
HAL Id: tel-04956830
https://theses.hal.science/tel-04956830v1

Submitted on 19 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Decision Trees and Community-based Graph
Embeddings : towards Interpretable Machine Learning

Gabriel Damay

To cite this version:
Gabriel Damay. Dynamic Decision Trees and Community-based Graph Embeddings : towards Inter-
pretable Machine Learning. Machine Learning [cs.LG]. Institut Polytechnique de Paris, 2024. English.
�NNT : 2024IPPAT047�. �tel-04956830�

https://theses.hal.science/tel-04956830v1
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
4I

PP
A

T
04

7

Dynamic Decision Trees and
Community-based Graph Embeddings:

towards Interpretable Machine Learning
Thèse de doctorat de l’Institut Polytechnique de Paris

préparée à Télécom Paris

École doctorale n◦626 École doctorale de l’Institut Polytechnique de
Paris (ED IP Paris)

Spécialité de doctorat: Mathématiques et informatique

Thèse présentée et soutenue à Palaiseau, le 19/12/2024, par

GABRIEL DAMAY

Composition du Jury :

Jesse Read
Professor at LIX (École Polytechnique) Président/Examinateur

Matthieu Latapy
Research Director (DR) at LIP6 (CNRS) Rapporteur

Marc Lelarge
Research Director (DR) at INRIA and ENS Rapporteur

Fragkiskos Malliaros
Associate Professor at CentraleSupélec Examinateur

Vincent Labatut
Associate Professor at Avignon Université Examinateur

Marine Le Morvan
Junior Researcher (CR) at INRIA Examinatrice

Mauro Sozio
Professor at Télécom Paris (IPP) Directeur de thèse

i

Résumé

L’apprentissage automatique est le domaine des sciences informatiques dont le
but est de créer des modèles et des solutions à partir de données sans savoir
exactement les instructions qui dirigent intrinsèquement ces modèles. Ce do-
maine a obtenu des résultats impressionnants mais il est le sujet d’inquiétudes
en raison notamment de l’impossibilité de comprendre et d’auditer les modèles
qu’il produit. L’apprentissage automatique interprétable propose une solution
à ces inquiétudes en créant des modèles qui sont interprétables de façon in-
hérante. Cette thèse contribue à l’apprentissage automatique interprétable de
deux façons.

Dans un premier temps, nous étudions les arbres de décision. Il s’agit d’un
groupe de méthodes d’apprentissage automatique très connu et qui est inter-
prétable par la façon même dont il est conçu. Cependant, les données réelles
sont souvent dynamiques et peu d’algorithmes existent pour maintenir un ar-
bre de décision quand des données peuvent à la fois être ajoutées et supprimées
de l’ensemble d’entrainement. Nous proposons un nouvel objectif pour les
arbres de décision dynamiques, que nous appelons "ϵϵϵ-faisabilité". Ce nouvel
objectif relaxe des propriété que nous obtiendrions si l’arbre était recalculé à
chaque modification de l’ensemble d’entrainement. En particulier, un recal-
cul systématique de l’arbre garantirait que chaque séparation de l’ensemble
d’entrainement résulte en le meilleur gain possible du score de Gini, mais
l’ϵϵϵ-faisabilité ne requiert qu’une garantie d’écart maximal entre le gain effectif
et le meilleur gain possible. Nous présentons également des propriétés de
régularité du score de Gini. Ces propriétés permettent de montrer que, lorsque
l’ensemble d’entrainement de l’arbre change peu, les scores de Gini obtenus
en séparant cet ensemble d’entrainement changent peu également. Ainsi, il
n’est pas nécessaire de reconstruire l’ensemble de l’arbre en repartant de zéro à
chaque modification de l’ensemble d’entrainement. Nous nous basons sur ces
propriétés pour construire un nouvel algorithms que nous appelons PARFAITE.
Celui-ci consiste à conserver sur chaque sommet de l’arbre le nombre de modi-
fications apportées à l’ensemble d’entrainement qui a permis de construire le
sommet. Lorsque ce nombre dépasse un seuil, qui dépend de la taille de cet
ensemble d’entrainement, un recalcul est déclenché. Pour éviter une situation
dans laquelle un sommet est recalculé immédiatement après ses sommets "en-
fants", nous introduisont également un critère grâce auquel, lorsque la taille de
l’ensemble d’entrainement d’un sommet est trop proche de celle de son parent,
c’est le parent qui est recalculé.

Dans un second temps, nous étudions l’embedding de graphes. La tech-
nique appelée "embedding" est une technique d’apprentissage automatique très
commune. Elle consiste à projeter les noeuds d’un graphe sur un espace vecto-
riel. Ce type de méthodes est cependant non-interprétable en général. Nous
proposons un nouvel algorithme d’embedding appelé PARFAITE, qui est basé
sur la factorisation de la matrice de PageRank personnalisé. Cet algorithme est

ii

conçu pour que ses résultats soient interprétables. Il consiste tout d’abord à con-
struire une fonction qui approche la multiplication de n’importe quel vecteur
par la matrice de PageRank personnalisée, centrée par colonne. Cette fonction
peut ensuite être utilisée pour obtenir la décomposition en valeurs singulières
de la matrice. Le résultat est la projection sur les sous-espaces singuliers de
chaque vecteur de PageRank personnalisé pour chaque sommet du graphe,
et symétriquement la projection des colonnes de la matrice. Un clustering
est alors réalisé pour détecter les communautés et leur vecteur de PageRank
personnalisé, projeté sur le sous-espace singulier. Enfin, une inversion de la
projection sur les sous-espaces singuliers est réalisée, afin d’obtenir le vecteur
de PageRank personnalisé moyen de chaque communauté, ainsi que la colonne
moyenne de la matrice. Ce sont ces vecteurs moyens qui sont utilisés comme
embedding. Puisque le vecteur de PageRank personnalisé donne des valeurs
plus fortes aux sommets d’une même communauté, ces résultats sont alors
interprétables comme des métriques d’importance et de degré d’appartenance
de chaque sommet à une communauté.

Nous étudions chacun de ces algorithmes sur un plan à la fois théorique
et expérimental. Nous montrons que FuDyADT est au minimum comparable
aux algorithmes de l’état de l’art dans les conditions habituelles, tout en étant
également capable de fonctionner dans des contextes inhabituels comme dans
le cas où des données sont supprimées. Quant à PARFAITE, il produit des
dimensions d’embedding qui sont alignées avec les communautés du graphe,
et qui sont donc interprétables.

iii

Abstract

Machine learning is the field of computer science that interests in building
models and solutions from data without knowing exactly the set of instructions
internal to these models and solutions. This field has achieved great results but
is now under scrutiny for the inability to understand or audit its models among
other concerns. Interpretable Machine Learning addresses these concerns by
building models that are inherently interpretable. This thesis contributes to
Interpretable Machine Learning in two ways.

First, we study decision trees. This is a very popular group of machine
learning methods for classification problems and it is interpretable by design.
However, real world data is often dynamic, but few algorithms can maintain a
decision tree when data can be both inserted and deleted from the training set.
We propose a new algorithm called FuDyADT to solve this problem.

Second, when data is represented as a graph, a very common machine
learning technique called “embedding” consists in projecting it onto a vectorial
space. This kind of method however is usually not interpretable. We propose
a new embedding algorithm called PARFAITE based on the factorization of
the Personalized PageRank matrix. This algorithm is designed to provide
interpretable results.

We study both algorithms theoretically and experimentally. We show that
FuDyADT is at least comparable to state-of-the-art algorithms in the usual
setting, while also being able to handle unusual settings such as deletions of
data. PARFAITE on the other hand produces embedding dimensions that align
with the communities of the graph, making the embedding interpretable.

iv

v

Acknowledgements

First of all, I must thank Mauro. You trusted me with this PhD, and I also have
learned a lot by working with you. I also want to thank Christophe Prieur and
Fabien Tarissan. You were involved in the decision to trust me with this PhD,
and it has also been very interesting and fulfilling to work with you during
these years.

I would also like to thank the reviewers, Marc Lelarge and Matthieu Latapy,
who took the time to read my manuscript and review it, and who also trusted
me from this manuscript with my ability to defend this PhD. And more gener-
ally I want to thank all the members of the jury for your attentive listening of
my presentation and your very interesting questions that allowed me to clarify
some points of my work and also gave me some new research ideas.

Then, I would like to thank all those who were interested enough in my
work to attend the presentation physically or remotely. It really meant a lot to
me.

During these 3 years and a bit more, I have been part of the DIG team. I
have spent a really great time with you, I felt welcome among you from day
one and the lunches with you and the The Crew games helped me relax a bit
when the workload was high, so thank you very much.

Of course, in 3 years, there are some times when life is a bit harder. I want to
thank my friends of the compagnie, who have often been sympathetic listeners
when I had to vent what was on my heart. I also want to adress special thanks
to Diane and Grégoire who have offered to proofread my manuscript. It has
really helped me to improve it.

Speaking of proofreading, I want to thank Julie. You have been there before,
so you gave me extremely precious advice, both on the manuscript and also on
many aspects of the life of a PhD student. I also remember that you, together
with Tobias, hosted my when I missed my connection flight coming back from
a summer school, and I was trapped in Frankfurt. More generally, I would like
to thank my whole family. It’s comforting to be with you when times are hard,
and great when times are easier.

And last but not least, my deepest thanks go to Zoé. You have helped me
so much that I don’t know if I could have succeeded without you. You have
been my strongest support, you listened to countless of my rehearsals even
though my PhD topic is very far from your main interests. You have been
an absolutely critical support, both morally and logistically. So you have my
greatest gratitude.

vi ACKNOWLEDGEMENTS

Contents

Résumé i

Abstract iii

Acknowledgements v

Introduction 1
Organization of this thesis . 2
Notations . 2
Acknowledgements . 3

1 Background 5
1.1 Dynamic decision trees . 5

1.1.1 The classification problem 5
1.1.2 The dynamic classification problem 6
1.1.3 Evaluating a classification model 7
1.1.4 Decision trees generalities 9
1.1.5 Split criteria for decision trees 12
1.1.6 Stopping criteria for decision tree building 15

1.2 PageRank and graph embedding 16
1.2.1 Graph generalities . 16
1.2.2 The centrality problem . 18
1.2.3 Singular Value Decomposition 21
1.2.4 Graph embedding . 22

2 Dynamic Decision Trees 25
2.1 Introduction . 25

2.1.1 Main contributions . 26
2.1.2 Organization of the chapter 26
2.1.3 Acknowledgements . 26

2.2 Online decision trees: A brief literature review 26
2.3 Preliminaries . 28

vii

viii CONTENTS

2.3.1 Gini index and Gini gain smoothness 28
2.3.2 ϵϵϵ-feasibility: a new performance guarantee for dynamic

decision trees . 33
2.4 The Fully Dynamic Decision Tree algorithm 34

2.4.1 Main ideas . 34
2.4.2 The BUILD procedure . 34
2.4.3 The UPDATE procedure 37
2.4.4 Performance of the FUDYADT algorithm 39
2.4.5 Lower bounds . 42

2.5 Experiments . 43
2.5.1 Experimental settings . 43
2.5.2 Limitations . 44
2.5.3 Results and discussion . 45

2.6 Conclusion and future work . 46

3 Personalized PageRank for Graph embedding 49
3.1 Introduction . 49

3.1.1 Main contributions . 49
3.1.2 Organization of the chapter 50
3.1.3 Acknowledgements . 50

3.2 Preliminaries on PageRank . 51
3.2.1 PageRank . 51
3.2.2 Personalized PageRank 52
3.2.3 Interpretations . 53
3.2.4 Computing the PPR matrix and vectors 54

3.3 Preliminaries on communities in graphs 54
3.4 Preliminaries on graph embedding 55

3.4.1 Taxonomy of graph embedding methods 55
3.4.2 A brief history . 56
3.4.3 The problem of interpretability 57

3.5 A new interpretable graph embedding 63
3.5.1 Overview . 63
3.5.2 Interpretation of the steps 65
3.5.3 Decomposition of the PPR matrix 67
3.5.4 Finding the communities 68
3.5.5 Reconstructing the communities rows and columns . . . 68

3.6 Experiments . 68
3.6.1 Experimental setting . 68
3.6.2 Results and discussion . 70

3.7 New Personalized PageRank properties 71
3.8 A practical application . 74
3.9 Conclusion and future work . 75

Conclusion 81

CONTENTS ix

A Additional results for PARFAITE experiments 89

B Screenshots of the website for clusters presentation 93

x CONTENTS

List of Figures

1.1 Example of a decision tree . 10
1.2 Example of an overfitting decision tree 14

2.1 Performance of FUDYADT in the incremental model as a func-
tion of ε . 47

2.2 Performance of FUDYADT on the RU model 48

3.1 Illustration of the PARFAITE embedding 64
3.2 Toy graphs and their respective Π− αI matrices 65
3.3 Precision@k results of the Link Prediction experiment 72

B.1 Main page of the clustering website 94
B.2 Page of a cluster on the clustering website 95
B.3 Page of the channels on the clustering website 96
B.4 Page of the videos on the clustering website 96

xi

xii LIST OF FIGURES

List of Tables

2.1 Datasets statistics. 43
2.2 Performance of EFDT and FUDYADT on the incremental model 48

3.1 Interpretability Score results for PARFAITE, HOPE and node2vec 73
3.2 CISIP results for PARFAITE, HOPE and node2vec 77
3.3 Interpretability Score results for the SVD of the PPR matrix . . . 78
3.4 CISIP results for the SVD of the PPR matrix 79

A.1 Betweenness Centrality Index results for PARFAITE and node2vec 90
A.2 Closeness Centrality Index results for PARFAITE and node2vec 90
A.3 BCI results for the SVD of the PPR matrix 90
A.4 CCI results for the SVD of the PPR matrix 91

xiii

xiv LIST OF TABLES

Introduction

Machine learning takes a growing space in our daily lives. From speaking
virtual assistants to autonomous cars, from recommender systems to chatbots,
or from automatically labelling images to classifying resumes for recruiting,
machine learning algorithms are becoming central in our society.

However, these algorithms also raise a lot of concerns, many of which
revolve around their obscurity: How can we ensure that the productions or
decisions of these algorithms are fair and non-discriminatory? How can we
ensure that they respect personal life and confidentiality of data? How can we
ensure that the recommender systems do not result in filter bubbles?

The field of interpretable machine learning addresses these concerns by
creating algorithms that are inherently interpretable. In other words, when
these algorithms are used for solving a problem, not only do they provide a
solution, but it is also easy for the human user to understand why they provide
this decision.

This thesis addresses two questions related to interpretable machine learn-
ing. The first one is: How can we design an algorithm for building and effi-
ciently maintaining decision trees, which are interpretable, in a fully dynamic
context? Indeed, although decision trees are widely used to solve classification
problems, there are very few solutions to use them in a fully dynamic context.
We answer this question by studying the smoothness of functions used to build
the tree. We also define a new objective for fully dynamic trees, and we propose
an algorithm to build trees that meet this objective. We study the theoretical
and practical performances of this new algorithm.

The second question is: Can we make a graph embedding that would be
inherently interpretable? Graph embedding is a very useful tool to use classical
machine learning algorithms designed for vectors when the input data are
graphs. However, if the embedding is not interpretable, the final result of the
algorithm will have no chance of being interpretable. To answer that question,
we study the PageRank score, and especially its variation called Personalized
PageRank score. We use this score, as well as matrix decomposition and cluster-
ing, to design an embedding algorithm that is inherently highly interpretable,
and we study the interpretability and the efficiency of this algorithm. We also

1

2 CHAPTER 0. INTRODUCTION

study the existing metrics of graph embedding interpretability and we design
a new one to address some weaknesses of these metrics. While studying the
Personalized PageRank, we also discover a property that links it tightly to the
well-known spectral graph embedding.

Organization of this thesis

This thesis focuses on two main problems, namely algorithms to build and
maintain fully dynamic decision trees, and inherently interpretable graph
embeddings.

Chapter 1 provides the general background about these problems. It is
organized in two sections, each presenting the background of one of the two
problems.

Chapter 2 presents the work about an algorithm for building and maintain-
ing fully dynamic decision trees. It begins with a short review of the literature
around dynamic decision tree algorithms. It carries on presenting preliminaries
for the algorithms. Notable parts of this preliminaries section are the presenta-
tion of a new theorem about the smoothness of Gini index and Gini gain, as
well as a new objective for fully dynamic decision trees. The following two
sections present the algorithm itself and experiments to assess its running time
and efficiency.

Chapter 3 presents the work about an interpretable graph embedding. It
starts with several preliminary sections about the various aspects used for
the design of this embedding. Notably, it presents new properties of the
Personalized PageRank (PPR) matrix that shed a new light on the spectral
graph embedding. Then, two sections present the algorithm and experiences to
assess its interpretability and efficiency. A last section presents a side work of
this doctoral work about the clustering of graph data for analyzing the YouTube
website.

Notations

Vectors and matrices In this thesis, matrices and vectors are written with bold
uppercase and lowercase letters, respectively. A bold subscript or superscript
character is part of the name of the matrix or vector, while regular subscripts or
superscripts are operations on the matrix or vector, e.g. index or exponentiation.
For example, the notation vi denotes the ith vector of a sequence of vectors
{vi}i∈N. On the opposite, vi denotes the value at the ith position of the vector v.

All non-transposed vectors are column vectors.
The identity matrix is denoted by I .

Intervals The common notation is used, a parenthesis denotes that the related
side of the interval is open, and a square bracket denotes that the side is closed.

3

For example:
(0, 1] = {x ∈ R : 0 < x ≤ 1}

The set on which the interval is defined (R or N) is derived from the context.
When this set is N and the range is [1, i] for some i ∈ N, then the set is also
denoted [i].

Cardinal number For any set S, its cardinal number is denoted by |S|.

Acknowledgements

This work was funded by the French National Agency (ANR) under project
APY (ANR-20-CE38-0011).

4 CHAPTER 0. INTRODUCTION

Chapter 1
Background

1.1 Dynamic decision trees

1.1.1 The classification problem

In machine learning, the class of problems called supervised learning problems
regroup those for which a set called training set of objects called training
examples is provided, and an expected output value is known for each of
these examples. The problem is then to create a model using these examples
that would capture the underlying logic of the expected output so that, when
applied to new examples for which the expected output is unknown, the model
would generalize from the training examples to predict the output as best as
possible. Two of the main problems in this class are regression problems and
classification problems, and this thesis addresses the latter.

The classification problem is a very common problem in machine learning.
In this problem, the expected output for each example is a class, also called a
label, i.e. the identifier of a group of examples to which this example belongs.
In that case, the prediction of a model is sometimes called the decision. For
example, we can think of flights, and we want to know if they will arrive
early, on time, delayed or if they will be canceled. These 4 possible, mutually-
exclusive status are the classes, and each flight is an example. We focus on
the case when the examples are points characterized each by several elements
called feature elements (sometimes shorten to features). In the case of flights,
features can be the company, the date of flight, the length of the flight and so
on. The number d of features is called the dimension of the examples. The
features are identified by integers from 1 to d. Each feature i can only take its
value from a set of admissible values, called the domain of the given feature
and denoted by dom(i). For example, the domain of the feature “company” of
a flight is the set of existing companies. The list of all features of an example is
represented by a vector of dimension d.1 The Cartesian product of the features

1 All data that are considered in the part of this thesis related to decision trees can be injected

5

6 CHAPTER 1. BACKGROUND

domains defines the domain of the vector, i.e. the set of possible values for the
vector itself. It is called the feature domain and is denoted by X . Similarly, the
set of labels to which every expected output belongs is called the label domain
and is denoted by Y . To simplify, the labels are generally projected onto the
integers so that the label domain ranges from 0 to |Y|.

Definition 1.1 (Classification problem). Let Y = {0, . . . |Y|} be a set of classes.
Let also S = {(x1, y1), . . . (xn, yn)} be a training set with (xi, yi) ∈ X × Y being an
example and its associated label. Let finally Q = {(x∗

1, y
∗
1), . . . (x

∗
m, y∗m)} be a decision

set defined similarly.
It is assumed that each example x∗

i is correlated with its class y∗i in the same way
as the examples in S are correlated with their classes.

Then, the classification problem consists in building a function called model
MS : X → Y using the training set S, so that the prediction MS(x

∗
i) of the examples

in Q is mostly right.

The notion of being “mostly right” is vague because several objective or
evaluation metrics exist for evaluating the performance of a solution to this
problem. This topic will be addressed in more details in Section 1.1.3.

In this thesis, we propose general solutions, but the experiments will mainly
be conducted on the binary classification problem. In this problem, the exam-
ples belong to one of two classes commonly called “positive” and “negative”
classes, i.e. |Y| = 2. We can think for example of disease diagnosis, in which
the “positive” class usually means that the patient has the disease. We map the
positive class to 1 and the negative class to 0 so that Y = {0, 1}.

1.1.2 The dynamic classification problem

The dynamic classification problem is a special case of the classification prob-
lem. In that case, the training set is updated sequentially by adding or removing
examples and the algorithm should update the model considering these in-
sertions and deletions.2 Insertions are typically the result of new data being
collected or revealed, while deletions can be the result of noise removal, re-
moval of personal data for privacy concerns, data becoming obsolete, etc. For
this problem the complexity of updating the model is crucial since many appli-
cations use real-time streaming data for which the decision needs to be given
after a reasonable delay. For example, we can think of a failure prediction

onto the set R without any loss of information. We therefore consider that we always
work on vectors of Rd. However, the ordering of the domain values does not always make
sense, and the relative order of two projected features into the R set should not always
be considered as semantically meaningful. This matter is discussed with more details in
Section 1.1.5

2 Some papers in the literature also consider the updating of examples. In this thesis, we
consider the updating of an example as the removal of the outdated version and the
insertion of the updated one. We do not study the specific optimizations that could be
implemented for this specific case.

1.1. DYNAMIC DECISION TREES 7

system that needs to predict the failures as soon as the data of the unlabeled ex-
amples are available, and needs to update in order to consider the new labeled
examples as they arrive.

Definition 1.2 (Dynamic classification problem). Let S0 = {(x1, y1), . . . (xn, yn)}
be an initial training set, and U = {((xU

1 , y
U
1), u1), . . . ((x

U
T , y

U
T), uT)} be a set

of updates with (xU
t , y

U
t) ∈ X × Y an example/class pair and ut ∈ {INS, DEL}

the type of update, indicating that at time t the pair is respectively inserted in
the training set or deleted. We denote by St the set S0 affected by the updates
((xU

1 , x
U
1), u1), . . . ((x

U
t , y

U
t), ut).

The dynamic classification problem consists in

1. Building a model MS0 that addresses the classification problem for S0,

2. For each t ∈ [1, T], updating the model MSt−1 into a new model MSt which
addresses the classification problem for St.

1.1.3 Evaluating a classification model

Many metrics have been proposed over the years for evaluating the model
created by a classification algorithm. Although new proposals have been sparse
in recent years, there is still some research on the specifics of each metric and
the choice of the best one for a given problem (see for example [12]). This
subsection provides a quick overview of the most commonly used metrics.

As introduced in the Subsection 1.1.1, a classification algorithm builds a
model MS from a training set S so that this model produces good predictions
when applied to the decision set Q.

The first measure that can be used is the so-called training error:

Definition 1.3 (Training error (TE)). The training error of a model MS is the
number of examples in S that would be attributed to the wrong class by the model.

TE = |{(xi, yi) ∈ S : MS(xi) ̸= yi}| (1.1)

Providing that S does not contain two identical examples associated with
different classes, it is always possible to get an optimal training error of 0.
Trying to find a model that optimizes the Training Error is called the Empirical
Risk Minimization (ERM) [52]. However, models with an optimal training
error are often not optimal because of the so-called overfitting: the model’s
primary goal is to correctly predict the data of the decision set Q, and excessive
fitting to the training set S often reduces its relevance when generalizing to the
decision set [27]. An example of a probable overfitting, in the case of a decision
tree, is given on Figure 1.2. The reason we can say it is probably overfitting will
be given in Section 1.1.6. It has been proven that the set of admissible models
can be reduced a priori (i.e. before the training phase) in a way that prevents
the overfitting and hence makes ERM a good strategy for training and a good
indicator of the quality of the model. This strategy is called induction bias [52].

8 CHAPTER 1. BACKGROUND

Most classification model building algorithms rely on trying to minimize
the Training Error with induction bias. It is however difficult to assess the
quality of the bias on which the prevention of the model overfitting is based.
Methods have therefore been developed to assess the quality of the model
using data that have not been used for the training of the model.

The most common of these methods is to split the training set into two
subsets. The model is trained only on the first one, that appropriates the name
“training set”, and the second one is called the “test set” and is used as a proxy
decision set. We denote by S the training set and Q the test set. This setup
allows the following definitions.3

Definition 1.4 (True Positive (TP) and True Negative (TN)). In a binary clas-
sification problem, the True Positive and True Negative values are the number of
examples in the test set that are correctly associated with respectively the positive and
the negative class by the model.

TP = |{(xi, yi) ∈ Q : yi = 1 ∧MS(xi) = 1}|
TN = |{(xi, yi) ∈ Q : yi = 0 ∧MS(xi) = 0}| (1.2)

Definition 1.5 (False Positive (FP) and False Negative (FN)). The False Positive
and False Negative values are the number of examples in the test set that are incorrectly
attributed to the positive and to the negative class, respectively, by the model.

FP = |{(xi, yi) ∈ Q : yi = 0 ∧MS(xi) = 1}|
FN = |{(xi, yi) ∈ Q : yi = 1 ∧MS(xi) = 0}| (1.3)

These measures are raw unnormalized data, hence called “Base measures”
in [12]. Three metrics are directly derived from these.

