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ABSTRACT

The human eye cannot perceive small pixel changes in images or videos until a certain
threshold of distortion. In the context of video compression, Just Noticeable Difference
(JND) is the smallest distortion level from which the human eye can perceive the difference
between reference video and the distorted/compressed one. Satisfied-User-Ratio (SUR)
curve is the (complementary) cumulative distribution function of the individual JNDs
of a viewer group. JND and SUR have been widely investigated for compressed image
and video to use the least resources (e.g., storage and bandwidth) without damaging the
Quality of Experience (QoE)

However, due to the extremely time-consuming nature of the JND subjective test,
current available Video-Wise JND datasets are still very limited in terms of codec types,
content resolution and dynamic range. In this thesis, we proposed a new AtHome pro-
tocol for subjective study on high-end video quality. We named this AtHome protocol
"In-The-Wild" subjective test because it takes place in the diverse environment of partici-
pants’ homes. We benchmark existing JND search methods and proposed a pre-processing
step that significantly reduces the time required for JND searches. Using this optimized
methodology, we collect new JND datasets for HEVC in HD-SDR and UHD-HDR videos.

After collecting the datasets, we introduce a new subjective data screening method
named ZREC, which is simpler yet more effective than state-of-the-art methods, enhanc-
ing the reliability of the collected data. We propose methods for estimating confidence
intervals for SUR, an often neglected but crucial aspect of SUR analysis. Additionally, we
conduct a longitudinal study, a unique feature of our AtHome subjective test protocol.

By benchmarking widely used Video Quality Metrics (VQMs) on the JND datasets,
we reveal their high content dependency at a given SUR threshold. We then propose a
pipeline to predict SUR using VQMs as proxies and develop parameter-driven models to
predict SUR using encoding parameters as proxies. Our proposed model is demonstrated
to be less complex and more practical for streaming services.

Finally, we demonstrate the application of JND and SUR in optimizing streaming
services. We analyze the bitrate costs for different SUR thresholds, showing that increasing
SUR leads to an exponential increase in bitrate. Furthermore, we showcase how integrating

iii



JND and SUR into bitrate ladder optimization can significantly save both bitrate and
storage, ultimately enhancing the QoE for end-users.
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RÉSUMÉ

L’œil humain ne peut percevoir de petits changements de pixels dans les images ou
les vidéos qu’à partir d’un certain seuil de distorsion. Dans le contexte de la compression
vidéo, la Just Noticeable Difference (JND) est le plus petit niveau de distorsion à partir
duquel l’œil humain peut percevoir la différence entre la vidéo de référence et la vidéo
dégradée/compressée. La courbe du Satisfied-User-Ratio (SUR) est la fonction de dis-
tribution cumulative (complémentaire) des JND individuels d’un groupe de spectateurs.
La JND et le SUR ont été largement étudiés pour les images et vidéos compressées afin
d’utiliser le moins de ressources (par exemple, stockage et bande passante) sans nuire à
la qualité d’expérience (QoE).

Cependant, en raison du temps considérable nécessaire pour les tests subjectifs de
JND, les ensembles de données disponibles pour les vidéos JND sont encore très limités
en termes de types de codecs, de résolution de contenu et de gamme dynamique. Dans
cette thèse, nous avons proposé un nouveau protocole AtHome pour les études subjectives
sur la qualité vidéo haut de gamme. Nous avons nommé ce protocole AtHome "In-the-
Wild" car il se déroule dans l’environnement diversifié des domiciles des participants.
Nous avons évalué les méthodes de recherche JND existantes et proposé une étape de
prétraitement qui réduit considérablement le temps nécessaire pour les recherches JND.
En utilisant cette méthodologie optimisée, nous avons collecté de nouveaux ensembles de
données JND pour le HEVC en vidéos HD-SDR et UHD-HDR.

Après avoir collecté les ensembles de données, nous avons introduit une nouvelle méth-
ode de filtrage des données subjectives nommée ZREC, qui est plus simple mais plus
efficace que les méthodes actuelles, améliorant ainsi la fiabilité des données collectées.
Nous proposons des méthodes pour estimer les intervalles de confiance pour le SUR, un
aspect souvent négligé mais crucial de l’analyse SUR. De plus, nous menons une étude
longitudinale, une caractéristique unique de notre protocole de test subjectif AtHome.

En évaluant les métriques de qualité vidéo (VQM) largement utilisées sur les ensembles
de données JND, nous révélons leur forte dépendance au contenu à un seuil de SUR donné.
Nous proposons ensuite un pipeline pour prédire le SUR en utilisant les VQM comme
proxys et développons des modèles paramétriques pour prédire le SUR en utilisant les
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paramètres d’encodage comme proxys. Notre modèle proposé s’avère moins complexe et
plus pratique pour les services de streaming.

Enfin, nous démontrons l’application de la JND et du SUR dans l’optimisation des
services de streaming. Nous analysons les coûts en débit pour différents seuils de SUR,
montrant qu’une augmentation du SUR entraîne une augmentation exponentielle du débit.
De plus, nous montrons comment l’intégration de la JND et du SUR dans l’optimisation
de la bitrate ladder peut permettre de réaliser des économies significatives en termes de
débit et de stockage, améliorant ainsi la QoE pour les utilisateurs.
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Chapter 1

INTRODUCTION

Overview

Contents
1.1 Context and motivation . . . . . . . . . . . . . . . . . . 1
1.2 Challenges and Research questions . . . . . . . . . . . . 3
1.3 Organization and outlines . . . . . . . . . . . . . . . . . 6
1.4 Peer-reviewed publications . . . . . . . . . . . . . . . . . 8

1.1 Context and motivation

Human Visual System (HVS) cannot perceive small distortions. Just Noticeable Dif-
ference (JND) threshold is the minimum amount by which stimulus’s intensity must
be changed to produce a noticeable variation for HVS. Nowadays, with the increasing
multimedia demand such as video streaming, JND plays an important role to reduce
the resources (e.g, bandwidth, storage) consumption without decreasing the Quality of
Experience (QoE) for end-users. In addition, JND has been widely employed in many
other vision applications, including digital image/video processing, visual signal restora-
tion/enhancement, and watermarking.

JND depends on 3 factors: (1) viewing conditions; (2) subjects; (3) video contents.
This thesis investigates each of these factors:

1. Viewing conditions: The viewing conditions significantly impacts subjective test
results for video quality experiments. Factors such as display type, ambient light,
viewing distance and the enviroment [107] play crucial roles. Most subjective tests
are conducted in controlled lab environments with well-calibrated displays and con-
trolled ambient light and viewing distances, following International Telecommunica-
tion Union (ITU) recommendations [56, 58]. However, in real-life scenarios, people
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Chapter 1 – Introduction

do not watch videos in such controlled environments. To increase the ecological
validity of subjective tests, we designed a subjective test system that allows par-
ticipants to conduct tests at home with provided equipment and instructions. We
named this system "In-the-Wild" subjective testing because it is conducted in di-
verse home environments with different displays. This system offers the opportunity
to analyze the impact of the viewing conditions on the test results.

2. Subjects:
The participants who conduct the subjective tests vary in their sensitivity to quality
distortions. Factors such as age, educational background, visual acuity, and fatigue
during the test affect the results. Analyzing the behavior of the subjects and cleaning
the raw subjective data is crucial before drawing any conclusions. We propose a
novel method to analyze subjects’ behavior during the tests and clean the raw data.
Conducting the JND subjective test on a group of subjects (e.g., 30 participants)
for a given video content can provide the Satisfied User Ratio (SUR), which is the
percentage of subjects who cannot perceive the distortion compared to the anchor.
The concept of SUR was proposed in [138] to account for differences in subjects’
JND thresholds. This thesis extends this concept to a more general form for different
JND proxies such as QP, bitrate, and VMAF.

3. Video contents:
Video contents differ in terms of resolution, dynamic range, and intrinsic charac-
teristics such as motion, texture, and color. For the same viewing environment and
subjects, different video contents will have different JND thresholds. This is because
various content types react differently to compression due to spatial and temporal
complexities, and some content can mask the perception of distortion by the HVS,
known as the masking effect [50]. After collecting and cleaning the subjective test
data, we analyze the impact of video content on the SUR of JND and develop
prediction models for SUR and JND with different proxies. This thesis focuses on
Video-on-Demand content and high-end video quality.

The first step in modeling JND is to collect subjective datasets. Although several
JND datasets are available in the literature, the JND datasets for videos are still limited
in terms of resolution [63], dynamic range [138] and other factors. Additionally, these
datasets are typically collected in well-controlled lab environments, which may not reflect
real-life scenarios. Therefore, it is essential to expand the collection of JND datasets for
videos to address these limitations.
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1.2. Challenges and Research questions

To identify the JND video in a series of videos with varying distortion levels for a given
anchor/reference, these videos need to be compared with the anchor. Wang et al. [138]
proposed a binary search method to conduct the JND search which can help to reduce the
number of comparison during the JND search. However, compared to standard subjective
tests for image/video quality (such as Absolute Category Rating (ACR) or Degradation
Category Rating (DCR) [61]), subjective JND testing is significantly more time-consuming
because it requires tracking the HVS threshold. Given that subjective tests are time and
resource-intensive, developing JND prediction models is essential.

Finally, integrating the JND prediction model into video streaming can significantly
reduce resource consumption without compromising the QoE for end-users. By selecting
the appropriate JND threshold for streaming, we can optimize bitrate and storage costs
effectively. It is crucial to investigate the impact of different SUR thresholds on streaming
bitrate and quantify the potential savings in bitrate and storage costs through JND-aware
bitrate ladder optimization.

1.2 Challenges and Research questions

In this thesis, we investigate both the subjective and objective modeling of JND by
considering these 3 factors. We also analyze the potential impact of resource savings
by integrating JND into video streaming systems. We formulated the following research
questions:

1. RQ1: How to Design a More Ecologically Valid Subjective Test System
for High-End Video Quality?
Traditional subjective tests for high-end video quality are usually conducted in well-
controlled laboratory environments. These environments include well-calibrated dis-
plays, fixed viewing distances, and controlled ambient lighting. However, in real-life
scenarios, people do not watch videos under such controlled conditions.
Crowdsourcing platforms like Amazon Mechanical Turk (AMT) and Prolific have
been widely used to conduct subjective tests for video quality [48, 2, 106], providing
conditions that are closer to real-life scenarios. Nevertheless, these platforms have
limitations, particularly regarding display choice. For example, testing video quality
on a 55-inch TV is challenging on these browser-based platforms.
Therefore, the research question arises: How can we design a more ecologically valid
subjective test system for high-end video quality? This question seeks to develop

3



Chapter 1 – Introduction

methods and systems that better replicate real-life viewing conditions while main-
taining the rigor and reliability of traditional lab-based tests.

2. RQ2: What is the Impact of the Viewing Conditions on the Subjective
Test Results?
We collect subjective test data from participants at home using our provided equip-
ment and instructions. This research question aims to understand the impact of
the viewing conditions on the results, including differences between "in lab" and
"at home" settings, and how the type of display affects the outcomes. By comparing
data from controlled lab environments and diverse home settings, we seek to identify
and analyze variations in test results attributable to these different conditions.

3. RQ3: What is the Impact of Conducting Subjective Tests Over the Long
Term on Test Results?
Since we collect subjective test data at each participant’s home, the tests can be
conducted over an extended period. Participants can complete the tests at their
convenience, with a daily time limit to avoid fatigue, and are required to participate
for a specified number of days (e.g., 9 days with 45 minutes per day) for each test
campaign. This unique design allows us to perform a longitudinal study on the
impact of long-term subjective testing on the results, providing insights into how
extended testing durations affect participant responses and overall test outcomes.

4. RQ4: Which Subjective Test Methodology is Best for Tracking the JND
Threshold for Video Quality?
The binary search method is the most widely used subjective test methodology for
JND dataset collection [138]. However, there are other psychophysical methods, such
as the method of limits [35], the staircase method [15], and Quest+ [142], which can
be used to determine JND. Determining the most suitable methodology for tracking
the JND threshold for video quality remains an open question. By benchmarking
these different methods, we aim to identify the most effective approach. This will
allow us to further optimize subjective test methodologies, given that collecting JND
datasets is a very time-consuming process.

5. RQ5: How to Analyze Subjects’ Behavior from the Subjective Data and
Clean the Raw Subjective Data?
After collecting the raw subjective data, it is essential to analyze the subjects’ be-
havior, such as bias and inconsistency, and clean the data. This research question
aims to develop a novel method for analyzing subjects’ behavior and cleaning the
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1.2. Challenges and Research questions

raw subjective data. This method will help identify and remove outliers, ensuring
the reliability and validity of the subjective test results.

6. RQ6: What is the Impact of Subjective Data Screening on Learning-
Based Prediction Models?
After cleaning the raw subjective data, the cleaned data can be utilized to train a
learning-based prediction model for JND and SUR. This research question aims to
explore the effect of subjective data screening on the performance of such learning-
based prediction models. By comparing the results of models trained with and with-
out cleaned data, we can assess the effectiveness of the data screening process and
its influence on model performance.

7. RQ7: How to Estimate the Uncertainty of SUR Obtained from Subjective
Tests?
We already know that relying solely on the Mean Opinion Score (MOS) is not
sufficient, as it overlooks the diversity in subjective ratings [47]. Consequently, the
uncertainty of the MOS has been widely investigated in the literature [119, 28, 25].
Similarly, the uncertainty of SUR is equally crucial yet remains understudied. In
this research question, our aim is to estimate the uncertainty of SUR obtained from
the subjective test. This will provide us a more comprehensive understanding of the
subjective test results.

8. RQ8: How Effectively Can Current Widely Used Video Quality Metrics
(VQMs) Reflect SUR?
To what extent can the current widely used Video Quality Metrics (VQMs) reflect
the SUR? Using VMAF as a case study, can we identify a threshold VMAF value at
which 75% of observers cannot perceive a quality difference compared to the pristine
video? We refer to this as the resolving power of VQM towards SUR. Which VQM
has the best resolving power towards SUR?

9. RQ9: How to Develop a Prediction Model for SUR and JND without
Extensive Recompression?
This research question addresses the challenge encountered in previous JND/SUR
prediction models, where a large number of Processed Video Sequences (PVSs) are
required as input, proving time and storage-intensive for video streaming service
providers. We aim to explore a method that relies solely on Source Video Content
(SRC) as input, eliminating the need for re-compression, to predict SUR curves
with a given codec. This question is based on the assumption that SUR curves are
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predominantly influenced by content features, such as the masking effect of spatial
and temporal randomness [137].

10. RQ10: What is the impact on bitrate when selecting different SUR thresh-
olds for streaming?
How does the bitrate change when selecting different SUR thresholds? Specifically,
how much additional bitrate is required to increase the SUR from 75% to 95%?
This research question aims to provide insights into the trade-off between bitrate
and SUR, enabling service providers to selecte the appropriate SUR threshold for
streaming.

11. RQ11: How Much Bitrate and Storage Cost Can Be Saved with JND-
Aware Bitrate Ladder Optimization?
Bitrate ladders are utilized in adaptive streaming to offer varying quality levels
for different network conditions. Yet, these ladders often contain redundant quality
levels. This research question investigates the potential savings in bitrate and storage
costs achievable through JND-aware bitrate ladder optimization.

1.3 Organization and outlines

The organization of the thesis and the corresponding research questions of JND are
shown in Figure 1.1. In Chapter 1, we introduce the context and motivation of the
thesis, outline the challenges and research questions, and provide an overview of the
thesis structure and peer-reviewed publications.

In Chapter 2, we address RQ1 by introducing our "AtHome" subjective test system.
We conducted pre-qualification tests to ensure the reliability of our "AtHome" test settings
and analyze the impact of the test environment on the subjective test results (RQ2).

In Chapter 3, we compare the state-of-the-art JND datasets and address RQ4 by
benchmarking different JND search methodologies through simulations. We also describe
how we optimized the JND search methodology and collected our JND datasets using the
AtHome subjective test system.

Chapter 4 addresses RQ5, RQ6, and RQ7. We propose a novel method that is sim-
pler yet more efficient than the state-of-the-art methods for analyzing subjects’ behavior
and cleaning raw subjective data. Additionally, we investigate the impact of subjective
data screening on learning-based prediction models and estimate the uncertainty of the
SUR obtained from subjective tests.
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Figure 1.1 – Organization of the thesis and the corresponding research questions

In Chapter 5, we first address RQ8 by analyzing how the currently widely used
VQMs reflect JND and SUR. We then address RQ9 by developing a prediction model
for SUR and JND using different proxies (e.g., VQM, encoding parameters), avoiding the
resource-intensive and impractical process of massive re-compression for the industry.

Chapter 6 addresses RQ10 and RQ11 by investigating the impact of selecting dif-
ferent SUR thresholds for streaming on bitrate, and how much bitrate and storage cost
can be saved with JND-aware bitrate ladder optimization.
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Chapter 7 concludes the thesis by summarizing the contributions and limitations,
and provides directions for future research.
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Chapter 2

IN-THE-WILD SUBJECTIVE TESTING FOR

HIGH-END QUALITY ASSESSMENT
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Part of this chapter has been published in research papers [160].

2.1 Introduction

Traditional subjective tests for high-end quality are usually conducted in well-controlled
laboratory environments, which include a well-calibrated display, a fixed viewing distance,
and controlled ambient light, among other factors. However, the recent pandemic at the
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(a) InLab (b) AtHome

Figure 2.1 – InLab and AtHome subjective test environment

beginning of this thesis made it difficult to conduct such tests in a laboratory. Conse-
quently, we decided to conduct the subjective tests at the homes of the participants.

The advantage of doing the test at home is that we can collect the data in a more
ecological valid way. The participants are watching the video in their own environment,
which is more similar to the real life scenario. Furthermore, we used different brands of TV
to conduct the test, helping us to understand the impact of the display on the subjective
test for high-end quality.

We refer to this type of subjective test as an "In-the-wild" subjective test because
it takes place in the diverse environment of participants’ homes, featuring a variety of
displays, rather than in a well-controlled laboratory setting. We name the two types of
subjective tests enviroment as "InLab" and "AtHome". Figure 2.1 shows the two different
environments for the subjective tests.

We developed a complete system to conduct reliable subjective tests at the home of
each participant (see Section 2.2). In Section 2.3, we described the pre-qualification test
which is desinged to ensure the correct setting of "AtHome" enviroment. In Section 2.4,
we analyzed the impact of the test environment (AtHome and InLab) on the subjective
test results. Similarly, in Section 2.5, we analysed the impact of different displays on the
subjective test results.

2.2 AtHome subjective test system

Due to the COVID-19 pandemic, we implemented a pipeline to conduct the subjective
tests at participants’ homes. This strategy enabled us to gather data in a setting more
ecologically valid, with participants viewing videos in real-life scenarios. Additionally, we
employed a variety of TV brands in the tests, providing insights into how the display
impacts the subjective assessment of high-end quality.
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Figure 2.2 – A simplified AtHome subjective test system

Figure 2.2 outlines the simplified system for the AtHome subjective test. Participants
received the assigned TV, firestick, and other necessary materials. They set up the TV,
connected the provided firestick to the TV via HDMI, and ensured the firestick had an
internet connection through Wi-Fi. The application was pre-installed on the firestick by
our team. Participants then logged in with their accounts on the application and initiated
the test. Subsequently, the application sent ratings and playback logs to the server, from
which we extracted data for further analysis. The detailed system is described below.

2.2.1 Displays Specifications

The TVs used in our AtHome subjective test are detailed in Table 2.1. The selection

Table 2.1 – TV Models detials for the AtHome subjective test

Brand Reference No. of TVs Size Resolution Screen Type Screen Backlight

SONY KD-55XH8096 4 55 inches 3840 x 2160 LCD LED
LG Nanocell 55NAN091 2 55 inches 3840 x 2160 LCD LED
SAMSUNG UE55TU8075U 2 55 inches 3840 x 2160 LCD LED
SAMSUNG QE55Q74TATXXC 2 55 inches 3840 x 2160 LCD QLED

of these displays was influenced by both the market share of different brands and the
project’s budget. All the TV selected are LCD display with LED backlight. Participants
were instructed to set up the displays in their living rooms for comfortable video viewing.
Each home had two participants, both of whom had passed a pre-experiment vision check
to ensure they possessed normal or corrected-to-normal visual acuity.

We configured all the displays before delivering to the participants, ensuring standard
settings and removing post-processing features like denoising and motion flow. While
participants were allowed to use the TV outside of the test for personal purposes, they
were requested to keep the settings unchanged. We measured the displays using an X-Rite
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i1Display Pro colorimeter and can be used to analyse the impact of the display on the
subjective test results.

Participants were instructed to position themselves in the middle, directly in front
of the TV, maintaining a distance of 2 meters for optimal viewing of HD content. This
distance was approximately three times the height of the screen. For UHD content, the
recommended viewing distance was 1.5 times the height of the screen, which equates to
approximately 1 meter from the TV.

Ambient light, especially light directly hitting the screen, can significantly affect lu-
minance, particularly for black levels due to display reflectivity. The display contrast
decreases with an increase in ambient light, and this effect is also influenced by the anti-
reflective coating of the display and room lighting geometry [71]. Uncontrolled ambient
light in crowdsourcing subjective tests increases the variance of the Mean Opinion Scores
(MOS). To mitigate the impact of ambient light, participants are instructed to close cur-
tains or blinds and turn off lights facing the screens. Additionally, participants may turn
on some lights in the room to create a dimly lit atmosphere while avoiding complete
darkness.

2.2.2 Firestick and application

The Amazon Fire TV Stick, a portable device that plugs into a TV’s HDMI port,
provides access to streaming services like Amazon Prime Video, Netflix, and Disney+. It
also supports gaming and apps such as YouTube and Spotify, connecting to the internet
via Wi-Fi and powered by a USB cable linked to the TV or a wall outlet as shown in the
Figure 2.2.

The advantage of using the Fire TV Stick is that it provides a consistent platform
for video playback across different TV brands, eliminating the need to navigate different
operating systems on various smart TVs. In our experiment, we used the Fire TV Stick
4K Max, which runs on Fire OS 8, based on Android 10 (API level 29).

We configured the Fire TV Stick to automatically upscale the video to match the
resolution of the source content (i.e., viewing resolution). The settings of the Fire TV Stick
can significantly impact the visualization of the videos; we list the important settings in
Table 2.2.

We developed an application for the subjective test using the Android native player.
The application is designed to be user-friendly and easy to navigate, providing a simple
interface for participants to log in, initiate the test, and rate the videos.
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Table 2.2 – Settings of the Fire TV Stick for the subjective test

Content Type Resolution Color Depth Dynamic Range

SDR Up to 4K Ultra HD 8 bit Deactivate HDR
HDR10 Up to 4K Ultra HD Up to 10 bit Always HDR

In crowdsourcing subjective tests, reference videos are often compressed (e.g., CRF
of 18 in [13], CRF of 12 in [63]) to reduce file size [40] and ensure smooth playback.
However, with the Fire TV Stick 4K Max, we can play videos at a much lower CRF (CRF
of 1 with the Prime Video in-house encoder) and a bitrate exceeding 400Mbps, without
filesize constraints. This allows the reference videos to closely resemble the original quality,
aligning with our focus on high-end quality.

The application is designed to handle various test types, including Degradation Cate-
gory Rating (DCR), Absolute Category Rating (ACR), and more. The test type remains
transparent to the participants, with instructions provided each time they log in. We have
the flexibility to change the test type for each participant on the server side, and the appli-
cation will seamlessly adjust to the assigned test type. The application sends both ratings
and playback logs to the server, from which we extract data for further analysis. Our
team pre-installed the application on the Fire TV Stick, and participants were instructed
to log in with their accounts and initiate the test.

As shown in Figure 2.2, a USB stick is connected to the Fire TV Stick. All the videos
to be evaluated are stored on the USB stick and are fully loaded before playback. This
approach eliminates the need for participants to download the videos, which could poten-
tially lead to issues such as network congestion and slow download speeds.

2.3 Pre-qualification test

The goal of the pre-qualification test is to ensure participants can successfully con-
duct the test in a qualified environment at home. We conducted the same test in both a
well-controlled laboratory environment with a well-calibrated display and at participants’
homes with various displays (refer to Section 2.2.1). By comparing the results of these two
tests, we confirm participants’ ability to conduct the test in a qualified setting. Addition-
ally, this comparison allows us to analyze the impact of the test environment (AtHome
vs. InLab) on the subjective test results.
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2.3.1 Observers information

We recruited 20 participants for the AtHome subjective test. Each pair of participants
shared the same household environment and display. These pairs typically consisted of
family members or friends. The observers were naive, and the experiment duration was
compensated by gift cards. They varied in age, nationality, and educational backgrounds,
as shown in Table 2.3. Every participant passed the pre-experiment vision check to make
sure that they have normal or corrected-to normal visual acuity.

Table 2.3 – Repartition of Ages and Genders in the Subjective Tests

Age Gender

Average Std Min Max Male Female

36.3 12.4 20 63 9 11

In Section 2.2.1, we outlined instructions for participants to set up the displays, con-
trol the viewing distance, and manage ambient light. While participants were carefully
selected from a pool of trusted panelists—who have not been flagged as spammers in
previous subjective tests—we still needed to ensure adherence to instructions and main-
tain a qualified testing environment. Hence, we designed a pre-qualification test before
conducting further subjective test.

2.3.2 Test sequences

Content selection plays a crucial role in enhancing the efficiency of subjective tests by
enabling the selection of representative contents [120]. Spatial information (SI), Temporal
information (TI) [55] and Ambiguity [88] are computed on 229 HD (1080p) videos con-
tents provided by Amazon Prime Video. K-means clustering was applied to the extracted
features to group the contents based on their similarities. From these content clusters, 10
HD contents Ci were selected, with each content having a duration of 10 seconds.

Each selected contents are compressed by High Efficiency Video Coding (HEVC) with
3 different encoding resolutions (1080p, 720p and 540p). For each encoding resolutions,
13 different level of distortions are used. There are in total 39 (3 × 13) encoding recipes
Ri,j for each content Ci. However, it is time and money consuming to conduct subjective
test on all the generated Processed Video Sequence (PVS). To select significant PVS
for the subsequent subjective test, we conducted a 2-direction JND search by experts
(golden-eyes) as described in Figure 2.3, following the framework proposed in [155].
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Figure 2.3 – 2-direction JND search

For each resolution, we selected the PVS with the highest quality as the anchor (re-
ferred to as JND-dec-anchor) and searched through the remaining PVS to identify the
point at which the observer just begins to perceive a difference in quality between the an-
chor and the PVS (referred to as inc-JND points). Likewise, we selected the PVS with the
lowest quality as the JND-inc-anchor to identify the JND points where the observer first
perceives a quality difference. There are a total of 12 stimulus for each content, consisting
of one source (SRC) and 11 PVS.

2.3.3 Test methodology

The Degradation Category Rating (DCR) test methodology are used for the pre-
qualification test. The DCR test involved presenting the test sequences in pairs, where
the first stimulus in each pair was always the source reference, and the second stimulus
was the PVS of the same content. Five-level scale for rating was used as recommended in
ITU-T P.910 [55] as shwon in Table 2.4.

Table 2.4 – Degradation Category Rating Scale (DCR)

Rating Description

5 Imperceptible
4 Perceptible, but not annoying
3 Slightly annoying
2 Annoying
1 Very annoying
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The stimuli were presented to the subjects in a random order, with a constraint that
the same content was not presented successively. The entire test took approximately 45
minutes to complete.

We conducted the same DCR test in both the InLab and AtHome environments (see
Figure 2.1). Both share identical contents and experiment design. The only difference
between the two experiments was the experiment setting where one of the experiments was
conducted in a controlled laboratory environment and the other was in home environment
of each participants.

The InLab experiement specifications are as follows:

— Display: a 4K calibrated UHD Grundig Finearts 55 FLX 9492 SL with a 55-inch
screen size.

— Viewing distance: 3H for HD (1080p) video, with H the height of the screened video,
as recommended in ITU-R BT.1769 [59]

— Ambient light: the illuminance level of the subjective environment was set as rec-
ommended by ITU-R BT.2013-1 [60]

— Subjects: A total of 24 participants, who were non-experts in subjective experiments,
image processing, or related fields, took part in the study. All participants had either
normal or corrected-to-normal visual acuity, which was ensured prior to the exper-
iment using a Monoyer chart. Ishihara color plates were used to test color vision,
and all viewers passed the pre-experiment vision check. There is no overlap between
the participants in the InLab and AtHome experiments to avoid any potential bias.

Details regarding the AtHome experiment specifications can be found in 2.2.

2.4 Test environment’s impact on subjective results

Previous studies [72, 77] have identified several factors that can significantly impact
Quality of Experience (QoE) for multimedia content. These factors include, but are not
limited to, video quality, device, observer’s emotion etc.

The physical experiment environment is a major factor that influences QoE, and stan-
dardization efforts have been made to propose methodologies and recommendations for
experiment conditions in subjective QoE studies. For instance, ITU has developed stan-
dards such as BT.500 [56], BT.910 [58], and BT.913 [57].
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In a previous study by Jumisko-Pyykö et al. [65], it was found that the acceptability of
content varied significantly when measured in laboratory environment compared to real-
life scenarios. The results indicated that subjects were more critical during laboratory
experiments when evaluating the acceptability of mobile videos. In another study, Li et
al. [77] investigated the influence of devices on Quality of Experience (QoE), focusing
on acceptability and annoyance in video streaming. Their analysis revealed a significant
impact on measured QoE when comparing devices, such as Tablets vs. TVs. Additionally,
Ak et al. [3] conducted subjective tests to assess the influence of context on video streaming
QoE. The findings indicated that the remaining data in a mobile data plan context could
impact participants’ opinion scores.

In this section, we analyze the impact of the experiment environment (AtHome vs.
InLab) on the results obtained from the pre-qualification test (see Section 2.3). We com-
pare the Mean Opinion Scores (MOS) and Confidence Intervals (CI) of the MOS collected
from both enviroments. Additionally, we perform an ANOVA test to assess the statistical
impact of the experiment environment on the subjective test results. Finally, we conduct
an advanced analysis, specifically Eliminated-by-Aspects (EBA) method to measure the
influence as a function of MOS.

2.4.1 MOS and CI

We analyzed the correlation between the MOS collected from the two environments
(InLab and AtHome) and compare their Confidence Intervals (CI). We expect a smaller CI
for the InLab experiment. We use 3 different MOS recovery (observer screening) method-
ologies to analyze the correlation between the MOS collected in InLab and AtHome ex-
periments. Summary of each method can be found below:

BT500: ITU-R BT.500 Recommendation [56] defines the simple and commonly used
observer screening procedure. Subjects are rejected based on the number of opinion scores
outside of the predefined amount of standard deviation range of the population. If a
subject found to be an outlier, all of his/her opinions are removed from the dataset. MOS
is calculated as the mean of remaining subjects.

P910: is specified in ITU-R P.913 Recommendation clause 12.6 [57] (also refferred to as
P913-12.6) and defines a procedure where MOS is recovered by bias removal and subject
inconsistency based weighted average. The procedure defines the individual opinion scores
of a subject as the combination of subject bias, inconsistency and the true quality of the
stimuli. The approach simultaneously addresses and resolves these three parameters.
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ZREC: is proposed in [161]. It relies on estimating subject bias and inconsistency to
recover the MOS. It doesn’t require any solver and the evaluations show a smaller CI over
the tested dataset compared to alternative methods. For further details and insights into
MOS recovery methods, refer to Section 4.2.

Figure 2.4 – Scatter plots between InLab MOS and AtHome MOS with 3 different MOS
recovery (observer screening) methods. Below the title of each plot, Spearman’s Rank
Order Correlation Coefficients (SROCC) and average CI 95% for InLab and AtHome
experiments are given.

