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Chapter 1

INTRODUCTION

Contents
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Motivations and Objectives . . . . . . . . . . . . . . . . . . . . 11

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Scientific Publications . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1 Context

Human motion data refers to digital records of movements performed by people in
a large variety of contexts. This data can be acquired and represented in several ways,
and includes a wide range of relevant movements, from sports and artistic movements, to
trauma-specific movements, to movements performed in everyday life. This motion data
is therefore a valuable resource that can be used in multiple applications, including:

— In Entertainment, motion data can animate humanoid creatures in movies, charac-
ters in video games and virtual reality environments. In the latter context, motion
data can also be used to control characters interactively through gesture recogni-
tion or motion detection.

— In Robotics, robots can be remotely controlled through motion tracking or recog-
nition. Furthermore, human-robot interaction uses motion data to develop robots
capable of understanding and responding to human gestures.

— There are also applications in the field of Health care where motion data is analyzed
to design rehabilitation programs, to monitor patients’ movements and track their
progress. Fall detection systems are also developed, with the possibility of sending
alerts to caregivers or emergency services.

7
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— Sports science uses biomechanical analysis to study athletes’ movements and pro-
vide feedback to optimize their performance, prevent injuries, and propose cus-
tomized training programs.

— Educational tools can be developed to learn from interaction in virtual and aug-
mented reality. One example is an immersive application developed to learn first-aid
gestures, with real-time feedback 1. Motion data can also be used to develop im-
mersive surgery applications, particularly for learning surgical techniques. Another
example is data-driven sign language learning, using avatar technology [87].

Several artificial intelligence (AI) methods have revolutionized data processing in var-
ious domains over the last few years. Machine learning and, more recently, deep learning
techniques make it easier and more efficient to process data for tasks such as prediction,
recognition, or the generation of new data. This also applies to motion data. As most of
these methods rely on large amount of data to operate efficiently, especially deep learning
ones, this raises the question of how to obtain this data.

Given the many ways in which motion data can be used, its acquisition has therefore
become an important issue for which numerous solutions have been developed. In this
thesis, we focus on kinematic data of human movements, notably their spatiotemporal
aspects. We focus more specifically on the kinematic data of human movements, in par-
ticular their spatiotemporal aspects. In the research fields considered here, this data is
traditionally represented geometrically and kinematically, in the form of positions and
rotations of skeletal joints.

Before describing our goals, we briefly present below the main advantages and draw-
backs of the motion acquisition technologies exploited to record motion data.

1.1.1 Motion Capture Systems

For the purpose of recording the movements of people, various motion capture (Mo-
Cap) technologies have been developed to track and capture motion:

— Optical MoCap systems that are either passive or active. Passive systems use re-
flexive markers attached to the body and multiple infrared cameras. The principle
is to measure the position of the markers while tracking them over time. Active
systems on the other hand, use LED markers that emit their own light. A software
is used to identify the positions of the different markers.

1. https://www.motion-up.com/

8

3D motion reconstruction with deep learning methods : application to motor disabilities Mansour Tchenegnon 2024

https://www.motion-up.com/


Introduction

— Non-optical MoCap systems that use magnetic, inertial or mechanical sensors to
track the body and compute the motion. These systems can be intrusive and are
generally less accurate than optical systems.

MoCap systems, especially optical ones with passive markers, are the most widely
used for their reliability and accuracy. They enable high-precision capture, down to the
millimeter, and at high frequencies, in excess of 120 Hz. For some applications in Computer
Animation, these systems lead to data-based synthesis methods being favored over other
synthesis methods (descriptive or procedural) in order to produce better, more natural
animations. For example, complex movements and technical gestures such as acrobatic
flip in football video game can be captured in a physically accurate manner and used to
animate characters.

There are, however, some limitations in using these systems. Firstly, the equipment
is rather costly and its installation is usually constrained by specific requirements such
as the environment in which it is to be used. In addition, these systems require human
resources for their usage and may sometimes require post-processing operation that can
be time-consuming. Thankfully, with the help of AI methods, new systems manage to
reduce the time needed for post-processing 2. There are also specific situations where
these systems are difficult to use. For example, in situations where there are many people
interacting with each, the installation time increases as well as the difficulty of labeling
and tracking the markers without error especially when individuals get closer during
interactions. There are also cases of interactions with the environment in activities such
as climbing a wall, playing an instrument, or activities of wheelchair users, where external
objects may obstruct the markers (occlusion problems), creating gaps in the recordings,
thus hindering the tracking and generating errors that are difficult to correct, even with
post-processing.

Although, MoCap systems are limited in certain situations and sometimes difficult to
use due to conditions such as high cost, environment requirement, technical skills needed,
etc., they remain a preferred option to record motion data.

1.1.2 Markerless Systems as an Alternative to MoCap Systems

Markerless systems are a type of optical systems to record motion in which the subject
does not need to wear special equipment (such as a suit equipped with markers) for

2. Automatic labeling allows to reduce the post-processing time. See more on https://docs.
optitrack.com/motive/labeling
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tracking.
Some of these systems use multiple video cameras installed in a studio for tracking and

capturing motion 3. The cameras are set up in different positions in order to obtain various
viewpoints. The sequences of images produced by the cameras are used to computes the
motion as a sequence 3D skeletal postures of people.

Other systems are based on RGB-D cameras, such as Kinect that capture both color
and depth images. The two images are used to generate voxels (3D pixels) that are used
to produce 3D skeletal postures over time. These systems can capture real-time motion
but are usually noisy because they use a single-view camera.

Driven by researches and techniques in Computer Vision such as human pose estima-
tion or human motion reconstruction, new systems for recording motion from video have
recently been developed. These systems use deep learning methods to estimate 3D skeletal
postures of a single person or several people in the scene. There are single-view systems
that estimate 3D skeletal postures from a single camera or multi-view systems that use
multiple cameras with different viewpoints. The best existing methods reconstruct motion
with an error margin of 3 to 4 cm for videos recorded at a frequency rate up to 50 Hz.
This type of systems is easy to deploy and very suitable for real-time motion tracking.

Advantages and limitations of markerless systems with AI models

Hypothetically speaking, markerless systems, more precisely those that use AI mod-
els to reconstruct motion sequence from video should be able to overcome some of the
problems encountered by MoCap systems. First of all, they are generally low cost, easy
to use and not intrusive as they do not require people to wear any equipment. Secondly,
with intensive training, AI models should be able to learn to reconstruct motion in these
situations we mentioned as long as a huge amount of data is available. In addition, these
systems usually enable real-time acquisition.

Despite the advantages they offer, these systems are not yet sufficiently accurate to
be preferred to MoCap systems. Indeed, in terms of capture accuracy, optical MoCap
systems are better (<1mm vs. ≥ 3cm error). Moreover, compared to optical MoCap
systems which can capture at high frequencies (higher than 200Hz), the temporal quality
of motion reconstructed from video at a frequency rate of 50Hz is lower. In addition, most
existing AI methods focus mainly on the accuracy of the reconstruction and less on the

3. Example of CMU Panoptic Studio https://www.cs.cmu.edu/~hanbyulj/panoptic-studio/
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temporal quality. Finally, the existing models do not yet fully solve occlusion problems
due to external objects.

1.2 Motivations and Objectives

We are interested in capturing and reconstructing motion from video with an emphasis
on the temporal quality of the reconstruction. We intend to later apply the reconstruction
system to cases of motor disability that require to use a wheelchair and where the use of
MoCap systems is limited.

Numerous applications can be developed from motion tracking and capture, especially
in order to improve the autonomy and daily life of people with motor disability. It is
possible to develop home monitoring systems that can track and analyze people’s move-
ments from home. It is useful for activity recognition and behavior analysis. In particular,
such systems can detect anomalies, such as long-time inactivity and falls, and then send
an alert for help. They can also analyze the daily activities of people in order to adapt
the environment (wheelchair, kitchen and bathroom equipment, door, etc.) according to
the analysis results, thus facilitating their autonomy. Finally, if the system is sufficiently
accurate, it can be used for other motion capture applications.

As mentioned above, the existing MoCap technologies are the most effective way to
capture motion data with high accuracy. However, these systems are used in specific
environments and sometimes have to meet strict requirements to be effectively used,
which means that these technologies cannot be used in every situation. This is particularly
true for capturing the movements of people with motor disabilities. For example, it can
be difficult to obtain the reference pose (so called standing T-pose) necessary for post-
processing. Also, there can be occlusion problems resulting from the usage of a mobile
wheelchair that occludes some markers from the cameras. Furthermore, these solutions,
very costly and time-consuming are not for anytime use. Lastly, it is not ideal to install
such system at home and coerce people to wear a suit with markers for a long period of
time, which is intrusive. So, these systems cannot be used for real-time applications such
as home monitoring.

A strong hypothesis underlying our work is that markerless capture systems based on
video cameras coupled with AI models are suitable for motion capture and reconstruction
in situations where MoCap systems are limited. However, existing AI models for motion
reconstruction are not yet sufficiently accurate, and generally neglect certain aspects of
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3D motion reconstruction with deep learning methods : application to motor disabilities Mansour Tchenegnon 2024



Introduction

motion such as temporal continuity. In addition, despite the existence of AI models for
reconstructing human movements from videos, no system for capturing movements in
situations of motor disability has yet been designed. This can be explained by the fact
these AI models are trained on massive amount of specific data, which prevents them from
generalizing. In other words, these models perform well on motion data directly related
to those with which they have been trained (identical or similar databases), but perform
less well on new categories of motion data. Finally, a large amount of data is generally
required to train and evaluate models. To date, however, there are very few databases
available on the movements of people with motor disabilities using wheelchairs.

This leads us to define our thesis objectives as follows:

In this thesis, we aim to propose a markerless system for easily cap-
turing motion with improved spatiotemporal quality. We propose
to use deep learning methods to reconstruct motion from video,
emphasizing its temporal continuity while preserving its skeletal
structure. We then intend to apply this system to the specific case
of motor disability. The ultimate goal is for our system to easily cap-
ture, track and reconstruct motion data, at low cost, for real-time
applications such as daily activity analysis and home monitoring
assistance in connected apartments for people with disabilities.

From our objective, two research axes are considered:

1. Motion reconstruction from video. To offer an easy-to-use, portable system,
we have chosen to reconstruct motion from a single-view camera. For the motion
reconstruction approach, we opted for a 2-steps methodology. First, we use a model
to estimate motion from video as a sequence of 3D poses. Then, we propose an
algorithm to correct the shortcomings in the sequence. This reconstructs a motion
of better quality by improving the temporal characteristics while preserving the
skeletal structure throughout the sequence. With this approach, we intend to par-
ticularly focus on the temporal quality of motion reconstruction, an aspect that
most existing AI models neglect, especially with the large difference in frequency
rate between optical MoCap systems and markerless video-based systems.

2. Application to motor disabilities. In order to train AI models capable of re-
constructing motion in motor disability situations, we need a sufficient amount
of motion data in these situations, that is video data and corresponding highly
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precise 3D motion data. To obtain such data, we have chosen to use an original ap-
proach consisting in generating 2D videos from a small amount of 3D movements
captured with a MoCap system. This data-driven synthesis approach increases
the initial database. Indeed, a larger variety of data can be produced, notably by
recording different points of view in the virtual environment, or by using virtual
characters with different morphologies.

1.3 Contributions

In line with our objectives, the different achievements realized in this thesis are as
follows:

1. A study of motion representation and deep learning methods and their usage in
motion reconstruction from video data. Through this study, we analyze existing
deep learning solutions proposed in the state of the art and propose our own
solution. We also propose a spatiotemporal loss function to train AI models in 3D
motion reconstruction task. In addition, we propose spatial and temporal metrics
to evaluate the quality of reconstructed motion.

2. A motion correction system using deep learning methods and Laplacian motion
modeling. After movements have been reconstructed from video using existing
deep learning methods, they are corrected by this system to improve the spatial
and temporal quality of these movements.

3. A new motion capture database consisting of movements in motor disability situ-
ations. This database contains actions from daily activities of people using mobile
wheelchair. From the captured motion data, we generate animated videos, then,
we carry out some experiments to test previously developed motion reconstruction
approach on these videos.

1.4 Thesis Outline

This PhD thesis is divided into 8 chapters organized as follows:
— A Literature Review part regrouping 2 chapters. Chapter 2 is related to exist-

ing deep learning methods for motion reconstruction from video while Chapter 3
presents existing motion databases.
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— A Motion Processing and Deep Learning part summarizing our work on the motion
reconstruction task in 3 chapters. Chapter 4 presents the human motion represen-
tation we used throughout our work. Chapter 5 describes our solution for the first
step of our approach for motion reconstruction from videos. Finally, Chapter 6
presents the motion correction system we developed to improve the quality of mo-
tion reconstructed from video.

— A Motion Database and Application to Motor Disability part that presents, in a
single chapter (Chapter 7), a new database of motion captured in disability case
situations as well as deep learning experiments realized on these data.

1.5 Scientific Publications

The following publications were produced based on the work presented in this thesis:

1. Mansour Tchenegnon, Thibaut Le Naour, Sylvie Gibet. “CVM-Net: Motion Re-
construction from a Single RGB Camera with a Fully Supervised DCNN”. In:
Les Journées Françaises de l’Informatique Graphique, Nov 2021, Sophia Antipolis,
France. (hal-03536041)

2. Mansour Tchenegnon, Sylvie Gibet, Thibaut Le Naour. “A New Spatio-Temporal
Loss Function for 3D Motion Reconstruction and Extended Temporal Metrics for
Motion Evaluation”. In: European Conference on Computer Vision (ECCV 2022),
Workshop on What is Motion for?, Oct 2022, Tel Aviv, Israel. (hal-03966941)

3. Mansour Tchenegnon, Sylvie Gibet, Thibaut Le Naour. “MoCoSys: Human Motion
Correction based on Deep Learning Coupled with 3D+t Laplacian Motion Repre-
sentation”. 2023. (Under Review, Submitted to The Visual Computer on November
2023)

4. Mansour Tchenegnon, Thibaut Le Naour, Willy Allègre, Sylvie Gibet. “Handi-
Motion: Corpus de Données de Mouvements Capturés en Situation de Handicap”.
June 2024, Paris, France. (Accepted at Handicap 2024 Conference organised by
IFRATH)
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Literature Review
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Chapter 2

MOTION RECONSTRUCTION AND DEEP

LEARNING

Contents
2.1 Human Pose Estimation . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Human Motion Reconstruction . . . . . . . . . . . . . . . . . . 23

2.3 Summary and Discussions . . . . . . . . . . . . . . . . . . . . . 27

We are interested in the idea of reconstructing motion from video. Advances in deep
learning techniques give hope to the making of simple systems for capturing motion data
from monocular cameras. In this chapter, we present a review of the literature starting
with human pose estimation from image to motion reconstruction from video.

2.1 Human Pose Estimation

Human pose estimation (HPE) consists in estimating a representation of the posture
of the human body from a monocular image. In computer vision, three models of repre-
sentation of posture are used in related studies (see Figure 2.1):

— Skeleton-based model where the human body is associated to its skeleton-like form.
This model represents the human body skeletal structure as a set of joint locations
and the corresponding limb orientations. It can also be described as a graph with
joints as vertices and limbs as edges connecting the joints within the skeletal struc-
ture. Note that the Cartesian coordinates of the joint locations can be defined in
2D or 3D space.

— Shape-based model which is a contour-like representation of the human body. It
contains width and contour information of the body limbs and torso and is used
only in 2D pose estimation.

— Volume-based model in which the human body shape and pose is represented with
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geometric shapes or meshes. Earlier representation used cylinders and conics for
modeling the body parts. Now, most representations use meshes, containing infor-
mation on the mesh vertices.

Figure 2.1 – Models of human body representation. (a) Skeleton-based model. (b) Shape-
based model. (c) Volume-based model. Source: Chen et al. [19]

In this thesis, we are interested in the skeleton-based model, which is the most used
among the three models.

Two branches of studies stem from the HPE task. When remaining in the scope of
the image where the estimated data are the 2D pixels coordinates of the skeletal joints,
we talk about 2D HPE. When the scope is extended to 3D space, the task becomes a 3D
HPE problem.

2.1.1 2D Human Pose Estimation

Estimating human pose started in 2D scope with the objective of detecting 2D joint
coordinates of skeletal representations of people in an image. This problem is divided into
two contexts: single-person context for image with a single person in it, or multi-person
context for images with many people.

Single-Person Pose Estimation

Deep learning (DL) solutions for single-person context are made using either a direct
regression approach from the image or using an intermediate heat map prediction (see
Figure 2.2). Direct regression approaches use a deep neural network (DNN) to learn the
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Figure 2.2 – Single-person pose estimation pipelines. Top: Direct regression approach.
Bottom: Heat map based approach.

2D joint locations from the image. As an example, Toshev and Szegedy [117] proposed a
cascaded DNN regressor to predict the 2D pose representation directly.

Other approaches firstly determine heat map representations of the joints from images
and regress them to get the 2D joint locations. In this category, Newell et al. [90] proposed
a multi-stage model to learn heat maps through supervised learning, then estimate 2D
joint locations.

