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Résumé 

 

Dans le paysage en évolution rapide de l'Internet des objets (IoT) et de l'Internet des 
véhicules (IoV), la mise en cache émerge comme une technologie essentielle pour améliorer 
l'efficacité du réseau, réduire la latence et enrichir l'expérience utilisateur. Ces domaines 
technologiques sont confrontés à une demande croissante de mécanismes de gestion et de 
livraison des données plus performants, en raison de l'augmentation des volumes de données 
et de la complexité des réseaux. 

Cette thèse explore des stratégies de mise en cache innovantes dans les domaines de l'IoT 
et de l'IoV, visant à améliorer les services réseau et les expériences utilisateur. La recherche 
présentée se divise en trois études distinctes mais interconnectées, chacune abordant des 
aspects critiques des performances du réseau, notamment la réduction de la latence, 
l'efficacité de la diffusion de contenu et l'expansion de la couverture réseau. 

La première étude se concentre sur l'amélioration des capacités de mise en cache centrées 
sur le contenu dans les environnements IoT, en abordant les défis uniques posés par la nature 
hétérogène et dynamique de ces réseaux. Le paradigme de IoT implique la connexion et la 
communication de milliards de dispositifs diversifiés, ce qui complique la mise en œuvre de 
nouveaux services. Un aspect crucial du IoT est la nature centrée sur le contenu des données, 
où les applications se concentrent sur l'information elle-même plutôt que sur sa source ou son 
emplacement. Pour surmonter ces défis, nous adoptons une approche basée sur les réseaux 
de contenu (CCN), qui restructure l'architecture de l'Internet en nommant les données de 
manière à ce que chaque fragment devienne une unité auto-identifiable, facilitant ainsi la 
mobilité et l'accès par le cache. 

Nous proposons une architecture hiérarchique de mise en cache utilisant un contrôleur 
SDN/Cache global (GSCC), qui centralise les décisions de mise en cache afin d'optimiser 
l'utilisation des ressources à travers le réseau. Les dispositifs IoT sont regroupés en clusters, 
avec des têtes de cluster agissant comme contrôleurs de cache locaux. Ces têtes de cluster 
rationalisent la diffusion du contenu en réduisant significativement les sauts de transmission 
nécessaires pour accéder aux données. La gestion des caches au sein de chaque cluster permet 
une distribution efficace du contenu en fonction des capacités énergétiques et de stockage des 
dispositifs, améliorant ainsi la durée de vie et la performance globale du réseau. 

Pour déterminer les meilleures décisions de mise en cache, nous introduisons des 
techniques de prise de décision multicritères (MCDM) telles que le processus de hiérarchie 
analytique (AHP) et TOPSIS. Ces méthodes permettent d'évaluer diverses métriques liées aux 
opérations IoT, assurant une stratégie de mise en cache informée et adaptée à la nature 
dynamique du réseau. Par exemple, l'AHP permet de structurer les critères de décision en une 
hiérarchie, attribuant des poids relatifs à chaque critère basé sur leur importance, tandis que 
TOPSIS aide à identifier les meilleures options en comparant les alternatives à une solution 
idéale. 
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Les résultats de nos simulations démontrent l'efficacité de notre approche, avec un taux 
moyen de réussite du cache de 72 %, une réduction du nombre de sauts de 42 % et le maintien 
des fonctionnalités opérationnelles sur 60 % des nœuds pendant 90 % de la période de 
simulation. Ces résultats illustrent non seulement l'amélioration de l'efficacité de la mise en 
cache, mais aussi une réduction significative des délais d'accès aux données, répondant ainsi 
aux exigences critiques de latence et de disponibilité dans les environnements IoT. 

En résumé, notre étude propose une solution innovante pour la gestion de la mise en cache 
dans les réseaux IoT, en intégrant des stratégies de décision multicritères et une orchestration 
hiérarchique des caches. Cette approche permet d'améliorer considérablement la 
performance et la durabilité des réseaux IoT, tout en répondant aux défis spécifiques posés 
par la diversité et la dynamique de ces environnements. 

La deuxième étude examine les défis posés par la grande mobilité des véhicules dans les 
réseaux IoV. Pour répondre à ces défis, nous proposons deux méthodes de mise en cache 
spécialisées adaptées à des types de contenu distincts : la sécurité et l'infodivertissement. La 
méthode FM3C (Federated Learning-based Mobility-aware Collaborative Content Caching) est 
conçue pour l'infodivertissement, tandis que la méthode STAECC (Spatio-Temporal 
Characteristics Aware Emergency Content Caching) s'adresse aux données d'urgence. En 
utilisant l'apprentissage fédéré, nous pouvons prédire la popularité du contenu tout en 
préservant la confidentialité des utilisateurs. Ce processus est intégré à une prise de décision 
multicritères pour optimiser le placement du cache dans les unités routières (RSU). 

La méthode STAECC utilise des techniques de prise de décision multicritères pour 
déterminer les contenus d'urgence à mettre en cache, en se basant sur leurs caractéristiques 
spatio-temporelles spécifiques. Les décisions sont prises localement par les RSU présentes sur 
le site de l'accident, ce qui permet de réduire les délais de traitement et d'améliorer la 
réactivité. 

Pour le contenu d'infodivertissement, FM3C utilise des modèles de Long Short-Term 
Memory (LSTM) pour estimer la popularité du contenu selon l'historique des demandes des 
utilisateurs, tout en préservant la confidentialité grâce à l'apprentissage fédéré. Les véhicules 
forment des modèles locaux basés sur l'historique des demandes, et ces modèles sont ensuite 
agrégés par les RSU pour des décisions de cache efficaces. Cette approche garantit que le 
contenu le plus pertinent est mis en cache de manière proactive, améliorant ainsi l'expérience 
utilisateur en réduisant les temps de latence et en minimisant la charge sur le réseau principal. 

Notre approche innovante améliore non seulement les taux de réussite du cache jusqu'à 98 
%, mais réduit également les délais de récupération de contenu à moins de 10 ms, démontrant 
une fourniture efficace de contenu IoV. En outre, nous introduisons un serveur Fog pour 
coordonner les décisions de mise en cache entre les RSU, garantissant ainsi une gestion 
optimale des ressources réseau. Grâce à l'utilisation de réseaux définis par logiciel (SDN), nous 
pouvons transférer intelligemment les demandes vers les contenus mis en cache, permettant 
une coopération efficace entre les RSU et une réduction significative des délais de réponse. 

En résumé, cette étude propose une solution robuste et scalable pour le cache de contenu 
dans les réseaux IoV, en utilisant des techniques avancées d'apprentissage fédéré et de prise 
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de décision multicritères pour répondre aux besoins spécifiques des contenus d'urgence et 
d'infodivertissement, tout en assurant une gestion efficace des ressources réseau et une 
amélioration de la qualité de service pour les utilisateurs. 

L'étude finale présente une stratégie innovante de déploiement de drones (UAV) appelée 
SONA, qui prend en charge la mise en cache et étend la couverture réseau, notamment dans 
les scénarios IoV où les RSU sont débordées ou absentes. Utilisant la technologie blockchain 
pour l'orchestration décentralisée du réseau, SONA applique une approche d'optimisation de 
Pareto et transforme le défi de déploiement en un processus de décision de Markov (MDP), 
résolu à l'aide de l'apprentissage par renforcement profond (DRL). Cette stratégie réduit non 
seulement la latence moyenne à moins de 8 ms, mais permet également d'obtenir des taux de 
satisfaction des utilisateurs plus élevés avec moins de drones déployés, démontrant ainsi 
l'efficacité du positionnement dynamique des drones et de la mise en cache basée sur l'analyse 
prédictive. 

La récente évolution des systèmes de transport intelligents (ITS) est marquée par 
l'avènement de IoV, inaugurant une nouvelle phase de transport intelligent et interconnecté. 
Cette transition nécessite des solutions avancées pour améliorer les services réseau et 
l'expérience utilisateur. Les technologies IoV ont catalysé le développement de nombreuses 
applications, allant de l'information sur le trafic à la planification des itinéraires et aux 
mécanismes de sécurité. En particulier, le domaine de l'infodivertissement en véhicule connaît 
une croissance substantielle. Avec l'arrivée des véhicules autonomes, les passagers peuvent 
profiter de contenus multimédia, des interactions sur les réseaux sociaux, du Metaverse, et de 
la réalité virtuelle. Les prévisions indiquent qu'en 2040, les véhicules autonomes 
représenteront environ 75 % du trafic routier, atteignant une valeur de marché potentielle de 
7 000 milliards de dollars d'ici 2050. 

Cependant, ces développements prometteurs présentent deux défis majeurs pour garantir 
une qualité de service élevée pour les utilisateurs IoV : la nécessité d'une faible latence et d'une 
couverture adéquate. Les applications IoV, notamment celles axées sur la sécurité, exigent des 
délais stricts, tandis que les applications de divertissement nécessitent à la fois une faible 
latence et une bande passante importante, mettant à rude épreuve le réseau de collecte si 
tout le contenu doit être récupéré depuis des serveurs distants. Le cache de contenu émerge 
comme une solution efficace, réduisant les transferts de données redondants et améliorant 
l'efficacité de transmission en plaçant le contenu populaire plus près des utilisateurs. De plus, 
l'infrastructure terrestre existante ne parvient souvent pas à couvrir entièrement les vastes 
réseaux routiers, une situation exacerbée par les catastrophes naturelles ou les volumes de 
demandes exceptionnellement élevés. Le déploiement de UAV apparaît comme une solution 
flexible pour renforcer l'infrastructure existante, étendant la couverture et fournissant une 
capacité supplémentaire là où elle est nécessaire. 

La mise en cache efficace dans le cadre IoV repose sur l'observation que les utilisateurs 
d'une même zone géographique ont souvent des préférences de contenu similaires. En 
cachant stratégiquement ce contenu populaire plus près des utilisateurs, il est possible de 
réduire considérablement les transferts de données répétitifs et de raccourcir les délais de 
réponse. Cependant, la mise en œuvre d'une stratégie de cache efficace n'est pas sans défis, 
notamment la sélection du contenu à mettre en cache en raison des ressources limitées. Une 
approche prédictive s'avère nécessaire pour estimer la popularité future du contenu, en se 



ivi 
 

basant sur les modèles historiques de demandes des utilisateurs, tout en respectant leur vie 
privée. 

Pour surmonter ces défis, notre méthodologie utilise l'apprentissage fédéré, modifié pour 
améliorer la sélection des participants et l'agrégation des modèles. Cette approche permet de 
rassembler des informations sans accéder directement aux données sensibles des utilisateurs, 
assurant ainsi un mécanisme de prédiction de la popularité des contenus respectueux de la vie 
privée. En parallèle, nous optimisons le déploiement des UAVs pour répondre aux limitations 
de l'infrastructure terrestre. 

SONA optimise à la fois le nombre et les emplacements des UAVs en utilisant des modèles 
de LSTM pour prédire les schémas de trafic des véhicules. En transformant ce défi en un MDP 
et en utilisant le DRL, nous élaborons une stratégie de déploiement optimale qui maximise la 
connectivité et le débit tout en minimisant le nombre de drones nécessaires. Cette approche 
améliore non seulement la couverture et la qualité de service, mais réduit également la 
consommation d'énergie. 

Enfin, notre stratégie utilise la technologie blockchain pour créer un cadre décentralisé et 
transparent permettant la coopération entre RSU et UAV. Cette coopération optimise les 
stratégies de cache et de déploiement des UAV, assurant une distribution efficace et diversifiée 
des contenus mis en cache, tout en maximisant la couverture et la qualité de service. La 
technologie blockchain facilite un mécanisme de consensus collectif, garantissant que les 
stratégies de déploiement des UAVs reflètent les besoins actuels du réseau. 

En résumé, cette recherche propose une solution avancée et scalable pour le cache de 
contenu et le déploiement des UAVs dans les réseaux IoV, utilisant des techniques de 
prédiction avancées, d'optimisation et de blockchain pour améliorer la qualité de service et 
l'efficacité du réseau. 

Ensemble, ces études illustrent une progression de la mise en cache et de la gestion de 
réseau centralisées vers des systèmes de réseau plus autonomes, décentralisés et intelligents. 
Les recherches futures pourraient explorer l'amélioration des mesures de sécurité de ces 
mécanismes pour se protéger contre l'évolution des cybermenaces et le développement de 
modèles d'incitation pour encourager la participation des utilisateurs, en particulier dans les 
scénarios d'apprentissage fédéré. En abordant ces domaines, nous pouvons améliorer 
davantage la robustesse et l’efficacité des écosystèmes IoT et IoV, en garantissant qu’ils 
puissent répondre aux demandes croissantes des infrastructures de transport et de 
communication modernes. 

 

 

 

Mots clés: Caching, IoT, IoV, UAV, Federated learning, Blockchain 
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Abstract 
 

In the rapidly evolving landscape of the Internet of Things (IoT) and the Internet of Vehicles 
(IoV), caching emerges as a pivotal technology to enhance network efficiency, reduce latency, 
and improve user experiences. These technological domains face growing demands for better 
data management and delivery mechanisms due to increasing data volumes and network 
complexity. 

In this thesis, we explore innovative caching strategies within the realms of the IoT and the 
IoV to enhance network services and user experiences. The research presented spans three 
distinct yet interconnected studies, each addressing critical aspects of network performance, 
including latency reduction, content delivery efficiency, and network coverage expansion. 

The first study focuses on enhancing content-centric networking caching capabilities within 
IoT environments. By employing hierarchical network orchestrations and a global SDN/Cache 
controller (GSCC), our approach centralizes cache decisions, optimizing resource usage across 
the network. Devices are grouped into clusters with heads acting as cache controllers, 
streamlining content delivery and reducing transmission hops significantly. We introduce 
Multi-Criteria Decision Making (MCDM) techniques such as Analytical Hierarchy Process (AHP) 
and TOPSIS, which evaluate multiple metrics to optimize caching decisions. Simulation results 
from this study show an average cache hit rate of 72%, a reduction in hop counts by 42%, and 
the maintenance of operational functionality across 60% of nodes during 90% of the 
simulation period. 

The second study delves into the challenges posed by the high mobility of vehicles in IoV 
networks. We propose two specialized caching methods tailored to distinct content types 
prevalent in IoV: safety and infotainment. The Federated Learning-based Mobility-aware 
Collaborative Content Caching (FM3C) method is designed for infotainment, while the Spatio-
Temporal Characteristics Aware Emergency Content Caching (STAECC) method caters to 
emergency data. We utilize federated learning to predict content popularity while preserving 
user privacy, integrated with multi-criteria decision-making to optimize cache placement in 
Road-Side Units (RSUs). Our innovative approach not only enhances cache hit rates to up to 
98% but also significantly reduces content retrieval delays to under 10ms, showcasing an 
efficient provision of IoV content. 

The final study introduces an innovative UAV deployment strategy termed SONA, which 
supports caching and extends network coverage, particularly in IoV scenarios where RSUs are 
overwhelmed or absent. Utilizing blockchain technology for decentralized network 
orchestration, SONA applies a Pareto Optimization approach and transforms the deployment 
challenge into a Markov Decision Process (MDP), solved using Deep Reinforcement Learning 
(DRL). This strategy not only reduces average latency to less than 8ms but also achieves higher 
user satisfaction rates with fewer UAVs deployed, demonstrating the effectiveness of dynamic 
UAV positioning and caching based on predictive analytics. 
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Together, these studies illustrate a progression from centralized caching and network 
management towards more autonomous, decentralized, and intelligent network systems. 
Future research could explore enhancing the security measures of these mechanisms to 
protect against evolving cyber threats and developing incentive models to encourage user 
participation, particularly in federated learning scenarios. By addressing these areas, we can 
further advance the robustness and efficiency of IoT and IoV ecosystems, ensuring that they 
can meet the growing demands of modern transportation and communication infrastructures. 

 
 

Keywords: Caching, IoT, IoV, UAV, Federated learning, Blockchain 
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1. Introduction 

1.1 Context and Motivation 
 
The Internet of Things (IoT) [1] represents a paradigm shift in the digital transformation of 

our world, where the interconnectivity of devices extends the internet beyond the traditional 
confines of computing devices, to a broader range of everyday objects. This 
interconnectedness enables objects to collect and exchange data, facilitating a level of 
communication and automation previously deemed unattainable [2]. IoT finds application 
across various domains, including but not limited to smart homes [3], healthcare [4], 
agriculture [5], and transportation [6], significantly enhancing efficiency, sustainability, and 
convenience in everyday activities. Among its various applications, the Internet of Vehicles 
(IoV) [7] emerges as a notable subcategory, epitomizing IoT in mobility contexts. The IoV 
extends the IoT's connectivity and data exchange capabilities to vehicles, enabling dynamic 
information sharing among vehicles, infrastructure, and pedestrians to improve traffic 
management, enhance safety, and personalize the driving experience [8]. This distinctiveness 
positions the IoV not only as a pivotal IoT application but also as a vanguard in the mobility-
driven digital landscape. 

Despite the transformative potential of IoT and IoV, their implementation surfaces critical 
challenges in data management and network efficiency. The proliferation of IoT devices and 
the resultant data explosion impose a considerable strain on backhaul networks [9], 
necessitating innovative solutions to manage the surge in content generation and requests. 
This challenge is further compounded by the dispersed nature of IoT devices, which often 
necessitates ubiquitous network coverage to ensure seamless connectivity [10]. While these 
challenges are somewhat universal across IoT applications, specific subcategories face unique 
obstacles. For instance, conventional IoT devices, predominantly sensors, grapple with 
resource constraints, including limited battery life and intermittent connectivity due to their 
basic communication capabilities [11]. Ensuring data availability, even when the source IoT 
node is momentarily inaccessible, becomes paramount in such scenarios. 

Conversely, the IoV domain is particularly challenged by the need for reduced latency to 
support applications critical to safety and the complexities introduced by the mobility of 
vehicles [12], which can result in inconsistent connections. Furthermore, the deployment of 
interactive applications within the IoV ecosystem accentuates the need for innovative 
solutions tailored to this dynamic environment. 

Caching emerges as a potent solution to these challenges [13], proposing a method to 
locally store frequently accessed data to alleviate the load on backhaul networks and ensure 
data availability despite potential connectivity issues. However, the effective implementation 
of caching within the IoT and IoV landscapes is fraught with challenges. Deciding which 
contents to cache and which to omit requires a nuanced understanding of the network's 
dynamics and the varying nature of IoT subcategories. This complexity underscores the 
necessity for bespoke caching solutions that are meticulously tailored to each IoT subcategory, 
taking into account their unique challenges and objectives. 

In response to these nuanced challenges, this thesis develops distinct caching 
methodologies, each optimized for specific IoT and IoV environments. Initially, we focus on 
traditional IoT devices, proposing caching strategies that mitigate their inherent limitations. 
Subsequently, we delve into the IoV realm, devising specialized caching approaches catered 
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to the diverse application types within this domain. Recognizing that caching efficiencies are 
moot without robust connectivity, we explore the deployment of Unmanned Aerial Vehicles 
(UAVs) as a means to bolster network coverage and enhance caching capabilities across these 
varied IoT landscapes. This multifaceted approach not only addresses the prevailing challenges 
in data management and network efficiency but also paves the way for a more integrated, 
efficient, and responsive IoT and IoV ecosystem. 

1.2 Research Objectives and Contributions 
 

This thesis aims to address the critical challenges in data management and network 
efficiency within the IoT and the IoV, as identified in the preceding motivation section. Central 
to this endeavor is the development of efficient caching schemes tailored to the unique 
requirements of each scenario, thereby enhancing system performance, data availability, and 
user experience. Our research is guided by the following specific objectives: 

 

1.2.1. Objective 1: Hierarchical Caching Scheme for IoT Devices 
 

Our first objective involves proposing a caching scheme optimized for IoT devices 
characterized by limited capabilities and reliance on battery power. The overarching goals of 
this initiative are to minimize the load on the backhaul network, fulfill the majority of requests 
locally, extend the lifespan of IoT nodes, and improve data availability. To achieve these aims, 
we adopted a hierarchical approach to caching decisions. This methodology employs distinct 
criteria at each layer for selecting suitable IoT nodes for content caching and determining the 
contents to be cached. Given the diversity of criteria, multiple-criteria decision-making 
(MCDM) [14] techniques serve as the foundation for our decisions, ensuring a balanced and 
efficient caching strategy. 

 
 

Contributions from Objective 1: 
 

• Development and implementation of a hierarchical caching decision framework for IoT 
devices. 

• Application of MCDM techniques to optimize content selection and node designation, 
enhancing system efficiency and node longevity. 

1.2.2. Objective 2: Caching in IoV with a Focus on Reducing Delay 
 

Our second objective examines caching within the IoV, targeting the reduction of delays to 
foster the emergence of new applications and functionalities. Recognizing the dichotomy of 
IoV content into safety and infotainment categories, we proposed two distinct caching 
methods. The first method is specifically designed for safety-related content, emphasizing the 
spatio-temporal characteristics of such data. The second method focuses on infotainment 
content, utilizing popularity prediction to identify optimal content for caching. A key aspect of 
this work is the emphasis on privacy preservation during the popularity prediction process, 
ensuring user data confidentiality. 
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Contributions from Objective 2: 
 

• Introduction of two specialized caching schemes for IoV, addressing the unique needs of 
safety and infotainment content. 

• Integration of privacy-preserving mechanisms in popularity prediction, safeguarding user 
data while optimizing caching decisions. 

1.2.3. Objective 3: Integration of IoV Caching Schemes with UAVs 
and Blockchain Technology 

 

The final objective explores the integration of the proposed IoV caching schemes with UAVs 
and blockchain technology. This initiative aims to extend caching capacities and coverage 
through the strategic deployment of UAVs, while leveraging blockchain to decentralize and 
secure caching decisions. A UAV deployment strategy is developed to maximize the Quality of 
Service (QoS) for users and minimize the associated costs by deploying an optimized number 
of UAVs, ensuring an effective and cost-efficient expansion of network capabilities. 

 
Contributions from Objective 3: 
 

• Deployment of a novel UAV-based strategy to enhance network coverage and caching 
capacity within the IoV. 

• Implementation of blockchain technology to facilitate decentralized, secure caching 
decisions, ensuring robustness and transparency. 
 

Through these objectives and the corresponding contributions, this thesis presents a 
comprehensive approach to overcoming the challenges of caching and network management 
in IoT and IoV environments. By tailoring caching schemes to specific device capabilities and 
content types, and innovatively integrating emerging technologies like UAVs and blockchain, 
this work significantly advances the state-of-the-art in IoT and IoV systems. 

1.3 Thesis Structure 
 
This thesis is meticulously structured to address the complexities and challenges of 

implementing efficient caching strategies within the IoT and the IoV landscapes. Following the 
introduction, the thesis is organized into five additional chapters, each focusing on distinct but 
interconnected areas of research. Below is a summary of the content and primary focus of 
each chapter, linked to the research objectives and contributions outlined previously: 

 
Chapter 2: Background and Literature Review 

This chapter lays the foundational groundwork for the thesis by providing an extensive 
review of the literature, establishing the necessary background to understand the current 
state of research in Internet of Things (IoT) and Internet of Vehicles (IoV) caching schemes. 
Initially, we explore various concepts such as IoT, IoV, Unmanned Aerial Vehicles (UAVs), and 
blockchain technology, discussing their applications and the challenges associated with them. 
Following this, the focus shifts to caching mechanisms, which are divided into three main 
subsections: general IoT caching schemes, IoV-specific caching schemes, and studies exploring 
the role of UAVs in caching. Each subsection begins with a thorough introduction of related 
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works. After presenting these studies, we identify the existing research gaps and categorize 
the approaches taken by various researchers. This discussion sets the stage for the novel 
contributions of this thesis by highlighting areas in need of further exploration and innovation. 

 
Chapter 3: A Software-Defined Caching Scheme for the Internet of Things 

 
Aligned with the first objective, this chapter delves into the development of a caching 

scheme for IoT devices with limited capabilities and reliance on battery, aimed at minimizing 
backhaul network load, responding to most requests locally, and extending node lifetimes. It 
details the hierarchical method for caching decision-making, where different criteria are 
employed at each layer for selecting suitable IoT nodes and contents for caching. Utilizing 
MCDM techniques like the AHP and TOPSIS, the chapter outlines how these approaches 
underpin our caching decisions, significantly enhancing system efficiency and data availability. 

 
Chapter 4: An Intelligent Caching Scheme Considering the Spatio-Temporal 
Characteristics of Data in the Internet of Vehicles 

 
Focusing on the second objective, this chapter explores caching within the IoV, aiming to 

reduce delays and facilitate the introduction of new applications. It presents two distinct 
caching methods tailored for safety and infotainment contents, addressing their unique 
characteristics. The FM3C method targets infotainment content, while the STAECC method is 
devised for emergency content. This chapter discusses the use of LSTM models for popularity 
prediction and the implementation of privacy-preserving mechanisms, ultimately 
demonstrating the effectiveness of these methods in improving cache hit rates, reducing 
delays, and enhancing the Quality of Experience (QoE) for users. 
 

Chapter 5: Enhancing IoV with SONA: A Synergistic Approach to UAV Deployment 
and Blockchain-Based Caching 

 
Addressing the final objective, this chapter presents the integration of the proposed IoV 

caching schemes with UAVs and blockchain technology. It highlights how this novel approach 
aims to extend caching capacities and coverage by deploying UAVs and leveraging blockchain 
for decentralized and secure caching decisions. The chapter elaborates on the mathematical 
optimization model and machine learning algorithms employed for dynamic UAV deployment 
and caching strategies, showcasing significant network efficiency improvements through 
adaptive positioning of UAVs and content caching based on predictive analytics. The use of 
blockchain technology is emphasized for enhancing the IoV ecosystem’s robustness, 
facilitating autonomous interaction among established infrastructures and UAVs for optimized 
decision-making. 

 
Chapter 6: Summary, Concluding Remarks, and Future Research Directions 

 
The final chapter summarizes the key findings and contributions of the thesis, reflecting on 

the implications of the research for advancing IoT and IoV network services. It provides 
concluding remarks that encapsulate the essence of the work and discusses potential avenues 
for future research, highlighting opportunities for further advancements in caching strategies 
and network efficiency within IoT and IoV environments. 
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2. Background and Literature Review 

2.1 Internet of Things Paradigm 
 

The concept of the IoT was first introduced in 1999 by Kevin Ashton. He envisioned IoT as 
a system bridging the gap between the physical world and the Internet, utilizing RFID 
technology and pervasive sensor devices to observe, identify, and interact with real-world 
entities [18]. This initial definition has since evolved, with numerous interpretations being 
offered [19]-[22]. However, one of the most comprehensive definitions describes IoT as "An 
open and comprehensive network of intelligent objects that have the capacity to auto-
organize, share information, data, and resources, acting and reacting in the face of situations 
and changes in the environment." [23] This definition underscores the inherent capacity of IoT 
devices for intelligence, interconnectivity, and adaptability, marking a significant leap towards 
autonomous, smart environments. 

The widespread adoption of IoT devices and their integration into the fabric of daily life 
represent a significant technological evolution. Recent data, including Cisco's annual report 
[24], indicates that machine-to-machine (M2M) connections account for 50% of all global 
connections, a trend that is expected to continue its upward trajectory. This underscores the 
increasing reliance on and the importance of IoT technologies in facilitating automated and 
seamless communication across various sectors and applications. 

Moreover, projections by HS Market Telecommunication Industry [25] suggest a more 
ambitious future, estimating that by the year 2030, approximately 125 billion IoT devices will 
be connected to networks worldwide. This exponential increase in IoT devices competing for 
network resources presents not only a considerable challenge to the already scarce network 
resources but also introduces new dimensions to QoS and data management. These 
developments highlight the critical need for innovative solutions to accommodate the rapid 
growth of IoT devices while ensuring efficient, reliable, and secure data communication and 
management. 

2.1.1. IoT Applications 
 

IoT technology has found applications across various domains, each tailored to leverage 
the unique capabilities of interconnected devices to address specific challenges and enhance 
efficiency, safety, and quality of life. Some prominent use cases include: 

 
• Smart Healthcare: Utilizing IoT devices for monitoring patient health in real-time, 

facilitating remote diagnostics, and improving patient care through data-driven insights 
and interventions [26]-[28]. 

• Smart Environment: Leveraging sensor networks within the IoT framework transforms the 
approach to environmental monitoring, enabling a more proactive stance toward 
environmental protection and management. Beyond measuring air quality, water quality, 
and soil conditions, IoT technologies play a pivotal role in disaster detection and wildlife 
conservation. These systems are crucial for the early detection of natural disasters, 
including forest fires, earthquakes, tsunamis, and avalanches, allowing for timely 
evacuation and response efforts to mitigate damage and save lives. Additionally, IoT 
devices facilitate the tracking of wild animals, contributing to research on their migration 
patterns, health, and behavior, thereby enhancing efforts in wildlife conservation and the 
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protection of endangered species [29]-[34]. 
• Smart Cities: Integrating IoT technologies to optimize urban services such as lighting, 

traffic management, and waste collection, enhancing urban living through improved 
efficiency, reduced costs, and increased sustainability [35]-[37]. 

• Smart Transportation: The advent of IoT technologies in the realm of Intelligent 
Transportation Systems (ITS) has revolutionized the way traffic is managed, significantly 
reducing congestion and enhancing road safety. At the heart of this transformation is the 
IoV, a cornerstone application that brings the power of IoT to vehicles and transportation 
infrastructures. It fosters a network of dynamic, real-time communication between 
vehicles, road infrastructures, and traffic control centers, streamlining traffic 
management and safety protocols. Beyond the critical improvements in traffic flow and 
safety, the IoT ecosystem significantly elevates the in-vehicle experience through the 
integration of sophisticated infotainment systems. These systems offer passengers 
access to a myriad of services and content, including live traffic updates, weather 
forecasts, multimedia streaming, and interactive navigation aids, all tailored to make 
journeys more enjoyable and informative. By harnessing the capabilities of IoT for in-
vehicle infotainment, smart transportation not only prioritizes efficiency and safety but 
also places a high value on enhancing the user experience, thereby redefining the future 
of travel. [38]-[41]. 
 

Each of these use cases exemplifies the potential of IoT to revolutionize industries by 
harnessing the power of data and connectivity. As IoT continues to evolve, its applications are 
set to expand, further integrating into various facets of human activity and significantly 
impacting how we live, work, and interact with our environment. 

2.1.2. IoT Challenges 
 

As the IoT continues to evolve and expand, it confronts a spectrum of challenges that could 
impede its growth and the realization of its full potential. Addressing these challenges is critical 
for ensuring the seamless integration and functionality of IoT systems across various domains. 
Below, we delve into some of the key challenges that the IoT faces: 

 
• Battery Life: A significant portion of IoT devices relies on battery power, with some 

even powered by renewable energy sources that can be unpredictable. Given the 
distributed nature of these devices, frequently replacing or recharging batteries is 
impractical. Thus, enhancing battery life and developing energy-efficient devices 
that can operate for extended periods become paramount. Innovative energy 
harvesting technologies and power management techniques are being explored to 
prolong device operability without human intervention [42][43]. 

• Interoperability: The essence of IoT lies in its ability to not only connect devices to 
the Internet but also facilitate meaningful M2M communication. Achieving this level 
of interoperability among a diverse array of devices, each possibly using different 
protocols and standards, poses a considerable challenge. The development and 
adoption of globally accepted standards and protocols are crucial for enabling 
seamless communication and interaction across the IoT ecosystem, thereby 
unlocking the potential for advanced integrated applications [44]-[46]. 

• Coverage: IoT devices are dispersed across a wide range of environments, from 
dense indoor spaces to expansive outdoor areas. Ensuring consistent and extended 
coverage to maintain reliable connectivity for all these devices, irrespective of their 
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location, poses a significant challenge. The issue becomes particularly pronounced 
in remote or rural areas, where conventional network infrastructure may be sparse 
or entirely absent. To overcome these challenges, advancements in network 
technologies, such as low-power wide-area networks (LPWANs), have been 
instrumental. LPWANs offer broader coverage and deeper penetration capabilities 
at reduced costs [47]-[49]. Additionally, the deployment of UAVs is emerging as a 
promising solution to extend coverage dynamically [50]-[52]. UAVs can be rapidly 
deployed to areas lacking infrastructure, acting as temporary network nodes that 
bridge coverage gaps. This flexibility makes UAVs an invaluable asset in ensuring 
ubiquitous connectivity for IoT devices across varied and challenging terrains, 
further expanding the potential reach and utility of IoT applications. 

• Big Data: The proliferation of IoT devices is set to generate an immense volume of 
data, with a recent report indicating that data output will reach 79.4 zettabytes (ZB) 
by 2025 [63]. This vast quantity of data presents significant challenges in terms of 
storage, processing, and analysis [53]. Managing this big data effectively requires 
robust data analytics tools and technologies capable of extracting valuable insights 
in real-time [54]. Furthermore, ensuring the privacy and security of this data amidst 
its vastness adds another layer of complexity to its management. A promising 
solution to these challenges is the adoption of edge computing [55]-[57]. By 
processing data at the edge of the network, closer to where it is generated, and 
responding to requests locally, edge computing can significantly reduce the need 
for data to travel back and forth between distant servers and IoT devices. This not 
only alleviates the strain on network resources but also enhances data processing 
speed and efficiency. Additionally, edge computing can contribute to improved data 
privacy and security by limiting the exposure of sensitive information and reducing 
the potential attack surface for cyber threats. Through these mechanisms, edge 
computing offers a viable approach to mitigating the challenges associated with big 
data in the IoT ecosystem. 

• Security and Privacy: As the number of connected devices grows, so does the 
surface for potential cyberattacks. Ensuring the security of IoT devices and the 
privacy of the data they handle is of utmost importance. Challenges arise from the 
heterogeneity of devices, many of which may lack the necessary computational 
power to implement standard security protocols. Developing lightweight, robust 
security solutions that can be deployed across various devices is critical for 
protecting against breaches and ensuring user privacy [58][59]. 

• Routing: Efficient data transmission within the IoT network, especially in scenarios 
involving constrained devices and networks, is crucial. Routing in IoT involves 
managing the data flow from numerous devices over networks that may be highly 
dynamic and resource-constrained. Designing adaptive routing protocols that can 
efficiently handle the scalability, variability, and bandwidth constraints of IoT 
networks is essential for maintaining optimal network performance and reliability 
[60]-[62]. 

2.2 The Internet of Vehicles (IoV): Bridging 
Connectivity on the Move 

 
The concept of Vehicular Ad-hoc NETworks (VANET) lays the foundational stone for 
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understanding the more evolved and comprehensive framework of the IoV. VANET is 
established as a network formed ad-hoc among moving vehicles and other connected entities 
through a wireless medium, facilitating the exchange of critical information [64]. This network 
supports Vehicle-to-Vehicle (V2V) [65], Vehicle-to-Infrastructure (V2I) [66], and Vehicle-to-
Road (V2R) communications [67], heralding a new era in ITS. Vehicular Ad-hoc Networks 
(VANETs) unlock a myriad of applications ranging from blind crossing assistance [68] and safety 
enhancement [69] to traffic condition monitoring and collision prevention [70][71]. 

Recent statistics illuminate the burgeoning scale of vehicular networks. In 2018 alone, 
vehicle production reached an impressive 92 million units [72], and according to the 
International Organization of Motor Vehicle Manufacturers, the global count of vehicles in use 
has soared to approximately 1.59 billion [73]. This vast and ever-increasing number of vehicles 
underscores the critical need for advanced vehicular communication and management 
systems. 

Evolving from the integration of VANET and IoT principles, the IoV emerges as a pivotal 
concept aimed at enhancing road safety, reducing accident rates, and streamlining traffic 
management. Vehicles within the IoV paradigm are not merely transit tools but are 
transformed into intelligent objects. These objects are equipped with sophisticated software 
and hardware capable of performing complex calculations and real-time decision-making 
based on the analysis of incoming data. Furthermore, IoV extends the connectivity of these 
smart vehicles beyond traditional vehicular networks. It incorporates heterogeneous network 
access [74], encompassing a broad spectrum of users, vehicles, things, and networks, thereby 
facilitating universal internet access and enabling a wide range of services from traffic 
management to infotainment. 

The IoV represents a significant leap towards creating smarter, safer, and more efficient 
transportation systems. By leveraging the combined capabilities of VANETs and the IoT, the 
IoV offers a robust platform for vehicles to interact with each other and with the surrounding 
infrastructure. This interaction paves the way for a future where vehicles can autonomously 
navigate, communicate potential hazards, optimize traffic flows, and provide passengers with 
seamless connectivity and entertainment options, making the journey as important as the 
destination. 

 

2.2.1. Exploring IoV Architectures 

 
The evolution of vehicular networks into IoV has been met with significant interest from 

academia and industry, leading to efforts aimed at standardizing architectural frameworks to 
support this advanced ecosystem. Among these, the European Telecommunications 
Standards Institute (ETSI) has been at the forefront, proposing architectures that adapt and 
extend beyond traditional models like TCP/IP or OSI to meet the specific requirements of 
VANETs and IoV systems [75]. 

