
HAL Id: tel-04956954
https://theses.hal.science/tel-04956954v1

Submitted on 19 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust Reinforcement Learning : Theory and Practice
Pierre Clavier

To cite this version:
Pierre Clavier. Robust Reinforcement Learning : Theory and Practice. Machine Learning [stat.ML].
Institut Polytechnique de Paris, 2024. English. �NNT : 2024IPPAX102�. �tel-04956954�

https://theses.hal.science/tel-04956954v1
https://hal.archives-ouvertes.fr

574

N
N

T
:2

02
4I

P
PA

X
10

2

Robust Reinforcement Learning: Theory
and Practice

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à l’Ecole polytechnique

École doctorale n◦574 Ecole Doctorale de Mathématiques Hadamard (EDMH)
Spécialité de doctorat : Mathématiques appliquées

Thèse présentée et soutenue à Paris, le 20 novembre 2024, par

PIERRE CLAVIER

Composition du Jury :

Rémi Munos
Directeur de recherche, Inria et Meta, FAIR Président du jury

Aurélien Garivier
Professeur, Ecole Normale Supérieure de Lyon Rapporteur

Ana Bušić
Chargée de recherche (HdR), Inria et ENS Ulm Rapportrice

Eric Moulines
Professeur, Ecole polytechnique Examinateur

Michal Valko
Chargé de recherche (HdR), Inria Examinateur

Shie Mannor
Professeur, Technion et Nvidia Research Examinateur

Erwan Le Pennec
Professeur, Ecole polytechnique Directeur de thèse

Stéphanie Allassonnière
Professeure, Université Paris Cité Co-directrice de thèse

Matthieu Geist
Professeur, Université de Lorraine et Cohere Invité

†CMAP, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.
‡Inria Paris, HeKA

Robust Reinforcement Learning: Theory and Practice

Pierre Clavier †,‡

Paris, France,
November 21, 2024

This work was supported by the Paris Ile-de-France Region via the DIM Math Innov program.
We also acknowledge support from Fondation Mathématiques Jaques Hadamard.

À mes grands-parents, Odette et Jean.

Contents

Contents iv

Remerciements xi

Résumé court xv

Abstract xvii

Notations xix

Chapter 1 Introduction 1
1.1 Résumé et introduction en français . 2

1.1.1 Détails des différentes contributions du manuscrit 10
1.2 Introduction . 12

1.2.1 Overview of the manuscript and contributions 18
1.3 Background . 20

1.3.1 Reinforcement Learning and Markov Decision Processes 23
1.3.2 Deep Reinforcement Learning . 30
1.3.3 Robust Markov Decision Processes . 33
1.3.4 Deep Robust RL as a zero-sum game . 42

I Theory of Robust Markov Decision Processes 45

Chapter 2 Towards Minimax Sample Complexity of Robust RL 47
2.1 Introduction . 48
2.2 Related Work . 49
2.3 Preliminaries . 50

2.3.1 Markov Decision Process . 50
2.3.2 Robust Markov Decision Process . 51
2.3.3 Generative Model Framework . 53

2.4 Sample Complexity with Lp-balls . 54
2.4.1 Discussion . 55

2.4.2 Sketch of Proof . 55
2.5 Toward minimax optimal sample complexity . 56

2.5.1 Discussion . 57
2.5.2 Sketch of proof . 57

2.6 Conclusion . 58

Chapter 3 Near-Optimal Distributionally Robust Reinforcement Learning
with General Lp Norms 61

3.1 Introduction . 61
3.2 Problem Formulation: Robust Markov Decision Processes 64
3.3 Distributionally Robust Value Iteration . 67
3.4 Theoretical guarantees . 68

3.4.1 sa-rectangular uncertainty set with general smooth norms 68
3.4.2 s-rectangular uncertainty set with general norms 70

3.5 Conclusion . 71

II Practical Robust Reinforcement Learning 73

Chapter 4 Robust Reinforcement Learning with Distributional Risk-averse
formulation 75

4.1 Introducion . 75
4.2 Robust formulation in greedy step of AVI. 78
4.3 Algorithms based on Distributional RL . 80

4.3.1 Distributional RL using quantile representation 80
4.3.2 Mean-standard deviation RL with discrete action space 80
4.3.3 Mean-standard deviation Maximum Entropy RL for continuous action space 82

4.4 Experiments . 83
4.4.1 Results on continuous action spaces . 83
4.4.2 Results on discrete action spaces . 84

4.5 Conclusion of Chapter 4 . 85

Chapter 5 Boostraping Expectile in Reinforcement Learning 87

5.1 Related Work . 90
5.2 Background . 91

5.2.1 Markov Decision Processes . 91
5.2.2 Robust MDPs . 91
5.2.3 Expectiles . 92

5.3 ExpectRL method . 92

5.3.1 Expectile Bellman Operator . 92
5.3.2 The ExpecRL Loss . 93
5.3.3 ExpecRL method with Domain randomisation 94
5.3.4 Auto-tuning of the expectile α using bandit 94

5.4 Empirical Result on Mujoco . 95
5.5 Empirical Results on Robust Benchmark . 96
5.6 Conclusion and perspectives . 98

Chapter 6 Time-Constrained Robust MDPs 99

6.1 Introduction . 99
6.2 Problem statement . 100
6.3 Related works . 102
6.4 Time-constrained robust MDP algorithms . 103
6.5 Results . 105
6.6 Some Theoretical properties of TC-MDPS . 107

6.6.1 On the optimal policy of TC . 107
6.6.2 Some Lipchitz-properties for non-stationary TC-RMPDS 107

6.7 Conclusion . 109

Chapter 7 RRLS: Robust Reinforcement Learning Suite 111

7.1 Introduction . 111
7.2 Problem statement . 112
7.3 Related works . 113

7.3.1 Reinforcement learning benchmark . 113
7.3.2 Robust Reinforcement Learning algorithms 114

7.4 RRLS: Benchmark environments for Robust RL 116
7.5 Benchmarking Robust RL algorithms . 119
7.6 Conclusion . 122

III Bandit Theory 125

Chapter 8 VITS : Variational Inference Thompson Sampling for contextual
bandits 127

8.1 Introduction . 127
8.2 Thompson sampling for contextual bandits . 130
8.3 Main results . 134

8.3.1 Linear Bandit . 134
8.4 Numerical experiments . 136

8.4.1 Linear and quadratic bandit . 136
8.5 MovieLens Dataset . 139
8.6 Conclusion and perspectives . 139

IV Conclusion, Bibliography and Appendix 141

Conclusion & Perspectives 143
8.6.1 Conclusion on our Contribution . 143
8.6.2 Future Work and Perspectives . 145

Bibliography 147

Appendix 161

Appendix of Chapter 2 163
1 Overview and useful inequalities . 163

1.1 Table of sample Complexity . 163
1.2 Relation with the work of Kumar et al. (2022) and Derman et al. (2021) . 164
1.3 Model based DRVI LP algorithm . 165
1.4 Useful Inequalities and notations . 166
1.5 Robust Bellman Operator and robust Q values 167

2 An H4 bound for Lp-balls . 168
3 Towards minimax optimal bounds . 184

Appendix of Chapter 3 193
4 Other related works . 193
5 Further discussions of Theorem 3.4.1 and Theorem 3.4.3 194
6 Preliminaries . 195

6.1 Additional definitions and basic facts . 196
6.2 Empirical robust MDP M̂rob Bellman equations 197
6.3 Properties of the robust Bellman operator and dual representation 197

7 Proof of the upper bound : Theorem 3.4.1 and 3.4.3 201
7.1 Technical lemmas . 201
7.2 Proof of Theorem 3.4.1 and Theorem 3.4.3 201
7.3 Proof of the auxiliary lemmas . 213

8 Proof of Theorem 3.4.2 . 232
9 Proof of Theorem 3.4.4 . 233

9.1 Construction of the hard problem instances 233
9.2 Establishing the minimax lower bound . 235

9.3 Proof of Lemma 9.1 . 237
10 DRVI for sa− rectangular algorithm for arbitrary norm 238

Appendix of Chapter 4 241

11 Proof of mean-standard deviation formulation as a robust problem 241
12 Further results on continuous action space . 242

12.1 Normalised results . 242
13 Further Experimental Details . 243
14 Ablation study for discrete action space on Cartpole-v1 243
15 Further Experimental Details . 244

Appendix of Chapter 5 249

16 Proof . 249
17 AutoExpectRL algorithm description . 250
18 Hyperparameters . 252
19 AutoExpecRL vs other expectiles on Robust benchmark for mean on Table 5.1 . 253
20 Worst case performance for AutoExpecRL and ExpecRL (only nominal samples) or

Table 5.2. 254
20.1 For 1D uncertainty greed benchmark . 254
20.2 For 2D uncertainty greed benchmark . 255
20.3 For 3D uncertainty greed benchmark . 255

21 Average performance for AutoExpecRL and ExpecRL(only nominal samples) or
Table 5.2. 255
21.1 For 1D uncertainty greed benchmark . 256
21.2 For 2D uncertainty greed benchmark . 256
21.3 For 3D uncertainty greed benchmark . 257

22 Additional details for expectiles on Robust benchmark for worst-case and mean
on Table 5.3 . 257

23 Uncertainty sets used for Robust benchmark . 257

Appendix of Chapter 6 261

24 Appendix . 261
25 Proof of Theorem 6.2.1 . 261
26 Guaranties for non-stationary Robust MDPS . 262
27 Proof Theom 6.6.1 . 263
28 Implementation details . 266

28.1 Algorithm . 266
28.2 Neural network architecture . 266
28.3 M2TD3 . 267

28.4 TD3 . 267
29 Sanity check on the adversary training in the time-constrained evaluation 267
30 Uncertainty set in MuJoCo environments . 269
31 Raw results . 271

31.1 Fixed adversary evaluation . 271
31.2 Agents training curve . 274

32 Computer ressources . 279
33 Broader impact . 279

33.1 Limitations . 279

Appendix of Chapter 7 291
34 Modifiable parameters . 291
35 Training curves . 291
36 Non-normalized results . 292
37 Implementation details . 292

37.1 Neural network architecture . 292
37.2 M2TD3 . 294
37.3 TD3 . 295

38 Computer ressources . 296

Appendix of Chapter 8 303
39 Proof of the regret bound . 303

39.1 Proof of Theorem 8.3.5 . 303
39.2 Hyperparameters choice and values . 306
39.3 Useful definitions . 307
39.4 Main lemmas . 308
39.5 Technical Lemmas . 311

40 Concentration and anti-concentration . 323
40.1 Auxiliary Lemmas . 326

41 Approximation of our algorithm and complexity 327
42 Discussion on the difference between the algorithm of Urteaga and Wiggins (2018)

and our algorithm VITS. 327
43 Hyper-parameters tuning . 328
44 Experimental comparison between Langevin Monte Carlo and VI 329
45 Additional Results on non-contextual bandits . 330

45.1 Linear and logistic bandit on synthetic data (non contectual) 330
46 Details about experiences in synthetic contextual bandits with synthetic data . . 331
47 Computation complexity and Computational Power 333

Remerciements

Dans un premier temps, je tenais à remercier mes directeurs de thèse Erwan Le Pennec et
Stéphanie Allassonnière avec qui j’ai eu la chance de pouvoir travailler et échanger pendant

les dernières années. Merci beaucoup à Stéphanie de m’avoir introduit au monde de la recherche,
et de m’avoir donné les bases de statistiques computationnelles quand tu étais ma professeure au
MVA. Merci pour ta bonne humeur et ton enthousiasme qui permet de persévérer dans la thèse
et de se motiver quand on l’est moins. Erwan, cela était un vrai plaisir d’avoir pu collaborer
avec toi pendant plus de trois ans, de pouvoir apprendre à tes cotés que cela soit en math ou
en machine learning, ainsi que toutes les discussions intéressantes que j’ai pu avoir avec toi en
général.

Je tenais également à remercier Matthieu, pout tout le temps que tu as pris pour m’enseigner
le RL ! Merci pour tes conseils avisés, ta bonne humeur, tes conseils LaTeX que ”j’essaye” de
suivre autant que faire se peut, ton recul en recherche et ta capacité à comprendre et répondre à
mes questions pour transformer la ”mathémagie” en problème intéressant et en preuve rigoureuse.
Merci particulièrement pour tout ce que tu m’as appris, pour que je devienne un jeune chercheur,
en m’envoyant des papiers, en m’incluant dans la communauté du RL ou en me soutenant dans
les moments plus difficiles. Si j’ai autant apprécié ma thèse c’est aussi grâce à toi !

Je remercie également les membres du jury, et en premier lieu les rapporteurs de la thèse Ana
et Aurélien, pour m’avoir consacré de leur temps que je sais précieux et pour leurs remarques
pertinentes. Merci également aux autres examinateurs Eric, Michal et Shie et Rémi. Thank you
to the members of the thesis committee, and foremost to the referees, for their precious time and
relevant remarks.

I would like to thank everyone at Caltech with whom I have had the opportunity to talk
and collaborate. Many thanks to Eric and Adam for welcoming me into their great and friendly
group and for introducing me to another vision of research. I would especially like to thank
Laixi, with whom I’ve had the chance to work and collaborate this year, who taught me a lot
about research and take the time to explain concepts to me in a very pedagogical way ! Then, I
would also like to thank Jolene for all her work and without whom my visit would have been
impossible. Finally, I thank all the people I had the chance to talk to in California, who gave me
such a warm welcome, especially Théo, Solène, Elvira and Eric!

Un grand merci à toute le groupe d’Emmanuel à Supaero et tout particulièrement à Adil pour
tous les projets que j’ai eu la chance de mener avec toi, toujours dans la bonne humeur même
après 2 deadlines ! Merci Emmanuel pour toutes les discussions super intéressantes, scientifiques
ou pas, et pour le dynamisme que tu apportes à la communauté RL !

Par la suite je tiens à remercier toutes les personnes du groupe de Stéphanie à savoir Vianney,
Solange, Grand Clément, Petit Clément, Fleur, Louis, Agathe, Théo ! Merci à tous pour toutes
les supers moments passés en conférence ou séminaire à Bruxelles, Bordeaux, avec vous et tous
ce que vous m’avez appris. Un grand merci à Petit Clément pour tous tes conseils en début de

Remerciements xii

thèse et les conseils en info, pour me motiver à faire des applications comme faire courir des
robots/saucisses sur Mujoco ! Un petit merci à Grand Clément qui a presque réussi à me faire
croire que SAEM-MCMC pouvait marcher en très grande dimension, mais un grand merci pour
m’avoir fait découvrir la fonction torch.einsum qui m’émerveille toujours autant.

Je tenais à remercier tous les du CMAP et pas uniquement les gens ”SIMPA” ! Un grand
merci à tous les permanents de SIMPA avec qui j’ai eu l’occasion de discuter et particulièrement
Alain, Aymeric et Eric pour les nombreuses discussions scientifiques et les collaborations avec
Alain qui m’a beaucoup appris en math ! Merci également à Rémi, Emmanuel, Marylou, Mahdi.
Merci à tous les doctorants avec qui j’ai pu échanger pendant les retraites au ski ou à la mer,
Louis, Aymeric, Daniil (pout toutes les discussions super intéressantes en RL), Antoine, Antoine,
Jean, Michael, Orso, Clément, Margaux, Renaud, Guillaume, Alexandre. Enfin, merci Nasséra
pour tout son travail et son implication dans le labo. Sans toi le CMAP ne tournerai pas et je
n’aurai pas eu la chance de partir en conférence scientifique ces dernières années. Merci également
à toute l’équipe gestion du CMAP en général. Merci à toute la team Lagrange : Louis, Lisa,
Vincent qui me motive à faire des calculs, Valentin, Pablo, Maxence et son beurre de cacahouète
au petit déjeuné en séminaire, Badr, Yazid, Achille pour tes précieux conseils en début de thèse,
Mehdi, Mehdi, Thomas, Antonio et le boss de la guitare Gabriel ! Comment oublier Tom, avoir
pu collaborer avec toi a toujours été super que ça aux nuits passé à Lagrange à faire des maths
et à concevoir des algorithmes pour améliorer la VITS de ThomPson Sampling.

Je souhaite également remercier tous les gens de mon équipe INRIA, HeKA et particulièrement
Sarah, Adrien, Moreno, et Jean Feydy pour toutes les discussions super intéressantes avec toi,
Alice, Juliette, Jean-Baptiste ainsi que tous les ingénieurs de recherche. (Un merci très sincère à
Antoine et Marine pour la cantine toutes ses années.) Je tiens à remercier évidement Linus pour
avoir été un super compagnon de thèse toutes ses années et pour le dynamisme et l’énergie que
tu mets ans la communauté !

Un grand merci à toute l’équipe de Cohere et spécialement l’équipe RL qui m’a beaucoup
appris pendant mon stage à savoir Omar, Yannis, Nathan et Florian.

Merci à toute l’équipe du MAP5 qui m’ont donné envie de faire de recherche quand j’étais
en stage de master en particulier mon bureau composé de Pierre, Alexandre, Claire, Vincent,
Pierre Louis, Anton et enfin Remi le maitre ultime de python qui m’a tout appris ainsi les gens
du LPSM, Adeline, Alexandra et Anna. Je tenais également à remercier Warith pour toutes tes
discussions scientifiques et de m’avoir donné envie de faire de la recherche, enfin à mes anciens
encadrant de stage Oliver, Grégory qui m’ont introduit à la recherche.

Merci à mes professeurs de sciences qui m’ont donné l’envie de faire des sciences, en particulier
M. Briche à Fénélon et M. Aubert à Poinca qui m’ont donné le gôut des maths.

Merci à Julia d’avoir été présente tout au long de ma thèse et en master, d’avoir partagé la
quasi-totalité des projets avec moi au MVA. Ton dynamisme et ta rigueur scientifique me pousse
à donner le meilleur de moi et j’apprécie tous les moments passé avec toi scientifiques ou non !
Enfin merci à Jos pour ta bonne humeur et ton courage de commencer une thèse de RL que j’en
suis certain sera géniale ! Enfin merci infiniment à Raphael, ou plutôt Shakespeare d’avoir relu
mon introduction avec attention.

Je remercie celles et ceux qui ont croisé ma route à de nombreuses reprises et avec qui les
discussions furent toujours enrichissantes.

Je tiens à remercier mes ami·e·s, en particulier celles et ceux que je n’ai pas déjà men-
tionné·e·s ou que je ne mentionnerai pas ci-dessus/dessous !

Dans mes amis qui ne font pas/plus des maths (ou pas encore !) je tenais à remercier :

xiii Remerciements

Mes amis d’enfance Théophile, Billy, Hubert, Constantin, Jean. Remerciement spécial à
Edmond pour sa contribution à cette thèse à avoir le super template, les conseils en info, le
télétravail le mardi et nos repas équilibrés achetés chez Rachid.

Jag ville tacka mina vänner jag fick i Sverige, Carla, Clara, Grison, Claire, Christelle, Marie,
Sylvain, speciellt de tv̊a bästa rumskamraterna, Nerf-bossen och bowling-bossen (jag l̊ater dig
bestämma vem som är vem) Paulo och Mimi. Massor av pussar och kannellbular!

Mes (anciens) colloc, Manon, Laura, Corentin, Weisrock, Louis avec qui je partage ou j’ai
partagé des supers moments.

Mes amis de toute part et personnes que j’apprécie beaucoup depuis le collège jusqu’à
maintenant: Ezechiel, David, Mathieu, Ugo, Clément M., Sophia, Elodie, Raphael, Philippine,
Bélen, Florian, Clément B, François, Marina, Yoann, Antoine, Thomas, Louis M., Gaspard,
William, Antonin, Marie, Hugo, Arthur, Serge, Mehdi, Aurian, Mathieu, Morgane, Fred, Martin,
Hortence, Niel, Paul, Louis D, Nicolas, Erwan, Edouard, Ariala, Lucie, Audrey, Manon, Eva,
Alexandre, Laure, Baptiste, Youenne, Marwan, Pierre, Anaid, Natacha, Maud et Anastasia.

Merci à toute ma famille qui m’a soutenue pendant toutes ses années, je pense notamment à
mes grands-parents Gilbert, Jean, Odette, Colette.

Enfin un grand merci à mes parents Evelyne et Jean-Yves, ma sœur Lucile qui m’ont toujours
encouragé à faire ce que je voulais, ont éveillé ma curiosité et m’ont soutenu toutes ces années à
chaque instant.

A Paris, November 21, 2024
Pierre Clavier

Résumé court

L ’apprentissage par renforcement (RL) est un paradigme d’apprentissage automatique qui
aborde la question de la prise de décision séquentielle. Dans ce paradigme, l’algorithme,

désigné comme un agent, réagit à des interactions avec un environnement. À chaque interaction,
l’agent effectue une action dans l’environnement, observe un nouvel état de l’environnement et
reçoit une récompense en conséquence. L’objectif de l’agent est d’optimiser une récompense
cumulative, qui est définie par l’utilisateur pour s’aligner sur la tâche spécifique à accomplir
dans l’environnement. La théorie du processus décisionnel de Markov (MDP) est utilisée pour
formaliser ce concept. Cependant, en cas de mauvaise spécification du modèle ou d’erreur
dans la fonction de transition de l’environnent ou de la récompense, les performances du RL
peuvent diminuer rapidement. Pour résoudre ce problème, le concept de MDP robustes a émergé,
l’objectif étant d’identifier la politique optimale sous l’hypothèse que le noyau de transition
appartient à un ensemble d’incertitude. Cette thèse présente une étude théorique de la complexité
d’échantillonnage des MDP robustes, ou de la quantité de données nécessaires pour atteindre une
erreur arbitrairement petite. Ces résultats démontrent que dans certains cas, cette complexité
peut être inférieure à celle des MDP classiques, ce qui constitue une voie prometteuse pour
concevoir de nouveaux algorithmes efficaces sur le plan de l’échantillonnage. La thèse se poursuit
par des propositions de nouveaux algorithmes RL robustes pour renforcer les performances de
RL ayant des ensembles d’action continus. Notre méthode est basée sur les MDP averses aux
risques et les jeux à somme nulle, dans lesquels l’adversaire peut être considéré comme un agent
qui change l’environnement dans le temps. En conclusion, la dernière section présentera des
nouvelles tâches pour l’évaluation des algorithmes RL robustes, qui manquent de références pour
l’évaluation des performances.

Mots clés : processus décisionnel de Markov, appentissage par renforcement
robuste, robustesse

Abstract

R einforcement learning (RL) is a machine learning paradigm that addresses the issue of
sequential decision-making. In this paradigm, the algorithm, designated as an agent,

responds to interactions with an environment. At each interaction, the agent performs an action
within the environment, observes a new state of the environment, and receives a reward in
consequence. The objective of the agent is to optimise an cumulative reward, which is defined by
the user to align with the specific task at hand within the environment. The Markov Decision
Process (MDP) theory is used in order to formalise these concepts. However, in the event of
mispecifications or errors in the transition or reward function, the performance of RL may decline
rapidly. To address this issue, the concept of robust MDPs has emerged, whereby the objective
is to identify the optimal policy under the assumption that the transition kernel belongs to a
bounded uncertainty set. This thesis presents a theoretical study of the sample complexity of
robust MDPs, or the amount of data required to achieve an arbitrary small convergence error. It
demonstrates that in certain cases, the sample complexity of robust MDPs can be lower than for
classical MDPs, which is a promising avenue for the derivation of sample-efficient algorithms.
The thesis then goes on to derive new robust RL algorithms to strengthen the performance of RL
in continuous control. Our method is based on risk-averse MDPs and zero-sum games, in which
the adversary can be seen as an agent that changes the environment in the time. In conclusion,
the final section present a benchmark for the evaluation of robust RL algorithms, which currently
lack a reproducible benchmark for performance assessment.

Keywords : Robust Markov Decision Process, Robust Reinforcement Learning,
Sample Complexity

Notations
Mathematical Notations

• N set of intergers

• R set or real numbers

• M⊤ transpose of a matrix M

• N normal distribution

• E expectation under a probabilistic model

• V variance

• ∆(S) the space of probability distributions over S (i.e., the probability simplex)

• 2S set of subsets of a set E

• ∥.∥ an arbitrary norm and ∥.∥p the classical Lp norm.

• θ parameter to learn in a statistical model

• arg max set of all maximizers

• U uniform distribution

• 1 for unitary vector and 1s for unitary of dimension S

Markov Decisions Processes Notations

• M a MDP

• S state space of context space of dimention S ≤ ∞ in Chapter 2 and 3

• A action space of dimension A with A ≤ ∞ in Chapter 2 and 3

• γ the discount factor, γ ∈ [0, 1)

• r reward function reward function of the agent r : s, a→ r(s, a)

• P transition kernel s′ ∼ P (s′|s, a)

• τ the trajectory or rollout following kernel P and policy π.

• P the probability distribution over the trajectories or rollout τ ∼ P = (π, P)

• R the return of one trajectory R(τ) = ∑
t≥0 γ

trt

Notations xx

• ρ initial state distribution

• σ radius of the uncertainty set in Robust MDPs

• P 0 nominal kernel in Robust MDPs

• T the Bellman Operator

• V state value function where ∗ stands for optimal value and π for policy value

• Q state-action value function, where ∗ stands for optimal value, π for policy value

• H the horizon factor in infinite discounted MDP equal to H = 1/(1− γ)

• π the policy learn and Π the set of all policies from S to A

• D a dataset

• B a batch of the dataset D

• t the index of the time in the MDP

• k iteration index of an algorithm, usually used as a subscript

1

Ch
ap

te
r

Introduction

Contents
1.1 Résumé et introduction en français . 2

1.1.1 Détails des différentes contributions du manuscrit 10

1.2 Introduction . 12

1.2.1 Overview of the manuscript and contributions 18

1.3 Background . 20

1.3.0.1 Sequential Decision Making and Bandit Problem 20

1.3.1 Reinforcement Learning and Markov Decision Processes 23

1.3.1.1 Markov Decision Processes . 23

1.3.1.2 Value, policy and optimality 23

1.3.1.3 Bellman Operators and Optimality 25

1.3.1.4 (Approximate) Value Iteration (AVI) 26

1.3.1.5 AVI with a generative model in model based setting 28

1.3.2 Deep Reinforcement Learning . 30

1.3.2.1 Fitted Q-learning and Q-learning 30

1.3.2.2 Actor-Critic Methods . 32

1.3.3 Robust Markov Decision Processes . 33

1.3.3.1 From robust MDPs to practical algorithm using regularisation 37

1.3.4 Deep Robust RL as a zero-sum game . 42

Chapter 1. Introduction 2

Essayer d’imiter un esprit humain adulte nous oblige à beaucoup réfléchir au
processus qui l’a conduit à cet état. Nous pouvons en relever trois composantes.

• (a) l’état initial de l’esprit, à la naissance ;

• (b) l’éducation à laquelle il a été soumis ;

• (c) un autre type d’expérience, que nous ne rangeons pas sous le terme
”éducation” à laquelle il a été confronté.

Au lieu d’essayer de produire un programme qui simule l’esprit adulte, pourquoi
ne pas plutôt essayer d’en produire un qui simule celui de l’enfant ? S’il était
soumis à une éducation appropriée , on aboutirait au cerveau adulte. Il est
probable que le cerveau de l’enfant est une sorte de calepin comme on peut en
trouver dans les papeteries : un mécanisme plutôt petit et avec beaucoup de
feuilles blanches. (”Mécanisme” et ”écriture” sont pour nous pratiquement
synonymes.) Notre espoir est qu’il y ait un si petit mécanisme dans le cerveau
de l’enfant qu’il soit aisément programmable. En première approximation, nous
pouvons supposer que la quantité de travail nécessaire à cette éducation serait
pratiquement identique à celle qui est destinée à un enfant humain.

Alan Turing, Machine à calculer et intelligence (1950) (traduit par Gromov)

1.1 Résumé et introduction en français

On évalue souvent la pertinence d’une décision après une certaine période de temps. Dans les
jeux ou dans la vie en général, les décisions peuvent avoir des impacts qui s’étendent bien

au-delà du moment initial du choix, et agir en prenant en compte les implications futures est un
aspect primordial de l’intelligence. Bien que les récents progrès en apprentissage automatique
aient démontré des capacités impressionnantes dans les prédictions à une étape ou de manière
non séquentielle, telles que la transcription de la parole en texte, la prédiction de la forme
des protéines ou la reconnaissance du contenu des images, la création d’algorithmes capables
de modifier leurs actions pour tenir compte des résultats futurs reste l’un des défis les plus
significatifs de la recherche contemporaine en intelligence artificielle. La capacité de planifier et
de prédire une séquence d’actions pour résoudre ce problème est généralement désignée sous le
terme de prise de décision séquentielle.

Dans la nature, les humains et les animaux sont capables de prendre des décisions séquentielles.
Par exemple, les neurotransmetteurs tels que la dopamine, qui est synthétisée dans le cerveau et
les reins des humains et animaux, sont impliqués dans la modulation des comportements motivés
par une récompense (Berridge 2007). Notamment, la libération de dopamine en anticipation
d’un stimulus gratifiant ou en réponse à une récompense qui dépasse les attentes (Montague
et al. 1996) montre la capacité des mécanismes neurochimiques à adapter leur comportement en
réponse aux stimuli environnementaux et à optimiser leurs actions pour les résultats souhaités.

D’un point de vue plus informatique ou mathématiques, l’un des pionniers de la prise de
décision séquentielle est Bellman. Dans son célèbre ouvrage intitulé ”Dynamic Programming”,
Bellman (1966) a été l’un des premiers à établir les fondements de l’apprentissage par renforcement.
Bien que le travail de Bellman soit principalement théorique et méthodologique, la compréhension
ultérieure des phénomènes biologiques a fortement influencé ses travaux.

3 1.1. Résumé et introduction en français

Enfin, le terme ”apprentissage par renforcement”, tel que défini formellement par Sutton
and Barto (2018), est un paradigme mathématique qui permet aux agents d’interagir avec leur
environnement et d’apprendre des comportements qui maximisent leur récompense cumulative
au fil du temps. Au cours de ce processus, les agents apprennent à éviter les mauvaises actions
qui peuvent avoir des conséquences négatives à l’avenir et à agir de manière à améliorer leur
résultat final dans un environnement donné.

Un type particulier de prise de décision séquentielle est appelé problèmes des bandits. Les
algorithmes de bandits représentent une classe d’approches conçues principalement pour résoudre
le problème du bandit manchot (Auer et al. 2002, Lattimore and Szepesvári 2020). Dans sa forme
classique, le problème du bandit manchot consiste à sélectionner une stratégie pour maximiser le
profit, étant donné n machines à bandit manchot à un seul bras avec des gains qui suivent des
distributions de probabilité distinctes et inconnues. Une caractéristique unique de ce problème
est que les décisions passées n’ont pas d’impact sur les résultats des décisions ultérieures, de
la même manière qu’un nouveau tirage de roulette dans un casino est indépendant des tirages
précédents.

L’apprentissage par renforcement (RL), contrairement au problème des bandits, est un
problème d’apprenti-ssage séquentiel où l’influence des décisions passées pèse sur les décisions
futures. Le RL a démontré des performances impressionnantes dans une grande variété de
domaines, notamment les jeux (Silver et al. 2017), l’alignement de grands modèles linguistiques
(Ziegler et al. 2019, Achiam et al. 2023), la robotique et le contrôle (Kober et al. 2013) ou encore les
soins de santé (Liu et al. 2019, Fatemi et al. 2021). Ces remarquables accomplissements peuvent
être attribués à la quantité importante de données utilisées dans le processus d’apprentissage de
la politique ou statégie de choix des actions.

Cependant, dans certaines situations, les données disponibles peuvent ne pas être suffisantes
pour apprendre une politique efficace, ce qui entrâıne des politiques qui généralisent mal et qui
mènent des performances sous-optimales lorsqu’elles sont déployées dans des applications réelles.
Les approches basées sur les données deviennent de plus en plus cruciales pour améliorer divers
aspects de la vie humaine. Par conséquent, lors du développement d’algorithmes d’apprentissage
par renforcement, quels facteurs devraient être pris en compte ?