Definition 1.6 (Precision, or confidence (P)). The precision of a model is the ratio
of the examples associated with the positive class that are indeed in this positive class.

P =
TP

TP + FP
(1.4)

Definition 1.7 (Sensitivity or Recall (TPR), and Specificity (TNR)). 4

The Sensitivity and the Specificity of a model are the fraction of examples belonging
to the positive and to the negative class, respectively, for which the model’s prediction
is correct.

TPR = TP
TP+FN

TNR = TN
TN+FP

(1.5)

3 Note that we reuse the name “training set”, as well as the notations S and Q. This is
because the model is trained solely on the new training set, making it very similar to the
old definition, and the model is not trained on the test set but simply outputs guesses
about the labels of its examples, making it very similar to the decision set.

4 TPR and TNR stand respectively for “True Positive Ratio” and “True Negative Ratio”.

1.1. DYNAMIC DECISION TREES 9

All these metrics are normalized, but they are complementary and none of
them alone is sufficient to draw a complete picture of the model’s performance.
Therefore, many metrics exist to aggregate them into a single value. In this
thesis, we only present one of the best-known, called F1-score.

Definition 1.8 (F1-score). The F1-score of a model is the harmonic mean of its
precision and sensitivity

F1 = 2
P · TPR

P + TPR
(1.6)

We note that this metric should be used with caution because it gives equal
weight to precision and recall, although the relative costs of false positive and
false negative predictions vary greatly from one application to another. For
example, if the model predicts serious diseases for which the cure is cheap and
has few side effects, then a low number of false negative predictions is expected
even at the cost of a high number of false positive predictions. This would
ensure that as few diseases as possible are missed, while the false positive
predictions would result in the useless use of a cheap cure at low risk. The low
number of false negative would mean a high recall, and the high number of
false positive would mean a low precision.

For this reason, there exist variations of the F1-score, called Fβ-scores, which
weight the precision and the sensitivity differently in the harmonic mean. For
more details on these scores or other evaluation methods, please refer to [12].

Evaluating dynamic classification models For evaluating a dynamic classifi-
cation model, we need a special kind of test set. In that test set, each example
needs to be associated with a step t of the updating process at which the class
should be predicted by the model Mt. One way to build such a test set is to
use each example of the update set for which the update type is “INS” both
as a test example and as a training example. The “test” step, which consists
in predicting its class, is performed using the model as it is just before the
“training” step, i.e. the insertion of the example. This method allows training
each model on all the examples available at the time at which the model is
defined, while never predicting the class of an example using a model that
would have been trained on that very example.

It is then possible to use the same metrics as in the static case, e.g. the
F1-score.

1.1.4 Decision trees generalities

One well-known group of algorithms for solving the classification problem
is the group of decision tree algorithms. These algorithms can be used to
solve either the classification problem or another problem called the regression
problem. To remove the ambiguity, we sometimes refer to classification tree
algorithms in the former case and regression trees in the latter. However, since

10 CHAPTER 1. BACKGROUND

gini = 0.75
samples = 13200

Temperature ≤ 6.5

gini = 0.193
samples = 3450

Season ≠ Winter

True

gini = 0.68
samples = 9750

Visibility (km) ≤ 4.75

False

gini = 0.748
samples = 347

Precipitation (%) ≤ 32.5

gini = 0.054
samples = 3103

Humidity ≤ 57.5

gini = 0.735
samples = 98
class = Snowy

gini = 0.741
samples = 249
class = Rainy

gini = 0.744
samples = 83
class = Cloudy

gini = 0.016
samples = 3020
class = Snowy

gini = 0.276
samples = 3322

Cloud Cover ≠ clear

gini = 0.573
samples = 6428

UV Index ≤ 4.5

gini = 0.221
samples = 3195

class = Rainy

gini = 0.0
samples = 127
class = Sunny

gini = 0.248
samples = 3101
class = Cloudy

gini = 0.268
samples = 3327
class = Sunny

Figure 1.1: Example of a decision tree for the classification of the Weather dataset
[55]. On each node, the Gini index and the size of the training set are indicated.
If the node is internal, then the condition is written. The training set of the
left child contains the examples that match the condition. If the node is a leaf,
the majority class is indicated. The color hue of each node correspond to its
majority class, while the color saturation correspond to the consensus on that
class (inversely related to the Gini index).

we focus on classification problems in this thesis, the term “decision tree” will
always be used for “classification tree” unless specified otherwise.

Definition 1.9 (Decision tree). A decision tree is a type of classification model built
as a tree graph. The nodes of this graph are of two kinds:

• Internal nodes These nodes are characterized by a set of children nodes and a set of
rules to deterministically direct any example to one of the children nodes,

• Leaves These nodes are characterized by a class. Any example directed to a leaf will
be predicted to belong to the class associated with it.

The class of an example is predicted by directing it from the root down to a leaf using
the rules at each node.

The process of building a decision tree from data is called tree training or
tree building, and we will use both words indifferently in this thesis.

Using trees of rules to organize knowledge is a very intuitive thing to do,
and such trees were used long before the automation of their building for
machine learning. For example, we can think of the so-called “tree of life”
that classify life in a tree and date back at least to 1801 [1]. The automation
arrived first in 1963 with the publication of the Automatic Interaction Detection
(AID) algorithm for regression trees [43], quickly followed in 1972 by the THeta
Automatic Interaction Detection (THAID) algorithm for classification trees [42].
For a more comprehensive history of decision trees in Data Science, see [37].

1.1. DYNAMIC DECISION TREES 11

The decision tree algorithms have since become some of the most popular
algorithms for classification. One of their main advantages is the clarity of the
model they build, whose decisions can be explained just by listing the rules
that direct the examples from the root to the leaf [14, 30].

The usual framework algorithm for building decision trees, sometimes
called Hunt’s algorithm [49], is described in Algorithm 1.1. This framework
algorithm takes as arguments the training set S ∈ (X ,Y)n. It can also require
some context information, denoted by “. . . ” in Algorithm 1.1, such as the depth
of the subtree that will be built by this call to the function.

A decision tree is built recursively, starting from the root, with the full set of
training examples, by either making the node a leaf or splitting its training set
and building children from the subsets. At Line 5, the class of a leaf is usually
determined by the majority class in the subset of training examples used for
building the leaf. Therefore, the main variation for decision tree building
algorithms is the method used at Line 8 to split the set of training examples.
The criteria used at Line 4 to decide whether a node should be a leaf are also
an important parameter for decision tree building.

Algorithm 1.1 Hunt’s recursive framework algorithm for building a decision
tree

1: ▷ Note: To build a decision tree, this algorithm is run recursively, starting with
the root and the full set of training examples. The recursion is at Line 10

2: procedure HUNTS_FRAMEWORK(S, . . .)
3: v ← new node
4: if this node should be a leaf then
5: c← Determine the class of the leaf
6: T ← tree of depth 1, with v, which is only leaf, of class c
7: else
8: Determine f a function that splits S into l subsets (S1, . . . Sl), i.e. that

associates each training example of S with one of the l subsets
9: for Si ∈ {S1, . . . Sl} do

10: Build a subtree for this node using this algorithm, with Si as
input

11: Add the subtree root as a child of v
12: end for
13: T ← a tree of root v, with the splitting function of v being f
14: end if
15: return T
16: end procedure

In this thesis, we will focus on binary trees, i.e. decision trees in which
internal nodes have exactly 2 children each. In that case, we call one of the
children the right child and the other the left child. The splitting function f
can then be seen as a test that outputs a boolean and, by convention, examples

12 CHAPTER 1. BACKGROUND

are directed to the right child if the output is true, and to the left child if it is
false. An example of a binary decision tree is given in Figure 1.1. This tree
aims at classifying weathers. If this tree predicts that it is snowy, we can easily
understand when we see this tree that the reason of this prediction is that the
temperature is below 6.5 °C, it is Winter and the humidity is above 57.5%.

Many decision tree building algorithms have a final step that consists in
pruning the tree, i.e. reducing its size by turning some internal nodes into
leaves and dropping the associated subtree. The methods we propose and
study in this thesis do not feature this part, and we therefore only mention it
for completeness but will not detail it further. For a survey on decision tree
pruning and more generally constraining decision trees, please refer to [44].

1.1.5 Split criteria for decision trees

Before exploring the possible splitting criteria for the decision tree nodes, we
need to distinguish between two types of data that the features can be.

Definition 1.10 (Categorical and numerical data). A feature is said to be categori-
cal when its domain is finite and no well-ordering of the values in this domain can be
established with sense.

A feature is said to be numerical when the values in its domain do semantically
accept a well-order.5

We note that the definition does not only require the existence of a well-
order, but also that this order should make sense. For example, if the domain
of a feature is the Airline of a flight, it could accept a well-order as any finite
set, but this order would not make sense. Therefore, the feature is categorical.
Other examples of categorical data can be a town of origin, a language or a
kind of food. Examples of numerical data are heights, temperature or number
of people.

In a decision tree, the splitting criteria can rely either on categorical or on
numerical data. In the case of categorical data, the splitting criterion is usually
in the form of a pair (j, C) with j ∈ [1, d] and C is a subset of the domain of the
feature dom(j). An example x is directed to the right child if xj ∈ C. In the
case of numerical data, the splitting criterion is usually in the form of a pair
(i, t) ∈ [1, k] × R, and an example x is directed to the right child if xj ≤ t. In
that case, t is called the threshold.

The solution chosen to define and find efficiently the best splitting criterion
is one of the main differences between decision tree algorithms. Let us intro-

5 It is common in machine learning to consider a third type of data, called ordinal data.
These data do not map intuitively and directly to numerical values, but do accept a well-
ordering. For example, a qualitative evaluation of temperature can take values “cold”,
“lukewarm” and “hot”. In this thesis, we do not consider the specificity of these data and
we map them to consecutive integers (e.g. “cold”→ 0, “lukewarm”→ 1 and “hot”→ 2)
to treat them as numerical.

1.1. DYNAMIC DECISION TREES 13

duce some of the most commonly used. In these definitions, we denote by NS,y

the number of examples of a set S that are associated with the class y.

Definition 1.11 (Gini index and Gini gain). The Gini index of a set S = {(x1, y1), . . .
(xn, yn)} of examples xi associated with classes yi is the sum of the squared proportion
of examples in the set that belong to each class.

g(S) = 1−
∑
y∈Y

(
NS,y

n

)2

(1.7)

The Gini gain of a split of a set S which produces two subsets S1 and S2 is the difference
between the Gini index of S and the weighted mean Gini index of S1 and S2:

G(S, S1, S2) = g(S)−
(
|S1|
|S|

g(S1) +
|S2|
|S|

g(S2)

)
(1.8)

When the classification problem is binary (i.e. there are only two classes),
the Gini index definition can be rewritten to:

g(S) = 2
NS,0

n

(
1− NS,0

n

)
(1.9)

The Gini index ranges from 0 to |Y|−1
|Y| , reaching 0 when the set contains

only examples of a single class, and |Y|−1
|Y| when it contains the same number of

examples of each class. When building a decision tree using this index, the goal
will be to minimize the weighted mean Gini index of the subsets of training
examples in leaves. Following the Hunt’s algorithm, the chosen split of each
node will be greedily chosen as the one that maximizes the Gini gain.

Definition 1.12 (Entropy and information gain). The entropy of a set S =
{(x1, y1), . . . (xn, yn)} of examples xi associated with classes yi ∈ Y is defined by

E(S) =
∑

y∈C:NS,y ̸=0

−NS,y

n
log2

(
NS,y

n

)
(1.10)

The information gain of a split of a set S which produces two subsets S1 and S2 is
the difference between the entropy of S and the weighted mean entropy of S1 and S2

IG(S, S1, S2) = E(S)−
(
|S1|
|S|

E(S1) +
|S2|
|S|

E(S2)

)
(1.11)

The entropy ranges from 0 to log2(|Y|), and these values are reached re-
spectively when the set contains only one class and when each class is equally
represented in the set.

14 CHAPTER 1. BACKGROUND

gini = 0.003
samples = 613

Wind Speed ≤ 7.75

gini = 0.015
samples = 130

Wind Speed ≤ 7.25

gini = 0.0
samples = 483
class = Rainy

gini = 0.0
samples = 113
class = Rainy

gini = 0.111
samples = 17

UV Index ≤ 0.5

gini = 0.375
samples = 4

Visibility (km) ≤ 2.75

gini = 0.0
samples = 13
class = Rainy

gini = 0.0
samples = 1

class = Cloudy

gini = 0.0
samples = 3
class = Rainy

Figure 1.2: Subtree of a decision tree that overfits. The decision tree has been
trained on the Weather dataset [55]. The root of the subtree represented in this
figure is at depth 18 in the full tree. On each node, the Gini index and the size
of the training set are indicated. If the node is internal, then the condition is
written. The training set of the left child contains the examples that match
the condition. If the node is a leaf, the majority class is indicated. The color
hue of each node corresponds to its majority class, while the color saturation
corresponds to the consensus on that class (inversely related to the Gini index).

1.1. DYNAMIC DECISION TREES 15

1.1.6 Stopping criteria for decision tree building

The criteria used at Line 4 of Algorithm 1.1 to decide if a node should be a leaf
are an important part of building decision trees. The most intuitive criterion is
to make a node a leaf when the subset of the node is totally homogeneous, i.e.
all of its examples are associated with the same class.

The problem with this criterion is that it can result in either very deep trees,
overfitting (defined in Section 1.1.3) or both. Very deep trees can be a problem
for various reasons, including extended computation times for building and
predictions, and reduced interpretability [14, 30].

For example, the tree on Figure 1.1 has been limited to a depth of 3. If we
remove this limitation, the tree grows to a depth of 22, and one of its subtrees is
represented on Figure 1.2. We can see in that example that the training subset
of this whole subtree contains 129 examples labeled “Rainy” and only one
example labeled “Cloudy”. It is probably that this “Cloudy” example is among
the “Rainy” examples because of random variations or incorrect measurements.
If an unlabeled example is directed down to this subtree, it seems probable that
the target label would be “Rainy”. Therefore, the “Cloudy” leaf can probably
lead to the misclassification of examples. This hypothesis is strengthened by
the fact that, to arrive at the “Cloudy” leaf, the “Wind Speed” feature of the
example must be in the range (7.25, 7.75]. This feature has a precision of 0.5, so
an example that arrives to this subtree needs to have a “Wind Speed” feature
value of exactly 7.5 to be classified as “Cloudy”.

Three solutions to these problems are widely used, two of which aim to
avoid overfitting while the third aims to reduce the depth, although solving
one problem generally helps to reduce the other.

The solutions to avoid overfitting have in common that they add conditions
for a split to be acceptable. If no acceptable split can be found due to these
conditions, no child node is built and the node becomes a leaf.

The first of these solutions is to prevent the split from containing fewer than
a given number of training examples. By ensuring that each subset of the tree
represents a high enough number of training examples, this solution reduces
the possibility that variations due solely to noisy data are considered in the
model.

The second solution to avoid overfitting is to make inadmissible the splits
that generate less than a given improvement of the objective function, e.g. the
splits of which the Gini gain or information gain is below a given threshold.
The reasoning behind this solution is that the improvement of the objective
function is a proxy for the extent to which the split criterion is relevant to
separate the classes. A low improvement would then imply a low relevance,
which could even correspond to noise.

The solution to reduce the depth is to simply set as a parameter of the
algorithm a maximal depth to which the tree can grow. If a node is to be built
at the given maximal depth, it will automatically be a leaf. Not only does this
solution prevent deep trees from being built, but by limiting the number of

16 CHAPTER 1. BACKGROUND

branching, it also prevents the breaking down of the space of the examples into
very small subspaces and thus limits the overfitting to some extent.

1.2 PageRank and graph embedding

1.2.1 Graph generalities

Graphs are a range of mathematical objects used to study the relations between
entities. The simplest graphs are defined by two sets V and E.

V is a countable set of objects called vertices or nodes. These objects can
be of any type, but it is common to inject this set into the natural numbers set
so that each vertex receives a unique identifier. E ⊂ V × V 6 is a set of pairs
of vertices, each of these pair being called an edge. When graphs are used
in practical applications, vertices can correspond to any type of entity, while
edges reflect relations or links between a pair of these entities. A graph is called
undirected if the edges are not directed, i.e. the existence of an edge (u, v) ∈ E
symbolizes a symmetric relation between vertices u and v. In that sense, we
can consider that in an undirected graph (u, v) = (v, u). On the opposite, a
graph is called directed if the edge (u, v) ∈ E symbolizes a directed relation
from u to v and does not imply any similar relation from v to u.

In practical use, and especially when the number of vertices is very large,
the graphs are often called networks. From a mathematical point of view,
however, the words “graph” and “network” are synonyms.

An example of a directed graph is the routers-rf network.7 In this graph,
nodes are internet rooters and there is an edge between two rooters if they
are connected together. An example of an undirected graph is the WikipediaFr
graph that we introduce in Section 3.6. In this graph, nodes are Wikipedia
pages and there is an edge from a source page to a target page if the source
contains an hyperlink to the target.

Definition 1.13 (Order and size of a graph). The order n of a graph is its number
of vertices n = |V |.

The size m of a graph is its number of edges m = |E|

If loops, i.e. edges from one vertex to itself, are impossible, then the graph
of order n with the maximum size is the graph called the n-clique. In such
graph, all pairs of vertices are in the edge set. Its order is then m = n(n− 1) for
directed graphs and m = n(n−1)

2
for undirected graphs. The density of a graph

is the ratio of its size to this maximum size. A graph with low density, i.e. with
a number of edges of the same order as the number of vertices, is said to be
sparse, and most real-world graphs are sparse.

6 This notation implies that each pair of vertices can be connected by at most one edge. This
is often assumed to be true, and it is in this thesis.

7 This network is available on the website networkrepository.com [50].

1.2. PAGERANK AND GRAPH EMBEDDING 17

Definition 1.14 (Weighted graph). A weighted graph is a graph defined with an
extra set W ∈ Rm that defines a weight for each edge.

The weight of an edge generally reflects the strength of the link or connec-
tion between the vertices.

The simplest way to represent a graph is to give its order and, using V =
[0, n− 1], listing its edges. However, in many cases it is convenient to represent
it in the form of the so-called adjacency matrix.

Definition 1.15 (Adjacency matrix). The adjacency matrix of a graph is the matrix
A ∈ Rn×n defined by

Aij =

{
1 if (i, j) ∈ E

0 else

We note that for an undirected graph, the matrix is symmetric. In the case
of weighted graphs, the elements of the matrix are the weights of the edges,
instead of 1.

Another important notion is that of neighbors of a vertex.

Definition 1.16 (Neighbors). In a graph G = {V,E}, the set N (u) of neighbors of
a vertex u is the set of vertices that shares an edge with u.

N (u) = {v ∈ V : (u, v) ∈ E ∨ (v, u) ∈ E} (1.12)

In the case of directed graphs, we define the sets N−(u) of out-neighbors and
N+(u) of in-neighbors of u as the sets of nodes such that there is, respectively, an
edge coming from u to them, and going from them to u.

N−(u) = {v ∈ V : (u, v) ∈ E}
N+(u) = {v ∈ V : (v, u) ∈ E} (1.13)

In the case of undirected graphs, the sets of out- and in-neighbors are equivalent to
the set of neighbors.

The set of neighbors is sometimes called neighborhood. From this notion,
we can define the degree of a vertex and, in the case of directed trees, the in-
and out-degree:

Definition 1.17 (Degree). In a graph G = {V,E}, the degree du of a vertex u is the
size of its neighborhood:

du = |N (u)| (1.14)

In the case of a directed graph, the in-degree d−u and out-degree d+u of a node are
respectively the size of its in- and out-neighborhood:

d−u = |N−(u)|
d+u = |N+(u)| (1.15)

18 CHAPTER 1. BACKGROUND

1.2.2 The centrality problem

A common problem on graphs, called the centrality problem, is to determine
how central each vertex is in the graph. This notion of centrality can be defined
in various manners that will affect the metric that will be used to compute it.

The main application of the centrality metrics is to find out which nodes
are the most important or influential in a network. For example, the PageRank
algorithm [47], which we use extensively in this thesis, was first developed to
rank the relative importance of web pages as answers to a Google search.

Many centrality metrics rely on paths and distances in the graph. We first
define these notions. A path is a series of adjacent edges leading from one
vertex to another.

Definition 1.18 (Path). In a graph G = {V,E}, a path P from u∗ to v∗, with
u∗, v∗ ∈ V is a sequence of edges P = {(ui, vi) ∈ E : i ∈ [1, |P |]} so that u1 = u∗,
v|P | = v∗ and ∀i ∈ [1, |P | − 1] , we have ui+1 = vi.

Definition 1.19 (Distance between vertices). The distance d(u, v) between two
vertices u, v ∈ V is the length of the shortest path from u to v. By convention, the
distance between two vertices with no path between them is defined as +∞.

Any path from u to v of size equal to the distance between them is called a geodesic.

We present a brief history of the centrality metrics and an introduction to
some main ones used in the literature.

One of the first papers to talk about centrality [3] was published in 1950.
This paper was very application-oriented as it mainly studied the structures of
collaboration to conduct tasks in groups, but these structures were modeled as
graphs, which prompted the authors to propose a metric for centrality that is
now known as closeness centrality.

Definition 1.20 (Closeness centrality). In a graph G = {V,E}, the closeness
centrality CC(u) of a vertex u ∈ V is defined as

CC(u) =
1∑

v∈V d(u, v)
(1.16)

Various variations of the numerator have been proposed to normalize the
metric. One of the drawbacks of this metric is that it only works for connected
graphs, i.e. graphs in which there exists a path between any pair of nodes. This
is because the distance between two unconnected points is +∞.

Shortly after, in 1953, the Katz centrality index [32], which is one of the most
popular centrality metrics up to this date, was introduced.

Definition 1.21 (Katz centrality index). In a graph G = {V,E}, the Katz Central-
ity Index of parameter α ∈ [0, 1) of a vertex u ∈ V is defined as:

CKatz(u) =
+∞∑
k=1

∑
v∈V

αk(Ak)uv (1.17)

1.2. PAGERANK AND GRAPH EMBEDDING 19

For unweighted graphs and for two vertices u, v ∈ V , (Ak)uv is the number
of distinct paths of length k from u to v. The sum

∑
v∈V (A

k)uv is therefore the
number of distinct paths starting at u and of length k that can be found in the
graph. The Katz Centrality index is the pondered sum of this number for each
value of k, the longer paths having a lower importance in the sum.

We note that α needs to be smaller than the inverse of the maximum Eigen-
value of A to ensure the convergence of the series.

In 1972, Bonacich proposed the Eigenvector centrality [7]:

Definition 1.22 (Eigenvector centrality). The Eigenvector centrality vector x of
a graph G is the largest Eigenvector of the adjacency matrix.{

∃λ ∈ R : Ax = λx

∀λ∗ ∈ R,x∗ ∈ Rn : Ax∗ = λ∗x∗ ⇒ λ∗ ≤ λ
(1.18)

The Eigenvector centrality of a given vertex u ∈ V is the value xu of the element of the
vector x associated with this vertex.

A property of this metric is that ∀u ∈ V : λxu =
∑

v∈V Auvxv. In other
words, the Eigenvector centrality of a vertex is high when the Eigenvector
centrality of its neighbors is high.

It has been shown that Eigenvector centrality is related to Katz centrality,
the latter approximating the former when α→ 1

λ
[8].

In 1977, another centrality metric that is still widely used today was in-
troduced in [20]. This metric called Betweenness Centrality relies on the
geodesics of the graph and, to define it, we introduce the notations σuv which
is the number of geodesics from vertex u to vertex v. We also denote by σuv(w)
the number of geodesics from u to v that contain the vertex w.

Definition 1.23 (Betweenness Centrality). In a graph G = {V,E}, the Between-
ness Centrality of a vertex w is the sum, for each pair of vertices, of the ratio of
geodesics between these vertices that contain w:

CB(w) =
∑

u,v∈V×V :u̸=v ̸=w

σuv(w)

σuv

(1.19)

When the graph is undirected, this value needs to be divided by 2 to account
for the fact that each pair of vertices is counted twice.

The value σuv(w)
σuv

equals 0 when no shortest path from u to v contains w and
1 when all the shortest paths do (e.g. when there is only one shortest path
from u to v). In that sense, the Betweenness Centrality of w is the number of
pairs of vertices that the removal of w would spread apart, but it also considers
the cases when w is on some geodesics between two vertices but not all. The
interpretation of the authors is that the Betweenness Centrality of a vertex is a
metric of the control the vertex has on information passing in the graph.

20 CHAPTER 1. BACKGROUND

Finally in 1999, the centrality metric that interests us the most in this thesis,
PageRank, was introduced in a very famous paper [47].

To define PageRank, we first define the concept of random walk.

Definition 1.24 (Random walk). Given a graph G = {V,E}, a random walk on
the graph is a sequence {Vt}t∈N of random variables. The domain of each variable is the
vertices of the graph, and the probability distribution of each variable Vt is defined as a
function of the realizations of the previous variables {Vt}t∈[0,t−1].

To clarify the explanations about a random walk, it is convenient to repre-
sent it as an entity that we call “walker” that goes randomly from one vertex
to another following the rules of the random walk. Therefore, in this thesis, we
will use phrases like “the walker is on the vertex u at time t” or “the position of
the walker at time t is u”, meaning that the realization of the random variable
Vt is u. We will also use phrases like “the probability of the walker to go from u
to v”, meaning the conditional probability that Vt+1 = v given that Vt = u.

