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Résumé court

‘apprentissage par renforcement (RL) est un paradigme d’apprentissage automatique qui
L aborde la question de la prise de décision séquentielle. Dans ce paradigme, 'algorithme,
désigné comme un agent, réagit a des interactions avec un environnement. A chaque interaction,
Pagent effectue une action dans ’environnement, observe un nouvel état de ’environnement et
recoit une récompense en conséquence. L’objectif de I'agent est d’optimiser une récompense
cumulative, qui est définie par l'utilisateur pour s’aligner sur la tache spécifique a accomplir
dans lenvironnement. La théorie du processus décisionnel de Markov (MDP) est utilisée pour
formaliser ce concept. Cependant, en cas de mauvaise spécification du modele ou d’erreur
dans la fonction de transition de ’environnent ou de la récompense, les performances du RL
peuvent diminuer rapidement. Pour résoudre ce probléme, le concept de MDP robustes a émergé,
I’objectif étant d’identifier la politique optimale sous I’hypothese que le noyau de transition
appartient a un ensemble d’incertitude. Cette these présente une étude théorique de la complexité
d’échantillonnage des MDP robustes, ou de la quantité de données nécessaires pour atteindre une
erreur arbitrairement petite. Ces résultats démontrent que dans certains cas, cette complexité
peut étre inférieure a celle des MDP classiques, ce qui constitue une voie prometteuse pour
concevoir de nouveaux algorithmes efficaces sur le plan de ’échantillonnage. La thése se poursuit
par des propositions de nouveaux algorithmes RL robustes pour renforcer les performances de
RL ayant des ensembles d’action continus. Notre méthode est basée sur les MDP averses aux
risques et les jeux a somme nulle, dans lesquels I’adversaire peut étre considéré comme un agent
qui change ’environnement dans le temps. En conclusion, la derniére section présentera des
nouvelles taches pour I’évaluation des algorithmes RL robustes, qui manquent de références pour
I’évaluation des performances.

Mots clés : processus décisionnel de Markov, appentissage par renforcement
robuste, robustesse






Abstract

einforcement learning (RL) is a machine learning paradigm that addresses the issue of
R sequential decision-making. In this paradigm, the algorithm, designated as an agent,
responds to interactions with an environment. At each interaction, the agent performs an action
within the environment, observes a new state of the environment, and receives a reward in
consequence. The objective of the agent is to optimise an cumulative reward, which is defined by
the user to align with the specific task at hand within the environment. The Markov Decision
Process (MDP) theory is used in order to formalise these concepts. However, in the event of
mispecifications or errors in the transition or reward function, the performance of RL may decline
rapidly. To address this issue, the concept of robust MDPs has emerged, whereby the objective
is to identify the optimal policy under the assumption that the transition kernel belongs to a
bounded uncertainty set. This thesis presents a theoretical study of the sample complexity of
robust MDPs, or the amount of data required to achieve an arbitrary small convergence error. It
demonstrates that in certain cases, the sample complexity of robust MDPs can be lower than for
classical MDPs, which is a promising avenue for the derivation of sample-efficient algorithms.
The thesis then goes on to derive new robust RL algorithms to strengthen the performance of RL
in continuous control. Our method is based on risk-averse MDPs and zero-sum games, in which
the adversary can be seen as an agent that changes the environment in the time. In conclusion,
the final section present a benchmark for the evaluation of robust RL algorithms, which currently
lack a reproducible benchmark for performance assessment.

Keywords : Robust Markov Decision Process, Robust Reinforcement Learning,
Sample Complexity






Notations

Mathematical Notations

e« N set of intergers

e R set or real numbers

o« MT transpose of a matrix M

o N normal distribution

e E expectation under a probabilistic model

o V variance

o A(S) the space of probability distributions over S (i.e., the probability simplex)
o 29 set of subsets of a set E

.1l an arbitrary norm and ||.[|,, the classical L, norm.

e 0 parameter to learn in a statistical model

argmax  set of all maximizers
o U uniform distribution

e 1 for unitary vector and 1 for unitary of dimension S

Markov Decisions Processes Notations

- M a MDP

e S state space of context space of dimention S < oo in Chapter 2 and 3

e« A action space of dimension A with A < oo in Chapter 2 and 3

o v the discount factor, v € [0, 1)

o 7 reward function reward function of the agent r : s,a — (s, a)

e P transition kernel s’ ~ P(s'|s, a)

o T the trajectory or rollout following kernel P and policy .

« P the probability distribution over the trajectories or rollout 7 ~ P = (7, P)

e R the return of one trajectory R(7) = Y 15077



Notations

XX

m O < 3

[ ]
3

™ 9

initial state distribution

radius of the uncertainty set in Robust MDPs

nominal kernel in Robust MDPs

the Bellman Operator

state value function where * stands for optimal value and 7 for policy value
state-action value function, where * stands for optimal value, 7 for policy value
the horizon factor in infinite discounted MDP equal to H = 1/(1 — =)

the policy learn and II the set of all policies from S to A

a dataset

a batch of the dataset D

the index of the time in the MDP

iteration index of an algorithm, usually used as a subscript
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Chapter 1. Introduction 2

Essayer d’imiter un esprit humain adulte nous oblige a beaucoup réfiéchir au
processus qui l’a conduit a cet état. Nous pouvons en relever trois composantes.

o (a) Uétat initial de Uesprit, a la naissance ;
o (b) éducation a laquelle il a été soumis ;

o (c) un autre type d’expérience, que nous ne rangeons pas sous le terme
“éducation” a laquelle il a été confronté.

Au lieu d’essayer de produire un programme qui simule [’esprit adulte, pourquoi
ne pas plutot essayer d’en produire un qui simule celui de l'enfant ? S’il était
soumis a une éducation appropriée , on aboutirait au cerveau adulte. Il est
probable que le cerveau de l’enfant est une sorte de calepin comme on peut en
trouver dans les papeteries : un mécanisme plutot petit et avec beaucoup de
feuilles blanches. ("Mécanisme” et "écriture” sont pour nous pratiquement
synonymes.) Notre espoir est qu’il y ait un si petit mécanisme dans le cerveau
de l'enfant qu’il soit aisément programmable. En premiére approxrimation, nous
pouvons supposer que la quantité de travail nécessaire a cette éducation serait
pratiquement identique a celle qui est destinée d un enfant humain.

Alan Turing, Machine a calculer et intelligence (1950) (traduit par Gromov)

1.1 Résumé et introduction en francais

N évalue souvent la pertinence d’une décision apres une certaine période de temps. Dans les
O jeux ou dans la vie en général, les décisions peuvent avoir des impacts qui s’étendent bien
au-dela du moment initial du choix, et agir en prenant en compte les implications futures est un
aspect primordial de 'intelligence. Bien que les récents progres en apprentissage automatique
aient démontré des capacités impressionnantes dans les prédictions a une étape ou de maniere
non séquentielle, telles que la transcription de la parole en texte, la prédiction de la forme
des protéines ou la reconnaissance du contenu des images, la création d’algorithmes capables
de modifier leurs actions pour tenir compte des résultats futurs reste I'un des défis les plus
significatifs de la recherche contemporaine en intelligence artificielle. La capacité de planifier et
de prédire une séquence d’actions pour résoudre ce probléme est généralement désignée sous le
terme de prise de décision séquentielle.

Dans la nature, les humains et les animaux sont capables de prendre des décisions séquentielles.
Par exemple, les neurotransmetteurs tels que la dopamine, qui est synthétisée dans le cerveau et
les reins des humains et animaux, sont impliqués dans la modulation des comportements motivés
par une récompense (Berridge 2007). Notamment, la libération de dopamine en anticipation
d’un stimulus gratifiant ou en réponse a une récompense qui dépasse les attentes (Montague
et al. 1996) montre la capacité des mécanismes neurochimiques a adapter leur comportement en
réponse aux stimuli environnementaux et & optimiser leurs actions pour les résultats souhaités.

D’un point de vue plus informatique ou mathématiques, 'un des pionniers de la prise de
décision séquentielle est Bellman. Dans son célebre ouvrage intitulé ”Dynamic Programming”,
Bellman (1966) a été I'un des premiers a établir les fondements de Papprentissage par renforcement.
Bien que le travail de Bellman soit principalement théorique et méthodologique, la compréhension
ultérieure des phénomenes biologiques a fortement influencé ses travaux.
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Enfin, le terme ”apprentissage par renforcement”, tel que défini formellement par Sutton
and Barto (2018), est un paradigme mathématique qui permet aux agents d’interagir avec leur
environnement et d’apprendre des comportements qui maximisent leur récompense cumulative
au fil du temps. Au cours de ce processus, les agents apprennent & éviter les mauvaises actions
qui peuvent avoir des conséquences négatives a ’avenir et a agir de maniere a améliorer leur
résultat final dans un environnement donné.

Un type particulier de prise de décision séquentielle est appelé problemes des bandits. Les
algorithmes de bandits représentent une classe d’approches congues principalement pour résoudre
le probléme du bandit manchot (Auer et al. 2002, Lattimore and Szepesvari 2020). Dans sa forme
classique, le probleme du bandit manchot consiste a sélectionner une stratégie pour maximiser le
profit, étant donné n machines a bandit manchot a un seul bras avec des gains qui suivent des
distributions de probabilité distinctes et inconnues. Une caractéristique unique de ce probleme
est que les décisions passées n’ont pas d’impact sur les résultats des décisions ultérieures, de
la méme maniere qu'un nouveau tirage de roulette dans un casino est indépendant des tirages
précédents.

L’apprentissage par renforcement (RL), contrairement au probléme des bandits, est un
probleme d’apprenti-ssage séquentiel ou l'influence des décisions passées pese sur les décisions
futures. Le RL a démontré des performances impressionnantes dans une grande variété de
domaines, notamment les jeux (Silver et al. 2017), alignement de grands modeéles linguistiques
(Ziegler et al. 2019, Achiam et al. 2023), la robotique et le contrdle (Kober et al. 2013) ou encore les
soins de santé (Liu et al. 2019, Fatemi et al. 2021). Ces remarquables accomplissements peuvent
étre attribués a la quantité importante de données utilisées dans le processus d’apprentissage de
la politique ou statégie de choix des actions.

Cependant, dans certaines situations, les données disponibles peuvent ne pas étre suffisantes
pour apprendre une politique efficace, ce qui entraine des politiques qui généralisent mal et qui
meénent des performances sous-optimales lorsqu’elles sont déployées dans des applications réelles.
Les approches basées sur les données deviennent de plus en plus cruciales pour améliorer divers
aspects de la vie humaine. Par conséquent, lors du développement d’algorithmes d’apprentissage
par renforcement, quels facteurs devraient étre pris en compte ?

e« La notion de robustesse. Dans le contexte de 'apprentissage par renforcement, la
robustesse face a des perturbations est une caractéristique primordiale. En RL, les perfor-
mances d’une politique apprise dans I’environnement d’entralnement peuvent se dégrader
considérablement une fois déployée en phase de test dans un environnement en en raison de
I'incertitude et de la variabilité, qui peuvent étre causées par des perturbations aléatoires
et des événements rares ou méme des attaques malveillantes (Mahmood et al. 2018). Par
conséquent, il est crucial de développer des algorithmes RL capables de gérer efficacement
de telles incertitudes et de garantir que les politiques apprises peuvent se généraliser de
manieére adéquate a de nouveaux environnements.

o L’efficacité d’échantillonage est également un aspect crucial de I’apprentissage par
renforcement (RL) moderne. La complexité des problemes RL contemporains a augmenté de
maniere significative, avec des environnements plus grands et des modeles pour apprendre
politique plus complexes (Silver et al. 2017, Achiam et al. 2023). Par conséquent, les
algorithmes de RL ont souvent besoin de vastes quantités de données pour apprendre des
politiques efficaces. Ce défi est d’autant plus difficile de par la nature séquentielle des
problemes RL, ot la complexité de ’environnement croit de maniére exponentielle avec la
longueur de I’horizon. Par conséquent, 'amélioration de l'efficacité d’échantillonage est une
direction de recherche essentielle pour permettre aux agents RL d’apprendre des politiques
efficaces avec des données et des ressources de calcul limitées. Du point de vue théorique,
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les recherches récentes se sont concentrées sur le développement d’un cadre théorique a
échantillon fini (Kakade 2003) pour évaluer et comparer lefficacité d’échantillonage des
algorithmes d’apprentissage par renforcement dans des contextes de grande dimension.
Cependant, la compréhension statistique du RL actuelle reste incompléte, en particulier en
raison des difficultés techniques rencontrées d’un point de vue théorique. Par conséquent,
des recherches supplémentaires sont nécessaires pour améliorer 'efficacité d’échantillonage
des algorithmes RL dans des contextes de grande dimension.

e La reproductibilité des performances des algorithmes d’apprentissage par renforcement
et la fagon de s’adapter a des espaces de grande dimension sont également d’une importance
capitale. Dans les applications pratiques, la dimensionnalité des environnements rencontrés
est souvent élevée, ce qui rend la mise a I’échelle des algorithmes RL une considération
critique, en particulier dans les situations ou les ressources en mémoire et calcul sont
limitées. De plus, le RL est fréquemment critiqué pour son manque de robustesse et ses
performances difficiles & reproduire. Par conséquent, il est essentiel de développer des
algorithmes RL qui peuvent performer efficacement dans des environnements de haute
dimension et concevoir des benchmarks pour tester la robustesse des algorithmes et obtenir
des performances reproductibles.

Le probleme de complexité ou efficacité d’échantionnage est représenté dans la Figure 1.1b.
Dans cette figure 'algorithme demande beaucoup d’échantillon & I’environnement pour converger
ou pour obtenir des bonnes performances alors que dans Figure 1.1a, la convergence est plus
rapide pour le méme environnement Walker-v3.

Walker Walker
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(a) Un algorithme avec une bonne complexité (b) Un algorithme avec moins bonne complexité
d’échantionnage d’échantionnage

Le probléme de robustesse face a des perturbations est présenté dans la figure 1.2. Dans cette
figure, on enraine un agent qui interagit dans un environnement nommé CartPole, dont le but est
de contréler une barre fixée a un chariot par une articulation non actionnée. Cet environnement
posséde initialement une grandeur physique (la longueur de la barre) relative de 1, mais en phase
de test, on évalue ’agent en modifiant la cette grandeur physique. Le but de cette theése est de
concevoir des algorithmes robuste a ces perturbations. Le paramétre o dans le graphe controle
la robustesse induite dans ’algorithme de RL. Plus de détails sont disponible au chapitre 4 . La
question centrale a laquelle tenterons de répondre est:

Pouvons nous concevoir des algorithmes de RL qui aient da la fois une bonne complexité
d’échantillonnage, soient robustes, passent a l’échelle en terme de dimension tout en ayant des
performances reproductibles ?
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Figure 1.2: Performance d'un algorithme entrainé avec une masse relative de 1 sur I’environment
CartPole-v1, variant la masse du CartPole en phase de test

Nous tenterons de répondre a cette question en se focalisant sur le RL robuste en montrant
que ce dernier est un paradigme qui peut répondre a ces différents criteres.

Comme mentionné précédemment, apprentissage par renforcement (RL) a connu des réussites
significatives ces derniéres années ; cependant, il fait souvent face a des défis en termes de
robustesse et de généralisation. Ces défis surviennent principalement parce que les agents
sont trop ajustés a I'’environnement d’entrainement spécifique, ce qui peut entrainer de pietres
performances lors du déploiement. Les agents RL sont généralement entrainés en simulation
en raison du colit élevé de l'interaction avec les systemes physiques. Toutefois, les simulations
peuvent contenir des erreurs de modélisation et des parametres imprécis, ce qui entraine une
divergence entre la simulation et la réalité ou la politique entrainée peut avoir du mal a gérer
pendant la transition de la simulation au réel. Méme les politiques entrainées directement
sur le systéme réel peuvent résister a des incertitudes ou des perturbations préalablement non
rencontrées, de légeres déviations dans les parametres de I’environnement, tels que la masse ou la
friction, peuvent avoir un impact significatif sur les performances d’une politique, ce qui peut
faire la différence entre la réussite et ’échec dans les scénarios de test (Morimoto and Doya 2005,
Pinto et al. 2017).

Pour résoudre ce probléme, les processus de décision Markov robustes (RMDP) ont été
introduits dans Iyengar (2005), Nilim and El Ghaoui (2005). Ce cadre est naturel et polyvalent car
il exploite les informations issues de 'optimisation robuste distributionnelle et de 'apprentissage
supervisé (Bertsimas et al. 2018, Blanchet and Murthy 2019, Duchi and Namkoong 2021).
Contrairement aux MDP conventionnels, les RMDPs fournissent un cadre de modélisation plus
étendu, permettant la spécification de la forme et de la magnitude de I’ensemble d’incertitude.
Fréquemment, ’ensemble d’incertitude est choisi comme étant une petite boule centrée autour du
noyau nominal ayant un rayon o, ayant une forme définie par une métrique qui mesure la distance
entre les distributions de probabilité. Pour faciliter la faisabilité de la résolution des RMDP,
I’ensemble d’incertitude est généralement supposé posséder certaines propriétés structurelles.
Par exemple, des travaux antérieurs (Iyengar 2005, Wiesemann et al. 2013) ont proposé que
I’ensemble d’incertitude puisse étre décomposé en sous-ensembles indépendants pour chaque
état ou paire état-action, appelés respectivement s- et (s, a)-rectangularité. Dans cette these,
nous adopterons ’hypothese de (s, a)-rectangularité pour I'ensemble d’incertitude. D’un point
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de vue théorique, cette hypothese sera utile dans les chapitres 2 et 3 tandis que nous essaierons
de I’éviter d’un point de vue pratique car il s’agit d’une hypothése restrictive dans le chapitre 6.

Les contributions de cette thése sont les suivantes. Apres un bref apergu résumant les notions
utiles dans le chapitre 1, le manuscrit est organisé en deux parties : la premiere se concentre sur
la théorie des MDP robustes et en particulier sur la question de la complexité de I’échantillon, la
seconde étudie 'apprentissage par renforcement robuste d’un point de vue pratique. Ces deux
directions ne sont pas orthogonales : au contraire, I’étude théorique des MDP peut donner des
idées sur la facon de concevoir des algorithmes d’apprentissage par renforcement robustes efficaces
et 'utilisation d’algorithmes d’apprentissage par renforcement robustes donne une intuition sur
la complexité de I’échantillon des MDP robustes.

Tout d’abord, nous aborderons la question de la complexité d’échantionnage.. Supposons que
I'on ait acces a des échantillons de données générés par un MDP avec un noyau de transition nom-
inal, obtenus par certains mécanismes d’échantillonnage. L’objectif principal de 'apprentissage
par renforcement traditionnel est d’apprendre la politique optimale spécifiquement adaptée au
noyau nominal, pour lequel la limite de complexité d’échantillon minimax a été bien établie (Azar
et al. 2013a). En revanche, l'objectif de 'apprentissage par renforcement robuste distributionnel
est d’apprendre une politique plus résiliente en utilisant le méme ensemble d’échantillons de
données, en optimisant les performances dans le pire des cas lorsque le noyau de transition est
choisi arbitrairement a partir d’'un ensemble d’incertitude prédéfini autour du noyau nominal.
La complexité de I’échantillon pour les RMDP a été étudiée dans (Yang et al. 2022, Panaganti
and Kalathil 2022a, Shi et al. 2024). D’un point de vue de la complexité de I’échantillon, nous
démontrerons que les RMDP ne sont pas plus difficiles & apprendre que les MDP classiques pour
un petit rayon d’incertitude o, et peuvent méme étre plus simples & apprendre lorsque le rayon
est plus grand. Cette constatation fournit une motivation pour I'utilisation de RMDP afin de
développer un algorithme efficace en termes d’échantillons dans le chapitre 2 et 3.
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Premiere contribution sur la complexité d’échantionnage des RMDPs

Dans la premiere partie, nous nous concentrons sur la compréhension de la complexité de
I’échantillon des MDPs robustes. Plus précisément, dans le chapitre 2, nous étudions la
complexité de I’échantillon pour obtenir une politique e-optimale dans les processus de
décision Markoviens robustes a horizon infini escompté ou actualisé (RMDPs), en n’ayant
acces qu’a un modele génératif du noyau nominal. Ce probleme est largement étudié
dans le cas non robuste, et il est connu qu’une approche de planification appliquée & un
MDP empirique estimé avec @(H if A) échantillons fournit une politique e-optimale, ce
qui est optimal au sens minimax. Les résultats dans le cas robuste sont beaucoup plus
rares. Pour les ensembles d’incertitude sa- (resp s-) rectangulaires, jusqu’a récemment, la
meilleure complexité d’échantillon connue était O(Z 46*22‘4) (resp. CN)(H4§22A2)), pour des
algorithmes spécifiques et lorsque ’ensemble d’incertitude est basé sur la divergence de la
variation totale (TV), la divergence KL ou la divergence du Chi-square. Dans cet article,
nous considérons des ensembles d’incertitude définis avec une L,-boule (retrouvant le cas
TV), et nous étudions la complexité de I’échantillonage de n’importe quel algorithme de
planification (avec une garantie de haute précision sur la solution) appliqué a un RMDP
empirique estimé a ’aide du modele génératif. Dans le cas général, nous dérivons une
complexité d’échantillon de O(& ifA) pour les cas sa- et s-rectangulaires (améliorations
de S et SA respectivement). Lorsque la taille de I'incertitude est suffisamment petite,
nous améliorons la complexité de ’échantillon & O(Z iqu), retrouvant la borne inférieure
pour le cas non robuste pour la premiere fois et une borne inférieure robuste. Enfin,
nous introduisons également des algorithmes simples et efficaces pour résoudre les MDPs

robustes L, étudiés.

Deuxiéme contributions sur la complexité d’échantionnage des RMDPs

Dans le chapitre 3, nous affinons le résultat du chapitre 2 en supposant ’accés a un modele
génératif qui échantillonne a partir du MDP nominal. Nous examinons la complexité de
I’échantillon des RMDPs en utilisant une classe de normes L, généralisées comme fonction
de "distance” pour ’ensemble d’incertitude, sous deux conditions sa-rectangulaires et
s-rectangulaires couramment adoptées. Nos résultats impliquent que les RMDPs peuvent
étre plus efficaces en termes d’échantillons & résoudre que les MDPs standard en utilisant
des normes L, généralisées dans les cas sa- et s-rectangulaires, ce qui pourrait inspirer
davantage de recherches empiriques. Nous fournissons une borne supérieure quasi optimale
et une borne inférieure minimax correspondante pour les scénarios sa-rectangulaires. Pour
les cas s-rectangulaires, nous améliorons la borne supérieure de I’état de ’art et dérivons
également une borne inférieure en utilisant la norme Lo, qui vérifie 'exactitude. Par
rapport au chapitre 2, nous améliorons la complexité de I’échantillon, montrant qu’il est
possible d’obtenir une complexité d’échantillon inférieure a celle des MDPs classiques.
Cette partie ouvre une voie prometteuse pour dériver des algorithmes qui peuvent atteindre
une complexité d’échantillon plus faible tout en étant plus robustes aux perturbations.

Dans la deuxiéme partie de cette thése, nous nous concentrons sur la dérivation d’algorithmes
d’apprentissage par renforcement robustes (Robuste RL) a partir d’un point de vue pratique.
Nous montrons que les idées issues des MDPs robustes peuvent étre utilisées pour concevoir des
algorithmes de Robuste RL en utilisant une formulation basée sur MDPs risque-averses. Plus
précisément, I’idée de cette classe d’algorithmes est d’approcher I'opérateur minimum interne
présent dans l'opérateur de Bellman robuste (1.37). Les travaux précédents ont généralement
employé une approche duale pour le probléme minimum, ou la probabilité de transition est
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contrainte a rester dans une boule spécifiée autour du noyau de transition nominal. Dans des
travaux précédents, (Kumar et al. 2022) a dérivé un algorithme approché pour les RMPDS
avec des boules Ly, (Liu et al. 2022) a utilisé une boule définie avec une divergence KL et
nous essayons d’approcher pour les RMDPs avec une divergence x? dans le chapitre 4. En
pratique, la robustesse est équivalente & la régularisation (Derman et al. 2021) et, par exemple,
lalgorithme SAC (Haarnoja et al. 2018a) possede des charactéristiques robuste en raison de la
régularisation entropique (Eysenbach and Levine 2021). Enfin, Wang et al. (2023) propose une
nouvelle approche en ligne pour résoudre les RMDP. Contrairement aux travaux précédents qui
régularisent avec la politique ou la fonction de valeur, Wang et al. (2023) crée de la robustesse en
simulant les pires scénarios de noyau pour ’agent tout en utilisant n’importe quel algorithme
d’apprentissage par renforcement classique dans le processus d’apprentissage.

L’idée que la régularisation et la robustesse sont étroitement liées sera également centrale
dans cette these dans les chapitres 4 et 5. L’idée centrale dans le chapitre 5 est que nous
évitons l'estimation d’une pénalisation ou d’une régularisation, et estimons plutdt ’expectile
de la fonction de valeur, ce qui crée une robustesse implicite. Ces types d’algorithmes sont
mathématiquement bien fondés, mais utilisent uniquement que des échantillons provenant du
noyau de transition nominal. L’idée d’utiliser des échantillons pas seulement du noyau nominal
est présente dans le concept de randomisation de domaine (DR) Tobin et al. (2017) qui apprend
une fonction de valeur qui maximise le rendement attendu en moyenne sur une distribution fixe
(généralement uniforme) sur I’ensemble d’incertitude. Cette méthode utilise des échantillons de
toute l'incertitude et sera combinée avec une formulation d’aversion au risque dans le chapitre 5.
Pour relever les défis mentionnés précédemment d’utiliser uniquement des échantillons a partir
du nominal et d’éviter les hypothéeses de rectangularité, une approche utilisant le concept de jeux
a deux joueurs a somme nulle ou min-max est proposée dans le chapitre 6. Notre algorithme est
basé, comme de nombreux algorithmes d’apprentissage en profondeur robustes existants tels que
M2TD3 Tanabe et al. (2022a), M3DDPG (Li et al. 2019a), ou RARL (Pinto et al. 2017), sur le
jeu a deux joueurs a somme nulle présenté dans la section 6.2.

Premiere contribution algorithmique en RL robuste

L’apprentissage par renforcement robuste essaie de rendre les prédictions plus robustes
aux changements dans la dynamique ou les récompenses du systeme. Ce probleme est
particulierement important lorsque la dynamique et les récompenses de I’environnement
sont apprises et estimées a partir des données. Dans le chapitre 4, nous essayons d’approcher
’apprentissage par renforcement robuste contraint avec une divergence de x2 en utilisant
une formulation de RL averse au risque approchée. Nous montrons que la formulation
classique de 'apprentissage par renforcement peut gagner en robustesse en utilisant une
pénalisation de I’écart-type de 'objectif. Deux algorithmes basés sur le Reinforcement
Learning distributionnel, I'un pour l’espace d’actions discret et ’autre pour 'espace
d’actions continu, sont proposés et testés sur des environnements Gym classiques pour
démontrer la robustesse des algorithmes.
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Seconde contribution algorithmique en RL robuste

Dans le chapitre 5, nous dérivons une nouvelle forme de robustesse implicite en RL en
utilisant le bootstrapping d’expectile. L’utilisation de cette technique évite d’estimer
une pénalisation comme dans le chapitre 4. De nombreux algorithmes classiques de
Reinforcement Learning (RL) reposent sur un opérateur de Bellman, qui implique une
espérance sur les états suivants, conduisant au concept de bootstrapping. Pour introduire
une forme de pessimisme, nous proposons de remplacer cette espérance par un expectile.
En pratique, cela peut étre tres simplement fait en remplacant la perte Ly par une
perte d’expectile plus générale pour le critique. L’introduction de pessimisme en RL est
souhaitable pour diverses raisons, telles que la résolution du probléme de surestimation
(pour lequel les solutions classiques sont le double Q-learning ou ’approche twin-critic de
TD3) ou le RL robuste (ou les transitions sont adverses). Nous étudions empiriquement
ces deux cas. Pour le probleme de surestimation, nous montrons que ’approche proposée,
ExpectRL, fournit de meilleurs résultats qu’'un twin-critic classique. Sur les benchmarks
de RL robuste, impliquant des changements de ’environnement, nous montrons que notre
approche est plus robuste que les algorithmes classiques de RL. Nous introduisons également
une variante de ExpectRL combinée avec la randomisation de domaine qui est compétitive
avec les agents de RL robuste de I'état de I’art. Enfin, nous étendons également ExpectRL
avec un mécanisme pour choisir automatiquement la valeur d’expectile, c’est-a-dire le
degré de pessimisme.

Troisieme contribution algorithmique en RL robuste

Dans le chapitre 6, nous essayons de dériver un nouvel algorithme sans hypotheses de
rectangularité. Les hypotheses de rectangularité en RL L’apprentissage par renforcement
robuste traditionnel dépend souvent d’hypotheses de rectangularité, ou les mesures de
probabilité adverses des états de résultat sont supposées étre indépendantes pour différents
états et actions. Cette hypothese, rarement respectée dans la pratique, conduit a des
politiques excessivement conservatrices. Pour résoudre ce probleme, nous introduisons
une nouvelle formulation de MDP robuste & temps contraint (TC-RMDP) qui prend en
compte les perturbations multifactorielles, corrélées et dépendantes du temps, reflétant
ainsi plus précisément les dynamiques du monde réel. Cette formulation va au-dela du
paradigme conventionnel de rectangularité, offrant de nouvelles perspectives et élargissant
le cadre analytique pour ’apprentissage par renforcement robuste. Nous proposons trois
algorithmes distincts, chacun utilisant différents niveaux d’informations environnementales,
et les évaluons de maniere approfondie sur des benchmarks de contréle continu. Nos
résultats montrent que ces algorithmes offrent un compromis efficace entre performance
et robustesse, surpassant les méthodes traditionnelles d’apprentissage par renforcement
robuste en profondeur dans les environnements a temps contraint tout en maintenant la
robustesse dans les benchmarks classiques. Cette étude remet en question les hypotheses
prédominantes en apprentissage par renforcement robuste et ouvre de nouvelles voies
pour le développement d’applications d’apprentissage par renforcement plus pratiques et
réalistes.

Enfin, pour obtenir des méthodes reproductibles et évolutives, nous avons créé un benchmark
normalisé : RRLS dans le chapitre 7. Nous avons testé notre dernier algorithme TC-MDPs sur
ce benchmark pour créer un algorithme reproductible qui peut évoluer avec la dimension et offrir
des performances reproductibles.
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Contribution en RL Robuste reproductible

Nous introduisons la Robust Reinforcement Learning Suite (RRLS), une suite de bench-
marks basée sur des environnements Mujoco. RRLS propose six tdches de contrdle continu
avec deux types d’ensembles d’incertitude pour l’entrainement et 1’évaluation. Notre
benchmark vise a standardiser les tdches d’apprentissage par renforcement robuste, facili-
tant ainsi des expériences reproductibles et comparables, en particulier celles issues de
récentes contributions de pointe, pour lesquelles nous démontrons I'utilisation de RRLS. 11
est également congu pour étre facilement extensible & de nouveaux environnements. Le
code source est disponible a P’adresse https://github.com/SuReLI/RRLS.

Dans le chapitre 8, nous abordons le probleme de la représentation de la distribution postérieure
dans le probleme de bandit en utilisant des algorithmes d’échantillonnage de Thompson avec une
distribution postérieure arbitraire apprise a I'aide de l'inférence variationnelle.

Premiere contribution sur la théorie des bandits

Nous introduisons et analysons une variante de I'algorithme d’échantillonnage de Thomp-
son (TS) pour les bandits contextuels. A chaque tour, le TS traditionnel nécessite des
échantillons de la distribution postérieure actuelle, ce qui est généralement intractable.
Pour contourner ce probleme, des techniques d’inférence approchée peuvent étre utilisées
et fournissent des échantillons avec une distribution proche des postérieures. Cependant,
les techniques d’approximation actuelles conduisent soit & une estimation de mauvaise
qualité (approximation de Laplace), soit peuvent étre cotiteuses en calcul (méthodes
MCMC, échantillonnage d’ensemble, etc.). Dans cet article, nous proposons un nouvel
algorithme, 'inférence variationnelle T'S (VITS), basé sur 'inférence variationnelle gaussi-
enne. Ce schéma fournit des approximations de postérieures puissantes qui sont faciles a
échantillonner, et qui sont efficaces sur le plan computationnel, ce qui en fait un choix
idéal pour TS. De plus, nous montrons que VITS atteint une borne de regret sous-linéaire
du méme ordre dans la dimension et le nombre de tours que le TS traditionnel pour les
bandits contextuels linéaires. Enfin, nous démontrons expérimentalement 'efficacité de
VITS sur des jeux de données synthétiques et réels.

1.1.1 Détails des différentes contributions du manuscrit

Nous passons maintenant a la description des contributions de cette these. Apres un bref apercu
des notions utiles dans le chapitre 1, le manuscrit est organisé en deux parties : la premiere se
concentre sur la théorie des MDPs robustes et en particulier sur la question de la complexité
de I’échantillon, tandis que la deuxieme étudie la RL robuste d’un point de vue pratique. Ces
deux directions ne sont pas orthogonales : au contraire, I’étude théorique des MDPs peut donner
des idées sur la fagon de concevoir des algorithmes de RL robustes efficaces et 'utilisation
d’algorithmes de RL robustes peut donner une intuition sur les MDPs robustes.

Contributions

Les éléments et résultats présentés dans cette these ont été publiés ou sont actuellement en
cours d’examen dans les travaux suivants :

e Pierre Clavier, Erwan Le Pennec, Matthieu Geist Towards Minimax Optimality of
Model-based Robust Reinforcement Learning Conference on Uncertainty in Artificial


https://github.com/SuReLI/RRLS
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Intelligence (UAI) 2024 (Oral), Clavier et al. (2023). Covered in Chapter 2.

e Pierre Clavier Laixi Shi, Eric Mazumdar, Matthieu Geist, Adam Wierman, Erwan Le
Pennec Near-Optimal Distributionally Robust Reinforcement Learning with
General Lp Norms. NeurIPS 2024, Dans le chapitre 3.

e Pierre Clavier®, Tom Huix*, Alain Durmus VITS : Variational Inference Thomson
Sampling for contextual bandits International Conference on Machine Learning 2024,
Clavier et al. (2023). Dans le chapitre 8.

o Pierre Clavier, Stéphanie Allassonniere, Erwan Le Pennec Robust Reinforcement
Learning with Distributional Risk-averse formulation International Conference on
Machine Learning 2024, Workshop in Responsible Decision Making in Dynamic Environ-
ments, Clavier et al. (2022). Dans le chapitre 4.

e Pierre Clavier, Emmanuel Rachelson, Erwan Le Pennec, Matthieu Geist. Bootstrapping
Expectiles in Reinforcement Learning https://arxiv.org/abs/2406.04081. Clavier
et al. (2024) Dans le chapitre 5.

o Adil Zouitine*, David Bertoin*, Pierre Clavier*, Matthieu Geist, Emmanuel Rachelson
Time-Constrained Robust MDPs Zouitine et al. (2024b) NeurIPS 2024. Dans le
chapitre 6.

e Adil Zouitine*, David Bertoin*, Pierre Clavier®, Matthieu Geist, Emmanuel Rachelson
RRLS : Robust Reinforcement Learning Suite, Zouitine et al. (2024a),
https https://arxiv.org/abs/2406.08406. Dans le chapitre 7.

A propos de mes contributions:

o Je suis le seul premier auteur junior des chapitres 2, 3, 4, et 5. J’ai rédigé I'article, développé
le code et les expériences, et je suis a l'origine de 1’idée principale. Laixi Shi, chercheuse
postdoctorale, a contribué en tant que deuxiéme auteur au chapitre 4, en apportant des
commentaires précieux sur la rédaction et des commentaires sur les résultats. Toutes les
preuves ont été discutées avec elle, tandis que les idées et la rédaction sont mon propre
travail.

e Pour les chapitres 6, 7 et 8, je suis co-premier auteur aux cotés de mes collegues Adil
Zouitine, David Bertouin et Tom Huix. Dans les chapitres 6 et 7, je suis coauteur avec Adil
et David. J’ai contribué a parts égales avec Adil Zouitine a la rédaction, aux discussions
et au développement des idées. Adil et David se sont davantage concentrés sur la mise
en ceuvre, tandis que j’ai traité les sections théoriques de maniére indépendante. Dans le
chapitre 8, j’ai partagé le travail a parts égales avec Tom Huix, l'autre coauteur. Nous
avons tous deux contribué a la mise en ceuvre, aux preuves et a la rédaction du papier. En
outre, j’ai apporté des idées personnelles a la fois dans la preuve et dans la mise en ceuvre
des algorithmes finaux.

*Equal contribution.
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1.2 Introduction

In the process of trying to imitate an adult human mind we are bound to think
a good deal about the process which has brought it to the state that it is in. We
may notice three components.

o (a)The initial state of the mind, say at birth,
e (b)The education to which it has been subjected

e (c) Other experience, not to be described as education, to which it has
been subjected.

Instead of trying to produce a program to simulate the adult mind, why not
rather try to produce one which simulates the child’s? If this were then
subjected to an appropriate course of education one would obtain the adult
brain. Presumably the child brain is something like a notebook as one buys it
from the stationer’s. Rather little mechanism, and lots of blank sheets.
(Mechanism and writing are from our point of view almost synonymous.) Our
hope is that there is so little mechanism in the child brain that something like it
can be easily programmed. The amount of work in the education we can
assume, as a first approzimation, to be much the same as for the human child.

Alan Turing, Computing Machinery and Intelligence (1950)

he intelligence behind a decision often becomes apparent only after a significant period has
T passed. In games, or in life in general, decisions can have impacts that reach far beyond
the initial moment of choice, and acting with an awareness of future implications is a critical
aspect of intelligence. Recent advancements in machine learning have demonstrated impressive
abilities in single-step predictions, such as speech-to-text transcription, protein shape prediction,
or image content recognition. However, creating algorithms that can adjust their actions based
on anticipated future outcomes remains one of the most significant challenges in contemporary
artificial intelligence research. The ability to plan and predict a sequence of actions to address
this challenge is typically referred to as sequential decision making.

In nature, humans and animals are capable of sequential decision making. For example,
neurotransmitters such as dopamine, synthesized in the brains and kidneys of both humans and
animals, play a role in modulating reward-motivated behaviors (Berridge 2007). The release
of dopamine in anticipation of a rewarding stimulus, or in response to a reward that exceeds
expectations (Montague et al. 1996), illustrates how neurochemical mechanisms can adapt
behavior in response to environmental stimuli and optimize actions to achieve desired outcomes.

From a computer science and mathematical perspective, Bellman remains a pioneer in the
science of sequential decision making. Bellman (1966) was among the first to establish the
foundation of reinforcement learning in his renowned work, Dynamic Programming. While
Bellman’s contributions are primarily rooted in computational and mathematical principles,
subsequent understanding of biological phenomena has provided new insights into this field.

Finally, reinforcement learning, as formally defined by Sutton and Barto (2018), is a mathe-
matical framework that enables agents to interact with their environment and learn behaviors
that maximize their cumulative reward over time. Through this process, agents learn to avoid
actions that may lead to negative consequences and to act in ways that improve their ultimate
outcomes within a given environment.
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One type of sequential decision making is known as the bandit problem. Bandit algorithms
represent a class of approaches primarily designed to address the multi-armed bandit problem
(Auer et al. 2002, Lattimore and Szepesvari 2020). In its classical form, the multi-armed
bandit problem involves selecting a strategy to maximize profit given n single-armed bandit
machines, each with payoffs following distinct and unknown probability distributions. A defining
characteristic of this problem is that past decisions do not influence the outcomes of future
ones, similar to how each roulette spin in a casino is independent of previous spins, for example.
However, this unique characteristic also represents a key limitation: it does not account for the
influence of past decisions on future outcomes. This limitation is significant in many sequential
decision-making applications, such as games like chess, where the state of the board—determined
by both players’ moves—heavily influences each subsequent move. Therefore, while bandit
algorithms are not suitable for solving general decision-making problems, they are perfectly
adapted to the multi-armed bandit problem. The final chapter (8) of this thesis will focus on
this specific setting.

Reinforcement learning (RL), by contrast, addresses sequential learning problems in which
allowing past decisions to influence future ones has yielded impressive achievements across a
wide range of human-related domains, including games (Silver et al. 2017), large language model
alignment (Ziegler et al. 2019, Achiam et al. 2023), robotics and control (Kober et al. 2013),
and healthcare (Liu et al. 2019, Fatemi et al. 2021). These remarkable accomplishments can be
attributed to the extensive volume of interactive data leveraged in the policy’s learning process.

However, in certain instances, the available data may be insufficient to train an effective policy,
leading to policies that fail to generalize well and exhibit suboptimal performance in real-world
applications. As data-driven approaches play an increasingly pivotal role in enhancing diverse
aspects of human life, what factors should be taken into account when developing data-driven
reinforcement learning algorithms?

e The notion of Robustness. Robustness to uncertainty is a highly valued attribute in
reinforcement learning (RL). This importance stems from the fact that the performance of
a learned policy in the training environment can significantly deteriorate when exposed
to the uncertainty and variability of a test environment, which may arise from random
disturbances, rare occurrences, or even intentional adversarial attacks (Mahmood et al. 2018).
Consequently, developing RL algorithms that can effectively manage such uncertainties is
essential to ensure that the learned policies generalize reliably to new environments.

o The sample efficiency is a crucial aspect of modern reinforcement learning (RL). As
RL problems have become increasingly complex, with larger environments and more
sophisticated policy models, RL agents often require extensive data to learn effective
policies (Silver et al. 2017, Achiam et al. 2023). This challenge is further compounded
by the sequential nature of RL problems, where the environment’s complexity can grow
exponentially with the length of the horizon. Consequently, enhancing sample efficiency has
become an essential research direction to enable RL agents to learn effective policies using
limited data and computational resources. From a theoretical standpoint, recent efforts
have been directed toward developing a finite-sample framework (Kakade 2003) to assess
and compare the sample efficiency of RL algorithms in high-dimensional settings. However,
current statistical insights and provable performance guarantees are still insufficient in both
theory and practice, largely due to technical challenges and the broad, diverse scope of RL.
Thus, advancing the sample efficiency of RL algorithms in high-dimensional environments
remains a pressing area for further research.

e Reproducibility and scalability of RL algorithm performance are also of critical importance.
In practical applications, the dimensionality of encountered environments is often substantial,
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making the scalability of reinforcement learning (RL) algorithms a key consideration,
particularly in scenarios with limited memory and computational resources. Additionally,
(Robust) RL is frequently criticized for producing results that are challenging to replicate.
Thus, it is essential to develop RL algorithms that can effectively and efficiently scale to
high-dimensional environments, as well as to design benchmarks that test the robustness of
algorithms with reproducible performance outcomes.

The problem of sample efficiency is presented in Fig 1.1b where the first algorithm requires
many samples to converge to a good solution whereas in 1.1a it requires less samples to obtain a
good policy. Moreover, robustness purposes is illustrated in Fig 1.2. In this figure, we train all
agents with a relative physical parameter (the length of the pole) of 1 and then in testing phase,
the physical parameter is changed. The question we want to tackle is how design algorithm
robust to these changes of physical parameters - which lead to changes of transition kernel. In
Fig 1.2, a controls the robustness induced in the RL algorithm. More details on that matter
may be found in Chapter 4.

Can we derive RL algorithms that are sample efficient, robust and scale with the size of the
problem and with reproducible performances?

In this thesis, we will tackle all these issues within the framework of Robust Reinforcement
Learning. As previously stated, reinforcement learning (RL) has achieved significant success in
recent years; however, it often faces challenges in robustness and generalization. These challenges
primarily arise due to agents overfitting to specific training environments, which can lead to poor
performance during deployment. RL agents are typically trained in simulation due to the high
cost of interacting with physical systems. However, simulations may contain modeling errors
and imprecise parameters, leading to a discrepancy between simulation and reality that can be
difficult for the trained policy to handle during transition. Even policies trained directly on
real systems may struggle with previously unencountered uncertainties or disturbances. Slight
deviations in the environment’s parameters, such as mass or friction, can significantly impact a
policy’s performance, which may be the difference between success and failure in test scenarios
(Morimoto and Doya 2005, Pinto et al. 2017).

Robust Markov Decision Processes (RMDPs) have been introduced in Iyengar (2005), Nilim
and El Ghaoui (2005) to tackle this problem. This framework is natural, versatile, and leverages
insights from distributionally robust optimization and supervised learning (Bertsimas et al. 2018,
Blanchet and Murthy 2019, Duchi and Namkoong 2021). In contrast to conventional MDPs, the
class of RMDPs provides a more extensive modeling framework, enabling the specification of the
shape and magnitude of the uncertainty set. Frequently, the uncertainty set is chosen to be a
small ball centered around the nominal kernel with an uncertainty radius o, with its dimensions
and form defined by a metric that measures the distance between probability distributions. To
facilitate the tractability of solving RMDPs, the uncertainty set is typically assumed to possess
certain structural properties. For example, previous works (Iyengar 2005, Wiesemann et al. 2013)
have proposed that the uncertainty set can be decomposed into independent subsets for each
state or state-action pair, referred to as s- and (s, a)-rectangularity, respectively. In this thesis,
we adopt the assumption of (s, a)-rectangularity for the uncertainty set.From a theoretical point
of view, these assumptions will be useful in Chapter 2 and 3 while we will try to avoid it from a
practical point of view - as it is restrictive - in Chapter 6.

We now turn to the descriptions of the contributions made in this thesis. After a short
background summarizing the useful notions in Chapter 1, this manuscript is organized in two
parts: the first one focuses on the theory of Robust MDPs and especially the question of sample
complexity; the second studies Robust RL from a practical point of view. These two directions
are not orthogonal: on the contrary, the theoretical study of MDPs can provide insights on how
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to design efficient Robust RL algorithms, and using Robust RL algorithms gives intuition on the
sample complexity of Robust MDPs.

First, we will tackle the question of sample complexity. Suppose that one has access to
data samples generated by an MDP with a nominal transition kernel, obtained through certain
sampling mechanisms. The primary objective of traditional RL is to learn the optimal policy
that is specifically tailored to the nominal kernel, for which the minimax sample complexity
limit has been well-established (Azar et al. 2013a). In contrast, the goal of distributionally
robust RL is to learn a more resilient policy using the same set of data samples by optimizing
the worst-case performance when the transition kernel is chosen arbitrarily from a predefined
uncertainty set around the nominal kernel. Sample complexity for RMDPs has been studied
in (Yang et al. 2022, Panaganti and Kalathil 2022a, Shi et al. 2024) but generally does not
directly translate to algorithms that scale up to complex evaluation benchmarks. From a sample
complexity perspective, we will demonstrate that RMDPs are no more difficult to learn than
classical MDPs for small uncertainty radius o and can even be simpler to learn when the radius is
larger.This finding provides motivation for utilizing RMDPs to develop sample-efficient algorithm
in Chapter 2 and 3.

First contributions about sample complexity of Robust MDPs

We focus in Part I on understanding the sample complexity of Robust MDPs. More
previously, in Chapter 2, we study the sample complexity of obtaining an e-optimal
policy in Robust discounted Markov Decision Processes (RMDPs), given only access to a
generative model of the nominal kernel. This problem is widely studied in the non-robust
case, and it is known that any planning approach applied to an empirical MDP estimated
with @(H zQS A) samples provides an e-optimal policy, which is minimax optimal. Results
in the robust case are much more scarce. For sa- (resp s-) rectangular uncertainty sets,

until recently the best-known sample complexity was O(Z 452A) (resp. @(H4522A2)), for
specific algorithms and when the uncertainty set is based on the total variation (TV), the
KL or the Chi-square divergences. In this paper, we consider uncertainty sets defined with
an L,-ball (recovering the TV case), and study the sample complexity of any planning
algorithm (with high accuracy guarantee on the solution) applied to an empirical RMDP
estimated using the generative model. In the general case, we prove a sample complexity of
O igq 4) for both the sa- and s-rectangular cases (improvements of S and S A respectively).
When the size of the uncertainty is small enough, we improve the sample complexity to
@(H;SA), recovering the lower-bound for the non-robust case for the first time and a
robust lower-bound. Finally, we also introduce simple and efficient algorithms for solving

the studied L, robust MDPs.
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Second contribution about sample complexity of Robust MDPs

In Chapter 3 , we refine the results of Chapter 2, assuming access to a generative model
that samples from the nominal MDP, we examine the sample complexity of RMDPs using
a class of generalized L, norms as the 'distance’ function for the uncertainty set, under two
commonly adopted sa-rectangular and s-rectangular conditions. Our results imply that
RMDPs can be more sample-efficient to solve than standard MDPs using generalized L,
norms in both sa- and s-rectangular cases, potentially inspiring more empirical research.
We provide a near-optimal upper bound and a matching minimax lower bound for the
sa-rectangular scenarios. For s-rectangular cases, we improve the state-of-the-art upper
bound and also derive a lower bound using L., norm that verifies the tightness. Compared
to Chapter 2, we improve the sample complexity, showing that it is possible to obtain
sample complexity that are lower than in classical MDPs. This part gives a promising
avenue to derive algorithm that can achieve lower sample complexity while be more robust
on perturbations.

Then, from a practical point of view, we derive robust RL algorithms. We show that the
ideas from Robust MDPs can be used to design Robust RL algorithms using a Nominal-based
Risk-Averse formulation. More specifically, the idea of this class of algorithms is to approximate
the inner minimum operator present in the robust Bellman operator (1.37).

Previous work has typically employed a dual approach to the minimum problem, whereby
the transition probability is constrained to remain within a specified ball around the nominal
transition kernel. In this line of work, (Kumar et al. 2022) derived an approximate algorithm
for RMDPs with L, balls, (Liu et al. 2022) for KL divergence, and we attempt to approximate
RMDPs with x? in Chapter 4. Practically, robustness is equivalent to regularization (Derman
et al. 2021): for example the SAC algorithm (Haarnoja et al. 2018a) has been shown to be robust
due to entropic regularization (Eysenbach and Levine 2021). Finally, Wang et al. (2023) proposes
a novel online approach to solve RMDP. Unlike previous works that regularize the policy or value
updates, Wang et al. (2023) achieves robustness by simulating the worst kernel scenarios for the
agent while using any classical RL algorithm in the learning process. The idea that regularisation
and robustness are closely linked will be central in this Thesis in the Chapter 4 and 5. The idea
in Chapter 5 is that we avoid estimation of a penalisation or regularisation, and rather estimate
the expectile of the value function, which create implicitly robustness. These types of algorithms
are mathematically well founded but are only using sample from the nominal transition kernel.
Closely related the idea of using sample not only from the nominal kernel, domain randomization
(DR) (Tobin et al. 2017) learns a value function which maximizes the expected return on average
across a fixed (generally uniform) distribution on the uncertainty set. This method that uses
sample from all the uncertainty set will be combined with risk averse formulation in Chapter 5.
To tackle the aforementioned challenges of using sample uniquely from the nominal and avoid
rectangularity assumptions, one approach using the concept of two-player zero-sum games or
min-max is proposed in Chapter 6. Our algorithm is based like many Deep Robust algorithms
exist such as M2TD3 Tanabe et al. (2022a), M3DDPG (Li et al. 2019a), or RARL (Pinto et al.
2017) on the two player zero-sum game presented in 6.2.
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First contributions about practical Robust Reinforcement Learning

Robust Reinforcement Learning tries to make predictions more robust to changes in
the dynamics or rewards of the system. This problem is particularly important when
the dynamics and rewards of the environment are learned and estimated from the data.
In Chapter 4, we try to approximate the Robust Reinforcement Learning constrained
with a y?-divergence using an approximate Risk-Averse formulation. We show that the
classical Reinforcement Learning formulation can be robustified using Standard deviation
penalization of the objective. Two algorithms based on Distributional Reinforcement
Learning, one for discrete and one for continuous action space are proposed and tested on
classical Gym environment to demonstrate the robustness of the algorithms.

