
HAL Id: tel-04956621
https://theses.hal.science/tel-04956621v1

Submitted on 19 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generic vanishing for holonomic D-modules : a study via
Cartier duality

Gabriel Ribeiro

To cite this version:
Gabriel Ribeiro. Generic vanishing for holonomic D-modules : a study via Cartier duality. Algebraic
Geometry [math.AG]. Institut Polytechnique de Paris, 2024. English. �NNT : 2024IPPAX072�. �tel-
04956621�

https://theses.hal.science/tel-04956621v1
https://hal.archives-ouvertes.fr


574

N
N

T
:2

02
4I

P
PA

X
07

2

Generic Vanishing for Holonomic
D-Modules: A Study via Cartier Duality
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Thomas Krämer
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Motivations and main results

In this chapter, we outline the historical context that led to the development of the
results presented in this thesis. Furthermore, we provide a brief overview of our main
findings, situating them within the broader mathematical landscape.

Exponential sums over finite fields

Exponential sums over finite fields are ubiquitous in modern analytic number theory.
Much of their study revolves around two fundamental questions:

(1) For an exponential sum S, what are good upper bounds for |S|?

(2) For a family {Si}i∈I of exponential sums, how do the complex numbers Si vary as
i ranges through the set I?

As we will soon see, these questions are closely intertwined. We will illustrate this
theory with a particularly enlightening example, which we learned from our advisor
Fresán, who also presented it in his first talk at the Séminaire Bourbaki [Fre19].
Let p be a prime number, q a power of p, and fix a non-trivial additive character

ψp : Fp → C×. By precomposing with the trace map Fq → Fp, we obtain the additive
character ψq : Fq → C×. For each multiplicative character χ : F×q → C×, the Gauss sum
g(ψq, χ) is defined as

g(ψq, χ) :=
∑
x∈F×q

ψq(x)χ(x).

Question (1) has a straightforward answer for Gauss sums. Due to the orthogonality
of characters, the absolute value of g(ψq, χ) is 1 when χ is the trivial character, and
√
q otherwise. In contrast, Question (2) is far more intriguing. There are q− 2 angles

θq,χ := g(ψq, χ)/
√
q on the unit circle S1, one for each non-trivial character χ.

How are these angles distributed on S1 as q tends towards infinity?

Although Gauss sums are some of the simplest examples of exponential sums,
this question is profound. Its solution only became feasible after Deligne proved the
Riemann hypothesis for varieties over finite fields.
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Motivations and main results

Theorem (Deligne, Katz). As q tends to infinity, the angles θq,χ for χ 6= 1 become equidis-
tributed on S1 with respect to its normalized Haar measure. In other words, the equation

1

2π

∫2π
0

f(eiθ) dθ = lim
q→∞

1

q− 2

∑
χ 6=1

f(θq,χ)

holds for all continuous functions f : S1 → C.

Beginning of the proof. As Laurent polynomials are dense in C(S1), it suffices to consider
functions of the form f(z) = zn for n ∈ Z. The case n = 0 is trivial, and the relation
g(ψq, χ)g(ψq, χ) = q allows us to assume n > 1. In this case, the integral always
vanishes, so it remains to prove that the sequence

1

q− 2

∑
χ 6=1

f(θq,χ) =
1

qn/2(q− 2)

∑
χ 6=1

g(ψq, χ)n

tends to zero as q goes to infinity. Expanding the expression for g(ψq, χ)n, we obtain

g(ψq, χ)n =
∑

x1,...,xn∈F×q

ψq(x1 + · · ·+ xn)χ(x1 . . . xn)

=
∑
a∈F×q

χ(a)
∑

x1,...,xn∈F×q
x1...xn=a

ψq(x1 + · · ·+ xn).

That is, the map χ 7→ g(ψq, χ)n is the Fourier transform of the Kloosterman sums

a 7→ Kln(a, q) :=
∑

x1,...,xn∈F×q
x1...xn=a

ψq(x1 + · · ·+ xn).

Thus, the solution to Question (2) for Gauss sums depends on resolving Question (1)
for Kloosterman sums. To be continued...

Kloosterman himself needed to estimate the sums that now bear his name in [Klo27],
but specifically for the case n = 2. By calculating the fourth moment,∑

a∈F×q

Kl2(a, q)4 = 2q3 − 3q2 − 3q− 1,

he was able to conclude that |Kl2(a, q)| < 2q3/4. However, determining the optimal
upper bound for |Kln(a, q)|, which is necessary to complete the proof above, required
the development of étale cohomology and Deligne’s subsequent work—advancements
that took another fifty years.

To elucidate the role of étale cohomology in this story, let us first review some of its
key features. For a connected algebraic variety X over k = Fq, Grothendieck defined
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the étale fundamental group π1(X), a profinite group that classifies finite étale covers of X.
Given a finite extension E/k, the étale fundamental group of X = SpecE is simply the
absolute Galois group Gal(E)—the free profinite group Ẑ, with a generator given by

E→ E, x 7→ x|E|.

This is known as the arithmetic Frobenius. Its inverse, denoted by FrobE and referred to
as the geometric Frobenius, plays a crucial role in the theory.
Henceforth, we fix a prime number ` 6= p, an algebraic closure of Q`, and an

isomorphism between Q` and C. Consider an `-adic local system L of rank r on X,
characterized as a continuous representation ρ : π1(X) → GLr(Q`). For each point
x ∈ X(E), the natural functoriality of the étale fundamental group induces a map

Gal(E) ' π1(SpecE)→ π1(X).

We denote by FrobE,x the image of FrobE under this morphism. Since this construction
is canonical only up to the choice of a base point, FrobE,x represents a conjugacy class
in π1(X). Consequently, ρ(FrobE,x) forms a conjugacy class in GLr(Q`), and we can
take its trace, denoted by tr(FrobE,x | L ).

Grothendieck also introduced the cohomology groups Hi(Xk̄,L ) and the compactly
supported cohomology groups Hic(Xk̄,L ). These are finite-dimensional Q`-vector
spaces, equipped with an action of Gal(k), and vanish outside the range 0 6 i 6 2d,
where d is the dimension of X. The action of the geometric Frobenius on an `-adic local
system and on its compactly supported cohomology are related by the Grothendieck
trace formula:

∑
x∈X(E)

tr(FrobE,x | L ) =

2d∑
i=0

(−1)i tr(FrobE | H
i
c(Xk̄,L )).

This formula forms a key component of a powerfulmethod for estimating exponential
sums over finite fields. First, an `-adic local system L is constructed so that the left-
hand side of the Grothendieck trace formula corresponds to the given exponential sum.
Next, the eigenvalues of the geometric Frobenius acting on Hic(Xk̄,L ) are estimated.
This estimation can be accomplished using Deligne’s theory of weights.

Definition. We say that L is pure if there exists an integer w, its weight, such that for
every finite extension E/k and every x ∈ X(E), the eigenvalues of FrobE,x acting on L

have absolute value |E|w/2.
The `-adic local system L is called mixed if it admits a finite filtration where each

successive quotient is pure. The weights of these non-zero quotients are said to be the
weights of L .
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The same terminology extends to the cohomology groups Hi(Xk̄,L ) and Hic(Xk̄,L ).
The main result in Deligne’s seminal paper [Del80] compares the weights of an `-adic
local system with those of its cohomology groups.

Theorem (Deligne). If L is mixed of weights 6 w, then the compactly supported cohomology
group Hic(Xk̄,L ) is mixed of weights 6 w+ i.

For smooth X, Poincaré duality implies that if L is mixed of weights > w, then
Hi(Xk̄,L ) is mixed of weights > w+ i. This estimation is particularly useful when the
forget-supports map Hic(Xk̄,L )→ Hi(Xk̄,L ) is an isomorphism, in which case these
cohomology groups are pure of weight w+ i.

We now apply the aforementioned method to estimate Kloosterman sums. Consider
the morphism of k-schemes A1k → A1k defined by x 7→ x − xq. This is a finite étale
Galois cover with Galois group Fq. Since π1(A1k) is the limit of the Galois groups of all
finite étale Galois covers, we obtain a natural surjection π1(A1k)� Fq. As a result, the
composition

π1(A1k)� Fq
ψq−−→ Q×`

corresponds to a rank-one `-adic local system Lψq on A1k, whose trace at a point
x ∈ A1k(k) = Fq is simply ψq(x).
Fix a ∈ F×q , and let X be the zero locus of x1 . . . xn − a in Ank . Define f : X→ A1k as

the map that sends (x1, . . . , xn) to their sum, so that

Kln(a, q) =
∑
x∈X(k)

tr(Frobk,x | f
∗Lψq) =

2n∑
i=0

(−1)i tr(Frobk | H
i
c(Xk̄, f

∗Lψq)).

In [SGA 41
2
, Thm. 7.4], Deligne computed these cohomology groups, showing that Hic

vanishes for i 6= n − 1 and that Hn−1c ' Hn−1 is n-dimensional. Moreover, since the
values of ψq are p-th roots of unity, the `-adic local system f∗Lψq is pure of weight 0.
Deligne’s theorem then implies that

|Kln(a, q)| = |tr(Frobk | H
n−1
c (Xk̄, f

∗Lψq))| 6 nq(n−1)/2,

which is the optimal bound.
We are now in a position to complete the proof of the equidistribution theorem for

Gauss sums.

End of the proof. By summing the obtained expression for g(ψq, χ)n over the non-trivial
multiplicative characters χ, we get∑

χ 6=1

g(ψq, χ)n = −g(ψq, 1)
n +

∑
a∈F×q

Kln(a, q)
∑
χ

χ(a)

= (−1)n+1 + (q− 1) Kln(1, q).
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Deligne’s bound leads to the estimate∣∣∣∣∣∣ 1

qn/2(q− 2)

∑
χ 6=1

g(ψq, χ)n

∣∣∣∣∣∣ 6 2n+ 1
√
q
,

which tends to zero as q approaches infinity.

The key property ofGauss sums that enabled the preceding proof is thatχ 7→ g(ψq, χ)

is the Fourier transform of the trace function of an `-adic local system. This property
can be generalized in two directions. First, instead of considering characters χ of
F×q = Gm(k), one can extend the scope to characters ofG(k), whereG is a commutative
connected algebraic group over k. Similar to the construction above, for each such
character χ ∈ Ĝ(k), there exists a rank-one `-adic local system Lχ on G whose trace at
any point x ∈ G(k) is equal to χ(x).

Local systems can also be generalized to a broader class of `-adic sheaves known as
perverse sheaves. Given a finite extension E/k and a perverse sheafM on G that is pure
of weight zero, we define the exponential sum

S(M,E, χ) :=
∑
x∈G(E)

tr(FrobE,x |M)χ(x) =
∑
x∈G(E)

tr(FrobE,x |M⊗Lχ).

As shown in [FFK23, Thm. 3.28], there exists a linear algebraic group Conv(M) over Q`
that encapsulates the symmetries of this exponential sum. This group is defined as a
tannakian group associated with a certain quotient category of perverse sheaves.

Let K be a maximal compact subgroup of Conv(M)an. Since Conv(M) is linear, there
exists an integer r > 0 and a closed embedding Conv(M) ↪→ GLr. Denote by µ the
normalized Haar measure on K, and by ν its direct image by the trace function. We
now present the main theorem from the recent monograph [FFK23].

Theorem (Forey, Fresán, Kowalski). As the degree of E/k tends to infinity, the exponential
sums S(M,E, χ) for χ ∈ Ĝ(E) become ν-equidistributed on average. In other words, the
equation ∫

K

f(tr(x)) dµ(x) = lim
n→∞

1

n

∑
[E:k]6n

1

|G(E)|

∑
χ∈“G(E)

f(S(M,E, χ))

holds for all bounded continuous functions f : C→ C.

This result not only encompasses the equidistribution theorem for Gauss sums but
also extends many other related theorems. Recall that, according to the Grothendieck
trace formula, the exponential sum S(M,E, χ) is given by an alternating sum of traces
of Frobenii acting on cohomology groups:∑

i∈Z

(−1)i tr(FrobE | H
i
c(Gk̄,M⊗Lχ)).
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As before, the proof of this theorem relies on the fact that, for most choices of χ, all but
one of these cohomology groups vanish, significantly simplifying the sum. Moreover,
the only non-vanishing compactly supported cohomology group coincides with its
non-compactly supported counterpart, enabling the application of Deligne’s weight
estimates.

Theorem (Forey, Fresán, Kowalski). Let G be a commutative connected algebraic group over
k of dimension d, and letM be a perverse sheaf on G. The set S of characters χ ∈ Ĝ that satisfy

Hic(Gk̄,M⊗Lχ) = Hi(Gk̄,M⊗Lχ) = 0 for i 6= 0;
H0c(Gk̄,M⊗Lχ) ' H0(Gk̄,M⊗Lχ)

is generic, meaning there exists a real number c > 0 such that |Ĝ(E) − S(E)| 6 c|E|d−1 for
every finite extension E/k.

Exponential sums and differential equations

Having applied `-adic methods to solve Question (1) for the Kloosterman sums
Kln(a, q), we now turn to the distribution of these sums as a ∈ F×q varies and q tends to
infinity. For simplicity, we consider the case n = 2. Utilizing the previously established
bound, and noting that the sums Kl2(a, q) are real numbers, it follows that there exists
a unique angle θq,a ∈ [0, π] such that Kl2(a, q) = 2

√
q cos θq,a.

How are these angles distributed on [0, π] as q tends towards infinity?

Theorem (Katz). As q tends to infinity, the angles θq,a for a ∈ F×q become equidistributed on
[0, π] with respect to the Sato–Tate measure (2/π) sin2 θ dθ. In other words, the equation

2

π

∫π
0

f(θ) sin2 θ dθ = lim
q→∞

1

q− 1

∑
a∈F×q

f(θq,a)

holds for all continuous functions f : [0, π]→ C.

Sketch of proof. We explain how this result fits within the framework of the equidistri-
bution theorem established by Forey, Fresán, and Kowalski. Recall that each character
χ ∈ F̂q can be expressed as x 7→ ψq(ax), for a unique a ∈ Fq. This correspondence
leads to the following equality:Kl2(a, q) =

∑
x∈F×q

ψq

Å
ax+

1

x

ã ∣∣∣∣∣∣ a ∈ Fq

 =

∑
x∈F×q

ψq

Å
1

x

ã
χ(x)

∣∣∣∣∣∣ χ ∈ F̂q

 .
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Let j : Gm → Ga denote the natural inclusion, and ι : Gm → Gm be the inversion
map. The objectM = j!ι

∗j∗Lψq [1](1/2) is a pure perverse sheaf of weight zero on the
additive group Ga, whose trace function satisfies

tr(Frobk,x |M) =

{
−ψq(1/x)/

√
q if x ∈ Gm(k) = F×q

0 otherwise

for x inGa(k) = Fq. Themain theorem from [FFK23] then provides an equidistribution
result, though it remains to determine the associated measure.

The symmetry groups of perverse sheaves on Ga have a particularly simple descrip-
tion. There exists a dense open subset U of Ga such that Deligne’s Fourier transform
FTψq(M), described in the introduction of Chapter 4, becomes a shifted `-adic local
system on U. Denote by ρ : π1(U)→ GLr(Q`) the corresponding representation. Then
the symmetry group Conv(M) is isomorphic to themonodromy group of this `-adic local
system, which is the Zariski closure of ρ(π1(U)) in GLr(Q`) [FFK23, Prop. 3.32].
For this specific perverse sheafM, standard arguments [Kat90, Prop. 8.1.12] show

that j∗ FTψq(M) ' KL2[1](1/2), where KL2 is the Kloosterman sheaf described in [Kat88,
Thm. 4.1.1]. Katz computed the monodromy group of the `-adic local system KL2(1/2)

to be the special linear group SL2 [Kat88, Thm. 11.1]. His computation further implies
that we achieve equidistribution, not merely equidistribution on average. (See [FFK23,
Thm. 4.15] and [Kat88, Cor. 11.3].)

The maximal compact subgroup of SL2(C) is the special unitary group SU(2). The
theorem then follows by observing that the direct image of its normalized Haar
measure by the trace function is the Sato–Tate measure.

This story has a counterpart in characteristic zero. By replacing characters of Fq
with those of R and sums with integrals, the Bessel function Be(z) emerges as a formal
analogue of the Kloosterman sum Kl2(a, q):

Kl2(a, q) =
∑
x∈F×q

ψq

(
x+

a

x

)
Be(z) =

∫
S1

exp
(
x+

z

x

)dx

x
.

The function Be(z) satisfies the differential equation (z∂z)
2 − z = 0, whose differential

Galois group can be shown to be SL2 [Kol68]. It is no coincidence that this matches
the monodromy group obtained in the proof of the preceding theorem! Katz has
documented numerous instances of this phenomenon in [Kat90].

A general comparison theorem between monodromy groups and differential Galois
groups represents the crowning achievement of Katz’ book [Kat90], which we now
outline. Let R be a subring of C that is a finitely generated Z[1/`]-algebra, and letM
be an object of Dbc (A1R,Q`). Suppose thatM is adapted to a stratification {A1R \D,D},

9



Motivations and main results

where D is a finite étale divisor defined by a monic polynomial whose discriminant is
a unit in R.
Assume thatM is relatively perverse in the sense of [HS23], meaning that for any

morphism of ringsϕ : R→ K, whereK is an algebraically closed field, the inverse image
Mϕ ofM in Dbc (A1K,Q`) is perverse. LetM0 be the regular holonomicD-module on A1C
corresponding to the complex fiber ofM under the Riemann–Hilbert correspondence.
The Fourier transform FT(M0) restricts to a connection on Gm,C, thereby giving rise to
a differential Galois group Gal(FT(M0)|Gm).

According to [Kat90, Prop. 14.1.5], for each morphism of rings ϕ : R→ K, where K is
an algebraically closed field of characteristic p > 0, the perverse sheaf FTψq(Mϕ)|Gm
is of the form Lϕ[1] for some `-adic local system Lϕ. The monodromy group of this
local system is denoted by Mon(Lϕ).

Theorem (Gabber, Katz). If Mon(Lϕ) is reductive and Gal(FT(M0)|Gm) is semisimple, then
there exists a dense open subset U of SpecR such that for any ϕ lying over a point of U, the
monodromy group Mon(Lϕ) is isomorphic to Gal(FT(M0)|Gm).

As breathtaking as this theorem is, it does not seem to account for the isomorphism
between the monodromy group for Kloosterman sums and the differential Galois
group for the Bessel function. Nor does it apply to other commutative connected
algebraic groups beyond Ga. Nonetheless, this phenomenon is certainly not confined
to the additive group.
By repeating the same formal procedure, we observe that the characteristic-zero

analogue of Gauss sums is the Gamma function Γ(s):

g(ψq, χ) =
∑
x∈F×q

ψq(x)χ(x) Γ(s) =

∫∞
0

e−xxs
dx

x
.

The Gamma function satisfies the difference equation τ − s = 0, where τ is the shift
operator that maps f(s) to f(s + 1). The difference Galois group associated with this
equation is GL1, reflecting the fact that Gauss sums are equidistributed on S1. Indeed,
S1 is the maximal compact subgroup of GL1(C).

In the context of the multiplicative group, there appear to be numerous examples of
this phenomenon, yet no general comparison theorem has been established. We refer
to [Kat12, Chap. 29] for a related discussion. As Katz so aptly puts it, much remains to
be done.

Summary of results
While a complete understanding of the relation between exponential sums and their
characteristic-zero counterparts remains elusive, this thesis marks a step toward that

10



goal. To begin, let us place Gabber and Katz’ result in perspective.
Consider a subring R of C that is a finitely generated Z[1/`]-algebra. Let G be a

commutative connected algebraic group over R, andM be a relatively perverse sheaf
on G. Fix a sufficiently generic morphism from R to Fq, and denote byMp the inverse
image ofM. Additionally, letM0 denote the holonomic D-module corresponding to
the complex fiber ofM.

According to the aforementioned results from [FFK23], the perverse sheafMp gives
rise to a family of exponential sums, whose equidistribution is governed by a symmetry
group Conv(Mp). In the special case where G is the additive group Ga, the symmetry
group Conv(Mp) can be described as a monodromy group, as seen in the proof of
equidistribution for Kloosterman sums.

Rather than comparing the monodromy group associated withMp to the differential
Galois group associated withM0, this thesis focuses on studying a certain de Rham
symmetry group, denotedConv(M0), whosedefinition closelyparallels that ofConv(Mp).
Moreover, whenG is the additive group, Conv(M0) can be identified with a differential
Galois group, and when G is the multiplicative group, Conv(M0) can be described as
a difference Galois group.
Just as the definition of Conv(Mp) required several conceptual advances, so too

does the definition of Conv(M0), which will be developed throughout this monograph.
A precise comparison theorem relating Conv(Mp) and Conv(M0) under reasonable
hypotheses will be the subject of future work.

Relative
perverse
sheafM

Perverse
sheafMp

Holonomic
D-moduleM0

`-adic symmetry
group Conv(Mp)

de Rham symmetry
group Conv(M0)

Monodromy group Differential
Galois group

Difference
Galois group

?

for Ga for Ga for Gm

From this point forward, we discard the previous notation and consider G to be a
commutative connected algebraic group over C. As noted by Krämer in [Krä14, §5],

11
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and subsequently utilized in [FFK23, §3.5], the existence of such a symmetry group is,
in essence, a formal consequence of a generic vanishing theorem. In the context of de
Rham cohomology, this result should follow the template below.

Proto-theorem. Let G be a commutative connected algebraic group over C, and letM be a
holonomic D-module on G. The following holds

Hic(G,M⊗Lχ) = Hi(G,M⊗Lχ) = 0 for i 6= 0;
H0c(G,M⊗Lχ) ' H0(G,M⊗Lχ)

for almost every character χ.

As it stands, the proto-theorem above does not make much sense. To refine it into a
precise and meaningful statement, we must proceed with the following steps:

(1) Define character sheaves: line bundles with integrable connection corresponding
to the rank-one `-adic local systems Lχ in positive characteristic.

(2) Construct a moduli space G[ of character sheaves and analyse its geometric
properties.

(3) Study the geometry of the loci within G[ constituted of the character sheaves
satisfying the proto-theorem above.

The initial step is straightforward. For a commutative connected algebraic group
G over Fq, with group law m : G × G → G, there exists a clear characterization of
the `-adic local systems of the form Lχ for some character χ. Specifically, these are
the rank-one `-adic local systems L that satisfy the condition m∗L ' L �L—an
isomorphism reflecting the equation χ(xy) = χ(x)χ(y). More precisely, the group
morphisms®

Characters
χ : G(Fq)→ Q×`

´ ®
Isomorphism classes of rank-one `-adic local
systems L on G satisfyingm∗L ' L �L

´
χ 7→Lχ

tr L← [L

are inverses of each other [ST21, Lem. 2.16]. This observation leads to the following
definition.

Definition (Character sheaf). A character sheaf is a line bundle with integrable connec-
tion (L ,∇) on G satisfyingm∗(L ,∇) ' (L ,∇)� (L ,∇).

To better understand these objects, we recall the Barsotti–Chevalley theorem, which
states that the algebraic group G fits in a short exact sequence

0→ L→ G→ A→ 0,

12



where L is linear group and A is an abelian variety. The linear group L further
decomposes into a product of a torus T and a unipotent group U. For reasons that
will soon become apparent1, we denote by H1m(GdR,Gm) the group of isomorphism
classes of character sheaves on G. These groups have straightforward descriptions for
unipotent groups, tori, and abelian varieties.

� Example. In characteristic zero, a unipotent group U is always of the form Gna for
some n. The group H1m(UdR,Gm) is then naturally isomorphic to Cn through the map

Cn → H1m(UdR,Gm)

(χ1, . . . , χn) 7→ (OU, d − χ1 dt1 − · · ·− χn dtn) .

Similarly, over C, a torus T is isomorphic to a power of the multiplicative group Grm.
Here, the group H1m(TdR,Gm) is naturally isomorphic to (C/Z)r via the map

(C/Z)r → H1m(TdR,Gm)

(χ1, . . . , χr) 7→
Å
OT , d − χ1

dt1
t1

− · · ·− χr
dtr
tr

ã
.

For abelian varieties A, every line bundle with integrable connection is a character
sheaf. This is because a line bundle equipped with an integrable connection has a
vanishing first Chern class, implying that it lies in Pic0(A). �

In the context of non-abelian Hodge theory, Simpson constructed a moduli space of
line bundles with flat connection on a smooth projective variety [Sim94]. In particular,
there exists a moduli space of character sheaves on abelian varieties. For affine groups,
however, the group of line bundles with flat connection is too large2, but the character
condition effectively resolves this issue.

Theorem A (3.2.6). There exists a smooth commutative connected group algebraic space G[

satisfying dimG 6 dimG[ 6 2 dimG, whose C-points parametrize character sheaves.

The techniques employed in the proof of this theorem represent the main novelty of
this thesis. These methods are distinct from other approaches to generic vanishing
and lead to a new construction of Simpson’s moduli space for abelian varieties.

Sketch of the proof of Theorem A. The inspiration for this proof is the Barsotti–Weil for-
mula, which we generalize in Theorem F. For an abelian variety A, this formula asserts
that the extension sheaf Ext1(A,Gm), computed in the category of abelian sheaves
1The proof of Theorem A introduces the de Rham space GdR, and H1(GdR,Gm) is its fppf cohomology
with coefficients in Gm. The group H1m(GdR,Gm) is the subgroup consisting of the line bundles
satisfying the character condition.

2For instance, the "moduli space" of line bundles with flat connection on A1 is the ind-scheme
A∞ := colimn An, whereas the moduli space of character sheaves on Ga is Ga itself.

13
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on the fppf site (Sch/C)fppf, is representable by the dual abelian variety A′. This is a
moduli space of line bundles L on A satisfyingm∗L ' L �L .
The next ingredient is the so-called de Rham space. For an algebraic variety X, line

bundles on the de Rham space XdR correspond to line bundles with flat connection
on X. Consequently, it can be shown that the abelian sheaf A\ := Ext1(AdR,Gm)

parametrizes character sheaves on A and is representable by a connected algebraic
group. This algebraic group coincides with Simpson’s moduli space.
For a general commutative connected algebraic group G, Theorem 2.3.21 provides

an isomorphism between the C-points of the sheafG\ := Ext1(GdR,Gm) and the group
H1m(GdR,Gm). If G is semiabelian (i.e., an extension of an abelian variety by a torus),
then this abelian sheaf is representable by a smooth commutative connected group
algebraic space, thereby establishing the theorem.
However, when G contains a unipotent subgroup, the sheaf G\ is no longer repre-

sentable by an algebraic space. In Chapter 3, we computedG\ in as explicit a manner as
possible and identified the problematic constituents. By excluding those problematic
parts, we obtain the desired moduli space G[.

As a result of the explicit computations required for the preceding proof, we establish
a normal form for character sheaves. Let ψ : G → A be the map arising from the
Barsotti–Chevaley decomposition, and let ΩG denote the vector group of invariant
differentials on G. Each ω ∈ ΩG induces a character sheaf Lω := (OG, d +ω) on G.
Finally, let Lχ denote the character sheaf on G corresponding to a point χ ∈ G[.

Corollary (3.1.10). Every character sheaf on G can be expressed as Lω ⊗ψ∗Lα, for some
ω ∈ ΩG and α ∈ A[.

While the decomposition above is not unique, Corollary 3.1.10 provides a precise
characterization of the various possible decompositions of a character sheaf. After
examining Steps (1) and (2), we now proceed to Step (3), starting with the case of
unipotent groups.

Theorem B (5.3.1). LetU be a commutative unipotent group over C, and letM be a holonomic
D-module on U. There exists an open dense subset V of U[ such that

Hic(U,M⊗Lχ) = Hi(U,M⊗Lχ) = 0 for i 6= 0;
H0c(U,M⊗Lχ) ' H0(U,M⊗Lχ)

holds for every χ ∈ V .

A unipotent group U over C is necessarily a vector group, with the moduli space U[

being isomorphic to the dual vector group U∗. For a given holonomic D-module on U,
we suspect that locus of good characters is far more structured than merely being an
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open dense subset of U∗. We conjecture that its complement consists of a finite union
of affine subspaces with positive codimension. This leads to the following definition.

Definition (3.3.1, 3.3.4). For an epimorphism ρ : G � G̃ with connected kernel, the
image of ρ[ : G̃[ ↪→ G[ is said to be a linear subspace of G[. A generic subspace of G[ is
the complement of a finite union of translates of linear subspaces of G[ with positive
codimension.

These subspaces are straightforward to describe for linear algebraic groups and can
be connected to established concepts in the literature on abelian varieties.

� Example — 3.3.2. Consider a torus T with character group X. A linear subspace of
T [ ' ΩT/X is of the form V/Y, where Y is a subgroup of X and V is the linear subspace
ofΩT generated by Y, in the sense of linear algebra. For a unipotent group U, a linear
subspace of U[ = U∗ corresponds to a linear subspace of the underlying vector space
of U∗, in the sense of linear algebra.

For an abelian variety A, linear subspaces of A[ ' A\ were first studied by Simpson,
who termed them triple tori [Sim93, p. 365]. Schnell refers to translates of linear
subspaces of A[ as linear subvarieties [Sch15, Def. 2.3]. �

While we have yet to prove that the subspace of good characters inU[ is generic3, we
are able to establish a similar result for semiabelian varieties. Here, we let ϕ : L→ G

denote the map from the Barsotti–Chevalley decomposition.

Theorem C (5.2.1, 5.4.3). Let G be a semiabelian variety over C, and letM be an object of
Dbh (DG). Then there exists a generic subspace V of L[ such that the forget-supports map

H∗c(G,M⊗Lω ⊗ψ∗Lα)→ H∗(G,M⊗Lω ⊗ψ∗Lα)

is an isomorphism for everyα ∈ A[ and everyω ∈ ΩG such thatϕ∗Lω lies inV . Furthermore,
ifM is concentrated in degree zero, for eachω as above, there exists a generic subspaceW of
A[ such that

H∗c(G,M⊗Lω ⊗ψ∗Lα) ' H∗(G,M⊗Lω ⊗ψ∗Lα)

is concentrated in degree zero for every α ∈W.

The particular case of abelian varieties in the theorem above was proved by Schnell
[Sch15, Thms. 2.2 and 4.1]. Moreover, Krämer proves a related result for regularM in
[Krä14, Thm. 2.1]. The former result serves as an ingredient in our proof, which was
inspired by the latter.
We are now in a position to introduce the construction of the de Rham symmetry

group, as promised earlier. The key idea is to apply the formalism of tannakian
3However, Remark 5.3.5 presents a promising idea for such a proof.
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categories, which provides criteria for a category to be equivalent to the category of
finite-dimensional representations of an affine group scheme.
The fundamental requirement for tannakian categories is that they are symmetric

monoidal, which means they possess a binary operation corresponding to the tensor
product of representations. In our context, this operation is provided by convolution,
which manifests in two forms:

Dbh (DG)× Dbh (DG) Dbh (DG) Dbh (DG)× Dbh (DG) Dbh (DG)

(M,N) m!(M�N) (M,N) m+(M�N).

While these operations do not agree and do not preserve holonomic D-modules in
degree zero, they do so up to negligible modules.

Definition (6.2.1). LetM be a holonomicD-module on G. We say thatM is negligible if
there exists a generic subspace V of G[ such that

H∗c(G,M⊗Lχ) = 0

for all χ ∈ V . We denote by Neg(DG) the full subcategory of Hol(DG) constituted of
the negligible holonomic D-modules.

Theorem D (6.2.12). Let G be the additive group, a torus, or an abelian variety. The category
Neg(DG) is a thick subcategory ofHol(DG), and the quotientHol(DG)/Neg(DG) is tannakian
under convolution. In particular, every holonomic D-module M on G has an associated
symmetry group Conv(M).

These symmetry groups can be described quite concretely when G is either the
additive group Ga or the multiplicative group Gm.

Theorem E (6.3.11, 6.3.11). LetM be a holonomic D-module on Ga, and let FT(M) denote
its Fourier transform. The generic fiber FT(M)η is a differential module whose differential
Galois group is isomorphic to Conv(M).

Similarly, letN be a holonomicD-module onGm, and letMT(N) denote itsMellin transform.
The generic fiber MT(N)η is a difference module whose difference Galois group is isomorphic to
Conv(N).

In [Krä22, Thm. 3.2], Krämer established a related result for the Fourier–Mukai
transform of holonomic D-modules on abelian varieties. This characterization was
later used to show that the associated symmetry groups are almost connected. The
same conclusion holds for Gm in our setting, despite the different methods employed,
and we show that the analogous result for Ga is false.

16



Extensions of abelian sheaves
The proof of Theorem A required a detailed and nuanced analysis of fppf extension
sheaves. Along the way, we uncovered several results that are noteworthy in their own
right. To our surprise, we found that the well-known Barsotti–Weil formula appears to
lack a complete published proof in the literature, alongside other inconsistencies.

Unable to find a reference for the Barsotti–Weil formula in the level of generality we
required, we established the following generalization.

Theorem F (2.3.10). Let A be an abelian scheme and B an affine commutative group scheme
over a base scheme S. For an S-scheme T , the natural maps

Ext1(A,B)(T)← Ext1T (A,B)→ H1m(AT , BT )

are isomorphisms. (See 2.3.6 for the definition of H1m(AT , BT ).) In particular, the abelian sheaf
Ext1(A,Gm) is representable by the dual abelian scheme A′.

For an abelian schemeA over a regular base S, the vanishing of Ext2(A,Gm) has been
asserted in [Bre75, Rem. 6], [Jos09, Thm. 1.2.5], and [Bro21, Cor. 11.5]. Unfortunately, in
each instance, this result is attributed to [Bre69, §7], but additional arguments appear to
be lacking. The following theorem, developed in collaboration with Zev Rosengarten,
aims to fill this gap, at least in characteristic zero.

Theorem G (2.4.4). Let A be an abelian scheme over a characteristic zero scheme S. Then the
abelian sheaf Ext2(A,Gm) vanishes.

Another abelian sheaf that plays a significant role in this thesis is Ext1(U,Gm), for
a commutative unipotent group U over a characteristic zero field. In [Ros23, Rem.
2.2.16], Rosengarten details Gabber’s construction of a non-zero section of this sheaf.
In Example 2.3.17, we provide what may be the simplest such section.

Regrettably, the vanishing of this sheaf has been asserted in the literature. This claim
can be found in [Pol11, Lem. 1.3.6], was utilized in the proofs of [BB09, Lem. A.4.5]
and [Ber14, Lem. 10], and can be derived from the computations in [Lau85, Ex. p. 25].
Our final theorem demonstrates that, although this sheaf is non-zero, its images often
vanish.

Theorem H (2.3.16). Let U be a commutative unipotent group over a characteristic zero field
k. Then the group Ext1(U,Gm)(T) vanishes for all seminormal k-schemes T .

We note that a similar result was announced by Gabber in a recent conference talk
[Gab23]. Our arguments are independent, and we were unaware of Gabber’s proof
during the development of this thesis.
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Motivations et principaux résultats

Dans ce chapitre, nous exposons le contexte historique qui a conduit au développement
des résultats présentés dans cette thèse. De plus, nous fournissons un bref aperçu de
nos principales découvertes, en les situant dans le paysage mathématique plus large.

Sommes exponentielles et équations différentielles
Les sommes exponentielles sur les corps finis sont omniprésentes dans la théorie
analytique des nombres moderne. Une grande partie de leur étude tourne autour de
deux questions fondamentales :

(1) Pour une somme exponentielle S, quelle est une bonne borne supérieure pour |S|
?

(2) Pour une famille {Si}i∈I de sommes exponentielles, comment les nombres com-
plexes Si varient-ils lorsque i parcourt l’ensemble I ?

Comme nous allons le voir bientôt, ces questions sont étroitement liées. Nous
illustrerons cette théorie avec un exemple particulièrement éclairant, que nous avons
appris de notre directeur de thèse Fresán, qui l’a également présenté dans son premier
exposé au Séminaire Bourbaki [Fre19].
Soit p un nombre premier, q une puissance de p, et fixons un caractère additif

non trivial ψp : Fp → C×. En précomposant avec l’application trace Fq → Fp, nous
obtenons le caractère additif ψq : Fq → C×. Pour chaque caractère multiplicatif
χ : F×q → C×, la somme de Gauss g(ψq, χ) est définie par

g(ψq, χ) :=
∑
x∈F×q

ψq(x)χ(x).

La Question (1) a une réponse simple pour les sommes de Gauss. En raison de
l’orthogonalité des caractères, la valeur absolue de g(ψq, χ) est 1 lorsque χ est le
caractère trivial, et√q sinon. En revanche, la Question (2) est bien plus intrigante. Il y
a q− 2 angles θq,χ := g(ψq, χ)/

√
q sur le cercle unité S1, un pour chaque caractère non

trivial χ.

Comment ces angles se répartissent-ils sur S1 lorsque q tend vers l’infini ?
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Bien que les sommes de Gauss soient quelques-uns des exemples les plus simples de
sommes exponentielles, cette question est profonde. Sa solution n’est devenue possible
qu’après que Deligne a démontré l’hypothèse de Riemann pour les variétés sur les
corps finis.

Théorème (Deligne, Katz). À mesure que q tend vers l’infini, les angles θq,χ pour χ 6= 1

deviennent équirépartis sur S1 par rapport à sa mesure de Haar normalisée. En d’autres termes,
l’équation

1

2π

∫2π
0

f(eiθ) dθ = lim
q→∞

1

q− 2

∑
χ 6=1

f(θq,χ)

est vérifiée pour toutes les fonctions continues f : S1 → C.

Début de la démonstration. Comme les polynômes de Laurent sont denses dans C(S1),
il suffit de considérer des fonctions de la forme f(z) = zn pour n ∈ Z. Le cas n = 0 est
trivial, et la relation g(ψq, χ)g(ψq, χ) = q nous permet de supposer que n > 1. Dans
ce cas, l’intégrale s’annule toujours, il reste donc à prouver que la séquence

1

q− 2

∑
χ 6=1

f(θq,χ) =
1

qn/2(q− 2)

∑
χ 6=1

g(ψq, χ)n

tend vers zéro lorsque q tend vers l’infini. En développant l’expression de g(ψq, χ)n,
on obtient

g(ψq, χ)n =
∑

x1,...,xn∈F×q

ψq(x1 + · · ·+ xn)χ(x1 . . . xn)

=
∑
a∈F×q

χ(a)
∑

x1,...,xn∈F×q
x1...xn=a

ψq(x1 + · · ·+ xn).

C’est-à-dire que l’application χ 7→ g(ψq, χ)n est la transformée de Fourier des sommes
de Kloosterman

a 7→ Kln(a, q) :=
∑

x1,...,xn∈F×q
x1...xn=a

ψq(x1 + · · ·+ xn).

Ainsi, la solution à la Question (2) pour les sommes de Gauss dépend de la résolution
de la Question (1) pour les sommes de Kloosterman. À suivre...

Kloosterman lui-même a dû estimer les sommes qui portent désormais son nomdans
[Klo27], mais spécifiquement pour le cas n = 2. En calculant le quatrième moment,∑

a∈F×q

Kl2(a, q)4 = 2q3 − 3q2 − 3q− 1,
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il a pu conclure que |Kl2(a, q)| < 2q3/4. Cependant, déterminer la borne supérieure
optimale pour |Kln(a, q)|, ce qui est nécessaire pour compléter la démonstration ci-
dessus, a nécessité le développement de la cohomologie étale et les travaux ultérieurs
de Deligne—des avancées qui ont pris cinquante ans de plus.

Pour éclaircir le rôle de la cohomologie étale dans cette histoire, examinons d’abord
quelques-unes de ses caractéristiques clés. Pour une variété algébrique connexe X sur
k = Fq, Grothendieck a défini le groupe fondamental étale π1(X), un groupe profini qui
classe les revêtements étales finis de X. Étant donné une extension finie E/k, le groupe
fondamental étale de X = SpecE est simplement le groupe de Galois absolu Gal(E)—le
groupe profini libre Ẑ, avec un générateur donné par

E→ E, x 7→ x|E|.

Ceci est connu sous le nom de Frobenius arithmétique. Son inverse, noté FrobE et appelé
Frobenius géométrique, joue un rôle crucial dans la théorie.

Désormais, fixons un nombre premier ` 6= p, une clôture algébrique de Q`, et un
isomorphisme entre Q` et C. Considérons un système local `-adique L de rang r
sur X, caractérisé comme une représentation continue ρ : π1(X) → GLr(Q`). Pour
chaque point x ∈ X(E), la fonctorialité naturelle du groupe fondamental étale induit
une application

Gal(E) ' π1(SpecE)→ π1(X).

Nous désignons par FrobE,x l’image de FrobE sous ce morphisme. Comme cette
construction n’est canonique qu’à choix de point de base près, FrobE,x représente une
classe de conjugaison dans π1(X). Par conséquent, ρ(FrobE,x) forme une classe de
conjugaison dans GLr(Q`), et nous pouvons en prendre la trace, notée tr(FrobE,x | L ).
Grothendieck a également introduit les groupes de cohomologie Hi(Xk̄,L ) et les

groupes de cohomologie à support compact Hic(Xk̄,L ). Ce sont des espaces vectoriels
de dimension finie surQ`, équipés d’une action de Gal(k), et ils s’annulent en dehors de
l’intervalle 0 6 i 6 2d, où d est la dimension de X. L’action du Frobenius géométrique
sur un système local `-adique et sur sa cohomologie à support compact sont liées par
la formule des traces de Grothendieck :

∑
x∈X(E)

tr(FrobE,x | L ) =

2d∑
i=0

(−1)i tr(FrobE | H
i
c(Xk̄,L )).

Cette formule constitue un élément clé d’une méthode puissante pour estimer les
sommes exponentielles sur les corps finis. Tout d’abord, un système local `-adique
L est construit de manière à ce que le côté gauche de la formule des traces de
Grothendieck corresponde à la somme exponentielle donnée. Ensuite, les valeurs
propres du Frobenius géométrique agissant sur Hic(Xk̄,L ) sont estimées. Cette
estimation peut être réalisée en utilisant la théorie des poids de Deligne.
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Motivations et principaux résultats

Définition. Nous disons que L est pur s’il existe un entier w, son poids, tel que pour
toute extension finie E/k et tout x ∈ X(E), les valeurs propres de FrobE,x agissant sur
L ont valeur absolue |E|w/2.
Le système local `-adique L est dit mixte s’il admet une filtration finie où chaque

quotient successif est pur. Les poids de ces quotients non nuls sont les poids de L .

La même terminologie s’applique aux groupes de cohomologie Hi(Xk̄,L ) et
Hic(Xk̄,L ). Le résultat principal dans l’article fondateur de Deligne [Del80] com-
pare les poids d’un système local `-adique avec ceux de ses groupes de cohomologie.

Théorème (Deligne). Si L est mixte de poids 6 w, alors le groupe de cohomologie à support
compact Hic(Xk̄,L ) est mixte de poids 6 w+ i.

Pour X lisse, la dualité de Poincaré implique que si L est mixte de poids > w, alors
Hi(Xk̄,L ) est mixte de poids > w + i. Cette estimation est particulièrement utile
lorsque l’applicationd’oubli de supportsHic(Xk̄,L )→ Hi(Xk̄,L ) est un isomorphisme,
auquel cas ces groupes de cohomologie sont purs de poids w+ i.

Nous appliquons maintenant la méthode mentionnée précédemment pour estimer
les sommes de Kloosterman. Considérons le morphisme de k-schémas A1k → A1k défini
par x 7→ x− xq. Il s’agit d’un revêtement galoisien étale fini avec groupe de Galois Fq.
Étant donné que π1(A1k) est la limite des groupes de Galois de tous les revêtements
galoisiens étales finis, nous obtenons une surjection naturelle π1(A1k) � Fq. En
conséquence, la composition

π1(A1k)� Fq
ψq−−→ Q×`

correspond à un système local `-adique de rang un Lψq sur A1k, dont la trace en un
point x ∈ A1k(k) = Fq est simplement ψq(x).

Fixons a ∈ F×q , et soit X le lieu des zéros de x1 . . . xn − a dans Ank . Définissons
f : X→ A1k comme l’application qui envoie (x1, . . . , xn) sur leur somme, de sorte que

Kln(a, q) =
∑
x∈X(k)

tr(Frobk,x | f
∗Lψq) =

2n∑
i=0

(−1)i tr(Frobk | H
i
c(Xk̄, f

∗Lψq)).

Dans [SGA 41
2
, Thm. 7.4], Deligne a calculé ces groupes de cohomologie, montrant que

Hic s’annule pour i 6= n− 1 et que Hn−1c ' Hn−1 est de dimension n. De plus, puisque
les valeurs de ψq sont des racines p-ièmes de l’unité, le système local `-adique f∗Lψq

est pur de poids 0. Le théorème de Deligne implique alors que

|Kln(a, q)| = |tr(Frobk | H
n−1
c (Xk̄, f

∗Lψq))| 6 nq(n−1)/2,

ce qui est la borne optimale.
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Nous sommes maintenant en mesure de compléter la démonstration du théorème
d’équidistribution pour les sommes de Gauss.

Fin de la démonstration. En sommant l’expression obtenue pour g(ψq, χ)n sur les carac-
tères multiplicatifs non triviaux χ, nous obtenons∑

χ 6=1

g(ψq, χ)n = −g(ψq, 1)
n +

∑
a∈F×q

Kln(a, q)
∑
χ

χ(a)

= (−1)n+1 + (q− 1) Kln(1, q).

La borne de Deligne nous mène à l’estimation∣∣∣∣∣∣ 1

qn/2(q− 2)

∑
χ 6=1

g(ψq, χ)n

∣∣∣∣∣∣ 6 2n+ 1
√
q
,

qui tend vers zéro lorsque q tend vers l’infini.

La propriété clé des sommes de Gauss qui a permis la démonstration précédente est
que l’application χ 7→ g(ψq, χ) est la transformée de Fourier de la fonction trace d’un
système local `-adique. Cette propriété peut être généralisée dans deux directions.
Premièrement, au lieu de considérer des caractères χ de F×q = Gm(k), on peut élargir la
portée aux caractères de G(k), où G est un groupe algébrique commutatif connexe sur
k. De manière similaire à la construction ci-dessus, pour chaque caractère χ ∈ Ĝ(k),
il existe un système local `-adique de rang un Lχ sur G dont la trace en tout point
x ∈ G(k) est égale à χ(x).
Les systèmes locaux peuvent également être généralisés à une classe plus large de

faisceaux `-adiques connus sous le nom de faisceaux pervers. Étant donné une extension
finie E/k et un faisceau pervers semi-simpleM sur G qui est pur de poids zéro, nous
définissons la somme exponentielle

S(M,E, χ) :=
∑
x∈G(E)

tr(FrobE,x |M)χ(x) =
∑
x∈G(E)

tr(FrobE,x |M⊗Lχ).

Comme montré dans [FFK23, Thm. 3.28], il existe un groupe algébrique linéaire
Conv(M) sur Q` qui encapsule les symétries de cette somme exponentielle. Ce groupe
est défini comme un groupe tannakien associé à une certaine catégorie quotient de
faisceaux pervers.
Soit K un sous-groupe compact maximal de Conv(M)an. Puisque Conv(M) est

linéaire, il existe un entier r > 0 et une immersion fermée Conv(M) ↪→ GLr. Notons
par µ la mesure de Haar normalisée sur K, et par ν son image directe par la fonction
trace. Nous présentons maintenant le théorème principal du récent ouvrage [FFK23].
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Motivations et principaux résultats

Théorème (Forey, Fresán, Kowalski). À mesure que le degré de E/k tend vers l’infini, les
sommes exponentielles S(M,E, χ) pour χ ∈ Ĝ(E) deviennent ν-équiréparties en moyenne. En
d’autres termes, l’équation∫

K

f(tr(x)) dµ(x) = lim
n→∞

1

n

∑
[E:k]6n

1

|G(E)|

∑
χ∈“G(E)

f(S(M,E, χ))

est vérifiée pour toutes les fonctions continues bornées f : C→ C.

Ce résultat englobe non seulement le théorème d’équidistribution pour les sommes
de Gauss, mais étend également de nombreux autres théorèmes connexes. Rappelons
que, selon la formule des traces de Grothendieck, la somme exponentielle S(M,E, χ)

est donnée par une somme alternée de traces des Frobenius agissant sur les groupes
de cohomologie : ∑

i∈Z

(−1)i tr(FrobE | H
i
c(Gk̄,M⊗Lχ)).

Comme précédemment, la démonstration de ce théorème repose sur le fait que, pour la
plupart des choix de χ, tous ces groupes de cohomologie sauf un sont nuls, simplifiant
ainsi considérablement la somme. De plus, le seul groupe de cohomologie à support
compact non nul coïncide avec son homologue sans support compact, permettant ainsi
l’utilisation des estimations de poids de Deligne.

Théorème (Forey, Fresán, Kowalski). Soit G un groupe algébrique commutatif connexe sur
k de dimension d, et soitM un faisceau pervers sur G. L’ensemble S des caractères χ ∈ Ĝ qui
satisfont

Hic(Gk̄,M⊗Lχ) = Hi(Gk̄,M⊗Lχ) = 0 pour i 6= 0;
H0c(Gk̄,M⊗Lχ) ' H0(Gk̄,M⊗Lχ)

est générique, ce qui signifie qu’il existe un nombre réel c > 0 tel que |Ĝ(E) \ S(E)| 6 c|E|d−1

pour toute extension finie E/k.

Sommes exponentielles et équations différentielles
Après avoir appliqué les méthodes `-adiques pour résoudre la Question (1) concer-
nant les sommes de Kloosterman Kln(a, q), nous nous tournons maintenant vers la
distribution de ces sommes lorsque a ∈ F×q varie et que q tend vers l’infini. Pour
simplifier, nous considérons le cas n = 2. En utilisant la borne établie précédemment,
et en notant que les sommes Kl2(a, q) sont des nombres réels, il s’ensuit qu’il existe un
angle unique θq,a ∈ [0, π] tel que Kl2(a, q) = 2

√
q cos θq,a.

Comment ces angles se répartissent-ils sur [0, π] lorsque q tend vers l’infini ?
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Théorème (Katz). À mesure que q tend vers l’infini, les angles θq,a pour a ∈ F×q deviennent
équirépartis sur [0, π] par rapport à la mesure de Sato–Tate (2/π) sin2 θ dθ. En d’autres termes,
l’équation

2

π

∫π
0

f(θ) sin2 θ dθ = lim
q→∞

1

q− 1

∑
a∈F×q

f(θq,a)

est vérifiée pour toutes les fonctions continues f : [0, π]→ C.

Esquisse de la démonstration. Nous expliquons comment ce résultat s’inscrit dans le
cadre du théorème d’équidistribution établi par Forey, Fresán, et Kowalski. Rappelons
que chaque caractère χ ∈ F̂q peut être exprimé comme x 7→ ψq(ax), pour un a ∈ Fq
unique. Cette correspondance conduit à l’égalité suivante :Kl2(a, q) =

∑
x∈F×q

ψq

Å
ax+

1

x

ã ∣∣∣∣∣∣ a ∈ Fq

 =

∑
x∈F×q

ψq

Å
1

x

ã
χ(x)

∣∣∣∣∣∣ χ ∈ F̂q

 .
Soit j : Gm → Ga l’inclusion naturelle, et ι : Gm → Gm l’application d’inversion.

L’objetM = j!ι
∗j∗Lψq [1](1/2) est un faisceau pervers pur de poids zéro sur le groupe

additif Ga, dont la fonction trace satisfait

tr(Frobk,x |M) =

{
−ψq(1/x)/

√
q si x ∈ Gm(k) = F×q

0 sinon

pour x dans Ga(k) = Fq. Le théorème principal de [FFK23] fournit alors un résultat
d’équidistribution, bien qu’il reste à déterminer la mesure associée.
Les groupes de symétrie des faisceaux pervers sur Ga ont une description par-

ticulièrement simple. Il existe un sous-ensemble ouvert dense U de Ga tel que la
transformée de Fourier de Deligne FTψq(M), décrite dans l’introduction du Chapitre 4,
devienne un système local `-adique décalé sur U. Notons par ρ : π1(U)→ GLr(Q`) la
représentation correspondante. Le groupe de symétrie Conv(M) est alors isomorphe
au groupe de monodromie de ce système local `-adique, qui est la clôture de Zariski de
ρ(π1(U)) dans GLr(Q`) [FFK23, Prop. 3.32].

Pour ce faisceau pervers spécifiqueM, des arguments standard [Kat90, Prop. 8.1.12]
montrent que j∗ FTψq(M) ' KL2[1](1/2), où KL2 est le faisceau de Kloosterman décrit
dans [Kat88, Thm. 4.1.1]. Katz a calculé que le groupe de monodromie du système
local `-adique KL2(1/2) est le groupe spécial linéaire SL2 [Kat88, Thm. 11.1]. Son
calcul montre également que l’on obtient une équidistribution, et non simplement une
équidistribution en moyenne. (Voir [FFK23, Thm. 4.15] et [Kat88, Cor. 11.3].)

Le sous-groupe compact maximal de SL2(C) est le groupe unitaire spécial SU(2). Le
théorème découle alors du fait que l’image directe de sa mesure de Haar normalisée
par la fonction trace est la mesure de Sato–Tate.
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Cette histoire a un pendant en caractéristique zéro. En remplaçant les caractères de
Fq par ceux de R et les sommes par des intégrales, la fonction de Bessel Be(z) apparaît
comme un analogue formel de la somme de Kloosterman Kl2(a, q) :

Kl2(a, q) =
∑
x∈Fq×

ψq

(
x+

a

x

)
Be(z) =

∫
S1

exp
(
x+

z

x

)dx

x
.

La fonction Be(z) satisfait l’équation différentielle (z∂z)
2 − z = 0, dont le groupe de

Galois différentiel peut être montré qu’il est SL2 [Kol68]. Ce n’est pas une coïncidence
que cela corresponde au groupe de monodromie obtenu dans la démonstration du
théorème précédent ! Katz a documenté de nombreux exemples de ce phénomène
dans [Kat90].
Un théorème de comparaison général entre les groupes de monodromie et les

groupes de Galois différentiels représente l’aboutissement du livre de Katz [Kat90],
que nous allons maintenant résumer. Soit R un sous-anneau de C qui est aussi une
Z[1/`]-algèbre de type fini, et soitM un objet de Dbc (A1R,Q`). Supposons queM soit
adapté à une stratification {A1R \D,D}, où D est un diviseur étale fini défini par un
polynôme unitaire dont le discriminant est une unité dans R.

Supposons queM soit relativement pervers au sens de [HS23], c’est-à-dire que pour
tout morphisme d’anneaux ϕ : R→ K, où K est un corps algébriquement clos, l’image
réciproqueMϕ deM dans Dbc (A1K,Q`) soit perverse. SoitM0 leD-module holonome
régulier sur A1C correspondant à la fibre complexe deM sous la correspondance de
Riemann–Hilbert. La transformée de Fourier FT(M0) se restreint à une connexion sur
Gm,C, donnant ainsi naissance à un groupe de Galois différentiel Gal(FT(M0)|Gm).
Selon [Kat90, Prop. 14.1.5], pour chaque morphisme d’anneaux ϕ : R → K, où

K est un corps algébriquement clos de caractéristique p > 0, le faisceau pervers
FTψq(Mϕ)|Gm est de la forme Lϕ[1] pour un certain système local `-adique Lϕ. Le
groupe de monodromie de ce système local est noté Mon(Lϕ).

Théorème (Gabber, Katz). Si Mon(Lϕ) est réductif et Gal(FT(M0)|Gm) est semi-simple,
alors il existe un sous-ensemble ouvert dense U de SpecR tel que pour tout ϕ se situant sur un
point de U, le groupe de monodromie Mon(Lϕ) soit isomorphe à Gal(FT(M0)|Gm).

Aussi remarquable que soit ce théorème, il ne semble pas rendre compte de
l’isomorphisme entre le groupe de monodromie pour les sommes de Kloosterman et
le groupe de Galois différentiel pour la fonction de Bessel. Il ne s’applique pas non
plus à d’autres groupes algébriques commutatifs connexes au-delà de Ga. Néanmoins,
ce phénomène n’est certainement pas confiné au groupe additif.
En répétant la même procédure formelle, nous observons que l’analogue en carac-
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téristique zéro des sommes de Gauss est la fonction Gamma Γ(s) :

g(ψq, χ) =
∑
x∈F×q

ψq(x)χ(x) Γ(s) =

∫∞
0

e−xxs
dx

x
.

La fonction Gamma satisfait l’équation aux différences τ− s = 0, où τ est l’opérateur
de décalage qui associe f(s) à f(s+ 1). Le groupe de Galois aux différences associé à cette
équation est GL1, reflétant le fait que les sommes de Gauss sont équiréparties sur S1.
En effet, S1 est le sous-groupe compact maximal de GL1(C).
Dans le contexte du groupe multiplicatif, il semble y avoir de nombreux exemples

de ce phénomène, bien qu’aucun théorème de comparaison général n’ait été établi.
Nous renvoyons à [Kat12, Chap. 29] pour une discussion connexe. Comme le dit si
bien Katz, much remains to be done.

Résumé des résultats

Bien qu’une compréhension complète de la relation entre les sommes exponentielles et
leurs analogues en caractéristique zéro reste insaisissable, cette thèse constitue une
étape vers cet objectif. Pour commencer, plaçons le résultat de Gabber et Katz dans
son contexte.
Considérons un sous-anneau R de C qui est une Z[1/`]-algèbre de type fini. Soit

G un groupe algébrique commutatif connexe sur R, etM un faisceau pervers relatif
sur G. Fixons un morphisme suffisamment générique de R vers Fq, et notons parMp

l’image réciproque deM. De plus, soitM0 le D-module holonome correspondant à la
fibre complexe deM.
Selon les résultats mentionnés ci-dessus de [FFK23], le faisceau perversMp donne

lieu à une famille de sommes exponentielles, dont l’équidistribution est régie par un
groupe de symétrie Conv(Mp). Dans le cas particulier où G est le groupe additif Ga,
le groupe de symétrie Conv(Mp) peut être décrit comme un groupe de monodromie,
comme on le voit dans la démonstration de l’équidistribution pour les sommes de
Kloosterman.

Plutôt que de comparer le groupe de monodromie associé àMp au groupe de Galois
différentiel associé àM0, cette thèse se concentre sur l’étude d’un certain groupe de
symétrie de Rham, noté Conv(M0), dont la définition est étroitement parallèle à celle de
Conv(Mp). De plus, lorsque G est le groupe additif, Conv(M0) peut être identifié à un
groupe de Galois différentiel, et lorsque G est le groupe multiplicatif, Conv(M0) peut
être décrit comme un groupe de Galois aux différences.

Tout comme la définition de Conv(Mp) a nécessité plusieurs avancées conceptuelles,
la définition de Conv(M0) en demande autant, et elle sera développée tout au long de
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ce mémoire. Un théorème de comparaison précis entre Conv(Mp) et Conv(M0) sous
des hypothèses raisonnables fera l’objet de travaux futurs.

Faisceau
pervers
rélatifM

Faisceau
perversMp

D-module
holonomeM0

Groupe de symétrie
`-adique Conv(Mp)

Groupe de symétrie
de de Rham Conv(M0)

Groupe de
monodromie

Groupe de Galois
différentiel

Groupe de Galois
aux différences

?

pour Ga
pour Ga

pour Gm

À partir de ce point, nous abandonnons la notation précédente et considérons que G
est un groupe algébrique commutatif et connexe sur C. Comme l’a noté Krämer dans
[Krä14, §5], et utilisé par la suite dans [FFK23, §3.5], l’existence d’un tel groupe de
symétrie est, en essence, une conséquence formelle d’un théorème d’annulation générique.
Dans le contexte de la cohomologie de Rham, ce résultat devrait suivre le modèle
ci-dessous.

Proto-théorème. Soit G un groupe algébrique commutatif et connexe sur C, et soitM un
D-module holonome sur G. Le résultat suivant est vérifié :

Hic(G,M⊗Lχ) = Hi(G,M⊗Lχ) = 0 pour i 6= 0;
H0c(G,M⊗Lχ) ' H0(G,M⊗Lχ)

pour presque tous les caractères χ.

Tel qu’il est formulé, le proto-théorème ci-dessus n’a pas beaucoup de sens. Pour
le raffiner en un énoncé précis et significatif, nous devons procéder par les étapes
suivantes :

(1) Définir les faisceaux caractères : des fibrés en droites avec connexion intégrable
correspondant aux systèmes locaux `-adiques de rang un Lχ en caractéristique
positive.
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(2) Construire un espace de modules G[ de faisceaux caractères et analyser ses
propriétés géométriques.

(3) Étudier la géométrie des lieux dans G[ constitués des faisceaux caractères
satisfaisant le proto-théorème ci-dessus.

La première étape est simple. Pour un groupe algébrique commutatif et connexe
G sur Fq, avec loi de groupe m : G × G → G, il existe une caractérisation claire des
systèmes locaux `-adiques de la forme Lχ pour un certain caractère χ. Ce sont les
systèmes locaux `-adiques de rang unL qui satisfont la conditionm∗L ' L �L—un
isomorphisme reflétant l’équationχ(xy) = χ(x)χ(y). Plus précisément, lesmorphismes
de groupes®

Caractères
χ : G(Fq)→ Q×`

´ 
Classes d’isomorphisme de systèmes
locaux `-adiques de rang un L sur G

satisfaisantm∗L ' L �L


χ 7→Lχ

tr L← [L

sont des inverses l’un de l’autre [ST21, Lem. 2.16]. Cette observation mène à la
définition suivante.

Définition (Faisceau caractère). Un faisceau caractère est un fibré en droites muni d’une
connexion intégrable (L ,∇) sur G satisfaisantm∗(L ,∇) ' (L ,∇)� (L ,∇).