With each method describe above, MOS from the InLab and AtHome experiments and
their CI (95%) are calculated. Figure 2.4 presents the results as a scatter plot between
the InLab and AtHome MOS for each method. SROCC values indicate that the MOS
acquired from both enviroments are highly correlated with all MOS recovery methods.
On another front, we observe slightly lower CI for the InLab MOS compared to AtHome
MOS. Considering the uncontrolled experiment environments in AtHome experiment, the
results are not surprising. With more sophisticated MOS recovery methods, we can acquire
lower CIs for both experiments however the slightly higher CI for AtHome experiment
remains true.

We also analysed the Standard Deviation of Opinion Scores (SOS) [47] for each stim-
ulus. The SOS analyses is widely used to compare the annotation quality of different
subjective test [71, 40, 147, 82]. SOS hypothesis suppose the variance of the opinion
scores sigma2 follows the Eq.(2.1).

SOS(MOS)2 = a(−MOS2 + 6×MOS − 5) (2.1)
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As shown in Figure 2.5, for the InLab test, we obtain a = 0.2177, a value consistent
with other in-lab tests in video compression and streaming [47]. It is noteworthy that
the a value for the AtHome test is higher than that for the InLab test, aligning with our
earlier observation that the AtHome test exhibits a higher Confidence Interval (CI) than
the InLab test.

Figure 2.5 – Comparison of SOS hypothesis of InLab and AtHome experiments

2.4.2 Significant difference test

In the previous section, we analyzed the correlation between the MOS collected from
the InLab and AtHome experiments and the SOS scores respectively. In this section,
we perform a significant difference test to determine whether the opinion scores and the
corresponding CI collected from the two environments are significantly different.

Significant difference test for Opinion Scores

For each stimulus, we performed a significant difference test for the opinion scores
between the InLab and AtHome experiments. As discussed in Section 2.4.1, it can be
observed that the variances of the opinion scores for the two environments are different.
Therefore, we employed the Welch’s t-test [125], which is an adaptation of Student’s t-test
and is more suitable when variances are not assumed to be equal. The results are depicted
in Figure 2.6.
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(a) Welch’s t-test p-value for opinion scores (b) Distribution of p-values

Figure 2.6 – Significant difference test for per stimulus’ opinion scores

It can be observed that among the 110 stimuli, only 5 stimuli have p-values less
than 0.05 (see Figure 2.6b), indicating that the opinion scores in the InLab and AtHome
experiments are not significantly different for most cases. Among these 5 stimuli, 3 of
them have AtHome MOS higher than InLab MOS, while the other 2 have InLab MOS
higher than AtHome MOS (see Figure 2.6a). These results indicate that the experiment
environment has a limited impact on the opinion scores.

Significant difference test for CI

Similar to the SOS analyses, Figure 2.7 shows the relationship between the Confidence
Interval (CI) level and the Mean Opinion Score (MOS) for both the InLab and AtHome
experiments. The significant difference test (Welch’s t-test) indicate that the CI level
is significantly different for the two environments (Figure 2.7a and 2.7b show the MOS
obtained by BT500 [56] and ZREC [161] respectively). It is also observed that using
ZREC [161] to recover the MOS can reduce the CI level for both the InLab and AtHome
experiments. For more details about the opinion score recovery method, readers can refer
to Section 4.2.

2.4.3 Eliminated-by-Aspects

In this part, we rely on Eliminated-by-Aspects (EBA) analysis the impact of experi-
ment settings on the QoE and quantify this impact.
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(a) CI vs. BT500 MOS (b) CI vs. ZREC MOS

Figure 2.7 – CI vs. MOS for InLab and AtHome experiments

EBA model is proposed by Tversky [133]. It can be used to analyze the subgroups
containing similar stimuli. It assumes that, in a pair comparison subjective experiment,
a subject prefer a stimulus than another stimulus in comparison due to set of attributes
being present in the higher quality stimulus.

In QoE experiments, each video sequence i has a quality attribute defined by qi. If
no other influences are considered, the MOS can be represented as fm(qi), where fm is
typically a logarithmic mapping function [77]. In our case where experiment were repeated
under home and laboratory settings, these settings also have their attributes defined as
dHome and dLab. Therefore, the measured QoE in each experiment can be represented as
fm(qi + di) where di is either dHome or dLab depending on the experiment enviroments.

In pair comparison, the probability of a subject preferring stimulus i over stimulus j

can be defined as:
P (i; j) = qi + di

qi + di + qj + dj

(2.2)

Supposing there are n subjects, number of subjects k who selected i over j follows
a binomial distribution with parameters n and P (i; j). The Probability Mass Function
(PMF) of the binomial distribution can be constructed as:

f(k; n, P (i; j)) =
(

n

k

)
× P (i; j)k × (1− P (i; j))n−k (2.3)

The optimal parameters qi, dHome, and dLab can be estimated by maximizing the
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likelihood of the observed data. The likelihood function can be defined as:

L(P (i, j); ki,j, ni,j) =
∏
i<j

P (i; j)ki,j (1− P (i; j))ni,j−ki,j (2.4)

We can find the optimal parameters qi, dHome, and dLab by maximizing the likelihood
function by using the matlab function proposed in [143].

The EBA model was initially designed for pairwise comparison subjective tests. How-
ever, our subjective test follows the DCR test, which does not involve pairwise com-
parisons. We construct the pairwise comparison matrix using the algorithm outlined in
Algorithm 1.

The algorithm takes as input the DCR ratings provided by various observers under
each condition. For example, if we are interested in comparing the impact of test conditions
(AtHome vs. InLab), there will be only two conditions (C1 and C2). Nevertheless, this
solution can be generalized to situations where more than two conditions are applied.

The algorithm first concatenates the DCR ratings for all conditions and then constructs
the pairwise comparison matrix. The DCR rating for condition Cn is represented as a 2D
list. Each row of Cn corresponds to different stimuli, while each column corresponds to
different observers. The length of Cn is the number of stimuli tested in condition n. The
number of observers who annotated stimulus s may vary across different conditions and
stimuli.

The pairewise comparison matrix is a symmetric matrix, where the element PCM(i, j)
is the number of subjects who prefer the stimulus i over the stimulus j. For a given
observer o, if his/her DCR rating is higher for stimulus i than for stimulus j, we can
infer that, in a pairwise comparison, he/she prefer stimulus i over stimulus j. However, in
practice, asking the same observer to compare the same stimulus in different conditions
is challenging, especially in crowdsourcing scenarios. Additionally, repeated voting for the
same stimulus may introduce bias. Therefore, we address these challenges by randomly
selecting the ratings from one observer for stimuli i and j and comparing them to construct
the pairwise comparison matrix. The random shuffle in the algorithm is used to select
random observers.

The algorithm is designed to handle the case where the randomly selected subjects’
rating for stimulus i is equal to that of stimulus j. In this case, the algorithm will assign
0.5 to both PCM(i, j) and PCM(j, i).

After maximizing the likelihood function (Eq.( 2.4)), we can obtain the optimal param-
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Algorithm 1 Pairwise Comparison Matrix Generation for EBA
1: Input: C1, C2, ...Cn - 2D list of DCR rating under every condition. Rows represent

the stimuli and columns represent the observers.
2: Output: PCM - Pairwise Comparison Matrix.
3: function GeneratePCM(C1, C2, ...Cn)
4: Call ← concatenate(C1, C2, ...Cn)
5: PCM ← zeros matrix of size (len(Call) ∗ len(Call))
6: for i← 0 to len(Call)− 1 do
7: for j ← 0 to len(Call)− 1 do
8: if i < j then
9: Si ← Call[i]

10: Sj ← Call[j]
11: Si ← random shuffle(Si)
12: Sj ← random shuffle(Sj)
13: lmin ← min(len(Si), len(Sj))
14: for obs← 0 to lmin − 1 do
15: if Si[obs] > Sj[obs] then
16: PCM [i][j]← PCM [i][j] + 1
17: else if Si[obs] < Sj[obs] then
18: PCM [j][i]← PCM [j][i] + 1
19: else
20: PCM [i][j]← PCM [i][j] + 0.5
21: PCM [j][i]← PCM [j][i] + 0.5
22: end if
23: end for
24: end if
25: end for
26: end for
27: return PCM
28: end function

eters q̂i for each stimulus and d̂Home, and d̂Lab for each enviroment. We can then analyze
the impact of the experiment environment on the QoE and quantify this impact.

Figure 2.8a shows the relationship between the sum of quality and experiment condi-
tion attributes and MOS. The MOS shows an increasing trend with the sum of the two
attributes. We evaluated various mapping functions and found that the 4-parameter logis-
tic function best represents the mapping function fm between the sum of attributes and
MOS. The Spearman Rank Order Correlation Coefficient (SROCC) between the mapped
sum of attributes and MOS is 0.9227 (see Figure 2.8b). The SROCC value indicates a
strong correlation between the mapped sum of attributes and MOS. However, it’s worth
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(a) Sum of quality and experiment condi-
tion attributes vs. MOS

(b) Logistic fitting of sum of quality and ex-
periment condition attributes vs. MOS

Figure 2.8 – EBA analysis of the impact of experiment environment on the QoE

noting that the mapped sum of attributes tends to saturate for high-quality ranges.
EBA allows us to analyze the impact of different attributes separately. By eliminating

the influence of the environment and retaining only the quality attribute of the stimuli,
we can assess the impact of the experiment environment on MOS. As illustrated in Fig-
ure 2.9, for stimuli with the same quality attribute, the MOS of the AtHome experiment
is comparable to that of the InLab experiment. This result further confirms that the AtH-
ome and InLab environments do not have a significant impact on MOS, consistent with
the conclusions drawn in Section 2.4.1 and Section 2.4.2.

Figure 2.9 – Impact of experiment environment on the MOS
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2.5 Display impact on subjective results

In the previous section, we demonstrated that the experiment environment has a
limited impact on MOS (the observed quality for end users). In this section, we analyze
the influence of the display on the MOS.

The HD DCR pre-qualification AtHome subjective test (see Section 2.3 for details)
employed 10 TVs with 4 different TV models, as detailed in Table 2.1. Although the
number of TVs varies for each TV model, e.g., 4 SONY and 2 LG, and the number of
observers is limited, i.e., 2 observers per TV, we can still rely on the EBA model to gain
a preliminary understanding of the impact of the display on the quality of experience for
end users.

Similar to Section 2.4.3, we adapted the EBA model to measure the impact of the
display on the MOS. The observed quality (MOS) is represented as fm(qi +di) where qi is
the quality attribute and di is the display attribute. In our AtHome test, dSONY represents
the impact of the SONY displays; dLG for the LG displays; dSG_T U and dSG_Q74 for the
2 different SAMSUNG models, and the number of TVs for each TV models can be found
in Table 2.1.

Negative impact of the display on the quality?

It is possible that some displays may have a negative impact on the qual-
ity. However, the EBA model assumes that the observed quality (MOS) is
represented as fm(qi + di). Does this mean that the EBA model assumes
that the display can only have a positive impact on the quality? The answer
is no. EBA assumes the values of attributes are relative and not in the
MOS scale. For example, if the output of EBA is such that dSONY = 0.1
and dLG = 0.05, we cannot state that SONY improves the quality by 0.1
and LG improves the quality by 0.05. To determine whether the impact of
the display is positive or negative, one should first choose one display as the
reference and then compare the impact of the other displays to the reference.
In the same example, if we choose SONY as the reference, then the impact
of LG is -0.05, allowing us to conclude that LG has a negative impact on
the quality compared to SONY.

As shown in Figure 2.10, we plot the impact of the display on the MOS for the 10 SRC
of the AtHome pre-qualification test. The x-axis in each subfigure represents the normal-
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ized mapped quality attribute. The same PVS has the same value of quality attribute. The
y-axis represents the MOS. The color blue, orange, green and red correspond to SONY,
LG, SG_TU and SG_Q74, respectively. It can be observed that for the same quality
attribute, the MOS differs for different displays. This difference is due to the differences
of the displays.

It can be observed that the impact of the display can vary between different SRC. For
example, for SRC0, the impact of the display is relatively larger than for SRC3

From the fitted line with 1st order linear regression, we can observe that the LG display
has the lowest MOS for the same quality attribute. Looking at the TV measuremets in
Table 2.5, we can see that the peak luminance of LG is the highest among the 4 TV
models. This result is consistent with the human contrast sensitive function(CSF) [27, 14,
94], which indicates that human visual sensitivity is higher for higher luminance, leading
to a higher chance of detecting video distortions.

TV models SONY LG SG_TU SG_Q74

Peak luminance (cd/m2) 191.9960 249.9962 140.8884 232.6089

Table 2.5 – Peak luminance values for different TV models.

2.6 Summary

In this chapter, we introduced the "AtHome" subjective test system for conducting
subjective tests "In-the-wild". The AtHome test system occupies a middle ground between
the two widely used subjective test methods, InLab and Crowdsourcing. It effectively
combines the controlled environment, such as display settings, of the InLab test with the
diversity inherent in Crowdsourcing tests.

Furthermore, through an analysis of the experimental environment and display impact
on subjective test results, we demonstrated the AtHome test system’s ability to deliver
results comparable to those obtained in the InLab environment. Additionally, the AtHome
test system provided valuable insights into the influence of displays on subjective test
outcomes. The variety and advanced functionalities of display ecosystems can significantly
affect the Quality of Experience (QoE) of end-users.
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Chapter Contributions

— Introduced a novel "AtHome" subjective test system to conduct subjective
tests in a more ecological and accessible manner.

— Compared the AtHome test system with traditional in-lab subjective tests
through pre-qualification tests, demonstrating its effectiveness and reliability.

— Analyzed the impact of different test environments and displays on the sub-
jective test results.
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Part of this chapter has been published in research papers [155, 154].

3.1 Introduction

Human eye cannot perceive small pixel changes in images or videos until a certain
threshold of distortion. In the context of image/video compression, Just Noticeable Dif-
ference (JND) is the smallest distortion level from which the human eye just begins to
perceive the difference between the anchor/reference stimuli and the distorted stimuli.
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Picture-Wise Just Noticeable Difference (PW-JND) [90, 131, 126, 85], and Video-Wise
Just Noticeable Difference (VW-JND) [137, 135, 151, 68] have been investigated from
human perceptive aspects in order to provide high quality of experience for end-users
with limited storage and internet bandwidth [153, text].

Figure 3.1 – Comparison of the traditional quality level and perceptual quality level on the
Rate-Distortion curve. The traditional quality level is continuous, as widely used quality
metrics such as PSNR and SSIM. In contrast, the perceptual quality level is discrete, based
on thresholds beyond which the human visual system cannot distinguish differences.

Considering the limitation of publicly available VW-JND datasets, we have opted
to gather new VW-JND datasets using the "In-the-wild" subjective test methodology
outlined in the preceding chapter.

This chapter is organized as follows: In Section 3.2, we first introduce the background of
the VW-JND study. We then formalize a more general SUR definition with different prox-
ies in Section 3.2.2. Next, we compare the state-of-the-art JND datasets in Sections 3.2.3
and 3.2.4, and introduce the motivations behind collecting our new VW-JND datasets in
Section 3.2.5.

In Section 3.3, we introduce different methods for JND search in the state-of-the-art
and compare these methods using simulations. Moreover, we propose a pre-processing
method to further optimize the JND search efficiency. In Section 3.4, we introduce the
content selection process for our VW-JND datasets. Finally, Section 3.5 summarizes the
chapter.

3.2 Background and motivation

In this section, we first introduce the background of the VW-JND study, including
the subjective test for video quality assessment in Section 3.2.1. Secondly, we extend the
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definition of the Satisfied User Ratio (SUR) of JND from encoding parameter as proxy to
any distortion level as proxy in Section 3.2.2. Furthermore, we compare the state-of-the-
art JND datasets in Section 3.2.3 and other related work in Section 3.2.4, and introduce
the motivations behind collecting our new VW-JND datasets in Section 3.2.5.

3.2.1 Subjective test for video quality assessment

Subjective video quality tests are psychophysical experiments in which human subjects
are asked to rate the quality of a video [58, 145, 23]. The goal of these tests is to measure
the quality of experience (QoE) of the subjects, thereby aiding in the development of
video processing algorithms such as video compression, enhancement, and restoration.
Additionally, they serve as ground truth for the development of objective video quality
assessment metrics.

Several subjective test methodologies for image and videos are standardized by the
International Telecommunication Union (ITU) [56]. There are 4 main methods that are
widely used today: Absolute Category Rating (ACR), Degradation Category Rating (DCR),
Subjective Assessment Method for Video Quality (SAMVIQ), and Pair Comparison (PC)
method.

ACR and DCR are both category rating methods since they use discrete scales, and
they are dominant in video subjective quality tests [56, 127, 49]. The difference between
ACR and DCR is that for ACR, observers are asked to rate the quality of a single stimulus,
while for DCR, observers are asked to rate the quality degradation of a stimulus compared
to a reference stimulus. DCR is also called Double Stimulus Impairment Scale (DSIS).
The most widely used ACR and DCR rating scales are 5-point discrete scales, but there
are also 3-point scales (usually used for Acceptance and Annoyance (AccAnn) [77]), 9-
point, and 11-point discrete scales in various studies [54]. Moreover, some studies use
5-point/11-point continuous scales [53]

SAMVIQ [69] is more suitable for discriminating similar levels of quality. It is based on
a random access process to play stimuli, allowing observers to start and stop the evaluation
process, modify the quality score multiple times, and repeat the playback as they wish. It
usually uses a 0-100 continuous scale. It is also called the multistimuli continuous quality
scale in some studies [16, 112].

For the Pair Comparison (PC) method [58], test sequences are presented in pairs,
usually side-by-side, and observers are forced to choose the one with the highest quality.
PC usually combines all possible combinations, making it more time-consuming than
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ACR and DCR. However, Mantiuk et al. [95] found that forced-choice PC method is
more accurate than ACR and DCR.

The quality scores obtained from the aforementioned methods, such as Mean Opinion
Score (MOS) and Differential Mean Opinion Score (DMOS) measure overall quality but do
not provide information about JND. Similarly, widely used objective video quality metrics
like VMAF [80], which are trained on these subjective datasets, reflect quality scores but
are insufficient to determine if the HVS can perceive a difference between two videos.
However, as shown in Figure 3.1, some small distortions may be imperceptible due to the
psychological and physiological mechanisms of the Human Visual System (HVS) [32]. This
presents an opportunity to optimize video transmission and storage without compromising
perceptual quality for end-users.

For example, in HTTP Adaptive Streaming (HAS) [17, 8], video content is encoded
at multiple bitrate-resolution pairs, known as representations, to construct the bitrate
ladder. This allows for dynamic adjustment of video quality based on the viewer’s available
bandwidth and device type. By eliminating representations that are not perceptually
different from the viewer’s perspective, we can save the storage and bandwidth.

3.2.2 Satisfied User Ratio (SUR) of JND

For a given visual content, JND of different subjects will be different [87]. Wang et
al.[136] proposed to conduct the subjective test of JND with respect to a viewer group
other than the very few experts (golden eyes) for the worst-case analysis, because the
group-based quality of experience (QoE) is closer to the realistic applications.

Satisfied User Ratio (SUR) curve can be derived from this group-based JND value.
SUR curve is defined as the Q-function supposing that the group-based JND follows
Gaussian distribution [137]. Intuitively, the value of SUR curve at a certain distortion
level d, is the percentage of the group users who cannot perceive any difference between
the reference stimuli and the distorted stimulus whose distortion level is smaller than d,
i.e., these users are satisfied.

At a given threshold p for SUR, the corresponding distortion level is defined as p%SUR
instead of the misleading notation p%JND in previous works [137, 135, 151, 138].

The SUR value quantifies the portion of the population that cannot perceive distortion
when a video is compared to a reference at a specific distortion level [138, 159]. This level
is referred to as the proxy of the SUR curve. In literature, this proxy is usually encoding
parameters such as QP (Quantization Parameter). Therefore, the SUR value decreases
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Figure 3.2 – Distribution of group-based VW-JND (blue bar); empirical and analytical
SUR (in green and yellow respectively) and empirical 75%SUR (red circle) of SRC001
(360p) in VideoSet [138]

with the increase of the proxy value. In this section, we extend the proxy of SUR
to any metric that can reflect distortion level, such as VMAF [80]. Unlike the QP
proxy, for VMAF proxy, the SUR value will increase with the increase of the proxy value.
We therefore define the SUR curve in two cases: where the quality decreases with an
increase in the proxy (case 1) and where the quality increases with the proxy (case 2).

For a given video content clip m, let us assume there are VW-JND annotations from
N reliable subjects. The VW-JND values from these N subjects can be represented as a
vector jm, defined as:

jm = [jm
1 , jm

2 , ..., jm
N ] (3.1)

Here, jm
n represents the individual annotation of subject n, which can be QP or any

other proxy capable of representing the distortion level, such as VMAF. Let Jm denote a
discrete random variable representing the VW-JND for video m. jm is a vector of random
samples from Jm. The empirical Probability Mass Function (PMF) of Jm is given by:

pm(x) = Pr(JND = x) = 1
N

N∑
i=1

1 (jm
i = x), (3.2)

where 1(c) is an indicator function that equals to 1 if the specified binary clause c is true.
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Thus, the empirical Cumulative Distribution Function (CDF) can be calculated from the
PMF as follows:

CDFm
emp(x) = Pr(VW-JND ≤ x) =

∑
ω<x

pm(ω). (3.3)

In Figure 3.2, empirical CDF is represented in orange. Considering SURemp to depend
on the polarity of the chosen proxy, it is defined as follows:

SURemp(x) =
 1− CDFemp(x), for case 1

CDFemp(x), for case 2
(3.4)

In case 1, where quality decreases with an increase in the proxy (e.g., using QP as the
proxy as shown in Figure 3.2), the empirical SUR corresponds to the complementary
empirical CDF. In contrast, in case 2, such as using VMAF as the proxy, where quality
increases with the proxy increases, the empirical SUR is equals to the empirical CDF.
Finally, p%SURemp is defined as:

p%SURemp =
 min {x |SURemp (x) ⩽ p%} , for case 1,

max {x |SURemp (x) ⩽ p%} , for case 2.
(3.5)

Figure 3.2 showcases the 75%SURemp (represented by the red circle) for the QP proxy.
We can determine p%SURemp for a specific video content using individual VW-JND an-
notations collected from a sampled population through subjective test.

The analytical SUR curve and p%SUR are calculated by Eq.(3.6) and (3.7), f(x) is the
Probability Density Function (PDF). Contrary to the empirical SUR, the analytical SUR
is a continuous function, it can be obtained by fitting the empirical SUR curve with an
assumption of the distribution of the individual VW-JND annotations (see Section 5.4.1
for more details). The analytical SUR curve is represented in yellow in Figure 3.2.

SURanaly(x) =
 1− CDFanaly(x), for case 1

CDFanaly(x), for case 2
(3.6)

p%SURanaly = arg min
x
|SURanaly(x)− p%| (3.7)

The 75% SUR is the most widely used target prediction ground truth in previous works [137,
135, 152, 109, 108]. However, to our best knowledge, why the 75%SUR is selected as the
target of prediction in previous works is not clear. In Chapter 6, we will investigate the
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relationship between the SUR threshold and bitrate, thereby providing insight into how
to decide the SUR threshold.

System bias for the SUR curve estimation?

In a recently published paper [63], the authors demonstrate that the SUR
curve obtained by the previous definition introduces a system bias. An open
discussion on this topic is available in Annex A. We approach this issue
from a different perspective by introducing uncertainty estimation of the
SUR curve in Section 4.3 of Chapter 4.

3.2.3 State of the art JND based datasets

There are several publicly available JND datasets for images and videos, as summarized
in Table 3.1. For image JND datasets (PW-JND datasets):

— MCL-JCI [64] is a widely used image JND dataset. It includes 50 source images,
each distorted using JPEG with Quality Factor (QF) values ranging from 1 to 100.
Each source image is evaluated by 30 subjects, with over 150 participants in the
subjective test. The reference image and its compressed version are displayed side
by side on a 65-inch TV with a native resolution of 3840x2160. To efficiently update
the comparison image, the binary search method is adopted [87]

— JND-Pano [92] is a panoramic image JND dataset consisting of 40 images with a
resolution of 5000x2500. These images are compressed using JPEG with QF values
ranging from 1 to 100. The subjective test is conducted in a lab environment using
head-mounted displays (HMDs). Subjects have the flexibility to control the field of
view (FoV) to explore the panoramic image. In contrast to MCL-JCI, the comparison
images are displayed sequentially with the reference images.

— SIAT-JSSI [33] and SIAT-JASI [33] are stereo image JND datasets. The key dis-
tinction between the two datasets lies in their compression methods: SIAT-JSSI
utilizes symmetric compression, while SIAT-JASI employs asymmetric compres-
sion. Both datasets incorporate two types of distortion: HEVC intra coding and
JPEG2000. The subjective tests are conducted in a lab environment with a 3D dis-
play, where subjects wear polarized glasses to view the reference and distorted stereo
images side by side. The relaxed binary search method [138] is utilized to update
the comparison image.
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Table 3.1 – Comparison of state-of-the-art JND-based datasets with our proposed datasets
across various dimensions, including the year, content type, dataset size, number of sub-
jects, resolution, distortion type, subjective test method, test environment, and JND
search algorithm. The dataset size is detailed, indicating the number of pristine and dis-
tortion levels for each pristine. Similarly, the number of subjects includes both the count
per content and the total number involved in the entire test.

Datasets
name Year Content

type

Size
(Pristine/
distortion

level)

Nb subjects
(per content/

in total)
Resolution Distortion

type

Subjective
test

method

Test
env

JND
search

algorithm

MCL-JCI [64] 2016 Image 50/
QF 1∼100 30/150 1920x1080 JPEG PC

side-by-side Lab Binary
search

JND-Pano [92] 2018 Panoramic
image

40/
QF 1∼100 25/42 5000x2500 JPEG PC

sequential Lab Binary
search

SIAT-JSSI
[33] 2019 Stereo

image

12/
QP 1∼51 28/50 1920x1080

HEVC intra
coding

(symmetric)
PC

side-by-side Lab Relaxed
binary
search12/

CR 1∼300 28/50 1920x1080 JPEG2000
(symmetric)

SIAT-JASI
[33] 2019 Stereo

image

12/
QP 1∼51 28/50 1920x1080

HEVC intra
coding

(asymmetric)
PC

side-by-side Lab Relaxed
binary
search12/

CR 1∼300 28/50 1920x1080 JPEG2000
(asymmetric)

VVC [126] 2021 Image 202/
QP 13∼51 20/20 1920x1080 VVC PC

side-by-side Lab Binary
search

KonJND-1k
[84] 2022 Image

1008/
QF 1∼100 42/503 640x480 JPEG Flicker

(8Hz)
Crowd

-sourcing Slider
1008/

QP1∼50 42/503 640x480 BPG

MCL-JCV [136] 2016 Video 30/
QP1∼51 50/∼150 1920x1080 AVC PC

sequential Lab Binary
search

Huang et al.
[52] 2017 Video 40/

QP1∼51 30/30 1920x1080 HEVC PC
sequential Lab Binary

search

VideoSet [138] 2017 Video 220/
QP 1∼51 30/800

1920x1080
1280x720
960x540
640x360

AVC PC
sequential Lab

Relaxed
binary
search

FlickerVidSet
[63] 2024 Video

45/
QP 0∼51 42∼48/511 640x480 AVC PC

side-by-side
+flicker

Crowd
-sourcing Quest+

45/
QP 0∼63 41∼51/511 640x480 VVC

Our HD
AMZ-HD-VJND 2022 Video

180/
dynamic

CRF
20/20 1920x1080 HEVC PC

sequential Home
Relaxed
binary
search

Our HDR
AMZ-HDR-VJND 2023 Video

180/
dynamic

CRF
20/20 3820x2160 HEVC PC

sequential Home
Relaxed
binary
search

1 Different from other methods, FlikerVidSet proposed a "Collective Observer" approach.
For a given content, the common approach involves each observer conducting an entire
JND search separately. However, for the "Collective Observer", each step of the JND
search is conducted by a randomly selected observer.
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— VVC [126] is similar to MCL-JCI, but it uses VVC compression instead. It offers a
larger set of source images with fewer distortion levels. The subjective test is carried
out in a controlled lab setting with a 55-inch smart TV.

— KonJND-1k [84] is a large-scale image JND dataset comprising 1008 source im-
ages compressed using JPEG and BPG with QF values ranging from 1 to 100 and
QP ranging from 1 to 51. The subjective test is conducted in a crowd-sourcing en-
vironment. Unlike previous datasets, KonJND-1k employs a slider method instead
of binary search to obtain the JND image. Additionally, instead of displaying the
reference and distorted images side by side, they conduct a flicker test where the
distorted image and the reference image alternate at a frequency of 8Hz.

For video JND datasets (VW-JND datasets):

— MCL-JCV [136] is a video JND dataset including 30 source videos compressed
using AVC with QP values ranging from 1 to 51. Each source video is evaluated by
50 subjects, with a total of more than 150 participants in the subjective test. The
reference video and its compressed version are displayed sequentially on a 65-inch
TV with a native resolution of 3840x2160. The binary search method is used to
update the comparison video.

— Huang et al. [52] collected a video JND dataset comprising 40 source videos. In
contrast to MCL-JCV, the type of distortion used is HEVC instead of AVC.

— VideoSet [138] is a large-scale video JND dataset comprising 220 source videos
compressed using AVC with QP values ranging from 1 to 51 for various resolutions
(1080p, 720p, 540p, and 360p). Each source video is evaluated by more than 30
subjects, totaling over 800 participants. Relaxed binary search is used to track the
JND threshold.

— FlickerVidSet [63] includes 45 selected and cropped sources from VideoSet. The
subjective test is conducted in a crowd-sourcing environment. Instead of displaying
the reference videos and the distorted versions sequentially, two side-by-side method-
ologies are used. In the first method, the reference video and the distorted video
are played simultaneously side by side, referred to as the plain test. For the second
method, the distorted video is replaced by a flicker video. This flicker video alter-
nates frames of the reference video with frames of the distorted video at a temporal
frequency of 8Hz. The Quest+ method is employed to track the JND threshold.
They demonstrate that the flicker test is more sensitive than the plain test.
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3.2.4 Other relevant works

Comprehensive JND Datasets in section 3.2.3 are all compression-oriented, meaning
that the labels of JND points are based on levels of compression distortion. However, a
generalized JND model should take different kinds of distortion into account. Therefore,
Liu et al. [93] proposed a more comprehensive JND dataset for images. It contains 25
types of distortion, including Gaussian noise, motion blur, jitter, etc. Each distortion has
4 or 5 distortion levels. They used a coarse-to-fine strategy to select JND points, first
collecting MOS (Mean Opinion Score) of distorted images as the preliminary selection
criterion, and then using a flicker test to make fine JND selections. There are 106 source
images and 1642 JND maps collected from 30 subjects using a crowdsourcing platform.

Zhang et al. [150] also collected a JND dataset to validate their Learned Perceptual
Image Patch Similarity (LPIPS) metric. This dataset includes traditional distortions such
as photometric distortion, compression distortion, and also CNN-based distortion. Each
image patch among a total of 4.8k patches is distorted by one type of distortion randomly
and evaluated by three subjects to determine if they can perceive the difference. It is
worth noting that this dataset is not designed to track the threshold of JND distortion
because only one type of distortion is applied to each image patch, and the distortion
level is not varied.

2AFC JND Two-Alternative Forced Choice (2AFC) with scale reconstruction is also
used to determine JND. Hoffman et al. [46] defines 1 JND as a difference in the image
that, in a 2AFC test, observers can correctly identify the reference image between the
reference and the distorted image with a probability of 75%. They collected a database of
18 images with more than 250k responses from observers using a flicker test. Pérez-Ortiz
et al. [117] proposed a method to scale the 2AFC to a unified quality scale, such that a
difference of 1 on the scale is equal to 1 JND.

3.2.5 Motivation

Despite the availability of existing datasets, several challenges remain to be addressed.
Firstly, all current VW-JND datasets use Quantization Parameter (QP) as the distortion
proxy. However, QP has limitations when applied to real-world industry settings, partic-
ularly in HTTP Adaptive Streaming (HAS).