Second contributions about practical Robust Reinforcement Learning

Then, we derive in Chapter 5 new form of implicit robustness in RL using expectile
boostraping. Using these technique avoid to estimate a penalisation like in 4. Many classic
Reinforcement Learning (RL) algorithms rely on a Bellman operator, which involves an
expectation over the next states, leading to the concept of bootstrapping. To introduce a
form of pessimism, we propose to replace this expectation with an expectile. In practice,
this can be very simply done by replacing the Lo loss with a more general expectile loss for
the critic. Introducing pessimism in RL is desirable for various reasons, such as tackling the
overestimation problem (for which classic solutions are double Q-learning or the twin-critic
approach of TD3) or robust RL (where transitions are adversarial). We study empirically
these two cases. For the overestimation problem, we show that the proposed approach,
ExpectRL, provides better results than a classic twin-critic. On robust RL benchmarks,
involving changes of the environment, we show that our approach is more robust than
classic RL algorithms. We also introduce a variation of ExpectRL combined with domain
randomization which is competitive with state-of-the-art robust RL agents. Eventually,
we also extend ExpectRL with a mechanism for choosing automatically the expectile value,
that is the degree of pessimism.

Third contributions about practical Robust Reinforcement Learning

Subsequently in the Chapter 6, we try to derive a new algorithm without rectangularity
assumptions. Robust reinforcement learning often depends on rectangularity assumptions,
where adverse probability measures of outcome states are assumed to be independent
across different states and actions. This assumption, rarely fulfilled in practice, leads
to overly conservative policies. To address this problem, we introduce a new time-
constrained robust MDP (TC-RMDP) formulation that considers multifactorial, correlated,
and time-dependent disturbances, thus more accurately reflecting real-world dynamics.
This formulation goes beyond the conventional rectangularity paradigm, offering new
perspectives and expanding the analytical framework for robust RL. We propose three
distinct algorithms, each using varying levels of environmental information, and evaluate
them extensively on continuous control benchmarks. Our results demonstrate that these
algorithms yield an efficient tradeoff between performance and robustness, outperforming
traditional deep robust RL methods in time-constrained environments while preserving
robustness in classical benchmarks. This study revisits the prevailing assumptions in robust
RL and opens new avenues for developing more practical and realistic RL applications.
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Finally to do reproducible method find algorithm that can scale, a normalised benchmark
RRLS in 7, we test our last algorithm TC-MDPs on this benchmark to create reproducible
algorithm that can scale with dimension and with reproducible performances.

Contributions about reproductiblity issues of Robust RL

We introduce the Robust Reinforcement Learning Suite (RRLS), a benchmark suite based
on Mujoco environments. RRLS provides six continuous control tasks with two types of
uncertainty sets for training and evaluation. Our benchmark aims to standardize robust
reinforcement learning tasks, facilitating reproducible and comparable experiments, in
particular those from recent state-of-the-art contributions, for which we demonstrate the
use of RRLS. It is also designed to be easily expandable to new environments. The source
code is available at https://github.com/SuReLI/RRLS.

Finally, in the 8, we tackle the problem of representation of the posterior in the bandit
problem using Thompson sampling algorithms with arbitrary posterior distribution learned using
Variational inference.

Contributions in Bandit Theory

We introduce and analyze a variant of the Thompson sampling (TS) algorithm for contex-
tual bandits. At each round, traditional TS requires samples from the current posterior
distribution, which is usually intractable. To circumvent this issue, approximate inference
techniques can be used and provide samples with distribution close to the posteriors.
However, current approximate techniques yield to either poor estimation (Laplace approx-
imation) or can be computationally expensive (MCMC methods, Ensemble sampling...).
In this paper, we propose a new algorithm, Varational Inference TS (VITS), based on
Gaussian Variational Inference. This scheme provides powerful posterior approximations
which are easy to sample from, and is computationally efficient, making it an ideal choice
for TS. In addition, we show that VITS achieves a sub-linear regret bound of the same
order in the dimension and number of round as traditional TS for linear contextual bandit.
Finally, we demonstrate experimentally the effectiveness of VITS on both synthetic and
real world datasets.

1.2.1 Overview of the manuscript and contributions

We turn to the descriptions of the contributions made in this thesis. After a short background
summarizing the useful notions in Chapter 1, the manuscript is organized in two parts: the first
one focuses on theory of Robust MDPs and especially question of sample complexity, the second
study Robust RL from a practical point of view. These two directions are not orthogonal: on
the contrary, the theoretical study of MDPs can give idea on how design efficient Robust RL
algorithm and using Robust RL algorithm gives intuition on sample complexity of Robust MDPs.

Contributions The elements and results presented in this thesis have been published or are
currently under review in the following works:

e Pierre Clavier, Erwan Le Pennec, Matthieu Geist Towards Minimax Optimality of
Model-based Robust Reinforcement Learning Conference on Uncertainty in Artificial
Intelligence (UAI) 2024 (Oral), Clavier et al. (2023). Covered in Chapter 2.

e Pierre Clavier Laixi Shi, Eric Mazumdar, Matthieu Geist, Adam Wierman, Erwan Le


https://github.com/SuReLI/RRLS

1.2. Introduction

Pennec Near-Optimal Distributionally Robust Reinforcement Learning with
General Lp Norms. NeurIPS 2024, Covered in Chapter 3.

e Pierre Clavier®, Tom Huix*, Alain Durmus VITS : Variational Inference Thomson
Sampling for contextual bandits International Conference on Machine Learning 2024,
Clavier et al. (2023). Covered in Chapter 8.

e Pierre Clavier, Stéphanie Allassonniere, Erwan Le Pennec Robust Reinforcement
Learning with Distributional Risk-averse formulation International Conference on
Machine Learning 2024, Workshop in Responsible Decision Making in Dynamic Environ-
ments, Clavier et al. (2022). Covered in Chapter 4.

e Pierre Clavier, Emmanuel Rachelson, Erwan Le Pennec, Matthieu Geist. Bootstrapping
Expectiles in Reinforcement Learning https://arxiv.org/abs/2406.04081. Clavier
et al. (2024) Covered in Chapter 5.

e Adil Zouitine*, David Bertoin*, Pierre Clavier®, Matthieu Geist, Emmanuel Rachelson
Time-Constrained Robust MDPs, Zouitine et al. (2024b), NeurIPS 2024. Covered in
Chapter 6.

e Adil Zouitine*, David Bertoin*, Pierre Clavier®, Matthieu Geist, Emmanuel Rachelson
RRLS : Robust Reinforcement Learning Suite, Zouitine et al. (2024a),
https https://arxiv.org/abs/2406.08406. Covered in Chapter 7.

About my contributions:

e [ am the sole junior first author of Chapters 2, 3, 4, and 5. 1 wrote the paper, developed
the code for implementations and experiments, and originated the main idea. Laixi Shi, a
postdoctoral researcher, contributed as a second author to Chapter 4, providing valuable
feedback on writing and insights on the results. All proofs were discussed with her, while
the ideas and writing are my own work.

e For Chapters 6, 7, and 8, I am co-first author alongside junior colleagues Adil Zouitine,
David Bertouin, and Tom Huix. In Chapters 6 and 7, I share co-first authorship with
Adil and David. I contributed equally with Adil Zouitine in the writing, discussions, and
development of ideas. Adil and David focused more on implementation, while I handled the
theoretical sections independently. In Chapter 8, I shared the work equally with Tom Huix,
the other co-first author. We both contributed to the implementation, proofs, and writing
of the paper. Additionally, I contributed my own ideas to the proof, the implementation
and the final algorithms.

*Equal contribution.
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1.3 Background

1.3.0.1 Sequential Decision Making and Bandit Problem

In traditional Multi-Armed Bandit (MAB) problems, an agent has to sequentially choose between
several actions (referred to as "arms”), from which it receives a reward from the environment.
The arm selection process is induced by a sequence of policies, which are inferred and refined
at each round from past observations. These policies are designed to optimize the cumulative
rewards over the entire process. The main challenge in this task is to effectively manage a
suitable exploitation-exploration trade-off (Robbins 1952, Katehakis and Veinott 1987, Berry
and Fristedt 1985, Auer et al. 2002, Lattimore and Szepesvari 2020, Kveton et al. 2020). Here,
exploitation refers to selecting an arm that is currently believed to be the best based on past
observations, while exploration refers to selecting arms that have not been selected frequently in
the past in order to gather more information. The classical Bandit problem can be represented
in Fig 1.3. Bandits have many applications, such as in agriculture (Gautron et al. 2024), health
(Réda 2022), recommendation systems (Li et al. 2010), or model selection in Machine Learning
(Pacchiano et al. 2020).

Environment
Give arewardr ~ R(.|a)

Agent
Compute Ttg(a)

Figure 1.3: A bandit problem

Contextual bandit problems are a particular instance of the MAB problem, which assumes
that, at each round, the set of arms and the corresponding rewards depend on a d-dimensional
feature vector called a contextual vector or context. This scenario has been extensively studied
over the past decades, and learning algorithms have been developed to address this problem
(Langford and Zhang 2007, Abbasi-Yadkori et al. 2011, Agrawal and Goyal 2013, Kveton et al.
2020). These algorithms have been successfully applied in several real-world problems, such as
recommender systems, mobile health, and finance (Li et al. 2010, Agarwal et al. 2016, Tewari and
Murphy 2017, Bouneffouf et al. 2020). The existing algorithms for addressing contextual bandit
problems can be broadly categorized into two groups. The first category is based on maximum
likelihood and the principle of optimism in the face of uncertainty (OFU) and has been studied
in (Auer et al. 2002, Chu et al. 2011, Abbasi-Yadkori et al. 2011, Li et al. 2017, Ménard and
Garivier 2017, Zhou et al. 2020, Foster and Rakhlin 2020, Zenati et al. 2022).

The second category consists of randomized probability matching algorithms, which are based
on Bayesian belief and posterior sampling. Thompson Sampling (TS) is one of the most famous
algorithms that falls into this latter category. Since its introduction by Thompson (1933), it has
been widely studied, both theoretically and empirically (Agrawal and Goyal 2012, Kaufmann et al.
2012, Agrawal and Goyal 2013, Russo and Van Roy 2014; 2016, Lu and Van Roy 2017, Riquelme
et al. 2018, Jin et al. 2021). Despite the fact that OFU algorithms offer better theoretical
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guarantees compared to classic T'S-based algorithms, traditional T'S methodologies still appeal
to us due to their straightforward implementation and empirical advantages. In Agrawal and
Goyal (2012), the authors claimed that: "In applications like display advertising and news article
recommendation, TS is competitive with or better than popular methods such as UCB.” Similarly,
Chapelle and Li (2011) has examined the empirical performances of TS on both simulated and
real data. Their experiments demonstrate that TS outperforms OFU methods, leading them
to conclude: ”In any case, TS is very easy to implement and should thus be considered as a
standard baseline.” Taking all these factors into account, we focus on TS-based algorithms for
addressing contextual bandit problems in this thesis. The contextual bandit problem can be
represented in Figl.4.

Environment
Give arewardr ~ R(.|a) and a new context s

Agent
Compute Ttg(a [s)

Figure 1.4: Contextual Bandit problem

<

Thompson sampling for contextual bandits : We now present in more details the contextual
bandit framework. Let S be a contextual space and consider A : & — 24 a set-valued action
map, where 2 stands for the power set of the action space A. For simplicity, we assume here
that sup,cs Card(A(s)) < +00. A (deterministic or random) function 7 : S — A is said to be
a policy if for any s € S, m(s) € A(s). Then, for a fixed horizon T' € N*, a contextual bandit
process can be defined as follows: at each iteration ¢ € [T] and given the past observations

Di—1 = {(si,a4,73) bics:

e The agent receives a contextual feature s; € S ;
o The agent chooses an action a; = m(s;) where m; is a policy sampled from Q¢(:|Dy—1) ;

o Finally, the agent receives a reward r; sampled from R(-|s¢, a;) given D;_1. Here, R is a
Markov kernel on (A x §) x R, where RCR.

For a fixed family of conditional distributions Q1.7 = {Q:}+<7, this process defines a random
sequence of policies, 1.7 = {m }+<7 with distribution still denoted by Q.7 by abuse of notation.
Let’s defined the optimal expected reward for a contextual vector x € X and the expected reward
given x and any action a € A(s) as follow

fe(s) = max f(s,a), f(s,a) = /rR(dr|s,a) . (1.1)

a€A(s)

The main challenge of a contextual bandit problem is to find the distribution Q.7 that minimizes
the cumulative regret defined as

CRegret(Q1.7) = >_;<7 Regret;” (1.2)
with  Regret?’ = fi(si) — f(zs, ms(si)) .
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The main difficulty in the contextual bandit problem arises from the fact that the reward
distribution R is intractable and must be inferred to find the best policy to minimize the
instantaneous regret m — fi(s) — f(s,m(s)) for a context s € S. However, the estimation of R
may contradict the primary objective of minimizing the cumulative regret (8.2), since potentially
non-effective arms must be chosen to obtain a complete description of R. Therefore, bandit
learning algorithms have to achieve an appropriate trade-off between the exploitation of arms
that have been confidently learned and the exploration of misestimated arms.

Thompson sampling: To achieve such a trade-off, we consider the popular Thompson
Sampling (TS) algorithm. Consider a parametric model Ry,:,0 € R? for the reward distribution,
where for any 6, Ry is a Markov kernel on (A x S) x R parameterized by 6 € R?. We assume in
this paper that Ry admits a density with respect to some dominating measure Af. For instance,
it is possible to use the exponential family defined in 8.3

With the introduced notations, the likelihood function associated to the observations D; at
step t > 1 is given by
t—1
L.(0) ocexp{ZE(H\si,ai,ri)} , (1.3)
i=1
where the log-likelihood is given by £(0|s;, as, s;) = log(dRg/dNet)(ri]si,a;) . The symbol o
denotes a quantity proportional to another. Choosing a prior on # with density pg with respect
to Leb, and applying Bayes formula, the posterior distribution at round ¢ € [T] is given by

bt = L(0)po(0) /3t , (1.4)

where 3; = [ L(6)po(€)df denotes the normalizing constant and we used the convention that
D1 = po. Moreover we define the potential function U(#) o< —log p:(#). Then, at each iteration
t € [T], TS consists in sampling a sample ; from the posterior p; and from it, use as a policy,

Since 3; is generally intractable, sampling from the posterior distribution is not in general an
option. This is why we will use of Variational Inference to approximate the posterior distribution.
Other methods such as Laplace (Chapelle and Li 2011), Langevin (Xu et al. 2022) have been
proposed approximate and a details overview is presented in Chapter 8. The TS algorithm for
contextual bandit is described in Alg. 1.

Algorithm 1: Thompson Sampling for Contextual Bandit
fort=1,..,7T do
Receive from environment the context s;.
Sample 6; from p;.

(TS

Select a; such as a; = m, )(st).

Receive ry ~ R(.|s¢, at).

Update Pyt using new point (s¢, ag, r¢).
end for

Variational inference T'S: To address this challenge, practitioners often employ approximate
inference methods to generate samples from a distribution that is expected to be "close” to the
actual posterior distribution. In this context, we specifically concentrate on the application of
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Variational Inference (VI). In this scenario, we consider a variational family G, which is a set of
probability densities with respect to the Lebesgue measure, from which it is typically easy to
sample. Then, ideally, at each round ¢ € [T], the posterior distribution p; is approximated by
the variational posterior distribution §;, which is defined as:

qr = argmin KL(p|p:) , (1.6)
pEegG

where KL is the Kullback-Leibler divergence is defined in 1.30. In Chapter 8, We will detail
how to derive algorithms using Variational Inference in the Thompson Sampling algorithm and
evaluate the performance of our algorithm against other approximations of the posterior, such as
Laplace in the LMC-TS algorithm (Xu et al. 2022). The main difference between contextual
bandits and Markov Decision Processes, which will be central in the rest of the thesis, is that the
action chosen in contextual bandits does not affect the next state, contrary to MDPs, making it
much harder to find the best policy .

1.3.1 Reinforcement Learning and Markov Decision Processes
1.3.1.1 Markov Decision Processes

We define a Markov Decision Process to model the interaction between the environment and
the agent in Reinforcement Learning. Usally, we use a a discounted, infinite horizon, Markov
Decision Process (MDP) M = (S, A, P,r,~, p), specified by:

e &, the state space that can be either finite or infinite. In Chapter 2 and 3, we will assume it
is finite for mathematical convenience but we will in Deep Reinforcement Learning Chapter
4,5,6,7 assume it possibly infinite.

o A the action space, which also may be discrete or infinite. For mathematical convenience,
we will assume that A is finite except in Chapter 4, 5, 6 and 7.

e 7: S8 x A —[0,1], the reward function which is the immediate reward associated with
taking action a in state s. The reward he r(s,a) could be a random variable where the
distribution depends on s, a such as in Chapter 4. However we will focus on the case where
r(s,a) is deterministic in more theoretical Chapter 2 and Chapter 3.

e v €10,1), the discount factor which defines a horizon for the problem.
o p € A(S) the initial state distribution which specifies the initial state sp sampled.

o P:S8xA— A(S), the transition function . P (s’ | s,a) is the probability of transitioning
into state s’ upon taking action a in state s. We will use P; 4 to denote the vector P(- | s,a).

1.3.1.2 Value, policy and optimality

Policy: Throughout this thesis, time is assumed to be discrete. A policy, denoted by m, is
defined as a mapping from states to distributions over actions. The space of all policies is
denoted as II € A(A)S. A deterministic policy assigns a single action to a given state, while a
stochastic policy may assign positive probabilities to multiple actions for a given state. Finally,
the probability assigned by policy 7 to action a in state s is denoted by 7(a | s). One possible
and classical objective is to learn an optimal policy, denoted by 7*, that maximizes the expected
cumulative discounted reward, defined as follows:
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Environment
Give a reward and next stater ~ R(. |a;, s;)
and  Sp1 ~ P sy, ay)

ay St+1 Ty

Agent
Compute TTg(a; |St)

Figure 1.5: Reinforcement Learning framework

7% € argmaxE {Z Vo (se,ap) | so ~ pyag ~ (- | 8t), 8001 ~ P(-| st,at)} . (1.7)
mell tZO

The discounted sum of reward >";~q 7' (s¢, ;) is also called the return. Finally, we denote Z the
distribution over the return. along a trajectory or rollout 7. Using 7 from state s using initial
action a is defined as the the random sequence 77715090 = ((s4, ag,70), (s1,a1,71),...) with
so = 8,a0 = a,a; ~ w (- | s)and ry, s¢41 ~ P (- | s¢,a¢) ; we denote the distribution over rollouts
by P(7) with P(7) = p (so) [Ti—g P (St41,7¢ | 5t,a) 7 (as | 5¢) dr and usually write 7 ~ P = (7, P).

Value function: To characterize the cumulative reward, the value function V™ for any policy
7 under the transition kernel P is defined by Vs € S:

VP (s) = E(x,p) lz v (s, ar) ‘so = s] ) (1.8)
t=0

The expectation is taken over the randomness of the trajectory {s:, a:}?2, generated by executing
the policy 7 under the transition kernel P, such that a; ~ (- |s;) and sy41 ~ P(-| s, at) for all
t > 0. In the same way, the Q function Q™" associated with any policy = under the transition
kernel P is defined using expectation taken over the randomness of the trajectory under policy 7 as

Q™" (s,a) =E(; p) [Z V7 (st, ar) ‘ (s0,a0) = (Sva)l ; (1.9)
t=0

Moreover, both the Value and Q function follow the so called Bellman equation (Bellman 1957)
such as :

VP (s) = Eirp) | D' (s6,a0) | 0= s] (1.10)
>0
=E(r,p) |7(s,0) + ’YZ’YtT(St, at) | so = s,a~ W(S)] (1.11)
t>1

=Y w(als) > P(s]s,a) (r(s,a) +E(x,p) [Z Yor(se,ar) | so = s’]) (1.12)

a€A s'eS t>0

= Z m(a | s) Z P(s"|s,a) (T(s,a) + VTP (s')) (1.13)

acA s'eS
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The aforementioned equation creates a connection between the value of a particular state and the
values of its ensuing states. This connection is pivotal in dynamic programming and reinforcement
learning, as it permits the propagation of value from one state to others within the state space.
Similarly, the Q-function, which denotes the quality of an action at a specific state, follows an analo-
gous principle, thereby allowing the transmission of action-value information among diverse states.

Q™ (s,a) =r(s,a) +~ Z P(s'|s,a) Z m(a' | §) Q™f (s'.d) (1.14)

s'eS a’eA
Moreover, a policy 7* is said to be optimal for a MDP if and only if

7 = argmax Eg,[V™F (s)]
mell

with p the initial state distribution or equivalently (Sutton and Barto 2018), a policy 7* is
optimal if and only if

Vr e I,Vs e S,V™ P(s) > V™ (s).

1.3.1.3 Bellman Operators and Optimality

The value function V™% for policy r, is the fixed point of the Bellmen operator 7, P, defined
for any V € R as

TPV (s) = ZW(@]S)[R(S, a) + 'yZP (s']s,a) V (s')].

a s

We also define the optimal Bellman operator: 7"V (s) = maXy cA 4 (T“S’PV) (s). Both optimal

and classical Bellman operators are y-contractions (Sutton and Barto 2018). This is why sequences
{V|n >0}, and {V,* | n > 0}, defined as

T ._ gmnPym * %, Pyr*
ntl ‘— T Vn and Vn+1 = T Vn,

converge linearly to V™ and V** | respectively the value function following m and the optimal
value function. Now, we introduce the concept of a greedy policy that connects the optimal
policy and its value V € RS. We say that a policy is considered greedy with respect to a value
function if it always selects the action that maximizes the expected reward based on that value
function. In other words, a greedy policy makes locally optimal decisions at each state, assuming
that the value function accurately represents the long-term reward. More formally, 7 is greed
with respect to V' if an only if

TPV =TV .

Finally, we define the the space of greedy policies as G(V'). The greediness can be understood
state-wise as, for alla € A and s € S,

m(a]s) > 0= a € argmax (T(s,a) + 7 Z P(s'|sd)V (s’)) . (1.15)
a’'eA s'eS

The action that leads to the state where the value is maximized according to a greedy policy. The
interesting property is that optimal policy is greedy with regards to its own value, ie 7* € G (V*),
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so it is possible to compute the optimal using associated optimal value function. The optimality
can also computed using definition of @-function. The major interest of definition greedeyness
defined like this, is that it allow defining greediness without having access the transition kernel
P. So for any Q € RS*A, we say that a policy 7 is greedy w.r.t. Q if and only if

VseS,Vae A, n(a]s)>0= ac argmaxQ (s,a’).
a’'eA
With this definition, the greedy policy can be found without any knowledge of transition kernel
P. Thus, the notion of greediness using Q-values is simpler to define as it is simply the action
maximizing the estimated Q-value for each state. Finally we define the Bellman Operator 77"
and the optimal Bellman Operator T™ ¥ for the Q-function as :

TP Q(s,a) = r(s,a) + Z P(s"|s,a) Eoor(ls) (@ (s',d")] , (1.16)
s'eS
T FQ(s,a) = r(s,a) + WSZE;SP (s"| s,a) glgﬁ@ (s',d") . (1.17)

These operators are also a - contraction. So we can iterate this operator to converge to the
optimal policy 7* and defined Q** the fix point with Q*F = Q™ F.

1.3.1.4 (Approximate) Value Iteration (AVI)

In the previous section, we have established first a method for determining the value of the
optimal policy, and then a relationship between the optimal policy and its corresponding value.
Combining these elements results in Value Iteration which is a Dynamic Programming algorithm
that calculates the optimal policy for a MDP. This scheme begins with any initial value V; € RS,
and at each iteration step k € N:

(1.18)

Vir1 = TPV,
Tit1 € G (Viy1) -

To be more accurate, it would be interesting to quantify a stoping criterion such as a number of
step to reach arbitrary small error or finding € > 0 such that ||Vj;41 — Vi||,, < €. The fact that
VI asymptotically compute 7* and this error € tend to zero is simply a consequence of Banach’s
fixed point theorem applied to the optimal Bellman Operator 7% which is a y-contraction. As
the convergence is asymptotic, VI will never be able to compute the optimal policy 7* as we can
bound by

2 k

<t .k 1.19
S 1)
because the current reward 7(s,a) belongs to [0,1]. So VI converges exponentially fast with
linear rate as v € [0,1) but the error can be sometime very large as 1/(1 — +) or horizon factor
can be very large when ~y is close to 1. Moreover, VI can be rewritten using () function in a
model free setting as :

HVWP . V*,PH

{ gkl:l e_gT(gfl)’PQk : (1.20)
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Then we will see the influence of error in VI. To take into account errors in the process, we use the
Approximate Dynamic Programming framework. It defines and analyzes Dynamic Programming
schemes, and incorporates additional arbitrary errors such as

{ T €9 (Qr) (1.21)

Qri1 =T PQp + ey,

where Vk € N, ¢, € R are for errors made when computing the @-values. Firstly, note that
this definition does not specify the origin of errors, which can come from various noise sources.
Typically, errors are classified into three types:

o Estimation errors : these occur due to the large or continuous state space, which prevents
an exact tabular representation of @), necessitating function approximation methods such
as Neural Network.

e Sampling errors: they arise because the transition probability P is unknown in RL setting,
requiring states to be sampled from P(- | s,a) instead of computing exact expectations.

e Greediness errors: errors in computing the greedy policy are not considered in this
scheme but this is based on the assumption that the action space is small and discrete,
allowing for the straightforward computation of a greedy policy by finding the maximum
over a small set. However, in the case of continuous control, these errors must be taken
into account.

To better understand the influence of errors on the behavior of a scheme, we will focus on error
propagation in AVI. Specifically, we aim to connect the discrepancy between the value of the
computed policy and the optimal policy to the errors incurred during iterations. This analysis
helps us understand various phenomena, such as how errors accumulate over iterations and the
conditions under which we can demonstrate convergence or establish bounds on the distance to
the optimal policy. At step or iteration k, Bertsekas (2017) show that

|@F —@F| < 3 (7 0= el

(1—7) i

In this upper bound, we can recognise two terms : the fist one proportional to 7* is similar
the the scheme without errors and tend to zero when k grows. The second term proportional
to Z?Zl =7 ||ex|| ., does not tend to zero as it is an exponential average of the norms of every
errors. It shows that errors have an impact on the current solution and that recent errors have
more impact than the older ones. Moreover it is important to know that this upper bound is
tight according to Scherrer and Lesner (2012).

A nice modification on this scheme comes from Vieillard et al. (2020) that use KL regularisation

k

of the policy to obtain bound that depend on the average of the errors H% > j=1 ejH and not
oo

Z§:1 ~*=3 ||ex]| .- This modification is central in many state of the art Deep RL algorithm such
as TRPO or PPO (Schulman et al. 2015; 2017a) or more recently in Munchausen algorithm
(Vieillard et al. 2020). Using this modification, if we assume that errors have zero mean lead to
convergence in average which is not the case without this modification and this modified scheme
play an averaging thought steps of the iterations. However, for example when the model used
in far from the initial one, the error have not zero mean and iterating over the step k& do not
necessary converge to a good solution. To give an example, assume that we are trying to find
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the best policy but having access to a transition kernel P’ which slightly differ from P. Then we
obtain iterating AVI:

{ TE4+1 € g (Qk) (122)

Qi1 =T+ Qp + €11
with using vector notation Ps, for kernel starting at state action (s, a) definition of
e = TP Q) — T7rk+17P/Qk — (PR — Plﬂrk+1)Qk

with PT, = > ucs P (8" | 8,a) Eqron(|s) [Qk (s',a)] . This error is not centered as long as the
expectation of (P™+1 — P'™k+1) is not zero due to model misspecification, or changes in the
transitions kernel thought iterations.

Starting from this fact, our goal is to develop a reinforcement learning procedure that is
more robust to errors arising from model misspecifications, especially in the transition kernel,
thereby motivating the need for robustness in RL from a theoretical point of view. Achieving
this requires modifications to the underlying algorithm. A significant portion of this manuscript
is devoted to identifying and implementing these modifications. To solve this problem, a central
idea for creating robustness would be to develop an algorithm that, in practice, has a lower value
function but can generalize better in an environment that is not exactly the same as the training
environment. Two questions arise from a theoretical point of view:

1. Can we design algorithms which are robust to these model misspecifications and errors?

2. Can we estimate the number of data N we need to get arbitrary small error € in (robust)
RL algorithm?

While the first question will be address in more practical Deep RL algorithm in chapter 4, 5 and
6 we will first focus on the sample complexity question.

1.3.1.5 AVI with a generative model in model based setting

In this part we try to answer the second question of the previous part about sample complexity.
The next paragraph discuss sample complexity related work in RL.

Classical reinforcement learning with finite-sample guarantees. A recent surge in
attention for RL has leveraged the methodologies derived from high-dimensional probability and
statistics to analyze RL algorithms in non-asymptotic scenarios. Substantial efforts have been de-
voted to conducting non-asymptotic sample analyses of standard RL in many settings. Illustrative
instances encompass investigations employing Probably Approximately Correct (PAC) bonds in
the context of generative model settings (Kearns and Singh 1999, Beck and Srikant 2012, Li et al.
2022, Chen et al. 2020, Azar et al. 2013b, Sidford et al. 2018, Agarwal et al. 2020, Li et al. 2023,
2020, Wainwright 2019) and the online setting via both in PAC-base or regret-based analyses (Jin
et al. 2018, Bai et al. 2019, Li et al. 2021, Zhang et al. 2020, Dong et al. 2019, Jin et al. 2020, Li et al.
2023, Jafarnia-Jahromi et al. 2020, Yang et al. 2021) and finally offline setting (Rashidinejad et al.
2021, Xie et al. 2021, Yin et al. 2021, Shi et al. 2022, Li et al. 2022, Jin et al. 2021, Yan et al. 2022).

In the rest of this introduction and in Chapter 2 and 3, we assume having access to a
generative model. Following (Kearns and Singh 1999), we assume access to a generative model or
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a simulator which allows us to collect IV independent samples for each state-action pair generated
based on the nominal kernel P: Y(s,a) € S x A, sisq £ P(-|s,a), i=1,2,---,N. The
total sample size is, therefore, NSA. We consider a model-based approach tailored to MDPs,
which first constructs an empirical nominal transition kernel based on the collected samples and
then applies value iteration to compute an optimal policy. As we will decouple the statistical
estimation error and the optimization error, we need to exhibit an algorithm that can achieve
arbitrary small error €., in the empirical MDP defined as an empirical nominal transition kernel
P € R54%5 that can be constructed on the basis of the empirical frequency of state transitions,
ie V(s,a) eSx A

N 1 XN
P(s]s,a) = ¥ ;]l{siﬂw =s}. (1.23)
From an AVI point of view we get:

{ i1 € 9 (Qk) (1.24)

Qi1 =T FPQp + ep i1,

where e = T™+1P Q) — Tme+1P Q) = ~v(PT — p”)Qk. As we see, in this setting, if the estimate
kernel converge to true transition kernel, we can control the error yo be arbitrary small. So
a question is can we find a minimum number of data N such as € is the sufficiently small 7
Specifically, given some target accuracy level € > 0, the goal is to seek an e-optimal robust policy
7, the policy estimated in the empirical MDP obeying

VseS: Q%F(s,a)— Q?’P(s,a) <e with @%’P = @?’P < Eopt - (1.25)
This formulation allows plugging any solver of MDPs in this bound as long as we get egopt
error. Using VI, we can bound the optimisation term eqp: by % using (1.19) at iteration

k of our algorithm, but we could also plug any algorithm and consider arbitrary @, using this
decomposition.

Q*,P _ Q;r\,P

(Qw*,P _ @W*,P) i (@w*,P _ @*,P) I (@*,P _ @?,P) i (@?,P _ Q;F,P)
% (Qw*,P _ @w*,P) + (@*,P . @?,P) + (@?,P . Q?,P)

—
=

where we use the fact (i) that @”*’P < @*’P . Then a natural decomposition using triangular
inequality is

HQ*,P o er,P”OO < HQ*,P _ Qﬂ'*,PHOO + HQ*,P - er,P ‘oo + ”er,P _ er,P

statistical error I optimisation error statistical error I1

‘oo~

Here the problem is to find the number of data N needed to get an arbitrary small error
on the two statistical error terms which do not depend on the number of steps for arbitrary
policy from the data 7. On the contrary the optimisation term decrease when the number of step
increase but does not depend on N. Indeed, in model free setting we construct and estimate of
the data called P find a planner in this empirical MDP. In Agarwal et al. (2020), for § > 0 and
for an appropriately chosen absolute constant ¢, we have with probability greater than 1 — ¢ :

¢ log(cSA/9) ey log(c|SA/0)
‘00'57\/(1 WON  (-ap N

”Q*,P o QW*,P

statistical error I
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The second statistical error [|Q™F — Q™F||s can also be bounded with the same term with
additional term from egpt. Finally, Agarwal et al. (2020) provided for e </ ﬁ, that the number
of samples from a generative model requires are

c|S||Al log(cSA/9)

# samples from generative model = |S||A|N > ,
(L= ¢

then with probability greater than 1 — 4,

Q" = Q™ |l <€
So the overall sample complexity needed to get arbitrary small statistical error € is
SA )

e (1.26)

# samples from generative model = @(

Moreover a minimax lower bound with the same complexity exist from Azar et al. (2013b).
However in practice, the sample complexity can be very large as for «y close to 1, 1/(1 —~)3 is
very big. The question is,

Can we find other formulation of RL with smaller sample complezity to converge quicker
from a theoretical point of view?

Ideally, to obtain a solution with smaller sample complexity, the value function would have less
variability while converging to a reasonable solution. In the minimax lower bound, dependency
S A are difficult to improve as the number of samples from generative model is equals to NS A,
which is linear in the number of state and action space. From a theoretical point of view,
Bernstein’s concentration inequality is used to control statistical terms. More formally, the

statistical error, up to constant, logarithmic term and second order term, is controlled using

Bernstein’s inequality (Vershynin 2018) by VPT(V) where P is a transition kernel and V' a value

function. The only factor here that could easily be reduced would be the variance of the value
function using a new formulation.

Surprisingly, we will see that the issue of reducing sample complexity, reducing the variability
of the value function and developing algorithms that are robust to model misspecification are
closely related. Indeed, we will see that the formulation of Robust MDPs will also reduce the
variance of the value function and the sample complexity. This idea will be developed further in
Chapter 3. Before this, we introduce some elements of Deep Reinforcement learning in the next
part.

1.3.2 Deep Reinforcement Learning

In this section, we introduce elements of classical Deep Reinforcement Learning that will be
useful to derive Deep Robust algorithm in the following of the thesis. First, we introduce
Fitted Q-learning and Q-learning, which will be useful to tackle the problem if MDPs but with
continuous state space.

1.3.2.1 Fitted Q-learning and Q-learning

First, we describe the Neural Fitted Q-learning introduced by Riedmiller (2005), then we will
see the difference with classical Deep Q-learning algorithm. First, we consider the following
approximation scenario. Suppose the state space is continuous or too large for a tabular
representation (we still assume the action space is small and finite). To learn an appropriate
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Q-function, we must use function approximation. We start by describing a simple setting.
Assume we have a fixed dataset of transitions D = {(s, as, 7, s})}, where for each timestep ¢,
st ~ P(-| s¢,at) and r = r(s¢, ay). The actions a; are chosen by an arbitrary policy, which we
do not consider here.

We can then parameterize a function to represent the ()-value within a hypothesis space,
typically using neural networks. We denote such a parameterized function as (Jy. For simplicity,
we define the reward function over S x A. This can be viewed as taking the expectation over the
resulting states of a reward function defined on § x A x §, in which case the evaluation would
be stochastic. From an Approzimate Dynamic Programming point of view, Qg models Q41 in
the VI scheme. Then, we maintain a fixed version of )y to model @, denoted as @5, where the
weights @ are periodically updated by copying from . Subsequently, we iteratively minimize
the following loss using classical gradient descent, demoting Ep the empirical expectation over
transitions in dataset such as

L(0) =Ep

2
(Tt + gléiﬁ Qé (527 a’) — Qg (St, at)) ] . (1-27)

Finally, minimizing this loss can be seen as a method called Temporal differences. The classic
temporal difference (TD) approach consist in estimating the quantity Qg(s,a) by performing a
regression on targets of the form r(s,a) +v> ycamk (@' | ') Qr—1(s',a’). This can be formally
express as calculating Qg1 = TP Qu_1 + €.

Algorithm 2: Neural Fitted-Q
Input , dataset of transitions: D, learning steps: K € N, update period: I €
N, learning rate: 7 € R, batch size: B € N, discount factor:
Output Onrq
Initialize online weights:
Initialize target weights: ¢’
for k€{0,...,K -1} do
for i €{0,...,I -1} do

B
Draw uniformly a batch B = {(sj, aj,7j, s;)} . from D

Compute the targets: V1 < j < B, y; < r; +ymaxyeca Qo (s;,a")
Compute: £(0) < 3721 (Qo (s, a5) — y5)°
Update the online weights: 0 <— 0 — nVL(6)
end for
Update target network: 6" < 6
end for
return Onpq =0

Deep Q-Networks The Deep Q-Network (DQN) is an implementation of Approximate Value
Iteration (AVI) that utilizes a neural network as the function approximation during the regression
step (learning). Unlike Neural Fitted-Q, where the dataset D is fixed, data collection (acting) in
DQN is a continuous process that occurs concurrently with learning. Specifically, the dataset D,
also known as the replay buffer, is managed as a First-In First-Out (FIFO) queue. The data is
collected by interacting with the environment using an e-greedy policy my . (here € is not the
error as before), defined as:
moe = (1 — €)mp + emy
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where mp € G(Qg) and 7y is the uniform policy. The DQN algorithm consists of two main
processes: acting and learning. These processes share the weights 6 of the online network and
the replay buffer D. This Deep Q-Network (DQN) algorithm introduced by Mnih et al. (2013;

Algorithm 3: Acting process in DQN
Input : replay buffer: D, environment: F
Shared : online weights: 6 € RV
while True, do do
a < Sample (mg (. | 5))
r(s,a),s «+ Step(F,a)
Put (s,a,r(s,a),s’) in D
s« s
end while

2015) serves as the foundation for many of the methods explored in this manuscript. DQN is a
groundbreaking approach in reinforcement learning (RL), particularly recognized for its success
in establishing a functional deep RL framework on the Atari benchmark (Bellemare et al. 2013).
Some algorithm enhancements have been introduced such that :

e Double DQN (DD@N) addresses the issue of target overestimation (Van Hasselt et al.
2016).

e Prioritized Experience Replay prioritizes sampling transitions with higher temporal-difference
(TD) errors (Schaul et al. 2015).

o Architectural Enhancements : the dueling Architecture provides less-biased estimates of
actions not taken by the agent (Wang et al. 2016).

e Distributional Reinforcement Learning aims to learn the entire distribution of returns,
rather than just the expected returns, using either a categorical approach (Bellemare
et al. 2017) or a quantile approach (Dabney et al. 2018a). In Chapter 4 we will use this
improvement to derive a risk averse version of DQN to create Robustness.

e Regularization techniques such as the Munchausen algorithm have been proposed to enhance
the classical DQN algorithm in the munchausen algorithm Vieillard et al. (2020). To improve
robustness, we will also use regularisation but in another manner as we will not regularise
with the policy but with the value function itself in Chapter 4.

1.3.2.2 Actor-Critic Methods

Actor-critic methods differ from those derived from @-learning. These methods typically involve
two main components: a value network (critic) that estimates the value of the current state and
a policy network (actor) that selects actions based on the current state and. The policy network
is updated using policy gradients method (Williams 1992), with the critic’s value serving as a
baseline to reduce update variance. The value network, similar to ()-learning, is updated using
standard temporal-difference (TD) updates described in 1.3.2.1, which involve bootstrapping.
The main advantage of these methods is that the tackle the problem of continuous actions space
contrary to DQN based methods using policy gradient. Unlike Q-learning methods such as DQN,
which can utilize off-policy data from a replay buffer, standard actor-critic methods are on-policy.
This means they learn exclusively from interaction data generated by the current policy.
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There is significant literature on deep reinforcement learning actor critic that employs
regularization techniques. Several algorithms have been developed based on the principle that
constraining policy updates to be smooth can enhance performance. Notable examples include
are SQL (Azar et al. 2011) , TRPO, (Schulman et al. 2015), PPO (Schulman et al. 2017a), SAC
(Haarnoja et al. 2018b) algorithms. Moreover, other algorithm without regularisation but based
on policy gradient such as TD3 (Fujimoto et al. 2018) can achieve state of the art performances
on continuous control. Based on SAC (Haarnoja et al. 2018b) and TD3 (Fujimoto et al. 2018)
algorithm we will derived new algorithm that are robust with continuous action and state space
in Chapter 4, 5, and 6.

1.3.3 Robust Markov Decision Processes

Motivated both in theory and practice in Section 1.3.1.5 and 1.3.2.2, we consider distri-
butionally robust MDPs (RMDPs) in the discounted infinite-horizon setting, denoted by
Miop = {S,A,'y,Z/IM(PO),r}, where S, A,~,r are the same sets and parameters as in stan-
dard MDPs. The main difference compared to standard MDPs is that instead of assuming a
fixed transition kernel P, it allows the transition kernel to be arbitrarily chosen from a prescribed
uncertainty set U], (P°) centered around a nominal kernel P° : S x A — A(S), where the un-
certainty set is specified using some metric denoted ||.|| defined in of radius o > 0. In particular,
given the nominal transition kernel P? and some uncertainty level o, the uncertainty set—with
arbitrary metric || || : RSx — R¥ in sa rectangular case or from RS*# in the s-rectangular case,

is specified as Z/{ﬁ’_H(PO) = Qs L{ﬁj"a(Pga), illustrated in Fig 1.6 and defined bellow

U (PL) = { Poa € AS) : | Poa = P2y < 0}, (1.28)

Py = P(-]s,a) €RV5 P}, == P(-[5,a) € RV (1.29)

Figure 1.6: One sa-uncertainty set for transition probability
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Note that we could also consider any divergence p, such as KL or x? rather than a metric ||.||

P(s'|s,a
KL <P57a7PSO’a> = E P (S/ | 87(1) lOg (PO((SI||SCL))>, (130)
s'eS ’
P(s']s,a)\?
2 0 ._ 0/ B )
X (PS,mPs,a) = SIEESP (s' | s,a) (1 PO [5.0) s,a)) (1.31)

but in Chapter 2 and 3 we will consider metric such as L,. In other words, the uncertainty is
imposed in a decoupled manner for each state-action pair, obeying the so-called sa-rectangularity
(Zhou et al. 2021, Wiesemann et al. 2013). More generally, we define s-rectangular MDPs as

MIT\\(P) = ®s U‘Tjﬁ(Ps), for the general norm |.||. The uncertainty is imposed in a decoupled
manner for each state pair, and a fixed budget given a state for all action is defined. To get a
similar meaning for the radius of the ball between sa-rectangular and s-rectangular assumptions,
we need to rescale the radius depending on the norm like in Yang et al. (2022). The s- uncertainty
set is then defined using the rescaled radius & as

U () = {Ple AS)* 1 |PL= P <5 = o|La}. (132)
Ps = P(7 . ’ 8) c RlXSA’ Pg — PO(', . ‘ S) € RIXSA , (133)

where 14 € R4 denotes the unitary vector. For the specific case of respectively Li,L, and L
norm, & is equal to |0A|, 0| AP and . Note that this scaling allows for a fair comparison
between sa- and s-rectangular MDPs. In RMDPs, we are interested in the worst-case performance
of a policy 7 over all the possible transition kernels in the uncertainty set. This is measured by
the robust value function V™ and the robust Q-function Q™% in M, defined respectively as

V(s,a) e S x A

Vmo(s) = inf  V™P(s), ™ (s,a) = inf ™P(s,a) . 1.34
5= B V) Q= e @ s (130
Similarly for s-rectangularity, the value function is denoted V™7 (s) := ian MS:(PO) VTP (s).
cus

Optimal robust policy and robust Bellman operator. As a generalization of properties
of standard MDPs in the sa-rectangular robust case, it is well-known that there exists at least
one deterministic policy that maximizes the robust value function (resp. robust Q-function)
simultaneously for all states (resp. state-action pairs) (Iyengar 2005, Nilim and El Ghaoui 2005)
but not in the s-rectangular case. Therefore, we denote the optimal robust value function
(resp. optimal robust Q-function) as V*7 (resp. Q*7), and the optimal robust policy as 7*, which
satisfy V(s,a) € S x A

V*o(s) = V" (s) = max V™o(s), Q%(s,a) = Q" “(s,a) = max Q™ (s,a). (1.35a)

A key concept in RMDPs is a generalization of Bellman’s optimality principle, encapsulated in
the following robust Bellman consistency equation (resp. robust Bellman optimality equation):

V(s,a) €S x A, ™9 (s,a) =r(s,a) + inf PV 1.36a
(5,0) Qo) =)+, (1.360)
V(s,a) e Sx A Q*(s,a) =r(s,a)+~ inf PV, (1.36b)

PeUP (o)

for the sa-rectangular case and same equation replacing Pga by PV and o by 6. The robust Bell-
man operator (Iyengar 2005, Nilim and El Ghaoui 2005) is denoted by 7™ or 7*7(-) : R94 — RS54
or for the optimal robust Bellman operator
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T(Q™)(s,a) :=r(s,a) + inf PVT, with V7(s) = Ey[Q"(s,a)], 1.37
@) = 47, (5) = Evnrl@(s,0)] (137

T5°(Q™)(s,a) =71(s,a) + inf PV, with V(s):=maxQ"(s,a), 1.38
@ssa) = rloa) 7, (5) = mex@(s,0) . (139

for sa-rectangular MDPs. When the radius is not defined, we will also denote in this Thesis the
Robust Bellman Operator as 7,7 for uncertainly set I/.

Distributionally Robust Value Iteration (DRVI) Given that @*7 is the unique-fixed point
of 77 one can recover the optimal robust value function and Q-function using a procedure termed
distributionally robust value iteration (DRV I). Generalizing the standard value iteration, DRV I
starts from some given initialization and recursively applies the robust Bellman operator until con-
vergence. As has been shown previously, this procedure converges rapidly due to the y-contraction
property of 77 with respect to the Lo, norm (Iyengar 2005, Nilim and El Ghaoui 2005).

Tkt1 € G (Qk)
{ Qry1 = T™+17Qy (1.39)

Two questions raised once this framework defined to solve Robust MDps problem :

1. As for classical MPDs, the question of sample complexity using DRVI (and not VI) will be
adressed in Chapter 2 and 3 or how to find

VseS: V*(s)—V™s) <e, (1.40)
V0 U0 < ey (1.41)

Here the problem is slightly different as the target we try to learn in the robust value
function and not the classical one.

2. The question in practice of how to approximate the infimum operator in (1.37) (1.38) is
central in RMPDs. This question will be discussed in the next paragraph. Moreover, the
algorithm DRVI will be used in practice in Chapter 4 and 5 and 6.

Related work on Robust MDPs Reinforcement learning has had notable achievements but
has also exhibited significant limitations, particularly when the learned policy is susceptible to
deviations in the deployed environment due to perturbations, model discrepancies, or structural
modifications. To address these challenges, the idea of robustness in RL algorithms has been
studied. Robustness could concern uncertainty or perturbations across different Markov Decision
Processes (MDPs) components, encompassing reward, state, action, and the transition kernel.
Moos et al. (2022) gives a recent overview of the different work in this field.

The distributionally robust MDP (RMDP) framework has been proposed (Iyengar 2005) to
enhance the robustness of RL. In addition to this work, various other research efforts, including,
but not limited to, Zhang et al. (2020; 2021), Han et al. (2022), Qiaoben et al. (2021), explore
robustness regarding state uncertainty. In these scenarios, the agent’s policy is determined on
the basis of perturbed observations generated from the state, introducing restricted noise, or



Chapter 1. Introduction 36
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Figure 1.7: Robust Reinforcement Learning

undergoing adversarial attacks. Finally, robustness considerations extend to uncertainty in the
action domain. Works such as Tessler et al. (2019), Tan et al. (2020) consider the robustness
of actions, acknowledging potential distortions introduced by an adversarial agent.

Given the focus of our work, we provide a more detailed background on progress related to
distributionally robust RL. The idea of distributionally robust optimization has been explored
within the context of supervised learning (Rahimian and Mehrotra 2019, Gao 2020, Duchi and
Namkoong 2018, Blanchet and Murthy 2019) and has also been extended to distributionally
robust dynamic programming and Distributionally Robust Markov Decision Processes (DRMDPs)
such as in (Iyengar 2005, Xu and Mannor 2012, Wolff et al. 2012, Kaufman and Schaefer 2013,
Ho et al. 2018, Smirnova et al. 2019a, Ho et al. 2021, Goyal and Grand-Clement 2022, Derman
and Mannor 2020, Tamar et al. 2014, Badrinath and Kalathil 2021). Despite the considerable
attention received, both empirically and theoretically, most previous theoretical analyses in the
context of RMDPs adopt an asymptotic perspective (Roy et al. 2017) or focus on planning with
exact knowledge of the uncertainty set (Iyengar 2005, Xu and Mannor 2012, Tamar et al. 2014).
Many works have focused on the finite-sample performance of verifiable robust Reinforcement
Learning (RL) algorithms. These investigations encompass various data generation mechanisms
and uncertainty set formulations over the transition kernel.

Various forms of uncertainty sets have been explored, showcasing the versatility of approaches.
Divergence such as Kullback-Leibler (KL) divergence is another prevalent choice, extensively
studied by Yang et al. (2021), Panaganti and Kalathil (2022b), Zhou et al. (2021), Shi and Chi
(2022), Xu et al. (2023), Wang et al. (2023), Blanchet et al. (2023), who investigated the sample
complexity of both model-based and model-free algorithms in simulator or offline settings. Xu
et al. (2023) considered various uncertainty sets, including those associated with the Wasserstein
distance. The introduction of an R-contamination uncertainty set Wang and Zou (2021), has
been proposed to tackle a robust Q-learning algorithm for the online setting, with guarantees
analogous to standard RL. Finally, the finite-horizon scenario has been studied by Xu et al.
(2023), Dong et al. (2022) with finite-sample complexity bounds for (RMDPs) using TV and
x? divergence. More broadly, other related topics have been explored, such as the iteration
complexity of policy-based methods (Li et al. 2022, Kumar et al. 2023), and regularization-based
robust RL (Yang et al. 2023). Finally, Badrinath and Kalathil (2021) examined a general
sa-rectangular form of the uncertainty set, proposing a model-free algorithm for the online setting
with linear function approximation to address large state spaces.
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1.3.3.1 From robust MDPs to practical algorithm using regularisation

In this section, the question is how to approximate or compute in a friendly way the infimum in
the Robust Bellman operator in (1.37). We will discuss robustness of kernel and not of reward
function that can be tackle by penalising the reward function by a certain penalty such as in
Derman et al. (2021). Moreover, for simplicity we will consider sa-rectangular case.

up, (P) = (PO + 7’) P = Xses,aeAPs,a

where x denotes the Cartesian product. Finally we use as a notation for the infimum in Robust
Bellman Operator in (1.37) kp(v) = inf {uTv tu € D}. The classical way to approximate the

infimum is to compute the dual of the initial problem. First Iyengar (2005) derive practical
1-dimensional form of the dual for TV case and for x? divergence. In the case of TV a quantity
appears in the dual is called span semi-norm and is defined bellow.