Pour mieux comprendre ces objets, rappelons le théorème de Barsotti–Chevalley,
qui affirme que le groupe algébrique G s’insère dans une suite exacte courte

0→ L→ G→ A→ 0,

où L est un groupe linéaire et A est une variété abélienne. De plus, le groupe linéaire
L se décompose en un produit d’un tore T et d’un groupe unipotent U. Pour des
raisons qui deviendront bientôt apparentes1, nous désignons par H1m(GdR,Gm) le
groupe des classes d’isomorphisme de faisceaux caractères sur G. Ces groupes ont des
descriptions simples pour les groupes unipotents, les tores et les variétés abéliennes.

� Exemple. En caractéristique zéro, un groupe unipotent U est toujours de la forme Gna
pour un certain n. Le groupe H1m(UdR,Gm) est alors naturellement isomorphe à Cn

via l’application

Cn → H1m(UdR,Gm)

(χ1, . . . , χn) 7→ (OU, d − χ1 dt1 − · · ·− χn dtn) .

1La démonstration du Théorème A introduit l’espace de de Rham GdR, et H1(GdR,Gm) est sa
cohomologie fppf à coefficients dans Gm. Le groupe H1m(GdR,Gm) est le sous-groupe constitué des
fibrés en droites satisfaisant la condition de caractère.
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De même, sur C, un tore T est isomorphe à une puissance du groupe multiplicatif Grm.
Ici, le groupe H1m(TdR,Gm) est naturellement isomorphe à (C/Z)r via l’application

(C/Z)r → H1m(TdR,Gm)

(χ1, . . . , χr) 7→
Å
OT , d − χ1

dt1
t1

− · · ·− χr
dtr
tr

ã
.

Pour les variétés abéliennesA, tout fibré en droites muni d’une connexion intégrable
est un faisceau caractère. En effet, un fibré en droites admettant une connexion
intégrable a une première classe de Chern nulle, ce qui implique qu’il appartient à
Pic0(A). �

Dans le contexte de la théorie de Hodge non-abélienne, Simpson a construit un
espace de modules de fibrés en droites munis d’une connexion plate sur une variété
projective lisse [Sim94]. En particulier, il existe un espace de modules de faisceaux
caractères sur les variétés abéliennes. Pour les groupes affines, cependant, le groupe
des fibrés en droites avec connexion plate est trop grand2, mais la condition de caractère
résout efficacement ce problème.

Théorème A (3.2.6). Il existe un espace algébrique en groupes lisse et connexe G[ satisfaisant
dimG 6 dimG[ 6 2 dimG, dont les C-points paramètrent les faisceaux caractères.

Les techniques employées dans la démonstration de ce théorème représentent la
principale nouveauté de cette thèse. Ces méthodes sont distinctes des autres approches
à l’annulation générique et conduisent à une nouvelle construction de l’espace de
modules de Simpson pour les variétés abéliennes.

Esquisse de la démonstration du Théorème A. L’inspirationpour cettedémonstrationvient
de la formule de Barsotti–Weil, que nous généralisons dans le Théorème F. Pour une var-
iété abélienneA, cette formule affirme que le faisceau d’extension Ext1(A,Gm), calculé
dans la catégorie des faisceaux abéliens sur le site fppf (Sch/C)fppf, est représentable
par la variété abélienne duale A′. Il s’agit d’un espace de modules de fibrés en droites
L sur A satisfaisantm∗L ' L �L .
L’élément suivant est l’espace de de Rham. Pour une variété algébrique X, les fibrés

en droites sur l’espace de de Rham XdR correspondent aux fibrés en droites munis
d’une connexion plate sur X. Par conséquent, on peut montrer que le faisceau abélien
A\ := Ext1(AdR,Gm) paramètre les faisceaux caractères sur A et est représentable
par un groupe algébrique connexe. Ce groupe algébrique coïncide avec l’espace de
modules de Simpson.
2Par exemple, « l’espace de modules » de fibrés en droites munis d’une connexion plate sur A1 est
l’ind-schéma A∞ := colimn An, tandis que l’espace des modules des faisceaux caractères sur Ga est
Ga lui-même.
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Pour un groupe algébrique connexe commutatif généralG, le Théorème 2.3.21 fournit
un isomorphisme entre les C-points du faisceau G\ := Ext1(GdR,Gm) et le groupe
H1m(GdR,Gm). Si G est semi-abélien (c’est-à-dire une extension d’une variété abélienne
par un tore), alors ce faisceau abélien est représentable par un espace algébrique lisse
et connexe, établissant ainsi le théorème.
Cependant, lorsque G contient un sous-groupe unipotent, le faisceau G\ n’est plus

représentable par un espace algébrique. Dans le Chapitre 3, nous avons calculé G\ de
la manière la plus explicite possible et identifié les constituants problématiques. En
excluant ces parties problématiques, nous obtenons enfin l’espace de modules souhaité
G[.

À la suite des calculs explicites nécessaires pour la démonstration précédente,
nous établissons une forme normale pour les faisceaux caractères. Soit ψ : G → A

l’application issue de la décomposition de Barsotti–Chevalley, et soit ΩG le groupe
vectoriel des différentielles invariantes sur G. Chaque ω ∈ ΩG induit un faisceau
caractère Lω := (OG, d + ω) sur G. Enfin, soit Lχ le faisceau caractère sur G
correspondant à un point χ ∈ G[.

Corollaire (3.1.10). Tout faisceau caractère sur G peut être exprimé comme Lω ⊗ψ∗Lα,
pour certainsω ∈ ΩG et α ∈ A[.

Bien que la décomposition ci-dessus ne soit pas unique, le Corollaire 3.1.10 fournit
une caractérisation précise des différentes décompositions possibles d’un faisceau
caractère. Après avoir examiné les Étapes (1) et (2), nous passons maintenant à l’Étape
(3), en commençant par le cas des groupes unipotents.

Théorème B (5.3.1). Soit U un groupe unipotent commutatif sur C, et soitM un D-module
holonome sur U. Il existe un sous-ensemble ouvert dense V de U[ tel que

Hic(U,M⊗Lχ) = Hi(U,M⊗Lχ) = 0 pour i 6= 0;
H0c(U,M⊗Lχ) ' H0(U,M⊗Lχ)

soit vérifié pour tout χ ∈ V .

Un groupe unipotent U sur C est nécessairement un groupe vectoriel, l’espace
de modules U[ étant isomorphe au groupe vectoriel dual U∗. Pour un D-module
holonome donné sur U, nous suspectons que le lieu des caractères bons est bien plus
structuré qu’un simple sous-ensemble ouvert dense de U∗. Nous conjecturons que
son complément consiste en une union finie de sous-espaces affines de codimension
positive. Cela conduit à la définition suivante.

Définition (3.3.1, 3.3.4). Soit G un groupe algébrique commutatif et connexe sur C.
Pour un épimorphisme ρ : G � G̃ avec noyau connexe, l’image de ρ[ : G̃[ ↪→ G[ est
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appelée un sous-espace linéaire de G[. Un sous-espace générique de G[ est le complément
d’une union finie de translatés de sous-espaces linéaires deG[ de codimension positive.

Ces sous-espaces sont simples à décrire pour les groupes algébriques linéaires et
peuvent être reliés à des concepts établis dans la littérature sur les variétés abéliennes.

� Exemple — 3.3.2. Considérons un tore T avec groupe des caractères X. Un sous-espace
linéaire de T [ ' ΩT/X est de la forme V/Y, où Y est un sous-groupe de X et V est le
sous-espace linéaire deΩT généré par Y, au sens de l’algèbre linéaire. Pour un groupe
unipotent U, un sous-espace linéaire de U[ = U∗ correspond à un sous-espace linéaire
de l’espace vectoriel sous-jacent de U∗, au sens de l’algèbre linéaire.
Pour une variété abélienne A, les sous-espaces linéaires de A[ ' A\ ont été étudiés

pour la première fois par Simpson, qui les a appelés triple tori [Sim93, p. 365]. Schnell
désigne par linear subvarieties les translatés de sous-espaces linéaires de A[ [Sch15, Def.
2.3]. �

Bien que nous n’ayons pas encore prouvé que le sous-espace des bons caractères
dans U[ est générique3, nous sommes en mesure d’établir un résultat similaire pour
les variétés semi-abéliennes. Ici, nous notons par ϕ : L→ G l’application provenant de
la décomposition de Barsotti–Chevalley.

Théorème C (5.2.1, 5.4.3). Soit G une variété semi-abélienne sur C, et soitM un objet de
Dbh (DG). Il existe alors un sous-espace générique V de L[ tel que l’application d’oubli de
supports

H∗c(G,M⊗Lω ⊗ψ∗Lα)→ H∗(G,M⊗Lω ⊗ψ∗Lα)

soit un isomorphisme pour tout α ∈ A[ et toutω ∈ ΩG tel que ϕ∗Lω appartienne à V . De
plus, siM est concentré en degré zéro, pour chaqueω comme ci-dessus, il existe un sous-espace
génériqueW de A[ tel que

H∗c(G,M⊗Lω ⊗ψ∗Lα) ' H∗(G,M⊗Lω ⊗ψ∗Lα)

soit concentré en degré zéro pour tout α ∈W.

Le cas particulier des variétés abéliennes dans le théorème ci-dessus a été prouvé
par Schnell [Sch15, Thms. 2.2 et 4.1]. De plus, Krämer prouve un résultat similaire
pourM régulier dans [Krä14, Thm. 2.1]. Ce premier résultat sert d’ingrédient à notre
démonstration, qui a été inspirée par le second.
Nous sommes maintenant en mesure d’introduire la construction du groupe de

symétrie de de Rham, comme promis précédemment. L’idée clé est d’appliquer le
formalisme des catégories tannakiennes, qui fournit des critères pour qu’une catégorie

3Cependant, la Remarque 5.3.5 présente une idée prometteuse pour une telle preuve.
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soit équivalente à la catégorie des représentations de dimension finie d’un schéma en
groupes affine.

L’exigence fondamentale pour les catégories tannakiennes est qu’elles soient monoï-
dales symétriques, ce qui signifie qu’elles possèdent une opération binaire correspon-
dant au produit tensoriel des représentations. Dans notre contexte, cette opération est
fournie par la convolution, qui se manifeste sous deux formes :

Dbh (DG)× Dbh (DG) Dbh (DG) Dbh (DG)× Dbh (DG) Dbh (DG)

(M,N) m!(M�N) (M,N) m+(M�N).

Bien que ces opérations ne coïncident pas et ne préservent pas lesD-modules holonomes
en degré zéro, elles le font à objets négligeables près.

Définition (6.2.1). SoitM un D-module holonome sur G. On dit queM est négligeable
s’il existe un sous-espace générique V de G[ tel que

H∗c(G,M⊗Lχ) = 0

pour tout χ ∈ V . Nous désignons par Neg(DG) la sous-catégorie pleine de Hol(DG)

constituée des D-modules holonomes négligeables.

Théorème D (6.2.12). Soit G le groupe additif, un tore ou une variété abélienne. La catégorie
Neg(DG) est une sous-catégorie épaisse de Hol(DG), et le quotient Hol(DG)/Neg(DG) est
tannakienne sous convolution. En particulier, chaque D-module holonome M sur G a un
groupe de symétrie associé Conv(M).

Ces groupes de symétrie peuvent être décrits de manière assez concrète lorsque G
est soit le groupe additif Ga, soit le groupe multiplicatif Gm.

Théorème E (6.3.11, 6.4.5). Soit M un D-module holonome sur Ga, et soit FT(M) sa
transformée de Fourier. La fibre générique FT(M)η est un module différentiel dont le groupe
de Galois différentiel est isomorphe à Conv(M).

De même, soit N un D-module holonome sur Gm, et soit MT(N) sa transformée de Mellin.
La fibre générique MT(N)η est un module aux différences dont le groupe de Galois aux
différences est isomorphe à Conv(N).

Dans [Krä22, Thm. 2.2], Krämer a établi un résultat similaire pour la transformée
de Fourier–Mukai des D-modules holonomes sur les variétés abéliennes. Cette
caractérisation a ensuite été utilisée pour montrer que les groupes de symétrie associés
sont presque connexes. La même conclusion s’applique pour Gm dans notre contexte,
malgré les méthodes différentes employées, et on montre que le résultat analogue pour
Ga est faux.
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Extensions de faisceaux abéliens
La démonstration du Théorème A a nécessité une analyse détaillée et nuancée des
faisceaux fppf d’extensions. En chemin, nous avons découvert plusieurs résultats qui
méritent d’être signalés pour eux-mêmes. À notre surprise, nous avons constaté que
la célèbre formule de Barsotti–Weil semble manquer d’une preuve complète publiée
dans la littérature, en plus d’autres incohérences.

N’ayant pas trouvé de référence pour la formule de Barsotti–Weil dans le niveau de
généralité dont nous avions besoin, nous avons établi la généralisation suivante.

Théorème F (2.3.10). Soit A un schéma abélien et B un schéma en groupes commutatif affine
sur un schéma de base S. Pour un S-schéma T , les applications naturelles

Ext1(A,B)(T)← Ext1T (A,B)→ H1m(AT , BT )

sont des isomorphismes. (Voir 2.3.6 pour la définition de H1m(AT , BT ).) En particulier, le
faisceau abélien Ext1(A,Gm) est représentable par le schéma abélien dual A′.

Pour un schéma abélienA sur une base régulière S, l’annulation de Ext2(A,Gm) a été
affirmée dans [Bre75, Rem. 6], [Jos09, Thm. 1.2.5], et [Bro21, Cor. 11.5]. Malheureuse-
ment, dans chaque cas, ce résultat est attribué à [Bre69, §7], mais des arguments
supplémentaires semblent manquer. Le théorème suivant, développé en collaboration
avec Zev Rosengarten, vise à combler cette lacune, du moins en caractéristique zéro.

Théorème G (2.4.4). Soit A un schéma abélien sur un schéma de caractéristique zéro S. Alors
le faisceau abélien Ext2(A,Gm) est nul.

Un autre faisceau abélien qui joue un rôle important dans cette thèse est Ext1(U,Gm),
pour un groupe unipotent commutatif U sur un corps de caractéristique zéro. Dans
[Ros23, Rem. 2.2.16], Rosengarten détaille la construction par Gabber d’une section
non nulle de ce faisceau. Dans l’Exemple 2.3.17, nous fournissons ce qui pourrait être
la section la plus simple de ce type.
À regret, l’annulation de ce faisceau a été affirmée dans la littérature. Cette

affirmation se trouve dans [Pol11, Lem. 1.3.6], a été utilisée dans les démonstrations de
[BB09, Lem. A.4.5] et [Ber14, Lem. 10], et peut être dérivée des calculs dans [Lau85, Ex.
p. 25]. Notre dernier théorème démontre que, bien que ce faisceau ne soit pas nul, ses
images s’annulent souvent.

Théorème H (2.3.16). Soit U un groupe unipotent commutatif sur un corps de caractéristique
zéro k. Alors le groupe Ext1(U,Gm)(T) est nul pour tous les k-schémas seminormaux T .

Nous notons qu’un résultat similaire a été annoncé par Gabber lors d’une conférence
récente [Gab23]. Nos arguments sont indépendants, et nous n’étions pas au courant
de la démonstration de Gabber lors de l’élaboration de cette thèse.
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1. Quasi-coherent sheaves and
D-modules

Coherent and de Rham cohomology, like most cohomology theories in algebraic
geometry, have natural coefficients: quasi-coherent sheaves and D-modules. This
chapter introduces the main concepts needed for their study in this thesis. Much of
the material is classical, albeit sometimes lacking precise references.

Six-functor formalisms

A guiding thread in our approach is the notion of a six-functor formalism. For each
cohomology theory, the assignment of a (derived) category of coefficients D(X) to a
geometric object X should exhibit a rich functoriality. First, the categories D(X) must be
closed symmetric monoidal, meaning they are equipped with a tensor product −⊗−

that is left adjoint to an internal hom functor Hom(−,−).
A morphism f : X→ S between geometric objects induces adjoint inverse and direct

image functors f∗ : D(S)→ D(X) and f∗ : D(X)→ D(S), respectively. Additionally, for
sufficiently nice morphisms f, there exist adjoint proper direct image and exceptional
inverse image functors f! : D(X) → D(S) and f! : D(S) → D(X), respectively. Recently,
Liu–Zheng and Mann succinctly encoded the myriad expected relations between these
six functors in Definition 1.2.8.
Mann also introduced a method, detailed in Theorem 1.2.13, for constructing six-

functor formalisms, which significantly simplifies classical constructions and provides
more precise information. Furthermore, Scholze’s Theorem 1.2.18 demonstrates that
six-functor formalisms naturally extend to stacks, with a broad class of morphisms
having !-functors [Sch22].

Quasi-coherent sheaves

We would like to apply this framework to construct a six-functor formalism for quasi-
coherent sheaves on schemes. A fundamental property of six-functor formalisms is
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1. Quasi-coherent sheaves and D-modules

that a cartesian diagram

X′ X

S′ S

g′

f′ f

g

induces an isomorphism g∗f! ' f′!g′,∗. Although there is no straightforward definition
of the proper direct image functors, the functors g∗f∗ and f′∗g′,∗ are not far from being
isomorphic. To illustrate this, suppose that the schemes X = SpecB, S = SpecA, and
S′ = SpecA′ are affine. Then, for a B-moduleM, we seek an isomorphism

M⊗L
B (B⊗A A′) 'M⊗L

A A
′.

It becomes evident that, for this isomorphism to hold, the tensor product B ⊗A A′
should also be derived. Additionally, to consider the spectrum of B ⊗L

A A
′, it must

possess some sort of ring structure. This leads us into the world of higher algebra and
derived algebraic geometry.
We assume that the reader believes in the existence of a theory of∞-categories, in

which the ∞-category An of anima plays the role of the category of sets. The objects X
of An should be thought as derived sets, endowed with homotopy groups πi(X) for i > 0.
There is a fully faithful functor Set ↪→ An, whose essential image consists of the anima
X satisfying πi(X) = 0 for i > 0. All additional necessary details about∞-categories
will be explained in the main text.

In Section 1.3, we construct the∞-category An(Ring) of animated rings, serving as the
desired derived analogues of commutative rings. With the local theory established, the
fundamental objects of algebraic geometry can be defined elegantly. A derived stack is a
functor An(Ring)→ An satisfying fppf descent. Then, a derived scheme is a derived stack
that is locally, with respect to the Zariski topology, isomorphic to an affine derived
scheme. The latter being the derived stack corepresented by an animated ring.

The functormapping an animated ringR to its derived∞-categoryD(R) forms a sheaf
of ∞-categories. This allows us to define the ∞-category of quasi-coherent sheaves
Dqc(X) on a derived scheme X by descent. Mann’s method yields in Theorem 1.3.20 a
six-functor formalism for quasi-coherent sheaves on quasi-compact quasi-separated
derived schemes. Remark 1.3.21 discusses the relationship between this formalism
and other approaches to Grothendieck duality.

Finally, Scholze’s Theorem 1.2.18 extends this six-functor formalism to derived stacks.
For more detailed information, see Theorem 1.3.23. Interestingly, although the functor
f! was defined as f∗ for a morphism f between quasi-compact quasi-separated derived
schemes, the forget-supports map f! → f∗ may not be an isomorphism when f is a
morphism between derived stacks.
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de Rham spaces and D-modules
As first observed by Simpson [Sim96], given a cohomology theory H and a geometric
object X, there often exists a stack XH whose ∞-category of quasi-coherent sheaves
matches the ∞-category of coefficients for H. Furthermore, the association X 7→ XH

preserves the natural functoriality of H.
In this chapter, we explore the de Rham side of this story. For a smooth algebraic

variety X over a characteristic zero field k, the de Rham space XdR is a derived stack
obtained as a quotient of X by identifying infinitesimally close points. We note that the
functor XdR takes values in the full subcategory Set of An, making it essentially a sheaf
of sets in the site (Sch/k)fppf.
For a commutative algebraic group G, the difference of two infinitesimally close

points lies in an infinitesimal neighborhood of the identity. Consequently, denoting
its formal completion along the identity by Ĝ, the de Rham space GdR is naturally
isomorphic to the quotient G/Ĝ. This isomorphism will be of paramount importance
in Part II.
Theorem 1.4.4 relates quasi-coherent sheaves on de Rham spaces to D-modules.

More precisely, for a smooth morphism p : X → S between k-schemes of finite type,
there exists a natural morphism ιp : X→ XdR ×SdR S inducing a symmetric monoidal
equivalence of∞-categories

Dqc(XdR ×SdR S) ' Dqc(DX/S).

Under this equivalence, the functor ι∗p corresponds to the forgetful functor of left
DX/S-modules, ι!p corresponds to the forgetful functor of right DX/S-modules, and ιp,!
corresponds to the induced DX/S-module functor.

According to Corollaries 1.4.8 and 1.4.12, the natural functoriality of D-modules can
also be accessed from the de Rham spaces. Consider a commutative diagram of finite
type k-schemes

X′ X

S′ S,

f

p′ p

g

where p and q are smooth, and f is quasi-projective. The universal property of fiber
products provides a natural map (f, g)dR : X

′
dR ×S′dR S

′ → XdR ×SdR S. Then, the functor
(f, g)∗dR corresponds to the "naive" inverse image of D-modules, while the functor
(f, g)dR,! corresponds, up to a shift, to the direct image of D-modules.

Holonomic D-modules
The six-functor formalism for quasi-coherent sheaves on de Rham spaces is quite
general but possesses some unusual features. For instance, given an open immersion
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j : U → X, one might expect the map jdR : UdR → XdR to be cohomologically étale,
meaning that j∗dR ' j!dR. Yet, Corollary 1.4.3 shows that it is cohomologically proper, so
jdR,! ' jdR,∗.

Section 1.5 constructs a dual version of this six-functor formalism, after restricting to
holonomic D-modules. The four functors f!, f+, f+, and f! associated to a morphism
f are well-known in the D-module literature. However, the requirement of having a
six-functor formalism compels us to consider a tensor product⊗X and an internal hom
functor HomX that are familiar to some experts but largely absent from the literature.

We also consider integrable connections, seen as O-coherentD-modules, systemati-
cally in degree dimX. Remark 1.5.2 outlines many pleasing consequences of this choice.
For now, the reader can take comfort in knowing that, under the Riemann–Hilbert corre-
spondence, our tensor product and internal hom correspond to the conventional tensor
product and internal hom of constructible sheaves. Moreover, the Riemann–Hilbert
correspondence maps regular connections in degree dimX to local systems.

The reader can find a table comparing our notation with those of the most common
references on page 83.

1.1. The de Rham space
Let k be a field and consider the category Aff/k of affine schemes over k. In order to
simplify notation, we will often denote an object SpecR of Aff/k as R.

Definition 1.1.1 (de Rham space). Given a presheaf of sets X on Aff/k, its de Rham space
XdR is the presheaf defined by

XdR(R) := colim
I⊂R

X(R/I),

where the colimit runs over the filtered poset of nilpotent ideals of R. This presheaf
comes equipped with a morphism X→ XdR induced by the trivial ideal I = 0.

This assignment is functorial: given a morphism of presheaves f : X→ Y, there is an
induced map fdR : XdR → YdR, making the diagram

X XdR

Y YdR

f fdR

commute. As it will be formalized in Corollary 1.1.7, the geometric interpretation of
XdR, at least for smooth k-schemes X, is that it is a quotient of X where we identify
infinitesimally close points.
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We begin our study of the de Rham space with the following simple observation,
which will prove useful later.

Proposition 1.1.2. The functor (−)dR : PSh(Aff/k)→ PSh(Aff/k) preserves finite limits and
arbitrary colimits.

Proof. Since limits and colimits of presheaves are computed pointwise, this follows
from the fact that filtered colimits in the category of sets commute with arbitrary
colimits and finite limits.

For a finite type k-algebra R (or more generally, a noetherian k-algebra), the nilradical
Nil(R) is nilpotent as it is generated by finitely many nilpotent elements. Consequently,
XdR(R) ' X(R/Nil(R)) = X(Rred). This property holds for any k-algebra provided X is
a finite type scheme.

Proposition 1.1.3. Let X be a locally of finite type scheme over k. Then XdR(R) ' X(Rred) for
every k-algebra R.

Proof. Define S := colimI⊂R R/I, where the colimit runs through the nilpotent ideals of
R. As usual, elements of S are denoted as equivalence classes of the form [I, x], where I
is a nilpotent ideal in R and x is an element of R. Here, [I, x] = [I′, x′] if there exists a
nilpotent ideal J containing I and I′ such that x ≡ x′ mod J.
The natural map R→ S, corresponding to the ideal I = 0, sends every nilpotent in

R to zero. In other words, it factors through the nilradical yielding a map Rred → S.
We affirm that this morphism is injective. Indeed, [0, x] = 0 means that there exists
a nilpotent ideal J containing x. It follows that x is nilpotent and so vanishes on Rred.
Since [I, x] ∈ S is the image of x ∈ R, we have that Rred → S is an isomorphism.
As X is locally of finite type, [Stacks, Tag 01ZC] gives XdR(R) ' X(S) ' X(Rred),

concluding the proof.

Perhaps not surprisingly, given the aforementioned geometric interpretation of XdR,
formal completions of schemes can be written in terms of de Rham spaces.

Proposition 1.1.4. Let X be a k-scheme and let Z be a closed subscheme of X. The formal
completion X̂Z of X along Z is isomorphic to X×XdR ZdR.

Proof. Let I ⊂ OX be the ideal sheaf defined by Z, and let R be a k-algebra. We aim to
obtain a functorial isomorphism

colim
I⊂R

X(R)×X(R/I) Z(R/I) ' colim
n>0

SpecX(OX/I
n+1)(R),

where the colimit on the left runs through the nilpotent ideals of R. For an ideal I ⊂ R,
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let iI denote the closed immersion SpecR/I→ SpecR. Then, we have that

colim
I⊂R

X(R)×X(R/I) Z(R/I) ' colim
I⊂R

{x ∈ X(R) | i∗Ix
∗I = 0}

' colim
n>0

colim
In+1=0

{x ∈ X(R) | i∗Ix
∗I = 0}

' colim
n>0

{x ∈ X(R) | x∗In+1 = 0} ' X̂Z(R),

where the last isomorphism is the universal property of the relative spectrum.

Note that the expression X ×XdR ZdR is meaningful even if Z → X is not a closed
immersion. In such cases, it can be used to define formal completions. Moreover,
this characterization makes it clear that the projection X̂Z → X is a monomorphism
whenever Z→ X is.

Corollary 1.1.5. If Z is a closed subscheme of a k-scheme X, the projection X̂Z → X is a
monomorphism of presheaves.

Proof. According to [Stacks, Tag 01L7], the closed immersion i : Z→ X is a monomor-
phism in the category of schemes. Now, the Yoneda embedding preserves limits and
any functor that preserves limits preserves monomorphisms [Stacks, Tag 01L3]. In
other words, i is a monomorphism of presheaves. Since the de Rham functor preserves
finite limits, so is ZdR → XdR. Finally, fibered products preserve monomorphisms and
this finishes the proof.

For a morphism of k-schemes p : X→ S, the universal product of fibered products
induces a map ιp : X → XdR ×SdR S. As the following proposition shows, this map
faithfully encodes the differential information contained in p.1

Proposition 1.1.6. Let p : X → S be a morphism of k-schemes. Then p is formally smooth
(resp. formally unramified) if and only if ιp : X → XdR ×SdR S is an epimorphism (resp.
monomorphism) of presheaves.

Proof. Recall thatp is formally smooth (resp. formally unramified) if, for every k-algebra
Rwith a map SpecR→ S and for every nilpotent ideal I ⊂ R, the induced map

HomS(SpecR, X)→ HomS(SpecR/I, X)

is surjective (resp. injective). We will translate this condition into the surjectivity (resp.
injectivity) of X(R)→ (XdR ×SdR S)(R).

Suppose that p is formally smooth, let R be any k-algebra, and let [x, s] be an element
of

(XdR ×SdR S)(R) ' colimI⊂R X(R/I)×S(R/I) S(R).

1This result is somewhat akin to the slogan "f is smooth (resp. unramified) if and only if df is surjective
(resp. injective)".

42

https://stacks.math.columbia.edu/tag/01L7
https://stacks.math.columbia.edu/tag/01L3


1.1. The de Rham space

That is, there exists a nilpotent ideal I ⊂ R such that x ∈ X(R/I) and s ∈ S(R) agree
on S(R/I). By formal smoothness, we have a morphism x : SpecR → X making the
diagram

SpecR/I X

SpecR S

p

s

x

x

commute. (The lower triangle commutes since x is a morphism over S, and the upper
triangle commutes because x maps to x.) This is an element of X(R) mapping to
(XdR ×SdR S)(R). Conversely, suppose that R is a k-algebra with a map s : SpecR→ S,
I ⊂ R is a nilpotent ideal, and x is an element of HomS(SpecR/I, X). This data defines
an element of (XdR ×SdR S)(R) and so there exists x ∈ X(R) mapping to it. In other
words, ιp : X→ XdR ×SdR S is an epimorphism if and only if p is formally smooth.

Now, if p is formally unramified, consider a k-algebra R and let x, y ∈ X(R) be two
elements whose images in XdR ×SdR S(R) coincide. That is, there exists a nilpotent ideal
I ⊂ R such that the diagram

SpecR/I→ SpecR→→ X
p−→ S

commutes. In particular, x and y define elements of HomS(SpecR, X) that coincide on
HomS(SpecR/I, X). Since p is formally unramified, we have that x = y.

Suppose that ιp : X→ XdR ×SdR S is a monomorphism and let x, y ∈ HomS(SpecR, X)

be two morphisms that coincide on HomS(SpecR/I, X), for some ring k-algebra R with
a map SpecR → S and a nilpotent ideal I ⊂ R. In particular, x and y are elements
of X(R) that coincide on (XdR ×SdR S)(R). It follows that x = y and so p is formally
unramified.

Let Y → X be an immersion of k-schemes that factors as Y → U→ X, where Y → U

is a closed immersion with ideal I and U → X is an open immersion. The formal
completion of X along Y is usually defined as the colimit of SpecU(OU/I

n+1), for n > 0.
The previous proposition shows that U ' UdR ×XdR X and so

U×UdR ZdR ' X×XdR UdR ×UdR ZdR ' X×XdR ZdR,

proving that the Proposition 1.1.4 also works for locally closed immersions.

Corollary 1.1.7. Let X→ S be a formally smooth morphism of k-schemes. Then XdR ×SdR S
is the coequalizer of ÿ�(X×S X)∆

→→ X,

where ÿ�(X×S X)∆ is the formal completion of X×S X along the diagonal.
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Proof. In order to simplify notation, let Y = XdR ×SdR S. Since every epimorphism is
effective in a topos, X→ Y is the coequalizer of X×Y X→→ X. Now, the result follows
from general category theory: the pullback of

X×S X

XdR (X×S X)dR
∆dR

is X×Y X.

Recall that the functor of points of a scheme X is a sheaf for the étale and fppf
topologies. We will now study the descent properties of XdR, and we begin with a
lemma.

Lemma 1.1.8. Let R be a k-algebra and let {R→ Ri}i∈I be an étale covering. Then the reduction
{Rred → Ri,red}i∈I is also an étale covering. Moreover, any étale covering of Rred arises in this
way.

Proof. Since R → Ri is étale, so is its base change Rred → Rred ⊗R Ri. By [Stacks, Tag
033B], we have that Rred ⊗R Ri is reduced and then [EGA I, Cor. 5.1.8] gives that

Rred ⊗R Ri = (Rred ⊗R Ri)red ' (Rred ⊗Rred Ri,red)red ' Ri,red.

It follows that {Rred → Ri,red}i∈I is an étale covering of Rred.
Now, consider an étale covering {Rred → Si}i∈I ofRred. By the topological invariance of

the étale site, there exists a covering {R→ Ri}i∈I along with isomorphisms Rred⊗R Ri '
Si for all i ∈ I [Stacks, Tag 04DZ]. The same argument as above shows that Si is
reduced, and then Si ' Ri,red.

Proposition 1.1.9. Let X be a locally of finite type scheme over k. The de Rham space XdR is
an étale sheaf on Aff/k.

Proof. Let R be a k-algebra and let {R→ Ri}i∈I be an étale covering of R. We want to
prove that the diagram

X(Rred)→
∏
i

X(Ri,red)→→
∏
i,j

X((Ri ⊗R Rj)red)

is an equalizer. The lemma above says that {Rred → Ri,red}i∈I is also an étale cover and
then the fact that X is an étale sheaf implies that the diagram

X(Rred)→
∏
i

X(Ri,red)→→
∏
i,j

X(Ri,red ⊗Rred Rj,red)

44

https://stacks.math.columbia.edu/tag/033B
https://stacks.math.columbia.edu/tag/04DZ


1.1. The de Rham space

is an equalizer. The same argument as in the proof of the previous lemma shows that
Ri,red ⊗Rred Rj,red is reduced. Then [EGA I, Cor. 5.1.8] gives isomorphisms Ri,red ⊗Rred

Rj,red ' (Ri ⊗R Rj)red, finishing the proof.

In particular, the preceding proposition implies that the de Rham space of a
commutative algebraic group over k is an abelian étale sheaf on Aff/k.

Proposition 1.1.10. The functor (−)dR from commutative algebraic groups over k to abelian
étale sheaves on Aff/k is exact.

Proof. Let 0→ A→ B→ C→ 0 be an exact sequence of commutative algebraic groups
over k. In particular, it is left-exact in the category of abelian presheaves on Aff/k. By
Proposition 1.1.2, the induced exact sequence 0 → AdR → BdR → CdR → 0 is also
left-exact in abelian presheaves. Since sheafification is exact, this sequence is left-exact
in the category of abelian étale sheaves.

Let us verify thatBdR → CdR is an epimorphism of abelian sheaves. Given a k-algebra
R and an element c ∈ CdR(R) = C(Rred), the fact that B→ C is an epimorphism of étale
sheaves implies that there exists a covering {Rred → Si}i∈I such that c|Si is in the image
of B(Si)→ C(Si) for all i ∈ I [Stacks, Tag 00WN]. Lemma 1.1.8 then gives a covering
{R→ Ri}i∈I whose reduction is {Rred → Si}i∈I. It follows that c|Ri = c|Si is in the image
of BdR(Ri)→ CdR(Ri) for all i ∈ I, concluding the proof.

We proved in Corollary 1.1.7 that XdR is a quotient of X in which we identify
infinitesimally close points. When X is a commutative algebraic groupG, the difference
of two such points has to live in an infinitesimal neighborhood of the identity. This
heuristic leads to the result below.

Proposition 1.1.11. Let G be a smooth commutative algebraic group over k. Then GdR is
isomorphic to the presheaf quotient G/Ĝ, where Ĝ is the formal completion of G along the
identity. In particular, GdR is also isomorphic to the sheaf quotient G/Ĝ.

Proof. In this proof, let us consider every (co)limit to be taken inside the category of
abelian presheaves on Aff/k. As the cokernel of the identity section e : Speck→ G is
G itself, a variant of Proposition 1.1.2 for abelian presheaves shows that the cokernel
of edR : Speck → GdR is GdR. The universal property of cokernels then induces the
dashed map below.

Ĝ G G/Ĝ

Spec k GdR GdR
edR

The square on the left is cartesian due to Proposition 1.1.4, and G → GdR is an
epimorphism since G is smooth. Then, [Stacks, Tag 08N4] implies that the square
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on the left is also cocartesian, and [Stacks, Tag 08N3] gives that G/Ĝ → GdR is an
isomorphism. Since GdR is already an étale sheaf, the presheaf and the sheaf quotients
G/Ĝ coincide.

We now study the descent properties of de Rham spaces with respect to the finer fppf
topology. We remark that the following lemma, along with the subsequent proposition
and its corollary, are the unique results in this section that need the base field k to have
characteristic zero.

Lemma 1.1.12 (Cartier). Let G be a commutative algebraic group over a characteristic zero
field k, and let g be its Lie algebra seen as a vector group. The formal completions of G and of g
along the identity coincide.

Proof. Since an algebraic group and its formal completion share the same Lie algebra,
the composition®

Algebraic
groups over k

´ ®
Infinitesimal formal

groups over k

´ ®
Lie algebras

over k

´‘(−) Lie(−)

is the functor associating an algebraic group to its Lie algebra. In particular, G and g,
seen as a vector group, have the same image by the composition above. Now, by [SGA
3I, Exp. VIIB, Cor. 3.3.2], the functor on the right is an equivalence of categories. In
particular, G and g have isomorphic formal completions.

Proposition 1.1.13. Let G be a commutative algebraic group over a characteristic zero field
k. Then GdR is an fppf sheaf isomorphic to G/Ĝ and the functor (−)dR from commutative
algebraic groups over k to abelian fppf sheaves is exact.

Proof. By the Lemma 1.1.12, the formal completion Ĝ is a direct sum of copies of“Ga. Then, given a k-algebra R, [Bha22, Rem. 2.2.18] says that H1fppf(R,
“Ga) = 0 and so

(G/Ĝ)(R) ' G(R)/Ĝ(R) ' GdR(R), where the quotient on the left is taken on the fppf
topology. In other words GdR is an fppf sheaf isomorphic to G/Ĝ. The exactness of
(−)dR here is a particular case of Proposition 1.1.10.

Corollary 1.1.14. Let X be a locally of finite type scheme over a characteristic zero field k.
Then XdR is an fppf sheaf.

Proof. Let R be a k-algebra and let {R→ Ri}i∈I be an fppf covering of R. By the previous
proposition, the diagram

Rred →
∏
i

Ri,red →→
∏
i,j

(Ri ⊗R Rj)red

is an equalizer in the category ofk-algebras. The functor of pointsX(−) : (Aff/k)op → Set
sends this diagram to an equalizer in the category of sets, finishing the proof.
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�Remark 1.1.15—de Rham spaces in positive characteristic. Let k be a field of characteristic
p > 0. Given a k-algebra R, the colimit Rperf of the tower

R
x 7→xp−−−−→ R

x 7→xp−−−−→ R
x 7→xp−−−−→ · · ·

is the so-called colimit perfection of R. It is always a perfect k-algebra and the natural
map R→ Rperf is universal among morphisms from R to a perfect algebra. We define a
presheaf Ga,perf on Aff/k by Ga,perf(R) := Rperf. As [Bha22, Rem. 2.2.18] shows, we have
an exact sequence of abelian fppf sheaves

0→ “Ga → Ga → Ga,perf → 0.

It follows that the natural map of abelian étale sheavesGa,dR → Ga,perf identifiesGa,perf
with the fppf sheafification of Ga,dR. �

We end this section by extending the definition of de Rham spaces from functors on
Aff/k to functors on Sch/k.

Definition 1.1.16. Let X be a locally of finite type scheme over k, seen as its functor of
points (Sch/k)op → Set. We define its de Rham space by taking the de Rham space of the
restriction (Aff/k)op → (Sch/k)op → Set and then right Kan extending to (Sch/k)op.

This definition actually coincides with the naive one, but it will be more convenient.
Indeed, given a k-scheme S, Proposition 1.1.3 implies that

XdR(S) ' lim
SpecA→S

X(SpecAred),

where the limit runs through the affine k-schemes with a map to S. Since the functor
X(−) = Homk(−, X) commutes with limits, this is also

X

Å
colim

SpecA→S
SpecAred

ã
' X(Sred).

The usefulness of this definition comes from the fact that we have an equivalence
of topoi Sh((Aff/k)ét) ' Sh((Sch/k)ét). Here, the functor Sh((Sch/k)ét)→ Sh((Aff/k)ét)

is given by restriction and the functor Sh((Aff/k)ét) → Sh((Sch/k)ét) is a right Kan
extension [Stacks, Tag 021E].

Every result in this section that was true for sheaves generalizes to this setting. Take
Proposition 1.1.11 as an example: it is no longer true that GdR ' G/Ĝ as presheaves on
Sch/k, but GdR is isomorphic to the quotient G/Ĝ taken in Ab((Sch/k)ét). For the sake
of completeness, we give precise statements below.

Proposition 1.1.17. Let Z be a closed subscheme of a locally of finite type scheme X over k.
Then the formal completion X̂Z of X along Z is isomorphic to X×XdR ZdR and the projection
X̂Z → X is a monomorphism of étale sheaves on Sch/k.
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Proposition 1.1.18. Let f : X→ S be a morphism of locally of finite type k-schemes. Then f
is formally unramified if and only if X→ XdR ×SdR S is a monomorphism of étale sheaves on
Sch/k. Moreover, if f is formally smooth, then X → XdR ×SdR S is an epimorphism of étale
sheaves on Sch/k.

Proposition 1.1.19. Let G be a commutative algebraic group over k. Then GdR is isomorphic
to the quotient G/Ĝ taken in Ab((Sch/k)ét). Moreover, the functor (−)dR from commutative
algebraic groups over k to abelian étale sheaves on Sch/k is exact.

Due to [Stacks, Tag 021V], all results in the last 3 propositions also hold for the fppf
topology as long as k has characteristic zero.

1.2. Digression on six-functor formalisms

The objective of the upcoming sections is to extend the derived category of quasi-
coherent sheaves on a scheme to a very general class of stacks. In particular, we will
be able to consider quasi-coherent sheaves on de Rham spaces, along with all the
associated functoriality. To achieve this, we explain the categorical formalization of a
six-functor formalism developed in [Man22, App. A.5] and [Sch22].

Definition 1.2.1 (Geometric setup). A geometric setup is a pair (C, E), where C is an∞-category with finite limits, and E is a class of morphisms in C that includes all
isomorphisms and is stable under pullback and composition.

One should consider C as the category of spaces under consideration, while E
represents the class of morphisms f : X→ Y for which the functors f! and f! are defined.
For instance, in the usual six-functor formalism of abelian sheaves on topological
spaces, we could let C be the category of topological spaces and E be the class of
separated locally proper maps as described in [SS16].
For the next definition, we recall that the twisted arrow category Tw(∆n) is the full

subcategory of (∆n)op × ∆n consisting of simplices (i, j) ∈ {0, 1, . . . , n}2 with i > j
[Kerodon, Tag 00B2]. For example, the category Tw(∆2) can be visually represented as

(0, 2)

(0, 1) (1, 2)

(0, 0) (1, 1) (2, 2).
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This representation generalizes for all n > 0. In this picture, we say that a right arrow is
a morphism of the form (i, j)→ (i+ 1, j), for some i and j. Additionally, a diagram of
the form

(i, j)

(i, j− 1) (i+ 1, j)

(i+ 1, j− 1),

for some i and j, is going to be referred as a square.

Definition 1.2.2 (Category of correspondences). Given a geometric setup (C, E), the∞-
category of correspondences Corr(C, E) is defined as the simplicial set whose n-simplices
are maps Tw(∆n)→ C sending right arrows to maps in E and squares to pullbacks.

We remark that Corr(C, E) is indeed an ∞-category [LZ17, Lem. 6.1.2]. This ∞-
category has a natural symmetric monoidal structure, in which the tensor product of
two objects X and Y is their cartesian product X× Y. We refer to [LZ17, Prop. 6.1.3]
and [Sch22, Def. 3.11] for more details.

Unwrapping the definition, we see that the objects of Corr(C, E) are the same as the
objects of C. A morphism from X to Y is given by a correspondence

Z

X Y,

where the right arrow Z→ Y lies in E, and the composition of two correspondences
X← S→ Y and Y ← T → Z is witnessed by the outer arrows in the diagram

S×Y T

S T

X Y Z

Definition 1.2.3 (Three-functor formalism). A three-functor formalism on a geometric
setup (C, E) is a lax monoidal functor D : Corr(C, E)→ Cat∞.
Let us explain why this definition deserves its name. An object X of C is also an

object of Corr(C, E), and so it gets mapped to an ∞-category D(X). This should be

49



1. Quasi-coherent sheaves and D-modules

interpreted as the category of coefficients for the cohomology theory enhanced by D.
For a morphism f : X→ Y in C, the correspondence

X

Y X

f

is mapped to a functor f∗ : D(Y)→ D(X). Similarly, for a morphism f : X→ Y in E, we
define the functor f! : D(X)→ D(Y) as the image of the correspondence

X

X Y

f

by D. A general correspondence X f←− Z g−→ Y can be written as the composition

Z

Z Z

X Z Y,

f g

and so it gets mapped to g!f
∗ : D(X)→ D(Y).

A three-functor formalism also contains the data of tensor products. Indeed, for
every pair of objects X, Y in C, the lax monoidality of D provides an exterior tensor
product functor � : D(X) × D(Y) → D(X × Y). If ∆X : X → X × X is the diagonal map,
the composition

D(X)× D(X)
�−−→ D(X× X)

∆∗X−−→ D(X)

sends a pair of objectsM,N to the tensor productM ⊗N. The tensor unit of D(X) is
denoted by 1X.

The following remarks explain some of the usual relations between the three functors
f!, f∗, and ⊗ that are encoded in Definition 1.2.3.

� Remark 1.2.4 — Base change. Let f : X → S be a morphism in C, and g : S′ → S be a
morphism in E. Denote by X′ the fiber product X×S S′. Since the large diagram

X′

S′ X

S′ S X

f′ g′

g f
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gives the composition of the correspondences S′ = S′
g−→ S and S f←− X = X, the

outer correspondence is mapped to the functor f∗g!. On the other hand, the outer
correspondence is S′ f

′
←− X′ g

′
−→ X, and so it is mapped to the g′!f′,∗. Therefore, we have

an isomorphism f∗g! ' g′!f′,∗. �

� Remark 1.2.5— Inverse images are monoidal. The natural functor Cop → Corr(C, E), that
sends a morphism f : X→ Y to the correspondence

X

Y X,

f

is symmetric monoidal with respect to the coproduct monoidal structure on Cop.
Therefore, the composition Cop → Corr(C,E) → Cat∞ is lax symmetric monoidal,
making f∗ : D(Y)→ D(X) symmetric monoidal.2 �

� Remark 1.2.6 — Exterior tensor product. Let X and Y be objects of C, and denote by
prX : X× Y → X and prY : X× Y → Y the natural projections. The naturality of the lax
monoidal structure implies that the diagram

D(X)× D(Y) D(X× Y)

D(X× Y)× D(X× Y) D(X× Y × X× Y)

D(X× Y)

�

pr∗X×pr∗Y (prX×prY)∗

�

⊗

∆∗X×Y

commutes. We deduce isomorphismsM�N ' pr∗XM⊗ pr∗Y N for allM in D(X) and
N in D(Y). �

� Remark 1.2.7—Projection formula. Given an objectX ofC, the diagonal∆X : X→ X×X
endowsXwith the structure of a commutative algebra inCop. Furthermore, amorphism
f : X → Y in C induces a morphism of commutative algebras, implying that X is a
Y-module in Cop.
Since the natural functor Cop → Corr(C, E) is symmetric monoidal, X inherits a

structure of Y-module in Corr(C, E). If f belongs to E, the fact that the diagram

X Y

X× Y Y × Y

f

(idX,f) ∆Y

f×idY

2According to [HA, Thm. 2.4.3.18], lax symmetric monoidal functors Cop → Cat∞ are equivalent to
functors Cop → CAlg(Cat∞).
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is cartesian implies that X = X
f−→ Y is a morphism of Y-modules in Corr(C, E).

Consequently, f! : D(X)→ D(Y) is a morphism of D(Y)-modules. In particular, we have
isomorphisms f!(M⊗ f∗N) ' f!M⊗N that are natural inM ∈ D(X) and N ∈ D(Y).
For a concrete proof of the projection formula, based on the explicit description of

the cocartesian fibration defining the monoidal structure of Corr(C, E), see [Sch22, End
of Lect. III]. �

We now define a six-functor formalism as a three-functor formalism in which the
functors f∗, f!, and ⊗ have right adjoints.

Definition 1.2.8 (Six-functor formalism). A six-functor formalism on a geometric setup
(C, E) is a three-functor formalism

D : Corr(C, E)→ Cat∞
such that

(1) For each object X of C, the symmetric monoidal∞-category D(X) is closed;

(2) For each map f : X→ Y in C, the functor f∗ : D(Y)→ D(X) has a right adjoint;

(3) For each map f : X→ Y in E, the functor f! : D(X)→ D(Y) has a right adjoint.

The ∞-categories D(X) are often presentable, allowing the use of the adjoint functor
theorem to infer the existence of the required right adjoints. (We refer to the Re-
mark 1.2.14 for more on presentable ∞-categories.) As is customary, we denote the
inner hom in D(X) by Hom, the right adjoint of f∗ by f∗, and the right adjoint of f! by f!.
The following remarks elucidates how the compatibilities among all six functors are
encapsulated in Definition 1.2.8.

� Remark 1.2.9 — Local adjunctions. Consider a morphism f : X→ Y in E and objects
M ∈ D(Y),N ∈ D(X), and P ∈ D(Y). The projection formula and the adjunctions in the
definition of a six-functor formalism provide the following isomorphisms of anima:

Hom(M, f∗Hom(N, f!P)) ' Hom(f∗M,Hom(N, f!P))

' Hom(f∗M⊗N, f!P)

' Hom(f!(f
∗M⊗N), P)

' Hom(M⊗ f!N,P)

' Hom(M,Hom(f!N,P)).

The fully faithfulness of theYoneda embedding then implies thatwehave isomorphisms

f∗Hom(N, f!P) ' Hom(f!N,P),
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that are natural on N ∈ D(X) and P ∈ D(Y). Similar considerations show that we also
have isomorphisms

f∗Hom(f∗M,N) ' Hom(M, f∗N)

Hom(f∗M, f!P) ' f!Hom(M,P)

Hom(M⊗ P,Q) ' Hom(M,Hom(P,Q)),

that are natural inM ∈ D(Y), N ∈ D(X), P ∈ D(Y), and Q ∈ D(Y). �

� Remark 1.2.10 — Poincaré duality. Let f : X→ Y be a morphism in E and denote the
dualizing object f!1Y as ωf. The counit of the adjunction f! a f!, combined with the
projection formula, yields a natural transformation

f!(f
!1Y ⊗ f∗−) ' f!f!1Y ⊗−→ −.

By adjunction, we obtain a natural map ρf : ωf ⊗ f∗ → f!. Following [Sch22, Def. 5.1],
we say that f is cohomologically smooth if

(1) The natural transformation ρf is an isomorphism;

(2) The dualizing objectωf is invertible under the tensor product;

(3) For any morphism g : Y′ → Y in C with base changes f′ : X′ → Y′ and g′ : X′ → X,
properties (1) and (2) also hold for f′, and the natural map g′,∗ωf → ωf′ is an
isomorphism.

In reasonable six-functor formalisms, smooth morphisms (however they are defined
in C) should be cohomologically smooth. While this is not a formal statement, [Zav23,
Thm. 3.3.1] provides a straightforward criterion for its verification. There is also a
robust strategy for computing the dualizing object ωf based on deformation to the
normal cone. For further details, see [CS22, Lect. XIII] or [Zav23, §4]. �

� Remark 1.2.11 — Forget-supports map. Consider a morphism f : X→ Y in E. Scholze, in
[Sch22, Def. 6.10], gave a definition of what it means for f to be cohomologically proper, a
condition that ensures the functors f! and f∗ are naturally isomorphic. As one might
expect, proper morphisms (defined geometrically in C) are often cohomologically
proper.

In most examples of six-functor formalisms, the morphisms within the class E are
separated, implying that their associated diagonal maps are cohomologically proper.
Under these conditions, [Sch22, Prop. 6.11] guarantees the existence of a natural
transformation

f! → f∗.

Following Katz, we refer to it as the forget-supports map. This map is an isomorphism if
and only if f is cohomologically proper. �
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As demonstrated in this section, a lax monoidal functor Corr(C, E)→ Cat∞ contains
a substantial amount of information. This complexity might suggest that constructing
a three-functor formalism is a nearly impossible task. However, we will now outline a
method for such constructions, due to Liu–Zheng and Mann.

For a geometric setup (C, E), it is often straightforward to concoct a functorD0 : Cop →
CAlg(Cat∞) that encodes the ∞-categories of coefficients, the tensor products and the
inverse image functors. According to [HA, Thm. 2.4.3.18], this is equivalent to a lax
monoidal functor

Corr(C, isomorphisms) ' Cop → Cat∞.
Our goal is to extend this functor to the larger ∞-category Corr(C, E). This will be
done with the help of the following gadget.

Definition 1.2.12 (Compactification setup). Let (C, E) be a geometric setup, and let
D0 : Cop → CAlg(Cat∞) be a functor. A compactification setup with respect to this data is
a pair (I, P) of classes of morphisms in C that satisfy the following conditions:

(1) The classes I and P include all isomorphisms, and are stable under pullback and
composition;

(2) Given two maps f : X→ Y and g : Y → S, if both g and g ◦ f belong to I (resp. to
P), so does f;

(3) Every morphism in I ∩ P is n-truncated for some n;

(4) Every map in E can be expressed as a composition p ◦ j, with p in P and j in I;

(5) For each morphism j in I, the functor j∗ admits a left adjoint j! satisfying base
change and the projection formula;

(6) For each morphism p in P, the functor p∗ admits a right adjoint p∗ satisfying base
change and the projection formula;

(7) For any cartesian diagram

X′ X

S′ S,

j′

p′ p

j

with j in I and p in P, the natural map j!p′∗ → p∗j
′
! is an isomorphism.

Some remarks are in order. First, condition (3) is automatically satisfied if C is a
1-category. The map j!p′∗ → p∗j

′
! in condition (7) is defined as the adjoint to the counit

p∗j!p
′
∗ ' j′!p′,∗p′∗ → j′!.
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In most instances, condition (7) is straightforward to verify, as noted in [Sch22, Rem.
4.2]. As the notation suggests, the classes I and P are to be imagined as consisting of
open immersions and proper maps.
The most significant example is when C is the category of quasi-compact and

quasi-separated schemes, and E is the class of separated morphisms of finite type. In
this context, Nagata’s compactification theorem [Stacks, Tag 0F41] ensures that the
classes I of open immersions and P of proper maps satisfy conditions (1) to (4) in
Definition 1.2.12.
The following theorem, due to Mann and Liu–Zheng [Sch22, Thm. 4.6], provides a

very efficient method for constructing three- and six-functor formalisms.

Theorem 1.2.13. Let (C, E) be a geometric setup, and let D0 : Cop → CAlg(Cat∞) be a functor.
Given a compactification setup (I, P), there is an extension of D0 to a lax symmetric monoidal
functor

D : Corr(C, E)→ Cat∞
such that, for j ∈ I, the functor j! is left adjoint to j∗ and, for p ∈ P, the functor p! is right
adjoint to p∗.

For the convenience of the reader, we remark that all truncated morphisms in I are
cohomologically étale3, and all truncated morphisms in P are cohomologically proper.
We now delve into the final topic of this section: the extension of a six-functor

formalism to stacks. Henceforth, assume that D : Corr(C, E) → PrL is a presentable
six-functor formalism. For the reader’s convenience, the following remark summarizes
some essential concepts about presentable ∞-categories.

� Remark 1.2.14 — On presentable ∞-categories. Most ∞-categories encountered in
practice are large. Yet, they are often quite manageable. Consider, for instance, the
category Ab of abelian groups. This is a large category, but every abelian group can
be expressed as a filtered colimit of objects from the small subcategory of finitely
generated abelian groups. The theory of presentable ∞-categories, a cornerstone of
higher category theory, axiomatizes this situation.

An∞-categoryC is presentable if there exists a small∞-categoryD, a set ofmorphisms
R in PSh(D,An), and a fully faithful functor C → PSh(D,An) whose essential image
consists of presheaves F : Dop → An such that, for every morphism ϕ : G→ G′ in R, the
induced map Hom(G′, F)→ Hom(G, F) is an isomorphism of anima. This equivalence
between C and a full subcategory of PSh(D,An) can be viewed as a presentation of C
with generators in D and relations imposed by R.

The raison d’être of presentable ∞-categories is the adjoint functor theorem. This
theorem states that a functor F : C→ D between presentable ∞-categories has a right
3See [Sch22, Def. 6.12] for the precise definition. This is a condition morally equivalent to being
cohomologically smooth and having a trivial dualizing object.
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adjoint if and only if it preserves small colimits. Similarly, F has a left adjoint if and
only if it preserves small limits and κ-filtered colimits, for some regular cardinal κ
[HTT, Cor. 5.5.2.9].4
Following Lurie, we denote the∞-categories of presentable∞-categories and left

or right adjoint functors by PrL and PrR, respectively. Since the forgetful functors
PrL → Cat∞ and PrR → Cat∞ preserve small limits, limits in PrL and PrR are computed
as in Cat∞ [HTT, §5.5.3].
By mapping a functor to its right adjoint, we obtain an equivalence (PrL)op → PrR.

Consequently, colimits in PrL are computed by first taking right adjoints and then
computing the result limit in Cat∞. A similar procedure also allows us to compute
colimits in PrR. Chapter 5 in [HTT] describes many other ways of constructing
presentable ∞-categories. �

Let Ĉ be the ∞-category of presheaves of anima on C, and let Ê be the class of
morphisms in Ĉ whose pullback to any object of C is in E. We denote by ĈÊ the
subcategory of Ĉ whose morphisms lie in Ê. By [Man22, Prop. A.5.16], D can be
extended to a six-functor formalism

Corr(Ĉ, Ê)→ PrL,

which we still denote by D. This six-functor formalism is defined for a wide collection
of spaces Ĉ, though relatively few maps in Ĉ have !-functors.

Definition 1.2.15 (D-topology). Let D : Corr(C, E)→ PrL be a presentable six-functor
formalism. We denote by D∗ : Cop → Cat∞ the functor that sends a map f : X → Y to
f∗ : D(Y)→ D(X). Similarly, we denote by D! : Ĉ

op
Ê → Cat∞ the functor that sends a map

f : X→ Y to f! : D(Y)→ D(X). Now, consider a family of maps fi : Xi → S in C.

(1) The maps fi form a cover of S in the canonical topology if, for all objects Y and
all maps S′ → S in C, the functor Hom(−, Y) satisfies descent along the maps
Xi ×S S′ → S′.

(2) The maps fi satisfy universal ∗-descent if, for every map S′ → S in C, the functor
D∗ satisfies descent along the maps Xi ×S S′ → S′.

(3) The maps fi satisfy universal !-descent if, for every map S′ → S in ĈE, the functor
D! satisfies descent along the maps Xi ×S S′ → S′.

We say that the maps fi form a D-cover if they lie in E, form a cover of S in the
canonical topology, and satisfy both universal ∗-descent and universal !-descent. The
Grothendieck topology on C generated by these covers is called the D-topology.
4In particular, if F preserves small limits and filtered colimits, then it has a left adjoint.
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� Remark 1.2.16. There is a convenient criterion for verifying that a given morphism
f : X → S in E satisfies ∗- and !-descent. By [Sch22, Prop. 6.18], this holds if f is
cohomologically smooth5 and the functor f∗ : D(S)→ D(X) is conservative. Moreover,
if f is also a canonical cover, then it is a D-cover. �

Let C̃ be the∞-category of sheaves of anima on C, with respect to the D-topology.
We denote by Ẽ0 the class of morphisms in C̃ that lie in Ê.

Definition 1.2.17. Let Ẽ be a class of morphisms in C̃, containing Ẽ0, that is stable under
pullback and composition. Suppose the six-functor formalism D : Corr(C̃, Ẽ0)→ PrL

extends uniquely to Corr(C̃, Ẽ).
(1) The class Ẽ is stable under disjoint unions if, for all morphisms Xi → S in Ẽ, their

disjoint union
∐
Xi → S is also in Ẽ.

(2) The class Ẽ is local on the target if whenever f : X→ S is a morphism in C̃ such that,
for every object S′ in C mapping to S, the pullback X×S S′ → S′ lies in Ẽ, then
f ∈ Ẽ.

(3) The class Ẽ is local on the source if whenever f : X → S is a morphism in C̃ such
that there is a map g : X′ → X in Ẽ of universal !-descent satisfying f ◦ g ∈ Ẽ, then
f ∈ Ẽ.

(4) The class Ẽ is tame if, for any morphism X → S in Ẽ with S in C, there exist
morphisms Xi → S in E and a morphism

∐
Xi → X over S that is in Ẽ and of

universal !-descent.

The following theorem is proven in [Sch22, Thm. 4.20].

Theorem 1.2.18. Let D : Corr(C, E) → PrL be a presentable six-functor formalism. There
exists a minimal collection of morphisms Ẽ in C̃, containing Ẽ0, such that D extends uniquely
to Corr(C̃, Ẽ) and Ẽ satisfies all conditions in Definition 1.2.17.

1.3. The six-functor formalism of quasi-coherent sheaves
In this section, we construct a six-functor formalism for quasi-coherent sheaves on
quasi-compact, quasi-separated schemes. Recall that in a six-functor formalism, each
cartesian diagram

X′ X

S′ S

g′

f′ f

g

5It suffices for 1X to be f-smooth, in the sense of [Sch22, Def. 6.1].
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induces an isomorphism of functors f∗g! ' g′!f′,∗. When dealing with (complexes of)
quasi-coherent sheaves, unusual phenomena occur. Firstly, there is no clear definition
of compactly supported direct images. However, an isomorphism f∗g∗ ' g′∗f′,∗ exists
as long one of the maps f or g is flat [Stacks, Tag 08IB]. (Here, every functor is
considered to be derived.)
The necessity of flatness becomes apparent when one recognizes the mismatch

between derived and non-derived structures. On one hand, X′ = X ×S S′ is locally
represented by a non-derived tensor product of rings. On the other hand, a relationship
is expected between the derived functors f∗g∗ and g′∗f′,∗. When either f or g is flat, these
tensor products become automatically derived, yielding the desired isomorphism.
To eliminate this hypothesis, we must consider a derived version of fiber products,

locally represented by a derived tensor product of rings. This is provided by Quillen’s
non-abelian derived categories, which we now explain. Our exposition of this topic is
greatly inspired by Khan’s notes [Kha23].