Some random walks also accept an extra vertex w in the domain of the
positions. This extra vertex is not a vertex of the graph. If the walker is on this
vertex, it can never move again. Formally, vt∗ = w ⇒ ∀t > t∗, vt = w. When the
walker goes to that extra vertex, we say that the walker stops walking, and
a realization of the random variable can be defined simply by the time f at
which the walker stops walking and the previous positions {Vt}t∈[0,f−1].

We can now introduce the random walk on which PageRank is based.
In that random walk, when the walker in on a vertex u, there is an equal
probability that it goes to any out-neighbors of u.8

We denote by D ∈ Rn×n the diagonal matrix of out-degrees of the graph,
i.e. the matrix in which each diagonal element is the number of edges starting
from the related vertex. We can then define M = D−1A the stochastic matrix
of the random walk, i.e. Muv is the probability that the walker will go to vertex
v on the next step given that it is on vertex u at this step.

Finally, we define a random walk with restart of parameter α as a random
walk in which, at each step, the walker has a probability α to go onto a random
vertex of the graph instead of necessarily going to an out-neighbor. In that case,
we say that the walker restarts. The probability distribution of the vertex it
restarts from is the same as the probability distribution of the initial position
V0.

Definition 1.25 (PageRank score). In a graph G = {V,E}, the PageRank score
πu of a vertex u ∈ V with parameter α is the asymptotic probability that the position
of the walker is the vertex u at a step of the random walk with restart of parameter α

πu = lim
t→+∞

P (Vt = u) =
α

n

+∞∑
i=0

∑
v∈V

(1− α)i(M i)uv (1.20)

8 In the case of weighted graphs, another version is to give each vertex a probability
proportional to its weight.

1.2. PAGERANK AND GRAPH EMBEDDING 21

Some of these centrality metrics exist in personalized version, i.e. metrics
for the importance of each vertex in relation to a given subset W of vertices
instead of the whole graph. This is particularly true for the Katz and PageRank
metrics. For Katz, the personalized version can be obtained by computing the
sum over the given subset W of vertices instead of all the vertices in the graph.

PKatz(W,u) =
+∞∑
k=1

∑
v∈W

αk(Ak)uv (1.21)

For PageRank, the personalized version consists in reducing the start and
restart set of vertices of the random walk to the given subset. Mathematically,
this has the same impact as summing only over the given subset, only also
affecting the normalization.

PPageRank(W,u) =
α

|W |

+∞∑
i=0

∑
v∈W

(1− α)i(M i)uv (1.22)

When the subset is reduced to a single vertex, the metric is either called a
personalized version or the rooted version of the metric. In this thesis, unless
specified otherwise, we will use the term “Personalized PageRank” (PPR) for
this rooted version because it is the one that most interests us and it is easy to
see that personalized versions with bigger subsets are just linear combinations
of the rooted ones. A more in-depth study of PageRank and PPR is presented
in Section 3.2.2

1.2.3 Singular Value Decomposition

The Singular Value Decomposition (SVD) is a method of matrix factorization.

Definition 1.26. The Singular Value Decomposition of a matrix M ∈ Rm×n

is a group of a rectangular diagonal matrix Σ ∈ Rm×n and two unitary matrices
U ∈ Rm×m and V ∈ Rn×n such that

M = UΣV ⊤ (1.23)

A real square matrix U is said to be unitary if U⊤U = UU⊤ = I the
identity matrix.

We can assume that m ≤ n. This assumption is made without loss of
generality, since the transposed matrix can be used when the assumption is
false.

The columns {u1, . . .um} and {v1, . . .vn} of the matrices U and V are
called the left and right singular vectors of the matrix, respectively, and the
diagonal elements {σ1, . . . , σm} of Σ are called the singular values. For a given
index i ∈ [m], the triplet {σi,ui,vi} is called a singular triplet. The equation in
the SVD decomposition can be rewritten as a combination of singular triplets:

M =
m∑
i=1

σiuivi
⊤ (1.24)

22 CHAPTER 1. BACKGROUND

The SVD is massively used in Data Science for reducing the dimensions of
data by removing redundancy and keeping only the most influential features.
In that case, the lines of the matrix are usually the samples while the columns
are the features. We can see from Equation (1.24) that if the values σi are
indexed in decreasing order, then the matrix M can be approached by a limited
number k of them

M ≈
k∑

i=1

σiuivi
⊤ (1.25)

This equation is sometimes written in its matrix form

M ≈ UkΣkVk
⊤ (1.26)

where Uk and Vk are made of the first k columns of U and V , and Σk is Σ
reduced to its k × k upper-left submatrix.

This technique is called truncated SVD. It has been proven that this approx-
imation is the best possible of order k, meaning that there is no set of k triplets
{σi,ui,vi} that would result in a better approximation in Equation (1.25). This
result is known as the Eckart-Young theorem [17]. When applied to a matrix
of data of which the features are centered, it is equivalent to the well-known
Principal Components Analysis.

When applied to a matrix of data with each line representing a sample and
each column a feature, the right singular vectors associated with the highest
singular values represent the “patterns” of features that have the highest im-
portance to represent the data, i.e. linear combination of the features that can be
multiplied by constants to approximate the data at best. The left singular vec-
tors multiplied by the singular values are these constants, i.e. the importance
of each right singular vector to represent the data.

1.2.4 Graph embedding

The data mining technique of embedding consists in simplifying the study of
complex objects by representing them into a low-dimensional vectorial space.
For example, in Natural Language Processing, the word embedding technique
consists in representing each word of a corpus in a vectorial space so that words
from a same lexicon are close together.

In graph mining, the objects that are embedded can be either vertices, edges
or the entire graph. In this thesis, we focus on the case of vertices. This tech-
nique can be applied for solving various problems as node recommendation,
link prediction or node classification. For most of these problems there exist
algorithms running directly on graphs that can solve them, but it is not always
possible to use other external data. In addition, since these algorithms are
specifically designed for graphs, they do not benefit from the same attention as
similar algorithms for vectorial data, a problem that embedding solves. Finally,
the embedding, although often computationally costly, can be computed only
once and then be used to address multiple problems.

1.2. PAGERANK AND GRAPH EMBEDDING 23

The name “graph embedding” can stand either for the embedding of the
whole graph as one vector or for the embedding of the components of the
graph, either the vertices, the edges or both, as multiple vectors, one for each
component. In this thesis we are interested in the embedding of vertices and
unless specified otherwise, we will always use the name “graph embedding”
in its “vertices embedding” meaning.

24 CHAPTER 1. BACKGROUND

Chapter 2
Dynamic Decision Trees

2.1 Introduction

Decision trees are a cornerstone of machine learning and an essential tool in
any machine learning library. Decision-tree-based algorithms, such as random
forests [9] or XGBoost [13], are widely used to solve real-world machine learn-
ing problems. They also boast the appealing feature of being explainable [30,
14]. As many other machine learning problems, the classification problem has
a dynamic version, as explained in Section 1.1.2. In that version, the training
dataset evolves over time by inserting and deleting labeled examples. The dy-
namic classification problem is called fully dynamic if insertions and deletions
are permitted, and online or incremental if only the former applies.

In the latter case, there is an additional difficulty called concept drift. In
that case, the underlying model, which assign data to one ground-truth class
or another, changes over time, so that the relevance of the data is maximal
at the time of insertion and slowly decays as other data is inserted. Thus, if
the model is updated by considering each data equally, its accuracy will be
sharply reduced. If the algorithm used to build the model can handle the fully
dynamic problem, then it is possible to handle the concept drift by working
on a window of data, i.e. setting a constant t and only working on the last
t inserted data, deleting the oldest example each time a new one is inserted.
There are however algorithms built specifically for the online problem that can
handle concept drift.

Many variants of the decision tree method exist to deal with the online prob-
lem. However, to the best of our knowledge, the only variant compatible with
the fully dynamic problem is BOAT [22], and this method was not specifically
designed for this task.

25

26 CHAPTER 2. DYNAMIC DECISION TREES

2.1.1 Main contributions

This chapter presents a new algorithm for fully dynamic decision trees building
and maintenance, called FUDYADT. To the best of our knowledge, this is the
first decision tree algorithm to be specifically designed for the fully dynamic
setting. This new algorithm is based on a new theorem about the smoothness of
the Gini index and Gini gain, and also on a new objective for dynamic decision
trees. Theoretical guarantees and experimental results are also provided to
show the performance of our new algorithm.

2.1.2 Organization of the chapter

In this chapter, we first present a brief review of the literature about dynamic
decision trees. Then, we formulate the preliminary concepts necessary for
understanding the FUDYADT algorithm. Notably, among these preliminaries,
we state and prove a theorem on the smoothness of the Gini index and gain,
and we define a new objective for dynamic decision trees called “ϵϵϵ-feasibility”.
The two following sections present the FUDYADT algorithm itself and its
theoretical properties, and then its experimental performance compared, when
relevant, to the state-of-the-art EFDT algorithm, presented in Section 2.2. Fi-
nally, we conclude with a summary of the findings and suggestions for future
works around this topic.

2.1.3 Acknowledgements

Sections 2.3 and 2.4 are a modified version of the conference paper “Fully-
Dynamic Decision Trees” [10] presented in 2023 at the AAAI conference. This
paper is reproduced here in a modified version in compliance with the copy-
right agreement.

My contribution to the article was mainly on the “experiments” part. How-
ever, as part of my doctoral work, I extended the theorems and proof to training
sets with more than two labels. These extended versions are the ones presented
in that chapter. I did not contribute significantly to section 4 of the paper that
presents lower bounds on the memory use and computation time of algorithms
that build ϵϵϵ-feasible decision trees, nor did I expand it. Therefore, I only present
it briefly in Section 2.4.5.

2.2 Online decision trees: A brief literature review

There is a rich literature for online decision tree algorithms (see [41] for a
survey). We propose a quick overview of this literature.

The BOAT algorithm To the best of our knowledge, the first algorithm to
build and maintain decision trees in a dynamic setting is BOAT [22]. This is

2.2. ONLINE DECISION TREES: A BRIEF LITERATURE REVIEW 27

also, to the best of our knowledge, the only algorithm before ours to maintain
decision trees in a fully dynamic environment, not only an incremental one.

The BOAT algorithm was primarily designed to build a decision tree from
huge data, too big to be represented at once in memory. It works in the follow-
ing way: first, it takes a sample of the data and uses this sample to create a
sample decision tree. In this sample decision tree, the splitting features corre-
spond with high probability to the splitting features of the target decision tree,
and for each splitting threshold of the target tree, a range is given to which the
threshold belongs with high probability. Then, the data are sequentially loaded
in memory. The only data kept in memory are those that could contribute
in determining a target threshold, i.e. the data are directed to a node, where
their value on the splitting feature is within the range of the splitting threshold.
Finally, the algorithm goes up through the tree to detect where the best split
was possibly missed, and in that case the related subtree is rebuilt.

The dynamic maintenance of the tree is done by considering that the training
set at a given time is a sample of the training set after new insertions and
deletions. This assumption is reasonable, even in a concept drift setting, as
long as the concept drift is slow enough. The last part of the algorithm, which
checks if the best split was possibly missed, will trigger the recomputation of
some subtrees when the data have changed so much that the best split has
changed.

Hoeffding trees The Hoeffding tree algorithms, first introduced in [16] and
then improved and expanded in [21, 29, 31, 51], aims to build the tree using
incremental insertions of data, while using as little memory as possible. The
main idea is that the data are directed to leaves as they arrive, and only statistics
about the data are stored in each leaf. These statistics allow for the computation
of the gain, whether it is information gain or Gini gain, to split the data. Once
the difference between the two best splits exceeds a threshold called Hoeffding
bound, the leaf becomes an internal node. This bound ensures that the split is
the best with high probability. However, the statistics do not allow directing
the examples that contributed to find the split into the new leaves, therefore,
the new leaves are created with their statistics at 0.

Extremely Fast Decision Tree (EFDT) Finally, in 2018, the state-of-the-art
algorithm named Extremely Fast Decision Tree (EFDT), also known as Ho-
effding AnyTime Tree (HATT), was introduced [40]. This algorithm improves
the Hoeffding Tree algorithm by allowing to reconsider a split that was per-
formed before. Indeed, when the Hoeffding tree algorithm creates an internal
node, it considers this node permanent and drops the statistics that led to the
split. EFDT, on the other hand, keeps this statistics and keeps them up to
date. This way, if the best split according to the statistics would become much
better than the split used before, it will reconsider and change the split. This
process of reconsidering the splits allows EFDT to converge faster to better

28 CHAPTER 2. DYNAMIC DECISION TREES

solutions, and also to be resilient to concept drift. A paper published in 2022
[41] was dedicated to compare EFDT to other algorithms through “the largest
and most comprehensive set of testbenches in the online learning literature”,
and it showed that EFDT is “a superior alternative to Hoeffding Tree in a large
number of ensemble settings”.

Hoeffding trees and most of the following algorithms for online decision
trees focus on minimizing the memory usage. However, when working with
fully dynamic decision trees, it is much more difficult to reduce memory usage.
The theorems presented in Section 2.4.5 will show that it is impossible to
build and maintain fully dynamic decision trees that satisfy some reasonable
criteria (ϵϵϵ-feasibility, presented in section 2.3.2) with a memory usage lower
than Ω

(
n·d

k·logn

)
. Therefore, the algorithm presented in this chapter focuses

on minimizing the amortized computation time per update, rather than the
memory usage.

2.3 Preliminaries

2.3.1 Gini index and Gini gain smoothness

The Gini index and Gini gain were introduced in Section 1.1.5. The Gini gain is
one of the main metrics used for determining the best splits in decision trees.
We want to study to which extent a limited number of modifications to the
training set can change the Gini index or the best Gini gain from the set.

We use the following notation with o denoting a boolean operation:

δo =

{
1 if o is true
0 else

(2.1)

We then have the following equivalent definition of the Gini index:

Property 2.1. We denote by S = {(x1, y1), . . . (xn, yn)} a set of labeled examples.
Then we have:

g(S) =
2

n2

n∑
i=1

n∑
j=i+1

δyi ̸=yj (2.2)

Proof. We have
∑n

i=1

∑n
j=1 δyi=yj =

∑
y∈Y N2

S,y. From Equation (1.7) we have:

g(S) = 1− 1

n2

n∑
i=1

n∑
j=1

δyi=yj

⇔g(S) =
1

n2

n∑
i=1

n∑
j=1

1− δyi=yj

(2.3)

We know that 1 − δyi=yj = δyi ̸=yj . We rearrange the terms to find the sum in
Equation (2.2) and conclude the proof.

2.3. PRELIMINARIES 29

We call edit distance △(S, S ′) from one set of data S to another S ′ the
minimal number of insertions and deletions needed to build S ′ from S. We
first establish two lemmas on the local smoothness of the Gini index and the
Gini gain:

Lemma 2.2. Let S, S ′ be two sets of training data of size at least 1. If△(S, S ′) ≤ 1.
then |g(S)− g(S ′)| ≤ 2

max(|S|,|S′|)

Lemma 2.3. Let S, S ′ be two sets of training data of size at least 1. Let S1 and S2 the
two subsets created by a splitting function applied on S, and S ′

1 and S ′
2 the subsets

created by the same splitting function applied on S ′. If△(S, S ′) ≤ 1. then

|G(S, S1, S2)−G(S ′, S ′
1, S

′
2)| ≤

12

max(|S|, |S ′|)

Proof of Lemma 2.2. The case△(S, S ′) = 0 is trivial, therefore, we assume that
△(S, S ′) = 1. Let n = |S|. Without loss of generality, we assume that |S| =
|S ′|+ 1, and we denote S = {(x1, y1)} ∪ S ′ = {(x1, y1), . . . (xn, yn)}.

Let DS = 2
∑n

i=1

∑n
j=i+1 δyi ̸=yj . We see that g(S) = 1

n2DS . We also see that:

DS − 2(n− 1) ≤ DS′ ≤ DS

therefore we have:

g(S ′)− g(S) ≥
(

1

(n− 1)2
− 1

n2

)
DS −

2

n− 1
(2.4)

g(S ′)− g(S) ≤
(

1

(n− 1)2
− 1

n2

)
DS (2.5)

We can factorize each inequality using 1
(n−1)2

− 1
n2 = 2n−1

n2(n−1)2

We first study (2.5). We know that DS < (n− 1)2, and so we have:

g(S ′)− g(S) <
2n− 1

n2
<

2

n

Now, we study (2.4). First, note that if DS = 0 then g(S) = g(S ′) = 0 and
the lemma holds. We therefore focus on the case when DS > 0.

We note that if we consider the class y with the lowest number of examples
in S and move one example from that class to another, then the value of DS

is necessarily reduced or equal. We can apply this process recursively on any
training set S s.t. DS > 0, to create a new training set S∗ in which all examples
but one are in the same class. Since DS∗ = 2(n − 1) and the process only
decreases DS , we deduce that if DS > 0 then DS ≥ 2(n− 1).

30 CHAPTER 2. DYNAMIC DECISION TREES

Then, (2.4) becomes:

g(S ′)− g(S) ≥ 2n− 1

n2(n− 1)2
DS −

2

n− 1

≥ 2
2n− 1

n2(n− 1)
− 2

n− 1

≥ − 2

n

(
n2 − 2n+ 1

n(n− 1)

)
≥ − 2

n

(
n− 1

n

)
≥ − 2

n

Proof of Lemma 2.3. The lemma is trivial if △(S, S ′) = 0, therefore, we focus
on the case when △(S, S ′) = 1. From the definition of the Gini gain and the
triangular inequality, we get:

|G(S, S1, S2)−G(S ′, S ′
1, S

′
2)| ≤ |g(S)− g(S ′)| (2.6)

+

∣∣∣∣ |S1|
|S|

g(S1)−
|S ′

1|
|S ′|

g(S ′
1)

∣∣∣∣ (2.7)

+

∣∣∣∣ |S2|
|S|

g(S2)−
|S ′

2|
|S ′|

g(S ′
2)

∣∣∣∣ (2.8)

From Lemma 2.2, we know an upper bound for the part numbered (2.6). We
now search a bound for the two other parts, (2.7) and (2.8). Since△(S, S ′) = 1,
we know that either S1 = S ′

1 or S2 = S ′
2. Without loss of generality, we assure

S2 = S ′
2

|S1|
|S| g(S1) ≤ |S1|

|S|

(
g(S ′

1) +
2

max(|S1|,|S′
1|)

)
from Lemma 2.2

≤ |S1|
|S| g(S

′
1) +

2
|S|

≤ |S1|+1
|S|+1

g(S ′
1) +

2
|S| because |S1| ≤ |S|

≤ |S′
1|+2

|S′| g(S ′
1) +

2
|S|

<
|S′

1|
|S′| g(S

′
1) +

2
|S′| +

2
|S| because g(S ′

1) < 1

≤ |S′
1|

|S′| g(S
′
1) +

6
max(|S|,|S′|) because 1

2
≤ |S|

|S′| ≤ 2

(2.9)

Inverting S and S ′ in this sequence of inequalities leads to:

|S ′
1|
|S ′|

g(S ′
1) ≤

|S1|
|S|

g(S1) +
6

max(|S|, |S ′|)
(2.10)

2.3. PRELIMINARIES 31

Together, these two inequalities lead to:∣∣∣∣ |S1|
|S|

g(S1)−
|S ′

1|
|S ′|

g(S ′
1)

∣∣∣∣ ≤ 6

max(|S|, |S ′|)
(2.11)

The sequence of inequalities can also be used to find a bound to the part
numbered (2.8) but, since S2 = S ′

2, we can remove 2
|S| until the penultimate

inequality and therefore the bound is:∣∣∣∣ |S2|
|S|

g(S2)−
|S ′

2|
|S ′|

g(S ′
2)

∣∣∣∣ ≤ 4

max(|S|, |S ′|)
(2.12)

Altogether, we have:

|G(S, S1, S2)−G(S ′, S ′
1, S

′
2)| ≤

2

max(|S|, |S ′|)

+
6

max(|S|, |S ′|)

+
4

max(|S|, |S ′|)

(2.13)

Noting△∗(S, S ′) = △(S,S′)
max(|S|,|S′|) the relative edit distance, we can now estab-

lish the following theorem:

Theorem 2.4. Let S, S ′ be two sets of training data of size at least 1. Let S1 and S2 be
the two subsets created by a splitting function applied on S, and S ′

1 and S ′
2 the subsets

created by the same splitting function applied on S ′. Then:

1. |G(S, S1, S2)−G(S ′, S ′
1, S

′
2)| ≤

(
13− 1

|Y|

)
△∗(S, S ′)

2. |g(S)− g(S ′)| ≤
(
3− 1

|Y|

)
△∗(S, S ′)

This theorem proves that small variations in the set of data only causes
small variations in the Gini index, and in the Gini gain of any split of this set.

Proof for the Gini gain part. If△∗(S, S ′) ≥ |Y|−1
13|Y|−1

, then

(13− 1

|Y|
)△∗(S, S ′) ≥ |Y| − 1

|Y|
≥ |G(S, S1, S2)−G(S ′, S ′

1, S
′
2)|

and the theorem holds. Therefore, we focus on the case when △∗(S, S ′) <
|Y|−1

13|Y|−1
.

32 CHAPTER 2. DYNAMIC DECISION TREES

Let l = △(S, S ′). Then, there exist a sequence of training sets {S(0), . . . S(l)}
s.t. S(0) = S, S(l) = S ′ and ∀i ∈ [0, l − 1] : △(S(i), S(i+1)) = 1. We have:

|S(i)| ≥ max(|S|, |S ′|)−△(S, S ′)

≥ (1−△∗(S, S ′))max(|S|, |S ′|)

≥ (1− |Y| − 1

13|Y| − 1
)max(|S|, |S ′|) because△∗(S, S ′) <

|Y| − 1

13|Y| − 1

≥ 12|Y|
13|Y| − 1

max(|S|, |S ′|) (2.14)

We see from the triangular inequality that:

|G(S, S1, S2)−G(S ′, S ′
1, S

′
2)| ≤

l−1∑
i=0

|G(S(i), S
(i)
1 , S

(i)
2)−G(S(i+1), S

(i+1)
1 , S

(i+1)
2)|

and so we have:

|G(S, S1, S2)−G(S ′, S ′
1, S

′
2)| ≤

l−1∑
i=0

12

max(|S(i)|, |S(i+1)|)
Lemma 2.3

≤
l−1∑
i=0

12
12|Y|

13|Y|−1
max(|S|, |S ′|)

From Equation (2.14)

≤
(
13− 1

|Y|

)
△∗(S, S ′) because l = △(S, S ′)

Proof for the Gini index part. This proof is very similar to the one for the Gini
gain part, so we do not go into as many details. We first see that if△∗(S, S ′) ≥
|Y|−1
3|Y|−1

then the theorem holds, therefore, we focus on the case when△∗(S, S ′) <
|Y|−1
3|Y|−1

.
We define a sequence of training sets as in the previous proof. Knowing that

△∗(S, S ′) < |Y|−1
3|Y|−1

and in the same way that we have shown Equation (2.14),
we show that:

|S(i)| ≥ 2|Y|
3|Y| − 1

max(|S|, |S ′|) (2.15)

Finally, we can use the triangular inequality in the same way and find the
following:

|g(S)− g(S ′)| ≤
l−1∑
i=0

2

max(|S(i)|, |S(i+1)|)
Lemma 2.2

≤
l−1∑
i=0

2
2|Y|

3|Y|−1
max(|S|, |S ′|)

From Equation (2.15)

≤
(
3− 1

|Y|

)
△∗(S, S ′) because l = △(S, S ′)

(2.16)

2.3. PRELIMINARIES 33

2.3.2 ϵϵϵ-feasibility: a new performance guarantee for dynamic
decision trees

Fully computing a decision tree is computationally expensive. It would there-
fore not be efficient to recompute the whole decision tree at each insertion
or deletion of an example. To avoid this, our goal is not to compute the per-
fect decision tree at each step. Instead, we introduce a new objective called
ϵϵϵ-feasibility. Roughly speaking, a decision tree is ϵϵϵ-feasible if the Gini gain of
each of its splits is not too far from the Gini gain of the optimal split.

To clarify this definition, we denote by S+
v,j,a and S−

v,j,a the left and right
subsets of a training set Sv when splitting along the feature j and with threshold
or category a. It means that if the feature j is numerical, then:

S−
v,j,a = {(x, y) ∈ S : xj ≤ a}

S+
v,j,a = {(x, y) ∈ S : xj > a}

(2.17)

If the feature j is categorical, then:

S−
v,j,a = {(x, y) ∈ S : xj = a}

S+
v,j,a = {(x, y) ∈ S : xj ̸= a}

(2.18)

For any node v of a decision tree, we also denote by Sv the subset of the
training set that is associated with this node, i.e. the examples from the training
set that would be directed to or through that node if evaluated by the tree. We
can now define the ϵϵϵ-feasibility:

Definition 2.5 (ϵϵϵ-feasibility). Let k, h ∈ N, and let ϵϵϵ = (α, β) where α, β ∈ (0, 1].
A decision tree T is ϵϵϵ-feasible, with pruning thresholds (k, h), w.r.t. a training set S if
for every node v of the tree, the following conditions hold:

1. if |Sv| ≤ k or g(Sv) = 0 or depthT (v) = h, then v is a leaf, else if g(Sv) ≥ α,
then v is an internal node;

2. if v is an internal node and its splitting criterion is (j, a), then we have

G(Sv, S
+
v,j,a, S

−
v,j,a) ≥ G(Sv, S

+
v,j′,a′ , S

−
v,j′,a′)− β

for all (j′, a′) ∈ [d]× R;

3. if v is a leaf, then the label Lv associated with the leaf is a majority label of Sv;

For any fixed pruning thresholds k, h, we say that a fully dynamic decision
tree building algorithm is ϵϵϵ-feasible if, at any point t in time, the tree Tt built by
the algorithm is ϵϵϵ-feasible with respect to the training set that is up-to-date at
that time.

