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Abstract
Abstract

Additional degrees of freedom enrich the physics of systems and provide the supple-
mentary control knobs necessary for achieving applications. For example, by including the
electron spin in the description of electron transport in solids, the whole field of spintron-
ics has emerged, which now counts many applications, such as magnetic memory storage
devices, magnetic sensors, spin-polarized LEDs and lasers, spin transistors, etc. In the
domain of Topological Physics, the inclusion of the spin gave rise to the quantum spin
Hall insulators and superconductors, Weyl semimetals, and other interesting topological
phases of matter.

The core of many of these effects lies in the spin-orbit coupling, the link between
electron spin and its motion. Generically, electronic spin-orbit coupling is described by
a superposition of Rashba and Dresselhaus contributions. Under proper fabrication and
tuning of parameters, these two contributions can be balanced, giving rise to a particular
regime of Rashba-Dresselhaus spin-orbit coupling (RDSOC). It turns out that the same
type of balanced spin-orbit coupling is possible to realize in photonics and atomic gases,
where the role of spin is played by the light polarization in the case of photons and two
hyperfine levels in the case of atoms. The investigation of possible effects originating from
RDSOC is the main scope of this theoretical thesis.

First, we investigate how the incorporation of RDSOC can induce or modify the topol-
ogy of different systems. We start by constructing a proper generic tight-binding de-
scription of lattices in the presence of RDSOC. We distinguish two regimes provided by
RDSOC: tunneling amplitude and phase control regimes. The first allows us to demon-
strate the topology control of the Su-Schrieffer-Heeger chain. The second paves the way
towards realization of the Harper-Hofstadter model. We then extend our study to non-
Hermitian systems. By adding a non-Hermiticity into the system, the tunneling becomes
non-reciprocal. In the case of a monomer chain, it gives rise to the spin non-Hermitian skin
effect, where the monomer chain splits into two orthogonally-polarized copies, each real-
izing the Hatano-Nelson model. A similar effect happens for an SSH chain with RDSOC,
with the addition of anomalous bulk-boundary correspondence.

In this thesis, we focus on a particular realization of the RDSOC in a nematic liquid
crystal planar microcavity. This system provides a fine tunability of band structure, vast
engineering capabilities, including lithography, it possesses all the advantages of photonic
systems, such as direct access to the eigenstates, light-matter coupling, unique nonlinear
properties, and, finally, it offers a path towards non-Hermitian physics due to the open
nature of photonic systems. We show that the effects suggested above can be realized
in the liquid crystal microcavities, and some of them have already been realized after our
proposals.

Finally, we devote the last part of this thesis to the description of exciton-polariton
fluids under RDSOC. We suggest a new approach for the strong coupling confirmation in a
system with a tunable band structure. We apply this approach to the experimental results
obtained in a hybrid liquid crystal – organic polymer microcavity. We further investigate
this system in the condensed regime, demonstrating and studying the stripe phase of the
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polariton fluid, a hallmark of the supersolidity.
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Résumé
Résumé

Des degrés de liberté supplémentaires enrichissent la physique des systèmes et four-
nissent les leviers de contrôle supplémentaires nécessaires à la réalisation d’applications.
Par exemple, en incluant le spin de l’électron dans la description du transport électronique
dans les solides, tout le domaine de la spintronique a émergé, lequel compte désormais de
nombreuses applications, telles que les dispositifs de stockage de mémoire magnétique,
les capteurs magnétiques, les DEL et lasers polarisés en spin, les transistors à spin, etc.
Dans le domaine de la physique topologique, l’inclusion du spin a donné naissance aux
isolants et supraconducteurs de Hall quantique de spin, aux semi-métaux de Weyl, ainsi
qu’à d’autres phases topologiques intéressantes de la matière.

Le cœur de nombreux de ces effets réside dans le couplage spin-orbite, le lien entre
le spin de l’électron et son mouvement. En général, le couplage spin-orbite électronique
est décrit par une superposition des contributions de Rashba et de Dresselhaus. Sous
une fabrication et un réglage appropriés des paramètres, ces deux contributions peuvent
être équilibrées, donnant lieu à un régime particulier de couplage spin-orbite de Rashba-
Dresselhaus (RDSOC). Il se trouve que le même type de couplage spin-orbite équilibré
peut être réalisé dans les systèmes photoniques et les gaz atomiques, où le rôle du spin est
joué par la polarisation de la lumière dans le cas des photons et par deux niveaux hyperfins
dans le cas des atomes. L’étude des effets possibles provenant du RDSOC est l’objectif
principal de cette thèse théorique.

Tout d’abord, nous examinons comment l’incorporation du RDSOC peut induire ou
modifier la topologie de différents systèmes. Nous commençons par construire une de-
scription générique et appropriée des liaisons fortes dans des réseaux en présence de RD-
SOC. Nous distinguons deux régimes fournis par le RDSOC : les régimes de contrôle de
l’amplitude et de la phase des coefficients de couplage. Le premier nous permet de dé-
montrer le contrôle topologique de la chaîne de Su-Schrieffer-Heeger. Le second ouvre
la voie à la réalisation du modèle de Harper-Hofstadter. Nous élargissons ensuite notre
étude aux systèmes non-Hermitiens. En introduisant la non-Hermiticité dans le système,
l’effet tunnel devient non-réciproque. Dans le cas d’une chaîne de monomères, cela donne
lieu à l’effet de peau non-Hermitien de spin, où la chaîne de monomères se divise en deux
copies orthogonalement polarisées, chacune réalisant le modèle de Hatano-Nelson. Un effet
similaire se produit pour une chaîne SSH avec RDSOC, conduisant à une correspondance
anormale entre le volume et les bords.

Dans cette thèse, nous nous concentrons sur une réalisation particulière du RDSOC
dans une microcavité planaire à cristaux liquides nématiques. Ce système offre une grande
flexibilité de la structure de bande, de vastes capacités d’ingénierie, y compris par lithogra-
phie, il possède tous les avantages des systèmes photoniques, tels que l’accès direct aux
états propres, le couplage lumière-matière, des propriétés non linéaires uniques et, enfin,
il offre une voie vers la physique non-Hermitienne en raison de la nature ouverte des sys-
tèmes photoniques. Nous montrons que les effets suggérés ci-dessus peuvent être réalisés
dans des microcavités avec cristaux liquides, et certains ont déjà été réalisés après nos
propositions.
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Résumé

Enfin, nous consacrons la dernière partie de cette thèse à la description des fluides
d’exciton-polaritons sous RDSOC. Nous proposons une nouvelle approche pour confirmer
le couplage fort dans un système à structure de bande modulable. Nous appliquons cette
approche aux résultats expérimentaux obtenus dans une microcavité hybride cristaux
liquides-polymère organique. Nous poursuivons l’étude de ce système dans le régime con-
densé, en démontrant et en étudiant la phase « stripes » du fluide polaritonique, une
caractéristique emblématique de la supersolidité.
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Optical microcavitiesChapter 1: Optical microcavities
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1.2.4 Gross-Pitaevskii equation . . . . . . . . . . . . . . . . . . . . . . 28

Optical microcavity [1, 2], or microresonator, has proven to be a powerful platform for
studying diverse physics. Thanks to their small cavity volume V and high quality factor
Q, the microcavity density of states is significantly modified with respect to the density
of states of free space or conventional resonators: it shows narrow sparsely distributed
quasi-equidistant peaks. This gives rise to one of the fundamental microcavity effects,
Purcell effect, stating that the spontaneous emission of an atom is altered (enhanced or
suppressed) as a function of available microcavity states to decay.

Another fundamental phenomenon appearing in the optical microcavities is the pro-
nounced enhancement in the light-matter interaction, known as strong coupling between
a cavity mode and a cavity atom resonance. The strong coupling appears when the field-
atom coupling strength (half Rabi frequency) exceeds the total dissipation of the cavity-
atom system, and it results in the new entangled eigenstates between the cavity field and
atom.

Unique properties of microcavities and these two principle phenomena allowed micro-
cavities to find their use in numerous research domains including non-linear photonics,
cavity quantum electrodynamics, optical sensing, cavity optomechanics, topological pho-
tonics, non-Hermitian physics, and to give rise to remarkable technologies, such as VCSEL
and single-photon source [3].

Depending on the desired properties, microcavities can have different realizations:
Fabry-Perot resonators, whispering gallery resonators, and photonic crystals. In this The-
sis, we will focus exclusively on planar Fabry-Perot microcavities. Section 1.1 is devoted
to the mathematical description of photonic modes in the weak coupling regime, while
Sec. 1.2 discusses the strong light-matter coupling regime.
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Chapter 1. Optical microcavities

1.1 Weak coupling regime

1.1.1 Planar microcavity structure

Fabry-Perot, or more precisely, planar microcavity, is formed by a pair of parallelly
aligned mirrors. Those mirrors are commonly metal layers or distributed Bragg reflectors
(DBRs). Metallic mirrors are efficient in infrared and beyond, while their Q factor is
limited in the visible range by the material absorption. This is not the case for DBRs. A
single DBR constitutes the alternating layers of two dielectric materials. The target optical
length of each layer is λc/4, where λc is the desired central wavelength of the reflectivity
stopband. The number of layers and the material refractive index contrast control the
Bragg mirror stopband width and Q factor. Since the dielectric materials do not show
strong absorption in the visible range, Q factors are significantly increased with respect to
metallic mirrors. Therefore, the DBR Q factor is mostly a trade-off between the increasing
number of DBR layers and the capability to reduce their roughness and surface cracking.
DBR mirrors provide a huge advantage in terms of engineering the desired reflectivity
spectrum, which is not the case for metallic mirrors where the reflectivity spectrum is
fixed by the material.

Microcavity based on DBR mirrors can be viewed as a 1D photonic crystal with the
cavity being a defect. In DBR-based microcavity, the cavity mode length is limited by
a deep penetration of the electric field inside the DBR mirrors, which should be taken
into account when analyzing any effect depending on the mode volume, such as the strong
coupling, for example. For the metallic mirror, the penetration length is normally sub-
wavelength. Often, a microcavity is designed to have a wedge, the spatially dependent
cavity width in a selected direction. This allows one to control the cavity mode frequency
by moving the excitation spot along the sample. This is especially crucial when the cavity
mode needs to be finely tuned to a resonance of material filling the microcavity.

1.1.2 Photon dispersion

Due to the light confinement along the microcavity growth axis z, the photonic modes
become discrete. The anchoring of the electric field node at the ideal mirror interface
implies kz,NLc = Nπ, where kz,N is the projection of the cavity photon wavevector k =
(kx, ky, kz) on the z axis, Lc is the cavity length, nc is the cavity material refractive index,
and N is the mode number. For small transverse wavevector component k⊥ = (kx, ky)
with respect to kz,N , it is easy to show that the cavity photon dispersion is parabolic in
k⊥ (i.e. the cavity photon acquires an effective mass):

EN (k⊥) = ℏωc = ℏ
c

nc

√
k2

z,N + k⊥
2 ≈ ℏ

c

nc
kz,N

(
1 + k⊥

2

2k2
z,N

)
= EN,0 + ℏ2k⊥

2

2mN
, 1.1

where EN,0 = mN (c/nc)2 is the Nth cavity mode energy at k⊥ = 0 (typically in the range
of 1–3 eV), mN = ℏnckz,N/c is the effective cavity photon mass (typically 10−6–10−5me,
where me is the electron mass), ωc is the photon angular frequency (further frequency), ℏ
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1.1.3 Spinor model for photon and Stokes vector

is the reduced Planck constant, and c is the speed of light. It is worth noting explicitly
that the cavity photon mass mN depends on the mode number N , cavity length Lc, and
cavity material refractive index nc. This will be crucial for understanding the tunable
multimode dispersion of liquid crystal microcavities discussed extensively in this Thesis.

If mirrors are not ideal, and more particularly, if each mirror is a DBR consisting of
N pairs of layers, then the microcavity eigenfrequency has both real and imaginary parts.
The real part ω defines the frequency at which one can observe a transmission (reflection)
peak (dip) for light illuminating the cavity, while the imaginary part γ defines the spectral
width of this peak. The eigenmode frequency is modified with respect to ωc according to
the formula [4]:

ω(φ) = Lcωc(φ) + LDBR(φ)ωs(φ)
Lc + LDBR(φ) , 1.2

where φ is the incidence angle of the light from a medium outside the cavity with the
refractive index n0. As one can see, the cavity eigenfrequency becomes a weighted average
of the perfect cavity eigenfrequency ωc and the mirror stopband center frequency ωs. The
weights (coefficients) are the resonator layer length Lc and the effective DBR length LDBR,
respectively. The latter is defined as an additional (to Lc) increase of the distance between
ideal mirrors which would create the same phase shift for a wave as under reflection at
non-ideal DBRs. The exact formulas for the components entering the Eq. 1.2 can be
found in [4]. One noticeable property of the Eq. 1.2 is that the eigenfrequency of a
realistic cavity ω approximately coincides with the eigenfrequency of an ideal one ωc when
the latter is tuned to the center of the mirror stopband ωs. Therefore, when the mode
is in the vicinity of the stopband center, Eq. 1.1 provides a good approximation for the
cavity eigenfrequency.

The imaginary part of the eigenfrequency γ, inversely proportional to the cavity photon
lifetime τ , is defined as [4]:

γ(φ) ≈ c(1 −R(φ))
2nc(Lc + LDBR(φ)) cosφc

, 1.3

where R is the mirror reflectivity, and φc is the incidence angle of the light inside the
cavity layer, related to the φ by the Snell law:

n0 sinφ = nc sinφc. 1.4

There are two noticeable properties of the Eq. 1.3 . Firstly, the photon lifetime increases
with reflectivity, going to infinity (γ = 0) at R = 1 (ideal mirrors), as expected. Secondly,
the lifetime is angle-dependent.

1.1.3 Spinor model for photon and Stokes vector

The Eq. 1.1 is scalar, in other words, it does not take into account the polarization
degree of freedom of the photon. We now turn to the discussion of how to represent the
polarization of the photon mathematically and be able to describe various effects involving
light polarization.
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Chapter 1. Optical microcavities

The polarized state of the photon can be decomposed, for example, on the circular
polarization components c± as |ψ⟩ = c+ |+⟩+c− |−⟩, where |±⟩ are ± circular polarization
eigenstates. This polarized state is usually written in the form of a two-component vector
in the basis of circular polarization (|+⟩ |−⟩)T : |ψ⟩ = (c+ c−)T .

In the circular polarization basis, every Hamiltonian appears as 2x2 matrix. Since
Pauli matrices σ = {σx, σy, σz} together with the identity matrix σ0 form a basis for 2x2
matrix space, we can rewrite any Hamiltonian H as:

H = E0σ0 + Ω · σ, 1.5

where E0 is the polarization-independent energy, and Ω = {Ωx,Ωy,Ωz} decomposition
coefficients which are real for the Hermitian Hamiltonian. We can now introduce a new
quantity called Stokes vector S = {Sx, Sy, Sz}, or Stokes parameters, being extremely
useful for the geometric interpretation of a photon state and for understanding the physical
meaning of the decomposition coefficients Ω. Stokes vector is simply the expectation value
of Pauli matrix vector: S = ⟨σ⟩. Namely, in the circular polarization basis:

Sx = 2Re[c∗
+c−], Sy = −2Im[c∗

+c−], Sz = |c+|2 − |c−|2. 1.6

Stokes vector components Sx,y,z quantify the degree of polarization between horizontal-
vertical (HV), diagonal-antidiagonal (DA), and positive-negative circular (+−) polar-
izations, respectively. Note, that the Stokes vector is automatically normalized S2 =
S2

x + S2
y + S2

z = 1 if the state |ψ⟩ is normalized. Otherwise, it can be easily done by
dividing each component of the Stokes vector by S0 = ⟨σ0⟩ = |c+|2 + |c−|2.

The pure state of the polarized light, therefore, can be graphically represented as the
Stokes vector on the surface of a unit sphere, which is called the Poincaré sphere, and
constitutes the analog of the Bloch sphere in solid-state physics (see Fig. 1.1). The poles
of the Poincaré sphere correspond to the states of circular polarization (north +, south −),
while linearly polarized states lie within the equator; all other points on the sphere are
elliptically polarized.

Now, we can understand better the physical meaning of the decomposition coefficients
Ω. Using the definition of the Stokes vector S and the Schrödinger equation with Hamil-
tonian 1.5 , one can obtain:

∂S
∂t

= 2
ℏ

Ω × S. 1.7

In general, this whole mathematical description reminds strongly the one of the spin-
1
2 particle, therefore, it is reasonable to call the Stokes vector the photon pseudospin.
Furthermore, the Eq. 1.7 describes the precession of the pseudospin S about the vector
Ω, so Ω plays a role of an effective magnetic field. The frequency of this precession is
2
ℏ |Ω|.

The transformation from the circularly polarized basis +− to the linear one, either HV
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1.1.4 TE-TM spin-orbit coupling

Figure 1.1: Poincaré sphere. (a) Polarized state |ψ⟩ on a sphere (purple arrow); the
sphere is fully defined by two circularly polarized basis states |+⟩ and |−⟩; (b) Pseudospin S
on a sphere (purple arrow) which precesses around the effective magnetic field Ω (another
purple arrow); the precession trajectory on a surface of the sphere is shown by the black
dashed line; note that the states having orthogonal orientation of the electric field in real
space (H and V, for example) correspond to the counter-oriented pseudospins S on the
Poincaré sphere.

or DA, can be easily performed with the use of corresponding transformation matrices:

T+−→HV = 1√
2

(
1 1
1 −1

)
, T+−→AD = 1√

2

(
1 i

1 −i

)
. 1.8

The formulas 1.6 change in this case and involve new spinor components (cH,V or cA,D).

1.1.4 TE-TM spin-orbit coupling

Though sometimes the orthogonal polarizations of light can be decoupled and con-
sidered separately, in most cases different polarizations are involved in an intricate way,
producing various polarization patterns in real and reciprocal space. The coupling (link)
between polarization (pseudospin) and light propagation direction received the name of
photonic (pseudo)spin-orbit coupling (SOC), in analogy with atomic spin-orbit coupling,
where the spin of electron couples to its orbital motion inside the atom.

According to the Fresnel equations, as soon as we have a refractive index gradient in
our system, we can distinguish between two waves, s and p, or in more contemporary
terminology, between TE and TM polarizations of light. These TE and TM polarizations
have different reflection and transmission coefficients, and they are the solution (eigen-
modes) of Maxwell’s wave equation. In general, the more pronounced the refractive index
gradients in the system of interest and the bigger the angles of incidence of light to gradi-
ent direction, the stronger the emerging difference between reflection and transmission of
these two modes.

In microcavities with DBRs, due to the presence of a refractive index gradient along the
cavity growth axis, the difference appears between the effective DBR length LDBR(φ) and
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Chapter 1. Optical microcavities

the stopband center frequency ωs(φ) for TE and TM modes of the cavity (see Eq. 1.2 ).
Consequently, the cavity eigenfrequency ω is different for TE and TM modes as well. The
difference between them is the TE-TM splitting term ∆T E−T M , which can be written
as [4]:

∆T E−T M = ωT E(φc) −ωT M (φc) ≈ LcLDBR(0)
(Lc + LDBR(0))2

2 cosφc sin2 φc

1 − 2 cos2 φc
(ωc(0) −ωs(0)), 1.9

where φc is the incidence angle of the light inside the cavity layer. This formula utilizes a
strong approximation of close values for n1, n2 and nc, where n1 and n2 are the refractive
indices of the DBR layers. However, it provides a good intuition for the TE-TM splitting
behavior. As one can see, the splitting is proportional to the detuning between the perfect
cavity mode frequency ωc(0) and the stopband center frequency ωs(0), therefore, allowing
for the splitting sign change. By considering small angles of incidence φ and utilizing the
Eq. 1.4 , we can easily show that ∆T E−T M ∝ φ2 ∝ k2

⊥. This proportionality is typically
used for constructing effective Hamiltonians with TE-TM SOC term, since it provides a
good enough precision. Without any approximations, the formula for the TE-TM splitting
Eq. 1.9 will contain higher order contributions in k⊥, but all of them will be even in k⊥,
and the leading one (k2

⊥) will still be dominant for realistic microcavities.

The angular dependence of the TE-TM SOC term ensures the invariance of the micro-
cavity under rotation around z axis (Fig. 1.2(d)). In terms of the effective magnetic field
defined in Eq. 1.5 , TE-TM SOC in circular polarization basis can be written as [5]:

Ω(k⊥) = (∆T E−T M (k⊥) cos 2θ,∆T E−T M (k⊥) sin 2θ, 0) , 1.10

where θ = arctan ky/kx is the in-plane propagation angle of the light. The effective
field direction in reciprocal space for the fixed k⊥ is depicted in Fig. 1.2(c), where color
corresponds to the in-plane angle of the field with respect to the kx axis.

Together with the microcavity photon kinetic energy term Eq. 1.1 , the Hamiltonian
of a microcavity photon including TE-TM SOC in the circular polarization basis reads as:

HT E−T M =

E0 + ℏ2k2
⊥

2m γk2
⊥e

−2iθ

γk2
⊥e

2iθ E0 + ℏ2k2
⊥

2m

 , 1.11

where we have omitted the mode number N (Eq. 1.1 ) since we consider two orthogonally
polarized longitudinal modes of the same number N .

The k2
⊥ dependence of TE-TM SOC results in the two energy bands E±(k⊥) = E0 +

ℏ2k2
⊥

2m ± γk2
⊥ with different effective masses: m−1

T M,T E = m−1 ± 2γ/ℏ2 (see Fig. 1.2(a,b),
notice that k⊥ = (kx, ky)). The corresponding eigenstates are ψ± = 1√

2(1 ± e2iθ)T .
Therefore, the Stokes vectors of these eigenstates (Eq. 1.6 ): S± = (± cos 2θ,± sin 2θ, 0).
By comparing S± with Eq. 1.10 , we see that the higher energy pseudospin S+ is co-aligned
with the effective field, while lower energy pseudospin S− is counter-aligned.

If an optical microcavity is excited resonantly under a non-zero angle, in general, the
excitation propagates along the cavity, and its pseudospin precesses according to Eq. 1.7 .
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1.1.4 TE-TM spin-orbit coupling

Figure 1.2: TE-TM SOC. Energy bands of Hamiltonian 1.11 along (a) kx and (b)
ky; TE or TM mode polarization depends on propagation direction; TM mode has higher
energy; (c) effective TE-TM magnetic field (Eq. 1.10 ) acting on polarization pseudospin
for the fixed value of k⊥; color in (a-c) represents the angle between effective field direction
and kx axis; (d) TE and TM mode linear polarization for the fixed value of k⊥; color is
used to distinguish between the two modes.
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Chapter 1. Optical microcavities

Due to the Rayleigh scattering, all other states at fixed k⊥ will be populated as well.
In combination with a double-winding structure of effective TE-TM field (see Eq. 1.10
and Fig. 1.2), it gives rise to a four-lobe polarization structure in real space. This effect
has been discovered in 2005 [6] and has been named Optical Spin Hall Effect (OSHE) in
analogy with electronic spin Hall effect, where electrons propagating in opposite directions
have different spin (two-lobe spin structure).

1.1.5 Birefringence

Another property widespread in optical microcavities is optical anisotropy, or bire-
fringence. The optical anisotropy is the difference between refractive indices for different
polarizations of light which results, for example, in the double refraction effect happening
when the light strikes a birefringent material. In optical microcavities, plenty of sources of
both linear and circular optical birefringence can exist and coexist, including stress (defor-
mation), patterning or structuring, nonlinear effects (Pockels or Kerr effect), orientation
of anisotropic molecules, molecular chirality, and material magnetic properties (Faraday
effect).

In this section, we focus uniquely on the linear birefringence of uniaxial materials, since
nematic liquid crystals studied extensively in this Thesis are such materials. Uniaxial
materials have a single direction governing the behavior of the light propagating inside
the material known as the material optic axis. In the case of nematic liquid crystals, this
direction is equivalent to the molecular director , a preferential orientation of rod-like LC
molecules. The light polarized along this axis propagates with extraordinary refractive
index, while the orthogonal polarization is characterized by ordinary refractive index.

If the optic axis coincides with x or y of a bare planar microcavity, the birefringence
translates itself into quantization energy (Eq. 1.1 ) difference between x- and y-polarized
modes, which we will often refer to as H and V polarizations, respectively. This difference
is simply described by the effective field Ω = (δ, 0, 0), where δ = (EH

N,0 − EV
N,0)/2. It is

crucial to note, that we consider here a small birefringence that keeps orthogonal H and
V modes of number N close to each other in comparison with the cavity free spectral
range (distance between modes of consecutive numbers). If this is not the case, the
Hamiltonian often should be written in an extended basis taking into account possible
coupling mechanisms between cavity modes. The case of a large birefringence on the
order of the free spectral range will be considered in Sec. 3.2.

The Hamiltonian of microcavity photon including birefringence, therefore, reads in
circular polarization basis as:

HHV =

E0 + ℏ2k2
⊥

2m δ

δ E0 + ℏ2k2
⊥

2m

 , 1.12

where we used subscript HV standing for HV linear splitting, the term we will use occa-
sionally. The corresponding energy bands are EH,V (k⊥) = E0 + ℏ2k2

⊥
2m ± δ (see Fig. 1.3(a,b)

and eigenstates are ψ± = 1√
2(1,±1)T . The pseudospin is simply aligned along x: S± =

(±1, 0, 0).
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Figure 1.3: Birefringence. Energy bands of Hamiltonian 1.12 along (a) kx and (b) ky;
the H (x-polarized) mode has a higher energy than the V (y-polarized) mode; (c) effective
magnetic field of birefringence acting on polarization pseudospin for the fixed value of k⊥;
color represents the angle between effective field direction and kx axis.

1.1.6 Combination of TE-TM SOC and birefringence

As one can notice, the birefringence term is quite trivial and does not produce any
remarkable effect. The combination of TE-TM SOC and birefringence, though, provides
us with a qualitatively new behavior, which is worth discussing in more detail. The
Hamiltonian combines two effective fields:

Ω(k⊥) =
(
δ + γk2

⊥ cos 2θ, γk2
⊥ sin 2θ, 0

)
, 1.13

and, therefore, reads in circular polarization basis as:

HT E−T M+HV =

 E0 + ℏ2k2
⊥

2m δ + γk2
⊥e

−2iθ

δ + γk2
⊥e

2iθ E0 + ℏ2k2
⊥

2m

 . 1.14

The energy bands are defined as E±(k⊥) = E0 + ℏ2k2
⊥

2m ±
[
δ2 + γ2k4

⊥ + 2δγk2
⊥ cos 2θ

]1/2 (see
Fig. 1.4(a,b)), and corresponding eigenstates can be written as ψ± = 1√

2(1 ± eiθ′)T with

θ′ = arg
(
δ + γk2

⊥e
2iθ
)
.

Contrary to parabolic band crossing (Fig. 1.2(a,b)) with eigenstate winding 2 (Fig. 1.2(c)),
the combined case of TE-TM SOC and birefringence demonstrates two linear crossings
at degeneracy points k0

⊥ =
(
0, ±

√
δ/γ

)
(Fig. 1.4(a,b)) with eigenstate winding 1 around

each of them (Fig. 1.4(c)). These two points are tilted Dirac points, sometimes referred as
diabolic points. The linear crossings characteristic for Dirac cones can be easily verified by
Taylor expansion of effective field, energies and eigenstates around the degeneracy points
k0

⊥ =
(
qx, qy ±

√
δ/γ

)
:

Ω(q) ≈ 2
√
δγ (∓qy,±qx, 0) , 1.15

E±(q) ≈ ±2
√
δγq, ψ± ≈ 1√

2(1 ±ei(θq±π/2))T , where q = (qx, qy), θq = arctan qy/qx, and ±

(∓) in Eq. 1.15 and ± before π/2 correspond to different Dirac points k0
⊥ =

(
0, ±

√
δ/γ

)
,

respectively.
The ingredients discussed in this Section will appear throughout this Thesis. The

spinor formalism and eigensystem analysis along with terminology of polarization, effective
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Figure 1.4: Combination of TE-TM SOC and birefringence. Energy bands of
Hamiltonian 1.13 along (a) kx and (b) ky; two tilted Dirac cones are visible at non-zero
ky in (b); (c) combined effective magnetic field of TE-TM SOC and birefringence acting
on polarization pseudospin around Dirac points (black dots) k0

⊥ =
(
0, ±

√
δ/γ

)
; color

represents the angle between effective field direction and kx axis.

field, and pseudospin form a toolkit for understanding this Thesis. More details about the
winding number, and topology in general, will be given in Ch. 2.

1.2 Strong coupling regime

The strong light-matter coupling allows us to significantly enrich the scope of fun-
damental physical phenomena and technological applications. Among various material
excitations, we will focus only on exciton, a bound state of an electron and a hole. By
experiencing the strong coupling with a photon, they create a part-light part-matter quasi-
particle called exciton-polariton. This Thesis will be partially devoted to studying the
novel effects engaging these fascinating quasiparticles.

1.2.1 Exciton-polariton

Excitation of a valence electron to a conduction band leaves a vacation in the valence
band, called electron hole. An electron hole, being positively charged, interacts with an
electron through Coulomb interaction thus forming a bound state resembling a hydro-
gen atom, called exciton. Exciton, therefore, is a chargeless quasiparticle that, however,
can transfer energy. Since electron and hole are both fermions, the created exciton is a
composite boson.

Excitons have diverse physical properties, but it is common to distinguish two main
classes. Wannier-Mott excitons are hydrogen-like states having their size (radius) much
larger than the crystal unit cell and typical binding energies of the order of tens meV.
Wannier-Mott excitons usually appear in inorganic semiconductors and they are strongly
sensitive to confinement potentials, in other words, their properties may vary significantly
in 3D, 2D, or 1D structures. Another class, Frenkel excitons, is distinguished by smaller
exciton sizes of the order of a single unit cell and larger binding energies, typically hundreds
of meV. Frenkel excitons are common for some insulators and organic semiconductors.

Excitons give rise to narrow optical resonances at the energies lying inside the bandgap.
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1.2.1 Exciton-polariton

Figure 1.5: Common exciton-polariton plots. Energy of upper EU and lower EL

polariton branches (a) along wavevector kx (dispersion) and (b) versus detuning ∆(kx = 0)
(solid colored lines); polariton branches visibly differ from bare cavity photon EC and
exciton EX modes (dashed black lines), notably, by an apparent anticrossing in place of
crossing of the bare modes; color represents the photon-exciton polarization, where 1 (-1)
corresponds to a pure photonic (excitonic) mode.

They are detectable in reflection, transmission, absorption, or photoluminescence measure-
ments. Due to the low binding energies, these measurements should be performed at low
temperatures for Wannier-Mott excitons. On the contrary, Frenkel excitons are often
measurable at room temperature, which we will benefit from in our studies described in
Ch. 5.

The process of the light-matter interaction between a cavity photon and an exciton
can be viewed as follows: a cavity photon with wavevector k and energy E is absorbed by
a material, creating an exciton with the same wavevector and energy; next, exciton emits
a photon, which after reflection on microcavity mirror gets reabsorbed by the material.
In that way, the light-matter interaction is enhanced by several orders of magnitude in
comparison with free space photon propagation.