Definition 1.3.1 (Algebraic category). Let C be a 1-category. We say that C is algebraic
if there exists an essentially small full subcategory P of C that is closed under finite
coproducts, along with an equivalence

FunΠ(Pop,Set) ∼−→ C,

which restricts via the Yoneda embedding P ↪→ FunΠ(Pop,Set) to the inclusion P ↪→ C.
Here, FunΠ(Pop,Set) refers to the category of functors Pop → Set that preserve finite
products.

Readers may note that an algebraic category is the same as a category of models for
a Lawvere theory. Furthermore, a category C is algebraic if and only if the conditions
in Definition 1.3.1 apply with P as the full subcategory of compact projective objects.

� Example 1.3.2. Here are examples of algebraic categories:

(1) The category Set of sets is algebraic, with its compact projective objects being
finite sets.

(2) The category Grp of groups is algebraic. Its compact projective objects are free
groups on finite sets.

(3) For a ring R, the categoryMod(R) of R-modules is algebraic. Its compact projective
objects are finite projective R-modules.

(4) For a ring R, the category Alg(R) of R-algebras is algebraic. Its compact projective
objects are retracts of finite type polynomial R-algebras.
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ForMod(R), P can be the full subcategory of finite free R-modules. Likewise, for Alg(R),
P can be taken as the full subcategory constituted of the R-algebras R[x1, . . . , xn] for all
n > 0. �

By substituting the category of sets in the equivalence FunΠ(Pop,Set) ' C with the∞-category of anima, we derive a higher categorical analogue of C.

Definition 1.3.3 (Animation). Let C ' FunΠ(Pop,Set) be an algebraic category. Its
animation, denoted An(C), is the∞-category FunΠ(Pop,An) of functors Pop → An that
preserve finite products.6

The animation of the category of sets is equivalent to the ∞-category An. Indeed,
since every finite set can be expressed as a finite coproduct of copies of the terminal set
{∗}, a functor {finite sets}op → An preserving finite products is uniquely determined by
the image of {∗}. The next remark provides additional examples of animations.

� Remark 1.3.4. The animation An(C) can be derived from the category of simplicial
objects of C by inverting weak equivalences according to a model structure induced by
the Quillen model structure on simplicial sets [HTT, Cor. 5.5.9.3].
In particular, the ∞-categories of animated groups, modules, and algebras can

be obtained from the respective categories of simplicial objects by inverting weak
equivalences. For a ring R, the Dold–Kan correspondence implies that An(Mod(R)) is
equivalent to the full subcategory D60(R) of the derived∞-category D(R), consisting
of complexes whose cohomologies vanish in positive degrees. �

The natural inclusion Set ↪→ An induces a fully faithful functor C ↪→ An(C). Objects
in its essential image are said to be static. This functor has a left adjoint π0 : An(C)→ C
that acts as

(Pop → An) 7→ (Pop → An π0−−→ Set),

where π0 : An→ Set maps an anima to its set of isomorphism classes of objects. More
generally, we have functors πi : An(C)→ C for all i > 0.

The following result, available in [HTT, Prop. 5.5.8.15], provides a universal property
of animation. Recall that reflexive coequalizers are the categorical generalization of
quotients by equivalence relations. Geometric realizations serve as their ∞-categorical
counterparts, corresponding to stacky quotients.

Proposition 1.3.5 (Universal property of animation). Let C ' FunΠ(Pop,Set) be an
algebraic category. For every∞-category D that has filtered colimits and geometric realizations,
the natural functor

Funs(An(C),D)→ Fun(P,D)

6The animation An(C) is independent of the choice of P.
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is an equivalence. Here, Funs(An(C),D) denotes the ∞-category of functors An(C)→ D that
preserve filtered colimits and geometric realizations.

An astute reader will recognize that a functor An(C)→ D preserves filtered colimits
and geometric realizations if and only if it preserves sifted colimits, thereby justifying
the subscript s. This proposition enables the animation of functors as well.

Definition 1.3.6 (Animated functors). Consider algebraic categoriesC ' FunΠ(Pop,Set)
and D ' FunΠ(Qop,Set), and let F : C→ D be a functor between them. The universal
property of animation, applied to the composition P ↪→ C → D ↪→ An(D), yields a
unique functor

An(F) : An(C)→ An(D)

which preserves filtered colimits and geometric realizations, and restricts to F on P.
The functor An(F) is referred to as the animation of F.

There is a natural isomorphism π0 ◦ An(F) ' F ◦ π0 of functors An(C)→ D. Similar
to derived functors, for any two composable functors F and G, there exists a natural
transformation An(F) ◦An(G)→ An(F ◦G) that is not necessarily an isomorphism. This
natural transformation becomes an isomorphism under certain additional conditions,
which are detailed in [ČS24, Prop. 5.1.5]. Additionally, the functor An(F) preserves all
colimits if and only if F preserves finite coproducts.
Having established the necessary general theory, we will now examine some

animated avatars of fundamental objects in commutative algebra. The category Ring of
rings is algebraic, as noted in Remark 1.3.2, and we denote its animation by An(Ring).
For an animated ring R, there exists a unit map R → π0(R) that can be visualized
similarly to the quotient map R → Rred in commutative algebra. Just as a ring R can
be thought as an infinitesimally thickened version of Rred, an animated ring R can be
imagined as a ring π0(R) enriched with additional higher-dimensional information.
Consider a diagram R ← S → T of animated rings. We define the animated ring

R⊗S T by animating the classical tensor product functor on rings. This tensor product
satisfies the universal property of pushouts in the ∞-category of animated rings.
Furthermore, if S is static, the forgetful functor from animated S-algebras7 to animated
S-modules identifies R⊗S T with the standard derived tensor product in D60(S).
The next step is to define the ∞-category AnMod(R) of animated modules over an

animated ring R. We approach this by first defining an algebraic category of modules
over any ring.

Definition 1.3.7. We denote by RingMod the category of pairs (R,M), where R is a ring
7By [SAG, Cor. 25.1.4.3], the animation of the category of S-algebras is equivalent to the ∞-category of
animated rings equipped with a map from S.
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andM is an R-module. A morphism (R,M)→ (R′,M′) consists of a morphism of rings
R→ R′ and a morphism of R′-modulesM⊗R R′ →M′.

The category RingMod is algebraic. We may take the full subcategory P to be the
category of pairs (R,M), where R is a polynomial ring Z[x1, . . . , xn] andM is a finite
free R-module R⊕m, for some n,m > 0. Moreover, the natural functorRingMod→ Ring,
which maps (R,M) to R, induces a bicartesian fibration An(RingMod)→ An(Ring). The
following remark explains the necessary facts about such fibrations.

� Remark 1.3.8 — On (co)cartesian fibrations. Let F : C→ D be a functor of ∞-categories.
For each object X of D, the fiber CX is an∞-category defined as the pullback

CX C

{X} D.

F

In order to assemble these fibers into a functor Dop → Cat∞, a morphism f : X1 → X2 in
D should induce to a functor f∗ : CX2 → CX1 . Let us describe how such a functor might
intuitively be constructed.
Given an objectM2 in CX2 , one could expect the existence of an objectM1 in CX1 ,

together with a morphismM1 →M2 mapping to f under the functor F, as indicated
in the diagram

C M1 M2

D X1 X2.

F

This objectM1 would be a natural candidate for f∗M2. Typically, there can be multiple
objectsM1 that satisfy these conditions, so one might impose the mapM1 →M2 to
satisfy some universal property. To determine what this universal property should be,
let us examine the action of f∗ : CX2 → CX1 on morphisms.
Let ϕ : M2 → N2 be a morphism in CX2 , along with morphisms M1 → M2 and

N1 → N2 that map to f under F.

C M1 M2

N1 N2

D X1 X2

F

ϕ

By requiring N1 → N2 to satisfy the universal property of being F-cartesian, we ensure
the existence of a morphism f∗ϕ : M1 → N1 making the square above commute. We
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now proceed to give precise definitions of F-cartesian morphisms and of cartesian
fibrations; the functors F : C→ D whose fibers assemble into a functor Dop → Cat∞.

A morphism ψ : N1 → N2 in C is said to be F-cartesian if, for every objectM in C, the
diagram

HomC(M,N1) HomC(M,N2)

HomD(F(M), F(N1)) HomD(F(M), F(N2))

ψ◦−

F F

F(ψ)◦−

(∗)

is a pullback in the∞-category An. We say that F : C→ D is a cartesian fibration if, for
every morphism f : X1 → X2 in D and every objectN2 in CX2 , there exists an F-cartesian
map ψ : N1 → N2 that maps to f under F.8

Since a functor of∞-categoriesDop → Cat∞ containsmore data thanmerely an action
on objects and morphisms, the discussion above fails short of defining such a functor.
A crowning achievement of [HTT] is the fact that this can indeed be accomplished.
According to [HTT, Thm. 3.2.0.1], there exist equivalences of∞-categories

St : Cart(D) Fun(Dop,Cat∞) :Un,
∼

∼

where Cart(D) denotes the subcategory of Cat∞/D consisting of cartesian fibrations
and functors that preserve cartesian maps. The functor St is known as straightening,
while Un is called unstraightening.

By inverting all the arrows, a functor F : C→ D is said to be a cocartesian fibration if
the opposite functor Fop : Cop → Dop is a cartesian fibration. Furthermore, F is referred
to as a bicartesian fibration if it is both a cartesian and a cocartesian fibration. Bicartesian
fibrations are significant in our context due to their connection with adjoint functors.

Let F : C→ D be a bicartesian fibration, and consider a map f : X1 → X2 in D. Viewed
as a cartesian fibration, F induces a functor f∗ : CX2 → CX1 . Dually, as a cocartesian
fibration, F induces a functor f∗ : CX1 → CX2 . We claim that f∗ is left adjoint to f∗. To
see this, consider the functor ∆1 → D induced by f, and form the pullback diagram

Cf C

∆1 D.

F

The functor Cf → ∆1 remains a bicartesian fibration, with the functors f∗ and f∗
being induced by the unique morphism 0→ 1 in ∆1. Given objectsM1 andM2 in CX1
and CX2 , respectively, we obtain equivalences

HomCX1 (M1, f
∗M2) ' HomCf(M1,M2) ' HomCX2 (f∗M1,M2).

8We refer to [Maz19] for the equivalence between these definitions and their quasi-categorical
counterparts in [HTT].
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The equivalence on the left arises from considering ψ : f∗M2 → M2, a cartesian lift
associated with the morphism 0→ 1, in the diagram (∗). The equivalence on the right
is dual. This proves that the functor f∗ is indeed left adjoint to f∗. �

For readers who found the preceding remark useful, we suggest the following
exercise: prove that the functor RingMod → Ring, which maps (R,M) to R, is a
bicartesian fibration. Additionally, it would be valuable to explicitly describe its fibers
and the corresponding pullback and pushforward functors. We now establish the
animated counterpart of these statements.

Proposition 1.3.9. The animation of the functor RingMod→ Ring, that maps (R,M) to R, is
a bicartesian fibration An(RingMod)→ An(Ring).

Proof. Let Poly denote the full subcategory of Ring that consists of polynomial rings
Z[x1, . . . , xn] for some n > 0. Similarly, let PolyMod be the full subcategory of RingMod
consisting of pairs (R,M), where R is a polynomial ring Z[x1, . . . , xn] andM is a finite
free R-module R⊕m, for some n,m > 0. Recall that the ∞-categories An(RingMod) and
An(Ring) are given by FunΠ(PolyModop,An) and FunΠ(Polyop,An), respectively.

Let F : PolyMod→ Poly be the restriction of the functor RingMod→ Ring to PolyMod.
One can verify that this functor admits a left adjoint G : Poly→ PolyMod, which sends
a polynomial ring R to the pair (R, 0). As a result, we obtain an adjunction between the
corresponding functor∞-categories

Fun(PolyModop,An) Fun(Polyop,An).

−◦Gop

−◦Fop

a

In other words, the left Kan extension of a functor PolyModop → An along Fop is
equivalent to precomposition with Gop. According to [HTT, Rem. 5.3.5.9], this implies
that the functor An(RingMod)→ An(Ring) maps a presheafM : PolyModop → An to the
composition

Polyop Gop
−−−→ PolyModop M−−→ An.

Now, let ϕ : S→ R be a morphism of animated rings, and letM : PolyModop → An be
an object ofAn(RingMod) such thatM◦Gop ' R. Denote by S andR the precompositions
of S and R with Fop, respectively. The unit of the adjunction above induces a map
M→M ◦Gop ◦ Fop ' R.

We claim that the projection ρ : M×R S→M is a cartesian map over ϕ. LetN be an
object of An(RingMod). Since limits in functor∞-categories are computed pointwise,
the morphism ρ is mapped to ϕ under the functor − ◦Gop : An(RingMod)→ An(Ring).
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Consequently, the diagram (∗) in Remark 1.3.8 becomes

HomAn(RingMod)(N,M×R S) HomAn(RingMod)(N,M)

HomAn(Ring)(N ◦Gop, S) HomAn(Ring)(N ◦Gop, R).

ρ◦−

−◦Gop −◦Gop

ϕ◦−

The universal property of the fiber productM×RS implies that this diagram is cartesian,
finishing the proof that An(RingMod)→ An(Ring) is a cartesian fibration.

To prove that the functor An(RingMod)→ An(Ring) is also a cocartesian fibration, we
need to show that all the pullback functors admit left adjoints. Since the functors F and
G preserve finite coproducts, the functor−◦Fop : Fun(Polyop,An)→ Fun(PolyModop,An)

restricts to provide a right adjoint to An(RingMod) → An(Ring). Consequently, the
latter is a morphism in PrR.
Given that limits in PrR are computed in Cat∞, we conclude that the fibers of

An(RingMod) → An(Ring) are presentable ∞-categories. As the pullback functors
preserve limits and filtered colimits, the adjoint functor theorem (see Remark 1.2.14)
implies that they admit left adjoints, proving that An(RingMod)→ An(Ring) is indeed
a cocartesian fibration.

Definition 1.3.10 (Animated modules). Let R be an animated ring. We define its∞-category of animated modules AnMod(R) as the fiber of the bicartesian fibration
An(RingMod)→ An(Ring) at R. For a morphism S→ R of animated rings, the functor
AnMod(S)→ AnMod(R) is called the base change functor and is denoted as −⊗S R, while
the functor AnMod(R)→ AnMod(S) is called restrictions of scalars and is denoted (−)S.

From the discussion in Remark 1.3.8, along with Proposition 1.3.9, we have that
restriction of scalars is right adjoint to the base change functor. Furthermore, the proof
of Proposition 1.3.9 implies that the ∞-categories of animated modules are always
presentable.

Given a ring R, considered as a static animated ring, the Dold–Kan correspondence
gives an equivalence between its ∞-category of animated modules and D60(R). By
taking the limit of the ∞-categories D6n(R) for all n > 0, we obtain the unbounded
derived ∞-category D(R). Before extending this construction to an arbitrary animated
ring, we provide a brief explanation of some ideas concerning stable∞-categories.

� Remark 1.3.11 — On stable ∞-categories. Let C be an ∞-category that has finite limits
and colimits. We say that C is stable if every commutative square is cartesian if and
only if it is cocartesian.9

9This is similar to the condition on abelian categories requiring the image of a morphism to be
isomorphic to its coimage.
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Denote the zero object of a stable∞-category C by 0. From the definition, the functor
Ω : C → C, mapping an objectM to the fiber product 0 ×M 0, is an equivalence of
categories. This induces a shift functor on the homotopy category hC, which can be
shown to be triangulated [HA, Thm. 1.1.2.14].
Now, suppose C is any ∞-category admitting finite limits. Particularly, C has a

terminal object ∗, so the coslice∞-category C∗ has a zero object. The stabilization Sp(C)

of C is the limit of the tower

· · · → C∗
Ω−−→ C∗

Ω−−→ C∗.

This is a stable ∞-category, equipped with a limit-preserving functorΩ∞ : Sp(C)→ C
that is final among limit-preserving functors from stable ∞-categories [HA, Cor.
1.4.2.23].

If C is presentable, the functorΩ : C∗ → C∗ has a left adjoint Σ : C∗ → C∗, and Sp(C)

can be computed as the colimit of the tower

C∗
Σ−→ C∗

Σ−→ C∗ → · · ·

in PrL. Indeed, since the forgetful functor PrR → Cat∞ preserves limits, the limit
defining Sp(C) can also be computed in PrR ' (PrL)op. Thus, Sp(C) is presentable,
and the functor Ω∞ : Sp(C) → C has a left adjoint Σ∞ : C → Sp(C), initial among
colimit-preserving functors to presentable stable∞-categories. �

Definition 1.3.12 (Derived category of an animated ring). Let R be an animated ring.
We define its derived∞-category D(R) to be the stabilization of AnMod(R).

Considering that the ∞-category AnMod(R) is presentable, we deduce the same
for D(R). The functor Σ∞ : AnMod(R)→ D(R) is fully faithful, and its essential image
D60(R) constitutes the connective part of a t-structure on D(R). The heart of this
t-structure is equivalent to the abelian category of modules over π0(R).

For a morphism of animated rings S→ R, the universal properties of stabilization of
presentable∞-categories induce functors D(S)→ D(R) and D(R)→ D(S) making the
diagrams

AnMod(S) AnMod(R) D(R) D(S)

D(S) D(R) AnMod(R) AnMod(S)

−⊗SR

Σ∞ Σ∞ Ω∞ Ω∞
(−)S

commute. We refer to and denote these functors as their restrictions to the ∞-
categories of animated modules. These universal properties also imply that the functor
−⊗S R : D(S)→ D(R) remains left adjoint to (−)S : D(R)→ D(S).
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Proposition 1.3.13. Let R be an animated ring. Then the tensor product of modules induces a
symmetric monoidal structure on the∞-categories AnMod(R) and D(R). Furthermore, for a
morphism of animated rings S→ R, the base change functors AnMod(S)→ AnMod(R) and
D(S)→ D(R) are symmetric monoidal.

Proof. According to [HA, Rem. 4.8.1.8], the functor FunΠ((−)op,An), mapping ∞-
categories to sifted cocomplete ∞-categories, is symmetric monoidal.10 Therefore, this
functor preserves commutative algebra objects.

Let Poly be the full subcategory of Ring consisting of polynomial rings Z[x1, . . . , xn]

for somen > 0. Similarly, letPolyModdenote the full subcategory ofRingMod consisting
of pairs (R,M), where R is a polynomial ring Z[x1, . . . , xn] andM is a finite free R-
module R⊕m for some n,m > 0. Both categories are symmetric monoidal, as is the
natural functor PolyMod→ Poly.
All in all, we find that the induced functor An(RingMod)→ An(Ring) is symmetric

monoidal. By unstraightening, we obtain a functor An(RingMod)⊗ → An(Ring)⊗ over
the category Fin∗ of pointed finite sets. (See [HA, Def. 2.0.0.7].) An animated ring R
then gives rise to a section Fin∗ → An(Ring)⊗ of An(Ring)⊗ → Fin∗, acting as

〈n〉 7→ (R, R, . . . , R)︸ ︷︷ ︸
n copies

.

By Proposition 1.3.9, the functor An(RingMod)⊗ → An(Ring)⊗ is a cocartesian fibration.
Consequently, we obtain a symmetric monoidal structure on AnMod(R) by pullback:

AnMod(R)⊗ An(RingMod)⊗

Fin∗ An(Ring)⊗

Fin∗.

It is clear that, for a morphism S → R of animated rings, the base change functor
AnMod(S)→ AnMod(R) is symmetric monoidal.

LetPrLst be the full subcategoryofPrL consistingof presentable stable∞-categories. As
in Remark 1.3.11, the stabilization functor Sp : PrL → PrLst is left adjoint to the inclusion
PrLst ↪→ PrL. Letting Sp := Sp(An) denote the∞-category of spectra, Proposition 4.8.2.18
of [HA] identifies PrLst with ModSp(PrL), the ∞-category of Sp-module objects in PrL.
Under this identification, the stabilization–inclusion adjunction corresponds to the
free–forgetful adjunction between Sp-modules and their underlying objects.
10In the notation of that reference, we set K = ∅ and K′ to be the collection of sifted ∞-categories.
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As in classical algebra, the free Sp-module functor Sp : PrL → PrLst is symmetric
monoidal with respect to Lurie’s tensor product [HA, Thm. 4.5.3.1]. (See also [HA,
Prop. 3.4.2.1 and Prop. 4.6.2.17].) Consequently, this functor preserves commutative
algebra objects. In particular, it induces a symmetric monoidal structure on the
derived∞-category of an animated ring, such that all pullback functors are symmetric
monoidal.

Definition 1.3.14 (Flat morphisms). Let ϕ : S→ R be a morphism of animated rings.
We define ϕ to be flat if the induced map π0(S)→ π0(R) is flat and the natural maps

πi(S)⊗π0(S) π0(R)→ πi(R)

are isomorphisms for all i > 0. Furthermore, if Specπ0(R)→ Specπ0(S) is surjective,
then ϕ is said to be faithfully flat. We say that ϕ is an fppf cover if it is faithfully flat and
π0(S)→ π0(R) is of finite presentation.

Analogous to the classical setting, a morphism of animated rings S → R is flat if
and only if the base change functor − ⊗S R : D(S) → D(R) is t-exact. Smooth and
étale morphisms of animated rings can be likewise defined. According to [SAG, Prop.
A.3.2.1], fppf covers induce a Grothendieck topology on the∞-category An(Ring) of
animated rings.

Definition 1.3.15 (Derived stack). Let X be a functor An(Ring) → An. We say that X
satisfies fppf descent if X preserves finite products and, for every fppf cover S→ R, the
diagram

X(S)→ X(R)→→ X(R⊗S R)
→→→ X(R⊗S R⊗S R)

→→→→ . . .

forms a limit diagram. A functor An(Ring) → An satisfying fppf descent is called a
derived stack. The category of derived stacks is denoted by dStk.

The simplest example of derived stack is the functor An(Ring)→ An corepresented
by an animated ring R. This is the affine derived scheme SpecR. A classical stack, viewed
as a functor Ring→ Grpd satisfying fppf descent, can also be considered as a derived
stack. Indeed, it suffices to left Kan extend the composition Ring→ Grpd ↪→ An along
the inclusion Ring ↪→ An(Ring) and sheafify.

Before defining a derived scheme as a derived stack that is locally, with respect to the
Zariski topology, isomorphic to an affine derived scheme, we define open immersions
of derived stacks.

Definition 1.3.16 (Open immersion). Let j : U→ X be a morphism of derived stacks.
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(1) If U = SpecR and X = SpecS are affine derived schemes, j is an open immersion if
the morphism of animated rings S→ R is flat and Specπ0(R)→ Specπ0(S) is an
open immersion.

(2) If X is an affine derived scheme, j is an open immersion if it is a monomorphism
and there exists a collection of affine derived schemes {Ui}i∈I together with an
effective epimorphism Ui → X such that the compositions Ui → X are open
immersions for all i ∈ I.

(3) In general, j is an open immersion if for every affine derived scheme V endowed
with a morphism V → X, the base change U×X V → V is an open immersion.

Definition 1.3.17 (Derived scheme). Aderived stackX is a derived scheme if there exists a
collection {Ui → X}i∈I of open immersions, where each Ui is an affine derived scheme,
such that ∐

i∈I

Ui → X

is an effective epimorphism in the∞-topos dStk.

A classical scheme, when viewed as a derived stack, is also a derived scheme.
Furthermore, for a derived scheme X, the precomposition of X with the natural
inclusion Ring ↪→ An(Ring) yields the underlying classical scheme Xcl. This functor
Ring→ An indeed takes values in sets and is represented by a classical scheme.

A derived scheme X is defined to be quasi-compact or quasi-separated if its underlying
classical scheme Xcl has the same property. Together, these conditions imply that X
has a finite affine cover whose intersections are also quasi-compact. We denote the∞-category of quasi-compact quasi-separated derived schemes as dSch.

We can extend the definition of every property of morphisms of animated rings that
is local on the source and target (such as flatness and being locally of finite presentation)
to maps in dSch. We say a morphism f : X→ S satisfies such a property P if there exist
an affine cover Vi of S and affine covers Uij of X ×S Vi such that the compositions
Uij → X ×S Vi → Vi satisfy P. Furthermore, f is said to be an fppf cover if it is flat,
locally of finite presentation, and fcl : Xcl → Scl is surjective.

Definition 1.3.18 (Quasi-coherent sheaves). We define the functor Dqc : dStkop → Cat∞,
which maps a derived stack X to its derived∞-category of quasi-coherent sheaves Dqc(X),
as the right Kan extension of the functor An(Ring)→ Cat∞ along the natural inclusion
An(Ring) ↪→ dStkop.

Let PrLst be the full subcategory of PrL consisting of presentable stable ∞-categories.
Since the∞-category CAlg(PrLst) is complete and the natural functor CAlg(PrLst)→ Cat∞
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preserves limits [HA, Prop. 1.1.4.6 and Cor. 3.2.2.5], the ∞-categories Dqc(X) are
presentable, stable, and endowed with symmetric monoidal structures. Furthermore,
for a morphism of derived stacks f : X → S, the pullback f∗ : Dqc(S) → Dqc(X) is
symmetric monoidal.

The following animated analogue of faithfully flat descent, proved by Lurie and Töen
[SAG, Cor. D.6.3.3], will be our main tool for understanding quasi-coherent sheaves on
derived stacks.

Theorem 1.3.19. The functor An(Ring) → Cat∞, which sends an animated ring R to its
derived∞-category D(R), satisfies faithfully flat descent. In other words, this functor preserves
finite products and, for a faithfully flat morphism of animated rings S→ R, the diagram

D(S)→ D(R)→→ D(R⊗S R)
→→→ D(R⊗S R⊗S R)

→→→→ . . .

forms a limit diagram.

Consequently, for an effective epimorphism f : X→ S of derived stacks, the diagram

Dqc(S)→ Dqc(X)→→ Dqc(X×S X)
→→→ Dqc(X×S X×S X)

→→→→ . . .

forms a limit diagram.

Theorem 1.3.20. The functor Cop → CAlg(Cat∞), which sends X to Dqc(X), extends to a six-
functor formalism on the geometric setup (dSch, all) valued in presentable stable∞-categories.

Proof. Let I be the collection of all isomorphisms in dSch, and let P consist of every
morphism in dSch. In order to apply Theorem 1.2.13, we need to verify that (I, P) is a
compactification setup. The only non-vacuous condition is that, for every morphism
f : X→ S in dSch, the functor f∗ has a right adjoint f∗ satisfying base change and the
projection formula. This can be verified as in [BFN10, §3.2].

� Remark 1.3.21 — The exceptional inverse image functor. Let f : X→ S be a morphism of
quasi-compact quasi-separated schemes. The right adjoint to the direct image functor
f∗ : Dqc(X)→ Dqc(S) is sometimes denoted by f× in the Grothendieck duality literature.
A functor that deserves to be called f! can then be constructed by factoring f as a
composition p ◦ j of an open immersion j and a proper map p, and defining f! as j∗ ◦p×.

Instead of imposing that f! = f∗ as we did, one could also enlarge the∞-categories
Dqc(X) of quasi-coherent sheaves to the∞-categories D�(X) of solid modules. There,
one can define a compactly supported direct image functor f! : D�(X)→ D�(S) and its
right adjoint can be restricted to Dqc(S)→ Dqc(X), where it coincides with the functor
f! defined in the previous paragraph.
As we have no need for the correct exceptional inverse image functor in this thesis,

we will continue to denote the right adjoint of f∗ : Dqc(X)→ Dqc(S) as f!. �
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The final objective of this section is to extend this six-functor formalism from dSch
to dStk. First, we note that a derived stack can also be regarded as an fppf sheaf on
dSch. Just as in the classical setting, there is an equivalence of∞-categories between
dStk and the category of fppf sheaves of anima on dSch [Hoy14, Lem. C.3].

Now, the theory exposed in the previous section gives an extension of this six-functor
formalism to the ∞-categoryfldSch of anima-valued sheaves on dSch with respect to the
Dqc-topology. The next result gives a comparison between dStk andfldSch.
Proposition 1.3.22. Let f : X→ S be an fppf cover of quasi-compact quasi-separated derived
schemes. Then f is a Dqc-cover.

Proof. Given that every morphism of quasi-compact quasi-separated derived schemes
is cohomologically proper, the criterion of [Sch22, Prop. 6.19] applies. Namely, it suffices
to prove that f∗OX is descendable in the sense of [Mat16, Def. 3.18]. Furthermore, up
to taking affine covers, we can assume that both X and S are affine derived schemes.
The result then follows from [Mat16, Cor. 3.33].

As a consequence of the preceding proposition, there exists a fully faithful functorfldSch ↪→ dStk. This functor has a left adjoint L : dStk→fldSch, referred to as sheafification
[HTT, Prop. 6.2.2.7]. The results of the previous section provide a collection of
morphism Ẽ infldSch such that the six-functor formalism of Theorem 1.3.20 extends to
the geometric setup (fldSch, Ẽ). The following corollary extends it further to dStk.

Corollary 1.3.23. Let E be the collection of morphisms of derived stacks that lie in Ẽ after
sheafification. Then, the six-functor formalism of quasi-coherent sheaves extends from quasi-
compact quasi-separated derived schemes to derived stacks. In this extension, every morphism
in E has !-functors.

Proof. Theorem 1.2.18 gives an extension of Dqc to anima-valued sheaves on dSch with
respect to the Dqc-topology. Furthermore, [Cam24, Lem. 3.1.4] shows that the natural
functor

Corr(dStk, E)→ Corr(fldSch, Ẽ),

given by sheafification, is symmetric monoidal. Consequently, the composition

Corr(dStk, E)→ Corr(fldSch, Ẽ)→ PrLst

is a six-functor formalism valued in presentable stable∞-categories.

By definition of the Dqc-topology, quasi-compact quasi-separated derived schemes
lie in the full subcategoryfldSch of dStk, and thus the six-functor formalism above is
indeed an extension of the one in Theorem 1.3.20. Moreover, since Dqc-covers are of
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universal ∗-descent, the restriction

dStkop ' Corr(dStk, isomorphisms) ↪→ Corr(dStk, E)→ PrLst

agrees with the functor given in Definition 1.3.18. In particular, for a derived stack
X, pullback by the natural map X → L(X) induces an equivalence of ∞-categories
Dqc(X) ' Dqc(L(X)).
Finally, we observe that, although we defined the functor f! as f∗ for a morphism f

of quasi-compact quasi-separated derived schemes, the functors f! and f∗ may differ
when f is a morphism of derived stacks. We first explain the simplest possible example,
then we give a more interesting one, that is also going to be useful in the next section.

� Example 1.3.24. For a field k, denote by X a countable disjoint union of copies of Speck,
and by p : X→ Spec k the structure map. By descent, an objectM of Dqc(X) amounts
to a collectionMi of objects in D(k). Then, p!M is the direct sum of theMi, while p∗M
computes their cartesian product. Furthermore, the forget-supports map p!M→ p∗M

can be identified to the natural inclusion. �

Proposition 1.3.25. Let X be a quasi-compact quasi-separated scheme. Consider a closed
immersion i : Z→ X cut out by a locally finitely generated ideal sheaf. Then, the natural map
î : X̂Z → X is cohomologically étale.

Proof. Let h be the natural morphism Z→ X̂Z. We claim that h is of universal !-descent.
The question is local on X, so we can suppose that X is affine and Z is the vanishing
loci of n functions. Since being of universal !-descent is stable under base change, we
may assume that n = 1 and Z is the vanishing locus of t in X = SpecZ[t].

The condition on [Sch22, Prop. 6.6] for verifying that OZ is h-smooth coincides with
the one for verifying that OZ is i-smooth, in the sense of [Sch22, Def. 6.1]. The latter
holds according to [Stacks, Tag 0AU3]. By the derived Nakayama lemma [Stacks, Tag
0G1U], pullback by h is conservative, thus Remark 1.2.16 implies that it is of universal
!-descent.

Given that having !-functors is local on the source, we conclude that î has !-functors.
We note that the pullback functor î∗ : Dqc(X)→ Dqc(X̂Z) has a fully faithful left adjoint
satisfying base change and the projection formula [HP23, Thms. 2.2.3 and 2.2.5].
Arguing as in [Sch22, Thm. 8.13], we conclude that O“XZ is î-smooth. Since its diagonal
is an isomorphism, î is cohomologically étale.

� Example 1.3.26 — Greenlees–May. Let i : Z → X be a closed immersion defined by a
locally finitely generated ideal sheaf I. Denote by î the natural map X̂Z → X. Since î
is a cohomologically étale monomorphism, base change implies that both î∗ ◦ î! and
î∗ ◦ î∗ are isomorphic to the identity functor. Consequently, î! and î∗ are fully faithful.
The functor î! ◦ î∗, an avatar of local cohomology, maps an objectM in Dqc(X) to its

I-power torsion part. In contrast, the functor î∗ ◦ î∗ sends an objectM of Dqc(X) to
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its I-completion. Consequently, the full subcategories of Dqc(X) consisting of I-power
torsion sheaves and I-complete sheaves are equivalent. This equivalence is known as
Greenlees–May duality, a vast generalization of Grothendieck’s local duality theorem.
For more details, we refer to [HP23, §2].

For example, consider the inclusion i of a prime Z = SpecFp into X = SpecZ. In this
case, the functor î! ◦ î∗ maps the structure sheaf Z to Qp/Zp[−1]. On the other hand,
the functor î∗ ◦ î∗ maps Z to the p-adic integers Zp. This gives another example where
the forget-supports map fails to be an isomorphism. �

1.4. Quasi-coherent sheaves on de Rham spaces
In this section, we fulfill a promise made at the beginning of Section 1.2 by studying the
derived∞-categories of quasi-coherent sheaves on de Rham spaces and their relation
to D-modules. Additionally, many natural functors relating these ∞-categories can be
interpreted as natural operations on D-modules.

The content of this section is similar to that in [Sch22, App. to Lec. VIII], but we focus
on quasi-coherent sheaves instead of ind-coherent sheaves and we consider relative
D-modules. We begin by generalizing de Rham spaces to derived stacks.

Definition 1.4.1 (de Rham space). Let X be a derived stack over a field k. Its de Rham
space XdR is the functor An(Ring)→ An defined by

XdR(R) := colim
I⊂π0(R)

X(π0(R)/I),

where the colimit runs over the filtered poset of nilpotent ideals of π0(R). This functor
comes equipped with a natural transformation X→ XdR induced by the trivial ideal.

Some remarks are in order. First, the inclusion Set ↪→ An preserves filtered colimits,
ensuring the consistency of the definition above with Definition 1.1.1. Moreover, for a
derived scheme X, the natural map Xcl → X induces an isomorphism between their
de Rham spaces. This enables the extension of most results in Section 1.1 to derived
schemes.11 That being said, for simplicity, this section will focus on classical schemes.

Proposition 1.4.2. Let p : X→ S be a smooth morphism of relative dimension n between finite
type k-schemes, and let ιp : X→ XdR ×SdR S be the natural map. Then, ιp is cohomologically
smooth.

Proof. Cohomological smoothness is a property that can be verified locally on the
source and target. Thus, by Proposition 1.1.6 and [Stacks, Tag 039Q], we may assume
11However, the pullback functor Dqc(XdR) → Dqc(X), corresponding to the forgetful functor from

DX-modules to quasi-coherent sheaves, surely depends on the derived structure of X.

72

https://stacks.math.columbia.edu/tag/039Q


1.4. Quasi-coherent sheaves on de Rham spaces

that p is the natural projection AnS → S for some n > 0. In this case, the map ιp
becomes the product of n copies of ι : A1 → A1dR with the identity of S. Therefore, it
suffices to prove that ι is cohomologically smooth.

Since ι is an effective epimorphism, wewill check that the projectionA1×A1dR
A1 → A1

is cohomologically smooth. As in the proof of Corollary 1.1.7, this pullback can be
identified with the projection A1 ×“Ga → A1. Consequently, it is sufficient to verify
that the structure map “Ga → Spec k is cohomologically smooth.
The formal group “Ga can also be viewed as a formal completion of P1. Hence,

Proposition 1.3.25 implies that the natural map “Ga → P1 is cohomologically étale.
The structure map P1 → Spec k is cohomologically smooth by [Sch22, Prop. 8.14],
concluding the proof that ιp is cohomologically smooth.

To examine the natural functoriality of de Rham spaces in a relative setting, we
consider the following commutative diagram of finite type k-schemes

X′ X

S′ S,

f

p′ p

g

(∗)

where p and q are smooth. We emphasize that this square is not necessarily supposed
to be cartesian. The universal property of fiber products provides a natural map
(f, g)dR : X

′
dR ×S′dR S

′ → XdR ×SdR S.

Corollary 1.4.3. Consider the setting of the commutative square (∗). Then, the morphism
(f, g)dR : X

′
dR×S′dR S

′ → XdR×SdR S admits !-functors. Furthermore, (f, g)dR is cohomologically
proper if the square (∗) is cartesian, or if f is étale and g is a monomorphism. The morphism
(f, g)dR is cohomologically smooth if f is smooth and proper. Additionally, if f is a closed
immersion and g is the identity morphism, (f, g)dR is cohomologically étale.

Proof. Given that the property of having !-functors is local on the source, it suffices
to verify this after precomposing with the cohomologically smooth map ιp′ . The
commutativity of the diagram

X′ X

X′dR ×S′dR S
′ XdR ×SdR S,

f

ιp′ ιp

(f,g)dR

which can be verified after post composing with the projections XdR ×SdR S→ XdR and
XdR ×SdR S→ S, implies that (f, g)dR ◦ ιp′ is the composition of ιp and f. As both ιp and
f have !-functors, the same holds for (f, g)dR.
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If the diagram (∗) is cartesian, or if f is étale and g is monic, the square above
becomes cartesian. Given that cohomological properness can be verified after pulling
back via the cohomologically smooth map ιp [Cam24, Prop. 3.1.14], the cohomological
properness of f implies the same for (f, g)dR.

Similarly, [Cam24, Prop. 3.1.24] implies that cohomological smoothness is local on
the source. Thus, by the commutativity of the commutative diagram above, (f, g)dR is
cohomologically smooth as long as f is. This holds if f is smooth and proper [Sch22,
Prop. 8.14].

Suppose that g is the identity morphism and f is a closed immersion. Both the large
rectangle and the bottom square in the diagram

X′dR ×XdR X X

X′dR ×SdR S XdR ×SdR S

X′dR XdR

ιp

(f,g)dR

fdR

are cartesian. By the pasting law, so is the top square. Since being cohomologically
étale is local on the target, it suffices to prove that X′dR ×XdR X→ X has this property.
This is the content of Proposition 1.3.25.

For a smooth morphism of schemes X→ S of relative dimension n, we denote by
DX/S its sheaf of differential operators as defined in [EGA IV4, §16.8.7]. The∞-category
Dqc(DX/S) is then defined as the full subcategory of the derived∞-categoryD(DX/S) of
leftDX/S-modules, consisting of objects whose cohomology sheaves are quasi-coherent
OX-modules.
This ∞-category is endowed with a forgetful functor Dqc(DX/S) → Dqc(X), which

can be viewed as a restriction of scalars. Since tensoring with the dualizing complex
ΩnX/S[n] gives an equivalence of ∞-categories from Dqc(DX/S) to the analogously
defined∞-category of rightDX/S-modules [Ber00, §1.2.1], there exists another forgetful
functor Dqc(DX/S)→ Dqc(X).

As usual, the forgetful functor for rightDX/S-modules has a left adjoint, which sends
M toM⊗DX/S with its natural structure of a right DX/S-module. This is referred to
as the induced DX/S-module functor.12

Theorem 1.4.4. Let p : X → S be a smooth morphism between finite type k-schemes. Then,
the ∞-categories Dqc(XdR ×SdR S) and Dqc(DX/S) are monoidally equivalent. Under this

12There is also an induced DX/S-module functor for left DX/S-modules. However, as noted by Saito
[Sai89], the one for right DX/S-modules has better compatibility with the direct image functors.
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equivalence, the functor ι∗p corresponds to the forgetful functor of leftDX/S-modules, the functor
ι!p corresponds to the forgetful functor of right DX/S-modules, and ιp,! corresponds to the
induced DX/S-module functor.

Wewill first prove this result at the level of abelian categories. As in Definition 1.3.18,
we can right Kan extend the functor (Sch/k)op → Cat, which sends a k-scheme to its
abelian category of quasi-coherent sheaves, to the 2-category PSh(Sch/k,Grpd). We
will still denote this extension by QCoh.

For a more concrete description ofQCoh(XdR×SdR S), consider the following diagram,
where each map is a natural projection.

( ¤�X×S X×S X)∆
→→→ (◊�X×S X)∆ →→ X

We denote by pri (resp. prij) the projection on the i-th factor (resp. on the i, j-th factors).

Lemma 1.4.5. Given a quasi-coherent sheafM on X, the following data are equivalent:

(i) An isomorphism of quasi-coherent sheaves ε : pr∗1M → pr∗2M satisfying the cocycle
condition pr∗12(ε) ◦ pr∗23(ε) = pr∗13(ε);

(ii) A stratification onM as in [BO78, Def. 2.10];

(iii) A morphism of OX-algebras DX/S → EndOS
(M).

Proof. Let (X ×S X)
(n)
∆ denote the n-th infinitesimal neighborhood of the diagonal

in X ×S X. Recall that the formal completion (◊�X×S X)∆ is the filtered colimit of the
schemes (X ×S X)

(n)
∆ . In particular, QCoh((◊�X×S X)∆) is the limit of the categories

QCoh((X ×S X)
(n)
∆ ). Thus, an isomorphism ε : pr∗1M → pr∗2M corresponds to a

compatible system of isomorphisms εn : (pr
(n)
1 )∗M→ (pr

(n)
2 )∗M, where

(X×S X)
(n)
∆ X

pr
(n)
1

pr
(n)
2

are the natural projections. This establishes the equivalence between (i) and (ii). Finally,
[BO78, Prop. 2.11] gives the equivalence between (ii) and (iii). The reader may want to
see [BO78, Rem. 2.13] as well.

Note that, for a morphism of quasi-coherent sheaves ϕ : M → N on X along with
isomorphisms εM : pr∗1M→ pr∗2M and εN : pr∗1N→ pr∗2N as above, the diagram

pr∗1M pr∗1N

pr∗2M pr∗2N

εM

pr∗2ϕ

pr∗1ϕ

εN
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commutes if and only if ϕ isDX/S-linear. Moreover, for quasi-coherent sheavesM and
N on X endowed with isomorphisms εM : pr∗1M→ pr∗2M and εN : pr∗1N→ pr∗2N, the
tensor productM⊗N inherits the isomorphism

pr∗1(M⊗N) ' pr∗1M⊗ pr∗1N
εM⊗εN−−−−−→ pr∗2M⊗ pr∗2N ' pr∗2(M⊗N).

According to [Ber96, Cor. 2.3.3], this corresponds to the usual tensor product of
DX/S-modules constructed locally as in [HTT08, Prop. 1.2.9]. All in all, we obtain the
following proposition.

Proposition 1.4.6. Let X → S be a smooth morphism of finite type k-schemes. Then
QCoh(XdR ×SdR S) is monoidally equivalent to the category QCoh(DX/S) of quasi-coherent
DX/S-modules.

Proof. Note that the functor QCoh : PSh(Sch/k,Grpd)op → Cat factors through the
sheafification PSh(Sch/k,Grpd) → Sh((Sch/k)ét,Grpd) to yield a limit-preserving
functor Sh((Sch/k)ét,Grpd)op → Cat [HTT, Prop. 5.5.4.20]. Proposition 1.1.18 then
implies that QCoh(XdR ×SdR S) is the limit of the diagram

QCoh(X)→→ QCoh((◊�X×S X)∆)
→→→ QCoh(( ¤�X×S X×S X)∆).

This is a category of descent data, whose objects are precisely quasi-coherent sheaves
M on X endowed with the data of Lemma 1.4.5.(i). The result then follows from the
aforementioned lemma.

To proceed from Proposition 1.4.6 to the proof of Theorem 1.4.4, we use the following
lemma.

Lemma 1.4.7. We define two full subcategories D60qc (XdR ×SdR S) and D>0qc (XdR ×SdR S) of
Dqc(XdR ×SdR S), consisting of objects whose inverse image by ιp lies in D60qc (X) or D>0qc (X),
respectively.
The pair (D60qc (XdR ×SdR S),D>0qc (XdR ×SdR S)) defines a t-structure on Dqc(XdR ×SdR S),

whose heart is equivalent to QCoh(XdR ×SdR S). Furthermore, Dqc(XdR ×SdR S) is equivalent
to the derived∞-category of its heart.

Proof. The map ιp : X → XdR ×SdR S being an effective epimorphism implies that the∞-category Dqc(XdR ×SdR S) is the limit of the diagram

Dqc(X)→→ Dqc((◊�X×S X)∆)
→→→ Dqc(( ¤�X×S X×S X)∆)

→→→→ · · · .

Since all the functors in the diagram above are t-exact and ι∗p : Dqc(XdR×SdR S)→ Dqc(X)

is conservative, [HP23, Lem. 2.1.12.(iv)] endows Dqc(XdR ×SdR S) with the desired
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t-structure. The same result also states that the heart D♥qc(XdR ×SdR S) is the limit of the
diagram

QCoh(X)→→ QCoh((◊�X×S X)∆)
→→→ QCoh(( ¤�X×S X×S X)∆)

→→→→ · · · .

Here, Proposition 1.3.25 allows us to identify the abelian categories of quasi-coherent
sheaves on the formal completions with the hearts of their corresponding stable∞-categories. According to [Car+17, Lem. 2.21], D♥qc(XdR ×SdR S) is also the limit of the
truncated diagram

QCoh(X)→→ QCoh((◊�X×S X)∆)
→→→ QCoh(( ¤�X×S X×S X)∆),

and this limit is precisely QCoh(XdR ×SdR S).
LetM and I be objects of QCoh(XdR ×SdR S) ' D♥qc(XdR ×SdR S), and suppose that

I is injective. We claim that π0HomC(M, I[n]), where C = Dqc(XdR ×SdR S), vanishes
for all n > 0. Given the description of C as a limit, π0HomC(M, I[n]) embeds into
π0HomD(ι∗pM, ι

∗
pI[n]), for D = Dqc(X). Therefore, it suffices to prove that the latter

vanishes.
To establish that π0HomD(ι∗pM, ι

∗
pI[n]) = 0, we will verify that ι∗pI is an injective

OX-module. Since X is noetherian, it suffices to prove that ι∗pI is an injective object
of QCoh(X) [TT07, B.4]. Consider a monomorphism F → G of quasi-coherent
sheaves on X, and a map F → ι∗pI. Since DX/S is flat over OX, the induced map
DX/S ⊗F → DX/S ⊗ G remains a monomorphism. Furthermore, by the universal
property of scalar extension, there exists a morphism DX/S ⊗ F → I making the
diagram

F G

ι∗p(DX/S ⊗F ) ι∗p(DX/S ⊗ G )

ι∗pI

commute. The injectivity of I then gives a morphism DX/S ⊗ G → I whose image
under ι∗p makes the triangle above commute. This confirms that ι∗pI is injective, and so
π0HomC(M, I[n]) vanishes.

The conservativity and t-exactness of the functor ι∗p : Dqc(XdR×SdR S)→ Dqc(X), along
with [HA, Prop. 1.2.1.19], implies that the t-structure of Dqc(XdR ×SdR S) is both left
and right complete. Then, [HA, Prop. 1.3.3.7] gives rise to a fully faithful functor
D+(QCoh(XdR×SdR S))→ Dqc(XdR×SdR S) whose essential image is the full subcategory

D+
qc(XdR ×SdR S) :=

⋃
n60

D>nqc (XdR ×SdR S) ⊂ Dqc(XdR ×SdR S).
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The desired equivalence D(QCoh(XdR ×SdR S))
∼−→ Dqc(XdR ×SdR S) then follows by

taking left completions. Indeed, the category D(QCoh(XdR ×SdR S)) is left complete
since ι∗p : D(QCoh(XdR ×SdR S)) → D(QCoh(X)) ' Dqc(X) is conservative and t-exact
[Stacks, Tag 09T4].

Proof of Theorem 1.4.4. The same strategy as in the preceding lemma, based on [HA,
Prop. 1.3.3.7], also shows that Dqc(DX/S) is equivalent to D(QCoh(DX/S)). All in all,
we have equivalences

Dqc(XdR ×SdR S) ' D(QCoh(XdR ×SdR S)) ' D(QCoh(DX/S)) ' Dqc(DX/S),

where the equivalence in the middle is given by Proposition 1.4.6. It is clear that, under
these equivalences, the pullback ι∗p corresponds to the forgetful functor.

Having related de Rham spaces to D-modules, we now relate their natural functori-
alities. First, we note that the equivalence Dqc(XdR ×SdR S) ' Dqc(DX/S) preserves the
tensor products on both sides. Next, we recall the setting of a not-necessarily-cartesian
square of finite type k-schemes

X′ X

S′ S,

f

p′ p

g

(∗)

where p and q are smooth. This square induces morphisms (ÿ�X′ ×S′ X′)∆ → (◊�X×S X)∆

and ( ¤�X′ ×S′ X′ ×S′ X′)∆ → ( ¤�X×S X×S X)∆ making the diagram

( ¤�X′ ×S′ X′ ×S′ X′)∆ (ÿ�X′ ×S′ X′)∆ X′

( ¤�X×S X×S X)∆ (◊�X×S X)∆ X

commute, and allowing us to pullback the data of Lemma 1.4.5.(i). This defines an
image inverse functor (f, g)∗ : QCoh(DX/S) → QCoh(DX′/S′).13 The following result
follows directly from the proof of Theorem 1.4.4.

Corollary 1.4.8. Let X → S and X′ → S′ be smooth morphisms of finite type k-schemes.
Given morphisms f : X′ → X and g : S′ → S making the diagram (∗) commute, the diagram

Dqc(XdR ×SdR S) Dqc(DX/S)

Dqc(X
′
dR ×S′dR S

′) Dqc(DX′/S′)

(f,g)∗dR L(f,g)∗

∼

∼

13See [Ber00, §2.1.1] for the analogous construction on arithmetic D-modules.
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commutes up to natural isomorphism.

� Remark 1.4.9 — On the existence of left derived functors. Let X → S be a smooth
morphism of schemes. A complexM of OX-modules is called OX-homotopically flat
if, for every acyclic complex L of OX-modules, the tensor product M ⊗OX L is also
acyclic. Similarly, a complexM of DX/S-modules is said to be DX/S-homotopically flat if
M⊗DX/S

L is acyclic for every acyclic complex of DX/S-modules L.
For a complexN ofDX/S-modules, [Stacks, Tag 06YF] provides an OX-homotopically

flat complex of OX-modulesM along with a quasi-isomorphismM→ D̃R(N), where
D̃R(N) is defined as in [Sai89, Lem. 1.5]. Since DX/S is a flat OX-module, applying the
functor D̃R

−1
= −⊗OX DX/S preserves the quasi-isomorphism. By the same result of

Saito, the composition

M⊗OX DX/S = D̃R
−1

(M)→ D̃R
−1

D̃R(N)→ N

is also a quasi-isomorphism. Given thatM is OX-homotopically flat, this provides a
DX/S-homotopically flat resolution of N.
Using theseDX/S-homotopically flat resolutions, one can compute the left derived

functor of inverse images and tensor products of relativeD-modules on the unbounded
derived category. As in [Stacks, Tags 08DW and 08DX], it is clear that both functors
preserve complexes with quasi-coherent cohomologies. �

We are now in position to define direct images of relative D-modules in the setting
of the commutative diagram (∗). As in the absolute case, we define the transfer module

DX/S�X′/S′ := ωX′/S′ ⊗OX′
(f, g)∗DX/S ⊗f−1OX f

−1ω⊗−1X/S ,

which is a (f−1DX/S,DX′/S′)-bimodule. Observe that, whenever the square (∗) is
cartesian, the inverse image (f, g)∗DX/S reduces to DX′/S′ and so DX/S�X′/S′ ' DX′/S′ .
In every case, we define the direct image functor Dqc(DX′/S′)→ Dqc(DX/S) as

(f, g)+ := Rf∗
Ä
DX/S�X′/S′ ⊗L

DX′/S′
−
ä
.

Akin to the absolute setting, given a commutative diagram of finite type k-schemes in
which the vertical morphisms are smooth

X′′ X′ X

S′′ S′ S,

f′ f

g′ g

we have a natural equivalence (f, g)+ ◦ (f′, g′)+ ' (f ◦ f′, g ◦ g′)+, and similarly for the
inverse images [Ber00, §2.1.1].
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� Remark 1.4.10 — On the direct image functor. In the notation above, we begin by
observing that (f, g)+ is well-defined as a functor D(DX′/S′) → D(DX/S). First, the
derived tensor product in its definition can be computed using homotopically flat
resolutions, as in the preceding remark. Next, recall that the category of modules
over any sheaf of (not necessarily commutative) rings is Grothendieck [KS06, Thm.
18.1.6]. For complexes in such abelian categories, there exist homotopically injective
resolutions [Stacks, Tags 070H and 079P], allowing us to compute the functor Rf∗.
It remains to prove that (f, g)+ preserves the full subcategories of quasi-coherent

sheaves. As in the proof of Proposition 1.4.11 below, we may assume that either
the commutative square (∗) is cartesian or g is the identity map. In each case, the
result follows from [Stacks, Tag 08D5]. For the second case, one needs to resolve a
quasi-coherent complex by induced D-modules as in [Ber02, Prop. 2.4.2]. �

Even though the following result is interesting by itself, it will be particularly useful
to us via its corollary that gives a compatibility between the direct image of relative
D-modules and the direct image on the respective de Rham spaces.

Proposition 1.4.11. Let X→ S and X′ → S′ be smooth morphisms of finite type k-schemes,
and let d = dimS X− dimS′ X

′. Suppose that k has characteristic zero. Consider morphisms
f : X′ → X and g : S′ → S making the diagram (∗) commute and suppose that the square is
cartesian or f is smooth. Then the functor L(f, g)∗ is left adjoint to (f, g)+[d].

Proof. The case inwhich the square is cartesian can be proved using the same arguments
in [Vig21, Cor. 2.1.19]. We now consider the case in which f is smooth. Remark that
the universal property of pullbacks induces a smooth morphism X′ → X×S S′ making
the diagram

X′ X×S S′ X

S′ S′ S

f

idS′ g

commute. In particular we may suppose that g is the identity map. This case can be
proven as in [Kas03, Thm. 4.40].

The uniqueness of adjoints then gives the corollary below.

Corollary 1.4.12. Let X → S and X′ → S′ be smooth morphisms of finite type k-schemes,
and let d = dimS X − dimS′ X

′. Consider morphisms f : X′ → X and g : S′ → S making the
diagram (∗) commute, and suppose that k has characteristic zero and f is quasi-projective. Then
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the diagram
Dqc(X

′
dR ×S′dR S

′) Dqc(DX/S)

Dqc(XdR ×SdR S) Dqc(DX/S)

∼

(f,g)dR,! (f,g)+[d]

∼

commutes up to natural isomorphism.

Proof. As in the proof of the previous proposition, it suffices to prove this in the cases
where g is the identity map or the square (∗) is cartesian. The case where the square
(∗) is cartesian follows from Proposition 1.4.11, along with the fact that (f, g)dR is
cohomologically proper in this case.
Now, suppose that g is the identity map. Since we are assuming that f is quasi-

projective, we may factor it as a composition q ◦ i ◦ j, where j is an open immersion, i
is a closed immersion, and q is smooth and proper. Corollary 1.4.3 says that (j, id)dR is
cohomologically proper, thus the result for j follows as in the previous paragraph.
Another application of Corollary 1.4.3 gives that (i, id)dR is cohomologically étale.

Consequently, (i, id)dR,! is left adjoint to (i, id)∗dR and the result for i follows from [Car21,
Cor. 4.2.3].
As in [Sch22, Thm. 8.35], we have that (q, id)dR,! is isomorphic to (q, id)dR,∗[2n],

where n is the relative dimension of q. In particular, (q, id)dR,![−2n] is right adjoint to
(q, id)∗dR. The result then follows once again from Proposition 1.4.11.

1.5. The six-functor formalism of holonomic D-modules
The formalism developed in the previous section is quite general but exhibits some
unusual behaviors. For instance, given an open immersion j : U→ X, the morphism
jdR : UdR → XdR is cohomologically proper. In this section, our goal is to construct a
dual version of this formalism, one that more closely resembles familiar six-functor
formalisms.

Let C be the category of smooth quasi-projective varieties over a characteristic zero
field k. From Corollary 1.4.3 and [Cam24, Lem. 3.1.4], we observe that the functor

Corr(C, all) (−)dR−−−−→ Corr(dStk, E)→ Cat∞
defines a three-functor formalism on the geometric setup (C, all).14 Here, E denotes
the class of morphisms given by Corollary 1.3.23.

We denote the external tensor product in this three-functor formalism as�. Similarly,
the tensor product on Dqc(DX) is denoted as ⊗L

OX
. For a morphism f in C, we denote

14This is even a six-functor formalism, but this section will make no use of the right adjoints.
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the inverse image functor as Lf∗. The insistence on the symbol L is due to the fact that
most computations for D-modules reduce to studying the underived analogues of
these functors.
Moving forward, we make an initial modification to the three-functor formalism.

We retain the action on objects and the lax monoidal structure but adjust the action on
correspondences:á

Z

X Y

f g

ë
7−→ gdR,!f

∗
dR[2 dimZ− dimX− dim Y].

This has the effect of replacing the tensor product ⊗L
OX

with ⊗!
X := ⊗L

OX
[− dimX],

whose unit 1!
X is isomorphic to OX[dimX]. Similarly, the inverse image becomes

f! := Lf∗[dimZ− dimX], and the direct image becomes g+ := gdR,![dimZ− dim Y].15
Denote by Dbh (DX) the full subcategory of Dqc(DX) consisting of objectsM whose

cohomologies H i(M) are holonomic and vanish for sufficiently large |i|. We equip
Dbh (DX) with its standard t-structure, and denote by Hol(DX) its heart. According to
[HTT08, §3.2.1], the three functors described above preserve the stable∞-categories of
holonomic D-modules.

From [HTT08, Cor. 2.6.8], we know that the∞-category Dbh (DX) has a natural t-exact
anti-equivalence DX : D

b
h (DX)

∼−→ Dbh (DX)op. This functor is its own inverse [HTT08,
Prop. 2.6.5]. Now, we make the final modification to our three-functor formalism.
Once again, we retain the action on objects and the lax monoidal structure but adjust
the action on correspondences:á

Z

X Y

f g

ë
7−→ DYg+f

!DX.

This modification replaces the tensor product ⊗!
X with the functor ⊗X, which acts

as (M,N) 7→ DX(DX(M)⊗!
X DX(N)), and whose unit 1X is isomorphic to OX[− dimX].

Furthermore, the inverse image functor is transformed into f+ := DZf
!DX, and the

direct image functor is transformed into g! := DYg+DZ.
Although the ∞-categories Dbh (DX) are not presentable, the three functors just

constructed admit right adjoints.

Proposition 1.5.1. The three-functor formalismDbh constructed above is a six-functor formalism.
Moreover, for a morphism f : X→ S, the right adjoint of f! is f! and the right adjoint of f+ is f+.
15Corollary 1.4.12 ensures that this notation is not overloaded.
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For an objectN of Dbh (DX), the right adjoint of −⊗XN is the functor HomX(N,−) defined as
DX(−⊗X DX(N)).

Proof. That f! and f+ are right adjoint to f! and f+, respectively, is the content of [HTT08,
Cor. 3.2.15]. The existence and expression for the right adjoint of the tensor product
follow from [HTT08, Prop. 2.6.14].

For the reader’s convenience,wepresent a table comparingour notationswith those of
common references. In it, we consider a morphism f : X→ S and let d = dimX− dimS.

Our notation [Ber] [Bor+87] [HTT08] [Meb88]

Lf∗ Lf∆ Lf◦ Lf∗ Lf∗

f! f! f! f† -
f+ f∗ f+

∫
f

∫
f∗

DX D DX DX (−)∗

f+ f∗ f+ f? Lf![−d]

f! f! f!
∫
f!

∫
f!

⊗L
OX

⊗LOX ⊗L
OX

⊗LOX ⊗L
OX

⊗!
X 4× - - -
⊗X - - - -

HomX Hom - - -

As this table shows, except for the tensor product ⊗X and its right adjoint HomX, all
the functors in this six-functor formalism are standard in theD-module literature. Not
only is the choice of the tensor product ⊗X necessary in order to have a six-functor
formalism, but this functor also agreeswith the standard tensor product of constructible
sheaves under the Riemann–Hilbert correspondence [HTT08, Prop. 4.7.8 and Thm.
7.1.1].
The following remarks highlight key aspects of this six-functor formalism, which

will be essential in the subsequent chapters. We advise the reader to proceed to the
next chapter and consult this section as necessary.

� Remark 1.5.2 — On connections. As usual, we identify vector bundles (locally free
sheaves) with integrable connections and OX-coherent DX-modules. Henceforth,
we will refer to these objects simply as connections. We denote by Dbint(DX) the full
subcategory of Dbh (DX) consisting of objects with connections as their cohomologies.
As in the theory of perverse sheaves, we endow Dbint(DX) with the standard t-structure,
shifted by dimX. Thus, the heart of Dbint(DX) consists of connections in degree dimX.
Consider a morphism f : X → S, and let d = dimX − dimS. The inverse image

f+ : Dbh (DS)→ Dbh (DX) restricts to a t-exact functor Dbint(DS)→ Dbint(DX). Furthermore,
we have H i(f+M) ' f∗H i−d(M) for every objectM in Dbh (DS) and all i ∈ Z [Bor+87,
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Rem. in §VI.4]. Here, the functor f∗ coincides with the usual inverse image of
connections [CF09, §2.3].