34 CHAPTER 2. DYNAMIC DECISION TREES

2.4 The Fully Dynamic Decision Tree algorithm

2.4.1 Main ideas

We first present a broad overview of our new algorithm. Our goal is to propose
an ϵϵϵ-feasible fully dynamic decision tree building algorithm. We also want this
algorithm to be as efficient as possible, especially when updating the model
to insertions and deletions. More precisely, we focus on the amortized cost of
updating, i.e. the mean computational cost per update (insertion or deletion).

The main idea is to use the smoothness properties presented in Theorem
2.4. This theorem states that the change in the gain of a splitting criterion after
a series of updates is linearly dependent on the number of updates. In other
words, to change the gain of a splitting criterion by a constant ε or more, one
needs to update the training set at least Ω(ε|S|) times. Therefore, it should be
enough to recompute any node of the tree every Θ(ε|Sv|) updates that affect
it to keep the tree consistent with the second condition of the ϵϵϵ-feasibility
definition. This process only requires keeping track of the number of updates
that affect each node. It does not require keeping an estimate of the gain of the
current split or any of the alternative splits.

The second idea is that if a node u is recomputed at some point in time
and a node v in the path from u to the root is recomputed a few updates later,
then u will be replaced in the process, making its recomputing a waste of
computational time. In fact, the worst-case scenario would be that a leaf would
need to be rebuilt at some time t, then its parent at time t+ 1 and so on all the
way up to the root at time t + h, with h the height of the tree. In that case, it
would be way more efficient to directly rebuilt the whole tree at time t.

If the condition to rebuild the node u is tight to keep the tree ϵϵϵ-feasible, it is
not possible to delay its rebuilding as it would make our tree not-ϵϵϵ-feasible. It
is possible however to check the nodes from u to the root to see if they would
need to be rebuilt soon, i.e. if the number |Sv| of examples in their training set
is close to the one of u and, if so, we can rebuild them instead.

We now proceed to the rigorous presentation of the algorithm. The algo-
rithm is composed of a procedure named BUILD, which defines how a given
node of the tree is built or rebuilt, and a procedure named UPDATE, which
defines how the algorithm deals with insertions and deletions.

2.4.2 The BUILD procedure

This procedure is shown as Algorithm 2.1. It is a special case of Hunt’s frame-
work algorithm presented as Algorithm 1.1 in Section 1.1.4. Sr is the training
set. η is the current depth of the tree. If BUILD is called to build the tree from
the root, then η = 1. The procedure is called first at the initialization of the tree,
and then by the UPDATE procedure when needed.

The constants k and α
2

are respectively the number of examples and the Gini

2.4. THE FULLY DYNAMIC DECISION TREE ALGORITHM 35

Algorithm 2.1 FUDYADT.BUILD

1: procedure BUILD(Sr, η)
2: r ← new vertex, c(r)← 0, s(r)← |Sr|
3: if |Sr| ≤ k or g(Sr) ≤ α

2
or η = h then

4: Store Sr in a self-balancing binary tree
5: T ← decision tree with r as root
6: Lr ← any majority label in Sr

7: else
8: (j, a)← argmax{G(S, S+

r,ι̂,â, S
−
r,ι̂,â) : (ι̂, â) ∈ [d]× R}

9: T1 ← BUILD(S+
r,j,a, η + 1)

10: T2 ← BUILD(S−
r,j,a, η + 1)

11: T ← decision tree with root r, T1, T2 as left, right subtrees, and split
(j, a)

12: end if
13: return T
14: end procedure

score of the training set of a node, below which the node must be a leaf. The
constant h is the maximal depth of the tree.

First, a new vertex r of the tree is created. The variable c(r) is the number of
updates that the node has received since last built and it is initialized to 0. The
variable s(r) is the size of the training set of the node when last built, and it is
initialized to the size of Sr. Then, the procedure checks if any of the constants
k, α

2
or h is reached (Line 3). If so, the node is a leaf and a tree of height 1 is

returned. If not, the best splitting criterion (j, a) is determined (Line 8). Finally,
two children subtrees are built from the training subsets S+

r,j,a and S−
r,j,a and set

as left and right children of r.

Theorem 2.6. The BUILD procedure can be implemented to run in time

O(hd|Sr|(log |Sr|+ |Y|))

If all the features are categorical, this can is reduced to

O(|Sr|(hd|Y|+ log |Sr|))

Proof. There are five operations in the procedure that cannot be computed in
constant time:

• Computing the Gini index at Line 3

• Storing the training set of a leaf at Line 4

• Finding the best splitting criterion at Line 8

• Building the new training subsets S+
r,j,a and S−

r,j,a from the criterion, used
in Lines 9-10

36 CHAPTER 2. DYNAMIC DECISION TREES

• Building the left and right children at Lines 9-10

We suppose that Sr is stored in a doubly linked list, so that it can be constructed
or enumerated in time O(|Sr|). The Gini index computation at Line 3 only
requires going through the data once and counting the number of each label,
so it can be computed in time O(|Sr|+ |Y|).

Storing the data of a leaf requires |Sr| insertions in a self-balancing tree of
maximal size |Sr|, so it is done in time O(|Sr| log |Sr|)

Algorithm 2.2 Computing the best threshold for a numerical feature

1: procedure BEST_THRESHOLD_NUMERICAL(Sr, j, initial_counters)
2: S∗ ← Sr sorted along the feature j
3: best_gain← 0
4: best_threshold← min(xj : (x, y) ∈ S∗)
5: counters_below← {y0 : 0, . . . y|Y| : 0}
6: counters_above← initial_counters
7: for (x, y) ∈ S∗ do
8: counters_above[y]← counters_above[y]− 1
9: counters_below[y]← counters_below[y] + 1

10: if next example has a different value for the feature j then
11: gain← compute_gain(counters_below, counters_above)
12: if gain > best_gain then
13: best_gain← gain
14: best_threshold← xj

15: end if
16: end if
17: end for
18: return best_threshold
19: end procedure

The procedure to find the best threshold for a numerical feature j is shown
in Algorithm 2.2. The variable “initial_counters” is a dictionary that contains
the number of examples for each label. This dictionary is a by-product of the
Gini index calculation and can therefore be given as input with no time cost.
Line 10 ensures that we only compute the gain for a valid split along the feature,
i.e. that we do not split values that have the same value for the feature.

In Algorithm 2.2, Line 2 is computed in time O(|Sr| log(|Sr|)). Line 4 is
computed in constant time, since S∗ is sorted. Lines 5-6 are computed in time
O(|Y|). If the counters are stored in arrays of size |Y|, the gain computation at
Line 11 is done in time O(|Y|) and all the other lines except for the loop can
be computed in constant time. Therefore, the loop can be computed in time
O(|Sr||Y|) and the whole procedure can be computed in time O(|Sr|(log(|Sr|) +
|Y|)).

If the feature j is categorical, then the procedure for computing its best
threshold goes as follows: for each category of this feature, counters are set

2.4. THE FULLY DYNAMIC DECISION TREE ALGORITHM 37

to the number of examples of this category that has each label. To compute
this counters requires going through all the examples in Sr, which can be done
in time O(|Sr|) because Sr is stored in a self-balancing tree. Then, for each
category of the feature, the counters are enough to compute the Gini gain in
time O(|Y|). All in all, finding the best category a for a given feature j and the
associated gain can be computed in timeO(|Sr|+bj|Y|), where bj is the number
of categories for the feature j in Sr, and since bj ≤ |Sr|, then the computation
can be done in time O(|Sr||Y|).

Building the training subset S+
r,j,a requires |S+

r,j,a| insertions in a doubly
linked list, computed in time O(|S+

r,j,a|). The same is true for S−
r,j,a and since

|S+
r,j,a| + |S−

r,j,a| = |Sr|, the construction of both these children subsets can be
computed in O(|Sr|).

We now see that we can compute the BUILD procedure of an internal node
except for the recursion Lines 9-10 in time O(d|Sr|(log(|Sr|) + |Y|)), reduced to
O(d|Sr||Y|) if all the features are numerical. Also recall that |S+

r,j,a|+|S−
r,j,a| = |Sr|

and ∀a, b ∈ R+ : a log a + b log b ≤ (a + b) log(a + b). Therefore, we can see
by induction that the BUILD procedure including its recursion lines can be
computed in timeO(hd|Sr|(log(|Sr|)+ |Y|)), reduced toO(|Sr|(hd|Y|+log |Sr|))
if all the features are categorical.

2.4.3 The UPDATE procedure

Algorithm 2.3 FUDYADT.UPDATE

1: procedure UPDATE(T, (x, y), o)
2: Px ← vκ1 , . . . , vκℓ

with vκ1 = r(T), vκℓ
= v(x)

3: update Svκℓ
according to (x, y), o

4: Update Lvκℓ
if necessary

5: for i = 1, . . . , ℓ do
6: c(vκi

)← c(vκi
) + 1

7: if c(vκi
) ≥ ε · s(vκi

) then
8: ŝ← 2⌈log2 s(vκi)⌉
9: j ← min{j′ ∈ {0, . . . , i} : s(vκj′

) ≤ ŝ}
10: T ′ ← BUILD(Svκj

, j)
11: return T ′

12: end if
13: end for
14: end procedure

The UPDATE procedure is presented in Algorithm 2.3. T is the decision tree
before the update, (x, y) is the labeled example to insert or delete and o is the
type of update, either INS for “insertion” or DEL for “deletion”. The constant
ε ∈ R+ is a parameter that decides how rarely the nodes need to be rebuilt.
Theorem 2.7 will give the value of ε for FUDYADT to be ϵϵϵ-feasible.

38 CHAPTER 2. DYNAMIC DECISION TREES

The first step of this algorithm is to direct the new example from the root to
the relevant leaf w.r.t. the splitting criteria of the nodes. This gives the path Pvκℓ

.
Then, the training set of each node is updated. This may lead to a change in the
label of the leaf vκℓ

if the label of the inserted example becomes the majority
label, or if the deleted example belongs to the majority label. If so, the label is
updated at Line 4.

Then for all vertices in the path from the root to the leaf, its count of updates
is incremented. If this count overpasses the threshold ε · s(vκi

) then the node
needs to be rebuilt. However, as explained in Section 2.4.1, we do not want to
rebuild this node now and its parent in a near future. To avoid this, we set a
new threshold ŝ = 2⌈log2 s(vκi)⌉, i.e. the smallest power of 2 greater or equal to
s. Instead of rebuilding vκi

, we recompute the vertex of which size is less or
equal to ŝ, and that is closest to the root.

Theorem 2.7. If ε = min

(
1

k+1
, α
6− 2

|Y|
, β

13− 1
|Y|

)
, then the tree initialized with BUILD

and updated with UPDATE is (α, β)-feasible, with pruning thresholds (k, h)

The value of ε in this theorem depends on |Y| to be as tight as possible.
However, if |Y| is unknown or if we want to unify the value of ε, it is possible
to use ε = min

(
1

k+1
, α
6
, β
13

)
with the same guarantees and only a slight decrease

in efficiency.

Proof. First, we see that BUILD builds a ϵϵϵ-feasible tree.
Let us suppose that, after calling UPDATE, a vertex v does not match the

conditions for the tree to be ϵϵϵ-feasible. We denote by S the training set of that
vertex at that time, and S0 the training set of that vertex at the last time BUILD

was used on it. We see that c(v) ≥ △(S0, S) and so c(v)
s(v)
≥ △∗(S0, S). We also

know from Line 7 of UPDATE that c(v)
s(v)
≤ ε because BUILD would have been

called on v or one of its ancestors otherwise. Therefore, we will show that any
condition on v that would cause the tree to not be ϵϵϵ-feasible would also cause
△∗(S0, S) > ε. From that, we will deduce that such vertex can not exist and
that the tree is ϵϵϵ-feasible. We go through all the ϵϵϵ-feasibility conditions that
could be broken by v.

v should be a leaf This condition applies if |S| ≤ k, g(S) = 0 or depthT (v) ≥ h.
It is broken if v is an internal node. UPDATE does never change the depth of a
vertex or change it from leaf to internal or vice versa without calling BUILD. It
is therefore impossible that depthT (v) ≥ h and that v is an internal node.

If v is an internal node, then it means that |S0| > k and g(S0) >
α
2

. If |S| ≤ k
then △∗(S0, S) ≥ 1

k+1
≥ ε. Else, we need g(S) = 0 for the condition to apply.

This means that g(S0)− g(S) ≥ α
2

and thanks to Theorem 2.4, this means that
△∗(S0, S) ≥ α

6− 2
|Y|
≥ ε.

2.4. THE FULLY DYNAMIC DECISION TREE ALGORITHM 39

v should be an internal node This condition applies if |S| > k, g(S) ≥ α
and depthT (v) < h. It is broken if v is a leaf. For v to be a leaf, we need either
|S0| ≤ k, g(S0) = 0 or depthT (v) = h. Since the depth of v can not have changed
since it was last built, we can disregard the option that depthT (v) = h. With
a similar reasoning as the previous condition, we get that if |S0| ≤ k then
△∗(S0, S) ≥ 1

k+1
≥ ε, and if g(S0) = 0 then△∗(S0, S) ≥ α

6− 2
|Y|
≥ ε.

The Gini gain should be close to the optimal We denote by (j, t) the current
splitting criterion, i.e. the optimal splitting criterion of S0, and (j∗, t∗) the
optimal splitting criterion of S. We also denote by G the gain of the current
splitting criterion on S, G∗ the gain of (j∗, t∗) on S, G0 the gain of (j, t) on S0

and G∗
0 the gain of (j∗, t∗) on S0.

This criterion is broken if G∗ − G > β. Since (i, t) is the best splitting
parameter for S0, we know that G0 −G∗

0 > 0. Therefore G0 −G+G∗ −G∗
0 > β

and so max(|G0 − G|, |G∗ − G∗
0|) > β. Thanks to Theorem 2.4, this leads to

△∗(S0, S) >
β

13− 1
|Y|
≥ ε.

The label of a leaf should be the majority Line 4 of UPDATE ensures that
this condition is never broken.

2.4.4 Performance of the FUDYADT algorithm

For each vertex v of a tree, we denote by st(v) the size of the training set of
that vertex when it was last (re-)built using BUILD before or at time t. We also
denote by St

v the training set of the vertex at time t. We prove the two following
lemmas which will be used to study the performance of the algorithm:

Lemma 2.8. Let Tt be a decision tree built by the BUILD procedure and then updated
through t ≥ 0 calls to the UPDATE procedure. Then, for each vertex v of the tree,
(1− ε) · st(v) ≤ |St

v| ≤ (1 + ε) · st(v).

Lemma 2.9. Let T be a decision tree built on a training set S. If every vertex v uses a
split with a gain at least γ > 0 w.r.t. Sv, then T has height O

(
log |S|

γ

)
.

Proof of Lemma 2.8. We know that ct(v) ≥ ||St
v| − st(v)|, with ct(v) the number

of updates to the training set of v since it was last built. But we also know from
Line 7 of algorithm 2.3 that at the end of any call of UPDATE, ct(v) ≤ εst(v).
Therefore, we have ∣∣|St

v| − st(v)
∣∣ ≤ εst(v)

and this is equivalent to the lemma.

Proof of Lemma 2.9. We consider an internal node v of the tree, and u and z its
children. We know from Theorem 2.4 that:(

3− 1

|Y|

)
△∗(Sv, Sz) ≥ g(Sv)− g(Sz)

40 CHAPTER 2. DYNAMIC DECISION TREES

But since△∗(Sv, Sz) =
|Su|
|Sv | , we have(

4− 1

|Y|

)
|Su|
|Sv|
≥ g(Sv)− g(Sz) +

|Su|
|Sv|

≥ g(Sv)− (1− |Su|
|Sv|

)g(Sz)

≥ g(Sv)−
|Sz|
|Sv|

g(Sz)−
|Su|
|Sv|

g(Su) ≥ γ

(2.19)

Therefore we know that
(
4− 1

|Y|

)
|Su| ≥ γ|Sv| and so |Su| ≥ γ

4
|Sv|. But then

|Sz| ≤ 3γ
4
|Sv| and by the same reasoning we can find the same result on Su.

Hence, the size of the training set of any vertex at depth η is in O(γη|S|).
But since the size of the training set of a vertex can not be below 1, then the size
of the tree is in O(log |S|

γ
).

We can now prove the performances theorem:

Theorem 2.10. If T is a tree built from BUILD and not updated since. The UPDATE
procedure can be implemented so that T invocations of UPDATE on T run in time

O
(
T hd log(n)

ε
(log(n) + |Y|)

)
= O

(
T d log

2(n)

ε2
(log(n) + |Y|)

)
(2.20)

If all the features are categorical, the time is reduced to

O
(
T hd log(n)

ε
|Y|
)

= O
(
T d log

2(n)

ε2
|Y|
)

(2.21)

Proof. We denote by cost(T) the running time of T invocations of UPDATE.
In Algorithm 2.3, the lines that can not be implemented to run in constant

time are Line 2, which can be computed in time O(h), Line 3, which can be
computed in time O(log n) because Sr is stored in a self-balancing tree in the
leaf, Line 4, which can be computed in timeO(|Y|) as long as we keep counters
in the leaf that can be updated in constant time, and Line 9, which can be
computed in time O(h). There is also the BUILD procedure. Its time complexity
has been given in Theorem 2.6. Finally, to call BUILD, one needs to rebuild the
training set Svκj

. Recall that, although the training sets in the leafs are stored in
self-balancing trees, the training sets used for calling BUILD are double-linked
lists. Therefore, rebuilding Svκj

can be done is O(|Svκj
|) by visiting the subtree

of vκj
and aggregating the data at the leaves.

Let the invocations of UPDATE be identified by consecutive integer from 1
to T and let B ⊆ [T] be the invocations when BUILD is called. For each t ∈ B,
let also i(t) and b(t) be such that vi(t) and vb(t) are respectively the node that

2.4. THE FULLY DYNAMIC DECISION TREE ALGORITHM 41

triggers the call to BUILD (Line 7 of Algorithm 2.3) and the node on which
BUILD is called (Line 9) at time t. Then:

cost(T) ≤
T∑
t=1

O(h+ log(n) + |Y|)

+
∑
t∈B

O
(
hd|St

vb(t)
|(log(n) + |Y|)

) (2.22)

The first term contributes O(T (h+ log(n) + |Y|)). We also have∑
t∈B

|St
vb(t)
| ≤ 2

∑
t∈B

st(vb(t)) From Lemma 2.8 and ε ≤ 1

≤ 4
∑
t∈B

st(vi(t)) Lines 8-9 of UPDATE

≤ 4

ε

∑
t∈B

ct(vi(t)) Line 7 of UPDATE

≤ 4

ε

∑
t∈B

ct(vb(t)) b(t) is an ancestor of i(t)

(2.23)

We now have

cost(T) ≤O(T (h+ d+ log(n) + |Y|))

+
∑
t∈B

O
(
hd

ct(vb(t))

ε
(log(n) + |Y|)

)
(2.24)

We consider an invocation t of UPDATE and (x, y) the labeled example that
is inserted or deleted at that time. Px is the path of the example in the tree, i.e.
the set of nodes affected by the update. We denote by Ct = {vk1 , . . . vkM} ⊆ Px

the set of nodes from Px such that BUILD(Sti
vki

,depth(vki)) will be executed at
some time ti ≥ t. In other words, the nodes themselves will be rebuilt at some
point in time. We suppose that Ct is sorted so that the highest nodes come first.
In other words, vk1 is an ancestor of every other node of Ct, vk2 is an ancestor
of every other nodes except vk1 and so on.

We see that if i < j and ti and tj are the time at which vki and vkj respectively
will be recomputed, then ti > tj because otherwise vkj would be deleted when
vki would be rebuilt and would not exist at time tj to be rebuilt. We also see that
∀i ∈ [M − 1], we have ⌈log2(sti+1(vki))⌉ > ⌈log2(sti+1(vki+1

))⌉, because otherwise
vki would be rebuilt at time ti+1 instead of vki+1

, because of Line 8 of Algorithm
2.3. Since ti > ti+1 neither vki nor vki+1

is rebuilt between time t and ti, and so

∀i ∈ [M − 1] : ⌈log2(st(vki))⌉ > ⌈log2(st(vki+1
))⌉

We deduce that:
∀t ∈ T : |Ct| ≤ ⌈log2(n)⌉ (2.25)

42 CHAPTER 2. DYNAMIC DECISION TREES

We see that ∀t ∈ B, ct(vb(t)) equals the number of times it was in a set Ct since it
was last built. Since the sets Ct contain by design only nodes that will be built
at some time t ∈ B, we have:∑

t∈B

ct(vb(t)) =
T∑
t=1

|Ct|

≤
∑
t∈B

|Ct|

∈ O(T log(n))

(2.26)

We combine this result with Equation (2.24) and we get

cost(T) ≤ O
(
T hd log(n)

ε
(log(n) + |Y|)

)
We conclude this proof for numerical features by using Lemma 2.9.

The proof for categorical features is the same, except that we use the specific
result for categorical features of Theorem 2.6 in Equation (2.24).

The amortized cost of UPDATE is obtained by dividing Equations (2.20) and
(2.21) by T . This is because, even if the tree has been updated before, it will
be rebuilt entirely after at most n updates. Therefore, Theorem 2.10 applies at
least to the last T − n updates and, since the first n updates are computed in
finite time, then their computation time has no impact on the amortized cost.

2.4.5 Lower bounds

The paper “Fully-Dynamic Decision Trees” [10] also contains the following
theorems:

Theorem 2.11. Let k∗, h∗ ≥ 1, and let ϵϵϵ = (α, β) with 0 ≤ α ≤ 1 and 0 ≤ β < 1
24

.
Any weakly (ϵϵϵ, 3

4
)-feasible fully dynamic algorithm with pruning thresholds k∗, h∗

uses space Ω
(

n·d
k·logn

)
, where d is the number of features and n is the maximum size of

the active set at any point in time.

and

Theorem 2.12. Let k, h ≥ 1 and α, β ∈ [0, 1
2
). For arbitrarily large n and d there

exist sequences of n INS and DEL operations over {0, 1}d × {0, 1} such that, in the
matrix access model, any weakly (ϵϵϵ, 2/3)-feasible fully dynamic algorithm has expected
running time Ω(nd).

The notion of the weakly (ϵϵϵ, 3
4
)-feasibility is a generalization of the ϵϵϵ-feasibility,

so that every ϵϵϵ-feasible algorithm is also weakly (ϵϵϵ, 3
4
)-feasible. Therefore, these

theorems ensure that ϵϵϵ-feasible algorithms can not be much more space- or
time-efficient than FUDYADT.

For the reasons explained in the Section 2.1.3, these theorems are not studied
in more details in this thesis.

2.5. EXPERIMENTS 43

d # of examples 1-class

Electricity 8 45 311 UP
Forest Covertype 54 581 011 2
INSECTS v1-v5 33 24 150 – 79 986 *-male
KDDCUP99 41 494 021 smurf.
NOAA Weather 8 18 159 1
Poker 10 829 201 0

Table 2.1: Datasets statistics.

2.5 Experiments

2.5.1 Experimental settings

We compare FUDYADT against the state-of-the-art algorithms for incremental
decision tree learning, EFDT [40], using the MOA software [5]. Our goal is
to show that FUDYADT performs at least similarly as this competitor in the
incremental setting. We also show the time performance of FUDYADT in a
fully dynamic setting.

Settings. We implemented FUDYADT in C++.1 We conducted all experiments
on an Ubuntu 20.04.2 LTS server equipped with 144 Intel(R) Xeon(R) Gold 6154
@ 3.00GHz CPUs and 264 GB of RAM. We observe that the algorithms have
not been implemented in the same programming language, which limits the
relevance of the runtime comparison.

Datasets. Our datasets are shown in Table 2.1. We have chosen them among
standard datasets for classification; some of them, such as INSECTS, feature
the so-called concept drift. Not all datasets have binary labels. Because the
experiments have been performed on a first version of our algorithm, that
worked only with binary labels, we adapted the datasets to have only two
labels. For the INSECTS datasets, we assigned label 1 to the union of male
classes. For every other dataset, we assigned label 1 to the majority class. The
INSECTS dataset contains 5 sets of examples, each representing a different way
of introducing concept drift.

Input models. We consider two input models. Let (x1, y1), . . . , (xT , yT) be the
sequence of examples as given by the dataset at hand (typically in chronological
order). The simplest model is one in which data are inserted in the order of the
dataset, aka incremental model. Formally, a first batch of g data, called grace
period, is provided to initialize the model. Then at every t ∈ [g + 1, T] the
algorithm receives INS(xt, yt). This model is supported by both algorithms

1 https://github.com/GDamay/dynamic-tree

https://github.com/GDamay/dynamic-tree

44 CHAPTER 2. DYNAMIC DECISION TREES

(FUDYADT and EFDT), hence we use it to compare them against each other.
Because the data feature concept drift that EFDT claims to handle and we do
not, FUDYADT is tested in that setting with a sliding window. This means
that every time it receives an example for insertion, the oldest example of its
training set is subsequently deleted.

