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Résumé substantiel en français 
 
L'hématopoïèse clonale à potentiel indéterminé (CHIP) se caractérise par l'expansion de 
cellules souches hématopoïétiques (CSH) portant des mutations somatiques dans des gènes 
fréquemment mutés dans les leucémies myéloïdes, sans qu'elles ne soient associées à une 
pathologie hématologique. Cette expansion des clones mutés est particulièrement observée 
dans des contextes inflammatoires, notamment lors du vieillissement. Le CHIP est reconnu 
comme un état pré-leucémique, augmentant le risque de progression vers une leucémie. Les 
mutations les plus fréquentes affectent des gènes codant pour des facteurs épigénétiques, tels 
que TET2 et DNMT3A, qui, malgré leurs fonctions opposées, entraînent des altérations 
similaires dans les CSH. Une réorganisation spécifique de la marque d'hétérochromatine 
H3K9me3, jouant un rôle clé dans la répression des éléments transposables (ET), est 
fréquemment observée lors du vieillissement. Ces éléments transposables peuvent perturber le 
transcriptome et induire un état inflammatoire. Nous émettons l'hypothèse que les 
modifications de l'hétérochromatine et des éléments transposables jouent un rôle central dans 
le déclenchement de l'hématopoïèse clonale et dans le développement de la leucémie. 
 
Les mécanismes moléculaires impliqués dans l'expansion des clones mutés CHIP demeurent 
encore partiellement élucidés. L'objectif principal de cette thèse était d'explorer les mécanismes 
moléculaires sous-jacents à l'expansion clonale des CSH Tet2-/- sous stress. Nos travaux ont 
démontré que la perte d'hétérochromatine, et en particulier la perte de H3K9me3, ainsi que la 
réactivation des transposons, en particulier L1Md, constituent une réponse commune au 
vieillissement et à divers stress (radiations ionisantes, inflammation). Ces phénomènes sont 
particulièrement marqués lors du vieillissement des CSH. Nous avons également observé que 
la réactivation des L1Md est associée à une perte de fonction des CSH en réponse au stress 
inflammatoire et aux radiations ionisantes, se manifestant par l'accumulation de dommages à 
l'ADN et des altérations transcriptomiques. 
 
Deux hypothèses non exclusives peuvent expliquer l'expansion des clones mutés CHIP avec 
l'âge et en réponse au stress : 1) un désavantage des cellules non mutées et/ou 2) un avantage 
compétitif pour les cellules mutées. Il est également intéressant de noter qu’en réponse à 
l'inflammation, une différence marquée a été observée entre les CSH WT et Tet2-/- : les CSH 
WT ont montré une perte de H3K9me3 au niveau des transposons L1Md, alors que les CSH 
Tet2-/- ont présenté une augmentation de H3K9me3 au niveau de ces mêmes transposons. Nous 
avons également observé que la répression des L1Md était associée à une résistance accrue des 
CSH Tet2-/- aux effets du LPS. 
 
La diminution de H3K9me3 dans les CSH WT après exposition au LPS pourrait résulter de la 
réduction de l'expression de SUV39H1, tandis que l’augmentation de H3K9me3 dans les CSH 
Tet2-/- pourrait être liée à une surexpression de SETDB1 dans ce contexte. Enfin, nos résultats 
suggèrent que l'expansion des CSH Tet2-/- en réponse à l'inflammation pourrait être due à 
l'activité accrue des transcrits L1, ce qui induirait des effets délétères sur les CSH WT, 
conférant ainsi un avantage compétitif aux CSH Tet2-/-. 
 
Dans l'ensemble, ces résultats soulignent l'importance des éléments L1 et de l'inflammation 
chronique dans le vieillissement des CSH suggèrent également que les mutations de TET2 
peuvent avoir un avantage dans des contextes environnementaux tels que l'inflammation, 
entraînant une dérégulation synergique de l’hétérochromatine et des gènes, conduisant 
finalement à la sélection et à l’expansion clonale des CSH. Cette compréhension pourrait aussi 
aider à identifier des voies spécifiques impliquées dans l'expansion clonale en cas de 
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vieillissement, de stress environnemental ou de pathologies, offrant ainsi de nouvelles 
perspectives thérapeutiques pour mieux contrôler ces processus pathologiques. 
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accumulates a large reservoir of HSCs, protecting them from signals that promote immediate 

differentiation (Robin et al., 2009). Indeed, Robin et al. transplanted cells isolated from human 

placenta throughout gestation into immunocompromised mice. PCR and flow cytometry 

analysis of the recipients showed the presence of engraftable human cells capable of low-level 

hematopoietic reconstitution as early as the first trimester and continuing until term (Robin et 

al., 2009). Later in gestation, the fetal liver becomes the primary site of hematopoietic activity, 

maintaining this role until mid-gestation. At that point, the development of blood cells is 

transferred to the BM, which then serves as the final and lifelong site of adult hematopoiesis 

(Lux et al., 2008). 

 

I. 1. 2 HSC are defined by their capacity to self-renew and to differentiate into mature 

blood cells on a long-term 

 

The life-long maintenance of blood cell production depends on the ability of HSCs to 

reconstitute hematopoiesis, self-renew and stay quiescent. 

 

I. 1. 2. 1 HSC are defined by their capacity to reconstitute hematopoiesis on a long term 

 

HSCs are identified by their functionality in in vivo repopulation experiments (McCulloch and 

Till, 1962). Hematopoietic stem cell transplantation (HSCT) was developed over 50 years ago 

and traditionally involves injecting BM into lethally irradiated recipient mice via the tail vein 

or retro-orbital route. Donor engraftment is then analyzed to assess the reconstitution capacity 

of HSCs, followed by potential secondary or tertiary engraftments to evaluate their long-term 

self-renewal capacity. 

 

Long-Term and Short-Term HSCs (LT- and ST-HSCs) have different reconstitution capacities. 

LT-HSCs can reconstitute hematopoiesis for more than 4 months (Donnelly et al., 1999), 

whereas ST-HSCs can only sustain clonal populations of cells with multilineage potential for 

a maximum of 4 months. Multipotent progenitors (MPPs) can do so for an even shorter duration 

of 1-3 months (Sommerkamp et al., 2021).  

 

These experiments allowed the identification of specific cell surface markers to differentiate 

these different populations. In general, the presence or absence of the following surface 

markers are used to identify murine HSCs: a mix of markers specifically present at the surface 
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of mature cells that is referred to lineage (Lin) markers: (CD11b, B220, CD3e, Ly6C/6G), Stem 

cell antigen-1 (Sca-1), KIT(CD117), CD34, Fms-like tyrosine kinase 3 (Flt3/Flk2), CD150 

(SLAMF1) and CD48 (Table 1).  

 

Cell 

types/markers 

Lin Sca-1 KIT CD34 Flk2/Flt3 CD150 CD48 

LT-HSC - + + - - + - 

ST-HSC - + + + -   

MPP1 - + + + - + - 

MPP2 - + + + - + + 

MPP3 - + + + - - + 

MPP4 - + + + + - + 

LSKs - + +     

 

Table 1: Specific murine surface markers to identify different HSC and progenitor populations  

 

Human HSC markers include Lin, CD34, CD38, CD90 (Thy-1 membrane glycoprotein), 

CD45RA and CD49f (Table 2). 

 CD34 CD38 CD90 CD45RA CD49f 

HSC + - + - + 

MPPs + - - - - 

 

Table 2: Specific human surface markers to identify different HSC and progenitor populations  

 

I. 1. 2. 2 HSC are characterized by their quiescence  

 

Quiescence has been proposed as a fundamental property of HSCs. Cells that enter the GO 

phase, undivided cells, that didn’t pass the restriction point in G1, are called quiescent or 

dormant (Pardee, 1974). Based on computational models, it is estimated that dormant mouse 

HSCs (d-HSCs) divide roughly once every 145 days, totaling about five divisions throughout 

their lifespan. These d-HSCs predominantly have long-term self-renewal capabilities (Wilson 

et al., 2008). Although they typically undergo only five divisions during normal conditions, 

they can be promptly activated by external or internal factors or by BM injury (Essers et al., 

2009; Ito et al., 2019; Wilson et al., 2008). Quiescence is believed to prevent exhaustion 
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can differentiate into two identical progenitors or self-renew and give rise to two identical new HSCs. 

Asymmetric division gives rise to one HSC and one progenitor (Created with BioRender, License: 

PB27F4SQIN).   

 

The core network of transcription factors (TFs)—NANOG, OCT4, SOX2, and KLF4—plays 

a crucial role in supporting stem cell self-renewal by orchestrating both transcriptional and 

epigenetic regulation of essential stem cell genes (Nichols et al., 2009; Yamanaka and Blau, 

2010). While extensively studied in embryonic stem cells (ESCs), their specific functions in 

normal HSCs remain less understood. The reduction of OCT4, an octamer transcription factor, 

triggers differentiation in ESCs (Nichols et al., 1998). SOX2, shares DNA-binding sites with 

OCT4 and forms a heterodimer to regulate their target genes synergistically. SOX2 is involved 

in ESC stability through the maintenance of appropriate OCT4 expression. The OCT4/SOX2 

complex regulates NANOG, which is expressed only in undifferentiated cells. NANOG is 

believed to prevent differentiation by suppressing differentiation genes or activating others like 

OCT4 (Hepburn et al., 2019). Other factors such as Klf4, also play roles in maintaining ESC 

pluripotency and self-renewal (Takahashi et al., 2006). 

 

I. 1. 2. 4 HSCs are able to differentiate into mature blood cells 

To initiate differentiation, stem cells have to get out of the self-renewal state, the transcriptional 

networks has to be dissolved, and lineages have to be chosen. How these tasks are coordinated 

is poorly understood.  In a recent study, Parmentier et al. demonstrated that a global genome 

decompaction, making more than 50% of gene promoters accessible in the genome, induces 

stochastic activation of gene transcription in human CD34+ cells after stimulation with 

cytokines (Parmentier et al., 2022). This is followed by a gradual chromatin closure and an 

overall down-regulation of gene transcription. Specific regulatory actions stabilize and 

maintain the activity of key genes, while the rest of the genome is repressed through chromatin 

re-compaction. The authors propose that the fate decision process will be dependent on intrinsic 

and extrinsic constraints (Rommelfanger and MacLean, 2021) and the stabilization of specific 

regulatory networks (Xue et al., 2024). Lineage-specific transcription factors regulate gene 

expression by modulating chromatin accessibility, such as TCF-1, which alters chromatin 

accessibility at T cell-specific genes (Johnson et al., 2018). 

 

I. 2 Global Definition of hematopoiesis: Hematopoietic Stem Cells to mature blood cells 

based on organism’s need 
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Hematopoiesis is the process where hematopoietic stem cells (HSC) differentiate into immature 

progenitor and precursor cells finally giving rise to all the mature cells of the blood, from both 

the myeloid (erythrocytes, platelets, monocytes/macrophages and neutrophils) and the 

lymphoid (B, T, and natural killer (NK) lymphocytes) lineages (Fig. 3).  

In adults, hematopoiesis occurs in the bone marrow (BM) that, in addition to hematopoietic 

cells (red marrow), comprises supportive stromal cells, and marrow adipose tissue (yellow 

marrow). Hematopoiesis is primarily located in flat bones, such as the hip bone, sternum, skull, 

ribs, vertebrae, and shoulder blades. Additionally, it is found in the metaphyseal and epiphyseal 

ends of long bones, like the femur, tibia, and humerus, where the bone is cancellous or spongy 

(Caon, 2020). 

There is a wide range of cellular heterogeneity in the BM with various blood cells at different 

stages of their differentiation (Laurenti and Göttgens, 2018).  

HSCs are rare cells with an estimated population of approximately 10,000 cells in mammals 

(Catlin et al., 2011).  

I. 3 Hierarchical models of hematopoiesis  

Despite the first observation of the remarkable ability of HSCs to restore the entire 

hematopoietic system being made over 50 years ago (Till and McCULLOCH, 1961), 

understanding the precise mechanisms behind this process remains a fascinating question. The 

classical dogma posits that hematopoiesis is a stepwise differentiation process where 

asymmetric division of HSCs results in one daughter cell retaining HSC characteristics and 

another daughter cell, known as MPP, which loses the self-renewal capacity but retains 

multipotent differentiation ability. According to this model, MPPs undergo sequential binary 

decisions until they differentiate into mature blood cell types (Akashi et al., 2000; Kondo et 

al., 1997) (Fig. 3A). This model, primarily derived from transplantation assays, is valuable for 

determining the self-renewal and lineage potential of HSCs. However, reliance on surface 

markers to identify HSCs may overlook the full heterogeneity of HSCs. 

The advent of next-generation techniques such as single-cell RNA sequencing (scRNA-seq), 

combined with in vivo tracking/tracing experiments and single-cell transplantations, has 

challenged the classical hierarchical view of hematopoiesis (Cabezas-Wallscheid et al., 2014; 
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Pietras et al., 2015; Rodriguez-Fraticelli et al., 2018; Yu et al., 2017). Recent studies have 

identified new hematopoietic cell populations and branching points, suggesting that 

hematopoiesis is better represented as a continuum of differentiation rather than a strict 

stepwise process (Busch et al., 2015; Sun et al., 2014) (Fig. 3B). These studies have shown that 

HSC display heterogeneous phenotypic characteristics: quiescence and self-renewal capacity 

to varying degrees, differentiation bias towards a particular lineage, response to stress. These 

phenotypic characteristics can be transplanted into recipient mice and are therefore intrinsic to 

HSCs (Yu et al., 2016). Indeed, only a small fraction of HSCs produces an equal distribution 

of all mature blood cells, while the majority of HSCs exhibit a bias towards differentiating into 

specific lineages.  Barcoding tools are more and more used to tackle biological questions in a 

non-invasive manner without the need for transplantations and the possibility to track and 

identify many cells. The team of Thomas Höfer developed a model called Polylox system to 

study homeostasis of the adult hematopoietic system. It is based on the introduction of long 

artificial substrate with unique DNA sequences flanked by LoxP sites (Pei et al., 2017). 

Experiments using different barcoding systems such as the Sleeping Beauty transposon-based 

tagging or the Polylox system support the idea that, except for megakaryocyte fate, MPPs likely 

represent the active differentiation compartment responsible for replenishing most mature 

blood cells (Pei et al., 2017; Rodriguez-Fraticelli et al., 2018; Sun et al., 2014). Nevertheless, 

despite the significant advancements brought by these single-cell techniques, they have 

limitations and technical challenges. Barcode-based techniques may exclude rare HSC clones 

due to thresholding and are not suitable to study HSC fate in native condition or in human 

tissues. New methods relying on endogenous clonal markers, such as the follow up of DNA 

methylation at single C–phosphate–G (CpG) levels, allow for lineage tracing in native 

conditions (Scherer et al., 2024).  
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FIG. 3: Models of HSC lineage commitment (A)Stepwise model: The traditional view of hematopoiesis 

depicts a stepwise differentiation pattern, where HSCs are thought to contribute equally to all blood cell 

lineages. (B) Continuum model: hematopoiesis may rather follow a continuum of differentiation 

Abbreviations: CLP, common lymphoid progenitor; CMP, common myeloid progenitor; DCs, dendritic 

cells; GMP, granulocyte/macrophage progenitor; HSCs, hematopoietic stem cells; ILCs, innate-

lymphocyte cells; LMPP, lymphoid/myeloid progenitor; MEP, megakaryocyte/erythroid progenitor; MgK, 

megakaryocyte; MPP, multipotent progenitor; NK, natural killer; RBCs, red blood cells (Rodrigues et al., 

2021). 

I. 4 Mature blood cells: Myeloid and lymphoid lineages  

I. 4. 1 Myeloid lineage 

Myeloid lineage encompasses megakaryocytes, erythrocytes, and immune myeloid cells such 

as monocytes, macrophages, and dendritic cells (DCs), all originating from a common myeloid 

progenitor (CMP) in the BM. These cells are produced in the BM, and the fetal liver during 

embryonic development, and continue to be generated throughout adult hematopoiesis (Collin 

and Bigley, 2016). It is now understood that macrophages, and likely DCs, can also be derived 

from the embryonic yolk sac (Hoeffel et al., 2012). Myeloid cells are the earliest immune cells 

to develop in the body and represent a diverse group of cells that include phagocytic and 

granulocytic cells. These cells either quickly migrate into tissues from the bloodstream or 

maintain themselves locally as resident sensors, patrolling the environment. Their ability to 

migrate and their advanced sensory capabilities allow myeloid immune cells to detect 
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disturbances such as cell death or infections, thereby triggering an immediate, specific local 

innate immune response (Geissmann et al., 2010; Manz and Boettcher, 2014). The innate 

immune system is considered a non-specific defense mechanism, while the adaptive immune 

system is specific. The innate immune system is the one you are born with. 

I. 4. 2 Lymphoid lineage 

Lymphocyte development is a meticulously controlled process where immature lymphoid 

progenitors are derived from HSCs and mature through specific stages of differentiation. For 

instance, lymphoid-primed multipotent progenitors (LMPP) retain some myeloid potential but 

ultimately give rise to lymphoid progeny. Common lymphoid progenitors (CLPs) are 

descendants of LMPP that are destined to generate B lymphocytes, NKs lymphocytes and T 

cells.  

As CLPs mature, they sequentially produce pre-pro-B cells, pro-B cells, pre-B cells, and 

finally, newly formed B lymphocytes (Hardy et al., 2007; Monroe and Dorshkind, 2007). B 

cells produce antibodies that target invading bacteria, viruses, and toxins. Maturation of B cells 

occur in the spleen (Petrie and Kincade, 2005). 

T cells destroy the body's own cells that have been infected by viruses or have become 

cancerous. They mature in the thymus (Petrie and Kincade, 2005). The thymus manufactures 

new T cells throughout life but lacks self-renewing potential. Instead, replenishment depends 

on the recruitment of BM–derived progenitors that circulate in the blood (Petrie and Kincade, 

2005). 

Mature blood cells are predominantly short lived, that’s why stem cells are required throughout 

life to provide multi lineage progenitors (Orkin and Zon, 2008).  The high regeneration capacity 

of blood is one of its most important characteristics, with approximately one trillion cells 

arising each day in human BM (Table 3).   

 RBC WBC Platelets Lymphocytes 

Rate/number ~200 billion ~10 billion ~400 billion ~45 million 

Lifespan ~120 days ~1-3 days ~9-12 days ~1week-few 

months 

 

Table 3: Rate/number of different mature cells and their lifespan 
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The role of osteoblasts (OBs) in hematopoietic stem and progenitor cell (HSPC) maintenance 

and expansion within the BM has been a subject of significant research interest. Taichman and 

Emerson first highlighted the importance of osteoblastic lineage cells in regulating HSPC 

function (Taichman and Emerson, 1998). Subsequent studies using genetic models, including 

mice engineered to produce OB-specific, activated PTH/PTHrP receptors (Calvi et al., 2003) 

or mutant mice with conditional inactivation of bone morphogenetic protein (BMP) receptor 

type IA (Zhang et al., 2003), provided compelling evidence that activation of OBs could indeed 

lead to an expansion of the HSPC pool within the marrow, enhancing their long-term 

repopulating ability. LT-HSCs from OB-ablated mice exhibit a loss of quiescence, decreased 

long-term engraftment, and diminished self-renewal capacity (Bowers et al., 2015).  A decrease 

in OB numbers favors myeloid expansion while suppressing lymphoid and erythroid expansion 

(Krevvata et al., 2014). Interestingly, this shift toward a myeloid bias at the expense of 

lymphopoiesis resembles characteristics of hematopoietic aging, that will be discussed in 

chapter IV. Moreover, recent investigations have shed light on the potential specialization of 

OBs in supporting lymphopoiesis and lymphoid tissue function (Adams et al., 2009). This 

emerging understanding suggests that OBs may constitute a specialized niche within the BM 

environment for lymphoid progenitors (Hoffman and Calvi, 2014). OBs express the chemokine 

CXCL12, also known as Stromal Derived Factor-1, which constitutes a signaling axis that 

governs HSPC self-renewal and residence within the BM. Although not a hormone, this axis 

serves as a central pathway through which cellular and hormonal signals from the 

microenvironment are conveyed to HSPCs (Nagasawa et al., 1996).  These findings not only 

underscore the multifaceted roles of OBs in hematopoiesis but also highlight their significance 

in shaping the immune landscape within the BM microenvironment. 

 

More recently, it has been proposed that the inflammatory cytokine granulocyte-colony 

stimulating factor (G-CSF) reprograms BM stromal cells, including CXCL12-abundant 

reticular cells and OBs, leading to the suppression of B lymphopoiesis in mice (Day et al., 

2015). G-CSF, a mobilizing agent for HSPCs, functions by lowering CXCL12 levels in the 

marrow while simultaneously upregulating CXCR4 expression.  

 

These findings highlight the capacity of nonhematopoietic cells like OBs to regulate the stem 

cell pool through the production of CXCL12 and by controlling HSPC cell cycle dynamics and 

their movement out of the marrow. 
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I. 5. 2 Adipocytes 

While various cell types have been recognized for their positive regulatory roles in HSPCs 

within the marrow, adipocytes have been identified as suppressive factors. The role of 

adipocytes in hematopoiesis is complex and controversial, potentially mediated by multiple 

mechanisms. It has long been believed that adipocytes inhibit the differentiation of HSCs. This 

was first reported by Naveiras et al., who found that marrow adipose tissue (MAT) negatively 

regulates hematopoiesis, as evidenced by the reduced generation of HSCs and short-term 

progenitors in the adipocyte-rich caudal vertebrae compared to the adipocyte-free thoracic 

vertebrae of mice (Naveiras et al., 2009). Conversely, research by Zhou Bo suggests that MAT 

can positively regulate HSC differentiation. They found that after irradiation, the physiological 

HSC niche, including endothelial cells and marrow stromal cells (MSCs), is temporarily 

destroyed, prompting MSCs to rapidly initiate adipogenic differentiation. Newly generated 

adipocytes then become a temporary HSC niche, maintaining basic hematopoietic function by 

secreting stem cell factor (SCF) (Zhou et al., 2017). 

 

I. 5. 3 Mesenchymal cells 

Multipotent mesenchymal stem cells (MSCs), capable of differentiating into OBs, have been 

recognized as crucial for supporting HSPCs within the BM. These MSCs are now being utilized 

as an innovative therapeutic approach. Previous research, such as the study by McNiece et al. 

in 2004, demonstrated the capacity of human MSCs to expand HSPCs ex vivo. Méndez-Ferrer's 

group identified a stromal nestin-expressing MSC population (nestin+ MSC) that is closely 

associated with putative HSCs (McNiece et al., 2004). Nestin+ MSCs are strictly perivascular 

and typically found in the central areas of the marrow, but they are also present near the 

endosteum, albeit at a lower frequency. Additionally, nestin+ MSCs are tightly associated with 

adrenergic nerve fibers of the sympathetic nervous system, which regulate HSC mobilization 

and are responsible for the circadian oscillations in circulating HSC numbers (Katayama et al., 

2006; Méndez-Ferrer et al., 2008). Notably, these MSCs express higher levels of HSC 

maintenance factor transcripts, including CXCL12, SCF, angiopoietin-1, interleukin-7, 

vascular cell adhesion molecule 1, and osteopontin, compared to any other stromal cell type, 

including OBs. 

 

Other hematopoietic and non-hematopoietic cells, such as macrophages, and signals from the 

circadian rhythm and the sympathetic nervous system, play a role in regulating HSC quiescence 
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and self-renewal (Hoffman and Calvi, 2014). However, these topics will not be further 

discussed. 
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Chapter II - Epigenetics: From fundamental principles to the 

regulation of hematopoiesis 

 

II. 1 An introduction to epigenetics 

 

II. 1. 1 Epigenetics: Bridging the Gap Between Genotype and Phenotype 

 

All somatic cells in an individual contain identical genetic information. However, their 

specialization and unique function are regulated by an additional layer of information applied  

to the DNA or histone proteins referred to as epigenetics. Originally, the term “epigenetics” 

referred to phenomena unexplained by genetic principles. Conrad Waddington (1905–1975) 

defined epigenetics as “the branch of biology which studies the causal interactions between 

genes and their products, which bring the phenotype into being” (Waddington, 1942). 

Epigenetics involves heritable changes in gene expression that do not stem from alterations in 

the DNA sequence, unlike mutations (Gibney and Nolan, 2010). It helps elucidate how cells 

and organisms with identical DNA can exhibit significant phenotypic differences. Epigenetics 

notably helps to understand how a "stem" cell can differentiate into different cell types with 

different gene expression profiles, morphologies and functions while sharing the same genetic 

information. Epigenetics play a crucial role in HSC identity, function and fate. Hematopoietic 

differentiation is a model of choice for studying the role of epigenetics in cell fate commitment.  

 

Epigenetic modifications encompass DNA methylation, post-translational modifications 

(PTMs) of histones, chromatin remodelers and long or small non-coding RNA (Kosan and 

Godmann, 2016). These modifications shape specific chromatin structures, resulting in distinct 

gene expression patterns in each cell: (1) heterochromatin or closed chromatin (associated with 

gene repression), which is highly condensed, late to replicate, and mainly contains inactive 

genes, and (2) euchromatin or open chromatin (permissive to transcription), which is relatively 

open and contains most of the active genes (Fig. 5). 
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Heterochromatin is a fundamental and highly conserved component of eukaryotic genomes, 

occupying a significant portion, ranging from approximately 25% to 90% (International 

Human Genome Sequencing Consortium et al., 2001a; Vicient and Casacuberta, 2017) that 

differs from euchromatin in its dense structure, abundance of repetitive DNA sequences, low 

transcription activity, low level of histone acetylation, high levels of DNA methylation at CpG 

dinucleotides (Epsztejn-Litman et al., 2008) and unique replication timing (Allshire and 

Madhani, 2018). Originally detected cytologically by the pronounced dark staining with DNA 

dyes (Heitz, 1928), heterochromatin has since been categorized into two main types: 

constitutive, which forms densely compacted regions at centromeres and telomeres across 

many cell types; and facultative, which is more specific to certain loci or cell types (Elgin, 

1996). Constitutive heterochromatin typically consists of repeat-rich sequences and inhibits 

recombination between chromosomes, while facultative heterochromatin is involved in 

silencing cell type-inappropriate genes (Bulut-Karslioglu et al., 2014; Tachibana et al., 2001).  

 

II. 1. 3 Chromatin remodeling complexes: remodelers 

 

Chromatin remodeling complexes known as remodelers (Khorasanizadeh, 2004) utilize ATP 

hydrolysis to alter the packaging state of chromatin by moving, ejecting, or restructuring 

nucleosomes (Saha et al., 2006).  

 

Chromatin remodelers are part of the RNA/DNA helicase superfamily, itself divided into four 

subfamilies: Imitation SWItch and Chromodomain Helicase DNA-binding, which are involved 

in nucleosome assembly, maturation and spacing, INO80, involved in nucleosome composition 

change, and finally SWItch/Sucrose Non-Fermentable (SWI/SNF), which play a key role in 

regulating chromatin accessibility by repositioning or ejecting nucleosomes. The recruitment 

and activity of these remodelers can be regulated by PTMs, such as lysine acetylation in the 

case of SWI/SNF (Skiniotis et al., 2007; Suganuma and Workman, 2011).  SWI/SNF are 

involved in the control of the chromatin structure (Clapier and Cairns, 2009), gene transcription 

and mutations in this complex are often found in cancers (Chen et al., 2023). 

 

II. 1. 4 Histone Modifications 

 

Histones are small, basic proteins with a globular domain and a flexible, charged NH2-terminus 

(histone "tail") (Jenuwein and Allis, 2001). These domains protrude from the nucleosome 
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surface and contribute to stabilizing the chromatin fiber (Garcia-Ramirez et al., 1992; Tse et 

al., 1998; Tse and Hansen, 1997). Interestingly, histone tails undergo multiple PTMs such as 

acetylation, phosphorylation, methylation, ubiquitination, and ADP-ribosylation (Fig. 7). Each 

of these histone modification plays a very specific role on gene expression according to a 

“histone code”. Unlike other core histones that only have N-terminal tails, H2A also has a C-

terminal tail. This tail varies in length between variants and serves to regulate nucleosome 

formation and stability by directly binding to linker DNA (Li and Kono, 2016). 

 

Unsurprisingly, the four core histone proteins—H2A, H2B, H3, and H4—are among the most 

evolutionarily conserved proteins known (van Holde, 1988). Histone modifications can 

influence the interaction affinities of chromatin-associated proteins, leading to dynamic shifts 

between transcriptionally active and silent chromatin states. For instance, acetylation and 

methylation of lysine residues in histones H3 and H4 have been associated with either active 

transcription or gene repression, depending on the specific modification (Fischle et al., 2003). 

 

The linker histone H1 organizes nucleosomes into higher-order structures, leading to increased 

chromatin folding and decreased transcription (Maeshima et al., 2016; Shimada et al., 2019). 

In contrast, the High Mobility Group Nucleosome-binding (HMGN) family of proteins 

competes with histone H1, promoting chromatin decompaction, increased accessibility, and 

enhanced local transcription (Catez et al., 2002; Ding et al., 1997). HMGN proteins do not 

position randomly within the genome, they preferentially co-localize with regulatory marks at 

active promoters, influencing nucleosome organization, DNase hypersensitivity patterns, and 

PTMs (Deng et al., 2013; Trieschmann et al., 1998). 
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FIG. 7: PTMs of histones H2A, H2B, H3 and H4. Post-translational modifications (PTMs) of histone amino 

termini affect the structure and function of chromatin. In nucleosomes, DNA is wrapped around a histone 

octamer composed of two each of H2A, H2B, H3, and H4. Histone tails are subject to various PTMs that 

influence chromatin compaction and gene expression. This diagram illustrates several modifications at 

specific residues, including acetylation (Ac), methylation (Me), phosphorylation (P), and ubiquitination 

(Ub) (Liu et al., 2023).  

 

II. 1. 4. 1 Writers, readers and erasers of histone modifications 

 

In the realm of epigenetic regulation, there exist three key categories of participants: writers, 

readers, and erasers. Writers refer to chromatin-modifying enzymes responsible for adding 

modifications to histones. Readers, on the other hand, are proteins tasked with interpreting the 

signals inscribed by the writers. Lastly, erasers denote enzymes dedicated to removing the 

chemical information encapsulated within the PTMs (Boukas et al., 2019). 

 

II. 1. 4. 2 Acylation marks: Metabolically regulated and involved in gene regulation 

 

The epigenome including histone acylations are dynamically regulated and adapt in response 

to various metabolic changes, such as glucose deprivation or the loss of metabolic enzymes. It 

has been shown that alongside acetylation, other histone modifications like butyrylation, 

crotonylation, and propionylation are reversibly regulated and closely associated with the 

central glucose metabolism (Jo et al., 2020). Acetylation, butyrylation and propionylation were 

identified as active chromatin marks promoting transcription (Kebede et al, 2017) 
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II. 1. 4. 3 Histone Acetylation 

 

The N-terminal domains of the core histones undergo reversible acetylation at specific lysine 

residues. Lysine acetylation is almost always associated with chromatin accessibility and 

transcriptional activity. Indeed, acetylation neutralizes the positive charge of lysines, 

weakening the interactions between histones and DNA, and contributing to a more open 

chromatin state (Eberharter and Becker, 2002). Direct evidence linking core histone acetylation 

to transcriptionally active chromatin has been demonstrated by fractionating chromatin using 

an antibody recognizing acetylated histones, followed by DNA probing with sequences from 

active genes (Hebbes et al., 1988). Histone acetylation alters nucleosomal conformation 

(Norton et al., 1989), potentially enhancing the accessibility of transcriptional regulatory 

proteins to chromatin templates (Lee et al., 1993; Vettese-Dadey et al., 1996). 

 

Histone acetylation is modulated by the opposing activities of histone acetyltransferases 

(HATs) (writer) and histone deacetylases (HDACs) (eraser). HATs transfer acetyl groups from 

acetyl-CoA to specific lysine residues on histone proteins. These enzymes, responsible for 

histone and non-histone protein acetylation, encompass members from the E1A binding protein 

p300 /CREB-binding protein, Moz, Ybf2/Sas3, Sas2, Tip60, (family of HATs), and GCN5-N-

acetyltransferase families (Jeon et al., 2014). HDACs regulate gene expression through 

deacetylation, serving as the catalytic core of the Sin3A, nucleosome remodeling and 

deacetylation, and co-repressor for element-1-silencing transcription factor complexes 

(Jamaladdin et al., 2014). 

 

II. 1. 4. 4 Histone Methylation 

 

Histone methylation occurs on all basic residues: arginines, lysines, and histidines. Lysines can 

undergo mono-methylation (me1), di-methylation (me2), or tri-methylation (me3) (Snowden, 

2002), arginines can be monomethylated (me1), symmetrically dimethylated (me2s), or 

asymmetrically dimethylated (me2a) on their guanidinyl group (Turner, 2005), and histidines 

have been reported to be monomethylated, although this occurrence appears rare and hasn't 

been extensively characterized (Byvoet et al., 1972; Daitoku et al., 2021).  

 

The most thoroughly investigated histone methylation sites include histone H3 lysine 4 

(H3K4), H3K9, H3K27, H3K36, H3K79, and H4K20. Generally, methyl groups are thought 
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to have slower turnover rates compared to many other PTMs, and initially, histone methylation 

was deemed irreversible (Byvoet et al., 1972). The identification of an H3K4 demethylase, 

lysine-specific demethylase 1A (also known as LSD1), revealed the reversibility of histone 

methylation (Shi et al., 2004). In various biological contexts, some methylation events may 

require stable maintenance (e.g., methylation involved in transmitting a silenced 

heterochromatin state through mitosis), while others may need to be adaptable (e.g., during cell 

differentiation or response to environmental signals).  

 

Three enzyme families have been identified to catalyze the addition of methyl groups, derived 

from S-adenosylmethionine, to histones. These include SET-domain-containing proteins (Rea 

et al., 2000) and DOT1-like proteins (Feng et al., 2002) for lysine methylation, and members 

of the protein arginine N-methyltransferase family for arginine methylation (Bannister and 

Kouzarides, 2011). Two families of demethylases have been discovered that remove methyl-

lysines: amine oxidases (Shi et al., 2004) and jumonji C (JmjC)-domain-containing, iron-

dependent dioxygenases (Tsukada et al., 2006; Whetstine et al., 2006). Demethylases for 

arginines remain less well understood. 