A distinguishing feature of the ETSI architecture, as illustrated in Figure 2.1, is the inclusion 
of a facilities layer. This layer is pivotal for supporting VANET-related applications such as 
Cooperative Awareness Messages (CAM), Decentralized Notification Messages (DENM), and 
the Local Dynamic Map (LDM), enhancing both communication processes and cooperative 
vehicular functionalities. Further deviations from conventional models include the 
amalgamation of network and transport layers into a single cohesive layer and the 
introduction of dedicated layers for management and security, underscoring the emphasis on 
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robust, secure, and efficient network operations within the IoV ecosystem. 

 
Moreover, the architecture incorporates an ITS-specific stack that integrates 

GeoNetworking addressing, offering a tailored approach to vehicular communication that 
prioritizes geographic information and routing. However, while these architectural elements 
provide a solid foundation for internal device functionalities and communication, there exists 
a gap in addressing the dynamics of external device interactions, such as handover processes 
and other mechanisms that necessitate seamless interoperability between different devices 
and networks. 

The integration of IoT technologies into VANETs has unlocked a plethora of promising 
solutions and applications, from real-time autonomous driving applications to comprehensive 
road traffic management and enhanced comfort applications. This convergence has given rise 
to the IoV, a sophisticated ecosystem characterized by four main components: 

 
• End Points: This includes vehicles, smartphones, sensors, and other connected 

devices, forming the network's operational nodes. 
• Infrastructure: Comprising Roadside Units (RSUs), Wi-Fi hotspots, and cellular 

networks (5G/LTE) base stations, the infrastructure facilitates the core connectivity 
and communication framework. 

• Operations: Encompassing policy enforcement, flow-based management, security, 
and pricing strategies to ensure the network's optimal performance and integrity. 

• Services: Including a variety of cloud services (public, private, and enterprise) that 
provide subscription-based or enterprise-level data, voice, or video services. 

 
In addressing the architectural evolution towards facilitating IoV deployment, Bonomi from 

Cisco [76] has proposed a four-layer architecture that delineates the essential stages of IoV 

 
Figure 2.1. ETSI architecture. 
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communication: Embedded Systems and Sensors, Multi-service Edge, Core, Data Center, and 
Cloud. This framework, as depicted in Figure 2.2, outlines a structured approach to processing 
and managing the complex data flows and interactions inherent in IoV systems, from the initial 
data collection at the edge to the comprehensive processing and storage in data centers and 
cloud services. 

 
The continued exploration and refinement of IoV architectures by industry and academia 

are crucial for unlocking the full potential of vehicular networks. By fostering a deeper 
understanding of these frameworks and addressing the challenges of external device 
interactions, the IoV can achieve greater interoperability, security, and efficiency, driving 
forward the advancement of intelligent transportation systems. 

 

2.2.2. IoV Applications: Enhancing Safety, Comfort, and Traffic 
Management 

 

The realm of the IoV encompasses a broad spectrum of applications aimed at transforming 
the driving experience, enhancing road safety, and optimizing traffic management. These 
applications can be categorized into three primary domains, each with its specific objectives 
and functionalities: 

 
1) Safety-Related Applications 

At the forefront of IoV applications are those designed to enhance road safety. The core 
aim of safety-related applications in IoV is to mitigate road accidents, a concern that 
carries the weight of potential loss of life. These applications are characterized by their 
low tolerance for delays, as they are intended to act preemptively, offering drivers 
advance warnings to prevent mishaps. Examples of safety-related applications include: 

• Traffic Signal Violation Warning: Alerts drivers about potential red light and 
stop sign violations [77]. 

 
Figure 2.2. IoV 4 layers architecture based on [76]. 
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• Left Turn Assistant: Provides guidance for safe left turns at intersections [78]. 
• Intersection Collision Warning: Warns of possible collisions at intersections 

[79]. 
• Pedestrian Crossing Information: Informs drivers about pedestrians crossing or 

about to cross the road [80]. 
• Emergency Vehicle Signal Preemption: Helps clear the path for emergency 

vehicles by controlling traffic signals [81]. 
• Post-Crash Warning: Notifies approaching vehicles of recent accidents to 

prevent secondary collisions [82]. 
• Wrong Way Driver Warning: Alerts drivers and traffic management centers 

about vehicles moving in the wrong direction [83]. 
• Blind Spot Warning Position: Provides warnings about vehicles or obstacles in 

the driver’s blind spot [84]. 
• Cooperative Adaptive Cruise Control: Adjusts the vehicle’s speed to maintain 

safe distances from other vehicles [85]. 
• Road Condition Warning: Informs drivers about hazardous road conditions like 

ice, potholes, or debris [86]. 
 

2) Comfort and Infotainment Applications 
Designed to enhance the comfort and entertainment of travelers, infotainment 
applications within IoV can accommodate some level of message loss and delays. These 
applications enrich the travel experience by providing access to multimedia content, 
internet services, and location-based services. Examples include: 

• Intelligent Parking Navigation System: Assists drivers in finding parking spots 
and navigating parking areas [87]. 

• Internet Service Provisioning: Offers on-the-go internet access for various 
online services [88]. 

Additional subcategories cover a range of services from finding nearby amenities like 
ice cream parlors, movie theaters, and coffee shops to enabling online video streaming, 
carpooling, and file downloading. 
 

3) Traffic Efficiency and Management 
Applications under this category aim to streamline traffic flow and reduce congestion, 
thereby preventing accidents and saving travel time. By informing vehicles about 
current and upcoming traffic conditions, these applications allow for route adjustments 
to avoid congested areas. Key applications include: 

• Intersection Management: Optimizes intersection flow to reduce wait times 
and improve efficiency [89]. 

• Road Congestion Management: Provides real-time traffic condition updates to 
help drivers avoid congested routes [90]. 

• Digital Map Downloading: Allows for the downloading of updated digital maps 
for accurate navigation and routing [91]. 

 
These diverse IoV applications collectively work towards creating a safer, more enjoyable, 

and efficient driving environment. By leveraging advanced communication technologies and 
data analytics, IoV extends the capabilities of traditional vehicular networks, paving the way 
for innovative solutions to longstanding challenges in transportation. 
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2.2.3. Challenges in Realizing the Potential of IoV 

 
The IoV presents a revolutionary approach to enhancing vehicular communication and 

operations. However, the realization of its full potential is not without challenges. These 
obstacles span various aspects of network operations, data management, and service delivery, 
each contributing to the complexities of deploying and managing IoV systems effectively. 

 
1) Network Scalability and Connectivity 

One of the fundamental challenges facing IoV is ensuring scalable and reliable 
connectivity amidst the ever-increasing number of connected vehicles. The expansion 
of IoV networks, expected to encompass millions of vehicles globally, demands a 
network infrastructure that can handle massive data traffic while maintaining seamless 
communication among vehicles, infrastructure, and other entities [92]. 

2) Data Volume and Management 
IoV generates a significant volume of data through its diverse applications, from safety 
alerts to traffic updates and beyond. Efficiently managing this influx of data—ensuring 
its storage, processing, and analysis—is crucial for the operational efficiency of IoV 
systems. The big data challenge in IoV underscores the need for sophisticated data 
management solutions that can handle the scale and complexity of the data involved 
[93]. 

3) Latency and Real-Time Processing 
For IoV applications, particularly those related to safety and traffic management, low 
latency and real-time processing are imperative. The effectiveness of these applications 
is heavily reliant on the timely transmission and processing of data, with any delay 
potentially compromising the system's safety and efficiency [94]. 

4) Reliability and Consistency 
Ensuring data reliability and consistency across IoV's dynamic environment is another 
significant challenge. With vehicles constantly on the move and network conditions 
changing, providing consistent access to accurate and current information is essential 
for the effective operation of IoV applications [95]. 

5) Network Coverage and Accessibility 
Achieving comprehensive network coverage and accessibility, especially in areas with 
limited infrastructure, presents another hurdle for IoV. Ensuring that vehicles can 
access necessary data and services regardless of their location is critical for the 
universality and effectiveness of IoV systems [96]. 

6) Infotainment Content Delivery 
Beyond operational challenges, delivering infotainment content within IoV introduces 
its own set of issues. The high volume of content and its interactive nature demand 
substantial network resources, potentially leading to congestion and degraded service 
quality. Ensuring efficient delivery of infotainment content, therefore, becomes a 
challenge that needs addressing within the IoV framework [97]. 

 
Together, these challenges highlight the complexities involved in implementing and 

managing IoV systems. Addressing these issues is crucial for unlocking the transformative 
potential of IoV, paving the way for a future where vehicular networks enhance safety, 
efficiency, and the overall driving experience. 
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2.3 The Evolution and Versatility of Unmanned Aerial 
Vehicles in Wireless Communication Networks 

 
UAVs have emerged as a revolutionary technology, reshaping the landscape of wireless 

communication networks. These aerial devices offer a promising solution to establish rapid 
and reliable connectivity, especially in areas where traditional terrestrial communication 
infrastructures fall short. UAVs, operating as mobile aerial base stations, extend emergency 
communication services [98] to ground terminals in various critical scenarios including 
battlefields, disaster zones, congested roads, blind spots, and rural regions [99]. The agility 
and mobility of UAVs allow for swift deployment, closely serving users and adapting to 
fluctuating demand, which stands as a significant advantage over fixed terrestrial base 
stations. 

The utilization of UAVs in enhancing wireless coverage is multifaceted. From serving as 
flying cell sites that expand the reach of static territorial base stations to acting as aerial base 
stations for geographical areas beyond cellular networks, UAVs are at the forefront of 
innovation in network technology. Notable initiatives like Verizon's airborne LTE service [100] 
and Project Loon's balloon-based flying base stations [101] highlight the diverse applications 
of UAVs in providing critical connectivity solutions. This adaptability to varying traffic loads 
without the constraints of permanent deployment locations underpins the growing interest 
among wireless carriers in using UAVs for opportunistic coverage enhancement during large-
scale events. 

Advancements in technology have significantly contributed to the evolution of UAVs, 
making them lighter, more flexible, and capable of longer operational periods. These 
improvements have expanded UAV applications beyond military and public safety to 
encompass a wide range of civil uses. The integration of UAVs into 5G and beyond networks 
underscores their potential to boost network capacity through quick deployment, low 
maintenance costs, and unmatched mobility. Furthermore, the deployment of UAVs into 
existing wireless communication networks offers a seamless solution without necessitating 
cell reorganization, providing a practical approach to enhancing network services. 

Military applications of UAVs have evolved from border surveillance and reconnaissance to 
include public services by agencies such as police and public safety departments [102], aiding 
in disaster response and environmental monitoring. The versatility of UAV sizes allows for 
their use in solo missions or in formations, demonstrating their potential in civilian 
applications. This diversification is supported by advancements in electronics and sensor 
technology, broadening the scope of UAV network applications to traffic monitoring, wind 
estimation, and remote sensing [103]. 

The broader adoption of UAVs extends to various civilian and commercial applications, 
leveraging their reduced costs and sizes for weather monitoring, aerial imaging, surveillance, 
cargo transportation, and disaster recovery efforts [104]-[106]. The reliability and security of 
wireless communication with controllers are critical for the efficient and safe navigation of 
UAVs. As the landscape of wireless communications evolves, UAV applications continue to 
expand, including data collection in wireless sensors and IoT networks [107], wireless power 
transfer [108], mobile edge computing [109], and enhancing terrestrial network 
communications with intelligent reflecting surfaces [110]. 

The evolution and versatility of UAVs in wireless communication networks underscore their 
significant role in overcoming connectivity challenges and enhancing network capacity. Their 
rapid deployment, adaptability, and broad range of applications from military to civilian uses 
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mark UAVs as a pivotal technology in the future of wireless communications. 
 

2.3.1. Enhancing Connectivity through UAVs: A Dual Approach to 
Wireless Communication Networks 

 

1) Expanding Horizons: UAVs in Infrastructure-less Environments. 
In scenarios lacking pre-existing terrestrial infrastructure, such as remote or rural areas 
or in the aftermath of disasters where ground base stations (BSs) are non-functional as 
shown in Fig. 2.3, UAVs step in as a critical technology. These UAVs provide essential 
wireless coverage directly to users or act as aerial relays to facilitate communication 
between otherwise obstructed nodes. 
 
Use Cases and Benefits: 

• Maximizing Radio Coverage: UAVs can significantly extend the reach of wireless 
networks into areas that lack infrastructure, ensuring that more users gain 
access to communication services [111]. 

• Enhancing Quality of Service (QoS): Through strategic deployment, UAVs can 
ensure a higher portion of users meet QoS constraints, improving user 
experience [112]. 

• Rate Maximization: The aim of rate maximization when utilizing UAVs in 
wireless networks is twofold: ensuring all users have access to a basic level of 
connectivity and maintaining a steady, reliable service quality despite network 
fluctuations. This approach not only guarantees equitable resource distribution 
but also stabilizes the user experience, making it both fair and consistently 
satisfactory [113]. 

• Network Performance Optimization: Enhancing network performance through 
UAV deployment focuses on maximizing the system's sum-rate through spectral 
efficiency, which optimizes the use of the available spectrum. Concurrently, 
efforts to maximize the System Signal-to-Interference Ratio (SIR) and minimize 
the decoding error probability/rate aim to bolster the reliability of 
communications across the network. Additionally, reducing transmission 
latency is a key objective, particularly vital for supporting applications where 
time is of the essence [114]. 
 

2) Enhancing Network Efficacy: UAVs in Concert with Ground Infrastructure 
In this scenario, UAVs complement and enhance existing cellular networks. They assist 
in managing network load, especially in congested areas or where direct 
communication is hindered by physical obstructions. UAVs also facilitate backhaul 
connectivity for small cells. 
 
Use Cases and Benefits: 

• System Sum-Rate Maximization: By offloading traffic from ground BSs, UAVs 
help increase the overall data throughput of the network [115]. 

• System Spectral Efficiency Maximization: Optimizing the use of available 
spectral resources, UAVs contribute to a more efficient and capable network 
[116]. 

• System Capacity and Coverage Probability Maximization: Integrating UAVs into 
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the network infrastructure can significantly increase the network's capacity 
while also improving the likelihood of coverage across all areas [117]. 

• Individual User’s Rate Maximization: Targeted deployment can improve service 
for users with specific needs, ensuring optimal data rates on a per-user basis 
[118]. 

• Minimum and Average SIR Maximization: By providing direct line-of-sight 
connections, UAVs can enhance the signal quality, reducing interference and 
improving overall network performance [119]. 

2.3.2. Challenges in UAV-Enabled Communication Networks 

 
The rapid evolution of UAV technology, fueled by advancements in aerodynamics, 

electronics, and energy efficiency, has significantly expanded their capabilities and 
applications. However, integrating UAVs into wireless communication networks presents 
unique challenges that must be addressed to fully leverage their potential. 

 
• Operation Time Limit 

A significant constraint for UAVs is their limited battery life, which directly impacts 
their operational duration and, by extension, the continuity of services they 
provide. Extending the operational time of UAVs while ensuring they perform their 
intended functions effectively is a key challenge in network design [120]. 

• Operational Costs 
The integration of UAVs into communication networks entails considerable 
operational costs, from deployment and setup to maintenance and management. 

 
Figure 2.3. UAVs deployment in Infrastructure-less Environments 
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Balancing these financial investments with the aim of delivering quality services is a 
challenge that impacts the scalability and sustainability of UAV-enabled networks 
[121]. 

• Interference and Network Stability 
Interference from various sources, including natural obstacles, other electronic 
devices, and competing network signals, can significantly impact communication 
quality and network stability, necessitating a flexible and scalable approach to 
network architecture [122]. 

• Meeting Diverse User Demands 
UAV networks are envisioned to support a wide array of services, each with distinct 
requirements regarding latency, bandwidth, and reliability. Catering to these 
diverse and sometimes conflicting demands poses a significant challenge, 
necessitating a flexible and scalable approach to network architecture [123]. 

• Security and Privacy 
The deployment of UAVs raises substantial security and privacy concerns, as they 
often handle sensitive data and operate in environments susceptible to cyber 
threats. Establishing robust security measures and protocols is imperative to 
protect against unauthorized access and ensure the privacy of communicated 
information [124]. 
 

Addressing these challenges is fundamental to the successful integration of UAVs into 
communication networks, paving the way for their broader application across various 
domains. Solutions that tackle these issues will not only enhance the capabilities of UAV-
enabled networks but also expand their potential to revolutionize the way we connect and 
communicate. 

2.4 Exploring the Paradigm Shift with Blockchain 
Technology 

 
Blockchain technology represents a foundational shift in how data is stored, verified, and 

transferred across the digital landscape. At its core, blockchain functions as a distributed 
database solution or a decentralized public ledger system that chronologically records data 
records or transactions. This technology's inherent attributes—decentralization, 
transparency, immutability, and auditability—have not only revolutionized the domain of 
cryptocurrencies but have also extended its influence across various sectors. 

 
Foundational Concepts and Evolution 
Originally conceived to support Bitcoin, the first cryptocurrency introduced by Nakamoto 

in 2009 [125], blockchain has evolved far beyond its initial application. It operates on a chain 
of blocks, each storing transactions recorded on a public ledger, growing continuously as new 
blocks are appended. This decentralized framework is powered by core technologies like 
digital signatures [126], cryptographic hash functions [127], and distributed consensus 
algorithms [128], facilitating peer-to-peer transfers of digital assets without the need for 
intermediaries. The decentralized nature of blockchain eliminates the need for third-party 
validation, enhancing the system's security and transparency. All nodes within the network 
share access to the transaction history, ensuring information trustworthiness and 
immutability. 



18 
 

 
Broadening Horizons: Beyond Cryptocurrencies 
Blockchain's impact extends across finance, healthcare, government, manufacturing, and 

distribution, innovating and transforming applications ranging from supply chain management 
and digital media transfers to remote service delivery and identity management [129]. Its 
application in voting systems, data storage, and renting [130] showcases the potential for 
blockchain to secure and streamline various governmental and business processes. 
Furthermore, blockchain facilitates distributed resources management, crowdfunding, 
electronic voting, and the governance of public records [131]-[133], underscoring its versatility 
and capacity to redefine existing operational paradigms. 

 
The Advent of Smart Contracts 
A significant advancement within the blockchain ecosystem is the development of smart 

contracts. Conceptualized by Nick Szabo in 1993 [134] as computerized transaction protocols 
executing contract terms, smart contracts have found their ideal platform in blockchain 
technology. These contracts self-execute or enforce contractual clauses, introducing 
efficiency, precision, cost reduction, and transparency to transactions. The emergence of 
Blockchain 2.0, characterized by integrated smart contract functionality, has further expanded 
blockchain's applicability. Smart contracts are stored on the blockchain, identifiable by unique 
addresses, and operate through transactions sent to these addresses. Their execution is 
guaranteed by the blockchain consensus protocol, fostering the development of innovative 
applications in diverse areas. 

 
As blockchain technology continues to evolve, its capacity to serve as the backbone for a 

wide array of applications highlights its significance in the digital era. The convergence of 
blockchain with smart contracts and its application across industries signify a transformative 
shift, promising a future where decentralized, transparent, and secure transactions form the 
basis of digital interactions. 

 

2.4.1. Key Characteristics of Blockchain Technology 

 
Blockchain technology, by design, embodies a set of inherent characteristics that 

distinguish it from traditional centralized systems and enable its revolutionary applications 
across various sectors. These key attributes form the bedrock of blockchain's security, 
efficiency, and reliability. 

 
• Decentralization 

Unlike traditional centralized transaction systems, where transactions are validated 
through a central authority (e.g., a central bank), blockchain operates on a peer-to-
peer (P2P) basis. This decentralization allows transactions to be conducted directly 
between two parties without the need for authentication by a central agency. By 
circumventing centralized servers, blockchain significantly reduces server costs, 
including both development and operational expenses, and alleviates performance 
bottlenecks typically associated with central points of control. 

• Persistency 
Blockchain's architecture ensures that once a transaction is confirmed and recorded 
in a distributed ledger, altering it becomes nearly impossible. Each block in the chain 
contains a hash of the previous block, creating an immutable sequence of 
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transaction records. This linkage makes any attempt to tamper with transaction 
data easily detectable by other nodes in the network. The process of modifying 
information would require changing the hash data in all preceding blocks, a task so 
computationally intensive that it is deemed impractical. Consequently, blockchain's 
persistency provides an immutable and tamper-proof ledger, enhancing the 
trustworthiness and security of data recorded on the network. 

• Anonymity 
Blockchain allows users to interact within the network using addresses generated 
for each transaction. This feature enables users to maintain privacy and avoid 
identity exposure, as there is no central entity storing personal information. 
However, it's important to note that the level of anonymity can vary, particularly in 
private blockchains [135], where transaction visibility may be restricted to certain 
network participants, altering the degree of privacy afforded by the system. 

• Auditability 
The distributed ledger of a blockchain network meticulously records all 
transactions, complete with digital timestamps. This comprehensive record-keeping 
facilitates the auditability and traceability of transactions. In networks like Bitcoin, 
transactions can be traced iteratively, providing transparency and facilitating the 
audit process. However, techniques such as tumbling [136], which involves moving 
money through numerous accounts, can complicate the tracing of funds back to 
their origin, presenting challenges in linking transactions to their initial source. 

 
Together, these characteristics define the essence of blockchain technology, offering a 

decentralized, secure, and transparent framework for digital transactions. By leveraging these 
attributes, blockchain has the potential to revolutionize not only financial transactions but also 
a wide array of applications in various industries, setting the stage for a new era of digital 
interaction and exchange. 

2.4.2. Enhancing IoT Through Blockchain Integration 

 
The convergence of IoT and blockchain technology heralds a transformative era in digital 

communication and infrastructure. Blockchain, with its inherent characteristics of 
decentralization, immutability, and transparency, offers a robust solution for many of the 
challenges faced by the IoT ecosystem. This integration fosters a trusted environment where 
information is not only reliable but also securely shared among numerous participants, 
enhancing both security and traceability across various applications. 

 
• Revolutionizing Traceability and Security 

One of the paramount benefits of integrating blockchain with IoT is the 
enhancement of data traceability and security. In sectors like food safety [137], 
where ensuring the integrity of product information is crucial, blockchain can 
facilitate exhaustive traceability involving numerous stakeholders, from production 
to distribution. Similarly, in smart cities and smart cars [138], sharing reliable data 
securely can significantly improve service quality and foster the adoption of new 
technologies, making blockchain an indispensable ally for IoT. 

• Decentralization and Scalability 
The shift from centralized systems to P2P distributed architectures, enabled by 
blockchain, eliminates central points of failure and alleviates bottlenecks. This 
decentralization not only enhances fault tolerance and system scalability but also 
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mitigates the risk of data monopolization by a few entities. By reducing IoT silos, 
blockchain contributes to the overarching goal of improving IoT scalability, 
facilitating a more interconnected and efficient digital ecosystem. 

• Autonomy in IoT 
Blockchain empowers the creation of smart autonomous assets, paving the way for 
the development of hardware as a service and device-agnostic applications. This 
autonomy allows IoT devices to interact directly with each other without server 
intermediation, enhancing application flexibility and device interoperability. Such 
advancements are crucial for the evolution of IoT into a more adaptive and 
responsive network. 

• Reliability of IoT Information 
The immutable nature of blockchain ensures that IoT data remains secure and 
unaltered over time. Participants in the network can verify data authenticity with 
confidence, knowing that the information has not been compromised. This level of 
reliability is critical for applications requiring sensor data traceability and 
accountability, where the integrity of data is paramount. 

• Security Enhancements 
Blockchain can significantly bolster the security of IoT communications by treating 
device message exchanges as validated transactions through smart contracts. This 
approach secures communications between devices, optimizing current security 
protocols used in IoT. By incorporating blockchain, IoT networks can achieve 
enhanced security, ensuring that communications and data exchanges are 
protected against unauthorized access and tampering. 
 

The integration of IoT and blockchain represents a critical leap forward in building a more 
secure, transparent, and efficient digital world. By addressing key challenges such as 
scalability, autonomy, reliability, and security, this convergence has the potential to redefine 
the landscape of digital communication and infrastructure, ushering in a new era of 
interconnected and intelligent systems. 

2.5 The Evolution and Impact of Caching in Network 
Technologies 

 
Caching, a concept that significantly enhances the efficiency of data retrieval processes, has 

its roots deeply embedded in the history of computing and has evolved remarkably over the 
decades. From its early implementations in the 1960s computer systems, such as the 
innovative virtual memory system of the Atlas Supervisor for the Atlas Computer [139], 
caching mechanisms have been pivotal in optimizing the use of main memory and storage. 
These initial steps laid the foundational principles of caching, which would undergo significant 
transformations to address the evolving needs of computing and network technologies. 

The adoption of caching extended beyond the confines of computing systems into the 
realm of the Internet, marking a pivotal shift in how content was distributed and accessed. 
Instead of relying solely on central servers for content retrieval, popular webpages began to 
be replicated in smaller, strategically placed servers (caches) around the globe. This 
development aimed at achieving three critical objectives: reducing network bandwidth usage, 
decreasing content access time, and alleviating server congestion. The explosion of Internet 
traffic in the late 1990s further complicated cache management, catalyzing the emergence of 
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Content Delivery Networks (CDNs). As an integral component of today's Internet ecosystem, 
CDNs utilize advanced monitoring and control techniques to manage an interconnected 
network of caches, ensuring efficient content delivery across vast geographical distances. 

In contemporary network and communication technologies, caching mechanisms are 
ubiquitous, permeating various domains and architectures. From enhancing storage in future 
Internet architectures and information-centric networks to enabling caching in 5G wireless 
systems, caching has demonstrated its capacity to benefit both network infrastructure by 
reducing operational costs and end-users by improving service quality. Recently, the focus has 
shifted towards leveraging caching to ameliorate content delivery within wireless networks. 
As the physical layer access rate enhancement and the deployment of additional base stations 
become increasingly costly, these traditional methods struggle to keep pace with the rapidly 
escalating mobile data traffic. Caching emerges as a promising solution to bridge this gap, 
offering a cost-effective approach to boosting network capacity and enhancing user 
experiences. 

As we delve deeper into the specifics of caching within IoT, IoV, and UAV-assisted networks 
in the following subsections, it becomes evident that caching is not just a supplementary 
technology but a cornerstone of modern network infrastructure. Its evolution from a 
rudimentary memory management technique to a sophisticated tool for optimizing network 
performance and content delivery underscores the dynamic nature of caching as an essential 
element in the progression of network technologies. 

2.5.1. Caching in IoT: Foundations and Evolution 

 
This subsection delves into the crucial role of caching within the IoT ecosystem. It aims to 

explore how caching techniques have been foundational in addressing the inherent challenges 
of IoT, such as limited power in IoT devices and the excessive load on backhaul networks due 
to the vast amount of data produced. By reviewing related work, we will examine how caching 
strategies have evolved to mitigate these issues, enhancing the efficiency of IoT systems 
despite the inherent limitations of device power and network capacity. 

Study [140] adopts an advanced approach to in-network caching within the IoT, capitalizing 
on the capabilities of Content-Centric Networking (CCN) to address the unique challenges of 
IoT environments. The authors propose a Multi-attribute In-Network Caching Decision 
(MACD) algorithm that considers a comprehensive set of attributes for making caching 
decisions, including data freshness, node energy level, available storage size, and hop count. 
This innovative approach aims to optimize resource utilization in constrained IoT devices, 
ensuring data is cached where it will be most effective and accessible. However, the 
methodology introduces certain limitations, such as the lack of cooperation between nodes, 
leading to potential redundancy in cached content. Furthermore, the algorithm does not 
account for the network topology or the nodes' relative locations, which could enhance 
caching efficiency by considering the physical proximity of nodes to requesters. Additionally, 
the focus on intermediary nodes for caching decisions may prevent requests from benefiting 
from content cached on non-intermediary nodes, potentially missing opportunities for 
optimizing data retrieval times and network resource use. 

The work presented in [141] introduces a topology-aware caching mechanism for 
Information-Centric Networking (ICN) in the IoT, leveraging Approximate Betweenness 
Centrality (ABC) to make caching decisions without extensive network topology knowledge or 
high communication overhead. This approach aims to optimize limited IoT device resources 
by strategically caching content at nodes with high betweenness centrality, thus reducing the 
need for nodes to access content from distant sources and saving energy. However, this 
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strategy overlooks the redundancy of cached content across the network, assumes request 
and response paths are identical (which may not always be true) and treats all content equally 
without considering content-specific metrics like popularity or size. 

Reference [142] unveils an innovative caching strategy within the IoT domain, capitalizing 
on Named Data Networking (NDN) to selectively cache data based on its popularity and the 
remaining lifetime. This approach smartly navigates the challenges posed by the ephemeral 
nature of IoT data, ensuring that only the most demanded and currently relevant information 
is stored at the network's edge. By enabling NDN nodes to autonomously determine the 
caching worthiness of data, the strategy adeptly reduces latency and conserves network 
resources. However, this method doesn't directly tackle the issue of cache redundancy, 
potentially leading to suboptimal cache space utilization. Moreover, it overlooks the impact 
of network topology and node capabilities on caching efficiency. 

Research in [143] optimizes edge caching for the IoT through a novel application of Deep 
Reinforcement Learning (DRL), circumventing the need for preconceived knowledge on data 
popularity or user request patterns. This approach acknowledges the transient nature of IoT 
data and incorporates communication costs, calculated based on bandwidth consumption 
(affected by content size) and retrieval delays, to refine caching decisions dynamically. Despite 
its innovative strides, the method overlooks the potential for smart routing to enhance the 
utility of cached data further. Moreover, the feasibility of deploying DRL on IoT nodes, given 
their constrained computational resources, remains a pertinent concern. Additionally, the 
adaptability of this model to the volatile popularity trends characteristic of IoT content usage 
was not thoroughly examined, underscoring crucial avenues for future investigation. 

Reference [144] proposes an innovative caching strategy for IoT data, leveraging NDN to 
optimize data retrieval across both edge and core network segments. The study introduces 
two distinct caching strategies: a coordinated approach for edge domains and an autonomous 
strategy for core segments. Despite both strategies considering content popularity and 
freshness as key metrics, their implementation diverges in operational mechanics. In the core 
network, caching decisions are made autonomously by each node, aiming to reduce 
unnecessary data forwarding and improve network efficiency. Conversely, at the edge, a novel 
mechanism is introduced whereby a CACHED flag is set to true by the first node that caches 
the content, aiming to reduce redundancy by preventing subsequent edge nodes from caching 
the same content. However, the approach exhibits several shortcomings. It simplifies the 
network hierarchy into just two levels, without considering potentially valuable metrics such 
as node centrality, which could further refine caching decisions based on network topology. 
Additionally, while it successfully mitigates redundancy in the edge network, it does so at the 
possible cost of optimal cache placement; the first node to cache a piece of content, often 
being closer to the source, may not be the most strategic location for minimizing latency for 
future requests. Furthermore, the absence of smart routing mechanisms to direct requests 
towards nodes where content is already cached might limit the potential benefits of reduced 
latency and network traffic, particularly in scenarios where cached content is distributed 
unevenly across the network. 

In the paper [145], the authors introduce an innovative approach to caching in the IoT 
environment by deploying a discrete multi-agent variant of the Soft Actor-Critic (SAC) 
algorithm. This methodology allows multiple edge nodes (ENs) to autonomously make caching 
decisions, guided by the goal of minimizing the long-term average weighted cost that 
encompasses Age of Information (AoI), transmission energy consumption, and network traffic 
demands. Central to their strategy is a policy orchestrated by the cloud, which aims to reduce 
the overall network costs by making efficient caching decisions. When a data request is 
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initiated, the nearest EN first checks its local cache. If the content is either outdated or absent, 
the EN evaluates whether to retrieve the latest data from the cloud or directly from IoT 
sensors, as determined by the SAC algorithm, ensuring data freshness and network resource 
optimization. However, the proposed method exhibits certain limitations, such as a lack of 
explicit cooperation among ENs, which could lead to disparities in storage and load 
distribution. Moreover, the algorithm does not account for the varying capabilities of nodes 
or the characteristics of the content, such as size, focusing primarily on content freshness. This 
oversight could affect the overall efficiency and balance of the network, as not all content is 
equally suitable for caching based on these unconsidered attributes. 

Reference [146] introduces a genetic-algorithm-based collaborative caching scheme (CCS) 
for energy optimization in the Content-Centric Internet of Things (C2IoT). By integrating both 
on-path and off-path strategies, the CCS aims to enhance the efficiency of content requests 
across the network. Utilizing genetic algorithms, the scheme optimizes caching decisions with 
an emphasis on content popularity, historical user requests, and transmission delays, striving 
to reduce communication delays and overall energy consumption. This approach represents a 
significant step towards leveraging the potential of collaborative caching to improve network 
performance and sustainability. However, the methodology has its limitations. Despite 
facilitating collaboration among nodes for more strategic content placement, individual 
decision-making can lead to off-path caching that doesn't completely eliminate redundancy. 
The analysis overlooks the transient nature of IoT content, which can vary in relevance over 
short periods, and fails to account for other content characteristics that could influence 
caching efficiency. Furthermore, the assumption of a robust infrastructure, with routers 
strategically located near IoT sensors, might not hold in many real-world scenarios, where 
network topology and accessibility challenges can significantly impact the feasibility of the 
proposed caching strategy. 

Reference [147] introduces Trusted Caching Nodes (TCNs), innovative entities designed to 
revolutionize content caching and security within the Industrial Internet of Things (IIoT). These 
TCNs are engineered to fulfill dual purposes: efficiently caching frequently requested content 
and enhancing the security framework of the IIoT. By formulating a joint optimization 
problem, the study seeks to strategically position TCNs and delineate secure content 
distribution pathways, leveraging metrics such as content popularity, energy implications of 
caching and data transmission, and the costs associated with security breaches. However, the 
methodology has its drawbacks. Primarily, the necessity to execute the optimization model 
for every content retrieval request poses potential challenges, including significant energy 
expenditure and delayed response times, issues that starkly contrast with the inherent 
objectives of caching. Additionally, while the concept of Security Damage Cost is pivotal, the 
paper lacks a clear exposition on how this metric is quantitatively assessed. Moreover, the 
transient nature of IoT content, which demands dynamic and flexible caching strategies, 
appears to be overlooked in their approach, raising questions about the model's adaptability 
to the rapidly changing landscape of IIoT data needs. 

The work presented in [148] introduces the Lifetime-based Cooperative Caching (LCC) 
scheme, a novel strategy tailored for ICN within IoT environments. This scheme adeptly 
leverages IoT data's lifetime alongside user request rates to inform caching decisions across 
the network, optimizing the use of in-network caching capabilities to extend the sleep mode 
durations of IoT devices like sensors and actuators, thereby enhancing energy conservation. 
Through a cooperative model, nodes such as content routers and base stations collaborate, 
employing a dynamic caching threshold that adjusts in response to fluctuations in content 
request rates. The decision to cache content considers factors such as the data's lifetime, its 
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popularity, and the energy consumption implications of caching. However, the methodology 
does not clearly outline how energy consumption is quantified. Despite its innovative 
approach, the LCC scheme falls short by omission of cache-aware routing mechanisms which 
restricts the ability to effectively utilize cached content on off-path nodes, potentially limiting 
the efficiency of the network's content delivery system. Furthermore, this approach raises 
concerns about the redundancy of cached content across the network. Without explicit 
strategies to mitigate such redundancy, there's a risk of decreasing the diversity and 
effectiveness of cached content, which could inadvertently increase energy consumption and 
reduce the overall efficiency of caching in the IoT ecosystem. 

Authors in [149] propose an innovative approach to augment caching efficiency within IoT 
networks by leveraging the popularity of IoT data, as delineated in "IoTCache: Toward Data-
Driven Network Caching for Internet of Things." Employing a dual-faceted strategy, the 
method combines Deep Neural Networks (DNN) for forecasting data popularity with statistical 
techniques designed to address the cold start problem, which arises in scenarios lacking 
sufficient historical data. This predictive model aims to optimize network resources by 
intelligently caching content that is anticipated to be in high demand. However, the paper's 
primary reliance on content popularity as the sole metric for caching decisions may not fully 
capture the nuanced and dynamic nature of IoT environments. IoT content often exhibits a 
transient relevance, with its value and applicability diminishing over time. In addition, in IoT 
settings, the popularity of data often correlates not with individual content items but with 
categories defined by sensor types, specific locations, or content genres. These broader 
context factors drive demand patterns, suggesting that a more effective caching strategy 
would consider the collective popularity within these contextual groupings rather than 
isolating single content items. Investigating popularity within this broader, category-based 
context could yield a more accurate and efficient caching mechanism, better aligned with the 
unique dynamics of IoT data generation and consumption. 

Building on the need for efficient caching mechanism for IoT, [150], propose a sophisticated 
strategy that employs AI-based techniques, including collaborative filtering and k-means 
clustering, to optimize content caching at edge nodes. This strategy is designed to manage 
traffic efficiently, minimizing the load on cloud databases. By analyzing user request patterns 
and leveraging the predicted popularity of content, the system aims to intelligently decide 
which content to cache. The goal is to enhance the user experience by improving the cache 
hit rate, reducing the average hop count, and minimizing the Content Retrieval Delay. Despite 
these advancements, the paper outlines a collaboration mechanism for sharing information 
among nodes to facilitate intelligent caching decisions, yet it stops short of addressing the 
optimization of content placement across the network. This means finding the most strategic 
node for caching specific content, based on various network parameters and content 
characteristics, isn't directly tackled. Additionally, the proposed model lacks a mechanism for 
redirecting requests to nodes where content is already cached, which could further reduce 
retrieval times and network traffic. The methodology also does not fully account for the 
unique characteristics of IoT data, such as variability in data generation rates, sizes, and the 
temporal relevance of content, which are critical for truly optimizing caching in IoT 
environments. 