Definition 1.3.1 (Span seminorm (Puterman 1990)). Let p > 1 a real number and q be such
that it satisfies the Holder’s equality, i.e. % + é = 1. Let g-variance or span-seminorm function
spy(.) : & = R and g-mean function w, : S — R be defined as

8Dg(v) == min [lv —wlflg ,  wy(v) := argmin v — Wi, .

This is a measure of dispersion of the value function. Moreover, we define the upper truncated
function of V' by alpha as
« if V(s) > a
V] :== { 7

V(s), otherwise.

o For TV uncertainty set with sa-rectangularity, we can represent P, , as Iyengar (2005)

Psa={Psa:S >R Z Ps,a(sl) = O7P£a + Psa > 0,, ||Ps,a||1 < 0saf (1.42)
s/

and we obtain for a € RT (Iyengar 2005):

HPS,Q(V) Iggé{{ [V]a - Us,asp([v]a)oo} ,

which is a 1-dimensional optimisation problem.

« Using x? divergence, for a € R, the associated Robust set defined with which can be
rewritten as

Psa={Psa:S = RI[D Poals) =0,P, + Psa>0,X*(Psa+ P, |P),) <050} (1.43)

s/

and lead to (Iyengar 2005) the dual form

Hpsya (V) max{ [V]a - Us,aVPSO,a([V]Ot)}

a>0

denoting classical variance as V.
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e For KL divergence, the dual can be rewritten also as for an uncertainly set
Poa={Psa:S = R|D Poals) =0,P), + Psa >0, KL(Psq+ P),|P),) < 054}
SI
(1.44)

like TV and x?, for T > 0, the dual for KL (Iyengar 2005) can be reduced as

npsya(V) = 1%1%<{—057aT —Tlog Epsoa[exp(—V/T)]}.

Again there is a 1-dimentional optimisation problem in the dual which comes from that
probabilities of the adversarial kernel is positive.

o Using L,, for o € RY, the dual form is slightly more difficult to represent as using this
uncertainty set

Poa=1{Psa:S R[> Pua(s) =0,P), + P,y >0, 1Psall, < 00}

s

the infimum can be rewritten as according to Lemma in Appendix of Chapter 2.5 as

% A, A,
wpy (V)= | max APS(V* = s’ ) = 0saspy(V = i, )}
Mo, “Fpo, ’
o 0
= O/\"fnea:&“’ Ps,a[v]of"g’ - O-S@Spq([v]a;ﬁ) )
PO, T PO, >
where
A A A A L)
AR = (o} s ap(9) =w + AVIIPI () : A > 0w > 0.P € AS), ap € o, 1_7] }
(1.45)
A A A A 1 5
M = {pp” =V —ap® A w e R, P € A(S),up” € {07 1_7} } (1.46)
(1.47)

Here « is not anymore a scalar but a vector only parameterized by only two parameters w and .
Moreover, the truncation for o € R%is defined as

a, if V(s) > a(s),

' (1.48)
V(s), otherwise.

[Vla(s) = {

The first remark is that there is no simple dual for KL, Lp or y? divergence or for our
knowledge any divergence with close form dual. When the state space is finite, it is possible
to approximate easily the maximum such as in Iyengar (2005) to obtain DRVI algorithm or
Q-learning based algorithm which is robust using KL divergence ball. However when the state-
action space is continuous there is no simple solution to compute the dual. Thus, the question
arises:

Could we derive simple/close form of the dual to compute Robust Bellman Operator easily ?
Two ideas exist to get simple expression and they are all based on relaxation.

1) Use a relaxation of the problem without non negative probability constraint
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Relaxation of the problem with probability of the adversary that can be possibly negative have
been proposed in Kumar et al. (2022). In there algorithm, the uncertainty set is defined removing
the constraint Pg o T Ps.a = 0 such that

ps,a = {Ps,a :S§—R ’ ZPs,a(sl) =0, HPs,aHp < Us,a}

s

using this formulation the dual is simple and only depend on the the span semi norm.

K“'Ps,a(v) = PSO,(),V - US,aqu(V) . (149)

This formulation allows to derive practical algorithm using DRVI wiht L, formulation (Kumar
et al. 2022) or policy gradient Kumar et al. (2023). Using this relaxation, robustness is equivalent
to regularisation using value function. The first work to establish the connection between
regularization and Robustness in RL has been Derman et al. (2021) and in their work they do
no assume any conditions on the adversary, which leads to a slightly different regularisation with
uncertainty set of the form

Poa = {Poa:S = R [|Peall, < 00}

which lead to

K’Ps,a(v) = PSO,aV - 0-3,0« ”VHq .

In fact, it is possible to do the same for example with the y? divergence constraint and remove
the positivity of the constraint to obtain simple risk averse mean minus standard deviation
optimisation:

Poa={Psa:S = R[> Pials) =0,x*(Psa+ PoylPly) < 0sa}

s

we obtain

kp, (V) =PV —| [o5aVpo, (V).

With this formulation, we obtain simple mean minus standard deviation for the the infimum.
Once the supremum cancelled in the dual of Robust Bellman Operator using a relaxation, the
question of the estimation of the penalisation here is different. We will also see another way of
getting close form relaxing the constrain.

2) Use alternative definition such as Soft Robust MDPs

Another way of avoiding supremum in the dual would be to use Soft Robust MDPs. In this
setting introduced by Zhang et al. (2023), the distance constraint to the nominal is relaxed and
is added as an objective. The uncertainty set become simply the simplex

Psa={Psa:S = R[Y Pials) =0,Pq+ P, >0}

S/

and the infimum is regularised with KL for example :

PS,irel,f‘Ps,a(PS’aV B ’)/0-8_7; KL(PS,(Z

Pga)) = _70-5_,; log Es’ngae_BVﬂ(S/) )
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which leads to Q-function of the form : Q™ (s,a) = r(s,a) — y8~!log ESers,ae_BV(s/) . This idea
is nice to obtain close form but the scheme does not scale yes to large or continuous action space
(Zhang et al. 2023) while it is a promising avenue for Deep RL algorithm. Now from a practical
point of the view to derive algorithm the question is :

How to estimate the regularisation in Deep Robust RL and does what regularisation make
sense from a practical point of view?

o For L, constraints, even using relaxation of equation (1.49), the span semi norm which is a
quantity depending on all state s expect for L were the semi dual span is simply the range
(max V' — min V')/2 need to be computed. As we consider in Deep RL in a model free, we
cannot estimate this quantity easily. As the penalty is a span semi norm depending on
all state it is very difficult to estimate it, even if a possible solution to approximate the
penalty using samples from the replay Buffer have been proposed in (Derman, Men, Geist,
and Mannor Derman et al.).

e The KL and y? formulations are interesting because the penalty involve samples from
the nominal kernel Pg . and not all state like in L,. Using relaxation in x? would be an
alternative if we could get a good estimate of the variance of the the Q-function in the next
state or an approximation using policy iteration such as in Zhang et al. (2021).

e While KL is interesting, the dual loss involves exponential term which are difficult to
implement from stability point of view in Deep RL.

e A first interesting point idea is that SAC algorithm is shown to be robust to some
perturbation. Indeed Eysenbach and Levine (2021) show that SAC Haarnoja et al. (2018b)
is robust both in practice and in theory to some perturbation of the robust kernel.

Finally in practice, one drawback of regularisation is the the coefficient proportional to the
penalty or radius of the uncertainty o set need to be carefully chosen which is one additional
hyperparameter in practice. So direct penalisation to improve robustness has two main drawbacks,
estimation of the penalty and find the good uncertainty radius o to obtain robust policy while
not be too pessimistic and decrease drastically performances. The Figure 1.8 illustrates this idea
where we try in Chapter 4 to estimate a penalty with coefficient a which is proportional to o
the radius of the ball. As showed in Figure 1.8, when « is too big, our algorithm cannot learn
correctly as the penalisation is too strong.

We will give two alternative with easy implementation Deep Robust RL algorithm to answer
the question on tow to tackle estimation problem in Robust/Regularised RL and obtain relevant
penalisation in practice.

1. Retro-engineering and design relevant penalisation in practice, and then look at the robust
set.

In Chapter 5, this idea will be developed using Expectile statistics with lower expectile
boostraping. Using this formulation allow to create implicit Robustness in Reinforcement
Learning. Moreover, the hyperparmeter tuning is much easier as expectile are more
interpretable than magnitude of the regularisation. We will propose a version with automatic
fine tuning in Chapter 5.

2. We will try to derive practical penalisation that easy to estimate using Distribution of
returns. One of the problem in Robust Bellman Operator is that the expectation is taken
over next state s’. Using Robust Bellman Operator will lead to penalisation depending
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on the next state, it could be expectation, variance, norm etc. However these quantities
are quite difficult to estimate in practice in a model free setting as we only have access to
sample from the buffer. Recall that the Robust Bellman Operator is defined as :

T”’PQ(S,Q) =r(s,a) +vy Z P(s']s,a) Ea/mor(|s) [Q(s',d")] (1.50)
s'eS

where the Q-function is simply the average return of the distribution of return given s, a.
A rollout or trajectory using 7 from state s using initial action a is defined as the the
random sequence Ty, o, = ((S0,a0,70) , (s1,a1,71),...) with so = s,a0 = a,a; ~ 7 (- | s¢) ,
ry the reward function and the s;41 ~ P (- | s¢,a;) . The @Q-function ca be rewritten as :

QP (s,a) := E[Z77(s,a) (1.51)
= ETs,aNP [R(T) ‘ ag ~ ﬂ—(’ | St) s Tty St41 ™~ P(7 . | St7at) ;80 = S,a0 = a] .
(1.52)

Then, taking the infimum over trajectory starting from s, a called 7 4, the classical Bellman
Operator can be rewritten as

T™"Z(s,a) =r(s,a) +7 Y P(s' | s,a) Egronls) {ETS,’G, [Z (s’,a’)]} : (1.53)
s'eS

An idea would be to compute a minimum over the next trajectory against a reference
trajectory denoted 7y that follow a given nominal kernel P° and 7.

T™FZ(s,a) = r(s,a) + min P (s'|s,a)Eyncisn |Er, 12 (s, d
o) =ra+y,  poming P 50 B ) [Erv 12 ()]

(1.54)

=r(s,a)+ P(s'|s,a)Eyon(ls min E., ,[Z(s,d)]| , (1.55

(5,) 75’26;9 (5"1 5,0) Barmn( ) Tt ar:p(P(Ty 01 ) P70 o a1)) ol ( ) (1.55)

where p a divergence between two trajectory probability and P(7) the probability distri-
bution of the trajectory. Finding a relevant formulation for the expectation would give a
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P(sti1lsy, ap) = 7i(sy, ar)

- s, Adversary
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T ap ~ T(sy)

Figure 1.9: Robust RL and Zero-sum Markov Game

risk averse formulation involving the distribution of returns. For example in Chapter 4,
we derive mean standard deviation error based on x? divergence constraint. In practice,
Distributional RL introduced by Bellemare et al. (2017) will allow use to get an approxi-
mation of the distribution of returns and gives simple estimate of the regularisation based
on the distribution.

Surprisingly, most of the Robust RL algorithms are not based in these risk averse formulation
that comes from Theory of Robust MDPs. One of the reason for this is that here we assume
having access of sample uniquely from the nominal P° whereas other algorithm in Deep Robust
RL, use sample from the entire uncertainty set as they modify parameters of the generative
model such as in Mujoco. A interesting question is :

Can we derive algorithm using risk averse based method and combine it with sample from the
entire ball and not only in the nominal?

This questions will be address in Chapter 5. In the following we will do a related work on
Deep Robust Rl methods that play with sample not only from the nominal kernel P° but from
the entire uncertainty set.

1.3.4 Deep Robust RL as a zero-sum game

Deep Robust RL as two-player games is a common approach for solving robust RL problem,
representing the problem as a zero-sum two-player Markov games (Littman 1994, Tessler et al.
2019) where S, A are respectively the state and action set of the adversarial player. In a zero-sum
Markov game, the adversary tries to minimize the reward or maximize —r. Writing 7 : S — A :=
A(S) the policy of this adversary, the robust MDP problem turns to max, minz V™7, where
V™7 (s) is the expected sum of discounted rewards obtained when playing 7 (agent actions)
against 7 (transition models) at each time step from s. In the specific case of robust RL as a two
player-game, S = S x A. This enables introducing the robust value iteration sequence of functions

v, = T**V,(s) = i TV, 1.56
+1(s) (s) ﬂ(rsr)lg&ﬁ(&gég(s)( )(s) (1.56)

where T™7 := E,r(s)[7(5, @) + VEgr(s,0) V()] is a zero-sum Markov game operator. These
operators are also y—contractions and converge to their respective fixed point V™" and V**

(Tessler et al. 2019). This two-player game formulation will be used in TC-MDPs algorithm and
in the evaluation of the RRLS bechmark in Section 7 and 8.

A first family of methods define 7(s;) = P°+4 A(s;), where P? denotes the reference (nominal)
transition function. Among this family, Robust Adversarial Reinforcement Learning (RARL)
(Pinto et al. 2017) applies external forces at each time step ¢ to disturb the reference dynamics. For
instance, the agent controls a planar monopod robot, while the adversary applies a 2D force on the
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foot. In noisy action robust MDPs (NR-MDP) (Tessler et al. 2019) the adversary shares the same
action space as the agent and disturbs the agent’s action 7(s). Such gradient-based approaches
incur the risk of finding stationary points for m and 7 which do not correspond to saddle points of
the robust MDP problem. To prevent this, Mixed-NE (Kamalaruban et al. 2020) defines mixed
strategies and uses stochastic gradient Langevin dynamics. Similarly, Robustness via Adversary
Populations (RAP) (Vinitsky et al. 2020) introduces a population of adversaries, compelling
the agent to exhibit robustness against a diverse range of potential perturbations rather than
a single one, which also helps prevent finding stationary points that are not saddle points.

Aside from this first family, State Adversarial MDPs (Zhang et al. 2020; 2021, Stanton
et al. 2021) involve adversarial attacks on state observations, which implicitly define a partially
observable MDP. This case aims not to address robustness to the worst-case transition function
but rather against noisy, adversarial observations.

A third family of methods considers the general case of 7(s¢,ay) = Py or 7(s;) = P, where
P, € P. Minimax Multi-Agent Deep Deterministic Policy Gradient (M3DDPG) (Li et al.
2019b) is designed to enhance robustness in multi-agent reinforcement learning settings but boils
down to standard robust RL in the two-agents case. Max-min TD3 (M2TD3) (Tanabe et al.
2022a) considers a policy , defines a value function Q(s,a, P) which approximates Q™ (s, a) =
Ey~p[r(s,a,s) +vyV™F(s)], updates an adversary 7 so as to minimize Q(s, 7 (s), 7(s)) by taking
a gradient step with respect to 7’s parameters, and updates the policy 7 using a TD3 gradient
update in the direction maximizing Q(s,7(s),7(s)). As such, M2TD3 remains a robust value
iteration method that solves the dynamic problem by alternating updates on 7 and 7, but since
it approximates Q™ it is also closely related to the method we introduce in the next section.

Domain randomization. Domain randomization (DR) (Tobin et al. 2017) learns a value
function V'(s) = max, E pNu(p)V”’P (s) which maximizes the expected return on average across
a fixed distribution on P. As such, DR approaches do not optimize the worst-case performance.
Nonetheless, DR has been used convincingly in applications (Mehta et al. 2020a, OpenAl et al.
2019). Similar approaches also aim to refine a base DR policy for application to a sequence of
real-world cases (Lin et al. 2020, Dennis et al. 2020, Yu et al. 2018). For a more complete survey
of recent works in robust RL, we refer the reader to the work of Moos et al. (2022).

We will use the idea of using sample from the entire uncertainty set. One recurrent problem
with min max adversary formulation is that the adversary may lead to very bad policy. Moreover,
rectangularity assumptions defined in (1.28) are not realistic in practice. So the issue is :

Can we relaz classical assumptions of rectangularity to obtain more realistic transition and
weaker adversary policy ?

We address this question in in the Chapter 6 where the problem of rectangularity used in
theory may be not suitable in practice sometimes. To set ideas, let us consider the robust MDP
of a pendulum, described by its mass and rod length. Varying this mass and rod length spans the
uncertainty set of transition models. The rectangularity assumption induces that 7(s¢, a;) can
pick a measure in A(S) corresponding to a mass and a length that are completely independent
from the ones picked in the previous time step. While this might be a good representation in
some cases, in general it yields policies that are very conservative as they optimize for adversarial
configurations which might not occur in practice. We first step away from the rectangularity
assumption and define a parametric robust MDP as an RMDP whose transition kernels are
spanned by varying a parameter vector ¢ (typically the mass and rod length in the previous
example). Choosing such a vector couples together the probability measures on successor states
from two distinct (s,a) and (s',a’) pairs. The main current robust deep RL algorithms actually
optimize policies for such parametric robust MDPs but still allow the parameter value at each
time step to be picked independently of the previous time step.
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Figure 1.10: TC-RMDP training involves a temporally-constrained adversary aiming to maximize the
effect of temporally-coupled perturbations. Conversely, the agent aims to optimize its performance against
this time-constrained adversary. In , the oracle observation, and in blue the stacked observation.

Parametric MDPs. A parametric RMDP is given by the tuple (S, A, ¥, Py, r) where the
transition kernel Py(s,a) € A(S) is parameterized by 1, and ¥ is the set of values 9 can take,
equipped with an appropriate metric. This yields the robust value iteration update :

V = in(T}V, = inE,. , Eon Va(sN)].

1 (s) e glelg( w Vn)(8) clnax 0 B [r(s,a) + VEsnpy (s,0) Vin(s)]
A parametric RMDP remains a Markov game and the Bellman operator remains a contraction
mapping as long as Py, can reach only elements in the simplex of A(S), where the adversary’s

action set is the set of parameters instead of a (possibly sa-rectangular) set of transition kernels.
The idea to tackle this problem is to defined Time-constrained RMDPs (TC-RMDPs).

Time-constrained RMDPs (TC-RMDPs). We will in Chapter 6 introduce TC-RMDPs
as the family of parametric RMDPs whose parameter’s evolution is constrained to be Lipschitz
with respect to time. More formally a TC-RMDP is given by the tuple (S, A, ¥, Py, r, L), where
le41 — ]| < L, that is the parameter change is bounded through time. In the previous
pendulum example, this might represent the wear of the rod which might lose mass or stretch
length. Similarly, and for a larger scale illustration, TC-RMDPs enable representing the possible
evolutions of traffic conditions in a path planning problem through a busy town. Starting from
an initial parameter value 1_1, the pessimistic value function of a policy 7 is non-stationary, as
g is constrained to lay at most L-far away from ¢ _1, 11 from 1y, and so on.
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En un mot ma mémoire n’est pas mauvause, mais elle serait insuffisante
pour faire de moi un bon joueur d’echecs. Pourquoi donc ne me fait-elle pas
défaut dans un raisonnement mathématique difficile ou la plupart des jouerurs
d’echecs se perdraient? C’est évidemment parce qu’elle est guidée par la marche
générale du raisonmment. Une démonstration mathématiques n’est pas une
simple juxtaposition de syllogismes, ce sont des syllogismes placés dans un
certian ordre, et l’ordre dans lequel ces éléments sont placés est beaucoup plus
important que le sont les éléments euz-mémes. Si j’ai le sentiment, Uintuition
pour ainsi dire de cet ordre, de facon d apercevoir d’un coup d’oeil I’ensemble
du raisonnement, je ne dois plus craindre d’oublier l'un des éléments , chacun
d’eux viendra se placer de lui-méme, dans le cadre qui lui est préparé, et sans
que j’aie a faire auncun effort de mémoire

Henri Poincaré, Science et Methode (1908)
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2.1 Introduction

einforcement learning (RL) (Sutton and Barto 2018), often modelled as learning and decision-
making in a Markov decision process (MDP), has attracted increasing interest in recent years
due to its remarkable success in practice. A major goal of RL is to find a strategy or policy, based
on a collection of data samples, that can predict the expected cumulative rewards in an MDP,
without direct access to a detailed description of the underlying model. However, Mannor et al.
(2004) showed that the policy and the value function could sometimes be sensitive to estimation
errors of the reward and transition probabilities, meaning that a very small perturbation of the
reward and transition probabilities could lead to a significant change in the value function.

Robust MDPs (Iyengar 2005, Nilim and El Ghaoui 2005) (RMDPs) have been proposed to
handle these problems by letting the transition probability vary in an uncertainty (or ambiguity)
set. In this way, the solution of robust MDPs is less sensitive to model estimation errors with
a properly chosen uncertainty set. An RMDP problem is usually formulated as a max-min
problem, where the objective is to find the policy that maximizes the value function for the worst
possible model that lies within an uncertainty set around a nominal model. Initially, RMPDs
(Iyengar 2005, Nilim and El Ghaoui 2005) were developed because the solution of MDPs can be
very sensitive to the model parameters (Zhao et al. 2019, Packer et al. 2018). However, as the
solution of robust MDPs is NP-hard for general uncertainty sets Nilim and El Ghaoui (2005), the
uncertainty set is usually assumed to be rectangular (meaning that it can be decomposed as a
product of uncertainty sets for each state or state-action pair), which allows tractability Iyengar
(2005), Ho et al. (2021). These two kinds of sets are called respectively s- and sa-rectangular sets.
A fundamental difference between them is that the greedy and optimal policy in sa-rectangular
robust MDPs is deterministic, as in non-robust MDPs, but can be stochastic in the s-rectangular
case Wiesemann et al. (2013). Compared to sa-rectangular robust MDPs, s-rectangular robust
MDPs are less restrictive but much more difficult to handle. Under this rectangularity assumption,
many structural properties of MDPs remain intact Iyengar (2005) and methods such as robust
value iteration, robust modified policy iteration, or partial robust policy iteration Ho et al. (2021)
can be used to solve them. It is also known that the uncertainty in the reward can be easily
handled, while handling uncertainty in the transition kernel is much more difficult Kumar et al.
(2022), Derman et al. (2021). Finally, Deep Robust RL algorithms Pinto et al. (2017), Clavier
et al. (2022), Tanabe et al. (2022b) have been proposed to tackle the problem of Robust MDPS
with continuous state-action space.

In this work, we consider robust MDPs, with both sa- and s-rectangular uncertainty sets,
consisting of L,-balls centered around the nominal model . We assume access to a generative
model, which can sample a next state from any state-action pair from the nominal model. The
question we address is to know how many samples are required to compute an e-optimal policy.
This classic abstraction, which allows studying the sample complexity of planning over a long
horizon, is widely studied in the non-robust setting Singh and Yee (1994), Sidford et al. (2018),
Azar et al. (2013a), Agarwal et al. (2020), Li et al. (2020), Kozuno et al. (2022), but much less
in the robust setting (Yang et al. 2021, Panaganti and Kalathil 2022a, Shi and Chi 2022, Xu
et al. 2023, Shi et al. 2023). We consider more specifically model-based robust RL. We call
the generative model the same number of times for each state-action pair, to build a maximum
likelihood estimate of the nominal model, and use any planning algorithm for robust MDPs (with
high accuracy guarantee on the solution) on this empirical model. This setting will be discussed
further later, but we insist right away that it is especially meaningful in the robust setting, as it
is a good abstraction of sim2real. The research question we address is:

How many samples are required for guaranteeing an e-optimal policy with high probability?
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Our first contribution is to prove that for both s and sa-rectangular sets based on L,-balls,

the sample complexity of the proposed approach is @(H;SA), with H = (1 — v)~! being the
horizon term. Previous works (Yang et al. 2021, Panaganti and Kalathil 2022a, Shi and Chi 2022,
Xu et al. 2023) study different sets, based on the Kullback-Leibler (KL) divergence, Chi-square
divergence, and total variation (TV). We have the TV in common (L;-ball up to a normalizing
factor), and, in this case, we improve these existing results by S for the sa-rectangular case,
and by SA for the s-rectangular case, which is significant for large state-action spaces. On the
technical side, our results build heavily upon the dual view of robust Bellman operators (Derman
et al. 2021, Kumar et al. 2022). However, we deviate from this line of work by enforcing the
uncertainty set to belong to the simplex. This allows ensuring that the robust operators are
overly conservative while ensuring they are ~y-contractions, which is important for the theoretical
analysis. On the negative side, the algorithms they introduce are no longer applicable, which
calls for new algorithmic design.

Our second contribution is to show that, if the uncertainty set is small enough, then we
have a sample complexity of @(%) This is a further improvement by H of the previous
bound, and it matches the known lower bound for the non-robust case (Azar et al. 2013a). On the
technical side, it again builds upon the dual view of robust Bellman operators with the deviation
mentioned above.(Derman et al. 2021, Kumar et al. 2022). In addition to that, it adapts two
proof techniques of the non-robust case: The total variance technique of Azar et al. (2013a) to
reduce the dependency to the horizon, and the absorbing MDP construction of Agarwal et al.
(2020) to allow for a wider range of valid e.As mentioned earlier,(Derman et al. 2021, Kumar
et al. 2022) algorithms are not applicable to the more realistic uncertainty sets we consider.

Our third contribution is an algorithm DRVI Lp (see Alg. 11, for Distributionally Robust
Value Iteration for Lp in sarectangular case that solves exactly RMDPs in the case of valid
robust transition that belongs to the simplex contrary to Kumar et al. (2022).

2.2 Related Work

The question of sample complexity when having access to a generative model has been widely
studied in the non-robust setting Singh and Yee (1994), Sidford et al. (2018), Azar et al. (2013a),
Agarwal et al. (2020), Li et al. (2020), Kozuno et al. (2022). Notably, Azar et al. (2013a) provide
a lower-bound of this sample complexity, (2 ‘g{ 3), and show that (tabular) model-based RL
reaches this lower-bound, making it minimax optimal (up to polylog factors). This bound relies
on the so-called total variance technique, that we adapt to the robust setting. However, their
result is only true for small enough e, in the range (0,1/H/S). This was later improved to
(0,vH) by Agarwal et al. (2020), thanks to a novel absorbing MDP construction, that we also
adapt to the robust setting.

Closer to our contributions are the works that study the sample complexity in the robust
setting Yang et al. (2021), Panaganti and Kalathil (2022a), Xu et al. (2023), Shi and Chi (2022).
The study of sample complexity of specific algorithms (respectively either empirical robust value
or Robust Phased Value Learning) is studied by Panaganti and Kalathil (2022a), Xu et al. (2023),
while our results apply to any oracle planning (applied to the empirical model), as long as it
provides a solution with enough accuracy. We consider both s- and sa-rectangular uncertainty
sets, as Yang et al. (2021), while Panaganti and Kalathil (2022a), Xu et al. (2023), Shi and Chi
(2022) only consider the simpler sa-rectangular sets. They all study either TV, KL or Chi-square
balls, while we study L,-balls. Shi and Chi (2022) improved the KL bound compared to Yang
et al. (2021), Panaganti and Kalathil (2022a) in the sa rectangular case. The framework of Xu
et al. (2023) is slightly different as they consider finite horizon which adds a factor H in all
bounds. All previous results are not minimax optimal in terms of the horizon factor.
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Table 2.1: Sample Complexity of TV for s- or sa rectangular with o (see Def 2.3.2) the radius of
uncertainty set (see also Tab. 9.1 in the appendix for a complete table with different norms)

Panaganti  and | Yang et al. (2021) | Our o >0 Our 1/(2H~v) > | Shi et al. (2023)
Kalathil (2022a) o>0
~ 2 4 ~ 2 4 )2 ~ 4 ~ 3 ~ 2
o [O(ZHE) [ (THEET) To(3) [0(3) | 0 (amittinm)
rect.
" | o(FFEEE) [o () [o(=) [~
rect.

We rely more specifically on a simple optimization dual expression of the minimization
problem over models. As such, we do not cover the KL, and Chi-square cases, which do not
have such a simple form even if there can also be written as simple scalar optimization problem.
However, we have in common with Yang et al. (2021), Panaganti and Kalathil (2022a) the total
variation case, which corresponds to a (scaled) L;-ball. For this case, we can compare our sample
complexities. Without assumption on the size of the uncertainty set, we improve the existing
sample complexities by S and SA respectively (for sa- or s-rectangularity). Also, our bounds
have no dependency on the size of the uncertainty set. Notice that as we consider a generic
oracle planning algorithm, our bounds apply to the algorithms they consider in Panaganti and
Kalathil (2022a), Xu et al. (2023). If we further assume that the uncertainty set is small enough,
then we improve the bound by an additional H factor, reaching the minimax sample complexity
of the non-robust case. Table 2.1 summarizes the difference in sample complexity, and we will
discuss them again after stating our theorems.

Finally, the archival version of this contribution predates the concurrent work of Shi et al.
(2023) that studies the sample complexity of RMDPs for TV and x? divergence. In the very
specific case of sa- rectangular for T'V which in this case coincides with L norm, Shi et al.
(2023) retrieves our upper bound which is minimax optimal in the regime where the radius of the
uncertainty set is small and improves our result in the regime where the radius of the uncertainty
set is bigger than 1 — «. However, our results hold more generally for the s-rectangular case are
still state-of-the-art for s-rectangular case with p > 1 and for sa—rectangular with p > 1. Notice
also that the proof techniques are very different, and it is an interesting research direction to
know if their bound for the regime where the radius of the uncertainty set is bigger than 1 —~ or
their lower-bound would extend to the more general case studied here.

2.3 Preliminaries

For finite sets S and A, we write respectively S and A their cardinality. We write A(A) :=
{p: A= R|pla) >0, ,c4p(a) =1} the simplex over A. For v € R® the classic L, norm is
[v]lg = 35 v(s)?. The unitary vector of dimension S is denoted 1s. Finally, we denote O the O
notation up to logarithm factor.

2.3.1 Markov Decision Process

A Markov Decision Process (MDP) is defined by M = (S, A, P,r,~, p) where S and A are the
finite state and action spaces, P : S x A — A(S) is the transition kernel, r : § x A — [0, 1] is
the reward function, p € Ag is the initial distribution over states and v € [0,1) is the discount
factor. A stationary policy 7 : S — A(A) maps states to probability distributions over actions.
We write Ps 4 the vector P(-|s,a). We also define P™ to be the transition matrix on state-action
pairs induced by a policy m: P[ ) o .y = P(s'|s,a)m(a’ | §'). Slightly abusing notations,
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for V€ R¥, we define the vector Varp(V) € RS*4 as Varp(V)(s,a) := Varp(.|s,q)(V), so that
Varp(V) = P(V)? — (PV)? (with the square understood component-wise). Usually, the goal is
to estimate the value function defined as:

VPrT(s) . =E Z Y'r (Spyan) | so = s, , P] .

n=0

The value function V2R for policy 7, is the fixed point of the Bellmen operator 777 defined
as

TErTY (5) = Zﬂ(a]s)[r(s, a) + ’yz P (s'|s,a) V (s')].
We also define the optimal Bellman operator: T5"*V (s) = max,,ca(a) (TP s V) (s). Both

optimal and classical Bellman operators are y-contractions (Sutton and Barto 2018). This is
why sequences {V,™ | n > 0}, and {V,* | n > 0}, defined as

T ._ TPrmym * TPy *
=TTV, Fand Vi =TV

converge linearly to V"™ and VF™* respectively the value function following 7 and the optimal
value function. Finally, we can define the Q-function,

[e.e]
QY™™ (s,a) :=E Z Y7 (Snyan) | S0 = s,a0 = a,m, P
n=0
The value function and Q-function are linked with the relation VP (s) = ((ms, QP (s)) 4.
With these notations, we can define Q-functions for transition probability transition P following
policy 7 such as

QP = r 4 APV = p 4 yPTQPTT = (I —yP™) 1

2.3.2 Robust Markov Decision Process

Once classical MDPs defined, we can define robust (optimal) Bellman operators 7,7 and 7;;

T7V(s) == min (TP77V) (s)

r,PeU

* i . P,r,ms
(TuV) () 1= max min, (TP 7V (s)

where P and r belong to the uncertainty set ¢/. The optimal robust Bellman operator 7;; and

robust Bellman operator 7,] are vy-contraction maps for any policy 7 (Iyengar 2005, Thm. 3.2) if
the adversarial kernel P € A(S) to obtain a valid transition kernel :

ITerv = Tgull o < vllu = vlloo,
1Tdv = T ulloo <= vllo, V.

™ (s ™ *

Finally, for any initial values V{7, V", sequences defined as V| := 77V, and V,J | := T;V,
converge linearly to their respective fixed points, that is V7 — V;7 and V7 — V;j. This makes
robust value iteration an attractive method for solving robust MDPs. In order to obtain tractable
forms of RMDPs, one has to make assumptions about the uncertainty sets and give them a
rectangularity structure Iyengar (2005). In the following, we will use an L, norm as the distance
between distributions. The s- and sa-rectangular assumptions can be defined as follows, with r¢
and P° being called the nominal reward and kernel.
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Assumption 2.3.1. (sa-rectangularity) We define sa-rectangular L,-constrained uncertainty set
as
U\T,T{:(PD) = (TO + R) X (PO + P) R = XsES,aeARs,aa

P = XsES,aEAPS,mRs,a = {Ts,a €R ‘ ’rs,a’ < as,a}
Ps,a = {Ps,a :§—R | Zps,a(sl) =0, Pe?,a + Ps,a >0, ”Ps,aHp < Us,a}

)

Assumption 2.3.2. (s-rectangularity) We define s-rectangular Ly,-constrained uncertainty set as
u|T.’|(|j = (TO + R) X (PO + P) 7P = XSESPS’
p
R = xsesRs, R ={rs: AR ||, <}
Pe={P.: Sx A= R|[Y Pus',a) =0,Ya € A, Py(,a)+ P} > 0,||P|, < 5.}

We write 0 = sup, , 05 for sa-rectangular assumptions or 6 = sup, ¢ for s-rectangular
assumptions and with the same manner o = sup, , s 4. Moreover, we write P € 772@ for
P = P, + P with P' € Ps, and P € P for P = PX™ 4+ P with P’ € P, P?™(s') =
> W(a|s)P£a(s') e RS,

In comparison to sa-rectangular robust MDPs, s-rectangular robust MDPs are less restrictive
but much more difficult to deal with. Using rectangular assumptions and constraints defined with
L,-balls, it is possible to derive simple dual forms for the (optimal) robust Bellman operators for
the minimization problem that involves the seminorm defined below:

Definition 2.3.1 (Span seminorm (Puterman 1990)). Let g be such that it satisfies the Holder’s
equality, i.e. 1 +1 =1. Let q-variance or span-seminorm function qu(.) :S — R and g-mean
function wy : S — R be defined as

Dy(v) i= minJo — wify,  wq(v) = argmin o — w1,

One can think of those span-seminorms as semi-mean-centered-norms. The main problem is
that these quantities represent the dispersion of a distribution around its mean, and there are no
order relations for this type of object. Seminorms appear in the (non-robust) RL community
for other reasons Puterman (1990), Scherrer (2013). For p =1, 2 and oo, a closed form can
be derived, corresponding to median, variance and range. This is not the case for arbitrary p
but span-seminorms can be efficiently computed in practice, see Kumar et al. (2022). Once
span-seminorms defined, we introduced the dual of the inner minimization problem.

Lemma 2.3.3 (Duality for sa rectangular case with L, norm). For any V € RS,PS% =
P%(|s,a) € R® and p € RS

. _ 0
A28 PV = max Py (V = 1) = 0s.aspy(V = 1)

Lemma 2.3.4 (Duality for s rectangular case.). Consider the probability kernel F§ ; = H”Pga €
R® with II™ a projection matriz associated with a given policy m such that
PIT(s") =Y, w(als)P,(s") € RS. For any V € RS :

. . 0,
g, PV = max PoT(V —p) — os |75l spg(V — p)
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Proofs car be found in Appendix 2.5 ,2.3.4. These results allow computing robust value and
Q-functions. Close to our work, Derman et al. (2021), Kumar et al. (2022) do not assume that
robust kernel belongs to the simplex and in that sense, their formulation is a relaxation of the
framework of RMPDs. Using this relaxation, closed form of robust Bellman operator can be
obtained, see Th. 1 in Kumar et al. (2022). In our work, we assume a valid transition kernel in
the simplex (Ps, > 0 or P; > 0 for respectively sa— or s— rectangular case.) that leads to dual
form that has not a closed form but which is a simple scalar optimization problem. A complete
discussion can be found in Appendix 1.2.

Finally, we denote robust @ function for sa— and s— rectangular respectively Q™ and Q™°
and we define them from robust value function V™7, V™ as :

Vro(s) =Y m(als)QT(s,a),  V™(s) =) m(als)Q™(s,a)

a a
Lemma 2.3.5. For sa— and s— rectangular,
QTI’,O’(S ) _ ré;ra) PO VTI',O'
Q™% (s,a) = rdx + 'yPO 74
with

(s,a) _ . in PV™
Ton ro(s,a) — agq+ 7y Plggsl,a

q—1
’/Ts(a)) O‘s"”y mln PTI’vTrO’
17l =2

Robust @ functions and dual forms of the robust Bellman operators will be central to our
analysis of the sample complexity of model-based robust RL. They allow improving the bound
by a factor S or SA compared to existing results (Sec. 2.4). With additional technical subtleties,
adapted from the non-robust setting, and assuming the uncertainty set is small enough, they
even allow improving the bound by a factor SH or SAH (Sec. 2.5).

2.3.3 Generative Model Framework

We consider the setting where we have access to a generative model, or sampler, that gives
us samples s’ ~ PY(- | s,a), from the nominal model and from arbitrary state-action couples.
Suppose we call our sampler N times on each state-action pair (s,a). Let P be our empirical
model, the maximum likelihood estimate of PP,

/
P(s'| s,a) = Pya(s) = C(’“mﬁvﬂ
where count(s’ ,8,a) represents the number of times the state-action pair (s,a) transitions to
state s'. Moreover, we define M as the empirical RMDP 1dentlcal to the original M except that
it uses P instead of PV for the transition kernel. We denote by V™ and Q™ the value functions of
a policy 7 in M and 7 ,Q* and V* denote the optimal policy and its value functions in M. Tt is
assumed that the reward function Ry is known and deterministic and therefore exactly identical
in M and M. Moreover, we write P € 753@ for P = ]53@ + P' with P! € P;, and P € 755 for
P = PT 4+ P' with P' € P,, Pr(s') =Y, m(a|s)Psq(s") € RS.

S
Notice that our analysis would easily account for an estimated reward (the hard part being

handling the estimated transition model). This generative model framework, when we can
only sample from the nominal kernel, is classic and appears for both non-robust and robust
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MDPs (Agarwal et al. 2020, Panaganti et al. 2022, Azar et al. 2013a, Xu et al. 2023). In the
robust case, it is especially relevant as an abstraction of ”sim-to-real”, the simulator giving access
to the nominal kernel for learning a robust policy to be deployed in the real world (assumed to
belong to the uncertainty set).

The question of how to solve RMDPs and the related computational complexity are com-
plementary, but different from Theorems 2.4.1and 2.5.1. Indeed, an important point that
differentiates us from (Panaganti and Kalathil 2022a) is the use of a robust optimization oracle.
In (model-based) sample complexity analysis, the goal is to determine the smallest sample size N
such that a planner executed in M yields a near-optimal policy in the RMDP M. To decouple
the statistical and computational aspects of planning with respect to an approximate model
M , we will use an optimization oracle that takes as input an (empirical) RMDP and returns a
policy 7 that satisfies ][Q* — QﬁHoo < €opt- Our final bound will depend on €, the error made
from finite sample complexity, and €,p¢ . In practice, the error e,y is typically decreasing at a
linear speed of ¥ at the k*! iteration of the algorithm, as in classical MDPs because (optimal)
Bellman operators are y-contraction in both classic and robust settings when robust kernel in
assuming in the simplex.

The computational cost of RMDPs is addressed by Iyengar (2005) but not in the L,. Kumar
et al. (2022) address this question, in this case, using the regularized form of robust MDPs obtained
with relaxed hypothesis on the kernel (See Appendix 1.2). The conclusions of the latter are that
L, robust MDPs are computationally as easy as non-robust MDPs for regularized forms, at least
for some choices of p for their relaxation. However, in their analysis, the use of y-contraction of
the Robust Bellman Operator is needed, whereas this is not always the case for sufficiently large
0. Indeed, assuming robust kernel is not anymore in the simplex, Robust Bellman Operator is
not anymore a -y-contraction but an e—contraction for € close to 1 and only for a small range of
0. (See Derman et al. (2021) Th. 5.1). We address the question of solving RMPDs in the L, case
with a valid robust kernel in Alg. 11 as it is required to obtain an €,y solution in our analysis.

2.4 Sample Complexity with L,-balls

The aim of this section is to obtain an upper-bound on the sample complexity of RMDPs. This
result is true for sa- and s-rectangular sets and for any L, norm with p > 1. We remove the
upperscipt o or ¢ as following Theorem is true both for sa and s rectangular assumptions,
independently of o or &.

Theorem 2.4.1. Assume 6 >0, € >0 and o > 0. Let 7 be any €,y -optimal policy for M\, i.e.
||(Q§7r — @*Hoo < €opt - With N calls to the sampler per state-action pair, such that N > %,
325 AN|1L|,

. " __
with L" = 10g< A=)

>we obtain the following guarantee for policy 7,

for -], < e o

with probability at least 1 — §, where C is an absolute constant. Finally, for Ny = N|S||A|
and H=1/(1 —~), we get an overall complexity of

_ (H*SA
Ntotal :0< 2 ) .

€
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2.4.1 Discussion

This result says that the policy & computed by the planner on the empirical RMDP M will be
(eopt + €)-optimal in the original RMDP M. As explained before, 11 planning algorithms for
RMDPs that guarantee arbitrary small €,p¢, such as robust value iteration considered by Panaganti
and Kalathil (2022a). It will also apply to future planners, as long as they come with a convergence
guarantee. The error term e is controlled by the number of samples: Nyoy = @(H 45 Ae2) calls to
the generative models allow guaranteeing an error e. This is a gain in terms of sample complexity
of S compared to Panaganti and Kalathil (2022a), for the sa-rectangular assumption. Our bound
also holds for both s- and sa-rectangular uncertainty sets. Panaganti et al. (2022) do not study
the s-rectangular case, while Yang et al. (2021) do, but have a worst dependency to A in this
case. Their bounds also have additional dependencies on the size of the uncertainty set, which
we do not have. We recall that we do not cover the same cases, we do not analyze the KL and
Chi-Square robust set, while they do not analyze the L, robust set for p > 1. However, the above
comparison holds for the total variation case that we have in common (p = 1). These bounds are
clearly stated in Table 2.1. In the non-robust setting, Azar et al. (2013a) show that there exist

MDPs where the sample complexity is at least Q (H ifs ) Section 2.5 gives a new upper-bound

in H3 which matches this lower-bound for non-robust MDPs with an extra condition on the
range of o (the uncertainty set should be small enough).

2.4.2 Sketch of Proof

This first proof is the simpler one, it relies notably on Hoeffding’s concentration arguments. We
provide a sketch, the full proof can be found in Appendix 2. The resulting bound is not optimal
in terms of the horizon H, but it also does not impose any condition on the range of € or o,
contrary to the (better) bound of Sec. 2.5. We would like to bound the supremum norm of the
difference between the optimal Q-function and the one of the policy computed by the planner in
the empirical RMDP, according to the true RMDP, [|Q* — Q||s. Using a simple decomposition
and the fact that 7* is not optimal in the empirical RMDP (Q” <Q* = Q”*), we have that

Q-QT=Q -Q+Q -Q"+Q"-Q".
As Q* — Q* < Q* — Q™ a triangle inequality yields

1Q" = Qoo < Q" — Q™ [l + Q" — Q[0 + Q" — Q||

The second term is easy to bound, by the assumption of the planning oracle we have
||Q* — Qoo < €opt- The two other terms are similar in nature. They compare the Q-functions
of the same policy (either 7* the optimal one of the original RMDP, or 7 the output of the
planning algorithm) but for different RMPDs, either the original one or the empirical one. For
bounding the remaining terms, we need to introduce the following notation. For any set D and
a vector v, let define kp(v) = inf {uTv TS D} . This quantity corresponds to the inf form of
the robust Bellman operator. The following lemma provides a data-dependent bound of the two

terms of interest.

Lemma 2.4.2. We have with Ps, defined in Assumption 2.5.1 and 7357,1 the robust set centered
around the empirical MDPs that

A A A ’)/ A A A A
Q7 = Q1 < 1 max |, (V%) = s (V)

* A Y * *
107 = @7l < T2 maxlig, (V) = o, (V)
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For proving these inequalities, we rely on fundamental properties of the (robust) Bellman
operator, such as y-contraction. This lemma is written for sa-rectangular assumption but is also
true for s-rectangular assumption, replacing notation of robust set P, , by P;. Now, we need to
bound the resulting terms, which is done by the following lemma.

Lemma 2.4.3. With probability at least 1 — §, we have

. . 10 L L"SY4)1g],(p—1)
max s, (V) = (V)] < s (1 37 + o) + 2o

with L" = log (32:?31_2)1 ”q>

Again, this also holds for s-rectangular sets. This inequality relies on Hoeffding’s based
concentration argument coupled with absorbing MDPs of Agarwal et al. (2020) and smoothness
of the L, norm. Putting everything together, we have just shown that :

A 37€opt 20y L L'SY g, (p— 1)
| ”°°—1—7 (1_7)2< 2N N )

Solving in € for the second term of the right-hand side gives the stated result as the term
proportional to 1/N is small compared to the second one for sufficiently small e.

2.5 Toward minimax optimal sample complexity

Now, we provide a better bound in terms of the horizon H, reaching (up to log factors) the
lower-bound in H? for non-robust MDPs. Recall 0 = SUp; 4 Os,q fOr the sa-rectangular assumption
or & = sup, 65 for the s-rectangular assumption. For the following result to hold, we need to
assume that the uncertainty set is small enough: we will require

< I—v 1
~ 2ySla  2(H —1)SVa

g

or the same condition for 6.The following theorem is true for both sa- and s-rectangular
uncertainty sets, and for any L, norm with p > 1.

Theorem 2.5.1. let o € (0, m], for any £ > 0 and any e < KV H it exists a Cyy ey > 0
independent of H such that for any o € (0,00) and any € € (0, €y), whenever N the number of calls
to the sampler per state-action pair satisfies N > C’ao’m# where L = log(8|S||A|/((1 —~)d)),
it holds that if T is any €,pt -optimal policy for M, that is when H@” — @*Hoo < €opt, then

8€opt
1—n

o~ et

with probability at least 1 — §.50 Nyprar = N|S||A| as an overall sample complexity
~ (H3SA
€

for any € < €y. The result is true with & replacing o for the s-rectangular case.
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2.5.1 Discussion

The constants of Theorem 2.5.1 are explicitly given in Appendix 3. For instance, for og = m

and ¢y = V16H, we have C' = 1024, other choices being possible. Recall that in the non-robust
case, the lower-bound is Q (H ifA) Azar et al. (2013a). Our theorem states that any model-based
robust RL approach, in the generative model setting, with an accurate enough planner applied to
the empirical RMDP, reaches this lower bound, up to log terms. As far as we know, it is the first
time that one shows that solving an RMDP in this setting does not require more samples than
solving a non-robust MDP, provided that the uncertainty set is small enough. Our bound on ¢ is
similar to the one of Agarwal et al. (2020) in the robust case with their range [0, vH), we differ
only by giving more flexibility in the choice of the constant C'. The best range of € for non-robust
MDPs is (0, H) (Li et al. 2020), we let its extension to the robust case for future work. So far, we
discussed the lower-bound for the non-robust case, that we reach. Indeed, non-robust MDPs can
be considered as a special case of MDPs with ¢ = 0. As far as we know, the only robust-specific
lower-bounds on the sample complexity have been proposed by Yang et al. (2021). They propose
two lower-bounds accounting for the size of the uncertainty set, one for the Chi-square case, and
one for the total variation case, which coincide with our L, framework for p = 1 This bound is

(S 1)

This lower bound has two cases, depending on the size of the uncertainty set. If o < (1—v) =1/H,
SAH3
52
matches the lower-bound, and we have proved that model-based robust RL in the generative
model setting is minimax optimal for any accurate enough planner. Their condition for this

bound, o < 1/H, is close to our condition, o < 1/(4(H — 1). This suggests that our condition on

we retrieve the non-robust lower bound ( ) Therefore, for a Li-ball, our upper-bound

o is not just a proof artifact. In the second case, if 0 > 1 — ~y, the lower-bound is Q (%).
In this case, our theorem does not hold, and we only currently get a bound in H* (see Sec. 2.4),

which doesn’t match this lower-bound.

In the case of TV, we know from posterior work Shi et al. (2023) that it is possible to get a
tighter bound in the regime o > 1 — v but in the case of Lp norm, it is still an open question. In
the case where o is too large, the question arises whether RMDPs are useful as long as there is
little to control when the transition kernel can be too arbitrary.

To sum up, to the best of our knowledge, with a small enough uncertainty set, our work delivers
the first-ever minimax-optimal guarantee for RMDPs according to the non-robust lower-bound
for L,-balls, and the first ever minimax-optimal guarantee according to the robust lower-bound
for the total variation case for a sufficiently small radius of the uncertainty set, which has been
later on the larger set of o by Shi et al. (2023). ¢

2.5.2 Sketch of proof

The full proof is provided in Appendix 3. As in Sec. 2.4.2, we start from the inequality
10" = Q7[loo < 1Q* = Q™ loo + |Q = Q7 [loo + |Q7 = Q[|oo,

where the second term of the right-hand side can again be readily bounded, ||Q* — Q7| < €opt -
To bound the remaining two terms, if we want to obtain a tighter final bound, the contracting
property of the robust Bellman operator will not be enough, we need a finer analysis. To achieve
this, we rely on the total variance technique introduced by Azar et al. (2013a) for the non-robust

case, combined with the absorbing MDP construction of Agarwal et al. (2020), also for the
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non-robust case, which allows improving the range of valid €. The key underlying idea is to rely
on a Bernstein concentration inequality rather than a Hoeffding one, therefore considering the
variance of the random variable rather than its range, tightening the bound. Working with a
Bernstein inequality will require controlling the variance of the return. A key result was provided
by Azar et al. (2013a), that we extend to the robust setting,

N
oo_ (1_7)3'

Naively bounding the left-hand side would provide a bound in H?, while this (non-obvious)
bound in v H? is crucial for obtaining on overall dependency in H? in the end. Now, we come
back to the terms [|Q* — Q7 ||oo and ||Q™ — Q7||o that we have to bound. This bound should
involve a term proportional to (I —vP%™)~! to leverage later Eq. (2.1). The following lemma is
inspired by Agarwal et al. (2020), and its proof relies crucially on having a simple dual of robust
Bellman operator.