Since the objects in Dbint(DX) are precisely the dualizable objects in Dbh (DX), we have
the isomorphisms

M⊗X N 'M⊗!
X N[2 dimX] 'M⊗OX N[dimX],

for M in Dbint(DX) and N in Dbh (DX). Consequently, ⊗X restricts to t-exact functors
Dbint(DX)× Dbh (DX)→ Dbh (DX) and Dbint(DX)× Dbint(DX)→ Dbint(DX).
Finally, the duality functor DX : D

b
h (DX) → Dbh (DX)op also restricts to a t-exact

anti-equivalence Dbint(DX)
∼−→ Dbint(DX)op. More precisely, we have an isomorphism

H i(DX(M)) ' HomOX
(H −i(M),OX) for every object M in Dbh (DS) and all i ∈ Z

[HTT08, Ex. 2.6.10]. Here, HomOX
(−,OX) denotes the usual dual of connections. �

� Remark 1.5.3—On cohomology. Let X be a smooth quasi-projective variety over k, and
denote its structure map by p : X→ Speck. As usual in six-functor formalisms, for an
objectM of Dbh (DX), we define its de Rham cohomology and compactly supported de Rham
cohomology groups as

Hi(X,M) := H i(p+M) and Hic(X,M) := H i(p!M).

According to [Dim+00, Prop. 1.4], the de Rham cohomology group Hi(X,M) can
be explicitly computed as the sheaf cohomology group Hi(X,M ⊗Ω∗X), where the
de Rham complexΩ∗X is concentrated in degrees [− dimX, 0]. This expression, along
with the isomorphisms Hic(X,M) ' H−i(X,DX(M))∨, also enables the computation of
compactly supported de Rham cohomology groups. �

� Remark 1.5.4 — Artin vanishing. Consider a morphism f : X → S between smooth
quasi-projective k-varieties. A D-module analogue of Artin vanishing states that, if f
is affine, then f+ : Dbh (DX)→ Dbh (DS) is right t-exact and f! : Dbh (DX)→ Dbh (DS) is left
t-exact [Bor+87, Prop. VI.8.1].
While we will not use this, it is worth noting that, when f is quasi-finite, the

functors f! : Dbh (DS) → Dbh (DX) and f+ : Dbh (DX) → Dbh (DS) are left t-exact. Dually,
f! : D

b
h (DX)→ Dbh (DS) and f+ : Dbh (DS)→ Dbh (DX) are right t-exact. This follows from

[HTT08, Exs. 1.5.12 and 1.5.22] and [Bor+87, Prop. VI.8.1], along with Zariski’s main
theorem. �

� Remark 1.5.5—Recollement. Consider a closed immersion i : Z ↪→ X and its comple-
mentary open immersion j : U ↪→ X. Recall that i is proper (hence i! ' i+) and j is étale
(hence j! ' j+). This data satisfies the recollement conditions [Bei+18, §1.4.3]. Specifically,
the following hold:

(1) i!j+ = 0, and by adjunction, i+j! = 0 and j+i+ = 0;
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(2) The adjunction maps i!i! → id→ j+j
+ and j!j! → id→ i+i

+ form fiber sequences;

(3) The adjunction maps i+i+ → id→ i!i! and j+j+ → id→ j!j! are isomorphisms.

In the D-module context, these axioms are essentially equivalent to Kashiwara’s
equivalence [HTT08, Cor. 1.6.2].

Since the counit i+i+ → id is an isomorphism, the functor i+ is fully faithful, so the
composition i+i! → id→ i+i

+ yields a map i! → i+. Section 1.4 in [Bei+18] shows that
i+j+ ' i!j![1] and that

j!M→ j+M→ i+i
+j+M→ j!M[1],

i!N→ i+N→ i+j+j
+N→ i!N[1],

forM in Dbh (DU) and N in Dbh (DX), are distinguished triangles. �

� Remark 1.5.6 — Mayer–Vietoris. Consider a smooth quasi-projective k-variety X and
let i1 : Z1 → X and i2 : Z2 → X be closed immersions covering X, where Z1 and Z2 are
also smooth.

Z1 ∩ Z2 Z2

Z1 X.
i1

i2

Denoting by i12 : Z1 ∩ Z2 → X the diagonal map above, we have a fiber sequence

M→ i1,!i
+
1M⊕ i2,!i+2M→ i12,!i

+
12M

for everyM in Dbh (DX). This is a consequence of the recollement conditions. �

� Remark 1.5.7—Middle direct image. Let f : Y ↪→ X be a locally closed immersion. Given
a holonomic D-moduleM over Y, we define the middle direct image f!+M as the image
of the forget-supports map H 0(f!M)→H 0(f+M).

For a holonomic D-module N over X, we say that N is an extension ofM if H 0(f+N)

is isomorphic to M. The D-module f!+M is characterized as the unique, up to
isomorphism, extension of M supported on Y with no non-trivial subobjects or
quotients supported on Y \ Y. In particular, if E is a connection on X and Y is a dense
open of X, then f!+f+E ' E [Kat90, Cor. 2.9.1.1]. �

� Remark 1.5.8 — Nearby and vanishing cycles. Let i : Z ↪→ X be a closed immersion of
codimension one. Given this setup, a holonomic D-moduleM on X can be endowed
with the V-filtration as described in [Meb88, Chap. III.4]. This filtration is indexed by k,
and its graded pieces grVα(M) vanish unless−α is a root modulo Z of the Bernstein–Sato
polynomial associated to i [Meb88, Prop. 4.2.1].

The unipotent nearby cycles functor ψ1 : Hol(DX)→ Hol(DZ) is defined as grV−1, while
the unipotent vanishing cycles functor φ1 : Hol(DX)→ Hol(DZ) is defined as grV0 . These
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1. Quasi-coherent sheaves and D-modules

functors come with natural transformations

can : ψ1 → φ1 and var : φ1 → ψ1

given locally by −∂t and t, respectively, where t is a local equation for Z. Furthermore,
the compositions can ◦ var and var ◦ can are nilpotent [Meb88, §4.3.3]. Finally, according
to [Meb88, §§4.5.3 and 4.6.5], we have fiber sequences

i+M→ ψ1(M)
can−−→ φ1(M),

i!M→ φ1(M)
var−−→ ψ1(M),

for every holonomic D-module on X. �
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Harmonic analysis on stacks
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2. Cartier duality of commutative group
stacks

An underlying motif in this chapter is the concept of commutative group stacks. These
entities generalize commutative group schemes and naturally emerge in their study.
The raison d’être of commutative group stacks is that they provide the correct setting
for a general form of Cartier duality, the algebro-geometric counterpart to Pontryagin
duality.

Commutative group stacks
Henceforth, we fix a base scheme S and consider classical fppf stacks over S. There is a
standard method for constructing commutative group stacks. For a morphism F → G

of abelian sheaves on (Sch/S)fppf, the sheaf F acts on G via translation, enabling us
to consider the stacky quotient [G /F ]. Proposition 2.1.3, derived from the Dold–Kan
correspondence, asserts that every commutative group stack arises in this manner.
The interplay between these perspectives is a fundamental characteristic of those

objects. On one hand, commutative group stacks are geometric objects, prompting us
to consider line bundles or even quasi-coherent sheaves on them. On the other hand,
commutative group stacks can be studied using the tools of fppf cohomology, similarly
to any abelian sheaf.

Consider a commutative group stack G, with its group lawdenoted bym : G×SG→ G.
The stacky Cartier dual of G, denoted G∨, is the commutative group stack Hom(G,BGm).
Since BGm classifies line bundles, a morphism of group stacks G→ BGm corresponds
to a multiplicative line bundle on G. More precisely, for an S-scheme T , the objects of
G∨(T) are pairs (L , α), where L is a line bundle on G ×S T and α is an isomorphism
m∗L → L �L making two diagrams encoding associativity and commutativity
commute.
Denote by G◦ the morphism of abelian sheaves, defined up to quasi-isomorphism,

associated with a commutative group stack G via the Dold–Kan correspondence. We
view G◦ as a two-term complex concentrated in degrees −1 and 0. The stacky Cartier
dual can be explicitly described as (G∨)◦ = τ60RHom(G◦,Gm[1]). This leads us to the
study of classical Cartier duals Hom(G ,Gm) and extension sheaves Ext1(G ,Gm), for
abelian sheaves G .
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2. Cartier duality of commutative group stacks

Abelian schemes and tori

Consider two fundamental examples of commutative group schemes over a general
base: abelian schemes and tori. For a torus T over S, its Cartier dual X := Hom(T,Gm) is
represented by a group scheme étale-locally isomorphic to the constant group scheme
Zr, for some integer r. According to a theorem of Grothendieck, Ext1(T,Gm) vanishes,
implying that T∨ ' BX. Similarly, the stacky Cartier dual of X is BT . For further
details, see Propositions 2.2.1 and 2.3.1.

For an abelian S-schemeA, the Cartier dualHom(A,Gm) vanishes. The stackyCartier
dual A∨, which then corresponds to the extension sheaf Ext1(A,Gm), is represented
by the dual abelian scheme of A. This result is known as the Barsotti–Weil formula.
Surprisingly, a complete proof appears to be absent from the literature.1 We present a
generalization of this result in Theorem 2.3.10. In contrast to the approach of [Oor66],
our method applies to general base schemes and does not require a reduction to the
case of a base field.
Even though stacky Cartier duals contain no information about higher extension

sheaves, those frequently appear in long exact sequences. For an abelian schemeA over
a regular base S, the vanishing of Ext2(A,Gm) has been claimed in [Bre75, Rem. 6],
[Jos09, Thm. 1.2.5], and [Bro21, Cor. 11.5]. Regrettably, in each instance, this result is
attributed to [Bre69, §7], but additional arguments appear to be lacking.

Section 2.4, written in collaboration with Zev Rosengarten, aims to address this gap.
Theorem 2.4.4 proves that Ext2(A,Gm) vanishes for a base scheme S of characteristic
zero, without any regularity assumptions. Additionally, we show that Ext2(A,M) = 0

for an abelian scheme A over a general base S and a quasi-coherent OS-moduleM. In
particular, Ext2(A,Ga) vanishes.

The case of a base field

We now consider a commutative connected algebraic group G over a field k of
characteristic zero. According to the Barsotti–Chevalley theorem, G has a functorial
decomposition as an extension of an abelian variety A by a product of a torus T and an
unipotent group U. While the classical Cartier duals and extension sheaves of A and T
were discussed in the previous subsection, we now also consider unipotent groups.

As a first observation, we note that a commutative unipotent group over a characteris-
tic zero field is necessarily a vector group. In particular,U is isomorphic to some power
of the additive group Ga. Denoting by U∗ the dual vector space, Proposition 2.2.3
computes the Cartier dual Hom(U,Gm), identifying it to the formal completion Û∗ of
U∗ along the identity.

1For further details, see [Jos09, Footnote to Thm. 1.2.2] and [Jos10].
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Due to its significance in the remainder of this thesis, we denote the abelian sheaf
Ext1(G,Gm) by G′. This is the sheafification of the functor mapping a k-scheme S to
the group Ext1S(G,Gm), which classifies extensions of GS by Gm over S. Consequently,
there exists a natural morphism

Ext1S(G,Gm)→ Ext1(G,Gm)(S) = G′(S)

that is functorial on S. Furthermore, the group Ext1S(G,Gm) can be seen as the group
of isomorphism classes of objects in G∨(S). As such, there also exists a natural map2

Ext1S(G,Gm)→ H1(GS,Gm)

sending a pair (L , α) to L . Its image lies in the subgroup H1m(GS,Gm), which consists
of equivalence classes of line bundles L on GS satisfyingm∗L ' L �L .
For a regular k-scheme S, Theorem 2.3.19 demonstrates that both morphisms

constructed above

G′(S) = Ext1(G,Gm)(S)← Ext1S(G,Gm)→ H1m(GS,Gm)

are isomorphisms. This substantially simplifies the geometric interpretation of elements
in G′(S).

A crucial element in proving Theorem 2.3.19 is a detailed study of the abelian sheaf
U′ = Ext1(U,Gm). The most important point being Proposition 2.3.16, which states
that U′ vanishes on seminormal k-schemes. In [Ros23, Rem. 2.2.16], Rosengarten
details Gabber’s construction of a non-zero section of this sheaf. In Example 2.3.17, we
provide what is arguably the simplest non-zero section of this sheaf.

Unfortunately, the vanishing of U′ has been asserted in the literature. This claim can
be found in [Pol11, Lem. 1.3.6], was utilized in the proofs of [BB09, Lem. A.4.5] and
[Ber14, Lem. 10], and can be derived from the computations in [Lau85, Ex. p. 25].3 We
believe this led Laumon to consider a modified definition of the stacky Cartier dual
in his more recent preprint [Lau96]. This modification plays a significant role in the
following chapter.

The stacky Cartier dual of a de Rham space
Using the de Rham spaces introduced in the previous chapter, we can also employ
fppf cohomology techniques to the study of line bundles with integrable connection onG.
Recall that the de Rham space GdR, as in Definition 1.1.1, is isomorphic to the quotient
of G by its formal completion Ĝ along the identity.
2Equivalently, this arrow sends an extension to its underlying Gm-torsor.
3Indeed, Laumon claims that the morphism γ in Proposition 3.1.9 is an isomorphism.
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2. Cartier duality of commutative group stacks

As a first observation, Proposition 2.2.6 explicitly verifies that the Cartier dual
Hom(GdR,Gm) vanishes. As a result, the stackyCartier dualG∨

dR is naturally isomorphic
to Ext1(GdR,Gm). This abelian sheaf is of critical importance in this thesis, and we
denote it by G\.

According to Theorem 1.4.4, the fppf cohomology group H1(GdR × S,Gm) classifies
isomorphism classes of line bundles L on GS with integrable connection∇ relative to
S. As before, we consider the subgroup H1m(GdR × S,Gm) consisting of pairs (L ,∇)

satisfying m∗(L ,∇) ' (L ,∇) � (L ,∇). One of the main results in Section 2.3,
Theorem 2.3.21, states that the natural maps

G\(S) = Ext1(GdR,Gm)(S)← Ext1S(GdR,Gm)→ H1m(GdR × S,Gm),

for a reduced k-scheme S, are isomorphisms.
For an abelian variety A, the abelian sheaf A\ is representable by an algebraic group

known as the universal vector extension of the dual abelian variety A′. This object was
extensively studied in [MM74], and our methods provide simpler proofs for many of
their results. See Remark 2.3.24 for further details. The geometric properties of T \ and
U\ are more subtle and will discussed in the next chapter.

2.1. Definitions and first properties
Let Lat be the full subcategory of Ab whose objects are free abelian groups of finite
rank. Given an ∞-category C with finite products, we define its category of abelian
group objects Ab(C) as the ∞-category of functors Latop → C that commute with finite
products. (See [Lur17, §1.2] for more.)

When C is the category of sets, Ab(C) coincides with the usual category of abelian
groups. If C is the ∞-category of anima, Ab(C) is the ∞-category of animated abelian
groups as in Section 1.3. More generally, if X is an ∞-topos, then Ab(X) is the ∞-
category of sheaves on X valued in animated abelian groups. This motivates the
definition below.

Definition 2.1.1 (Commutative group stack). Let C be a 1-site. A commutative group
stack on C is a sheaf

Cop → An61(Ab),

whereAn61(Ab) is the full subcategory ofAn(Ab) consisting of animated abelian groups
Mwith πi(M) = 0 for i 6= 0, 1.

Equivalently, a commutative group stack onC is an abelian group object in the 2-topos
Sh(C,Grpd). These objects were first suggested by Grothendieck and subsequently
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2.1. Definitions and first properties

studied by Deligne in [SGA 4III, Exp. XVIII, §1.4] under the name champs de Picard
strictement commutatifs.

� Remark 2.1.2. The forgetful functor An(Ab) → An restricts to An61(Ab) → Grpd.
Concretely, an object ofAn61(Ab) is a groupoidM endowedwith a symmetricmonoidal
structure + such that the set of isomorphism classes π0(M) is a group. Additionally,
for all x, y inM, the symmetry constraints x+ x→ x+ x and x+ y→ y+ x→ x+ y

are supposed to be the identity maps. �

The following proposition, a consequence of theDold–Kan correspondence, provides
a concrete characterization of commutative group stacks. This characterization will
underpin virtually every computation involving these objects throughout this thesis.

Proposition 2.1.3. Let C be a 1-site. Denote by Ch[−1,0](Ab(C)) the category of complexes of
abelian sheaves4 on C concentrated in degrees −1 and 0. Similarly, denote by D[−1,0](Ab(C))

the full subcategory of D(Ab(C)) consisting of the objects whose cohomologies are concentrated
in degrees −1 and 0. The functor

Ch[−1,0](Ab(C))→ Sh(C,An61(Ab))

[F → G ] 7→ [G /F ]

factors through D[−1,0](Ab(C)), and the induced functor D[−1,0](Ab(C))→ Sh(C,An61(Ab))

is an equivalence of∞-categories.

We will use the proof of this result to explain some important concepts in higher
topos theory. Readers who are already familiar with these concepts may skip to the
conclusion of the proof.

Proof of Proposition 2.1.3. Let D be an ∞-category. Recall that a functor F : Cop → D is
a sheaf if it preserves finite products and if, for every covering X→ S in C, the natural
morphism

F (S)→ lim

[
F (X)→→ F (X×S X)

→→→ F (X×S X×S X)
→→→→ · · ·

]

is invertible. Functors preserving finite products and satisfying the preceding descent
condition with respect to all hypercovers in C are called hypersheaves. We denote by
HSh(C,D) the full subcategory of Sh(C,D) constituted of the hypersheaves.

Consider a sheaf of abelian groups G on C. Using the natural inclusion Ab ↪→ D(Ab),
G can be viewed as a presheaf valued in the derived ∞-category D(Ab). While this
often fails to satisfy descent, one can sheafify to obtain a functor Ab(C)→ Sh(C,D(Ab)).
4Denoting the category of abelian sheaves on C by Ab(C) is an abuse of notation, since this is the
category of abelian group objects on the associated 1-topos.
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2. Cartier duality of commutative group stacks

This induces a t-exact fully faithful functor D(Ab(C)) ↪→ Sh(C,D(Ab)), whose essential
image is precisely HSh(C,D(Ab)) [SAG, Cor. 2.1.2.3].

The distinction between hypersheaves and ordinary sheaves a phenomenon unique
to∞-categories. More precisely, the inclusion HSh(C,D) ↪→ Sh(C,D) is an equivalence
as soon as D is a n-category for some finite n [HTT, Lem. 6.5.2.9]. Consequently,

D[−1,0](Ab(C))→ Sh(C,D[−1,0](Ab))

is an equivalence of∞-categories.
Finally, recall that theDold–Kan correspondencegives an equivalence of∞-categories

D60(Ab)
∼−→ An(Ab). Here, the i-th homotopy group of an object on the right is

isomorphic to the −i-th cohomology group of the corresponding object on the left.
In particular, this restricts to an equivalence D[−1,0](Ab)

∼−→ An61(Ab) leading to the
desired equivalence D[−1,0](Ab(C))

∼−→ Sh(C,An61(Ab)).

Let us momentarily denote by G◦ the object in the derived category of abelian sheaves
associated with a commutative group stack G. (We will soon begin identifying these
objects.) Here, we outline some consequences of the proof of Proposition 2.1.3.

� Remark 2.1.4.

1. Let G be an abelian sheaf. Composing with the natural inclusion Ab ↪→ An61(Ab),
we obtain a commutative group stack denoted by the same symbol. Then, G ◦ is
isomorphic to the complex [0→ G ]. Similarly, (BG )◦ is isomorphic to [G → 0].

2. Given a commutative group stack G, the abelian sheaf H 0(G◦) is isomorphic to
the coarse moduli sheaf of G. This is the sheafification of the presheaf sending
an object X of C to the group of isomorphism classes π0(G(X)) of G(X). Similarly,
H −1(G◦) is isomorphic to the automorphism sheaf of a zero section of G.

3. Let G andH be commutative group stacks. We denote by Hom(G,H) the internal
Hom of commutative group stacks. This is another commutative group stack
satisfying Hom(G,H)◦ ' τ60RHom(G◦,H◦).

�

The following useful proposition, proven in [Bro21, Prop. 2.10], shows that fiber
sequences provide a reasonable notion of short exact sequences of commutative group
stacks. However, the reader should be aware that this notion sometimes behaves in
unexpected ways. For example, given an abelian sheaf G , the morphisms

G → 0→ BG

satisfy the equivalent conditions in the proposition below [Bro21, Rem. 2.12].
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Proposition 2.1.5. Let ϕ : G1 → G2 and ψ : G2 → G3 be morphisms of commutative group
stacks. Then

G◦1 → G◦2 → G◦3

is a fiber sequence if and only if ψ is an effective epimorphism and ϕ identifies G1 with the fiber
of ψ over a zero section of G3.

Henceforth, we will focus on the big fppf site C = (Sch/S)fppf associated with a base
scheme S. There is a distinguished abelian sheaf on this site: the multiplicative group
Gm, sending a S-scheme T to the group of units Γ(T,OT )×. Its classifying stack, BGm,
will play a role in this thesis similar to that of the circle group in the Pontryagin duality
of locally compact abelian groups.

Definition 2.1.6. Let G be a commutative group stack on (Sch/S)fppf. We define its
Cartier dual GD as Hom(G,Gm) and its stacky Cartier dual G∨ as Hom(G,BGm).

From our perspective, the stacky Cartier dual G∨ is the true dual of a commutative
group stackwhileGD is a good enough approximation is some situations. The following
remark explains our motivation for considering G∨.

� Remark 2.1.7. Let G be a commutative group stack on (Sch/S)fppf, and denote by
m : G × G → G its group law. Given an S-scheme T , the groupoid G∨(T) can be
described as follows: its objects are pairs (L , α), where L is a line bundle on G×S T
and α is an isomorphismm∗L → L �L making diagrams (A) and (B) just above
[Bro21, Rem. 3.13] commute. A morphism from (L , α) to (L ′, α′) is an isomorphism
of line bundles ϕ : L → L ′ making the diagram

m∗L L �L

m∗L ′ L ′ �L ′

α

m∗ϕ ϕ�ϕ

α′

commute. The symmetric monoidal structure on G∨(T) sends (L , α) and (L ′, α′) to
the pair (L ⊗L ′, α · α′), where α · α′ is defined as the composition

m∗(L ⊗L ′) ' m∗L ⊗m∗L ′ α⊗α′−−−→ (L �L )⊗ (L ′�L ′) ' (L ⊗L ′)� (L ⊗L ′).

The reader might also be interested in comparing this description to [SGA 7I, Exp. VII,
§1.1.6] or [Mor85, §I.2.3]. �

In most cases of interest in this thesis, we will work with commutative group stacks
G defined by complexes [F → G ], where the map d : F → G is a monomorphism.
In this case, G ' cokerd takes values in the full subcategory Ab of An61(Ab). The
following proposition gives a convenient criterion for computing the stacky Cartier
duals of these objects.
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2. Cartier duality of commutative group stacks

Proposition 2.1.8. Let G be an abelian sheaf on (Sch/S)fppf. Then the stacky Cartier dual
of the classifying stack BG is isomorphic to GD. If Ext1(G ,Gm) = 0, then G ∨ ' BGD.
Similarly, if GD = 0, then G ∨ ' Ext1(G ,Gm).

Proof. The first isomorphism is simply the fact that ((BG )∨)◦ is given by

τ60RHom(G [1],Gm[1]) ' Hom(G ,Gm).

Similarly, using the explicit description of (G ∨)◦ as τ60RHom(G ,Gm[1]), the other
isomorphisms follow from the fact that an object of a derived category, whose
cohomology is concentrated in a single degree, is isomorphic to that cohomology in
the corresponding degree.

We refer the reader to [Bro21] for an in-depth study of the Cartier duality of
commutative group stacks, whose focus is largely orthogonal to the content of the
following sections.

2.2. Computations of Cartier duals
Consider a base scheme S, and let G be an abelian sheaf on (Sch/S)fppf, regarded as
a commutative group stack. Our approach to computing the stacky Cartier dual G ∨

predominantly follows the method outlined in Proposition 2.1.8. We typically either
prove the vanishing of Ext1(G ,Gm) and calculate GD, or we establish that GD vanishes
and compute Ext1(G ,Gm). This section focuses on computing the Cartier duals GD

for some abelian sheaves G of interest.
Recall that an abelian scheme is a group scheme over S that is smooth, proper, and

has connected fibers.5 Additionally, a torus is a finite type group scheme over S that
is locally, with respect to the fpqc topology, isomorphic to a finite product of copies
of the multiplicative group Gm.6 As is customary, we will systematically denote the
Cartier dual TD of a torus T by X.

Proposition 2.2.1. Let A be an abelian scheme and T be a torus over a base scheme S. Then
the Cartier dual AD of A vanishes, and the Cartier dual X of T is representable by a group
scheme that is étale locally isomorphic to a finite product of copies of the constant group scheme
Z. Moreover, the Cartier dual of X is isomorphic to T .

Proof. Denote by p : A → S the structure map, and let T be an S-scheme. By the
universal property of the global spectrum, a morphism of schemes AT → Gm,T over T
5An abelian scheme is automatically of finite presentation, has geometrically connected fibers, and has
a commutative group law.

6A torus is automatically of finite presentation, affine, and faithfully flat over the base. Moreover, it is
étale locally isomorphic to a finite product of copies of Gm and has a commutative group law.
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is equivalent to a morphism of OT -algebras

OT [t, t−1]→ pT,∗OAT ' OT ,

where pT : AT → T is the base change of p [Stacks, Tag 0E0L]. It follows that every
morphism of schemes AT → Gm,T over T must be constant. If it is a morphism of
groups, it has to be trivial. This proves that AD vanishes. The statements about tori
are proven in [SGA 3II, Exp. X, Cor. 5.7].

Moving forward, we focus on the case where the base scheme S is the spectrum of a
characteristic zero field k. The following proposition recalls the standard setting for
Cartier duality [SGA 3I, Exp. VIIB, Prop. 2.2.2]. (Proposition 2.2.2 is independent of the
characteristic of k, but every other result below requires it to be zero.)

Proposition 2.2.2. Let G = SpecR be an affine commutative group scheme over k. Its Cartier
dualGD is represented by the formal group Spf R∗, where R∗ is the dual Hopf algebra. Moreover,
the double dual (GD)D is naturally isomorphic to G.

Let U be a commutative unipotent algebraic group over k. Since the exponential
map gives an isomorphism between U and its Lie algebra, U is necessarily a vector
group [Mil17, Prop. 14.32] and we denote by U∗ its vector space dual.

Proposition 2.2.3. Let U be a commutative unipotent algebraic group with dual U∗. Denote
by Û and Û∗ their formal completions along the zero sections. Then UD ' Û∗ and ÛD ' U∗.

Proof. The computation UD ' Û∗ follows from the fact that the dual of Sym(U∗) is the
completion of Sym(U) at the ideal of degree one elements. (Upon a choice of basis, this
is nothing but the isomorphism k[x1, . . . , xn]∗ ' kJx1, . . . , xnK.) The other computation
follows from this one by duality.

Given a k-algebra R, we have that “Ga(R) is the group of nilpotent elements in R and“Gm(R) is that of unipotent elements. We remark that the formal groups “Ga and “Gm
are isomorphic via the map “Gm(R)→ “Ga(R)

1+ x 7→ log(1+ x).

This phenomenon is a general property of formal groups in characteristic zero, and it
simplifies their study. (In positive characteristic, divided powers come on the scene,
and give rise to the group scheme7 G]

a; the crystalline counterpart of “Ga [Dri22].) The
following result already appeared in this thesis as Lemma 1.1.12.

7Not to be confused with the abelian sheaf G\
a of Definition 2.3.23.

97

https://stacks.math.columbia.edu/tag/0E0L


2. Cartier duality of commutative group stacks

Proposition 2.2.4 (Cartier). LetG be a commutative algebraic group over k and let g be its Lie
algebra, seen as a vector group. The formal completions of G and of g along their zero sections
coincide.

The preceding propositions enable us to compute the Cartier dual of the formal
completions of commutative algebraic groups. This result, with a slightly different
proof, also appears in [BB09, Lem. A.3.1].

Corollary 2.2.5. Let G be a commutative algebraic group over k and denote by g its Lie
algebra. The Cartier dual of the formal completion Ĝ is naturally isomorphic to g∗. This also
coincides with the invariant differentialsΩG of G.

We are now in position to compute the Cartier dual of the de Rham spaceGdR ' G/Ĝ
of a commutative connected algebraic group G.

Proposition 2.2.6. For a commutative connected algebraic group G over k, the Cartier dual of
GdR vanishes.

Proof. Recall from the Barsotti–Chevalley theorem [Mil17, Thm. 8.28 and Cor. 16.15]
that G is an extension of an abelian variety A by a product of a torus T and a unipotent
group U. Since the de Rham functor (−)dR is exact, the de Rham space GdR is an
extension of AdR by TdR ×UdR. Thus, we have an induced exact sequence

0→ Hom(AdR,Gm)→ Hom(GdR,Gm)→ Hom(TdR,Gm)× Hom(UdR,Gm),

and so it suffices to prove the result whenG is an abelian variety, a torus, or a unipotent
group.
Because the functor Hom(−,Gm) is left-exact, the vanishing of GDdR is equivalent to

the morphism Hom(G,Gm)→ Hom(Ĝ,Gm) being a monomorphism. We verify this
in the relevant particular cases. For abelian varieties, their vanishing Cartier dual
ensures this property. For a unipotent group U, the relevant morphism is isomorphic
to Û∗ → U∗, which is likewise monic per Corollary 1.1.5.
For a torus T , the question of whether Hom(T,Gm) → Hom(T̂ ,Gm) is a monomor-

phism is local on the base, allowing us to assume that T = Gm. Then the statement
boils down to the following: given a connected k-algebra R, if

Uni(B) ↪→ B× → B×

x 7→ x 7→ xn

is the unit map for every R-algebra B, then n = 0. Here, Uni(B) denotes the group of
unipotent elements in B. This can be proven by choosing B = R[z]/(z− 1)r for some
r > n, leading to the desired result.
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The hypothesis that G is connected in the Proposition 2.2.6 is essential. In general, a
commutative algebraic group G over k fits into a short exact sequence

0→ G0 → G→ π0(G)→ 0,

where G0 is the connected component of G containing the identity, and π0(G) is the
finite étale group of connected components. Proposition 1.1.6 states that the natural
map π0(G)→ π0(G)dR is an isomorphism, and the preceding result then implies that
the Cartier duals of GdR and π0(G) coincide.

2.3. Extensions by the multiplicative group
As in the previous section, consider a base scheme S and an abelian sheaf G on
(Sch/S)fppf. To continue our strategy outlined in the beginning of Section 2.2, we now
focus on computing the extension sheaves Ext1(G ,Gm). We start by revisiting a result
of Grothendieck.

Proposition 2.3.1 (Grothendieck). Let T be a torus over S with Cartier dual X. Then both
Ext1(T,Gm) and Ext1(X,Gm) vanish.

Proof. The vanishing of Ext1(T,Gm) was proved in [SGA 7I, Exp. VIII, Prop. 3.3.1]. As
for Ext1(X,Gm), its vanishing is a local property on S and so we may suppose that
X ' Z. Consequently, the result follows from the exactness of Hom(Z,−), which is
isomorphic to the identity functor.

For an abelian scheme A over S, the sheaf Ext1(A,Gm) is represented by the dual
abelian scheme A′. This is the so-called Barsotti–Weil formula, yet surprisingly, a
complete proof seems to be absent from the literature.8 A generalization of this result
is going to be proven in Theorem 2.3.10.

We now describe a strategy for computing extension sheaves in a very general setting,
in the hopes that it may also be useful elsewhere. Let G and A be abelian groups in a
1-topos X. As Exti(G ,A ) is the sheafification of the presheaf S 7→ ExtiS(G ,A ), there is
a natural morphism of groups

ExtiS(G ,A )→ Exti(G ,A )(S),

functorial on G , A , and S. The following simple result describes its kernel and cokernel
for i = 1. We recall that the cohomology groups Hi(S,−) are defined as the right
derived functors of Γ(S,−) := HomX(S,−) : Ab(X)→ Ab.

8For more, see [Jos09, Footnote to Thm. 1.2.2] and [Jos10].
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Proposition 2.3.2. Let S be an object and G ,A be abelian groups in a 1-topos X. Then the
kernel of the sheafification map Ext1S(G ,A ) → Ext1(G ,A )(S) is H1(S,Hom(G ,A )), and
its cokernel is H2(S,Hom(G ,A )).

Proof. The group of sections of Hom(G ,A ) over S is, by definition, HomS(G ,A ). In
particular, there is a Grothendieck spectral sequence, often called local-to-global spectral
sequence, whose five-term exact sequence yields the desired result.

Now that we have established a connection between extension sheaves and extension
groups, we will study a method for computing the latter. The following proposition,
initially suggested by Grothendieck in [SGA 7I, Exp. VII, Rem. 3.5.4] and partially
developed by Breen in [Bre69], has been independently proven by Deligne (in a letter
to Breen available in Appendix B) and by Clausen–Scholze [SC19, Thm. 4.10].

Proposition 2.3.3 (Breen–Deligne resolution). Let G be an abelian group in a 1-topos X.
There exists a functorial resolution of the form

· · · →
ni⊕
j=1

Z[G ri,j ]→ · · · → Z[G 3]⊕ Z[G 2]→ Z[G 2]→ Z[G ]→ G ,

where the ni and ri,j are all positive integers.

Clausen and Scholze’s proof shows that the first terms of the resolution can be
chosen in the following way:

Z[G 4]⊕ Z[G 3]⊕ Z[G 3]⊕ Z[G 2]⊕ Z[G ]
d3−→ Z[G 3]⊕ Z[G 2]

d2−→ Z[G 2]
d1−→ Z[G ]

d0−→ G ,

where the differentials are given by

d3([x, y, z, t]) = ([x+ y, z, t] − [x, y+ z, t] + [x, y, z+ t] − [x, y, z] − [y, z, t], 0)

d3([x, y, z]) = (−[x, y, z] + [x, z, y] − [z, x, y], [x+ y, z] − [x, z] − [y, z])

d3([x, y, z]) = ([x, y, z] − [y, x, z] + [y, z, x], [x, y+ z] − [x, y] − [x, z])

d3([x, y]) = (0, [x, y] + [y, x])

d3([x]) = (0, [x, x])

d2([x, y, z]) = [x+ y, z] − [x, y+ z] + [x, y] − [y, z]

d2([x, y]) = [x, y] − [y, x]

d1([x, y]) = [x+ y] − [x] − [y]

d0([x]) = x.

Here, the top d3([x, y, z]) acts on the first factor of Z[G 3], while the bottom d3([x, y, z])

acts on the second factor. In particular, this explicit description allows us to define two
important invariants.
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Definition 2.3.4. Let G and A be abelian groups in a 1-topos X. Applying the functor
HomAb(X)(−,A ) to the Breen–Deligne resolution of G , we obtain the complex

Γ(G ,A )→ Γ(G 2,A )→ Γ(G 3,A )⊕ Γ(G 2,A )

Γ(G 4,A )⊕ Γ(G 3,A )⊕ Γ(G 3,A )⊕ Γ(G 2,A )⊕ Γ(G ,A ).

We denote the first cohomology of this complex by H2s(G ,A ) and the second cohomol-
ogy by H3s(G ,A ).

� Remark 2.3.5. The invariant H2s(G ,A ) is usually known as the symmetric subgroup of
the second Hochschild cohomology group [Mil17, Chap. 15]. When X is the topos of
sets, it reduces to the subgroup of the group cohomology H2(G ,A ) constituted of the
symmetric cocycles. The (non-standard) notation H3s(G ,A ) indicates that this group is,
in some sense, a variant of the third Hochschild cohomology which is better adapted
to commutative groups. �

As usual, given an object S and an abelian groupA in a 1-toposX, the groupH1(S,A )

classifies A -torsors over S, where the group operation corresponds to the contracted
product [Gir71, §§III.2.4.2, III.2.4.5, III.3.5.4]. Moreover, a morphism f : T → S in X
induces a map of groups f∗ : H1(S,A ) → H1(T,A ). This map sends an A -torsor
P → S to the pullback f∗P → T [Gir71, §V.1.5.3]. When S = G is also an abelian group,
we define a subgroup H1m(G ,A ) of H1(G ,A ) constituted of the A -torsors over G

compatible with the group structure on the latter.

Definition 2.3.6. Let G and A be abelian groups in a 1-topos X. Denote bym : G ×G →
G the group operation of G , and by pr1, pr2 : G × G → G the natural projections. We
define H1m(G ,A ) as the kernel of the morphismm∗ − pr∗1− pr∗2.

Put simply, H1m(G ,A ) is the group of isomorphism classes of A -torsors P over G

satisfyingm∗P ' pr∗1 P ∧ pr∗2 P. Often, we say that these A -torsors are multiplicative.
With this terminology established, we may now explain the computation of the
extension groups.

Proposition 2.3.7 (Breen). Let G and A be abelian groups in a 1-topos X. There exists an
exact sequence

0→ H2s(G ,A )→ Ext1(G ,A )→ H1m(G ,A )→ H3s(G ,A )→ Ext2(G ,A ),

that is functorial in G and A .
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Before diving into the proof, let us explain the morphism Ext1(G ,A )→ H1m(G ,A ).
Since Ext1(−,A ) is an additive functor, an extension E of G by A always satisfies

m∗E = (pr1+ pr2)
∗E ' pr∗1 E + pr∗2 E ,

where the sum on the right is the Baer sum of extensions. Such an extension defines
an A -torsor P over G , which satisfiesm∗P ' pr∗1 P ∧ pr∗2 P.

Proof of Proposition 2.3.7. The universal property of free objects gives that Hi(G n,A )

is isomorphic to Exti(Z[G n],A ) for all n and i. Then, the Breen–Deligne resolution
yields an spectral sequence

Ei,j1 :

ni∏
r=1

Hj(G si,r ,A ) =⇒ Exti+j(G ,A ),

whose five-term exact sequence is precisely the one in the statement.

�

The Breen–Deligne resolution is generally not acyclic with respect to extension groups.
In the topos of sets, every torsor is trivial, and the proposition above recovers the
classical isomorphism H2s(G ,A ) ' Ext1(G ,A ), for any pair of abelian groups G

and A . However, we will see numerous examples of fppf sheaves G and A for which
H1m(G ,A ) is non-trivial.

� Remark 2.3.8. In [SGA 7I, Exp. VII, §1.2], Grothendieck proved that the category of
extensions of G by A is equivalent to a category of pairs (P, α), where P is a A -torsor
over G and α : m∗P → pr∗1 P∧pr∗2 P is an isomorphism of A -torsors over G ×G making
two diagrams (imposing that P admits an associative and commutative group law)
commute. In particular, Ext1(G ,A ) is isomorphic to the group of isomorphism classes
of such pairs, and our invariants H2s(G ,A ) and H3s(G ,A ) govern how far the map

Ext1(G ,A )→ H1m(G ,A )

[P, α] 7→ [P]

is from being an isomorphism. �

Even though the first terms of the Breen–Deligne resolution are explicit, the invariants
H2s(G ,A ) and H3s(G ,A ) are usually quite hard to compute. The following observation
will suffice for their computations in many interesting cases.

Lemma 2.3.9. Let G and A be abelian groups in a 1-topos X. If every morphism G n → A in X
(for n = 2, 3) can be expressed as a sum of maps G → A , then both H2s(G ,A ) and H3s(G ,A )

vanish. In particular, this condition is satisfied if every morphism G n → A is constant.
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Proof. First, we demonstrate that H2s(G ,A ) vanishes. The kernel of

Γ(G 2,A )→ Γ(G 3,A )⊕ Γ(G 2,A )

is composed of themaps f : G 2 → A that satisfy f(x+y, z)−f(y, z) = f(x, y+z)−f(x, y)

and f(x, y) = f(y, x). By applying the given hypothesis, we findmorphisms f1, f2 : G →
A such that f(x, y) = f1(x) + f2(y). This simplifies the first equation to

f1(x+ y) − f1(y) = f2(y+ z) − f2(y).

By setting x = y = 0 and y = z = 0, we observe that f must be constant. Next, the
image of

Γ(G ,A )→ Γ(G 2,A )

consists of maps of the form (x, y) 7→ g(x+y)−g(x)−g(y), for some g : G → A . Since
every constant map is of this form, it follows that the cohomology vanishes.
We will use the same strategy to show that H3s(G ,A ) also vanishes. The kernel of

the morphism

Γ(G 3,A )⊕ Γ(G 2,A )→ Γ(G 4,A )⊕ Γ(G 3,A )⊕ Γ(G 3,A )⊕ Γ(G 2,A )⊕ Γ(G ,A )

is composed of the maps p : G 3 → A and q : G 2 → A satisfying

p(x, y, z) + p(x, y+ z, t) + p(y, z, t) = p(x+ y, z, t) + p(x, y, z+ t) (1.1)
p(x, y, z) + p(z, x, y) + q(x, z) + q(y, z) = p(x, z, y) + q(x+ y, z) (2.1)

p(x, y, z) + p(y, z, x) + q(x, y+ z) = p(y, x, z) + q(x, y) + q(x, z) (3.1)
q(x, y) + q(y, x) = 0 (4.1)

q(x, x) = 0. (5.1)

To organize the reminder of the proof, we will denote a simplified version of the
Equation (n.i) as (n.i+ 1). Once again, we write p(x, y, z) = p1(x) + p2(y) + p3(z) for
some pi : G → A , and q(x, y) = q1(x) + q2(y) for some qi : G → A . Using Equation
(5.1), we replace every instance of q2 by −q1. This yields the following relations.

p3(z) + p1(x) + p2(y+ z) + p1(y) + p3(t) = p1(x+ y) + p3(z+ t) (1.2)
p2(y) + p3(z) + p1(z) + p2(x) + q1(x) + q1(y) = p2(z) + q1(x+ y) + q1(z) (2.2)
p1(x) + p2(y) + p2(z) + p3(x) + q1(y) + q1(z) = p2(x) + q1(y+ z) + q1(x) (3.2)

By setting x = y = 0 in Equations (2.2) and (3.2), we obtain

p2(0) + p3(z) + p1(z) + q1(0) = q1(z) (2.3)
p1(0) + p2(z) + p3(0) = 0. (3.3)
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With this information, we can simplify Equation (1.2):

p3(z) + p1(x) + p2(0) + p1(y) + p3(t) = p1(x+ y) + p3(z+ t). (1.3)

Restricting this equation to x = 0 and t = 0 gives two new relations, implying that p1
and p3 are essentially morphisms of groups up to constants.

p1(x) + p1(y) − p1(0) = p1(x+ y) (1.4)
p3(z) + p3(t) − p3(0) = p3(z+ t) (1.5)

In summary, we have obtained the following equations:

p1(x) + p1(y) − p1(0) = p1(x+ y) (1.4)
p3(z) + p3(t) − p3(0) = p3(z+ t) (1.5)

p1(z) − p1(0) + p3(z) − p3(0) = q1(z) − q1(0) (2.3)
p1(0) + p2(z) + p3(0) = 0. (3.3)

Finally, to prove that H3s(G ,A ) vanishes, we need to find a morphism h : G 2 → A

such that

p(x, y, z) = h(x+ y, z) − h(x, y+ z) + h(x, y) − h(y, z)

q(x, y) = h(x, y) − h(y, x).

A quick verification using the previously established equations shows that the mor-
phism h(x, y) := p1(x) − p3(y) satisfies this criterion.

In order to profit from this machinery, we return to the settingwhere X is the category
of sheaves on (Sch/S)fppf, for a given base scheme S. The promised generalization of
the Barsotti–Weil formula now follows directly from the preceding results.

Theorem 2.3.10 (Generalized Barsotti–Weil formula). Let A be an abelian scheme and B
an affine commutative group scheme over S. For an S-scheme T , the natural maps

Ext1(A,B)(T)← Ext1T (A,B)→ H1m(AT , BT )

are isomorphisms.

Proof. The argument used in the proof of Proposition 2.2.1 shows that Hom(A,B)

vanishes. In particular, Proposition 2.3.2 provides the desired isomorphism on the left.
Similarly, Lemma 2.3.9 yields the isomorphism on the right.

� Remark 2.3.11. Taking the Breen–Deligne resolution for granted, the proof of Theo-
rem 2.3.10 is remarkably straightforward. While the application of Lemma 2.3.9 may
seem intricate, the Generalized Barsotti–Weil formula actually follows from a simpler
special case of the lemma, where every morphism G n → A is constant—this case is
significantly easier to establish. �
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Specifically, the Theorem 2.3.10 generalizes the results in the Section VII.3 of Serre’s
book [Ser88].

Corollary 2.3.12. Let A be an abelian scheme over S and T an S-scheme. Then the natural
maps

Ext1(A,Ga)(T)← Ext1T (A,Ga)→ H1(AT ,OAT )

are isomorphisms.

Proof. The content of this corollary is that every element ofH1(AT ,OAT ) ismultiplicative.
Letm : AT ×T AT → AT denote the group law, and let pr1, pr2 : AT ×T AT → AT be the
natural projections. By the Künneth formula, the map

H1(AT ,OAT )⊕ H1(AT ,OAT )→ H1(A2T ,OA2T )

(x, y) 7→ pr∗1 x+ pr∗2 y

is an isomorphism. In particular, given an element z of H1(AT ,OAT ), there exist
x, y ∈ H1(AT ,OAT ) satisfying

pr∗1 x+ pr∗2 y = m∗z.

Restricting this to AT ×T T ↪→ AT ×T AT , we obtain x = z. Similarly, restricting it to
T ×T AT ↪→ AT ×T AT , we obtain y = z.

Corollary 2.3.13. Let A be an abelian scheme over S. Then Ext1(A,Gm) is representable by
the dual abelian scheme A′. More generally, if H is an extension of a finite locally free group
scheme by a torus over S, we have an isomorphism Ext1(A,H) ' Hom(HD, A′).

Proof. For an S-scheme T , the T -points of the dual abelian scheme A′ are given by
H1m(AT ,Gm).9 The first statement then follows as an application of Theorem 2.3.10.
The second statement can be proven similarly to [Jos09, Prop. 1.2.3].

Under additional hypotheses on the base scheme S, we can also apply Lemma 2.3.9
to a broader class of commutative group schemes over S. The following proposition
extends a result by Colliot-Thélène and Gabber [Col08, Prop. 3.2 and Thm. 5.6]. Their
method of proof can also be applied to our setting, but this result follows directly from
our machinery.

Theorem 2.3.14. LetG be a commutative group scheme over a reduced base S. Assume that the
morphism G→ S is smooth, surjective, and has connected geometric fibers. Then the natural
map

Ext1S(G,Gm)→ H1m(G,Gm)

is an isomorphism.
9See the discussion at the beginning of [GW23, §27.41].
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Proof. This result is a direct application of Lemma 2.3.9, using González-Avilés’ gener-
alization of Rosenlicht’s lemma [Gon17, Thm. 1.1]. For the reader’s convenience, we
note that this result holds more generally in the following context: G is a commutative
group scheme over a reduced base S such that G→ S is syntomic, surjective, and has
reduced, connected maximal geometric fibers. Here, a maximal geometric fiber of
G→ S is a schemeG×SSpec κ(η), for some generic point η of an irreducible component
of S.

Henceforth, we concentrate on the case where the base scheme is the spectrum
of a characteristic zero field. We start by using Proposition 2.3.2 to prove that the
sheafification map is an isomorphism in certain cases.

Proposition 2.3.15. Let T be a torus andU be a unipotent group over a characteristic zero field k.
The sheafification map Ext1S(T,Gm)→ Ext1(T,Gm)(S) is an isomorphism for an irreducible
geometrically unibranch k-scheme S. Similarly, the map Ext1S(U,Gm)→ Ext1(U,Gm)(S) is
an isomorphism for a k-scheme S that is either reduced or affine.

Proof. Let S be an irreducible geometrically unibranch k-scheme. Proposition 2.3.1
states that the sheaf Ext1(T,Gm) vanishes, so the desired result is equivalent to the
vanishing of the cohomology group H1(S, X) = 0, where X := TD is the Cartier dual of
T . This holds due to [SGA 7I, Exp. VIII, Prop. 5.1].

For the unipotent case, we may assume thatU = Ga. If S is an affine scheme, [Bha22,
Rem. 2.2.18] implies that Hi(S,“Ga) vanishes for all i 6= 0. We claim that, for a reduced
k-scheme S, the cohomology groups Hi(S,“Ga) vanish for all i. First, we prove that the
étale cohomology groups Hiét(S,

“Ga) vanish, and then we identify these groups with
their fppf analogues.
Recall that “Ga(SpecR) is the nilradical of a k-algebra R. Thus, the sheaf condition

implies that “Ga(S) vanishes for reduced S. Next, the cohomology Hiét(S,
“Ga) can be

computed on the small étale site of S and, according to [Stacks, Tag 03PC.(8)], the
restriction of “Ga to this site vanishes.

Since Ga,dR is the presheaf quotient of Ga by “Ga, we obtain the following morphism
of long exact sequences:

0 Γ(S,“Ga) Γ(S,Ga) Γ(S,Ga,dR) H1(S,“Ga) H1(S,Ga) · · ·

0 Γ(S,“Ga) Γ(S,Ga) Γ(S,Ga,dR) H1ét(S,
“Ga) H1ét(S,Ga) · · · .

Given that S is reduced, we have shown that Hiét(S,
“Ga) = 0 for all i. Moreover, since

Ga is smooth, the natural map Hi(S,Ga)→ Hiét(S,Ga) is an isomorphism. Using these
facts, a diagram chase gives that Hi(S,“Ga) vanishes for all i.
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To understand the sheafification map Ext1S(G,Gm) → Ext1(G,Gm)(S) for a con-
nected commutative algebraic group G over a characteristic zero field, we need the
following vanishing result.

Proposition 2.3.16. Let U be a unipotent group over a characteristic zero field k. Then the
group Ext1(U,Gm)(S) vanishes for all seminormal k-schemes S.

Proof. Since seminormal schemes are reduced [Stacks, Tag 0EUQ], Theorem 2.3.14
and Proposition 2.3.15 imply that Ext1(U,Gm)(S) ' H1m(US,Gm,S). Denoting by
p : US → S the structure map, Traverso’s theorem [Sad21, Lem. 4.3] gives that

p∗ : H1(S,Gm)→ H1(US,Gm)

is an isomorphism. In particular, H1m(US,Gm) is isomorphic to the subgroup of
H1(S,Gm) consisting of elements x ∈ H1(S,Gm) that satisfy p∗x ∈ H1m(US,Gm). Next,
denote bym : US ×S US → US the group operation and by pri : US ×S US → US the
natural projections. Then, p∗x lies in H1m(US,Gm) if and only if

m∗p∗x = pr∗1 p
∗x+ pr∗2 p

∗x.

However, the morphisms p ◦m, p ◦ pr1, and p ◦ pr2 are all equal to the structure map
of U2S, which has a section S→ U2S. Thus,m∗p∗x = pr∗1 p

∗x+ pr∗2 p
∗x holds if and only

if x = 0, completing the proof.

� Example 2.3.17 — Schanuel’s module. Let k be a characteristic zero field. Although the
group Ext1(Ga,Gm)(S) vanishes for seminormal k-schemes S, the sheaf Ext1(Ga,Gm)

is non-trivial. In [Ros23, Rem. 2.2.16], Rosengarten constructs an example (due to
Gabber) of an extension of Ga by Gm that does not split locally in the fppf topology.
Here, we construct another non-zero section of Ext1(Ga,Gm).
Let R = k[x, y]/(y2 − x3) be the coordinate ring of a cusp. Since R is reduced,

Theorem 2.3.14 and Proposition 2.3.15 provide isomorphisms

Ext1(Ga,Gm)(R)
∼←− Ext1R(Ga,Gm)

∼−→ H1m(Ga,R,Gm) ⊂ Pic(R[t]).

Now, consider the fractional ideals I = (x, 1+ yt/x) and J = (x, 1− yt/x) of R[t]. As

1 = x2t4 + (1+ xt2)(1− xt2) ∈ IJ = (x2, x+ yt, x− yt, 1− xt2),

the ideal I is invertible and thus defines an element of Pic(R[t]). The fractional ideal
m∗J pr∗1 I pr∗2 I of R[t1, t2] is(

x3, x2 + xyt1, x
2 + xyt2, x+ y(t1 + t2) + x

2t1t2, x
2 − xy(t1 + t2),

x− (x2t1 + y)(t1 + t2) + yt1, x− (x2t2 + y)(t1 + t2) + yt2,

1+ xt1t2 − x(t1 + t2)
2 − yt1t2(t1 + t2)

)
.
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As one can verify in their preferred programming language, this ideal also contains
1; proving that I lies in the subgroup Ext1(Ga,Gm)(R) ' H1m(Ga,R,Gm) of Pic(R[t]).
The following code provides an implementation in Macaulay2.

1 -- Define the ideal ’prod’ with the given generators

2 Rt1t2 = ZZ[x, y, u, v] / (y^2 - x^3)

3 prod = ideal(

4 x^3,

5 x^2 + x*y*u,

6 x^2 + x*y*v,

7 x + y*(u + v) + x^2*u*v,

8 x^2 - x*y*(u + v),

9 x - (x^2*u + y)*(u + v) + y*u,

10 x - (x^2*v + y)*(u + v) + y*v,

11 1 + x*u*v - x*(u + v)^2 - y*u*v*(u + v)

12 )

13

14 -- Compute a Groebner basis and the change of basis matrix,

15 -- which provides the coefficients for writing 1 as a linear

16 -- combination of the generators of ’prod’

17 grob = gb(prod, ChangeMatrix => true)

18 mat = getChangeMatrix(grob)

19

20 -- Print the results

21 gens grob

22 mat

The reader is spared the pain of seeing 1 as a page-long linear combination of the
generators ofm∗J pr∗1 I pr∗2 I. �

� Remark 2.3.18 — Schanuel’s module in positive characteristic. Let k be a field of char-
acteristic p > 0. The previous example gives a k-scheme S such that Ext1S(Ga,Gm) '
H1m(Ga,S,Gm) 6= 0. However, it is no longer true thatExt1(Ga,Gm)(S) ' Ext1S(Ga,Gm).

Given a k-algebra R, the colimit Rperf of the tower

R
x 7→xp−−−−→ R

x 7→xp−−−−→ R
x 7→xp−−−−→ · · ·

is known as the colimit perfection of R. It is always a perfect k-algebra, and the natural
map R→ Rperf is universal among morphisms from R to perfect algebras. The kernel
of R→ Rperf is the nilradical of R, and R→ Rperf is surjective if R is semiperfect.10

10An Fp-algebra R is said to be semiperfect if the Frobenius endomorphism is surjective.
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In [Bha22, Rem. 2.2.18], Bhatt proves that RΓ(R,“Ga) ' [R→ Rperf], where the complex
is in degrees zero and one. In particular, H2(R,“Ga) vanishes, but H1(R,“Ga) may not.
Therefore, for S = Spec k[x, y]/(y2 − x3), the sheafification map

Ext1S(Ga,Gm)→ Ext1(Ga,Gm)(S)

is surjective but not injective. More precisely, Rosengarten has recently proven that the
sheaf Ext1(Ga,Gm) vanishes [Ros23, Prop. 2.2.14]. �

We are now in position to prove the promised enhancement of Theorem 2.3.14, for
commutative connected algebraic groups over a characteristic zero field.

Theorem 2.3.19. Let G be a commutative connected algebraic group over a characteristic zero
field k. For a regular k-scheme S, the natural maps

Ext1(G,Gm)(S)← Ext1S(G,Gm)→ H1m(GS,Gm)

are isomorphisms.

Proof. That the arrow on the right is an isomorphism was already proven in Theo-
rem 2.3.14. This result holds even if S is merely assumed to be reduced. For the
reader’s convenience, we note that the hypotheses of Theorem 2.3.14 are satisfied due
to [Mil17, Cor. 1.32 and 8.39].
We now turn our attention to the sheafification map on the left. As in the proof of

Proposition 2.2.6, we know that G is an extension of an abelian variety A by a linear
group L, that is a product of a torus T and a unipotent group U. This leads to the
commutative diagram

HomS(L,Gm) Ext1S(A,Gm) Ext1S(G,Gm) Ext1S(L,Gm)

Hom(L,Gm)(S) Ext1(A,Gm)(S) Ext1(G,Gm)(S) Ext1(L,Gm)(S),

∼ ∼

whose rows are exact. Propositions 2.3.1 and 2.3.16 imply that Ext1(L,Gm)(S) vanishes,
and Proposition 2.3.15 further ensures that Ext1S(L,Gm) = 0. The desired result then
follows from a diagram chase.

The following example demonstrates that the map Ext1S(G,Gm)→ Ext1(G,Gm)(S)

may not be an isomorphism if S is not regular.

� Example 2.3.20. Let k be an algebraically closed field of characteristic zero, and consider
the nodal curve S = Spec k[x, y]/(y2−x3+x2). The proof of Proposition 2.3.7 indicates
that Ext1S(Gm,Gm) can be computed in the étale topology. Since Grothendieck’s
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2. Cartier duality of commutative group stacks

proof of Proposition 2.3.1 also shows that Ext1(Gm,Gm) vanishes on the étale site,
Proposition 2.3.2 gives that

Ext1S(Gm,Gm) ' H1ét(S,Z).

Denote by f : P1k → S the normalization map, and by i : Spec k→ S the inclusion of
the singular point. As one can verify, we have a short exact sequence

0→ Z→ f∗Z→ i∗Z→ 0,

implying that H1ét(S,Z) ' Z. In particular, the sheafification map Ext1S(Gm,Gm) →
Ext1(Gm,Gm)(S) is not an isomorphism. �

We also prove an analogue of Theorem 2.3.14 for de Rham spaces.

Theorem 2.3.21. Let G be a commutative connected algebraic group over a characteristic zero
field k. For a reduced k-scheme S, the natural maps

Ext1(GdR,Gm)(S)← Ext1S(GdR,Gm)→ H1m(GdR × S,Gm)

are isomorphisms.

Proof. Proposition 2.2.6 asserts that the Cartier dual of GdR vanishes. Consequently,
Proposition 2.3.2 implies that the map on the left is an isomorphism for all k-schemes
S. To show that the map on the right is also an isomorphism for reduced k-schemes S,
we use Lemma 2.3.9.

Consider a morphism of S-schemes f : GndR × S→ Gm,S, where n is either 2 or 3. As
in the proof of Theorem 2.3.14, there exist morphisms fi : GS → Gm,S for i = 1, . . . , n,
such that their product equals the composition

GnS → GndR × S→ Gm,S.

Since epimorphisms in topoi are stable under base change, Proposition 1.1.19 implies
that the map GnS → GndR × S is an epimorphism. Therefore, the morphisms fi factor
through the quotient, yielding maps

fi : GdR × S→ Gm,S,

whose product is equal to f.

Our final proposition in this section is a vanishing result for extension sheaves of
commutative formal groups, whose proof may be found in [Rus13, Lem. 1.14]. This
result is primarily used for the formal completion Ĝ of a commutative connected
algebraic group G over a field of characteristic zero, where it was first presented in
[BB09, Lem. A.4.6].
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Proposition 2.3.22. Let G be a commutative formal group over a field whose Cartier dual is of
finite type. Then Ext1(G ,Gm) vanishes.

In order to have a bird’s-eye view of this section, consider the following definition.

Definition 2.3.23. Let G be a commutative connected algebraic group over a character-
istic zero field k. We denote the abelian sheaf Ext1(GdR,Gm) by G\, and the abelian
sheaf Ext1(G,Gm) by G′.

Denote by m : G × G → G the group law of G. For a reduced k-scheme S, Theo-
rem 2.3.21 gives isomorphisms

G\(S) := Ext1(GdR,Gm)(S)
∼←− Ext1S(GdR,Gm)

∼−→ H1m(GdR × S,Gm)

that are functorial on G and S. In other words, G\(S) is isomorphic to the set of
isomorphism classes of line bundles L on GS with integrable connection∇ relative
to S satisfyingm∗(L ,∇) ' (L ,∇)� (L ,∇). Moreover, the group structure of G\(S)

corresponds to the tensor products of connections.
Similarly, for a regular k-scheme S, Theorem 2.3.14 yields isomorphisms

G′(S) := Ext1(G,Gm)(S)
∼←− Ext1S(G,Gm)

∼−→ H1m(GS,Gm)

that are functorial on G and S. As above, this implies that G′(S) can be identified to
the group of isomorphism classes of line bundles L on GS satisfyingm∗L ' L �L .

The following remark explains our choice of notation in Definition 2.3.23.

� Remark 2.3.24. LetA be an abelian variety over a characteristic zero field k. According
to Corollary 2.3.13, the abelian sheaf A′ in Definition 2.3.23 is represented by the dual
abelian variety. Thus, our notation is not overloaded.
By considering the long exact sequence in cohomology associated with the Cartier

duality functor (−)D := Hom(−,Gm) and the short exact sequence

0→ Â→ A→ AdR → 0,

we deduce that A\ is an extension of A′ by ΩA, the vector group of the invariant
differentials of A. (Consequently, A\ is representable by an algebraic group.11) We
affirm that A\ is the universal vector extension of A′ as defined in [MM74, §I.1].