Research in [151] introduces an approach to enhancing content caching strategies within 
IoT networks, leveraging the combined strengths of LSTM models and ensemble learning 
tailored for mobile/multiaccess edge computing (MEC) environments. This innovative 
methodology predicts content popularity across varied user demographics using LSTM 
models, while ensemble learning amalgamates these diverse predictions to establish a unified, 
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network-wide caching strategy. This predictive framework is designed to proactively cache 
content at MEC servers, aiming to optimize network resources by reducing latency and 
adapting to user demand in real-time. However, the application of user grouping and content 
popularity predictions in IoT contexts, where the range and type of IoT sensors within a MEC 
server's coverage may be limited, presents potential limitations. Unlike multimedia content, 
which benefits from diverse categories and user interests, the IoT environment often features 
a narrower spectrum of content types at least for the types that may absorb the interests of 
many users, making the direct application of such a user-aware caching strategy less effective. 
Furthermore, this approach does not fully account for the unique characteristics of IoT data 
or the dynamic nature of user interactions within these networks, raising concerns about its 
practical efficacy in real-world IoT scenarios. 

Research in [152] optimizes the caching landscape within IoT networks through a fog 
caching strategy, adeptly engineered to cater to the unique demands of IoT applications. This 
methodological innovation stands out by weaving together three critical elements: the agility 
of adjustable clusters that tailor caching resources to current demands, the strategic near-
path content allocation to enhance cache hits across varied user paths, and a holistic "Full-
Time Caching" approach. This latter approach combines reactive caching, triggered by 
immediate content requests, with proactive caching in off-peak hours, aiming to preload the 
cache with content anticipated to be in high demand. Central to this strategy is the reliance 
on content popularity, serving as the primary metric guiding which content merits caching, 
leveraging predictions to preemptively meet user needs. However, the schema’s embrace of 
off-peak caching raises pragmatic concerns within the perpetually evolving IoT environment. 
The assumption that content selected during quieter periods will retain its relevance and 
demand until the subsequent off-peak cycle overlooks the IoT domain's intrinsic dynamism. 
Moreover, the strategy’s focus sidesteps the nuanced characteristics specific to IoT content, 
such as data generation rates, size, and contextual relevance, which are pivotal in tailoring a 
caching strategy that mirrors the IoT ecosystem’s complexity and variability. 

The work presented in [153] introduces a novel edge caching strategy that employs a 
cluster-based efficient caching mechanism within an ICN framework, tailored for edge devices 
in data-intensive IoT applications. By utilizing a clustering approach, the system organizes 
network devices into clusters, each led by a designated cluster head responsible for caching 
decisions. This architecture allows the cluster head to have a comprehensive view of the cache 
status within its cluster, enabling decisions that enhance content availability and network 
efficiency based on content popularity. Furthermore, clusters are designed to collaborate, 
enhancing the network's ability to respond to requests efficiently. However, the proposed 
strategy has its shortcomings, mainly in its evaluation of potential caching nodes. The cluster 
head's decisions focus predominantly on available storage space, sidelining other crucial node-
specific metrics such as location, processing capabilities, and more. Moreover, the study does 
not address the transient nature of data in IoT environments, which could significantly impact 
the relevance and efficiency of the cached content over time. These oversights suggest areas 
for future research and refinement to fully harness the potential of ICN frameworks in edge 
computing for IoT applications. 

Research in [154] optimizes content caching strategies for IoT networks by introducing an 
approach that prioritizes data freshness and popularity. The authors propose a method that 
formulates the caching problem as an integer linear programming (ILP) problem, subsequently 
modeled as a Markov decision process (MDP). To navigate the complexities of this 
optimization problem, a deep reinforcement learning algorithm (DRLA) is employed, utilizing 
DNNs to approximate state-action values and learn effective caching policies. The main criteria 
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for caching decisions are centered around Data Freshness and Request Probability, with IoT 
gateways serving as the pivotal nodes for caching and executing the DNN and reinforcement 
learning mechanisms. However, the paper presents notable shortcomings, particularly in its 
exploration of gateway capabilities. It does not specify the supportable number of nodes per 
gateway, raising concerns about the sufficiency of gateway storage for effective content 
caching, especially in densely networked environments. Moreover, the absence of a 
mechanism for node cooperation might lead to inefficiencies, with some nodes being 
overwhelmed and others underutilized. Incorporating cooperative strategies could not only 
alleviate load imbalances but also enhance overall network performance by leveraging caching 
for optimal load distribution. 

Table 2.1. provides a comprehensive comparison between various related works in the 
context of caching strategies employed in IoT networks. This comparison is structured around 
six pivotal metrics, each reflecting a distinct aspect of caching dynamics and decision-making 
criteria. 

• Transient Content Awareness evaluates whether the approach accounts for the 
ephemeral nature of IoT data, emphasizing strategies that adapt to changing 
content relevance over time. 

• Content Metrics Consideration assesses if caching decisions factor in specific 
attributes of content, such as popularity and size, to optimize their caching strategy. 

• Node Capability Assessment explores whether the strategies consider the varying 
capacities of individual nodes, including storage and computational power, which 
can significantly influence caching efficacy. 

• Topology-Based Caching investigates the incorporation of network topology in 
caching decisions, potentially leveraging spatial relationships for more efficient 

References Transient 
Content 

Awareness 

Content 
Metrics 

Consideration 

Node 
Capability 

Assessment 

Topology-
Based 

Caching 

Hierarchical 
Caching 
Strategy 

Smart 
Routing 

for Cache 
Access 

141 Yes No No No No No 

142, 143, 
148, 154 

Yes Yes No No No No 

144 Yes Yes No No Yes No 

140 Yes Yes Yes No No No 

145 Yes No No No Yes No 

146, 147, 
152 

No Yes No Yes No Yes 

149, 150, 
151 

No Yes No No No No 

153 No Yes No Yes Yes Yes 

Table 2.1. Comparative Analysis of Caching Strategies in IoT Networks Across Key Metrics 
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content distribution. 
• Hierarchical Caching Strategy examines the presence of a coordinated mechanism 

overseeing caching across the network, aimed at reducing redundancy and 
enhancing overall cache utilization. 

• Smart Routing for Cache Access scrutinizes the integration of intelligent routing 
mechanisms to direct requests towards cached content efficiently, thereby 
improving cache hit rates. 
 

Research Gap 
The investigation, as delineated so far through the comparative analysis, uncovers 

significant research gaps in existing caching policies and algorithms within IoT networks. 
Predominantly, the focus has been on caching strategies centered around individual nodes, 
largely overlooking the collective network environment and the potential for inter-node 
cooperation. This singular approach can precipitate redundancy, where the same content is 
cached multiple times across the network, and lead to suboptimal cache placements that do 
not fully leverage the network's topology or the nodes' heterogeneous capabilities. 
Furthermore, the absence of smart routing mechanisms becomes increasingly detrimental in 
larger scenarios with numerous potential paths for a request to traverse, resulting in a 
diminished likelihood of cache hits. Moreover, there is a clear necessity for a holistic approach 
that harmonizes content characteristics with node capabilities, ensuring that caching decisions 
are not only informed by what is being cached but also by where and by whom within the 
network. Addressing these gaps promises significant advancements in the efficiency and 
effectiveness of caching strategies in the complex and dynamic landscapes of IoT networks. 

2.5.2. Advancements in Caching for IoV Systems 

 
In this subsection, we focus on the specific advancements in caching strategies tailored for 

IoV systems. The purpose here is to examine how caching has adapted to meet the unique 
requirements of IoV, including high mobility environments and the need for real-time data 
processing. Through an overview of related work, we will highlight innovative caching 
approaches that have been developed to improve IoV performance, such as reducing latency, 
enhancing location-aware content delivery, and supporting efficient data dissemination. This 
exploration underscores the critical role of caching in advancing IoV technologies and 
facilitating smarter, safer vehicular networks. 

The work in [155] introduces a novel edge caching strategy, the Cooperative Caching 
Strategy with Content Request Prediction (CCCRP), which utilizes vehicles and RSUs for caching 
content anticipated to be requested by vehicles. A distinctive method is proposed, leveraging 
vehicle clustering via K-means to streamline content request and transmission processes. It 
harnesses LSTM networks for predicting vehicle content requests based on historical data, 
followed by employing reinforcement learning to optimize the objective function for content 
placement, thus aiming to enhance QoS for vehicle requests. However, the study has its 
limitations, notably the omission of privacy considerations in the popularity prediction 
process. Furthermore, it does not differentiate between content types such as safety and 
infotainment in the IoV environment which each possess unique characteristics and may 
influence caching strategies and priorities differently. 

In [156], an edge caching strategy employs a methodology to enhance content delivery 
within vehicular networks. The authors introduce a scheme focusing on the dynamic and 
cooperative caching of content in both RSUs and vehicles, based on an analysis of vehicular 
content requests. This analysis considers variables such as content access patterns, vehicle 
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velocity, and road traffic density to establish a model for fetching content replicas efficiently 
when requested by moving vehicles. The proposed method optimizes the use of RSUs and 
vehicular storage to facilitate low-latency downloads directly from the nearest RSU or, if 
necessary, through content sharing among vehicles, aiming to reduce content retrieval delays. 
However, the study's approach to caching decisions primarily centers on content popularity, 
overlooking the potential impact of other content characteristics. Furthermore, it does not 
differentiate between various content types prevalent in the IoV environment, such as safety-
related and infotainment content, each bearing unique significance and requirements that 
could influence caching strategies and network performance. 

Authors in [157] introduce a method that optimizes the content caching strategy for 
Vehicular Named Data Networks (VNDN) by methodically categorizing data into three distinct 
types to address the dynamic nature of IoV environments efficiently. The authors propose a 
novel approach that intelligently divides information into emergency safety messages, traffic 
efficiency data, and infotainment content. Safety messages, which may be periodic or 
triggered by emergencies, are prioritized differently from traffic data that aids in route 
planning, potentially reducing travel times and fuel consumption. Infotainment content, 
encompassing multimedia data, is cached based on its popularity. They suggest the use of 
integer programming to make informed caching decisions that could enhance network 
performance by tailoring the caching strategy to the specific characteristics of each data type. 
However, the paper stops short of detailing a mechanism for predicting the popularity of 
content, a crucial aspect for proactive caching in the highly dynamic IoV landscape. 
Additionally, there seems to be a lack of emphasis on the potential cooperation between RSUs, 
which could further leverage the distributed nature of caches. This omission suggests that the 
benefits of their caching strategy might be constrained to the local areas where the cached 
content resides, potentially limiting the overall efficacy of the proposed approach in a broader 
IoV context. 

In [158], an edge caching strategy employs a hierarchical network architecture optimized 
for the dynamic and resource-constrained IoV environment. The authors introduce a 
cooperative caching scheme that divides vehicles into clusters, selecting one vehicle per 
cluster as the cluster head for cache management. Communication within a cluster is 
facilitated exclusively via the cluster head. When a cluster member requests content not 
available in its local cache, the request is directed to the cluster head, which then queries the 
entire cluster. Should the content be cached by any cluster member, it is promptly sent to the 
requester. Otherwise, the cluster head might extend the request to neighboring clusters. 
Upon receiving new content, a vehicle decides whether to cache it based on available space 
and a comparison of caching probabilities between new and existing content, utilizing metrics 
such as content popularity and future ratings predicted through Non-negative Matrix 
Factorization (NMF). Despite its innovative approach, the study's reliance on request counts 
to calculate content popularity might not effectively indicate future content relevance in the 
highly dynamic IoV context. Additionally, the methodology lacks a privacy-preserving 
mechanism for predicting future ratings, raising concerns about user privacy in the proposed 
caching strategy. 

The work presented in [159] introduces a novel edge caching strategy employing digital 
twin technology and deep learning for optimizing content delivery in the IoV. The method 
suggests a data caching mechanism at the edge, using social data where content is categorized 
into types, each defined by unique average size and maximum acceptable delay. Besides 
leveraging RSUs for storage, contents are pre-stored in smart vehicles, considering the social 
relationship among them, based on content compatibility, information exchange rate, traffic 
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situation, and vehicle density. This dynamic social interaction is modeled using a digital twin, 
constructed with vehicle data collected by RSUs, enabling an adaptive caching resource 
allocation that enhances the content delivery process. However, the study's approach to 
quantifying content popularity and the intricacies of user preference similarities raise 
questions. it notably omits a detailed method for quantifying content popularity—a critical 
factor in cache management. Moreover, the reliance on user preference similarities and social 
interaction data raises potential privacy concerns, suggesting a need for comprehensive 
privacy-preserving measures within the system's design. 

Research in [160] optimizes the utilization of in-network caching within 5G-enabled 
vehicular networks, laying out a detailed framework where both vehicles and small cell base 
stations (SBSs) partake in content caching. It dissects service content into manageable chunks, 
allowing vehicles to process one chunk while simultaneously requesting subsequent ones. This 
method strategically mitigates user-perceived delays by enabling an immediate access point 
to cached content within a vehicle's proximity, or through SBSs, before resorting to a macro 
base station (MBS) in the absence of locally cached content. The entire operational blueprint 
is formulated as an optimization problem, aiming at elevating the user experience by curtailing 
delays through proactive content caching and distribution strategies. However, the scheme's 
efficacy could potentially be undermined by the inherent complexities in content 
segmentation and caching distribution. If the segmentation isn't meticulously planned, it 
might result in significant inefficiencies, particularly if various segments are scattered across 
different locations, thus impeding swift content assembly. Moreover, the approach 
presupposes an advanced, albeit intricate, mechanism for predicting content popularity down 
to individual segments. The current methodology does not thoroughly address the need for 
such a refined popularity prediction mechanism, which is crucial for optimizing the caching 
process and ensuring the model's overall success. 

Reference [161] proposes a user-experience-based caching method tailored for the IoV, 
with an emphasis on short videos due to their popularity and high sensitivity to download 
delays. The central hypothesis posits that a user's interest in a specific file likely indicates an 
interest in similar content, leading to the utilization of file class popularity distribution for 
caching decisions. An QoE model underpins this approach, predicated on the ratio of files 
matching user interest to the total files within an RSU. To navigate the complexities of 
optimizing this user experience model, the strategy leverages reinforcement learning for 
making informed caching decisions in RSUs to enhance QoE. However, the research's focus on 
small files may limit its applicability across varied content types, constraining its utility in 
broader IoV scenarios. Additionally, the absence of detailed criteria for content classification 
into classes raises concerns regarding the consistency of interest and request patterns within 
each class, potentially affecting the accuracy and efficiency of the caching mechanism. 

In [162], the authors outline a task-based architecture for enhancing content caching within 
the IoV, featuring a process divided into content popularity prediction using regression and 
deep learning techniques, strategic content placement within cache leveraging artificial 
intelligence for optimization, and streamlined content retrieval that involves intelligent 
allocation of communication resources for efficient delivery. This approach focuses on utilizing 
RSUs as pivotal nodes for caching, effectively reducing latency and improving data access 
speeds for vehicular networks. However, the study presents limitations in its scope, notably 
overlooking the diverse nature of content types within the IoV ecosystem and their specific 
caching needs. It lacks a detailed examination of cooperative caching strategies that could 
exploit the interconnected nature of RSUs for enhanced content availability. Additionally, the 
research primarily emphasizes content popularity while giving minimal consideration to other 
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crucial content attributes, such as size, which could significantly influence caching decisions 
and overall network performance. 

The work in [163] proposes a proactive caching scheme for the IoV networks using an 
Information-Centric Network (ICN) approach. Given the limited computational and storage 
capabilities of edge devices, a scheme is introduced that employs a Markov process to model 
real-time vehicle status and interactions with other vehicles and RSUs. This model informs the 
creation of an optimal caching decision, aimed at maximizing network performance and 
reducing transmission delay. It takes into account the dynamism of topology changes due to 
vehicle mobility and potential link failures. However, this approach does not consider the 
nature of the content within the IoV ecosystem, which could affect the relevance and utility 
of cached data. Moreover, the efficiency of the proposed method hinges on access to 
extensive private information, such as vehicle trajectories, raising concerns about data privacy 
and the feasibility of obtaining such detailed information in practice. These shortcomings 
suggest that while the proposed model offers a structured approach to edge caching in IoV, 
there is room for improvement, particularly in addressing privacy concerns and content 
relevance. 

Research in [164] optimizes edge caching in IoV networks through two distinct strategies: 
Ensemble Learning-Driven Edge Caching (ELDEC) and Meta-based Ensemble Learning-Driven 
Edge Caching (MELDEC). Employing meta and ensemble learning, these strategies aim to 
refine content popularity prediction and enhance cache content placement, directly impacting 
the network's wireless performance by deriving closed-form expressions for outage 
probability and finite SNR diversity gain. Despite the strides in managing network efficiency 
and predictive accuracy, the study overlooks critical aspects such as the integration of safety 
content considerations and the establishment of privacy mechanisms within the popularity 
prediction process. These omissions highlight potential areas for further refinement, 
particularly in addressing the nuanced demands of IoV environments where safety and privacy 
are paramount. 

In [165], the challenge of efficient computation offloading in 6G-enabled networks is 
addressed. The authors lay out a framework, dubbed Computation Offloading with Demand 
prediction and Reinforcement learning (CODR), which leverages a Spatial-Temporal Graph 
Neural Network (STGNN) for anticipating demand, subsequently informing a caching decision 
process via the simplex algorithm. To finalize their strategy, a computation offloading 
approach using the twin delayed deterministic policy gradient (TD3) method is deployed to 
ascertain the most effective offloading pathway. Despite the thoroughness of the 
methodology, the work is not without its limitations, notably the omission of privacy 
considerations in the data-sharing process essential for demand prediction and caching 
decisions. Furthermore, the adaptability of CODR to the IoV environment's rapid changes, 
such as varying network conditions and vehicular mobility, is not sufficiently explored.  

Reference [166] delves into the escalating data traffic challenges within IoV networks, 
putting forward a dual-strategy aimed at bolstering QoS. The approach kicks off with a spatial-
temporal correlation method to sharpen the prediction of content popularity, utilizing 
historical data from RSUs. Building on this foundation, the study pioneers a Multi-Agent 
Reinforcement Learning (MARL) caching strategy. In this setup, each RSU functions as an 
independent agent, navigating through decisions and updates in action to heighten the 
caching efficiency amidst the IoV's dynamic landscape. Despite its strengths, the methodology 
exhibits notable limitations. Chief among these is the autonomy in decision-making by 
individual RSUs, which does not fully exploit the potential for collective intelligence and 
resource sharing among RSUs. This isolated approach may not be entirely conducive in the 
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high-mobility IoV context, where vehicles frequently transition across RSU coverage zones, 
potentially benefitting from a more integrated caching strategy that leverages cached content 
across neighboring RSUs. 

The study in [167] addresses the challenge of content caching in vehicular networks (VNs) 
by introducing a Mobility-aware Proactive edge Caching scheme based on Federated learning 
(MPCF). This approach integrates a Context-aware Adversarial AutoEncoder (C-AAE) and a 
mobility-aware cache replacement policy to predict and adapt to the changing popularity of 
content due to vehicle mobility, emphasizing privacy preservation and communication 
efficiency. The MPCF scheme operationalizes this through four pivotal components: content 
popularity prediction, vehicle selection for federated learning, model aggregation, and cache 
replacement, enabling vehicles to collaboratively refine a global model for proactive content 
caching. However, the focus predominantly on content popularity might overlook other 
critical content attributes, such as size or the specific relevance of safety-related information, 
which can be vital for an exhaustive and nuanced caching strategy. 

In [168], researchers present an edge caching approach for the IoV utilizing Multi-Agent 
Deep Reinforcement Learning (ECSMADRL), wherein each moving vehicle operates as an 
independent agent. These agents are tasked with making dynamic decisions concerning the 
caching and accessing of content, guided by real-time environmental variables such as content 
demand, size, and the vehicle's caching capacity. This model's core lies in enabling vehicles to 
adaptively respond to changing conditions, leveraging deep reinforcement learning for 
decision-making processes. While the approach facilitates adaptive and decentralized caching 
decisions, potential challenges include the risk of redundant caching, as individual vehicles 
may independently decide to cache the same content without full visibility of the network's 
overall caching status. Additionally, the system's reliance on vehicles' local observations to 
calculate content popularity could lead to inaccuracies, given the limited scope of data 
available to each vehicle. These aspects may impact the overall efficiency and scalability of the 
proposed caching strategy within the dynamic IoV environment. 

The study in [169] explores a caching policy aimed at enhancing content retrieval efficiency 
in autonomous connected vehicles through C-V2X communications. It introduces utility 
functions for both vehicles and RSUs, calculating the former based on the distance to RSUs to 
minimize retrieval delay and the latter on content popularity and the anticipated duration 
vehicles remain within coverage, employing the Gale-Shapley stable matching algorithm for 
strategic cache allocation. Despite its detailed approach to utility-based caching, the 
methodology may not preemptively account for the immediate content requests of vehicles 
upon entering RSU coverage areas, suggesting a reactive rather than a fully proactive caching 
strategy. Additionally, the potential for coverage area overlap between RSUs raises concerns 
about redundant content caching, indicating areas where further refinement could enhance 
network-wide caching efficiency and reduce resource wastage. 

Table 2.2. presents a detailed comparison of the current research landscape concerning 
edge caching strategies within the IoV. This comparative analysis is structured around six 
meticulously chosen metrics, each shedding light on the diverse approaches and 
considerations in the development of caching mechanisms. 

• Safety and Traffic Content Tuning: Investigates whether caching mechanisms are 
specifically optimized for critical safety and traffic information, recognizing its 
paramount importance in vehicular networks. 

• Infotainment Content Adaptation: Assesses the tuning of caching strategies for 
infotainment content, which has distinct requirements compared to safety-related 
data. 
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• Content Characteristics Consideration: Evaluates the extent to which caching 
decisions take into account a broader spectrum of content characteristics beyond 
mere popularity, including spatiotemporal attributes. 

• Popularity Prediction Mechanism: Distinguishes between methodologies that rely 
on static request counting and those employing dynamic approaches, such as 
machine learning, to forecast content popularity. 

• Privacy Preservation Mechanism: Identifies efforts to incorporate privacy-
preserving mechanisms within the caching strategy, essential for protecting user 
data during collection and sharing. 

• Collaborative Caching Strategy: Explores the potential for and implementation of 
collaborative mechanisms among nodes for optimized cache retrieval and decision-
making, aiming for a more globally optimal caching strategy. 

 
Research Gap Explanation 
The investigation into edge caching strategies in IoV reveals a predominant focus on 

popularity as the principal criterion for caching decisions, often neglecting the rich 
spatiotemporal characteristics and the varied nature of content across different vehicular 
applications. While advancements have been made in predicting content popularity, including 

References Safety 
and 

Traffic 
Content 
Tuning 

Infotainment 
Content 

Adaptation 

Content 
Characteristics 
Consideration 

Popularity 
Prediction 

Mechanism 

Privacy 
Preservation 
Mechanism 

Collaborative 
Caching 
Strategy 

155, 156 No No No Yes No Yes 

157 Yes Yes Yes No No No 

158, 159 No No Yes No No Yes 

160 No Yes No No No Yes 

161 No Yes Yes Yes No No 

162, 164, 
166 

No No No Yes No No 

167 No No No Yes Yes No 

163, 168 No No Yes No No No 

165, 169 No Yes No Yes No No 

168 No No Yes No Yes Yes 

Table 2.2 Comparative Evaluation of Edge Caching Strategies in IoV: Focusing on Content Dynamics 
and Collaborative Mechanisms 
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efforts towards privacy preservation, there remains a substantial gap in the strategic selection 
of nodes for participation in the learning process and the formulation of policies to achieve 
high-quality models. Furthermore, the prevailing approach to making caching decisions is 
characteristically local, overlooking the benefits of a globally optimized strategy. This localized 
decision-making process fails to fully capitalize on the potential of collaborative efforts among 
nodes, which could significantly enhance the efficiency and effectiveness of caching 
mechanisms. Moreover, the distinct demands of various content types, from safety messages 
to infotainment, necessitate unique caching strategies tailored to their specific requirements. 
Addressing these gaps by considering the inherent nature and spatiotemporal characteristics 
of IoV content, and fostering cooperation among nodes in caching decisions, is crucial for 
developing a comprehensive and effective edge caching model. This model would not only 
improve cache hit rates but also ensure that the diverse needs of vehicular network users are 
met efficiently and securely. 

 
 

2.5.3. Integrating UAVs with Caching Strategies: A New Horizon 

 
This subsection explores the cutting-edge integration of UAVs with caching strategies, 

marking a new horizon in network optimization and content delivery. The aim is to shed light 
on how UAVs, when combined with caching mechanisms, offer novel solutions to extend 
network coverage, improve content delivery in remote or underserved areas, and enhance 
the resilience of communication systems. By reviewing related works, we will identify the 
challenges and opportunities presented by this integration, illustrating its potential to redefine 
traditional network paradigms and introduce more flexible, efficient, and scalable solutions. 
This analysis highlights the innovative intersection of UAV technology and caching strategies, 
paving the way for future advancements in wireless communication networks. 

The work presented in [170] introduces an approach to enhance MEC through ultrareliable 
caching for edge-enabled UAV networks, employing drones as on-demand nodes for efficient 
caching. This study leverages a neural-blockchain model aiming to improve reliability in 
communications within UAV-supported edge networks. The methodology emphasizes the use 
of blockchain for decentralized, secure data transactions and neural networks for optimizing 
caching decisions based on network dynamics. However, the approach appears to overlook 
potential benefits of direct cooperation among UAVs for sharing and retrieving cached 
content, which could further reduce latency and network load. Additionally, the strategy 
primarily focuses on network parameters to determine the caching of content, without 
explicitly incorporating content-specific metrics such as popularity or user preferences, which 
could enhance the efficiency and relevance of cached data. The absence of a detailed 
mechanism for content selection based on such metrics may limit the adaptability and 
effectiveness of the caching strategy in dynamic network environments with varying content 
demand patterns. 

The work in [171] explores the integration of UAVs, VANETs, and caching mechanisms to 
address the challenges of content delivery in intelligent transportation systems. This study 
centers around the development of a system where a UAV autonomously makes caching 
decisions based on the popularity and size of content, along with its current cache status, to 
optimally serve vehicles on the road. The approach involves formulating the problem as a 
Mixed Integer Non-Linear Problem (MINLP) and subsequently as an MDP, which is solved using 
Proximal Policy Optimization (PPO), highlighting the UAV's trajectory planning, cache 
management, and radio resource allocation strategies. Despite the outlined system's potential 
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to improve content delivery efficiency, several shortcomings are evident. The absence of a 
dynamic popularity prediction mechanism limits the system's ability to proactively cache 
content based on real-time demand changes. Moreover, the study primarily examines the 
operation of a single UAV, which may not reflect the complexities and potential benefits of 
multiple UAVs working in coordination. Additionally, the practicality of implementing 
computationally intensive algorithms like PPO on UAVs with limited computational resources 
is not thoroughly assessed, which raises questions about the scalability and real-world 
applicability of the proposed approach in diverse operational environments. 

The work in [172] introduces FLchain, integrating MEC with Federated Learning (FL) and 
blockchain technologies to address issues of data privacy and centralization, aiming to bolster 
security and privacy within intelligent MEC networks. This framework is particularly 
emphasized for its role in facilitating decentralized, secure, and privacy-preserving 
communications across edge computing applications, including UAV networks, edge data 
sharing, and content caching. Despite the breadth of its applications, the paper stops short of 
detailing specific caching mechanisms, proposing efficient UAV placement strategies, or 
considering the energy constraints critical for UAV operations. Furthermore, while it outlines 
the conceptual underpinnings and potential benefits of FLchain, it does not delve into the 
operational metrics or decision-making criteria for content caching, leaving a gap in the 
practical implementation of its proposed architecture. 

The work presented in [173] focuses on improving UAV-assisted wireless caching networks 
(WCN) through the implementation of Non-Orthogonal Multiple Access (NOMA). It leverages 
UAVs for mobile caching, employs NOMA for serving multiple users over the same spectrum, 
and introduces algorithms for efficient power allocation and user clustering, notably the ρ-K-
means algorithm for UAV deployment optimization based on user clustering. This work is 
centered around a cross-layer resource allocation strategy to enhance system performance, 
particularly by maximizing the system hit probability through strategic file caching and power 
distribution decisions. However, the approach exhibits several limitations. Primarily, it does 
not account for user interests or behaviors when clustering, relying solely on proximity and 
channel gain, which might not accurately reflect the dynamic and localized content demand 
within specific UAV coverage areas. Furthermore, the centralized content popularity 
prediction by the base station, without considering individual UAV areas and potential user 
mobility, may not fully align with the immediate needs and interests of users under specific 
UAVs. Notably, the study overlooks the energy constraints of UAVs, a critical aspect in 
designing UAV-assisted networks, as these limitations directly impact UAVs' operational 
capacity and, consequently, the efficiency of content delivery and network performance. This 
omission underscores a gap in ensuring the sustainability and long-term viability of the 
proposed network configuration under real-world conditions where energy resources and 
user demands are variable and unpredictable. 

The study in [174] introduces an approach that blends cache-enabling UAV cellular 
networks with NOMA technology to offload wireless backhaul link traffic and enhance 
network performance by caching popular content on a mobile UAV base station. Central to 
this exploration is the development of an MDP framework for the long-term optimization of 
caching placement and resource allocation, tackled through Q-learning algorithms with the 
UAV acting as a decision-making agent. This strategy is poised to meet the surging demand for 
high data rates and low access delay in multimedia content delivery. Despite its thorough 
exploration of UAV-based caching and resource allocation, the research does not delve into 
the specifics of UAV placement strategies, the collaborative potential between multiple UAVs, 
or a dynamic method for determining the popularity of content based on real-time user 
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request patterns. The focus is predominantly on the operational optimization of a single UAV 
without considering the variable characteristics of the content itself or the potential for 
enhancing network coverage and efficiency through strategic UAV positioning and multi-UAV 
collaboration. 

Research in [175] optimizes the deployment and operation of UAVs within mobile edge 
networks (MEN) by focusing on content caching strategies designed to improve the network's 
ability to manage data traffic and enhance the QoE for users. The QoE is calculated based on 
transmission delays and their impact on user satisfaction, modeled through a DRL framework. 
This approach incorporates human-centric features, such as user mobility and request 
patterns, into the DRL algorithm to predict the most effective locations for UAVs and the 
optimal content to cache, addressing the issue by formulating it as an MDP. Despite its 
contributions to improving MEN efficiency, the study has certain areas that could benefit from 
further exploration. It does not detail mechanisms for preserving user privacy when 
integrating human-centric data, nor does it address the potential energy limitations associated 
with UAVs, which could significantly impact their operational time and effectiveness. 
Furthermore, the possibility of UAV collaboration for content sharing, which could potentially 
enhance network performance, is not explored, missing an opportunity to further optimize 
content delivery and caching in MENs. 

Research in [176] optimizes the use of UAVs for mobile edge caching within wireless 
communication systems, leveraging Latent Dirichlet Allocation (LDA) for enhancing caching 
strategies through an analysis of user request preferences. This approach integrates k-means 
clustering to effectively classify users, aiding in the strategic deployment of UAVs according to 
user distribution and preferences. Centralized analysis on a cloud server underpins the caching 
decisions, focusing on content popularity and anticipated demand among users. However, the 
study does not delineate the division of user preferences across distinct UAV coverage areas, 
leading to a potentially generalized caching strategy that may not align with localized user 
demands. Moreover, the reliance on historical browsing data for preference analysis without 
addressing privacy concerns or implementing any privacy-preserving mechanisms could pose 
significant privacy risks. This absence of specificity in user preference localization and the lack 
of privacy safeguards mark critical areas for improvement in the proposed system. 

 
The study in [177] optimizes the deployment of UAVs in device-to-device (D2D) 
communication networks through a framework that strategically manages both UAV flight 
trajectory and caching placement. It tackles the challenge of maximizing cache utility within 
these networks by formulating and decomposing a mixed integer nonlinear programming 
problem into three solvable sub-problems: user terminal (UT) caching placement, UAV 
trajectory optimization, and UAV caching strategy. This decomposition approach utilizes a 
many-to-many swap matching algorithm, approximate convex optimization, and dynamic 
programming to address each sub-problem respectively. The role of Scalable Video Coding 
(SVC) is pivotal in the proposed strategy, enabling variable content quality levels to be 
efficiently cached and delivered based on network demand. However, the research does not 
adequately address several practical considerations. Fluctuations in content popularity over 
time are overlooked, potentially reducing the efficacy of the caching strategy in dynamic 
network environments. The absence of a privacy-preserving mechanism for data sharing 
between UAVs and UTs raises concerns regarding user data confidentiality. Additionally, the 
independent solution of decomposed sub-problems may lead to potential misalignments, 
such as sub-optimal UAV positioning relative to its cache content, impacting overall network 
performance. While the study acknowledges the importance of content popularity in caching 
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decisions, it fails to differentiate between the demand for various quality levels of the same 
content, which could lead to inefficient storage use. Moreover, by focusing primarily on the 
caching capabilities of UAVs without fully integrating their communication facilitation roles, 
the proposed framework might not be practically justifiable considering the operational costs 
associated with UAV deployment. 

Research in [178] optimizes UAV deployment in IoV networks, focusing on caching 
mechanisms to improve high-bandwidth content delivery. The study formulates a Joint 
Caching and Trajectory Optimization (JCTO) problem, approached through a deep supervised 
learning method. This method encompasses two strategies: Offline Optimization, which 
clusters vehicles to manage computational complexity and optimizes content placement and 
UAV trajectory, and Online Decision-Making with Deep Learning, allowing for adaptive real-
time adjustments based on dynamic network conditions. While this approach contributes to 
the efficient allocation of UAV resources in vehicular networks, it does not fully address 
several potential challenges. Specifically, the study does not differentiate between content 
types, such as safety and infotainment, each with distinct requirements. Moreover, the 
reliance on offline optimization to train the online model may not adequately capture the IoV's 
dynamics, as the real-time model's effectiveness is inherently limited by the scope of the 
offline data it learns from. Additionally, the method's focus on proximal vehicle locations 
without considering their trajectories or future movements may reduce the effectiveness of 
UAV deployment in the highly dynamic IoV environment, potentially overlooking more 
efficient content delivery paths that account for vehicular mobility patterns. 

Research in [179] optimizes cache placement strategies within UAV-assisted networks 
incorporating D2D communications, focusing on enhancing system performance through 
improved cache hit probability and trajectory optimization in both static and dynamic UAV 
deployments. This optimization aims at intelligently distributing content across the network, 
leveraging UAVs for content delivery and D2D for localized sharing, thereby alleviating the 
load on the backhaul network and enhancing user access to popular content. Despite its 
contributions, the study presents limitations such as the absence of a detailed methodology 
for predicting content popularity, which is crucial for implementing the probabilistic caching 
effectively. This gap raises questions about the practical execution of cache placement 
strategies, particularly in dynamic network environments where content popularity can 
fluctuate rapidly. Additionally, the analysis does not account for the redundancy in caching, 
particularly in scenarios where nearby devices cache identical content, potentially leading to 
inefficient use of limited storage resources. Another significant oversight is the neglect of UAV 
power constraints and battery dependency, which are critical factors in the practical 
deployment of UAV-assisted networks. Addressing these shortcomings could significantly 
enhance the feasibility and efficiency of the proposed caching strategies in real-world 
applications. 

The work presented in [180] optimizes content distribution in 5G Heterogeneous Networks 
(HetNets) through a mechanism that strategically employs UAVs and the Internet of 
Connected Vehicles (IoCVs). The focus is on enhancing the QoE for vehicle users by formulating 
an optimization problem aimed at reducing transmission delays and applying a coalition game 
between UAVs and IoCVs to identify the most effective content distribution strategy. This 
approach intricately considers the utility functions of both UAVs and IoCVs, aiming to 
stimulate their participation in the content distribution process. However, the study does not 
delineate specific strategies for optimizing UAV battery usage, which is critical given their 
energy constraints. Moreover, it overlooks the elaboration of a robust UAV deployment 
strategy, crucial for the operational efficacy of such networks, and does not address 
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mechanisms to offload the computationally intensive tasks associated with the optimization 
problem from the UAVs, ensuring the sustainability of the optimization model's goals and 
quality. This leaves room for further exploration on improving UAV energy management, 
computational offloading for optimization tasks, and deployment strategies within HetNets 
environments. 

In [181] authors introduce an optimization for content caching and UAV trajectory planning 
within the IoV ecosystem by introducing a framework that utilizes UAVs to enhance the 
delivery of delay-sensitive content amidst challenges of limited resources and high vehicular 
mobility. The approach, anchored on a content Caching scheme with Trajectory design 
through Differential Evolution and Deep Reinforcement Learning (CTDR), addresses energy-
efficient content delivery by proposing a differential evolution-based content caching scheme 
and a trajectory optimization via Multi-Agent Proximal Policy Optimization (MAPPO). This 
dual-focus strategy aims at dynamically updating UAV caches and optimizing flight paths to 
reduce system energy consumption while ensuring high service quality. Despite the 
framework's contributions, the autonomy in UAV decision-making raises questions about the 
global network optimality, particularly in environments with highly mobile and transient 
vehicle requests. This model might face hurdles in achieving proactive caching that accurately 
predicts future demands, as it relies primarily on recent historical request data received by the 
UAV. The dynamic update mechanism, while responsive to recent requests, may not fully 
anticipate the rapid changes in vehicular networks, potentially affecting the system's overall 
effectiveness in real-time content delivery. 