This is because QP controls the level of compression but does not ensure a consistent
bitrate, which is crucial for maintaining streaming quality in bandwidth-constrained en-
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vironments. To tackle this issue, we collected datasets using Constant Rate Factor (CRF)
as the distortion proxy, which is more practical for maintaining a relatively consistent
bitrate compared to constant QP [124].

What is the link between p%SUR and 2AFC JND?

Giving one reference image/video and its distorted version, if the distance
between these two is 1 JND according to a 2AFC test with scale recon-
struction, then the SUR value between them is 50%. More generally, if the
probability of correctly selecting the reference during a 2AFC test is c%,
then it can be computed as:

c% = 1
2p% + (1− p%) = 1− 1

2p% (3.8)

Where p%SUR means that p% of observers cannot perceive a difference
between the reference and the distorted version; they will randomly vote
during a 2AFC, while 1 − p% of observers can perceive a difference, and
they will vote for the reference during a 2AFC. Typically, for a 75%SUR,
the corresponding c of 2AFC value is 62.5%, and for a 50%SUR, it’s 75%.

Secondly, existing VW-JND datasets are primarily designed for Standard Dynamic
Range (SDR) video, yet there is a growing demand for High Dynamic Range (HDR)
videos due to the increasing availability of HDR contents [30, 110]. Therefore, we collected
VW-JND datasets specifically for HDR content.

Thirdly, the resolution of existing datasets is typically limited to HD resolution. To
address the need for high-quality content, we collected UHD resolution VW-JND datasets.

Moreover, most existing datasets are collected in lab environments, limiting their eco-
logical validity. To overcome this limitation, we collected new VW-JND datasets in a home
environment, as described in Chapter 2, to better reflect real-world viewing conditions.

Additionally, one of the major challenges in JND subjective testing is the time-consuming
nature of the JND search process. For example, in the VideoSet dataset, each Source
Video Sequence (SRC) is encoded into 51 Processed Video Sequences (PVSs) using H.264
with QP ranging from 1 to 51, leading to significant time costs. To mitigate this issue,
we proposed preprocessing of JND candidate playlists (JCP) to incorporate a dynamic
range of distortion levels instead of a fixed range (details are provided in Section 3.3.3).
The comparison of our proposed JND datasets with existing datasets is summarized in
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Table 3.1.

3.3 JND search methodology

In Section 3.2.3, we outlined the JND search algorithms used in current JND datasets.
The goal of these algorithms is to determine the Just Noticeable Difference (JND) thresh-
old by subjective tests. Typically, the JND search employs a psychophysical approach,
where human observers assess and provide feedback on differences between the reference
and distorted versions. This process demands considerable time and attention from par-
ticipants. Hence, selecting an efficient JND search method is crucial for effective dataset
collection.

In this section, we will introduce psychophysical methods applicable for JND searches
(Section 3.3.1). Following this, we’ll simulate and compare the accuracy and efficiency of
various JND search methods (Section 3.3.2). Lastly, we’ll introduce our proposed opti-
mization of JND search methodologies through pre-processing of JCP in Section 3.3.3.

3.3.1 Related works

— Method of Limits, also known as the linear method, is a psychophysical method
introduced by Fechner in 1860 [35]. It is a simple method that involves presenting
stimuli in ascending or descending order of intensity until the observer can perceive
the stimulus. The ascending and descending orders are repeated several times, and
the results are averaged to obtain the threshold estimation.

— Slider: Lin et al. [84] proposed using a slider-based adjustment combined with the
flicker test to collect a large-scale image JND dataset. Observers can freely drag the
slider to adjust the distortion level of the distorted image until they can perceive
the flicker effect. The authors claimed that the slider method can obtain comparable
results with binary search while being more efficient. However, the slider method is
more suitable for images than for videos.

— Method of Constant Stimuli presents stimuli in a quasi-random order that en-
sures each will occur equally often [31]. The observer is asked to respond whether
they can detect the difference between the reference stimulus and the distorted stim-
ulus. The threshold is estimated by fitting a psychometric function to the data. Each
stimulus needs to be presented multiple times (usually not less than 20); therefore,
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this method is rather time-consuming and requires patient, attentive observers.

— Simple Staircase is a modification of the Method of Limits. It is introduced by
Békésy in 1960 [15]. The stimulus intensity is varied in a stepwise manner, and
the observer is asked to respond whether they can detect the difference between
the reference stimulus and the distorted stimulus. The step size is decreased after
each reversal, and the threshold is estimated by averaging the reversal points. The
problem with this Simple Staircase method is that the observer may easily become
aware of the pattern of the stimulus intensity presentation, leading to biased thresh-
old measurement. Therefore, there are many variations of the staircase method, such
as the two interleaved staircase [26].

— PEST: Parameter Estimation by Sequential Testing (PEST) uses Maximum Like-
lihood Estimation (MLE) to select the most efficient stimulus intensity for a given
trial [83]. Different with the staircase method, the PEST method can adaptively
adjust the step size according to the observer’s response. It usually assumes the
psychophysical function is a sigmoid function.

— Quest+ is a Bayesian adaptive psychometric method that estimates the threshold
by fitting a psychometric function to the data [142]. It is a generalization of the
original QUEST method [141]. It is an adaptive variant of the Method of Constant
Stimuli, and it can adjust the stimulus intensity adaptively according to the ob-
server’s response. Mohsen et al. [63] adopted Quest+ to collect VW-JND datasets
through crowdsourcing.

— Binary Search is a widely used algorithm in computer science. Taking the JND
Candidate Playlist (JCP) with QP from 0 to 51 with step size 1 as an example (see
Figure 3.3 left), the observer will be asked initially if they can perceive the difference
between the video with QP = 0 (Reference) and QP = 25 (middle of the original
interval of JCP). If "YES", the interval QP = [26, 51] will be excluded in the next
comparison; if "NO", the interval QP = [0, 24] will be excluded.

— Relaxed Binary Search: Binary Search may encounter issues when the observer
makes an unconfident decision in the previous comparison. The Relaxed Binary
Search, proposed by Wang et al. [138], is a modified version of Binary Search. It only
eliminates one quarter of the original interval instead of half, for example, interval
QP = [39, 51] instead of QP = [26, 51] in the previous example (see Figure 3.3
right).
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Figure 3.3 – Binary Search vs. Relaxed Binary Search: R stands for reference, the list
on the right is the JCP with QP from 0 to 51 with step size 1. yes and no indicate the
observer’s response.

3.3.2 Simulation and comparison of JND search methods

In this section, we aim to compare the accuracy and efficiency of various JND search
methods to understand the pros and cons of these methods. We will be examining three
widely used JND search methods: Relaxed Binary Search, Simple Staircase, and Quest+.
The comparison will be based on both experiment time efficiency and JND measurement
accuracy.

Experiment time efficiency will be quantified by the number of trials or comparisons
required, while JND measurement accuracy will be evaluated using the Mean Absolute
Error (MAE) between the measured JND and the ground truth JND of the observer
simulation model.

Observer simulation model

We employed the same assumption as [63, 138] that for a given content, observers’ JND
thresholds follow a Gaussian distribution with mean µ and standard deviation σ. Here, µ

represents the sensitivity to distortion of each observer, while σ indicates the consistency
of the observers’ responses. In Figure 3.4, we showcase three different observers. Observer
1 is the most sensitive to distortion, while observer 2 is the least sensitive to distortion but
the most consistent in response. To create a more realistic observer model, we referred to
the publicly available VW-JND dataset VideoSet [138]. Among the 4 resolutions available
in VideoSet, we only use the 1080p resolution as reference. It was observed that for the
220 Source Content (SRC) videos in VideoSet 1080p, the range of µ and σ are [15, 35]
and [2.36, 9.38] respectively. These values were used to conduct the following simulations.

44



3.3. JND search methodology

Figure 3.4 – Observer simulation model

Experiment time

Subjective tests to determine the JND threshold are considerably longer than other
classic subjective tests for image and video quality, such as ACR and DCR tests. Given
budget constraints and observer fatigue concerns, it is crucial to measure the experiment
time of each JND search method. The subjective test time is determined by the number
of trials or comparisons required.

Figure 3.5 – Comparison of Relaxed Binary Search, Simple Staircase, and Quest+ in terms
of the number of trails/comparison for the observer model follows N (25, 22)

Simple Staircase stops the search when the number of reversals reaches a predefined
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number, typically set to 6 to 9 [31]. The number of trials is determined by the number
of reversals. In Figure 3.5, the gray line represents the simulation process of the simple
staircase method with descending order initialization and a step size of 2. In this example,
the number of reversals is 9, resulting in 26 trials. The final JND is 25.33, with an MAE
of 0.33 compared to the ground truth JND of the observer model.

Figure 3.6 – Number of reversal vs. MAE for Simple Staircase

We furthermore conducted simulations to understand the relationship between the
number of reversals for stopping the simple staircase search and the MAE of the obtained
JND. As shown in Figure 3.6, the MAE decreases as the number of reversals increases for
different step sizes. The simulations were conducted for observers following a N (25, 22)
distribution, repeating 1000 times. Additionally, we conducted simulations for different
observer models, and the results can be found in Annex B. The MAE increases with the
increase of the standard deviation of the observer model, while the mean of the observer
model has almost no impact on the MAE.

Interestingly, the step size impacts the MAE differently for different standard devia-
tions of observer models. For higher observer consistency (i.e., smaller σ), smaller step
sizes perform slightly better than larger step sizes. However, for lower observer consistency
(i.e., larger σ), larger step sizes perform significantly better than smaller step sizes. This
indicates that a larger step size is more robust for inconsistent observers (details can be
found in Figure B.3 in Annex B).

Relaxed Binary Search will stop the search when the search interval is less than
2 [138]. For classic binary search, it is well known that the maximum number of comparison
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is
log2 (len(JCP )) = log(1/2) (1/len(JCP )) , (3.9)

However, the interval to keep for relaxed binary search is 3/4 instead of 1/2 in each
iteration, thus the maximum number of comparison is calculated by log(3/4) (1/len(JCP )).
Figure 3.7 shows the number of trials required for the relaxed binary search method with
different JCP lengths. The simulation was conducted for various observer models. The
number of trials increases as the length of the JCP increases, following a logarithmic
relationship. For VideoSet [138], where the length of the JCP is 51, the number of trials
ranges between 10 and 11 for different observer models. These simulation results are
consistent with those reported in [63].

Figure 3.7 – Number of trials vs. length of JCP for Relaxed Binary Search

For Quest+, Jenadeleh et al. [63] set the trial number to 30, while Parie et al. [116]
used 64-trials Quset+ procedure to determine JND. We conducted simulations for Quest+ 1

to explore the relationship between the number of trials and the MAE of JND measure-
ment.

As shown in Figure 3.8, the MAE decreases as the number of trials increases for
observer model following a N (25, 22) distribution repeated 1000 times. We also conducted
simulation for different observer models and the results can be found in Annex C.

Similar to the Simple Staircase method, the MAE increases with the standard devi-
ation of the observer model. Across different observer models, the MAE decreases with

1. https://github.com/hoechenberger/questplus.
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Figure 3.8 – Number of trials vs. MAE for Quest+

an increase in the number of trials. The comparison of the three JND search methods in
terms of the number of trials and MAE will be further discussed in Section 3.3.2.

JND measurement accuracy

We simulate the JND search process for different observer models and compare the
accuracy of the JND measurement for the three JND search methods: Simple Staircase,
Relaxed Binary Search, and Quest+. Detailed results can be found in Annex D. We used
the same JCP as VideoSet (QP 1 51) for simulation, and µ ranges from 15 to 35 and σ

ranges from 2 to 8 for the observer models. The MAE is averaged over 1000 simulations
for each observer model.

For Simple Staircase, we varied the reversal times (from 6 to 8) as the stop condition,
each with step sizes ranging from 1 to 3. Observations from Table D.1 in Annex D are as
follows:

— Increasing the step size leads to lower trial numbers. However, the impact of step
size on the Mean Absolute Error (MAE) varies across different observer models. For
observers with higher consistency, smaller step sizes perform slightly better, whereas
for less consistent observers, larger step sizes are significantly better, as also shown
in Figure B.3 of Annex B.

— Changes in the µ value do not significantly affect the MAE, while changes in the σ

value have a notable impact. MAE increases with higher standard deviations of the
observer model for different Simple Staircase settings.
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— The µ value significantly impacts the trial numbers. Higher µ values lead to lower
trial numbers, as the staircase begins from the highest distortion level in descending
order. Conversely, if we set the staircase to begin from the lowest distortion level in
ascending order, the trial numbers will increase with higher µ values.

— For the same step size, increasing the reversal time for the stop condition will result
in higher trial numbers but also improve the MAE. The MAE decreases with the
increase of the reversal time for different observer models.

For Relaxed Binary Search, observations from Table D.1 in Annex D are as follows:

— Trial numbers always range between 10 to 11 for different observer models with a
fixed JCP length (consistent with Figure 3.7).

— Similar to Simple Staircase, the accuracy of JND measurement decreases with higher
standard deviations of the observer model, while the impact of the mean is not
significant.

— To achieve a similar MAE as the Simple Staircase method, Relaxed Binary Search
requires fewer trials, making it more efficient in terms of experiment time.

For Quest+, observations from Table D.1 are as follows:

— MAE decreases with an increase in the number of trials for different observer models.

— Similar with Simple staircase and Relaxed Binary Search, the JND measurement
accuracy reduces with the increase of the standard deviation of the observer model.

— Similar to Simple Staircase and Relaxed Binary Search, JND measurement accuracy
decreases with higher standard deviations of the observer model.

— With the same trial numbers as Relaxed Binary Search, the accuracy of Quest+ is
significantly lower compared to Relaxed Binary Search.

If we maintain consistent trial numbers for the three JND search methods mentioned
above, we can plot the MAE of each method with different observer models. As depicted
in Figure 3.9a, the higher the inconsistency of the observer model, the greater the MAE
for all three methods. Notably, the Relaxed Binary Search method outperforms the other
two methods in terms of MAE across various observer models.

The trial number for Relaxed Binary Search is only determined by the length of
the JCP, whereas the trial numbers for Simple Staircase and Quest+ are predefined. As
illustrated in Figure 3.9b, with a fixed observer model, the MAE decreases as the trial
numbers increase for both Simple Staircase and Quest+. While the Simple Staircase and
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Quest+ methods can achieve higher accuracy than the Relaxed Binary Search method,
they require significantly more trials. For instance, Simple Staircase needs twice as many
trials as Relaxed Binary Search to attain the same MAE.

(a) MAE vs. observer σ (b) MAE vs. trial numbers

Figure 3.9 – Comparison of different JND search methods: (a) Maintaining nearly equal
trial numbers and observer µ = 25, MAE versus observer σ for different JND search
methods. (b) Keeping the same observer model (µ=25, σ=5), MAE versus trial numbers
for different methods.

In conclusion, the Relaxed Binary Search method proves to be more efficient in terms
of experiment time compared to Simple Staircase and Quest+. Although Simple Staircase
and Quest+ can achieve higher accuracy than Relaxed Binary Search, they necessitate
significantly more trials. Considering the need for collecting large-scale VW-JND datasets
and budget limitations, the Relaxed Binary Search is a more practical choice for collecting
our HD and HDR VW-JND datasets.

3.3.3 Pre-processing of JCP

The JND search procedure remains time consuming, even with the fastest search
method: relaxed binary search. For example, for a JCP lenght of 51 in VideoSet (QP
1 51), it requires 10 to 11 trials to find the JND (details are provided in Section 3.3.2).
The total time for one observer to find the JND for one content Tjnd can be computed as:

Tjnd = (tvideo × 2 + trating)×Ntiral (3.10)
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where tvideo is the duration of the video sequence, multiplied by 2 because the videos are
played sequentially. trating is the duration of the rating, and Ntrial is the number of trials.
For a 10-second video and a 5-second rating, the total time for one observer to find the
JND for one content is more than 4 minutes, which is still challenging for collecting a
large-scale VW-JND dataset.

The JND search time depends on the length of JCP. The longer the JCP is, the longer
the search time will be for different JND search methods. Meanwhile, it is well known
that from a certain level of compression (e.g., QP = 40), it is almost certain that anyone
with correct visual acuity can perceive the difference between the reference and the PVS.

Therefore, we proposed a method to optimize the JND subjective test time by reducing
the length of JCP with the help of a pre-processing using the mapping function from
VMAF to JND proposed in [155]. The mapping function for HD videos is shown in
Figure 3.10. It can be observed that the higher the VMAF difference (∆VMAF) between
two videos (same content, different encoding recipes), the more likely it is for humans to
perceive differences between them in terms of quality.

The idea is to remove the low quality PVSs that human eyes can perceive "for sure"
differences to reduce the numbers of comparison before finding the JND. For a given
threshold thr%, the corresponding value of ∆VMAF in the mapping function is denoted
as Vthr%. The reference for the 1st JND is SRC, therefore ∆VMAF = VMAF(SRC) −
VMAF(PV S) and VMAF(SRC) = 100. The PVS whose ∆VMAF is larger than Vthr%

will be removed from the JCP. Eq.(3.11) stipulates the condition to eliminate the PVS to
save subjective test time.

VMAF(PV S) < 100− Vthr% (3.11)

As shown in Table 3.2, we compared the trial numbers and experiment times. The
"Mean of len(JCP )" represents the average length of the JCP across the entire datasets.
As the threshold thr% in the mapping function decreases, Vthr% decreases and the number
of PVSs eliminated increases according to Eq.(3.11), thus decreasing the average length
of JCP. However, there’s a possibility that the JND video may also be excluded during
this procedure. The last columns in Table 3.2 indicate the number of videos whose JNDs
are excluded during the pre-processing. It can be observed that only when the threshold
is close to 1, we can ensure not to remove any JND in VideoSet.

The maximum number of comparisons/trials is calculated as in Section 3.3.2, and the
duration is estimated by Eq.(3.10). It can be concluded that our proposed method can
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Figure 3.10 – Mapping function between ∆VMAF and probability of perceive difference
between 2 videos with different encoding recipes for HD videos

reduce the subjective test duration by 9.09% without removing any mandatory informa-
tion.

Table 3.2 – Benchmark between our solutions and original relaxed binary search in terms
of testing time in VideoSet (1080p)

JND search method Mean of
len(JCP)

Max
trial number Duration (s) JND excluded

baseline[138] 52 11 275 0

thr. =

99% 36.99 10 250 0
95% 29.54 9 225 45
85% 27.21 9 225 113
75% 24.85 8 200 159

3.4 Content selection

The videos for our JND datasets were provided by the Prime Video team. These source
videos cover a wide variety of genres of Video on Demand (VOD), including action, drama,
comedy, TV shows, documentaries, animations, etc. All the videos are cut into 10-second-
long sequences with a constraint on the number of scene cuts. Due to budget limitations,
we have decided to collect one HD SDR and one UHD HDR VW-JND dataset, each
containing 180 video contents. To ensure a comprehensive coverage of content types, we
need to select representative contents.

52



3.4. Content selection

The considered features to characterize the contents are:

— Spatial Information (SI) [55] reflects the spatial complexity of videos. Higher SI
values indicate more details, contrast, and edges in the videos.

— Temporal Information (TI) [55] reflects the temporal complexity of videos.
Higher TI values indicate more motion and dynamics in the videos.

— Colorfulness is an important visual feature [4]. We used the metric proposed by
Hasler et al.[44] to compute the colorfulness of the videos.

— Texture features can be extracted by computing the Gray Level Co-occurrence
Matrix (GLCM) [42]. GLCM is, in fact, a 2-D histogram given distance and angle.

— Ambiguity is a measure of the difficulty observers face in judging content quality.
We used the content ambiguity features proposed by Ling et al. [88], which are
based on content ambiguity derived from subjective test results proposed by Li et
al. [79] as training labels.

— Bitrate-Distortion cluster is a feature to characterize the behavior of video con-
tent towards compression. Ling et al. [89] proposed a Bitrate-Distortion rate clus-
tering method to classify content into different clusters based on the slope of the
BD-rate.

For HDR videos, besides the above features, we also considered the following features:

— MaxCLL (Maximum Content Light Level): This represents the maximum bright-
ness level in the video.

— MaxFALL (Maximum Frame Average Light Level): This indicates the maximum
average brightness level in the video.

— WCG (Wide Color Gamut): These features describe the color volume of the video.
We used the metric proposed by Lee et al. [73, 74].

— HDR contrast: We used the features proposed by Narwaria et al. [111] for HDR
image content selection. These features reflect the quality difference between the
original HDR content and contrast-reduced content.

We compute these features for all the 10-second video clips. For WCG and HDR contrast,
we only compute the features for the first frame of the video clips. These features are then
input into a K-means clustering algorithm to group the videos into different clusters. We
select videos from each cluster to ensure a broad coverage of content types.
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3.5 Summary

In this chapter, we first introduce the concept of JND and its significance in video
quality assessment. Subsequently, we generalize the definition of SUR with a proxy ap-
plicable to any distortion level. SUR stands as one of the most crucial concepts in this
thesis. Following that, we discuss the motivation behind collecting new VW-JND datasets
after comparing the currently available JND datasets across different aspects.

Next, we delve into the JND search methods, which constitutes the most time-consuming
part of the JND subjective test. We compare the accuracy and efficiency of three widely
used JND search methods: Relaxed Binary Search, Simple Staircase, and Quest+. Our
findings reveal that the Relaxed Binary Search method is more efficient in terms of exper-
iment time compared to Simple Staircase and Quest+. Based on the simulation results,
we propose a pre-processing method to optimize the time efficiency of the JND subjective
test.

Finally, we provide a brief overview of the content selection process for our VW-JND
datasets. The new HD and HDR datasets, named AMZ-HD-VJND and AMZ-HDR-VJND
respectively, were collected following the subjective test methodology described in this
chapter and the "In-the-Wild" subjective test environment set-up in Chapter 2. Further
analysis of the collected dataset will be presented in the next chapter.

Chapter Contributions

— Extended the definition of SUR to include proxies beyond encoding parame-
ters.

— Benchmarked various JND search methods, evaluating both their accuracy
and efficiency.

— Proposed a pre-processing method to significantly enhance the time efficiency
of JND subjective tests.
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Part of this chapter has been published in research papers [161, 156].

4.1 Introduction

After collecting subjective datasets, it’s crucial to analyze the data before developing
any objective prediction models or metrics. This analysis helps determine the reliability
of the collected data and identify any outliers that may need to be addressed. To address
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these concerns, we propose a new data screening method called ZREC in Section 4.2.
Furthermore, while uncertainty has been widely studied for traditional rating exper-

iments, there has been limited analysis of uncertainty for Satisfied User Ratio (SUR) of
JND. In Section 4.3, we present an uncertainty analysis for the SUR curve. This analysis
is crucial when using the SUR for further analysis or model training.

Additionally, the subjective tests of the VW-JND pipeline introduced in previous
chapters (2, 3) present an opportunity to conduct a longitudinal study of the subjective
data. Unlike classic In-Lab subjective tests, our At-Home subjective tests were conducted
over a longer period. In Section 4.4, we present the longitudinal analysis of the subjective
data.

4.2 ZREC: robust recovery of mean and percentile
opinion scores

Observer screening and subject opinion score recovery is essential for collecting a re-
liable QoE database. In this section, we propose a new method, ZREC 1, which uses
Z-scores to estimate subject bias, inconsistency, and content ambiguity. Additionally, we
propose Mean Opinion Score (MOS) recovery and Percentile Opinion Score (POS) recov-
ery scheme based on the three estimated parameters. ZREC does not fully reject subjects,
rather adjust their coefficients in the MOS/POS recovery, allowing for more efficient use of
data collection. The estimated parameters of ZREC are highly correlated with more com-
plex solver-based methods and standards. In addition, ZREC recovers MOS with smaller
confidence intervals than the state of the art. Experimental results also demonstrate that
using recovered pth POS as ground truth during training improves the performance of
SUR prediction.

4.2.1 Background and motivation

Observer screening is an essential steps of collecting a reliable Quality of Experience
(QoE) database. A range of methods [79, 75, 76, 2, 1] with varying complexities have
been proposed, and various standards [56, 58, 57] include recommendations for this pur-
pose. Observer screening can reduce personal bias, eliminate outliers, and provide higher

1. available at: https://github.com/kyillene/ZREC
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confidence data. Additionally, it has also been demonstrated that training learning-based
metrics on recovered MOS can enhance their performance to a certain extent [118].

The collected QoE measurements in subjective studies are often characterized as a
combination of subject bias, inconsistency and the underlying quality of the stimuli [79].
As shown in Eq.(4.1), we model the raw opinion scores as a random variable oi,j for
subjects i and stimulus j, it can be represented as the sum of the true opinion score Oj,
the subject bias Bi, and the content ambiguity Ajεj, where εj is standard normal variable.

oi,j = Oj + Bi + Ajεj (4.1)

Subject bias refers to the systematic error of a subject towards a certain direction,
e.g. a positive bias indicates the subjects overall tendency to perceive a higher quality.
Subject inconsistency is associated with the random unexplained error included in the
observations, such as lack of attention, malicious intentions etc. On another front, the
Content ambiguity defines the level of difficulty in evaluating a stimulus due to its
inherent ambiguity.

Below, we provide a summary of commonly used MOS recovery methods from the
literature and briefly discuss their advantages and disadvantages. In addition, Table 4.1
provides a quick overview of the parameters estimated by each model.

Table 4.1 – Summary of the estimated parameters by each mos recovery model.

BT500 P913 P910 MLE ZREC
Subject Inconsistency ✗ ✗ ✓ ✓ ✓

Subject Bias ✗ ✓ ✓ ✓ ✓

Content Ambiguity ✗ ✗ ✗ ✓ ✓

— BT500: ITU-R BT.500 Recommendation [56] defines outlier rejection proce-
dures. We use the widely adopted kurtosis-based outlier rejection procedure in
BT.500 [56], where subjects are rejected based on the number of opinion scores
outside of the predefined amount of standard deviation range of the population. If a
subject found to be an outlier, all of his/her opinions are removed from the dataset.
MOS is calculated as the mean of remaining subjects. Due to hard-coded thresholds
and removing all votes of a detected outlier, the MOS recovery may result in even
larger confidence intervals

— P913: also called P913-12.4. ITU-R P.913 Recommendation clause 12.4 [57] pro-
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poses a procedure based on both bias removal and outlier rejection. For each
subject, the bias is calculated as the average difference between the MOS and sub-
jects’ opinion score of each stimulus. Estimated biases are removed from subject
opinion scores and then MOS can be calculated as the average of bias-removed
opinion scores, optionally after rejecting outliers. It can be seen that P913 is a
slight improvement over BT500. However after removing the subject bias, the ob-
server are still rejected with hard-coded parameters or treated equally by ignoring
the subject inconsistency.

— P910: also called P913-12.6. ITU-R P.913 Recommendation clause 12.6 [57] de-
fines a procedure where MOS is recovered by bias removal and subject inconsis-
tency weighting. Same procedure is also included in ITU-R P.910 Recommendation
Annex-E [58]. The procedure defines the individual opinion scores of a subject as
the combination of subject bias, inconsistency and the true quality of the stimuli
and jointly solves these three parameters. Two solvers are proposed for the approach
in [79]. Due to minimal differences between the solvers, we only consider the Alter-
nating Projection (AP) solver in this work. P910 can be seen as the next step of the
P913 by additionally considering subject inconsistency during MOS recovery. Note
that the model does not provide any estimate for content ambiguity.

— MLE: Li et al. [78] proposed a a MOS recovery approach by jointly estimating
bias and inconsistency of subject and content ambiguity with Maximum Likelihood
Estimation (MLE) and belief propagation. In addition to bias and inconsistency of
subject as P910, MLE also provide content ambiguity. However, it is acknowledged
by the authors that the MLE solver has the issue of lacking of uniqueness in its
solution in certain cases, e.g., it cannot find solutions for our collected AMZ-HD-
VJND dataset (see Section 4.2.2).

To address the limitations of previous work, we propose an alternative method that
relies on Z-score to estimate subject bias, inconsistency, and content ambiguity. We also
present a simple yet efficient MOS and POS recovery scheme. Our proposed model is
more robust to different use-cases and datasets as it does not require a solver, which can
sometimes result in convergence issues. The contributions of Section 4.2 are:

— A simple yet robust statistical model for estimating subject bias, inconsistency, and
content ambiguity from subjective opinion scores.

— A MOS and POS recovery method based on the estimated subject bias and incon-
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sistency.

— Performance comparison between the proposed model and the state-of-the-art, val-
idated by estimating CIs and quantifying the impact of pth POS recovery on the
accuracy of SUR prediction models.

4.2.2 QoE Datasets

The performance of ZREC and other existing models from the literature in terms of
MOS and POS recovery, as well as estimation of subject bias, inconsistency and content
ambiguity, have been assessed on two datasets with distinct characteristics.

AMZ-HD-VJND: is our collected dataset for HD videos. There are 180 source con-
tent (SRC) evaluated by 20 naive subjects with correct visual acuity. Each SRC has been
compressed with HEVC with different Constant Rate Factor (CRF) and presented to each
subject via Relaxed Binary Search [154] to find the JND of each subject. Therefore the
proxy of JND is represented by CRF value. SUR curve is the complementary cumulative
distribution function of the individual JNDs of a viewer group [159]. q%SUR is the CRF
value that corresponds to a SUR value on the SUR curve equals to threshold q%. 75% is
the most commonly used threshold [151, 137, 152, 86, 34]. More detials about this datasets
please refer to Chapter 2 and 3.

In this work, the individual JND annotations for each subject are considered as the
opinion scores. Additionally, the q%SUR is equivalent to the pth percentile (p = 1− q, see
Eq.(4.12) in Section 4.2.3) of opinion score. The opinion scores were used for MOS/CI
validation and parameter estimation experiments as well as to measure the impact of POS
recovery on the accuracy of SUR prediction models.

Netflix Public: Netflix Public Dataset [113] is a publicly available video quality
dataset with 79 Processed Video Sequences (PVS) where each evaluated by 26 subjects.
We used the opinion scores for MOS/CI validation and parameter estimation experiments.

4.2.3 Proposed Model

Let oi,j be the opinion score annotated by subject i for stimulus j. For a subjective
dataset that consist of m stimulus and have been evaluated by n subjects, the original
annotation can be represented by a matrix O ∈ Rn×m. For every stimulus, we first compute
the mean and standard deviation of the opinion score annotated by each subject:
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m(j) =
(

1
n

n∑
i=1

oi,j

)
, where j = 1, 2, . . . m (4.2)

s(j) =
√√√√ 1

n

n∑
i=1

(oi,j −m(j))2

 , where j = 1, 2, . . . m (4.3)

where m, s ∈ R1×m.
Afterwards, we acquire the Z-score matrix Z from the raw opinion score matrix O as:

Z = (O− Im)./Is (4.4)

where I = [1, 1, . . . 1]T , I ∈ Rn×1 and ./ is element-wise division.
Each element zi,j in matrix Z represents the number of standard deviations by which

the opinion score oi,j is away from the mj. The following analyses are mainly based on
the Z-score matrix Z.

Subject bias and inconsistency

Let B ∈ R1×n and C ∈ R1×n the vector of bias and inconsistency of n subjects
respectively. Bias and inconsistency for subject i is calculated with the mean and standard
deviation of the Z-score for subject i across all stimulus:

B(i) =
 1

m

m∑
j=1

zi,j

 , where i = 1, 2, . . . n (4.5)

C(i) =
√√√√ 1

m

m∑
j=1

(zi,j −B(i))2

 , where i = 1, 2, . . . n (4.6)

The key distinction between the estimation of subject bias in ZREC and P913 is that
ZREC describes the subject bias in the standard deviation range of each stimulus, while
P913 describes it in the opinion score range. By modeling subject bias in the standard
deviation range of individual stimuli, ZREC takes stimulus ambiguity into account.