H (1—~P"7) " Narpo (V) 2.1)

Lemma 2.5.2.

2705’

Q™ = Qoo <AN(I = AP*)7H(P® = P)V o + 107 — Q7 [l

We see that the term o appears in the bound. This comes from the need to control the
difference in penalization between seminorms of value functions, from a technical viewpoint.
Indeed, the terms 270 Q™= Q™ ||so (with 7 being either # or 7*) are not present in the non-robust

version of the bound and are one of the main differences from the derivation of Agarwal et al.
(2020). The first term of the right-hand side of each bound |(I — vP%™)~1(Py — P)V™||s (with

7 being either # or 7*, again) will be upper-bounded using a Bernstein argument, leveraging
also Eq. (2.1). The resulting lemma is the following.

Lemma 2.5.3. With probability at least 1 — §, we have

N A A L "YASN Y€opt 8L
. T _ AT 4 ) P 2
(Cn + ClIQ™ = Qe +40 g s + 7= T 15 (2T W )

with Cy = % and Cy = ﬁ\/g and where Nj =/ SF + (1—C§)N
with L =1og(8SA/((1 —~)d)).

HQ%_@N <
o)

For this result to be exploitable, we have to ensure that Cny + C, < 1, which leads to

o< ow Sl s~airz» and then Cn + Cy < 1 leads to a constraint on N in Theorem 2.5.1. Eventually,

injecting the result of this last lemma in the initial bound, keeping the dominant term in 1/v/ N
and solving for € provides the stated result, cf Appendix 3.

2.6 Conclusion

In this paper, we have studied the question of the sample complexity of model-based robust
reinforcement learning. To decouple this from the problem of exploration, we have considered
the classic (in non-robust RL) generative model setting, where a sampler can provide next-state
samples from the nominal kernel and from arbitrary state-action couples. We focused our study
more specifically on sa- and s-rectangular uncertainty sets corresponding to L,-balls around the
nominal.
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Without any restriction on the size of uncertainty set (o), we have shown that the sample
complexity of the studied general setting is @(S ézH . ), already significantly improving existing
results (Yang et al. 2021, Panaganti and Kalathil 2022a). Our bound holds for both the sa- and
s-rectangular cases, and improves existing results (for the total variation) by respectively S and
SA. By assuming a small enough uncertainty set, and for a small enough ¢, we further improved
this bound to @(S égH 3), adapting proof techniques from the non-robust case (Azar et al. 2013a,
Agarwal et al. 2020). This is a significant improvement. Our bound again holds for both the sa-
and s- rectangular cases, it matches the lower-bound for the non-robust case Azar et al. (2013a),
and it matches the total variation lower-bound for the robust case when the uncertainty set is
small enough (Yang et al. 2021). We think this is an important step towards minimax optimal
robust reinforcement learning.

There are a number of natural perspectives, such as knowing if we could extend our results to
other kinds of uncertainty sets, or to extend our last bound to larger uncertainty sets (despite the
fact that if the dynamics are too unpredictable, there may be little left to be controlled). Our re-
sults build heavily on the simple dual form of the robust Bellman operator, which prevents us from
considering, for the moment, uncertainty sets based on the KL or Chi-square divergence. Beyond
their theoretical advantages, these simple dual forms also provide practical and computationally
efficient planning algorithms. Therefore, another interesting research direction would be to know
if one could derive additional useful uncertainty sets relying primarily on the regularization
viewpoint. In the next Chapter, we will refine our result in term of upper bound while providing
also lower bound to better understand the question of sample complexity in Robust MDPs.
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3.1 Introduction

einforcement learning (RL) (Sutton 1988) is a popular paradigm in machine learning, partic-
R ularly noted for its success in practical applications. The RL framework, usually modeled
within the context of a Markov decision process (MDP), focuses on learning effective decision-
making strategies based on interactions with an environment. However, the work of Mannor et al.
(2004), among others, has highlighted a vulnerability in RL strategies, revealing the sensitivity
to estimation errors in the reward and transition probabilities. A specific example of this is
when, because of a sim-to-real gap, policies learned in idealized environments catastrophically
fail when deployed in settings with slight changes or adversarial perturbations (Klopp et al. 2017,
Mahmood et al. 2018).

To address this issue, robust MDPs (RMDPs), proposed by Iyengar (2005) and Nilim and
El Ghaoui (2005), have attracted considerable attention. RMDPs are formulated as max-min
problems, seeking policies that are resilient to model estimation errors within a specified uncer-
tainty set. Despite the robustness benefits, solving RMDPs is NP-hard for general uncertainty
sets (Nilim and El Ghaoui 2005). To overcome this challenge, the assumption of rectangularity is
often adopted, with uncertainty sets structured as products of independent subsets for each state
or state-action pair, denoted as s-rectangular or sa-rectangular assumptions (see Definitions 3.4
and 3.5). These assumptions facilitate the use of methods such as robust value iteration and
robust policy iteration, preserving many structural properties of MDPs (Ho et al. 2021). The
s-rectangular sets, though less restrictive, pose greater challenges, while the sa-rectangular sets
allow for deterministic optimal policies akin to non-robust MDPs (Wiesemann et al. 2013). Note
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that, while uncertainty in the reward can be easily handled, dealing with uncertainty in the
transition kernel is much more difficult (Kumar et al. 2022, Derman et al. 2021).

The question of sample efficiency is central in RL problems ranging from practice to theory.
Although minimax rates are achieved in (Azar et al. 2013b, Li et al. 2023) in the context of
classical MDPs, this goal remains open, in general, in the context of RMDPs. Specifically, there
exists prior work studying the sample complexity of distributionally robust RL for a few specific
divergences such as total variation (T'V), x2, KL, and Wasserstein (see a further discussion in
Appendix 4) (Yang et al. 2022, Zhou et al. 2021, Panaganti and Kalathil 2022b), while such
results remain unclear for more general classes of L, norms defined in 3.2.1.To this point, to the
best of our knowledge, the results of sample complexity that achieve minimax optimality for the
full range of uncertainty level are limited to only one case — T'V distance (Shi et al. 2023).

In this work, we focus on understanding the sample complexity of RMDPs with a general
smooth L, that will be defined in Def. 3.2.1. This generalization is appealing for both practice and
theory. In practice, numerous applications are based on optimizations or learning approaches that
involve general norms beyond those that have already been studied. Additionally, optimizing norm
weighted ambiguity sets for Robust MDPs has been proposed in the context of RMDPs in Russel
et al. (2019), which justifies our formulation. Theoretically, prior work has characterized the
sample complexity of RMDPs for some specific norms have suggested intriguing insights about the
statistical implications of distributional robustness in RL. It is interesting to further understand
the statistical cost of robust RL in more general scenarios.One area of focus is the contrast between
the sample efficiency of solving distributionally robust RL and solving standard RL. In particular,
for the specific case of TV distance, Shi et al. (2023) shows that the sample complexity for
solving robust RL is at least the same as and sometimes (when the uncertainty level is relatively
large) could be smaller than that of standard RL. This motivates the following open question:

Is distributionally robust RL more sample efficient than standard RL for norms defined in

Def. (3.2.1) ?

A second question is about the comparisons between the sample complexity of solving s-
rectangular RMDPs and that of solving sa-rectangular RMDPs. Note that s-rectangular RMDPs
have more complicated optimization formulations with additional variables (uncertainty levels
for each action) to optimize. This leads to a richer class of optimal policy candidates—stochastic
policies in s-rectangular cases, in contrast to the class of deterministic policies for sa-rectangular
cases. In addition, existing sample complexity upper bounds for solving s-rectangular RMDPs
are larger than that for solving sa-rectangularity (Yang et al. 2022) for the investigated cases.
This motivates the curious question:

Does solving s-rectangular RMDPs require more samples than solving sa-rectangular RMDPs
with general smooth L, norms defined in Def. 3.2.17

Main contributions. In this paper, we address each of the two questions discussed above.
In particular, we provide the first sample complexity analysis for RMDPs with general L, norms
defined in 3.2.1 under both the s- and sa-rectangularity conditions. For convenience, we present
a detailed comparison between the existing state-of-the-art and our results in Table 3.1 for quick
reference and discuss the contributions and their implications below.

e Considering the first question, we illustrate our results in both sa- and s-rectangular case in
Figure 3.1. In the case of sa-rectangularity, we derive a sample complexity upper bound for
RMDPs using general smooth L, norms (cf. Theorem 3.4.1) in the order of

o SA
(1 —7)?max{l —~,Cyo}e? )’

with Cy; > 0 a positive constant related to the geometry of the norm defined in 3.2.1. For classical
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sa-rectangularity s-rectangularity
Result type Reference Distance 0<0<S1-9|1-7<S0<0max | 0<3<S1—7| 1—7<6 < Gmax
Yang et al. (2021) v A SAGter S, i
Panaganti and Kalathil (2022b) TV (lfjﬁ (ijﬁ x x
Upper bound Shi et al. (2023) TV % # % x
Clavier et al. (2023) Ly ﬁ % ﬁ %
This paper Ly e T G Tl
This paper General L, [3.2.1] ﬁ (7(157;1)?52 (17‘5:{)1352 (1—7)256‘;;;14in.=Hml\*s’z
Yang et al. (2021) TV ﬁ?f %;L) x %
Lower bound Shi et al. (2023) TV ﬁ 17(157»:1)?52 « X
This paper Lp ﬁ? ﬁm x x

Table 3.1: Comparisons with prior results (up to log terms) regarding finding an e-optimal policy for the
distributionally RMDP, where o is the radius of the uncertainty set and o, defined in Theorem 3.4.1.

Lp norms, Cy; > 1 so we can directly relax this constant to 1 to obtain the result in table 3.1.
In addition, we provide a matching minimax lower bound (cf. Theorem 3.4.2) that confirms the
near-optimality of the upper bound for almost full range of the uncertainty level. Our results
match the near-optimal sample complexity derived in Shi et al. (2023) for the specific case using
TV distance, while holding for broader cases using general L, norms. The results rely on a
new dual optimization form for sa-rectangular RMDPs and reveal the relationship between the
sample complexity and this new dual form — the infinite span seminorm (controlled in Lemma
7.1), which may be of independent interest.

In the case of s-rectangularity, we provide a sample complexity upper bound for solving
RMDPs with general smooth L, norms in the order of

5 SA
(1 —v)?max{l — ~, Cyming ||rs||,5}e2 |

This result improves the prior art O <(1—*Svj?4?) in Clavier et al. (2023) for classical L, when

d <1 —~ — by at least a factor of O (ﬁ) Furthermore, we present a lower bound for a
representative case with Lo, norm, which corroborates the tightness of the upper bound. To the
best of our knowledge, this is the first lower bound for solving RMDPs with s-rectangularity.

e Considering the second question, as illustrated in Figure 3.1, our results highlight that robust
RL is at least the same as and sometimes can be more sample-efficient to solve than standard
RL for general smooth L, norms in 3.2.1. This insight is of significant practical importance and
serves to provide crucial motivation for the use and study of distributionally robustness in RL.
Notably, robust RL does not only reduce the vulnerability of RL policy to estimation errors and
sim-to-real gaps, but also leads to better data efficiency. In terms of comparing the statistical
implications of sa- and s- rectangularity, our results show that solving s-rectangular RMDPs
is not harder than solving sa-rectangular RMDPs in terms of sample requirement (See Theorem
3.4.3 and Figure 3.2, Right).

e We highlight the technical contributions as below. For the upper bounds, regarding optimization
contribution, we derive new dual optimization problem forms for both sa— and s— rectangular
cases (Lemma 6.3 and 6.4), which is the foundation of the covering number argument in finite-
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sample analysis. From a statistical point of view, a new concentration lemma (See Lemma 7.4 for
dual forms and two new lemmas to obtain sample complexity lower than classical RL, controlling
the infinite span semi norm of the value function, both for sa— and s— rectangular case are
derived (See Lemmas 7.1 and 7.2). For the lower bound, the technical contributions are mainly
in s-rectangular cases, which involves entire new challenges compared to sa-rectangularity case:
the optimal policies can be stochastic and hard to be characterized as a closed form, compared
to the deterministic one in sa-rectangular cases. Therefore, we construct new hard instances
for s-rectangular cases that is distinct from those used in sa-rectangular cases or standard RL.

3.2 Problem Formulation: Robust Markov Decision Processes

In this section, we formulate distributionally robust Markov decision processes (RMDPs) in the
discounted infinite-horizon setting, introduce the sampling mechanism, and describe our goal.

>

Sample complexity 4
For s-& (s, a)-rectangular with £, norm

SA Upper bound [Clavier et al.]
(1—)%e? !
1
|
|
SA Standard MDPs

upper & minimax lower
(1—7)%2 i
For (s, a)-rectangular with £; norm
Upper & minimax lower bound [Shi et al.]
SA
(1 — ’7)252 L | This work: for (s, a)-rectangular
(1 —~v)2%€%¢ : upper bound & minimax lower bound
1 This work: for s-rectangular
1 upper bound (general norms) & lower bound (€,,)
1 1 1 >
0 Oot-v) 0 Uncertainty level O

Figure 3.1: Left: Sample complexity results for RMDPs with sa- and s-rectangularity with L, with
comparisons to prior arts (Shi et al. 2023) (for L; norm, or called total variation distance) and (Clavier
et al. 2023)

Standard Markov decision processes (MDPs). A discounted infinite-horizon MDP is
represented by M = (S, A,v, P,r), where S = {1,--- , S} and A= {1,--- , A} are the finite state
and action spaces, respectively, v € [0, 1) is the discounted factor, P : S x A — A(S) denotes the
probability transition kernel, and r : S x A — [0, 1] is the immediate reward function, which is
assumed to be deterministic. Moreover, we assume that the reward function is bounded in (0,1)
without loss of generality of the results due to the variance reward invariance. Finally we denote
14 or 1g the unitary vector of respectively dimension A or S. Moreover, e, is the standard
unitary vector supported on s. The policy we are looking for is denoted by 7 : S — A(A), which
specifies the probability of action selection over the action space in any state. Note that if the
policy is deterministic in the sa-rectangular case, we overload the notation and refer to 7 (s) as
the action selected by the policy 7 in state s. Finally, to characterize the cumulative reward,
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Sample complexity

Standard MDPs

SA upper & minimax lower
(1 — 7)352 For s-rectangular:
upper bound with uniform solutions
For (s, a)-rectangular:
upper & minimax lower bound
SA
SA (1—9)%2%0
(1= )%
A x AP
(1 —~)2e20AL/P
SA | For s-rectangular:
(1 _ 7)2€2A1/p I upper bound with deterministic solutions
1 1 > o
0 01-4)  OQ) !

Figure 3.2: The data and instance-dependent sample complexity upper bound of solving s-rectangular
dependency RMDPs with Lp norms.

the value function V™ for any policy 7 under the transition kernel P is defined by Vs € S

V™ (s) = E.p [i vir (st, ay) ‘ S0 = s] . (3.1)

t=0

The expectation is taken over the randomness of the trajectory {s, a;};2, generated by executing
the policy 7 under the transition kernel P, such that a; ~ w(-|s¢) and s¢r1 ~ P(- | s¢, ar) for all
t > 0. In the same way, the Q function Q™% associated with any policy = under the transition
kernel P is defined using expectation taken over the randomness of the trajectory under policy 7 as

Q™" (s,a) =E.p lz vor (se, ar) ‘so,ao = s,a] . (3.2)

t=0

Distributionally robust MDPs. We consider distributionally robust MDPs (RMDPs) in the
discounted infinite-horizon setting, denoted by M., = {S, A, fy,Z/{ﬁ’.” (PY),r}, where S, A, v, r are
the same sets and parameters as in standard MDPs. The main difference compared to standard
MDPs is that instead of assuming a fixed transition kernel P, it allows the transition kernel
to be arbitrarily chosen from a prescribed uncertainty set Z/I”‘_ I (P°) centered around a nominal

kernel PV : S x A — A(S), where the uncertainty set is specified using some called L, smooth
norm denoted ||.|| defined in of radius o > 0 defined in 3.2.1.

Definition 3.2.1 (General smooth L, norms and dual norms). A norm || - || is said to be a
general smooth Ly, norm if

o forallz € R, [[z|| = ||z, = (Xh= wy(|zg|)P) /P, where w € R, is an arbitrary positive
vector,

o it is twice continuously differentiable Rudin et al. (196) with the supremum of the Hessian
Matriz over the simple Cs = sup,en ||V |||y, where |||l, here is the spectral norm
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Finally, we denote the dual norm of ||-|| as |||, s-t. |yll« = max, 2Ty : |x|| < 1. Moreover, for any
metric ||.||, we define Cy as Cy = 1/ ming ||es| where e € RS is the standard basis of supported in s.

Note the quantity Cg exists as the Hessian is continuous for C? functional and the simplex
is a compact set, so by Extreme Value Theorem Rudin et al. (1964), Cg is finite. Moreover, to
give an example, considering L,, p > 2, norms, Cg is bounded by (p — 1)51/‘1. (See (A.203) )
This definition is general and includes Ly, p > 2, all rescaled and weighted norms. Moreover,
we could extend our result to a larger set than the one of the norms defined in Def. 3.2.1, this
is why a complete discussion about the set of norms can be found in Appendix 5. However,
it does not include divergences such as KL and x?. Not that the case of TV which is not C?
smooth is treated independently with different arguments in the proof but has the same sample
complexity. In particular, given the nominal transition kernel P? and some uncertainty level o,
the uncertainty set—with arbitrary smooth L, norm metric || || : RS x — RT in sa rectangular
case or from RS*A in the s-rectangular case, is specified as Z/l”fll(PO) = Qs,q Uﬁ'j"o(Pga)

u\s\jiU(Pf,a) = {PS,a €A(S): ‘ Psa = Psoﬂ < U} ’ (3.3)

P = P(-|s,a) € RIXSvPsO,a = PO(' |s,a) € R (3.4)

where we denote a vector of the transition kernel P or P? at state-action pair (s,a). In other
words, the uncertainty is imposed in a decoupled manner for each state-action pair, obeying
the so-called sa-rectangularity (Zhou et al. 2021, Wiesemann et al. 2013). More generally, we

define s-rectangular MDPs as MITH(P) =®, Z/{S|_’|C|’(PS), for the general smooth L, norm ||.||. The
uncertainty is imposed in a decoupled manner flor each state pair, and a fixed budget given a state
for all action is defined. To get a similar meaning for the radius of the ball between sa-rectangular
and s-rectangular assumptions, we need to rescale the radius depending on the norm like in Yang
et al. (2022). The s- uncertainty set is then defined using the rescaled radius & as
o : A =

U (Py) = {Ple AS)*: |PL= P <& =oll1a] }, (3.5)

P, = P(-, . | S) c RIXSA’ P;) — PO(-, X | 5) c R1><SA (3.6)

where 14 € R4 denotes the unitary vector. For the specific case of respectively Li,L, and L
norm, & is equal to |o0.A|, o|A|'/? and o. Note that this scaling allows for a fair comparison between
sa- and s-rectangular MDPs. In RMDPs, we are interested in the worst-case performance of a pol-
icy 7 over all the possible transition kernels in the uncertainty set. This is measured by the robust
value function V™7 and the robust Q-function Q™ in M,qp, defined respectively as V(s,a) € Sx.A

V™9 (s) == inf VTP (s), ™9(s,a) == inf P (s, a) . 3.7
(= ) VIO @)= e @ (3.1
Similarly for s-rectangularity, the value function is denoted V77 (s) := ian L7 (PO VTP (s) .
cus

Optimal robust policy and robust Bellman operator. As a generalization of properties
of standard MDPs in the sa-rectangular robust case, it is well-known that there exists at least
one deterministic policy that maximizes the robust value function (resp. robust Q-function)
simultaneously for all states (resp. state-action pairs) (Lyengar 2005, Nilim and El Ghaoui 2005)
but not in the s-rectangular case. Therefore, we denote the optimal robust value function
(resp. optimal robust Q-function) as V*7 (resp. @*7), and the optimal robust policy as 7*, which
satisfy V(s,a) € S x A

VO (s) =V (s) = max V™(s), Q% (s,a) = Q" “(s,a) = max Q™ (s,a). (3.8a)
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A key concept in RMDPs is a generalization of Bellman’s optimality principle, encapsulated in
the following robust Bellman consistency equation (resp. robust Bellman optimality equation):

V(s,a) € S x A, ™9 (s,a) =7r(s,a) + inf PV, 3.9a
(5.0) Qo) =rls.0) £, ok (3.99)
V(s,a) e Sx A Q" (s,a)=r(s,a)+~y inf  PV*T, (3.9b)

PEUPT (PL,)

for the sa-rectangular case and same equation replacing P507a by PY and o by &. The robust

Bellman operator (Iyengar 2005, Nilim and EI Ghaoui 2005) is denoted by 77(-) : R4 — R4

T°(Q™)(s,a) =r(s,a)+~ inf PV, with V{(s):= max Q" (s,a) , (3.10)

PeU” (PY,)

for sa-rectangular MDPs. Given that Q*7 is the unique-fixed point of 7% one can recover the
optimal robust value function and Q-function using a procedure termed distributionally robust
value iteration (DRVI). Generalizing the standard value iteration, DRVI starts from some
given initialization and recursively applies the robust Bellman operator until convergence. As
has been shown previously, this procedure converges rapidly due to the y-contraction property
of T with respect to the Lo, norm (Iyengar 2005, Nilim and El Ghaoui 2005).

3.3 Distributionally Robust Value Iteration

Generative model-based sampling. Following Zhou et al. (2021), Panaganti and Kalathil
(2022b), we assume access to a generative model or a simulator (Kearns and Singh 1999), which
allows us to collect N independent samples for each state-action pair generated based on the
nominal kernel PY: V(s,a) € S X A, 8is.4 < PY-|s,a), i=1,2,--- N. The total sample
size is, therefore, NSA. We consider a model-based approach tailored to RMDPs, which first
constructs an empirical nominal transition kernel based on the collected samples and then applies
distributionally robust value iteration (DRVI) to compute an optimal robust policy. As we
decouple the statistical estimation error and the optimization error, we exhibit an algorithm
that can achieve arbitrary small error €,y in the empirical MDP defined as an empirical nominal
transition kernel P? € RSAXS that can be constructed on the basis of the empirical frequency of
state transitions, i.e. V(s,a) € S x A

N 1 XN
PO(s|s,a) = N Z]l{si,s,a =5}, (3.11)
i=1

which leads to an empirical RMDP M\rob ={S, A, 'y,Z/lﬁ H(ﬁo), r}. Analogously, we can define

the corresponding robust value function (resp. robust Q-function) of policy 7 in M\rob as V™o
(resp. Q™) (cf. (3.8)). In addition, we denote the corresponding optimal robust policy as 7 and
the optimal robust value function (resp. optimal robust Q-function) as Vo (resp. @*7") (cf. (3.9)),
which satisfies the robust Bellman optimality equation V(s,a) € S x A:

~

Q"7 (s,a) =r(s,a) +~ inf PV, (3.12)

Peuia_il"(Pga)

Equipped with P°, we can define the empirical robust Bellman operator 77 as ¥(s,a) € S x A

T°(Q™)(s,a) =r(s,a) +~ inf PV, (3.13)
PeU” (P,)
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with  V(s) := max; Q" (s,a). The aim of this work is given the collected samples, to learn the
robust optimal policy for the RMDP w.r.t. some prescribed uncertainty set 4 (P°) around the
nominal kernel using as few samples as possible. Specifically, given some target accuracy level
€ > 0, the goal is to seek an e-optimal robust policy 7 obeying

~

VseS: V™ (s)—=V™(s)<e, (3.14)
V™o P70 < egpy (3.15)

This formulation allows plugging any solver of RMDPs in this bound, for instance, the distribu-
tionally robust value iteration (DRVI) algorithm detailed in Appendix 10.

3.4 Theoretical guarantees

In this section, we present our main results characterizing the sample complexity of solving
RMDPs with sa-and s-rectangularity. Additionally, we discuss the implications of our results
for the comparisons between standard and robust RL, and for comparisons between sa- versus
s-rectangularity.

3.4.1 sa-rectangular uncertainty set with general smooth norms

To begin, we consider the RMDPs with sa-rectangularity with general norms. We first provide the
following sample complexity upper bound for certain oracle planning algorithms, whose proof is
postponed to Appendix 7.2. Technically, we derive two new dual forms for RMDPs problems using
arbitrary norms in Lemmas 6.3 and 6.4 for respectively sa- and s-rectangular RMDPS. In these
dual forms, a central quantity denoted sp(.)., representing the dispersion of the value function,
appears and is the dual span semi-norm associated with the considered general L, norm ||.|| defined
in 3.2.1 in the initial primal problem. The main challenge in this analysis is to derive a tight upper
bound on this quantity in Lemmas (7.1) and (7.2), leading to the following sample complexity.

sa

Theorem 3.4.1 (Upper bound for sa-rectangularity). Consider the uncertainty set Z/{”.H’U(‘) asso-
ciated with arbitrary L, smooth norm ||-|| defined in 3.2.1. We denote oyax = maxy, p,ca(s) [P1—
po|| as the accessible mazimal uncertainty level. Consider any 6 € (0,1), discount factor~y € [i, 1) ,

and uncertainty level o € (0,0max|. Let T be the output policy of some oracle planning algo-
rithm with optimization error eope introduced in (3.15). With introduced in 3.2.1, one has with
probability at least 1 — 6,

~ 8¢,
VseS: V*(s)— V™ (s) < e+t 15_7: (3.16)
for any € € (0,4/1/ max{l — v,0C,}|, as long as the total number of samples obeys
g
Cls’A CQSACS ||1S||
NSA > * 3.17
R A Pmax{l =7, Gyl T (1 - ) (3.17)

with ci1,co,c3 a universal positive constant. For a sufficiently small level of accuracy € <
(max{l —v,C40})/(Cs||1s||), the sample complezity is

c3SA
(1 —~v)?max{l —~,Cyo}e?

NSA> (3.18)
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Note that this result is also true for TV without the geometric smooth term depending on
Cs. Considering L, norms, Cy > 1 and Cg < Sl/q(p —1). In Theorem 3.4.1, we introduce the
following minimax-optimal lower bound to verify the tightness of the above upper bound; a proof
is provided in Appendix 8.

Theorem 3.4.2 (Lower bound for sa-rectangularity). Consider the uncertainty set uﬁ"’””()
associated with arbitrary Lp norm ||-|| defined in 3.2.1. We denote omax = maxy, 4 ea(s) [[p1—p2ll
as the accessible mazimal uncertainty level. Consider any tuple (S, A,~,o,¢), where v € B, 1),
0 € (0,0max(l — co)] with 0 < ¢y < % being any small enough positive constant, and € €
(0, %]. We can construct two infinite-horizon RMDPs Mg, M1 such that giving a dataset

with N independent samples for each state-action pair over the nominal transition kernel (for
either My or M respectively), one has

-~ 1
inf  max Pa( max [V*9(s) = V™(s)] > ¢ } > —
T MG{Mo,Ml}{ M( SES [ (s) ( ﬂ ) -8’
where the infimum is taken over all estimators 7, Py (resp. P1) are the probability when the

RMDP is My (resp. M), as long as, for c7 is a universal positive constant,

C7SA

NSA < .
S4 s (1 — )2 max{l — v, Cyo}e?

(3.19)

e Near minimax-optimal sample complexity with general L, norms. Recall that
Theorem 3.4.1 shows that the sample complexity upper bound of oracle algorithms for RMDPs
is in the order of

o SA
(1= )P max{l —7,Cyo}e2 )
Combined with the lower bound in Theorem 3.4.2, we observe that the above sample complexity
is near minimax-optimal, in almost the full range of uncertainty.

e Solving RMDPs with general L, norms can be easier than solving standard RL.
Recall that the sample complexity of solving standard RL with a generative model (Agarwal

et al. 2020, Li et al. 2024, Azar et al. 2013a) is: O (ﬁ) . Comparing this with the sample
complexity in (3.18), it highlights that solving robust MDPs (cf. (3.18)) using any norm as the
divergence function for the uncertainty set is not harder than (and is sometimes easier than) solving
standard RL (cf. (3.4.1)). Specifically, when the uncertainty level is small o < 1 — ~, the sample
complexity of solving robust MDPs matches that of standard MDPs. While when the uncertainty
level is relatively larger 1 — v < 0 < opmax, the sample complexity of solving robust MDPs is

smaller than that of standard MDPs by a factor or 1=, which goes to ﬁ when o = O(1).

e Comparisons with prior arts. In Figure 3.1, we illustrate the comparisons with two state-of-
the-arts (Clavier et al. 2023, Shi et al. 2023) which use some divergence functions belonging to the
class of general norms considered in this work. In particular, Shi et al. (2023) achieved the state-of-
the-art minimax-optimal sample complexity 9] ((177)2 — f ;}{177,0}52
total variation distance). In this work, we attain near minimax-optimal sample complexity for any
general norm (including L) which matches the one in Shi et al. (2023) when narrowing down to L
norm. Note that in T'V case, Cy = 1. This reveals that the finding of robust MDPs can be easier
than standard MDPs (Shi et al. 2023) in terms of sample requirement does not only hold for L,

norm, but for any general norm. In addition, compared to Clavier et al. (2023) which focuses on L,

) for specific L1 norm (or called
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norms for any 1 < p < oo: when 1—+ < 0 < opax, Wwe improve the sample complexity 5(%)

to 6(%) by at least a factor of ﬁ; otherwise, we match the results in Clavier et al. (2023).

Burn-in Condition, C; factor and 7'V case : In Th. 3.4.1 and 3.4.3 we need a sufficiently
small level of accuracy e < (max{1 —~,Cy0o})/(Cs||1s]|), to obtain the sample complexity. This
type of condition is usual in MDPS analysis Shi et al. (2022) and is equivalent to burn in term.
Moreover, the quantity Cg exists (see 3.2.1) and for example, considering L, norms, Cg is
bounded by S/4. (See (A.203)) and the product Cs||1g|| is upper bounded by S for Ly norm.
Moreover, note that our theorem for the smooth norm is also true for TV which is not C? and
has the same complexity as (Shi et al. (2023). In this case, the burn-in condition is not needed.
(See Lemma 7.3.3). Finally, the factor Cy = 1/ min, |le,|| is norm dependent and depends on
how big the vector ey, is in the considered norm. Note for classical L, this quantity is bigger
than 1, which reduces the sample complexity.

3.4.2 s-rectangular uncertainty set with general norms

To continue, we move on to the case when the uncertainty set is constructed under s-rectangularity
smooth norm. The following theorem presents the sample complexity upper bound for learning
an e-optimal policy for RMDPs with s-rectangularity. A proof is shown in Appendix 7.2.

Theorem 3.4.3 (Upper bound for s-rectangularity). Consider the uncertainty set Z/lﬁ’ﬁ() with

s-rectangularity. Consider any discount factor ~v € H, 1), the rescaled uncertainty level ¢ =
olllall, and denote Gmax = |1all, maxy, p,ea(s) lp1 — p2ll and 6 € (0,1). Let T be the output
policy of an arbitrary optimization algorithm with error eqpt. , with probability at least 1 —J, one

has for any e € (0, \/1/max{1 — 7, Cyming |||, o},

~ ~~ 8 °
VsES: V*(s)—V™9(s) <&+t 1%’;

as long as the total number of samples obeys
A 1 1 A 1
NSAzichS 55 min , - — +C5S CSH2S”*.
(1—7)% max{1 —7, 0y} " oCymin { ||z |, [ Lall, sl [1all} (1 —n)%
(3.20)

For a sufficiently small accuracy, € < (max{l —~,Cy6})/(Cs||1s||) the sample complezity is

CGSA . 1 1
NSAZ min , - — (3.21)
(1 —n)%e? {max{l =7, g0} oCyminses { |75l [Lall, (175 11all} }

where 75 € A 4 denote the policy of the empirical RMPDs at state s, 75 € A4 the optimal policy
given s of the true RMPDs, ||.||, the dual norm and ¢y, ¢5, ¢g are universal constant. Note that
this result is also true for TV without the term depending on smoothness Cs. In addition, we
provide the lower bounds for a representative divergence function Lo, norm in the following.
Note that for classical L,, Cs = SY9(p — 1) and C, can be lower bounded by 1. A proof is
provided in Appendix 9.

Theorem 3.4.4 (Lower bound for s-rectangularity). Consider the uncertainty set Uy (-) as-
sociated with the Lo, norm. Consider any tuple (S, A,v,0,¢) and 0 < ¢y < % being any small

enough positive constant, where v € {%, 1), and ¢ € (0, %] Correspondingly, we denote the
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accessible mazimal uncertainty level for U7 (-) as og0,, = max,, , cas)4 [P1—p2llc = 1. Then

we can construct a collection of infinite-horizon RMDPs My, defined by the uncertainty set
with U7 (-) so that for any o € (0,005, (1 — )], and any dataset with in total N,y independent
samples for all state-action pairs over the mnominal transition kernel (for any RMDP inside

My, ), one has
~ 1
inf P V*o(s) = V™7 > > — 3.22
inf | max { m(max [V*7(s) ()] E)} >3 (3.22)
provided that for cg is a universal positive constant,

CgSA

N < .
1= 1= 9)2max{l — 7,5}

(3.23)
with Paq the probability when the RMDP is M, and the infimum is taken over all estimators 7.

Now we can present some implications of Theorem 3.4.3 and Theorem 3.4.4.

e Robust MDPs with s-rectangularity are at least as easy as sa-rectangularity. The-

orem 3.4.3 shows that the sample complexity of solving RMDPs with s-rectangularity does
SA

(1—v)? max{1—v,Cyo}c?
sa-rectangularity (cf. (3.18)) and indicates that although s-rectangular RMDPs are of a more
complicated formulation, solving s-rectangular RMDPs is at least as easy as solving sa-rectangular
RMDPs in terms of the sample complexity. In addition to the worst-case sample complexity
upper bound, Theorem 3.4.3 also provides a data and instance-dependent sample complexity
upper bound for s-rectangular RMDPs (cf. in (3.20)).Taking the divergence function || - || = L,
for instance, the data and instance-dependent sample complexity upper bound is

not exceed the order of 6( ) . This matches the sample complexity for

? (1—571;1252 max{ll—’y,o}> if 7s(a|s) = 7wi(als) = %, V(s,a) e S x A
0 (5 oy ) EIRCIo= (1 )lo=1, VseS

where ||.||, corresponds to the total number of nonzero elements in a vector.The intuition beyond
this theorem is that when the policy becomes proportional to uniform, the uncertainty budget of
the s-rectangular MDPs is equally spread into all actions, and we retrieve the sa-rectangular case.
When the policy becomes deterministic, all the uncertainty budget concentrates on one action.
In this case, most of the actions are not robust except one, and the problem is simpler than
classical MDP for this only specific action. An illustration of this result can be found in Fig. 3.2.

e Comparisons with prior arts. In Figure 3.1, we illustrate the comparisons with Clavier et al.
(2023) which use L, norms functions belonging to the class of general norms considered in this work.
We do not compare in this section to Yang et al. (2021) as it is not anymore state-of-the-art with
regard to the work of Clavier et al. (2023). In particular, the latest achieves in the s-rectangular
case at sample complexity of O (U_i%) in the regime where & < 1—+. In this regime, our result
is the same but more general but in the regime where 6 2 1 — ~, they achieve sample complexity

of O (%) which is bigger than our result O ((177)2 mfxﬁlf,y 5}52) by a factor at least ﬁ

3.5 Conclusion

This work refined sample complexity bounds to learn robust Markov decision processes when the
uncertainty set is characterized by an general L, metric, assuming the presence of a generative
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model. Our findings not only strengthen the current knowledge by improving both the upper
and lower bounds, but also highlight that learning s-rectangular MDPs is less challenging in
terms of sample complexity compared to classical sa-rectangular MDPs. This work is the first to
provide results with a minimax bound, as prior results concerning s-rectangular cases were not
minimax optimal. Additionally, we have established the minimax sample complexity for RMDPs
using a general L, norm, demonstrating that it is never larger than that required for learning
standard MDPs. Our research identifies potential avenues for future work, such as exploring the
characterization of tight sample complexity for RMDPs under a broader family of uncertainty
sets, such as those defined by f-divergence. It would be highly desirable for a more unified
theoretical foundation, as the distance between probability measures is more natural to define
using divergence. Moreover, it would be interesting to focus on the finite-horizon Setting and
linear setting, as our current analytical framework opens the door for potential extensions to
address finite-horizon RMDPs. Such an extension would contribute to a more comprehensive
understanding of tabular cases. Finally, the case of linear MDPs would be interesting to explore.



Part 11

Practical Robust Reinforcement
Learning






Chapter

Robust Reinforcement Learning with
Distributional Risk-averse formulation

Contents

4.1 Introducion . . . . . . . . . . 0 i i i i i e e e e e e e e e e 75
4.2 Robust formulation in greedy stepof AVI. . . ... .......... 78
4.3 Algorithms based on Distributional RL . . ... ............ 80
4.3.1 Distributional RL using quantile representation . . . . . . . .. ... .. 80
4.3.2 Mean-standard deviation RL with discrete action space . . .. ... .. 80

4.3.3 Mean-standard deviation Maximum Entropy RL for continuous action
SPACE v vt e e e e e e e e e e e e e e 82
4.4 Experiments . . . . . . . . i i ittt e e e e e e e e e e e e 83
4.4.1 Results on continuous action spaces . . . . . . ... .. ... ... 83
4.4.2 Results on discrete action spaces . . . . . . .. ... 84
4.5 Conclusion of Chapter 4 . . ... ... ... ... 85

Ever tried. Ever failed. No matter. Try again. Fail again. Fail better.
Samuel Beckett, Worstward Ho

4.1 Introducion

The classical Reinforcement Learning (RL)Sutton and Barto (2018) problem using Markov
Decision Processes (MDPs) modelization gives a practical framework to solve sequential decision
problems under uncertainty of the environment. However, for real-world applications, the final
chosen policy can sometimes be very sensitive to sampling errors, inaccuracy of the model
parameters, and definition of the reward.

This problem motivates robust Reinforcement Learning, aiming to reduce such sensitivity
by taking to account that the transition and/or reward function (P,r) may vary arbitrarily
inside a given uncertainty set. The optimal solution can be seen as the solution that maximizes
a worst-case problem in this uncertainty set or the result of a dynamic zero-sum game where
the agent tries to find the best policy under the most adversarial environment (Abdullah et al.
2019). In general, this problem is NP-hard (Wiesemann et al. 2013) due to the complex max-min
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problem, making it challenging to solve in a discrete state action space and to scale to a continuous
state action space.

Many algorithms exist for the tabular case for Robust MDPs with Wasserstein constraints
over dynamics and reward such as Yang (2017), Petrik and Russel (2019), Grand-Clément and
Kroer (2020a;b) or for Lconstrained S-rectangular Robust MDPs (Behzadian et al. 2021). Here
we focus on a more general continuous state space S with a discrete or continuous action space
A and with constraints defined using f-divergence.

Robust RL (Morimoto and Doya 2005) with continuous action space focuses on robustness in
the dynamics of the system (changes of P) and has been studied in Abdullah et al. (2019), Singh
et al. (2020), Urpi et al. (2021), Eysenbach and Levine (2021) among others. Eysenbach and
Levine (2021) tackles the problem of both reward and transition using Max Entropy RL, whereas
the problem of robustness in action noise perturbation is presented in Tessler et al. (2019). Here,
we tackle the problem of robustness through dynamics of the system..

In this paper, we show that it is possible to tackle a Robust Distributional Reinforcement
Learning problem with f-divergence constraints by solving a risk-averse RL problem, using a
formulation based on mean standard deviation optimization.

The idea beyond that relies on the argument from Robust Learning theory, stating that
Robust Learning under an uncertainty set defined with f-divergence is asymptotically close to
Mean-Variance (Gotoh et al. 2018) or Mean-Standard deviation optimization (Duchi et al. 2016,
Duchi and Namkoong 2018).

In this work, we focus on the idea that generalization, regularization, and robustness are
strongly linked in RL or MDPs as shown in Husain et al. (2021), Derman and Mannor (2020),
Derman et al. (2021), Ying et al. (2021), Brekelmans et al. (2022). We show that is it possible
to improve the Robustness of RL algorithms with variance/standard deviation regularisation.
Moreover, the problem of uncertainty under the distribution of the environment is transformed
into a problem with uncertainty over the distribution of the rewards, which makes it tractable.

Note that our work is related to Smirnova et al. (2019b) as they penalise the expectation by the
variance of returns. However, their approach differs from ours since they use the variance estimate
under a Gaussian assumption of distributions while we use a standard deviation penalization
without any distribution assumptions. Moreover, the idea of robustness in the change of dynamics
is not demonstrated numerically, and the problem tackled is different since they consider close
policy distributions, while we consider dynamic distributions.

The contribution of the work is the following: we motivate the use of standard deviation
penalization and derive two algorithms for discrete and continuous action space that are robust to
changes in dynamics. These algorithms only require one additional parameter tuning, which is the
Mean-Standard Deviation trade-off. Moreover, we show that our formulation using Distributional
Reinforcement Learning is robust to changing transition dynamics in environments with both
discrete and continuous action spaces both in the Mujoco suite and in stochastic environments
derived from Mujoco.

Related topics : Regularised MDPs : Policy Regularisation in RL Geist et al. (2019)
has been studied and led to state-of-the-art algorithms such as PPO and SAC (Schulman
et al. 2017b, Haarnoja et al. 2018b, Vieillard et al. 2020). In these algorithms, an additional
penalisation based on the current policy is added to the classical objective function. The idea is
different, as we penalize our mean objective function using the standard deviation of the return
distribution. Being pessimistic about the distributional state-value function leads to more stable
learning, reduces the variance, and, tends to improve the robustness of systems as demonstrate
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(Brekelmans et al. 2022). Recent advances in Robust MDPs have shown a link between this field
and Regularised MDPs as in Derman et al. (2021), Kumar et al. (2022).

Distributional RL : Second-order estimation is done using Distributional Reinforcement
Learning (Bellemare et al. 2017, Zhang and Weng Zhang and Weng) using a quantile estimate of
our distribution to approximate our action value function (Dabney et al. 2017; 2018a) with the
QRDQN and IQN algorithms. Distributional state-action function representation is also used
to learn an accurate critic for a policy-based algorithm, such as in Kuznetsov et al. (2020), Ma
et al. (2021), Nam et al. (2021).

Risk-Averse RL : Risk-averse RL aims at minimizing different objectives than the classical
mean optimization e.g. CVaR or other risk measures. For example, Dabney et al. (2018a), Ma
et al. (2021) use distributional RL for optimizing different risk measures. Our goal is to show
the robustness of using risk-averse solutions to our initial problem. Our formulation is close
to mean-variance formulation (Jain et al. 2021, Wang and Zhou 2020) that already exists in
risk-averse RL, although not using a distributional framework that shows highly competitive
performance in a controlled setting.

Pessimism and Optimism in Distributional RL Moskovitz et al. (2021) describes a way
of performing Optimistic / Pessimistic Deep RL using a constructed confidence interval with
the variance of rewards. Their work is close to ours in the pessimistic case but the confidence
interval is expressed in terms of variance of expectation estimate and not using the variance of
the distribution itself. Moreover, they use an adaptative regularizer where we look at the interest
of using a fixed parameter.

Notations: Considering a Markov Decision Process (MDP) (S, A, P,r,~, p), where A is the
action space, S is the state space, P (s’ | s,a) is the reward and transition distribution from state
s to s’ taking action a and v € (0,1) is the discount factor. Stochastic policy are denoted

m(a | s): S — A(A) and we consider usually the case where action space is continuous and
action space is either discrete our continuous.

A rollout or trajectory using 7 from state s using initial action a is defined as the the random
sequence 775090 = ((s0. ag,ro(s0,a0)), (s1,a1,m1,70(s1,a1)),...) with sg = s,a9 = a,a; ~
7 (- | s¢) and sp41 ~ P (- | s, a¢); we denote the distribution over rollouts by P(7) with
P(1) = p(s0) [T—g P (St11 | St a¢) 7 (at | s¢) dr and usually write 7 ~ P = (P, 7). Moreover,
considering the the distribution of discounted cumulative return Z57 (s, a) = R(rP71%) with
R(1T) = 5207 ri(se,a¢), the Q-function Q™ : S x A — R of  is its expected discounted
cumulative return of the distribution

Q”’P(s,a) = E[Z’T’P(s,a)] =E;(n,P) [R(T) | az ~7 (-] 8t), 841~ P (| st,at),80 = s,a0 = a .

The initial goal of (RL) also called risk-neutral RL, is to find the optimal policy 7* where
Q™ (s,a) > QP7(s,a) for all 7 and s € S,a € A. Finally, the Bellman operator 77 and
Bellman optimal operator 7* can be defined as follow :

Tﬂ-Q(Sv a) = T(Sa a) + /YES/NP,CL/NTI' [Q (317 al)]
T*Q(s,a) :==7r(s,a) + vEgp {maXQ (s, a')} )
a//
Applying either operator from some initial Q° lead to fixed point Q™ or Q* at a geometric

rate as both operators are contractive. Simplifying the notation with regards to s,a, 7 and P, we
define the set of greedy policies w.r.t. @ called G(Q) = argmax_(Q, 7). A classical approach
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to estimate an optimal policy is Approximate Modified Policy Iteration (AMPI) Scherrer et al.
(2015),

i1 € G (Qr)

Qi1 = (T™+1)™ Q) + €41

which usually reduces to Approximate Value Iteration (AVI, m = 1) and Approximate Policy
Iteration (API, m = o) as special cases. The term €41 accounts for errors made when applying
the Belleman Operator.

4.2 Robust formulation in greedy step of AVI.

In this section, we would like to find policy that are robust to change of environment law P as
small variations of P should not affect to much the new policy in the greedy step. In our case
we are not looking at classical greedy step n’ € G(Q) = argmax, (@, m) but at the following
greedy step :

7' € G(Q) = arg max(min Q™" )
well P

With this reformulation, we need to constraint the set of admissible transitions from state-
action to the next state P to get a solution of the problem. In general without constraint, the
problem is NP-Hard and we have to constrain the problem to distributions that are not too far
from the original using distance between distribution such that Wasserstein metric (Abdullah
et al. 2019) or other specific distance where the problem can be simplify (Eysenbach and Levine
2021). Moreover, an explicit form for minp Q"™ given a particular divergence our distance
between probability distribution would allow a simplification of the greed step and transforming
this max-min problem into a simple one. In fact, a simplification is possible using f-divergence
H to constrain the problem with ® a closed convex function such that ® : R = R U {400} and
f(z) > f(1) =0 for all z € R.

SipsoPif (E) 5 Yips0ei=1,¢2>0
Hp(Q|P) = (p )

+o00 otherwise.

This constraint requires ¢; = 0 if p; = 0 so the measure Q absolutely continuous with respect to
P. The x2-divergence are a particular case of f-divergence with f(z) = (z — 1)2. For trajectories
7 sampled from distribution P® = (7, P%) and looking at distribution P closed to P® with regards
to x2-divergence, the minimisation problem reduces to :

: ,P — PO« . 1/2V VA % 4.1

PGDX;I(l;ﬂlPO)SaQ (Saa) Q (Sva) o PO[ (S7a)] : ( : )

The proof can be found in Appendix 11 for a such that a < H\%OTE < 1 with ZP =
7ZP —E[ZP] the centered return distribution and V[Z%?] the variance of returns. For o > HVZ[ZOP{’); ,

the equality becomes an inequality, but we still optimize a lower bound of our initial problem.
Defining a new greedy step which is penalized by the standard deviation.
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Note that this result can be obtained for any « using the same proof as in Iyengar (2005),
Lemma 5, but doing a relaxation of the problem where probabilities of trajectories can be possibly
negative. The main difference with classical RMDPs defined in 3.7 in is that this formulation,
the minimum operator is taken over the probability of the trajectory 7 and not only in the
transition kernel of the next state P. Using this formulation, this gives a penalisation (here the
the standard deviation) which depend on the distribution of returns starting from state-action
space (s,a) which is not the case writing classical RMDPs formulation where penalisation are
usually global quantities which does not depend on (s,a). ( See Introduction in 3.7. Defining a
new standard deviation return penalised greedy step :

€ Ga(Q) = ar%éll}[aX<Pergn(lli>r||lP0)ga QP ) = ar%é%aX(QPOJ — a2V po[Z(s, a)]%, Y,

we now look at the the current AMPI to improve robustness :

Tk+1 € Ga (Qk)

m
Qi1 = (T”k“’P) Qk + €ry1

Approximate identity like 4.1 for a larger class of ®-divergence and not only x? ca be found
in the work of (Duchi et al. 2016).

Robustness is not present in the evaluation step as we use classical Bellman Operator in
contrast of the work of (Derman et al. 2021) but only in the greedy step. This idea is very closed
to Risk-averse formulation in RL (i.e minimizing risk measure and not only the mean of rewards)
but here the idea is approximate a robustness problem in RL. To do so, standard deviation of
the distribution of the returns must be estimated. Many ways are possible but we will privilege
distributional RL (Bellemare et al. 2017, Dabney et al. 2017; 2018a) which achieve very good
performances in many RL applications. Estimating quantiles of the distribution of return, we
can simply estimate standard deviation using classical estimator of the standard deviation given
the quantiles over an uniform grid {¢;(s,a)}1<i<n,V(s,a) € S X A.

S

ViZ(s,a))} = o(s,0) = JZ (4:(s.0) — (s, ))?

i=1

where ¢ is the classical estimator of the mean. A different interpretation of this formulation
could be that taking actions with less variance, we constructing a confidence interval with the
standard deviation of the distribution

Z™F(s,a) 4 Z(s,a) — ao(s,a) .

This idea is present in classical UCB algorithms (Auer 2002) or pessimism/optimism Deep RL.
Here we construct confidence interval using the distribution of the return and note different
estimates of the @ function such as in Moskovitz et al. (2021), Bai et al. (2022). In the next
section, we derive two algorithms, one for discrete action space and one for continuous action
space using this idea. A very interesting way of doing robust Learning is by doing Max entropy
RL such as in the SAC algorithm. In Eysenbach and Levine (2021), a demonstration that SAC
is a surrogate of Robust RL is demonstrated formally and numerically and we will compare our
algorithm to this method.
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4.3 Algorithms based on Distributional RL

To derive our algorithms, estimation the second-order moment of the distribution of return
must be carried out. For discrete action space a variant of QR-DQN (Dabney et al. 2017) with
mean-standard deviation objective is proposed whereas for continuous action space, we propose
a mean-standard TQC algorithm (Kuznetsov et al. 2020) based on soft-actor framework as it as
already show some robustness as a surrogate of Robust RL (Eysenbach and Levine 2021).