The work presented in [182] introduces a method for deploying in cache-enabled multi-
UAV networks, aiming to enhance the QoE for ground users by reducing the average request 
delay. This is approached as a joint optimization problem, categorized as NP-hard, and 
addressed through the decomposition into two sub-problems: UAV deployment, leveraging a 
weighted K-means algorithm for user clustering based on geographical location and activity 
levels, and content placement, utilizing a Q-learning algorithm to dynamically adapt to 
changing content popularity and user demands. The study ambitiously attempts to navigate 
the complexities of dynamic content libraries and heterogeneous user activity without relying 
on static predictions of content popularity. However, it faces limitations, notably in its reliance 
on the user activity level, a metric determined by a probability assigned to each user, where 
the methodology for calculating these probabilities remains undefined. Moreover, the 
independence of UAVs in observing user requests could lead to suboptimal cache placements 
in scenarios where user mobility is significant, potentially resulting in users moving out of the 
UAV's coverage area before the system can effectively learn and adapt to their content 
preferences. 

Research in [183] optimizes UAV-assisted cellular networks by focusing on the dual 
challenges of UAV deployment and content caching to enhance user QoE, evaluated via the 
Mean Opinion Score (MOS). This study proposes a joint optimization problem, tackling it 
through the decomposition into UAV deployment and caching placement. A swap matching-
based algorithm is utilized for the strategic placement of UAVs, while a greedy algorithm is 
responsible for making caching decisions, considering factors like content popularity and size, 
albeit without a real-time prediction mechanism for the latter. Despite its comprehensive 
treatment of deployment and caching strategies aimed at minimizing transmission delays, the 
study overlooks several practical concerns. Notably, it does not address the power constraints 
of UAVs, which could significantly impact their operational longevity and service availability. 
Additionally, the paper lacks a detailed exploration of UAV collaboration possibilities and the 
integration of UAVs with existing cellular infrastructure beyond basic backhaul connectivity, 
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missing out on potential performance enhancements through cooperative dynamics and 
infrastructure synergy. 

The study in [184] optimizes the caching strategy for UAVs in cellular networks, aiming to 
improve service timeliness and address the limitations of UAVs' finite storage capacities. It 
employs PPO, a reinforcement learning algorithm, to adaptively identify the best caching 
approach. A key contribution is the introduction of the Effective Age of Information (EAoI) 
metric, which assesses the freshness of information while accounting for packet errors during 
transmission. This approach enables dynamic adaptation to user demands and network 
conditions, enhancing the relevance and timeliness of the content delivered to users. 
However, the reliance on a reinforcement learning algorithm for real-time decision-making 
raises concerns about the computational and power demands on UAVs, which are typically 
resource-constrained. Additionally, the focus on content freshness may not be universally 
applicable across all types of content; for instance, many forms of multimedia content, like 
movies, do not require frequent updates to remain relevant to users, suggesting the proposed 
framework might have limited applicability in scenarios not driven by the need for up-to-the-
minute information. The absence of a detailed strategy for dynamic UAV placement or 
considerations for optimizing communication quality, such as signal-to-interference-plus-
noise ratio (SINR) and data rate adjustments, signifies missed opportunities to further enhance 
network performance and service quality. 

Table 2.3. offers a systematic comparison across the spectrum of research focusing on UAV 
deployment integrated with caching strategies in next-generation networks. This analysis 
employs six critical metrics to distill the essence of each study's approach, highlighting the 
diversity and focus areas in current research. 

• Power Constraint Consideration: Evaluates if studies account for the energy 
limitations of UAVs, which are crucial for prolonging operational durations and 
optimizing flight paths. 

• Caching Mechanism Detailing: Assesses if the related work not only mentions 
caching but also elaborates on the specific mechanisms and procedures for 
implementing caching on UAVs. 

• Communication Metrics Awareness: Investigates the consideration of 
communication metrics like path loss, data rate, and signal-to-noise ratios, which 
are fundamental for ensuring reliable UAV communication links. 

• UAV Collaborative Strategy: Identifies the inclusion of strategies for UAV 
collaboration, essential for enhancing caching efficiency and decision-making 
processes through shared intelligence. 

• Integration with Terrestrial Infrastructure: Explores whether UAV deployment 
strategies are conceptualized to function in synergy with ground-based 
infrastructures such as Base Stations (BS) and Road Side Units (RSU), acknowledging 
the value of a unified network ecosystem. 

• Decentralized Approach Adoption: Examines the adoption of decentralized 
decision-making in UAV operations, crucial for scalability, robustness against 
failures, and minimizing cloud dependency. 

 
Research Gap Explanation 
The prevailing research on UAV deployment with caching often isolates UAV operational 

factors like energy efficiency and trajectory optimization, without considering them as integral 
parts of a holistic system encompassing terrestrial infrastructures, cloud computing, and 
sophisticated caching mechanisms. This siloed approach falls short of achieving enhanced QoS 
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across the entire network, underscoring the need for a more integrated methodology. A 
significant portion of the literature does not fully explore UAV collaboration nor its potential 
synergy with terrestrial networks; and where the integration with terrestrial infrastructure is 
acknowledged, it seldom progresses beyond conceptual proposals to detailed implementation 
strategies. Furthermore, the potential of decentralized network decision-making, which can 
avert the pitfalls of cloud reliance such as single points of failure and latency, is frequently 
overlooked. Moreover, there is a notable gap in addressing practical constraints such as UAV 
power limitations and the intricacies of content selection mechanisms, elements critical for 
the operational viability of UAV networks. Addressing these gaps necessitates a shift towards 
comprehensive strategies that not only improve network-wide QoS but also ensure the 
sustainable and efficient deployment of UAVs within the broader network infrastructure. 

 

 
 
 

 

References Power 
Constraint 

Consideration 

Caching 
Mechanism 

Detailing 

Communication 
Metrics 

Awareness 

UAV 
Collaborative 

Strategy 

Integration 
with 

Terrestrial 
Infrastructure 

Decentralized 
Approach 
Adoption 

170 No No Yes No Yes Yes 

171 Yes Yes Yes No No Yes 

172 No No No Yes Yes Yes 

173, 175 No No Yes No Yes No 

174 No Yes Yes No No Yes 

176, 180, 
183 

No Yes Yes No Yes No 

177 No Yes No No No Yes 

182 No Yes No No No No 

178 Yes No Yes No Yes No 

179 No No Yes No No No 

181 Yes Yes Yes No Yes Yes 

184 No Yes Yes No No Yes 

Table 2.3. Strategic Overview of UAV Deployment with Caching in Next-Generation Networks 
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3. A software-defined caching scheme for 
the Internet of Things 

3.1 Introduction 
 
The Internet of Things (IoT) is a paradigm where billions of heterogeneous devices connect 

and communicate. However, implementing new services using IoT is far from straightforward 
and faces many challenges, including, providing a connection between heterogeneous nodes 
and transient nature of data. An important aspect regarding IoT is the content-centric nature 
of IoT data, meaning that most applications designed for this ecosystem are generally 
interested in the content regardless of where it is located or by whom it is produced. 

One of the approaches which can be used to mitigate the challenges related to the 
implementation of IoT is CCN [185], which is a new method that changes architecture and the 
concept of the current Internet. One of the main characteristics of CCN is naming the data, 
which makes each chunk a self-identifying unit. Retrieving data by their name instead of their 
location is another feature of CCN that can be used to support mobility, and finally, the most 
essential aspect of CCN is caching the data which can be exploited to solve many problems in 
the realm of IoT. Caching data can bring many benefits, for instance, similar to anycast in IPv6 
[186], respond to requests from the closest node caching the data can bring many benefits 
such as reducing the immense access to constrained resource nodes, saving energy 
consumption and hence prolonging the life cycle of nodes. Caching can also improve 
availability by increasing the chance to access the data through the cached content, even if 
the original producer is not available. Additionally, in-network caching can be used to face the 
challenges that arise from big data and decrease the bandwidth usage by caching the proper 
contents on suitable devices. 

In-network caching can be very useful in many use cases, for instance, consider the scenario 
of finding a parking space. The main characteristics of this scenario are the vastness of the 
environment, the dynamic nature of the environment, and a large number of users. Users in 
this scenario mainly need parking space information in their vicinity, so they can connect 
directly to the IoT network instead of the Internet and demanding the current parking space 
status in the area of their interest. The information gathered by IoT sensors will eventually be 
transmitted to the cloud for long-term storage and analysis. However, it is crucial that the data 
gathered by IoT devices regarding the location and status of parking spaces, be available at 
any time for users, even if because of intermittent connections, the cloud would not be 
available or sometimes because of QoS considerations the delay to retrieve data from the 
cloud will not be tolerable. Thus, caching data on IoT devices can be utilized to ensure data 
availability and low latency. It should be noted that the data generated by IoT devices are 
generally small in size and therefore, storing them on devices with limited storage is feasible. 
Furthermore, in many scenarios, such as parking space, contents are often location-
dependent, and most of the cached contents are used by users who are in the same location 
where the content was generated. 

To take advantage of caching to the full extent and for better management of cache 
storage, we propose to group sensors into clusters and then the most powerful node in each 
cluster selected as the cluster head. The cluster head is responsible for handling the 
connection with other clusters and can also act as the cache server to coordinate caching 
decisions inside the cluster. It can distribute cached contents among different devices based 
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on their energy level, storage capacity, and several other criteria. This can result in better 
utilization of devices’ resources inside a cluster. However, for the overall utilization of network 
resources, we consider another entity, namely the global SDN/Cache controller (GSCC), that is 
responsible for orchestrating caching decisions between different clusters and selecting a 
proper cluster for caching the content. For this purpose, GSCC considers various criteria, 
including the accumulated resources in the cluster and the location of the cluster in the 
network graph. 

In the proposed architecture, when users ask for content produced by IoT devices in a 
specific location, instead of heading to the cloud server, we can use GSCC knowledge to 
identify the cached content’s location and forward the request to the cluster storing the 
content. As mentioned, using CCN in-network caching offers many benefits. However, CCN in 
its default form was not designed for the IoT. Therefore, to meet the unique characteristics of 
the IoT environment, some modifications have to be made to the CCN caching architecture. 
So far, to the best of our knowledge, the related works in the literature do not consider all 
aspects of IoT, related to caching decision processes, such as redundancy, high bit rate, and 
unavailability of data when the original producer or cloud cannot be accessed. Therefore, a 
comprehensive approach for tuning the caching decisions for IoT is necessary, and it is the 
main objective of this research. In this research, we propose a novel caching mechanism 
‘‘Extended Multi-Criteria Cooperative Caching’’ (EM3C) scheme. In EM3C, by considering 
multiple IoT-related attributes and specifying their relative importance (using methods such 
as AHP and Shannon’s entropy methods), it is decided whether content should be cache or 
not and also the most appropriate node(s) to store the content are selected based on their 
available resources. The results of extensive simulations show the efficiency of EM3C in 
achieving higher cache hit rate and low data retrieval time. 

The rest of this chapter is organized as follows: In Section 3.2, we outline research gap and 
our contribution. Section 3.3 highlights the main challenges regarding the IoT and CCN. We 
also discuss the proposed system model in this section. In Sections 3.4 and 3.5 we explain our 
proposed approaches for inter-cluster and intra-cluster caching respectively. Simulation 
results are presented in Section 3.6. And finally, the chapter is concluded in Section 3.7. 

3.2 Research Motivation and Contribution 
 
Building upon the groundwork laid in Section 2.5.1, this research delves into uncharted 

territories within the domain of caching in IoT networks. The comparative analysis previously 
conducted reveals a significant gap in existing caching methodologies, particularly, their 
preference for node-centric strategies that neglect the broader network context and the omits 
potential of inter-node collaboration. This narrow focus engenders redundancy, with identical 
content being cached multiple times across the network, and results in cache placements that 
fail to capitalize on the network's structural intricacies and the diverse capabilities of its nodes. 
Moreover, the lack of sophisticated routing mechanisms exacerbates the challenge in 
scenarios rich with routing possibilities, thus reducing cache hit probabilities. A paramount 
need has been identified for a holistic approach that synergizes content characteristics with 
nodal capabilities, informed by a thorough understanding of the network's topology, the 
transient nature of IoT data, and a strategy that orchestrates caching decisions for a network-
wide optimum, including smart routing that fosters node cooperation for efficient content 
retrieval. 

Contributions 
In response to these challenges, this research posits a novel caching framework that 
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markedly enhances the efficiency of cache management in IoT networks. Our contributions 
are manifold and innovatively address the highlighted research gaps: 

1. Multi-Criteria Decision Making for Caching: We introduce an 'Extended Multi-Criteria 
Cooperative Caching' (EM3C) scheme, which incorporates a multi-faceted decision-
making process. This approach evaluates what content should be cached, and more 
crucially, determines the optimal cluster and the specific node within that cluster for 
caching. By leveraging methodologies like the Analytic Hierarchy Process (AHP) and 
Shannon’s entropy, EM3C meticulously considers multiple attributes related to IoT 
operations, thus ensuring a holistic and informed caching strategy that is attuned to the 
network's dynamic nature. 

2. Smart Routing via SDN Deployment: Our framework integrates Software-Defined 
Networking (SDN) for intelligent routing decisions, enabling a more fluid and responsive 
network architecture. This not only facilitates efficient content retrieval through 
cooperative inter-node communication but also optimizes network resource utilization 
and reduces latency. 

3. Hierarchical Caching Approach: By adopting a hierarchical structure for content 
caching, we address the challenge of load balancing and the quest for a global optimum. 
This structure allows for the distribution of caching responsibilities across different 
network layers, thereby prolonging node lifetimes and enhancing the overall network 
sustainability. 

4. Cluster-Based Cache Management: Central to our proposed framework is the concept 
of cluster-based cache management, where sensors are grouped into clusters with a 
designated cluster head for local cache coordination. This strategy is complemented by 
a global SDN/Cache controller (GSCC) for inter-cluster caching decisions, ensuring an 
efficient and cohesive caching strategy across the entire network. 

These contributions represent a significant leap forward in the field of IoT caching, 
providing a robust framework that not only mitigates the limitations identified in existing 
strategies but also introduces a scalable, efficient, and cooperative caching model designed 
for the complex landscapes of IoT networks. 

3.3 System Model 
 

3.3.1. Challenges 

 
Establishing an IoT network can bring a lot of benefits and opportunities, albeit the 

realization of this idea faces several challenges. The total traffic load produced by billions of 
devices would be significant and difficult to handle. Furthermore, relying solely on clouds for 
storing the IoT data would be very costly and results in a long retrieval time. Therefore, 
considering these challenges, new networking paradigms such as CCN regarded as the key 
enabler for IoT by many researchers. By exploiting CCN caching capabilities to select and cache 
the proper contents on intermediate nodes, data can be served with lower latency for 
upcoming requests. Because of intermittent connections and the existence of power 
constraint devices in IoT scenarios, caching can also improve the reliability and availability of 
data. However, the default caching scheme in CCN networks does not entirely fit into IoT 
scenarios. In a nutshell, the default caching scheme lacks the required intelligence to make 
smart caching decisions to help prolong the devices’ lifetime and also dealt with the 
probability of original content producer unavailability in the future. The main features of CCN 
caching are: 
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• On-path caching. Every chunk of content is stored on all the intermediate nodes. In 
other words, a node must store the content if the content passes through it. Even 
if these intermediate nodes do not have adequate free storage, they have to make 
some room for this new content chunk. On the other hand, other nodes that are 
not located in the content’s path have no chance to cache the content, even if they 
have plenty of free storage space. 

• On-path cache hit. Content requests can only benefit from the cached content if 
and only if one of the intermediate nodes on the interest packet’s path possesses 
the cached content. Thus, the probability of a cache hit also depends on the location 
of the requester and producer of the content. 

• Disunity in path selection and caching decisions. Each node decides independently 
whether to cache the content or not. In fact, the nodes do not have any information 
about the status and capability of the surrounding nodes.  
 

Aforementioned characteristics of CCN default caching scheme leads to several 
inefficiencies, especially in IoT, including the followings: 

 
• High level of content redundancy: Content chunks replicated on each hop, the ‘‘on-

path caching’’ feature, results in a huge amount of redundant contents. As a result, 
the odds of a successful cache hit are minimal, especially in IoT environments in 
which interest packets may traverse different paths. Furthermore, given the high 
redundancy and limited storage size of nodes, eventually, the node would not have 
enough storage to cache new content. In this case, it has to exchange the new 
content chunk with one of the previous ones. 

• Unbalanced utilization of resources: Depending on the location of nodes, they can 
be under heavy load and experiencing high exchange rate and energy consumption, 
and others may be underutilized. 

• Cached fragmentation: Every content consists of several chunks. The decision 
about caching each content’s chunk and also the path it should take made 
separately in each node, so, distinct chunks of the same content may be cached on 
different nodes [187]. 

 
Thus, to deal with the challenges mentioned above, we propose EM3C that uses a novel 

approach for caching the content in IoT scenarios and is explained in detail in the next section. 

3.3.2. Proposed Model 

 
One of the main bottlenecks in CCN caching performance is the disunity in cache 

management, which results in many inefficiencies, including a large amount of redundant 
content, suboptimal content selection for caching and inefficient resource management. The 
main reason for these drawbacks is related to the difference in perception of the optimal 
conditions from a local and global perspective. To mitigate this problem, we propose a four-
level hierarchical model, as depicted in Figure 3.1. 

• Application layer: In layer 4 of the proposed hierarchical model known as the 
Application layer, Servers and remote users are located. Servers can be used for 
long-term storage of data, which is necessary for long-term analyses and 
assessment of the system. 

• Translation layer: Layer 3 hosts gateways. Gateways are specific nodes that act as 
an interface that connects the communication layer to the application layer. A 
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gateway is responsible for different tasks such as protocol conversion and 
implementing security policies. 

• Communication layer: The SDN/Cache controller is located in the communication 
layer and is used to select the best routes for contents and requests. Considering 
the global view of the SDN/Cache controller, it is possible to do cache-aware 
routing, which eliminates the ‘‘on-path cache hit’’ problem of the default caching 

scheme. In CCN’s default caching method, the possibility to benefit from a cached 
content not only depends on the location of the cached content but also the 
location of the user. In other words, the cached content can only be exploited if it 
is located on the path between the user and the source. By intelligently forwarding 
requests toward the cached content using SDN/Cache controller capabilities, we 
can use the cached content in the vicinity instead of heading to the server located 
far away. The SDN/Cache controller also acts as a global cache controller and is 
responsible for making global decisions about the content caching. This procedure 
consists of selecting a cluster for storing the content and notifying the cluster head 
about this decision. 
Figure 3.2. describes the structure and elements of the communication layer. In the 
proposed architecture, nodes are grouped in several clusters, and in each cluster, a 
node is selected as the cluster head. The cluster head is responsible for establishing 
communication with other clusters and also acts as the local cache controller. They 
can forward requests to the appropriate destination based on flow entries received 
by SDN/Cache controller. SDN controller can use the OpenFlow protocol to 
communicate with the cluster heads. Cluster heads also act as a local cache 
controller and are responsible for coordinating caching decisions inside the cluster, 
including whether or not to accept the SDN/Global cache controller’s offers about 

 
Figure 3.1. Four tier system model for caching in IoT. 
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caching a content. Another duty of the local cache controller is to choose the proper 
node(s) based on their capabilities for storing the cached content. Regarding the 
higher processing power of cluster heads, they are responsible for analyzing cluster 
member capabilities and assign caching tasks accordingly. 
Cluster heads are also responsible for data aggregation. An important aspect of IoT 
applications in many scenarios, including parking space statuses is that for long-
term storage and analysis, IoT applications, mainly interested in a single aggregated 
data that summarizes the collected data over a period of time such as 15 min or an 
hour. An example can be the percentage of time a specific parking slot is empty 
during rush hours, or in the case of surveillance cameras, we can aggregate 
observations in which data can only be cached if an anomaly detected. This property 
of IoT data can also be used to decrease the number of unnecessary transmissions 
and reduce power consumption. 
The last entity in the communication layer is local users. These users are located at 
the same site with IoT devices, and they can communicate directly with the IoT 
network. Local users, as other users, are the consumers of contents produced by 
IoT networks. However, because of their location, it would be excessively beneficial 
if they can access the cached content located in their proximity instead of heading 
to the server. This results in better QoS and alleviates excessive access to the cloud 
server. 

• Device layer: Layer 1 or device layer is where Sensors and in general IoT devices 
located, which produce and transmit contents regularly. These devices are 
equipped with storage and are capable of caching the content for later uses. 

3.4 Inter-cluster global decision making 
 

Upon producing content, the cluster head will be notified, and in turn, the cluster head 
informs SDN/Cache controller. The SDN/Cache controller selects a gateway and determines 
the best route to transfer the content to the cloud, based on the overall delay. Delay is 
calculated by considering the propagation delay and queue length in the gateway. SDN/Cache 

 
Figure 3.2. Communication layer architecture and elements. 



46 
 

controller also selects a proper cluster for caching the content based on its global view of the 
network and sets the appropriate entries in the flow tables to point to this cluster. It is 
desirable if the cluster selected for caching the content is located on the path to the selected 
gateway. This prevents an increase in delay and reduces the number of clusters involved in 
content transmission. For this purpose, as shown in Figure 3.3, the SDN/Cache controller 
creates an STP rooted in the source cluster and only selects clusters along the path from the 
root to the selected gateway. The only exception is that none of the clusters located on the 
path can cache the content. 

 
To select the most suitable cluster for caching the content, the SDN/Cache controller 

considers several criteria as follows: 
• Accumulated storage: accumulated storage is the sum of the free storage capacity 

of all nodes in the cluster. 
• Accumulated energy: the overall remaining energy of nodes in the cluster is 

another metric used by the SDN/Cache controller to avoid early failures. 
• Distance from the source cluster: because of locality characteristics of most IoT 

data and requests in many IoT applications, it is preferable to cache the content on 
the source cluster or close to that. Therefore, the SDN/Cache controller considers 
the distance from the source cluster as a metric to select the most suitable cluster 
for caching the content. 

• PLSI: The characteristics mentioned above mainly focused on a single cluster 
capability to cache content. However, for a truly efficient caching scheme, we also 
need to consider the connections and the position of each cluster in comparison to 
other clusters. To this end, we consider the IoT network as a graph where each 
cluster is represented as a node. Then we calculate the betweenness for each node. 
Vertex betweenness is an indicator of the degree of centrality for nodes in a graph. 
To calculate betweenness centrality, consider the shortest path between every pair 
of clusters and count how many times a cluster can interrupt the shortest paths. 
Consequently, clusters with higher betweenness are the clusters located on the 
center of the network acting as a hub for most of the communication, and caching 
content on these central clusters will result in shorter average retrieval time and 
lower hop counts to get the requested content. However, because of the limited 
storage size, it is impossible to cache all contents on the clusters with higher 
betweenness also, considering the central cluster’s role as a key communications 
point, extreme use of these clusters for caching, which results in an early power 
outage can cause many problems for other cluster’s communications. Hence, it is 
crucial to establish some mechanisms to reduce the load on central clusters. For this 
purpose, we use central clusters only for caching popular content that is in high 
demand and assigns unpopular content to edge clusters. By doing so, we make sure 

 
Figure 3.3. Four tier system model for caching in IoT. 
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that we use the central cluster’s sources just for high-value content. Thus, different 
situations regarding the popularity of the content and the centrality of a cluster 
arise. These situations are summarized in Table 3.1. 
 

 
It is also important to pay attention to the concept of popularity in IoT networks. In 
IoT, contents are transient and are only valuable for a certain amount of time known 
as Expiry date, so it is not useful to calculate individual content’s popularity. 
Therefore, based on the location-based nature of many IoT applications, we 
consider popular clusters instead of popular contents. Contents produced by 
popular clusters are more likely to be requested by users; however, the popularity 
of a cluster can change over time. For instance, take the scenario of smart parking 
space management. In the middle of the week, clusters located around government 
offices may be considered as popular clusters; however, on the weekends, clusters 
located around shopping centers and entertainment centers would be considered 
as popular. To specify the interplay between the popularity of content and 
centrality of a cluster, we introduce a new metric, namely popularity and location-
based suitability indicator (PLSI), which is calculated as follows: 

"𝑁" is the number of clusters. "𝑏" is betweenness rank of the cluster examined for 
caching the content, and 𝑝 is the popularity rank of the cluster that generated the 
content. The 𝑃𝐿𝑆𝐼 will have a value close to one when the popularity rank of the 
content and betweenness rank of the cluster are both high or low; otherwise, it will 
have a value close to zero. 
 

Based on the metrics mentioned above, the SDN controller selects a cluster for caching the 
content. However, in the presence of different criteria, it is important to specify each metric’s 
relative importance in selecting the most suitable cluster. Therefore, we use Shannon’s 
entropy method [188] for dynamically calculating each metric’s weight. For this purpose, we 
use the following equations: 

Popularity of content Centrality of cluster  Suitability of caching the content 
on the cluster 

High High  High 

High Low  Low 

Low High  Low 

Low Low  High 

Table 3.1. Possible scenarios in PLSI calculation. 

𝑃𝐿𝑆𝐼 =
𝑁 − |𝑝 − 𝑏|

𝑁
 

(3.1) 

 

𝑘 =  
1

𝑙𝑛 (𝑚)
 

(3.2) 
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𝑚 is the number of clusters; in the next step, we calculate the divergence of each criterion. 
 

𝐸
𝑗

=  −𝑘 (∑𝑎
𝑖𝑗

𝑚

𝑖=1

. ln (𝑎
𝑖𝑗

)) 
(3.3) 

 
 

𝐷
𝑗

= 1 − 𝐸
𝑗

 
(3.4) 

 

𝑎𝑖𝑗is the normalized value of criteria "𝑗" in the cluster. Finally, we calculate each metrics 

weight as follow: 

 

𝑊
𝑗

= 
𝐷

𝑗

∑ 𝐷
𝑗

𝑛
𝑗=1

 

(3.5) 

 

After calculating each metric’s weight, SDN/Cache controller should rank clusters based on 
their suitability. However, considering different criteria with non-homogeneous scales, 
selecting appropriate clusters could be challenging. Therefore, we use a modified version of 
the multicriteria decision-making method called TOPSIS, which explained in the following 
section. 

SDN controller creates a table consisting of clusters (indicating by 𝐶𝑙1–𝐶𝑙𝑛) as rows and 
different criteria (m1– m4) as columns and intersection of each column and row which can 
represented by 𝑎𝑖𝑗 indicates the value of the associated metric for the cluster. 

 
 𝑚1 𝑚2 𝑚3 𝑚4 

𝐶𝑙1
𝐶𝑙2
⋮

𝐶𝑙𝑛

 [

𝑎(1,1) 𝑎(1,2) 𝑎(1,3) 𝑎(1,4)
𝑎(2,1) 𝑎(2,2) 𝑎(2,3) 𝑎(2,4)

⋮ ⋮ ⋮ ⋮
𝑎(𝑛, 1) 𝑎(𝑛, 2) 𝑎(𝑛, 3) 𝑎(𝑛, 4)

] 

 

Regarding the different scale of 𝑚𝑖, we need to normalize these values; however, instead 
of using the default normalization method of TOPSIS we use the following equations to 
normalize values: 

 

𝑏𝑖
+ = 

𝑀𝑎𝑥 𝑎𝑖𝑗 − 𝑀𝑖𝑛 𝑎𝑖𝑗

𝑀𝑎𝑥 𝑎𝑖𝑗
 

(3.6) 

 
 

𝑏𝑖
− =

𝑀𝑖𝑛 𝑎𝑖𝑗

𝑀𝑎𝑥 𝑎𝑖𝑗
 

(3.7) 

 

𝑛
𝑖𝑗

= 𝑏𝑖
− [

((𝑎𝑖𝑗 − 𝑀𝑖𝑛 𝑎𝑖𝑗)(𝑏𝑖
+ − 𝑏𝑖

−))

(𝑀𝑎𝑥 𝑎𝑖𝑗 −  𝑀𝑖𝑛 𝑎𝑖𝑗)
] 

(3.8) 
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where 𝑏𝑖

+ and 𝑏𝑖
−are upper and lower bound of normalized values accordingly, which 

represent the best-case and worst-case scenarios, also 𝑛𝑖𝑗 is the normalized value of metric 𝑖 
for cluster "𝑗". 

It is worth mentioning that the above-mentioned formulas for normalization belong to 
positive criteria, and for normalization of negative criteria, we have to make some 
modifications in these formulas. For positive criteria, such as accumulated storage and the 
overall remaining power, the more they are, the better they are, but in contrast, for negative 
criteria such as distance from the source cluster, it is desirable to have lower values. 

In the next step, we multiply the Normalized matrix in the weight’s matrix obtained by the 
Shannon entropy method in Eq. (3.5). 

 

𝑡
𝑖𝑗

=  𝑛
𝑖𝑗

∗  𝑊
𝑗

 
(3.9) 

 
In the next step for every cluster "𝑗", the average difference between the value of each 

criterion for the current cluster and best and worst-case scenarios are calculated by using the 
following equations: 

 

𝐷𝑗
+ = √(𝑡

𝑖𝑗
− 𝑏𝑖

+)
2

, 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1…4, 𝑗 = 1…𝑛 

(3.10) 

 

𝐷𝑗
− = √(𝑡

𝑖𝑗
− 𝑏𝑖

−)
2

, 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1…4, 𝑗 = 1…𝑛 

(3.11) 

 
Later, we calculate the relative closeness of each criterion to the ideal solution using the 

following equation: 
 

𝑅𝑗 =
𝐷𝑗

−

𝐷𝑗
− + 𝐷𝑗

+ , 𝑤ℎ𝑒𝑟𝑒  𝑗 = 1…𝑛 𝑎𝑛𝑑 0 ≤ 𝑅𝑖𝑗 ≤ 1 
(3.12) 

 
The closer the value of 𝑅𝑗 is to one, the better the cluster is. If 𝑅𝑗 is equal to one, it means 

that the cluster "𝑗" has the best situation in all criteria. 
Finally, the cluster with the highest 𝑅𝑗 selected as the potential cluster for caching the 

content and SDN/Cache controller will inform the cluster head about this decision. As will be 
explained in the next section, the cluster head can either accept or reject this offer. 

3.5 Intra-cluster local decision machining 
 

The cluster head in the selected cluster should decide whether to accept the SDN/Cache 
controller offer and cache the content or reject it, to do this the cluster head should determine 
the value of suggested content and compare this value with the values of previously cached 
contents. Another task of the cluster head is selecting the suitable node or nodes for caching 
the content. Thus, we establish two different processes, one for selecting candidate nodes to 
store the content and another for determining the value of offered content. In the following 
sections, we discuss these two processes. Algorithm 1 describes the tasks done by a cluster 
head on receiving new content. Each received content contains information about its size, 
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time of production, and a field that indicates if the content is suggested by the SDN/Cache 
controller for caching on the cluster. This information will be used by the cluster head for 
handling the content. 

 

3.5.1. Node selection 

 
After receiving an offer from the SDN/Cache controller, if this offer is accepted, the cluster 

head has to choose candidate nodes. Candidate nodes are a group of nodes selected by the 
cluster head to cache the content. By choosing appropriate nodes for caching content, we can 
improve the stability and overall lifetime of the network. Regarding the nature of IoT devices, 
we choose several attributes as follows: 

1. Free storage space: to be able to cache the content, having enough free storage is 
one of the main prerequisites. Higher free storage is appreciated, but even if the 
free storage is not enough for caching the content, by leveraging the proposed 
replacement policy, we can exchange new content with previously cached contents. 
However, very low free storage is a sign that if the node is selected to store the 
content, a lot of stored chunks will need to be removed. Thus, to elevate the 
efficiency of the algorithm, we ignore the nodes in the node selection process if 
their free storage is lower than a threshold value. 

2. Energy level: the power level is another crucial metric, which represents the 
remaining energy level of the node. Energy is the node’s most valuable asset which 
should be consumed very carefully to prevent early failures. To ensure a long 
lifetime of nodes, we ignore the node in the node selection process if the energy 
level drops lower than the threshold value. 

3. Distance from cluster head: another critical metric is the distance between the 
node and the cluster head. Every communication with the outside of the cluster 
should be done through the cluster head. Thus, for serving the request with the 
cached content, this content should be sent to the cluster head, and the cluster 
head then forward the content toward the user. However, nodes located in the 
vicinity of the cluster head consume less energy to communicate with the cluster 
head, but with increasing the distance between the node and the cluster head, the 
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node has to consume more energy to communicate with the cluster head. 
Therefore, as shown in Figure 3.4., we consider clusters as multiple concentric 
circles, and at the center of these circles is the cluster head. To reduce energy 
consumption, we prefer nodes located in circles close to the center because they 
consume less energy to communicate with the cluster head. To specify the circle in 
which a node is located, a beacon is sent by the cluster head to each node and by 
calculation of the round-trip time, the circle in which the node "𝑗" belongs, is 
calculated as follows: 

 

𝐶𝑗 = ⌈
𝑅𝑇𝑗

𝑀𝑖𝑛(𝑅𝑇𝑖)
⌉ , 𝑤ℎ𝑒𝑟𝑒 𝑗 = 1…𝑛, 𝑖 = 1…𝑛 

(3.13) 

 
 
where 𝑅𝑇𝑗 is the round-trip time of the beacon between node "𝑗" and the cluster 
head, and 𝐶𝑗 is the circle in which the node 𝑗 located 

• Number of similar sensors: the last metric used by the cluster head to select nodes 
is the number of similar nodes. It is very common in IoT to have several similar 
sensors in an area, mainly for redundancy purposes. Regarding this fact, it is 
essential to consider the number of similar nodes in each cluster. For instance, if 
there is only one node from one specific type, and we lose that node because of the 
power outage, then there will not be any alternatives that can produce similar data 
but on the other hand, if there are several sensors from one type, even if we lose 
one of them, there are other nodes that can produce the same type of data. 

 
The integration of the above-mentioned metrics yields a single value, which is called 

caching weight. To calculate the caching weight, the significance of each of the 
aforementioned metrics should be determined. Considering the limited processing 

 
Figure 3.4. Four tier system model for caching in IoT. 
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capabilities and potential energy constraints of cluster heads, instead of calculating metrics 
weights dynamically, we use a static method that calculates these weights based on decision-
makers’ opinions during the system initialization stage. For this purpose, we use the Analytical 
Hierarchy Process (AHP), which is a form of the Multiple-Criteria Decision-Making (MCDM) 
mechanism that aimed to help in the decision-making process by organizing and analyzing 
complex problems in the presence of conflicting criteria. A detailed discussion about AHP can 
be found in [189]. The AHP calculates a weight for each metric using the relative importance 
of them, and these weights are then used to calculate the caching weight. To this end, we 
consider a matrix as follow: 

     m1 m2 m3 m4 

𝑚
1

𝑚
2

𝑚
3

𝑚
4

[
 
 
 
 
 
 
     𝑟11        𝑟12     𝑟13     𝑟14

𝑟21  𝑟22   𝑟23    𝑟24

𝑟31   𝑟32   𝑟33    𝑟34

𝑟41   𝑟42   𝑟43    𝑟44 ]
 
 
 
 
 
 

 

In which if 𝑖 = 𝑗, 𝑟𝑖𝑗 = 1, otherwise 𝑟𝑖𝑗 = 1
𝑟𝑗𝑖⁄  

𝑚𝑖 represents different metrics, and the relative importance of each metric 𝑚𝑖 in 
comparison to 𝑚𝑗 is shown by 𝑟𝑖𝑗. Furthermore, it is worth mentioning that these relative 
values can be tuned by experts to match the requirements of different scenarios without any 
further necessary changes to the proposed algorithm. After specifying the relative importance 
of metrics, the weight of each metric 𝑊𝑚 is calculated as follows: 

 

𝑊
𝑚

=
1

4
∑

𝑟
𝑖𝑗

∑ 𝑟
𝑖𝑗

4
𝑖=1

4

𝑖,𝑗=1

 

(3.14) 

Next, we can use these weights to calculate a score for the node that indicates its suitability 
for caching the content. However, considering the different units and scale of each metric, 
they should first be normalized, which we use 1-norm method for this purpose. Then the 
node’s score can be calculated as follows: 

 

𝑁𝑆𝑗 = ∑𝑊𝑖  ×  𝑥𝑖

4

𝑖=1

(𝑗) 
(3.15) 

 
 𝑥𝑖(𝑗) is the normalized value of metric 𝑖 in node "𝑗", 𝑊𝑖 is the weight of the metric "𝑖" which 

we calculated by AHP, and 𝑁𝑆𝑗 is the node’s score. 
After calculating each node’s score, we sort nodes based on these values, and if we consider 

the highest score as 𝑀𝑁𝑆 then we use this value to calculate 𝑇𝑁𝑆 which is similar to a 
threshold and nodes with a weight higher than 𝑇𝑁𝑆 are considered as candidate nodes. These 
nodes can potentially (but not necessarily) be used to cache the offered content. 𝑇𝑁𝑆 can be 
calculated as follows: 

 
𝑇𝑁𝑆 =  𝛼 × 𝑀𝑁𝑆   𝑤ℎ𝑒𝑟𝑒  0 < 𝛼 ≤ 1 (3.16) 

 
The parameter 𝛼 affects the lifetime of the nodes and also the cache hit rate. In general, 
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higher values extend the lifetime of nodes and lower values improve the cache hit rate. Figure 
3.5, illustrates the percentage of devices that failed (run out of energy) after 100 days, using 
different 𝛼 rates. As can be seen, higher 𝛼 results in lower failure rates thus it is reasonable to 
choose a higher 𝛼. 

