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Matthieu RAMBAUD
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avec attention le manuscrit de ma thèse. Leurs commentaires constructifs et leurs remarques
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Résumé

Avec l’essor des services de stockage et de calcul dans le cloud, il est désormais possible
de déléguer la gestion des données à des infrastructures dématérialisées pour se concentrer
uniquement sur leur analyse. Cette architecture permet également de combiner facilement
des données issues de sources diverses pour en extraire des informations utiles. Cepen-
dant, la confidentialité des données externalisées demeure un défi crucial, freinant encore de
nombreux cas d’usage lorsqu’il s’agit de données sensibles.

Le calcul sécurisé multipartite (MPC) offre une solution à ce problème. Il permet à un en-
semble de n participants, chacun possédant ses propres inputs, de calculer une fonction f sur
l’ensemble des données tout en préservant leur confidentialité et en garantissant l’exactitude
des résultats. Dans cette thèse, nous adoptons le paradigme du cloud computing pour ex-
plorer la délégation sécurisée de protocoles MPC. Plus précisément, nous étudions un cadre
où un ensemble d’input-owners délègue un calcul à des serveurs non fiables, responsables de
l’essentiel des tâches computationnelles, tout en respectant des garanties strictes de sécurité
et de confidentialité.

Pour répondre à ces besoins, nous nous appuyons sur des solutions basées sur le chiffre-
ment complètement homomorphe (FHE). Cet outil puissant permet d’effectuer des calculs
directement sur des données chiffrées, offrant ainsi des garanties de confidentialité. Trois
exigences principales guident notre approche:

i) Limiter le protocole à un nombre fixe de rounds de communication. Plus précisément,
quel que soit la fonction f à évaluer, nous exigeons que le protocole consiste en un
nombre constant de rounds, incluant un ou plusieurs broadcasts initiaux suivi d’échanges
peer-to-peer;

ii) Assurer la robustesse en garantissant que les participants honnêtes obtiennent le résultat
correct même en cas de comportements malveillants d’une minorité. Plus précisément,
nous exigeons que pour un certain seuil de corruption t, tant que n− t participants pren-
nent correctement part au calcul sécurisé, alors les participants honnêtes ont la garantie
de recevoir le résultat, même si un sous-ensemble d’au plus t participants se comporte
de manière malveillante (c’est-à-dire envoie des messages malformés ou abandonne).
En pratique, cette propriété empêche tout participants d’obtenir un avantage déloyal en
retenant le résultat final ou en sabotant le protocole;

iii) Permettre une délégation simple des calculs sans prétraitement complexe ni charge com-
putationnelle excessive pour les propriétaires des données. Plus précisément, nous ex-
igeons que la partie de l’évaluation coûteuse en termes de calcul soit déléguée par les
”input-owners” vers un ensemble de participants non fiables, tout en préservant la confi-
dentialité des inputs.
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Dans la première partie de cette thèse, nous établissons un cadre théorique pour la con-
struction de protocoles de calcul délégué. Ce framework se veut aussi général que possible
afin de s’adapter à une grande diversité de contextes. Pour cela, nous proposons de dissocier
les inputs des fonctions à évaluer. Ainsi, la délégation s’en voit faciliter puisqu’aucun calcul
préalable spécifique à une fonction ne doit être effectué par les inputs-owners. De plus, les
inputs distribués peuvent être réutilisées pour évaluer différentes fonctions sans nécessiter
de nouvelle intervention de leurs propriétaires. Dans la deuxième partie de cette thèse, nous
proposons deux protocoles répondant aux exigences pratiques que nous avons mis en avant.
Ce faisant, nous présentons deux contributions principales:

1. Tout d’abord, nous introduisons le premier protocole de MPC robuste utilisant un schéma
efficace de FHE basé sur l’hypothèse RLWE. Traditionnellement, la construction d’un pro-
tocole de MPC utilisant un schéma de FHE repose sur la génération de clés communes
pour tous les participants, permettant de réaliser des calculs sur leurs différentes inputs.
Cependant, la génération robuste de ces clés s’avère difficile dans le cas des schémas
basés sur RLWE, et aucun travail antérieur n’a réussi à résoudre ce problème. Dans
cette thèse, nous introduisons une nouvelle variante linéaire du cryptosystème BFV et
montrons comment exploiter cette linéarité pour obtenir une génération robuste des clés;

2. Ensuite, nous introduisons une approche générique pour construire des protocoles de
MPC permettant d’obtenir les meilleurs propriétés pratiques: permettre de facilement
déléguer le calcule en utilisant un nombre optimal d’un unique broadcast initial, tout en
permettant une évaluation efficace, y compris dans des scénarios à grande échelle impli-
quant un grand nombre de participants. Pour souligner les applications pratiques de ce
nouveau protocole, appelé Share&Shrink, nous l’avons implémenté et testé par rapport
aux méthodes de l’état de l’art.

Ces différentes avancées offrent des solutions concrètes aux défis posés par le MPC, en
combinant simplicité, efficacité et robustesse. Elles ouvrent des perspectives prometteuses
pour des applications pratiques dans divers contextes, où la sécurité des données et l’efficacité
computationnelle sont cruciales, y compris dans des scénarios impliquant un très grand nom-
bre de participants.
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Abstract

With the rise of storage and computing services in the cloud, it has become possible to dele-
gate data management to remote infrastructures, allowing users to focus solely on data anal-
ysis. This architecture also facilitates the seamless combination of data from various sources
to extract valuable insights. However, ensuring the confidentiality of outsourced data remains
a critical challenge, hindering many potential use cases involving sensitive information.

Secure multiparty computation (MPC) provides a solution to this problem. It enables a
group of n participants, each holding private inputs, to compute a function f over their collective
data while preserving the privacy of the inputs and ensuring the accuracy of the results. In
this thesis, we adopt the cloud computing paradigm to explore the secure delegation of MPC
protocols. Specifically, we examine a framework where a group of input-owners delegates
computations to untrusted servers, which handle the bulk of the computational workload while
adhering to strict security and confidentiality guarantees.

To meet these needs, we rely on solutions based on fully homomorphic encryption (FHE).
This powerful tool enables computations directly on encrypted data, ensuring data confiden-
tiality. Three key requirements guide our approach:

i) Limiting the protocol to a fixed number of communication rounds. Specifically, regardless
of the function f to be evaluated, we require that the protocol consist of a constant number
of rounds, including one or more initial broadcasts followed by peer-to-peer exchanges.

ii) Ensuring robustness by guaranteeing that honest parties obtain the correct result even
in the presence of malicious behavior by a minority. Specifically, we require that for a
certain corruption threshold t, as long as n − t parties correctly take part in the secure
computation, the honest parties are guaranteed to receive the result, even if a subset
of at most t participants behaves maliciously (e.g., by sending malformed messages
or aborting ). In practice, this property prevents any participant from gaining an unfair
advantage by withholding the final result or sabotaging the protocol.

iii) Enabling simple delegation of computations without complex preprocessing or excessive
computational burden on the input-owners. Specifically, we require that the computa-
tionally expensive part of the evaluation be delegated by the input-owners to a set of
untrusted parties, while preserving the confidentiality of the inputs.

In the first part of this thesis, we establish a theoretical framework for constructing delegated
MPC protocols. This framework is designed to be as general as possible to adapt to a wide
range of contexts. To achieve this, we propose decoupling the inputs from the functions to
be evaluated. This separation simplifies delegation since no prior computation specific to a
function needs to be performed by the input-owners. Moreover, the distributed inputs can be
reused to evaluate different functions without requiring further intervention from their owners.
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In the second part of this thesis, we propose two protocols that meet the practical require-
ments we have outlined. In doing so, we present two main contributions:

1. We introduce the first robust MPC protocol using an efficient FHE scheme based on the
RLWE assumption. Traditionally, constructing an MPC protocol from an FHE scheme re-
lies on the generation of common keys for all participants, enabling computations on their
respective inputs. However, robust key generation has proven challenging for RLWE-
based schemes, and no prior work has successfully addressed this issue. In this thesis,
we introduce a new linear variant of the BFV cryptosystem and demonstrate how to lever-
age this linearity to achieve robust key generation.

2. Next, we present a generic approach for constructing MPC protocols that achieve the
best practical properties: enabling easy delegation of computation using an optimal sin-
gle initial broadcast, while allowing efficient evaluation, even in large-scale scenarios
involving many participants. To highlight the practical applications of this new protocol,
called Share&Shrink, we implemented it and tested it against state-of-the-art methods.

These various advancements provide concrete solutions to the challenges of MPC, com-
bining simplicity, efficiency, and robustness. They open up promising prospects for practical
applications in diverse contexts where data security and computational efficiency are critical,
including scenarios involving a very large number of participants.
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Introduction and Technical Overview

In this dissertation, we consider the problem of secure multiparty computation (or MPC for
short), in which a number of participants want to compute a function f on inputs while guar-
anteeing interesting security properties such as the privacy of the inputs and the correctness
of the computation. In particular, we will focus on the setting where a number of participants,
known as input-owners, provide inputs, and where n additional parties, known as the compu-
tation parties, are responsible for offloading as many computing tasks as possible from the
input-owners. Importantly, both input-owners and computation parties should trust each other
as little as possible.

This setting is especially relevant with the rise in popularity of cloud storage and analytics.
These advancements allow users to delegate data management concerns (scalability, avail-
ability, infrastructure) and focus solely on their analysis. While combining data from multiple
sources offers valuable insights (e.g., in medical research, advertising), ensuring user privacy
from cloud providers during this analysis is a significant challenge, which can have a direct
impact on the choice of whether or not to carry out a certain processing operation on private
data. Therefore, it is not surprising that the construction of practical secure MPC protocols
suited for delegation has received a lot of interest.

Numerous techniques [BFLS91; KMR11; PRV12; CF13; BFR13; GKR15; PHGR16; SVV16;
WJB+17; CCKP19; FNP20; WHZ24] have been proposed to achieve verifiable delegation of
computation. These techniques allow one (or more) resource-constrained parties to delegate
a computation to a powerful, untrusted server. They ensure that the returned result is com-
puted correctly, even if the powerful server tries to cheat, and that the work required to verify
the correctness of the result is significantly less than the work needed to compute the function
itself. Motivated by practical scenarios, a number of recent works [JNO14; BIK+17; BBG+20;
RSY21] focus on large-scale secure computation, where a function needs to be evaluated on
thousands or even millions of private inputs. To this end, for instance, Alon et al. [ANOS24]
recently proposed the GMPC model, specially designed to capture the scenarios in which a
very large company (such as Apple, Meta, or Google) is interested in executing a secure com-
putation over its users’ data1. There, it is reasonable to assume that users (e.g. phones) can
communicate only via the server in a star-network, since it’s not practical to have, say, 100M
users communicating with each other arbitrarily. However, this efficient server-aided model
relies on the continued functionality and security of the server. Any server malfunction or com-
promise could disrupt the entire computation.

1Variations of this setting have been used in large-scale real-world applications, such as for health statistics through the
COVID-19 Exposure Notification system developed jointly by Apple and Google [21], or for secure advertising measurement by
Meta [23b; MMT+24], that is used for queries with up to 1 billion records.
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In this dissertation, we focus on the secure delegation of a computation that must be prac-
tical in the most generic setting possible, and, in particular, even when a supposedly reliable
helper server is not available. We therefore introduce the following set of practical require-
ments:

Constant-round MPC. We require that a group of mutually distrustful parties is able to se-
curely compute a function of their inputs in a constant number of communication rounds.
Following Yao’s seminal work [Yao82], garbled circuits have become a core concept for
2-party secure computation. They enable one party to ”encrypt” a function (circuit) while
another party privately evaluates it. For more than two parties, Beaver, Micali, and Rogaway
[BMR90] proposed the BMR protocol, which allows for a dishonest majority of parties to se-
curely evaluate a function of their inputs while maintaining a constant-round communication
complexity. Overall, the latter consists of two steps: first, an offline phase that involves the
secure garbling of a circuit, independent of the actual inputs. Then, an input-dependent on-
line phase, in which parties simply send some keys before locally evaluating the circuit. Sub-
sequently, an extensive number of constant-round protocols have been proposed [LSS16;
WRK17; ACGJ18; LPSY19; ABT19; ACGJ19; HSS20; ACGJ20] mainly following variations
of this BMR protocol. However, garbled-circuit-based protocols seem to inherently have a
scaling issue with a large number of participants. Indeed, the circuit size typically grows lin-
early with the number of parties, leading to increased data processing and communication
bandwidth requirements.

Another classic approach for building constant-round MPC protocols [AJL+12; LTV12; GLS15;
MW16; BJMS20; Par21; DMR+21; BMMR23] is to use a homomorphic encryption scheme.
The latter is a versatile tool for locally evaluating a function on encrypted inputs and is the
main focus of this dissertation.

Guaranteed Output Delivery (GOD) under honest majority. We require that for some cor-
ruption threshold t, as long as n− t parties correctly participate in the secure computation,
then honest parties have the guarantee to receive the output, even if a subset of at most
t parties behave maliciously (i.e. send malformed messages or abort). This property, also
denoted as robustness when a protocol needs to produce a correct output in a constant
number of rounds, is particularly important and has been studied in many contexts, such as
for threshold signature schemes [GJKR96; Sho00; SS01; Bol02; RRJ+22], distributed key
generation protocols [KMM+23; Kat24], decentralized random beacons protocols [CD17;
KRDO17; GLOW21], or MPC [IKLP06; GLS15; BJMS20]. In practice, this property prevents
any party from gaining an unfair advantage by withholding the final result or sabotaging
the process [CL17]. For instance, consider several companies collaborating on a confi-
dential market research project on some private data (e.g., customer demographics). It is
paramount that all participating companies receive the final market analysis report, even
if some of them experience temporary internet outages or if a competitor attempts to ma-
nipulate the outcome. Without this guarantee, companies are unlikely to participate in the
protocol in the first place for fear of giving away a competitive edge.

In this dissertation, we will consider a set of n parties, of which a minority of t < n/2 of them
can be corrupted by an adversary (i.e. we set n = 2t+ 1, also denoted as honest majority),
and will guarantee a robust execution, i.e. honest parties output the computation result in a
constant number of rounds whatever the behavior of the adversary.

Delegability. We require that most of the computationally expensive evaluation must be out-
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sourced by the so-called input-owners to a set of n untrusted computation parties while
safeguarding the confidentiality of the inputs. Note that contrary to some MPC protocols
[GGP10; BGV11] that require input-owners to perform a costly pre-processing phase before
delegating a computation, we require that no function-specific data be sent or known by the
input-owners before the computation begins.

RLWE. Finally, let us recall that in this dissertation, we focus on secure computation from
fully homomorphic encryption (FHE, formally defined in Chapter 1). In recent years, sev-
eral generations of FHE schemes have been proposed, with the latest based on the ring-
learning-with-errors (RLWE) assumption [LPR13a] gaining traction through implementation
[23c], and standardization [ACC+21]. For efficiency, we therefore require our protocols to
be as scheme-independent as possible, and in particular, to be built from the latest efficient
FHE schemes based on the RLWE assumption.

Finding a way to securely and practically delegate a computation with these properties is
not straightforward and poses several challenges that we address in this dissertation.

Challenges and Contributions

We now turn to the main challenges we have faced, and the new solutions we have introduced
to achieve an efficient and practical secure delegation of any computation.

Challenge 1: Building a Robust threshold-FHE scheme based on RLWE

Our first goal is to design a robust MPC protocol based on a fully homomorphic encryption
(FHE) scheme. To this end, the common start of FHE-based MPC protocols [CDN01; DPSZ12;
AJL+12; CLO+13; BGG+18; MTBH21; BDO23; IKC+24] is a distributed key generation proto-
col (DKG) executed by all n parties. During the latter, each party Pi generates a contribution
ski and takes part in the multiparty protocol to reach the following starting point:

skS = SkS({ski}i∈S), ekS = EkS(skS),(1)

i.e. a shared secret/encryption key pair, where SkS is an algorithm for generating a secret key
from a set of contributions coming from a subset S ⊆ [n] of indices of parties who did not abort
during the DKG, and EkS is an algorithm for generating the corresponding encryption key. S is
a critical subset, which we will discuss later. Importantly, the secret key skS is never known to
any single party.

To run their homomorphic evaluation algorithm, some FHE schemes require the generation
of some additional common key, denoted as relinearization key2. In a similar way to the above-
mentioned DKG protocol, one therefore needs another relinearization key generation protocol
(RlkGen) to generate this key:

rlkS = RLKS(skS),(2)

where RLKS is an algorithm to generate the relinearization key that corresponds to the same
secret key skS presented in Equation (1) generated by the DKG.

2Or sometimes as evaluation key.

14



However, although conceptually similar to the well-known DKG protocols, the design of
these RlkGen protocols is proving challenging, and no solution, to be used for building an MPC
protocol with the properties we want, currently exists. Overall, two problems emerged:

1. First, some protocols [GLS15; BHP17; BGG+18; CSW23] completely bypassed the
generation of a relinearization key and have chosen not to use the latest RLWE-based
schemes, but instead other LWE-based [Reg05] schemes such as GSW [GSW13]. The
former does not require any such relinearization key. However, this comes at the cost of
a less efficient homomorphic evaluation.

2. Second, a large number of recent works [KJY+20; MTBH21; Par21] proposed RlkGen

protocols for generating a relinearization key. Unfortunately, none of them are robust; as
soon as one party in S deviates, no relinearization key is generated, which prevents the
design of a robust MPC protocol.

In this dissertation, we focus on the latter issue. The robust generation of a common
relinearization key is therefore our first goal.

Contribution 1: The first robust Key Generation for RLWE-based threshold-FHE scheme.

Our first contribution, presented in Chapter 3, is to design a protocol for reaching a dis-
tributed state in which the parties simultaneously generate, the secret key skS , and the keys
ekS and rlkS corresponding to skS introduced in Equations (1) and (2), all in one round. As a
result, we have that either a party aborts or is in S. Once this state is reached - and this is
the main novelty- it no longer matters whether a party in S aborts or not as in previous works
[KJY+20; MTBH21; Par21]. Indeed, t + 1 cooperating parties3 are always able to decrypt a
ciphertext c with the shared key skS and eventually output the result.

In other words, this contribution enables the design of the first robust MPC protocol under
honest majority from a RLWE-based FHE scheme.

Technical Summary:

We now provide technical explanations about our contribution that can be found in greater
detail in Chapter 3. We take the BFV [FV12] cryptosystem as an example of a RLWE-based
FHE scheme, in which the relinearization key is described, for a secret key sk, as being of the
following form:

(3) rlk = (sk2w − sk · r + e(rlk), r)

where r is a uniform random string, e(rlk) some noise, and w a decomposition basis of dimen-

sion some l, i.e w = (w0, w1, . . . , wl−1)T . The presence of the term sk2w in Equation (3) intro-
duces a challenging non-linearity. To overcome the latter, various RlkGen protocols [KJY+20;
Par21; MTBH21] for generating rlk, have been proposed. Overall, they have the following
informal structure:

3Which is always possible since we assume an honest majority, i.e. n = 2t+ 1.
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• In round 1: each party Pi generates a contribution rlk0,i using its key ski, and sends it. It
also shares its secret key via Publicly Verifiable Secret Sharing (PVSS) [Sta96; Sch99].
The latter primitive, which is described in detail later in Chapter 24, is commonly used
in many distributed key generation protocols [CD17; CD20; Gro21; GV22; Kat24; CD24]
to generate a shared secret in one round, so that each party possesses a share of this
secret.

• In round 2: each party Pi sums together the contributions rlk0 =
∑

i∈S rlk0,i, where S

denotes the set of indices of non-aborting parties in the first round. Then, each Pi uses
an algorithm RelinKeyGen to compute a final contribution rlki ← RelinKeyGen(rlk0, ski)

and sends rlki. Also, note that the shared secret key roughly consists in the sum skS =∑
i∈S ski of the keys ski over the set S.

Finally, the relinearization key is defined as rlkS′ =
∑

i∈S′ rlki, where S′ is the set of indices
of non-aborting parties in this second round.

However, in this generic protocol, illustrated in Figure 1, if some parties take part in some
of the rounds, but not all, then no rlk is generated. Specifically, [KJY+20; Par21; MTBH21]
required S and S′ to be equal for RlkGen to output. Otherwise, if the generation were done with
non-equal sets S and S′, then the resulting rlkS′ would be incompatible with the ekS produced
in the first round, making the overall key generation non-robust.

DKG
• Compute (ski, eki, rlk0,i)← Keygen()

• Broadcast (eki, rlk0,i,PVSS(ski))

Set ekS =
∑
j∈S ekj , skS =

∑
j∈S skj and rlk0 =

∑
j∈S rlk0,j

RlkGen
• rlki ← RelinKeyGen(rlk0, ski)

• Broadcast (rlki)

Compute rlkS′ =
∑
j∈S′ rlkj (if S = S′)

DKG
• Compute (ski, eki)← Keygen()

• Broadcast (eki,PVSS(ski))

RlkGen
• Compute rlki ← `-RlkKeygen(ski)

• Broadcast (rlki)

Set ekS =
∑
j∈S ekj , skS =

∑
j∈S skj and rlkS =

∑
j∈S rlkj

[MTBH21]/[KJY+20]/[Par21]
(Non-robust)

Our Protocol
(Robust)

DKG & RlkGen

• S: Set of indices of non aborting parties of round 1

• S′ ⊆ S: Set of indices of non aborting parties of round 2

Round 1

Round 2

Figure 1: We present on the left-hand side the overall construction of previous protocols
[KJY+20; Par21; MBH23]. First, each party Pi runs Keygen to produce keys (ski, eki, rlk0,i).
Contributions are added together over the set S of indices of non-aborting parties to form the
common secret, threshold encryption, and intermediate relinearization keys skS , ekS and rlk0.
Then, parties run RelinKeyGen with their key ski and rlk0 to produce a contribution rlki that
is broadcast. Once added together over the set S′ of indices of non-aborting parties of this
second round, parties can compute the relinearization key rlk =

∑
j∈S′ rlkj if S = S′. On the

right-hand side, we present a sketch of our protocol. More specifically, to have robustness,
parties run in parallel Keygen and our relinearization key generation algorithm `-RlkKeygen.

4It roughly consists in parties publishing encrypted shares of secrets along with proofs of share validity, so that all parties are
able to non-interactively verify whether a given sharing is correct, and to obtain a share, so that a set of shares can be used to
reconstruct the shared secret.
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We overcome these issues by detailing a `-RlkKeygen algorithm for generating an alter-
native relinearization key adapted from the multikey FHE scheme of [CDKS19], that departs
from all previous approaches because it only applies a linear map to the secret key skS , not
a squaring. This results in a linear variant of BFV, denoted as `-BFV, which, as shown in Fig-
ure 1, enables the design of a RlkGen protocol that generates rlkS in only one round, running
in parallel with the DKG. This process yields a robust overall key generation, as summarized
in Table 1.

# Rounds
for DKG & RlkGen

Robustness

[KJY+20] 2 %

[Par21] 2 %

[MTBH21] 2 %

Chapter 3 1 X

Table 1: DKG and RlkGen properties for various Threshold-FHE schemes.

What we ultimately end up with is a robust threshold-FHE scheme based on RLWE, which
we call trBFV. It enables the construction of a robust MPC protocol, as described later in
Figure 2a. Once a common threshold encryption key has been generated, encrypted inputs
can be distributed, and parties are able to (locally) perform homomorphic computations on
the ciphertexts to evaluate the desired function. Finally, parties jointly execute a threshold
decryption protocol to uncover the computation’s output.

Challenge 2: MPC when only one initial broadcast is available

Overall, MPC protocols can be characterized in terms of (i) the security guarantees they
achieve, (ii) the setup they require, (iii) the corruption threshold t they support, and (iv) the
kinds of communication required in each round (broadcast, peer-to-peer channels,...). It is
known that secure computation is possible in two broadcast rounds [GIKR02; AJL+12; GLS15;
DHRW16; MW16; BLPV18]. However, in practice, implementing a broadcast channel requires
either multiple rounds of peer-to-peer communication [DR85; FH06; KK06; GP21; WMR+23]
or special channels (such as blockchains), and is therefore costly and difficult in itself. This
difficulty was for instance pointed out in the comments5 of NIST’s recent call for standard-
ization of multiparty threshold-cryptography[23a]. For this reason, a number of recent works
[CGZ20; RU21; DMR+21; GJPR21; BMMR23; DRSY23] have undertaken to fully characterize
MPC protocols that are broadcast-optimal, i.e. that require only one broadcast in one of the
rounds. In this dissertation, we restrict the study to protocols with GOD under honest major-
ity, provided with one initial broadcast followed by any number of asynchronous peer-to-peer
communication rounds.

5e.g. From J. Katz, C. Komlo, X. Meng, and N. Smart “We have observed that protocol implementers are often unsure about
how to implement a “broadcast channel” in practice, and there is no general guidance available about how protocols that rely on
a broadcast channel should be implemented in a point-to-point network. We therefore encourage NIST to require submissions to
either explicitly state that their security analysis assumes a broadcast channel (and then suggest how such a channel should be
implemented), or otherwise provide a protocol specification and proof of security in the point-to-point communication model (i.e.,
without the assumption of a broadcast channel).”
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Comm.
Setup

Trusted DKG bPKI + URS bPKI No setup

1 BC + 1 Sync P2P
[GLS15]+[DMR+21]

X
X [GIKR02]

%

1 BC +∞ Asynch P2P
[BHN10]

X X
[UR22]
%

Chapter 4

Table 2: Feasibility and impossibility of MPC with GOD under honest majority with different
setups and communication patterns. URS stands for a public uniform random string, and bPKI

for a bulletin-board PKI.

With these requirements, various setups can be considered:

• Trusted DKG setup, i.e. when a common threshold encryption key and secret key shares
have been distributed to the parties by a trusted dealer. Under this setup, Beerliová, Hirt
and Nielsen [BHN10] have shown the feasibility of MPC with GOD under honest majority
in one broadcast.

• Bulletin Board PKI (bPKI) + URS setup, i.e. when a bare bulletin board of public keys
(as detailed in Section 1.9) is available to parties, and a single uniform random string is
given. Under this setup, Damgård et a. [DMR+21] have shown feasibility of MPC in one
broadcast.

Thus, what remains to be seen is what is achievable when a bulletin board PKI is available
but no URS.

Contribution 2: Feasibility of MPC with the sole setup of a bulletin board PKI

In Chapter 4, we complete the theoretical picture of honest majority MPC with GOD from
one initial round of broadcast (BC) followed by a number of peer-to-peer (P2P) communica-
tions, and show its feasibility in the sole setup of a bulletin board PKI. The overall (in)feasibility
picture is summarized in Table 2.

Challenge 3: Delegated MPC in one Broadcast with an Efficient Evaluation

Our last goal is to address the shortcomings of the previous threshold-FHE based MPC proto-
cols [AJL+12; BGG+18; KJY+20; MTBH21; Par21; BDO23], as well as our protocol introduced
in Chapter 3, namely the need for two initial broadcast rounds before the evaluation: a first one
for the generation of the common keys6 and the second one for the distribution of the encrypted
inputs. However, as discussed previously, the use of broadcast is costly in practice. Therefore,
significant effort is currently put to remove or minimize the use of broadcast in MPC protocols
[FN09; BHN10; GGOR13; PR18; CGZ20; GJPR21; DMR+21; DRSY23], under different setup
settings.

6A common threshold encryption key and a common relinearization key
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Overall, previous attempts [GLS15; BJMS20] to reduce the number of broadcast rounds in
FHE-based MPC protocols are based on multikey-homomorphic encryption schemes [LTV12].
The latter enables a homomorphic evaluation directly over ciphertexts encrypted under dif-
ferent keys. Thus, by using such schemes, no DKG is needed before the distribution of the
inputs, effectively reducing the number of broadcasts to just one: parties start with the local
generation of keys, directly followed by the (unique) broadcast of inputs encrypted under the
different keys. However, the use of a multikey scheme is not without its own issues and leads
to two main practical problems:

Problem 1: Delegability.

In [GLS15], Gordon et al. proposed the first robust threshold multikey-FHE scheme re-
quiring one single broadcast. Unfortunately, their scheme is not compatible with efficient
RLWE-based FHE schemes and most importantly, the MPC protocol they built from it can-
not enable delegation, i.e. input-owners cannot easily outsource the costly homomorphic
evaluation to a set of n untrusted computation parties.

Problem 2: Efficient Evaluation.

To remedy the former issue, Badrinarayanan et al. [BJMS20] proposed another approach
for building an MPC protocol with GOD in one broadcast that leverages a more generic
usage of a multikey-HE scheme, enabling the use of efficient RLWE-based schemes.
However, their protocol still suffers from a major drawback: the sizes of the (multikey)
ciphertexts are at least linear in the number |Q| of input-owners who distributed an input.
As a consequence, the multikey evaluation is at least |Q|× less efficient than when using
a threshold-FHE scheme7, which prevents use-cases involving a large number of inputs.

Our third goal is therefore to propose a new FHE-based delegated MPC protocol that offers
the best of both threshold-FHE based [KJY+20; MTBH21; Par21; MBH23] and multikey-FHE

based [GLS15; BJMS20] protocols, i.e. an efficient delegable homomorphic evaluation with
only one initial broadcast.

Contribution 3: Share&Shrink: A Generic Protocol for Efficient Delegated MPC with
GOD from one broadcast.

In Chapter 4, we propose a new generic protocol, denoted Share&Shrink, that enables
building a broadcast-optimal MPC protocol, while performing the homomorphic evaluation on
ciphertexts whose size does not depend on the number of inputs, leading to an efficient com-
putation. Importantly, this generic protocol can be built from various schemes, including our
linear RLWE-based `-BFV scheme introduced in Chapter 3, allowing for greater modularity ac-
cording to the use-cases considered. We summarize in Table 3 the properties of our protocol
as well as the previous works.

Technical Summary:
We now provide technical explanations about our contribution that can be found in greater

detail in Chapter 4. Overall, Share&Shrink departs from previous threshold-FHE based proto-
cols [KJY+20; MTBH21; Par21] and performs in parallel : a DKG protocol, and a distribution of

7In which, we recall, the evaluation is independent of the number of distributed inputs.
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Protocol 1 BC + asynch P2P
GOD

for t < n/2
Delegability

Size of
ciphertexts

RLWE

Compatible

[KJY+20][MTBH21]
[Par21][MBH23] % % X |C | X

Chapter 3 (trBFV) % X X |C | X

[GLS15] X X % |C | %

[BJMS20] X X % |Q| · |C | X

Chapter 4 X X X |C | X

Table 3: MPC for n = 2t + 1 parties and |Q| input-owners. Here, |C | represents the size of a
regular FHE ciphertext.
The last column refers to the ability for the protocol to be built from efficient RLWE-based FHE

schemes. The “Size” is the one of the ciphertexts which undergo homomorphic evaluation.
The “Delegability” refers to the ability for computation to be outsourced to a set of untrusted
computation parties. We did not mark as GOD the protocols that must be completely restarted
when one party aborts in the middle.

ciphertexts of inputs under a common threshold encryption key. This allows obtaining in only
one broadcast, ciphertexts of sizes independent of the number |Q| of input-owners, and thus
an efficient evaluation.

The main intuition is that some encryption schemes, and notably `-BFV, the linear vari-
ant of BFV we introduced in Chapter 3, can be expressed as a set of linear maps. Impor-
tantly, this includes the key generation, encryption, and decryption algorithms, as later defined
in Section 1.10.4. In particular, encryption consists of the evaluation of a linear map Λek

Enc,
parametrized by a threshold encryption key ek, over the secret input (and some encryption
randomnesses). Provided with linearly secret-shared inputs, encryption then consists in open-
ing Λek

Enc evaluated over the shared inputs, which can be done in one step of peer-to-peer
asynchronous messages thanks to the properties of the sharing8.

Overall, our Share&Shrink protocol is outlined in Figure 2b, and can be synthesized as
follows:

1. Share. Parties run a DKG protocol in one round of broadcast. The pattern is the same as
in [FS01]. Namely, each party Pi generates an additive contribution ski to the secret key,
and eki to the threshold encryption key. It broadcasts eki and shares ski (as previously, in
the form of a PVSS [Sta96; Sch99]).

In parallel, input-owners also share their inputs and encryption randomnesses via PVSSs9.

2. Shrink. Each party locally sets the common threshold encryption key ek as, roughly, the
sum of the eki’s for which the ski’s were correctly shared. Parties then perform the thresh-
old encryption of the shared inputs under ek in one step of peer-to-peer messages using
the previously introduced linear map Λek

Enc, thereby “shrinking” them down to the sizes of
ciphertexts encrypted under this single ek.

In the end, parties obtain a common view on inputs encrypted under a common threshold
encryption key ek. They can thus proceed with the efficient evaluation and later the threshold

8This has been used extensively in many protocols, see e.g. [CDD+98; BBPT14; CDGK22; AAPP23]
9Which, we recall, is described in Chapter 2

20



decryption, which requires no further broadcast.

Importantly, as highlighted in Figure 2, the major difference with previous approaches based
on threshold-FHE schemes [KJY+20; Par21; MBH23], is that the input distribution is not de-
pendent on the DKG. In other words, inputs are distributed without any knowledge of the
encryption key under which they will be encrypted, which means they can be shared in paral-
lel with the DKG. This reduces the number of initial broadcasts to just one, and, as a bonus,
enables input-owners to remain lightweight, in the sense that they do not need to participate,
monitor, or receive the outputs of a DKG protocol, nor implement the full FHE libraries. Say
differently, they can simply share their inputs and leave the protocol.
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(a) Overview of Threshold-FHE based MPC.
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Figure 2: Comparison of the threshold-FHE-based approach in 2 broadcasts, and our
broadcast-optimal Share&Shrink protocol for delegating to some computation parties the se-
cure evaluation of some circuit on inputs provided by a set of input-owners.

Finally, let us compare our approach to previous broadcast-optimal protocols in terms of
practical computation complexity. To this end, we consider the protocol of [BJMS20] in-
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Figure 3: Comparison of median times for a multiplication between two ciphertexts, when using
[BJMS20] instantiated from the multikey scheme of [KKL+23] and our Share&Shrink method
instantiated leveraging the `-BFV scheme introduced in Chapter 3. 100 runs for various num-
ber of input-owners were executed.

stantiated with the efficient multikey scheme of [KKL+23] based on BFV [FV12], and our
Share&Shrink protocol instantiated leveraging the `-BFV scheme introduced in Chapter 3.
In Figure 3, we compare the running time of a multiplication between two ciphertexts for differ-
ent numbers of input-owners ranging from 1 to 64. Overall, this verifies that the running time of
a multiplication grows almost linearly with the number of input-owners when using a multikey
scheme, while Share&Shrink brings down this duration to a small constant, independent of
the number of input-owners as expected.

Details about this experiment, including implementation and parameter selection, are fur-
ther discussed in Chapter 4.

Organization

This dissertation is organized as follows:

• In Chapter 1, we present the main concepts and definitions relevant to describe FHE-
based MPC protocols.

• In Chapter 2, we formalize a general framework for linear secret sharing, that is used
throughout this dissertation for constructing threshold schemes.

• In Chapters 3 and 4, we present our main aforementioned contributions.

• In Chapter 5, we conclude this dissertation and discuss future research directions.

22



Chapter 1

Definition and Constructions

Contents
1.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3 Multiparty Computation (MPC) . . . . . . . . . . . . . . . . . . . . . . . . 25

1.4 Arithmetic circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5 Adversary Model and System Goals . . . . . . . . . . . . . . . . . . . . . . 25

1.6 Delegated MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.7 Simulation-based Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.7.1 Formalizing Eventual Delivery in UC . . . . . . . . . . . . . . . . 30

1.7.2 MPC Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.8 Communication Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.8.1 Authenticated message transmitting . . . . . . . . . . . . . . . . . 32

1.8.2 Broadcast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.9 Other UC functionalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.9.1 Model Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.10 Cryptographic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.10.1 Linear Secret Sharing. . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.10.2 Public Key Encryption (PKE). . . . . . . . . . . . . . . . . . . . . 41

1.10.3 Homomorphic Encryption. . . . . . . . . . . . . . . . . . . . . . . 43

1.10.4 Linear Homomorphic Encryption. . . . . . . . . . . . . . . . . . . 44

1.10.5 Threshold Fully Homomorphic Encryption (ThFHE). . . . . . . . . 45

1.10.6 Ring Learning with Error. . . . . . . . . . . . . . . . . . . . . . . 46

1.10.7 Gadget Decomposition. . . . . . . . . . . . . . . . . . . . . . . . . 46

1.11 ThFHE-based MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1.12 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1.12.1 LSS-based MPC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1.12.2 Multikey FHE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

23



The goal of this first chapter is to introduce the reader to some of the key theoretical ex-
isting concepts in the area of secure multiparty computation. First in Sections 1.1 and 1.2
we introduce some basic terms and notations to present our main topic of study, Multiparty
Computation, in Sections 1.3 to 1.6. From Sections 1.7 to 1.9, we detail our formalism, before
defining in Section 1.10 primitives that will be used throughout this work. Finally, in Sec-
tions 1.11 and 1.12, we give an overview of the design of an MPC protocol which will be
refined and detailed in the following sections.

1.1 Terminology

For greater clarity, we now introduce the main terms that will be used to describe our multiparty
cryptographic constructions.

System. It refers to a set of participants and rules according to which a cryptographic goal is
achieved.

Party. It refers to each participant in a system, modeled as probabilistic interactive Turing
machines [GMR85] that run in polynomial time (in some security parameter λ).

Algorithm. It refers to any non-interactive cryptographic function, i.e. a set of instructions
executed locally without any communication between parties.

Protocol. It refers to any interactive cryptographic function, i.e. a set of algorithm executions
composed of communication between parties.

Let us give a concrete example of these notions. We will later refer to a system whose goal
is to securely compute a function applied on a number of inputs held by a set of n parties. It
outputs the result through a “threshold decryption” protocol, that consists, as per the definition,
of a set of local instructions, referred to as a “decryption” algorithm, executed by the different
parties and followed by some interactions between them.

1.2 Notation

We now introduce some notations that will be used throughout this work. We denote x $←−D

the sampling of x according to distribution D , and
−→
D a vector of distributions. Cardinality of

a set X is denoted as |X|. For a finite set E, we denote U(E) the uniform distribution on E.
The set of positive integers [1, . . . , n] is denoted [n]. We denote by λ the security parameter
throughout the dissertation. {0, 1}∗ denotes bitstrings of arbitrary lengths. All logarithms are
in base two.

We consider a positive integer d, a monic polynomial f of degree d; k < q positive integers
denoted plaintext and ciphertext moduli; and R := Z[X]/f(X). We denote Rk = R/(k.R)

and Rq = R/(q.R) the residue rings of R modulo k and q respectively. For two vectors u,v

(in bold) we denote 〈u,v〉 the dot product and, for a third vector w, we denote u<·>(v,w) :=(
〈u,v〉 , 〈u,w〉

)
. Finally, ⊗ : R2

q ×R2
q → R3

q denotes the tensor product.
All linear forms are are succinctly specified as formal linear combinations, e.g., let (xi)i

denote labels of some variables (xi)i, then,
∑

i lixi denotes
{

(xi)i →
∑

i lixi
}

. In a general
sense, a linear map between abelian groups g : (E,+)→ (F, ∗) is such that g(e1 +e2) = g(e1)∗
g(e2), with some further compatibility to multiplication by scalar constants (either polynomials,
or integers, possibly modulo some prime p or prime power pe, depending on the cases).
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1.3 Multiparty Computation (MPC)

In secure multiparty computation (MPC), we consider a setting where n parties P = {P1, . . . , Pn},
each Pi having an input mi, want to securely compute a given function f(m1, . . . ,mn), while
preserving the confidentiality of their inputs, i.e. nothing should be learned about the inputs
m1, . . . ,mn, except possibly from what is leaked about the output y = f(m1, . . . ,mn).