• La notion de robustesse. Dans le contexte de l’apprentissage par renforcement, la
robustesse face à des perturbations est une caractéristique primordiale. En RL, les perfor-
mances d’une politique apprise dans l’environnement d’entrâınement peuvent se dégrader
considérablement une fois déployée en phase de test dans un environnement en en raison de
l’incertitude et de la variabilité, qui peuvent être causées par des perturbations aléatoires
et des événements rares ou même des attaques malveillantes (Mahmood et al. 2018). Par
conséquent, il est crucial de développer des algorithmes RL capables de gérer efficacement
de telles incertitudes et de garantir que les politiques apprises peuvent se généraliser de
manière adéquate à de nouveaux environnements.

• L’efficacité d’échantillonage est également un aspect crucial de l’apprentissage par
renforcement (RL) moderne. La complexité des problèmes RL contemporains a augmenté de
manière significative, avec des environnements plus grands et des modèles pour apprendre
politique plus complexes (Silver et al. 2017, Achiam et al. 2023). Par conséquent, les
algorithmes de RL ont souvent besoin de vastes quantités de données pour apprendre des
politiques efficaces. Ce défi est d’autant plus difficile de par la nature séquentielle des
problèmes RL, où la complexité de l’environnement crôıt de manière exponentielle avec la
longueur de l’horizon. Par conséquent, l’amélioration de l’efficacité d’échantillonage est une
direction de recherche essentielle pour permettre aux agents RL d’apprendre des politiques
efficaces avec des données et des ressources de calcul limitées. Du point de vue théorique,

Chapter 1. Introduction 4

les recherches récentes se sont concentrées sur le développement d’un cadre théorique à
échantillon fini (Kakade 2003) pour évaluer et comparer l’efficacité d’échantillonage des
algorithmes d’apprentissage par renforcement dans des contextes de grande dimension.
Cependant, la compréhension statistique du RL actuelle reste incomplète, en particulier en
raison des difficultés techniques rencontrées d’un point de vue théorique. Par conséquent,
des recherches supplémentaires sont nécessaires pour améliorer l’efficacité d’échantillonage
des algorithmes RL dans des contextes de grande dimension.

• La reproductibilité des performances des algorithmes d’apprentissage par renforcement
et la façon de s’adapter à des espaces de grande dimension sont également d’une importance
capitale. Dans les applications pratiques, la dimensionnalité des environnements rencontrés
est souvent élevée, ce qui rend la mise à l’échelle des algorithmes RL une considération
critique, en particulier dans les situations où les ressources en mémoire et calcul sont
limitées. De plus, le RL est fréquemment critiqué pour son manque de robustesse et ses
performances difficiles à reproduire. Par conséquent, il est essentiel de développer des
algorithmes RL qui peuvent performer efficacement dans des environnements de haute
dimension et concevoir des benchmarks pour tester la robustesse des algorithmes et obtenir
des performances reproductibles.

Le problème de complexité ou efficacité d’échantionnage est représenté dans la Figure 1.1b.
Dans cette figure l’algorithme demande beaucoup d’échantillon à l’environnement pour converger
ou pour obtenir des bonnes performances alors que dans Figure 1.1a, la convergence est plus
rapide pour le même environnement Walker-v3.

(a) Un algorithme avec une bonne complexité
d’échantionnage

(b) Un algorithme avec moins bonne complexité
d’échantionnage

Le problème de robustesse face à des perturbations est présenté dans la figure 1.2. Dans cette
figure, on enrâıne un agent qui interagit dans un environnement nommé CartPole, dont le but est
de contrôler une barre fixée à un chariot par une articulation non actionnée. Cet environnement
possède initialement une grandeur physique (la longueur de la barre) relative de 1, mais en phase
de test, on évalue l’agent en modifiant la cette grandeur physique. Le but de cette thèse est de
concevoir des algorithmes robuste à ces perturbations. Le paramètre α dans le graphe contrôle
la robustesse induite dans l’algorithme de RL. Plus de détails sont disponible au chapitre 4 . La
question centrale à laquelle tenterons de répondre est:

Pouvons nous concevoir des algorithmes de RL qui aient à la fois une bonne complexité
d’échantillonnage, soient robustes, passent à l’échelle en terme de dimension tout en ayant des
performances reproductibles ?

5 1.1. Résumé et introduction en français

100

length of the pole

0

100

200

300

400

500

600

M
ea

n
Re

wa
rd

PPO
=0
=5
=7

Figure 1.2: Performance d’un algorithme entrainé avec une masse relative de 1 sur l’environment
CartPole-v1, variant la masse du CartPole en phase de test

Nous tenterons de répondre à cette question en se focalisant sur le RL robuste en montrant
que ce dernier est un paradigme qui peut répondre à ces différents critères.

Comme mentionné précédemment, l’apprentissage par renforcement (RL) a connu des réussites
significatives ces dernières années ; cependant, il fait souvent face à des défis en termes de
robustesse et de généralisation. Ces défis surviennent principalement parce que les agents
sont trop ajustés à l’environnement d’entrâınement spécifique, ce qui peut entrâıner de piètres
performances lors du déploiement. Les agents RL sont généralement entrâınés en simulation
en raison du coût élevé de l’interaction avec les systèmes physiques. Toutefois, les simulations
peuvent contenir des erreurs de modélisation et des paramètres imprécis, ce qui entrâıne une
divergence entre la simulation et la réalité où la politique entrâınée peut avoir du mal à gérer
pendant la transition de la simulation au réel. Même les politiques entrâınées directement
sur le système réel peuvent résister à des incertitudes ou des perturbations préalablement non
rencontrées, de légères déviations dans les paramètres de l’environnement, tels que la masse ou la
friction, peuvent avoir un impact significatif sur les performances d’une politique, ce qui peut
faire la différence entre la réussite et l’échec dans les scénarios de test (Morimoto and Doya 2005,
Pinto et al. 2017).

Pour résoudre ce problème, les processus de décision Markov robustes (RMDP) ont été
introduits dans Iyengar (2005), Nilim and El Ghaoui (2005). Ce cadre est naturel et polyvalent car
il exploite les informations issues de l’optimisation robuste distributionnelle et de l’apprentissage
supervisé (Bertsimas et al. 2018, Blanchet and Murthy 2019, Duchi and Namkoong 2021).
Contrairement aux MDP conventionnels, les RMDPs fournissent un cadre de modélisation plus
étendu, permettant la spécification de la forme et de la magnitude de l’ensemble d’incertitude.
Fréquemment, l’ensemble d’incertitude est choisi comme étant une petite boule centrée autour du
noyau nominal ayant un rayon σ, ayant une forme définie par une métrique qui mesure la distance
entre les distributions de probabilité. Pour faciliter la faisabilité de la résolution des RMDP,
l’ensemble d’incertitude est généralement supposé posséder certaines propriétés structurelles.
Par exemple, des travaux antérieurs (Iyengar 2005, Wiesemann et al. 2013) ont proposé que
l’ensemble d’incertitude puisse être décomposé en sous-ensembles indépendants pour chaque
état ou paire état-action, appelés respectivement s- et (s, a)-rectangularité. Dans cette thèse,
nous adopterons l’hypothèse de (s, a)-rectangularité pour l’ensemble d’incertitude. D’un point

Chapter 1. Introduction 6

de vue théorique, cette hypothèse sera utile dans les chapitres 2 et 3 tandis que nous essaierons
de l’éviter d’un point de vue pratique car il s’agit d’une hypothèse restrictive dans le chapitre 6.

Les contributions de cette thèse sont les suivantes. Après un bref aperçu résumant les notions
utiles dans le chapitre 1, le manuscrit est organisé en deux parties : la première se concentre sur
la théorie des MDP robustes et en particulier sur la question de la complexité de l’échantillon, la
seconde étudie l’apprentissage par renforcement robuste d’un point de vue pratique. Ces deux
directions ne sont pas orthogonales : au contraire, l’étude théorique des MDP peut donner des
idées sur la façon de concevoir des algorithmes d’apprentissage par renforcement robustes efficaces
et l’utilisation d’algorithmes d’apprentissage par renforcement robustes donne une intuition sur
la complexité de l’échantillon des MDP robustes.

Tout d’abord, nous aborderons la question de la complexité d’échantionnage.. Supposons que
l’on ait accès à des échantillons de données générés par un MDP avec un noyau de transition nom-
inal, obtenus par certains mécanismes d’échantillonnage. L’objectif principal de l’apprentissage
par renforcement traditionnel est d’apprendre la politique optimale spécifiquement adaptée au
noyau nominal, pour lequel la limite de complexité d’échantillon minimax a été bien établie (Azar
et al. 2013a). En revanche, l’objectif de l’apprentissage par renforcement robuste distributionnel
est d’apprendre une politique plus résiliente en utilisant le même ensemble d’échantillons de
données, en optimisant les performances dans le pire des cas lorsque le noyau de transition est
choisi arbitrairement à partir d’un ensemble d’incertitude prédéfini autour du noyau nominal.
La complexité de l’échantillon pour les RMDP a été étudiée dans (Yang et al. 2022, Panaganti
and Kalathil 2022a, Shi et al. 2024). D’un point de vue de la complexité de l’échantillon, nous
démontrerons que les RMDP ne sont pas plus difficiles à apprendre que les MDP classiques pour
un petit rayon d’incertitude σ, et peuvent même être plus simples à apprendre lorsque le rayon
est plus grand. Cette constatation fournit une motivation pour l’utilisation de RMDP afin de
développer un algorithme efficace en termes d’échantillons dans le chapitre 2 et 3.

7 1.1. Résumé et introduction en français

Première contribution sur la complexité d’échantionnage des RMDPs

Dans la première partie, nous nous concentrons sur la compréhension de la complexité de
l’échantillon des MDPs robustes. Plus précisément, dans le chapitre 2, nous étudions la
complexité de l’échantillon pour obtenir une politique ϵ-optimale dans les processus de
décision Markoviens robustes à horizon infini escompté ou actualisé (RMDPs), en n’ayant
accès qu’à un modèle génératif du noyau nominal. Ce problème est largement étudié
dans le cas non robuste, et il est connu qu’une approche de planification appliquée à un
MDP empirique estimé avec Õ(H3SA

ϵ2) échantillons fournit une politique ϵ-optimale, ce
qui est optimal au sens minimax. Les résultats dans le cas robuste sont beaucoup plus
rares. Pour les ensembles d’incertitude sa- (resp s-) rectangulaires, jusqu’à récemment, la
meilleure complexité d’échantillon connue était Õ(H4S2A

ϵ2) (resp. Õ(H4S2A2

ϵ2)), pour des
algorithmes spécifiques et lorsque l’ensemble d’incertitude est basé sur la divergence de la
variation totale (TV), la divergence KL ou la divergence du Chi-square. Dans cet article,
nous considérons des ensembles d’incertitude définis avec une Lp-boule (retrouvant le cas
TV), et nous étudions la complexité de l’échantillonage de n’importe quel algorithme de
planification (avec une garantie de haute précision sur la solution) appliqué à un RMDP
empirique estimé à l’aide du modèle génératif. Dans le cas général, nous dérivons une
complexité d’échantillon de Õ(H4SA

ϵ2) pour les cas sa- et s-rectangulaires (améliorations
de S et SA respectivement). Lorsque la taille de l’incertitude est suffisamment petite,
nous améliorons la complexité de l’échantillon à Õ(H3SA

ϵ2), retrouvant la borne inférieure
pour le cas non robuste pour la première fois et une borne inférieure robuste. Enfin,
nous introduisons également des algorithmes simples et efficaces pour résoudre les MDPs
robustes Lp étudiés.

Deuxième contributions sur la complexité d’échantionnage des RMDPs

Dans le chapitre 3, nous affinons le résultat du chapitre 2 en supposant l’accès à un modèle
génératif qui échantillonne à partir du MDP nominal. Nous examinons la complexité de
l’échantillon des RMDPs en utilisant une classe de normes Lp généralisées comme fonction
de ”distance” pour l’ensemble d’incertitude, sous deux conditions sa-rectangulaires et
s-rectangulaires couramment adoptées. Nos résultats impliquent que les RMDPs peuvent
être plus efficaces en termes d’échantillons à résoudre que les MDPs standard en utilisant
des normes Lp généralisées dans les cas sa- et s-rectangulaires, ce qui pourrait inspirer
davantage de recherches empiriques. Nous fournissons une borne supérieure quasi optimale
et une borne inférieure minimax correspondante pour les scénarios sa-rectangulaires. Pour
les cas s-rectangulaires, nous améliorons la borne supérieure de l’état de l’art et dérivons
également une borne inférieure en utilisant la norme L∞ qui vérifie l’exactitude. Par
rapport au chapitre 2, nous améliorons la complexité de l’échantillon, montrant qu’il est
possible d’obtenir une complexité d’échantillon inférieure à celle des MDPs classiques.
Cette partie ouvre une voie prometteuse pour dériver des algorithmes qui peuvent atteindre
une complexité d’échantillon plus faible tout en étant plus robustes aux perturbations.

Dans la deuxième partie de cette thèse, nous nous concentrons sur la dérivation d’algorithmes
d’apprentissage par renforcement robustes (Robuste RL) à partir d’un point de vue pratique.
Nous montrons que les idées issues des MDPs robustes peuvent être utilisées pour concevoir des
algorithmes de Robuste RL en utilisant une formulation basée sur MDPs risque-averses. Plus
précisément, l’idée de cette classe d’algorithmes est d’approcher l’opérateur minimum interne
présent dans l’opérateur de Bellman robuste (1.37). Les travaux précédents ont généralement
employé une approche duale pour le problème minimum, où la probabilité de transition est

Chapter 1. Introduction 8

contrainte à rester dans une boule spécifiée autour du noyau de transition nominal. Dans des
travaux précédents, (Kumar et al. 2022) a dérivé un algorithme approché pour les RMPDS
avec des boules Lp, (Liu et al. 2022) a utilisé une boule définie avec une divergence KL et
nous essayons d’approcher pour les RMDPs avec une divergence χ2 dans le chapitre 4. En
pratique, la robustesse est équivalente à la régularisation (Derman et al. 2021) et, par exemple,
l’algorithme SAC (Haarnoja et al. 2018a) possède des charactéristiques robuste en raison de la
régularisation entropique (Eysenbach and Levine 2021). Enfin, Wang et al. (2023) propose une
nouvelle approche en ligne pour résoudre les RMDP. Contrairement aux travaux précédents qui
régularisent avec la politique ou la fonction de valeur, Wang et al. (2023) crée de la robustesse en
simulant les pires scénarios de noyau pour l’agent tout en utilisant n’importe quel algorithme
d’apprentissage par renforcement classique dans le processus d’apprentissage.

L’idée que la régularisation et la robustesse sont étroitement liées sera également centrale
dans cette thèse dans les chapitres 4 et 5. L’idée centrale dans le chapitre 5 est que nous
évitons l’estimation d’une pénalisation ou d’une régularisation, et estimons plutôt l’expectile
de la fonction de valeur, ce qui crée une robustesse implicite. Ces types d’algorithmes sont
mathématiquement bien fondés, mais utilisent uniquement que des échantillons provenant du
noyau de transition nominal. L’idée d’utiliser des échantillons pas seulement du noyau nominal
est présente dans le concept de randomisation de domaine (DR) Tobin et al. (2017) qui apprend
une fonction de valeur qui maximise le rendement attendu en moyenne sur une distribution fixe
(généralement uniforme) sur l’ensemble d’incertitude. Cette méthode utilise des échantillons de
toute l’incertitude et sera combinée avec une formulation d’aversion au risque dans le chapitre 5.
Pour relever les défis mentionnés précédemment d’utiliser uniquement des échantillons à partir
du nominal et d’éviter les hypothèses de rectangularité, une approche utilisant le concept de jeux
à deux joueurs à somme nulle ou min-max est proposée dans le chapitre 6. Notre algorithme est
basé, comme de nombreux algorithmes d’apprentissage en profondeur robustes existants tels que
M2TD3 Tanabe et al. (2022a), M3DDPG (Li et al. 2019a), ou RARL (Pinto et al. 2017), sur le
jeu à deux joueurs à somme nulle présenté dans la section 6.2.

Première contribution algorithmique en RL robuste

L’apprentissage par renforcement robuste essaie de rendre les prédictions plus robustes
aux changements dans la dynamique ou les récompenses du système. Ce problème est
particulièrement important lorsque la dynamique et les récompenses de l’environnement
sont apprises et estimées à partir des données. Dans le chapitre 4, nous essayons d’approcher
l’apprentissage par renforcement robuste contraint avec une divergence de χ2 en utilisant
une formulation de RL averse au risque approchée. Nous montrons que la formulation
classique de l’apprentissage par renforcement peut gagner en robustesse en utilisant une
pénalisation de l’écart-type de l’objectif. Deux algorithmes basés sur le Reinforcement
Learning distributionnel, l’un pour l’espace d’actions discret et l’autre pour l’espace
d’actions continu, sont proposés et testés sur des environnements Gym classiques pour
démontrer la robustesse des algorithmes.

9 1.1. Résumé et introduction en français

Seconde contribution algorithmique en RL robuste

Dans le chapitre 5, nous dérivons une nouvelle forme de robustesse implicite en RL en
utilisant le bootstrapping d’expectile. L’utilisation de cette technique évite d’estimer
une pénalisation comme dans le chapitre 4. De nombreux algorithmes classiques de
Reinforcement Learning (RL) reposent sur un opérateur de Bellman, qui implique une
espérance sur les états suivants, conduisant au concept de bootstrapping. Pour introduire
une forme de pessimisme, nous proposons de remplacer cette espérance par un expectile.
En pratique, cela peut être très simplement fait en remplaçant la perte L2 par une
perte d’expectile plus générale pour le critique. L’introduction de pessimisme en RL est
souhaitable pour diverses raisons, telles que la résolution du problème de surestimation
(pour lequel les solutions classiques sont le double Q-learning ou l’approche twin-critic de
TD3) ou le RL robuste (où les transitions sont adverses). Nous étudions empiriquement
ces deux cas. Pour le problème de surestimation, nous montrons que l’approche proposée,
ExpectRL, fournit de meilleurs résultats qu’un twin-critic classique. Sur les benchmarks
de RL robuste, impliquant des changements de l’environnement, nous montrons que notre
approche est plus robuste que les algorithmes classiques de RL. Nous introduisons également
une variante de ExpectRL combinée avec la randomisation de domaine qui est compétitive
avec les agents de RL robuste de l’état de l’art. Enfin, nous étendons également ExpectRL
avec un mécanisme pour choisir automatiquement la valeur d’expectile, c’est-à-dire le
degré de pessimisme.

Troisième contribution algorithmique en RL robuste

Dans le chapitre 6, nous essayons de dériver un nouvel algorithme sans hypothèses de
rectangularité. Les hypothèses de rectangularité en RL L’apprentissage par renforcement
robuste traditionnel dépend souvent d’hypothèses de rectangularité, où les mesures de
probabilité adverses des états de résultat sont supposées être indépendantes pour différents
états et actions. Cette hypothèse, rarement respectée dans la pratique, conduit à des
politiques excessivement conservatrices. Pour résoudre ce problème, nous introduisons
une nouvelle formulation de MDP robuste à temps contraint (TC-RMDP) qui prend en
compte les perturbations multifactorielles, corrélées et dépendantes du temps, reflétant
ainsi plus précisément les dynamiques du monde réel. Cette formulation va au-delà du
paradigme conventionnel de rectangularité, offrant de nouvelles perspectives et élargissant
le cadre analytique pour l’apprentissage par renforcement robuste. Nous proposons trois
algorithmes distincts, chacun utilisant différents niveaux d’informations environnementales,
et les évaluons de manière approfondie sur des benchmarks de contrôle continu. Nos
résultats montrent que ces algorithmes offrent un compromis efficace entre performance
et robustesse, surpassant les méthodes traditionnelles d’apprentissage par renforcement
robuste en profondeur dans les environnements à temps contraint tout en maintenant la
robustesse dans les benchmarks classiques. Cette étude remet en question les hypothèses
prédominantes en apprentissage par renforcement robuste et ouvre de nouvelles voies
pour le développement d’applications d’apprentissage par renforcement plus pratiques et
réalistes.

Enfin, pour obtenir des méthodes reproductibles et évolutives, nous avons créé un benchmark
normalisé : RRLS dans le chapitre 7. Nous avons testé notre dernier algorithme TC-MDPs sur
ce benchmark pour créer un algorithme reproductible qui peut évoluer avec la dimension et offrir
des performances reproductibles.

Chapter 1. Introduction 10

Contribution en RL Robuste reproductible

Nous introduisons la Robust Reinforcement Learning Suite (RRLS), une suite de bench-
marks basée sur des environnements Mujoco. RRLS propose six tâches de contrôle continu
avec deux types d’ensembles d’incertitude pour l’entrâınement et l’évaluation. Notre
benchmark vise à standardiser les tâches d’apprentissage par renforcement robuste, facili-
tant ainsi des expériences reproductibles et comparables, en particulier celles issues de
récentes contributions de pointe, pour lesquelles nous démontrons l’utilisation de RRLS. Il
est également conçu pour être facilement extensible à de nouveaux environnements. Le
code source est disponible à l’adresse https://github.com/SuReLI/RRLS.

Dans le chapitre 8, nous abordons le problème de la représentation de la distribution postérieure
dans le problème de bandit en utilisant des algorithmes d’échantillonnage de Thompson avec une
distribution postérieure arbitraire apprise à l’aide de l’inférence variationnelle.

Première contribution sur la théorie des bandits

Nous introduisons et analysons une variante de l’algorithme d’échantillonnage de Thomp-
son (TS) pour les bandits contextuels. À chaque tour, le TS traditionnel nécessite des
échantillons de la distribution postérieure actuelle, ce qui est généralement intractable.
Pour contourner ce problème, des techniques d’inférence approchée peuvent être utilisées
et fournissent des échantillons avec une distribution proche des postérieures. Cependant,
les techniques d’approximation actuelles conduisent soit à une estimation de mauvaise
qualité (approximation de Laplace), soit peuvent être coûteuses en calcul (méthodes
MCMC, échantillonnage d’ensemble, etc.). Dans cet article, nous proposons un nouvel
algorithme, l’inférence variationnelle TS (VITS), basé sur l’inférence variationnelle gaussi-
enne. Ce schéma fournit des approximations de postérieures puissantes qui sont faciles à
échantillonner, et qui sont efficaces sur le plan computationnel, ce qui en fait un choix
idéal pour TS. De plus, nous montrons que VITS atteint une borne de regret sous-linéaire
du même ordre dans la dimension et le nombre de tours que le TS traditionnel pour les
bandits contextuels linéaires. Enfin, nous démontrons expérimentalement l’efficacité de
VITS sur des jeux de données synthétiques et réels.

1.1.1 Détails des différentes contributions du manuscrit

Nous passons maintenant à la description des contributions de cette thèse. Après un bref aperçu
des notions utiles dans le chapitre 1, le manuscrit est organisé en deux parties : la première se
concentre sur la théorie des MDPs robustes et en particulier sur la question de la complexité
de l’échantillon, tandis que la deuxième étudie la RL robuste d’un point de vue pratique. Ces
deux directions ne sont pas orthogonales : au contraire, l’étude théorique des MDPs peut donner
des idées sur la façon de concevoir des algorithmes de RL robustes efficaces et l’utilisation
d’algorithmes de RL robustes peut donner une intuition sur les MDPs robustes.

Contributions .
Les éléments et résultats présentés dans cette thèse ont été publiés ou sont actuellement en

cours d’examen dans les travaux suivants :

• Pierre Clavier, Erwan Le Pennec, Matthieu Geist Towards Minimax Optimality of
Model-based Robust Reinforcement Learning Conference on Uncertainty in Artificial

https://github.com/SuReLI/RRLS

11 1.1. Résumé et introduction en français

Intelligence (UAI) 2024 (Oral), Clavier et al. (2023). Covered in Chapter 2.

• Pierre Clavier Laixi Shi, Eric Mazumdar, Matthieu Geist, Adam Wierman, Erwan Le
Pennec Near-Optimal Distributionally Robust Reinforcement Learning with
General Lp Norms. NeurIPS 2024, Dans le chapitre 3.

• Pierre Clavier∗, Tom Huix∗, Alain Durmus VITS : Variational Inference Thomson
Sampling for contextual bandits International Conference on Machine Learning 2024,
Clavier et al. (2023). Dans le chapitre 8.

• Pierre Clavier, Stéphanie Allassonnière, Erwan Le Pennec Robust Reinforcement
Learning with Distributional Risk-averse formulation International Conference on
Machine Learning 2024, Workshop in Responsible Decision Making in Dynamic Environ-
ments, Clavier et al. (2022). Dans le chapitre 4.

• Pierre Clavier, Emmanuel Rachelson, Erwan Le Pennec, Matthieu Geist. Bootstrapping
Expectiles in Reinforcement Learning https://arxiv.org/abs/2406.04081. Clavier
et al. (2024) Dans le chapitre 5.

• Adil Zouitine∗, David Bertoin∗, Pierre Clavier∗, Matthieu Geist, Emmanuel Rachelson
Time-Constrained Robust MDPs Zouitine et al. (2024b) NeurIPS 2024. Dans le
chapitre 6.

• Adil Zouitine∗, David Bertoin∗, Pierre Clavier∗, Matthieu Geist, Emmanuel Rachelson
RRLS : Robust Reinforcement Learning Suite, Zouitine et al. (2024a),
https https://arxiv.org/abs/2406.08406. Dans le chapitre 7.

A propos de mes contributions:

• Je suis le seul premier auteur junior des chapitres 2, 3, 4, et 5. J’ai rédigé l’article, développé
le code et les expériences, et je suis à l’origine de l’idée principale. Laixi Shi, chercheuse
postdoctorale, a contribué en tant que deuxième auteur au chapitre 4, en apportant des
commentaires précieux sur la rédaction et des commentaires sur les résultats. Toutes les
preuves ont été discutées avec elle, tandis que les idées et la rédaction sont mon propre
travail.

• Pour les chapitres 6, 7 et 8, je suis co-premier auteur aux côtés de mes collègues Adil
Zouitine, David Bertouin et Tom Huix. Dans les chapitres 6 et 7, je suis coauteur avec Adil
et David. J’ai contribué à parts égales avec Adil Zouitine à la rédaction, aux discussions
et au développement des idées. Adil et David se sont davantage concentrés sur la mise
en œuvre, tandis que j’ai traité les sections théoriques de manière indépendante. Dans le
chapitre 8, j’ai partagé le travail à parts égales avec Tom Huix, l’autre coauteur. Nous
avons tous deux contribué à la mise en œuvre, aux preuves et à la rédaction du papier. En
outre, j’ai apporté des idées personnelles à la fois dans la preuve et dans la mise en œuvre
des algorithmes finaux.

∗Equal contribution.

Chapter 1. Introduction 12

1.2 Introduction

In the process of trying to imitate an adult human mind we are bound to think
a good deal about the process which has brought it to the state that it is in. We
may notice three components.

• (a)The initial state of the mind, say at birth,

• (b)The education to which it has been subjected

• (c) Other experience, not to be described as education, to which it has
been subjected.

Instead of trying to produce a program to simulate the adult mind, why not
rather try to produce one which simulates the child’s? If this were then
subjected to an appropriate course of education one would obtain the adult
brain. Presumably the child brain is something like a notebook as one buys it
from the stationer’s. Rather little mechanism, and lots of blank sheets.
(Mechanism and writing are from our point of view almost synonymous.) Our
hope is that there is so little mechanism in the child brain that something like it
can be easily programmed. The amount of work in the education we can
assume, as a first approximation, to be much the same as for the human child.

Alan Turing, Computing Machinery and Intelligence (1950)

The intelligence behind a decision often becomes apparent only after a significant period has
passed. In games, or in life in general, decisions can have impacts that reach far beyond

the initial moment of choice, and acting with an awareness of future implications is a critical
aspect of intelligence. Recent advancements in machine learning have demonstrated impressive
abilities in single-step predictions, such as speech-to-text transcription, protein shape prediction,
or image content recognition. However, creating algorithms that can adjust their actions based
on anticipated future outcomes remains one of the most significant challenges in contemporary
artificial intelligence research. The ability to plan and predict a sequence of actions to address
this challenge is typically referred to as sequential decision making.

In nature, humans and animals are capable of sequential decision making. For example,
neurotransmitters such as dopamine, synthesized in the brains and kidneys of both humans and
animals, play a role in modulating reward-motivated behaviors (Berridge 2007). The release
of dopamine in anticipation of a rewarding stimulus, or in response to a reward that exceeds
expectations (Montague et al. 1996), illustrates how neurochemical mechanisms can adapt
behavior in response to environmental stimuli and optimize actions to achieve desired outcomes.

From a computer science and mathematical perspective, Bellman remains a pioneer in the
science of sequential decision making. Bellman (1966) was among the first to establish the
foundation of reinforcement learning in his renowned work, Dynamic Programming. While
Bellman’s contributions are primarily rooted in computational and mathematical principles,
subsequent understanding of biological phenomena has provided new insights into this field.

Finally, reinforcement learning, as formally defined by Sutton and Barto (2018), is a mathe-
matical framework that enables agents to interact with their environment and learn behaviors
that maximize their cumulative reward over time. Through this process, agents learn to avoid
actions that may lead to negative consequences and to act in ways that improve their ultimate
outcomes within a given environment.

13 1.2. Introduction

One type of sequential decision making is known as the bandit problem. Bandit algorithms
represent a class of approaches primarily designed to address the multi-armed bandit problem
(Auer et al. 2002, Lattimore and Szepesvári 2020). In its classical form, the multi-armed
bandit problem involves selecting a strategy to maximize profit given n single-armed bandit
machines, each with payoffs following distinct and unknown probability distributions. A defining
characteristic of this problem is that past decisions do not influence the outcomes of future
ones, similar to how each roulette spin in a casino is independent of previous spins, for example.
However, this unique characteristic also represents a key limitation: it does not account for the
influence of past decisions on future outcomes. This limitation is significant in many sequential
decision-making applications, such as games like chess, where the state of the board—determined
by both players’ moves—heavily influences each subsequent move. Therefore, while bandit
algorithms are not suitable for solving general decision-making problems, they are perfectly
adapted to the multi-armed bandit problem. The final chapter (8) of this thesis will focus on
this specific setting.

Reinforcement learning (RL), by contrast, addresses sequential learning problems in which
allowing past decisions to influence future ones has yielded impressive achievements across a
wide range of human-related domains, including games (Silver et al. 2017), large language model
alignment (Ziegler et al. 2019, Achiam et al. 2023), robotics and control (Kober et al. 2013),
and healthcare (Liu et al. 2019, Fatemi et al. 2021). These remarkable accomplishments can be
attributed to the extensive volume of interactive data leveraged in the policy’s learning process.

However, in certain instances, the available data may be insufficient to train an effective policy,
leading to policies that fail to generalize well and exhibit suboptimal performance in real-world
applications. As data-driven approaches play an increasingly pivotal role in enhancing diverse
aspects of human life, what factors should be taken into account when developing data-driven
reinforcement learning algorithms?

• The notion of Robustness. Robustness to uncertainty is a highly valued attribute in
reinforcement learning (RL). This importance stems from the fact that the performance of
a learned policy in the training environment can significantly deteriorate when exposed
to the uncertainty and variability of a test environment, which may arise from random
disturbances, rare occurrences, or even intentional adversarial attacks (Mahmood et al. 2018).
Consequently, developing RL algorithms that can effectively manage such uncertainties is
essential to ensure that the learned policies generalize reliably to new environments.

• The sample efficiency is a crucial aspect of modern reinforcement learning (RL). As
RL problems have become increasingly complex, with larger environments and more
sophisticated policy models, RL agents often require extensive data to learn effective
policies (Silver et al. 2017, Achiam et al. 2023). This challenge is further compounded
by the sequential nature of RL problems, where the environment’s complexity can grow
exponentially with the length of the horizon. Consequently, enhancing sample efficiency has
become an essential research direction to enable RL agents to learn effective policies using
limited data and computational resources. From a theoretical standpoint, recent efforts
have been directed toward developing a finite-sample framework (Kakade 2003) to assess
and compare the sample efficiency of RL algorithms in high-dimensional settings. However,
current statistical insights and provable performance guarantees are still insufficient in both
theory and practice, largely due to technical challenges and the broad, diverse scope of RL.
Thus, advancing the sample efficiency of RL algorithms in high-dimensional environments
remains a pressing area for further research.