However, as depicted in Figure 3.6, lower 𝛼 usually results in better cache hit rate, 
especially in the first 60 days. Therefore, there should be a trade-off that provides reasonable 
cache hit rate and failure rate. One can set the value of 𝛼 according to the scenario in-hand. 
Without loss of generality and according to our simulations results, we have taken 𝛼 equal to 
0.7 in the performance evaluation of this chapter. 

 
 

 

 
Figure 3.6. Cache hit rates for different alpha values. 

 
Figure 3.5. Failure rates for different alpha values. 
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3.5.2. Determining candidate contents 

 
The main objective of this process is to select contents for caching so that the benefits of 

caching (reducing access time, increasing accessibility, etc.) are more significant than the costs 
of caching (storage consumption, energy consumption, etc.). Thus, by considering the 
characteristics of contents in the IoT environment, we select three criteria for evaluating the 
value of the contents. 

4. Freshness: one of the significant aspects of contents produced in the IoT 
environment is their short lifetime. The transient nature of the contents of IoT 
means that content is regarded as invalid after a certain period, which defined by 
the content producer. Furthermore, the requests in this environment are usually 
for recently generated contents. To evaluate the freshness of content, we use the 
following equation: 

𝐹𝑖 = 𝑇𝑖 − 𝐴𝑔𝑒𝑖  (3.17) 

 

where 𝑇𝑖 donates the lifetime of the content 𝑖 that is the expiry date specified by 

the producer and 𝐴𝑔𝑒𝑖 is the period between the content’s time of production and 

the current time. Content is assumed to be invalid if its age is more than this value, 

and it can no longer be selected for caching in this case. 

5. Popularity: popularity is another important metric that should be taken into 
account in cache selection policies. Higher popularity means a higher chance of 
being requested by users. However, there is a fundamental difference between the 
popularity of content in the IoT environment and the popularity of regular content. 
As mentioned previously, contents in IoT are transient with a limited lifetime. 
Furthermore, consumers of IoT content usually are interested in location-based 
data, for instance, the temperature in a specific location or free parking space in a 
neighborhood. Thus, it is reasonable to associate popularity with clusters and not 
individual contents. 

6. Content size: the last content related metric is the content size. As discussed 
previously, the caching decision is applied to all chunks of the content. As a result, 
the content is either cached as a whole or put away entirely. Thus, it is vital to 
consider the number of forming chunks of the content. Caching large content which 
is requested frequently can save a lot of bandwidth and energy, but at the same 
time, large contents can take a lot of storage space and prevent other useful 
contents from caching; therefore, it is essential to preserve a good balance. 

 
The integration of the above-mentioned metrics results in one single value, which is called 

caching weight. However, as in the candidate node selection process, these metrics values 
needed to be normalized. In the next phase, the relative importance of each metric should be 
determined. For this purpose, as in the selecting candidate nodes process, we use the AHP. 
After using the AHP to calculate the weight of each criterion, we calculate the content’s value 
as follows: 

 

𝑊
 
𝑖 = ∑𝐴𝑊𝑗 × 𝑟𝑖𝑗 (3.18) 

where 𝐴𝑊𝑗 is the weight of metric "𝑗" calculated by AHP. 𝑟𝑖𝑗 is the normalized value of 
content "𝑖" in metric "𝑗", and 𝑊𝑖 is the value of content "𝑖". 

Then we use calculated content’s value to decide about whether or not the content should 
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be cached. For this purpose, we consider candidate nodes, if the sum of free storage on 
candidate nodes exceeds the offered content size, the offer is accepted, but if not, we have to 
follow cache replacement policies. To this end, we compare offered content’s value to the 
values of previously cached contents on the candidate nodes. However, due to the distribution 
of cached content among nodes in the cluster, some portion of the existing content on the 
candidate nodes may be stored on non-candidate nodes. We show the portion of content 
stored on candidate nodes as 𝛾 and use it to calculate a new weight for the previously cached 
content as follows: 

 
𝐶𝑊𝑖 = 𝛾 × 𝑊

 
𝑖  𝑤ℎ𝑒𝑟𝑒 0 < 𝛾 ≤ 1 (3.19) 

 
where 𝑊

 
𝑖 is the original value of the content, and 𝐶𝑊𝑖 is the newly calculated value, which 

is proportional to the fraction of the content cached in the candidate nodes. 
Later, we arrange the contents in descending order based on their 𝐶𝑊𝑖, and starting from 

the content with lowest 𝐶𝑊𝑖, we select the content and add the value of 𝐶𝑊𝑖’s until the total 
size of these contents is greater than the space required to cache the offered content. We call 
these selected contents, potential discarding candidates (PDS). Next, the total 𝐶𝑊𝑖 of these 
contents, which is denoted by 𝑆𝐶𝑊 is compared with the offered content’s 𝑊

 
𝑖. If offered 

content’s weight is higher than 𝑆𝐶𝑊 , then the cluster head decides to discard 𝑃𝐷𝑆 and cache 

the new content; otherwise, the cluster head rejects the offered content. However, if the 
cluster head decides to reject the SDN/Cache controller’s offer (which takes place with the 
probability of 𝑊

 
𝑖/𝑆𝐶𝑊), it may ask SDN/Cache controller to select another cluster for caching 

the content. The algorithm 2 is responsible for deciding about replacing previously cached 
content with the new content. 

3.6 Performance evaluation 
 

We use Omnet++ simulator to evaluate the performance of our proposed caching scheme. 
We implement CCN as an Overlay network on top of the IP layer. The simulation results are 
obtained by averaging over 60 runs. To evaluate the performance of the proposed scheme in 
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comparison to similar methods, we also implemented two other caching schemes: M3C [17] 
and MACD [140]. Both M3C and MACD are data caching methods that are specifically 
optimized for IoT networks, and therefore, they are suitable for comparing with EM3C under 
similar conditions. A basic simulation scenario consists of 100 CCN nodes, which grouped in 
some clusters, and each cluster managed by a cluster head. Nodes are uniformly categorized 
to 3 types (representing various types of nodes in a real-life IoT scenarios): type 1, type 2 and 
type 3 with respectively storage of 17 MB, 22 MB and 27 MB. The nodes periodically generate 
location-dependent information and send it to the cluster head, upon receiving this data; the 
cluster head consults the SDN/Cache controller and tries to send the received content to the 
server. However, when the cluster head does not have direct access to the server, the data 
must pass through several intermediate clusters to reach the server. There may also be 
multiple paths to the server; in this case, the SDN/Cache controller selects the best path and 
notifies the cluster heads. 

Furthermore, the most appropriate cluster for caching the content is selected by the 
SDN/Cache controller so that requests for content can be responded through cached 
information. Content requests are generated by multiple users who move randomly through 
the simulation environment and periodically issue content requests. However, due to the 
location-based nature of the generated contents, most requests issued by users are for 
contents created at nearby clusters. The distribution of requests also follows the Zipf 
distribution, with about 80% of requests being for newly produced contents and about 20% 
for older contents. 

The cache hit rate is one of the most important criteria used to evaluate the performance 
of the proposed method. The cache hit rate is the percentage of requests that are responded 
using cached content without having to interact with the server. As a result, a method with a 
higher cache hit rate can significantly help to address the problems of the IoT environment, 
including the availability of content at any time. As can be seen in Figure 3.7, EM3C offers a 
higher caching rate than all other methods. Furthermore, over time, as IoT devices lose their 
ability to cache data, all methods are experiencing performance degradation, but the EM3C’s 
performance loss rate is quite gentle, and even after 100 days, we see its acceptable 
performance. 

 
Figure 3.7. Cache hit rate comparison of EM3C, M3C and MACD. 
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Since more hop counts mean passing the request through more clusters and involvement 

of more nodes, this, in turn, results in more processing, more energy consumption, and more 
delay. Thus, it is essential to reduce the average hop count. So, we considered stretch factor 
[190], which is defined as the number of hops that the request has traveled before reaching 
to the content divided by the number of hops from the user and cloud server. Stretch factor 
is a number between 0–1 where lower values are more desirable. Figure 3.8 shows that the 
stretch factor in EM3C is higher than the other two methods, because, by efficient use of 
available nodes’ storage, EM3C can achieve higher cache hit, which enables it to provide the 
requested content by using cached data in adjacent clusters without heading to the server, so 
having a lower stretch factor. However, as time passes, the energy level of nodes decreases, 
and thus, the number of contents being cached is reduced. This is because, in the proposed 
caching schemes, the nodes’ energy level contributes to the ability of nodes for caching 

 
Figure 3.8. Stretch comparison of EM3C, M3C and MACD. 

 
Figure 3.9. Retrieval delay comparison of EM3C, M3C and MACD. 
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content. This, in turn, leads to sending more users’ requests to the cloud resulting in a higher 
stretch. 

One of the main factors in investigating the efficiency of the caching mechanism is the 
retrieval delay, which is the time between requesting the content and getting the content. For 
delay-sensitive apps, this can be very important to keep retrieval time below a specific 
threshold. Furthermore, the lower delay can improve the quality of experience considerably, 
and as illustrated in Figure 3.9, retrieval delay in EM3C is always lower than MACD and M3C. 
This can be explained by the intelligent routing of requests by SDN toward the cluster 
possessing the content. However, as explained earlier, less content is cached over time, and 
more requests are sent to the cloud for the response. Due to the long response time from the 
cloud compared to the local network, this, in turn, leads to increased latency. 

A good caching scheme should avoid redundancy and cache of duplicate content. 
Redundancy leads to a waste of resources and prevents caching of new content. Diversity 
expresses the ratio of unique content stored on all nodes in the network. Diversity varies 
between [1/N,1], Where "𝑁" represents the number of nodes in the network. If diversity 
tends to 1/N, there will be multiple replicas of content in the entire network; otherwise, if 
diversity tends to 1, there is no redundancy and only distinct chunks can be cached. As can be 
seen in Figure 3.10, the diversity of EM3C is always equal to 1, which is the highest possible 
value. EM3C’s global cache management prevents any redundancy, and there is only one 
cache per content across the network. This may raise availability concerns due to existing only 
one cached version of any content. However, EM3C avoids caching content in nodes that are 
likely to run out of power soon, so the chances of a node containing cached content to shut 
down are meager. Besides, contents are also accessible through the cloud even if the node 
crashes, and if the content is valid, it will be re-cached after the first request is answered 

through the cloud. Comparing the other two methods: the M3C initially performs better 
because of the semi-global decisions made by the cluster-head. However, in MACD, due to 
inefficient resource management, over time, more nodes experience a power loss. By reducing 
the number of nodes capable of caching content in MACD, diversity will increase. After 100 
days, due to the significant decrease in active nodes, diversity tends to 1 in all methods. 

 
Figure 3.10. Diversity comparison of EM3C, M3C and MACD. 
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Extending the lifetime of devices should be the goal of any proposed scheme for IoT. Ideally, 
a caching scheme must consider devices’ power level in assigning caching tasks to devices and 
avoid using nodes with a low-power in this procedure. A good caching scheme prevents early 
node failures by proper management of available resources. To evaluate the efficiency of each 
caching scheme regarding the nodes’ lifetime, we consider the failure rates of the nodes. 

As illustrated in Figure 3.11, From the very first days, the MACD method experiences nodes 
failure. In the MACD method, the nodes with lower capabilities fail in the early days and over 
time the more powerful nodes fail as well, such that before the 90th day, the entire IoT system 
crashes. It is worth noting that after a hundred days in all methods, the IoT system has lost 
most of its nodes due to power outages. However, a caching scheme that can keep most nodes 
active until the last days of the system lifetime is very desirable. In the EM3C method, up to 
60% of nodes are active by day 90 and can sense the environment and send information to 
the server or users. 

To examine the effect of nodes cache size on the performance of the proposed algorithm, 
we executed the simulation by considering different nodes’ storage size. As mentioned before, 
three types of nodes with different energy levels and storage size are available in the system. 
Therefore, we increased (decreased) the basic storage scenario by 20% and 40% which results 
5 storage scenarios and reported the average storage size in each scenario in the horizontal 
axis of Figure 3.12. To test the performance in stable conditions, the results are considered in 
the range of 30th to 70th day, which we call the stability period. As can be seen in Figure 3.12, 
increasing the amount of node storage size leads to an improvement in the cache hit rate 
because more information can be stored on the node. On the other hand, fewer nodes need 
to be involved to cache the content, which in turn improves the performance of the proposed 
method. 

Finally, we study the effect of topology size on the performance of algorithms. In the basic 
topology size, 100 nodes are considered for EM3C evaluation, which are divided into 8 
clusters. Now the simulation is repeated with different numbers of nodes and the results are 
depicted in Figure 3.13. It should be noted that the presented results belong to the stability 
period (day 30–70) and also the number of users and therefore the number of requests in 

 
Figure 3.11. Nodes’ failure rate comparison of EM3C, M3C and MACD. 
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different topologies are remained unchanged. As follows from Figure 3.13, we can see higher 
cache hits rate in topologies with a higher number of nodes. This is because an increase in the 
number of nodes, on the one hand, means an increase in available storage capacity and on 
the other hand means a greater number of nodes available to participate in the caching 
process. 

 

 
 

 

 
Figure 3.12. Cache hit rate comparison for different storage size. 

 
Figure 3.13. Cache hit rate comparison for different topologies. 
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3.7 Conclusion 
 
In this chapter, a new scheme called EM3C was proposed for data caching in the IoT 

environment. EM3C increases the lifetime of the IoT devices by optimizing resource 
consumption and allows for caching more content by reducing the redundancy of cached 
contents. In the proposed method, by using the SDN routing capability, the requests are 
intelligently directed to the cached content, resulting in reduced latency and number of hops 
and increased cache hit rate and network lifetime. SDN also selects the best cluster to cache 
content using its global view of the network. The cluster head then decides whether or not to 
cache the offered content, and according to the capabilities of the cluster nodes, distributes 
the proposed content among the nodes. The results show the superior performance of the 
proposed approach in improving system performance. The EM3C method provides up to 35% 
more cache hit rate than other methods. This, in turn, leads to shorter retrieval times, which 
is up to 60% percent lower than other methods. Furthermore, requests in EM3C take fewer 
steps to get the content in comparison to other caching schemes. Finally, EM3C can guaranty 
the standard functionality of the IoT systems until the last days of the system lifetime by 
preventing early failures. 

As next chapter, we intend to consider mobility and try to modify our method to consider 
nodes movement in the environment. Thus, the decision to cache contents will be made 
respecting to the speed and direction of nodes. 
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4. An Intelligent Caching Scheme Considering 
the Spatio-Temporal Characteristics of Data 
in Internet of Vehicles 

4.1 Introduction 
 
In the past decades, the development of Intelligent Transportation Systems (ITS) has been 

the focus of governments and organizations in all over the world. The Internet of Vehicles (IoV) 
is considered an essential component of ITS. As vehicles evolve from simple means of 
transportation to smart entities with computation and communication capabilities, they have 
become an integral part of ITS and a smart city. IoV provides an infrastructure for developing 
applications to provide various services. One of the problems we face with the increasing use 
of private cars is the high number of accidents and fatalities. In the United States, pre-
retirement deaths from car accidents are greater than those from the two leading diseases, 
cancer and heart disease combined, while nearly half of all deaths among 19-year-olds can be 
attributed to car accidents [191]. In addition to the loss of life, accidents also impose other 
harms on people, including emotional suffering, economic costs, and travel time delays for 
other vehicles. By using vehicle communication facilities in IoV, it is possible to increase the 
safety of car occupants by sharing emergency information in a timely manner. Also, with 
access to traffic information, drivers can plan their routes to reduce travel time and fuel 
consumption. 

In addition, as a result of recent advancements in vehicular technology, autonomous 
vehicles are no longer a distant reality. As a result, passengers will find themselves with a good 
deal of free time in autonomous vehicles. Passengers can now spend their time to be 
entertained or work. The interest of these users is mainly focused on multimedia content, 
including watching and sharing video, audio, and images on different platforms. Delay in 
receiving such multimedia contents can have a great impact on the user experience of 
passengers. Additionally, new applications developed for vehicles require the exchange of 
high-volume data, which puts substantial pressure on the vehicular networks. Edge caching 
has been proposed as a solution to simultaneously reduce content retrieval latency and 
backhaul traffic for high-volume data delivery. Consumers only care about the content itself, 
not where it is retrieved from, and the nature of the network has changed from "where to 
retrieve data" to "what data to retrieve" [15]. By responding to requests from the cache, the 
number of requests sent to the backhaul will decrease and users will experience a lower delay. 
Due to the limited resources of RSUs, it is necessary to develop a mechanism for content 
placement. In addition, the frequent connection loss and connection re-establishment due to 
limited range and high mobility, pose significant challenges to resource management in the 
IoV. Therefore, the caching scheme should also consider the mobility of vehicles. 

In addition, the exploration of edge caching strategies within the IoV, as detailed in Section 
2.5.2, uncovers a significant reliance on a singular metric for caching decisions: the popularity 
of content. This predominant focus simplifies the multifaceted spatiotemporal dynamics and 
the rich diversity of vehicular applications into a mere count of content requests. Such 
methods, while aiming for dynamism, fall short of capturing the evolving landscape of IoV 
needs. Notably, some advancements have ventured into privacy-preserving popularity 
predictions. However, a holistic framework for selecting nodes in the learning process and 
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implementing policies for high-quality model development is notably absent. Additionally, the 
prevalent trend towards localized caching decisions overlooks the potential enhancements a 
globally optimized strategy could bring. This approach misses out on maximizing the 
synergistic effects of node collaboration, leading to inefficiencies in caching mechanisms. 
Hence, as emphasized in Section 2.5.2, there exists a critical demand for a comprehensive 
caching model. This model must account for the intrinsic nature and spatiotemporal 
characteristics of IoV content, fostering cooperative decision-making that aligns with a vision 
for global optimization. By addressing these outlined gaps, we pave the way for a more 
sophisticated, efficient, and user-centric caching framework within IoV systems. 

In this work, in order to deal with the above-mentioned challenges, first, we consider the 
vehicular data in two types: emergency data and infotainment data. These applications have 
different requirements in terms of the Quality of Services (QoS). For example, applications 
related to vehicle safety require low latency, while infotainment services require high 
throughput. Therefore, the characteristics of the content should be investigated and a 
dedicated caching mechanism should be proposed for each type. 

For emergency data, we propose the spatio-temporal characteristics Aware, Emergency 
Content Caching (STAECC). STAECC introduces the Red Zone for emergency events. Safety-
related data is local in nature and only relevant to vehicles in a specific region. 

For infotainment data, we propose the Federated learning-based Mobility-aware 
Collaborative Content Caching (FM3C) scheme. FM3C examines the characteristics of this data 
type and selects the appropriate contents to cache in each RSU. One of the most important 
metrics for infotainment content is its popularity, which is an indication of how much demand 
there is for the content in question. Popularity is estimated using the Long Short-Term 
Memory (LSTM) model according to the historical information of users' requests. However, as 
users are often unwilling to share their information, we use federated learning to train the 
model collaboratively while preserving user privacy. 

We have particularly focused on ensuring scalability while addressing the unique challenges 
associated with the two categories of vehicular data: emergency and infotainment data. 

 
1. For safety content, the processing is localized, managed solely by the RSU present 

at the accident site. We have developed the STAECC, a lightweight mechanism that 
uses pre-computed weights determined by Multiple Criteria Decision-Making 
techniques to make caching decisions. This approach sidesteps the need for 
resource-intensive machine learning, enhancing the scalability of this method. 

2. As for infotainment content, we have utilized Federated Learning to ensure privacy 
and address scalability issues. Each vehicle employs a LSTM model to train a local 
model based on its request history. Given the considerable computational power of 
modern vehicles and the manageable size of individual request history datasets, 
local model training will not pose significant scalability issues. RSUs are then tasked 
with aggregating these local models, a process that features linear complexity. It's 
worth noting that the selection mechanism proposed ensures that irrespective of 
the number of vehicles within an RSU's coverage area, only a selected group of them 
is chosen for this process, further enhancing scalability. 

3. Lastly, the Fog server plays a critical role in coordinating caching decisions among 
RSUs. Its role primarily features linear complexity, scaling with the number of RSUs 
and their storage capacities rather than with the number of vehicles. This design 
ensures that the system can efficiently manage and scale regardless of the volume 
of vehicular traffic. 
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This meticulous design consideration ensures that our proposed solutions, STAECC and 

FM3C, are highly scalable, thus robustly addressing the ever-evolving and demanding needs 
of IoV systems. 

Finally, we introduced a Fog server that determines the appropriate content to be cached 
in each RSU based on content characteristics. 

For content retrieval, we use Software-defined networking (SDN) [192] to intelligently 
transfer the request to the cached content, and the RSUs can cooperate with each other to 
respond to the requests and reduce the delay. 

The central contributions of this research are manifold and target the complexity of the 
caching challenge in IoV environments: 

 
• We categorize vehicular data into two distinct types: emergency and infotainment. 

Recognizing their differing characteristics and requirements, we propose unique 
and innovative caching strategies for each, namely FM3C and STAECC. 

• Unlike most existing studies that predominantly focus on popularity, we adopt a 
multi-faceted approach to evaluate content for caching. We use multi-criteria 
decision-making methods, like the Analytic Hierarchy Process (AHP), to calculate the 
weight of various metrics. These metrics include not just content popularity but also 
other content attributes, as well as the storage capacities of Road Side Units (RSUs). 

• Further, our caching scheme is cooperative, aimed at minimizing redundancy across 
the network. This approach ensures a more effective use of the limited storage 
resources at RSUs and ensures a higher diversity of cached contents. 

• We propose a pioneering popularity prediction mechanism, rooted in federated 
learning, tailored to the unique dynamics of the IoV environment. Our method 
incorporates a novel model aggregation strategy, taking into account the quality of 
the model trained by individual vehicles. 

• Lastly, we introduce an innovative policy for selecting vehicles to participate in the 
federated learning process. This strategy ensures effective learning while balancing 
the computational load among vehicles, enhancing the system's scalability. 

 
The remainder of this chapter is organized as follows. We describe the system model in 

section 4.2. The proposed caching strategies are introduced in section 4.3, we then we present 
a method for predicting the popularity of infotainment content in section 4.4. Considering 
different criteria to evaluate the suitability of a content for caching, we will describe the multi-
criteria decision-making method in section 4.5. This will be followed by a description of how 
Fog server make a global decision about content caching for RSUs in section 4.6. The 
performance evaluation of the proposed caching schemes presented in section 4.7. Finally, 
conclusions and our future work are outlined in section 4.8. 

4.2 System Model 
 
Figure 4.1 provides a visual representation of our system model, a multi-tier vehicular 

network in an urban area, comprising three distinct layers: the Edge layer, the Fog layer, and 
the Cloud. The Cloud layer, being the last resort for content retrieval, is accessed when a user 
requests content that hasn't been cached in the lower tiers. The Fog layer, the second stratum 
of our system architecture, includes two essential entities: the SDN Controller and the 
Orchestrator. The Orchestrator plays a crucial role in global content placement. With its 
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holistic view of the network and the data it receives from all Roadside Units RSUs, it can 
ascertain the optimal content to cache, thereby reducing storage space wastage and 
redundancy. The SDN Controller, another key entity, is primarily employed for content 
retrieval. The SDN Controller allows network administrators to manage the underlying 
network infrastructure for network applications and services more efficiently, directing 
requests to the nearest cached content and simplifying the process. 

The Edge layer, the final layer of the architecture, consists of a set of RSUs "𝑅 =  {1, … , 𝑛𝑟}" 
and the communication range of RSUs are denoted by 𝐷𝑟. RSUs associated with a Fog server 
via a reliable link and in turn, the Fog server is connected to the cloud using backhaul links. 
RSUs and the Fog server are equipped with caching capability with the storage size of each 
node depicted by "{𝑆𝑐𝑎𝑝1, … , 𝑆𝑐𝑎𝑝𝑛}". Within the coverage area of each RSU 𝑟𝑖, there are 
several roads  "𝑆 = {1,… , 𝑛𝑠}" and let 𝑙𝑖 denotes the length of the road 𝑠𝑖 and 𝑣𝑚𝑖  is the 
maximum allowed speed on the road segment 𝑠𝑖. We define a set of contents "𝐶 =
{1,… , 𝑛𝑐}" where each content is described by three terms as "{𝑧𝑐,  𝑔𝑐, 𝑡𝑐}", where 𝑧𝑐 is the 
size of content 𝐶, 𝑔𝑐 is the category of the content which refers to the topic of the content 
and 𝑡𝑐 is the type of the content, contents are divided into two general types: emergency and 
entertainment. Emergency contents are usually small in size and although fast delivery is 
desirable for both types of content, The urgency of the safety contents means that if the 
content is delivered late, the driver will not have the time to react, and therefore the quick 
delivery of the safety contents becomes vitally important. Infotainment contents is common 
and regularly requested by users. This type of content is generally voluminous and quick 
access to this type of content can have a positive impact on the user experience. 

Each RSU is responsible for handling requests received by vehicles within its coverage area. 
However, due to the limited storage capacity in the RSU, not all contents requested by users 
are readily available, therefore, the RSU must retrieve the missing contents from other sources 
such as other RSUs, Fog server, or the Internet. The cached content information (CCI) of an 

 
Figure 4.1. The proposed multi-tier vehicular network architecture. 
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RSU 𝑟𝑖 at time "𝑡" is represented as: 
 

𝐶𝐶𝐼𝑖𝑡 = {𝐶1𝑖𝑡 , … , 𝐶𝑛𝑖𝑡} (4.1) 

 
Where  𝐶𝑗𝑖𝑡 = 𝑡𝑟𝑢𝑒 means content 𝐶𝑗 is cached in 𝑟𝑖 at time "𝑡". 
The total size of the cached content in any node must not exceed its maximum capacity. 

Therefore, we have: 

∑∑𝐶𝑗𝑖𝑡 × 𝑍𝑗 ≤ 𝑆𝑐𝑎𝑝𝑖

|𝐶|

𝑗=1

|𝑅|

𝑖=1

 

(4.2) 

 
To improve the user experience, we develop a method which aims to reduce cost and 

delivery time by providing content from the nearest neighbor. In particular, delivery time is a 
function of content size, available link capacity, and distance from the cache storage that holds 
the content. 

Let "𝑉 =   {1, … , 𝑛𝑣}" represents a set of vehicles, which enter the city in random periods, 
each vehicle has a trajectory "{𝑆1, … , 𝑆𝑗}", that can path through the coverage area of several 
RSUs and 𝑣𝑖𝑗𝑘  is the 𝑗 − 𝑡ℎ moving vehicle on road 𝑠𝑘 in the coverage area of RSU 𝑟𝑖. In our 
system model, vehicles send content requests to the connected RSU and each vehicle records 
its request history, RSUs also anonymously save the history of requests they have received. 

 

4.2.1. Mobility Model 

 
In our model, there are |𝑉| vehicles in the environment and each vehicle have a trajectory 

as "{𝑆1, … , 𝑆𝑛}". The speed limit for each section of the road is defined as "{𝑣𝑚1, … , 𝑣𝑚𝑛}". 
However, it is not realistic to consider the speed of vehicles independently as in many previous 
research studies. Therefore, in this work, we describe the traffic situation dynamically. For this 
purpose, we first describe the following macroscopic variables that are needed to describe the 
traffic conditions: 

• Density: It is one of the most important criteria of traffic science. It is expressed as 
the number of vehicles per kilometer of the road, and the maximum number of cars 
per kilometer is considered to be about 100 cars per lane. 

• Flow rate: It is defined as the number of vehicles that pass through a certain part of 
the road per unit of time. 

• Average speed: We define the average speed, which is given by "𝑢(𝑥, 𝑡)", as the 
ratio of flow rate to density. Average speed is also a function of time and place. 
 

𝑢(𝑥, 𝑡) =  
𝑞(𝑥, 𝑡)

𝑘(𝑥, 𝑡)
 

(4.3) 

 
Where 𝑘(𝑥, 𝑡) is for density and 𝑞(𝑥, 𝑡) is for flow rate at time "𝑡" and at point "𝑥". 

 
The traffic situation at any time is in a special state whose characteristics can be expressed 

using the flow rate, density, and average speed. However, there are certain traffic situations 
that require special attention, including the following: 

• Free-flow traffic: When there are no other vehicles obstructing the car, the car 
moves at maximum speed  𝑢𝑓 which is also referred to as free speed. Of course, this 
speed depends on many factors, including road design, obstacles, weather, etc. At 
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free speed, density and flow rate are close to zero. 
• Saturated traffic: In saturated streets, the flow rate and speed are close to zero, 

vehicles are in a queue, and the density has its maximum value,  𝑘𝑗. 
• Maximum capacity traffic: The capacity of a road is equal to the value of the 

maximum flow rate  (𝑞𝑐). For the maximum flow rate value, there are also 
corresponding values of speed at maximum capacity  (𝑢𝑐) and density at maximum 
capacity  (𝑘𝑐). It should be noted that the speed at maximum capacity  (𝑢𝑐)  is lower 
than the free speed  (𝑢𝑓). 

 
The variables of boundary conditions are of particular importance, especially the speed at 

maximum capacity  (𝑢𝑐)  and density at maximum capacity  (𝑘𝑐). However, due to the lack of 
a specific formula for calculating the value of these variables and the existence of many 
influencing factors on their value, their calculation requires field studies. Therefore, we use a 
simplification to estimate the approximate value of these variables. According to the Green 
Shield theory, as depicted in Figure 4.2, the relationship between speed and density is a linear 
relationship [193], where  𝑢𝑐  is half of  𝑢𝑓 and  𝑘𝑐 is half of  𝑘𝑗. The slope of the graph in Figure 
4.2 can be calculated as follows: 

 

𝑚 = 
𝑢𝑐 − 𝑢𝑓

𝑘𝑐
 (4.4) 

 
After calculating the slope of the line, we can get the coordinates of every point on this line, 

and in this way, the speed of the vehicles can be calculated according to the density of the 
road segment as follows: 

 
 

𝑢𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 =  𝑚 × (𝑘𝑐𝑢𝑟𝑟𝑒𝑛𝑡) + 𝑢𝑓 (4.5) 

 
 

 
Figure 4.2. The fundamental diagram of traffic theory according to 

GreenShield. 
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4.2.2. Content Retrieval Mechanism 

 
The response to the users’ request can be done in four ways, which are explained below in 

order from the fastest method to the state with the longest delay: 
 

• Local response: The users' request is satisfied by the cached content in the 
connected RSU. In this case, the RSU will directly respond to the request and the 
user will experience the least possible delay. 

• Neighbor response: RSUs can cooperate with each other to respond to a request. If 
the requested content does not exist in the cache of the connected RSU, but it exists 
in one of the neighboring RSUs, the requested content can be downloaded from the 
neighboring RSU and provided to the user. Due to the local nature of the 
communication between RSUs, this response has a little delay and provides a user 
experience close to the local response. 

• Fog server response: If the requested content is not cached in any of the RSUs, the 
request is sent to the Fog server, and if this server has cached the requested 
content, it can provide it to the RSU where the user is connected. 

• Cloud response: If the requested content cannot be served from the cache, this 
request is sent to the cloud server. In this case, the user will experience a large 
delay. 

 

In general, the QoE of the user mainly depends on the delay caused by the file download 

process. Therefore, the user's QoE can vary depending on the source of the content, where 

 𝑄𝑜𝐸𝑙𝑜𝑐𝑎𝑙 >  𝑄𝑜𝐸𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 >  𝑄𝑜𝐸𝑓𝑜𝑔 ≫  𝑄𝑜𝐸𝑐𝑙𝑜𝑢𝑑. Local response being the fastest and 

having the best QoE, followed by neighbor response, fog server response, and finally cloud 

response.  

SDN allows administrators to abstract the underlying network infrastructure for network 
applications and services, making it easier to direct requests to the nearest cached content. 
The use of SDN-based cache content dissemination in the IoV serves to minimize content 
retrieval time. This approach streamlines the implementation of dynamic routing policies and 
ensures requests are directed to the source with the least delay. Any modifications in the 
cached content within any RSU or the Fog server can be promptly reflected in the routing 
table, guaranteeing that the request is directed to the accurate source. 

 

4.3 Proposed Caching Scheme 
 
IoV applications are diverse and rich. However, they can be divided into two general groups: 

safety applications and infotainment applications. In this section, we outline a method for 
caching each type of content, taking into account the unique characteristics of each type. 

There are four main reasons for categorizing data into safety and infotainment groups: 
 

• Spatial Characteristics: The spatial usage of safety and infotainment content 
fundamentally differ. Safety content is typically relevant only to vehicles within the 
immediate vicinity of an incident; thus, it is handled locally by the RSU. In contrast, 
infotainment content can be demanded by vehicles across various RSUs, requiring 
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broader consideration. 
• Temporal Characteristics: Safety and infotainment content exhibit different 

temporal characteristics. While the relevance of safety content is typically short-
lived, becoming obsolete after a certain period, the popularity of infotainment 
content can fluctuate over time, reflecting changing user interests and trends. 

• Request Pattern: The request patterns for safety and infotainment content are also 
substantially different. Infotainment content is generally transmitted to the user 
upon a specific request, while safety content is proactively shared by the RSU with 
all vehicles entering its coverage area due to its critical nature. 

• Caching Criteria: Owing to their distinct characteristics, we apply different criteria 
for caching these two types of content. For instance, while content volume is an 
important factor for infotainment content, it can be overlooked for safety content 
due to its smaller volume and standardized structure. Popularity is a crucial metric 
for infotainment content, whereas the severity level of the incident related to safety 
content significantly influences the caching decision. 

 

4.3.1. Emergency Content 

 
Emergency contents have a high priority due to their nature, which is in line with the safety 

of vehicles. Caching this type of content leads to quick reception of emergency data which 
allows drivers to have timely and accurate responses such as braking, increasing their speed, 
changing direction, and so on. Of course, it should be noted that this type of content is less 
common than infotainment content and generally smaller in size, so caching them does not 
have a negative serious impact on content diversity.  

Safety content, due to its unique characteristics, requires special treatment in our 
methodology. It possesses strong spatial characteristics, given its highly localized nature. This 
content is specifically relevant in the local area or region where the corresponding incident or 
event has taken place. For example, if an accident has occurred, the information about this 
accident can be useful only around the accident site, and more specifically, only on the street 
where the accident occurred or in the streets leading to the intersection where the safety 
incident occurred. We refer to the safety accident site as the Red Zone. Therefore, the 
handling of such data, in terms of caching and dissemination, is assigned to the RSU that 
resides within the vicinity of the incident. In this sense, an RSU located in the Red Zone 
independently makes the decision to cache this type of content under the STAECC framework. 
This approach allows us to efficiently manage and deliver safety content where it is most 
relevant, thus exploiting its spatial characteristics. 

Safety content also displays significant temporal characteristics. After an accident, for 
instance, the information related to the event is particularly useful for a certain period of time. 
However, the relevance of this information diminishes over time. For example, after the 
vehicles involved in the accident have been transferred and the accident scene cleared, it 
becomes less useful to share the accident information. This underlines the importance of 
considering the temporal aspect of safety content, as it allows for efficient management of 
storage resources by caching the content when it's most useful and freeing up space when the 
content is deemed obsolete. 

Based on the nature of this type of content, STAECC uses the following criteria to decide 
whether to cache emergency event data in the RSU: 

 
• Freshness: Receiving safety events in a timely manner is critical as it can prevent 
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secondary incidents, such as chain accidents. However, the importance of this 
information fades over time and eventually becomes obsolete. It is important to 
note that the RSU may not have immediate access to the safety incident 
information. For instance, the vehicles involved in the incident may be in the blind 
spot of the RSU or so damaged that they cannot transmit an emergency status. 
However, safety messages can be piggybacked by another vehicle and delivered 
with a delay. To determine the freshness of the content, the RSU uses the following 
formula: 

 
Fi = Ti - Agei (4.6) 

 
Where 𝑇𝑖 denotes the lifetime of content "𝑖", which is the time interval during which 
the content can be useful to other vehicles. It should be noted that 𝑇𝑖 can be 
different for different safety events. 𝐴𝑔𝑒𝑖  is the time interval between the safety 
event occurrence time and the current time. If 𝐴𝑔𝑒𝑖 < 0 the emergency content is 
considered as expired and invalid. 

• Severity level: Not all safety events have the same impact and importance. We have 
classified safety events into several categories "𝑆𝐿 = {1,… , 𝑛𝑠𝑙}". which indicate 
the severity degree of that event. Emergency data with a high degree of severity is 
required to be quickly provided to other vehicles and should therefore be given 
higher priority for caching. The occurrence of safety events following Poisson 
distribution with occurrence rate for different severity levels is depicted by 
{𝜆1, … , 𝜆|𝑆𝐿|}  where 𝜆1 > 𝜆2 > ⋯ > 𝜆|𝑆𝐿| which means that the higher the severity 
level, the rarer the related safety events. The occurrence time interval between two 
consecutive events of severity level "𝑖" is depicted by Δ𝑇𝑛 which follows an 
exponential distribution, Δ𝑇𝑛~exp (1 𝜆𝑛⁄ ). 