 

I will focus on the tri-methylation of histone 3 lysine 9 (H3K9me3) as I mainly focus on this 

epigenetic mark in my thesis. 

 

II. 1. 4. 5 H3K9me3 in heterochromatin 

 

Constitutive heterochromatin is characterized by di- and tri-methylation of histone 3 lysine 9 

(H3K9me2 and H3K9me3). These modifications are enzymatically catalyzed by a family of 

SET-domain-containing methyltransferases (writers, Fig. 8), with five such enzymes identified 

in mammals. Among these, SET domain bifurcated histone lysine methyltransferase 

1(SETDB1), Suppressor of variegation 3-9 histone lysine methyltransferase H1 (SUV39H1), 

and H2 SUV39H2 contribute to both H3K9me2 and H3K9me3, all primarily involved in 

methylation of H3K9me3, while GLP and G9a (also known as EHMT1 and EHMT2, 

respectively / writers) catalyze H3K9me1 and H3K9me2. SUV39H1 and SUV39H2 can 

methylate H3K9me0 but prefer H3K9me1 as a substrate to establish H3K9me3 (Loyola et al., 

2009; Rea et al., 2000). In contrast, SETDB1 can mono-, di-, and tri-methylate H3K9me0 in 

vitro (Loyola et al., 2009; Schultz et al., 2002; Wang et al., 2003; Yang et al., 2002). 
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maintenance is vital for cellular identity. Consequently, H3K9me3 patterns undergo 

reorganization during cell fate transitions in development, both in early embryos (Fadloun et 

al., 2013) and terminal lineage maturation, playing a crucial role in maintaining pluripotency 

and its exit. 

 

Genome-wide mapping studies have elucidated the role of H3K9me3 in cell type-specific 

regulation of facultative heterochromatin (Hawkins et al., 2010). In differentiated human cells, 

H3K9me3 forms extensive contiguous domains, expanding in number and size during 

differentiation from pluripotency. These domains, or "patches," encompass numerous genes 

repressed in a cell type-specific manner (Hawkins et al., 2010). The dimethyl mark is 

particularly significant for silencing lineage-inappropriate genes during differentiation (Wen et 

al., 2009). 

 

H3K9me3 is additionally linked with the enduring repression of transposable elements (TEs), 

that I will describe in detail in chapter VI. TEs are pervasive nuclear entities capable of 

proliferating within host genomes and inducing DNA damage and mutations in both 

Drosophila and vertebrate systems (Karimi et al., 2011; Klenov et al., 2011). TE insertions 

scattered across the genome often exhibit local H3K9me3 peaks within otherwise euchromatic 

regions. Due to its enrichment at TEs, repetitive regions, and chromosomal ends, H3K9me3-

marked constitutive heterochromatin is renowned for its pivotal role in chromosome 

architecture and genome stability. It is essential for proper chromosome segregation and for 

preventing unequal recombination between repeats (Janssen et al., 2018). 

 

II. 1. 4. 6 Histone phosphorylation: γH2AX 

 

Phosphorylation of H2A(X) constitutes a critical histone modification playing a pivotal role in 

the DDR (Rossetto et al., 2010; van Attikum and Gasser, 2005). In mammalian cells, this 

modification occurs on serine 139 of the H2AX variant histone, commonly known as γH2AX 

(Celeste et al., 2003; Rogakou et al., 1998). This phosphorylation event takes place throughout 

all phases of the cell cycle and is implicated in various DDR pathways, including non-

homologous end joining, homologous recombination, and replication-coupled DNA repair 

(Downs et al., 2000; Fernandez-Capetillo et al., 2004). 
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II. 1. 5 The dynamic balance of DNA methylation and de-methylation 

 

Currently, there are four major types of DNA modifications, such as methylation at the 5th 

position of the pyrimidine ring of cytosine, resulting in 5-methylcytosine (5mC), or other 

modifications at the same position, including 5-hydroxymethyl (5hmC), or other intermediates 

such as 5-formyl (5fC), and 5-carboxyl (5caC) (Baylin and Jones, 2011; Wu and Zhang, 2011) 

(Fig. 9). 5fC and 5caC residues are less abundant than 5hmC (Ito et al., 2011) and occur on the 

hypomethylated promoters and enhancers of highly expressed genes in mouse ESCs (mESCs) 

(Neri et al., 2015). Additionally, they act as docking sites for specialized proteins with domains 

that specifically recognize these modifications. These readers then recruit other chromatin 

modifiers and remodeling enzymes, which function as the effectors of these modifications 

(Dawson and Kouzarides, 2012). 

 

 

FIG. 9: The dynamic balance of DNA methylation and demethylation processes. DNA methyltransferases 

(DNMTs) generate 5-methylcytosine (5mC), while various pathways facilitate its demethylation. 5mC can 

be passively reverted to cytosine through replication-dependent dilution, occurring in the absence of DNMT 

activity. Additionally, TET proteins can actively oxidize 5mC to form 5-hydroxymethylcytosine (5hmC), 5-

formylcytosine (5fC), and 5-carboxylcytosine (5caC), which may also undergo passive dilution during 

replication. Alternatively, thymine DNA glycosylase (TDG) and base excision repair (BER) can remove 5fC 

and 5caC, leading to active demethylation of 5mC (Song et al., 2013). 

 

DNA methylation regulates gene expression either by attracting proteins involved in gene 

repression or by hindering the binding of TFs to DNA.  Throughout development, the DNA 

methylation pattern undergoes dynamic changes due to both de novo methylation (Lienert et 

al., 2011) and demethylation processes. Consequently, differentiated cells acquire a stable and 

distinct DNA methylation pattern that governs tissue-specific gene transcription (Holliday and 

Pugh, 1975).  
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DNA methylation is catalyzed by a family of DNA methyltransferases (DNMTs), which 

transfer a methyl group from S-adenyl methionine to the fifth carbon of a cytosine residue to 

form 5mC. DNA (cytosine-5)-methyltransferase 3a (DNMT3A) and DNMT3B can establish 

new methylation patterns on unmodified DNA and are thus known as de novo DNMTs. In 

contrast, DNMT1 functions during DNA replication to copy the DNA methylation pattern from 

the parental DNA strand onto the newly synthesized daughter strand (Okano et al., 1999; Wu 

and Zhang, 2011). 5mC can be passively converted back to cytosine through replication-

dependent dilution due to a lack of DNMT1 activity. TET (ten-eleven translocation) proteins 

catalyze the active conversion of 5mC to 5hmC, 5fC, and 5caC through three consecutive Fe 

(II)- and 2-oxoglutarate (2-OG)-dependent oxidation reactions which could be followed by 

passive replication/dilution demethylation. Alternatively, thymine DNA glycosylase (TDG) 

and base excision repair (BER) can remove 5fC and 5caC, leading to active demethylation of 

5mC (Song et al., 2013) (Fig. 9). I will further develop the literature on TET2 in chapter III.  

 

Generally, repetitive sequences, including transposons, centromeric, and pericentric repeats, 

are extensively methylated. Additionally, the gene bodies of genes that are highly expressed 

undergo methylation. Conversely, CpG islands, defined as CG-rich sequences ranging from 

500 to 2000 base pairs commonly located in promoter regions, typically lack methylation. 

(Deaton and Bird, 2011). 

 

DNA methylation plays a pivotal role in the development of mammals and is implicated in an 

array of biological functions. These functions encompass the regulation of transcription, the 

silencing of transposons, the inactivation of the X chromosome, and genomic imprinting. 

(Smith and Meissner, 2013). 

 

II. 1. 6 RNA-centered mechanisms 

 

Noncoding RNAs (ncRNAs) play diverse roles that impact nearly every biological process, 

spanning from DNA replication, RNA transcription, and protein translation to cell 

differentiation and metabolism. They can function as proto-oncogenes or tumor suppressor 

genes and are also involved in the epigenetic regulation of genes. Small noncoding RNAs also 

contribute to directing chromatin modifications, such as histone methylation. For instance, in 
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Schizosaccharomyces pombe, the RNAi machinery is essential for establishing and/or 

maintaining centromeric heterochromatin, marked by H3K9 methylation (Verdel et al., 2004). 

 

Recent advancements in this domain suggest a critical involvement of noncoding RNA in 

epigenetic regulation (Rinn et al., 2007). Long ncRNAs may serve diverse roles in gene 

regulation, particularly in the epigenetic control of chromatin (Bernstein and Allis, 2005). An 

example is the silencing of the inactive X chromosome by the ncRNA X-inactive specific 

transcript (XIST). To balance the X chromosome copy number between male and female cells, 

transcription of XIST RNA from one of the two female X chromosomes recruits Polycomb 

group proteins (PcG) to trimethylate histone H3 on lysine 27 (H3K27me3), thereby rendering 

the chromosome transcriptionally silent (Plath et al., 2003). 

 

Mounting evidence indicates that micro-RNAs (miRNAs) play crucial roles in various 

biological processes, including cell proliferation, differentiation, apoptosis, and hematopoiesis 

(Lund et al., 2004; Yi et al., 2003). Biogenesis and expression of miRNAs are subject to 

regulation by epigenetic modifications such as DNA methylation, RNA alterations, and histone 

modifications, with miRNA dysregulation being a hallmark of cancer initiation and metastasis 

(Humphries et al., 2019). Additionally, miRNAs control the expression of epigenetic 

regulators, including DNMTs and histone deacetylases (Iorio et al., 2010). miRNAs are 

involved in intricate double-negative feedback loops, wherein miRNA inhibition of an 

epigenetic regulator is reciprocally controlled at the epigenetic level by the same regulator. 

This miRNA–epigenetic feedback loop significantly influences gene expression levels, and 

disruption of this feedback loop can perturb normal physiological processes, leading to disease 

(Yao et al., 2019). 

 

II. 2 Epigenetics of hematopoiesis 

 

II. 2. 1 Chromatin state in HSCs and it’s pivotal role upon differentiation 

 

The structure of chromatin appears pivotal in defining HSC identity and in regulating gene 

transcription during hematopoiesis.  

 

II. 2. 1. 1 Epigenetics in HSC identity 
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The role of epigenetics in defining HSC identity has notably been highlighted in mice Knock 

Out (KO) for the H3K9 methyltransferase SETDB1. SETDB1 KO induces the loss of HSCs 

and progenitors as well as ectopic expression of non-hematopoietic genes in HSCs, suggesting 

that the H3K9me3 mark “defines” HSC by preventing expression of non-hematopoietic genes 

(Koide et al., 2016). 

 

The importance of epigenetics in defining HSC identity has been further shown in single-cell 

analysis (sc-ATAC-seq; sc-RNA-seq), combined with in vivo tracking/tracing experiments and 

single-cell transplantations. Indeed, HSC that are heterogeneous for their quiescence, self-

renewal, and differentiation capacities are defined by a particular epigenetic state (DNA 

methylation or chromatin accessibility) at the enhancers and promoters of HSC-specific genes 

or genes involved in differentiation into myeloid or lymphoid lineages (Cabezas-Wallscheid et 

al., 2014; Lara-Astiaso et al., 2014; Weishaupt et al., 2010; Yu et al., 2017). As an example, 

HSCs with a lymphoid bias show weaker methylation at lymphoid enhancers and stronger 

methylation at myeloid enhancers, and vice versa for HSCs with a myeloid bias. The 

differential methylation of these enhancers does not correlate with the transcription of 

lymphoid or myeloid differentiation genes respectively in the HSC, but later in the cells during 

differentiation (Yu et al., 2017). 

 

II. 2. 1. 2 Epigenetics in HSC differentiation 

 

Different studies have shown that the cell fate of HSCs is programmed at the epigenetic level, 

with the transcriptional consequences of these epigenetic variations only being observed later 

during differentiation (Cui et al., 2009; Lara-Astiaso et al., 2014; Weishaupt et al., 2010). 

 

One such example comes from Parmentier’s study, that showed that the global decompaction 

of the genome following cytokine stimulation precedes the stochastic activation of gene 

transcription in CD34+ human cells during the “multilineage-primed state” (Parmentier et al., 

2022). 

 

Promoter regions of many genes exhibit a compressed chromatin state in LT-HSCs and ST-

HSCs compared to MPPs, indicating that only a few genes regulate HSC self-renewal, whereas 

many more are involved in blood cell differentiation regulation (Yu et al., 2017). ATAC-seq 

analyses revealed that PU.1, SPIB, and ELF5 binding motifs, which are associated with 
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differentiation, were less enriched in open chromatin in LT-HSCs compared to ST-HSCs and 

MPPs. Conversely, binding motifs for Krüppel-like factors (KLF9, KLF10, KLF14) and the 

ETS TF ETV2 were specifically enriched in open chromatin in LT-HSCs relative to ST-HSCs 

and MPPs, indicating their potential role in the maintenance of LT-HSCs (Yu et al., 2017). 

Many lineage-restricted promoters are linked to bivalent histone methylation, characterized by 

the presence of both activating and repressive marks. This bivalency would prepare genes for 

rapid expression (loss of the repressive mark) or repression (loss of the activating mark) during 

differentiation according to cell fate (Sun et al., 2014; Weishaupt et al., 2010). Indeed, bivalent 

promoters of genes that are expressed in T cells lose repressive marks upon differentiation 

(Weishaupt et al., 2010). 

 

Lara-Astiaso's research identified TF networks that regulate chromatin dynamics and lineage 

specification in hematopoiesis, providing a detailed model of chromatin behavior during 

development. The study revealed that 60% of enhancers, defined by the presence of the 

H3K4me1 histone mark, are initially marked in HSCs but are activated by the addition of 

H3K27ac, and drive gene transcription, only within the corresponding lineage. Additionally, 

they found that a significant portion of dynamic enhancers are newly established during the 

differentiation process (Lara-Astiaso et al., 2014).  

 

II. 2. 1. 3 Epigenetic regulators of hematopoiesis  

 

II. 2. 1. 3 a) H3K9me2/3 are essential for maintaining the balance between HSC self-

renewal and differentiation 

 

Inhibition of G9A methyltransferase with UNC0638 (inhibitor of G9a and GLP) delays HSC 

differentiation by maintaining higher levels of HSC-selective genes and preventing their 

transition to MPP-like gene expression profiles. This is associated with reduced H3K9me2 and 

H3K9me3 at promoters of several upregulated genes, indicating direct regulation by G9A and 

that G9A promotes their silencing upon HSC differentiation. Proper H3K9 methylation by G9A 

is crucial for the silencing of differentiation-associated genes, highlighting its role in 

maintaining the balance between HSC self-renewal and differentiation (Ugarte et al., 2015). 

 

II. 2. 1. 3 b) The role of epigenetic regulators in HSC self-renewal and lineage regulation 
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TET2 and DNMT3A are the most frequently mutated genes in clonal hematopoiesis of 

indeterminate potential (CHIP) (which I will develop in chapter VI) and in hemopathies. I will 

thus focus this part on these factors. Accumulating evidence suggests that these two epigenetic 

regulators play critical roles in both maintaining self-renewing HSCs and a balance between 

myeloid and lymphoid output. Mutant and KO models for Tet2 and Dnmt3a show similar 

phenotypes including increased self-renewal and reconstitution capacity and a biased 

differentiation towards the myeloid lineage (myeloid bias) (Challen et al., 2014, 2012; 

Quivoron et al., 2011). 

 

Different KO studies investigating the de novo methyltransferases Dnmt3a and Dnmt3b in 

adult HSCs revealed that their loss leads to a myeloid bias and expanding HSC numbers 

(Challen et al., 2014, 2012; Ostrander et al., 2020; Tadokoro et al., 2007). Dnmt3A is thought 

to play a crucial role in the choice between self-renewal and differentiation, with loss of this 

factor leading to HSC self-renewal rather than differentiation. Loss of Dnmt3a leads to the 

upregulation of HSC multipotency genes and a downregulation of differentiation factors. The 

progeny exhibited global hypomethylation and incomplete repression of HSC-specific genes 

(Challen et al., 2012). Dnmt3a-deficient HSCs also favor the erythroid differentiation program 

at the expense of monocyte lineage commitment (Izzo et al., 2020; Ostrander et al., 2020). The 

combined loss of Dnmt3a and Dnmt3b had a synergistic effect, leading to enhanced HSC self-

renewal and a more severe block in differentiation compared to Dnmt3a-null cells, whereas the 

loss of Dnmt3b alone resulted in a mild phenotype (Challen et al., 2014).   

 

The loss of Tet2 leads to increased self-renewal, myelo-proliferation and an enlargement of the 

HSC compartment (Ko et al., 2011; Li et al., 2011; Moran-Crusio et al., 2011; Quivoron et al., 

2011). Single-cell DNA methylation analyses on Tet2−/− HSCs revealed dramatic methylation 

changes at CpG sites within lineage-specific TF binding motifs, resulting in disrupted 

transcriptional priming (Izzo et al., 2020). It was also demonstrated that 5hmC is lost and that 

there is a hypermethylation of enhancer elements upon the disruption of Tet2 (Rasmussen et 

al., 2015).  

 

I will develop in more details the role of TET2 in hematopoiesis in the next chapter.  
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Chapter III - The dioxygenase TET2: an epigenetic regulator 

playing a crucial role in hematopoiesis 

 

III. 1 The structure of TET enzymes  

 

The three enzymes of the TET family (TET1, TET2, TET3) identified in humans are 

evolutionarily conserved dioxygenases that catalyze DNA demethylation. I will mainly focus 

on TET2 in this chapter because it is the most mutated in clonal hematopoiesis and 

hemopathies. 

 

The TET family was identified through the involvement of a fusion protein involving TET1 

and myeloid/lymphoid- or mixed-lineage leukemia (MLL) in acute myeloid leukemia (AML) 

with a t(10;11) (q22;q23) translocation, hence the name Ten Eleven Translocation (TET). 

TET2 and TET3 were then identified by homology searches (Lorsbach et al., 2003; Ono et al., 

2002). TET1 and TET3 present an amino-terminal CXXC-type zinc finger domain, and a 

carboxy-terminal catalytic Fe (II)- and α-ketoglutarate-dependent dioxygenase domain inserted 

in a cysteine-rich domain, whereas a chromosomal inversion during vertebrate evolution split 

TET2 gene into distinct segments encoding the catalytic domain (TET2 gene) and the DNA-

binding CXXC domain (CXXC4/IDAX gene) (Fig. 10). The CXXC motif may be responsible 

for direct (TET1 and TET3) or indirect (TET2) DNA binding (Ko et al., 2013; Xu et al., 2012). 

 

 

 

FIG. 10: TET family. Domain structure of TET proteins. All TET proteins have one core catalytic domain in the 

C-terminal. A CXXC domain, located in the N-terminal of TET1 and TET3, but not in TET2, confers DNA binding 

ability directly (Zhang, 2023). CXXC: CXXC domain, CRD: cysteine-rich domain, DSBH: double-stranded β-

helix 
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Ko et al. (2013) showed that IDAX (CXXC4; Dvl-Binding Protein) interacts directly with the 

catalytic domain of TET2, leading to TET2 protein degradation through a caspase-dependent 

mechanism (Ko et al., 2013). The loss of IDAX in ESCs prevents TET2 degradation during 

ESC differentiation. shRNAs against IDAX in a human myeloid cell line upregulates TET2 

and increases 5hmC levels. When the CXXC domain of IDAX is mutated, IDAX loses its 

ability to bind TET2 and affect 5hmC, suggesting that IDAX recruits TET2 to chromatin 

through its CXXC domain. This represents a unique case of epigenetic marking where IDAX 

recruits TET2 to the chromatin to modify DNA followed by degrading TET2 (Ko et al., 2013). 

 

III. 2 Distinct expression patterns of TET enzymes in vivo 

 

Different TET enzymes exhibit distinct expression patterns in vivo, with TET1 being mainly 

expressed in ESCs and in the brain. TET2 and TET3 are more ubiquitous, with TET2 

expression predominating in a variety of differentiated tissues, especially in hematopoietic and 

neuronal lineages (Tahiliani et al., 2009) (Fig. 11). Besides, TET gene expression in different 

tissues was analyzed using the Protein Atlas database (https://www.proteinatlas.org/). The 

expression of TET2 is shown in Fig. 11, which may suggest different functions of TET2 in 

tissues. 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 11:  Expression levels of TET2 in different tissues. The data were obtained from the protein atlas (Zhang, 

2023). 

III. 3 The catalytic role of TET Proteins in DNA demethylation  
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TET proteins (TET1-3) are Fe (II)- and α-ketoglutarate (α-KG)-dependent mammalian DNA 

oxidases that catalyze the conversion of 5mC to 5hmC (Tahiliani et al., 2009). The discovery 

of this new modification on DNA methyl cytosine has provided novel insights into DNA 

demethylation pathways. The TET enzymes can further oxidize 5hmC to 5fC and 5caC, which 

can be directly recognized and repaired by TDG-mediated BER to generate unmethylated 

cytosines, leading to active DNA demethylation (He et al., 2011; Ito et al., 2011) (Fig. 9). On 

another hand, these modified cytosines are not recognized by DNMT1 during replication, 

leading to passive demethylation. 

 

III. 4 The non-catalytic role of TET2 

 

TET2 is mostly known for its catalytic role in demethylating DNA. However, several studies 

have also highlighted a non-catalytic role for TET2, that involves the recruitment of histone 

modifiers. In this context, TET2 plays the role of either an activator or a repressor of gene 

transcription. TET2 mutations, which are dispersed across various exons and regions of the 

gene, often lead to frameshift or stop codon changes, resulting in truncated proteins and 

insufficient protein production, both affecting the catalytic and non-catalytic roles of TET2 

(Tefferi et al., 2009). 

 

III. 4. 1 TET2 and OGT interaction: Mechanisms of histone GlcNAcylation and gene 

activation 

 

TET2 directly interacts with O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT), 

facilitating OGT-dependent histone O-GlcNAcylation through its association with chromatin. 

It has been shown that histones can be modified by OGT at different sites (Zhang et al., 2011), 

particularly at Serine 112 of histone H2B in vivo (Fujiki et al., 2011). The combined epigenetic 

modifications by TET2 and OGT on both DNA and histones coordinate gene transcription 

regulation (Chen et al., 2013). There is a significant overlap of target genes between OGT, H2B 

S112 GlcNAc, and TET2, with similar binding profiles to TET2 at transcriptional start sites 

(TSS). In wild-type ES cells, genes occupied by OGT and TET2, and enriched with H2B S112 

GlcNAc, were associated with high levels of transcription. Like TET2, TET3 might also target 

OGT to chromatin for gene transcription regulation. Recent reports indicate that H2B 

GlcNAcylation is associated with active TSS and positively regulates transcription (Fujiki et 

al., 2011). TET2/3 co-localize with OGT on chromatin at active promoters characterized by 
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high levels of H3K4me3. Reduction in either TET2/3 or OGT activity results in a direct 

decrease in H3K4me3 and concomitant decreased transcription. Studies in Tet2 KO mouse BM 

tissue support this data, showing decreases in global GlcNAcylation and H3K4me3, 

particularly at key regulators of hematopoiesis (Deplus et al., 2013). When TET2 and OGT 

bind, it is primarily for the activation of gene expression. 

 

III. 4. 2 TET2 and HDAC interaction: regulation of inflammatory genes in myeloid cells 

 

TET2 selectively mediates the repression of inflammatory genes during the resolution of 

inflammation in innate myeloid cells, including DCs and macrophages. As an example, loss of 

TET2 leads to the upregulation of several inflammatory mediators, including interleukin-6 (IL-

6), in the late phase of the response to lipopolysaccharide (LPS) challenge. This repression 

mechanism, independent of DNA methylation and hydroxy-methylation, involves TET2 

recruiting HDAC2 to repress Il6 transcription via histone deacetylation (Zhang et al., 2015). In 

another study, Pronier et al. demonstrated in both mice and human monocytes that, even 

without any inflammatory challenge, downregulation of TET2/Tet2 promotes the production 

of MIF (macrophage migration inhibitory factor), a key mediator of atherosclerotic lesion 

formation (Pronier et al., 2022). In healthy monocytes, TET2 is recruited to the MIF promoter 

and interacts with the transcription factor early growth response 1 (EGR1) and histone 

deacetylases. Co-immunoprecipitation experiments in human blood monocytes confirmed 

TET2's interaction with EGR1 and validated its ability to interact with HDAC1 and HDAC2 

(Pronier et al., 2022). This provides mechanistic evidence for TET2's gene-specific 

transcription repression activity through histone deacetylation, preventing constant 

transcription activation at the chromatin level during inflammation resolution (Zhang et al., 

2015). 

 

III. 4. 3 TET2 and heterochromatin at transposable elements 

 

Regardless of cell type, TET deficiency was broadly associated with an expected DNA 

hypermethylation in the euchromatic compartment, but to an unexpected DNA 

hypomethylation in the heterochromatic compartment (López-Moyado et al., 2019). Genomic 

analysis of malignant T cells lacking TET2/3 showed DNA hypomethylation in 

heterochromatic regions, along with the reactivation of repeat elements and an increased 



 
 

49 

frequency of single-nucleotide alterations, particularly in heterochromatic areas (López-

Moyado et al., 2019).  

 

The role of TET1 in controlling repetitive sequences has been confirmed in the study from Paul 

Stolz in 2022. In that study, it was demonstrated that TET1 plays a crucial role in establishing 

H3K9me3 at TEs, with its silencing function operating independently of its well-known role 

in DNA demethylation (Stolz et al., 2022). The researchers proposed that the TET1-SIN3A-

HDAC complex is involved in deacetylation, which is followed by the SETDB1-KAP1 

complex that deposits H3K9me3 to achieve silencing (Stolz et al., 2022). It appears that one of 

TET1's non-catalytic activities is to facilitate the establishment of H3K9me3 through 

interaction with the SIN3A/HDAC and OGT complexes. The involvement of TET1 and TET2 

in depositing H3K9me3 by interacting with SIN3A/HDAC complex at TEs was also shown in 

the study from de la Rica et al in 2016 (De La Rica et al., 2016).  

 

I will come back on the role of TET2 in regulating TEs in Chapter VI. 

 

III. 5 Regulatory mechanisms and dependencies of the TET2 enzymes 

 

III. 5. 1 TET2 catalytic function is dependent on iron and 2-Oxoglutarate 

 

TET2 requires cofactors such as Fe (II), O2 in addition to 2-OG (Tahiliani et al., 2009). 2-

Oxoglutarate (2OG) and Fe (II)-dependent oxygenases couple substrate oxidation with 2OG 

decarboxylation to produce succinate and CO2 (Berg et al., 2018). 

 

Suppressing iron uptake or Tet2 expression impairs the expression of erythroid genes and the 

differentiation of HSCs (Tseng et al., 2024). Iron is essential for dioxygenases, which support 

vital biological functions such as oxygen transport, energy production, DNA synthesis, and cell 

growth and replication. Alpha-ketoglutarate (aKG) is a critical intermediate metabolite in the 

tricarboxylic acid cycle, also known as the Krebs or citric acid cycle. aKG is crucial for cellular 

energy metabolism, amino acid synthesis, collagen synthesis, and epigenetic regulation. It acts 

as a cofactor for several chromatin-modifying enzymes, including TET2 (Zdzisińska et al., 

2017).  

 

III. 5. 2 TET2 activity can be regulated by Vitamin C 
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iron (Fe²⁺), which is essential for its role as a cofactor for α-KGDDs. Vitamin C regulates 

various α-KGDD families, including prolyl hydroxylases (Cimmino et al., 2018). Additionally, 

metabolomic screening by Agathocleous et al. revealed that vitamin C levels are significantly 

higher in human and mouse HSCs compared to more differentiated hematopoietic cell types 

(Agathocleous et al., 2017). 

 

III. 5. 3 regulation of TET2 by miR-22 

 

A recent study identified miR-22 as an oncogene that directly targets TET2 transcripts. 

Conditional overexpression of miR-22 in the mouse hematopoietic compartment leads to 

reduced global 5hmC, increased self-renewal of HSCs, and impaired differentiation ability. 

Furthermore, miR-22 overexpression enhances the proliferative capacity of HSC/HPCs, 

causing them to outcompete their wild-type counterparts in competitive transplantation assays. 

Bioinformatics analysis revealed direct interaction of miR-22 with the 3′UTR of the TET2 

transcript. These findings suggest that TET2 loss contributing to the pathogenesis of myeloid 

malignancies can also be related to deregulation of the miR-22-TET2 pathway (Song et al., 

2013). 

 

III. 5. 4 Modulation of TET2 Activity by IDAX 

 

As previously mentioned, Ko et al. (2013) demonstrated that IDAX, a protein dissociated from 

the CXXC domain, directly interacts with the catalytic domain of TET2. This interaction leads 

to the degradation of TET2 and a reduction in 5hmC through a caspase-dependent pathway. In 

ESCs, the absence of IDAX prevents TET2 degradation during ESC differentiation. Mutations 

in the CXXC domain of IDAX impair its ability to bind and degrade TET2, suggesting that 

IDAX uses its CXXC domain to recruit TET2 to chromatin (Ko et al., 2013). 

 

III. 6 TET2 mutations and inactivation: Implications for hematopoiesis and human 

hematologic disorders 

 

III. 6. 1 TET2 loss in murine hematopoiesis  

 

It has been demonstrated that alterations in TET2 function resulted in diverse hematopoietic 

abnormalities and a predisposition to fatal disorders resembling human myeloid diseases with 
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TET2 mutations. TET2 disruption gives cells a competitive advantage, enhanced repopulating 

capacity, a myeloid bias and eventually leads to malignancy development (Ko et al., 2011; Li 

et al., 2011; Moran-Crusio et al., 2011; Quivoron et al., 2011). Additionally, Tet2+/- mice also 

show increased stem cell self-renewal and extramedullary hematopoiesis, suggesting that Tet2 

haploinsufficiency contributes to hematopoietic transformation in vivo (Moran-Crusio et al., 

2011). In the lab, we use Tet2-deficient mice that were obtained by crossing Tet2flox/flox mice 

with EIIa-Cre mice. Approximately 30% of animals in this Tet2-deficient model developed a 

chronic myelo-monocytic leukemia (CMML)–like disease (Quivoron et al., 2011). 

 

In order to decipher the impact of the catalytic vs non catalytic function of TET2 on 

hematopoiesis, Ito et al. (2019) compared Tet2 KO mice, losing both the catalytic and non-

catalytic function of TET2 to mice with mutation in the catalytic domain (Tet2 mutant (Mut) 

mice). The increased incidence of aberrant lymphopoiesis observed in Tet2 KO mice, but not 

in Tet2 Mut mice, suggests that TET2's non-catalytic roles are involved in regulating 

lymphopoiesis. Their analysis conclusively establishes that the catalytic activity of TET2 is the 

primary regulator of myeloid lineage differentiation and the pathogenesis of myelodysplastic 

syndrome (MDS) through DNA demethylation. Tet2 KO mice develop disorders affecting both 

the myeloid and lymphoid lineages (Ito et al., 2019). 

 

III. 6. 2 Impact of inactivation/knockdown of TET2 on human hematopoiesis 

 

Interestingly, knocking down TET2 in human hematopoietic cells was found to enhance 

hematopoietic development. Specifically, when TET2 was knocked down in hematopoietic 

progenitors (CD34+CD43+ cells) derived from human ESCs (hESCs) or murine primary BM 

cells, there was a notable increase in the number of progenitors compared to controls (Figueroa 

et al., 2010; Langlois et al., 2014). 

 

In another study, genetic engineering through CRISPR-Cas9 sgRNAs against TET2 of human 

hematopoietic stem cells (hHSCs) and transplantation into immunodeficient mice showed that 

TET2 loss in hHSCs leads to distinct neutrophil heterogeneity in BM and peripheral tissues, 

enhancing the repopulating capacity of neutrophil progenitors and resulting in the formation of 

low-granule neutrophils. Neutrophils carrying TET2 mutations exhibit heightened 

inflammatory responses and more condensed chromatin, which is linked to increased 

production of compact neutrophil extracellular traps (Huerga Encabo et al., 2023). 
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III. 6. 3 TET2 Mutations in clonal hematopoiesis and hemopathies 

 

Inactivating mutations of the TET2 gene were initially identified in myeloid malignancies and 

have since been found in B and T lymphomas, including peripheral T-cell lymphomas, 

suggesting that TET2 mutations occur in the stem cell compartment. TET2 mutations were 

present in 40 out of 86 (47%) cases of angioimmunoblastic T-cell lymphoma and in 22 out of 

58 (38%) cases of peripheral T-cell lymphoma (Lemonnier et al., 2012). TET2 mutations were 

also detected in approximately 10% of adult T-cell leukemia/lymphoma cases (Kataoka et al., 

2015; Shimoda et al., 2015). In B-cell malignancies, TET2 mutations have been reported in 0–

12% of patients with diffuse large B-cell lymphoma (Asmar et al., 2013; Lohr et al., 2012; 

Morin et al., 2011; Quivoron et al., 2011). 

 

TET2 is a bona fide tumor-suppressor gene in myeloid cancers. Mutations in TET2 are early 

events in some patients with MDS, myeloproliferative disorders, or secondary AML. The 

frequency of TET2 mutations in unselected patients was 20-35% with MDS (Kosmider et al., 

2009), 15,5% with MPN (Chia et al., 2021), 12-34% with AML (Weissmann et al., 2012), and 

30-60% with CMML (Grossmann, 2011). The prevalence of TET2 gene mutations among the 

three subtypes of myeloproliferative neoplasms (MPN): polycythaemia vera, essential 

thrombocythaemia and myelofibrosis were 16.8%, 9.8% and 15.7%, respectively (Chia et al., 

2021).  

 

TET2 mutations can also appear with age in the HSPCs of otherwise healthy individuals and 

give rise to CHIP (described in chapter V).  