Content ambiguity

It is important to clarify the difference between stimuli ambiguity and content ambi-
guity. In QoE datasets, multiple stimuli (i.e., PVS) can be generated from a unique source
content (i.e., SRC). We define the stimulus ambiguity for j as the standard deviation of
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subjects’ opinion score (Eq.(4.3)). Consequently, content ambiguity is defined as the mean
ambiguity of all stimuli that belong to a particular content l:

A(l) =
1

h

∑
j∈g

s(j)
 , where l = 1, 2, . . . t (4.7)

h is the number of stimulus for content l, g the list of stimulus index of content l, t is the
total number of contents in the entire datasets, A ∈ R1×t.

Mean opinion score recovery

We first remove the bias of each subject for each stimuli from the original annotation
O. The unbiased opinion score matrix U ∈ Rn×m is calculated with:

U = O−BTs (4.8)

ui,j is the element of U, which is the opinion score of subject i for stimuli j after
the removal of the bias of subject i. In Eq.(4.8), we multiply the bias of each observers
BT ∈ Rn×1 with the standard deviation s ∈ R1×m of different subjects’ opinion score
for every stimuli in Eq.(4.3) in order to re-scale the Z-score to the original opinion score
range.

To calculate the recovered MOS of stimuli j, denoted R(j), we employ a weighting
scheme that takes into account the inconsistency of the opinion scores provided by different
subjects. Specifically, instead of simply averaging the unbiased scores uj across all subjects,
we use a weighted average of uj, where the weight assigned to each score is inversely
proportional to the square of subject’s inconsistency. This means that subjects with higher
inconsistency are given less weight, and their opinion scores have less influence on the final
MOS calculation.

R(j) =


n∑

i=1
C(i)−2ui,j

n∑
i=1

C(i)−2

 , where j = 1, 2, . . . m (4.9)

Similar with the recovered MOS, weighted standard deviation is calculated as:

σw(j) =


√√√√√√√ n

n− 1 ×

n∑
i=1

C(i)−2(ui,j −R(j))2

n∑
i=1

C(i)−2

 (4.10)
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Where j = 1, 2, ...m. The factor of n/(n − 1) is intended to account for the number of
degrees of freedom, thus giving us an unbiased estimation of the standard deviation of
the population [19]. The 95% CI is thus computed with:

CI(j) = R(j)± 1.96σw(j)√
n

(4.11)

Pth percentile opinion score recovery

Algorithm 2 Calculate Qp, weighted pth percentile opinion scores
Require: unbiased subject opinions matrix, Un,m

Require: subject inconsistencies, Cn

Require: percentile to be calculated, p
number of subjects = n, number of stimuli = m
total weight of the population, w = sum(C−2

n )
percentile weight, wp = w × p/100
initialize Qp, a zero vector (with size=m) to store pth percentile opinion score for each
stimuli
for each stimuli j in m do

Un ← get subject opinions for stimuli j from Un,m

Un−sorted ← sort Un in ascending order
wn−sorted ← sort C−2

n with same indices as Un−sorted

initialize current weight, wc = 0
initialize current subject index, i = 0
while wc < wp do

Qp(j) ← get current subject (i) opinion from Un−sorted and set it as the pth

percentile score
w ← get current subject (i) weight from wn−sorted

wc ← wc + w
i ← i + 1

end while
end forreturn Qp

Some subjective/objective studies are not interested in mean of opinion scores but
the percentile of opinion scores. For JND and SUR studies [154, 151, 152, 86, 34, 135],
75%SUR is commonly used to train and evaluate objective metric. It can be easily proved
that for a given stimuli j:

q%SUR(oi) = (1− q) - th percentile(oi), (4.12)
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75%SUR is in fact 25th percentile. Therefore, we provide a weighted percentile ap-
proach where subject bias and inconsistency is taken into account. Algorithm 2 depicts
the process to calculate weighted percentiles Qp of an unbiased opinion score matrix Un,m

of n subjects and m stimuli for a given percentile p in range [0, 100].

4.2.4 Experiment Results

MOS recovery and confidence intervals

Figure 4.1 – Recovered MOS and their CI for four different methods on the Netflix Public
dataset with all the observers. The legend shows the average confidence interval for each
method across 79 stimuli. %CI represents the percentage of recovered MOS values that
fall within the confidence interval range for the 79 stimuli, based on 1000 bootstrapping
iterations. In each iteration, only half of the observers are used to recover the MOS.

Figure 4.1 depicts the MOS values and corresponding confidence intervals recovered
on the Netflix Public dataset. The results indicate that P910 and ZREC offer more precise
confidence intervals with values of 0.44 and 0.42, respectively.

Table 4.2 depicts the average 95% CI of the recovered MOS on the Netflix Public and
AMZ-HD-VJND datasets with all subjects. To evaluate the comparative reliability of the
confidence intervals generated by each method, we performed a bootstrapping analysis
comprising 1000 iterations. In each iteration, we randomly selected half of the subjects
and recovered the MOS with each model. Results shows that ZREC and P910 exhibit the
lowest average CI values while maintaining a relatively high CI% level. Despite having a
higher CI% value, P913 displays a significantly larger average CI compared to ZREC and
P910.
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Table 4.2 – Analysis of the CI of the recovered MOS for four different methods on the
Netflix Public and the AMZ-HD-VJND datasets. Avg CI represents the length of the
CI for each method on each dataset with all subjects included in MOS recovery. CI%
represents the percentage of recovered MOS values that fall within the confidence interval
range based on 1000 bootstrapping iterations. In each iteration, only half of the subjects
in each dataset are used to recover the MOS.

NETFLIX AMZ-HD-VJND
Avg CI CI% Avg CI CI%

BT500 0.5153 0.5645 1.2612 0.9285
P913 0.4986 0.9102 1.1254 0.8671
P910 0.4420 0.8885 1.0217 0.8805
ZREC 0.4172 0.8783 0.9813 0.8554

Estimated parameters

Table 4.3 – Pearson linear correlation coefficient (PLCC) between the estimated param-
eters of subject inconsistency, subject bias, and content ambiguity across various models.

Subject
Inconsistency

Subject
Bias

Content
Ambiguity

Model Pair NETFLIX
MLE - ZREC 0.9282 0.9952 0.9663
MLE - P910 0.9669 0.9964 -
P910 - ZREC 0.9372 0.9965 -
P913 - MLE - 0.9992 -
P913 - P910 - 0.9999 -
P913 - ZREC - 0.9965 -
Model Pair AMZ-HD-VJND

P910 - ZREC 0.9603 0.9994 -
P913 - P910 - 0.9999 -
P913 - ZREC - 0.9994 -

In this section, we analyze the correlation between the subject bias, inconsistency
and content ambiguity across the tested models. As summarized in the Table 4.1, BT500
does not estimate any of the parameters and thus excluded from the correlation analysis.
Moreover, P913 cannot estimate subject inconsistency and content ambiguity while P910
cannot estimate content ambiguity. In addition, MLE fails to converge to a solution for
AMZ-HD-VJND dataset.

Table 4.3 depicts the PLCC values between the indicated model pairs in each row. The
results indicate that the tested models are well correlated in terms of subject bias. On
the other hand, estimated subject inconsistencies show slight differences between models.
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Finally, MLE and ZREC shows relatively high correlations in terms of content ambiguity.
Despite the lower correlations for subject inconsistencies, ZREC estimations are in line
with the standards. It is impossible to know which model estimations are closer to the
ground truth, however the analysis showcases the relative reliability of the approach.

Impact of percentile opinion score recovery on the accuracy of SUR prediction
models

Table 4.4 – The mean and variance of absolute errors on 75%SUR prediction with SUR
prediction model [154] on AMZ-HD-VJND dataset without any recovery and with ZREC
and P910 POS recovery.

|∆75%SUR| Without
Recovery [154]

P910
POS Recovery

ZREC
POS Recovery

Mean Error 0.7489 0.7175 0.6883
Error Variance 0.9224 0.7198 0.6989

Previous work [118] has shown that training objective quality models on cleaned data
can improve the prediction performance. In this work, we compared the performance of
the 75%SUR prediction model [154] trained on 75%SUR from original datasets without
recovery and 75%SUR (25th percentile) recovered by ZREC and P910 respectively. Because
P910 only provide MOS recovery but not percentile recovery, we use Algorithm 2 with the
subject bias and inconsistency of P910 as input. The mean and variance of absolute error
of 75%SUR for different training data are shown in Table 4.4. It can be observed that the
75%SUR prediction model trained both on ZREC and P910 improved the prediction, in
which ZREC get a smaller prediction error than P910.

4.2.5 Conclusion

We introduced ZREC to estimate subject bias, inconsistency and content ambiguity,
all of which are fundamental for QoE studies. Using these parameters, ZREC can recover
the MOS and the POS whichever is more suitable for the QoE use-case in question. Our
findings indicate that ZREC can produce slightly tighter CIs for MOS recovery on two
datasets compared to the current state of the art models, albeit with a minor reduction in
accuracy. A tighter CI allows to reduce the required number of subjects in the subjective
study without sacrificing from the accuracy and resolving power. Furthermore, the results
of our experiments on the SUR prediction use-case demonstrate that ZREC can improve
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the performance of objective quality metrics by providing a more reliable ground truth
with 25th POS recovery.

4.3 Uncertainty analyses of SUR

In this section, we emphasize the importance of uncertainty estimation for subjective
SUR, a factor often overlooked in previous works (Section 4.3.1). We then introduce a
method to estimate the uncertainty of p%SUR (Section 4.3.2), which represents a single
point on the SUR curve, followed by estimating the uncertainty for the entire SUR curve
(Section 4.3.3).

For p%SUR, our CI estimation method does not rely on any distribution assump-
tion for the individual Just Noticeable Difference (JND). However, for SUR curve CI
estimation, distribution assumption becomes necessary. Additionally, we validate each
mathematical CI estimation method using the bootstrapping method.

4.3.1 Motivation

Several studies have shown that depending only on the Mean Opinion Score (MOS)
isn’t enough because it overlooks the diversity in subjective ratings [47]. Additionally, it
is important for VQM to consider the Confidence Interval (CI) of subjective data [119,
28, 25]. Ignoring the CI/uncertainty can lead to training models based on data that
are not statistically significant, resulting in an inaccurate understanding of the correct
behavior [70].

Similarly, the Confidence Interval (CI) of q%SUR, which represents the Pth percentile
of the individual Just Noticeable Difference (JND) score (see Eq.(4.12)), is also important
for further analysis of subjective data and the development of objective metrics based on
SUR.

As shown in Figure 4.2, when revisiting the original annotations in VideoSet, we dis-
covered instances where certain SRCs depicted nearly identical scenes, yet their respective
75%SUR values exhibited considerable disparity. As depicted in Figure 4.2, we present
sample frames from SRC#76 and #79, both featuring nearly identical video content, along
with the distributions of original VW-JND annotations provided by the individuals. No-
tably, the 75%SUR QP values for these two SRCs are 33 and 30, respectively, indicating
a significant difference. However, when performing the ANOVA [39] analysis on the two
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distributions, no statistically significant differences emerged. Furthermore, when exam-
ining the 95% confidence interval (95%CI) ranges for the 75%SUR values, they appear
relatively close, despite the significant disparity in the 75%SUR values themselves.

It is worth highlighting that previous works [137, 152, 135] have employed the 75%SUR
as ground truth for training their models, aiming to predict two distinct values for what
are essentially the same video contents, which can cause ambiguity for model training.
Therefore, it becomes imperative to analyze the uncertainty associated with the SUR
derived from subjective tests.

Figure 4.2 – The sampled frames of SRC#76 and #79 and the corresponding VW-JND
distribution in VideoSet [138].

4.3.2 Uncertainty estimation of p%SURemp

Mathematical CI estimation

In this section, we apply the definition of SUR for various proxies as outlined in Sec-
tion 3.2.2. We can determine p%SURemp for a specific video content using individual
VW-JND annotations collected from a sampled population through subjective test. How-
ever, if we were to replicate the same test with a different group of subjects, would we
obtain the same p%SURemp results?
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Figure 4.2 has shown that the 75%SURemp for almost same contents can be very
different. Therefore, assessing the uncertainty of the p%SURemp data obtained from the
collected datasets is very important.

Using statistical theory, we can estimate the true p%SUR of the entire population
based on the p%SURemp obtained from a sample of N subjects. If we assume that the
true p%SUR is equal to s, and we randomly select one subject from the population with
their VW-JND denoted as jm

n , we can calculate the probability of jm
n being less than s

using Eq.(4.13), in accordance with the definition of the p%SUR in Section 3.2.2. As a
reminder, in case 1, where quality decreases with an increase in the proxy (e.g., using QP
as the proxy as shown in Figure 4.2), the empirical SUR corresponds to the complementary
empirical CDF. In contrast, in case 2, where quality increases with the proxy (such as
VMAF), the empirical SUR is the empirical CDF itself.

Pr(jm
n ⩽ s) =

 (1− p)%, for case 1,

p%, for case 2.
(4.13)

Taking case 2 as an example, we define the random variable A as equal to 1 (event success)
when jm

n ⩽ s and 0 (event failure) when jm
n > s. Consequently, the random variable A

conforms to a Bernoulli distribution [18], as presented in Table 4.5.

Table 4.5 – The random variable A follows a Bernoulli distribution (this table serves as
an example for case 2)

Event A Probability
jm

n ⩽ s 1 (success) p%
jm

n > s 0 (fail) (1− p)%

A subjective test involving N subjects can be understood as N times independently
sampling the population. The count of event successes, denoted as X, conforms to a
binomial distribution [36]:

X ∼ B(N, p%). (4.14)

The PMF of X can be obtained by:

f(x, N, p%) = Pr(X = x) = Cx
Np%x(1− p%)N−x (4.15)

Where Cx
N = N !

x!(N−x)! and x ∈ [0, N ]. Figure 4.3 shows the PMF of the binomial dis-
tribution with parameters N = 34 and p = 75. When the count of event successes is
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Figure 4.3 – PMF of binomial distribution for N=34, p=75, and the 95%CI of 75%SUR

26, the probability is calculated as 0.1564. This indicates that if we were to conduct a
subjective test with 34 subjects, there is a 15.64% probability that 26 of these subjects
would have VW-JND values smaller than or equal to s. If we can determine the lower
and upper bounds, denoted as l and u, respectively, such that the cumulative probability
between them encompasses approximately 95%, we can confidently assert that there is a
95% probability that the number of subjects with jm

n ⩽ s falls within the interval [l, u].
We adapted the Near-symmetric Algorithm [41] to derive l and u for the desired CI

as described in Algorithm 3. Once l and u are determined, we arrange the values of Jm

in ascending order. Subsequently, the CI range for p%SURemp is between CIl = Jm
ordered[l]

and CIu = Jm
ordered[u], where Jm

ordered represents the ordered values of Jm. The 95%CI range
can be interpreted as follows: if we were to replicate the subjective test multiple times,
there is a 95% probability that the p%SURemp falls within this range.

Bootstraping CI

After computing the 95%CI ranges as presented previously, we perform bootstrapping
on the original annotations to compare with the CI estimation. For each bootstrap sam-
ple, we computed p%SURemp and calculated the percentage of p%SURemp values that fell
within the estimated 95%CI, denoted as Avg CI. We performed 1,000,000 bootstrapping
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Algorithm 3 Get lower bound and upper bound of target CI
Input: target_CI, binomial (index from 0 to N)

1: max_index ← argmax(binomial)
2: real_CI_list = []; l_list = []; u_list = []
3: l, u ← max_index; real_CI ← binomial[max_index]
4: while real_CI < target_CI do
5: left ← binomial[l − 1]
6: right ← binomial[l + 1]
7: if left ⩽ right then
8: real_CI+ = left; l = l − 1
9: else

10: real_CI+ = right; u = u + 1
11: end if
12: real_CI_list.append(real_CI); l_list.append(l); u_list.append(u)
13: end while
14: if real_CI_list[−1]− target_CI > target_CI − real_CI_list[−2] then
15: real_CI = real_CI_list[−2], l = l_list[−2], u = u_list[−2]
16: else
17: real_CI = real_CI_list[−1], l = l_list[−1], u = u_list[−1]
18: end if

return l, u, real_CI

iterations, each with sample sizes of 0.25, 0.5, and 0.75 of the original annotations. Ta-
ble 4.6 shows the Avg CI values for 95%CI estimation on 220 video contents of VideoSet
in 1080p for 1st JND.

Table 4.6 – Avg CI with 1,000,000 bootstrapping iteration with different sample sizes

Sample size 0.25 0.5 0.75
Avg CI 0.8331 0.9790 0.9998

In VideoSet, each SRC is annotated by 25 to 34 subjects. Consequently, when the
sample size is reduced to 0.25, we observe a decrease in Avg CI. However, on average, the
bootstrapped CI closely aligns with the mathematically based CI estimation presented in
the previous section, confirming the validity of our proposed mathematical CI estimation
method.
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4.3.3 Uncertainty estimation of SUR curve

In the preceding section, we calculated the uncertainty associated with the p% SURemp,
which represents just one point of the SUR curve. In this section, we delve into a com-
prehensive analysis of the uncertainty across the entire SUR curve. This is accomplished
through the application of Maximum Likelihood Estimation (MLE) to fit an analytical
curve.

MLE estimation

The VW-JND of each video content clip m can be seen as a random variable Jm. The
annotations from the JND subjective test by N observers can be seen as N independent
and identically distributed (i.i.d.) samples of Jm. From the observed values, i.e., the vector
of subjects’ annotations in Eq. (3.1), we can estimate the distribution of Jm.

Previous works [138, 137, 135, 152, 151, 63] have assumed that Jm follows a Gaussian
distribution. We can use Maximum Likelihood Estimation (MLE) to estimate the pa-
rameters of this distribution following the Gaussian assumption. The probability density
function of the Gaussian distribution for video content clip m is given by:

fm(j|µ, σ2) = 1√
2πσ2

e− 1
2( j−µ

σ )2

, (4.16)

where µ and σ are two parameters of Gaussian distribution. The likelihood function of
clip m:

Lm(µ, σ2|j) =
N∏

i=1

1√
2πσ2

e
− 1

2

(
jm
i

−µ

σ

)2

, (4.17)

where jm
i is the VW-JND value of the i-th observer obtained from the subjective test for

clip m. The log-likelihood function of clip m:

ℓm(µ, σ2) = log(Lm(µ, σ2|j)) (4.18)

The gradient vector of the log-likelihood function of clip m:

u(θ) = ∂ℓm(θ)
∂θ

=
 ∂

∂µ
ℓm(µ, σ2)

∂
∂σ2 ℓm(µ, σ2)

 , (4.19)

where u(θ) ∈ Rp×1, p is the number of the parameters. For Gaussian distribution, p = 2.
The optimal µ̂m and σ̂m are typically found by setting the gradient of the log-likelihood
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to zero, which is a necessary condition for a maximum. However, it is not always sufficient,
because any point where the gradient is zero could be a local maximum, a local minimum,
or a saddle point.

u(θ) = 0 (4.20)

This procedure can be generalized to other distributions than Gaussian, such as Lo-
gistic, Weibull, Gumbel, Rayleigh, etc.

Goodness-of-fit

However, when we observer the raw distribution of the VideoSet [138], we noticed that
the Gaussian distribution may not be the most suitable to model the data, as shown in
Figure 3.2 in Chapter 3. Therefore, we explore several alternative distributions and con-
duct goodness-of-fit tests to identify the most appropriate one. The experimental results
of the goodness-of-fit tests are presented in Table 4.7. The results reveal that the Weibull
distribution yields the largest log-likelihood, indicating its superiority in modeling the
VW-JND data of a group of observers.

Table 4.7 – Goodness of fit: different distributions and the resuls of log-likelihood

Distribution Nb of para Nb of reject Log-likelihood
Gaussian 2 2 -93.8587
Logistic 2 0 -94.1238
Weibull 2 0 -93.6152
Gamma 2 13 -96.2992
Gumbel 2 3 -97.0893
Rayleigh 1 218 -117.0835
Cauchy 2 1 -98.9519
Student-t 3 0 -93.6944

Mathematical CI estimation of MLE

The parameters of the distribution of individual JND can be estimated by the samples
of individual JND from subjective test using MLE. However, how certain is the estimation?
If we repeat the same subjective test with another group of observers, the estimated
parameters will probably change. Therefore it is important to estimate the Confidence
Interval (CI) of the estimated parameters of MLE.
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Bradley [22] outlined a method for estimating confidence intervals (CIs) for Maximum
Likelihood Estimators (MLEs). We adopt Bradley’s approach to determine the CIs for
the MLEs.

Initially, we compute the observed Fisher’s Information matrix, denoted as I(θ) defined
as:

I(θ) = − ∂2

∂θi∂θj

ℓ(θ), 1 ≤ i, j ≤ p (4.21)

Here p represents the number of parameters, typically p = 2 for Gaussian distributions.
The observed Fisher’s Information matrix is the negative of the Hessian matrix of the
log-likelihood function ℓ(θ).

The expected Fisher’s Information matrix I(θ) is the expectation of the observed
Fisher’s Information matrix:

I(θ) = −E

(
∂2

∂θi∂θj

ℓ(θ)
)

, 1 ≤ i, j ≤ p (4.22)

Similar to the Central Limit Theorem (CLT), when the sample size N is large and the
Jm are independent and identically distributed (i.i.d.) random variables, the distribution
of estimated parameters by MLE approaches normality asymptotically. Here, the mean
of this distribution equals the true parameter value, while the variance-covariance ma-
trix mirrors the inverse of the expected Fisher’s information matrix, denoted as I(θ)−1.
Within this matrix, the diagonal elements correspond to the variances of the estimated
parameters, and the off-diagonal elements represent their covariances.

Mathematically, this can be expressed as:

θ ∼ N (θ, Diag
(
I(θ)−1

)
) (4.23)

Since the true parameters are typically unknown, we rely on MLE estimated param-
eters to compute confidence intervals. The 95% confidence interval of the parameters is
calculated as follows:

θ̂ ± zvalue ×
√

Diag
(

I(θ̂)−1
)

(4.24)

For a detailed mathematical demonstration of the confidence interval estimation using
MLE, please refer to Annex F.

After estimating the CIs for each parameter, we can determine the CI of the SUR curve.
We can plot the SUR curves with the lower and upper bounds of the CIs to visualize the
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uncertainty of the SUR curve, as shown in Figure 4.4.

Figure 4.4 – MLE estimated SUR curve and 95%CI for SRC12 in VideoSet [138] 1080p
with Gaussian assumption.

The solid lines represent the estimated Probability Density Functions (PDF), while
the dashed lines depict the SUR curves. The shaded areas indicate the 95% confidence
intervals (CIs) of the SUR curve. The red curves depict the MLE estimation without the
CI, whereas the other four colors represent combinations of the lower and upper bounds
of the estimated parameters µ and σ with Gaussian assumption.

The CI of the SUR curve indicates the uncertainty inherent in the subjective test re-
sults. For instance, taking SRC12 of VideoSet (Figure 4.4) as an example, at the 50%SUR
level, there is a 95% probability that the QP value ranges from 31 to 34. Conversely, for
QP = 30, there is a 95% chance that the SUR value falls between 0.61 and 0.93. This
implies that between 61% and 93% of observers may not perceive any difference between
QP 0 and QP 30 for SRC12.

Considering this uncertainty is crucial when utilizing the SUR curve for further analysis
or model training.
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4.4. Longitudinal study of Subjective Data

Bootstraping CI Validation

Similar to the CI estimation of p%SUR in Section 4.3.2, we employ bootstrapping
to validate the mathematical CI estimation of the MLE parameters. We execute 1,000
bootstrapping iterations, each with sample sizes of 0.25, 0.5, and 0.75 of the original an-
notations. MLE is performed on each subset of the bootstrapped data, and the percentage
of MLE parameters falling within the mathematically estimated 95% CI, as outlined in
Section 4.3.3, is computed and denoted as Avg CI. The results of the Avg CI for the 95%
CI of VideoSet 1080p are presented in Table 4.8.

Table 4.8 – Avg CI with 1,000 bootstrapping iteration with different sample sizes

Sample size 0.25 0.5 0.75

Avg CI µ 0.6812 0.8380 0.9129
σ 0.6811 0.8546 0.9265

Similar with the CI estimation of p%SURemp, the Avg CI increases as the sample size
increases. When sample size is 0.75, the Avg CI of µ and σ are close to around 91.29%
and 92.65%, respectively. This indicates that the mathematically estimated 95% CI of the
MLE parameters is reliable and can be used for further analysis.

4.4 Longitudinal study of Subjective Data

One of the unique features of our AtHome subjective test pipeline is that participants
conduct subjective tests over the long term (e.g., 30 minutes per day for 20 days), in
contrast to traditional InLab tests or crowdsourcing tests where participants conduct the
test in a single session (e.g., 30 minutes). This feature allows us to study the longitudinal
effects of subjective data. In this section, we will examine the longitudinal effects of
subjective data by analyzing the subjects’ behavior.

4.4.1 Test campaign management

Different from the traditional subjective test conducted in a single session over a short
time, the AtHome subjective test pipeline allows participants to conduct the test over the
long term. That is to say, participants can choose to connect to the server and conduct the
test at any time during several days. To prevent participant fatigue, we’ve implemented
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time limits on the application. For instance, participants cannot conduct the test for more
than 45 minutes per day, and they are asked to finish the test within a deadline.

For example, collecting a JND dataset with 180 video contents will take around 9 hours
per participant. We require participants to complete the entire test campaign within 3
weeks. One participant can choose to connect to the server and conduct the test for 30
minutes per day for 18 days to meet our requirements.

As illustrated in Figure 4.5, participants will receive email notifications announcing
the beginning of the next test campaign, detailing the total time needed to finish the test,
the daily time limits, and the campaign deadline.

Participants who are unable to finish the test need to return the TV and other materials
to us. We will then provide the TV to another participant to continue the test. However,
this may result in additional delays to the test campaign.

Figure 4.5 – Demostration of different test campaigns of the AtHome subjective test
pipeline.
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4.4.2 Observer behavior analysis

The subjective test data collected following the test campaign management described
above enables us to conduct longitudinal analysis of the observers’ behavior. In this sec-
tion, we perform cross campaign analysis, where we compare observer behavior across
different test campaigns, and intra campaign analysis, where we compare observer be-
havior across different days within the same test campaign. Observer behavior is character-
ized by the bias and inconsistency of the observers, quantified by ZREC (see Section 4.2).

Cross campaign analysis

The same group of observers conducts the two JND test campaigns (namely JND1 and
JND2). We compute the bias and inconsistency of each observer in JND1 and JND2 using
ZREC. Note that JND1 corresponds to the first JND search, while JND2 corresponds
to the second JND search. For more details, please refer to Figure 3.1. The bias and
inconsistency of the observers in JND1 and JND2 are shown in Figure 4.6. The results
indicate that the bias and inconsistency of the observers in JND1 and JND2 are correlated
(with Spearman rank correlation coefficients of 0.7023 and 0.7233 respectively), even
though there is a significant time gap between the two test campaigns (there is a gap of
one month between JND1 and JND2). This suggests that the bias and inconsistency of
the observers are relatively stable over time.

(a) (b)

Figure 4.6 – Correlation analyses of observer bias and inconsistency of test campaign
JND1 and JND2.

From Figure 4.7a, we can observe that only one observer (ID 34) changed his bias
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drastically from JND1 to JND2. For some observers, the bias is reduced from JND1 to
JND2, while for others, it increases.

The inconsistency of the observers in JND1 and JND2 is shown in Figure 4.7b. The
inconsistency of the observers in JND1 and JND2 is slightly more highly correlated than
the bias, indicating that the time gap has less impact on the inconsistency of the ob-
servers than on the bias. Similar to bias, there is no clear trend in the inconsistency of
the observers from JND1 to JND2. This indicates that the time gap does not have a
significant effect on reducing or increasing the inconsistency of the observers between two
test campaigns.

(a) (b)

Figure 4.7 – Bias and inconsistency of all observers in different test campaigns.

Intra campaign analysis

Each test campaign lasts for several days (e.g., 20 days). We can also analyze the ob-
server behavior within each test campaign, which is referred to as intra-campaign analysis.
We compute the bias and inconsistency of each observer for each day of the test campaign
using an adaptation of ZREC.

Instead of computing the bias and inconsistency of each observer i across the entire
test campaign as in Eq.(4.5) and Eq.(4.6), we compute the bias and inconsistency of each
observer i for each day d of the test campaign. The bias and inconsistency of observer i on
day d are denoted as Bd(i) and Cd(i) respectively. The bias and inconsistency of observer
i on day d are computed as follows:
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Bd(i) =
 1

D

∑
j∈d

zi,j

 , where i = 1, 2, . . . n (4.25)

Cd(i) =
√√√√ 1

D

∑
j∈d

(zi,j −Bd(i))2

 , where i = 1, 2, . . . n (4.26)

Where D is the number of stimuli done by observer i on day d. zi,j is computed from
Eq.(4.4). j ∈ d means that the stimuli j is done by observer i on day d.

(a) (b)

Figure 4.8 – Intra campaign analysis of observer 11. (a) Bias and inconsistency of observer
11 for each day of the test campaign. (b) Ambiguity and inconsistency of observer 11 for
each day of the test campaign.

Figure 4.8a showcases the behavior of Observer 11. The red bars represent the number
of ratings done by Observer 11 on each day. It took him 15 days to complete this test
campaign. It can be observed that from July 2nd to July 4th, Observer 11 reached the
maximum limit of per day test time (240 ratings take around 45 minutes). The bias of Ob-
server 11 remains relatively stable over time, and there is a tendency for the inconsistency
of Observer 11 to decrease.

In Section 4.2, we demonstrated that the observer inconsistency proposed by ZREC
eliminates the influence of content ambiguity. However, here we aim to confirm whether
high observer inconsistency arises because the content is overly ambiguous. Therefore, we
also plot the average content ambiguity (computed using Eq. (4.7)) per day in Figure 4.8b.
It can be observed that high observer inconsistency does not solely result from high content
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ambiguity. For instance, the content ambiguity on June 23rd is lower than that on June
26th, yet the observer inconsistency on June 23rd is higher than that on June 26th.
This observation further confirms that the observer inconsistency proposed by ZREC is
independent of content ambiguity.

Similar analyses for all the other observers can be found in Annex E. It can be observed
that the trend of observer bias and inconsistency over time is not consistent across all
observers. In order to have a quantitative analysis of the observer behavior over time, we
compute the SRCC between bias and inconsistency of each observer over time, as shown
in Figure 4.9. For observers with ID 12, 18, and 28, we can see that there is a negative
correlation relationship between the observer inconsistency and the date, indicating that
the inconsistencies of these observers decrease as the test campaign progresses. However,
this does not hold true for all observers. For instance, the observer with ID 31 has a
positive correlation between the observer inconsistency and the date, indicating that the
inconsistency of this observer increases as the test campaign progresses. This demonstrates
that the observer behavior is not consistent across all observers.

Figure 4.9 – SRCC between observer behavior and date for each observer within the same
test campaign.

We compute the mean and standard deviation of the SRCC for all the observers;
the results are presented in Table 4.9. The last column of the table represents the ratio
between the observer inconsistency and the average content ambiguity per day. It can be
observed that there is no clear trend of the observers’ bias and inconsistency over time
within the test campaign.
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Table 4.9 – Mean and standard deviation of SRCC between observer behavior and date
for all observers within the same test campaign.

Behavior Bias Consistency Ratio

SRCC
(mean±std) 0.1352± 0.4435 −0.2507± 0.4906 −0.2504± 0.5033

4.5 Summary

In this chapter, we first introduced our data screening method ZREC, which could
be used for both MOS and POS. Besides, ZREC also provided a more straightforward
way to estimate subject bias, inconsistency, and content ambiguity compared to P910.
Experiment results showed that ZREC could produce slightly tighter CIs for MOS recovery
compared to the state-of-the-art methods. Besides, the results of our experiments on the
SUR prediction use-case demonstrated that ZREC improved the performance of objective
quality metrics by providing a more reliable ground truth.

We then introduced the uncertainty estimation of the SUR curve, which was overlooked
in previous works but very important for JND studies. We first proposed a mathematical
method to estimate the CI for p%SUR, which was a single point giving the level of SUR
value. This method didn’t rely on any distribution assumption. We then estimated the
uncertainty of the entire SUR curve by using the CI estimation of MLE parameters. We
also validated the CI estimation of MLE parameters by bootstrapping for both methods.
Further analyses based on the uncertainty of the SUR, such as examining how video
quality metric prediction spread for a p%SUR value, will be conducted in the next chapter.