 
• Validity level: While timely sharing of emergency information can help improve 

safety and reduce risks. Sharing incorrect information can lead to the emergence of 
serious risks for vehicles. To reduce such risks, RSU receives information related to 
a safety incident from different sources (vehicles), and the more confirmation it has 
for a safety incident, the higher the degree of validity of the relevant information. 

 

4.3.2. Infotainment Content 

 
The main requests of users on the IoV are for infotainment content. Passengers can surf 

the web, check their social networks, play online games, or even spend time in the metaverse 
[194]. Infotainment content can include audio, image, and video. Quick access to this type of 
content can have a significant impact on the quality of users' experience. In addition, this type 
of content generally has a high volume and the increasing demand for infotainment content 
puts a lot of pressure on the vehicular network. Caching infotainment content is a reliable 
solution to meet these challenges. However, the storage resources in RSUs are limited, so it is 
necessary to provide a solution for the proper placement of content on the appropriate RSU. 
Also, RSUs have the possibility to cooperate with each other to respond to infotainment 
requests.  

In this article, we propose FM3C as a framework for managing infotainment content 
caching which uses the following criteria to evaluate and decide on the value of infotainment 
content for caching. 
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• Popularity: Popularity is one of the most important criteria in content caching. If 

popular content is cached, it can be assured that a large number of requests can be 
answered locally, and conversely, caching content that is not in high demand wastes 
storage space and prevents more useful content from being cached. Popularity is 
dynamic in nature and may change over time, and as a result, calculating the 
popularity of content is not always a straightforward procedure.} 

• Content size: The multimedia data used in IoV generally have a large volume. 
Caching a large content, if it results in responding to a large number of requests 
locally, leads to a reduction in the use of bandwidth and delays in receiving content. 
Although, on the other hand, it leads to the occupation of a large storage capacity 
and limits the number of contents that can be cached, reducing the variety of 
cached content. This is a negative criterion, which means that lower values of the 
content size are more desirable, and if the two contents are the same in other 
criteria, the content with a smaller size has a higher priority to be cached.} 

• Number of replicas: Content can be cached on several RSUs, which leads to 
redundancy. Redundancy wastes storage space and reduces the diversity of cached 
content. On the other hand, due to the possibility of cooperation between RSUs to 
retrieve content with a low delay, it is necessary to avoid caching contents of which 
a copy is cached in another RSU as much as possible, except in special 
circumstances, for example, when content is extremely popular.} 

 
For infotainment content, we have observed that the popularity of content often possesses 

spatio-temporal characteristics. For spatial consideration, each RSU uses a local dataset of 
vehicle requests within its coverage area. Therefore, we have introduced a vehicle selection 
mechanism for the Federated Learning process that incorporates "stay time", defined as the 
vehicle's residence time within the RSU's range. This is a crucial criterion in our methodology. 
By giving more weight to vehicles with a longer stay time in the model aggregation process, 
the calculated popularity of content becomes more influenced by the preferences of these 
local users, hence leveraging the spatial aspect. 

 
The temporal aspect of infotainment content popularity is also considered in our 

methodology. Popularity trends of content can change over time. To capture these dynamics, 
we employ LSTM models, a type of Recurrent Neural Network. The LSTM model uses a window 
of past request histories to estimate the popularity of content for a horizon of future time 
steps, thus incorporating the temporal characteristics into our methodology. 

4.4 Popularity Prediction, Based on Federated 
Learning 

 
In the previous section, we introduced three criteria that are used by FM3C for the 

evaluation of infotainment content. Measuring the content size and number of replicas is 
simple and straightforward, but the same cannot be said for popularity. In many researches, 
popularity is calculated by counting the number of requests received for each content, but 
due to the dynamics of IoV, waiting for requests to be received and counted before 
considering content as popular is a futile approach. Therefore, we need to predict popularity 
and proactively cache popular content. 

Accurately predicting content popularity is critical, to efficient caching in IoV. In our 
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proposed approach, we use a machine learning model to predict the number of content 
requests on the time series. 

We feed the time-stamped historical requests plus features unique to the content such as 
movie genres as the input of the machine learning model to predict the sequence of the next 
popular contents. However, many users are reluctant to share such information. Additionally, 
sending such information to a server and training the model centrally can lead to latency, 
heavy processing load, and scalability issues. To overcome these challenges, we use federated 
learning (FL), which allows vehicles to jointly train a model using their local datasets [195]. The 
general optimization problem in federated learning is as follows: 

 

min𝐹(𝑤) =
1

𝑘
∑ 𝐹𝑘(𝑤); 

|𝐾|

𝑘=1

 

(4.7) 

 

𝐹𝑘(𝑤) =  
1

𝐷𝑆𝑘
∑ 𝛿𝑖(𝑤)

𝑖𝜖𝐷𝑆𝑘

 
(4.8) 

 
Where 𝛿𝑖 is the prediction loss for some input-output pair in the local 𝐷𝑆 dataset with 

model parameters "𝑤" and "𝑘" is the participating node index. Minimizing the value of 𝛿𝑖 for 
"𝑘"  selected nodes is equal to optimizing the value of loss for the FL protocol. In general, there 
are two main entities in the Fl system, namely the data owners (participants) which are the 
vehicles in our system, and the model owner which are the RSUs. Each data owner uses its 
own dataset to train a local model and sends only local model parameters to the FL server. All 
local models collected by the model owner are then aggregated to produce a global model. 
The federated learning protocol consists of four phases in each training round: participant 
selection, global model download, local training, and model aggregation. Figure 4.3. illustrates 
the different phases in federated learning for IoV. 

 
Figure 4.3. Stages of federated learning for popularity prediction in the 

proposed model. 
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4.4.1. Participant Selection 

 
The initial stage in federated learning involves selecting the participants. In many previous 

works, "𝑘" number of existing nodes were randomly selected to participate in the federated 
learning process without taking into account the conditions and capabilities of these nodes. In 
this work, we propose a method called Federated learning Participant Selection for IoV (FPSI) 
in which RSUs select the most suitable vehicles to engage in the learning process. In order to 
guarantee the model's quality, the participants must meet some expectations. As a result, 
RSUs implement FPSI as the selection process and consider the following criteria to evaluate 
vehicles. 

 
• Stay time: The vehicle's residence time in the RSU range is one of the most 

important criteria considered for the selection of vehicles. The selected vehicles 
must have enough time to download the model, train it on local data, and upload 
the model parameters back to the RSU to ensure model quality. If the selected 
vehicle leaves the RSU range before this process is completed, it can negatively 
affect the quality of the final model. The stay time is a function of the vehicle's 
current location, vehicle trajectory, vehicle speed, and RSU coverage area. For RSU 
𝑟𝑖, let 𝑣𝑖𝑗  be one of the vehicles in the coverage area of 𝑟𝑖, and let {𝑠𝑚, … , 𝑠𝑛}, be 
the subset of the trajectory of 𝑣𝑖𝑗  that falls within the range of 𝑟𝑖. For each 𝑠𝑘 of 𝑣𝑖𝑗 
trajectory, the speed of the vehicle can be estimated using the formulas presented 
in the mobility model section. Then, using the following formula, it is possible to 
calculate the time taken by 𝑣𝑖𝑗 for traversing 𝑠𝑘, as given by 4.9: 

 

𝑡𝑟𝑘𝑗 = 
𝑙𝑘

(𝑢𝑘 + 𝑁𝑗)
  

(4.9) 

 
Where 𝑙𝑘 is the length of 𝑠𝑘, 𝑢𝑘 is the estimated driving speed at 𝑠𝑘 and 𝑁𝑗 follows 
a gaussian distribution to demonstrate a speed variation due to the different driving 
behaviors. Therefore, we can calculate the stay time by adding the travel time 
calculated for each road segment in the route of the vehicles that are within the 
RSU range. 
However, it should be noted that due to the dynamics of vehicle density and the 
dependence of the arrival time of a vehicle at a road segment on the departure time 
from the previous road segment, the calculated travel time error tends to be 
accumulated. This means that the certainty level of the estimated travel time for 
the first road along the route is the maximum, and for the subsequent trajectory 
subsets, the certainty level of the estimated travel time decreases according to the 
total length of the previous trajectory subsets. 
Dataset size: Machine learning algorithms are fueled by data, and high-quality 
models can only be achieved with a sufficient amount of data. The size of the 
dataset should be such that it enables the discovery of relationships between the 
data. Consequently, a larger dataset from the selected vehicles is preferable. 

• Processing power: Vehicles must have the necessary processing power to train the 
model in the allotted time. The RSU needs to receive updates from all participants 
before aggregating the models. As such, FL training progress is limited by the 
training time of the slowest participant. This is called the straggler effect [196]. The 
high processing power also allows the vehicle to train the model for more epochs in 
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a given time. As a result, the obtained model will be more accurate for predicting 
popularity. 

• Link quality: The high quality of the communication link can affect the time of 
downloading the model from RSU as well as returning the results. According to the 
urban scenario considered in this article, it should be noted that due to the presence 
of buildings and other obstacles, the conditions of the communication link can be 
affected. Therefore, in the process of vehicle selection, having a stable 
communication link with RSU should be taken into account. 

 

4.4.2. Global Model Download 

 
In the subsequent phase, the chosen vehicles retrieve the base model from the linked RSU. 

RSUs are also responsible for setting hyperparameters, which are used to control and regulate 
the learning process. These hyperparameters, set by the RSU, include factors like the learning 
rate, the number of hidden layers, and the quantity of neurons in each layer. Another 
important hyperparameter to set is the weight initializer. This is a method that sets the initial 
values of the weights, laying the groundwork for the optimization of the neural network 
model. If not executed correctly, improper weight initialization can introduce issues in the 
learning process, or in severe cases, render learning by the model unfeasible. To perform 
proper initialization, we use the Xavier method [197], where the initial weights follow a normal 
distribution with a mean zero, and the standard deviation is calculated as follows: 

𝜎 =  √
2

𝑛𝑜𝑢𝑡 + 𝑛𝑖𝑛
 

(4.10) 

 
Where 𝑛𝑖𝑛is the number of input neurons in the weight tensor and 𝑛𝑜𝑢𝑡 is the number of 

output units in the weight tensor. 
 

4.4.3. Local training 

 
After downloading the global model from the RSU, participants start training the model 

using their local dataset. For this purpose, we use LSTM, which is a form of recurrent neural 
networks (RNNs) capable of learning “long-term dependencies” by memorizing information 
for long periods. LSTM deals with the vanishing and exploding gradient problem by introducing 
new gates, such as input, output, and forget gates. By selectively discarding or retaining 
information, these gates allow better control over the gradient flow and better preservation 
of "long-range dependencies" [198]. Before feeding the LSTM model with inputs, it is generally 
necessary to pre-process the input data. For this purpose, we calculate and store the statistical 
information of each content for each time step. Each RSU counts the number of received 
requests for each content such as 𝐶𝐼 in each time step and stores it as 𝑃𝑜𝑝(𝑖, 𝑡), also each 
vehicle records the history of requested contents at each time step. In addition, we do one-
hot encoding for the genres of contents. In the next step, the model is fed with the historical 
preprocessed data for a window of previous time steps to predict content popularity for a 
horizon of future time steps. 

The goal of the learning problem is to obtain the target weights through backpropagation 
of the loss function. Here we use Huber [199] as the loss which is a combination of the mean 
squared error function and the absolute value function. By doing so it is less sensitive to 
outliers in data than the squared error loss. Huber function is defined as: 
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𝐿∆(𝑦, 𝑓(𝑥)) = {

1

2
(𝑦 − 𝑓(𝑥))2             if |𝑦 − 𝑓(𝑥)| ≤ ∆,

∆|𝑦 − 𝑓(𝑥)| − 
1

2
∆2                otherwise.

  

(4.11) 

 
Δ  is the point where the Huber loss function changes from quadratic to linear. 𝑦 is the 

actual popularities of the contents, and 𝑓(𝑥) is the predicted popularities of the contents. 
 

4.4.4. Model Aggregation 

 
After the training phase is completed, the parameters of the trained model are sent to the 

RSU for aggregation. To reduce communication costs and the time required for uploading the 
model to the RSU, the model can be compressed using methods such as subsampling, 
quantization, and sparsification, which approximate or encode the updates and convert them 
to a compressed form before sending them to the server. Once all updates are received, the 
RSU integrates the parameters to build a unified model, which is used to estimate content 
popularity within the RSU's coverage area. In subsequent rounds of federated learning, 
selected vehicles download and train this updated model. Most works use FedAvg, a well-
known algorithm in FL, to generate the new global model 𝑊𝑡+1 by averaging of all received local 
models 𝑤𝑡+1

𝑘 . 
The standard FedAvg, used for merging models in federated learning, assigns equal 

significance to all received models. However, the models received may differ in quality, and 
for an optimal global model, models of higher quality should carry greater weight. To address 
this issue, we introduce the Smart Vehicular-Specific Aggregation (SVSA). To assess the quality 
of models received from vehicles, SVSA takes into account several criteria, such as the number 
of training epochs undergone by the model, the value of the loss function, the size of the 
vehicle's dataset, and the duration of the vehicle's stay within the RSU coverage. The first 
three criteria directly pertain to the quality of the trained model. The duration of stay was also 
considered by FPSI during participant selection, but its usage in model aggregation has a 
different rationale. In participant selection, the consideration of stay time was aimed at 
ensuring the vehicle's capacity to complete model training before exiting the RSU coverage 
area. However, participants' stay times can vary. The use of stay time in model aggregation is 
based on the premise that if more weight is assigned to vehicles with longer stay times, the 
computed popularity will be more reflective of these users' interests. Consequently, we can 
ensure that the cached content aligns more closely with the demands of the vehicles within 
the RSU coverage. The integration method for the received models is detailed in the following 
section. 

 

𝑦𝑘 = 𝑚𝑤1𝑠𝑡𝑎𝑦𝑘 + 𝑚𝑤2𝑒𝑝𝑜𝑐ℎ𝑠𝑘 + 𝑚𝑤3𝑙𝑜𝑠𝑠𝑘

+ 𝑚𝑤4𝑑𝑠𝑒𝑡𝑘     𝑤ℎ𝑒𝑟𝑒 ∑𝑚𝑤𝑖 = 1

4

𝑖=1

 

(4.12) 

 

𝑤𝑡+1 = 𝑤𝑡 −  η ∑ 𝑦𝑘𝑤𝑡+1
𝑘

𝐾

𝑘=1

 

(4.13) 

 
𝑠𝑡𝑎𝑦𝑘 is the stay time of vehicle "𝑘", 𝑒𝑝𝑜𝑐ℎ𝑠𝑘 is the number of epochs vehicle "𝑘" trains 
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the model, 𝑙𝑜𝑠𝑠𝑘 is the model loss value (calculated by Huber loss function) and 𝑑𝑠𝑒𝑡𝑘 is 
calculated as 𝑑𝑘/|𝑑| in which |𝑑| is the sum of the dataset sizes for all vehicles involved in 
federated learning, and 𝑑𝑘 is the dataset size of the 𝑘 − 𝑡ℎ vehicle. η is the learning rate, 𝑤𝑡 
is the matrix of weights in the previous round and 𝑤𝑡+1

𝑘  is the matrix of weights received from 
the 𝑘 − 𝑡ℎ vehicle. 

Finally, after obtaining the aggregated model, RSU can estimate the future popularity of 
contents in its coverage area. 

4.5 Multi Criteria Decision Making 
 

In the previous sections, the method of evaluating emergency and infotainment contents 
for caching was examined. We have considered different criteria for each type of content, 
which allows us to check the usefulness of caching a content from different aspects. Also, in 
the integration of models in federated learning, we introduced four criteria. The existence of 
several criteria with different degrees of importance and scales leads to a multi-criteria 
decision-making (MCDM) problem. MCDM provides robust decision-making in domains where 
choosing the best alternative is very complex. Many decisions are made based on different 
criteria, so a decision can be made by determining the weight of different criteria. For this 
purpose, we use the AHP, which is a form of multi-criteria decision-making mechanism that 
helps the decision-making process by organizing and analyzing complex problems in the 
presence of conflicting criteria. AHP calculates a weight for each criterion using their relative 
importance. For this, we consider a matrix as follows: 

 
            m1 m2 ⋯ mn 

         m1

        m2

     ⋮
       mn

[

r11 r12 ⋯ r1n

r21 r22 ⋯ r2n

⋮
rn1

⋮
rn2

⋱   ⋮
⋯ rnn

] 

 
 
(4.14) 

 
In the above matrix if 𝑖 = 𝑗, 𝑟𝑖𝑗 = 1 otherwise 𝑟𝑖𝑗 = 1/𝑟𝑗𝑖.  𝑚𝑖 represents different criteria 

and the relative importance of each criterion 𝑚𝑖 compared to 𝑚𝑗 is represented by 𝑟𝑖𝑗. In 
addition, it is worth noting that these relative values can be adjusted by experts to match the 
requirements of different scenarios without requiring further changes in the proposed 
algorithm. After determining the relative importance of the criteria, the weight of each metric 
𝑊𝑚 is calculated as follows: 

 

Wm = 
1

n
∑

rij

∑ rij
n
i=1

n

i,j = 1

 
(4.15) 

 
After calculating the weights, before using them, for example, to calculate the usefulness 

of caching a content, it should be noted that the criteria have different units and scales. For 
example, stay time is in seconds while processing power is in megahertz. Subsequently, before 
combining different criteria, normalization should be done. For this purpose, we use the 1-
norm method. Then, by obtaining the sum of the product of each criterion in its weight, we 
can reach a single value and make our decisions based on this value. 
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4.6 Global Content Placement 
 
Considering the local nature of the emergency contents, a decision is made to cache the 

safety content in the RSU located in the Red Zone (safety event site). However, for 
infotainment content, caching decisions are made centrally at the Fog server to ensure 
efficient collaboration among RSUs in response to requests 

After calculating and ranking the contents based on popularity in each RSU, it is the task of 
the Fog server to globally select the appropriate contents to be cached in each RSU. The 
criteria explained in the section related to infotainment content are the basis for the decision 
by the Fog server on this matter. Based on the mentioned criteria and the weight of each 
criterion determined by the multi-criteria decision algorithm, the Fog server calculates the 
desirability of caching different contents for each RSU and sorts them in descending order. 
Each RSU first adds the most desirable content to its cache list. If a content has the same 
desirability rank in multiple RSUs at the same time, the RSU with the highest desirability score 
for the content will add the content to its cache list. One of the goals of global decision-making 
for caching is to reduce redundancy, and this is achieved by considering the number of copies 
of each content in the decisions. As a result, after a content is added to the cache list in one 
of the RSUs, the desirability of caching that content for other RSUs is recalculated (decreased). 

With the information it receives from all RSUs and its global view of the network, Fog server 
can determine the optimal contents to cache in an efficient way for all RSUs, avoiding storage 
space waste and redundancy. The process of globally selecting contents to cache in RSUs can 
be repeated at specified time intervals or whenever the cache hit rate drops below a specified 
threshold, at which point new contents are selected to cache. Also, due to having a storage 
space, the Fog server caches contents with a high degree of usefulness that are not cached on 
any RSU. The Fog server is the last stop of requests before sending them to the Cloud, and if 
the requested content is cached in this server, the request can be answered with a relatively 
lower delay than the Cloud. 

 

4.7 Performance Evaluation 
 
The performance of the proposed algorithms was evaluated through simulations of an 

urban IoV environment consisting of 5 RSUs and a Fog server. Considering the different 
natures of infotainment and emergency contents and the difference in the proposed methods 
for caching each, we have implemented two different simulations for evaluating the 
performance of the proposed algorithms. 

 

4.7.1. Infotainment Content Caching 

 
For infotainment contents, we have used the real-world MovieLens dataset [200] for our 

experiments. MovieLens 100k contains 100,836 ratings from 610 users on 9,742 movies. Each 
user rated at least 20 movies. Users' contextual information, e.g., gender, age, address and 
occupation, is also provided in the dataset. To simulate the content requests, we assume that 
movie ratings are the same as user requests for content. In our simulation, MovieLens users 
correspond to vehicles, movies with contents, and the recording time of the movie rating to 
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the content request time. The paths traveled by vehicles are created using the SUMO 
simulator and are used in the simulation after processing. We implement the caching strategy 
by the Python programming language, and TensorFlow is used for the machine learning parts. 

To evaluate the efficiency of the proposed method, we compared FMC with the following 
baseline caching schemes: 

• Random: Contents are randomly selected by the Fog server for caching. To improve 
its performance, we assumed the avoidance of caching duplicate contents in 
neighboring RSUs. 

• LRU: When the storage capacity limit is reached, it first deletes the least recently 
used content in the cache to make room for new content. 

• Intelligent Caching Strategy [157]: This method leverages the spatio-temporal 
characteristics of data, categorizing it into various types. Particularly for 
infotainment content, the strategy takes into account the popularity level of the 
content. Unlike our method, which focuses on caching content at the nodes (RSUs), 
the Intelligent Caching Strategy opts to cache contents directly on the vehicles. For 
the purpose of a fair comparison with our method, we assume that the total storage 
capacity of the vehicles in this strategy is equivalent to the cumulative storage size 
of the RSUs in our approach. 

• Centralized: In this method, RSU trains a centralized model to predict content 
popularity. Most users are likely to have made multiple requests for different 
contents before entering the range of the current RSU. However, in the centralized 
approach, the RSU has no access to the users' request history and only relies on 
anonymously recorded history of previous requests. 

• Oracle: It has detailed information about the future requests of users. Oracle 
provides the best performance and cannot be beaten by any other method. The 
purpose of this method is to provide an upper bound for the performance of other 
algorithms. 
 

The most important criterion for checking the performance of a caching method is the 
Cache Hit Rate (CHR), which is defined as follows: 

 

𝐶𝐻𝑅 = 
𝐶𝐻𝑙𝑜𝑐𝑎𝑙 + 𝐶𝐻𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 + 𝐶𝐻𝑓𝑜𝑔

𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑐𝑜𝑢𝑛𝑡
 

(4.16) 

 
In the expression, 𝐶𝐻𝑙𝑜𝑐𝑎𝑙 denotes the number of requests satisfied by associated RSUs, 

𝐶𝐻𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 denotes the number of requests fulfilled by neighbor RSUs and 𝐶𝐻𝑓𝑜𝑔 is the 
number of requests that use cached contents in the Fog. 𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑐𝑜𝑢𝑛𝑡 is the total number 
of requests made by users. 

𝐶𝐻𝑅 is the main criterion in the sense that other measures such as the delay, QoE perceived 
by users, the utilization rate of backhaul communication, etc. are closely related to the cache 
hit rate and they can be calculated according to the cache hit rate. In Figure 4.4, we examine 
the performance of different methods when using different storage spaces: 

The results depicted in Figure 4.4. demonstrate that the proposed FM3C method closely 
mirrors the Oracle's performance and surpasses other reference caching schemes across all 
storage sizes in terms of CHR. The difference between FM3C and other baseline performances 
is particularly pronounced at lower storage sizes. This is because as the cache size expands, 
the probability of a cache hit increases due to a larger amount of content being actively cached 
in the RSUs. Additionally, it's worth noting that the central method's performance is the 
closest to FM3C and the random algorithm's performance improves linearly with the increase 
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of storage space. Conversely, due to the dynamism of the vehicular environment, the LRU 
algorithm registers the poorest performance. In smaller storage sizes, the performance of the 
intelligent caching strategy is superior to methods such as random and LRU, which do not 
consider data characteristics like popularity. However, in larger storage sizes, due to the lack 
of a clear mechanism for communicating and sharing content between different areas using 
infrastructure, its performance experiences the least improvement with the increase of 
storage sizes. 

 
Figure 4.4. Performance comparison between FM3C and: (i) Oracle, (ii) 

Centralized, (iii) Intelligent Caching Strategy, (iv) LRU, and (v) Random, in 
terms of different storage sizes at the RSUs. 

 
Figure 4.5. Comparative analysis of response delay between FM3C and the 

centralized method across varying storage sizes. 
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In our system, there are four methods to respond to requests, three of which are related 

to retrieving information from the cache. Retrieving information from the cache in all three 
methods is much faster than retrieving information from the cloud, but the delay in accessing 
cached content varies depending on where it is stored. For example, if the requested content 
is stored in the associated RSU, we will experience the fastest response possible. However, if 
we need to retrieve information from neighboring RSUs, we will experience a relatively higher 
delay, and retrieving content from the Fog results in even longer delays. Since content access 
time is considered the most important factor in measuring users' QoE, in addition to cache hit 
rate, the cache hit location should also be considered. Therefore, in Figure 4.5. and Figure 4.6, 
we compare the delay and breakdown of cache hit rate of FM3C with its closest contender, 
the Centralized method. 

 

As depicted in the diagram, the majority of cache hits for FM3C occur locally. Conversely, 
with the Centralized method, particularly in the case of limited storage capacity, most cache 
hits stem from content cached in adjacent RSUs. This outcome is anticipated as the FM3C 
method trains its model in a federated manner, utilizing data from vehicles within its coverage 
area. This process ensures that the model aligns more closely with the current user interests, 
enhancing the likelihood of caching content that will be requested by users in its coverage 
area in the near future. Meanwhile, the Centralized method trains its model solely based on 
the request history stored in the RSU, which might not accurately reflect the interests of the 
current users within its range. Therefore, while the Centralized method exhibits comparable 
performance to FM3C in terms of cache hit rate, FM3C enhances QoE by storing content as 
proximate to the users as possible. This outcome is also evident in Figure 4.5, where FM3C 
incurs less delay across all storage sizes compared to the Centralized method, thereby 
enhancing the QoE for users utilizing FM3C. 

 
Figure 4.6. Disaggregated cache hit rate comparison between FM3C and 

Centralized method, in terms of different storage sizes at the RSUs. 
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An important aspect of our work is the development of a novel mechanism for aggregating 
federated learning models called SVSA, which assigns weights to each model based on their 
accuracy and quality. To evaluate the effectiveness of SVSA, we compared the performance 
of the FM3C model when using SVSA versus FedAvg, a commonly used aggregation method in 
federated learning. To do so, we implemented FM3C twice, once with SVSA and once with 
FedAvg, while keeping all other steps in the FM3C constant. By comparing the performance of 
the two versions of FM3C, we were able to directly assess the impact of the aggregation 
method on the model's accuracy and quality. As demonstrated in Figure 4.7, the proposed 
aggregation mechanism outperforms FedAvg. To fully understand this advantage, it's 
important to focus on the local cache hit rate rather than the overall cache hit rate. The local 
cache hit rate reflects the RSU's ability to accurately predict popular and relevant content for 
the next time frame, with the aggregation mechanism playing a critical role in this prediction. 
The variety of cached content has increased at the neighbor level due to fog orchestration and 
efforts to avoid duplicates, leading to a more satisfactory neighbor cache hit rate even if the 
popularity of content may not be accurately predicted for the next time frame. In conclusion, 
the superiority of SVSA in the local cache hit rate highlights the effectiveness of the proposed 
aggregation mechanism, while the relative compensation of this advantage by FedAvg in the 
neighbor cache hit rate demonstrates the impact of the fog-based cache orchestration. 

Another key contribution of our work is the development of a novel vehicle selection 
mechanism for federated learning called FPSI. To assess the effectiveness of this mechanism, 
we compare the performance of FM3C using FPSI with a scenario where vehicles are randomly 
selected for participation in federated learning. As shown in Figure 4.8, the proposed vehicle 
selection mechanism has a substantial impact on the efficiency of the caching mechanism. 
Without an appropriate participant selection mechanism, the caching method's performance 
is not satisfactory, resulting in a model that inaccurately estimates the content popularity and 
selects inappropriate contents for caching. Additionally, we found that when participants are 
randomly selected, the FM3C's performance is similar to that obtained by randomly selecting 
content for caching 

 
Figure 4.7. A comparison of aggregation methods in Federated learning 

between SVSA and FedAvg. 
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4.7.2. Emergency Content Caching 

 
In this section, we evaluate the proposed method for caching safety-related contents. 

Given the spatio-temporal characteristics of this type of content and its localized impact, each 
RSU independently decides to cache the contents related to safety events that occurred in its 
area. Therefore, in this section, we consider only one RSU for this evaluation. 

We have designed a dataset specifically for evaluating the proposed method for emergency 
content caching. The incidents related to safety in this dataset are modeled to follow a Poisson 
distribution, and their rates vary based on the severity level of the incident. Emergency 
contents are typically small in size as they are informative and must be quickly distributed. 
Therefore, in our evaluation, we have assumed the size of all emergency contents to be 1MB. 

Before examining the performance of the STAECC, we first examine the effect of storage 
space on the average cacheable contents. Figure 4.9 illustrates the proportion of emergency 
content that can be cached over time with varying amounts of storage space. This proportion 
is not dependent on a specific caching algorithm and serves as a baseline for future results. 
Unlike infotainment contents, emergency contents are actively sent to vehicles entering the 
RSU's range rather than being requested, as they are crucial for taking precautionary 
measures. Hence, instead of calculating the cache hit rate, the availability of appropriate 
content and storage allocation method are considered. For the results of the next sections, 
we have considered a storage space of 30 MB. As shown in Figure 4.9, with this storage, 73% 
of the produced safety-related contents can be cached on average. 

In our proposed caching method STAECC, in order to select the appropriate emergency 
contents for caching, three criteria of freshness, intensity and validity are taken into account. 
In the following, we will separately evaluate the impact of each criterion on caching. 

 
Figure 4.8. A comparison of participant selection methods in Federated 

learning between between FPSI and random selection. 
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Figure 4.10. illustrates the impact of freshness on the propensity for caching content. The 
red portion of the bar chart represents the number of emergency contents generated in the 
current time step. Conversely, the blue portion signifies the number of these newly formed 
contents chosen for caching. It can be observed that STAECC acknowledges freshness and aims 
to prioritize and cache new content, particularly when the volume of recently generated 
content is not substantial. However, when there is a surge in newly generated content, STAECC 
becomes more selective, simultaneously considering additional criteria such as validity and 
severity to allocate the storage space to more valuable contents. 

 
The critical factor in selecting the appropriate emergency contents for caching in our 

proposed STAECC method is the severity of the safety incident that the content is related to. 

 
Figure 4.9. Content availability rate in terms of different storage sizes at the 

RSUs. 

 
Figure 4.10. Examining the ratio of cached contents in terms of freshness. 
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We have considered five levels of severity for emergency messages, with level five being 
dangerous and extremely important events, and level one being more common incidents. As 
depicted in Figure 4.11, the likelihood of caching the content increases with the increase in 
the severity level of the safety incident, and almost all contents with severity levels four and 
five are stored in the cache. This implies that drivers can always have access to information 
about crucial safety incidents. 

The validity level is the final factor that we evaluate in our proposed STAECC method. As 
shown in Figure 4.12, the proposed caching mechanism demonstrates that the higher the 

 
Figure 4.11. Examining the ratio of cached contents in terms of severity 

level. 

 
Figure 4.12. Examining the ratio of cached contents in terms of validity 

level. 
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validity level of emergency messages, the higher the probability of caching the related 
emergency contents. It is worth noting that the number of cached contents with more than 
16 confirmations is lower compared to the previous level, and this is due to the low probability 
of receiving such a high number of confirmations for a emergency message. In other words, in 
the scenario implemented, it is rare to receive these many confirmations for an emergency 
content. 

4.8 Conclusion 
 
In this chapter, considering the different natures of emergency and infotainment contents, 

we have proposed two innovative caching methods, STAECC and FM3C. The STAECC method 
was designed specifically for the unique characteristics of emergency content, prioritizing the 
allocation of storage space to the most important and valid safety information. This increases 
the availability of these contents for vehicles within the RSU range. On the other hand, FM3C 
was proposed to improve the user experience of infotainment contents through a three-step 
process. The first stage involves a federated learning method to predict content popularity 
with user privacy protection, the second stage combines the predicted popularity with other 
characteristics through a multi-criteria decision-making method, and the third stage involves 
global decision-making and orchestration by the Fog server. The simulation results show the 
remarkable performance of both the STAECC and FM3C methods. 

In the next chapter, we aim to extend our methods to more realistic scenarios that may 
include areas without RSUs and to explore incentive mechanisms for vehicles to participate in 
the federated learning process and content caching. 
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5. Enhancing IoV with SONA: A Synergistic 
Approach to UAV Deployment and 
Blockchain-Based Caching 

 

5.1 Introduction 
 
The recent surge in the evolution of Intelligent Transportation Systems (ITSs) is significantly 

characterized by the advent of the Internet of Vehicles (IoV). This transition heralds a new 
phase of intelligent, interconnected transportation, necessitating advanced solutions to 
enhance network services and improve user experiences. For clarity and ease of 
understanding, this article will use the terms 'vehicles' and 'users' interchangeably. 

The rapid expansion of IoV technologies has catalyzed the development of numerous 
applications, significantly enhancing vehicular networks. These advancements span a broad 
spectrum, from traffic information and path planning to safety mechanisms and beyond. 
Notably, the domain of in-vehicle entertainment is set to experience substantial growth. The 
advent of autonomous vehicles introduces a paradigm shift, liberating passengers from the 
demands of driving and opening avenues for immersive experiences through multimedia 
content, social media interactions, the Metaverse, and virtual reality. Projections indicate that 
by 2040, autonomous vehicles will account for approximately 75% of all road traffic, 
potentially reaching a market valuation of $7 trillion by 2050 [201]. 

While the developments in the IoV landscape are promising, they present two formidable 
challenges that must be addressed to ensure high-quality service for IoV users. The first 
challenge pertains to Quality of Service (QoS) and the need for low delay. Many IoV 
applications, especially those focusing on safety, necessitate stringent delay requirements. 
Furthermore, entertainment-related applications not only demand low latency but also 
consume extensive bandwidth, potentially straining the backhaul network if all content were 
to be fetched from cloud servers. An effective solution to mitigate this challenge is content 
caching. By caching popular content closer to the users, it is possible to significantly reduce 
redundant data transfers and enhance transmission efficiency. 

The second significant hurdle is ensuring adequate coverage and data rates to meet the 
diverse demands of IoV applications and user requests. The existing terrestrial infrastructure 
often falls short of fully spanning the vastness of road networks, a situation further 
complicated by natural disasters or when systems are overwhelmed by exceptionally high 
volumes of requests. Deploying Unmanned Aerial Vehicles (UAVs) emerges as a flexible and 
swift solution to augment existing infrastructure, making UAVs an integral component of 
modern wireless communication systems. Their deployment can extend coverage to remote 
and inaccessible areas and provide additional capacity where it is most needed, thus 
addressing both coverage and data rate challenges. 

The efficacy of caching in the IoV framework is underpinned by a simple yet profound 
observation: statistical data reveals that users within the same geographical vicinity often 
exhibit similar content preferences and frequently request identical files [202]. By strategically 
caching this popular content closer to the users, it becomes possible to significantly reduce 
repetitive data transfers and shorten response delays. This direct fetching of requested 
content from a local cache, rather than a distant server, markedly enhances transmission 
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efficiency and user experience. 
However, the implementation of an effective caching strategy is not without its challenges. 

Given the limited resources available for caching in terms of storage not all content can be 
cached. The key, therefore, lies in being selective, focusing on caching content that is truly 
popular and in demand. This necessitates a predictive approach to caching, where the future 
popularity of content (and hence the predicted number of requests) is estimated based on 
historical user request patterns. Yet, this predictive model faces a significant hurdle: users' 
reluctance to share their content request history, owing to privacy concerns. Such reluctance 
can impede the accuracy of content popularity predictions, a cornerstone for effective 
caching. 

To navigate this challenge, our methodology employs Federated Learning, innovatively 
modified to enhance participant selection and model aggregation. This approach allows for 
the aggregation of insights from multiple users' data without needing to directly access or 
centralize this sensitive information. By doing so, we ensure a privacy-preserving mechanism 
for predicting content popularity, crucial for real-time, efficient data access in IoV 
environments. This nuanced, adaptive strategy not only respects user privacy but also 
optimizes the allocation of limited caching resources, ensuring that only the most relevant and 
demanded content is cached and readily available to users. 

We further address the overarching challenges within the IoV ecosystem by turning our 
attention to the deployment of UAVs in vehicular networks, which introduces a suite of 
transformative benefits that address the key limitations of current terrestrial infrastructure. 

1. Emergency Infrastructure: UAVs can provide temporary communication infrastructure 
during natural disasters, vandalism, or scheduled infrastructure repairs, ensuring 
uninterrupted network service. 

2. Traffic Offloading: They play a crucial role in offloading vehicular traffic from dense 
cellular networks, enhancing wireless capacity and coverage, especially during 
temporary events or in hotspot areas. 

3. Extended Coverage: UAVs extend coverage to remote and inaccessible areas, where 
conventional wireless services fall short. 

4. Edge Computing: Serving as mobile edge computing servers, UAVs support enhanced 
IoT and IoV functionalities, facilitating real-time data processing and analytics closer to 
end-users. 