Multi-Person Pose Estimation

In the multi-person context, the difficulty increases compared to single-person cases.
Firstly, there are no prior knowledge of how many people there are in the image. Also,
more people means more features to extract from the image. Up to date, there are two
methods used in this context, namely top-down approaches and bottom-up approaches.

Top-down approaches. These approaches detect and locate people in the image and
then proceed with the estimation of skeletal postures for each of them. Solutions start with
extracting cropped images of each person present with bounding boxes. Each cropped
image is then sent to a neural network designed for single-person pose estimation to
calculate the 2D joint coordinates. Finally the 2D joint coordinates are brought back
to the original image plan using the location of the bounding box. Solutions such as
AlphaPose [35], CPN [18] and HRNET [110] are great references to top-down approaches.

These approaches are often considered to be time-consuming since the pose estimation
is made for one person at a time. The more people in the image, the longer the estimation
time.
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Figure 2.3 – Pipeline of AlphaPose [35] as an example of top-down approach.

Bottom-up approaches. These approaches identify all the human body parts in an
image through a first operation. Then, they proceed to reassembling them to reconstruct
the different skeletal postures of people in the image. An earlier example of bottom-up
approach is DeepCut [97]. This approach proceed in three steps which are 1) detecting
the body parts in the image; 2) labeling the different body parts as "leg", "torso" and
so on; and finally 3) assembling the body parts belonging to the same person. Among
the bottom-up approaches, OpenPose [13] is a well-known and very used solution. In this
method, they first detect body parts with a representation called Part Affinity Fields and
then use a matching algorithm to reassemble the different skeletal postures.

Figure 2.4 – Pipeline of OpenPose [13] as an example of bottom-up approach.

Bottom-up approaches are generally faster than top-down approaches since the es-
timation is made simultaneously for all people in the image. However, solutions of this
category have to be careful during the matching process to avoid mixing body parts of
different persons.

Each approach has its pros and cons and the choice is usually made depending of the
end purpose. Bottom-up approaches are effective for real-time use, otherwise top-down
approaches are usually preferred.
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2.1.2 3D Human Pose Estimation

In this branch, the posture representation is estimated in 3D space. This task is more
challenging because of depth information which is difficult to deduce from 2D information.
For the remainder of this chapter, we consider the single-person context of the problem.

There are two main methodologies to address 3D HPE, either estimation from images
or estimation from 2D pose representations obtained before hand with a 2D HPE solution.

Direct estimation from image

This first method consists in processing images to directly estimate position coordi-
nates of the skeleton joints in 3D space, thus, estimating the skeletal posture. Solutions of
this group extract features within the image and regress them into 3D position coordinates
of the different joints. Various features can be extracted such as heat maps of possible
joint locations, depth information hypothesis, etc. Figure 2.5 summarizes the pipeline of
this method.

Figure 2.5 – Pose estimation through features extraction from images.

Using this method, Habibie et al. [43] chose to extract 2D heat map representations
of the skeletal joints and additional 3D pose information (depth information for example)
from image, then integrate them to estimate the 3D joints coordinates. Wei et al. [129] used
a framework to generate heat maps and bone maps in order to extract 2D pose hypotheses.
They then used a pose regression or a selection-based algorithm on these hypotheses to
compute the final 3D pose. Sun et al. [112] propose a solution that extract 3D heat maps
with depth information from the image. The 3D heat maps are then regressed into 3D
position coordinates for each joint using an integral function, thus leading to the 3D pose
representation.
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Estimation from 2D pose representation

This second method is conceived on top of 2D HPE algorithms. Approaches of this
category propose neural networks that transform 2D poses into 3D poses. This requires to
first estimate 2D joint locations from the images using existing solutions such as CPN [18],
OpenPose [13]. The neural network then uses the vector of 2D joint locations previously
obtained as input data to estimate the vector of 3D position coordinates (representing
the 3D skeletal posture) as shown in Figure 2.6.

Figure 2.6 – 3D Pose estimation using 2D pose estimation solutions.

Martinez et al. [75] proposed an approach using consecutive linear layers to perform a
2D-to-3D regression of joint positions. Combining a 2D-to-3D pose regression and a 3D-
to-2D pose re-projection modules, Biswas et al. [9] used re-projection error minimization
as a constraint to predict the 3d locations of body joints. Chen et al. [16] presented an
unsupervised algorithm that lifts 2D pose representations to 3D. They showed that adding
random 2D projections and an adversarial network allows the training process to be self-
supervised using geometric consistency. Shimada et al. [105] decided to first estimate 3D
pose from 2D joint locations, and then they used foot contact prediction and physics-
based pose optimization to make the estimated pose more realistic. Zou et al. [148] and
Zhao et al. [138] opted for a representation of 2D skeletal posture as a graph and used
a Graph Convolutional Networks to estimate the 3D skeletal posture from it. Azizi et
al. [7] proposed a solution that encodes transformations between joints using the Möbius
Transformation and uses a new light Spectral GCN to achieve state-of-the-art results. All
these approaches focused on estimating 3D poses with high accuracy and achieved great
results in 3D HPE.

Through the various work achieved in HPE, the idea of reconstructing motion from
video has taken place, leading to the 3D motion reconstruction task.
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2.2 Human Motion Reconstruction

Human motion reconstruction (HMR) involves capturing and reconstructing motion
from video data. This field of research has started to develop thanks to the progress made
in HPE and deep learning (DL) techniques. Before reviewing existing methods for 3D
motion reconstruction, we present different numerical representations of motion used for
adaptability to deep learning methods requirement.

2.2.1 Human Motion Representation for Deep Learning Meth-
ods

Using deep learning methods to reconstruct human motion, requires a numerical rep-
resentation of it. Related studies used various representations defined from the skeleton-
based model of the human body.

Positional Representation

In positional representation, a posture is described by the 3D position coordinates of
the skeletal joints. Each posture is encoded as a vector of joint positions. The posture can
be visualized in drawing as shown in Figure 2.7. Human motion is considered as a sequence
of postures in chronological order. Thus, it is encoded as a vector of vectors corresponding
to the position coordinates of the joints. Most approaches choose this representation as it
is the simplest and most easy to use [96, 140, 135].

This representation is the most compatible with previous studies on 3D human pose
estimation where the posture is represented by a vector of position coordinates of the
skeletal joints.

The positional representation does not explicitly take into account the interdependence
between the time and space axes. In fact, the only link between them is related to the
fact that the postures are ordered in a chronological order. To encode the correlation
between the time and space axes, this representation can be modified to represent the
motion as a spatiotemporal graph. Each skeletal joint is a node of the graph. The edges
of the graph are created by pairing the joints of each posture at each time instant to form
the skeleton. Additional edges to represent the temporal connection between the postures
are made, connecting similar joints through time. This representation was used in many
approaches [125, 137].
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Figure 2.7 – Representation of human motion as a sequence of 3D skeletal poses. Top:
sequence of images from video. Bottom: sequence of 3D skeletal poses.

Angular Representation

This representation is inspired by the kinematic animation of articulated bodies. Con-
sidering that the skeleton of the human body is an articulated body, that is bones con-
nected with articulations (skeletal joints), two types of information are encoded as illus-
trated in Figure 2.8. Static features that parameterize the skeleton such as bone lengths
and dynamic data that defines the motion of the skeleton. Dynamic data represents the
changes over time of rotation angles of each skeletal joint and are sequentially encoded
as a vector of vectors. The motion is encoded as the set of both the static and dynamic
data.

An advantage of this representation is that it ensures that bone lengths remain con-
stant over time. A few DL approaches for motion reconstruction [95, 105] use this rep-
resentation. Using this representation sometimes create discontinuities when regressing
joint rotations as Euler angles, therefore Pavllo et al. [95] proposed to represent the ro-
tations with quaternions. Using forward kinematics algorithms [4] on this representation,
it is possible to compute the positional representation thus taking into account joint po-
sition errors during the regression. Due to the characteristics of 3D rotations a specific
representation may be required for neural networks as proposed by Zhou et al. [146].

Positional representation is usually preferred to angular representation when deep
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Figure 2.8 – Example of angular representation of human motion. For a motion of length
T , the dynamic data consist of T vectors containing rotation angles of each joint.

learning methods are involved for ease of use.

2.2.2 Deep Learning Methods for Motion Reconstruction

Deep learning methods for motion reconstruction include methods that consider not
only the spatial accuracy of the joint positions at each pose but also the temporal consis-
tency between the skeletal postures in the sequence representing the motion. This group
consists of solutions designed to estimate a sequence of 3D human pose from a sequence
of images or a sequence of 2D poses. Because the estimation is made from a sequence, the
estimated 3D poses have a better temporal consistency. We divided these solutions into
two categories presented below.

The first category include methods that proposed deep neural networks for sequence-
to-pose or sequence-to-sequence estimation. In sequence-to-pose estimation, DNNs process
multiple consecutive frames in the sequence to estimate the posture of the central frame,
while in sequence-to-sequence estimation, models process the whole sequence to yield the
estimated sequence of 3D skeletal postures. In this category, Hossain et al.[47] used an
LSTM-based approach with encoder-decoder units. The decoder includes the estimation
at time t−1 to estimate the pose at time t, thus applying a temporal smoothness constraint
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to the reconstruction process. Zheng et al.[140] used spatiotemporal transformers to learn
the motion structure at each frame and between frames. To further improve temporal
coherence, some approaches use an additional loss based on temporal features. Cai et
al. [12] represented the pose sequence as a spatiotemporal graph and learn the spatial
and temporal relationships between joints by means of graph convolution, using a loss
function that combines the positional derivative and positional loss. Wang et al. [125]
proposed what they call a motion loss, that is a loss function consisting of distances
calculated from the projection of the sequence of poses into a motion space. The latter
is the encoded representation of the pose sequence obtained by concatenating pairwise
cross-product vectors between the coordinate vectors of the same joints over time with
various intervals. This motion loss is then added to the joint position loss function to
train a graph convolution network. Zhang et al. [135] used Transformers at both spatial
and temporal levels with a weighted per joint position loss and a temporal coherence
loss. These approaches not only improve the temporal consistency of the reconstructed
motion, but also its spatial accuracy. However, they do not achieve consistency at the
level of skeletal bone lengths.

The second category involves methods that, inspired by computer animation, used the
angular representation of motion. Pavllo et al. [95] represented rotations with quaternions
and defined a loss function that performs forward kinematics to penalize absolute position
errors instead of angle errors. Shi et al. [102] chose to estimate both a skeletal model
and the temporal sequence of joint rotations through two parallel convolutional neural
networks. They then applied a forward kinematics (FK) algorithm to obtain the sequence
of 3D poses of the motion, enabling them to achieve skeletal consistency.

It should be noted that it is more difficult for neural networks to estimate joint rota-
tions than joint positions because different rotations can produce the same poses. As a
matter of fact, most of these solutions used while training their model, loss function on
joint positions after computing the positional representation with FK methods.

2.2.3 Temporal Loss Function

The loss function generally used to train neural network in 3D human pose estimation
is the joint position loss. It is the average distance error on the joint positions between
the estimated pose and the ground truth. Most solutions use this loss function in their
learning process. However, for a motion reconstruction task, it is lacking because it focus
on spatial accuracy alone and overlook the temporal axis of the motion. As a solution to
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this issue, some researchers propose new loss functions based on temporal characteristics
of the motion. Among them, some choose to calculate the loss function by using the first
derivative, that is the velocity [28]. Wang et al. [125] propose a loss function, called Motion
Loss, computed from an encoded representation of motion. They project the predicted
and ground truth sequences of poses into the encoding space and compute the difference
between the two encoded information. This difference evaluates the temporal quality of
the reconstructed motion compared to the ground truth.

These solutions approaches show that coupling temporal loss function with the joint
position loss improves the temporal quality of reconstructed motions.

2.3 Summary and Discussions

From 2D pose estimation to 3D pose estimation to finally 3D motion reconstruction,
this chapter reviews various studies and experiments conducted using deep learning meth-
ods.

With 2D pose estimation, the skeletal posture of people are visualized in images. The
results can be achieved using top-down approaches which first detect people in an image
and then compute the skeletal joint locations for each of them. Another method grouping
bottom-up approaches, is to estimate all body parts in the image and reassemble them to
form each people posture.

Adding depth information, 3D pose estimation gives a 3D view of the skeletal posture.
Pose representations are calculated either through features extraction from images then
regression to calculate 3D joint coordinates or through 2D-to-3D lifting operation of 2D
pose representation to integrate depth information.

Finally, motion is represented as a sequence of 3D postures which include the time
axis, thus enabling its reconstruction from video. To ensure the temporal coherence of
the reconstructed motion, various means such as specialized deep learning methods for
temporal data processing, and temporal loss function are used.

Motion reconstruction using deep learning techniques can be used to produce motion
data from video. Even though there are improvements in the quality of the reconstructed
motion, there are still some improvements needed to effectively use these solutions for
high precision motion acquisition. In chapter 6, we will present a system to improve the
quality of motion reconstructed through these methods.
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Since the 2000s, technologies based on motion capture, MoCap, have made it possible
to capture human movement more accurately. Thanks to this development, various human
motion databases have been recorded for research purposes. The recorded data can be
used in data-driven motion synthesis models in the field of Computer Animation. More
recently, the development of deep learning techniques in Computer Vision, led to the
generation of new databases, featuring real videos, MoCap, and videos constructed from
MoCap. Section 3.1 lists existing motion databases while section 3.2 deals with disability
movement databases.

3.1 Existing Human Motion Databases

We divide the existing motion databases into two groups. Databases obtained through
traditional MoCap technologies and databases recorded through videos.

3.1.1 Motion Capture Databases

Motion Capture or MoCap refers to some techniques for digitally recording motion data
from a person’s movements. The acquisition is realized using passive or active systems.
Passive systems use infrared cameras to record the position and displacement of reflective
markers placed on an actor’s body. Active systems use different types of sensors, whether
inertial, magnetic or mechanical to compute the motions of the actor. We introduce in
details some of the databases recorded with these technologies.
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One of the first and large MoCap database was proposed by the Canergie Mellon
University [26]. The CMU Graphics Lab Motion Capture Database is built with a
variety of categories of motion. It is a free of use database often used in computer anima-
tion. It contains motions of human interaction, interaction with the environment, human
behaviors, human locomotion, and also physical activities and sports. The recorded mo-
tions involve human interaction, interaction with the environment, locomotion (running,
walking, etc.), physical activities and sports (basketball, dance, soccer, etc.), for a total
of 2,605 clips.

The Mocap Database HDM05 [86] supplies free motion capture data mostly for mo-
tion recognition purpose. For this database, they used a system based on optical marker-
based technology, with the actor equipped with a set of 40-50 retro-reflective markers
attached to a suit. All recordings were performed at a sampling rate of 120 Hz. The mo-
tion sequences were executed several times by 5 non-professional actors. The sequences
were manually cut into motion clips arranged into approximately 100 classes of motion.
This amounts to roughly 1,500 motion clips with 50 minutes of motion data.

For specific research context, MoCap data are extended to generate databases with var-
ious contents. These databases provide in addition to motion capture data, other types
of data such as: synchronized videos, 3D model of human body data based on SMPL
[70](Skinned Multi-Person Linear) Model or its extended version SMPLX [94] (see Fig-
ure 3.1), etc.

The HumanEva database [106] is an example of such database. Its first version,
HumanEva-I contains 7 calibrated video sequences (4 grayscale and 3 color) for syn-
chronization with 3D body poses obtained from a MoCap system. Only a part of the
MoCap data are synchronized with video data using a synchronization software. The
database contains 4 subjects performing 6 common actions (e.g. walking, jogging, ges-
turing, etc.). The second version, HumanEva-II records only 2 subjects performing an
extended sequence of actions they called Combo. The sequence starts with walking along
an elliptical path, then continues on to jogging in the same direction and concludes with
the subject alternatively balancing on each of the two feet.

Ionescu et al. [52] propose the Human3.6M database. It is the most used database in
3D human pose estimation task. This database of 3D human poses was captured indoor
with a marker-based motion capture system. The data consists of 15 scenarios of daily
actions executed by 11 professional actors (6 males and 5 females) and recorded by 4 digital
video cameras and 10 motion cameras. The performed motions involve giving directions,
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Figure 3.1 – Example of SMPL model taken from the paper of Lopez et al. [70].

discussing, eating, sitting, making purchases, taking photo, smoking, etc. It contains 3.6
million video frames annotated with 3D positions and rotations (ground truth) acquired
at a frequency of 50 frames per second. It also provides 3D scanner data of the different
actors.

There are other more specific databases oriented to specific motions recorded in a
similar environment as the one used for Human3.6m [52], namely Fit3D [36], Hu-
manSC3D [37], CHI3D [38].

Fit3D [36] contains 611 multi-view motion sequences involving 47 fitness exercises
such as warm-ups, dumbbell exercises, barbell exercises, and equipment-free exercises. The
motions were performed by 11 actors, including 1 trainer and 10 trainees. The recordings
amount to a total of 2,964,236 video frames with the corresponding 3D skeletal poses.