 

Disease emergence is dictated by the accumulation of additional mutations. For example, 

mutations in CTCF followed by FLT3 can lead to AML. In another rare case, a mutation in 

JAK2 generates MPN, which can transform into secondary myelofibrosis due to an additional 

ASXL1 mutation (Solary et al., 2014). TET2 can be associated with SF3B1 and JAK2 

mutations, although this occurs less frequently in MPNs and MDS. However, such mutations 

have been observed in patients with refractory anemia with ring sideroblasts and 

thrombocytosis (Flach et al., 2014). In a third scenario, mutations in SRSF2 followed by KRAS 

can result in CMML in its proliferative form (Fig. 13). The highest incidence of TET2 genetic 

alterations has been observed in CMML (Solary et al., 2014). 
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Chapter IV - Effect of aging on HSCs and hematopoiesis  

 

Given that HSCs are vital for the continuous production of all blood and immune cells 

throughout a person's life, understanding how aging affects HSCs and hematopoiesis is crucial 

to comprehend the decline in hematopoietic function with age. It is widely recognized that the 

declining function of the immune system significantly increases the risk of infections, cancer, 

and autoimmune diseases in the elderly population, as extensively reviewed in the literature 

(Stahl and Brown, 2015). Our current comprehension of the decline in hematopoietic function 

encompasses a shift in the functioning of both adaptive and innate immune cells, resulting in a 

reduced ability to recognize new antigens (immunosenescence) and widespread chronic 

inflammation. 

 

IV. 1 Aging results in immunosenescence and a shift towards myeloid cell differentiation 

 

IV. 1. 1 Myeloid bias and its related hematological conditions 

 

While young HSCs exhibit a balanced production of lymphoid and myeloid cells, promoting 

the necessary lymphopoiesis for initiating adaptive immune responses while restraining the 

production of potentially inflammatory myeloid cells (Yamamoto and Nakauchi, 2020), aging 

is marked by reduced lymphopoiesis and an increase in myeloid-biased HSCs, leading to 

heightened myelopoiesis (Pang et al., 2011).  

 

Gene expression analysis has shown that aged HSCs undergo systemic downregulation of 

genes associated with lymphoid specification and function, while genes involved in myeloid 

fate and function are upregulated (Liang et al., 2005; Rossi et al., 2005). 

 

This bias of HSC differentiation towards the myeloid lineage is associated with a higher risk 

of developing myeloid cancers such as MDS, MPN, mixed MDS/MPN such as CMML, and 

AML. MDS, previously known as myelodysplastic syndromes, are clonal hematopoietic 

malignancies characterized by morphological BM dysplasia and often manifesting as anemia, 

neutropenia, or thrombocytopenia. CMML is a clonal disorder that used to be considered a type 

of MDS, with TET2 and SRSF2 mutations being early initiating events (Patnaik, 2022). Given 

that CMML exhibits characteristics of both MDS and MPN, experts established a new 'overlap' 
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category for MDS/MPN neoplasms (Jaffe, 2008). MDS and CMML patients also face an 

increased risk of AML. Beyond MDS, chronic myeloid neoplasms (MN) encompass MPN, 

characterized by abnormal proliferation of both immature and mature myeloid cells, presenting 

with various proliferative features (Vardiman et al., 2009). 

 

IV. 1. 2 Immunosenescence 

 

Immunosenescence denotes the alterations in the adaptative immune system observed in aging 

individuals. Key features include a diminished capacity to respond to novel antigens and 

decreased memory response.  

 

Aging leads to a decrease in the numbers of CLPs and reduced CLP proliferation rates in vivo 

(Gruver et al., 2007). T cells are particularly susceptible to the effects of aging. Various factors 

have been implicated in the decline of T cell function with age, yet chronic age-induced thymic 

atrophy and the consequent reduction in naïve T cell production appear to be the most 

significant contributors (Haynes et al., 2000). Moreover, the population of pre-B cells 

diminishes notably with age, likely due to an impediment between the pro- and pre-B cell 

developmental stages (Johnson, 2002). Human immunosenescence significantly impacts 

morbidity and mortality later in life. 

IV. 2 Functional changes of HSCs upon aging 

Transplantation assays using single cells and inducible lineage tracing systems have revealed 

that aged mice harbor a higher quantity of immunophenotypic HSCs in comparison to their 

younger counterparts. Aged HSCs exhibit a higher rate of cell division and proliferation 

compared to younger stem cells, which are more likely to remain quiescent (Pang, 2011) 

(Fig.14). However, despite this abundance, each individual HSC in older mice exhibits a 

reduced ability to generate mature hematopoietic cells (Säwen et al., 2018; Yamamoto et al., 

2018). Aged HSCs are constrained in their lineage potential but also produce fewer 

differentiated progeny, leading to a delayed and diminished recovery process (Van Zant and 

Liang, 2003). 
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histone H2AX (γ-H2AX) serves as a marker for DNA damage, and there is an accumulation of 

γ-H2AX foci in HSCs as they age (Rossi et al., 2007). Older HSCs also present increased 

replication stress due to cell cycle abnormalities, altered DNA replication dynamics, and the 

presence of chromosome gaps or breaks (Flach et al., 2014). However, delaying the effects of 

aging in mice by reducing DNA damage levels has not yet been accomplished, and a direct 

link between DSB formation and physiological aging remains to be established (White and 

Vijg, 2016). 

 

Once old HSCs enter a quiescent state, residual replication stress persists primarily at ribosomal 

DNA genes, resulting in the formation of nucleolar-associated γH2AX signals. It is thought 

that these signals persist due to ineffective H2AX dephosphorylation rather than ongoing DNA 

damage.  

 

IV. 3. 2 Increased ROS due to higher level of oxidative metabolism  

 

HSCs are characterized by having a low metabolic rate, being essentially glycolytic while 

quiescent (Chandel et al., 2016; Ito and Suda, 2014). Upon activation, young HSC change 

towards a more oxidative metabolism that can be reverted when they return to quiescence. 

However, in aged HSC, basal metabolism is shifted to a higher level of oxidative metabolism 

(Verovskaya et al., 2019), which increases ROS leading to oxygen related-stress, accompanied 

by impaired regenerative potential (Chandel et al., 2016). 

 

The maintenance of appropriate ROS levels is critical for the maintenance of HSCs and DNA 

integrity, as well as for preventing ROS-mediated cell damage (Naka et al., 2008). Jang and 

Sharkis reported that HSCs with low levels of ROS had high potential for self-renewal, which 

was attenuated during aging as the ROS levels increased (Jang and Sharkis, 2007).  

 

Recent studies have shown that in young mice, HSCs purified based on low intracellular levels 

of ROS displayed heightened self-renewal potential. Conversely, those with elevated ROS 

levels became rapidly depleted upon serial transplantation, exhibiting a myeloid-biased 

differentiation pattern similar to that observed in aged HSC transplantation (Jang and Sharkis, 

2007). It can be concluded that intracellular ROS levels play a critical role in determining the 

functionality of HSCs. 
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While the BM, where hematopoiesis occurs, is hypoxic rather than hyperoxic, increased 

oxidative stress from ROS production in the BM hematopoietic niche with aging has been 

proposed (Latchney and Calvi, 2017). 

 

IV. 3. 3 The role of telomers in aging of HSCs 

 

IV. 3. 3. 1 Telomere-centric theory of cell aging  

Telomeres safeguard the integrity of DNA throughout the cell cycle by acting as specialized 

caps on chromosomes. During cellular division, they prevent the loss of base pairs from 

chromosomal DNA. However, with each division, telomeres shorten until they become too 

short for the cell to divide, leading to cellular senescence. Indeed, the DNA polymerase, which 

synthesizes DNA from the 5′ to the 3′ end, needs a transient primer to start the process but 

cannot fully replicate the chromosome's 3′ ends, a limitation known as the “end-replication 

problem” (Jang and Sharkis, 2007; Levy et al., 1992). Besides incomplete replication, telomere 

shortening can also result from various external and internal factors, such as radiation, 

infections, pollution, and other environmental factors, particularly those that stimulate 

excessive mitochondrial ROS production (Fig. 16). This reduction in telomere length is 

associated with aging and a variety of diseases. The telomere-centric theory of cell aging posits 

that telomere shortening is influenced not only by the number of cell divisions (mitotic clock) 

but also by various internal and external factors. 
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(Beerman et al., 2013; D. Sun et al., 2014), suggesting that disruption of the normal epigenetic 

state is a key factor in the aging HSC phenotype.  

 

A study looking at the genes that are up or down-regulated in old vs. young mice HSCs revealed 

that genes associated with the stress response, inflammation, and protein aggregation were up-

regulated, while the down-regulated included genes involved in the preservation of genomic 

integrity and chromatin remodeling (Chambers et al., 2007).  

 

In line with recently published data (Beerman et al., 2013), they observed that the overall DNA 

methylation pattern remains highly conserved throughout HSC aging (Taiwo et al., 2013). 

Comparing young and old HSCs, there is generally a significant 5% decrease in global DNA 

methylation (Taiwo et al., 2013) and a decrease in 5-hmC levels in aged HSCs (D. Sun et al., 

2014). Increased DNA methylation upon aging generally occurs at genomic loci linked to 

lymphoid and erythroid lineages, while DNA methylation decreases at loci associated with the 

myeloid lineage. This could be linked to the myeloid bias upon aging (D. Sun et al., 2014). 

There is also a hypomethylation at HSC-specific genes that can explain the increased number 

of HSCs with age (Beerman et al., 2013; Bernitz et al., 2020; Gekas and Graf, 2013; D. Sun et 

al., 2014). Aging-associated differentially methylated regions that gain methylation with age 

preferentially appear in precursor/stem cells at specific developmental gene promoters.  

 

Concerning histone marks, HSC aging is associated with an increase in the number of loci 

enriched in H3K4me3, and an expansion of this mark, particularly at HSC-specific genes. This 

change is correlated with an increase in gene expression, in line with the expansion of HSCs 

(D. Sun et al., 2014). 

 

The number of loci marked by H3K27me3 remains constant with age, but an increase in mark 

intensity and coverage is observed. The increase in H3K27me3 at lymphoid differentiation 

genes correlates with their decreased expression and declining lymphoid differentiation 

potential with age (D. Sun et al., 2014). 

 

Human HSCs also face age-associated epigenetic reprogramming, characterized by changes in 

DNA methylation and reductions in H3K27ac, H3K4me1, and H3K4me3 levels. This 

reprogramming in aged HSCs globally affects developmental and cancer-related pathways, 

potentially creating a predisposition to disease (Adelman et al., 2019). 
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These epigenetic changes may be linked to the decreased expression of key epigenetic 

regulators, such as Ezh2, the PcG complex member Cbx2, DNMTs, Tet and Suv39H1  genes 

in human and mice HSCs (Djeghloul et al., 2016a; D. Sun et al., 2014).  

 

IV. 3. 4. 2 ‘Loss of Heterochromatin’ theory of aging 

 

The "loss of heterochromatin" model of aging, first proposed by Villeponteau (1997), suggests 

that heterochromatin domains established early in embryogenesis break down during aging, 

leading to the derepression of silenced genes and resulting in abnormal gene expression 

patterns (Villeponteau, 1997). This model is supported by observations of global 

heterochromatin loss associated with aging in both humans and animals. For instance, cells 

from patients with Hutchinson-Gilford Progeria Syndrome (HGPS), a condition that mimics 

premature aging, exhibit a decrease in the heterochromatin mark H3K9me3 and a 

delocalization of HP1α and the calcinosis, Raynaud phenomenon, esophageal dysmotility, 

sclerodactyly, and telangiectasia antigen from constitutive heterochromatin (Shumaker et al., 

2006). Therefore, while global heterochromatin levels decrease with age, there is also an 

increase in localized heterochromatin formation at specific loci, a process referred to as 

"heterochromatin redistribution" (Sedivy et al., 2008). Another mechanism to protect from 

further genome instability after DNA damage through delocalization is shown in the paper of 

Fortuny where the methyltransferase SETDB1 coordinates histone methylation with the 

deposition of new histones in damaged heterochromatin after UV exposure (Fortuny et al., 

2021) leading to a loss of histones in other regions. In the paper of van Meter et al. they show 

that during aging and in response to DNA damage there is a relocalization of the 

heterochromatin from TEs to the site of DNA damages, leading to a loss of heterochromatin 

marks at some regions and a gain in others (Van Meter et al., 2014).  

 

Loss of heterochromatin through the loss of the major heterochromatic histone 

methyltransferases SUV39H1 and SUV39H2 resulted in characteristic changes associated with 

aging such as diminished HSC function, myeloid skewing and immunosenescence, confirming 

the link between loss of H3K9me3 and HSC aging (Keenan et al., 2020). 

 

Our lab participated in a study showing a loss of H3K9me3 in mouse and human HSCs, 

associated with loss of lymphoid differentiation. Interestingly, overexpression of SUV39H1 in 
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aged human HSC restores lymphoid differentiation and attenuates the myeloid bias, 

demonstrating the importance of heterochromatin in age-related phenotypic alterations in HSC 

(Djeghloul et al., 2016a).  

 

IV. 4 Stresses as a driver of HSC Aging 

 

Different stressors play significant roles in accelerating the aging process and contributing to 

the decline in hematopoietic function, including inflammation, smoking, ionizing radiations 

(IR) or other environmental factors. Therapies used in cancer treatment, such as 

chemotherapies and radiotherapies, also induce a premature aging of HSCs (Hill et al., 2020).  

 

I will mainly focus this part on the effects of IR and inflammation on HSC aging as I used these 

stresses as models of premature aging in my thesis.   

 

IV. 4. 1 Ionizing Radiations  

Exposure to natural and artificial radiations, in the context of medical use such as CT-scan or 

radiotherapies, have harmful biological effects on hematopoiesis.  

Exposure to IR is an independent risk factor for many disorder characteristics of accelerated 

aging. Epidemiological studies, particularly those involving atomic bomb survivors (Shuryak 

et al., 2010; Yoshida et al., 2019) and patients receiving medical radiation (Hernández et al., 

2015), have provided valuable data on the association between IR and a wide range of age-

related phenotypes, such as frailty, fatigue or hair loss, and diseases, including cancer. 

 

The hematopoietic tissue is particularly sensitive to IR. The persistence of pan hematopoietic 

defects as late as 50 years after initial IR exposure in Japanese atomic bomb survivors suggests 

that HSCs are the primary targets of IR. Irradiation notably induces enhanced inflammatory 

responses decades after radiation exposure due to an increase in peripheral myeloid cells 

(Yoshida et al., 2006). 

 

Therapy-related myeloid neoplasms (t-MN), such as MDS and therapy-related AML (t-MDS 

and t-AML), develop between 3 to 8 years after exposure to chemotherapies or radiotherapies, 

are frequently associated with poor overall survival, and are generally refractory to 
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conventional therapies (Takahashi et al., 2017a). T-MDS and t-AML constitute 15-20% of all 

adult AML/MDS cases. This has become a major public concern in the last decades as the 

number of long-term survivors of cancer treatments is continuously growing, consequently 

increasing the incidence of t-MN.  

Our lab and others have demonstrated that total body irradiation in mice results in long-term 

hematopoietic defects stemming from a depletion of HSC reserves and their functions (de Laval 

et al., 2013a; Fleenor et al., 2015; Mohrin et al., 2010). In HSCs, IR triggers the accumulation 

of DNA damage, a loss of self-renewal capability, and a skewed differentiation toward the 

myeloid lineage. This results in elevated myeloid cell counts and a decrease in the adaptive 

immune response. These changes are likely contributing to many IR-induced premature aging 

disorders and to the high risk of developing myeloid leukemia. 

Interestingly, we showed that IR-induced loss of HSC function is associated with a loss of 

H3K9me3 (Pelinski et al., 2022a). These data confirm the involvement of H3K9me3 in the 

aging phenotype of HSCs. 

 

IV. 4. 2 Inflammation 

 

While inflammation is a physiological process that aids in tissue repair in response to internal 

or external insults, a chronic inflammatory state can have detrimental consequences. 

 

A chronic pro-inflammatory status due to the increased production of myeloid cells is a 

common feature of aging. This persistent low-grade inflammation, occurring without overt 

infection, is termed "inflammaging" and poses a significant risk factor for morbidity and 

mortality in the elderly as it increases the risk of cardiovascular diseases (CVD), chronic kidney 

disease, diabetes mellitus, cancer, depression, dementia, and sarcopenia (Kuo et al., 2006; 

Leonardi et al., 2018; Miller and Raison, 2016; Ruparelia et al., 2017). Unlike young 

individuals, older adults consistently exhibit elevated levels of inflammatory cytokines, 

particularly IL-6 and tumor necrosis factor-α (TNF-α) (Singh and Newman, 2011) that were 

shown to be linked to an increased risk of cardiovascular and neurodegenerative diseases and 

that are also associated with sarcopenia and frailties (Tylutka et al., 2024). 

 

In addition to the proinflammatory state linked to the aged-induced increase in myeloid cells, 

chronic infections, autoimmunity, ataxia telangiectasia mutated kinase-dependent 



 
 

66 

inflammasomes and altered biomolecules from chromosome attrition can trigger chronic 

inflammation associated with aging. This not only increases ROS levels but also stimulates 

proliferation within the stem cell niche, leading to cell senescence and stem cell depletion 

(Lupatov and Yarygin, 2022). 

 

IV. 4. 2. 1 Effect of inflammation on HSCs 

 

Distinguishing between the acute and chronic effects of pro-inflammatory cytokines, as well 

as their impact at low or high doses, provides further insight into HSC function. Chronic low-

dose LPS treatment leads to HSC expansion and myeloid skewing in a TLR4-dependent 

manner (Liu et al., 2015). High-dose LPS causes increased BM cell death and HSC dysfunction 

(Chen et al., 2010). Chronic low-dose murine endotoxemia leads to a decline in HSC function 

and a loss of quiescence, that has been shown by their reduced repopulation capacity in serial 

transplantation experiments (Esplin et al., 2011). Short-term stimulation with different 

cytokines, including Interferon gamma (IFNγ), Interferon alpha/beta, interleukin-1, TNFα, and 

IL-6, promotes HSC proliferation, but prolonged exposure to these cytokines can impair their 

function (Chavakis et al., 2019; Haltalli et al., 2020; Burberry et al., 2014; Khan et al., 2020). 

 

IV. 4. 2. 2 Effect of inflammation on epigenetics 

 

In a recent study, analysis of DNA methylation changes in monocytes from 192 healthy adults, 

both exposed and unexposed to inflammation showed that these changes were associated with 

genes frequently mutated in cancer, indicating that altered DNA methylation might connect 

inflammation to genetic mutations. Notably, LPS exposure caused the most significant 

changes, by increasing the epigenetic age/clock of the cells by 6 months linking epigenetic 

aging with innate immune activity (Gilchrist et al., 2024). Epigenetic clocks predict 

chronological age based on changes in methylation at CpGs associated with aging (Van 

Dongen et al., 2016). 

 

In a separate study, it was demonstrated that the chromatin state at myeloid regulators in HSCs 

(De Laval et al., 2020) remains open following an initial inflammatory stimulus, enabling a 

quicker response to subsequent stimulation, suggesting the induction of an epigenetic memory 

that contributes to trained immunity. 
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Chapter V- Clonal hematopoiesis of indeterminate potential 

(CHIP) 

 

V. 1 Definition  

 

As other cells, HSC are not speared from accumulating somatic mutations over a lifetime. Most 

of these mutations are of little or no functional consequence. However, some of them may lead 

to a clonal expansion as compared to non-mutated cells and to a clonal hematopoiesis (CH) 

(Watson et al., 2020). On average, each HSC acquires about 1.3 ± 0.2 somatic exome mutations 

per decade (Welch et al., 2012).  By the age of 70, a person would have up to 1.4 million 

protein-coding variants, averaging about 70 mutations per gene, in at least one HSC (Jaiswal 

et al., 2014). 

 

CH is associated with a higher risk of developing leukemia. However, most individuals with 

CH never develop blood cancer. Additional events such as cooperative mutations in other genes 

may be required to induce malignant transformation. Thus, these clonal populations are 

considered to have “indeterminate potential.” This phenomenon is thus referred to as ‘Clonal 

hematopoiesis of indeterminate potential (CHIP)’ (Fig. 17). In 2015, a formal definition of 

CHIP was proposed with the following criteria: CHIP must occur without morphological 

variation in blood cells, a pre-leukemic candidate driver gene mutation should be present at a 

variant allele frequency of at least 2% in peripheral blood; and there should be no diagnostic 

criteria for hematologic malignancy (Steensma et al., 2015).  According to the WHO 2022 

classification (Haferlach and Heuser, 2022), CHIP is considered a myeloid precursor lesion, 

encompassing the same characteristics previously described by Steensma et al (Steensma et al., 

2015). 10-20% of people over the age of 70 have CHIP (Bick et al., 2020; Genovese et al., 

2014; Jaiswal et al., 2014; Kar et al., 2022). 
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V. 3 Diseases associated with CHIP 

 

Clonally restricted hematopoiesis is linked to an increased risk of all-cause mortality, with most 

deaths resulting from non-hematologic diseases. Epidemiologic studies indicated that CHIP 

raises the risk of death by 40%, a rate significantly higher than what could be attributed to the 

risk of hematologic malignancy alone (Beeler et al., 2022; Bouzid et al., 2023; Desai et al., 

2018; Genovese et al., 2014; Jaiswal et al., 2014; Tian et al., 2023).  

 

 

 

FIG. 19: Clonal hematopoiesis is linked to various health outcomes across multiple organ systems. Green-

shaded boxes indicate associations between CH and diseases replicated by Kessler et al. (2022). COPD: 

chronic obstructive pulmonary disease (Beeler et al., 2022). 

 

V. 3. 1 The impact of CHIP on cardiovascular and systemic diseases 

 

CHIP is associated with a pro-inflammatory state that has been linked to various cardiovascular 

conditions, including coronary artery disease, myocardial infarction, and venous 

thromboembolic disease, as well as influencing prognosis in aortic stenosis (Dorsheimer et al., 

2019) and heart failure (Mas-Peiro et al., 2020) (Fig. 19). Notably, CHIP confers a two-fold 

increase in cardiovascular risk, independent of traditional risk factors (Amancherla et al., 2022; 

Fuster et al., 2017; Marnell et al., 2021; Sano et al., 2018). CHIP has also been connected to 

chronic obstructive pulmonary disease (Buscarlet et al., 2017), diabetes (Fuster et al., 2020; 
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Jaiswal et al., 2014), psychiatric illnesses (Zink et al., 2017), early menopause (Honigberg et 

al., 2021), osteoporosis (Kim et al., 2021), liver disease (Wong et al., 2022) and renal 

dysfunction (Dawoud et al., 2020). Recently, CHIP has also been implicated in affecting both 

the risk and response to infections. Patients with CHIP have been found to have an increased 

risk of severe COVID-19, sepsis, and other infections (Dawoud et al., 2020) 

 

The correlation between CHIP and these diseases may stem from common factors such as 

aging, smoking, and inflammation, but it is also possible that CHIP-driven inflammation 

contributes to the development of these conditions. 

 

There are indeed several hypotheses regarding the mechanisms involved, with one suggesting 

that DNMT3A and TET2 converge in regulating proinflammatory pathways in monocytes and 

macrophages (Cobo et al., 2022; Fuster et al., 2017). Dnmt3a-deficiency has been associated 

with various potentially pro-atherogenic phenotypes across different immune cell populations, 

including the modest increase in IFN-γ production by T cells (Pham et al., 2013), and reduced 

immunosuppressive function in myeloid-derived suppressor cells (Yu et al., 2012). In murine 

models of atherosclerosis, Tet2-deficient macrophages exhibit higher levels of mRNA and 

protein expression of IL-1β, IL-6, and chemokines. This was associated with larger 

atherosclerotic lesions in mice engrafted with Tet2 KO as compared to non-mutated BM 

(Jaiswal et al., 2017). Additionally, Jak2V617F HSC-transplanted mice contribute to CVD, 

specifically atherosclerotic plaque buildup, through iron accumulation resulting from excessive 

erythrophagocytosis (Wang et al., 2018). TET2 has been shown to control the expression of 

cytokines through its non-catalytic function,  by recruiting HDAC2 to specifically repress IL-

6  and MIF (Pronier et al., 2022; Zhang et al., 2015). Loss of TET2 also lead to the emergence 

of a novel inflammatory monocytic cell population (Yeaton et al., 2022). 

 

Finally, CHIP may also have a protective role. A recent study has shown that CH is associated 

with protection from Alzheimer's disease (Bouzid et al., 2023). 

 

V. 3. 2 Clonal hematopoiesis and its risk for hematologic malignancies 

 

CHIP is also associated with an increased risk of developing myeloid or lymphoid neoplasia 

(Steensma et al., 2015). CHIP is thus defined as a pre-leukemic state.  Indeed, around 75% of 

AML patients have a CHIP mutation, years before diagnosis (Desai et al., 2018). CHIP is 
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associated with a 0.5-1.0% annual risk of developing leukemia. The incidence of hematopoietic 

malignancies in patients with CHIP is low with only 4% of individuals with CHIP in the Jaiswal 

study developed a hematopoietic malignancy at a median follow-up of nearly 8 years (Jaiswal 

et al., 2014). Follow up of BM transplantations of two healthy individuals with mutant 

DNMT3A into mice showed no expansion of the mutated clone after 8 months indicating that 

other factors might be required for expansion (Midic et al., 2020).  

 

In their review, Florez et al. discuss environmental factors that are associated with CHIP 

expansion, including advanced age, inflammation, radiations, chemotherapy, and cigarette 

smoking, which promote the selection and expansion of specific CHIP mutant clones (Florez 

et al., 2022a). For instance, genotoxic stresses such as IR and chemotherapies drive the 

expansion of clones mutated for factors involved in DNA repair (p53, PPM1D), while 

inflammation drives the expansion of clones with epigenetic mutations. These data will be 

further discussed in V.4 section. 

 

Figure 20 illustrates a model of disease progression with different evolutionary steps. Early 

mutations that initiate clonal expansion include TET2, DNMT3A, ASXL1, or JAK2, followed 

by mutations that contribute to disease characteristics, such as RUNX1, IDH1, or KRAS. The 

risk of developing future blood cancers and overall survival rates differ by mutation type, with 

DNMT3A and TET2 mutations associated with a lower risk of progression compared to 

PPM1D and TP53 mutations (Genovese et al., 2014; Jaiswal et al., 2014). 
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FIG. 20: CHIP as a precursor state for hematological neoplasms, representing a model of progression from 

normal hematopoiesis to CHIP, and potentially advancing to MDS or AML in certain instances (Steensma et al., 

2015).  

 

In the study by Weeks et al., a table is provided (Fig. 21) to calculate a score for the risk of 

developing hematologic diseases in CHIP. This simple prognostic model differentiates 

between high-risk CHIP/Clonal Cytopenia of Undetermined Significance (CCUS) and low-

risk CHIP/CCUS in both population and patient cohorts. Key features influencing MN risk are 

divided into two groups: low-risk factors such as single DNMT3A mutations, and high-risk 

factors including: high-risk mutations such as SRSF2, SF3B1, ZRSR2, JAK2, RUNX1, and 

IDH2, two or more mutations, a VAF of 0.2, higher age of 65 or older, the presence of CCUS 

versus CHIP, and red blood cell indices. 

 

They employed conditional probability-based random permutation analysis to identify key 

predictors, including high-risk mutations and single DNMT3A mutations, which emerged as 

the most significant genotypes for classification. The Clonal Hematopoiesis Risk Score 

(CHRS) was used to categorize individuals into low-risk (n=10,018, 88.4%), intermediate-risk 

(n=1,196, 10.5%), and high-risk (n=123, 1.1%) groups. In clinical cohorts, the majority of MN 

events occurred in high-risk patients with CHIP/CCUS. 
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FIG. 21: Clonal hematopoiesis risk score (CHRS) values to determine the risk of developing hematologic 

diseases (Weeks et al., 2023). CCUS: clonal cytopenia of undetermined significance 

 

V. 4 Expansion of CHIP mutated HSCs 

V. 4. 1 Expansion dynamics of mutated CHIP clones 

 

Several studies have investigated the expansion dynamics of mutated clones over the course of 

age, or in response to therapies (radio- and/or chemotherapies), or to various stresses (smoking, 

inflammation) (Bolton et al., 2020; Coombs et al., 2017; Fabre et al., 2022) and have shown 

differences in behavior between clones carrying different mutations. In a study monitoring 697 

clonal hematopoiesis clones from 385 individuals aged 55 and older over a median period of 

13 years, it was observed that 92.4% of the clones expanded at a consistent exponential rate. 

Different mutations drove significantly varied growth rates, ranging from 5% per year 

(DNMT3A and TP53) to over 50% per year for mutations in genes involved in splicing 

(SRSF2P95H). Growth rates of clones with the same mutation differed by approximately ±5% 

per year, affecting slower drivers more substantially. DNMT3A-mutant clones expanded 

preferentially during early life but exhibited slower growth in old age within a progressively 

competitive oligoclonal environment. Conversely, splicing gene mutations drove expansion 

only later in life, while TET2-mutant clones emerged across all ages. Finally, the study 

demonstrated that mutations driving faster clonal growth carry a higher risk of malignant 

progression (Fabre et al., 2022). The growth rate of mutated clones may depend on additional 

mutations in the clone. Mutations in the TCL1A gene reduce the expression of this gene in 

TET2-mutant clones and clone expansion (Weinstock et al., 2023). 

 

V. 4. 2 Environmental factors that expand clones 

V. 4. 2. 1 The role of genotoxic stresses in the expansion of mutant clones 
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Chemotherapies and radiations, used in radiotherapies for example, exert their anti-cancer 

effects by inducing DNA damage, disrupting DNA replication, impairing DNA repair 

mechanisms, blocking pro-survival signaling pathways, inhibiting transcription and 

translation, and triggering metabolic and cellular stress (Krisl and Doan, 2017). Certain pre-

existing mutations associated with CHIP confer a clonal advantage upon therapies, allowing 

mutant clones to expand and persist under the selective pressure of chemotherapy and radiation. 

CHIP was identified in 25% of cancer patients, with 4.5% harboring presumptive leukemia 

driver mutations. Mutations in DDR genes such as TP53, PPM1D, and CHEK2 show the 

strongest correlation with prior cancer treatments, with clones harboring these mutations 

expanding more robustly under the stress induced by specific cytotoxic therapies (Bolton et al., 

2020; Coombs et al., 2017; Gillis et al., 2017; Takahashi et al., 2017a).  

 

Even if mutations in DNA damage pathways are the most frequently expanded upon genotoxic 

stresses, expansion of clones presenting mutations in epigenetic factors such as TET2 has also 

been observed (Nishiyama et al., 2018; Shih et al., 2013; Takahashi et al., 2017a). 

 

V. 4. 2. 2 The role of Inflammation in the expansion of mutant clones 

 

Studies in both human subjects and animal models have highlighted that specific clones 

associated with CHIP can withstand the stress induced by inflammation, gaining a competitive 

advantage under these conditions (Cook et al., 2020; Florez et al., 2022a). 

 

Expansion of Tet2 KO HSCs upon inflammatory stress have been extensively investigated in 

murine models, revealing that these deficient HSCs selectively expand, particularly within the 

myeloid compartment, in response to acute or chronic pro-inflammatory stimuli such as TNFα 

and LPS (Abegunde et al., 2018; Cai et al., 2018; Caiado et al., 2023; McClatchy et al., 2023). 

In their study, Cai et al. demonstrate that Tet2 KO HSPCs maintain a competitive advantage 

following acute inflammatory stress as compared to non-mutated cells. Similarly, TNF-α has 

been shown to expand Tet2-mutant cells in mouse models (Abegunde, 2018). In both cases, 

resistance of Tet2 KO HSCs towards inflammation is associated with resistance to apoptosis, 

through the up-regulation of anti-apoptotic genes or down-regulation of apoptotic genes 

(Abegunde et al., 2018; Cai et al., 2018).  
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Administration of IL-1 to mice led to an IL-1 receptor 1-dependent expansion of Tet2+/− HSPCs 

and mature blood cells. This expansion was driven by enhanced cell cycle progression in 

Tet2+/− HSPCs, greater multilineage differentiation, and improved repopulation capacity 

compared to their wild-type counterparts. Consistently, IL-1α-treated Tet2+/− HSCs showed 

increased DNA replication and repair transcriptomic signatures and reduced susceptibility to 

IL-1α-mediated downregulation of self-renewal genes (Caiado et al., 2023). 

 

The study of Meisel et al. demonstrates that bacterial translocation from the intestine following 

disruption of the intestinal barrier or systemic bacterial stimuli like toll-like receptor 2 agonists 

and elevated Il-6 levels are crucial for pre-leukemic myeloproliferation (PMP) development in 

mice lacking TET2 in hematopoietic cells. This condition can be reversed with antibiotic 

treatment and does not develop in germ-free Tet2-/- mice, highlighting the significant role of 

microbial signals in PMP development (Meisel et al., 2018). 

 

In another mouse model of CHIP with hematopoietic-cell-specific Tet2 deletion, IL1β drives 

the expansion of pro-inflammatory monocytes/macrophages that correlates with impaired 

demethylation of enhancers and transcription factor binding sites (TFBS) related to lymphoid 

and erythroid lineages. Administration of IL1β leads to significant loss of DNA methylation in 

WT HSPCs, a process that Tet2-deficient HSPCs resist. IL1β also enhances the self-renewal 

capacity of Tet2-deficient HSPCs by upregulating self-renewal genes and preventing the 

demethylation of TFBS associated with terminal differentiation (McClatchy et al., 2023). 

 

Similarly, murine clones with Dnmt3a loss of function are more resistant to chronic IFNγ 

stimulation or to TNF-α as compared to their WT counterparts (Hormaechea-Agulla et al., 

2021; SanMiguel et al., 2022). Dnmt3a-/- HSCs expand in response to infection and maintain 

functionality in long-term reconstitution studies. Like Tet2 mutants, Dnmt3a-null HSCs 

stimulated with IFNγ exhibit resistance to apoptosis, characterized by significantly reduced 

caspase 3/7 activity compared to IFNγ-stimulated wild-type HSCs and better preserve their 

self-renewal capacity under inflammatory stress (Hormaechea-Agulla et al., 2021).  