In its simplest conception, we can imagine that there is a trusted third party that receives
inputs from the various parties who wish to participate, computes the result y in a truthful way,
and sends it to the participants without revealing any input mi. The aim of MPC is to create a
protocol that allows this kind of scenario to be instantiated in the real world, where a trusted
third party is not available.

1.4 Arithmetic circuit

The first natural question to ask is how to calculate the desired function f . Following Yao’s
seminal work [Yao82], most approaches for constructing MPC protocols involves initially ex-
pressing f as an arithmetic circuit C, followed by a strategy to compute C in a secure way.
Informally, an arithmetic circuit takes as inputs some values and is allowed to either add or
multiply two values it has already computed.

In more detail, an arithmetic circuit over a field F is a directed acyclic graph whose vertices
are called gates and whose edges are called wires. The gates represent either the addition
or the multiplication operation over the field, that can be applied to the values. Let us consider
inputs M = {m1, . . . ,mn}. The computation flow is as follows: every input gate, i.e. of in-
degree 0 is labeled by either a variable from M or a field element from F. Then, the outputs of
these gates are successively processed through the renaming connected gates until to reach
a gate of out-degree 0, i.e. the output gate, where the result of the computation is retrieved.
In practice, two important metrics come into play: the size and the depth. The size of a circuit
is the total number of gates in it, and the depth of a circuit is the length of the longest path
between two input and output gates.

1.5 Adversary Model and System Goals

In cryptography, we often consider a system to be “secure” by showing that it is difficult to
break with reasonable probability. Hence, we generally consider a probabilistic polynomial time
(PPT) referred to as an “adversary”, denoted A, whose goal is to break a property supposedly
maintained by a system. In the case of MPC, we are trying to ensure that nothing is learned
about the parties’ inputs, except from the output y.

In practice, if the incentive is high enough, we can well imagine the possibility of several par-
ties colluding, i.e. adopting a behavior that takes into account the pooling of their information,
to increase their chances of breaking the properties of a system. That is why, the adversary is
generally given the capability to corrupt simultaneously a number 0 < t < n of parties. Then,
our goal is to build a protocol that is secure as long as the adversary does not corrupt more
than t parties. The set of indices in [n] corresponding to corrupt parties is denoted by I , while
the set of indices of the remaining honest parties, is denoted by H = [n] \ I .
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Multiple threshold adversarial structures exist, to account for the many ways to model risks.
In this dissertation, we gonna assume an honest majority, i.e. t < n/2. In this case, the set of
honest parties always accounts for a majority of the participants, no matter how the adversary
selects corrupt parties.

To be complete, let us note that classically, systems may also be considered in the dishon-
est majority case, i.e. t < n, where the adversary is given more power and may corrupt up
to t = n − 1 parties, or the two-thirds honest majority, where t < n/3. The choice of these
bounds is important, as it will determine which properties are achievable for the system, and
the means of achieving them.

Type of Corruption. So far, we have seen that to be considered secure, a system must be
able to withstand an adversary who has the ability to corrupt a certain number of its partic-
ipants. We now turn to the details of what the latter are capable of doing to achieve their
goal.

We previously said that these corrupt parties, coordinated by the adversary, can share
information received during the protocol execution, with the aim of breaking the system, but
we haven’t yet touched on their capabilities. We therefore introduce two different types of
corruption:

Passive/semi-honest. An adversary is said to be passive if the corrupt parties follow the rules
specified by the protocol faithfully. The adversary is able to see all the internal state of
the corrupt parties, including messages received and sent by these, but cannot change
their behavior.

Active/malicious. An adversary is said to be active if it fully controls the corrupt parties, which
includes making them do whatever arbitrary action it desires during the execution of the
protocol. The need to protect a system against this more realistic scenario stems from
the fact that there is no way for honest parties to verify that a given message follows the
protocol since, by principle, it should not reveal any information.

As one would expect, protocols secured against malicious adversaries are usually more
difficult to design and are likely to be less efficient compared to their passively secure equiva-
lent.

Output Guarantees. Apart from privacy, an MPC protocol is expected to return an output,
which an adversary might want to prevent. We therefore introduce three notions, from the
weakest to the strongest, that categorize the guarantees achieved by different protocols:

Security with abort. A protocol is secure with abort if the adversary may obtain the output
while honest parties do not (this abort may be unanimous, i.e. if one honest party aborts,
then all honest parties also abort, or selective).

Fairness. A protocol is fair if the adversary cannot learn the output when the honest parties
do not also learn it, i.e. either all parties abort, or none of them do.

Guaranteed Output Delivery (GOD). A protocol guarantees output delivery if, no matter what
the adversary does, the honest parties will learn the output.

In this dissertation, we focus on protocols that achieve the strongest notion of Robustness,
i.e. that guarantee output delivery in a constant number of rounds.
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Efficiency. When designing a cryptographic system, we are generally interested in how “ef-
ficient” it is. To this end, there exists a number of metrics among which the most common are
the following:

Communication complexity. MPC involves interactions during which data are transmitted.
A crucial metric in practice is therefore the number of bits transmitted by all parties in a
system throughout an execution.

Computation complexity. The amount of computation performed locally by each party is also
a crucial metric, since this can be a limiting factor in practice.

1.6 Delegated MPC

So far, we have only considered a set P of parties, each of whom has inputs, performs a
computation, and then learns the result. This model is restrictive in practice, for a number
of reasons. Firstly, there are situations in which the output does not have to be public, but
a single designated party has to learn it. More importantly, computation requires significant
resources, both in terms of computational power and bandwidth. Thus, there are scenarios in
which the owners of the inputs do not have the necessary resources or will to participate in
such protocols. Finally, some scenarios involve a large number of parties, some of whom may
not be able to remain online for the entire duration of the computation. We therefore present
an amended model, that we call delegated MPC, and introduce, in addition to the parties in
P, the following new kind of machines:

Input-Owner: Owner of an input that does not directly take part in the computation.

Output-Learner: Designated receiver of the computation output.

We denote Q the set of input-owners and L the output learner1.

Practical Example. In this model, the circuit evaluation can be outsourced to a cloud-like
service, by providing it with the inputs and necessary cryptographic materials. The input-
owners can arbitrarily go offline during the evaluation and reconnect for the final output step if
they are meant to receive it.

Consider for instance the case of multiple private sensing devices that wish to delegate
the computation of some analytic computation to a set of external companies that operate a
network of computing parties. The latter can generate all the cryptographic material required
for the computation, receive encrypted data, and collectively compute the desired function
before sending the result to an output learner, say a client.

In this setting, the overhead for each input-owner is independent of the total number of
participants, i.e. of the number of parties, other input-owners, and output learners. This
enables to scale MPC to a large number of participants and even enables it for resource-
constrained parties. Finally, note that the generation of the cryptographic material by the
computing parties does not necessarily need to be repeated for each owner, which makes the
protocol more efficient at scale.

1This can trivially be extended to multiple learners.
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1.7 Simulation-based Security

Motivation. The main idea behind MPC is above all to build “secure” systems. In our case,
let us recall from Section 1.3 that the goal is to prevent an adversary, who can corrupt a subset
of parties, from learning something about honest parties’ inputs, except from the output y. The
idea of defining a system’s security in terms of its ability to resist an adversary is not unique to
MPC, but is used in all areas of cryptography. For example, when considering an encryption
scheme, security is classically formalized as a security game (see for instance Definition 5), in
which an adversary can choose a number of pairs of plaintext messages, and its objective is to
determine whether the ciphertexts it receives represent encryptions of the first or the second
plaintext in the pairs.

The case of multiparty computation is, however, more complicated in that i) it is a dis-
tributed protocol during which the parties communicate with each other, ii) the adversary (see
Section 1.5) is possibly given additional powers to change the behavior of the corrupt parties
and, iii) it receives an output y. Therefore, to prove security, a more complex approach has to
be adopted based on the real vs ideal world paradigm [Lin17].

High-level intuition. Remember that in Section 1.3, we said that in its simplest conception,
we could imagine that in an ideal world, the parties would send their inputs to a trusted third
party and only receive the result. This intuition forms the basis of what we are going to describe
as the ideal world. In the real world, the adversary corrupts a subset of parties and carries
out the protocol by interacting with the other parties. The aim seems to be to show that an
adversary can’t distinguish between the two. However, in this description, the adversary sees
interactions between parties in the real world, whereas, in the ideal world, only the inputs are
sent to the trusted party and the output is received from it. One ingredient is missing, that we
will now formalize.

Description. We consider in Figure 1.1 a machine, called the environment, that fully controls
an adversary A and may send inputs to honest parties and which is forwarded their outputs in
real-time by honest parties. Its task is to distinguish the real world from the ideal world. In the
real world detailed in Figure 1.1a, the adversary A corrupts a subset of parties, and executes
the protocol Π by interacting with the honest parties, to eventually learn the output. In the ideal
world detailed in Figure 1.1b, we model the trusted third party as an interactive agent, called
functionality and denoted F , that is able to receive some inputs, perform some computation,
and send an output. Honest parties interact with F , while the adversary interacts through a
proxy, called the simulator, that connects to F on behalf of the corrupt parties, and that sends
messages to corrupt parties. That way, as the adversary still interacts in the ideal world with
what it thinks are the honest parties, there is no obvious way to distinguish between the two.

Proof Idea. We illustrate the high-level proof idea in Figure 1.2. The simulator Sim initiates
in its head a set of n parties and may initially receive up to t corruption requests from the
environment. Then, Sim creates a simulated honest party in mind for each real, or dummy,
honest party and lets the simulated honest parties play the protocol Π with the external corrupt
parties as in the real world protocol. The simulator can send inputs to and receive outputs from
the functionality F that represents the intended computation to be performed securely. This
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(a) Real execution of protocol Π with dummy adversary
A. The Environment Env interacts with the system by: its
full control on A, its power to give an input to honest par-
ticipants, and its power to learn the outputs.
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P ′3
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FSim

(b) Ideal execution: dummy honest participants perform
the dummy protocol with the functionality F ; the simulator
Sim interacts on the right with F with the same interface
as A and corrupt entities in the dummy protocol, and on
the left, interacts with Env with the same interface as the
dummy adversary in the real protocol.

Figure 1.1: Real vs Ideal world paradigm
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Figure 1.2: Simulation-based proof idea. The simulator Sim simulates honest parties for each
real honest party, and executes the protocol Π with the external corrupt parties, while interact-
ing with F . The goal is to prove that the view of Env in the simulation is indistinguishable from
the real protocol execution.

serves as the primary tool for Sim to establish an indistinguishable scenario for the environ-
ment compared to the real world.

To summarize we introduce the following components in addition to the parties:

Functionality. A functionality is a machine that receives inputs from parties, performs some
computation, and sends an output back to the parties.

Environment. The environment is a machine that fully controls an adversary and which may
send inputs to honest parties and which is forwarded their outputs in real-time.

Simulator. A simulator acts as an interface between an ideal functionality and the adversary
in the ideal world. It can send inputs to and receive outputs from the functionality while
being connected to the adversary as in the real world.

We now say that a protocol is secure if no environment can distinguish between the real
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and ideal worlds.

1.7.1 Formalizing Eventual Delivery in UC

We now explain the high-level idea of the mechanism used to formalize eventual delivery
following [KMTZ11; CGHZ16]. Every ideal functionality F , when it needs to eventually deliver
(ssid, v) to some entity P , engages in the following interaction. It notifies A of the output id
(ssid) and initializes a counter Dssid ← 1, which captures the delivery delay. Upon receiving
(delay) from A , it sets Dssid←Dssid + 1. Upon receiving (fetch) from P, it sets Dssid←Dssid − 1,
as well as for all other counters related to pending outputs for P . In addition, we specify that it
leaks (fetch) to A2. It is left implicit that entities fetch as much as they can all. Since A is PPT,
at some point, it gets exhausted from pressing the button delay. So, after sufficiently many
fetches more, the counter drops down to 0. Then F can deliver (ssid, v) to P .

Remark. The session identifier of the MPC protocol, sid, is left implicit in all calls to func-
tionalities. Some calls to functionalities are parametrized by sub-session identifiers ssid. For
instance, in FLSS and BC described Sections 1.8.2 and 2.2, ssids are encoded by labels of
variables.

1.7.2 MPC Functionality

The ideal functionality of MPC that we aim to UC implement, is formalized as FC in Fig. 1.3. It
returns to an output learner L the evaluation of a public arithmetic circuit C : (M∪{⊥})n →M
over inputs in some spaceM. For simplicity: C has n input gates, one single output gate, FC

expects exactly one single input from each party, and delivers the output to an output learner
L. For more clarity in the presentation, C is hardcoded in FC. However, our MPC protocols
actually allow parties to adaptively choose C based on the list of non-⊥ inputs received.

The functionality works as follows. Upon receiving an input from any party Pi, it stores
(Pi,mi)

3 and leaks this information to A. Before FC delivers the output, it needs to wait for the
inputs to be submitted. However, the adversary A can choose to never instruct corrupt parties
to send their inputs. To remedy this, we follow the fetch-and-delay mechanism explained in
Section 1.7.1 and introduce a timeout TA. In brief, the functionality:

1. waits until it receives an input from every honest party,

2. sets a timeout TA,

3. then, after it elapsed, sets to ⊥ the inputs of the parties (necessarily corrupt) which did
not give an input.

Once the timeout expires, the output9available flag is permanently set to true, and no more
input can be submitted. Finally, the output evaluation is eventually delivered following a finite
delay chosen by A.

2This precision is not present in previous works [KMTZ11; CGHZ16; LLM+20], since that way, the adversary knows at any
moment in time when an output will be delivered.

3Where mi denotes the label of variable mi
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LIST OF FIGURES 31

FC

Output format Initialize an empty vector m = {>}n.

• Initialize output9available← false. //the flag telling if the output can be delivered.

• When all mi 6= >, ∀i ∈ [n], set output9available = true. //it is now frozen

Formalizing timeout for inputs of corrupt parties

• Initialize a counter TA ← 1 // the timeout.

• Upon receiving delay9inputs from A, TA ← TA + 1.

• Upon receiving fetch from L, TA ← TA − 1.

• When TA = 0 for the first time, freeze forever TA = 0. Then, for all i ∈ I : if mi = >,
then set mi ← ⊥.

Input (Only accessible while output9available = false) On input (input, m̃i ∈M) from any
Pi ∈ P for the first time, or possibly from A if Pi is corrupt, set mi ← m̃i, then store
(input,S ,mi), and eventually-deliver (stored,mi) to each party P ∈ P. //eventually-
delivers” consists of the same fetch-and-delay mechanism as explained in Section 1.7.1.

Formalizing eventual delivery

• Initialize a counter DR ← 0 // the delivery delay.

• Upon receiving fetch from L, DR ← DR − 1.

• When DR = 0 for the first time, if no output was delivered yet to L, wait until
output9available = true, then deliver y = C(m) to L.

Figure 1.3: Functionality of secure circuit evaluation. Each input mi is identified by a public
label mi.



Straightforward Generalizations of FC. In our MPC protocols presented in Chapters 3
and 4, messages of parties do not depend on the actual circuit to be computed. Thus, our pro-
tocol actually achieves the “reusability” property ([BJMS20]), i.e., it implements a more general
functionality to which honest parties can possibly provide circuits to be computed after the dis-
tribution of the inputs by the input-owners, possibly with some ⊥ or badly formed messages for
some of them. We do formalize and implement such a functionality in Chapter 2 for the specific
case of linear combinations, as this will help the future description of our MPC protocols.

As such, our definition of FC implies that only L outputs. However, it straightforwardly
generalizes to capture protocols delivering outputs to a set of output learners, be they included,
overlapping, or disjunct, from the set P of parties.

1.8 Communication Model

In this dissertation, we consider two ways of sending a message from some sender to some
receiver(s).

• Asynchronous peer-to-peer channel : Asynchronous communication models real-world
networks (like the Internet), where limited guarantees exist as to the reception of sent
messages. We describe in Section 1.8.1 a functionality for asynchronous authenticated
public/secure message transmitting with eventual delivery, where the adversary is given
the power to schedule the delivery of messages within some finite (unknown to the hon-
est sender and/or receiver) delay D. Importantly, two parties may receive two different
messages from the same corrupt sender.

• Broadcast channel : We describe in Section 1.8.2 a functionality for broadcast, where
each broadcast message recipient has the guarantee that all other recipients received
the same message within some known bound ∆.

In practice, implementing a broadcast channel requires either multiple rounds of peer-to-
peer communication [DR85; FH06; KK06; GP21; WMR+23] or special channels (such as
blockchains), and is therefore costly in itself. This difficulty was pointed out in the comments of
NIST’s recent call for standardization of multiparty threshold-cryptography[23a]. That is why,
in this dissertation, we are going to limit its use as much as possible to the initial distribution
of inputs, in order to ensure input provision, i.e. to guarantee that the inputs of all the honest
parties are considered for the circuit evaluation.

1.8.1 Authenticated message transmitting

We formalize in Figure 1.4 the ideal functionality of asynchronous public authenticated mes-
sage transmitting with eventual delivery, denoted as FAT. It is parametrized by a sender S
and a receiver R, hence the terminology authenticated. It delivers every message sent within
a finite delay D, hence the terminology eventual delivery, although D can be adaptively in-
creased by A. It leaks the content of every message to A, hence the terminology public.
We also define a stronger variant, denoted FST for secure transmitting, which leaks only the
length of the messages. Only messages intended for the output-learner L will go through this
stronger variant.
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FAT /FST

• Upon receiving a message (send,m) from S , initialize Dmid ← 1, where mid is a
unique message ID, store (mid, Dmid,m) and leak (mid, Dmid,m) to A. FST leaks only
(mid, Dmid, |m|).

• Upon receiving a message (fetch) from R:

1. Set Dmid ← Dmid − 1 for all mid stored, and leak (fetch) to A.

2. If Dmid = 0 for some stored (mid, Dmid,m), deliver the message m to R and delete
(mid ,m) from the memory.

• Upon receiving a message (delay,mid) fromA, for some stored mid , setDmid ← Dmid+1.

• (Adaptive message replacement) Upon receiving a message ((mid,m)→ m′) from A, if
S is corrupt and the tuple (mid, Dmid > 0,m) is stored, then replace the stored tuple by
(mid, Dmid,m

′).

Figure 1.4: Ideal functionality of asynchronous public authenticated message transmitting with
eventual delivery delay, parametrized by sender S and receiver R. The straightforward up-
grade to obtain asynchronous secure message transmitting FST is described inline.

Our baseline for FST is the functionality denoted Fed-smt [KMTZ11]. For FAT, we made the
addition to leak the contents of the messages to A. We also incorporated two other changes,
borrowed from the FNET in [LLM+20]. The first consists in attaching a unique identifier to each
message and counter, in order to give A control on the delay of each message individually.
Notice that [CGHZ16] model this individual control by, instead, giving the power to A to re-
order messages not delivered yet. The second consists in forcing explicitly A to press (delay)
to augment the delay by +1, instead of the (equivalent) formalization in which A enters the
additional delay in unary notation.

1.8.2 Broadcast

Definition 1. A broadcast protocol [FLL21, Def 1] involves a sender S and a set of receivers
R. It requires the following properties:

(Termination): all honest receivers eventually output;

(Consistency): any two honest receivers output the same value;

(Validity): if the sender S is honest and inputs value m, all honest receivers output the same
value m.

We dub it as BC and formalize it in Figure 1.5.

Overall, it simply proceeds as follows. On receiving a message m from the sender S , it
sends m to each receiver R ∈ R by using the same procedure as FAT.

Remark. There exists another functionality for broadcast in [CP23; AAPP22], which is denoted
as FACast. The difference is that for every given R ∈ R, FACast may never deliver s to R if the
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BCS→R

• Upon receiving a message (send,m) from S , for each R ∈ R, do the following. Ini-
tialize Dmid ← 1, where mid is a unique message ID, store (mid, Dmid,m,R) and leak
(mid, Dmid, R,m) to A.

• Upon receiving a message (fetch) from R:

1. Set Dmid ← Dmid − 1 for all (mid, Dmid, R,m) stored, and leak (fetch, R,m) to A.

2. If Dmid = 0 for some stored (mid, Dmid, R,m), deliver the message m to R and
delete (mid, R,m) from the memory.

• Upon receiving a message (delay,mid, R) from A, for some stored (mid, Dmid, R,m), set
Dmid ← Dmid + 1.

Figure 1.5: Ideal functionality of reliable broadcast. It is parametrized by a sender S and a set
of receivers R.

adversary does not allow to, nonwithstanding other honest parties could have been delivered s.
The reason is that they use the classical UC framework of delayed output of Canetti [Can01],
in which the delivery of every single output from a functionality needs to be allowed by the
adversary.

1.9 Other UC functionalities

We now define other functionalities which will be used to build our protocols.

Public Key Infrastructure. A public key infrastructure (PKI) is responsible for facilitating
the authentication and distribution of public keys by essentially maintaining a database of
identity/public key pairs.

We present in Figure 1.6 the ideal functionality of a bulletin board of public keys, denoted
as bPKI. Upon receiving a key pki from any party Pi ∈ P, it stores (Pi, pki) and leaks this
information to the adversary A. Then, it:

• waits until it received a public key from every honest party Pi ∈P,

• sets a timeout,

• then after it elapsed, sets to ⊥ the keys of the (necessarily corrupt) parties which did not
give a key.

Then it sets as pk← (pki)i∈[n]
4 the vector of all keys, and eventually delivers it to all the system.

Remark. The bPKI functionality, for our usage limited to publication of public keys, could be
traded by the assumption denoted {Bare/Untrusted/Bulletin board} public key setup (PKI)”
[ACGJ18; BCG21; GJPR21]. Importantly, bPKI does not perform any check on the written
strings, it displays them to all parties.

4With possibly some pki = ⊥.
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LIST OF FIGURES 35

bPKI

Output format Initialize an empty vector pk = {>}n.
When all pki 6= >, ∀i ∈ [n], set output9available = true.

Formalizing eventual delivery For every R ∈ R, initialize a counter DR ← 0 // the deliv-
ery delay.
Initialize output9available← false //the flag telling if the output can be delivered.
Upon receiving fetch from any R ∈ R, DR ← DR − 1. When DR = 0 for the first time, if
no output was delivered yet to R, wait until output9available =true then deliver pk to R.

Formalizing timeout for keys of corrupt parties Initialize a counter TA ← 1 // the time-
out.
Upon receiving delay9keys from A, TA ← TA + 1.
Upon receiving fetch from any R ∈ R, TA ← TA − 1.
When TA = 0 for the first time, freeze forever TA = 0. Then, for all i ∈ I : if pki = >,
then set pki ← ⊥.

Honest keys registration Upon receiving the first message (Register, p̃ki) from an honest
key-holder Pi, send (Registered, Pi, p̃ki) to A and set pki ← p̃ki.

Corrupt keys registration Upon receiving a message (Register, (p̃ki 6= >)i∈I) from A,
set pki ← p̃ki ∀i ∈ I .

Figure 1.6: The bulletin board of public keys functionality bPKI, parametrized by a set of n
key-holders, of which the corrupt ones are indexed by I ⊂ [n], and by a set of receivers R. It
does not perform any checks on the keys received. A published key that is not in the correct
distribution is automatically considered as ⊥ by honest parties.



Non-Interactive Zero Knowledge Proof.

Definition 2 (Zero-Knowledge Proof). A pair of probabilistic polynomial time interactive pro-
grams P, V is a zero-knowledge proof if the following properties are satisfied:

Soundness : If the statement is false, a cheating prover P cannot convince the honest verifier
V that it is true, except with negligible probability.

Completeness: If the statement is true, then an honest verifier V will be convinced by an
honest prover P .

Zero-knowledge : If the statement is true, no verifier V learns anything beyond the statement
being true.

We present in Figure 1.7 the ideal functionality of non-interactive zero-knowledge argu-
ments of knowledge, denoted as FNIZK and mainly borrowed from [GOS06]. It is parametrized
by an NP relation R. Upon request of a prover P exhibiting some public input x and knowl-
edge of some secret witness w, it verifies if (x,w) ∈ R then deletes w from its memory. If the
verification passes, then FNIZK eventually delivers a string π to P . We denote Π the space of
such strings π. During the delay of output, A has the power to set the value of π. If it does not
use this power, then FNIZK sets π to a default value π0. Upon subsequent input of the same
string π and x from any verifier, FNIZK then confirms to the verifier that P knows some witness
for x.

Remark. The main difference with [GOS06], in which A could delay forever the delivery of
π, is the introduction of a time-out, based on the fetch-and-delay mechanism. Sticking to this
model would have prevented us from specifying a protocol with guaranteed output delivery
(GOD) in case of honest majority.

UC implementations of FNIZK exist, which do not require honest majority [DDOPS01], but at
the cost of requiring a uniform random string (URS). Nonwithstanding that [DDOPS01] allows
the same URS to be reused in concurrent executions, the bottom-line is that the URS needs to
be part of a local setup in their implementation. Without an honest majority assumption, then
[CDPW07] prove that UC NIZK is non-implementable in the global common random string
model, i.e., which we formalized as GURS in the particular case where the string is uniform.

Remark. The need for a URS can be escaped under honest majority, provided access to bPKI,
thanks to the technique denoted multi-string CRS [GO14; BJMS20].

Uniform Random String. We present in Figure 1.8 the ideal functionality of uniform ran-
dom string, denoted GURS and mainly presented as a particular case of Fcrs in [CLOS02]. It
samples uniformly at random a sequence of bits of pre-defined length κ, denoted URS, then
outputs it to all parties.

Remark. We strictly upgrade the security of our model in that we allow the string produced by
GURS to be directly observed by the Environment. In particular, our simulator will not have the
choice but to use the URS provided by GURS.
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FNIZK

The functionality is parametrized with an NP relation R of an NP language L and a prover
P .

Proof: On input (prove, sid, ssid, x, w) from P , ignore if (x,w) /∈ R. Request (proof, x) to A
then go to the next step.

Reception of the NIZK Initialize a counter TA ← 1.
Upon receiving delay from A, TA ← TA + 1.
Upon receiving fetch from P , TA ← TA − 1.
Upon receiving (activate, π) from A and if TA > 0, then: freeze forever store (x, π) and
deliver (proof, sid, ssid, π) to P.
If TA = 0, then: freeze forever TA = 0, store (x, π) and deliver (proof, sid, ssid, π0) to P.

Verification: On input (verify, sid, ssid, x, π) from any verifier V , check whether (x, π) is
stored. If not, then do the following instructions:

• request (verify, x, π) to A;

• initiate a counter Dverif which A can increase by +1 steps, and V by −1 steps;

• upon receiving an answer (activate,witness, w) from A and if Dverif > 0 and if
(x,w) ∈ R, then: store (x, π);

• when Dverif = 0, halt those instructions and go to the next (and last) step.

If (x, π) is stored, return (verification, sid, ssid, 1) to V , else return (verification, sid, ssid, 0).

Figure 1.7: Non-interactive zero-knowledge functionality

GκURS

On input query from all honest parties in P, then samples a sequence of κ bits uniformly
at random then outputs it to each party P ∈P, then halts.

Figure 1.8: Uniform Random String Functionality.



1.9.1 Model Summary

In this dissertation, we aim at building some protocol ΠF that securely instantiates a function-
ality F with the help of some other functionality, say F ′, that is, in the F ′-hybrid model. This
functionality F ′ serves as an intermediary trusted entity that parties can use to assist them in
securely computing F . Indeed, ΠF ′

F could possibly be expressed in a much simpler way using
F ′.

By proving the UC security of ΠG
F ′ in a typically simpler G -hybrid model, we simplify the

proof of ΠF ′
F , by not considering a big “monolithic” protocol, but instead a simpler variant in

this F ′-hybrid model. The main result of the UC framework is that the composed protocol still
instantiates F in the G -hybrid model.

In what follows, we will rely heavily on this principle and prove, notably in Chapter 2, an
intermediate functionality that will serve to simplify the proofs of MPC protocols in Chapters 3
and 4. We can summarize the system in which we will be working as follows:

Participants: We consider a set P of n parties, of which up to t can be corrupt by a PPT

adversary A. We also consider a set Q of (possibly corrupt) input-owners and an output
learner L.

Functionalities: To help us to build MPC protocols, we described in Sections 1.8 and 1.9
functionalities FAT,BC, bPKI,FNIZK and GURS.

Semi-Malicious Corruptions: In our protocols and proofs, we will consider what we define
as Semi-Malicious Corruptions, following [AJL+12; BHP17; GLS15; BJMS20]. Semi-
maliciously corrupt parties continuously forward to A their outputs received from ideal
functionalities, and act arbitrarily as instructed by A. For instance, they can possibly not
send some messages although the protocol instructs them to. However, when a corrupt
entity M inputs a message m to FAT or BC, then the sending of m must be compatible
with the requirements of the protocol, with respect to: (i) all outputs of instances of GURS,
bPKI, BC required for sending m (ii) an internal witness tape that M must have, of the
form (x, r) with x an input and r of the same length as all random coins that an honest
party would have been meant to have tossed upon sending m. M can however use
conflicting (x, r) when sending different messages m, m′. Finally, we also require that
the semi-malicious adversary A can only send an output v to BCM for some corrupt M
only if: either v could have been input to BCM by M itself according to the above rule, or
if v = ⊥. Notice that we do not impose any condition for the sending of some m on bPKI.

Robustness : Briefly, we say that an MPC protocol is robust if, in every execution in which
the adversary provides the inputs required by BC, then all honest parties obtain an output
in a constant number of rounds. We argue that our definition coincides with the classi-
cal definition of robustness, as soon as BC and FAT are implemented with protocols or
resources that eventually deliver messages.
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1.10 Cryptographic Definitions

We now provide the definitions of the main notions that are relevant to this work. Recall
from Section 1.2 that we consider a security parameter λ and will mainly use a computational
security argument to show that an adversary’s advantage to successfully attack a scheme is
negligible in λ.

For the specific case of homomorphic operations, we also consider another parameter κ to
account for the ability to carry out successive operations and will require that the probability of
incorrect decryption after some homomorphic operations be a negligible function in κ.

1.10.1 Linear Secret Sharing.

We now introduce the concept of linear secret sharing that will prove useful throughout this
dissertation to design multiparty schemes.

Definition 3 ((n, t)-LSS). Let R be a ring. A (n, t)-Linear Secret Sharing Scheme is defined
by the following two algorithms:

• LSS.Share(s ∈ R, n, t)5 → (s(1), . . . , s(n)): For a given secret s ∈ R, the sharing algorithm
generates a vector (s(1), . . . , s(n)) of shares, where s(i) is the share of party Pi.

• LSS.Reco({s(i)}i∈U ,U) → s: For any set U of size t + 1 and shares {s(i)}i∈U , the recon-
struction algorithm outputs a secret s ∈ R.

To ease notations, we define a sharing of some secret s ∈ R as [s] = {s(1), . . . , s(n)}.

Furthermore, it must satisfy the following properties.

1. Correctness: For any set U of size t+1, the value s can be efficiently reconstructed from
the set of shares {s(i)}i∈U , i.e. for any projection SU of S ← LSS.Share(s, n, t), it holds that
LSS.Reco(SU ,U) = s with probability 1.

2. Privacy: For all V such that |V | ≤ t, and secrets sL, sR ∈ R, then the shares of sL and
sR output by LSS.Share follow the same distribution. More formally, we have:

(1.1)

{
{s(i)
R }i∈V ≈ {s

(i)
L }i∈V

∧{s(i)
R }i∈[n] ← Share(sR, n, t)

∧{s(i)
L }i∈[n] ← Share(sL, n, t)

}

In other words, the set of shares {s(i)}i∈V does not leak anything about the value s.

3. Linearity: Linear operations (namely additions and subtractions) can be applied on the
shares of different secrets to obtain the shares of the corresponding operations applied
on these secrets. Specifically, when considering two sharings [x] = {x(1), . . . ,x(n)} and
[y] = {y(1), . . . ,y(n)} of some values x, y ∈ R, then {x(1) + y(1), . . . ,x(n) + y(n)} (resp -
for the subtraction) is a sharing of x+ y (resp x− y).

5We leave implicit the randomness used for the sharing. It will be made explicit in Definition 8
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This notion can be generalized to any set of secret values. Consider a linear map
Λ and a set of sharings {[xi]}i∈S of some secrets {xi}i∈S ∈ R. Then, we have that
{Λ({x(1)

i }i∈S), . . . ,Λ({x(n)
i }i∈S)} = [Λ({xi}i∈S)].

Moreover, for our UC proofs to go through, we require in addition the following two properties
(4) and (5), which enable the simulation of shares. They are satisfied by all linear secret shar-
ings used in practice, e.g., Shamir[Sha79] and the {0, 1}-LSSD of [JRS17] (renamed {0, 1}-LSS

in [BS23]). Of possible independent interest, in Appendix A, we provide a definition (Defini-
tion 39) of a subclass of (n, t)−LSS, which we call (n, t)−LSSD, and which encompasses both
Shamir sharing, {0, 1}-LSSD and the recent TreeSS scheme of Cheon et al. [CCK23]. Then in
Proposition 41 we prove that a (n, t)−LSSD scheme satisfies both properties (4) and (5).

4. Simulatability: Additionally, we require the existence of an efficient algorithm ShSim such
that for every PPT adversary A, for any set V such that |V | ≤ t (and U = [n] \ V), and
any two secrets sL, sR ∈ R, for (s

(1)
L , . . . , s

(n)
L ) ← LSS.Share(sL, n, t), (s

(1)
R , . . . , s

(n)
R ) ←

LSS.Share(sR, n, t) and {s̃(i)
L }i∈U ← ShSim({s(i)

R }i∈V , sL),

(1.2)
∣∣∣Pr[A({s(i)

L }i∈V , {s
(i)
L }i∈U ) = 1]− Pr[A({s(i)

R }i∈V , {s̃
(i)
L }i∈U ) = 1]

∣∣∣ ≤ negl(λ)

5. Inference of Shares: Finally, we require the existence of an efficient algorithm ShInfer

such that for every PPT adversary A, for any set (t + 1)-sized set U (and V = [n] \ U),
and any two secrets sL, sR ∈ R, for (s

(1)
L , . . . , s

(n)
L )← LSS.Share(sL, n, t), (s

(1)
R , . . . , s

(n)
R )←

LSS.Share(sR, n, t) and {s̃(i)
L }i∈V ← ShInfer({s(i)

L }i∈U ),

(1.3)
∣∣∣Pr[A({s(i)

L }i∈V , {s
(i)
L }i∈U ) = 1]− Pr[A({s̃(i)

L }i∈V , {s
(i)
L }i∈U ) = 1]

∣∣∣ ≤ negl(λ)

We now discuss a classical example of a linear secret-sharing scheme.

Example: Shamir Secret Sharing [Sha79]. For the purpose of this section, we consider
a finite field F and assume that each party Pi ∈ P is associated with a non-zero element
αi ∈ F such that if i 6= j then αi 6= αj . We recall the secret-sharing scheme of Shamir [Sha79]
that implements a (n, t)-LSS scheme based on polynomial interpolation in a finite field. As a
reminder, let us first define what are Lagrange coefficients.

Definition 4. Given U ⊆ [n] with |U | = t + 1, we denote as Lagrange coefficients the values
{λUi }i∈U computed as

(1.4) λUi =
∏

j∈U ,j 6=i

α0 − αj
αi − αj
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Intuitively, Shamir uses polynomial evaluation to share some secrets and interpolation to
reconstruct them from shares. In more detail, to share a value s ∈ F using Shamir, the dealer
samples at random a polynomial f(Y ) ∈ F≤t[Y ] of degree at most t, such that f(0) = s.
The shares corresponding to each party Pi are then define as the evaluation of f in αi, i.e.
s(i) = f(αi). The reconstruction of the secret is done by doing a Lagrange interpolation at α0

from any set of t+ 1 shares.

Formally, the scheme can be defined by the following two algorithms:

Shamir.Share(s, n, t): To secret-share a value s ∈ F, sample f1, . . . , ft $←− F and output s(i) =

s+ Σt
j=1fjα

j
i for all i ∈ [n].

Shamir.Reco({s(i)}i∈U ,U): To reconstruct s from shares {s(i)}i∈U and for |U | > t, compute

(1.5) s =
∑
i∈U

λUi s
(i)

Correctness of the scheme follows from polynomial evaluation and reconstruction, while
privacy intuitively follows from the fact that any set of t shares does not leak anything about
the secret s.

Remark. To relate to Definition 39 later presented in Appendix A, let us note that in the case
of Shamir, we use the Vandermonde matrix as the sharing matrix M.

(1.6)


1 α1

1 α2
1 . . . αt1

1 α1
2 α2

2 . . . αt2
...

...
...

...
1 α1

n α2
n . . . αtn



The simulation and the inference of shares follow easily by Lagrange interpolation.

1.10.2 Public Key Encryption (PKE).

We continue with the most basic cryptographic primitive: encryption.

Definition 5 (PKE). A public-key encryption scheme consists of the following algorithms:

• Key Generation (dk, pk) ← PKeyGen(1λ): Given a security parameter λ, the key gen-
eration algorithm outputs the public key pk ∈ Pk with the associated decryption key
dk ∈ Dk;

• Encryption c← Enc(pk,m): Given a message m and a public key pk, it outputs a cipher-
text c;

• Decryption m′ ← Dec(dk, c): Given a ciphertext c and a decryption key dk, it outputs a
message m′.
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Moreover, a PKE scheme satisfies the following properties

1. Security: There exists different levels of security of a public encryption scheme:

IND9CPA (Indistinguishability Under Chosen-Plaintext Attacks): Informally, it means that
an adversary can not find which message is encrypted after receiving a ciphertext of
one of the two messages of its choice;

IND9CCA (Indistinguishability Under adaptive Chosen-Ciphertext Attacks): Informally, it
is similar to the previous definition except that now, the adversary has additional ac-
cess to a decryption oracle, with the only restriction being that it cannot request the
decryption of the challenge ciphertext.

For subsequent use later in this dissertation, we now describe in more detail the semantic
security of a PKE scheme E = (PKeyGen,Enc,Dec). Consider the following IND9CPA

game:

GameAIND9CPA(1λ)

1 : b $←− {0, 1}
2 : (dk, pk) $←−Keygen(1λ)

3 : (state,m0,m1)← A(1λ, pk)

4 : c← Enc(pk,mb)

5 : b′ ← A(1λ, pk, c, state)

6 : return b = b′

The advantage of A in this game is defined as AdvAEnc = |Pr[b = b′]|.
We say that E is IND9CPA secure if, for any PPT adversary A, it holds that:

(1.7) |2.AdvAEnc − 1| ≤ negl(λ)

2. Correctness: A public-key encryption scheme if said correct is for all message m and
(dk, pk)← PKeyGen(1λ),

(1.8) Dec(dk,Enc(pk,m)) = m.