The next model involves deletions and thus is supported only by FUDYADT.
It is the random update model (RU): for all t ∈ [T], with probability 1/2 the
algorithm receives INS(x, y) where (x, y) is a new example chosen uniformly
at random from the remaining training set, and with probability 1/2 it receives
DEL(x, y) where (x, y) is chosen uniformly at random from the active set St.
This last model will help check the performances of FUDYADT in a fully
dynamic setting. Its F1-score performances are not expected to vary with ε.

In all cases, before performing any insertion INS(x, y), the example (x, y) is
assigned a label ȳ by the decision tree, which is used for the evaluation of the
F1-score.

Metrics. The results of the models are evaluated using the F1-score presented
in Section 1.1.3.

Parameters. For FUDYADT, we let α = 0, β = 0 k = 1, h ∈ {5, 10}, and we
manually set ε ∈ [0, 2]. Note that it breaks the condition of Theorem 2.7. It
allows us to test the effect of ε without fine-tuning of the other parameters. The
parameters of EFDT are set to the original values specified by the authors; we
only vary the grace period in {100, 500, 1000} to find the value yielding highest
F1-score. For the size of the sliding window, we use W ∈ {100, 1000}. Several
parameter configurations show similar trends.

2.5.2 Limitations

We acknowledge several limitations in these experiments that limit the extent
of the comparison between FUDYADT and its competitors. First, the program-
ming language is not the same, FUDYADT being implemented in C++ while
the competitors are implemented in Java. The memory consumption is also not
comparable, FUDYADT having memory needs in O(dn) while EFDT has been
specifically designed to limit the memory consumption. Finally, while EFDT is
evaluated in a purely incremental setting, FUDYADT is evaluated in a sliding
window setting.

Therefore, the comparison between FUDYADT and its competitors will be
very limited. We only aim at showing that, although FUDYADT is capable of
handling new settings, i.e. fully dynamic settings, it is also at least as good as
its competitors in the classical online setting with concept drift.

2.5. EXPERIMENTS 45

2.5.3 Results and discussion

FUDYADT versus EFDT. We compare the F1-scores of EFDT and FUDYADT
when allowed the same mean time per update. To this end, we tuned the param-
eter ε of FUDYADT to make its running time very close to (and never exceeding)
that of EFDT. The results are shown in Table 2.2; remarkably, FUDYADT out-
performs consistently EFDT in terms of F1-score. We can argue from these
results that FUDYADT performs at least as good as EFDT. However, we refrain
from drawing stronger conclusions from these results, as all the limitations we
discussed in Section 2.5.2 may have played a role.

FUDYADT on the incremental (sliding window) setting These experiments
aim at finding how changes in ε affect the performance of the algorithm, i.e.
its ability to adapt to concept drift, as well as the effect on the mean time
per updated. We set h = 10, k = 1, α = 0, and W = 100 for Electricity and
W = 1000 otherwise.

Figure 2.1 shows the F1 score as a function of ε (left column) and the average
time per update in milliseconds in logarithmic scale as a function of ε (left
column). The smaller ε is, the more often subtrees are recomputed, yielding a
higher amortized running time. The more frequent recomputing also allows
the tree to capture the concept drift better, yielding higher F1-scores.

This behavior is clear in the Electricity and Poker datasets, where from ε = 0
to ε = 1 the F1 score decreases by roughly 0.1 and the running time decreases
by three orders of magnitude. For INSECTS the F1-score is much more stable.
A good tradeoff could be ε = 0.1, where the F1-score is close to that of ε = 0 but
with an amortized running time per update smaller by orders of magnitude
(≈ 0.5ms). However, this tradeoff probably depends on the speed at which the
concept drift affects the data. A slower concept drift will make the frequent
recomputing less important, and hence will favor higher values of ε.

All other datasets and parameter settings yielded very similar qualitative
behaviors.

FUDYADT the Random Updates setting Figure 2.2 shows the average run-
ning time for the RU model. We observe a similar trend on this figure as on
Figure 2.1. This result confirms that our algorithm performs well even in a
context of random insertions and deletions.

FUDYADT versus BOAT At the time the paper was written for the confer-
ence, we did not know of the BOAT algorithm, which explains why it is not part
of the experiments. However, given that BOAT computes an exact decision tree
without trying to leverage the smoothness of the gain function, our algorithm
gives much more control on how often the tree need to be rebuilt. Furthermore,
the paper that presents BOAT [22] states several times that when it is possible
to hold all the data in memory, BOAT is less efficient than an algorithm that do

46 CHAPTER 2. DYNAMIC DECISION TREES

so. Therefore, we are confident that with the right choice of the parameter ε,
our algorithm is more efficient than BOAT.

2.6 Conclusion and future work

In this chapter, we have presented a new algorithm for building and maintain-
ing decision trees in a fully dynamic setting.

This solution is based on two novel theoretical contributions. First, the
formulation of a new smoothness theorem for the Gini index and Gini gain.
This theorem states that the Gini index of a training set, when this set is updated
by insertions and deletions of points, never changes by more than 3 times the
relative number of updates, i.e. the number of updates divided by the size of
the set. Furthermore, the Gini gain of any split performed on that set never
changes by more than 13 times the relative number of updates.

The second theoretical contribution that the solution uses is a new objective
for fully dynamic decision trees. We call this new objective “ϵϵϵ-feasibility”. A
decision tree that meet this objective splits its training set almost as best as
possible, meaning that the Gini gain of its splits is close to the optimal gain,
while also meeting other criteria of tree building as the maximal depth.

Then, this chapter has presented the FUDYADT algorithm that relies on
the theorem for maintaining an ϵϵϵ-feasible fully dynamic decision tree. With
an amortized time per update (insertion or deletion) of O

(
d log3(n)

ε2

)
when the

number of class |Y| is small compared to d and log(n). This algorithm has been
compared with the EFDT algorithm and proven to be at least as efficient in an
incremental setting, while also operating within the fully dynamic setting.

A very interesting future work would be to study the same kind of fully
dynamic algorithm for the information gain criterion. Would it be possible
to get similar smoothness properties, leading to similar guarantees for the
algorithm?

Decision trees are also much used as the basis for the random forest models.
It would be very interesting to study how our algorithm can be adapted to
create fully dynamic random forests.

A final future work direction could be to try to combine our finding with
the ideas of the BOAT algorithm, among which the bootstrapping, to design
algorithms that would maintain fully dynamic decision trees with a high
probability, and with a very high efficiency.

2.6. CONCLUSION AND FUTURE WORK 47

F1-score amortized time/update (ms)
(a) Electricity

F1-score amortized time/update (ms)
(b) INSECTS

F1-score amortized time/update (ms)
(c) Poker

Figure 2.1: Performance of FUDYADT in the incremental model on the Electric-
ity, INSECTS and Poker datasets (top to bottom), in terms of F1-score (left) and
amortized milliseconds per update (right) as a function of ε.

48 CHAPTER 2. DYNAMIC DECISION TREES

EFDT FUDYADT
RT F1 RT F1 ε

Electricity 1.65 72.05 1.53 83.93 0.15
Forest Covertype 42.47 83.64 42.37 90.33 0.29
INSECTS v1 4.85 88.96 4.51 92.17 1.00
INSECTS v2 3.13 87.40 3.09 92.53 0.92
INSECTS v3 7.54 92.51 7.43 94.76 1.00
INSECTS v4 6.30 91.15 6.02 91.91 0.95
INSECTS v5 6.84 89.85 6.77 93.34 1.00
KDDCUP99 17.72 97.98 17.43 99.91 0.17
NOAA Weather 0.73 80.78 0.73 81.43 0.36
Poker 16.26 79.69 16.14 86.07 1.03

Table 2.2: Running time in seconds (labeled RT) and F1-score (labeled F1) of
EFDT and FUDYADT in the incremental model. The last column shows the
value of ε in UPDATE.

(a) Electricity (b) INSECTS

(c) Poker

Figure 2.2: Amortized running time per update (in milliseconds) of FUDYADT
in the RU model on the Electricity, Poker and INSECTS datasets.

Chapter 3
Personalized PageRank for Graph
embedding

3.1 Introduction

Graph embeddings are one of the main techniques for graph mining. They
allow the use of standard machine learning techniques designed for vectorial
data, even when the input data are graphs. For example, graph embedding
allows the use of techniques such as k-means or DB-scan for node clustering,
or decision trees for node classification.

However, as most embedding techniques, graph embedding does not easily
produce interpretable results. This is because the embedding is affected by
many orders of relation, from the direct neighborhood to long paths, and
these relations are very difficult to sum up in an interpretation that could be
understood by a human user.

The lack of interpretable graph embeddings is a problem, as it prevents
any subsequent interpretable use of these embeddings. For example, decision
trees are interpretable machine learning models, but if the input data are not
interpretable, then the interpretation provided by these models will not make
sense to any human user. This leads us to propose a method for embedding
graphs that is inherently interpretable.

3.1.1 Main contributions

The main contribution in this chapter is a new embedding, called PageRank
Factorization-based Interpretable Graph Embedding (PARFAITE) that aims
first and foremost at providing an highly interpretable graph embedding. This
novel approach is based on multiple ideas. The first one is to consider the
Personalized PageRank (PPR) matrix as a data matrix and hence centering it
before decomposing using an SVD. The second idea is to use the unaltered
singular values in the left and right representations, instead of the rooted

49

50 CHAPTER 3. PERSONALIZED PAGERANK FOR GRAPH EMBEDDING

singular values as matrix decomposition embeddings usually do. The final
idea is not to use the result of the SVD, i.e. the projection of the matrix on the
singular spaces, as the embedding. Instead, we perform a clustering and project
back the centers of the clusters onto the original space to get the embedding.
This last part ensures a high interpretability through communities.

In Section 3.4.3, we also provide a new metric for interpretability and,
in Section 3.6.2, we present a novel dataset constructed from all pages of
the French version of Wikipedia, which we release for reproducibility and
benchmarking.

Our last contribution is an exploration of the properties of the PPR ma-
trix, presented in Section 3.7. To the best of our knowledge, the properties
stated in this section were not known beforehand. Among other things, this
exploration gives us a glimpse on the possibility of an embedding using the
eigendecomposition of a matrix linked to the PPR. We also discover that this
eigendecomposition is closely related to the spectral embedding of graphs, and
this sheds a new light on the spectral embedding.

3.1.2 Organization of the chapter

This chapter begins with a presentation of the PageRank vector, the Person-
alized PageRank matrix and their properties. Then, a short section presents
the notion of communities in graphs. A section is then dedicated to graph em-
beddings, with a presentation of a taxonomy and a brief history of the existing
graph embeddings. This section also features a presentation of the problem of
interpretability of graph embedding, with a review of the existing metrics and
the presentation of a new one. After this, our new embedding, PARFAITE, is
presented, along with experiments that show its higher interpretability and its
reasonable performance on the task of link prediction. Finally, a section study
some new properties of the PPR matrix and their implications to the spectral
embedding of graphs, a short section presents the work done on a practical
application for the clustering of YouTube channels and users, and the chapter
ends with a recap of the findings and suggestions for future works around this
topic.

3.1.3 Acknowledgements

This chapter is based on the conference paper “PARFAITE: PageRank-Matrix
Factorization for Interpretable Graph Embeddings”, which was presented at
the 2024 ASONAM conference. The proceedings of this conference are still
in press at the time of that writing. Parts of this paper are reproduced in a
modified version in this chapter with permission from Springer Nature.

3.2. PRELIMINARIES ON PAGERANK 51

3.2 Preliminaries on PageRank

The PageRank score was briefly introduced in Section 1.2.2. We propose here a
study of this metric and its personalized version, and of their computation.

Let us first recall the definition of the PageRank score and give some equiv-
alent definitions.

3.2.1 PageRank

The first definition of PageRank with a parameter α ∈ [0, 1) uses a random walk
with restart in the graph. The walker starts from a vertex drawn uniformly
at random, i.e. ∀v ∈ V,P (V0 = v) = 1

n
. Then, at each step, it makes one of the

following two moves:

• Restart The walker goes to any vertex of the graph at random.

•Walk The walker draws uniformly at random one of the neighbors (out-
neighbors in the case of directed graphs) of the vertex it is on and goes to
that neighbor.

At each step, the probability to restart is α and the probability to walk is
1 − α. Let us denote by pi ∈ Rn the vector that, for each vertex, contains the
probability of being on that vertex at step i. The random walk is defined by the
following sequence:

p0 = 1
n
1

pi+1
⊤ = α p0

⊤︸︷︷︸
Restart

+(1− α)pi
⊤M︸ ︷︷ ︸

Walk

(3.1)

where 1 ∈ Rn is the vector of which all elements are 1.

Property 3.1. The sequence defined in Equation (3.1) converges to the vector π defined
by

π⊤ = αp0
⊤ + (1− α)π⊤M (3.2)

The vector π is the PageRank vector of the graph.

Proof. Let f : Rn → Rn be the iteration function, f(x)⊤ = αp0
⊤ + (1− α)x⊤M .

We have
∀x,y ∈ Rn : f(x)⊤ − f(y)⊤ = (1− α)(x− y)⊤M

Since M is a stochastic matrix, we have ∀z ∈ Rn : ||z⊤M ||1 ≤ ||z||1. Therefore,
we have

∀x,y ∈ Rn : ||f(x)⊤ − f(y)⊤||1 ≤ (1− α)||(x− y)||1
This proves that f is a contraction mapping on Rn and so the Banach fixed-point
theorem [15] concludes the proof.

52 CHAPTER 3. PERSONALIZED PAGERANK FOR GRAPH EMBEDDING

The PageRank vector of the graph G is the asymptotic limit of the sequence
defined in Equation (3.1), i.e. it is the vector π defined in Equation (3.2).

Property 3.2. The PageRank vector π defined in Equation (3.2) can be equivalently
written as the series

π⊤ = α
+∞∑
i=0

(1− α)ip0
⊤M i (3.3)

Proof. We can show by induction that the general term of the sequence de-
scribed in Equation (3.1) is

pi = (1− α)ip0
⊤M i + α

i−1∑
j=0

(1− α)jp0
⊤M j

It has already been shown that the sequence converges.
Given that limi→+∞ ||(1− α)ip0

⊤M i||1 = 0 then

pi ∼i→+∞ α
i−1∑
i=0

(1− α)ip0
⊤M i

3.2.2 Personalized PageRank

In a graph G = {V,E}, the Personalized PageRank (PPR) vector πu of a vertex
u ∈ V with parameter α is the asymptotic vector of the sequence defined by{

p0 = eu

pi+1
⊤ = αp0

⊤ + (1− α)pi
⊤M

(3.4)

with eu ∈ Rn the vector of which the only non-zero element is 1 at the uth

position.
This definition is identical to Equation (3.1) except for the first term. It is

easy to see that Properties 3.1 and 3.2 also apply.

Definition 3.3 (Personalized PageRank (PPR) matrix). The Personalized PageR-
ank matrix Π ∈ Rn×n of a graph G = {V,E} with parameter α is the matrix of
which each line is the PPR vector of the related vector in the graph.

We know from Properties 3.1 and 3.2 that:

πu
⊤ = αeu

⊤ + (1− α)pu
⊤M

and

πu
⊤ = α

+∞∑
i=0

(1− α)ieu
⊤M i

3.2. PRELIMINARIES ON PAGERANK 53

We can deduce that:

Π = αI + (1− α)ΠM (3.5)

and

Π = α
+∞∑
i=0

(1− α)iM i (3.6)

where I ∈ Rn×n is the identity matrix.
Finally, we see from Equation (3.5) that:

Π = α(I − (1− α)M)−1 (3.7)

Note that I − (1− α)M is a strictly diagonally dominant matrix, and hence
is invertible.

We use the PPR matrix to introduce the reversed PPR vector:

Definition 3.4 (Reversed PPR). The Reversed PPR vector of a vertex u is the
column associated with u in the PPR matrix Π. In other words, the reversed PPR
score from u to v is the probability Πvu that the PageRank random walk starting at the
vertex v ends at u.

3.2.3 Interpretations

A first interpretation of the PageRank and Personalized PageRank vectors has
been given in its definition. We propose two other interpretations.

In the first new interpretation, a content (e.g. information, liquid. . .) flows
from the vertices in p0. At each step, a fraction α of the still-flowing content
it kept or dissipated on its current vertex and the rest divides equally to keep
flowing to the neighbors. The PageRank or PPR vector is the proportion of the
content that have been kept or dissipated on each vertex, i.e. the exposure of
each vertex to the content.

The second interpretation comes directly from Equation (3.6) and uses
another random walk. In this new random walk, the initial position of the
walker is selected as in the first definition of PageRank or PPR, but then the
actions of the walker are one of these two:

• Stop The walker stops walking and the random walk ends

•Walk The walker draws uniformly at random one of the neighbors (out-
neighbors in the case of directed graphs) of the vertex it is on and goes to
that neighbor.

The probability of stopping is α. The value for a vertex v in the PageRank
or PPR vector is the probability that the walker is on that vertex when he stops
walking. This interpretation helps to understand why it is usually enough to
compute only a few steps of the walk to approximate the PageRank or PPR
vectors. For example, if α = 0.1 then after only 66 steps the probability that the
walker is still walking is less than 10−3.

54 CHAPTER 3. PERSONALIZED PAGERANK FOR GRAPH EMBEDDING

3.2.4 Computing the PPR matrix and vectors

We present the most-used algorithm for computing the PPR matrix and vectors.
We denote by π(p0) the PPR vector generated from the PageRank random

walk with restart using p0 as the initial vector. This can be the PageRank vector,
a rooted PPR vector, or any PPR vector starting from a set of nodes.

The main idea of this algorithm is to build sequences (qi)i∈N and (ri)i∈N,
that maintain the following invariant

∀i ∈ N,
(
π(p0)

)⊤
= qi

⊤ + ri
⊤Π (3.8)

The pseudocode is shown as Algorithm 3.1. In this algorithm, the parameter
α is the parameter of the PPR walk, M is the stochastic matrix of a random
walk in the graph, p0 ∈ (R+)n is the initial random walk vector, max_iter∈ N
is the number of iterations and ε ∈ (0, 1) is the maximum accepted residual
value. p0 is a vector of probability, so it must satisfy ||q0||1 = 1 . The vectors pi
are the successive approximations of the PPR vector, while the vectors ri are
the residual values, that are still to be considered in the approximation. This
algorithm can be seen as a simulation of the interpretation as content flowing
given in Section 3.2.3. With that interpretation, pi is the content that has already
stopped while ri represents the content that keeps flowing.

The convergence of this algorithm is guaranteed by the fact that M is a
stochastic matrix and hence ∀i ∈ N : ||riM ||1 ≤ ||ri||1. Therefore ∀i ∈ N :
||ri+1||1 ≤ (1 − α)||ri||1. ||ri||1 is upper bounded by a geometric sequence
of common ratio less than 1, therefore it converges to 0Rn and, thanks to the
invariant in Equation (3.8), we deduce that qi converges to π(p0)

Algorithm 3.1 PPR computing algorithm using an invariant

1: procedure APPROXIMATE_PPR(α, M , p0 ∈ (R+)n, max_iter∈ N, ε ∈ (0, 1))
2: i = 0
3: qi = 0Rn

4: ri = p0

5: while i < max_iter and ||ri||1 < ε do
6: i++
7: pi = pi−1 + αri−1

8: ri
⊤ = (1− α)ri−1

⊤M
9: end while

10: return pi
11: end procedure

3.3 Preliminaries on communities in graphs

The concept of communities in graphs is very close to the concept of clusters, in
that they both represent groups of nodes that are densely linked together and

3.4. PRELIMINARIES ON GRAPH EMBEDDING 55

sparsely linked with the rest of the graph. These two concepts are sometimes
used interchangeably, e.g. [39, 19].

To the best of our knowledge, there is no rigorous and fully-consensual
definition that would separate the two concepts. In this thesis, we name
“cluster” the abstract concept of a group of densely-linked nodes. In that sense,
the quality of a clustering can be evaluated with measures as the modularity
[45]. On the contrary, we name “community” a group of nodes that it makes
humanly sense to group together, e.g. social communities, genre of film or field
of research. With this definition, the evaluation of an automatically-detected
community requires comparing it with a ground truth.

The main problem associated with communities in graph mining is the
so-called community detection problem. It is an unsupervised problem in
which we want to extract from the graph groups of nodes that belong to the
same community. Some research have also focus on a semi-supervised version
of the problem that consists in, given a small set of nodes that belong to the
same community, finding the other nodes that belong to this community. See
for example [28, 59, 34]. However, in this thesis, we use communities as a target
for the interpretability of the embedding. Therefore, we do not address the
community detection problem.

A new dataset We release a new dataset with ground-truth communities
(Wikipedia fr).1 This dataset has been constructed from all the pages of the
French version of Wikipedia.2 In such a graph, nodes represent Wikipedia
pages while directed edges represent links between the corresponding Wikipedia
pages. In the French version of Wikipedia, it is common to add links to so-
called “portals” at the end of the page, which serve as reference pages for given
topics and can be seen as ground-truth communities. We observe that links to
portals are rarer in the English version of Wikipedia, while portals are more
semantically related to their corresponding Wikipedia pages than Wikipedia
categories. Such novel graph contains 2.52 millions vertices, 102 million edges
and 2 700 ground-truth communities.

3.4 Preliminaries on graph embedding

3.4.1 Taxonomy of graph embedding methods

As introduced in Section 1.2.4, the objective of graph embedding is to find a
function ϕ : V → Rk, that represents the vertices of the studied graph into a
low-dimension vectorial space Rk. The result can be represented as a matrix
Y ∈ Rn×k in which each line is the embedding of the related vertex. There

1 https://gitlab.telecom-paris.fr/gabriel.damay/WikipediaFRNetwork
2 All pages from the main space of Wikipedia, i.e. all the pages usually accessed by the

public, excluding discussions, user pages etc.

56 CHAPTER 3. PERSONALIZED PAGERANK FOR GRAPH EMBEDDING

exists in the literature a consensual taxonomy of the methods to perform such
embedding [11, 24]. This taxonomy contains three main classes of techniques,
namely the Matrix Factorization, the Random Walk and the Deep Learning
techniques.

A Matrix Factorization technique is based on a n × n matrix X of which
each element represents some sense of proximity between the two related
vertices. For example, the simplest of these matrices is the adjacency matrix
A of the graph. Then a factorization method uses the eigendecomposition
or the Singular Value Decomposition and parts or all of the results of this
decomposition are used as the embedding results. When a non-symmetric
decomposition is performed as the SVD X ≈ UΣV ⊤, each vertex can receive
an embedding both from U and V . In that case, the embeddings from U and
V are usually called respectively left embedding and right embedding.

A Random Walk technique consists in sampling random walks in the graph
and then embed the paths of these random walks, considering that they reflect
the structure of the graph.

Some Matrix Factorization techniques are deeply related to Random Walk
techniques because the matrices they are based on represent probabilities to go
from one edge to another in a random walk. For example, as defined in Section
3.2.3, the Personalized PageRank matrix is the probability matrix of a random
walk with restart and therefore the matrix and an embedding derived from it
could be approximated by sampling this random walk.

Finally, as suggested by their name, Deep Learning techniques rely on
deep learning algorithms to learn the embedding of the vertices. Two main
approaches exist, namely Autoencoder techniques and Graph Convolutional
Networks (GCN). Autoencoders are neural networks, that consist in a first
part called the encoder of which role is to compute the embedding and a
second part called the decoder of which role is to retrieve the graph or part of
it based on the embedding vectors. The two parts are trained together in an
unsupervised manner. Graph Convolutional Networks on the other hand first
find an embedding based on the direct neighborhood of each vertex, and then
iteratively takes into account the embedding of vertices further away.

3.4.2 A brief history

One of the first graph embedding techniques was introduced in 2001 and is
called spectral embedding [4]. Given an undirected graph, its Laplacian matrix
L = D −A is symmetric and positive semidefinite. Therefore, this matrix has
an eigendecomposition, i.e. there exist a diagonal matrix Σ ∈ Rn×n and an
unitary matrix U ∈ Rn×n so that:

L = UΣU⊤ (3.9)

The values in D called eigenvalues are in increasing order. The first eigen-
value will always be 0, and there will be as many eigenvalues that are 0 as there

3.4. PRELIMINARIES ON GRAPH EMBEDDING 57

are connected components in the matrix [4]. The embedding vectors, are the
columns of U , called eigenvectors, except for the first one which corresponds
to the eigenvalue of 0.

If we denote by Y the embedding matrix, this embedding has been shown
in [4] to solve the following problem:

Y =

min

X∈Rn×k

n∑
u=1

n∑
v=1

||Xu,· −Xv,·||22Auv

s.t. X⊤
1 = 0Rk

X⊤X = I

(3.10)

with Xu,· the uth line of X .
The first constraint X⊤

1 = 0Rk ensures that the embeddings are centered,
and the second constraint X⊤X = I ensures that the embedding dimensions
are uncorrelated.

The algorithm HOPE also relies on a matrix factorization technique and
was presented in 2016 [46]. This algorithm is the closest to the one we present
in Section 3.5. A parameter of this algorithm is the proximity matrix it will
decompose. This can be chosen in a range of matrices the algorithm is defined
on, including the personalized Katz and PageRank matrices. Then the chosen
matrix is decomposed using a generalized version of the SVD. This results in
two matrices U ,V ∈ Rn×k, and a diagonal matrix Σ ∈ Rk×k. The left and right
resulting embeddings are UΣ

1/2 and V Σ
1/2.