4.3.1 Distributional RL using quantile representation

Distributional RL aims at approximating the return random variable Z™" (s, a) := 30 ' R (s, a;)
with so = s,a9 = a and sp41 ~ P (- | st,a4),a; ~ 7 (- | s¢), as the classical RL framework ap-
proximate the expectation of the return or the Q-function, Q™% (s,a) := E [Z”’P(s, a)} . Many
algorithms and distributional representation fo the critic exits (Bellemare et al. 2017, Dabney
et al. 2017; 2018a) but here we will focus on QR-DQN Dabney et al. (2017) that approximates the
distribution of returs Z™(s,a) with Zy(s,a) := +; M s (91?(8, a)), a mixture of atoms-Dirac
delta functions located at G}p(s, a),... ,ny(s, a) given by a parametric model 0y : S x A — RM,

Parameters v are obtained by minimizing the averaged over the 1-Wasserstein distance
between Z,, and the temporal difference target distribution TP Z,, where Tx is the distributional
Bellman operator defined in Bellemare et al. (2017). The control version or optimal operator is
denoted T Z;,

TP Z(s,a) = R(s,a) +vZ (s',d') with §' ~ P(-| s,a),a’ ~7 (-] &)

Considering Z be the space of action-value distributions with finite moments: Z = {Z :
X x A— P(R)} with E[|Z(x,a)|P] < 00,¥(x,a),p > 1 Bellemare et al. (2017) show that :

|ET™" 2, —ET™"2,|| < ~|EZ —EZ|..

so point wise convergence is exponentially fast for the the mean of the distribution as in the
classical case. According to Dabney et al. (2017), the minimization of the 1-Wasserstein loss
can be done by learning quantile locations for fractions 7, = 2’2"]\}1,771 € [1..M] via quantile

regression loss, defined for a quantile fraction 7 € [0,1] as :

Gr(0) :=Ezy [pr(Z—0)] . with
pr(u) =u(t — l(u<0)),Yu eR.

Finally, to obtain better gradients when w is small, Huber quantile loss ( or asymmetric Huber

loss) can be used:
pr (u) = |7 = 1(u < 0)[ L3 (u) |

where £}{ (u) is a classical Huber loss with parameter 1. The quantile representation has the
advantage of not fixing the support of the learned distribution and is used to represent the
distribution of return in our algorithm for both discrete and continuous action space.

4.3.2 Mean-standard deviation RL with discrete action space

Once the estimation is done, a phase of policy improvement is done using a Q-learning style
algorithm with distributional estimation like QR-DQN (Dabney et al. 2017). The main difference
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in our case is that we are not taking the expectation in this phase but mean-standard deviation
objective 4.2 in the greedy step estimated using M quantile over a uniform grid on [0, 1]. Formally
we choose actions with less variance to improve robustness using classical empirical estimator
of the variance one the quantiles estimated. However, the estimation step of the algorithm
remain the same than in classical QR-DQN algorithm. Parameters ¢ of the quantile network are
classically updated using a stochastic gradient descent where v represent a stochastic estimate
of the gradient. Moreover, § controls the learning of the target quantile network parametrised

by .

a* = argmax £,2™F (s, a) = argmax E[Z™ (s,a)] — \/aV[Z™P (s, a)] (4.2)
acA acA

Algorithm 4: QR-DQN with Standard Deviation penalisation
Initial critics Z, Zi
for each iteration do
for each step of the environment do
collect (s¢, as, ¢, s¢41) according to m(ag|s;) = argmax, Eo Z™F (¢, az)
D+ DU {(St, at, T, St+1)}
end for
for each gradient steps do
Sample batch (s,a,r,s") of D
Take a* = argmax,, £, 277 (s, a’)
yi(s,a) < r+ 792) (s'ya*),i € [1..M]
T7(¥) = Ep X751 ot (yi(s,a) — 03, (s,0))
)= AzVydz (),
Y (L=B)Y+ By
end for
end for
return critic Zw,le.
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4.3.3 Mean-standard deviation Maximum Entropy RL for continuous action
space

We use a Distributional Maximum Entropy framework for continuous action space which is
closed to the TQC algorithm Kuznetsov et al. (2020) which uses an actor-critic framework with
a distributional truncated critic to ovoid overestimation in the estimation with the max operator.
This algorithm is based on a soft-policy iteration where we penalize the target using the entropy
of the distribution. More formally, to compute the target, the principle is to train /N approximate
estimate Zy, , ... Zy,, of the distribution of returns Z™ where Zy, maps each (s,a) to Zy.(s,a) :=
ﬁ SM_ s (%”n (s, a)) , which is supported on atoms %C(s, a),..., 9%(3, a). Then approximations
Zy, - - Zyy are trained on the temporal difference target distribution denoted Y'(s, a) contructed
as follow. First atoms are pooled into a distributions Zy, (s',a’), ..., Zy. (s',d) into Z (s',d’) :=
{HZ}C (s'yad')|ce[l..Cl,m e [1M]} and denote elements of Z (s',a’) sorted in ascending order
by z@) (s',a’), with i € [1..MC]. Then we only keep the kC' smallest elements of Z (s',a’). We
remove outliers of distribution to avoir overestimation of the value function. Finally the atoms
of the target distribution Y (s,a) 1= 2 S K€ 6 (yi(s,a)) are computed according to a soft policy
gradient method where we penalised with the log of the policy :

yi(s,a) :=7r(s,a) +7 [Z(i) (s',a") — nlogmy (a' | s/)} ) (4.3)

As in QR-DQN, the 1-Wasserstein distance between each of Zy, (s,a),n € [1..N] and the
temporal difference target distribution Y'(s,a) is minimized learning the locations for quantile

fractions 7, = 221 m € [1..M]. Similary, we minimize the loss :

2M

Tz (Ye) = Epr | £F (51, 0300)| = Epr

1 M kC . .
e 2 2o (wils.0) efpgs,a))} (44)

j=1i=1

over the parameters 1, for each critic. The learning of all quantiles HZ";(S,a) is with
this formulation dependent on all atoms of the truncated mixture of target distributions. To
optimize the actor, the following loss based on KL-divergence denoted Dyj, is used for soft policy
improvement, where 1 can be seen as a temperature and needs to be tuned:

exp (1€,(0y (s, -
DKL(st)n P (30 >>)>]

Jﬂ,a((b) = ED D

where D is a constant of normalisation. This expression simplify into :

C
1
J7r7a(¢) = ED,ﬂ' [Tl log 77(;5(@ ’ 8) - 6 Zga('g?l)c(sa a))‘| (4‘5)
c=1

where s ~ D,a ~ my(- | s). Nontruncated estimate of the Q-value are used for policy
optimization to avoid a double truncation, in fact the Z-functions approximate already truncated
future distribution. Finally, n is the entropy temperature coefficient is dynamically adjusted by
taking a gradient step with respect to the loss like in Haarnoja et al. (2018b) :

J(n) = Epr, [(—logmg (ar | s1) — Hy) 1]

at every time the 7y changes. Temperature 7 decrease if the policy entropy, —log g (as | 5¢), is
higher than H,, and increases 7 otherwise. The algorithm is summarized as follow :
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Algorithm 5: TQC with Standard Deviation penalisation
Initialize policy my, critics Zy,, Z;_ for c € [1..C]
for each iteration do
for each step of the environment do
collect (sy, at, 7, s¢.41) with policy 7y
D+ DU {(St, ag, T, St+1)}
end for
for each gradient steps do
Sample batch (s, a,s’,r) of D
yi(s,a) < r(s,a) + [z(i) (s',a") —nlogmy (a’ | s’)}
n<n-— )‘nVAnJ(n)
O ¢— )\ﬂvqﬁ:]ﬂ,oz(@b)
@éc — e — AZv¢ch_(¢n) ,c € [1..C]
Ve < Boe+ (1 = B)Ye,n € [1..C]
end for
end for
return gy, critics Zy,,n € [1..C].

Our algorithm is based SAC framework but with many distributional critics to improve
estimation of @-functions while using mean-standard deviation objective in the policy loss to
improve robustness.

4.4 Experiments

We try different experiments on continuous and discrete action space to demonstrate the interest
of our algorithms for robustness using ¢ : Z — E[Z] — o'/ 2V[Z]% instead of the mean. The choice
of «v is crucial as it determines the degree of penalty in the objective. The more the environment
is penalized, the more a pessimistic action is chosen.

4.4.1 Results on continuous action spaces

For continuous action space, we compare our algorithm with SAC which achieves state-of-the-art
robust control (Eysenbach and Levine 2021) on the Mujoco environment such as Hopper-v3,
Walker-v3 or HalfCheetah-v3. We use a version where the entropy coefficient is adjusted during
learning for both SAC and our algorithm, as it requires less parameter tuning. Moreover, we
show the influence of a distributional critic without a mean-standard deviation greedy step using
a = 0 to demonstrate the advantage of using a distributional critic against the classical SAC
algorithm. We also compare our results to TQC algorithm, varying the penalty « to show that
for the tested environment, there exists a value of o such that prediction are more robust to
change of dynamics.

The interest of our algorithm is best shown in stochastic environments, since it involves
the distributions of returns which are varying in stochastic environments. The only source of
stochasticity in the Mujoco subject is the initial point, so in order to make its environments
stochastic we have noised environments at each step by adding a noise in [~1e~2,1e72] to each
action. Since we also compare our algorithm in non-stochastic environments, we differentiate the
two cases by denoting noisy environments by (IN) and environments without noise (wN). In
these simulations, variations of dynamics are carried out by moving the relative mass, which is an
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influential physical parameter in all environments. All algorithms are trained with a relative mass
of 1 and then tested on new environment where the mass varies from 0.5 to 2. Two phenomena
can be observed for the 3 environments.

First, for all environments in Fig 4.1,4.2, and Fig A12.2 in annex, where performance is
normalized by the maximum of the performance for every curve to highlight robustness and not
only mean-performance. We see that we can find a value of o where the robustness is clearly
improved without deteriorating the average performance. In fact, if a penalty is applied too
strongly, the average performance can be reduced, as in the HalfCheetah-v3 environment. For
Hopper-v3, a « calibrated at 5 gives very good robustness performances, while for Walker2d-
v3, the value is closer to 2. This phenomenon was expected and was in agreement with our
formulation. Moreover, our algorithm outperforms the SAC algorithm for Robustness tasks in all
environments. Tuning of o must be chosen carefully, for example, « is chosen in {0,1,...,5} for
Hopper-v3 and Walker2d-v3 whereas values of a are chosen smaller in {0,0.1,0.5.1,1.5,2} and
not in a bigger interval. As a rule of thumb for choosing «, we can look at the empirical mean
and variance at the end of the trajectories to see if the environment has rewards that fluctuate a
lot. The smaller the mean/variance ratio, the more likely we are to penalise our environment.
For HalfCheetah, the mean/variance ratio is about approximately 100, so we will favour smaller
penalties than for Walker2d where the mean /variance ratio is about 50 or 10 for Hopper.

The second surprising observation is that penalizing our objective also improves performance
in terms of stability during training and in terms of average performance, especially for Hopper
and Walker2d in Fig 4.4 or sometimes in Fig 4.3. Similar results are present in the work of
(Moskovitz et al. 2021), which gives an interpretation in terms of optimism and pessimism for
environments. This phenomenon is not yet explained, but it is present in environments that are
particularly unstable and have a lot of variance. The variance of the return is a consequence
of the stochasticity of the environment or of the policy. Intuitively, the most favorable settings
are thus the one with the most stochasticity. We have, however, observed that our method
remains interesting in low-stochasticity or non-stochasticity environments even if the policy is
not stochastic. A possible explanation is a better exploration thanks to the pessimistic approach.
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Figure 4.1: y-axis : normalised mean + standard deviation over 20 trajectories. x-axis : relative mass.

4.4.2 Results on discrete action spaces

We test our QRDQN algorithm with standard deviation penalization on discrete action space,
varying the length of the pole in Cartpole-vl and Acrobot-v1 environments. We observe similar
results for the discrete environment in terms of robustness. Training is done for a length of the
pole equal to the x-axis of the black star on the graph, and then for testing, the length of the
pole is increased or decreased. We show that robustness is increased when we penalised our
distributional critic. We have compared our algorithm to PPO which has shown relatively good
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4.5. Conclusion of Chapter 4
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results in terms of robustness for discrete action space in (Abdullah et al. 2019) as SAC does
not apply to discrete action space. The same phenomenon is observed in terms of robustness
as for continuous environments. However, the improvement in terms of mean performance on
Hopper and Walker2d environments is not observed. This is partly explained by the fact that the
maximum reward is reached in Cartpole and Acrobot quickly. An ablation study can be found
in annex C where we study the impact of penalization on our behavior policy during testing and
on the policy used during learning. It is shown that both are needed in the algorithm.

4.5 Conclusion of Chapter 4

In this Chapter, we have tried to show that by using a mean-standard deviation formulation
to choose our actions pessimistically, we can increase the robustness of our environment for
continuous and discrete environments without adding too much the complexity. A single fixed «
parameter must be tuned to obtain good performance without penalizing the average performance
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too much. Moreover, for some environments, it is relevant to penalize to increase the average
performance as well when there is many variability in the environment.

About limitations of this work : Convergence of the algorithm to a fix point is not shown
using only for mean-standard deviation penalisation in the greedy step. In fact there is no policy
improvement theorem with this formulation. Moreover it may be difficult to tune « in practice.
In the next Chapter, we will try to deal with these problems, deriving a Deep Robust formulation
with theoretical guarantees, avoiding the problem of estimation of a penalisation and trying to
find more interpretable uncertainty parameter o which can be easily tuned.
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Pessimism is a desirable concept in many Reinforcement Learning (RL) algorithms to stabilize
the learning and get an accurate estimation of the value function. This idea is developed in Double
Q-learning (Hasselt 2010), an RL technique designed to address the issue of overestimation bias
in value estimation, a common challenge in Q-learning and related algorithms. Overestimation
bias occurs when the estimated values of actions are higher than their true values, potentially
leading to a suboptimal policy. By maintaining two sets of Q-values and decoupling action
selection from value estimation, Double Q-learning provides a more accurate and less optimistic
estimate of the true values of actions. In general, Double Q-learning enhances the stability of
the learning process and these principles can be extended to deep RL known as Double Deep
Q-Networks (DDQN), a successful approach in various applications (Van Hasselt et al. 2016).
Pessimism also appears in the twin critic approach, the equivalent of Double Q-learning for
continuous action spaces, which requires training two critics to select the most pessimistic one.
Many state-of-the-art RL algorithms are based on this method, such as TD3 (Fujimoto et al.
2018) that uses this method to improve on DDPG (Lillicrap et al. 2015) and SAC (Haarnoja
et al. 2018a) that uses this trick to stabilize the learning of @-functions and policies.

The idea of pessimism is also central in Robust RL (Moos et al. 2022), where the agent tries to
find the best policy under the worst transition kernel in a certain uncertainty space. It has been
introduced first theoretically in the context of Robust MDPs (Iyengar 2005, Nilim and El Ghaoui
2005) (RMDPs) where the transition probability varies in an uncertainty (or ambiguity) set.
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Hence, the solution of robust MDPs is less sensitive to model estimation errors with a properly cho-
sen uncertainty set, as RMDPs are formulated as a max-min problem, where the objective is to find
the policy that maximizes the value function for the worst possible model that lies within an uncer-
tainty set around a nominal model. Fortunately, many structural properties of MDPs are preserved
in RMDPs (Iyengar 2005), and methods such as robust value iteration, robust modified policy iter-
ation, or partial robust policy iteration (Ho et al. 2021) can be used to solve them. It is also known
that the uncertainty in the reward can be easily tackled while handling uncertainty in the transition
kernel is much more difficult (Kumar et al. 2022, Derman et al. 2021). Finally, the sample com-
plexity of RMDPs has been studied theoretically (Yang et al. 2021, Shi and Chi 2022, Clavier et al.
2023, Shi et al. 2023). However, these works usually assume having access to a generative model.

Robust RL (Moos et al. 2022) tries to bridge a gap with real-life problems, classifying its algo-
rithms into two distinct groups. The first group engages solely with the nominal kernel or the cen-
ter of the uncertainty set. To enhance robustness, these algorithms often adopt an equivalent risk-
averse formulation to instill pessimism. For instance, Clavier et al. (2022) employ mean-standard
deviation optimization through Distributional Learning to bolster robustness. Another strategy in-
volves introducing perturbations on actions during the learning process, as demonstrated by Tessler
et al. (2019), aiming to fortify robustness during testing. Another method, known as adversarial
kernel robust RL (Wang et al. 2023), exclusively samples from the nominal kernel and employs
resampling techniques to simulate the adversarial kernel. While this approach introduces a novel
paradigm, it also leads to challenges associated with poor sample complexity due to resampling and
requiring access to a generative model. Despite this drawback, the adversarial kernel robust RL
paradigm offers an intriguing avenue for exploration and development in the realm of robust RL. Fi-
nally, policy gradient (KKumar et al. 2023, Li et al. 2023) in the case of Robust MDPs is also an alter-
native. A practical algorithm using robust policy gradient with Wasserstein metric is proposed by
Abdullah et al. (2019), but this approach requires having access to model parameters which are usu-
ally not available in a model-free setting. The second category of algorithms engages with samples
within the uncertainty set, leveraging available information to enhance the robustness and general-
ization of policies to diverse environments. Algorithms within this category, such as IWOCS (Zoui-
tine et al. 2023), M2TD3 (Tanabe et al. 2022b), M3DDPG (Li et al. 2019a), and RARL (Pinto et al.
2017) actively interact with various close environments to fortify robustness in the context of RL.

In all these settings, the idea of pessimism is central. We propose here a new simple form of
pessimism based on expectile estimates that can be plugged into any RL algorithm. For a given
algorithm, the only modification relies on the critic loss in an actor-critic framework or in the
Q-learning loss for Q-function based algorithms. Given a target y (r,s') = 7 + Qg .., (8, 7(5))
with reward r, policy 7, we propose to minimize

L(@D)= E _[L§(Qs(s,a) =y (rs))],
(s,a,r,s’)~D
where L7 is the expectile loss defined in Section 5.2.3. For a = 1/2, the expectile coincides with
the classical mean, and we recover the classical Lo loss of most RL algorithms. We denote this
modification as ExpectRL. In many RL algorithms, we are bootstrapping the expectation of the
Q-function over the next state, by definition of the classical Bellman equation.

Our method ExpectRL is equivalent to bootstrapping the expectile and not the expectation
of the Q value. Bootstraping expectiles still leads to an algorithm with the contraction mapping
property for the associated Expectile Bellman Operator, but adds pessimism by giving more
weight to the pessimistic next state compared to a classical expectation (see Section 5.2.3).

The ExpectRL modification is relevant in the context of the twin critic approach as when
employing this method, the challenge arises in effectively regulating the level of pessimism
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through the application of the twin critic method, which remains heuristic for continuous action
spaces, although it has been studied in the discrete case by Hasselt (2010). Furthermore, the
acquisition of imprecise ) functions has the potential to yield detrimental outcomes in practical
applications, introducing the risk of catastrophic consequences. Using the ExpectRL method,
the degree of pessimism in learning the value or Q) function is controlled through the parameter
a, and our first question is:

Can we replace the learning of two critics in the twin critic method, using only a simple
expectile bootstrapping?

In the Robust RL setting, ExpectRL can also be beneficial as by nature expectiles are
a coherent, convex risk measure, that can be written as a minimum of an expectation over
probability measure on a close convex set (Delbaen 2002). So implicitly bootstrapping an
expectile instead of an average leads to a robust RL algorithm. Compared to many Robust RL
algorithms, our method is simple in the sense that the a-expectile is more interpretable and easy
to choose than a penalization or trade-off parameter in mean-standard deviation optimization
(Clavier et al. 2022). ExpectRL has the advantage of being computationally simple compared to
other methods, as it uses all samples, compared to the work of Wang et al. (2023), that needs
resampling to induce robustness. Finally, our method is simple and can be adapted to practical
algorithms, compared to robust policy gradient methods such as Kumar et al. (2023), Li et al.
(2023). Moreover, while these algorithms can be considered more mathematically grounded and
less heuristic, the second group with IWOCS, M2DTD2, RARL (Zouitine et al. 2023, Tanabe
et al. 2022b, Li et al. 2019a, Pinto et al. 2017) tends to rely on heuristic approaches that exhibit
practical efficacy on real-world benchmarks. This dichotomy prompts the question:

Can we leverage EzpectRL method as a surrogate for Robust RL and formulate robust RL
algorithms that are both mathematically founded and requiring minimal parameter tuning?

By extending expectile bootstrapping (ExpectRL) with sampling from the entire uncertainty
set using domain randomization (DR), our approach bolsters robustness, positioning itself compet-
itively against the best-performing algorithms. Notably, our algorithm incurs low computational
costs relatively to other algorithms and requires minimal or no hyperparameter tuning. Our
contributions are the following.

Our first contribution, is to introduce ExpectRL, and demonstrate the efficacy of that
method as a viable alternative to the twin critic trick with Lo loss across diverse environments.
This substitution helps empirically control of the overestimation in the @-function, thereby
reducing the computational burden associated with the conventional application of the twin trick,
which entails learning two critics.

The second contribution of our work lies in establishing that expectile bootstrapping or
ExpectRL facilitates the development of straightforward Deep Robust RL approaches. These
approaches exhibit enhanced robustness compared to classical RL algorithms. The effectiveness of
our approach combining ExpectRL with DR is demonstrated on various benchmarks and results
in an algorithm that closely approaches the state of the art in robust RL, offering advantages
such as lower computational costs and minimal hyperparameters to fine-tune.

Our third contribution introduces an algorithm, AutoExpectRL that leverages an automatic
mechanism for selecting the expectile or determining the degree of pessimism. Leveraging bandit
algorithms, this approach provides an automated and adaptive way to fine-tune the expectile
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parameter, contributing to the overall efficiency and effectiveness of the algorithm.

5.1 Related Work

TD3 and twin critics. To tackle the problem of over-estimation of the value function,
TD3 algorithm (Fujimoto et al. 2018) algorithm uses two critics. Defining the target ymi, as
Ymin (1, 8") = r+ymini—1 2 Qg, .., (8,7 (5")) , both critics are learned by regressing to this target,
such that, for i € {1,2},

2

L (@bl, D) = E (th (Sa CL) — Ymin (T7 S,))
(S?a7’r7s/7d)ND

Our approach is different as we do not consider the classic Ls loss and only use one critic. We

will compare ExpectRL to the classic TD3 algorithm both with twin critics and one critic to

understand the influence of our method.

Expectiles in Distributional RL. Expectiles have found application within the domain of
Distributional RL (RL), as evidenced by studies such as (Rowland et al. 2019, Dabney et al.
2018b, Jullien et al. 2023). It is crucial to note a distinction in our approach, where we specifically
focus on learning a single expectile to substitute the conventional Lo norm. This diverges from
the methodology adopted in these referenced papers, where the entire distribution is learned
using different expectiles. Moreover, they do not consider expectile statistics on the same random
variable as they consider expectiles of the full return.

Expectile in Offline RL and the IQL algorithm . Implicit Q-learning (IQL) (Kostrikov
et al. 2021) in the context of offline RL endeavors to enhance policies without the necessity of
evaluating actions that have not been encountered. Like our method, IQL employs a distinctive
approach by treating the state value function as a random variable associated with the action,
but achieves an estimation of the optimal action values for a state by utilizing a state conditional
upper expectile. In ExpectRL, we employ lower expectiles to instill pessimism on the next state
and approximate a minimum function, contrasting with the conventional use of upper expectiles
for approximating the maximum in the Bellman optimality equation.

Risk-Averse RL. Risk-averse RL, as explored in studies like Pan et al. (2019), diverges from
the traditional risk-neutral RL paradigm. Its objective is to optimize a risk measure associated
with the return random variable, rather than focusing solely on its expectation. Within this
framework, Mean-Variance Policy Iteration has been considered for optimization, as evidenced by
Zhang et al. (2021), and Conditional Value at Risk (CVaR), as studied by Greenberg et al. (2022).
The link between Robust and Risk averse MDPS has been highlighted by Chow et al. (2015) and
Zhang et al. (2023) who provide a mathematical foundation for risk-averse RL methodologies,
emphasizing the significance of coherent risk measures in achieving robust and reliable policies.
Our method lies in risk-averse RL as expectiles are a coherent risk measure (Zhang et al. 2023),
but to the best of our knowledge, the expectile statistic has never been considered before for
tackling robust RL problems.

Regularisation and robustness in RL. Regularization plays a pivotal role in the context
of Markov Decision Processes (MDPs), as underscored by Derman et al. (2021) or Eysenbach
and Levine (2021), who have elucidated the pronounced connection between robust MDPs and
their regularized counterparts. Specifically, they have illustrated that a regularised policy during
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interaction with a given MDP exhibits robustness within an uncertainty set surrounding the MDP
in question. In this work, we focus on the idea that generalization, regularization, and robustness
are strongly linked in RL or MDPs as shown by Husain et al. (2021), Derman and Mannor (2020),
Derman et al. (2021), Ying et al. (2021), Brekelmans et al. (2022). The main drawback of this
method is that it requires tuning the introduced penalization to improve robustness, which is not
easy in practice as it is very task-dependent. The magnitude of the penalization is not always
interpretable compared to «, the value of the expectile.

5.2 Background

5.2.1 Markov Decision Processes

We first define Robust Markov Decision Processes (MDPs) as Mg = { My} cq, with M, =
{S, A, P, Pg,rw,v} the MDP with specific uncertainty parameter w € 2. The chosen state
space S and action space A are subsets of real-valued vector spaces in our setting. The transition
probability density P, : S x A x & — R, the initial state probability density P): S — R, and
the immediate reward r,, : § x A — R depend on w. Moreover, we define F;,, the vector
of P,(s,a,.). The discount factor is denoted by v € (0,1). Let mp : S — A be a policy pa-
rameterized by § € © and 7* the optimal policy. Given an uncertainty parameter w € €, the
initial state follows sg ~ PY. At each time step ¢ > 0, the agent observes state s;, selects action
a; = my (s¢), interacts with the environment, and observes the next state s;y1 ~ B, (- | s¢,a¢),
and the immediate reward r; = 7, (s¢,a¢). The discounted return of the trajectory starting from
time step ¢ is Ry = > ;>0 v¥r¢ 1 1. The action value function Q™ (s, a,w) and optimal action value
Q*(s,a,w) under w is the expectation of R; starting with s; = s and a; = a under w; that is,

QWQ,P(SvaaW) = EPwﬂrg [Rt ‘ St = §,at = (I] 5 Q*,P(s’%w) = EPw,Tl'* [Rt | St = S§,at = CL] y

where E is the expectation. Note that we introduce w to the argument to explain the Q-value
dependence on w. Lastly, we define the value function as

V”e’P(s,w) =Ep, n (Rt | 5t = 5], V*’P(s,w) =Ep, = [Re | st = 9].

In the following, we will drop the w subscript for simplicity and define the expectile (optimal)
value function, that follows the recursive Bellman equation

VTP (s) = v™(s) = Egun( ) [r(s,a) + vEp,, [VTF]] (5.1)
£Q™Ps,a)
V*’P(s) = meaji(r(s, a) ++Ep,, [V*’P])) . (5.2)
éQ*,P(s,a)

Finally, we define the classical Bellman Operator and optimal Bellman Operator that are
~-contractions, so iteration of these operators leads V™ or V*F:

T”’PV(S) = Zﬂ(a\s)(r(s, a) +vEp,,[V]) (5.3)

a

TPV (s) = T "'V (s) = max(r(s, a) + 1Ep,,[V]) . (5.4)

5.2.2 Robust MDPs

Once classical MDPs are defined, we can define robust (optimal) Bellman operators 7,7 and 7,7,

T I T, P * — : T, P
T V(s) = glelgT Vi(s), Ty V(s) : ﬂglf(}ix) gelgT V(s), (5.5)
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where P belongs to the uncertainty set /. The optimal robust Bellman operator 73, and robust
Bellman operator 1] are y-contraction maps for any policy 7 (Iyengar 2005, Thm. 3.2) if the
uncertainty set U is a subset of A(S) where A(S) it the simplex of |S| elements so that the transi-
tion kernel is valid. Finally, for any initial values V", ViJ", sequences defined as V7, | := T;7V," and

Vg = 17;V,y converge linearly to their respective fixed points, that is V7 — V;J and V7 — V}].

5.2.3 Expectiles

Let’s first define expectiles. For o € (0,1) and X a random variable, the a-expectile is defined as
ma(X) = argmin,, E;[L§(x — m)] with

LS (u) = |a — 1{u<0}|u2 = au? + (1 — a)u?,

where uy = max(u,0) and u— = max(—u,0). We can recover the classical mean with m1(X) =
2

E[X] as Lé/ 2(u) = u? .Expectiles are gaining interest in statistics and finance as they induce the
only law-invariant, coherent (Artzner et al. 1999) and elicitable (Gneiting 2011) risk measure.
Using the coherent property representation (Delbaen 2000), one has that p : L>® — R is a
coherent risk measure if and only if there exists a closed convex set P of P-absolutely continuous
probability measures such that p(X) = infgep Eq[X],VX € L*™. with L> the vector space of
essentially bounded measurable functions with the essential supremum norm. The uncertainty set
induced by expectiles as been described by Delbaen (2013) as mq(X) = mingeg EQ[X] such as

{QeP|3n>on,/ = _dp 1/1_0‘ } (5.6)

where we deﬁne as the Radon-Nikodym derivative of ) with respect to P. Here, the uncer-
tainty set corresponds thus to a lower and upper bound on % with a quantity depending on
the degree of uncertainty. For a = 1/2, the uncertainty set becomes the null set and we retrieve
the classical mean. This variational form of the expectile will be useful to link risk-sensitive and

robust MDPs formulation in the next section.

5.3 ExpectRL method

First, we introduce the Expectile Bellman Operator and then we will explain our proposed
method ExpectRL and AutoExpectRL that work both in classic and robust cases.

5.3.1 Expectile Bellman Operator

In this section, we derive the loss and explain our approach. Recall that for o € (0,1) and X a
random variable taking value x and following a probability law P, the a-expectile is denoted
ma(X) or mq (P, z) in the following. Writing the classical Bellman operator for ¢ function

TRPQ(Sa a) = T(37 CL) + 7<Psa7 U) = T(S, a) + ’VES’NPM(-)[V(S/)]'

and denoting Vg, the random variable which is equal to V'(s") with probability Ps,(s"), it holds
that:

TW’PQ(S, a) =r(s,a)+ vm%(Vsa) =r(s,a)+ 'ym%(Psa, V).
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Our method consists instead in considering the following Expectile Bellman operator
TaQ(s, a) = r(s,a) + yma(Vsa)- (5.7)

With a < %, Eq. (5.7) allows to learn a robust policy, in the sense that it is a pessimistic estimate
about the value we bootstrap according to the value sampled according to the nominal kernel.
Next, we define the expectile value of a given policy and the optimal expectile value as:

VJ(S) = Ea~7r(~|s) [T(Sv a) + 'ymoc(Psaa VoTzr)]’ (58)
2q7(s,a)
Ve (s) = max(r(s, a) + yma (Psa, Viy))- (5.9)
éqa(sﬂ)

With a = %, we retrieve the standard Bellman equations but we consider o < % for the robust
case. Finally, we define (optimal) expectile Bellman Operator as:

7V (s) = Zﬂ'(a\s)(r(s, a) + yma(Psa, V)).

a

T V(s) = mgx(r(s, a) +ymq(Psa, V).

Theorem 5.3.1. The (optimal) Ezpectile Bellman Operators are ~y-contractions for the sup
norm. (proof in Appz. 16).

So as T7 and T, are 7-contractions, it justifies the definition of fixed point V] and V.
The central idea to show that expectile bootstrapping or ExpectRL is implicitly equivalent to
Robust RL comes (Zhang et al. 2023) where we try to estimate the optimal robust value function
V¢ = max, mingeg Ve,

Theorem 5.3.2. The (optimal) Ezpectile value function is equal to the (optimal) robust value
function

Vi(s) =VI = max 122061{51 VTR VT(s) = VEF = glelIgl e (5.10)
where £ is defined in 5.2.3. Proof can be found in 16.2. Note that his formulation does not

converge to the expectile of the value distribution but to V¢ the robust value function. Moreoever,
for & > 1/2, Now that expectile operators are defined, we will define the related loss.

5.3.2 The ExpecRL Loss

In this section, we present the method more from a computational and practical point of view.
As stated before, this method can be plugged into any RL algorithm where a @Q-function is
estimated, which included any @Q-function-based algorithm or some actor-critic framework during
the critic learning. For a given algorithm, the only modification relies on modifying the Lo loss
in the Q-value step by the Expectile loss. Given a target y (r,s") = r +7Qg .., (8, 7(s")) with
reward 7, policy 7, we propose to minimize

L(@D)= E _[L5(Qu(s.a) =y (rs))], (5.11)

(s,a,r,s")~D

where L§ is the expectile loss defined in Section 5.2.3. For av = 1/2, the expectile coincides with
the classical mean, and we retrieve the classical Lo loss present in most RL algorithms. We will
use TD3 as a baseline and replace the learning of the critic with this loss. The actor loss remains
the same in the learning process. With ExpectRL, only one critic is needed, replacing the double
critic present in this algorithm. We will compare our method with the classical TD3 algorithm
using the twin critic trick and TD3 with one critic to see the influence of our method.
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5.3.3 ExpecRL method with Domain randomisation

From a practical point of view, many Robust RL algorithms such as M2TD3 (Tanabe et al.
2022b), M3DDPG (Li et al. 2019a), and RARL (Pinto et al. 2017) not only interact with
the nominal environment but also with environments that belong to the uncertainty set U.
Sampling trajectories from the entire uncertainty set allows algorithms to get knowledge from
dangerous trajectories and allows algorithms to generalize better than algorithms that only
sample from the nominal. Receiving information about all environments that need to be robust
during the training phase, the algorithm tends to obtain better performance on minimum per-
formance over these environments on testing. With the same idea of generalization, Domain
Randomisation (DR) (Tobin et al. 2017) focuses not on the worst case under the uncertainty
set but on the expectation. Given a point of the uncertainty set P, € U, the DR objective is:
Thr = argmax, E,cq ;. po[V™(s,w)]. In other words, DR tries to find the best policy on average
over all environments in the uncertainty set. The approach we propose to be competitive on
a robust benchmark is to find the best policy using ExpectRL under domain randomization or

7-‘-E)R,oz = arg;nax EwGQ,swPB [VO?—(S, w)] = arg;_nax EwEQ,swPB [IIDHIEH VW’P(Sa CU)], (512)
where VI (s,w) is the expectile value function under uncertainty kernel P, and £ defined in
Section 5.2.3. Using this approach, we hope to get sufficient information from all the environments
using DR and improve robustness and worse-case performance using ExpectRL. The advantage of
the approach is that any algorithm can be used for learning the policy, sampling from the entire
uncertainty set uniformly and replacing the critic loss of this algorithm learning with ExpecR1
loss. The effectiveness of this algorithm on a Robust benchmark will be conducted in Section
5.3. Getting an algorithm that is mathematically founded and which tries to get the worst-case
performance, the last question is how to choose the degree of pessimism or o € (0,1/2) in practice.
The following section tries to answer this question using a bandit algorithm to auto-tune c.

5.3.4 Auto-tuning of the expectile o using bandit

In the context of varying levels of uncertainty across environments, the selection of an appropriate
expectile o becomes contingent on the specific characteristics of each environment. To automate
the process of choosing the optimal expectile, we employ a bandit algorithm, specifically the
Exponentially Weighted Average Forecasting algorithm (Cesa-Bianchi and Lugosi 2006). We
denote this method as AutoExpectRL. This formulation adopts the multi-armed bandit problem,
where each bandit arm corresponds to a distinct value of a. We consider a set of D expectiles
making predictions from a discrete set of values {ad}i?:l. At each episode m, a cumulative reward
R, is sampled, and a distribution over arms p,, € Ap is formed, where p,,(d) x exp (wp(d)).
The feedback signal f,, € R is determined based on the arm selection as the improvement in
performance, specifically f,, = R, — Rm—1, where R,,, denotes the cumulative reward obtained
in the episode m. Then, wy,+1 is obtained from w,, by modifying only the d,, according to
W1 (dm) = W (dp) + npii?d) where 1 > 0 is a step size parameter. The exponential weights
distribution over « values at episode m is denoted as p%,. This approach can be seen as a form of
model selection akin to the methodology presented by Pacchiano et al. (2020). Notably, instead
of training distinct critics and actors for each « choice, our approach updates one single neural
network for the critic and one single neural network for the actor. In both critic and actor, neural
networks are composed of one common body and different heads for every value of «, in our case 4
values for {O‘d}clz):1 = {0.2,0.3,0.4,0.5}. The critic’s heads correspond to the 4 expectile losses for
different values of . The actor’s neural network is trained using 4 classical TD3 losses, evaluated
with action chosen by one specific head of the actor. Then in both critic and actor, the 4 losses are
summed, allowing an update of all heads at each iteration. Finally, the sampling of new trajectories
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TD3 Twin Critic | TD3 1 critic | ExpectRL best Expectile | AutoExpectRL
Ant(x10?) 3.65 £ 0.33 1.90 £0.07 4.46 £0.12 4.274+0.25
Hal fCheetah(x10%) 10.91 +£0.14 | 10.36 = 0.54 10.42 £0.13 10.40 £ 0.09
Hopper(x10?) 2.88£0.10 | 2.022+0.09 3.10 £ 0.05 3.03+0.11
Walker(x10?) 2.95+0.12 2.35+0.25 3.22+0.11 3.02£0.09
HumanoidStandup(x10°) 1.101 £0.09 | 1.087 4+ 0.09 1.197 +£0.05 | 1.143+0.010

Table 5.1: Expectile vs Twin-critic, Mean performance + standard error, on 10 train seed

is done using the chosen head of the actor, proposed by the bandit algorithm. More details about
implementation can be found in Appendix 17. Intuitively, when the agent receives a higher reward
compared to the previous trajectory, the probability of choosing this arm is increased to encourage
this arm to be picked again. Note that the use of a bandit algorithm to automatically select
hyperparameters in an RL algorithm has been proposed in other contexts, such as Moskovitz et al.
(2021), Badia et al. (2020). The AutoExpectRL method allows picking automatically expectile
« and reduces hyperparameter tuning. Practical details can be found in Appendix 17 where
we expose the neural network architecture of this problem and associated losses. Note that this
approach does not work in the DR setting as uncertainty parameters change between trajectories in
DR. It is difficult for the algorithm to know if high or low rewards on trajectories come because the
uncertainty parameter leads to small rewards, or if it is due to bad expectile picked at this iteration.

5.4 Empirical Result on Mujoco

The Mujoco benchmark is employed in this experiment due to its significance for evaluating
robustness in the context of continuous environments, where physical parameters may vary. In
contrast, the Atari benchmark very deterministic with discrete action space without physical
parameters cannot change during the testing period. In this section, we compare the performance
of the TD3 algorithm using the twin critic method during learning, only one critic, and finally our
method ExpectRL. The different values of a are {ag}i_ | = {0.2,0.3,0.4,0.5}. We can notice that
ExpectRL with a = 0.5 is exactly TD3 with one critic. Here, we only interact with the nominal
and there is no notion of robustness. The mean and standard deviation are reported in Table 5.1,
where we use 10 seeds of 3M steps for training, each evaluated on 30 trajectories. The last column
is our last algorithm, AutoExpectRL. In all environments except HalfCheetah, ExpectRL with fine-
tuning of a has the best score and AutoExpectRL has generally close results. The scores for every
expectiles can be found in Appendix19. In Halcheetah 5.1 environment, it seems that no pessimism
about @-function is needed and our method ExpectRL is outperformed by TD3 with twin critic.
Similar observations have been observed in Moskovitz et al. (2021) on this environment. Moreover,
results for & = 0.5 and a = 0.4 are very close in Appendix 19 while the variance is reduced using
a = 0.4. Results of Table 5.1 show that it is possible to replace the twin critic approach with
only one critic with the relevant value of pessimism or expectile. Moreover, one can remark in
Appendix 19 that in Hopper, Walker, and Ant environment, high pessimism is needed to get an
accurate () function and better results, with a value of & = 0.2 or o = 0.3 whereas less pessimism
with a = 0.4 is needed for HumanoidStandup and HalfCheetah. Note that the value of a = 0.5
is never chosen and leads to generally the worst performance as reported in column TD3 with
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TD3 mean ExpectRL mean Auto mean TD3 worst ExpectRL worst Auto worst
Antl 2.76 £ 0.5 3.55 + 0.65 3.55 + 0.51 2.224+0.5 2.65 + 0.57 2.71 4+ 0.43
Ant2 2.28 £ 0.09 2.50 + 0.89 2.41 +£0.77 1.59 + 0.08 2.49 + 0.94 2.42 £+ 0.51
Ant3 0.31 +1.13 0.54 + 0.08 0.53 + 0.69 —0.99 +1.13 —0.94 +0.21 —0.88 +0.34
Half1l 2.79 £ 0.22 3.05 + 0.48 2.98 +0.19 —0.34 +0.04 —0.27 +0.19 —0.27 £ 0.21
Half2 2.63 + 0.20 2.51 +£0.41 2.58 +0.32 —0.53 + 0.06 —0.223 + 0.16 —0.23 £ 0.10
Half3 2.47 +0.18 2.45 4+ 0.42 2.39 +£0.15 —0.61 + 0.08 —0.557 + 0.27 —0.58 + 0.09
Hopperl 2.39 4+ 0.14 2.76 + 0.04 2.52 4+ 0.11 0.4 £0.02 0.44 + 0.01 0.449 + 0.15
Hopper2 1.54 +0.17 2.06 £ 0.01 1.87 £ 0.02 0.21 4+ 0.04 0.32 + 0.03 0.32 £ 0.03
Hopper3 1.15+0.14 1.43 + 0.02 1.433 + 0.09 0.14 + 0.03 0.25 + 0.22 2.42 +£0.19
Walkerl 3.124+0.2 3.66 + 0.68 3.58 +£ 0.27 0.68 + 0.12 2.77 +£ 0.15 1.99 +0.13
Walker2 2.70 £ 0.2 3.98 + 0.58 3.88 + 0.61 0.28 4+ 0.07 1.36 + 0.82 1.11 +£0.15
Walker3 2.60 +0.18 3.84 +0.45 3.58 + 0.15 0.17 + 0.06 0.65 + 0.12 0.87 £ 0.09
Humanoidl 1.03 £ 0.4 1.12+0.25 1.13 +0.26 0.85 + 0.07 0.97 +0.23 0.98 + 0.24
Humanoid2 1.03+0.3 1.13 +0.15 1.11 + 0.12 0.73 £ 0.07 0.83 + 0.23 0.80 +0.18
Humanoid3 1.01+0.3 1.06 +0.13 1.05 + 0.18 0.57 + 0.04 0.71 + 0.21 0.68 + 0.09

Table 5.2: Result on Robust Benchmark for TD3 ExpectRL and AutoExpectRL. Results are x 103 bigger
for all environments except for Humanoid where results are x 105 bigger.

one critic which coincides with o = 0.5. Finally, the variance is also decreased using our method
compared to TD3 with twin critics or TD3 with one critic. Finally, our method AutoExectRL
allows choosing automatically the expectile almost without loss of performance and outperforming
TD3, except on the environment HalfCheetah. Learning curves can be found in Appendix 19.

5.5 Empirical Results on Robust Benchmark

This section presents an assessment of the worst-case and average performance and generalization
capabilities of the proposed algorithm. The experimental validation was conducted on optimal
control problems utilizing the MuJoCo simulation environments (Todorov et al. 2012). The
performance of the algorithm was systematically benchmarked against state-of-the-art robust
RL M2TD3 as it is state of the art compared to other algorithms methodologies, M3DDPG,
and RARL. Furthermore, a comparative analysis was undertaken with Domain Randomization
(DR) as introduced by Tobin et al. (2017) for a comprehensive evaluation. To assess the worst-
case performance of the policy 7 under varying uncertainty parameters w € €2, following the
benchmark of Tanabe et al. (2022b), 30 evaluations of the cumulative reward were conducted
for each uncertainty parameter value wy,...,wx € Q. Specifically, Ri(m) denotes the cumulative
reward on wy, averaged over 30 trials. Subsequently, Ryorst(7m) = mini<x<x Ri(m) (denoted (w)
in Table 5.2 and 5.3) was computed as an estimate of the worst-case performance of = on €.
Additionally, the average performance was computed as Raverage(T) = 7 S K | Ri(7) (denoted
(m) in Table 5.2 and 5.3). For the evaluation process, K uncertainty parameters ws, ...,wxg were
chosen according to the dimensionality of w: for 1D w, K = 10 equally spaced points on the
1D interval Q; for 2D w, 10 equally spaced points were chosen in each dimension of €, resulting
in K = 100 points; and for 3D w, 10 equally spaced points were selected in each dimension of
), resulting in K = 1000 points or different environments. Each approach underwent policy
training 10 times in each environment. The training time steps Tiax Were configured as 2M, 4M,
and 5M for scenarios with 1D, 2D, and 3D uncertainty parameters respectively, following Tanabe
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DR+ExpectRL(m) M2TD3(m) DR(m) DR+ExpectRL(w) M2TD3(w) DR(w)
Antl 4.84 +0.43 4.51 + 0.08 5.25+ 0.1 3.36 = 0.55 3.84+0.1 3.51 4+ 0.08
Ant2 5.63 £ 0.43 5.44 £+ 0.05 6.32 + 0.09 2.72 + 0.42 4.13 +0.11 1.64 +0.13
Ant3 2.86 + 1.03 2.66 + 0.22 3.62+0.11 0.28 + 0.35 0.10 + 0.10 —0.32 4+ 0.03
Halfl 5.3 + 0.59 3.89 4+ 0.06 5.93 +0.18 2.86 + 0.99 3.14 £ 0.10 3.19 + 0.08
Half2 5.25 + 0.32 4.35 + 0.05 5.79 + 0.15 1.77 £ 0.31 2.61 +0.16 2.124+0.13
Half3 4.52 +0.24 3.79 £ 0.09 5.54 + 0.16 1.02+0.24 0.93 + 0.21 1.09 + 0.06
Hopperl 2.58 +£0.23 2.68 +0.11 2.57 £ 0.15 0.64 + 0.20 0.62 4+ 0.45 0.53 + 0.26
Hopper2 2.53 + 0.22 2.51 +0.07 1.89 + 0.08 0.55 + 0.07 0.53 + 0.28 0.47 £ 0.02
Hopper3 2.21+0.33 0.85 4+ 0.07 1.5+ 0.07 0.39 + 0.07 0.28 +0.25 0.21 4+ 0.03
Walkerl 3.77 £ 0.89 3.70 £ 0.31 3.59 + 0.26 3.41 + 0.05 2.83 +0.39 2.19 + 0.42
Walker2 4.75 + 0.57 4.72 4+ 0.12 4.54 + 0.31 2.74 + 0.61 3.14 + 0.39 2.31 £ 0.51
Walker3 4.39 + 0.37 4.27 £ 0.21 4.48 £ 0.16 1.14 £ 0.79 1.34 +0.43 1.32 £ 0.34
Humanoidl 1.21 +£0.23 1.08 £ 0.04 1.12 £ 0.05 1.04 +0.86 0.93 + 0.07 0.96 + 0.06
Humanoid2 1.23 +£0.22 0.97 £+ 0.04 1.06 £ 0.04 0.86 + 0.28 0.65 + 0.07 0.73 £ 0.78
Humanoid3 1.12+0.35 1.09 £+ 0.06 1.04 £ 0.07 0.84 + 0.26 0.62 4+ 0.06 0.54 + 0.34

Table 5.3: Result on Robust Benchmark for ExpectRL + DR , M2TD3 and DR. Results are x10? bigger
for all environments except for Humanoid results are x10° bigger. The mean performance is denoted (m)
and worst case (w).

et al. (2022b). Table 9.7 summarizes the different changes of parameters in the environments.
The final policies obtained from training were then evaluated for their worst-case performances
and average performance over all uncertainty parameters. The results are the following.

We first demonstrate that our method ExpectR1 is more robust than the classical RL algo-
rithm. To do so, we conduct the benchmark task presented previously on TD3 algorithm (with
twin critic trick) as a baseline and our method ExpectR1l. As exposed in Table 5.2, our method
outperforms TD3 in all environments on worst-case performance, which was expected as TD3
is not designed by nature to be robust and to maximize a worst-case performance. Moreover,
AutoExpectRL has good and similar performance compared to the best expectile like in Table 5.1.
As TD3 has sometimes very bad performance, our method also performs better on average over all
environments except HalfCheetah 2 and HalfCheetah 3. These two environments required more
exploration, and pessimism is in general not a good thing for these tasks. Moreover, robustness
is not needed in HalfCheetah environments that are already quite stable compared to other tasks
in Mujoco. However, ExpectRL needs to be compared with algorithms designed to be robust,
such as M2TD3 which has state-of-the-art performance on this benchmark.

If performance of ExpectRL in Table 5.2 and the performance of M2TD3 in Table 5.3 are
compared, we can observe a large difference on many tasks where M2TD3 outperforms, in general,
our method. This is because sampling trajectories from the entire uncertainty set allows M2TD3
to get knowledge from dangerous trajectories and allows the algorithm to generalize better than
our method, which only samples from the nominal. The comparison between methods is then not
fair for ExpectR1 which has only access to samples from the nominal and this is why the method
ExpectRL + DR was introduced. Receiving information about all environments that need to be
robust during the training phase, the algorithm tends to obtain better performance on minimum
performance over these environments on testing. Table 5.3 shows the result on average and on
worst-case performance between our second method ExpectRL + DR with tuning of « against
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M2TD3 and DR approach. Recall that AutoExpectRL cannot be used with DR as mentioned
at the end of Section 5.3.4.

In terms of worst-case performance, our method outperforms 9 times M2TD3 (8 times in
bold and one time when DR is better in general for HalfCheetaht3) and has a worse performance
on 6 tasks compared to M2TD3. Our method is therefore competitive with the state of the
art in robust algorithms such as M2TD3, which already outperformed M3DDPG and RARL
on worst-case performance. Except on Hopperl, our method outperforms M2TD3 on average,
results which show that M2TD3 is very pessimistic compared to our method. However, in
terms of average results, we can see that DR, which is designed to be good on average across
all environments, generally performs better than our method and M2TD3 expect on Hopper,
Walkerl and 2, and HumanoidStandup which are not stable and need to be robustified to avoid
catastrophic performance that affect too much the mean performance over all environment.
Moreover, compared to M2TD3, our method ExpecRL, even without auto fine-tuning of «, has
the advantage of having fewer parameter tuning compared to the M2TD3 algorithm.

5.6 Conclusion and perspectives

We propose a simple method, ExpectRL to replace twin critic in practice, only replacing the classic
Lo loss of the critic with an expectile loss. Moreover, we show that it can also lead to a Robust
RL algorithm and demonstrate the effectiveness of our method combined with DR on a robust
RL Benchmark. The limitations of our method are that AutoExpectRL allows fine-tuning of «
only without combining with DR. About future perspectives, we demonstrate the effectiveness
of our method using as baselines TD3, but our method can be easily adapted to any algorithm
using a Q-function such as classical DQN, SAC, and other algorithms both with discrete or
continuous action space. Finally, theoretically, it would be interesting to study for example sample
complexity of this method compared to the classical RL algorithm. Finally, in this Chapter, the
agent try to find the best policy against an adversary that can easily pick the worst kernel in
the uncertainty set without any continuity between chosen adversarial transition kernel. In the
following Chapter we will try to relax this assumptions to reduce the influence of the adversary
and get better results, which allow a tradoff between robustness and performances in RL
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6.1 Introduction

Robust MDPs capture the problem of finding a control policy for a dynamical system whose
transition kernel is only known to belong to a defined uncertainty set. The most common
framework for analyzing and deriving algorithms for robust MDPs is that of sa-rectangularity
(Iyengar 2005, Nilim and El Ghaoui 2005), where probability measures on outcome states are
picked independently in different source states and actions (in formal notation, P(s'|s,a) and
P(s'|s,a) are independent of each other). This provides an appreciable decoupling of worst
transition kernel search across time steps and enables sound algorithms like robust value iteration
(RVI). But policies obtained for such sa-rectangular MDPs are by nature very conservative
(Goyal and Grand-Clement 2018, Li et al. 2023), as they enable drastic changes in environment
properties from one time step to the next, and the algorithms derived from RVI tend to yield
very conservative policies even when applied to non-sa-rectangular robust MDP problems.