A user with the pair (dk, pk) of decryption-public keys can publish pk to everyone likely to
send him a message. However, dk needs to be stored privately.

Example: ElGamal. Let us describe the PKE of ElGamal [Elg85], which is composed of
three algorithms (PKeyGen,Enc,Dec) and defined on a cyclic group (G, ·) of prime order p in
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which DDH is hard. Let g be any generator of G.

ElGamal Encryption Scheme

PKeyGen(1λ) Given a security parameter λ, it chooses x←$Zp and outputs the public
key pk = g−x and the decryption key dk = x.

Enc(pk,M) To encrypt a message M ∈ G using public key pk, it chooses r←$Zp and
outputs the ciphertext c = (M · pkr, gr) ∈ G2.

Dec(dk, c) Given c = (c1, c2) and the decryption key sk, it computes c1 · cdk.

The scheme is correct as c1 · cdk2 = M · pkr · (gr)dk = M · g−dkr+rdk = M .

1.10.3 Homomorphic Encryption.

An encryption scheme is said partially homomorphic if one can define an additional algorithm
Add (or Mult) taking as input two ciphertexts X of a value x and Y of a value y and producing
a ciphertext Z of value x+ y (or x× x).

An encryption scheme that has simultaneously the additive and multiplicative properties,
is said to be fully homomorphic. In that case, we will define in the Definition 6 below a new
Eval algorithm whose purpose is to evaluate an arithmetic circuit C. Note that the latter algo-
rithm may require an additional relinearization (or evaluation) key. Because this homomorphic
evaluation requires proper parametrization in practice, we introduce an abstract homomorphic
parameter κ that will be used to define correctness.

Definition 6 (Fully Homomorphic Encryption Scheme (FHE)). A fully homomorphic encryp-
tion scheme (FHE) consists in a message space M ; spaces of secret, encryption and relin-
earization keys X , E k, Rlk; randomness spaces BKey and

−−−→
BEnc (for key generation, and

encryption) and a ciphertext space C ; along with the following probabilistic polynomial-time
algorithms:

• Setup pp ← Setup(1λ): On input the security parameter λ, the setup algorithm outputs a
set of public parameters pp.

• Keys Generation (sk, ek, rlk) ← Keygen(pp): On input some public parameters pp, the
key generation algorithm samples a secret key sk $←−X , and outputs the encryption key
ek ∈ E k and the relinearization key rlk ∈ Rlk6.

• Encryption c ← Enc(pp, ek ∈ E k, m ∈M ): On input public parameters pp, an encryption
key ek and a plaintext m, the encryption algorithm outputs a ciphertext c of m under ek.

• Evaluation c′ ← Eval(C, rlk, c1, . . . , cn): On input public parameters pp, an encryption key
ek, a relinearization key rlk, a circuit C : M n →M , and a set of ciphertexts c1, . . . , cn, the
evaluation algorithm outputs a ciphertext c.

6Sometimes denoted as evaluation key
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• Decryption m′ ← Dec(sk ∈ X , c ∈ C ): On input a ciphertext c and a secret key sk, the
decryption algorithm outputs m′.
Moreover, a FHE scheme satisfies the following properties:

1. Semantic Security: Similar to Definition 5, we say that a FHE scheme E = (Keygen,Enc,

Eval,Dec) is IND9CPA secure if, no PPT adversary A has an non-negligible advantage in
the IND9CPAAEnc(1

λ) game.

2. Correctness: For any arithmetic circuit C : M n → M and input messages m1, . . . ,mn,
there exists a public parameterization pp such that, for (sk, ek, rlk)← Keygen(pp, 1λ),

(1.9) Pr[Dec(sk,Eval(C, rlk, c1, . . . , cn)) 6= C(m1, . . . ,mn)] ≤ negl(κ).

1.10.4 Linear Homomorphic Encryption.

We observe that in a number of encryption schemes, key generation, encryption, and decryp-
tion are essentially linear maps. For simplicity’s sake, we assume that all operations take place
over Z/qZ-modules, where q is a known modulus7. A linear map between two Z/qZ-modules
g : (E,+)→ (F, ∗) satisfies g(e1 + e2) = g(e1) ∗ g(e2) for e1, e2 ∈ E, and, g(a · e) = a · g(e) for
all a∈Z/qZ. More precisely, in such schemes, key generation is a linear function in a secret
key sk and some randomness, encryption is linear in a plaintext and some randomnesses,
while decryption is, roughly, linear in sk. This linearity property, essential in multiparty settings,
implies that there exists a public map which, given an offset (roughly: sk′) on the secret key,
maps encryptions under sk into ciphertexts that have the same distribution as fresh encryp-
tions under sk + sk′. Moreover, this linearity supports partial homomorphic operations, such as
addition and/or multiplication, in some form. The following Definition 7 provides a wrapper for
all such schemes, formalized using generic linear maps (ΛEKeyGen, ΛEnc and ΛDec).

Definition 7 (Linear Homomorphic Encryption (`-HE)). A linear homomorphic encryption scheme
(`-HE) consists in a message space M ; spaces of secret and encryption keys X , E k; ran-
domness spaces: BKey and

−−−→
BEnc, both (subsets of) vector spaces over Z/sZ-modules ; and

a ciphertext space C ; along with the following PPT algorithms and properties:

• Setup(1λ): On input the security parameter λ, the setup algorithm outputs a set of public
parameters pp and a uniform random string a.

• Keygen(pp, a): On input some public parameters pp, and a URS a, the key generation
algorithm samples a secret key sk $←−X and a key randomness ρkey $←−BKey. When BKey is
not closed under addition, the randomness ρkey is drawn small enough such that the sum of
n such terms remains statistically within BKey. In our multiparty setting, this will ensure that
a common key resulting from a sum of keys remains valid, as illustrated in Equations (3.6)
and (4.1). The algorithm outputs an encryption key ek ← Λa

EKeyGen(sk, ρkey) ∈ E k8, where
Λa
EKeyGen is a public linear map with coefficients determined by the URS a.

7However, this formalization can be adapted to settings where q is unknown, such as in the CL [CL15] case, where secret-
sharing operates over Z, as explained in [BDO23].

8sometimes, along with a relinearization key rlk∈Rlk, that must also be linear in sk
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• Enc(pp, ek ∈ E k, m ∈ M ): On input public parameters pp, an encryption key ek and a
plaintext m, the encryption algorithm samples a vector of randomnesses ~ρEnc $←−

−−−→
BEnc and

outputs a ciphertext c← Λek
Enc(m, ~ρEnc) ∈ C , where Λek

Enc is a public fixed linear map.

• Dec(sk ∈ X , c ∈ C ): On input a ciphertext c and a secret key sk, the decryption algorithm
computes µ ← Λc

Dec(sk), where Λc
Dec is a public linear map, and either outputs a plaintext

m = ΩDec(µ) or the symbol ⊥, where ΩDec denotes a non-linear decoding function.

• IND9CPA and correctness, as reminded in Definition 5;

Examples. Definition 7 is verified by various classical schemes such as BGN [BGN05], ex-
ponentiated ElGamal [ISO19; TLC+23], GSW [GSW13] or CL [CL15], as further discussed in
Section 4.3. Interestingly, this definition wraps schemes with different degrees of homomorphic
capabilities, ranging from those with limited homomorphism to fully homomorphic encryption
schemes.

In Section 3.3.2, we detail a linear scheme called `-BFV, which is the first RLWE-based
`-HE scheme with fully homomorphic capabilities. For clarity, we refer to this subcategory of
schemes as `-FHE.

Why linearity matters? The most important takeaway is that a `-HE scheme has linearity
properties for both key generation and encryption/decryption.

The former can be dubbed as a being key homomorphic, namely, that provided with a
common set of public parameters pp and with a uniform random string a, the addition of two
encryption keys ek1 and ek2 leads to a valid encryption key ek′. Said differently, for sk1, sk2

$←−X

and ρkey,1, ρkey,2 $←−BKey, we have that ek′ ← Λa
EKeyGen(sk1, ρkey,1) + Λa

EKeyGen(sk2, ρkey,2) =

Λa
EKeyGen(sk1 + sk2, ρkey,1 + ρkey,2) ∈ E k. This property enables the efficient distributed gen-

eration of a common encryption key, which is the backbone of any `-HE-based MPC protocol
as explained in Section 1.11.

The latter will facilitate threshold decryption, mainly thanks to the fact that, provided with a
ciphertext c, we have that Λc

Dec(sk1) + Λc
Dec(sk2) = Λc

Dec(sk1 + sk2). This allows decryption to be
carried out when the secret key sk is distributed among different parties.

1.10.5 Threshold Fully Homomorphic Encryption (ThFHE).

We work in a distributed context, so we need to adapt the standalone Definition 6 in the event
of several parties wishing to perform a computation together. This leads to the definition of
a new family of threshold (or sometimes multiparty) FHE schemes, or ThFHE in short, that
makes it possible to design MPC protocols as described in Section 1.11. In this dissertation,
we do not directly define this new family, but instead describe in Chapters 3 and 4 how to effi-
ciently transform any FHE scheme that verifies the linearity properties outlined in Definition 7,
into a ThFHE scheme using a formalism introduced in Chapter 2.

Generally speaking, the main idea behind threshold schemes is that only a set of more
than t parties out of n collaborating together can decrypt an encrypted secret. To this end, the
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secret key sk is now distributed such that each of the parties has a share of it, and the key
generation and the decryption algorithms are now interactive protocols.

1.10.6 Ring Learning with Error.

The security of encryption schemes usually relies on some hardness assumptions, such as
the learning with error (LWE) assumption introduced by Regev [Reg05]. In this dissertation,
we will largely rely on a variant of this cryptographic assumption over polynomial rings, that is
assumed to be computationally hard enough to be used for cryptography.

Notations Recall that we consider a positive integer d, denoted the lattice dimension; a
monic polynomial f of degree d; k < q positive integers denoted plaintext and ciphertext
moduli; and R := Z[X]/f(X). We denote Rk = R/(k.R) and Rq = R/(q.R) the residue
rings of R modulo k and q respectively. Let Xq and Ψq be distributions over Rq, where the
coefficients of the latter are sampled from a bounded discrete Gaussian distribution of small
variance σ2 and small bound B.

The decisional-Ring Learning with Errors Problem (RLWE). The RLWE [LPR13a] as-
sumption with parameter (Rq,Xq,Ψq) can be stated as follows: for a fixed secret sample
s←Xq, then any polynomially long sequence of samples in R2

q of the form (ai, bi = s ai + ei)i,
where ai ← U(Rq), and ei ← Ψq, is computationally indistinguishable from a uniform random
sequence of elements of R2

q .

1.10.7 Gadget Decomposition.

A gadget decomposition technique is commonly used for constructing efficient lattice-based
FHE schemes [BIP+22; CGGI20; JLP23] for reducing the noise growth of homomorphic oper-
ations. Below, let us define the widely used, e.g., [GSW13; CDKS19; GMP19], gadget toolkit :

1. Gadget vector: g = (g0, g1, ..., gl−1) ∈ Rlq ; and integers l and a (small) Bg;

2. The gadget decomposition denoted g−1(.): on input any x ∈ Rq, decomposes it into a
vector u = (u0, ..., ul−1) ∈ Rl of (small) coordinates, i.e, ‖ui‖ ≤ Bg for all 0 ≤ i ≤ l − 1,
such that

∑
i = 0l−1ui.gi = x (mod q).

1.11 ThFHE-based MPC

In scenarios involving multiple users, ThFHE-based techniques present a promising set of
solutions for secure multiparty computation (MPC), where a set of n parties collaborates to
compute any function on their inputs, while preserving the confidentiality of those inputs, due
to their minimal communication overhead [AJL+12].

Overall, instantiating an MPC protocol from a ThFHE scheme is not straightforward, and
involves multiple steps described in Figure 1.9 and recalled below:

Distributetd Key Generation (DKG): a protocol in which the parties 1 collaboratively es-
tablish a common threshold encryption key ek for a FHE scheme, and each party Pi also
obtains a share ski of the secret key sk. The threshold encryption key ek is then made
public to potential input-owners;
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m1, . . . ,m|Q|
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y = f(m1, . . . ,m|Q|)

3
Encrypted inputs

6
Output

2

1 Keygen

4 Evaluation

5 Decryption

Figure 1.9: Parties generate keys and send the threshold encryption key to the input-owners,
that encrypt their inputs and broadcast them back. Then, the computation is performed on
these encrypted data and parties collectively perform a threshold decryption towards the out-
put learner.

Input Distribution: input-owners encrypt their inputs using ek and 3 broadcast them;

Evaluation: parties (locally) perform 4 homomorphic computations on the ciphertexts to
evaluate the desired function;

Threshold Decryption: parties then 5 jointly execute a threshold decryption protocol to
uncover the computation’s output, which is then sent to the output learner.

A lower-level description will be done in Chapters 3 and 4. For ease of comprehension,
let us note that the protocol described above is made up of 3 rounds of interaction: one
for generating the keys, one to distribute the encrypted inputs, and a last one for threshold
decryption.

Delegated Computation. The main advantage of using a fully homomorphic encryption
scheme to securely evaluate a circuit is that the computation can be performed non-interactively
once the keys and inputs have been provided. This makes it easy to apply for delegated MPC,
as defined in Section 1.6 and depicted in Figure 1.9, where the “heavy” part of the computa-
tion is distributed to a set of computation parties. This approach allows our MPC protocol to
scale efficiently to a large number of input-owners, as the complexity of the evaluation remains
independent of their number.

Another interesting use case made possible by this model is to leverage a single keyless
semi-honest entity, such as a cloud server, to perform the computation. In this scenario, parties
are only responsible for generating the keys and for decrypting the output, while the circuit is
solely computed by the cloud server. This opens the door to other cases, in which parties
would be resource-constrained.
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1.12 Related Works

1.12.1 LSS-based MPC.

Linear Secret Sharing schemes (LSS, see Definition 3) have emerged as a popular founda-
tion for constructing MPC protocols. Their appeal lies in their simplicity and the homomorphic
properties that enable efficient computations on secret-shared data. Following the seminal
work by Ben-Or, Goldwasser, and Wigderson [BGW88], many approaches [Bea91; DPSZ12]
have been proposed to build more efficient and robust protocols, and have led to a number
of practical implementations such as the Sharemind framework [BLW08] and the MP-SPDZ
library [Kel20].

However, LSS-based MPC protocols still face practical limitations that can hinder their real-
world usability. One major limitation is the high communication complexity, which grows with
the number of participants and the size of the circuit. This issue is exacerbated in wide-area
network settings, where latency can significantly impact performance and increase the overall
computation time. Additionally, these protocols involve a number of communication rounds
proportional to the depth of the circuit being computed. Finally, most protocols, including
those following the SPDZ framework [DPSZ12], require a single-use, correlated random value
shared among all parties, with a size proportional to both the circuit size and the number of
participants. Distributing these randomnesses securely can be challenging and often requires
the use of alternative primitives such as FHE [KPR18] or oblivious-transfer [KOS16], which can
quickly become the dominant factor in the overall protocol execution time.

1.12.2 Multikey FHE.

Multikey FHE schemes, as introduced by López-Alt et al. [LTV12], enable the evaluation of
homomorphic operations directly over ciphertexts encrypted under different secret keys. This
paves the way to an ad-hoc form of MPC, where no DKG is run before the distribution of the
inputs, as will be later shown in Figure 4.1b. Thus, these schemes allow for a dynamic set of
parties to enter the protocol i.e. they enable to include on-the-fly new parties during the circuit
computation.

The primary application of multikey schemes is to design MPC protocols with minimal
rounds. For instance, granted that parties have access to a common uniform random string,
multikey schemes enable the construction of two-round actively secure MPC protocols, as
demonstrated in [MW16]. However, this low number of rounds comes at the cost of a much
greater computation complexity than their single-key FHE counterparts. In turn, even recent
schemes [CDKS19; CCS19; KMS24; KKL+23; KÖA23] have their ciphertext size and homo-
morphic operation complexity that increase at least linearly with n.

We observe that while at first sight the use of a multikey FHE scheme seems particularly
suited to delegated MPC, it actually poses major challenges. First, in its classical conception,
input-owners encrypt their inputs under their own keys, before distributing them. This effec-
tively prevents separate roles for input-owners and computing parties, which is essential for
easy delegation of the computation. Maybe even more importantly, computation under a multi-
key scheme scales poorly with the number of input-owners involved. Their use is therefore still
restricted to limited use-cases. However, let us point out that we propose in Chapter 4 a new
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approach that can be considered as a hybrid between multikey and standard threshold con-
structions, where no DKG needs to be run before distributing encrypted inputs while obtaining
ciphertext sizes independent of the number of parties n.
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In this chapter, we formalize a Linear Secret Sharing functionality FLSS that will prove a very
useful tool to later design MPC protocols. More specifically, we are interested in how a set of
parties can efficiently delegate a computation on their inputs. The computation performed is
ideally as general as possible, and the system is adaptable to as many settings as possible.
In MPC protocols, it is generally agreed that the parties settled on a circuit to be computed
before any operation is undertaken or any input is distributed. However, this assumption turns
out to be a strong one when many parties are considered, as some may be added during the
course of the protocol, and not all parties may agree on the calculations to be made later.

In short, we are aiming for a functionality with a reusability property, where the inputs and
the functions to be computed are dissociated. That way, no function-specific precomputation
needs to be carried out by input-owners and distributed inputs can be re-used multiple times
for different functions. Therefore, even if input-owners leave the system, the functionality has
enough information to pursue and eventually output.

For later use in Chapters 3 and 4, we focus on the special case of linear combinations. In-
tuitively, this follows on from the remarks made earlier in Section 1.10.4, where we noted that
for some encryption schemes, the key generation, encryption, and decryption algorithms are
essentially linear maps. The ability to share inputs and compute linear combinations on them
will come in handy when thresholdizing these `-HE schemes, as this will help us to reduce the
number of interactions and improve the efficiency of distributed protocols.

We describe in Figure 2.1 the overall idea of the functionality, that we call FLSS, that will be
used to compute linear combinations of shared data. In a nutshell, a set of senders are able
to send their inputs m1, . . . ,mn to the functionality without knowing which linear combination
will be computed on them. Later, on input a linear map Λ, the linear combination Λ({mi}i)
is computed and output. Importantly, distributed inputs can be reused for several different
computations (say of another linear combination Λ′({mi}i)) without requiring the senders to
send anything again.

FLSS
m1, . . . ,mn

Λ Λ′

Λ({mi}i)

Λ ′({mi}i)

Figure 2.1: Overall design requirements of FLSS. Senders distributed their inputs to the func-
tionality, that on input a linear map Λ, computes and outputs the linear combination.

Let us give a dummy example to better understand how it is intended to work. Let us imag-
ine that an unknown number of senders wants to compute an average on a set of personal
data, e.g. their salary, without a priori knowing this number. The functionality FLSS we aim
at building accepts a certain number of values, and is later parameterized by a linear map Λ,
here to compute an average. It outputs the average over these data. Importantly, FLSS can
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later consider another linear map Λ′ and compute the linear combination without the senders
having to take any other action.

This chapter is organized as follows: we first detail the technical challenges in Section 2.1,
before formalizing our new Linear Secret Sharing functionality FLSS in Section 2.2. Then, we
define the useful cryptographic primitive of Publicly Verifiable Secret Sharing (PVSS) in Sec-
tion 2.3, before discussing in Section 2.4 how to implement a LSS scheme over a polynomial
Ring for later use in Chapters 3 and 4. We prove in Section 2.5 that our construction of PVSS is
IND9CPA, before finally describing in Section 2.6 the implementation of FLSS and its security.

2.1 Technical Challenges

We detail in Sections 2.1.1 and 2.1.2 the technical challenges for FLSS to be instantiated, for
later use in the rest of this dissertation.

2.1.1 Efficient Linear Secret Sharing over Rq.

We will consider in Chapters 3 and 4 efficient homomorphic encryption schemes in which the
ciphertext space is a polynomial ring Rq, as defined in Section 1.10.6. We thus need to have
instantiations of a (n, t)-LSS scheme (see Definition 3) defined over polynomial rings. There
are two main difficulties in constructing such schemes.

1. First, following Definition 3 in Section 1.10.1, one needs to be able to instantiate two
efficient algorithms ShSim and ShInfer from a (n, t)-LSS scheme, which will turn out to be
very important in Section 2.1.2. To this end, we introduce a new subclass of (n, t)−LSS

denoted as (n, t)−LSSD, for which we detail a generic instantiation strategy for ShSim and
ShInfer.

2. Second, as previously stated, the considered schemes must be defined over polynomial
rings, which turned out not to be obvious, for example in the case of Shamir. Thus, we
present a new variant of Shamir defined over a polynomial ring, denoted as Rpe9Shamir.
Importantly, it is defined over Rq, including the useful case where q is a power q = pe

of a prime, itself possibly small p 6 n. The latter case proves useful in practice [CH18;
GIKV23] to speed-up homomorphic operations for the BGV[BGV12] and BFV [FV12] FHE

schemes.

In short, we explain how to implement a Linear Secret Sharing scheme over a polynomial
ring, which will help us throughout the rest of this dissertation.

2.1.2 Simulatability of PVSS, without straight-line extraction.

We now look back to Definition 3 and the introduction of the notion of “Inference of shares”,
which was not present in the formalism used so far in [BGG+18; CCK23]. This is not just
an addition of formalism, but, an important ingredient in the design of effective cryptographic
schemes and MPC protocols. Indeed, this allows us to describe simulators for PVSS/MPC that
do not perform straight-line extractions, but instead use rewinding, allowing the use of more
efficient schemes.
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In more detail, in our UC proof in Section 2.6.2, we introduce a hybrid in which ShInfer is
used to infer corrupt shares instead of being extracted from the broadcast PVSSs (formally
defined in Definition 8 later in Section 2.3). As a by-product, it positively answers the ques-
tion raised by Shrestha-Bhat-Kate-Nayak in the first version of [SBKN21, p5], whether PVSS

would be simulatable. Moreover, under honest majority, we achieve it from any NIZK Argu-
ment of Knowledge with simulation-soundness after possibly rewinding, i.e., weak simulation
extractability [FKMV12], in other words, not necessarily in straight-line. This includes Bullet-
proofs and Spartan [BBB+18; Set20], as very recently shown under DLOG by [DG23].

We were later informed of other works doing simulation proofs for PVSS [CD20; GHK+21;
Div22], but all of them require NIZK with straight-line, a.k.a. online, extractability, which ruled-
out Bulletproofs and Spartan.

2.2 Functionality FLSS

We now specify, in Figure 2.2, an ideal functionality for linear secret sharing, denoted FLSS.
It is parametrized by i) a set P of n parties, ii) a list S of entities of the (possibly mali-
cious) senders, where each S ∈ S has a list of inputs: (xS,α)α∈XS , identified by input labels
(xS,α)α∈XS . We denote XS the list of indices α of inputs of sender S . Finally iii), we consider
an output learner L.

Setup. Before any sender starts interacting with FLSS, it needs to wait until (Setup, P ) is
stored ∀P ∈ P. However, the adversary A can choose to never instruct corrupt parties to
setup. To remedy this, we follow the fetch-and-delay mechanism explained in Section 1.7.1
and introduce a timeout TA.

Input. Upon receiving (ready) from the functionality, a sender S ∈ S can then send its
inputs (xS ,α)α∈XS of labels (xS ,α)α∈XS , after which FLSS notifies it to all the parties. The former
cannot be subsequently updated; once sent, the sender S is committed to the submitted val-
ues.

Opening. Let HOpeners be a set of parties, initially empty. Any party Pi can call LCOpen for
some linear map Λ, and is then included in HOpeners.

Upon receiving LCOpen for some linear map Λ from t+1 honest parties, i.e. when |HOpeners| ≥
t + 1, and if FLSS has stored all the inputs appearing with nonzero coefficient in Λ, then FLSS

eventually delivers its evaluation. We denote this mechanism a collective opening. Now con-
sider the scenario where one isolated honest party would start the LCOpen protocol, i.e. start-
ing revealing its shares of the evaluation. Since it is hard to prevent t corrupt parties from also
publicly disclosing compatible consistent shares, this results in the evaluation being publicly
opened. We qualify such an event as an early opening. In practice, we give to A the power
to send an (open9order) to FLSS, which triggers an immediate delivery of the evaluation to all
parties, as soon as one honest party requests (LCOpen).

2.3 Publicly Verifiable Secret Sharing (PVSS)

Let PKE = (PKeyGen,Enc,Dec) be any public key encryption scheme as defined in Definition 5
in Section 1.10.2, satisfying IND9CPA. We introduce the following definition:
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LIST OF FIGURES 54FLSS

Participants: A set S of senders, an output learner L, and a set P of parties.
Inputs (For each S ∈ S ): a list (xS,α)α∈XS , where each input xS,α is identified by a unique
predefined ’label’ xS,α.

Setup

• On input (Setup) from any P ∈ P for the first time, or possibly from A if P
is corrupt: stores (Setup, P ), and eventually-delivers (Setup, P ) to each party
P ∈ P. //eventually-delivers” consists of the same fetch-and-delay mechanism
as explained in Section 1.7.1.

• Initialize a counter TA ← 1 //Formalizing timing for setup of corrupt parties

– Upon receiving delay 9 Setup from A, TA ← TA + 1.
– Upon receiving fetch from any P ∈P, TA ← TA − 1.
– When TA = 0 for the first time, freeze forever TA = 0. Then, send ready to every
S ∈ S .

Input On input (input, xS ,α, xS,α ∈ Rq) from any S ∈ S for the first timea, or possibly from
A if S is corrupt: first, if xS,α = ⊥ then set it to 0, store (input,S , xS,α), and eventually-
deliver (stored, xS ,α)b to each party P ∈P.

A delaying eventual delivery

• Initialize D ← 1 // Delivery delay

• Upon receiving delay from A, set D ← D + 1

Bookkeeping requests from honest parties

• Initialize HOpeners← {}c

• Upon receiving (LCOpen, ssid = Λ) from any honest party Pi ∈P, set HOpeners←
HOpeners ∪ {Pi}, set D ← D − 1 and leak (LCOpen, ssid = Λ, Pi) to A.

LCOpen

• [Early Opening] If |HOpeners| ≥ 1 and if all xS ,α appearing with nonzero coefficient in
Λ are stored, then,

1. if L is corrupt, leak y := Λ((xS ,α)S,α) to A;
2. if L is honest, upon receiving (open9order,Λ) from A, if no output was delivered

yet to L, then send (ssid = Λ, y := Λ((xS,α)S,α)) to L.

• [Collective Opening] If |HOpeners| ≥ t + 1 and D ≤ 0 and no output was delivered
yet to L, and if all xS ,α appearing with nonzero coefficient in Λ are stored, then send
(ssid = Λ, y := Λ((xS,α)S,α) to L.

aOnce a sender S (or A) send an input xS,α with label xS,α, the former cannot be subsequently updated.
bAppended with “xS,α = ⊥” when this is the case.
cRecall that we consider in this description a unique Λ. If multiple are considered, then several sets HOpenersΛ must

also be considered.

Figure 2.2: Sharing with Linear Combination functionality for one single linear map Λ. sid
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Definition 8. (Publicly Verifiable Secret Sharing (PVSS)) Let us consider the following random-
ized function PVSS, parametrized by n strings (pkPKEi )i∈[n].

On input s ∈ Rq, compute (s(1), . . . , s(n))← LSS.Share(s), and output
[
PKE.Enc(pkPKEi , s(i))

]
i∈[n]

along with a NIZK proof π of correct sharing for the following relation

(2.1) RShare=
{
x = ({pkPKEi }j∈[n], enc9shares)

w = (s, r, {ρi}i∈[n])

∧{s(i)}i∈[n] ← LSS.Share(s; r)

∧ enc9shares← [Enc(pkPKEi , s(i); ρi)]i∈[n]

}

PVSS is IND9CPA secure for anyA being given at most t decryption keys
(
dkPKEi

)
i∈I⊂[n],|I|≤t,

as will be shown in Section 2.5.

Remark. By convention, encryption under an incorrectly formatted public key pkPKE, e.g., ⊥,
returns the plaintext itself.

Remark. We describe the MPC protocols in Chapters 3 and 4 in the semi-malicious model,
for which the NIZK proof can be dropped. This leads to the manipulation of new structures,
denoted as Public Secret Sharing, namely a PVSS without a proof of correctness.

State-of-the-art implementations of PVSS can be found in [GV22; KMM+23]. The former
includes NIZKs of smallness of the secret, which will be needed, e.g., for sharing noises.

Security An intuition of proof is that, under the idealized assumption that PKE ciphertexts
under the unknown t + 1 public keys would perfectly hide their content, then, the view of the
adversary is the vector of t plaintext shares {s(i)}i∈I . In particular, for any value s ∈ Rq, we
have that, in a PVSS of s, the t+1 coordinates

[
Enc(pkPKEi , s(i)), i ∈ [n]\I

]
, which are encrypted

under the honest keys pkPKEi , perfectly hide the plaintext coordinates s(i) to the adversary.

2.4 How to implement a linear Secret Sharing scheme over a Polynomial Ring

Our goal in this section is to propose instantiations of (n, t)-LSS schemes as defined in Defi-
nition 3 over polynomial rings. There are two main difficulties in constructing such schemes.
First, following Definition 3 in Section 1.10.1 one needs to be able to instantiate two efficient
algorithms ShSim and ShInfer, which will turn out to be very important for our UC proofs as ex-
plained Section 2.1.2. Second, these schemes must be defined over polynomial rings, which
turned out not to be obvious, for example in the case of Shamir. To address these challenges,
we follow the roadmap below:

1. We first introduce a subclass of (n, t)−LSS that we denote as (n, t)−LSSD in Definition 39
in Appendix A. The latter will be used as a helper to describe a common instantiation
strategy for ShSim and ShInfer that encompasses classic sharing schemes.

2. We then recall in Section 2.4.1 the classical {0, 1}−LSS scheme of [JRS17] and show in
Property 11 that it is indeed a (n, t)−LSSD scheme. In particular, we show that it verifies
both the simulatability and inference properties.

3. Finally, we present in Section 2.4.2 our new Shamir scheme over polynomial rings, de-
noted as Rpe9Shamir, and show that it also is a (n, t)−LSSD scheme.
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In a nutshell, we show in this section the following:

(2.2) Rpe9Shamir ∪ (n, t)−{0, 1}−LSS ⊂
Prop. 11&15

(n, t)−LSSD ⊂
Definition 39

(n, t)−LSS

(n, t)−LSSD. As a preliminary, we define (n, t)−LSSD in Definition 39 in Appendix A. The
purpose of this definition, which is adapted from [JRS17], is to serve as a helper to prove
that Shamir, the {0, 1}−LSS scheme of [JRS17] and the recent TreeSS scheme of Cheon et
al. [CCK23] all verify properties (4) and (5) of Definition 3. We give details, in Proposition 41,
about a common strategy to instantiate ShSim and ShInfer for all these schemes.

2.4.1 Constructing a (n, t)−LSSD scheme from a (n, t)−{0, 1}-LSS scheme

We first consider a class of linear secret sharing schemes, denoted as (n, t)−{0, 1}9LSS, in
which the reconstruction coefficients are always binary (see Definition 9). More precisely, such
a secret sharing scheme divides a secret s into a set of shares s(1), . . . , s(n) such that each
share consists of a set of elements s(i) = {s(i)

j }j∈[l] for a fixed bound l. For any set S ⊆ [n] that
satisfies the access structure, i.e such that |S| > t, there exists a subset S′ ⊆

⋃
i∈S′ s

(i) such
that

∑
S′ s

(i)
j = s, i.e. with binary recovery coefficients.

Definition 9. (Strong {0, 1}-Reconstruction). We say that a LSS scheme has strong {0, 1}-
reconstruction if for any secret s and (s(1), . . . , s(n)) = LSS.Share(s), for any valid set of shared
elements T ⊆ [n] × [l], there exists a subset T ′ ⊆ T such that

∑
i,j∈T ′ s

(i)
j = s, where s(i) =

(s
(i)
1 , . . . , s

(i)
l ).

We denote any LSS scheme with this reconstruction property as a {0, 1}-LSS scheme. In
other words, the reconstruction function takes a 0/1 combination of its inputs.

In the following definition, we require this to hold not only for any valid set of shared ele-
ments, but also for any set of shares corresponding to a valid set of more than t+1 parties, i.e.
when each party receives multiple shares. This property defines the notion of a {0, 1}-LSSD

scheme in [JRS17].

Definition 10. ((n, t)−{0, 1}-LSS particularized from [JRS17]) Let P = {P1, . . . , Pn} be a set
of parties. We denote by {0, 1}-LSSn the collection of all sets of subsets U ∈ P(P)1 with
a size of at least t + 1, such that there exists an l ∈ N polynomial in n and some set of
parties P ′ = {P ′1, . . . , P ′ln} such that we can associate the party Pi ∈ P with the parties
P ′l(i−1), P

′
l(i−1)+1, . . . , P

′
li ∈P ′ as follows.

For every U ⊆ [n], |U | > t if and only if the set U ′ of parties of P ′ is associated with a party
in U , |U ′| > t. More precisely, for every U ⊆ [n],

(2.3)
∣∣ ⋃
i∈U
{Pi}

∣∣ > t if and only if
∣∣ ⋃
i∈U
{P ′l(i−1), P

′
l(i−1)+1, . . . , P

′
li}
∣∣ > t.

1Where P(P) represents the power set of P.
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Construction. We refer to [JRS17] for an example of construction of a (n, t)−{0, 1}−LSS

scheme. Overall, it uses a classic result of Valiant [Val84] to describe a randomized construc-
tion of a monotone Boolean formula for threshold functions with size O(n5.3), before describing
a “folklore” algorithm to go from special monotone formulas to (n, t)−{0, 1}−LSS sharing ma-
trices (following the formalism of Definition 39 in Appendix A).

Property 11. The (n, t)−{0, 1}−LSS scheme described in [JRS17] is a (n, t)−LSSD scheme.

Proof. This property directly follows from [JRS17, Theorem 3]. Importantly, one can efficiently
instantiate ShSim and ShInfer from it following the strategy described in the proof of Proposi-
tion 41 in Appendix A.

Remark. Note that the simulatability of a {0, 1}−LSS scheme had been used without being
formalized in [BGG+18; CCK23]. Inference, on the other hand, is a new ingredient that makes
it possible not to use straight-line extraction in our UC proofs

Remark. This construction leads to an average share size of O(n4.3). Note that following
Definition 3, such scheme has the property that the distribution of any set of t shares is U(Rtq).

Remark. Finally, let us note that the recent TreeSS scheme presented in [CCK23] also is a
(n, t)−LSSD scheme following their Proposition F.1. Therefore, the same reasoning is trivially
valid.

2.4.2 Shamir Secret-Sharing in Rq

The usual Shamir secret-sharing scheme described in Section 1.10.1 is instantiated over a
field F. Indeed, Shamir is based on polynomial interpolation and involves the computation of
Lagrange coefficients, which requires inverting elements of the form αi − αj , where αi and αj
are public-points. Working over a field guarantees that all non-zero elements are units, hence
that these coefficients exist.

Our goal is to propose a variant of this classical case that works over polynomial rings.
Overall, we will proceed as follows:

1. First, we recall the claim known since [Feh98], that it is possible to construct a Shamir
scheme over polynomial rings as long as αi − αj is invertible (see Definition 12), which
exists when the prime factor q is of size at least n+ 1.

2. Then, we propose a new construction, denoted as Rpe9Shamir that extends this result to
the useful case where q is a power q = pe of a prime, itself possibly small p 6 n.

Reminders. It is a known result since [Feh98] that using a ring is possible, as long as the
set of Shamir public-points forms an exceptional sequence [ACD+19; CDN15] as defined in
Definition 12 below.

Definition 12. From [ACD+19] For a ring R, the sequence α1, . . . , αn of elements of R is an
exceptional sequence if αi − αj is a unit in R for all i 6= j.

Provided with an exceptional sequence over R, we then have the following Theorem 13.
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Theorem 13. From [ACD+19] Let R be a commutative ring and α1, . . . , αn be an exceptional
sequence in R. Then, a Shamir secret-sharing scheme instantiated in R with Shamir public-
points, α1, . . . , αn, is correct and secure.

What remains to be seen is how to build an exceptional sequence (or Shamir public points)
from Rq.

Construction of an Exceptional Sequence. To build an exceptional sequence for Rq, we
distinguish two cases.

The easy case is when all prime factors of q are of size at least n + 1. Then we have that
[0, . . . , n] ⊂ Rq forms an exceptional sequence. Indeed, all i− j for

{
(i, j) ∈ [0, . . . , n]2, i 6= j

}
are invertible modulo all the prime factors of q, thus are invertible modulo q by the Chinese
remainders theorem (CRT), and thus in Rq.

In the general case, we need to enlarge Rq. We do the construction for q = pe a prime
power, itself possibly small p 6 n ([CH18; GIKV23]), then the case of composite q follows
from the CRT. The construction is conceptually as follows. Consider an irreducible polynomial
Q(T ) ∈ Fp[T ] of degree d := dlogp(n + 1)e, then an arbitrary lift Q in Z/qZ. Finally, embed
Rq in the Rq-algebra S := Rq[T ]/Q(T ), which we may also denote as Gal(Rq, d). Now in
S = Gal(Rq, d), we have the sub-ring B := Z/qZ[T ]/Q, denoted Gal(Z/qZ, d) the ”Galois ring
extension of degree d of Z/qZ”.

In [ACD+19], they observe that B contains a pd-sized exceptional sequence, i.e. at least
n + 1 = 2log(n+1) elements, denoted (α0 := 0, α1, ..., αn), such that all pair-wise differences
αi − αj for i 6= j are invertible. From them, we deduce a linear secret-sharing over B, that we
denote LSS[B]. By tensorisation of LSS[B], over Z/qZ, with any inclusion of Z/qZ-algebras,
e.g. Z/qZ ↪→ Rq, we obtain a S-linear secret-sharing scheme LSS[S] over S := Rq ⊗Z/qZ B.
Thus, we can apply to S and to these evaluation points (αi)i=0,...,n the same previous construc-
tion as for Shamir defined in Section 1.10.1. Rq being a sub-ring of S, we have that LSS[S]

particularizes to a Rq-linear sharing over Rq as desired.

Property 14. (Rpe9Shamir) Let e be an integer and p a prime. There exists a Shamir secret-
sharing scheme instantiated in Rpe that is correct and secure.

Property 15. Rpe9Shamir is a (n, t)−LSSD scheme.

Proof. This directly follows from Definition 39 presented in Appendix A, when considering the
Vandermonde matrix presented in Equation (1.6) as sharing matrix.

To summarize, we consider an exceptional sequence α1, . . . , αn, where each αi will be
treated as a Shamir public-point. To share a secret s, sample a polynomial h at random in
S[X]

(s)
t , then output {h(αi)}i∈[n]. Each share, which is in S, is therefore encoded as d ele-

ments of Rq. Then for reconstruction use the Lagrange polynomials Πj 6=i(X − αj)/(αi − αj).
Note that, since each share is in S =̃Rdq , we have a size overhead of d. But for simplicity, in
the remaining, we do as if shares were in Rq.
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Uniformity of any t shares of any given secret.