HumanSC3D [37] database was generated to capture motions with various self-
contact occurrences like crossing legs, touching one’s head with one’s hands. The record-
ings include 172 motions performed by 6 subjects (3 men and 3 women between 20 and 30
years old with various fitness levels and body shapes). The recorded motions are divided
into 116 motions while standing, 20 while sitting on the floor and 36 while sitting on
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or standing next to a chair, summing up to a total of 1,246,487 video frames with the
associated 3D skeletal poses.

CHI3D [38] is a database related to motions with interactions (handshakes, hugs,
holding hands, etc.). Each recording is realized simultaneously by a pair of subjects (5
pairs in total), with only one of the subject being tracked with the marker-based motion
capture system while the other is only tracked by the RGB cameras. 631 interaction
sequences were recorded for a total of 728,664 ground truth 3D skeletons.

These 4 databases are part of a series recorded in the same environment presented in
Figure 3.2.

Figure 3.2 – Laboratory setup for marker-based motion capture. There are 10 motion
cameras, 4 digital RGB cameras.

AMASS [73] is a large database of human motion, unifying 15 optical marker-based
MoCap databases such as CMU [26], HDM05 [86, 85], KIT [74]. Using the MoCap
data, motions with 3D human representation in the format SMPL [70] were generated as
shown in Figure 3.3. The resulting database amounts to 11,265 motions, more than 40
hours of recordings data from 344 subjects.

We can also find MoCap databases designed for more specific contexts such as a
corpus for theatrical expressive gestures proposed by Carreno-Medrano et al. [15]. The
same research team also proposed French sign language (LSF) databases for data-driven
synthesis applied to signing avatars. These databases are described in [32, 64, 41, 88] and
their use for synthesis in [45, 42, 89].

There are more motion databases designed for specific purposes in specific contexts.
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Figure 3.3 – SMPL body shape generation in AMASS database [73].

3.1.2 Motion Databases Acquired through Video

Video based acquired databases are obtained through filming subjects with one or mul-
tiple camera. Motion data are then computed from video data through various techniques.
This type of acquisition is usually referred to as marker-less motion capture.

In this regard, CMU Panoptic [56] is a typical example of motion database obtained
in a studio with 480 synchronized cameras. The database currently contains 5.5 hours of
recording divided into 65 sequences. The sequences are made of scenes capturing multiple
people interacting with each other.

MPI-INF-3DHP [76] uses a commercial marker-less motion capture system to collect
data. The recordings are made in a multi-camera studio of 14 cameras. The database
contains 8 activities set performed by 8 actors, 4 men and 4 women. The activities range
from walking and sitting to complex exercise poses and dynamic actions.

The database 3DPW [122] was captured in the wild through a method they called
Video Inertial Poser (VIP). The method records motion data using a single moving camera
coupled with 6 to 17 Inertial Measurement Units (IMUs) attached to the body limbs.
The database contains 60 sequences at 60 Hz for more than 51,000 frames. A total of 7
actors were recorded performing various activities such as shopping, doing sports, hugging,
discussing, capturing selfies, riding bus, playing guitar, relaxing.

Motion acquisition using video-based systems is relatively cheaper and easier to use,
especially acquisition through a single camera. Although the accuracy of the algorithms
used to compute motion data from video is constantly improving, they remain inferior to
extremely precise and accurate MoCap systems.
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3.2 Motion Disability Databases

After browsing the existing motion databases, we found that there are no existing
database of motions in physical disability situations. This is mainly due to the difficulty
of using traditional motion capture systems on people with disabilities, particularly those
with motor impairments who use wheelchairs. Another reason is the belief that what can
be achieved with existing motion databases can also be achieved for motor disability cases.
Therefore, no attempt has been made to generate such a database.

However, that logic does not apply to some tasks, such as fine motion and behavior
analysis. Furthermore, the reconstruction of these constrained movements from videos
requires the artificial intelligence (AI) model to have previously learned from such data.

As a result, we decided to create a new corpus of motion in motor disability situations
that can be used later in many applications. In our particular case, we want to experiment
motion reconstruction from video.

3.3 Summary and Discussions

This chapter reviews existing motion databases acquired through various recording
systems. Most of the databases are obtained using traditional MoCap systems. Some
of these databases were recorded while synchronizing MoCap systems with monocular
cameras in order to jointly obtain a video of the recorded movement, thus, generating
videos data coupled with 3D body poses for task such as AI models training.

There are also a few motion databases recorded using systems with one or more cam-
eras for multiple views to conduct marker-less motion capture. Although less precise than
the traditional approach, these systems are improving and are constantly researched for
their ease of use.

Finally, we discovered that there are no available MoCap database recorded in dis-
ability case situations. We believe this is due to the difficulty of capture such motion
using traditional systems. Also, actual video-based systems for capturing motion are not
sufficiently accurate to use them for task involving motion data in disability cases.

In Chapter 7, we will present a new database of motions in motor disability situations
called Handi-Motion. This database was generated to design an AI model for marker-less
motion capture based on motion reconstruction from video. Considering the difficulty of
capturing motion in these situations with the traditional approach, we built this database
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by generating 2D videos using 3D captured motions. Indeed, we chose to first capture a
few motion with a MoCap system, then, used these motion to animate virtual characters
and record videos data. With this original approach, we expanded the database using
several recording cameras with different viewpoints and varying 3D models of virtual
characters.
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4.1 Introduction

In this chapter, we focus on the numerical representation of motion in order to recon-
struct it from video through deep learning techniques. We recall that the human body
is simplified to a skeleton-based model. This model represents the human body as an
articulated body made of rigid segments (bones) connected by joints. It is a hierarchical
configuration of the skeleton that defines the body posture.

In a kinematics point of view, we consider human motion as sequence of posture
changes of the skeleton over time. A pose or posture is the state of the skeleton at a
given time or frame, described by the position and orientation of each joint. Therefore,
the posture si of the skeleton at time i is given by:

si = {(p1
i , q1

i ), (p1
i , q1

i ), . . . , (pn
i , qn

i )} (4.1)

where n is the number of skeletal joints in the skeleton and (pj
i , qj

i ) are respectively the
position and the orientation of joint j at time i with 1 ≤ j ≤ n. A motion is then noted
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as M = {s1, s2, . . . , st} with t the total number of postures in the sequence.
Unlike applications in computer animation where the orientation is often needed, in

Computer Vision, this information can be overlooked as it is possible to visualize the
posture using only the position. Therefore, to facilitate processing, a posture si can be
simplified to a configuration given by si = {p1

i , p2
i , . . . , pn

i }. In the remainder of this work,
we will use this configuration.

The representation of the motion as a sequence of postures (positions of joints) over-
look the temporal connection between the different postures. This issue can be solved
by representing the motion as a graph in 3D Euclidean space and guided by distance to
include the time and space connections between the skeletal joints.

More than that, this representation allows us to apply Laplacian properties of graph
on the motion to study local deformation of joints. With these properties, we can encode
the temporal coherence using a differential information to express the motion graph using
the discrete Laplacian operator. Also, we can introduce constraints to the graph in order
to preserve some important information such as bone length, so that the skeleton remains
consistent throughout the sequence of poses.

In this chapter, we will first present the discrete Laplacian operator applied to a graph.
We will then explain the representation of the motion as a graph. And, finally, we will
present the advantages of this representation.

4.2 Discrete 3D Laplacian Operator

The discrete Laplacian operator is often used in computer science to analyze and edit
geometric shapes. In this section, we show how the discrete Laplacian operator is applied
to a graph in 3D Euclidean geometry setting.

4.2.1 Discrete Laplacian Operator

To describe this operator in the current case, let us consider a graph G = (V, E) where
V = {v1, ..., vn} is the set of vertices of the graph in Euclidean geometry and E the set of
edges. Let the function p : V− > R3 that assigns to each vertex vi, a vector corresponding
to its Cartesian coordinates. The discrete Laplacian operator applied to p is such that:

∀i, (Lp)(vi) = 1
di

∑
vj∈N (i)

wij(p(vi)− p(vj)) (4.2)
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with wij the weight associated to the edge (vi, vj), N (i) the set of vertices neighbors to
vi and di a positive factor defined for vertex vi.

4.2.2 Laplacian Coordinates

In this setting, the function p returns the vector of Cartesian coordinates of each
vertex of the graph in Euclidean space. We will note p(vi) = vi = [vix, viy, viz] ∈ R. Using
the Laplacian operator, we express the graph with differential information that is a set of
differential coordinates δi for each vertex vi. We note ∆ = {δi}. The Laplacian coordinates
δi = L(vi) of vertex vi is a 3-dimensional vector δi = [δix, δiy, δiz] that can be interpreted
as the difference between its vector vi and the mean of all vectors vj,∀vj ∈ N (i).

L(vi) = δi =
∑

j∈N (i)
wij(vi − vj) (4.3)

where wij is the Laplacian weight applied to edge (vi, vj). It should be noted that wij

can be used in a non-normalized case wij = wij or in a normalized case, wij = wij

di
with

di = ∑
k∈N (i) wik represented as the sum of the weights of all edges associated with vertex

vi. For the remainder of this chapter, we will consider the non-normalized case.

4.2.3 Matrix Notations

Calculations with the Laplacian operator are generally handled using vectors and
matrices. We represent the graph in the Cartesian system by the (N × 3) matrix P of
vectors vi associated to its vertices:

P =


v1

.

.

vn

 (4.4)

Let A be the adjacency matrix of the graph and D = diag(d1, . . . , dn) the matrix of de-
grees. The transformation of the graph from its representation with Cartesian coordinates
P into a representation with Laplacian coordinates ∆ can be given by ∆ = LP where
L = I − D−1A. The matrix L is the matrix representation of the Laplacian operator of
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the graph defined by the formula:

Lij =


∑

j∈N (i) wij if i = j

−wij ∀(i, j) ∈ E

0 otherwise

(4.5)

4.3 Human Motion Representation as a Laplacian
Graph

In this section, we propose a representation of the human motion as a graph in order
to apply the discrete Laplacian operator on it.

4.3.1 Human Motion Graph

Based on the definition of human motion as the change of skeletal postures over time,
we consider two axis: the spatial axis represented by each posture and the temporal axis.

For the spatial axis, the skeleton representation that defines the posture is made of
bones and joints. To build a graph from that representation, we consider the joints as the
vertices and the bones as the edges as shown in Figure 4.1. The temporal axis is represented

Figure 4.1 – (a) Skeleton as an articulated body. (b) Pose representation as a graph.

as the different skeleton representation of the body at each instant (frame), from the
beginning to the end of the motion. More simply, a motion of T frames is considered as
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a sequence of T postures S = (S1, ..., ST ). Thus, the motion can be considered as a large
graph made by connecting T graphs and it is called a 3D+t graph.

In details, each skeleton St (1 ≤ t ≤ T ) is a sub-graph St = (Vt, Et) with vi,t the vertex
of index i in Vt and Et the edges. The vertices represent the skeletal joints and the edges
the bones of the skeleton. The graph 3D+t is built by connecting the sub-graphs {St} and
is defined by G = (V, ES ∪ ET ), where V = {Vt}1≤t≤T is the set of vertices (all skeletal
joints from S), ES = {Et} the set of existing spatial edges for each skeleton St, and ET

the set of temporal edges connecting the same joints between adjacent skeletons (in the
temporal order of the sequence). For a each vertex vi,t ∈ Vt, ET contains all the edges
(vi,t−1, vi,t) and (vi,t, vi,t+1). Figure 4.2 illustrates such a graph for 3 consecutive frames.

Figure 4.2 – Graph 3D+t for 3 consecutive frames. Each skeleton is represented as a graph
forming the set of spatial edges ES (skeleton bones, in color). Consecutive skeletons are
connected through identical joints forming a set of temporal edges ET (in black).

4.3.2 Application of Discrete Laplacian Operator on Human
Motion Graph

With the representation of the motion as a 3D+t graph, it is possible to apply the
discrete Laplacian operator on it.
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3D+t Discrete Laplacian Operator. As presented by Le Naour et al. [63], while
applying the discrete Laplacian operator L on the 3D+t graph, we compute the Laplacian
coordinates vector δi,t of the vertex vi,t, represented by the Cartesian coordinates vector
vi,t, with the formula:

L(vi,t) = δi,t = w−(vi,t − vi,t−1) + w+(vi,t+1 − vi,t) +
∑

j∈Nt(i)
wij,t(vi,t − vj,t) (4.6)

with w− and w+ the weights associated respectively to the temporal edges (vi,t, vi,t−1) and
(vi,t, vi,t+1), and wij,t the weight associated to the spatial edge (vi,t, vj,t).

Laplacian coordinates are used in this context to represent movement as a set of local
deformation of skeletal joints. This encoding provides an accurate modeling of motion
that compacts both the spatial and temporal relationships between the joints and can be
integrated with deep learning techniques.

4.4 Conclusion

This chapter presents a representation of human motion for motion reconstruction.
Using the definition of the motion as a sequence of skeletal postures, we represent each
posture as a sub-graph. Then, we build a large graph by connecting the sub-graphs of
consecutive postures, thus creating temporal links between them. Between two consecutive
sub-graphs, an edge is added to connect vertices representing the same type of joints, i.e.
left ankle with left ankle, right elbow with right elbow and so on.

We use this representation of human motion in two ways:
— To define a spatiotemporal loss function used to train deep neural network designed

to reconstruct motion from videos. This use case is presented in chapter 5
— To build a motion correction system that improves temporal coherence and adjusts

skeletal consistency of reconstructed motion from video. We use a neural network
that operates on Laplacian coordinates to improve the spatiotemporal accuracy of
the reconstruction and use the flexibility of the graph representation to incorporate
additional constraints in order to preserve the skeletal structure. The achieved
results are presented in chapter 6.
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Chapter 5

MOTION RECONSTRUCTION WITH DEEP

LEARNING METHODS
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5.1 Introduction

We have carried out an in-depth comparative study of DL techniques to achieve the
best results in reconstructing 3D motion from video. We consider human motion recon-
struction (HMR) as an extension of human pose estimation (HPE). As a matter of fact,
DL techniques developed for HPE can be used in HMR. Nevertheless, the end goal in
HMR is a little different since, on top of the accuracy in the estimated human poses,
the temporal coherence between the different poses is also sought. And as a result, we
differentiate between DL solutions for HMR and solutions for HPE.

We consider three main factors to distinguish between solutions for HMR and solutions
for HPE, based on the settings defined to build the DL models.

The first factor is the formulation of the problem. Building a DL solution begins with
precisely formulating the problem by defining the formats of the input and output of the
model. In 3D motion reconstruction, the input data are either a sequence of images (video)
or a sequence of 2D poses. The output data is a sequence of 3D poses that represents the
motion.
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The second factor is the architecture of the neural network. It is related to the different
DL algorithms that are used to design the neural network such as convolution, multi-
layer perceptron, normalization and so on. We will discuss in this chapter the different
possibilities regarding DL networks and present at the end our model architecture to
compete with state-of-the-art solutions.

The last factor is part of the process to train the neural network, namely the loss
function. This function is used to guide the model towards the results we want it to
achieve during the training session. In HPE, the focus is generally on the accuracy of
the 3D poses which means that the loss function is related to the error in estimating
the 3D joints positions. However, in 3D HMR for computer animation, we also want the
resulting movements to be consistent over time. To achieve this, the loss function will
also incorporate errors related to temporal characteristics. In addition to the loss function
based on motion descriptors and custom loss functions borrowed from the literature,
we propose an additional loss function, which is a spatiotemporal one, based on the
representation of motion as a 3D+t graph (see sub-section 4.3.2).

After designing and training a DL solution, an evaluation session is proposed to de-
termine whether the results produced by the model are satisfactory or not. The metrics
used in this session depend on the nature of the problem. In 3D motion reconstruction,
metrics related to the spatial accuracy and the temporal consistency of the motion are
usually used.

During this study, we carried out two experiments. The first experiment aimed to
test the efficiency of a spatiotemporal loss function that we developed, called Laplacian
loss. In the second experiment, we designed a complete motion reconstruction solution to
compete with existing state-of-the-art solutions.

Chapter outline. We will first review the above mentioned factors that characterize
DL solutions for 3D HMR in sections 5.2 and 5.3. Then we will present the different
evaluation metrics for the evaluation process in section 5.4. Finally, in section 5.5, we
will present the results of our two experiments made using two different neural networks.
Firstly we will use a convolution-based neural network to evaluate the efficiency of the
Laplacian loss function. And secondly, we will propose a variational autoencoder neural
network to achieve state-of-the-art results.
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5.2 Deep Neural Network

Prototyping a DL solution requires two analytic steps. The first is to formulate the
problem we are trying to solve in machine language, i.e. a formulation that can be un-
derstood and solved by a neural network. Next, we need to decide which deep learning
algorithms to use to build the model architecture. In this section, we will detail these
steps for the specific case of HMR from video.