The first Random Walk embedding named DeepWalk was presented in 2014
[48]. This algorithm consists in sampling random walks of fixed length and it
considers the sequence of vertices that form each random walk as a sentence
of a corpus. The embedding is then computed by using Language Processing
tools. Specifically, this method uses the SkipGram words embedding model.

This idea was taken one step further in 2016 with the very famous embed-
ding method called node2vec [25]. In this method, the random walk is biased
by two parameters p and q. The parameter p limits the “return” likelihood of
the random walk, i.e. a high value of p will make it unlikely that the walker
goes back to the node it just left. The parameter q limits the “spreading” be-
havior of the random walk, i.e. a high value of q will make it unlikely that the
walker goes to a neighbor of the current node that would not also be a neighbor
of the previous node.

3.4.3 The problem of interpretability

The interest for explainable algorithms is growing recently among the broad
research community and in the general public alike. Many data-processing al-
gorithms are fed with embeddings of complex data. If the embedding methods
are not interpretable, there is little hope to provide satisfying explanations of
the result of the algorithm. As a result, many recent papers focus on developing

58 CHAPTER 3. PERSONALIZED PAGERANK FOR GRAPH EMBEDDING

embedding methods that are interpretable, such as [36] and [56] for image and
video processing respectively. In the field of graph embeddings, most of the
efforts have focused on defining measures to assess the interpretability of a
graph embedding algorithm, with community-based metrics emerging as one
of the most popular metrics. In particular, [23] and [33] develop three different
community-based interpretability metrics and evaluate node2vec and HOPE
in terms of those metrics. Those works suggest that a satisfactory solution for
an interpretable graph embedding is still missing.

Metrics overview

Several metrics have been proposed to evaluate the interpretability of a graph
embedding, such as the Interpretability Score (IS) [23], the Betweenness Cen-
trality Importance (BCI) and Closeness Centrality Importance (CCI) [33]. Those
metrics all consider the vector representation of a given node interpretable if it
encodes somehow whether that node belongs to some real-world communities.
To define them, we call “the value of a vertex u in the embedding dimension
k” the kth value in the vector vu that represents u as a result of the embedding.
We also denote by {C1, . . . CG} a set of ground-truth communities as defined in
section 3.3.

Interpretability score (IS)

The Interpretability Score (IS) was presented in [23]. Consider the kth dimension
of our embedding, and let g be the index of one of the ground-truth communi-
ties. To compute the IS for a (k, g) pair, a top score IStop(k,g) and a bottom score
ISbottom(k,g) must be computed first. The top score is the recall@|Cg| of the top-
value vertices of the embedding, i.e. the ratio of the |Cg| vertices of maximum
value in the kth embedding dimension that belongs to Cg. The bottom score is
defined similarly on the lowest values. These scores evaluate respectively how
well the highest and lowest values of the embedding reflect the belonging to
the group.

The article then proposes to aggregate the scores by dimension or ground-
truth communities using aggregation functions fg∈[0,G] : RG −→ R and h :
R2 −→ R. These functions can be either the “max” or the “mean” function.

IS =
K∑
k=1

fg∈[0,G]

(
h(IStop(k,g), ISbottom(k,g))

)
(3.11)

Betweenness Centrality Importance (BCI) and Closeness Centrality Impor-
tance (CCI)

These scores were introduced in [33]. They are defined based on the well-
known Betweenness Centrality and Closeness Centrality scores, introduced in
[6], and which have been presented in Section 1.2.2.

3.4. PRELIMINARIES ON GRAPH EMBEDDING 59

Betweenness Centrality Importance (BCI) Let Cg be a community, as defined
in Section 3.3. Let v, ui, uj ∈ Cg be three vertices of that community, so that
v ̸= ui ̸= uj . We call “Local Betweenness Importance” of v between ui to uj the
ratio:

LBIui,uj
(v) =

σuiuj
(v)

σuiuj

(3.12)

where σuiuj
is the number of distinct shortest paths from ui to uj , and σuiuj

(v)
is the number of these shortest paths that goes through v. In other words,
LBIui,uj

(v) is the ratio of the shortest paths from ui to uj that go through v.3

Then the Betweenness Centrality Importance of a vertex v ∈ Cg w.r.t. the
community Cg is:

BCIg(v) =

∑
ui,uj∈Cg :ui ̸=uj ̸=v LBIui,uj

(v)

nv

(3.13)

where nv is the number of pairs of vertices in Cg, such that at least one of the
shortest paths between them goes through v. In other words, the BCI score of a
vertex v is the mean of its non-zero Local Betweenness Importance scores. If
nv = 0, then the score is set to 0.

Given an embedding dimension d and a community Cg the top-BCI score,
denoted by BCI+d,g is a metric of how the vertices of top-value in the embedding
dimension d match the community. It uses the set N+

d,g, which is defined as the
set of |Cg| vertices of highest values in the embedding dimension. Then, BCI+d,g
is defined by:

BCI+d,g = mean{BCIg(v) : v ∈ N+
d,g ∩ Cg ∧ BCIg(v) ̸= 0} (3.14)

The bottom-BCI score BCI−d,g is defined similarly using the vertices of lowest
values in the embedding dimension, and the final BCI score BCId,g for the
dimension d and the community Cg is the maximum of BCI+d,g and BCI−d,g.

Finally, the BCI score of the dimension BCId is:

BCId = max
g∈[G]

BCId,g (3.15)

and the BCI score of the embedding is the mean of the BCI scores of its dimen-
sions.

Closeness Centrality Importance (CCI) Then the Closeness Centrality Im-
portance of a vertex v ∈ Cg w.r.t. the community Cg is:

CCIg(v) =
|Cg| − 1∑

ui∈Cg ,ui ̸=v d(v, ui)
(3.16)

3 The original article does not define the Local Betweenness Importance and directly intro-
duces the BCI score with equation (3.13). However, we think that this intermediary step
helps to understand both the computation and the meaning of this score.

60 CHAPTER 3. PERSONALIZED PAGERANK FOR GRAPH EMBEDDING

where d(v, ui) is the length of the shortest path from v to ui. This is the inverse
of the mean distance from v to the other vertices of the community. Note that
CCIg(v) is not defined when the community in not connected.

Then, the aggregation to a single metric for the whole embedding is very
similar to the BCI. First, a top- and a bottom-CCI score is computed as the
mean of the non-zero CCI scores of the vertices of highest and lowest values in
the embedding dimension that belong to the community:

CCI+d,g = mean{CCIg(v) : v ∈ N+
d,g ∩ Cg ∧ CCIg(v) ̸= 0} (3.17)

Then the CCI scores of a dimension is the maximum of its top and bottom
scores over all the communities. Finally, the CCI score of the embedding is the
mean of the CCI scores of the dimensions.

Limitations of the BCI and CCI The BCI or CCI score for an embedding
dimension and a community is the mean of the non-zero scores for the vertices
that belong to N+

d,g ∩ Cg (see equations (3.14) and (3.17)). The fact that only
the non-zero scores and only the vertices from the community are considered
make it very possible that the results of these metric would not really reflect
the interpretability of the embedding.

Let us consider for example a community Cg and two embedding dimen-
sions k1 and k2 so that the first one contains only one very central vertex of Cg

among its top vertices, and the second contains this same vertex plus another
slightly less central vertex of Cg. Then, although arguably much more inter-
pretable w.r.t. the gth ground-truth community, the k2 embedding dimension
will have a lower score than the k1 one.

A new interpretability metric: CISIP

A weak point of the metrics already proposed in the literature is that, although
they evaluate the fitness of an embedding dimension to a ground-truth group,
they do not evaluate how well the embedding separates the data and the
redundancy between the dimensions.

Let us take the IS as an example: if 50% of the |C1| highest values for the first
dimension belong to C1, then IStop(1,1) = 0.5. But then it is possible that 50% of
the highest values for the second dimension are made either of the exact same
part of C1, or of the other points of C1. The former case would denote a strong
redundancy for the interpretation of these dimensions, while the latter case
would denote that the first group is halved between these dimensions, hence
reducing the interpretability of both dimensions. In both cases, IStop(2,1) = 0.5.

On top of that all these metrics only consider the nodes that receive top- or
bottom-|Cg| scores from the embedding, and all these vertices are considered
with equal weight. It seems however natural to consider that the importance
should be decreasing before reaching the |Cg| threshold, e.g. the vertex with
the highest value should have higher importance than the vertex with the

3.4. PRELIMINARIES ON GRAPH EMBEDDING 61

second-highest value. Similarly, it seems that the importance should not drop
to 0 after the |Cg|th value: if two embedding dimensions have the exact same
top-|Cg| vertices, but one has its (|Cg| + 1)th vertex belonging to Cg while the
other has not, it seems natural to consider that the first one is more interpretable
w.r.t. Cg.

Algorithm 3.2 CISIP

1: procedure CISIP(E, {C1, . . . CG}, f)
2: l← min(K,G)
3: {(k1, g1), . . . (kl, gl)} ← hungarian(E, {C1, . . . CG})
4: sum_scores← 0
5: for i ∈ [l] do
6: sum_scores← sum_scores + Weighted_Kendall_Tau(E·,ki , f(Cgi))
7: end for
8: return sum_scores/l
9: end procedure

To tackle these weaknesses, we propose the new Complete Interpretability
Score Integrating Priority (CISIP) metric. The procedure to compute this metric
is presented in Algorithm 3.2. The input parameters are the embedding matrix
E ∈ Rn×k in which each line corresponds to a vertex and each column to an
embedding dimension, the set of ground-truth communities {C1, . . . CG}, and a
smoothing function f that, given a community Cg, creates a vector f(Cg) ∈ Rn

that scores how much each vertex belong to the community, or how important
each vertex is to the community. The simplest of these function, which we
call the “identity function”, gives a score of 1 to the nodes that belong to the
community, and 0 to the other nodes:

∀u ∈ V,
(

identity(Cg)
)
u
=

{
1 if u ∈ Cg

0 else
(3.18)

Then, CISIP assign each embedding dimension to a unique community at
Line 3.4 This is done using the Hungarian algorithm for optimal assignment.
Given two sets P and Q and a score s(pi, qj) for each pair (pi, qj) ∈ P ×Q, this
algorithm finds the assignments {(pi1 , qj1), . . . (pil , qjl)}, with l = min(|P |, |Q|)
that maximizes the sum of scores of the pairs, with the constraint that each
element of the smaller set must be uniquely assigned with an element of the
bigger set.

In our case, the sets are the set of indices [K] of the embedding dimensions,
and [G] of the communities. For each pair (k, g) we would ideally use the
weighted Kendall Tau score of E·,ki and f(Cgi) (explained later in this section),
as this would make the assignment maximize the final CISIP score. However,

4 If there are fewer communities than dimension, then each community is assigned to a
unique dimension instead.

62 CHAPTER 3. PERSONALIZED PAGERANK FOR GRAPH EMBEDDING

the weighted Kendall Tau score is computationally expensive, and it would be
untractable to compute it for each pair of embedding dimension and commu-
nity. Therefore, we use a much simpler and much more time-efficient score at
this step: the sum of embedding dimension values for the vertices of the com-
munity. To account for the fact that vertices belonging to the community can
have high negative scores instead of high positive scores, we use the maximum
between this sum and its opposite:

s(k, g) = max
(
(−
∑
u∈Cg

Eu,k), (
∑
u∈Cg

Eu,k)
)

(3.19)

Note that this is effectively the absolute value of the sum but, crucially, we
need to keep track of whether we keep the sum or its opposite, in order to
know whether we expect the vertices with the highest scores or those with the
lowest scores to match the community.

Once this assignment has been computed, we score each pair (k, g) of the
assignment. We first transform the community Cg into a vector using the
smoothing function f . This function gives to each vertex a value that reflects
its belonging or importance in the community. Then, the weighted Kendall
Tau scoring function is used to score similarity between the vector and the
embedding dimension (Line 6). This function was introduced in [53]. It scores
two vectors r and s between −1 and 1. The score 1 is reached when the ranking
of the indices in both vectors is the same, i.e. the index of highest value is the
same in both vectors, as is this index of second-highest value and so on, and
there are no ties, i.e. ∀i, j : ri ̸= rj and si ̸= sj . The score −1 is reached when
the ranking is opposite between the two vectors, i.e. the index of highest value
in r is the index of lowest value in s and so on, and there are no ties. Crucially,
this scoring function values more the higher-rank indices.

Finally, the CISIP score is the mean weighted Kendall Tau score of the pairs
assigned together.

The smoothing function is a parameter of the CISIP metric. In this thesis,
we consider the identity function, which is defined in Equation (3.18), the
Personalized PageRank of the community, and the Mean Neighbors Belonging
(MNB) function, which is defined as follows:

∀u ∈ V,
(

MNB(Cg)
)
u
=

1

d+u

∑
v∈N+(u)

(
identity(Cg)

)
v

(3.20)

Note that, as explained in Definition 1.16, we can define the out-neighborhood
of a vertex in an undirected graph as equal to the neighborhood. This way, the
definition of MNB applies both to directed and undirected graphs.

One weakness of our method that should be noted is that ties in any of
the vectors that would not be in the other vector would reduce the score.
This behavior is actually wanted when the tie is in the embedding dimension
because an embedding with ties is arguably less interpretable when these

3.5. A NEW INTERPRETABLE GRAPH EMBEDDING 63

ties are not also in the ground-truth scoring, but it limits drastically the max
achievable score when the ground-truth scoring contains many ties (e.g. when
the smoothing uses the identity or the Mean Neighbors Belonging function).

3.5 A new interpretable graph embedding

3.5.1 Overview

We introduce the new PageRank Factorization-based Interpretable Graph
Embedding (PARFAITE) method. It produces two embeddings, PARFAITE_L
(left) and PARFAITE_R (right).

Algorithm 3.3 PARFAITE

1: procedure PARFAITE(mP : Rn → Rn)
2: U , Σ, V ← SVD(mP)
3: clustering← kmeans(concat(normalize(UΣ), normalize(V Σ)))
4: C ← clustering.clusters_centers
5: PARFAITE_L← UC⊤

·,d:
6: PARFAITE_R← V C⊤

·,:d
7: return PARFAITE_L, PARFAITE_R
8: end procedure

Figure 3.1 illustrates the algorithm. A pseudocode of our algorithm is given
in Algorithm 3.3. The parameter mP is a function that, for each vector v ∈ Rn,
approximate Π̄v. Section 3.5.3 gives more details about this function.

Our method consists of three main parts. First, a truncated Singular Values
Decomposition is performed on the centered PPR matrix (Line 2 of Algorithm
3.3). To overcome the issues of computing and representing the PPR matrix
exactly for very large graphs, we employ a function m so that ∀v ∈ Rn : m(v) ≈
Π̄(v), where Π̄ is the centered PPR matrix. This approximation function will be
defined in section 3.5.3.

This results in two representations of the vertices as UΣ and V Σ, illustrated
on Figures 3.1b and 3.1c.

Then, vertices are clustered, with each vertex being represented by a con-
catenation of its left and right representation (Line 3). This provides the central
points of the communities in the space of these representations, stored in the
matrix C. These central points are represented on Figure 3.1d. Finally, our
left and right embeddings, respectively PARFAITE_L and PARFAITE_R are com-
puted by projecting back these central points onto the original spaces (Lines
5-6). The results are represented on Figures 3.1e and 3.1f.

64 CHAPTER 3. PERSONALIZED PAGERANK FOR GRAPH EMBEDDING

(a) Initial centered matrix Π̄

(b) Projection on the left singular subspace

(c) Projection on the right singular subspace

Left Right
(d) Centers of clusters
in the singular sub-
spaces

(e) Left embedding PARFAITE_L

(f) Right embedding PARFAITE_R

(g) Ground-truth community belonging

Figure 3.1: Illustration of the PARFAITE embedding algorithm applied on the
graph on Figure 3.2c. For layout reasons, the scale of the matrix 3.1a is much
smaller than the scale of the other matrices, and the matrices 3.1b, 3.1c, 3.1e
and 3.1f are transposed.
An SVD is performed on the matrix 3.1a resulting in the matrices 3.1b and 3.1c.
Then a clustering results in the cluster centers on Subfigure 3.1d. Finally, these
centers are projected back on the original space, resulting in the matrices 3.1e
and 3.1f. Subfigure 3.1g gives the ground-truth community belonging.

3.5. A NEW INTERPRETABLE GRAPH EMBEDDING 65

(a) Star of cliques (b) Ring of stars (c) Toy Graph from SBM

(d) Π−αI matrix of the star
of cliques

(e) Π−αI matrix of the ring
of stars

(f) Π− αI matrix of the toy
graph from SBM

Figure 3.2: Toy graphs and their respective Π− αI matrices. On each graph, a
community is highlighted, the red stars vertices belonging exclusively to the
community, and the green diamonds ones belonging both to the highlighted
community and to at least one other. On each matrix, the rows and columns
relative to the red star vertices are highlighted through red and orange boxes,
and the rows and columns relative to the green diamond vertices are high-
lighted through green and cyan boxes. We use Π− αI instead of Π for better
readability.

3.5.2 Interpretation of the steps

The PARFAITE method relies on the well-established fact that the PPR vector of
each vertex often contains large scores at dimensions corresponding to vertices
it shares at least one community with, while it contains small scores at other
dimensions [28, 34]. When we consider the PPR vector as an importance
scoring of the vertices of the graph w.r.t. the source vertex, it means that the
vertices of the graph that are the most important to the source vertex are those
which share a community with it.

This property strengthens the one stated in [59] that two nodes are likely
to share a community not only if the PPR score from one node to the other is
high, but especially if their PPR vectors are similar., meaning that they “agree
with each other in terms of their personalized views about the network” [59].

66 CHAPTER 3. PERSONALIZED PAGERANK FOR GRAPH EMBEDDING

We illustrate this property with three toy graphs represented in Figure 3.2.
The first two graphs provide ideal cases where we can find communities
according to two natural community definitions: a) a clique, where each node
is connected to every other node in the community, and b) a star where all
nodes but one are connected to a single node (e.g. they are connected to a same
influencer in social media). In particular, Figure 3.2a represents a star of cliques,
while Figure 3.2b represents a ring of stars. Observe that the communities in
the graphs of Figure 3.2 do overlap, which means that some nodes belong to
several communities at the same time. On each graph represented in Figure 3.2,
one community is outlined. Red star vertices are those that belong exclusively
to the outlined community, while green diamond vertices belong to the outlined
community and at least another one. The graph in Figure 3.2c is built using
the Stochastic Block Model (SBM) with 100 vertices, 300 edges, 4 communities,
with each pair of vertices of a same community being 100 times more likely
to be connected than two vertices from different communities. As a result, in
Figure 3.2c, there are 19 vertices belonging to exactly two communities, 7 of
which are depicted in green.

Figures 3.2d, 3.2e and 3.2f show the corresponding PPR matrices. Recall
that each row represents the PPR vector of some vertex v, i.e. the PPR scores
when v is the source vertex of the random walk. Indeed, we can see that PPR
vectors contain larger scores to vertices of a same community as the source
node, generating “square” patterns in the matrices.

Similarly, we observe that the reversed PPR vectors (columns in the matrix)
exhibit the same pattern of large scores inside the community and low scores
outside.

However, there might be relatively few vertices that have very large PPR
scores even if they do not share communities with other nodes. This is apparent
in Figure 3.2e, where we observe that the central nodes in the neighboring
cliques have higher scores in the PPR vector of the studied community than
other nodes in the same community. The reversed PPR is not affected by this
issue.

To avoid this bias, we define the Π̄ matrix obtained by centering the columns
of Π.

We study this centering using the interpretation of a PPR vector as the final
probability vector of a random walk that has probability α at each step to stop
permanently (see Section 3.2.3). We have the following property

Property 3.5. Let Xf be the random variable of the final node of the walk, and X0 the
random variable of the initial node of the walk. We have:

Π̄i,j =
1

n
P (Xf = j)

(
P (X0 = i|Xf = j)− P (X0 = i)

)

3.5. A NEW INTERPRETABLE GRAPH EMBEDDING 67

Proof. We know that Πij = P (Xf = j|X0 = i). Therefore, we see that:

Π̄i,j = P (Xf = j|X0 = i)− P (Xf = j)

=
P (X0 = i|Xf = j)P (Xf = j)

P (X0 = i)
− P (Xf = j)

If we look at the rows of this new matrix, each entry is then the excess of
probability to go to each vertex from the reference vertex, compared to the
agnostic probability. If we look at the columns and because P (Xf = j) is a
constant along a column, each entry is proportional to the excess of probability
to come from each vertex given that the walk arrived at the reference vertex.

Then a Singular Value Decomposition is performed. One of the main
advantages of the SVD, which make it especially attractive for embedding, is
that it is known to filter out the noise in the data. More specifically, the SVD
removes the small variations between data so that only the main patterns in
the matrix are kept in the final result [35].

Therefore, we expect the result of the SVD to exhibit the typical rows and
columns for each community. We expect these typical rows and columns to
have patterns of the excess of probability to respectively come from and arrive
into the community, given that we respectively arrived into and came from the
community. We could then interpret these vectors as respectively the belonging
of each node to the community and its importance in the community.

Our last problem is that, although the truncated SVD should make the com-
munity patterns in the matrix apparent, each dimension of the decomposition
usually does not match a community, hindering the interpretation. To tackle
this issue, we perform a clustering on the vertices represented by the SVD, and
we use the central points to obtain the desired representative vectors for each
community. Note that, although the clustering itself is non-overlapping and
non-fuzzy, the resulting vectors are fuzzy scoring of belonging and importance
of the nodes in each community.

3.5.3 Decomposition of the PPR matrix

The PPR matrix is a dense matrix belonging to Rn×n. In most cases of big
graphs, this matrix is too big to be explicitly represented. Most modern SVD
algorithms do not require an explicit representation of the matrix M but only a
function mP (v) = Mv. We use a reduced form of equation (3.6) to approximate
the PPR matrix.

mP (v) = Π̄lv =

(
α

l∑
i=0

(1− α)iP iv

)
− (π · v)1 (3.21)

where 1 is the vector of which all entries equal 1 and π is the (not-personalized)
PageRank vector of the matrix.

68 CHAPTER 3. PERSONALIZED PAGERANK FOR GRAPH EMBEDDING

We know from [34] that a few steps are usually enough to compute an
approximation of the PageRank vector that outlines the community of the node.
We fix l = 10 for the rest of this section.

3.5.4 Finding the communities

SVD provides representations that should, if used to reconstruct the matrix,
contain only the main patterns of the matrix which are the communities. There
is no reason however to think that the dimensions of the representations corre-
spond themselves to communities. That is why we perform a clustering of the
vertices using their SVD representations to find the communities. Since both
matrices of the embedding provide relevant and distinct information, there is
no reason to exclude one and therefore we use a concatenation of both sides
as the vectors for the clustering. Unfortunately, we did not have enough time
during this thesis to study which clustering algorithm would perform best for
this task, and we simply use the well-known k-means algorithm [38] and its
initialization variant k-means++ [2].

As we saw before, the PPR and reversed PPR vectors for vertices of a same
community are expected to have similar patterns of high and low entries,
which correspond to similar directions of the vectors. However, they are not
supposed to have similar norms, especially for the reversed PPR, for which the
norm typically follows the importance of the vertex. To make the clustering
algorithm work on directions and not on Euclidean distance, both embeddings
are normalized before concatenation and then the cosine similarity is used.

3.5.5 Reconstructing the communities rows and columns

The UΣ and V Σ embeddings are the projection of the columns and rows of
the centered PPR matrix onto the singular spaces, e.g. for a vertex of the graph
w, we have (UΣ)w,· = π̄w

⊤V . Therefore, the clusters centers are the central
columns and rows of each community, projected on the singular spaces. To
reconstruct the true central columns and rows of the communities, which are
the typical centered reversed PPR and centered PPR vectors for the community,
we multiply by the transposed of the projection matrices, which are U and
V . Note that this reconstruction is not perfect because the dimensions of the
singular spaces we use are smaller than the dimension of the original space.

3.6 Experiments

3.6.1 Experimental setting

Our main goal is to show that our method provides better interpretability
scores than state-of-the-art approaches, while boasting similar results for a
popular machine learning task in graph analysis, such as link prediction.

3.6. EXPERIMENTS 69

Datasets. We use two datasets that are available on the SNAP website [57].
The first one named Wikispeedia contains 4592 vertices, and 120 000 edges.
105 overlapping ground-truth community are given. The second one named
Facebook contains 10 graphs. We exclude 2 of them, numbered 698 and 3980,
because they contain fewer than 128 nodes and we could therefore not compute
the SVD for them using the same parameters used for the others. The remaining
8 graphs of Facebook contain between 155 and 1035 vertices and between 3312
and 60050 edges. Between 7 and 46 overlapping ground-truth communities are
given for each graph.

We also use the WikipediaFr dataset presented in Section 3.3. This graph
contains 2.52 millions vertices, 102 million edges and 2 700 ground-truth com-
munities. To keep the dimension of the embeddings manageable, however, we
only study the 117 communities that contain more than 10 000 vertices.

Methods. We evaluate our method against the two widely used algorithms
for graph embedding HOPE and node2vec described in Section 3.4.2.

For node2vec, we use the most-used python3 implementation [18]. We keep
the default parameters, i.e. the number of walks is 200 per vertex, the length of
the walks is 30 and the window size is 10.

For HOPE, we use the official implementation in Matlab5 provided by the
authors of [46], which we reimplement in python3 (while using numpy and
scipy), to provide a fair comparison with the other approaches. We keep all the
constants and parameters as available in this implementation.