The proof of Theorem 2.3.21 provides natural isomorphisms

A\(S) := Ext1(AdR,Gm)(S)
∼←− Ext1S(AdR,Gm)

∼−→ H1m(AdR × S,Gm)

for all k-schemes S. This implies that the presheaf S 7→ H1m(AdR × S,Gm) already
satisfies fppf descent. Therefore, the sheafification in the definition of E\ [MM74, Def.
I.4.1.6] is superfluous, leading to the identification A\ ' E\.
11We refer the reader to Remark 3.1.3 for more explanations.
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2. Cartier duality of commutative group stacks

Mazur andMessing also define an abelian sheaf Ext\(A,Gm) which, by Remark 2.3.8,
is isomorphic to A\ = Ext1(AdR,Gm). In particular, our methods reprove their [MM74,
Prop. I.4.2.1], which compares Ext\(A,Gm) and E\. Finally, from [MM74, Props. I.2.6.7
and I.3.2.3], we conclude that A\ is indeed the universal vector extension of A′. �

2.4. Higher extensions of abelian schemes
Even though the stacky Cartier dual G∨ of a commutative group stack G contains
no information about the higher extension sheaf Ext2(G◦,Gm), some homological
arguments may require its vanishing. For an abelian scheme A over a regular base S,
the vanishing of Ext2(A,Gm) has been claimed in [Bre75, Rem. 6], [Jos09, Thm. 1.2.5],
and [Bro21, Cor. 11.5].
However, in each instance, this result is deduced from [Bre69, §7], and additional

arguments appear to be lacking. To address this gap, in this section, written in col-
laboration with Zev Rosengarten, we establish that both Ext2(A,Ga) and Ext2(A,Gm)

vanish in characteristic zero without any regularity assumptions on the base scheme S.
We start by establishing a Künneth formula for the cohomology of an abelian scheme

over an arbitrary ring.

Lemma 2.4.1. Let A be an abelian scheme over a ring R. Then the R-module Hn(A2,OA2)

is the direct sum of Hi(A,OA) ⊗R Hj(A,OA) for i + j = n. In particular, H1(A2,OA2) is
isomorphic to H1(A,OA)⊕ H1(A,OA).

Proof. SinceA is flat over R, we have RΓ(A2,OA2) ' RΓ(A,OA)⊗L
RRΓ(A,OA), as shown

in [Stacks, Tag 0FLQ]. Consider a projective resolution P of RΓ(A,OA). The Künneth
spectral sequence, whose second page is

Ep,q2 =
⊕
i+j=q

TorpR(H i(P),H j(P)) '
⊕
i+j=q

TorpR(Hi(A,OA),Hj(A,OA)),

converges to H p+q(P ⊗R P) ' Hp+q(A2,OA2). Note that Hi(A,OA) is a finite locally
free R-module for all i due to [GW23, Thm. 27.203]. Consequently, these TorpR all vanish
for p > 0 and the spectral sequence degenerates.

Theorem 2.4.2. Let A be an abelian scheme over a ring R, and letM be an R-module. Then
Ext2R(A,M) = 0.

Proof. Consider the structure map p : A → SpecR. We claim that Hj(A, p∗M) is
isomorphic to Hj(A,OA)⊗RM for all j. Using the projection formula, we obtain

RΓ(A,p∗M) ' RΓ(A,OA ⊗L
OA

Lp∗M) ' RΓ(A,OA)⊗L
RM.
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2.4. Higher extensions of abelian schemes

The claim then follows from [GW23, Thm. 27.203], which states that RΓ(A,OA) is a
bounded complex with finite, locally free cohomology modules.
Next, we compute Ext2R(A,M) using the Breen–Deligne spectral sequence, as in

the proof of Proposition 2.3.7. To simplify notation, let Hi,j denote the R-module
Hi(Aj,OAj)⊗RM. We explicitly write the beginning of the first page.

H2,1 H2,2 H2,3 ⊕ H2,2 H2,4 ⊕ H2,3 ⊕ H2,3 ⊕ H2,2 ⊕ H2,1

H1,1 H1,2 H1,3 ⊕ H1,2 H1,4 ⊕ H1,3 ⊕ H1,3 ⊕ H1,2 ⊕ H1,1

H0,1 H0,2 H0,3 ⊕ H0,2 H0,4 ⊕ H0,3 ⊕ H0,3 ⊕ H0,2 ⊕ H0,1

Here, the maps on the left are given by (m∗ − pr∗1− pr∗2)⊗ id, wherem : A×A→ A is
the group operation. The maps on the middle are given by

(pr∗1,2−(id×m)∗ + (m× id)∗ − pr∗2,3, id
∗−τ∗)⊗ id,

where τ : A×A→ A×A permutes the factors. Similarly, the maps on the right can be
computed using the formulas described just after Proposition 2.3.3.

Although [GW23, Lem. 27.209] assumes that R is a field andM = R, the same proof
shows that the map H2,1 → H2,2 is injective by replacing [GW23, Cor. 27.200] with
[GW23, Cor. 27.204]. Furthermore, since H0(Aj,OAj) = R for all j, the cohomology of
the bottom row at H0,3 ⊕ H0,2 is the cohomology of the complex

M M⊕2 M⊕5

x (0, 0)

(x, y) (−x,−x− y, x− y, 2y, y),

that is clearly exact.
To show that the cohomology of the middle row at H1,2 vanishes, it suffices to

prove that the map H1,2 → H1,3 is injective. According to Lemma 2.4.1, we have
isomorphisms H1,2 ' (H1,1)⊕2 and H1,3 ' (H1,1)⊕3. Now, consider the composition

H1,1 → (H1,1)⊕2 ' H1,2 → H1,3 ' (H1,1)⊕3 → H1,1,

where the middle map is one of {pr∗1,2, (id×m)∗, (m × id)∗, pr∗2,3}, and the other two
arrows are natural injections and projections. This composition can be geometrically
described as the pullback by

A→ A×R A×R A→ A×R A→ A,

where the first map is the natural closed immersion of a factor, the middle map is one
of {pr1,2, id×m,m× id, pr2,3}, and the last map is a projection.
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2. Cartier duality of commutative group stacks

By considering all possible inclusionsH1,1 → (H1,1)⊕2, middlemaps, and projections
(H1,1)⊕3 → H1,1, we see that the map H1,2 → H1,3 acts as

(H1,1)⊕2 (H1,1)⊕3

(x, y) (x, 0,−y),

which is clearly injective. This finishes the proof.

Corollary 2.4.3. LetA be an abelian scheme over a base scheme S, and letM be a quasi-coherent
OS-module. Then Ext2(A,M) vanishes. In particular, Ext2(A,Ga) = 0.

We now turn to the main result of this section.

Theorem 2.4.4. Let A be an abelian scheme over a characteristic zero scheme S. Then
Ext2(A,Gm) = 0.

The proof of Theorem 2.4.4 requires several lemmas. Readers are encouraged to
proceed directly to its proof and refer back to the lemmas as needed.

Lemma 2.4.5. Let A an abelian scheme over a base scheme S. For every non-zero integer n, the
multiplication-by-n map on Ext2(A,Gm) is injective.

Proof. According to [GW23, Prop. 27.186], we have a short exact sequence of abelian
sheaves

0→ A[n]→ A
n−−→ A→ 0,

where A[n] is a finite locally free group scheme over S. Passing to the long exact
sequence in cohomology, we obtain the exact sequence

Ext1(A[n],Gm)→ Ext2(A,Gm)
n−−→ Ext2(A,Gm)

and Ext1(A[n],Gm) vanishes due to [SGA 7I, Exp. VIII, Prop. 3.3.1].

Lemma 2.4.6. Let S = SpecR0 be an affine scheme, and let T = SpecR for an R0-algebra
R. Suppose R is a filtered colimit colimRλ of R0-algebras, and let Tλ = SpecRλ. Then, for
all commutative group schemes G and H over S such that H → S is smooth, we have that
ExtiT (G,H) is the filtered colimit of the ExtiTλ(G,H) for all i.

Proof. As filtered colimits of abelian groups are exact, this result follows from the
Breen–Deligne spectral sequence in conjunction with [SGA 4II, Exp. VII, Cor. 5.9].

Lemma 2.4.7. Let A be an abelian scheme over a noetherian ring R. Then the restriction map
Ext2R(A,Gm)→ Ext2Rred

(A,Gm) is injective.
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2.4. Higher extensions of abelian schemes

Proof. Let I ⊂ R be an arbitrary nilpotent ideal, and let n denote its index of nilpotency.
We will show that the map Ext2R(A,Gm)→ Ext2R/I(A,Gm) is injective, which suffices
due to the noetherianity of R. Note that the quotient map R→ R/I factors as

R = R/In → R/In−1 → . . .→ R/I2 → R/I = Rred,

where every map is surjective and has a square-zero kernel. Consequently, we may
assume that n = 2. Additionally, we remark that the Breen–Deligne spectral sequence
allow us to compute the extension groups on the respective small étale sites.
Let i : SpecR/I→ SpecR be the natural closed immersion. Since I2 = 0, we have a

short exact sequence of étale sheaves

0→ I→ Gm,R → i∗Gm,R/I → 0.

The exactness of i∗ then implies that

Ext2R(A, I)→ Ext2R(A,Gm)→ Ext2R/I(A,Gm)

is exact, and the result follows from Theorem 2.4.2.

We extend our gratitude to Gabber for drawing our attention to the paper [KM23],
which facilitated the proof of our next lemma.

Lemma 2.4.8. Let (R,m) be a complete noetherian local ring and let A be an abelian scheme
over R. Assume that that the residue field R/m has characteristic zero. Then the natural map
Ext2R(A,Gm)→ limn Ext2R/mn(A,Gm) is injective.

Proof. Let n be a non-negative integer. For simplicity, we make the convention that the
0-th power of an ideal is the zero ideal, so R/m0 ' R. As in Definition 2.3.6, we denote
the kernel of the natural map H2(AR/mn ,Gm) → H2(A2R/mn ,Gm) as H2m(AR/mn ,Gm).
By the Breen–Deligne spectral sequence, there is an exact sequence

0→ Qn → Ext2R/mn(A,Gm)→ H2m(AR/mn ,Gm),

where Qn is the middle cohomology of the complex

Mn :=
î
H1(AR/mn ,Gm)→ H1(A2R/mn ,Gm)→ H1(A3R/mn ,Gm)⊕ H1(A2R/mn ,Gm)

ó
.

The left-exactness of the lim functor then provides the commutative diagram

0 Q0 Ext2R(A,Gm) H2m(A,Gm)

0 limQn lim Ext2R/mn(A,Gm) lim H2m(AR/mn ,Gm),
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2. Cartier duality of commutative group stacks

where both rows are exact. Since [KM23, Thm. 11.11] implies that the right-most
vertical arrow is injective, it suffices to prove the same for the left-most one.

By [KM23, Prop. 5.3], the natural morphism of complexes M0 → limMn is an
isomorphism, making the map Q0 → limQn a comparison between H 1(limMn) and
lim H 1(Mn). Here is one way of understanding this comparison.

Given an additive functor F : A→ B between Grothendieck abelian categories and a
complexM in A, there exist two "hypercohomology" spectral sequences

Di,j1 = RjF(Mi) and Ei,j2 = RiF(H j(M)),

that converge to H i+j(RF(M)). IfM is constituted of F-acyclic objects, the first spectral
sequence degenerates at the second page, proving that the second spectral sequence
converges to H i+j(F(M)). Furthermore, when RiF vanishes for i > 1, this spectral
sequence yields a short exact sequence

0→ R1F(H i−1(M))→H i(F(M))→ F(H i(M))→ 0.

An additional application of [KM23, Thm. 11.11] demonstrates that the terms in
our complexMn are acyclic with respect to the lim functor. Therefore, our preceding
discussion applies with F = lim, yielding a short exact sequence

0→ lim1H1m(AR/mn ,Gm)→ Q0 → limQn → 0.

The abelian group H1m(AR/mn ,Gm) is isomorphic to the R/mn-points of the dual
abelian scheme A′. The formal smoothness of A′ implies that the natural map

A′(R/mn+1)→ A′(R/mn)

is surjective for all n. Consequently, the pro-object {H1m(AR/mn ,Gm)} satisfies the
Mittag–Leffler property, concluding the proof.

We are now in position to prove the main result of this section.

Proof of Theorem 2.4.4. Let T → S be a morphism of schemes, and let E be an element of
Ext2T (A,Gm). By the Lemma 2.4.5, we need to prove that E is fppf-locally torsion. Up
to taking affine covers, we may suppose that T = SpecR and S = SpecR0. The Lemma
2.4.6 and [Stacks, Tag 00QN] imply that we can suppose R to be a finitely presented
R0-algebra. By [GW23, Rem. 27.91] and [Stacks, Tag 05N9] we can further assume that
R0 is a finite type Z-algebra. Lastly, Lemma 2.4.7 asserts that we may also assume T is
reduced.
Let η be a generic point of T . Since T is reduced, we have that OT,η is already

the residue field κ(η) [Stacks, Tag 00EU]. In particular, κ(η) is the filtered colimit of
coordinate rings of affine opens containing η. From Lemma 2.4.6 and [Bre69, §7], there
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2.4. Higher extensions of abelian schemes

exists an open subset of T containing ηwhere E is torsion. Taking the union of all such
opens for each generic point yields a dense open subset U of T where E is torsion.

Consider an irreducible component Z of T \Uwith generic point ξ, and let B := OT,ξ

be its local ring. The completion B̂ is a local ring with maximal ideal m and, for all
n > 1, the composition

B̂→ B̂/mn → (B̂/mn)red ' B̂/m

is the quotient map. Thus, Lemmas 2.4.7 and 2.4.8 imply that both maps below

Ext2“B(A,Gm)→ lim
n

Ext2“B/mn(A,Gm)→
∞∏
n=1

Ext2“B/m(A,Gm)

are injective. According to [Bre69, §7], Ext2“B/m(A,Gm) is torsion, and then so is
Ext2“B(A,Gm).

Given that the local ring B = OT,ξ is excellent, Popescu’s theorem [Stacks, Tag 07GC]
states that the completion B̂ is a filtered colimit of smooth B-algebras Bλ. By Lemma
2.4.6, the pullback of E to SpecBλ is torsion for some λ, which we now fix.
Now, since B is the filtered colimit of the coordinate rings of affine open neighbor-

hoods of η, we can spread out themap SpecBλ → SpecB to a smoothmorphism Y → V ,
where V is an affine neighborhood of η. Furthermore, Bλ is the filtered colimit of the
coordinate rings of all Y mapping smoothly to V with image containing ξ. According
to Lemma 2.4.6, by further narrowing down Y, E becomes torsion on Y.

Let f be the composition Y → V → T . Since Z is irreducible, Z∩ f(Y) is a dense open
subset of it (and so its complement is lower-dimensional). By reiterating the same
procedure, which finishes after a finite number of steps since T is noetherian, we can
find an fppf cover of this complement where E is torsion. Gathering these maps for
each irreducible component of T \U, together with U→ T , we obtain an fppf cover of
T where E is torsion.

Corollary 2.4.9. LetA be an abelian variety over a characteristic zero field k. Then the abelian
sheaf Ext2(AdR,Gm) vanishes.

Proof. The abelian sheaf Ext2(AdR,Gm) fits into the exact sequence

Ext1(Â,Gm)→ Ext2(AdR,Gm)→ Ext2(A,Gm),

and the extremities vanish by the preceding theorem, alongwith Proposition 2.3.22.
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3. Moduli of character sheaves
Let G be a commutative connected algebraic group over a field k of characteristic
zero, withm : G×G→ G as its group operation. A primary goal of this thesis is to
study line bundles with integrable connection (L ,∇) on G satisfying the condition
m∗(L ,∇) ' (L ,∇)� (L ,∇). These objects are referred to as character sheaves, and
this chapter is dedicated to studying the geometry of their moduli spaces.

Laumon duality of generalized 1-motives
For a k-scheme S, Remark 2.3.8 and Theorem 2.3.21 show that the S-points of the
sheaf G\ := Ext1(GdR,Gm) correspond to isomorphism classes of triples (L ,∇, α).
Here, L is a line bundle on GS with integrable connection ∇ relative to S, and α is an
isomorphismm∗(L ,∇)→ (L ,∇)� (L ,∇) making two specific diagrams commute.
When S is reduced, the natural map G\(S)→ H1m(GdR × S,Gm) is an isomorphism.

Explicitly, the S-points of G\ also correspond to isomorphism classes of pairs (L ,∇),
where L is a line bundle on GS with integrable connection∇ relative to S satisfying
m∗(L ,∇) ' (L ,∇)� (L ,∇). In particular,G\(k) is the group of isomorphism classes
of character sheaves on G.
In Chapter 4, we will introduce a Fourier transform functor Dqc(GdR) → Dqc(G

\).
Given the existence of a widely studied Fourier transform Dqc(DA1)→ Dqc(DA1), one
might expectG\

a to be isomorphic to the de Rham spaceGa,dR. However, this is not the
case. Proposition 3.1.5 gives a monomorphism Ga,dR → G\

a, with the cokernel being
the non-vanishing sheaf Ext1(Ga,Gm) studied in Remark 2.3.17.
This discrepancy led Laumon to define a class of commutative group stacks called

generalized 1-motives in [Lau96], which includes all commutative connected algebraic
groups and their de Rham spaces. Subsequently, Laumon extended Deligne’s Cartier
duality for 1-motives in [Del74] to this setting, ensuring the self-duality of Ga,dR.

Akin to the example of Ga,dR above, the Laumon dual G. of a generalized 1-motive
G naturally maps to the stacky Cartier dual G∨. Proposition 3.1.5 shows that this map
induces an isomorphism π1(G

.)
∼−→ π1(G

∨) and a short exact sequence

0→ π0(G
.)→ π0(G

∨)→ Ext1(L,Gm)→ 0,

where L is the linear part of G. (See the discussion below Definition 3.1.1 for a precise
description of L.) In particular, this shows that Deligne’s Cartier dual of a 1-motive
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3. Moduli of character sheaves

coincides with its stacky Cartier dual.
A notable property of the Laumon dual is its computational ease. To set the stage

for computing G.dR, express G as an extension

0→ L
ϕ−−→ G

ψ−−→ A→ 0

of an abelian varietyA by a linear group L. LetΩG denote the vector group of invariant
differentials on G. There is a natural pullback map ψ∗ : ΩA → ΩG, and a morphism
ΩA → A\ that maps an invariant differential η to the character sheaf (OA, d + η). We
denote by K the pushout (ΩG × A\)/ΩA, which is representable by a commutative
connected algebraic group.

There is also a natural morphism from the Cartier dual LD of L to K. This morphism
maps a character χ ∈ LD to [ω, (L ,∇)], where ω is any element of ΩG satisfying
ϕ∗ω = dχ/χ, and (L ,∇) is theunique element ofA\ satisfyingψ∗(L ,∇) ' (OG, d−ω).
This is a monomorphism, and Proposition 3.1.7 identifies the quotient K/LD with the
Laumon dual G.dR.
The morphism from the Laumon dual G.dR to the stacky Cartier dual G\ can be

described simply using this identification. Proposition 3.1.9 shows that this morphism
maps [ω, (L ,∇)] to the character sheaf

(OG, d +ω)⊗OG ψ
∗(L ,∇).

Since Proposition 2.3.16 implies thatG.dR(S)→ G\(S) is an isomorphism for seminormal
k-schemes S, it follows that every character sheaf on G has the form above.

Moduli space of character sheaves
By further decomposing the linear part L as a product of a torus T and a unipotent
group U, the Cartier dual LD ' TD ×UD becomes isomorphic to X× Û∗. Here, X is
the character group of T , and Û∗ is the formal completion along the identity of the
dual vector space U∗. Since Û∗ is a formal group, the Laumon dual of GdR cannot be
represented by a scheme or even an algebraic space.

We define the moduli space of character sheaves G[ as the quotient K/X. As before,
for seminormal k-schemes S, the natural morphism G[(S)→ H1m(GdR × S,Gm) is an
isomorphism. In particular, G[(k) is isomorphic to the group of isomorphism classes
of character sheaves on G, thereby justifying its name.
Note that the group of isomorphism classes of character sheaves on Gm is k/Z.

Accordingly, the moduli space G[
m is isomorphic to Ga/Z, a group algebraic space not

representable by a scheme. The main result in this chapter, Theorem 3.2.5, asserts that
the complex

0→ A[ → G[ → T [ ×U[ → 0
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is exact. Consequently, descent implies that G[ is representable by a smooth commuta-
tive connected group algebraic space. The dimension of G[ satisfies

dimG 6 dimG[ 6 2 dimG,

with equality on the left if and only if G is affine, and equality on the right if and only
if G is proper.

This theoremmight lead the reader to think that (−)[ is an exact functor, in the sense
of exact categories. Proposition 3.2.9 demonstrates that this contravariant functor maps
monomorphisms to epimorphisms and epimorphisms to monomorphisms. However,
as illustrated by Example 3.2.10, the functor (−)[ is not exact.

Linear and generic subspaces of the moduli space
The guiding thread of this thesis is a vanishing theorem for de Rham cohomology on
G, which asserts that the cohomology of twists by character sheaves on certain large
subsets of the moduli space G[ vanish. These subsets exhibit a rigid structure derived
from the algebraic and geometric properties of the group G under consideration.
For an epimorphism ρ : G� G̃with connected kernel, the image of ρ[ : G̃[ ↪→ G[ is

said to be a linear subspace of G[. When G is an abelian variety A, linear subspaces of
A[ ' A\ were initially studied by Simpson in the context of non-abelian Hodge theory,
referring to them as triple tori [Sim93, p. 365]. These subsets also play a key role in
Schnell’s work [Sch15], where he terms translates of linear subspaces of A[ as linear
subvarieties.
Given a torus T , a linear subspace of T [ ' ΩT/X is of the form V/Y, where Y is a

subgroup of X and V is the linear subspace ofΩT generated by Y in the sense of linear
algebra. For a unipotent group U, a linear subspace of U[ = U∗ corresponds to a linear
subspace of the underlying vector space of U∗ in the sense of linear algebra.
More generally, let L be a linear commutative connected algebraic group. By

decomposing L as a product of a torus T and a unipotent group U, we obtain an
isomorphism L[ ' T [ × U[. Then, a linear subspace of L[ is the product of linear
subspaces of T [ and U[.

We define a generic subspace of G[ as the complement of a finite union of translates of
linear subspaces with positive codimension. These are the large subsets ofG[ on which
generic vanishing is supposed to hold. In most other approaches to generic vanishing,
such as [Krä14; BSS18; LMW18; LMW19], the authors considered open dense subsets
of some moduli space as their analogues of generic subspaces. Hereafter, we compare
our notion with those in the literature.
According to Proposition 3.3.5, when G is an extension of an abelian variety by a

unipotent group, a generic subspace of G[ is also open and dense. Since the Zariski
topology ofG[

m ' Ga/Z is too coarse for such a result, we are led to suppose k = C and
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3. Moduli of character sheaves

consider the analytification G[
an. Although G[ is often not representable by a scheme,

G[
an is a complex Lie group.
Interestingly, for an abelian varietyA, the complexmanifoldA[

an is Stein, even though
A[ itself is not affine. The moduli space A[ is even anti-affine, meaning that every
morphism of algebraic varieties A[ → A1 is constant. In general, Proposition 3.3.5
implies that a generic subspace of G[ defines an open subset of G[

an whose complement
has measure zero. In particular, it is an open dense subset of G[

an.
Often, the moduli space considered for generic vanishing is the character variety

Char(G), defined as the spectrum of the group algebra C[π1(Gan)]. This serves as a
moduli space for rank-one local systems on Gan. The natural Hopf algebra structure on
C[π1(Gan)] equips Char(G) with a multiplication, encoding the tensor product of local
systems.
The Riemann–Hilbert equivalence states that local systems on Gan correspond to

regular connections on G. Since all non-trivial character sheaves on unipotent groups
are irregular, Char(G) cannot parametrize character sheaves in general. On the other
hand, Proposition 3.3.9 states that the natural mapG[

an → Char(G)an is an isomorphism
for semiabelian varieties G.

3.1. Generalized 1-motives and their Laumon duals
Let k be a perfect field of any characteristic. In this chapter, we will systematically
apply Proposition 2.1.3 to represent commutative group stacks over k as two-term
complexes (in degrees −1 and 0) of abelian sheaves on the site (Sch/k)fppf. For the
reader’s convenience, we recall that the Cartier dual of a commutative formal group is
represented by an affine commutative group scheme.

Definition 3.1.1. A generalized 1-motive is a two-term complex of abelian fppf sheaves
[G → G], where G is a smooth commutative connected algebraic group over k, and G

is a commutative formal group over k whose Cartier dual is smooth and connected.

A usual 1-motive, as defined in [Del74, §10.1], is a special case of the definition
above where k is algebraically closed, G is a semiabelian variety, and G is a finitely
generated free Z-module. Our Definition 3.1.1 is inspired by the one in [Rus13] and
extends Laumon’s [Lau96] to base fields that may have positive characteristic.

Let [G → G] be a generalized 1-motive. The Barsotti–Chevalley theorem [Mil17, Thm.
8.27] states that G has a smallest subgroup L such that G/L is proper. This subgroup is
affine, smooth and connected, and the quotient G/L is an abelian variety A. In other
words, G can be functorially decomposed as an extension

0→ L→ G→ A→ 0,
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3.1. Generalized 1-motives and their Laumon duals

of an abelian variety A by an affine smooth commutative connected algebraic group L.

� Every algebraic group over a characteristic zero field is smooth. In positive characteristic,
a singular connected algebraic group is still an extension of an abelian variety by a
linear group, but this decomposition may not be unique. See [Bri17a, Ex. 4.3.8].

The motivation for Definition 3.1.1 arises from the fact that the Cartier duality of
Proposition 2.2.2 naturally restricts to an anti-equivalence of categories

Affine smooth
commutative connected
algebraic groups over k

←→


Commutative formal groups
over k whose Cartier dual is

smooth and connected

 .
Using this, we will concoct a dual of [G → G] of the form [LD → K], for some smooth
commutative connected algebraic group K fitting into the short exact sequence

0→ GD → K→ A′ → 0,

where A′ is the dual abelian variety of A. A functorial definition of K is given by the
following lemma.

Lemma 3.1.2. Let [G → A] be the generalized 1-motive defined by the compositionG → G→ A.
The complex RHom([G → A],Gm) has no cohomology in degrees 0 and 2. Moreover,
Ext1([G → A],Gm) is representable by a smooth commutative connected algebraic group.

Proof. Applying the functor RHom(−,Gm) to the fiber sequence G → A → [G → A],
we obtain the following long exact sequence:

0 Ext0([G → A],Gm) 0 GD

Ext1([G → A],Gm) A′ 0

Ext2([G → A],Gm) 0.

Here, we use Propositions 2.2.1 and 2.3.22, along with Theorem 2.4.4 to justify the
non-trivial zeros above. The vanishing results follow directly, and the representability
of Ext1([G → A],Gm) by a smooth commutative connected algebraic group follows by
descent. (See the following remark for an explanation of how these descent arguments
work.)

� Remark 3.1.3 — On properties inherited by extensions. Let S be a base scheme, and
consider an extension of abelian sheaves on the site (Sch/S)fppf:

0→H
ϕ−−→ E

ψ−−→ G → 0.
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3. Moduli of character sheaves

The composition H × E
ϕ×id−−−−→ E × E

m−−→ E , wherem is the group operation of E ,
defines an action of H on E . This action fits into the cartesian diagram

H × E E × E E

E G ,

ϕ×id

pr2

m

ψ

ψ

giving that E is an H -torsor over G . In other words, we have an H -equivariant
isomorphism H × E → E ×G E .
Assume that G and H are represented by group algebraic spaces G and H over S,

respectively. By [Stacks, Tag 00WN], there exists a scheme T with a map T → E such
that the composition

T → E → G

is an fppf cover. This induces a trivialization H× T ' E ×G T . Since the definition of
an algebraic space is local in the fppf topology [Stacks, Tag 04SK], it follows that E is
representable by an algebraic space E over G. Therefore, E is also a group algebraic
space over S.

Let P be a property of morphisms of algebraic spaces that is stable under base change
and fppf-local on the base. The same reasoning implies that if H → S satisfies P ,
then so does E→ G. Furthermore, if P is stable under composition and is satisfied by
G→ S, then E→ S also satisfies P. (See [Stacks, Tags 03H8 and 03YE] for an extensive
list of such properties P.)
Now, suppose that S is the spectrum of a field k. If G and H are schemes, then the

maps G→ S and H→ S are necessarily separated [Stacks, Tag 047L]. The preceding
discussion implies that E→ S is also separated, and so [Stacks, Tag 0B8G] shows that
E is a scheme as well.
For the remainder of this discussion, assume that G and H are group algebraic

spaces locally of finite type over k. Then, we note that E has dimension dimG+ dimH.
Indeed, [Stacks, Tag 0AFH] says that the relative dimension of E→ G is dimE− dimG.
However, this relative dimension is also the dimension of the fiber H, completing the
proof.

Since E→ G is faithfully flat of finite presentation, the induced morphism |E|→ |G|

between the underlying topological spaces is a quotient map [Stacks, Tag 0413].
Although the fibers of |E| → |G| may not be homeomorphic to |H|, there exists a
continuous surjection from |H| to them, as stated in [Stacks, Tag 03H4]. In particular, if
G and H are connected, so is E. �

Following Laumon, wewill systematically denote byK the algebraic group represent-
ing Ext1([G → A],Gm). The following variant of (stacky) Cartier duality was initially
introduced in [Del74] and was subsequently generalized in [Lau96] and [Rus13].
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3.1. Generalized 1-motives and their Laumon duals

Definition 3.1.4. Let [G → G] be a generalized 1-motive. We define the Laumon dual
[G → G]. to be the generalized 1-motive [LD → K], where LD → K is the connecting
morphism induced by the fiber sequence L → [G → G] → [G → A] via the Cartier
duality functor.

We note that the Laumon dual is functorial on the generalized 1-motive. Indeed, by
the functoriality of the Barsotti–Chevalley theorem, a morphism of complexes

G1 G1

G2 G2

between two generalized 1-motives induces maps L1 → L2 and A1 → A2 making the
diagram

0 L1 G1 A1 0

0 L2 G2 A2 0

commute. Consequently, we obtain a commutative diagram in the derived category of
abelian sheaves

L1 [G1 → G1] [G1 → A1]

L2 [G2 → G2] [G2 → A2].

The Cartier duality functor then induces a morphism [G2 → G2]
. → [G1 → G1]

..
Our next proposition gives a comparison between the Laumon dual defined above

and the stacky Cartier dual of Definition 2.1.6.

Proposition 3.1.5. Let [G → G] be a generalized 1-motive. There exists a natural map
[G → G]. → [G → G]∨, whose cofiber is Ext1(L,Gm).

Proof. The fiber sequence defining the Laumon dual induces the fiber sequence below.

RHom([G → A],Gm[1])→ RHom([G → G],Gm[1])→ RHom(L,Gm[1])

ByLemma3.1.2,Ext2([G → A],Gm)vanishes and soExt1([G → G],Gm)→ Ext1(L,Gm)

is an epimorphism. Then, [Bro21, Lem. 3.10] implies that

τ60RHom([G → A],Gm[1])→ τ60RHom([G → G],Gm[1])→ τ60RHom(L,Gm[1])

is also a fiber sequence. Yet another application of Lemma 3.1.2 gives that

τ60RHom([G → A],Gm[1]) ' K
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3. Moduli of character sheaves

and so, up to a shift, the fiber sequence just obtained is L∨[−1] → K → [G → G]∨.
Since LD ' τ60(L∨[−1]), there is a natural map LD → L∨[−1] making the square

LD K [LD → K]

L∨[−1] K [G → G]∨

commute and inducing a morphism of fiber sequences. In this way we obtain the
desired comparison map.
Now, according to [Stacks, Tag 08J5], there exists a fiber sequence LD → L∨[−1]→

Ext1(L,Gm). Finally, the octahedral axiom [Stacks, Tag 05R0] gives that the cofiber of
[G → G]. → [G → G]∨ is isomorphic to Ext1(L,Gm).

This proposition implies that the comparison map [G → G]. → [G → G]∨ becomes
an isomorphism precisely when Ext1(L,Gm) = 0. This condition is satisfied when G
is semiabelian, thereby demonstrating that the Cartier dual on 1-motives, as defined
by Deligne, agrees with the stacky Cartier dual. Extending this result, we derive the
following corollary.

Corollary 3.1.6. The comparison morphism [G → G]. → [G → G]∨ is always an isomor-
phism when the base field k has positive characteristic. When k has characteristic zero, the
comparison map is an isomorphism if and only if G is semiabelian.

Proof. In positive characteristic, the fppf sheaf Ext1(L,Gm) always vanishes due to
[Ros23, Prop. 2.2.17]. If k has characteristic zero, L is a product of a torus and
a vector group U [Mil17, Cor. 16.15]. In particular, Proposition 2.3.1 implies that
Ext1(L,Gm) ' Ext1(U,Gm). By Example 2.3.17, the latter sheaf vanishes precisely
when U does.

For the remainder of this section, we assume the base field k has characteristic zero
and G = Ĝ, so that [Ĝ → G] ' GdR. We now provide a more explicit description of
K = Ext1([Ĝ→ A],Gm). The long exact sequence derived from the extension

0→ Â→ A→ AdR → 0,

via the Cartier duality functor, results in the short exact sequence

0→ ΩA → A\ → A′ → 0,

as noted in Remark 2.3.24. Now, the quotient map ψ : G→ A induces a pullback map
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3.1. Generalized 1-motives and their Laumon duals

ψ∗ : ΩA → ΩG, and we consider the corresponding pushout extension.

0 ΩA A\ A′ 0

0 ΩG (ΩG ×A\)/ΩA A′ 0

ψ∗

Here, and throughout this thesis, ΩG represents the vector group consisting of the
invariant differentials of G.

Proposition 3.1.7. The algebraic group K = Ext1([Ĝ→ A],Gm) is naturally isomorphic to
the quotient (ΩG ×A\)/ΩA.

Proof. Consider the following commutative diagram, whose rows are fiber sequences.

Ĝ A [Ĝ→ A]

Â A [Â→ A]

After applying RHom(−,Gm) and taking long exact sequences in cohomology, we
obtain the following commutative diagram with exact rows:

0 ΩA A\ A′ 0

0 ΩG K A′ 0.

ψ∗

We assert that the square on the left is cocartesian. This means that the complex

0→ ΩA → ΩG ×A\ → K→ 0,

with the action ofΩA onΩG ×A\ as in the typical pushout construction, is exact. This
complex is part of the following larger commutative diagram.

0 0

0 ΩG ΩG 0

0 ΩA ΩG ×A\ K 0

0 ΩA A\ A′ 0

0 0 0
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3. Moduli of character sheaves

In this diagram, every column is exact, and both the top and bottom rows are exact.
Therefore, the middle row must also be exact.

Let us fix some notation. Given that the algebraic group K is a quotient ofΩG ×A\,
we will denote its points as (equivalence classes of) pairs (ω, (L ,∇)), whereω ∈ ΩG
and (L ,∇) ∈ A\.1 We will also systematically denote the natural maps L → G and
G→ A as ϕ and ψ, respectively.

� Remark 3.1.8. The morphism LD → K in the Laumon dual of [Ĝ → G] can also be
explicitly described: it maps a character χ ∈ LD to [ω, (L ,∇)], whereω is any element
of ΩG satisfying ϕ∗ω = dχ/χ, and (L ,∇) is the unique element of A\ satisfying
ψ∗(L ,∇) ' (OG, d −ω). Note that, since the Cartier dual of GdR vanishes, the map
LD → K is a monomorphism. In particular, the Laumon dual of GdR is a usual abelian
sheaf. �

Finally, we describe the comparison map [Ĝ → G]. → [Ĝ → G]∨ from Proposi-
tion 3.1.5. The universal property of pushouts permits us to define the morphism of
abelian sheaves

K→ G\

[ω, (L ,∇)] 7→ (OG, d +ω)⊗OG ψ
∗(L ,∇).

This map factors through the quotient, resulting in a morphism γ : K/LD → G\.

Proposition 3.1.9. The morphism γ : K/LD → G\, sending an equivalence class [ω, (L ,∇)]

to the line bundle with integrable connection

(OG, d +ω)⊗OG ψ
∗(L ,∇),

coincides with the comparison map G.dR → G∨
dR. In particular, γ is a monomorphism and its

cokernel is Ext1(L,Gm).

Proof. Consider the morphism K→ G\, defined above using the universal property of
pushouts. We affirm that the diagram

K G\

Ext1([Ĝ→ A],Gm) Ext1([Ĝ→ G],Gm),

∼

1This is a slight abuse of notation since the sheafification involved in defining the quotient sheaf may
be non-trivial. That being said, by Serre vanishing, K(S) indeed is the quotient ofΩG(S)×A\(S) by
ΩA(S) for affine S.
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3.1. Generalized 1-motives and their Laumon duals

on which the map Ext1([Ĝ→ A],Gm)→ Ext1([Ĝ→ G],Gm) is induced by the natural
morphism of complexes [Ĝ→ G]→ [Ĝ→ A], commutes. This is the same as showing
that the diagram

Ext1([Â→ A],Gm)

Hom(Ĝ,Gm) Ext1([Ĝ→ A],Gm)

Ext1([Ĝ→ G],Gm)

commutes. The upper triangle clearly commutes by functoriality, and the lower triangle
can be seen to commute by applying the functor RHom(−,Gm) to the morphism of
fiber sequences

Ĝ G [Ĝ→ G]

Ĝ A [Ĝ→ A],

ψ

and taking long exact sequences in cohomology. Now, as in the proof of Proposi-
tion 3.1.5, there are two dashed morphisms making the diagram

K [X× Û∗ → K] LD[1]

K G\ L∨

commute: the comparison map of Proposition 3.1.5 and γ. The fact that they coincide
follows from [Stacks, Tag 0FWZ].

Recall that the linear part L ofG decomposes as a product of a torus T , whose Cartier
dual is denoted as X, and a vector group U. Inasmuch as Ext1(L,Gm) ' Ext1(U,Gm)

has no k-points, due to Propositions 2.3.1 and 2.3.16, this computation is particularly
useful for obtaining concrete information about character sheaves.

Corollary 3.1.10. The group of isomorphism classes H1m(GdR,Gm) of character sheaves on
G fits into the short exact sequence

0→ X→ (ΩG ×A\(k))/ΩA → H1m(GdR,Gm)→ 0,

where the morphism on the left is described in Remark 3.1.8, and the morphism on the right is
as in Proposition 3.1.9. In particular, every character sheaf on G is of the form

(OG, d +ω)⊗OG ψ
∗(L ,∇),
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3. Moduli of character sheaves

for someω ∈ ΩG and (L ,∇) ∈ A\(k).

Proof. As explained above, the preceding proposition provides an isomorphism
(K/LD)(k)→ H1m(GdR,Gm). The group of k-points (K/LD)(k) fits into the long exact
sequence

0→ X→ K(k)→ (K/LD)(k)→ H1(k, X)× H1(k, Û∗),

where the term on the right vanishes due to [SGA 7I, Exp. VIII, Prop. 5.1] and [Bha22,
Rem. 2.2.18]. Finally, as noted in Footnote 1, K(k) is isomorphic to the quotient
(ΩG ×A\(k))/ΩA, completing the proof.

3.2. The moduli of character sheaves
As discussed in the previous section, Laumon defined a dual [Ĝ → G]. that, in a
sense, eliminates the enigmatic object U′ = Ext1(U,Gm) from the stacky Cartier dual
G\ = G∨

dR. Now, according to Remark 3.1.8, the Laumon dual of GdR is isomorphic to
the quotient sheaf K/(X× Û∗). Since Û∗ is a formal group, it cannot be representable.
This leads us to the following definition.

Definition 3.2.1 (Moduli space of character sheaves). We denote by G[ the abelian
sheaf K/X, where X ↪→ K is the morphism that maps χ ∈ X to [ω, (L ,∇)], where ω
is any element ofΩG satisfying ϕ∗ω = dχ/χ and (L ,∇) is the unique element of A\

satisfying ψ∗(L ,∇) ' (OG, d −ω).

Note that although the map X → K is a monomorphism, it is not an immersion.
Consequently, it is unclear whether the quotient G[ = K/X is a scheme, and it may
indeed fail to be one. A brief verification shows that the morphism

k→ H1m(Gm,dR,Gm)

α 7→ (OGm , d − α dx/x)

is surjective and induces an isomorphism H1m(Gm,dR,Gm) ' k/Z. Accordingly, the
moduli space G[

m is isomorphic to Ga/Z, an algebraic space2 that is not a scheme.
Nonetheless, the main result of this section, Theorem 3.2.5, asserts in Corollary 3.2.6
that G[ is as well-behaved as one could hope for.

� Remark 3.2.2. Let S be a k-scheme. According to Propositions 2.2.6, 2.3.2, and 3.1.5,
there are natural morphisms

G[(S)
(1)−−→ G.dR(S)

(2)−−→ G\(S)
(3)−−→ H1m(GdR × S,Gm).

2We emphasize that, as in [Stacks, Tag 025Y] and contrarily to [LM00, Déf. 1.1], we do not suppose that
algebraic spaces are quasi-separated.
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3.2. The moduli of character sheaves

Proposition 2.3.15 and Theorem 2.3.21 imply that themaps (1) and (3) are isomorphisms
if S is reduced. Furthermore, Proposition 2.3.16 states that (2) is an isomorphism
for seminormal k-schemes S. In particular, G[(k) is isomorphic to the group of
isomorphism classes of character sheaves on G, thereby justifying its name. �

� Remark 3.2.3. The assignmentG 7→ G[ is functorial. Specifically, consider a morphism
G1 → G2 between commutative connected algebraic groups over a characteristic zero
field. Since the Barsotti–Chevalley decomposition is functorial, we obtain the following
commutative diagram

0 L1 G1 A1 0

0 L2 G2 A2 0,

where Ai are abelian varieties and Li are affine. The linear parts Li further decompose
into a product of tori Ti and unipotent groupsUi. By [Mil17, Cor. 14.18], the morphism
L1 → L2 is a product of morphisms T1 → T2 andU1 → U2. In particular, this induces a
map X2 → X1 between the character groups of T2 and T1, respectively. The functoriality
of the Laumon dual ensures that the square on the right of the diagram

X2 X2 ×”U∗2 K2

X1 X1 ×”U∗1 K1

commutes. Consequently, the universal property of cokernels gives the desired map
G[
2 → G[

1. �

� Example 3.2.4. As usual, let T be a torus, U a unipotent group, and A be an abelian
variety. We have that

T [ ' T \ ' ΩT/X ' t∗/X, U[ ' ΩU ' U∗, A[ ' A\.

The first one is a group algebraic space, while the other two are algebraic groups. �

Before going further, we note that there exists a large diagram relying many of the
objects appearing in this chapter. Since both formal completions and the de Rham
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3. Moduli of character sheaves

functor are exact, we obtain the following commutative diagram:

0 0 0

0 T̂ × Û Ĝ Â 0

0 T ×U G A 0

0 TdR ×UdR GdR AdR 0

0 0 0,

ϕ ψ

in which every column and row is exact. By applying the Cartier duality functor, and
passing to the long exact sequences in cohomology, we obtain

0 0

0 GD X× Û∗

0 ΩA ΩG ΩT ×ΩU 0

0 A\ G\ T \ ×U\ 0

A′ G′ U′ 0

0 0 0.

ψ∗ ϕ∗

ψ∗ ϕ∗

ϕ∗ψ∗

ϕ∗

Here, every row (including the zigzag path) and every column is exact. The necessary
computations andvanishing results have alreadybeendiscussed in the previous chapter.
We note that the morphisms in the columns have natural geometric interpretations, as
given by

0 GD ΩG G\ G′ 0

χ dχ/χ (L ,∇) L

ω (OG, d +ω).

We are now in position to state the main theorem of this section.
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3.2. The moduli of character sheaves

Theorem 3.2.5. Let G be a commutative connected algebraic group over a characteristic zero
field. Write G as an extension of an abelian variety A by a product T ×U of a torus T and a
unipotent group U. Then the complex 0→ A[ → G[ → T [ ×U[ → 0 is exact.

Proof. Consider the map K→ ΩT ×ΩU induced by ϕ∗ : ΩG → ΩT ×ΩU and 0 : A\ →
ΩT ×ΩU. We claim that the composition K→ ΩT ×ΩU → ΩT/X×ΩU descends to
the quotient K/X. According to the universal property of the quotient, we need to
verify that the composition

X→ X× Û∗ → K→ ΩT ×ΩU → ΩT/X×ΩU

is zero. Applying the functor RHom(−,Gm) to the morphism of fiber sequences

L [L̂→ L] L̂[1]

L [Ĝ→ G] [Ĝ→ A],

and taking long exact sequences in cohomology, we find that the composition X×Û∗ →
K→ ΩT ×ΩU the familiar map appearing on Page 132. In particular, this composition
is the product ofX→ ΩT and Û∗ → ΩU. It follows that our large composition vanishes,
and we obtain a map K/X→ ΩT/X×ΩU.
Now, we have every morphism needed to consider the following commutative

diagram
0 0 0

0 0 X X 0

0 A\ K ΩT ×ΩU 0

0 A\ K/X ΩT/X×ΩU 0

0 0 0,

whose columns are clearly exact. Since the top row is also exact, by the nine-lemma,
it suffices to prove that the middle row is exact. This holds by an application of the
snake lemma in the pushout extension defining K.

The theorem above implies that G[ is a "coarse moduli space" for G\, in the sense
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3. Moduli of character sheaves

that G[ is represented by an algebraic space with the same k-points as G[.3

Corollary 3.2.6. The abelian sheaf G[ is representable by a smooth commutative connected
group algebraic space. Moreover, it satisfies dimG 6 dimG[ 6 2 dimG, with equality on the
left if and only if G is affine, and equality on the right if and only if G is proper.

Proof. The discussion in Remark 3.1.3 indicates that G[ is representable by a smooth
commutative connected group algebraic space of dimension dim T [ + dimU[ + dimA[.
Given that

dim T [ = dimΩT/X = dimΩT = dim T

dimU[ = dimU∗ = dimU

dimA[ = dimA\ = dimΩA + dimA ′ = 2 dimA,

we find that dimG[ = dim T + dimU+ 2 dimA = dimG+ dimA, thus completing the
proof.

The full subcategory of Ab((Sch/k)fppf) consisting of commutative connected alge-
braic groups is closed under extensions. Consequently, it inherits a structure of exact
category. One might believe that this makes the functor G 7→ G[ exact. The following
results provide some support for this conjecture.

Proposition 3.2.7. Let 0 → A1 → A2 → A3 → 0 be a short exact sequence of abelian
varieties over a characteristic zero field. Then the complex 0→ A[

3 → A[
2 → A[

1 → 0 is exact.

Proof. By Proposition 1.1.19, the complex 0 → A1,dR → A2,dR → A3,dR → 0 is exact.
The Cartier duality functor then induces the exact sequence

Hom(A1,dR,Gm) = 0→ A\
3 → A\

2 → A\
1 → 0 = Ext2(A3,dR,Gm),

where the vanishing results are due to Proposition 2.2.6 and Corollary 2.4.9.

Proposition 3.2.8. Let 0 → L1 → L2 → L3 → 0 be a short exact sequence of linear
commutative connected algebraic groups over a characteristic zero field. Then the complex
0→ L[3 → L[2 → L[1 → 0 is exact.

Proof. First, we decompose the linear groups Li as a product of tori Ti and unipotent
groups Ui. The exactness of the formal completion functor induces the short exact
sequence

0→ T̂1 × Û1 → T̂2 × Û2 → T̂3 × Û3 → 0.

3However, it remains unclear whether there is a natural morphism G\ → G[, or if such a morphism
would satisfy the universal property.
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3.2. The moduli of character sheaves

Then, the Cartier duality functor gives rise to the exact sequence

0→ ΩT3 ×ΩU3 → ΩT2 ×ΩU2 → ΩT1 ×ΩU1 → 0 = Ext1(T̂3 × Û3,Gm).

Here, we use Corollary 2.2.5 and Proposition 2.3.22. As in Remark 3.2.3, we have
induced maps X3 → X2 → X1 between the character groups of the tori Ti, fitting into
the diagram

0 0 0

0 X3 X2 X1 0

0 ΩT3 ×ΩU3 ΩT2 ×ΩU2 ΩT1 ×ΩU1 0

0 ΩT3/X3 ×ΩU3 ΩT2/X2 ×ΩU2 ΩT1/X1 ×ΩU1 0

0 0 0.

The first row above is exact due to Proposition 2.3.1, and the nine lemma implies that
the bottom row is also exact.

Proposition 3.2.9. Let 0→ G1 → G2 → G3 → 0 be a short exact sequence of commutative
connected algebraic groups over a characteristic zero field. Then G[

3 → G[
2 is a monomorphism

and G[
2 → G[

1 is an epimorphism.

Proof. Consider the following commutative diagram, composed of the short exact
sequence of commutative connected algebraic groupsGi, along with the induced maps
on their Barsotti–Chevalley decompositions.

0 0 0

0 T1 ×U1 T2 ×U2 T3 ×U3 0

0 G1 G2 G3 0

0 A1 A2 A3 0

0 0 0
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3. Moduli of character sheaves

The exactness of Barsotti–Chevalley decompositions has been thoroughly examined
by Brion in [Bri17b]. He proved that the complex 0→ U1 → U2 → U3 → 0 is exact, but

0→ T1 → T2 → T3 → 0 and 0→ A1 → A2 → A3 → 0

might only be exact up to isogeny [Bri17b, Thm. 2.9, Lems. 4.3 and 4.7]. That being said,
the map T1 → T2 is a monomorphism, while T2 → T3 andA2 → A3 are epimorphisms.4
Next, we apply the functor (−)[ to the diagram above, obtaining the following

commutative diagram

0 0 0

0 A[
3 A[

2 A[
1 0

0 G[
3 G[

2 G[
1 0

0 T [3 ×U[
3 T [2 ×U[

2 T [1 ×U[
1 0

0 0 0,

whose rows are complexes and columns are exact. According to the preceding
propositions, the maps A[

3 → A[
2 and T [3 × U[

3 → T [2 × U[
2 are monomorphisms.

The long exact sequence in cohomology associated with the short exact sequence of
complexes above implies that G[

3 → G[
2 is also a monomorphism.

We claim that A[
2 → A[

1 is an epimorphism. Let F be the kernel of A1 → A2 and B
be its cokernel. Note that F is a finite group, while B is an abelian variety. Consider the
short exact sequences

0→ F→ A1 → A1/F→ 0 and 0→ A1/F→ A2 → B→ 0.

By passing to the de Rham spaces and considering the long exact sequences induced by
the Cartier duality functor, we obtain that the maps A[

2 → (A1/F)
[ and (A1/F)

[ → A[
1

are epimorphisms. Hence, so is their composition. Since T [2 × U[
2 → T [1 × U[

1 is an
epimorphism, the same argument as above proves the same for G[

2 → G[
1.

As it turns out, the lack of exactness in the Barsotti–Chevalley decompositions is
more than just a nuisance in the proof above. Inspired by [Bri17b, Rem. 4.6], we provide
below a counter-example to our conjecture.
4Brion’s results apply in arbitrary characteristic, while the characteristic zero case required here is
significantly simpler.
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3.2. The moduli of character sheaves

� Example 3.2.10. Assume the base field k contains a non-trivial p-th root of unit, for
some prime p. Given an elliptic curve E containing a rational point of order p, we let
µp act diagonally on the product E×Gm and consider the quotient G. This group fits
into the short exact sequence

0→ E→ G→ Gm → 0.

Taking the Barsotti–Chevalley decomposition of each group, we obtain the following
commutative diagram

0 0

0 Gm Gm 0

0 E G Gm 0

0 µp E E/µp 0

0 0 0,

whose rows and columns are exact. Passing to the de Rham spaces on the bottom row
and taking the long exact sequence in cohomology induced by the Cartier dual, we
obtain the exact sequence

0→ Z/pZ→ (E/µp)[ → E[ → 0.

The functor (−)[ can be applied to the portion of the preceding diagram consisting
of commutative connected algebraic groups. This yields the commutative diagram

0 0

0 (E/µp)[ E[ 0

0 G[
m G[ E[ 0

0 G[
m G[

m 0

0 0,
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3. Moduli of character sheaves

where the columns are exact and the rows are complexes. The long exact sequence
in cohomology induced from a short exact sequence of complexes then identifies the
middle cohomology of

0→ G[
m → G[ → E[ → 0

with Z/pZ, thereby proving that the functor (−)[ is not exact. �

3.3. Linear and generic subspaces of the moduli space

The overarching goal of this thesis is to study generic vanishing theorems, stating that
the de Rham cohomology of twists by character sheaves vanish for character sheaves
on a large subset of the moduli space G[. The complements of these subsets consist of
finite unions of subsets arising from quotients of G. This section focuses on their study.

Definition 3.3.1 (Linear subspace). Let G be a commutative connected algebraic group
over a characteristic zero field. For an epimorphism ρ : G� G̃with connected kernel,
the image of ρ[ : G̃[ ↪→ G[ is said to be a linear subspace of G[.

The following remark concretely characterizes linear subspaces of G[ when G is
affine. Furthermore, when G is an abelian variety, this notion is related to existing
concepts in the literature.

� Remark 3.3.2. Let G � G̃ be an epimorphism between commutative connected
algebraic groupswith connected kernelN. IfG is linear, unipotent, a torus, or an abelian
variety, then G̃ and N inherit the same properties. The following characterizations
follow from this observation.

Consider a torus T with character group X. A linear subspace of T [ ' ΩT/X is of the
form V/Y, where Y is a subgroup of X and V is the linear subspace ofΩT generated by
Y, in the sense of linear algebra. For a unipotent group U, a linear subspace of U[ = U∗

corresponds to a linear subspace of the underlying vector space of U∗, in the sense of
linear algebra.
Let L be a linear commutative connected algebraic group, and decompose it as a

product of a torus T and a unipotent group U. If ρ : L � L̃ is an epimorphism with
connected kernel, then L̃ is also linear and decomposes as L̃ ' T̃ × Ũ. Moreover, ρ is
a product of epimorphisms T � T̃ and U � Ũ. Thus, a linear subspace of L[ is the
product of linear subspaces of T [ and U[.

For an abelian variety A, linear subspaces of A[ ' A\ were first studied by Simpson,
who termed them triple tori [Sim93, p. 365]. Schnell refers to translates of linear
subspaces of A[ as linear subvarieties [Sch15, Def. 2.3]. �
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3.3. Linear and generic subspaces of the moduli space

Proposition 3.3.3. Let G be a commutative connected algebraic group over a characteristic
zero field, and express G as an extension of an abelian variety A by a linear group L. If V ⊂ L[
is a (translate of a) linear subspace, so is its inverse image by G[ → L[.

Proof. Let L� L̃ be the epimorphism defining the linear subspace V , and let N be its
kernel. Denote by G̃ the quotient of G by N; we have a commutative diagram

0 0 0

0 N L L̃ 0

0 N G G̃ 0

0 A A 0

0 0,

whose rows and columns are exact. Applying the functor (−)[, we obtain the following
commutative diagram

0 0

0 A[ A[ 0

0 G̃[ G[ N[ 0

0 L̃[ L[ N[ 0

0 0 0.

According to Theorem 3.2.5 and Proposition 3.2.8, its columns are exact, as well as the
top and bottom rows. Consequently, the middle row is exact as well. A diagram chase
shows that the square

G̃[ G[

L̃[ L[

is cartesian, thereby concluding the proof.
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3. Moduli of character sheaves

The following definition makes precise the large subsets of the moduli space on
which generic vanishing is expected to hold.

Definition 3.3.4 (Generic subspace). Let G be a commutative connected algebraic
group over a characteristic zero field. A generic subspace of G[ is the complement of a
finite union of translates of linear subspaces of G[ with positive codimension.

In algebraic geometry, a property is said to hold generically if it holds on an open
dense subset. For extensions of abelian varieties by unipotent groups, this can be
related with our definition above.

Proposition 3.3.5. Let G be a commutative algebraic group over a characteristic zero field that
is an extension of an abelian variety by a unipotent group. If V is a generic subspace of G[,
then V is open and dense in G[.

Proof. Since the intersection of a finite number of open dense subsets is also open
and dense, it suffices to prove that the complement of a linear subspace with positive
codimension is open and dense. Let G� G̃ be an epimorphism with connected kernel
N defining the linear subspace G̃[ of G[.

First, we claim that G̃ is also an extension of an abelian variety by a unipotent
group. Denote by U the maximal unipotent subgroup of G and by A the quotient G/U.
The universal property of quotients yields a morphism N/(U ∩N)→ Amaking the
diagram

0 U ∩N N N/(U ∩N) 0

0 U G A 0

commute. A quick diagram chase shows that N/(U ∩N) → A is a monomorphism.
The usual isomorphism theorems then imply that (G/N)/(U/(U ∩N)) is isomorphic
to (G/U)/(N/(U ∩ N)). Denoting by B this common group, we may complete the
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3.3. Linear and generic subspaces of the moduli space

diagram above to

0 0 0

0 U ∩N N N/(U ∩N) 0

0 U G A 0

0 U/(U ∩N) G̃ B 0

0 0 0.

Here every column and every row is exact. Since B is a quotient of an abelian variety,
it is also an abelian variety. Similarly, U/(U ∩N) is a unipotent group.
Recall from Corollary 3.2.6 that G[ and G̃[ are commutative connected algebraic

groups. Since algebraic groups in characteristic zero are smooth, G[ is irreducible
[Stacks, Tag 047N].
According to [Mil17, Thm. 5.34], the map G̃[ → G[ is a closed immersion and

so its complement is open. Since G̃[ is assumed to be of positive codimension, its
complement is non-empty. The irreducibility of G[ then implies that it is dense, thus
completing the proof.

The preceding result does not hold for general commutative connected algebraic
groups. The Zariski topology of G[

m ' A1/Z is too coarse. Indeed, the only open
dense subset of G[

m is the entire space itself. This suggests the following definition.

Definition 3.3.6 (Analytic moduli space). Let G be a commutative connected algebraic
group over C. Taking the C-points of the morphism X ↪→ K defining the moduli
space G[, we obtain a monomorphism of abelian groups X ↪→ K(C). Equip X with the
discrete topology and K(C) with the analytic topology. The quotient K(C)/X is said to
be the analytic moduli space and is denoted by G[

an.

Interestingly, although G[ is often not representable by a scheme, G[
an is a complex

manifold. Furthermore, for an abelian variety A, the complex manifold A[
an is Stein,

even though A[ is not affine. The moduli space A[ is even anti-affine, meaning that
every morphism of algebraic varieties A[ → A1 is constant [Bri17a, Prop. 5.5.8].
For a generic subspace V of G[, we denote by Van the set V(C) with the subspace

topology inherited from G[
an. An analytic analogue of Proposition 3.3.5 holds in all

generality.
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3. Moduli of character sheaves

Proposition 3.3.7. Let G be a commutative connected algebraic group over C. If V is a generic
subspace of G[, then Van is an open subset of G[

an whose complement has measure zero. In
particular, it is an open dense subset.

Proof. Let G � G̃ be an epimorphism with connected kernel N defining a linear
subspace G̃[ of G[ with positive codimension. As in the proof of Proposition 3.3.5, it
suffices to prove that G̃[

an is a closed subset of G[
an with measure zero.

According to the functoriality of (−)[, explained in Remark 3.2.3, the natural map
G̃[

an ↪→ G[
an is induced by a morphism of schemes K̃ → K. Consequently, G̃[

an is a
complex Lie subgroup of G[

an. It follows that G̃[
an ↪→ G[

an is a closed immersion [Bou06,
Chap. III, §1.3.5]. Since we assumed that dim G̃[ < dimG[, Sard’s theorem implies that
G̃[

an has measure zero in G[
an.

Definition 3.3.8 (Character variety). LetG be a commutative connected algebraic group
over C. The character variety of G, denoted Char(G), is the spectrum of the group
algebra C[π1(Gan)].

Recall that the group algebra functor Grp → Alg(C) is left adjoint to the functor
sending a C-algebra R to its group of units R×. Thus, the C-points of Char(G)

correspond to characters π1(Gan)→ C× of the fundamental group π1(Gan). In other
words, Char(G) is a moduli space for rank one local systems on Gan. The Hopf algebra
structure in C[π1(Gan)] induces a structure of algebraic group in Char(G), encoding
the tensor product of local systems.
The Riemann–Hilbert equivalence states that local systems on Gan correspond to

regular connections onG. Since all non-trivial character sheaves on unipotent groups are
irregular, Char(G) cannot parametrize character sheaves in general. On the other hand,
character sheaves on semiabelian varieties are regular, allowing such a comparison.

Proposition 3.3.9. Let G be a semiabelian variety over C. Then the complex Lie groups G[
an

and Char(G)an are isomorphic.

Proof. Write G as an extension of an abelian variety A by a torus T . By analytification,
we obtain a short exact sequence

0→ Tan → Gan → Aan → 0

of complexLie groups. In particular,Gan → Aan is a fibrationwithfiber Tan. Considering
the associated long exact sequence in homotopy, we have

0 = π2(Aan)→ π1(Tan)→ π1(Gan)→ π1(Aan)→ π0(Tan) = 0.

Here, π0(Tan) vanishes since Tan is connected, and π2(Aan) vanishes since Aan is a Lie
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group. This induces a short exact sequence of Hopf algebras

C→ C[π1(Tan)]→ C[π1(Gan)]→ C[π1(Aan)]→ C,

followed by a short exact sequence of affine algebraic groups

0→ Char(A)→ Char(G)→ Char(T)→ 0.

There is a natural holomorphic morphism G[
an → Char(G)an sending a character

sheaf (L ,∇) to the local system ker∇an. This is compatible with inverse images and
tensor products, giving rise to the following commutative diagram of complex Lie
groups.