In the second quantization formalism, according to the dipole and rotating wave ap-
proximations, the Hamiltonian describing the light-matter coupling in k-space can be
written as [2, 7] (Jaynes-Cummings model [8]):

H =
∑

k
EC(k)aC†

k aC
k +

∑
k
EX(k)aX†

k aX
k +

∑
k

ℏΩR

(
aC†

k aX
k + aX†

k aC
k

)
, 1.16

where aC
k (aC†

k ) and aX
k (aX†

k ) are cavity photon and exciton annihilation (creation) opera-
tors, respectively; EC(k) and EX(k) are photon and exciton dispersions, respectively; ΩR

is the Rabi frequency accounting for conversion of a cavity photon into an exciton. The
dispersion of a photon EC(k) is given by Eq. 1.1 . The dispersion of an exciton EX(k) in
the cases of our interest can be well approximated by a constant since the exciton effec-
tive mass is several orders larger than the one of a cavity photon. The Rabi frequency is
proportional to the product of the exciton electric dipole moment and the local amplitude
(at the position of an exciton) of the cavity photon electric field.
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Both photon and exciton annihilation operators aC
k and aX

k obey the bosonic algebra
in the low excitation density limit:

[ak, aq] =
[
a†

k, a
†
q

]
= 0,

[
ak, a

†
q

]
= δk,q. 1.17

The Hamiltonian 1.16 can be diagonalized by constructing a linear superposition of pho-
ton and exciton annihilation operators. This transformation, often referred to as Hopfield
transformation [9], can be written as:

aL
k = X(k)aX

k − C(k)aC
k , 1.18a

aU
k = C(k)aX

k +X(k)aC
k . 1.18b

New basis annihilation operators aL
k and aU

k describe so-called lower and upper exciton-
polaritons (or simply polaritons), the new quasiparticles being the eigenstates of the system
and combining properties of a photon and an exciton. A polariton is a boson since its
constituents are, and the operators aL

k and aU
k obey the bosonic algebra as well. How

much a polariton is photonic-like or excitonic-like is defined by real-valued coefficients of
transformation X(k) and C(k), called Hopfield coefficients. The Hamiltonian 1.16 after
applying the transformation 1.18 reads as:

H =
∑

k
EU (k)aU†

k aU
k +

∑
k
EL(k)aL†

k aL
k , 1.19

where EU (k) and EL(k) are upper and lower polariton dispersions, respectively, defined
as:

EU,L(k) = 1
2 (EC(k) + EX(k)) ±

√
(ℏΩR)2 + 1

2 (EC(k) − EX(k))2. 1.20

Many of the hallmarks of polaritons are embedded in Eq. 1.20 . We plot the dispersion
along kx of the upper and lower polariton branches (UPB and LPB) in Fig. 1.5(a). The
anticrossing characteristic for polaritons appears in the spectrum Fig. 1.5(a) at kx where
bare cavity photon and exciton modes cross. One can also introduce a photon-exciton
detuning between cavity and exciton modes as:

∆(k) = EC(k) − EX(k). 1.21

When plotting UPB and LPB versus detuning ∆(kx = 0) an anticrossing appears as well
at ∆ = 0 (Fig. 1.5(b)). At the position of anticrossing, the distance between UPB and
LPB is minimal and equal 2ℏΩR. It is also crucial to note, that the effective mass of
both UPB and LPB is detuning-dependent mU,L = mU,L(∆(kx = 0)), the fact which we
will use in the Ch. 5. The strong light-matter coupling regime is achieved when the Rabi
frequency ΩR exceeds the loss imbalance between the exciton and the photon.
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1.2.2 Polariton condensation

1.2.2 Polariton condensation

As already mentioned earlier, polaritons are bosons, so it is natural to expect that
they demonstrate canonical bosonic effects such as Bose-Einstein condensation (BEC) and
superfluidity. Moreover, as a platform to study these effects, they possess significant ad-
vantages over other bosonic platforms. For example, microcavity polariton effective mass
is typically 4-5 orders less than the electron mass which allows to obtain BEC at higher
temperature (lower density) contrary to dilute gases of atoms [10, 11] or excitons [12].
Also, the properties of exciton-polariton condensate such as coherence, polarization, and
distribution function are easily accessible in the experiment thanks to photons escaping
the cavity and transferring this information. At the same time, since microcavity polari-
tons have a short lifetime in order of ps, they are intrinsically an open system. Therefore,
the condensation process is generally non-equilibrium, and it is defined by an interplay be-
tween high energy exciton reservoir formation by the pump, scattering rate towards lower
energy polariton states, and the loss of polaritons. This creates additional challenges and
requires sometimes a more careful analysis of the condensation process. However, at the
same time, the non-equilibrium nature of exciton-polaritons enriches their physics.

Regardless of the resemblance to the exact thermal equilibrium, there are some prop-
erties that the polariton ground state should demonstrate to be called a polariton con-
densate [13]. Mainly, it is an establishment of long-range order (spatial coherence) and
spontaneous symmetry breaking over the excitation spot size. The macroscopic state of
the condensate in real space is described by the classical single-particle wavefunction ψ(r)
equivalent in this case to the quantum matter field. The system Hamiltonian is unchanged
under an arbitrary transformation of the wavefunction phase (global gauge invariance).
At phase transition, the wavefunction spontaneously chooses a phase throughout the con-
densate thus breaking the gauge symmetry. In this case, the condensate order parameter
reads as [14, 2]:

ψ(r) =
√
n(r)eiθ(r), 1.22

where n(r) is the condensate density, and θ(r) is the global condensate phase.
Along with spatial coherence, the condensate of exciton-polaritons demonstrates an

enhanced temporal coherence at the phase transition [13]. It can be directly probed by
means of interferometry, or implicitly appear as an abrupt condensate linewidth narrowing
at phase transition.

The crucial distinctive feature being achievable in the experiment is the polariton dis-
tribution function. An ideal Bose gas after the condensation onset is characterized by
a macroscopically occupied ground state and excited states following the Bose-Einstein
distribution with the temperature of the lattice. Polariton condensate shows two key dif-
ferences. First, as a consequence of the non-equilibrium nature of polaritons, the effective
temperature of the distribution is higher than the one of the lattice. Second, due to the
interaction between polaritons, at high pumping densities, the microscopic occupation of
the ground state is typically "smeared" across the low-energy states [15, 13].

Finally, one of the polariton condensation hallmarks is the energy blueshift. It appears
during the typical experimental analysis of the microcavity: measurement of the density
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dependence. The origins of the blueshift are the phase space filling and interactions be-
tween polaritons. The phase space filling is a consequence of the composite structure of
an exciton, which combines an electron and a hole, both following the Fermi statistics and
obeying the Pauli exclusion principle. At high pumping densities, excitons fill most of the
available phase space, thus preventing further excitations, which effectively results in the
Rabi splitting reduction, and can even lead to the collapse of the strong coupling back to
the weak coupling regime. Polariton-polariton interaction is realized through matter part
(excitons) and is mathematically described by the terms of type Vqa

X†
k+qa

X†
k′−qa

X
k a

X
k′ . For

a condensate state, the interaction is, therefore, proportional to n2. This term starts to
grow after condensation onset and results in the energy renormalization of the condensate
state with the shift towards higher energies (lower wavelengths).

1.2.3 Polariton superfluidity

Superfluidity is tightly bound with the phenomenon of Bose-Einstein condensation,
such that the difference between the two is not always clear [14]. Superfluids can propagate
without energy dissipation since they do not show any mechanical viscosity. The first
observation of superfluidity was achieved in 1938 simultaneously by Allen and Misener [16]
and Kapitsa [17]. Several years later, Landau has explained this phenomenon [18] and
formulated a concise yet powerful criterion for superfluidity. He has defined a maximum
velocity at which a weak impurity can travel through the superfluid without friction, the
Landau critical velocity [7]:

vc = min
k

[ω(k)/k] . 1.23

This criterion received the name of Landau criterion and it is formulated in a perturbative
manner, i.e., for a weak impurity.

Shortly after the demonstration of polariton BEC [13], several experiments demonstrat-
ing polariton superfluidity have been performed [19, 20] reinforced by numerous theoretical
studies [21, 22, 23, 24]. The general idea of distinct experiments is to induce a polariton
flow with velocity v which hits a defect naturally present in a microcavity (Fig. 1.6). If the
polariton flow moves fast v > vc (left column in Fig. 1.6), it scatters on the defect. The
resulting density pattern forms a Mach-Cherenkov cone originating from the interference
of an incident plane wave and scattered spherical wave. Because of an apparent similarity
with sound, this regime is also called supersonic, where vc plays a role of polariton sound
velocity. If the regime is subsonic v < vc (right column in Fig. 1.6), then the polariton
cloud is superfluid and travels without friction only creating small local density oscilla-
tions near the surface of the defect. The transition from one regime to another in the
experiment is usually achieved through pumping density control. A low-density pump
creates non-interacting polaritons, which, when injected under an angle, are normally in a
supersonic regime. With increasing pumping density, interactions start to play a role and
modify the excitation spectrum of the polariton fluid bringing it into a superfluid regime.

26



1.2.3 Polariton superfluidity

Figure 1.6: Polariton superfluidity. (a) Experimental and (b) numerical polariton
density in real (first row) and reciprocal (second row) space for a polariton flow hitting
the defect; columns correspond to different polariton densities (excitation intensities) in-
creasing from left to right; low-density limit shows supersonic behavior of polaritons (left
column), while high-density limit represents the polariton superfluid (subsonic regime).
Adopted from [19].
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1.2.4 Gross-Pitaevskii equation

The powerful tool for explaining the spatial dynamics of condensate is the nonlin-
ear Schrödinger equation including interactions between the particles of Bose gas. This
equation was first written by Gross [25] and Pitaevskii [26] in order to describe quantum
vortices in liquid helium. Since then, it has been commonly used to simulate phenomena
involving BEC and it is referred to as the Gross-Pitaevskii equation (GPE):

iℏ
∂ψ(r, t)
∂t

= − ℏ2

2m∇2ψ(r, t) + Vext(r)ψ(r, t) + g|ψ(r, t)|2ψ(r, t), 1.24

where ψ(r, t) is the condensate wavefunction defined in Eq. 1.22 , m is the particle mass,
Vext is an external potential, and g is a constant of interaction. This model provides a
good quantitative agreement only in the limit of high density (low temperature) when the
condensate mode dominates over all other modes.

One can notice that Eq. 1.24 is written for thermodynamic limit and does not account
for a driven-dissipative nature of polaritons. There exist two commonly used generaliza-
tions of GPE differing by the pumping configuration [7]. The first one describes the case
of coherent pumping, where the pumping laser is tuned resonantly or quasiresonantly with
respect to the LPB, and in which condensate inherits the coherence properties from the
pump. We skip the discussion of this case since it is not used in this Thesis. The second
generalization describes the case of incoherent pumping, where the pumping laser is sig-
nificantly blue-detuned with respect to the LPB (non-resonant excitation), and any infor-
mation about its coherence is lost during the relaxation process. Typically, the relaxation
takes place in two steps. First, hot excitons relax towards the region near the inflection
point of LPB (see Fig. 1.5(a)) through the exciton-polariton and phonon-polariton scat-
tering mechanisms. There, polaritons accumulate due to the lack of final lower energy
states. Due to this accumulation, this region is often called a bottleneck region. In the
second step, this bottleneck effect is overcome by polariton-polariton scattering. In this
scattering process, one polariton relaxes towards the bottom of the LPB while the second
one is excited at high k⊥ in agreement with energy and momentum conservation laws.
This relaxation process is further undergoing a bosonic stimulation due to the bosonic
nature of polaritons if the population of the ground state is of order 1 [7].

In order to describe the two-step relaxation process, an introduction of an additional
bottleneck polariton reservoir nR(r, t) has been suggested [27]. The scattering rate from
the polariton reservoir towards the condensate state ψ(r, t) is generally described by the
monotonically growing function R[nR] (in the simplest case R[nR] = RnR). The polariton
dissipation rate is γLP B. In this case, the generalized GPE reads as:

iℏ
∂ψ(r, t)
∂t

=
[
− ℏ2

2mLP B
∇2 + Vext(r) + g|ψ(r, t)|2

]
ψ(r, t)+

i

2
[
R[nR(r, t)] − γLP B

]
ψ(r, t),

1.25

where mLP B is the LPB mass, and g is the polariton-polariton interaction strength. The
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reservoir dynamics, in its turn, is defined by the pumping power P (r, t), scattering into
the condensate, and decay of reservoir polaritons γR. Therefore, the reservoir equation is
typically written as follows:

∂nR(r, t)
∂t

= P (r, t) −R[nR(r, t)]|ψ(r, t)|2 − γRnR(r, t). 1.26

In the limit of fast reservoir dynamics, the adiabatic approximation can be used: ∂tnR(r, t) ≈
0. In this case, the generalized GPE 1.25 , 1.26 can be rewritten as a single equation con-
taining a nonlinear gain term saturating at high condensate density (using R[nR] = RnR):

iℏ
∂ψ(r, t)
∂t

=
[
− ℏ2

2mLP B
∇2 + Vext(r) + g|ψ(r, t)|2

]
ψ(r, t)+

i

2

[
RP (r, t)

γR +R|ψ(r, t)|2 − γLP B

]
ψ(r, t).

1.27

This equation is often called the complex Ginzburg-Landau equation for the polariton
condensate. We will utilize a modified version of this equation in Ch. 5 in order to
simulate the polariton stripe phase under non-resonant excitation.
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It is generally accepted that the Topological Physics, a domain combining the physics
and the topology, the field of mathematics studying conserved properties under continuous
transformations, emerged in 1980 with the demonstration of a remarkable effect nowadays
known as Quantum Hall Effect [28]. The experiment showed the exact quantization of
Hall conductance and was soon after crowned with a Nobel Prize in physics in 1985. To
be more precise, the work Ref. [28] did not explain the effect in terms of topology, and the
first topology-related explanation appeared only in two years [29]. There, the conductance
was explicitly defined in terms of a global system invariant obtained by the integration
of valence band wavefunctions over the whole unit cell, the quantity that later received
the name Chern invariant, or Chern number . Several years later, a graphene-based model
was proposed [30] which does not require a magnetic field but still demonstrates the
quantization of Hall conductivity. The effect is now widely known as the Anomalous
Quantum Hall Effect, where "anomalous" simply underlines the absence of a magnetic
field. These works laid the foundation for the field of Topological Physics, which since
then has grown exponentially and become omnipresent in physical systems.

In this Chapter, we shortly review the field of topological photonics and introduce the
concept of gauge field. We will have a closer look at several canonical topological models,
both Hermitian and non-Hermitian, and introduce their topological invariants.

2.1 Topological photonics

In 2005 the concept of topology was extended to the field of photonics [31, 32, 33] in
the seminal works of Haldane and Raghu [34, 35]. They made a key observation that the
band structure and its topology do not exclusively belong to the quantum system, but they
are rather the properties of waves in periodic systems. They suggested a photonic system
showing nontrivial topology based on a 2D photonic crystal built of dielectric rods break-
ing the time-reversal symmetry by the Faraday effect. Furthermore, they predicted the
existence of the unidirectional propagating photonic edge modes robust against backscat-
tering and localization by impurities. They thus confirmed theoretically the bulk-boundary
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correspondence [36, 37] between the topology of the bulk states, defined by the Chern in-
variant, and the number of the chiral edge states which has been already remarked in
electronic systems. Quickly after these theoretical studies, a realistic experimental plat-
form based on 2D gyromagnetic microwave photonic crystal was proposed [38], and an
experiment was conducted [39] fully confirming all predictions.

In the following, the domain of Topological Photonics was growing actively. If ini-
tially the research in photonic systems mostly confirmed the topological physics known
from electronics, later the topological photonics caught up and became an equivalently
advanced field. This is certainly linked with significant advantages provided by photon-
ics. Photonic systems can be engineered in a diverse and precise manner. One of such
powerful engineering approaches is the Floquet eingineering which makes use of the peri-
odic temporal dynamics of a Hamiltonian in order to realize an effective time-independent
topologically nontrivial Hamiltonian. For the first time in photonics, this approach was
utilized to construct the Floquet Chern insulator by breaking the time-reversal symmetry
(TRS) and obtaining a propagating topologically-protected edge state in a femtosecond-
laser written photonic honeycomb lattice constructed out of helical waveguides [40]. Later,
the framework of Floquet engineering allowed to create photonic Weyl points [41], pho-
tonic parity-time-symmetric (PT-symmetric) crystals [42], anomalous Floquet topological
insulators [43, 44] and a photonic topological Anderson insulator [45], for example. In ad-
dition to laser-written waveguide arrays, quantum walks in bulk optics is another popular
approach [46] for Floquet engineering.

A broad range of different degrees of freedom in engineered photonic systems also
proposes an extension towards higher dimensional topological models through synthetic
dimensions. These degrees of freedom might be frequency [47, 48], mode structure [49],
or orbital angular momentum [50, 51]. One of their major advantage is an opportunity
to realize long-range couplings in a synthetic photonic lattice. Probably, the most fasci-
nating consequence of synthetic dimensions is the ability to access 4D topological models
and invariants [47, 52]. Synthetic dimensions have been already used to demonstrate
experimentally a topological insulator [49].

Moreover, unique nonlinear optical effects and the open nature of photonic systems
allow us to extend the topological physics into previously unexplored domains of non-
linear [53] and non-Hermitian [54] topological physics. The inclusion of nonlinear and
non-Hermitian terms into a system description automatically generates plenty of intrigu-
ing questions: how are topological transitions modified, is the robustness enhanced or
broken, are there any genuinely nonlinear or non-Hermitian topological phases without
analogs in linear Hermitian systems. Various photonic setups allow us to find answers
to these questions. Numerous works in photonics cover the topology of nonlinear sys-
tems, including soliton dynamics in topological systems [55, 56, 57, 58, 59], self-induced
topological transitions [60] and nonlinearity-induced topological edge state tuning [61]
in the Su–Schrieffer–Heeger chain, and second-order topological insulators [62]. In non-
Hermitian topological photonics, researchers investigate mostly topological surface states
in PT-symmetric systems with balanced gain and loss [63, 64], photonic Fermi-arcs and
exceptional points [65] and different types of topological lasing: unidirectional [66] and
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single-mode lasing in PT-symmetric systems [67, 68].
Finally, photonics also provides us with a rich diversity of hybrid systems thanks to

the interaction of light with various material excitations, therefore opening the whole field
of topological polaritonics. Among different hybrid modes, we are especially interested
in microcavity exciton-polaritons and what new they can bring to topology. First of all,
they can undergo BEC with an establishment of a global coherent state, as discussed in
Sec. 1.2.2. This property allowed for one of the first realizations of a topological laser that
was based on the Su–Schrieffer–Heeger chain [69, 70] in this case. This laser is attrac-
tive not only because of its topological protection, but also thanks to the low threshold
typical for polariton condensates. Secondly, exciton-polaritons are strongly sensible to
the magnetic field thanks to their excitonic fraction, thus providing a powerful tool to
break the TRS. This property allowed to realize the anomalous Hall effect [71, 72] and a
polaritonic topological insulator [73, 74, 75]. Importantly for this thesis, the TE-TM SOC
played a central role in the realization of both these effects. Finally, polariton-polariton
interactions capable of producing a huge Kerr nonlinearity open a way towards nonlinear
topological phases with a potential to achieve strongly correlated phases of light in the
quantum regime. So far, there are mostly theoretical works in this direction. For exam-
ple, the topological protection of the valley Hall effect was demonstrated by utilizing the
coupling between vortex (a nonlinear excitation of a polariton fluid) and valley degrees of
freedom [76]. Other works make use of a spatial pattern of an excitation laser in order to
induce a nontrivial topology for the nonlinear polariton fluid excitation spectrum under
resonant [77] and non-resonant [78] excitation conditions. One more powerful approach
for generation of a nontrivial topology in an initially trivial lattice is to optically-induce
the Zeeman splitting (effective magnetic field) between circularly-polarized polaritonic
modes. This is an alternative way to achieve the Chern insulator, as has been shown in
quasi-resonant [79] and non-resonant [80] excitation schemes. Again, in the last case, the
TE-TM SOC brings the contribution without which the system would not be a Chern
insulator.

The expectation for technological impact is high in photonics. The new concepts of
light confinement should result in optical devices with high control of electromagnetic
fields. The topological protection of the edge states promises a large set of robust energy-
efficient optical isolators, simulators, and lasers operating from microwave to optical fre-
quencies. For more details, we refer you to a nicely captured evolution of the field in
several review articles [31, 32, 33].

In this thesis, we will have a particular focus on the topology induced by a relatively
new type of photonic spin-orbit coupling, recently engineered in a planar microcavity
system [81] and called the Rashba-Dresselhaus spin-orbit coupling (RDSOC). The detailed
description of this SOC will be provided in Ch. 3. Here, we simply underline a couple of
crucial points about this SOC. As we have seen by now, TE-TM SOC lies the foundation
for a majority of exciting topological effects in optical microcavities. The RDSOC is
fundamentally different from the TE-TM SOC. First of all, it is essentially a 1D SOC,
therefore, it does not show any winding. It is also linear in wavevector, which makes
it a gauge field. This is particularly important since gauge fields bring a lot of diverse
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topological effects as we review in the next Sec. 2.2. And finally, in photonic microcavities,
the RDSOC appears along with a linear polarization splitting term which gives rise to the
polarization mixing and is responsible for many exciting effects which we discover in this
Thesis.

2.2 Artificial gauge fields in topological photonics

With the development of physics, and especially with the advancement of its math-
ematical formalism, the omnipresence of the gauge fields along with gauge symmetries,
potentials, and invariance is becoming more obvious [82]. Probably, the Aharonov-Bohm
effect [83] is the first evidence that the gauge field is a wider and more fundamental concept
than the real field. The gauge-dependent electromagnetic potentials, which were believed
to have no physical meaning and direct consequences, have been shown to play an explicit
role in quantum interference.

While in some systems gauge fields and potentials appear naturally, like in the case of
an electron in the electromagnetic field, in other cases, the system should be properly en-
gineered in order to obtain so-called artificial gauge fields. In both cases, the Hamiltonian
can be written in a minimal coupling form:

H = H(p − A), 2.1

where gauge potential A can depend on spatial coordinates, time, internal degrees of
freedom, etc: A = A(r, t, σ). The corresponding gauge field is a curl of the potential:
B = ∇ × A. The transition from a continuous space Hamiltonian in the minimal coupling
form (Eq. 2.1 ) to a lattice in tight-binding approximation can be performed through
Peierls transformation. In this case, the gauge potential appears as the Peierls phase
between lattice sites.

The concept of gauge field is closely linked with the topology, but according to our
knowledge, this link is not yet fully understood. For example, the Berry curvature, the
quantity defining the topology of most systems, is itself a gauge field (but not necessary
represented by Eq. 2.1 ), while the Berry connection is a gauge potential. Even leaving
the Berry curvature out of the brackets, the artificial gauge field appearing in the minimal
coupling form of the Hamiltonian is often responsible for the emergence of topological
effects.

We are mostly interested in gauge-field-related topological effects in photonics. It
turns out that many photonic topological settings, even initially formulated in the form
of Maxwell’s equations, can be reformulated in the minimal coupling form Hamilto-
nian 2.1 [84], thus confirming the role played by an artificial gauge field. One of them is
the already discussed proposal by Haldane and Raghu [34, 35] and its following realization
in a gyromagnetic photonic crystal [38, 39]. Another one is a photonic crystal based on the
bianisotropic metamaterial [85], which constitutes the so-called Z2 topological insulator.
For this insulator, the TRS is not broken, and the total Chern number (topological invari-
ant) is equal to zero. However, there is still a pair of counter-propagating orthogonally
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polarized edge states, with associated spin Chern numbers, which appear thanks to the
vectorial nature of light polarization. This effect is equivalent to the Quantum Spin Hall
Effect in electronics.

Numerous other platforms and frameworks involve gauge fields and potentials in an
explicit way. One of them is an array of coupled ring resonators [86, 87, 88]. In this case,
the vectorial nature of the state (pseudospin) originates from the clockwise and counter-
clockwise propagating modes of each ring resonator, which are consequently coupled to
each other with a path-length-dependent phase. When the mixing between different pseu-
dospins is absent, they can be split out with each of them realizing a celebrated Harper-
Hofstadter model [89, 90], with the Hofstadter butterfly spectrum. The model, therefore,
does not require breaking the TRS, but as with any topological model, to keep its robust-
ness, it should stay in the same universality class, which in this case means keeping the
pseudospin-flipping scattering negligible.

Another approach to achieve nontrivial topology in the form of artificial gauge field-
induced Landau levels is to use a strained photonic lattice [91, 92, 93, 94]. Contrary to
the unstrained lattice, the artificial gauge potential is spatially dependent which gives rise
to a non-zero curl (artificial gauge field). No matter what platform is used, a lattice of
coupled waveguides [91], semiconductor micropillars [92, 93] or a silicon photonic crys-
tal [94], all works report propagating chiral edge states, again in pairs formed by opposite
polarizations, since the TRS is conserved.

The next framework widely utilized is Floquet engineering: construction of a peri-
odically modulated in time system which after natural averaging appearing in evolution
or detection results in a time-independent effective topologically-nontrivial Hamiltonian.
The realizations may be various [95, 96, 97], but the most known is in the form of coupled
helical (spiral) waveguides [40]. The role of time is played there by waveguide propa-
gation coordinate z. The waveguide position oscillations periodic along z are associated
with artificial gauge potential after averaging. As a result, TRS is broken, and a unique
propagation direction of the edge states has been confirmed experimentally.

Another crucial framework strongly enriching topological physics is synthetic dimen-
sions. As stated earlier, it allows to extend the system towards 3D, 4D, or even more
dimensions by means of numerous system’s degrees of freedom. These degrees of free-
dom can be frequency eigenmodes of ring resonators [47] or their chirality [98], transverse
modes of waveguide lattice [49], time-bins [99], optical angular momentum modes in a free
space cavity [50], frequency modes of nonlinear waveguide [100], etc. The exploitation of
synthetic dimension is the only way to access four-dimensional topological physics [47, 52]
which promises new interesting phenomena not present in 2D [101].

We can also look from the point of view of physical phenomena that can be associ-
ated with gauge fields and find a diversity of them in photonics. In addition to what
has been already mentioned, gauge fields play a central role in 3D photonic topological
insulators [102, 103], light guiding [104, 105], non-Abelian Harper-Hofstadter model [106],
Klein tunneling [107], Weyl points [108] and exceptional rings [109], exceptional points
and Fermi arcs [65], and many other effects.

Certainly, plenty of other paradigms and platforms combining gauge fields and non-
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Figure 2.1: SSH model. (a) Scheme of a finite SSH chain; unit cell (green dashed
line) contains two lattice sites (A and B); J1 and J2 are intracell and intercell couplings,
respectively; (b) spectrum of the finite SSH chain depending on the coupling ratio J1/J2;
color represents the edge localization; (c) dispersion of the infinite SSH chain for several
values of ratio J1/J2 (different colors); (d) trajectories of the field vector d in (dx, dy)
plane for different values of ratio J1/J2 (different colors); trajectories circumventing the
origin (small black circle) have non-zero winding.

trivial topology exist. The last but not least platform that is worth mentioning here is an
optical microcavity, where an artificial gauge field for photons or polaritons is usually re-
alized through the spin-orbit coupling. The combination of the TE-TM SOC and material
birefringence gives rise to the Dresselhaus- [110, 111] or Rashba-type [112, 113] SOC in the
vicinity of a Dirac point. Another approach utilizes the magnetoelectric Stark effect for
polaritons to realize a tunable gauge potential [114]. This platform is of particular interest
for this Thesis. We will demonstrate in Ch. 4 new topological models emerging from a
gauge field associated with the Rashba-Dresselhaus spin-orbit coupling in liquid crystal
microcavities. Contrary to finely engineered gauge fields in different platforms described
above, this SOC naturally appears in a nematic liquid crystal microcavity in the course
of molecular rotation. Therefore, it provides us with a nice playground for demonstrating
various gauge-field-induced effects.

2.3 Topological models

2.3.1 Su–Schrieffer–Heeger model and winding number

We start with the simplest topological model known, the Su–Schrieffer–Heeger (SSH)
chain [115]. This model was suggested to describe the electron band structure and soli-
ton formation in polyacetylene. It is quite often an introductory model in textbooks on
topological physics since it allows to establish many concepts of topological physics in a
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simple and vivid way. The model is depicted in Fig. 2.1(a). The chain is defined by two
staggered coupling coefficients J1 and J2. The unit cell of the chain contains two atoms,
which we mark as A and B. The Hamiltonian of the chain is [116]:

H =
∑

n

J1a
†
n,Ban,A + J2a

†
n,Ban+1,A + h.c., 2.2

where a†
n,σ(an,σ) is a creation (annihilation) operator of a photon at nth unit cell and

σ = {A,B} lattice site. The spectrum of the Hamiltonian 2.2 (chain of 20 unit cells)
is demonstrated in Fig. 2.1(b) as a function of the coupling ratio J1/J2. One can clearly
observe that most of the states form two bands. These bands are separated by a bandgap
which changes its size depending on the ratio J1/J2. For small ratios, two additional
states are present inside the bandgap at zero energy. When the ratio reaches the value of
1, the bandgap closes. For bigger ratios, it opens again but without any states inside the
bandgap.

These bandgap states are edge states of the chain. It is easy to verify by writing the
edge state as |ψ⟩ = (c1,A c1,B ... cN,A cN,B)T in the basis of single site localized states
a†

n,σ |0⟩ = |n, σ⟩ and by calculating the edge localization degree accordingly:

EL =
∑

n={iedges}
|cn,A|2 + |cn,B|2. 2.3

We show the edge localization degree 2.3 as a color in Fig. 2.1(b), where we utilized 3
unit cells from each edge as {iedges}. As one can see, the EL for bandgap states is close
to one contrary to smaller values for the delocalized bulk states forming the bands. If
the chain is long enough for two edges to be decoupled, each edge state is localized on
the lattice sites of a single type: A sites for the state on the left edge and B sites for the
state on the right edge (see Fig. 2.1(a)). When the ratio approaches 1, the edge states
continuously delocalize into the bulk states (in the case of a finite chain).

The bandgap states are not only edge-localized but also topologically protected states.
The protection stems from the famous bulk-boundary correspondence [36, 37, 117] which
links the number of edge states with the quantized topological invariant of the system.
The topological invariant, in its turn, is defined in the bulk by the symmetry class of the
Hamiltonian. Ten different symmetry classes of the Hermitian systems were introduced by
Altland and Zirnbauer [118]. These symmetry classes are built upon three fundamental
symmetry operations: time-reversal symmetry (TRS), particle-hole symmetry (PHS), and
chiral symmetry (CS). Initially, these classes were discussed in the context of electronic
systems, from where symmetries names appear. Nowadays, it is understood that the
Altland-Zirnbauer classification is more fundamental and can be applied to many different
platforms (photonic, for example), therefore, it is better not to interpret these names
literally, but rather consider these symmetries as pure mathematical properties of the
Hamiltonian.

It is worth noting that the symmetry class is defined not by the symmetries of the
Hamiltonian itself, but rather by the symmetries which we impose on the system. In other
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words, the Hamiltonian of an ideal unperturbed system can have several symmetries, but
when the perturbation kicks in, it breaks some of them. Those symmetries that are robust
against the allowed perturbations define the genuine symmetry class of the system. In the
case of the SSH chain, typically, the chiral symmetry is imposed which is defined as:

Γ−1H†Γ = −H, 2.4

with CS operator Γ being unitary ΓΓ† = 1 and Hermitian Γ = Γ†. The CS operator Γ
satisfying these properties is easy to construct for the SSH chain:

Γ = PA − PB =
∑

n

a†
n,Aan,A − a†

n,Ban,B, 2.5

with the projection operator PA (PB) on lattice sites A (B). In Hermitian systems, CS is
identical to sublattice symmetry (SLS) [119]. This name is widely used for SSH since it is
more intuitive: it underlines the bipartite nature of the lattice which originates from the
lattice couplings connecting only sites of different types.