Property 16. Let p be a prime and e and integer. For every s ∈ Rpe , for any subset of t indices
I ⊂ [n], the distribution of shares (s(i))i∈I output by Rpe9Shamir.Share(s) is U(Rtpe).

Proof. For any commutative ring R with unit 1, we denote as R[Y ]t the polynomials of degree
≤ t. Let us first introduce, for a set U ⊂ (αi)i∈[0,...,n], the following map:

• EvalU : h ∈ R[Y ]t → [h(αi), αi ∈ U ]: the map returning the evaluations at points of U .

By [ACD+19, Thm 3], for every (t + 1)-sized U , we have that EvalU is an isomorphism. Then,
we have the randomized function LSS[R].Share : R −→ Rn, defined as: on input a secret
s ∈ R, sample h← U

(
R[Y ]

(s)
t

)
then return Eval(αi)i∈[n]

(h) denoted shares of s.
By surjectivity (isomorphism) of Eval{0}∪I : R[Y ]t → Rt+1 for any t-sized subset I of indices

of (αi)i∈[0,...,n], we have surjectivity (isomorphism) of EvalI : R[Y ]
(s)
t → Rt for any fixed s ∈ R.

Furthermore, the map EvalI being also linear, we have that it maps the uniform distribution
onto the uniform distribution.

When LSS is instantiated with Rpe9Shamir, we have in conclusion the desired result.

2.5 Proof of IND9CPA of Publicly Verifiable Secret Sharing

Proposition 17 states that any PPT adversary A corrupting at most t parties, has negligible
advantage in distinguishing between the encrypted (n, t)−LSS sharings of any two chosen se-
crets (sL, sR) ∈ R2

q . Recall that in this section, we consider any public key encryption scheme
PKE = (PKeyGen,Enc,Dec) satisfying IND9CPA as defined in Definition 5 in Section 1.10.2.

Proposition 17 (IND9CPA of encrypted sharing). For any integers 0 ≤ t ≤ n, we consider the
following game between an adversary APVSS and an oracle O . O is parametrized by a secret
b ∈ {L,R} (left or right oracle ).

GameAPVSS

IND−PVSS

Setup. APVSS gives to O: a subset of t indices I ⊂ [n], and a list of t public keys
(pki)i∈I ∈ (Pk t ⊥)t. For each i ∈ [n]\I , O generates (dki, pki) ← PKeyGen(1λ)

and shows pki to APVSS.

Challenge. APVSS is allowed to query O an unlimited number of times as follows. APVSS

gives to O a pair (sL, sR) ∈ R2
q . Depending on b ∈ {L,R}, O replies as either OL

or OR:

OL: computes (s(1), . . . , s(n))← Share(sL) and returns (Encpki(s
(i)))i∈[n]

OR: computes (s(1), . . . , s(n))← Share(sR) and returns (Encpki(s
(i)))i∈[n].

Guess. APVSS gets some (Encpki(s
(i)))i∈[n] and outputs b′ ∈ {L,R}. It wins if b′ = b.

Figure 2.3: IND9CPA of encrypted sharing
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At some point, APVSS may output a string, e.g., a bit. Then for any PPT machine APVSS, we
want to show that the distinguishing advantage AdvL,R = |Pr(1← AOL

PVSS)− Pr(1← AOR

PVSS)| is
negligible.

Proof Strategy: In order to prove Proposition 17, we follow the following steps:

1. We first consider in Figure 2.4 the straightforward reduction into the slightly easier variant
of the game, which we denote as IND9CPA of encrypted sharing with plaintext adversary
shares. There, the adversary APVSS∗ is given shares of corrupt parties in the clear2.

2. We then introduce in Figure 2.5 an intermediary oracle that sets the shares of honest
parties to 0.

3. Finally, we describe in Figure 2.6 the (n− t)-keys IND9CPA game for a PKE scheme.

Our goal is then to bound the advantage by any adversary APVSS∗ in the game presented
in Figure 2.4, by the maximum advantage of an adversary APKE in the (n-t)-keys variant indis-
tinguishability game for PKE presented in Figure 2.6.

Proof. We now consider the game of IND9CPA of encrypted sharing with plaintext adversary
shares. We denote again its oracles as OL and OR, although now they return in the clear
the t corrupt shares. We first define two apparent modifications of OL and OR, denoted as
ÕL and ÕR, which only differ from the previous, in that they first sample the corrupt shares
(s(i))i∈I $←−Rtq3 uniformly at random, then simulate shares for [n] \ I using the latter and sL or
sR.

Actually, by the secrecy of the secret sharing scheme, they produced exactly the same dis-
tribution as OL and OR. We describe them below in Figure 2.4, then formalize the previous
claim in Equation (2.4).

GameAPVSS∗
IND−PVSS∗

Setup. APVSS∗ gives to O: a subset of t indices I ⊂ [n], and a list of t public keys
(pki)i∈I ∈ (Pk t ⊥)t. For each i ∈ [n]\I , O generates (dki, pki) ← PKeyGen(1λ)

and shows pki to APVSS∗ .

Query. APVSS∗ is allowed to query O an unlimited number of times as follows. APVSS∗

gives to O a pair (sL, sR) ∈ R2
q . Depending on b ∈ {L,R}, O replies as either OL

or OR:

ÕL : samples (s(i))i∈I $←−Rtq and simulates shares for [n] \ I . Pre-
cisely, it interpolates ({s(i)}i∈[n]\I) ← ShSim({s(i)}i∈I , sL) and returns(
(s(i))i∈I , (Encpki(s

(i)))i∈[n]\I
)
;

ÕR: samples (s(i))i∈I $←−Rtq and simulates shares for [n] \ I . Pre-

2Notice that this variant is strictly easier when APVSS∗ badly generated some of its keys, and thus is unable to
decrypt the shares of corrupt parties. Formally, the reduction from Game

APVSS
IND−PVSS to Game

APVSS∗
IND−PVSS∗ proceeds as

follows. Consider a challenger APVSS of Proposition 17. The reduction forwards the requests of APVSS to its oracle.
It receives the plaintext shares (s(i))i∈I and the ciphertexts (ci)i∈[n]\I . It forwards to APVSS∗ : (Encpki(s

(i))i∈I and
the same ciphertexts (ci)i∈[n]\I .

3Here we do as if all shares were in Rq
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cisely, it interpolates ({s(i)}i∈[n]\I) ← ShSim({s(i)}i∈I , sR) and returns(
(s(i))i∈I , (Encpki(s

(i)))i∈[n]\I
)
;

Guess. APVSS∗ gets some
(
(s(i))i∈I , (Encpki(s

(i)))i∈[n]\I
)

and outputs b′ ∈ {L,R}. It
wins if b′ = b.

Figure 2.4: IND9CPA of encrypted sharing with plaintext adversary shares.

For any possibly unlimited adversary APVSS∗ ,

(2.4) |Pr(1← AÕL

PVSS∗)− Pr(1← AOL

PVSS∗)| = 0 and |Pr((1← AÕR

PVSS∗)− Pr(1← AOR

PVSS∗)| = 0

To conclude the proof, we introduce an intermediary oracle, defined as ÕZ in Figure 2.5.
ÕZ is the common modification of ÕL and ÕR, which sets to 0 the n−t honest plaintext shares.
In particular, it completely ignores the request (sL, sR) given to it.

ÕZ : samples (s(i))i∈I $←−Rtq; sets s(i) := 0 ∀i ∈ [n]\I ; returns(
(s(i))i∈I , (Encpki(s

(i)))i∈[n]\I
)
;

Figure 2.5: Intermediate oracle ÕZ for the game presented in Figure 2.4.

From Property 16 of uniform independence of the t plaintext shares
(
s(i))i∈I , we conclude

that the distinguishing advantage between both ÕL and ÕR, with ÕZ , is negligible.

Claim 18. The maximum distinguishing advantage with ÕZ is less than the one for (n−t)-keys
IND9CPA for PKE.

We recall the game defining it, from which the Claim should be clear enough. It is between
a challenger APKE, and an oracle OPKE parametrized by a secret b ∈ {E, 0}.
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GameAPKE

(n−t)−IND9CPA

Setup. For each i ∈ [n − t], OPKE generates (dki, pki) ← PKeyGen(1λ) and shows pki
to APKE.

Query. APKE gives to OPKE (n − t) chosen plaintexts (sh)h∈[n−t], then OPKE replies
depending on b ∈ {E, 0}. In the former case, it behaves as OE

PKE (actual n− t-keys
encryption), in the latter case as O 0

PKE (encryptions of 0).

OE
PKE returns (Encpkh(sh))h∈[n−t];

O0
PKE returns (Encpkh(0))h∈[n−t].

Guess. APKE gets some (ch)h∈[n−t] and outputs b′ ∈ {E, 0}. It wins if b′ = b.

Figure 2.6: (n− t)-keys IND9CPA Game

Recall that the distinguishing advantage in this GameAPKE

(n−t)−IND9CPA game, is upper-bounded
by n− t times the advantage for one-message indistinguishability, see e.g. [BS, Thm 5.1].

We now fully formalize the proof of the Claim, as the following straightforward reduction from
the game (ÕL/ÕZ) (and likewise (ÕZ/ÕR)) into the n− t-keys IND9CPA game (OE

PKE/O0
PKE).

The reduction works as follows.

1. Upon receiving a set of keys (pkPKEh )h∈H from OPKE, then APKE samples itself t key pairs
(dkPKEi , pkPKEi )i∈I , initiates APVSS∗ , reorganizes the indices so that the indices chosen
by APVSS∗ correspond to I , gives to APVSS∗ the total n = |H| + |I | public keys and
furthermore gives to APKE the t secret keys (dkPKEi )i∈I .

2. Upon receiving one challenge (sL, sR) from APVSS∗ (we keep the same syntax, but actu-
ally sR is never used here), APKE samples (s(i))i∈I $←−Rtq and interpolates ({s(i)}i∈[n]\I)←
ShSim({s(i)}i∈I , sL) which it gives to its oracle OPKE as a request.

3. Upon receiving the response ciphertexts (ch)h∈H fromOPKE, it then computes the n-sized
vector V consisting of:

• The entries in I equal to the plaintexts (s(i))i∈I that APKE generates itself.

• The remaining entries are set to the {ch}h∈H received from OPKE.
And sends it to APVSS∗ as response to its challenge.

4. Upon receiving as answer a bit b from APVSS∗ , then APKE outputs the same bit b to OPKE.

The Claim now follows from the fact that in the case OE
PKE, then APVSS∗ is facing the same

behavior as ÕL, while in the case O0
PKE, then APVSS is facing the same behavior as ÕZ . Thus

the distinguishing advantage of APKE is the same as the one of APVSS∗ , which concludes the
proof.

Without computing the probabilities, the idea why APKE has non-negligible advantage with
this strategy is that:

• In the case where the ciphertexts {ch}h∈H are encryptions of the actual n − t shares
{s(h)}h∈H, then APVSS∗ receives from APKE a correctly generated PVSS of s.
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• In the case where the ciphertexts {ch}h∈H are encryptions of 0, then, by Property 16
of uniform independence of the t plaintext shares

(
s(i))i∈I , we have that what APVSS∗

receives from APKE is undistinguishable from a sample in the distribution V .

2.6 Implementation of FLSS.

We now detail in Figure 2.7 a protocol ΠLSS that instantiates FLSS in the (BC,FAT, bPKI)-hybrid
model. Recall from Section 2.2, that we consider a set P of n parties, a set S of senders,
and an output-learner L.

Overall, we make use of a linear secret sharing scheme detailed in Section 2.4 as well as
a public key encryption scheme PKE. The combination of the two will be used to distribute the
inputs in the form of publicly verifiable secret sharings (PVSS). The linearity of the LSS scheme
will then enable the evaluation of linear maps on the shared inputs and open the outputs.

ΠLSS

Parameters: Any PKE = (PKeyGen,Enc,Dec) and (n, t)−LSS = (Share,Reco) schemes
and, from them, the PVSS algorithm detailed in Definition 8.

ΠLSS.Setup : ∀P ∈ P: (dkPKEP , pkPKEP ) ← PKE.PKeyGen(1λ), send (Register, pkPKEP ) to
bPKI.

ΠLSS.Input :

• Each sender S ∈ S sets (pkPKEP )P∈P as the output delivered by bPKI. For each
α ∈ XS :

– Compute enc9sharesS,α, := PVSS
(
(pkPKEP )P∈P , xS ,α

)
.

– Broadcast (input, ssid := xS,α, enc9sharesS,α) over BCS .

• ∀Pj ∈ P, upon receiving outputs from all sub-instances of all BCS whose label
ssid = xS,α has nonzero coefficient in Λ: for each output (xS,α, ∗), if ∗ = ⊥ then
set x(j) := 0; else if ∗ = [c

(1)
S,α, . . . , c

(n)
S,α] then set x(j)

S,α := PKE.Dec(dkPKEj , c
(j)
S,α).

ΠLSS.LCOpen(Λ) :

• Upon calling LCOpen, each party Pj ∈ P evaluates µ(j) := Λ
(
(x

(j)
S ,α)S,α

)
and

sends it over FPj ,L
AT to L.

• Upon receiving opening shares (µ(i))i∈U from any (t+ 1)-set U ⊂ [n] of parties,
outputs µ := LSS.Reco

(
µ(i))i∈U ,U).

Figure 2.7: Protocol for secret-sharing then linear combination

In practice, the main feature of this protocol is that, after a unique round of broadcast,
parties have a common view of the set of shared secrets. Subsequently, they can perform the
threshold opening of the evaluation of any linear map over the shared secrets, using only one
step of all-to-all asynchronous peer-to-peer messages.
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How to compute a linear map Λ on shared secrets? We consider a system in which each
party Pi ∈P has published a public key pkPKEi on bPKI. Now, let us consider a set of senders
S that wishes to share some secret values and evaluate some linear map Λ on them.

To share a secret s, each sender S first generates a (n, t)-linear secret sharing of it. Let
{s(i)}i∈[n] the vector of shares obtained. It then encrypts each share s(i) under Pi’s public key
pkPKEi . Following Definition 8, the n-sized vector of ciphertexts obtained is called a publicly
verifiable secret sharing (PVSS)4. This vector is then broadcast.

To open a linear map Λ over a set of shared secrets (sj)j : every party Pi first decrypts its
encrypted shares s(i)

j , then evaluates Λ on them. By linearity of the (n, t)-LSS scheme, the
result is an opening share µ(i) of Λ((sj)j). Then it sends µ(i) to L, via asynchronous P2P
channels. Finally, from any t + 1 opening shares, the desired linear combination Λ((sj)j) is
efficiently reconstructible.

Remark. In the malicious case, we let senders append NIZKs of knowledge of plaintexts and
of a degree t polynomial as defined in Definition 8

Security.

Proposition 19. Protocol ΠLSS UC implements FLSS

The intuition is that, if PKE perfectly hides the plaintexts, then we are almost brought back
to the basic protocol in [CDN15, p. III] for computing a linear combination with information-
theoretical MPC. The “almost” being that ΠLSS furthermore prevents malicious senders from
aborting after having sent shares to some parties but none to others, thanks to the broadcast.
We provide a detailed proof in Sections 2.6.1 and 2.6.2.

2.6.1 Description of the Simulator Sim

We describe in Figure 2.8 the simulator for an honest L5 and a linear map Λ. Sim initiates in
its head: a sets P of n parties and S of senders, and may initially receive corruption requests
from Env for arbitrarily many senders and up to t parties, indexed by I ⊂ [n].

It simulates the functionalities (bPKI,FAT,BC) following a correct behavior. For instance,
upon receiving some instruction from Env intended to some functionality, Sim internally sends it
to the functionality then simulates the steps taken by the functionality accordingly. Upon every
output from a simulated functionality to a simulated corrupt party, or, upon every message from
a simulated functionality to Sim acting as A, then Sim immediately forwards it to Env, as would
have done the actual dummy A.

Following its specification, FLSS relays to Sim every message from the actual dummy honest
parties (LCOpen). Sim has an exact control over the delays of early and of collective opening,
which is enabled by the instructions open9order and delay which it sends to FLSS.

Remark. Note that for simplicity, we describe the simulator for the opening of only one evalu-
ation of one linear map. The case of multiple openings is handled as in [CDN15, p127], when
they simulate each new LCOpen.

4Recall that in the current semi-malicious model, the appended NIZK proof is dropped
5The case where the output learner is corrupt is easy. Namely, the simulator plays ΠLSS honestly, then indistinguishability

follows from the correctness of ΠLSS.
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Sim
Share : Sim does the following:

- For any simulated honest sender S ∈ S , the simulator Sim sets x̃S ,α := 0

for all α ∈ XS , and follows the protocol.
- For any simulated corrupt S ∈ S , the simulator Sim first extracts the
secret xS ,α for all α ∈ XS by simply decrypting shares of simulated honest
parties, and sends (input, xS ,α, xS,α) to FLSS.

LCOpen : Upon being leaked by FLSS that a dummy honest party Pi sent
(LCOpen,Λ), then do the following. If all xS,α appearing with nonzero co-
efficient in Λ are stored and if the simulated Pi was already assigned a sim-
ulated opening share of y := Λ((xS ,α)S,α), then, the simulated Pi sends this
share to L. Otherwise, do the following steps to assign simulated opening
shares to Pi, then proceed as above.

1. If FLSS did not leak the stored output y yet, then, assign an arbitrary
opening share to Pi.

2. Else this means that Sim was just leaked the evaluation y from
FLSS. Then, do the following assignments from now on. Simu-
lated parties who followed the protocol so far have received a set
{enc9sharesS,α}S∈S ,α∈XS of PVSSs of some xS,α. The simulator Sim

does the following:

(a) First, it decrypts the honest shares
(
x

(i)
S ,α
)
i∈H, of

{enc9sharesS,α}S∈S ,α∈XS , and computes the opening shares
{µ̃(i) = Λ

(
(x

(i)
S ,α)α∈XS ,S∈S

)
}i∈H.

(b) Second, it does a corrupt share inference: from the t + 1 opening
shares {µ̃(i)}i∈H of ỹ held by simulated honest parties, it applies
ShInfer to deduce the t corrupt opening shares {µ̃(i)}i∈I .

(c) Finally, it deduces the (unique) n− t opening shares {µ(i)}i∈H of
honest parties as ShSim(y, (µ̃(i))i∈I).

Figure 2.8: Description of the simulator for ΠLSS



2.6.2 Proof of indistinguishability with a Real execution

We go through a series of hybrid games, starting from the real execution REALA. The view of
Env consists of its interactions with A/Sim, and of the outputs of the actual honest parties.

Intuition The UC security property follows from four hybrids. The first two, HybridShSim and
HybridFLSS , replace the opening shares of honest parties of the output of the protocol ΠLSS, by
ones simulated out of the actual evaluation of a linear map Λ. They are indistinguishable from
the real execution, by simulatability of openings and by correctness of ΠLSS. Then, Hybrid0Share

replaces the input of a simulated honest senders by 0. Finally, HybridShInfer changes the way
opening shares of corrupt parties are obtained.

Game REALA. This is the actual execution of the protocol ΠLSS with adversary A fully con-
trolled by Env (and ideal functionalities bPKI,FAT,BC).

Game HybridShSim. (Skipped if L is honest.)
In this hybrid, we change the method of computation of the opening shares of honest par-

ties. To do so, we first define quantities denoted Inferred Corrupt Opening Shares (µ(i))i∈I ,
nonwithstanding corrupt parties may not have any opening shares on their witness tapes,
since they may not send any.

For every input xS,α of some honest S , we simply define
(
x

(i)
S ,α
)
i∈I as the actual shares

produced by S when it computes the PVSS of xS ,α.
For each output (xS,α, ∗) of BCS from some corrupt S : (i) if ∗ = ⊥ then we define

(
x

(i)
S ,α :=

0
)
i∈I , otherwise (ii) this implies that ∗ is a correctly formed PVSS. Thus in this case, we define

as
(
x

(i)
S,α
)
i∈I the plaintext shares read on the witness tape of S .

For all i ∈ I we set µ(i) := Λ
(
(x

(i)
S,α)α∈XS ,S∈S

)
. By linearity of the LSS scheme, they are

equal to the opening shares of ỹ that the (Pi)i∈I would have sent if they were honest. Finally,
we generate the opening shares of honest parties as ShSim(ỹ, (µ(i))i∈I).

Claim 20. REALA ≡ Hybrid0Share.
Proof: Since ShSim simulates perfectly, they are identical to the ones of the Real execution.

Game HybridFLSS . (Skipped if L is honest.) This game differs from HybridShSim in that the
input ỹ to ShSim is replaced by the actual y leaked by FLSS.

Claim 21. Hybrid0Share ≡ HybridFLSS .
Proof: By correctness of ΠLSS, y = ỹ so the view of Env is unchanged.

Game Hybrid0Share. We modify HybridFLSS in that each simulated honest sender plays the
protocol as if it had input 0 instead of x.

Claim 22. HybridFLSS ≡ Hybrid0Share.
Proof: Since the private decryption keys dkh of all honest parties h ∈ H are not used anymore,
we have that the IND9CPA property of PVSS stated in Proposition 17 in Section 2.5 applies.
Thus the view of Env is indistinguishable from the one in the previous game.
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Game HybridShInfer. If L is honest, this game is identical to Hybrid0Share. Else (if L is corrupt),
we now modify the method to Infer the corrupt shares of the enc9sharesS ,α broadcast by corrupt
senders S . First, decrypt the honest shares of enc9sharesS ,α using, again, the honest secret
keys (dkh)h∈H. From them, compute the opening shares {µ̃(i)}i∈I and use them to infer the
corrupt shares using ShInferH.

Claim 23. Hybrid0Share ≡ HybridShInfer.
Proof: The inferred shares are identical to the ones in the previous game, by the property of
ShInferH.

What we have achieved is a simulator that interacts only with the environment and with the
ideal functionality of linear combination computation, so this concludes the proof.

2.7 Chapter Summary

In this chapter, we introduced a new Linear Secret Sharing functionality FLSS and showed how
to implement it. Along the way, we detailed efficient instantiations of (n, t)-LSS schemes over
polynomial rings and discussed simulatability of PVSS without straight-line extraction, allowing
the use of more efficient schemes. In the following Chapters 3 and 4, we will show how to use
this functionality as a foundation for building delegated MPC protocols.
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Chapter 3

trBFV: a Robust RLWE scheme with
application to MPC
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In this chapter, we propose the first FHE-based MPC protocol based on RLWE, as intro-
duced in Section 1.10.6, that is robust. More specifically, considering a set of n parties, of
which up to t can be corrupt by an adversary A, this protocol guarantees that honest parties
output the computation result in a constant number of rounds. Adding some robustness in a
protocol is typically achieved by employing a (n, t)-LSS scheme, as introduced in Definition 3
and detailed in Chapter 2, to secret-share parties secret keys, and distributing the shares.
That way, even if t parties abort, the remaining t+ 1 ones have enough information to pursue
and eventually output. In what follows, we consider the BFV scheme [FV12] as an example
of a RLWE-based FHE scheme, and introduce trBFV, our new robust threshold-FHE scheme
built upon it. However, an analogous construction using other RLWE-based schemes such as
CKKS [CKKS17] can be obtained with a straightforward adaptation.

Using secret sharing to make a RLWE-based MPC protocol more robust has been studied
in many works [BGG+18; MTBH21; Par21; MBH23], following the blueprint of Asharov et al.
[AJL+12]. However, none of them has succeeded in proposing a robust end-to-end protocol,
due to the unique challenges that arise when combining a RLWE-based FHE scheme with
MPC. Two steps are particularly challenging:

Distributed Key Generation (DKG) : DKG protocols enable a set of parties to establish, in
a distributed way, a common threshold encryption key. This has been widely studied
for discrete-log-based schemes [Ped91; CKLS02; KG21; Kat24], and more recently for
RLWE-based schemes [MTBH21; KJY+20; Par21]. However, the latter present unique
challenges, mainly due to the fact that their Eval algorithm (see Definition 6) requires
some additional public key, denoted as relinearization key for BFV, that proves difficult to
generate in a distributed and robust way. In this chapter, we propose the first robust DKG

for RLWE-based FHE schemes.

Threshold Decryption (ThresholdDec) : ThresholdDec protocols enable a set of parties, pro-
vided with some common threshold encryption key ek and secret key shares (sk1, . . . , skn)

of the secret key sk to decrypt a ciphertext c. Existing protocols, which we review in Sec-
tion 3.2.2, either require non-compact (i.e. of size at least linear in n) ciphertexts or
non-compact key shares, which, in both cases, introduce a significant overhead in prac-
tice. In this chapter, we detail an efficient threshold decryption protocol with compact
ciphertexts and key shares, leveraging the functionality FLSS introduced in Chapter 2.

This chapter is organized as follows: We first introduce the BFV FHE scheme and detail
the main challenges that arise when building a threshold and robust version of it (Section 3.1).
Then, we detail our contributions (Section 3.2) and compare them with previous related works.
In Section 3.3, we present an alternative relinearization key, allowing us to describe a linear
variant of BFV, denoted `-BFV. In Section 3.4, we show how the latter helps us describe
trBFV, our new robust threshold scheme. Then, in Section 3.5, we detail an improved thresh-
old decryption protocol. Finally in Section 3.6, we conduct a rigorous noise analysis, before
describing our MPC protocol in Section 3.7 and its security in Section 3.8.

3.1 Preliminaries

We introduce in Section 3.1.1 the BFV scheme, and the overall idea behind the creation of a
threshold version from it. In Sections 3.1.2 and 3.1.3, we detail the main challenges that we
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face in designing our robust MPC protocol from BFV.

Notations Recall that we denote Rk = R/(k.R) and Rq = R/(q.R) the residue rings of R
modulo k and q. For r ∈ Rq, let us consider the unique representative r̃ = Σn−1

i=0 r̃iX
i ∈ R

such that r̃i ∈ [−(q − 1)/2, ..., (q − 1)/2] for all i. Then, we define ‖r‖ := maxi |r̃i|. Let
Ψq, BEnc,q and Xq be distributions over Rq. We denote d.e, b.c, b.e the rounding to the next,
previous, and nearest integer respectively, and [.]k the reduction of an integer modulo k into
Rk. When applied to polynomials or vectors, these operations are performed coefficient-wise.
Let ∆ = bq/kc be the integer division of q by k. We denote vectors of some length l (see
Section 1.10.7) in bold, e.g. r. For such vector r = (r1, . . . , rl) ∈ Rlq, we define ‖r‖ := maxi |r̃i|.

For two polynomials p and h in Rq whose polynomial modulus is a degree-d power of 2
cyclotomic, we have

(3.1) ‖p · h‖ ≤ d‖p‖‖h‖.

The proof of this inequality is straightforward and it can be found in [BCN18, Lemma 2].

Unless otherwise stated, we consider the arithmetic in Rq and polynomial reductions are
omitted in the notation.

3.1.1 The BFV FHE scheme [FV12].

We now describe in Figure 3.1 the Brakerski-Fan-Vercauteren [FV12] FHE scheme seen as a
mere `-HE scheme, following Definition 7. Departing from [FV12], we specify that the encryp-
tion key generation algorithm takes a fixed public uniform random string (URS) denoted a as
input, while a is sampled locally in [FV12]. The reason is that, for our distributed key gener-
ation (DKG) to operate, some form of additivity will be required between the keys. Intuitively,
this specification of a as a URS is harmless, since t + 1 = n − t honest encryption keys (eki)

generated with this same a are t + 1 instances of RLWE with the same public a, hence, are
indistinguishable from t+ 1 uniform randomnesses.

BFV is based on two kinds of secrets, commonly sampled from small-normed yet different
distributions: The key distribution is denoted Xq

1. The error distribution Ψq (or BEnc,q for
encryption) over Rq has coefficients distributed according to a centered discrete Gaussian
with standard deviation σ (resp σEnc) and truncated support over [−B,B] (resp BEnc) where σ
and B are cryptosystem parameters.

BFV is an approximate FHE scheme over the message space Rk, i.e. its ciphertexts con-
tain an error that increases during the homomorphic operations, and its decryption algorithm
outputs approximations of the messages. While noisy messages may suffice for certain ap-
plications, the majority of use cases often demand a fixed level, or even exact arithmetic. To
achieve this, BFV uses plaintext encoding and decoding methods. Specifically, it consists in
amplifying the plaintext by a factor ∆ to switch the locations of the message and the noise in a

1And is typically chosen as R3, where coefficients are uniformly distributed in {−1, 0, 1}
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BFV Scheme
Public Input: URS a ∈ Rq

BFV.Keygen(a) : Sample e(ek) $←−Ψq and sk $←−Xq, and define the linear map Λa
EKeyGen :

(sk, e(ek))→ (−a · sk + e(ek), a).

Output ek← Λa
EKeyGen(sk, e(ek)) = (−a · sk + e(ek), a) = (b, a) and sk.

BFV.Enc(ek = (b, a), m ∈ Rk) : Sample the encryption randomnesses e(Enc)
0

$←−BEnc,q,
e

(Enc)
1

$←−Ψq, and u $←−Xq. Define the linear map Λb,a
Enc : (∆ · m,u, e(Enc)

0 , e
(Enc)
1 ) →(

∆ ·m+ u · b+ e
(Enc)
0 , u · a+ e

(Enc)
1

)
.

Output c← Λb,a
Enc

(
∆m,u, e

(Enc)
0 , e

(Enc)
1

)
∈ R2

q .
[In the formalism of Definition 7, the space of encryption randomness is thus−−−→
BEnc = BEnc,q ×Ψq ×Xq.]

BFV.Dec(sk, c) : Given a ciphertext c = (c[0], c[1]) ∈ R2
q , define the linear map Λc

Dec :

sk→ c[0] + c[1].sk and compute µ← Λc
Dec(sk).

Output m← [
⌊
k
q (µ)

⌉
]k := ΩDec(µ) ∈ Rk.

Figure 3.1: The BFV scheme

ciphertext, and employing rescaling-and-rounding techniques during decoding. Then, for en-
cryption randomnesses e(Enc)

0
$←−BEnc,q, e

(Enc)
1

$←−Ψq, u $←−Xq and an encryption key ek = (b, a),
the encryption of a message m ∈ Rk can be seen as:

(3.2) c = (∆ ·m+ u · b+ e
(Enc)
0 , u · a+ e

(Enc)
1 )

Following this, the decryption of a ciphertext c = (c[0], c[1]) can be seen as a two-step
process. The first step requires the secret key to compute a noisy plaintext in Rq as:

(3.3) c[0] + sk · c[1] = ∆ ·m+ ec,

where ec is the ciphertext overall error, or ciphertext noise (to be later specified in Section 3.6).

In the second step, the message is decoded from the noisy term in Rq to a plaintext in Rk, by
rescaling-and-rounding:

(3.4)
[
bk
q

(∆ ·m+ ec)e
]
k

= [bm+ r · k + ve]k

where v has coefficients in Q. Thus, the decryption outputs m when ‖v‖ < 1
2 .

Hence, the correctness of the scheme depends on the ciphertext noise ec, that must be
kept below ∆

2 throughout the computation.
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Remark. Note that one of our goals is to minimize the increase in the ciphertext noise (as
introduced in Equation (3.3)) for the correctness to hold, without having an explosion of pa-
rameter values. Some operations, and notably the relinearization (see Algorithm 1), require
multiplying a ciphertext with large Rq elements. To reduce the noise blowup, we often rely on
a prior decomposition of Rq elements into an auxiliary basis to reduce their norm. Specifi-
cally, a common choice is to consider a decomposition basis w of dimension l = dlogw(q)e, i.e
w = (w0, w1, . . . , wl−1)T . Then, for any element z ∈ Rq, we have z =

∑l−1
i=0wi · zi, where zi

denotes the i-th coefficient of z in the decomposition basis.

Remark. For better efficiency, it is common to use packing techniques; namely to FFT-like
transform the plaintext polynomials in order to enable coefficient-wise encrypted arithmetic.
Intuitively, this enables encoding up to d messages into d independent ciphertext slots, where
d is the polynomial degree. We refer to [SV12] for details.

Security. For later use in the security proof of our MPC protocol in Section 3.8, we require
that considering an encryption key sampled uniformly at random2, the ciphertext produced by
BFV.Enc is pseudorandom under the RLWE assumption.

GameSemantic

Setup. The challenger generates samples a, b $←− U(Rq) and sends (a, b) to A.

Query. A chooses a m ∈ Rk and sends it to the challenger.

Challenge. The challenger picks a random β ∈ {0, 1}.

• If β = 0, it chooses c∗ = (c∗0, c
∗
1) $←−R2

q uniformly at random.

• If β = 1, it generates a valid ciphertext c∗ = (c∗0, c
∗
1)← BFV.Enc(ek = (b, a),m).

Guess A gets c∗ = (c∗0, c
∗
1) and outputs β′ ∈ {0, 1}. It wins if β′ = β.

Figure 3.2: Pseudorandomness of BFV ciphertexts with uniformly generated encryption
keys

Lemma 24. Let pp = (Rq, l,Xq, Rk,Ψq,BEnc,q) be parameters suited for our MPC protocol
later presented in Section 3.7.1, i.e. such that Assumption 42 holds and that satisfies Equa-
tion (3.23). Then for any PPT adversary A, the function AdvASemantic(1

λ) :=
∣∣Pr[β = β′] − 1

2

∣∣,
denoted as the advantage of A, is negligible in λ.

Proof. In case β = 1, the adversary is returned the pair (∆m+u · b+ e
(Enc)
0 , a ·u+ e

(Enc)
1 ) ∈ R2

q ,
where the fixed u $←−Xq and e(Enc)

0
$←−BEnc,q, e

(Enc)
1

$←−Ψq are secretly sampled. Subtracting the
known ∆m from the left component, the pair constitutes two RLWE samples, namely: sample
a fixed u $←−Xq, then construct the first RLWE sample with (b ← U(Rq), e

(Enc)
0 ← BEnc,q) and

the second one with (a $←− U(Rq), e
(Enc)
1

$←−Ψq).
2Note that this slightly departs from the classical notion, to be used in our MPC proof where keys are replaced by uniformly

random values in Rq .
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Thus, by RLWE for (Xq,Ψq) introduced in Section 1.10.6, and thus a fortiori for (Xq,BEnc,q)

(Equation 3.23), the two RLWE samples are indistinguishable from samples in U(R2
q).

The multiparty Case: Distributed key Generation. We are interested in a distributed set-
ting, where several parties participate in the algorithms introduced in Figure 3.1, and in partic-
ular, in the key generation and decryption. Overall, the main idea is to let all n parties perform
a distributed key generation (DKG) protocol to establish a common threshold encryption key,
and to use the linearity of the decryption in a `-HE scheme to design a distributed version of it.

To facilitate understanding, we will describe in the first place the easiest case where the
keys are additively shared. We will later explain how to adapt this to the case where a (n, t)-
LSS scheme (see Definition 3) is used instead. First, let us denote by ski the secret key locally
sampled by party Pi. Then, using an additive structure, we define the common secret key sk

as:

(3.5) sk =
∑
i∈S

ski,

where S ⊆ [n] is defined as the set of indices of non-aborting parties in the DKG.

ΠEKeyGen

Private Input for Pi: ski (secret key share)
Public Input a ∈ Rq (uniform random string)
Public Output: ek (common threshold encryption key)

Round 1 Each party Pi:

1. Samples e(ek)
i

$←−Ψq;

2. Outputs eki = (−a · ski + e
(ek)
i ).

Output : ek = (
∑

i∈S eki, a), where S ⊆ [n] denotes the indices of parties that then a
contribution in the first round.

Figure 3.3: Protocol for common threshold encryption key generation

Now, we would like to distributively generate a common encryption key ek from sk. In
order to emulate the BFV.Keygen algorithm, we design in Figure 3.3 a protocol ΠEKeyGen. This
requires some added additivity, which we provide in the form of a common uniform random
string a uniformly sampled in Rq and agreed upon by all the parties. Thus, at the end of the
execution of ΠEKeyGen, parties have access to:

(3.6) ek =
∑
i∈S

Λa
EKeyGen(ski, e

(ek)
i )3 = Λa

EKeyGen(
∑
i∈S

(ski, e
(ek)
i )).

3Note that the URS a is left outside of the sum.
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i.e. a BFV encryption key for sk following Figure 3.1. Note that S denotes again the set of

indices of non-aborting parties in the DKG.

Remark. Due to its distributed generation, the encryption key noise has a larger magnitude
that grows linearly in n. However, that does not incur serious practical obstacles, even for large
n.

3.1.2 Challenge 1: Robust Relinearization Key Generation.

So far, we have described how a set of parties is able to distributively generate a common
threshold encryption key. However, as introduced in Definition 6, an additional key, denoted as
relinearization key in the specific case of BFV, is needed to be able to perform homomorphic
operations. For a secret key sk, it is described in [FV12] as being of the form

(3.7) rlk = (sk2w − sk · r + e(rlk), r)

where w < q is a decomposition basis of dimension l = dlogw(q)e, i.e. w = (w0, w1, . . . , wl−1)T ,

r ∈ Rlq a uniform random string and e(rlk) some noise.

Generating this key in a distributed way proves to be more complex than in the case of the
encryption key. Indeed, the presence of the term sk2w introduces a non-linearity. To overcome
the challenge posed by the squaring of sk, various ΠRlkGen protocols [KJY+20; Par21; MTBH21]
have been proposed. Overall, they have the following informal structure:

• In round 1 : each party Pi generates a contribution rlk0,i using its key ski.

• In round 2 : each party Pi sums together the contributions rlk0 =
∑

i∈S rlk0,i, where S

denotes the set of indices of non-aborting parties in the first round. Then each Pi uses
an algorithm RelinKeyGen to compute a final contribution rlki ← RelinKeyGen(rlk0, ski)

and broadcasts rlki.

At the end of this protocol, the relinearization key is defined as rlk =
∑

i∈S′ rlki, where S′ is
the set of indices of non-aborting parties in this second round.

Main issue: Robustness. We observe that this generic protocol, illustrated in Figure 3.4,
has a major drawback, in that it is not robust; if some parties take part in some of the rounds,
but not all of them, then no rlk is generated. Specifically, [KJY+20; Par21; MTBH21] required
S and S′ to be equal for ΠRlkGen to output. Otherwise, if the generation were done with non-
equal sets S and S′, then the resulting rlk would be incompatible with the ek produced in the
first round as ek =

∑
i∈S Λa

EKeyGen(ski, e
(ek)
i ), making the distributed key generation non-robust.