0 A[
an G[

an T [an 0

0 Char(A)an Char(G)an Char(T)an 0

Since character sheaves on A and T are regular, the Riemann–Hilbert correspondence
implies that the morphisms A[

an → Char(A)an and T [an → Char(T)an are injective. The
fact that a line bundle with integrable connection on A is automatically a character
sheaf further says that A[

an → Char(A)an is surjective.
To prove that T [an → Char(T)an is surjective, we may suppose that T = Gm. A line

bundle with integrable connection on Gm is of the form (OGm , d + f(x) dx/x), for some
f ∈ k[x, x−1]. This connection is regular precisely if f is constant. In other words,
regular line bundles with integrable connection on Gm are the same as character
sheaves. This proves that (Gm)[an → Char(Gm)an is surjective.

Corollary 3.3.10. Let G be a semiabelian variety over C. Then every character sheaf on G is
regular.
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4. Fourier transforms
In this chapter, we present a Fourier transform mapping quasi-coherent sheaves on
a commutative group stack G to quasi-coherent sheaves on its stacky Cartier dual
G∨. This construction mirrors the role of the classical Fourier transform in harmonic
analysis, providing a powerful tool for translating problems about quasi-coherent
sheaves on G into equivalent problems on G∨, where they may become more tractable.

Function-sheaf dictionary
Let ` be a prime number, and let X be an algebraic variety over a finite field k of
characteristic different from `. Denote by Frobk the geometric Frobenius automorphism.
For any objectM in the derived category Dbc (X,Q`) of constructible `-adic sheaves, we
define a function X(k)→ Q` as

x 7→
∑
i∈Z

(−1)i tr
(
Frobk,H

i(M)x̄
)
,

whose values are independent of a choice of geometric point x̄ above x. This is the
so-called trace function trM ofM.
The assignment M 7→ trM establishes a dictionary between objects of Dbc (X,Q`)

and functions on X(k). For a map f : X → Y of algebraic varieties over k, the table
below illustrates how certain operations on sheaves translate into operations on trace
functions.

Object of Dbc (X,Q`) or Dbc (Y,Q`) Associated trace function

M1 ⊗M2 trM1
· trM2

f∗N trN ◦ f
Rf!M y 7→

∑
f(x)=y trM(x)

For each character χ of k, there exists an `-adic local system Lχ on A1k whose trace
function is χ. This local system is commonly referred to as the Artin–Schreier sheaf.
Recall that, once a character χ is fixed, any other character of k can be expressed as
x 7→ χ(tx) for some unique t ∈ k. As a result, the Fourier transform of a function f on
k is defined by

f̂ : t 7→
∑
x∈k

f(x)χ(tx).
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4. Fourier transforms

Every operation above has a corresponding sheaf-theoretic analogue. Indeed, when
f is the trace function of a complexM onA1, the Fourier transform f̂ is the trace function
of the complex R pr2,!(pr∗1M ⊗ σ∗Lχ). Here, σ : A1k × A1k → A1k is the multiplication
map, whereas pr1, pr2 : A1k × A1k → A1k are the natural projections.

The functor R pr2,!(pr∗1−⊗ σ∗Lχ) was originally introduced by Deligne in a letter to
Kazhdan [FFK23, App. D], where he explored the fundamental results of harmonic
analysis within this setting. This construction has since become a cornerstone in
`-adic cohomology, inspiring numerous adaptations across other cohomology theories
[Muk81; Dai00; Lau03; Noo04].

Fourier transform on commutative group stacks
Let G be a commutative group stack. Recall that the points of G∨ correspond to
multiplicative line bundles on G. Just as (t, x) 7→ χ(tx) is the universal character on
k, the evaluation map G × G∨ → BGm gives rise to the universal multiplicative line
bundle PG. For each point α ∈ G∨, the restriction of PG to G ' G× {α} is isomorphic
to the multiplicative line bundle Lα corresponding to α.
This leads to the definition of a Fourier transform functor FTG : Dqc(G)→ Dqc(G

∨),
sendingM to pr2,!(pr∗1M⊗PG), where pr1 and pr2 are the natural projections from
G× G∨. The functors appearing in this definition come from the six-functor formalism
for quasi-coherent sheaves on derived stacks developed in Section 1.3. To reassure the
reader, we note that the functor pr2,! coincides with pr2,∗ is most situations of interest.

In the case of an abelian scheme, this operation is known in the literature under the
name Fourier–Mukai transform. Having the aforementioned six-functor formalism at our
disposal, the main properties of the Fourier transform on commutative group stacks
can be established in a manner analogous to the classical proofs for the Fourier–Mukai
transform. This is explored in detail in Sections 4.1 and 4.2.
One particularly significant property of the Fourier transform deserves special

emphasis. For simplicity, consider the case where the commutative group stack
G is defined over a ring R. For an object M of Dqc(G), Proposition 4.1.8 provides
isomorphisms

RΓc(G,M⊗Lα) ' α∗ FTG(M),

where Lα is the multiplicative line bundle determined by a point α ∈ G∨(R). In other
words, the complex FTG(M) encapsulates the cohomology groups of all twists ofM
by multiplicative line bundles.

The Fourier–Laumon transform
Let G be a generalized 1-motive over a field k of characteristic zero. In Section 3.1, we
constructed its Laumon dual G. and established a comparison morphism G. → G∨.
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4.1. Fourier transform on commutative group stacks

For the reader’s convenience, we recall that Corollary 3.1.6 states that this map is an
isomorphism precisely when G has no "unipotent part".
We define the Fourier–Laumon transform LTG : Dqc(G) → Dqc(G

.) as the pullback of
FTG : Dqc(G)→ Dqc(G

∨) by the comparison map G. → G∨. We believe this approach
offers a highly conceptual perspective on the Fourier transform originally defined
by Laumon in [Lau96], significantly simplifying its definition. This viewpoint also
demonstrates that the Fourier–Laumon transform inherits most of the key properties
of the Fourier transform on commutative group stacks.
In this thesis, the most significant example of a generalized 1-motive is the de

Rham space GdR associated with a commutative connected algebraic group G. Its
Fourier–Laumon transform Dqc(DG)→ Dqc(G

.
dR) extends several classical operations

for D-modules, including the Fourier transform on unipotent groups, the Mellin
transform on tori, and the Fourier–Mukai transform on abelian varieties. For a more
detailed discussion, see Section 4.3.

4.1. Fourier transform on commutative group stacks
Throughout this chapter, we will systematically employ the six-functor formalism
for quasi-coherent sheaves on derived stacks, as established in Corollary 1.3.23. A
(classical) stack is viewed as a derived stack whose classical truncation, given by the
composition Ring ↪→ An(Ring)→ An, takes values in the 2-category Grpd of groupoids.
Henceforth, we fix a base scheme S and assume, unless otherwise specified, that all
stacks are over S.

�
In this chapter, every functor is implicitly derived, including fiber products, which
are to be computed in the∞-category dStk of derived stacks. It is worth noting that
all results also extend to classical fiber products under appropriate tor-independence
conditions.

The following definition introduces a class of stacks to which the results of this
chapter are applicable. According to Definition 1.2.17 and Proposition 1.3.22, any stack
X with an fppf cover by a scheme lies in this class. Notably, this includes algebraic
stacks. Similarly, Proposition 1.4.2 implies that de Rham spaces also lie in this class.

Definition 4.1.1. Let X be a stack. We say that X is !-able if its structure map p : X→ S

has !-functors.

The raison d’être of this condition, in the setting of this chapter, is that X being !-able
allow us to consider the !-direct image of the projection X × Y → Y. In many cases,
such as for quasi-compact quasi-separated schemes, the !-direct image coincides with
the usual direct image. But it is the correct functor to consider for more general stacks,
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such as de Rham spaces.
A myriad of interesting operators in analysis arise as integral transforms. For a

function K on a product space X× Y, called a kernel, those act as

f 7→
Å
y 7→

∫
f(x)K(x, y) dx

ã
.

In words, the integral transform above takes a function f on X, treats it as a two-variable
function on X × Y, multiplies it by K, and then integrates over X. Each step has a
sheaf-theoretic analogue, motivating the definition below.

Definition 4.1.2 (Integral transform). Let X and Y be !-able stacks together with an
object K of Dqc(X× Y). We say that the functor

Dqc(X)→ Dqc(Y)

M 7→ pr2,!(pr∗1M⊗ K),

where pr1 and pr2 are the natural projections from X× Y, is the integral transform with
kernel K.

The most important property of those operations, in the context of this chapter, is
the fact that compositions of integral transforms are also integral transforms. This
result, in the generality below, can be proven just as in [GW23, Prop. 27.241].

Proposition 4.1.3. Let X, Y, and Z be !-able stacks together with objects K1 of Dqc(X× Y) and
K2 of Dqc(Y× Z). Then the composition of integral transforms

Dqc(X)→ Dqc(Y)→ Dqc(Z)

is isomorphic to the integral transform with kernel

K1 ◦ K2 := pr13,!(pr∗12 K1 ⊗ pr∗23 K2),

where prij is the projection from X× Y× Z into the ij-th factors.

We will often use this result in the following form.

Proposition 4.1.4. Let X, Y, and Z be !-able stacks together with an object K of Dqc(X× Y)

and a map f : Z→ Y. Then the composition

Dqc(X)→ Dqc(Y)
f∗−−→ Dqc(Z),

where the functor on the left is the integral transform with kernel K, is isomorphic to the integral
transform with kernel (idX× f)∗K.
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4.1. Fourier transform on commutative group stacks

Since the integral transform with kernel Γf,!OZ is isomorphic to the inverse image
functor f∗ : Dqc(Y)→ Dqc(Z), the following result is actually a corollary of the previous
one. That being said, it is easier to just prove it directly.1

Proof of Proposition 4.1.4. An application of base change in the diagram

X× Z

X× Y Z

X Y

idX× f
pr2pr1

pr1 pr2 f

yields the isomorphism f∗ pr2,!(pr∗1−⊗ K) ' pr2,!(pr∗1 −⊗ (idX× f)∗K).

Let G be a commutative group stack. Its stacky Cartier dual G∨ := Hom(G,BGm), as
studied in Chapter 2, parametrizes multiplicative line bundles on G. Naturally, if G is
flat2, there is a universal such line bundle on the product G× G∨. This is the kernel for
the most important kind of integral transform.

Definition 4.1.5 (Fourier transform). Let G be a !-able flat commutative group stackwith
stacky Cartier dual G∨. The evaluation map G× G∨ → BGm defines the Poincaré line
bundle PG on G× G∨. We define the Fourier transform functor FTG : Dqc(G)→ Dqc(G

∨)

as the integral transform with kernel PG.

We now present an interesting example of a Fourier transform over a general base
scheme S. In the next sections, we will see more examples after specializing to a base
field.

� Example 4.1.6. Let A be an abelian scheme over S. Since its Cartier dual AD =

Hom(A,Gm) vanishes, the Barsotti–Weil formula (Corollary 2.3.13) implies that A∨

is isomorphic to the dual abelian scheme A′. The associated Fourier transform
Dqc(A) → Dqc(A

′) has been widely studied in the literature under the name Fourier–
Mukai transform. See [GW23, §27.45] for its main properties.
The stacky Cartier dual of BA vanishes, making the associated Fourier transform

rather trivial; it reduces to the functor p! : Dqc(BA)→ Dqc(S), where p : BA→ S denotes
the structure map. Furthermore, we note that p is cohomologically proper, as the
pullback A→ S by the effective epimorphism S→ BA has this property. As a result,
the forget-supports map p! → p∗ is an isomorphism. �

1Furthermore, the direct proof does not require Γf to have !-functors and needs fewer tor-independence
hypotheses when working with classical products.

2We say that G is flat if the derived product G× X agrees with its classical truncation for all stacks X.
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4. Fourier transforms

Proposition 4.1.7. Let ϕ : G→ H be a morphism of !-able flat commutative group stacks with
dual ϕ∨ : H∨ → G∨. Suppose that ϕ and ϕ∨ have !-functors. Then the functors ϕ∨,∗ ◦ FTG

and FTH ◦ϕ! are isomorphic. Similarly, the functorsϕ∨
! ◦FTH and FTG ◦ϕ∗ are isomorphic.

Proof. The Proposition 4.1.4 gives that ϕ∨,∗ ◦ FTG ' pr2,!(pr∗1 − ⊗ (idG×ϕ∨)∗PG),
where the maps are as in the diagram below.

H ×H∨

G×H∨

H G× G∨ H∨

G G∨

q1

q2
ϕ×id

H∨

idG×ϕ∨ pr2

pr1

pr1 pr2 ϕ∨ϕ

By definition of the dual morphism, the two maps below coincide

G×H∨ idG×ϕ∨

−−−−−−→ G× G∨ → BGm

G×H∨
ϕ×id

H∨−−−−−−→ H ×H∨ → BGm,

and so (ϕ× idH∨)∗PH ' (idG×ϕ∨)∗PG. The commutativity of the diagram above,
together with the projection formula implies that

ϕ∨,∗ ◦ FTG ' q2,!(ϕ× idH∨)!(pr∗1 −⊗ (ϕ× idH∨)∗PH)

' q2,!((ϕ× idH∨)!pr∗1 −⊗PH).

The first natural isomorphism then follows by another application of base change. A
dual version of the same arguments yields the desired isomorphism betweenϕ∨

! ◦FTH

and FTG ◦ϕ∗.

The following result follows directly from Proposition 4.1.4. In the particular case
where T and S are both the spectrum of a ring R, it says that the Fourier transform
FTG(M) of an objectM in Dqc(G) contains all the data of the compactly supported3

cohomology groups H∗c(G,M ⊗ Lα) for all α ∈ G∨(R). Here, Lα denotes the line
bundle on G associated with α.
3We say compactly supported cohomology because it is defined as a !-direct image. In most cases of
interest this coincides with usual cohomology, though.

150



4.2. Convolution and equivalences of categories

Proposition 4.1.8. Let G be a !-able flat commutative group stack with stacky Cartier dual G∨.
Consider a S-scheme T and the natural projections prG : GT → G and prT : GT → T . Then, for
every α ∈ G∨(T), we have an isomorphism prT,!(pr∗G−⊗Lα) ' α∗ ◦ FTG, where Lα is the
multiplicative line bundle on GT associated with α.

4.2. Convolution and equivalences of categories
Just like the Fourier transform in analysis sends a product of functions to the convolution
of their Fourier transforms, our sheaf-theoretic Fourier transform also enjoys an
analogous property. This convolutionproduct provides a clear criterion for determining
when the Fourier transform is an equivalence of categories.

Definition 4.2.1 (Convolution). Let G be a !-able flat commutative group stack with
group operation m : G × G → G. We define the convolution product as the bifunctor
Dqc(G)× Dqc(G)→ Dqc(G) sending (M,N) toM ∗N := m!(M�N).

Proposition 4.2.2. Let G be a !-able flat commutative group stack with zero section e : S→ G.
The convolution product endows the stable ∞-category Dqc(G) of a symmetric monoidal
structure with unit e!OS.

Proof. Let C be an∞-category admitting finite limits, and let E be a class of morphisms
stable under pullback and composition, containing all isomorphisms. According to
Definition 1.2.3, a three-functor formalism is a lax symmetric monoidal functor

D : Corr(C, E)→ Cat∞,
where Corr(C, E) is the symmetric monoidal ∞-category of correspondences. Denote
by CE the subcategory of C composed of the morphisms lying in E. We have a natural
functor CE → Corr(C, E) acting as the identity on objects and sending a morphism
f : X→ Y to the correspondence

X

X Y.

idX f

This functor is symmetric monoidal, implying that the composition CE → Corr(C, E)→
Cat∞ is lax symmetric monoidal. As such, it preserves commutative algebra objects.

Now, consider the six-functor formalism on derived stacks Dqc defined in Section 1.3.
Since a !-able flat commutative group stack is a commutative algebra in the category of
derived stacks, the preceding discussion endows Dqc(G) with a symmetric monoidal
structure given by convolution.
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4. Fourier transforms

Let ϕ : G → H be a morphism of commutative group stacks. Suppose that ϕ
admits !-functors and that both G and H are !-able and flat. As a byproduct of the
preceding proof, the functor ϕ! is symmetric monoidal with respect to convolution. In
particular, if e : S→ G is the identity section of G, the functor e! maps tensor products
to convolutions.

Proposition 4.2.3. Let G be a !-able flat commutative group stack. The Fourier transform
FTG : Dqc(G)→ Dqc(G

∨) is symmetric monoidal with respect to the convolution product on
the source and the tensor product on the target. Moreover, it is also symmetric monoidal with
respect to the tensor product on the source and the convolution product on the target.

Proof. The result follows directly from Proposition 4.1.7, noting that stacky Cartier
duality interchanges diagonal maps with group operations.

Definition 4.2.4. We say that a commutative group stack G is reflexive if it is flat, !-able,
and the natural evaluation map evG : G→ (G∨)∨ is an isomorphism. In this case, we
define a functor FT∨

G : Dqc(G
∨)→ Dqc(G) as the composition of FTG∨ with the inverse

image by evG.

We remark that this Fourier transform FT∨
G : Dqc(G

∨) → Dqc(G) really is what one
expects it to be. Indeed, if τ : G× G∨ → G∨ × G switches the factors, the maps

G× G∨ → BGm and G× G∨ τ−→ G∨ × G
id

G∨
× evG

−−−−−−−→ G∨ × (G∨)∨ → BGm

coincide, and so PG ' τ∗(idG∨ × evG)∗PG∨ . Then Proposition 4.1.4 implies that FT∨
G

is nothing but the functor

M 7→ pr1,!(pr∗2M⊗PG),

where pr1 and pr2 are the natural projections from G× G∨.
In the author’s experience, Fourier transforms of reflexive commutative group stacks

are often equivalences of categories. However, this does not seem to be a formal
consequence of the theory developed in this chapter. The proposition below describes
one method for proving such equivalences.4

Proposition 4.2.5. Let G be a reflexive commutative group stack with Cartier dual G∨ and
Poincaré bundle PG. Denote by pr1 : G × G∨ → G and pr2 : G × G∨ → G∨ the natural
projections. Then the Fourier transforms FTG : Dqc(G) → Dqc(G

∨) and FT∨
G : Dqc(G

∨) →
Dqc(G) are equivalences of categories if and only if pr1,! PG and pr2,! PG are invertible with
respect to the convolution product.
4See [Bei+18, App. B] for a slightly different approach.
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4.2. Convolution and equivalences of categories

Proof. If both Fourier transforms above are equivalences of categories, so are the compo-
sitions FTG ◦ FT∨

G and FT∨
G ◦FTG. Conversely, if these compositions are equivalences

of categories, then (FT∨
G ◦FTG)−1 ◦ FT∨

G is a left-inverse and FT∨
G ◦(FTG ◦ FT∨

G )−1 is
a right-inverse to FTG, proving that it is an equivalence and similarly for FT∨

G . By
symmetry, it suffices to prove that FT∨

G ◦FTG is an equivalence of categories if and
only if pr1,! PG is invertible with respect to the convolution product.
Proposition 4.1.3, along with the discussion following Definition 4.2.4, shows that

FT∨
G ◦FTG is the integral transformwith kernelPG ◦σ∗PG, where σ : G∨×G→ G×G∨

switches the factors. Now, consider the morphism µ : G× G∨ × G→ G× G∨ given by
(x,ϕ, y) 7→ (x+ y,ϕ). By comparing the maps

G× G∨ × G
µ−→ G× G∨ → BGm

G× G∨ × G
pr12−−−→ G× G∨ → BGm

G× G∨ × G
pr23−−−→ G∨ × G

σ−→ G× G∨ → BGm,

we see that PG ◦ σ∗PG ' pr13,! µ
∗PG. Then, an application of base change on the

diagram
G× G∨ × G G× G∨

G× G G

µ

pr13 pr1

m

gives that pr13,! µ
∗PG ' m∗ pr1,! PG.

Denote by p1 and p2 the natural projections from G×G, and by invG : G→ G the map
sending an element of G to its inverse. Remark that the morphism δ : G× G→ G× G

defined by (x, y) 7→ (−x, x + y) is an isomorphism whose inverse is itself. It follows
that

FT∨
G ◦FTG ' p2,!(p∗1 −⊗m∗ pr1,! PG)

' p2,!δ!δ
∗(p∗1 −⊗m∗ pr1,! PG)

' m!(p
∗
1 inv∗G −⊗ p∗2 pr1,! PG) ' (inv∗G −) ∗ (pr1,! PG).

Since invG is an isomorphism, the functor FT∨
G ◦FTG is an equivalence of categories

precisely when pr1,! PG is invertible with respect to the convolution product.

� Example 4.2.6. Let A→ S be an abelian scheme of relative dimension g with dual A′,
and let PA be its Poincaré bundle. As above, we denote by pr1 and pr2 the natural
projections from A×S A′. Moreover, let e : S→ A and e′ : S→ A′ be the zero sections.
By [GW23, Prop. 27.229], we have that

pr1,∗PA ' e∗ det(Ce)
−1[−g]

pr2,∗PA ' e′∗ det(Ce)
−1[−g],
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4. Fourier transforms

where Ce = e∗Ω1A/S is the conormal bundle of the zero section. Since the convolution
inverse of e∗ det(Ce)−1[−g] is e∗ det(Ce)[g], and similarly for e′∗ det(Ce)−1[−g], this
recovers Mukai’s original result [Muk81, Thm. 2.2]. �

4.3. The Fourier–Laumon transform
Throughout this section, the base scheme S is the spectrum of a characteristic zero
field k.5 There is an equivalence of categories Dqc(Ga) ' Dqc(B“Ga), where “Ga denotes
the formal completion of Ga at the identity [Bha22, Ex. 2.2.12]. Thus, one might
expect a Fourier transform witnessing this equivalence. While “Ga is the Cartier dual
of Ga, the coarse moduli sheaf of G∨

a is the non-vanishing Ext1(Ga,Gm) studied in
Remark 2.3.17.

In this subsection, we treat B“Ga as the correct dual. This is the Laumon dual, denoted
G.
a and defined in Section 3.1. More generally, let G be a generalized 1-motive, regarded

as a commutative group stack. In the aforementioned section, we constructed the
Laumon dual G. along with a natural map G. → G∨. It may be reassuring to note that
Corollary 3.1.6 shows that the comparison map G. → G∨ is frequently an isomorphism.

Proposition 4.3.1. Let G be a generalized 1-motive over k. Then G is !-able.

Proof. Write G as a quotient of smooth commutative connected algebraic group G by a
commutative formal group G . By Cartier duality, G is the Cartier dual LD of an affine
smooth connected algebraic group L. Because L decomposes as a product of a torus T
and a unipotent group U, the formal group G is isomorphic to X× Û∗, where X is the
character group of T and U∗ is the dual vector group.

It is clear that the map X→ Spec k is cohomologically smooth, and Proposition 1.4.2
established that the map Û∗ → Speck is cohomologically smooth as well. Since the
diagram

X× Û∗ Spec k

Spec k BG

is cartesian, it follows that the unit section Spec k→ BG is cohomologically smooth.
Finally, the diagram

G Speck

G BG

5As noted in Corollary 3.1.6, the Fourier transform discussed in this section is required only in
characteristic zero.
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4.3. The Fourier–Laumon transform

being cartesian gives that the quotient map G → G is cohomologically smooth.
Remark 1.2.16 yields that G → G satisfies universal !-descent. Given that having
!-functors is local on the source, we conclude that G is !-able.

As a result of the preceding proposition, all the results from the previous two
sections apply to generalized 1-motives. In particular, we can define a variant of the
Fourier transform that maps quasi-coherent sheaves on G to quasi-coherent sheaves on
the Laumon dual G..

Definition 4.3.2. Let G be a generalized 1-motive. The Fourier–Laumon transform is the
functor LTG : Dqc(G) → Dqc(G

.) defined as the composition of FTG with the inverse
image by G. → G∨.

�
This definition is inspired by the one presented in [Lau96, §6.3]. Although we have
not verified if they coincide (up to shifts and tensoring with invertible modules), we
believe that Definition 4.3.2 is highly conceptual and meets all essential properties
expected of a Fourier transform.

The following examples illustrate how the Fourier–Laumon transform generalizes
somewell-knownoperations forD-modules. The comparisonwith the classical functors
follows directly from the computation of the Laumon duals via the Proposition 3.1.7,
along with the Corollaries 1.4.8 and 1.4.12.

� Example 4.3.3 — Fourier transform for D-modules on unipotent groups. Let U be a
unipotent commutative algebraic group, and let U∗ be its dual vector space seen
as a vector group. The Laumon dual of UdR is U∗dR, inducing the Fourier–Laumon
transform Dqc(DU)→ Dqc(DU∗).6 Using the notation from [Dai00, §2.2.2], this functor
coincides with F∗[− dimU]. In particular, since F∗ is t-exact [Dai00, Cor. 2.2.2.1],
this Fourier–Laumon transform maps a DU-module concentrated in degree zero to a
DU∗-module concentrated in degree dimU. (See also [Lau85, §1].)
After a choice of bases U ' Spec k[x1, . . . , xn] and U∗ ' Spec k[ξ1, . . . , ξn], this

Fourier–Laumon transform becomes rather explicit. Indeed, consider the Weyl
algebras7 An = k[x1, . . . , xn]〈∂x1 , . . . , ∂xn〉 and A∗n = k[ξ1, . . . , ξn]〈∂ξ1 , . . . , ∂ξn〉. The
isomorphism

k[x1, . . . , xn]〈∂x1 , . . . , ∂xn〉 → k[ξ1, . . . , ξn]〈∂ξ1 , . . . , ∂ξn〉
xi 7→ ∂ξi

∂xi 7→ −ξi

6This provides another example where the stacky Cartier dual and the Laumon dual do not coincide.
7The free noncommutative algebra generated by the variables xi and the differential operators ∂xi ,
satisfying the commutation relations ∂xixj − xj∂xi = δij for i, j = 1, . . . , n.
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4. Fourier transforms

allows us to define a functor Mod(An)→ Mod(A∗n) given byM 7→ A∗n ⊗An M. This
induces an equivalence of ∞-categories D(Mod(An)) → D(Mod(A∗n)) which, under
the identifications Dqc(DU) ' D(Mod(An)) and Dqc(DU∗) ' D(Mod(A∗n)), coincides
with the functor F∗ mentioned above [KL85, Lem. 7.1.4]. �

� Example 4.3.4 — Mellin transform for D-modules on tori. Let T be a k-torus. Denote by
ΩT the vector space of invariant differential forms over T , seen as a vector group, and
by X its character group. Both the stacky Cartier and the Laumon dual of TdR are given
byΩT/X, where X acts onΩT as

X×ΩT → ΩT

(χ,ω) 7→ ω+ χ∗(dt/t).

Here, t denotes the canonical coordinate of Gm = Speck[t, t−1]. We obtain a Fourier
transform Dqc(DT ) → DXqc(ΩT ), where DXqc(ΩT ) is the derived ∞-category of quasi-
coherent X-equivariant sheaves onΩT .
This functor coincides with F[− dim T ], with F defined as in [Lau85, §2]. For a split

torus T , this operation can be made explicit. After choosing coordinates, we have
isomorphisms T ' Spec k[x1, x

−1
1 , . . . , xn, x

−1
n ], ΩT ' Speck[s1, . . . , sn] and X ' Zn.

Under these identifications, an X-equivariant quasi-coherent sheaf onΩT corresponds
to a left k[s1, . . . , sn]〈τ1, τ−11 , . . . , τn, τ−1n 〉-module.8 Then, F coincides with the functor
induced by the isomorphism

k[x1, x
−1
1 , . . . , xn, x

−1
n ]〈θx1 , . . . , θxn〉 → k[s1, . . . , sn]〈τ1, τ−11 , . . . , τn, τ−1n 〉

xi 7→ τi

θi 7→ −si,

where θi := xi∂xi , as in the previous example [LS91b, Lem. 1.2.2]. In particular, F is
t-exact with respect to the standard t-structures. �

� Example 4.3.5 — Fourier–Mukai transform for D-modules on abelian varieties. Let A
be an abelian variety, and denote by A\ the universal vector extension of the dual
abelian variety A′. The stacky Cartier and the Laumon dual of AdR coincide and are
isomorphic to A\. As a result, there exists a Fourier transform Dqc(DA) → Dqc(A

\),
which is naturally isomorphic to F̃[− dimA], in the notation of [Lau96, §3].

According to [Lau96, Thm. 3.2.1], the functor F̃ is an equivalence of categories. In
particular, it restricts to compact objects, giving Dbcoh(DA)→ Dbcoh(A\). This functor is
not t-exact with respect to any shifts of the standard t-structures. However, it becomes
t-exact with respect to a perverse t-structure on the target after restricting to holonomic
complexes [Sch15, Thm. 4.2]. �

8Similar to the Weyl algebra, k[s1, . . . , sn]〈τ1, τ−11 , . . . , τn, τ−1n 〉 is the free noncommutative algebra
generated by the variables si and the invertible difference operators τi, with commutation relations
τisj − sjτi = τiδij for i, j = 1, . . . , n.
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We now explain the main properties of the Fourier–Laumon transform, beginning
by those inherited from properties of the Fourier transform studied in the previous
sections.

Proposition 4.3.6. Let ϕ : G→ H be a morphism of generalized 1-motives with Laumon dual
ϕ. : H. → G.. Then the functors ϕ.,∗ ◦ LTG and LTH ◦ϕ! are isomorphic.

Proof. The comparison map between the Laumon and the stacky Cartier dual being
natural on the generalized 1-motive implies that the diagram

H. H∨

G. G∨

ϕ. ϕ∨

commutes. The result then follows from Proposition 4.1.7.

Proposition 4.3.7. Let G be a generalized 1-motive. Then the Fourier–Laumon transform
LTG : Dqc(G) → Dqc(G

.) is symmetric monoidal with respect to the convolution product on
the source and the tensor product on the target.

Proof. This result can either be seen as a consequence of Proposition 4.2.3, or one could
use the preceding proposition to argue as in the proof of Proposition 4.2.3.

Note that not every commutative group stack is reflexive. For instance, the stacky
Cartier dual of the classifying stackof anabelian schemevanishes. But everygeneralized
1-motive is reflexive with respect to the Laumon dual.

Proposition 4.3.8. Let G be a generalized 1-motive. Then there is a natural isomorphism
G

∼−→ (G.)..

Proof. We will freely use the notations of Section 3.1 in this proof. Writing the
generalized 1-motive G as a two-term complex [G → G], its Laumon dual becomes
[LD → K], for K = Ext1([G → A],Gm). As in the proof of Lemma 3.1.2, we have a short
exact sequence

0→ (LD)D → Ext1([LD → A′],Gm)→ Ext1(A′,Gm)→ 0.

Cartier duality gives that the natural map L → (LD)D is an isomorphism, while the
Barsotti–Weil formula alongwith the duality of abelian varieties implies that the natural
map A→ Ext1(A′,Gm) is an isomorphism. The uniqueness in the Barsotti–Chevalley
decomposition then yields that Ext1([LD → A′],Gm) ' G.
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5. The generic vanishing theorem
Let G be a commutative connected algebraic group over C. In the previous part,
we constructed the moduli space of character sheaves G[ and studied its geometry.
Specifically, we identified a class of large subspaces within G[, referred to as generic
subspaces, which reflect the geometric structure of G. We now turn our attention
to vanishing theorems for the de Rham cohomology of holonomic D-modules on G,
twisted by character sheaves on these generic subspaces of G[.

General outline
In this chapter, all algebraic varieties are assumed to be defined over C, and every
point is considered to be closed. We adopt the D-module conventions introduced
in Section 1.5, which includes a table aligning our notation with that of common
references. Following Remark 1.5.2, we denote by Lχ the character sheaf associated
with a point χ ∈ G[, taken in degree dimG. For an invariant formω ∈ ΩG, we denote
the character sheaf (OG, d +ω)[− dimG] by Lω.
Let M be a holonomic D-module on G. The desired generic vanishing theorem

should assert the existence of a generic subspace V ⊂ G[ such that, for all χ ∈ V :

(1) the forget-supports map H∗c(G,M⊗GLχ)→ H∗(G,M⊗GLχ) is an isomorphism;

(2) the complex H∗(G,M⊗G Lχ) is concentrated in degree zero.

If each holonomicD-module ofG admits a generic subspace ofG[ with these properties,
we say that G satisfies generic vanishing.

A fundamental observation is that property (1) is closely related to linear groups,
while property (2) is naturally associated with abelian varieties. For an abelian
variety A, the forget-supports map H∗c(A,M⊗A Lχ)→ H∗(A,M⊗A Lχ) is always an
isomorphism, making property (2) the primary focus. On the other hand, for a linear
group L, whenever the forget-supports map H∗c(L,M⊗L Lχ)→ H∗(L,M⊗L Lχ) is an
isomorphism, Artin vanishing ensures that both sides are concentrated in degree zero
(see Proposition 5.1.2 for more details).

For a general commutative connected algebraic group G, the Barsotti–Chevalley
theorem provides a decomposition of G as an extension of an abelian variety A by a
linear group L:

0→ L
ϕ−−→ G

ψ−−→ A→ 0.

161



5. The generic vanishing theorem

Moreover, from Corollary 3.1.10, every character sheaf on G can be expressed as
Lω ⊗G ψ+Lα, for some ω ∈ G and α ∈ A[. The projection formula then gives
isomorphisms

H∗c(G,M⊗G Lω ⊗G ψ+Lα) ' H∗(A,ψ!(M⊗G Lω)⊗A Lα)

H∗(G,M⊗G Lω ⊗G ψ+Lα) ' H∗(A,ψ+(M⊗G Lω)⊗A Lα).

Consequently, properties (1) and (2), for Lχ = Lω ⊗G ψ+Lα, can be derived from the
following conditions:

(1′) the forget-supports map ψ!(M⊗G Lω)→ ψ+(M⊗G Lω) is an isomorphism;

(2′) the complex H∗(A,ψ+(M⊗G Lω)⊗A Lα) is concentrated in degree zero.

Building on Schnell’s work, we can focus primarily on condition (1′). Indeed, a
relative version of Artin vanishing guarantees that, for each ω ∈ ΩG such that the
forget-supports map ψ!(M⊗G Lω)→ ψ+(M⊗G Lω) is an isomorphism, both sides
are concentrated in degree zero. Thus, condition (2′) follows from the fact that abelian
varieties satisfy generic vanishing; a result of Schnell [Sch15, Thms. 2.2 and 4.1].

Relative generic vanishing
The Barsotti–Chevalley decomposition implies thatG is an L-torsor overA. In particular,
there exists an étale covering S→ A that trivializes this torsor and identifies the map
ψ : G→ A with the projection prS : L× S→ S:

L× S S

G A.

prS

ψ

As in Proposition 5.4.1, the verification of condition (1′) reduces to the following
assertion: for each smooth variety S and each objectM of Dbh (DL×S), there exists a
generic subspace V ⊂ L[ such that, for all χ ∈ V ,

(1′′) the forget-supports map prS,!(M ⊗L pr+L Lχ) → prS,+(M ⊗L pr+L Lχ) is an iso-
morphism.

Here, prL : L × S → L denotes the natural projection. A linear group L with this
property is said to satisfy relative generic vanishing.

The following result is the culmination of all the dévissages discussed above. When
combined with the verification that tori satisfy relative generic vanishing, it stands as
one of the most significant theorems in this thesis.
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Theorem (5.4.3). LetM be an object of Dbh (DG). Suppose that L satisfies relative generic
vanishing. Then there exists a generic subspace V of L[ such that the forget-supports map

H∗c(G,M⊗G Lω ⊗G ψ+Lα)→ H∗(G,M⊗G Lω ⊗G ψ+Lα),

is an isomorphism for everyα ∈ A[ and everyω ∈ ΩG such thatϕ+Lω lies inV . Furthermore,
ifM is concentrated in degree zero, for eachω as above, there exists a generic subspaceW of
A[ such that

H∗c(G,M⊗G Lω ⊗G ψ+Lα) ' H∗(G,M⊗G Lω ⊗G ψ+Lα)

is concentrated in degree zero for every α ∈W.

As explained in Corollary 5.4.2, for an objectM of Dbh (DG), this theorem guarantees
the existence of a generic subspaceW of G[ such that the forget-supports map

H∗c(G,M⊗G Lχ)→ H∗(G,M⊗G Lχ)

is an isomorphism for every χ ∈W. IfM is concentrated in degree zero, it provides a
"large" subsetW′ of G[ such that

H∗c(G,M⊗G Lχ) ' H∗(G,M⊗G Lχ)

is concentrated in degree zero for every χ ∈W′. However, it remains unclear whether
W′ contains a generic subspace of G[.

The proof of relative generic vanishing
In Section 5.1, we present a general strategy for proving that a forget-supports map
is an isomorphism based on nearby and vanishing cycles. (Which, in the de Rham
setting, are modeled by the V-filtration of Kashiwara, Malgrange, and Sabbah.) This
strategy was successfully applied in Theorem 5.2.1 to demonstrate that tori satisfy
relative generic vanishing, thereby reproving and generalizing a theorem of Sabbah
[Sab92, Thm. 2.2].

Theunipotent case, however, presents significantlymore challenges. In Example 5.3.4,
we apply the previously outlined strategy to establish a specific instance of relative
generic vanishing for unipotent groups. We believe this example is highly indicative
of the general case, potentially even serving as a model for proving relative generic
vanishing for arbitrary linear groups. Although we are not yet able to verify every
detail, Remark 5.3.5 outlines a possible approach to such a proof.

Nonetheless, in Proposition 5.3.1, we prove that a unipotent groupU satisfies a weak
form of generic vanishing. Specifically, for each objectM of Dbh (DU), there exists an
open dense subset V of U[ such that the forget-supports map

H∗c(G,M⊗U Lχ)→ H∗(G,M⊗U Lχ)
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5. The generic vanishing theorem

is an isomorphism for all χ ∈ V . Furthermore, ifM is concentrated in degree zero,
those cohomology groups vanish in all non-zero degrees.

5.1. Relative generic vanishing
In this section, we explain our strategy for proving a significant part of the generic
vanishing theorem. Given that a general commutative connected algebraic group
G is an extension of an abelian variety A by a linear group L, there exists an étale
covering S→ A that trivializes the L-torsor G→ A and identifies it with the projection
L× S→ S. This brings us to the following definition.

Definition 5.1.1 (Relative generic vanishing). Let L be a linear commutative connected
algebraic group. We say that L satisfies relative generic vanishing if, for each smooth
algebraic variety S and each objectM of Dbh (DL×S), there exists a generic subspace V
of L[ such that the forget-supports map

prS,!(M⊗L×S pr+L Lχ)→ prS,+(M⊗L×S pr+L Lχ),

where prS : L× S→ S and prL : L× S→ L are the projections, is an isomorphism for
every χ ∈ V .

As one could expect, a linear commutative connected algebraic group that satisfies
relative generic vanishing also satisfies a generic vanishing theorem.

Proposition 5.1.2. Let L be a linear commutative connected algebraic group, and suppose that
L satisfies relative generic vanishing. Then, for each holonomic D-moduleM over L, there
exists a generic subspace V of L[ such that

Hic(L,M⊗L Lχ) = Hi(L,M⊗L Lχ) = 0 for i 6= 0;
H0c(L,M⊗L Lχ) ' H0(L,M⊗L Lχ)

for every χ ∈ V .

Proof. Applying relative generic vanishing to S = SpecC provides a generic subspace
V such that the forget-supports map

H∗c(L,M⊗L Lχ)→ H∗(L,M⊗L Lχ)

is an isomorphism for every χ ∈ V . Since L is affine, a D-module analogue of Artin
vanishing implies that the left-hand side is concentrated in positive degrees, whereas
the right-hand side is concentrated in negative degrees. (See Remark 1.5.4 for more
details on Artin vanishing.) Consequently, whenever both sides are isomorphic, they
must be concentrated in degree zero.
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5.1. Relative generic vanishing

In the remainder of this section, we outline a strategy for the more general problem
of verifying that a forget-supports map is an isomorphism. Here, we employ the
six-functor formalism of holonomic D-modules; however, the reader will note that
these ideas are also applicable in most six-functor formalisms equipped with notions
of nearby and vanishing cycles. Indeed, we were inspired by [Lau81] and [KL85],
where similar techniques were used in the setting of `-adic cohomology.

Let f : X → S be a morphism between smooth algebraic varieties, and let N be a
holonomic D-module over X. Our goal is to determine conditions on N implying that
the forget-supports map f!N → f+N is an isomorphism. As a first observation, the
theorem on Nagata compactifications [Stacks, Tag 0F41] provides an open immersion
X ↪→ X and a proper map X→ Swhose composition is equal to f.

According to the theorem of resolution of singularities [Kol07, Thm. 36], there exists
a smooth projective variety X̃ and a projective morphism X̃→ X that is an isomorphism
over the smooth locus of X. Consequently, X ↪→ X factors through X̃, and we obtain a
factorization

X̃

X X S,

pj

f

where j is an open immersion, p is proper, and X̃ is a smooth algebraic variety. Since
f!N → f+N is the image of j!N → j+N by p+, it suffices to prove that the latter is an
isomorphism.

�
Currently, resolutions of singularities are only known to exist in characteristic zero.
However, most six-functor formalisms that one might consider in positive characteristic
work without any regularity assumptions. In such cases, the factorizationX ↪→ X→ S

suffices for these arguments.
The following lemma provides a general criterion this problem using the V-filtration

of Kashiwara, Malgrange and Sabbah.

Lemma 5.1.3. Let j : X ↪→ X̃ be an open immersion between smooth algebraic varieties, with
complementary closed immersion i : Z ↪→ X̃. Suppose that Z is smooth and of codimension 1.
Given a holonomic D-module N on X, the forget-supports map

j!N→ j+N

is an isomorphism if and only if grV0 (j+N) vanishes.

Since the V-filtration is the D-module analogue of nearby and vanishing cycles, we
will give a proof of this result focusing on standard properties these functors. We refer
the reader to Remark 1.5.8 for more on the V-filtration.
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Proof of Lemma 5.1.3. Recall that grV0 (j+N) is the D-module analogue of the unipotent
vanishing cycle functor φ1(j+N). Firstly, note that we have a recollement fiber sequence

j!N→ j+N→ i+i
+j+N.

Hence, the forget-supports map is an isomorphism precisely if i+i+j+N = 0. Moreover,
since i+i+ is isomorphic to the identity functor, this occurs if and only if i+j+N = 0.
Next, the standard theory of nearby and vanishing cycles provides two additional

fiber sequences:

i+j+N→ ψ1(j+N)
can−−→ φ1(j+N)

i!j+N→ φ1(j+N)
var−−→ ψ1(j+N).

The first sequence demonstrates that the forget supports map is an isomorphism if and
only if can is. Since i!j+ = 0, the second sequence implies that ψ1(j+N) and φ1(j+N)

are isomorphic. In particular, if φ1(j+N) vanishes, then so does ψ1(j+N) and can is an
isomorphism.
Conversely, if the forget supports map is an isomorphism, our reasoning shows

that can is an isomorphism as well. Furthermore, var is also an isomorphism (since
i!j+ = 0) and thus so is can ◦ var. However, this morphism is nilpotent, implying that it
is zero. It follows that φ1(j+N) = 0.

Althoughwe can always choose a factorizationX ↪→ X̃→ S such that the complement
Z of X in X̃ is a divisor, we often cannot ensure that Z is smooth. In most other
cohomology theories, all the smoothness hypotheses in the preceding lemma are
unnecessary; however, this is not the case for de Rham cohomology. A standard way
of circumventing this issue is the so-called graph trick of Kashiwara.
Assume that the divisor Z is not-necessarily smooth but is the zero set of a regular

function f on X̃. Denoting by Γf : X̃ ↪→ X̃× A1 its graph, we note that ϕ : j!N→ j+N is
an isomorphism if and only if Γf,+ϕ is. Indeed, Γf has a retraction. The graph Γf is a
closed immersion, and thus Γf,+ϕ is the forget-supports map (Γf ◦ j)!N→ (Γf ◦ j)+N.
Next, we have the following commutative diagram

X X̃

X̃×Gm X̃× A1,

j

Γ̃f Γf

j̃

where Γ̃f : X ↪→ X̃×Gm is the restriction of Γf to X and j̃ is the natural open immersion.
Consequently, the morphism (Γf ◦ j)!N → (Γf ◦ j)+N agrees with j̃!Γ̃f,+N → j̃+Γ̃f,+N.
Since the complement of X̃ × Gm in X̃ × A1 is X̃ × {0} ' X̃, which is supposed to be
smooth, we can apply Lemma 5.1.3 to Γ̃f,+N.
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5.1. Relative generic vanishing

Consider the general setting where j : X ↪→ X̃ is an open immersion between smooth
algebraic varieties, and the complement i : Z ↪→ X̃ has codimension one. Verifying
whether ϕ : j!N→ j+N is an isomorphism can be done on an open (even étale) cover
of X̃. We may then choose an open cover {Vλ}λ∈Λ of X̃ such that Zλ := Z ∩ Vλ is the
zero set of some regular function for all λ. Using proper and smooth base change on
the diagram

Uλ Vλ Zλ

X X̃ Z,

jλ iλ

j i

where Uλ := X ∩ Vλ, we see that the restriction of ϕ to Vλ is the forget-supports map
jλ,!N|Uλ → jλ,+N|Uλ . This can be checked to be an isomorphism using the graph trick
and Lemma 5.1.3.
In the context of proving relative generic vanishing, where X is the product of a

linear commutative connected algebraic group and a smooth algebraic variety, one can
always ensure that the complement Z of X in X̃ is a simple normal crossings divisor.
This further simplifies the geometry of the problem. Up to working locally, as in the
previous paragraph, we are led to consider the forget-supports map j!N→ j+N, where
j is the product of Ar \ {x1 . . . xr = 0} ↪→ Ar and the identity morphism of some smooth
algebraic variety.

For notational simplicity, we will ignore the product with a smooth algebraic variety
and assume j is the natural open immersion Ar \ {x1 . . . xr = 0} ↪→ Ar. This morphism
can be factored as

Ar \ {x1 . . . xr = 0} Ar \ {x2 . . . xr = 0} An \ {x3 . . . xr = 0}

· · ·

Ar \ {xr−1xr = 0} An \ {xr = 0} Ar.

j1 j2

jr−1 jr

Although the complement of j is a singular simple normal crossings divisor, the
complements of each of the open immersions ji are smooth:

Ar \ {x1 . . . xr = 0} Ar \ {x2 . . . xr = 0} {0}×Gr−1m

Ar \ {x2 . . . xr = 0} Ar \ {x3 . . . xr = 0} A1 × {0}×Gr−2m

... ... ...

Ar \ {xr−1xr = 0} Ar \ {xr = 0} Ar−2 × {0}×Gm

Ar \ {xr = 0} Ar Ar−1 × {0}.

j1 i1

j2 i2

jr−1 ir−1

jr ir
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5. The generic vanishing theorem

Since the forget-supports map j!N→ j+N also factors accordingly, an application of
Lemma 5.1.3 implies that j!N→ j+N is an isomorphism as long as

grV0 (j1,+N), grV0 (j2,+j1,+N), . . . , grV0 (jr,+ . . . j1,+N)

all vanish.

5.2. The case of tori
This section is dedicated to proving that tori satisfy relative generic vanishing, as
defined in Definition 5.1.1. We will employ the strategy outlined in the previous
section.

Theorem 5.2.1. Let T be a torus over C. Then T satisfies relative generic vanishing.

Before delving into the proof of Theorem 5.2.1, let us set the stage. Since C is
algebraically closed, T must be isomorphic to Grm for some r. The moduli space of
character sheaves T [ is isomorphic to (Ga/Z)r, and we denote by Lχ the character
sheaf

(OGm , d − χ1 dt1/t1)[−1]� · · ·� (OGm , d − χr dtr/tr)[−1]

associated with χ = (χ1, . . . , χr) ∈ T [ ' (Ga/Z)r. It is often convenient to view the
connection (OGm , d − χi dti/ti) as the D-module DGm/DGm(ti∂ti + χi).

Let S be a smooth algebraic variety, and letM be an object ofDbh (DT×S). Furthermore,
consider the natural embedding j : T ↪→ Pn. According to the general strategy outlined
in Section 5.1, to prove Theorem 5.2.1, it suffices to obtain a generic subspace V such
that the forget-supports map

j!(M⊗T×S pr+T Lχ)→ j+(M⊗T×S pr+T Lχ), (∗)

where prT : T × S→ T is the natural projection, is an isomorphism for every χ ∈ V .
Since both tensoring with a connection and taking the (compactly supported) direct

image by j are t-exact functors, we can suppose thatM is concentrated in degree zero.
For the remainder of this section, we also assume that r = 2 and S = SpecC. The
general case does not seem to follow from this particular case, but the same arguments
prove the general result, albeit with heavier notation.

Next, we examine the geometry of the open immersion j : G2m ↪→ P2 and its
complementary closed immersion. The projective space P2 has three natural affine
charts:

Vx = {[x : y : z] ∈ P2 | x 6= 0} ' A2y,z
Vy = {[x : y : z] ∈ P2 | y 6= 0} ' A2x,z
Vz = {[x : y : z] ∈ P2 | z 6= 0} ' A2x,y,
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5.2. The case of tori

where subscripts denote the natural coordinates of these spaces. The image of G2m in
P2 is contained in all three charts. However, since the charts Vx and Vz have different
coordinates, we will give different names to the copies of G2m in each chart.

Ux = G2m,y,z
jx

↪−−→ Vx = A2y,z

Uy = G2m,x,z
jy

↪−−→ Vy = A2x,z

Uz = G2m,x,y
jz

↪−→ Vz = A2x,y

Here, the natural isomorphismUx = G2m,y,z → Uz = G2m,x,y acts as (y, z) 7→ (1/z, y/z),
and the natural isomorphism Uy = G2m,x,z → Uz = G2m,x,y acts as (x, z) 7→ (x/z, 1/z).

As explained in Section 5.1, the map (∗) is an isomorphism if and only if each of the
following morphisms

jx,!(M⊗T Lχ)|Ux → jx,+(M⊗T Lχ)|Ux

jy,!(M⊗T Lχ)|Uy → jy,+(M⊗T Lχ)|Uy

jz,!(M⊗T Lχ)→ jz,+(M⊗T Lχ)

are. Let us outline how to verify that the forget-supports map associated with jz is an
isomorphism, since the others are similar. The open immersion jz : Uz ↪→ Vz factors as

A2x,y \ {xy = 0}
jxz

↪−−→ A2x,y \ {y = 0}
j
y
z

↪−−→ A2x,y,

inducing a factorization of the forget-supports map jz,!(M⊗T Lχ)→ jz,+(M⊗T Lχ) as

jyz,!j
x
z,!(M⊗T Lχ)→ jyz,!j

x
z,+(M⊗T Lχ)→ jyz,+j

x
z,+(M⊗T Lχ).

Consequently, jz,!(M⊗T Lχ)→ jz,+(M⊗T Lχ) is an isomorphism as long as both

grV0
(
jxz,+(M⊗T Lχ)

)
and grV0 (jz,+(M⊗T Lχ))

vanish. We now prove Theorem 5.2.1 by computing these associated graded parts.

Proof of Theorem 5.2.1. Let us start by studying theD-module jxz,+(M⊗TLχ). According
to Remark 1.5.2, the following isomorphisms hold1

jxz,+(M⊗T Lχ) ' jxz,+(M⊗!
T Lχ)[4]

' jxz,+M⊗! jxz,+Lχ[4]

' jxz,+M⊗L
O j
x
z,+Lχ[2].

1Let j : U → X be an open immersion, and letM,N ∈ Dbh (DU). By recollement and the projection
formula, we have j!M ⊗X j!N ' j!(M ⊗U j+j!N) ' j!(M ⊗U N). Dually, we have j+M ⊗!

X j+N '
j+(M⊗!

U N). This formula is used in the second isomorphism below.
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5. The generic vanishing theorem

Since jxz,+Lχ[2] ' jxz,∗Lχ[2] is isomorphic to O(∗Gm,x) as an O-module, and tensoring
over O is the same as tensoring over O(∗Gm,x), we conclude that

jxz,+(M⊗T Lχ) ' jxz,+M⊗O(∗Gm,x) j
x
z,+

D

D(x∂x + χ1, y∂y + χ2)
.

This isomorphism implies that jxz,+(M⊗T Lχ) has the same underlying O-module
as jxz,+M, but the element x∂x in the ring of differential operators of A2x,y \ {y = 0} acts
on it as

m⊗ 1 7→ x∂x(m)⊗ 1+m⊗ x∂x(1) = x∂x(m)⊗ 1−m⊗ χ11 = (x∂x − χ1)(m⊗ 1).

It follows that grV0
(
jxz,+(M⊗T Lχ)

)
' grVχ1

(
jxz,+M

)
. The same arguments show that

grV0 (jz,+(M⊗T Lχ)) is isomorphic to grVχ2(jz,+M).
The change of coordinates from Uz to Ux turns the characters (χ1, χ2) into the pair

(χ2,−χ1 − χ2). Similarly, the change of coordinates from Uz to Uy maps the characters
(χ1, χ2) to (χ1,−χ1−χ2). As above, we have that jx,!(M⊗TLχ)|Ux → jx,+(M⊗TLχ)|Ux
is an isomorphism if and only if

grVχ2
(
jxy,+M|Ux

)
and grV−χ1−χ2(jx,+M|Ux)

vanish. Furthermore, the forget-supports map jy,!(M⊗T Lχ)|Uy → jy,+(M⊗T Lχ)|Uy
is an isomorphism precisely when both

grVχ1
(
jxy,+M|Uy

)
and grV−χ1−χ2

(
jy,+M|Uy

)
vanish.

Since the V-filtration is discrete, the six aforementioned graded pieces all vanish
unless −χ1, −χ2, −χ2, χ1 + χ2, −χ1, or χ1 + χ2 are roots modulo Z of the respective
Bernstein–Sato polynomials. The subsets of T [ cut out by the (χ1, χ2) satisfying these
conditions form the desired translates of linear subspaces.

5.3. The unipotent case
Let U be an n-dimensional unipotent commutative algebraic group over C. While
we believe that U satisfies relative generic vanishing, a formal proof remains elusive.
Therefore, this section is devoted to establishing an absolute generic vanishing theorem
for U. Additionally, in Remark 5.3.5, we outline a potential proof that U satisfies
relative generic vanishing.
Recall that the moduli space U[ is isomorphic to the vector group associated with

the dual vector space U∗. Under a choice of coordinates, U becomes isomorphic to Gna
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and similarly for U∗. A point χ = (χ1, . . . , χn) ∈ U∗ then corresponds to the character
sheaf

Lχ = (OGa, d − χ1 dt1)[−1]� · · ·� (OGa, d − χn dtn)[−1].

With this notation, we state the main result of this section.

Proposition 5.3.1. LetM be an object of Dbh (DU). There exists an open dense subset V of U[

such that the forget-supports map

H∗c(G,M⊗U Lχ)→ H∗(G,M⊗U Lχ)

is an isomorphism for all χ ∈ V . Furthermore, if M is concentrated in degree zero, those
cohomology groups vanish in non-zero degrees.

The key tool for the proof of Proposition 5.3.1 is the Fourier transform described in
Example 4.3.3. For the reader’s convenience, we recall its main properties. Consider the
evaluationmapσ : U×U∗ → A1 and the exponential character sheaf E := (OA1 , d−dx)[−1]

on A1. We define the Fourier transform functor FTU : D
b
h (DU)→ Dbh (DU∗) as

FTU := pr2,+(pr+1 (−)⊗U×U∗ σ+E [n]),

where pr1 : U × U∗ → U and pr2 : U × U∗ → U∗ are the canonical projections. This
functor is a shift of the Fourier–Laumon transform associated with UdR, and coincides
with the functor F∗ from [Dai00, §2.2.2].

This operation has a plethora of wonderful properties, but we will content ourselves
with explaining those strictly needed for our purposes:

• The functor FTU is t-exact with respect to the canonical t-structures on Dbh (DU)

and Dbh (DU∗);

• Denoting by invU∗ : U
∗ → U∗ the inverse map, we have a natural isomorphism

DU∗ ◦ FTU ' inv+
U∗ ◦FTU ◦DU.

The importance of the Fourier transform on the generic vanishing theorem lies in
the fact that FTU(M) simultaneously contains the data of all cohomology groups
for every character twist of M. The second half of this result was already proven
in Proposition 4.1.8; however, we provide a direct proof here using the six-functor
formalism of holonomic D-modules.

Proposition 5.3.2. LetM be an object of Dbh (DU) and denote by p : U→ SpecC the structure
map. Then,

p!(M⊗U Lχ) ' χ+ FTU(M)[−n] and p+(M⊗U Lχ) ' χ! FTU(M)[n]

hold for every χ ∈ U∗.
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Proof. An application of the proper base change theorem on the cartesian diagram

U× SpecC U×U∗

U

SpecC U∗

p

pr1

χ

id×χ

pr2

yields χ+ ◦ pr2,! ' p! ◦ pr1,! ◦ (id×χ)+. By applying pr+1 M⊗U×U∗ σ+E to both sides,
we get

χ+ FTU(M)[−n] ' p!pr1,!N,

where N = (id×χ)+ pr+1 M ⊗U×SpecC (id×χ)+σ+E . Since (id, p) is the inverse of pr1,
the functors pr1,! and (id, p)+ are isomorphic. In particular,

pr1,!N ' (id, p)+(id×χ)+ pr+1 M⊗U (id, p)+(id×χ)+σ+E 'M⊗U σ(−, χ)+E ,

for pr1 ◦ (id×χ) ◦ (id, p) = id and σ ◦ (id×χ) ◦ (id, p) = σ(−, χ).
Upon a choice of coordinates, both U and U∗ become isomorphic to Gna , and thus

the map σ(−, χ) acts as

(t1, . . . , tn) 7→ χ1t1 + . . .+ χntn.

Therefore, σ(−, χ)+E ' Lχ, giving us the first desired isomorphism.
By applying the result just proved to DU(M) and taking the dual of both sides, we

obtain
DCp!(DU(M)⊗U Lχ) ' DCχ

+ FTU(DU(M))[n].

The left-hand side is

DCp!(DU(M)⊗U Lχ) ' p+DU(DU(M)⊗U Lχ)

' p+(M⊗!
U DU(Lχ))

' p+(M⊗!
U L ∨

χ [2n])

' p+(M⊗!
U L−χ[2n])

' p+(M⊗U L−χ),

while the right-hand side is

DCχ
+ FTU(DU(M))[n] ' χ!DU∗ FTU(DU(M))[n]

' χ! inv+
U∗ FTU(M)[n]

' χ! inv!
U∗ FTU(M)[n]

' (−χ)! FTU(M)[n].

By switching χ and −χ, we obtain the desired result.
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Proposition 5.3.1 now follows directly from the main properties of the Fourier
transform.

Proof of Proposition 5.3.1. As FTU(M) is a bounded complex of holonomic D-modules,
there exists an open dense subset V ⊂ U∗ such that H i(FTU(M)|V) is locally free for
all i ∈ Z. Then, whenever χ lies in V , we have that

Hi(G,M⊗G Lχ) 'H i+n(χ! FTU(M)|V) ' χ∗H i(FTU(M)|V)

and
Hic(G,M⊗G Lχ) 'H i−n(χ+ FTU(M)|V) ' χ∗H i(FTU(M)|V).

The isomorphisms on the right hold due to Remark 1.5.2.

Although Proposition 5.3.1 does not establish that the set of characters where generic
vanishing holds forms a generic subspace, its proof provides more precise information
than its statement. This is clarified in the following remark. Notably, this result is even
more precise than its positive characteristic analogue [FFK23, Thm. 2.3].

� Remark 5.3.3 — Stratified vanishing. Let M be an object of Dbh (DU). According to
[HTT08, Thm. 3.3.1], there exists a decreasing sequence of closed subschemes

U∗ = Z0 ⊃ Z1 ⊃ · · · ⊃ Zm ⊃ Zm+1 = ∅

such that the complements Vj := Zj \ Zj+1 are smooth and the cohomology sheaves
H ∗(FTU(M)|Vj) are connections for all j. Denote by dj the integer n− dimVj. Then,
for any χ in Vj, we have that

Hi(U,M⊗U Lχ) ' χ∗H i+dj(FTU(M)|Vj),

Hic(U,M⊗U Lχ) ' χ∗H i−dj(FTU(M)|Vj).

Consequently, H
i+dj
c (U,M⊗U Lχ) is isomorphic to Hi−dj(U,M⊗U Lχ) for all i. IfM

is concentrated in degree zero, these groups vanish for i 6= 0. �

We now outline a potential proof of relative generic vanishing for unipotent groups.
The following example illustrates some of the main ideas, which will be formalized in
the subsequent discussion.

� Example 5.3.4. Consider the unipotent group U = Ga,x, the smooth algebraic variety
S = A1t , and the exponential connectionM = (OU×S, d − x dt − t dx). Denoting by
j : Ga,x×A1t ↪→ P1×A1t the natural open immersion, we claim that the forget-supports
map

j!(M⊗U×S pr+ULχ)→ j+(M⊗U×S pr+ULχ), (∗)

where prU : U× S→ U is the natural projection, is an isomorphism for every χ ∈ C×.
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As explained in Section 5.1, it suffices to prove this after restricting to the affine chart

{([x : y], t) ∈ P1 × A1x | x 6= 0} ' A2y,t.

Denoting by j′ : Gm,y × A1t ↪→ A2y,t the natural inclusion, the problem reduces to
proving that the forget-supports map

j′!