In addition to the symmetry class, the imposed symmetries define the constraints on
eigenvalues and eigenvectors. For SSH, application of the CS operator on the eigenstate
|ψn⟩ with eigenvalue En reveals that each eigenstate |ψn⟩ possesses a chiral-symmetric
partner Γ |ψn⟩ with eigenvalue −En:

HΓ |ψn⟩ = −ΓH |ψn⟩ = −EnΓ |ψn⟩ . 2.6

For the edge states having En = 0, the localization on lattice sites of a single type (A or
B) can be proved:

HPA/B |ψn⟩ = 1
2H (σ0 ± Γ) |ψn⟩ = 0. 2.7

Eq. 2.7 automatically indicates that the edge state is a chiral-symmetric partner of itself:
Γ |ψn⟩ = ± |ψn⟩.

Until now, we have been working with a finite SSH chain, i.e. under open boundary
condition (OBC), possessing two edges and thus corresponding to the "boundary" con-
stituent of the bulk-boundary correspondence. In order to address the "bulk" constituent,
we have to rewrite the Hamiltonian 2.2 under periodic boundary condition (PBC):

H =
∑

n

J1a
†
n,Ban,A + J2a

†
n,Ba(n+1 mod N),A + h.c., 2.8

where difference appears only as mod N in subscript. Now, the system has the translation
symmetry and wavevector k is a good quantum number. Therefore, the discrete Fourier
transform can be applied to change from the real space basis |n, σ⟩ to the reciprocal space
one |k, σ⟩:

|n, σ⟩ = 1√
N

∑
n

e−ink |k, σ⟩ . 2.9

Then, the Hamiltonian 2.8 reads in the basis of the sublattice degree of freedom (|A⟩ |B⟩)T
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as:

H(k) = ⟨k|H |k⟩ =
(

0 J1 + J2e
−ik

J1 + J2e
ik 0

)
= dx(k)σx + dy(k)σy, 2.10

with effective field vector components dx(k) = J1 + J2 cos k and dy(k) = J2 sin k. The
dispersion of the bulk Hamiltonian 2.10 is simply defined analytically as a length of the
field vector E(k) = d(k) =

√
(dx(k)2 + dy(k)2). The dispersion is shown in Fig. 2.1(c)

with the ratio J1/J2 as a parameter. At zero ratio the bands are flat since different dimers
of the chain are completely decoupled (dark blue line, regime of full dimerization J2 = 0).
When ratio starts to increase (light blue line), the bands bend and approach each other at
the edges of the Brillouin zone (BZ). At ratio 1 (green line), the gap between the bands
closes. While increasing ratio even more, the gap reopens and increases (dark and light
yellow lines).

The topological invariant of the SSH chain is convenient to define geometrically by
looking at the evolution of the field vector d in (dx, dy) plane while k is moving along the
BZ (Fig. 2.1(d)). The amount of times that the vector d encircles the origin (black dot) is a
topological invariant called the winding number [120]. For small ratios J1/J2 < 1 it is equal
to one (dark and light blue lines), for big ratios J1/J2 > 1 it is equal to zero (dark and light
yellow lines), and, finally, for exact equality J1 = J2 it is ill-defined since the d trajectory
crosses the origin (green line). As one can easily notice, OBC spectra, PBC spectra and
field vector trajectories (Figs. 2.1(a,b,c), respectively) are well consistent with each other.
The presence of the localized edge states at J1/J2 < 1 coincides with the nonzero winding
number. This correspondence is indeed the bulk-boundary correspondence. In case of the
SSH chain, winding number indicates the amount of edge states on a single edge. Since
there are two edges in our chain, the total number of edge states is doubled.

The fact that the winding number is a good topological invariant is strongly related
to the symmetries (and, therefore, the symmetry class) of the system. The CS ensures
the absence of σz term in the Hamiltonian, which forces the field vector d to stay in-
side the (dx, dy) plane. Therefore, in order to transform the system from topologically
nontrivial phase (dark blue line in Fig. 2.1(d)) to topologically trivial phase (light yellow
line in Fig. 2.1(d)) the trajectory of d must cross the origin. The intersection with the
origin implies the closure of the gap and, consequently, non-adiabatic Hamiltonian phase
transition. If one lifts the requirement of CS, then the phase transition can be performed
adiabatically (without crossing the origin and closing the gap) by means of σz term which
takes the d trajectory out of plane [116].

As a final note on this model, we discuss another topological invariant which is equiv-
alent to the winding number in the case of SSH chain. This invariant is the Zak phase
γn(BZ) defined for the bulk reciprocal space eigenstate |ϕn(k)⟩ as [121]:

γn(BZ) = i

∫
BZ

⟨ϕn(k)| ∂
∂k

|ϕn(k)⟩ . 2.11

If normalized to 2π, it gives precisely the same result as the winding number: 1 for J1/J2 <

1 and 0 for J1/J2 > 1. In case of SSH chain the calculation of both invariants is useless
since they give the same result, but considering a different system, especially a higher
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dimensional system, the difference becomes pronounced and fundamental. The winding
number is a so-called Z invariant in the system with odd number of dimensions [119].
The Zak phase in its turn is a special case of the Berry phase γn(C), the geometric phase
acquired by the eigenstate during the adiabatic evolution in the parameter space. Berry
phase is inextricably linked with Berry curvature, Berry connection and Chern number,
which we already mentioned before in this Thesis and which we will discuss in more details
in the next Sec. 2.3.2. Contrary to the winding number, the Chern number is Z invariant
in the system with even number of dimensions. As one can remark once again, the SSH
model in some sense marries these invariants.

Since the SSH is one of the simplest topological models to study and realize experimen-
tally, it is not surprising that it has plenty of realizations in photonics. The SSH chain was
utilized for the first realization of exciton-polariton topological laser [69, 70]. Instead of
varying the distance between chain sites, this realization utilizes the anisotropic coupling
between localized p-orbital states: the difference between σ and π bonds. Since the pillars
are arranged in a zigzag manner, σ and π bonds interchange along the chain making the
system equivalent to the SSH. Other experimental realizations of polaritonic SSH have ap-
peared later in different geometry [122], at room temperature [123, 124], under electrical
injection [125] and in the regime of condensate ballistic coupling [126].

Other realizations of SSH involve optically induced potential in nonlinear crystal [127],
quantum walks in free-space optical system [46] and based on orbital angular momentum of
light beams [128], plasmonic [129] and dielectric [130, 131] nanoparticles forming a zigzag
chain, arrays of plasmonic [132, 133, 134] and dielectric waveguides [135, 134, 136], chain
of microwave resonators [137], array of silicon Mach-Zehnder interferometers [138]. Most
of these realizations, once fabricated, do not allow tunability of the model parameters. We
will address this issue by proposing a tunable photonic SSH configuration in Sec. 4.2.

2.3.2 Harper-Hofstadter model and Chern number

The next system which we discuss in detail is an electron in a 2D lattice under a perpen-
dicular homogeneous magnetic field (Fig. 2.2(a)). For the first time this model was studied
by Harper [89], and latter in more details by Hofstadter [90]. The significant contribution
of both studies resulted in the currently widely used model name, Harper-Hofstadter (HH)
model. The model played a crucial role for understanding the quantization of the Hall
conductance since the integer Chern numbers characterizing the Hall conductance emerge
naturally while solving the model analytically. It also reproduces the Landau levels in a
continuous limit.

Initially, the HH model is formulated for charged spinless non-interacting fermions.
The Hamiltonian of the model can be written in a compact way as [139]:

H = t(Tx + Ty) + h.c., 2.12
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Figure 2.2: Harper-Hofstadter model. (a) Scheme of the model: segment of the infi-
nite square lattice built out of lattice sites with coordinates (x, y) = (m,n) (green circles)
connected by lattice couplings t along x direction and tei2πφm along positive y direction
(blue dashed lines and text); the Peierls phase along y is created thanks to the perpendic-
ular magnetic field B (red circle) and the use of Landau gauge; the total phase acquired
while moving along the lattice plaquette is 2πφ (blue looped arrow); (b) the spectrum of
HH model ε versus magnetic flux per plaquette φ showing the famous Hofstadter butterfly
(adopted from the original work of Hofstadter [9]).

where Tx and Ty are translation operators in the presence of the magnetic field:

Tx =
∑
m,n

a†
m+1,nam,ne

iθx
m,n , Ty =

∑
m,n

a†
m,n+1am,ne

iθy
m,n . 2.13

The phase θx
m,n and θy

m,n originate from the vector potential A and can be obtained
through Peierls substitution:

θx
m,n = e

ℏ

∫ m+1

m
Axdx, θy

m,n = e

ℏ

∫ n+1

n
Aydy. 2.14

It is simple to verify that the total phase accumulated while encirling a lattice plaquette
(lattice curl), sometimes called the Aharonov-Bohm phase, is linked with the flux per
lattice plaquette φ:

rotmnθ = e

ℏ

∮
mn

A · dl = 2π e
h

∫
mn

BdS = 2π φ
φ0
, 2.15

where φ0 = h/e is the quantum of magnetic flux. Now, when the model is introduced
(Fig. 2.2(a)), we will briefly discuss several remarkable properties of this model. For
further analysis, we restrict ourselves to Landau gauge A = (0, Bx, 0) = (0, 2πφm, 0).
Therefore, θx

m,n = 0 and θy
m,n = 2πφm.

The Hamiltonian is not diagonal in the basis of eigenstates of translation operators
since they do not commute: [Tx, Ty] ̸= 0. New operators which diagonalize the Hamilto-
nian are called magnetic translation operators and they deal with the presence of Peierls
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phase induced by the magnetic field:

T̂x =
∑
m,n

a†
m+1,nam,ne

i2πnφ, T̂y =
∑
m,n

a†
m,n+1am,n. 2.16

These operators do not commute and they form so-called magnetic translation algebra:

T̂xT̂y = ei2πφT̂yT̂x. 2.17

In the case of rational flux per plaquette φ = p/q, these operators can be used to construct
a new, q times increased magnetic unit cell under translation by 1 lattice constant along
y and q lattice constants along x: [T̂ q

x , T̂y] = 0. Therefore, the magnetic Brillouin zone T2

is reduced by q: 0 ≤ kx ≤ 2π/q, 0 ≤ ky ≤ 2π. Because of this shrinking of the BZ, the
spectrum of the model acquires q-fold degeneracy at different ky wavevectors.

Making use of the reduced magnetic BZ, the state of the system can be written as a
superposition of q states localized on the "sites" in momentum space (kx = k0

x+2πφm, m =
0, ..., q − 1):

|ϕ⟩ =
q−1∑
m=0

cma
†
k0

x+2πφm,ky
. 2.18

The spectrum and eigenstates of the HH model are then defined by Harper equation:

εcm = (E/t)cm = 2 cos (k0
x + 2πφm)cm + (e−ikycm−1 + eikycm+1). 2.19

The resulting spectrum ε as a function of the magnetic flux per plaquette φ is shown
in Fig. 2.2(b) and it forms a fractal pattern widely known as Hofstadter butterfly. The
Landau levels can be reproduced by going in the continuous limit φ → 0.

Probably, the most striking result emerging from this model is the quantization of Hall
conductance. If the Fermi level is placed inside the rth gap, then three positive integers
r, p, q can be linked by Diophantine equation [29]:

r = qsr + ptr, 2.20

with the constraints of integer sr, tr and |tr| ≤ q/2, 0 ≤ r ≤ q. The Hall conductance σxy

in this case reads as (TKNN formula):

σxy = e2

h
tr. 2.21

This is an extremely simple and elegant formula confirming the quantization of the Hall
conductance. But so far it did not involve the topology explicitly. In other words, the geo-
metrical properties of the eigenstates in Hilbert space are not explicitly used for derivation
of this formula. In order to build a link with the topology, we need to start from another
end and discuss the general properties of bands in Hilbert space.

In 1984, Berry [140] realized that under adiabatic evolution of the eigenstate |n(R)⟩
in the parameter space R, the state acquires not only a dynamical phase, but also an
additional geometric phase γn(C) defined uniquely by the eigenstate |n(R)⟩ and trajectory
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C in the parameter space R. This concept has received the name of Berry phase and
is probably the most important concept in topological band theory. Berry phase is by
definition a gauge phase. It has associated gauge potential An(R) and gauge field Ωn(R)
called Berry connection and Berry curvature, respectively, and defined as:

An(R) = i ⟨n(R)| ∇R |n(R)⟩ , 2.22

Ωn(R) = ∇R × An. 2.23

As one can see, these quantities are pure derivatives from a single band state |n(R)⟩, and
therefore can be viewed as geometric characteristics of this band.

In case of 2D electron Bloch band, the Berry curvature integrated over the whole
BZ gives an integer number of a pure geometric nature, called the band Chern number
Cn. And here the link between the mathematics and physics comes. The sum of Chern
numbers Cn for all occupied bands (below Fermi level in rth gap) is exactly equal to tr,
which is called the gap Chern number :

tr =
r∑

n=1
Cn. 2.24

We showed here how a simple model such as the Harper-Hofstadter model brings us to
the striking result linking the topology, a purely mathematical concept, with the Hall con-
ductance, an observable physical quantity. The transport in this system appears through
the topologically protected edge states according to the bulk-boundary correspondence.
These states are unidirectional as a consequence of the TRS breaking. One of the results
of this Thesis is a possible realization scheme of a TRS-conserving yet topological version
of the HH model in a liquid crystal microcavity which we will address in more detail in
Sec. 4.5.

2.4 Non-Hermitian effects

Up to this moment, we were discussing the effects which can be described in terms
of Hermitian Hamiltonians (H = H†). The non-Hermitian Hamiltonians (H ̸= H†) for a
long time were not seriously considered, since the non-Hermiticity mostly originating from
the system losses was perceived as detrimental for the system. Nevertheless, every physical
system is an open system by some extent, and often the exchange with the environment
can not be neglected. The non-Hermitian Hamiltonians provide a simple and intuitive
description of the system in this case.

The formalism of non-Hermitian Hamiltonians has first appeared in the works of Moi-
seyev [141], where they were applied to describe atomic and molecular resonances. We
can say that the interest for non-Hermitian Hamiltonians started to grow quickly after
the study made by Bender and Boettcher [142], where they suggested parity-time sym-
metric non-Hermitian Hamiltonians having real spectra, thus building a bridge between
Hermitian and non-Hermitian Hamiltonian formalisms. Nowadays, parity-time symmetric
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non-Hermitian Hamiltonians are often used to describe the systems with balanced gain
and loss [143, 144].

In the following, the classification of topological phases of matter was extended to the
non-Hermitian Hamiltonians [119]. The concept of bandgap was split on point and line
bandgaps in complex energy plane, new symmetries, topological classes and invariants were
defined. This mathematical extension was supported by purely non-Hermitian phenomena
which have emerged in physical systems [54]. Today, several promising applications built
on the non-Hermitian Hamiltonian formalism are already realized; they count enhanced
sensing [145, 146, 147], unidirectional visibility [148, 149] and lasing [150], and single-mode
lasing [67, 68].

2.4.1 Non-Hermitian skin effect

One of non-Hermitian phenomena is the non-Hermitian skin effect (NHSE) [151]. The
core feature of the effect is the localization of all eigenstates of a finite system on its edge.
The number of localized states here is proportional to the system volume, contrary to the
Hermitian systems where it is proportional to the system surface area at most. The states
of the system are called skin states by drawing inspiration from the electromagnetic skin
effect where the current density concentrates near the surface of a conductor.

First, the non-Hermitian skin effect is a genuinely non-Hermitian topological effect
characterized by the complex spectral winding number [152]:

wEb
= 1

2π

∮
BZ

d

dz
arg[H(z) − Eb]dz, 2.25

where z = eik is the BZ in a complex plane, H(z) is the tight-binding Hamiltonian under
PBC, and Eb is a complex energy reference point. If there exists a point Eb with non-zero
winding, then the non-Hermitian skin effect is present. Second, the effect can appear even
for a single band Hamiltonian, which is not the case for Hermitian systems, where for
nontrivial Hermitian topology at least two bands are required.

A single-band system where the NHSE takes place is the Hatano-Nelson (HN) model [153].
The model is a 1D chain with non-reciprocal hopping coefficients t+ and t−. The single-
particle Hamiltonian of the chain is:

H =
∑

n

t+a†
n+1an + t−a†

nan+1, 2.26

where an (a†
n) is the annihilation (creation) operator for a particle at lattice site n, as

usual. All eigenstates of the chain are localized at one side (Fig. 2.3(a,b)). The spectrum
of the chain forms a loop in the complex energy plane (Fig. 2.3(c)):

E(k) = (t− + t+) cos k + i(t− − t+) sin k, 2.27

therefore, having non-zero winding number wEb=0. The winding sign, and, hence, the
localization edge is defined by sign(|t−| − |t+|).

Another approach providing the complementary information about the NHSE is the
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2.4.1 Non-Hermitian skin effect

Figure 2.3: HN model. Density of all eigenstates in real space for (a) t+ < t− and
(b) t+ > t−; color corresponds to the state number; (c) complex spectra of HN model for
two different ratios t+/t−; red (blue) color corresponds to the positive (negative) spectral
winding Eq. 2.25 ; the simulations are performed for a finite HN chain of 40 sites.

construction of generalized Brillouin zone (GBZ). The necessity to substitute normal BZ
appears when we perform a transition from bulk (PBC) to finite system (OBC). Initially
delocalized states pile up at the edge of the system under the system truncation which
contradicts to the postulate we use to apply the bulk-boundary correspondence: the intro-
duction of the border does not change the bulk topology. Therefore, the topology should
be redefined under OBC. Starting from this intuition, Yokomizo and Murakami suggested
how to construct this GBZ [154]. As a result of this construction for a system in mind,
one can visualize the GBZ in a complex plane as: z = r(k)eik, r(k) ∈ R, k ∈ [0, 2π]. The
pre-factor r originates from the non-Hermitian nature of Hamiltonian and captures the
exponential growth (r(k) > 1) or decay (r(k) < 1) of the eigenstate. The predictions of
the NHSE by the winding number and GBZ are equivalent despite the completely different
approaches: the first is based on the spectrum under PBC while the second utilizes the
complex wavevectors originating from OBC [155].

The first experimental realizations of NHSE appeared mostly in acoustics [156, 157],
mechanics [158, 159, 160, 161], electrical circuits [162, 163, 164, 165], and cold atoms [166].
Several theoretical suggestions were done in the field of photonics and they are mainly
based on coupled ring resonators [167, 168, 169, 170], exciton-polariton lattices [171,
172, 173, 174], array of chirally coupled atoms [175] and photonic crystals [176, 177,
178, 179]. Experimental realizations of NHSE in photonics are not numerous and in-
volve only discrete-time quantum walks in coupled optical fiber loops [180] and bulk op-
tics [181, 182, 183], synthetic frequency dimension in an optical ring resonator [184, 185],
and a single realization in a real space utilizing a chain of active ring resonators [186].
The key ingredient for achieving the NHSE in a simple 1D model is the non-reciprocity
of couplings, though in 2D there was a suggestion how to realize it with gain and loss
only [187]. Therefore, most of proposals and experimental realizations resort to the com-
plicated setups, elaborated fabrication techniques, and use of synthetic dimensions. In the
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Sec. 4.6, we suggest a way how to realize tunable non-reciprocal couplings and the NHSE
in real space which is applicable to several platforms.

2.4.2 Anomalous bulk-boundary correspondence

Another effect which often (but not always) accompanies the NHSE is the anomalous
bulk-boundary correspondence. Basically, the topological transition with an edge state ap-
pearance happens at the set of system parameters not expected from Hermitian topological
invariant calculated for Bloch bands of the system. The effect was initially observed for
a Creutz ladder [188], which is equivalent to the non-Hermitian SSH chain (Fig. 2.4(a))
under similarity transformation. The Hamiltonian of the non-Hermitian SSH chain can
be written in this case as:

H =
∑

n

t+1 a
†
n,Ban,A + t−1 a

†
n,Aan,B + t−2 a

†
n,Ban+1,A + t+2 a

†
n+1,Aan,B, 2.28

where t+1,2 and t−1,2 are staggered non-reciprocal couplings along positive and negative
directions of the chain, respectively, an,σ(a†

n,σ) is the annihilation (creation) operator for
a particle at lattice site n and sublattice type σ = {A,B}.

The spectrum of Hamiltonian 2.28 is complex. Its absolute value, real part and
complex part are shown separately in Fig. 2.4(b,c,d) as a function of the reciprocal part t1
of intracell coupling (t±1 = t1 ±γ/2). Here, the specific case of reciprocal intercell coupling
t±2 = t2 is considered in order to distil the result. As one can easily see, the transition
happens at t1/t2 ̸= 1, contrary to what expected from Hermitian topology (see Fig. 2.1).

An extension of topological classification towards non-Hermitian systems [152, 119]
allowed to define a proper topological invariant for this system and restore the bulk-
boundary correspondence. In analogy with Hermitian SSH, the non-Hermitian winding
number predicts correctly the transition. It is defined as:

W =
∮

dk

4πitr
[
SH−1(k)dH(k)

dk

]
, 2.29

under the SLS S that is conserved (and not CS):

SH(k)S−1 = −H(k). 2.30

Another approach makes use of biorthogonal quantum mechanics [189] and defines
a topological invariant in real space called biorthogonal polarization [190]. Biorthogonal
quantum mechanics operates with both right and left eigenstates of the Hamiltonian:

H |ψR,i⟩ = Ei |ψR,i⟩ , H† |ψL,i⟩ = E∗
i |ψL,i⟩ . 2.31

Then, the biorthogonal polarization P makes use of localized nature of zero-energy topo-
logical mode and is defined as:

P = 1 − lim
N→∞

∑
n ⟨ψL,0|nΠn |ψ0,R⟩

N
, 2.32
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2.4.2 Anomalous bulk-boundary correspondence

Figure 2.4: Non-Hermitian SSH model. (a) Segment of a non-Hermitian SSH chain;
the chain is defined by non-reciprocal intracell t±1 and intercell t±2 couplings; (b) absolute
value, (c) real part and (d) imaginary part of complex spectrum of the finite non-Hermitian
SSH chain depending on the reciprocal part of intracell tunneling t1 (special case of t±1 =
t1 ± γ/2, t±2 = t2 = 1, γ = 4/3); red solid lines mark a topologically protected zero-
energy mode; the topological transitions happens at t1/t2 ̸= 1 contrary to Hermitian SSH
(Fig. 2.1); panels (b,c,d) are adopted from [151].
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where N is a system size, subscript 0 indicates the zero-energy state, and Πn is a projection
operator onto the unit cell n, which in the case of non-Hermitian SSH 2.28 reads as
Πn = a†

n,Aan,A +a†
n,Ban,B. The invariant is generalizable to higher-order boundary states,

multiple boundary states and systems without analytical solutions.
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In this Chapter, we will cover the central concept of this Thesis, the Rashba-Dresselhaus
spin-orbit coupling (RDSOC). In Sec. 3.1, we will start by reviewing the historical develop-
ment of this SOC in different systems and discussing the theoretical works studying various
RDSOC-induced effects. In Sec. 3.2, we cover a particular platform of liquid crystal (LC)
microcavity which constitutes a nice playground for the physics of spin-orbit coupling.

3.1 Overview

In 1955, Dresselhaus calculated [191] the electronic bands of a zinc blende structure
from the symmetry considerations in order to explain the properties of InSb observed
in experiment. Due to the bulk inversion asymmetry (BIA), the dispersion of the bulk
material demonstrates the band splitting originating from the spin-orbit coupling and
proportional to the third power of wavevector components HD ∝ ki

xk
j
yk

l
z, i + j + l = 3.

For 2D material lacking inversion symmetry, the confinement along z axis allows to isolate
a leading term linear in k, nowadays typically called the Dresselhaus spin-orbit coupling:

HD = ΩD · σ = β(kxσx − kyσy), 3.1

where σi is the ith Pauli matrix, and β is the strength of the SOC. The band structure
of a massive particle with Dresselhaus SOC HD and the pseudospin structure S (co- and
counter-aligned with the effective field ΩD) are shown in Fig. 3.1(a,d), respectively.

Four years later, in 1959, Rashba and Sheka have discovered a similar band splitting in
bulk wurtzite lattice having uniaxial symmetry [192] (see Supplementary Materials of [193]
for english version). Some years later, Bychkov and Rashba realized [194] that this type of
SOC is typical for many 2D material samples having an asymmetric confinement (surfaces
and heterostructures), or the structure inversion symmetry (SIA). For these materials
Rashba spin-orbit coupling is commonly written as:

HR = ΩR · σ = α(kyσx − kxσy), 3.2

where α is the strength of the SOC. The band structure of a massive particle with Rashba
SOC HR and the pseudospin structure S (co- and counter-aligned with the effective field
ΩR) are shown in Fig. 3.1(b,e), respectively. Nowadays, the Rashba effect, and especially
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Figure 3.1: Rashba and Dresselhaus SOCs. Dispersion cut for a massive particle with
(a) Dresselhaus, (b) Rashba and (c) Rashba-Dresselhaus SOC; the pseudospin structure at
constant energy cut of the disperions (a,b,c): (d) Dresselhaus, (e) Rashba and (f) Rashba-
Dresselhaus SOC; dashed line shows the cut axis for panels (a,b,c); dashed and dotted lines
are k+ and k− coordinate axes, respectively, which simplify HRD Hamiltonian Eq. 3.3 ;
color represents the in-plane pseudospin orientation (Eq. 1.6 ).

its tunability by applied electric field, is one of the foundational effects for the field of
spintronics [195], it plays a pivotal role in Spin Hall Effect [196] and Quantum Spin Hall
Effect [197] and it has potential to be applied in Topological quantum computing through
realization of Majorana fermions [198, 199, 200, 201].

Rashba and Dresselhaus dispersions are identical (for α = β) and they show an extrema
circle at nonzero k, a fingerprint of these SOCs. However, the eigenstate behavior is
different for them: the effective field of Dresselhaus SOC ΩD demonstrates the winding
of -1, while the winding of Rashba field ΩR is 1.

In general, the Hamiltonian of a 2D electron gas is then written as:

H = ℏ2k2

2m σ0 +HR +HD, 3.3

where the first term is the kinetic energy of the lattice electron with effective mass m.
An interesting change in the bands and eigenstates appears when both contributions are
balanced: α = β (Fig. 3.1(c)) [202]. In this case, there are two degenerate bands shifted
oppositely along a certain direction of the reciprocal space. Each band shows a unique
pseudospin direction (Fig. 3.1(c,f)). To clarify the result, the Hamiltonian 3.3 can be
transformed into a different basis by U = 1√

2

[
1 + i√

2(σx + σy)
]

along with the spatial
coordinate transformation k± = 1√

2(ky ± kx) (see dashed and dotted lines in Fig. 3.1(f)).
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We, therefore, obtain the Hamiltonian with Rashba-Dresselhaus SOC :

HRD = ℏ2k2

2m σ0 − 2αk+σz. 3.4

Since Hamiltonian 3.4 is diagonal, one easily obtains two energy bands E± = ℏ2k2/2m∓
2αk+ for |+⟩ = (1 0)T and |−⟩ = (0 1)T eigenstates. The shift between two minima of
parabolic bands along k+ axis is Q+ = 4mα/ℏ2. The shift along k− is absent: Q− = 0.

The same Hamiltonian 3.4 (as in the rotated basis) emerges in [110] semiconductor
quantum wells of zinc-blende structure (GaAs, for example). The uniform eigenstate spin
structure of Hamiltonians 3.3 and 3.4 ensures an enhanced spin lifetime [203, 204]. By
using this effect, it was suggested to realize a nonbalistic spin field effect transistor [205,
206]. Later, the SU(2) symmetry of the Hamiltonian 3.4 was discovered which led to
the prediction [202] and the following experimental observation [207, 208] of the persistent
spin helix, stable in-plane pattern of spin stripes. Interestingly, Ref. [202] interpreted
mathematically the persistent spin helix as a "manifestation of a non-Abelian flux in the
ground state of the Hamiltonian". We will discuss it in more details in Sec. 3.2.3.

In 2011, following the theoretical proposal of 2009 [209], RDSOC was engineered in an
atomic system [210] with the use of ultracold atomic gas of neutral bosonic 87Rb particles.
Two spin states of the ground electronic manifold were used as basis states for a two-level
system. By dressing these two states with a pair of lasers, the authors realized the next
Hamiltonian:

H = ℏ2k2

2m σ0 + Ω
2 σz + δ

2σy + 2αkxσy, 3.5

where the first term is the atom kinetic energy with effective mass m, the second and
the third terms play a role of Zeeman magnetic fields along z and y axes, respectively,
and the last term is the RDSOC. All effective fields can be independently controlled in
this system. The same SOC was afterwards realized in fermionic atomic gases [211, 212].
Later, the control over the RDSOC magnitude was achieved through amplitude-modulated
Raman coupling of spin states [213]. As a consequence of Dirac-like dispersion structure
of Hamiltonian 3.5 near k = 0, the Zitterbewegung oscillations were observed [214, 215].
In this case, they constitute the synchronized trembling particle motion in real space and
spin oscillations due to the interference between eigenstates of the Hamiltonian. Following
the theoretical proposals [216, 217], the Spin Hall Effect and spin field effect transistor
were realized in atomic gas by utilizing spatial variation of RDSOC while moving along
finite-size inhomogeneous Raman laser profile [218]. Various phases of atomic BEC under
RDSOC were studied as well [210, 219].

Since RDSOC is essentially a 1D SOC, it is not easy to engineer many different topo-
logical phases. Nevertheless, some studies do exist. Two-legs ladder, with each leg playing
a role of pseudospin, was studied in tight-binding approximation and its equivalence with
the Hofstadter model was claimed [220]. Other works studied an SSH chain with RDSOC,
but did not obtain any crucial changes with respect to the conventional SSH [221, 222].

Among photonic systems, the main platform allowing to engineer the RDSOC is a
planar microcavity filled with highly birefringent material. These can be the microcavities
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filled with liquid crystals [81], organic materials [223, 224, 225], or hybrid microcavities
having a combination of liquid crystals and perovskites, for example [226, 227, 228]. While
the dispersion of cavities containing the LC is tunable by external voltage, it is not the
case for organic materials. With the use of these setups in the RDSOC regime, some-
times in combination with emitting materials, many exciting results have already been
obtained, including optical persistent spin helix [229], lasing [230, 224], tunable Berry cur-
vature [231, 227], partially inspired by the theoretical proposal [232], electrical switching
of lasing polarization [233], manipulation of exciton-polariton propagation [226], polarized
electroluminescence from light emitting diode [225, 234], 1D electrically tunable photonic
lattice [235], polariton spin Hall effect [228], Zitterbewegung oscillations [236], polariton
stripe phase [237], electrically tunable polariton vortex pairs with locked spin and orbital
angular momentum [238], with many of these effects happening in the strong light-matter
coupling regime [226, 227, 224, 233, 239, 228, 236, 237, 238].

The tunability of optical LC microcavities can bring us beyond the RDSOC regime,
where different physics appear, such as tunable optical spin Hall effect [240], meron polar-
ization textures [241] and tunable exceptional points [242]. We will pay a special attention
to this platform and discuss it in more detail in the next Sec. 3.2. The RDSOC was ob-
served as well in photonic metamaterials [243, 244], but has not been extensively studied
there.