 

TET2 and DNMT3a mutated HSCs were also shown to have an attenuated response to 

inflammation in CHIP mutated individuals, as compared to non-CHIP HSCs (Jakobsen et al., 

2024a). This may induce their resistance upon CHIP-induced inflammatory stress and their 

expansion. 
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Mature cells from the CHIP-mutated clones produce higher and novel inflammatory signals 

(Pronier et al., 2022; Yeaton et al., 2022; Zhang et al., 2015). This could induce the expansion 

of HSCs in a pernicious circle, as proposed by Speck (Speck, 2022). Indeed, in a zebrafish 

model of human ASXL1 mutation, Avagyan et al. showed that mutated HSPCs are resistant to 

the inflammatory cytokines produced by their mature progeny as compared to WT HSCs 

through the expression of immunomodulatory genes (Avagyan et al., 2021). 

 

Overall, research primarily conducted with mouse models supports the idea that inflammatory 

processes apply selective pressure that benefits the survival and expansion of HSPCs with 

CHIP mutations. Additionally, inflammation can arise from mature myeloid cells within the 

clone, creating a detrimental cycle that further promotes the expansion of mutated HSCs 

(Speck, 2022). This phenomenon may contribute to the progression towards hematologic 

malignancies. 

 

V. 4. 2. 3 The impact of aging and inflammaging on clonal hematopoiesis 

 

Numerous studies have demonstrated that the prevalence of CHIP increases exponentially with 

age in a context of low-grade inflammation called inflammaging. Indeed, there is a baseline 

increase in the production of pro-inflammatory cytokines such as IFNγ, TNFα, and IL-6 over 

time (Chung et al., 2009; Li et al., 2011; Sanada et al., 2018). This low-grade inflammation 

may be due to the increased production of myeloid cells upon aging as described in chapter IV. 

 

In the study by Hong et al., they reported that aging causes a spatial re-localization of 

H3K9me3-marked heterochromatin in HSCs. Their findings suggest that the loss of TET2 

prevents this spatial re-localization of H3K9me3-marked heterochromatin. They proposed that 

TET2 may play a role in regulating the subnuclear distribution of H3K9me3 in stem cells, when 

the DNA methylation machinery is defective due to aging or DNMT loss-of-function. This 

disruption could ultimately affect HSPC function. They demonstrated that Tet2 KO HSPCs are 

resistant to aging compared to WT cells by maintaining perinuclear heterochromatin 

distribution (Hong et al., 2023). 
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Liao et al. found that Dnmt3a R878H BM cells (human equivalent: DNMT3A R882H) 

exhibited enhanced reconstitution ability in an aged BM environment and in response to 

inflammatory stress (Liao et al., 2022). It has been shown that old mice have elevated levels of 

TNF-α in both plasma and in the BM compartment (Henry et al., 2015).  Dnmt3a R878H 

mutations protect HSPCs from chronic inflammation-induced damage, particularly from TNFα 

which is produced in the aged BM microenvironment. Mechanistically, they discovered that 

the RIPK1–RIPK3–MLKL-mediated necroptosis pathway is impaired in R878H cells when 

subjected to proliferative stress and TNFα exposure as compared to non-mutated cells (Liao et 

al., 2022). 
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Chapter VI - Transposable elements  

 

VI. 1 Definition  

 

TEs are repeated mobile DNA sequences that can independently replicate within host genomes. 

They usually range in length from 100 to 10,000 base pairs (bp), though some can be much 

larger (Arkhipova, 2017). Along with viruses, TEs are among the most complex selfish genetic 

elements, often encoding proteins with multiple biochemical functions and featuring intricate 

noncoding regulatory sequences that facilitate their transposition. The distinction between TEs 

and other invasive genetic elements like viruses is not always clear. TEs are defined as genetic 

elements capable of mobilization in the germline, thereby increasing in frequency through 

vertical inheritance. Although vertical inheritance through the germline is a hallmark of all 

TEs, horizontal transfer (HT) between species also occurs (Gilbert and Feschotte, 2018; 

Panaud, 2016). Although the precise mechanisms of these transfers are not fully understood, 

organisms engaged in close biotic interactions, such as parasitism or host-parasite 

relationships, appear to be more likely to exchange genetic material horizontally. HT of TEs 

enable TEs to bypass the host genome’s silencing mechanisms, which could be crucial for their 

survival and spread among eukaryotes (Panaud, 2016). HTs might also drive genomic variation 

and biological innovation (Schaack et al., 2010). 

 

Which vectors facilitate HTs and how DNA moves from one organism to another have long 

been debated. For years, only speculative hypotheses and indirect evidence were available. 

However, Gilbert and colleagues (2014) provided compelling evidence supporting the virus-

TE vector hypothesis where viruses could serve as TE vectors between species. They identified 

two TEs from the cabbage looper that had been incorporated into the genome of the baculovirus 

Autographa californica multiple nucleopolyhedrovirus during caterpillar infection. 

Furthermore, they demonstrated that these TEs subsequently spread to several related moth 

species via HT (Gilbert et al., 2014). 

 

TEs are present in all eukaryotic genomes examined to date, with a few exceptions. In most 

organisms, TE content is strongly correlated with genome size, and in some species, TEs can 

make up as much as 85% of the genome as for example the maize reference (B73) genome 
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crucial for target-primed reverse transcription (Luan et al., 1993). In this process, the enzyme 

encoded by ORF2 (ORF2p) nicks the target DNA to initiate reverse transcription of either its 

own RNA or other RNAs (Han, 2010) (Fig. 24). The 5' and 3' untranslated regions (UTRs) of 

LINE retrotransposons exhibit considerable variability. Most characterized 5' UTRs of 

functional non-LTR retrotransposons contain internal promoter activity (Mizrokhi et al., 1988), 

though promoter replacement is common (Haas et al., 2001), resulting in non-conserved 

promoter sequences among elements from different species. These promoters are typically 

transcribed by RNA polymerase II. 

 

 

FIG. 24: LINE-1 and its retrotransposition process, highlighting the relative positions of several key regions: the 

5′ untranslated region (5′-UTR), the open reading frames (ORF0, ORF1, and ORF2), the 3′ untranslated region 

(3′-UTR), and the Poly A tail. ORF2 encodes endonuclease (EN), reverse transcriptase (RT), and a cysteine-rich 

domain (C). LINE-1 mRNA is synthesized from the sense promoter located in the 5′-UTR. Once produced, the 

LINE-1 mRNA is transported to the cytoplasm, where ORF1 and ORF2 proteins are translated and assembled 

into a ribonucleoprotein (RNP) particle. This RNP is then imported into the nucleus. Within the nucleus, the 

ORF2P endonuclease in the RNP targets and cleaves specific sequences on the bottom DNA strand at the 

consensus site 3′AA/TTTT−5′. The resulting free 3′ hydroxyl group at the cut site is used by ORF2P and the LINE-

1 mRNA in the RNP as a template for reverse transcription, leading to the synthesis of complementary DNA for 

the LINE-1 gene (Zhang et al., 2020). 

 

The 3' UTR of LINE elements often includes specific sequences or structures recognized by 

the RT ORF (Luan and Eickbush, 1995). Additionally, the 3' boundary of LINE 

retrotransposons may feature a polydeoxyadenosine sequence or short sequence repeats 

(Kajikawa and Okada, 2002). LINE-1 mRNA is synthesized from the sense promoter located 

in the 5′-UTR. Once produced, the LINE-1 mRNA is transported to the cytoplasm, where 

ORF1 and ORF2 proteins are translated and assembled into a ribonucleoprotein (RNP) particle. 
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This RNP is then imported into the nucleus. Within the nucleus, the ORF2P EN in the RNP 

targets and cleaves specific sequences on the bottom DNA strand at the consensus site 

3′AA/TTTT−5′. The resulting free 3′ hydroxyl group at the cut site is used by ORF2P and the 

LINE-1 mRNA in the RNP as a template for reverse transcription, leading to the synthesis of 

complementary DNA for the LINE-1 gene (Zhang et al., 2020) (Fig. 24). 

 

Additionally, mammalian genomes contain many SINE non-LTR retrotransposons, such as Alu 

and SVA (SINE-VNTR-Alu) in humans (International Human Genome Sequencing 

Consortium et al., 2001b).  

SINEs are non-autonomous retrotransposons that rely onLINE-1 enzyme machinery for 

mobilization. They mobilize in trans by hijacking the machinery produced by their LINE-1 

autonomous counterpart which provide the necessary EN and RT functions for Alu elements. 

SINEs are usually derived from noncoding genes such as tRNAs, transcribed by RNA 

polymerase III, and trans-mobilized by the machinery of LINEs (Dewannieux et al., 2003). The 

estimated copy number of these elements is 1.1 million, and they are currently retro 

transpositional active in the human genome (Cordaux and Batzer, 2009).  

 

VI. 2. 2 LTR elements 

 

 

FIG. 25: The theoretical life cycle of LTR retrotransposons begins with the transcription of mRNA from the 5′ R 

region to the 3′ R region. Next, during translation, the active elements GAG and POL are synthesized. POL is 

then internally cleaved by aspartic proteinase (AP) into components such as RT-RNaseH and integrase (IN). 

Following translation, RNA dimerization occurs before or during packaging, utilizing a 'kissing-loop' mechanism. 

During packaging, reverse transcription starts as GAG proteins assemble into a virus-like particle (VLP). The 
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reverse transcription is carried out by the dual protein RT-RNaseH, which synthesizes the first strand of 

complementary DNA (cDNA) using the packaged RNA as a matrix. Afterward, the RNA matrix is degraded, and 

synthesis of the second strand of cDNA begins. The process continues with the completion of double-stranded 

cDNA synthesis and the linkage of integrase (IN) to the long terminal repeats (LTRs). Finally, a double-stranded 

break occurs, allowing the newly synthesized cDNA to integrate into a new genomic location. Key proteins 

involved in this cycle include reverse transcriptase (RT), ribonuclease H (RNaseH), open reading frame (ORF), 

aspartic proteinase (AP), and integrase (IN)(Wilhelm and Wilhelm, 2001). 

 

The structures, coding capacity, and replication mechanisms of LTR closely resemble those of 

retroviruses, to which they are evolutionarily related (Eickbush and Malik, 2007) (Fig. 25). 

Autonomous LTR elements contain at least two distinct genes (gag and pol), generally 

expressed as a single polycistronic RNA transcribed from a Pol II promoter located within the 

LTRs. Both gag and pol encode polyproteins that are cleaved into multiple proteins by a pol-

encoded protease. Pol also encodes the activities of RT, ribonuclease H (RNaseH), and IN 

(Wilhelm and Wilhelm, 2001). After translation, RNA dimerization takes place either before 

or during the packaging process, facilitated by a 'kissing-loop' mechanism. During packaging, 

reverse transcription begins as GAG proteins form a virus-like particle. This process is driven 

by the dual protein RT-RNaseH, which synthesizes the first strand of complementary DNA 

(cDNA) using the packaged RNA as a template. This DNA is then integrated into the host 

genome by the element-encoded IN. RT is a multifunctional enzyme with RNA-dependent and 

DNA-dependent DNA polymerase activities, as well as RNase H activity, which specifically 

degrades the RNA strand of RNA-DNA duplexes (Wilhelm and Wilhelm, 2001). 

 

VI. 3 TEs play a critical role in evolution 

 

TEs play a critical role in evolution, influencing everything from genome size and structure to 

the proteins encoded and their regulation.  

 

VI. 3. 1 TEs are involved in shaping the size/structure of the genome, even if it’s not linked 

to complexity  

 

TEs face selective pressures for expansion. Changes in genome size can be driven by the co-

evolutionary dynamics between TEs and their hosts (Ågren and Wright, 2011). 
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While the total TE content varies significantly among species, it has been observed that there 

is a very strong correlation indicating that the relative abundance/percentage of individual TE 

families within the genome is quite similar across species (Tenaillon et al., 2011). The insertion 

of TEs into genes has led to the formation of large introns and, in conjunction with other factors, 

an abundance of pseudogenes. However, the proportion of the genome occupied by TEs does 

not correlate with organismal complexity (Nowoshilow et al., 2018; Nystedt et al., 2013). One 

example is the large genome size in conifers that appears to result from the slow and steady 

accumulation of a diverse array of LTR TEs (Nystedt et al., 2013). 

 

VI. 3. 2 TEs co-opted as host sequences 

 

TEs can be actively transcribed or serve as regulatory elements, either for their own purposes 

or to benefit their host.  

 

TEs have for example influenced placental evolution by inserting themselves into genes, 

thereby enabling new functions and providing alternative promoters or enhancers (Keighley et 

al., 2023).  There are TE genes (Syncytin-1, Syncytin-2, PTN and INSL4) that are 

unmethylated and active in the placenta while they are methylated and unactive in adult somatic 

tissues (Liang et al., 2005; Macaulay et al., 2011) that enable placental development. Envelope 

proteins produced by human endogenous retroviruses (HERVs) are essential for the 

differentiation and fusion of syncytiotrophoblasts which form a syncytium that acts as a 

interface between maternal blood and fetal tissues (Keighley et al., 2023). 

 

Since the discovery of the RAG genes, researchers have suspected that V(D)J recombination 

might result from the insertion of a TE. Several observations support this hypothesis: firstly, 

the compact organization of the RAG locus resembles that of a TE (Schatz et al., 1989), and 

secondly, RAG proteins cut DNA after binding to recombination signal sequences throughout 

the BCR and TCR loci (Gellert, 2002). In another study they confirmed this similarity to DNA 

transposons based on their chromosomal translocations and deletions (Rommel et al., 2017). 

 

VI. 4 Consequences of TE Activity 

VI. 4. 1 Impact of TEs on the genome/genomic instability 
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Due to their ability to mobilize in the genome, TEs play a significant role in genomic instability 

(Cordaux and Batzer, 2009), through insertions or rearrangements within the genome.  

 

TEs insertions can cause mutations in coding genes or disrupt gene regulatory sequences. When 

a TE inserts into an exon, it may alter the ORF, leading to the production of aberrant peptides 

or causing missense or nonsense mutations. Insertion of retrotransposons alone account for 

approximately 0.3% of all mutations (Cordaux and Batzer, 2009). As an example, mobilization 

of an L1 element in the adenomatous polyposis coli gene, together with a point mutation in the 

second allele, led to colorectal cancer (Scott et al., 2016). In a separate case, a somatic L1 

insertion in the suppression of tumorigenicity 18 gene resulted in its up-regulation in a 

hepatocellular carcinoma case (Shukla et al., 2013). 

 

L1 expression and mobilization was also associated with double-strand breaks (DSBs) and 

DNA damage accumulation (Belgnaoui et al., 2006) (Fig 23).  

 

Transfection with vectors expressing L1, but not with vectors expressing L1 lacking EN 

activity, results in a significant increase in DSBs in DNA (Gasior et al., 2006a). Belancio et al. 

demonstrated that the exogenous expression of full-length L1 or the spliced SpORF2 mRNA 

alone in human fibroblasts and adult stem cells triggers a senescence-like phenotype, a known 

response to DNA damage (Belancio et al., 2008). These data suggest that even without 

mobilization, the activity of the endonuclease alone is able to induce DNA damage.  

 

Our lab showed that mouse HSCs express various families of TEs, including the most recent 

subfamily members of L1, L1Md, with increased expression following irradiation. By utilizing 

mice with an engineered human L1 retro transposition reporter cassette and inhibitors against 

reverse transcription, our team demonstrated that L1 retro-transposition occurs in vivo. They 

found that it contributes to the formation of persistent γH2AX foci and the impairment of HSC 

function following irradiation (Barbieri et al., 2018a). 

 

L1 reactivation also induced γH2AX foci in leukemia cell lines and cell cycle exit (Gu et al., 

2021a). 
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Reactivation and aberrant transcription of TEs have also been linked to the formation of R-

loops (Zeller et al., 2016; Zhu et al., 2018), which are associated with DNA damage and DSBs 

(Crossley et al., 2019).  

 

VI. 4. 2 TE mediated transcriptomic alterations 

 

Even in the absence of transcription and mobilization, TEs have been recognized as major 

contributors of gene regulatory networks (Chuong et al., 2017). TEs present in intronic regions 

can result in alternative splicing by serving as novel splice sites, disrupting canonical splice 

sites, or introducing a polyadenylation signal (Deininger and Batzer, 1999; Konkel and Batzer, 

2010) (Fig. 26). TEs located in intronic regions can also destabilize mRNA through providing 

additional splicing site leading to skipping of the downstream exon or premature termination 

signals, reducing gene expression (Chen et al., 2006). Similarly, TEs situated in the 5' or 3' 

regions of genes can affect gene expression. For instance, an Alu element can inhibit the 

initiation of translation of Breast Cancer gene 1 mRNA (Sobczak and Krzyzosiak, 2002).  

 

FIG. 26: Different mechanisms of TE influence on gene transcription. Green boxes: retroelements, blue boxes: 

gene exons, green arrow gene transcriptional start site, pink oval: enhancer element (Adapted from Gogvadze 

and Buzdin, 2009).  

 

TEs can also integrate various transcriptional regulators into gene regulatory networks. They 

are unique in their ability to introduce regulatory sites throughout the genome during 

transposition, thereby coordinating the regulation of multiple genes under a shared regulatory 

framework as proposed by the “gene-battery” model (Sundaram and Wang, 2018). The 

hypothesis that TEs might serve as a readily available source of DNA for regulating gene 

expression stems from the observation of multiple TFBSs within TE-derived DNA (Jordan et 
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al., 2003). TE-derived DNA located near gene promoters is more likely to have associated TFs, 

indicating a more frequent role in regulating genes nearby. Many active TF binding events 

mapped to TEs are associated with the promoters inherent to TEs themselves (Zhou et al., 

2020). 

 

Functional TFBSs in SINEs and LINEs are found more frequently in introns than in intergenic 

regions. Conversely, TF binding in ERVs is more prevalent in intergenic regions (Zhou et al., 

2020) 

 

Such TE-induced changes in gene expression may disrupt regulatory networks, potentially 

resulting in disease conditions (Konkel and Batzer, 2010). 

 

In the paper by Deniz et al., six ERV families with AML-associated enhancer chromatin 

signatures were identified. These families are enriched in the binding of key regulators of 

hematopoiesis and AML pathogenesis. Remarkably, the deletion or epigenetic silencing of an 

ERV-derived enhancer inhibits cell growth by triggering apoptosis in leukemia cell lines 

(Deniz et al., 2020). 

 

Furthermore, Jang et al. showed that TEs are involved in the expression of different oncogenes 

in different human cancers (Jang et al., 2019).  

 

VI. 4. 3 Viral Mimicry/Inflammation  

 

Viral mimicry refers to a cellular state where an active antiviral response is triggered by 

endogenous stimuli rather than actual viral infection. This response includes both innate and 

adaptive immune reactions initiated by endogenous sources of cytosolic RNA or DNA (Fig. 

27). Bidirectional transcription of many TEs, including ERVs, produces double-strand RNA 

(dsRNA), double-strand DNA (dsDNA), and RNA/DNA duplexes. These nucleic acids can 

induce a viral mimicry response through pathogen pattern recognition receptors, leading to 

NFκB and interferon inflammatory signaling. dsRNA is detected by RIG-I-like receptors, 

while dsDNA triggers signaling through the cGAS/STING/TLR PRR pathway, activating 

potent interferon responses and inflammatory pathways, which can lead to cell death 

(Chiappinelli et al., 2015a; Roulois et al., 2015).  
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generations and have acquired mutations making them less of a threat than more recently active 

families.  

 

In contrast, pathways monitoring recently integrated copies of actively replicating 

retrotransposon families need to use targeting mechanisms to deposit epigenetic silencing 

modifications to the correct locations de novo.  

 

Consequently, retroelements are under severe evolutionary pressure to devise 'escape 

strategies.' Thus, host strategies must be efficient and discriminative and evolutionarily flexible 

to adapt to new threats to the germline (Molaro and Malik, 2016). 

 

TEs are regulated by chromatin remodelers, DNA methylation, histone modifications and small 

RNAs. I will only develop the parts on DNA methylation and histone modifications. 

 

VI. 5. 1 Regulation of transposable elements through DNA Methylation: From 

retroelement silencing to host DNA protection 

 

DNA methylation, specifically 5mC, is arguably the most widely adopted strategy by higher 

eukaryotes for maintaining TEs in a repressive state. It has been argued that the need to 

maintain TE silencing drove the evolution of DNA methylation as a repressive mechanism 

(Yoder et al., 1997), later co-opted for other contexts, such as gene imprinting. These 

considerations indicate that measurements of genomic 5mC levels might, in some cases, have 

unwittingly reported almost solely on the methylation of retroelements (Bestor, 1990). An 

additional hypothesis is that prokaryotic DNMTs began by protecting the host from foreign 

DNA integration but evolved into enzymes allowing the coexistence of foreign DNA within 

the host genome (Bird et al., 1995). 

 

The integration of TEs leads not only to genome expansion and methylation of the TE DNA 

but also to the methylation of the flanking host DNA. Collectively, these results suggest that 

an unmethylated, CpG-rich TE inserted into the germline is suppressed by DNA methylation, 

which can subsequently spread into the surrounding DNA, leading eventually to the loss of 

CpG sites in neighboring DNA (Zhou et al., 2020), as the inevitable consequence of cytosine 

methylation is an increase in C-to-T transition mutations via deamination. Although the 

evolutionary cause of genome expansion is not yet fully understood, there is a notable 
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correlation between genome size, that could be linked to TE integration, and CpG 

underrepresentation. This interplay among TE insertion, DNA methylation, and 5-

methylcytosine deamination could have affected the size and the structure of eukaryotic 

genomes (Zhou et al., 2020).  

 

The involvement of DNA methylation in controlling TEs was shown by studying TE 

expression during the waves of DNA demethylation during mammalian gametogenesis and 

embryogenesis or using mouse models inactivated for DNMTs enzymes. DNA 

hypomethylation coincides with the transient upregulation of several TEs, including LINE-1 

elements, during reprogramming periods of mouse germ cell development including 

gametogenesis and embryogenesis (Molaro et al., 2014). In mouse embryos deficient in Dnmt1 

there are elevated transcript levels of intracisternal A particle (IAP) elements, the most recent 

and active subfamilies of LTR in mice (Walsh et al., 1998). This highlights the crucial function 

of DNA methylation to suppress the expression of potentially harmful genetic elements.  

 

Dnmt3C, a de novo DNMT gene that originated from a duplication of Dnmt3B in rodent 

genomes, was identified as crucial for methylating the promoters of evolutionarily young and 

active retrotransposons in the male germ line. This specialized function of DNMT3C is 

essential for mouse fertility and highlights the adaptability of the mammalian DNA methylation 

system in regulating retrotransposons (Barau et al., 2016a). Additionally, it was demonstrated 

that DNA methyltransferase 3-like is expressed in testis during a brief perinatal period in non-

dividing precursors of spermatogonial stem cells, coinciding with the de novo methylation of 

retrotransposons (Bourc’his and Bestor, 2004). 

 

Murine HSPCs expressing the human DNMT3A loss of function mutation (Dnmt3R882H) 

exhibited decreased DNA methylation associated with increased expression of different 

families of TEs (Scheller et al., 2021).  

 

In a mouse model of T cell lymphoma driven by TET deficiency (Tet2/3 DKO T cells), 

genomic analysis of the malignant T cells revealed an expected DNA hypermethylation in 

euchromatin regions, but a paradoxical DNA hypomethylation in the heterochromatic regions 

of the genome, enriched for repeated sequences, alongside the reactivation of TEs (López-

Moyado et al., 2019).  
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Recruitment of SETDB1 at TEs was also been shown to be mediated by MORC2 and subunits 

of the HUSH complex, specifically MPP8 and TASOR. HUSH/MORC2 complexes selectively 

bind to evolutionarily young, full-length L1s within transcriptionally active euchromatic 

regions, facilitating H3K9me3 deposition by SETDB1 and transcriptional silencing. Notably, 

these silencing events frequently occur within the introns of active genes, leading to down-

regulation of host gene expression in a HUSH/MORC2-dependent manner (Liu et al., 2023). 

  

TEs were also shown to be controlled by H3K27me3. Frapporti et al. observed that H3K9me3 

and H3K27me3 co-occur at multiple families of TEs in an Ezl1-dependent manner in the 

unicellular eukaryote Paramecium tetraurelia (Frapporti et al., 2019). They demonstrated that 

the loss of these histone marks leads to a global increase in the transcriptional activity of TEs, 

with only modest effects on the expression of protein-coding genes. This suggests that, despite 

often being viewed as functionally distinct, H3K9me3 and H3K27me3 may share a common 

evolutionary origin and a similar ancestral role in the silencing of TEs (Frapporti et al., 2019). 

In the mouse, an epigenetic switch involving H3K9me3 and H3K27me3 is involved in 

controlling distinct TE families upon genome-wide DNA demethylation in murine ESC 

(Walter et al., 2016). 

 

Interestingly, besides their role in controlling TEs by DNA methylation, TET1 and TET2 were 

also shown to be involved in the deposition of H3K9me3 at TEs, especially at L1Md and IAP, 

the most recent families of L1 and LTR respectively in mouse ES cells (De La Rica et al., 2016; 

Stolz et al., 2022). Loss of TET2 results in a reduction of H3K9me3 levels. However, loss of 

H3K9me3 was not associated with an increased expression of TEs. This could be linked DNA 

methylation still enriched at these TEs (De La Rica et al., 2016).  TET1 and TET2 could also 

control TEs by recruiting HDAC complexes (De La Rica et al., 2016; Guallar et al., 2018; Stolz 

et al., 2022). 

 

VI. 6 Impact of heterochromatin loss and TE upregulation on HSC aging 

 

As discussed in Chapter IV, the "loss of heterochromatin" model of aging posits that 

heterochromatin domains, which are established early in embryogenesis, deteriorate with age. 

This breakdown leads to the derepression of previously silenced genes and TEs, resulting in 

abnormal gene expression patterns and genomic instability. 
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TE derepression due to loss of heterochromatin is proposed to be involved in the aging process 

in various species and cell types.  

 

LINE-1 expression and integration may lead to accumulation of DSBs, potentially linking 

LINE-1 element activation to human aging processes (St. Laurent et al., 2010), even if the 

involvement of DNA damage in aging is debated (Best, 2009). TE activation during aging are 

also proposed as a significant driver of sterile inflammation that may contribute to various age-

related diseases (Gorbunova et al., 2021). During cellular senescence, the LINE-1 element 

becomes derepressed, and its upregulation triggers the IFN-I response. This activation appears 

to be linked to the cytoplasmic accumulation of LINE-1 cDNA, which contributes to the sterile 

inflammation commonly associated with aging (De Cecco et al., 2013).  

 

The transposon theory of aging posits that increased activation of TEs in somatic tissues during 

the aging process contributes to lifespan shortening (Driver and McKECHNIE, 1992). 

 

Interestingly, our lab showed that decline in SUV39H1 levels with age in both human and 

mouse HSCs is associated with H3K9me3 loss and overexpression of TEs, especially L1Md 

and IAP (Djeghloul et al., 2016a), suggesting a role of TEs in HSCs aging. 

 

VI. 7 TEs in cancer, the 'double-edged sword' (Fig. 29) 

 

Through their ability to modify the cell transcriptome, to induce genomic instability and an 

inflammatory context, TEs are generally described as oncogenes. However, TEs are also tumor 

cell’s Achille’s heel. Recent studies suggest that TEs, including active LINE-1 and ERVs, have 

been selected during evolution because of their essential role as tumor suppressor sentinels 

(Kelsey, 2021). Indeed, high expression of TEs induces DNA damage, senescence, and a state 

of “sterile inflammation”, mimicking viral infection, that triggers an innate and adaptive anti-

tumor immune response. Such innate immune signaling, if chronically induced, may also 

decrease HSC regenerative capacities.  

Our lab has shown that increased expression of young active LINE-1 is partly responsible for 

the sustained DNA damage observed in HSCs long-time after irradiation, a phenomenon that 

can be reversed by RT inhibitors. The decrease in TE-induced DNA damage is associated with 

a significant improvement of HSC reconstitution capacities (Barbieri et al., 2018a). TE-induced 
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sterile inflammation upon chemotherapies might be involved in HSC activation and exit from 

quiescence (Clapes et al., 2021).  

Tumor cells may adapt to repress TE expression to a level tolerable for their survival and 

proliferation.  

 

FIG. 29: Ying and Yang of transposable elements: Left: pro-tumoral including genomic instability, insertions and 

mutations of tumor suppressor genes and transcriptomic alterations, right: anti-tumoral including sterile 

inflammation, IFN-1 response and activation of the p53 pathway. 

 

In CRISPR/Cas9 screens, two studies identified MPP8, a member of the HUSH complex, and 

SETDB1, as dependencies in myeloid leukemia (Cuellar et al., 2017a; Gu et al., 2021a). In 

both studies, it was shown that the proliferation of leukemic cell lines was dependent on the 

repression of TEs by H3K9me3. Reactivation of TEs leads to DNA damage accumulation and 

an IFN-I response finally leading to leukemic cell cycle exit and apoptosis. Interestingly, 

SETDB1 expression is increased in AML and different types of cancer, suggesting a broad role 

of the epigenetic repression of TEs in leukemogenesis. 

 

Suppression of TE expression and decreased inflammatory pathways were observed in 

leukemic stem cells (LSCs) as compared to pre-leukemic HSCs and to leukemic blasts in AML, 

and in CD34+ from high-risk as compared to low-risk MDS (Colombo et al., 2017a).  
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In a recent study, our team observed significant disorganization of heterochromatin in CD34+ 

cells from CMML patients, characterized by a decrease in H3K9me3 but an increase in 

H3K9me2, particularly at the level of TEs, as compared to aged-matched healthy controls. This 

is associated with decreased immune and age-associated pathways. By combining DNA 

hypomethylating agents (HMAs) with inhibitors of the G9A/GLP H3K9me2 

methyltransferase, our team was able to reduce CMML HSPC fitness by reactivating TE-

induced viral and inflammatory pathways. This approach selectively targets mutated cells 

while sparing wild-type HSCs, thus opening new therapeutic possibilities for CMML but also 

for other myeloid malignancies ((Hidaoui et al., 2024a), in preprint). 
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PhD Project  

Clonal hematopoiesis of indeterminate potential (CHIP) is defined by the expansion of 

hematopoietic stem cells (HSCs) harboring somatic mutations in genes commonly mutated in 

myeloid leukemia, without being associated with a hematologic disease. Mutated clones 

expand with age in a context of low-grade inflammation also referred as inflammaging, or 

following genotoxic stresses, used in the context of cancer treatment (ionizing radiations – IR 

in radiotherapies, or chemotherapies).  

CHIP induces a pre-leukemic state and an increased risk of developing myeloid leukemia. 

However, most individuals with CHIP never develop blood cancer. It is thus of major 

importance to understand the mechanisms by which CHIP mutations trigger HSC expansion 

and the emergence of the pre-leukemic clone.   

                                                         

The most frequently mutated genes in CHIP encode for epigenetic factors such as TET2, which 

plays a role in both DNA methylation and histone modifications. TET2 loss of function 

mutations induce a competitive advantage of HSCs and imbalanced myeloid/lymphoid 

differentiation. However, the molecular mechanisms by which the loss of function of this 

epigenetic factor confers a fitness advantage to HSCs remains largely unknown. 

Two non-exclusive hypotheses could explain the expansion of CHIP-mutated clones with age 

and in response to stress: 1- a disadvantage of non-mutated cells, and/or 2- a competitive 

advantage of mutated cells. It is therefore crucial to study the effect of aging and stress on both 

mutated and non-mutated cells. 

As described in chapter IV, one theory proposes that aging may result from heterochromatin 

loss. As heterochromatin, mainly characterized by DNA methylation and the repressive histone 

mark H3K9me3, plays a major role in controlling TEs, aging may result from the derepression 

of TEs, through the induction of genomic instability, transcriptomic alterations, and sterile 

inflammation. 

Upon my arrival in the lab, the team had shown a loss of H3K9me3 at, and an upregulation of 

L1Md and IAP, the most recent subfamilies of TEs upon aging and IR, that induces a premature 

aging in HSCs (Barbieri et al., 2018; Djeghloul et al., 2016a; Pelinski et al., 2022).  We further 

showed that TE derepression is associated with HSC loss of function through DNA damage 

accumulation, and transcriptomic alterations (Barbieri et al., 2018; Pelinski et al., 2022). 
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Results showing the effect of IR on H3K9me3 at L1Md, and the impact of L1Md on HSC 

transcriptome and function were published in the Journal of Experimental Medicine in 2022, 

in an article in which I am a co-second author.  

“NF-κB signaling controls H3K9me3 levels at intronic LINE-1 and hematopoietic stem cell 

genes in cis” Y. Pelinski, D. Hidaoui*, A. Stolz*, F. Hermetet, R. Chelbi, M. K. Diop, A. M. 

Chioukh, F. Porteu, E. Elvira-Matelot, Journal of Experimental Medicine. 219, e20211356 

(2022). This article is included as an annex to this manuscript. 

In parallel, the team of Eirini Trompouki (IRCAN-Nice) also showed the involvement of TE 

derepression in HSC functional changes upon chemotherapies (Clapes et al., 2021). 

These data suggest that heterochromatin loss and TE derepression may be a common molecular 

mechanism involved in non-mutated HSC functional changes upon aging and stress.  

Chronic inflammation leads to impaired HSC function and aging-like changes in hematopoiesis 

(Esplin et al., 2011). However, the impact of chronic inflammation on HSC heterochromatin 

at TEs was unknown. 

The aims of my PhD project were:  

1/ To investigate if derepression of TEs may be involved in the loss of HSC function upon 

chronic inflammation.  

2/ to decipher the role of heterochromatin changes at TEs on Tet2-/- clonal expansion upon IR 

and chronic inflammatory stresses. 
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Material and Methods 

 

Mice strains and treatment 

 

Wild type (WT) C57BL/6J mice (6-8 weeks-old) were from the Envigo (CD45.2) or from 

Charles River (CD45.1) laboratories. Tet2-/- mice were shared by Olivier Bernard (INSERM 

U1170- Gustave Roussy). All the mice were housed in a specific pathogen-free environment. 