Finally, we conducted a longitudinal study of the subjective data collected by our At-
Home subjective test pipeline. We first introduced our test campaign management, which
allowed participants to conduct the test over the long term. We then analyzed the observer
behavior by comparing the bias and inconsistency of the observers across different test
campaigns and within the same test campaign, namely cross-campaign analysis and intra-
campaign analysis. The results showed that the bias and inconsistency of the observers
were relatively stable over time. The trend of observer bias and inconsistency over time
was not consistent across all observers. We also computed the SRCC between bias and
inconsistency of each observer over time, and the results showed that there was no clear
trend of the observers’ bias and inconsistency over time both for cross-campaign and
intra-campaign analyses.
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Chapter Contributions

— Proposed ZREC: an effective method for screening subjective data.

— Analyzed how data screening affects learning-based SUR prediction model.

— Developed mathematical methods to estimate uncertainty in empirical SUR
values and analytical SUR curves.

— Conducted a longitudinal study using data collected through our AtHome
subjective test pipeline.
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OBJECTIVE STUDY OF SUR
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Part of this chapter has been published in research papers [156, 158, 159, 160]

5.1 Introduction

We collected subjective VW-JND datasets (Chapter 3) and conducted preliminary
analyses (Chapter 4), providing insights into the SUR for VW-JND. However, it is im-
practical to collect subjective data for every video. Therefore, developing objective models
to accurately predict the SUR for VW-JND is essential. This chapter aims to address the
following research questions:

— How effectively can current widely used VQMs reflect the SUR of VW-JND?
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— Can we predict the SUR of VW-JND using VQMs as proxies?

— Can we predict the SUR of VW-JND using encoding parameters as proxies?

In this chapter, we delve into the objective study of the SUR by answering these re-
search questions. We start by analyzing the ability of widely used VQMs to reflect SUR in
Section 5.2. Experimental results in Section 5.2.2 reveal that VQMs exhibit high content
dependency for a given SUR threshold, indicating that current VQMs are not sufficiently
accurate in capturing the SUR. This finding motivates us to develop a learning-based
model to predict the SUR of VW-JND using VQMs as proxies, detailed in Section 5.3.
Additionally, we propose a novel parameter-driven framework (Section 5.4.1) and its im-
proved version (Section 5.4.2) for predicting SUR using encoding parameters as proxies,
presented in Section 5.4.

5.2 Resolving power of VQM towards SUR

Before developing learning-based models on the subjective datasets, we first analyzed
the existing widely used VQMs. VQMs [140, 139, 80, 9] capture video quality on a con-
tinuous scale and aim to exhibit a strong correlation with human visual perception. We
applied these VQMs to the VW-JND datasets to address the research question: How well
can the current widely used VQMs reflect the Just Noticeable Difference (JND)? Taking
VMAF as an example, can we find a threshold VMAF value at which 75% of observers
cannot perceive a quality difference compared with the pristine video? We termed this the
resolving power of VQM towards SUR. In the literature, VMAF scores of 94 and 98 are
commonly used for the first JND [102, 100]. For instance, using VMAF as an example, the
threshold VMAF value for the first JND can vary among different observers for the same
video content. Likewise, for a given observer, different video contents may yield different
threshold VMAF values for the first JND. Therefore, it is important to investigate the
resolving power of VQMs towards SUR.

In this section, we investigate the resolving power of VQMs towards SUR. We compute
the VQMs corresponding to a fixed SUR threshold and analyze the consistency and uncer-
tainty of different VQMs on both publicly available VW-JND datasets and our collected
VW-JND datasets across various content types.
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5.2.1 VQM

We investigate the use of the following VQMs, which are the most widely used video
quality metrics in practice, as proxies for SUR:

— Peak Signal-to-Noise Ratio (PSNR): PSNR is a video quality metric that mea-
sures the difference between an original video signal and a distorted version of that
signal. It is commonly used to assess the fidelity or visual quality of compressed or
reconstructed video.

— Structural Similarity Index (SSIM): SSIM [140] is a widely used perceptual
image quality metric that assesses the similarity between a reference image and a
distorted image. The SSIM index is a decimal value ranging from 0 to 1, where
1 indicates a perfect similarity between the two images. The SSIM metric takes
into account the luminance, contrast, and structural similarity between the images,
making it more robust than traditional metrics like PSNR.

— Multi-Scale Structural Similarity Index (MS-SSIM): MS-SSIM [139] is an ex-
tension of the SSIM metric that incorporates multiple scales to assess the structural
similarity between images. MS-SSIM takes into account the perception of struc-
tural similarity at different levels, including global and local structural information.
MS-SSIM provides a more comprehensive evaluation of structural similarity by con-
sidering information at multiple scales. It is commonly used in image and video
quality assessment to capture perceptual differences that may not be captured by
single-scale metrics like SSIM or PSNR.

— Video Multimethod Assessment Fusion (VMAF): VMAF [80] is designed
to assess the perceived quality of videos by considering various visual factors that
influence human perception.
VMAF takes into account a range of spatial and temporal features, including con-
trast, luminance, texture, and motion. It utilizes a machine learning algorithm that
is trained on large-scale subjective quality datasets to predict human judgment of
video quality. The output of VMAF is a score ranging from 0 to 100, where higher
scores indicate better perceived quality.

— FVVDP: FovVideoVDP [96] is a video difference metric that simultaneously consid-
ers spatial, temporal, and peripheral aspects of perception. It addresses the complex
interaction between spatial and temporal sensitivity in different retinal locations.
Derived from psychophysical studies, the metric incorporates models for contrast
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sensitivity, cortical magnification, and contrast masking.

Specifically, we investigate the consistency and uncertainty associated with these VQMs
at a specific SUR threshold.

5.2.2 Experimental resuls

We compute the VQMs for a fixed SUR threshold, namely p%SURemp (refer to Sec-
tion 3.2.2 for the definision of p%SURemp) on VideoSet and AMZ-HDR-VJND dataset.
We then analyze the consistency and uncertainty of different VQMs across these datasets
for various video contents.

VideoSet 1080p

For VideoSet [138], the original VW-JND annotations for a given content Jm (refer
to Eq.( 3.1)) are provided in terms of QP values. We convert each element of Jm into its
corresponding VQM scores and then calculate the p%SURemp for each VQM. The PSNR
in this study is computed on the Y channel. The VMAF version used in this work is
v0.6.1 and for the FVVDP, we used v1.2.0. The parameters are set as LPeak = 165.8,
contrast = 435, γ = 2.2, Eambient = 100, ppd[pix/deg] = 60.8, and kref = 0.005. The
parameters are chosen following the recommenations in [91].

The results are presented in Table 5.1. We present the mean values of 80%SURemp,
75%SURemp, and 70%SURemp across the 1080p of VideoSet in Table 5.1. The mean value
of 75%SURemp on VideoSet for VMAF is 93.62, which aligns with previous studies [115,
7] that suggest a first 75%SUR of approximately 94 for VMAF.

It can be observed that p%SURemp for the first JND increases with higher values of p

for all VQMs. Additionally, it is evident that for all these VQMs, the value of the VQM
for p%SURemp is highly content dependent.

Taking VMAF as example, for 75%SUR, the mean value is 93.62, with a minimum
of 75.22 and a maximum of 99.97. This indicates that, for content A, if the compressed
version has a VMAF score around 99.97, 25% (1-75%) of the population can already
perceive the difference between this compressed version and the pristine version. However,
for another content B, we need to degrade the quality until it reaches 75.22 so that 25%
of the population can perceive the difference. This suggests that even though VMAF
is highly correlated with human perception of quality, it is still not precise enough to
measure the SUR in terms of JND.
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Table 5.1 – Benchmark VQMs on 70%SUR, 75%SUR and 80%SUR on VideoSet 1080p
for first JND

VQM
(min-max) Mean Min Max COV

Avg
95%CI

lower_b

Avg
95%CI

upper_b

Avg
95%CI
range

NAvg
95%CI
range

80%SUR
PSNR (23.4-60) 42.6826 32.4392 54.9418 0.0825 41.7589 44.7754 3.0165 0.0824

SSIM (0.7-1) 0.9947 0.9760 0.9998 0.0037 0.9931 0.9972 0.0041 0.0135
MS-SSIM(0.7-1) 0.9917 0.9662 0.9996 0.0053 0.9897 0.9950 0.0053 0.0186
VMAF (5.3-100) 94.5579 75.2246 99.9676 0.0399 92.6803 97.1454 4.4651 0.0471
FVVDP (4.8-10) 9.4835 8.5792 9.9705 0.0215 9.3727 9.6782 0.3056 0.0585

75%SUR
PSNR (23.4-60) 42.2025 31.7613 53.3174 0.0823 41.2626 43.8400 2.5775 0.0704

SSIM (0.7-1) 0.9939 0.9689 0.9993 0.0043 0.9919 0.9964 0.0045 0.0149
MS-SSIM(0.7-1) 0.9907 0.9634 0.9990 0.0060 0.9881 0.9938 0.0057 0.0199
VMAF (5.3-100) 93.6156 75.2246 99.9676 0.0427 91.4264 96.2902 4.8638 0.0514
FVVDP (4.8-10) 9.4287 8.5529 9.9105 0.0231 9.3069 9.6044 0.2976 0.0569

70%SUR
PSNR (23.4-60) 41.8065 31.1083 53.0536 0.0836 40.9990 43.3017 2.3027 0.0629

SSIM (0.7-1) 0.9932 0.968911 0.9990 0.0047 0.9912 0.9956 0.0045 0.0147
MS-SSIM(0.7-1) 0.9898 0.9634 0.9988 0.0065 0.9873 0.9929 0.0056 0.0194
VMAF (5.3-100) 92.7761 72.7199 99.9607 0.0473 90.6152 95.5342 4.9190 0.0519
FVVDP (4.8-10) 9.3795 8.4782 9.8811 0.0248 9.2667 9.5492 0.2825 0.0541

To measure the consistency of different VQMs in terms of SUR, we calculate the
Coefficient Of Variation (COV) for p%SURemp. COV is the ratio of the standard deviation
to the mean, serving as an indicator of variability. In this context, it is utilized because
different VQMs operate on different scales. A larger COV indicates lower consistency for
p%SURemp. Table 5.1 reveals that, for p values of 80, 75, and 70, SSIM exhibits the highest
level of consistency among the six VQMs.

To visually represent the consistency of different VQMs, as shown in Figure 5.1, we plot
the distributions using blue bars for the quality scores across the entire dataset (comprising
220 SRCs with QP values ranging from 1 to 51). Additionally, we use pink bars to represent
the distributions of 75%SURemp for each SRC. The y-axis uses a logarithmic scale.

The distribution of 75%SURemp for PSNR appears relatively wide compared to the
entire dataset. In contrast, the distributions for VMAF and FVVDP are relatively nar-
rower. SSIM and MS-SSIM exhibit the narrowest distribution range for 75%SURemp, in
line with its COV values presented in Table 5.1.

We also compute the 95%CI of p%SURemp using the method introduced in Sec-
tion 4.3.2, as presented in Table 5.1. We calculate the mean of the lower bound and
upper bound for each VQM across the dataset. Notably, the lower bound and the upper
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bound exhibit the same trend as the mean of p%SURemp. To account for the varying
scales, we normalized the CI range using the minimum and maximum values observed for
each VQM across the entire VideoSet dataset:

Norm(95% CI range) = 95%CIu − 95%CIl

max(V QM)−min(V QM) . (5.1)

The mean of the normalized CI range is listed in Table 5.1 under the column ‘NAvg 95%CI
range’. Notably, SSIM exhibits the smallest CI range.

AMZ-HDR-VJND

Similar to VideoSet, we conducted a similar analysis on our collected HDR dataset:
AMZ-HDR-VJND. There are two main differences compared with VideoSet. Firstly, the
proxy of SUR for our collected datasets is Constant Rate Factor (CRF) instead of Quan-
tization Parameter (QP) in VideoSet (see Chapter 3, Section 3.2.3). Secondly, because
we used different display devices, the display and environment parameters for FVVDP
are different from the ones used in VideoSet. Detailed parameters are set in Table 5.2.
The minimum and maximum luminance of the display were measured using i1Profiler,

Table 5.2 – Display and environment parameters for FVVDP on our SONY displays in
HDR mode

Parameters Value
EOTF PQ

Resolution 3840x2160
Diagonal size 55 inches

Max luminance 600 nits
Min luminance 0.16 nits
Ambient light 10 nits

while the ambient light was measured using a luxmeter. It’s important to note that in
Chapter 2, Section 2.2.1, we used different displays and environments. The parameters
mentioned here are measured for the SONY display used in our AtHome subjective test,
and the ambient light represents the average of different home environments.

However, it’s important to acknowledge that we did not have strict control over the
ambient light in the AtHome subjective test. Participants were instructed to turn off the
lights and close the curtains, and the ambient light was measured at the beginning of the
entire test session.
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Figure 5.1 – Distributions of 75%SURemp and the distribution of VQMs on the entire
datasets on VideoSet for different VQMs

The results are presented in Table 5.3. It can be observed that the mean value of
75%SURemp for PSNR, SSIM, MS-SSIM, VMAF, in AMZ-HDR-VJND is 49.33, 0.9987,
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Table 5.3 – Benchmark VQMs on 75%SUR on AMZ-HDR-VJND for first JND

VQM
(min-max) Mean Min Max COV

Avg
95%CI

lower_b

Avg
95%CI

upper_b

Avg
95%CI
range

NAvg
95%CI
range

75%SUR
PSNR(37.2-72) 49.3318 38.0200 69.9868 0.0879 48.9674 50.4101 1.4427 0.0415
SSIM(0.98-1) 0.9987 0.9933 1.0 0.0010 0.9985 0.9991 0.0006 0.0517

MS-SSIM(0.95-1) 0.9948 0.9664 1.0 0.0050 0.9944 0.9958 0.0014 0.0304
VMAF(82.3-100) 96.9677 86.3406 100.0 0.0261 96.5740 97.8574 1.2835 0.0725
FVVDP(8.0-10.0) 9.4232 8.2501 9.9606 0.0225 9.3635 9.5619 0.1984 0.0977

0.9948 and 96.97, respectively. These values are all larger than those of VideoSet presented
in Table 5.1. Only the mean value of FVVDP remains more or less the same in both
datasets.

The Coefficients of Variation (COV) in AMZ-HDR-VJND are smaller than those of
VideoSet, indicating that the VQMs are more consistent in our collected datasets. Addi-
tionally, the 95% CI range of the VQMs in AMZ-HDR-VJND is also smaller than those
of VideoSet. It’s important to note that it doesn’t make sense to directly compare the
Normalized Average 95% CI range of the VQMs across datasets because the JCPs are not
designed in the same way.

Similar with VideoSet, we plot the histograms of the VQMs and 75%SURemp in our
collected dataset in Figure 5.2.

Experimental results on both datasets suggest that all these VQMs are highly content-
dependent in terms of SUR. This indicates a significant challenge in developing VQMs that
are not only highly correlated with human subjective opinion scores but also consistent
and precise enough to measure SUR in terms of JND.

5.3 Prediction of SUR using VQMs as proxy

From the VQM resolving power analyses conducted in Section 5.2, it’s evident that the
VQMs towards SUR of JND are highly content dependent. As shown in Figure 5.3, using
VMAF as an example, the ∆VMAFSUR(75%) varies significantly across different video
content in VideoSet. The ∆VMAFSUR(75%) represents the transition from perceptually
lossless to perceptually lossy coding of the VMAF proxy for p% of SUR value, as defined
by Eq. (5.2) and Eq. (5.3).

∆VMAFSUR(p%) =
∣∣∣VMAFSUR(100%) − VMAFSUR(p%)

∣∣∣ , (5.2)
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Figure 5.2 – Distributions of 75%SURemp and the distribution of VQMs on the entire
datasets on AMZ-HDR-VJND for different VQMs
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Figure 5.3 – ∆VMAFSUR(75%) where the first JND occurs for for the 100 − p% = 25%
(p% = 75%) of viewers in VideoSet [138] for 1080p.

where VMAFSUR(p%) is the VMAF proxy where p% of viewers cannot see the transition
and is defined as:

VMAFSUR(p%) = arg min
x
|SUR(100− x)− p%| . (5.3)

This observation leads to a research question: Can we predict the VQM towards SUR of
JND at a given threshold, for example 75%SUR? The prediction of VQM towards SUR is
crucial for constructing an optimized bitrate ladder. In Adaptive Bitrate Streaming (ABR)
methods [17], video content is encoded at multiple bitrate-resolution pairs known as rep-
resentations. These representations are used to construct a bitrate ladder [8], enabling the
dynamic adjustment of video quality according to the viewer’s available bandwidth and
device type.

Traditionally, a fixed set of representations, such as the HLS bitrate ladder [12], is
used for all video content. However, this “one-size-fits-all" approach may not be optimal
for different types of videos. To address this, the per-title encoding approaches were in-
troduced, where an optimized bitrate ladder is created for each video content, resulting in
improved Quality of Experience (QoE). In per-title encoding [29, 8, 6], various encoding
parameters, including resolution, frame rate, and others, are assessed by encoding the
videos using all possible combinations of these parameters. Subsequently, an optimized
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bitrate ladder is constructed by selecting representations from a convex-hull [148] based
on the quality measurements of the encoded representations.

Selecting a subset of representations from the convex-hull is a crucial step in con-
structing an optimized bitrate ladder. This selection process involves considering various
factors, such as available network bandwidth, device capabilities, and perceptual qual-
ity metrics like VMAF. While some methods focus on selecting representations based on
the probability of clients requesting specific bitrate versions [123, 130], other approaches
prioritize the selection of representations to minimize perceptual similarity [103] between
the chosen representations. These methods aim to avoid including representations in the
bitrate ladder that have similar perceptual qualities, as this redundancy may lead to inef-
ficient resource utilization. If we can predict the VQM towards SUR of JND, we can then
use the predicted VQM to construct the bitrate ladder to avoid this redundancy.

What do videos with the highest and lowest ∆VMAFSUR(75%) look
like?

From Figure 5.3, we can see that the ∆VMAFSUR(75%) varies from 24.88
to 0.01 for different contents. What do the videos with the highest
∆VMAFSUR(75%) and lowest ∆VMAFSUR(75%) look like? Please refer to An-
nex G.

In this section, we propose a method to predict the VMAF towards SUR of JND.
VMAF is widely used in the industry due to its superior correlation with human perceptual
quality [11]. It is frequently employed to evaluate the quality of video representations and
guide the bitrate laddering process [67].

First, we introduce the existing method in the state of the art to predict the VMAF
towards 75%SUR of JND. Then, we describe our proposed prediction pipeline incorpo-
rating different VQMs. Finally, we present the experimental results of the prediction of
VQM towards SUR of JND and draw some conclusions.

5.3.1 State-of-the-art methods

In the existing literature, two sources provide recommendations for determining the
VMAF towards SUR of JND in JND-based bitrate laddering. Jan Ozer [115], in a blog
post, reports an interview with an unnamed Netflix employee who suggests a constant
step size of 6 for ∆VMAFSUR(75%)without empirical evidence to support this recommen-
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Figure 5.4 – Comparison of SOTA [7] (a), and our proposed pipelines (b) for
∆VMAFSUR(75%) prediction. FR-VQM represents the full reference VQM.

dation. On the other hand, Kah et al. [66], in a publication, present the findings of a
subjective study campaign on the acceptability and perceived quality of video content
and propose a constant value of 2 for ∆VMAFSUR(75%). To further substantiate these
two cases, Amirpour et al. [7] conducted an analysis by applying the two recommenda-
tions (∆VMAFSUR(75%) = 2 vs. 6) to VideoSet [138], comparing the outcomes with the
subjective JND ground truth provided in the dataset.

In this study, each recommendation was interpreted as a simple linear model that
predicts the ∆VMAFSUR(75%) for each video content in the dataset. The results were
subsequently analyzed using common error metrics. It was shown that using the constant
value of the 6 rule for ∆VMAFSUR(75%) performs significantly better than the constant
value of 2.

However, these estimators still yield high error levels. The main reason for this discrep-
ancy is the substantial variance of ∆VMAFSUR(75%) values across different video contents.

To effectively tackle the challenges in the current works, a content-specific frame-
work [7] was developed to estimate ∆VMAFSUR(75%) by utilizing features extracted from
the reference video (see Figure5.4(a)). These features encompass the framewise features,
including: (i) Spatial Information (SI) [58], (ii) Temporal Information (TI) [58], (iii) Spa-
tial Energy (E) [104], (iv) Temporal Energy (h) [104], (v) Brightness (L), (vi) Colourful-
ness (c) [44], and (vii) Frame rate (fr).

By considering these features, the framework provided a more comprehensive estima-
tion of ∆VMAFSUR(75%), taking into account the spatial and temporal aspects, as well as
brightness, colourfulness, and frame rate characteristics of the videos, as:

∆VMAFSUR(75%) = f(SI, TI, E, h, L, fr, c) (5.4)
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However, despite the utilization of this approach, the mean absolute error (MAE) was
only reduced from 2.73 down to 2.11, in comparison to using the dataset’s ∆VMAFSUR(75%)

mean of 6.93 as a constant estimator. Although an improvement was observed, the re-
maining error levels are still not satisfactory. Therefore, in this study, we investigate the
use of VQMs to improve ∆VMAFSUR(75%) estimation accuracy.

5.3.2 ∆VMAFSUR(75%) prediction pipeline using VQMs

Building upon the work of [7], we propose a new pipeline to further improve the estima-
tion of ∆VMAFSUR(75%). Illustrated in Figure5.4(b), we leverage VQMs on distorted video
that is compressed with a fixed and optimal QP to enhance the estimation process. The
rationale behind this idea is that quality metrics at a fixed QP provide information on how
the VQMs interact with compression across different video content. By integrating VQMs
into the ∆VMAFSUR(75%) estimation framework, we aim to achieve more refined and
precise predictions of the perceptual differences in video content. The complete pipeline
consists of two stages: A) computing VQMs and B) Regression on ∆VMAFSUR(75%)based
on VQMs on the optimal QP. Additionally, we conduct optimal QP selection to enhance
the prediction accuracy and reduce the complexity of the pipeline.

We use the PSNR, SSIM, MS-SSIM, VMAF, FFVDP to enhance ∆VMAFSUR(75%) es-
timation. Detailed description of these VQM can be found in Section 5.2.1.

Optimal QP selection

Due to the computational cost associated with encoding videos at multiple QPs and
measuring the corresponding quality metrics, we propose to encode the video at a single
fixed QP (qp) and calculate the VQMs specifically at that optimal QP.

The ultimate optimal QP is determined using a regression model via a brute-force
approach. Among the evaluated QPs, we identify the one yielding the lowest Mean Ab-
solute Error (MAE) after regression. As depicted in Figure 5.5, illustrating the test set’s
MAE across various QPs utilizing a linear regression model with only VMAF as input,
it becomes evident that the selection of QP notably influences the model’s prediction
accuracy. The results indicate that the lowest MAE is achieved at a QP value of 29 on
VideoSet 1080p.
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Figure 5.5 – MAE vs. QP for ridge regression with only VMAF as input features on
VideoSet 1080p. We used an 80/20 train-test split over 20 random splits. The regulariza-
tion parameter α is set to 0.5 for ridge regression.

Regression

Our prediction model for estimating ∆VMAFSUR(75%) can be represented as:

∆VMAFSUR(75%) = f(VMAFqp, SSIMqp, PSNRqp, MS-SSIMqp, VDPqp), (5.5)

where qp is the optimal QP previously selected.

Initially, a foundational regression model, i.e., ridge regression, with the complexity
parameter α = 0.5 was applied. Furthermore, a more optimized machine learning regres-
sion model, XGBoost (eXtreme Gradient Boosting) [24], was employed using parameters
n_estimators = 100, max_depth = 1, and booster = gbtree.

To evaluate the contribution and dependency of these features in predicting the

∆VMAFSUR(75%), we systematically eliminate the least important feature one by one
until only one feature remains. We additionally conducted a comparative analysis of fea-
ture importance between the video complexity features outlined in [7] and the optimal
VQM features for predicting ∆VMAFSUR(75%). Further details of the outcomes are pro-
vided in Section 5.3.3.
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5.3.3 Experimental Results

The evaluation of the proposed method is conducted on VideoSet and AMZ-HDR-
VJND. Prior to commencing the experiment, a preliminary data cleaning process was
undertaken. As shown in Figure 5.6, the box plot of the ∆VMAFSUR(75%) of raw data
in VideoSet shows that there are few data points that deviate significantly from the
majority of the dataset. These points have been removed to prevent these extreme values
from distorting the overall analysis and interpretation of the data.

The remaining data points were divided into an 80% training set and a 20% test set.
Train test split is conducted 20 times using 20 different random seeds. The reported results
are the mean values obtained from these multiple splits.

The results are summarized in Table 5.4. When utilizing a fixed ∆VMAFSUR(75%) of
2 [66], the MAE is 4.29. Increasing the fixed ∆VMAFSUR(75%) to 6 [115] results in a
reduced MAE of 2.59. The state-of-the-art method [7] achieves an MAE of 2.01. The
results indicate that our proposed pipeline both ridge and XGBoost regression leads to
lower MAE than SOTA. Utilizing XGBoost with VMAF28, SSIM28 can further reduce the
MAE to 1.67. The overall results presented in Table 5.4 demonstrate that incorporating
quality metrics of video compressed with optimal QP can significantly reduce the MAE
in ∆VMAFSUR(75%) modeling.

Figure 5.7 portrays the feature importance of both the optimal VQM features and the
video complexity features outlined in [7]. This importance is derived from the absolute
values of the coefficients associated with each feature within the ridge regression model.
The results clearly indicate that VMAF28 exerts the most substantial influence on the
prediction model. Moreover, the VQM features demonstrate notably greater impact on
∆VMAFSUR(75%) prediction compared to the video complexity features. This finding un-
derscores the notion that VQMs not only inherently encompass video complexity features,

Figure 5.6 – The box plot of the ∆VMAFSUR(75%). Data points falling below the lower
threshold (Q1− 1.5IQR) or exceeding the upper threshold (Q3 + 1.5IQR) are considered
outliers and have been excluded, as indicated by the ’x’ marker.
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Table 5.4 – Experiment results of different ∆VMAFSUR(75%) estimation models on
VideoSet 1080p.

Model Features qp MAE
Jan et al. [115] ∆VMAFSUR(75%)= 2 - 4.29
Kah et al. [66] ∆VMAFSUR(75%)= 6 - 2.59
Amirpour et al. [7] SI, TI, E, h, L, c, fr - 2.01
Ridge regression vmaf, ssim, vdp, psnr, ms-ssim 30 1.77
Ridge regression vmaf, ssim, vdp, psnr 30 1.77
Ridge regression vmaf, ssim, vdp 29 1.78
Ridge regression vmaf, vdp 29 1.78
Ridge regression vmaf 29 1.80
XGBoost vmaf, ssim, vdp, psnr, ms-ssim 28 1.73
XGBoost vmaf, ssim, vdp, psnr 28 1.74
XGBoost vmaf, ssim, vdp 28 1.73
XGBoost vmaf, ssim 28 1.67
XGBoost vmaf 28 1.72

but also furnish supplementary information, enhancing the predictive accuracy.

Figure 5.7 – Feature importance of optimal VQM features and video complexity features
in [7]

Similarly, we employed the same pipeline on our collected HDR dataset. The results
are summarized in Table 5.5. The optimal encoding parameter is CRF equals to 20.
Surprisingly, the MAE in our collected HDR dataset is much smaller than in VideoSet.
This might be due to the fact that our datasets used CRF as a proxy while VideoSet used
QP. When encoding video in CRF mode, the encoder automatically adjusts the QP of
each frame to maintain a constant quality level. Consequently, VQMs calculated at a fixed
CRF value can help the model extrapolate the ∆VMAFSUR(75%) more easily than those
calculated at a fixed QP value. We visualized the prediction of ∆VMAFSUR(75%) using
the Ridge regression model with VMAF, SSIM, PSNR as input. Similar to the approach
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Table 5.5 – Experiment results of ∆VMAFSUR(75%) estimation models on AMZ-HDR-
VJND dataset.

Model features CRF MAE
Ridge regression vmaf 20 0.30
Ridge regression vmaf, ssim, psnr 20 0.29
XGBoost vmaf, ssim, psnr 20 0.40

used for VideoSet, we used 80% of the datasets as training set and the remaining 20% as
test set, using different seeds for splitting the data. Figure 5.8 shows the predicted values
and the ground truth for the test set with different seeds. The results for other seeds can
be found in Annex H. It can be seen that the model effectively captures the trend of the
ground truth across different splits.

(a) seed 0 (b) seed 1

Figure 5.8 – Visualization of the prediction of ∆VMAFSUR(75%)using Ridge regression with
VMAF, SSIM, PSNR as input features on AMZ-HDR-VJND dataset.

5.3.4 Discussion

In this section, we try to answer the research question: Can we predict the VQM
towards SUR of JND at a given threshold, for example 75%SUR? Using VMAF as an
example, we proposed a pipeline to predict the VMAF towards 75%SUR of JND. The
pipeline consists of two stages: A) Computing VQMs and C) Regression based on VQMs
on the optimal QP/CRF. We used the PSNR, SSIM, MS-SSIM, VMAF, FFVDP to en-
hance ∆VMAFSUR(75%) estimation. The results show that our proposed pipeline can signif-
icantly reduce the MAE in ∆VMAFSUR(75%) modeling. The optimal encoding parameter
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is CRF 20 in our collected AMZ-HDR-VJND dataset and QP 28 in VideoSet 1080p. The
MAE in our collected dataset is significantly smaller than in VideoSet, which might be
because our collected datasets use CRF as a proxy instead of QP. The results indicate that
incorporating quality metrics of compressed video with optimal QP/CRF can significantly
reduce the MAE in ∆VMAFSUR(75%) modeling.

However, in practice, accurately predicting the VQM value for SUR of JND at a given
threshold, such as VMAF, does not directly inform us how to encode the video to achieve
this VQM value. For instance, we need to encode the video at multiple QP/CRF settings
to obtain the VMAF scores and then compare them to the target value to determine the
appropriate QP/CRF to use. This process is computationally expensive. Therefore, in the
next section, to improve efficiency and accuracy, we aim to directly predict the encoding
parameters towards SUR of JND.

5.4 Prediction of SUR using encoding parameters as
proxy

It is well known that subjective test is expensive and time-consuming, especially for
VW-JND. Therefore, it is crucial to develop VW-JND prediction methods. In previous
section 5.3, we proposed a pipeline to predict the SUR using VQM as proxy. In this
section, we aim to predict the SUR using encoding parameter (e.g., QP, CRF) as proxy,
which is more efficient and practical for industry applications.

Wang et al. [137] proposed a model to predict SUR curve with QP proxy by using
support vector regression (SVR) under the assumption that the individual JND points of a
group users follow a normal distribution. Their model infers SUR values from VMAF [80]
Quality Degradation Features concatenated with Masking Effect Features [50, 51] and is
trained on VideoSet [138], the 75%SUR point can then be derived by the predicted SUR
curve.

[135] is the extended work of [137], where the 2nd and 3rd JND points are predicted
using 3 different settings in which the reference inputs of the predictor are different.

Instead of predicting SUR with encoding parameter QP as proxy, Zhang et al. [151]
proposed a novel perceptual model to predict SUR versus bitrate, which is more widely
used in practice. Three kinds of features, Masking features, re-compression features and
basic attribute features, are extracted from original reference video to build a feature
vector, which will be used to conduct a Gaussian Processes Regression (GPR) to predict
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SUR.
Using deep learning, Zhang et al. [152] developed the Video Wise Spatial SUR method

(VW-SSUR) for predicting the SUR with QP proxy for compressed video along with the
Video Wise Spatial-Temporal SUR (VW-STSUR) to boost the prediction accuracy.