3.2 RDSOC in liquid crystal microcavities

3.2.1 Nematic liquid crystal microcavity

A nematic LC microcavity is a system where the RDSOC can appear as a dominant
contribution to the dispersion [81], contrary to organic materials and perovskites. The
scheme of a typical system is shown in Fig. 3.2(a). The microcavity is usually formed by
two DBRs. The space between DBRs is filled with nematic LC, and its rotation plane is
fixed by an orientation layer deposited on a DBR. In order to achieve electrical control
over the LC molecular director orientation, two ITO electrodes are deposited on the outer
parts of the DBRs. Depending on the LC used, at zero voltage director can be oriented
along x or along z axis (see Fig. 3.2(a)). Under applied voltage V , the director rotates in
the xz plane. In the course of this rotation, x-polarized mode experiences a continuous
change of its refractive index nx(V ), while the refractive index of y-polarized mode ny

stays unperturbed:

ny = no, nx(V ) = none√
n2

o cos2 θ(V ) + n2
e sin2 θ(V )

, 3.6

where no and ne are ordinary and extraordinary refractive indices of LC, respectively,
θ(V ) is a voltage-dependent angle of LC director rotation counted from the x axis. In the
spectrum, LC rotation results in the energy change for x-polarized mode, and constant
band structure for y polarization. If the microcavity is thick enough, the free spectral range
of the modes is reduced, and by having big enough anisotropy of the LC one can achieve
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Figure 3.2: Nematic LC microcavity and photonic RDSOC. (a) Scheme of nematic
LC microcavity; LC director rotates in xz plane under an applied voltage V ; (b) eigen-
modes of the LC microcavity as a superposition of two linearly polarized standing waves
formed by the traveling waves with different phase velocities; (c) dispersion of the Hamilto-
nian 3.7 for kx = 0; (d) isoenergetic lines of the Hamiltonian 3.7 in k⊥ space; (e) TRS
transformation of light in free space; (f) circular polarization inversion upon mirror re-
flection; (g) microcavity bulk acting on the eigenmode as a λ/2 waveplate; red (blue) color
and notation σ+ (σ−) represent the right (left) circular polarization everywhere. Adopted
from [81].

the resonant regime between longitudinal modes of different numbers and orthogonal linear
polarizations. In the case of a resonance between modes of the same parity (N and N,
N and N+2, etc), the Hamiltonian of the system is often well approximated by TE-TM
SOC Hamiltonian 1.14 , though an additional mass anisotropy and non-Hermiticity may
appear [81, 242].

3.2.2 (N,N+1) resonant regime

In the case of a resonance between modes of different parities (N and N+1, N and N+3,
etc), the Hamiltonian of the system is the RDSOC Hamiltonian written in the circular
polarization basis as:

H = ℏ2k2
x

2mx
σ0 +

ℏ2k2
y

2my
σ0 + µxk

2
xσx + µyk

2
yσx − 2αkyσz + δσx, 3.7

where the first two terms are kinetic energy terms with anisotropic masses mx and my,
the third and fourth terms are polarization-dependent mass differences along kx and ky

due to the mode number difference (see Eq. 1.1 ), the fifth term is the RDSOC with
magnitude α and aligned along ky axis, and the last term is a linear polarization splitting
between modes Nx = N and Ny = N + 1 with δ = (Ex −Ey)/2. The Rashba-Dresselhaus
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parameter α is a function of the birefringence of the liquid crystal ∆n = ne − no, the tilt
angle of the liquid crystal director θ(V ), and the mode numbers Nx and Ny (see more
details in SM of [81]). In this Section, we restrict ourselves to the case µx = µy = 0
and mx = my = m. The Hamiltonian can be obtained rigorously by starting from the
Maxwell’s equations with the dielectric tensor of LC [81] (see also Ref. [245] for a nice
derivation of Hamiltonian 3.7 from the point group symmetry):

ε =


εo sin2 θ + εe cos2 θ 0 (εe − εo) sin θ cos θ

0 εo 0
(εe − εo) sin θ cos θ 0 εo cos2 θ + εe sin2 θ

 , 3.8

where εo = n2
o and εe = n2

e are the main values of the anisotropic dielectric tensor. We
will not repeat here the whole derivation, but simply emphasize that the basis used in this
derivation and in Eq. 3.7 is:

|±⟩ = 1√
2

(|x,Nx⟩ ± i |y,Ny⟩) , 3.9

|x,Nx⟩ = 2√
Lεx

sin
(
Nxπ

L
z

)
, |y,Ny⟩ = 2√

Lεo
sin
(
Nyπ

L
z

)
, 3.10

where εx = n2
x (Eq. 3.6 ) and L is the cavity length along z. By looking at structure of the

basis states |±⟩ (Fig. 3.2(b)), one can notice that the polarization of the light is circular
(at δ = 0) only at the edges of the cavity, and, consequently, outside of the cavity, while
inside it is generally elliptical. Since the measurements are usually performed outside of
the cavity, the Hamiltonian 3.7 serves perfectly for understanding the dispersion, real
space dynamics, polarization distributions, etc. However, once the medium inside the
cavity is not uniform, and especially if some additional polarization-dependent composites
(such as chiral absorbers, for example) are introduced, the Hamiltonian Eq. 3.7 should
be revised.

The dispersion of the Hamiltonian 3.7 for the case of δ = 0 is shown in Fig. 3.2(c,d).
The modes are split along ky with already mentioned magnitude of splitting Qy = 4mα/ℏ2

(which was introduced as Q+ in the case of semiconductor electron gas due to the splitting
along k+ direction). The mode shifted positively has a + polarization (right circular), while
the mode shifted negatively has a − polarization (left circular). The isoenergetic lines are
two circles (in case of m = mx = my). The bottom of the dispersion valleys has the energy
E0 = −αQy/2.

A physical explanation why circularly polarized modes are the eigenmodes of the sys-
tem is suggested in Fig. 3.2(e,f,g). When a circularly polarized light is reflected from
the mirror, an inversion of its polarization σ and wavevector component kz happens
(Fig. 3.2(f)). After the reflection, the light propagates through the cavity which plays
a role of λ/2 waveplate at any angle of incidence. When light reaches an opposite side of
the cavity, the polarization it had before the reflection is restored (Fig. 3.2(g)). Therefore,
the process is repetitive and the considered mode is an eigenmode of the system. As under-
lined before, it has a circular polarization only at the moment of reflection. The presence
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of the cavity mixing the modes of opposite σ and kz effectively modifies the TRS trans-
formation. In the free space, the TRS transformation for light writes as (k, σ) → (−k, σ)
(Fig. 3.2(e)). In the case of cavity modes, it is modified: (k⊥, kz, σ) → (−k⊥, kz,−σ),
where k⊥ is the in-plane wavevector component. Therefore, two eigenmodes of the LC
microcavity are TRS partners of each other and the TRS is conserved [81].

Let us now have a closer look at δ ̸= 0 case (Fig. 3.3). Then, the dispersion and the
Stokes vector are defined as:

E(k⊥) =
ℏ2(k2

x + k2
y)

2m ±
√

4k2
yα

2 + δ2, 3.11

S =
(

± sign(δ)√
1 + η2 , 0, ∓ η√

1 + η2

)
, η = 2kyα

|δ|
, 3.12

where the upper (lower) sign corresponds to the upper (lower) band. The full dispersion
is shown in Fig. 3.3(a), where the color indicates the Sz component of the pseudospin
(Eq. 1.6 ). Now, the polarizations are mixed by the detuning term δ. Fig. 3.3 provides a
pseudospin structure in reciprocal space for the lower eigenstate of the dispersion. White
arrows indicate an in-plane pseudospin component S⊥ = (Sx, Sy), which is induced by δ,
and, therefore, has uniquely Sx ̸= 0. The color shows Sz as in panel (a). The dependence
of the dispersion E(0, ky) on the detuning δ is shown in Fig. 3.3(c). With increasing
magnitude of detuning |δ|, two valleys are continuously approaching each other and finally
merge into a single valley typical for a microcavity mode at |δ| = αQy (grey dashed line
in Fig. 3.3(c)). The valley positions are defined as:

k± = ±

√(2myα

ℏ2

)2
−
(
δ

2α

)2
, 3.13

and, therefore, the δ-dependent inter-valley distance is:

Qy(δ) = k+ − k− =
√
Q2

y − (δ/α)2, 3.14

where Qy is actually Qy(0).

The isoenergetic levels of the two-valley dispersion (|δ| = 0.25αQy) are depicted in
Fig. 3.3(d). The bottom of two valleys (red dots) emerges at

Emin = E(0, k±) = −αQy

2 − δ2

2αQy
. 3.15

Then the circles near the bottom appear (yellow dots). They are not symmetric as in the
δ = 0 case (Fig. 3.2(d)), so they start to deform (light green dots) until they touch (dark
green dots). At this moment, we reach a gap at k⊥ = 0 (light blue dots), and start to
cross the upper band afterwards (dark blue dots). By going further, the isoenergetic lines
expand (purple dots) while slowly bending towards the typical circular shape (pink dots).
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Figure 3.3: Photonic RDSOC with nonzero detuning. (a) Full dispersion of Hamilto-
nian 3.7 ; color shows Sz pseudospin component; two bands are split and two polarizations
are mixed; (b) the pseudospin S components in reciprocal space for the lower energy eigen-
state; white lines show in-plane component S⊥ while color visualizes the Sz component;
(c) dispersion of Hamiltonian 3.7 along ky for several magnitudes of detuning |δ| (colored
solid lines); dashed black line traces the trajectories of valleys k± (Eq. 3.13 ) which merge
at |δ| = αQy; (d) isoenergetic lines of dispersion of the Hamiltonian 3.7 for several values
of energy E (colored points).
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3.2.3 Minimal coupling representation

The RDSOC Hamiltonian 3.7 can be rewritten in the minimal coupling representa-
tion:

H = p2
x

2mσ0 + (pyσ0 −ARDσz)2

2m + δσx + E0σ0, 3.16

where ARD = 2mα/ℏ = ℏQy/2 is the vector potential having opposite signs for different
circular polarizations and E0 = Emin(δ = 0) = −αQy/2 (see also Eq. 3.15 ). In fact, the
vector potential ARD is a non-Abelian vector potential forming a SU(2) field described by
the Yang-Mills gauge theory. The Hamiltonian 3.16 can be treated in terms of SU(2) ×
U(1) gauge theory unifying the Maxwell field U(1) governing the effective charge dynamics
and Yang-Mills field responsible for pseudospin dynamics [246]. The generic Hamiltonian
of this theory reads as:

H = 1
2m(p − e

c
A − ηAaσa)2 + eA0 + Aa

0σ
a, 3.17

where p = ℏk is the momentum operator, Aµ = (A0, Ai) and Aµ = Aa
µσ

a are the 4-vector
potentials of Maxwell and Yang-Mills fields, respectively, σµ = (σ0, σa) is the 4-vector of
identity matrix and Pauli matrices, e and η are quanta of effective charge and pseudospin,
respectively, and we can easily assume e = η = ℏ = c = 1 without losing generality for
further results. Here and in the following in this Section we will utilize greek letters for
indexes staring from zero {0,1,2,3} and latin letters for indexes starting from one {1,2,3}.
The vector potentials define the field tensors of the Maxwell field Fµν = ∂µAν − ∂νAµ and
Yang-Mills field Fµν = Fa

µνσ
a with tensor components Fa

µν = ∂µAa
ν − ∂νAa

µ − εabcAb
νAc

µ,
where εabc is the Levi-Civita symbol.

In the case of Hamiltonian 3.16 , the non-zero components of vector potentials are:

A0 = E0, A1
0 = δ, A3

2 = ARD. 3.18

They produce a single non-zero field tensor component:

F2
20 = −F2

02 = ARDδ. 3.19

This component is a result of non-commutative nature of SU(2) group and it does not have
any analog in U(1) gauge theory. We can also introduce a unified current tensor for the
charge and spin in order to describe their full dynamics in real space. We first construct
a 4-vector velocity operator vµ = vα

µσ
α defined by the Heisenberg equation of motion:

vµ = − i
ℏ [xµ, H]. We define as well the 4-spin operator as sα = σα. In these notations,

the unified current tensor is J = Jα
µ σ

α with tensor components Jα
µ = 1

2{vµ, s
α}, where the

curly brackets indicate an anticommutator. In analogy with the continuity equation for
charge, we can write a continuity-like equation governing the spin current dynamics:

∂

∂xµ
Jµ + i [Aµ,Jµ] , 3.20

where Aµ = gµν
Aν , and gµν is the Minkowski metric tensor.
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Finally, in analogy with the Lorentz force fi = J0
µFµi = J0

0Ei − εijkJ
0
j Bk, where Ei

and Bk are electric and magnetic fields along xi and xk, respectively, we can write an
expression for the force induced by the Yang-Mills field acting on the spin 4-current:

fi = Ja
µFa

µi = Ja
0 Ea

i − εijkJ
a
j Ba

k , 3.21

with the electric field Ea
i and magnetic Ba

k acting on the pseudospin current component
Ja along xi and xk, respectively.

Now, equipped with this mathematical apparatus, we can discuss what kind of spin
dynamics we expect for Hamiltonian 3.16 . We will separate the effects originating from
different terms. First, let us consider A1

0 (see Eq. 3.18 ) term in the continuity equation
Eq. 3.20 . We obtain a system of equations:

∂J3
0

∂t
= 2δJ2

0 ,

∂J2
0

∂t
= −2δJ3

0 .

3.22

This system of equations describes the pseudospin density precession in time with fre-
quency 2δ. Since the effect is produced by δσx term, the pseudospin rotates around Sx

vector in Syz plane of the Poincare sphere (Fig. 1.1).

The next term of interest is A3
2 = ARD, which under substitution in Eq. 3.20 results

in:
∂J2

2
∂y

= −2ARDJ
1
2 ,

∂J1
2

∂y
= 2ARDJ

2
2 .

3.23

This system of equations describes the real space oscillations of polarization current along
y axis. The effect is produced by ARDσz term of the Hamiltonian 3.16 , and, therefore,
oscillations happen between linearly polarized currents, in Sxy plane of the Poincare sphere
(Fig. 1.1). The period of oscillations in real space is 2πℏ/2ARD = 2π/Qy. This effect is
exactly the persistent spin helix already mentioned before (see Sec. 3.1). It was observed
in a LC microcavity in the RDSOC regime [229, 230].

The last contribution for the dynamics originates from the non-Abelian field component
F2

02 = −ARDδ. It produces an effective electric field E2
2 = −ARDδ for S2 component of

pseudospin which results in the force acting on S2 along y axis:

f2 = −ARDδJ
2
0 . 3.24

Since the eigenstates of the Hamiltonian 3.16 have Sy = 0 over the whole k space (see
Fig. 3.3(b)), it is impossible to decouple the spin force f2 Eq. 3.24 and the pseudospin
precession Eq. 3.22 . The combination of two effects results in the trembling motion
of a particle, known as the Zitterbewegung, which was predicted for a slightly different
configuration of LC microcavity [232], and only recently observed experimentally [236].
Another example of a recent experimental study of a similar non-Abelian gauge field can
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be found in Ref. [113]. In Sec. 4.5, we will discuss how to go further and enrich system’s
physics by spatial variation of its parameters.

3.2.4 Cholesteric liquid crystal and optical activity

Another LC phase which will be of importance for this Thesis is a cholesteric liquid
crystal (CLC). This phase shows a twist of LC director along a specific direction in space
with a spatial period of twist, typically called pitch p, that can vary from hundreds of nm
to hundreds of µm. CLC is typically obtained by doping a nematic phase with a chiral
material.

Let us revise the physics of light propagation in CLC. We choose the twist axis along
z and fix the director orientation along x at z = 0. Then, the director vector has a
form n(θ) = (cos θ, sin θ, 0), where θ = q0z is the director rotation angle in xy plane, and
q = 2π/p is the pitch wavevector. Inside any z = const plane the director orientation is,
therefore, uniform. The director structure in real space is depicted in Fig. 3.4(a), where
the color represents the value of angle θ(z). Since n and −n are equivalent, the real,
physical periodicity of the structure is p/2. The permittivity tensor in this case has a
form:

ε(z) = εe + εo

2

(
1 0
0 1

)
+ εe − εo

2

(
cos 2q0z sin 2q0z

sin 2q0z − cos 2q0z

)
. 3.25

By introducing ε± = (εe ± εo)/2 playing roles of average permittivity and anisotropy,
respectively, and by solving the Maxwell’s wave equation for the electric field and propa-
gation along z, one can obtain the following system of equations [247]:(

(kz + q0)2 − k2
0ε+ −k2

0ε−

−k2
0ε− (kz − q0)2 − k2

0ε+

)(
a+

a−

)
= 0, 3.26

where kz is the wavevector component along z, k0 = ω/c, ω is the wave frequency, c is the
speed of light, and a± are the amplitudes of circularly ±-polarized plane waves utilized as
the basis:

E± = a± exp [i(kz ± q0)z − iωt]. 3.27

In order to have nontrivial solutions, the determinant of matrix in Eq. 3.26 has to be
equal zero, which gives us a bi-quadratic equation for the dispersion ω(kz):

(q2
0 + k2

z − ε+k
2
0)2 − 4q2

0k
2
z − ε2

−k
4
0 = 0. 3.28

By imposing ω > 0, we draw two dispersion branches of Eq. 3.28 in Fig. 3.4(c). We are
especially interested in the polarization texture of the eigenmodes. The Stokes vector can
be written as:

S =
(
S⊥ cos 2q0z, S⊥ sin 2q0z, ∓ η√

1 + η2

)
, S⊥ = ± 1√

1 + η2 , η = 2q0kz

k2
0ε−

. 3.29

It turns out, that there are two drastically different regimes for S. At kz → 0 and
kz → ∞ the eigenmodes are linearly polarized Sz = 0, S⊥ ̸= 0. This regime is called
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Figure 3.4: Dispersion of CLC and RDSOC Hamiltonian. (a) CLC aligned along
z axis; the rotation of molecular director happens in xy plane and the angle of rotation
θ(z) is shown by the color; (b) nematic LC microcavity in the RDSOC regime; the director
orientation is unifrom over the space and obtained by rotation in xz plane; two black
planes symbolize the microcavity mirrors; dispersion of (c) CLC and (d) nematic LC in
the RDSOC regime; color depicts the circular polarization degree S3; an apparent similarity
arises at low wavevectors, both for polarization and bands.
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Mauguin regime and it is characterized by waveguiding of the eigenmodes by local director
orientation: at each z plane, the orientation of the 1st (2nd) eigenmode linear polarization
is parallel (perpendicular) to the director orientation, and, therefore, it propagates with
ne (no) effective refractive index. The difference The gap between two bands at kz = 0 is
defined by modes refractive indices as: ω+(0) = cq0/n0, ω−(0) = cq0/ne.

Another regime emerges when η → ∞. In real materials it covers a large range of
frequencies since often ε− ≪ 1. In this regime, the polarization of eigenmodes is pre-
dominantly circular: Sz ≈ ±1, S⊥ ≈ 0. Under these conditions, an incoming linearly
polarized wave will quickly rotate, analogously to what happens in optically active mate-
rials. Therefore, this regime can be called optically active regime. The rotation angle ζ for
incoming linearly polarized light at frequency ω is defined by effective refractive indices
n1,2 of circular polarized eigenmodes as:

ζ = 1
2k0(n1 − n2)d =

ε2
−k

4
0

8q0(ε+k2
0 − q2

0)
, k0n1,2 = k1,2

z ∓ q0, 3.30

where k1,2
z = kz(ω) are two roots of the same group velocity of Eq. 3.28 , and d is a

light propagation distance. The full polarization structure of the eigenmodes is shown
in Fig. 3.4(c), where color depicts Sz Stokes parameter (high kz values characterized by
linearly polarized eigenmodes are not shown).

In one of the first papers investigating the photonic RDSOC [223] the analogy has
been drawn between RDSOC and optical activity. Indeed, as we discussed already, under
RDSOC the rotation of polarization happens for the light propagating in microcavity plane
along the direction of RDSOC ky. We utilized the term persistent spin helix to describe
this effect, however, this term is better suitable for electronics, and, especially, spintronics,
where the spin control makes a central interest. In our case, the term emergent optical
activity is a better fit, since it underlines the optical nature of the system, and at the same
time points out that the system does not contain any optically active materials, and the
effect emerges as a result of an interplay between material linear birefringence and cavity
confinement.

A final remark can be done after comparing the band and eigenstate polarization
structures for CLC and nematic LC microcavity in the RDSOC regime (compare left
and right columns in Fig. 3.4). First of all, the polarization structures of the eigenstates
demonstrate a pronounced similarity (compare also Eq. 3.29 and Eq. 3.12 ), except for
the region of large kz (ky) where we expect the difference (not shown in Fig. 3.4(c,d)).
Also, the bands itself are quite similar at kz < q0 (ky < Qy/2) where the dispersion
resembles the one of the massive Dirac Hamiltonian. This likeness implies that the RDSOC
effective Hamiltonian 3.7 can be used in order to describe the CLC eigenmodes at low
wavevectors kz < q0. This allows to facilitate the analytical analysis of CLC modes due to
the pronounced simplicity of RDSOC mathematical description. It also allows us to apply
all our knowledge about RDSOC while studying a novel, before unexplored system. We
will utilize this analogy in Sec. 4.4 in order to explain the band and polarization structures
of CLC microcavity in the uniformly lying helix configuration.
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In this chapter, we study in detail the lattice effects stemming from the RDSOC.
We start with the discussion of RDSOC in tight-binding approximation in Sec. 4.1. We
demonstrate how to control the topology of an SSH chain by RDSOC and we suggest a
realistic realization of this effect in a nematic LC microcavity in Sec. 4.2. Next, we discuss
how to control the tunneling between individual lattice sites in Sec. 4.3. The tunneling
control was already realized experimentally in a nematic LC microcavity by our colleagues
from IBM Research–Zurich and University of Warsaw, with the samples produced in the
Warsaw Military University of Technology. We then turn to the discussion of 1D tunable
lattices in CLC microcavities in Sec. 4.4. We suggest 2D lattice models for further studies
and experimental realization in Sec. 4.5. Finally, we study non-Hermitian 1D models
with RDSOC in Sec. 4.6, including HN and non-Hermitian SSH models in tight-binding
approximation, and possible NHSE realizations in photonic and electronic settings.
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Figure 4.1: Tunneling phase and amplitude control. Regimes of (a) tunneling phase
control (δ ≈ 0) and (b) tunneling amplitude control (large δ).

4.1 RDSOC in tight-binding approximation

As was mentioned earlier, the RDSOC Hamiltonian can be represented in the minimal
coupling form Eq. 2.1 , where RDSOC itself plays a role of non-Abelian vector potential
(Eq. 3.18 ). In this case, the transformation from continuous Hamiltonian to tight-binding
approximation can be done with the use of Peierls substitution [248]. Let us consider the
coupling between two sites i and j, each hosting (pseudo)-spin-1/2 particles. We will use
further the terminology from photonics when speaking about spin degree of freedom. If
a link between sites has an angle θij with respect to the RDSOC direction, two circu-
lar polarizations (eigenmodes of σ̂z) acquire opposite Peierls, or Aharonov-Bohm, phases
±βij(θij) while propagating along the link:

βij(θij) = αijdij

ℏ2/2m cos θij , 4.1

where dij is the link length, αij is the RDSOC magnitude at the position of ij link, m is
the particle effective mass, and βij = −βji. We will call βij the RDSOC phase. Therefore,
the RDSOC Hamiltonian 2.1 of an arbitrary lattice in tight-binding approximation can
be written as:

Hlattice =
∑
i,j

Jije
iβijσza†

jai +
∑

i

δσxa
†
iai, 4.2

where ai (a†
i ) is an annihilation (creation) operator for a particle at lattice site i, and Jij is

the tunneling coefficient between lattice sites i and j. By decoupling circular polarizations
(δ = 0), one can control the tunneling phases of individual couplings using the RDSOC, if
we assume that one can vary RDSOC amplitude αij or direction θij at individual couplings.
Therefore, the regime of absent or small δ (with respect to |Jij |) can be called a phase
control regime (Fig. 4.1(a)).

By going in the opposite limit of big δ (in comparison with |Jij |), one obtains the
eigenstates almost identical to HV -polarized eigenstates of σx. Therefore, it is useful to
rewrite the generic Hamiltonian 4.2 in the HV basis:

Hlattice =
∑
i,j

Jij(σ0 cosβij + iσx sin βij)a†
jai +

∑
i

δσza
†
iai. 4.3
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As one can notice, the co-polarized tunneling is now proportional to cosβij , contrary to
e±iβij in the phase control regime. It means, that by varying RDSOC amplitude αij or
direction θij , one now controls the tunneling amplitude of the individual couplings instead
of phases. Therefore, we can call this limit the amplitude control regime. In order to verify
and clarify this result, we can write an effective Hamiltonian for a single polarization in
the perturbation theory up to the 2nd order. If we focus on V polarization, with energy
≈ −δ, then the effective Hamiltonian writes as:

Hlattice,eff =
∑

i

−δa†
iai +

∑
i,j

Jij cosβija
†
jai +

∑
i,j,m

JimJmj sin βim sin βmj

2δ a†
jai, 4.4

where Pauli matrices are absent because we got rid of polarization degree of freedom by
choosing a single V polarization. From Hamiltonian 4.4 it is evident that the co-polarized
term of Eq. 4.3 Jij cosβij contributes to the direct tunneling, while the cross-polarized
term Jij sin βij contributes to a smaller order indirect (through the third site) tunneling
change and the on-site energy shift. From the point of view of lattice engineering, both
phase and amplitude control regimes are valuable, since some lattice models require phase
control (Harper-Hofstadter model, for example) and other require amplitude control (SSH,
for example).

4.2 SSH topology control

In this Section, we utilize the amplitude control regime in order to modify tunneling
coefficients of the SSH model. Since the topological transition in an SSH happens when
staggered tunnelings are balanced (see Sec. 2.3.1 and especially Fig. 2.1), the possibility
of changing the ratio between the tunnelings via the RDSOC, allows us to suggest a
reconfigurable SSH model.

4.2.1 Tight-binding model

The system which we consider is an SSH chain with a period d, shown in Fig. 4.2(a).
Since normally RDSOC direction is uniform in real space in physical systems, we achieve
the staggering between angles θij (θ1 and θ2) along the chain by zigzag geometry. These
angles control the RDSOC phases β1 and β2 according to Eq. 4.1 . The unit cell consists
of two lattice sites A and B. Therefore, the generic Hamiltonian 4.2 reduces in k-space
to a 4 × 4 Hamiltonian which in the basis (|A+⟩ |A−⟩ |B+⟩ |B−⟩)T reads as:

HσSSH(kx) =


0 δ J1e

iβ1 + J2e
−iβ2e−ikxd 0

δ 0 0 J1e
−iβ1 + J2e

iβ2e−ikxd

c.c 0 0 δ

0 c.c. δ 0

 , 4.5
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Figure 4.2: Topology control in SSH with RDSOC. (a) The scheme of SSH chain with
RDSOC; RDSOC is uniform in space and staggering of the RDSOC phases β1,2 is achieved
through zigzag geometry; the dispersion of (b) reduced Hamiltonian (Eq. 4.9 , δ = 8) and
(c) general spinful SSH Hamiltonian (Eq. 4.6 , δ = 1.8) with staggered RDSOC for several
values of β (for all values of β see SM Movie in [248]); (d) energy spectrum of a finite SSH
chain and Zak phase of the corresponding bulk dispersion lowest band depending on the
RDSOC phase β (the colorscale shows the edge localization); (e) SSH chain corresponding
to ferro- (top) and antiferromagnetic (bottom) phases of TFIM: black arrows correspond
to the ground state spin distribution; red (blue) lines show positive (negative) tunneling
amplitudes.
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where c.c. stands for a complex conjugate. Since we would like to study the big-δ limit, it is
useful again to transform the Hamiltonian 4.5 into HV basis (|AH⟩ |AV ⟩ |BH⟩ |BV ⟩)T :

HσSSH(kx) =


δ 0 c1 ic2

0 −δ ic2 c1

c∗
1 −ic∗

2 δ 0
−ic∗

2 c∗
1 0 −δ

 ,
c1 = ρ1e

iφ1 = J1 cosβ1 + J2 cosβ2 · e−ikxd,

c2 = ρ2e
iφ2 = J1 sin β1 − J2 sin β2 · e−ikxd,

4.6

with the co-polarized and cross-polarized tunnelings c1 and c2 in the HV basis, respec-
tively. The spectrum of the Hamiltonian 4.6 is then easily written using these notations:

E(kx) = ±
[
δ2 + ρ2

1 + ρ2
2 ± 2ρ1

√
δ2 + ρ2

2 sin2(φ2 − φ1)
]1/2

. 4.7

The four bands of the system are separated in two pairs, symmetric with respect to E = 0
because of the CS of the model:

ΓH†(kx)Γ−1 = −H(kx), Γ = sz ⊗ σ0, 4.8

where sz is the third Pauli matrix acting in the pseudospin subspace.

4.2.2 Reduced model and topological transition

If δ ≫ J1, J2, it is possible to use the effective Hamiltonian 4.4 . In that case each
pair of modes (upper and lower) is H- and V -polarized and described by a standard SSH
Hamiltonian (up to the 1st order of perturbation theory) which for the lower V -polarized
pair reads:

HSSH(kx) ≈
(

−δ J1 cosβ1 + J2 cosβ2e
−ikxd

c.c. −δ

)
. 4.9

Thus, RDSOC modulates the tunneling amplitudes as J ′
1 = J1 cosβ1 and J ′

2 = J2 cosβ2.
Consequently, it allows, for example, to transform a monomer chain (J1 = J2) into a dimer
chain (J ′

1 ̸= J ′
2), or to swap the ratio between the tunnelings (J ′

1/J
′
2 > 1 → J ′

1/J
′
2 < 1),

thereby, changing the chain topology, characterized by the Zak phase (Eq. 2.11 ). In the
spinless SSH 2.2 , edge states exist if |J1| < |J2| (chain ending with a weak link). With
RDSOC, the topology is nontrivial when:

|J1 cosβ1| < |J2 cosβ2|. 4.10

It turns out, that the condition 4.10 is valid in the general case of Eq. 4.6 and not only
for high δ Eq. 4.9 . A topological transition occurs when J1 cosβ1 = ±J2 cosβ2, which
corresponds to the closing of the lowest gap in Eq. 4.7 (ρ1 = 0). J1 cosβ1 = J2 cosβ2

case corresponds to a gap closing at the edges of the BZ (kx = ±π/d), analogously to the
spinless SSH, whereas J1 cosβ1 = −J2 cosβ2 case corresponds to a gap closing at kx = 0.
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If a spinless SSH chain is topologically trivial (|J1| > |J2|), the same chain with modulated
RDSOC could be either nontrivial (|J ′

1| < |J ′
2|) or trivial (|J ′

1| > |J ′
2|), depending on the

values of β1 and β2.
For clarity of the analysis let us choose β2 = 0 and β1 = β. Physically, this corresponds

to a zigzag chain with 90◦ angle between neighboring links, and the RDSOC aligned
parallel to one of these links. Fig. 4.2(b) shows the energy bands computed in the large-
δ limit for the strong link J1 = 2 and weak link J2 = 1 and different values of β. It
is worth to remark that we apply the notions of "strong" and "weak" links for an SSH
chain without RDSOC. When RDSOC is present, physical tunnelings are J ′

1 and J ′
2, and

their relative strength can change according to the 4.10 . The critical β values for which
the band topology is changing are π/3 and 2π/3 which corresponds to a gap closing at
kx = ±π/d and kx = 0, respectively. At these values, the ratio between genuine tunneling
amplitudes of the system J ′

1 and J ′
2 crosses 1. In between these β values, a topological

band gap is opened. The edge states lie in the middle of this gap because the reduced
2 × 2 Hamiltonian 4.9 is equivalent to the spinless SSH, and, therefore, preserves the
CS. Precisely at β = π/2, the RDSOC completely suppresses the co-polarized tunneling
through the strong link J1. The corresponding band gap reaches its maximum value 2J2

and the bands are completely flat.
Fig. 4.2(c) shows the finite δ case, where all four bands have to be taken into account

(all parameters except δ are the same as for Fig. 4.2(b)). For any δ, the gap is again closing
at kx = ±π/d for β = π/3 and at kx = 0 for β = 2π/3. The maximal gap value is still at
β = π/2, but it is smaller than 2J2. There is no symmetry within the spectrum of a single
bands pair and the edge states are not at the center of the gap. All these features are
summarized in Fig. 4.2(d) showing the energy spectrum versus β and the corresponding
Zak phase of a finite chain. A trivial gap (zero Zak phase) is present from β = 0 to
β = π/3 where the gap closes, then immediately reopens as a topological gap persisting
for β ∈ [π/3; 2π/3] (color demonstrates the edge localization degree as in Eq. 2.3 ). The
gap closes at β = 2π/3 becoming topologically trivial again. For δ < |J1 cosβ|, the bands
are overlapping in energy (not crossing). There is no real gap anymore, and therefore no
protected edge states.