All procedures were reviewed and approved by the Animal Care Committee n°26 approved by 

the French Ministry for Research (CE #2019_078_23286 and CE #2022_066_40153). Mice 

were injected intraperitoneally with 6 µg LPS-B5 Ultrapure (Invivogen, tlrl-pb5lps) every other 

day for 30 days and control mice were injected with 1x PBS, following the protocol described 

by (Esplin et al., 2011). For reconstitution experiments mice were irradiated with 9.5 Gy with 

an X-ray irradiator in GR for BM transplantation (RX irradiator X- RAD 320), or with a cesium 

irradiator for lin- transplantation (GSR D1®- CEA Fontenay-Aux-Roses) and engrafted by 

retro-orbital injections of BM or lin- cells. 

Cell harvest and culture  

Bone marrow was harvested from femur, tibia and hip bones in mice. Total bone marrow was 

depleted of differentiated hematopoietic cells (lineage-positive cells) using Mouse 

Hematopoietic Progenitor (Stem) Cell Enrichment Set (BD, 558451). Magnetically sorted 

Lineage-negative (lin-) cells were kept overnight at 4°C in IMDM medium supplemented with 

10% FBS (HyClone) and 1% penicillin-streptomycin (Thermofisher). Staining was performed 

for 20min at room temperature (RT) using CD3ε (Lin) – APC clone 145-2C11 (553066, BD), 

TER-119 (Lin) – APC clone Ter-119 (557909), CD45R/B220 (Lin) – APC clone RA3-6B2 

(553092), Ly6G-6C (Lin)-APC clone RB6-8C5 (553129), Ly-6A/E (Sca-1) - PeCy7 clone d7 

(558162), CD117 (c-Kit) – PE or PerCP-Cy5.5, clone 2B8 (553355 or 560557 respectively), 

CD34– FITC or AF700 clone RAM34 (560238 or 560518), CD135 (Flk2) – BV421 or PE 

clone A2F10.1 (562898 or 553842 respectively), all from BD Biosciences. HSCs (Lin-Sca+c-

Kit+CD34lowFlk2-) were sorted using ARIA3, ARIA Fusion or Influx cell sorters (BD Franklin 

Lakes, NJ, USA) and collected in Stem Span (StemCell).  

Cell cultures and treatments 
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Freshly isolated murine HSCs were cultured in StemSpan medium (StemCell Technologies) 

supplemented with 1% penicillin/streptomycin (P/S), containing the following cytokines (all 

from Miltenyi Biotech): FTL3-Ligand (FTL3-L, 10ng/ml), stem cell factor (SCF, 100ng/mL) 

interleukin 3 (IL3, 10ng/mL) and interleukin 6 (IL6, 10ng/mL), at 37°C, 5% CO2. For 

treatments, LPS-B5 Ultrapure (Invivogen, tlrl-pb5lps) or lamivudine (3TC- L1295-10MG, 

Sigma) were added at the start of the cultures (day 0) at a concentration of 10ug/mL or 10uM 

respectively and for 48h.  

 

Infected murine Lin- cells were cultured in DMEM (Merck, D6429) supplemented with 1% 

penicillin/streptomycin (P/S), 10% FBS containing the following cytokines (all from Miltenyi 

Biotech): FTL3-Ligand (FTL3-L, 10ng/ml), stem cell factor (SCF, 100ng/mL) interleukin 3 

(IL3, 10ng/mL) and interleukin 6 (IL6, 10ng/mL), at 37°C, 5% CO2.  

 

Immunofluorescence 

 

3000-5000 HSCs were cytospin on glass slides and immunofluorescence was performed as 

previously described (de Laval et al., 2013b). γH2AX antibody was purchased from Millipore 

(05-636-I) and used at 1/2000. SETDB1 antibody was purchased from Santa Cruz (sc-166621) 

and used at 1/250. SUV39H1 antibody was purchased from Cell Signaling (8729) and used at 

1/200. Detection was performed using Alexa Fluor 555-coupled anti-mouse secondary 

antibody (1/600) (Invitrogen, A-21425). All slides were visualized using SPE confocal 

microscope (Leica). Images were analyzed using CellProfiler.  

 

sh-LINE1 virus production 

 

shRNAs were kindly provided by Dr. Antonio Morales-Hernandez (University of Michigan). 

Lentivirus was prepared using a three-plasmid system: (1) shRNA transfer vector-, (2) 

Gag/Pol- + Rev/Tat- (pCMV), and (3) envelope plasmid (pMD2.G) by co-transfection of 

HEK293T cells using jetPRIME® (OZYME, POL101000046). Supernatant was collected 48 

h later, cleared, titred onto HEK293T cells and stored at −80 °C. 50uL of virus were used to 

transduce 2 million Lin- cells and incubated for 72h before detection of the GFP/mCherry 

signal. 
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CUT&Tag 

CUT&Tag-IT assay kit (Active Motif) was used on 3,000 HSC according to manufacturer’s 

instructions. Cells were incubated O/N with 0.5µg of H3K9me3 (C15410193-Diagenode). 

DNA fragments were amplified 18-fold by PCR using adapters supplied by the kit. PCR 

purification was carried out to remove remaining primers and large fragments. The quantity 

and quality of the libraries were assessed on Agilent 2100 Bioanalyzer (Agilent Technologies 

50567-4626). Sequencing of the libraries was performed on the NovaSeq-6000 at Gustave 

Roussy (Illumina; 50 bp paired-end reads).  

 

RNA-seq 

 

HSCs from individual mice were lysed in Tri-Reagent (Zymo Research) and stored at −80°C 

until used. Total RNA was extracted using the Direct-Zol RNA microprep kit (Zymo research). 

The RNA integrity was checked on the Agilent Fragment Analyzer (Agilent) and quantified. 

All samples were subjected to SMARTer® Stranded Total RNA-Seq Kit v3 - Pico Input 

Mammalian (Takara Bio USA, Inc., 634485). Fragmentation time is adjusted depending on the 

quality of the RNA input.  

The quantity and quality of the libraries were evaluated on the Agilent Bioanalyzer. Libraries 

were pooled and sequenced in (2 x 100bp) on the NovaSeq6000 (Illumina). 

 

CUT & Tag Analysis 

 

Quality control was performed using FastQC (v0.11.9) and MultiQC (v1.11). Reads were 

aligned to the mm10 (UCSC genome) reference using Bowtie2 (v2.4.1) with the following 

parameters: --end-to-end --very-sensitive --no-mixed --no-discordant --phred33 -I 10 -X 700. 

Duplicate reads were removed with Picard (v2.26.9) using the parameters --

REMOVE_DUPLICATES true --VALIDATION_STRINGENCY LENIENT. Aligned read 

quality scores were set to 0, retaining all reads using Samtools (v1.13) with the parameter -q 0. 

Aligned reads were sorted and indexed with Samtools (v1.13). A coverage track (bigWig) was 

generated using deeptools (v3.5.0) with parameters -bs 5 --normalizeUsing BPM. Finally, a 

profile plot over genomic regions (mm10.rmsk.mod.L1Md.bed) was generated using deeptools 

(v3.5.0) with the following parameters: --beforeRegionStartLength 1000 --regionBodyLength 

5000 --afterRegionStartLength 1000. 
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To quantify H3K9me3 levels at TEs, the Bioconductor package Diffbind (Ross-Innes et al., 

2012) v3.8.4 was employed in R v4.2.3. Paired-end mode was enabled during the read counting 

step using the SummarizeOverlaps method. The default mapping quality threshold (mapQCth) 

was adjusted to 0 for multimapping analysis. Differential binding affinity was assessed using 

the DBA_DESEQ2 method. The normalized H3K9me3 concentration across all TE loci within 

the same family or subfamily was aggregated to calculate the total H3K9me3 concentration per 

TE family. Differential binding at peaks was determined using a P-value threshold of 0.05. 

 

RNA-seq analysis 

 

Quality control was performed using FastQC (v0.11.9) and MultiQC (v1.11). UMI was 

extracted using umi_tools (v1.1.2). adapters were removed with Trimgalor (v0.6.5).  The 

FASTQ file was filtered for rRNA sequences using SortMeRNA (v3.4.6). Reads were aligned 

to the GRCm38 mouse genome reference using STAR (v2.7.5a) and gene’s quantification was 

performed using salmon (v1.6.0). these precedent steps were performed on the Core Cluster of 

the Institut Français de Bioinformatique (IFB) (ANR-11-INBS-0013). Differential expression 

analysis was done using DESeq2 R package with P-value <0.05 

 

TE-transcript Analysis  

Bulk RNA-seq data analysis was conducted following previously established protocols, with 

some modifications. In brief, reads were aligned to the mouse genome (GRCm38) using STAR 

(v2.7.5a) with the following parameters: --runRNGseed 0 --outFilterMultimapNmax 100 --

alignSJDBoverhangMin 1 --winAnchorMultimapNmax 100 --outFilterMismatchNmax 3 --

alignEndsType EndToEnd --alignIntronMax 1 --alignMatesGapMax 350. TEtranscripts 

(v2.2.1) was used to quantify reads mapping to transposable elements (TEs) with the parameter 

--mode multi.). Differential expression analysis was done using DESeq2 R package with P-

value <0.05 

 

Pathway Enrichment Analysis and Data Visualization 

 

We performed Gene Set Enrichment Analysis (GSEA) on a ranked gene list (based on fold 

change) using the clusterProfiler R package (v4.6.2). This approach assessed transcript 

abundance across a ranked list of all available genes to identify the regulation of functionally 

related gene sets with statistically significant enrichment. The GSEA analysis was performed 
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on normalized, batch-corrected counts generated in DESeq2, utilizing the 

mh.all.v2023.2.Mm.entrez.gmt (hallmark) and m2.all.v2023.2.Mm.entrez.gmt (curated) gene 

set databases. 

 

We performed a multiple gene set enrichment analysis and displaying enrichment patterns 

using BubbleGUM (v1.3.19) software.  

 

 

Statistical analysis 

 

Results were statistically evaluated using GraphPad Prism version 7.0 software (GraphPad 

Software Inc.). The results are displayed as the means and SEM. The value of *, P < 0.05 was 

considered as significant, and **, P < 0.01 or ***, P < 0.001 as highly significant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





 
 

104 

FIG.1: Chronic LPS treatment induces a loss of H3K9me3 at L1Md and IAP, the most recent subfamilies of 

L1 and LTR. (A) Volcano plot of the TE differentially enriched in H3K9me3 between WT-LPS and WT conditions. 

The horizontal axis represents the –log10(pValue) and the vertical axis the log2 fold change (FC). TE presenting 

a significant (p<0.05) increase (red) or decrease (green) enrichment in H3K9me3 are shown. (B) Violin plot 

representing the distribution of H3K9me3 concentration at each TE locus retrieved in (A).  (C) Distribution of 

the % of each family of TE among the total TE loci in the mouse mm10 genome (up) and among the TE retrieved 

in (A) presenting a significant decrease (middle - loss) or increase (bottom – gain) of H3K9me3. (D) Violin plot 

representing the distribution of H3K9me3 concentration at each locus retrieved in for LINE, LTR, SINE and DNA 

families of TEs in WT and WT-LPS conditions. (E-F) Correlation plot representing H3K9me3 concentration 

quantified at differentially enriched LINE (E) or LTR (F) elements retrieved in (A) vs their age in million years 

(My) in WT and WT-LPS conditions. R, Pearson correlation coefficient; p, pvalue. (G-H) Plot profile of H3K9me3 

enrichment along the L1Md (G) or IAP (H) sequences +/- 1kb flanking regions in WT-LPS (orange) vs WT (blue) 

conditions. wilcoxon test. **p<0.01; ****p<0.0001.  

 

Chronic inflammation induces a loss of H3K9me3 at L1Md and IAP, the most recent 

subfamilies of L1 and LTR 

 

To characterize the effect of chronic inflammation on non-mutated HSC heterochromatin at 

TEs, we used a mouse model of chronic inflammation mediated by serial injections of low 

doses of bacterial lipopolysaccharide (LPS), which has been shown to mimic the low-level 

chronic inflammation observed with age and leads to impaired HSC function and aging-like 

changes in hematopoiesis (Dykstra et al., 2011; Esplin et al., 2011; Rossi et al., 2005). 

 

We performed H3K9me3 CUT&Tag experiments in HSCs sorted from mice at the end of 

chronic LPS treatment. We previously showed that H3K9me3 is mainly enriched at TEs, and 

more particularly at L1Md elements, the most recent subfamilies of LINE, in HSCs (Pelinski 

et al., 2022). In order to not to miss out on the information at youngest TE subfamily level, we 

performed a multiple read analysis, as previously described (Pelinski et al., 2022). We focused 

our analyses at these sequences by performing a differential H3K9me3 enrichment analysis at 

TE genomic loci. We found 598 TE loci with significant H3K9me3 differential enrichment, 

403 (67%) and 195 (33%) loci showing decreased or increased H3K9me3, respectively upon 

LPS treatment (Fig. 1A). The distribution of the H3K9me3 concentration at the 598 

significantly differentially enriched TEs showed a significant (p<0.0001) decrease in 

H3K9me3 at TEs (Fig. 1B). Annotation of the TEs that significantly loose H3K9me3 upon 

LPS treatment loci revealed that they are enriched in LINEs (62.53%) and LTR (35.98%) as 

compared to the distribution of these TEs in the mouse genome (24.71 and 22.07 % 
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respectively) (Fig. 1C). Comparing the distribution of the H3K9me3 concentration between 

WT-LPS and WT conditions confirmed a significant (p<0.0001) loss in H3K9me3 

concentration at LINEs and at LTRs, but a significant gain at SINE and DNA (Fig. 1D).  

 

Since we and others have reported that young TE subfamilies, notably L1Md, are the most 

epigenetically regulated in the genome compared to old ones (Barau et al., 2016b; Pelinski et 

al., 2022b; Pezic et al., 2014), we further dissected H3K9me3 enrichment at LINEs and LTRs 

depending on their age, as calculated in (Sookdeo et al., 2013). We confirmed the significant 

negative correlation between the age of the LINE and H3K9me3 enrichment, showing that 

H3K9me3 loss mainly occur at these youngest subfamilies (Fig. 1E). The correlation between 

H3K9me3 enrichment and the age of LTRs is less strong, but still shows that within the LTRs 

the most enriched for H3K9me3 are the youngest, especially IAPEz-int. (Fig. 1F). 

 

Finally, plot profile of H3K9me3 enrichment along L1Md and IAP sequences confirmed the 

global decrease of H3K9me3 (Fig. 1G-H) at these sequences. 

Altogether, these data show that chronic inflammation induces the loss of H3K9me3 mainly at 

the youngest subfamilies of LINE and LTR, especially big and intact L1Md that keep the 

capacity to propagate in the genome and induce genomic instability (Barbieri et al., 2018; 

Belancio et al., 2010; Gasior et al., 2006). 
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independent experiments Dunnet’s multiple comparison test ** p<0.01 for 0-1-2 foci per cell. RTI: reverse 

transcriptase inhibitor. 

 

TE derepression is associated with DNA damage accumulation upon LPS treatment. 

We next interrogated if loss of H3K9me3 at LINE and LTR could be associated with their 

overexpression, as we previously observed upon irradiation and aging (Barbieri et al., 2018b; 

Djeghloul et al., 2016b; Pelinski et al., 2022b). For this purpose we performed RNA-seq 

experiments in HSCs sorted from WT and WT-LPS mice, and quantified the expression of TE 

families using TEtranscript (Jin et al., 2015) (multiple mapping reads). We observed a 

significant upregulation of LINE and LTR classes of TEs (p<0.0001) upon LPS treatment (Fig. 

2A-B) 

Next, we performed Gene Set enrichment analysis (GSEA) on Hallmark gene sets. The data 

show a significant (padj<0.05) enrichment of TNFA_signaling_via_NFKB and apoptosis 

pathways in WT HSCs upon LPS treatment, and a decrease of proliferative pathways such as 

MYC_TARGETS and E2F_targets (Fig. 2C). 

We and others have shown that L1 expression and mobilization is associated with double strand 

breaks (DSB), as measured by the presence of γH2AX foci, notably in HSCs (Barbieri et al., 

2018b; Belancio et al., 2010; Gasior et al., 2006b). Inflammation also leads to genomic 

instability in HSPCs (Rodriguez-Meira et al., 2023). In order to assess the impact of chronic 

LPS treatment on DSBs accumulation in HSCs, we assessed γH2AX foci accumulation by 

immunofluorescence (IF) in vivo in HSCs sorted from mice at the end of chronic LPS 

treatment, or in vitro in culture in the presence or absence of 10ug.ml LPS for 48h. We show 

that chronic LPS treatment induced a significant increase in the number of gH2AX positive 

HSCs (>=3foci) in HSCs both in vitro and in vivo (Figure 2D-G).  

We previously showed that DNA damage accumulation and loss of HSC self-renewal capacity 

upon irradiation stress is due to L1 mobilization (Barbieri et al., 2018). L1 mobilization requires 

its reverse transcription activity, which is carried by ORF2p (Mita and Boeke, 2016). This 

activity is sensitive to reverse transcription inhibitors (RTIs), including lamivudine also called 

3TC, which is particularly efficient in inhibiting the reverse transcription of L1 (De Cecco et 

al., 2019). In order to assess if DNA damage accumulation upon chronic LPS treatment may 

also be due to L1 mobilization, we cultured HSCs in liquid culture in vitro with 10ug.ml LPS 
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months after reconstitution. One-way ANOVA with Sidak multiple comparison test *p<0.05; **p<0.01; 

***p<0.001; ****p<0.0001  

 

Both Tet2-/- and WT HSCs lose their functionality upon IR  

 

Our data show that both IR and chronic inflammatory stresses affect WT HSC function through 

H3K9me3 loss and TE derepression.  

Even if some studies showed an effect of IR on TET2 mutated HSCs expansion in CHIP 

individuals (Takahashi et al., 2017b), most studies show that IR stress mainly affect HSC 

mutated for DNA repair factors instead of epigenetic factors, and  that TET2-mutated HSCs 

mainly expand upon inflammatory stress, and in a context of chronic low-dose inflammation 

associated with aging (Florez et al., 2022b).  

In order to assess the effect of IR on Tet2-/- HSCs function, we first treated Tet2-/- and WT mice 

with 2Gy IR, and one month after IR, engrafted 10% of bone marrow (BM) cells sorted from 

these mice in competition with 90% of BM from CD45.1 mice, in CD45.1 lethally irradiated 

recipient mice. BM analysis 3 months after reconstitution showed that IR drastically reduced 

HSC functionality of both WT and Tet2-/- HSCs (Fig. 3B). These data suggest that IR may not 

affect Tet2-/- expansion in mice.  

These data, together with published data showing the preferential expansion of TET2 mutated 

HSC upon aging and inflammation, prompted us to focus our analysis on the effect of chronic 

inflammation on Tet2-/- HSCs expansion. 
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We next aimed to decipher the impact of chronic inflammation on Tet2-/- HSCs. For this 

purpose, we chronically treated Tet2-/- with LPS as previously described for WT mice and 

assessed the effect of LPS on HSC heterochromatin in Tet2-/- HSCs. We found 241 TE loci 

with significant H3K9me3 differential enrichment, 108 (45%) and 133 (55%) loci showing 

decreased or increased H3K9me3, respectively upon LPS treatment (Fig.4A). In contrast to 

what we observed in WT HSCs, the distribution of the H3K9me3 concentration showed a slight 

significant (p<0.05) increase in H3K9me3 at TEs (Fig. 4B). Comparing the distribution of the 

H3K9me3 between Tet2-/- -LPS and TET2 conditions showed that the gain of H3K9me3 

specifically occurs at LINE as compared to other TE classes (Fig. 4C). Finally, plot profile of 

H3K9me3 enrichment along L1Md and IAP sequences showed a specific global increase of 

H3K9me3 at L1Md but not a IAP upon LPS treatment in Tet2-/- HSCs (Fig. 4D-E).   

Surprisingly, these data show that LPS had inverse consequences on H3K9me3 enrichment at 

L1Md in WT and Tet2-/- HSCs. 
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grey bar for 3-6 foci. *p<0.05; **p<0.01 (D) Reconstitution Experimental design: Engraftment of 10% CD45.2 

WT or Tet2-/- BM in competition with 90% WT BM into lethally irradiated mice (9.5 Gray) followed by LPS 

treatments (6ug per mouse) every two days for 30 days. (E-F) Percentages of CD45.2 contribution in blood (E) 

and in myeloid cells in blood (F) in mice 4 months after reconstitution. (G-H) Percentage of CD45.2+ in LSKs 

(G) or LSK CD34- Flk2- (H) 4 months after reconstitution. Sidak’s multiple comparison test *p<0.05.  

 

Tet2-/- HSCs are protected from the deleterious effects of LPS. 

 

These data prompted us to test the hypothesis that L1Md repression in Tet2-/- HSCs upon 

chronic LPS treatment may protect them from the deleterious effect of chronic inflammation. 

In accordance with this hypothesis, while LPS induced a significant increase in gH2AX positive 

cells in WT HSCs in vitro, it had no effect on Tet2-/- HSCs (Fig. 5A-C).  

 

To assess the effect of LPS on the expansion capacity of HSCs, we performed competitive 

reconstitution assays followed by treatments with LPS. Total BM cells isolated from mice 

treated were transplanted in competition with total BM cells from CD45.1 mice into lethally 

irradiated CD45.1 mice (Fig. 5D). Five months after reconstitution, the percentage of CD45.2 

in myeloid donor cells were significantly decreased in the blood (Fig. 5F) and in LSK 

compartments in the bone marrow (Fig. 5G). 

 

Altogether, these data suggest that Tet2-/- HSCs are resistant to LPS effects as compared to WT 

HSCs.  
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FIG.6: LPS induces differential transcriptomic responses in WT and Tet2-/- HSCs.  

(A) Heatmap of the expression of TEs found significantly differentially expressed (p<0.05) in WT-LPS vs WT in 

each treatment. (B) Box plot showing the level of expression of TEs found significantly (p<0.05) differentially 

expressed in HSCs of Tet2-/- mice treated or not with LPS. (C) Heatmap of the expression of DEGs found in WT-

LPS vs WT comparison in each treatment (C) and hallmarks associated to each cluster (D). (E) GSEA analysis 

using Hallmark genes sets. graphs representing significantly (FDR<0.25) enriched (red) or depleted (green) 

pathways in Tet2-/- -LPS vs Tet2-/- comparisons (F) BubbleGUM (GSEA Unlimited Map) analysis to identify 

hallmarks specific to one comparison compared to the other.  

 

LPS induces differential transcriptomic responses in WT and Tet2-/- HSCs. 

 

In order to decipher the mechanisms involved in Tet2-/- HSC resistance towards LPS as 

compared to WT HSCs, we performed RNA-seq experiments in HSCs sorted from Tet2-/- and 

WT littermates treated or not with LPS.  

We first assessed the expression of the TEs found significantly (p<0.05) differentially 

expressed in WT-LPS vs WT (Fig. 2A) in HSC sorted from Tet2-/- mice treated or not with 

LPS. Heatmap clustering of the expression levels of TEs revealed that almost all the TEs 

significantly overexpressed upon LPS in WT HSCs show a decreased expression in Tet2-/- 

HSCs upon LPS treatment (Fig. 6A). Focusing on TEs significantly (p<0.05) deregulated in 

Tet2-/- HSCs upon LPS treatment, we show that LPS induces a significant decrease in TE 

expression in Tet2-/- context (Fig. 6B). 

 

We next compared transcriptomic pathways deregulated in Tet2-/- or WT HSCs upon LPS 

treatment. Heatmap clustering of the expression levels of DEGs deregulated in WT-LPS vs 

WT conditions in WT, WT-LPS, Tet2-/-, Tet2-/--LPS identified eight clusters (Fig. 6C-D). 

Cluster 1 is composed of genes whose expression increases in all the conditions as compared 

to WT HSCs. It is enriched in genes linked to the peroxisome, involved in redox signaling and 

fatty acids homeostasis. Cluster 2 is composed of genes whose expression decreases in all the 

conditions as compared to WT HSCs and is enriched for genes involved in allograft rejection. 

Cluster 3, which is composed of genes whose expression decreases in WT, but inversely 

increase in Tet2-/- upon LPS treatment, is enriched for genes involved in mitotic spindle. 

Finally, cluster 8, which is composed of genes that are up-regulated in WT but inversely down-

regulated in Tet2-/- HSC upon LPS treatment are notably enriched in inflammatory 

(TNFA_signaling_via_NFKB, TGF_beta_signaling, IL2_STAT5_signaling) and p53 
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pathways (Fig. 6C-D). 

Interestingly, TNFA_signaling_via_NFKB pathway was negatively enriched in Tet2-/- HSCs 

upon LPS treatment, and apoptosis pathway was not enriched anymore as compared to what 

we observed in WT HSCs (Fig. 2C). Finally, we compared hallmarks enrichment in WT-LPS 

vs WT and Tet2-/--LPS vs Tet2-/- conditions using BubbleGUM tool (Spinelli et al., 2015) to 

identify pathways significantly differentially enriched in these two comparisons. We show that 

TNFA_signaling_via_NFKB pathway was significantly enriched in WT-LPS vs WT 

comparisons, as compared to Tet2-/--LPS vs Tet2-/- comparison, and proliferative pathways 

were inversely significantly enriched in Tet2-/--LPS vs Tet2-/- as compared to WT-LPS vs WT 

comparisons (Fig. 6F). 

Altogether, these data suggest that Tet2-/- HSCs have an altered transcriptomic response to 

inflammation, as recently described in human HSCs mutated for TET2 in the context of CHIP 

(Jakobsen et al., 2024), associated with decreased expression of TEs, increased enrichment of 

proliferative pathways, and decreased enrichment of inflammatory and p53/apoptosis 

pathways.  
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Percentage of GFP+ HSCs (Tet2-/- HSCs) was assessed 3 days after. (C) Experimental design for Tet2-/-  vs WT 

HSCs competition in vivo.  90% of WT lin- cells transduced with either an sh-control or sh-LINE fused to mCherry 

reporter gene were engrafted in competition with 10% of Tet2-/- lin- cells transduced with an sh-control fused to 

GFP reporter gene in lethally irradiated recipient mice. Recipient mice were then chronically treated with LPS 1 

or 2 months after engraftment. (D-F) Percentage of GFP+ cells in blood before (D) and 4 months engraftment in 

HSCs (F). 

 

Resistance of Tet2-/- HSCs towards LPS-induced DNA damage and loss of function may 

explain their expansion upon chronic inflammation. To test this hypothesis, we first performed 

competitive assays in vitro between WT HSCs transduced with either an sh-control or an sh-

LINE fused to mCherry reporter gene, and Tet2-/- HSCs transduced with an sh-control fused to 

GFP reporter gene (Fig. 7A). The results showed that Tet2-/- HSCs (GFP+) significantly 

increased after 3 days in culture in the presence of LPS when they are in competition with WT 

HSCs transduced with an sh-control, as compared to the non LPS condition (Fig. 7B). 

However, they were no more able to expand when they are in competition with WT HSC 

transduced with an sh-L1 (Fig. 7B). These results suggest that Tet2-/- expansion is dependent 

on the presence of L1 transcripts and their deleterious effects on WT HSCs. We next aimed at 

confirming these data in vivo by engrafting 10% Tet2-/- lin- cells previously transduced with 

an sh-control fused to GFP with 90% of WT lin- cells transduced with either an sh-control an 

sh-L1 fused to mCherry (Fig. 7C).  

We first assessed Tet2-/- cells expansion in blood 1 month and after engraftment.  As shown in 

Figure 7D, Tet2-/- cells expanded from 10% to 56% in the blood when in competition with sh-

control WT cells. These data are coherent with previous studies showing rapid expansion of 

Tet2-/- cells upon engraftment (Moran-Crusio et al., 2011). Interestingly however, Tet2-/- cells 

expanded only from 10 to 20% in average in blood when in competition with sh-L1 WT cells.  

Pre-transplantation conditioning regimen in the context of HSC transplantation, such as 

ionizing radiations and/or chemotherapies, have been associated to a transient cytokine storm 

(Jordan et al., 2017; Weischendorff et al., 2019a). In mice, 9Gy irradiation induces increased 

levels of cytokines, such as IL6 and TNFα, in the plasma 6h to 10 days after irradiation (Zhang 

et al., 2012). These data suggest that under an inflammatory context induced by irradiation, or 

irradiation stress itself, the expansion of Tet2-/- cells is significantly (p<0.01) dependent on L1 

transcript in WT cells.  

We next aimed at testing the effect of chronic inflammation induced by LPS on Tet2-/- cell 
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expansion on a long term. For this purpose, we chronically treated recipient mice with LPS 1 

month after engraftment (Fig 7C). Analysis of the proportion of Tet2-/- GFP+ cells in blood or 

bone marrow four months after the end of LPS treatment is still ongoing.  

FIG. 8: Increased H3K9me3 at L1Mds in Tet2-/- HSCs upon LPS treatment might be due to an increase in 

SETDB1: Representative images (A+B) and quantification of SETDB1(C) and SUV39H1(D) in HSCs (LSK-

CD34- Flk2-) after one month of treatment with or without LPS. Bars, 5 μm. Cell profiler was used for 

quantification. For each cell the fluorescence intensity was normalized to the total cell surface and then to the 

mean intensity of WT cells. Means ± SEM from two independent experiments.  

Increased H3K9me3 at L1Mds in Tet2-/- HSCs upon LPS might be due to an increase in 

SETDB1 

 

To understand the mechanism behind increased H3K9me3 at L1Md upon LPS in Tet2-/- HSCs, 

we chronically treated Tet2-/- and WT littermates with LPS and we performed IF on HSC sorted 

from mice the day after the end of the treatment, using antibodies directed against the 

H3K9me3-methyltransferases SUV39H1 and SETDB1. Additionally, we observed a 

significant decrease in SUV39H1 in WT HSCs treated with LPS compared to untreated WT 

S
E

T
D

B
1

 f
lu

o
re

sc
e

n
ce

 in
te

n
si

ty


N
o

rm
a

li
ze

d
to

 W
T

S
E

T
D

B
1

D
A

P
I

m
e

rg
e

WT WT LPS Tet2-/- Tet2-/-LPS

0

1

2

W
T

A)

B)

S
U

V
3

9
H

1
D

A
P

I
m

e
rg

e

WT WT LPS Tet2-/- Tet2-/-LPS

S
U

V
3

9
H

1
 f

lu
o

re
sc

e
n

ce
 i

n
te

n
si

ty


N
o

rm
a

li
ze

d
to

 W
T



0

1

2

W
T

W
T

 L
P

S

T
e

t2
-/

-

T
e

t2
-/

- L
P

S
T

e
t2

-/
- L

P
S

T
e

t2
-/

-

W
T

 L
P

S

D)

C)
3

FIGURE 8 

3

0

1

2

3 ****

****



 
 

120 

HSCs (Fig. 8B-D) and a significant increase in SETDB1 in Tet2-/- HSCs treated with LPS 

compared to untreated Tet2-/- HSCs (Fig. 8A+C).  

 

These data show that H3K9me3 loss upon LPS treatment might be due to a loss of SUV39H1, 

as previously observed upon aging (Djeghloul et al., 2016). They also suggest that Tet2-/- HSCs 

protection towards inflammation might be dependent on SETDB1.  
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Discussion 

 

TET2 is one of the most frequently mutated genes in CHIP, yet not all carriers progress to 

leukemia. It is thus of major importance to understand the mechanisms by which CHIP 

mutations trigger HSC expansion and the emergence of the pre-leukemic clone.  Several studies 

have investigated the mechanisms by which specific mutant clones gain an advantage over 

other, non-mutated HSCs, and have led to a better understanding of the selective environments 

that drive their expansion (Florez et al., 2022b).  

 

While IR and chemotherapy are known to expand clones with mutations in DNA repair factors 

(TP53 or PPM1D), expansion of clones mutated in epigenetic factors appear to be favored by 

the emergence of an inflammatory microenvironment in the bone marrow which is a 

characteristic feature of aging (inflammaging). Nevertheless, some studies highlighted the 

expansion of TET2 mutated clones upon radio-and chemotherapy (Nishiyama et al., 2018; 

Takahashi et al., 2017a; Wong et al., 2015). 

 

Two non-exclusive hypotheses could explain the expansion of CHIP-mutated clones with age 

and in response to stress: 1- a disadvantage of non-mutated cells, and/or 2- a competitive 

advantage of mutated cells.  

 

In order to decipher the molecular mechanisms involved in the expansion of Tet2-/- HSCs upon 

stresses, the aims of my thesis were to study the impact of IR and inflammatory stresses on WT 

and Tet2-/- HSCs.  

 

Our team had previously shown that loss of H3K9me3 at TEs, and TE overexpression, are 

involved in HSC loss of function upon IR stress, through DNA damage accumulation and 

transcriptomic alterations (Barbieri et al., 2018; Pelinski et al., 2022).  

 

We first aimed at deciphering if chronic inflammation could also affect HSC function through 

H3K9me3 loss at TEs. We could show that inflammation induces a loss of H3K9me3 at L1Md 

and IAP, the most recent subfamilies of L1 and LTR. This is associated with increased 

expression of L1 and LTR, and DNA damage accumulation. By using RTI, we further showed 

that L1 expression is involved in DNA damage accumulation upon LPS treatment. These data 

thus suggest that HSC functional changes upon chronic inflammation may be due to L1 
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derepression, as previously observed upon IR (Barbieri et al., 2018; Pelinski et al., 2022). To 

validate this hypothesis, reconstitution experiments will be needed to check if lamivudine 

treatment may be able to prevent loss of HSC reconstitution capacity observed upon chronic 

LPS treatment (Esplin et al., 2011). 

 

We then aimed at characterizing the effect of IR and LPS on Tet2-/- HSC. Through 

reconstitution experiments, we showed that IR drastically reduced HSC functionality of both 

WT and Tet2-/- HSCs. These data suggest that IR may not induce Tet2-/- expansion in mice. I 

thus focused the rest of my thesis on the effect of chronic inflammation on Tet2-/- HSC. 