5.2.1 Formulating the Problem

Formulating a DL problem is usually done by determining two parameters. The formu-
lation requires to: i) define the type of data we are using which will determine the input
format of the neural network and ii) define the type of data the model should produce,
determining the output format of the model. In computer vision, where it is easier to
manipulate motion as sequence of postures, the output format is usually a sequence of
3D poses (3D coordinates of the joints of the skeleton). Then, based on the format of the
input data, there are two possible formulations:

1. reconstruction from video (sequence of images)

2. reconstruction from a sequence of 2D poses

The literature shows that the advances made in the 2D human pose estimation such as
CPN [18], HRNet [110] or OpenPose [13], make the reconstruction from 2D poses a good
and simplified choice. Thus, we will proceed with this method in the subsequent study.

Formulation of 3D HMR problem. The task is to learn the transformation from
a sequence of 2D poses into a sequence of 3D poses. This formulation implies that to
reconstruct the motion, the video must be first processed into a sequence of 2D joint
locations which in turn will be sent to the neural network for a transformation into 3D
space. A pose (or posture) can be represented as a vector of the coordinates of the skeletal
joints. Let us define X the input data and Y the output. X, representing the sequence
of 2D poses, is a vector of vectors containing the 2D joint locations. Y , representing the
sequence of 3D postures, is a vector of vectors containing the 3D joint locations. We note
Y = F(X) where F is the function or algorithm that transforms X into Y . Figure 5.1
summarizes the formulation of the task for DL methods.
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Figure 5.1 – Formulation of the HMR task.

5.2.2 Designing a Neural Network Architecture

After the formulation of the problem, the next step is to design the architecture of the
DL solution. The choice of the the DL algorithms depends on the type of method to solve
the problem. The literature shows three groups of deep learning DL methods for solving
this problem:

1. Per frame pose estimation. This approach ignores the time dimension of the prob-
lem and focuses on the space. The concept here is to compute the pose in 3D space
by learning the depth dimension from a single 2D pose. Most solutions to 3D HPE
fit in this category.

2. Sequence-to-pose estimation. In this approach, a sequence of 2D poses is used to
estimate a single pose in 3D, generally the pose of the central frame. The process
is repeated until the whole sequence is finally transformed. The idea behind this
method is to make use of the temporal inform between multiple frames to learn a
more precise depth information. In this algorithm, the temporal characteristics are
partially integrated in the computation process as only one pose is estimated at a
time.

3. Sequence-to-sequence estimation. The architecture here processes the whole se-
quence to compute the transformation. This is to ensure that the temporal con-
nection between the 2D poses in the sequence are preserved in the estimated 3D
sequence. Among the three methods, this is the only method that fully integrates
the time axis in the reconstruction process. Solutions from this category are more
suited to the task of 3D motion reconstruction where the temporal consistency
between the postures is desired.
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The first two methods focus mainly on the spatial accuracy while the last one tries to
balance between spatial accuracy and temporal coherence.

In the literature, the proposed solutions use various DL algorithms to design their neu-
ral network. Before we design our own, we will browse through some of these algorithms.

Multi-Layer Perceptron

This is one of the first algorithm that introduces the concept of DL. Models are
made of multiple fully Connected (also called Dense or Linear) layers. The FC layer

Figure 5.2 – Example of Fully Connected layer.

processes only the features dimension of the input data and thus does not include the
time dimension. Applying this algorithm on temporal data implies that the data at each
time t is processed independently, and thus, the output sequence does not integrate the
temporal characteristics of the input sequence.

Recurrent Neural Network

The recurrent neural network approach is an algorithm specifically made to work with
temporal data. It sequentially processes the input data in the chronological order and at
each time, it reuses the result of the previous computation. By doing so, the temporal
connection between the sequence of data is integrated in the output. This algorithm has
the advantage of working with sequences of any size.

There are extensions of this algorithm such as Long Short-Term Memory networks
(LSTM) for long time lags information and many others. The most notable disadvantage
of this algorithm is that its computation process for large sequences is time-consuming.
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Figure 5.3 – Recurrent Neural Network.

Convolution Neural Network

Convolution Networks are a type of networks built on a convolution algorithm. In the
case of temporal data we use 1-D also called temporal convolution. This is the most widely
used algorithm that brought a significant breakthrough in the task. The majority of the
existing solutions are built upon it. This algorithm is a solution to the time-consuming
problem brought by recurrent neural networks.

Figure 5.4 – Example of 1-D Convolution for input with multiple features.

Temporal convolution applies filters using a time window (kernels). It takes as input
Tin ×Cin and output Tout ×Cout, where, Tin and Tout represent respectively the sequence
lengths of the input and output, Cin the features dimension and Cout the output dimension.
Moreover, we can use a dilated convolution to apply filters on non-consecutive frames
to learn features at different time scales. A fully convolutional neural network has the
advantage of not requiring a fixed sequence length and as a result can be easily generalized.
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Graph Convolutional Network

Graph convolution is a convolution operation applied to a graph structure. Similar to
convolution applied to image where the filter is applied to the neighborhood of each pixel,
the operation is applied using the neighborhood of each node of the graph. This operation
is realized using the adjacency matrix of the graph that contains the connection between
the different nodes.

In 3D motion reconstruction, graph convolution networks can be combined with the
representation of the motion as a spatiotemporal graph (see section 4.3).

Figure 5.5 – Example of a graph convolution network usage for 3D motion reconstruction.
Source: Wang et al. [125]

Transformers Neural Network

The transformer architecture first appeared in Natural Language Processing. With
its attention mechanism, it achieved great success in the field. Later, several approaches
attempted to apply the principle of this algorithm to the 3D pose estimation task. The
results were significant, and today more and more approaches are making full use of it.
We have not made an in-depth study of this method but we believe that it is worth
mentioning for reference purposes.

5.3 Training a Neural Network

Training a neural network requires to choose a learning pattern (or paradigm) which
refers to the settings used to train a deep learning model. It also requires a loss function
defined depending on the learning pattern to assist in the training operation. There are
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Figure 5.6 – Example of a Transformer based model for human pose estimation. Source:
PoseFormer [140]

three learning patterns that can be used to train a neural network in motion reconstruc-
tion: supervised, semi-supervised, unsupervised. Among them, we selected the supervised
approach which is the most used.

In this section, we will briefly present the different patterns, and later, the loss functions
used in the case of supervised learning.

5.3.1 Learning Patterns

In section 5.2, we discussed the architecture of deep learning models for HMR. Once
designed, a neural network should be trained on data before its usage. A neural network
can be seen as a set of variables or parameters usually referred to as weights, used to
compute an output from a given input data. Training the model means updating its
parameters so that it can compute the right output according to the input. Before choosing
a learning paradigm for our experiments, we will briefly review the different paradigms.

Supervised Learning In the supervised learning paradigm, we have at disposition a
dataset of labeled data, meaning that for each input, we have a desired output. We can
represent the dataset as D = (X, Y ) where the inputs are X = xi, 1 ≤ i ≤ n and the
targeted values are Y = yi, 1 ≤ i ≤ n. The learning phase consists of gradually updating
the model weights so that for each xi it can output a value ŷi ≈ yi (see Figure 5.7).

Unsupervised Learning In the unsupervised learning pattern, the dataset is unlabeled
meaning we have the input data X but not targeted output data Y . Updating the model
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Figure 5.7 – Supervised learning pattern. The heuristic or loss is a quantified difference
between the output values and the targeted values. It is computed through a loss function.

is possible through a specific heuristic between the output values inferred by the model
and the input values (see Figure 5.8)

Figure 5.8 – Unsupervised learning pattern. The heuristic is a quantified difference be-
tween the output values and the targeted values. It is computed through a loss function.

Semi-supervised Learning The semi-supervised learning is a mix of supervised and
unsupervised learning. Indeed, the dataset used in this paradigm is partially labeled i.e.,
for input data X = xi, 1 ≤ i ≤ n we have targeted data Y = yi, 1 ≤ i ≤ m with m < n.
It is also called weak supervision because the number of labeled data is smaller than
the number unlabeled data. Using this pattern implies the assumption that there is an
underlying relationship between the data. The model is trained to learn this relationship
through the labeled data and then transpose it to the unlabeled data.
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Selecting a Paradigm Among these different paradigms, we opted in this work for the
supervised pattern which is the most used thanks to large-scale annotated dataset such
as Human3.6m [52], MPI-INF-3DHP [76], 3DPW [122].

5.3.2 Loss Function

The loss function is a key component in order to efficiently train a deep learning neural
network. It is defined depending on the learning pattern chosen to train the model. In the
case of supervised training, the function computes an error between the output produced
by the model and the desired output. Here we present the various loss functions used in
the literature for training neural networks, as well as our own spatiotemporal loss function.

Existing Loss Function

Most studies in 3D human pose estimation, use as loss function the average distance
error between the joint positions of the ground truth 3D poses and those of the estimated
3D poses. It is defined as:

LP = 1
T
∗ 1

J

T∑
t=1

J∑
j=1
∥pt,j − pt,j∥2 (5.1)

where pt,j and pt,j are the 3D position vectors of joint j at time t from the estimated
poses and the ground truth poses respectively.

This function, if used solely as loss function, works well for single frame pose estima-
tion. But, when working on motion reconstruction, it is limited because it tends to average
the joint positions loss over the whole sequence. The less represented poses in the motion
can be biased by the more represented ones, affecting the overall motion reconstruction.
In the motion reconstruction task, it is preferable to supplement this function with an
additional function related to the time axis of the motion. Two temporal loss functions
are presented below.

Velocity Loss The first proposition of temporal loss function is the velocity loss func-
tion. Based on one of the motion descriptor, the velocity loss refers to the average difference
between the velocity vectors of the estimated motion and those of the ground truth.

LV = 1
T − 1 ∗

1
J

T −1∑
t=1

J∑
j=1
∥vt,j − vt,j∥2 (5.2)
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where vt,j and vt,j represent the velocity vectors of joint j at time t, respectively for the
ground truth and the estimation.

Motion Loss Function Wang et al. [125] propose a loss function as a distance in mo-
tion space. It is based on the encoding motion from a sequence of poses, by computing
differential values between the position vectors of the same joint at different time inter-
vals. It can be a subtraction, an inner-product or a cross-product. They encode both the
estimated and the ground truth pose sequences. The loss is then computed between the
encoded ground truth and the reconstructed poses.

5.3.3 Laplacian Loss Function

Each of the existing loss functions considers either the spatial axis or the temporal
axis. As a result, most approaches tend to use a weighted combination of them. We believe
that a better solution is a function that implicitly considers both axis at the same time.
For that reason, we define a new function that we call Laplacian Loss. It considers the
local deformation induced by the spatiotemporal graph representation of the motion.

The Laplacian Loss computes a difference in the representation of the ground truth
motion and the estimated motion in the Laplacian space. As we represent the motion as
a graph 3D+t (see Section 4.3.2), characterized by the Laplacian differential coordinates
∆, this loss computes the average error on the differential coordinates of each joints’
position between the estimated representation and the ground truth representation. The
loss function is defined by the following equation:

L∆ = 1
T
∗ 1

J

T∑
t=1

J∑
j=1
∥δt,j − δt,j∥ (5.3)

where δt,j and δt,j represent the differential Laplacian vectors of joint j at time t from
respectively the ground truth and the estimation.

Training a neural network with this loss function enables it to learn the spatiotemporal
connections between the joints locations it predicts, thus implicitly taking into account
the skeletal structure and the temporal changes of the joints.
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5.4 Evaluation Metrics

The numerous studies carried out on the estimation of human pose in 3D have pro-
duced a number of standards on how to evaluate and compare proposed solutions. These
standards concern evaluation protocols as well as metrics used as reference for quantitative
evaluation. We are interested here in the evaluation metrics.

In HPE, the reference metric is a spatial metric linked to the accuracy with which the
model estimates the 3D joint positions compared to ground truth. But, in HMR, as the
time axis is also considered, temporal metrics related to the temporal features of motion
are included in the evaluation.

5.4.1 Spatial Metrics

The most common metrics used in the evaluation process is the Mean Per-Joint Posi-
tion Error (MPJPE) which is related to the spatial accuracy of the reconstruction. It is
defined as the average error in estimating the joint positions.

MPJPE = 1
T
∗ 1

J

T∑
t=1

J∑
j=1
∥pt,j − pt,j∥2 (5.4)

where pt,j and pt,j represent the position vectors of joint j at time t from respectively the
ground truth and the estimation.

5.4.2 Temporal Metrics

We call temporal measurements those related to the temporal characteristics of the
motion. These metrics are based on kinematic motion descriptors, namely velocity and
acceleration. They serve as a reference to evaluate the quality of the reconstructed motion
compared to the original one. These metrics are presented below.

Mean Per-Joint Velocity Error, MPJVE This metric is based on the velocity. It is
the average distance error between the velocity vectors of the estimation and the ground
truth.

vj,t = pj,t+1 − pj,t (5.5)

MPJV E = 1
T − 1 ∗

1
J

T −1∑
t=1

J∑
j=1
∥vt,j − vt,j∥2 (5.6)
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where vt,j and vt,j represent the velocity vectors of joint j at time t, respectively from
the ground truth and the estimation.

Mean Per-Joint Velocity Error, MPJAccE The MPJAccE is an acceleration-based
metric and is computed as the average distance error between the acceleration vectors of
the estimation and the ground truth.

aj,t+1 = pj,t+2 − 2 ∗ pj,t+1 − pj,t (5.7)

MPJAccE = 1
T − 2 ∗

1
J

T −2∑
t=1

J∑
j=1
∥at,j − at,j∥2 (5.8)

where at,j and at,j represent the acceleration vectors of joint j at time t, respectively from
the ground truth and the estimation.

5.5 Experiments and Results

We have previously defined a Laplacian loss function suitable for motion reconstruc-
tion. We have chosen to verify the efficiency of this loss function through the following two
studies. The first experiment is an ablation study on the Laplacian loss function applied
on our own neural network (a simple convolutional model). In the second experiment, we
built a more advanced neural network which we trained with the Laplacian loss function
and then benchmarked against 3 other state-of-the-art (STAR) models.

5.5.1 Ablation Study on Laplacian Loss Function

The goal of this experiment is to assess the efficiency of the Laplacian loss function in
training neural network. To do this, we designed a simple deep neural network architec-
ture and trained different versions of it with different loss functions each time. We then
analyzed the results and evaluated the most efficient version.

Generic Neural Network CVM-Net

We built this network using temporal convolution algorithms. Figure 5.9 shows the
architecture of this model.
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Figure 5.9 – CVM-Net architecture. Temporal Convolution Neural Networks for motion
reconstruction. This is a generic approach that combines 1D convolution algorithms to
transform a sequence of 2D poses into a sequence of 3D poses.
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Results

To evaluate the performance of our Laplacian loss function, we have set up training-test
experiments using our neural network architecture CVM-Net. We used the same training
environment for each session with the only difference being the loss function. In these
experiments, we compared two different loss functions.

— CVM-Net with only the joint position loss LP .
— CVM-Net∆ with a combination of the joint position loss and our Laplacian Loss

in an overall function L = LP + L∆.
The models with the two configurations above mentioned are trained under the same

conditions:
— both models have the same architecture with the same parameters;
— the dataset used for the experiments is Human3.6m dataset [52];
— and, the training configuration is the same for both. It includes the learning rate

of 10−3, for 150 epochs. We used the optimizer Adam for gradients computing.
The training has also been conducted on the same machine.

The evaluation results of this experiment are presented in Table 5.1. We compare the
different metrics between the three trained models defined in Section 5.4, i.e. the spatial
metric MPJPE and the temporal metrics MPJVE and MPJAccE.

MPJPE (mm) MPJVE (mm/f) MPJAccE (mm/f2)
CVM-Net 142.47 4.35 1.99

CVM-Net∆ 100.62 3.22 1.33

Table 5.1 – Comparative results of motion reconstruction with Human3.6m [52] as bench-
mark.

Discussion

The results of these experiments show that the Laplacian loss impacts both the spatial
accuracy and the temporal coherence of the reconstructed motion. The improvement of
the results using the metrics on velocity and acceleration proves that this loss function
integrates the temporal connection between consecutive skeleton poses. With these results
we conclude that our Laplacian loss function is a good choice for training deep learning
solutions for HMR.

With the experiment to evaluate the efficiency of the Laplacian loss concluded, we
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are now proceeding to the development of a solution to compete with state-of-the-art
approaches.

5.5.2 State-of-the-Art Challenge

Here we present an alternative neural architecture to compete with state-of-the-art
solutions (STAR) for human pose estimation.

We decided to develop this neural network for usage in real-time application purpose.
For that reason, the model should be compact so that it can be deployed and run on
systems with low computing capacity. This type of model are often called lightweight
neural network. Generally, compact solutions have low efficiency compared to massive
neural network.