• Reproducibility and scalability of RL algorithm performance are also of critical importance.
In practical applications, the dimensionality of encountered environments is often substantial,

Chapter 1. Introduction 14

making the scalability of reinforcement learning (RL) algorithms a key consideration,
particularly in scenarios with limited memory and computational resources. Additionally,
(Robust) RL is frequently criticized for producing results that are challenging to replicate.
Thus, it is essential to develop RL algorithms that can effectively and efficiently scale to
high-dimensional environments, as well as to design benchmarks that test the robustness of
algorithms with reproducible performance outcomes.

The problem of sample efficiency is presented in Fig 1.1b where the first algorithm requires
many samples to converge to a good solution whereas in 1.1a it requires less samples to obtain a
good policy. Moreover, robustness purposes is illustrated in Fig 1.2. In this figure, we train all
agents with a relative physical parameter (the length of the pole) of 1 and then in testing phase,
the physical parameter is changed. The question we want to tackle is how design algorithm
robust to these changes of physical parameters - which lead to changes of transition kernel. In
Fig 1.2, α controls the robustness induced in the RL algorithm. More details on that matter
may be found in Chapter 4.

Can we derive RL algorithms that are sample efficient, robust and scale with the size of the
problem and with reproducible performances?

In this thesis, we will tackle all these issues within the framework of Robust Reinforcement
Learning. As previously stated, reinforcement learning (RL) has achieved significant success in
recent years; however, it often faces challenges in robustness and generalization. These challenges
primarily arise due to agents overfitting to specific training environments, which can lead to poor
performance during deployment. RL agents are typically trained in simulation due to the high
cost of interacting with physical systems. However, simulations may contain modeling errors
and imprecise parameters, leading to a discrepancy between simulation and reality that can be
difficult for the trained policy to handle during transition. Even policies trained directly on
real systems may struggle with previously unencountered uncertainties or disturbances. Slight
deviations in the environment’s parameters, such as mass or friction, can significantly impact a
policy’s performance, which may be the difference between success and failure in test scenarios
(Morimoto and Doya 2005, Pinto et al. 2017).

Robust Markov Decision Processes (RMDPs) have been introduced in Iyengar (2005), Nilim
and El Ghaoui (2005) to tackle this problem. This framework is natural, versatile, and leverages
insights from distributionally robust optimization and supervised learning (Bertsimas et al. 2018,
Blanchet and Murthy 2019, Duchi and Namkoong 2021). In contrast to conventional MDPs, the
class of RMDPs provides a more extensive modeling framework, enabling the specification of the
shape and magnitude of the uncertainty set. Frequently, the uncertainty set is chosen to be a
small ball centered around the nominal kernel with an uncertainty radius σ, with its dimensions
and form defined by a metric that measures the distance between probability distributions. To
facilitate the tractability of solving RMDPs, the uncertainty set is typically assumed to possess
certain structural properties. For example, previous works (Iyengar 2005, Wiesemann et al. 2013)
have proposed that the uncertainty set can be decomposed into independent subsets for each
state or state-action pair, referred to as s- and (s, a)-rectangularity, respectively. In this thesis,
we adopt the assumption of (s, a)-rectangularity for the uncertainty set.From a theoretical point
of view, these assumptions will be useful in Chapter 2 and 3 while we will try to avoid it from a
practical point of view - as it is restrictive - in Chapter 6.

We now turn to the descriptions of the contributions made in this thesis. After a short
background summarizing the useful notions in Chapter 1, this manuscript is organized in two
parts: the first one focuses on the theory of Robust MDPs and especially the question of sample
complexity; the second studies Robust RL from a practical point of view. These two directions
are not orthogonal: on the contrary, the theoretical study of MDPs can provide insights on how

15 1.2. Introduction

to design efficient Robust RL algorithms, and using Robust RL algorithms gives intuition on the
sample complexity of Robust MDPs.

First, we will tackle the question of sample complexity. Suppose that one has access to
data samples generated by an MDP with a nominal transition kernel, obtained through certain
sampling mechanisms. The primary objective of traditional RL is to learn the optimal policy
that is specifically tailored to the nominal kernel, for which the minimax sample complexity
limit has been well-established (Azar et al. 2013a). In contrast, the goal of distributionally
robust RL is to learn a more resilient policy using the same set of data samples by optimizing
the worst-case performance when the transition kernel is chosen arbitrarily from a predefined
uncertainty set around the nominal kernel. Sample complexity for RMDPs has been studied
in (Yang et al. 2022, Panaganti and Kalathil 2022a, Shi et al. 2024) but generally does not
directly translate to algorithms that scale up to complex evaluation benchmarks. From a sample
complexity perspective, we will demonstrate that RMDPs are no more difficult to learn than
classical MDPs for small uncertainty radius σ and can even be simpler to learn when the radius is
larger.This finding provides motivation for utilizing RMDPs to develop sample-efficient algorithm
in Chapter 2 and 3.

First contributions about sample complexity of Robust MDPs

We focus in Part I on understanding the sample complexity of Robust MDPs. More
previously, in Chapter 2, we study the sample complexity of obtaining an ϵ-optimal
policy in Robust discounted Markov Decision Processes (RMDPs), given only access to a
generative model of the nominal kernel. This problem is widely studied in the non-robust
case, and it is known that any planning approach applied to an empirical MDP estimated
with Õ(H3SA

ϵ2) samples provides an ϵ-optimal policy, which is minimax optimal. Results
in the robust case are much more scarce. For sa- (resp s-) rectangular uncertainty sets,
until recently the best-known sample complexity was Õ(H4S2A

ϵ2) (resp. Õ(H4S2A2

ϵ2)), for
specific algorithms and when the uncertainty set is based on the total variation (TV), the
KL or the Chi-square divergences. In this paper, we consider uncertainty sets defined with
an Lp-ball (recovering the TV case), and study the sample complexity of any planning
algorithm (with high accuracy guarantee on the solution) applied to an empirical RMDP
estimated using the generative model. In the general case, we prove a sample complexity of
Õ(H4SA

ϵ2) for both the sa- and s-rectangular cases (improvements of S and SA respectively).
When the size of the uncertainty is small enough, we improve the sample complexity to
Õ(H3SA

ϵ2), recovering the lower-bound for the non-robust case for the first time and a
robust lower-bound. Finally, we also introduce simple and efficient algorithms for solving
the studied Lp robust MDPs.

Chapter 1. Introduction 16

Second contribution about sample complexity of Robust MDPs

In Chapter 3 , we refine the results of Chapter 2, assuming access to a generative model
that samples from the nominal MDP, we examine the sample complexity of RMDPs using
a class of generalized Lp norms as the ’distance’ function for the uncertainty set, under two
commonly adopted sa-rectangular and s-rectangular conditions. Our results imply that
RMDPs can be more sample-efficient to solve than standard MDPs using generalized Lp
norms in both sa- and s-rectangular cases, potentially inspiring more empirical research.
We provide a near-optimal upper bound and a matching minimax lower bound for the
sa-rectangular scenarios. For s-rectangular cases, we improve the state-of-the-art upper
bound and also derive a lower bound using L∞ norm that verifies the tightness. Compared
to Chapter 2, we improve the sample complexity, showing that it is possible to obtain
sample complexity that are lower than in classical MDPs. This part gives a promising
avenue to derive algorithm that can achieve lower sample complexity while be more robust
on perturbations.

Then, from a practical point of view, we derive robust RL algorithms. We show that the
ideas from Robust MDPs can be used to design Robust RL algorithms using a Nominal-based
Risk-Averse formulation. More specifically, the idea of this class of algorithms is to approximate
the inner minimum operator present in the robust Bellman operator (1.37).

Previous work has typically employed a dual approach to the minimum problem, whereby
the transition probability is constrained to remain within a specified ball around the nominal
transition kernel. In this line of work, (Kumar et al. 2022) derived an approximate algorithm
for RMDPs with Lp balls, (Liu et al. 2022) for KL divergence, and we attempt to approximate
RMDPs with χ2 in Chapter 4. Practically, robustness is equivalent to regularization (Derman
et al. 2021): for example the SAC algorithm (Haarnoja et al. 2018a) has been shown to be robust
due to entropic regularization (Eysenbach and Levine 2021). Finally, Wang et al. (2023) proposes
a novel online approach to solve RMDP. Unlike previous works that regularize the policy or value
updates, Wang et al. (2023) achieves robustness by simulating the worst kernel scenarios for the
agent while using any classical RL algorithm in the learning process. The idea that regularisation
and robustness are closely linked will be central in this Thesis in the Chapter 4 and 5. The idea
in Chapter 5 is that we avoid estimation of a penalisation or regularisation, and rather estimate
the expectile of the value function, which create implicitly robustness. These types of algorithms
are mathematically well founded but are only using sample from the nominal transition kernel.
Closely related the idea of using sample not only from the nominal kernel, domain randomization
(DR) (Tobin et al. 2017) learns a value function which maximizes the expected return on average
across a fixed (generally uniform) distribution on the uncertainty set. This method that uses
sample from all the uncertainty set will be combined with risk averse formulation in Chapter 5.
To tackle the aforementioned challenges of using sample uniquely from the nominal and avoid
rectangularity assumptions, one approach using the concept of two-player zero-sum games or
min-max is proposed in Chapter 6. Our algorithm is based like many Deep Robust algorithms
exist such as M2TD3 Tanabe et al. (2022a), M3DDPG (Li et al. 2019a), or RARL (Pinto et al.
2017) on the two player zero-sum game presented in 6.2.

17 1.2. Introduction

First contributions about practical Robust Reinforcement Learning

Robust Reinforcement Learning tries to make predictions more robust to changes in
the dynamics or rewards of the system. This problem is particularly important when
the dynamics and rewards of the environment are learned and estimated from the data.
In Chapter 4, we try to approximate the Robust Reinforcement Learning constrained
with a χ2-divergence using an approximate Risk-Averse formulation. We show that the
classical Reinforcement Learning formulation can be robustified using Standard deviation
penalization of the objective. Two algorithms based on Distributional Reinforcement
Learning, one for discrete and one for continuous action space are proposed and tested on
classical Gym environment to demonstrate the robustness of the algorithms.

Second contributions about practical Robust Reinforcement Learning

Then, we derive in Chapter 5 new form of implicit robustness in RL using expectile
boostraping. Using these technique avoid to estimate a penalisation like in 4. Many classic
Reinforcement Learning (RL) algorithms rely on a Bellman operator, which involves an
expectation over the next states, leading to the concept of bootstrapping. To introduce a
form of pessimism, we propose to replace this expectation with an expectile. In practice,
this can be very simply done by replacing the L2 loss with a more general expectile loss for
the critic. Introducing pessimism in RL is desirable for various reasons, such as tackling the
overestimation problem (for which classic solutions are double Q-learning or the twin-critic
approach of TD3) or robust RL (where transitions are adversarial). We study empirically
these two cases. For the overestimation problem, we show that the proposed approach,
ExpectRL, provides better results than a classic twin-critic. On robust RL benchmarks,
involving changes of the environment, we show that our approach is more robust than
classic RL algorithms. We also introduce a variation of ExpectRL combined with domain
randomization which is competitive with state-of-the-art robust RL agents. Eventually,
we also extend ExpectRL with a mechanism for choosing automatically the expectile value,
that is the degree of pessimism.

Third contributions about practical Robust Reinforcement Learning

Subsequently in the Chapter 6, we try to derive a new algorithm without rectangularity
assumptions. Robust reinforcement learning often depends on rectangularity assumptions,
where adverse probability measures of outcome states are assumed to be independent
across different states and actions. This assumption, rarely fulfilled in practice, leads
to overly conservative policies. To address this problem, we introduce a new time-
constrained robust MDP (TC-RMDP) formulation that considers multifactorial, correlated,
and time-dependent disturbances, thus more accurately reflecting real-world dynamics.
This formulation goes beyond the conventional rectangularity paradigm, offering new
perspectives and expanding the analytical framework for robust RL. We propose three
distinct algorithms, each using varying levels of environmental information, and evaluate
them extensively on continuous control benchmarks. Our results demonstrate that these
algorithms yield an efficient tradeoff between performance and robustness, outperforming
traditional deep robust RL methods in time-constrained environments while preserving
robustness in classical benchmarks. This study revisits the prevailing assumptions in robust
RL and opens new avenues for developing more practical and realistic RL applications.

Chapter 1. Introduction 18

Finally to do reproducible method find algorithm that can scale, a normalised benchmark
RRLS in 7, we test our last algorithm TC-MDPs on this benchmark to create reproducible
algorithm that can scale with dimension and with reproducible performances.

Contributions about reproductiblity issues of Robust RL

We introduce the Robust Reinforcement Learning Suite (RRLS), a benchmark suite based
on Mujoco environments. RRLS provides six continuous control tasks with two types of
uncertainty sets for training and evaluation. Our benchmark aims to standardize robust
reinforcement learning tasks, facilitating reproducible and comparable experiments, in
particular those from recent state-of-the-art contributions, for which we demonstrate the
use of RRLS. It is also designed to be easily expandable to new environments. The source
code is available at https://github.com/SuReLI/RRLS.

Finally, in the 8, we tackle the problem of representation of the posterior in the bandit
problem using Thompson sampling algorithms with arbitrary posterior distribution learned using
Variational inference.

Contributions in Bandit Theory

We introduce and analyze a variant of the Thompson sampling (TS) algorithm for contex-
tual bandits. At each round, traditional TS requires samples from the current posterior
distribution, which is usually intractable. To circumvent this issue, approximate inference
techniques can be used and provide samples with distribution close to the posteriors.
However, current approximate techniques yield to either poor estimation (Laplace approx-
imation) or can be computationally expensive (MCMC methods, Ensemble sampling...).
In this paper, we propose a new algorithm, Varational Inference TS (VITS), based on
Gaussian Variational Inference. This scheme provides powerful posterior approximations
which are easy to sample from, and is computationally efficient, making it an ideal choice
for TS. In addition, we show that VITS achieves a sub-linear regret bound of the same
order in the dimension and number of round as traditional TS for linear contextual bandit.
Finally, we demonstrate experimentally the effectiveness of VITS on both synthetic and
real world datasets.

1.2.1 Overview of the manuscript and contributions

We turn to the descriptions of the contributions made in this thesis. After a short background
summarizing the useful notions in Chapter 1, the manuscript is organized in two parts: the first
one focuses on theory of Robust MDPs and especially question of sample complexity, the second
study Robust RL from a practical point of view. These two directions are not orthogonal: on
the contrary, the theoretical study of MDPs can give idea on how design efficient Robust RL
algorithm and using Robust RL algorithm gives intuition on sample complexity of Robust MDPs.

Contributions The elements and results presented in this thesis have been published or are
currently under review in the following works:

• Pierre Clavier, Erwan Le Pennec, Matthieu Geist Towards Minimax Optimality of
Model-based Robust Reinforcement Learning Conference on Uncertainty in Artificial
Intelligence (UAI) 2024 (Oral), Clavier et al. (2023). Covered in Chapter 2.

• Pierre Clavier Laixi Shi, Eric Mazumdar, Matthieu Geist, Adam Wierman, Erwan Le

https://github.com/SuReLI/RRLS

19 1.2. Introduction

Pennec Near-Optimal Distributionally Robust Reinforcement Learning with
General Lp Norms. NeurIPS 2024, Covered in Chapter 3.

• Pierre Clavier∗, Tom Huix∗, Alain Durmus VITS : Variational Inference Thomson
Sampling for contextual bandits International Conference on Machine Learning 2024,
Clavier et al. (2023). Covered in Chapter 8.

• Pierre Clavier, Stéphanie Allassonnière, Erwan Le Pennec Robust Reinforcement
Learning with Distributional Risk-averse formulation International Conference on
Machine Learning 2024, Workshop in Responsible Decision Making in Dynamic Environ-
ments, Clavier et al. (2022). Covered in Chapter 4.

• Pierre Clavier, Emmanuel Rachelson, Erwan Le Pennec, Matthieu Geist. Bootstrapping
Expectiles in Reinforcement Learning https://arxiv.org/abs/2406.04081. Clavier
et al. (2024) Covered in Chapter 5.

• Adil Zouitine∗, David Bertoin∗, Pierre Clavier∗, Matthieu Geist, Emmanuel Rachelson
Time-Constrained Robust MDPs, Zouitine et al. (2024b), NeurIPS 2024. Covered in
Chapter 6.

• Adil Zouitine∗, David Bertoin∗, Pierre Clavier∗, Matthieu Geist, Emmanuel Rachelson
RRLS : Robust Reinforcement Learning Suite, Zouitine et al. (2024a),
https https://arxiv.org/abs/2406.08406. Covered in Chapter 7.

About my contributions:

• I am the sole junior first author of Chapters 2, 3, 4, and 5. I wrote the paper, developed
the code for implementations and experiments, and originated the main idea. Laixi Shi, a
postdoctoral researcher, contributed as a second author to Chapter 4, providing valuable
feedback on writing and insights on the results. All proofs were discussed with her, while
the ideas and writing are my own work.

• For Chapters 6, 7, and 8, I am co-first author alongside junior colleagues Adil Zouitine,
David Bertouin, and Tom Huix. In Chapters 6 and 7, I share co-first authorship with
Adil and David. I contributed equally with Adil Zouitine in the writing, discussions, and
development of ideas. Adil and David focused more on implementation, while I handled the
theoretical sections independently. In Chapter 8, I shared the work equally with Tom Huix,
the other co-first author. We both contributed to the implementation, proofs, and writing
of the paper. Additionally, I contributed my own ideas to the proof, the implementation
and the final algorithms.

∗Equal contribution.

Chapter 1. Introduction 20

1.3 Background

1.3.0.1 Sequential Decision Making and Bandit Problem

In traditional Multi-Armed Bandit (MAB) problems, an agent has to sequentially choose between
several actions (referred to as ”arms”), from which it receives a reward from the environment.
The arm selection process is induced by a sequence of policies, which are inferred and refined
at each round from past observations. These policies are designed to optimize the cumulative
rewards over the entire process. The main challenge in this task is to effectively manage a
suitable exploitation-exploration trade-off (Robbins 1952, Katehakis and Veinott 1987, Berry
and Fristedt 1985, Auer et al. 2002, Lattimore and Szepesvári 2020, Kveton et al. 2020). Here,
exploitation refers to selecting an arm that is currently believed to be the best based on past
observations, while exploration refers to selecting arms that have not been selected frequently in
the past in order to gather more information. The classical Bandit problem can be represented
in Fig 1.3. Bandits have many applications, such as in agriculture (Gautron et al. 2024), health
(Réda 2022), recommendation systems (Li et al. 2010), or model selection in Machine Learning
(Pacchiano et al. 2020).

Environment

Agent

Compute

Give a reward r

Figure 1.3: A bandit problem

Contextual bandit problems are a particular instance of the MAB problem, which assumes
that, at each round, the set of arms and the corresponding rewards depend on a d-dimensional
feature vector called a contextual vector or context. This scenario has been extensively studied
over the past decades, and learning algorithms have been developed to address this problem
(Langford and Zhang 2007, Abbasi-Yadkori et al. 2011, Agrawal and Goyal 2013, Kveton et al.
2020). These algorithms have been successfully applied in several real-world problems, such as
recommender systems, mobile health, and finance (Li et al. 2010, Agarwal et al. 2016, Tewari and
Murphy 2017, Bouneffouf et al. 2020). The existing algorithms for addressing contextual bandit
problems can be broadly categorized into two groups. The first category is based on maximum
likelihood and the principle of optimism in the face of uncertainty (OFU) and has been studied
in (Auer et al. 2002, Chu et al. 2011, Abbasi-Yadkori et al. 2011, Li et al. 2017, Ménard and
Garivier 2017, Zhou et al. 2020, Foster and Rakhlin 2020, Zenati et al. 2022).

The second category consists of randomized probability matching algorithms, which are based
on Bayesian belief and posterior sampling. Thompson Sampling (TS) is one of the most famous
algorithms that falls into this latter category. Since its introduction by Thompson (1933), it has
been widely studied, both theoretically and empirically (Agrawal and Goyal 2012, Kaufmann et al.
2012, Agrawal and Goyal 2013, Russo and Van Roy 2014; 2016, Lu and Van Roy 2017, Riquelme
et al. 2018, Jin et al. 2021). Despite the fact that OFU algorithms offer better theoretical

21 1.3. Background

guarantees compared to classic TS-based algorithms, traditional TS methodologies still appeal
to us due to their straightforward implementation and empirical advantages. In Agrawal and
Goyal (2012), the authors claimed that: ”In applications like display advertising and news article
recommendation, TS is competitive with or better than popular methods such as UCB.” Similarly,
Chapelle and Li (2011) has examined the empirical performances of TS on both simulated and
real data. Their experiments demonstrate that TS outperforms OFU methods, leading them
to conclude: ”In any case, TS is very easy to implement and should thus be considered as a
standard baseline.” Taking all these factors into account, we focus on TS-based algorithms for
addressing contextual bandit problems in this thesis. The contextual bandit problem can be
represented in Fig1.4.

Environment

Agent

Compute

Give a reward r

Figure 1.4: Contextual Bandit problem

Thompson sampling for contextual bandits : We now present in more details the contextual
bandit framework. Let S be a contextual space and consider A : S → 2A a set-valued action
map, where 2A stands for the power set of the action space A. For simplicity, we assume here
that sups∈S Card(A(s)) < +∞. A (deterministic or random) function π : S → A is said to be
a policy if for any s ∈ S, π(s) ∈ A(s). Then, for a fixed horizon T ∈ N⋆, a contextual bandit
process can be defined as follows: at each iteration t ∈ [T] and given the past observations
Dt−1 = {(si, ai, ri)}i<t:

• The agent receives a contextual feature st ∈ S ;
• The agent chooses an action at = πt(st) where πt is a policy sampled from Qt(·|Dt−1) ;
• Finally, the agent receives a reward rt sampled from R(·|st, at) given Dt−1. Here, R is a

Markov kernel on (A× S)× R, where R ⊂ R .

For a fixed family of conditional distributions Q1:T = {Qt}t≤T , this process defines a random
sequence of policies, π1:T = {πt}t≤T with distribution still denoted by Q1:T by abuse of notation.
Let’s defined the optimal expected reward for a contextual vector x ∈ X and the expected reward
given x and any action a ∈ A(s) as follow

f⋆(s) = max
a∈A(s)

f(s, a) , f(s, a) =
∫
rR(dr|s, a) . (1.1)

The main challenge of a contextual bandit problem is to find the distribution Q1:T that minimizes
the cumulative regret defined as

CRegret(Q1:T) = ∑
i≤T Regretπii (1.2)

with Regretπis = f⋆(si)− f(xs, πs(si)) .

Chapter 1. Introduction 22

The main difficulty in the contextual bandit problem arises from the fact that the reward
distribution R is intractable and must be inferred to find the best policy to minimize the
instantaneous regret π 7→ f⋆(s)− f(s, π(s)) for a context s ∈ S. However, the estimation of R
may contradict the primary objective of minimizing the cumulative regret (8.2), since potentially
non-effective arms must be chosen to obtain a complete description of R. Therefore, bandit
learning algorithms have to achieve an appropriate trade-off between the exploitation of arms
that have been confidently learned and the exploration of misestimated arms.

Thompson sampling: To achieve such a trade-off, we consider the popular Thompson
Sampling (TS) algorithm. Consider a parametric model Rθ, :, θ ∈ Rd for the reward distribution,
where for any θ, Rθ is a Markov kernel on (A× S)× R parameterized by θ ∈ Rd. We assume in
this paper that Rθ admits a density with respect to some dominating measure λref. For instance,
it is possible to use the exponential family defined in 8.3

With the introduced notations, the likelihood function associated to the observations Dt at
step t > 1 is given by

Lt(θ) ∝ exp
{
t−1∑
i=1

ℓ(θ|si, ai, ri)
}
, (1.3)

where the log-likelihood is given by ℓ(θ|si, as, si) = log(dRθ/dλref)(ri|si, ai) . The symbol ∝
denotes a quantity proportional to another. Choosing a prior on θ with density p0 with respect
to Leb, and applying Bayes formula, the posterior distribution at round t ∈ [T] is given by

p̂t = Lt(θ)p0(θ)/Zt , (1.4)

where Zt =
∫

Lt(θ)p0(θ)dθ denotes the normalizing constant and we used the convention that
p̂1 = p0. Moreover we define the potential function U(θ) ∝ − log p̂t(θ). Then, at each iteration
t ∈ [T], TS consists in sampling a sample θt from the posterior p̂t and from it, use as a policy,
π

(TS)
t (s) defined for any s by

π
(TS)
t (s) = aθt(s) , aθ(s) = arg max

a

∫
rRθ(dr|s, a) . (1.5)

Since Zt is generally intractable, sampling from the posterior distribution is not in general an
option. This is why we will use of Variational Inference to approximate the posterior distribution.
Other methods such as Laplace (Chapelle and Li 2011), Langevin (Xu et al. 2022) have been
proposed approximate and a details overview is presented in Chapter 8. The TS algorithm for
contextual bandit is described in Alg. 1.

Algorithm 1: Thompson Sampling for Contextual Bandit
for t = 1, ..., T do

Receive from environment the context st.
Sample θt from p̂t.
Select at such as at = π

(TS)
t (st).

Receive rt ∼ R(.|st, at).
Update p̂t+1 using new point (st, at, rt).

end for

Variational inference TS: To address this challenge, practitioners often employ approximate
inference methods to generate samples from a distribution that is expected to be ”close” to the
actual posterior distribution. In this context, we specifically concentrate on the application of

23 1.3. Background

Variational Inference (VI). In this scenario, we consider a variational family G, which is a set of
probability densities with respect to the Lebesgue measure, from which it is typically easy to
sample. Then, ideally, at each round t ∈ [T], the posterior distribution p̂t is approximated by
the variational posterior distribution q̃t, which is defined as:

q̃t = arg min
p∈G

KL(p|p̂t) , (1.6)

where KL is the Kullback-Leibler divergence is defined in 1.30. In Chapter 8, We will detail
how to derive algorithms using Variational Inference in the Thompson Sampling algorithm and
evaluate the performance of our algorithm against other approximations of the posterior, such as
Laplace in the LMC-TS algorithm (Xu et al. 2022). The main difference between contextual
bandits and Markov Decision Processes, which will be central in the rest of the thesis, is that the
action chosen in contextual bandits does not affect the next state, contrary to MDPs, making it
much harder to find the best policy π.

1.3.1 Reinforcement Learning and Markov Decision Processes

1.3.1.1 Markov Decision Processes

We define a Markov Decision Process to model the interaction between the environment and
the agent in Reinforcement Learning. Usally, we use a a discounted, infinite horizon, Markov
Decision Process (MDP) M = (S,A, P, r, γ, ρ), specified by:

• S, the state space that can be either finite or infinite. In Chapter 2 and 3, we will assume it
is finite for mathematical convenience but we will in Deep Reinforcement Learning Chapter
4,5,6,7 assume it possibly infinite.

• A the action space, which also may be discrete or infinite. For mathematical convenience,
we will assume that A is finite except in Chapter 4, 5, 6 and 7.

• r : S × A → [0, 1], the reward function which is the immediate reward associated with
taking action a in state s. The reward he r(s, a) could be a random variable where the
distribution depends on s, a such as in Chapter 4. However we will focus on the case where
r(s, a) is deterministic in more theoretical Chapter 2 and Chapter 3.

• γ ∈ [0, 1), the discount factor which defines a horizon for the problem.

• ρ ∈ ∆(S) the initial state distribution which specifies the initial state s0 sampled.

• P : S ×A → ∆(S), the transition function . P (s′ | s, a) is the probability of transitioning
into state s′ upon taking action a in state s. We will use Ps,a to denote the vector P (· | s, a).

1.3.1.2 Value, policy and optimality

Policy: Throughout this thesis, time is assumed to be discrete. A policy, denoted by π, is
defined as a mapping from states to distributions over actions. The space of all policies is
denoted as Π ∈ ∆(A)S . A deterministic policy assigns a single action to a given state, while a
stochastic policy may assign positive probabilities to multiple actions for a given state. Finally,
the probability assigned by policy π to action a in state s is denoted by π(a | s). One possible
and classical objective is to learn an optimal policy, denoted by π∗, that maximizes the expected
cumulative discounted reward, defined as follows:

Chapter 1. Introduction 24

Environment

Agent

Compute

Give a reward and next stater

Figure 1.5: Reinforcement Learning framework

π∗ ∈ argmax
π∈Π

E

∑
t≥0

γtr (st, at) | s0 ∼ ρ, at ∼ π (· | st) , st+1 ∼ P (· | st, at)

 . (1.7)

The discounted sum of reward ∑t≥0 γ
tr (st, at) is also called the return. Finally, we denote Z the

distribution over the return. along a trajectory or rollout τ . Using π from state s using initial
action a is defined as the the random sequence τP,π|s0,a0 = ((s0, a0, r0) , (s1, a1, r1) , . . .) with
s0 = s, a0 = a, at ∼ π (· | st) and rt, st+1 ∼ P (·, · | st, at) ; we denote the distribution over rollouts
by P(τ) with P(τ) = ρ (s0)∏T

t=0 P (st+1, rt | st, at)π (at | st) dτ and usually write τ ∼ P = (π, P).

Value function: To characterize the cumulative reward, the value function V π,P for any policy
π under the transition kernel P is defined by ∀s ∈ S:

V π,P (s) := E(π,P)

[∞∑
t=0

γtr
(
st, at

) ∣∣∣ s0 = s

]
. (1.8)

The expectation is taken over the randomness of the trajectory {st, at}∞t=0 generated by executing
the policy π under the transition kernel P , such that at ∼ π(· | st) and st+1 ∼ P (· | st, at) for all
t ≥ 0. In the same way, the Q function Qπ,P associated with any policy π under the transition
kernel P is defined using expectation taken over the randomness of the trajectory under policy π as

Qπ,P (s, a) := E(π,P)

[∞∑
t=0

γtr
(
st, at

) ∣∣∣ (s0, a0) = (s, a)
]
, (1.9)

Moreover, both the Value and Q function follow the so called Bellman equation (Bellman 1957)
such as :

V π,P (s) = E(π,P)

∑
t≥0

γtr
(
st, at

)
| s0 = s

 (1.10)

= E(π,P)

r(s, a) + γ
∑
t≥1

γtr
(
st, at

)
| s0 = s, a ∼ π(s)

 (1.11)

=
∑
a∈A

π(a | s)
∑
s′∈S

P
(
s′ | s, a

)r(s, a) + γE(π,P)

∑
t≥0

γtr
(
st, at

)
| s0 = s′

 (1.12)

=
∑
a∈A

π(a | s)
∑
s′∈S

P
(
s′ | s, a

) (
r(s, a) + γV π,P (s′)) (1.13)

25 1.3. Background

The aforementioned equation creates a connection between the value of a particular state and the
values of its ensuing states. This connection is pivotal in dynamic programming and reinforcement
learning, as it permits the propagation of value from one state to others within the state space.
Similarly, theQ-function, which denotes the quality of an action at a specific state, follows an analo-
gous principle, thereby allowing the transmission of action-value information among diverse states.

Qπ,P (s, a) = r(s, a) + γ
∑
s′∈S

P
(
s′ | s, a

) ∑
a′∈A

π
(
a′ | s′)Qπ,P (s′, a′) (1.14)

Moreover, a policy π∗ is said to be optimal for a MDP if and only if

π∗ = arg max
π∈Π

Es∼ρ[V π,P (s)] ,

with ρ the initial state distribution or equivalently (Sutton and Barto 2018), a policy π∗ is
optimal if and only if

∀π ∈ Π,∀s ∈ S, V π∗,P (s) ≥ V π,P (s) .

1.3.1.3 Bellman Operators and Optimality

The value function V π,P for policy π, is the fixed point of the Bellmen operator T π, P , defined
for any V ∈ RS as

T π,PV (s) =
∑
a

π(a|s)[R(s, a) + γ
∑
s′

P
(
s′|s, a

)
V
(
s′)].