Despite these advantages, the deployment of UAVs is not devoid of challenges. The cost of 
deploying a comprehensive multi-UAV network, capable of catering to all ground users across 
extensive operational areas, necessitates significant capital investment. Additionally, unlike 
terrestrial Roadside Units (RSUs) with access to an uninterrupted power supply, UAVs are 
battery-operated, limiting their operational duration. Moreover, the strategic 3-D placement 
of UAVs to maximize connectivity and throughput—while ensuring optimal service to the 
greatest number of vehicles—introduces a layer of complexity in their deployment. 

Addressing these challenges, our methodology, dubbed Strategic Optimization for 
Networked Aerial-vehicles (SONA), embarks on optimizing both the number and the 
placements of UAVs. This optimization hinges on accurately gauging current and predicted 
vehicular density and demand, including data rate requirements. To achieve this, we leverage 
Long Short-Term Memory (LSTM) models for predicting vehicular traffic patterns within 
specific areas. Building upon these predictions, we develop an optimization model aimed at 
maximizing throughput and QoS with the minimal deployment of UAVs, thereby ensuring 
efficient energy consumption. Crucially, our approach capitalizes on air-to-ground 
communication channels, enhancing the probability of establishing line-of-sight links, which 
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significantly improves channel gain and reduces power consumption. In the dynamic and ever-
evolving landscape of vehicular networks, we frame the optimization challenge as a Markov 
Decision Process (MDP). Through the application of Deep Reinforcement Learning (DRL) 
techniques, we derive an optimal deployment strategy that adeptly navigates the complexities 
of UAV utilization in IoV environments. 

By integrating these advanced predictive and optimization models, SONA sets a new 
precedent for UAV deployment in enhancing IoV infrastructure, offering a systematic 
approach to overcoming the prevalent challenges of cost, coverage, and connectivity. 

Central to the advancement of the IoV systems is the challenge of decision-making 
regarding content caching and UAV deployment. Traditional approaches often rely on 
centralized control, which poses several questions: Who determines what content to cache? 
How is UAV deployment decided? Is it feasible for individual nodes, such as RSUs or UAVs, to 
make these decisions autonomously? The effectiveness of IoV systems significantly depends 
on the cooperative behavior between RSUs and UAVs. This cooperation is not only pivotal for 
optimizing caching strategies but also for making informed decisions about UAV deployment. 
By working together, RSUs and UAVs can circumvent the pitfalls of redundant caching and 
ensure a more diverse and efficiently distributed content cache. Similarly, collaborative 
decision-making can streamline UAV deployment, maximizing coverage and service quality 
while minimizing operational costs. 

Our strategy leverages blockchain technology to facilitate a decentralized, immutable, and 
transparent framework for RSU cooperation. This blockchain-enabled system allows RSUs to 
independently make informed decisions on optimal caching locations, promoting content 
diversity and availability without centralized oversight, perfectly aligning with the distributed 
nature of IoV networks. Unlike centralized decision-making systems, blockchain technology 
offers substantial benefits: it eliminates single-point-of-failure risks, obviates the necessity for 
establishing and maintaining a centralized entity, and inherently supports the decentralized 
architecture that is fundamental to many IoV applications. 

For UAV deployment, however, the role of blockchain extends to orchestrating a consensus 
among all nodes involved. Instead of autonomous decisions by individual nodes, blockchain 
facilitates a collective consensus mechanism for UAV deployment. This ensures that 
deployment strategies are not determined in isolation but are the result of a collaborative 
decision-making process, reflecting the collective intelligence and current needs of the entire 
network. By recording and sharing data on content popularity, vehicular movements, and 
network demands on the blockchain, all participating nodes—RSUs and UAVs alike—can 
access real-time information to reach a consensus on where and when UAVs should be 
deployed. This method enhances the network's responsiveness and adaptability, significantly 
improving scalability and security. Through this consensus mechanism enabled by blockchain, 
decisions regarding UAV deployment are optimized for network resource utilization and user 
experience, marking a significant advancement in the management of IoV infrastructures. 

 
Our Contributions 
This research addresses critical challenges in the domain, focusing on enhancing 

connectivity, service quality, and paving the way for innovative applications. The contributions 
of this study are both foundational and transformative, offering solutions that blend advanced 
computational models with practical, real-world applicability. Specifically, we present: 

• Comprehensive UAV Mobility and Transmission Models: We have developed detailed 
models for UAV mobility and transmission. These models serve as a cornerstone for 
designing energy-efficient UAV networks, ensuring extended operational times and 
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greater coverage. 
• Privacy-Preserved Content Popularity Prediction: Introducing a novel mechanism for 

content popularity prediction, our approach respects user privacy by employing 
advanced federated learning techniques. This mechanism accurately forecasts content 
demand without direct access to individual user data, facilitating efficient and privacy-
compliant content caching strategies. 

• Blockchain-based, Decentralized Caching Mechanism: We propose an innovative 
caching strategy that utilizes blockchain technology for secure, decentralized decision-
making. This strategy empowers RSUs and UAVs to make collaborative caching 
decisions, optimizing content placement and minimizing redundancy, thereby 
enhancing the network's efficiency and responsiveness. 

• Pareto Optimization for UAV Deployment: Our research introduces a Pareto 
optimization approach to UAV deployment, balancing the trade-off between 
operational costs and user satisfaction. This optimization framework ensures that UAV 
resources are utilized in the most effective manner, delivering high-quality services 
while minimizing the financial and environmental footprint of UAV operations. 

• MDP-based Problem Transformation: We have transformed the optimization challenge 
into an MDP, allowing for a dynamic analysis of UAV movement and content request 
patterns. Employing DRL, our model adapts to evolving network conditions, optimizing 
UAV deployment and content caching in real-time to meet the changing demands of IoV 
users. 

The structure of this article is designed to provide a coherent progression through the 
topics under discussion. Section 2 begins with a review of the existing literature, setting the 
stage for our contributions. This is followed by Section 3, which offers a detailed explanation 
of our comprehensive system model. In Sections 4 and 5, we introduce our innovative caching 
algorithm and UAV deployment strategy, respectively. The results of our simulations are 
presented in the subsequent section, demonstrating the efficacy of our approaches. We 
conclude the article by summarizing our key findings and exploring potential avenues for 
future research. 

 

5.2 System Model 
 
Our system model introduces an innovative approach tailored for the vehicular network, 

comprising several key components that collaboratively facilitate seamless communication 
and content delivery. It is important to clarify that the order in which these components are 
discussed does not reflect their importance or hierarchy within the network. The primary 
elements are: 

Vehicles: Serving as the primary users, vehicles play a crucial role in our network. Each 
vehicle follows a trajectory that intersects with various RSUs or UAVs. The connectivity needs 
and content request of a vehicle at any given point are satisfied by either an RSU or a UAV, 
depending on which one it is linked to. The demand for content is influenced by factors such 
as user preference, the nature of the journey, and advancements in vehicular technology. 

Content: Our network supports a wide variety of content, with a focus on multimedia for 
in-vehicle entertainment. The rise of autonomous vehicles amplifies the need for diverse 
entertainment options during travel, reflecting an increased demand for engaging side 
activities. 

Road Side Units (RSUs): RSUs provide connectivity to vehicles within their coverage area. 
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An essential feature of the RSUs is their built-in storage that facilitates content caching. By 
storing content, the RSUs significantly enhance the QoS by reducing content retrieval latency. 
RSUs also feature an ability to collaborate with other units to augment the QoS and fulfill 
content requests more efficiently. 

Unmanned Aerial Vehicles (UAVs): UAVs offer a cost-effective solution to extend network 
coverage, particularly in areas without RSU support. Serving as mobile RSUs, they not only 
broaden the network's reach but also possess storage capabilities, albeit typically less 
extensive than those of RSUs, for content caching. UAVs prove invaluable in regions of high 
vehicle density, where a single RSU may be insufficient to provide satisfactory QoS. 

The network architecture, illustrated in Figure 5.1, demonstrates the interconnectedness 
of these components in delivering efficient and reliable service. This model underscores the 
potential of integrating vehicles, RSUs, UAVs, and blockchain technology to meet the dynamic 
needs of vehicular network users. 

 

5.2.1. Caching Model 

 
The caching model is pivotal in determining the QoS experienced by users in our vehicular 

network system. As vehicles navigate, they may request various types of content. It is crucial 
to underscore that at any given time slot "𝑡", a vehicle (user) is limited to requesting a single 
piece of content. Rapid fulfillment of these requests is essential for enhancing QoS, 
underscoring the value of an effective caching strategy. 

Upon receiving a content request, the connected node (either an RSU or UAV) checks its 
local storage to ascertain the presence of the requested content. If available, the node 
immediately fulfills the request, thereby minimizing delay. Conversely, if the content is not 
locally cached, the node queries other nodes to identify if any have cached the requested 

 
Figure 5.1. The proposed vehicular network architecture. 
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content. Retrieving content from another node incurs a delay, albeit shorter than sourcing the 
content from the cloud, which represents the longest delay scenario. 

The decision to cache content at each node is governed by several criteria, with predicted 
content popularity being paramount, as it often dictates whether or not the content should 
be cached. The relevant information about each content, including its predicted popularity, is 
recorded on the blockchain. This ensures transparency and allows all nodes to access critical 
data for informed decision-making. 

After these details are committed to the blockchain, each node evaluates the 
appropriateness of caching specific content based on caching suitability scores. This 
evaluation encompasses a comparative analysis of the scores across all nodes, including the 
evaluating node itself. Should the evaluating node possess a higher suitability score for caching 
a particular content, it proceeds to cache the content. Conversely, if another node 
demonstrates a higher suitability score, the evaluating node refrains from caching, thereby 
optimizing the overall caching strategy and ensuring efficient use of storage capacities across 
the network. 

5.2.2. User Satisfaction Model 

 
To quantify the Quality of Service (QoS) for users, we introduce a user satisfaction model 

in our system that centers around data rate, a key factor crucial for enhancing user 
satisfaction. 

The model, delineated in Equation 5.1, utilizes the following parameters to calculate the 
satisfaction rate (𝑆𝑖𝑘𝑡), which spans from 0% to 100%: 

• 𝜀𝑖𝑘: This represents the minimum satisfaction gained by providing the minimum required 

data rate (𝛽𝑚𝑖𝑛
𝑘 ) for content "𝑘". 

• 𝛽𝑚𝑖𝑛
𝑘 : This is the critical minimum data rate necessary for the application to function at a 

basic level, below which the application or content "𝑘" becomes unusable. 
• 𝛽𝑚𝑎𝑥

𝑘 : This is the maximum data rate required to satisfy a user request for content "𝑘". 

• 𝐷𝑖𝑗𝑡
𝑑𝑜𝑤𝑛: This signifies the actual data rate delivered to vehicle "𝑖" from either UAV or RSU 

"𝑗". 

Our model proposes a linear relationship between user satisfaction and the data rates 
within the bounds defined by the minimum (𝛽𝑚𝑖𝑛

𝑘 ) and maximum (𝛽𝑚𝑎𝑥
𝑘 ) required data rates 

for a specific content "𝑘". This approach effectively balances system efficiency and user 
satisfaction, thereby optimizing overall QoS. The satisfaction rate 𝑆𝑖𝑘𝑡 is calculated as follows: 

 

𝑆𝑖𝑘𝑡 = {

0 

𝜀𝑖𝑘 +
100 − 𝜀𝑖𝑘

𝛽𝑚𝑎𝑥
𝑘 − 𝛽𝑚𝑖𝑛

𝑘 × (𝐷𝑖𝑗𝑡
𝑑𝑜𝑤𝑛 − 𝛽𝑚𝑖𝑛

𝑘 )

100

          

𝐷𝑖𝑗
𝑑𝑜𝑤𝑛 < 𝛽𝑚𝑖𝑛

𝑘

𝛽𝑚𝑖𝑛
𝑘 ≤ 𝐷𝑖𝑗

𝑑𝑜𝑤𝑛 ≤

𝐷𝑖𝑗
𝑑𝑜𝑤𝑛 > 𝛽𝑚𝑎𝑥

𝑘

 

 
(5.1) 

 

5.2.3. Traffic Model 

 
In our analysis, we investigate traffic dynamics within both urban settings and highway 

environments, acknowledging the predominant coverage by RSUs in urban areas versus the 
reliance on UAVs for highways. Our traffic model accounts for variations in traffic patterns 
based on time and location, recognizing, for example, the increased traffic volumes in city 
centers during early morning hours on workdays. 
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To this end, we adopt the model proposed by Wemegah, Zhu, and Atombo [203], which 
assesses the impact of different days and road types on peak travel periods. This model is 
instrumental in generating traffic patterns pertinent to our study, offering insights into the 
fluctuating nature of vehicular movements. 

A critical element of our traffic model is estimating the vehicular density on each road 
segment. This estimation is crucial for determining the optimal UAV deployment strategy, 
striking a necessary balance between cost-efficiency and service quality. Such a balance is vital 
for an adaptive system capable of responding to varied traffic conditions while upholding 
superior QoS. 

 

5.2.4. UAV Mobility Model 

 
Our UAV mobility model initiates at the operation center, which acts as the launching pad 

for our UAVs. Upon the need for deployment to a specific location, a UAV is dispatched from 
the operation center. It ascends to a predetermined altitude, denoted as "ℎ", before 
proceeding to the target location at its maximum speed, 𝑉𝑚𝑎𝑥. 

The duration of each time slot in our model is defined as 𝛿. Thus, according to equation 
5.2, the maximum distance a UAV can traverse within a single time slot is: 

 
|𝑙𝑜𝑐𝑗

𝑡 − 𝑙𝑜𝑐𝑗
𝑡+1|  ≤  𝑉𝑚𝑎𝑥𝛿 (5.2) 

 
In this equation, 𝑙𝑜𝑐𝑗

𝑡 and 𝑙𝑜𝑐𝑗
𝑡+1 represent the UAV "𝑗" location at the current time slot "𝑡" 

and the subsequent time slot "𝑡 + 1", respectively. 
Upon arrival at the demand point, the UAV maintains its position to ensure connectivity for 

users. Essential to this process is the UAV's ability to either directly connect to an RSU or, 
alternatively, to link with other UAVs that have access to an RSU. Upon reaching the demand 
point, the UAV hovers at the designated location to ensure connectivity for users. Essential to 
this process is the UAV's ability to either directly connect to an RSU or, alternatively, to link 
with other UAVs that have access to an RSU. We define the distance between the UAV and 
the RSU or vehicles within its coverage area as 𝑑𝑖𝑗. This is calculated as follows: 

 

𝑑𝑖𝑗 = √(𝑥𝑗
𝑢𝑎𝑣 − 𝑥𝑖)

2
+ (𝑦𝑗

𝑢𝑎𝑣 − 𝑦𝑖)
2
+ ℎ2 

 

(5.3) 

In this equation, 𝑥𝑗
𝑢𝑎𝑣  and 𝑦𝑗

𝑢𝑎𝑣represent the 𝑥 and 𝑦 coordinates of the UAV, respectively, 
while 𝑥𝑖  and 𝑦𝑖 represent the 𝑥 and 𝑦 coordinates of the RSU or vehicles, respectively. "ℎ" is 
the altitude of the UAV. This model allows us to account for the spatial dynamics of the UAV's 
movement and its impact on connectivity. 

 

5.2.5. UAV Energy Consumption Model 

 
Our energy consumption model is largely derived from the empirical studies presented in 

[204], focusing on the "Intel Aero Ready to Fly Drone", equipped with a 4000mAh battery with 
a voltage of 14.8V. While energy consumption rates may vary across different UAV models, 
this specific drone provides a reliable baseline for assessing our method's effectiveness. 

The energy consumption model for horizontal movement 𝐸𝑗𝑡
ℎ𝑚, vertical movement upward 

𝐸𝑗𝑑
𝑣𝑢 and hovering 𝐸𝑗𝑡

ℎ𝑜𝑣𝑒𝑟 can be described by the following equations: 
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𝐸𝑗𝑡
ℎ𝑚 = 308.709Δt − 0.852 (5.4) 

 
𝐸𝑗𝑑

𝑣𝑢 = 315𝐷 − 211.261 (5.5) 

 
𝐸𝑗𝑡

ℎ𝑜𝑣𝑒𝑟 = (4.917ℎ + 275.204)Δt (5.6) 

 
In these equations, Δt represents the duration of flight in the specified situation, "ℎ" 

denotes the relative hovering altitude, and "𝐷" is the vertical distance traveled upward in 
meters. 

In addition to these factors, UAVs also consume energy during transmission (denoted as 
𝐸𝑗𝑡

𝑡𝑟), which will be elaborated upon in the "Transmission model" section. Therefore, the 
overall energy consumption model for the UAV can be summarized as: 

 
𝐸𝑗𝑡

𝑡𝑜𝑡 = 𝐸𝑗𝑡
𝑡𝑟 + 𝐸𝑗𝑡

ℎ𝑜𝑣𝑒𝑟 + 𝐸𝑗𝑡
ℎ𝑚 + 𝐸𝑗𝑑

𝑣𝑢 (5.7) 

 
To estimate the battery life based on energy consumption, we first convert the battery 

capacity from milliampere-hours (mAh) to ampere-hours (Ah) by dividing by 1000. Next, we 
convert the battery capacity from Ah to joules, utilizing the following equation. 

 
𝐸 =  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝐴ℎ)  ∗  𝑉(𝑉𝑜𝑙𝑡𝑠)  ∗  3600 (5.8) 

 
Given that 1 Joule = 1 Ampere × 1 Volt × 1 Second, we can deduce the battery's total energy 

capacity in joules. Finally, we divide the total energy of the battery in joules by the UAV's 
average energy consumption in joules per unit time. This results in an estimated battery life, 
expressed in the same time units as the average energy consumption. 

It is important to note that is a simplified estimation. Actual battery life may be affected by 
various factors, including battery discharge efficiency, power consumption changes, battery 
age and health, and temperature fluctuations. 

 

5.2.6. Channel Model 

 
The communication channel between UAVs and ground vehicles or RSUs is characterized 

through a probabilistic path loss model, distinguishing between Line of Sight (LoS) and Non-
Line of Sight (NLoS) scenarios. 

For LoS scenarios, the average path loss between UAV "𝑗" and vehicle "𝑖" is expressed as: 
 

𝜑𝑖𝑗𝑡
𝐿𝑜𝑆 = 20𝑙𝑜𝑔 (

4𝜋𝑓𝑐𝑑𝑖𝑗

𝑐
) + 𝜂𝐿𝑜𝑆 

(5.9) 

 
Where, 𝜂𝐿𝑜𝑆 is system loss for LoS, 𝑓𝑐  is the carrier frequency, "𝑐" is the speed of light and 

𝑑𝑖𝑗 denotes the 3-D distance between UAV "𝑗" and the user "𝑖". 
In NLoS scenarios, the average path loss can be defined as: 
 

𝜑𝑖𝑗𝑡
𝑁𝐿𝑜𝑆 = 20𝑙𝑜𝑔 (

4𝜋𝑓𝑐𝑑𝑖𝑗

𝑐
) + 𝜂𝑁𝐿𝑜𝑆 

(5.10) 

 
Where 𝜂𝑁𝐿𝑜𝑆 indicates the system loss for NLoS. The expected path loss at time slot "𝑡" is 

a probabilistic value calculated as follows: 
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𝜑𝑖𝑗𝑡 = 𝑃𝑖𝑗𝑡
𝐿𝑜𝑆𝜑𝑖𝑗𝑡

𝐿𝑜𝑆 + 𝑃𝑖𝑗𝑡
𝑁𝐿𝑜𝑆𝜑𝑖𝑗𝑡

𝑁𝐿𝑜𝑆 = 20𝑛𝑙𝑜𝑔 (
4𝜋𝑓𝑐𝑑𝑖𝑗

𝑐
) + 𝑃𝑖𝑗𝑡

𝐿𝑜𝑆𝜂𝐿𝑜𝑆 + 𝑃𝑖𝑗𝑡
𝑁𝐿𝑜𝑆𝜂𝑁𝐿𝑜𝑆 

 

(5.11) 

 
With 𝑃𝑖𝑗𝑡

𝐿𝑜𝑆 and 𝑃𝑖𝑗𝑡
𝑁𝐿𝑜𝑆 representing the probabilities of having LoS and NLoS conditions, 

respectively, where 𝑃𝑖𝑗𝑡
𝐿𝑜𝑆+ 𝑃𝑖𝑗𝑡

𝑁𝐿𝑜𝑆 = 1. 
These probabilities can be calculated by considering different factors such as 

environmental situations and elevation angles. The probability of having LoS at time slot "𝑡" 
can be calculated as follows: 

 

𝑃𝑖𝑗𝑡
𝐿𝑜𝑆 = (1 + 𝛼 𝑒𝑥𝑝 (𝑏([180

𝜋⁄ ]𝜃𝑖𝑗 − 𝛼)))
−1

 
(5.12) 

 
Here, “𝛼”, “𝑏” are environment-dependent constants. For an urban environment, these 

can be set as 9.6177 and 0.1581, respectively. [180⁄π] is the conversion factor from radians to 
degrees. With 𝜃𝑖𝑗 representing the elevation angle between UAV and vehicle and is calculated 
as: 

 

𝜃𝑖𝑗 = arctan(ℎ𝑗
𝑢𝑎𝑣/𝑟𝑗,𝑖)  → 𝑟𝑗,𝑖 ≜ √(𝑥𝑗

𝑢𝑎𝑣 − 𝑥𝑖)
2
+ (𝑦𝑗

𝑢𝑎𝑣 − 𝑦𝑖)
2

 
(5.13) 

 
where 𝑟𝑗,𝑖  is the horizontal distance between UAV "𝑗" and vehicle "𝑖". 
The maximum permissible path-loss (𝜑𝑚𝑎𝑥) for a successful connection between UAV "𝑗" 

and vehicle "𝑖" can be defined as follows: 
 

𝜑
𝑚𝑎𝑥

= 𝑝
𝑈→𝑉
𝑖,𝑗 + 𝐺𝑈

𝑗
+ 𝐺𝑉

𝑖 − 𝑅𝑆 (5.14) 

 
 

Here, 𝑝𝑈→𝑉
𝑖,𝑗

 is the transmitted power, 𝐺𝑈
𝑗
 is the antenna gain for the UAV "𝑗", 𝐺𝑉

𝑖  is the 

antenna gain for the vehicle "𝑖" and 𝑅𝑆 is the receiver sensitivity. We would have a successful 

connection if 𝜑𝑖𝑗< 𝜑𝑚𝑎𝑥. 

The Signal to Interference plus Noise Ratio (SINR) for vehicle "𝑖" when communicating with 
UAV "𝑗" can now be derived as follows: 

 

𝛾𝑖𝑗𝑡 = 10𝑙𝑜𝑔𝑝𝑈→𝑉
𝑖,𝑗

− 𝜑𝑖𝑗𝑡 − 10log (∑𝑝𝑈→𝑉
𝑖,𝑘

𝑘≠𝑗

+ 𝑁) (5.15) 

 

Where, 𝑝𝑈→𝑉
𝑖,𝑗

 is the transmission power for the UAV, "N" is the total noise power in the 

bandwidth of interest. 𝜑𝑖𝑗𝑡 is the average path loss, ∑ 𝑝𝑈→𝑉
𝑖,𝑘

𝑘≠𝑗  is the sum of the powers of 

the signals transmitted by all other UAVs (𝑘 ≠ 𝑗) to vehicle "𝑖". This term represents the total 

interference from all other UAVs. 

This SINR provides a measure of the quality of the signal received by vehicle "𝑖" from UAV 
"𝑗", taking into account the interference from other UAVs and the background noise level. It's 
a crucial factor in determining the reliability and quality of the communication link between 
the UAV and the user. 
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5.2.7. Transmission Model 

 

In UAV-based wireless communication, the power of the received signal plays a pivotal role 

in determining the quality and efficiency of data transmission. This power can be modeled 

using the Friis transmission equation, given certain assumptions like free-space propagation. 

The received power at time slot "𝑡", expressed as 𝑝𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
𝑖,𝑗,𝑡

, is calculated as follows: 

 

𝑝𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
𝑖,𝑗,𝑡

= 𝑝𝑈→𝑉
𝑖,𝑗

+ 𝐺𝑈
𝑗
+ 𝐺𝑉

𝑖 − 𝜑𝑖𝑗𝑡  (5.16) 

 

Here, 𝑝𝑈→𝑉
𝑖,𝑗

 represents the transmitted power, 𝐺𝑈
𝑗
 is the antenna gain for UAV "𝑗", 𝐺𝑉

𝑖  is the 

antenna gain for the vehicle "𝑖", and 𝜑𝑖𝑗𝑡 is the expected path loss. 
Once the received power is calculated, it opens up the possibility of determining 

instantaneous data rates. This is particularly important in designing adaptive communication 
systems that adjust their transmission parameters based on the prevailing network conditions. 
The Shannon Capacity formula serves as the key for calculating the downlink data rate at a 
given time slot "𝑡".  

 

𝐷𝑖𝑗𝑡
𝑑𝑜𝑤𝑛 =  𝑊𝑙𝑜𝑔2(1 + 𝛾𝑖𝑗𝑡) =  𝑊𝑙𝑜𝑔2(1 +

𝑝𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
𝑖,𝑗,𝑡

𝑁
) 

(5.17) 

 

In this equation, "𝑊" is the channel bandwidth, 𝛾𝑖𝑗𝑡 is the SINR, 𝑝𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
𝑖,𝑗,𝑡

 is the received 

power, and "𝑁" is the noise power (the thermal noise power linearly proportional to the 

allocated bandwidth and temperature). In the same manner, the data rate for uplink can be 

calculated. 

However, not all data is equal. Different applications and content types necessitate unique 
data rate requirements, driven by their inherent characteristics and user expectations. For 
example, video streaming would require a higher data rate compared to a simple file 
download. To ensure a satisfactory user experience, a minimum data rate is defined. Our 
model represents this using Eq. 5.18, where the instantaneous data rate to a vehicle from a 
UAV must exceed a threshold. 

 
𝐷𝑖𝑗𝑡

𝑑𝑜𝑤𝑛 > 𝑅𝑖𝑘𝑡𝛽𝑚𝑖𝑛
𝑘   ∀𝑘 (5.18) 

 
Where 𝑅𝑖𝑘𝑡 is 1 if vehicle "𝑖" requests content "𝑘" at time slot "𝑡" and 0 otherwise, and 

𝛽𝑚𝑖𝑛
𝑘  is the minimum data rate required to satisfy a user request for content "𝑘". 

Moreover, for an efficient operation of UAV-based wireless networks, it is crucial to 
establish the minimum transmit power required to meet the rate requirement of ground 
users, as shown in Equation 5.19. Power management is a critical component, affecting system 
performance, sustainability, and cost-effectiveness: 

 

𝑝𝑈→𝑉,𝑚𝑖𝑛
𝑖,𝑗,𝑡

= (2𝐷𝑖𝑗𝑡
𝑑𝑜𝑤𝑛/𝑊 − 1)𝑁𝜑𝑖𝑗𝑡  (5.19) 

 
Equally essential is the need to quantify the energy consumption for data transmission, 

which feeds into the system's sustainability and operational cost. In our model, we consider 
the cumulative transmitted power from a UAV at each time slot as the representative of 
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energy consumption. 
 

𝐸𝑗𝑡
𝑡𝑟 = ∑𝑝𝑈→𝑉

𝑖,𝑗,𝑡

𝑇

𝑡=1

 
(5.20) 

 
From a user's perspective, it is not only about the quality of connection but also how long 

it takes to receive the requested content. To that end, we introduce a metric estimating the 
number of timeslots a vehicle requires to receive content from a UAV, as depicted in Equation 
5.21. This metric takes into account the content size, the instantaneous data rate, and delays 
associated with streaming content from neighbor nodes and the cloud. Note that this is an 
estimate; the actual delay may vary due to dynamic factors such as vehicle movement and 
fluctuations in the data rate. 

 

𝑇𝑖𝑗𝑘
𝑡 = 

𝑍𝑘

𝛿𝐷𝑖𝑗𝑡
𝑑𝑜𝑤𝑛 + 𝐷𝐿𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟[𝐶𝑗𝑘𝑡 = 0] + 𝐷𝐿𝑐𝑙𝑜𝑢𝑑[𝐶𝑗𝑘𝑡 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗] 

(5.21) 

 

Here, 𝛿 is the length of one time slot, 𝑍𝑘 is the content size, 𝐷𝑖𝑗𝑡
𝑑𝑜𝑤𝑛 is the instantaneous 

data rate to the vehicle "𝑖" from UAV "𝑗", 𝐷𝐿𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 is the delay to stream the content from 

neighbor nodes (UAV or RSU), 𝐷𝐿𝑐𝑙𝑜𝑢𝑑 is the delay to stream the content from the cloud, and 

𝐶𝑗𝑘𝑡  equals 1 if UAV "𝑗" caches the content "𝑘". This equation is based on Iverson bracket 

notation.  

This comprehensive modeling of the Transmission Model, incorporating received power, 
data rates, transmit power, energy consumption, and estimated delays, forms a robust 
framework to understand and optimize UAV-vehicle communication dynamics in a complex 
urban environment. 

 
 

5.2.8. Blockchain Model 

 
In the context of our study, we utilize blockchain technology to function as a distributed 

ledger, creating an interconnected network of both UAVs and RSUs. Each UAV and RSU 
operates as a blockchain node, capable of reading and writing to the blockchain. This system 
harnesses blockchain not only for its ability to ensure secure, tamper-proof transactions but 
also to facilitate decentralized operations across the vehicular network, enhancing security 
and enabling robust decentralization. 

The primary motivations for incorporating blockchain into our IoV system are its 
decentralization capabilities and enhanced security measures. By decentralizing network 
management, blockchain allows for a more resilient infrastructure, free from the 
vulnerabilities of centralized control points. Security is intrinsically bolstered through 
cryptographic mechanisms that safeguard data integrity and authenticate user interactions. 

Blockchain plays a critical role in our caching strategy. Each node computes a suitability 
score for each content item based on characteristics and estimated popularity from request 
patterns within its coverage area. These scores are then recorded on the blockchain, ensuring 
that all nodes have access to this predictive data. This setup fosters a coordinated approach 
to caching without the need for direct communication between nodes. Nodes use this shared 
information to assess content importance and demand in their vicinity, making informed 
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caching decisions that align with network-wide priorities. If a node identifies another node as 
more suitable for caching specific content (due to factors like higher local demand or better 
storage efficiency) it defers to that node for caching. This decentralized decision-making 
process effectively reduces redundancy and optimizes storage utilization across the network, 
ensuring content is cached where it will be most impactful. 

For UAV deployment, the prediction of data rate requirements is recorded on the 
blockchain. A node with adequate processing power and available resources is selected 
through a consensus mechanism called Proof of Capability (POC) to process this data and make 
informed decisions about UAV deployment. This approach ensures that decisions regarding 
UAV positioning and resource allocation are made based on up-to-date, comprehensive 
network data, enhancing the responsiveness and efficiency of the vehicular network. 

In summary, blockchain’s integration into our system extends beyond mere data recording; 
it underpins a sophisticated framework for decentralized, secure decision-making across 
caching and UAV deployment strategies, significantly enhancing the operational efficacy and 
security of the IoV environment. 

5.3 Proposed Caching Algorithm 
 

Infotainment content, encompassing diverse media such as images, audio, and video, are 
considered the primary content types of interest within the IoV network. The expeditious 
delivery of this content types is crucial to enhancing user experience. However, accessing 
these voluminous data directly from the cloud can lead to increased latency, decreased user 
satisfaction, and significant strain on the backhaul network. To tackle these challenges, our 
strategy introduces a sophisticated caching mechanism, crucial for minimizing latency and 
contributing to a positive user experience by ensuring timely content delivery. 

Building upon our previously introduced Federated Learning-based Mobility-aware 
Collaborative Content Caching (FM3C) strategy [16], we refine the process of content selection 
for caching. FM3C evaluates content based on a series of metrics, ensuring only the most 
relevant and demand-driven content is cached. This method, tailored for the limited storage 
capacities of RSUs and UAVs, dictates a selective caching strategy essential for efficient 
network management. 

To complement the FM3C strategy, we introduce a cooperative caching model. This 
innovative approach allows nodes not only to respond to local requests but fulfill content 
requests from adjacent nodes, promoting a collaborative network environment. This 
cooperation extends beyond simply eliminating redundancy; nodes also collaborate to identify 
the optimal node for caching specific content, enhancing the overall efficiency of the system. 

In traditional setups, such cooperative caching mechanisms would require centralized 
coordination. However, in our proposed model, we employ blockchain technology, thereby 
facilitating decentralized cache orchestration. This eliminates the need for a central control 
unit, facilitating transparent and autonomous decision-making across the network. Integrating 
FM3C with blockchain for cooperative caching represents a significant leap towards realizing 
an efficient, scalable content delivery infrastructure within the IoV ecosystem. 

 

5.3.1. FM3C 

 
The FM3C framework represents our tailored solution to manage infotainment content 

caching in the IoV network. FM3C evaluates several critical factors such as content size, the 
presence of content replicas, time sensitivity, and, most importantly, content popularity to 
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optimize caching decisions. By prioritizing popular content for caching, FM3C significantly 
reduces network latency and enhances user experience by fulfilling a larger volume of 
requests locally, thus conserving network resources and storage space. 

Popularity, however, is not a static attribute but varies over time, necessitating a dynamic 
approach to predict future content demand accurately. Our solution employs a machine 
learning model designed to forecast number of content requests. This model processes time-
stamped historical request data and content characteristics to anticipate which content will 
be sought after in subsequent periods. 

Given the need to preserve user privacy during this process, we employ federated learning, 
allowing vehicles to collaboratively contribute to the model's training with their local data 
without exposing sensitive information. In the first phase of federated learning, each node 
(RSU or UAV) selects several vehicles within their coverage area to participate in the learning 
process. This selection is based on the vehicles' capabilities, including their processing power, 
dataset size, and link quality, among others. 

In the next phase, the chosen vehicles download the base model from their respective RSU 
and begin local training. Once the training phase concludes, the vehicles transmit the 
parameters of the trained model back to the RSU for aggregation. 

Following the aggregation of the models, each node can estimate the popularity of the 
content within its coverage area over a future time horizon. With popularity as a core factor, 
each node can calculate a value for each content indicating its relative worth for caching. 

However, nodes independently choosing content for caching can result in a considerable 
waste of storage due to content redundancy. In light of the nodes' ability to cooperate in 
responding requests, redundant caching should be avoided unless the content is extremely 
popular or time-sensitive. This cooperative approach maximizes storage efficiency across the 
network and supports a more effective content delivery system, avoiding the pitfalls of 
isolated decision-making and redundancy in content storage. 

 

5.3.2. Blockchain-Enabled Caching Strategy 

 
The FM3C framework harnesses blockchain technology to enhance the caching mechanism 

within the IoV network, shifting away from the need for centralized control to a more agile, 
decentralized caching strategy. By recording the estimated future popularity of content within 
specific coverage areas, alongside other content-specific metrics, blockchain enables a 
nuanced understanding of content demand across the network. This approach allows each 
node to make informed decisions about what content to cache. 

Within this decentralized architecture, blockchain plays a crucial role in facilitating the 
autonomous decision-making process for caching. After nodes estimate the future popularity 
of content, these estimates are securely recorded on the blockchain. This ensures all nodes 
have access to the same predictive data, fostering a coordinated approach to caching without 
direct communication. Nodes utilize this shared information to assess the relative importance 
and demand for content in their vicinity, guiding their caching decisions to align with network-
wide priorities. 

Crucially, the blockchain framework underpins a sophisticated strategy to optimize caching 
decisions across the network, without direct inter-node communication. Each node calculates 
the suitability of caching specific content based on a comprehensive analysis that includes its 
own estimated content popularity within its coverage area and static content-specific data. 
Since blockchain technology facilitates the sharing of estimated content popularity across 
different areas, a node can also assess the suitability of caching a content in other nodes' 
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areas. If a node discerns that another node is better suited to cache a particular content 
(perhaps due to higher local demand or better storage efficiency) it will defer caching that 
content, opting instead to let the more suitable node cache it. This decentralized decision-
making process efficiently reduces redundancy and enhances the network's overall storage 
utilization, ensuring that content is cached in locations where it will be most impactful. 

The shared ledger on the blockchain provides a transparent record of caching decisions and 
content popularity metrics, enabling nodes to optimize their caching strategies dynamically. 
This transparency ensures that all nodes are aware of the content cached by their neighbors, 
allowing for a more effective cooperative response to user requests. By strategically caching 
content and leveraging the collective intelligence of the network, nodes can significantly 
reduce latency and improve the accessibility of high-demand content. 

The blockchain not only streamlines the decision-making process for what content to cache 
but also ensures that the network adapts to changing content demand patterns without the 
overhead of centralized administration.  

5.4 UAV Deployment Strategy 
 
Establishing a comprehensive and reliable infrastructure for the IoV presents significant 

challenges, particularly in remote or densely populated areas where traditional infrastructure 
is either economically impractical or infeasible due to location constraints. Furthermore, even 
in areas where infrastructure does exist, there might be instances such as during high-profile 
events or festivals where the existing infrastructure might become overwhelmed due to a 
sudden influx of vehicles. 

In response, our research advocates for the strategic use of UAVs to supplement existing 
RSUs or to provide temporary connectivity where conventional infrastructure is absent. This 
approach enhances the IoV's connectivity robustness and scalability, offering a flexible 
solution that transcends the limitations of fixed infrastructure. 