We choose to benchmark our model against three different STAR models: Pose-
former [140], AANet [17] and MotioNet [102]. The choice was made to cover the following
conditions:

— good accuracy in predicting the positions of the skeletal joints;
— good temporal consistency of the reconstructed motion;
— preservation of the skeletal structure over time in the motion sequence;
— and a variety of approaches (sequence-to-sequence, sequence-to-pose, etc.)
MotioNet [102] is a model designed to estimate an angular representation of the mo-

tion. From a sequence of 2D poses, the approach estimates both a skeletal representation
in the form of bone lengths and the changes of rotations angles (quaternions values). The
estimated values are combined through a forward kinematics method to obtain the rep-
resentation as a sequence of 3D poses. This method has the advantage of preserving the
skeletal structure in the motion sequence, and this is also the reason why we choose to
experiment with this.

The model AANet [17] uses a sequence-to-pose approach. The model is divided into
two neural networks. The first neural network estimates bone directions of the central
frame in the sequence while the second estimates 3D joint positions to derive the bone
lengths. Both data are then combined to generate the estimated 3D pose.

Finally, the model Poseformer [140] is a transformer-based neural network and one
of the best-performing models in the literature on both spatial and temporal levels. It
combines two transformer modules, one spatial that extracts high dimensional feature
embedding for each individual 2D pose, and one temporal that encodes dependencies
across the sequence of 2D poses.

58

3D motion reconstruction with deep learning methods : application to motor disabilities Mansour Tchenegnon 2024



5.5. Experiments and Results

Model Architecture

The solution we designed is a variational autoencoder (VAE) neural network. We chose
this type of architecture because it can compress high-dimensional data while keeping its
important features. It can also capture temporal dependencies in sequential data and is
suitable for reconstruction tasks [121].

The encoder takes a 2D poses sequence and outputs a latent code representation of
the pose at each frame. It uses temporal convolution with a sliding window of 9 frames,
meaning 9 consecutive frames are used to compute the latent code of a single frame (the
central frame). For videos with a frame rate of 50Hz (Human3.6m [52]), it corresponds
to 0.18s of motion to estimates the latent code of a targeted pose. The decoder is a
multi-layer perceptron that uses each latent code to generate the corresponding 3D pose.
Figure 5.10 shows an overview of the model architecture.

Figure 5.10 – Architecture of the motion reconstruction network based on variational
autoencoder.

Implementation details

We propose a light neural network for this motion reconstruction task. Compared to
the existing solutions that achieve STAR results, it has fewer parameters as shown in
Table 5.2. This model does not require a GPU to run, so it is easy to deploy. We designed
this solution for use on systems with low computing power.
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Model Number of parameters
Poseformer [140] 9,602,885 (9.60M)

AANet [17] 59,177,580 (59.17M)
MotioNet [102] 37,990,458 (37.99M)

Ours 218,615 (0.22M)

Table 5.2 – Comparison of model parameters.

Results

The evaluation session of our neural network is conducted with the different evaluation
metrics mentioned in section 5.4. The results are then compared to the evaluation of
solutions found in the literature. The following table 5.3 presents the comparative results.

MPJPE (mm) MPJVE (mm/f) MPJAccE (mm/f2)
MotioNet [102] 53.47 3.12 1.96

AANet [17] 44.63 2.64 2.21
PoseFormer [140] 30.72 1.28 0.76

Ours 88.14 3.22 0.98

Table 5.3 – Comparative results of motion reconstruction with Human3.6m as benchmark.

Discussion

The results obtained in this experiment lead to the following observations. First, our
solution does not achieve better results than the selected STAR solution on the MPJPE
metric related to the spatial accuracy. We may explain this with the simplicity and com-
pactness of our model which has very few parameters compared to the others. The tempo-
ral metrics on the other hand show some interesting results. The velocity error we achieve
remains in the scope of most of the STAR solutions. The acceleration error however shows
a greater performance of our model than most of the STAR methods. We explain this as
a result to the Laplacian loss function. Indeed, this loss function is based on Laplacian
modeling where temporal links are set to connect each frame t with the previous and the
next ones t− 1, t + 1. Note that motion acceleration at each instant t is computed be-
tween the three consecutive instants t− 1, t, t + 1. We can deduce that the representation
with Laplacian coordinates indirectly emphasizes the acceleration of motion. Therefore
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the Laplacian loss has greater impact on the acceleration than the velocity. As a result,
we outperform many STAR solutions on the acceleration metric.

5.6 Conclusion

In this chapter, we first presented deep learning methods and how they could be applied
in motion reconstruction tasks. We detailed the different steps from the formulation of
the problem to the design and training of the neural network solution. We also presented
the evaluation process of these solutions with the different metrics. Finally, we presented
a number of experiments we have carried out to determine a high-performance solution
for reconstructing motion from video. The first experiment aimed to study the impact
of the Laplacian loss function that we proposed to guide the optimization in training of
neural network model. In the second experiment, we proposed a compacted deep learning
solution trained with our loss function to compete with state-of-the-art solutions.

The ablation study on the Laplacian loss has proven its efficiency in improving the
spatial and temporal performance of neural network, compared to classical loss functions.
The second experiment allowed us to compete with state-of-the-art approaches. Through
these studies, we noted found that the acceleration in reconstructed motion was the feature
most affected due to the nature of the Laplacian modeling.

The result of our state-of-the-art challenge showed that to compete with recent ad-
vances in the highly competitive research field of human pose estimation, we needed to
experiment against other deep learning methods, in particular, methods with more param-
eters. In the remainder of our work, rather than continuing in improving this approach,
we decided to use the best-performing STAR models to proceed to the second step of
our methodology, that is improving the quality of motion while preserving the skeletal
structure throughout sequences of 3D poses. In particular, thanks to the Laplacian loss
function, we were able to confirm the effectiveness of Laplacian motion modeling. We also
noticed that most STAR methods did not perform well enough on the temporal aspect.
Therefore, we decided to improve the performance of existing STAR solutions, by apply-
ing a motion correction algorithm based on Laplacian modeling to the output of these
models.

In the next chapter, we will propose our motion correction model to improve the spatial
and temporal quality of motion estimated from video using HPE solutions.
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6.1 Introduction

Human motion data is widely used in many fields, including data-driven computer
animation, motion and behavior analysis, interaction and games. This data is usually
captured using optical systems with markers, mechanical or magnetic systems. However,
these systems are very expensive, time-consuming to process and sometimes require a
specific environment. For example, it is difficult to use a marker-based optical system in
the wild.

Marker-less motion capture using cameras is one solution to these difficulties. Motion
data is extracted from the outputs of RGB-D or monocular cameras. In this context, using
a single monocular camera is a more challenging task. With the advent of deep learning
techniques capable of learning from existing motion databases, the development of such
a single-camera solution is becoming increasingly promising. The aim is to estimate 3D
human poses from images or videos.

However, most current solutions do not achieve sufficient accuracy to replace tradi-
tional motion capture systems in certain application areas, such as avatar animation. In
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addition, these approaches, which rely on postural proximity between estimated poses
and ground truth, often overlook essential features of captured movements, such as tem-
poral and skeletal coherence. Although there have been a few attempts to improve the
temporal coherence of movement [125], or to preserve skeletal structure (even fewer ap-
proaches) [102], the proposed solutions generally focus on just one of these aspects.

Our previous reconstruction system manages to achieve good results on the temporal
aspect of motion, but the results on spatial accuracy are not up to the level of the most
recent solutions. In addition, all existing approaches have shortcomings with regard to the
temporal aspect of motion. We therefore decided to design a motion correction system to
complement 3D human pose estimation solutions so that 3D-reconstructed skeletal motion
retains good spatial accuracy of 3D posture, while improving the temporal qualities of
motion and preserving skeletal structure over time.

Our system is composed of:
— A fine-tuning motion module based on a Laplacian representation of motion in the

form of a 3D+t graph associated with a deep learning neural network. Using this
graph, motion is modeled by differential Laplacian coordinates that encapsulate the
spatial and temporal characteristics of motion. The deep learning neural network
refines this representation to correct the motion.

— A neural network that estimates bone lengths in a fixed way over time, enabling
consistent skeletal structure during movement.

— A combined correction module. This module combines the outputs of the two pre-
vious modules, namely the corrected Laplacian differential coordinates and the
corrected skeletal structure, to reconstruct motion with improved spatial and tem-
poral quality.

In addition to the correction system, we add to our contributions, a metric to assess
skeletal coherence in the reconstructed motion. It is an original skeleton-based metric to
verify whether the static representation of the skeleton is preserved in the reconstructed
motion over time.

Chapter outline. In this chapter, we will present these contributions and how they
are combined into a motion correction system MoCoSys. Then we will present evaluation
results of the motion correction system. Finally we will discuss about how to improve this
system in future work.
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6.2 Motion Correction System

Figure 6.1 – Motion Correction System. Top: correction pipeline. Performed in three
steps, starting with the 3D poses sequence estimated from the STAR solution EP . Bottom:
detailed correction steps. 1. Motion Fine-Tuning. The process C∆ transforms the sequence
of poses P into a graph, then into Laplacian differential coordinates ∆. These coordinates
are corrected into ∆′ using the neural network E∆. 2. Skeleton Constraints Computation.
Distance constraints Γ related to the skeletal structure are computed using the neural
network EB (to compute skeleton bone lengths B) and the gamma computational algo-
rithm CΓ. 3. Corrected Poses Computation. The corrected differential coordinates ∆′ and
the distance constraints Γ are used to compute the corrected sequence of 3D poses.

We introduce the motion correction system with the aim of i) improving the spatial
reconstruction of motion, with satisfactory temporal quality (motion fluidity) ii) minimiz-
ing the error made on the length of skeletal bones, and iii) ensuring that these bones have
an almost constant length throughout the motion sequence. Figure 6.1 shows the pipeline
of the approach. The top figure shows the overall architecture of our motion correction
system. The figure above details the various steps of this system. Our approach builds
on state-of-the-art (STAR) solutions for 3D human pose estimation from video, and then
corrects the motion, both temporally and spatially. Firstly, a 3D+t representation of the
motion [63], coupled with a deep learning approach, is used to estimate the differential
coordinates of the Laplacian (Motion Fine-Tuning module). The second step (Skeleton
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Constraints Computation module) adds distance constraints related to the skeleton struc-
ture. Finally, the third step (Corrected Poses Computation module) gives result to the
corrected sequence of 3D poses by combining the outputs of the two previous modules.

6.2.1 Step I: Motion Fine-Tuning

In this stage, our aim is to fine-tune the motion represented as a Laplacian graph
3D+t in order to improve the spatio-temporal features. First we convert the estimated
sequence of 3D poses P into Laplacian differential coordinates with the Delta Conversion
Unit C∆. Then, the neural network E∆ estimates corrected differential coordinates ∆′

which are then used in the final Corrected Poses Computation module.

Delta Conversion Unit C∆

This unit uses the discrete Laplacian operator corresponding to the 3D+t motion
graph to compute the differential coordinates ∆ of the skeleton joints as defined above.
For a sequence of T poses, each skeletal pose being composed of J joints, we have a total
of N = T · J joints in the graph G = (V, E = ES ∪ ET ). The adjacency matrix A of size
(N ×N) associated to the graph is defined by:

Aij =

1 if(i, j) ∈ (ES ∪ ET )

0 otherwise
(6.1)

Using the degree matrix D and the identity matrix I, we can compute a simple version
of L as:

L = I −D−1A (6.2)

Finally, the matrix ∆ of dimension (N × 3) of differential coordinates can be computed
as:

∆ = LP (6.3)

with P the stacked matrix of dimension (N×3) of the 3D coordinates of the graph joints.
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Neural Network E∆

This model consists of layers of neural networks that learn to correct motion in dif-
ferential coordinate space. We have chosen a network architecture based on graph convo-
lution [57], using the 3D+t graph structure of motion. This can be summarized by the
function:

∆′ = E∆(∆) (6.4)

Figure 6.2 illustrates the architecture of E∆.

Figure 6.2 – Learning Block E∆. It consists of a sequentially connected graph convolu-
tion neural network.

As it operates on the differential coordinates ∆, the learning block E∆ is trained to
minimize the associated loss. We call this loss the Laplacian loss [114]. It is defined as the
average distance between the corrected and actual differential coordinates according to:

L∆ = 1
N

N∑
1
∥∆gt −∆′∥ (6.5)

where N is the total number of joints, ∆gt is the matrix of the ground truth differential
coordinates, and ∆′ the matrix of corrected differential coordinates estimated by E∆.
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6.2.2 Step II: Skeleton Constraints Computation

The Laplacian differential coordinates ∆′ obtained in the first stage do not characterize
the skeletal structure of the 3D+t graph of motion in Euclidean space. Rather, they are
a local representation based on the distance of each joint from its direct neighbors in
Laplacian space. Therefore, to obtain the corrected graph in the form of 3D skeletal
poses from ∆′, we need constraints between joints related to human skeletal structure
expressed in Euclidean space. We start by estimating the lengths of the skeletal bones
(fixed distances between skeletal joints) using the neural network EB. We then compute
these skeletal constraints Γ through CΓ.

Neural Network EB

The neural network EB is in charge of estimating fixed lengths B for the skeleton bones.
These lengths are then used to define vector constraints between skeletal joints to ensure
consistency of skeletal structure throughout motion. Figure 6.3 shows the architecture of
the neural network EB. EB estimates the skeleton bone lengths B, taking into account

Figure 6.3 – EB Neural network architecture. It consists of convolution layers, grouped
into 3 blocks. The first block is a spatial encoder, the second a temporal encoder, and the
third one is a regression block that collapses the temporal axis. The output of this NN is
the static representation of the skeleton (bone lengths B).

the fact that symmetrical bones should have the same length. Table 6.1 presents in detail
the architecture of the model.

Gamma Computational Unit CΓ

We represent by Γ the differential vectors integrating the distance constraints between
the skeletal joints. The matrix Gamma of all the skeletal bone vectors is computed by
normalizing each vector to be corrected so that they all have the desired length (lengths
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Name Layers k s in/out
Spatial
Encoder

(Conv + ReLU + Drop)
(Conv + ReLU + Drop)

1
1

1
1

34/32
32/32

Temporal
Encoder

(Conv + ReLU + Drop)
(Conv + ReLU + Drop)

3
3

1
1

32/32
32/32

Regression
Block

(Batch Normalization +
Average Pooling +
Conv)

1 1 32/10

Table 6.1 – Detailed architecture of EB model. k represents the kernel size and s the
strides of the convolution. The input and output channels are also given. A skeleton of
17 joints is composed of 16 bones. If we consider symmetrical bones, we retain only 10
values.

obtained from the bone lengths B). The resulting vectors Γ are computed through the
Algorithm 1.

Algorithm 1 Algorithm to compute Γ
1: Data: P : Set of joint position coordinates from the motion
2: B: Dictionary of lengths for each skeleton bone
3: Results: Γ: Set of bone vectors with correct lengths
4: Γ← Set of all bone vectors computed from P ;
5:
6: for b ∈ Γ do
7: b← B[name(b)]. b

||b|| ▷ Corrects each bone vector to have the desired length
8: end for

We note Γ = CΓ(P, B).

6.2.3 Step III: Corrected Poses Computation

This final step of the correction system calculates the corrected motion in the form of
a sequence of 3D skeleton poses, by solving a constrained linear system using the results
of the previous steps.

Poses Regression

This module computes the new positional coordinates P ′ of the joints from the cor-
rected differential coordinates ∆′ computed in stage I and the distance constraints Γ
obtained in stage II. We obtain P ′ by solving the linear system represented by the matrix
equation LP ′ = ∆′. However, solving this linear system leads to an infinite number of
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solutions, some of which do not preserve the skeletal structure. As a solution to this issue,
we choose to over constrain this system. Two types of constraints are therefore considered.
Firstly, we introduce root position constraints to reduce the number of solutions due to
the translation-invariant property of the discrete Laplacian operator. We thus compute
the solution with a fixed root position (pelvis) for each skeleton in the sequence. Secondly,
to preserve skeletal structure, we define vector constraints between joints.

Root Position Constraints These constraints will ensure that the root of all the
skeletons are set to (0, 0, 0). Let VR ⊂ V the set of joints that represents the pelvis of
the skeletons within the sequence of poses and Vt ⊂ V the set of joints of skeleton St

(see 4.3.2). The constraints are defined as: p′
i = (0, 0, 0) if vi ∈ VR and vi ∈ Vt, 1 ≤ t ≤ T ,

where p′
i is the desired Cartesian coordinates of vertex vi. To integrate these constraints

into the above equation system, we add the constraint equation system UP ′ = R, in
which U is a sparse matrix that extracts the coordinates vectors of the root from P ′. It
is a matrix (T ×N) defined by:

Uti =

1 if vi ∈ VR and vi ∈ Vt

0 otherwise
(6.6)

The R matrix represents the values assigned to the root positions in P ′. It is a column
matrix of vectors (0, 0, 0).

Skeleton vector constraints To preserve the structure of each skeleton, we add vector
constraints on the bones composing the skeleton. Each constraint is defined as a vector
between two joints of the same skeleton, corresponding to the edges in ES. For each
(vi, vj) ∈ ES, we note γij = pi−pj, the directional vector between joints vi and vj. We have
a total of card(ES) vectors. We can stack them into a matrix Γ of size card(ES)×3. Let D

an operator that computes the vectors Γ from the coordinates P . D is a (card(ES)×N)
matrix defined as:

Dek =


1 if k = i

−1 if k = j

0 otherwise

(6.7)

with e = (vi, vj) ∈ ES.
Using the vectors obtained from the gamma computational unit CΓ, we have the

70

3D motion reconstruction with deep learning methods : application to motor disabilities Mansour Tchenegnon 2024



6.2. Motion Correction System

desired values for skeleton constraints. We can then define the constraints DP ′ = Γ.