Another interesting possibility offered by the tuning of tunneling amplitudes is the im-
plementation of the mapping between the Hamiltonian 4.9 and the transverse-field Ising
model (TFIM) – the fundamental quantum many-body model describing the transition
between ordered (ferro- or antiferromagnetic) and disordered (paramagnetic) phases [249,
250]. The TFIM Hamiltonian reads as:

HT F IM = −J
∑

i

σz
i σ

z
i+1 − h

∑
i

σx
i , 4.11

where J is a coupling term, h is a transverse magnetic field and i is the site index. After
applying the Jordan-Wigner transformation [251], the mapping between Hamiltonians 4.9
and 4.11 is: J = J2 cosβ2, h = J1 cosβ1. As shown in Fig. 4.2(e), where the spin orien-
tation on each site is given by the on-site phase of the wavefunction, the sign modulation
of tunneling amplitudes provided by the RDSOC allows to achieve both ferro- and anti-
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ferromagnetic configurations which is not the case in TFIM based on usual SSH. Thus,
tunneling amplitude modulation by RDSOC gives access to the whole variety of TFIM
configurations.

4.2.3 Topology switching in continuous realistic photonic model

Next, we turn to the discussion of realistic realization of SSH topology control (Eq . 4.10 )
based on a nematic LC microcavity with DBR patterning [252] which realises an in-plane
potential. The zigzag SSH potential U(r) (equivalent for both pseudospins and defined
in 2D real space r = (x, y)) is constructed out of Gaussian potential wells with 30 meV
depth, 1 µm FWHM and 1.53 (1.7) µm intra-cell (inter-cell) distance, respectively. The
potential is shown in Fig. 4.3(a) with the RDSOC being oriented along the strong link
of the zigzag chain. We perform a simulation beyond the tight-binding approximation by
solving the stationary spinor Schrödinger equation with 2D Hamiltonian:

H2D = −ℏ2∇2
r

2m σ0 + 2iα ∂

∂x
σz + δσx + U(r)σ0. 4.12

The parameters of the simulation are typical for a nematic LC microcavity: the cavity
photon mass m = 1.6 · 10−5me, where me is the free electron mass, the linear splitting
δ = 5.5 meV, and Lorentzian broadening of states 0.5 meV in full-width half-maximum.

Fig. 4.3(c,e) shows the modes in the real and reciprocal spaces without RDSOC. The
chain exhibits a clear band gap of 1 meV, but no edge states. Fig. 4.3(d,f) shows the
case with non-zero RDSOC (α = 1.62 meV·µm). A mode strongly localized on the edge
appears within the gap (also see Fig. 4.3(b)). The asymmetry between the lower and upper
bands is enhanced when going beyond the tight-binding model. However, the lowest band
is flattened analogously to β = π/2 case in the tight-binding model (Fig. 4.2(b,c,d)). In
the experiment, the transition between two cases happens when one applies voltage, and,
therefore, modifies δ. In the case of (N,N) mode resonance, the RDSOC is effectively
zero, while in the case of modes N and N +1 close to the resonance, it has non-zero value.
Therefore, by going from one resonant regime to another we can switch the topology of the
model. The condition 4.10 does not depend on δ, therefore, it does not allow to predict
a continuous transition between different topological phases with changing δ (voltage).
However, we will discuss in Sec. 4.3 how to obtain a δ-dependence and perform a similar
continuous transition.

We extend our analysis and study how the TE-TM SOC (Sec. 1.1.4) affects the edge
states. As we stated already in Sec. 1.1, TE-TM SOC is almost inevitable in DBR mi-
crocavities, therefore, it is natural to verify that its contribution does not destroy the
nontrivial topology of the system. The extended Hamiltonian 4.12 with TE-TM SOC
reads:

Hext
2D = −ℏ2∇2

r
2m σ0 + 2iα ∂

∂x
σz + δσx − γ

(
∂2

∂x2 − ∂2

∂y2

)
σx − 2γ ∂2

∂x∂y
σy + U(r)σ0, 4.13

where γ = ℏ2

2mγ
′ is the TE-TM SOC magnitude. Fig. 4.4 demonstrates the band structure
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Figure 4.3: SSH topology switching in a nematic LC microcavity. (a) 2D zigzag
SSH potential (in meV) constructed out of Gaussian wells with RDSOC aligned along
strong link; (b) normalized edge state density; energy spectrum in real (c,d) and reciprocal
(e,f) space in the absence (c,e) and presence (d,f) of RDSOC; the red rectangular highlights
the edge state (in (f) intensity of the edge state is increased by 10x for visibility).
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Figure 4.4: SSH edge states in the presence of TE-TM SOC. Energy spectrum of
Hamiltonian 4.13 in (a,c,e) real and (b,d,e) reciprocal space for increasing magnitude of
the TE-TM SOC γ′ (rows from top to bottom); intensity of the edge state is increased by
10x times for visibility, as in Fig. 4.3(e,f); the parameters are the same as for Fig. 4.3,
except the chain is two times shorter, and δ = 8.0 meV.
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Figure 4.5: Edge state period doubling in tight-binding model. The Stokes vector
(a-d) and density decay (e-h) in real space of a finite SSH chain for different magnitudes
of RDSOC β; κ is an exponential decay length obtained by fitting the data (dashed lines);
(i) the division of a unit cells into two types: odd and even; the colors of A-D letters
correspond to the colors of arrows in (a-d) and dots in (e-h); (j) the edge state density
(color) in reciprocal space depending on the RDSOC phase β.

in real (left column) and reciprocal (right column) space for different values of γ′ (rows).
As one can notice, with increasing TE-TM SOC the edge state slowly approaches the
upper bands, and the asymmetry between the bands increases. However, for realistic
values of TE-TM SOC used in these simulations, the state still stays inside the gap and
its localization is evident.

4.2.4 Period doubling in both models

In both cases, of tight-binding model Eq. 4.6 and of continuous model Eq. 4.12 , we
observe the period doubling of the edge state. We start by investigating the structure
of the polarization and density of the edge state in the tight-binding model for the same
parameters as for Fig. 4.2(d). Fig. 4.5(a-d) shows the in-plane Stokes vector at each site,
and Fig. 4.5(e-h) shows the intensity distribution. The circular polarization degree of edge
modes is zero. We divide all unit cells into odd and even (Fig. 4.5(i)). For small β there
is no difference between Stokes vector behavior on odd and even unit cells, as one can
see in Fig. 4.5(d,h). For β ≈ π/2, we see a pronounced difference between odd and even
unit cells (Fig. 4.5(c,g)). While all B sites are equivalent (red and green arrows), Stokes
vector on odd and even A sites (blue and yellow arrows) rotates differently. The density
behavior also shows four distinct spatial decay rates. For β = π/2 (Fig. 4.5(b,f)), we have
a specific edge state divided into orthogonally-polarized dimers; a single site terminates
the chain. The density at even B lattice sites drops almost to zero (thus not visible in
Fig. 4.5(f)). After crossing β = π/2 value, the direction of polarization rotation at A
sublattices changes (Fig. 4.5(a,e)), while B sublattices still do not rotate. For even larger
β, the period doubling disappears.

The period doubling arises from a superposition of three components of the edge state
wavefunction in reciprocal space for β ≈ π/2 (Fig. 4.5(j)). This occurs because the bulk
energy bands exhibit almost equal gaps at the center and edges of the BZ (red line in
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Figure 4.6: Edge state period doubling in continuous model. (a-c) Normalized
edge state density distribution in reciprocal space, (d-f) spectrum of the lowest gap with
the edge state marked by the red rectangle (edge state density is multiplied by 10, gray
color scale shows normalized state density), (g-i) Stokes vector distribution in real space
(averaged over FWHM region for each potential well) and (j-l) density decay in real space
for different magnitudes of RDSOC constant α; parameters of the calculation are the same
as for Fig. 4.3 with difference in δ = 8 meV and Lorentzian broadening of 0.1 meV FWHM
(for better visibility).

Fig. 4.2(c)). The component located exactly in the middle of the BZ creates a constant
phase distribution along the chain. The two components located exactly at the edges of
the BZ create a phase distribution which jumps between each pair of neighboring unit cells.
Thus, the linear combination of these three components creates an imbalance between odd
and even unit cells, since in the former the components sum up constructively while in the
latter the components sum up destructively. However, this superposition does not explain
the difference between two sublattices inside each unit cell. The subblatice difference is
created by the finite distribution of each of these three components in reciprocal space. It
provides the necessary spatial decay rate and Stokes vector rotation inside each unit cell.

In the tight-binding approximation several assumptions are used: the chain is oriented
along the x axis and all lattice sites have equal spacing, the tunneling between lattice sites
does not depend on energy. In a realistic 2D implementation all these assumptions stop
to hold, however, the period-doubling effect still can be observed, although with a slight
difference in Stokes vector behavior and the edge state density distribution (Fig. 4.6).
With increasing RDSOC, the period-doubling starts to appear at α = 1.85 meV · µm
(first column of Fig. 4.6), acquires the most pronounced effect at α = 2 meV ·µm (second
column of Fig. 4.6) and finally vanishes at α = 2.15 meV · µm (third column of Fig. 4.6),
similarly to what occurs around β = π/2 in Fig. 4.5. Contrary to the tight-binding results,
there are always two sets of sublattices of different type which rotate along the chain with
distinct spatial rate. In Fig. 4.6(g-i) they are even A (yellow) and even B (green). The
other two sets of sublattices stay unchanged. The density of the edge state still has three
main components in reciprocal space (at the edges and at the center of the BZ), but now
they become equal to each other rather on the onset of period-doubling (the first column
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in Fig. 4.6). The density spatial decay (Fig. 4.6(j-l)) is in good correspondence with the
tight-binding results. The pattern of polarization here, especially for the case of β = π/2
reminds a persistent spin helix, but incorporated in a chain.

4.3 Continuous tunneling control between individual sites

As was mentioned in the previous Sec. 4.1, the tunneling in the effective Hamilto-
nian 4.9 does not depend on the detuning δ, a single easily continuously tunable with
voltage parameter of LC microcavity. As a result, it was only possible to make abrupt
changes of topology by voltage, by turning the RDSOC on and off. More generally, it is so
for any 1D model with nearest-neighbor couplings only, since in this case the last term in
Eq. 4.4 contributes only to the on-site energy shift. Therefore, the tunneling can not be
controlled by applied voltage according to Eq. 4.4 . However, the following δ-dependent
terms emerge as the 3rd order perturbation theory correction:

Hlattice,eff = ...−
∑

i,j,k,m

JikJkmJmj sin βik cosβkm sin βmj

4δ2 a†
jai + ... 4.14

Therefore, they provide a continuous control over effective tunneling. At the same time,
we expect the 3rd order correction to be small, and thus make an experimental observation
challenging. A workaround is necessary to get a correction of more leading order.

4.3.1 General idea

Let us consider the case of two sites, which simplifies the mathematical description of
the tunneling control. We will call this system a double trap (DT). The Hamiltonian 4.3
therefore can be written as 4x4 matrix in the basis combining polarization (HV ) and site
(left/right) degrees of freedom (|V l

s ⟩ |V r
s ⟩ |H l

s⟩ |Hr
s ⟩)T :

H =


−δ −J cosβ 0 iJ sin β

−J cosβ −δ −iJ sin β 0
0 iJ sin β δ −J cosβ

−iJ sin β 0 −J cosβ δ

 , 4.15

where we have single tunneling amplitude J and RDSOC phase β, and subscript s under-
lines that we have a single localized state inside each trap which is typically called s state
in analogy with atomic orbital notations. We inverted the sign of tunneling J → −J since
the tunneling between s states is negative, and it will be important for future considera-
tions. Therefore, currently J > 0. According to the Hamiltonian 4.15 , the cross-polarized
inter-site transition is allowed (green terms), while cross-polarized intra-site one is pro-
hibited (red terms). This is schematically depicted in Fig. 4.7(a). This happens because
of the symmetry of RDSOC term, which mediates all cross-polarized transitions in this
system. RDSOC term is linear in ky (Eq. 3.7 ), and, consequently, it can couple only
states of different symmetry (symmetry selection rule). Since we consider s states in both
polarizations, s states located on the same site can not be coupled by the RDSOC, because
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Figure 4.7: Cross-polarized RDSOC-mediated transitions between s states of a
double trap. (a) Allowed (green) and prohibited (red) cross-polarized transitions between
single-site s states; two-step transition from |V l

s ⟩ to |V r
s ⟩ is prohibited; (b) cross-polarized

transitions between single-site s states of V polarization, and even-odd s states of H polar-
ization (green and orange marker-like lines show the symmetry of state); all transitions are
allowed, and two possible two-step paths from |V l

s ⟩ to |V r
s ⟩ (through |He

s ⟩ (green) or |Ho
s ⟩

(orange)) compensate each other, thus giving zero total change in tunneling (Eq. 4.4 );
however, if Ho

s state falls into the continuum (red cloud), the second-order transition
through |He

s ⟩ becomes unbalanced.

they share the same symmetry, while s states located at different sites can. Therefore,
the two-step transition process from |V l

s ⟩ to |V r
s ⟩ through an intermediate state in H

polarization, which is expected to change the tunneling, is prohibited.

The transitions depicted in Fig. 4.7 can be considered in another basis, where states
in H polarization are already coupled, and form symmetric (even, superscript e) and anti-
symmetric (odd, superscript o) two-site eigenstates (see green and orange marker-like lines
in Fig. 4.7(b)). This basis is closer to reality, since now a perturbative approach is applied
only for V polarization and its coupling to H, while inside H polarization the eigenstates
are exact. The Hamiltonian 4.15 reads in this new basis (|V l

s ⟩ |V r
s ⟩ |He

s ⟩ |Ho
s ⟩)T as:

H =


−δ −J cosβ iJ sin β/

√
2 −iJ sin β/

√
2

−J cosβ −δ −iJ sin β/
√

2 −iJ sin β/
√

2
−iJ sin β/

√
2 iJ sin β/

√
2 δ − J cosβ 0

iJ sin β/
√

2 iJ sin β/
√

2 0 δ + J cosβ

 . 4.16

In this basis, all four cross-polarized transitions are allowed. There are two different two-
step paths which connect |V l

s ⟩ and |V r
s ⟩ states, through |He

s ⟩ or |V o
s ⟩ states. The paths

compensate each other because of sign difference in transition matrix elements (orange and
green paths in Eq. 4.16 and Fig. 4.7(b)). However, if me imagine that the anti-symmetric
state |V o

s ⟩, which has a bigger energy, falls into the continuum (red cloud), this leaves us
with the unbalanced two-step transition through |He

s ⟩. Therefore, the tunneling between
s states in V polarization should acquire a change already as the 2nd order correction,
contrary to Eq. 4.14 . The Hamiltonian for 3-level system without |V o

s ⟩ can be easily
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obtained by eliminating this state from Hamiltonian 4.16 :

H =


−δ −J cosβ iJ sin β/

√
2

−J cosβ −δ −iJ sin β/
√

2
−iJ sin β/

√
2 iJ sin β/

√
2 δ − J cosβ

 . 4.17

The effective 2x2 Hamiltonian for V polarization is, therefore (up to the 2nd order cor-
rections):

Heff =

 −
(
δ + J2 sin2 β

4δ

)
−J

(
cosβ − J sin2 β

4δ

)
−J

(
cosβ − J sin2 β

4δ

)
−
(
δ + J2 sin2 β

4δ

)  . 4.18

The non-diagonal terms proportional to δ−1 are, therefore, the tunneling modification ∆J .
We call this result the tunneling amplitude control technique, since ∆J can be controlled
by detuning δ which in its turn is simply controlled in experiment by voltage. Actually, the
obtained result is quite general. It is based on (1) selection rules, which allow some tran-
sitions and prohibit the others, and (2) tunability of energy separation between the states
of interest (V -polarized states) and intermidiate states (H-polarized states). Therefore, it
can be realized in different physical systems, using various types of inter-level (spin-orbit)
couplings, and utilizing higher energy states, not necessarily s states.

4.3.2 Realization in nematic liquid crystal microcavity

In collaboration with IBM Research–Zurich, University of Warsaw, and Warsaw Mili-
tary University of Technology, this proposal has been already realized in a nematic liquid
crystal microcavity [253]. The scheme of the cavity is shown in Fig. 4.8(a). In this re-
alization, there are several differences with respect to the simplified model discussed in
the previous Section 4.3.1. First of all, the RDSOC-mediated tunneling control is realized
through intermediate p states. Also, due to the refractive index difference for H and V

(Eq. 3.6 ), the photonic potentials for H and V are different as well, and, consequently,
the spectra of single-site localized states are different. Furthermore, the polarization mass
difference terms (µx and µy in Eq. 3.7 ), originating from distinct longitudinal mode num-
bers (Eq. 1.1 ), can no longer be neglected. This mass difference for H and V photons
results in unequal tunneling coefficients J . Finally, the RDSOC contribution is computed
directly from the continuous Hamiltonian 3.7 by evaluating cross-polarized transition
matrix elements between different localized states.

It will be useful to utilize the Hamiltonian 3.7 in HV basis, where we changed the
RDSOC to be along kx and to correspond to a new coordinate system (Fig. 4.8(a)). The
Hamiltonian then reads:

H (kx) = ℏ2k2
x

2M σ0 +
(
ℏ2k2

x

2m + 2αkx

)
σx + δσ11. 4.19

with 1/M = (1/mH + 1/mV )/2, 1/m = (1/mH − 1/mV )/2, where mH (mV ) is the mass
of the H-(V -)polarized mode, and δ is the detuning between Nth H (non-tunable) and
(N + 1)th V (tunable) modes. Since only one mode is shifted by voltage in experiment,
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4.3.2 Realization in nematic liquid crystal microcavity

Figure 4.8: Scheme of a nematic LC microcavity with potential traps and ST
dispersion. (a) Scheme of an LC microcavity with ST and DT potentials; experimentally
measured dispersion of ST for (b) 5.2 V and (c) 8.3 V shown as S1 and S3 Stokes param-
eters, respectively; the data is nonlinearly transformed and saturated in order to enhance
the visibility of localized states marked as |Vs⟩, |Hs⟩ and |Hp⟩; the colorbars are in a.u.;
black solid lines show the fit of continuous modes (H and V in (b), + and − in (c)) by
Hamiltonian 4.19 ; black double-headed arrow depicts the tunability of V mode. Adopted
from [253].
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the σx Pauli matrix next to the detuning δ in Eq. 3.7 is substituted by σ11 = (σ0 −σz)/2.

4.3.3 sp coupling by RDSOC on a single site

We start by considering a single trap (ST) potential. In Fig. 4.8, we show the dispersion
measured at the position of an ST for different voltages. At small voltages, the detuning
δ between the two linear polarizations is large, and therefore, the eigenmodes are predom-
inantly linearly polarized. It is clearly visible when plotting the first Stokes parameter S1

(Fig. 4.8(b)). Along with continuous parabolic cavity modes, well described by the Hamil-
tonian 4.19 , we observe the localized states. These states have discrete, kx-independent
energies below the corresponding continuous modes and show a node/antinode at kx = 0,
depending on the state symmetry. Due to the contrast in H and V effective refractive
indices, the effective potential depth of the ST is different for H and V . As a result, a
single localized state is observed for V (s state) and two localized states for H (s and p

states).
For higher voltages (around 8.3 V), the V mode of (N + 1)th order approaches the H

mode of Nth order, and the RDSOC contribution 2αkx starts to dominate over the split-
ting δ between the linearly-polarized modes (Fig. 4.8(c)). In this regime, the eigenmodes
are mostly circularly polarized and split along kx, which is visible when plotting the third
Stokes parameter S3.

We measured the dispersion at the position of an ST for the set of voltages between 0 V
and 11 V. The results are shown in Fig. 4.9(a) in an energy-voltage plot for a fixed angle
of detection of −7◦ corresponding to kx=1.49µm−1 (which optimizes the simultaneous
visibility of both s and p localized states). The tunability of the V mode (green) with
voltage is well visible in this type of diagram. The experimental results can be reproduced
by numerically solving the stationary Schrödinger equation with the Hamiltonian 4.19 as
displayed in Fig. 4.9(b). From the experimentally measured total intensity in Fig. 4.9(c),
one can infer that localized states anticross at the positions highlighted by black arrows,
corroborated by numerical results (Fig. 4.9(d)). This anticrossing is a manifestation of
RDSOC-mediated coupling between localized states of H and V of different symmetry.
The absolute value of the matrix elements of this coupling can be generally written as
β = | ⟨Hl| 2αkx |Vl′⟩ |, with l(l′) = {s, p, ...} representing the quantum number of a localized
state. While the |Vp⟩ state was not visible in Fig. 4.8(b), it appears when H and V

are close to the resonance, and so it can couple with the other states which are always
visible. Therefore, the tight-binding model for localized states of an ST in the basis
(|Hs⟩ |Hp⟩ |Vs⟩ |Vp⟩)T can be written as:

HST =


EHs 0 0 −iβST,2

0 EHp iβST,1 0
0 −iβST,1 EVs + δ 0

iβST,2 0 0 EVp + δ

 , 4.20

where Eφ stands for the energy of localized |φ⟩ state. Two different coupling coefficients
βST,1(2) give rise to two anticrossing points observed in Fig. 4.9(c,d). By diagonalizing
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Figure 4.9: Energy-voltage diagrams showing the near-resonant regime between
Nth H mode and (N + 1)th V mode in an ST. (a,c) Experimental and (b,d) nu-
merical results represented as (a,b) linear polarization degree S1 and (c,d) total intensity
S0; the detection angle of experimental data θ = −7◦ corresponds to kx = 1.49 µm−1 of
the numerical simulation; the data is nonlinearly transformed and saturated in order to
enhance visibility of localized states; the colorbars are in a.u.; black arrows in (c,d) mark
anticrossing points; black dotted lines in (c) show the energies obtained by diagonalizing
tight-binding Hamiltonian 4.20 . Adopted from [253].
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the tight-binding Hamiltonian 4.20 , we obtain a good correspondence with experimental
results (black dotted lines in Fig. 4.9(c)). The parameters can be found in SM of [253].

4.3.4 Tunneling control between two sites mediated by RDSOC

We now turn to the consideration of the DT potential. The dimensionality of Hamil-
tonian is 8 since it contains two polarizations, two sites, and two "orbitals" (s and p). We
write the full 8x8 Hamiltonian, perform its transformation and apply the perturbation
theory in Appendix A. Here, we discuss only the physical interpretation, very similar to
the one of Sec. 4.3.1, and final formula.

The tunneling between sites contains both a first-order direct tunneling J0 and a
second-order contribution due to RDSOC, as sketched in Fig. 4.10(a,b). The RDSOC-
mediated 2nd order transitions happen through the intermediate Vp ST states. In addition
to the intra-site RDSOC-mediated sp transitions β′

2 ≡ βST,2 discussed in the case of
ST (Eq. 4.20 ), inter-site sp transitions β′

3 appear. The expression for the detuning-
dependent effective tunneling between |H l

s⟩ and |Hr
s ⟩ states mediated by RDSOC through

an intermediate |Vp⟩ states reads as:

J [δ(V )] = J0 −
β2

DT,2
EVp − EHs + δ(V ) 4.21

where βDT,2 = (β′
2 +β′

3)/
√

2, β′
2,3 = | ⟨H l

s| 2αkx |V l,r
p ⟩ | (see Fig. 4.10(b)), EHs and EVp are

the energies of ST |Hs⟩ and |Vp⟩ states, respectively (Eq. 4.20 ). The voltage dependence
of tunneling, analogous to Eq. 4.18 , is evident.

We now present the comparison with the experimental results. The dispersions for
negative and positive linear detunings δ are shown in Fig. 4.10(c,d), respectively. Now,
each state of an ST is split into even and odd states, since the traps forming the DT are
coupled by tunneling. For both H and V modes, we observe three localized states. The
coupling between different localized states is described by the same matrix elements with β
introduced above. Note that the energy splitting between |He

s ⟩ and |Ho
s ⟩ localized states is

different for panels (c) and (d) in Fig. 4.10. Moreover, it changes continuously with voltage
(Fig. 4.10(g)). The effect is especially pronounced when approaching the resonance. At
the same time, the polarization of the states is mostly conserved, which is confirmed by
S1 both in the experiment (Fig. 4.10(e)) and numerical simulation (Fig. 4.10(f)). Since
the uncoupled states in both traps are degenerate, the energy splitting between the DT
states can be written as 2J , where J is a tunneling coefficient. Therefore, this result can
be interpreted as a continuous control of the tunneling amplitude by the applied voltage
due to the RDSOC: J = J(V ).

The effective tunneling extracted from the experiment is shown as blue points in
Fig. 4.10(h), while the fitting of this data with J(δ) (Eq. 4.21 ) is illustrated by a solid
black line. We, therefore, conclude that the hyperbolic dependence of the tunneling J

on the detuning δ (directly controlled by the voltage) given by Eq. 4.21 is confirmed by
the experiment. The total change of J(δ) is from 0.7J0 to 1.45J0, exceeding a factor 2.
This change is only possible if the absolute value of the RDSOC transition matrix element
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4.3.4 Tunneling control between two sites mediated by RDSOC

Figure 4.10: Tunneling amplitude control in DT. (a) Tunneling J0 and its change ∆J
as the first and the second order corrections of perturbation theory, respectively; Vmn is a
matrix element of perturbation; (b) allowed (green) and prohibited (red) RDSOC-mediated
transitions responsible for the tunneling control; experimentally measured dispersion of a
DT for (c) 5.2 V and (d) 9.3 V shown as S1 Stokes parameter; black solid lines show
the fit by Hamiltonian 4.19 ; black double-headed arrow depicts the tunability of V mode;
purple arrows mark the spectral distance between |He

s ⟩ and |Ho
s ⟩; (e,g) experimental and

(f) numerical results represented as (e,f) S1 linear polarization degree and (g) H-polarized
intensity; black dotted lines in (g) show the extracted energies of |He

s ⟩ and |Ho
s ⟩ localized

states; the data in (c-g) is nonlinearly transformed and saturated in order to enhance the
visibility of localized states; the colorbars are in a.u.; (h) effective coupling coefficient be-
tween |Hr

s ⟩ and |H l
s⟩ localized states extracted from the experiment (blue dots) and fitted by

J(δ) Eq. 4.21 (black line). See simulation parameters in SM of [253]. Adopted from [253].
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Figure 4.11: Topological transition in DT. Spectrum of a DT depending on RDSOC
parameter α showing a spectral inversion between |He

s ⟩ and |Ho
s ⟩ localized states in (a)

total intensity S0 and (b) linear polarization degree S1; the colorbars are in a.u.; real part
of H-polarized wavefunction component Re[ΨH] of the lowest (1, red) and the second lowest
(2, blue) localized states (c) before and (d) after state inversion; black dashed line shows a
potential UH for H; Re[ΨH] and UH units are normalized; white dashed line in (a) shows
the experimental value of RDSOC parameter α presented in Fig. 4.10; see parameters in
SM of [253]. Adopted from [253].

βDT,2 is non-zero. Thus, the RDSOC-mediated coupling between s and p states plays a
crucial role in the control of the tunneling between two traps.

4.3.5 Tunneling inversion and topological transition

Another remarkable property of the effective tunneling J(δ) is a minus sign allowing,
in principle, to suppress the effective tunneling down to zero or even to invert its sign.
The inversion of the tunneling sign is inextricably linked with a topological transition
manifesting itself in the experiment as a spectral swap between e and o localized states.
This transition is similar to the one observed in the first seminal works on the Quantum
Spin Hall Effect in HgTe topological insulators [254]. The Quantum Spin Hall Effect in
the HgTe quantum wells corresponds to the most well-known topological transition with
the mass sign inversion in the Dirac Hamiltonian [255, 256], and our system corresponds
to its 1D projection. In Fig. 4.11 we demonstrate this effect in numerical simulations.
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4.3.6 Discussion

Fig. 4.11(a,b) shows the evolution of the spectrum with increasing RDSOC constant α.
At α ≈ 4 meV·µm, the |He

s ⟩ and |Ho
s ⟩ localized states cross in energy. By looking at the

structure of the lowest (1) and second lowest (2) states in real space before the crossing
(Fig. 4.11(c)) and after the crossing (Fig. 4.11(d)), one can easily notice the inversion
between the e and o states. At the same time, the polarization of these states is mostly
conserved, as confirmed by the degree of linear polarization S1 (Fig. 4.11(b)).

In the demonstrated DT experiment (Fig. 4.10), the value of α is 2.4 meV·µm, which
does not allow us to observe this topological transition experimentally (white dashed line
in Fig. 4.11(a)). The simplest way to achieve it in future experiments is to utilize a LC
material with higher birefringence.

4.3.6 Discussion

Along with an abundance of physical phenomena, microcavities allow studying various
lattice models, often in the context of topological photonics. Nowadays, the most common
techniques for lattice engineering in planar microcavities are micropillar etching [257, 5],
where the tunneling in the presence of spin-orbit coupling has also been studied [258],
and ballistical coupling [259]. Both of these techniques lack a simple tunability for the
lattice tunnelings, and do not provide dynamical access to the transitions between different
topological phases of the model, that our technique does. In the next Section 4.4, we will
present another approach for lattice tunability based on CLC microcavity in a uniformly
lying helix configuration [235], which has a different origin of tunability in comparison
with the approach presented in this Section.

Our tunneling amplitude control technique can be further extended to the domains of
strong light-matter interaction, non-linear physics, or non-Hermitian physics, since all nec-
essary ingredients are available in nematic LC microcavities. Our technique is mathemat-
ically similar to the adiabatic elimination used to control coupling in photonic waveguide
lattices [260] and atomic systems [261]: the full Hilbert space is reduced to an effective
Hamiltonian exhibiting the desired coupling. The main advantage over the coupled waveg-
uide system is the small spatial size of the DT system, allowing its efficient integrability.
DT system presents the same miniaturisation advantage over another proposed implemen-
tation of coupling control based on Mach-Zehnder interferometers [262] and over artificial
gauge field techniques of tunneling amplitude modulation based on bent waveguides [263].