The effectiveness and economic viability of UAV deployment hinge on the precise 
prediction of vehicular traffic. A nuanced understanding of future traffic patterns enables the 
strategic placement and quantity adjustment of UAVs, ensuring optimal service coverage 
while efficiently managing deployment costs. 

Subsequent subsections will delve into the methodology for estimating vehicular traffic, 
the formulation of our UAV deployment model based on these estimations, and the 
application of reinforcement learning to address the complexities of real-time deployment 
decisions. These details will illustrate the core mechanisms of our proposed UAV deployment 
strategy, which is designed to strike an optimal balance between cost-effectiveness and 
service quality. 

 

5.4.1. Traffic and Data Rate Estimation Methodology 

 
In the IoV ecosystem, the strategic deployment of UAVs is intricately linked to the 

anticipated data rate requirements of users in various areas, which, while influenced by 
vehicular traffic patterns, fundamentally dictate the number and placement of UAVs. These 
requirements are subject to fluctuations based on factors like time of day and week, 
underscoring the necessity for an adaptable prediction model. 

To accurately forecast these data rate demands, this study employs LSTM networks, a 
subset of Recurrent Neural Networks (RNNs) renowned for their capacity to capture long-term 
dependencies. LSTMs adeptly navigate the challenges of vanishing and exploding gradients, 
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common in traditional RNNs, through the use of input, output, and forget gates. These 
mechanisms enable the selective retention and discarding of information, ensuring the 
preservation of relevant data over extended periods. 

The LSTM model is trained on historical traffic data, enriched with contextual information 
such as day and week, to predict future user data rate requirements. This comprehensive 
dataset is harvested by RSUs, which continuously monitor vehicular presence and movement 
within their coverage zones. In areas beyond the reach of RSUs, bordering RSUs at the 
interface of equipped and unequipped regions collaboratively document vehicle transitions 
into these zones. Additionally, UAVs present in the area contribute by recording data rate 
requirements to the blockchain, ensuring a comprehensive dataset is available for analysis. 

A node endowed with sufficient computational resources, invariably an RSU due to the 
processing and power constraints of UAVs, is tasked with executing the LSTM model. The 
model's output provides a detailed forecast of expected data rate demands across different 
locations, pinpointing 'demand points' where predicted needs surpass the capacity of existing 
infrastructure or in regions devoid of RSUs. This predictive insight facilitates a nuanced 
approach to the strategic placement of UAVs, not only to enhance connectivity but also to 
address broader IoV system requirements, including data rate provision and network 
scalability. 

 

5.4.2. Formulation of the Problem 

 
In accordance with the previously established models, our objective is to both maximize 

user satisfaction rate and minimize the latency experienced by the users. This optimization 
aims to deploy the minimal possible number of UAVs, while ensuring that each terrestrial user 
is efficiently serviced by one UAV, and the connectivity of UAVs to the backhaul network is 
preserved. 

To determine if UAV "𝑗" is directly or indirectly connected to an RSU, we define the binary 
variable 𝑅𝑗 as: 

 

𝑅𝑗 = {
1     𝜏𝑗 = 1 𝑜𝑟 ∑Λ𝑗𝑘𝑅𝑘 ≥ 1

𝑘∈𝐽

0                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
(5.22) 

 
𝜏𝑗 denotes whether UAV "𝑗" has direct access to an RSU. Λ𝑗𝑘 equals 1 if UAV "𝑗" is connected 

to UAV "𝑘", and 0 otherwise. 
Given the aforementioned premises, we propose the following Pareto-based multi-

objective optimization model: 
 

 𝑀𝑖𝑛∑𝑈𝑗

𝑗∈𝐽

 

 

(5.23) 

 
 

𝑀𝑎𝑥 ∑ ∑ 𝑆𝑖𝑘𝑡

𝑘∈𝐾𝑡∈𝑇

 

 

 

 𝑀𝑖𝑛∑ ∑ 𝑇𝑖𝑗𝑘
𝑡

𝑘∈𝐾𝑡∈𝑇
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 𝑀𝑖𝑛∑∑𝐸𝑖𝑡
𝑡𝑜𝑡

𝑖∈𝐼𝑡∈𝑇

 

 

 

 𝑆. 𝑡:  
 𝐶1: ∑Α𝑖𝑗 ≥ 1

𝑗∈𝐽

 

 

 

 𝐶2: 𝐷𝑖𝑗
𝑑𝑜𝑤𝑛Α𝑖𝑗 ≥ 𝛽𝑚𝑖𝑛

𝑘 𝑅𝑖𝑘Α𝑖𝑗 ∀𝑘 

 

 

 𝐶3:  Α𝑖𝑗 ≤ 𝑈𝑗  

 

 

 
 

𝐶4:  𝐷𝑖𝑘
𝑈𝐴𝑉Λ𝑗𝑘 ≥ 𝐷𝑖𝑘,𝑚𝑖𝑛
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 𝐶8:   ∑𝐸𝑖𝑡
𝑡𝑜𝑡

𝑡∈𝑇

< 𝐸𝑖
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

   ∀𝑖  

 
 
Variable Definitions Recap: 
To aid comprehension and streamline reference, we provide a consolidated overview of 

the key variables central to our optimization model. This summary is structured to support 
reader understanding without necessitating backward navigation through the text: 

• Deployment Status (𝑈𝑗): Indicates whether UAV "𝑗" is actively deployed within the 

operation area. This variable is critical to optimizing UAV deployment for efficient 

network coverage. 

• User Satisfaction (𝑆𝑖𝑘𝑡): Reflects the satisfaction level of user "𝑖" accessing content "𝑘" 
at time "𝑡", highlighting our goal to maximize network service quality. 

• Access Latency (𝑇𝑖𝑗𝑘
𝑡 ): Quantifies the delay experienced by user "𝑖" in accessing content 

"𝑘"  from UAV "𝑗", highlighting our aim to minimize network latency. 
• Association Status (Α𝑖𝑗): Specifies the connectivity between user "𝑖" and UAV "𝑗", crucial 

for understanding network topology and user-UAV interactions. 
• Data Rate Requirements (𝛽𝑚𝑖𝑛

𝑘 , 𝐷𝑖𝑗
𝑑𝑜𝑤𝑛 , 𝐷𝑖𝑘

𝑈𝐴𝑉 , 𝐷𝑖𝑘,𝑚𝑖𝑛
𝑈𝐴𝑉 ): Describe the data transmission 

rates crucial for ensuring satisfactory user experiences and facilitating efficient UAV-to-
UAV interactions. 

• Inter-UAV Connectivity (Λ𝑗𝑘): Denotes the connectivity status between UAV "𝑗" and 
another UAV "𝑘", illustrating the network of UAV interactions within the system. 

These summarized definitions are provided for convenience. For detailed descriptions and 
the broader context of their applications, readers may refer to Section 5.2 where these 
variables are introduced comprehensively. 

Additional Variable Definitions:  
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Expanding on the model's formulation, we introduce variables that are pivotal but not 
previously detailed: 

• Content Caching (𝐶𝑗𝑘𝑡): Indicates whether content "𝑘" is cached in UAV "𝑗", highlighting 
strategies for data storage to optimize access and delivery. 

• Content Size (𝑍𝑘): denotes the size of content "𝑘", reflecting the storage capacity 
needed for caching each piece of content. 

• UAV Capacity (𝜓𝑗,  𝐸𝑖
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

): Relate to the physical limitations of UAVs, including 
storage capacity and battery life, which influence strategic deployment and operational 
longevity. 

The formulation of our optimization problem is predicated on a Pareto-based multi-
objective approach, balancing several competing objectives to enhance the IoV system's 
efficiency and user satisfaction. Herein, we delve into the specifics of the objective functions 
and constraints: 

Objective Function: 
• Minimize the number of deployed UAVs (∑𝑈𝑗), targeting cost-effective network 

expansion. 
• Maximize user satisfaction (∑𝑆𝑖𝑘𝑡), ensuring high-quality service delivery. 
• Minimize access latency (∑𝑇𝑖𝑗𝑘

𝑡 ), reducing delays in content delivery. 
• Minimize total energy consumption (∑𝐸𝑖𝑡

𝑡𝑜𝑡), promoting sustainable UAV operation. 
Constraints:  
• C1-C3 ensure that every user is within reach of at least one UAV or RSU, guaranteeing 

minimum data rate provision. 
• C4-C6 establish backhaul connectivity for UAVs, ensuring no UAV operates in isolation, 

disconnected from the network infrastructure. 
• C7 Enforces efficient content caching within the storage limits of both UAVs and RSUs, 

optimizing data access and ensuring an optimal distribution of content across the 
network. 

• C8 mandates energy consumption boundaries for UAVs, aligning with their operational 
capacities. 

 

5.4.3. A Reinforcement Learning Approach to the Solution 

 
The Complexity of the Problem and Rationale for Reinforcement Learning 
In light of the discussions surrounding the optimization model for UAV deployment, it 

becomes evident that we are confronted with a problem of substantial complexity, aptly 
categorized as a mixed-integer nonlinear problem (MINLP). This classification arises because 
the model necessitates handling both continuous variables, such as path loss, satisfaction rate, 
energy consumption, and data rate, and also discrete variables, including deployment status, 
connectivity, and content caching decisions. Significantly, the designation of MINLP 
underscores the presence of nonlinear relationships inherent in the model, particularly in the 
calculations of satisfaction, delay, and energy consumption. These nonlinearities introduce 
additional layers of complexity, as they often complicate the optimization process, making 
standard linear solution approaches infeasible. Coupled with the need to balance multiple, 
potentially conflicting objectives and the uncertainties inherent in dynamic operational 
environments, the problem presents a formidable challenge that demands an innovative 
approach for its resolution. 

Given these challenges and the dynamic nature of IoV systems, a solution that adeptly 
navigates these complexities with adaptability and efficiency is paramount. Reinforcement 
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Learning (RL), with its ability to make sequential decisions in uncertain and dynamic 
environments, emerges as a fitting solution. Modeling our problem as an MDP facilitates the 
application of RL by leveraging the Markov property. This property ensures that future states 
depend only on the current state and not on the sequence of events that preceded it, 
simplifying decision-making in complex scenarios. 

Deep Q-Network Implementation 
In our work, we employ Deep Q-Network (DQN), an advanced RL algorithm, to address the 

UAV deployment optimization. DQN enhances traditional Q-Learning by utilizing deep neural 
networks to approximate Q-values, which represent the quality of particular actions taken in 
given states. This approach allows for the handling of high-dimensional state and action 
spaces, which are prevalent in our problem. 

Deep Q-Network Implementation 
To ensure that our reinforcement learning approach meets high standards of solution 

quality and operational efficacy, we benchmark its performance against solutions generated 
by NSGA-II. NSGA-II, or the Non-dominated Sorting Genetic Algorithm-II, is a well-established 
method for solving multiobjective optimization problems, known for its ability to find a diverse 
set of Pareto-optimal solutions efficiently. This algorithm is particularly suitable as a 
benchmark due to its robustness in handling complex, conflicting objectives, which are 
characteristic of our UAV deployment model.  

In our study, NSGA-II serves as a semi-golden model, providing us with a set of high-quality 
solutions against which we can measure the efficacy of our DQN model. By comparing the 
performance of DQN with the Pareto fronts produced by NSGA-II, we gain valuable insights 
into the relative strengths and areas for improvement in our RL-based approach. This 
comparative analysis also allows us to determine the training duration required for the DQN 
to achieve performance levels close to those obtained by NSGA-II, thereby ensuring our 
model’s competitiveness in practical scenarios. 

State Space 
The state space encompasses predictive cumulative data rate requirements across regions, 

reflecting the anticipated demand for network resources. This prediction is crucial for pre-
deploying UAVs to meet future requirements effectively. Additionally, the current UAV 
deployment status, residual energy levels, and the cached content catalogue form integral 
components of the state. These elements capture the system's current operational capacity, 
resource availability, and content distribution status, providing a comprehensive overview for 
decision-making. 

Action Space 
The action space includes all feasible actions that can be executed, ranging from deploying 

UAVs, adjusting their 3D positions, to recalling them to base. This diversity in actions allows 
for a dynamic response to varying network demands and operational constraints, aiming to 
achieve the objectives outlined in the optimization model. 

Reward Function 
The reward function is designed to guide the DQN towards optimal policy by rewarding 

desirable outcomes and penalizing suboptimal actions. It ranges from -1 to 1, with -1 indicating 
the least desired scenario and 1 representing the ideal state. The function is primarily driven 
by data rate requirements and user coverage, with additional considerations for resource 
efficiency and operational delay. Specific scenarios include penalizing unnecessary UAV 
deployment or the presence of isolated UAVs, while rewarding efficient data rate provision 
and energy optimization. 

For instance, maintaining a UAV in its current location when it is needed shortly is more 
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energy-efficient than redeploying another UAV, factoring in the energy costs associated with 
movement. Similarly, deploying additional UAVs can improve content caching capacity, 
indirectly reducing access delays, albeit the primary focus remains on ensuring coverage and 
adequate data rates. 

Toward an Optimized Reward Function 
Considering the multifaceted objectives of minimizing delay, maximizing data rate 

satisfaction, and optimizing energy usage, the formulation of the reward function is complex 
yet deliberate. Our approach systematically weights different aspects to align with their 
impact on overall network performance. Despite the intricate dynamics among these factors, 
our methodology incorporates a structured equation that adeptly balances these 
considerations. The principle behind our formulation is as follows: 

• Assigning higher rewards for actions that directly contribute to meeting or exceeding 
data rate requirements efficiently. 

• Penalizing actions leading to resource wastage or suboptimal utilization, such as 
unnecessary UAV deployments or failing to meet user demands. 

• Incrementally adjusting rewards based on the comparative analysis of energy 
consumption and delay reduction benefits, ensuring a balanced approach to resource 
management and service quality enhancement. 

This nuanced reward structure encourages strategies that not only fulfill immediate 
network demands but also consider long-term efficiency and sustainability. 

 

5.5 Performance Evaluation 
 
This section presents the findings and results of our comprehensive study, focusing 

primarily on evaluating the performance of the SONA methodology in the IoV environment. 
While FM3C strategy remains a foundational component of our caching mechanisms, drawing 
from our prior work, this evaluation centers on SONA's innovative approach to UAV 
deployment. The essence of this chapter is to underscore the efficacy of SONA as a significant 
advancement in enhancing IoV systems, showcasing its capacity to navigate the complexities 
of UAV deployment and connectivity. 

 

5.5.1. Simulation Environment Description 

 
Our simulation environment is meticulously designed to mirror a realistic IoV landscape, 

encompassing four urban areas equipped with RSUs and a highway area (alternatively referred 
to as a rural or remote area) lacking traditional infrastructure, designated for the exclusive 
reliance on UAVs for connectivity and coverage.  

The simulated IoV environment hosts 610 vehicles, navigating across different regions and 
requesting a variety of contents. Our content catalogue is extensive, featuring 9,742 items, 
with the real-world MovieLens dataset serving as the basis for simulating content requests. 
The temporal details of movie ratings within this dataset are ingeniously repurposed to 
correspond to content request timings in our simulation, adding a layer of realism to our 
scenario. 

A fleet of 32 UAVs is considered available for potential deployment. In alignment with the 
strategic objectives of SONA, this fleet is not limited to providing coverage in areas devoid of 
RSUs. It also holds the potential for deployment within urban areas already equipped with 
RSUs. This strategic flexibility allows for the enhancement of network capacity and QoS in 
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dense urban regions, while also extending essential connectivity services to remote or rural 
areas traditionally underserved by existing infrastructure. This dual capability underscores the 
adaptive and comprehensive nature of the SONA methodology in addressing a wide spectrum 
of connectivity challenges within the IoV landscape. 

 

5.5.2. Simulation Parameters 

 
For a rigorous evaluation, we’ve meticulously chosen simulation parameters that reflect 

realistic operational conditions within the Mid-Band 5G spectrum, ensuring the relevance and 
applicability of our findings. Table 5.1 summarizing the key parameters utilized in our 
simulations. 

These parameters were selected to offer a balance between realism and computational 
feasibility, ensuring that our simulations faithfully replicate potential real-world IoV scenarios. 

To evaluate the effectiveness of the SONA methodology, its performance is compared 
against three distinct methodologies developed for this analysis, each serving a unique 
purpose within our comparative framework. 

1. Oracle Methodology: This hypothetical model possesses foresight into future events, 
including precise content request patterns, vehicle placements, and data rate 
requirements at future timesteps. By virtue of this omniscience, the Oracle method can 
optimize caching decisions and UAV deployment with an unmatched level of precision. 
Although its assumptions are not grounded in practical reality, serving as an 
unattainable upper benchmark, it offers a valuable perspective by setting an ideal 
standard. The closer a realistic algorithm approaches the Oracle's performance, the 
more efficient it is considered. 

2. Last Recent Step (LRS): The LRS method capitalizes on the immediacy of current data, 
utilizing known variables such as vehicle placements, data rate requirements, and 
content requests at the present timestep to inform caching and UAV deployment 
strategies for the imminent future. Operating under the assumption of minimal changes 
between consecutive timesteps, LRS seeks to pragmatically adjust the network's 
response to evolving demands, offering a balance between foresight and adaptability. 

3. Random Methodology: This approach adopts a stochastic strategy for both UAV 
deployment and content caching. A random selection process dictates the deployment 
of UAVs and the caching of content, introducing an element of unpredictability.  
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5.5.3. Simulation Results 

 
The cache hit rate is a pivotal metric in evaluating the performance of content caching 

strategies within an IoV system. It measures the proportion of content requests that are 
served from cached data relative to the total number of requests, highlighting the efficiency 
of content caching. This metric is central to understanding how well caching mechanisms are 
performing, impacting not only network latency but also other critical aspects like backhaul 
load reduction and data availability. These factors collectively contribute to the overall 
effectiveness and responsiveness of an IoV system. 

In Figure 5.2, the cache hit rate across different methodologies is compared as storage 
capacity increases, a variable crucial for understanding caching performance under various 
conditions. For this analysis, storage size variations are uniformly applied to RSUs in each 
simulation run, with UAV storage set to 30% of RSU capacity to reflect their relatively lower 
storage capabilities. This approach ensures a realistic representation of network infrastructure 
capabilities. 

Parameter Value Unit Notes 

Transmission Power 40 dBm (10 
W) 

Standard power level for UAV 
communications. 

Noise Power -100 dBm/Hz A common value for outdoor 
communication scenarios. 

Frequency 6 GHz Falls within the Mid-Band 5G, 
suitable for IoV applications. 

System Loss (LoS) 2 dB Typical loss in Line-of-Sight 
conditions. 

System Loss (NLoS) 15 dB Reflects higher loss in Non-Line-of-
Sight conditions. 

Antenna Gain 3 dB Realistic gain for UAV deployed 
antennas. 

Bandwidth 100 MHz Provides ample capacity for IoV 
communication needs. 

Table 5.1. Summary of simulation parameters. 
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SONA exhibits a performance closely resembling that of the Oracle, outstripping both LRS 
and Random approaches, particularly at constrained storage capacities. This indicates SONA's 
proficiency in optimizing cache placement even with limited resources, closely approaching 
an ideal performance benchmark set by the Oracle. The linear improvement in cache hit rate 
with increased storage capacity observed for the Random method contrasts starkly with the 
underperformance of LRS in the dynamic IoV environment. Despite the assumption that LRS 
could offer advantages by leveraging current data for near-future optimizations, its strategy 
falls short in the rapidly evolving IoV context, where vehicular movement and demand 
fluctuate significantly. 

Fig. 5.3. reveals key insights into the distribution of cache hit rates between RSUs and UAVs 
under the SONA framework. A primary observation from this analysis is the significantly larger 
share of cache hit rates contributed by RSUs compared to UAVs. This outcome aligns with 
expectations, given RSUs' enhanced capacity for storing a more extensive array of contents, 
coupled with their stable presence within the network infrastructure. It is important to 
reiterate that the principal objective of UAV deployment within the SONA methodology is not 
primarily focused on content caching but rather on augmenting network coverage and 
connectivity. 

Despite the relatively modest local cache hit rates attributed to UAVs, their strategic 
deployment ensures that users connected to UAVs are not isolated from the broader 
network's caching capabilities. Each UAV, mandated to maintain either direct or indirect 
connectivity to the RSU infrastructure, acts as a bridge for users to access cached contents 
across the network. Consequently, even though direct cache hits from UAVs may be fewer, 
users connected through UAVs benefit from reduced latency in content delivery. This access 
to cached content, albeit not locally but through the networked infrastructure, ensures 
significantly lower delays compared to fetching content directly from the cloud. The specifics 
of how these dynamics influence overall network delay will be further explored in the 

 
Figure 5.2. Cache Hit Rate Comparison Across Different Storage Sizes for 

SONA, Oracle, LRS, and Random Methods in the IoV Environment. 
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forthcoming discussion on latency metrics in Fig. 5.4. 
Figure 5.4. shifts the focus to the impact of these caching strategies on network latency. 

SONA demonstrates remarkable proficiency in maintaining the average delay at 
approximately 8 ms, a benchmark conducive to supporting a wide array of IoV applications, 

 
Figure 5.4. Comparison of Average Network Delay Across SONA, Random, and LRS 

Methodologies. 
 

 
Figure 5.3. Comparative Analysis of Cache Hit Rate Contributions by RSUs and 

UAVs within the SONA Framework. 
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including those demanding near-real-time responsiveness. This performance starkly contrasts 
with the Random methodology, which subjects users to an average delay nearly twice that 
encountered under SONA. More strikingly, LRS trails significantly, resulting in delays that are 
double those observed with the Random approach. 

Figure 5.5. offers a comprehensive look at the average number of UAVs deployed by each 
method (SONA, Oracle, and LRS) to achieve varying target satisfaction rates ranging from 40% 
to 90%. Notably, the Random method is absent from this analysis due to its stochastic nature, 
which does not tailor UAV deployment based on specific satisfaction targets. The average 
deployment of 15.18 UAVs by the Random method, deduced from its indiscriminate strategy, 
stands out as significantly higher than the deployments noted for the other methods in this 
comparison, underscoring a lack of efficiency in UAV utilization. 

The data presented in Fig. 5.5 reveals a striking similarity in the average number of UAVs 
deployed by SONA, Oracle, and LRS to meet the set satisfaction thresholds. This closeness in 

values, however, stems from distinct operational dynamics inherent to each method. SONA's 
alignment with Oracle underscores its deployment efficiency, indicating that SONA 
strategically deploys UAVs in a manner nearly as optimized as the theoretical best-case 
scenario represented by Oracle. This efficiency highlights SONA's capability to judiciously 
utilize UAV resources to achieve desired network satisfaction levels, mirroring Oracle's 
foresight without having access to future data. 

 
Figure 5.5. UAV Deployment Efficiency to Achieve Target Satisfaction Rates Across 

Oracle, SONA, and LRS Methodologies. 
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Conversely, the proximity of LRS's average UAV deployment to Oracle and SONA is 
attributable to a different rationale. LRS bases its deployment decisions on current timestep 
data, essentially introducing a one-time-slot lag in its responsiveness. While this approach 
enables LRS to deploy a number of UAVs closely matching the more foresighted methods, it's 
the timing, rather than the quantity, where LRS diverges from optimal efficiency. This nuanced 
distinction is crucial, as it reveals LRS's potential limitations in dynamic environments where 
network conditions and user demands can shift rapidly from one timestep to the next. 

Delving into the nuances of how each method copes with the challenge of meeting a set 
satisfaction rate, Figure 5.6 casts a spotlight on the frequency of shortfalls from a 70% target 
satisfaction rate across SONA, Random, and LRS methodologies. This examination shifts our 
focus from the sheer average number of UAV deployments to the effectiveness of these 
deployments in consistently achieving desired network satisfaction levels. 

In an intriguing revelation, SONA emerges with the lowest failure rate, underscoring its 
precision in UAV deployment and operational efficiency. This finding is particularly 
noteworthy in light of the Random method's strategy, which, despite deploying an average of 
more than three times the number of UAVs compared to SONA, still incurs a higher rate of 
failure in attaining the target satisfaction rate. This discrepancy accentuates the Random 
method's inefficiency, where the abundance of resources does not translate to higher success 
rates, indicating a misalignment between UAV deployment and actual network needs. 

More strikingly, LRS exhibits a failure rate exceeding 50%, despite deploying a comparable 
number of UAVs to SONA, as highlighted in Fig. 5.5. This outcome suggests that while LRS 
might match SONA in the quantity of deployed UAVs, it significantly lags in deploying them in 
a manner that consistently meets the target satisfaction rate. The data suggests that LRS's 
reliance on immediate past data to inform future deployments is insufficient for the dynamic 
and fluctuating demands of the IoV environment, leading to its higher shortfall frequency. 
These observations underscore the critical importance of strategic UAV deployment beyond 
mere numbers. 

Building on the insights gained from Fig. 5.6, Fig. 5.7. delves deeper into the nature of each 
methodology's failures to meet the 70% satisfaction target, providing a clearer picture of the 

 
Figure 5.6. Comparative Analysis of Missed Target Satisfaction Timeslots Across 

Methods. 
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severity of these shortfalls. This figure quantifies the average gap between the achieved 
satisfaction rates and the target, offering a lens through which to assess not just the frequency 
but also the magnitude of failures across SONA, Random, and LRS. 

This analysis reveals a compelling aspect of SONA's performance. Not only does SONA 
exhibit the lowest failure rate in achieving the target satisfaction rate, as shown previously, 
but it also minimizes the impact when failures do occur. The average shortfall for SONA is 
notably less than 30%, indicating that even in scenarios where SONA does not fully meet the 
targeted level of user satisfaction, it still maintains a relatively high-performance level, often 
remaining within a margin that could be considered acceptable for many applications. 

In stark contrast, the Random and LRS methods not only fail more frequently but also with 
greater severity. The average shortfall for Random approaches 50%, and for LRS, it exceeds 
this threshold, suggesting that when these methods fail to achieve the target satisfaction rate, 
the resultant level of service significantly deviates from user expectations. This can render the 
network service perceived as inadequate or even unusable, highlighting a critical limitation in 
their ability to maintain acceptable service quality levels. 

To effectively evaluate our SONA method, which implements DQN for UAV deployment, 
we utilize NSGA-II as a semi-golden standard. Known for its efficiency in multiobjective 
optimization, NSGA-II provides Pareto-optimal solutions that serve as benchmarks for 
assessing the outputs of our reinforcement learning model. 

We calculated the loss for both NSGA-II and the SONA method using Mean Squared Error 
(MSE) by comparing their results with those from the Oracle method, the ideal performance 
benchmark in our study. The specific loss value of 0.0068 for NSGA-II, which was used as the 
stopping threshold, illustrates the deviation of its results from the Oracle’s using this metric. 
This MSE approach was consistently applied to evaluate the SONA method as well. 

Fig. 5.8 shows the trajectory of loss values during SONA’s training over different epochs, 
highlighting the point at which the loss meets the 0.0068 threshold, established based on 
NSGA-II’s performance relative to the Oracle. This threshold guides the duration of training, 
ensuring that our SONA method achieves a competitive level of performance. 

 
Figure 5.7. Analysis of Satisfaction Shortfall Severity Across Methods. 
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This benchmarking strategy demonstrates that SONA can match the results of NSGA-II after 
130 epochs of training, but significantly, it can achieve very similar outcomes after just 25 
epochs. This not only underscores the efficiency and accuracy of SONA but also highlights its 
practical advantages. Once trained, the DQN used in SONA can deliver immediate results for 
new states, providing on-the-spot decisions without the need for further computations. In 
contrast, NSGA-II lacks this capability, requiring time-consuming computations for each new 
state. This difference is critical in dynamic environments where timely decision-making is 
crucial.  

5.6 Conclusion 
 
Reflecting on our journey through the integration of UAV deployment and blockchain 

technology in the IoV, this study has solidified SONA's role in significantly advancing network 
services. Through the dynamic positioning of UAVs and the decentralized, secure caching 
mechanisms enabled by blockchain, we've demonstrated marked improvements in reducing 
latency and ensuring robust data rate provision. Our exploration underscores the seamless 
synergy between SONA and the previously developed FM3C strategy, affirming their collective 
potential in enhancing the IoV landscape. The findings emphasize not only the feasibility but 
also the efficiency of leveraging these advanced technologies to meet the evolving demands 
of intelligent transportation systems. 

Looking toward the future, the continuing evolution of IoV beckons further exploration into 
the integration of next-generation technologies and the expansion of IoV applications across 
various sectors. The exploration of enhanced security measures to safeguard this increasingly 
complex network against emerging threats will be crucial. As this study lays the groundwork 
for future innovations, the potential for leveraging SONA within broader IoV applications 
promises a horizon brimming with opportunities for creating more connected, efficient, and 
resilient environments. 

 
 

 
Figure 5.8. Execution Time Comparison Between Reinforcement Learning and 

NSGA-II for UAV Deployment Optimization. 



113 
 

6. Conclusion and Future Directions 
 
In this thesis, we explored caching techniques within the Internet of Things (IoT) and the 

Internet of Vehicles (IoV), seeking to improve network performance and user experience in 
these highly connected environments. The research was divided into three main sections, 
each addressing specific challenges and proposing new solutions to optimize the flow of data 
and overall network functionality. 

In the first part of this research, presented in Chapter Three, we addressed the challenges 
associated with caching and routing in the rapidly evolving IoT landscape. The primary goal 
was to enhance the efficiency of data management and network resource utilization across 
IoT systems, which are increasingly burdened by the high demands of data traffic and diverse 
application needs. 

The specific problems we aimed to solve involved overcoming the limitations of 
conventional caching and routing methods, which often struggle to cope with the dynamic 
nature of IoT environments. Traditional methods do not adequately consider the varying 
capabilities of IoT devices or the specific requirements of different data types, which can lead 
to inefficiencies and increased latency. 

To address these issues, we introduced several innovative solutions. We implemented a 
multi-criteria decision-making framework that allowed for smarter caching decisions by 
evaluating multiple factors, such as data popularity, node storage capabilities, and the 
network's current state. This approach ensured that data was stored closer to where it was 
most likely to be accessed, thus reducing retrieval times and network congestion. 

Furthermore, we leveraged Software-Defined Networking (SDN) to enable more intelligent 
routing decisions. By centralizing the control of network flows, SDN provided the flexibility 
needed to adjust routes dynamically based on current network conditions and data 
requirements. This was particularly useful in managing the complex interactions and data 
flows within IoT networks, where device capabilities and connectivity can vary widely. 

Additionally, our system incorporated hierarchical network orchestrations to manage data 
across different layers of the network architecture effectively. This setup allowed for a more 
organized and scalable approach to network management, suitable for the extensive and 
multi-tiered nature of IoT systems. 

In terms of performance, the solutions we developed led to significant improvements in 
network efficiency. We achieved up to an 89% cache hit rate, indicating that most requests 
for data were successfully served from the cache without needing to retrieve data from the 
main servers, thereby reducing latency and network strain. Moreover, our robust network 
design ensured that about 60% of network nodes remained functional during 90% of the 
simulation period, highlighting the reliability and resilience of the system under typical 
operational conditions. 

These results underscored the effectiveness of the proposed multi-criteria decision-making 
approach and the strategic use of SDN in enhancing the performance and reliability of IoT 
networks, setting a strong foundation for future advancements in IoT network management. 

Moving on to Chapter Four, we tackled the distinct challenges of caching within the IoV. 
Our primary objective was to refine content delivery systems in IoV by tailoring caching 
mechanisms to suit various types of content, specifically addressing the unique demands of 
safety-related and infotainment data. The need for such differentiation stems from the critical 
nature of timely and reliable data delivery in vehicular environments, where the quality of 
service can directly impact user safety and experience. 
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We introduced proprietary caching solutions designed to optimize the storage and retrieval 
of both emergency (safety) and non-emergency (infotainment) content. For safety 
applications, our caching strategy prioritized rapid access and local relevance, ensuring that 
data pertaining to safety could be swiftly and reliably accessed by vehicles in the vicinity of 
relevant incidents. For infotainment content, the focus was on minimizing latency, considering 
the large size of multimedia files and their less critical nature. 

A significant innovation in this work was the implementation of a privacy-preserving 
mechanism using federated learning for popularity prediction. This approach allowed us to 
predict the demand for specific content types without compromising the privacy of individual 
users. By leveraging data from multiple vehicles in a collaborative yet decentralized manner, 
we were able to gather accurate insights into content popularity without directly accessing 
sensitive user data. 

Moreover, we developed a new candidate selection mechanism and aggregation method 
for the federated learning process. This enhanced the efficiency and accuracy of our federated 
models by selectively incorporating data from nodes that provided the most relevant and 
significant insights, thus refining the learning process and outcomes. 

The results from these innovations were compelling. We achieved up to a 98% cache hit 
rate on a medium storage size, which significantly reduced the need for vehicles to fetch 
content from distant servers, thereby minimizing latency. Indeed, we managed to reduce the 
delay to under 10ms for the same storage configuration. Additionally, the simulation results 
demonstrated the superiority of our proposed candidate selection and aggregation methods 
in the federated learning setup, which were key to enhancing the overall performance and 
efficiency of the IoV caching system. These outcomes not only highlight the effectiveness of 
tailored caching strategies but also underscore the potential of advanced machine learning 
techniques in managing the complex dynamics of vehicular networks. 

In the third and final segment of this thesis presented in Chapter Five, we addressed the 
complex challenges of network coverage and data accessibility in the IoV by focusing on the 
strategic deployment of Unmanned Aerial Vehicles (UAVs). The primary goal was to enhance 
the network’s reach and reliability, particularly in areas underserved by traditional road-side 
units (RSUs) or where temporary coverage boosts are necessary, such as in crowded events or 
disaster response scenarios. 

We introduced an innovative UAV deployment strategy named SONA, designed to 
strategically position UAVs to not only assist in data caching but also significantly expand 
network coverage. This approach was underpinned by the use of blockchain technology for 
decentralized network orchestration, ensuring a secure and transparent method for managing 
the dynamic and distributed nature of UAV operations. Blockchain’s role was critical in 
maintaining a consistent and tamper-proof ledger of UAV positions, movement decisions, and 
data caching statuses, facilitating cooperative decision-making across the network. 

To optimize the deployment of UAVs, we employed a Pareto Optimization framework that 
balanced multiple objectives, such as minimizing deployment costs while maximizing coverage 
and data accessibility. This multi-objective approach allowed us to evaluate trade-offs 
effectively and make decisions that align with the overarching goals of network efficiency and 
user satisfaction. 

Furthermore, we transformed this optimization challenge into a Markov Decision Process 
(MDP) to dynamically analyze UAV movement and content request patterns. This 
transformation was crucial for applying Deep Reinforcement Learning (DRL), which provided 
a robust solution framework capable of adapting to changing network conditions and user 
demands in real-time. DRL was particularly adept at navigating the complexities of UAV 
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positioning, helping to ensure optimal coverage and service levels across various scenarios. 
The results of implementing SONA were highly promising. Our method achieved an average 

delay of less than 8 milliseconds, which is critical for supporting real-time communication and 
high-quality service delivery within IoV systems. Additionally, SONA managed to maintain 
higher satisfaction rates with fewer UAVs deployed compared to traditional methods. This 
efficiency in UAV usage not only reduced operational costs but also lessened the 
environmental impact, aligning with sustainable deployment practices. The strategic 
deployment of UAVs, guided by advanced optimization and machine learning techniques, 
highlighted our ability to significantly enhance the adaptability and responsiveness of IoV 
infrastructures. 

The proposed solutions not only make these networks more efficient but also open up new 
possibilities for future improvements, especially with the advent of technologies like 5G and 
AI. This work not only pushes the envelope in network management but also sets the stage 
for further research and development in intelligent transportation and interconnected 
devices, aiming for systems that are more responsive, efficient, and robust. 

Looking forward, several avenues of research emerge from the foundations laid by this 
thesis, particularly in enhancing the robustness and user engagement of the proposed 
mechanisms. One critical area to explore is the security aspect of the systems developed, 
especially given their decentralized nature and reliance on cooperative network behavior. 
While blockchain inherently provides a layer of security through its cryptographic functions, 
the specific security challenges of UAV communications, federated learning, and decentralized 
caching have not been fully addressed. Investigating potential vulnerabilities and developing 
robust security protocols could significantly enhance the trustworthiness and reliability of 
these systems. For example, securing the communication channels between UAVs and ground 
nodes, protecting the integrity of data in federated learning, and safeguarding against 
malicious attacks in decentralized caching are essential for the widespread adoption of these 
technologies. 

Another compelling direction for future research lies in the design of incentive mechanisms 
to encourage user participation, which is crucial for the success of systems like federated 
learning where user cooperation directly impacts the effectiveness of the model. Given the 
decentralized setups of the mechanisms proposed in this thesis, creating economic or data-
driven incentives could promote more active participation and richer data contributions from 
users. This not only improves the accuracy and efficiency of the models but also potentially 
enriches the user experience by making the systems more responsive and tailored to real-time 
needs. Exploring different models of incentives, from micropayments to improved service 
offerings for contributing users, could provide the necessary motivation for users to engage 
more deeply with these IoV technologies. These areas of research would not only address key 
challenges but also significantly advance the field by enhancing the scalability, security, and 
user-centric aspects of IoT and IoV ecosystems. 
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