We also define the optimal Bellman operator: T ∗,PV (s) = maxπs∈∆A

(
T πs,PV

)
(s). Both optimal

and classical Bellman operators are γ-contractions (Sutton and Barto 2018). This is why sequences
{V π

n | n ≥ 0}, and {V ∗
n | n ≥ 0}, defined as

V π
n+1 := T π,PV π

n and V ∗
n+1 := T ∗,PV ∗

n ,

converge linearly to V π,P and V ∗,P , respectively the value function following π and the optimal
value function. Now, we introduce the concept of a greedy policy that connects the optimal
policy and its value V ∈ RS . We say that a policy is considered greedy with respect to a value
function if it always selects the action that maximizes the expected reward based on that value
function. In other words, a greedy policy makes locally optimal decisions at each state, assuming
that the value function accurately represents the long-term reward. More formally, π is greed
with respect to V if an only if

T π,PV = T ∗,PV .

Finally, we define the the space of greedy policies as G(V). The greediness can be understood
state-wise as, for all a ∈ A and s ∈ S,

π(a | s) > 0⇒ a ∈ argmax
a′∈A

r(s, a) + γ
∑
s′∈S

P
(
s′ | s, a′)V (s′) . (1.15)

The action that leads to the state where the value is maximized according to a greedy policy. The
interesting property is that optimal policy is greedy with regards to its own value, ie π∗ ∈ G (V ∗),

Chapter 1. Introduction 26

so it is possible to compute the optimal using associated optimal value function. The optimality
can also computed using definition of Q-function. The major interest of definition greedeyness
defined like this, is that it allow defining greediness without having access the transition kernel
P . So for any Q ∈ RS×A, we say that a policy π is greedy w.r.t. Q if and only if

∀s ∈ S,∀a ∈ A, π(a | s) > 0⇒ a ∈ argmax
a′∈A

Q
(
s, a′) .

With this definition, the greedy policy can be found without any knowledge of transition kernel
P . Thus, the notion of greediness using Q-values is simpler to define as it is simply the action
maximizing the estimated Q-value for each state. Finally we define the Bellman Operator T π,P
and the optimal Bellman Operator T π∗,P for the Q-function as :

T π,PQ(s, a) = r(s, a) + γ
∑
s′∈S

P
(
s′ | s, a

)
Ea′∼π(·|s′)

[
Q
(
s′, a′)] , (1.16)

T π
∗,PQ(s, a) = r(s, a) + γ

∑
s′∈S

P
(
s′ | s, a

)
max
a′∈A

Q
(
s′, a′) . (1.17)

These operators are also a γ- contraction. So we can iterate this operator to converge to the
optimal policy π∗ and defined Q∗,P the fix point with Q∗,P = Qπ

∗,P .

1.3.1.4 (Approximate) Value Iteration (AVI)

In the previous section, we have established first a method for determining the value of the
optimal policy, and then a relationship between the optimal policy and its corresponding value.
Combining these elements results in Value Iteration which is a Dynamic Programming algorithm
that calculates the optimal policy for a MDP. This scheme begins with any initial value V0 ∈ RS ,
and at each iteration step k ∈ N:

{
Vk+1 = T ∗,PVk
πk+1 ∈ G (Vk+1) . (1.18)

To be more accurate, it would be interesting to quantify a stoping criterion such as a number of
step to reach arbitrary small error or finding ϵ > 0 such that ∥Vk+1 − Vk∥∞ < ϵ . The fact that
VI asymptotically compute π∗ and this error ϵ tend to zero is simply a consequence of Banach’s
fixed point theorem applied to the optimal Bellman Operator T ∗,P which is a γ-contraction. As
the convergence is asymptotic, VI will never be able to compute the optimal policy π∗ as we can
bound by

∥∥∥V πk,P − V ∗,P
∥∥∥

∞
≤ 2

(1− γ)2γ
k , (1.19)

because the current reward r(s, a) belongs to [0, 1]. So VI converges exponentially fast with
linear rate as γ ∈ [0, 1) but the error can be sometime very large as 1/(1− γ) or horizon factor
can be very large when γ is close to 1. Moreover, VI can be rewritten using Q function in a
model free setting as : {

πk+1 ∈ G (Qk)
Qk+1 = T πk+1,PQk .

(1.20)

27 1.3. Background

Then we will see the influence of error in VI. To take into account errors in the process, we use the
Approximate Dynamic Programming framework. It defines and analyzes Dynamic Programming
schemes, and incorporates additional arbitrary errors such as

{ πk+1 ∈ G (Qk)
Qk+1 = T πk+1,PQk + ϵk+1 ,

(1.21)

where ∀k ∈ N , ϵk ∈ R are for errors made when computing the Q-values. Firstly, note that
this definition does not specify the origin of errors, which can come from various noise sources.
Typically, errors are classified into three types:

• Estimation errors : these occur due to the large or continuous state space, which prevents
an exact tabular representation of Qk, necessitating function approximation methods such
as Neural Network.

• Sampling errors: they arise because the transition probability P is unknown in RL setting,
requiring states to be sampled from P (· | s, a) instead of computing exact expectations.

• Greediness errors: errors in computing the greedy policy are not considered in this
scheme but this is based on the assumption that the action space is small and discrete,
allowing for the straightforward computation of a greedy policy by finding the maximum
over a small set. However, in the case of continuous control, these errors must be taken
into account.

To better understand the influence of errors on the behavior of a scheme, we will focus on error
propagation in AVI. Specifically, we aim to connect the discrepancy between the value of the
computed policy and the optimal policy to the errors incurred during iterations. This analysis
helps us understand various phenomena, such as how errors accumulate over iterations and the
conditions under which we can demonstrate convergence or establish bounds on the distance to
the optimal policy. At step or iteration k, Bertsekas (2017) show that

∥∥∥Qπk,P −Q∗,P
∥∥∥

∞
≤ 2

(1− γ)2

γk + (1− γ)
k∑
j=1

γk−j ∥ϵk∥∞

 .

In this upper bound, we can recognise two terms : the fist one proportional to γk is similar
the the scheme without errors and tend to zero when k grows. The second term proportional
to ∑k

j=1 γ
k−j ∥ϵk∥∞ does not tend to zero as it is an exponential average of the norms of every

errors. It shows that errors have an impact on the current solution and that recent errors have
more impact than the older ones. Moreover it is important to know that this upper bound is
tight according to Scherrer and Lesner (2012).

A nice modification on this scheme comes from Vieillard et al. (2020) that use KL regularisation
of the policy to obtain bound that depend on the average of the errors

∥∥∥ 1
k

∑k
j=1 ϵj

∥∥∥
∞

and not∑k
j=1 γ

k−j ∥ϵk∥∞. This modification is central in many state of the art Deep RL algorithm such
as TRPO or PPO (Schulman et al. 2015; 2017a) or more recently in Munchausen algorithm
(Vieillard et al. 2020). Using this modification, if we assume that errors have zero mean lead to
convergence in average which is not the case without this modification and this modified scheme
play an averaging thought steps of the iterations. However, for example when the model used
in far from the initial one, the error have not zero mean and iterating over the step k do not
necessary converge to a good solution. To give an example, assume that we are trying to find

Chapter 1. Introduction 28

the best policy but having access to a transition kernel P ′ which slightly differ from P . Then we
obtain iterating AVI:

{
πk+1 ∈ G (Qk)
Qk+1 = T πk+1,P ′

Qk + ϵk+1 .
(1.22)

with using vector notation Ps,a for kernel starting at state action (s, a) definition of

ϵk = T πk+1,PQk − T πk+1,P ′
Qk = γ(P πk+1 − P ′,πk+1)Qk

with P πs,a = ∑
s′∈S P (s′ | s, a) Ea′∼π(·|s′) [Qk (s′, a′)] . This error is not centered as long as the

expectation of (P πk+1 − P ′πk+1) is not zero due to model misspecification, or changes in the
transitions kernel thought iterations.

Starting from this fact, our goal is to develop a reinforcement learning procedure that is
more robust to errors arising from model misspecifications, especially in the transition kernel,
thereby motivating the need for robustness in RL from a theoretical point of view. Achieving
this requires modifications to the underlying algorithm. A significant portion of this manuscript
is devoted to identifying and implementing these modifications. To solve this problem, a central
idea for creating robustness would be to develop an algorithm that, in practice, has a lower value
function but can generalize better in an environment that is not exactly the same as the training
environment. Two questions arise from a theoretical point of view:

1. Can we design algorithms which are robust to these model misspecifications and errors?

2. Can we estimate the number of data N we need to get arbitrary small error ϵ in (robust)
RL algorithm?

While the first question will be address in more practical Deep RL algorithm in chapter 4, 5 and
6 we will first focus on the sample complexity question.

1.3.1.5 AVI with a generative model in model based setting

In this part we try to answer the second question of the previous part about sample complexity.
The next paragraph discuss sample complexity related work in RL.

Classical reinforcement learning with finite-sample guarantees. A recent surge in
attention for RL has leveraged the methodologies derived from high-dimensional probability and
statistics to analyze RL algorithms in non-asymptotic scenarios. Substantial efforts have been de-
voted to conducting non-asymptotic sample analyses of standard RL in many settings. Illustrative
instances encompass investigations employing Probably Approximately Correct (PAC) bonds in
the context of generative model settings (Kearns and Singh 1999, Beck and Srikant 2012, Li et al.
2022, Chen et al. 2020, Azar et al. 2013b, Sidford et al. 2018, Agarwal et al. 2020, Li et al. 2023;
2020, Wainwright 2019) and the online setting via both in PAC-base or regret-based analyses (Jin
et al. 2018, Bai et al. 2019, Li et al. 2021, Zhang et al. 2020, Dong et al. 2019, Jin et al. 2020, Li et al.
2023, Jafarnia-Jahromi et al. 2020, Yang et al. 2021) and finally offline setting (Rashidinejad et al.
2021, Xie et al. 2021, Yin et al. 2021, Shi et al. 2022, Li et al. 2022, Jin et al. 2021, Yan et al. 2022).

In the rest of this introduction and in Chapter 2 and 3, we assume having access to a
generative model. Following (Kearns and Singh 1999), we assume access to a generative model or

29 1.3. Background

a simulator which allows us to collect N independent samples for each state-action pair generated
based on the nominal kernel P : ∀(s, a) ∈ S × A, si,s,a i.i.d∼ P (· | s, a), i = 1, 2, · · · , N. The
total sample size is, therefore, NSA. We consider a model-based approach tailored to MDPs,
which first constructs an empirical nominal transition kernel based on the collected samples and
then applies value iteration to compute an optimal policy. As we will decouple the statistical
estimation error and the optimization error, we need to exhibit an algorithm that can achieve
arbitrary small error ϵopt in the empirical MDP defined as an empirical nominal transition kernel
P̂ ∈ RSA×S that can be constructed on the basis of the empirical frequency of state transitions,
i.e. ∀(s, a) ∈ S ×A

P̂ (s′|s, a) := 1
N

N∑
i=1

1
{
si,s,a = s′} . (1.23)

From an AVI point of view we get:{
πk+1 ∈ G (Qk)
Qk+1 = T̂ πk+1,PQk + ϵk+1 ,

(1.24)

where ϵk+1 = T πk+1,PQk− T̂ πk+1,PQk = γ(P π− P̂ π)Qk. As we see, in this setting, if the estimate
kernel converge to true transition kernel, we can control the error yo be arbitrary small. So
a question is can we find a minimum number of data N such as ϵ is the sufficiently small ?
Specifically, given some target accuracy level ε > 0, the goal is to seek an ε-optimal robust policy
π̂, the policy estimated in the empirical MDP obeying

∀s ∈ S : Q⋆,P (s, a)−Qπ̂,P (s, a) ≤ ε with Q̂π̂
⋆,P − Q̂π̂,P ≤ εopt . (1.25)

This formulation allows plugging any solver of MDPs in this bound as long as we get εopt

error. Using VI, we can bound the optimisation term εopt by 2γk
(1−γ)2 using (1.19) at iteration

k of our algorithm, but we could also plug any algorithm and consider arbitrary π̂, using this
decomposition.

Q⋆,P −Qπ̂,P =
(
Qπ

⋆,P − Q̂π⋆,P
)

+
(
Q̂π

⋆,P − Q̂∗,P
)

+
(
Q̂∗,P − Q̂π̂,P

)
+
(
Q̂π̂,P −Qπ̂,P

)
(i)
≤
(
Qπ

⋆,P − Q̂π⋆,P
)

+
(
Q̂∗,P − Q̂π̂,P

)
+
(
Q̂π̂,P −Qπ̂,P

)

where we use the fact (i) that Q̂π⋆,P ≤ Q̂∗,P . Then a natural decomposition using triangular
inequality is

∥Q∗,P −Qπ̂,P ∥∞ ≤ ∥Q∗,P − Q̂π∗,P ∥∞︸ ︷︷ ︸
statistical error I

+ ∥Q̂∗,P − Q̂π̂,P ∥∞︸ ︷︷ ︸
optimisation error

+ ∥Q̂π̂,P −Qπ̂,P ∥∞︸ ︷︷ ︸
statistical error II

.

Here the problem is to find the number of data N needed to get an arbitrary small error
on the two statistical error terms which do not depend on the number of steps for arbitrary
policy from the data π̂. On the contrary the optimisation term decrease when the number of step
increase but does not depend on N . Indeed, in model free setting we construct and estimate of
the data called P̂ find a planner in this empirical MDP. In Agarwal et al. (2020), for δ ≥ 0 and
for an appropriately chosen absolute constant c, we have with probability greater than 1− δ :

∥Q∗,P − Q̂π∗,P ∥∞.︸ ︷︷ ︸
statistical error I

≤ γ
√

c

(1− γ)3
log(cSA/δ)

N
+ cγ

(1− γ)3
log(c|SA/δ)

N
.

Chapter 1. Introduction 30

The second statistical error ∥Q̂π̂,P −Qπ̂,P ∥∞ can also be bounded with the same term with
additional term from εopt. Finally, Agarwal et al. (2020) provided for ϵ ≤

√
1

1−γ , that the number
of samples from a generative model requires are

samples from generative model = |S||A|N ≥ c|S||A|
(1− γ)3

log(cSA/δ)
ϵ2

,

then with probability greater than 1− δ,

∥Q∗,P − Q̂π∗,P ∥∞ ≤ ϵ .

So the overall sample complexity needed to get arbitrary small statistical error ϵ is

samples from generative model = Õ
(SA

(1− γ)3ϵ2

)
. (1.26)

Moreover a minimax lower bound with the same complexity exist from Azar et al. (2013b).
However in practice, the sample complexity can be very large as for γ close to 1, 1/(1− γ)3 is
very big. The question is,

Can we find other formulation of RL with smaller sample complexity to converge quicker
from a theoretical point of view?

Ideally, to obtain a solution with smaller sample complexity, the value function would have less
variability while converging to a reasonable solution. In the minimax lower bound, dependency
S A are difficult to improve as the number of samples from generative model is equals to NSA,
which is linear in the number of state and action space. From a theoretical point of view,
Bernstein’s concentration inequality is used to control statistical terms. More formally, the
statistical error, up to constant, logarithmic term and second order term, is controlled using
Bernstein’s inequality (Vershynin 2018) by

√
VP (V)
N where P is a transition kernel and V a value

function. The only factor here that could easily be reduced would be the variance of the value
function using a new formulation.

Surprisingly, we will see that the issue of reducing sample complexity, reducing the variability
of the value function and developing algorithms that are robust to model misspecification are
closely related. Indeed, we will see that the formulation of Robust MDPs will also reduce the
variance of the value function and the sample complexity. This idea will be developed further in
Chapter 3. Before this, we introduce some elements of Deep Reinforcement learning in the next
part.

1.3.2 Deep Reinforcement Learning

In this section, we introduce elements of classical Deep Reinforcement Learning that will be
useful to derive Deep Robust algorithm in the following of the thesis. First, we introduce
Fitted Q-learning and Q-learning, which will be useful to tackle the problem if MDPs but with
continuous state space.

1.3.2.1 Fitted Q-learning and Q-learning

First, we describe the Neural Fitted Q-learning introduced by Riedmiller (2005), then we will
see the difference with classical Deep Q-learning algorithm. First, we consider the following
approximation scenario. Suppose the state space is continuous or too large for a tabular
representation (we still assume the action space is small and finite). To learn an appropriate

31 1.3. Background

Q-function, we must use function approximation. We start by describing a simple setting.
Assume we have a fixed dataset of transitions D = {(st, at, rt, s′

t)}, where for each timestep t,
st ∼ P (· | st, at) and rt = r(st, at). The actions at are chosen by an arbitrary policy, which we
do not consider here.

We can then parameterize a function to represent the Q-value within a hypothesis space,
typically using neural networks. We denote such a parameterized function as Qθ. For simplicity,
we define the reward function over S ×A. This can be viewed as taking the expectation over the
resulting states of a reward function defined on S ×A× S, in which case the evaluation would
be stochastic. From an Approximate Dynamic Programming point of view, Qθ models Qk+1 in
the VI scheme. Then, we maintain a fixed version of Qθ to model Qk, denoted as Qθ̄, where the
weights θ̄ are periodically updated by copying from θ. Subsequently, we iteratively minimize
the following loss using classical gradient descent, demoting ÊD the empirical expectation over
transitions in dataset such as

L(θ) = ÊD

[(
rt + max

a′∈A
Qθ̄
(
s′
t, a

′)−Qθ (st, at)
)2
]
. (1.27)

Finally, minimizing this loss can be seen as a method called Temporal differences. The classic
temporal difference (TD) approach consist in estimating the quantity Qk(s, a) by performing a
regression on targets of the form r(s, a) + γ

∑
a′∈A πk (a′ | s′)Qk−1 (s′, a′). This can be formally

express as calculating Qk+1 = T πk,PQk−1 + ϵk.

Algorithm 2: Neural Fitted-Q
Input , dataset of transitions: D, learning steps: K ∈ N, update period: I ∈
N, learning rate: η ∈ R, batch size: B ∈ N, discount factor: γ
Output θNFQ
Initialize online weights: θ
Initialize target weights: θ′

for k ∈ {0, . . . ,K − 1} do
for i ∈ {0, . . . , I − 1} do

Draw uniformly a batch B =
{(
sj , aj , rj , s

′
j

)}B
j=1

from D
Compute the targets: ∀1 ≤ j ≤ B, yj ← rj + γmaxa′∈AQθ′ (sj , a′)
Compute: L(θ)←∑B

j=1 (Qθ (sj , aj)− yj)2

Update the online weights: θ ← θ − η∇θL(θ)
end for
Update target network: θ′ ← θ

end for
return θNFQ = θ

Deep Q-Networks The Deep Q-Network (DQN) is an implementation of Approximate Value
Iteration (AVI) that utilizes a neural network as the function approximation during the regression
step (learning). Unlike Neural Fitted-Q, where the dataset D is fixed, data collection (acting) in
DQN is a continuous process that occurs concurrently with learning. Specifically, the dataset D,
also known as the replay buffer, is managed as a First-In First-Out (FIFO) queue. The data is
collected by interacting with the environment using an ϵ-greedy policy πθ,ϵ (here ϵ is not the
error as before), defined as:

πθ,ϵ = (1− ϵ)πθ + ϵπU ,

Chapter 1. Introduction 32

where πθ ∈ G(Qθ) and πU is the uniform policy. The DQN algorithm consists of two main
processes: acting and learning. These processes share the weights θ of the online network and
the replay buffer D. This Deep Q-Network (DQN) algorithm introduced by Mnih et al. (2013;

Algorithm 3: Acting process in DQN
Input : replay buffer: D, environment: E
Shared : online weights: θ ∈ RN

while True, do do
a← Sample (πθ,ϵ(. | s))
r(s, a), s′ ← Step(E, a)
Put (s, a, r(s, a), s′) in D
s← s′

end while

2015) serves as the foundation for many of the methods explored in this manuscript. DQN is a
groundbreaking approach in reinforcement learning (RL), particularly recognized for its success
in establishing a functional deep RL framework on the Atari benchmark (Bellemare et al. 2013).
Some algorithm enhancements have been introduced such that :

• Double DQN (DDQN) addresses the issue of target overestimation (Van Hasselt et al.
2016).

• Prioritized Experience Replay prioritizes sampling transitions with higher temporal-difference
(TD) errors (Schaul et al. 2015).

• Architectural Enhancements : the dueling Architecture provides less-biased estimates of
actions not taken by the agent (Wang et al. 2016).

• Distributional Reinforcement Learning aims to learn the entire distribution of returns,
rather than just the expected returns, using either a categorical approach (Bellemare
et al. 2017) or a quantile approach (Dabney et al. 2018a). In Chapter 4 we will use this
improvement to derive a risk averse version of DQN to create Robustness.

• Regularization techniques such as the Munchausen algorithm have been proposed to enhance
the classical DQN algorithm in the munchausen algorithm Vieillard et al. (2020). To improve
robustness, we will also use regularisation but in another manner as we will not regularise
with the policy but with the value function itself in Chapter 4.

1.3.2.2 Actor-Critic Methods

Actor-critic methods differ from those derived from Q-learning. These methods typically involve
two main components: a value network (critic) that estimates the value of the current state and
a policy network (actor) that selects actions based on the current state and. The policy network
is updated using policy gradients method (Williams 1992), with the critic’s value serving as a
baseline to reduce update variance. The value network, similar to Q-learning, is updated using
standard temporal-difference (TD) updates described in 1.3.2.1, which involve bootstrapping.
The main advantage of these methods is that the tackle the problem of continuous actions space
contrary to DQN based methods using policy gradient. Unlike Q-learning methods such as DQN,
which can utilize off-policy data from a replay buffer, standard actor-critic methods are on-policy.
This means they learn exclusively from interaction data generated by the current policy.

33 1.3. Background

There is significant literature on deep reinforcement learning actor critic that employs
regularization techniques. Several algorithms have been developed based on the principle that
constraining policy updates to be smooth can enhance performance. Notable examples include
are SQL (Azar et al. 2011) , TRPO, (Schulman et al. 2015), PPO (Schulman et al. 2017a), SAC
(Haarnoja et al. 2018b) algorithms. Moreover, other algorithm without regularisation but based
on policy gradient such as TD3 (Fujimoto et al. 2018) can achieve state of the art performances
on continuous control. Based on SAC (Haarnoja et al. 2018b) and TD3 (Fujimoto et al. 2018)
algorithm we will derived new algorithm that are robust with continuous action and state space
in Chapter 4, 5, and 6.

1.3.3 Robust Markov Decision Processes

Motivated both in theory and practice in Section 1.3.1.5 and 1.3.2.2, we consider distri-
butionally robust MDPs (RMDPs) in the discounted infinite-horizon setting, denoted by
Mrob = {S,A, γ,Uσ∥.∥(P 0), r}, where S,A, γ, r are the same sets and parameters as in stan-
dard MDPs. The main difference compared to standard MDPs is that instead of assuming a
fixed transition kernel P , it allows the transition kernel to be arbitrarily chosen from a prescribed
uncertainty set Uσ∥.∥(P 0) centered around a nominal kernel P 0 : S × A → ∆(S), where the un-
certainty set is specified using some metric denoted ∥.∥ defined in of radius σ > 0. In particular,
given the nominal transition kernel P 0 and some uncertainty level σ, the uncertainty set—with
arbitrary metric ∥ ∥ : RS× → R+ in sa rectangular case or from RS×A in the s-rectangular case,
is specified as Uσ∥.∥(P 0) := ⊗s,a U sa,σ

∥.∥ (P 0
s,a), illustrated in Fig 1.6 and defined bellow

U sa,σ
∥.∥ (P 0

s,a) :=
{
Ps,a ∈ ∆(S) :

∥∥∥Ps,a − P 0
s,a

∥∥∥ ≤ σ} , (1.28)

Ps,a := P (· | s, a) ∈ R1×S , P 0
s,a := P 0(· | s, a) ∈ R1×S . (1.29)

Figure 1.6: One sa-uncertainty set for transition probability

Chapter 1. Introduction 34

Note that we could also consider any divergence ρ, such as KL or χ2 rather than a metric ∥.∥

KL
(
Ps,a, P

0
s,a

)
:=

∑
s′∈S

P
(
s′ | s, a

)
log

(P (s′ | s, a)
P 0 (s′ | s, a)

)
, (1.30)

χ2
(
Ps,a, P

0
s,a

)
:=

∑
s′∈S

P 0 (s′ | s, a
) (

1− P (s′ | s, a)
P 0 (s′ | s, a)

)2
(1.31)

but in Chapter 2 and 3 we will consider metric such as Lp. In other words, the uncertainty is
imposed in a decoupled manner for each state-action pair, obeying the so-called sa-rectangularity
(Zhou et al. 2021, Wiesemann et al. 2013). More generally, we define s-rectangular MDPs as
Uσ∥.∥(P) = ⊗s U s,σ̃

∥.∥ (Ps), for the general norm ∥.∥. The uncertainty is imposed in a decoupled
manner for each state pair, and a fixed budget given a state for all action is defined. To get a
similar meaning for the radius of the ball between sa-rectangular and s-rectangular assumptions,
we need to rescale the radius depending on the norm like in Yang et al. (2022). The s- uncertainty
set is then defined using the rescaled radius σ̃ as

U s,σ̃
∥.∥ (Ps) :=

{
P ′
s ∈ ∆(S)A :

∥∥P ′
s − Ps

∥∥ ≤ σ̃ = σ∥1A∥
}
, (1.32)

Ps := P (·, · | s) ∈ R1×SA, P 0
s := P 0(·, · | s) ∈ R1×SA , (1.33)

where 1A ∈ RA denotes the unitary vector. For the specific case of respectively L1,Lp and L∞
norm, σ̃ is equal to |σA|, σ|A|1/p and σ. Note that this scaling allows for a fair comparison
between sa- and s-rectangular MDPs. In RMDPs, we are interested in the worst-case performance
of a policy π over all the possible transition kernels in the uncertainty set. This is measured by
the robust value function V π,σ and the robust Q-function Qπ,σ in Mrob, defined respectively as
∀(s, a) ∈ S ×A

V π,σ(s) := inf
P∈U sa,σ

∥.∥ (P 0)
V π,P (s) , Qπ,σ(s, a) := inf

P∈U sa,σ
∥.∥ (P 0)

Qπ,P (s, a) . (1.34)

Similarly for s-rectangularity, the value function is denoted V π,σ̃(s) := inf
P∈U s,̃σ

∥.∥(P 0)
V π,P (s).

Optimal robust policy and robust Bellman operator. As a generalization of properties
of standard MDPs in the sa-rectangular robust case, it is well-known that there exists at least
one deterministic policy that maximizes the robust value function (resp. robust Q-function)
simultaneously for all states (resp. state-action pairs) (Iyengar 2005, Nilim and El Ghaoui 2005)
but not in the s-rectangular case. Therefore, we denote the optimal robust value function
(resp. optimal robust Q-function) as V ⋆,σ (resp. Q⋆,σ), and the optimal robust policy as π⋆, which
satisfy ∀(s, a) ∈ S ×A

V ⋆,σ(s) := V π⋆,σ(s) = max
π

V π,σ(s), Q⋆,σ(s, a) := Qπ
⋆,σ(s, a) = max

π
Qπ,σ(s, a). (1.35a)

A key concept in RMDPs is a generalization of Bellman’s optimality principle, encapsulated in
the following robust Bellman consistency equation (resp. robust Bellman optimality equation):

∀(s, a) ∈ S ×A, Qπ,σ(s, a) = r(s, a) + γ inf
P∈U sa,σ

∥.∥ (P 0
s,a)
PV π,σ, (1.36a)

∀(s, a) ∈ S ×A Q⋆,σ(s, a) = r(s, a) + γ inf
P∈U sa,σ

∥.∥ (P 0
s,a)
PV ⋆,σ , (1.36b)

for the sa-rectangular case and same equation replacing P 0
s,a by P 0

s and σ by σ̃. The robust Bell-
man operator (Iyengar 2005, Nilim and El Ghaoui 2005) is denoted by T π,σ or T ∗,σ(·) : RSA → RSA

or for the optimal robust Bellman operator

35 1.3. Background

T π,σ(Qπ)(s, a) := r(s, a) + γ inf
P∈U sa,σ

∥.∥ (P 0
s,a)
PV π, with V π(s) := Ea′∼π[Qπ(s, a)] , (1.37)

T ∗,σ(Qπ)(s, a) := r(s, a) + γ inf
P∈U sa,σ

∥.∥ (P 0
s,a)
PV, with V (s) := max

π
Qπ(s, a) , (1.38)

for sa-rectangular MDPs. When the radius is not defined, we will also denote in this Thesis the
Robust Bellman Operator as T πU for uncertainly set U .

Distributionally Robust Value Iteration (DRVI) Given that Q⋆,σ is the unique-fixed point
of T σ one can recover the optimal robust value function and Q-function using a procedure termed
distributionally robust value iteration (DRV I). Generalizing the standard value iteration, DRV I
starts from some given initialization and recursively applies the robust Bellman operator until con-
vergence. As has been shown previously, this procedure converges rapidly due to the γ-contraction
property of T ∗,σ with respect to the L∞ norm (Iyengar 2005, Nilim and El Ghaoui 2005).

{
πk+1 ∈ G (Qk)
Qk+1 = T πk+1,σQk

(1.39)

Two questions raised once this framework defined to solve Robust MDps problem :

1. As for classical MPDs, the question of sample complexity using DRVI (and not VI) will be
adressed in Chapter 2 and 3 or how to find

∀s ∈ S : V ⋆,σ(s)− V π̂,σ(s) ≤ ε , (1.40)

V̂ π̂⋆,σ − V̂ π̂,σ ≤ εopt . (1.41)

Here the problem is slightly different as the target we try to learn in the robust value
function and not the classical one.

2. The question in practice of how to approximate the infimum operator in (1.37) (1.38) is
central in RMPDs. This question will be discussed in the next paragraph. Moreover, the
algorithm DRVI will be used in practice in Chapter 4 and 5 and 6.

Related work on Robust MDPs Reinforcement learning has had notable achievements but
has also exhibited significant limitations, particularly when the learned policy is susceptible to
deviations in the deployed environment due to perturbations, model discrepancies, or structural
modifications. To address these challenges, the idea of robustness in RL algorithms has been
studied. Robustness could concern uncertainty or perturbations across different Markov Decision
Processes (MDPs) components, encompassing reward, state, action, and the transition kernel.
Moos et al. (2022) gives a recent overview of the different work in this field.

The distributionally robust MDP (RMDP) framework has been proposed (Iyengar 2005) to
enhance the robustness of RL. In addition to this work, various other research efforts, including,
but not limited to, Zhang et al. (2020; 2021), Han et al. (2022), Qiaoben et al. (2021), explore
robustness regarding state uncertainty. In these scenarios, the agent’s policy is determined on
the basis of perturbed observations generated from the state, introducing restricted noise, or

Chapter 1. Introduction 36

Adversary

Agent

Environment

Robust RL

Figure 1.7: Robust Reinforcement Learning

undergoing adversarial attacks. Finally, robustness considerations extend to uncertainty in the
action domain. Works such as Tessler et al. (2019), Tan et al. (2020) consider the robustness
of actions, acknowledging potential distortions introduced by an adversarial agent.

Given the focus of our work, we provide a more detailed background on progress related to
distributionally robust RL. The idea of distributionally robust optimization has been explored
within the context of supervised learning (Rahimian and Mehrotra 2019, Gao 2020, Duchi and
Namkoong 2018, Blanchet and Murthy 2019) and has also been extended to distributionally
robust dynamic programming and Distributionally Robust Markov Decision Processes (DRMDPs)
such as in (Iyengar 2005, Xu and Mannor 2012, Wolff et al. 2012, Kaufman and Schaefer 2013,
Ho et al. 2018, Smirnova et al. 2019a, Ho et al. 2021, Goyal and Grand-Clement 2022, Derman
and Mannor 2020, Tamar et al. 2014, Badrinath and Kalathil 2021). Despite the considerable
attention received, both empirically and theoretically, most previous theoretical analyses in the
context of RMDPs adopt an asymptotic perspective (Roy et al. 2017) or focus on planning with
exact knowledge of the uncertainty set (Iyengar 2005, Xu and Mannor 2012, Tamar et al. 2014).
Many works have focused on the finite-sample performance of verifiable robust Reinforcement
Learning (RL) algorithms. These investigations encompass various data generation mechanisms
and uncertainty set formulations over the transition kernel.