In this paper, we depart from the rectangularity assumption and turn towards a family of
robust MDPs whose transition kernels are parameterized by a vector 1. This parameter vector
couples together the outcome probabilities in different (s, a) pairs, hence breaking the indepen-
dence assumption that is problematic, especially in large dimension Goyal and Grand-Clement
(2018). This enables accounting for the notion of transition model consistency across states and
actions: outcome probabilities are not picked independently anymore but are rather set across
the state and action spaces by drawing a parameter vector. In turn, we examine algorithms
for solving such parameter-based robust MDPs when the parameter is constrained to follow a
bounded evolution throughout time steps. Our contributions are the following.

1. We introduce a formal definition for parametric robust MDPs and time-constrained robust
MDPs, discuss their properties and derive a generic algorithmic framework (Sec. 6.2).
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2. We propose three algorithmic variants for solving time-constrained MDPs, named vanilla
TC, Stacked-TC and (Sec. 6.4), which use different levels of information in
the state space, and come with theoretical guaranties (Sec. 6.6).

3. These algorithms are extensively evaluated in MuJoCo (Todorov et al. 2012) benchmarks,
demonstrating they lead to non-conservative and robust policies (Sec. 6.5).

6.2 Problem statement

(Robust) MDPs. A Markov Decision Process (MDP) (Puterman 2014) is a model of a discrete-
time, sequential decision making task. At each time step, from a state s; € S of the MDP, an
action a; € A is taken and the state changes to s;y1 according to a stationary Markov transition
kernel P(s;4+1|s¢,at), while concurrently receiving a reward r(s¢, a;). S and A are measurable sets
and we write A(S) and A(A) the set of corresponding probability distributions. A stationary
policy 7(-|s) is a mapping from states to distributions over actions, prescribing which action
should be taken in s. The value function V™F of policy 7 maps state s to the expected discounted
sum of rewards Ep [>", 7'r] when applying 7 from s for an infinite number of steps. An optimal
policy for an MDP is one whose value function is maximal in any state. In a Robust MDP
(RMDP) (Iyengar 2005, Nilim and El Ghaoui 2005), the transition kernel P is not set exactly
and can be picked in an adversarial manner at each time step, from an uncertainty set 7. Then,
the pessimistic value function of a policy is VA (s) = minpep V™F(s). An optimal robust policy
is one that has the largest possible pessimistic value function V3 in any state, hence yielding
an adversarial max, minp optimization problem. Robust Value Iteration (RVI) (Iyengar 2005,
Wiesemann et al. 2013) solves this problem by iteratively computing the one-step lookahead best
pessimistic value:

J— * Pyp— 1 /
Vn-i—l(s) = T’PVTL(S) T ﬂ(sI)IéaAX(A) glel% anw(s) [7‘(57 CL) + EP{Vn(S )H

The T’; operator is called the robust Bellman operator and the sequence of v, functions converges
to the robust value function v} as long as the adversarial transition kernel belongs to the simplex

of A(S).

Zero-sum Markov Games. Robust MDPs can be cast as zero-sum two-players Markov
games (Littman 1994, Tessler et al. 2019) where B is the action set of the adversarial player.
Writing 7 : § x A — Ap the policy of this adversary, the robust MDP problem turns to
max, minz V™7, where v™7 (s) is the expected sum of discounted rewards obtained when playing
7 (agent actions) against 7 (transition models) at each time step from s. This enables introducing
the robust value iteration sequence of functions

Voa1(8) :=T**V,,(s) ;= max min TV, (s
+1(5) (s) n(s)EA(A) 7(s,a)EA(S) ()

where T™7 := Equn(s)[r(s,a) + VEg oz (s,a)Va(s)] is a zero-sum Markov game operator. These
operators are also y—contractions and converge to their respective fixed point V™™ and V** = vz
Tessler et al. (2019). This formulation will be useful to derive a practical algorithm in Section 6.4.

Often, this convergence is analyzed under the assumption of sa-rectangularity, stating that
the uncertainty set P is a set product of independent subsets of A(S) in each s, a pair. Quoting
Iyengar (2005), rectangularity is a sort of independence assumption and is a minimal requirement
for most theoretical results to hold. Within robust value iteration, rectangularity enables picking
7(s¢, ar) completely independently of 7(s;—1,a;—1). To set ideas, let us consider the robust MDP
of a pendulum, described by its mass and rod length. Varying this mass and rod length spans the
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uncertainty set of transition models. The rectangularity assumption induces that 7(s¢, a;) can
pick a measure in A(S) corresponding to a mass and a length that are completely independent
from the ones picked in the previous time step. While this might be a good representation in
some cases, in general it yields policies that are very conservative as they optimize for adversarial
configurations which might not occur in practice.

We first step away from the rectangularity assumption and define a parametric robust MDP
as an RMDP whose transition kernels are spanned by varying a parameter vector v (typically
the mass and rod length in the previous example). Choosing such a vector couples together the
probability measures on successor states from two distinct (s,a) and (s,a’) pairs. The main
current robust deep RL algorithms actually optimize policies for such parametric robust MDPs
but still allow the parameter value at each time step to be picked independently of the previous
time step.

Parametric MDPs. A parametric RMDP is given by the tuple (S, A, ¥, Py, r) where the
transition kernel Py(s,a) € A(S) is parameterized by 1, and ¥ is the set of values 9 can take,
equipped with an appropriate metric. This yields the robust value iteration update :

V,t1(s) = max min7[V,(s):= max minE,_ r(s,a) +YEg . V., (s)].
n+1( ) 7(s)CA(A) HEV P n( ) 7(s)CA(A) HEV a TI'(S)[ ( ) YEs'~ Py (s,a) n( )]
A parametric RMDP remains a Markov game and the Bellman operator remains a contraction
mapping as long as Py, can reach only elements in the simplex of A(S), where the adversary’s
action set is the set of parameters instead of a (possibly sa-rectangular) set of transition kernels.

Time-constrained RMDPs (TC-RMDPs). We introduce TC-RMDPs as the family of
parametric RMDPs whose parameter’s evolution is constrained to be Lipschitz with respect to
time. More formally a TC-RMDP is given by the tuple (S, A, ¥, Py, r, L), where ||¢1 — 9| < L,
that is the parameter change is bounded through time. In the previous pendulum example, this
might represent the wear of the rod which might lose mass or stretch length. Similarly, and
for a larger scale illustration, TC-RMDPs enable representing the possible evolutions of traffic
conditions in a path planning problem through a busy town. Starting from an initial parameter
value v_1, the pessimistic value function of a policy 7 is non-stationary, as 1y is constrained to
lay at most L-far away from _1, 11 from 19, and so on. Generally, this yields non-stationary
value functions as the uncertainty set at each time step depends on the previous uncertainty
parameter. To regain stationarity without changing the TC-RMDP definition, we first change
the definition of the adversary’s action set. The adversary picks its actions in the constant set
B = B(0y, L), which is the ball of radius L centered in the null element in ¥. In turn, the state
of the Markov game becomes the pair s, and the Markov game itself is given by the tuple
((Sx W), A, B, Py,r), where the Lipschitz constant L is included in B. Thus, given an action
by € B and a previous parameter value v;_1, the parameter value at time ¢ is ¥y = ¥y_1 + b;.
Then, we define the pessimistic value function of a policy as a function of both the state s and
parameter :

Vg(‘s?w) = min E[Z’}/trt"lp_l:'1/1,3():S,btEB,T/Jt:T/Jt_l—i-bt,CLN?T,StNPwt,

(bt)ten,
bieB

Vi (s,9) = S hax V5 (5,7).

In turn, an optimal robust policy is a function of s and 1 and the TC robust Bellman operators are:

Vat1(s,¥) :=Tgon(s,¢) :=  max  TgVu(s, ),

W(S,l/})eAA

= inE,. , Evop. . (sa)Val(s' 0+ b).
qomax, mink, () [7(5,0) +YEg b,y (s,0) V(8,1 + )]

This iteration scheme converges to a fixed point according to Th. 6.2.1.
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Theorem 6.2.1. The time-constrained (TC) Bellman operators TS and Tj are contraction
mappings. Thus the sequences Vi1 = TGV and Vi1 = Tg v, converge to their respective fized
points V§ and V.

Proof of Th. 6.2.1 can be found in Appendix 25. We refer to this formulation as algorithm
(see Section 6.4 for implementation details) since an oracle makes the current
parameter ¢ visible to the agent. Therefore, it is possible to derive optimal policies for TC-
RMDPs by iterated application of this TC Bellman operator. These policies have the form
7(s,1). In the remainder of this paper, we extend state-of-the-art robust deep RL algorithms
to the TC-RMDP framework. In particular, we compare their performance and robustness
properties with respect to classical robust MDP formulations, we also discuss their relation with
the 7(s) robust policies of classical robust MDPs.

If the agent is unable to observe the state variable 1, it is not possible to guarantee the
existence of a stationary optimal policy of the form 7(s). Similarly, there is no guarantee of
convergence of value functions to a fixed point. Nonetheless, this scenario, in which access to the
1) parameter is not available, is more realistic in practice. It turns the two-player Markov game
into a partially observable Markov game, where one can still apply the TC Bellman operator but
without these guarantees of convergence. We call vanilla TC the repeated application of the TC
Bellman operator in this partially observable case. Vanilla TC will be tested in practice, and some
theoretical properties of the objective function will be derived using the Lipschitz properties (Sec
6.6).

6.3 Related works

Since our method is a non-rectangular, Deep Robust RL algorithm, (possibly non-stationary for
Stacked-TC and TC ), we discuss the following related work.

Non-stationary MDPs. First, non-stationarity has been studied in the Bandits setting
in Garivier and Moulines (2008). Then, for episodic, non-stationary MDPs Even-Dar et al.
(2004), Abbasi Yadkori et al. (2013), Lecarpentier and Rachelson (2019) have explored and
provided regret bounds for algorithms that use oracle access to the current reward and transition
functions. More recently Gajane et al. (2018), Cheung et al. (2019) have facilitated oracle access
by performing a count-based estimation of the reward and transition functions based on the
recent history of interactions. Finally, for tabular MDPs, past data from a non-stationary MDP
can be used to construct a full Bayesian model Jong and Stone (2005) or a maximum likelihood
model Ornik and Topcu (2019) of the transition dynamics. We focus on the setting not restricted
to tabular representations.

Non-rectangular RMDPs. While rectangularity in practice is very conservative, it can be
demonstrated that, in an asymptotic sense, non-rectangular ellipsoidal uncertainty sets around the
maximum likelihood estimator of the transition kernel constitute the smallest possible confidence
sets for the ground truth transition kernel, as implied by classical Cramér-Rao bounds. This is in
accordance with the findings presented in § 5 and Appendix A of Wiesemann et al. (2013). More
recently, Goyal and Grand-Clement (2018) extends the rectangular assumptions using a factored
uncertainty model, where all transition probabilities depend on a small number of underlying
factors denoted wy, ..., w, € RS, such that each transition probability Ps, for every (s,a) is
a linear (convex) combination of these r factors. Finally, Li et al. (2023) use policy gradient
algorithms for non-rectangular robust MDPs. While this work presents nice theoretical guarantees
of convergence, there is no practical Deep RL algorithms for learning optimal robust policies.



103 6.4. Time-constrained robust MDP algorithms

Deep Robust RL Methods. Many Deep Robust algorithms exist such as M2TD3 Tanabe
et al. (2022a), M3DDPG Li et al. (2019a), or RARL Pinto et al. (2017), which are all based
on the two player zero-sum game presented in 6.2. We will compare our method against these
algorithms, except Li et al. (2019a) which is outperformed by Tanabe et al. (2022a) in general.
We also compare our algorithm to Domain randomization (DR) Tobin et al. (2017) that learns
a value function V(s) = maxz E,p)V, (s) which maximizes the expected return on average
across a fixed (generally uniform) distribution on P. As such, DR approaches do not optimize
the worst-case performance but still have good performance on average. Nonetheless, DR has
been used convincingly in applications Mehta et al. (2020b), Akkaya et al. (2019). Finally,
the zero-sum game formulation has lead to the introduction of action robustness Tessler et al.
(2019) which is a specific case of rectangular MDPs, in scenarios where the adversary shares
the same action space as the agent and interferes with the agent’s actions. Several strategies
based on this idea have been proposed. One approach, the Game-theoretic Response Approach
for Adversarial Defense (GRAD) (Liang et al. 2023) builds on the Probabilistic Action Robust
MDP (PR-MDP) (Tessler et al. 2019). This method introduces time-constrained perturbations
in both the action and state spaces and employs a game-theoretic approach with a population
of adversaries. In contrast to GRAD, where temporal disturbances affect the transition kernel
around a nominal kernel, our method is part of a broader setting in which the transition kernel
is included in a larger uncertainty set. Robustness via Adversary Populations (RAP) (Vinitsky
et al. 2020) introduces a population of adversaries. This approach ensures that the agent develops
robustness against a wide range of potential perturbations, rather than just a single one, which
helps prevent convergence to suboptimal stationary points. Similarly, State Adversarial MDPs
(Zhang et al. 2020; 2021, Stanton et al. 2021, Liang et al. 2023) address adversarial attacks on
state observations, effectively creating a partially observable MDP. Finally, using rectangularity
assumptions, (Abdullah et al. 2019, Clavier et al. 2022) use Wasserstein and x? balls respectively
for the uncertainty set in Robust RL.

6.4 Time-constrained robust MDP algorithms

The TC-RMDP framework addresses the limitations of traditional robust reinforcement learning
by considering multifactorial, correlated, and time-dependent disturbances. Traditional robust
reinforcement learning often relies on rectangularity assumptions, which are rarely met in real-
world scenarios, leading to overly conservative policies. The TC-RMDP framework provides a
more accurate reflection of real-world dynamics, moving beyond the conventional rectangularity
paradigm.

We cast the TC-RMDP problem as a two-player zero-sum game, where the agent inter-
acts with the environment, and the adversary (nature) changes the MDP parameters 1. Our
approach is generic and can be derived within any robust value iteration scheme, perform-
ing maxn(s)ea(4) Minyew Eqn(s)[7(8,a) + YEgwp, (s,a)0n(s")] updates, by modifying the adver-
sary’s action space and potentially the agent’s state space to obtain updates of the form
MaXr(s e, MiNpes Equn(s)[7(8, @) +7Egp,,,(s,a)Va(s')]. In Section 6.5, we will introduce time
constraints within two specific robust value iteration algorithms, namely RARL Pinto et al.
(2017) and M2TD3 Tanabe et al. (2022a) by simply limiting the search space for worst-case 1 at
each step. This specific implementation extends the original actor-critic algorithms. For the sake
of conciseness, we refer the reader to Appendix 28.1 for details regarding the loss functions and
algorithmic details.

Three variations of the algorithm are provided (illustrated in Figure 7.2) but all fall within
the training loop of Algorithm 6.
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Figure 6.1: TC-RMDP training involves a temporally-constrained adversary aiming to maximize the
effect of temporally-coupled perturbations. Conversely, the agent aims to optimize its performance against
this time-constrained adversary. In , the oracle observation, and in blue the stacked observation.

Algorithm 6: Time-constrained robust training
Input: Time-constrained MDP: (S, A, ¥, Py, r, L), Agent m, Adversary 7
1 for each interaction time step t do

3 or ay ~ my(S¢, Gr—1, St—1) // Sample an action with Stacked-TC
4 or a; ~ my(S¢) // Sample an action with TC
5 Ury1 ~ TSty ag, Pr) // Sample the worst TC parameter
6 Sp41 ~ Py, (54, a¢) // Sample a transition
7 B« BU{(st,at,r (st,at) , 0,41, 8141)}  // Add transition to replay buffer
8 {Siaai,T(Si,ai),%,%H,5i+1}¢6[17N] ~ B // Sample a mini-batch of
transitions
9 mi41 < UpdatePolicy(m) // Update Agent
10 Ty <+ UpdatePolicy(m,) // Update Adversary
. As discussed in Section 6.2, the version includes the MDP state
and parameter value as input, . This method assumes that the agent has access

to the true parameters of the environment, allowing it to make the most informed decisions
and possibly reach the true robust value function. However, these parameters v are sometimes
non-observable in practical scenarios, making this method not always feasible.

Stacked-TC . Since 1 might not be observable but may be approximately identified by the
last transitions, the Stacked-TC policy uses the previous state and action as additional inputs
in an attempt to replace ¥, m: S x A x § — A. This approach leverages the information in the
transitions, even though it might be insufficient for a perfect estimate of 1. It aims to retain
(approximately) the convergence properties of the algorithm.

Vanilla TC . Finally, the vanilla TC version takes only the state, 7 : S — A, as input, similar
to standard robust MDP policies. This method does not attempt to infer the environmental
parameters or the transition dynamics explicitly. Instead, it relies on the current state information
to guide the agent’s actions. While this version is the most straightforward and computationally
efficient, it may not perform as robustly as the or Stacked-TC versions in environ-
ments with significant temporal disturbances, since it attempts to solve a partially observable
Markov game, for which there may not exist a stationary optimal policy based only on the
observation. Despite this, it remains a viable option in scenarios where computational simplicity
and quick decision-making are prioritized.
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6.5 Results

Experimental settings. This section evaluates the robust time-constrained algorithm’s per-
formance under severe time constraints and in the static settings. Experimental validation was
conducted in continuous control scenarios using the MuJoCo simulation environments (Todorov
et al. 2012). The approach was categorized into three variants. The , where the
agent accessed environmental parameters (s, 1); the Stacked-TC , where the agent took in
input 7(s¢, $¢—1,a¢—1); and the vanilla TC , which did not receive any additional inputs 7 (s). For
each variant of the time-constrained algorithms, we applied them to RARL (Pinto et al. 2017),
and M2TD3 Tanabe et al. (2022a), renaming them TC-RARL and TC-M2TD3, respectively.
The algorithms were tested against two state-of-the-art robust reinforcement learning algorithms,
M2TD3 and RARL. Additionally, the Oracle versions of M2TD3 and RARL, where the agent’s
policy included v in the input 7 : & x ¥ — A, were evaluated for a more comprehensive
assessment. Comparisons were also made with Domain Randomization (DR) (Tobin et al. 2017)
and vanilla TD3. (Fujimoto et al. 2018) to ensure a thorough analysis. A 3D uncertainty set
is defined in each environment P normalized between [0,1]3. Appendix 30 provides detailed
descriptions of uncertainty parameters. Performance metrics were gathered after five million
steps to ensure a fair comparison. All baselines were constructed using TD3, and a consistent
architecture was maintained across all TD3 variants. The results presented below were obtained
by averaging over ten distinct random seeds. Appendices 37.3, 37.2, 37.1, and 35 discuss further
details on hyperparameters, network architectures, and implementation choices, including training
curves for our methods and baseline comparisons. In the following tables 6.1, 7.6, 7.7, the best
performances are shown in bold. Oracle methods, with access to optimal information, are shown
in black. Items in bold and green represent the best performances with limited information on
1, making them more easily usable in many scenarios. When there is only one element in bold
and green, this implies that the best overall method is a non-oracle method.

Ant HalfCheetah | Hopper Humanoid Walker Agg.

Oracle M2TD3 1.11£0.07 | 0.95+£0.1 1.51 £0.84 2.07+0.19 1.31 £0.36 1.39 £0.31
Oracle RARL 0.72+0.18 | —0.71+£0.05 | —1.3+0.28 | —2.8+1.62 | —0.19+£0.2 | —0.86+0.47

-M2TD3 1.61+£0.32 | 2.76+0.16 | 7.79+1.0 1.69+2.14 1.49+0.41 3.07+0.81

-RARL 1.66 £0.32 | 2.63 £0.12 6.86 + 1.46 0.19 £ 1.68 1.34 +0.11 2.54+0.74
Stacked-TC -M2TD3 | 1.33+0.21 | 2.4 +0.19 6.51 +0.59 | —1.424+1.44 | 1.69 4+ 0.33 | 2.1 +0.55
Stacked-TC -RARL 1.48+£0.22 | 1.76 £0.08 3.28£0.27 1.39 £0.57 1.01+£0.21 1.78 £0.27
TC -M2TD3 1.52+£0.2 2.42 £+ 0.1 5.16 £0.2 4.02 +1.23 | 1.38 £0.25 29+0.4
TC -RARL 1.57+£0.26 | 1.54+0.15 2.04 £0.49 1.25£1.91 0.89+0.2 1.46 £ 0.6
TD3 0.0£0.19 0.0 +£0.27 0.0+1.27 0.0+1.18 0.0+0.23 0.0+0.63
DR 1.58 £0.2 | 1.59+0.12 2.28 £0.42 0.87+1.79 1.03 +0.19 1.47 £ 0.54
M2TD3 1.0+0.19 1.0+£0.14 1.0 £ 0.96 1.0£1.31 1.0£0.31 1.0 £0.58
RARL 0.63+0.2 —0.61+£0.18 | —1.5+0.33 | 0.8£0.88 0.27+£0.25 —0.08 £0.37

Table 6.1: Avg. of normalized time-coupled worst-case performance over 10 seeds for each method
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Performance of TCRMDPs in worst-case time-constrained. Table 6.1 reports
the worst-case time-constrained perturbation. To address the worst-case time-constrained
perturbations for each trained agent 7*, we utilized a time-constrained adversary using TD3
algorithm 7" = minpes Equr(s) bnr(s,0,) [1(8: @) + VEsopy 4 (s,0)Vn(8')] within a perturbation
radius of L = 0.001 for a total of 5 million steps. The sum of episode rewards was averaged
over 10 episodes. To compare metrics across different environments, each method’s score v was
standardized relative to the reference score of TD3. TD3 was trained on the environment using
default transition function parameters, with its score denoted as vyps. The M2TD3 score, varorps,
was used as the comparison target. The formula applied was (v —vrps)/(|vamrarps — vrps|). This
positioned vyps as the minimal baseline and vyo7p3s as the target score. This standardisation
provides a metric that quantifies the improvement of each method over TD3 in relation to the
improvement of M2TD3 over TD3. In each evaluation environment, agents trained with the
time-constrained framework (indicated by TC in the method name) demonstrated significantly
superior performance compared to those trained using alternative robust reinforcement learning
approaches, including M2TD3 and RARL. Furthermore, they outperformed those trained through
domain randomisation (DR). Notably, even without directly conditioning the policy with 1),
the time-constrained trained policies excelled against all baselines, achieving up to a 2.9-fold
improvement. The non-normalized scores are reported in Appendix 31. Additionally, when
policies were directly conditioned by % and trained within the robust reinforcement learning
framework, they tended to be overly conservative in the time-constrained framework. This is
depicted in Table 6.1, comparing the performances of Oracle RARL, Oracle M2TD3, Oracle
TC-RARL, and Oracle TC-M2TD3. Both policies also observe 1. The only difference is that
Oracle RARL and Oracle M2TD3 were trained in the robust reinforcement learning framework,
while Oracle TC-RARL and Oracle TC-M2TD3 were trained in the time-constrained framework.
The performance differences under worst-case time-coupled perturbation are as follows: for
Oracle RARL (resp. M2TD3) and Oracle TC-RARL (resp. M2TD3), the values are —0.86
(1.39) vs. 2.54 (3.07). This observation highlights the need for a balance between robust
training and flexibility in dynamic conditions. A natural question arises regarding the worst-case
time-constrained perturbation. Was the adversary in the loop adequately trained, or might its
suboptimal performance lead to overestimating the trained agent’s reward against the worst-
case perturbation? The adversary’s performance was monitored during its training against all
fixed-trained agents. The results in Appendix 29 show that our adversary converged.

Robust Time-Constrained Training under various time fixed adversaries. The
method was evaluated against various fixed adversaries, focusing on the random fixed adversary
shown in Figure 6.2. This evaluation shows that robustly trained agents can handle dynamic and
unpredictable conditions. The random fixed adversary simulates stochastic changes by selecting
a parameter ¢, at each timestep within a radius of L = 0.1. This radius is 100 times larger
than in our training methods. At the start of each episode, 1 is uniformly sampled from the
uncertainty set 1y ~ U(P). This tests the agents’ adaptability to unexpected changes. Figures
6.2a through 6.2e show our agents’ performance. Agents trained with our robust framework
consistently outperformed those trained with standard methods. The policy was also assessed
against five other fixed adversaries: cosine, exponential, linear, and logarithmic. Detailed results
are provided in the Appendix. 31.1.

Performance of Robust Time-Constrained MDPs in the static setting. In static
environments, the Robust Time-Constrained algorithms were evaluated for worst-case and average
performance metrics, shown in Tables 7.6 and 7.7. A fixed uncertainty set P was used, dividing
each dimension of ¥ into ten segments, creating a grid of 1000 points (10%). Each agent ran
five episodes at each grid point, and the rewards were averaged. The scores were normalized as
described for the time-constrained adversary analysis in Table 6.1. The raw data is provided in
Appendix 9.27 and 9.28. Performance scores were adjusted relative to the baseline vyrps and
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Figure 6.2: Evaluation against a random fixed adversary, with a radius L = 0.1

varoTp3- As a result, normalized results reveal distinct trends among agent configurations within
the TC-RMDP framework. The Oracle TC-M2TD3 variant achieved an average score of 3.12
7.7, while the Stacked TC-M2TD3 scored 2.23, indicating its resilience. Furthermore, in the
worst-case scenario, the TC-RARL and Stacked TC-RARL variants demonstrated adaptability,
with TC-RARL scoring 0.92 and TC-M2TD3 scoring 1.02 7.6. This performance highlights its
reliability in challenging static environments.

6.6 Some Theoretical properties of TC-MDPS

6.6.1 On the optimal policy of TC

Following Lemma 3.3 of (Iyengar 2005), it is known that in the rectangular case, there exists an
optimal policy of the adversary that is stationary, provided that the actor policy is stationary.
The TC-RMDP definition enforces a limitation on the temporal variation of the transition kernel.
Consequently, all stationary adversarial policies are constrained by this stipulation. In turn, this
guarantees that (under the hypothesis of sa-rectangularity) there always exists a solution to the
TC-RMDP that is also a solution to the original RMDP. In other words: optimizing policies for
TC-RMDPs do not exclude optimal solutions to the underlying RMDP. This sheds an interesting
light on the search for robust optimal policies, since TC-RMDPs shrink the search space of
optimal adversarial policies. In practice, this is confirmed by the previous experimental results
(Figure 7.6) where the optimal agent policy found by either Oracle-TC, Stacked-TC , or vanilla
TC actually outperforms the one found by M2TD3 or RARL in the non time-constrained setting.

6.6.2 Some Lipchitz-properties for non-stationary TC-RMPDS

In this subsection we slightly depart from the framework defined in Section 6.2 and study
the smoothness of the robust objective for vanilla TC or Stacked-TC . Th. 6.2.1 is no longer
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Ant HalfCheetah | Hopper Humanoid Walker Agg
Oracle M2TD3 1.02+0.19 | 0.34£0.23 0.97 £0.55 3.9+3.65 0.3+£0.45 1.314+1.01
Oracle RARL 0.62 £ 0.32 0.1 £0.02 0.48 £0.19 —2.09+2.18 | 0.16 £0.21 —0.25 £ 0.58
-M2TD3 0.1£0.25 1.87+0.1 0.49 £1.07 —0.8£3.050 | 0.28+0.38 0.39 £0.97
-RARL 0.59 + 0.36 1.55 £0.35 0.4+0.16 1.19+1.24 0.56 + 0.39 0.86 £ 0.5
Stacked-TC -M2TD3 | —0.05+0.09 | 1.56 4+ 0.16 | 1.08 + 0.89 —-0.83+£2.62 | 1.12+ 0.5 0.58 £ 0.85
Stacked-TC -RARL 0.07£0.13 0.76 £ 0.34 1.354+0.93 | 1.75 £ 2.48 | 0.67 £0.32 0.92+£0.84
TC -M2TD3 —0.06 £0.08 | 1.49 £0.23 1.29 £0.29 1.21+2.44 1.194+0.34 | 1.02 £+ 0.68
TC -RARL 0.14£0.24 0.89 £ 0.3 1.5£0.76 1.4 +£4.57 0.67 £0.59 0.92 +1.29
TD3 0.0£0.34 0.0 £0.06 0.0£0.21 0.0 £2.27 0.0£0.1 0.0£0.6
DR 0.06 +0.16 1.07£0.36 0.86 + 0.82 0.04+4.1 0.57 +0.37 0.52 £ 1.16
M2TD3 1.0 &+ 0.27 1.0+0.16 1.0+ 0.65 1.0+ 3.32 1.0+ 0.63 1.0+1.01
RARL 0.44+0.3 0.13 +0.08 0.5 £0.22 0.44 +2.94 0.12 +0.09 0.33 £0.73
Table 6.2: Avg. of normalized static worst-case performance over 10 seeds for each method
Ant HalfCheetah | Hopper Humanoid Walker Agg
Oracle M2TD3 1.13 £0.08 1.56 £ 0.24 1.12 £ 0.46 1.96 £1.53 1.23£0.3 1.4 +£0.52
Oracle RARL 0.7+ 0.22 —1.44+013 | —0.77+£0.24 | —2.6 £2.88 —1.13+£0.84 | —1.04 £ 0.86
-M2TD3 1.73 £0.09 4.35+0.26 | 5.54+0.13 | 212+14 1.84 +£0.37 3.12+0.45
-RARL 1.78 £0.02 | 4.324+0.21 5.08 £0.48 0.42+£2.9 1.68 £ 0.24 2.66 £ 0.77
Stacked-TC -M2TD3 | 1.45+0.38 3.78 £0.29 | 5.2 4+ 0.29 —1.38 +1.67 | 2.11 & 0.52 | 2.23 +0.63
Stacked-TC -RARL 1.52+£0.11 2.29 +0.23 2.91 +0.67 1.14 £2.19 1.21 £0.46 1.81+£0.73
TC -M2TD3 1.6 £ 0.06 3.71+0.24 4.44+0.6 3.28 +£2.52 | 1.56 +£0.23 2.91 +0.73
TC -RARL 1.67 £ 0.07 | 2.27+0.22 1.79 £ 0.53 0.89 +2.19 1.01 £0.21 1.53 £0.64
TD3 0.0+0.49 0.0+0.22 0.0 +£0.83 0.0 +1.36 0.0£0.51 0.0 £0.68
DR 1.65 £ 0.05 2.31+£0.27 2.08 +0.49 1.15 £ 247 1.22+£0.34 1.68 £0.72
M2TD3 1.0+0.11 1.0+0.19 1.0+£0.55 1.0+ 1.43 1.0 £ 0.65 1.0+ 0.59
RARL 0.69 +0.13 —-1.3+£054 | —0.99+£0.11 | 047 +£1.92 —0.35+0.83 | —0.3+0.71

Table 6.3: Avg. of normalized static average case performance over 10 seeds for each method
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applicable as v is not observed. However, we can still give smoothness of the objective starting
from Lipchichz conditions on the evolution of the parameter that leads to smoothness on reward
and transition kernel in the following definition 6.6.1.

Definition 6.6.1 (Reward/Kernel Lipchitz TC-RMDPs (Lecarpentier and Rachelson 2019)).
We say that a parametric RDMPs is time constrained if the parameter change is bounded through
time ie. |11 — Y]] < L. Moreover, we assume that this variation in parameter implies a
variation in the reward and transition kernel of

Vs € §,Va € Aa ||Pt( | S,(I) - Pt+1(' | 5)"’)”1 <Lp ;|rt(57a) _rtJrl(sva)‘ <L,.

From a theoretical point of view, a TC-RMDP can be seen as a sequence of stationary MDPs
with time indexed reward and transition kernel r;, P; that have continuity. More formally for
M; = (S, A, ¥, Py,,r¢,L = (Lp, L)), we can then define the sequence of stationary MDPs with
Lipchitz variation :

Mp = {{My},_, 3L, €RVs € S,Va € A,

Py, (-] 5,0) = Py, (| s,0)|, < Lp

[rr(s,a) = roa (s,0)] < Ly} (6.1)

Defining 7 as the random variable corresponding to the reward function at time step ¢ for
stationary MDPs, but iterating with index k, the stationary rollout return at time ¢ is G(mw, M) =
S k07 rE. Assuming that at a fixed ¢ the reward and transition kernel r;, P; are fixed, the
robust objective function is:

JE(m,t) = min E[G (m,m)] .
m:{m;}i,:toe./\/lf

This leads to the following guarantee for vanilla TC and Stacked-TC algorithms.

Theorem 6.6.1. Assume TC-RMPDS with L = (L., Lp) smoothness. Then ¥t € N,r, € [0, 1],

Vt e NT Vg € N, [JB(m, to) — JB(m to + t)| < L't (6.2)
with L' = (2 L + £5 Ly )

This theorem states that a small variation of the Kernel and reward function will not affect
too much the robust objective. In other terms, despite the fact that the TC Bellman operator
may not admit a fixed point and yield a non-stationary sequence of value functions, variations of
the expected return remain bounded. Proof of the Th. 6.6.1 can be found in Appendix 26.

6.7 Conclusion

This paper presents a novel framework for robust reinforcement learning, which addresses the
limitations of traditional methods that rely on rectangularity assumptions. These assumptions
often result in overly conservative policies, which are not suitable for real-world applications
where environmental disturbances are multifactorial, correlated, and time-constrained. In order
to overcome these challenges, we proposed a new formulation, the Time-Constrained Robust
Markov Decision Process (TC-RMDP). The TC-RMDP framework is capable of accurately
capturing the dynamics of real-world environments, due to its consideration of the temporal
continuity and correlation of disturbances. This approach resulted in the development of three
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algorithms: The three algorithms, , Stacked-TC , vanilla TC which differ in the
extent to which environmental information is incorporated into the decision-making process.
A comprehensive evaluation of continuous control benchmarks using MuJoCo environments
has demonstrated that the proposed TC-RMDP algorithms outperform traditional robust RL
methods and domain randomization techniques. These algorithms achieved a superior balance
between performance and robustness in both time-constrained and static settings. The results
confirmed the effectiveness of the TC-RMDP framework in reducing the conservatism of policies
while maintaining robustness. Moreover, we provided theoretical guaranties for

in Th. 6.2.1 and for Stacked-TC and vanilla TC in Th. 6.6.1. This study contributes to the
field of robust reinforcement learning by introducing a time-constrained framework that more
accurately reflects the dynamics observed in real-world settings. The proposed algorithms and
theoretical contributions offer new avenues for the development of more effective and practical RL
applications in environments with complex, time-constrained uncertainties. In the next Chapter,
we will provide a new Robust RL benchmark based on Mujoco to evaluate Robustness of RL
algorithm and improve reproducibility of Robust RL algorithm.
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7.1 Introduction

Reinforcement learning (RL) algorithms frequently encounter difficulties in maintaining perfor-
mance when confronted with dynamic uncertainties and varying environmental conditions. This
lack of robustness significantly limits their applicability in the real world. Robust reinforcement
learning addresses this issue by focusing on learning policies that ensure optimal worst-case per-
formance across a range of adversarial conditions. For instance, an aircraft control policy should
be capable of effectively managing various configurations and atmospheric conditions without
requiring retraining. This is critical for applications where safety and reliability are paramount
to avoid a drastic decrease in performance Morimoto and Doya (2005), Tessler et al. (2019).

The concept of robustness, as opposed to resilience, places greater emphasis on maintaining
performance without further training. In robust reinforcement learning (RL), the objective is
to optimize policies for the worst-case scenarios, ensuring that the learned policies can handle
the most challenging conditions. This framework is formalized through robust Markov decision
processes (MDPs), where the transition dynamics are subject to uncertainties. Despite significant
advancements in robust RL algorithms, the field lacks standardized benchmarks for evaluating
these methods. This hampers reproducibility and comparability of experimental results (Moos
et al. 2022). To address this gap, we introduce the Robust Reinforcement Learning Suite, a
comprehensive benchmark suite designed to facilitate rigorous evaluation of robust RL algorithms.

The Robust Reinforcement Learning Suite (RRLS) provides six continuous control tasks based
on Mujoco Todorov et al. (2012) environments, each with distinct uncertainty sets for training
and evaluation. By standardizing these tasks, RRLS enables reproducible and comparable
experiments, promoting progress in robust RL research. The suite includes four compatible
baselines with the RRLS benchmark, which are evaluated in static environments to demonstrate
their efficacy. In summary, our contributions are the following :
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e Our first contribution aims to establish a standardized benchmark for robust RL, addressing
the critical need for reproducibility and comparability in the field (Moos et al. 2022). The
RRLS benchmark suite represents a significant step towards achieving this goal, providing
a robust framework for evaluating state-of-the-art robust RL algorithms.

e Our second contribution is a comparison and evaluation of different Deep Robust RL
algorithms in Section 7.5 on our benchmark, showing the pros and cons of different
methods.

7.2 Problem statement

Reinforcement learning. Reinforcement Learning (RL) (Sutton and Barto 2018) addresses
the challenge of developing a decision-making policy for an agent interacting with a dynamic
environment over multiple time steps. This problem is modeled as a Markov Decision Process
(MDP) (Puterman 2014) represented by the tuple (S,.A, P,r), which includes states S, actions
A, a transition kernel P(s;4+1|s¢,a¢), and a reward function r(s;, a;). For simplicity, we assume
a unique initial state sg, though the results generalize to an initial state distribution pp(s). A
stationary policy 7(s) € A(A) maps states to distributions over actions. The objective is to find
a policy m that maximizes the expected discounted return

o0

JT = EsgmplV™ (50)] = E{Z’Ytr(styat)!at ~ T, 841 ~ P, so ~ ﬂ}, (7.1)
t=0

where V™ is the value function of 7, v € [0,1) is the discount factor, and sq is drawn from the
initial distribution p. The value function V™ of policy 7 assigns to each state s the expected
discounted sum of rewards when following 7 starting from s and following transition kernel p.
An optimal policy 7* maximizes the value function in all states. To converge to the (optimal)
value function, the value iteration (VI) algorithm can be applied, which consists in repeated
application of the (optimal) Bellman operator 7** to value functions:

Vot1(s) = T Va(s) == 7r(Sr)réan(A) Eamrn(s)lr(s,a) + Ep[Va(s)]]. (7.2)

Finally, the @ function is also defined similarly to Equation (7.1) but starting from specific
state/action (s,a) as V(s,a) € S x A:

[e.e]

Q™" (s,a) = E[Zytr(st, ag)|ag ~ mw, 8141 ~ P, sg = s,a9 = a}. (7.3)
t=0

Robust reinforcement learning. In a Robust MDP (RMDP) Iyengar (2005), Nilim and
El Ghaoui (2005), the transition kernel p is not fixed and can be chosen adversarially from an
uncertainty set P at each time step. The pessimistic value function of a policy 7 is defined as
VA (s) = minyep v (s). An optimal robust policy maximizes the pessimistic value function Vp in
any state, leading to a max; min, optimization problem. This is known as the static model of
transition kernel uncertainty, as m is evaluated against a static transition model w. Robust Value
Iteration (RVI) (Iyengar 2005, Wiesemann et al. 2013) addresses this problem by iteratively
computing the one-step lookahead best pessimistic value:
Vati(s) = TpVa(s) == e min Equr(s)[r(s,a) + Ep[Vi(s)]]. (7.4)
This dynamic programming formulation is called the dynamic model of transition kernel un-
certainty, as the adversary picks the next state distribution only for the current state-action
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P(sti1lsy, ap) = 7i(sy, ar)

- s, Adversary
Environment — S I

T ap ~ T(sy)

Figure 7.1: Relation between Robust RL and Zero-sum Markov Game

pair, after observing the current state and the agent’s action at each time step (and not a full
transition kernel). The 75 operator, known as the robust Bellman operator, ensures that the
sequence of V, functions converges to the robust value function V3, provided the adversarial
transition kernel belongs to the simplex of A(S) and that the static and dynamic cases have the
same solutions for stationary agent policies Iyengar (2022).

Robust reinforcement learning as a two-player game. Robust MDPs can be repre-
sented as zero-sum two-player Markov games (Littman 1994, Tessler et al. 2019) where S, A are
respectively the state and action set of the adversarial player. In a zero-sum Markov game, the
adversary tries to minimize the reward or maximize —r. Writing 7 : S — A := A(S) the policy of
this adversary, the robust MDP problem turns to max, minz V™7, where V™7 (s) is the expected
sum of discounted rewards obtained when playing 7 (agent actions) against 7 (transition models)
at each time step from s. In the specific case of robust RL as a two player-game, S = S x A.
This enables introducing the robust value iteration sequence of functions

Vir1(8) := TV, (s) := ma min TV, (s 7.5
+1( ) ( ) W(S)GAX(A) 7(s,a)€A(S) ( ) ( )

where T := Equr(s)[7(5,a) + VEg<7(s,0)Vn(s')] is a zero-sum Markov game operator. These
operators are also y—contractions and converge to their respective fixed point V™™ and V** = V3
Tessler et al. (2019). This two-player game formulation will be used in the evaluation of the
RRLS in Section 7.5.

7.3 Related works

7.3.1 Reinforcement learning benchmark

The landscape of reinforcement learning (RL) benchmarks has evolved significantly, enabling
the accelerated development of RL algorithms. Prominent among these benchmarks are the
Atari Arcade Learning Environment (ALE) Bellemare et al. (2012), OpenAl Gym Brockman
et al. (2016), more recently Gymnasium Towers et al. (2023), and the DeepMind Control Suite
(DMC) Tassa et al. (2018). The aforementioned benchmarks have established standardized
environments for the evaluation of RL agents across discrete and continuous action spaces,
thereby fostering the reproducibility and comparability of experimental results. The ALE has
been particularly influential, offering a diverse set of Atari games that have become a standard
testbed for discrete control tasks Bellemare et al. (2012). Moreover, the OpenAl Gym extended
this approach by providing a more flexible and extensive suite of environments for various RL
tasks, including discrete and continuous control Brockman et al. (2016). Similarly, the DMC Suite
has been essential for benchmarking continuous control algorithms, offering a set of challenging
tasks that facilitate evaluating algorithm performance Tassa et al. (2018). In addition to these
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general-purpose benchmarks, specialized benchmarks have been developed to address specific
research needs. For instance, the DeepMind Lab focuses on 3D navigation tasks from pixel
inputs Beattie et al. (2016), while ProcGen Cobbe et al. (2019) offers procedurally generated
environments to evaluate the generalization capabilities of RL agents. The D4RL benchmark
targets offline RL methods by providing datasets and tasks specifically designed for offline learning
scenarios Fu et al. (2021), and RL Unplugged Gulcehre et al. (2020) offers a comprehensive suite
of benchmarks for evaluating offline RL algorithms. RL benchmarks such as Meta-World Yu
et al. (2021) have been developed to evaluate the ability of RL agents to transfer knowledge
across multiple tasks. Meta-World provides a suite of robotic manipulation tasks designed to
test RL algorithms’ adaptability and generalization in multitask learning scenarios. Similarly,
RLBench James et al. (2020) offers a variety of tasks for robotic learning, focusing on the
performance of RL agents in multi-task settings. Recent contributions such as the Unsupervised
Reinforcement Learning Benchmark (URLB) Lee et al. (2021) have further expanded the scope
of RL benchmarks by targeting unsupervised learning methods. URLB aims to accelerate
progress in unsupervised RL by providing a suite of environments and baseline implementations,
promoting algorithm development that does not rely on labeled data for training. Additionally,
the CoinRun benchmark Cobbe et al. (2020) and Sonic Benchmark Nichol et al. (2018) focus
on evaluating generalization and transfer learning in RL through procedurally generated levels
and video game environments, respectively. Finally, benchmarks like the Behavior Suite (bsuite)
Osband et al. (2019) have been designed to test specific capabilities of RL agents, such as memory,
exploration, and generalization. Closer to our work, safety in RL is another critical area where
benchmarks like SafetyGym Achiam and Amodei (2019) have been instrumental. SafetyGym
evaluates how well RL agents can perform tasks while adhering to safety constraints, which is
crucial for real-world applications where safety cannot be compromised. Despite the progress in
benchmarking RL algorithms, there has been a notable gap in benchmarks specifically designed
for robust RL, which aims to learn policies that perform optimally in the worst-case scenario
against adversarial environments. This gap highlights the need for standardized benchmarks
(Moos et al. 2022) that facilitate reproducible and comparable experiments in robust RL. In the
next section, we introduce existing robust RL algorithms.

Finally, a competing work Gu et al. (2024) published after ours, and which cites our research,
has many similarities as it is also a benchmark for robust RL. The differences between our work
are as follows. Their work includes a larger number of environments, which in a sense makes
it more comprehensive than ours. Our benchmark has been tested on robust RL algorithms
such as RARL, M2TD3, demonstrating its utility, whereas the competing work has not yet
been evaluated in this way in all tasks. Our benchmark differs in that it goes beyond simply
adding noise to the transition kernel; it provides a rigorous evaluation framework by varying
hyperparameters on a relevant grid or uncertainty set during the evaluation phase.

7.3.2 Robust Reinforcement Learning algorithms

Two principal classes of practical, robust reinforcement learning algorithms exist, those that can
interact solely with a nominal transition kernel (or center of the uncertainty set), and those that
can sample from the entire uncertainty ball. While the former is more mathematically founded,
it is unable to exploit transitions that are not sampled from the nominal kernel and consequently
exhibits lower performance. In this benchmark, only the Deep Robust RL as two-player games
that use samples from the entire uncertainty set are implemented.

Nominal-based Robust/risk-averse algorithms. The idea of this class of algorithms
is to approximate the inner minimum operator present robust Bellman operator in Equation
(7.4). Previous work has typically employed a dual approach to the minimum problem, whereby
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the transition probability is constrained to remain within a specified ball around the nominal
transition kernel. Practically, robustness is equivalent to regularization (Derman et al. 2021) and
for example the SAC algorithm Haarnoja et al. (2018a) has been shown to be robust due to
entropic regularization. In this line of work, (Kumar et al. 2022) derived approximate algorithm
for RMPDS with L,, balls, (Clavier et al. 2022) for x? constrain and (Liu et al. 2022) for KL
divergence. Finally, Wang et al. (2023) proposes a novel online approach to solve RMDP. Unlike
previous works that regularize the policy or value updates, Wang et al. (2023) achieves robustness
by simulating the worst kernel scenarios for the agent while using any classical RL algorithm in the
learning process. These Robust RL approaches have received recent theoretical attention, from a
statistical point of view (sample complexity) (Yang et al. 2022, Panaganti and Kalathil 2022a,
Clavier et al. 2023, Shi et al. 2024) as well as from an optimization point of view (Grand-Clément
and Kroer 2021), but generally do not directly translate to algorithms that scale up to complex
evaluation benchmarks.

Deep Robust RL as two-player games. A common approach to solving robust RL
problems is cast the optimization process as a two-player game, as formalized by Morimoto and
Doya (2005), described in Section 7.2, and summarized in Figure 7.1. In this framework, an
adversary, denoted by 7 : S x A — P, is introduced, and the game is formulated as

oo
max mﬁinE Z’ytr(st,at, St41) |80, ae ~ w(sy), P = w(s¢, ar), Sev1 ~ Pi(¢]se, ar)

t=0
Most methods differ in how they constrain 7’s action space within the uncertainty set. A
first family of methods define 7(s;) = Py + A(s¢), where p,o¢ denotes the reference (nominal)
transition function. Among this family, Robust Adversarial Reinforcement Learning (RARL)
(Pinto et al. 2017) applies external forces at each time step ¢ to disturb the reference dynamics. For
instance, the agent controls a planar monopod robot, while the adversary applies a 2D force on the
foot. In noisy action robust MDPs (NR-MDP) (Tessler et al. 2019) the adversary shares the same
action space as the agent and disturbs the agent’s action 7(s). Such gradient-based approaches
incur the risk of finding stationary points for 7 and 7 which do not correspond to saddle points of
the robust MDP problem. To prevent this, Mixed-NE (Kamalaruban et al. 2020) defines mixed
strategies and uses stochastic gradient Langevin dynamics. Similarly, Robustness via Adversary
Populations (RAP) (Vinitsky et al. 2020) introduces a population of adversaries, compelling
the agent to exhibit robustness against a diverse range of potential perturbations rather than
a single one, which also helps prevent finding stationary points that are not saddle points.

Aside from this first family, State Adversarial MDPs (Zhang et al. 2020; 2021, Stanton
et al. 2021) involve adversarial attacks on state observations, which implicitly define a partially
observable MDP. This case aims not to address robustness to the worst-case transition function
but rather against noisy, adversarial observations.

A third family of methods considers the general case of 7(s;,a;) = P, or 7(s;) = pt, where
P, € P. Minimax Multi-Agent Deep Deterministic Policy Gradient (M3DDPG) (Li et al.
2019Db) is designed to enhance robustness in multi-agent reinforcement learning settings but boils
down to standard robust RL in the two-agents case. Max-min TD3 (M2TD3) (Tanabe et al.
2022a) considers a policy 7, defines a value function Q(s, a, p) which approximates Q™% (s, a) =
Esp[r(s,a,s) +yV™P(s")], updates an adversary 7 so as to minimize Q(s, (s), 7(s)) by taking
a gradient step with respect to 7’s parameters, and updates the policy 7 using a TD3 gradient
update in the direction maximizing Q(s,7(s),7(s)). As such, M2TD3 remains a robust value
iteration method that solves the dynamic problem by alternating updates on 7 and 7, but since
it approximates Q™ it is also closely related to the method we introduce in the next section.

Domain randomization. Domain randomization (DR) (Tobin et al. 2017) learns a value

function V(s) = max, E,yp)V,7 (s) which maximizes the expected return on average across a
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Figure 7.3: Visual representation of various reinforcement learning environments including Ant,
HalfCheetah, Hopper, Humanoid Stand Up, Inverted Pendulum, and Walker.

fixed distribution on P. As such, DR approaches do not optimize the worst-case performance.
Nonetheless, DR has been used convincingly in applications (Mehta et al. 2020a, OpenAl et al.
2019). Similar approaches also aim to refine a base DR policy for application to a sequence of
real-world cases (Lin et al. 2020, Dennis et al. 2020, Yu et al. 2018). For a more complete survey
of recent works in robust RL, we refer the reader to the work of Moos et al. (2022).

7.4 RRLS: Benchmark environments for Robust RL

This section introduces the Robust Reinforcement Learning Suite, which extends the Gymnasium
Towers et al. (2023) API with two additional methods: set_params and get_params. These
methods are integral to the ModifiedParamsEnv interface, facilitating environment parameter
modifications within the benchmark environment. Typically, these methods are used within
a wrapper to simplify parameter modifications during evaluation. In the RRLS architecture
(Figure 7.2), the adversary begins by retrieving parameters from the uncertainty set and setting
them in the environment using the ModifiedParamsEnv interface. The agent then acts based
on the current state of the environment, and the Mujoco Physics Engine updates the state
accordingly. The agent observes this updated state, completing the interaction loop. Multiple
MuJoCo environments are provided (Figure 7.3), each with a two default uncertainty sets,
inspired respectively by those used in the experiments of RARL (Pinto et al. 2017) (Table 9.11)
and M2TD3 (Tanabe et al. 2022a) (Table 7.2). This variety allows for a comprehensive evaluation
of robust RL algorithms, ensuring that the benchmarks encompass a wide range of scenarios.