Nami et al. [109] proposed a multi-task deep learning framework to predict both PW-
JND and VW-JND. The framework jointly learns the three JND levels (first, second, and
third JND), the visual attention map with one JND level, and the visual attention map
with all three JND levels. They don’t predict the SUR curve but the QP value of 75%SUR
on the SUR curve.

However, previous works assume that the individual VW-JND of a group viewers
follows Gaussian distribution, which might not be the optimal modeling method. Besides,
when predicting SUR curve, previous works are computationally expensive because they
extract features from SRC and from every encoded PVS and predict the individual SUR
score of each PVS to derive the SUR curve. Therefore, we first investigate the modeling
of SUR curve and then propose a novel SUR prediction model only based on SRC.

5.4.1 Parameter-driven model

We firstly investigated the modeling of the group-based VW-JND rather than using a
simple normality test as in the previous works [138, 136], in order to find the mathematical
model that best fits SUR. Afterwards, we proposed a SUR prediction method via predict-
ing the model parameters obtained by the modeling fit, which is called parameter-driven
model, in preference to the commonly used point-by-point models. The entire pipeline is
shown in Figure 5.9.

Modeling of SUR

When modeling the SUR of VW-JND, previous works [138, 136] conducted Jarque-
Beta test [62] to verify the normality of the VW-JND position of every subject. However,
when revisiting the original distribution of VW-JND annotations, we found that Gaussian
distribution is not necessarily the best modeling of the VW-JND distribution as shown in
Figure 3.2 in Chapter 3. Therefore, based on the definition of the empirical SUR curve and
p%SUR in Section 3.2.2, we set the Complementary Cumulative Distribution Function
(CCDF) of different candidate distributions (e.g., Gaussian, Sigmoid, Weilbull, etc.) as
model functions to find the best fit function of the empirical SUR curve. The model
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Figure 5.9 – Illustration of the pipeline of SUR and JND modeling (A) and prediction
(B)

Table 5.6 – Summary of candidate model functions. (NB para is the number of parameters
in model function)

Name Model function NB para
Polynomial-3

f(x) =
n∑

k=0
akxk 4

Polynomial-4 5
Gaussian 1− 1

2

(
1 + erf

(
x−µ

σ
√

2

))
2

2-para-logistic 1− 1
1+e−(x−µ)/s 2

4-para-logistic f (x) = b + L
1+e−k(x−x0) 4

Weibull e−( x
λ )k

2
Gumbel 1− e−e−(x−µ)/β 2

Rayleigh e
−x2

(2σ2) 1

functions were named as analytical SUR. We also proposed a criteria to select the best
fit function of the empirical SUR curve.

After computing the empirical SUR from the VW-JND annotations, we fitted the dis-
crete points in empirical SUR with 8 model functions (Table 5.6) for each video. It can be
easily proved that the CDF (Eq.(3.3)) of a distribution is monotonic non-decreasing, thus
SUR (Eq.(3.4) case 1 using QP proxy) is monotonic non-increasing. Therefore, monotonic
constraint was applied during least-squares optimization for polynomial model function.

In addition to MAE and RMSE, we use ∆p%SUR|E−A| (Eq.(5.6)) to evaluate the
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candidate model functions, where p% is set to 75%.

∆p%SUR|E−A| = |p%SURemp − p%SURanaly| (5.6)

VideoSet [138] was used to evaluate the modeling of SUR and JND. We used the
individual VW-JND annotations of each SRC to generate the SURemp and 75%SURemp

(Eq.(3.4)-(3.5)) and every discrete points of SURemp were used to fit the model functions
listed in Table 5.6. Scikit-learn linear regression was used for polynomial fittings and
monotonic constraints were applied by using Polyfit 1. Non-linear least squares from SciPy
were used for other model functions.

Table 5.7 – Mean of MAE, RMSE and ∆75%SUR|E−A| for different model functions with
VideoSet [138]

Name MAE RMSE ∆75%SUR|E−A|
Polynomial-3 0.1204 0.1466 5.0614
Polynomial-4 0.1085 0.1338 4.7420

Gaussian 0.0147 0.0253 0.6625
2-para-logistic 0.0156 0.0250 0.5875
4-para-logistic 0.0164 0.0236 0.5761

Weibull 0.0138 0.0240 0.6761
Gumbel 0.0220 0.0343 0.5977
Rayleigh 0.1451 0.1703 8.9114

For every SRC in the 4 resolutions of VideoSet (220×4 = 880 SRC in total), we calcu-
lated the MAE and RMSE between SURemp and SURanaly and also the difference between
empirical and analytical 75%SUR : ∆75%SUR|E−A| (Eq.(5.6)) with different fitting func-
tions. The results are shown in Table 5.7. It can be observed that the CCDF of Gaussian
distribution is not the best modeling for SUR. 4-para-logistic model function outperforms
the other candidate model functions both in RMSE and ∆75%SUR|E−A|. This result is
consistant with the results of MLE in Section 4.3.3 in Chapter 4.

Prediction of SUR

We revisited the SUR prediction model proposed by Wang et al. [137] namely the
baseline. Furthermore, we analysed the two main drawbacks of the baseline model and
proposed solutions to solve these issues.

1. https://github.com/dschmitz89/Polyfit
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As shown in Figure (5.10), the input of the baseline model is the uncompressed source
video (SRC). SRC is firstly compressed with different encoding parameters (e.g.,QP 1 to
51) to get a series of PVS (Processed Video Sequence). Afterwards, SRC and all PVS are
segmented to small video patches both spatially and temporally to extract features from
the eye fixation level. Two types of features are extracted from the segmented patches:
Masking effect and Quality degradation (M and Q in Figure (5.10)). Masking effect is a
measure of the spatial and temporal randomness [50, 51]. A high level of randomness masks
distortions from the human eye, making it difficult to perceive the difference between the
SRC and the distorted PVS. Quality degradation is calculated based on the difference
of quality scores (e.g., VMAF) between SRC and PVS. The masking effect and quality
degradation feature vectors of one video are the histogram and cumulative curve of its
video patches, respectively. When extracting the Quality degradation features, only video
patches with significant quality degradation were selected to compute the final feature
vector. The two feature vectors for SRC and each PVS are concatenated and are used to
predict SUR scores by regression.

The baseline model is computational expensive as individual SUR scores of each PVS
of a SRC must be computed to derive the SUR curve prediction. Accordingly, features from
a SRC and its PVSs (i.e., 52 sequences) have to be computed. This is the first drawback
of the baseline model. The second drawback is that the SURpred curve of baseline model
is not monotonic non-increasing because every individual point of SUR curve is predicted
separately. The basic meaning of SUR is: for a given distortion level x, its SUR value
is the percentage of subjects that are satisfied, i.e., the percentage of subjects that do
not perceive the difference between the reference video and all the distorted video whose
distortion level is less than x. Therefore, it is not reasonable that when the distortion level
increases, the SUR value increases.

To address these issues, we proposed a straightforward solution with the help of the
modeling parameters of SUR. The pipeline of the proposed method is shown in Figure 5.9.
Instead of predicting SUR scores of every PVS and getting the SUR curve accordingly, the
parameters which describe the SUR curve (e.g., σ and µ for Gaussian) are predicted. Only
SRC is used for prediction, hence these models are called SRC-based model. Masking
effect features are extracted from SRC and Support Vector Regression (SVR) [128] is
used for regression. Although SRC-based models are preferred in real-life applications, it
is still interesting to understand how important the quality degradation information from
PVSs is to the prediction of SUR and JND. Therefore, we also investigated SRC+PVS-
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Figure 5.10 – Illustration of baseline SUR prediction model

based model, where masking effect and quality degradation features of every PVS are
concatenated into one vector for regression to predict the modeling parameters.

Each prediction model was evaluated on videos using 5-fold cross validation. Radial
basis function kernel was used for SVR. We firstly compare the baseline model (in-house
implementation) and 3 SRC-based parameter-driven models with different model func-
tions. Figure 5.11 shows the SUR prediction results of 2 SRCs. The dashed lines in orange,
green and blue are the analytical SUR curves obtained from fitting to the red points in
empirical SUR with Gaussian, 2-p-logistic and 4-p-logistic respectively. Plain lines with
dots are the predicted SUR of the 3 SRC-based models obtained by predicting the param-
eters of the corresponding dashed lines. The green line is the SUR prediction of baseline
model. Difference between Predicted and Analytical SUR (denoted ∆SUR|P−A|) is the
MAE between them for the QP/CRF values present in the datasets. ∆SUR|P−A| indicates
the error between ground truth (analytical SUR curve) and prediction SUR curve, but the
modeling error (between empirical and analytical SUR curve) are not considered. There-
fore, difference between Predicted and Empirical SUR (denoted ∆SUR|P−E|) is evaluated
as well. ∆75%SUR is evaluated in the same way. The results are shown in Table 5.8.
The 3 SRC-based parameter-driven models outperform the baseline model both in ∆SUR
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Figure 5.11 – Examples of SUR prediction results comparison between SRC-based models
and baseline model

and ∆75%SUR. The prediction errors between Gaussian and logistic parameter-driven
models are quite close. However, the 4-para-logistic which has the smallest modeling error
performs worse than Gaussian and 2-para-logistic.

Table 5.8 – Averaged prediction error comparison between baseline model and 3 SRC-
based parameter-driven models on VideoSet.

RES Model name ∆SUR ∆75%SUR
|P− A| |P− E| |P− A| |P− E|

360p

baseline 0.0769 0.0799 4.3682 4.3773
2-p-Gaussian 0.0459 0.0480 2.4773 2.5864
2-p-Logistic 0.0462 0.0489 2.4455 2.5682
4-p-Logistic 0.0496 0.0515 2.4591 2.5909

540p

baseline 0.0786 0.0812 4.3182 4.2909
2-p-Gaussian 0.0397 0.0428 2.1182 2.1045
2-p-Logistic 0.0398 0.0437 1.9727 2.0955
4-p-Logistic 0.0435 0.0458 2.0045 2.1000

720p

baseline 0.0783 0.0820 4.2864 4.2909
2-p-Gaussian 0.0433 0.0447 2.1636 2.2045
2-p-Logistic 0.0435 0.0459 2.1636 2.2364
4-p-Logistic 0.0467 0.0476 2.1636 2.2318

1080p

baseline 0.0801 0.0834 4.6000 4.5591
2-p-Gaussian 0.0412 0.0431 2.3455 2.2136
2-p-Logistic 0.0409 0.0440 2.1182 2.1773
4-p-Logistic 0.0439 0.0455 2.1455 2.1727

We also compared SRC-based model and SRC+PVS-based model, the results are
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shown in Table 5.9. It can be observed that adding quality degradation information from
PVSs will improve the prediction of both SUR and 75%SUR, but with a cost of encoding
SRC to 51 PVSs.

Table 5.9 – Averaged prediction error comparison between SRC-based and SRC+PVS
based model on VideoSet 1080p with Guassian modeling.

Model ∆SUR ∆75%SUR
|P− A| |P− E| |P− A| |P− E|

SRC-based 0.0412 0.0431 2.3455 2.2136
SRC+PVS-based 0.0377 0.0412 2.0727 2.1409

Summary

In section, we proposed a novel pipeline for SUR modeling and prediction to predict the
optimal encoding parameter only from SRC. Experiment results show that the proposed
parameter-driven model (2-p-Logistic for instance) improves the mean SUR prediction
error to 0.046, reducing it by 43.64% compared with the baseline and reduces the mean
75%SUR prediction error from 4.38 QP (baseline) to 2.27 QP. Furthermore, compared
with SRC-based model, the SRC+PVS-based model slightly improves the mean prediction
error of SUR curve and 75%SUR by 0.0019 and 0.0727 QP respectively, which means the
quality degradation features from PVSs are not crucial to SUR prediction.

5.4.2 Further improvement of the prediction

In the previous Section 5.4.1, we firstly compare several different mathematical mod-
elings of SUR curve and secondly compute the SUR curve by predicting the modeling
parameters only based on the features of SRC. Nevertheless, the prediction errors of SUR
curve and 75%SUR are still non-negligible due to the limitation of masking effect fea-
tures. In this section, we propose a new SUR prediction framework based on the previous
one that extract many different types of features other than the masking effect features
followed by features selection and regression.

Similar with the SUR prediction framework in Figure 5.9 in Section 5.4.1, there are
two steps (see Figure 5.12) for the entire pipeline: (1) Modeling; (2) Prediction. Modeling
includes computing the empirical SUR curve (SURemp) from the JND distribution of the
group-users and finding the best mathematics model to fit the SURemp. The fitted SUR
curve is denoted as SURanaly. After generating ground truth from modeling, we use SRC as
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Figure 5.12 – Illustration of the pipeline of SUR and JND (1) modeling and (2) prediction
framework (improved version of Figure 5.9)

input to extract features, select features and make predictions. The prediction framework
is detailed as follows:

Feature extraction

Three types of features: (1) masking effect features, (2) bitstream features and (3)
content features are extracted as illustrated in Figure 5.12.

Masking effect Features measures randomness/regularity temporally (temporal
randomness (TR) [51]) and spatially (spatial randomness (SR) [50]). When the random-
ness is high, it will be difficult for human to perceive difference, as it masks the distortion
for the HVS. Masking effect features were used in [137, 159] to predict JND.

As shown in Figure 5.12, SRC is segmented into small video patches both spatially
and temporally to extract features from the eye fixation level. The dimensions of video
patches are set the same as [137]. SR and TR are calculated on each small video patch to
obtain feature matrices FSR and FT R (Please refer to Annex I for details). The statistic
histogram (Eq. (5.7)) with number of bins equals to 20 is applied as pooling method to
reduce the feature dimension.

−→
SR = Hist20(FSR), −→

TR = Hist20(FT R) (5.7)
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Bitstream Features are widely used for light-weight quality estimation [121]. Be-
fore extracting bitstream features in Table 5.10, SRCs are first compressed into a near
lossless PVS with CRF = 5 for our datasets. The bitstream features are extracted using
videoparse [122] without decoding pixel information.

The temporal and spatial pooling function are defined as:

Ftime = {Mean, Std, Max, Skew, Kurt} (5.8)

Fspace = {Mean, Std} (5.9)

where Mean is the average value, Std indicates standard deviation, Max denotes
maximum, Skew represents skewness, and Kurt is the kurtosis. The dimension of features
equals to the product of the dimension of Ftime and Fspace (e.g., for motion features, we
first compute the Mean and Std of motions intra frame (spatially); afterwards, Mean,
Std, Max, Skew and Kurt are calculated based on the two previous-computed spatial
value (Mean and Std for each frame) inter frame (temporally) respectively.)

Table 5.10 – Bitstream Features Summary

Features dimension
Average framerate 1

Bitrate 1
Ratio(non− I) =Nb(non−I frame)

Nb(all frame) 1
Max(Framerate) 1

Ftime(non - I frame size) 5
Ftime {Fspace(horizontal motion)} 5*2 = 10
Ftime {Fspace(vertical motion)} 5*2 = 10

Ftime {Fspace(motion)} 5*2 = 10
Ftime(Temporal Complexity [122] per frame) 5
Ftime(Spatial Complexity [122] per frame) 5

1 Nb: number;
2 Ftime and Fspace are the temporal (Eq. (5.8)) and spatial (Eq. (5.9)) pooling function.

Content Features include 7 types of features: Spatial Information(SI) [61], Tem-
poral Information (TI) [61], Chrominance Information (CI) [146], Contrast Information
(CTI) [146], Spatial Perceptual Information (SPI) [146], Colorfulness (CF) [44] and Grey
Level Co-occurrence Matrix (GLCM) [42]. As illustrated in Figure 5.12, they are extracted
directly from the pixel level of the SRC [88]. The temporal pooling function for content
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features is the same with bitstream features (Eq. (5.8)), and the spatial pooling function
is defind as:

Fspace = {Mean, Std, Max, Skew, Kurt}. (5.10)

The co-occurrence matrix (CM) is computed based on image patches. For each small
patche, we calculated 6 features as shown in Eq. (5.11):

Fpatch = {contrast, dissimilarity, homogeneity,

ASM, energy, correlation},
(5.11)

where contrast = ∑l−1
i,j=0 CMi,j(i− j)2, the dissimilarity diss = ∑l−1

i,j=0 CMi,j |i− j|, the
homogeneigy homo = ∑l−1

i,j=0
CMi,j

1+(i−j)2 , Angular Second Moment: ASM = ∑l−1
i,j=0 CM2

i,j,

energy =
√

ASM and correlation = ∑l−1
i,j=0 CMi,j

[
(i−µi)(j−µj)√

σ2
i σ2

j

]
, in which l is the level

of luminance of original image patch (l=255 for 8 bit image), i, j are the horizontal and
vertical index of CM respectively; µ, σ are the mean and variance of CM.

Features selection

As shown in Figure 5.12, all the extracted features are concatenated into one vector.
The exhibited vector has dimension of 399. We then used Forward-Sequential Feature
Selection (F-SFS) [37] to select the optimal set of feature for SUR prediction. It is a greedy
procedure. More specifically, we initially find the feature that minimize the cross-validated
prediction error for the modeling parameters in indirect mode A or the p%SURemp in direct
mobe B, when an estimator is trained on this single feature. Once that first feature is
selected, we repeat the procedure by adding the new feature that maximizes the cross-
validated score to the set of selected features. The procedure stops when the desired
number N of selected features is reached. Grid search was adapted to determine N .

Regression

The selected features will be fed into a SVR for prediction. As shown in Figure 5.12,
there are two ways to predict p%SUR:

— A: indirect p%SUR prediction through SUR modeling

— B: direct p%SUR prediction without modeling

For the indirect mode, analytical SUR curve (SURanaly) and its parameters are de-
termined by fitting the empirical SUR curve (SURemp). The fitted parameters serve as
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Table 5.11 – Content Features Summary.

Features dimension
SI+ = Ftime {Fspace {Sobel [Yn(i, j)]}} 5*5 =25
TI+ = Ftime {Fspace [Mn(i, j)]}
where Mn(i, j) = Yn(i, j)− Yn−1(i, j) 5*5 =25
CICb = Ftime {Fspace [Cbn(i, j)]}
CICr = Ftime {WR × Fspace [Crn(i, j)]}
where WR = 1.5 5*5+5*5=50
CTI = Ftime {Fspace [Yn(i, j)]} 5*5 = 25
SPISI13 = Ftime {Fspace [Rn(i, j)]}
where Rn(i, j) =

√
Hn(i, j)2 + Vn(i, j)2,

SPIHV 13 = Ftime

{
mean[HV (i,j)]
mean[HV (i,j)]

}
,

rg = Rn(i, j)−Gn(i, j),
yb = 1

2 (Rn(i, j) + Gn(i, j))−Bn(i, j) 5*5+5 = 30
CF = Ftime {CFn}
where CFn = σrgyb + 0.3µrgyb

σrgyb =
√

σ2
rg + σ2

yb, µrgyb =
√

µ2
rg + µ2

yb 5
GLCM = Ftime {Fspace [Fpatch(CM ]}
where CM is the co-occurrence matrix1 5*(5*6)=150

1 https://scikit-image.org/docs/0.7.0/api/skimage.feature.texture.html
2 Ftime and Fspace are the temporal (Eq. (5.8)) and spatial (Eq. (5.10)) pooling function;
Fpatch is the functions to compute the texture features of the spatial patch with size
n = 64 ∗ 64.
3 Y , Cr and Cb are the luminance and two chroma components; R, G and B are the red,
green and blue channels.

ground truth for the regressor. We first obtain the SURpred curve by predicting the fitted
parameters from the features. p%SUR can be computed from the SURpred curve.

For the direct mode, the ground truth for the regressor is p%SURemp. This mode is
useful if one is only interested in the specific value of p%SUR (e.g., the demand of a
streaming service provider is to satisfy 75% clients), but not the SUR curve, the direct
prediction without modeling can be adapted as illustrated in the dotted box in Figure 5.12.

Experiments and results

The logistic function showed best prediction performance in the previous Section 5.4.1,
hence it is employed in the indirect prediction model. Before feeding the extracted features
to the SVR, all the features are normalized by applying z-score transformation. The
estimator for F-SFS is the SVR and the metric of features selection is the Mean Square
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Error (MSE) of the fitted paramters for the indirect mode and the p%SURemp for the
direct mode. The optimal number of selected features is 55, detailed in Table 5.12. It can
be observed that bitstream features has highest selection rate, which means the bitstream
features such as motions are significant for SUR value prediction.

Table 5.12 – Number of features selected per category

Features type Selected/original Ratio of selection
Masking effect 9/40 0.2250

Bitstream 15/49 0.3061
Content features 31/310 0.1000

Each model is evaluated in our AMZ-HD-VJND datasets with 5-fold cross validation
with random split (fixed random state). Hyper parameters of SVR are determined by
grid search (kernel=’rbf’, C=0.1, epsilon=0.0001, gamma=’scale’). Difference between
Predicted and Analytical SUR curve (∆SUR|P−A|) is the Mean Average Error (MAE)
between them. ∆SUR|P−A| indicates the error between the fitted analytical SUR curve and
the predicted one. Difference between Predicted and Empirical SUR curve (∆SUR|P−E|)
is evaluated as well. ∆75%SUR is evaluated in the same way. The results are shown in
Table 5.13. For the model who predict directly the p%SUR (Direct mode), the ∆SUR|P−A|

and ∆SUR|P−E| don’t exist. Similarly, we cannot compute ∆75%SUR|P−A| because the
SURanaly doesn’t exist without modeling.

Experiment results show that our proposed models, both direct and indirect mode, out-
performs the basic parameter-driven model presented in Section 5.4.1, reducing ∆SUR|P−E|

by 40%. The direct p%SUR prediction mode without modeling has the smallest prediction
error in terms of ∆75%SUR. However, the indirect model provides us more information
(the SUR curve and the 75%SUR value) compared to the direct model that outputs only
the 75%SUR value. Furthermore, it could be observed in Table 5.13 that the indirect
model has smaller standard deviation than direct p%SUR prediction model which indi-
cates that the indirect model helps stabilize the variation of the prediction error.

Similarly, we applied the proposed framework on AMZ-HDR-VJND datasets. In addi-
tion to the bitstream features, we included SI TI 10bits 2 and WCG 3 features [73] for HDR
content. The results, shown in Table 5.14, indicate that, similar to the AMZ-HD-VJND
datasets, the direct p%SUR prediction mode without modeling has the smallest prediction

2. https://github.com/VQEG/siti-tools, last access: May 30, 2024.
3. https://github.com/junghyuk-lee/WCG-content-characterization, last access: May 30, 2024.
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Table 5.13 – Average and variance of prediction error in AMZ-HD-VJND datasets

Model ∆SUR ∆75%SUR
|P− A| |P− E| |P− A| |P− E|

Basic model (Section 5.4.1)
mean

0.1121 0.1146 1.3251 1.2559
Indirect 0.0621 0.0789 0.8510 0.8575
Direct 0.7489

Basic model (Section 5.4.1)
Var.

0.0513 0.0671 1.1921 1.1635
Indirect 0.0514 0.0406 0.8796 0.8382
Direct 0.9222

error in terms of ∆75%SUR compared to the indirect mode. However, unlike the AMZ-
HD-VJND datasets, the prediction errors of the direct mode also have smaller variance
than those of the indirect mode. Additionally, We also observed that the difference be-
tween the ∆75%SUR|P−A| and ∆75%SUR|P−E| is relatively higher in AMZ-HDR-VJND
datasets than AMZ-HD-VJND datasets. This indicates a larger modeling error for the
HDR datasets.

Table 5.14 – Average and variance of prediction error in AMZ-HDR-VJND datasets

∆SUR ∆75%SURModel |P− A| |P− E| |P− A| |P− E|
Indirect 0.0589 0.0775 0.8991 1.4838
Direct Mean 0.9449

Indirect 0.0343 0.0365 0.7089 1.0228
Direct Var. 0.7295

Conclusion

Compared to the basic parameter-driven model presented in Section 5.4.1, this im-
proved version for SUR/JND prediction includes enhanced feature extraction/selection
and regression by incorporating bitstream features and other content features. Our anal-
ysis shows that bitstream features have the highest contribution to the prediction of SUR
compared to other features. We evaluated two prediction modes: direct and indirect, for
predicting the p%SUR. Experimental results demonstrate that our proposed framework
outperforms the basic parameter-driven model in Section 5.4.1 for both SUR curve and
75%SUR value predictions.
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5.5 Summary

This chapter primarily addresses the objective study of the Satisfied User Ratio (SUR).
We first analyzed the resolving power of currently widely used Video Quality Metrics
(VQMs) towards SUR. Experimental results show that the investigated VQMs are highly
content-dependent and not consistent enough for p%SUR, indicating that the current
VQMs are not accurate enough to capture the Just Noticeable Difference (JND). This
finding indicates that the widely used VQM struggles to accurately capture both JND
and SUR.

Due to the content dependency of VQMs for p%SUR, we proposed a new pipeline
to predict p%SUR using VMAF as a proxy. This pipeline consists of two stages: A)
computing of VQMs and B) Regression based on VQMs at the optimal QP/CRF. Ex-
perimental results indicate that incorporating quality metrics of compressed video with
optimal QP/CRF can significantly reduce the Mean Absolute Error (MAE) of p%SUR
predictions using VMAF as a proxy, compared to existing solutions in the literature.

Furthermore, we proposed a parameter-driven model to predict SUR using encoding
parameters as proxies. Experimental results show that the proposed parameter-driven
model (e.g., 2-p-Logistic) improves the mean SUR prediction error to 0.046, reducing it
by 43.64% compared with the baseline, and reduces the mean 75%SUR prediction error
from 4.38 QP (baseline) to 2.27 QP. Compared with the SRC-based model, the SRC+PVS-
based model slightly improves the mean prediction error of the SUR curve and 75%SUR
by 0.0019 and 0.0727 QP, respectively, indicating that the quality degradation features
from PVSs are not crucial to SUR prediction.

Finally, we proposed an improved version of the parameter-driven model that in-
cludes enhanced feature extraction/selection and regression by incorporating bitstream
features and other content features. Our analysis shows that bitstream features have the
highest contribution to the prediction of SUR compared to other features. We evaluated
two prediction modes: direct and indirect, for predicting p%SUR. Experimental results
demonstrate that our proposed framework outperforms the basic parameter-driven model
for both the SUR curve and 75%SUR value predictions.
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Chapter Contributions

— Analysed the resolving power of different VQM for p%SUR.

— Proposed a pipeline to predict p%SUR using VMAF as a proxy.

— Proposed parameter-driven models to predict SUR using encoding parameters
as proxies.
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APPLICATION OF SUR: STREAMING
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Overview

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2 Bitrate costs for enhanced user satifaction . . . . . . . 120

6.2.1 Expanding JND Datasets to other Codecs . . . . . . . . . 123
6.2.2 Bitrate as a Function of Satisfied User Ratio (SUR) . . . 126
6.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.3 JND aware per-title bitrate ladder optimization . . . . 129
6.3.1 JASLA Architecture . . . . . . . . . . . . . . . . . . . . . . 130
6.3.2 Evaluation and Results . . . . . . . . . . . . . . . . . . . 133
6.3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Part of this chapter has been published in research papers [10, 101]

6.1 Introduction

The usage of video streaming platforms such as YouTube, Netflix, Hulu or Amazon
Prime Video has become an integral part of our daily lives. In this context, Http Adaptive
Streaming (HAS) has become the dominant technique utilized for both live and Video-on-
Demand (VoD) streaming applications. HAS relies on Adaptive Bitrate (ABR) Streaming
methods which encode video content at multiple bitrate-resolution pairs known as “rep-
resentations". These different representations are used to construct a so-called bitrate
ladder [8], allowing a dynamic adjustment of video quality that takes into account the
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available bandwidth of the viewer and the type of device.
So far, the norm has been to utilize a fixed set of representations, such as the HLS

bitrate ladder [12] for all video content on a system or platform. However, such a "one-size-
fits-all" approach may not be optimal when provisioning a wider range of video content
types. As shown in Figure 6.1, for Dolls_s000, the cross-over bitrate between 540p and
1080p resolutions happens at approximately 2.0 Mbps, which means at bitrates lower
than 2.0 Mbps, 540p resolution outperforms 1080p in terms of VMAF 1. In comparison,
at bitrates higher than 2.0 Mbps, 1080p resolution outperforms 540p. On the other hand,
for RushHour_s000, 1080p yields higher VMAF over the entire bitrate range, which means
1080p should be selected for the bitrate ladder for the entire bitrate range.

0.2 0.5 1.2 3.0 9.0
Bitrate (in Mbps)

10

30

50

70

90

VM
AF

Dolls_s000 540p
Dolls_s000 1080p
RushHour_s000 540p
RushHour_s000 1080p

Figure 6.1 – RD curve of 540p and 1080p CBR encodings of Dolls_s000 and Rush-
Hour_s000 [5] video sequences using x265 HEVC encoder at slower preset.

For this reason, per-title encoding approaches were introduced, which aim to create
an individual, optimized bitrate ladder for each video content in order to achieve higher
Quality of Experience (QoE). More specifically, in per-title encoding [29, 8, 6], various en-
coding parameters (such as frame rate, resolution, etc.) are varied and utilized by encoding
content clips using all possible combinations of these parameters. Subsequently, an opti-
mized bitrate ladder is constructed by selecting representations from a convex-hull based
on the quality measurements of the encoded representations (cf. Figure 6.2). In terms of
objective quality metric for the convex-hull construction, VMAF [80] is frequently used,
due to its strong correlation with human-perceived quality. Therefore, VMAF is often
used to assess the quality of representations and guide the bitrate laddering process [67].

1. https://netflixtechblog.com/vmaf-the-journey-continues-44b51ee9ed12, last access: May 30, 2024.
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A key step in constructing an optimized bitrate ladder is the careful selection of a
subset of representations from the convex-hull. This selection process has to consider a
broad range of factors, including available network bandwidth, device capabilities. While
some methods focus on selecting representations based on the probability of clients re-
questing specific bitrate versions [123, 130], other approaches prioritize a selection of
representations that minimize perceptual similarity [103, 20, 157]. These methods aim to
avoid including representations in the bitrate ladder that feature overly similar perceptual
qualities, since such redundancy may lead to inefficient resource utilization. To prevent
quality redundancy in the bitrate ladder, the selection process should focus on minimizing
perceptual similarity between representations. This approach helps to reduce streaming
costs by avoiding the inclusion of perceptually similar quality levels in the bitrate ladder.
Figure 6.2 shows an example of selecting bitrate-resolution pairs from the convex-hull. In
this example, selection is based on the optimal encoding parameters for each bitrate, by
focusing either on bitrate or quality. Figure 6.2a illustrates the selection process based on
bitrate, similar to the approach described in [130]. In this method, the most frequently
requested set of bitrates, i.e., {b1, b2, ....bn}, is chosen from within the convex hull to con-
struct the bitrate ladder. Figure 6.2b depicts a quality-based selection process, specifically
for VMAF, similar to the approaches outlined in [103, 20]. These methodologies choose a
set of quality values, denoted as {v1, v2, . . . , vn} with the goal of having only small, barely
noticeable perceptual differences between consecutive representations. These approaches
help minimize streaming costs by avoiding the inclusion of perceptually similar quality
levels in the bitrate ladder. However, the selection of representations in these works is
based on a fixed JND threshold, which may not be optimal for all video content.

In this chapter, we aim to deploy JND and SUR into streaming optimization. We first
investigate the bitrate costs associated with varying SUR thresholds to answer the key
research question: What is the impact on bitrate when selecting different SUR thresholds?
Specifically, how much additional bitrate is required to increase the SUR from 75% to 95%?

To conduct this analysis across various codecs, we first expand the current Just No-
ticeable Difference (JND) datasets to include additional codecs (Section 6.2.1). We then
examine the relationship between SUR thresholds and bitrate requirements for construct-
ing bitrate ladders across these codecs (Section 6.2.2).