Various forms of uncertainty sets have been explored, showcasing the versatility of approaches.
Divergence such as Kullback-Leibler (KL) divergence is another prevalent choice, extensively
studied by Yang et al. (2021), Panaganti and Kalathil (2022b), Zhou et al. (2021), Shi and Chi
(2022), Xu et al. (2023), Wang et al. (2023), Blanchet et al. (2023), who investigated the sample
complexity of both model-based and model-free algorithms in simulator or offline settings. Xu
et al. (2023) considered various uncertainty sets, including those associated with the Wasserstein
distance. The introduction of an R-contamination uncertainty set Wang and Zou (2021), has
been proposed to tackle a robust Q-learning algorithm for the online setting, with guarantees
analogous to standard RL. Finally, the finite-horizon scenario has been studied by Xu et al.
(2023), Dong et al. (2022) with finite-sample complexity bounds for (RMDPs) using TV and
χ2 divergence. More broadly, other related topics have been explored, such as the iteration
complexity of policy-based methods (Li et al. 2022, Kumar et al. 2023), and regularization-based
robust RL (Yang et al. 2023). Finally, Badrinath and Kalathil (2021) examined a general
sa-rectangular form of the uncertainty set, proposing a model-free algorithm for the online setting
with linear function approximation to address large state spaces.

37 1.3. Background

1.3.3.1 From robust MDPs to practical algorithm using regularisation

In this section, the question is how to approximate or compute in a friendly way the infimum in
the Robust Bellman operator in (1.37). We will discuss robustness of kernel and not of reward
function that can be tackle by penalising the reward function by a certain penalty such as in
Derman et al. (2021). Moreover, for simplicity we will consider sa-rectangular case.

Uσ∥.∥(P 0) :=
(
P 0 + P

)
,P = ×s∈S,a∈APs,a

where × denotes the Cartesian product. Finally we use as a notation for the infimum in Robust
Bellman Operator in (1.37) κD(v) = inf

{
u⊤v : u ∈ D

}
. The classical way to approximate the

infimum is to compute the dual of the initial problem. First Iyengar (2005) derive practical
1-dimensional form of the dual for TV case and for χ2 divergence. In the case of TV a quantity
appears in the dual is called span semi-norm and is defined bellow.

Definition 1.3.1 (Span seminorm (Puterman 1990)). Let p ≥ 1 a real number and q be such
that it satisfies the Holder’s equality, i.e. 1

p + 1
q = 1. Let q-variance or span-seminorm function

spq(.) : S → R and q-mean function ωq : S → R be defined as

spq(v) := min
ω∈R
∥v − ω1∥q , ωq(v) := arg min

ω∈R
∥v − ω1∥q .

This is a measure of dispersion of the value function. Moreover, we define the upper truncated
function of V by alpha as

[V]α :=
{
α, if V (s) > α

V (s), otherwise.

• For TV uncertainty set with sa-rectangularity, we can represent Ps,a as Iyengar (2005)

Ps,a = {Ps,a : S → R |
∑
s′

Ps,a(s′) = 0, P 0
s,a + Ps,a ≥ 0, , ∥Ps,a∥1 ≤ σs,a} (1.42)

and we obtain for α ∈ R+ (Iyengar 2005):

κPs,a(V) = max
α≥0
{P 0

s,a[V]α − σs,asp([V]α)∞} ,

which is a 1-dimensional optimisation problem.

• Using χ2 divergence, for α ∈ R+, the associated Robust set defined with which can be
rewritten as

Ps,a = {Ps,a : S → R |
∑
s′

Ps,a(s′) = 0, P 0
s,a + Ps,a ≥ 0, χ2(Ps,a + P 0

s,a|P 0
s,a) ≤ σs,a} (1.43)

and lead to (Iyengar 2005) the dual form

κPs,a(V) = max
α≥0
{P 0

s,a[V]α −
√
σs,aVP 0

s,a
([V]α)}

denoting classical variance as V.

Chapter 1. Introduction 38

• For KL divergence, the dual can be rewritten also as for an uncertainly set

Ps,a = {Ps,a : S → R |
∑
s′

Ps,a(s′) = 0, P 0
s,a + Ps,a ≥ 0, ,KL(Ps,a + P 0

s,a|P 0
s,a) ≤ σs,a}

(1.44)

like TV and χ2, for T ≥ 0, the dual for KL (Iyengar 2005) can be reduced as

κPs,a(V) = max
T≥0
{−σs,aT − T log EP 0

s,a
[exp(−V/T)]}.

Again there is a 1-dimentional optimisation problem in the dual which comes from that
probabilities of the adversarial kernel is positive.

• Using Lp, for α ∈ RS , the dual form is slightly more difficult to represent as using this
uncertainty set

Ps,a = {Ps,a : S → R |
∑
s′

Ps,a(s′) = 0, P 0
s,a + Ps,a ≥ 0, , ∥Ps,a∥p ≤ σs,a}

the infimum can be rewritten as according to Lemma in Appendix of Chapter 2.5 as

κPs,a(V) = max
µλ,ω
P0
s,a

∈µλ,ω
P0
s,a

{P 0
s,a(V ∗ − µλ,ωP 0

s,a
)− σs,aspq(V − µ

λ,ω
P0,s,a

)}

= max
αλ,ω
P0
s,a

∈Aλ,ω
P0
s,a

P 0
s,a[V]

αλ,ω
P0
s,a

− σs,aspq([V]
αλ,ω
P0
s,a

).

where

Aλ,ω
P = {αλ,ωP : αλ,ωP (s) = ω + λ|∇∥P∥p|(s) : λ > 0, w > 0, P ∈ ∆(S), αλ,ωP ∈

[
0, 1

1− γ

]S
}

(1.45)

Mλ,ω
P = {µλ,ωP = V − αλ,ωP , λ, ω ∈ R+, P ∈ ∆(S), µλ,ωP ∈

[
0, 1

1− γ

]S
} (1.46)

(1.47)

Here α is not anymore a scalar but a vector only parameterized by only two parameters ω and λ.
Moreover, the truncation for α ∈ RS is defined as

[V]α(s) :=
{
α, if V (s) > α(s),
V (s), otherwise.

(1.48)

The first remark is that there is no simple dual for KL, LP or χ2 divergence or for our
knowledge any divergence with close form dual. When the state space is finite, it is possible
to approximate easily the maximum such as in Iyengar (2005) to obtain DRVI algorithm or
Q-learning based algorithm which is robust using KL divergence ball. However when the state-
action space is continuous there is no simple solution to compute the dual. Thus, the question
arises:

Could we derive simple/close form of the dual to compute Robust Bellman Operator easily ?
Two ideas exist to get simple expression and they are all based on relaxation.

1) Use a relaxation of the problem without non negative probability constraint

39 1.3. Background

Relaxation of the problem with probability of the adversary that can be possibly negative have
been proposed in Kumar et al. (2022). In there algorithm, the uncertainty set is defined removing
the constraint P 0

s,a + Ps,a ≥ 0 such that

Ps,a = {Ps,a : S → R |
∑
s′

Ps,a(s′) = 0, ∥Ps,a∥p ≤ σs,a}

using this formulation the dual is simple and only depend on the the span semi norm.

κPs,a(V) = P 0
s,aV − σs,aspq(V) . (1.49)

This formulation allows to derive practical algorithm using DRVI wiht Lp formulation (Kumar
et al. 2022) or policy gradient Kumar et al. (2023). Using this relaxation, robustness is equivalent
to regularisation using value function. The first work to establish the connection between
regularization and Robustness in RL has been Derman et al. (2021) and in their work they do
no assume any conditions on the adversary, which leads to a slightly different regularisation with
uncertainty set of the form

Ps,a = {Ps,a : S → R | ∥Ps,a∥p ≤ σs,a}

which lead to

κPs,a(V) = P 0
s,aV − σs,a ∥V ∥q .

In fact, it is possible to do the same for example with the χ2 divergence constraint and remove
the positivity of the constraint to obtain simple risk averse mean minus standard deviation
optimisation:

Ps,a = {Ps,a : S → R |
∑
s′

Ps,a(s′) = 0, χ2(Ps,a + P 0
s,a|P 0

s,a) ≤ σs,a} ,

we obtain
κPs,a(V) = P 0

s,aV −
√
σs,aVP 0

s,a
(V) .

With this formulation, we obtain simple mean minus standard deviation for the the infimum.
Once the supremum cancelled in the dual of Robust Bellman Operator using a relaxation, the
question of the estimation of the penalisation here is different. We will also see another way of
getting close form relaxing the constrain.

2) Use alternative definition such as Soft Robust MDPs
Another way of avoiding supremum in the dual would be to use Soft Robust MDPs. In this

setting introduced by Zhang et al. (2023), the distance constraint to the nominal is relaxed and
is added as an objective. The uncertainty set become simply the simplex

Ps,a = {Ps,a : S → R |
∑
s′

Ps,a(s′) = 0, Ps,a + P 0
s,a ≥ 0}

and the infimum is regularised with KL for example :

inf
Ps,a∈Ps,a

(Ps,aV − γσ−1
s,a KL(Ps,a|P 0

s,a)) = −γσ−1
s,a log Es′∼P 0

s,a
e−βV π(s′) ,

Chapter 1. Introduction 40

which leads to Q-function of the form : Qπ(s, a) = r(s, a)− γβ−1 log Es′∼Ps,ae
−βV (s′) . This idea

is nice to obtain close form but the scheme does not scale yes to large or continuous action space
(Zhang et al. 2023) while it is a promising avenue for Deep RL algorithm. Now from a practical
point of the view to derive algorithm the question is :

How to estimate the regularisation in Deep Robust RL and does what regularisation make
sense from a practical point of view?

• For Lp constraints, even using relaxation of equation (1.49), the span semi norm which is a
quantity depending on all state s expect for L1 were the semi dual span is simply the range
(max V −minV)/2 need to be computed. As we consider in Deep RL in a model free, we
cannot estimate this quantity easily. As the penalty is a span semi norm depending on
all state it is very difficult to estimate it, even if a possible solution to approximate the
penalty using samples from the replay Buffer have been proposed in (Derman, Men, Geist,
and Mannor Derman et al.).

• The KL and χ2 formulations are interesting because the penalty involve samples from
the nominal kernel P 0

s,a and not all state like in Lp. Using relaxation in χ2 would be an
alternative if we could get a good estimate of the variance of the the Q-function in the next
state or an approximation using policy iteration such as in Zhang et al. (2021).

• While KL is interesting, the dual loss involves exponential term which are difficult to
implement from stability point of view in Deep RL.

• A first interesting point idea is that SAC algorithm is shown to be robust to some
perturbation. Indeed Eysenbach and Levine (2021) show that SAC Haarnoja et al. (2018b)
is robust both in practice and in theory to some perturbation of the robust kernel.

Finally in practice, one drawback of regularisation is the the coefficient proportional to the
penalty or radius of the uncertainty σ set need to be carefully chosen which is one additional
hyperparameter in practice. So direct penalisation to improve robustness has two main drawbacks,
estimation of the penalty and find the good uncertainty radius σ to obtain robust policy while
not be too pessimistic and decrease drastically performances. The Figure 1.8 illustrates this idea
where we try in Chapter 4 to estimate a penalty with coefficient α which is proportional to σ
the radius of the ball. As showed in Figure 1.8, when α is too big, our algorithm cannot learn
correctly as the penalisation is too strong.

We will give two alternative with easy implementation Deep Robust RL algorithm to answer
the question on tow to tackle estimation problem in Robust/Regularised RL and obtain relevant
penalisation in practice.

1. Retro-engineering and design relevant penalisation in practice, and then look at the robust
set.
In Chapter 5, this idea will be developed using Expectile statistics with lower expectile
boostraping. Using this formulation allow to create implicit Robustness in Reinforcement
Learning. Moreover, the hyperparmeter tuning is much easier as expectile are more
interpretable than magnitude of the regularisation. We will propose a version with automatic
fine tuning in Chapter 5.

2. We will try to derive practical penalisation that easy to estimate using Distribution of
returns. One of the problem in Robust Bellman Operator is that the expectation is taken
over next state s′. Using Robust Bellman Operator will lead to penalisation depending

41 1.3. Background

1 2 3 4 5
Number of steps 1e6

0

1000

2000

3000

4000

5000

6000

M
ea

n
Re

wa
rd

Mean Reward of 20 trajectories ± standard deviation
SAC

=0
=2
=5

Figure 1.8: Walker-v3

on the next state, it could be expectation, variance, norm etc. However these quantities
are quite difficult to estimate in practice in a model free setting as we only have access to
sample from the buffer. Recall that the Robust Bellman Operator is defined as :

T π,PQ(s, a) = r(s, a) + γ
∑
s′∈S

P
(
s′ | s, a

)
Ea′∼π(·|s′)

[
Q
(
s′, a′)] (1.50)

where the Q-function is simply the average return of the distribution of return given s, a.
A rollout or trajectory using π from state s using initial action a is defined as the the
random sequence τs0,a0 = ((s0, a0, r0) , (s1, a1, r1) , . . .) with s0 = s, a0 = a, at ∼ π (· | st) ,
rt the reward function and the st+1 ∼ P (· | st, at) . The Q-function ca be rewritten as :

QP,π(s, a) := E[ZP,π(s, a)] (1.51)
= Eτs,a∼P [R(τ) | at ∼ π (· | st) , rt, st+1 ∼ P (·, · | st, at) , s0 = s, a0 = a] .

(1.52)

Then, taking the infimum over trajectory starting from s, a called τs,a, the classical Bellman
Operator can be rewritten as

T π,PZ(s, a) = r(s, a) + γ
∑
s′∈S

P
(
s′ | s, a

)
Ea′∼π(·|s′)

[
Eτs′,a′ [Z

(
s′, a′)]] . (1.53)

An idea would be to compute a minimum over the next trajectory against a reference
trajectory denoted τ0 that follow a given nominal kernel P 0 and π.

T π,PZ(s, a) = r(s, a) + γ min
τs′,a′ :ρ(P(τs′,a′),P(τ0,s′,a′))

∑
s′∈S

P
(
s′ | s, a

)
Ea′∼π(·|s′)

[
Eτs′,a′ [Z

(
s′, a′)]]

(1.54)

= r(s, a) + γ
∑
s′∈S

P
(
s′ | s, a

)
Ea′∼π(·|s′)

[
min

τs′,a′ :ρ(P(τs′,a′),P(τ0,s′,a′))
Eτs′,a′ [Z

(
s′, a′)]] , (1.55)

where ρ a divergence between two trajectory probability and P(τ) the probability distri-
bution of the trajectory. Finding a relevant formulation for the expectation would give a

Chapter 1. Introduction 42

Adversary
AgentEnvironment

Figure 1.9: Robust RL and Zero-sum Markov Game

risk averse formulation involving the distribution of returns. For example in Chapter 4,
we derive mean standard deviation error based on χ2 divergence constraint. In practice,
Distributional RL introduced by Bellemare et al. (2017) will allow use to get an approxi-
mation of the distribution of returns and gives simple estimate of the regularisation based
on the distribution.

Surprisingly, most of the Robust RL algorithms are not based in these risk averse formulation
that comes from Theory of Robust MDPs. One of the reason for this is that here we assume
having access of sample uniquely from the nominal P 0 whereas other algorithm in Deep Robust
RL, use sample from the entire uncertainty set as they modify parameters of the generative
model such as in Mujoco. A interesting question is :

Can we derive algorithm using risk averse based method and combine it with sample from the
entire ball and not only in the nominal?

This questions will be address in Chapter 5. In the following we will do a related work on
Deep Robust Rl methods that play with sample not only from the nominal kernel P 0 but from
the entire uncertainty set.

1.3.4 Deep Robust RL as a zero-sum game

Deep Robust RL as two-player games is a common approach for solving robust RL problem,
representing the problem as a zero-sum two-player Markov games (Littman 1994, Tessler et al.
2019) where S̄, Ā are respectively the state and action set of the adversarial player. In a zero-sum
Markov game, the adversary tries to minimize the reward or maximize −r. Writing π̄ : S̄ → Ā :=
∆(S) the policy of this adversary, the robust MDP problem turns to maxπ minπ̄ V π,π̄, where
V π,π̄(s) is the expected sum of discounted rewards obtained when playing π (agent actions)
against π̄ (transition models) at each time step from s. In the specific case of robust RL as a two
player-game, S̄ = S×A. This enables introducing the robust value iteration sequence of functions

Vn+1(s) := T ∗∗Vn(s) := max
π(s)∈∆A

min
π̄(s,a)∈∆(S)

(T π,π̄Vn)(s) (1.56)

where T π,π̄ := Ea∼π(s)[r(s, a) + γEs′∼π̄(s,a)Vn(s′)] is a zero-sum Markov game operator. These
operators are also γ−contractions and converge to their respective fixed point V π,π̄ and V ∗∗

(Tessler et al. 2019). This two-player game formulation will be used in TC-MDPs algorithm and
in the evaluation of the RRLS bechmark in Section 7 and 8.

A first family of methods define π̄(st) = P 0 +∆(st), where P 0 denotes the reference (nominal)
transition function. Among this family, Robust Adversarial Reinforcement Learning (RARL)
(Pinto et al. 2017) applies external forces at each time step t to disturb the reference dynamics. For
instance, the agent controls a planar monopod robot, while the adversary applies a 2D force on the

43 1.3. Background

foot. In noisy action robust MDPs (NR-MDP) (Tessler et al. 2019) the adversary shares the same
action space as the agent and disturbs the agent’s action π(s). Such gradient-based approaches
incur the risk of finding stationary points for π and π̄ which do not correspond to saddle points of
the robust MDP problem. To prevent this, Mixed-NE (Kamalaruban et al. 2020) defines mixed
strategies and uses stochastic gradient Langevin dynamics. Similarly, Robustness via Adversary
Populations (RAP) (Vinitsky et al. 2020) introduces a population of adversaries, compelling
the agent to exhibit robustness against a diverse range of potential perturbations rather than
a single one, which also helps prevent finding stationary points that are not saddle points.

Aside from this first family, State Adversarial MDPs (Zhang et al. 2020; 2021, Stanton
et al. 2021) involve adversarial attacks on state observations, which implicitly define a partially
observable MDP. This case aims not to address robustness to the worst-case transition function
but rather against noisy, adversarial observations.

A third family of methods considers the general case of π̄(st, at) = Pt or π̄(st) = Pt, where
Pt ∈ P. Minimax Multi-Agent Deep Deterministic Policy Gradient (M3DDPG) (Li et al.
2019b) is designed to enhance robustness in multi-agent reinforcement learning settings but boils
down to standard robust RL in the two-agents case. Max-min TD3 (M2TD3) (Tanabe et al.
2022a) considers a policy π, defines a value function Q(s, a, P) which approximates Qπ,P (s, a) =
Es′∼P [r(s, a, s′) +γV π,P (s′)], updates an adversary π̄ so as to minimize Q(s, π(s), π̄(s)) by taking
a gradient step with respect to π̄’s parameters, and updates the policy π using a TD3 gradient
update in the direction maximizing Q(s, π(s), π̄(s)). As such, M2TD3 remains a robust value
iteration method that solves the dynamic problem by alternating updates on π and π̄, but since
it approximates Qπ,P , it is also closely related to the method we introduce in the next section.

Domain randomization. Domain randomization (DR) (Tobin et al. 2017) learns a value
function V (s) = maxπ EP∼U(P)V

π,P (s) which maximizes the expected return on average across
a fixed distribution on P. As such, DR approaches do not optimize the worst-case performance.
Nonetheless, DR has been used convincingly in applications (Mehta et al. 2020a, OpenAI et al.
2019). Similar approaches also aim to refine a base DR policy for application to a sequence of
real-world cases (Lin et al. 2020, Dennis et al. 2020, Yu et al. 2018). For a more complete survey
of recent works in robust RL, we refer the reader to the work of Moos et al. (2022).

We will use the idea of using sample from the entire uncertainty set. One recurrent problem
with min max adversary formulation is that the adversary may lead to very bad policy. Moreover,
rectangularity assumptions defined in (1.28) are not realistic in practice. So the issue is :

Can we relax classical assumptions of rectangularity to obtain more realistic transition and
weaker adversary policy ?

We address this question in in the Chapter 6 where the problem of rectangularity used in
theory may be not suitable in practice sometimes. To set ideas, let us consider the robust MDP
of a pendulum, described by its mass and rod length. Varying this mass and rod length spans the
uncertainty set of transition models. The rectangularity assumption induces that π̄(st, at) can
pick a measure in ∆(S) corresponding to a mass and a length that are completely independent
from the ones picked in the previous time step. While this might be a good representation in
some cases, in general it yields policies that are very conservative as they optimize for adversarial
configurations which might not occur in practice. We first step away from the rectangularity
assumption and define a parametric robust MDP as an RMDP whose transition kernels are
spanned by varying a parameter vector ψ (typically the mass and rod length in the previous
example). Choosing such a vector couples together the probability measures on successor states
from two distinct (s, a) and (s′, a′) pairs. The main current robust deep RL algorithms actually
optimize policies for such parametric robust MDPs but still allow the parameter value at each
time step to be picked independently of the previous time step.

Chapter 1. Introduction 44

Figure 1.10: TC-RMDP training involves a temporally-constrained adversary aiming to maximize the
effect of temporally-coupled perturbations. Conversely, the agent aims to optimize its performance against
this time-constrained adversary. In orange, the oracle observation, and in blue the stacked observation.

Parametric MDPs. A parametric RMDP is given by the tuple (S,A,Ψ, Pψ, r) where the
transition kernel Pψ(s, a) ∈ ∆(S) is parameterized by ψ, and Ψ is the set of values ψ can take,
equipped with an appropriate metric. This yields the robust value iteration update :

Vn+1(s) = max
π(s)∈∆A

min
ψ∈Ψ

(T πψVn)(s) := max
π(s)∈∆(A)

min
ψ∈Ψ

Ea∼π(s)[r(s, a) + γEs′∼Pψ(s,a)Vn(s′)].

A parametric RMDP remains a Markov game and the Bellman operator remains a contraction
mapping as long as Pψ can reach only elements in the simplex of ∆(S), where the adversary’s
action set is the set of parameters instead of a (possibly sa-rectangular) set of transition kernels.
The idea to tackle this problem is to defined Time-constrained RMDPs (TC-RMDPs).
Time-constrained RMDPs (TC-RMDPs). We will in Chapter 6 introduce TC-RMDPs
as the family of parametric RMDPs whose parameter’s evolution is constrained to be Lipschitz
with respect to time. More formally a TC-RMDP is given by the tuple (S,A,Ψ, Pψ, r, L), where
∥ψt+1 − ψt∥ ≤ L, that is the parameter change is bounded through time. In the previous
pendulum example, this might represent the wear of the rod which might lose mass or stretch
length. Similarly, and for a larger scale illustration, TC-RMDPs enable representing the possible
evolutions of traffic conditions in a path planning problem through a busy town. Starting from
an initial parameter value ψ−1, the pessimistic value function of a policy π is non-stationary, as
ψ0 is constrained to lay at most L-far away from ψ−1, ψ1 from ψ0, and so on.

Part I

Theory of Robust Markov Decision
Processes

2

Ch
ap

te
r

Towards Minimax Sample Complexity of
Robust RL

Contents
2.1 Introduction . 48

2.2 Related Work . 49

2.3 Preliminaries . 50

2.3.1 Markov Decision Process . 50

2.3.2 Robust Markov Decision Process . 51

2.3.3 Generative Model Framework . 53

2.4 Sample Complexity with Lp-balls . 54

2.4.1 Discussion . 55

2.4.2 Sketch of Proof . 55

2.5 Toward minimax optimal sample complexity 56

2.5.1 Discussion . 57

2.5.2 Sketch of proof . 57

2.6 Conclusion . 58

En un mot ma mémoire n’est pas mauvause, mais elle serait insuffisante
pour faire de moi un bon joueur d’echecs. Pourquoi donc ne me fait-elle pas
défaut dans un raisonnement mathématique difficile où la plupart des jouerurs
d’echecs se perdraient? C’est évidemment parce qu’elle est guidée par la marche
générale du raisonmment. Une démonstration mathématiques n’est pas une
simple juxtaposition de syllogismes, ce sont des syllogismes placés dans un
certian ordre, et l’ordre dans lequel ces éléments sont placés est beaucoup plus
important que le sont les éléments eux-mêmes. Si j’ai le sentiment, l’intuition
pour ainsi dire de cet ordre, de façon à apercevoir d’un coup d’oeil l’ensemble
du raisonnement, je ne dois plus craindre d’oublier l’un des éléments , chacun
d’eux viendra se placer de lui-même, dans le cadre qui lui est préparé, et sans
que j’aie à faire auncun effort de mémoire

Henri Poincaré, Science et Methode (1908)

Chapter 2. Towards Minimax Sample Complexity of Robust RL 48

2.1 Introduction

Reinforcement learning (RL) (Sutton and Barto 2018), often modelled as learning and decision-
making in a Markov decision process (MDP), has attracted increasing interest in recent years

due to its remarkable success in practice. A major goal of RL is to find a strategy or policy, based
on a collection of data samples, that can predict the expected cumulative rewards in an MDP,
without direct access to a detailed description of the underlying model. However, Mannor et al.
(2004) showed that the policy and the value function could sometimes be sensitive to estimation
errors of the reward and transition probabilities, meaning that a very small perturbation of the
reward and transition probabilities could lead to a significant change in the value function.

Robust MDPs (Iyengar 2005, Nilim and El Ghaoui 2005) (RMDPs) have been proposed to
handle these problems by letting the transition probability vary in an uncertainty (or ambiguity)
set. In this way, the solution of robust MDPs is less sensitive to model estimation errors with
a properly chosen uncertainty set. An RMDP problem is usually formulated as a max-min
problem, where the objective is to find the policy that maximizes the value function for the worst
possible model that lies within an uncertainty set around a nominal model. Initially, RMPDs
(Iyengar 2005, Nilim and El Ghaoui 2005) were developed because the solution of MDPs can be
very sensitive to the model parameters (Zhao et al. 2019, Packer et al. 2018). However, as the
solution of robust MDPs is NP-hard for general uncertainty sets Nilim and El Ghaoui (2005), the
uncertainty set is usually assumed to be rectangular (meaning that it can be decomposed as a
product of uncertainty sets for each state or state-action pair), which allows tractability Iyengar
(2005), Ho et al. (2021). These two kinds of sets are called respectively s- and sa-rectangular sets.
A fundamental difference between them is that the greedy and optimal policy in sa-rectangular
robust MDPs is deterministic, as in non-robust MDPs, but can be stochastic in the s-rectangular
case Wiesemann et al. (2013). Compared to sa-rectangular robust MDPs, s-rectangular robust
MDPs are less restrictive but much more difficult to handle. Under this rectangularity assumption,
many structural properties of MDPs remain intact Iyengar (2005) and methods such as robust
value iteration, robust modified policy iteration, or partial robust policy iteration Ho et al. (2021)
can be used to solve them. It is also known that the uncertainty in the reward can be easily
handled, while handling uncertainty in the transition kernel is much more difficult Kumar et al.
(2022), Derman et al. (2021). Finally, Deep Robust RL algorithms Pinto et al. (2017), Clavier
et al. (2022), Tanabe et al. (2022b) have been proposed to tackle the problem of Robust MDPS
with continuous state-action space.

In this work, we consider robust MDPs, with both sa- and s-rectangular uncertainty sets,
consisting of Lp-balls centered around the nominal model P0. We assume access to a generative
model, which can sample a next state from any state-action pair from the nominal model. The
question we address is to know how many samples are required to compute an ϵ-optimal policy.
This classic abstraction, which allows studying the sample complexity of planning over a long
horizon, is widely studied in the non-robust setting Singh and Yee (1994), Sidford et al. (2018),
Azar et al. (2013a), Agarwal et al. (2020), Li et al. (2020), Kozuno et al. (2022), but much less
in the robust setting (Yang et al. 2021, Panaganti and Kalathil 2022a, Shi and Chi 2022, Xu
et al. 2023, Shi et al. 2023). We consider more specifically model-based robust RL. We call
the generative model the same number of times for each state-action pair, to build a maximum
likelihood estimate of the nominal model, and use any planning algorithm for robust MDPs (with
high accuracy guarantee on the solution) on this empirical model. This setting will be discussed
further later, but we insist right away that it is especially meaningful in the robust setting, as it
is a good abstraction of sim2real. The research question we address is:

How many samples are required for guaranteeing an ϵ-optimal policy with high probability?

49 2.2. Related Work

Our first contribution is to prove that for both s and sa-rectangular sets based on Lp-balls,
the sample complexity of the proposed approach is Õ(H4SA

ϵ2), with H = (1 − γ)−1 being the
horizon term. Previous works (Yang et al. 2021, Panaganti and Kalathil 2022a, Shi and Chi 2022,
Xu et al. 2023) study different sets, based on the Kullback-Leibler (KL) divergence, Chi-square
divergence, and total variation (TV). We have the TV in common (L1-ball up to a normalizing
factor), and, in this case, we improve these existing results by S for the sa-rectangular case,
and by SA for the s-rectangular case, which is significant for large state-action spaces. On the
technical side, our results build heavily upon the dual view of robust Bellman operators (Derman
et al. 2021, Kumar et al. 2022). However, we deviate from this line of work by enforcing the
uncertainty set to belong to the simplex. This allows ensuring that the robust operators are
overly conservative while ensuring they are γ-contractions, which is important for the theoretical
analysis. On the negative side, the algorithms they introduce are no longer applicable, which
calls for new algorithmic design.

Our second contribution is to show that, if the uncertainty set is small enough, then we
have a sample complexity of Õ(H3SA

ϵ2). This is a further improvement by H of the previous
bound, and it matches the known lower bound for the non-robust case (Azar et al. 2013a). On the
technical side, it again builds upon the dual view of robust Bellman operators with the deviation
mentioned above.(Derman et al. 2021, Kumar et al. 2022). In addition to that, it adapts two
proof techniques of the non-robust case: The total variance technique of Azar et al. (2013a) to
reduce the dependency to the horizon, and the absorbing MDP construction of Agarwal et al.
(2020) to allow for a wider range of valid ϵ.As mentioned earlier,(Derman et al. 2021, Kumar
et al. 2022) algorithms are not applicable to the more realistic uncertainty sets we consider.

Our third contribution is an algorithm DRVI LP (see Alg. 11, for Distributionally Robust
Value Iteration for LP in sarectangular case that solves exactly RMDPs in the case of valid
robust transition that belongs to the simplex contrary to Kumar et al. (2022).

2.2 Related Work

The question of sample complexity when having access to a generative model has been widely
studied in the non-robust setting Singh and Yee (1994), Sidford et al. (2018), Azar et al. (2013a),
Agarwal et al. (2020), Li et al. (2020), Kozuno et al. (2022). Notably, Azar et al. (2013a) provide
a lower-bound of this sample complexity, Ω̃(SAH3

ϵ2), and show that (tabular) model-based RL
reaches this lower-bound, making it minimax optimal (up to polylog factors). This bound relies
on the so-called total variance technique, that we adapt to the robust setting. However, their
result is only true for small enough ϵ, in the range (0,

√
H/S). This was later improved to

(0,
√
H) by Agarwal et al. (2020), thanks to a novel absorbing MDP construction, that we also

adapt to the robust setting.
Closer to our contributions are the works that study the sample complexity in the robust

setting Yang et al. (2021), Panaganti and Kalathil (2022a), Xu et al. (2023), Shi and Chi (2022).
The study of sample complexity of specific algorithms (respectively either empirical robust value
or Robust Phased Value Learning) is studied by Panaganti and Kalathil (2022a), Xu et al. (2023),
while our results apply to any oracle planning (applied to the empirical model), as long as it
provides a solution with enough accuracy. We consider both s- and sa-rectangular uncertainty
sets, as Yang et al. (2021), while Panaganti and Kalathil (2022a), Xu et al. (2023), Shi and Chi
(2022) only consider the simpler sa-rectangular sets. They all study either TV, KL or Chi-square
balls, while we study Lp-balls. Shi and Chi (2022) improved the KL bound compared to Yang
et al. (2021), Panaganti and Kalathil (2022a) in the sa rectangular case. The framework of Xu
et al. (2023) is slightly different as they consider finite horizon which adds a factor H in all
bounds. All previous results are not minimax optimal in terms of the horizon factor.