Joint Position Computation Adding the above-mentioned constraints, we have the
final equation system to compute the joint positions:


L

U

D

P ′ =


∆′

R

Γ

 (6.8)

This system is an over-determined linear system and therefore requires a least-squares
approximation method for its resolution. To solve this system, we opted for Cholesky
factorization. The resulting solution vector is the sequence of corrected poses.

Note that the Cholesky decomposition matrix can be time-consuming if the sequence
is too large, or if we need to perform it for several sequences of different sizes. Therefore, to
optimize performance, the process is performed in sub-sequences using a fixed-size sliding
window.

Skeleton Adjustment

Cholesky factorization produces an approximate result that adjusts both the coordi-
nates of the Laplacian ∆′ and the constraints of the skeleton vector Γ. As a result, the
constraints of the skeleton structure are applied as soft constraints. To solve this issue,
we add an additional process that strongly enforces these constraints. From the previ-
ously obtained joint positions P ′ and skeleton bone lengths B, we compute new distance
constraints Γc = CΓ(P ′, B).

The final Pc coordinates of the joint positions are obtained by solving the following
system of linear equations: U

D

Pc =
R

Γc

 (6.9)

This linear system has the same number of equations and unknowns, and therefore a
unique solution.

6.2.4 Motion Correction System

The algorithm 2 summarizes the complete process of our approach.
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Algorithm 2 Motion Correction Algorithm
1: Data: I: Sequence of 2D joint positions
2:
3: Results: Pc: Sequence of corrected 3D poses
4:
5: P ← EP (I)
6: ▷ Step I: Motion Fine-Tuning
7: ∆← C∆(P )
8: ∆′ ← E∆(∆)
9: ▷ Step II: Gamma Computation

10: B ← EB(I)
11:
12: Γ← CΓ(P, B)
13: ▷ Step III: Corrected Poses Computation
14: ▷ i): Delta-Gamma Fitting
15: ▷ Compute P ′ from Cholesky Resolution

16:

L
U
D

P ′ =

∆′

R
Γ

 ▷ equation 6.8

17: ▷ ii): Skeleton Adjustment
18: Γc ← CΓ(P ′, B)
19: ▷ Compute Pc from Linear Resolution

20:

(
U
D

)
Pc =

(
R
Γc

)
▷ equation 6.9
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6.3 Experiments and Results

6.3.1 Additional Evaluation Metrics

In the process of correcting motion, we pointed out a requirement that needs to be
fulfilled, i.e., the consistence of the skeleton. To ensure that the skeleton is unchanged
through the motion sequence, we define a new metric, called the Skeleton Variation Error.
This metric, called SVE, is computed as the mean of standard deviations of bone lengths
over the motion sequence. Let us consider a motion composed of T frames. The following
formula gives the standard deviation of a bone b:

σb =

√√√√ 1
T

T∑
t=1

(db,t − µb)2 (6.10)

with db,t representing the length of the bone b of the skeleton at time t and µb the mean
length of bone b.

We then compute skeleton consistency metric as follows:

SV E = 1
card(B)

∑
b∈B

σb (6.11)

with B the set of bones of the skeleton. The closer this metric is to 0, the more consistent
the skeleton is within the reconstructed motion.

6.3.2 Quantitative Evaluation

Evaluation Methodology

Dataset We evaluate our approach with the well known dataset Human3.6M [52]. It
is a dataset of 3D human poses captured indoor with a marker-based motion capture
system. The data consists of 15 different daily actions executed by 11 professional actors
and recorded by 4 cameras. It contains 3.6 million captured video frames annotated with
3D positions and rotations (ground truth) at a frequency of 50 frames per second. In
line with the evaluation process for all related work, the training set contains data for 5
subjects (S1, S5, S6, S7 and S8) and the test set for 2 subjects (S9 and S11). All actions
are included in the sets.
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Experiments Details The experiments take place in two phases. In the first phase,
the neural networks for each correction step are trained as follows:

1. For the motion fine-tuning step, the E∆ neural network is trained to learn better
Laplacian representation of the 3D pose sequences estimated using the STAR esti-
mator. To avoid the experiment being biased by the efficiency of the estimator, we
choose one that does not perform best on either temporal or skeletal coherence. In
this experiment, we used Chen et al. [17] 3D pose estimator (AANet) to train E∆.
Algorithm 3 presents a pseudo code of the training process.

Algorithm 3 E∆ training process
1: Data: D: Training dataset
2: for n epochs do
3: for I, Pgt ∈ D do
4: P ← EP (I)
5: ∆← C∆(P )
6: ∆gt ← C∆(Pgt)
7: ∆′ ← E∆(∆)
8: l∆ ← L∆(∆′, ∆gt)
9: Compute gradients from l∆

10: Update weights of E∆
11: end for
12: end for

2. For the skeleton constraints computation step, the neural network EB, is trained
to estimate skeleton bone lengths from the 2D joint locations in the benchmark.
The skeleton bone lengths of the corresponding 3D poses are used as ground truth
for the supervised learning.

Finally, we conduct the evaluation of the whole correction system with the previously
trained neural networks. The validation process can then take place in two stages:

— a simple validation using the same STAR estimator as in the training session;
— a cross-validation where we replace the estimator with another STAR solution.
Each evaluation is performed on the whole test set of the Human3.6M dataset [52],

using as input the 2D ground truth. We compare the motion reconstructed by the STAR
estimator and the motion reconstructed after the correction steps.

We use three different STAR estimators to evaluate our correction system.
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Estimator AANet AANet [17] is the solution used to train the E∆ neural network of
the motion correction stage.

Metrics AANet [17] AANet [17] + Correction ∆ ∆%
MPJPE (mm) 44.63 44.88 ↑0.25 ↑0.87
MPJVE (mm/f) 2.64 2.27 ↓0.37 ↓ 14.01
MPJAccE (mm/f2) 2.21 1.00 ↓ 1.21 ↓ 54.75
MBLE (mm) 7.70 3.76 ↓ 3.94 ↓ 51.17
SVE (mm) 1.79 0 ↓ 1.79 ↓ 100

Table 6.2 – Results of the motion correction system with AANet [17].

Estimator MotioNet MotioNet [102] is a solution that ensures the skeletal consistency
of the reconstructed motion.

Metrics MotioNet [102] MotioNet [102] + Correc-
tion

∆ ∆%

MPJPE (mm) 53.47 52.85 ↓ 0.62 ↑ 1.15
MPJVE (mm/f) 3.12 2.73 ↓ 0.39 ↓ 12.50
MPJAccE (mm/f2) 1.96 1.22 ↓ 0.74 ↓ 37.75
MBLE (mm) 3.08 3.76 ↑ 0.68 ↑ 22.07
SVE (mm) 0 0 0 0

Table 6.3 – Results of the motion correction system with MotioNet [102].

Estimator PoseFormer PoseFormer [140] is a solution of the literature that achieves
excellent results in terms of both spatial accuracy and temporal consistency.

Metrics PoseFormer [140] PoseFormer [140] + Cor-
rection

∆ ∆%

MPJPE (mm) 30.72 29.71 ↓ 1.01 ↓ 5.24
MPJVE (mm/f) 1.28 1.34 ↑0.06 ↑ 0.78
MPJAccE (mm/f2) 0.76 0.76 0 0
MBLE (mm) 8.20 3.76 ↓ 4.44 ↓ 54.14
SVE (mm) 4.92 0 ↓ 4.92 ↓ 100

Table 6.4 – Results of the motion correction system with PoseFormer [140].
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6.3.3 Discussion

Spatial accuracy Our correction system does not degrade the error on the position
of the joints and sometimes even improves it a little. The MPJPE results show that our
system can be adapted to any STAR method chosen as the basis for 3D pose estimation.

Skeleton structure The lengths of the bones that characterize the skeletal structure of
the human should not change through the motion. In STAR methods, skeletal structure in
motion is generally neglected. The results show that our correction system guarantees that
this aspect is always verified (the SVE is always 0). Our correction system also reduces
the average error in bone length to 3.76 mm.

Temporal coherence The temporal aspects are also greatly improved compared to
the chosen state-of-the-art solutions. This is an important factor to take into account,
depending on the subsequent use of the reconstructed motion (whether motion analysis
or synthesis). The closer the acceleration and velocity errors (MPJAccE and MPJVE) are
to 0, the closer we come to the fluidity of the original motion.

Visual results In Figure 6.4, we can observe in more details some comparative results.
The acceleration and velocity curves show that the correction system improves the tem-
poral quality of motion. The acceleration curves display the most significant results with
the error curve closest to ground truth. The velocity curve is smoother, with variations
similar to the ground truth curve. These observations show that our corrected motion
achieves a smoothness very close to that of the ground truth. Furthermore, by observing
the curves related to variations in bone length, we can affirm that skeletal consistency has
been achieved and that bone lengths are closer to the ground truth.
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Figure 6.4 – Example of comparative results, action: walking. In green we have the ground
truth motion, in orange the motion from the STAR model AANet [17] and in blue the mo-
tion after correction. Top: we have the skeleton poses from the estimation, the correction
and the ground truth at different frames. Bottom: from left to right we have the velocity
curve, the acceleration curve and the average bone length curve. The different curves show
that using our correction system brings better quality results than the estimation.
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Figure 6.5 – Additional comparative results, action: phoning.

Figure 6.6 – Additional comparative results, action: discussion.
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6.3.4 Ablation Study on MoCoSys

In this study we explore the impact of the correction process. We specifically study
the impact of the skeleton adjustment process in the corrected poses computation step.
We use as baseline a STAR method, and observe the results obtained after the correction
process. Table 6.5 shows the results of the study with three different baselines. These
results show that the correction module achieves the objectives assigned to it.

MPJPE
(mm)

MPJVE
(mm/s)

MPJAccE
(mm/s2)

MBLE
(mm)

SVE
(mm)

Baseline 44.63 2.64 2.21 7.70 1.79
Baseline + Correction(PR) 44.78 2.28 1.02 7.99 2.56
Baseline + Correction(PR +
SA)

44.88 2.27 1.00 3.76 0

(a) Baseline = AANet [17]
MPJPE
(mm)

MPJVE
(mm/s)

MPJAccE
(mm/s2)

MBLE
(mm)

SVE
(mm)

Baseline 30.72 1.28 0.76 8.20 4.92
Baseline + Correction(PR) 31.58 1.33 0.76 8.56 5.06
Baseline + Correction(PR +
SA)

29.71 1.34 0.76 3.76 0

(b) Baseline = PoseFormer [140]
MPJPE
(mm)

MPJVE
(mm/s)

MPJAccE
(mm/s2)

MBLE
(mm)

SVE
(mm)

Baseline 53.47 3.12 1.96 3.08 0
Baseline + Correction(PR) 52.61 2.72 1.22 4.57 2.49
Baseline + Correction(PR +
SA)

52.85 2.73 1.22 3.76 0

(c) Baseline = MotioNet [102]

Table 6.5 – Ablation study. We explore the impact of the skeleton reinforcement step. (a),
(b) and (c) use different baselines. PR=Poses Regression, SA=Skeleton Adjustment. The
correction system produces good results whatever the baseline.

The motion correction system significantly improves temporal metrics, as shown by
the reduction in MPJVE and MPJAccE errors (respectively for velocity and acceleration),
while showing little or no degradation in MPJPE.
With the skeleton adjustment operation, the correction reduces the error on bone
lengths (MBLE) to 3.76 mm, which is better than almost all existing solutions. The
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skeleton variation error SV E is also reduced to approximately 0, showing that the skeletal
structure is preserved.
We can conclude that our motion correction system significantly improves 3D motion
reconstruction. Indeed, the average error on bone length is reduced, skeletal structure is
preserved over time thanks to the skeletal correction module, and errors on velocity and
acceleration are reduced thanks to our 3D+t fine-tuning module.

6.4 Conclusion

In this chapter we presented a system for motion correction based on deep learning
applied on a 3D+t Laplacian modeling of motion. The system is used in conjunction with
an existing method for estimating 3D pose from video. It improves 3D pose estimation and
motion quality by preserving skeletal structure and enhancing temporal smoothness. The
system consists of two deep neural networks. The first neural network estimates the static
features of the skeleton, namely the bone lengths. The second neural network works on
the Laplacian representation of the estimated movement to correct the local deformation
in time and space of each joint. Finally the system uses both the estimated skeleton model
and the corrected Laplacian representation to reconstruct a smoother, less noisy motion.
Thanks to our approach, the captured motion meet the requirements of a wider range of
data-driven applications, particularly those involving motion synthesis.

There are some limitations to the method and we have some ideas for improvement.
Our current system is based on an intermediate step of estimating 2D joint positions before
estimating skeletal bone lengths. As a result, estimation errors accumulate. In future work,
we aim first to improve and generalize the estimation of skeletal bone lengths by using
a neural network that directly estimates skeletal structure from video. Secondly, in the
motion correction process, the unique solution of the linear system is obtained thanks
to the Γ vector constraints on the skeletal structure, calculated from the estimated 3D
poses. We intend to find new ways of computing the graph representation from differential
coordinates without depending on estimated 3D poses, probably by learning Γ through
deep learning, directly from video or 2D joint positions, or by defining prior information
on skeletal structure.
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HANDI-MOTION: A DATABASE OF

MOTIONS FROM PEOPLE IN MOTOR

DISABILITY STATE
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7.1 Introduction

In recent years, the perception of disability and the attention given to people in defi-
ciency situation has considerably evolved, opening the way to new disciplines. Numerous
researchers and engineers, in collaboration with healthcare professionals, are now involved
in the development of technologies designed to facilitate the autonomy and improve the
living conditions of people with disabilities. In this work, we are specifically interested in
applications related to people with motor deficiencies that their movements and require
the use of a mobile wheelchair [54, 27].

Many applications related to human motion are based on methods and tools that rely
on the use of data. However, despite current technologies and methods, collecting motion
data from wheelchair users remains difficult to realize. As a result, in clinical practice,
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human motion analysis is mainly limited to quantified gait analysis (QGA) to meet the
needs of different audiences [25, 31].

The best solution to collect motion data is to use motion capture systems (MoCap) for
highly precise capture. But, these systems are sometimes restrictive and require recording
conditions that are difficult for wheelchair users to satisfy. For example, with marker-
based capture systems, it is difficult to obtain a reference pose, usually the standing
T-pose, which enables post-processing operations required to obtain clean and consistent
data.

Video-based motion reconstruction techniques are relatively imprecise and present a
number of problems, including occlusion problems due to the small number of cameras
used. In addition, most of these techniques require the use of existing motion data to train
AI models before using them. However, such data is not currently available.

Despite the difficulties encountered when using traditional MoCap systems, we sought
a compromise that would make the use of these systems possible. To this end, we chose
to capture the movements of participants with mild disabilities who were able to stand
up for a few seconds. With such participants, it becomes possible to perform calibration,
which facilitates the post-processing of the captured data.

Our aim is to propose a corpus of movement data to enable the development of ap-
plications related to motor disability. More specifically, we aim to build a MoCap corpus
that will then be extended by synthesis to train artificial intelligence models. The ultimate
goal is to automatically reconstruct the movements of wheelchair users in a variety of en-
vironments, particularly in the context of home care. This makes it possible to implement
automatic supervision applications, requiring action recognition and anomaly detection,
such as fall or inactivity detection. In the context of motor rehabilitation, semi-automatic
supervision can also be envisaged, in particular for analyzing and interpreting data and
facilitating therapeutic diagnosis, in order to assess the motor capacities of people in hand-
icap situations. In the same context, we could also mention applications for tele-education,
assessment of independence levels or analysis of functional gestures. Our research into the
analysis and synthesis of movements aims to meet these different objectives.

This chapter presents Handi-Motion, a Motion Capture corpus defined for motion
from people with physical disabilities. In section 7.2, we describe the motivations and the
content of this corpus. Section 7.3 presents the protocol we followed to acquire the data
while section 7.4 explains the format of the captured data. Finally, section 7.6 presents
an experiment we realize on this database in line with the original purpose of this thesis.
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7.2 Corpus Definition

Large Motion Capture databases cover a large variety of motion categories. But even
those databases can cover neither all motion categories nor all possible actions related
to one category. This is due to the time and resources needed to acquire motion data
with traditional MoCap systems. Therefore, for each database, a data corpus is defined
to detail a range of motion to cover. For example, the Fit3D database [36] specifically
targets motion data related to physical and fitness exercises.

The corpus definition specifies not only the objectives and needs that motivate the
construction of a database but also details the content of the database.

Our corpus concerns movements from motor disability situations. We especially target
disabilities that require the use of a wheelchair. We based our selection in a situation of
home care, with reference to internationally recognized classifications and models in this
field, notably those of the ICF (International Classification of Functioning, Disability and
Health) [109, 108].