Å
OGm,y×A1t , d −

dt

y
+ (t+ χ)

dy

y2

ã
→ j′+

Å
OGm,y×A1t , d −

dt

y
+ (t+ χ)

dy

y2

ã
is an isomorphism. Consider the blow-up f : Bl0A2y,t → A2y,t of the origin in A2y,t,
viewed as the closed subscheme of A2y,t × P1 cut out by the points ((y, t), [u : v])

satisfying yu = tv. Since j′ : Gm,y × A1t ↪→ A2y,t factors as

Gm,y × A1t Bl0A2y,t A2y,t

(y, t) ((y, t), [t : y])

((y, t), [u : v]) (y, t),

j̃

j′

f

and f : Bl0A2y,t → A2y,t is proper, it suffices to prove that the forget-supports map

j̃!

Å
OGm,y×A1t , d +

dt

y
− (t+ χ)

dy

y2

ã
→ j̃+

Å
OGm,y×A1t , d +

dt

y
− (t+ χ)

dy

y2

ã
is an isomorphism.
As before, this can be checked locally. Therefore, we consider the affine charts of

Bl0A2y,t:

Vu :=
{

((y, t), [u : v]) ∈ A2y,t × P1 | yu = tv, u 6= 0
}
' A2t,v

Vv :=
{

((y, t), [u : v]) ∈ A2y,t × P1 | yu = tv, v 6= 0
}
' A2y,u.

The intersections of Gm,y × A1t with Vu and Vv are given, respectively, by

(t, v) A2t,v \ {tv = 0} A2t,v

(tv, t) Gm,y × A1t Bl0A2y,t

ju

and
(y, u) Gm,y × A1u A2y,u

(y, yu) Gm,y × A1t Bl0A2y,t.

jv

The inverse images of our connection fromGm,y×A1u toA2t,v\{tv = 0} andGm,y×A1u,
respectively, areÅ

O, d +
χ

vt2
dt+

(t+ χ)

v2t
dv

ã
and

Å
O, d − du+ χ

dy

y2

ã
.
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5.3. The unipotent case

For χ = 0, these connections simplify toÅ
O, d +

dv

v2

ã
and (O, d − du),

whereas, for χ 6= 0, the variable changes t 7→ χt and y 7→ χy result inÅ
O, d +

dt

vt2
+

(t+ 1)

v2t
dv

ã
and

Å
O, d − du+

dy

y2

ã
.

All in all, the morphism (∗) is an isomorphism for all χ ∈ C× as long as the forget-
supports maps

ju,!

Å
O, d +

dt

vt2
+

(t+ 1)

v2t
dv

ã
→ ju,+

Å
O, d +

dt

vt2
+

(t+ 1)

v2t
dv

ã
(5.1)

jv,!

Å
O, d − du+

dy

y2

ã
→ jv,+

Å
O, d − du+

dy

y2

ã
(5.2)

are isomorphisms.
Since the divisor y = 0 associated with jv is smooth, Lemma 5.1.3 can be applied

directly. This lemma asserts that the (5.2) is an isomorphism if and only if

grV0

Å
jv,+

Å
O, d − du+

dy

y2

ãã
vanishes. The underlying C[u, y]-module of jv,+

(
O, d − du+ dy/y2

)
is C[u, y±], and

the differential operators ∂u and ∂y act on p ∈ C[u, y±] as

∂u · p =
∂p

∂u
− p and ∂y · p =

∂p

∂y
+
p

y2
.

We claim that the V-filtration on this D-module is constant. The only potentially
non-trivial axiom of the V-filtration is that C[u, y±] must be a finitely generated
C[u, y, ∂u, y∂y]-module. For this, note that {1} serves as a generating set. Indeed, the
relation

(y∂y + n)(y∂y + n− 1) . . . (y∂y + 1)(y∂y) · 1 = 1/yn+1

holds for all n > 0.
The divisor tv = 0 associated with ju is singular, but has simple normal crossings.

As a result, the approach outlined in Section 5.1 is applicable. We factor ju as

A2t,v \ {tv = 0}
jtu
↪−→ A2t,v \ {v = 0}

jvu
↪−→ A2t,v,

after which it suffices to verify that

grV0

Å
jtu,+

Å
O, d +

dt

vt2
+

(t+ 1)

v2t
dv

ãã
and grV0

Å
ju,+

Å
O, d +

dt

vt2
+

(t+ 1)

v2t
dv

ãã
175



5. The generic vanishing theorem

vanish. The underlying C[t, v±]- and C[t, v]-modules of the D-modules

jtu,+

Å
O, d +

dt

vt2
+

(t+ 1)

v2t
dv

ã
and ju,+

Å
O, d +

dt

vt2
+

(t+ 1)

v2t
dv

ã
are both C[t±, v±]. The differential operators ∂t and ∂v act on p ∈ C[t±, v±] as follows:

∂t · p =
∂p

∂t
+
p

vt2
and ∂v · p =

∂p

∂v
+

(t+ 1)p

vt2
.

Again, we claim that the associated V-filtrations are constant. To demonstrate this, it
suffices to verify that C[t±, v±] is a finitely generated C[t, v±, t∂t, ∂v]-module as well
as a finitely generated C[t, v, ∂t, v∂v]-module. In both cases, {1} is a generating set, as
indicated by the following formulas

vn+1(t∂t + n)(t∂t + n− 1) . . . (t∂t + 1)(t∂t) · 1 = 1/tn+1

(t2∂t)
n+1 · 1 = 1/vn+1,

which hold for all n > 0. �

We finish this section with some ideas on how to generalize the previous example
and prove relative generic vanishing for unipotent groups. It should be taken with a
large grain of salt, as we are currently unable to verify some of its details.

� Remark 5.3.5 — On relative generic vanishing. Let S be a smooth algebraic variety,
and M be an object of Dbh (DU×S). Additionally, consider the natural embedding
j : U× S ↪→ Pn × S. We believe that there exists a generic subspace V of U[ such that
the forget-supports map

j!(M⊗U×S pr+ULχ)→ j+(M⊗U×S pr+ULχ), (∗)

where prU : U× S→ U is the natural projection, is an isomorphism for every χ in V .
Since holonomic complexes are generically connections, one should be able to assume

that the cohomology sheaves ofM are connections. As every functor above is t-exact,
we can further suppose thatM is concentrated in degree zero. In what follows, we
will also assume that S = SpecC for simplicity, even though one should probably keep
track of S.
According to the Kedlaya–Mochizuki theorem [Ked11; Moc11], there exists a

projective birational morphism f : X → Pn, which is an isomorphism above U, such
that f!j+M has a good formal structure. Specifically, there exists a commutative diagram

U X Z

U Pn Pn−1,

j̃

f

ĩ

f̃

j i
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5.4. The general case

where both squares are cartesian and Z is a simple normal crossings divisor, such that,
for each z ∈ Z, the formal module ‘OX,z(∗Z)⊗OX,z j̃+M can, up to ramified coverings, be
decomposed as a direct sum of tensor products of exponential modules with regular
ones.

From the properness of f, we see that the forget-supports map (∗) is an isomorphism
as long as

j̃!(M⊗U Lχ)→ j̃+(M⊗U Lχ)

is. Following the approach outlined in Section 5.1, we may suppose that Z is smooth.
Then, Lemma 5.1.3 states that the forget-supports map above is an isomorphism
precisely if the D-module grV0 (̃j+(M ⊗U Lχ)) on Z vanishes. The V-filtration being
compatible with formal completions and ramification, it suffices to prove that

grV∗
Ä‘OX,z(∗Z)⊗OX,z j̃+(M⊗U Lχ)

ä
' grV∗

Ä‘OX,z(∗Z)⊗OX,z j̃+M⊗OX(∗Z) j̃+Lχ[n]
ä

vanishes for χ in a generic subspace of U[. (Recall that j̃+Lχ[n] is concentrated in
degree zero.) Finally, the normal form provided by the Kedlaya–Mochizuki theorem
should enable us to use the character χ to force the V-filtration to be constant, as
illustrated in the example above. �

5.4. The general case
We now return to the general case where G is a commutative connected algebraic
group. Recall that such a group necessarily fits into a short exact sequence

0→ L
ϕ−−→ G

ψ−−→ A→ 0,

in which L is a linear group andA is an abelian variety. We denote by Lω the character
sheaf (OG, d +ω)[− dimG] defined by an invariant differential ω ∈ ΩG. Using this
notation, the main observation needed for this section comes from Corollary 3.1.10:
every character sheaf on G is of the form

Lω ⊗G ψ+Lα,

for someω ∈ ΩG and α ∈ A[.
The following proposition is the raison d’être of the notion of relative generic vanishing.

Proposition 5.4.1. LetM be an object of Dbh (DG). Suppose that L satisfies relative generic
vanishing. Then there exists a generic subspace V of L[ such that the forget-supports map

ψ!(M⊗G Lω)→ ψ+(M⊗G Lω),

is an isomorphism for everyω ∈ ΩG such that ϕ+Lω lies in V .
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5. The generic vanishing theorem

Proof. Since ψ : G → A is an L-torsor, there exists an étale covering S → A and an
L-equivariant isomorphism µ : L× S→ G×A Smaking the square

L× S S

G×A S

G A

prS

µ

prG

ψ

cartesian. It suffices to check that ψ!(M⊗G Lω)→ ψ+(M⊗G Lω) is an isomorphism
after pulling back via S→ A. By proper and smooth base change, this map becomes

prS,!(µ
+ pr+GM⊗L×S µ+ pr+GLω)→ prS,+(µ+ pr+GM⊗L×S µ+ pr+GLω).

Next, consider the following diagram, whose commutativity is ensured by the
L-equivariance of µ.

L× S

L× L× S L× S

L×G×A S G×G×A S G×A S

G×G G

idL×e×idS
mL×idS

idL×µ µ

ϕ×id mG×idS

prG×G

prG

mG

Pulling back Lω through the two colored paths results in the isomorphism

µ+ pr+GLω ' pr+L ϕ
+Lω ⊗ pr+S (e× idS)+µ+ pr+GLω.

Consequently, prS,!(µ
+ pr+GM⊗L×S µ+ pr+GLω) is isomorphic to

prS,!(µ
+ pr+GM⊗L×S pr+L ϕ

+Lω ⊗ pr+S (e× idS)+µ+ pr+GLω)

' prS,!(µ
+ pr+GM⊗L×S pr+L ϕ

+Lω)⊗ (e× idS)+µ+ pr+GLω,

and similarly for prS,+(µ+ pr+GM⊗L×S µ+ pr+GLω). The result then follows from the
assumption that L satisfies relative generic vanishing.

Corollary 5.4.2. LetM be an object of Dbh (DG). Suppose that L satisfies relative generic
vanishing. Then there exists a generic subspace V of L[ such that the forget-supports map

H∗c(G,M⊗G Lω ⊗G ψ+Lα)→ H∗(G,M⊗G Lω ⊗G ψ+Lα),

178



5.4. The general case

is an isomorphism for every α ∈ A[ and every ω ∈ ΩG such that ϕ+Lω lies in V . In
particular, there exists a generic subspaceW of G[ such that the forget-supports map

H∗c(G,M⊗G Lχ)→ H∗(G,M⊗G Lχ)

is an isomorphism for every χ ∈W.

Proof. Let p : G → SpecC and q : A → SpecC be the structure maps. If ω ∈ ΩG is
such that ϕ+Lω lies in the generic subspace V given by the preceding proposition, the
projection formula implies that

p!(M⊗G Lω ⊗G ψ+Lα) ' q!ψ!(M⊗G Lω ⊗G ψ+Lα)

' q+(ψ!(M⊗G Lω)⊗A Lα)

' q+(ψ+(M⊗G Lω)⊗A Lα)

' q+ψ+(M⊗G Lω ⊗G ψ+Lα)

' p+(M⊗G Lω ⊗G ψ+Lα).

This proves the first half of the statement. The second half follows by takingW to be
the inverse image of V by the morphism ϕ[ : G[ → L[, as in Proposition 3.3.3.

As the preceding corollary shows, relative generic vanishing for L implies half of the
generic vanishing theorem for G. Specifically, it implies that the forget-supports map

H∗c(G,M⊗G Lχ)→ H∗(G,M⊗G Lχ)

is an isomorphism for χ in a generic subspace of G[. Furthermore, the generic
vanishing theorem for abelian varieties proven by Schnell implies that both sides
vanish in non-zero degrees for most choices of character sheaves.

Theorem 5.4.3. Let M be an object of Dbh (DG). Suppose that L satisfies relative generic
vanishing. Then there exists a generic subspace V of L[ such that the forget-supports map

H∗c(G,M⊗G Lω ⊗G ψ+Lα)→ H∗(G,M⊗G Lω ⊗G ψ+Lα),

is an isomorphism for everyα ∈ A[ and everyω ∈ ΩG such thatϕ+Lω lies inV . Furthermore,
ifM is concentrated in degree zero, for eachω as above, there exists a generic subspaceW of
A[ such that

H∗c(G,M⊗G Lω ⊗G ψ+Lα) ' H∗(G,M⊗G Lω ⊗G ψ+Lα)

is concentrated in degree zero for every α ∈W.
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5. The generic vanishing theorem

Proof. The first half of the statement was already proven in Corollary 5.4.2. As in its
proof, the projection formula implies that

H∗(G,M⊗G Lω ⊗G ψ+Lα) ' H∗(A,ψ+(M⊗G Lω)⊗A Lα).

If ϕ+Lω lies in V , the forget-supports map ψ!(M ⊗G Lω) → ψ+(M ⊗G Lω) is an
isomorphism. Consequently, similar to the proof of Proposition 5.1.2, Artin vanishing
implies that both sides are concentrated in degree zero.

For eachω ∈ ΩG as above, [Sch15, Thms. 2.2 and 4.1] provide a generic subspaceW
of A[ such that the right hand side is concentrated in degree zero for every α ∈W.
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6. Comparison of tannakian groups

Let G be a commutative connected algebraic group over C that satisfies generic
vanishing. In this chapter, we explore a particular tannakian group associated with a
holonomic D-module on G, known as the convolution group. These groups not only
serve as direct analogues to those governing the equidistribution of exponential sums,
as discussed in the introduction of this thesis, but also generalize both differential and
difference Galois groups.

Convolution and associated tannakian groups
Letm : G×G→ G be the group operation of G. The convolution of D-modules on G
comes in two variants: !-convolution and +-convolution:

M ∗! N := m!(M�N) and M ∗+ N := m+(M�N).

Each of these operations defines a symmetric monoidal structure on the derived∞-category Dbh (DG) of holonomicD-modules. A central aim of this thesis is to define
a tannakian group associated with holonomic D-modules under these convolution
operations.

Two significant challenges arise immediately. Tannakian categories are, by definition,
abelian categories equipped with a rigid—meaning that every object is dualizable—
symmetricmonoidal structure. Yet, neither variant of convolution necessarily preserves
holonomicD-modules in degree zero, and often there are objects that are not dualizable
with respect to either convolution.

To better understand the failure of rigidity, note that, according to Proposition 6.1.7,
an objectM of Dbh (DG) is dualizable with respect to !-convolution if and only if the
forget-supports map

M ∗! N→M ∗+ N

is an isomorphism for every N in Dbh (DG).
We define an objectM of Dbh (DG) to be negligible if there exists a generic subspace

V ⊂ G[ such that H∗c(G,M⊗GLχ) vanishes for all χ ∈ V . This concept is motivated by
the result established in Proposition 6.2.9, which shows that although the two forms of
convolution may not coincide and do not preserve holonomic D-modules in degree
zero, they do so up to negligible objects.
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6. Comparison of tannakian groups

Bymoddingoutnegligible objects,wedefine thequotient categoryHol(DG)/Neg(DG).
This quotient is precisely constructed so that the convolution products descend to it,
thereby endowing the quotient category with a rigid symmetric monoidal structure.
Moreover, our Theorem 6.2.12 demonstrates that this quotient is a neutral tannakian
category. Consequently, every holonomicD-moduleM onG admits a tannakian group
Conv(M), which we refer to as the convolution group.

Differential Galois theory

To our knowledge, there are two primary approaches to differential Galois theory.
The first approach, pioneered by Kolchin and Picard–Vessiot, is distinctly algebraic in
nature. In this framework, the Galois group of a differential operator is defined as the
group of automorphisms of its Picard–Vessiot extension, which serves as an analogue
to the splitting field of a polynomial.

The second approach is geometric and was popularized by Katz in his foundational
works [Kat82a; Kat87]. This approach focuses on the category of vector bundles with
integrable connection on a smooth connected algebraic variety. As this category is
tannakian, each vector bundle with an integrable connection is associated with a
tannakian group, which is its differential Galois group.
Although experts are likely aware of it, we were unable to find any references that

directly compare these two approaches. As a result, the first main result in Section 6.3
is Theorem 6.3.9, which establishes an isomorphism between the Galois groups arising
from each theory. Our focus was on the one-dimensional setting, as is often the case on
the algebraic theory. However, we believe that the same arguments should naturally
extend to higher dimensions.
LetM be a holonomic D-module on the additive group Ga, and let FT(M) denote

its Fourier transform. As with any holonomicD-module, FT(M) restricts to a vector
bundle with integrable connection on a dense open subset U ⊂ Ga. According to
the discussion above, FT(M)|U has an associated differential Galois group, which
coincides with the differential Galois group of the generic fiber FT(M)η in the algebraic
approach.

Notably, Theorem 6.3.11 establishes an isomorphism between this differential Galois
group and the convolution group Conv(M). This isomorphism not only provides an
effective method for computing Conv(M), but also offers valuable theoretical insights
into these objects. For instance, it implies that every linear algebraic group can be
realized as the convolution group of some holonomicD-module onGa, thereby solving
the "inverse problem" for convolution groups.
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6.1. Convolution of holonomic D-modules

Difference Galois theory
The Fourier transform for holonomicD-modules onGa has amultiplicative counterpart:
the Mellin transform. This functor maps a holonomic D-module on the multiplicative
group Gm to a Z-equivariant quasi-coherent sheaf on Ga. Given that the generator of
Z acts on the ring of functions C[s] of Ga by p(s) 7→ p(s+ 1), the generic fiber of the
Mellin transform corresponds to a difference equation.

A classic example from analysis illustrates this operation: the Gamma function Γ is
the Mellin transform of the exponential function, and it satisfies the difference equation

Γ(s+ 1) = sΓ(s).

Just as differential operators have associated Galois groups, so too do difference
operators. This is the essence of difference Galois theory, as presented in [VS97].

Analogous to the additive setting, Theorem6.4.5 establishes an isomorphismbetween
the convolution group Conv(M) of a holonomicD-moduleM onGm and the difference
Galois group of MT(M)η. Here as well, this isomorphism gives an effective method
for computing Conv(M) and yields some theoretical insights about those objects.

However, unlike the differential case, not every linear algebraic group can be realized
as the convolution group of a holonomic D-module on Gm. We demonstrate that the
group of connected components of Conv(M) is always cyclic. Additionally, we offer
a partial answer to the inverse problem: every connected linear algebraic group is
isomorphic to the convolution group of some holonomic D-module on Gm.

6.1. Convolution of holonomic D-modules
Let G be a commutative connected algebraic group over a field k of characteristic
zero, with m : G × G → G as its group operation. The convolution of D-modules
can be viewed as a particular case of the convolution of quasi-coherent sheaves on
commutative group stacks, as introduced in Section 4.2. However, in this section, we
undertake a more detailed analysis. While many of the results discussed here are
familiar to experts, we believe it could be useful to compile them comprehensively in
one location.

Definition 6.1.1 (Convolution). We define the !-convolution and +-convolution prod-
ucts as bifunctors Dbh (DG)× Dbh (DG)→ Dbh (DG) that map a pair (M,N) toM ∗! N :=

m!(M�N) andM ∗+ N := m+(M�N), respectively.

An elementary but frequently useful observation is that both convolution products
reduce to the tensor product when G = Speck. As we will see, most properties of
the tensor product in a six-functor formalism have their counterparts in convolution.
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6. Comparison of tannakian groups

We start by observing that convolution defines a symmetric monoidal structure,
accompanied by a tensor-hom adjunction.

Proposition 6.1.2. Both convolutions equip Dbh (DG) with a symmetric monoidal structure,
with δe := e+k as identity. Furthermore, the symmetric monoidal∞-category (Dbh (DG), ∗!)

is closed, with its inner hom given by

Hom∗G(M,N) := pr1,+ HomG×G(pr+2 M,m
!N),

where pr1, pr2 : G×G→ G denote the natural projections.

Before proceeding with the proof, we will first clarify some concepts regarding
closed symmetric monoidal categories.

� Remark 6.1.3 — On closed symmetric monoidal categories. Let (C,⊗) be a symmetric
monoidal ∞-category, with 1 denoting its identity object. The symmetric monoidal∞-category (C,⊗) is said to be closed if, for every object N in C, the functor − ⊗ N
admits a right adjoint Hom(N,−). In this case, the adjunction can be enhanced to an
isomorphism

Hom(M⊗N,P) ' Hom(M,Hom(N,P)),

which is natural inM, N, and P. The dual of an object N, denoted N∨, is defined as
Hom(N, 1). By adjunction, the identity map N∨ → N∨ induces the evaluation map

ev : N⊗N∨ → 1.

The object N is said to be reflexive if the adjunct N→ (N∨)∨ of the evaluation map is
an isomorphism. In this case, the enhanced adjunction gives an isomorphism

Hom(M,N) ' (M⊗N∨)∨.

For objectsM and N in C, consider the morphism µM,N : M∨ ⊗N → Hom(M,N),
defined as the composition

M∨ ⊗N 'M∨ ⊗ Hom(1, N)
◦−→ Hom(M,N).

An objectM is said to be dualizable if µM,M is an isomorphism, in which caseM is also
reflexive and µM,N is an isomorphism for every N. IfM is dualizable, there exists a
coevaluation map coev, defined as the composition

1→ Hom(M,M)
µ−1
M,M−−−−→M∨ ⊗M,

with the property that both compositions

M 'M⊗ 1 M⊗M∨ ⊗M 1⊗M 'M

M∨ ' 1⊗M∨ M∨ ⊗M⊗M∨ M∨ ⊗ 1 'M∨

id⊗ coev ev⊗ id

coev⊗ id id⊗ ev
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are homotopic to the identity morphisms. Conversely, if there exists an object
N, together with morphisms ε : M ⊗ N → 1 and η : 1 → N ⊗M, such that both
compositions

M 'M⊗ 1 M⊗N⊗M 1⊗M 'M

N ' 1⊗N N⊗M⊗N N⊗ 1 ' N

id⊗η ε⊗ id

η⊗ id id⊗ε

are homotopic to the identities, then M is dualizable and N is isomorphic to M∨.
Moreover, under this identification, ε corresponds to ev and η corresponds to coev

[DP80, Thm. 1.3]. If every object is dualizable, the closed symmetric monoidal∞-category (C,⊗) is said to be rigid. �

Proof of Proposition 6.1.2. Following the same reasoning as in the proof of Proposi-
tion 4.2.2, and applying it to the six-functor formalism of holonomic D-modules
established in Proposition 1.5.1, along with the variant that maps a correspondence

Z

X Y

f g

to g+f!, it follows that both convolutions equip Dbh (DG) with a symmetric monoidal
structure, with δe := e+k serving as identity object. The explicit description for the
inner hom in (Dbh (DG), ∗!) is a consequence of the standard adjunctions within a
six-functor formalism.

Similarly to how inverse images are symmetric monoidal with respect to the tensor
product, direct images are symmetric monoidal with respect to convolution. The
corollary below follows directly from the proof of the previous proposition.

Corollary 6.1.4. Let ϕ : G→ H be a morphism of commutative connected algebraic groups
over k. The direct image functor ϕ+ (resp. the proper direct image functor ϕ!) is symmetric
monoidal with respect to +-convolution (resp. !-convolution). Furthermore, the duality functor
DG is also symmetric monoidal but switches both versions of convolution.

Lastly, in our analogies with tensor products, the following proposition provides an
analogue of the projection formula for convolution.

Proposition 6.1.5. Let ϕ : G→ H be a morphism of commutative connected algebraic groups
over k. Then, there are isomorphisms

ϕ+(ϕ!M ∗! N) 'M ∗! ϕ
+N and ϕ!(ϕ+M ∗+ N) 'M ∗+ ϕ!N,

for everyM in Dbh (DG) and N in Dbh (DH).
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Proof. An application of proper base change in the cartesian diagram

G×G G×H

H×H

G H

m

ϕ

id×ϕ

ϕ×id

m

yields that

ϕ+ ◦m! ◦ (ϕ× id)! ' m! ◦ (id×ϕ)+ and ϕ! ◦m+ ◦ (ϕ× id)+ ' m+ ◦ (id×ϕ)!.

The desired isomorphisms are then obtained by evaluating these natural isomorphisms
onM�N.

While the inner hom for !-convolution is seldom discussed in the literature, a duality
functor is frequently encountered (e.g., in [Kat12] and [Krä14]). The following lemma
demonstrates that these two functors are naturally compatible. As in the rest of this
thesis, we denote by inv : G→ G the inverse map.

Lemma 6.1.6. For an objectM of Dbh (DG), denote byM∨∗ the convolution dual Hom∗G(M,δe).
Then, there is a natural isomorphism (−)∨

∗ ' inv+ ◦DG. In particular, every object of Dbh (DG)

is reflexive with respect to !-convolution.

Proof. By unraveling the definitions and utilizing that δe is auto-dual, we find that

Hom∗G(M,δe) = pr1,+ HomG×G(pr+2 M,m
!δe)

= pr1,+ DG×G(pr+2 M⊗G×G DG×G(m!δe))

' pr1,+ DG×G(pr+2 M⊗G×Gm+DG(δe))

' pr1,+ DG×G(pr+2 M⊗G×Gm+δe)

' DG pr1,!(pr+2 M⊗G×Gm+δe).

Since the rectangle in the diagram

G G×G G×G

Speck G

p

∆G

e

m

inv× id

(inv,id)

is cartesian, it follows that

m+δe = m
+e!k ' (inv× id)!∆G,!p

+k ' (inv× id)!∆G,!1G.
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All in all, we obtain Hom∗G(M,δe) ' DG pr1,!(pr+2 M ⊗G×G (inv× id)!∆G,!1G). Ap-
plying the projection formula, this simplifies to

DG pr1,!(inv× id)!((inv× id)+ pr+2 M⊗G×G ∆G,!1G)

' DG inv! pr1,!(pr+2 M⊗G×G ∆G,!1G),

since pr2 ◦ (inv× id) = pr2 and pr1 ◦ (inv× id) = inv ◦ pr1. By applying the projection
formula one more time, we find

DG inv! pr1,!∆G,!(∆
+
G pr+2 M⊗G×G 1G) ' DG inv!M,

as pr1 ◦ ∆G = pr2 ◦ ∆G = idG. Finally, since inv : G → G is an isomorphism, this is
nothing but inv+ DG(M).

Our next result, that gives an interesting criterion for dualizable objects with respect
to !-convolution, is a consequence of [BD13, Cor. 4.6]. That being said, in our setting
we can also give a direct proof.

Proposition 6.1.7. An objectM in Dbh (DG) is dualizable with respect to !-convolution if and
only if the forget-supports mapM ∗! N→M ∗+N is an isomorphism for everyN in Dbh (DG).

Proof. LetM∨∗ ' inv+ DG(M) denote the dual ofM in the closed symmetric monoidal∞-category (Dbh (DG), ∗!). By definition,M is dualizable if and only if the natural map
µ : M∨∗ ∗! N→ Hom∗G(M,N) is an isomorphism for every N in Dbh (DG). According to
Lemma 6.1.6, one can replaceN with N∨∗ without loss of generality. By unraveling the
definitions, we find that µ is the image of the morphism

pr1,!(pr+2 M⊗G×Gm+ inv+N)→ m+(inv× inv)+(M�N)

through the duality functor DG.
Since pr1 = m ◦ τ, where τ : G × G → G × G is the shear map (g, h) 7→ (gh, h−1),

we have that pr1,! ' m!τ!. Given that τ is an involution, it follows that τ! ' τ+.
Consequently, DG(µ) corresponds to the forget-supports map

m!(inv× inv)+(M�N)→ m+(inv× inv)+(M�N).

Finally, applying proper base change to the cartesian square

G×G G×G

G G,
inv

m m

inv× inv

we conclude that µ is the image of the forget-supports mapM ∗!N→M ∗+N through
the anti-equivalence of categories (−)∨

∗ . This completes the proof.
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6. Comparison of tannakian groups

Corollary 6.1.8. The symmetric monoidal ∞-category (Dbh (DG), ∗!) is rigid if and only if G
is an abelian variety.

Proof. If G is proper, so is the multiplication mapm : G×G→ G and then the forget-
supports mapM ∗! N→M ∗+ N is always an isomorphism. Conversely, suppose that
M∗!N

∼−→M∗+N for allM,N ∈ Dbh (DG). Letϕ : L→ G be the kernel of the Albanese
morphism, as in the Barsotti–Chevalley decomposition, and takeM = N to be ϕ!1L.

The given isomorphism says thatm!(ϕ×ϕ)!1L×L ' m+(ϕ×ϕ)+1L×L. Since ϕ is a
groupmorphism, this is the same asϕ!mL,!1L×L ' ϕ+mL,+1L×L, wheremL : L×L→ L

is the group law of L. Applying ϕ+ to both sides, we simplify this expression to
mL,!1L×L ' mL,+1L×L.
Let p : L → Speck be the structure map. Since the multiplication map mL is

isomorphic to a projection L× L→ L, the mapmL,!1L×L → mL,+1L×L is the image by
p+ of the forget-supports map p!1L → p+1L. The latter is an isomorphism since p has
a section.
Without loss of generality, we may suppose that k is algebraically closed. Then,

the linear group L decomposes as Gra × Gsm, for some r, s. As a result, the Künneth
formula gives isomorphisms

H0c(A1)⊗r ⊗k H0c(Gm)⊗s 'H 0(p!1L)
∼−→H 0(p+1L) ' H0(A1)⊗r ⊗k H0(Gm)⊗s.

This implies that r = s = 0, since otherwise the left-hand side vanishes whereas the
right-hand side does not.

The final proposition of this section gives a compatibility between convolution and
character sheaves. This compatibility is a counterpart of the equality

((f · χ) ∗ (g · χ))(t) =

∫
f(x)χ(x)g(tx−1)χ(tx−1) dx

=

Å∫
f(x)g(tx−1) dx

ã
χ(t) = (f ∗ g)(t) · χ(t),

under the analogy between functions and sheaves.

Proposition 6.1.9. Let χ ∈ G[(k), and let tχ : Dbh (DG)→ Dbh (DG) be the functor −⊗G Lχ.
Then tχ is t-exact and symmetric monoidal with respect to both convolutions.

Proof. For complexesM and N in Dbh (DX), the projection formula implies that

tχ(M) ∗! tχ(N) = m!((M⊗G Lχ)� (N⊗G Lχ))

' m!((M�N)⊗G×G (Lχ �Lχ))

' m!((M�N)⊗G×Gm+Lχ)

' m!(M�N)⊗G Lχ

= tχ(M ∗! N).
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6.2. The convolution group

If we replace ∗! by ∗+, all of these isomorphisms still hold, with the possible exception
of the projection formula. Nevertheless, the isomorphism

m+((M�N)⊗G×Gm+Lχ) ' m+(M�N)⊗G Lχ

holds because Lχ is dualizable with respect to the tensor product. Moreover, the
functor tχ sends the convolution identity δe to itself. Indeed, another application of
the projection formula gives

δe ⊗G Lχ = e!k⊗G Lχ ' e!(k⊗k e+Lχ︸ ︷︷ ︸
'k

) ' e!k = δe,

finishing the proof.

6.2. The convolution group

The goal of this section is to construct a tannakian category of holonomic D-modules
using the convolution products. As first observed by Gabber and Loeser [GL96] in a
related setting, there exists a quotient ∞-category of Dbh (DG) where both convolutions
coincide and become t-exact. The heart of this stable ∞-category is going to be the
desired tannakian category. Most of the contents of this section appear in some way or
another in [GL96], [Krä14], or [FFK23]. From this point onward, we assume that k = C.

Definition 6.2.1 (Negligible objects). LetM be a holonomicD-module onG. We say that
M is negligible if there exists a generic subspace V of G[ such that H∗c(G,M⊗G Lχ) = 0

for all χ ∈ V . An object of Dbh (DG) is said to be negligible if its cohomology sheaves
are. The full subcategories of Hol(DG) and Dbh (DG) consisting of negligible objects are
denoted by Neg(DG) and Dbneg(DG), respectively.

The study of negligible is highly dependent on a generic vanishing theorem. Since
we have yet to prove such a result in absolute generality, we make it an axiom.

Definition 6.2.2 (Generic vanishing). We say that G satisfies generic vanishing if, for
every holonomic D-moduleM on G, there exists a generic subspace V of G[ such that

Hic(G,M⊗G Lχ) = Hi(G,M⊗G Lχ) = 0 for i 6= 0;
H0c(G,M⊗G Lχ) ' H0(G,M⊗G Lχ)

for every χ ∈ V .
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6. Comparison of tannakian groups

The results in the previous chapter establish that the additive group1 Ga, tori, and
abelian varieties satisfy generic vanishing. A simple spectral sequence argument also
implies the following seemingly stronger result.

Lemma 6.2.3. Assume that G satisfies generic vanishing and letM be an object of Dbh (DG).
Then, there exists a generic subspace V of G[ such that

Hic(G,M⊗G Lχ) ' Hi(G,M⊗G Lχ) ' H0c(G,H
i(M)⊗G Lχ)

holds for all i ∈ Z and all χ ∈ V .

Proof. Let χ be a character in G[. Since the functor −⊗G Lχ is t-exact, it follows that
H j(M⊗G Lχ) 'H j(M)⊗G Lχ for all j. As a result, there are spectral sequences

Ei,j2 = Hic(G,H
j(M)⊗G Lχ) =⇒ Hi+jc (G,M⊗G Lχ)

Fi,j2 = Hi(G,H j(M)⊗G Lχ) =⇒ Hi+j(G,M⊗G Lχ).

For each j, there exists a generic subspace Vj of G[ such that H∗c(G,H
j(M) ⊗G Lχ)

coincides with H∗(G,H j(M) ⊗G Lχ) and is concentrated in degree zero for χ ∈ Vj.
These subspaces may only differ from G[ for a finite number of indices. Thus, their
intersection V is also a generic subspace where the desired conclusion holds.

The following proposition connects our definition of negligible objects with those
found in [GL96; Kat12; Krä14]. We refer the reader to Example 4.3.4 for further details
on the Mellin transform of D-modules on tori.

Proposition 6.2.4. Let G be an abelian variety or a torus, and letM be a holonomicD-module
onG. ThenM is negligible if and only if its Euler characteristic χ(G,M) vanishes. Furthermore,
when G is a torus, M is negligible precisely when the generic fiber of its Mellin transform
vanishes.

Proof. Before starting the proof, we note that Theorem A.1.1 asserts that the Euler
characteristic χ(G,M) coincides with its compactly supported counterpart χc(G,M).
In particular, it suffices to prove that M is negligible if and only if its compactly
supported Euler characteristic χc(G,M) vanishes.

Assume thatM is negligible. Since generic subspaces are non-empty, there exists an
element χ ∈ G[ such that

H∗c(G,M⊗G Lχ) = 0.

As a result, Lemma A.2.5 and Proposition A.2.6 imply that χc(G,M) coincides with
χc(G,M ⊗G Lχ) = 0. Conversely, if the compactly supported Euler characteristic
1Proposition 5.3.1 implies that unipotent groups satisfy a weaker version of generic vanishing. Both
versions agree in dimension one.
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6.2. The convolution group

χc(G,M) vanishes, the generic vanishing theorems ensure the existence of a generic
subspace V of G[ such that Hic(G,M⊗G Lχ) = 0 for i 6= 0 and

dim H0c(G,M⊗G Lχ) = χc(G,M⊗G Lχ) = χc(G,M) = 0

for all χ in V . This proves thatM is negligible. The statement regarding the Mellin
transform follows from [LS92, Thm. 2].

The following proposition provides a recipe for constructing negligible holonomic
D-modules. In particular, it asserts that character sheaves are always negligible.

Proposition 6.2.5. Let ρ : G→ H be an epimorphism with a non-trivial connected kernelN
and let d = dimN. Then, for any holonomic D-moduleM on H and any χ ∈ G[, the object
ρ+M ⊗G Lχ[d] is negligible. If G is a torus or an abelian variety, every simple negligible
holonomic D-module is of this form.

The proof of this proposition requires a lemma akin to the orthogonality of characters
in classical harmonic analysis.

Lemma 6.2.6. Let χ be a non-zero element of G[. Then, the de Rham cohomology groups
H∗(G,Lχ) and their compactly supported counterparts H∗c(G,Lχ) all vanish.

Proof. Recall that the category of vector bundles with integrable connection on G is
tannakian. Given a fiber functorω, with associated tannakian group Γ , we affirm that
H0(G,E ) ' ω(E )Γ holds for every integrable connection E . Indeed, the left-hand side
is Hom(OG,E ), whereas the right-hand side is Hom(ω(OG),ω(E )).2 If E is simple, so
is the representationω(E ). In particular, it follows that H0(G,Lχ) = ω(Lχ)Γ = 0.
We will prove by induction that Hi(G,Lχ) vanishes for higher i. Assume it holds

for all 0 6 i < r. Factor the identity map id : G→ G as

G
(id,e)−−−−→ G×G m−−→ G,

to obtain a factorization Hr(G,Lχ)→ Hr(G×G,m+Lχ)→ Hr(G,Lχ) of the identity.
Now,

Hr(G×G,m+Lχ) ' Hr(G×G,Lχ �Lχ) '
⊕
i+j=r

Hi(G,Lχ)⊗k Hj(G,Lχ),

and every term on the right vanishes. Thus, Hr(G,Lχ) vanishes as well. The statement
regarding compactly supported cohomology follows by Poincaré duality.
2Recall from Remark 1.5.2 our convention that when connections are regarded as D-modules, they
should be shifted to be in degree equal to the dimension of the underlying space.
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6. Comparison of tannakian groups

Proof of Proposition 6.2.5. Let χ′ be any point of G[ distinct from χ. By the projection
formula, we have

H∗c(G, ρ
+M⊗G Lχ ⊗G Lχ′ [d]) ' H∗+dc (H,M⊗H ρ!(Lχ ⊗G Lχ′)).

We claim that ρ!(Lχ ⊗G Lχ′) vanishes, implying the desired result. To prove this, it
suffices to verify that h+ρ!(Lχ ⊗G Lχ′) = 0 for all h ∈ H(k). Since character sheaves
are translation-invariant, proper base change identifies this object with ρ!(Lχ ⊗G Lχ′),
where ρ : N→ Spec k denotes the structure map. Given that χ′ is distinct from χ, the
character sheaf Lχ ⊗G Lχ′ is non-trivial, and the result follows from Lemma 6.2.6.

The characterizations of simple negligible holonomicD-modules follow from Propo-
sition 6.2.4, as well as [Sch15, Cor. 5.2] and [GL96, Thm. 9.2].

Let us recall some fundamental facts about quotients of categories. For an abelian
category A, a non-empty full subcategory B is said to be thick if it is stable under
subquotients and extensions. In this case, B is also an abelian category, and there exists
an abelian category A/B equipped with an exact functor A → A/B universal among
exact functors to abelian categories mapping the objects of B to zero [Stacks, Tag 02MS].
For a stable∞-category C, a stable subcategory of C is a non-empty full subcategory

D that is stable under the formation of fibers and cofibers. In this case, there exists a
stable∞-category C/D equipped with an exact functor C→ C/D, which is universal
among exact functors to stable∞-categories mapping the objects of D to zero [NS18,
Thm. I.3.3].3

Assume that C has a symmetric monoidal structure ⊗where the tensor product is
exact in each variable. We say that D is a ⊗-ideal ifM⊗N lies in D for allM in C andN
in D. Then, the quotient C/D inherits a unique symmetric monoidal structure such
that the functor C→ C/D is symmetric monoidal [NS18, Thm. I.3.6].

Proposition 6.2.7. Assuming thatG satisfies generic vanishing, the full subcategoryNeg(DG)

of Hol(DG) is thick. Furthermore, Dbneg(DG) is a stable subcategory ofDbh (DG) and is a⊗-ideal
with respect to !-convolution.

Proof. Consider a short exact sequence 0→M→ N→ P → 0 of holonomicD-modules
on G, and let χ belong to the intersection of the generic subspaces associated with
M, N, and P. Note that this intersection remains a generic subspace. The long exact
sequence in cohomology gives a short exact sequence

0→ H0c(G,M⊗G Lχ)→ H0c(G,N⊗G Lχ)→ H0c(G, P ⊗G Lχ)→ 0.

Consequently, N is negligible if and only if bothM and P are. It follows that Neg(DG)

is a thick subcategory of Hol(DG).
3The homotopy category h(C/D) is equivalent to the Verdier quotient of triangulated categories hC/hD,
as constructed in classical references.
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6.2. The convolution group

Let M → N → P be a fiber sequence in Dbh (DG), and assume that M and N are
negligible. Taking the associated long exact sequence in cohomology, we obtain an
exact sequence

H i(N)
ϕi−−→H i(P)

ψi−−→H i+1(M)

for all i. This induces a short exact sequence

0→H i(N)/ kerϕi →H i(P)→ imψi → 0,

where both extremities are negligible. SinceNeg(DG) is a thick subcategory ofHol(DG),
it follows that P is also negligible. The same argument also shows that negligible
objects are stable under the formation of fibers.
Finally, letM be an object of Dbh (DG) and N an object of Dbneg(DG). Let χ be in the

generic subspace associated with N, as in Lemma 6.2.3. According to Corollary 6.1.4
and Proposition 6.1.9, we have an isomorphism

H∗c(G, (M ∗! N)⊗G Lχ) ' H∗c(G,M⊗G Lχ)⊗k H∗c(G,N⊗G Lχ),

where H∗c(G,N⊗G Lχ) vanishes due to Lemma 6.2.3.

Definition 6.2.8. ForG satisfying generic vanishing, the abelian quotient categoryHol(DG)

is defined as the quotient ofHol(DG) byNeg(DG), whereas the stable quotient∞-category
D
b

h (DG) is defined as the quotient of Dbh (DG) by Dbneg(DG).

Proposition 6.2.7 implies that Hol(DG) is an abelian category, and D
b

h (DG) is a stable∞-category equipped with a symmetric monoidal structure given by !-convolution.
Furthermore,Dbh (DG) inherits a t-structurewhose heart is equivalent toHol(DG) [GL96,
Prop. 3.6.1]. Consequently, Hol(DG) can be naturally viewed as a full subcategory of
D
b

h (DG).
Our next result is the raison d’être for considering negligible objects. Informally, it

asserts that while the two variants of convolution on Dbh (DG) may not coincide and do
not preserve holonomic D-modules in degree zero, they do so up to negligible objects.

Proposition 6.2.9. Assume that G satisfies generic vanishing and letM and N be objects of
Dbh (DG). The cofiber of the forget-supports mapM ∗! N→M ∗+N is negligible. Moreover, if
M and N are holonomic D-modules in degree zero, then the cohomology sheaves H i(M ∗! N)

and H i(M ∗+ N) are negligible for i 6= 0.

Proof. Let C be the cofiber of the forget-supports mapM ∗! N → M ∗+ N. Since G
satisfies generic vanishing, there exists a generic subspace V of G[ such that

Hjc(G,H
i(C)⊗G Lχ) = 0 for j 6= 0;

H0c(G,H
i(C)⊗G Lχ) ' Hic(G,C⊗G Lχ)
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holds for all i ∈ Z and χ ∈ V . Thus, it suffices to prove that H∗c(G,C⊗G Lχ) vanishes
for generic χ. This is equivalent to proving that the induced map

ϕ : H∗c(G, (M ∗! N)⊗G Lχ)→ H∗c(G, (M ∗+ N)⊗G Lχ)

is an isomorphism. According to Proposition 6.1.9 and Corollary 6.1.4, the map ϕ fits
into the following commutative diagram:

H∗c(G, (M ∗! N)⊗G Lχ) H∗c(G,M⊗G Lχ)⊗k H∗c(G,N⊗G Lχ)

H∗c(G, (M ∗+ N)⊗G Lχ)

H∗(G, (M ∗+ N)⊗G Lχ) H∗(G,M⊗G Lχ)⊗k H∗(G,N⊗G Lχ).

∼

ϕ

∼

After possibly shrinking V , we may further assume that the forget-supports maps

H∗c(G,M⊗G Lχ)→ H∗(G,M⊗G Lχ)

H∗c(G,N⊗G Lχ)→ H∗(G,N⊗G Lχ)

H∗c(G, (M ∗+ N)⊗G Lχ)→ H∗(G, (M ∗+ N)⊗G Lχ)

are isomorphisms, proving that ϕ is an isomorphism for generic χ.
Next, assume thatM andN are holonomicD-modules in degree zero. By generic

vanishing, there exists a generic subspaceW of G[ such that

H∗c(G, (M ∗! N)⊗G Lχ) ' H∗c(G,M⊗G Lχ)⊗k H∗c(G,N⊗G Lχ)

is concentrated in degree zero for all χ ∈ W. Additionally, the preceding lemma
provides a generic subspaceW′ of G[ such that

Hic(G, (M ∗! N)⊗G Lχ) ' H0c(G,H
i(M ∗! N)⊗G Lχ)

holds for all i ∈ Z and all χ ∈ W′. As a result, H0c(G,H
i(M ∗! N) ⊗G Lχ) vanishes

whenever i 6= 0 and χ ∈ W ∩W′. Thus, the cohomology sheaves H i(M ∗! N) are
negligible for i 6= 0. The proof forM ∗+ N is analogous.

Proposition 6.2.10. Assume thatG satisfies generic vanishing. Then, the symmetric monoidal∞-categories Hol(DG) and D
b

h (DG) are rigid.

We start by proving that the inner hom for !-convolution descends to the quotient
category D

b

h (DG).
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Lemma 6.2.11. Assume that G satisfies generic vanishing, and let M and N be objects of
Dbh (DG). The inner hom for !-convolution Hom∗G(M,N), defined in Proposition 4.2.2, becomes
negligible whenever either M or N is negligible. As a consequence, Hom∗G descends to a
bifunctor Dbh (DG)× D

b

h (DG)→ D
b

h (DG).

Proof. Let n be the dimension of G, and let σ : G × G → G × G be the isomorphism
that maps (x, y) to (xy, y). The commutativity of the diagram

G

G×G G×G

G

m

σ

pr2

pr1

pr2

implies that

Hom∗G(M,N) = pr1,+ HomG×G(pr+2 M,m
!N)

' pr1,+ HomG×G(σ+ pr+2 M,σ
! pr!

1N)

' pr1,+ σ
!HomG×G(pr+2 M, pr!

1N)

' pr1,+ σ+HomG×G(pr+2 M, pr!
1N) ' m+HomG×G(pr+2 M, pr!

1N).

Consequently, for a character χ ∈ G[, we find that

Hom∗G(M,N)⊗G Lχ ' m+

(
HomG×G(pr+2 M, pr!

1N)⊗G×Gm+Lχ

)
' m+

(
HomG×G(pr+2 M, pr!

1N)⊗!
G×G pr!

1Lχ ⊗!
G×G pr!

2Lχ

)
[4n]

' m+

(
pr!
2DG(M)⊗!

G×G pr!
1N⊗!

G×G pr!
1Lχ ⊗!

G×G pr!
2Lχ

)
[4n]

' m+

(
pr!
2(DG(M)⊗!

G Lχ)⊗!
G×G pr!

1(N⊗!
G Lχ)

)
[4n]

' m+

(
pr!
2DG(M⊗G L−χ)⊗!

G×G pr!
1(N⊗G Lχ)

)
' m+HomG×G(pr+2 (M⊗G L−χ), pr!

1(N⊗G Lχ))

' Hom∗G(M⊗G L−χ, N⊗G Lχ).

Let p : G→ Spec k denote the structure map. As in the proof of Proposition 6.2.9, it
suffices to show that p+(Hom∗G(M,N)⊗G Lχ) vanishes for generic χ. Using the usual
adjunctions, along with base change and [HTT08, Cor. 2.6.15], we have

p+(Hom∗G(M,N)⊗G Lχ) ' p+m+HomG×G(pr+2 (M⊗G L−χ), pr!
1(N⊗G Lχ))

' (p× p)+HomG×G(pr+2 (M⊗G L−χ), pr!
1(N⊗G Lχ))

' RHomDG×G(pr+2 (M⊗G L−χ), pr!
1(N⊗G Lχ))

' RHomDG
(pr1,! pr+2 (M⊗G L−χ), N⊗G Lχ)

' RHomDG
(p+p!(M⊗G L−χ), N⊗G Lχ).
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If M is negligible, then the complex p!(M ⊗G L−χ) vanishes for generic χ, and
consequently so does p+(Hom∗G(M,N)⊗G Lχ). The proof for the case when N is
negligible follows similarly.

Proof of Proposition 6.2.10. According to Proposition 6.2.7 and Lemma 6.2.11, the bi-
functors

− ∗! − and Hom∗G(−,−)

both descend to the quotient ∞-category D
b

h (DG). It follows from the counit-unit
equations4 that these functors stay adjoint in the quotient, establishing that Dbh (DG) is
a closed symmetric monoidal∞-category.
The dualizability of every object in D

b

h (DG) follows directly from the proof of
Proposition 6.1.7, along with Proposition 6.2.9. As in Lemma 6.1.6, denote by (−)∨

∗ the
functor Hom∗G(−, δe). Since both functors

D
b

h (DG)× D
b

h (DG)
−∗!−−−−−→ D

b

h (DG) and D
b

h (DG)op
(−)∨
∗

−−−−→ D
b

h (DG)

are t-exact, the heart Hol(DG) inherits a rigid symmetric monoidal structure from the
stable∞-category D

b

h (DG).

Before presenting themain theorem of this section, we first review some fundamental
concepts related to tannakian categories. Let k be a field, and A be a non-trivial rigid
abelian k-linear symmetric monoidal category. We call A tannakian if there exists a
k-algebra R and an exact k-linear symmetric monoidal functorω : A→ Mod(R). Such a
functor is referred to as an R-valued fiber functor for A.
A tannakian category that admits a fiber functor with values in k is said to be

neutral. The main theorem concerning neutral tannakian categories states that, for
a neutral tannakian category A over k, there exists an affine group scheme H over k
and a symmetric monoidal equivalence A ' Rep(H) [DM82, Thm. 2.11]. Here, Rep(H)

denotes the category of finite-dimensional representations of H.
There are specific criteria for determining when a non-trivial rigid abelian k-linear

symmetric monoidal category A is tannakian. Recall that for every objectM of A with
dualM∨, there exists evaluation and coevaluation maps

ev : M⊗M∨ → 1 and coev : 1→M⊗M∨.

The element dimM of k ' End(1) corresponding to the composition ev ◦ coev is said
to be the dimension of M. If k has characteristic zero, the category A is tannakian
if the dimension of every objectM of A is a non-negative integer [Del07, Thm. 7.1].
Furthermore, when k is algebraically closed, every tannakian category is neutral
[Cou20, Thm. 6.4.1].
4See [RV22, Prop. F.5.6] for the counit-unit equations in the quasi-categorical setting.
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Theorem 6.2.12. Let G be a commutative connected algebraic group over C satisfying generic
vanishing. Then, Hol(DG) is a neutral tannakian category.

To prove this theorem, we need a more concrete description of the quotient category
Hol(DG). We begin by outlining a general result, due to Gabber and Loeser, that
describes quotients of abelian categories as full subcategories [GL96, Prop. 3.7.2].
Let B be a thick subcategory of an abelian category A. For an object M of A, let

MB denote the largest subobject of M that belongs to B. Similarly, let MB denote
the smallest subobject N ofM such thatM/N lies in B. We write [A : B] for the full
subcategory of A consisting of objectsM for whichMB = 0 andMB =M.

Lemma 6.2.13 (Gabber–Loeser). Let B be a thick subcategory of an abelian category A. Then
the functor

T : A→ [A : B]

M 7→ (MB +MB)/MB

factors through the quotient category A/B, inducing a quasi-inverse S : A/B → [A : B] for
the restriction of the quotient functor Q : A → A/B to [A : B]. In particular, S defines an
equivalence of categories between A/B and [A : B].

�

The category [A : B] is abelian, but the inclusion functor [A : B] ↪→ A is not necessarily
exact. As a simple example, let A be the category of abelian presheaves on a topological
space X, and let B be the full subcategory consisting of presheaves with trivial stalks.
In this case, [A : B] is the category of abelian sheaves on X, and its inclusion into A
fails to be exact.

The preceding lemma, applied to the thick subcategoryNeg(DG) ofHol(DG), implies
that the quotient Hol(DG) is equivalent to the full subcategory Holint(DG) of Hol(DG)

consisting of holonomicD-modules with no negligible subquotients. Assuming that G
satisfies generic vanishing, the categoryHolint(DG) inherits a rigid symmetric monoidal
structure ∗mid from Hol(DG).

Proof of Theorem 6.2.12. According to all the discussion above, it suffices to prove that
the dimension of every objectM of Holint(DG) is a non-negative integer. By definition,
the dimension ofM is the image of the composition

δe
coev−−−→M ∗midM

∨∗ ev−−→ δe

under the isomorphism End(δe) ' C. Twisting by a character χ and taking compactly
supported cohomology, we obtain morphisms

C→ H∗c(G, (M ∗midM
∨∗ )⊗G Lχ)→ C.
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6. Comparison of tannakian groups

For a sufficiently generic characterχ, (M∗midM
∨∗ )⊗GLχ coincideswith (M∗!M

∨∗ )⊗GLχ.
As a result,

H∗c(G, (M ∗midM
∨∗ )⊗G Lχ) ' H∗c(G, (M ∗! M

∨∗ )⊗G Lχ)

' H∗c(G,M⊗G Lχ)⊗C H∗c(G,M⊗G Lχ)∗.

From generic vanishing, there exists a character χ such that the above holds and
H∗c(G,M⊗G Lχ) is concentrated in degree zero. As in the proof of [Krä14, Thm. 5.2],
the morphisms

C→ End(H0c(G,M⊗G Lχ))→ C

coincide with the evaluation and coevaluation maps of finite-dimensional vector
spaces. Thus, the dimension ofM is the same as the dimension of H0c(G,M⊗G Lχ) as
a C-vector space.

LetM be a holonomicD-module onGwith imageM in Hol(DG). We denote by 〈M〉
the full subcategory of Hol(DG) whose objects are subquotients of finite direct sums of

M ∗! · · · ∗! M︸ ︷︷ ︸
n factors

∗!M
∨∗ ∗! · · · ∗! M

∨∗︸ ︷︷ ︸
m factors

,

for some n,m > 0. By construction, the categories 〈M〉 are also tannakian.

Corollary 6.2.14. Assume that G satisfies generic vanishing, and let M be a holonomic
D-module on G. Then, there exists an affine algebraic group Conv(M) such that the full
subcategory 〈M〉 ofHol(DG) is equivalent to the categoryRep(Conv(M)) of finite-dimensional
representations of Conv(M). Furthermore, ifM is semisimple, then Conv(M) is reductive.

Proof. The existence ofConv(M) follows from themain theoremon tannakian categories
[DM82, Thm. 2.11], and it is algebraic due to [DM82, Prop. 2.20]. The last statement is
a consequence of [Mil17, Thm. 22.42], along with [DM82, Cor. 2.22].

For the reader’s convenience, we recall that the tannakian group of Hol(DG) can be
recovered as the cofiltered limit of the algebraic groups Conv(M), as 〈M〉 runs through
the full subcategories of Hol(DG) generated by a single object. For more details, see
the proof of [DM82, Prop. 2.8].5 Notably, this tannakian group is pro-algebraic.

6.3. Differential Galois theory
In this section, we explain two approaches to differential Galois theory and examine
their interrelation. Their equivalence, that we present as Theorem 6.3.9, appears to be
5Note that in [DM82], the notation CM is used for what we denote by 〈M〉. (They use 〈M〉 for a
different subcategory.) However, our notation has since become standard.
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6.3. Differential Galois theory

well-known, although we were unable to locate any references describing it. Finally,
we connect the convolution group discussed in the previous section to a differential
Galois group.
We begin with a geometric approach to differential Galois theory, popularized by

Katz in his influential papers [Kat82a; Kat87], which have significantly shaped our
understanding of the subject. Let X be a geometrically connected algebraic variety
that is smooth over a field k of characteristic zero, and assume that X has at least one
rational point. Following Katz, we denote by DE(X/k) the category of vector bundles
with integrable connection on X, which we refer to simply as connections.

Since every coherent OX-module equipped with a (not necessarily integrable) con-
nection is locally free [And01, Cor. 2.5.2.2], DE(X/k) is a k-linear abelian category.
Furthermore, it is endowed with a rigid symmetric monoidal structure, given by the
tensor product of connections. The following proposition explains how connections
behave under restriction to open subsets.

Proposition 6.3.1. Let U be an open dense subset of X. Then the restriction functor
DE(X/k)→ DE(U/k) is symmetric monoidal, exact, and fully faithful. Moreover, if (E ,∇) is
a connection on X and (E ′,∇′) is a subquotient of (E ,∇)|U, there exists a unique subquotient
(Ẽ ,‹∇) of (E ,∇) such that (E ′,∇′) ' (Ẽ ,‹∇)|U.

Proof. Let j : U ↪→ X be the natural open immersion. It is clear that the restriction
functor j∗ : DE(X/k)→ DE(U/k) is exact and symmetric monoidal, as the restriction of
coherent sheaves possesses these properties. To prove that this functor is fully faithful,
consider a morphism ϕ : (E ,∇)|U → (E ′,∇′)|U of connections on U. We need to show
that ϕ has a unique extension to a morphism ϕ : (E ,∇)→ (E ′,∇′).
The existence of such an extension follows from Remark 1.5.7, as ϕ = j!+ϕ is a

morphism in DE(X/k) that restricts to ϕ on U. To establish uniqueness, suppose that
ϕ is the zero-morphism, and let ϕ be any extension of ϕ. The image of ϕ would then
be a locally free sheaf supported on X \U. This implies that ϕmust vanish, thereby
completing the proof of uniqueness.
To demonstrate the second part of the statement, consider a connection (E ,∇)

on X, and let (E ′,∇′) be a subobject of (E ,∇)|U. Since right-adjoints are left-exact,
j∗E ′ is a subsheaf of j∗j∗E = j∗E |U. Furthermore, the unit map η : E → j∗j

∗E is a
monomorphism as kerη is a coherent subsheaf of E supported on X \U. Thus, we may
take the intersection of j∗E ′ and E in j∗j∗E .

We assert that the connection∇ on E restricts to a connection‹∇ on Ẽ := j∗E ′∩E . This
will imply that (Ẽ ,‹∇) is an object of DE(X/k) whose restriction to U is isomorphic to
(E ′,∇′). Such an object must be unique, as the restriction functor DE(X/k)→ DE(U/k)

is fully faithful.

199



6. Comparison of tannakian groups

Now, let V be an open subset of X, and consider a section s in

Γ(V, j∗E
′ ∩ E ) ' Γ(U ∩ V,E ′) ∩ Γ(V,E ).

Since (E ′,∇′) is a subobject of (E ,∇)|U, the connection∇′ is the restriction of∇ to U.
Consequently,∇(s) lies in

Γ(U ∩ V,E ′ ⊗OU Ω
1
U/k) = Γ(V, j∗(E

′ ⊗OU Ω
1
U/k)) ' Γ(V, j∗E

′ ⊗OX Ω
1
X/k).

Thus, we have

∇(s) ∈ Γ(V, j∗E
′ ⊗OX Ω

1
X/k) ∩ Γ(V,E ⊗OX Ω

1
X/k) ' Γ(V, (j∗E

′ ∩ E )⊗OX Ω
1
X/k),

proving that∇ indeed restricts to Ẽ = j∗E ′ ∩ E . Given that the functor j∗ is exact, the
corresponding statement about quotients follows directly from this result.

Let x be a k-point of X. By mapping a connection (E ,∇) to its fiber E (x) = E ⊗OX k,
we obtain an exact k-linear symmetric monoidal functorωx : DE(X/k)→ Vect(k). This
functor serves as a fiber functor, establishing that DE(X/k) is a tannakian category.

Definition 6.3.2. Let x be a k-point of X. The tannakian group of DE(X/k) associated
with the fiber functorωx is called the differential fundamental group of X and is denoted
by πdiff

1 (X, x). For a connection (E ,∇), the tannakian group of 〈(E ,∇)〉 is referred to as
Katz’ differential Galois group and is denoted by GalK((E ,∇), x).

The differential fundamental group πdiff
1 (X, x) is significantly larger than its Betti

and étale counterparts. This observation led Deligne to consider the tannakian group
of unipotent connections as his de Rham fundamental group in [Del89, §12.4]. Katz’
differential Galois group, on the other hand, is a more manageable object, as we will
demonstrate in this section.

Our next result follows directly from Proposition 6.3.1. We first conjectured that this
statement might hold after examining [Kin15, Lem. 2.5], where the author considers a
positive-characteristic analogue.

Corollary 6.3.3. Let U be an open dense subset of X, and let (E ,∇) be a connection on X.
Then the restriction functor

〈(E ,∇)〉 → 〈(E ,∇)|U〉

is an equivalence of symmetric monoidal categories. In particular, we have an isomorphism

GalK((E ,∇), x) ' GalK((E ,∇)|U, x)

for every k-point x of U.
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6.3. Differential Galois theory

The following remark connects Katz’ differential Galois groups with the classical
monodromy groups.