Our algorithm is implemented in python3, using mainly the numpy [26]
and scipy [54] packages. The restart parameter α for the PPR algorithm is set
to α = 0.1. The number l of iterations to approximate the PPR matrix is set to
l = 10 and the dimension D of the intermediate SVD is set to D = 128.

For all embeddings, the dimension K of the embedding is set to be the
number G of known ground-truth communities.

Metrics. We measure the interpretability of the methods using each of the
metrics mentioned in the “metrics” part of Section 3.4.3.

We consider as the Interpretability Scores (IS) of a pair (embedding di-
mension, community) the maximum between the top- and bottom IS score
for that pair. In order to obtain a single result, the IS are then aggregated
along the ground-truth groups using the max function, and then along the
embedding dimensions using the mean function. The use of the mean allows
us to obtain scores between 0 and 1. However, we should keep in mind that,
counterintuitively, it makes it possible that the adding of new dimensions to
the embedding worsens it score. In contrast with [23], we do not multiply the
result by 100, which only changes the results by this factor without any other
impact. Formally, the definition of the Interpretability Score we use is:

5 https://github.com/ZW-ZHANG/HOPE

70 CHAPTER 3. PERSONALIZED PAGERANK FOR GRAPH EMBEDDING

IS =
1

K

K∑
k=1

max
g∈[0,G]

(
max(IStop(k,g), ISbottom(k,g))

)
(3.22)

The size of the top and bottom sets considered for the Betweenness and
Closeness Centrality Indices (BCI and CCI) are set to the size of the studied
ground-truth group, as suggested by the original paper. For CISIP, three
smoothing functions f are considered. The first one, which we call “identity”,
is the direct use of the binary ground-truth belonging feature, the second one is
the Mean Neighbors Belonging (MNB), i.e. the mean of the belonging features
of the neighbors, and the last one is the PPR of the community.

The BCI and CCI are not computed for the WikipediaFr dataset for perfor-
mances reasons. The BCI and CCI results are not considered reliable because
of the limitations due to their normalization, as explained in Section 3.4.3.

3.6.2 Results and discussion

The results for the IS and CISIP scores are given in Tables 3.1 and 3.2. Results
for the BCI and CCI scores, for PARFAITE and node2vec, are given in Appendix
A.

As we see in these results, our algorithm’s interpretability is much higher
than node2vec’s when evaluated using the Interpretability Score or any of the
variants of CISIP. HOPE’s interpretability is closer, but still generally below
PARFAITE’s.

Our left embedding greatly outperforms the right one when using CISIP
with the PPR smoothing, and this result was expected, as the left embedding
is an approximation of the typical PPR vector of each cluster detected. The
results are however equivalent between our two embeddings when compared
using either the IS or CISIP with the identity smoothing, which both evaluate
directly the matching between the embedding and the belonging features, or
with the MNB smoothing. This is consistent with our interpretation that the left
embedding represents which communities a vertex belongs to, while the right
embedding measures somehow the “importance” of a vertex in a community.

Is the clustering needed ?

To check if the last step of our algorithm of clustering the data and computing
the final embeddings is really needed, we compare our results to what we
would have without the clustering step. To achieve this, we take the UΣ and
V Σ results from the SVD, and we keep only the G first dimensions to match
the dimension of the PARFAITE embeddings so that the dimension of this
embedding is identical to the dimension of the PARFAITE embeddings.

The results for IS and for CISIP with the three smoothing functions already
used are presented in Table 3.3 and 3.4. The results for the BCI and CCI
scores are given in Appendix A. We see that in most cases the results of our

3.7. NEW PERSONALIZED PAGERANK PROPERTIES 71

PARFAITE_L and PARFAITE_R outperform those before clustering, sometimes
significantly (e.g. more than 0.1 points of difference for the IS). This is especially
true for the IS and CISIP with PPR smoothing. We note however that the
SVD provides better results in several occurrences when compared to our
embeddings using CISIP with the identity or the MNB smoothing.

Overall we conclude that PARFAITE_L and PARFAITE_R do generally per-
form better than single SVD, i.e. without the clustering and reconstruction
steps.

Is our embedding efficient ?

The method we propose mainly focuses on the interpretability of the embed-
ding. However, this interpretability should not come at the cost of an excessive
loss of efficiency in the task the embedding helps to solve.

We check the efficiency of PARFAITE against HOPE and node2vec at the
task of Link Prediction. We build test graphs by removing 0.1% of the edges of
a real-world graph. We store the pairs of vertices of these edges as “positive”
pairs, and build a set of “negative” pairs by drawing the same number of pairs
of vertices that are not connected by an edge.

The embedding of the test graph is computed, and a score is attributed to
each positive or negative pair of vertices using this embedding.

For HOPE, the score is the dot product of the left embedding of the first
vertex in the pair and the right embedding of the second vertex. The score for
PARFAITE is similar, but the left embedding of the first vertex is normalized to
account for the entire use of the singular values on each side of the embedding.
For node2vec, following [25], a Logistic Regression is trained on the test graph
by representing the pairs with a concatenation of their vertices’ embeddings.

We run this experiment on 10 test graph for both the Wikispeedia dataset
and on the 1912 part of the Facebook dataset, as the part with the highest
order. The mean results are given in Figure 3.3. As we can see, node2vec is
outperformed by both HOPE and PARFAITE. HOPE achieves similar results as
PARFAITE on Facebook 1912 and slightly better on Wikispeedia, but overall
we can say that the greater interpretability of PARFAITE does not come at the
cost of a much lower efficiency on the task of link prediction.

3.7 New Personalized PageRank properties

We present new properties of the PPR matrix that, to the best of our knowledge,
were not known beforehand. Theorem 3.8, particularly, opens the door to a
new embedding and sheds a new light on the spectral embedding.

Theorem 3.6. If Π is the PPR matrix and M the stochastic matrix of the graph, we
have

ΠM = MΠ (3.23)

72 CHAPTER 3. PERSONALIZED PAGERANK FOR GRAPH EMBEDDING

(a) Wikispeedia (b) Facebook 1912

Figure 3.3: Mean Precision@k of the Link Prediction on 20 test graphs built
from the Wikispeedia and Facebook 1912 datasets

Proof.

ΠM −MΠ =���αM + (1− α)ΠM 2
����−αM − (1− α)MΠM

= (1− α)(ΠM −MΠ)M

so
(ΠM −MΠ)(I − (1− α)M) = 0Rn×n

with 0Rn×n ∈ Rn×n the zero matrix.
Since (I − (1− α)M) is invertible, we deduce that

(ΠM −MΠ) = 0Rn×n

Theorem 3.7. If the graph G is undirected, then the matrices DΠ and ΠD−1 are
symmetric.

Proof. We first prove that ΠD−1 is symmetric. We note that since G is undi-
rected, A is symmetric. We also recall that ∀B,C invertible matrices, (BC)−1 =
C−1B−1.

We use the definition of Π given by the Equation (3.7). Then we have

ΠD−1 = α(I − (1− α)M)−1D−1

= α(D − (1− α)D M︸︷︷︸
=D−1A

)−1

= α(D − (1− α)AD−1D︸ ︷︷ ︸
=M⊤D

)−1

= αD−1(I − (1− α)M⊤)−1

= D−1Π⊤

(3.24)

3.7. NEW PERSONALIZED PAGERANK PROPERTIES 73

Table 3.1: Interpretability Score results for PARFAITE, HOPE and node2vec

Dataset PARFAITE HOPE node2vec
left right left right

Wikispeedia 0.389 0.375 0.200 0.266 0.139
Facebook 0 0.520 0.567 0.529 0.530 0.429
Facebook 107 0.626 0.601 0.550 0.550 0.323
Facebook 348 0.968 0.928 0.888 0.888 0.895
Facebook 414 0.854 0.861 0.683 0.683 0.414
Facebook 686 0.736 0.730 0.650 0.650 0.617
Facebook 1684 0.863 0.807 0.572 0.572 0.304
Facebook 1912 0.766 0.764 0.603 0.603 0.348
Facebook 3437 0.430 0.759 0.429 0.429 0.188
WikipediaFr 0.040 0.083 0.041 0.083 *

* The embedding of this graph with node2vec as been stopped after 36h of
computation.

The third inequality derives from the facts that D−1D = I and that A = IA =
AI

The proof that DΠ is symmetric follows directly from ΠD−1 = D−1Π⊤

Theorem 3.8. If the graph G is undirected, then the matrices DΠ and ΠD−1 are
positive-definite

We note that if a matrix Γ is symmetric and positive-definite, then there
is an eigendecomposition Γ = UΣU⊤ so that U is a unitary matrix and D is
diagonal and strictly positive. Therefore, the inverse matrix Γ−1 = UΣ−1U⊤ is
also symmetric and positive-definite. We also know from Equation (3.7) that
the inverse of DΠ and ΠD−1 are respectively 1

α

(
D−1 − (1 − α)MD−1

)
and

1
α

(
D − (1− α)A

)
. The proof will therefore consist in proving that the matrices(

D−1 − (1− α)D−1AD−1
)

and
(
D − (1− α)A

)
are positive-definite, i.e. that

the quadratic forms defined by these matrices over Rn is an inner product.

74 CHAPTER 3. PERSONALIZED PAGERANK FOR GRAPH EMBEDDING

Proof that
(
D−1 − (1− α)MD−1

)
is positive-definite. ∀x ∈ Rn, we have:

x⊤(D−1 − (1− α)MD−1
)
x = x⊤(D−1 − (1− α)D−1AD−1

)
x

=
n∑

u=1

x2
u

du
− (1− α)

n∑
u=1

n∑
v=1

xuxv

dudv
Auv

= α
n∑

u=1

x2
u

du
+ (1− α)

n∑
u=1

(x2
u

du
−

n∑
v=1

xuxv

dudv
Auv

)
= α

n∑
u=1

x2
u

du
+ (1− α)

n∑
u=1

n∑
v=1

(x2
u

d2u
− xuxv

dudv

)
Auv

= α
n∑

u=1

x2
u

du
+ (1− α)

n∑
u=1

n∑
v=1

xu

du

(xu

du
− xv

dv

)
Auv

= α
n∑

u=1

x2
u

du
+

1− α

2

n∑
u=1

n∑
v=1

(xu

du
− xv

dv

)2
Auv

(3.25)

We see that x⊤(D−1 − (1 − α)MAD−1
)
x ≥ 0 and that 0 is reached only

when x = 0Rn

Proof that
(
D − (1− α)A

)
is positive-definite. With a similar reasoning as for(

D−1 − (1− α)D−1AD−1
)
, we get that ∀x ∈ Rn, we have

x⊤(D − (1− α)A
)
x = α

n∑
u=1

dux
2
u +

1− α

2

n∑
u=1

n∑
v=1

(xu − xv)
2Auv (3.26)

This property opens the possibility to make an eigendecomposition of DΠ
or ΠD−1, which could be used as an embedding. We note that, as used in the
proof, the inverse of ΠD−1 is 1

α
(D − (1− α)A). Therefore, the eigenvectors of

ΠD−1 are the same as the eigenvectors of 1
α
(D−(1−α)A), and the eigenvalues

are the inverse.
We see that an embedding based on this eigendecomposition is very close

from the spectral embedding, which defined in Section 3.4.2. Indeed, the
spectral embedding relies on the eigendecomposition of the D−A matrix. This
sheds a new light on the spectral embedding, which is sometimes disregarded
as an embedding that only considers the direct neighborhood (e.g. see [58]).
On the contrary, this result shows that it is closely related to the PPR matrix,
which considers by design high orders of neighborhoods.

3.8 A practical application

We teamed up with a company specialized in YouTube economics and data to
extract a bipartite graph of YouTube. A bipartite graph is a graph in which the

3.9. CONCLUSION AND FUTURE WORK 75

nodes are split into two parts and a node from one part can only share an edge
with nodes of the other part. Each part usually represents a type of real-world
entity. For example, here, one part represents the YouTube users while the
other part represented YouTube videos. An edge represented the fact that the
user had commented the video and it is weighted by the number of comments.
However, due to technical limitations, we only had the last 15 000 comments
on the videos of a same YouTube channel at the time of the scrapping.

The goal was to separate the graph into clusters, i.e. groups of nodes
densely connected to one another, and sparsely connected to the rest of the
graph. The graph had many small connected components and also some series
of users connected to only a few videos, themselves connected to a few users.
To remove these less interesting parts that made the clustering more difficult,
we kept only the k-core of the graph, i.e. the maximal subgraph in which every
node have at least k neighbors. The values of k we have considered are 2, 5
and 10.

Then we tried two clustering methods in the graph. The first one computed
a spectral embedding and then performed a k-means clustering on the result.
The second one used the Louvain algorithm, which is a well-known graph
clustering algorithm.

We presented the results as a small local website to help reading and brows-
ing them. Screenshots of this website are presented in Appendix B.

Unfortunately, the manual analysis of the results revealed poor perfor-
mances. We worked with researchers interested in sociology who had partially
clustered the videos and who did not find a convincing matching between their
work and the results. After analyzing the data, we think that the limitation to
the last 15 000 comments on the videos of a same YouTube channel removed a
lot of information. For example, we probably lost a lot of the occurrences when
a same user who was very loyal to a channel had commented on most of the
videos at the time of their publication, because those comments would have
been old and therefore “erased” by new comments.

3.9 Conclusion and future work

In this chapter, we have addressed the lack of inherently interpretable embed-
ding methods for graphs. Indeed, the usual embedding algorithms produce
results from complex processes and do not align with easy-to-understand
concepts. Our solution is a new embedding called PARFAITE, which relies
on a projection of the Personalized PageRank (PPR) matrix into the singular
subspaces, then clustering and a projection back from the singular subspaces
onto the original space. This procedure makes PARFAITE the first embedding
to be interpretable by design. We have shown that the results of PARFAITE are
indeed very interpretable, and that this result is achieved without much loss
of efficiency at tasks like link prediction. This appeals for many new research
questions: Could the k-means clustering be replaced by another, more efficient

76 CHAPTER 3. PERSONALIZED PAGERANK FOR GRAPH EMBEDDING

method? Could the projection into the singular spaces be replaced by other
embedding methods? And if so, what interpretation could be found from the
resulting embeddings? What is the best way to label the resulting dimensions
to transmit the interpretability information to the user?

We have also studied the metrics that exist to evaluate the interpretability of
a graph embedding. However, we found common weaknesses in the available
methods, in that none consider the potential redundancy or separation of
the communities that constitute the interpretation. Moreover, both consider
equally the top or bottom vertices of the embedding dimensions and completely
disregard the vertices after a given rank. We have tackled these weaknesses
with a new metric called CISIP. This new metric compares the ordering of
the vertices in the embedding with the ordering in a smoothed version of the
belonging to the communities. The smoothing is a parameter of the metric and
so it would be very interesting to study more functions for it, e.g. personalized
version of centrality metrics like the BCI, the CCI or the Katz index. It would
also be very interesting to study how these functions affect the results and
what they say about the interpretability of the embedding.

Finally, we have discovered that, for undirected graphs, the matrix ΠD−1,
which is the PPR matrix normalized by the inverse degrees, can be factorized
by an eigendecomposition. This decomposition produces an embedding that
is strongly related to the spectral embedding. It would be very interesting
to study more in-depth the link between these embeddings, their common
aspects and their differences. It would also be interesting to study if this
eigendecomposition can be used as the first step of PARFAITE instead of the
SVD.

3.9. CONCLUSION AND FUTURE WORK 77

Table 3.2: CISIP results for PARFAITE, HOPE and node2vec

Dataset PARFAITE HOPE node2vec
left right left right

No smoothing (identity function)
Wikispeedia 0.429 0.414 0.339 0.318 0.255
Facebook 0 0.333 0.311 0.233 0.232 0.248
Facebook 107 0.403 0.408 0.316 0.316 0.234
Facebook 348 0.561 0.566 0.524 0.524 0.252
Facebook 414 0.545 0.605 0.540 0.540 0.283
Facebook 686 0.527 0.489 0.384 0.384 0.295
Facebook 1684 0.483 0.493 0.369 0.369 0.264
Facebook 1912 0.401 0.425 0.352 0.353 0.266
Facebook 3437 0.300 0.310 0.331 0.331 0.256
WikipediaFr 0.350 0.376 0.339 0.353 *

Smoothing with MNB
Wikispeedia 0.431 0.508 0.282 0.369 0.105
Facebook 0 0.436 0.434 0.230 0.230 0.028
Facebook 107 0.545 0.515 0.384 0.384 0.161
Facebook 348 0.582 0.509 0.349 0.349 0.105
Facebook 414 0.627 0.584 0.474 0.474 0.084
Facebook 686 0.475 0.400 0.234 0.234 0.102
Facebook 1684 0.539 0.532 0.389 0.389 0.122
Facebook 1912 0.504 0.511 0.269 0.267 0.029
Facebook 3437 0.513 0.524 0.373 0.373 0.067
WikipediaFr 0.272 0.499 0.400 0.493 *

Smoothing with PPR
Wikispeedia 0.449 0.516 0.189 0.174 0.012
Facebook 0 0.429 0.429 0.143 0.138 0.074
Facebook 107 0.585 0.576 0.304 0.304 0.093
Facebook 348 0.633 0.682 0.510 0.510 0.071
Facebook 414 0.589 0.774 0.531 0.531 0.283
Facebook 686 0.454 0.550 0.285 0.285 0.106
Facebook 1684 0.538 0.649 0.393 0.393 0.085
Facebook 1912 0.557 0.633 0.278 0.279 0.101
Facebook 3437 0.568 0.688 0.402 0.402 0.073
WikipediaFr 0.123 -0.067 0.049 -0.015 *

78 CHAPTER 3. PERSONALIZED PAGERANK FOR GRAPH EMBEDDING

Table 3.3: Interpretability Score results for the SVD of the PPR matrix. The
results in bold as those at least as good as the related PARFAITE results

Dataset SVD (left) SVD (right)
Wikispeedia 0.234 0.204
Facebook 0 0.538 0.593
Facebook 107 0.538 0.516
Facebook 348 0.923 0.928
Facebook 414 0.808 0.812
Facebook 686 0.690 0.696
Facebook 1684 0.792 0.768
Facebook 1912 0.589 0.604
Facebook 3437 0.270 0.463
WikipediaFr 0.043 0.061

3.9. CONCLUSION AND FUTURE WORK 79

Table 3.4: CISIP results for the SVD of the PPR matrix. The results in bold as
those at least as good as the related PARFAITE results

Dataset SVD (left) SVD (right)
No smoothing (identity function)

Wikispeedia 0.363 0.362
Facebook 0 0.333 0.360
Facebook 107 0.493 0.464
Facebook 348 0.520 0.525
Facebook 414 0.545 0.549
Facebook 686 0.438 0.440
Facebook 1684 0.532 0.545
Facebook 1912 0.377 0.392
Facebook 3437 0.304 0.337
WikipediaFr 0.350 0.381

Smoothing with MNB
Wikispeedia 0.280 0.369
Facebook 0 0.330 0.395
Facebook 107 0.596 0.571
Facebook 348 0.404 0.412
Facebook 414 0.431 0.404
Facebook 686 0.320 0.337
Facebook 1684 0.512 0.493
Facebook 1912 0.299 0.320
Facebook 3437 0.429 0.443
WikipediaFr 0.259 0.502

Smoothing with PPR
Wikispeedia 0.244 0.202
Facebook 0 0.284 0.356
Facebook 107 0.609 0.604
Facebook 348 0.449 0.485
Facebook 414 0.527 0.541
Facebook 686 0.378 0.407
Facebook 1684 0.511 0.549
Facebook 1912 0.319 0.320
Facebook 3437 0.419 0.421
WikipediaFr 0.150 -0.011

80 CHAPTER 3. PERSONALIZED PAGERANK FOR GRAPH EMBEDDING

Conclusion

Decision trees are very popular models in machine learning. They are efficient
to train, easy to understand and inherently interpretable. Algorithms such as
EFDT exist for building and maintaining decision trees in a dynamic setting.
Very few algorithms exist to fulfill this task in a fully dynamic setting, in which
training examples can be both inserted and deleted. In this thesis, we have
presented a new algorithm for fully dynamic decision trees. To the best of our
knowledge, this is the first algorithm to be specifically designed for this task.

This algorithm relies on a new smoothness theorem for the Gini index and
Gini gain. The theorem states that given a training set and a series of updates,
i.e. insertions and deletions from the training set, the difference of Gini index
of the training set before and after the updates is no more than 3 times the
ratio of updates by the size of the training set. Moreover, for any split of the
training set, the difference of Gini gain of that split between before and after
the updates is not more than 13 times the ratio of updates by the size of the
training set.

This algorithm also relies on a objective for fully dynamic decision trees
that loosen the strict objective of maintaining a tree that would be as good as
if it was trained from scratch on the updated training set. Our new objective,
called ϵϵϵ-feasibility, requires the splits of the trees to have Gini gains close to the
optimal Gini gain. We have introduced an algorithm called FUDYADT. This
algorithm meets ϵϵϵ-feasibility and, provided that the number of labels is small
in comparison with the dimension of the examples and the logarithm of the
number of data, runs in time O

(
d log3(n)

ε2

)
. We have shown experimentally that

this algorithm performs at least as good as the state-of-the-art EFDT algorithm
in contexts when this comparison is relevant, while also operating in fully
dynamic contexts.

Another very popular machine learning method is graph embedding. It
allows transforming graph data into classical vectorial that can be used in
classical machine learning algorithms. However, little work has been done
so far to make embedding methods interpretable. This is important because
the interpretations of methods that take vectors as input usually relies on the
semantics of the values in the vectors. Therefore, a non-interpretable graph

81

82 CHAPTER 3. CONCLUSION

embedding, when used as the input for another machine learning method,
makes this method non-interpretable.

Therefore, we have proposed a new algorithm for inherently interpretable
graph embedding. This new method relies on properties of the Personalized
PageRank (PPR) matrix that make embedding methods based on it outline com-
munities. It also relies on the property that the Singular Value Decomposition
(SVD) further outline these communities. Finally, it uses a clustering to make
the final embeddings align with the communities. The whole process makes
our new embedding strongly interpretable by design, and we have shown that
it is also interpretable in practice through experiments against two well-known
graph embeddings called node2vec and HOPE.

Studying this new embedding, we found that few metrics exist for assessing
the interpretability of graph embedding. Crucially, we found that the existing
metrics have common weaknesses on not considering the ordering of the values
in the embedding dimension, and not considering redundant interpretations.
To address these weaknesses, we proposed a new metric called CISIP. The
process to compute this metric is to first automatically assign each embedding
dimension to a community, and then to compare the order of the values in the
embedding vector with a smoothed version of the belonging of the vertices to
the communities.

Finally, we also discovered that a modified version of the PPR matrix can
be eigendecomposed and that this eigendecomposition is closely related to the
graph spectral embedding. This finding open new embedding perspectives, as
well as shedding a new light on the spectral embedding.

Our two new algorithms, as well as our other contributions, expand the
range of machine learning problems that can be addressed using interpretable
techniques. Moreover, they open new research questions that will expand this
range further.

As the general public demands more and more for machine learning models
that could be understood, audited and discussed, these new findings and the
next to come will surely contribute to make machine learning less of a black
box to trust blindly, and more of a real decision assistant that the user can
understand and tune to get decisions or solution he is satisfied with.

Bibliography

[1] J. David Archibald. “Edward Hitchcock’s Pre-Darwinian (1840) “Tree of
Life””. In: Journal of the History of Biology 42.3 (Aug. 1, 2009), pp. 561–592.
ISSN: 1573-0387. DOI: 10.1007/s10739-008-9163-y. (Visited on
10/26/2024).

[2] David Arthur and Sergei Vassilvitskii. k-means++: The Advantages of Care-
ful Seeding. Technical Report 2006-13. Stanford InfoLab, June 2006.

[3] Alex Bavelas. “Communication Patterns in Task-Oriented Groups”. In:
The Journal of the Acoustical Society of America 22.6 (Nov. 1950), pp. 725–730.
ISSN: 0001-4966. DOI: 10.1121/1.1906679. (Visited on 09/25/2024).

[4] Mikhail Belkin and Partha Niyogi. “Laplacian Eigenmaps and Spec-
tral Techniques for Embedding and Clustering”. In: Advances in Neu-
ral Information Processing Systems. Vol. 14. MIT Press, 2001. (Visited on
10/07/2024).

[5] Albert Bifet et al. “MOA: Massive Online Analysis”. In: J. Mach. Learn.
Res. 11 (2010), pp. 1601–1604.

[6] Francis Bloch, Matthew O Jackson, and Pietro Tebaldi. “Centrality mea-
sures in networks”. In: Social Choice and Welfare 61.2 (2023), pp. 413–453.

[7] Phillip Bonacich. “Factoring and Weighting Approaches to Status Scores
and Clique Identification”. In: Journal of Mathematical Sociology (Jan. 1972).
ISSN: 0022-250X. (Visited on 09/26/2024).

[8] Phillip Bonacich. “Some Unique Properties of Eigenvector Centrality”.
In: Social Networks 29.4 (Oct. 2007), pp. 555–564. ISSN: 0378-8733. DOI:
10.1016/j.socnet.2007.04.002. (Visited on 09/26/2024).

[9] Leo Breiman. “Random Forests”. In: Machine Learning 45.1 (Oct. 2001),
pp. 5–32. ISSN: 1573-0565. DOI: 10.1023/A:1010933404324. (Visited
on 09/24/2024).

[10] Marco Bressan, Gabriel Damay, and Mauro Sozio. “Fully-Dynamic Deci-
sion Trees”. In: Proceedings of the AAAI Conference on Artificial Intelligence
37.6 (6 June 26, 2023), pp. 6842–6849. ISSN: 2374-3468. DOI: 10.1609/
aaai.v37i6.25838. (Visited on 10/23/2024).