4.4 1D tunable lattice in cholesteric liquid crystal micro-
cavity

In this Section, we discuss the CLC embedded in microcavity and optical potential
which it creates. This optical potential turns out to be tunable with external voltage and
can exhibit a spin-orbit coupling having many similarities with RDSOC. We explain the
origin of tunability and spin-orbit coupling, and describe the similarity with RDSOC. The
experimental part was performed by our colleagues at University of Warsaw, and sample
fabrication was done in Warsaw Military University of Technology.
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Figure 4.12: CLC microcavity in ULH configuration. (a) Scheme of the dye-doped
optical microcavity with an embedded stabilized ULH structure; the rows of directors ori-
ented vertically are colored in red to indicate the period of the lattice; (b) polarizing optical
microscopy image of light transmitted through a ULH texture embedded inside LC micro-
cavity. Adopted from [235].

4.4.1 Microcavity scheme

The scheme of the microcavity used in experiment is presented in Fig. 4.12(a). The
cavity is filled with a nematic LC and chiral dopant, which induces a CLC phase with a
helical pitch p ≈ 8 µm (Fig. 4.12(b)). Under homeotropic (perpendicular to the mirrors)
anchoring, the mirror surfaces impose a topological frustration that induces a uniformly
lying helix (ULH) configuration, with the axis of helix aligned parallel to the mirrors [264,
265, 266]. Doping of LC with an organic laser dye is important only for the experimental
part of the work, so we will not discuss it here. Two different samples, showing some
distinctions in physics, were prepared. Sample A, with a higher birefringence of the CLC
mixture, was used in the first part of the work to demonstrate band structure tunability by
external electric field. Sample B has a CLC mixture with lower birefringence but exhibits
a deeper photonic potential thanks to the higher homogeneity along the cavity axis z.
This sample demonstrates a photonic spin-orbit coupling absent in the sample A.

4.4.2 CLC-induced photonic 1D potential

First, sample A was studied. Experiment is based on angle-resolved reflectivity spec-
troscopy. Without any voltage applied to the sample (Fig. 4.13(e,h)), the bandgap is visible
only in H polarization, while in V polarization the spectrum remains gapless (within the
spectrometer resolution and line broadening). The s-band is observed in H polarization
(denoted Hs, E ≈ 2.1 eV). Under non-zero external voltage, an energy gap emerges in V

polarization as well, as shown in Fig. 4.13(i,j), opening from 0 meV at 0.0 V to 20 meV
at 3.7 V. The whole band structure in V polarization is shifted towards higher energies.
The process of gap opening is reversible. We also observed the increase of the gap for H
polarization, from 12 meV at 0.0 V to 25 meV at 3.7 V (Fig. 4.13(f,g)). Beside the sym-
metric s-band, another gap opens in H polarization for higher energies (around 2.14 eV),
thus forming an additional anti-symmetric p-band (denoted Hp).

The observed results can be explained by considering the combination of ULH-induced
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Figure 4.13: Lattice tunability in ULH LC microcavity (sample A). Illustrative
representation of the LC director arrangement inside the microcavity and the corresponding
schematic dispersion relations of the horizontally- (H, pink) and vertically- (V , green)
polarized modes for (a) zero and (b) non-zero voltage; effective refractive index ellipses for
H and V polarizations showing periodical dependence along the ULH axis y over half-pitch
p/2 and obtained by averaging director distributions shown in (a) and (b) along microcavity
axis z for (c) zero and (d) non-zero voltage, respectively; reflectivity spectra of (e-g) H-
and (h-j) V -polarized band structures measured for different voltages (indicated in top right
corners) applied to the sample A. Adopted from [235].

87



Chapter 4. RDSOC in weakly-coupled systems

Figure 4.14: Schematic dependence of refractive indices and corresponding po-
tentials for sample A. Refractive index real space dependence for (a) zero and (b)
non-zero voltage; resulting periodic potentials for (c) zero and (d) non-zero voltage; pink
and green colors correspond to H and V polarizations, respectively; dotted lines show
single-well localized states and colored rectangles show the energy range of the continuum.
Adopted from [235].
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potential, director fluctuations, and so-called dielectric effect [267], governing director
reorientation under applied field. Microcavity photons experience a potential defined
by the effective refractive index obtained by averaging along z axis of the microcavity.
This averaging can be easily performed for a known LC director distribution inside the
microcavity. The ideal helix creates a perfectly uniform distribution of the director along
the microcavity axis z. Its projection on microcavity plane x-y shows a periodic variation
of refractive index along y for one polarization (H) and the absence of variation for another
polarization (V ). In reality, the helix is not ideal, and the angular fluctuations [268] of
molecules from ideal orientation occur (marked by color of ellipsoids in Fig. 4.13(a)).
Under zero electric field, these fluctuations are randomly distributed and do not have any
preferential direction. In general, their effect is a reduction of the effective refractive index
contrast. In other words, if we now average the LC director distribution along z taking
into account these fluctuations (Fig. 4.13(a)), the maximum (minimum) refractive index
is reduced (increased) for both polarizations in comparison to the ideal helix. The result
of this averaging is shown in Fig. 4.13(c) in the form of effective refractive index ellipses
for H and V polarizations. It is also shown in a more standard way in Fig. 4.14(a), as two
separate functions, nH (pink) and nV (green), representing the effective refractive indices
inside the unit cell for H and V polarization, respectively. The polarization-dependent
potentials created by these refractive index distributions are calculated as:

VH,V = πℏcN
nH,V L

∝ 1
nH,V

, 4.22

with microcavity mode number N , and microcavity length L. These potentials are
schematically depicted in Fig. 4.14(c). The periodic potential with half-pitch period p/2 is
present for H and absent for V . Naturally, a single potential well (the unit cell itself with-
out periodicity) for H contains a localized state (shown as a dotted line in Fig. 4.14(c)),
creating a band in the periodic system, exactly as in the experiment (Fig. 4.13(e)).

When the voltage is applied to the cavity along the z axis, molecules aligned closely
to the electric field direction are the first to react on the field, and they realign with it
even better, while molecules perpendicular to the field almost do not realign. This effect is
often referred to as the dielectric effect of the electric field [267]. Thus, the uniformization
of the director distribution along z happens for some regions (edges of the distribution
in Fig. 4.13(b,d), y/p ≈ 0 or 1/2), while it does not happen for the others (middle of
the distribution in Fig. 4.13(b,d), y/p ≈ 1/4). Therefore, the effective refractive index
contrast is increasing for both polarizations: the highest refractive indices for H and V

stay almost the same, while the lowest ones are decreasing, as shown in Fig. 4.14(b). Also,
the narrowing of the central region (high refractive index region) happens (more red-
colored directors appear in Fig. 4.13(b) with respect to Fig. 4.13(a)). In complete analogy
with zero-voltage case, the potential is calculated by Eq. 4.22 and shown in Fig. 4.14(d).
Now, the potential appears for V polarization, with a localized state inside a single well.
For H polarization, the potential well deepens and allows now for two localized states.
The continuum of states for both H and V is also shifted towards higher energy (shown
by the pink and green colored rectangles, respectively).
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Figure 4.15: Symmetry analysis of a cholesteric liquid crystal in the ULH con-
figuration. (a,b) Unbounded, (c,d) perfect bounded (sample A) and (e,f) tilted bounded
(sample B) helix configurations; the first and the last break the inversion symmetry, while
the second does not. Adopted from [235].

The presented analysis is performed in the assumption of normal incidence (ky = 0).
By taking into account non-zero ky components, we obtain mostly a quantitative difference,
but not a qualitative one. The single case when the qualitative difference appears is the
case of zero voltage. In this case, V polarization has a slight modulation of refractive
index along y for non-zero incidence angles (ky ̸= 0). This modulation is significantly less
than the one for H polarization due to the small incidence angles in experiment, therefore,
the size of the emerging gap is small, and it cannot be resolved in our experimental setup
due to the mode broadening (Fig. 4.13(h)). The described qualitative behavior agrees
perfectly with the experimental observations presented in Fig. 4.13(e-j).

4.4.3 CLC-induced photonic spin-orbit coupling

It is important to stress that the strong optical activity (OA) expected for a CLC helix
and discussed in Sec. 3.2.4 does not show up for sample A. The unbounded medium with
a cholesteric helix has no inversion symmetry from where its optical activity stems (see
Fig. 4.15(a,b); in the following, for simplicity, one can simply track the position of the blue
ellipsoid marked by the blue arrow). When a cholesteric helix is bounded by the cavity
in the ULH configuration, the cavity volume can be unfolded to pave the whole space by
building the reflection of the helix in the mirrors. In this case, the inversion symmetry (up
to a supplementary translation by cavity width) is restored, preventing the appearance
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of OA (Fig. 4.15(c,d)). However, this is not the case if an additional molecular tilt is
introduced, as we show now for sample B (Fig. 4.15(e,f)).

Fig. 4.16(d-f) presents the angle-resolved reflectivity spectra measured for total inten-
sity (Stokes parameter S0), horizontal H, and vertical V polarizations of detected light,
respectively; the right parts of the panels are obtained by a semi-analytical model which
we will not discuss here (if interested, see details in SM of [235]). The presence of a
deeper photonic potential, compared to Fig. 4.13, leads to opening of a greater number of
photonic bandgaps, as well as a deeper localization of light: a large effective mass of the
trapped photons makes the lowest bands almost flat.

In a system with uncoupled H and V polarizations, each of them should possess a
band structure with its own ladder of states. However, we observe that the states around
2 eV, expected to be Hp and Vs, show up in both polarizations. Fig. 4.16(g,h,i) show the
corresponding Stokes parameters S1, S2, and S3, measured in the reflectivity in k-space
(along ky). It is evident that each of these two coupled states contains both H and V

contributions. Furthermore, in the circular polarization degree S3 in Fig. 4.16(i), these
states form a non-zero check pattern. Stokes parameters of spatially-resolved (r-space)
transmission spectrum are shown in Fig. 4.16(j-l). The lowest energy states in Fig. 4.16(j)
portray the spatial periodicity of the refractive index corresponding to the half-pitch of
ULH. The check pattern similar to that in Fig. 4.16(i) is visible in the Stokes parameter S2

(Fig. 4.16(k)) at energies around 2 eV. All these features prove the presence of spin-orbit
coupling in the system.

4.4.4 Spin-orbit coupling approximation by RDSOC

The trigger which forces the OA to reappear again, thus creating this spin-orbit cou-
pling, is the molecular tilt, as was stated above. If the director is rotated (tilted) around
x axis, the inversion symmetry breaks again, therefore, bringing back the OA which was
suppressed by the mirrors. Turns out that the tilted ULH is one of the ULH stable con-
figurations [269]. The particular choice of a stable configuration depends on the used
LC, deposition techniques, anchoring strength, and other parameters, which explains the
difference between samples A and B. The magnitude of the tilt (for small tilts) correlates
with the strength of the SOC (see details in SM of [235]).

The polarization pattern which we observe for sample B reminds the one which RDSOC
Hamiltonian 3.7 creates. Indeed, in k-space (Fig. 4.16(g-i)), the diagonal polarization
is absent and the circular polarization forms two parabolas, which now just became dis-
cretized in energy (see Fig. 3.3(a,b) for comparison). In r-space, the dominant polarization
is observed in S1 and S2 Stokes parameters (Fig. 4.16(j-l)), similar to the persistent spin-
helix, or emergent optical activity, which creates linearly-polarized stripes in real space,
as discribed in Secs. 3.2.3 and 3.2.4. By combining this remark with the fact that all
measurements were done at small angles of incidence, we, actually, restore the similarity
between OA of CLC and RDSOC which we extensively discussed in Sec. 3.2.4. Therefore,
to reproduce results of the experiment, we can approximate the spin-orbit coupling term
by RDSOC term. However, we should always keep in mind that the microscopic origin of
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Figure 4.16: Spin-orbit coupling in ULH LC microcavity (sample B). (a) (top)
Illustration of the LC director distribution inside the microcavity and (bottom) effective
refractive index ellipses; sp-hybridized bands obtained from the tight-binding Hamiltonian
Eq. 4.24 with colors corresponding to (b) S1 and (c) S3 Stokes parameters (S2 = 0
everywhere); the inset shows a scheme of hybridization; the k-space reflectivity spectra
measured for (d) total intensity (S0 Stokes parameter) and orthogonal linear (e) horizontal
H and (f) vertical V polarization of light; Stokes parameters S1, S2, and S3 in (g,h,i)
reciprocal and (j,k,l) real space, respectively; the left halves of the Stokes parameter panels
correspond to the experimental data, while the right halves represent the results of semi-
analytical model (see details in SM of [235]); the SOC-mixed eigenstates appear near 2.0 eV
as a result of coupling between p band of H polarization and s band of V polarization.
Adopted from [235].
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the SOC is different.

In this case, an effective Hamiltonian describing the cavity modes of two polarizations
H and V in the polarization-dependent periodic potential created by the ULH in the
(|H⟩ |V ⟩)T basis in real space reads:

Hcont =

− ℏ2

2m
∂2

∂y2 + AH
2 [1 − cos (2qy)] − δ

2 −2iα ∂
∂y

−2iα ∂
∂y − ℏ2

2m
∂2

∂y2 + AV
2 [1 − cos (2qy)] + δ

2

 , 4.23

where m is the mass of a cavity photon moving along y, δ is the linear splitting, and
q = 2π/p is the pitch wavevector of the ULH. AH,V are potential amplitudes for H and V
polarizations, respectively.

Now, we can derive from the continuous Hamiltonian 4.23 a tight-binding Hamilto-
nian reproducing in a transparent manner the coupling between the orthogonally H- and
V -polarized bands of the periodic potential observed in the experiment. As we already
discussed in Sec. 4.3 devoted to the tunneling control, the RDSOC term couples only local-
ized states of opposite parity. The most pronounced coupling happens in the experiment
around 2 eV between the s-band in V polarization (Vs) and the p-band in H polariza-
tion (Hp). By focusing exclusively on these two bands, we can write a 2x2 tight-binding
Hamiltonian:

H =
(
EHp − 2tpp cos (kyp/2) −iα [tsp,0 − 2tsp,1 cos (kyp/2)]

c.c. EVs − 2tss cos (kyp/2)

)
, 4.24

where EHp and EVs are the onsite energies of Hp and Vs, respectively, tpp and tss are the
nearest-neighbor tunnelings between p states of H and s states of V , respectively, tsp,0

and tsp,1 are the onsite and nearest-neighbor cross-polarized couplings between Hp and
Vs, respectively, and c.c. stands for complex conjugate. All terms are calculated from the
Hamiltonian 4.23 using the standard perturbation theory on a trial basis of s and p states
of a harmonic oscillator (see explicit expressions for terms and values used in App. B).
In the limit of strongly localized modes (αtsp,1, tss, tpp ≪ αtsp,0), which is our case, the
spectrum of the Hamiltonian ( 4.24 ) is shown in Fig. 4.16(b,c), with color representing
the Stokes parameters S1 and S3. The resemblance between the theory (Fig. 4.16(b,c))
and experiment (Fig. 4.16(g,i)) is evident.

4.5 Perspectives for 2D lattice models

This short Section discusses 2D models that can be implemented with RDSOC. As
was already mentioned in Sec. 3.1 and elaborated in Sec. 3.2.3, since RDSOC is a 1D
SOC, the effects which it induces are few. Therefore, spatial modulation of its magnitude
or direction can be used to achieve richer physics. We give two examples, HH and XY
models, in order to emphasize the usefulness of both RDSOC lattice regimes, phase control
and amplitude control.
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Figure 4.17: 2D lattice models. Schemes of (a) Harper-Hofstadter and (b) XY models
that can be realized with RDSOC; green circles are lattice sites; red arrows show the local
direction of RDSOC; blue arrows indicate the total phase per plaquette for HH model (for
one circular polarization). Adopted from [248].

4.5.1 HH model in tunneling phase control regime

Following the approach of Sec. 3.2.3, we can consider the RDSOC with variation of
orientation in real space. Let us focus on the case of RDSOC rotation with constant
rate along x axis, and absent linear detuning δ. Then, the angle of RDSOC orientation
in real space with respect to x axis is θ = τx, where τ is a spatial rotation rate. The
Hamiltonian 3.16 can then be rewritten as:

H = (pxσ0 −ARD,x(x)σz)2

2m + (pyσ0 −ARD,y(x)σz)2

2m + E0σ0,

ARD,x(x) = 2mα
ℏ

cos τx, ARD,y(x) = 2mα
ℏ

sin τx.
4.25

The out-of-plane magnetic field (Eq. 3.21 ) acting on in-plane circular polarization cur-
rents J3

1,2 is, therefore:

B3
3(x) = 2mα

ℏ
τ cos τx. 4.26

This field is positive (along z) for + polarization, and negative (counter z) for − polariza-
tion. In the simplest case of small θ, the field B3

3 can be well-approximated by a constant
field, which creates a spectrum of equidistant Landau levels, with the level spectral sep-
aration of ∆E = ℏωc = 2ατ , where ωc is a cyclotron frequency. For a realistic value
of RDSOC magnitude α ≈ 3.2 meV·µm [81] and spatial rotation rate τ = 2π/40 µm,
one gets ∆E ≈ 1 meV, completely feasible to observe in experiment. If a square lattice
is added to this picture, and it is located in the region of small θ, the resulting model
is equivalent to the TRS-conserving HH model (see Sec. 2.3.2 and Fig. 4.17(a)), where
circular polarizations are uncoupled and each of them is described by the HH model with
opposite chirality (edge state propagation direction). The similarity can be drawn here
with the Quantum Spin Hall Effect in the context of the Kane-Mele model [197], which
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4.5.2 XY Hamiltonian in tunneling amplitude control regime

can be viewed as two uncoupled spin-polarized copies of Haldane model [30] with opposite
chirality. However, an important difference exists between HH and Haldane models, since
the former breaks the TRS by non-zero total magnetic flux while the latter does it by a
local magnetic field with the total flux of zero.

The nematic LC microcavity provides everything needed to implement this model.
The square lattice can be patterned as was done in Sec. 4.3. The easiest way to realize
a real-space variation of RDSOC direction is to deposit side-by-side two rubbing layers
with different rubbing orientation defining LC director rotation plane, and, consequently,
RDSOC orientation (Sec. 3.2). Inside the transition region between two layers, the LC
director tends to continuously rotate in space from orientation defined by the first layer
towards orientation defined by the second. The resulting RDSOC orientation in space
should look like depicted in Fig. 4.17(a) by red arrows.

The same prediction of TRS-conserving HH model can be done with our formalism of
phase control method. We know, that in the case of δ ≈ 0, opposite circular polarizations
acquire opposite RDSOC phases Eq. 4.1 . Therefore, for a 2D lattice with spatially varying
RDSOC orientation shown in Fig. 4.17(a), we can assign an RDSOC phase for each link.
If we trace now the total phase per lattice plaquette for one of circular polarizations
(blue arrows), we get a non-zero value, exactly as discussed in Sec. 2.3.2. The phase per
plaquette for an opposite circular polarization has an opposite sign.

4.5.2 XY Hamiltonian in tunneling amplitude control regime

In the amplitude control regime δ ≫ Jij , the spatially-dependent orientation of the
RDSOC allows to control the magnitudes and the signs of individual tunnelings according
to the Eq. 4.4 . By considering a square lattice with only nearest-neighbour tunnelings J
(Fig. 4.17(b)), the Hamiltonian 4.4 can be mapped to the classical XY Hamiltonian [270]:

ĤXY =
∑
i,j

J cosβij cos (ηi − ηj), 4.27

where ηi is the orientation of the in-plane XY ’spin’ i, encoded in the phase of the wave-
function argψi at site i. This Hamiltonian allows to simulate complex spin-liquid phases,
superfluids, superconductors, and solve some optimization problems [271, 270, 272, 273].
The dynamical version of XY model is also known as Kuramoto network [274], one of
the simplest models describing synchronization and very important in the field of neural
networks.

Contrary to the suggested HH model realization, this model requires control over
RDSOC direction at the level of individual lattice tunnelings, which is very challenging.
In LC microcavities, this can possibly be achieved with the use of more elaborated rubbing
layer engineering [275]. Some studies even claim the in-plane control over LC director
orientation by applied voltage [276]. If this possibility indeed exists, then by arranging
individual electrodes in a lattice (grey squares in Fig. 4.17), the RDSOC in-plane direction
can be controlled locally, therefore providing a full tunability for HH model (previous
Section 4.5.1) in the phase control regime and for XY model in the amplitude control
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Figure 4.18: Non-reciprocal tunneling. Non-reciprocal tunneling (inequivalent forward
and backward transitions) as the 2nd order perturbation correction which appears due to
the combination of linear detuning δ, RDSOC (phase β), and circular dichroism γ; green
arrows mark allowed transitions.

regime. Such a LC-based simulator would be compact and benefit from high accessibility
to the lattice state.

4.6 1D non-Hermitian models with RDSOC

In this Section we extend the results developed in Sec. 4.1 by introducing the spin-
dependent lifetime of particles. This term is non-Hermitian, and it allows us to achieve
non-reciprocal tunneling coefficients in amplitude control regime. As a consequence, we
observe the effects of pure non-Hermitian nature: NHSE and anomalous bulk-boundary
correspondence. We demonstrate these effects first in tight-binding model to gain a better
understanding of physics behind, and then suggest their realistic implementations in pho-
tonics and electronics without need for any lattice potential. We will use the terminology
of photonics everywhere, except the last Sec. 4.6.4. However, the results are generic and
can be applied to any platform providing the same ingredients.

4.6.1 Hatano-Nelson tight-binding model

We start by considering a spin-1
2 particle in a 1D monomer chain of coupled potential

wells, in the presence of the RDSOC (phase β), linear detuning δ, and spin-dependent loss
γ, which is typically called circular dichroism in the case of photonics. The Hamiltonian
of the system in the tight-binding approximation (Fig. 4.19(a)) is:

H1 =
∑

n

δσxa
†
nan + iγσza

†
nan + teiβσza†

n+1an + te−iβσza†
nan+1, 4.28

where an (a†
n) is an annihilation (creation) operator of a particle at lattice site n, and

t is a tunneling coefficient. On-site circular dichroism γ is a new ingredient which was
absent in our previous study of SSH model (Sec. 4.1) and which makes the Hamiltonian
non-Hermitian. The average lifetime term −iγ0σ0 is not included in the Hamiltonian since
it does not affect the physics related to the NHSE.
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4.6.1 Hatano-Nelson tight-binding model

Figure 4.19: Model transformations in the amplitude control regime. (a) Spinful
monomer and (b) SSH chains with RDSOC phases βi, linear detuning δ and circular
dichroism γ, which in the amplitude control regime transform into (c) non-Hermitian HN
and (d) SSH models. Adopted from [277].

We look at the tunneling amplitude control regime: |δ| ≫ |t|, |γ|. Contrary to the case
of absent circular dichroism (Fig. 4.7(a)), where two-step transitions between neighboring
sites were prohibited, here two-step transitions are allowed thanks to the one of the steps
(previously prohibited) enabled by circular dichroism (Fig. 4.18). Also, as clearly seen from
Fig. 4.18, the forward path (n−1 → n) and backward path (n → n−1) are not equivalent,
therefore, producing a non-reciprocity in tunneling in the 2nd order perturbation theory.
In this case, the effective Hamiltonian obtained from Eq. 4.28 (up to the 2nd order) in
the linearly-polarized subspace a†

n |0⟩ ⊗ |σx; −⟩ reads as:

Heff
1 = Heff

1,onsite +Heff
1,NN +Heff

1,NNN ,

Heff
1,onsite =

∑
n

(
−δ + γ2 − 2t2 sin2 β

2δ

)
a†

nan,

Heff
1,NN =

∑
n

t−a†
nan+1 + t+a†

n+1an,

Heff
1,NNN =

∑
n

t2 sin2 β

2δ (a†
nan+2 + a†

n+2an),

t± = t(cosβ ± γ

δ
sin β).

4.29

where Heff
1,onsite, H

eff
1,NN , H

eff
1,NNN stand for on-site, nearest neighbor (NN), and next-

nearest neighbor (NNN) Hamiltonian contributions, respectively. As one can see from
Eq. 4.29 , forward and backward tunneling coefficients t± differ by a factor γ

δ sin β. The
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Figure 4.20: NHSE in a monomer chain. (a) Transition from the full Hamilto-
nian 4.28 to the effective Hamiltonian 4.29 for a 40-site chain with an increase of δ
displaying NHSE; blue (red) color shows the right (left) edge localization degree (similar
to Eq. 2.3 ); (b) normalized density of eigenstates for the lower band of (a) depending
on the real part of the energy Re[E] and site number n; (c) BZ, GBZs of Eq. 4.28 and
Eq. 4.29 ; (d) PBC spectrum of Eq. 4.28 , OBC spectra of Eq. 4.28 and Eq. 4.29 ; pa-
rameters: t = 1, γ = 1, δ = 5, β = 0.2π. Adopted from [277].

chain is equivalent to the non-reciprocal HN model up to the NNN tunnelings (Fig. 4.19(c)).

We next consider a finite 40-site chain. Fig. 4.20(a) shows the real eigenenergies of the
full Hamiltonian 4.28 versus δ. With increasing δ, a single band splits into two subbands
(a†

n |0⟩ ⊗ |σx; −⟩ and a†
n |0⟩ ⊗ |σx; +⟩ for big δ). Each of the two subbands shows a strong

localization of eigenstates on the edge of the chain (opposite edges for different subbands).
Fig. 4.20(b) demonstrates for δ/|t| = 5 the spatial distribution of modes of the lowest
band, which confirms the localization on the right edge.

The GBZs of the full Hamiltonian 4.28 and the effective Hamiltonian 4.29 are shown
in Fig. 4.20(c) by yellow and red lines, respectively. The GBZ of the full Hamiltonian 4.28
consists of two closed lines, one inside the BZ (unit circle, blue) and one outside, corre-
sponding to two subbands localized on the opposite edges. The GBZ of the reduced
Hamiltonian 4.29 is in perfect agreement with the inner part of GBZ of the full Hamil-
tonian 4.28 , confirming their equivalence in this limit. In contrast to a pure HN model,
red and yellow circles are not centered at z = 0 due to the presence of NNNs ( 4.29 ). As
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4.6.2 Non-Hermitian SSH tight-binding model

Figure 4.21: NHSE in an SSH chain. (a) BZ, GBZs of Hamiltonian 4.32 for two
values of β1; (b) PBC spectra of 4.32 , OBC spectra of 4.32 for two values of β1, each
showing two coinciding topological edge states; (c) normalized density of eigenstates of a
40-site chain depending on the real part of the energy Re[E] and site number n; (d) real
spectrum of Eq. 4.32 vs β1 displaying NHSE as well as a topological transition (bottom)
confirmed by the winding number ν (top); blue (red) color shows the right (left) edge
localization (similar to Eq. 2.3 ); parameters: t1 = 2, t2 = 1, γ = 1, δ = 5, β2 = 0.
Adopted from [277].

a result, the localization length is state-dependent (Fig. 4.20(b)).

Fig. 4.20(d) depicts the OBC spectra of Hamiltonians 4.28 (solid yellow line) and
4.29 (dashed red line) forming real-valued segments, and complex PBC spectrum of
Hamiltonian 4.29 (blue solid line). One can see that the effective Hamiltonian 4.29
perfectly approximates the OBC spectrum of the lower energy band of the full Hamilto-
nian 4.28 . The complex PBC spectrum can be used to compute a non-Hermitian spectral
winding number (Eq. 2.25 ):

wEb=−5 = −1. 4.30

Therefore, the NHSE is confirmed by all approaches: GBZ, pronounced difference between
PBC and OBC spectra, and spectral winding number.
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4.6.2 Non-Hermitian SSH tight-binding model

We continue by considering the SSH model with the same ingredients: linear detun-
ing δ, RDSOC (phases β1,2), and circular dichroism γ. The Hamiltonian is written as
(Fig. 4.19(b)):

H2 =
∑

n

δσx(a†
n,Aan,A + a†

n,Ban,B) + iγσz(a†
n,Aan,A + a†

n,Ban,B)+

(t1eiβ1σza†
n,Ban,A + t2e

−iβ2σza†
n,Ban+1,A + h.c.),

4.31

where t1 (t2) is an intra-(inter-)cell tunneling. By considering the amplitude control regime
again (|σx; −⟩ polarization subspace), one can transform the Hamiltonian 4.31 to an
effective Hamiltonian:

Heff
2 = Heff

2,onsite +Heff
2,NN +Heff

2,NNN ,

Heff
2,onsite =

∑
n

[
−δ + γ2 − (t21 sin2 β1 + t22 sin2 β2)

2δ

]
(a†

n,Aan,A + a†
n,Ban,B),

Heff
2,NN =

∑
n

t+1 a
†
n,Ban,A + t−1 a

†
n,Aan,B + t−2 a

†
n,Ban+1,A + t+2 a

†
n+1,Aan,B,

Heff
2,NNN =

∑
n

t1t2 sin β1 sin β2
2δ (a†

n+1,Aan,A + a†
n+1,Ban,B + h.c.),

t±i = ti(cosβi ± γ

δ
sin βi).

4.32

Analogously to the Hamiltonian 4.29 , the effective Hamiltonian 4.32 contains on-site,
NN, and NNN contributions. Up to the NNN terms, the Hamiltonian 4.32 is equivalent
to the non-Hermitian SSH model described in Sec. 2.4.2 (Fig. 4.19(d)). Both intra- and
inter-cell tunnelings become non-reciprocal, controlled by different RDSOC phases β1,2.
We investigate the case when β2 = 0 for simplicity. Consequently, the NNN terms vanish
(see Eq. 4.32 ), and the chiral symmetry of the Hamiltonian 4.32 is restored. We stress
that the NHSE is present for other values of β2 as well. The Hamiltonian 4.32 then
can be transformed into the conventional SSH Hamiltonian by similarity transformation
HSSH = SHeff

2 S−1 with S = diag{1, rs, r, r2s, ..., rN−1, rNs}, r =
√
t−1 t

−
2 /t

+
1 t

+
2 , s =√

t+1 /t
−
1 , where 2N defines the total number of lattice sites in the chain. The topology of

the chain is then described by the Hermitian winding ν (Sec. 2.3.1) such that ν = 1 for
|t+2 t

−
2 | > |t+1 t

−
1 |, and ν = 0 otherwise. The biorthogonal polarization (Eq. 2.32 ) shows

the same transition for the full Hamiltonian 4.31 .

In Fig. 4.21(a) we show the GBZ for two different values of β1: β1 > π/2 (solid
yellow line) and β1 < π/2 (dashed red line). They indicate the NHSE with accumulation
on different edges, which is also confirmed by Fig. 4.21(d), demonstrating finite chain
spectrum for different values of β1 with a blue (red) color corresponding to the right (left)
edge localization. The OBC spectra for the aforementioned values of β1 are depicted in
Fig. 4.21(b) (solid yellow and dashed red lines) together with PBC spectra (solid blue
and purple lines). The individual dots between two bands of each OBC spectrum are the
topological states. These topological states are localized at the edge of the chain (as the
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4.6.3 NHSE in continuous realistic photonic model

Figure 4.22: NHSE in a photonic potential well. Normalized eigenstate density for
the lower energy states of the potential well depending on the real part of the energy Re[E]
and real space coordinate x: (a) Hermitian and (b) non-Hermitian cases; parameters:
d = 20 µm, U0 = 10 meV, m = 1.6 · 10−5me, me is the electron mass, α = 1 meV ·
µm, δ = 5 meV, (a) γ = 0 meV and (b) γ = 0.25 meV. Adopted from [277].

bulk states), but they are located inside the real gap of the OBC spectrum. They appear
in Fig. 4.21(c), where we plot the normalized density of eigenstates versus the lattice site
number. In the Hermitian limit (γ → 0), the origin of the topological transition responsible
for the formation of the edge states is the modulation of the tunneling amplitudes by the
combination of RDSOC β with linear detuning δ, as described in Sec. 4.2. Here, this
transition is modified by non-Hermiticity and described by the invariant ν plotted in the
top panel of Fig. 4.21(d). This result is a realization of the anomalous bulk-boundary
correspondence (Sec. 2.4.2).