In Section 3.2.1, we overcome this issue by detailing an algorithm `-RlkKeygen for generating
an alternative relinearization key, that allows, as shown in Figure 3.4, to design a RlkGen pro-
tocol to generate rlk in only one round that operates in parallel with the DKG, and to obtain a
robust overall key generation.
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DKG
• Compute (ski, eki, rlk0,i)← Keygen(1λ)

• Secret share ski → {sk(j)
i }j∈[n], and dis-

tribute the share sk
(j)
i to Pj ∀j ∈ [n]

• Broadcast (eki, rlk0,i)

Compute ek =
∑
j∈S ekj , ski =

∑
j∈S sk

(i)
j and rlk0 =

∑
j∈S rlk0,j

RlkGen
• rlki ← RelinKeyGen(rlk0, ski)

• Broadcast (rlki)

Compute rlk =
∑
j∈S′ rlkj (if S = S′

DKG
• Compute (ski, eki)← Keygen(1λ)

• Secret share ski → {sk(j)
i }j∈[n], and dis-

tribute the share sk
(j)
i to Pj ∀j ∈ [n]

• Broadcast (eki)

RlkGen
• Compute rlki ← `-RlkKeygen(ski)

• Broadcast (rlki)

Compute ek =
∑
j∈S ekj , ski =

∑
j∈S sk

(i)
j and rlk =

∑
j∈S rlkj

[MTBH21]/[KJY+20]/[Par21]
(Non-robust)

Our Protocol
(Robust)

DKG & RlkGen

• S: Set of indices of non aborting parties of round 1

• S′ ⊆ S: Set of indices of non aborting parties of round 2

Round 1

Round 2

Figure 3.4: We present on the left-hand side the overall construction of previous protocols
[KJY+20; Par21; MTBH21]. First, each party Pi runs Keygen to produce keys (ski, eki, rlk0,i).
The secret key ski is secret-shared in n shares {sk

(j)
i }nj=1, and each sk

(j)
i is distributed to Pj .

The last two elements are broadcast and contributions are added together over the set S of
indices of non-aborting parties to form the common threshold encryption and intermediate
relinearization keys ek and rlk0, as well as a key share ski. Then, parties run RelinKeyGen with
their key ski and rlk0 to produce a contribution rlki that is broadcast. Once added together
over the set S′ of indices of non-aborting parties of this second round, parties can compute
the relinearization key rlk =

∑
j∈S′ rlkj if S = S′. On the right-hand side, we present a sketch

of our protocol. More specifically, to have robustness, parties run in parallel Keygen and our
relinearization key generation algorithm `-RlkKeygen.

3.1.3 Challenge 2: Threshold Decryption.

Finally, the last challenge consists of figuring out how to distributively decrypt a ciphertext c

encrypted under a common threshold encryption key ek.
A naive approach would be to let the set of parties follow a protocol that would emu-

late BFV.Dec. Recall from Figure 3.1, that the latter algorithm consists of applying a linear
map Λc

Dec in the secret key, followed by the computation of a non-linear decoding function
ΩDec. Now, let us consider a setting where a common secret key sk has been generated and
each party Pi owns an additive share ski of it. Then, to decrypt c, each Pi would compute
µdec,i ← Λc

Dec(ski) and broadcast it. Then, after summing all contributions together, it would
output m ← ΩDec(

∑
i∈S µdec,i). Unfortunately, this simple approach does not work straight

away, as each contribution µdec,i leaks some information about ski (see also, e.g., [BGG+18,
§2.1]), which ruins the security of the scheme.

To circumvent this issue, Asharov et al. [AJL+12] introduced the technique of adding ad-
ditional noise to the decryption output before it can be opened. This smudging noise esm is,
roughly, sampled uniformly in some large enough interval [−Bsm, Bsm]4. All in all, the thresh-
old decryption protocol for some ciphertext c followed by most previous approaches [BGG+18;
MTBH21; KJY+20; Par21] can be summed up informally as:

4More details will be provided in Section 3.5
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(1) Each party Pi used its secret key share ski to compute its decryption share of c: µdec,i ←
Λc
Dec(ski). Then, it locally sampled some “smudging noise” esm,i and broadcast a noisy

µi = µdec,i + esm,i.

(2) Each party used the received noisy decryption shares to reconstruct the output as m ←
ΩDec(

∑
i∈S µi).

Main issue: Robust and Efficient Threshold Decryption. A major difficulty arises when
trying to make this threshold decryption protocol robust. To do this, the basic idea is to share
the key sk not using an additive sharing, but a (n, t)-LSS scheme as defined in Definition 3
to add some redundancy. In doing so, even if the corrupt parties abort, the remaining t + 1

honest ones have enough material to reconstruct the output. Details about the transition to an
(n, t)-LSS scheme will be done in Section 3.5. However, this naively leads to a significant drain
on efficiency.

Following the discussion held in Section 2.4, we consider two alternatives for instantiating
the (n, t)-LSS scheme, which introduce their own challenges when parties use their secret key
shares during the threshold decryption.

• When instantiated with Shamir (see Section 1.10.1), the added smudging noises are
multiplied by Lagrange coefficients during the reconstruction. As explained in [BGG+18],
this led to the use of a large n!2 scaling factor, in order to later clear-out the denominators
of the Lagrange coefficients. Overall, this imposed the bit-size of the ciphertext modulus
q to be (n log n), which resulted in a n× blowup of the ciphertext length, as observed in
[GLS15].

• When using a {0, 1}-(n, t)-LSS scheme as defined in Definition 10 in Section 2.4.1, this
allowed to remove the extra n in the modulus bit-size, i.e. log q = O(log n), as instead
of the Lagrange coefficients used in Shamir’s scheme, it employs binary coefficients to
recover the output from the noisy decryption shares. However, this also led to a significant
space overhead, as the size of each secret key share is at least O(n4.2).

In Section 3.2.2, we overcome these issues by leveraging the FLSS functionality to describe
an alternative approach for threshold decryption which enables a (n!)3× smaller total smudg-
ing noise, while keeping regular key share size.

3.2 Our Contributions

In this chapter, we present trBFV, the first robust threshold BFV scheme, and propose an MPC
protocol as informally stated in Theorem 25 below.

Theorem 25. (Informal) Consider n = 2t+ 1 parties, of which t are maliciously corrupt. There
exists a robust protocol in 2 broadcasts + 1 asynchronous P2P rounds that UC implements
secure evaluation of any arithmetic circuit.

This follows from our main contribution detailed in the following Section 3.2.1.
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3.2.1 Main Contribution: A Robust Distributed Key Generation for RLWE-based FHE.

We propose an alternative relinearization key rlk for BFV, enabling the construction of the first
robust key generation protocol for a RLWE-based FHE scheme. The key innovation lies in the
newly proposed `-RlkKeygen algorithm, which, unlike all previous approaches, applies a linear
map to the secret key sk, rather than a squaring operation. This helps defining a linear variant
of BFV, called `-BFV, which underpins the RlkGen protocol described in Figure 3.4. Contrary to
previous protocols, the generation of rlk is done in parallel with the generation of the common
threshold encryption key, and is guaranteed to terminate under an honest majority. This is
summarized in Table 3.1.

Related Works. Recent protocols [KJY+20; Par21; MTBH21] have been proposed for the
distributed generation of rlk, however, none of them are robust. The main challenge is that
the generation of rlk requires the squaring of sk; let us analyze how these previous works
address it.

Kim et al. [KJY+20] proposed a protocol based on additive secret sharing, where each party
Pi first uses its key ski to encrypt ski and broadcasts this intermediate contribution dubbed as
rlk0,i. Then, all received contributions are added together over S (the set of indices of non-
aborting parties) to form an intermediate key rlk0, i.e. an encryption of sk =

∑
i∈S ski under

sk. Each party Pi runs an algorithm RelinKeyGen using once again its key ski and rlk0, that
computes an encryption of ski ·sk under sk by multiplying ski ·rlk0. Pi samples a large smudging
noise ei and broadcasts rlki := ski ·rlk0+ei. Finally, the latter contributions are added together
over the set S′ of indices of non-aborting parties in this second round. Hence, if S and S′ are
not equal, the rlk produced becomes incompatible with the ek produced in the first round. Park
[Par21] proposed a concurrent protocol to [KJY+20], where party Pi essentially uses for the
second round, its secret key ski along with the common threshold encryption key ek generated
over the set S in the first round (instead of rlk0), in order to generate its contribution rlki to
rlk. However, as before, if the same set of participants does not take part in both rounds, then
the generated key is not correct, making it a non-robust protocol.

Finally, Mouchet et al. [MBH23] presented a framework to use the n-out-of-n relinearization
key generation introduced in [MTBH21] in a (t + 1)-out-of-n threshold manner. However, to
make it efficient, the authors assumed that parties are able to determine (or optimistically
guess) a set of at least t+ 1 online parties, in order to first convert Shamir shares into additive
ones before performing the relinearization key generation. This caused the protocol to stale
if one of the selected parties did not provide its share. Recently, [MCPT24] proposed a retry
mechanism that addressed the latter challenge posed in [MBH23], at the cost, however, of a
non-constant number of rounds, contrary to what we expect for our robustness requirement.
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# broadcast
for DKG & RlkGen

Robustness

[KJY+20] 2 %

[Par21] 2 %

[MTBH21] 2 %

trBFV 1 X

Table 3.1: DKG and RlkGen properties for various Threshold-FHE schemes.

3.2.2 Leveraging FLSS for an alternative threshold decryption with smaller ciphertext.

For decryption, most previous works [BGG+18; KJY+20; Par21] followed the mainstream ap-
proach derived from [AJL+12] to decrypt a ciphertext c, each party Pi did the following:

• First, it used its secret key share ski to compute its “decryption share” ci of c, and added some
locally generated “smudging noise” esm,i to prevent leakage of any secret information,
before sending the noisy decryption share c̃i = ci + esm,i.

• Second, each party used t + 1 of the received noisy decryption shares to reconstruct the
output.

As explained in Section 3.1.3, this leads to a significant overhead, either in the ciphertexts or
in the size of the key shares.

In this chapter, we leverage the functionality FLSS introduced in Chapter 2 to easily describe
an alternative threshold decryption protocol, that enables a n!3× smaller total smudging noise,
while keeping regular key shares size. We first observe, as made explicit in Figure 3.1, that
the first step of the BFV decryption algorithm consists in the computation of a linear map
Λc
Dec, to which must be added a smudging noise esm. The latter operation being linear, we

can define Λc
Dec+sm, the linear map (sk, esm) → Λc

Dec(sk) + esm. Thus, provided with some pre-
generate common secret-shared smudging noises5, parties can leverage the FLSS functionality
to perform all-at-once the opening of the evaluation of the linear map of decryption, added with
one secret-shared smudging noise. This ingredient, which allows to remove the n!2 scaling
factor, has been introduced by [GLS15], but was never later used to our knowledge.

Moreover, as a bonus of using FLSS, we can use a modulus q of small size 2e, we use Shamir
sharing over Z/2eZ, i.e., embed polynomials into Galois rings extensions [Feh98; ACD+19],
thereby allowing efficient implementations [CH18; GIKV23]. Notice that alone, this last ingre-
dient would not have been applicable. Indeed, without the alternative threshold decryption,
i.e., with the mainstream approach, then it would have been required that q has no factor in
common with n!.

Related Works with smaller noise but incompatible with MPC. Some recent works [CSS+22;
BS23] addressed an orthogonal size dependency, by replacing the statistical distance used to
analyze the noise during the threshold decryption by the Rényi divergence. In more detail, the
threshold decryption of a ciphertext c allows recovering the message, but also reveals a small

5One for every subsequent opening to be done
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LSS Scheme
Simulation
Security

Modulus-to
noise ratio

Modulus Size
O(log q)

Share Size

[BGG+18]
{0, 1}-LSS

X Superpoly
O(log n) O(n4.2)

Shamir O(n · log n) O(1)

[CCK23] Shamir X Superpoly O(log n) O(n2+o(1))

[BS23] {0, 1}-LSS % Poly O(log n) O(n4.2)

Our Scheme
Shamir X Superpoly O(n · log n) O(1)

{0, 1}-LSS X Superpoly O(log n) O(n4.2)

Shamir with
pre-shared noise(a) X Superpoly O(log n) O(1)

(a) Presented in Section 3.5.2.

Table 3.2: Threshold FHE schemes for n parties, using lattice of dimension d and modulus q.
The last column indicates the size of the shares owned by a party, and the modulus-to-noise
ratio refers to the ratio between the modulus and decryption noise of the ciphertext of the
output.

decryption noise term (see Definition 29 in Section 3.6) that depends on the given ciphertext
and the secret key. It is precisely to prevent this leakage that some smudging noise is added to
the decryption shares. As shown in Table 3.2, previous works [BGG+18; CCK23] required the
ratio between this smudging noise, hence, the modulus, and the size of the decryption noise
of the ciphertext to be superpolynomial in the security parameter. This, in turn, required the
RLWE problem to be secure with a superpolynomial modulus-to-noise ratio, which required
larger RLWE parameters. Recently, [CSS+22; BS23] proposed threshold FHE schemes with
a polynomial modulus-to-noise ratio.

However, the latter schemes do not come without their own drawbacks. First, due to the
Rényi divergence technique, both [CSS+22] and [BS23] require a predetermined bound l on
the number of decryption queries, causing the modulus to scale with

√
l. Conversely, in our

scheme, the modulus does not need to increase with the number of decryption queries. More
importantly, [BS23] made clear that their scheme is not usable in MPC, i.e., do not offer com-
posability guarantees. On the contrary, our approach produces a threshold decryption func-
tionality in the simulation paradigm, making it usable as a black box in complex protocols.

3.3 `-BFV, with Linear Relinearization Key Generation

We now present `-BFV, the single-key FHE scheme which will later be used in Section 3.4
as the baseline to build our robust threshold FHE scheme. `-BFV is a particularization of the
n-out-of-n multikey scheme of [CDKS19] to the specific single-key case (i.e. for n = 1), and
can also be seen as a variant of BFV [FV12] with a linear relinearization key generation. In this
section, we first describe our apparently new relinearization key generation in Section 3.3.1,
before explicitly detailing `-BFV in Section 3.3.2. Finally in Section 3.3.3, we explain how to
perform homomorphic operations with this alternative key.

3.3.1 Relinearization Key Generation.

Let us recall that in order to perform homomorphic operations, an extra relinearization key
denoted rlk is needed. The homomorphic multiplication of two BFV ciphertexts c1, c2 ∈ R2

q
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`-RlkKeygen

Public Inputs: URS a ∈ Rlq and d1 ∈ Rlq.

`-RlkKeygen(a,d1, sk) : Given sk ∈ Rq and (a,d1) ∈ R2×l
q :

• Sample r ←Xq.

• Sample e
(rlk)
0 ← Ψl

q, and set d0 = −sk · d1 + e
(rlk)
0 + r · g

• Sample e
(rlk)
2 ← Ψl

q and set d2 = r · a + e
(rlk)
2 + sk · g

and set rlk = (d0,d1,d2).

Figure 3.5: `-RlkKeygen Relinearization Key Generation

involves two steps:

(a) The first, denoted “tensoring” produces a degree two ciphertext consisting of three ele-
ments:

(3.8) ĉ =

⌊
k

q
c1⊗c2

⌉
= (ĉ[0], ĉ[1], ĉ[2]) ∈ R3

q .
6

(b) To reduce the degree back to one, a second step, denoted relinearization, must be car-
ried out using rlk to turn ĉ into a “regular” BFV ciphertext c′ = (c′[0], c′[1]) which can be
decrypted as the product of the plaintexts.

Remember from Section 3.1.2 that the relinearization key rlk used in previous works
[KJY+20; Par21; MTBH21] was quadratic in the secret key. We now present an alternative
key that is only linear in the secret key.

Relinearization Key Generation. Our relinearization algorithm heavily leverages the gadget
toolkit introduced in Section 1.10.7. Notably, recall that g−1 : Rq → Rl is a gadget decomposi-
tion corresponding to a gadget vector g ∈ Rlq. It also makes use of two uniform random strings,
that come in the form of two vectors (a,d1) ∈ R2×l

q , of which a = a[0] is, as described in Sec-
tion 3.1.1, used to generate encryption keys. We can now define in Figure 3.5 the algorithm
`-RlkKeygen to generate a relinearization key. Interestingly, the overall algorithm to generate
rlk is linear over the secret key sk, unlike previous ones [KJY+20; Par21; MTBH21].

Construction Intuition. The intuitive rationale behind this algorithm is that our rlk is none
other than a particular case of an existing relinearization key! Indeed, the recent work of
[CDKS19] proposed a n-out-of-n multi-key FHE scheme from BFV, and, therefore an algorithm
to generate relinearization keys, which operate on multi-key ciphertexts. In this setting, a multi-
key ciphertext associated to n parties is of the form c = (c1, c2, . . . , cn), is decryptable by the

6Where c1 ⊗ c2 = (c1[0] · c2[0], c1[0] · c2[1]+c1[1] · c2[0], c1[1] · c2[1])
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`-BFV Scheme
Public Inputs: URSs: a ∈ Rlq,d1 ∈ Rlq

`-BFV.Keygen(a ∈ Rlq) : Sample e(pk) $←−Ψl
q and sk $←−Xq. Define Λa

EKeyGen : (sk, e(pk))→
(−a · sk + e(pk),a) = (b,a).

Output ek← Λa
EKeyGen(sk, e(pk))=(−a · sk + e(pk),a) = (b,a) and sk.

`-BFV.RelinKeyGen(a ∈ Rlq,d1 ∈ Rlq, sk) : Parse the URSs as (a ∈ Rlq,d1 ∈ Rlq) and
sample r ← Xq, e

(rlk)
0 , e

(rlk)
2 ← Ψl

q, and define Λa,d1,g
RlkGen : (sk, r, e

(rlk)
0 , e

(rlk)
2 ) →

(−sk · d1 + e
(rlk)
0 + r · g,d1, r · a + e

(rlk)
2 + sk · g).

Output the relinearization key rlk← Λa,d1,g
RlkGen(sk, r, e

(rlk)
0 , e

(rlk)
2 ).

`-BFV.Enc(ek = (b[0] = b,a[0] = a),m ∈ Rk) : Sample the encryption random-
nesses e(Enc)

0
$←−BEnc,q, e

(Enc)
1

$←−Ψq, and u $←−Xq.

Define Λb,a
Enc : (∆m,u, e

(Enc)
0 , e

(Enc)
1 )→

(
∆m+u · b+ e

(Enc)
0 , u · a+ e

(Enc)
1

)
.

Output c← Λb,a
Enc

(
∆m,u, e

(Enc)
0 , e

(Enc)
1

)
∈ R2

q .

`-BFV.Dec(sk, c) : Given a ciphertext c = (c[0],c[1])∈R2
q , define Λc

Dec : sk → c[0]+c[1] ·sk

and compute µ←Λc
Dec(sk).

Output m←
[⌊

k
q (µ)

⌉]
k

:= ΩDec(µ) ∈ Rk.

Figure 3.6: `-BFV Scheme

concatenated secret keys s = (sk1, . . . , skn), and is relinearizable using the concatenated n

relinearization keys {rlki}i∈[n]. Interestingly, we observe that if we only consider the particular
single-key case (i.e. n = 1), we obtain exactly our rlk presented in Figure 3.5!

Further construction details will be presented in Section 3.4.3.

3.3.2 `-BFV

We now describe `-BFV in Figure 3.6, which features a linear relinearization key generation.
To emphasize its linearity, we define it using linear maps. Specifically, we introduce ΛEKeyGen

and ΛRlkGen to highlight that both encryption and relinearization key generation are linear in the
secret key and some randomnesses, ΛEnc to indicate that encryption is linear in a plaintext and
some randomnesses, and ΛDec to show that decryption is, roughly, linear in the secret key.

3.3.3 Homomorphic Evaluation of a circuit

We can now augment, in Figure 3.7, the definition presented in Section 3.3.2 with homomor-
phic operations on `-BFV ciphertexts using keys ek = (b,a) and rlk.

Relinearization. We now present our relinearization algorithm adapted from [CDKS19].
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`-BFV Scheme (Continuation of Figure 3.6)

`-BFV.Add(c1, c2) : Given two ciphertexts c1 and c2, output c = c1 + c2 ∈ R2
q .

`-BFV.Mult(c1, c2, rlk,b) : Given two ciphertexts c1 and c2, and keys rlk and b, compute
ĉ =

⌊
k
q c1 ⊗ c2

⌉
∈ R3

q .

Output c′ ← Relin(ĉ, rlk,b) (cf Algorithm 1).

`-BFV.Eval(C, (ci ∈ R2
q)i∈[n], rlk,b), for an arithmetic circuit C with n input gates, output

the evaluation c′ obtained by applying `-BFV.Add and `-BFV.Mult gate by gate,
with inputs the (ci)i∈[n].

Figure 3.7: Homomorphic Properties of `-BFV

Algorithm 1 Relin

Input: ĉ=(ĉ[0], ĉ[1], ĉ[2])∈R3
q , rlk=[d0|d1|d2]∈(Rlq)

3,b∈ Rlq
Output c′ = (c′0, c

′
1) ∈ R2

q

1: c′0 ← ĉ[0]

2: c′1 ← ĉ[1]

3: c′2 ←
〈
g−1(ĉ[2]),b

〉
4: (c′0, c

′
1)← (c′0, c

′
1) + g−1(c′2)<·>(d0,d1)

5: c′1 ← c′1 +
〈
g−1(ĉ[2]),d2

〉
Correctness. Correctness follows from the proof of [CDKS19] adapted to our single-key
context. In a nutshell, we have:

g−1(c′2)<·>(d0,d1)<·>(1, sk) ≈ r · c′2 and
〈
g−1(ĉ[2]),d2

〉
· sk ≈ −r · c′2 + ĉ[2] · sk2

and thus,

c′0 + c′1sk ≈ ĉ[0] + ĉ[1]sk + ĉ[2]sk2

A full analysis is given in Section 3.6.3.

3.3.4 Bootstrapping

To evaluate deeper circuits, one can use a “bootstrapping” algorithm that homomorphically
brings back the size of the decryption noise of a `-BFV ciphertext (see Definition 29), roughly
to that of a fresh ciphertext. As for the relinearization, we particularize the bootstrapping
of a multikey construction, namely the one of [CDKS19, §5], to our single-key setting. The
elementary homomorphic operations in bootstrapping require an auxiliary bootstrapping key,
that we discuss below.

Bootstrapping Pipeline In short, [CDKS19] follow the algorithm improved by [CH18], which
consists of four steps, denoted as (1) Modulus raise, (2) Linear Transformation, (3) Extraction
and (4) the Inverse Linear Transformation.
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`-BkKG

Public Inputs: URS h1 ∈ Rlq.

`-BkKG(h1, sk, j) : Given sk ∈ Rq and h1 ∈ Rlq, sample e(bk) ← Ψl
q and output bk(j) :=(

h1, h0(j) = −sk · h1 + e(bk) + τj(sk) · g
)
.

Figure 3.8: `-BkKG bootstrapping Key Generation

Technically, the linear transformation requires the homomorphic evaluation of the rotation
of plaintext slots. In addition [CDKS19] also requires the homomorphic evaluation of “Ga-
lois elements slot-by-slot”. In [GHS12, p23] it is explained how these two evaluations, i.e.,
operations on plaintexts, can be decomposed into additions, scalar multiplications and appli-
cations of automorphisms of Rk = Zk[X]/(Xd + 1), denoted {τj , j ∈ (Z/2d)∗}, each being
defined by: X → Xj . In [CDKS19], it is observed that homomorphic evaluation of each τj
can be realized with the auxiliary key, which we denote as

(
h0(j), h1

)
whose technical pur-

pose is “key-switching”. This bootstrapping key consists of a collection of keys, indexed by
j ∈ (Z/2d)∗, constructed as shown in Figure 3.8 for `-BFV.

In some more details, given a ciphertext c = (c[0], c[1]) ∈ R2
q of m, the goal is to homomor-

phically evaluate τj on the plaintext, i.e. to find c′ such that 〈c′, s〉 = τj(〈c, s〉) with s = (1, sk).
To achieve this, we first compute τj(c) = (τj(c[0]), τj(c[1])), a valid encryption of τj(m) corre-
sponding the secret key τj(sk). The key-switching procedure is then applied to τj(c), which
has for consequence of generating a new ciphertext encrypting the same message under the
original secret key s instead of τj(s). This key switching algorithm presented in Algorithm 2 is
adapted from [CDKS19].

Algorithm 2 Adaptation of Key Switching: KeySwitch

Input c = (c[0], c[1]) ∈ R2
q ,bk = [h0|h1] ∈ (Rlq)

2

Output c′ = (c′[0], c′[1]) ∈ R2
q

1: c′[0]← τj(c[0])

2: c′[0]← c′[0] +
〈
g−1(τj(c[1])),h0

〉
3: c′[1]←

〈
g−1(τj(c[1])),h1)

〉
Remark. To add bootstrapping in the UC simulation, we need to extend Assumption 42 de-
scribed in Appendix B to account for these new keys. This is done implicitly in [CDKS19].
Based on the expanded assumption, we derive an analogue of Corollary 28, w.r.t. h1 ← U(Rlq).

Correctness From the definition and with s = (1, sk), the output ciphertext c′ = (c′[0], c′[1])←
KeySwitch(c,bk) holds:

c′[0] + c′[1] sk = τj(c[0]) +
〈
g−1(τj(c[1])),h0

〉
+
〈
g−1(τj(c[1])),h1)

〉
≈ τj(c[0]) +

〈
g−1(τj(c[1])), τj(s).g

〉
= 〈τj(c), τj(sk)〉 = τj(〈c, s〉)

as desired.
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3.4 Thresholdizing `-BFV into trBFV

In this section, we outline how the `-BFV scheme presented in Section 3.3.2 is transformed
into a new robust threshold scheme, which we refer to as trBFV. The latter scheme will be
presented as an end-to-end MPC protocol in Section 3.7.

As previously discussed in Section 3.1.2, existing protocols for distributed generation of
a relinearization key were not robust. Therefore, after describing our DKG protocol in Sec-
tion 3.4.1, we detail in Section 3.4.2 the robust distributed generation of the relinearization key
introduced in Section 3.3.1. Finally, we justify in Section 3.4.3 simulatability of our distributed
relinearization key generation.

3.4.1 Biased DKG, and its no-impact on the MPC security of our scheme

Let us remind from Section 3.1.1, that in order to emulate the `-BFV.Keygen algorithm, we
follow the classical pattern of previous DKGs in one broadcast [FS01; Gro21; BDO23] and
leverage the linearity in the encryption key generation algorithm. For later use in our MPC pro-
tocol, we wrap this linearity through the use of the functionality FLSS introduced in Chapter 2.
Therefore, we go one step further from Figure 3.3, and present the generation of a common
`-BFV encryption key in the (FLSS,GURS)-hybrid model in Figure 3.9.

Concretely, the first step is an all-to-all broadcast, as follows. Provided with a fixed public
uniform random string (URS) denoted a as input, each party Pi generates a key pair (eki =

(bi,a), ski), sends (input, ski, ski) to FLSS and broadcasts bi. In the second step, parties set a
threshold encryption key pair without any interaction, as follows. Denote S the set of indices of
non-aborting parties, i.e., the ones that have broadcast a contribution bi and sent an input to
FLSS. Then, the common threshold encryption key is defined as the sum of the contributions.

Each party Pj owns a share of sk, consisting in the sum over i ∈ S of its shares sk
(j)
i of the

skis. In our formalism, each contribution is accessible via FLSS through a label ski. Thus, the
sum of contributions: sk is also accessible via FLSS, via a label which we denote sk. This will
later prove useful for threshold decryption in Section 3.5.

Bias in DKG. The `-BFV.Keygen algorithm requires that the secret key sk is sampled from Xq,
which induces an almost-uniform distribution of the encryption key ek = (b,a) in R2×l

q . Hence,
ideally, we would like to have a DKG that outputs an encryption key of this form. However, this
is not the case since the adversary first sees the broadcast contributions bi of honest parties,
before it decides on the contributions of corrupt parties. So the adversary has the power to set
to almost any value the final threshold encryption key ek = (b =

∑
i∈S bi,a).

More formally, the key pair obtained as output of the ΠDKG protocol presented in Figure 3.9,
can be seen as generated by using what [BDO23, Fig. 2] formalized as the BiasKeyGen sub-
routine. Although the latter is formalized in the discrete-log setting, the formalism in our case
would be unchanged thanks to the additivity of keys (modulo noises). A long line of works
[GJKR07; GJM+21] studied how the security of single-key primitives is modified when the
generation of the key is biased by the adversary. Let us now provide the intuition of the two
main properties of our DKG, that our proof will use:
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LIST OF FIGURES 85

Protocol ΠDKG

Participants: n parties P1, . . . , Pn

Bulletin-board PKI setup and CRS setup. Each Pi:

• Sends (Setup) to FLSS;

• Obtains common uniform strings (a)← GURS.

Round 1 : Upon ready from FLSS, each Pi:

• Distributed Keys Generation:

– Computes (ski, (bi,a))← `-BFV.Keygen(a).

– Sends (input, ski, ski) to FLSS and broadcasts (bi).

Local Computation: Each party:

• Reception of broadcasts: Initializes an empty list S ← {} of indices of non-aborting
parties. ∀j ∈ [n], checks if the data received from the broadcast of Pj parses as: (bj)

then stores this data and adds j to S.

• Adding the contributions of non-aborting parties: Computes:

(3.9) b = Σj∈Sbj ,

and sets the common threshold encryption key: ek = (b, a) = (b[0],a[0]). //(b, a) will

serve for threshold encryption. The other components > 0 are only used during the
relinearization.

Sets the secret key as sk = Σi∈Sski. //accessible through FLSS, via the label sk .

Figure 3.9: Biased Distributed Key Generation Protocol



1. The first is the so-called IND9CPA under joint keys property, detailed in Figure 3.10 below.
It is an adaption of the one of [AJL+12], in our RLWE context. It states that even if the
adversary adds any bias b′ to the encryption key ek = (b,a), then as long as the (semi-
malicious) adversary can explain b′ with a corresponding secret key sk′ and small noise,
then IND9CPA under the biased key: b + b′ is preserved.

2. The second property is that, due to the use of FLSS in the DKG, the threshold opening of
any evaluation of a linear map over the secret key sk is as secure as (in the UC sense)
if the evaluation came directly from FLSS. In Section 3.5, we will use such threshold
opening of well-chosen linear maps, enabling simulatability of the threshold decryption.

IND9CPA under joint keys. In [AJL+12, Lemma 3.4], it is proven that an adversary cannot
distinguish the ciphertext of a chosen plaintext from a random string, even if the ciphertext is
encrypted under a key of the form ek′ = (b + b′,a), where b′ is adaptively generated by the
semi-honest adversary after it saw b. Our goal is to adapt their result in the RLWE setting.
We consider an experiment JointKey(Rq, l,Xq, Rk,Ψq,BEnc,q) between an attacker A and a
challenger defined as:

JointKey(Rq, l,Xq, Rk,Ψq,BEnc,q)

Setup. The challenger generates samples a,b $←− U(Rlq) and sends (a,b) to A.

Query. A adaptively chooses t pairs (ski, e
(ek)
i )i∈I for some set I of t indices. Both

terms being either ⊥ or such that ‖ski‖=1 and ‖e(ek)
i ‖≤ l ·B. Define sk′ :=

∑
i∈I ski

where the ⊥ values are set to 0, and likewise for e(ek) :=
∑

i∈I e
(ek)
i .

A outputs
{

b′=−a ·sk′+e(ek), (sk′i)i∈I , (e
(ek)
i )i∈I

}
to the challenger, along with some

m ∈ Rk of its choice.

Challenge. The challenger sets pk = b + b′ and picks a random β ∈ {0, 1}.

• If β = 0, it chooses c∗ = (c∗0, c
∗
1) $←−R2

q uniformly at random.

• If β = 1, it generates a valid ciphertext c∗ = (c∗0, c
∗
1) ← `-BFV.Enc(ek =

(pk[0],a[0]),m).

Guess A gets c∗= (c∗0, c
∗
1) and outputs β′∈{0, 1}. It wins if β′= β.

Figure 3.10: IND9CPA under Joint Keys Game

The aim of this result is to be used later in Section 3.7 in the broader context of MPC. That
is the reason why we consider that the honest key ek = (b,a) is generated uniformly at ran-
dom, instead of generated by `-BFV.Keygen. Moreover, this specific use-case has an impact
on the choice of parameters, which will be discussed in Corollary 28 and Equation (3.23).

Lemma 26. Let pp = (Rq, l,Xq, Rk,Ψq) be parameters such that Corollary 28 holds and BEnc,q
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that satisfies Equation (3.23)7. Then for any PPT adversary A, we have:

Pr
[
JointKeyA(Rq, l,Xq, Rk,Ψq,BEnc,q)=1

]
− 1/2 = negl(λ).

Proof. Our goal is to show a reduction, from this IND9CPA under Joint Keys Game, into the
GameSemantic game of security of BFV presented in Figure 3.2 in Section 3.1.1. We therefore
construct an adversary A′ playing the former game. A′ uses as black box an adversary A for
JointKey(Rq, l,Xq, Rk,Ψq,BEnc,q), as follows.

1. The challenger gives A′ the value (b,a), and a ciphertext (c0, c1) which is either chosen
as `-BFV.Enc(ek = (b[0],a[0]), 0) (β = 1) or is a sample in U(R2

q) (β=0).

2. Then A′ gives b to A and gets back
(
b′=−a · sk′ + e(ek), sk′, e(ek),m

)
from A, where m is

a challenge plaintext.

3. Finally, A′ sets (c∗0, c
∗
1) = (c0 − c1 · sk′, c1) ∈ R2

q , sends it to A and outputs the bit β′

obtained from A.

It is easy to see that if β = 0, then (c∗0, c
∗
1) is uniformly random. On the other hand, if β = 1,

we can write c0 = u·b+e(Enc)
0 ∈ Rq and c∗1 = u·a+e

(Enc)
1 ∈ Rq for some u $←−Xq, e

(Enc)
0

$←−BEnc,q,
e

(Enc)
1

$←−Ψq, and b = b[0], a = a[0], and with e(ek) = e(ek)[0]:

c∗0 = u · b+ e
(Enc)
0 − c1 · sk′ = u · b+ e

(Enc)
0 − (u · a+ e

(Enc)
1 ) · sk′

= u · (b+ b′) + e
(Enc)
0 − e(Enc)

1 · sk′ − u · e(ek)

s≡ u · (b+ b′) + e
(Enc)
0

The last equality states a statistical indistinguishability between the distributions of e(Enc)
0 −

e
(Enc)
1 · sk′ − u · e(ek) and of e(Enc)

0 , which we now prove.

To start with, from equation (3.1), we have both ‖e(Enc)
1 · sk′‖ ≤ dnB and ‖u · e(ek)‖ ≤ dnB.

Thus, ‖e(Enc)
1 · sk′ − u · e(ek)‖ ≤ 2dnB. But on the other hand, ‖e(Enc)

0 ‖ ≤ BEnc. We conclude
since the parameters are chosen such that 2dnB

BEnc
= negl(λ) (cf Equation (3.23) later presented

in Section 3.7.1). This conclusion can be formalized as the “smudging Lemma 27” below,
which implies that, in the sum e

(Enc)
0 − e

(Enc)
1 · sk′ − u · e(pk), we have that the distribution of

−e(Enc)
1 · sk′−u · e(ek) is “smudged-out” by the one of e(Enc)

0 . Therefore, A′ acts indistinguishably
from the challenger of GameSemantic of Lemma 24, thus has the same advantage as A.

Lemma 27 (Smudging lemma [AJL+12]). For B1, B2 positive integers and e1 ∈ [−B1, B1]

a fixed integer, sample e2 uniformly at random in [−B2, B2]. Then the distribution of e2 is
statistically indistinguishable from that of e2 + e1 if B1/B2 = ε, where ε = ε(λ) is a negligible
function.

In brief, the above lemma states that two distributions differing by a small noise, can be
made indistinguishable by adding an exponentially larger “smudging” noise to both.

Remark. Although our proof is done at a low level, it could be done at a higher level by using
that `-BFV has the property known as key-homomorphism [AHI11]. Roughly speaking, this
means that there is a public map which, given an offset (roughly: sk′) on the secret key, maps
encryptions under sk into ciphertexts which have the same distribution as fresh encryptions
under sk + sk′. It is a commonplace property in FHE schemes [BV11].

7The choice of parameters will be discussed in the broader context of MPC later in Section 3.7.
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3.4.2 Robust Distributed Relinearization Key Generation.

To distributively generate a common rlk, one can leverage the additional linearity provided
by our alternative algorithm presented in Section 3.3.1. In short, to build a RlkGen protocol,
we let each party Pi compute an additive contribution to the relinearization key (d0,i,d2,i) ←
`-RlkKeygen(a,d1, ski) and broadcast it. From the set S of indices of parties who have correctly
broadcast their additive contributions to the relinearization key and to the threshold encryption
key ek as in Equation (3.6), one can then compute:

(3.10) rlk := (Σi∈Sd0,i,d1,Σi∈Sd2,i)

3.4.3 Construction Details & Security

We now justify simulatability of our rlk generation introduced in Section 3.4.2, firstly by giving
the reasoning behind its construction, before proving its security.

Detailed Construction Explanation: From multikey to single-key relinearization key.
Let us slightly abuse future notation and denote RelinKeyGen the linear map used in [CDKS19]
to produce a relinearization key. In our context, the secret key sk comes as a sum

∑
i ski

of (secret shared) contributions ski from non-aborting parties, so we roughly need a robust
protocol that generates rlk := RelinKeyGen(sk). This hints towards the blueprint of our robust
distributed solution to generate rlk: in parallel of linearly secret-sharing its contribution ski
to the secret key and eki to the threshold encryption key, each party Pi broadcasts the cor-
responding contribution: rlki = (d0,i,d1,i,d2,i) = RelinKeyGen(ski) to the relinearization key.
Then, after it computed the threshold encryption key ek as in Equation (4.1), each party sets
rlk =

∑
i∈S rlki, where S is the same set, i.e., of indices of parties not aborting in the first

round, as the one used to set ek. However, one hurdle remains in that in the linear map
RelinKeyGen defined in [CDKS19], the coefficient of ski, denoted d1,i, actually depends on
the party making the contribution, since d1,i is sampled by Pi. Hence, this prevents additivity
between contributions from different parties (in [CDKS19], no additivity was needed) .

To solve this, we specify instead that d1 is in common and given by a uniform random string
(URS). The reason why fixing a common d1 does actually not degrade the security of the dis-
tributed protocol compared to [CDKS19], is that d1, by definition, appears in clear in the public
relinearization key. More particularly, in the proof of Corollary 28, we will show a reduction from
the pseudorandomness of our common rlk defined in Equation (3.10), into the pseudoran-
domness of a single-key rlk, with loss only linear in n. To give an intuition, a toy model of our
reduction is just the well-known reduction from the security of our DKG, into the security of
RLWE. In this toy model, what the adversary sees are n samples (a, a · ski + e

(ek)
i )i∈[n], all

with the same public uniform randomness a but with different independently sampled secrets
ski. So the idea is that the reduction to RLWE, upon receiving one RLWE challenge sample:
(a, a · skn + e

(ek)
n ), simply generates itself n− 1 other challenges: (a, a · ski + e

(ek)
i )i∈[n−1] with

the same a, and handles them to our adversary.
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Security. In Corollary 28, we prove that, despite our specification of a common d1, the con-
catenation of all the honestly generated contributions (d0,i,d2,i) ← `-RlkKeygen(a,d1, ski) to
the common relinearization key, as well as the contributions eki = (bi,a) to the threshold en-
cryption key, is indistinguishable from a large uniform random string, under the same circular
security assumption as implicitly made in [CDKS19] and detailed in Appendix B.