83

https://doi.org/10.1007/s10739-008-9163-y
https://doi.org/10.1121/1.1906679
https://doi.org/10.1016/j.socnet.2007.04.002
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1609/aaai.v37i6.25838
https://doi.org/10.1609/aaai.v37i6.25838

84 BIBLIOGRAPHY

[11] HongYun Cai, Vincent W. Zheng, and Kevin Chen-Chuan Chang. “A
Comprehensive Survey of Graph Embedding: Problems, Techniques, and
Applications”. In: IEEE Transactions on Knowledge and Data Engineering
30.9 (Sept. 2018), pp. 1616–1637. ISSN: 1558-2191. DOI: 10.1109/TKDE.
2018.2807452. (Visited on 10/07/2024).

[12] Gürol Canbek et al. “Binary classification performance measures/metrics:
A comprehensive visualized roadmap to gain new insights”. In: 2017
International Conference on Computer Science and Engineering (UBMK). 2017,
pp. 821–826. DOI: 10.1109/UBMK.2017.8093539.

[13] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting
System”. In: Proceedings of the 22nd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining. KDD ’16. San Francisco,
California, USA: ACM, 2016, pp. 785–794. ISBN: 978-1-4503-4232-2. DOI:
10.1145/2939672.2939785. URL: http://doi.acm.org/10.
1145/2939672.2939785.

[14] Vinícius G. Costa and Carlos E. Pedreira. “Recent Advances in Decision
Trees: An Updated Survey”. In: Artificial Intelligence Review 56.5 (May 1,
2023), pp. 4765–4800. ISSN: 1573-7462. DOI: 10.1007/s10462-022-
10275-5. (Visited on 10/25/2024).

[15] Constantinos Daskalakis, Christos Tzamos, and Manolis Zampetakis. “A
converse to Banach’s fixed point theorem and its CLS-completeness”.
In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing. STOC 2018. New York, NY, USA: Association for Computing
Machinery, 2018. DOI: 10.1145/3188745.3188968.

[16] Pedro Domingos and Geoff Hulten. “Mining High-Speed Data Streams”.
In: Proc. of ACM KDD. Boston, Massachusetts, USA, 2000, pp. 71–80. DOI:
10.1145/347090.347107.

[17] Carl Eckart and Gale Young. “The Approximation of One Matrix by
Another of Lower Rank”. In: Psychometrika 1.3 (Sept. 1, 1936), pp. 211–218.
ISSN: 1860-0980. DOI: 10.1007/BF02288367. (Visited on 10/23/2024).

[18] Elior Cohen. node2vec 0.4.6. URL: https://pypi.org/project/
node2vec/.

[19] Santo Fortunato. “Community Detection in Graphs”. In: Physics Reports
486.3 (Feb. 1, 2010), pp. 75–174. ISSN: 0370-1573. DOI: 10.1016/j.
physrep.2009.11.002. (Visited on 10/24/2024).

[20] Linton C. Freeman. “A Set of Measures of Centrality Based on Between-
ness”. In: Sociometry 40.1 (1977), pp. 35–41. ISSN: 0038-0431. DOI: 10.
2307/3033543. JSTOR: 3033543. (Visited on 09/26/2024).

[21] João Gama, Ricardo Rocha, and Pedro Medas. “Accurate Decision Trees
for Mining High-Speed Data Streams”. In: Proc. of ACM KDD. 2003,
pp. 523–528. DOI: 10.1145/956750.956813.

https://doi.org/10.1109/TKDE.2018.2807452
https://doi.org/10.1109/TKDE.2018.2807452
https://doi.org/10.1109/UBMK.2017.8093539
https://doi.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
https://doi.org/10.1007/s10462-022-10275-5
https://doi.org/10.1007/s10462-022-10275-5
https://doi.org/10.1145/3188745.3188968
https://doi.org/10.1145/347090.347107
https://doi.org/10.1007/BF02288367
https://pypi.org/project/node2vec/
https://pypi.org/project/node2vec/
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.2307/3033543
https://doi.org/10.2307/3033543
http://www.jstor.org/stable/3033543
https://doi.org/10.1145/956750.956813

BIBLIOGRAPHY 85

[22] Johannes Gehrke et al. “BOAT—Optimistic Decision Tree Construction”.
In: Proceedings of the 1999 ACM SIGMOD International Conference on Man-
agement of Data. SIGMOD ’99. New York, NY, USA: Association for Com-
puting Machinery, June 1, 1999, pp. 169–180. ISBN: 978-1-58113-084-3.
DOI: 10.1145/304182.304197. (Visited on 10/02/2024).

[23] Antonia Gogoglou, C. Bayan Bruss, and Keegan E. Hines. “On the In-
terpretability and Evaluation of Graph Representation Learning”. In:
NeurIPS workshop on Graph Representation Learning. 2019.

[24] Palash Goyal and Emilio Ferrara. “Graph Embedding Techniques, Ap-
plications, and Performance: A Survey”. In: Knowledge-Based Systems 151
(July 1, 2018), pp. 78–94. ISSN: 0950-7051. DOI: 10.1016/j.knosys.
2018.03.022. (Visited on 10/07/2024).

[25] Aditya Grover and Jure Leskovec. “Node2vec: Scalable Feature Learning
for Networks”. In: Proceedings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. KDD ’16. New York, NY,
USA: Association for Computing Machinery, Aug. 13, 2016, pp. 855–864.
ISBN: 978-1-4503-4232-2. DOI: 10.1145/2939672.2939754. (Visited
on 03/15/2024).

[26] Charles R. Harris et al. “Array programming with NumPy”. In: Nature
585.7825 (2020), pp. 357–362. DOI: 10.1038/s41586-020-2649-2.

[27] Douglas M. Hawkins. “The Problem of Overfitting”. In: Journal of Chem-
ical Information and Computer Sciences 44.1 (Jan. 1, 2004), pp. 1–12. ISSN:
0095-2338. DOI: 10.1021/ci0342472. (Visited on 10/24/2024).

[28] Alexandre Hollocou, Thomas Bonald, and Marc Lelarge. “Multiple Local
Community Detection”. In: SIGMETRICS Perform. Eval. Rev. 45.3 (2018),
pp. 76–83. ISSN: 0163-5999. DOI: 10.1145/3199524.3199537.

[29] Geoff Hulten, Laurie Spencer, and Pedro Domingos. “Mining Time-
Changing Data Streams”. In: Proc. of ACM KDD. 2001, pp. 97–106. DOI:
10.1145/502512.502529.

[30] Sangheum Hwang, Hyeon Gyu Yeo, and Jung-Sik Hong. “A New Split-
ting Criterion for Better Interpretable Trees”. In: IEEE Access 8 (2020),
pp. 62762–62774. DOI: 10.1109/ACCESS.2020.2985255.

[31] Ruoming Jin and Gagan Agrawal. “Efficient Decision Tree Construction
on Streaming Data”. In: Proc. of ACM KDD. 2003, pp. 571–576. DOI: 10.
1145/956750.956821.

[32] Leo Katz. “A New Status Index Derived from Sociometric Analysis”.
In: Psychometrika 18.1 (Mar. 1953), pp. 39–43. ISSN: 1860-0980. DOI: 10.
1007/BF02289026. (Visited on 09/25/2024).

https://doi.org/10.1145/304182.304197
https://doi.org/10.1016/j.knosys.2018.03.022
https://doi.org/10.1016/j.knosys.2018.03.022
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1021/ci0342472
https://doi.org/10.1145/3199524.3199537
https://doi.org/10.1145/502512.502529
https://doi.org/10.1109/ACCESS.2020.2985255
https://doi.org/10.1145/956750.956821
https://doi.org/10.1145/956750.956821
https://doi.org/10.1007/BF02289026
https://doi.org/10.1007/BF02289026

86 BIBLIOGRAPHY

[33] Shima Khoshraftar, Sedigheh Mahdavi, and Aijun An. “Centrality-based
Interpretability Measures for Graph Embeddings”. In: 2021 IEEE 8th
International Conference on Data Science and Advanced Analytics (DSAA).
2021, pp. 1–10. DOI: 10.1109/DSAA53316.2021.9564221. (Visited
on 03/14/2024).

[34] Isabel M. Kloumann and Jon M. Kleinberg. “Community Membership
Identification from Small Seed Sets”. In: Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining.
2014, pp. 1366–1375. ISBN: 9781450329569. DOI: 10.1145/2623330.
2623621.

[35] K. Konstantinides, B. Natarajan, and G.S. Yovanof. “Noise estimation
and filtering using block-based singular value decomposition”. In: IEEE
Transactions on Image Processing 6.3 (1997), pp. 479–483. DOI: 10.1109/
83.557359.

[36] Seunghyun Lee and Byung Cheol Song. “Interpretable Embedding Pro-
cedure Knowledge Transfer via Stacked Principal Component Analysis
and Graph Neural Network”. en. In: Proceedings of the AAAI Conference
on Artificial Intelligence 35.9 (2021), pp. 8297–8305. ISSN: 2374-3468. DOI:
10.1609/aaai.v35i9.17009. (Visited on 03/19/2024).

[37] Wei-Yin Loh. “Fifty Years of Classification and Regression Trees”. In:
International Statistical Review 82.3 (2014), pp. 329–348. DOI: https://
doi.org/10.1111/insr.12016.

[38] J MacQueen. “Some methods for classification and analysis of multivari-
ate observations”. In: Proceedings of 5-th Berkeley Symposium on Mathemati-
cal Statistics and Probability/University of California Press. 1967.

[39] Fragkiskos D. Malliaros and Michalis Vazirgiannis. “Clustering and Com-
munity Detection in Directed Networks: A Survey”. In: Physics Reports.
Clustering and Community Detection in Directed Networks: A Survey
533.4 (Dec. 30, 2013), pp. 95–142. ISSN: 0370-1573. DOI: 10.1016/j.
physrep.2013.08.002. (Visited on 10/24/2024).

[40] Chaitanya Manapragada, Geoffrey I. Webb, and Mahsa Salehi. “Ex-
tremely Fast Decision Tree”. In: Proc. of ACM KDD. 2018, pp. 1953–1962.
DOI: 10.1145/3219819.3220005.

[41] Chaitanya Manapragada et al. “An eager splitting strategy for online
decision trees in ensembles”. In: Data Mining and Knowledge Discovery
36.2 (2022), pp. 566–619. DOI: 10.1007/s10618-021-00816-x.

[42] Robert Messenger and Lewis Mandell. “A Modal Search Technique for
Predictive Nominal Scale Multivariate Analysis”. In: Journal of the Amer-
ican Statistical Association 67.340 (1972), pp. 768–772. DOI: 10.1080/
01621459.1972.10481290.

https://doi.org/10.1109/DSAA53316.2021.9564221
https://doi.org/10.1145/2623330.2623621
https://doi.org/10.1145/2623330.2623621
https://doi.org/10.1109/83.557359
https://doi.org/10.1109/83.557359
https://doi.org/10.1609/aaai.v35i9.17009
https://doi.org/https://doi.org/10.1111/insr.12016
https://doi.org/https://doi.org/10.1111/insr.12016
https://doi.org/10.1016/j.physrep.2013.08.002
https://doi.org/10.1016/j.physrep.2013.08.002
https://doi.org/10.1145/3219819.3220005
https://doi.org/10.1007/s10618-021-00816-x
https://doi.org/10.1080/01621459.1972.10481290
https://doi.org/10.1080/01621459.1972.10481290

BIBLIOGRAPHY 87

[43] James N. Morgan and John A. Sonquist. “Problems in the Analysis of
Survey Data, and a Proposal”. In: Journal of the American Statistical As-
sociation 58.302 (1963), pp. 415–434. DOI: 10.1080/01621459.1963.
10500855.

[44] Geraldin Nanfack, Paul Temple, and Benoit Frenay. “Constraint Enforce-
ment on Decision Trees: A Survey”. In: ACM Comput. Surv. 54.10s (Sept.
2022). DOI: 10.1145/3506734.

[45] M. E. J. Newman and M. Girvan. “Finding and evaluating community
structure in networks”. In: Phys. Rev. E 69 (2 Feb. 2004), p. 026113. DOI:
10.1103/PhysRevE.69.026113. URL: https://link.aps.org/
doi/10.1103/PhysRevE.69.026113.

[46] Mingdong Ou et al. “Asymmetric Transitivity Preserving Graph Em-
bedding”. In: Proceedings of the 22nd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining. 2016, pp. 1105–1114. ISBN:
9781450342322. DOI: 10.1145/2939672.2939751.

[47] Lawrence Page et al. The pagerank citation ranking: Bringing order to the
web. Tech. rep. Stanford InfoLab, 1999.

[48] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. “DeepWalk: Online
Learning of Social Representations”. In: Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining.
KDD ’14. New York, NY, USA: Association for Computing Machinery,
Aug. 24, 2014, pp. 701–710. ISBN: 978-1-4503-2956-9. DOI: 10.1145/
2623330.2623732. (Visited on 10/08/2024).

[49] Priyanka and Dharmender Kumar. “Decision tree classifier: a detailed
survey”. In: International Journal of Information and Decision Sciences 12.3
(2020), pp. 246–269. DOI: 10.1504/IJIDS.2020.108141.

[50] Ryan A. Rossi and Nesreen K. Ahmed. “The Network Data Repository
with Interactive Graph Analytics and Visualization”. In: AAAI. 2015. URL:
https://networkrepository.com.

[51] Leszek Rutkowski et al. “Decision Trees for Mining Data Streams Based
on the McDiarmid’s Bound”. In: IEEE Transactions on Knowledge and Data
Engineering 25.6 (2013), pp. 1272–1279. DOI: 10.1109/TKDE.2012.66.

[52] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learn-
ing: From Theory to Algorithms. USA: Cambridge University Press, May
2014. ISBN: 978-1-107-05713-5.

[53] Sebastiano Vigna. “A Weighted Correlation Index for Rankings with
Ties”. In: Proceedings of the 24th International Conference on World Wide Web.
2015, pp. 1166–1176. ISBN: 978-1-4503-3469-3. DOI: 10.1145/2736277.
2741088. (Visited on 03/08/2024).

https://doi.org/10.1080/01621459.1963.10500855
https://doi.org/10.1080/01621459.1963.10500855
https://doi.org/10.1145/3506734
https://doi.org/10.1103/PhysRevE.69.026113
https://link.aps.org/doi/10.1103/PhysRevE.69.026113
https://link.aps.org/doi/10.1103/PhysRevE.69.026113
https://doi.org/10.1145/2939672.2939751
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1504/IJIDS.2020.108141
https://networkrepository.com
https://doi.org/10.1109/TKDE.2012.66
https://doi.org/10.1145/2736277.2741088
https://doi.org/10.1145/2736277.2741088

88 BIBLIOGRAPHY

[54] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python”. In: Nature Methods 17 (2020), pp. 261–272. DOI:
10.1038/s41592-019-0686-2.

[55] Weather Type Classification. URL: https://www.kaggle.com/datasets/
nikhil7280/weather-type-classification (visited on 10/24/2024).

[56] Jiaxin Wu and Chong-Wah Ngo. “Interpretable Embedding for Ad-Hoc
Video Search”. In: Proceedings of the 28th ACM International Conference on
Multimedia. 2020, pp. 3357–3366. ISBN: 978-1-4503-7988-5. DOI: 10.1145/
3394171.3413916. (Visited on 03/05/2024).

[57] Jaewon Yang and Jure Leskovec. “Defining and Evaluating Network
Communities Based on Ground-Truth”. In: Proceedings of the ACM SIGKDD
Workshop on Mining Data Semantics. 2012. ISBN: 9781450315463. DOI: 10.
1145/2350190.2350193.

[58] Renchi Yang et al. “Homogeneous Network Embedding for Massive
Graphs via Reweighted Personalized PageRank”. In: Proceedings of the
VLDB Endowment 13.5 (Jan. 1, 2020), pp. 670–683. ISSN: 2150-8097. DOI:
10.14778/3377369.3377376. (Visited on 04/11/2024).

[59] Yinglong Zhang et al. “Robust Hierarchical Overlapping Community De-
tection With Personalized PageRank”. In: IEEE Access 8 (2020), pp. 102867–
102882. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2020.2998860. (Vis-
ited on 04/14/2024).

https://doi.org/10.1038/s41592-019-0686-2
https://www.kaggle.com/datasets/nikhil7280/weather-type-classification
https://www.kaggle.com/datasets/nikhil7280/weather-type-classification
https://doi.org/10.1145/3394171.3413916
https://doi.org/10.1145/3394171.3413916
https://doi.org/10.1145/2350190.2350193
https://doi.org/10.1145/2350190.2350193
https://doi.org/10.14778/3377369.3377376
https://doi.org/10.1109/ACCESS.2020.2998860

Appendix A
Additional results for PARFAITE
experiments

This appendix contains the results of the experiments on PARFAITE, HOPE and
node2vec, measured with the Betweenness and Closeness Centrality Indices.

89

90APPENDIX A. ADDITIONAL RESULTS FOR PARFAITE EXPERIMENTS

Table A.1: Betweenness Centrality Index results for PARFAITE and node2vec

Dataset PARFAITE_L PARFAITE_R node2vec
Wikispeedia 0.585 0.566 0.650
Facebook 0 0.635 0.456 0.630
Facebook 107 0.118 0.127 0.299
Facebook 348 0.405 0.400 0.450
Facebook 414 0.361 0.484 0.429
Facebook 686 0.527 0.686 0.444
Facebook 1684 0.415 0.292 0.329
Facebook 1912 0.604 0.701 0.458
Facebook 3437 0.400 0.435 0.381

Table A.2: Closeness Centrality Index results for PARFAITE and node2vec

Dataset PARFAITE_L PARFAITE_R node2vec
Wikispeedia 0.711 0.746 0.767
Facebook 0 0.418 0.413 0.341
Facebook 107 0.345 0.314 0.404
Facebook 348 0.430 0.459 0.458
Facebook 414 0.461 0.500 0.463
Facebook 686 0.350 0.359 0.356
Facebook 1684 0.344 0.350 0.463
Facebook 1912 0.465 0.496 0.464
Facebook 3437 0.414 0.462 0.400

Table A.3: BCI results for the SVD of the PPR matrix. The results in bold as
those at least as good as the related PARFAITE results

Dataset SVD (left) SVD (right)
Wikispeedia 0.645 0.684
Facebook 0 0.686 0.564
Facebook 107 0.197 0.213
Facebook 348 0.445 0.585
Facebook 414 0.435 0.480
Facebook 686 0.619 0.607
Facebook 1684 0.384 0.396
Facebook 1912 0.501 0.532
Facebook 3437 0.351 0.460

91

Table A.4: CCI results for the SVD of the PPR matrix. The results in bold as
those at least as good as the related PARFAITE results

Dataset SVD (left) SVD (right)
Wikispeedia 0.757 0.757
Facebook 0 0.342 0.385
Facebook 107 0.337 0.331
Facebook 348 0.447 0.469
Facebook 414 0.481 0.489
Facebook 686 0.328 0.350
Facebook 1684 0.384 0.395
Facebook 1912 0.415 0.423
Facebook 3437 0.309 0.384

92APPENDIX A. ADDITIONAL RESULTS FOR PARFAITE EXPERIMENTS

Appendix B
Screenshots of the website for clusters
presentation

This appendix shows screenshots of the website presented in section 3.8, and
made to present and help to navigate the results of the clustering.

93

94APPENDIX B. SCREENSHOTS OF THE WEBSITE FOR CLUSTERS PRESENTATION

Figure B.1: Screenshot of the main page of the website.

95

Figure B.2: Screenshot of the page of the website that presents main information
about a cluster.

96APPENDIX B. SCREENSHOTS OF THE WEBSITE FOR CLUSTERS PRESENTATION

Figure B.3: Screenshot of the page of the website that presents the channels in
a cluster.

Figure B.4: Screenshot of the page of the website that presents the videos of a
channel in a cluster.

Titre: Arbres de décisions dynamiques et embedding de graphes basés sur les communautés: contribu-
tions à l’apprentissage automatique interprétable

Mots clés: Exploration de graphes, détection de communautés, embedding de graph, Arbre de décision,
Apprentissage automatique dynamique, IA explicable

Résumé: L’apprentissage automatique est le domaine des
sciences informatiques dont le but est de créer des mod-
èles et des solutions à partir de données sans savoir exacte-
ment les instructions qui dirigent intrinsèquement ces mod-
èles. Ce domaine a obtenu des résultats impressionnants
mais il est le sujet d’inquiétudes en raison notamment de
l’impossibilité de comprendre et d’auditer les modèles qu’il
produit. L’apprentissage automatique interprétable propose
une solution à ces inquiétudes en créant des modèles qui sont
interprétables de façon inhérante. Cette thèse contribue à
l’apprentissage automatique interprétable de deux façons.
Dans un premier temps, nous étudions les arbres de décision.
Il s’agit d’un groupe de méthodes d’apprentissage automa-
tique très connu et qui est interprétable par la façon même
dont il est conçu. Cependant, les données réelles sont souvent
dynamiques et peu d’algorithmes existent pour maintenir un
arbre de décision quand des données peuvent à la fois être
ajoutées et supprimées de l’ensemble d’entrainement. Nous
proposons un nouvel algorithme nommé FuDyADT pour ré-

soudre ce problème.
Dans un second temps, nous étudions l’embedding de
graphes. La technique appelée "embedding" est une tech-
nique d’apprentissage automatique très commune. Elle con-
siste à projeter les noeuds d’un graphe sur un espace vecto-
riel. Ce type de méthodes est cependant non-interprétable en
général. Nous proposons un nouvel algorithme d’embedding
appelé PARFAITE, qui est basé sur la factorisation de la ma-
trice de PageRank personnalisé. Cet algorithme est conçu
pour que ses résultats soient interprétables.
Nous étudions chacun de ces algorithmes sur un plan à la fois
théorique et expérimental. Nous montrons que FuDyADT
est au minimum comparable aux algorithmes de l’état de
l’art dans les conditions habituelles, tout en étant égale-
ment capable de fonctionner dans des contextes inhabituels
comme dans le cas où des données sont supprimées. Quant à
PARFAITE, il produit des dimensions d’embedding qui sont
alignées avec les communautés du graphe, et qui sont donc
interprétables.

Title: Dynamic Decision Trees and Community-based Graph Embeddings: towards Interpretable
Machine Learning

Keywords: Graph mining, Community detection, Graph embedding, Decision Tree, Dynamic machine
learning, Explainable AI

Abstract: Machine learning is the field of computer science
that interests in building models and solutions from data
without knowing exactly the set of instructions internal to
these models and solutions. This field has achieved great re-
sults but is now under scrutiny for the inability to understand
or audit its models among other concerns. Interpretable Ma-
chine Learning addresses these concerns by building models
that are inherently interpretable. This thesis contributes to
Interpretable Machine Learning in two ways.
First, we study decision trees. This is a very popular group of
machine learning methods for classification problems and it
is interpretable by design. However, real world data is often
dynamic, but few algorithms can maintain a decision tree
when data can be both inserted and deleted from the training
set. We propose a new algorithm called FuDyADT to solve

this problem.
Second, when data is represented as a graph, a very common
machine learning technique called “embedding” consists in
projecting it onto a vectorial space. This kind of method how-
ever is usually not interpretable. We propose a new embed-
ding algorithm called PARFAITE based on the factorization
of the Personalized PageRank matrix. This algorithm is de-
signed to provide interpretable results.
We study both algorithms theoretically and experimentally.
We show that FuDyADT is at least comparable to state-of-the-
art algorithms in the usual setting, while also being able to
handle unusual settings such as deletions of data. PARFAITE
on the other hand produces embedding dimensions that align
with the communities of the graph, making the embedding
interpretable.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Résumé
	Abstract
	Acknowledgements
	Introduction
	Organization of this thesis
	Notations
	Acknowledgements

	Background
	Dynamic decision trees
	The classification problem
	The dynamic classification problem
	Evaluating a classification model
	Decision trees generalities
	Split criteria for decision trees
	Stopping criteria for decision tree building

	PageRank and graph embedding
	Graph generalities
	The centrality problem
	Singular Value Decomposition
	Graph embedding

	Dynamic Decision Trees
	Introduction
	Main contributions
	Organization of the chapter
	Acknowledgements

	Online decision trees: A brief literature review
	Preliminaries
	Gini index and Gini gain smoothness
	-.4-feasibility: a new performance guarantee for dynamic decision trees

	The Fully Dynamic Decision Tree algorithm
	Main ideas
	The Build procedure
	The Update procedure
	Performance of the FuDyADT algorithm
	Lower bounds

	Experiments
	Experimental settings
	Limitations
	Results and discussion

	Conclusion and future work

	Personalized PageRank for Graph embedding
	Introduction
	Main contributions
	Organization of the chapter
	Acknowledgements

	Preliminaries on PageRank
	PageRank
	Personalized PageRank
	Interpretations
	Computing the PPR matrix and vectors

	Preliminaries on communities in graphs
	Preliminaries on graph embedding
	Taxonomy of graph embedding methods
	A brief history
	The problem of interpretability

	A new interpretable graph embedding
	Overview
	Interpretation of the steps
	Decomposition of the PPR matrix
	Finding the communities
	Reconstructing the communities rows and columns

	Experiments
	Experimental setting
	Results and discussion

	New Personalized PageRank properties
	A practical application
	Conclusion and future work

	Conclusion

	Additional results for PaRFaItE experiments
	Screenshots of the website for clusters presentation