4.6.3 NHSE in continuous realistic photonic model

Now, we show that the NHSE can be observed in a photonic potential well, without
the use of a lattice. To do so, we consider a photonic microcavity filled with nematic LC
and a potential, which can be a barrier or a well structured on a microcavity mirror, or
even a strong enough defect. The presence of a chiral absorber or spin-dependent gain
in a nonlinear system can create a polarization-dependent lifetime γ. To demonstrate
the effect, we solve numerically the 1D spinor stationary Schrödinger equation with the
Hamiltonian:

Hph(x) = − ℏ2

2m
∂2

∂x2σ0 − 2iα ∂

∂x
σz + δσx − iγ0σ0 + iγσz + U(x)σ0, 4.33

where x is the real space coordinate, m is the microcavity photon mass, γ0 is the aver-
age loss, γ is the spin-dependent loss, α is the RDSOC magnitude. U(x) = {0, if |x| <
d; U0, otherwise} is the real space potential. We plot the normalized eigenstate density for
the Hermitian case γ = 0 meV in Fig. 4.22(a) and for the non-Hermitian case γ = 0.25 meV
in Fig. 4.22(b). The parameters used correspond to a realistic LC microcavity. In partic-
ular, the broadening for every state is taken as γ0 = 2 meV in full-width half-maximum
which exceeds the quantization energy, so the individual states are indistinguishable in
Fig. 4.22. Nevertheless, it does not prevent a clear observation of NHSE: one can see that
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the non-Hermiticity drives the density of all lowest eigenstates to the right edge of the
well. The inversion of either the RDSOC direction (α → −α) or of the spin-dependent loss
(γ → −γ) changes the NHSE so that the eigenstates localize at another edge. The contin-
uous change of δ also provides the tunability of the effect, with possibility to switch it on
and off. A similar NHSE realization based on the spin-orbit coupling was also suggested
for cold atoms [278, 279, 280].

This effect can be explained by considering again one polarization band (V) in the
limit of large linear detuning δ. Then, the Hamiltonian 4.33 is rewritten as:

Heff
ph (x) = E0 + U(x)+ξ2 (−i∂x − iτ)2 ,

E0 = −δ + γ2

2δ + (αγ
ξδ

)2, ξ2 = ℏ2

2m − 2α2

δ
, τ = αγ

ξ2δ
.

4.34

where E0 is a constant energy shift, ξ2 is a kinetic energy scaling, iτ is an imaginary
gauge potential [281]. By considering a wavefunction ansatz ψ(x) = φ(x)e−τx, we arrive
at a simple eigenvalue problem of a single spinless particle in a potential well with a
wavefunction φ(x):

Heff
ph (x)φ(x) =

(
E0 + U(x) − ξ2∂2

x

)
φ(x). 4.35

As one can see, τ−1 is a localization length of a wavefunction ψ(x) and its finite value is
a manifestation of NHSE. It is achieved only when α, γ, δ all have non-zero values, which
confirms the necessity of each component in our model. The sign of τ (the localization
side) is controlled by the combination of signs of α and γ.

The appearance of the NHSE can be also analyzed from the point of view of Hamilto-
nian symmetries. One can rewrite the Hamiltonian 4.33 without a potential (U(x) = 0)
in a reciprocal space as:

Hph(k) = ℏ2k2

2m σ0 − 2αkσz + δσx − iγ0σ0 + iγσz, 4.36

where k stands for a wavevector along x. In the absence of RDSOC (α = 0), three
symmetries simultaneously prevent the NHSE [119]: conjugated time-reversal symmetry
(TRS†) C+, pseudo-Hermiticity (PH) η and parity (inversion, P) P, which are defined as:

C+H
T (k)C−1

+ = H(−k), 4.37

ηH†(k)η−1 = H(k), 4.38

PH(k)P−1 = H(−k). 4.39

The symmetry operators in the case of Hamiltonian 4.36 are C+ = P = σ0 and η = σx.
When RDSOC is present (α ̸= 0), all three aforementioned symmetries are simultaneously
broken, giving rise to the NHSE. The single symmetry conserved for both cases is the
time-reversal symmetry (TRS) T+, defined as:

T+H
∗(k)T −1

+ = H(−k), 4.40
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Figure 4.23: NHSE in a photonic potential well with additional ingredients. The
NHSE obtained for the Hamiltonian 4.41 (a) without supplementary terms, (b,c) with
linear polarization lifetime imbalance Γ, and (d,e,f) with effective Zeeman splitting ∆; all
parameters that are not directly indicated in this Figure are taken from Fig. 4.22. Adopted
from [277].

with the symmetry operator T+ = σx. TRS does not forbid the NHSE, and its conservation
is natural since the RDSOC maintains it (Sec. 3.2).

We can also extend our analysis and investigate the effect introduced by two additional
terms, typical for optical microcavities. These terms are (1) the effective Zeeman splitting
∆σz and (2) linear polarization lifetime imbalance iΓσx, or linear dichroism:

Hext
ph (x) = − ℏ2

2m
∂2

∂x2σ0 − 2iα ∂

∂x
σz + (δ + iΓ)σx + (∆ + iγ)σz + U(x)σ0. 4.41

The first term ∆σz represents the effective out-of-plane magnetic field acting on photon
polarization. This term is often desirable in photonic microcavities in order to produce
topologically nontrivial photonic states [73, 72]. The interplay of effective Zeeman split-
ting with RDSOC has already been studied in the Hermitian case in a perovskite micro-
cavity [231] and 87Rb atomic condensate [210]. The results show a transition between
RDSOC- and Zeeman-dominated regimes. A similar transition should also be present in
the non-Hermitian case, and it, in general, can suppress the NHSE. However, the char-
acteristic energy of RDSOC in LC microcavity αQy is significantly bigger than a typical
Zeeman splitting, therefore, making the RDSOC contribution dominant in most cases.
In Fig. 4.23(a,d,e,f) we present the density of eigenstates of Hamiltonian 4.41 for sev-
eral values of the Zeeman term ∆. One can see, as Zeeman splitting amplitude grows,
the delocalization of skin states occurs (Fig. 4.23(e,f)). However, the value realistic for a
photonic system produces no visible effect on the localization (Fig. 4.23(d)).
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Figure 4.24: NHSE in an electronic nanowire. (a) The electronic system proposed
to realize the non-Hermitian skin effect: a quantum wire composed of semiconductor (SC)
and ferromagnetic (FM) layers; density of (b) |ψ+|2 and (c) |ψ−|2 spin components (in σy

basis) of the lowest energy eigenstate with ny = 2; colorbars are in a.u. Adopted from [277].

The second term of interest, linear polarization lifetime imbalance iΓσx, is natural for
LC microcavity, and it has already been utilized to observe exceptional points creation
and annihilation [242]. The magnitude of Γ experimentally measured in Ref. [242] is 0.25
meV. In Fig. 4.23(a,b,c) we present the density of eigenstates of Hamiltonian 4.41 for
three different values of Γ. As the figure clearly illustrates, the NHSE always persists,
even for a huge value of Γ.

Even in the presence of these additional terms, the role of RDSOC for the NHSE is
still central. Without RDSOC (α = 0), in both cases (∆σz or iΓσx term), TRS+ and P
symmetries hold (C+ = P = σ0), preventing the appearance of NHSE.

4.6.4 NHSE in continuous realistic electronic model

We propose a 1D nanowire made of a semiconductor material with a deposited ferro-
magnetic material on top (scheme in Fig. 4.24(a)), as a possible system for NHSE realiza-
tion. This kind of system has been already extensively studied experimentally [282, 283].
Additionally, a theoretical investigation of exceptional points in a planar configuration
already exists [284].

We now show why this system is equivalent to our proposal (Eq. 4.33 ). We consider a
semiconductor nanowire with massive electrons and Rashba SOC : HR = αR(kyσx −kxσy).
The choice of considering either Rashba or Dresselhaus SOC is not crucial, and it depends
on the material used and its growth configuration. The key point is that we have only
one type of SOC out of two. Such a regime with one contribution dominant over another
is easily achievable for InAs or GaAs [285, 207], for example. If the confinement along
y direction is strong, and the corresponding energy quantization is much bigger than the
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Rashba SOC along x, different spin projections of σx are only slightly mixed by σy. In this
case, the effect of the ky Rashba component is equivalent to the one of the linear splitting
δ, while the kx Rashba component becomes equivalent to the RDSOC with αR = 2α. The
amplitude of the effective linear splitting δ can be estimated as δ = αR⟨|ky|⟩ ≈ αRπny/dy,
where ny is the quantization number along y.

The presence of the ferromagnetic material magnetized along the axis forming 45◦

with x in the vicinity of the semiconductor creates an exchange splitting 2∆ (Zeeman
splitting) and spin lifetime difference γ, both proportional to the σy Pauli matrix in the
Hamiltonian [282, 283, 286, 287]. Therefore, the Hamiltonian of the system reads as:

Hel(x, y) = − ℏ2

2m∇2σ0 + iαR
∂

∂y
σx − iαR

∂

∂x
σy − iγ0σ0 + (∆ + iγ)σy + U(x, y)σ0, 4.42

where m is an effective electron mass, γ0 is an average electron loss, and U(x, y) is an
electronic potential created by the nanowire. Taking into account the discussion above,
this Hamiltonian is equivalent to the Hamiltonian 4.41 up to a (pseudo)spin basis trans-
formation.

Finally, we calculate the eigenstate density distribution of Hamiltonian 4.42 in real
space and show the results in Fig. 4.24(b,c). The quantum wire has width dy = 5 nm,
length dx = 100 nm, and potential walls height U0 = 100 meV. The effective mass
m = 0.1me and Rashba amplitude αR = 0.5 eV·Å are typical for this type of combined
semiconductor-ferromagnetic structure. The values of the exchange splitting 2∆ = 60
meV and spin-dependent electron lifetime γ = 10 meV are also taken according to the
experimental data [286, 287, 288]. We consider the quantization number along y equal
to ny = 2 since it produces stronger linear splitting δ than ny = 1, and hence stronger
localization. The skin state is clearly visible in Fig. 4.24(b,c).

To conclude, we want to mention that the coupling between a ferromagnet and another
material, not a semiconductor, can be also foreseen as a possible realization of the NHSE.
For example, the Rashba ferromagnet, a ferromagnetic layer sandwiched between different
materials creating an asymmetric confining potential and, consequently, Rashba SOC [289,
290, 291], or a coupled ferromagnet-graphene structure [292] are two systems to cite.
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In this Chapter, we study a system combining the RDSOC and the strong light-matter
coupling regime [237]. The latter is realized through the coupling between microcavity
photonic modes and excitons in the organic polymer called methyl-substituted ladder-type
poly(p-phenylene), or shortly MeLPPP. In a thin microcavity, this material demonstrates
a huge Rabi splitting in order of 115-145 meV [293, 294]. This allows us to achieve the
room-temperature BEC of exciton-polaritons in the RDSOC regime by incorporating this
polymer in a LC microcavity. We start by presenting the microcavity scheme and dis-
cussing the properties of MeLPPP in Sec. 5.1. We then turn to the confirmation of the
strong coupling regime in Sec. 5.2. Next, we discuss the condensation of exciton-polaritons
in this sample, and, specifically, the condensation polarization control in Sec. 5.3.1. Fi-
nally, we demonstrate a stripe phase in BEC of exciton-polaritons in Sec. 5.3.2, which is
considered to be a hallmark of supersolidity. The results of this section were obtained
in collaboration with the University of Warsaw, IBM Research–Zurich, Warsaw Military
University of Technology, and University of Southampton.

5.1 Microcavity scheme and MeLPPP properties

A scheme of the fabricated sample is shown in Fig. 5.1. The microcavity thickness is
approximately 2 µm, therefore, it hosts plenty of longitudinal modes which we number
with integers. The LC ordinary and extraordinary refractive indices are no ≈ 1.57 and
ne ≈ 1.98, respectively. The LC director rotates in the yz plane. Modes polarized along y
under normal incidence (H) are tunable by the LC rotation, while modes polarized along x
(V) are not affected by the voltage. Therefore, the RDSOC will appear along kx, contrary
to Eq. 3.7 , where it was along ky. Two 35 nm-thick layers of MeLPPP surround the LC
layer.

The absorption spectrum of MeLPPP layer deposited on a DBR shows several peaks
(Fig. 5.2(a)). The lowest energy peak corresponds to the excitonic resonance, while higher
energy peaks are vibronic resonances [293]. Vibrons play a crucial role in the condensa-
tion process in MeLPPP: the bottleneck excitons relax towards the bottom of the lower
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Figure 5.1: Hybrid microcavity combining the organic polymer MeLPPP and a
nematic LC. Thick LC layer sandwiched between two organic polymer layers, two DBRs,
and two ITO electrodes. Adopted from [237].

Figure 5.2: MeLPPP absorption and complex refractive index. (a) Experimentally
measured absorption of a single MeLPPP layer on the DBR (solid blue line); the fit of the
main absorption peak by a Gaussian function representing the inhomogeneous broadening
of excitons (dashed red line); (b) real (Re(n), blue line) and imaginary (Im(n), red line)
parts of the MeLPPP complex refractive index obtained by the ellipsometry. Adopted
from [237].
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Figure 5.3: LC microcavity PL spectra in the strong coupling regime. Experi-
mentally measured PL spectrum for different values of voltage, showing tunability of the
H-polarized modes and (c) reach of the RDSOC regime; red, green and yellow text labels
the longitudinal number and polarization of the mode(s); black solid lines show the fitting
(c) by the Hamiltonian 3.7 and (d,e) by a parabola. Adopted from [237].

polariton branch through the stimulated scattering with vibrons. This scattering is par-
ticularly efficient at high temperatures, therefore, allowing for a room-temperature BEC.
At the condensation threshold, typical features appear: BEC peak linewidth narrowing,
nonlinear signal increase and the blueshift. At high pumping powers, the blueshift can
become as large as 10 meV. This value is 2 orders of magnitude bigger that the typical
blueshift in inorganic semiconductors. Though the size of Frenkel excitons is typically 1-2
orders smaller than the size of Wannier-Mott excitons, such a high blueshift for MeLPPP
is achieved due to the 4-order increase in the condensation threshold and the 2-order
increase in the exciton binding energy in comparison with inorganic semiconductors [293].

For our further analysis we will use several parameters of MeLPPP. The inhomoge-
neous broadening of MeLPPP excitonic resonance will play an important role for the next
discussion, therefore, we performed its fit in the absorption spectrum Fig. 5.2(a) with a
Gaussian function exp [−(E − EX)2/2σ2], where EX = 2.715 eV is the central energy of
the peak and σ = 35 meV is the standard deviation of the exciton energy distribution. We
will also utilize the complex refractive index of MeLPPP in order to perform the Berreman
method simulation of the whole photonic structure presented in Fig. 5.2. The complex
refractive index real and imaginary parts of MeLPPP are shown in Fig. 5.2(b). The
background refractive index of MeLPPP extracted from Re(n) dependence is nBG = 1.7.
Finally, the bottleneck exciton lifetime at the condensation threshold is approximately
8 ps [293].

5.2 Strong coupling

5.2.1 Experimental results

Fig. 5.3 demonstrates the experimentally measured photoluminescence in H polariza-
tion. At 3V (Fig. 5.3(a)), the resonance between two longitudinal modes of opposite parity
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Figure 5.4: Change of LPB mass depending on voltage. The LPB mass mLP B of
the 15H mode as a function of the mode detuning ELP B − EX : experiment (blue dots)
and theory (red dots) obtained by the model 5.1 ; the yellow solid line shows the change
of photonic mass of the 15H mode obtained by the Berreman simulations (Sec. 5.2.2).
Adopted from [237].

and polarization is observed, giving rise to the RDSOC spectrum, well described by the
Hamiltonian 3.7 with the isotropic polarization-dependent mass difference µx = µy = µ.
At higher voltages, H-polarized modes move towards higher energies, therefore approach-
ing the excitonic resonance at EX = 2.715 eV. While not in the RDSOC regime, H- and
V-polarized modes are almost uncoupled, and H-polarized mode can be easily fitted by a
parabola.

The typical way to prove the strong coupling in a microcavity system would be to
observe an anticrossing either at high kx, where a photonic mode crosses an excitonic
resonance (Fig. 1.5(a)), or at kx = 0 with the linear detuning δ changing with voltage
(Fig. 1.5(b)). Both approaches are not applicable here since: (1) the excitonic resonance
is significantly inhomogeneously broadened (Fig. 5.2(a)), and therefore the PL of the LPB
vanishes before a bending of the mode appears; (2) the UPB is not visible due to the
high MeLPPP absorption in this energy range (Fig. 5.2(a)). Though the strong coupling
is not present for a photonic mode only slightly detuned with respect to the exciton, it
shows up when the mode is significantly detuned, which is confirmed by the LPB effective
mass change. This LPB mass change is clearly visible in Fig. 5.3(b,c) by looking at the
parabolic fitting of the H-polarized mode (black solid lines). The curvature difference for
these two lines is visible with a naked eye. We extract the LPB mass of one of the modes
marked as 15H (the notation is explained later) for many voltages, and plot it in Fig. 5.4
(blue points) versus the LPB detuning ELP B(kx = 0) − EX . The total mass change is
approximately 70% of the initial mass.

As was captured by the Eq. 1.1 , the mass change for a microcavity photon appears
even without the strong coupling regime if the refractive index nc of the mode changes,
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which is exactly the case for a tunable H-polarized mode in our LC microcavity sample
(see also Eq. 3.6 ). However, in the next two sections we prove that such a large mass
change observed in the experiment can be only due to the strong coupling regime, and
can not be explained solely by a photonic effect.

5.2.2 Photonic mass extraction

In order to prove this statement, we start by extracting the photonic mass of the mode
of interest for all values of voltage. We first reproduce the whole band structure of the
microcavity with the use of the Berreman method [295] (see the detailed description of
the method in the context of nematic LC microcavities in Ref. [296]). We simulate the
structure shown in Fig. 5.1 utilizing the MeLPPP refractive index depicted in Fig. 5.2(b)
and tune the length of the LC layer and the angle of LC molecules in order to obtain
a perfect correspondence between the measurement and the simulation at each voltage.
The comparison for two values of voltage is shown in Fig. 5.5. In the experiment, the PL
was measured in H polarization, which is why the H mode is well-visible for any voltage
applied to the microcavity, while the V mode appears only when it couples to the H mode
strongly enough (Fig. 5.5(a,c)). The numerical simulation (Fig. 5.5(b,d)) is represented
by the first Stokes parameter S1 of the system (linear polarization degree) in order to
easily distinguish between H and V modes, appearing as blue and red lines, respectively.
After achieving the correspondence between the experiment and numerical simulation, we
calculate once again the dispersion for every voltage and for the same structure, except
that now the MeLPPP refractive index is constant and equal to the background one
(n = nBG), thus eliminating the exciton from the calculation and making the system
purely photonic. This allows us to extract the mass and the position of the photonic mode
and plot them in Fig. 5.5(e). One can see that the total change of the photonic mass
is approximately 19%. The photonic mass is also plotted together with the LPB mass
in Fig. 5.4 for comparison. This result proves that the much bigger mode effective mass
change observed in Fig. 5.3 can be explained solely by the exciton-photon coupling. We
can also utilize the Berreman method simulation results to visualize the field distribution
along the microcavity axis (Fig. 5.6). This allows us to verify that the photonic mode
overlap with the MeLPPP layers is good enough to achieve the strong coupling regime
and also to define the longitudinal numbers of modes for both polarizations by counting
the number of field antinodes. These longitudinal numbers are utilized to label the modes
in Fig. 5.3 and throughout this Chapter.

5.2.3 Tavis-Cummings model with inhomogeneous broadening

Now, to prove the strong coupling not only qualitatively, which was done in the pre-
vious Sec. 5.2.2, but also quantitatively, we need to take into account the inhomogeneous
broadening of the excitonic resonance. The model which we construct should address two
main features of the experimental data: (1) the LPB mass dependence on the LPB detun-
ing shown in Fig. 5.4, and (2) the absence of the anticrossing for the LPB at the energies
close to the exciton.

111



Chapter 5. RDSOC in strongly-coupled systems

Figure 5.5: Extraction of the photonic mass of the mode 15H. Experimentally
measured PL spectrum in H polarization for (a) 4 V and (c) 20 V; linear polarization
degree S1 maps obtained by the Berreman method for the microcavity shown in Fig. 5.1 at
(b) 4 V and (d) 20 V that fit well the experimental PL spectra; photonic mass vs photonic
mode detuning extracted from the Berreman method calculations where MeLPPP layers
were substituted by the constant refractive index layers. Adopted from [237].
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Figure 5.6: Photonic mode field distribution. The electric field distribution along
the microcavity axis z (k⊥ = 0) for the 15H photonic mode at (a) 4 V and (b) 20 V;
the number of field antinodes between the DBRs defines a longitudinal mode number; two
MeLPPP layers are colored in yellow.

We apply the Tavis-Cummings model which describes the system consisting of a single
cavity mode coupled to N two-level systems, excitons in our case. Usually, the model
utilizes identical excitons, while in our case inhomogeneous broadening of the excitonic
peak is taken into account. The model reads as:

H = ℏ(ωph − iγph)a†a+
N∑

j=1
ℏ(ωex,j − iγex)σ+

j σ
−
j + ℏg

(
aσ+

j + a†σ−
j

)
, 5.1

where ℏωph = ℏωph,0 + ℏ2k2
x/2mph is the dispersion of the photonic cavity mode 15H

defined by ℏωph,0 energy at kx = 0 and the cavity photon mass mph, γph is the cavity
mode decay, ℏωex,j is the energy of j-th exciton taken from inhomogeneously broadened
Gaussian distribution (Fig. 5.2(a)), γex is the non-radiative decay of a single exciton, ℏg is
the exciton-photon coupling strength, a (a†) is the cavity photon annihilation (creation)
operator, and σ+

j = |ej⟩ ⟨gj | (σ−
j = |gj⟩ ⟨ej |) is the j-th two-level system raising (lowering)

operator. For the big exciton-photon detunings, a photon "sees" the broadened excitonic
peak as a single "strong" collective exciton located near EX , and, consequently, the Rabi
splitting can be estimated as Ω = ℏg

√
N . When the photonic mode approaches the

excitonic resonance, a photon starts to "see" the internal structure of the broadened peak:
individual excitons located closer to the photonic mode contribute significantly to the
excitonic fraction (excitonic Hopfield coefficient Eq. 1.18 ) of the LPB, but induce only
a weak Rabi splitting proportional to their individual coupling strength ℏg. That is why
when the LPB gets closer to the excitonic mode, the photonic Hopfield coefficient of the
LPB and, consequently, the PL signal from the LPB disappears faster than the mode
bends (anticrosses).

We confirm this intuition by performing numerical simulations with the model Eq. 5.1 .
Since the characteristic pump spot width (wpump ≈ 20 µm) in the experiment (Fig. 5.3) is
much larger than the estimated transverse cavity photon coherence length (lcoh ≈ 1.5 µm),
we consider Nens = w2

pump/l
2
coh different realizations of the Hamiltonian 5.1 : each realiza-

tion differs by the excitonic disorder (a corresponding ensemble of ℏωex,j) and a coupled
photon. Using the photonic dispersion ℏωph of the 15H mode obtained by the Berreman
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Figure 5.7: Numerically calculated PL from the theoretical model. The PL density
produced with the use of the Tavis-Cummings model 5.1 by summing up the contributions
from different exciton-photon ensembles and different eigenstates taking into account the
luminosity (the photonic fraction) of each eigenstate: (a) 6 V and (b) 20 V.

method for every voltage (Fig. 5.5(e)), we diagonalize each realization of the Hamilto-
nian 5.1 and for each realization we extract the photonic Hopfield coefficients of all
eigenmodes. Next, we sum up the PL signal originating from these eigenmodes for all
wavevectors and all realizations taking into account the eigenmode photonic fractions.
After applying this procedure, we obtain a total PL signal similar to the experimental
one (Fig. 5.7). The LPB naturally appears under this procedure since it has the most
pronounced photonic contribution. When the LPB approaches the excitonic resonance, it
gradually vanishes, as expected.

The comparison with the model of a single "collective" exciton (two-oscillator model)
with the exciton-photon coupling strength Ω is shown in Fig. 5.8 as a PL spectrum de-
pendence on the exciton-photon detuning Eph − EX . At high exciton-photon detunings,
the two models converge, but while approaching the excitonic peak, the PL signal pro-
vided by the model 5.1 decays rapidly (Fig. 5.8(a)). This is exactly what happens in the
experiment (Fig. 5.3), with the addition that the UPB is not visible at all. However, if
we plot the same PL map in the logarithmic scale (Fig. 5.8(b)), we see that an anticross-
ing is actually present, with a slightly higher splitting between the modes for the model
including broadening (Eq. 5.1 ).

We then extract the mass and the energy of the numerically obtained LPB, exactly like
we do with the experimentally measured PL intensity maps, and plot the final results in
Fig. 5.4 (red points). As one can see both LPB detuning and mass obtained by the numer-
ical simulations correspond well to the experimental data when we choose Rabi splitting
of Ω = 93 meV. The number of excitons used for every realization of Hamiltonian 5.1
is NX = 200. In reality, the number of excitons per each coherent spot l2coh ≈ 2.25µm2

should be much bigger, but increasing this number very quickly makes the Hamiltonian
diagonalization computationally heavy. That is why we first made sure that the simula-
tion results slowly converge when we increase NX up to 2000, then we performed all the
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Figure 5.8: Comparison between the model 5.1 and the two-oscillator model.
PL spectrum as a function of the exciton-photon detuning Eph − Ex in the (a) linear
and (b) logarithmic scales; dashed white and black lines represent the modes of the two-
oscillator model with the Rabi splitting Ω = 93 meV; red dotted lines are the excitonic
peak and the photonic mode energies; the PL signal (a) from the modes of the model 5.1
disappears before the modes start to bend (anticross); however, in the logarithmic scale (b)
the anticrossing is more visible.

simulations for NX = 200 and included a typical difference between the two as a method
error shown by red error bars in Fig. 5.4. We also extracted the LPB excitonic fraction of
≈ 5.5% at the RDSOC regime (Fig. 5.3(a)). The decay values used in the simulations are
ℏγph = 3 meV (obtained from the experimental reflectivity measurements, not shown here)
and ℏγex = 0.1 meV (which corresponds to the 8-ps bottleneck exciton decay time men-
tioned in Sec. 5.1). We can make a conclusion that the model 5.1 captures the dispersion
behavior of the system with a high level of accuracy.

5.3 Condensation

5.3.1 Condensate polarization control

We now turn to the results obtained under the strong optical pumping, demonstrating
the room-temperature exciton-polariton condensation. In the experiment, a pulsed non-
resonant excitation was used, and the observations in real and reciprocal space are the
result of averaging over 500-2500 pulses.

The verification of the condensation by measuring the dependencies of the emission
intensity, linewidth and energy can be found in Ref. [237]. Here, we focus only on the
experimental results that require a theoretical reproduction and explanation. Our cavity
provides an independent control over the energy of the polarized polaritonic modes: for V
and H through changing the position on the sample (cavity wedge) and for H with respect
to V (linear detuning δ) through the applied voltage. We utilize these features to select
the polariton condensate polarization.

When the non-resonant pump is circularly polarized, the mode at which the conden-
sation occurs is the one closest to the maximum polariton gain located approximately at
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Figure 5.9: Condensation polarization tuning. (a-d) Experimental and (e-h) theoret-
ical PL intensity demonstrating the polarization tuning; the polarization of the condensate
is defined by the interplay of pump polarization and maximum polariton gain near 2.48 eV;
linear H or V polarization of the pump is inherited by the condensate (b,d,f,h), while cir-
cular polarization of the pump is lost and the condensate shows up in the state with higher
gain (a,c,e,g). Adopted from [237].
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2.48 eV. By tuning voltage, the condensation switches from V-polarized to H-polarized
mode (Fig. 5.9(a,c)). Under linearly-polarized pumping, the excitonic reservoir retains a
part of pump polarization [293] due to the selective excitation of chromophores and slow
depolarization through energy transfer. This favors the condensation in the polariton state
with the same linear polarization as the pump (Fig. 5.9(b,d)).

In order to reproduce this result, we write the GPE equation analogous to Eq. 1.25 ,
but with slight modifications [297]:

iℏ
∂ψH,V

∂t
= (1 − iΛ)

[(
− ℏ2

2mH,V
∇2 ± δ − E0

)
ψH,V + 2iα∂ψV,H

∂x

]
+

gH,V (ψH , ψV ) +
[
UH,V (nR

H,V , r, t) + iRH,V (|ψH,V |2, nR
H,V , r, t) + E0

]
ψH,V + ξH,V .

5.2

This equation is written in HV basis in order to capture the linearly-polarized nature
of excitonic reservoir and the transfer of this polarization towards the condensate. An
additional energy-dependent relaxation towards the bottom of the dispersion is introduced
by the term proportional to Λ [298], where E0 (Eq. 3.16 ) inside the brackets ensures that
the relaxation is zero at the bottom of the dispersion. This modification of the model
allows to obtain a linearized spectrum of condensate excitations (bogolons) [299], which is
crucial for superfluidity studies. The polarization-dependent LPB effective masses mH,V

are related to the µ (Eq. 3.7 ) as m−1
H,V = m−1 ±2µ/ℏ2. The interaction term accounts for

the repulsive interaction with the strength g0 between polaritons of the same spin (circular
polarization), while the cross-spin interaction is negligible. The transformation to the
linear basis makes the expressions for the interaction terms more bulky than in Eq. 1.25 :
gH(ψH , ψV ) = g0√

2
(
ψH |ψH |2 + 2ψH |ψV |2 + ψ∗

Hψ
2
V

)
and gV (ψH , ψV ) = gH(ψV , ψH). The

potential is created by the excitonic reservoir, and therefore it inherits the Gaussian pump
profile and the reservoir lifetime: UH,V (nR

H,V , r, t) = U0(nR
H,V ) exp

[
−r2/2σ2 − γext

]
, where

σ is the pump profile width, and nR
H,V is the excitonic reservoir density for H and V. The

gain is due to the bottleneck exciton stimulated scattering towards the condensate, and
therefore it has a saturation and also inherits the reservoir lifetime:

RH,V (|ψH,V |2, nR
H,V , r, t) = R0

H,V (nR
H,V ) exp

[
−r2/2σ2 −N tot

H,V /Nsat − γext
]
, 5.3

where N tot
H,V =

∫
|ψH,V |2dr is the total condensate number of particles for H and V,

and Nsat is the saturation number of particles. Contrary to the locally-saturated gain
in Eq. 1.24 , this term is an integrally-saturated gain. Finally, ξH,V is the noise term
describing the spontaneous scattering from the excitonic reservoir towards the H and V

condensate components.