� Remark 6.3.4 — Monodromy groups. Assume that k is the field of complex numbers C.
As above, the category DE(Xan) of holomorphic connections on the complex manifold
Xan forms a neutral tannakian category. For an algebraic connection (E ,∇) and a point
x ∈ X(C), the monodromy group Mon((E ,∇), x) is defined as the tannakian group of the
category 〈(E ,∇)an〉 ⊂ DE(Xan), with respect to the fiber functor given by x.
Let ρ : π1(Xan, x)→ GL(E (x)) be the representation associated with (E ,∇)an under

the equivalence of categories DE(Xan) ' Rep(π1(Xan, x)). The monodromy group
Mon((E ,∇), x) can be described as the Zariski closure in GL(E (x)) of the image
ρ(π1(Xan, x)). There is a natural closed immersion

Mon((E ,∇), x) ↪→ GalK((E ,∇), x)

induced by the analytification functorDE(X/C)→ DE(Xan). From the Riemann–Hilbert
correspondence, we find that thismorphism is an isomorphismwhen (E ,∇) is a regular
connection. �

Our next objective is to relate the geometric theory presented above to the differential
Galois theory of Kolchin and Picard–Vessiot, as presented in [VS03]. For the reader’s
convenience, we briefly review some of its main concepts. To keep the discussion
accessible, we focus on the one-dimensional case, referring to [Del07, Rmq. 9.9] for the
more general setting.

Definition 6.3.5. A field K equipped with a derivation ∂ : K→ K is called a differential
field. A differential module over a differential field (K, ∂) is a finite-dimensional K-vector
spaceM equipped with an additive map ∇ : M→M satisfying the Leibniz rule

∇(fm) = ∂(f)m+ f∇(m),

for f ∈ K and m ∈ M. A morphism of differential modules (M,∇) → (M′,∇′) is
a K-linear map ϕ : M → M′ such that ∇′ ◦ ϕ = ϕ ◦ ∇. The category of differential
modules over (K, ∂) is denoted by Diff(K, ∂).

The category Diff(K, ∂) naturally inherits a symmetric monoidal structure: the tensor
product of two differential modules (M,∇) and (M′,∇′) is defined as the K-vector
spaceM⊗KM′, with the connection acting on pure tensors as

m⊗m′ 7→ ∇(m)⊗m′ +m⊗∇′(m′),

and extended by linearity. With this structure, Diff(K, ∂) becomes a rigid abelian
k-linear symmetric monoidal category, where k is the field of constants, i.e., the kernel
of ∂.
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6. Comparison of tannakian groups

Theorem 6.3.6. Let (K, ∂) be a differential field with field of constants k. Then the category
Diff(K, ∂) is tannakian. Moreover, if k is algebraically closed, Diff(K, ∂) is a neutral tannakian
category.

Proof. The forgetful functor Diff(K, ∂)→ Vect(K) serves as a K-valued fiber functor for
Diff(K, ∂), thereby establishing that Diff(K, ∂) is a tannakian category. Furthermore, a
theorem of Deligne asserts that every k-linear tannakian category is neutral when k is
algebraically closed [Cou20, Thm. 6.4.1].

Henceforth, we assume that the field of constants k is algebraically closed. The
preceding theorem implies that every differential module possesses a certain symmetry
group: its differential Galois group.

Definition 6.3.7. Let (K, ∂) be a differential field with an algebraically closed field of
constants, and let (M,∇) be a differential module over (K, ∂). The tannakian group
associated with a fiber functor ω on 〈(M,∇)〉 is called the differential Galois group of
(M,∇) and is denoted by Gal((M,∇),ω).

To relate this algebraic theory with its geometric counterpart, let X be a smooth
connected algebraic curve over an algebraically closed field k of characteristic zero.
Let K be a function field of X. The K-module of Kähler differentials Ω1K/k is one-
dimensional [Eis13, Thm. 16.14], and we let ∂ ∈ Derk(K) ' (Ω1K/k)∨ be a non-zero
derivation. This endows K with a structure of differential field.

Lemma 6.3.8. Let K be the function field of a smooth connected curve X over an algebraically
closed field k of characteristic zero, and let ∂ ∈ Derk(K) be a non-zero derivation. Then
ker∂ = k.

Proof. We begin by observing that L := ker∂ is a subfield of K that contains k.
Moreover, L is algebraically closed in K. Indeed, suppose f ∈ K satisfies P(f) = 0 for
some irreducible polynomial P ∈ L[t]. Then P′(f)∂(f) = ∂(P(f)) = 0, and so f ∈ L.

We claim that K has exactly two subfields containing k that are algebraically closed
in K: the algebraic closure of k in K, and K itself. To see this, let x ∈ K be such that
K is a finite extension of k(x) and consider any subfield F of K containing k that is
algebraically closed in K. If F/k is an algebraic extension, then Fmust be the algebraic
closure of k in K. Otherwise, F contains a transcendental element y ∈ K.

Note that the extension K/k(x, y) is finite (and thus algebraic), as k(x) ⊂ k(x, y) ⊂ K
and K/k(x) is finite. This implies that F = K. Indeed, any element of K is a root of a
polynomial in k(x, y)[t] since K/k(x, y) is algebraic. However, any element of K that is
a root of a polynomial in F[t] ⊃ k(x, y)[t] must belong to F, for F is algebraically closed
in K.
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6.3. Differential Galois theory

Given that ∂ is a non-zero derivation, we conclude that L is the algebraic closure
of k in K. According to [Stacks, Tag 0BY3], there exists a smooth projective curve Y
with function field K. We affirm that Y is also connected. Indeed, any idempotent of
Γ(Y,OY) is algebraic over k. Due to the normality of X, such an element must lie in
Γ(X,OX), proving that Y is connected.

Let U = SpecR be an affine open of Y. Since Y is normal, any element of K = FracR

that is algebraic over kmust belong to R. Therefore, we have

L ⊂
⋂

U affine

OY(U) =
⋂

U affine

⋂
y∈Y

OY,y =
⋂
y∈Y

OY,y = OY(Y).

The result then follows from the fact that OY(Y) = k, as in [Stacks, Tag 04L2].

As a consequence of the preceding lemma, the category Diff(K, ∂) is k-linear. For
a connection (E ,∇) on X, its generic fiber Eη is a finite-dimensional K-vector space
equipped with an additive map

Eη → Eη ⊗K Ω1K/k.

By composing this morphism with the evaluation map ev∂ : Ω
1
K/k → K defined by ∂,

we obtain an additive map∇∂ : Eη → Eη satisfying the Leibniz rule. This endows Eη
with a structure of differential module.

Theorem 6.3.9. Let X be a smooth connected curve over an algebraically closed field k of
characteristic zero. Let η be the generic point of X and K be its function field. For an object
(E ,∇) of DE(X/k) and a non-zero derivation ∂ ∈ Derk(K), the construction above yields a
symmetric monoidal equivalence of categories

〈(E ,∇)〉 ∼−→ 〈(Eη,∇∂)〉,

where 〈(E ,∇)〉 is a full subcategory of DE(X/k) and 〈(Eη,∇∂)〉 is a full subcategory of
Diff(K, ∂).

Proof. By taking the colimit of the restriction functors in Corollary 6.3.3, we obtain a
symmetric monoidal equivalence of categories

〈(E ,∇)〉 ∼−→ 〈(E ,∇)η〉 ⊂ DE(SpecK/k).

It then suffices to prove that our construction provides an equivalence of categories
between DE(SpecK/k) and Diff(K, ∂).
The construction above defines a functor DE(SpecK/k) → Diff(K, ∂) that acts as

(M,∇) 7→ (M,∇∂) on objects and is the identity on morphisms. To verify the image
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6. Comparison of tannakian groups

of a morphism ϕ : (M,∇) → (M′,∇′) under this functor is indeed a morphism on
Diff(K, ∂), we consider the following diagram:

M M⊗K Ω1K/k M

M′ M′ ⊗K Ω1K/k M′.

∇

ϕ

id⊗ ev∂

ϕ⊗id ϕ

∇′ id⊗ ev∂

The left square commutes sinceϕ is a morphism in DE(SpecK/k), and the right square
commutes trivially.

This functor is clearly fully faithful. To show that it is essentially surjective, consider
an object (M,‹∇) of Diff(K, ∂). We construct a connection ∇ : M → M ⊗K Ω1K/k by
setting

∇(m) := ‹∇(m)⊗ω,

whereω ∈ Ω1K/k is the dual of ∂ ∈ Derk(K). The image of (M,∇) under our functor is
(M,‹∇), since ∇∂ : M →M sendsm to ∂(ω)‹∇(m) = ‹∇(m). Therefore, the functor is
an equivalence of categories.

In particular, the proof above implies that the category Diff(K, ∂) is independent, up
to equivalence, of the choice of ∂. This result also allows us to compare the different
notions of differential Galois groups.

It is worth noting that, over an algebraically closed field k, any two fiber functors on
a neutral tannakian category A generated by a single object are isomorphic. Specifically,
[DM82, Thm. 3.2] asserts that the category of fiber functors for A with values in k
is equivalent to the category of G-torsors over k, where G is the tannakian group
associated with any of the fiber functors. Since G is an algebraic group and k is
algebraically closed, it follows that any G-torsor has a k-point. Consequently, we can
omit explicit reference to the fiber functors in most of our notations.

Corollary 6.3.10. With the notation of Theorem6.3.9, the groupsGalK(E ,∇) andGal(Eη,∇∂)

are isomorphic.

The reminder of this section will be dedicated to a comparison between the convolu-
tion group studied in the previous section and a differential Galois group. To facilitate
this comparison, it is useful to introduce an alternative description of differential
modules.
Consider the (non-commutative) rings C[t]〈∂t〉 and C(t)〈∂t〉, whose elements are

finite sums ∞∑
n=0

pn(t)∂nt ,
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6.3. Differential Galois theory

where the coefficients pn belong to C[t] and C(t), respectively. The multiplication in
these rings is governed by the relation ∂tt = t∂t + 1. In this context, a differential
module over the differential field C(t) with its standard derivation corresponds to a
C(t)〈∂t〉-module that is finite-dimensional over C(t).
Using this notation, the Fourier transform discussed in Example 4.3.3 can be inter-

preted as the equivalence of categories FT : Mod(C[x]〈∂x〉)→ Mod(C[t]〈∂t〉) induced
by the isomorphism

C[x]〈∂x〉 → C[t]〈∂t〉

that maps x 7→ ∂t and ∂x 7→ −t. Given that a holonomic D-module on A1 is a locally
free O-module of finite rank on a dense open subset, we obtain a functor

Hol(C[x]〈∂x〉)
FT−−→ Hol(C[t]〈∂t〉)

−⊗C[t]C(t)
−−−−−−−→ Diff(C(t)).

As established in the proof of Proposition 5.3.1, a holonomic C[x]〈∂x〉-module is
negligible if and only if its image in Diff(C(t)) is zero. Consequently, the universal
property of quotients induces a functor

Hol(C[x]〈∂x〉)/Neg(C[x]〈∂x〉)→ Diff(C(t)).

Note that the category on the left carries a symmetric monoidal structure defined by
convolution, while the category on the right carries a symmetric monoidal structure
defined by tensor products. By Proposition 4.3.7, this functor is symmetric monoidal.6

Theorem 6.3.11. The functor Hol(C[x]〈∂x〉)/Neg(C[x]〈∂x〉)→ Diff(C(t)) obtained by taking
the generic fiber of the Fourier transform is a symmetric monoidal equivalence of categories.

Proof. For a holonomic C[t]〈∂t〉-moduleM, let us say thatM is dual-negligible if it is
the Fourier transform of a negligible holonomic C[x]〈∂x〉-module. Equivalently,M is
dual-negligible if its generic fiberM⊗C[t] C(t) vanishes. We denote by DNeg(C[t]〈∂t〉)
the full subcategory of Hol(C[t]〈∂t〉) consisting of dual-negligible objects.

Note that the universal property of quotients induces functors making the diagram

Hol(C[x]〈∂x〉) Hol(C[t]〈∂t〉) Diff(C(t))

Hol(C[x]〈∂x〉)
Neg(C[x]〈∂x〉)

Hol(C[t]〈∂t〉)
DNeg(C[t]〈∂t〉)

FT −⊗C[t]C(t)

commute. Since both horizontal functors on the left are equivalences of categories, it
suffices to prove that the functor

−⊗C[t] C(t) : Hol(C[t]〈∂t〉)/DNeg(C[t]〈∂t〉)→ Diff(C(t))

6The abstract machinery of Section 4.1 should not obscure the simplicity of this result, which can also
be proven directly.
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is also an equivalence of categories. We will demonstrate this in several steps.

Part 1: The adjunction F0 : Mod(C[t])� Vect(C(t)) : G0 between extension and restriction of
scalars induces an adjunction F1 : Mod(C[t]〈∂t〉)� Mod(C(t)〈∂t〉) : G1.
LetM be a C[t]-module and N be a C(t)-vector space. We recall that the adjunction
maps are given explicitly by

HomC(t)(M⊗C[t] C(t), N)
∼←→ HomC[t](M,N)

ϕ 7−→ (m 7→ ϕ(m⊗ 1))
(m⊗ p 7→ pψ(m))←− [ ψ.

Now suppose thatM and N are endowed with structures of C[t]〈∂t〉- and C(t)〈∂t〉-
modules, respectively. The adjunction maps above send morphisms of C(t)〈∂t〉-
modules to morphism of C[t]〈∂t〉-modules, and inversely. Indeed we have that

ϕ(∂(m)⊗ 1) = ϕ(∂(m)⊗ 1+m⊗ ∂(1)) = ϕ(∂(m⊗ 1)) = ∂(ϕ(m⊗ 1))
pψ(∂(m)) + ∂(p)ψ(m) + p∂(ψ(m)) + ∂(p)ψ(m) = ∂(pψ(m)),

for allm ∈M and p ∈ C(t).

Part 2: The functor G1 : Mod(C(t)〈∂t〉)→ Mod(C[t]〈∂t〉) is fully faithful.
It is clear thatG0 : Vect(C(t))→ Mod(C[t]) is fully faithful, since an additive morphism
ϕ between C(t)-vector spaces is C(t)-linear if and only if it is C[t]-linear. As a
consequence, the counit of adjunction F0 ◦G0 → id is an isomorphism. This implies
the same for the counit F1 ◦G1 → id.

Part 3: The functor F1 : Mod(C[t]〈∂t〉)→ Mod(C(t)〈∂t〉) induces an equivalence of categories
F2 : Mod(C[t]〈∂t〉)/ ker F1 → Mod(C(t)〈∂t〉).
This is a classical result about reflective localizations, which can be found in [Bor94,
Prop. 5.3.1].

Part 4: The natural inclusion Hol(C[t]〈∂t〉)→ Mod(C[t]〈∂t〉) induces a fully faithful functor
Hol(C[t]〈∂t〉)/DNeg(C[t]〈∂t〉)→ Mod(C[t]〈∂t〉)/ ker F1.
This is another categorical fact: if B and C are thick subcategories of an abelian category
A, the natural functor B/(B ∩ C)→ A/C is fully faithful. Its proof is a simple exercise
using calculus of fractions.

Part 5: Conclusion.
Composing the functor F2 with the fully faithful functor obtained in Part 4, we obtain
a fully faithful functor

Hol(C[t]〈∂t〉)/DNeg(C[t]〈∂t〉)→ Mod(C(t)〈∂t〉).
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As previously remarked, this functor takes values in the full subcategory Diff(C(t)) of
differential modules, leading to a fully faithful functor

Hol(C[t]〈∂t〉)/DNeg(C[t]〈∂t〉)→ Diff(C(t)),

which is precisely the one obtained via the universal property of quotients.
To establish the essential surjectivity of this functor, letM be a difference module

over C(t). According to the cyclic vector theorem [VS03, Prop. 2.9], there exists an
element L of C(t)〈∂t〉 and an isomorphism

M ' C(t)〈∂t〉/C(t)〈∂t〉L.

By clearing the denominators in the coefficients of L, we may assume that L lies in
C[t]〈∂t〉. ThenM is isomorphic to the image of C[t]〈∂t〉/C[t]〈∂t〉L under the functor
above.

Corollary 6.3.12. LetM be a holonomic D-module on Ga. Then, the groups Conv(M) and
Gal(FT(M)η) are isomorphic.

This theorem also provides a solution to the inverse Galois problem for the convolu-
tion group on Ga. The following is a direct consequence of the preceding corollary,
along with the main theorem in [TT79].

Corollary 6.3.13. Let G be a linear algebraic group over C. Then, there exists a holonomic
D-moduleM on Ga such that Conv(M) ' G.

6.4. Difference Galois theory

In this section, we present an analogue of Theorem 6.3.11 for the multiplicative group.
We begin by briefly outlining the core concepts of difference Galois theory from a
tannakian perspective. Although difference Galois theory has certain nuances that
set it apart from differential Galois theory, these differences are not relevant to our
discussion. Therefore, we will focus on the parallels with differential Galois theory.
For a more comprehensive introduction to these ideas, we refer to [VS97].

Definition 6.4.1. A field K equipped with an automorphism τ : K → K is called a
difference field. A difference module over a difference field (K, τ) is a finite-dimensional
K-vector spaceM equipped with a bĳective additive map T : M→M satisfying

T(fm) = τ(f)T(m),
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for f ∈ K and m ∈ M. A morphism of difference modules (M,T) → (M′, T ′) is a
K-linear mapϕ : M→M′ such that T ′ ◦ϕ = ϕ ◦ T . The category of difference modules
over (K, τ) is denoted by Diff(K, τ).7

The category Diff(K, τ) naturally inherits a symmetric monoidal structure: the tensor
product of two difference modules (M,T) and (M′, T ′) is defined as the K-vector space
M⊗KM′, with the difference operator acting on pure tensors as

m⊗m′ 7→ T(m)⊗ T ′(m′),

and extended by linearity. With this structure, Diff(K, τ) becomes a rigid abelian
k-linear symmetric monoidal category, where k is the field of constants, i.e., the kernel
of τ− id.

Theorem 6.4.2. Let (K, τ) be a difference field with field of constants k. Then the category
Diff(K, τ) is tannakian. Moreover, if k is algebraically closed, Diff(K, τ) is a neutral tannakian
category.

Proof. The same arguments as in Theorem 6.3.6 apply here.

Henceforth, we assume that the field of constants k is algebraically closed. The
preceding theorem implies that every difference module possesses a certain symmetry
group: its difference Galois group.

Definition 6.4.3. Let (K, τ) be a difference field with an algebraically closed field of
constants, and let (M,T) be a difference module over (K, τ). The tannakian group of
〈(M,T)〉 is called the difference Galois group of (M,T) and is denoted by Gal(M,T).

Our primary example of difference field is the function field C(s) in one variable,
equipped with the difference operator C(s)→ C(s) that maps a rational function f(s)
to f(s+ 1). Consider the (non-commutative) rings C[s]〈τ, τ−1〉 and C(s)〈τ, τ−1〉, whose
elements are finite sums ∑

n∈Z

fn(s)τn,

where the coefficients fn lie in C[s] and C(s), respectively. The multiplication in these
rings is defined by the relation τs = (s+ 1)τ. With this notation, a difference module
over C(s) corresponds to a C(s)〈τ, τ−1〉-module that is finite-dimensional over C(s).
Let us revisit the Mellin transform, as discussed in Example 4.3.4. The ring of

differential operators on the multiplicative group Gm is the non-commutative algebra
7The context will make it clear whether we are referring to a category of differential or difference
modules.
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6.4. Difference Galois theory

C[x, x−1]〈∂x〉, whose elements are finite sums of the form

∞∑
n=0

pn(x)∂nx ,

where the coefficients pn are Laurent polynomials in C[x, x−1]. The multiplication in
this ring is defined by the relation ∂xx = x∂x + 1. It will be convenient to consider the
equivalent presentation C[x, x−1]〈θ〉, where θ := x∂x.

From this point of view, the Mellin transform can be described as the equivalence of
categories MT : Mod(C[x, x−1]〈θ〉)→ Mod(C[s]〈τ, τ−1〉) induced by the isomorphism

C[x, x−1]〈θ〉 → C[s]〈τ, τ−1〉

that maps x 7→ τ and θ 7→ −s. This equivalence of categories, along with Proposi-
tion 6.2.4, motivates the following definitions.

Definition 6.4.4. LetM be a C[s]〈τ, τ−1〉-module. We say thatM is holonomic if it is
the Mellin transform of a holonomic D-module on Gm. A holonomic C[s]〈τ, τ−1〉-
moduleM is said to be dual-negligible if its generic fiberM ⊗C[s] C(s) vanishes. We
denote by Hol(C[s]〈τ, τ−1〉) the category of holonomic C[s]〈τ, τ−1〉-modules, and by
DNeg(C[s]〈τ, τ−1〉) its full subcategory consisting of dual-negligible objects.

According to a theorem of Loeser–Sabbah [LS92, Thm. 2], the Euler characteristic
of a holonomic D-moduleM on Gm coincides with the dimension of MT(M)η over
C(s). As a result, the functor − ⊗C[s] C(s) maps holonomic C[s]〈τ, τ−1〉-modules to
difference modules over C(s). In other words, the generic fiber of the Mellin transform
defines a functor

Hol(C[x, x−1]〈θ〉)→ Diff(C(s)).

The universal property of quotients and Proposition 6.2.4 imply that this functor factors
through the quotient

Hol(C[x, x−1]〈θ〉)/Neg(C[x, x−1]〈θ〉)→ Diff(C(s)).

Recall that the category on the left has a symmetric monoidal structure given by
convolution, while the category on the right has a symmetric monoidal structure given
by tensor products. The functor above is symmetric monoidal due to Proposition 4.2.3.

Theorem 6.4.5. The functor Hol(C[x, x−1]〈θ〉)/Neg(C[x, x−1]〈θ〉) → Diff(C(s)) obtained
by taking the generic fiber of the Mellin transform is a symmetric monoidal equivalence of
categories.
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Proof. Exactly as in the proof of Theorem 6.3.11, it suffices to prove that the functor

−⊗C[s] C(s) : Hol(C[s]〈τ, τ−1〉)/DNeg(C[s]〈τ, τ−1〉)→ Diff(C(s))

is essentially surjective. In the difference setting, this result is a consequence of [LS91b,
Thm. 1.2.1.2].

Corollary 6.4.6. LetM be a holonomic D-module on Gm. Then, the groups Conv(M) and
Gal(MT(M)η) are isomorphic.

Unlike in the differential case, not every linear algebraic group can serve as a
difference Galois group. According to [VS97, Prop. 1.20], if G is a difference Galois
group over C(s), thenGmust be almost connected, meaning that the group of connected
components π0(G) ' G/G0 is cyclic. From Corollary 6.4.6, we deduce the same
property for convolution groups. This result can be seen as the de Rham counterpart
to [Kat12, Thm. 6.5].

Corollary 6.4.7. Let M be a holonomic D-module on Gm. Then the group of connected
components π0(Conv(M)) of Conv(M) is cyclic.

The inverse problem for difference equations conjectures that any linear algebraic
group over C with a cyclic group of connected components must be the Galois group
of a difference module over C(s). To our knowledge, this problem remains open.
However, it is known that every connected linear algebraic group is a difference Galois
group [VS97, Thm. 3.1]. We can therefore deduce an analogous result for convolution
groups.

Corollary 6.4.8. Let G be a connected linear algebraic group over C. Then, there exists a
holonomic D-moduleM on Gm such that Conv(M) ' G.
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A. Euler characteristics of holonomic
D-modules

A.1. Comparison of Euler characteristics
Let X be a smooth quasi-projective variety over a characteristic zero field k. Denote
by p : X → Speck the structure map. For an objectM of Dbh (DX), we define its Euler
characteristic as

χ(X,M) :=
∑
i∈Z

(−1)i dimkHi(X,M),

where the de Rham cohomology groups Hi(X,M) are defined as H i(p+M). Similarly,
by replacing p+ with p!, we obtain the compactly supported cohomology groups
Hic(X,M) and the corresponding compactly supported Euler characteristic χc(X,M).
For Betti cohomology, due to the absence of ramification phenomena, it is rather

straightforward to prove that both variants of Euler characteristic coincide for local
systems. This result can be extended to complexes of constructible sheaves through a
formal dévissage argument [Dim04, Cor. 4.1.23]. An analogous result also holds in the
`-adic setting, as demonstrated by Laumon [Lau81].
Laumon’s argument is highly versatile, applying to most "motivic" cohomology

theories that admit enhancements as six-functor formalisms with nearby and vanishing
cycles. However, it does not directly apply to de Rham cohomology. A critical part of
Laumon’s proof involves considering a compactification X of X. The difficulty with de
Rham cohomology arises because the complement X \ X is often not smooth.
Although the six-functor formalism for holonomic D-modules, as established in

Proposition 1.5.1, can be extended to singular varieties,1 some care must be taken
regarding nearby and vanishing cycles. In this section, we prove that both variants of
Euler characteristic agree for de Rham cohomology.

TheoremA.1.1. Let X be a smooth quasi-projective variety over a characteristic zero field k, and
letM be an object of Dbh (DX). Then, the Euler characteristic χc(X,M) and χ(X,M) coincide.

Before delving into the proof of this theorem, we encapsulate Laumon’s argument
in the following lemma. We refer the reader to Remark 1.5.8 for our conventions
1See [Ayo17, §3.8] for one possible approach.
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regarding nearby and vanishing cycles functors for holonomic D-modules.

Lemma A.1.2. Let j : X ↪→ X be an open immersion from X to a smooth projective algebraic
variety X. Denote by i : Z ↪→ X the complementary closed immersion, and suppose that Z is a
smooth divisor. Then, for an objectM of Dbh (DX), we have that χ(Z, i+j+M) = 0.

Proof. The same reduction as in the thirdpart of theproof of TheoremA.1.1 belowallows
us to assume thatM is a holonomicD-module concentrated in degree zero. According
to Remark 1.5.8, i+j+M is the fiber of the canonical map can : ψ1(j+M) → φ1(j+M).
In other words, i+j+M is isomorphic to the complex

ψ1(j+M)
can−−→ φ1(j+M),

where ψ1(j+M) is in degree −2. The long exact sequence in cohomology arising from
the short exact sequence of complexes

0→ ker can[2]→
î
ψ1(j+M)

can−−→ φ1(j+M)
ó
→ coker can[1]→ 0

then implies that χ(Z, i+j+M) = χ(Z, ker can) − χ(Z, coker can).
We can also consider the following short exact sequences of holonomic D-modules:

0→ ker can→ ψ1(j+M)→ im can→ 0

0→ im can→ φ1(j+M)→ coker can→ 0.

As before, these give rise to the relations χ(Z,ψ1(j+M)) = χ(Z, ker can) + χ(Z, im can)

and χ(Z,φ1(j+M)) = χ(Z, im can) + χ(Z, coker can). Now, another application of Re-
mark 1.5.8 shows that the variation map var : φ1(j+M)→ ψ1(j+M) is an isomorphism,
and so

χ(Z, ker can) + χ(Z, im can) = χ(Z,ψ1(j+M))

= χ(Z,φ1(j+M)) = χ(Z, im can) + χ(Z, coker can).

We conclude that χ(Z, ker can) = χ(Z, coker can), and so χ(Z, i+j+M) = 0.

Proof of Theorem A.1.1. The proof of this result is based on a series of dévissages.

Part 1: Suppose that X is a curve andM is a connection in degree zero.
Let X be the smooth compactification of X, and let Z be the complement of X in X.
Deligne’s formula for Euler characteristics says that

χ(X,M) = (rankM)χ(X) −
∑
z∈Z

irz(M),
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where irz(M) is the irregularity ofM at the point z ∈ Z [Del70, Eq. 6.21.1]. Now, by
[ABC20, Lem. 17.2.2], we have that irz(M) = irz(M

∨) for all z ∈ Z. Poincaré duality
then implies that

χc(X,M) = χ(X,M∨)

= (rankM∨)χ(X) −
∑
z∈Z

irz(M
∨)

= (rankM)χ(X) −
∑
z∈Z

irz(M) = χ(X,M).

Part 2: Suppose that X is a curve andM is a holonomic D-module in degree zero.
Let j : U ↪→ X be the locus whereM is a connection, and let i : Z ↪→ X be its complement.
As in Remark 1.5.5, the adjunction maps form fiber sequences

j!j
!M→M→ i+i

+M and i!i
!M→M→ j+j

+M.

Consequently, there are long exact sequences

· · · → Hic(U, j
!M)→ Hic(X,M)→ Hic(Z, i

+M)→ · · ·
· · · → Hi(Z, i!M)→ Hi(X,M)→ Hi(U, j+M)→ · · · .

In particular, χc(X,M) = χc(U, j
!M) + χc(Z, i

+M) and χ(X,M) = χ(U, j+M) +

χ(Z, i!M). The restriction j+M ' j!M is a connection on U, thus the preceding
part yields that χc(U, j!M) = χ(U, j+M). Another application of Remark 1.5.5 provides
a fiber sequence

i!M→ i+M→ i+j+j
+M.

Since Z is proper, Lemma A.1.2 implies that

χc(Z, i
+M) = χc(Z, i

!M) + χc(Z, i
+j+j

+M)

= χ(Z, i!M) + χ(Z, i+j+j
+M)

= χ(Z, i!M).

All in all, we find that χc(X,M) = χ(X,M).

Part 3: Suppose that X is a curve andM is an object of Dbh (DX).
We argue by induction on the amplitude ofM. IfM only has cohomology in a single
degree, the result follows from the preceding part. Now, suppose thatM has at most
n non-zero cohomologies, and let j ∈ Z be the smallest index i such that H i(M) 6= 0.
The truncation fiber sequence

H j(M)[−j]→M→ τ>j+1M,
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as in [Stacks, Tag 08J5], implies that

χc(X,M) = (−1)jχc(X,H
j(M)) + χc(X, τ>j+1M)

χ(X,M) = (−1)jχ(X,H j(M)) + χ(X, τ>j+1M).

Since τ>j+1M has at most n − 1 non-zero cohomologies, the induction hypothesis
implies that χc(X,H j(M)) = χ(X,H j(M)) and χc(X, τ>j+1M) = χ(X, τ>j+1M).

Part 4: Suppose that X is the affine space An, for some n, andM is an object of Dbh (DX).
We argue by induction. The case n = 1 having been proven in the previous part, we
suppose the result true from An and prove it for An+1. Let q : An+1 → An be the
projection onto the last n factors, and consider the following compactification

An+1 P1 × An An

An.

j

q
q

i

Remark 1.5.5 provides a fiber sequence q!M→ q+M→ i+j+M. Thus, Lemma A.1.2
implies that χ(An, q!M) = χ(An, q+M). As a result, we find that

χc(An+1,M) = χc(An, q!M) = χ(An, q!M) = χ(An, q+M) = χ(An+1,M).

Part 5: Suppose that X is an affine algebraic variety andM is an object of Dbh (DX).
Noether normalization provides a finite map f : X → An, for some n. As a result,
χ(X,M) = χ(An, f+M) and χc(X,M) = χc(An, f!M) = χc(An, f+M). The result then
follows from the preceding part.

Part 6: The general case.
For notational simplicity, assume that X is the union of two affine opens j1 : U1 ↪→ X

and j2 : U2 ↪→ X. Denote by j12 : U12 ↪→ X their intersection, which is also affine. As in
Remark 1.5.6, there are fiber sequences

j12,!j
+
12M→ j1,!j

+
1M⊕ j2,!j+2M→M and M→ j1,+j

+
1M⊕ j2,+j+2M→ j12,+j

+
12M.

In particular, we obtain the following long exact sequences in cohomology:

· · · → Hic(U12, j
+
12M)→ Hic(U1, j

+
1M)⊕ Hic(U2, j

+
2M)→ Hic(X,M)→ · · ·

· · · → Hi(X,M)→ Hi(U1, j
+
1M)⊕ Hi(U2, j

+
2M)→ Hi(U12, j

+
12M) · · · .

These imply that χc(X,M) = χc(U1, j
+
1M) + χc(U2, j

+
2M) − χc(U12, j

+
12M), and that

χc(X,M) = χc(U1, j
+
1M) + χc(U2, j

+
2M) − χc(U12, j

+
12M). Consequently, the result

follows from the previous part.
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A.2. Euler characteristics of regular twists

In this section, we explore a de Rham analogue of another result concerning Euler
characteristics that is known in the `-adic setting. The following theorem stems directly
from a result of Deligne, presented by Illusie in [Ill81].

Theorem A.2.1 (Deligne). Let k be an algebraically closed field of characteristic p, and let ` be
a prime number distinct from p. Let X be a normal quasi-projective variety over k, and letM
be an object of Dbc (X,Q`). Then, for every tame rank-one `-adic local system L on X, we have
that χ(X,M⊗L ) = χ(X,M).

Proof. From a Mayer–Vietoris argument, as in the proof of Theorem A.1.1, we may
assume that X is connected. Taking the closure of X inside of projective space, we
obtain an open immersion from X to a projective variety X [Stacks, Tag 08J5]. Since X
is normal, this map factors through the normalization X̃ of X, giving rise to an open
immersion j : X→ X̃.
The variety X̃ is connected, normal, and proper over k. Consequently, a result of

Deligne [Ill81, Thm. 2.1] applies, implying that j!(M ⊗ L ) and j!M have the same
compactly supported Euler characteristics. The result then follows from [Lau81].

Unfortunately, the proof of [Ill81, Thm. 2.1] appears to be deeply rooted in `-adic
cohomology and does not readily adapt to de Rham cohomology. Nevertheless, we
believe that Theorem A.2.1 should hold true in the de Rham setting as well.

Conjecture A.2.2. Let X be a smooth quasi-projective variety over C, and letM be an object
of Dbh (DX). Then, for every regular line bundle with integrable connection2 L , we have that
χ(X,M⊗X L ) = χ(X,M).

The remainder of this appendix will be dedicated to presenting evidence for this
conjecture. We begin by proving it in the one-dimensional case.

Proposition A.2.3. Conjecture A.2.2 holds when X is a curve.

Proof. IfM is an integrable connection concentrated in degree zero, this result is a
direct consequence of Deligne’s formula for Euler characteristics, as in the first part
of the proof of Theorem A.1.1. The same dévissage used in Parts 2 and 3 of that proof
similarly implies the desired result.

Proposition A.2.4. Conjecture A.2.2 holds when X is projective.

2Recall from Remark 1.5.2 our convention that when connections are regarded as D-modules, they
should be shifted to be in degree equal to the dimension of the underlying space.

217

https://stacks.math.columbia.edu/tag/08J5


A. Euler characteristics of holonomic D-modules

We start the proof of this proposition with the particular case of abelian varieties.
The following is an adaptation of the beautiful proof presented in [KW15, Cor. 4.2].

Lemma A.2.5 (Krämer–Weissauer). Conjecture A.2.2 holds when X is an abelian variety A.

Proof. Let p : A → SpecC be the structure map. The Euler characteristic χ(A,M) is
the same as the dimension of p+M, as an object of the rigid symmetric monoidal∞-category Dbcoh(C).3 From Corollaries 6.1.4 and 6.1.8, we know that Dbh (DA) is also
a rigid symmetric monoidal ∞-category under !-convolution, and the functor p+ is
symmetric monoidal. As a result, χ(A,M) is also the dimension ofM in Dbh (DA).
Since any line bundle with integrable connection L on A is a character sheaf,

Proposition 6.1.9 asserts that the functor −⊗A L is an equivalence of ∞-categories
Dbh (DA) → Dbh (DA) that is symmetric monoidal with respect to !-convolution. In
particular, tensoring with L preserves the dimension of objects in Dbh (DA).

Proof of Proposition A.2.4. Fix a base point on X and let a : X→ A be the Albanese map.
Consider a line bundle with integrable connection (L ,∇) on X. Since L admits a
connection, its first Chern class vanishes, implying that L belongs to Pic0(X). Given
that the Albanese map induces an isomorphism

a∗ : Pic0(A)
∼−→ Pic0(X),

there exists a line bundle L ′ on A such that L ' a∗L ′. Furthermore, since the first
Chern class of L ′ vanishes, it admits an integrable connection∇′.
The underlying line bundle of a∗(L ′,∇′)⊗ (L ,∇)∨ being trivial, its connection is

of the form d +ω for someω ∈ H0(X,ΩX). By Hodge theory, ω is of the form a∗ω′,
for some translation-invariant differential ω′ ∈ H0(A,ΩA). Consequently, (L ,∇) is
isomorphic to a∗(L ′,∇′ −ω′).

Henceforth, we return toD-module notation, where we denote (L ,∇)[− dimX] and
(L ′,∇′ −ω′)[− dimA] simply as L and L ′, respectively. Finally, we have that

χ(X,M⊗X L ) = χ(A,a+(M⊗X a+L ′)) = χ(A,a+M⊗A L ′),

thus the result follows from Lemma A.2.5.

PropositionA.2.6. Conjecture A.2.2 holds whenX is a commutative connected linear algebraic
group L.

Proof. A commutative connected linear algebraic group L over C is necessarily a
product Gra ×Gsm, for some r, s. Additionally, a regular line bundle with integrable
connection L on L is of the form

pr+1 L1 ⊗L · · · ⊗L pr+s Ls,

3Refer to the discussion preceding Theorem 6.2.12 for more details.
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where pri : L → Gm is the projection onto the i-th copy of Gm, for some character
sheaves Li on Gm. The structure map p : L→ SpecC factors as

L
pr1−−→ Gm

q−→ SpecC,

where q is the structure map of Gm. As a result, Proposition A.2.3 implies that

χ(L,M⊗L L ) = χ(L,M⊗L pr+1 L1 ⊗L · · · ⊗L pr+s Ls)

= χ(Gm, pr1,+(M⊗L pr+1 L1 ⊗L · · · ⊗L pr+s Ls))

= χ(Gm, pr1,+(M⊗L pr+2 L2 ⊗L · · · ⊗L pr+s Ls)⊗Gm L1)

= χ(Gm, pr1,+(M⊗L pr+2 L2 ⊗L · · · ⊗L pr+s Ls))

= χ(L,M⊗L pr+2 L2 ⊗L · · · ⊗L pr+s Ls).

Continuing in this fashion, we find that χ(L,M⊗L L ) = χ(L,M).

We end this section with some remarks on a possible proof of Conjecture A.2.2 based
on the results above.

� Remark A.2.7. Let G be a semiabelian variety over C. In other words, let G be an
extension of an abelian variety A by a torus T :

0→ T
ϕ−−→ G

ψ−−→ A→ 0.

In Proposition 3.3.9, we demonstrated that the regular line bundles with integrable
connection on G are precisely the character sheaves. In particular, using notation from
Section 5.4, Corollary 3.1.10 asserts that any line bundle with integrable connection on
Gmust be of the form Lω ⊗G ψ+Lα.
Building on the argument used in the proof of Proposition A.2.6, combined with

Proposition A.2.4, we conclude that

χ(G,M⊗G Lω ⊗G ψ+Lα) = χ(G,M⊗G Lω).

We believe that this is also equal to χ(G,M). If this equality holds, it would provide a
proof of the conjecture for semiabelian varieties. We assert that this would suffice to
prove the conjecture in its entirety.

For a smooth quasi-projective variety X, there exists a generalized Albanese map
a : X→ G, where G is a semiabelian variety. Just as in the proof of Proposition A.2.4,
every regular line bundle with flat connection on X comes from G.4 This would prove
the conjecture using the same arguments as in Proposition A.2.4. �

4See [LMW20, §2.2] for further details. The paper [Fuj24] is another useful reference.

219





B. Deligne’s 1970 letter to Breen

Bures-sur-Yvette, le 4 août 1970.

Dear Breen,

For me, a "Moore complex" means data of the following kind:

— a functorial left resolution of G (G abelian group) by a complexM such that

a) Mn is a sum of functors Z(Gk)

b) dn : Mn → Mn−1 is a matrix of morphisms f : Z(Gk) → Z(Gl) of the form
f =

∑
nifi, where each fi is deduced from

f′i : G
k → Gl : f′i((g

α)) =

(
k∑
α=1

aβαg
α

)
(aβα ∈ Z).

c) M0 = Z(G) and ε :M0 → G is the evident map.

I hope that I have succeeded in proving the existence of a Moore complex, by using
the idea of the "acyclic model theorem" + the "bar construction". I am sending you
notes about it by the same mail.

Yours sincerely,
Pierre Deligne
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1. Définitions
1.0. J’utiliserai les définitions suivantes

– catégorie sous-additive : où les Hom(X, Y) sont munis de lois de groupes abéliens,
la composition étant distributive

– catégorie additive : sous-additive + existence de sommes (= produits) finies [en
particulier, existence d’un 0]

– catégorie karoubienne : additive, et telle que tout projecteur ait un noyau:

∀X ∀p : X→ X, si p2 = p, alors X = Y ⊕ Z, avec p =

Ç
1 0

0 0

å
.

Pour toute catégorie C, il existe à équivalence près une unique catégorie karoubienne
Ck, munie d’un foncteur "universel" [ ] : C → Ck, telle que pour toute catégorie
karoubienne D, le foncteur Homadd(Ck,D) → Hom(C,D) soit une équivalence de
catégories. On l’obtient ainsi

a) Soit C′′ 
Ob(C′′) = Ob(C)

HomC′′(X, Y) = Z(Hom(X,Y))

[ ]′′ : C→ C′′ : X 7→ X, f 7→ f

la catégorie sous-additive engendrée par C.

b) Soit C′ la catégorie additive engendrée par C′′ : un objet de C′ est une famille finie
(Xi)i∈I, notée

∑
i∈I Xi, et

HomC′

(∑
i∈I

Xi,
∑
j∈J

Yj

)
=

∏
i,j

Hom(Xi, Yj).

c) Enfin, Ck est la catégorie karoubienne engendrée par C′ : un objet est un couple
(X, p) (p : X→ X tel que p2 = p), noté Im(p), et

HomCk(Im(p), Im(q)) = qHomC′(X, Y)p ⊂ HomC′(X, Y).

On a par construction

(1.0.1) HomCk([X], [Y]) = Z(HomC(X,Y)).

Pour simplifier les notations, on désignera par la suite par Al le foncteur X 7→ Z(X) :
(Ens)→ (Ab).
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Définition 1.0.2. Al(E) = Z(E).

� Remarque 1.0.3. Le théorème de Dold–Puppe sur l’équivalence des objets semi-
simpliciaux avec les complexes différentiels nuls en degré > 0 est valable dans les
catégories karoubiennes. �

� Remarque 1.0.4. Soit F : A×B→ C un foncteur, si C est karoubienne, il se prolonge en
Fk, additif en la première variable Ak ×B→ C. C’est clair sur la formule

Hom(A×B,C) = Hom(B,Hom(A,C)) ≈ Hom(B,Homadd(Ak,C)). �

1.1. On désignera par C0 la catégorie des groupes abéliens libres de type fini, par C1 la
catégorie karoubienne Ck0 engendrée par C0 et par [ ] : C0 → C1 le foncteur (non
additif) canonique.
Soit T : A→ B un foncteur (non nécessairement additif) entre catégories karoubi-

ennes. A étant additive, on dispose de

⊗ : C0 ×A→ A : (X,A) 7→ X⊗A.

En effet, si C−1 est la catégorie réduite a un objet 1 et à sa flèche identique, alors
C0 ≈ Ck−1 (avec [1] = Z) ; le foncteur X⊗A est caracterisé par son additivité en X et par
Z⊗A = A.

(1.1.1) Zn ⊗A = An

Composant avec T , on trouve

T ′ : C0 ×A→ B : (X,A) 7→ T(X⊗A)

qui se prolonge en un foncteur additif en la première variable (1.0.4)

T1 : C1 ×A→ B.

On posera TX(A) = T1(X,A).

(1.1.2) T∑[Xi](A) =
∑

T(Xi ⊗A)

Plus généralement, si K est un complexe K ∈ C(C1), alors TK est un foncteur

TK : A→ C(B).

On notera que les débuts des complexes de Moore connus sont de la forme AlK [Al :
1.0.2]. Par exemple

K = · · · → [Z⊕ Z⊕ Z]⊕ [Z⊕ Z]
σ
⊕−−−−−−−−−−→

∂0−∂1+∂2−∂3
[Z⊕ Z]

p1−µ+p2−−−−−−−→ [Z]
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donne
AlK = · · · → Z(G×G×G) ⊕ Z(G×G) → Z(G×G) → Z(G).

On a

T[Z](A) = T(A)(1.1.3)
[ ]K(Z) = K pour [ ] : C0 → C1.(1.1.4)

La formule essentielle suivante est cas particulier de (1.0.1)

HomC1([Z], K) = AlK(Z) ou plus généralement(1.1.5)
HomC1([X], K) = AlK(X̌).(1.1.6)

1.2. Pour T un foncteur entre catégories karoubiennes, on définit le "cross effect" (effets
croisés) par la formule

(1.2.1) T(
∑
i∈I

Xi) =
∑
P⊂I

T|P|((Xi)i∈P).

Par construction, si πQ est le projecteur sur
∑
i∈Q Xi, alors T|P|((Xi)i∈I) ⊂ T(

∑
i∈I Xi)

est défini par le projecteur

(1.2.2) PP =
∑
Q⊂P

(−1)#(P−Q)T(πQ)

On pose aussi,

(1.2.3) Tn(X) = Tn(X, . . . , X).

Pour I à un élément dans (1.2.1), on pose T+ = T1

(1.2.4) T(X) = T0 + T
+(X),

{
T0 ∈ Ob(B)

T+(0) = 0
.

Pour tout complexe différentiel L avec Li = 0 pour i > 0, on désignera par LDP l’objet
semi-simplicial (CSS) dont L est normalisé. Ainsi, Z[1]DP est le CSS

· · · Z⊕ Z⊕ Z
→→→→ Z⊕ Z→→→ Z→→ 0.

Pour L objet semi-simplicial en groupes abéliens libres de type fini, on désignera
par [L] (resp. [L]+) son image par [ ] (rep par [ ]+) : C0 → C1. Un lemme évident et
fondamental de "bar-construction" dit que le CSS

(1.2.5) T[Z[1]DP](X) : · · · T(X3)
→→→→ T(X2)

→→→ T(X)→→ T(0)
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a pour normalisé le complexe différentiel des T i(X)

(1.2.6) · · · T3(X)
d3−−→ T2(X)

d2−−→ T1(X)
0−→ T0,

où le morphisme dn : Tn(X)→ Tn−1(X) est la somme alternée des morphismes induits
par les Xn → Xn−1 : (x1, . . . , xn) 7→ (x1, . . . , xi + xi+1, . . . , xn). Pour d3 :

[induit par (x, y, z) 7→ (x+ y, z)] · [induit par (x, y, z) 7→ (x, y+ z)] .

� Remarque 1.2.7. Les foncteurs T i(X) sont de la forme TA(X) (A ∈ C1) et ce qui précède
est une identité dans C1. �

1.3. J’appelle "théorème des modèles acycliques" l’énoncé suivant

– Soit A une catégorie additive. Les foncteurs contravariants représentables Hom(∗, X)

sont des projectifs de la catégorie abélienne Homadd(Aopp, (Ab)) des foncteurs additifs
de Aopp dans la catégorie des groupes abéliens.

Il a comme corollaires

Corollaire 1.3.1. Soit f : K→ L un morphisme de complexes bornés supérieurement dans
une catégorie additive A ; pour que f soit une équivalence d’homotopie, il faut et il suffit que
pour A ∈ Ob(A),

f : Hom•(A,K)→ Hom•(A, L)

soit un quasi-isomorphisme (i.e. induise un isomorphisme sur la (co)homologie).

Corollaire 1.3.2. Soient K, L ∈ Ob(C−(A)) (A additive). Si, pour tout A ∈ Ob(A),

Hi(Hom•(A,K)) = Hi(Hom•(A, L)) = 0 pour i 6= 0,

alors tout morphisme de foncteurs

f : H0(Hom•(∗, K))→ H0(Hom•(∗, L))

se prolonge de façon unique à homotopie près en f̃ : K→ L.

1.4. Bar-construction

Soit K ∈ Ob(C−(C1)) et dérivons, au sens de Dold–Puppe, le foncteur [ ]K : C0 →
C−(C1). On posera

Définition 1.4.1. SK = ([ ]K(Z[1]DP))[−1].

Définition 1.4.2. ′S+K = ([ ]+K(Z[1]DP))[−1].
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Concrètement, les

· · · [ ]K(Z3)
→→→→ [ ]K(Z2)→→→ [ ]K(Z)

=

K

→→ [ ]K(0)

forment un objet semi-simplicial en complexes différentiels, et SK est le complexe
différentiel simple associé au complexe double correspondant, poussé de 1 vers la
droite. De même pour ′S+K, qui est homotope au complexe S+K, défini par le double
complexe

· · · [ ]K(Z3) ∂0−∂1+∂2−−−−−−−→ [ ]K(Z2) ∂0−∂1−−−−−→ [ ]K(Z)

=

K

.

On dispose de morphismes naturels

K
s+−−→ S+K→ SK = S+k⊕ [ ]K(0)[−1].

Le complexe [ ]S+K(0) est homotope à zéro.

Définition 1.4.3. On dit que K ∈ Ob(C−(C1)) est stable si s+ : K → S+K est une
équivalence d’homotopie.1

� Remarque 1.4.4. A ce moment, [ ]K(0) ∼ [ ]S+K(0) ∼ 0, de sorte que s : K → SK est
une équivalence d’homotopie.2 �

Proposition 1.4.5. Soit K ∈ Ob(C−(C1)). Les conditions suivantes sont équivalentes :

(a) Le foncteur X 7→ HiAlK(X) : C0 → (Ab), est additif pour i 6 q.

(b) Le morphisme de foncteurs HiAlK(X)→ HiAlS+K(X) est un isomorphisme pour i 6 q
(X ∈ Ob(C0)), un épimorphisme pour i = q+ 1.

(c) Il existe um diagramme
K S+K

K1

s

a v

tel que v soit un équivalence d’homotopie et que ai soit un isomorphisme pour i 6 q+ 1.

Si ces conditions sont verifiés, alors :

(d) Les foncteurs X 7→ HiAlS+k(X) sont additifs pour i 6 q+ 1.
1Editor’s note: In the letter, Deligne labels this definition as 1.4.1, which coincides with an earlier
definition. Consequently, the numbering in this subsection differs from that in the original letter.

2Editor’s note: Here Deligne writes "Réciproque", but does not continue.
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Corollaire 1.4.6. Pour que K soit stable, il faut et il suffit que les foncteurs X 7→ HiAlk(X)

de C0 dans (Ab) soient additifs.

L’équivalence (b) ⇐⇒ (c) résulte du théorème des modèles acycliques (1.3) et de
(1.1.6) ; de même, (b) pour tout q équivaut à la stabilité, et (1.4.5) =⇒ (1.4.6).

Procédons par récurrence sur q pour prouver que

(a)q =⇒ (b)q et (d)q

Ceci suffit à prouver (1.4.5), car pour r < q, on aura alors

(b)q + (a)r =⇒ (b)q + (d)r =⇒ (b)q + (a)r+1,

et que (a)N est clair pour N� 0.
Une des suites spectrales du double complexe AlS+K(X) s’écrit

E1pq = Hq(AlK(Xp+1)) =⇒ Hp+q(AlS+K(X)).

Les différentielles d1 sont
∑

(−1)iHq(AlK(∂i)) : ∂i : Xp+1 → Xp. Si T est le foncteur
Hq(AlK(∗)), alors, par (1.2.5) (1.2.6), E2∗q est la cohomologie du complexe des T i(X)

(i > 0)3 (cross effects), tandis que

s : Hq(AlK(X))→ Hq(AlS+K(X))

est la flèche bord
T(X)→ T i(X) = E20q → Hq(AlS+K(X)).

Si T est additif, alors T = T1 et T i = 0 pour i 6= 0, E2pq = 0 pour p 6= 0 (et la valeur
donnée de q), d’où (a)q =⇒ (b)q.

La suite spectrale E1

· · · • • • • • •

• • •

• • •

... ... ...

d2

d1

La suite spectrale donne de plus

Hq+1(AlS+K(X)) = coker(T2(X)→ T1(X))

pour T = Hq+1(AlK(X)).4 On achève la démonstration par le lemme
3Editor’s note: This part is cut from my copy of the letter, so I’m unsure if it is correct.
4Editor’s note: I’m unsure if this is what Deligne chose as T .
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Lemme 1.4.7. Pour tout foncteur T d’une catégorie additive dans une catégorie abélienne, le
foncteur

T ′ = coker(T2(X)→ T1(X))

est additif.

(a) On a (T ′)′ = T ′ : on peut supposer que T = T+(= T1), i.e. T(0) = 0. Alors, on
regarde le diagramme :

T2(X+ X) T(X+ X) T ′(X+ X) 0

T2(X) T ′
2

(X)

T2(X) = T2(X,X) T(X) T ′(X) 0.

p1−(+)+p2 p1−(+)+p2

0

(b) Soit T tel que T = T ′, le + induit 0 : T2(X) → T(X). Soit f : X ⊕ Y → Z. On
factorise f en

X⊕ Y (f1,0)+(0,f2)−−−−−−−−−→ Z⊕ Z +−−→ Z, d’où

T(X⊕ Y) T(Z⊕ Z) T(Z)

T2(X, Y) T2(Z,Z) T(Z),
0

car T=T ′

et f induit 0 : T2(X, Y) → T(Z). Ceci, pour f l’application 1 dans Z = X ⊕ Y
entraîne que T2(X, Y) = 0, d’où le lemme.

Corollaire 1.4.8. Soit f : K → L un homomorphisme de complexes stables dans C−(C0).
Alors f est une équivalence d’homotopie si et seulement si

Alf(Z) : H∗AlK(Z)
∼−→ H∗AlL(Z).

Résulte de (1.3.1) + (1.4.5). De (1.3.2) + (1.4.5), on tire de même

Corollaire 1.4.9. Un complexe stable tel que Hi(AlK(Z)) = 0 pour i 6= 0 est déterminé à
homotopie près par H0(AlK(Z)).

Définition 1.4.10. Un complexe de Moore est un complexe stable K ∈ Ob(C−(C1)) tel
que Hi(AlK(Z)) = 0 pour i 6= 0 et que H0(AlK(Z)) = Z.
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D’après (1.3.6)5, s’il existe, un tel complexe est unique à homotopie près ; il vérifie{
H0(AlK(X)) = X

Hi(AlK(X)) = 0, pour i 6= 0

pour X libre de type fini (done, par passage à la limite, pour X sans torsion).6
La Proposition (1.4.5) (c) + (d) permet d’itérer infiniment la construction S+ (à homo-

topie près) en ne changeant à chaque pas que les composants de degré (homologique)
de plus en plus élevé du complexe. Ceci permet de passer à la limite pour définir un
itéré infini St, muni de st : K→ StK. Il me semble clair que

Proposition 1.4.11. Le foncteur St : K−(C1)→ K−(C1) est un adjoint à gauche de l’inclusion
dans K−(C1) de la sous-catégorie triangulée pleine des complexes stables, la flèche d’adjonction
est st.

� Exemple 1.4.12. Il doit être clair que St([Z]) est le complexe de Mac-Lane A. Il doit être
clair aussi que St(K) peut se calculer "degré par degré". En formules, ce doit s’exprimer
comme suit : on dispose dans C1 d’une unique operation [⊗], rendant commmutatif

C0 × C0 C0

C1 × C1 C1

⊗

[ ]×[ ] [ ]

[⊗]

et biadditive. On a

SK = S([Z]) [⊗]K(1.4.13)
S+K = S+([Z]) [⊗]K

StK = St([Z]) [⊗]K.

�

Il droit être clair queH∗Hom•([Z], St([Z])) est l’homologie stable desK(Z, n) (n→∞)
[cf. (1.1.5)]. Par (1.4.11), c’est aussi

Hom•(St([Z], St([Z])),

donc une algèbre A . Traduction en terme classiques ? A est graduée : A ∗, et A 0 = Z.
Plus généralement, si K est un complexe stable, la dernière identité (1.4.13) définit

une action, dans K−(C1), de A = End•(St([Z])) sur K. Pour tout foncteur T : A→ B,
H∗(TK(A)) apparait ainsi comme un A -module dans B. En particulier, H∗AlK(Z) est
un A -module (aussi parce que H∗(AlK(Z)) ≈ H∗Hom•([Z], K) ≈ H∗Hom•(St([Z], K)).
5Editor’s note: There is no (1.3.6) in the letter. I believe that the reference should be to (1.4.9).
6Editor’s note: Here Deligne writes "Réciproque", but does not continue.
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2. Complexes de Moore
Théorème 2.1. Il existe des complexes de Moore (1.3.7)7.

C’est devenu plutôt clair. On part de St([Z]), stable, et pour lequel H0(AlK(Z)) = Z.
Pour K stable et x ∈ Hq(AlK(Z)) = Hq(HomC1 , K), il existe x : [Z][q]→ K qui le définit,
et, par (1.4.11), on peut prolonger x en St([Z][−q]) = St([Z])[−q] → K. Remplacer K
par le cône de x ne change par les Hi(AlK[Z]) pour i < q, tue x ∈ Hq et modifie les Hi
pour i > q. Procédant par récurrence, et notant que les complexes stables forment une
catégorie triangulée, on fabrique le complexe de Moore.
Cette construction montre une relation entre complexe de Moore et resolution

projective du A -module d’augmentation Z.

Proposition 2.2. Soit K un complexe stable. Si

0→ X→ Y → Z→ 0

est une suite exacte de groupes abéliens (libres ou non), alors la suite

Σ : AlK(X)
α−→ AlK(Y)

β−−→ AlK(Z)

est "aussi bonne qu’une suite exacte courte":

(a) Remplaçant K par un complexe homotope, on se ramène au cas où AlK(0) = 0 :
AlK(X) = AlK(0)⊕Al+K(X) et AlK(0) ∼ 0, Al+K(X) ∼ Al′K+(X).

(b) Ceci fait, α est injectif, β surjectif et

AlK(X)
α−→ ker(β) et coker(α)→ AlK(Z)

soit des quasi-isomorphismes.

Pour tout K, St(K) peut se calculer "degré par degré". Grâce à ce fait, on se ramène
au cas de St([Zn]), ou au cas de St([Z]) (car St([Zn]) ≈ St([Z])n). Pour le complexe
de Moore, cela est aussi évident sur la construction donnée. Enfin, pour K = St([Z])

(1.4.12), j’espère que c’est classique.

Corollaire 2.3. Si K est un complexe de Moore, alors, pour tout groupe abélien X, on a

Hi(AlK(X)) =

{
0 si i 6= 0
X si i = 0

.

Pour X de type fini, on prend 0→ Zn → Zm → X et on applique la suite exacte de
cohomologie plus la proposition précédente et la remarque après (1.4.10).

Le cas général se obtient par lim−→.
7Editor’s note: There is no (1.3.7) in the letter. I believe that the reference should be to (1.4.10).
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Titre : Annulation Générique pour les D-modules Holonomes : Une Étude via la Dualité de Cartier
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Résumé : Motivée par des questions issues de la
théorie analytique des nombres et de la géométrie
complexe, cette thèse explore des théorèmes d’an-
nulation générique pour la cohomologie de de Rham
des D-modules holonomes sur certains groupes
algébriques commutatifs connexes G.
Nous commençons par construire un espace
algébrique G qui paramétrise les fibrés en droites
multiplicatifs munis d’une connexion plate sur G,
appelés faisceaux caractères. Pour les variétés
abéliennes, cela fournit une nouvelle construction de
l’espace de modules de Simpson des fibrés en droites
munis d’une connexion intégrable. Cette construction
a l’avantage de s’appliquer également aux groupes
G non propres. La nouveauté de notre approche
réside dans l’utilisation systématique d’une incarna-
tion ≪ champêtre ≫ de la dualité de Cartier, condui-
sant à l’étude de diverses extensions de faisceaux
abéliens, pouvant être d’un intérêt indépendant.

En examinant la géométrie de l’espace de modules
G, nous identifions une classe de sous-espaces ap-
pelés sous-espaces linéaires. Ensuite, le théorème
d’annulation générique affirme que, pour chaque D-
module holonome, il existe un nombre fini de trans-
latés de ces sous-espaces linéaires telle que la co-
homologie de de Rham des twists par des faisceaux
caractères dans leur complément soit concentrée en
degré zéro.
En utilisant le théorème d’annulation générique, nous
déduisons qu’une certaine catégorie quotient des D-
modules holonomes est tannakienne. En d’autres
termes, chaque D-module de cette catégorie équivaut
à une représentation d’un groupe algébrique, appelé
groupe tannakien. Notamment, pour le groupe additif
et le groupe multiplicatif, nous établissons un résultat
de comparaison identifiant ces groupes tannakiens
aux groupes de Galois différentiels ou aux groupes
de Galois aux différences, respectivement.

Title : Generic Vanishing for Holonomic D-modules: A Study via Cartier Duality

Keywords : Algebraic Geometry, D-modules, Cartier Duality

Abstract : Motivated by questions in analytic num-
ber theory and complex geometry, this thesis studies
generic vanishing theorems for the de Rham cohomo-
logy of holonomic D-modules on certain commutative
connected algebraic groups G.
We begin by constructing an algebraic space G

that parametrizes multiplicative line bundles with flat
connection on G, referred to as character sheaves.
For abelian varieties, this provides a new construction
of Simpson’s moduli space of line bundles with inte-
grable connection. Importantly, our construction also
applies to non-proper groups G. The novelty of our
approach lies in the systematic use of a stacky incar-
nation of Cartier duality, leading to the study of various
extensions of abelian sheaves, which may be of inde-
pendent interest.

By examining the geometry of the moduli space G,
we identify a class of subspaces known as linear sub-
spaces. The generic vanishing theorem then asserts
that, for each holonomic D-module, there exists a fi-
nite number of translates of these linear subspaces
such that the de Rham cohomology of twists by cha-
racter sheaves in their complement is concentrated in
degree zero.
From the generic vanishing theorem, we deduce that
a specific quotient category of holonomic D-modules
is tannakian. In other words, each such D-module cor-
responds to a representation of an algebraic group,
referred to as a tannakian group. Notably, for the addi-
tive and multiplicative groups, we establish a compa-
rison result, identifying these tannakian groups with
differential and difference Galois groups, respectively.
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