In Section 6.3, we introduce a JND-aware bitrate ladder optimization method that
leverages the JND values of the video content. This framework, detailed in Section 6.3.1,
is designed to construct efficient bitrate ladders. The effectiveness of our approach is
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(a) (b)

Figure 6.2 – Optimal representation selection along the convex hull based on (a) bi-
trate [130] or (b) quality [103] (using VMAF metric).

demonstrated through experimental results presented in Section 6.3.2.
Finally, we conclude the chapter with a summary and suggest directions for future

research in Section 6.4.

6.2 Bitrate costs for enhanced user satifaction

In this section, we explore the use of Just Noticeable Differences (JND) for constructing
a bitrate ladder with respect to the proportion of satisfied user ratio (SUR). To expand the
investigation to various codecs, first, a method is explained that transfers the JND points
obtained through subjective testing from one codec (e.g., AVC) to other codecs (e.g.,
HEVC, VVC). This approach helps avoid the additional costs associated with conducting
subjective tests to obtain JND points for a wide range of different codecs. To achieve
this objective, we investigate the codec-agnostic nature of various video quality metrics,
followed by the transfer of JND between two codecs, taking into account the most suitable
codec-agnostic video quality metric. Secondly, we delve into the analysis of the bitrate cost
of a given bitrate ladder from a JND perspective, i.e.,, as a function of the SUR. Among
others, our experimental results demonstrate that increasing SUR leads to an exponential
increase in bitrate. For example, to raise the SUR from 75% to 90%, it is necessary to
double the video bitrate.

From the sections 3.2.2 of Chapter 3, we know that the JND varies for different ob-
servers, and SUR measure the population that could not perceive the difference for a
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Figure 6.3 – SUR curve example for the VMAF proxy.

certain distortion level. Figure 6.3 presents an example of an SUR curve with VMAF as
proxy. Obviously, as the percentage of satisfied individuals p increases (equating a de-
creasing audience share that is actually capable of perceiving the distortion between the
reference and degraded video), the VMAF value shows a corresponding increase. This
observation implies that to satisfy a larger number of individuals, the VMAF score of
the encoded video should be improved, signifying that the quality of the encoded video
should more closely match that of the reference video.

For example, consider VMAFSUR(75%), which signifies that 75% of viewers cannot de-
tect any distortion between the reference video and the encoded video when the VMAF
score reaches this level. To cater to a larger audience and meet higher quality standards,
where 95% of viewers should not perceive any differences between the reference video and
the encoded video, we would refer to the VMAF score as VMAFSUR(95%). In this context,
it is important to note that VMAFSUR(75%) would be less than VMAFSUR(95%), indicating
a higher level of satisfaction in the latter case.

Figure 6.4 illustrates how various values of p can influence the selection of bitrate-
resolution pairs. As the ratio of satisfied individuals, represented by p, increases, the
chosen bitrates for the bitrate ladder also increase. In this section, our goals are two-fold:

(i) Our objective is to quantify the relationship between the percentage of satisfied
individuals p and the overall bitrate of the selected representations for the bitrate ladder:

n∑
i=1

bi = f(p) (6.1)
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Figure 6.4 – A growing percentage of satisfied users (%p) requires a bitrate ladder with a
broader range of bitrate values.

(ii) To accommodate different codecs, we propose a mapping scheme for SUR(p%)
across various codecs. To achieve this, we initially assess the codec-dependent nature of
different Video Quality Metrics (VQMs) by analyzing a subjective test results. Subse-
quently, we employ the most codec-agnostic VQM to map SUR(p%) to other codecs.
This approach eliminates the necessity for conducting subjective tests for different video
codecs. Figure 6.5 illustrates the mapping of the corresponding QP values for SUR(p%)
from AVC to VVC.

Figure 6.5 – Mapping of the corresponding QP values from AVC to VVC.
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6.2.1 Expanding JND Datasets to other Codecs

Carrying out a subjective test is both time-consuming and expensive. This is partic-
ularly true for JND subjective tests, as they involve the identification of JNDs within
a large set of quality levels [155, 63]. VideoSet [138] is the most extensive JND dataset
conducted on the AVC codec to determine the JND values for the QP proxy. The dataset
comprises 220 source video sequences with a duration of 5 seconds, featuring frame rates
of either 24 fps or 30 fps. These sequences were encoded at different resolutions using the
constant quantization parameter (CQP) rate control mode of the AVC, with QPs rang-
ing from 0 to 51. The subjective evaluation of JND of individuals was conducted across
multiple universities.

VideoSet currently supports only AVC and to address the need for JND datasets for
more advanced codecs like HEVC and VVC, we aim to explore alternatives that do not
require an extensive subjective testing process. Our goal is to extend the applicability
of JND datasets to other codecs based on VideoSet, originally designed for AVC, while
minimizing the need for additional subjective testing efforts. In Figure 6.5, we show the
process of mapping the QP from subjective test results of AVC to VVC, all without
the need for additional subjective tests. This mapping leverages Video Quality Metrics
(VQMs) as proxies, operating under the assumption that widely adopted metrics like
VMAF provide consistent scores for the same perceptual quality across different codecs
for a given video. In the following section, we substantiate this assumption through a
comprehensive analysis of existing cross-codec subjective datasets.

Codec-Agnostic Video Quality Metric (VQM)

We examine the per-content codec-agnostic features of various Video Quality Metrics
(VQMs) by leveraging the subjective test results from the Waterloo IVC 4K dataset [81].
The Waterloo IVC 4K dataset includes subjective tests conducted on various video codecs,
such as AVC, HEVC, VP9, and AV1. We proceed to compute widely used VQMs, including
VMAF (model vmaf_v0.6.1 2), PSNR, SSIM, and MS-SSIM, for all the encoded videos.
Taking the mean opinion score (MOS) as the ground truth of perceptual quality, for a
VQM to demonstrate codec independence, it should yield the same VQM score for the
same MOS across different codecs.

To quantitatively evaluate the codec-independent performance of various VQMs, we

2. https://github.com/Netflix/vmaf/blob/master/resource/doc/models.md, last access: May 30, 2024.
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employ a MOS-VQM regression analysis for each VQM. For a given video encoded with
codec c ∈ C at a VQM set of Qc = [q1

c , q2
c , ..., qn

c ], we represent the MOS of its encoded
versions as Mc = [m1

c , m2
c , ..., mn

c ].
The regression analysis aims to predict MOS values based on VQM scores for videos

encoded using various codecs. Consequently, our goal is to identify the optimal VQM and
its associated regression model that minimizes the mean absolute error (MAE) across all
codecs:

MAE = 1
N

∑
c∈C

n∑
i=1

∣∣∣f(qi
c)−mi

c

∣∣∣ , (6.2)

where f is obtained from:

min
f
∥f(Qc1)−Mc1∥

2
2 . (6.3)

This states that for the best fit of the model f , MAE between the predicted MOS
values f(Qc) and the actual MOS values Mc over all codecs in set C should be minimal.

(a) SRC#1:PSNR (b) SRC#1:SSIM (c) SRC#1:MSSSIM (d) SRC#1:VMAF

(e) SRC#4:PSNR (f) SRC#4:SSIM (g) SRC#4:MSSSIM (h) SRC#4:VMAF

Figure 6.6 – Relationships between MOS and different VQMs for SRC#1,4 in Waterloo
IVC 4K datasets for different codecs.

Given that subjective tests within the VideoSet dataset were performed on AVC only,
our analysis selects AVC as c1 from the codec set C = {AVC, HEVC, VP9, AV1} provided
by the Waterloo IVC 4K dataset. For each content in the Waterloo IVC 4K dataset, we fit
a regression model as per Eq. (6.3), using the MOS scores associated with AVC encoded
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Table 6.1 – MAE and RMSE values between MOS of different codecs and the curve fitted
on the AVC codec on Waterloo dataset using linear regression model.

MAE RMSE
Codec PSNR SSIM MS-SSIM VMAF PSNR SSIM MS-SSIM VMAF
AVC 2.86 6.28 5.73 3.62 3.08 6.77 6.14 3.85

HEVC 5.99 7.83 7.38 5.41 6.81 9.24 8.86 6.33
VP9 10.60 8.50 7.72 5.86 11.84 9.60 8.71 6.88
AV1 12.98 11.52 10.20 6.60 15.37 12.24 10.87 7.33

Average 8.11 8.53 7.76 4.51 9.28 9.46 8.65 6.09

videos and their corresponding VQM scores. Figure 6.6 presents the plots of VQM versus
MOS for two different content from the Waterloo IVC 4K dataset, using PSNR, SSIM,
MS-SSIM, and VMAF as VQM. The fitted lines are derived from the VQM-MOS data of
versions encoded with AVC using a linear regression model.

Table 6.1 summarizes the MAE and root mean sqared error (RMSE) values for the se-
lected VQMs using the linear regression model. Please note that RMSE has been included
solely for reference purposes, while MAE has been utilized in the study. MAE measures
the absolute difference between the predicted MOS values on the fitted line with AVC
MOS-VQM points and the actual human-rated MOS scores. Lower MAE values indicate
higher codec-independence of the metric. The results indicate that, using linear regression,
VMAF achieves the lowest MAE, at 4.51%, across all codecs, demonstrating its codec in-
dependence. This denotes that VMAF consistently estimates the MOS with a marginal
error of 4.51% regardless of the codec used.

Generate Cross-Codec JND Datasets

We encoded the 220 source video of VideoSet with HEVC and VVC using the following
configurations:

— HEVC: The x265 HEVC video encoder version 3.4, integrated with FFMPEG (libx265),
was employed using its default settings (medium preset).

— VVC: The VVenC VVC encoder version 1.9.1 3 [144] was operated using the ‘faster’
preset and default settings.

VideoSet is based on videos that are encoded with AVC with QP ranging from 0 to
51. For a given content m in VideoSet, assuming that there are N reliable subjects’ JND

3. https://github.com/fraunhoferhhi/vvenc, last access: May 30, 2024.
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annotations, the JND of a subject “n" is denoted by jAV C,m
n . JND of N subjects can be

denoted by JAV C,m as

JAVC,m = [jAVC,m
1 , jAVC,m

2 , ..., jAVC,m
N ] (6.4)

For the same content m for another codec, taking VVC as example, the JND annotations
of subject “n" can be computed by Eq. (6.5).

jVVC,m
n = arg min

i∈{1,2,...63}

∣∣∣VQM(QPAVC(jAVC,m
n ))− VQM(QPVVC(i))

∣∣∣ , (6.5)

where QPc(x) is the video encoded with QP of x with codec c. This equation is based on
the codec agnostic features of different VQMs which has been validated in Table 6.1.

6.2.2 Bitrate as a Function of Satisfied User Ratio (SUR)

The main objective of the study is to determine the additional bitrate expense re-
quired to improve user satisfaction when using various codecs. Accordingly, our initial
step involves plotting the average bitrate for videos encoded at QPs corresponding to the
SUR(p%) pertinent to different JND levels as a function of the user satisfaction ratio, i.e.,
p.

Figure 6.7a shows the average bitrates required to satisfy a certain user ratio using
the AVC codec, as gathered directly from VideoSet. It has been observed that achieving
higher user satisfaction—whereby a greater percentage of users cannot detect any dis-
tortion between the reference video and the compressed version—necessitates a greater
bitrate. However, the required increase in bitrate to maintain user satisfaction exhibits an
exponential trend. For example, to ensure that 75% of users cannot discern any difference
at the 1st JND level, videos need to be encoded at an approximate average of 5 Mbps. If p

is increased to 90%, the approximate average required bitrate escalates to 10 Mbps, which
represents a significant increase. Figure 6.7b illustrates the increase in bitrate compared
to the preceding satisfaction level for each given satisfaction ratio, p. It has also been
noted that for the 1st JND, the increase in bitrate corresponding to an increase in the
satisfaction ratio p is greater than that for the 2nd JND, and the increases for the 2nd

JND are in turn higher than those for the 3rd JND.
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Cross-Codec Comparison on SUR

After generating the new JND datasets for HEVC and VVC as described in Sec-
tion 6.2.1, we conducted similar analyses to compare them with AVC. To facilitate a
clear comparison, we normalized the average bitrate of HEVC and VVC at SUR(p%) by
dividing them with the corresponding bitrate of AVC as shown in Eq. (6.6).

Bitratenormalized(SURC
p%) = Bitrate(SURC

p%)/
Bitrate(SURAVC

p% ) (6.6)

(a) (b)

Figure 6.7 – Relationships between bitrate and SUR threshold for VideoSet AVC 1080p
on 1st, 2nd and 3rd JND. (a) Average bitrate for different SUR thr. (b) Bitrate increase
for every 5% SUR thr. increase.

The results are shown in Figure 6.8a. It can be observed that, akin to AVC, the
average bitrate required to satisfy a given percentage of users (p%) increases with the p%
value. However, the bitrate demand is comparatively lower for HEVC and VVC, as the
relative bitrate is less than 1. An increase in relative bitrate can also be noted, suggesting
that the efficiency advantages of HEVC and VVC over AVC are more pronounced at
lower p% values, with this advantage diminishing as p% rises. For p% equal to 100%,
where the average bitrate for AVC is approximately 25 Mbps (refer to Figure 6.7a), the
bitrate requirement for HEVC and VVC is greater. This discrepancy may be attributed
to the efficiency of AVC in very high bitrates or the specific preset employed for different
codecs. Figure 6.8b demonstrates the quantified relationship between VMAF scores and
bitrates for the video SRC#1 encoded using different codecs. Additionally, it outlines
the associated SUR at a 75% satisfaction level for the 1st, 2nd, and 3rd perceptual JND
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thresholds. The data clearly indicates that at identical JND levels, HEVC and VVC
achieve the designated quality with lower bitrate requirements than AVC, confirming the
superior performance of the former codecs.

(a) (b)

Figure 6.8 – (a) The normalized average bitrate of HEVC and VVC at various SUR(p%)s.
(b) VMAF vs bitrate curves for video SRC# 1 encoded with AVC, HEVC, and VVC.

Impact of Video Quality Metric

In Section 6.2.1, we established that VMAF exhibits the highest level of codec-agnostic
properties compared to other VQMs. To assess the robustness of our JND mapping
methodology across various codecs, we employ multiple VQMs to determine the JND
points. This multi-metric approach enables us to understand the extent to which a VQM
affects the mapping. Figure 6.9 shows the relative bitrate for the HEVC codec’s JND
points using different VQMs for mapping. It has been observed that, aside from VMAF,
other VQMs yield similar results for the 1st JND, albeit with a significant margin of error
compared to VMAF. However, for the 2nd and 3rd JNDs, the similarity between the results
diminishes. This highlights the importance of choosing the appropriate VQM for accurate
mapping.

6.2.3 Summary

In this section, we conducted an evaluation of the codec-agnostic characteristics of var-
ious video quality metrics. Our findings indicate that VMAF exhibits superior robustness
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(a) (b) (c)

Figure 6.9 – Comparative mapping results to HEVC videos using different VQMs.

across different codecs, meaning that an equivalent VMAF score for different codecs corre-
lates with a comparable Mean Opinion Score (MOS) for those codecs. Utilizing VMAF, we
mapped Just Noticeable Difference (JND) points from the AVC codec within the VideoSet
dataset to the HEVC and VVC codecs, based on the premise that equivalent VMAF scores
for two codecs correlate to the same perceptual video quality. Subsequently, we assessed
the bitrate investment necessary to achieve an increased number of satisfied users across
different codecs. Our observations reveal an exponential trend, suggesting that satisfying
a larger proportion of users who cannot detect the quality differences between a reference
video and its encoded counterpart necessitates a steep increase in bitrate.

6.3 JND aware per-title bitrate ladder optimization

The previous Section 6.2 demonstrates the impact of SUR thresholds on bitrate alloca-
tion, providing streaming providers with a clearer understanding of the trade-offs between
SUR and bitrate cost. This enables them to determine the optimal SUR threshold for their
services. Once the SUR threshold is decided, the next question is how much bitrate and
storage cost can be saved by designing the bitrate ladder with the SUR in mind. We call
this JND-aware per-title bitrate ladder optimization.

In this section, we propose a JND-aware per-title bitrate ladder optimization frame-
work for adaptive VoD streaming applications, JASLA. This framework predicts jointly
optimized resolutions and corresponding Constant Rate Factors (CRFs) using spatial
and temporal complexity features for a given set of target bitrates for every video con-
tent/scene, resulting in an efficient constrained Variable Bitrate encoding. Furthermore,
bitrate-resolution pairs that result in distortion below the 1st JND (with a SUR threshold
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of 75%) are eliminated, ensuring efficient resource utilization.

6.3.1 JASLA Architecture

Figure 6.10 – JASLA architecture.

The JASLA architecture is shown in Figure 6.10. The resolution and the corresponding
CRF for each bitrate in the bitrate ladder are predicted for every scene using the scene’s
spatial and temporal complexity features, the set of pre-defined resolutions (R), and the
set of pre-defined bitrates (B) for an efficient cVBR steaming. An optimized bitrate ladder
for every scene ensures streaming quality with no bitrate fluctuations. R is input to JASLA
to confirm that only the resolutions supported by the streaming service provider are
selected to generate the optimized bitrate ladder. Next, the bitrate-resolution pairs whose
perceptual quality is less than one JND compared to the source video are eliminated. In
this way, the number of representations needed for streaming is reduced. The encoding
process is carried out only for the predicted bitrate-resolution-CRF pairs for every scene.

JASLA comprises three steps: (i) scene complexity features extraction, (ii) optimized
resolution and CRF prediction, and (iii) JND threshold prediction which are described
in the following.

Scene Complexity Features Extraction

In video streaming applications, an intuitive method for feature extraction would be to
utilize Convolutional Neural Networks (CNNs) [149]. However, such models have several
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inherent disadvantages, such as higher training time, inference time, and storage require-
ments, which are impractical in streaming applications. The popular state-of-the-art video
complexity features are Spatial Information (SI) and Temporal Information (TI) 4. But
the correlation of SI and TI features with the encoding output features such as bitrate,
encoding time etc. are very low, which is insufficient for encoding parameter prediction
in streaming applications [97, 103, 134, 104].

In this study, seven DCT-energy-based features [43], the average luma texture energy
EY , the average gradient of the luma texture energy h, the average luminescence LY , the
average chroma texture energy EU and EV (for U and V planes) and the average chromi-
nance LU and LV (for U and V planes), which are extracted using VCA 5 open-source
video complexity analyzer [105, 104] are used as the spatial and temporal complexity
measures [98, 99] of every scene.

Optimized Resolution and CRF Prediction

For each scene, the optimized resolution for a given target bitrate is predicted using the
scene’s spatial and temporal features, the set of supported resolutions (R), and the set of
target bitrates (B). To determine the bitrate-resolution pairs of the bitrate ladder, VMAF
is predicted for each target bitrate (bt) in the set B for all resolutions r̃ in R, denoted
as vr̃,bt . From the predicted VMAF values, the resolution which yields the maximum
VMAF value is chosen as the optimized resolution for the target bitrate. Random Forest
(RF) models are trained to predict VMAF for every resolution supported by the streaming
service provider. This ensures scalability of design, where there is no requirement to retrain
the entire network to add a new resolution to the framework.

Using the EY , h, LY features, optimized CRF ĉt is estimated for every (r̂t, bt) repre-
sentation of the bitrate ladder for cVBR encoding. Prediction models are trained for each
resolution r̃ in R, which determines ĉt based on EY , h, LY and log(bt) for every scene.
The minimum and maximum CRF (cmin and cmax, respectively) are chosen based on the
target codec. For example, x2656 supports a CRF range between 0 and 51. The prediction
algorithm for the bitrate ladder is shown in Algorithm 4.

4. https://github.com/VQEG/siti-tools, last access: May 30, 2024.
5. https://vca.itec.aau.at, last access: May 30, 2024.
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Algorithm 4 Optimized resolution and CRF prediction
1: Inputs:
2: R : set of all resolutions r̃m ∀ m ∈ [1, M ]
3: M : number of resolutions in R
4: B : set of all bitrates bt ∀ t ∈ [1, N ]
5: N : number of bitrates in B
6: EY , h, LY : average scene complexity
7: Output: (r̂, b, ĉ) pairs of the bitrate ladder
8: for t ∈ [1, N ] do
9: for m ∈ [1, M ] do

10: Determine vr̃m,bt with [EY , h, LY , log(bt)], using the model trained for r̃m.
11: end for
12: r̂t = arg maxr̃m∈R(vr̃,bt)
13: Determine ĉt with [EY , h, LY , log(bt)], using the model trained for r̂t.
14: (r̂t, bt, ĉt) is the (t)th point of the bitrate ladder
15: end for
JND Threshold Prediction

We adapted the SUR prediction framework described in Section 5.4.2 of Chapter 5
to predict the CRF value (cT ) where 75% of observers cannot perceive any distortion
compared to the source video. The original model, shown in Figure 5.12, utilizes three
types of features: (i) masking effect features, (ii) bitstream features, and (iii) content
features. However, computing the masking effect features is very time-consuming.

To address this, we replaced the masking effect features with scene complexity fea-
tures: EY , h, LY . These features are already extracted for resolution and CRF prediction,
as shown in Figure 6.10. The prediction results after this modification are presented in
Table 6.2. We observed that the prediction error increased by only 0.2 compared to the
original model. Despite this slight increase in error, the revised model is significantly
more efficient for bitrate ladder optimization: for the same 10s video of 1080p, using a
computer with an Intel(R) Xeon(R) CPU E7-8870 v4 @ 2.10GHz, extracting the masking
effect features takes 506 minutes, while extracting the scene complexity features takes just
0.9 seconds. It’s important to note that the implementation of the masking effect features
is not optimized, and the extraction time could be reduced through parallel computation.

Representation elimination: cT is used to eliminate perceptually redundant represen-
tations from the bitrate ladder as shown in Algorithm 5. There shall be only one repre-
sentation in the bitrate ladder where the selected optimized resolution is the maximum
supported resolution (rmax), and the predicted optimized CRF is lower than cT . Other
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Table 6.2 – Mean and Variance of the JND threshold prediction error for complexity
reduced model on AMZ-HD-VJND dataset.

Model Mean
(∆SUR|P−A|)

Var
(∆SUR|P−A|)

Original model 0.7498 0.9222
Complexity reduced model 0.9491 1.0888

higher bitrate representations are eliminated.

Algorithm 5 Representation elimination
Inputs:

N : number of bitrates in B
(r̂, b, ĉ) pairs of the bitrate ladder
cT : JND threshold CRF
rmax : maximum resolution in R

Output: (r̂, b, ĉ) pairs for encoding t = 1, f lag = 0
while t ≤ N do

if r̂t == rmax and ĉt < cT then
flag + +
end if
if flag > 1 then

Eliminate (r̂t, bt, ĉt) from the ladder.
end if

t + +
end while

6.3.2 Evaluation and Results

Test Methodology

In this study, four hundred video sequences (i.e., 80% of all sequences) from the Video
Complexity Dataset [5] are used as the training dataset, and the remaining (20%) is used
as the test dataset. The video sequences are encoded at 30fps using x265 6 v3.5 with the
slower preset. The bitrate-ladder specified in Apple HLS authoring specifications 7 are
considered in the evaluation, i.e., R= {360p, 432p, 540p, 720p, 1080p} and B = {145,
300, 600, 900, 1600, 2400, 3400, 4500, 5800, 8100}. EY , h and LY features are extracted
using VCA5 v1.5 open-source video complexity analyzer [104] run in eight CPU threads

6. https://videolan.org/developers/x265.html, last access: May 30, 2024.
7. https://developer.apple.com/documentation/http-live-streaming/hls-authoring-specification-for-

apple-devices, last access: May 30, 2024.
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using x86 SIMD optimization [132]. Hyperparameter tuning is performed to obtain a
balance between the model size and performance for VMAF and CRF prediction mod-
els, which results in the following parameters 8 for VMAF and CRF prediction models:
min_samples_leaf = 1, min_samples_split = 2, n_estimators = 100, and max_depth =
14. Furthermore, the bitstream features are extracted from the CRF=5 encoded bitstream
for each scene. Q × Q is set as 64 × 64 to determine GLCM features. The JND predic-
tion model is trained on our collected AMZ-HD-VJND datasets 3. The kernel of SVR is
the Radial basis function 9 with the parameters ϵ = 0.0001 and regularization parameter
C = 0.1 determined by a greedy hyperparameter search.

The following metrics are considered during the evaluation: (i) quality in terms of
PSNR and VMAF1, (ii) bitrate, and (iii) encoding time. Since the content is assumed to
be displayed at Full HD (1080p) resolution [29], the encoded content is scaled to 1080p
resolution, and VMAF and PSNR are calculated. Bjøntegaard delta rates [21] BDRP and
BDRV refer to the average increase in bitrate of the representations compared with that
of the fixed bitrate ladder encoding to maintain the same PSNR and VMAF, respectively.
BD-PSNR and BD-VMAF refer to the average increase in PSNR and VMAF, respectively,
at the same bitrate compared with the reference bitrate ladder encoding scheme. The
relative difference in the storage space required to store all representations (∆S) is also
evaluated as:

∆S =
∑

bopt∑
bref

− 1 (6.7)

where ∑ bref and ∑ bopt represent the sum of bitrates of all representations in the reference
bitrate ladder encoding and JASLA encoding, respectively.

Experimental Results

The performance of the VMAF, CRF, and JND threshold prediction models is inves-
tigated in the first experiment. The average R2 score of the VMAF and CRF prediction
models are estimated as 0.93 and 0.97, respectively. Hence, a strong positive correlation
exists between the predicted and ground truth values. The average MAE of the predic-
tion models is estimated as 3.25 and 1.86, respectively. The MAE of the JND threshold
prediction model is observed to be 0.94, which shows that JASLA works with sufficient

8. https://scikit-learn.org/stable/modules/ensemble.html#forests-of-randomized-trees, last access:
May 30, 2024.

9. https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html, last access: May 30,
2024.
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6.3. JND aware per-title bitrate ladder optimization
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Figure 6.11 – Comparison of RD curves of representative scenes using HLS CBR encoding
(blue line), JASLA encoding (red line).
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Chapter 6 – Application of SUR: Streaming Optimization

prediction accuracy.
The second experiment analyzes the runtime complexity of JASLA. JASLA predicts

resolution and CRF at a rate of 300 frames per second, i.e., 0.4s per video segment.
Compared to [154], the JND prediction runtime in JASLA is decreased by 97.24%.

The third experiment analyzes the bitrate saving and storage reduction results of
JASLA compared to the HLS CBR encoding. Using JASLA encoding, BDRP , BDRV , and
∆S are observed as -34.42%, -42.67% and -54.34%, respectively, compared to the HLS
CBR encoding. Moreover, JASLA encoding yields an average BD-PSNR and BD-VMAF
of 2.90 dB and 9.51, respectively. Figure 6.11 shows the RD curves of eight representative
video sequences (scenes) with HLS CBR encoding and JASLA encoding. The representative
scenes exhibit a variety of spatial and temporal complexities (in terms of EY , h, and LY ).
JASLA yields the highest VMAF at the same target bitrates for all scenes. Moreover, the
perceptually lossless representations are eliminated from the bitrate ladder.

6.3.3 Conclusions

we proposes a JND-aware per-scene bitrate ladder prediction scheme (JASLA) for adap-
tive video-on-demand streaming applications. JASLA predicts the optimized resolution and
corresponding CRF for given target bitrates for every video scene based on content-aware
spatial and temporal complexity features. A JND threshold prediction scheme is proposed,
eliminating representations that yield distortion lower than one JND from the bitrate lad-
der. The performance of JASLA is analyzed using the x265 open-source HEVC encoder
against a standard HLS bitrate ladder with the maximum resolution of Full HD (1080p).
It is observed that, on average, streaming using JASLA requires 34.42% and 42.67% fewer
bits to maintain the same PSNR and VMAF, respectively, compared to the reference HLS
bitrate ladder, along with a 54.34% cumulative decrease in the storage space needed to
store representations.

6.4 Summary

In this chapter, we explore the application of VW-JND in video streaming. We be-
gin with a study on the impact of the SUR threshold on bitrate allocation in adaptive
streaming. The experimental results reveal an exponential relationship between the SUR
threshold and bitrate cost. For instance, increasing the SUR from 75% to 90% requires

136



6.4. Summary

doubling the video bitrate. This study provides streaming providers with a clearer under-
standing of the trade-offs between SUR and bitrate cost, enabling them to determine the
optimal SUR threshold for their services. We also examine the codec-dependent nature
of various VQMs and propose a mapping approach to expand VW-JND datasets across
codecs.

Next, we propose a JND-aware per-title bitrate ladder optimization framework for
adaptive VoD streaming applications, JASLA. By leveraging the VW-JND prediction
framework, we eliminate perceptually lossless representations from the bitrate ladder.
Experimental results show that JASLA requires 34.42% and 42.67% fewer bits to maintain
the same PSNR and VMAF, respectively, compared to the reference HLS bitrate ladder.
Additionally, there is a 54.34% cumulative decrease in the storage space needed to store
the representations.

The proposed JASLA framework currently focuses solely on the first JND threshold
for determining the maximum resolution of the bitrate ladder. Eliminating perceptually
lossless representations can save significant resources, given their high resource demands.
However, there is potential for further optimization. Future work could explore integrating
the second and third JND thresholds, offering opportunities to refine the bitrate ladder
and enhance resource efficiency even further.

Chapter Contributions

— Explored the impact of SUR thresholds on bitrate allocation in adaptive
streaming, revealing an exponential relationship.

— Evaluated the codec-dependent nature of various VQMs and devised a map-
ping approach to expand VW-JND datasets across codecs.

— Introduced JASLA, a JND-aware bitrate ladder optimization framework for
adaptive VoD streaming.
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Chapter 7

CONCLUSION

Overview

Contents
7.1 Summary of contributions . . . . . . . . . . . . . . . . . 139
7.2 Limitations and Perspectives . . . . . . . . . . . . . . . 141

7.1 Summary of contributions

In-the-wild subjective test system: (1) Development of AtHome Subjective Test
System: We introduced a novel AtHome subjective test system designed for high-end video
quality assessments. (2) Comparison of Viewing Environments: Utilizing the AtHome sys-
tem, we analyzed the impact of viewing environments, specifically comparing "AtHome"
and "InLab" settings. Experimental results demonstrate that the opinion scores obtained
from both environments are not significantly different. However, the confidence inter-
vals (CI) of the opinion scores are larger in the AtHome environment, indicating greater
variability in responses. (3) Impact of Display on Opinion Scores: The AtHome system’s
flexibility with different displays allowed us to analyze the impact of various display tech-
nologies on opinion scores. Experimental results indicate that the variety and advanced
functionalities of display ecosystems significantly affect the Quality of Experience (QoE)
for end users.

Subjective study of VW-JND: (1) Generalization of SUR Definition: We com-
pared related work on VW-JND and extended the definition of the Satisfied User Ratio
(SUR) of JND to include different proxies such as Video Quality Metrics (VQM) and en-
coding parameters. (2) Benchmarking JND Search Methodologies: Through simulation,
we benchmarked various JND search methodologies and demonstrated that the Relaxed
Binary Search (RBS) is more efficient in terms of experiment time compared to Simple
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Chapter 7 – Conclusion

Staircase and Quest+ methods. (3) Pre-processing Method for JND Candidate Playlist
(JCP): We proposed a pre-processing method for the JND Candidate Playlist (JCP) that
reduces the duration of subjective tests by over 9%, enhancing the efficiency of data col-
lection. (4) Collection of HD and HDR VW-JND Datasets: Using our AtHome subjective
test system, we collected VW-JND datasets for HD and HDR content for high-end video
quality assessment.