Consider a public sampling of an uniform string (a,d1) ∈ U(Rl×2
q ), and a polynomial num-

ber M of independent machines. Each of them generates a key pair (skm, ekm) by using
`-BFV.Keygen, all using the common public a. Each machine m generates (d0,m,d2,m) ←
`-RlkKeygen(a,d1, skm). Then the collection of the public data issued by these machines
{bm,d0,m,d2,m}m∈[M ], jointly with the public (a,d1), is still indistinguishable from one sample
in U(R

(l×3)M
q ×Rl×2

q ).

Corollary 28 (Security with Common Public Randomness). Consider:
DM0 :=

{{
bm,d0,m,d2,m

}
m∈M ,a,d1 : (a,d1)← U(Rlq)

2, and ∀m ∈ [M ] :

skm ←Xq, (e
(ek)
m , e

(rlk)
0,m , e

(rlk)
2,m )←(Ψl

q)
3, rm ←Xq,bm := −a · skm+ e(ek)

m ,

d0,m := −skm · d1 + e
(rlk)
0,m + rm · g, d2,m := rm · a + e

(rlk)
2,m + skm · g

}
Then the maximum distinguishing advantage AdvλDM

0
between a single sample in DM0 and in

U(R
(l×3)M
q ×Rl×2

q ), is bounded by MAdvλD0
.

Proof. Consider a cascade of oracles O 0 := ODM
0
,O 1, . . . ,OM such that each O i returns

the first i components of R(l×3)M
q in U(R

(l×3)i
q ) and the remaining ones as in DM0 . Then the

distinguishing advantage between two consecutive O i is at most AdvD0 , as a straightforward
reduction shows (cf Appendix B).

3.5 Threshold Decryption

In this section, we first recall the blueprint of threshold decryption and in Section 3.5.1, the
mainstream instantiation used in previous works. We then present in Section 3.5.2 a second
improved protocol that enables n times shorter ciphertexts.

Threshold Decryption. Recall from Definition 7 that the decryption of a `-HE ciphertext c

can be seen as a two steps process: (i) the evaluation of a linear map Λc
Dec applied to the

secret key sk, with public coefficients equal to the ciphertext c, (ii) followed by the computation
of a non-linear decoding function ΩDec.

However, a direct adaptation from this decryption to the threshold setting is not trivial, when
ΩDec is nontrivial, as is the case for RLWE-based FHE schemes. Indeed, the output µdec of (i)
actually leaks information about the secret key (see also, e.g., [BGG+18, §2.1]), which ruins
the security of the encryption scheme.

To circumvent this issue, Asharov et al. [AJL+12] introduced the technique of adding some
extra noise to the output of (i) before it can be opened. This “smudging” noise esm is, roughly,
sampled uniformly in some large enough interval [−Bsm, Bsm]. Now consider an arithmetic
circuit C, and denote BC the fixed upper-bound on the decryption noise of a ciphertext after
evaluation of circuit C (formally defined in Definition 32 in Equation (3.20) for trBFV). The
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choice of Bsm is crucial for both the security and correctness of our MPC protocol. This
translates into the following two requirements:

1. First, there is a requirement that the output of (i), i.e. µdec = Λc
Dec(sk), is statistically close

enough to the (scaled) plaintext circuit evaluation ∆ · y. Then, there should exist some
level of noiseBsm, so that adding a uniform noise esm ∈ [−Bsm, Bsm] to both µdec and ∆·y,
makes them indistinguishable, while keeping the result correct: y = ΩDec(µdec + esm). As
stated in the Smudging Lemma 27, the indistinguishability requirement imposes a level
of noise high enough so that BC/Bsm 6 negl(λ).

2. Second, the correctness requirement imposes that BC added with this smudging noise
stays small, i.e. such that BC + n ·Bsm ≤ ∆/28.

In Sections 3.5.1 and 3.5.2, we give two methods for opening µdec added with such noise,
that are illustrated in Figure 3.11.

Example of `-BFV. In the specific case of `-BFV defined in Figure 3.6, we have that the
linear map used in (i) is defined as:

(3.11) Λc
Dec :sk→ c[0] + c[1] · sk,

applied to the secret key sk, with public coefficients equal to the ciphertext c.

The decryption is followed (ii) by the local computation of a non-linear decoding function
defined as ΩDec(.) = [

⌊
k
q (.)
⌉
]k. The decryption noise of a ciphertext after evaluation of an

arithmetic circuit C is formally defined in Definition 32 in Section 3.6.4 for trBFV.

3.5.1 Mainstream Threshold Decryption method

This first method follows the approach of [AJL+12] and has been used in most other works
[BGG+18; KJY+20]. Each party Pi locally samples a so-called smudging noise esm,i

$←− [−Bsm, Bsm]

uniformly in some interval to be specified, multiplies it by n!2 ([BGG+18, Construction 5.11]),
then adds it to its decryption share of c, which it sends. The reason for multiplying by n!2

is to clear-out the denominators of the Lagrange coefficients applied at reconstruction (see
[ABV+12] [BGG+18, §2.1]). Following the previous notation and explanations, the bound
Bsm is chosen such that: BC/Bsm = negl(λ) (for indistinguishability), and such that BC +

n.n!3.Bsm < ∆/2 for correctness of Lagrange reconstruction-then-rounding (with ∆ = q/2 in
the instantiation of [BGG+18] with GSW).

In a nutshell, this method introduces an overhead of n.n!3 on the ciphertext modulus q. This
results in a n× blowup of the ciphertext size.

Remark. Let us note that if this approach were to be used for CKKS, then it could not be
applied by simply sending the decryption shares over asynchronous point-to-point channels.
Indeed, in CKKS there is no rounding in decryption. Thus, if each party naively applies re-
construction on the first t + 1 decryption shares which it asynchronously receives, since the
added smudging noises are different in each different batch of t+1 shares, the resulting output

8Where ∆ denotes here a scheme-dependent scaling factor.
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LIST OF FIGURES 91

Threshold Decryption protocol
Participants: n parties Pi, i = 1, . . . , n;
Inputs: a public ciphertext c; shared secret key sk in FLSS with label sk // concretely, in the
form of a PVSS of sk.
Outputs: decryption Dec(sk, c)

Additional input for 2nd method: secret shared smudging noise esm ∈ [−n.Bsm, n.Bsm]

in FLSS with label esm (usable only for one decryption).

(1st method - mainstream): Each party Pi, given a ciphertext c and a secret share ski of
the secret key:
• Generates its decryption share of the decryption, i.e. µdec,i = Λc

Dec(ski). Samples
a smudging noise esm,i

$←− [−Bsm, Bsm]. Then, sends over P2P channels its “noisy
decryption share” µi = µdec,i + n!2esm,i. // The n!2 factor is not needed if {0, 1}-LSSD

is used [JRS17; BS23; CCK23] ;

• Each party Pi waits until it receives noisy decryption shares from a subset U ⊂ [n]

of t + 1 parties: (µj)j∈U . Denote (λUj )j∈U the Lagrange reconstruction coefficients
corresponding to the subset U (see Definition 4). It sets µ =

∑
j∈U λ

U
j µj the

smudged decryption. Then it outputs ΩDec(µ)

(2nd method, with smaller noise): Each party Pi:
• Given labels (sk, esm), and a ciphertext c, sends

(
LCOpen,Λc

Dec+sm(sk, esm)
)

(see
Equation (3.12)) to FLSS, obtains µ̃, and outputs m = ΩDec(µ̃).

Figure 3.11: Threshold Decryption Protocol



would also be different between parties. Therefore, the second approach presented below in
Section 3.5.2 should be adopted in this case.

3.5.2 Improved Threshold Decryption Method

To keep the ciphertext size small, the improved method follows the forgotten approach, which
we credit to [GLS15]. Parties do not anymore smudge their decryption share of µdec, which
we recall is the result of the evaluation of a linear map Λc

Dec applied to the secret key sk, with
a public coefficient equal to the ciphertext. Instead, they now open all at once the decryption
µdec and a common shared noise esm, i.e., they open the linear map defined as:

(3.12) Λc
Dec+sm : (sk, esm)→ Λc

Dec(sk) + esm

The distributed generation of the noise is simply by adding secret-shared contributions esm,i,

each sampled in [−Bsm, Bsm]. As a result, the correctness constraint now imposes only
BC+ n.Bsm <∆/2. Hence, the ciphertext expansion factor ∆ has a dependency in n which is
only linear (n), instead of n.n!3 in the previous method. We defer the security argument to the
proof of our MPC protocol in Section 3.8, where these formulas show up in Lemma 34.

Since the noise can be used only for one threshold decryption, parties must precompute
as much noises as many circuits to be subsequently evaluated. We will formalize this simple
Distributed Noise Generation protocol in the MPC protocol. Concretely, each party Pi secret-
shares a contribution esm,i ← [−Bsm, Bsm] in the form of a PVSS, i.e. a vector of encrypted
shares, in the first step. Then, parties define the common shared smudging noise as the sum
of the contributions of the parties which did not abort: esm =

∑
i∈S esm,i.

3.6 Noise Analysis

We now analyze the noise introduced by the different protocols and algorithms presented so
far. Specifically, we consider the changes made in `-BFV with the relinearization algorithm
introduced in Figure 3.5, compared to the original BFV cryptosystem [FV12]. In Sections 3.6.1
and 3.6.2, we detail the noise introduced in the keys and in the ciphertexts respectively. For
them, the original analysis [FV12] largely applies, albeit with a dependency on the number
n of parties. Finally in Section 3.6.3, we depart from the original scheme by analyzing the
impact of the changes made to the relinearization, before concluding in Section 3.6.4 with an
analysis of the noise introduced when computing an arithmetic circuit. The latter analysis will
be of prime importance in selecting the practical parameters of the MPC protocol presented in
Section 3.7.1.

Let us first introduce some general definitions:

Definition 29 (Decryption noise). Let c ∈ R2
q , m ∈ Rk and sk ∈Xq. We define the “decryption

noise” as e(Dec)(c, sk,m) := Λc
Dec(sk)−∆ ·m.

From there, we derive the following correctness property for `-BFV.
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Proposition 30 (Correctness). Let c = (c[0], c[1]) ∈ R2
q , m ∈ Rk and sk ∈ Xq. It satisfies the

trivial property that if |e(Dec)(c, sk,m)| < ∆
2 , then, `-BFV.Dec(sk, c) = m.

3.6.1 Decryption Noise of Distributed Key Generation

Following ΠDKG presented in Figure 3.9, the noise of the threshold encryption key is the result
of the sum of additive contributions and therefore we have ‖e(ek)‖ ≤ n · B, where B is the
worst-case norm for an error term from Ψq. Moreover, as each additive share ski is typically
sampled in R3, we have that ‖sk‖ ≤ n.

3.6.2 Fresh Encryption

We now formalize the set in which belong the outputs of `-BFV.Enc. For any m ∈ Rk, we
denote as a “Fresh `-BFV Encryption of m” under a key ek = (b, a), any element of R2

q of the

form: c = (∆m+ u · b+ e
(Enc)
0 , u · a+ e

(Enc)
1 ), where ‖u‖ ≤ 1,

∥∥∥e(Enc)
0

∥∥∥ ≤ BEnc and
∥∥∥e(Enc)

1

∥∥∥ ≤ B.

Following Definition 29, let us denote e(fresh) := e(Dec)(c, sk,m) := c[0] + c[1] · sk − ∆m its
decryption noise. Recall that by definition we have that c[0] + c[1] · sk = ∆m + e(fresh). With
e(ek) = e(ek)[0], we have:

c[0] + c[1] · sk = ∆m+ u · b+ e
(Enc)
0 + sk · a · u+ sk · e(Enc)

1

= ∆m+ (−sk · a+ e(ek)) · u+ e
(Enc)
0 + sk · a · u+ sk · e(Enc)

1

= ∆m+u · e(ek) + e
(Enc)
0 + sk · e(Enc)

1︸ ︷︷ ︸
e(fresh)

(3.13)
∥∥∥e(fresh)

∥∥∥ ≤ BEnc + d‖e(ek)‖+ dB ‖sk‖ = BEnc + 2d · n ·B := Bfresh.

3.6.3 Decryption Noise of Homomorphic Operations

We now analyze the noise introduced by additions and multiplications.

Addition. Let us consider two ciphertexts c1 and c2 such that c1[0]+c1[1]·sk=∆m1+e
(Dec)
1 and

c2[0]+c2[1] · sk=∆m2 +e
(Dec)
2 . Let cAdd = `-BFV.Add(c1, c2) be the homomorphic sum of c1 and

c2, and let us define the ”decryption noise of an addition” as e(Add) :=e(Dec)(cAdd, sk,m1 +m2).
Thus we have cAdd[0] + cAdd[1] · sk = ∆[m1 +m2]k + e(Add), with m1 +m2 = [m1 +m2]k +k · r

for ‖r‖ ≤ 1 and,

‖e(Add)‖ = ‖e(Dec)
1 + e

(Dec)
2 + rk(q) · r‖ ≤ ‖e(Dec)

1 ‖+ ‖e(Dec)
2 ‖+ rk(q)(3.14)

where rk(q) denotes the remainder of the integer division of q by k.
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Multiplication & Relinearization. Let us consider two ciphertexts c1 and c2 such that c1[0]+

c1[0] · sk = ∆m1 + e
(Dec)
1 and c2[0] + c2[1] · sk = ∆m2 + e

(Dec)
2 . Recall from Section 3.3.1 that the

multiplication of two ciphertexts involves two steps that introduce noise: a tensoring operation
followed by a relinearization.

1. Tensoring. First, let ĉ =
⌊
k
q c1 ⊗ c2

⌉
= (ĉ[0], ĉ[1], ĉ[2]). Let us define the “decryption

noise of a three-terms ciphertext ĉ with respect to the secret key sk and plaintext m1m2”, and
denote it e(tens), as:

(3.15) ĉ[0] + ĉ[1] · sk + ĉ[2] · sk2 = ∆[m1m2]k + e(tens)

Using [FV12, Lemma 2], we conclude that

‖e(tens)‖ ≤ d · k (‖e(Dec)
1 ‖+ ‖e(Dec)

2 ‖) (d · ‖sk‖+ 1) + 2k2 · d2 (‖sk‖+ 1)2.(3.16)

This shows that the noise is roughly multiplied by the factor 2 · k · d2 · n.

2. Relinearization. Second, a relinearization algorithm is executed using a key, denoted
rlk, generated distributively using our `-RlkKeygen algorithm detailed in Figure 3.5. Recall
that rlk = (

∑
i∈n d0,i,d1,

∑
i∈n d2,i) where (d0,i,d2,i)← `-RlkKeygen(a,d1, ski), the latter being

defined as: for (e
(rlk)
0,i , e

(rlk)
2,i ) $←− (Ψl

q)
2 and ri $←−Xq, output (d0,i,d2,i) =

(
−ski.d1 + e

(rlk)
0,i +

ri.g, ri.a + e
(rlk)
2,i + ski.g

)
.

Consider a degree two ciphertext ĉ with decryption noise e(tens) with respect to plaintext m
(m1m2 in our context) and secret key sk. Let us now recall that algorithm Relin presented in
Algorithm 1, takes as input ĉ = (ĉ[0], ĉ[1], ĉ[2]) ∈ R3

q , rlk =
(
d0,d1,d2

)
∈ (Rlq)

3,b ∈ Rlq, and
outputs c′ = (c′[0], c′[1]) ∈ R2

q .
Let us denote e(relin) the additional decryption noise of c′, namely:

(3.17) ĉ[0] + ĉ[1] sk + ĉ[2] sk2 = c′[0] + c′[1] sk + e(relin)

Let us estimate the noise introduced by the relinearization. Recall that c′[2] =
〈
g−1(ĉ[2]),b

〉
.

Let us denote err1 =
〈
g−1(c′[2]), e

(rlk)
0

〉
and err2 =

〈
g−1(ĉ[2]) , sk · e(ek) + e

(rlk)
2 sk

〉
. We have:

〈
g−1(c′[2])<·>(d0,d1), (1, sk)

〉
= r · c′[2] +

〈
g−1(c′[2]), e

(rlk)
0

〉
= r · c′[2] + err1 and

〈
g−1(ĉ[2]),d2

〉
· sk=

〈
g−1(ĉ[2]),−r · b + e(ek) · sk + e

(rlk)
2 · sk + sk2 · g

〉
=−r · c′[2]+ĉ[2] · sk2+

〈
g−1(ĉ[2]), sk · e(ek)+ e

(rlk)
2 · sk

〉
= −r · c′[2] + ĉ[2] · sk2 + err2.
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We can now analyze the noise introduced by the relinearization. First, recall that g−1(.)

decompose an element x ∈ Rq into a short vector u = (u0, ..., ul−1) ∈ Rl such that 〈u,g〉 =

x mod q with ‖ui‖ ≤ Bg for i = 0, 1, ..., l − 1. In details, we can write

c′[0] + c′[1] · sk = ĉ[0] + g−1(c′[2])<·>(d0,d1) +
(

ĉ[1] + g−1(c′[2])<·>(d0,d1)

+
〈
g−1(ĉ[2]),d2

〉)
sk

= ĉ[0] + ĉ[1].sk +
〈
g−1(c′[2])<·>(d0,d1), (1, sk)

〉
+
〈
g−1(ĉ[2]),d2

〉
sk

= ĉ[0] + ĉ[1].sk + ĉ[2].sk2 + err1 + err2

= ∆m+ e(tens) + e(relin)

with e(tens) introduced above and:

‖e(relin)‖ ≤ ‖err1‖+ ‖err2‖ ≤ d · l · n ·Bg ·B + 2d2 · l2 · n2 ·Bg ·B(3.18)

From Equations (3.16) and (3.18) we deduce the following proposition:

Proposition 31 (Decryption noise of a product). Consider two ciphertexts c1 and c2 of m1

and m2 respectively under a key
(
b = −a · sk + e(ek) ,a

)
∈ R2×l

q , with decryption noises
(Definition 29) denoted e(Dec)

i := ci[0] + ci[1] · sk−∆mi, i ∈ {1, 2}.
Consider any rlk = (

∑
i∈n d0,i,d1,

∑
i∈n d2,i) where (d0,i,d2,i) ← `-RlkKeygen(a,d1, ski), de-

note c′ := `-BFV.Mult(c1, c2, rlk,b), then e(Dec)(c′, sk,m1m2) is dominated by
k · d2 · n(‖e(Dec)

1 ‖+ ‖e(Dec)
2 ‖) + 2d2 · l2 · n2 ·Bg ·B.

3.6.4 Correctness of Threshold Decryption after Homomorphic evaluation of a Circuit

Let us now define and then estimate the noise BC introduced during the evaluation of a circuit
C, and formalize at which condition the threshold decryption of a homomorphically evaluated
ciphertext, does return the correctly evaluated plaintext.

Definition 32 (Decryption noise of a circuit: BC). For any arithmetic circuit C : Rnk → Rk of
depth L, with input gates indexed by n, as introduced in Section 1.4, we consider the largest
norm of the decryption noise e(Dec)(c, sk, y) of a ciphertext c, over the previous choices, and
over the choices: of elements (mi ∈ Rk)i∈[n], and of arbitrary fresh `-BFV Encryptions of them
(ci)i∈[n]; denoting c := `-BFV.Eval(C, (ci)i, rlk,b) and y := C((mi)i).

From Definition 29 and Figure 3.11, it follows that, for any y and c as above, if the second
threshold decryption method is used with a level of noise Bsm such that:

BC + n ·Bsm <
∆

2
(3.19)

Then: ΩDec

(
c[0] + c[1].sk

)
= y.

The noise introduced by evaluating C is dominated by the one introduced by multiplications
rather than additions, unless the width is much larger than L, which we do not assume in
this estimation. Thus we neglect, comparatively, the impact of n. Using Proposition 31, we
estimate an upper bound on the decryption noise of the evaluated ciphertext as:
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CL
1 ·Bfresh + C2

L−1∑
i=0

Ci
1 ≤ CL

1 ·Bfresh + L · C2 · CL−1
1(3.20)

with C1 = 2 · k · d2 · n and C2 = 2 · d2 · l2 · n2 ·B ·Bg.

3.7 MPC Protocol

In Figure 3.12, we formalize our trBFV scheme as an end-to-end MPC protocol. For simplicity
we describe and prove it in the FLSS-hybrid model, hence, the protocol is called ΠFLSS

MPC. Then,
by UC composability, replacing FLSS by its UC implementation detailed in Section 2.6, yields
an actual MPC protocol that is as secure as ΠFLSS

MPC. Concretely it starts by a distributed key
and smudging noise generation which is performed in 1 followed by the local computation of
the keys, and the broadcast of encrypted inputs in 2 . Finally, after the local evaluation of the
circuit C, the output is decrypted through a threshold decryption protocol in 3 .

3.7.1 Protocol ΠFLSS

MPC.

We instantiate protocol ΠFLSS

MPC from `-BFV, leveraging the alternative relinearization key gener-
ation presented in Section 3.3.1. Note that this requires uniform random strings a and d1 to
be in Rlq, and to be common parameters in order to allow some form of additivity (they were
previously sampled locally in [FV12] and in [CDKS19] respectively) .

The choice of practical parameter values is discussed in Section 4.7. For security and
correctness, we require Equation (3.19); and:

BC

n ·Bsm
= negl(λ) and

2 · d · n ·B
BEnc

= negl(λ) .(3.23)

where BC is a fixed upper-bound on the decryption noise of a ciphertext after the evaluation
of circuit C as given by Equation (3.20) and BEnc a bound on the encryption randomness. //the
former will be used in Lemma 34, the latter in Lemma 35.

Note that following Section 3.5, two possibilities exist for threshold decryption: (1) either
by using the mainstream threshold decryption method (Section 3.5.1), which does not require
pre-shared noises, (2) or by using the second improved method (Section 3.5.2), in which
parties distributively generate a pre-shared noise in parallel with the DKG. We use the latter in
Figure 3.12.

Remark. Note that in the protocol, malicious input-owners may decide not to send their en-
crypted inputs. Thus, we define a set Sc ⊆ [n] of indices of non-aborting input-owners, and
assume that we can define a restriction of C to the received inputs with indices in Sc that we
denote Cc.

3.8 Security

By Proposition 19, ΠLSS UC implements FLSS. Thus, the following Theorem 33 implies Theo-
rem 25 presented in Section 3.2, i.e. that ΠFLSS

MPC UC implements FC.
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Protocol ΠFLSS

MPC

Participants: n parties P = {P1, . . . , Pn}, and a set Q of na input-owners, each with input a plaintext
mi.
Bulletin-board PKI setup and CRS setup. Each Pi:

• Sends (Setup) to FLSS;

• Obtains common uniform strings (a,d1)← GURS.

1 Interactive setup in one step of all-to-all broadcasts.
Upon ready from FLSS, each Pi:

• Distributed Keys Generation - broadcasts:

– Computes (ski, (bi,a))← `-BFV.Keygen(a) and (d0,i,d2,i)← `-RlkKeygen(a,d1, ski).

– Sends (input, ski, ski) to FLSS and broadcasts (bi, (d0,i,d2,i)).

• Distributed Smudging Noises Generation (in parallel with DKG broadcasts):

– Samples esm,i
$←− [−Bsm, Bsm] and sends (input, esm,i, esm,i) to FLSS. //Once for each subse-

quent threshold decryptions, if multiple circuits.

Local Computation: Each party:

• Reception of broadcasts: Initializes an empty list S ← {} of indices of non-aborting parties.
∀j ∈ [n], checks if the data received from the broadcast of Pj parses as: (bj , (d0,j ,d2,j)) then
stores this data and adds j to S. Also, if the distributed smudging noise generation was activated,
it further checks if FLSS did notify (stored, esm,j) (else, it does not add j to S).

• Adding the contributions of non-aborting parties: Computes

(3.21) b = Σj∈Sbj ,

and sets: ek = (b, a) = (b[0],a[0]). Sets the secret key as sk = Σi∈Sski, the smudging noise as

esm = Σi∈Sesm,i //accessible through FLSS, via the labels sk, esm, and:

(3.22) rlk = (Σj∈Sd0,j ,d1,Σj∈Sd2,j)

2 Broadcast of encrypted inputs: Each Qi ∈ Q:

• Samples u $←−Xq, e
(Enc)
0

$←−BEnc,q and e(Enc)
1

$←−Ψq. Computes ci = (∆mi+u·b+e(Enc)
0 , u·a+e

(Enc)
1

)
then broadcasts it.

Evaluation (local): Each Pi sets Sc ⊆ [n] the subset of indices of owners from which it received a
broadcast ciphertext cj .

• Then it computes c← `-BFV.Eval(C, {cj}j∈Sc , rlk,b).b

3 Threshold Decryption: Each party Pi:

• Given labels (sk, esm), and a ciphertext c, sends
(
LCOpen,Λc

Dec+sm(sk, esm)c
)

to FLSS;

• Upon receiving (Λc
Dec+sm, µ) from FLSS, outputs m := ΩDec(µ).

aFor simplicity, we consider n input-owners, but any arbitrary value could be chosen instead.
bWithout loss of generality, C sets to ⊥ the non received inputs in [n] \ Sc.
cDefined in Equation (3.12)

Figure 3.12: MPC Protocol ΠFLSS

MPC



Theorem 33. ΠFLSS

MPC presented in Figure 3.12 UC implements the ideal functionality FC for any
semi-malicious adversary, in the (FLSS,BC)-hybrid model with external resource GURS.

To prove Theorem 33, we describe in Section 3.8.1 a simulator Sim of ΠFLSS

MPC that simulates
honest parties following the protocol, and ideal functionalities behaving as specified. We first
convey the main ideas of Sim by describing it via a sequence of incremental changes, starting
from a real execution. In the last hybrid obtained, the view of Env is generated solely by
interaction with FC, hence what we are describing is a simulator. The hybrids and the proofs
of indistinguishability are given in Section 3.8.2.

First, in Hybrid1, we simulate decryption by modifying the behavior of FLSS in the threshold
decryption. There it, incorrectly, outputs µSim := ∆.y + Σj∈Sesm,j , where y := C((mi)i∈Sc) is
the evaluation in clear of the circuit on the actual inputs. Indistinguishability follows from the
“smudging” Lemma 27, as detailed in Lemma 34.

Then, in Hybrid2, the additive contributions (bi,d0,id2,i)i∈H of honest parties to the encryp-
tion and relinearization keys, are replaced by a sample in U(Rl×3

q ). Indistinguishability from
Hybrid1 follows from Corollary 28.

Finally, in Hybrid3, we replace the actual inputs mi of simulated honest owners by m̃i := 0.
Importantly, the behavior of FLSS is unchanged, i.e., correct until 3 included, then outputs
µSim := ∆y+ Σj∈Sesm,j , where y := C((mi)i∈Sc) is still the evaluation of the circuit on the actual
inputs. Thanks to the modifications so far, the secret keys of the honest parties are no longer
used in any computation. Furthermore, since honest parties sample their contributions bi to
the common threshold encryption key independently (uniformly at random), we can assume
without loss of generality that corrupt contributions are generated after having seen the honest
ones. We can thus apply Lemma 26 “IND9CPA under Joint Keys” presented in Section 3.4.1.
This enables us to conclude that the distributions are indistinguishable.

In conclusion, we arrived at a view produced by a machine that interacts only with Env and
FC.

3.8.1 Description of the Simulator Sim of ΠFLSS

MPC.

We describe in Figure 3.13 the simulator Sim for an honest L (the case where the output
learner is corrupt is easy. Namely, the simulator plays ΠFLSS

MPC honestly, then indistinguishability
follows from correctness of ΠFLSS

MPC).
Sim initiates in its head: sets of n parties and n input-owners, and may initially receive cor-

ruption requests from Env for arbitrarily many owners and up to t parties, indexed by I ⊂ [n].
It simulates functionalities (BC,FLSS) following a correct behavior, apart from the value re-
turned by FLSS in the Output computation step. For instance, when receiving a message from
Env intended for some functionality, Sim internally sends it to the functionality and then sim-
ulates the steps taken by the functionality accordingly. Upon every output from a simulated
functionality to a simulated corrupt party, or, upon every message from a simulated functional-
ity to Sim acting as A, then Sim immediately forwards it to Env, as would have done the actual
dummy A.

3.8.2 Hybrids, and proofs of indistinguishabilities

We go through a series of hybrid games, starting from the real execution REALΠC
. The view

of Env consists of its interactions with A/Sim, and of the outputs of the actual honest parties.
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Sim
• Setup.

0 Simulates the setup of FLSS.

0 Retrieves (a,d1) from GURS and sends it to all on behalf of GURS

• Distributed Key and smudging noise generation: Simulates a correct
behavior of FLSS. For every simulated honest party (Pi)i∈H:

1 Samples ski $←−Xq (never used) and esm,i
$←− [−Bsm, Bsm], and sends

them to FLSS.

1 Samples bi $←− U(Rlq) and (d0,i,d2,i) $←− U(Rlq × Rlq), sends them over
BCPi .

As in the protocol, Sim sets S ⊂ [n] the indices of parties, for which no
instance returned ⊥.

• Distribution of encrypted inputs: Simulates correct behaviors to compute
keys b :=

∑
j∈S bj and rlk := (

∑
j∈S d0,j ,d1,

∑
j∈S d2,j) in 1 , defines sk =∑

i∈S ski, and:

2 ∀ simulated honest owners owners Q` ∈ Q: sets m̃` := 0 and samples
u $←−Xq, e

(Enc)
0

$←−BEnc,q and e(Enc)
1

$←−Ψq. Then sends c̃` =(∆m̃`+u · b+

e
(Enc)
0 , u · a+ e

(Enc)
1

)
over BCQ` .

2 ∀ simulated corrupt owners Q` ∈ Q, upon receiving (c`) from Env, uses
sk to decrypt c` into m` and sets m̃` := 0 if mi = ⊥ or m̃` := m` other-
wise, and sends (input,Q`,m`) to FC.

• Threshold Decryption: Upon being leaked the evaluation y from FC, where
by definition y = C({mi}i∈Sc), then Sim simulates the following incorrect
behavior:

• FLSS eventually-outputs
(

Λc
Dec+sm, µ

Sim := ∆y + Σj∈Sesm,j

)
.

Figure 3.13: Description of the simulator



We deal with the latter once and for all in Lemma 34.

Hybrid1 [Simulated Decryption]. FLSS is modified in the Threshold Decryption step: there it,
incorrectly, outputs µSim := ∆.y + Σj∈Sesm,j , where y := C((mi)i∈Sc) is the evaluation in clear
of the circuit on the actual inputs.

Lemma 34. The outputs of the actual honest parties are the same in REAL
Π
FLSS
MPC

and
IDEALFC,Sim,Env. Also, the views of Env in REAL

Π
FLSS
MPC

and Hybrid1 are computationally in-
distinguishable.

Proof. It is convenient to prove the two claims at once. The view of Env is identical in REAL
Π
FLSS
MPC

and Hybrid1 until 3 included. There, for all i ∈ Sc, a fresh encryption ci of mi under ek = (b, a)

is broadcast. Thus, the evaluated c := `-BFV.Eval(C, {cj}j∈Sc , rlk,b) is the same in both views.
In the threshold decryption of REAL

Π
FLSS
MPC

, the output of FLSS is:

µ = c[0] + c[1] · Σj∈Sskj + Σj∈Sesm,j ,(3.24)

with esm,j
$←− [−Bsm, Bsm] for all j ∈ S. First, by Definition 32, we have, for some noise e(Dec),

with ‖e(Dec)‖ ≤ BC:

c[0] + c[1] · Σj∈Sskj = ∆y + e(Dec) .(3.25)

Since ‖esm,j‖ ≤ Bsm for all j ∈ S, it follows from the choice of parameters (that verify Equa-
tion (3.19)) and the final remark in Definition 32, that the output of honest parties in REAL

Π
FLSS
MPC

is ΩDec(µ) := y, which proves our first claim.
Second, since we specified ‖e(Dec)‖/(n · Bsm) = negl(λ) (see Equation (3.23)), it follows

that the distribution of µ, given by Equation (3.24) is computationally indistinguishable from
the one of ∆y + Σj∈Sesm,j , see the “smudging Lemma” 27 presented in Section 3.4.1 for a
further formalization of this fact. But the latter is by definition µSim, which is exactly the output
of the functionality FLSS in Hybrid1.

Hybrid2 [Random Keys]. This is the same as Hybrid1 except that the additive contributions
(bi,d0,i,d2,i)i∈H of honest parties to the encryption and relinearization keys, are replaced by
a sample in U(Rl×3

q ). Indistinguishability from Hybrid1 follows from Corollary 28 presented in
Section 3.4.3.

Hybrid3 [Bogus Honest Inputs] This is the same as Hybrid2 except that the input and ran-
domness distribution on behalf of honest input-owners are computed with m̃` := 0, instead of
with their actual inputs m`. Importantly, the behavior of FLSS is unchanged, i.e., correct until
3 included, then outputs µSim := ∆y+Σj∈Sesm,j , where y := C((mi)i∈Sc) is still the evaluation

of the circuit on the actual inputs.
We now have that Hybrid3 and IDEALFC,Sim,Env produce identical views to Env. Indeed, the

behaviours of GURS, of the simulated ideal functionalities (FLSS,BC), and of the honest parties
in Hybrid3, are identical to the simulation done by Sim.

Lemma 35. Hybrid2 and Hybrid3 are computationally indistinguishable.

100



Proof. Since Hybrid2, the secret keys of the honest parties ({Pi}i∈H) are no longer used in any
computation. Furthermore, since honest parties sample their contributions bi to the encryption
key independently (uniformly at random), we can assume without loss of generality that corrupt
contributions are generated after having seen the honest ones. We can thus apply Lemma 26
“IND9CPA under Joint Keys” presented in Section 3.4.1. It considers a uniform value b in Rlq,
then the adversary can add to it the sum (b′,a) of t encryption keys which it semi-maliciously
produces (with the same a). The lemma states that the ciphertext of a chosen message
under the sum of keys (b + b′,a), is still indistinguishable from a uniformly random value. The
reduction, from multi-message, to this latter single-message statement, is straightforward.

3.9 Chapter Summary

In this chapter, we introduced trBFV, a (n, t)-threshold FHE scheme based on RLWE. The
construction improves upon the previous works of [MTBH21; KJY+20; Par21] by making the
distributed key generation robust, including for generating the relinearization key, and by using
an improved threshold decryption to obtain a smaller modulus size. Combining them together,
we built a robust MPC protocol ΠFLSS

MPC in 2 broadcasts + 1 asynchronous P2P rounds.
One limitation of our proposed protocol, as well as all previous ThFHE-based ones, is the

need for two broadcasts following the overall DKG-then-Input-Distribution approach. In the
following chapter, we show how to reduce the number of initial broadcast rounds to an optimal
value of one.

101



Chapter 4

Share & Shrink: Delegated MPC with
GOD from one broadcast
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In this chapter, we address the shortcomings of the threshold FHE-based MPC protocol
presented in Chapter 3, to make it more suitable for computation delegation. More specifi-
cally, the MPC protocol presented in Section 3.7.1 that entails Theorem 25 requires two initial
broadcast rounds before the evaluation: a first one for generating the keys and a second to
distribute the encrypted inputs. However, although handy abstractions for designing simple
MPC protocols, broadcast (BC, see Section 1.8.2) and round-by-round synchronous commu-
nication, are costly to implement in practice as previously discussed in Section 1.8. Moreover,
due to the loss of security when messages are not delivered within a round, protocol imple-
mentations must set the duration of a round very high (typically [AMN+20] 50× larger than the
actual network delay, in order to tolerate slowdowns). Therefore, our aim in this chapter is to
reduce the number of broadcast rounds to a minimum.

Significant effort is currently put to minimize the use of BC in MPC protocols [FN09; BHN10;
GGOR13; PR18; CGZ20; GJPR21; DMR+21; DRSY23]. We push further this line of work by
requiring only one initial call to BC i.e. a broadcast-optimal protocol as studied in [CGZ20;
DMR+21; GJPR21; BMMR23], without any trusted DKG setup, followed by a fully asyn-
chronous protocol. Since we aim at the (arguably gold standard) of guaranteed output delivery
(GOD) under honest majority, this initial call to BC is necessary, as shown by an elementary
split-brain attack [BHN10].

Overall, two main approaches exist to design round-efficient FHE-based MPC protocols:
Threshold FHE-based: A mainstream tool for round-efficient MPC is based on (n, t)-threshold-

FHE schemes as previously discussed in Chapter 3. Overall, it proceeds with the follow-
ing generic approach, or close variations as shown in Figure 4.1a: it starts 1 with the
distributed generation (DKG) of a common threshold encryption key ek, along with the
private assignment to each party of a secret key share, followed 2 by the broadcast of
encrypted inputs under the threshold encryption key. Then, parties locally evaluate a cir-
cuit through an algorithm Eval on the encrypted inputs, that outputs a ciphertext. Finally,
parties 3 perform an asynchronous threshold decryption protocol using their secret key
shares, so that any set of t+ 1 of them can recover the output.

Overall, this approach allows input-owners to distribute compact input ciphertexts, i.e. of
size independent of the number of inputs, and an efficient evaluation of a circuit on them.
However, it also inherently requires two initial broadcasts: a first one for the DKG and a
second one for the input distribution.

Multikey FHE-based: Another popular tool to reduce the number of broadcast rounds is to
use a (n, n)-Multikey-FHE scheme as previously discussed in Section 1.12.2. By using
such schemes, no DKG is needed before the distribution of the inputs, effectively reducing
the number of broadcasts in an MPC protocol to just one as shown in Figure 4.1b : the
former starts 1 with the local generation of keys by the computation parties, directly
followed by the broadcast of inputs encrypted under the different keys. Then 2 , parties
proceed with the multikey evaluation of a circuit through an algorithm MultikeyEval, before
performing a (n, n)-threshold decryption of the evaluated ciphertext.

Overall, this approach makes possible the design of MPC protocols using one broad-
cast. However, the multikey evaluation is then done on multikey ciphertexts that are
non-compact, i.e. that depend at least linearly on the number of inputs, which makes it
very expensive in practice.
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In short, these two approaches highlight a tradeoff: one allows an efficient evaluation but
requires an additional broadcast round, while the other allows to obtain an MPC protocol in
an optimal number of broadcasts at the cost of an expensive evaluation. In this chapter, our
goal is to propose a new approach that offers the best of both worlds: an MPC protocol with
an efficient evaluation that requires only one broadcast.

This chapter is organized as follows: we first detail the two main FHE-based approaches
to build round-efficient MPC protocols and detail the main efficiency challenges (Section 4.1).
Then, we present our contributions (Section 4.2) and compare them with previous related
works. In Section 4.3 we give examples of multiple `-HE schemes, before introducing our new
approach in Section 4.4. We describe our MPC protocol and its security in Section 4.5, and
prove in Section 4.6 some feasibility results. Finally, we detail in Section 4.7 some experiments
to assess the practicability of the new protocol.

4.1 Preliminaries

We first recap in Sections 4.1.1 and 4.1.2 the two main approaches for designing round effi-
cient FHE-based MPC protocols. In particular, we highlight the challenges to be overcome in
order to achieve efficient protocol for delegated computation.