Chapter 2. Towards Minimax Sample Complexity of Robust RL 50

Table 2.1: Sample Complexity of TV for s- or sa rectangular with σ (see Def 2.3.2) the radius of
uncertainty set (see also Tab. 9.1 in the appendix for a complete table with different norms)

Panaganti and
Kalathil (2022a)

Yang et al. (2021) Our σ ≥ 0 Our 1/(2Hγ) >
σ > 0

Shi et al. (2023)

sa-
rect.

Õ
(

S2AH4

ϵ2

)
Õ
(

S2AH4(2+σ)2

ϵ2σ2

)
Õ
(

SAH4

ϵ2

)
Õ
(

SAH3

ϵ2

)
Õ
(

SAH2

ϵ2 min(1/H,σ)

)
s-
rect.

× Õ
(

S2A2H4(2+σ̃)2

ϵ2σ2

)
Õ
(

SAH4

ϵ2

)
Õ
(

SAH3

ϵ2

)
×

We rely more specifically on a simple optimization dual expression of the minimization
problem over models. As such, we do not cover the KL and Chi-square cases, which do not
have such a simple form even if there can also be written as simple scalar optimization problem.
However, we have in common with Yang et al. (2021), Panaganti and Kalathil (2022a) the total
variation case, which corresponds to a (scaled) L1-ball. For this case, we can compare our sample
complexities. Without assumption on the size of the uncertainty set, we improve the existing
sample complexities by S and SA respectively (for sa- or s-rectangularity). Also, our bounds
have no dependency on the size of the uncertainty set. Notice that as we consider a generic
oracle planning algorithm, our bounds apply to the algorithms they consider in Panaganti and
Kalathil (2022a), Xu et al. (2023). If we further assume that the uncertainty set is small enough,
then we improve the bound by an additional H factor, reaching the minimax sample complexity
of the non-robust case. Table 2.1 summarizes the difference in sample complexity, and we will
discuss them again after stating our theorems.

Finally, the archival version of this contribution predates the concurrent work of Shi et al.
(2023) that studies the sample complexity of RMDPs for TV and χ2 divergence. In the very
specific case of sa- rectangular for TV which in this case coincides with L1 norm, Shi et al.
(2023) retrieves our upper bound which is minimax optimal in the regime where the radius of the
uncertainty set is small and improves our result in the regime where the radius of the uncertainty
set is bigger than 1− γ. However, our results hold more generally for the s-rectangular case are
still state-of-the-art for s-rectangular case with p ≥ 1 and for sa−rectangular with p > 1. Notice
also that the proof techniques are very different, and it is an interesting research direction to
know if their bound for the regime where the radius of the uncertainty set is bigger than 1− γ or
their lower-bound would extend to the more general case studied here.

2.3 Preliminaries

For finite sets S and A, we write respectively S and A their cardinality. We write ∆(A) :=
{p : A → R | p(a) ≥ 0,∑a∈A p(a) = 1} the simplex over A. For v ∈ RS the classic Lq norm is
∥v∥qq = ∑

s v(s)q. The unitary vector of dimension S is denoted 1S . Finally, we denote Õ the O
notation up to logarithm factor.

2.3.1 Markov Decision Process

A Markov Decision Process (MDP) is defined by M = (S,A, P, r, γ, ρ) where S and A are the
finite state and action spaces, P : S × A → ∆(S) is the transition kernel, r : S × A → [0, 1] is
the reward function, ρ ∈ ∆S is the initial distribution over states and γ ∈ [0, 1) is the discount
factor. A stationary policy π : S → ∆(A) maps states to probability distributions over actions.
We write Ps,a the vector P (·|s, a). We also define P π to be the transition matrix on state-action
pairs induced by a policy π: P π(s,a),(s′,a′) = P (s′ | s, a)π(a′ | s′). Slightly abusing notations,

51 2.3. Preliminaries

for V ∈ RS , we define the vector VarP (V) ∈ RS×A as VarP (V)(s, a) := VarP (·|s,a)(V), so that
VarP (V) = P (V)2 − (PV)2 (with the square understood component-wise). Usually, the goal is
to estimate the value function defined as:

V P,r,π(s) := E

[∞∑
n=0

γnr (sn, an) | s0 = s, π, P

]
.

The value function V P,R,π for policy π, is the fixed point of the Bellmen operator T P,R,π, defined
as

T P,r,πV (s) =
∑
a

π(a|s)[r(s, a) + γ
∑
s′

P
(
s′|s, a

)
V
(
s′)].

We also define the optimal Bellman operator: T P,r,∗V (s) = maxπs∈∆(A)
(
T P,r,πsV

)
(s). Both

optimal and classical Bellman operators are γ-contractions (Sutton and Barto 2018). This is
why sequences {V π

n | n ≥ 0}, and {V ∗
n | n ≥ 0}, defined as

V π
n+1 := T P,r,πV π

n and V ∗
n+1 := T P,r,∗V ∗

n ,

converge linearly to V P,r,π and V P,r,∗, respectively the value function following π and the optimal
value function. Finally, we can define the Q-function,

QP,r,π(s, a) := E

[∞∑
n=0

γnr (sn, an) | s0 = s, a0 = a, π, P

]
.

The value function and Q-function are linked with the relation V P,r,π(s) = ⟨(πs, QP,R,π(s)⟩A.
With these notations, we can define Q-functions for transition probability transition P following
policy π such as

QP,r,π = r + γPV P,r,π = r + γP πQP,r,π = (I − γP π)−1 r.

2.3.2 Robust Markov Decision Process

Once classical MDPs defined, we can define robust (optimal) Bellman operators T πU and T ∗
U

T πU V (s) := min
r,P∈U

(
T P,r,πV

)
(s) ,

(T ∗
U V) (s) := max

πs∈∆A
min
r,P∈U

(
T P,r,πsV

)
(s) ,

where P and r belong to the uncertainty set U . The optimal robust Bellman operator T ∗
U and

robust Bellman operator T πU are γ-contraction maps for any policy π (Iyengar 2005, Thm. 3.2) if
the adversarial kernel P ∈ ∆(S) to obtain a valid transition kernel :

∥T ∗
U v − T ∗

U u∥∞ ≤ γ∥u− v∥∞,
∥T πU v − T πU u∥∞ ≤ γ∥u− v∥∞, ∀π.

Finally, for any initial values V π
0 , V

∗
0 , sequences defined as V π

n+1 := T πU V π
n and V ∗

n+1 := T ∗
U V

∗
n

converge linearly to their respective fixed points, that is V π
n → V π

U and V ∗
n → V ∗

U . This makes
robust value iteration an attractive method for solving robust MDPs. In order to obtain tractable
forms of RMDPs, one has to make assumptions about the uncertainty sets and give them a
rectangularity structure Iyengar (2005). In the following, we will use an Lp norm as the distance
between distributions. The s- and sa-rectangular assumptions can be defined as follows, with r0
and P 0 being called the nominal reward and kernel.

Chapter 2. Towards Minimax Sample Complexity of Robust RL 52

Assumption 2.3.1. (sa-rectangularity) We define sa-rectangular Lp-constrained uncertainty set
as

Usa,σ∥.∥p
(P 0) := (r0 +R)×

(
P 0 + P

)
,R = ×s∈S,a∈ARs,a,

P = ×s∈S,a∈APs,a,Rs,a = {rs,a ∈ R | |rs,a| ≤ αs,a}

Ps,a = {Ps,a : S → R |
∑
s′

Ps,a(s′) = 0, P 0
s,a + Ps,a ≥ 0, ∥Ps,a∥p ≤ σs,a}

Assumption 2.3.2. (s-rectangularity) We define s-rectangular Lp-constrained uncertainty set as

Us,σ∥.∥p
= (r0 +R)×

(
P 0 + P

)
,P = ×s∈SPs,

R = ×s∈SRs, Rs =
{
rs : A → R | ∥rs∥p ≤ αs

}
Ps = {Ps : S ×A → R |

∑
s′

Ps(s′, a) = 0, ∀a ∈ A,Ps(., a) + P 0
s ≥ 0, ∥Ps∥p ≤ σ̃s}

We write σ = sups,a σs,a for sa-rectangular assumptions or σ̃ = sups σ̃s for s-rectangular
assumptions and with the same manner α = sups,a αs,a. Moreover, we write P ∈ P0

s,a for
P = P 0

s,a + P ′ with P ′ ∈ Ps,a and P ∈ P0
s for P = P 0,π

s + P ′ with P ′ ∈ Ps, P 0,π
s (s′) =∑

a π(a|s)P 0
s,a(s′) ∈ RS .

In comparison to sa-rectangular robust MDPs, s-rectangular robust MDPs are less restrictive
but much more difficult to deal with. Using rectangular assumptions and constraints defined with
Lp-balls, it is possible to derive simple dual forms for the (optimal) robust Bellman operators for
the minimization problem that involves the seminorm defined below:

Definition 2.3.1 (Span seminorm (Puterman 1990)). Let q be such that it satisfies the Holder’s
equality, i.e. 1

p + 1
q = 1. Let q-variance or span-seminorm function spq(.) : S → R and q-mean

function ωq : S → R be defined as

spq(v) := min
ω∈R
∥v − ω1∥q, ωq(v) := arg min

ω∈R
∥v − ω1∥q.

One can think of those span-seminorms as semi-mean-centered-norms. The main problem is
that these quantities represent the dispersion of a distribution around its mean, and there are no
order relations for this type of object. Seminorms appear in the (non-robust) RL community
for other reasons Puterman (1990), Scherrer (2013). For p =1, 2 and ∞, a closed form can
be derived, corresponding to median, variance and range. This is not the case for arbitrary p
but span-seminorms can be efficiently computed in practice, see Kumar et al. (2022). Once
span-seminorms defined, we introduced the dual of the inner minimization problem.

Lemma 2.3.3 (Duality for sa rectangular case with Lp norm). For any V ∈ RS , P 0
s,a =

P 0(.|s, a) ∈ RS and µ ∈ RS

min
P∈P0

s,a

PV = max
µ≥0

P 0
s,a(V − µ)− σs,aspq(V − µ)

Lemma 2.3.4 (Duality for s rectangular case.). Consider the probability kernel P π0,s = ΠπP 0
s,a ∈

Rs with Ππ a projection matrix associated with a given policy π such that
P 0,π
s (s′) = ∑

a π(a|s)P 0
s,a(s′) ∈ RS. For any V ∈ RS :

min
P∈P0

s

PV = max
µ≥0

P 0,π
s (V − µ)− σs ∥πs∥q spq(V − µ)

53 2.3. Preliminaries

Proofs car be found in Appendix 2.5 ,2.3.4. These results allow computing robust value and
Q-functions. Close to our work, Derman et al. (2021), Kumar et al. (2022) do not assume that
robust kernel belongs to the simplex and in that sense, their formulation is a relaxation of the
framework of RMPDs. Using this relaxation, closed form of robust Bellman operator can be
obtained, see Th. 1 in Kumar et al. (2022). In our work, we assume a valid transition kernel in
the simplex (Ps,a ≥ 0 or Ps ≥ 0 for respectively sa− or s− rectangular case.) that leads to dual
form that has not a closed form but which is a simple scalar optimization problem. A complete
discussion can be found in Appendix 1.2.

Finally, we denote robust Q function for sa− and s− rectangular respectively Qπ,σ and Qπ,σ̃
and we define them from robust value function V π,σ, V π,σ̃ as :

V π,σ̃(s) =
∑
a

π(a|s)Qπ,σ(s, a), V π,σ(s) =
∑
a

π(a|s)Qπ,σ(s, a)

Lemma 2.3.5. For sa− and s− rectangular,

Qπ,σ(s, a) = r
(s,a)
Qπ + γP 0

s,aV
π,σ,

Qπ,σ̃(s, a) = rsQπ + γP 0
s,aV

π,σ̃

with

r
(s,a)
Qπ = r0(s, a)− αs,a + γ min

P∈Ps,a
PV π,σ

rsQπ = r0(s, a)−
(πs(a)
∥πs∥q

)q−1
αs + γ min

Pπ∈Ps
P πV π,σ̃

Robust Q functions and dual forms of the robust Bellman operators will be central to our
analysis of the sample complexity of model-based robust RL. They allow improving the bound
by a factor S or SA compared to existing results (Sec. 2.4). With additional technical subtleties,
adapted from the non-robust setting, and assuming the uncertainty set is small enough, they
even allow improving the bound by a factor SH or SAH (Sec. 2.5).

2.3.3 Generative Model Framework

We consider the setting where we have access to a generative model, or sampler, that gives
us samples s′ ∼ P 0(· | s, a), from the nominal model and from arbitrary state-action couples.
Suppose we call our sampler N times on each state-action pair (s, a). Let P̂ be our empirical
model, the maximum likelihood estimate of P 0,

P̂ (s′ | s, a) = Ps,a(s′) = count(s′, s, a)
N

,

where count(s′, s, a) represents the number of times the state-action pair (s, a) transitions to
state s′. Moreover, we define M̂ as the empirical RMDP identical to the original M except that
it uses P̂ instead of P 0 for the transition kernel. We denote by V̂ π and Q̂π the value functions of
a policy π in M̂ , and π̂⋆, Q̂⋆ and V̂ ⋆ denote the optimal policy and its value functions in M̂ . It is
assumed that the reward function R0 is known and deterministic and therefore exactly identical
in M and M̂ . Moreover, we write P ∈ P̂s,a for P = P̂s,a + P ′ with P ′ ∈ Ps,a and P ∈ P̂s for
P = P̂ πs + P ′ with P ′ ∈ Ps, P̂ πs (s′) = ∑

a π(a|s)P̂s,a(s′) ∈ RS .
Notice that our analysis would easily account for an estimated reward (the hard part being

handling the estimated transition model). This generative model framework, when we can
only sample from the nominal kernel, is classic and appears for both non-robust and robust

Chapter 2. Towards Minimax Sample Complexity of Robust RL 54

MDPs (Agarwal et al. 2020, Panaganti et al. 2022, Azar et al. 2013a, Xu et al. 2023). In the
robust case, it is especially relevant as an abstraction of ”sim-to-real”, the simulator giving access
to the nominal kernel for learning a robust policy to be deployed in the real world (assumed to
belong to the uncertainty set).

The question of how to solve RMDPs and the related computational complexity are com-
plementary, but different from Theorems 2.4.1and 2.5.1. Indeed, an important point that
differentiates us from (Panaganti and Kalathil 2022a) is the use of a robust optimization oracle.
In (model-based) sample complexity analysis, the goal is to determine the smallest sample size N
such that a planner executed in M̂ yields a near-optimal policy in the RMDP M . To decouple
the statistical and computational aspects of planning with respect to an approximate model
M̂ , we will use an optimization oracle that takes as input an (empirical) RMDP and returns a
policy π̂ that satisfies ∥Q̂∗ − Q̂π̂∥∞ ≤ ϵopt. Our final bound will depend on ϵ, the error made
from finite sample complexity, and ϵopt . In practice, the error ϵopt is typically decreasing at a
linear speed of γk at the kth iteration of the algorithm, as in classical MDPs because (optimal)
Bellman operators are γ-contraction in both classic and robust settings when robust kernel in
assuming in the simplex.

The computational cost of RMDPs is addressed by Iyengar (2005) but not in the Lp. Kumar
et al. (2022) address this question, in this case, using the regularized form of robust MDPs obtained
with relaxed hypothesis on the kernel (See Appendix 1.2). The conclusions of the latter are that
Lp robust MDPs are computationally as easy as non-robust MDPs for regularized forms, at least
for some choices of p for their relaxation. However, in their analysis, the use of γ-contraction of
the Robust Bellman Operator is needed, whereas this is not always the case for sufficiently large
σ. Indeed, assuming robust kernel is not anymore in the simplex, Robust Bellman Operator is
not anymore a γ-contraction but an ϵ−contraction for ϵ close to 1 and only for a small range of
σ. (See Derman et al. (2021) Th. 5.1). We address the question of solving RMPDs in the Lp case
with a valid robust kernel in Alg. 11 as it is required to obtain an ϵops solution in our analysis.

2.4 Sample Complexity with Lp-balls

The aim of this section is to obtain an upper-bound on the sample complexity of RMDPs. This
result is true for sa- and s-rectangular sets and for any Lp norm with p ≥ 1. We remove the
upperscipt σ or σ̃ as following Theorem is true both for sa and s rectangular assumptions,
independently of σ or σ̃.

Theorem 2.4.1. Assume δ > 0, ϵ > 0 and σ > 0. Let π̂ be any ϵopt -optimal policy for M̂ , i.e.
∥Q̂π̂ − Q̂⋆∥∞ ≤ ϵopt . With N calls to the sampler per state-action pair, such that N ≥ Cγ2L′′

(1−γ)4ϵ2 ,

with L′′ = log
(

32SAN∥1s∥q
δ(1−γ)

)
we obtain the following guarantee for policy π̂,

∥∥∥Q∗ −Qπ̂
∥∥∥

∞
≤ ϵ+ 3γϵopt

1− γ

with probability at least 1− δ, where C is an absolute constant. Finally, for Ntotal = N |S||A|
and H = 1/(1− γ), we get an overall complexity of

Ntotal = Õ
(
H4SA

ϵ2

)
.

55 2.4. Sample Complexity with Lp-balls

2.4.1 Discussion

This result says that the policy π̂ computed by the planner on the empirical RMDP M̂ will be
(ϵopt + ϵ)-optimal in the original RMDP M . As explained before, 11 planning algorithms for
RMDPs that guarantee arbitrary small ϵopt, such as robust value iteration considered by Panaganti
and Kalathil (2022a). It will also apply to future planners, as long as they come with a convergence
guarantee. The error term ϵ is controlled by the number of samples: Ntot = Õ(H4SAϵ−2) calls to
the generative models allow guaranteeing an error ϵ. This is a gain in terms of sample complexity
of S compared to Panaganti and Kalathil (2022a), for the sa-rectangular assumption. Our bound
also holds for both s- and sa-rectangular uncertainty sets. Panaganti et al. (2022) do not study
the s-rectangular case, while Yang et al. (2021) do, but have a worst dependency to A in this
case. Their bounds also have additional dependencies on the size of the uncertainty set, which
we do not have. We recall that we do not cover the same cases, we do not analyze the KL and
Chi-Square robust set, while they do not analyze the Lp robust set for p > 1. However, the above
comparison holds for the total variation case that we have in common (p = 1). These bounds are
clearly stated in Table 2.1. In the non-robust setting, Azar et al. (2013a) show that there exist
MDPs where the sample complexity is at least Ω̃

(
H3AS
ϵ2

)
. Section 2.5 gives a new upper-bound

in H3 which matches this lower-bound for non-robust MDPs with an extra condition on the
range of σ (the uncertainty set should be small enough).

2.4.2 Sketch of Proof

This first proof is the simpler one, it relies notably on Hoeffding’s concentration arguments. We
provide a sketch, the full proof can be found in Appendix 2. The resulting bound is not optimal
in terms of the horizon H, but it also does not impose any condition on the range of ϵ or σ,
contrary to the (better) bound of Sec. 2.5. We would like to bound the supremum norm of the
difference between the optimal Q-function and the one of the policy computed by the planner in
the empirical RMDP, according to the true RMDP, ∥Q∗ −Qπ̂∥∞. Using a simple decomposition
and the fact that π∗ is not optimal in the empirical RMDP (Q̂π∗ ≤ Q̂∗ = Q̂π̂

∗), we have that

Q∗ −Qπ̂ = Q∗ − Q̂∗ + Q̂∗ − Q̂π̂ + Q̂π̂ −Qπ̂.

As Q∗ − Q̂∗ ≤ Q∗ − Q̂π∗ , a triangle inequality yields

∥Q∗ −Qπ̂∥∞ ≤ ∥Q∗ − Q̂π∗∥∞ + ∥Q̂∗ − Q̂π̂∥∞ + ∥Q̂π̂ −Qπ̂∥∞.

The second term is easy to bound, by the assumption of the planning oracle we have
∥Q̂∗ − Q̂π̂∥∞ ≤ ϵopt. The two other terms are similar in nature. They compare the Q-functions
of the same policy (either π∗ the optimal one of the original RMDP, or π̂ the output of the
planning algorithm) but for different RMPDs, either the original one or the empirical one. For
bounding the remaining terms, we need to introduce the following notation. For any set D and
a vector v, let define κD(v) = inf

{
u⊤v : u ∈ D

}
. This quantity corresponds to the inf form of

the robust Bellman operator. The following lemma provides a data-dependent bound of the two
terms of interest.

Lemma 2.4.2. We have with Ps,a defined in Assumption 2.3.1 and P̂s,a the robust set centered
around the empirical MDPs that

∥Qπ̂ − Q̂π̂∥∞ ≤
γ

1− γ max
s,a
|κP̂s,a

(V̂ π̂)− κP0,s,a(V̂ π̂)|

∥Q∗ − Q̂π∗∥∞ ≤
γ

1− γ max
s,a
|κP̂s,a

(V ∗)− κP0,s,a(V ∗)|.

Chapter 2. Towards Minimax Sample Complexity of Robust RL 56

For proving these inequalities, we rely on fundamental properties of the (robust) Bellman
operator, such as γ-contraction. This lemma is written for sa-rectangular assumption but is also
true for s-rectangular assumption, replacing notation of robust set Ps,a by Ps. Now, we need to
bound the resulting terms, which is done by the following lemma.

Lemma 2.4.3. With probability at least 1− δ, we have

max
s,a
|κP̂s,a

(V̂ π̂)− κP0,s,a(V̂ π̂)| ≤ 10
(1− γ)

(√ L′′

2N +
L′′S1/q∥1S∥q(p− 1)

N

)
+ 2ϵopt

with L′′ = log
(

32SAN∥1∥q
δ(1−γ)

)
.

Again, this also holds for s-rectangular sets. This inequality relies on Hoeffding’s based
concentration argument coupled with absorbing MDPs of Agarwal et al. (2020) and smoothness
of the Lp norm. Putting everything together, we have just shown that :

∥Q∗ −Qπ̂∥∞ ≤
3γϵopt
1− γ + 20γ

(1− γ)2

(√ L′′

2N +
L′′S1/q∥1S∥q(p− 1)

N

)
.

Solving in ϵ for the second term of the right-hand side gives the stated result as the term
proportional to 1/N is small compared to the second one for sufficiently small ϵ.

2.5 Toward minimax optimal sample complexity

Now, we provide a better bound in terms of the horizon H, reaching (up to log factors) the
lower-bound in H3 for non-robust MDPs. Recall σ = sups,a σs,a for the sa-rectangular assumption
or σ̃ = sups σ̃s for the s-rectangular assumption. For the following result to hold, we need to
assume that the uncertainty set is small enough: we will require

σ ≤ 1− γ
2γS1/q = 1

2(H − 1)S1/q .

or the same condition for σ̃.The following theorem is true for both sa- and s-rectangular
uncertainty sets, and for any Lp norm with p ≥ 1.

Theorem 2.5.1. let σ0 ∈ (0, 1
2(H−1)S1/q], for any κ > 0 and any ϵ0 ≤ κ

√
H it exists a Cσ0,ϵ0 > 0

independent of H such that for any σ ∈ (0, σ0) and any ϵ ∈ (0, ϵ0), whenever N the number of calls
to the sampler per state-action pair satisfies N ≥ Cσ0,ϵ0

Lγ2H3

ϵ2 where L = log(8|S||A|/((1− γ)δ)),
it holds that if π̂ is any ϵopt -optimal policy for M̂ , that is when ∥Q̂π̂ − Q̂⋆∥∞ ≤ ϵopt, then∥∥∥Q∗ −Qπ̂

∥∥∥
∞
≤ ϵ+ 8ϵopt

1− γ

with probability at least 1− δ.So Ntotal = N |S||A| as an overall sample complexity

Õ
(
H3SA

ϵ2

)

for any ϵ < ϵ0. The result is true with σ̃ replacing σ for the s-rectangular case.

57 2.5. Toward minimax optimal sample complexity

2.5.1 Discussion

The constants of Theorem 2.5.1 are explicitly given in Appendix 3. For instance, for σ0 = 1
8(H−1)

and ϵ0 =
√

16H, we have C = 1024, other choices being possible. Recall that in the non-robust
case, the lower-bound is Ω̃

(
H3SA
ϵ2

)
Azar et al. (2013a). Our theorem states that any model-based

robust RL approach, in the generative model setting, with an accurate enough planner applied to
the empirical RMDP, reaches this lower bound, up to log terms. As far as we know, it is the first
time that one shows that solving an RMDP in this setting does not require more samples than
solving a non-robust MDP, provided that the uncertainty set is small enough. Our bound on ϵ is
similar to the one of Agarwal et al. (2020) in the robust case with their range [0,

√
H), we differ

only by giving more flexibility in the choice of the constant C. The best range of ϵ for non-robust
MDPs is (0, H) (Li et al. 2020), we let its extension to the robust case for future work. So far, we
discussed the lower-bound for the non-robust case, that we reach. Indeed, non-robust MDPs can
be considered as a special case of MDPs with σ = 0. As far as we know, the only robust-specific
lower-bounds on the sample complexity have been proposed by Yang et al. (2021). They propose
two lower-bounds accounting for the size of the uncertainty set, one for the Chi-square case, and
one for the total variation case, which coincide with our Lp framework for p = 1 This bound is

Ω̃
(
SA(1− γ)

ε2 min
{ 1

(1− γ)4 ,
1
σ4

})
.

This lower bound has two cases, depending on the size of the uncertainty set. If σ ≤ (1−γ) = 1/H,
we retrieve the non-robust lower bound Ω̃

(
SAH3

ε2

)
. Therefore, for a L1-ball, our upper-bound

matches the lower-bound, and we have proved that model-based robust RL in the generative
model setting is minimax optimal for any accurate enough planner. Their condition for this
bound, σ ≤ 1/H, is close to our condition, σ < 1/(4(H − 1). This suggests that our condition on
σ is not just a proof artifact. In the second case, if σ > 1− γ, the lower-bound is Ω̃

(
SA|(1−γ)
ε2σ4

)
.

In this case, our theorem does not hold, and we only currently get a bound in H4 (see Sec. 2.4),
which doesn’t match this lower-bound.

In the case of TV , we know from posterior work Shi et al. (2023) that it is possible to get a
tighter bound in the regime σ > 1− γ but in the case of LP norm, it is still an open question. In
the case where σ is too large, the question arises whether RMDPs are useful as long as there is
little to control when the transition kernel can be too arbitrary.

To sum up, to the best of our knowledge, with a small enough uncertainty set, our work delivers
the first-ever minimax-optimal guarantee for RMDPs according to the non-robust lower-bound
for Lp-balls, and the first ever minimax-optimal guarantee according to the robust lower-bound
for the total variation case for a sufficiently small radius of the uncertainty set, which has been
later on the larger set of σ by Shi et al. (2023). ‘

2.5.2 Sketch of proof

The full proof is provided in Appendix 3. As in Sec. 2.4.2, we start from the inequality

∥Q∗ −Qπ̂∥∞ ≤ ∥Q∗ − Q̂π∗∥∞ + ∥Q̂∗ − Q̂π̂∥∞ + ∥Q̂π̂ −Qπ̂∥∞,

where the second term of the right-hand side can again be readily bounded, ∥Q̂∗ − Q̂π̂∥∞ ≤ ϵopt.
To bound the remaining two terms, if we want to obtain a tighter final bound, the contracting
property of the robust Bellman operator will not be enough, we need a finer analysis. To achieve
this, we rely on the total variance technique introduced by Azar et al. (2013a) for the non-robust
case, combined with the absorbing MDP construction of Agarwal et al. (2020), also for the

Chapter 2. Towards Minimax Sample Complexity of Robust RL 58

non-robust case, which allows improving the range of valid ϵ. The key underlying idea is to rely
on a Bernstein concentration inequality rather than a Hoeffding one, therefore considering the
variance of the random variable rather than its range, tightening the bound. Working with a
Bernstein inequality will require controlling the variance of the return. A key result was provided
by Azar et al. (2013a), that we extend to the robust setting,

∥∥∥∥(I − γP 0,π
)−1√

VarP 0 (V π)
∥∥∥∥

∞
≤
√

2
(1− γ)3 . (2.1)

Naively bounding the left-hand side would provide a bound in H2, while this (non-obvious)
bound in

√
H3 is crucial for obtaining on overall dependency in H3 in the end. Now, we come

back to the terms ∥Q∗ − Q̂π̂∗∥∞ and ∥Qπ̂ − Q̂π̂∥∞ that we have to bound. This bound should
involve a term proportional to (I − γP 0,π)−1 to leverage later Eq. (2.1). The following lemma is
inspired by Agarwal et al. (2020), and its proof relies crucially on having a simple dual of robust
Bellman operator.

Lemma 2.5.2.

∥Qπ̂ − Q̂π̂∥∞ ≤γ∥(I − γP 0,π̂)−1(P 0 − P̂)V̂ π̂∥∞ + 2γσS1/q

1− γ ∥Q
π̂ − Q̂π̂∥∞.

We see that the term σ appears in the bound. This comes from the need to control the
difference in penalization between seminorms of value functions, from a technical viewpoint.
Indeed, the terms 2γσ

1−γ ∥Q
π−Q̂π∥∞ (with π being either π̂ or π∗) are not present in the non-robust

version of the bound, and are one of the main differences from the derivation of Agarwal et al.
(2020). The first term of the right-hand side of each bound ∥(I − γP 0,π)−1(P0 − P̂)V̂ π∥∞ (with
π being either π̂ or π∗, again) will be upper-bounded using a Bernstein argument, leveraging
also Eq. (2.1). The resulting lemma is the following.

Lemma 2.5.3. With probability at least 1− δ, we have

∥∥∥Qπ̂ − Q̂π̂∥∥∥
∞
< (CN + Cσ)∥Qπ̂ − Q̂π̂∥∞ + 4γ

√
L

N(1− γ)3 +
γ∆′

δ,N

1− γ + γϵopt
1− γ

2 +
√

8L
N

 ,
with Cσ = 2γσS1/q

1−γ and CN = γ
1−γ

√
8L
N and where ∆′

δ,N =
√

cL
N + cL

(1−γ)N
with L = log(8SA/((1− γ)δ)).

For this result to be exploitable, we have to ensure that CN + Cσ < 1, which leads to
σ ≤ 1−γ

2γS1/q , and then CN + Cσ < 1 leads to a constraint on N in Theorem 2.5.1. Eventually,
injecting the result of this last lemma in the initial bound, keeping the dominant term in 1/

√
N

and solving for ϵ provides the stated result, cf Appendix 3.

2.6 Conclusion

In this paper, we have studied the question of the sample complexity of model-based robust
reinforcement learning. To decouple this from the problem of exploration, we have considered
the classic (in non-robust RL) generative model setting, where a sampler can provide next-state
samples from the nominal kernel and from arbitrary state-action couples. We focused our study
more specifically on sa- and s-rectangular uncertainty sets corresponding to Lp-balls around the
nominal.

59 2.6. Conclusion

Without any restriction on the size of uncertainty set (σ), we have shown that the sample
complexity of the studied general setting is Õ(SAH4

ϵ2), already significantly improving existing
results (Yang et al. 2021, Panaganti and Kalathil 2022a). Our bound holds for both the sa- and
s-rectangular cases, and improves existing results (for the total variation) by respectively S and
SA. By assuming a small enough uncertainty set, and for a small enough ϵ, we further improved
this bound to Õ(SAH3

ϵ2), adapting proof techniques from the non-robust case (Azar et al. 2013a,
Agarwal et al. 2020). This is a significant improvement. Our bound again holds for both the sa-
and s- rectangular cases, it matches the lower-bound for the non-robust case Azar et al. (2013a),
and it matches the total variation lower-bound for the robust case when the uncertainty set is
small enough (Yang et al. 2021). We think this is an important step towards minimax optimal
robust reinforcement learning.