7.2.1 Motivations

There are 4 reasons for designing this data corpus.
Our primary motivation is to have data available to train artificial intelligence (AI)

models for motion reconstruction, as well as action detection and recognition. These mod-
els will be used to support home monitoring systems in connected apartments for people
with disabilities. The information gathered by these systems will be used to analyze daily
activities in order to improve living conditions in these apartments.

Secondly, some actions are performed differently according to the type of disability.
With different disabilities, there is a wide variety of gestures that can be obtained for a
single action. Through this corpus, we aim to identify and analyze the differences that
may arise in the execution of different actions. This will help to study the impact these
differences have on AI models for action recognition and to test their robustness.

Thirdly, traditional motion capture methods are difficult to use for wheelchair users.
These methods often impose constraints that are difficult to meet in situations of motor
disability, such as the need to fit special suits or tools, the need to stand in a T-posture
(standing, with arms straight, forming the letter T) for calibrating the systems, and
many others. For optical capture with markers, there are also problems of occlusion due
to the presence of the chair. All these constraints can make data post-processing long
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and tedious, depending on the technology used and the type of action performed. Finally,
using these systems requires technical skills that are difficult to acquire and test in a
clinical setting. For all these reasons, the creation of the Handi-Motion corpus enables
experimentation with new AI methods for motion reconstruction from RGB video (and
by extension RGB-D), which are a priori less restrictive than MoCap methods and easier to
exploit. In particular, these AI models will be used to set up real-time motion tracking and
recording systems, facilitating clinical practice where professionals work in limited time.
Indeed, one of our objectives is to be able to generate videos of movement in situations
of disability from the MoCap data in this corpus. These will be used to train AI models
for motion reconstruction.

Finally, this data corpus will, like any existing one, be a source for avatar synthesis
and animation, motion analysis and many other motion data-driven applications.

7.2.2 Content of the Corpus

The prerequisite before capturing motion data is to define what categories of motion
to capture based on one’s need. For that, we worked in collaboration with professionals
(home occupational therapists, engineers specializing in technological assistance and smart
home) using a methodology comprising the following stages:

1. Review of ICF (International Classification of Functioning) items ;

2. Focus group and interviews with experts to select items/scenarios related to move-
ment and home;

3. Prioritization of items/scenarios based on the analysis capabilities of generic video
capture systems and the issues identified in the scientific literature in the field.

We first identified a list of actions related to the use of a mobile wheelchair. As our
primary aim is building AI models for home monitoring, we selected a number of actions
that govern daily life, grouped into three classes.

— Mobility. This category covers all wheelchair-related actions for moving around,
including the following : move forward, backward, turn (left or right), turn around,
stop ;

— Daily gestures. In this category are listed daily actions executed by mobile
wheelchair user among which: grasping/dropping/throwing an object, stretching,
opening specific objects (boxes), opening a door, eating, drinking, putting on shoes,
putting on clothes, doing push-ups ;
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— Transfer. These are specific actions that consist of leaving the wheelchair for either
sitting on a chair or lying down in bed and vice versa. We list: bed-wheelchair
transfer, wheelchair-chair transfer.

Combining these actions, we wrote a total of 12 scenarios of motion that will serve as
a guiding line during the data acquisition sessions. They are the following:

1. Drink a glass of water : (1) open a high cupboard on the left-hand side; (2) pick
up a glass and put it on the table in front of you; (3) help yourself to a drink from
a carafe on the right-hand side of the table; (4) bring the glass to your mouth and
drink.

2. Changing posture in the wheelchair: (1) do a wheelchair push-up (5 seconds);
do some stretches.

3. Cutting a food item : (1) pick up a food item (ex: a banana, on the right-hand
side of the table); (2) put the food item in the cutting board in front of you; (3)
pick up a knife (right-hand side of the table) and cut the food item; (4) pick up
the cut ends of food with your hands and put them on a plate (left-hand side of
the table).

4. Help yourself to food : (1) pick up the cutlery and place them on either side of
the plate in front of you; (2) take the salad bowl on the right of the plate in front
of you; (3) serve some salad on the plate; (3) pick the cutlery and cut the salad;
(4) prick some salad with the fork and bring the fork to your mouth.

5. Brushing your teeth: (1) move to the front of the sink; (2) grab the toothbrush
and toothpaste (placed at the back of the sink); (3) apply some toothpaste to
toothbrush; (4) brush your teeth ; (5) rinse your mouth with a glass of water
(placed to the left of the sink).

6. Pick up a pencil : (1) remove the brakes of the wheelchair; (2) move a little
forward; (3) turn to the right; (4) stop and put on the brakes; pick up the pencil
on the ground.

7. Wear a jacket: (1) move forward to the front of the closet; (2) open the closet
while moving a little backward; (3) pick a jacket in the closet; (4) put on jacket
and zip up; (5) wait; (6) zip down and take off the jacket.

8. Go to bed : (1) move from the wheelchair to the bed; (2) lie down on your back;
(3) turn to lie down on your right side; (4) wait; (5) turn back to lie down on your
back; (6) wait; (7) position yourself correctly in the bed using the support arm.
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9. Having breakfast : (1) move toward the work plan in the kitchen; (2) take two
slices of bread and put it in the toaster; (3) activate the toaster; (4) wait; (5)
remove the bread and put it on your knees; (6) turn around and move back to the
dining table; (7) put the bread on the table, (8) pick a knife and spread the butter
on the bread; (9) open jam pot and spread jam on bread.

10. Getting up in the morning : (1) transfer from bed to wheelchair; (2) remove
the brakes and move forward; (3) turn off the light by flipping the switch; (4) open
the door in front; (5) move backward while closing the door; (6) turn around and
move forward.

11. Fall simulation: Perform various fall scenes. (Performed only by APAS -Adapted
Physical Activity or Sport- students among the actors)

12. Free scene: Participants are free to performed actions they want. The purpose of
this scenario is to record natural movements without constraints.

7.3 Data Acquisition

Once the data corpus had been defined, it was necessary to find a rigorous protocol
for carrying out the capture. This protocol took into account the technical parameters,
which included all aspects relating to the equipment to be used. We also had to consider
solutions for capturing the movements of a sufficient number of participants, given the
constraints associated with MoCap.

7.3.1 Technical Parameters

Data acquisition was carried out using traditional capture methods. We opted for
marker-based optical capture and chose the Optitrack-Motive system. Infrared cameras are
used to locate the various markers. The marker information is then used to reconstruct the
movement. The technical parameters therefore take into account the capture environment
as well as the choice of a set of markers to be positioned on the body.

Motion Capture Room

The movements in the corpus require sufficient space to facilitate wheelchair move-
ments. The capture sessions took place in a gymnasium equipped with the Optitrack
system. The room was about 100 m2 in size and housed 18 MoCap cameras. Figure 7.1
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shows the dimensions of the room and the positioning of the MoCap cameras. The cam-
eras capture at a frequency of 120 fps with an accuracy down to 0.45mm after calibration.

Figure 7.1 – MoCap Room.

Marker Set

For this motion capture, we used the pair Optitrack-Motive which is a marker-based
motion capture system using passive markers attached to the dedicated suit worn by the
actor. In order to obtain the best recordings, it is imperative to define a marker set,
meaning the number of markers to use and their respective positions on the body. We
used for this MoCap database a set of 49 markers arranged on the body as shown in
Figure 7.2.

7.3.2 Participants

The ideal protocol for acquiring these data would be to capture only those people
who are truly motor-impaired. However, the settings required by the MoCap technology
make it difficult for them to be recorded. In fact, the system needs a calibration step
where the actor is asked to stand in T-Pose for a certain period, at best 5 seconds if
the pose is correctly executed. This step is not easily achievable for everyone with motor
difficulties. The capture was therefore carried out on 8 participants, 3 of whom were in
real situations of motor impairment, the other 5 simulating the scenarios. There are 2
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Figure 7.2 – Marker set used and rendering previews in the capture software.

women and 1 man among the participants in real disability situation. We selected among
the simulation participants, 2 students from the field APAH (Adapted Physical Activity
and Health) that, unlike the other participants, can performs fall scenarios. More details
on the participants are given in Table 7.1.

Handicap Actors Total
Men 1 2 3

Women 2 3 5
Total 3 5 8

Table 7.1 – Details on captured participants.

7.4 Recorded Data

The recorded data were captured from the 8 participants previously described, follow-
ing the 12 scenarios. Each scenario was executed 1 or 2 times. Following the recordings,
the data were post-processed with the Motive software.
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We managed to obtain approximately 115 minutes of recording at a sampling rate
of 120 Hz. Two types of data were saved after the post-processing: raw data and skeleton
data.

7.4.1 Raw Data

Raw data represent recordings of the markers’ 3D positions as tracked and captured
by the cameras of the Optitrack system, subsequently labeled and post-processed in the
Motive software.

7.4.2 Skeleton Data

Skeletal data represents motion captured according to the skeletal structure of the
body reconstructed from marker positions. Indeed, as shown in Figure 7.2, it is possible
to use the position of the markers to determine the positions of the rigid segments as well
as the joints connecting these segments (using for example inverse kinematics). The data
for these rigid bodies is tree-structured to represent the skeleton’s joint angles and bone
lengths. This representation can be exported in FBX or BVH formats, specially designed
to store motion data for use in data-driven animations.

7.5 Animation of Virtual Characters for Handi-Motion
Database Generation

In order to experiment motion reconstruction with AI models on movements in disabil-
ity situations, we have chosen to generate video data on which we can run the models. Our
approach uses the motion data we previously recorded with the MoCap system to animate
avatars in a virtual environment, and then to synthesize videos from the animations.

We propose to generate these videos in Unity Development Platform where we cre-
ate a virtual environment and animate characters. This synthesis approach has many
advantages:

— As the environment is virtual, the recording setting can be customized at will.
In particular, it is easy to add the desired number of video cameras to capture
different angles of view of the motion. Figure 7.3 shows the layout plan of the
virtual room.
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Figure 7.3 – Layout of the virtual environment.
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— No post-processing is needed to extract motion data. The extraction can be au-
tomatically performed using a script that is executed while an animation is being
played. Given that positions and rotations about objects in the scene (including
virtual characters) are known in the platform, the script can simultaneously record
videos and extract skeleton data.

— It is possible to change the back scene in order to have videos in different environ-
ments (See Figure 7.4).

Figure 7.4 – Examples of different back scenes.

— It is also possible to change the virtual character in order to have a variety of
morphologies (men, women, tall, short, slim, overweight, etc.). An overview of this
aspect is presented in Figure 7.5.

Before proceeding to database generation, we verified that the captured movements
were performed without any problem by the virtual characters. We also added a wheelchair
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Figure 7.5 – Some of our virtual characters.
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7.5. Animation of Virtual Characters for Handi-Motion Database Generation

(free model available online) and approximately synchronized interactions of the virtual
character with it as they have been created as two independent elements in the scene. We
faced some difficulties in this synchronization:

— The size and the position of the wheelchair had to be adjusted to match the
morphology of the avatar. This action had to be made for each avatar and for
each animation.

— During the recording of the MoCap data, we recorded the movements of the
wheelchair with some markers (4 placed on the back of the seat, and 3 on each
wheel’s spokes). However, the animation obtained from that (animation of an ob-
ject with 3 rigid bodies) had to be modified to match the structure of the wheelchair
in the virtual environment.

Database Generation

We generated our database by extracting different data from the animations played in
the virtual environment. The database contains sets of videos recordings and synchronized
2D/3D skeletal postures.

We performed an automatic extraction of data using a script that runs when an
animation is played. Through this script, we produced video data using the cameras in
the scene while simultaneously extracting 2D and 3D skeletal postures. To ensure that the
videos and skeletal postures are synchronized, we record at each frame of the animation
the following data:

1. images of the scene seen by all cameras. With the 8 cameras, we have 8 different
images (different viewpoints).

2. the 3D skeletal posture of the character, represented as the set of 3D position
coordinates of all joints {{p}1, {p}2, . . . {p}j} with j the number of joints and {p} =
[x, y, z]. This data serves as ground truth data.

3. 2D skeletal postures, one for each camera, by projecting the 3D skeletal posture on
their respective screen. This produces a set of 2D pixel locations of each joint,
representing the ground truth of 2D skeletal postures for images produced by
each camera. With 8 cameras we have 8 sets of 2D joint locations defined by
{{p}1, {p}2, . . . {p}j} with j the number of joints and {p} = [x, y].

Synchronized skeletal postures and videos are generated by gathering respectively skeletal
postures and images in chronological order. For every animation, the generation produces
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8 sequences of 2D skeletal postures, 8 videos (sequences of images), and the corresponding
sequence of 3D skeletal postures (Figure 7.6).

For the experiment described below, we use our Handi-Motion database which con-
tains 60,112 video frames (7,514 per camera), with the corresponding 60,112 2D skeletal
postures and 7,514 3D skeletal postures.
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7.5. Animation of Virtual Characters for Handi-Motion Database Generation

Figure 7.6 – Generation of database content. Representation of data generated for each
animation. Left: the sequences of images produced by the 8 cameras (1 row = 1 camera).
Middle: Sequences of 2D skeletal postures for each of the 8 cameras. Right: Corresponding
sequence of 3D skeletal postures.
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7.6 Experiments with Deep Learning

The experiments presented here are realized on the Handi-Motion database of ani-
mated videos previously presented. We want to test the efficiency of solutions that we
presented in Chapter 6, trained on the massive database Human3.6m.

Our motion reconstruction solution consists of i) estimating a sequence of 3D skeletal
postures from a sequence of 2D poses (using a STAR estimator), then ii) reconstructing
the motion with our correction algorithm. The full process is presented in Figure 7.7 and,
as shown in the figure, we reconstruct motion from a sequence of 2D poses previously
estimated from the video. Therefore, in our experiment presented in this section, we
reconstruct motion in 3D from ground truth (GT) sequences of 2D poses.

Figure 7.7 – Pipeline of the motion reconstruction solution.

Figure 7.8 shows the context in which the experiment is conducted. In this context,
we used the reconstruction models that where originally trained with the database Hu-
man3.6m. We evaluate the performance of these models on Handi-Motion database. The
criteria of evaluation consist of the performance on spatial accuracy and temporal con-
sistency with metrics on joint positions (MPJPE), velocity (MPJVE), acceleration (MP-
JAccE), as well as bone lengths (MBLE). We also evaluate the skeletal consistency in
the reconstruction process with the metrics SVE proposed in Chapter 6. We present the
results obtained using the STAR models previously defined, namely PoseFormer [140],
MotioNet [102], and AANet [17] for the estimation of sequences of 3D poses.

Two experimentation results are presented. Firstly, we present evaluation results for
each model on the database while comparing results of 3D poses estimation and 3D poses
estimation with motion correction. Secondly, we compare the performance of the pipeline
(3D poses estimation + correction) on Human3.6m database with that on Handi-Motion
database.
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Figure 7.8 – Context of experimentation. Models are trained on part of Human3.6m
database. Evaluations are performed on the remaining part of Human3.6m database and
Handi-Motion database.
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7.6.1 Comparative Results with Motion Correction

MPJPE MPJVE MPJAccE MBLE SVE
STAR model 125.21 5.47 2.3 34.69 0

STAR model + Correction 124.11 5.31 2.07 36.54 0
(a) Results with MotioNet [102]

MPJPE MPJVE MPJAccE MBLE SVE
STAR model 91.72 3.3 1.39 31.85 8.41

STAR model + Correction 91.71 3.44 1.39 36.54 0

(b) Results with PoseFormer [140]
MPJPE MPJVE MPJAccE MBLE SVE

STAR model 80.24 3.88 1.77 33.38 2.29
STAR model + Correction 83.12 3.94 1.64 36.54 0

(c) Results with AANet [17]

Table 7.2 – Quantitative results of motion reconstruction on Handi-Motion database.
Errors are in mm.

In Table 7.2, we present the results on evaluation of the STAR models before and
after motion correction to prove that our algorithm improves the quality of the recon-
struction. The results obtained in this experiment are similar to those of the ablation
study in Chapter 6. The motion correction system mostly improves temporal metrics,
as shown by the reduction in velocity and acceleration errors (respectively MPJVE and
MPJAccE metrics), while showing little improvement in MPJPE (except for the STAR
model AANet [17]). The results are more noticeable on the acceleration descriptor for
which there is improvement regardless of the STAR model used. There is a little improve-
ment on the velocity for the model MotioNet [102] but a slight increase in error for the
others. Bone length errors (MBLE), contrary to previous results, increase slightly after
correction but are still in the same order of magnitude. As these errors are related to
the neural network that estimates bone lengths, improving this model later will produce
better results.

7.6.2 Comparative Results between Databases

Here we compare the results of our complete reconstruction pipeline (3D estimation +
correction) obtained on the original database (Human3.6m [52]) that was used to train the
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neural network models, with the results obtained when using these same models on the
database Handi-Motion. Comparative results are presented in Table 7.3, while Figure 7.9
and Figure 7.10 show examples of visualization.