 

Surprisingly, we showed that LPS had an inverse effect on H3K9me3 at TEs in Tet2-/- HSCs as 

compared to WT. Indeed, LPS treatment induced an increased enrichment of H3K9me3 at 

L1Md. Repression of L1Md seems to protect Tet2-/- HSCs as LPS was not able to induce DNA 

damage accumulation in these cells. Resistance of Tet2-/- HSCs towards LPS-induced DNA 

damage may explain their expansion upon chronic inflammation. In accordance with this 

hypothesis, we showed that Tet2-/- HSCs were not able to expand in response to LPS in vitro 

when in competition with WT HSCs where L1 transcripts were degraded by the use of an sh-

L1. Preliminary data obtained in blood in vivo also suggest that Tet2-/- HSCs are not able to 

expand upon irradiation-stress during reconstitution experiments when L1 was degraded in WT 

cells. 

Altogether, these data show that Tet2-/- HSC expansion is dependent on the epigenetic 

repression of L1Md upon inflammation, that protects them from their deleterious effects, as 

compared to WT HSCs.   

 

Loss of Tet2-/- HSC reconstitution capacity upon IR is associated with a drastic loss of 

H3K9me3 

 

It has been shown that there is an expansion of TET2 clones upon cytotoxic agents and IR .  

We thus aimed at characterizing the effect of IR on Tet2-/- HSCs. 

Through reconstitution experiments, we showed that IR drastically reduced HSC functionality 

of both WT and Tet2-/- HSCs. These data suggest that IR may not affect Tet2-/- expansion in 

mice (Fig. 3B+C, results). However, this should be tested by engrafting WT and Tet2-/- BM in 
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Our data suggest that 2Gi IR may not expand Tet2-/- HSCs. Some examples in the literature 

show an expansion of TET2 mutated in the context of radiotherapies and/or chemotherapies 

(Nishiyama et al., 2018; Takahashi et al., 2017a; Wong et al., 2015). One possibility that has 

to be proven is that expansion of these Tet2-/- clones may be associated with irradiation and/or 

chemotherapies-induced inflammation. Indeed, it has been shown that pre-transplantation 

conditioning regimen in the context of HSC transplantation, such as ionizing radiations and/or 

chemotherapies, have been associated to a transient cytokine storm, which is thought to be 

linked to damages in the gastro-intestinal tract and translocation of bacterial products into the 

blood (Jordan et al., 2017; Weischendorff et al., 2019b). In mice, 9Gy irradiation induces 

increased levels of cytokines, such as IL6 and TNFα, in the plasma 6h to 10 days after 

irradiation (Zhang et al., 2012).  

 

Heterochromatin loss as a ‘theory of HSC aging’ 

 

The heterochromatin theory of aging, proposed by Tsurumi and Li (2012), suggests that the 

loss of heterochromatin underlies the aging process (Tsurumi and Li, 2012).  

 

Our team previously demonstrated that aging and IR, that induce a premature aging in HSCs, 

induce a loss of H3K9me3 in HSCs (Pelinski et al., 2022a). This was measured one month after 

irradiation, indicating that the loss of H3K9me3 persists on a long-term, even without ongoing 

stimulation. Clapes et al. also showed an opening of the chromatin upon chemotherapies 

(Clapes et al., 2021). It thus appears that heterochromatin loss, and especially loss of 

H3K9me3, may be a common response to various stresses that are involved in HSC aging.  

 

H3K9me3 loss upon aging is associated with decline in SUV39H1 levels in both human and 

mouse HSCs (Djeghloul et al., 2016a). It would be interesting to test the effect of stress on 

these factors. H3K9me3 is established by the two methyltransferases SUV39H1/H2 and 

SETDB1. SUV39H1 and SUV39H2 can methylate H3K9me0 but prefer H3K9me1 as a 

substrate to establish H3K9me3 (Loyola et al., 2009; Rea et al., 2000). In contrast, SETDB1 

can mono-, di-, and tri-methylate H3K9me0 in vitro (Loyola et al., 2009; Schultz et al., 2002; 

Wang et al., 2003; Yang et al., 2002). We examined the expression of these methyltransferases 

by IF upon LPS treatment in vivo. Our preliminary data show a decrease in SUV39H1 in WT 

HSCs treated with LPS compared to untreated WT HSCs, and no significant difference in 
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SETDB1 levels (Fig. 8, results). These data suggest that loss of SUV39H1 may be a central 

mechanism involved in H3K9me3 loss upon aging and stresses inducing a premature aging. 

 

Loss of H3K9me3 was also observed upon LPS treatment in monocytes. Loss of H3K9me3 in 

these cases is associated with KDM4 gain or G9a loss (Cao et al., 2019; Moorlag et al., 2022; 

Mourits et al., 2021). It would thus be also interesting to test the expression of these factors 

upon LPS treatment in HSCs. 

 

Loss of H3K9me3 upon inflammation has been linked to trained immunity. Trained immunity 

would allow a more robust and rapid reaction to secondary insults. In HSCs, De Laval and 

collaborators show that myeloid enhancers stay in an open conformation after LPS treatment 

in HSCs. This may allow a more robust and rapid reaction to secondary stress in a similar 

trained immunity process (De Laval et al., 2020). 

 

The loss of H3K9me3 after stresses such as LPS may on one hand improve the response to 

additional stimulation but at the end also age the cell. We propose that accumulation of stresses 

throughout life may induce HSC aging through heterochromatin loss.  

 

To prevent TET2 mutated cell expansion upon inflammation, one possibility would be to target 

the factors involved in H3K9me3 loss upon stresses, TE derepression and the associated 

damage in non-mutated cells. However, this may affect the natural mechanism of trained 

immunity and the response to infections.  

 

TE derepression as a ‘theory of HSC aging’ 

 

The idea that transposons may influence aging was first introduced by W. Murray in 1990 

(Murray, 1990). Studies have since demonstrated that the frequency of TE transpositions 

increases with age across various somatic tissues (De Cecco et al., 2013; Nikitin and Woodruff, 

1995; Orr, 2016; Woodruff, 1992) and suppressing this age-related increase in TE transposition 

can increase the lifespan of different organisms (Domingues and Hale, 2017; Driver and 

Vogrig, 1994; Jones et al., 2016; Lou et al., 2020). 

 

We propose that accumulation of stresses throughout life may induce HSC aging through an 

increase in the frequency of TE transposition.  
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During my thesis, I showed that there is a loss of H3K9me3 at L1Mds and IAPs upon chronic 

inflammation mediated by repeated injections of LPS for one month. Our lab also showed 

L1Md  and IAP overexpression upon IR. In another study, Clapes et al.  revealed through 

ATAC-seq experiments that chemotherapy leads to chromatin opening, especially at TEs. In 

all these studies, derepression of TEs was associated with loss of HSC function, through DNA 

damage accumulation, transcriptomic alterations,  or the induction of IFN-I response (Barbieri 

et al., 2018a; Clapes et al., 2021; Pelinski et al., 2022a). 

 

We correlated the enrichment of H3K9me3 with age of all the different LINE1 elements. We 

showed that it is especially the evolutionary youngest subfamilies of LINE1 that are the most 

enriched for H3K9me3, and it’s also these one that are the most affected by H3K9me3 loss 

upon IR (Pelinski et al., 2022a) and LPS (Figure 1E-F).  This is in accordance with previous 

studies showing that the young families of TEs are the most epigenetically regulated in the 

genome (Barau et al., 2016b; Pezic et al., 2014). As these elements are the ones still able to 

move and damage the cells, their repression by epigenetic mechanisms may be developed by 

the cells as a mechanism to control them (Castro-Diaz et al., 2014). 

 

We propose that accumulation of stresses throughout life may induce HSC aging through 

heterochromatin loss and TE upregulation.  

 

Re-localisation of H3K9me3 upon aging  

 

Our CUT&Tag data reveal a loss of H3K9me3 at LINE and LTR elements but a gain at SINEs 

and DNA transposons, upon LPS in HSCs, compared to untreated WT HSCs (Fig. 1D, results). 

This could indicate a re-localization of H3K9me3 from LINEs and LTRs to SINEs and DNA 

transposons. Indeed, more than a loss of heterochromatin theory of aging, Tsurumi and Li 

discuss the possibility of heterochromatin relocalization as a theory of aging (Tsurumi and Li, 

2012). Epigenetic factors involved in H3K9me3 deposition are the same than the one involved 

in DNA repair (Fortuny et al., 2021; Svobodová Kovaříková et al., 2018). It has been proposed 

that the relocalization of heterochromatin is due to a relocalization of these epigenetic factors 

from TEs that they repress at steady state to sites of DNA damage that accumulate upon aging 

and stresses. Indeed, In the study by van Meter et al., they report that the longevity-regulating 

protein sirtuin 6 (SIRT6) is a potent repressor of L1 activity. However, during aging and in 
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response to DNA damage, SIRT6 is depleted from L1 loci, leading to the activation of these 

previously silenced retroelements, and enriched at DNA damage sites (Van Meter et al., 2014). 

This paper is an example of heterochromatin relocalization from L1 following DNA damage.  

 

The relocalization of these factors from TEs to DNA damage upon stresses such as IR and 

inflammation sites might lead to DNA repair but also to the derepression of TEs and ultimately 

to HSC cell aging.  

 

Hong et al. reported that aging causes a spatial re-localization of H3K9me3-marked 

heterochromatin in HSCs. This disruption could ultimately affect HSPC function via TE 

derepression and induction of an inflammatory response. Their findings suggest that the loss 

of TET2 prevents this spatial re-localization of H3K9me3-marked heterochromatin. They 

proposed that TET2 may play a role in regulating the subnuclear distribution of H3K9me3 in 

stem cells, when the DNA methylation machinery is defective due to aging or DNMT loss-of-

function (Hong et al., 2023). Tet2 clones may thus expand upon aging due to their resistance 

towards heterochromatin relocalization and TE derepression. 

 

H3K9me3 distribution across different hematopoietic cell types have similar global levels of 

H3K9me3, but their spatial distribution varies significantly between cell types (Ugarte et al., 

2015). Notably, GMPs exhibited the lowest amount of heterochromatin near the nuclear 

envelope (Ugarte et al., 2015). Spatial re-distribution/ relocalization of the heterochromatin 

may be involved in the differentiation process. As aging and stresses such as IR and 

inflammation induce a myeloid bias. It would be interesting to test the link between H3K9me3 

relocalization and the induction of a myeloid program.  

 

Importance of basal level of L1 and inflammation on cell function and self-renewal  

 

There is a complex interaction between innate immune responses and stem cell function. 

Interestingly, Lefkopoulos et al showed in 2020 that TE-induced inflammation is required for 

HSPC development and formation. Ectopic expression of TEs enhanced HSPC formation in 

WT and not in Rig-I or Mda5 deficient zebrafish embryos where they saw reduced 

inflammatory signals (Lefkopoulos et al., 2020). They could also identify TE transcripts in 

hemogenic endothelial cells, suggesting a role of RLR ligands in early and definitive stages of 

hematopoiesis. 







 
 

130 

 

Interestingly, both mutant and non-mutant CHIP-mutated HSCs in the same individual show 

an increase inflammatory and aging-related transcriptomic signatures compared to HSCs from 

non-CHIP individuals. However, within the same CHIP-mutated individual, TET2-mutant 

HSCs showed a reduced inflammatory response relative to WT HSCs (Jakobsen et al., 2024a). 

This suggests that in an inflammatory environment mediated by CHIP, TET2-mutant HSCs 

have an attenuated response to inflammation.  

 

Interestingly, we show a decrease in inflammatory pathways in Tet2-/- HSCs after chronic 

challenge with LPS. Our data thus also highlight an attenuated response to inflammation in 

Tet2-/- HSCs. This attenuated response may be involved in the resistance of Tet2-/- HSCs 

towards inflammation.  

 

Increased proliferation pathways and frequencies in Tet2-/- HSCs upon inflammation 

 

Expansion of Tet2-/- HSC may be linked to a loss of non-mutated HSC function, as suggested 

by our results. However, expansion of Tet2-/- HSC may also be linked to increased self-renewal 

and proliferation of Tet2-/- HSCs. Indeed, we do observe the enrichment of proliferation 

pathways in our RNA-seq data (Fig. 6E-F, results) 

 

To test the effect of the expansion of Tet2-/- HSCs, we conducted chronic LPS injections for 

one month followed by FACS analysis of the BM. It was observed that LPS triggers TLR4-

dependent Sca-1 induction in HSCs in vivo (Demel, 2022). To quantify the number of HSCs 

independent of LPS's effect on Sca-1 expression, we analyzed the proportion of HSCs within 

the LSK population through FACS. We observed a fold change of 1.35 in WT HSCs treated 

with LPS and 2.14 in Tet2-/- HSCs when analyzed within the LSK population (Fig. 4A). When 

examining total HSCs, we found a fold change of 1.95 in WT and 6.07 in Tet2-/- HSCs (Fig. 

4B). This suggests that Tet2-/- HSCs expand more than WT HSCs in response to LPS. This 

expansion may be due to increased proliferation of HSCs. To test this possibility BrdU or Ki67 

assays are necessary.  BrdU is expressed during DNA replication and repair, while Ki67 marks 

cells that are in the proliferation stages (G1, G2, S, mitosis), not in the G0 phase. 
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is overexpressed in different types of malignancies such as AML, suggesting a role of 

SETDB1-mediated TE repression in tumorigenesis and more particularly in leukemogenesis.  

Our lab also recently showed an increase of the repressive H3K9me2 mark at TEs and an 

overexpression of G9a and GLP methyl transferases in patients with chronic myelomonocytic 

leukemia (CMML) (Hidaoui et al., 2024b). These data suggest that other H3K9 methyl 

transferases may be involved in leukemogenesis. 

 

This raises a crucial question: How could we selectively target mutant Tet2-/- HSCs to prevent 

their expansion in CHIP or upon leukemogenesis? One potential approach is to explore aberrant 

signaling pathways that these cells rely on for survival. Epigenetic mechanisms are reversible, 

and thus could be a good therapeutic target (Chiappinelli et al., 2015b; Roulois et al., 2015). 

Decreasing SETDB1 or HUSH leads to the reactivation of TE DNA damage, inflammation and 

leukemic cell death which could be used to treat different types of cancer. Donia Hidaoui from 

our team used a combination of HMA and G9A inhibitors to treat CMML which induced TE 

expression, inflammatory pathways and a selective loss of CMML HSPCs (Hidaoui et al., 

2024a). Unfortunately, there is no inhibitor available for SETDB1, but we could use shRNA 

against SETDB1 to test if reducing SETDB1 expression may prevent Tet2-/- HSC expansion.  
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Concluding remarks and summary diagram  

The molecular mechanisms involved in the expansion of CHIP mutated clones are still unclear. 

The aim of this thesis was to study the molecular mechanism that underlie the clonal expansion 

of Tet2-/- HSC upon stresses.  

 

Our team could show that heterochromatin loss, and especially loss of H3K9me3, and TE 

derepression, especially L1Md, the most recent subfamilies of L1, are a common response to 

aging and various stresses (IR, inflammation) that are involved in HSC aging. We further 

showed that L1Md derepression is associated with loss of HSC function upon IR and 

inflammatory stress through DNA damage accumulation and transcriptomic alterations. 

 

Interestingly, the impact of inflammation showed a contrast between WT HSCs, which 

exhibited a loss of H3K9me3 at L1Md, and Tet2-/- HSCs, which exhibited an increase of 

H3K9me3 at L1Md. We further showed that repression of L1Md is associated with the 

resistance of Tet2-/- HSCs towards the effects of LPS.  

 

Decreased H3K9me3 in WT HSC upon LPS treatment may be due to decrased expression of 

SUV39H1, whereas increased H3K9me3 might be due to higher levels of SETDB1 in Tet2-/- 

HSCs upon LPS treatment.  

 

Finally, our data suggest that the expansion of Tet2-/- HSCs upon inflammation appears to be 

driven by L1 transcript activity and its deleterious effects on WT HSCs, potentially 

contributing to the competitive advantage of Tet2-/- HSCs.  

 

Altogether, these findings underscore the role of L1 elements and chronic inflammation in 

shaping the differential behavior of Tet2-/- HSCs and WT HSCs leading to clonal expansion of 

Tet2-/- HSCs. 
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ARTICLE

NF-κB signaling controls H3K9me3 levels at intronic
LINE-1 and hematopoietic stem cell genes in cis
Yanis Pelinski1,2, Donia Hidaoui1,2*, Anne Stolz1,2*, François Hermetet1,2, Rabie Chelbi1,2, M’boyba Khadija Diop2,3, Amir M. Chioukh1,2,
Françoise Porteu1,2**, and Emilie Elvira-Matelot1,2**

Ionizing radiations (IR) alter hematopoietic stem cell (HSC) function on the long term, but the mechanisms underlying these
effects are still poorly understood. We recently showed that IR induces the derepression of L1Md, the mouse young subfamilies
of LINE-1/L1 retroelements. L1 contributes to gene regulatory networks. However, how L1Md are derepressed and impact
HSC gene expression are not known. Here, we show that IR triggers genome-wide H3K9me3 decrease that occurs mainly at
L1Md. Loss of H3K9me3 at intronic L1Md harboring NF-κB binding sites motifs but not at promoters is associated with the
repression of HSC-specific genes. This is correlated with reduced NFKB1 repressor expression. TNF-α treatment rescued all
these effects and prevented IR-induced HSC loss of function in vivo. This TNF-α/NF-κB/H3K9me3/L1Md axis might be
important to maintain HSCs while allowing expression of immune genes during myeloid regeneration or damage-induced bone
marrow ablation.

Introduction

Exposure to ionizing radiations (IR), in the context of medical use
such as radiotherapies, is an independent risk factor for many
disorders characteristic of an accelerated aging. The hematopoietic
tissue is particularly sensitive to IR. We and others have shown
that total body irradiation (TBI) in mice leads to long-term defects
in hematopoiesis due to loss of hematopoietic stem cell (HSC)
reserves and functions (Fleenor et al., 2015; de Laval et al., 2013;
Mohrin et al., 2010). In HSCs, IR induces DNA damage accumu-
lation, loss of self-renewal, and a biased differentiation toward the
myeloid lineage leading to increased myeloid cell counts and de-
cline of the adaptive immune response. These changes are likely
contributing to many IR-induced premature aging disorders and
to the high risk of developing myeloid leukemia. Understanding
themolecularmechanisms leading to HSC loss of function upon IR
is necessary to modulate its adverse effects. It may also help
identifying the first events leading to hematologic malignancies.

IR induces DNA double strand breaks (DSBs). DNA damage is
thought to be one of the main driving forces of aging. However,
delaying the effects of age in mice by decreasing the levels of
DNA damage has never been achieved, and a direct link between
DSB formation and physiological aging is still lacking (White and
Vijg, 2016). Although IR has been shown to induce chromosomal
abnormalities in progenitors (de Laval et al., 2013; de Laval et al.,

2014; Mohrin et al., 2010), in fact HSCs are quite resilient toward
accumulating DNA mutations in response to DNA damage
(Moehrle et al., 2015).

In addition to DSBs, IR has been shown to induce changes in
chromatin state, mainly at the level of DNA methylation, in
different tissues and cell lines (Miousse et al., 2017b). Epige-
netic alterations have been observed in aged HSCs in the ab-
sence of mutations in epigenetic factors (Djeghloul et al., 2016;
Sun et al., 2014). Reorganization of heterochromatin is among
the most commonly reported changes in aging and senescence,
supporting its essential role in maintaining proper cellular
function (Tsurumi and Li, 2012). Maintenance of HSC identity
is dependent on the heterochromatin mark H3K9me3 (Koide
et al., 2016). Decreased H3K9me3 in HSCs due to loss of Suv39h2
and/or Suv39h1 methyltransferases occurs with age and is associ-
ated with the loss of B cell differentiation (Djeghloul et al., 2016)
and hematopoietic changes archetypal of aging (Keenan et al.,
2020). However, whether the long-term effects of IR on HSCs
are linked to IR-induced changes in heterochromatin remains to
be addressed.

Heterochromatin plays also a major role in the maintenance
of the genome stability by repressing transposable elements
(TEs), including DNA transposons and retro-TEs (RTEs), further
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classified as LTR sequences that characterize endogenous ret-
roviruses (ERVs), and non-LTR elements such as long or short
interspersed elements (LINE-1/L1; SINE). Propagation of RTEs
in the genome has been recognized as a great source of ge-
nomic instability. Even without propagating, RTEs have also
been recently recognized as major contributors of gene regu-
latory networks (Chuong et al., 2017). Indeed, they qualita-
tively and quantitatively control gene expression, providing
alternative enhancers, promoters, splicing, or polyadenylation
signals, and also serving as cis-regulatory elements in a cell-
specific fashion. Basal L1 expression in early mouse embryo is
necessary for its proper development (Jachowicz et al., 2017).
RTEs are involved in T cell differentiation by regulating genes
involved in immune processes (Adoue et al., 2019). Abnormal
RTE expression has been observed in cancers, including acute
myeloid leukemia (AML), and may be involved in the patho-
genesis through the alteration of host gene expression (Chuong
et al., 2017) and the expression of oncogenes (Deniz et al.,
2020; Jang et al., 2019).

We recently showed that evolutionary recent mouse L1s
(L1Md) are highly expressed in HSCs and that their expression
is further increased and maintained at high levels up to 1 mo
after TBI (Barbieri et al., 2018). TE expression is also increased
in HSCs after chemotherapies (Clapes et al., 2021) and the
decreased H3K9me3 in aged HSCs is associated with increased
L1Md expression (Djeghloul et al., 2016). However, the impact
of L1Md derepression on the HSC transcriptome remains to be
addressed. In addition, the mechanisms and signaling path-
ways by which IR specifically triggers L1Md expression in
HSCs are currently unknown. We and others previously
showed that the NF-κB signaling pathway is required to pre-
vent IR-induced HSC injury (Hu et al., 2021; de Laval et al.,
2014). In addition, TNF-α–induced NF-κB supports HSC sur-
vival during inflammation and chemotherapeutic stress in-
duced by 5-fluorouracil (Yamashita and Passegué, 2019). On
the other hand, basal activation of NF-κB is required for HSC
homeostasis and self-renewal potential and the expression of
key HSC maintenance genes are severely impaired in mice
deficient for NF-κB pathway factors (Fang et al., 2018; Hu
et al., 2021; Stein and Baldwin, 2013). We show here that IR
induces a major loss of H3K9me3 in HSCs, which mainly af-
fects L1Md subfamilies, and more specifically intronic L1Md
displaying NF-κB binding sites. By controlling the levels of
H3K9me3 at selected intronic L1Md located in genes belonging
to the HSC signature, this pathway plays a crucial role to
preserve HSC-specific gene expression and HSC function
during IR stress.

Results

H3K9me3 is mainly enriched at recent L1Md subfamilies

in HSCs

To assess the effect of IR on H3K9me3 in HSCs and more par-
ticularly at TE sequences, we performed H3K9me3 chromatin
immunoprecipitation sequencing (ChIP-seq) experiments in
HSCs (Lin−Sca+-Kit+-CD34−Flk2−) sorted from mice 1 mo after
TBI (2 Gy) or not, as previously described (Barbieri et al., 2018;

Fig. 1, A and B). Deep characterization of H3K9me3 enrichment
in HSCs, notably at TE sequences, has never been performed.
We thus first characterized H3K9me3 genomic coverage in
HSCs at steady state.

Analysis of genomic repeats is still a bioinformatics chal-
lenge. The assignment of reads complementary to sequences
that are repeated in the genome and that present low sequence
variation is largely compromised. These multiple mapping
reads are often discarded in ChIP-seq studies. However, when
using only unique mapping reads, one can induce a bias of
representation of the TE subfamilies toward the oldest ones as
the youngest subfamilies, such as L1Md, present a very low
mappability due to quasi-identical copies (Teissandier et al.,
2019). Therefore, while young families of TEs are the most
epigenetically regulated in the genome (Barau et al., 2016;
Pezic et al., 2014), they are severely underestimated in unique
read analysis.

To maximize the output information on these sequences, we
considered all reads that mapped to the genome without mis-
matches and randomly assigned them at one of their best pos-
sible positions in the genome (Fig. 1 A). We combined both
unique and multiple mapping reads analyses (U-MRA and
M-MRA, respectively) to finally get a compromise between
precise assignment of the unique reads and global information
at youngest TE subfamily level.

Quality control of the resulting reads indicated high genomic
coverage in both U- andM-MRA and in non-irradiated (NIR) and
IR conditions (Table S1). Peak calling followed by reproducibility
measurement between replicates (irreproducible discovery rate
[IDR]) identified 456 peaks on average in the NIR conditions in
the U-MRA. As expected, with 7,769 peaks, M-MRA gave a
substantial increased number of peaks (Fig. 1 C and Table S1).
Our peak calling retrieved the SUV39h-1– and -2–dependent
H3K9me3 peaks that were previously described at young TEs
such as intracisternal A particle (IAP) ERVs (Fig. S1 A) using
this strategy in mouse embryonic stem cells (mESCs; Bulut-
Karslioglu et al., 2014). Of note, these elements were not cov-
ered by U-MRA.

After annotation of the peaks using annotateR, both
U-MRA and M-MRA showed that the majority of the
H3K9me3-enriched peaks occur at TEs (41.9 and 52%, re-
spectively; Fig. 1 D). Interestingly, M-MRA shows a gain in
LINE representation, with 32.7% of the total H3K9me3 en-
riched peaks vs. 16.5% in U-MRA. By contrast, M-MRA shows
reduced SINE and DNA representation while LTR represen-
tation was not affected. This suggests that H3K9me3 enrich-
ment occurs mainly at LINEs in HSCs. Heatmap representation
of the average concentration (i.e., H3K9me3 enrichment nor-
malized to input) of H3K9me3 at peaks retrieved fromM-MRA,
followed by RTE genomic coverage, further confirmed that
peaks enriched in H3K9me3 at basal are mostly covering LINEs
compared to LTR, SINEs, or DNA, and more especially the
young subfamilies of LINEs (L1Md) compared to older ones
(Lx5; Fig. 1 E).

Altogether, these data demonstrate that H3K9me3 is mainly
enriched at repetitive sequences, andmore particularly at young
L1Md elements in HSCs.
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Figure 1. H3K9me3 is mainly enriched at recent L1Md subfamilies in HSCs. (A) Experimental and bioinformatic analysis design for H3K9me3 ChIP-seq.
Mice were subjected to 2 Gy total body irradiation (IR) or left untreated (NIR). Analysis was done on both U- and M-MRA. (B) Gating strategy for HSCs (LSK
CD34−Flk2−) sorting. (C) Number of peaks with IDR score <0.05 in U- and M-MRA and in NIR and IR conditions. ***, P < 0.001; **, P < 0.01, t test.
(D) Repartition of confident peak annotations in each genomic feature using annotateR in NIR conditions for U- and M-MRA. (E) Left columns: Heatmap of
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Irradiation induces a loss of H3K9me3 that mainly affects the

recent L1Md subfamilies

We next investigated changes in H3K9me3 that occur upon IR.
We first compared the number of H3K9me3 peaks identified in
IR vs. NIR conditions. Only 115 peaks in average were found in IR
in the U-MRA, compared to 456 peaks in NIR condition, and 283
compared to 7,769 in the M-MRA (Fig. 1 C). Heatmap repre-
sentation further showed a loss of H3K9me3 enrichment at
peaks retrieved from M-MRA upon IR (Fig. 1 E).

Differential H3K9me3 enrichment analysis performed at
H3K9me3 peaks identified in both IR and NIR conditions further
revealed a strong decrease in H3K9me3 enrichment in IR (Fig. 2
A). We found 13 and 253 peaks showing significant (P < 0.05)
differential H3K9me3 enrichment upon IR in U- and M-MRA,
respectively. All of them in U-MRA and 252/253 peaks in
M-MRA showed decreased H3K9me3 upon IR (Fig. 2 A). These
data reveal a major loss of H3K9me3 genomic coverage upon IR,
regarding both the number of peaks and the concentration of
H3K9me3 at conserved peaks.

We performed the same analysis at TE genomic loci instead of
peaks and found 2,559 loci with significant H3K9me3 differen-
tial enrichment, 1,667 and 892 loci showing decreased or in-
creased H3K9me3, respectively, upon IR (Fig. 2 B). Annotation of
these loci showed that they are enriched in LINEs (66.7%) and
LTR (29.23%) compared to the distribution of these TEs in the
mouse genome (24.71 and 22.07%, respectively; Fig. 2 C). The
distribution of the H3K9me3 concentration showed a significant
(P < 0.0001) decreased in H3K9me3 at both LINEs and LTR upon
IR (Fig. 2 D). Comparing the distribution of the log2 fold change
between IR and NIR conditions in H3K9me3 concentration
showed that this decrease is significantly (P < 0.0001) more
pronounced at LINEs than at LTRs (Fig. 2 E).

Since young TE subfamilies, notably L1Md, were previously
reported to be the most epigenetically regulated in the genome
compared to old LINEs in ESCs and testis (Barau et al., 2016;
Pezic et al., 2014), we further dissected H3K9me3 enrichment at
TEs depending on their age, as calculated in Sookdeo et al.
(2013). We observed a significant negative correlation between
the age of the LINE and H3K9me3 enrichment, with the youn-
gest, typically L1Md_A and L1Md_Tf, showing the highest en-
richment (Fig. 2 F), as previously observed for DNA methylation
(Miousse et al., 2017a). IR induced a significantly (P < 0.0001)
more pronounced loss of H3K9me3 at young L1Md compared to
other LINEs (Fig. 2 G).

Altogether these data reveal that 1 mo after IR, HSCs display a
major loss of H3K9me3, which mainly occurs at L1Md, the
subfamilies of TEs the most enriched in H3K9me3 at steady
state. This prompted us to further focus our analysis on L1Md.

Plot profile of H3K9me3 enrichment along L1Md sequences
showed asymmetric distribution of H3K9me3 along the L1 body,
with the highest enrichment and the highest loss upon IR at the

59 end of these elements (Fig. 2 H and Fig. S1 B). Finally, we
confirmed the global decrease of H3K9me3 at L1Md, and more
particularly at L1Md_A, using ChIP–quantitative PCR (qPCR)
experiments with primers recognizing either all L1Md or spe-
cifically L1Md_A promoter (Fig. 2 I), as described previously
(Barbieri et al., 2018).

Irradiation induces a strong deregulation of the

HSC transcriptome

In order to unravel the consequences of IR-induced H3K9me3
loss on the HSC transcriptome, we performed RNA-seq of HSCs
1 mo after TBI. Comparison of IR vs. NIR revealed 1,067 differ-
entially expressed genes (DEGs; P < 0.05), with 602 (56.4%)
genes downregulated and 465 (43.6%) genes upregulated upon
IR (Fig. 3, A and B; and Table S2). Differences in gene expression
are very strong, as almost 80% of the DEGs between IR and NIR
present a fold change above 10 andmore than 50% present a fold
change above 50 (Fig. 3 B). Gene set enrichment analysis (GSEA)
on Hallmark gene sets indicated significant enrichments in DNA
repair, G2/M checkpoint, and oxidative phosphorylation path-
ways, as expected upon IR (Fig. 3 C), whereas themain pathways
lost in IR are related to cell signaling (Fig. 3 D). Among these, the
most significant decrease concerns genes regulated by NF-κB in
response to TNF-α (Fig. 3, D and E). A recent report showed that
TNF-α induces a specific prosurvival gene signature in HSCs
(Yamashita and Passegué, 2019). Interrogating this gene signa-
ture, composed of 62 genes representing both core regulators of
the NF-κB pathway and TNF-α–induced HSC-specific survival
genes, we observed its significant loss upon IR (Fig. 3 F). IR also
induced the loss of the different HSC TNF-α signatures taken
individually: the two in vitro signatures obtained 3 and 12 h after
TNF-α treatment and the in vivo signature obtained 3 h after
TNF-α treatment in mice (Fig. S2 A). By contrast, IR had no ef-
fect on the granulocyte/monocyte progenitor (GMP) TNF-α gene
signature (Fig. 3 G; Yamashita and Passegué, 2019).

Given the importance of the NF-κB pathway at maintaining
HSC survival and self-renewal or during chemotherapeutic and
IR stress (Hu et al., 2021; de Laval et al., 2014; Yamashita and
Passegué, 2019), we next interrogated different published HSC
signatures that are enriched in low-output/self-renewing and
functional long-term regeneration HSCs compared to differen-
tiating HSCs, or in dormant vs. activated HSCs (Cabezas-
Wallscheid et al., 2017; Chambers et al., 2007; Pietras et al.,
2015; Rodriguez-Fraticelli et al., 2020). We found a significant
loss of all these signatures upon IR (Fig. 3 H and Fig. S2 B).
Likewise, the megakaryocyte (MK)-biased output HSC signature
(Rodriguez-Fraticelli et al., 2020), representing platelet-primed
HSCs that were also previously described to be at the apex of the
HSC hierarchy (Sanjuan-Pla et al., 2013), was also enriched in
NIR vs. IR HSCs (Fig. S2 B). Conversely, the high-output and
multilineage signatures (Rodriguez-Fraticelli et al., 2020),

H3K9me3 enrichment at M-MRA confident peaks in NIR and IR conditions. Each row represents one-scaled H3K9me3 peak with ±4 kb flanking regions. The
color scale represents H3K9me3 enrichment over the input (H3K9me3 concentration) with the red corresponding to lower enrichment, and the blue to stronger
enrichment. Center and right columns: Genomic coverage of the H3K9me3 peaks showed in the heatmap at different TE families and subfamilies (LINE, LTR,
SINE, DNA, L1Md, Lx5) are also represented. Blue, TE is present; yellow, TE is absent in the peak (row).
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Figure 2. Irradiation induces a loss of H3K9me3 that mainly affects the recent L1Md subfamilies. (A and B)MA-plots showing nonsignificant (blue dots)
and significant (P < 0.05, pink dots) differential H3K9me3 enrichment at confident peaks between NIR and IR conditions analyzed both in U and M-MRA (A) and
TE loci (B). The number of peaks showing a significant decreased (down) or increased (up) in H3K9me3 enrichment upon IR is indicated in the plot.
(C) Distribution of the percent of each family of TE among the total TE loci in the mouse mm10 genome (up) and among the significantly differentially enriched
TE (bottom) retrieved in B. (D) Violin plot representing the distribution of H3K9me3 concentration at each locus retrieved in B for LINE, LTR, SINE, and DNA
families of TEs in NIR and IR conditions. (E) Violin plot representing the distribution of the log2 fold change (FC) in H3K9me3 concentration at each locus

Pelinski et al. Journal of Experimental Medicine 5 of 22

Cis-regulation of HSC genes by intronic LINE-1 https://doi.org/10.1084/jem.20211356

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
://ru

p
re

s
s
.o

rg
/je

m
/a

rtic
le

-p
d

f/2
1

9
/8

/e
2

0
2

1
1

3
5

6
/1

4
3

5
5

6
9

/je
m

_
2

0
2

1
1

3
5

6
.p

d
f b

y
 In

s
titu

t G
u

s
ta

v
e

 R
o

u
s
s
y
 u

s
e

r o
n

 2
1

 J
u

n
e

 2
0

2
3



 
 

181 

 

 

 

 

 

which mark differentiating HSCs, showed a significant enrich-
ment upon IR (Fig. S2 C). Altogether, these data show that IR
induces a loss of transcriptional signatures involved in HSC
quiescence, long-term potency, and self-renewal capacity, and a
gain in gene signatures involved in HSC differentiation, thus
recapitulating the HSC loss of self-renewal previously reported
upon IR (de Laval et al., 2013).