There are a number of natural perspectives, such as knowing if we could extend our results to
other kinds of uncertainty sets, or to extend our last bound to larger uncertainty sets (despite the
fact that if the dynamics are too unpredictable, there may be little left to be controlled). Our re-
sults build heavily on the simple dual form of the robust Bellman operator, which prevents us from
considering, for the moment, uncertainty sets based on the KL or Chi-square divergence. Beyond
their theoretical advantages, these simple dual forms also provide practical and computationally
efficient planning algorithms. Therefore, another interesting research direction would be to know
if one could derive additional useful uncertainty sets relying primarily on the regularization
viewpoint. In the next Chapter, we will refine our result in term of upper bound while providing
also lower bound to better understand the question of sample complexity in Robust MDPs.

3

Ch
ap

te
r

Near-Optimal Distributionally Robust
Reinforcement Learning with General Lp

Norms

Contents
3.1 Introduction . 61
3.2 Problem Formulation: Robust Markov Decision Processes 64
3.3 Distributionally Robust Value Iteration 67
3.4 Theoretical guarantees . 68

3.4.1 sa-rectangular uncertainty set with general smooth norms 68
3.4.2 s-rectangular uncertainty set with general norms 70

3.5 Conclusion . 71

3.1 Introduction

Reinforcement learning (RL) (Sutton 1988) is a popular paradigm in machine learning, partic-
ularly noted for its success in practical applications. The RL framework, usually modeled

within the context of a Markov decision process (MDP), focuses on learning effective decision-
making strategies based on interactions with an environment. However, the work of Mannor et al.
(2004), among others, has highlighted a vulnerability in RL strategies, revealing the sensitivity
to estimation errors in the reward and transition probabilities. A specific example of this is
when, because of a sim-to-real gap, policies learned in idealized environments catastrophically
fail when deployed in settings with slight changes or adversarial perturbations (Klopp et al. 2017,
Mahmood et al. 2018).

To address this issue, robust MDPs (RMDPs), proposed by Iyengar (2005) and Nilim and
El Ghaoui (2005), have attracted considerable attention. RMDPs are formulated as max-min
problems, seeking policies that are resilient to model estimation errors within a specified uncer-
tainty set. Despite the robustness benefits, solving RMDPs is NP-hard for general uncertainty
sets (Nilim and El Ghaoui 2005). To overcome this challenge, the assumption of rectangularity is
often adopted, with uncertainty sets structured as products of independent subsets for each state
or state-action pair, denoted as s-rectangular or sa-rectangular assumptions (see Definitions 3.4
and 3.5). These assumptions facilitate the use of methods such as robust value iteration and
robust policy iteration, preserving many structural properties of MDPs (Ho et al. 2021). The
s-rectangular sets, though less restrictive, pose greater challenges, while the sa-rectangular sets
allow for deterministic optimal policies akin to non-robust MDPs (Wiesemann et al. 2013). Note

Chapter 3. Near-Optimal Distributionally Robust Reinforcement Learning with General Lp
Norms 62

that, while uncertainty in the reward can be easily handled, dealing with uncertainty in the
transition kernel is much more difficult (Kumar et al. 2022, Derman et al. 2021).

The question of sample efficiency is central in RL problems ranging from practice to theory.
Although minimax rates are achieved in (Azar et al. 2013b, Li et al. 2023) in the context of
classical MDPs, this goal remains open, in general, in the context of RMDPs. Specifically, there
exists prior work studying the sample complexity of distributionally robust RL for a few specific
divergences such as total variation (TV), χ2, KL, and Wasserstein (see a further discussion in
Appendix 4) (Yang et al. 2022, Zhou et al. 2021, Panaganti and Kalathil 2022b), while such
results remain unclear for more general classes of Lp norms defined in 3.2.1.To this point, to the
best of our knowledge, the results of sample complexity that achieve minimax optimality for the
full range of uncertainty level are limited to only one case — TV distance (Shi et al. 2023).

In this work, we focus on understanding the sample complexity of RMDPs with a general
smooth Lp that will be defined in Def. 3.2.1. This generalization is appealing for both practice and
theory. In practice, numerous applications are based on optimizations or learning approaches that
involve general norms beyond those that have already been studied. Additionally, optimizing norm
weighted ambiguity sets for Robust MDPs has been proposed in the context of RMDPs in Russel
et al. (2019), which justifies our formulation. Theoretically, prior work has characterized the
sample complexity of RMDPs for some specific norms have suggested intriguing insights about the
statistical implications of distributional robustness in RL. It is interesting to further understand
the statistical cost of robust RL in more general scenarios.One area of focus is the contrast between
the sample efficiency of solving distributionally robust RL and solving standard RL. In particular,
for the specific case of TV distance, Shi et al. (2023) shows that the sample complexity for
solving robust RL is at least the same as and sometimes (when the uncertainty level is relatively
large) could be smaller than that of standard RL. This motivates the following open question:

Is distributionally robust RL more sample efficient than standard RL for norms defined in
Def. (3.2.1) ?

A second question is about the comparisons between the sample complexity of solving s-
rectangular RMDPs and that of solving sa-rectangular RMDPs. Note that s-rectangular RMDPs
have more complicated optimization formulations with additional variables (uncertainty levels
for each action) to optimize. This leads to a richer class of optimal policy candidates—stochastic
policies in s-rectangular cases, in contrast to the class of deterministic policies for sa-rectangular
cases. In addition, existing sample complexity upper bounds for solving s-rectangular RMDPs
are larger than that for solving sa-rectangularity (Yang et al. 2022) for the investigated cases.
This motivates the curious question:

Does solving s-rectangular RMDPs require more samples than solving sa-rectangular RMDPs
with general smooth Lp norms defined in Def. 3.2.1?

Main contributions. In this paper, we address each of the two questions discussed above.
In particular, we provide the first sample complexity analysis for RMDPs with general Lp norms
defined in 3.2.1 under both the s- and sa-rectangularity conditions. For convenience, we present
a detailed comparison between the existing state-of-the-art and our results in Table 3.1 for quick
reference and discuss the contributions and their implications below.
• Considering the first question, we illustrate our results in both sa- and s-rectangular case in
Figure 3.1. In the case of sa-rectangularity, we derive a sample complexity upper bound for
RMDPs using general smooth Lp norms (cf. Theorem 3.4.1) in the order of

Õ

(
SA

(1− γ)2 max{1− γ,Cgσ}ε2

)
,

with Cg > 0 a positive constant related to the geometry of the norm defined in 3.2.1. For classical

63 3.1. Introduction

Result type Reference Distance

sa-rectangularity s-rectangularity

0 < σ ≲ 1− γ 1− γ ≲ σ < σmax 0 < σ̃ ≲ 1− γ 1− γ ≲ σ̃ < σ̃max

Upper bound

Yang et al. (2021) TV S2A(2+σ)2

σ2(1−γ)4ε2
S2A(2+σ)2

σ2(1−γ)4ε2
S2A2(2+σ̃)2

σ̃2(1−γ)4ε2
S2A2(2+σ̃)2

σ̃2(1−γ)4ε2

Panaganti and Kalathil (2022b) TV S2A
(1−γ)4ε2

S2A
(1−γ)4ε2 × ×

Shi et al. (2023) TV SA
(1−γ)3ε2

SA
σ(1−γ)2ε2 × ×

Clavier et al. (2023) Lp
SA

(1−γ)3ε2
SA

(1−γ)4ε2
SA

(1−γ)3ε2
SA

(1−γ)4ε2

This paper Lp
SA

(1−γ)3ε2
SA

σ(1−γ)2ε2
SA

(1−γ)3ε2
SA

(1−γ)2σ̃mins∥πs∥∗ε
2

This paper General Lp [3.2.1] SA
(1−γ)3ε2

SA
σ(1−γ)2ε2

SA
(1−γ)3ε2

SA
(1−γ)2σ̃Cg mins∥πs∥∗ε

2

Lower bound

Yang et al. (2021) TV SA
(1−γ)3ε2

SA(1−γ)
σ4ε2 × ×

Shi et al. (2023) TV SA
(1−γ)3ε2

SA
σ(1−γ)2ε2 × ×

This paper Lp
SA

(1−γ)3ε2
SA

σ(1−γ)2ε2 × ×

This paper L∞
SA

(1−γ)3ε2
SA

σ(1−γ)2ε2
SA

(1−γ)3ε2
SA

σ̃(1−γ)2ε2

Table 3.1: Comparisons with prior results (up to log terms) regarding finding an ε-optimal policy for the
distributionally RMDP, where σ is the radius of the uncertainty set and σmax defined in Theorem 3.4.1.

LP norms, Cg ≥ 1 so we can directly relax this constant to 1 to obtain the result in table 3.1.
In addition, we provide a matching minimax lower bound (cf. Theorem 3.4.2) that confirms the
near-optimality of the upper bound for almost full range of the uncertainty level. Our results
match the near-optimal sample complexity derived in Shi et al. (2023) for the specific case using
TV distance, while holding for broader cases using general Lp norms. The results rely on a
new dual optimization form for sa-rectangular RMDPs and reveal the relationship between the
sample complexity and this new dual form — the infinite span seminorm (controlled in Lemma
7.1), which may be of independent interest.

In the case of s-rectangularity, we provide a sample complexity upper bound for solving
RMDPs with general smooth Lp norms in the order of

Õ

(
SA

(1− γ)2 max{1− γ,Cg mins ∥πs∥∗ σ̃}ε2

)
.

This result improves the prior art Õ
(

SA
(1−γ)4ε2

)
in Clavier et al. (2023) for classical Lp when

σ̃ ≲ 1 − γ — by at least a factor of O
(

1
1−γ

)
. Furthermore, we present a lower bound for a

representative case with L∞ norm, which corroborates the tightness of the upper bound. To the
best of our knowledge, this is the first lower bound for solving RMDPs with s-rectangularity.
• Considering the second question, as illustrated in Figure 3.1, our results highlight that robust
RL is at least the same as and sometimes can be more sample-efficient to solve than standard
RL for general smooth Lp norms in 3.2.1. This insight is of significant practical importance and
serves to provide crucial motivation for the use and study of distributionally robustness in RL.
Notably, robust RL does not only reduce the vulnerability of RL policy to estimation errors and
sim-to-real gaps, but also leads to better data efficiency. In terms of comparing the statistical
implications of sa- and s- rectangularity, our results show that solving s-rectangular RMDPs
is not harder than solving sa-rectangular RMDPs in terms of sample requirement (See Theorem
3.4.3 and Figure 3.2, Right).
•We highlight the technical contributions as below. For the upper bounds, regarding optimization
contribution, we derive new dual optimization problem forms for both sa− and s− rectangular
cases (Lemma 6.3 and 6.4), which is the foundation of the covering number argument in finite-

Chapter 3. Near-Optimal Distributionally Robust Reinforcement Learning with General Lp
Norms 64

sample analysis. From a statistical point of view, a new concentration lemma (See Lemma 7.4 for
dual forms and two new lemmas to obtain sample complexity lower than classical RL, controlling
the infinite span semi norm of the value function, both for sa− and s− rectangular case are
derived (See Lemmas 7.1 and 7.2). For the lower bound, the technical contributions are mainly
in s-rectangular cases, which involves entire new challenges compared to sa-rectangularity case:
the optimal policies can be stochastic and hard to be characterized as a closed form, compared
to the deterministic one in sa-rectangular cases. Therefore, we construct new hard instances
for s-rectangular cases that is distinct from those used in sa-rectangular cases or standard RL.

3.2 Problem Formulation: Robust Markov Decision Processes

In this section, we formulate distributionally robust Markov decision processes (RMDPs) in the
discounted infinite-horizon setting, introduce the sampling mechanism, and describe our goal.

Figure 3.1: Left: Sample complexity results for RMDPs with sa- and s-rectangularity with Lp with
comparisons to prior arts (Shi et al. 2023) (for L1 norm, or called total variation distance) and (Clavier
et al. 2023)

Standard Markov decision processes (MDPs). A discounted infinite-horizon MDP is
represented byM = (S,A, γ, P, r), where S = {1, · · · , S} and A = {1, · · · , A} are the finite state
and action spaces, respectively, γ ∈ [0, 1) is the discounted factor, P : S ×A → ∆(S) denotes the
probability transition kernel, and r : S ×A → [0, 1] is the immediate reward function, which is
assumed to be deterministic. Moreover, we assume that the reward function is bounded in (0, 1)
without loss of generality of the results due to the variance reward invariance. Finally we denote
1A or 1S the unitary vector of respectively dimension A or S. Moreover, es is the standard
unitary vector supported on s. The policy we are looking for is denoted by π : S → ∆(A), which
specifies the probability of action selection over the action space in any state. Note that if the
policy is deterministic in the sa-rectangular case, we overload the notation and refer to π(s) as
the action selected by the policy π in state s. Finally, to characterize the cumulative reward,

65 3.2. Problem Formulation: Robust Markov Decision Processes

Figure 3.2: The data and instance-dependent sample complexity upper bound of solving s-rectangular
dependency RMDPs with LP norms.

the value function V π,P for any policy π under the transition kernel P is defined by ∀s ∈ S

V π,P (s) := Eπ,P

[∞∑
t=0

γtr
(
st, at

) ∣∣∣ s0 = s

]
. (3.1)

The expectation is taken over the randomness of the trajectory {st, at}∞t=0 generated by executing
the policy π under the transition kernel P , such that at ∼ π(· | st) and st+1 ∼ P (· | st, at) for all
t ≥ 0. In the same way, the Q function Qπ,P associated with any policy π under the transition
kernel P is defined using expectation taken over the randomness of the trajectory under policy π as

Qπ,P (s, a) := Eπ,P

[∞∑
t=0

γtr
(
st, at

) ∣∣∣ s0, a0 = s, a

]
. (3.2)

Distributionally robust MDPs. We consider distributionally robust MDPs (RMDPs) in the
discounted infinite-horizon setting, denoted byMrob = {S,A, γ,Uσ∥.∥(P 0), r}, where S,A, γ, r are
the same sets and parameters as in standard MDPs. The main difference compared to standard
MDPs is that instead of assuming a fixed transition kernel P , it allows the transition kernel
to be arbitrarily chosen from a prescribed uncertainty set Uσ∥.∥(P 0) centered around a nominal
kernel P 0 : S ×A → ∆(S), where the uncertainty set is specified using some called Lp smooth
norm denoted ∥.∥ defined in of radius σ > 0 defined in 3.2.1.

Definition 3.2.1 (General smooth Lp norms and dual norms). A norm ∥ · ∥ is said to be a
general smooth Lp norm if

• for all x ∈ Rn, ∥x∥ = ∥x∥p,w = (∑n
k=1wk(|xk|)p)1/p, where w ∈ Rn+, is an arbitrary positive

vector,

• it is twice continuously differentiable Rudin et al. (1964) with the supremum of the Hessian
Matrix over the simple CS = supx∈∆S

∥∥∇2∥x∥
∥∥

2, where ∥∥2 here is the spectral norm

Chapter 3. Near-Optimal Distributionally Robust Reinforcement Learning with General Lp
Norms 66

Finally, we denote the dual norm of ∥·∥ as ∥·∥∗ s.t. ∥y∥∗ = maxx xT y : ∥x∥ ≤ 1. Moreover, for any
metric ∥.∥, we define Cg as Cg = 1/mins ∥es∥ where es ∈ RS is the standard basis of supported in s.

Note the quantity CS exists as the Hessian is continuous for C2 functional and the simplex
is a compact set, so by Extreme Value Theorem Rudin et al. (1964), CS is finite. Moreover, to
give an example, considering Lp, p ≥ 2, norms, CS is bounded by (p − 1)S1/q. (See (A.203))
This definition is general and includes Lp, p ≥ 2, all rescaled and weighted norms. Moreover,
we could extend our result to a larger set than the one of the norms defined in Def. 3.2.1, this
is why a complete discussion about the set of norms can be found in Appendix 5. However,
it does not include divergences such as KL and χ2. Not that the case of TV which is not C2

smooth is treated independently with different arguments in the proof but has the same sample
complexity. In particular, given the nominal transition kernel P 0 and some uncertainty level σ,
the uncertainty set—with arbitrary smooth Lp norm metric ∥ ∥ : RS× → R+ in sa rectangular
case or from RS×A in the s-rectangular case, is specified as Uσ∥.∥(P 0) := ⊗s,a U sa,σ

∥.∥ (P 0
s,a)

U sa,σ
∥.∥ (P 0

s,a) :=
{
Ps,a ∈ ∆(S) :

∥∥∥Ps,a − P 0
s,a

∥∥∥ ≤ σ} , (3.3)

Ps,a := P (· | s, a) ∈ R1×S , P 0
s,a := P 0(· | s, a) ∈ R1×S . (3.4)

where we denote a vector of the transition kernel P or P 0 at state-action pair (s, a). In other
words, the uncertainty is imposed in a decoupled manner for each state-action pair, obeying
the so-called sa-rectangularity (Zhou et al. 2021, Wiesemann et al. 2013). More generally, we
define s-rectangular MDPs as Uσ∥.∥(P) = ⊗s U s,σ̃

∥.∥ (Ps), for the general smooth Lp norm ∥.∥. The
uncertainty is imposed in a decoupled manner for each state pair, and a fixed budget given a state
for all action is defined. To get a similar meaning for the radius of the ball between sa-rectangular
and s-rectangular assumptions, we need to rescale the radius depending on the norm like in Yang
et al. (2022). The s- uncertainty set is then defined using the rescaled radius σ̃ as

U s,σ̃
∥.∥ (Ps) :=

{
P ′
s ∈ ∆(S)A :

∥∥P ′
s − Ps

∥∥ ≤ σ̃ = σ∥1A∥
}
, (3.5)

Ps := P (·, · | s) ∈ R1×SA, P 0
s := P 0(·, · | s) ∈ R1×SA (3.6)

where 1A ∈ RA denotes the unitary vector. For the specific case of respectively L1,Lp and L∞
norm, σ̃ is equal to |σA|, σ|A|1/p and σ. Note that this scaling allows for a fair comparison between
sa- and s-rectangular MDPs. In RMDPs, we are interested in the worst-case performance of a pol-
icy π over all the possible transition kernels in the uncertainty set. This is measured by the robust
value function V π,σ and the robust Q-function Qπ,σ inMrob, defined respectively as ∀(s, a) ∈ S×A

V π,σ(s) := inf
P∈U sa,σ

∥.∥ (P 0)
V π,P (s), Qπ,σ(s, a) := inf

P∈U sa,σ
∥.∥ (P 0)

Qπ,P (s, a) . (3.7)

Similarly for s-rectangularity, the value function is denoted V π,σ
s (s) := inf

P∈U s,̃σ
∥.∥(P 0)

V π,P (s) .

Optimal robust policy and robust Bellman operator. As a generalization of properties
of standard MDPs in the sa-rectangular robust case, it is well-known that there exists at least
one deterministic policy that maximizes the robust value function (resp. robust Q-function)
simultaneously for all states (resp. state-action pairs) (Iyengar 2005, Nilim and El Ghaoui 2005)
but not in the s-rectangular case. Therefore, we denote the optimal robust value function
(resp. optimal robust Q-function) as V ⋆,σ (resp. Q⋆,σ), and the optimal robust policy as π⋆, which
satisfy ∀(s, a) ∈ S ×A

V ⋆,σ(s) := V π⋆,σ(s) = max
π

V π,σ(s), Q⋆,σ(s, a) := Qπ
⋆,σ(s, a) = max

π
Qπ,σ(s, a). (3.8a)

67 3.3. Distributionally Robust Value Iteration

A key concept in RMDPs is a generalization of Bellman’s optimality principle, encapsulated in
the following robust Bellman consistency equation (resp. robust Bellman optimality equation):

∀(s, a) ∈ S ×A, Qπ,σ(s, a) = r(s, a) + γ inf
P∈U sa,σ

∥.∥ (P 0
s,a)
PV π,σ, (3.9a)

∀(s, a) ∈ S ×A Q⋆,σ(s, a) = r(s, a) + γ inf
P∈U sa,σ

∥.∥ (P 0
s,a)
PV ⋆,σ , (3.9b)

for the sa-rectangular case and same equation replacing P 0
s,a by P 0

s and σ by σ̃. The robust
Bellman operator (Iyengar 2005, Nilim and El Ghaoui 2005) is denoted by T σ(·) : RSA → RSA

T σ(Qπ)(s, a) := r(s, a) + γ inf
P∈U sa,σ

∥.∥ (P 0
s,a)
PV, with V (s) := max

π
Qπ(s, a) , (3.10)

for sa-rectangular MDPs. Given that Q⋆,σ is the unique-fixed point of T σ one can recover the
optimal robust value function and Q-function using a procedure termed distributionally robust
value iteration (DRV I). Generalizing the standard value iteration, DRV I starts from some
given initialization and recursively applies the robust Bellman operator until convergence. As
has been shown previously, this procedure converges rapidly due to the γ-contraction property
of T σ with respect to the L∞ norm (Iyengar 2005, Nilim and El Ghaoui 2005).

3.3 Distributionally Robust Value Iteration

Generative model-based sampling. Following Zhou et al. (2021), Panaganti and Kalathil
(2022b), we assume access to a generative model or a simulator (Kearns and Singh 1999), which
allows us to collect N independent samples for each state-action pair generated based on the
nominal kernel P 0: ∀(s, a) ∈ S × A, si,s,a i.i.d∼ P 0(· | s, a), i = 1, 2, · · · , N. The total sample
size is, therefore, NSA. We consider a model-based approach tailored to RMDPs, which first
constructs an empirical nominal transition kernel based on the collected samples and then applies
distributionally robust value iteration (DRVI) to compute an optimal robust policy. As we
decouple the statistical estimation error and the optimization error, we exhibit an algorithm
that can achieve arbitrary small error ϵopt in the empirical MDP defined as an empirical nominal
transition kernel P̂ 0 ∈ RSA×S that can be constructed on the basis of the empirical frequency of
state transitions, i.e. ∀(s, a) ∈ S ×A

P̂ 0(s′|s, a) := 1
N

N∑
i=1

1
{
si,s,a = s′}, (3.11)

which leads to an empirical RMDP M̂rob = {S,A, γ,Uσ∥.∥(P̂ 0), r}. Analogously, we can define
the corresponding robust value function (resp. robust Q-function) of policy π in M̂rob as V̂ π,σ

(resp. Q̂π,σ) (cf. (3.8)). In addition, we denote the corresponding optimal robust policy as π̂⋆ and
the optimal robust value function (resp. optimal robust Q-function) as V̂ ⋆,σ (resp. Q̂⋆,σ) (cf. (3.9)),
which satisfies the robust Bellman optimality equation ∀(s, a) ∈ S ×A:

Q̂⋆,σ(s, a) = r(s, a) + γ inf
P∈U sa,σ

∥.∥ (P̂ 0
s,a)
PV̂ ⋆,σ. (3.12)

Equipped with P̂ 0, we can define the empirical robust Bellman operator T̂ σ as ∀(s, a) ∈ S ×A

T̂ σ(Qπ)(s, a) := r(s, a) + γ inf
P∈U sa,σ

∥.∥ (P̂ 0
s,a)
PV, (3.13)

Chapter 3. Near-Optimal Distributionally Robust Reinforcement Learning with General Lp
Norms 68

with V (s) := maxπ Qπ(s, a). The aim of this work is given the collected samples, to learn the
robust optimal policy for the RMDP w.r.t. some prescribed uncertainty set Uσ(P 0) around the
nominal kernel using as few samples as possible. Specifically, given some target accuracy level
ε > 0, the goal is to seek an ε-optimal robust policy π̂ obeying

∀s ∈ S : V ⋆,σ(s)− V π̂,σ(s) ≤ ε , (3.14)

V̂ π̂⋆,σ − V̂ π̂,σ ≤ εopt. (3.15)

This formulation allows plugging any solver of RMDPs in this bound, for instance, the distribu-
tionally robust value iteration (DRVI) algorithm detailed in Appendix 10.

3.4 Theoretical guarantees

In this section, we present our main results characterizing the sample complexity of solving
RMDPs with sa-and s-rectangularity. Additionally, we discuss the implications of our results
for the comparisons between standard and robust RL, and for comparisons between sa- versus
s-rectangularity.

3.4.1 sa-rectangular uncertainty set with general smooth norms

To begin, we consider the RMDPs with sa-rectangularity with general norms. We first provide the
following sample complexity upper bound for certain oracle planning algorithms, whose proof is
postponed to Appendix 7.2. Technically, we derive two new dual forms for RMDPs problems using
arbitrary norms in Lemmas 6.3 and 6.4 for respectively sa- and s-rectangular RMDPS. In these
dual forms, a central quantity denoted sp(.)∗, representing the dispersion of the value function,
appears and is the dual span semi-norm associated with the considered general Lp norm ∥.∥ defined
in 3.2.1 in the initial primal problem. The main challenge in this analysis is to derive a tight upper
bound on this quantity in Lemmas (7.1) and (7.2), leading to the following sample complexity.

Theorem 3.4.1 (Upper bound for sa-rectangularity). Consider the uncertainty set U sa,σ
∥·∥ (·) asso-

ciated with arbitrary Lp smooth norm ∥·∥ defined in 3.2.1. We denote σmax := maxp1,p2∈∆(S) ∥p1−
p2∥ as the accessible maximal uncertainty level. Consider any δ ∈ (0, 1), discount factor γ ∈

[
1
4 , 1
)
,

and uncertainty level σ ∈ (0, σmax]. Let π̂ be the output policy of some oracle planning algo-
rithm with optimization error εopt introduced in (3.15). With introduced in 3.2.1, one has with
probability at least 1− δ,

∀s ∈ S : V ⋆,σ(s)− V π̂,σ(s) ≤ ε+ 8εopt
1− γ (3.16)

for any ε ∈ (0,
√

1/max{1− γ, σCg}], as long as the total number of samples obeys

NSA ≳
c1SA

(1− γ)2 max{1− γ,Cgσ}ε2 + c2SACS ∥1S∥∗
(1− γ)2ϵ

(3.17)

with c1, c2, c3 a universal positive constant. For a sufficiently small level of accuracy ϵ ≤
(max{1− γ,Cgσ})/(CS∥1S∥), the sample complexity is

NSA ≳
c3SA

(1− γ)2 max{1− γ,Cgσ}ε2 . (3.18)

69 3.4. Theoretical guarantees

Note that this result is also true for TV without the geometric smooth term depending on
CS . Considering Lp norms, Cg ≥ 1 and CS ≤ S1/q(p− 1). In Theorem 3.4.1, we introduce the
following minimax-optimal lower bound to verify the tightness of the above upper bound; a proof
is provided in Appendix 8.

Theorem 3.4.2 (Lower bound for sa-rectangularity). Consider the uncertainty set U sa,σ
∥·∥ (·)

associated with arbitrary LP norm ∥·∥ defined in 3.2.1. We denote σmax := maxp1,q1∈∆(S) ∥p1−p2∥
as the accessible maximal uncertainty level. Consider any tuple (S,A, γ, σ, ε), where γ ∈

[
1
2 , 1
)
,

σ ∈ (0, σmax(1 − c0)] with 0 < c0 ≤ 1
8 being any small enough positive constant, and ε ∈(

0, c0
256(1−γ)

]
. We can construct two infinite-horizon RMDPs M0,M1 such that giving a dataset

with N independent samples for each state-action pair over the nominal transition kernel (for
either M0 or M1 respectively), one has

inf
π̂

max
M∈{M0,M1}

{
PM

(
max
s∈S

[
V ⋆,σ(s)− V π̂,σ(s)

]
> ε

)}
≥ 1

8 ,

where the infimum is taken over all estimators π̂, P0 (resp. P1) are the probability when the
RMDP is M0 (resp. M1), as long as, for c7 is a universal positive constant,

NSA ≤ c7SA

(1− γ)2 max{1− γ,Cgσ}ε2 . (3.19)

• Near minimax-optimal sample complexity with general Lp norms. Recall that
Theorem 3.4.1 shows that the sample complexity upper bound of oracle algorithms for RMDPs
is in the order of

Õ

(
SA

(1− γ)2 max{1− γ,Cgσ}ε2

)
.

Combined with the lower bound in Theorem 3.4.2, we observe that the above sample complexity
is near minimax-optimal, in almost the full range of uncertainty.

• Solving RMDPs with general Lp norms can be easier than solving standard RL.
Recall that the sample complexity of solving standard RL with a generative model (Agarwal
et al. 2020, Li et al. 2024, Azar et al. 2013a) is: Õ

(
SA

(1−γ)3ε2

)
. Comparing this with the sample

complexity in (3.18), it highlights that solving robust MDPs (cf. (3.18)) using any norm as the
divergence function for the uncertainty set is not harder than (and is sometimes easier than) solving
standard RL (cf. (3.4.1)). Specifically, when the uncertainty level is small σ ≲ 1− γ, the sample
complexity of solving robust MDPs matches that of standard MDPs. While when the uncertainty
level is relatively larger 1 − γ ≲ σ ≤ σmax, the sample complexity of solving robust MDPs is
smaller than that of standard MDPs by a factor or σ

1−γ , which goes to 1
1−γ when σ = O(1).

• Comparisons with prior arts. In Figure 3.1, we illustrate the comparisons with two state-of-
the-arts (Clavier et al. 2023, Shi et al. 2023) which use some divergence functions belonging to the
class of general norms considered in this work. In particular, Shi et al. (2023) achieved the state-of-
the-art minimax-optimal sample complexity Õ

(
SA

(1−γ)2 max{1−γ,σ}ε2

)
for specific L1 norm (or called

total variation distance). In this work, we attain near minimax-optimal sample complexity for any
general norm (including L1) which matches the one in Shi et al. (2023) when narrowing down to L1
norm. Note that in TV case, Cg = 1. This reveals that the finding of robust MDPs can be easier
than standard MDPs (Shi et al. 2023) in terms of sample requirement does not only hold for L1
norm, but for any general norm. In addition, compared to Clavier et al. (2023) which focuses on Lp

Chapter 3. Near-Optimal Distributionally Robust Reinforcement Learning with General Lp
Norms 70

norms for any 1 ≤ p ≤ ∞: when 1−γ ≲ σ ≤ σmax, we improve the sample complexity Õ(SA
(1−γ)4ε2)

to Õ(SA
(1−γ)2σε2) by at least a factor of 1

1−γ ; otherwise, we match the results in Clavier et al. (2023).

Burn-in Condition, Cg factor and TV case : In Th. 3.4.1 and 3.4.3 we need a sufficiently
small level of accuracy ϵ ≤ (max{1− γ,Cgσ})/(Cs∥1S∥), to obtain the sample complexity. This
type of condition is usual in MDPS analysis Shi et al. (2022) and is equivalent to burn in term.
Moreover, the quantity CS exists (see 3.2.1) and for example, considering Lp norms, CS is
bounded by S1/q. (See (A.203)) and the product CS∥1S∥ is upper bounded by S for L2 norm.
Moreover, note that our theorem for the smooth norm is also true for TV which is not C2 and
has the same complexity as (Shi et al. (2023). In this case, the burn-in condition is not needed.
(See Lemma 7.3.3). Finally, the factor Cg = 1/mins ∥es∥ is norm dependent and depends on
how big the vector es0 is in the considered norm. Note for classical Lp this quantity is bigger
than 1, which reduces the sample complexity.

3.4.2 s-rectangular uncertainty set with general norms

To continue, we move on to the case when the uncertainty set is constructed under s-rectangularity
smooth norm. The following theorem presents the sample complexity upper bound for learning
an ϵ-optimal policy for RMDPs with s-rectangularity. A proof is shown in Appendix 7.2.

Theorem 3.4.3 (Upper bound for s-rectangularity). Consider the uncertainty set U s,σ̃
∥·∥ (·) with

s-rectangularity. Consider any discount factor γ ∈
[

1
4 , 1
)
, the rescaled uncertainty level σ̃ =

σ∥1A∥, and denote σ̃max := ∥1A∥,maxp1,p2∈∆(S) ∥p1 − p2∥ and δ ∈ (0, 1). Let π̂ be the output
policy of an arbitrary optimization algorithm with error εopt. , with probability at least 1− δ, one
has for any ε ∈ (0,

√
1/max{1− γ,Cg mins ∥πs∥∗ σ}],

∀s ∈ S : V ⋆,σ̃(s)− V π̂,σ̃(s) ≤ ε+ 8εopt
1− γ

as long as the total number of samples obeys

NSA ≳
c4SA

(1− γ)2ε2 min
{

1
max{1− γ,Cgσ}

,
1

σCg min
s∈S

{
∥π∗

s∥∗ ∥1A∥, ∥π̂s∥∗ ∥1A∥
}}+ c5SACS ∥1S∥∗

(1− γ)2ϵ
.