DKG

m2

Enc

m3

Enc

m1

Enc

Eval

Encek(m2 )
Encek(m3 )Encek(m1 )

Compact ciphertext

ek

(a) Threshold-FHE based MPC. Parties first run
a DKG protocol to obtain, in one BC, a common
threshold encryption key ek and secret key shares.
Then parties encrypt their inputs and broadcast
them. A circuit can later be efficiently evaluated
on them as they remain compact, i.e. independent
from the number of inputs.

m2

Keygen

Enc

m3

Keygen

Enc

m1

Keygen

Enc

MultikeyEval

Encek2
(m2)

Encek3
(m3)Encek1

(m1)

Non compact ciphertext

(b) Mulitkey-FHE based MPC. Parties first locally
Keygen a key pair ek/sk and encrypt their inputs
with their own key before broadcasting them. A
circuit can later be evaluated on them even if they
are not encrypted under the same key using a
MultikeyEval algorithm. Unfortunately, ciphertexts
are now non-compact, i.e. their sizes depend on
the number of inputs, and as a result, the evaluation
is inefficient.

Figure 4.1: Comparison of the threshold-FHE-based approach in 2 BC, and the multikey-FHE

based approach in 1 BC for evaluating a circuit on encrypted inputs.
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4.1.1 Threshold FHE

We briefly recall the approaches based on threshold-FHE schemes, following Chapter 3 and
Figure 4.1a. Overall, starting from [AJL+12], an MPC protocol can be built from a threshold-
FHE scheme following an approach that can be called “DKG-then-Input-distribution”. It consists
of two distinct steps:

1. First, a DKG protocol to generate a common threshold encryption key1 as well as the as-
signment to each party of a secret key share. As seen in Chapter 3, this is a well-studied
problem, and many works [MTBH21; KJY+20; Par21] have recently been proposed for
efficient RLWE-based FHE schemes2, or our robust protocol leveraging `-BFV presented
in Sections 3.4.1 and 3.4.2.

2. Second, the distribution by input-owners of encrypted inputs under the common threshold
encryption key.

This approach, however, raises two major challenges for our goal of building a round-
efficient protocol.

Challenge 1: Number of Broadcasts. Implementing DKG requires at the very least one
broadcast [FS01]. When adding the input distribution, this results in at least two broadcasts,
exceeding the desired goal of just one. To remove one broadcast, it would be possible to
further open the box of DKG under honest majority [SBKN21]. However, inside are several
synchronous rounds, due to the consensus (or MVBA) primitive, which is essentially equivalent
to broadcast. So we aim for a different approach without a DKG before the input distribution.

Challenge 2: Support for Lightweight Input-Owners. An inherent limitation of the DKG-
then-Input-distribution approach is that the common threshold encryption key ek produced by
the DKG is not published explicitly: it is the result of a local computation made by each party.
So in order for external input-owners to learn this key, it would require another intermediary
step after the DKG, in which parties would notify the former of ek. Moreover, in the case of ma-
licious parties, they would furthermore need to check NIZKs of the correctness of broadcasts
in the DKG, which we want to avoid to keep them as lightweight as possible.

4.1.2 Multikey FHE

We briefly recall the approaches based on multikey-FHE schemes, following Section 1.12.2
and Figure 4.1b. Overall, starting from [LTV12], a multikey-FHE scheme allows to perform ho-
momorphic operations directly over ciphertexts encrypted under different keys, which removes
the need for an initial DKG before the distribution of the inputs. However, if at first sight their
use seems well suited for delegated MPC, it actually comes with its own challenges.

Challenge 1: Robust Threshold Decryption. Multikey-FHE schemes inherently suffer from
a lack of robustness. Indeed, the threshold decryption requires all n parties to participate,

1And possibly additional relinearization and/or bootstrapping keys.
2Which do not, however, allow to obtain an MPC protocol with GOD by lack of a robust distributed generation of relinearization

& bootstrapping keys
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otherwise as soon as one party aborts, the decryption fails. One could imagine a compilation
of such threshold decryption protocols into ones guaranteeing GOD, at the cost of Ω(t) con-
secutive broadcasts and re-evaluations of the circuit. Namely: require parties to broadcast
their decryption shares; Then, if some instances of broadcast for some parties returned ⊥,
discard them and restart the whole protocol with the remaining parties. Thus, in the case of t
consecutively aborting parties in the threshold decryption, the execution is restarted t times.
Another approach is then needed to design a robust constant-round MPC protocol.

Challenge 2: Efficient Evaluation & Delegation. What we observed from the previous
DKG-then-Input-distribution approach, is that call to BC are used to provide parties with a
common view on threshold-encrypted inputs. In a breakthrough approach, [GLS15] proposed
the first (n, t)-threshold robust multikey-FHE scheme requiring one single BC. However, it suf-
fers from two practical issues. First, because it is based on GSW [GSW13], the sizes of the
ciphertexts are d× larger than those under more recent RLWE-based FHE scheme. Unfortu-
nately, the approach of [GLS15] is not portable to RLWE, since it relies on the subset-sum
Lemma of [Reg05] (see Section 4.2.2). Second and more importantly, their construction can-
not enable delegation (see Section 4.2.2).

To remedy the former issue, [BJMS20] built an MPC protocol based on multikey-FHE using
a more generic construction. However, their protocol still suffers from a major drawback: the
sizes of the (multikey) ciphertexts of [BJMS20] are quadratic in the number |Q| of input-owners
and so is the multikey evaluation. Part of this inefficiency is due to the use of the GSW-based
multikey scheme from [MW16; BHP17]. However, even using recent more efficient multikey
schemes [KKL+23; KÖA23] that reduced the overhead in homomorphic evaluation complex-
ity to linear in |Q|, the multikey evaluation is still |Q|× less efficient than when using their
threshold-FHE counterparts.

In this chapter, we then ask the following question:

Is there a generic method for designing an MPC protocol, providing a common view on
ciphertexts of inputs under a (threshold) FHE encryption (so of sizes independent of |Q|),

using no more than one broadcast, without a trusted DKG setup?

4.2 Our Contributions

Before moving to our main contribution in Section 4.2.2, we complete in Section 4.2.1 the
theoretical picture of honest majority MPC with GOD from one initial round of broadcast across
various setup settings.

4.2.1 Contribution 1: Feasibility of 1 BC + asynch P2P MPC with GOD under honest
majority with a bulletin board PKI.

We assume one initial access to a broadcast functionality BC (see Section 1.8.2), which guar-
antees an eventual delivery whatever the (non)behavior of the sender.

Theorem 36. There exists an MPC protocol with guaranteed output delivery (GOD) under
honest majority (n = 2t + 1), under the sole setup of a bulletin board PKI; which furthermore
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Comm.
Setup

Trusted DKG 4 bPKI + URS bPKI No setup

1 BC + 1 Sync P2P
[GLS15]+[DMR+21]

X
X [GIKR02]

%

1 BC +∞ Asynch P2P
[BHN10]

X X
[UR22]
%

[BJMS20] +Thm. 36

Table 4.1: Feasibility and impossibility of MPC with GOD under honest majority with different
setups and communication patterns. URS stands for a public uniform random string, and bPKI

for a bulletin-board PKI.

enjoys (i) termination in 1BC-then-1 step of asynchronous P2P messages; (ii) allow inputs from
external owners, i.e., which do not take part in the computation; (iii) is reusable, i.e. distributed
inputs can be reused to compute different functions3.

The baseline is the protocol of [BJMS20]. As stated, it does not have properties (i) nor (ii).
We show in Section 4.6 how the three-round MPC protocol of [BJMS20] in the plain model can
be modified to work in a BC-only model and support external input-owners. We note that our
proof differs from the one of Goel et al. [GJPR21], because as stated in [DRSY23], “we con-
sider [...] communication patterns where broadcast is limited to one of the two rounds”, while
broadcast is assumed in both rounds in [GJPR21]. Moreover, their protocol is not reusable,
i.e. given the transcript of the input distribution phase of the protocol, the computation phase
cannot be reused across an unbounded polynomial number of executions to compute different
functions on the same fixed joint inputs of all the parties. We refer to Appendix D for more
details.

Related Works. A long line of recent works [DRSY23; DMR+21; GJPR21] have undertaken
to fully characterize what MPC protocols with one initial broadcast round allow achieving
across various setup settings (such as with or without PKI, with or without a URS, ...). For
instance, [DRSY23] studied the feasibility and impossibility of two-round MPC with different
guarantees and broadcast patterns considering a model in which only a URS is available but
no PKI nor correlated randomness. Damgård et al [DMR+21] provided more details when a
PKI is also available.

In Table 4.1, we complete the picture by studying the case where a bulletin board bPKI is
available but no URS.

4.2.2 Contribution 2: Share&Shrink Generic Protocol for delegated MPC in one Broad-
cast.

We answer positively the main question by proposing a new generic protocol in the bulletin-
board PKI (bPKI) model, called Share&Shrink. It simultaneously addresses the three main
problems raised in Section 4.1:

Problem 1: MPC with GOD in one Broadcast, i.e. the ability for our MPC protocol to
achieve GOD using no more than one initial broadcast.

3see Appendix D for more details
4Threshold encryption key, secret-shared secret key
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Problem 2: Delegability, i.e. the ability for an input-owner to outsource the computation
to a set of parties while maintaining the privacy of its input.

Problem 3: Efficient Evaluation, i.e. the complexity of the homomorphic evaluation
should not depend on the number of input-owners.

Overall, Share&Shrink performs in parallel : a DKG protocol, and a distribution of cipher-
texts of inputs under a common threshold encryption key (thus of sizes independent of |Q|).
The broadcast BC is used only once simultaneously by both parties and input-owners. The
second (and last) step is performed over asynchronous peer-to-peer channels.

It leverages two main ingredients:

• First, any linear homomorphic encryption scheme as defined in Definition 7 in Sec-
tion 1.10.4. This includes, among others, the schemes or close variations known as
CL [CL15], GSW [MW16], or the `-BFV scheme detailed in Chapter 3. Intuitively, this
linearity property is important because it allows us to express these schemes as a set
of linear maps, which can be used as inputs to the ideal functionality FLSS introduced in
Chapter 2.

• The second ingredient is precisely the linear secret sharing functionality FLSS detailed in
Figure 2.2. Indeed, we recall that the latter has a reusability property, meaning among
other things, that the linear map to be evaluated should not necessarily be known at the
time of input sharing. This is precisely what we are going to use to enable us to perform
the DKG in parallel with the input distribution. For simplicity of the following description, let
us recall that sharing an input in FLSS corresponds roughly to broadcasting a PVSS[GV22;
KMM+23], as defined in Definition 8 in Section 2.3.

In more detail, consider any linear homomorphic encryption scheme satisfying Definition 7
in Section 1.10.4, represented by a tuple of PPT algorithms `-HE = (Setup,Keygen,Enc,Dec)

formalized by a set of linear maps Λa
EKeyGen,Λ

ek
Enc,Λ

c
Dec as well as a non-linear decoding function

ΩDec. The Share&Shrink protocol is presented in Figure 4.2, and can be described as follows:

0. Setup. Each party non-interactively generates, then publishes a public key, for any public-
key encryption scheme (PKE, see Definition 5 in Section 1.10.2). Parties also retrieve a
uniform random string (URS), as needed in most of the `-HE schemes considered.

1. Share. Parties run a DKG protocol in one round of broadcast. The pattern is the same as in
[FS01] and in Section 3.4.1. Namely, each party Pi generates an additive contribution ski to
the secret key, and eki to the threshold encryption key, which is the image of ski (and possibly
some noise) by a fixed public linear map Λa

EKeyGen (e.g., for `-BFV: eki ← (−a · ski + e
(pk)
i , a),

where a is a URS and e(pk)
i some noise). It broadcasts eki and a PVSS of ski. We leave here

implicit the necessary NIZK’s proving that the public eki is derived from the shared ski (with
possibly some noise e(pk)

i ).

In parallel, input-owners also broadcast PVSS’s of their inputs and of encryption random-
nesses.

2. Shrink. Each party locally sets the threshold encryption key ek as, roughly, the sum of the
eki’s for which the ski’s were correctly shared. Parties then perform the threshold encryption
of the shared inputs under ek, thereby “shrinking” them down to the sizes of ciphertexts
encrypted under this single ek. What makes the threshold encryption work in one step of
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peer-to-peer asynchronous messages, is that it simply consists in the opening of a linear
map Λek

Enc, parametrized by ek, evaluated over the shared secret inputs (and the shared
encryption randomnesses), leveraging FLSS.

In the end, parties obtain a common view on inputs encrypted under a common thresh-
old encryption key ek. They can thus proceed as in the remaining of the DKG-then-Input-
distribution approach, namely the evaluation and later the threshold decryption, which requires
no further broadcast.

PVSS(m1) PVSS(m2)

Keygen
ek2,PVSS(sk2)

Keygen
ek3,PVSS(sk3)

Keygen
ek1,PVSS(sk1)

ek =
∑

i∈S eki

µ
(2)
i

= Λ
ek
Enc(m

(2)
i

)

ek =
∑

i∈S eki

µ
(3)
i

= Λ
ek
Enc(m

(3)
i

)

ek =
∑

i∈S eki

µ
(i)
1 = Λ

ek
Enc(m

(1)
i

)

Reconstruct Encek(mi) from {µ(j)
i }j

Eval

Encek(m1) , Encek(m2)

Compact ciphertext

Broadcast

Asynch P2P

Figure 4.2: Overview of the Share&Shrink protocol for DKG & Encrypted Inputs Distribution
in one BC. In broad terms, parties run a DKG in one broadcast, i.e. each party Pi Keygens
a key pair eki/ski and shares a PVSS of its secret keys and the contribution to a common
threshold encryption key. In parallel, input-owners broadcast PVSSs of their inputs and leave
the system. In the second step, parties locally set the threshold encryption key ek as roughly
the sum of the eki’s for which the ski’s were correctly shared. Parties perform the threshold
encryption of the shared inputs under ek, in one opening of the linear map Λek

Enc, parametrized
by ek and evaluated over the shared secret inputs, in one step of P2P messages. In more
details, each party Pi evaluates Λek

Enc over its share m(i) of a shared input m, and sends its
opening share µ(i) of the evaluation. Upon receiving t+ 1 opening shares from any (t+ 1)-set
of parties, the ciphertext can be reconstructed. This effectively shrinks the size of the shared
encrypted inputs down to the sizes of ciphertexts encrypted under a common ek, which can
be efficiently evaluated. (We leave implicit the distribution of encryption randomness as it is
scheme-dependent)

Remark. As previously discussed in Section 1.10.4, the definition of a `-HE scheme encom-
passes schemes with various homomorphic capabilities. In particular, this includes schemes
that are not fully homomorphic, for which we describe alternative evaluation methods over
peer-to-peer asynchronous channels in Section 4.5.1.
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Summary. In short, as shown in Table 4.2, Share&Shrink enables building a delegated MPC
protocol with GOD in one broadcast with the following properties:

• Generic (RLWE compatible), i.e. it is scheme-independent, and in particular can be built
from efficient RLWE-based schemes.

• Short ciphertexts size, i.e. the size of the ciphertexts that undergo homomorphic eval-
uation does not depend on the number of inputs or parties. This matters in practice as
this is directly linked to the computation complexity. Notably, the multikey ciphertexts
used in previous approaches [BJMS20] have sizes that depend on |Q|, which leads to a
homomorphic operation complexity that also grows with |Q|.

Theorem 37 (Share & Shrink). For any linear homomorphic encryption scheme in the sense
of Definition 7, and evaluation algorithm (or asynchronous protocol) over encrypted inputs in
the sense of Section 4.5.1, there exists an MPC protocol under honest majority with GOD,
in 1 BC followed by asynchronous peer-to-peer messages. It furthermore allows inputs from
external lightweight input-owners and is reusable. It operates on ciphertexts of inputs under a
common threshold encryption key, and, in particular, their sizes are independent of the number
|Q| of input-owners, and of n.

Protocol 1 BC + asynch P2P
GOD

for t < n/2
Delegability

Size of
ciphertexts

[KJY+20][MTBH21]
[Par21] % % X |C |

Chapter 3 (trBFV) % X X |C |

[CDKS19] X % % |Q| · |C |
[GLS15] X X % |C |

[BJMS20] + Thm. 36 X X X |Q| · |C |
Thm. 37 X X X |C |

Table 4.2: MPC for n = 2t+ 1 parties and |Q| input-owners, using FHE with lattice dimension
d and modulus q, and assuming a URS and a bulletin-board PKI. The “Size” is the one of the
ciphertexts which undergo homomorphic evaluation (possibly with asynchronous interactions,
cf Section 4.5.1). The “Delegability” refers to the ability for the protocol to allow input-owners
to outsource the computation to a set of untrusted computation parties. We did not mark as
GOD the protocols which must be completely restarted when one party aborts in the middle.

It has furthermore the reusability property (see Appendix D), i.e., messages from input-
owners are independent of the circuit to be evaluated, and multiple circuits may be evaluated
on a set of distributed inputs. [BHKL18] pointed out that the lack of handling inputs from exter-
nal lightweight owners, like mobile phones or web browsers, is one of the main obstacles to the
deployment of MPC in practice. We, therefore, believe that enabling delegation, and having a
complexity that does not grow with the number of input-owners, are significant advantages of
our protocol over previous ones in 1 BC then asynchrony [GLS15; BJMS20].

Related Works. Since we have already discussed in Section 4.1 approaches based on
threshold-FHE schemes [KJY+20; MTBH21; Par21; MBH23], and those based on multikey-
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FHE schemes [CDKS19], we now detail the protocol of [GLS15]5 that is shown in Table 4.2.

Approach of [GLS15]: Let us recap their construction. Parties first receive a uniform ran-
dom string (denoted B), and, 0 generate and publish GSW encryption keys on the PKI. To

encrypt its input mi, each party Pi 1 generates a ciphertext ci,i of it under its own GSW

encryption key, and concatenates to it, encryptions of 0 under the n − 1 keys of other par-
ties, all with the same encryption randomness (denoted R). Such a vector of ciphertexts
ĉi = (ci,1, ci,2, . . . , ci,n) is denoted as a flexible ciphertext, and is broadcast. In parallel 1 ,
parties perform the second event of a DKG, establishing a common threshold encryption key.
Because a flexible ciphertext is generated using the same secret randomness for all the n

GSW ciphertexts contained in it, parties are able to Transform, locally and deterministically, a
flexible ciphertext into a FHE ciphertext under the common threshold encryption key by lin-
earity. Then parties proceed with the local evaluation of the circuit, and finally 2 with the
threshold decryption, which can be done over asynchronous P2P channels, according to our
observation. Because the same encryption randomness is used, and given that t of these
ciphertexts are encrypted under GSW encryption keys which were generated by the adversary
A, this, a priori, gives A an extra advantage to guess the plaintext of ci,i. For the security of
GSW to hold, their encryption keys are therefore scaled slightly larger (m = Ω((d + n) log(q))

vs m = Ω(d log(q)) in GSW), in order to apply the leftover-hash-lemma (LHL [GLS15, lemma
1]).

Overall, this protocol has two main limitations:

1. It is not delegable! The generation of the flexible ciphertext ĉi has, by construction
the secret key ski known by the corresponding party Pi, i.e. ĉi reveals the encrypted
input mi to the party Pi that owns the GSW secret key ski. It is therefore impossible to
accommodate external input-owners without losing privacy, which prevents delegation.

2. It is not generic! A second limitation is that, since this technique relies on the Leftover
Hash Lemma (LHL) [ILL89], it is unknown how to port this construction over other FHE

schemes. Let us illustrate this issue by taking the BFV scheme detailed in Chapter 3 as
an example. Overall, their technique is not easily transposable to efficient RLWE-based
cryptosystems, for the following reasons.

Suppose that the adversary is given one (or several) BFV encryptions of 0 under semi-
maliciously generated key(s) (a, bi), i.e.,

(
u · bi + e

(Enc)
0,i , u · a + e

(Enc)
1,i

)
, which would all be

generated with the same secret randomness u ← Xq. Then this may provide it with a
distinguishing advantage when given a BFV encryption of some m under some honest
key (a, bj) which would re-use the same randomness u. One could possibly think of a fix,
e.g., adapting BFV by specifying that the first component of the encryption key, a := a[0],
would instead be vectors with coordinates in Rq, and encryption randomness u that is
equal to a random vector with entries in Rq. But this fails since [DGKS21, §1] presented
a counterexample showing that the LHL does not hold in general (a leakage of 1/d of
the secret randomness which would make the outcome far from indistinguishable from
uniform). They also point that [LPR13b, Cor 7.5] showed that a weaker version of LHL,
denoted “regularity”, does apply in this setting, nonwithstanding the previous leakage is-
sue, in the case where the distribution of secret randomness would be Discrete Gaussian

5Note that a complete description of [BJMS20] will be done in Section 4.6.
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with sufficiently large parameters. Concretely, we would apply “regularity” to A.u, where
A would be a matrix with n rows encoding all encryption keys. The problem is that, for
the applicability of “regularity”, it is required that A be sampled uniformly, whereas in our
setting we have t keys in A which are semi-maliciously generated, furthermore possi-
bly depending on the other t + 1 honest keys. Thus, this situation could potentially leak
substantial information on u, and thus potentially enable distinguishing the outcome from
uniformly random, such as mentioned above [DGKS21, §1].

4.3 Cryptographic Preliminaries

We now observe that a number of encryption schemes, or close variations, such as [Pai99;
BGN05; GSW13; CL15] verify Definition 7 of `-HE, i.e. whose key generation, encryption, and
decryption algorithms can be expressed as linear maps. As previously stated, this is the main
ingredient behind our new protocol. In the following Sections 4.3.1 to 4.3.3, we give more
details about some `-HE schemes.

4.3.1 CL [CL15].

The `-HE of Castagnos-Laguillaumie (CL) [CL15] has plaintexts in Z/pZ but ciphertexts in a
group of hidden order, hence the operations are seen as Z-linear (the law ∗ in the target group
being multiplication). In [CCL+20, §3.2] it is described how to set-up the parameters for a
public common prime p.

We refer to [BDO23, Fig.4] for details about how to perform a DKG for CL, including a
suitable secret sharing over Z. Note that the DKG can be made non-interactive in one round
of BC, using PVSS.

4.3.2 `-BFV.

We refer to Figure 3.6 in Chapter 3 for a detailed description of the `-BFV scheme. Let us note
that `-BFV is the only known `-FHE scheme based on RLWE.

`-BFV will serve as our main example in this chapter, including for our security proof in
Section 4.5.3 and experiments in Section 4.7. Importantly, recall that it has fully homomorphic
capabilities.

4.3.3 GSW.

From a remote perspective, the original GSW [GSW13] public key FHE scheme falls short
of our linearity requirements. Indeed the encryptor needs to secretly compute a non-linear
function, which takes as input the encryption key and some encryption randomness (namely:
BitDecomp(A.R)). Then, [AP14] introduced a variation of GSW which is compatible with our
syntax, since the encryption is now a linear map. Furthermore, they observe that their varia-
tion is lossless, i.e., a ciphertext under their variation can be transformed into a GSW cipher-
text without knowing the secret key. This GSW-AP variation is explicitly spelled-out in [MW16]
([AP14] described only a symmetric-key simplification) and used in [BGG+18, Appendix B].

112



GSW Scheme

Public Input: URS A ∈ Z(n−1)m
q

GSW.Keygen(pp = (A ∈ Z(n−1)m
q )) : Sample e(ek) $←− Em and s $←− Zn−1

q and set sk =

(−s, 1) ∈ Znq , and defines the linear map ΛA
EKeyGen : (sk, e(ek))→ (s.A + e(ek),A).

Output ek← ΛA
EKeyGen(s, e

(ek)) = (sk.A + e(ek),A) = (b,A).

GSW.Enc(ek = (b,A), m ∈ Z) : Sample R $←− {0, 1}m×m, and define the linear map

ΛA,b
Enc : (R,m)→

([A
b

]
R +mG

)
, where G ∈ Zn×mq .

Output c← ΛA,b
Enc

(
R,m

)
∈ Zn×mq .

GSW.Dec(sk, c) : Given a ciphertext c ∈ Zn×mq , define a vector w = [0, . . . , 0, dq/2c] ∈
Znq , and Λc

Dec : (sk)→ sk.cG−1(wT ) and compute µ← Λc
Dec(sk).

Output m :=
∣∣∣⌊ µ
q/2

⌉∣∣∣ = ΩDec(µ).

Figure 4.3: The GSW scheme

Then, [BHP17] and [BJMS20] used a dual version of the GSW-AP variation, which we call
“GSW∗”. It differs from GSW only from the choices of dimensions and distributions. In Fig-
ure 4.3, we recall the GSW-AP (that we denote as GSW for simplicity), where E is a distribution
over Z, m an integer, G ∈ Zn×mq a fixed efficiently computable matrix and G−1(.) an efficiently
computable deterministic “short preimage” function as defined in [MW16, Lemma 2.1]. As in
Section 3.1.1, for additivity reasons, we consider that the public uniform randomness A is fixed
and drawn from a common URS.

4.4 Share&Shrink: DKG & Encrypted Input Distribution in 1 BC + 1 Async. P2P

We follow the model and the formalism introduced in Section 4.3 and assume a linear ho-
momorphic encryption scheme as in Definition 7, represented by a tuple of PPT algorithms
`-HE = (Setup,Keygen,Enc,Dec). Recall in particular that they are built from public fixed linear
maps Λa

EKeyGen,Λ
ek
Enc,Λ

c
Dec

6 (as well as a non-linear decoding function ΩDec).

We now describe a protocol in the FLSS-hybrid model, called Share&Shrink and formalized
in Figure 4.4, which performs a “DKG & Encrypted Input distribution” in 1 BC + asynch P2P by
leveraging FLSS introduced in Chapter 2. Precisely, it allows parties to obtain all-at-once: (i)
a common threshold encryption key ek7, (ii) a secret-shared secret key sk (formally: in FLSS),
and (iii) a common view on `-HE ciphertexts of the inputs encrypted under ek. The challenge
is that the input-owners have access to the broadcast, to distribute their inputs, only before ek

is known!

0 Setup: Parties receive some public parameters pp, and a uniform random string a.
6And possibly an extra ΛRlkGen if the specific scheme requires a relinearization key.
7Possibly along with a common relinearization key rlk.
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LIST OF FIGURES 114

Share & Shrink protocol
Participants: n parties Pi, i = 0, . . . , n, and |Q| input-owners;
Inputs (for each input-owner Q` ∈ Q): plaintext m` with label m`. // we assume only one
plaintext per input-owner .

• 0 Setup. Each party Pi:

– Sends (Setup) to FLSS

– Obtains some public parameters pp← `-HE.Setup , and a URS a← GURS.

• 1 Broadcast.

– Input and Randomness Distribution (part I): Each input-owner Q`:

* Samples ~ρ` $←−
−−−→
BEnc and sends (input, {m`, ~ρ`}, {m`, ~ρ`}) to FLSS.

– DKG (part I): Each party Pi:

* Computes (ski, eki)← `-HE.Keygen(pp, a). Sends (input, ski, ski) to FLSS and
broadcasts eki, denoted “additive contribution to the encryption key” //possi-
bly along with a relinearization key rlki. .

• Local computation.

– DKG (part II): let S be the subset of indices of parties that broadcast a eki and
for which FLSS has acknowledged the receipt of an additive contribution to the
secret key. Each party Pi:

* Computes ek = Σi∈Seki
a and defines the (secret shared) secret key as sk =

Σi∈Sski and its label as sk //sk is accessible only through FLSS

• 2 Asynchronous step

– Input and Randomness Distribution (part II): let Sc be the set of indices of input-
owners for which FLSS has acknowledged the receipt for all variables of Q`’s
“input and randomness distribution”. Each party Pi:

* For each ` ∈ Sc, given labels (m`, ~ρ`) and a key ek, sends(
LCOpen,Λek

Enc(m`, ~ρ`)
)

to FLSS, and obtains a ciphertext c`.
aAnd possibly a common relinearization key rlk.

Figure 4.4: Share & Shrink Protocol



In parallel, they Setup FLSS as explained in Section 2.2 (concretely: generate and publish
public keys on bPKI).

1 Broadcast: Input-owners send (Share) their inputs & encryption randomnesses ~ρEnc
to FLSS (concretely: broadcast PVSSs of them).
In parallel , based on public parameters pp, parties generate additive contributions ski to
the secret key, which they input to FLSS (concretely: broadcast a PVSS of them); and
eki to the threshold encryption key (using randomness ρkey

i ), which they broadcast (along
with possibly extra material, e.g., relinearization keys for `-BFV).

Local computation: Then, each party locally computes the common threshold encryp-
tion key ek, out of the contributions of the subset S of indices of non-aborting parties.
Precisely, S ⊂ [n] are those which broadcast correct material (including the PVSS, as
captured by FLSS). By linearity of the `-HE scheme, this key is merely the sum of the
contributions over S:

(4.1) ek = Σi∈SΛa
EKeyGen(ski, ρ

key
i ) = Λa

EKeyGen(Σi∈S(ski, ρ
key
i ))8

2 Asynchronous step (Shrinking of the inputs): Then, parties jointly compute thresh-
old encryptions under the common threshold encryption key ek of the shared inputs. Let
us recall that the encryption in a `-HE scheme is a linear function in the input and some
randomness. Thus, by leveraging FLSS, this step can simply be done as the threshold
opening of the images of the inputs (and of the shared encryption randomnesses) by the
linear map Λek

Enc. So this is expedited in one step of asynchronous P2P messages.

The outlined protocol is fundamentally different from related threshold-FHE works [Par21;
KJY+20; MTBH21] which roughly follow the pattern DKG-then-Input-distribution, since using
our protocol, the Input Distribution is done without knowing a common key, which allows us i)
to reduce the number of broadcast rounds to just one while guaranteeing output delivery, and
ii) to keep short ciphertexts compared to [GLS15; BJMS20].

Remark. Note that the security properties will come as a byproduct of the proof of MPC in
Section 4.5.2, which presents a strictly harder setting, due to adversarial influence on the
threshold encryption key (Lemma 44), re-use of random public parameters (Corollary 28), and
public openings of smudged decryptions.

4.5 MPC Protocol

We now present our delegated MPC protocol that operates in one single initial BC followed
by asynchronous P2P messages, leveraging our novel Share&Shrink protocol introduced in

8Note that in the case of `-BFV presented in section 4.3.2, the encryption key has another component which is the URS a,
which is left outside of the sum. The same caveat applies to GSW (Section 4.3.3).
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Section 4.4. First, we discuss the computation itself. When using a `-HE scheme (see Defini-
tion 7) with fully homomorphic capabilities, i.e. a `-FHE scheme, parties can locally evaluate
a circuit on the encrypted inputs and produce an output ciphertext. While our primary focus
is on evaluating circuits using FHE, we also explore alternative approaches for generating this
output. To formalize this, we introduce a generic evaluation protocol Eval in Section 4.5.1 to
evaluate a circuit on `-HE-encrypted ciphertexts in various ways. This protocol, possibly in-
teractive over asynchronous channels, must be simulatable. We then review several known
evaluation protocols that meet these criteria. Next in section 4.5.2, we provide our generic
MPC protocol ΠFLSS

MPC in the FLSS-hybrid model and discuss security. Finally in Section 4.5.3, we
detail the security proof when our `-BFV scheme reminded in Section 4.3.2 is used.

4.5.1 Asynchronous Evaluation of a Circuit

Consider a generic linear homomorphic encryption scheme `-HE and n parties with inputs a
common set of `-HE ciphertexts {c`}`∈[|Q|] of plaintexts {m`}`∈[|Q|] under a common threshold
encryption key ek. We assume that there exists an asynchronous evaluation protocol Eval for
(any) arithmetic circuit C : M |Q| →M with |Q| input gates, that outputs a ciphertext of the eval-
uation of the circuit. Formally, we require that ∀ pp← `-HE.Setup(1λ), there exists a distributed
key generation in one broadcast that returns a common encryption key ek and, privately to the
parties, shares ski of the corresponding secret key sk; ∀ (m`)`∈[|Q|], c` ← `-HE.Enc(pp, ek,m`);

then `-HE.Dec(sk,Eval(C, c1, . . . , c|Q|, ek9)) = C(m1, . . . ,m|Q|). We furthermore require that Eval

is simulatable, as exemplified below. In practice, there are different ways to implement Eval,
among others:

• `-FHE. When using a scheme with fully homomorphic capabilities as a particular kind of
`-HE scheme (as seen for `-BFV in Section 4.3.2), there exists a built-in non-interactive
algorithm Eval that comes as a property of the scheme. In particular, it is simulatable
from the knowledge of the threshold encryption key and of the relinearization key.

• [CLO+13]. Choudhury et al. proposed, through a clever use of pre-processed masks,
a protocol for evaluating a circuit based on an efficient interactive multi-party bootstrap-
ping protocol for an encryption scheme that supports a limited number of homomorphic
operations. Parties open threshold decryptions of masked intermediary evaluations, the
simulator simply simulates the opening of a random value.

• [BHN10]. From a common view of `-HE encrypted inputs under a common encryption
key, and from secret key shares assigned to each party, it is possible to apply the asyn-
chronous CDN-like ([CDN01]) protocol of [BHN10] to evaluate a circuit using a `-HE

scheme with only partial homomorphic properties. Parties open threshold decryptions
of masked intermediary results. Since some masks can be deduced from each other by
adversarially-chosen (but extractable) offsets, some extra care is paid by their simulator.

9Possibly along with an extra relinearization key.
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4.5.2 Protocol ΠFLSS

MPC in (FLSS,BC)-hybrid model, with external resource GURS

Consider any linear homomorphic encryption scheme satisfying Definition 7, represented by a
tuple of PPT algorithms `-HE = (Setup,Keygen,Enc,Dec). We show in Figure 4.5 how to build
an MPC protocol ΠFLSS

MPC from the Share&Shrink protocol instantiated from a `-HE scheme, an
evaluation algorithm Eval that depends on the homomorphic capacities of the scheme as dis-
cussed in Section 4.5.1, and a threshold decryption protocol as detailed in Section 3.5. Note
that the number of shared smudging noises to be generated in parallel, for use in the 2nd

method of threshold decryption presented in Section 3.5.2, is equal to the number of distinct
decryptions to be performed, i.e., of circuits to be evaluated.

Remark. Note that we do not mention here the possible issues related to the generation of the
relinearization keys, since they depend on the `-HE scheme used. It will be done, along with a
concrete instantiation of ΠFLSS

MPC from `-BFV and a summarized proof of security in Section 4.5.3.

Protocol ΠFLSS

MPC

Participants: n parties P1, . . . , Pn, and |Q| input-owners;
Inputs (for each input-owner Q` ∈ Q): a plaintext m` with label m`.

• Share & Shrink. Parties and Input Owners play the Share&Shrink protocol of Figure 4.4
(with the added smudging noise sharing by parties), in which each input-owner Q` ∈ Q
has an input m`.

Denote Sc ⊂ [|Q|] the indices of input-owners (resp. S ⊂ [n] of parties), for which no
instance returned ⊥ i.e parties that broadcast a eki and for which FLSS has acknowledged
the receipt of an additive contribution to the secret key, and input-owners for which FLSS

has acknowledged the receipt for all variables of Q`’s “input and randomness distribution”.

After Share & Shrink, parties have a common view on i) a common threshold encryption
key eka, ii) a set of ciphertexts {cj}j∈Sc encrypted under ek, iii) a shared secret key sk in
FLSS, as well as iv) a shared smudging noise esm in FLSS for threshold decryption (if the
2nd method is used for decryption).

• Evaluation. To evaluate a circuit C, each party Pi runs c← Eval(C, {cj}j∈Sc , eka).

• Threshold Decryption. Parties play the Threshold Decryption of Figure 3.11 with input
the ciphertext c and the shared secret key sk in FLSS.

They output the plaintext m obtained.
aPossibly along with a common relineariation key rlk.

Figure 4.5: MPC protocol ΠFLSS

MPC

Sketch of UC Proof of Theorem 37. We now sketch a simulator for ΠFLSS

MPC. It initiates in
its head sets P of n parties and Q of inputs-owners, and may initially receive corruption re-
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quests from Env for arbitrarily many owners and up to t parties, indexed by I . It simulates
functionalities (BC,FLSS) following a correct behavior, apart from the value returned by FLSS in
the threshold decryption step10. We provide a full description in Section 4.5.3 in the case of
an instantiation from `-BFV.

We consider a `-HE = (Setup,Keygen,Enc,Dec) scheme as well as an Eval protocol as
discussed in Section 4.5.1. To simulate ΠFLSS

MPC, the simulator Sim does the following:

• Setup. Simulates the setup of FLSS.

• Distributed Key and smudging noise generation: Simulates a correct behavior of
FLSS. For every simulated honest party (Pi)i∈H:

– Samples ski $←−X , and sends it to FLSS. //possibly along with esm,i
$←− [−Bsm, Bsm]

– Samples eki $←− U(E k), and sends it over BCPi . //possibly along with rlki $←− U(Rlk)

• Input and randomnesses distribution: Simulates a correct behaviors of FLSS, and:

– ∀ simulated honest input-owners Q` ∈ Q: sets m̃` := 0 and samples ~ρEnc,` $←−
−−−→
BEnc.

Then sends (input, {m̃`, ~ρEnc,`}, {m̃`, ~ρEnc,`}) to FLSS.

– ∀ simulated corrupt owners Q` ∈ Q, upon receiving (c`) from Env, use sk to decrypt c`
into m` and sets m̃` := 0 if mi = ⊥ or m̃` := m` otherwise, and sends (input,Q`,m`)

to FC.

As in the protocol, Sim sets Sc ⊂ [|Q|] the indices of input-owners, resp. S ⊂ [n] of the
parties, for which no instance returned ⊥.

• Threshold Encryption: Simulates correct behaviors to compute ek :=
∑

j∈S ekj
11, and

to make FLSS, for all ` ∈ Sc, eventually output:
(
Λek
Enc(m̃`, ~ρEnc,`)

)
.

• Circuit Computation: Simulates Eval as discussed in Section 4.5.1.

• Threshold Decryption: Upon being leaked the evaluation y from FC, where by definition
y = C({mi}i∈Sc), then Sim simulates the following incorrect behavior:

• FLSS eventually-outputs
(

Λc
Dec+sm, y

12
)

.

4.5.3 Protocol ΠFLSS

MPC instantiated from `-BFV

We describe in Figure 1 in Appendix C our MPC protocol ΠFLSS

MPC instantiated from `-BFV as
introduced in Section 3.3.2.

By Proposition 19, ΠLSS UC implements FLSS. Thus, the following Theorem 38 is a specific
case of Theorem 37 introduced in Section 4.2.2 when `-BFV is chosen as `-HE scheme and
the build-in Eval algorithm as the evaluation method.

10And possibly during the evaluation of the circuit depending on the method chosen as discussed in Section 4.5.1.
11And possibly an extra relinearization key rlk.
12Possibly with an additional smudging noise which we omit here.
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Theorem 38. ΠFLSS

MPC implemented from `-BFV detailed in Figure 1, UC implements the ideal
functionality FC for any semi-malicious adversary, in the (FLSS,BC)-hybrid model with external
resource GURS.

Description of the Simulator Sim of ΠFLSS

MPC. To prove Theorem 38, we describe in Figure 4.6
a simulator Sim of ΠFLSS

MPC that simulates honest parties following the protocol, and ideal func-
tionalities behaving as specified. More precisely, it initiates in its head: sets P of n parties
and Q of input-owners, and may initially receive corruption requests from Env for arbitrarily
many owners and up to t parties, indexed by I . It simulates functionalities BC,FLSS following
a correct behavior, apart from the value returned by FLSS in the threshold decryption.