IR-induced downregulation of gene expression is associated
with the presence of L1Md in their introns
In order to check if gene deregulation upon IR might be asso-
ciated with H3K9me3 enrichment changes at gene promoters,
we quantified H3K9me3 enrichment over promoter regions (−2
kb; +1 kb around transcription start site [TSS]; U-MRA). We
found 239 promoter sequences showing a significant (P < 0.05)
H3K9me3 differential enrichment upon IR, 211 and 28 showing
decreased and increased H3K9me3, respectively (Fig. S2 D).
However, these variations are not correlated with gene upre-
gulation, and only very poorly correlated with gene down-
regulation (Fig. 4 A and Fig. S2 E).

Since the loss of H3K9me3 upon IR mainly occurs at L1Md,
we sought to determine if L1Md derepression might be involved
in the gene deregulation observed after IR. Most of the infor-
mation concerning H3K9me3 enrichment at young RTE such as
L1Md is obtained through M-MRA. However, reads from the
M-MRA are arbitrary assigned and cannot be precisely localized.
Thus, it is impossible to determine if L1Md derepression is as-
sociated with gene deregulation by crossing our ChIP-seq and
RNA-seq data. To overcome this issue, we crossed the list of the
1,067 DEGs (P < 0.05) in IR vs. NIR from our RNA-seq data with
the list of genes hosting one or several L1Md (reconstructed
repeatMasker database; Fig. 4 B and Table S3). The vast majority
of these L1Md are located in introns (99%; Fig. S2 F). We found
that 377 DEGs in IR host one or several L1Md, in majority located
in introns. This is significantly (P < 0.0001) more than one
would expect by chance, as revealed by a permutation test using
10,000 lists of 1,067 genes randomly extracted from the refseq
database (Fig. 4, B and C). These results reveal a strong and
significant association between gene deregulation upon IR and
the presence of an intronic L1Md in these genes. This is specific
for L1Md as no significant association was observed between
DEGs and the presence of Lx5, an older LINE subfamily
(Fig. 4 D). Surprisingly, this association is specific for genes that
are downregulated upon IR (Fig. 4 E) and was not found for
upregulated genes (Fig. 4 F and Table S3).

Interestingly, 50% of the genes from long-term (LT)-HSC
signatures (Chambers et al., 2007; Pietras et al., 2015) whose
expression is significantly decreased upon IR (Fig. 4, G and H)
contain one or several L1Md in their introns. Similarly, we found

that 31 and 41% of the genes from the low-output and MK-biased
signatures (Rodriguez-Fraticelli et al., 2020) host one or several
L1Md (Fig. S2, G and H). Altogether, these data highlight a sig-
nificant association between genes whose expression is re-
pressed upon IR, notably those belonging to the HSC signature,
and the presence of intronic L1Md.

Gene repression upon IR is associated with loss of H3K9me3 at
selected intronic L1Md loci harboring NF-κB binding sites
We next investigated if the loss of H3K9me3 induced by IR at
intronic L1Md in a given gene could be associated with its de-
creased expression in cis. For this purpose, we chose six can-
didate genes whose expression is significantly reduced by IR in
our RNA-seq data: Mecom, Pkia, Ttc8, Rbms3, Rmdn2, and Akt3

(Table S2), five of them (Mecom, Pkia, Ttc8, Rbms3, Rmdn2) being
part of the different HSC signatures, as well as four negative
controls, also harboring at least one intronic L1Md but whose
expression remains unchanged upon IR (0.7 < fold change < 1.3,
P > 0.05): Snx27, Mapre2, Celf2, and Pdcd1lg2. 1 mo after TBI, a
significant downregulation of Mecom, Pkia, and Rmdn2, but not
of Snx27,Mapre2, Celf2, was observed (Fig. 5, A and C). To assess
H3K9me3 enrichment specifically at intronic L1Md of these
genes, we performed H3K9me3 ChIP-qPCR experiments using
primer pairs located both in the intron and in the 59 end of the
L1Md, thus allowing unique and specific amplicon production
(Fig. 5, A and B). Apart for Rmdn2, we chose the longest L1Md (>5
kb), displaying higher enrichment at the 59 end (Fig. 2 H), to
detect significant basal H3K9me3. We first confirmed that
H3K9me3 is indeed present at intronic L1Md, as compared to Spi1
and 5S negative controls (Fig. S3, A and B). Of note, H3K9me3
levels at tested L1Md are similar to those found globally at
L1Md_A promoters (Fig. S3 B). IR induced a significant decrease
in H3K9me3 specifically at all the chosen candidate intronic
L1Md of genes downregulated upon IR (Fig. 5 D and Fig. S3 C). Of
note, we randomly chose four negative candidates that fit our
criteria, and for the four candidates selected, no loss of H3K9me3
was detected. This indicates that IR-induced H3K9me3 loss at
intronic L1Md is not a general event but rather that it seems to
occur only in specific genes whose expression is reduced upon
IR. This suggests that the presence of the H3K9me3 mark at this
location may play a role in the regulation of gene expression in
cis upon IR.

In order to test this hypothesis, we chose to delete specifically
the intronic L1Md of Mecom through CRISPR/Cas9 and guide
RNAs targeting each side of the L1Md (59gRNA and 39gRNA;
Fig. 5 E) and tested Mecom expression upon IR. We electro-
porated LSK cells with the Cas9/guide RNA (gRNA) ribonucleo-
protein particles (RNP) complex (Gundry et al., 2016) together
with a siglo green electroporation indicator and we sorted

retrieved in B for LINE and LTR. (F) Correlation plot representing H3K9me3 concentration quantified at all LINE elements in M-MRA vs. their age inmillion years
(My). R, Pearson correlation coefficient. (G) Violin plot representing the distribution of the log2 fold change in H3K9me3 concentration at each locus retrieved in
B for L1Md or other LINE. (H) Plot profile of H3K9me3 enrichment along the L1Md sequences (>5 kb) ± 1 kb flanking regions in IR (green) vs. NIR (blue)
conditions. Wilcoxon test. (I)H3K9me3 enrichment at L1Md promoters analyzed by ChIP-qPCR normalized to H3K9me3 enrichment at repetitive 5S rRNA. n = 3
independent experiments. Each dot represents pools of three (NIR) or four (IR) mice. Results are expressed as fold change from the mean value of the NIR
condition and represented as means ± SEM. t test. *, P < 0.05; **, P < 0.01; ****, P < 0.0001.
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electroporated (FITC+) HSCs for analysis (Fig. 5 F and Fig. S3 D).
We first tested different combinations of 59 and 39 gRNAs (Table
S4). Only one of these combinations was efficient in deleting the
L1Md (Fig. S3 E). Using this combination, we then validated that
L1Md deletion occurred inMecom, but not in Pkia, through qRT-
PCR using the ChIP-qPCR primers (Fig. S3 F). We also validated

that in mock electroporated cells IR could induce the specific
downregulation of Mecom and Pkia but not of Snx27 expression
in vitro, as observed in vivo (Fig. 5 G). Deletion of its intronic
L1Md leads to a reduction in Mecom gene expression, without
affecting Pkia or Snx27 expression, suggesting that the presence
of the L1Md is important for the proper regulation of Mecom

Figure 3. Irradiation induces a strong deregulation of the HSC transcriptome. (A) Volcano plot of the DEGs between IR and NIR conditions. The horizontal
axis represents the log2 fold change (FC) and the vertical axis the –log10(P value). Significantly (P < 0.05) upregulated (red) and downregulated (green) genes
are shown. (B) Repartition of total (P < 0.05) DEG (gray) and downregulated (green) or upregulated (red) genes in IR vs. NIR according to their fold change.
(C–H) GSEA analysis using Hallmark gene sets. Significant (P < 0.05) gene sets gained (C) or lost (D) in the IR condition compared to NIR. Log10(P value) is set to
4 when P < 0.001. Enrichment plots for TNF-α signaling via NF-κB hallmark (E), HSC prosurvival TNF-α (F), and GMP TNF-α (G) gene signatures. (H) En-
richment plots for LT-HSC; low-output and dormant vs. activated HSC signatures. FDR, false discover rate; NES, normalized enrichment score.
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Figure 4. Gene repression upon IR is associated with intronic L1Md. (A) Correlation plot representing the log2(fold change [FC]) in H3K9me3 concen-
tration at gene promoters vs. log2(fold change) in gene expression. (B–F) Permutation test comparing of the number of genes found in common between the
list of DEGs or 10,000 lists of random genes and the list of genes hosting one or several L1Md. Blue curve: Distribution of the number of genes found in common
between random genes and genes hosting an L1. Black vertical line: number of genes found in common between DEGs and genes hosting an L1Md (C) or an Lx5
(D); or between genes downregulated (E) or upregulated (F) upon IR and hosting an L1Md. Significance bars (P < 0.01) are shown in red. (G and H) Heatmaps of
the expression of genes from two LT-HSC signatures that are significantly up- (red) or down- (blue) regulated in IR vs. NIR. Green stars indicate the presence of
an intronic L1Md in the downregulated gene.

Pelinski et al. Journal of Experimental Medicine 8 of 22

Cis-regulation of HSC genes by intronic LINE-1 https://doi.org/10.1084/jem.20211356

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
://ru

p
re

s
s
.o

rg
/je

m
/a

rtic
le

-p
d

f/2
1

9
/8

/e
2

0
2

1
1

3
5

6
/1

4
3

5
5

6
9

/je
m

_
2

0
2

1
1

3
5

6
.p

d
f b

y
 In

s
titu

t G
u

s
ta

v
e

 R
o

u
s
s
y
 u

s
e

r o
n

 2
1

 J
u

n
e

 2
0

2
3



 
 

184 

 

 

 

 

 

Figure 5. Gene repression upon IR is associated with the loss of H3K9me3 at intronic L1Md loci harboring NF-κB binding sites. (A and C) Experimental
design and mRNA expression assessed by qRT-PCR in HSCs 1 mo after TBI. Ct values were normalized to RPL32 and HPRT. Results are expressed as fold change
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expression. While Pkia expression remained significantly re-
duced upon IR after Mecom intronic L1Md deletion, Mecom ex-
pression was not affected anymore. This suggests that Mecom

intronic L1Md acts in cis, and is responsible for the specific gene
downregulation upon IR (Fig. 5 G).

To unravel what makes the specificity of H3K9me3 loss at
L1Md upon IR, we interrogated the potential enrichment for
binding motifs for transcription factors in the L1Md located in
genes downregulated in IR (P < 0.05, 1069 L1Md = input se-
quences) vs. nonderegulated genes (P > 0.05, 0.7 < fold change <
1.3, 1310 L1Md = background sequences) through de novo motif
search using BAMMmotif (https://bammmotif.soedinglab.org/;
Kiesel et al., 2018). Of the four motifs found significantly en-
riched in L1Md located in downregulated genes, two were not
retrieved in the mouse Hocomoco motif database, one motif
corresponds to the binding site of Hoxa1, and one to the binding
site of Rel, a member of the NF-κB transcription factor family
(Fig. 5 H). De novo motif search in the L1Md located in down-
regulated genes vs. upregulated genes also retrieved Rel motif
(Fig. S3 G). Furthermore, de novo search for motifs specifically
enriched in L1Md located in genes participating (284 L1Md) vs.
genes not participating (793 L1Md) to the loss of the HSC sig-
nature (Fig. 3 H) also revealed significant enrichment for NF-κB
transcription factors Rel, RelA, and Nfkb1 (Fig. 5 I). Similar re-
sults were found for the low-ouput/self-renewing LT-HSC sig-
natures (Fig. S3, H and I). Of note, this motif is present in the
intronic L1Md of IR-regulated genes Mecom, Pkia, Ttc8, Rbms3,
Akt3, and Rmdn2which loose H3K9me3 upon IR (Fig. 5 D, Fig. S2
C, and Table S3), supporting the possibility that it may regulate
the presence of H3K9me3 at these loci.

Performing de novo search on promoter sequences of genes
downregulated by IR (P < 0.05, 3,893 promoter sequences) vs.
nonderegulated genes (0.7 < fold change < 1.3, P > 0.05, 14,208
promoter sequences from which we randomly extracted 3,893
sequences) did not show specific enrichment inmotifs for NF-κB
members. Instead, motifs for different transcription factors such
as Egr, Znf, Foxj, and Foxq were found (Fig. S3 J).

Altogether, these data suggest that the NF-κB pathway may
control HSC gene expression by regulating the presence of
H3K9me3 mark at L1Md located in introns, and not by affecting
promoters.

TNF-α treatment prevents loss of H3H9me3 at intronic L1Md
and HSC gene repression during IR stress
In mammals, the NF-κB family is composed of five members:
RELA (p65), RELB, c-REL, and the precursor proteins NFKB1

(p105) and NFKB2 (p100), which are processed into their active
forms, p50 and p52, respectively, and are active as homo- or
heterodimers (Cartwright et al., 2016). The canonical NF-κB
pathway involves p50, p65, and c-Rel. P50 lacks transactivation
domain. Thus, while p50/p65 or c-Rel heterodimers act as
transcriptional activators, p50/p50 (NFKB1) homodimers are
generally described as transcriptional repressors. NFKB1 notably
represses the expression of proinflammatory genes through the
recruitment of chromatin modifiers and H3K9 methylation (Ea
et al., 2012; Elsharkawy et al., 2010). In addition, p50 has been
shown to shuttle between the nucleus and cytoplasm and to bind
to a large number of genes in unstimulated cells (Schreiber et al.,
2006). This makes of this factor a good candidate to regulate
H3K9me3 levels at L1Md presenting NF-κB sites and IR-induced
HSC gene expression changes. Supporting this possibility, HSCs
sorted frommice 1 mo after TBI showed a significant decrease in
both NFKB1mRNA, aswell as protein expression testedwith two
different antibodies (Fig. 6, A–C; and Fig. S4 A). Processing of
p105 to p50 is regulated both independently of the NF-κB
activation pathway and during activation of the canonical
pathway induced by proinflammatory cytokines such as TNF-α
(Cartwright et al., 2016). As shown above, IR induces a loss of the
TNFA_signaling_Via_NFKB signature (Fig. 3, D and E). Thus, we
asked whether TNF-α stimulation could prevent IR effects by
rescuing the levels of p50 homodimers. NFKB1 protein expres-
sion decreased after 48 h of culture of purified HSCs that have
been irradiated in vitro (Fig. 6, D and E; and Fig. S4 B). Addition
of TNF-α to the cell medium prior to IR prevented this effect. As
after TBI, the loss of NFKB1 induced by IR in vitro was associated
with a specific decrease ofMecom, Pkia, and Ttc8 but not of Celf2,
Snx27, and Mapre2 mRNAs (Fig. 6 F and Fig. S4 C). Importantly,
H3K9me3 ChIP-qPCR at intronic L1Md of the selected genes
correlated with gene expression with a significant and specific
reduction at Mecom and Pkia intronic L1Md but not at Snx27 and
Celf2 (Fig. 6 G). This shows that IR-induced H3K9me3 loss at
intronic L1Md and gene expression changes in HSCs are direct
and short-term and that TNF-α stimulation can rescue both ef-
fects. Supporting a role of NFKB1 in these effects, Nfkb1−/− HSCs
showed reduced expression of Mecom and Pkia but not of Snx27
mRNA when compared to WT HSCs (Fig. 6 H). In addition, TNF-α
was unable to rescue HSC gene expression or H3K9me3 levels
at their intronic L1Md in Nfkb1−/− HSCs (Fig. 6, I and J).

We then investigated if TNF-α stimulation could prevent IR
effects in vivo.WTmice received two injections with 2 µg TNF-α
at 12-h intervals and were irradiated 1 h after the last injection.
We then performed H3K9me3 CUT&Tag and RNA-seq in HSCs

from the mean value of the NIR condition. Each dot represents a pool of three (NIR) or four (IR) mice. Means ± SEM from three to four independent ex-
periments. (B and D) Experimental design and H3K9me3 ChIP-qPCR enrichment 1 mo after TBI. The primer positioning at the intronic L1Md allowing the
amplification of a unique and specific product is shown (B). Each dot represents a pool of three (NIR) or four (IR) mice from two to four independent ex-
periments. Results are means ± SEM of the percentage of input normalized to the NIR condition. t test. (E–G) CRISPR/Cas9-induced deletion intronic L1Md in
Mecom gene. gRNA positioning around L1Md sequence (E), experimental design (F), and mRNA expression assessed by qRT-PCR in Cas9-gRNA RNP elec-
troporated HSCs 48 h after irradiation in vitro (G). Ct values were normalized to Rpl32. mRNA expression was normalized to mock NIR values. Each dot
represents a pool of electroporated HSCs from three to five independent experiments. One-way ANOVA with Sidak’s multiple comparison test. (H and I) De
novomotif discovery analysis performedwith the BAMMmotif tool on L1Md sequences located in introns of downregulated genes vs. nonderegulated genes (H)
or the genes participating vs. not participating to the loss of the LT-HSC signature (I). Enriched motifs were matched to known motifs using the Hocomoco
mouse database. *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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Figure 6. TNF-α treatment prevents loss of H3H9me3 at intronic L1Md and HSC gene repression in vitro. (A–C) NFKB1 expression in HSCs 1 mo after
TBI. (B)mRNA expression measured by qRT-PCR. Ct values were normalized to mean of RPL32 and HPRT. Results are expressed as fold change from the mean
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sorted 1 mo after IR (Fig. 7 A). CUT&Tag gave an efficient pro-
filing of H3K9me3 with exceptionally low background as ob-
served at the SUV39h-1– and -2–dependent H3K9me3 peaks
(Bulut-Karslioglu et al., 2014; Fig. S5 A) and as previously de-
scribed (Kaya-Okur et al., 2019). Plot profile of H3K9me3 en-
richment along L1Md sequences confirmed the loss of H3K9me3
at L1Md upon IR and showed it could be prevented by TNF-α
(Fig. 7 B). Notably, TNF-α also inhibited the specific loss of
H3K9me3 enrichment at the intronic L1Md of Mecom and Pkia

but not Mapre2 (Fig. 7 C) and restored the corresponding gene
expression (Fig. 7 D). RNA-seq analysis further showed that
TNF-α injection in vivo prevented IR-induced loss of both TNF-α
via NF-κB (Fig. 7 E) and long-term HSC signatures (Fig. 7 F and
Fig. S5 B).

TNF-α treatment prevents HSC loss of function during IR
stress independently of their level of DNA damage
To confirm the importance of this pathway in HSCmaintenance,
we analyzed the effect of TNF-α treatment on HSC function
upon IR. Total bone marrow (BM) cells isolated from mice
treated with TNF-α before TBI or not were transplanted in
competition with total BM cells from mice ubiquitously ex-
pressing GFP (ubi-GFP mice) into lethally irradiated ubi-GFP
mice (Schaefer et al., 2001; Fig. 7 A). 7 wk and 3 mo after re-
constitution, as expected, the percentage of GFP negative IR
donor cells in the blood was greatly decreased. TNF-α treatment
before TBI significantly prevented this effect (Fig. 8, A and B;
and Fig. S5 C). It also significantly prevented IR-induced Lin-
Sca+Kit+ (LSK) and LT-HSC loss (Fig. 8, C and D; and Fig. S5 D).
Secondary transplants showed that the self-renewal function of
HSCs after IR could be restored by TNF-α treatment (Fig. 8 E).
TNF-α treatment could similarly rescue blood reconstitution and
LT-HSCs in the BMwhen injected after TBI, either in one dose at
6 h or in two doses at 1 and 13 h (Fig. 8, F–J).

Contrary to what we previously observed with thrombo-
poietin (de Laval et al., 2013), TNF-α treatment was not able to
prevent γH2AX foci formation upon IR or to enhance the DSB
repair as we observed no effect of TNF-α on the number of
γH2AX foci at short (30 min) or long (24 h) term after IR in vitro
(Fig. 8 K). In addition, TNF-α treatment had no effect on the
number of γH2AX foci in HSCs 1 mo after IR (Fig. 8 L). Alto-
gether, these data suggest that TNF-α treatment rescues HSC
reconstitution ability upon IR independently of their level of
DNA damage by preventing IR-induced decrease in NFKB1

repressor expression, specific derepression of L1Md harboring
NF-κB binding sites in the introns of HSC genes, and thereby
their repression (Fig. 9).

Discussion

H3K9me3 alterations are a hallmark of aging and cellular se-
nescence in model organisms (Criscione et al., 2016; Ocampo
et al., 2016). Although H3K9me3 has been shown to be crucial
for HSC identity (Koide et al., 2016), H3K9me3 changes in HSCs
have, to our knowledge, never been studied in the context of
stress such as IR. We show here that IR stress profoundly affects
HSC heterochromatin by significantly reducing H3K9me3 en-
richment, without affecting the expression of factors controlling
H3K9 tri-methylation (SETDB1, KAP1, or MPP8 from the human
silencing hub complex). This loss mainly occurs at evolutionary
recent L1Md elements. This effect was observed both after short
time in vitro and long time after TBI in vivo, suggesting that
heterochromatin alterations may explain the long-term effect of
IR on HSC function.

Heterochromatin alterations are associated with a strong
deregulation of the HSC transcriptome. H3K9me3 enrichment at
promoters has recently emerged as a key player in the repres-
sion of lineage-inappropriate genes (Koide et al., 2016). Sur-
prisingly, we found here that gene deregulation is not associated
with H3K9me3 changes at gene promoters, but is rather asso-
ciated with the loss of H3K9me3 at intronic L1Md. H3K9me3
enriched at intronic L1Md was previously shown to be involved
in the tight regulation of gene transcription in ESCs (Liu et al.,
2018). Some ERVs also play the role of AML enhancers with a
driving role in leukemia cell phenotype (Deniz et al., 2020).
However, our study is the first showing the involvement of
L1Md on the regulation of HSC gene expression.

With CRISPR/Cas9 targeted deletion, we show that the
presence of intronic L1Md inMecom is required forMecom gene-
specific downregulation upon IR and suggests that intronic
L1Md can act in cis to regulate gene expression. Although sur-
prising at first glance, repression of genes following derepres-
sion of intragenic L1 was previously reported in cancers
(Aporntewan et al., 2011). This may be due to transcriptional
interference (Han et al., 2004; Kaer et al., 2011; Ninova et al.,
2020). We cannot test directly this hypothesis due to the re-
petitive nature of these sequences. However, we could observe
downregulation of Rmdn2 gene whereas the L1Md located in its

value of the NIR condition. Means ± SEM. Each dot represents a pool of three (NIR) or four (IR) mice from three independent experiments. t test. (C) Rep-
resentative images and quantification of NFKB1 protein mean immunofluorescence (IF) intensity. Bars, 5 µM. Each dot represents a cell. Results are expressed
as fold change from the mean value of the NIR condition from two independent experiments and represented as means ± SEM. t test. (D) Experimental design
analyzing the effects of IR and TNF-α in vitro in WT and Nfkb1−/− mice. (E) Representative images and quantification of NFKB1 staining. Bars, 5 µM. Each dot
represents a cell. Results are represented as mean ± SEM of NFKB1 IF intensity. One-way ANOVA with Tukey’s multiple comparison test. (F) Gene expression
evaluated by qRT-PCR in WT mice. Means ± SEM from two independent experiments. One-way ANOVA with Tukey’s multiple comparison test. (G) H3K9me3
enrichment at intronic L1Md evaluated by ChIP-qPCR. Results are expressed as in legend to Fig. 5 D. Means ± SEM from two to three independent experiments.
One-way ANOVA with Bonferroni’s multiple comparison test. (H and I) mRNA expression measured by qRT-PCR in HSCs sorted from Nfkb1−/− mice (KO) vs.
WT without IR (H) or after IR and with or without prior TNF-α treatment in vitro (I). Ct values were normalized to the mean of RPL32 and HPRT. (J) H3K9me3
enrichment at intronic L1Md evaluated by ChIP-qPCR. For each experiment (H–J), a pool of 14–16 mice was used and divided in two to four culture replicates.
Each dot represents one replicate of two to five independent experiments. Means ± SEM, t test (H); one-way ANOVA with Tukey’s multiple comparison test (I
and J). *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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intron lacks 59UTR promoter sequences (Fig. 5 B), suggesting
that gene repression may not be exclusively due to intronic
L1Md transcription. Instead of blocking transcription, DNA
methylation or H3K9me3 within gene bodies is a feature of
transcribed gene (Jones, 2012; Ninova et al., 2020; Vakoc et al.,

2005). H3K9me3 loss in gene bodies was previously shown to
be associated with gene repression (Ninova et al., 2020). The
presence of H3K9me3 islands in the body of the genes has been
proposed to slow-down RNA Polymerase II (RNAP II) elongation
rate (Saint-André et al., 2011; Vakoc et al., 2005). This was

Figure 7. TNF-α treatment prevents loss of H3H9me3 at intronic L1Md and HSC gene repression. (A) Experimental design for TNF-α treatment in vivo,
molecular analysis, and reconstitution experiments using HSCs sorted from mice 1 mo after TBI and previously treated with TNF-α (IR + TNFα) or not (IR), or
left untreated (NIR); BMMC, bone marrow mononuclear cells. (B) Plot profile of H3K9me3 enrichment along the L1Md sequences ± 1 kb flanking regions in NIR
(blue), IR (green), and IR + TNF-α (red) conditions. Each line represents the `merged CUT&Tag signal from two (NIR) to three (IR and IR + TNF-α) mice ± SEM.
(C) H3K9me3 enrichment at intronic L1Md evaluated by ChIP-qPCR. (D) mRNA expression measured by qRT-PCR. Ct values were normalized to RPL32 and
HPRT. (C and D) Results are expressed as fold change from the mean value of the IR condition. Each dot represents a pool of four mice. Means ± SEM from two
independent experiments, t test. (E and F) GSEA analysis using gene sets. Enrichment plots for TNF-a signaling via NF-κB hallmark (E) and LT-HSC signature
(F). *, P < 0.05; **, P < 0.01.
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Figure 8. TNF-α treatment prevents loss of H3H9me3 HSC function in vivo independently of their level of DNA damage. (A and B) Percentage of GFP-
negative donor contribution in blood in mice transplanted with NIR, IR, or IR + TNF-α cells at 7 (A) and 14 wk (B) after reconstitution. (C and D) LSK GFP− (C) or
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shown to help the recognition of true vs. cryptic RNA processing
sites, controlling alternative splicing (de la Mata et al., 2003),
polyadenylation, and finally transcript stability. This is partic-
ularly relevant in the case of genes bearing long introns.

Interestingly, the genes downregulated upon IR in HSCs are
significantly longer than by chance (data not shown). Slowing
down RNAP II elongation rate in these long intron genes might
also prevent R-loop formation and genomic instability (Aguilera
and Gaillard, 2014). Thus, even in the absence of intronic L1Md
transcription, loss of H3K9me3 islands enriched at intronic
L1Md in the body of the genes might lead to gene repression. In
accordance with this hypothesis, we showed that deletion of the
L1Md in the intron of Mecom resulted in decreased Mecom gene
expression (Fig. 5 G).Mecom repression in this case may be due
to the absence of H3K9me3 islands in its gene body, as observed
upon IR-mediated loss of H3K9me3. However, the precise
mechanisms involved in HSC gene regulation through their in-
tronic L1Md will require further investigations.

Our RNA-seq analysis indicates a strong downregulation of
the TNF-α–NF-κB gene signature 1 mo after TBI. IR specifically
reduced the recently described HSC-prosurvival TNF-α–NF-κB
signature required to maintain HSCs during inflammation or
cytotoxic BM ablation (Yamashita and Passegué, 2019). This
suggests that loss of long-term regenerating HSCs and TNF-
α–NF-κB gene expression upon IR may be linked. Supporting
this possibility, treatment of HSCswith TNF-α before IR in vitro,
or its injection to mice before or after TBI, restored HSC gene
expression and their reconstitution ability. These results
strongly support previous data showing that TNF-α–NF-κB sig-
naling is required to regulate HSC function under stress (Hu
et al., 2021; de Laval et al., 2014; Yamashita and Passegué,
2019). TNF-α promotes HSC survival through p65/RelA NF-κB
subunit (Yamashita and Passegué, 2019). This factor has also
been found to control the expression of genes involved in HSC
maintenance (Stein and Baldwin, 2013). However, the pro-
moters of HSC genes downregulated upon IR are not enriched in
NF-κB binding sites. We show that L1Md associated with gene
repressed upon IR are specifically and significantly enriched in
NF-κB binding sites, and that this pathway regulates gene ex-
pression by controlling the level of H3K9me3 at these sequences.
Interestingly, H3K9me3 enriched genomic regions specific to
human ESCs as compared to more differentiated cells are en-
riched in NF-κB binding sites, suggesting their importance in
establishing and maintaining the pluripotent state (Whitaker
et al., 2015).

Whereas most of the NF-κB members can form active tran-
scription factors, NFKB1 p50 subunit lacks transactivation do-
main and p50:p50 homodimers have been shown to act as
stimulus-specific repressors, notably during the resolution
phase of inflammation, by recruiting H3K9 methyltransferases

LSK CD34−Flk2−CD48− (D) GFP-negative donor HSC contribution in the BM 14 wk after reconstitution. One-way ANOVA Tukey’s multiple comparison test.
(E) Percentage of GFP-negative donor contribution in blood in mice secondary transplanted with pool of NIR, IR, or IR + TNF-α mice from the primary re-
constitution. One-way ANOVA Tukey’s multiple comparison test. (F) Experimental design for TNF-α treatment after IR in vivo and reconstitution experiments
using HSCs sorted from mice 1 mo after TBI and treated with TNF-α 6 h after IR (IR + TNFα 6 h), treated with TNF 1 and 13 h after IR (IR + TNFα 1–13 h),
irradiated but non-treated with TNF-α (IR), or non irradiated and non treated (NIR); BMMC, bone marrow mononuclear cells. (G and H) Percentage of CD45.2
donor contribution in blood in mice transplanted with NIR, IR, or IR + TNF-α cells at 6 (G) and 11 wk (H). (I and J) Percentage of LSK−CD45.2 (I) or
LSK−CD34−Flk2−CD45.2+ (J) donor HSC contribution in the BM 11 wk after reconstitution. One-way ANOVA Tukey’s (I) or or Dunnett’s (J) multiple comparison
test. (K and L) γH2AX foci number 30 min and 24 h after IR in vitro with or without prior TNF-α treatment (K) or 1 mo after IR in vivo with or without TNF-α
treatment before IR (IR + TNF-α) or after IR (IR + TNF-α 1–13 h; L). One-way ANOVA Tukey’s multiple comparison test. *, P < 0.05; **, P < 0.01; ***, P < 0.001;
****, P < 0.0001.

Figure 9. Model. At basal, the NF-κB pathway, possibly through its re-
pressor NFKB1 (p50/p50 homodimers), is involved in the recruitment of H3K9
methylases (HMT) at intronic L1Md enriched in NF-κB binding sites motifs,
and apposition of the repressive histone mark H3K9me3. H3K9me3 “islands”
into the body of transcribed genes may help the processing of RNAP II
(RNAPol II) and transcript stability. Upon irradiation, loss of the TNF-α–NF-κB
pathway leads to a loss of H3K9me3 at the intronic L1Md, gene repression,
and transcript stability. This is prevented by prior TNF-α treatment.
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and histone deacetylases at both NF-κB and type-I IFN response
genes (Cartwright et al., 2018; Ea et al., 2012; Elsharkawy et al.,
2010). p50:p65 heterodimers are the most abundant form of NF-
κB generated upon inflammatory stimuli. By contrast, p50 ho-
modimers predominate in unstimulated cells where they can be
prebound to the chromatin (Cartwright et al., 2016; Schreiber
et al., 2006), suggesting that this factor may also play a role
under noninflammatory conditions. Indeed, we found that
NFKB1 is present in both the cytoplasm and the nucleus of
resting HSCs. Deletion of Nfkb1, or downregulation of p50/
NFKB1 gene and protein as induced by IR, correlates with the
decrease of both gene expression and H3K9me3 levels at their
intronic L1Md harboring an NF-κB binding sites. Conversely,
increasing p50 production upon TNF-α stimulation rescued
H3K9me3 levels at the specific intronic L1Md and gene expres-
sion in WT but not in Nfkb1−/− HSCs. This strongly supports the
possibility that p50:p50 homodimers are the active repressor
promoting the enrichment of H3K9me3 at L1Md located in HSC
genes and the cis regulation of the host gene.

A growing body of evidence indicates that TEs have been
coopted for transcriptional regulation in different cell and tissue
types (Chuong et al., 2017). TEs are reservoirs of functional
transcription factor binding sites. Since these sequences are
widespread in the genome, they are largely contributing to the
innovation of regulatory networks in a tissue-specific fashion
(Chuong et al., 2017; Hermant and Torres-Padilla, 2021;
Sundaram and Wang, 2018). Although LTRs dominate this re-
lationship, a search for binding motifs in young L1 in human and
mouse has revealed the presence of various TF motifs, including
CTCF, YY1, and MYC (Sun et al., 2018; Sundaram and Wang,
2018). Our results show that NF-κB motifs are specifically en-
riched in most of the intronic L1Md sequences of genes down-
regulated during IR stress, and involve as much as 96% of these
genes (Table S3). The presence of NF-κB binding sites in TEs is
reminiscent of a study reporting that, in the human genome, 11%
of NF-κB–binding sites reside in specific Alu SINEs, and that the
vast majority of sites bound by NF-κB do not correlate with
changes in gene expression (Antonaki et al., 2011). Although it is
not known how many of these NF-κB motifs present in intronic
L1Md have a functional role, the ability of TNF-α to restore both
H3K9me3 levels at the L1Md and the expression specifically of
genes including NF-κB motif-enriched intronic L1Mds strongly
suggests that at least some of these NF-κB–TE associations can
influence gene expression.