To reproduce the experimental results under non-resonant pumping with circular po-
larization (Fig. 5.9(a,c)) several things are taken into account in the numerical simulations.
First, it is the relaxation towards lower energy states (non-zero positive Λ term). Second,
the pump laser excites equal amount of H and V chromophores (nR

H = nR
V ). And fi-

nally, the proximity to the maximum polariton gain creates a disbalance for the gain from
the two reservoirs: R0

H(nR
H) ̸= R0

V (nR
V ). The combination of these factors results in the
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emission from the lower energy band as shown in Fig. 5.9(e,g).
In the case of H-(V-)polarized non-resonant pumping (Fig. 5.9(b,d)), one of the reser-

voirs can be considered empty: nR
V = 0 (nR

H = 0). This produces the gain R0
H(nR

H)
(R0

V (nR
V )) for the single polarization, coinciding with the pump polarization, and conse-

quently triggers the condensation with well-defined H (V) polarization shown in Fig. 5.9(f,h).

5.3.2 Polariton stripes

Previous results were obtained for the case of high linear detuning δ, and we were
looking only on the spectrum and global condensation polarization. Now, we are inter-
ested in spatial structure of the condensate density and polarization, and especially in
the differences that show up in the RDSOC regime. We start with the discussion of the
experimental results. Fig. 5.10(a) shows the PL spectrum under non-resonant circular
polarization above the condensation threshold at 0 V, when linear splitting δ is big (as
in Fig. 5.9). The real-space emission is shown in Fig. 5.10(d). It is affected by disorder,
showing bright spots on a homogeneous Gaussian background of 25 µm-width, comparable
with the pump spot size. The emission is fully linearly polarized (Fig. 5.10(g)), with no
circular polarization (Fig. 5.10(j)). The Fourier transform along x of the real space density
(blue line in Fig. 5.10(m)) demonstrates the absence of any spatial periodicity.

By changing voltage on the same sample point, we approach the RDSOC regime
(Fig. 5.10(b)). The dispersion is well described by the effective Hamiltonian 3.7 with
m = 1.37 · 10−5me, δ = −1.3 meV, α = 2.7 meV · µm and µ = −0.22 meV · µm2. The
bands show two minima at k± ≈ 1 µm−1 (see Eq. 3.13 ). Big part of the signal comes
from the negative-mass state of the lower band at kx = 0. This state demonstrates a high
population since the negative-mass polaritons are attracted by the reservoir potential and
they stay longer in the high gain region, while the positive-mass ones are repelled, and
quit quickly the gain region. This is a typical behavior for exciton-polaritons [300, 301]
and it can be considered as an additional proof of the strong coupling regime. The most
interesting feature is observed in the real-space emission density (Fig. 5.10(e)). The con-
densate demonstrates a fragmentation due to the disorder and a periodic pattern along x
axis, which is confirmed by the Fourier transform along this axis (red line in Fig. 5.10(m)).
Contrary to 0 V case, a peak at kx ≈ 3 µm−1 is observed.

This spatial periodicity, or crystallinity, which we call the density stripe phase, can
be considered as a hallmark of the supersolidity, supposing that the condensate is su-
perfluid. This peculiar quantum phase combines two seemingly contradictory properties,
the periodic ordering of a crystal and frictionless motion of a superfluid. The supersolid-
ity can be interpreted as BEC at two finite-wavevector modes. Each mode independently
demonstrates a spontaneous symmetry breaking by establishing a global mode-condensate
phase. The interference between two modes creates density oscillations in real space with
a spatial position defined by the relative phase of two modes. Combined with the super-
fluid properties of both mode-condensates, it gives rise to the supersolidity. This quantum
phase was predicted more than 50 years ago [302, 303]. All the years after, many efforts
have been done to observe it for a superfluid helium-4 [304, 305], but had no success so
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Figure 5.10: Stripe phase in a polariton condensate. PL measured at 0 V (first
column), at 7.6 V (second column) and calculated numerically by the GPE Eq. 5.2 (third
column); the first row (a-c) shows the kx-dependent total emission with the RDSOC disper-
sion in (b,c); the second row (d-f) shows the real space total emission with density stripes
absent in (d) and present in (e,f); the third (g-i) and fourth (j-l) rows show the real space
distribution of the HV linear S1 and circular S3 polarization degrees, respectively; (m)
Fourier transform along x of the experimental intensity from (d,e) with a marked stripes
diffraction peak. Adopted with modifications from [237].
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far [306]. BECs of atomic gases were then suggested as an alternative platform to catch
this elusive quantum phase [307, 308]. The initial idea was to utilize atoms with a large
magnetic dipole moment [309, 310, 311] or a field-induced electric dipole moment to re-
alize long-range interactions. Such atomic condensates with properly tuned dipole-dipole
and contact interactions placed in an appropriate non-uniform potential demonstrate a
finite-wavevector "roton" minimum in their excitation spectrum associated with the su-
persolidity. In real space, their density demonstrates stripes, that is, a periodical atomic
density modulation. However, the first two successful experiments that appeared simul-
taneously in 2017 were using different approaches. The first work utilized the long-range
atomic interactions mediated by two cavities [312], while the second is very close to our
system in study and it involves the RDSOC for atoms [313, 314] described in Sec. 3.1.
The atomic BEC stays so far the single platform where the supersolid properties were
observed.

While in this particular experiment that we demonstrate the physics of stripes estab-
lishment is very similar to the case of a spin-orbit coupled atomic condensate [313] (we
describe this physics below), there are still some important differences. Typical exper-
iments with atomic condensates utilize optical traps to control atoms. If any property
of a condensate should be measured, for example, its distribution function, a condensate
in most cases has to be released from the trap. Therefore, the process of measurement,
basically, requires the destruction of a condensate. This is not the case for condensates of
exciton-polaritons. The permanent leakage of photons through the cavity mirrors allows
one, in principle, to continuously observe the condensate dynamics, including the super-
fluidity in the vicinity of a defect, stripes build-up, formation of vortices, disorder effect,
etc. By demonstrating a stripe phase of exciton-polariron BEC, we, therefore, make a
step towards supersolidity in a new platform. However, we would like to underline that
this work is still far from the rigorous supersolidity demonstration, which requires a more
detailed study of superfluidity, single-shot dynamics, disorder effect, and so on.

The observation of a stripe phase can be explained by considering the simplest case
of BEC at absolute zero. In this case, the condensate wavefunction is fully defined by
two degenerate points at the bottom of the RDSOC dispersion. The eigenstates at these
two minima are elliptically-polarized with opposite circular polarization degree S3 and
same linear polarization degree S1 (see Fig. 3.3 and Eq. 3.12 ). This linear polarization
degree S1 is defined by Eq. 3.12 with a slight modification accounting for the presence
of polarization-dependent mass term µ:

S1 = −
δ + µk2

±√
4k2

±α
2 + (δ + µk2

±)2
. 5.4

In this case, the spinor wavefunction of the condensate can be written as:

|ψ⟩ = 1
2

(
cos θ/2
sin θ/2

)
eik−x + 1

2

(
cos(π − θ)/2
sin(π − θ)/2

)
eik+x, 5.5

where θ (π − θ) is the polar angle of the Stokes vector S of the first (second) valley state,
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whereas they share the same azimuthal angle equal to ϕ = 0 (H polarization) or ϕ = π (V
polarization), depending on the linear detuning sign: sign(δ). The corresponding density
reads:

⟨ψ|ψ⟩ = 1
2 (1 + cosQx(δ)x · sin θ) , 5.6

where Qx(δ) = k+ − k− (Eq. 3.14 ), and we changed the notation Qy → Qx since the
RDSOC is along kx now. This density exhibits the oscillations with spatial periodicity
defined by Qx and contrast defined by the absolute value of linear polarization degree
common for two degenerate states |S1| = | sin θ| (Eq. 5.4 ). This formula gives as a
theoretical estimation for the contrast of 21%, while the experimental one extracted from
Fig. 5.10(m) equals to 2.2%. This pronounced difference can be explained by accounting
several effects. First of all, in the realistic case of non-zero-temperature BEC, the contrast
is lowered due to the presence of higher energy states. Secondly, the experiment represents
the averaging of many shots, therefore, any fluctuations of stripes position in real space
reduce the total contrast. In the worst case, when no spatial pinning is present in the
system, the averaging should completely destroy the stripes for an infinite number of
repetitions. However, in our case, the stripes are pinned by inhomogeneity of the Gaussian
pump profile: stripes tend to acquire the largest possible overlap with the gain from the
excitonic reservoir, and, therefore, stripes density maximum overlaps with the center of
the pump spot. Finally, the pattern can be also disturbed by the formation of vortices
via the Kibble-Zurek mechanism [315] and their dynamics, which we will see also in the
numerical simulations.

Another result which we observe in the experiment Fig. 5.10(h) is the persistent spin
helix, or polarization stripes. Their contrast is defined by the magnitude of the circular
polarization degree |S3| common for two degenerate states. The theoretical estimation
gives |S3| = 1 − |S1| = 79%, while the experimental contrast is around 40%. This value
sets a minimal mutual coherence degree between two condensate components located at
different valleys k±. If this coherence were absent, the averaging of many shots would
result in a complete washing out of the persistent spin helix. Since the observed contrast
is non-zero and significantly big, it demonstrates the presence of a phase locking mechanism
between the two components.

In order to verify the experimental results, we perform the GPE numerical simulations
with the model 5.2 . Fig. 5.10(c) demonstrates the dispersion of the condensate. The
reservoir-induced potential and relaxation are tuned in order to reproduce the population
of the valleys and the negative-mass state. Real space density (Fig. 5.10(f)) shows the
stripes obtained by averaging in time of a single "numerical shot". The pinning of the
stripes maximum to the central point of the pump spot was verified by performing a series
of simulations. In the linear HV polarization degree S1 (Fig. 5.10(i)), strong polarization
stripes are present. The much better clarity of the theoretical stripes with respect to the
experimental ones is explained by the absence of disorder in the simulations. Circular
polarization degree S3 (Fig. 5.10(l)) demonstrates a non-zero pattern due to the rich
dynamics of the system over a single realization, including the reservoir (gain) dynamics,
the formation of vortices, and stripes establishment. Therefore, the numerical simulations
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fully confirm our observations and interpretations.
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Conclusion and perspectives

In Ch. 4, we have demonstrated a variety of topological effects originating from the
Rashba-Dresselhaus spin-orbit coupling in optical microcavities in the weak coupling
regime. By writing a generic lattice Hamiltonian in Sec. 4.1, we demonstrated two dis-
tinct regimes of tunneling control via RDSOC, phase and amplitude control regimes. Both
regimes are of importance, since some lattice models require a tunneling amplitude en-
gineering, such as SSH chain or strained graphene, while others need a tunneling phase
adjustment, such as Harper-Hofstadter or Haldane model. The significance of this result
is what we tried to prove in further sections.

In Sec. 4.2, a zigzag SSH chain with RDSOC was studied in detail. We have shown
how the topology of this chain is modified with the use of the RDSOC in the amplitude
control regime. We confirmed this result by simulating a liquid crystal microcavity with
an SSH potential: an initially trivial SSH patterned on top of the microcavity mirror
becomes nontrivial when the RDSOC is turned on by applying voltage to the microcavity.
We studied in detail the effect of TE-TM SOC in this system and demonstrated the edge
state is robust for realistic magnitudes of the TE-TM SOC. We also investigated a peculiar
structure of the edge state in real space where it is showing a period doubling of pseudospin
and in reciprocal space where it demonstrates an interplay between three components with
different wavevectors. Clearly, the next step is to demonstrate this SSH topology control
in experiment.

In Sec. 4.3, we made a step back from a chain to an individual lattice site and their
pairs in order to suggest a continuously tunable tunneling amplitude control contrary to
the switching that we demonstrated in Sec. 4.2. In this study, we demonstrated a crucial
role played by the symmetry of the RDSOC term and the number of localized states for the
coupling between these localized states. We showed theoretically and experimentally, that
the tunneling between two symmetric localized states can be continuously controlled via
RDSOC by simply applying voltage to the microcavity. The total demonstrated tunneling
change is more than 100%. At the end, we showed theoretically that once we are able to
push the tunneling change even further down (suppress it), we can observe the topological
transition characterized by the inversion of bands with different symmetry of eigenstates.
One of the possible follow-ups of this work would be to produce a cavity with a different LC
material and observe this topological transition in experiment. The proposed method of
tunneling tunability is actually more generic then it seems at first glance and it can simply
go beyond microcavity realizations, since it has only two, relatively loose requirements: (1)
selection rules which allow some transitions and prohibit the others, and (2) tunability of
energy separation between the states of interest and intermidiate states. The continuous
in-situ tunability is highly desirable in photonics, therefore, this technique can certainly
be further used for band structure reconfigurability in more complicated lattices.

In Sec. 4.4, we switched our focus to a slightly different and more complicated sys-
tem of a cholesteric liquid crystal microcavity. We provided a detailed explanation of the
electrically-induced band structure tunability in this system by considering a combination
of cholesteric-induced periodic potential, dielectric effect and liquid crystal molecular fluc-
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tuations. After this, we explained first the disappearance and then reemergence of the
optical activity in this system from the symmetry considerations. We drew the analogy
between optical activity and RDSOC, and verified it on the experimental data. This anal-
ogy is quite remarkable, in our opinion, since it allows us to link the RDSOC-based effects
and optical activity-based effects, therefore, on one hand, enriching our understanding of
these phenomena by considering them from two different points of view, and, on the other
hand, allowing us two establish clear differences between them. This work demonstrates
the versatility of microcavities filled with liquid crystals as a platform. In perspective,
we can study both theoretically and experimentally other configurations provided by the
cholesteric phase [316]: hopfions, heliknotons, skyrmions and torons. These defects of the
cholesteric phase are both Abelian and non-Abelian, and they are topological themselves,
which makes it interesting to study their interplay with light in optical microcavities, both
in form of individual defects and defects arranged in chains or lattices by self-organization.

In Sec. 4.5, we briefly reviewed how the amplitude and phase control techniques can
be extended towards 2D lattice models. We suggested a feasible way to construct a time-
reversal-symmetry-conserving Harper-Hofstadter model by using the phase control regime.
In the assumption of spatially adjustable orientation of the RDSOC, we suggested a real-
ization of the XY Hamiltonian in the amplitude control regime. XY model is interesting
because of its dynamic capturing the swarm synchronization phenomenon and its mapping
with various optimization problems. Such a LC-based simulator would be compact and
benefit from high accessibility to the lattice state. An interesting theoretical continuation
would be to study the Harper-Hofstadter model in more detail, and in particular, to go
beyond the Harper-Hofstadter Hamiltonian by reducing the number of constraints we use,
to study the impact of additional terms, especially in the context of non-Abelian gauge
fields, and to explore the potential tunability of this system.

In Sec. 4.6, we extended our formalism of tunneling amplitude control to non-Hermitian
systems. We first demonstrated that by adding a proper non-Hermitian term, the circu-
lar dichroism, we make available some cross-polarized transitions which were prohibited
before. The effect is two-fold: (1) the second-order correction to the tunneling coefficient
emerges, and (2) this correction is non-reciprocal due to the non-Hermitian nature of the
added term. As a result, the monomer chain transforms into the Hatano-Nelson model
and the SSH chain transforms into the non-Hermitian SSH chain in the amplitude control
regime. On the level of the continuous-space Hamiltonian, this gives rise to an imaginary
gauge potential responsible for the localization of all eigenstates of the system on the edge,
demonstrating, therefore, the effect called the non-Hermitian skin effect. We suggested
realistic realizations of this effect in photonic and electronic systems. We also studied in
detail symmetries of the system and the effect of additional terms to prove the robustness
of the effect. Certainly, realization of this effect in experiment would be a great step
forward, since there is still a few demonstrations in photonics, with most of them operat-
ing in synthetic dimensions. From theoretical point of view, it would be nice to explore
other non-Hermitian terms naturally provided by liquid crystal microcavities [242], such
as linear polarization lifetime difference and non-Hermitian TE-TM SOC. They can give
rise to non-Hermitian singularities, such as exceptional points [54], and trigger interesting
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non-Hermitian topological phases and transitions.
In Ch. 5, we switched to the description of a hybrid microcavity combining an organic

emitter and a nematic liquid crystal layer, and operating in the strong-coupling regime.
First, we verified that the strong coupling regime is achieved in this system. To do this,
we constructed a model taking into account the inhomogeneous broadening of the exci-
tonic resonance. Contrary to the standard strong coupling verification by observing the
anticrossing, we suggested an alternative way profiting from the microcavity spectrum
tunability. Though this approach requires a more rigorous analysis of the system, it pro-
vides a powerful alternative to the standard anticrossing fitting, and also enriches our
understanding of the strong coupling in a system with a broadened resonance. Then, we
considered the exciton-polariton Bose-Einstein condensation in this system at room tem-
perature and under non-resonant pumping. We demonstrated the persistent spin helix
and the density stripes in the RDSOC regime. We provided the theoretical explanation
for both these effects. The latter is considered to be a hallmark of supersolidity if we
assume that the condensate is superfluid. Therefore, we make here a step towards this
peculiar quantum phase of matter.

From the theoretical point of view, the next logical step is to study the effect of disorder
in this system, and, especially, how it affects the condensation and stripes contrasts.
Then, in order to get closer to the statement of supersolidity, the weak excitations of the
condensate can be studied for the RDSOC dispersion. This analysis can be reinforced by
the numerical GPE simulations of the superfluid behavior in the vicinity of a defect, as
was done for the first experimental demonstrations of polariton superfluidity (Fig. 1.6).
All these analytical derivations and numerical simulations can be performed for different
parameter ranges in order to search for distinct condensation regimes. Especially, the
dependence on the linear detuning δ should receive a special attention, since this control
knob is available in the experiment. Some additional ingredients can be added to the
theoretical model 5.2 , such as Zeeman splitting, for example, since it is easy to induce
it for polaritons through an applied magnetic field. Finally, a special attention should be
devoted to establish differences between polariton and atomic supersolidity in order to fully
understand and further utilize the advantages which polaritons are able to provide. One of
such potential advantages of polaritons is the access to the non-equilibrium condensation
which is not the case for atomic condensates. Therefore, studying the rich non-equilibrium
dynamics of the stripe phase in a polariton condensate would be a reasonable next step.

In general, all the models discussed in Ch. 4 can be pushed to a nonlinear regime by
combining a liquid crystal material with an emitter as it is done in Ch. 5. This is exactly
the goal of the TopoLight project, as a part of which this Thesis has been realized. This
project aims to build photonic devices profiting from topological robustness and tunability
of liquid crystals: lasers, isolators, modulators, optical gates, etc. These nonlinear and
non-Hermitian systems and devices form the most broad domain for future studies.
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Appendix A: 8x8 DT Hamiltonian and perturbation theory

In the basis (|H l
s⟩ |Hr

s ⟩ |V l
s ⟩ |V r

s ⟩ |H l
p⟩ |Hr

p⟩ |V l
p ⟩ |V r

p ⟩)T the DT Hamiltonian reads:

H
(8)
DT,lr

=



EHs −J0,Hs 0 iβ′
1 0 0 −iβ′

2 iβ′
3

−J0,Hs EHs −iβ′
1 0 0 0 iβ′

3 −iβ′
2

0 iβ′
1 EVs + δ −J0,Vs −iβ′

4 iβ′
5 0 0

−iβ′
1 0 −J0,Vs EVs + δ iβ′

5 −iβ′
4 0 0

0 0 iβ′
4 −iβ′

5 EHp J0,Hp 0 iβ′
6

0 0 −iβ′
5 iβ′

4 J0,Hp EHp −iβ′
6 0

iβ′
2 −iβ′

3 0 0 0 iβ′
6 EVp + δ J0,Vp

−iβ′
3 iβ′

2 0 0 −iβ′
6 0 J0,Vp EVp + δ,


, A.1

with l (r) standing for the left (right) trap in DT, J0,φ > 0 tunneling between left |φl⟩ and
right |φr⟩ ST states in the absence of RDSOC, and β′

i = | ⟨φ′| 2αkx |φ⟩ | RDSOC transition
matrix elements between corresponding states |φ′⟩ and |φ⟩. Here, we utilized the fact that
the unperturbed tunneling coefficients between p states are positive: J0,Hp , J0,Vp > 0.
Since in our experiment for both polarizations only even (symmetric) p states are present,
we need to transform the basis of p states from left-right ST states to even-odd DT states,
which is done by transformation matrix T = diag(σ0, σ0, U, U), where U = (σ0 − iσy)/

√
2.

The transformed Hamiltonian reads in the basis (|H l
s⟩ |Hr

s ⟩ |V l
s ⟩ |V r

s ⟩ |He
p⟩ |Ho

p⟩ |V e
p ⟩ |V o

p ⟩)T :

H
(8)
DT,eo =



EHs −J0,Hs 0 iβDT,1 0 0 −iβDT,2 −iβDT,3
−J0,Hs EHs −iβDT,1 0 0 0 iβDT,2 −iβDT,3

0 iβDT,1 EVs + δ −J0,Vs −iβDT,4 −iβDT,5 0 0
−iβDT,1 0 −J0,Vs EVs + δ iβDT,4 −iβDT,5 0 0

0 0 iβDT,4 −iβDT,4 EHe
p

0 0 iβDT,6

0 0 iβDT,5 iβDT,5 0 EHo
p

−iβDT,6 0
iβDT,2 −iβDT,2 0 0 0 iβDT,6 EV e

p
+ δ 0

iβDT,3 iβDT,3 0 0 −iβDT,6 0 0 EV o
p

+ δ,


, A.2

where βDT,1/6 = β′
1/6, βDT,2/3 = (β′

2 ± β′
3)/

√
2, βDT,4/5 = (β′

4 ± β′
5)/

√
2 are transformed

matrix elements, E
H

e/o
p

= EHp ∓ J0,Hp , E
V

e/o
p

= EVp ∓ J0,Vp are energies of even/odd DT
p states.

After applying the 2nd order perturbation theory in the limit |δ| > max |∆Eij | ≫
β, J0,φ, where ∆Eij is the difference between ith and jth localized states, we reduce
Hamiltonian A.2 to an effective 2x2 Hamiltonian including only (|H l

s⟩ |Hr
s ⟩)T basis states:

HDT =
(
E′

Hs
(δ) −J(δ)

−J(δ) E′
Hs

(δ)

)
,

E′
Hs

(δ) = EHs−
β2

DT,1
EVs − EHs + δ

−
β2

DT,2 + β2
DT,3

EVp − EHs + δ
,

J(δ) = J0,Hs −
β2

DT,2 − β2
DT,3

EVp − EHs + δ
,

A.3

where E′
Hs

(δ) is a detuning-dependent modified energy of ST states |H l,r
s ⟩, J(δ) is a

detuning-dependent effective tunneling, and J0,Hs ≡ J0 used in the main text. As one can
see, the contributions βDT,2 and βDT,3 from different intermediate states |V e

p ⟩ and |V o
p ⟩,
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respectively, are additive for on-site energy shift E′
Hs

(δ) and subtractive for the tunneling
change J(δ). Therefore, the absence of the state |V o

p ⟩ in the experiment (βDT,3 = 0)
maximizes the absolute value of tunneling change.
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Appendix B: Tight-binding model for ULH

We use s and p eigenstates of a harmonic oscillator as trial basis states: |0(y), V ⟩ and
|1(y), H⟩, respectively. In this basis, the terms of tight-binding Hamiltonian 4.24 are
written as:

EHp = ⟨1(y), H|
(

− ℏ2

2m
∂2

∂y2 + AH

2 [1 − cos (2qy)] − δ

2

)
|1(y), H⟩ , B.1

EVs = ⟨0(y), V |
(

− ℏ2

2m
∂2

∂y2 + AV

2 [1 − cos (2qy)] + δ

2

)
|0(y), V ⟩ , B.2

tpp = ⟨1(y + p/2), H|
(

− ℏ2

2m
∂2

∂y2 + AH

2 [1 − cos (2qy)] − δ

2

)
|1(y), H⟩ , B.3

tss = ⟨0(y + p/2), V |
(

− ℏ2

2m
∂2

∂y2 + AV

2 [1 − cos (2qy)] + δ

2

)
|0(y), V ⟩ , B.4

tsp,0 = ⟨1(y), H| 2∂y |0(y), V ⟩ , B.5

tsp,1 = ⟨1(y + p/2), H| 2∂y |0(y), V ⟩ , B.6

with EHp and EVs onsite energies of Hp and Vs, respectively, tpp and tss nearest-neighbour
couplings between p states of H and s states of V , respectively, tsp,0 and tsp,1 onsite and
nearest-neighbour cross-polarized couplings between Hp and Vs, respectively. The RDSOC
onsite coupling term αtsp,0 is dominant over other coupling terms (tpp, tss, αtsp,1), which
is confirmed by efficient mixing of polarizations (high S3 values in Fig. 4.16(i)), and large
band splitting with respect to the band size. The parameters used for Fig. 4.16(b,c):
EHp = 24.24 meV, EVs = 23.27 meV, tpp = 0.12 meV, tss = 0.10 meV, α = 1.1 meV·µm,
tsp,0 = 1.71 µm−1, tsp,1 = 0.06 µm−1, p = 8 µm.
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• Z. Zhang, I. Septembre, Z. Liu, P. Kokhanchik, S. Liang, F. Liu, C. Li, H. Wang, M.
Liu, Y. Zhang et al., “Beam dynamics induced by the quantum metric of exceptional
rings,” arXiv preprint arXiv:2410.14428, 2024.

• M. Muszynski, P. Kokhanchik, D. Urbonas, P. Kapuscinski, P. Oliwa, R. Mirek, I.
Georgakilas, T. Stoferle, R. F. Mahrt, M. Forster et al., “Observation of a stripe
phase in a spin-orbit coupled exciton-polariton Bose-Einstein condensate,” arXiv
preprint arXiv:2407.02406, 2024.

• M. Muszyński, P. Oliwa, P. Kokhanchik, P. Kapuściński, E. Oton, R. Mazur,
P. Morawiak, W. Piecek, P. Kula, W. Bardyszewski et al., “Electrically tunable
spin-orbit coupled photonic lattice in a liquid crystal microcavity,” arXiv preprint
arXiv:2407.07161, 2024.

• R. Mirek, P. Kokhanchik, D. Urbonas, I. Georgakilas, P. Morawiak, W. Piecek,
P. Kula, D. Solnyshkov, G. Malpuech, R. Mahrt et al., “In-situ tunneling control
in photonic potentials by Rashba-Dresselhaus spin-orbit coupling,” arXiv preprint
arXiv:2408.08582, 2024.

• P. Kokhanchik, D. Solnyshkov, and G. Malpuech, “Non-Hermitian skin effect in-
duced by Rashba-Dresselhaus spin-orbit coupling,” Physical Review B, vol. 108, no.
4, p. L041403, 2023.

• P. Kokhanchik, D. Solnyshkov, T. Stöferle, B. Piętka, J. Szczytko, and G. Malpuech,
“Modulated Rashba-Dresselhaus spin-orbit coupling for topology control and analog
simulations,” Physical Review Letters, vol. 129, no. 24, p. 246801, 2022.
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• Poster presentation “Non-Hermitian skin effect induced by Rashba-Dresselhaus spin-
orbit coupling,” PEPS 2024, 6–10 August 2024, Reykjavík, Iceland

• Poster presentation “Non-Hermitian skin effect induced by Rashba-Dresselhaus spin-
orbit coupling,” NHTOP 2023, 14–18 August 2023, Dresden, Germany

• Oral presentation “Modulated Rashba-Dresselhaus spin-orbit coupling for topology
control,” Topological Photonics 2023, 31 May – 2 June 2023, Madrid, Spain

• Poster presentation “Non-Hermitian skin effect in 1D systems with Rashba-
Dresselhaus spin-orbit coupling,” Out-of-equilibrium physics with photons and
atoms, 5–10 March 2023, Les Houches, France

• Poster presentation “Modulated Rashba-Dresselhaus spin-orbit coupling for topol-
ogy control and analog simulations,” PQIP 2023, 21–27 January 2023, Trento, Italy

• Oral presentation “Control of SSH chain topology by Rashba-Dresselhaus spin-orbit
coupling,” PLMCN 2022, 10–16 April 2022, Varadero, Cuba
Award for the best student talk (2nd place)
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RDSOC Rashba-Dresselhaus spin-orbit coupling
LC Liquid crystal
CLC Cholesteric liquid crystal
TFIM Transverse-field Ising model
ST Single trap (potential)
DT Double trap (potential)
ULH Uniformly lying helix
OA Optical activity
NN nearest neighbor
NNN next nearest neighbor
MeLPPP Methyl-substituted ladder-type poly(p-phenylene)
PL Photoluminescence
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correspondence, 46
artificial gauge field, 34

BEC, 25
Berreman method, 111
Berry connection, 43
Berry curvature, 34, 43
Berry phase, 43
biorthogonal polarization, 46
birefringence, 20
bottleneck region, 28
bottleneck reservoir, 28
bulk inversion asymmetry (BIA), 49
bulk-boundary correspondence, 37

Chern number, 31, 43
chiral symmetry, 37
cholesteric liquid crystal, 59
cholesteric pitch, 59
circular dichroism, 96
coherent pumping, 28
complex Ginzburg-Landau equation, 29
complex spectral winding number, 44
composite boson, 22
condensate order parameter

(wavefunction), 25

detuning (linear polarization splitting),
55

Dirac points, 21
distributed Bragg reflector, 14
Dresselhaus spin-orbit coupling, 49

edge states, 37
effective magnetic field, 16
electron hole, 22
emergent optical activity, 61
energy flueshift, 25
exciton, 22
exciton-polariton, 22, 24

extraordinary refractive index, 20

Frenkel excitons, 22

gap Chern number, 43
generalized Brillouin zone, 45
Gross-Pitaevskii equation, 28

Harper-Hofstadter model, 35, 40
Hatano-Nelson model, 44
Hofstadter butterfly, 42
Hopfield coefficients, 24
Hopfield transformation, 24

incoherent (non-resonant) pumping, 28

Jaynes-Cummings model, 23

Landau superfluidity criterion, 26

MeLPPP, 107
microcavity, 13
minimal coupling Hamiltonian, 34
molecular director, 20

nematic liquid crystal, 52
non-Abelian vector potential, 57
non-Hermitian skin effect, 44

open boundary condition, 38
optical activity, 61
Optical Spin Hall Effect, 20
ordinary refractive index, 20

particle-hole symmetry, 37
Peierls phase, 34
Peierls substitution, 41
periodic boundary condition, 38
persistent spin helix, 58
pesistent spin helix, 51
phase control regime, 66
phase space filling, 26
photon-exciton detuning, 24
photonic RDSOC Hamiltonian, 53
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Poincaré sphere, 16
polarization, 15
pseudospin, 16
Purcell effect, 13

Quantum Spin Hall Effect, 35

Rabi frequency, 13, 23
Rashba spin-orbit coupling, 49
Rashba-Dresselhaus spin-orbit coupling,

51
RDSOC phase, 66

spontaneous symmetry breaking, 25
Stokes vector, 16
strong coupling, 13, 24
structure inversion symmetry (SIA), 49
sublattice symmetry, 38
subsonic regime, 26
superfluidity, 26

supersolidity, 118
supersonic regime, 26
Su–Schrieffer–Heeger model, 36

Tavis-Cummings model, 113
TE-TM SOC, 18
time-reversal symmetry, 37
TKNN formula, 42
topology, 31
transverse-field Ising model, 70

uniformly lying helix, 86
uniformly lying helix (ULH), 61

Wannier-Mott excitons, 22
winding number, 39

XY Hamiltonian, 95

Zak phase, 39
Zitterbewegung, 58
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