Database MPJPE MPJVE MPJAccE MBLE
Human3.6m [52] 52.85 2.73 1.22 3.76
Handi-Motion 124.11 5.31 2.07 36.54

(a) MotioNet [102]
Database MPJPE MPJVE MPJAccE MBLE

Human3.6m [52] 29.71 1.34 0.76 3.76
Handi-Motion 91.71 3.44 1.39 36.54

(b) PoseFormer [140]
Database MPJPE MPJVE MPJAccE MBLE

Human3.6m [52] 44.63 2.27 1.00 3.76
Handi-Motion 83.12 3.94 1.64 36.54

(c) AANet [17]

Table 7.3 – Quantitative results of the motion reconstruction pipeline (3D pose estimation
+ correction) on our Handi-Motion database compared to Human3.6m [52].

As may be seen from the results in Table 7.3, the reconstruction on our new database
is less accurate on joint positions, approximately 2-3 times. The temporal quality of re-
constructed motions is reduced as well.

These results are induced by significant errors of more than 3cm in estimating bone
lengths, i.e. 10 times the errors on Human3.6m dataset. An observation of visual results
in Figure 7.9 confirms this interpretation. The main reason for this increase in errors
lies in the differences between the two databases, Human3.6m and Hand-Motion, due to
the different environments in which the videos were recorded. This includes the distance
between the camera and the MoCap actor. We were able to verify this by computing a
scale factor between the 3D skeletal structure of people in Human3.6m database and in our
Handi-Motion database. We found that the scaling factor is approximately 1.005, meaning
that the skeletal structures are similar, therefore these errors come from 2D information
(video). To further confirm our hypothesis, we analyzed results obtained when moving
the cameras closer to or further from the virtual character for the same movement. We
observed that error on bone lengths varies accordingly.

In addition, after visualizing the reconstructed movements, we found that gestures
are half-executed, i.e. the model is not able to reproduce complete gestures accurately.
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For example, arms are halfway stretched when they should be completely stretched, or
halfway bent when they should be fully bent. This greatly impacts both the temporal
factors (velocity and acceleration) and the spatial accuracy. This can be explained by
the difference between the two databases (Human3.6m and Handi-Motion) in terms of
categories of movements. Indeed, models were previously trained and evaluated with 2
sets of data from the same database, and so, with movements of the same categories. As
a result, their performance is not reflected in the same way when it comes to movements
of new categories.

The visualization in Figure 7.9 shows that the system still manages to reconstruct
skeletal postures that tend to follow the original movement, even if not accurately.

From these results, we can conclude that existing DL solutions for motion reconstruc-
tion are relatively dependent on the database on which they were trained, which reduces
their generative capacity. In other words, their performance is reduced on databases dif-
ferent from their training database.
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Figure 7.9 – First example of visual results. In blue the original pose and in red the
reconstructed pose. Back View Camera.
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Figure 7.10 – Second example of visual results. In blue the original pose and in red the
reconstructed pose. Front View Camera.
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7.7 Conclusion

In this chapter, we first presented our new Handi-Motion database containing motion
from people with disabilities. We then experimented our motion reconstruction models
on these data.

To overcome the lack of data on motor disability movements, we decided to build
our own database. We first captured and recorded data using an optical MoCap systems.
In order to augment our data and to experiment motion reconstruction from video with
AI models, we generated animated videos from the 3D captured motions with Unity
Development Platform. An experimental version of the generation process shows that the
virtual characters perform without difficulties the captured motion. We also manage to
add a wheelchair to the scene and synchronized it with the position of the character.

We tested our previously developed motion reconstruction models on the generated
videos. The reconstruction models that were trained with the database Human3.6m [52])
achieved at best an accuracy approximately 2 times less well on our Handi-Motion database.
Although they were not highly accurate, they managed to recover a visually acceptable
motion. This confirms that our approach to generate a database of movements in disabil-
ity situations is needed in order to design adapted AI models for motion reconstruction
from video when developing related applications.

During our experiments, it was possible to fine-tune our existing models on the Handi-
Motion database, that is, to retrain them with data from this database. However, we chose
not to do so for the time being because we believed that fine-tuning the models will most
likely yield better evaluation results, in particular the neural network for bone length
estimation whose improvement will definitely increase the accuracy of the reconstruction
system. Indeed, we wanted to focus first on the efficiency of our motion reconstruction
method on new data, especially the motion correction system. Moreover, fine-tuning a
model does not guarantee that the models will have better generative capacity as it may
be over-fitted on the new data. Fine-tuning experiments will be carried out in future work.

There is still work to be done on this database. We plan to carry out a perceptual
evaluation of the animated videos to validate this database. Before that, we need to
improve the quality of the virtual character, as well as the animation of the wheelchair
(better synchronization with the character, wheels that turn according to the movement).
We then want to evaluate the movements from these videos in terms of their degree
of naturalness. We also intend to carry out an analytical comparison between motion

105

3D motion reconstruction with deep learning methods : application to motor disabilities Mansour Tchenegnon 2024



Part III, Chapter 7 – Handi-Motion: A Database of Motions from People in Motor Disability
State

originally rendered by the MoCap system and those performed by the virtual character.
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Chapter 8

CONCLUSION
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8.1 Contributions

The goal of this thesis was to propose solutions to the problem of 3D motion re-
construction from videos in complex situations. More specifically, our objective was to
propose an alternative solution to motion capture systems which are difficult to use in
case of motor disability. We thus provided the basis for designing tools for applications
that improve the daily lives of disabled people. We proposed to use deep learning methods
from Computer Vision in the context of human pose estimation from images, to produce
motion data that can be used for various tasks such as motion analysis, synthesis, etc.
Therefore, we needed to reconstruct motion as a sequence of postures with the following
characteristics: a good spatial accuracy while maintaining a stable skeletal structure and
ensuring the temporal continuity between the postures.

We addressed this issue with two goals: motion reconstruction from video in general
and its use in the specific case of motor disability movements. For motion reconstruction,
we proposed a 2-steps approach that consists of (i) estimating motion as a sequence of 3D
skeletal postures, (ii) reconstructing motion of better quality with a correction algorithm.
For the specific case of motor disability, we experimented our motion reconstruction solu-
tion on a database that we designed and recorded in real and simulated motor disability
conditions.
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Motion reconstruction from video with Deep Learning

Existing work on motion reconstruction from video using deep learning techniques
started with human pose estimation. In this field, motion is represented as a sequence
of postures of the human skeleton, each posture being defined as a set of positions of
the skeletal joints. Methods for motion reconstruction from video generally comes from
Computer Vision. After studying various approaches, we decided to learn how to transform
a sequence of 2D postures into a sequence of 3D postures using deep learning techniques
on sequential data such as recurrent neural networks or temporal convolution networks.
The whole reconstruction process would normally consist in estimating 2D postures from
video, then transform them into 3D postures. But, thanks to the great performances
achieved in 2D pose estimation, we decided to focus on the transformation of skeletal
postures from 2D to 3D. We can use existing 2D pose estimator in the reconstruction
process from video.

Our first experiments on neural architectures, aiming at learning the transformation
of a sequence of 2D postures into a sequence of 3D postures by exploiting temporal
convolution, followed the traditional approach used in computer vision, with a learning
process based on minimizing spatial errors in joint positions. However, we found that
this was not sufficient to guarantee the quality of the reconstructed movement, and in
particular this did not respect temporal consistency.

Therefore, we decided to jointly learn a spatiotemporal representation of the motion.
To this end, we chose to represent the motion as a spatiotemporal graph 3D+t that
connects the skeletal postures. We then applied the discrete Laplacian operator on the
graph to extract Laplacian coordinates that encode spatial and temporal relations at each
joint level. From this representation, we defined the Laplacian Loss function to train the
neural network. We proved that training a DNN with a combination of both the joint
positions loss and the Laplacian Loss, improves the quality of the reconstructed motion.

Following the results of this first experiment, and with the goal of preparing for real-
time usage of a motion reconstruction system from video, we designed a lightweight neural
network for sequence-to-sequence poses estimation.

Subsequently, we designed the second part of our methodology, which aims to recon-
struct better quality movements from estimated sequences of poses. We found that none
of the existing approaches was able to achieve results in all aspects of motion quality,
including spatial accuracy, temporal consistency and preservation of skeletal structure.

We have therefore proposed a motion correction system MoCoSys that complements
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existing solutions on the aspects where they are lacking. This system uses DL techniques
in Laplacian coordinates space to improve the spatiotemporal quality of the sequence
of postures. At the same time, it uses an algorithm to adjust the distance between the
skeletal joints for each posture, in order to ensure that the skeletal structure is preserved.
Results from a comparative evaluation have proved the efficiency of the approach.

Handi-Motion database

We chose to apply our motion reconstruction system to motor disability situations.
The final aim of our thesis was to propose a system that can facilitate the development of
applications to ease the daily life and promote autonomy of people with motor disability.
Applications may need to track and capture motion data for various tasks such as motion
and behavior analysis, activity and gesture recognition, or use it for tasks such as motion
synthesis.

However, we realized that there was no digital recording of motion data in motor
disability situations. We believe this is mainly due to the difficulty of using MoCap systems
in such situations, for a variety of reasons, including constraints on use, the existence of
wheelchair occlusions for systems based on optical markers, and so on. Video-based motion
reconstruction systems that use deep learning techniques to develop and train artificial
intelligence models should be a solution to record such data. However, these models need
existing data to learn before they can perform accurate reconstruction.

We decided to collect the data we needed by first using a MoCap optical system to
capture a small amount of high-resolution data from a set of people. Among them, there
were people with disabilities who were able to satisfy the constraints required by the
system and people simulating disability situations. Then, we used the captured data to
generate synthesized videos from animated virtual characters. With this synthesis ap-
proach, we were able to generate a much larger amount of data than the initial MoCap
data, allowing us to evaluate AI models for motion reconstruction.

Using this database, we carried out an experiment to evaluate our previous motion
reconstruction models presented in Chapter 6. This experiment confirmed the need to
create this database, as existing models were less accurate when reconstructing motion
different from their training videos. Nevertheless, they succeeded in rendering a visually
acceptable reconstructed motion.

The results obtained in this experiment enable us to validate the importance of this
database and to discover new research perspectives.
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8.2 Perspectives

We present here various perspectives of research for the continuation of this work.

Evaluating Handi-Motion database

Our Handi-Motion database contains motion data of a specific type, usually performed
by people in disability situations. The participants to the recording sessions were a group
of people with some of them in actual disability situations and the others, people sim-
ulating these situations. We asked the participants to play daily life activities. We then
used a data-driven 3D animation program to produce videos of movements performed by
virtual characters. By using virtual characters, this approach made it possible to produce
anonymous videos and protect the privacy of the participants in the MoCap sessions. The
videos can then be showed to a wider audience.

As the videos were synthesized, it is of paramount importance that people of the motor
disability community validate this database. Moreover, it is necessary to evaluate how
these movements, performed in a virtual environment, can be perceived by a representative
community familiar with motor disability, including people with disability, occupational
therapists, medical experts, etc.

There are various aspects to validate in the database. The first one is related to
motion of actors that simulate a disability situation. We have to assess first if people are
capable of differentiating movements of people in actual disability situation from those of
people who simulate. The second aspect is related to the fact that videos are synthesized.
According to this point, we can evaluate the level of acceptance of this type of videos in
the community of people with disabilities. In particular, it can be interesting to evaluate
various aspects of the animations, by varying the motion representation (points or skeletal
displays, appearance of the avatar, point of view, etc).

In addition to these perceptual evaluations, we think it would be interesting to assess
the potential effect that the re-targeting on avatar has on the MoCap animations.

Performing further tests of motion reconstruction on Handi-Motion
database

During this thesis, we experimented our motion reconstruction model from generated
videos of Handi-Motion database. We used for this experiment ground truth sequences
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of 2D poses, as our reconstruction model operates on sequences of estimated 2D poses.
There are therefore some additional tests to perform:

1. Testing 2D pose estimation. We need to evaluate the performance of 2D pose
estimation. This can allow us to verify if the existing estimators such as Open-
Pose [13] or HRNet [110] are robust to situations where parts of the body are
hidden by the wheelchair. Indeed, these situations can lead to errors in estimating
2D joints locations, leading in turn to errors in the 3D skeletal postures estimation.

2. Testing the robustness of our motion reconstruction system. We believe
that our correction system can partially fix some errors in 2D poses obtained from
2D poses estimators, thanks to the spatiotemporal connection within the Laplacian
modeling. We intend to verify this by generating some examples of situations with
controlled artefacts and by observing how the model performs.

Improving the Algorithm of the Motion Correction System

The neural network of our motion correction system that estimates skeletal structure
(i.e., length on the bones) from the sequence of 2D poses, is less accurate on Handi-
Motion database. Indeed, with Human3.6m [52], the database used to train it, it produces
skeletal structure with an approximate error of 3mm. However, this error rises to 36mm
on Handi-Motion database, about 10 times greater. Although fine-tuning the model on
Handi-Motion (that is retraining the model on the current database) will improve the
results on this specific database, it would be more interesting to develop a new model
capable of estimating skeletal structure on different databases with better accuracy. A
solution can be to design the model to estimate the bone lengths from the video instead
of the sequence of 2D poses. Another alternative for improvement would be to train the
current neural network on various other databases in order to increase it generalization
capacity.

Improving the Lightweight Model for Motion Reconstruction

In Chapter 5, we proposed a lightweight neural network to estimate sequences of 3D
skeletal postures from sequences of 2D poses. As part of our original objective, and for
future development of real-time applications, it would be interesting to further improve
this solution, building in this way the complete pipeline of the motion reconstruction
solution.
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In addition, DL models are usually trained on massive amount of data, making their
performance closely related to databases used to train them. This creates models with
less capacity for generalization and lower performance on new types of data. To ensure
that the model can be used in a wide variety of situations, it will be interesting to try
frugal AI approaches that learn on small amount of data.

Applying the Motion Correction Algorithm to a Wider Range of
Motion

Similar to the context of motor disability, sign language also finds itself in a situation
where there is a lack of movement data. Therefore, there is a need to use generative AI
models to produce more data with body, hand and face reconstruction [134]. However,
it will be essential to correct this motion data, especially hand gestures where a small
variation can change the semantic, or where a facial expression can negate the sentence.
We would like to combine this kind of generative models with an adaptation of our motion
correction algorithm to improve the quality of the reconstruction.
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Titre : Reconstruction de mouvements en 3D à l’aide de méthodes d’apprentissage profond :
application aux handicaps moteurs

Mot clés : reconstruction de mouvement, apprentissage profond, handicap moteur, analyse et

synthèse du mouvement

Résumé : Cette thèse porte sur la recons-
truction de mouvement 3D à partir de vidéo
RGB en utilisant des techniques d’apprentis-
sage profond et propose une solution alterna-
tive aux systèmes capture de mouvement (Mo-
Cap) dans les situations complexes où leur uti-
lisation est difficile, notamment le handicap mo-
teur. La solution proposée est basée sur l’es-
timation de poses, suivie de la reconstruction
du mouvement par un processus de correction
qui préserve la continuité temporelle entre les
poses successives. Nous définissons une fonc-
tion de perte Laplacienne pour entraîner les
modèles d’IA, ainsi que des métriques d’évalua-
tion de la temporalité du mouvement et la pré-
servation de la structure du squelette. Le sys-
tème de correction de mouvement développé

en couplant modélisation Laplacienne du mou-
vement et apprentissage profond permet une
reconstruction avec une meilleure qualité tem-
porelle et spatiale. Dans un second temps, nous
appliquons notre système de reconstruction de
mouvement en situation de handicap moteur.
Nous pallions le manque de données en géné-
rant des vidéos 2D à partir de mouvements 3D
capturés par MoCap. Cette approche originale
augmente nos données en utilisant plusieurs
caméras d’enregistrement (différents points de
vue) et des modèles 3D de personnages vir-
tuels variés. Notre modèle de reconstruction
montre de bonnes performances sur ces vidéos
et offre des perspectives prometteuses pour
des applications temps réel.
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Abstract: This thesis deals with the reconstruc-
tion of 3D motion from RGB video using deep
learning techniques and proposes an alterna-
tive solution to motion capture systems (Mo-
Cap) in situations where they are difficult to use.
The proposed solution is designed based on hu-
man pose estimation, followed by motion recon-
struction using a correction process that pre-
serves temporal continuity between successive
poses. We define a Laplacian loss function for
training AI models, as well as metrics for as-
sessing motion temporal features and skeletal
structure preservation. The motion correction

system developed by coupling Laplacian mo-
tion modeling and deep learning enables mo-
tion reconstruction with improved temporal and
spatial quality. In a second step, we apply our
motion reconstruction system to motor disabil-
ity situations. We make up for the lack of data by
generating 2D videos from 3D movements cap-
tured by MoCap. This original approach aug-
ments our data by using multiple recording
cameras (different viewpoints) and various 3D
models of virtual characters. Our reconstruction
model performs well on these videos and offers
promising prospects for real-time applications.
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