Several MuJoCo environments are proposed, each with distinct action and observation spaces.
Figure 7.3 shows a visual representation of all provided environments. In all environments, the
observation space corresponds to the positional values of various body parts followed by their
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velocities, with all positions listed before all velocities. The environments are as follows:

e Ant: A 3D robot with one torso and four legs, each with two segments. The goal is to
move forward by coordinating the legs and applying torques on the eight hinges. The
action dimension is 8, and the observation dimension is 27.

o HalfCheetah: A 2D robot with nine body parts and eight joints, including two paws. The
goal is to run forward quickly by applying torque to the joints. Positive rewards are given
for forward movement, and negative rewards for moving backward. The action dimension
is 6, and the observation dimension is 17.

e« Hopper: A 2D one-legged figure with four main parts: torso, thigh, leg, and foot. The
goal is to hop forward by applying torques on the three hinges. The action dimension is
3, and the observation dimension is 11.

e« Humanoid Stand Up: A 3D bipedal robot resembling a human, with a torso, legs, and
arms, each with two segments. The environment starts with the humanoid lying on the
ground. The goal is to stand up and remain standing by applying torques to the various
hinges. The action dimension is 17, and the observation dimension is 376.

e Inverted Pendulum: A cart that can move linearly, with a pole fixed at one end. The
goal is to balance the pole by applying forces to the cart. The action dimension is 1, and
the observation dimension is 4.

o Walker: A 2D two-legged figure with seven main parts: torso, thighs, legs, and feet. The
goal is to walk forward by applying torques on the six hinges. The action dimension is 6,
and the observation dimension is 17.

The RRLS architecture enables parameter modifications and adversarial interactions using the
gymnasium Towers et al. (2023) interface. The set_params and get_params methods in the
ModifiedParamsEnv interface directly access and modify parameters in the Mujoco Physics
Engine. All modifiable parameters are listed in Appendix 34 and lie in the uncertainty set
described below.

Uncertainty Sets. Non-rectangular uncertainty sets (opposed to rectangular ones as defined
in (Iyengar 2005)) are proposed based on MuJoCo environments, detailed in Table 9.11. These
sets, based on previous work evaluating M2TD3 Tanabe et al. (2022a) and RARL Pinto et al.
(2017), ensure thorough testing of robust RL algorithms under diverse conditions. For instance,
the uncertainty range for the torso mass in the HumanoidStandUp 2 and 3 environments spans
from 0.1 to 16.0 (Table 9.11), ensuring challenging evaluation of RL methods. Three uncertainty
sets—1D, 2D, and 3D—are provided for each environment, ranging from simple to challenging.

RRLS also directly provides the uncertainty sets from the RARL (Pinto et al. 2017) paper.
These sets apply destabilizing forces at specific points in the system, encouraging the agent to
learn robust control policies.

Wrappers. We introduce environment wrappers to facilitate the implementation of various
deep robust RL baselines such as M2TD3 Tanabe et al. (2022a), RARL Pinto et al. (2017),
Domain Randomization Tobin et al. (2017), NR-MDP Tessler et al. (2019) and all algorithms
deriving from Robust Value Iteration, ensuring researchers can easily apply and compare different
methods within a standardized framework. The wrappers are described as follows:

e The ModifiedParamsEnv interface includes methods set_params and get_params, which
are crucial for modifying and retrieving environment parameters. This interface allows
dynamic adjustment of the environment during training or evaluation.
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Table 7.1: List of parameters uncertainty sets based on M2TD3 in RRLS

Environment Uncertainty set P Reference values Uncertainty parameters
Ant 1 [0.1,3.0] 0.33 torsomass
Ant 2 [0.1,3.0] x [0.01,3.0] (0.33,0.04) torso mass; front left leg mass
Ant 3 [0.1,3.0] x [0.01,3.0] x [0.01,3.0] | (0.33,0.04,0.06) | torso mass; front left leg mass; front right leg mass
HalfCheetah 1 (0.1, 3.0] 0.4 world friction
HalfCheetah 2 [0.1,4.0] x [0.1,7.0] (0.4,6.36) world friction; torso mass
HalfCheetah 3 [0.1,4.0] x [0.1,7.0] x [0.1,3.0] (0.4,6.36,1.53) world friction; torso mass; back thigh mass
Hopper 1 [0.1,3.0] 1.00 world friction
Hopper 2 [0.1,3.0] x [0.1,3.0] (1.00,3.53) world friction; torso mass
Hopper 3 [0.1,3.0] x [0.1,3.0] x [0.1,4.0] (1.00,3.53,3.93) world friction; torso mass; thigh mass
HumanoidStandup 1 [0.1,16.0] 8.32 torsomass
HumanoidStandup 2 [0.1,16.0] x [0.1,8.0] (8.32,1.77) torso mass; right foot mass
HumanoidStandup 3 | [0.1,16.0] x [0.1,5.0] x [0.1,8.0] | (8.32,1.77,4.53) torso mass; right foot mass; left thigh mass
InvertedPendulum 1 [1.0,31.0] 4.90 polemass
InvertedPendulum 2 [1.0,31.0] x [1.0,11.0] (4.90,9.42) pole mass; cart mass
Walker 1 [0.1,4.0] 0.7 world friction
Walker 2 [0.1,4.0] x [0.1,5.0] (0.7,3.53) world friction; torso mass
Walker 3 [0.1,4.0] x [0.1,5.0] x [0.1,6.0] (0.7,3.53,3.93) world friction; torso mass; thigh mass

e The DomainRandomization wrapper enables domain randomization by sampling environ-
ment parameters from the uncertainty set between episodes. It wraps an environment
following the ModifiedParamsEnv interface and uses a randomization function to draw
new parameter sets. If no function is set, the parameter is sampled uniformly. Parameters
reset at the beginning of each episode, ensuring diverse training conditions.

e The Adversarial wrapper converts an environment into a robust reinforcement learning
problem modeled as a zero-sum Markov game. It takes an uncertainty set and the
ModifiedParamsEnv as input. This wrapper extends the action space to include adversarial
actions, allowing for modifications of transition kernel parameters within a specified
uncertainty set. It is suitable for reproducing robust reinforcement learning approaches
based on adversarial perturbation in the transition kernel, such as RARL.

e The ProbabilisticActionRobust wrapper defines the adversary’s action space as the
same action space as the agent. The final action applied in the environment is a convex sum
between the agent’s action and the adversary’s action: ap, = aa+ (1 —a)a. The adversarial
action’s effect is bounded by the environment’s action space, allowing the implementation
of robust reinforcement learning methods around a reference transition kernel, such as

NR-MDP or RAP.

Evaluation Procedure. Evaluating Robust Reinforcement Learning algorithms can feature
a large variability in outcome statistics depending on a number of minor factors (such as random
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Table 7.2: List of parameters uncertainty sets based on RARL in RRLS

Environment Uncertainty set P Uncertainty parameters
Ant Rarl [~3.0,3.0]%¢ torso force x; torso force y; front left leg force x; front left leg force y; front right leg force x; front right leg force y
HalfCheetah Rarl [~3.0,3.0]%¢ torso force x; torso force y; back foot force x; back foot force y; forward foot force x; forward foot force y
Hopper Rarl [~3.0,3.01%2 foot force x; foot force y
HumanoidStandup Rarl [~3.0,3.0]%¢ torso force x; torso force y; right thigh force x; right thigh force y; left foot force x; left foot force y
InvertedPendulum Rarl [~3.0,3.0]%2 pole force x; pole force y
Walker Rarl [~3.0,3.0%4 leg force x; leg force y; left foot force x; left foot force y

seeds, initial state, or collection of evaluation transition models). To address this, we propose a
systematic approach using a function called generate_evaluation_set. This function takes an
uncertainty set as input and returns a list of evaluation environments. In the static case, where the
transition kernel remains constant across time steps, the evaluation set consists of environments
spanned by a uniform mesh over the parameters set. The agent runs multiple trajectories in
each environment to ensure comprehensive testing. Each dimension of the uncertainty set is
divided by a parameter named nb_mesh dim. This parameter controls the granularity of the
evaluation environments. To standardize the process, we provide a default evaluation set for
each uncertainty set (Table 9.11). This set allows for worst-case performance and average-case
performance evaluation in static conditions.

7.5 Benchmarking Robust RL algorithms

Experimental setup. This section evaluates several baselines in static and dynamic settings
using RRLS. We conducted experimental validation by training policies in the Ant, HalfCheetah,
Hopper, HumanoidStandup, and Walker environments. We selected five baseline algorithms:
TD3, Domain Randomization (DR), NR-MDP, RARL, and M2TD3. We select the most
challenging scenarios, the 3D uncertainty set defined in Table 9.11, normalized between [0, 1]3.
For static evaluation, we used the standard evaluation procedure proposed in the previous section.
Performance metrics were gathered after five million steps to ensure a fair comparison after
convergence. All baselines were constructed using TD3 with a consistent architecture across all
variants. The results were obtained by averaging over ten distinct random seeds. Appendices
35, 37.1, 37.2, and 37.3 provide further details on hyperparameters, network architectures,
implementation choices, and training curves.

Static worst-case performance. Tables 7.6 and 7.7 report normalized scores for each
method, averaged across 10 random seeds and 5 episodes per seed, for each transition kernel
in the evaluation uncertainty set. To compare metrics across environments, the score v of
each method was normalized relative to the reference score of TD3. TD3 was trained on the
environment using the reference transition kernel, and its score is denoted as vrps. The M2TD3
score, vyroT D3, wWas used as the comparison target. The formula used to get a normalized score
is (v —vrps)/(|lvaperps — vrps|). This defines vpps as the minimum baseline and vyorps3 as
the target. This standardization provides a metric that quantifies the improvement of each
method over TD3 relative to the improvement of M2TD3 over TD3. Non-normalized results
are available in Appendix 36. As expected, M2TD3, RARL and DR perform better in terms
of worst-case performance, than vanilla TD3. Surprisingly, RARL is outperformed by DR, except
for HalfCheetah, Hopper, and Walker in worst-case performance. Finally, M2TD3, which is a
state-of-the-art algorithm, outperforms all baselines except on HalfCheetah where DR, achieves
a slightly, non-statistically significant, better score. One potential explanation for the superior
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performance of DR over robust reinforcement learning methods in the HalfCheetah environment is
that the training of a conservative value function is not necessary. The HalfCheetah environment
is inherently well-balanced, even with variations in mass or friction. Consequently, robust training,
which typically aims to handle worst-case scenarios, becomes less critical. This insight aligns with
the findings of Moskovitz et al. (2021), who observed similar results in this specific environment.
The variance in the evaluations also needs to be addressed. In many environments, high variance
prevents drawing statistical conclusions. For instance, HumanoidStandup shows a variance of
3.32 for M2TD3, complicating reliable performance assessments. Similar issues arise with DR in
the same environment, showing a variance of 4.1. Such variances highlight the difficulty of making
definitive comparisons across different robust reinforcement learning methods in these settings.

Table 7.3: Avg. of normalized static worst-case performance over 10 seeds for each method

Ant HalfCheetah | Hopper HumanoidStandup | Walker Average
TD3 0.0+0.34 0.0 +0.06 0.0+0.21 0.0 +2.27 0.0+0.1 0.0+0.6
DR 0.06£0.16 | 1.07+0.36 | 0.86+0.82 | 0.04 £4.1 0.57 +0.37 0.52 +1.16
M2TD3 1.0+£0.27 | 1.04+0.16 1.0+£065 | 1.0+3.32 1.0+ 0.63 1.0+1.01
RARL 0.44+0.3 0.13 + 0.08 0.5+£0.22 0.44 £2.94 0.12 £+ 0.09 0.33 £0.73
NR-MDP | —0.25+0.1 | =0.10+£0.24 | —0.31+04 | —2.22 +1.51 —0.04 £0.01 | —0.58 £0.45

Static average performance. Similarly to the worst-case performance described above,
average scores across a uniform distribution on the uncertainty set are reported in Table 7.7.
While robust policies explicitly optimize for the worst-case circumstances, one still desires that
they perform well across all environments. A sound manner to evaluate this is to average their
scores across a distribution of environments. First, one can observe that DR outperforms the other
algorithms. This was expected since DR is specifically designed to optimize the policy on average
across a (uniform) distribution of environments. One can also observe that RARL performs worse
on average than a standard TD3 in most environments (except HumanoidStandup), despite having
better worst-case scores. This exemplifies how robust RL algorithms can output policies that
lack applicability in practice. Finally, M2TD3 is still better than TD3 on average, and hence this
study confirms that it optimizes for worst-case performance while preserving the average score.

Table 7.4: Avg. of normalized static average case performance over 10 seeds for each method

Ant HalfCheetah | Hopper HumanoidStandup | Walker Average
TD3 0.0£0.49 0.0 £0.22 0.0 £0.83 0.0 +1.36 0.0+ 0.51 0.0 +£0.68
DR 1.65+0.05 | 2.31 £0.27 | 2.08 £0.49 1.15+247 1.22+0.34 | 1.68£0.72
M2TD3 1.0+£0.11 1.0£0.19 1.0 £0.55 1.0+1.43 1.0 £0.65 1.0 £0.59
RARL 0.69+0.13 | —1.34+0.54 | —0.99+0.11 | 0.47+£1.92 —0.35+0.83 | —0.3+0.71
NR-MDP | 0.44 £0.03 | —0.58£0.17 | —0.85 +£0.001 | —0.83 £0.24 —1.08 £0.01 | —0.58 £0.15

Dynamic adversaries. While the static and dynamic cases of transition kernel uncertainty
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lead to the same robust value functions in the idealized framework of rectangular uncertainty
sets, most real-life situations (such as those in RRLS) fall short of this rectangularity assumption.
Consequently, Robust Value Iteration algorithms, which train an adversarial policy 7 (whether
they store it or not) might possibly lead to a policy that differs from those which optimize for
the original max, min, problem introduced in Section 7.2. RRLS permits evaluating this feature
by running rollouts of agent policies versus their adversaries, after optimization. RARL and
NR-MDP simultaneously train a policy 7 and an adversary 7. The policy is evaluated against
its adversary over ten episodes. Observations in Table 7.5 demonstrate how RRLS can be used
to compare RARL and NR-MDP against their respective adversaries, in raw score. However,
this comparison should not be interpreted as a dominance of one algorithm over the other, since
the uncertainty sets they are trained upon are not the same.

Table 7.5: Comparison of RARL and NR-MDP across different environments

Method ~ HumanoidStandup (10*)  Ant (10%) HalfCheetah (102) Hopper (103) Walker (10%)

RARL 9.84 &+ 3.36 2.90 £0.70 —0.74 £6.69 1.04 £0.16 3.45£1.13

NR-MDP 9.37+0.14 5.58 £ 0.64 109.90 +=4.74 3.14+0.53 5.17+0.89

Training curves. Figure 7.4 reports training curves for TD3, DR, RARL, and M2TD3 on the
Walker environment, using RRLS (results for all other environments in Appendix 35). Each agent
was trained for 5 million steps, with cumulative rewards monitored over trajectories of 1,000 steps.
Scores were averaged over 10 different seeds. The training curves illustrate the steep learning curve
of TD3 and DR in the initial stages of learning, versus their robust counterparts. The M2TD3
agent, ultimately achieves the highest performance at 5 million steps. Similarly, RARL exhibits
a significant delay in learning, with stabilization occurring only toward the end of the training.
Figures 7.4d and 7.4c show a significant variance in training across different random seeds. This em-
phasizes the difficulty of comparing different robust reinforcement learning methods along training.

A comparison of algorithms of Chapters 5 and 6 In tables 7.7 and 7.6, we have reported
the normalised scores of algorithms ExpectRL and TC-MDPs presented in Chapters 5 and 6
such that the score is defined as (v — vrps)/(|varerps — vrps|). The results are for tasks Ant3,
Hopper3, Walker3, etc... where three physical parameters are changing at the time on evaluation.
In both tables 7.7 and 7.6, we have separated the performance of oracle algorithms, with the
highest values highlighted in green, and the performance of non-oracle algorithms, with the best
values underlined in black. The results are as follows:

e In terms of worst-case performance in table 7.6: the results of the TC-MDP oracle
algorithm are the most optimal, as it leverages additional information that is typically
unavailable in practical settings. However, M2TD3 performs very well in practice since it
is designed to effectively minimize the worst-case scenarios. The performance of both the
TC-MDP stack and the classical TC-MDP algorithm is also strong, though slightly lower
than that of M2TD3.

e In terms of average performance in table 7.7: the average performance of the
DR+ ExpectRL algorithm significantly surpasses that of M2TD3. In the context of DR+
ExpectRL, adding a distributional robustness component is highly beneficial. We also
observe that the TC-MDP algorithms achieve considerably superior performance. The
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Figure 7.4: Averaged training curves for Walker over 10 seeds

inclusion of adversarial constraints leads to a less pessimistic adversary, which in turn
improves the average performance. An alternative interpretation is that this approach
considers non-rectangular uncertainty sets with dynamics constrained to be Lipschitz-
continuous.

In general, the conclusions regarding these methods are as follows: M2TD3 has lower variance
compared to the other algorithms and performs very well in terms of worst-case performance.
However, TC-MDP offers a better balance, with strong mean performance while still maintaining
good worst-case results. Finally, the ExpectRL algorithm is simpler than the others, as it utilizes
only a single network, and while it performs slightly lower in terms of worst-case performance, it
achieves strong results for mean performance.

7.6 Conclusion

This Chapter introduces the Robust Reinforcement Learning Suite (RRLS), a benchmark for
evaluating robust RL algorithms, based on the Gymnasium API. RRLS provides a consistent
framework for testing state-of-the-art methods, ensuring reproducibility and comparability. RRLS
features six continuous control tasks based on Mujoco environments, each with predefined uncer-
tainty sets for training and evaluation, and is designed to be expandable to more environments and
uncertainty sets. This variety allows comprehensive testing across various adversarial conditions.
We also offer four compatible baselines and demonstrate their performance in static settings.
Our work enables systematic comparisons of algorithms based on practical performance. RRLS
addresses the need for reproducibility and comparability in robust RL. By making the source
code publicly available, we anticipate that RRLS will become a valuable resource for the RL
community, promoting progress in robust reinforcement learning algorithms.
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7.6. Conclusion

Ant HalfCheetah | Hopper Humanoid Walker Agg

Oracle M2TD3 1.024+0.19 | 0.34+0.23 0.97 £+ 0.55 3.9+ 3.65 0.3£0.45 1.31+1.01
Oracle RARL 0.62 +0.32 0.1 £0.02 0.48 +0.19 —2.59+2.18 | 0.16 £0.21 —0.25 +0.58

-M2TD3 0.1£0.25 1.87+0.1 0.49 +1.07 —0.8£3.05 | 0.284+0.38 0.39 £0.97

-RARL 0.59 + 0.36 1.55 £ 0.35 0.4+0.16 1.19+1.24 0.56 + 0.39 0.86 £ 0.5
Stacked-TC -M2TD3 | —0.05+0.09 | 1.56 £ 0.16 | 1.08 +0.89 —0.83+£2.62 | 1.12+0.5 0.58 £ 0.85
Stacked-TC -RARL | 0.07 +0.13 0.76 + 0.34 1.35+0.93 | 1.75 + 2.48 | 0.67 £+ 0.32 0.92£0.84
TC -M2TD3 —0.06 = 0.08 | 1.49 +£0.23 1.29 £0.29 1.21+£2.44 1.19 £ 0.34 | 1.02 £+ 0.68
TC -RARL 0.14£0.24 0.89£0.3 1.5£0.76 1.4 £4.57 0.67 £0.59 0.92£1.29
TD3 0.0+£0.34 0.0 £0.06 0.0£0.21 0.0 £2.27 0.0£0.1 0.0£0.6
DR 0.06 £+ 0.16 1.07 £ 0.36 0.86 + 0.82 0.04 £4.1 0.57 £0.37 0.52 £ 1.16
M2TD3 1.0 £0.27 1.0+0.16 1.0+ 0.65 1.0+ 3.32 1.0 £ 0.63 1.0+1.01
RARL 0.44 £0.3 0.13 +0.08 0.5 £0.22 0.44 £2.94 0.12 +0.09 0.33£0.73
ExpecRL + DR 0.74+0.31 0.88 +0.29 1.09£0.31 1.12+2.49 0.85 %+ 0.60 0.93 £0.79

Table 7.6: Avg. of normalized static worst-case performance over 10 seeds for each method
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Ant HalfCheetah | Hopper Humanoid Walker Agg
Oracle M2TD3 1.13 £0.08 1.56 £ 0.24 1.12 £ 0.46 1.96 £1.53 1.23£0.3 1.4 £0.52
Oracle RARL 0.7+ 0.22 —-1.44+0.13 —0.77+0.24 | —2.6 £2.88 —1.13+£0.84 | —1.04 £ 0.86
-M2TD3 1.73 £ 0.09 4.35+0.26 | 554+0.13 | 2.12+14 1.84 +0.37 3.124+0.45
-RARL 1.78+£0.02 | 4.32+0.21 5.08 +0.48 0.42+2.9 1.68 £0.24 2.66 +0.77
Stacked-TC -M2TD3 | 1.45+0.38 3.78 £0.29 | 5.2+ 0.29 —1.38 +£1.67 | 2.11 & 0.52 | 2.23 +0.63
Stacked-TC -RARL 1.52+£0.11 2.29 +0.23 2.91 +0.67 1.14 £2.19 1.21 £0.46 1.81+£0.73
TC -M2TD3 1.6 £ 0.06 3.71+0.24 4.44+0.6 3.28 +£2.52 | 1.56 +£0.23 2.91 +£0.73
TC -RARL 1.67 £ 0.07 | 2.27 +0.22 1.79 £ 0.53 0.89 +2.19 1.01 £0.21 1.53 £ 0.64
TD3 0.0£0.49 0.0£0.22 0.0£0.83 0.0£1.36 0.0£0.51 0.0 £0.68
DR 1.65 £ 0.05 2.31+£0.27 2.08 +0.49 1.15£2.47 1.22+£0.34 1.68 £0.72
M2TD3 1.0+0.11 1.0+0.19 1.0+£0.55 1.0+ 1.43 1.0+ 0.65 1.0+0.59
RARL 0.69 +0.13 —1.3£0.54 —-0.994+0.11 | 0.47£1.92 —0.35+0.83 | —0.3+0.71
ExpecRL + DR 1.08 £0.41 1.17+£0.35 2.61 + 0.66 1.05 £1.42 1.02£0.5 1.38 £ 0.67

Table 7.7: Avg. of normalized static average case performance over 10 seeds for each method
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8.1 Introduction

In traditional Multi-Armed Bandit (MAB) problems, an agent, has to sequentially choose between
several actions (referred to as "arms”), from which he receives a reward from the environment.
The arm selection process is induced by a sequence of policies, which is inferred and refined
at each round from past observations. These policies are designed to optimize the cumulative
rewards over the entire process. The main challenge in this task is to effectively manage a
suitable exploitation and exploration trade-off (Robbins 1952, Katehakis and Veinott 1987, Berry
and Fristedt 1985, Auer et al. 2002, Lattimore and Szepesvari 2020, Kveton et al. 2020). Here,
exploitation refers to selecting an arm that is currently believed to be the best based on past
observations, while exploration refers to selecting arms that have not been selected frequently in
the past in order to gather more information.

Contextual bandit problems is a particular instance of MAB problem, which supposes, at
each round, that the set of arms and the corresponding reward depend on a d-dimensional feature
vector called a contextual vector or context. This scenario has been extensively studied over the
past decades and learning algorithms have been developed to address this problem (Langford
and Zhang 2007, Abbasi-Yadkori et al. 2011, Agrawal and Goyal 2013, Kveton et al. 2020),
and they have been successfully applied in several real-world problem such as recommender
systems, mobile health and finance (Li et al. 2010, Agarwal et al. 2016, Tewari and Murphy 2017,
Bouneffouf et al. 2020). The existing algorithms for addressing contextual bandit problems can
be broadly categorized into two groups. The first category is based on maximum likelihood and
the principle of optimism in the face of uncertainty (OFU) and has been studied in (Auer et al.
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2002, Chu et al. 2011, Abbasi-Yadkori et al. 2011, Li et al. 2017, Ménard and Garivier 2017,
Zhou et al. 2020, Foster and Rakhlin 2020, Zenati et al. 2022).

The second category consists in randomized probability matching algorithms, which is based
on Bayesian belief and posterior sampling. Thompson Sampling (TS) is one of the most famous
algorithms that fall into this latter category. Since its introduction by Thompson (1933), it has
been widely studied, both theoretically and empirically (Agrawal and Goyal 2012, Kaufmann et al.
2012, Agrawal and Goyal 2013, Russo and Van Roy 2014; 2016, Lu and Van Roy 2017, Riquelme
et al. 2018, Jin et al. 2021). Despite the fact that OFU algorithms offer better theoretical
guarantees compared to classic TS-based algorithms, traditional TS methodologies still appeal
to us due to their straightforward implementation and empirical advantages. In Agrawal and
Goyal (2012), the authors claimed that: ”In applications like display advertising and news article
recommendation, T'S is competitive with or better than popular methods such as UCB”. Similarly,
Chapelle and i (2011) has examined the empirical performances of TS on both simulated and
real data. Their experiments demonstrate that TS outperforms OFU methods, leading them
to conclude: ”In any case, TS is very easy to implement and should thus be considered as a
standard baseline”. Taking all these factors into account, we have decided to focus on T'S-based
algorithms for addressing contextual bandit problems.

Despite its relative simplicity, effectiveness and convergence guarantees, TS comes with a
computational burden which is to sample, at each iteration ¢ € N*, from an appropriate Bayesian
posterior distribution p; defined from the previous observations. Indeed, these posteriors are
usually intractable and approximate inference methods have to be used to obtain samples with
distributions "close” to the posterior. The family of TS methods using approximate inference
methods will be referred to as approximate inference TS in the sequel. Among the simplest
approximate inference methods, Laplace approximation has been proposed for TS in Chapelle
and Li (2011). This method consists of approximating the posterior distribution p; by a Gaussian
distribution with a carefully chosen mean and covariance matrix. More precisely, the mean is a
mode of the target distribution which is typically found using an optimization algorithm, while the
covariance matrix is taken to be the negative Hessian matrix of the log posterior at the considered
mode. Despite this method is easy to implement, it may lead to poor posterior representations.
Indeed, while Laplace method achieves minimal optimality in terms of regret (Faury et al. 2022),
it doesn’t dictate the posterior convergence rate. More precisely, in Katsevich and Rigollet (2023)
it has been demonstrated that VI outperforms Laplace in terms of mean convergence by a factor
of 1/n . It is worth noting that the covariance rates remain the same for both methods. This
discrepancy can lead to inadequate approximations, especially in high-dimensional settings, as
highlighted in section 1.4 of Katsevich and Rigollet (2023).

Another class of popular approximate inference methods are Markov Chain Monte Carlo
(MCMC) methods, such as Metropolis or Langevin Monte Carlo (LMC) algorithms. In the bandit
literature, LMC has been proposed to get approximate samples from TS posteriors for solving
traditional bandit problem in Mazumdar et al. (2020) and for contextual bandit problems in Xu
et al. (2022), Huix et al. (2023). Also, Lu and Van Roy (2017) have proposed to adapt Ensemble
Methods to the bandit setting. Roughly, the idea here is to maintain and incrementally update
an ensemble of statistically plausible models and to draw a uniform sample from this family at
each iteration.

Finally, Variational Inference (VI) (Blei et al. 2017) is another class of approximate method
that could be used to get samples from the posterior distribution. The core concept behind
VI is to find a distribution , referred to as the variational posterior, to closely match the
true posterior p in terms of Kullback-Leibler divergence (KL) within a predefined family of
distributions known as the variational family G. In general, the variational family is chosen to
make the optimization of the KL tractable and to be easy to sample from. In their work Urteaga
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and Wiggins (2018) propose the mean-field mixture of Gaussian variational family for TS. This
family of distributions is quite extensive and provides an accurate approximation for a wide range
of posterior distributions. However, in our perspective, it might not be the most suitable choice
for TS. Firstly, the optimization algorithm at each time step can be computationally expensive.
Secondly, the mean-field assumption assumes that the parameters are independent, a premise
that holds true in the regime of large, overparameterized models. In our perspective, this regime
may not align with the Bandit problem, which often operates in a setting where the number of
data points tends towards infinity in comparison to the model size. Finally, Yu et al. (2020) also
employs VI in more general graphical models but focuses on structured arms and rewards, where
the rewards are correlated through latent variables.

In this Chapter, we develop an efficient VI method that makes use of the whole family of non-
degenerate Gaussian distributions. This choice of VI family is supported by the Bernstein-Von
Mises theorem (Van der Vaart 2000) . This theorem, subject to specific regularity conditions,
asserts that a properly scaled version of the posterior converges to a Gaussian as the sample
size grows. When applied to contextual bandits, the data points progressively accumulate
over time, leading to the gradual concentration of the posterior around a dominant mode.
As a consequence, the Gaussian approximation becomes increasingly suitable for representing
the posterior in this particular setting. Furthermore, the covariance of the rescaled posterior
distribution tends to converge towards the inverse Fisher information matrix, which may not
necessarily be diagonal, thus justifying the need for a non-mean-field hypothesis. Our main
contributions can be summarized as follows:

Our first contribution is methodological. We develop a novel variant of the TS algorithm,
referred to as Variational Inference TS (VITS). Our method addresses the main challenges
encountered by the existing approximate TS algorithms and can be applied to a very large
class of TS posteriors. Moreover, it enjoys a low computational cost both theoretically and
empirically, since it boils down to adding a few optimization steps per round. We also propose
two approximate versions of VITS, called and VITS — IT Hessian-free, that scale
with the problem dimension.

Our second contribution is theoretical. We establish that our proposed methodology
achieves a sub-linear regret of order O(d*/2v/T) (up to logarithmic term) in the linear contextual
bandit framework, where 7" is the number of rounds and d is the dimension of the policy parameter.
To the best of our knowledge, this is the first regret bound derived for VI in the context of
sequential learning.

Finally, our last contribution is to illustrate the empirical performances of our method on
a synthetic and on the real world dataset MovieLens (Lam and Herlocker (Lam and Herlocker)).
It has been shown that in many cases, VITS outperforms existing approximate T'S algorithms
such as LMC algorithm.

Related work. The theoretical foundations of TS for linear contextual bandits were initially
explored by Agrawal and Goyal (2013). In this paper, the authors establish a sub-linear cumulative
regret bound O(d%2y/T) for Linear TS (Lin-TS). Compared to this study, our method achieves
a similar regret bound in the linear framework. However, it should be noted that Lin-TS is a
specialized algorithm that can be only used when the posterior is known and can be efficiently
sampled from.

As mentioned previously, VI has been suggested for TS in Urteaga and Wiggins (2018). This
paper introduces a TS algorithm called VTS that utilizes a mixture of mean-field Gaussian
distributions to approximate the sequence of posteriors. In comparison to this work, the setting
and the variational family we consider are richer than Urteaga and Wiggins (2018). A more
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detailed comparison is postponed in Appendix 42. Moreover, the methodology developed in
Urteaga and Wiggins (2018) does not come with any convergence guarantees. An empirical and
theoretical study of using LMC as approximate inference method for TS for contextual bandit
problems was carried out in Xu et al. (2022). This paper establishes that the resulting algorithm,
called LMC-TS, achieves a state-of-the-art sub-linear cumulative regret for linear contextual
bandits. Compared to this method, our approach yields a similar sub-linear regret in the same
setting. Finally, Zhang et al. (2020) suggests a TS method based on Neural Tangent Kernel.
While this performs well on real datasets, their method is much more expensive than previously
mentioned approaches, as it requires training a neural network.

Notation. For n > 1, [n] represents the set of integers between 1 and n. N(u, X)) denotes the
d-multidimensional Gaussian probability distribution with mean p € R? and covariance matrix
¥ € R™4, The transpose of a matrix M is denoted by M ". For any symmetric-real matrix A,
Amax(A4) and Apin(A) represent the maximum and minimum eigenvalues of A respectively. The
norm || - || will refer to the 2-norm for vectors, and the operator norm for matrices. For any semi-
definite positive matrix A, the norm |z||4 denotes the Mahalanobis norm, i.e., ||z|[4 = VzAxT.
For any event E on a probability space, E refers to the complementary of E. Finally, 1 is the
indicator function and tr is the trace of a matrix.

8.2 Thompson sampling for contextual bandits

Contextual bandit: We now present in more details the contextual bandit framework. Let &
be a contextual space and consider A : S — 24 a set-valued action map, where 24 stands for the
power set of the action space A. For simplicity, we assume here that sup,.g Card(A(s)) < +o0. A
(deterministic or random) function 7 : S — A is said to be a policy if for any s € S, 7(s) € A(s).
Then, for a fixed horizon T' € N*, a contextual bandit process can be defined as follows: at each
iteration ¢ € [T] and given the past observations Dy_1 = {(si, as, $;) }i<t:

e The agent receives a contextual feature s; € S;
o The agent chooses an action a; = m(s¢) where 7 is a policy sampled from Q;(:|D;—1);

o Finally, the agent receives a reward r; sampled from R(-|s¢, a;) given D;_;. Here, R is a
Markov kernel on (A x §) x R, where R C R

For a fixed family of conditional distributions Q1.7 = {Q:}+<7, this process defines a random
sequence of policies, m.7 = {7 }+<7 with distribution still denoted by Q.7 by abuse of notation.
Let’s defined the optimal expected reward for a contextual vector s € X and the expected reward
given x and any action a € A(s) as follow

fi(s) = max f(s,a), f(s,a) = /rR(dr|s,a) ) (8.1)

a€A(s)

The main challenge of a contextual bandit problem is to find the distribution Q.7 that minimizes
the cumulative regret defined as

CRegret(Q1.7) = >_;<r Regret}” (8.2)
with Regret!® = fi(s;) — f(si, mi(s:))-

The main difficulty in the contextual bandit problem, comes from the fact that the reward
distribution R is intractable and must be inferred to find the best policy to minimize the
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instantaneous regret m — f.(s) — f(s,7(s)) for a context s € S. However, the estimation of R
may be in contradiction with the primary objective to minimize the cumulative regret (8.2), since
potential non-effective arms has to be chosen to obtain a complete description of R. Therefore,
bandit learning algorithms have to achieve an appropriate trade-off between exploitation of arms
which have been confidently learned and exploration of misestimated arms.

Thompson sampling: To achieve such a trade-off, we consider the popular Thompson
Sampling (TS) algorithm. Consider a parametric model {Ry : 6 € R?} for the reward distribution,
where for any 6, Ry is a Markov kernel on (A x S) x R parameterized by # € RY. We assume in
this paper that Rg admits a density with respect to some dominating measure A.of. An important
example are generalized linear bandits Filippi et al. (2010), Kveton et al. (2020). In particular, it
assumes that {Rg(-|s,a) : § € ©} is an exponential family with respect to A, i.e., for s € X
and a € A,

dRy

d)\ref

for h : R — R, natural parameter and log-partition function ¢, C : RY x X x A — R and sufficient
statistics T : R — R. The family is said to be in canonical form if g(0,s,a) = (¢(s,a),6) for
some feature map ¢ : S x A — R and C(0, s,a) = o({(¢(s,a),)) for some link function o. Linear
contextual bandits Chu et al. (2011), Abbasi-Yadkori et al. (2011) fall into this model taking
Aret = Leb, T equals to the identity function,

(r|s,a) = h(r)exp(g(0,s,a)T(r) — C(0,s,a)), (8.3)

h(r) = exp(—777"2/2) and g(0,s,a) =n{¢(s,a),0), (8.4)

for some 1 > 0. As a result, Ry(-|s, a) is simply the Gaussian distribution with mean (¢(s,a), 0)
and variance 1/n. Finally Riquelme et al. (2018), Zhou et al. (2020), Xu et al. (2020) introduced
an extension of linear contextual bandits, referred to as linear neural contextual bandits where
g is a neural network with weights 6 and taking as input a pair (x,a). With the introduced
notations, the likelihood function associated to the observations Dy at step t > 1 is given by

t—1
L¢(0) x exp {Zf(ﬁ\si, ai,n)} , (8.5)

i=1

where the log-likelihood is given by £(0|s;, a;, ;) = log(dRg/dAret)(7i|xi, a;) . Choosing a prior
on 0 with density pp with respect to Leb, and applying Bayes formula, the posterior distribution
at round t € [T is given by

e = Le(8)po(0)/3¢ (8.6)

where 3; = [ Li(0)po(0)df denotes the normalizing constant and we used the convention that
D1 = po- Moreover we define the potential function U(6) < —log p;(#). Then, at each iteration
t € [T], TS consists in sampling a sample 6; from the posterior p; and from it, use as a policy,

WfTS)(s) defined for any = by

7™ (s) = a®(s) ,a’(s) = arggnax/rRe(dT!Sva) (8.7)

Since 3; is generally intractable, sampling from the posterior distribution is not in general an
option.

Variational inference T'S: To address this challenge, practitioners often employ approximate
inference methods to generate samples from a distribution that is expected to be "close” to the
actual posterior distribution. In this context, we specifically concentrate on the application of VI.
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In this scenario, we consider a variational family G which is a set of probability densities with
respect to the Lebesgue measure, from which it is typically easy to sample from. Then ideally, at
each round ¢ € [T, the posterior distribution p; is approximated by the variational posterior
distribution q; which is defined as:

qr = argmin KL(p|p¢) , (8.8)
pegG

where KL is the Kullback-Leibler divergence. However, we have to determine at each round a
solution to the problem specified in (8.8). In this paper, we consider as variational family the
set of non-degenerate Gaussian distribution G = {N(1,¥) : p € R%, ¥ € 8%} where N(, ) is
the Gaussian distribution with mean p and covariance matrix 3 and S7 is the set of symmetric
positive definite matrices. As explained in the introduction, this Gaussian variational family is
particularly relevant in bandit framework according to Bernstein-Von Mises theorem.

Presentation of VITS — I: As we will see, this choice of variational family will allow to derive
an efficient method for solving (8.8) using the Riemannian structure of G. As noted in Lambert
et al. (2022), G equipped with the Wasserstein distance of order 2 is a complete metric space
as a closed subset of Py(R?), the set of probability distributions with finite second moment.
Recall that for two Gaussian distributions py = N(ug, X0) and p; = N(u1,21), their Wasserstein
distance has a closed form:

W3 (po,p1) = [lio — || + tr(So + S1 — 2(55/°S15y/%)172) .

This Wasserstein distance on G allows to derive a Riemannian metric denoted g. The corresponding
geodesic is given through the exponential map. More precisely, for a Gaussian distribution
p = N(up, Xp), this map is defined as

epr(Mva ¥v) :(Mp + po + (B + 1) (- — Np))#p = N(Mp + pro; (Zp +1) Xp (Zp+1)) . (8.9)

With all these preliminaries, we can now present and motivate the algorithm developed in
Lambert et al. (2022) to efficiently solve (8.8). This method can be formalized as a Riemannian
gradient descent scheme on G. Firstly, we define the loss function F; : p — KL(p|p;). Then,
following Lambert et al. (2022), we derive the gradient operator of F; on G equipped with g as

Vo Filp) = ( / VU, (0)dp(6), / V2U, (0)dp(6) — 35 1) (8.10)

where ¥, is the covariance matrix of p. From this expression, the corresponding Riemannian
gradient descent Bonnabel (2013) using a step size hy > 0 defines the sequence of iterates
{Qt,k}kK:tl recursively as:

dtk+1 = xpq, , (= Vo Fi(ak)) -
At each time step ¢, this sequence is initialized with variational posterior at the previous step, ie,
qt,0 = di—1,K,_,- Please note that this warm initialization of the posterior results in an efficient
algorithm and has been directly used in our main theoretical result (see (A.376)). Combining
(8.9) and (8.10), this recursion amounts defining a sequence of means {1 1. }1."; and covariance
matrices {Et,k}fztl by the recursions

Mt k1 = He e — Ty / VUt(Q)dCIt,k(Q)a

Skt = Ap e Xk Av ks de k1 = Nt jr1, Be p1)where Ay =1— ht(/ V2Ut(9)d%,k(9) - Et_;i)
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The main computational challenge in this recursion stems is that the integrals involved are
typically intractable. To overcome this issue, we employ a Monte Carlo procedure to approximate
these integrals. Subsequently, we consider a sequence of mean values denoted as {ﬁtk}kK:tl and
covariance matrices {itk}kK:ll such that:

fikrr = ek — VU (Ork),  Serpr = AkSen Auk
with Ay =1 — he(V2U(011) — igl) d

where 0~t7k ~ N(fit it’k). Consequently, following Lambert et al. (2022) we obtain an algorithm
capable of addressing the problem defined in (8.8). However, this algorithm exhibits computational
inefficiency, particularly in high-dimensional scenarios. This inefficiency arises from the necessity
to sample from a Gaussian distribution with a non-diagonal covariance matrix during each
updating step k € [K;|. As a result, it becomes impractical for use in a contextual bandit
problem, where, at each time step ¢, we must solve the problem described in (8.8). This paper
introduces an improved version of the earlier algorithm, designed to efficiently address the
problem presented in (8.8). To achieve this, we begin by examining a sequence of matrices
denoted as Bj, defined by the following

By = {1 = hV2Ui(0y )} B + he (B T (8.11)

It is important to note that By is a square-root matrix of the covariance of the variational
distribution it,k, ie, BnkBg B = f),;k. Then we can sample efficiently from the variational
distribution using By j with 9}7;C = fig )+ Birerr , €~ N(0,I). As a result, note that our method
does not require any Cholesky decomposition, which has a complexity of O(d?), contrary to the
algorithm derived in Lambert et al. (2022) and also in LinTS. The updating strategies for the
sequence of fi; ;, and By j are given by

fit 1 = fitk — VU (Brr);  Brgpr = {1 — hV2Ur(Or ) } Bk + he (B )T
Ouk ~ N(fi s Bl Bug) -

From this methodology, we can now complete the description of our first algorithm, referred to
as VITS-I. At each step ¢, we consider the variational distribution §; = 4¢,x, = N(fit,x,, BJ wBt.k)
which approximates the solution of (8.8). Then, at round ¢ + 1, VITS-I consists in sampling 6y
according to §; and choosing

AT (5) = arg max a%+1 (s) . (8.12)

a€A(s)

As in TS, the likelihood function and the posterior distribution P41 are updated following equa-
tions (8.5) and (8.6) using the new observed reward 741 distributed according to R(:|x¢+1, ar+1)
with a1 = ﬂyﬂs_l(ac). The round ¢ + 1 is then concluded by solving i1 = Qt41,K4,-

The pseudo-code associated with this algorithm is given in Algorithm 7 and Algorithm 8.

Algorithm 7: VITS algorithm

Biy=1/v/An, Wig =1/(nA) a1 ~ N(O, Wi)

fort=1,...,7 do
receive Ty € S
sample 9,5 from 61t7Kt = N([Lt’[(t, B?;thBtvk)
choose a; = 7(VITS) () presented in (8.12)
receive 1y ~ R(+|z¢, ar)
update q¢41,k,,, using Alg. 8 or 9.

end for
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Algorithm 8: VITS-I
Parameters: step-size h;, number of iterations K;
i < fie—1,K,_ 1By < Bi1k,
for k=1,...,K; do
draw et,k ~ 6lt,k: = N(ﬂt,jﬁv B;—kBt,k)
fit k1 4 firg — RV U (O )
Bigi1  {I—= V2 (Ui(010)} Bu + he(B )T
end for

Presentation of : In high dimension, the computational cost of the recursion of mean
values and covariance matrices may be prohibitive since at each iteration k € [Ky], it requires
inverting the matrix By ;. To tackle this computational issue, we propose a new version of VITS.
More precisely, the inverse of the square root covariance matrix B, ,i can be approximated using
a first order Taylor expansion in h; see Appendix 41 for more details. We denote by Cy the
approximation of B, kl, and we obtain recursions for the sequence of {Cyr}r<k, and {By i<k,
such that:

Cris1 = Crp{l = h(CLCri — V2Ui (O )}
Bigi1 = (1= hV2Ui(0;4)) By + htCJk .

This trick reduces the complexity from O(d®) to O(d?) for the computation of the inverse. This
version of VITS is referred to as and is given in Algorithm 7 and 9.

Presentation of VITS — II Hessian-free: The most computationally intensive step in

remains the computation of the Hessian of U;. In scenarios with a large number of
data points and high dimensions, this step can become highly demanding. To avoid computing
the Hessian of U, we suggest to use the following property of Gaussian distribution which is the
result of a simple integration by part:

/VQUth(u,z) = /Z’l(l—,u)VUtT dN(p, ¥) . (8.13)

After approximating this right side integral using Monte Carlo, we derive a new sequence of
square-root covariance matrix {B; }r<k, and inverse square-root covariance matrix {Cyx i<k,
defined recursively by:

Crisr = Cop{l = hi(ClLCrr — Arr)}

Bigs1 =1 —hiAy ) By + htCtTk ;
where A;j = CtTkCt,k(ét,k‘ — /ltk)VUtT(ét,k) and ét,k ~ N(/]t,ngkBt,k)- This last version of
VITS is referred to as VITS — IT Hessian-free and its pseudo-code is given in Algorithm 7 and
Algorithm 9, where and (H free) are for respectively Hessian and Hessian Free version.

The computational complexity of all methods has been experimentally studied in a simple case,
as discussed in Section 47.

8.3 Main results

8.3.1 Linear Bandit

In this section, we are interested in convergence guarantees for VITS — I applied to the linear
contextual bandit framework. This framework consists in assuming that Ry has form (8.3) with
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Algorithm 9: / VITS — II Hessian-free
Parameters: step-size hy, number of iterations K;
fien < fie—1,K,_1» Bl < Bi—1 K,
for k=1,...,K; do

draw ét,k ~ Qe = N(fig ks BtTkBt,k)

[t 1 < g — htVUt(ét,k)

V2(Uy(Orx))
A =

Czk(ét,k — /th7k)(VUt(§t7k))T (Hessian free)
Bt,kJrl — {I — htAth}Bt,k + htC’gk,

Ciry1 < Crp(l— ht(cgkct,k — Atr))
end for

Aref = Leb, T is the identity function and h and g are specified by (8.4):

dRy
dLeb

Assumption on the reward kernel R is the following:

(r]s, @) o< exp[n(r — (¢(s, ), 0))*/2] . (8.14)

Assumption 8.3.1. (Sub-Gaussian Reward Distribution) There exists R > 1 such that for any
s€S,acAs), p>0,log [exp{p(r — f(s,a))}R(dr|s,a) < Rp* , where f is defined in 8.1

We could only assume that R > 0 in Assumption 8.3.1 since if a distribution is R-sub-
Gaussian, it is also R’-sub-Gaussian for any R’ > R, however, we choose to set R > 1 to ease the
presentation of our main results. We also assume that the model is well-specified.

Assumption 8.3.2. There exists 0* such that R = Rg« and satisfying ||0*||2 < 1. Feature map
¢ satisfies the boundedness condition.

Assumption 8.3.3. For any contextual vector x € R? and action a € A(s), it holds that
[6(s; @)z < 1.

Uniform boundedness condition on the feature map is relatively common for obtaining
regret bounds for linear bandit problems (Agrawal and Goyal 2013, Xu et al. 2022, Kve-
ton et al. 2020, Abbasi-Yadkori et al. 2011). Note that Assumption (8.3.3) is equivalent to
SUDsex ,acA(a) |#(8;a)[l2 < My for some arbitrary but fixed constant My > 0, changing the
feature map ¢ by ¢/My. Finally, we specify the prior distribution.

Assumption 8.3.4. The prior distribution is assumed to be zero-mean Gaussian distribution
with variance 1/(An), where n also appears in the definition Ry in (8.14),

While our theoretical results can readily be extended to accommodate a non-zero mean Gaus-
sian prior, for the sake of simplicity, we have chosen to center the prior. Under Assumption 8.3.4,
combining (8.6) and (8.14), the negative log posterior — log p; denoted by Uy is given by

t—1 t—1
Uy (6) = g (Z(qﬁ(ai, 5) 10— 1) + Aye|y§> = g(eTW —20"by+> 17), (8.15)
=1 =1

t—1 t—1
Ve =M+ i, € R b= rip; € R
i=1 1=1
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Therefore, it follows that the gradient of U; is given by VU:(0) = n(Vi0 — b;) and its hessian
matrix is equal to V2U;(6) = nV;. Consequently, we recover the well-known fact that the
posterior is a Gaussian distribution with mean f; = Vt_lbt and covariance matrix it = (th)_l.
Denote by Ql:T the distribution on the sequence of policies induced by the sequence of variational
posterior {G; = N(fit,x, BtT,Kt By k) }tepr) obtained with VITS — I. We now state our main result
on the cumulative regret associated to VITS — I for linear contextual bandit, where a the proof
is provided in Appendix 39.

Theorem 8.3.5. Assume Assumptions 8.3.1 to 8.3.4 hold. For the choice of hyperparameters
{ K+, hi}ier) and n specified in Section 39.2, for any 6 € (0,1), with probability at least 1 — 4, the
cumulative regret is bounded by

2 3
CRegret(Q,.,) < CR%*dV/dT log(373) log ((1 +T//\d)>
A2 0

where C' > 0 is a constant independent of the problem. Our main result shows that the
distribution of the sequence of policies generated by VITS — I results in a cumulative regret of
order O(dv/dT). Tt is in the same order as the state-of-the-art cumulative regret obtained in
Agrawal and Goyal (2013) for LinTS. The number of optimization steps K; we found are of order
r?log(dT log(T)) where ki = Amax(Vz)/Amin(V). Following (Hamidi and Bayati 2020, Wu et al.
2020), if the diverse context assumption holds, the condition number is k; = O(1). Therefore,
under this previous assumption, VITS — I require a number of optimization steps that scale as
log(dT log(T)). Finally, Xu et al. (2022) derived similar bounds for TS using LMC for linear
contextual bandit problems. Although our proof is based on the linear case, it could be extended
to more general cases insofar as our updates remain Gaussian by definition of the variational
family. This allows the use of Gaussian (anti) concentration bound in the theoretical analysis.
This is in contrast to other approximation methods, which do not possess this advantage.

Comparison table. In this paragraph we have added a comparison table between Linear
TS (LinTS), Linear UCB (LinUCB), Feel-Good TS Huix et al. (2023), Zhang (2022), VITS — I,

(VITS-I/II), VITS — II Hessian-free (VITS-II HF), Langevin Monte Carlo TS
(LMCTS) and Variational T'S (VTS). The column ”"Regret” corresponds to the theoretical regret
bound obtained by the algorithm. ”"Complexity” is the computational complexity, more precisely
the symbol (++) corresponds to a regret O(VdT), (+) to O(d*?\/T) and (—) to no existing
regret bound. ” Linear” is set to Yes when the algorithm is designed only for the Linear Bandit
setting and No for general setting including Linear. The ”"Conditioning” column describes the
algorithm’s robustness against the conditioning of the problem.