TEs have rewired the antiviral gene regulatory network and
they have been shown to play a key role in the regulatory evo-
lution of immune response. Strong but opposing forces are
driving the coevolution of TEs and antiviral defense (Chuong
et al., 2016; Moelling and Broecker, 2019). Many IFN/NF-κB–
target genes are viral restriction factors and contribute to the
immune control of both endogenous (i.e., TEs) and exogenous
genomic parasites (Gázquez-Gutiérrez et al., 2021; Schneider
et al., 2014). We and others have previously shown that IFN-I
signaling controls young L1Md expression and L1 retro-
transposition in HSCs and various tissues (Barbieri et al., 2018;
Goodier et al., 2015; Yu et al., 2015). However, through the
formation of double-strand (ds)RNA or cytoplasmic cDNA

resembling viral nucleic acids, TEs are sensed by the cells as
invading viruses and promote the activation of IRF3 and NF-κB
transcription factors and the major antiviral immune pathways
(Gázquez-Gutiérrez et al., 2021; Volkman and Stetson, 2014).
Notably, TE-derived dsRNAs have been shown to provide the
inflammatory signal necessary for HSC generation during em-
bryonic development (Lefkopoulos et al., 2020). Intriguingly,
beside HSC maintenance genes, many genes involved in IFN and
NF-κB immune response pathway are found among genes
downregulated in IR presenting an intronic L1Md with an NF-κB
binding site (Table S3). These include target genes of IFN and
NF-κB, such as EiF2ak2 and Oas1g, that are known to control L1
retrotransposition and/or levels, and whose activity are trig-
gered by virus- or TE-derived dsRNAs; Jak2, Tyk2, Tnfrsf9, and
Birc2 involved in IFN and TNF responses, respectively, as well as
T-cell suppressing activity genes, CD274 (PD-L1) and CD86. This
further reinforces the causal relationships between TEs and
immune genes and their coevolution. Interestingly, a higher TE
occurrence has been found in immune gene-associated genomic
regions and young TEs are specifically enriched in blood cells, as
compared to other tissues (Trizzino et al., 2018; Ye et al., 2020).
Using BAMMmotif for de novo motif search, we have found that
the NF-κB motif is specifically enriched in L1Md that are present
in genes of the HSC signature, and in the myeloid-leucocyte-
mediated-immunity signature (GO:0002444) as compared to
genes enriched in pancreas, testis, kidney, liver, placenta, and
salivary gland (Su et al., 2002; Fig. S3 K), or in genes from the
immune system process (GO:0002376) as compared to genes
from the reproductive process (GO:0022414; Fig. S3 L). This
suggests that NF-κB binding sites in L1Md might have been ac-
tively selected in introns of key HSC genes because of the
immune-linked maintenance. This regulation might be impor-
tant to expand the NF-κB and TNF-α activity by engaging more
genes, including HSC maintenance genes into the NF-κB regu-
latory networks. Such activity could be important to maintain
HSCs while allowing expression of immune gene during TNF-
α–NF-κB–induced myeloid regeneration or damage-induced
bone marrow ablation, and further highlights the complex role
of inflammation-induced pathways in HSCs. TNF-α levels are
increased in patients with hematopoietic malignancies and the
HSC-specific TNF-α signature is upregulated in myelodysplastic
syndrome/AML malignant HSCs (Yamashita and Passegué,
2019). Exploring the mechanisms controlling TE expression
and how inflammatory signals and aging impact them in normal
and malignant HSC could lead to the identification of new se-
lective dependencies of AML and new treatment strategies.

Materials and methods

Mice strains and treatments

WT C57BL/6J mice (6–8 wk old) were from the Envigo Labora-
tories. Nfkb1−/− mice were from The Jackson Laboratory (B6.Cg-
Nfkb1tm1Bal/J; Stock No:006097). All the mice were housed in a
specific pathogen–free environment. All procedures were
reviewed and approved by the Animal Care Committee
no. 26 approved by the French Ministry for Research
(#2019_078_23286; CE). Mice were injected retro-orbitally with
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2 µg TNF-α (Biolegend-Ozyme) before or after sublethal TBI (2
Gy; RX irradiator X- RAD 320).

Cell harvest and culture

Bone marrow was harvested from femur, tibia, and hip bones in
mice. Total bone marrow was depleted of differentiated hema-
topoietic cells (lineage-positive cells) using Mouse Hematopoi-
etic Progenitor (Stem) Cell Enrichment Set (BD). Magnetically
sorted Lineage-negative (lin−) cells were kept overnight (O/N) at
4°C in IMDM medium supplemented with 10% FBS (HyClone)
and 1% penicillin-streptomycin (Thermo Fisher Scientific).
Staining was performed for 20 min at room temperature (RT)
using CD3ε (Lin)–APC clone 145-2C11 (553066; BD), TER-119
(Lin)–APC clone Ter-119 (557909; BD), CD45R/B220 (Lin)–APC
clone RA3-6B2 (553092; BD), Ly6G-6C (Lin)–APC clone RB6-8C5
(553129; BD), Ly-6A/E (Sca-1)–PeCy7 clone d7 (558162; BD),
CD117 (c-Kit)–PE or PerCP-Cy5.5, clone 2B8 (553355 or 560557,
respectively; BD), CD34–FITC or AF700 clone RAM34 (560238 or
560518; BD), CD135 (Flk2)–BV421 or PE clone A2F10.1 (562898 or
553842, respectively; BD). HSCs (Lin−Sca+c-Kit+CD34lowFlk2−)
were sorted using ARIA3, ARIA Fusion, or Influx cell sorters
(BD) and collected in Stem Span (StemCell).

When the cells were irradiated in vitro, HSCs were cultured
in medium containing Flt3-Ligand, IL-3, IL-6, SCF as described
(de Laval et al., 2013) in the presence or absence of TNF-α. TNF-α
was added to the medium at 1 µg/ml 1 h before IR.

CRISPR-Cas9 deletion

gRNAs were designed to generate specific deletion of the in-
tronic L1Md of Mecom using CRISPOR (http://crispor.tefor.net/;
Table S4). 1 µg total gRNAs (0.5 µg 59-gRNA + 0.5 µg 39-gRNA;
Dharmacon) were incubated with 1 µg Cas9 (CAS12205; Dhar-
macon) during 15 min at RT and the Cas9-gRNA RNP was then
co-electroporated with an equimolar siglo-green transfection
indicator (D-001630-01-05) in 100 000 LSK after an O/N culture
in medium containing Flt3-Ligand, IL-3, IL-6, SCF, as described
(de Laval et al., 2013), and using a Neon transfection system
(Thermo Fisher Scientific) with the optimized electroporation
condition 1700V, 20ms, 1 pulse as previously described (Gundry
et al., 2016). Just after electroporation, FITC + HSC were sorted
and collected in Stem Span (StemCell) containing Flt3-Ligand,
IL-3, IL-6, SCF, and left O/N in culture before irradiation. Cells
were finally collected 48 h after irradiation for further
experiments.

DNA extraction and genomic deletion verification

DNA from electroporated HSC was extracted using the tissue XS
kit (Macherey-Nagel) according to the manufacturer’s in-
structions, and the specific deletion of Mecom intronic L1Md
was checked through qRT-PCR using the ChIP-qPCR primers
(Table S4).

qRT-PCR

HSCs were lysed in Tri-Reagent (Zymo Research) and stored at
−80°C until used. Total RNA was extracted using the Direct-Zol
RNA microprep kit (Zymo research) and reverse-transcribed
with EZ Dnase VILO (Invitrogen). Real-time PCR was

performed using the SYBR pPCR premix Ex Taq (Takara) or
LUNA Universal qPCR Master Mix (NEB) on a 7500 real-time
PCR machine (Applied Biosystems). Samples were tested for
qPCR before reverse transcription to rule out detection of con-
taminating DNA. qPCR primers used were designed in different
exons so as to minimize possible gDNA amplification. All data
were normalized to the mean expression of RPL32 and hypo-
xanthine phosphoribosyltransferase (HPRT). Primer sequences
are shown in Table S4.

When necessary, 1.25 µl of cDNAwas preamplified for 14 PCR
cycles in a multiplex reaction using Preamp Master-Mix (100-
5580; Fluidigm) and primer mix (200 µM of each primer). To
rule out primer dimerization or hairpin formation in the pre-
amplification mix, primer sequences were previously analyzed
usingMFE3.0 PCR Primer Quality Control Software (Wang et al.,
2019).

ChIP-qPCR

10,000 HSCs were harvested in 1 ml IMDM medium supple-
mented with 10% FBS and cross-linked using 1% formaldehyde
(Invitrogen) for 10 min at RT. ChIP-qPCR experiments were
performed using the TrueMicro-ChIP Kit (Diagenode) according
to the manufacturer’s instructions. Cells were sonicated using
the Bioruptor Pico (Diagenode) sonication device for 10 cycles
(20 s ON/40 s OFF). Chromatin was incubated O/N at 4°C using
0.25 µg of H3K9me3 (C15410193; Diagenode) per IP. ChIP DNA
was eluted and purified using the MicroChIP Diapure Columns
(Diagenode). Subsequent qPCR was performed as above. ChIP-
qPCR primers for intronic L1Md were designed such that one
primer is located in the 59 region of the L1Md, and the other
primer is located in the intron of the host gene to allow the
amplification of unique and specific product (Table S4).

Immunofluorescence

3,000–5,000 HSCs were cytospun on glass slides and immu-
nofluorescence was performed as previously described (de Laval
et al., 2013). Two different monoclonal anti-NFKB1 (p50) anti-
bodies were used at 1/200: clone E10 was purchased from Santa
Cruz Biotechnology, and clone D4P4D from Cell Signaling.
γH2AX antibody was purchased from Millipore (05-636-I) and
used at 1/2000. Detection was performed using Alexa Fluor
488–coupled antimouse secondary antibody (1/600). All slides
were visualized using SPE confocal microscope (Leica). Pictures
were analyzed using CellProfiler.

Statistical analysis

Results were statistically evaluated using either the one-way
ANOVA or unpaired t test using GraphPad Prism version 6.0
software (GraphPad Software Inc.). The results are displayed as
the means and SEM. The value of *, P < 0.05 was considered as
significant, and **, P < 0.01 or ***, P < 0.001 as highly significant.

ChIP-seq

The ChIP-seq experiment has been conducted by Diagenode
ChIP-seq (Cat# G02010000; Diagenode). The chromatin was
prepared using the True MicroChIP Kit (Cat# C01010130; Dia-
genode). Chromatin was sheared using Bioruptor Pico sonication
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device (Cat# B01060001; Diagenode) combined with the Bio-
ruptor Water cooler for seven cycles using 300 (ON) 300 (OFF)
settings. Shearing was performed in 0.65 ml Bioruptor Pico
Microtubes (Cat# C30010011; Diagenode) with the following cell
numbers: 10,000 cells in 100 µl for batch #1 and 20,000 in
100 μl for batch #2. 30 μl of this chromatin was used to assess
the size of the DNA fragments obtained by High Sensitivity NGS
Fragment Analysis Kit (DNF-474) on a Fragment Analyzer (Ad-
vanced Analytical Technologies, Inc.). ChIP was performed us-
ing IP-Star Compact Automated System (Cat# B03000002;
Diagenode) following the protocol of the aforementioned kit.
Chromatin corresponding to 7,000 or 18,000 cells was im-
munoprecipitated using 0.5 µg of H3K9me3 antibody
(C15410193; Diagenode antibody). Chromatin corresponding to
10% was set apart as Input.

For each sample, a library preparation was performed on 500
pg of DNA using the MicroPLEX v2 protocol. The ChIP samples
were processed together and a control library was processed in
parallel of the samples using the same amount of a control Di-
agenode ChIP’d DNA. According to the protocol, 12 cycles of
amplification were performed to amplify the libraries. After
amplification, 1 μl of each library was loaded on Fragment An-
alyzer to check if enough material was generated. If not, addi-
tional cycles were performed until having enough material. The
libraries were amplified for two to seven additional cycles, and
then 1 μl of the libraries was analyzed on the Fragment Analyzer.
Using the quantification values from the Qubit and the size
measurement generated by the Fragment Analyzer, the molar
concentration of each library was calculated. Then, the different
libraries were diluted to reach the final concentration each and
pooled together. Batch #1 was sequenced into two lanes of a
Hiseq 4000 (75 bp, paired end), and batch #2was sequenced into
one lane of a NovaSeq (150 bp, paired-end).

RNA-seq

HSCs from individual mice were lysed in Tri-Reagent (Zymo
Research) and stored at −80°C until used. Total RNA was ex-
tracted using the Direct-Zol RNA microprep kit (Zymo re-
search). For the IR vs. NIR analysis, the RNA integrity (RNA
Integrity Score ≥7.0) was checked on the Agilent Fragment
Analyzer (Agilent) and quantified. All samples were subjected to
SMARTer cDNA synthesis using SMARTer Ultra Low Input RNA
Kit for Sequencing - v3. Double-stranded cDNA (ds-cDNA) was
sheared using Covaris to obtain ds-cDNA in the 200–500 bp size
range. ds-cDNA fragments were end-repaired, extended with an
“A” base on the 39 end, ligated with indexed paired-end adaptors
(NEXTflex; Bioo Scientific) using the Bravo Platform (Agilent),
amplified by PCR for 6 cycles and purified with AMPure XP
beads (Beckman Coulter). For TNF-α analysis, all samples were
subjected to SMARTer cDNA synthesis using SMARTer stranded
total RNA-seq kit v3 following the manufacturer’s instructions.
Fragmentation time is adjusted depending on the quality of the
RNA input.

The final libraries were pooled and sequenced using the on-
board cluster method, as paired-end sequencing (2 × 100 bp
reads) on Illumina NovaSeq-6000 sequencer at Gustave Roussy
(Illumina).

CUT&Tag

CUT&Tag-IT assay kit (Active Motif) was used on 3,000 HSCs
according to the manufacturer’s instructions. Cells were incu-
bated O/N with 0.5 µg of H3K9me3 (C15410193; Diagenode).

Genomic analysis

RNA-seq

Reads quality. Quality of RNA-seq reads was assessed with
Fastqc v0.11.8, Fastq-screen (Wingett and Andrews, 2018)
v0.13.0, and MultiQC (Ewels et al., 2016) v1.7.

RNA quantification. Salmon (Patro et al., 2017) tool v0.14.1
was used to quantify mm10 NCBI RNA reference sequences
(O’Leary et al., 2016; RefSeq Curated, last updated 2017-11-16)
downloaded from the UCSC Table Browser (Karolchik et al.,
2004). Salmon was launched with the following parameters:
--numBootstraps 60 --libType A --validateMappings.

For the second RNA-seq performed in NIR, IR, and IR + TNF-a
conditions, we used nf-core/rnaseq (version 3.3) pipeline for
RNAseq analysis (https://doi.org/10.5281/zenodo.1400710), with
the following additional parameters: --genome mm10 --clip_r2
14, and performed on the Core Cluster of the Institut Français de
Bioinformatique (ANR-11-INBS-0013).

Differential gene expression analysis. Statistical analysis was
performed using R v3.5.1. Transcript expression levels were
aggregated in gene expression levels using tximport Bio-
conductor package (Soneson et al., 2015) v1.13.16. Deseq2 (Love
et al., 2014) v1.22.2 method was used to identify differentially
expressed genes between groups with a P value threshold
of 0.05.

Permutation test. To create the list of genes hosting an L1Md,
browser extensible data (BED) files containing L1Md genomic
localizations (reconstructed Repbase from Walter et al. [2016])
were intersected with the refseq_curated database from UCSC.
Permutation test (n = 10,000) between lists of genes hosting an
L1Md and DEG in IR vs. NIR, or the same number of random
genes (randomly extracted from Refseq without DEG) was per-
formed using R studio and considered significant if P < 0.01.

Motif enrichment analysis. Motif enrichment analysis was
performed using BaMM! Web interface (Kiesel et al., 2018;
Siebert and Söding, 2016) and de novo motif discovery module
(pattern = 10, P < 0.001). Query motif was matched to known
motifs using the Hocomoco mouse database.

GSEA analysis. GSEA analysis was performed using Hallmark
Gene Sets V7. To plot graphs, −log10 P value is set to 4 when
P < 0.0001.

ChIP-seq

Alignment. Human sequences were found in mouse ChIP-seq
reads. The contamination was removed with Xenome (Conway
et al., 2012) v1.0.0. After contamination removal, ChIP-seq se-
quence reads weremapped to theMouse genome build mm10 by
using Burrows-Wheeler Aligner MEM algorithm (Li and Durbin,
2009; BWA v0.7.17). The read group ID was attached to every
read in the resulting alignment file (bam file) with the -R pa-
rameter, and shorter split hits were marked as secondary with
-M. Samtools (Li et al., 2009) fixmate v1.9 was used to check
mate-pair information between mates and fixed if needed on a
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name-sorted bam file. The duplicate reads were tagged by
samtools markduplicates using a position sorted bam file. Sec-
ondary alignments and unmapped reads have been filtered out
and only properly paired reads have been kept. Two types of
downstream analysis have been performed, with multimapped
reads (mapping quality score ≥ 0) and one with uniquely map-
ped reads (mapping quality score ≥ 1). Cross-correlation scores
(normalized or relative strand cross-correlation coefficient)
have been calculated by phantompeakqualtools package
(Kharchenko et al., 2008; Landt et al., 2012) v1.2. DeepTools
(Ramı́rez et al., 2016) bamCoverage v3.3.0 has been used to
generate normalized bigwig files with the following parameters:
--binSize 1 --normalizeUsing BPM --extendReads –ignoreDuplicates.
Then, deepTools bigwigCompare was used to subtract input
signal from chip signal.

Peak calling. Areas in the genome enriched with aligned
reads (also called peaks) were identified with MACS2 (Zhang
et al., 2008) callpeak v2.1.2 with the following parameters: -f
BAMPE -g mm10 -q 0.05 --broad --broad-cutoff 0.05 for
H3K9me3 broad mark.

Irreproducible discovery rate (IDR) analysis. To measure the
reproducibility between replicate experiments, we used the IDR
method (Li et al., 2011) v2.0.4.2 with the following parameters:
--rank q.value --random-seed 12345 --plot. Peaks with a global
IDR score <0.05 were selected and used for downstream
analysis.

Peak annotation. Annotatr 1.8.0 (R3.5.1) was used for peak
annotation.

H3K9me3 quantification and differential binding. To quantify
H3K9me3 concentration at TE or promoters (−2 kb; +1 kb TSS),
the Bioconductor package Diffbind (Ross-Innes et al., 2012) v2.10
was used in R v3.5.1. Paired-end mode was activated for read
counting step with SummarizeOverlaps method. The default
mapping quality threshold (mapQCth) was modified in 0 for
multimapping analysis or 1 for unique mapping analysis.
DBA_DESEQ2_BLOCK method was used to consider unwanted
variable during normalization. Normalized H3K9me3 concen-
tration at all TE loci from a same family/subfamily was summed
to get a total H3K9me3 concentration per TE family. The age of a
TE was calculated as in Sookdeo et al. (2013): divergences were
converted to time assuming a neutral rodent genomic substi-
tution rate of 1.1%/million yr.

Differential binding at peaks was identified with a P value
threshold of 0.05.

Heatmaps. To plot heatmaps of H3K9me3 enrichment at
peaks, deeptools package v3.2.0 was used in R v3.5.1. The peaks
(IDR < 0.05) files obtained for NIR and IR conditions were first
fused using bedops. A matrix was then built using Compute-
Matrix tool in the scale-regions mode between the generated
fused bed file and the corresponding normalized bigwig files
after input subtraction. A body length of 2.5 kb (mean size of the
peaks) was selected, as well as a 4-kb distance upstream and
downstream of the start and the end of the peak. We asked for a
“–outFileSortedRegions” that gives the sorted bed file used for
the heatmap. This sorted bed file was then used for genome
coverage analysis, i.e., identification of the presence of a given

TE in each row after computing a matrix with the TE genome
coverage bigwig.

TE genome coverage. To generate TE genome coverage, bed-
tools package v2.27.1 was used. –bga option on the ge-
nomeCoverageBed tool was used. The bedGraphs generated
were then converted to bigwig files using the bed-
GraphToBigWig tool.

CUT&Tag

CUT&Tag was analyzed as described as in https://yezhengstat.
github.io/CUTTag_tutorial/index.html with the following pa-
rameters: Quality Control was performed using FastQC (0.11.9)
and MutiQC (1.10.1); Bowtie2 (2.4.1) alignment to mm10 (UCSC
genome) was performed with the following parameters: --end-
to-end --very-sensitive --no-mixed --no-discordant --phred33 -I
10 -X 700; duplicate reads were removed using Picar (2.26.9)
with the following parameters: --REMOVE_DUPLICATES
true --VALIDATION_STRINGENCY LENIENT; aligned read
quality score was set to 0 to keep all reads by using samtools
(1.13) with the following parameters: -q 0; aligned reads were
sorted and indexed using samtools (1.13); a coverage track
(bigWig) was generated using deeptools (3.5.0) with the
following parameters: -bs 5 --normalizeUsing BPM; peak
calling was performed using macs2 (2.2.7.1) with the fol-
lowing parameters: -B --broad --broad-cutoff 0.1 -f BAMPE -g
mm --max-gap 2000 --min-length 200; profile plot for scores
over genomic regions (mm10.rmsk.mod.L1Md.bed) were per-
formed using deeptools (3.5.0) with the following param-
eters: --beforeRegionStartLength 1000 --regionBodyLength
5000 --afterRegionStartLength 1000 \; statistics of the CUT and
TAG signal were performed using the R package Rseb 0.2.0:
using as input a score matrix computed by deeptools’s compu-
teMatrix, we plotted the mean density profile of all condition
with the SEM.

Online supplemental material

Fig. S1 relates to Figs. 1 and 2 showing additional information on
ChIP-seq data. Fig. S2 relates to Figs. 3 and 4 showing additional
information on RNA-seq data and the comparison between the
ChIP-seq and the RNA-seq data. Fig. S3 relates to Fig. 5 showing
ChIP-qPCR at intronic L1Md of additional target genes, the gat-
ing strategy for sorting HSC electroporated with the Cas9/gRNA
RNP complex for intronic L1Md deletion, the results of the tests
for gRNAs efficiency, and additional de novo motif search. Fig.
S4 relates to Fig. 6 showing NFKB1 immunofluorescence data
using another antibody (sc-8414, clone E10) and the effect of
TNF-α on gene expression upon IR at additional target genes.
Fig. S5 relates to Figs. 7 and 8 showing comparison of ChIP-seq
and CUT&Tag profiles, additional gene signatures affected by IR
and TNF-α treatment, and the gating strategies for analyzing
HSC reconstitution capacity in blood and BM after IR and with
or without TNF-α treatment. Table S1 shows quality control of
the reads and peak calling data for the ChIP-seq analysis, Table
S2 shows information on differentially expressed genes upon IR
for RNA-seq analysis, Table S3 gives information on intragenic
L1Md, and Table S4 lists primers and gRNAs used for the study.

Pelinski et al. Journal of Experimental Medicine 19 of 22

Cis-regulation of HSC genes by intronic LINE-1 https://doi.org/10.1084/jem.20211356

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
://ru

p
re

s
s
.o

rg
/je

m
/a

rtic
le

-p
d

f/2
1

9
/8

/e
2

0
2

1
1

3
5

6
/1

4
3

5
5

6
9

/je
m

_
2

0
2

1
1

3
5

6
.p

d
f b

y
 In

s
titu

t G
u

s
ta

v
e

 R
o

u
s
s
y
 u

s
e

r o
n

 2
1

 J
u

n
e

 2
0

2
3



 
 

195 

 

 

 

 

 

Data availability

The dataset generated from the ChIP-seq for Figs. 1 and 2 are
available in ArrayExpress accession no. E-MTAB-11865, from the
RNA-seq for Figs. 3 and 4 in ArrayExpress accession no.
E-MTAB-11866, and from RNA-seq and CUT&Tag for Fig. 7 in
ArrayExpress accession nos. E-MTAB-11867 and E-MTAB-11864,
respectively.
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Torres-Padilla. 2017. LINE-1 activation after fertilization regulates glo-
bal chromatin accessibility in the early mouse embryo. Nat. Genet. 49:
1502–1510. https://doi.org/10.1038/ng.3945

Jang, H.S., N.M. Shah, A.Y. Du, Z.Z. Dailey, E.C. Pehrsson, P.M. Godoy, D.
Zhang, D. Li, X. Xing, S. Kim, et al. 2019. Transposable elements drive
widespread expression of oncogenes in human cancers. Nat. Genet. 51:
611–617. https://doi.org/10.1038/s41588-019-0373-3

Jones, P.A. 2012. Functions of DNAmethylation: Islands, start sites, gene bodies
and beyond. Nat. Rev. Genet. 13:484–492. https://doi.org/10.1038/nrg3230

Kaer, K., J. Branovets, A. Hallikma, P. Nigumann, andM. Speek. 2011. Intronic
L1 retrotransposons and nested genes cause transcriptional interference
by inducing intron retention, exonization and cryptic polyadenylation.
PLoS One. 6:e26099. https://doi.org/10.1371/journal.pone.0026099

Karolchik, D., A.S. Hinrichs, T.S. Furey, K.M. Roskin, C.W. Sugnet, D. Haussler,
and W.J. Kent. 2004. The UCSC Table Browser data retrieval tool. Nucleic
Acids Res. 32:D493–D496. https://doi.org/10.1093/nar/gkh103

Kaya-Okur, H.S., S.J. Wu, C.A. Codomo, E.S. Pledger, T.D. Bryson, J.G. He-
nikoff, K. Ahmad, and S. Henikoff. 2019. CUT&Tag for efficient epi-
genomic profiling of small samples and single cells. Nat. Commun. 10:
1930. https://doi.org/10.1038/s41467-019-09982-5

Keenan, C.R., N. Iannarella, G. Naselli, N.G. Bediaga, T.M. Johanson, L.C.
Harrison, and R.S. Allan. 2020. Extreme disruption of heterochromatin
is required for accelerated hematopoietic aging. Blood. 135:2049–2058.
https://doi.org/10.1182/blood.2019002990

Kharchenko, P.V., M.Y. Tolstorukov, and P.J. Park. 2008. Design and analysis
of ChIP-seq experiments for DNA-binding proteins. Nat. Biotechnol. 26:
1351–1359. https://doi.org/10.1038/nbt.1508

Kiesel, A., C. Roth, W. Ge, M. Wess, M. Meier, and J. Söding. 2018. The BaMM
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R.D. Landes, A.J. Tackett, M. Hauer-Jensen, D. Zhou, and I. Koturbash.
2017a. Inter-strain differences in LINE-1 DNAmethylation in the mouse
hematopoietic system in response to exposure to ionizing radiation. Int.
J. Mol. Sci. 18:1430. https://doi.org/10.3390/ijms18071430

Miousse, I.R., K.R. Kutanzi, and I. Koturbash. 2017b. Effects of ionizing ra-
diation on DNA methylation: From experimental biology to clinical
applications. Int. J. Radiat. Biol. 93:457–469. https://doi.org/10.1080/
09553002.2017.1287454

Moehrle, B.M., K. Nattamai, A. Brown, M.C. Florian, M. Ryan, M. Vogel, C.
Bliederhaeuser, K. Soller, D.R. Prows, A. Abdollahi, et al. 2015. Stem
cell-specific mechanisms ensure genomic fidelity within HSCs and
upon aging of HSCs. Cell Rep. 13:2412–2424. https://doi.org/10.1016/j
.celrep.2015.11.030

Moelling, K., and F. Broecker. 2019. Viruses and evolution—viruses first? A
personal perspective. Front. Microbiol. 10:523. https://doi.org/10.3389/
fmicb.2019.00523

Mohrin, M., E. Bourke, D. Alexander, M.R. Warr, K. Barry-Holson, M.M. Le
Beau, C.G. Morrison, and E. Passegué. 2010. Hematopoietic stem cell
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Supplemental material

Figure S1. H3K9me3 is lost at recent L1Md subfamilies in HSC. (A) Integrative genomic viewer visualization of H3K9me3 enrichment and peaks at two
described loci with M-MRA or U-MRA analysis, as indicated: (left) chr2:39209585-39320316; (right) chr6:5271421–5288640 (Bulut-Karslioglu et al., 2014).
(B) Plot profile representing H3K9me3 enrichment along L1Md sequences ± 1 kb flanking regions in NIR (blue) vs. IR (green) conditions. ****, P < 0.0001,
Wilcoxon test.
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Figure S2. Gene repression upon IR is associated with intronic L1Md. (A–C) Enrichment plots in IR vs. NIR conditions obtained from GSEA for TNF
signatures induced in HSCs after TNF-α treatment 3 h in vivo and 3 and 12 h in vitro (A); MK-biased and serial engraftment HSC signatures (B); high output and
multilineage differentiation signatures (C). (D) Quantitative analysis of H3K9me3 enrichment at promoters (−2 kb;+1 kb TSS) performed by U-MRA. Non-
significant (blue dots) and significant (P < 0.05, pink dots) differential H3K9me3 enrichment at genes promoters are shown. (E) Correlation plot between
H3K9me3 concentration at gene promoters vs. gene expression at genes presenting both significant deregulation and differential H3K9me3 enrichment at their
promoters upon IR (P < 0.05). (F) Repartition of intragenic L1Md localization in the genes. TTS, transcriptional termination site. (G and H) Heatmaps of the
expression of genes from MK-biased (G) and the low-output (H) HSC signatures that are significantly either upregulated (red) or downregulated (blue) in IR vs.
NIR. Green stars indicate the presence of an intronic L1Md in the downregulated genes. FC, fold change; FDR, false discovery rate; NES, normalized
enrichment score.
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Figure S3. Gene repression upon IR is associated with the loss of H3K9me3 at intronic L1Md loci harboring NF-κB binding sites. (A and B) H3K9me3
enrichment in the NIR conditions evaluated by ChIP-qPCR at long (>5 kb) intronic L1Md promoters of the indicated genes compared to Spi1 (A and B), and at
L1_A promoter compared to repetitive 5S ribosomal RNA (A). Results are expressed as the means ± SEM of the percentage of input. Each dot represents a pool
of three mice from two to four independent experiments. (C) H3K9me3 ChIP-qPCR enrichment 1 mo after TBI. Each dot represents a pool of three (NIR) or four
(IR) mice from two to three independent experiments. Results are means ± SEM of the percentage of input normalized to the NIR condition. t test. (D) Gating
strategy for electroporated siglo+ HSCs in del L1Md condition using nonelectroporated cells as a control for designing FITC gate. (E) To test the efficiency of the
different combinations of gRNAs, DNA amplification of Mecom L1Md was assessed and normalized to the amplification of Snx27 L1Md by qRT-PCR. In red, the
couple of guides that were selected for further analysis. (F) DNA amplification assessed by qRT-PCR and in Cas9-gRNA RNP electroporated HSCs 48 h after
irradiation in vitro. Ct values were normalized to L1-Snx27. t test. (G–L) De novo motif discovery analysis performed with the BaMMmotif tool on L1Md
sequences located in: introns of downregulated genes vs. upderegulated genes (G); genes participating vs. not participating to the loss of the low-output or MK-
biased HSC signatures (H and I); promoter sequences (−2 kb; +1 kb TSS) from downregulated vs. nonderegulated genes (J); L1Md located in genes from the HSC
signature vs. genes from other organs signatures (kidney + liver + pancreas + testis + salivary gland + placenta) from Su et al. (2002) (K). (L) L1Md located in
genes from the Gene Ontology (GO) term immune response process (GO:0002376) vs. genes from the GO term reproductive process (GO: 0022414). Enriched
motifs were matched to known motifs using the Hocomoco mouse database. *, P < 0.05; ****, P < 0.0001.
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Figure S4. TNF-α treatment prevents loss of NFKB1 and HSC gene repression in vitro. (A and B) Representative images and quantification of NFKB1
protein mean IF intensity using the monoclonal anti-NFKB1 (p50) antibody clone from Santa Cruz Biotechnology. Bars, 5 µM. Each dot represents a cell. Results
are expressed as fold change from the mean value of the NIR condition from two independent experiments and represented as means ± SEM. t test for A or
one-way ANOVAwith Tukey’s multiple comparison test for B. (C) Ttc8 andMapre2mRNA expression evaluated by qRT-PCR. Ct values were normalized to Rpl32
and Hprt. Results are expressed as fold change from the mean value of the NIR condition and represented as means ± SEM from two independent experiments.
One-way ANOVA Tukey’s multiple comparison test. **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.
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Figure S5. TNF-α treatment prevents loss of H3H9me3 at intronic L1Md, HSC gene repression, and HSC loss of function upon IR. (A) Integrative
genomic viewer visualization of H3K9me3 enrichment obtained by ChIP-seq and CUT&Tag M-MRA analysis at two described loci as indicated: (left) chr2:
39209585–39320316; (right) chr6:5271421–5288640 (Bulut-Karslioglu et al. 2014). (B) Enrichment plots in IR vs. NIR and in IR + TNF-α vs. IR conditions
obtained from GSEA for low-output and LT-HSC signatures. (C and D) Gating strategy to evaluate donor-derived GFP− vs. recipient GFP+ cells in peripheral
blood (C) and bone marrow HSCs (D). FDR, false discovery rate; NES, normalized enrichment score.
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Provided online are four tables. Table S1 shows quality control of the reads and peak calling data for the ChIP-seq analysis, Table S2

shows information on differentially expressed genes upon IR for RNA-seq analysis, Table S3 gives information on intragenic L1Md,

and Table S4 lists primers and gRNAs used for the study.
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