Subjective Data Analyses: (1) ZREC Method for Opinion Score Recovery: We
proposed ZREC, a robust method to recover mean and percentile opinion scores. Ex-
perimental results show that parameters such as subject bias and inconsistency, content
ambiguity estimated by ZREC correlate highly with more complex solver-based methods
and standards. Additionally, ZREC recovers Mean Opinion Scores (MOS) with smaller
confidence intervals than current state-of-the-art methods. (2) Impact of ZREC on SUR
Prediction: Experimental results indicate that using recovered percentile opinion scores
of ZREC as ground truth during training improves the performance of SUR prediction
models. (3) Estimating Uncertainty: we introduced mathematical methods to estimate
the uncertainty of both p%SURemp and the SUR curve. This is crucial for understanding
subjective data but has been largely ignored in the literature. (4) Longitudinal Analysis
with AtHome System: Our AtHome subjective test system allows participants to conduct
tests over an extended period, enabling cross-campaign and intra-campaign analysis. Ex-
perimental results show that observer bias and inconsistency remain relatively stable over
time.

Objective study of SUR: (1) Resolving Power of VQM: We analyzed the resolving
power of VQMs for SUR and found that current widely used VQMs are highly content-
dependent for p%SUR. This presents a new challenge for VQM development: a good VQM
should not only have a high correlation with Mean Opinion Scores (MOS) but also be
consistent for p%SUR. (2) SUR Prediction Using VMAF as proxy: We proposed a new
pipeline to predict p%SUR using VMAF as a proxy. Experimental results show that the
proposed method can predict p%SUR with a Mean Absolute Error (MAE) of 1.67 on
VideoSet and 0.29 on AMZ-HDR-VJND datasets. (3) Parameter-Driven Models for SUR
Prediction: We also proposed a parameter-driven model to predict SUR using encoding
parameters as a proxy. The parameter-driven model (e.g., 2-p-Logistic) improves the mean
SUR prediction error to 0.046, reducing it by 43.64% compared with the baseline, and
reduces the mean 75%SUR prediction error from 4.38 QP (baseline) to 2.27 QP, with
only the SRC as input without extensive recompression (4) Improved Parameter-Driven
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Models: We further improved the parameter-driven model by including enhanced feature
extraction/selection and regression by incorporating bitstream features and other content
features. Our analysis shows that bitstream features have the highest contribution to the
prediction of SUR compared to other features. We evaluated two prediction modes: direct
and indirect, for predicting p%SUR. Experimental results demonstrate that our proposed
framework outperforms the basic parameter-driven model for both the SUR curve and
75%SUR value predictions.

Application of SUR in Streaming: (1) Bitrate Costs for SUR: Experimental re-
sults show that increasing the SUR leads to an exponential increase in bitrate across
different codecs. (2) Examination of Codec-Agnostic Features of VQM: We analyze the
per-content codec-agnostic features of different VQMs to extend the VW-JND datasets
to other codecs. (3) Applying SUR to Streaming Systems: We propose a JND-aware per-
title bitrate ladder optimization framework for VoD streaming applications. Experimental
results indicate that this framework can save up to 54.34% of storage space and requires
34.42% and 42.67% fewer bits to maintain the same PSNR and VMAF score, respectively,
compared to the HLS bitrate ladder.

7.2 Limitations and Perspectives

This thesis primarily focuses on the first JND threshold for the maximum resolution in
bitrate ladders. While eliminating perceptually lossless representations can significantly
save resources, the scope is restricted to the first JND. Future work could explore the 2nd
and 3rd JNDs of different resolutions. One major challenge in conducting subjective JND
research across resolutions is how to order the JND candidate playlist. All JND search
methods mentioned in Section 3.3 are based on the premise that the JND candidate
playlist is ordered by perceptual quality. For a single resolution, we can order the JCP
using encoding parameters, but for cross-resolution research, we need to find a way to
order the JCP by perceptual quality, which remains an open question in the field of video
quality assessment.

The AtHome subjective test system provides a more ecological testing environment
compared to traditional InLab settings. Even though we provide instructions on the am-
bient light and viewing distance and visited participants’ homes to measure the ambient
light, the current AtHome subjective test system doesn’t allow us to measure and verify
the actual test conditions, especially the ambient light and viewing distance, through-
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out the entire test campaigns. Future work could explore the possibility of supervising
ambient light and viewing distance during the test campaigns.

While the AtHome system allows for long-term testing and helps us conduct cross-
campaign and intra-campaign analysis, the results are based on a relatively small sample
size. Conducting larger-scale and longer-duration longitudinal studies with the AtHome
system can provide deeper insights into observers’ behavior and consistency over time.
This would help in understanding the long-term stability of subjective assessments.

We compared various JND search methods and proposed a pre-processing method
for the JCP, which effectively reduces the duration of subjective tests. However, the JND
search process remains time-consuming. Additionally, our uncertainty analysis of the SUR
curve obtained from the JND subjective datasets reveals that current JND search meth-
ods introduce considerable uncertainty to the SUR curve. Therefore, future work should
explore more efficient methodologies for JND search to reduce both the JND search time
and the uncertainty of the SUR curve.

Although efforts were made to extend VW-JND datasets to other codecs in Sec-
tion 6.2.1, the analysis remains somewhat codec-dependent. Developing truly codec-agnostic
VQMs that maintain high accuracy and precision across different codecs will be crucial.
This would involve more extensive testing and validation across a wider range of video
content and codecs.

In this thesis, the application of the SUR into bitrate ladder optimization for HAS
is limited to the VoD streaming use case due to the complexity of the JND prediction.
Future work could explore the application of SUR in other streaming use cases, such as
live streaming, by reducing the complexity of the JND prediction model.
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LIST OF ABBREVIATIONS

The list of the abbreviations used in this thesis in alphabetical order.

— ACR: Absolute Category Rating

— ABR: Adaptive Bitrate Streaming

— ANOVA: Analysis of Variance

— CBR: Constant Bitrate

— CI: Confidence Interval

— CDF: Cumulative Distribution Function

— CCDF: Complementary Cumulative Distribution Function

— CNN: Convolutional Neural Network

— CRF: Constant Rate Factor

— CLT: Central Limit Theorem

— COV: Coefficient of Variation

— cVBR: Constrained Variable Bitrate

— DCR: Degradation Category Rating

— DMOS: Differential Mean Opinion Score

— EBA: Eliminated by Aspects

— FoV: Field of View

— GLCM: Gray Level Co-occurrence Matrix

— HAS: Http Adaptive Streaming

— HDR: High Dynamic Range

— HD: High Definition

— HMD: Head Mounted Display

— HVS: Human Visual System

— ITU: International Telecommunication Union
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— i.i.d: Independent and Identically Distributed

— JCP: JND Candidate Playlist

— JND: Just Noticeable Difference

— JPEG: Joint Photographic Experts Group

— K-S: Kolmogorov-Smirnov

— MAE: Mean Absolute Error

— MaxCLL: Maximum Content Light Level

— MaxFALL: Maximum Frame Average Light Level

— MOS: Mean Opinion Score

— MLE: Maximum Likelihood Estimation

— PDF: Probability Density Function

— PEST: Parameter Estimation by Sequential Testing

— PMF: Probability Mass Function

— PVS: Processed Video Sequence

— PW-JND: Picture-Wise Just Noticeable Difference

— POS: Percentile Opinion Score

— PLCC: Pearson Linear Correlation Coefficient

— QF: Quality Factor

— QoE: Quality of Experience

— QP: Quantization Parameter

— RBS: Relaxed Binary Search

— SI: Spatial Information

— SDR: Standard Dynamic Range

— SOS: Standard deviation of the Opinion Scores

— SRC: Source

— SRCC: Spearman Rank Correlation Coefficient

— SUR: Satisfied User Ratio

— SVR: Support Vector Regression
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— TI: Temporal Information

— UHD: Ultra High Definition

— VMAF: Video Multimethod Assessment Fusion

— VOD: Video On Demand

— VW-JND: Video-Wise Just Noticeable Difference

— WCG: Wide Color Gamut
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ANNEXES

A System bias for SUR curve estimation?

In the literature [138, 135, 151, 152], the analytical SUR curve is defined as the Com-
plementary Cumulative Distribution Function (CCDF) of the distribution of individual
observers’ Just Noticeable Difference (JND) annotations obtained from subjective tests.
This definition aligns with Case 1 of our extended SUR definition for any proxy as dis-
cussed in Section 3.2.2 of Chapter 3.

However, a recently published paper [63] highlights a system bias in the SUR curve
when following this definition. The bias arises from the assumption that the JND of
observer i for a given content m is not a constant value but a random variable Ji,m that
follows a Gaussian distribution with mean µi and standard deviation σ.

The SUR curve is subsequently modified from Eq. (7.1) to Eq. (7.2). For a detailed
explanation, please refer to [63].

SURanaly(x) = 1− Φ(x− µ̄

σ0
) (7.1)

SURanaly_unbiased(x) = 1− Φ( x− µ̄√
σ02 + σ2 ) (7.2)

Where µ̄ and σ0 are the mean and standard deviation of the individual JND thresholds µi

across different observers, respectively. σ represents the standard deviation of the individ-
ual JND threshold for observer i. As shown in Figure A.1, the probability density function
(PDF) of the unbiased SUR curve is more spread out than the original one. Consequently,
the SUR curve obtained using Eq. (7.1) overestimates the SUR value when x < µ̄ and
underestimates the SUR value when x > µ̄.

This is based on the fact that if we repeat the exact same JND subjective test for
content m multiple times for the same observer, the JND threshold for this person would
not be exactly the same every time. However, Eq. (7.1) assumes that the random sample
taken from the observer at a given time is the mean value µi of this observer. In other
words, [63] emphasized that the JND threshold for each observer is not a constant value
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Figure A.1 – Illustration of the system bias for SUR curve estimation of SRC12 in
VideoSet [138] according to [63]
but a random variable. However, in SOTA, the individual JND threshold is not mod-
eled as a random variable but rather as a constant value, typically obtained via binary
search [138]. This is a general confusion in the entire field of multimedia JND research.

However, the assumption that the standard deviation of all observers’ JND random
variables is the same in Eq. (7.2) is not the general case, because different observers
can be more or less consistent and therefore have different standard deviations. But this
assumption still reveals the inaccuracy of the current SUR modeling.

In this thesis, we address this problem by modeling the uncertainty of the SUR in
Section 4.3 of Chapter 4. As shown in Figure A.2, the system bias illustrated in Figure A.1
is accounted for within the 95% confidence interval (CI) of the SUR curve.

Figure A.2 – MLE estimated SUR curve and 95%CI for SRC12 in VideoSet [138] 1080p
with Gaussian assumption. More detials please refer to Section 4.3 of Chapter 4.
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B Simple Staircase simulation

(a) µ = 15, σ = 2 (b) µ = 15, σ = 5 (c) µ = 15, σ = 8

(d) µ = 25, σ = 2 (e) µ = 25, σ = 5 (f) µ = 25, σ = 8

(g) µ = 35, σ = 2 (h) µ = 35, σ = 5 (i) µ = 35, σ = 8

Figure B.3 – Simple Staircase Simulation with different observer models
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C Quest+ Simulation

(a) µ = 25, σ = 1 (b) µ = 25, σ = 2 (c) µ = 25, σ = 3

(d) µ = 25, σ = 4 (e) µ = 25, σ = 5 (f) µ = 25, σ = 6

(g) µ = 25, σ = 7 (h) µ = 25, σ = 8 (i) µ = 25, σ = 9

Figure C.1 – Quest+ Simulation with different observer models

D JND search methods accuracy benchmark
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Table D.1 – Benchmark of JND search methods accuracy and efficiency

Method Setting Trial numbers Observer models σ=2 σ=5 σ=8
Reversal Step size

43.10 µ=15 0.82±0.60 2.97±1.80 6.10±3.00
33.06 µ=25 0.84±0.65 2.94±1.79 6.22±3.141
23.27 µ=35 0.84±0.64 2.88±1.84 5.74±2.77
26.69 µ=15 0.83±0.63 2.21±1.67 4.14±2.87
21.82 µ=25 0.78±0.61 2.13±1.63 4.06±2.782
16.75 µ=35 0.84±0.60 2.22±1.61 4.08±2.68
20.87 µ=15 0.91±0.64 2.04±1.55 3.53±2.60
17.55 µ=25 0.82±0.72 1.96±1.53 3.57±2.56

6

3
14.17 µ=35 0.83±0.69 1.97±1.59 3.39±2.52
45.28 µ=15 0.68±0.53 2.61±1.68 5.68±2.89
35.24 µ=25 0.68±0.52 2.53±1.68 5.67±2.821
25.43 µ=35 0.72±0.57 2.54±1.65 5.01±2.56
28.53 µ=15 0.68±0.52 1.87±1.41 3.68±2.60
23.56 µ=25 0.72±0.55 1.82±1.39 3.54±2.542
18.57 µ=35 0.69±0.51 1.82±1.40 3.50±2.39
22.56 µ=15 0.80±0.58 1.75±1.37 3.02±2.22
19.18 µ=25 0.74±0.63 1.70±1.33 2.99±2.22

7

3
15.88 µ=35 0.78±0.55 1.66±1.27 3.05±2.22
46.85 µ=15 0.71±0.53 2.50±1.65 5.38±2.69
36.96 µ=25 0.67±0.53 2.38±1.56 5.34±2.701
26.99 µ=35 0.69±0.51 2.50±1.60 4.84±2.42
30.14 µ=15 0.70±0.54 1.83±1.38 3.50±2.49
25.22 µ=25 0.71±0.51 1.79±1.39 3.53±2.492
20.19 µ=35 0.68±0.53 1.87±1.35 3.39±2.32
24.12 µ=15 0.79±0.56 1.68±1.25 2.95±2.26
20.78 µ=25 0.74±0.58 1.72±1.33 2.84±2.12

Simple
Staircase

8

3
17.47 µ=35 0.73±0.55 1.68±1.27 2.90±2.14
10.53 µ=15 0.79±0.73 1.82±1.44 2.71±2.18
10.52 µ=25 0.81±0.74 1.76±1.47 2.66±2.13

Relaxed
Binary
Search 10.52 µ=35 0.84±0.75 1.87±1.57 2.75±2.22

µ=15 2.23±1.69 5.49±3.74 7.36±4.50
µ=25 1.59±1.02 3.46±2.36 4.75±3.1410
µ=35 1.13±1.14 3.00±2.11 3.92±2.64
µ=15 1.47±1.09 4.16±2.95 6.80±4.23
µ=25 1.12±0.83 2.93±2.06 4.79±3.1015
µ=35 0.96±0.76 2.72±1.87 4.02±2.60
µ=15 1.15±0.78 3.30±2.32 6.14±4.04
µ=25 0.96±0.66 2.69±1.72 4.31±2.6620
µ=35 0.81±0.61 2.47±1.60 3.89±2.44
µ=15 0.98±0.64 2.79±1.92 5.46±3.95
µ=25 0.88±0.61 2.37±1.41 3.95±2.5825
µ=35 0.73±0.54 2.45±1.44 3.63±2.29
µ=15 0.92±0.58 2.47±1.69 4.92±3.44
µ=25 0.83±0.55 2.30±1.39 3.67±2.3430
µ=35 0.70±0.50 2.35±1.40 3.41±2.08
µ=15 0.88±0.52 2.30±1.57 4.75±3.32
µ=25 0.83±0.54 2.15±1.18 3.64±2.2235
µ=35 0.65±0.49 2.24±1.29 3.42±1.96
µ=15 0.87±0.51 2.21±1.37 4.50±3.03
µ=25 0.83±0.50 2.12±1.18 3.44±1.98

Quest+

40
µ=35 0.62±0.44 2.23±1.19 3.33±1.81
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E Intra campaign observer behavior analysis

(a) ID: 7 (b) ID: 9 (c) ID: 10 (d) ID: 11

(e) ID: 12 (f) ID: 13 (g) ID: 14 (h) ID: 19

(i) ID: 20 (j) ID: 21 (k) ID: 22 (l) ID: 27

(m) ID: 28 (n) ID: 29 (o) ID: 30 (p) ID: 31

(q) ID: 32 (r) ID: 33 (s) ID: 34 (t) ID: 36

Figure E.1 – Intra campaign observer behavior analysis for naive observers
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Besides the 20 observers in Figure E.1, there are also two experts which conducted
the same campaign. Because they are experts, the limitation per day was set higer than
the naive observers. Their results are as follows:

(a) ID: 8 (b) ID: 18

Figure E.2 – Intra campaign observer behavior analysis for expert
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F Details of the Confidence Interval of the MLE

In this appendix, we explain how to compute the confidence interval of the Maximum
Likelihood Estimation (MLE), taking the Normal distribution as an example. This method
is applicable to other distributions as well. The VW-JND of each video content clip m can
be regarded as a random variable Jm. The annotations from the JND subjective test by
N observers can be viewed as N independent and identically distributed (i.i.d.) samples
of Jm. From the observed values jm = [jm

1 , jm
2 , ..., jm

N ], we can estimate the parameters of
the distribution of Jm using MLE.

We assumed that Jm follows a Gaussian distribution [138, 137, 135, 152, 151, 63]. The
probability density function of the Gaussian distribution for video content clip m is given
by:

fm(j|µ, σ2) = 1√
2πσ2

e− 1
2( j−µ

σ )2

, (7.3)

where µ and σ are two parameters of Gaussian distribution. The likelihood function of
clip m:

Lm(µ, σ2|j) =
N∏
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1√
2πσ2

e
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2

(
jm
i
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)2

=
(
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2πσ2
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where jm
i is the VW-JND value of the i-th observer obtained from the subjective test for

clip m. The log-likelihood function of clip m:
ℓm(µ, σ2) = log(Lm(µ, σ2|j))
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The estimated parameters of the Gaussian distribution for clip m are the values of µ and
σ2 that maximize the log-likelihood function.

The gradient vector of the log-likelihood function of clip m:

u(θ) = ∂ℓm(θ)
∂θ

=
 ∂

∂µ
ℓm(µ, σ2)

∂
∂σ2 ℓm(µ, σ2)

 , (7.6)

where u(θ) ∈ Rp×1, p is the number of the parameters. For Gaussian distribution, p = 2.
For Gaussian distribution:

∂

∂µ
ℓm(µ, σ2) = ∂

∂µ

(
− 1

2σ2

N∑
i=1

(jm
i − µ)2

)

= ∂

∂µ

(
− 1

2σ2

N∑
i=1

(
(jm

i )2 − 2µjm
i + µ2

))

= − 1
2σ2

(
N∑

i=1
(−2jm

i ) + 2Nµ

)

= − 1
2σ2

(
−2

N∑
i=1

jm
i + 2Nµ

)
(7.7)

∂

∂σ2 ℓm(µ, σ2) = − N

2σ2 + 1
2(σ2)2

N∑
i=1

(jm
i − µ)2 (7.8)

The optimal µ̂ and σ̂2 maximize the log-Likelihood function, i.e., µ̂ and σ̂2 that make
the score vector equal to zero:

u(θ) = 0 (7.9)

More specifically, the MLE of the variance of the Gaussian distribution for clip m is:

∂
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(7.10)
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The MLE of the mean of the Gaussian distribution for clip m is:

∂

∂µ
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2σ2
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(7.11)

The estimation of the µ and σ2 are based on the samples of the VW-JND values
Jm = [jm

1 , jm
2 , ..., jm

N ] from the subjective test. Due to the limited number of samples, the
MLE of the parameters may not be accurate. The confidence interval of the MLE can be
computed to provide the range of the parameters. The confidence interval of the MLE
can be computed using the Fisher’s information [22].

The Fisher’s information [38] I(θ) is the negative expectation of the second derivative
of the log likelihood function:

I(θ) = −E

(
∂2

∂θ2 ℓm (θ)
)

(7.12)

where θ is the parameters to be estimated, and ℓm(θ) is the log-likelihood function of clip
m. For Gaussian distribution, the Fisher’s information is a p × p matrix, where p is the
number of the parameters, i.e., p = 2 for Gaussian distribution. The Fisher’s information
matrix for Gaussian distribution is:

I(θ) = −E

(
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∂θ2 ℓm (θ)
)

= −E
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 (7.13)

The p × p matrix I(θ) is called observed Fisher’s information matrix which is different
from the expected Fisher’s information matrix without the expectation operator:

I(θ) = −
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 (7.14)

where each element of the observed Fisher’s information matrix is:

∂2

∂µ2 ℓm(µ, σ2) = −N

σ2 (7.15)
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It can be observed that the cross partial derivative with respect to µ and σ2 is the same
no matter the order of the derivative, which is consistant with the Schwarz theorem [45].
The observed Fisher’s information matrix for Gaussian distribution is:
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It can be observed that the observed Fisher’s information matrix is actually the negative
of the Hessian matrix of the log-likelihood function.

The expected Fisher’s information matrix is the expectation of the observed Fisher’s
information matrix:

I(θ) =
 N

σ2 0
0 Nσ2

(σ2)3 − N
2(σ2)2

 =
 N

σ2 0
0 N

2(σ2)2

 (7.20)
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The inverse of the expected Fisher’s information matrix I(θ)−1:

I(θ)−1 =

 σ2

N
0

0 2(σ2)2

N

 (7.21)

Similar to the Central Limit Theorem (CLT), if N is large and the Jm are i.i.d. random
variables, the distribution of estimated parameters by MLE is asymptotically normal,
with the mean equal to the true parameter value, and the variance-covariance matrix
equal to the inverse of the expected Fisher’s information matrix, denoted as I(θ)−1. In
this matrix, the diagonal elements represent the variances of the estimated parameters,
while the off-diagonal elements represent the covariances of the estimated parameters.
Because we can not know the true parameters, we use the MLE estimated parameters
to replace the true parameters to compute the confidence interval. The 95% confidence
interval of the parameters can be computed as:

θ̂ ± 1.96
√

Diag(I(θ̂))−1 (7.22)

where θ̂ is the estimated parameters by MLE, and Diag(I(θ̂))−1 is the diagonal elements
of the inverse of the expected Fisher’s information matrix. More spacificaly, the 95%
confidence interval of the mean µ and the variance σ2 of the Gaussian distribution are:

µ̂± 1.96
√

σ̂2

N
(7.23)

σ̂ ± 1.96
√

2σ̂2

N
(7.24)

It can be observed that the confidence interval of the MLE is related to the sample
size N . The larger the sample size, the smaller the confidence interval. The confidence
interval of the MLE can be used to evaluate the accuracy of the MLE estimation. Be-
sides, the confidence interval is related to the variance of the distribution. The larger the
variance, the larger the confidence interval. The confidence interval of the MLE can be
used to evaluate the reliability of the MLE estimation. This method is applicable to other
distributions as well.
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G Videos with higest and lowest ∆VMAFSUR(75%)

In this annex, we showcase the frames of videos with the highest and lowest ∆VMAFSUR(75%)

values in VideoSet.

G.1 Videos with the 3 highest ∆VMAFSUR(75%)

Following are the I frames of SRC#120 , SRC#77, SRC#107.

Figure G.1 – I frames of SRC#120, ∆VMAFSUR(75%)=100 - 75.2246 = 24.7754

Figure G.2 – I frames of SRC#77, ∆VMAFSUR(75%)=100 - 76.3779 = 23.6221

Figure G.3 – I frames of SRC#107, ∆VMAFSUR(75%)=100 - 78.4399 = 21.5601

Interestingly, SRC#120 and SRC#77 are both scenes with lawns, while SRC#107 is
a scene with turbulent water. They all contain a lot of details and textures. It’s notable
that for these videos, in the compressed versions where VMAF gives very low scores (up
to 75), human eyes cannot easily perceive distortion.
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G.2 Videos with the 3 lowest ∆VMAFSUR(75%)

following are the I frames of SRC#15(99.9676), SRC#65(99.9582), SRC#175(99.9558)

Figure G.4 – I frames of SRC#15, ∆VMAFSUR(75%)=100 - 99.9676 = 0.0324

Figure G.5 – I frames of SRC#65, ∆VMAFSUR(75%)=100 - 99.9582 = 0.0418

Figure G.6 – I frames of SRC#175, ∆VMAFSUR(75%)=100 - 99.9558 = 0.0442

For these videos, in the compressed versions where VMAF gives very high scores (close
to 100), human eyes can easily perceive distortion compared to the pristine videos. The
common point of these videos is that they have camera movement in the scene, resulting
in a lot of motion.

H ∆VMAFSUR(75%) prediction results with different
seeds
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(a) Seed: 0 (b) Seed: 1 (c) Seed: 2 (d) Seed: 3

(e) Seed: 4 (f) Seed: 5 (g) Seed: 6 (h) Seed: 7

(i) Seed: 8 (j) Seed: 9 (k) Seed: 10 (l) Seed: 11

(m) Seed: 12 (n) Seed: 13 (o) Seed: 14 (p) Seed: 15

(q) Seed: 16 (r) Seed: 17 (s) Seed: 18 (t) Seed: 19

Figure H.1 – ∆VMAFSUR(75%) prediction results with different seeds on AMZ-HDR-VJND
datasets. (Refer to Chapter 5.3)
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I Spatial and Temporal Randomness

Spatial Randomness measures the regularity/randomness of video content in spa-
tial domain. Specifically, videos with low regularity/high randomness spatially will mask
the perception of distortion by video compression. SR is measured based on the spatial
prediction error [50]. For one frame of video patch, the prediction error of each pixel is
calculated as follows:

E(i, j) = |y(i, j)− CY XCXx(i, j)| , (7.25)

where y(i, j) is the ground truth value of the pixel (i, j), x is the neighboring pixels, CY X

and CX are the local properties of the image block, which is a small patch of the entire
frame as shown in Figure I.1.

Xb = [x1, x2, ..., xN ]T (7.26)

Yb = [y1, y2,..., yN ] (7.27)

Figure I.1 – Illustration of local properties calculation of image block for Spatial Ran-
domness (SR) computation

Xb and Yb are all the pixels and its neighboring pixels groups (orange and yellow
squares in Figure 3.2). The local properties of the current block are calculated using the
correlation matrix of Xb and the cross-correlation matrix of Xb and Yb :

CY X = 1
N − 1YbX

T
b , (7.28)

CX = 1
N − 1XbX

T
b . (7.29)

The product of local properties and the neighboring pixels vector x is thus the prediction
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of y(i, j). The average of the prediction error E(i, j) of all frames and then the average of
each frame for entire videos is the Spatial Randomness for video.

SR = Mean
F ∈V

(
Mean

i,j∈F
(E(i, j)

)
(7.30)

In our experiment, the block size is set to be the same size as the video patch (W = 360, H
= 180)[114]. SR is calculated on the three RGB channels respectively and then mean value
of them is calculated. The visualization of Spatial Randomness is shown in Figure I.2. It
can be seen that for a video content with low spatial complexity (e.g., SRC037), the SR
value is relatively low compared to a video content with high spatial complexity (e.g.,
SRC089). We can observed that the SR is high in the edges of object in images, it is
because the edges is more difficult for linear prediction from neighborhood pixel and the
prediction error is relatively high compared with smooth area.

Figure I.2 – Visualization of Spatial Randomness (SR) for two different video content
Temporal Randomness measures the regularity/randomness of video content in

temporal domain. Similarly with spatial randomness, video with low regularity/high ran-
domness will mask the perception of distortion by the human eye. The prediction error
of one frame from its previous frames is estimated to measure Temporal Randomness
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(TR). Y n
m ∈ Rl×(n−m+1) denotes a video sequence from frame n to frame m, each element

y ∈ Rl×1 is a column vector of a frame with flattened pixel value (l = H ×W ).

Y n
m = [y(m), y(m + 1), ..., y(n)] (7.31)

The prediction error is calculated on the basis of a dynamic system [51] :

E(n + 1) = |y(n + 1)− C(n)A(n)x(n)| , (7.32)

where the y(n + 1) is the ground truth value of the frame n + 1 and C(n), A(n), x(n) can
be estimated as follows:

Y n
m = UΣV T ∈ Rl×(n−m+1) (7.33)

C(n) = U ∈ Rl×k (7.34)

Xn
m = ΣV T ∈ Rk×(n−m−1) (7.35)

A(n) = Xn
m(Xn−1

m−1)−1 ∈ Rk×k (7.36)

Eq. (7.33) is the singular value decomposition of Y n
m, in which the singular values of the

diagonal matrix are sorted from largest to smallest. It should be noticed that in Eq. (7.36),
the inverse of matrix Xn−1

m−1 is the Moore-Penrose pseudo-inverse [129] of a matrix Xn−1
m−1.

x(n) ∈ Rk×1 is the last column of Xn
m.

Figure I.3 – Visualization of Temporal Randomness (TR) for two different video content

In our experiment, (n−m+1) = 5, which means 5 previous frames are used to predict
the next frame. The three RGB channels are used for the TR computation. Visualization
of TR is shown in Figure I.3. The same examples as TR are used here. It can be seen that
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the video with high motion/less regular content (e.g.,) SRC089 has a higher TR than the
video content which is more regular (e.g, SRC037). TR for one video is the average of
prediction error for all frames (except for the first previous p frames, in our cases p = 5).
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Title: High-end Video Streaming Quality in the Wild: Measuring and Predicting Satisfied User
Ratio

Keywords: Just Noticeable Difference, Satisfied User Ratio, Streaming Optimization, Video

Quality Assessment

Abstract: The human eye cannot perceive
small pixel changes in images or videos until
a certain threshold of distortion. In the context
of video compression, Just Noticeable Differ-
ence (JND) is the smallest distortion level from
which the human eye can perceive the differ-
ence between reference video and the dis-
torted/compressed one. Satisfied-User-Ratio
(SUR) curve is the (complementary) cumula-
tive distribution function of the individual JNDs
of a viewer group. JND and SUR have been
widely investigated for compressed image and
video to use the least resources without dam-
aging the Quality of Experience. In this the-
sis, we introduce a new AtHome protocol
for subjective studies, which combines in-lab

and crowdsourcing methodologies. We opti-
mize JND search methods, reducing subjec-
tive test time, and collect new JND datasets for
HD-SDR and UHD-HDR videos. We improve
data reliability with a screening method named
ZREC and propose methods for estimating
confidence intervals for SUR. We further con-
duct a longitudinal study based on the AtH-
ome protocol. We develop a pipeline to predict
SUR using VQMs as proxy and parameter-
driven models to predict SUR using encod-
ing parameters as proxy, enhancing practical-
ity for streaming services. Finally, we demon-
strate how integrating JND and SUR into bi-
trate ladder optimization can save bitrate and
storage.

Titre : Qualité du Streaming Vidéo Haut de Gamme dans des Conditions Réelles : Mesurer et
Prédire le Taux d’Utilisateurs Satisfaits

Mot clés : Différence Juste Perceptible, Taux d’Utilisateurs Satisfaits, Optimisation du Stream-

ing, Évaluation de la Qualité Video

Résumé : L’œil humain ne peut percevoir de
petits changements de pixels dans les im-
ages ou les vidéos jusqu’à ce qu’un certain
seuil de distorsion soit atteint. Dans le con-
texte de la compression vidéo, la Différence
Juste Perceptible (JND) est le plus petit niveau
de distorsion à partir duquel l’œil humain peut
percevoir la différence entre une vidéo de
référence et la vidéo déformée/compressée.
La courbe du Taux d’Utilisateurs Satisfaits
(SUR) est la fonction de distribution cumu-
lative (complémentaire) des JND individuels
d’un groupe de observateurs. Les JND et
SUR ont été largement étudiés pour les im-
ages et vidéos compressées afin d’utiliser les
ressources minimales sans compromettre la
Qualité de l’Expérience. Dans cette thèse,
nous introduisons un nouveau protocole AtH-
ome pour les études subjectives, qui com-

bine les approches en laboratoire et de crowd-
sourcing. Nous optimisons les méthodes de
recherche JND, réduisant ainsi le temps des
tests subjectifs, et collectons de nouveaux en-
sembles de données JND pour vidéos HD-
SDR et UHD-HDR. Nous améliorons la fiabil-
ité des données avec une méthode appelée
ZREC et proposons des méthodes pour es-
timer les intervalles de confiance pour SUR.
Nous menons également une étude longitu-
dinale basée sur le protocole AtHome. Nous
développons un pipeline pour prédire SUR en
utilisant les VQMs comme proxy et des mod-
èles basés sur les paramètres d’encodage
comme proxy, améliorant ainsi la praticité pour
les services de streaming. Enfin, nous démon-
trons comment l’intégration de JND et SUR
dans l’optimisation de l’échelle de débit peut
économiser le débit et le stockage.
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