8.4 Numerical experiments

8.4.1 Linear and quadratic bandit

Our initial investigation focused on a toy setting where contextual vectors are sampled from
a Gaussian distribution. However, in this specific setting, the contextual vectors exhibit high
diversity, resulting in a posterior covariance matrix with a condition number of O(1). This
condition makes the optimization problem overly simplistic, as a result, all approximation
methods seem to perform identically in this simple well-conditioned problem. So we introduce a
novel setting in which the diversity of arms is controlled by a parameter, denoted as (. Firstly,
we consider a fixed pool of arms denoted as P = [51,...,5,] with n = 50, where each arm §;
follows a normal distribution N(04,I;). This fixed pool is relevant in real-world scenarios, such
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Regret | Complexity | Linear | Conditioning
LinTS + ++ Yes ++
LinUCB ++ ++ Yes ++
FG-TS ++ No
VITS-I/11 + + No +
VITS-II HF | - + + No +
LMC-TS + ++ No -
VTS - - No

as in a Recommender system, where this pool corresponds to the concept of a meta-user. Then,
at each step t € [T, for every arm, we randomly sample a vector 3; from the pool P, and the
contextual vector associated with this arm is defined as x = 3; + (e, where € ~ N (04,1;). When
¢ has a high value, the corresponding user is far from the meta-user. Consequently, the diversity
among arms is high, resulting in a well-conditioned problem. However, in cases where ( is low,
the problem is ill-conditioned and the optimization becomes challenging.

We consider the linear bandit and the quadratic bandit problems. In both settings, the
bandit environment is simulated using a random vector 8* sampled from a normal distribution
N(0g4,0*1;). We opted for o* = 1/d to ensure that the variance of the scalar product x'6*
remains independent of the dimension d. The parameter dimension d is set to 20 and we
consider a number of arms K = 50. In the linear bandit setting, the reward associated
with the contextual vector z, is r = s'6* + ae where ¢ ~ N(04,1;). However, to maintain
problem complexity independent of , we have set the signal-to-noise ratio to a fixed value
of 1, meaning E[(s6*)2]/E[(c¢)?] = 1. This implies that /1 + (2 = a. See Appendix 46 for
more details about the setting. In these experiments, we have chosen to compare
VITS — IT Hessian-free, Linear TS (LinTS), and LMC-TS, with 10 and 50 iterations of
Langevin diffusion at each step. For VITS based algorithm, we have only used 10 updating steps.
We have omitted the performance of VITS — I since it experimentally performs identically to

. For the algorithm VITS — IT Hessian-free, we approximate the integral presented
in (8.13) using 20 Monte Carlo samples. This choice is made due to the observed instability
caused by the Monte Carlo error when considering high values of 1. However, in our setting,
even with 20 Monte Carlo samples, VITS — I1 Hessian-free remains a faster method compared
to . We also attempted to assess the performance of VTS, but, in the ill-conditioned
setting, it exhibited a linear and notably high cumulative regret. Consequently, we have opted to
exclude it from the figure for the sake of clarity and visibility. The mean and standard error are
reported for all experiments over 50 runs. The hyperparameter is provided in Appendix 43.
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Figure 8.1: Linear bandits, ( = 0.1 (left), ( = 1 (right).

Figure 8.1 illustrates the cumulative regret with respect to the time step ¢ for a well-conditioned
problem (¢ = 1) and a ill-conditioned problem (¢ = 0.1). Firstly, for ( = 1, it appears that all
methods exhibit similar performance, with the exception of LMC-TS with 10 steps, which slightly
underperforms. However, for ( = 0.1, the optimization problem becomes harder and LMC-TS
underperforms even with 50 Langevin steps. This behaviour was expected in our setting, because
LMC requires a lot of iterations to converge to the posterior compared to VI. A more complete
explanation of this phenomenon can be found in Appendix 44. Finally, we can conclude that

performs similarly to LinTS and that its Hessian-free version slightly underperforms
but is computationally more efficient.

For Quadratic bandit in Fig 8.2, the reward is 7 = (s 8*)? + ce. This setting is similar to the
Linear setting, but we ensure the condition E[(s'6*)*]/E[(c)?] = 1 to still get the signal-to-noise
ratio equals to 1. This implies a slight different condition a = (¢(? + 1)+/3 + 6/d, see Appendix
46. Moreover, a simple MLP with two hidden layers of 20 neurons is used for LMC, ,
and its Hessian-free version as neural network architecture. Performance in Fig 8.2 are similar
to linear bandits where slightly performs better than its Hessian-free version but
outperforms both LMC and LinTS algorithms as LinTS is not adapted for this setting. The
gap between LMC and our algorithm is smaller in the well-conditioned setting than in the
ill-conditioned, which was also expected. Finally, additional experience on non-contextual bandits
can also be found in Appendix 45.
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Figure 8.2: Quadratic bandit, ¢ = 0.1(left), ¢ = 1(right).
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8.5 MovieLens Dataset

In this section, we evaluate VITS on the MovieLens dataset, consisting of one million ratings
by 6040 users for 3952 movies. We adopt the setup proposed in Aouali et al. (2022), involving
a low-rank factorization of the rating matrix to yield 5-dimensional representations for users
(s; € R®) and movies (f; € R%). Movies are treated as potential actions, and context z; is
uniformly sampled from the pool of user vectors. We consider logistic rewards, sampled from
Ber(,u(s;-r«%)), where g is the sigmoid function. We conduct 50 simulations, each involving 100
randomly selected movies.Our prior distribution employs a Gaussian distribution with mean pg
and covariance ¥ = diag(op). Here, uop and og represent the mean and variance of movie vectors
across all dimensions. This setting deviates somewhat from our theoretical framework, where we
consider a unified posterior distribution for all arms using a feature map function ¢ representing
context-action pairs. In the MovieLens context, each arm possesses an individual posterior
distribution. These two settings closely align when the feature map is the vector concatenation
function. In practice, we can apply VITS or LMC at each arm to obtain posterior samples. In this
experiment, we compare LinTS against LMC-T'S, , and the VITS — IT Hessian-free
variant. LMC-TS uses 10 Langevin updating steps. It’s crucial to note that for each time step ¢
and each arm a, LMC-TS requires running Langevin diffusion to obtain a new parameter with low
correlation to the previous one. This leads to a high computational complexity for LMC-TS. In
contrast, VITS for each arm only involves sampling from a low-dimensional Gaussian distribution
and updating the variational posterior corresponding to the chosen arm. This approach offers
significant computational efficiency.

200 yinTs

—— VITS-ll
175 —— VITS-Il Hessian-free
—— LMC-TS

Cumulative regret

75

0 1000 2000 3000 4000 5000
time step t

Figure 8.3: Cumulative regret for MovieLens dataset.

Figure 8.3 reveals that LinTS is ill-suited for this particular task, as it assumes rewards
to be linear while the approximated algorithms outperform LinTS, as they specifically target
the logistic posterior. Remarkably, VITS appears to slightly outperform LMC-TS, despite its
computational efficiency advantages.

8.6 Conclusion and perspectives

This paper presents two novel TS algorithms called VITS — I, that use VI as an
approximation method. Moreover, VITS — I algorithms provide robust theoretical guarantees, in
particular a cumulative regret bound of O(dv/dT") in the linear setting.

One limitation of our analysis is that the regret bound derived is limited to the linear
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setting while the interest of our algorithm relies on nonlinear tasks. Additionally, we introduce a
third algorithm named VITS — IT Hessian-free, which offers enhanced computational efficiency.
This algorithm removes the computations of Hessian, resulting in faster execution. Finally, all
algorithms have been extensively evaluated in both simulated and real problems.
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Conclusion & Perspectives

I n this conclusion we first summarize or contributions and then raise some open questions
related to our work.

8.6.1 Conclusion on our Contribution

In this thesis, we have built brick by brick all the ingredients to solve the Robust RL problem in
real world settings. Our first question was how to design more sample efficient algorithm and use
robust RL algorithm? Let us see what elements of answer we brought to answer this question.

In Chapter 2, we study the sample complexity of obtaining an e-optimal policy in Robust
discounted Markov Decision Processes (RMDPs), given only access to a generative model of
the nominal kernel. We consider uncertainty sets defined with an L,-ball (recovering the TV
case), and study the sample complexity of any planning algorithm (with high accuracy guarantee
on the solution) applied to an empirical RMDP estimated using the generative model. In the
general case, we prove a sample complexity of @(%) for both the sa- and s-rectangular
cases (improvements of |S| and |S||A| respectively). When the size of the uncertainty is small
enough, we improve the sample complexity to @(%), recovering the lower-bound for the
non-robust case for the first time and a robust lower-bound.

In Chapter 3 , we refine the result of Chapter 2, assuming access to a generative model that
samples from the nominal MDP, we examine the sample complexity of RMDPs using a class of
generalized L, norms as the ’distance’ function for the uncertainty set, under two commonly
adopted sa-rectangular and s-rectangular conditions. Our results imply that RMDPs can be
more sample-efficient to solve than standard MDPs using generalized L, norms in both sa- and s-
rectangular cases, potentially inspiring more empirical research. We provide a near-optimal upper
bound and a matching minimax lower bound for the sa-rectangular scenarios. For s-rectangular
cases, we improve the state-of-the-art upper bound and also derive a lower bound using L
norm that verifies the tightness. Compared to Chapter 2, we improve the sample complexity,
showing that it is possible to obtain sample complexity that are lower than in classical MDPs.
This part gives a promising avenue to derive algorithm that can achieve lower sample complexity
while be more robust on perturbations.

Then we study Deep Robust RL in In Chapter 4 where we try to approximate the Robust
Reinforcement Learning constrained with a y?-divergence using an approximate Risk-Averse
formulation. We show that the classical Reinforcement Learning formulation can be robustified
using Standard deviation penalization of the objective. Two algorithms based on Distributional
Reinforcement Learning, one for discrete and one for continuous action space are proposed and
tested on classical Gym environment to demonstrate the robustness of the algorithms.

In Chapter 5, a new form of implicit robustness in RL using expectile boostraping. Using
these technique avoid to estimate a penalisation like in 4. Many classic Reinforcement Learning
(RL) algorithms rely on a Bellman operator, which involves an expectation over the next states,
leading to the concept of bootstrapping. To introduce a form of pessimism, we propose to replace
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this expectation with an expectile. In practice, this can be very simply done by replacing the Lo
loss with a more general expectile loss for the critic. Introducing pessimism in RL is desirable
for various reasons, such as tackling the overestimation problem (for which classic solutions
are double Q-learning or the twin-critic approach of TD3) or robust RL (where transitions are
adversarial). We study empirically these two cases. For the overestimation problem, we show
that the proposed approach, ExpectRL, provides better results than a classic twin-critic. On
robust RL benchmarks, involving changes of the environment, we show that our approach is more
robust than classic RL algorithms. We also introduce a variation of ExpectRL combined with
domain randomization which is competitive with state-of-the-art robust RL agents. Eventually,
we also extend ExpectRL with a mechanism for choosing automatically the expectile value, that
is the degree of pessimism.

Subsequently in the Chapter 6, we try to derive new algorithm without rectangularity
assumptions. The rectangularity assumptions in RL Traditional robust reinforcement learning
often depends on rectangularity assumptions, where adverse probability measures of outcome
states are assumed to be independent across different states and actions. This assumption, rarely
fulfilled in practice, leads to overly conservative policies. To address this problem, we introduce
a new time-constrained robust MDP (TC-RMDP) formulation that considers multifactorial,
correlated, and time-dependent disturbances, thus more accurately reflecting real-world dynamics.
This formulation goes beyond the conventional rectangularity paradigm, offering new perspectives
and expanding the analytical framework for robust RL. We propose three distinct algorithms, each
using varying levels of environmental information, and evaluate them extensively on continuous
control benchmarks. Our results demonstrate that these algorithms yield an efficient tradeoff
between performance and robustness, outperforming traditional deep robust RL methods in
time-constrained environments while preserving robustness in classical benchmarks.

In the Chapter 7, we introduce the Robust Reinforcement Learning Suite (RRLS), a benchmark
suite based on Mujoco environments. RRLS provides six continuous control tasks with two
types of uncertainty sets for training and evaluation. Our benchmark aims to standardize robust
reinforcement learning tasks, facilitating reproducible and comparable experiments, in particular
those from recent state-of-the-art contributions, for which we demonstrate the use of RRLS. It
is also designed to be easily expandable to new environments. The source code is available at
https://github.com/SuReLI/RRLS.

Finally, in the Chapter 8, we tackle the problem of representation of the posterior in the
bandit problem using Thompson sampling algorithms with arbitrary posterior distribution learned
using Variational inference. We introduce and analyze a variant of the Thompson sampling
(TS) algorithm for contextual bandits. At each round, traditional TS requires samples from the
current posterior distribution, which is usually intractable. To circumvent this issue, approximate
inference techniques can be used and provide samples with distribution close to the posteriors.
However, current approximate techniques yield to either poor estimation (Laplace approximation)
or can be computationally expensive (MCMC methods, Ensemble sampling...). In this paper,
we propose a new algorithm, Varational Inference TS (VITS), based on Gaussian Variational
Inference. This scheme provides powerful posterior approximations which are easy to sample
from, and is computationally efficient, making it an ideal choice for TS. In addition, we show
that VITS achieves a sub-linear regret bound of the same order in the dimension and number of
round as traditional TS for linear contextual bandit. Finally, we demonstrate experimentally the
effectiveness of VITS on both synthetic and real world datasets.
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8.6.2 Future Work and Perspectives

Finally, I would like to end this dissertation with a more personal view on what remains to be
done and how our work can be applied to real-world scenarios. The different contributions of
this thesis remains mostly theoretical but we could use these tools for practical applications and
Simulation to Real. Therefore, I believe there are still many issues and open question that nay
need to be addressed before use our method, algorithm and results to other applications.

Extension of the theoretical result to other robust definition settings. A first step
would be to adapt our approach to encompass alternative definitions and settings, with a view
to enhancing our understanding. It would be beneficial to examine the divergence between
probabilities in the definition of RMDPs, such as the KL or y2. Furthermore, while the model-
based approach with a generative model is a promising avenue for investigation within the
Simulation to Real framework, it would be beneficial to consider the question of online settings,
as recently explored in Lu et al. (2024), and the potential of model-free settings. Additionally, it
would be valuable to investigate how robustness for different divergences could potentially reduce
the range of the value function. This question could also be relevant for understanding the role
of different pessimistic penalisation in certain offline RL algorithms.

Identify novel Deep Robust algorithms combine concepts from Deep RL and theory.
A principal objective of this thesis was to derive a novel Deep Robust RL algorithm in practice,
based on the existing theoretical framework. Further investigation may be required to ascertain the
potential benefits of combining computer science concepts such as DR with risk-averse formulations
such as the expectile in Chapter 5. It would maybe be beneficial to investigate whether ideas
from the foundations model and meta-reinforcement learning can be employed to identify a
policy that generalises well to downstream tasks with robust Markov decision processes (MDPs).
This could potentially lead to the design of a more sample-efficient algorithm. Furthermore,
the question of how to derive implicit robustness with straightforward penalisation/estimation
remains an avenue for further exploration.

Generalisation versus Performance in RL. Further investigation is required to gain a
deeper understanding of the trade-off between generalisation and performance in (Robust) RL.
This will enable the development of policies that generalise more effectively while maintaining
good performance on the nominal kernel with low sample complexity. It may be the case that
a different form of robustness is more suitable in practice than that which is based on theory.
Finally, the question of how to circumvent rectangularity assumptions, as discussed in Chapter
6, is also pivotal in practice to achieve algorithms and performances that are not excessively
conservative.

Evaluation, metric and benchmark to understand Robustness in RL As is the case
in numerous domains within machine learning, the question of how to evaluate and identify
pertinent tasks represents a fundamental challenge in the field of robust reinforcement learning
(RL). Based on the Mujoco simulator, we propose RRLS, a normalised benchmark presented in
Chapter 7. However, this question remains incomplete and would require the inclusion of more
realistic and challenging tasks to evaluate the robustness and generalisation of RL algorithms.

Are RMDPs a new way for doing some exploration in RL ? A final proposition for
consideration is whether Robust RL facilitates superior exploration, given that it necessitates a
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minimal number of samples to reach a solution in theory. It may be the case that, in certain
instances, the robust value functions exhibit relatively favourable performance. One potential
approach would be to initially target a robust value function, capitalising on the concept of
reducing the variability of the value function at the outset. Subsequently, at the conclusion of the
training period, a non-robust value function could be targeted in order to enhance performance.
This could be achieved by reducing the parameter that controls robustness. (the parameter «
in Chapter 4 and 5) during the training represents a potential method for implementing the
aforementioned idea.
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Appendix of Chapter 2

1 Overview and useful inequalities

The appendix is organized as follows

o In Appendix 1.1, a comprehensive table with state-of-the-art complexity for every distance.

o In Appendix 1.2, we provide more details/explanations on the difference between our
formulation on the one of Kumar et al. (2022) and Derman et al. (2021).

e In Appendix 1.3, we give more details about our algorithm : DRVI Lp.
e In Appendix 1.4, we give some useful inequalities frequently used in the proofs.
e In Appendix 2, we prove Theorem 2.4.1.

e In Appendix 3, we prove Theorem 2.5.1.

Finally, the proofs for the s-rectangular and sa-rectangular cases are often very similar. If
this is true, we will combine them in a single proof with the two cases detailed when needed.

1.1 Table of sample Complexity

Table 9.1: Sample Complexity for different metric and s- or sa rectangular assumptions with o the
radius of uncertainty set, H the horizon factor, e the precicion, p, o, = (1 —7)/(27S*/?). the smallest
positive state transition probability of the nominal kernel visited by the optimal robust policy (see Yang
et al. (2021)).

Panaganti and Yang et al. (2021) Shi and Chi Our o >0 Our og,p > Shi et al. (2023) Shi et al. (2023)

Kalathil (2022a) (2022) o >0 o>1—-7v 0<o<1l—v

5 SQAH4> 5 s2aH(240)2 5 (sAHt (SAH3 5 (SAH2) 3 (SAH3)
1y | o(San o(Famaat) | o(sat) |o(:2) |o(m) |o(

e“o

(=44-) )
(=47) )
(=47) )

Lp 5 5 X X
(sa) € €
~ 4 ~ 3

Lp X X x o (824l o (84 X x
(s) € ¢

2 5 SQAUH4) 5 [ 1SI21AI(+0)2HE 5 (SAaH4) 5 (SA0H4)
(e O( 2 O\ a2 x % x G e

2 5 [ 1S12143%10+0)2 14
(X) X © (W X X x X

S

5 [ ISI21Alexp(H)H? | 5 (s2AH4) 5 (suﬂ)
(I;[;) o ( 5222 o 72252 o 2ok X X X X
~ 2 42174

KL X o (22‘2’252 ) X X X X X
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1.2 Relation with the work of Kumar et al. (2022) and Derman et al. (2021)

In the work of Derman et al. (2021) close forms for RMDPs with L, norms are derived assuming
the following uncertainty set :

Assumption 1.1. (sa-rectangularity in Derman et al. (2021))

U‘T,T{:(PO) = (TO +R) X (PO + P) 7R = XsES,aEARS,mRs,a = {Ts,a €R ‘ Hrs,aHp < as,a}
P = XsES,aEAPs,aPs,a = {Ps,a : S =R, ”Ps,aHp < Us,a}

Using these uncertainty sets leads to the following Bellman Operator :

Theorem 1.2 (Derman et al. (2021)). The sa-rectangular Robust Bellman operator is equivalent
to a regularized non-robust Bellman operator: for r/%(s,a) = — (OzS,a + 7054 |]V||q) +ro(s,a) as

we have
TV (s) = (ms, (s, a) + Z PO (s | s,a) V (s))a

s

Using this formulation, they get a closed form for the inner minimization problem and for
the Robust Bellman Operator

The work Kumar et al. (2022) modifies the work of Derman et al. (2021) using Kernel that
sum to 1, Y Ps o(s’) = 0 in their definition, but using this uncertainty set, it is still possible to
get a robust kernel out of the simplex. Using this formulation, they also get a closed form for
the inner minimization problem and for the Robust Bellman Operator.

Assumption 1.3. (sa-rectangularity in Kumar et al. (2022))

MHS,C|L|7:(P0) = (TO + R) X (PO + P) aR = XsGS,aGARS,aaRs,a = {Ts,a eR ‘ ||Ts,aHp < as,a}
P = XsES,aEAPs,aPs,a = {Ps,a :S—R ’ ZPs,a (3/) = 07 HPs,aHp < Us,a}

S

Using these uncertainty sets where robust Kernel may not belong anymore to the simplex as
they do not assume P° 4 P, , > 0. This leads to the following Bellman Operator :

Theorem 1.4 (Kumar et al. (2022)). The sa-rectangular Robust Bellman operator is equivalent
to a regularized non-robust Bellman operator: for r‘s/”fr(s,a) =— (Oé&a + 'yos,aqu(V)> +70(s,a),

as we have
TV (s) = (Ws,rf/ﬁr(s, a) + ”yZPO (s"| s,a) V (s'))a

S

where sp, (V) in defined in Def. 2.3.1.These results are due to the following lemma.

Lemma 1.5 ( Kumar et al. (2022). Duality for the minimization problem for sa rectangular
case with L, norm without simplex constrain).

inf R PV = ]/557(1‘/ - Us,aqu(v)
Py P(s)=0|| PPyl <05

Our analysis assumes the positivity of the kernel function, P° + P, > 0 in s-rectangular or
PO+ Ps . > 0 for sa-rectangular case. Using this more realistic assumption, we can not obtain a
closed form of the robust Bellman operator. However, we are still able to compute a dual form for
the inner minimization problem of RMDPs. With our definition of rectangularity in the simplex:
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Assumption 1.6. (sa-rectangularity) We define sa-rectangular L,-constrained uncertainty set
as

U (P°) = (ro + R) x (P° + P)

R = XsES,aEARs,mP = XsES,aEAPS,mRs,a = {Ts,a eR | |Ts,a| < as,a}
Ps,a = {Ps,a :S—+R ‘ ZPs,a(Sl) = 07P0,5,a + Ps,a >0,, ”Ps7aHp < Us,a}

SI

and using kp(v) = inf {u viu € D} we obtain :

Lemma 1.7 (Duality for the minimization problem for sa rectangular case with L, norm).

K/ﬁs,a (V) = IB&(}){{ﬁ&a(V - IU’) - Us,aqu(v — /_,L)}

Proof can be found on Appendix 2.5. Contrary to previous lemma in Kumar et al. (2022),
there is an additional max operator in our dual formulation. Interestingly, their formulation is a
relaxation of our Lemmas 2.3.3 as their formulation does not assume the positivity of the kernel.
Their relaxation allows practical algorithms with close form, but still suffer from non-exact
formulation of RMDPs with robust Kernel that are not in the simplex.

One crucial point in our analysis is that Bellman Operator for RMDPs is a - contraction for
robust kernel in the simplex for any radius o (see Iyengar (2005)). For Kumar et al. (2022) and
Derman et al. (2021) the range of o where their Robust Bellman Operator is a contraction is
smaller than (see Proposition 4 of Derman et al. ( 021)) which is the range where we have

Sl/q

minimax optimality in our Theorem 2.5.1. For ¢ > there is no contraction anymore. In

Sl/q )
the following, we will assume that robust kernels belong to the simplex to use ~y-contraction in
our proof of sample complexity and ensure convergence of the following Distributionally Robust

value Iteration for L, norms for any o Algoritm 11.

1.3 Model based DRVI L; algorithm

Algorithm 10: DRVI Lp: Distributionally robust value iteration DRVI for Lp norms
with sa—rectangular assuptions

input: empirical nominal transition kernel Fy; reward function r; uncertainty level o.

1

2 initialization: Qg(s,a) = 0, Vo(s) = 0 for all (s,a) € S x A.
g fort=1,2,--- 7T do

4 for Vs € S;a € A do

5 L Set Qy(s,a) according to (A.309) for sa—rectangular ;
6 for Vs € S do

7 L Set V;(s) = maxy Qy(s, a);

output: Qr, Vp and 7 obeying 7(s) = arg max, @T(s, a).

0]

We propose Alg. 11 to solve robust MDPs in the case of Lp norms using value Iteration with
sa- rectangularity assumptions. First, we can remark that directly solving classical RMDPs
formulation is computationally costly as it requires an optimization over an S-dimensional
probability simplex at each iteration, especially when the dimension of the state space S is
large. However, using strong duality like Iyengar (2005) for the TV, one can also solve using
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the dual problem of this formulation. The equivalence between the two formulations can be
found in Lemma 2.3.3. Using the dual form, the optimization (A.2) reduces to a 2-dimensional
optimization problem that can be solved efficiently using any 2—dimensional convex solver if
there exists an analytic form of the span-semi norm. Then the iterates {@t} >0 of DRVI for Lp

norms converge linearly to the fixed point @*, owing to the appealing ~-contraction property of
robust MDPs in the simplex. From an initialization Q9 = 0, the update rule at the ¢-th (¢ > 1)
iteration can be formulated as for sa-rectangular case as:

V(s,a) €S x A:  Qu(s,a) =r(s,a) + max PV —p) — Jsﬂqu(f/t_l — 1) (A.1)
p=>
=r(s,a) + max ﬁ[ﬂ_l]ax,w — Us’aqu(["/\%_l]ax,w) (A.2)
ayveAt P P

where the variational family A)Igw is a 2—dimensional variational family defined in (A.11).
The specific form of the dual problem depends on the choice of the norm. In the case of L,
Lo, or Ly, span semi-norms involved in dual problems have closed form (respectively equals to
median, variance, or span), and equation A.2 corresponds to a 2-D minimization problem.

But in general cases, one has to compute span-semi norms that can be easily computed using
binary search solving

S sign (0(s) — wp(v)) [0(s) — wp(v)[7T =0

to compute w, and then setting the semi norm sp,(v) = ||v — w,|. Recall the g-variance function
spy : § — R and g-mean function wy : & — R be defined as

8D (v) == min [lv — wlflg, wy(v) := argmin [jv — wify.

See Kumar et al. (2022) for discussion about computing span semi norms. So in the general
case, we can also compute the maximum solving :

V(s,a) € Sx A: Qus,a) =r(s,a) + max P[V,_1]

)
¥ eAdw
P P

q

w —O0s.a [‘/}tfl]a{yw —w
P

A,
(62N
P

Using any 2—D convex optimization algorithm solves the problem as this problem is jointly

concave in (A, w) because (A\,w) — — H[Vt_l]ax,w —w|| is concave using norm property and
P

q

A\, w) — ﬁ[@_l]ax,w also. Then the sum is concave.
P

Finally, in the sa-case we compute the best policy which is the greedy policy of the final
Q-estimates Qr as the final policy 7:

VseS: 7(s)=arg max Qr(s,a).

1.4 Useful Inequalities and notations

Here we present some useful inequalities used frequently in the derivation. Consider any P a
transition matrix and o for s rectangular uncertain sets or oy, for sa- uncertainty sets, then for
1=(1,1,..,1)":
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1
1—~P)  (yo )1 < —2—1 1—~P)y 1< _—— 1 A.
(1= 7P) ! (o) 1< 7 and (L= 9P) M1 < (A3)
Vg e N*, sp () < 2|0, <25V lls  5P()oo < 2]l (A4)

spg(-) < 211.ll, = 2|, (A.5)

Eq. (A.3) is true, taking the supremum norm of the left-hand side inequality. Eq. (A.4) and
Eq. (A.5) come from properties of norms, see Eq. (1) from Scherrer (2013). Finally we denote
the truncation operator for a vector o € RS,

V], = {a(s), if V(s) > a(s)

V(s), otherwise.

1.5 Robust Bellman Operator and robust Q values

This is proof of Lemma 2.3.5:

Lemma 1.8. Robust Bellman Operator for sa— and s— rectangular are :

TV () = Eorlals)( = v+ ro(ss0) +9 2 PS ssa)uls) +9 guin. PV)

T™OV(s) = — |msll a5+~ min PV + > w(als) (ro(s,a) +7P°(s]s.0)V ()

Proof. For sa-rectangular: by rectangularity

oY = — Usa ) in PV
TV (s) = Y wlals)( = s +rols @)+ min )

a

:Zﬂ(a|s)(—asa+ro(s a) + 7 min PV+P05aV)

PePs.a

For s—rectangular case :

TV (s) = P{{lei%g ~PV + é%%lg za:ﬂ(a\s)R(s, a)

= Zw(a]s)ro(s,a) + }?61%13 > w(als)R(s,a) + > w(als) ZPO "Is,a)V (s

+ min vP"V
PTEP;,

@ 7(als) (7"0(3, a) + ZPO(S'\S, a)V(s’)) — s |||, + Prpei% yP™V

a

where (a) comes from Holder’s inequality. O

Lemma 1.9. For sa— and s— rectangular,

Q™ (s,a) = rs) + 4P, V™, (A.6)
Q™ (s,a) = rgs + P V™ (A7)
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with
Tg;ra) = 740(37 CL) — Qgq + ,YP%%I:,(L PV™? (A8)
o = ro(s,0) — () oy 4y min PV (A.9)
THr = 1o(s,a) — Qs+ min ’ .
Q sl PTEP;

Proof. The result comes directly as for sa-rectangular the following relations hold,

VTa(s) = Zﬁ(a|s)Q”’U(s, a) and

a

and for s-rectangular case

VT(s) = D m(als)Q™7 (s, a).

a

Then using fixed point equation of Bellman operator: 7™V ™7 (s) = V™ (s) or T™ V™ (s) =
V™9 (s) and previous Lemma 1.8 for the expression of 7™V ™ (s), we can identify the robust Q
values that give the result

O]

2 An H* bound for L,-balls

To lighten notations, we remove superscript ¢ or ¢ in most places and denote for example V™
instead of V™7 for sa-rectangular sets.

Lemma 2.1 (Decomposition of the bound).

o -] < fler -~

Al -+l -],
Proof.

OSQ*—Qﬁ:Q*—QL+Q*—Qﬁ+Qﬁ—Qﬁ
>Qm*
<Q-QT+Q -QT+QT - Q"
= Q" = Qoo < Q" = Q™ [loo + Q" = Q[0 + Q" — Q7[00
O

This decomposition is the starting point of our proofs for both Theorems 2.4.1 and 2.5.1. In
this decomposition, the second term satisfies ||Q* — Q™ loo < €opt by definition. This term goes
to 0 exponentially fast as the robust Bellman operator is a v-contraction. The two last terms
1Q* — Q™ ||oo and ||Q — Q7||os need to be controlled using concentration inequalities between
the true MDP and the estimated one. To do so, we need concentration inequalities such as the
following Lemma 2.2.

Lemma 2.2 (Hoeffding’s inequality for V). For any V € RISl with |V < H, with probability
at least 1 — §, we have
log(2|5]|-Al/9)

max IN .

(s,a)

POV—ﬁV] <H
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Proof. For any (s, a) pair, assume a discrete random variable taking value V' (¢) with probability
P (i) for all i € {1,2,---,|S|}. Using Hoeffding’s inequality (Hoeffding 1994) and ||V|, < H:

P(P'V — PV >¢) <exp(-Ne?/(2H?)) and P (PV - PV >¢) <exp (~Ne/(2H?)).

Then, taking e = H w, we get

o B log(2|S]|4]/9) J
P(‘PV—PV‘EH ~ < Sl

Finally, using a union bound:

o (r(na}){ PV Bv|s \/2log<2|8|A\/6>) “yp (‘POV w|en Vmog(zwnAva)) s

N - N
This completes the concentration proof. Next we will look at the contraction argument of
the robust Bellman operator.

s,a

O]

Lemma 2.3 (Contraction of infimum operator). For D = Py, or Ps, the function
Vs,a, v~ kp(v)=inf {uTU tu € D}
is 1-Lipchitz.
Proof. We have that

V(s,a) €S x A, kp,, (Vo) —kp,, (Vi) = inf p"Vo— inf §'Vi= inf sup p'Vo—p'W
’ ’ peps,a ﬁeps,a peps,a ]’;'E’P‘S’a

> inf p' (Vo—W)=rp,,(Va—Vi).
PEPs,a ’
Then Ve > 0, there exists P, € P, 4 such that
Pl,(Va=Vi)—e <hp,, (Va—W1).

Using those two properties,

K’Ps,a (‘/1) - IQ,Ps,a (‘/2) S Ps—,ra (‘/1 - ‘/2) + € S ||P37a

Vi = Vel +e = [[Vi = Vafl + e,

where we used the Holder’s inequality. Since ¢ is arbitrary small, we obtain, xp, , (V1) —
kp, . (V2) < ||V1 — V2||. Exchanging the roles of V1 and V3 give the result. The proof is similar
for Ps. O

Note that an immediate consequence is the already known ~- contraction of the robust
Bellman operator.

Lemma 2.4 (Upper-bounds of Q™ — Q7| and HQ* QT )-
7 AR Y N rTy T
HQ Q| =g max|se, (V) = sl (VO]
* A* Y * *
@ - @, =17 maxwg, (V) = wp0.a (V)
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Proof. For the first inequality, since we can rewrite the robust Q-function for any uncertainty
sets on the dynamics as Q™ (s,a) =7 — as.q + VEPy, 4 (Vﬁ) (see Eq. (2.3.5)), or replacing o q

b 7o)\ 17 tangul :
y Qg m 11 e S- rec angu ar case:

O (s,0) — O (s,a) ¥ VEPo o0 (Vﬁ) VR, (Vﬁ)

= (11 (V) e (7)) 4 (5 (7). (7))

with Ps, defined in Assumption 2.3.1 and 7537a with the same definition but centered around the
empirical MDP. Hence, taking the supremum norm |||,

(7)o (7)) 9 (e (7) =, (7))

svhﬁ—vﬂw+mw

|7 - @7, = max
0o S,a

<q|vr-vr
o0

< 7]|QF - Q7| +ymax|np (VF) = ripy, (V)

Line (a) comes from the rectangularity assumption, (b) uses the triangular inequality and the
1-contraction of the infimum in Lemma 2.3, (c) uses the fact that [|[V™ — V™| < [|Q™ — Q||
for any m. As 1 —~ < 1, we get the first stated result.

One can note that the proof is true for any policy, so it is also true for both 7 and 7* which
concludes the proof. This proof is written for the sa-rectangular assumption, it is also true for
the s-rectangular case with slightly different notations, replacing D = Py s, by D = Py s. Now
we need to find new form for « for both s and sa rectangular assumptions.

For the second claim,

o=

gimax
00 1—'7 s,a

KI,I/D\s,a (V*) - K/,PO,s,a (V*)

we are using a slightly different modification:

Q" (s.0) ~ Q" (s,0) @ ymp,,, (V) =g (V)
= VTRPo,s,a (V*) — YRPos,a (Vﬂ*) + VEPosa (Vﬂ*) - '7’%55’& (Vﬂ*>

<7l|lQ - Q7| +max|rs (V) = wm, (V)

s,a

using the same arguments as in the first inequality. Solving gives the result. O

We denote [V], as its clipped version by some non-negative vector «, namely,

Defining the gradient of P — ||P| as V|| P|, A > 0, a positive scalar and w is the generalized
mean defined as the argmin in the definition of the span semi norm in Def.2.3.1, we derive two
optimization lemmas.
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Lemma 2.5 (Duality for the minimization problem for sa rectangular case.). Denoting P the
vector Ps , or PO for Pos.a ;s

Kp (V™) = max{P(V™ — 1) — o,

- h=0 7 PR e MR P
P
= Jmax PV = 0saspg([(V]aw).
P P

KPoa(V7) = max{P(V* = ) = 05aspy (V" = p)} = max {POUV" = 1) — 0aspg (V" = ipi)}

#=20 “;0 e“po
= max P°[V*] rw — 05asp,([V*] rw).
s PVl — oV
where
A A, A A 1 79
AR = {0} a3(s) =w + AIV [P, (5) 1 A > 0,w > 0, P € A(S), 0 € [o, 1_7} }
(A.11)
A A 1 79
(A.13)

For L or TV, case , the vector a;‘g’w reduces to a 1 dimensional scalar such as a € [0,1/(1—7)].
Proof. First, we will show that

g, (77) = max P77 = 1) = 0,05p, (V7 — )}
The second equation of this lemma is the same as the first one, replacing the center of the ball
constrain PS o by PO and 7 by 7*. By definition,

kp (VF) = min STP()V(s) = P VT + min S oysHVE(S)
PEA[|P-P|| <ouo g Uyl <050, 1y=0y>—P 7

where we use the change of variable y(s') = P(s') — P(s'). Then writing the Lagrangian we get
for p € R:gr,v € R the Lagrangian variables:

VTt JZ0WER y; ||yI|]|m£U§ . %: pu(s)P(s) + %:(y(sl)(vﬁ(s’) —u(s") =) (A.14)

= pyT — / / RN no_
R gﬂ(s JP() = 00 |[(VF () = () = )| (A.15)
2 max PVT = 1) = 00asp, (V7 = ) (A.16)
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where (a) is true using the equality case of Holder’s inequality and (b) is the definition of the
span semi-norm (see Def. 2.3.1). The value that maximizes the inner maximization problem in
A.15 in v is the ¢g-mean (see Def. 2.3.1) by definition denoted w. Now the aim is to prove that

A A A A

max{P(VT = 1) = 0oaspy (V7 = )} = M&{g’jﬁw{ﬁ(v — ") = Taspy (VT = 1)}

First, as the norm is differentiable (which true for L,, p > 2), we have that the equality (a)
comes from the generalized Holder’s inequality for arbitrary norms Yang (1991), namely, defining
z=(V* — u—w), it satisfies

z=zl,Viyl, (A.17)

The quantity v is replaced by the generalized mean for equality in (b) while (A.93) comes from
Yang (1991). Using complementary slackness Karush (2013)we define B={s € S : u(s) > 0}

VseB: y*(s)=—P(s), (A.18)
which leads to the following equality by plugging the previous (A.18) in (A.93) and defining
F=VF - —w:

VseB, z(s)= Hz*HqVHPHp(s) (A.19)
or

VseB, Vi(s)—p*(s) =w+ )\VHﬁHp(s)ﬁa%’w (A.20)

by letting A = ||2*[|, € R* . Note that for s € B, V||y||,, = V|| P||, only depends on P(s) and not
on other coordinates due to definition of L, norm.

We can remark that v — p* is P dependent, but if P is known, the best p* is only determined
by one 2 dimensional parameters A = [[v — u* — ||, and w € RT. Moreover, when P is fixed, the
scalar w is a constant is fully determined by P, v and p*. This is why the quantity defined a;\g

varies through 2 parameter A\ and w. Given this observation, we can rewrite the optimization
problem as :

DIXra Ot DIXra Aw s Aw
glgg{P(V” — ) = 05,5y (V" — )} = mgg\;{&w{P(V” — 13) = 0saspg(VF — 1)} (A21)
P P

= max  P[VT] yo — 05050, (V7] ro) (A.22)

aNeAN® P P
P P

where we defined the maximization problem on g not in RS but at the optimal in the variational
o n S
family denote M}\g’w = {u;‘g’w =V — aj‘;’w,)\,w ERT,Pe A(S),ne RS,/L;;W = [O, ﬁ} }.
We can rewrite the optimization problem in terms of ap with
Aw s Aw
a7 if V(s) > aX
Vppols) = {07 TV 2% .
P V(s), otherwise.

Note that for TV or Li, this lemma holds, but the vector a%w reduces to a positive scalar

denoted « which is equal to HV” —pu* according to lyengar (2005). The thing which is of

o0
capital importance is that the second part of the equation sp,([V*],) does not depend on P.

O]
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Lemma 2.6 (Duality for the minimization problem for s rectangular case.). Considering a
projection matriz associated with a given policy m such that PT(s') = Y, m(als)Psq(s") and
denoting P™ € R® the vector Pr(.) or P%™ for PY™(.), we have:

Ps.a s,a

i, (V) = Do (als) | max ((Ps,a[mw = 0 |mally 52 (V7] 2 )))

rpo (V") =Y w(als) | max ((Po,s,a[v*]a;w — o7l 5, (V7] 2 ))))

0,s,a 0,s,a

a(s), ifV(s)>a
V(s), otherwise.

Proof. The second equation is the same replacing the center of the ball constrain 135 by PO
and 7 by 7*. By definition,

Kp (V) (s) = min  PFV7(s)
® PFe(As),PFePs
@ — » ) s
=N #(als)PsoVT+ min 7r(a|s) min y(s)V™
Xa: . los,all,<os y,uy||ps(fs,a,1y:0,yz—ﬁ§:

where we use the change of variable y(s') = Py .(s') — Ps4(s') in (a). Then we case use the
previous lemma for sa rectangular assumption, Lemma 2.3.3. Then,

min Zﬁ'(a|s) min R Zy(s')V7r
”US’H’”PSJS a yv||y||p§03,avly=0,yZ—Ps,a s/

= min Zﬁ(a‘s) rl?g())( ( - iﬁs,aﬂ - Us,aSpq(f/vfr ))

||Us,a||p§05 a

_Zmax <7r als)(— sau) max Zﬁ(a\s)a&aqu(f/ﬁ ))

||Us,a||p§Cfs a

= Zmax <7r als)(— saﬂ) Os H7R<s”qs'pq(‘7fr ))

we can exchange the min and the max as we get concave-convex problems in o5, and u ,
((v. Neumann 1928)) in the second line and using Holder’s inequality in the last line. Finally, we
obtain:

rp, (V) =Zm§3< <fr(a|s)(ﬁg,a(vfr — 1) — 0 ||l sy (VT — u)))

Ps.a P.sa

U (als) |, max, <(ﬁs,a[vﬂax,w —oullmlly s, (V7,50 ))))
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where in (a) we use Lemma 2.3.3. Second claim is the same replacing v by V*, @« by 7* and P

by PY. Then we derive a new decomposition of the difference the two minimum.

O
Lemma 2.7. For s and sa rectangular assumptions,
’/{75 (V™) — K/poysya(f/ﬁ) < max { max | max (PSO@ — ﬁga) VT — u;;’g’ )IB (A.23)
s,a s Meup,éu s,a
::gsﬂ(a)]‘)’w,\/”)
max | max (PO o ) (VF — ) } (A.24)
s,a A,w A,w $,a S,a Psoa '
Yeo, MY, |
_:gsya(a;\s’w,f/ﬁ)
~ N
‘mﬁs(v*) — mpO’S(V*)‘ < max { max | max (Pga — Pga) (V* — upsé)"a) , (A.25)
b #E“P;Oa b
::gs’a(a;‘;w,V*)
max| max (PO - P ) (V= ) } (A.26)
S,a A\,w Mk,w S, 5,0 ,U]g,ga .
"p9, g, ’
=igs,a(ay”,V*)
Proof.
5, , (V) = g (V) (A.27)
=|  max {Pga(V* — ) = 0sa (sp((V* — N))*)}
Hpo, EMpD
- e POV =) = o (s =i ) ) |
ML,
A, A
S max {‘ A wmaxk w {Pso’a(v* N 'LLPSSJa) N O—S’a (Sp((v* N MP;OJJa))*)}
#PPQEMPPQ ’ 7
35 A A .
- x,wmaxx,w {Pga(V* - :U'psg,}a) ~Os,a (Sp((V* - Mpg)j}a))*)} ) (A-28)
P, Mo,
e, PO = ) = o (spl(V7 — ) ) | (4.29)
NP§GEMP§) s,a s,a
-, P07 =) - o (s ) ) |}
~ A, s A,
< max{ max (Pga — P£a> (V* — ,uPSSJa) )|, max (Psoﬂ P£a> (V" =z ) } (A.30)
ek, | [P M,
::gs,a(a;;’w7v$) 795,(1(04;\5, 7V*)
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where in the first equality we use Lemma 2.5. The final inequality is a consequence of the
1-Lipschitzness of the max operator. Taking the supremum over s, a gives the result. Replacing
V* by V™ gives the other inequality. The result for s rectangular are the same as

> 7(als) max{ énzi}i (Pga - I?’ga) (V* — ,u}\;ff )| (A.31)
a H HP;,O,a )

::gsya(a;‘;w,V*)

max (P, = PY,) (V= )| } (A.32)

Aw EMA,w ’ ’ Ps,a

=:gs a(a;’w,v*)
< max { max | max (Pga - Pga) (V* — ,uj;’ff ), (A.33)
S,a MEMP,SJ s,a
s,a

::gs,a(a;‘;w,v*)

max| = max (Pga — Pga) (V* — ;L)IID’;”) } (A.34)
) w W s,a
ro, “Meo, ’

::gs,a(a;\s'w,\/*)

Note that at this point, quantities for s and sa rectangular is the same as the part with
span semi norms cancelled. Now, note that the main problem is that we can not apply classical
Hoeffding’s inequality as P is dependent of data as V. We need to decouple V7 using s
absorbing MDPS as in Agarwal et al. (2020) but using Hoeffding arguments. First, we will use a
concentration for V*.

O
Lemma 2.8. For sa and s-rectangular, with probability 1 — §, it holds:
1/q _
‘“ﬁs,a(v*) (V)| <2 2N(1L_ o+ 2L\S\]<r(Hllinqy§p 1)
with L = log(18]/1]|,SAN/5)
Proof. First, we can use previous Lemma 2.7
rp, (V) = iy (V) (A.35)

< max{ uérllfi%(d (Pga — ]307 ) (V* — ,u}\;;’ ),|  max (PO — ]307 ) (V= ) } (A.36)
PS,(L

::gs,a(a;\;w7V*) ::gsxa(a;\s’wv‘/*)
First, we control gs,a(a}\;w, V*). To do so, we use for a fixed a;‘g’w and any vector V* that is

independent with f)o, the Hoeffding’s inequality, one has with probability at least 1 — ¢ with
sa-rectangular notations,
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log(g)
Aw _ 0 50 0
gsalap, V*) = ‘(Ps,a—Ps,a) Vi]axe] < (1—~)22N

(A.37)

Once pointwise concentration derived, we will use uniform concentration to yield this lemma.

First, union bound, is obtained noticing that gs,a(a?jw, V*) is 1-Lipschitz w.r.t. A and w as

I

it is linear in A and w. Moreover, \* = [[V* — p* —wl|, obeying A* < TH; The quantity

w € [0,1/(1 —~)] as it is always smaller that V* by definition. We construct then a 2-dimensional
1 . . 31, \2
7 q_“s] and w € [0,1/(1 — ~)] whose size satisfies |Ng,| < (61(\\1};))
(Vershynin 2018). Using union bound and (A.194), it holds with probability at least 1 — S% that
for all A € N,,,

a g1-net N, over \* € [0

2 1og(7SA|§V”')

SN (A.38)

gsalap, V*) < J

Using the previous equation and also (A.193), it results in using notation log(%) =1L,

(a) ~
gs,a(aﬁa, V*) < sup ’(Pga — Pga) VF |+ e
apENe r
SA|Ne, |
(b) log(%)
<Al ———Fz A.
< (1 — 2N +e1 (A.39)
25 A|N. 2S5 A|N.
(<c) log<7(|S 1|> log(ijS 1‘)
=\ NG 2 TN )
(i) L N L
=\ 2aN({1—7)2 " 3N(1—7)
L
<) —m A .40

where (a) is because the optimal o* falls into the £;-ball centered around some point inside Ng,
and gs o (o, V*) is 1-Lipschitz with regard to A and w, (b) is due to Eq. (A.38), (c) arises from

SA|Neq |
) log 2541INey | éN 1 . . 3||1||q 2 .
taking €1 = —3xr—y— (d) is verified by |Ng,| < (W) < 9N|[1f|, and that variance of a

ceiling function of a vector is smaller than the variance of non-ceiling vector.

For L, with p > 2, contrary to the previous term, the second term g, q (oz)]l37 V') is more difficult
as we need concentration, but there is an extra dependency in the data thought the parameter
oz)lg. Note that this term does not exist as a is a constant for TV. We need to decouple this
problem using absorbing MDPs. Then it leads to
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9s a(a}\sw> V*) A 41)
* A,

=| , max (Psoa—Pﬁa) (V" =z )l (A.42)
MPPQGMPPG s,a

— 0 0 * Aw 0 350 A\w

_| ma}%{ <P _Ps,a) (V _/vLPO ) (P P )(IMPO — B0 )| (A43)
MGMP’

0 50 % Aw

<|  max (P, = B2, (V= i3 (A.44)
“PQ EMPO )

T, e (Pl — P2 )(Mpo —Mpo )| (A.45)

'MPO GMPO

In the first equality, we add the term ,u;;"(f to retrieve the previous concentration problem, fixing

P0 and optimizing A\,w. In the second, we extend the max using triangular inequality. The
ﬁrst term in the last equality is exactly the term we have controlled previously, while the second
one needs more attention. We decouple the dependency of the data, and then controlling the
difference between the p. Then using the characterization of the optimal p from equation (A.96):

(P ) i, 35 = Y2 ()~ P)

(s') — V‘ ﬁ’ga(s/

)

p

As the norm is C? for p > 2, using Mean value theorem, we know that

al,)
p

< sup ||V2all, || ||(P — L)
2 zeA(S)

.
For L, = ||z|, norms, p > 2, we have simple taking derivative twice:

p—1 _
V2, = F— (42 ~ 5,97 )
p

) abs(x)) 9 ( x )
A = Diag gp = AP — .
( Ly : Ly

and L, the norm, where Diag is the diagonal matrix. However, as « < L,, A < I, we get

with

p—1
H < e, < (p—1)|S|9 (A.46)

where the 1/L,, is minimized for the uniform distribution. Then using Cauchy-Swartz inequality,
it holds

(P2~ P2 G =) < (o= DS (22, = 22,) -

(A.A7)

Then the question is how to bound the quantity H (Pga — ]3£CL>
Diarmid inequality.

2
’2. To do so, we will use Mac
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Definition 2.1. Bounded difference property

A function f : X1 x ... X, — R satisfies the bounded difference property if for eachi=1,...,n
the change of coordinate from s; to s; may change the value of the function at most on ¢

Vi€ [n]: sup |f(z1,.. @iy @) — f (@151, zn)| < @
IE;GXZ'
In our case, we consider f (X1,...,Xn) = |2 F—1 X&ll,. Then we can notice that by triangle
inequality for any x1,...,z, and z}, with X; ¢ = P§ ,(s') — P2,(s') (index i holds for index of

sample generated from the generative model) that

flo, . ap,. . z) = o4 oy < o+ -+ 2 — ak + 2y + e — 2|,
< f@yee, Thye oy xp) +2
Theorem 2.9. (McDiarmid’s inequality). McDiarmid et al. (1989) Let f : X1 x ... X, =+ R be a

function satisfying the bounded difference property with bounds c1,...,c,. Consider independent
random variables X1,..., X, X; € X; for all i. Then for any t > 0

2t2
Plf(X1,...,Xn) —E[f(X1,...,X,)] >t] <exp <_2>

n
i=16;

Using McDiarmid’s inequality and union bound, we can bound the term as here
5 5 2 _ 2Nlog(|S|A[/9))
0 _ po _ 0 _ po
(178 = B), — (P = o)) < =
with probability 1 — 6/(|S||A|). Moreover, the additional term can be bounded as follows:

E[H (PSO,a - ]380,(1)

N
= (P () — PR = EIX (5 30 X))

s’ s’
with X; ¢ = P§, .(s') — P? (') is one sample sampled from the generative model. Then
0o _po\|[H_o L - a 1o
E[H (Ps,a — P&a) ’2] =3 ZVar(Z Xis) = 2 Z ZVar(X@S)
S/ l 74 S/
1 Y ) 4
=Nz Z EQY_ X7 < N
i s’

where (a