We now convey the main ideas of Sim by describing it via a sequence of incremental
changes, starting from a real execution. In the last hybrid obtained, the view of Env is gener-
ated solely by interaction with FC, thus what we are describing is a simulator. The full details of
the proofs of indistinguishability are in Appendix C.1. Overall, it is largely similar to Section 3.8.

First, we simulate decryption by modifying the behavior of FLSS in the threshold decryption.
There it, incorrectly, outputs µSim := ∆.y + Σj∈Sesm,j , where y := C((m`)`∈Sc) is the evaluation
in clear of the circuit on the actual inputs. Indistinguishability follows from the “smudging”
Lemma 27, as detailed in Lemma 43.

Then, in Hybrid2, the additive contributions (bi,d0,i,d2,i)i∈H of honest parties to the encryp-
tion and relinearization keys, are replaced by a sample in U(Rl×3

q ). Indistinguishability from
Hybrid1 follows from Corollary 28.

Finally, in Hybrid3, we replace the actual inputs m` of simulated honest input-owners by
m̃` := 0. Importantly, the behavior of FLSS is unchanged, i.e., correct until 3 included, then
outputs µSim := ∆y + Σj∈Sesm,j , where y := C((m`)`∈Sc) is still the evaluation of the circuit
on the actual inputs. Thanks to the modifications so far, the secret keys of the honest par-
ties are no longer used in any computation. Furthermore, since honest parties sample their
contributions bi to the common threshold encryption key independently (uniformly at random),
we can assume without loss of generality that corrupt contributions are generated after having
seen the honest ones. We can thus apply Lemma 26 “IND9CPA under Joint Keys” presented
in Section 3.4.1. This enables us to conclude that the distributions are indistinguishable. In
conclusion, we arrived at a view produced by a machine that interacts only with Env and FC.

4.5.4 Semi-malicious Security to Malicious Security

At a high level, malicious security can be achieved by applying the compiler of [AJL+12, §E],
i.e. by instructing parties to append NIZK proofs (see Definition 2) to their messages, to
prove knowledge of a witness explaining them. But the compiler of [AJL+12] is designed for
broadcast-based protocols, whereas in ours, parties in 3 also act based on previous outputs
of FLSS. This is why, in our adapted model in section 1.9.1, we also required semi-malicious
parties to explain their messages based on these outputs. Namely, if a corrupt party P sends
a message m, then it must have data equal to the internal state of an honest party sending
this message m at this point of the protocol, i.e. the adversary must have a witness tape
containing: an input value of P , coins explaining the random choices of P , and the set of all
broadcast values so far. Compilation in the fully malicious model follows from instructing par-
ties to prove knowledge of this witness tape in zero-knowledge, thereby allowing its extraction.
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Sim
• Setup.

0 Simulates the setup of FLSS.

0 Retrieves (a,d1) from GURS and sends it to all on behalf of GURS

• Input and randomnesses distribution: Simulates a correct behavior of
FLSS. Moreover:

1 ∀ simulated honest Q` ∈ Q: sets m̃` := 0 and sam-
ples u $←−Xq, e

(Enc)
0

$←−BEnc,q and e
(Enc)
1

$←−Ψq. Then sends

(input, {∆m̃`, u`, e
(Enc)
0,` , e

(Enc)
1,` }, {∆m̃`, u`, e

(Enc)
0,` , e

(Enc)
1,` }) to FLSS.

1 ∀ simulated corrupt Q` ∈ Q, upon
(

input,
{

∆m`, u`, e
(Enc)
0,` , e

(Enc)
1,`

}
,{

∆m`, u`, e
(Enc)
0,` , e

(Enc)
1,`

})
from Env, sets m̃` := 0 if m` = ⊥ or m̃` := m`

otherwise, and sends (input, `,m`) to FC.

• Distributed Keys Generation: Simulates a correct behavior of FLSS. For
every simulated honest (Pi)i∈H:

1 Samples ski $←−Xq (never used) and esm,i
$←− [−Bsm, Bsm], and sends

them to FLSS.

1 Samples bi $←− U(Rlq) and (d0,i,d2,i) $←− U(Rlq × Rlq), sends them over
BCPi .

As in the protocol, Sim sets Sc ⊂ [|Q|] the indices of input-owners, resp.
S ⊂ [n] of the parties, for which no instance returned ⊥.

• Threshold encryption (Shrink) and evaluation Simulates correct be-
haviors. For instance in 2 , denoting b :=

∑
j∈S bj and rlk :=

(
∑

j∈S d0,j ,d1,
∑

j∈S d2,j), the simulated FLSS, ∀` ∈ Sc, eventually-outputs:(
Λa,b
Enc, c̃` := (∆m̃` + u` · b+ e

(Enc)
0,` , u` · a+ e

(Enc)
1,` )

)
.

• Threshold Decryption: Upon being leaked the evaluation y from FC, where
by definition y = C({m`}`∈Sc), then Sim simulates the following incorrect
behavior:

• FLSS eventually-outputs
(

Λc
Dec+sm, µ

Sim := ∆y + Σj∈Sesm,j

)
.

Figure 4.6: Description of the simulator



Notice that our simulator will not perform any extraction (rewinding will be used, but only in
the hybrids). The consequence is that our protocol can be instantiated with NIZKs with non-
necessary straight line simulation extractability, which allows for more efficient NIZKs. Recent
such examples are Bulletproofs and Spartan [DG23], of which the former are the ones used
in [GV22] for our purpose.

We can also simplify the compiler presented in [AJL+12] by allowing parties to prove their
statements with UC NIZKs, recalled in Section 1.9, since these can be set-up under honest
majority from one initial call to bPKI, thanks to the technique denoted Multi-String CRS [GO14;
BJMS20]. On the face of it, this call pre-pends one more step before the publication of keys
on bPKI. However, we can actually have parties publish multi-strings in parallel. Indeed, in
our semi-malicious model, we did not impose any conditions when publishing on bPKI. Multi-
Strings instead of GURS-based NIZKs have the merits (i) to relieve parties from the need to
access GURS when constructing their NIZKs, and (ii) to preserve GURS as a global resource,
which would otherwise have needed to be simulated if used to produce NIZKs.

4.5.5 Proving Theorem 37 for other instantiations.

We believe that the previous proof of Theorem 38 conveys all the ideas of a generic proof of
Theorem 37, since it is arguably the most complex instantiation. For instance, the instantiation
with GSW is a strict simplification, since no relinearization key is needed. For the encryption
scheme of CL, the IND9CPA property under a distributively generated key is not argued as
in our lattice-based context (Lemma 26 “IND9CPA under Joint Keys”), so requires a minor
change in the proof. Instead, in [BDO23], they provide a biased-but-simulatable DKG, which
also returns a pair of encryptions: of 1 and of 0. Their simulator of [CDN01] uses the latter to
replace the actual inputs by 0.

Finally, let us note that the adaptation of our proof of Theorem 37 to interactive evaluation
protocols [BHN10; CLO+13], follows directly (in black box) from our simulatability requirement,
exemplified in Section 4.5.1.

4.6 Proof of Theorem 36

The MPC protocol of [BJMS20] proceeds in 3 rounds of broadcasts that can roughly be de-
scribed as follows:

Setup: Parties first run a distributed setup to generate public/secret key pairs and contribu-
tions to public parameters and to the reference strings. These public contributions and
the public keys are then broadcast.

Input Distribution: Let S1 ⊆ [n] be the set of indices of parties that sent a message in round
1, and let parties encrypt their inputs using a multikey-FHE scheme. Parties then broad-
cast the multikey ciphertexts along with PVSSs of their secret keys.

Evaluation and Threshold Decryption: Let S2 ⊆ S1 be the set of indices of parties that sent
a message in round 2. Parties then evaluate a circuit C on the broadcast encrypted inputs
and perform a threshold decryption in one BC.

121



Now let us show how this outlined protocol can be cast in our model to obtain (i) termination
in 1 BC-then-1 step of asynchronous P2P messages; and (ii) allows inputs from external
owners.

We first note that the first broadcast round is input-independent. Hence, we replace their
round 1 with the publication of public keys and uniform random strings on the PKI. Then, the
broadcast in their 2nd round consists of broadcasting one’s input encrypted with a multikey-
FHE scheme, along with a PVSS of one’s secret key. The 3rd broadcast is used to send one’s
decryption share of the evaluated multikey ciphertext of the output (with a suitable NIZK of
correct decryption, as in [BJMS20], when compiled from semi-malicious to malicious security).

The modification to obtain (ii) is simply to allow any external input-owner to perform their
round 2 broadcast, directed to the n parties. In more detail, consider the subset S2 ⊂ [|Q|] of
indices of input-owners which correctly shared their inputs and shares of multikey-FHE keys
(in [BJMS20] S2 is instead a subset of parties). From these secret shared keys, it is de-
scribed in [BJMS20] how the parties still-honest-in-round-3 can emulate the multikey-FHE-
reconstruction, as if it would have been performed by members of S2 themselves (their partic-
ipation as input-owners is not needed anymore).

Finally, to obtain (i), we need to replace the broadcast in their third round by one step
of asynchronous P2P messages, in such a way that the output after round 3 is unchanged:
parties still need to obtain the same common threshold decryption. We remark that their round
3 can actually be performed over asynchronous P2P channels. It is because the computation
step performed by a party P at the end of round 3 is: choose any set S of t+1 valid decryption
shares received in round-3 messages, then apply the local threshold decryption algorithm on
them. So this step does not depend on whether all round-3 messages from honest parties
were received by P or not, but it could very well be that t out-of-the t + 1 valid decryption
shares chosen by P , originate from corrupt parties, without any impact of the correctness of
the decryption.

4.7 Experimental Evaluation

We present a proof-of-concept implementation to show that our protocol can lead to practical
results. To this end, we instantiate Share&Shrink from `-BFV as discussed in Section 4.3.2 (al-
though, as seen in Section 4.3, we could also have used another `-HE scheme such as GSW)
and, for a fair comparison, we compare it to the most efficient multikey scheme [KKL+23] based
on BFV, that we denote as MK-BFV. We consider inputs in Rk with log k = 16, and parameters
that achieve at least 128-bit of security level according to LWE-estimator [ACC+21]:

• For MK-BFV, we use the candidate parameter sets described in [KKL+23, Table 2], re-
called in Table 4.3, that supports circuits of depth 6.

• For Share&Shrink instantiated from `-BFV, we use the same parameters in our specific
single-key case.

Our goal is to show that our Share&Shrink approach is effective in practice when many
input-owners come together to compute a circuit on their inputs. Thus, we consider the follow-
ing setting:

• a number of input-owners ranging from 1 to 128, each owning inputs in Rk,
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log k log d log q l
16 14 438 8

Table 4.3: Experimental cryptographic parameters: Overview

• a cluster of n = 11 parties to perform the computation.

All experiments were performed on a MacBook Pro with a 3.1 GHz Intel i5 processor, using
Lattigo13 as well as the implementation of MK-BFV done by [KKL+23]14.

4.7.1 Experiment #1: Mult gate computation

We first compare in Figure 4.7a the running time of a Mult gate (followed by a relinearization)
between two ciphertexts for different numbers of input-owners ranging from 1 to 64 (we are
able to run MK-BFV with up to 64 input-owners, while the only limitation for 128 input-owners
appears to be the size of RAM).

Overall, this verifies that the running time of the Mult algorithm is almost linear with the
number of input-owners when using a multikey scheme, while Share&Shrink brings down this
duration to a small constant, independent of the number of input-owners as expected.

4.7.2 Experiment #2: Broadcast size

We compare in Figure 4.7b the size of the broadcast for different numbers of input-owners
ranging from 1 to 128 that each owns one or ten inputs in Rk, when using the MK-BFV scheme
or Share&Shrink. It comprises:

• An input-independent part that consists of the encryption and relinearization keys as well
as a PVSS of some secret key.

• An input-dependent part that consists either of MK-BFV ciphertexts or of PVSSs of an
input m∈Rk and randomnesses e(Enc)

0 , e
(Enc)
1 , u over Rq as required in Figure 4.4.

Let us first provide some details about Figure 4.7b. For the PVSS, we use the class-group-
based public-key encryption scheme recently employed in [KMM+24], while omitting zero-
knowledge proofs in our semi-malicious corruption model. For n parties, the total bit-length
of ciphertexts is 1752 · (n + 1) bits for a 256-bit plaintext, resulting in an asymptotic ciphertext
expansion factor of 6.8.

Following Chapter 3 and denoting |#inputs| the number of inputs per input-owner, the
broadcast for Share&Shrink is of size:

n · |(3 · l · |Rq|+ PVSS(|Rq|))|+ |Q| · |#inputs| · |PVSS(3 · |Rq|+ |Rk|)|.(4.2)

For Theorem 36 instantiated from the MK-BFV, the broadcast is of size:

|Q| · (4 · l · |Rq|+ PVSS(|Rq|) + |Q| · |#inputs| · 2|Rq|.(4.3)

In Figure 4.7b, we remark that for a small number of inputs per owner, Theorem 36 requires
broadcasting a comparable amount of data than Share&Shrink. However, the greater the

13https://github.com/tuneinsight/lattigo
14Available at https://github.com/SNUCP/MKHE-KKLSS/
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number of inputs per owner, the more the RHS of both Equations (4.2) and (4.3) dominates.
Consequently, Share&Shrink requires a larger broadcast since a greater number of n-sized
PVSSs are sent, which are larger than a MK-BFV ciphertext, whose size is 2|Rq|.

In practice, we believe that it is reasonable to consider a small number n of powerful com-
putation parties and a very large number of resource-constrained input-owners sending few
inputs.

4.8 Chapter Summary

In this chapter, we introduced a new generic protocol for designing MPC protocols in one
single BC from `-HE schemes. Notably, the construction improves on the previous works
[GLS15; BJMS20] in that it simultaneously allows for an easy delegation and for an efficient
evaluation that is independent of the number of input-owners.
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Chapter 5

Conclusion and Future Research
Directions

In this dissertation, we have proposed several MPC protocols that allow for easy delegation
and efficient computation while being robust.

We have introduced a general framework for constructing threshold schemes using linear
secret sharing for application to MPC. To do so, we proposed a new formalism, denoted (n, t)-
LSSD, that serves as a wrapper for most of the (n, t)-LSS schemes used in practice, and that
allows for a generic instantiation of inference and simulation of shares. This helps describe an
ideal functionality FLSS in the simulation paradigm, making it much more versatile for use as
a black box in complex protocols. Moreover, we detail how to implement a (n, t)-LSS scheme
over polynomial rings to make it compatible with the latest, most efficient FHE schemes. This
includes a variant of the Shamir scheme, denoted as Rpe9Shamir, and defined over Rq, where
q is a power q = pe of a prime, itself possibly small p 6 n. The latter case proves useful in
practice [CH18; GIKV23] to speed-up homomorphic operations for multiple FHE schemes.

We have also introduced trBFV, the first robust (n, t)-threshold FHE scheme based on
RLWE, and have instantiated this scheme in an efficient delegated MPC protocol. In doing so,
we have improved on previous non-robust RLWE-based schemes [MTBH21; KJY+20; Par21],
by proposing a new robust protocol for generating the relinearization key and detailing a more
efficient threshold decryption protocol than the mainstream state-of-the-art approach of Boneh
et al. [BGG+18], that enables smaller ciphertext sizes.

We have also improved our previous delegated MPC protocol by reducing the number of
initial broadcasts to the optimal number of one while keeping an efficient evaluation. In doing
so, we bridged the gap between previous approaches which were either based on threshold-
FHE schemes with an efficient homomorphic evaluation but two broadcasts, or on multikey-
FHE schemes which resulted in a protocol in one broadcast at the cost of a non-efficient
evaluation.

Our new generic protocol, denoted Share&Shrink, presents several advantages compared
to previous constructions in one broadcast [GLS15; BJMS20]: Our solution is generic and
can be built from any `-HE scheme, allowing for greater modularity. Moreover, the size of
the ciphertexts that undergo homomorphic evaluation does not depend on the number of in-
puts or parties, which effectively enables scaling our MPC protocol to a very large number of
lightweight input-owners. We have implemented and evaluated our protocol leveraging our
new linear scheme, and we have demonstrated that it outperformed previous protocols in one
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broadcast based on state-of-the-art multikey-FHE schemes.

Future Research Directions

Smudging Noise

The security of the threshold decryption protocol used in this work relies on a relatively crude
approach consisting of hiding a distribution by adding a smudging noise from a distribution with
exponentially larger variance. As a consequence, it requires the ciphertext modulus to be large
enough to accommodate this extra noise, and in practice, to precisely keep track of the noise
introduced during the evaluation to ensure the most accurate bounds possible [CCH+23].

To make up for these practical shortcomings, different research directions have been ex-
plored: first, replacing the statistical distance used to analyze the noise during the threshold
decryption by the Rényi divergence. As recently shown by [CSS+22; BS23], this enables
sampling a smudging noise from a distribution of only polynomially larger variance than the
distribution to hide. However, these works are not yet usable for MPC, as they do not pro-
vide composability guarantees. Second, one can consider a relaxed model [LMSS22] where
the decryption algorithm is modified by post-processing its output with a properly-chosen dif-
ferentially private mechanism. When the use case allows it, this leads to a softer smudging
mechanism.

Mobile Adversary Model

Throughout this dissertation, we have considered a model in which an adversary cannot
change corruption during the protocol. However, regardless of the approach used to securely
compute a circuit (FHE-based, LSS-based, ...), the evaluation may take some time. During this
period, the adversary may try to disrupt the protocol and gain additional knowledge by chang-
ing the parties it corrupts. To account for that risk, Ostrovsky and Yung [OY91] introduced the
notion of proactive security, in which the adversary becomes mobile, i.e. the set of corrupt
parties may change over time. In this model, the life span of a protocol is therefore divided
into separate time periods denoted “epochs”, and between each of them, all the private data
is proactivized, i.e. made independent between epochs, to prevent leakage to an adversary
that gradually compromises parties.

When applied to MPC, a recent line of research [GHK+21; CGG+21; RS22; AHKP22;
AHKP24] studies MPC with specialized computation models, that support a dynamically evolv-
ing set of parties, i.e. where participants can join and leave the computation as desired, without
interrupting the protocol. The rationale is that parties may devote only a limited amount of time
(and computational resources) to a computation that can last a long period, or be unstably
connected to the system due to an unreliable network [MCPT24]. This computation model
was made even stronger by Gentry et al. [GHK+21] under the name YOSO (You Only Speak
Once), where the computation is divided into a number of successive steps, each of them
carried out by some committee of ephemeral parties, i.e. parties that compute one single
computation step and publish a single message on a bulletin board, before vanishing from
the system. An attractive consequence of this model is the drastic reduction of the window
for adaptive corruption of these parties due to the unpredictable selection of committees of
parties for the computation.
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Unfortunately, this model does not seem to be easily adaptable to design a delegated MPC
protocol, as it inherently seems to require some form of consistent terminating broadcast (BC)
at the end of each computation step, for parties to perform their computation on the same
intermediary values. An interesting research direction could therefore be to design a delegated
MPC protocol in one broadcast in the YOSO model, which to our knowledge does not exist.
This would open the way to practical scenarios in which some lightweight input-owners post
some encrypted data on a public blockchain, while the main heavy computational tasks are
performed off-chain by ephemeral parties.

Final Remarks

Delegated computation combined with robust cryptography has the power to efficiently unlock
the valuable insights hidden within our data while safeguarding its confidentiality. Delegated
MPC has the potential to be truly transformative by, paradoxically, bringing a certain form
of centralization into a distributed domain. Indeed, although decentralization is often seen
as the ultimate goal in MPC, this is often at the expense of performance. In the delegated
model we have proposed in this dissertation, we separated the computation, which benefits
from being outsourced to servers with significant resources, from the data sources, that are
kept decentralized, enabling a wider spectrum of use cases. This could pave the way for an
MPC-as-a-service system, in which improvements could be made to the evaluation that are not
visible to end clients, making it easier to operate. Thus, the client’s choice to carry out a certain
processing operation on private data from various sources can be reduced solely to satisfying
a number of properties, including robustness, which was at the heart of this dissertation and
prevents unfair scenarios.
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[KÖA23] J. Klemsa, M. Önen, and Y. Akin. “A Practical TFHE-Based Multi-Key Homomor-
phic Encryption with Linear Complexity and Low Noise Growth”. In: ESORICS.
2023.

[KOS16] M. Keller, E. Orsini, and P. Scholl. “MASCOT: faster malicious arithmetic secure
computation with oblivious transfer”. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. 2016, pp. 830–842.

[KPR18] M. Keller, V. Pastro, and D. Rotaru. “Overdrive: Making SPDZ great again”.
In: Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques. Springer. 2018, pp. 158–189.

[KRDO17] A. Kiayias, A. Russell, B. David, and R. Oliynykov. “Ouroboros: A provably se-
cure proof-of-stake blockchain protocol”. In: Annual international cryptology con-
ference. 2017.

137



[Lin17] Y. Lindell. “How to Simulate It - A Tutorial on the Simulation Proof Technique”.
In: Tutorials on the Foundations of Cryptography. Ed. by Y. Lindell. Springer
International Publishing, 2017, pp. 277–346.

[LLM+20] C.-D. Liu-Zhang, J. Loss, U. Maurer, T. Moran, and D. Tschudi. “MPC with Syn-
chronous Security and Asynchronous Responsiveness”. In: ASIACRYPT. 2020.

[LMSS22] B. Li, D. Micciancio, M. Schultz, and J. Sorrell. “Securing approximate homomor-
phic encryption using differential privacy”. In: Annual International Cryptology
Conference–CRYPTO. 2022.

[LPR13a] V. Lyubashevsky, C. Peikert, and O. Regev. “On Ideal Lattices and Learning with
Errors over Rings”. In: J. ACM (2013).

[LPR13b] V. Lyubashevsky, C. Peikert, and O. Regev. “A toolkit for ring-LWE cryptography”.
In: EUROCRYPT. 2013.

[LPSY19] Y. Lindell, B. Pinkas, N. P. Smart, and A. Yanai. “Efficient constant-round multi-
party computation combining BMR and SPDZ”. In: Journal of Cryptology 32
(2019), pp. 1026–1069.

[LSS16] Y. Lindell, N. P. Smart, and E. Soria-Vazquez. “More efficient constant-round
multi-party computation from BMR and SHE”. In: Theory of Cryptography: 14th
International Conference –TCC. 2016.
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Appendices

A (n, t)−LSSD

Following [JRS17], we now define (n, t)−LSSD in Definition 39, presented as a subclass of
(n, t)−LSS defined in Definition 3 in Section 1.10.1. This definition will help us in Proposition 41
to describe efficient simulation and inference strategies for instantiating a (n, t)−LSS schemes.

Definition 39 ((n, t)−LSSD adapted from [JRS17]). A (n, t)-LSSD is defined by the following
two algorithm:

• LSSD.Share(s ∈ Rq, n, t) → (s(1), . . . , s(n)): There exists a share matrix M ∈ Rd×lq with
positive integers d =

∑n
i=1 di, l and associate a partition Ti of [d] of size |Ti| = di to each

party Pi, ∀i ∈ [n]. For a given secret s ∈ Rq the sharing algorithm samples random values
r2, . . . , rl←$Rq and generates a vector (sh1, . . . , shd)

T = M · (s, r2, . . . , rl)
T . The share

for Pi is a set of entries s(i) = {shj}j∈Ti .

• LSSD.Reco({s(i)}i∈U ,M) → s: For any set U ⊆ [n] such that |U | > t, one can efficiently
find the coefficient {cUj }j∈∪Pi∈UTi

such that

(1)
∑

j∈∪Pi∈UTi

cUj ·M[j] = (1, 0, . . . , 0).

Given such coefficients, the secret can be recovered simply by computing

(2) s =
∑

j∈∪Pi∈UTi

cUj · shj .

The coefficients {cUj } are called recovery coefficients.

Our goal is then to show that a (n, t)−LSSD scheme verifies the properties (4) and (5) of
simulatability and inference of a (n, t)−LSS scheme. In order to achieve this, we first adapt the
following definition from [BGG+18].

Definition 40. Let P = {P1, . . . , Pn} be a set of parties. We define the following:

• A set of parties S ⊆ P is a maximal invalid party set if |S| ≤ t but for every Pi ∈ P \ S, we
have |S ∪ {Pi}| > t.

• A set of parties S ⊆ P is a minimal valid party set if |S| > t and for every S′ ( S, we have
|S′| ≤ t.
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Let LSS be a (n, t)−LSSD scheme with share matrix M ∈Md×l. For a set of indices T ⊆ [d],
we say that T is a valid share set if (1, 0, . . . , 0) ∈ span({M[j]}j∈T ), and an invalid share set
otherwise. We also define the following:

• A set of indices T ⊆ [d] is a maximum invalid share set if T is an invalid share set, but for
any i ∈ [d] \ T , the set T ∪ {i} is a valid share set.

• A set of indices T ⊆ [d] is a minimal valid share set if T is a valid share set, but for any
T ′ ( T , T ′ is an invalid share set.

Proposition 41. From any (n, t)−LSSD scheme, there exists an efficient instantiation of ShSim

and ShInfer following Definition 3.

Proof. We leverage Definition 40 to outline simulation and inference strategies common to all
(n, t)−LSSD schemes as defined in Definition 39, so that we can use functions ShSim and
ShInfer as wrappers independent of the (n, t)−LSSD instantiation.

Simulation Strategy : We now detail the overall strategy to implement ShSim, i.e. the com-
putation of shares {s(i)}i∈[n]\V from {s(i)}i∈V and some secret s.

1. Compute a maximal invalid share set {shj}j∈T∗ where T ∗ =
⋃
i∈V Ti.

2. To simulate s(i) = {shj}j∈Ti , compute for all j ∈ Ti:
• If j ∈ Ti

⋂
T ∗, then set s̃hj = shj .

• If j /∈ Ti
⋂
T ∗, then compute a minimal valid share set T ⊆ T ∗ ∪ {j}. Such set T

exists since T ∗ is a maximal invalid share set, and we have
∑

j′∈T cj′ · shj′ = s.
Therefore, as long as j ∈ T , we have:

(3) s̃hj = (cj)
−1s−

∑
j′∈T\{j}

(cj)
−1cj′ · shj′

Finally, set s(i) = {s̃hj}j∈Ti .

Inference Strategy : To implement ShInfer, i.e the computation of shares {s(i)}i∈V ,|V |≤t from
shares {s(i)}i∈U=[n]\V , one can follow this simple strategy:

1. First, reconstruct s← LSS.Reco({s(i)}i∈U=[n]\V ,U).

2. Then, without lose of generality, choose t shares s(1), . . . , s(t) among {s(i)}i∈U=[n]\V ,
and follow the steps described above for the “Simulation Strategy” with inputs s and
these shares.

3. Output the simulated {s(i)}i∈V .

B Circular Security Hardness Assumption of [CDKS19].

The multikey-FHE scheme of [CDKS19] has its security based on the hardness of RLWE with
parameter (d, q,Xq,Ψq) since it uses the same encryption algorithm as BFV. In addition, they
make a circular security assumption under which their scheme remains secure even if (b, rlk)
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is given to the adversary. Precisely, this assumption implies that (b, rlk) is computationally
indistinguishable from the uniform distribution over R4×l

q . We now show that our modified
relinearization key generation, i.e., with a common public randomness d1, remains secure
under their assumption.

We now detail how this circular security shows up in [CDKS19] with their notations. For our
usage, we now state this assumption under a more concrete equivalent form, called Assump-
tion 42. Consider an oracle OD0 which samples a $←− U(Rlq) then Keygenerates one BFV key
pair (sk, ek), then samples d1

$←− U(Rlq), then, using RelinKeyGen(a,d1, sk), computes from it
one public relinearization key rlk = (d0,d1,d2) then outputs the pair (ek, rlk). Then, any ad-
versary has a negligible advantage in distinguishing this single output from a single sampling
in U(Rl×5

q ).

Assumption 42. Define the distribution:
D0 :=

{
(b,a,d0,d1,d2) : (a,d1)← U(Rlq)

2, sk←Xq, (e
(ek), e

(rlk)
0 , e

(rlk)
2 )← (Ψl

q)
3,

r ←Xq, b := −a · sk + e(ek), d0 := −sk · d1 + e
(rlk)
0 + r · g, d2 := r · a + e

(rlk)
2 + sk · g

}
Then the maximum distinguishing advantage AdvλD0

between a single sample in D0 and in
U(Rl×5

q ), is negl(λ).

Very briefly, they first define a RLWE-based symmetric encryption scheme denoted UniEnc,
for which they state (p7) and prove (Appendix B.1) indistinguishability from uniform random-
ness of any pair {BFV public key; encryption of some chosen plaintext encrypted with UniEnc

using the BFV secret key}, then they make the circular security assumption that indistinguisha-
bility still holds if one replaces the chosen plaintext by the BFV secret key itself.

B.1 How Assumption 42 appears in [CDKS19]

Assumption 42 appears in [CDKS19] with the following notations. They define a RLWE-based
symmetric one-time encryption scheme with plaintexts in Rq and ciphertexts in R3×l

q , denoted
UniEnca, parametrized by a ∈ Rlq. In their use case, a ∈ Rlq is the URS which is also used
to generate (sk, (b,a)) ← BFV.Keygen(a), exactly as in our MPC setting. Then, they state
in their (Security) formula p7, and prove in their Appendix B.1 that for any (chosen plain-
text) µ, we have that: for a sampling a ← U(Rlq), followed by a sampling (sk, (b,a)) ←
BFV.Keygen(a), followed by one single randomized encryption UniEnca(sk, µ), then the sin-
gle output (b,UniEnca(sk, µ)) is indistinguishable from a single sample in U(Rl×5

q ). Next, they
assume that (Security) also holds when the chosen µ is replaced by the secret key sk itself,
which is exactly what we spelled out in Assumption 42. Concretely, in their UniEnca, the r in
our D0 shows up as the secret encryption randomness, while the d1 is specified in UniEnc to
be sampled uniformly when encrypting.

C Detailed Protocol ΠFLSS

MPC when instantiated from `-BFV

In Figure 1, we detail our MPC protocol ΠFLSS

MPC when instantiated from `-BFV. Notably, we adopt
the same requirements as made in Section 3.7.1.
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Protocol ΠFLSS

MPC instantiated from `-BFV

Participants: n parties P1, . . . , Pn and a set Q of input owners;
Inputs (for each input owner Q` ∈ Q): a plaintext ∆m` with label ∆m`.
Setup. Each party Pi:

• Sends (Setup) to FLSS

• Obtains common uniform strings (a,d1)← GURS.

Broadcast.

• Input and Randomness Distribution: Upon ready from FLSS, each input owner Q` ∈ Q:

1 Samples u $←−Xq, e
(Enc)
0

$←−BEnc,q and e
(Enc)
1

$←−Ψq and sends

(input, {∆m`, u`, e
(Enc)
0,` , e

(Enc)
1,` }, {∆m`, u`, e

(Enc)
0,` , e

(Enc)
1,` }) to FLSS. Then it goes offline.

• Distributed Keys Generation: Upon ready from FLSS, each party Pi:

1 Computes (ski, (bi,a)) ← `-BFV.Keygen(a) and (d0,i,d1,d2,i) ← `-BFV.RelinKeyGen(a,d1).
Sends (input, ski, ski) to FLSS and (bi, (d0,i,d2,i)) over BCPi .

• Distributed Smudging Noise Generation: Upon ready from FLSS, each party Pi:

1 Samples esm,i
$←− [−Bsm, Bsm] and sends (input, esm,i, esm,i) to FLSS. //Once for each subse-

quent threshold decryption, if multiple circuits

Local computation. For all Q` ∈ Q, each party waits to receive (stored, `, ∗`) from FLSS for all fours
variables of Q`’s “input and randomness distribution”; then sets Sc ⊂ Q the Q`’s for which no ∗` = ⊥.
For all P ∈ P, each party waits to receive (stored, P, ∗P ) from FLSS for both instances in “distributed
Keys Generation” and in “Distributed Smudging Noise Generation”, and an output from all instances of
(BCP )P∈P ; then sets S ⊂P the set of parties for which no instance returned ⊥.
Each party Pi:

• ∀j ∈ S, parses the outputs of BCPj as (bj , (d0,j ,d2,j)) and computes b = Σj∈Sbj and rlk =

(Σj∈Sd0,j ,d1,Σj∈Sd2,j). Sets a = a[0] and b = b[0], and defines the secret key as sk = Σi∈Sski
and the smudging noise as esm = Σi∈Sesm,i //accessible through FLSS, via the labels sk, esm

Asynchronous step. Each party Pi:

2 ∀` ∈ Sc, given labels (∆m`, u`, e
(Enc)
0,` , e

(Enc)
1,` ), a key ek = (b, a), sends(

LCOpen,Λb,a
Enc(∆m`, u`, e

(Enc)
0,` , e

(Enc)
1,` )

)
to FLSS, and obtains a ciphertect c`.

Evaluation: To evaluate a circuit C, each party Pi:

3 Computes c← Eval(C, {cj}j∈Sc , rlk,b).

Threshold Decryption: Each party Pi:

3 Given labels (sk, esm), and a ciphertext c, sends
(
LCOpen,Λc

Dec+sm(sk, esm)
)

to FLSS.

• Upon receiving (ΛDec+smc
c, µ) from FLSS, outputs m := ΩDec(µ).

Figure 1: Protocol ΠFLSS

MPC instantiated from `-BFV



C.1 Proof of indistinguishability with a real execution

We go through a series of hybrid games, starting from the real execution REALΠC
. The view

of Env consists of its interactions with A/Sim, and of the outputs of the actual honest parties.
We deal with the latter once and for all in Lemma 43.

Hybrid1 [Simulated Decryption]. FLSS is modified in the threshold decryption step: there it,
incorrectly, outputs µSim := ∆.y + Σj∈Sesm,j , where y := C((m`)`∈Sc) is the evaluation in clear
of the circuit on the actual inputs.

Lemma 43. The outputs of the actual honest parties are the same in REALΠC
and

IDEALFC,Sim,Env. Also, the views of Env in REALΠC
and Hybrid1 are computationally indis-

tinguishable.

Proof. It is convenient to prove the two claims at once. The view of Env is identical in REALΠC

and Hybrid1 until 3 included. There, for all ` ∈ Sc, consecutively to an instance of Share&Shrink,
FLSS outputs a fresh encryption c` of m` under ek = (b, a), following the terminology of Sec-
tion 3.6.2. Thus, the evaluated c := Eval(C, {cj}j∈Sc , rlk,b) is the same in both views. In the
threshold decryption of REALΠC

, the output of FLSS is:

µ = c[0] + c[1] · Σj∈Sskj + Σj∈Sesm,j ,(4)

with esm,j
$←− [−Bsm, Bsm] for all j ∈ S. First, by Definition 32, we have, for some noise e(Dec),

with ‖e(Dec)‖ ≤ BC

c[0] + c[1] · Σj∈Sskj = ∆y + e(Dec) .(5)

Since ‖esm,j‖ ≤ Bsm for all j ∈ S, it follows from the choice of parameters (3.19) and the final
remark in Definition 32, that the output of honest parties in REALΠC

is m := ΩDec(µ) = y,
which proves our first claim. Second, since we specified ‖e(Dec)‖/n.Bsm = negl(λ) (equation
(3.23)), it follows that the distribution of µ, given by (4) is computationally indistinguishable
from the one of ∆y + Σj∈Sesm,j , see the “smudging” Lemma 27 for a further formalization of
this fact. But the latter is by definition µSim, which is exactly the output of FLSS in Hybrid1.

Hybrid2 [Random Keys]. This is the same as Hybrid1 except that the additive contributions
(bi,d0,i,d2,i)i∈H of honest parties to the encryption and relinearization keys, are replaced by
a sample in U(Rl×3

q ). Indistinguishability from Hybrid1 follows from Corollary 28.

Hybrid3 [Bogus Honest Inputs] This is the same as Hybrid2 except that the input and ran-
domness distribution on behalf of honest owners are computed with m̃` := 0, instead of with
their actual inputs m`. Importantly, the behavior of FLSS is unchanged, i.e., correct until 3
included, then outputs µSim := ∆y + Σj∈Sesm,j , where y := C((m`)`∈Sc) is still the evaluation of
the circuit on the actual inputs.

We now have that Hybrid3 and IDEALFC,Sim,Env produce identical views to Env. Indeed, the
behaviours of GURS, of the simulated ideal functionalities (FLSS,BC), and of the honest parties
in Hybrid3, are identical to the simulation done by Sim.

Lemma 44. Hybrid2 and Hybrid3 are computationally indistinguishable.
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Proof. Since Hybrid2, the secret keys of the honest parties ({Pi}i∈H) are no longer used in any
computation. Furthermore, since honest parties sample their contributions bi to the common
threshold encryption key independently (uniformly at random), we can assume without loss of
generality that corrupt contributions are generated after having seen the honest ones. We can
thus apply Lemma 26 “IND9CPA under Joint Keys”, which adapts the one of [AJL+12, Lemma
3.4] in the RLWE setting. It considers a uniform value b in Rlq, then the adversary can add to
it the sum (b′,a) of t encryption keys which it semi-maliciously produces (with the same a).
The lemma states that the ciphertext of a chosen message under the sum of keys (b + b′,a),
is still indistinguishable from a uniformly random value. The reduction, from multi-message, to
this latter single-message statement, is straightforward.

D On Reusability and Comparison with [GJPR21]

In the MPC protocols we present in Chapter 4, we point out that they verify the reusability
property of [BJMS20], defined as follows:

• Reusability (from [BJMS20]): Given the transcript of the input distribution phase of the
protocol, the computation phase of the protocol should be able to be reused across an
unbounded polynomial number of executions to compute different functions on the same
fixed joint inputs of all the parties.

The latter is to be compared with the weaker delayed-function property used until now, e.g.
in [ACGJ18], which roughly states that the first round messages of the honest parties are com-
puted independent of the function and the number of parties.

Let us note that the concurrent work of [GJPR21] presented a result close to our Theo-
rem 36, discovered independently and posted a few months before our work1, which affirms
the feasibility of MPC with GOD under honest majority with a bulletin board PKI. However,
we believe that our result is stronger for several reasons. Notably, we identified a miscitation
[GLS15] for their feasibility result (p10). Upon notification, they confirmed that their result was
derived from [ACGJ18], which carries several important implications:

1. First, their MPC protocol does not have the reusability property (as observed by [BJMS20])

2. Second, the communication complexity of their protocol is, as observed in [BJMS20],
linear in the circuit size, when it is only proportional to the circuit depth and the number
of inputs in our Theorem 36.

3. Third, broadcast is assumed in both rounds in [GJPR21, Section 6], while our Theo-
rem 36 requires only an asynchronous 2nd round.

4. Finally, we believe that their protocol, in its current form, is not delegable. Indeed, the
computation of both round 1 and round 2 messages by a party Pi requires the party’s own
input xi. As a result, the only way an external input-owner could delegate a computation
would be to reveal its input in clear text to one of the parties, which compromises security.
However, we do not rule out the possibility of a more sophisticated solution that enables

128/05/2021 vs 11/2021
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delegation, similar to approaches like [BJMS20] or [BGG+18], albeit with the additional
overhead such methods entail.
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encryption (FHE), which allows computa-
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number of participants.
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