(3.20)

For a sufficiently small accuracy, ϵ ≤ (max{1− γ,Cgσ̃})/(Cs∥1S∥) the sample complexity is

NSA ≳
c6SA

(1− γ)2ε2 min
{

1
max{1− γ,Cgσ}

,
1

σCg mins∈S
{
∥π∗

s∥∗ ∥1A∥, ∥π̂s∥∗ ∥1A∥
}} (3.21)

where π̂s ∈ ∆A denote the policy of the empirical RMPDs at state s, π∗
s ∈ ∆A the optimal policy

given s of the true RMPDs, ∥.∥∗ the dual norm and c4, c5, c6 are universal constant. Note that
this result is also true for TV without the term depending on smoothness CS . In addition, we
provide the lower bounds for a representative divergence function L∞ norm in the following.
Note that for classical Lp, CS = S1/q(p − 1) and Cg can be lower bounded by 1. A proof is
provided in Appendix 9.

Theorem 3.4.4 (Lower bound for s-rectangularity). Consider the uncertainty set U s,σ̃
L∞

(·) as-
sociated with the L∞ norm. Consider any tuple (S,A, γ, σ, ε) and 0 < c0 ≤ 1

8 being any small
enough positive constant, where γ ∈

[
1
2 , 1
)
, and ε ∈

(
0, c0

256(1−γ)
]
. Correspondingly, we denote the

71 3.5. Conclusion

accessible maximal uncertainty level for U s,σ̃
L∞

(·) as σ∞
max := maxp1,p1∈∆(S)A ∥p1− p2∥∞ = 1. Then

we can construct a collection of infinite-horizon RMDPs ML∞ defined by the uncertainty set
with U s,σ̃

L∞
(·) so that for any σ ∈ (0, σ∞

max(1− c0)], and any dataset with in total Nall independent
samples for all state-action pairs over the nominal transition kernel (for any RMDP inside
ML∞), one has

inf
π̂

max
M∈ML∞

{
PM

(
max
s∈S

[
V ⋆,σ(s)− V π̂,σ(s)

]
> ε

)}
≥ 1

8 , (3.22)

provided that for c8 is a universal positive constant,

Nall ≤
c8SA

(1− γ)2 max{1− γ, σ̃}ε2 . (3.23)

with PM the probability when the RMDP is M, and the infimum is taken over all estimators π̂.

Now we can present some implications of Theorem 3.4.3 and Theorem 3.4.4.

• Robust MDPs with s-rectangularity are at least as easy as sa-rectangularity. The-
orem 3.4.3 shows that the sample complexity of solving RMDPs with s-rectangularity does
not exceed the order of Õ

(
SA

(1−γ)2 max{1−γ,Cgσ}ε2

)
. This matches the sample complexity for

sa-rectangularity (cf. (3.18)) and indicates that although s-rectangular RMDPs are of a more
complicated formulation, solving s-rectangular RMDPs is at least as easy as solving sa-rectangular
RMDPs in terms of the sample complexity. In addition to the worst-case sample complexity
upper bound, Theorem 3.4.3 also provides a data and instance-dependent sample complexity
upper bound for s-rectangular RMDPs (cf. in (3.20)).Taking the divergence function ∥ · ∥ = Lp
for instance, the data and instance-dependent sample complexity upper bound isÕ

(
SA

(1−γ)2ε2
1

max{1−γ,σ}

)
if π̂s(a | s) = π∗

s(a | s) = 1
A , ∀(s, a) ∈ S ×A

Õ
(

SA
(1−γ)2ε2

1
max{1−γ,σA1/p}

)
if ∥π̂s(· | s)∥0 = ∥π∗

s(· | s)∥0 = 1, ∀s ∈ S

where ∥.∥0 corresponds to the total number of nonzero elements in a vector.The intuition beyond
this theorem is that when the policy becomes proportional to uniform, the uncertainty budget of
the s-rectangular MDPs is equally spread into all actions, and we retrieve the sa-rectangular case.
When the policy becomes deterministic, all the uncertainty budget concentrates on one action.
In this case, most of the actions are not robust except one, and the problem is simpler than
classical MDP for this only specific action. An illustration of this result can be found in Fig. 3.2.

• Comparisons with prior arts. In Figure 3.1, we illustrate the comparisons with Clavier et al.
(2023) which use Lp norms functions belonging to the class of general norms considered in this work.
We do not compare in this section to Yang et al. (2021) as it is not anymore state-of-the-art with
regard to the work of Clavier et al. (2023). In particular, the latest achieves in the s-rectangular
case at sample complexity of Õ

(
SA

(1−γ)3ε2

)
in the regime where σ̃ ≲ 1−γ. In this regime, our result

is the same but more general but in the regime where σ̃ ≳ 1− γ, they achieve sample complexity
of Õ

(
SA

(1−γ)4ε2

)
which is bigger than our result Õ

(
SA

(1−γ)2 max{1−γ,σ̃}ε2

)
by a factor at least 1

1−γ .

3.5 Conclusion

This work refined sample complexity bounds to learn robust Markov decision processes when the
uncertainty set is characterized by an general Lp metric, assuming the presence of a generative

Chapter 3. Near-Optimal Distributionally Robust Reinforcement Learning with General Lp
Norms 72

model. Our findings not only strengthen the current knowledge by improving both the upper
and lower bounds, but also highlight that learning s-rectangular MDPs is less challenging in
terms of sample complexity compared to classical sa-rectangular MDPs. This work is the first to
provide results with a minimax bound, as prior results concerning s-rectangular cases were not
minimax optimal. Additionally, we have established the minimax sample complexity for RMDPs
using a general Lp norm, demonstrating that it is never larger than that required for learning
standard MDPs. Our research identifies potential avenues for future work, such as exploring the
characterization of tight sample complexity for RMDPs under a broader family of uncertainty
sets, such as those defined by f -divergence. It would be highly desirable for a more unified
theoretical foundation, as the distance between probability measures is more natural to define
using divergence. Moreover, it would be interesting to focus on the finite-horizon Setting and
linear setting, as our current analytical framework opens the door for potential extensions to
address finite-horizon RMDPs. Such an extension would contribute to a more comprehensive
understanding of tabular cases. Finally, the case of linear MDPs would be interesting to explore.

Part II

Practical Robust Reinforcement
Learning

4

Ch
ap

te
r

Robust Reinforcement Learning with
Distributional Risk-averse formulation

Contents
4.1 Introducion . 75
4.2 Robust formulation in greedy step of AVI. 78
4.3 Algorithms based on Distributional RL 80

4.3.1 Distributional RL using quantile representation 80
4.3.2 Mean-standard deviation RL with discrete action space 80
4.3.3 Mean-standard deviation Maximum Entropy RL for continuous action

space . 82
4.4 Experiments . 83

4.4.1 Results on continuous action spaces . 83
4.4.2 Results on discrete action spaces . 84

4.5 Conclusion of Chapter 4 . 85

Ever tried. Ever failed. No matter. Try again. Fail again. Fail better.
Samuel Beckett, Worstward Ho

4.1 Introducion

The classical Reinforcement Learning (RL)Sutton and Barto (2018) problem using Markov
Decision Processes (MDPs) modelization gives a practical framework to solve sequential decision
problems under uncertainty of the environment. However, for real-world applications, the final
chosen policy can sometimes be very sensitive to sampling errors, inaccuracy of the model
parameters, and definition of the reward.

This problem motivates robust Reinforcement Learning, aiming to reduce such sensitivity
by taking to account that the transition and/or reward function (P, r) may vary arbitrarily
inside a given uncertainty set. The optimal solution can be seen as the solution that maximizes
a worst-case problem in this uncertainty set or the result of a dynamic zero-sum game where
the agent tries to find the best policy under the most adversarial environment (Abdullah et al.
2019). In general, this problem is NP-hard (Wiesemann et al. 2013) due to the complex max-min

Chapter 4. Robust Reinforcement Learning with Distributional Risk-averse formulation 76

problem, making it challenging to solve in a discrete state action space and to scale to a continuous
state action space.

Many algorithms exist for the tabular case for Robust MDPs with Wasserstein constraints
over dynamics and reward such as Yang (2017), Petrik and Russel (2019), Grand-Clément and
Kroer (2020a;b) or for L∞constrained S-rectangular Robust MDPs (Behzadian et al. 2021). Here
we focus on a more general continuous state space S with a discrete or continuous action space
A and with constraints defined using f -divergence.

Robust RL (Morimoto and Doya 2005) with continuous action space focuses on robustness in
the dynamics of the system (changes of P) and has been studied in Abdullah et al. (2019), Singh
et al. (2020), Urṕı et al. (2021), Eysenbach and Levine (2021) among others. Eysenbach and
Levine (2021) tackles the problem of both reward and transition using Max Entropy RL, whereas
the problem of robustness in action noise perturbation is presented in Tessler et al. (2019). Here,
we tackle the problem of robustness through dynamics of the system..

In this paper, we show that it is possible to tackle a Robust Distributional Reinforcement
Learning problem with f -divergence constraints by solving a risk-averse RL problem, using a
formulation based on mean standard deviation optimization.

The idea beyond that relies on the argument from Robust Learning theory, stating that
Robust Learning under an uncertainty set defined with f -divergence is asymptotically close to
Mean-Variance (Gotoh et al. 2018) or Mean-Standard deviation optimization (Duchi et al. 2016,
Duchi and Namkoong 2018).

In this work, we focus on the idea that generalization, regularization, and robustness are
strongly linked in RL or MDPs as shown in Husain et al. (2021), Derman and Mannor (2020),
Derman et al. (2021), Ying et al. (2021), Brekelmans et al. (2022). We show that is it possible
to improve the Robustness of RL algorithms with variance/standard deviation regularisation.
Moreover, the problem of uncertainty under the distribution of the environment is transformed
into a problem with uncertainty over the distribution of the rewards, which makes it tractable.

Note that our work is related to Smirnova et al. (2019b) as they penalise the expectation by the
variance of returns. However, their approach differs from ours since they use the variance estimate
under a Gaussian assumption of distributions while we use a standard deviation penalization
without any distribution assumptions. Moreover, the idea of robustness in the change of dynamics
is not demonstrated numerically, and the problem tackled is different since they consider close
policy distributions, while we consider dynamic distributions.

The contribution of the work is the following: we motivate the use of standard deviation
penalization and derive two algorithms for discrete and continuous action space that are robust to
changes in dynamics. These algorithms only require one additional parameter tuning, which is the
Mean-Standard Deviation trade-off. Moreover, we show that our formulation using Distributional
Reinforcement Learning is robust to changing transition dynamics in environments with both
discrete and continuous action spaces both in the Mujoco suite and in stochastic environments
derived from Mujoco.

Related topics : Regularised MDPs : Policy Regularisation in RL Geist et al. (2019)
has been studied and led to state-of-the-art algorithms such as PPO and SAC (Schulman
et al. 2017b, Haarnoja et al. 2018b, Vieillard et al. 2020). In these algorithms, an additional
penalisation based on the current policy is added to the classical objective function. The idea is
different, as we penalize our mean objective function using the standard deviation of the return
distribution. Being pessimistic about the distributional state-value function leads to more stable
learning, reduces the variance, and, tends to improve the robustness of systems as demonstrate

77 4.1. Introducion

(Brekelmans et al. 2022). Recent advances in Robust MDPs have shown a link between this field
and Regularised MDPs as in Derman et al. (2021), Kumar et al. (2022).

Distributional RL : Second-order estimation is done using Distributional Reinforcement
Learning (Bellemare et al. 2017, Zhang and Weng Zhang and Weng) using a quantile estimate of
our distribution to approximate our action value function (Dabney et al. 2017; 2018a) with the
QRDQN and IQN algorithms. Distributional state-action function representation is also used
to learn an accurate critic for a policy-based algorithm, such as in Kuznetsov et al. (2020), Ma
et al. (2021), Nam et al. (2021).

Risk-Averse RL : Risk-averse RL aims at minimizing different objectives than the classical
mean optimization e.g. CVaR or other risk measures. For example, Dabney et al. (2018a), Ma
et al. (2021) use distributional RL for optimizing different risk measures. Our goal is to show
the robustness of using risk-averse solutions to our initial problem. Our formulation is close
to mean-variance formulation (Jain et al. 2021, Wang and Zhou 2020) that already exists in
risk-averse RL, although not using a distributional framework that shows highly competitive
performance in a controlled setting.

Pessimism and Optimism in Distributional RL Moskovitz et al. (2021) describes a way
of performing Optimistic / Pessimistic Deep RL using a constructed confidence interval with
the variance of rewards. Their work is close to ours in the pessimistic case but the confidence
interval is expressed in terms of variance of expectation estimate and not using the variance of
the distribution itself. Moreover, they use an adaptative regularizer where we look at the interest
of using a fixed parameter.

Notations: Considering a Markov Decision Process (MDP) (S,A, P, r, γ, ρ), where A is the
action space, S is the state space, P (s′ | s, a) is the reward and transition distribution from state
s to s′ taking action a and γ ∈ (0, 1) is the discount factor. Stochastic policy are denoted
π(a | s) : S → ∆(A) and we consider usually the case where action space is continuous and
action space is either discrete our continuous.

A rollout or trajectory using π from state s using initial action a is defined as the the random
sequence τP,π|s0,a0 = ((s0, a0, r0(s0, a0)) , (s1, a1, r1, r0(s1, a1)) , . . .) with s0 = s, a0 = a, at ∼
π (· | st) and st+1 ∼ P (· | st, at) ; we denote the distribution over rollouts by P(τ) with
P(τ) = ρ (s0)∏T

t=0 P (st+1 | st, at)π (at | st) dτ and usually write τ ∼ P = (P, π). Moreover,
considering the the distribution of discounted cumulative return ZP,π(s, a) = R(τP,π|s,a) with
R(τ) = ∑∞

t=0 γ
trt(st, at), the Q-function QP,π : S × A → R of π is its expected discounted

cumulative return of the distribution

Qπ,P (s, a) := E[Zπ,P (s, a)] = Eτ∼(π,P) [R(τ) | at ∼ π (· | st) , st+1 ∼ P (· | st, at) , s0 = s, a0 = a] .

The initial goal of (RL) also called risk-neutral RL, is to find the optimal policy π∗ where
QP,π

∗(s, a) ≥ QP,π(s, a) for all π and s ∈ S, a ∈ A. Finally, the Bellman operator T π and
Bellman optimal operator T ∗ can be defined as follow :

T πQ(s, a) := r(s, a) + γEs′∼P,a′∼π
[
Q
(
s′, a′)]

T ∗Q(s, a) := r(s, a) + γEs′∼P

[
max
a′

Q
(
s′, a′)] .

Applying either operator from some initial Q0 lead to fixed point Qπ or Q∗ at a geometric
rate as both operators are contractive. Simplifying the notation with regards to s, a, π and P , we
define the set of greedy policies w.r.t. Q called G(Q) = argmaxπ∈Π⟨Q, π⟩. A classical approach

Chapter 4. Robust Reinforcement Learning with Distributional Risk-averse formulation 78

to estimate an optimal policy is Approximate Modified Policy Iteration (AMPI) Scherrer et al.
(2015),

πk+1 ∈ G (Qk)

Qk+1 = (T πk+1)mQk + ϵk+1

which usually reduces to Approximate Value Iteration (AVI, m = 1) and Approximate Policy
Iteration (API,m =∞) as special cases. The term ϵk+1 accounts for errors made when applying
the Belleman Operator.

4.2 Robust formulation in greedy step of AVI.

In this section, we would like to find policy that are robust to change of environment law P as
small variations of P should not affect to much the new policy in the greedy step. In our case
we are not looking at classical greedy step π′ ∈ G(Q) = argmaxπ∈Π⟨Q, π⟩ but at the following
greedy step :

π′ ∈ G(Q) = arg max
π∈Π

⟨min
P

Qπ,P , π⟩

.
With this reformulation, we need to constraint the set of admissible transitions from state-

action to the next state P to get a solution of the problem. In general without constraint, the
problem is NP-Hard and we have to constrain the problem to distributions that are not too far
from the original using distance between distribution such that Wasserstein metric (Abdullah
et al. 2019) or other specific distance where the problem can be simplify (Eysenbach and Levine
2021). Moreover, an explicit form for minP QP,π given a particular divergence our distance
between probability distribution would allow a simplification of the greed step and transforming
this max-min problem into a simple one. In fact, a simplification is possible using f -divergence
Hf to constrain the problem with Φ a closed convex function such that Φ : R→ R ∪ {+∞} and
f(z) ≥ f(1) = 0 for all z ∈ R.

Hf (Q | P) =

∑
i:pi>0 pif

(
qi
pi

)
; ∑

i:pi>0 qi = 1, qi ≥ 0

+∞ otherwise.

This constraint requires qi = 0 if pi = 0 so the measure Q absolutely continuous with respect to

P. The χ2-divergence are a particular case of f -divergence with f(z) = (z − 1)2. For trajectories
τ sampled from distribution P0 = (π, P 0) and looking at distribution P closed to P0 with regards
to χ2-divergence, the minimisation problem reduces to :

min
P∈Dχ2 (P∥P0)≤α

Qπ,P (s, a) = QP
0,π(s, a)− α1/2VP 0 [Z(s, a)]

1
2 . (4.1)

The proof can be found in Appendix 11 for α such that α ≤ V[ZP0]
∥Z̃P0∥2

∞

≤ 1 with Z̃P0 =

ZP0−E[ZP0] the centered return distribution and V[ZP0] the variance of returns. For α > V[ZP0]
∥Z̃P0∥2

∞

,
the equality becomes an inequality, but we still optimize a lower bound of our initial problem.
Defining a new greedy step which is penalized by the standard deviation.

79 4.2. Robust formulation in greedy step of AVI.

Note that this result can be obtained for any α using the same proof as in Iyengar (2005),
Lemma 5, but doing a relaxation of the problem where probabilities of trajectories can be possibly
negative. The main difference with classical RMDPs defined in 3.7 in is that this formulation,
the minimum operator is taken over the probability of the trajectory τ and not only in the
transition kernel of the next state P . Using this formulation, this gives a penalisation (here the
the standard deviation) which depend on the distribution of returns starting from state-action
space (s, a) which is not the case writing classical RMDPs formulation where penalisation are
usually global quantities which does not depend on (s, a). (See Introduction in 3.7. Defining a
new standard deviation return penalised greedy step :

π′ ∈ Gα(Q) = arg max
π∈Π

⟨ min
P∈Dχ2 (P∥P 0)≤α

QP,π, π⟩ = arg max
π∈Π

⟨QP 0,π − α1/2VP 0 [Z(s, a)]
1
2 , π⟩,

we now look at the the current AMPI to improve robustness :

πk+1 ∈ Gα (Qk)

Qk+1 =
(
T πk+1,P

)m
Qk + ϵk+1

Approximate identity like 4.1 for a larger class of Φ-divergence and not only χ2 ca be found
in the work of (Duchi et al. 2016).

Robustness is not present in the evaluation step as we use classical Bellman Operator in
contrast of the work of (Derman et al. 2021) but only in the greedy step. This idea is very closed
to Risk-averse formulation in RL (i.e minimizing risk measure and not only the mean of rewards)
but here the idea is approximate a robustness problem in RL. To do so, standard deviation of
the distribution of the returns must be estimated. Many ways are possible but we will privilege
distributional RL (Bellemare et al. 2017, Dabney et al. 2017; 2018a) which achieve very good
performances in many RL applications. Estimating quantiles of the distribution of return, we
can simply estimate standard deviation using classical estimator of the standard deviation given
the quantiles over an uniform grid {qi(s, a)}1≤i≤n,∀(s, a) ∈ S ×A.

V[Z(s, a)]
1
2 = σ(s, a) =

√√√√ n∑
i=1

(qi(s, a)− q̄(s, a))2

where q̄ is the classical estimator of the mean. A different interpretation of this formulation
could be that taking actions with less variance, we constructing a confidence interval with the
standard deviation of the distribution

Zπ,P (s, a) d= Z̄(s, a)− ασ(s, a) .

This idea is present in classical UCB algorithms (Auer 2002) or pessimism/optimism Deep RL.
Here we construct confidence interval using the distribution of the return and note different
estimates of the Q function such as in Moskovitz et al. (2021), Bai et al. (2022). In the next
section, we derive two algorithms, one for discrete action space and one for continuous action
space using this idea. A very interesting way of doing robust Learning is by doing Max entropy
RL such as in the SAC algorithm. In Eysenbach and Levine (2021), a demonstration that SAC
is a surrogate of Robust RL is demonstrated formally and numerically and we will compare our
algorithm to this method.

Chapter 4. Robust Reinforcement Learning with Distributional Risk-averse formulation 80

4.3 Algorithms based on Distributional RL

To derive our algorithms, estimation the second-order moment of the distribution of return
must be carried out. For discrete action space a variant of QR-DQN (Dabney et al. 2017) with
mean-standard deviation objective is proposed whereas for continuous action space, we propose
a mean-standard TQC algorithm (Kuznetsov et al. 2020) based on soft-actor framework as it as
already show some robustness as a surrogate of Robust RL (Eysenbach and Levine 2021).

4.3.1 Distributional RL using quantile representation

Distributional RL aims at approximating the return random variable Zπ,P (s, a) :=∑∞
t=0 γ

tR (st, at)
with s0 = s, a0 = a and st+1 ∼ P (· | st, at) , at ∼ π (· | st), as the classical RL framework ap-
proximate the expectation of the return or the Q-function, Qπ,P (s, a) := E

[
Zπ,P (s, a)

]
. Many

algorithms and distributional representation fo the critic exits (Bellemare et al. 2017, Dabney
et al. 2017; 2018a) but here we will focus on QR-DQN Dabney et al. (2017) that approximates the
distribution of returs Zπ(s, a) with Zψ(s, a) := 1

M

∑M
m=1 δ

(
θmψ (s, a)

)
, a mixture of atoms-Dirac

delta functions located at θ1
ψ(s, a), . . . , θMψ (s, a) given by a parametric model θψ : S ×A → RM .

Parameters ψ are obtained by minimizing the averaged over the 1-Wasserstein distance
between Zψ and the temporal difference target distribution T π,PZψ̄, where Tπ is the distributional
Bellman operator defined in Bellemare et al. (2017). The control version or optimal operator is
denoted T Zψ̄,

T π,PZ(s, a) = R(s, a) + γZ
(
s′, a′) with s′ ∼ P (· | s, a), a′ ∼ π

(
· | s′)

Considering Z be the space of action-value distributions with finite moments: Z = {Z :
X ×A → P (R)} with E [|Z(x, a)|p] <∞, ∀(x, a), p ≥ 1 Bellemare et al. (2017) show that :∥∥∥ET π,PZ1 − ET π,PZ2

∥∥∥
∞
≤ γ ∥EZ1 − EZ2∥∞

so point wise convergence is exponentially fast for the the mean of the distribution as in the
classical case. According to Dabney et al. (2017), the minimization of the 1-Wasserstein loss
can be done by learning quantile locations for fractions τm = 2m−1

2M ,m ∈ [1..M] via quantile
regression loss, defined for a quantile fraction τ ∈ [0, 1] as :

LτQR(θ) : = EZ̃∼Z

[
ρτ (Z̃ − θ)

]
, with

ρτ (u) = u(τ − I(u < 0)),∀u ∈ R .

Finally, to obtain better gradients when u is small, Huber quantile loss (or asymmetric Huber
loss) can be used:

ρHτ (u) = |τ − I(u < 0)|L1
H(u) ,

where L1
H(u) is a classical Huber loss with parameter 1. The quantile representation has the

advantage of not fixing the support of the learned distribution and is used to represent the
distribution of return in our algorithm for both discrete and continuous action space.

4.3.2 Mean-standard deviation RL with discrete action space

Once the estimation is done, a phase of policy improvement is done using a Q-learning style
algorithm with distributional estimation like QR-DQN (Dabney et al. 2017). The main difference

81 4.3. Algorithms based on Distributional RL

in our case is that we are not taking the expectation in this phase but mean-standard deviation
objective 4.2 in the greedy step estimated using M quantile over a uniform grid on [0, 1]. Formally
we choose actions with less variance to improve robustness using classical empirical estimator
of the variance one the quantiles estimated. However, the estimation step of the algorithm
remain the same than in classical QR-DQN algorithm. Parameters ψ of the quantile network are
classically updated using a stochastic gradient descent where ∇̂ represent a stochastic estimate
of the gradient. Moreover, β controls the learning of the target quantile network parametrised
by ψ̄.

a∗ = arg max
a∈A

ξαZ
π,P (s, a) = arg max

a∈A
E[Zπ,P (s, a)]−

√
αV[Zπ,P (s, a)] (4.2)

Algorithm 4: QR-DQN with Standard Deviation penalisation
Initial critics Zψ, Zψ̄
for each iteration do

for each step of the environment do
collect (st, at, rt, st+1) according to π(at|st) = arg maxa ξαZπ,P (st, at)
D ← D ∪ {(st, at, rt, st+1)}

end for
for each gradient steps do

Sample batch (s, a, r, s′) of D
Take a∗ = arg maxa′ ξαZ

π,P (s′, a′)
yi(s, a)← r + γθiψ (s′, a∗) , i ∈ [1..M]
JZ(ψ) = ED,π

∑m
i,j=1 ρ

H
τj

(
yi(s, a)− θjψ(s, a)

)
ψ ← ψ − λZ∇̂ψJZ (ψ) ,
ψ̄ ← (1− β)ψ̄ + βψ

end for
end for
return critic Zψ, Zψ̄.

Chapter 4. Robust Reinforcement Learning with Distributional Risk-averse formulation 82

4.3.3 Mean-standard deviation Maximum Entropy RL for continuous action
space

We use a Distributional Maximum Entropy framework for continuous action space which is
closed to the TQC algorithm Kuznetsov et al. (2020) which uses an actor-critic framework with
a distributional truncated critic to ovoid overestimation in the estimation with the max operator.
This algorithm is based on a soft-policy iteration where we penalize the target using the entropy
of the distribution. More formally, to compute the target, the principle is to train N approximate
estimate Zψ1 , . . . ZψC of the distribution of returns Zπ where Zψc maps each (s, a) to Zψc(s, a) :=
1
M

∑M
m=1 δ

(
θmψn(s, a)

)
, which is supported on atoms θ1

ψc
(s, a), . . . , θMψc(s, a). Then approximations

Zψ1 , . . . ZψN are trained on the temporal difference target distribution denoted Y (s, a) contructed
as follow. First atoms are pooled into a distributions Zψ1 (s′, a′) , . . . , ZψC (s′, a′) into Z (s′, a′) :={
θmψc (s′, a′) | c ∈ [1..C],m ∈ [1..M]

}
and denote elements of Z (s′, a′) sorted in ascending order

by z(i) (s′, a′), with i ∈ [1..MC]. Then we only keep the kC smallest elements of Z (s′, a′). We
remove outliers of distribution to avoir overestimation of the value function. Finally the atoms
of the target distribution Y (s, a) := 1

kC

∑kC
i=1 δ (yi(s, a)) are computed according to a soft policy

gradient method where we penalised with the log of the policy :

yi(s, a) := r(s, a) + γ
[
z(i)

(
s′, a′)− η log πϕ

(
a′ | s′)] . (4.3)

As in QR-DQN, the 1-Wasserstein distance between each of Zψn(s, a), n ∈ [1..N] and the
temporal difference target distribution Y (s, a) is minimized learning the locations for quantile
fractions τm = 2m−1

2M ,m ∈ [1..M]. Similary, we minimize the loss :

JZ (ψc) = ED,π
[
Lk (st, at;ψc)

]
= ED,π

 1
MkC

M∑
j=1

kC∑
i=1

ρHτj

(
yi(s, a)− θjψc(s, a)

) (4.4)

over the parameters ψn, for each critic. The learning of all quantiles θmψn(s, a) is with
this formulation dependent on all atoms of the truncated mixture of target distributions. To
optimize the actor, the following loss based on KL-divergence denoted DKL is used for soft policy
improvement, where η can be seen as a temperature and needs to be tuned:

Jπ,α(ϕ) = ED

DKL

πϕ (· | s) ∥
exp

(
1
η ξα(θψ (s, ·))

)
D

where D is a constant of normalisation. This expression simplify into :

Jπ,α(ϕ) = ED,π

[
η log πϕ(a | s)− 1

C

C∑
c=1

ξα(θψc(s, a))
]

(4.5)

where s ∼ D, a ∼ πϕ(· | s). Nontruncated estimate of the Q-value are used for policy
optimization to avoid a double truncation, in fact the Z-functions approximate already truncated
future distribution. Finally, η is the entropy temperature coefficient is dynamically adjusted by
taking a gradient step with respect to the loss like in Haarnoja et al. (2018b) :

J(η) = ED,πϕ [(− log πϕ (at | st)−Hη) η]

at every time the πϕ changes. Temperature η decrease if the policy entropy, − log πϕ (at | st), is
higher than Hη and increases η otherwise. The algorithm is summarized as follow :

83 4.4. Experiments

Algorithm 5: TQC with Standard Deviation penalisation
Initialize policy πϕ, critics Zψc , Zψ̄c for c ∈ [1..C]
for each iteration do

for each step of the environment do
collect (st, at, rt, st+1) with policy πϕ
D ← D ∪ {(st, at, rt, st+1)}

end for
for each gradient steps do

Sample batch (s, a, s′, r) of D
yi(s, a)← r(s, a) + γ

[
z(i) (s′, a′)− η log πϕ (a′ | s′)

]
η ← η − λη∇̂ηJ(η)
ϕ← ϕ− λπ∇̂ϕJπ,α(ϕ)
ψc ← ψc − λZ∇̂ψcJZ (ψn) , c ∈ [1..C]
ψ̄c ← βψc + (1− β)ψ̄c, n ∈ [1..C]

end for
end for
return πϕ, critics Zψc , n ∈ [1..C].

Our algorithm is based SAC framework but with many distributional critics to improve
estimation of Q-functions while using mean-standard deviation objective in the policy loss to
improve robustness.

4.4 Experiments

We try different experiments on continuous and discrete action space to demonstrate the interest
of our algorithms for robustness using ξ : Z → E[Z]−α1/2V[Z] 1

2 instead of the mean. The choice
of α is crucial as it determines the degree of penalty in the objective. The more the environment
is penalized, the more a pessimistic action is chosen.

4.4.1 Results on continuous action spaces

For continuous action space, we compare our algorithm with SAC which achieves state-of-the-art
robust control (Eysenbach and Levine 2021) on the Mujoco environment such as Hopper-v3,
Walker-v3 or HalfCheetah-v3. We use a version where the entropy coefficient is adjusted during
learning for both SAC and our algorithm, as it requires less parameter tuning. Moreover, we
show the influence of a distributional critic without a mean-standard deviation greedy step using
α = 0 to demonstrate the advantage of using a distributional critic against the classical SAC
algorithm. We also compare our results to TQC algorithm, varying the penalty α to show that
for the tested environment, there exists a value of α such that prediction are more robust to
change of dynamics.

The interest of our algorithm is best shown in stochastic environments, since it involves
the distributions of returns which are varying in stochastic environments. The only source of
stochasticity in the Mujoco subject is the initial point, so in order to make its environments
stochastic we have noised environments at each step by adding a noise in [−1e−2, 1e−2] to each
action. Since we also compare our algorithm in non-stochastic environments, we differentiate the
two cases by denoting noisy environments by (N) and environments without noise (wN). In
these simulations, variations of dynamics are carried out by moving the relative mass, which is an

Chapter 4. Robust Reinforcement Learning with Distributional Risk-averse formulation 84

influential physical parameter in all environments. All algorithms are trained with a relative mass
of 1 and then tested on new environment where the mass varies from 0.5 to 2. Two phenomena
can be observed for the 3 environments.

First, for all environments in Fig 4.1,4.2, and Fig A12.2 in annex, where performance is
normalized by the maximum of the performance for every curve to highlight robustness and not
only mean-performance. We see that we can find a value of α where the robustness is clearly
improved without deteriorating the average performance. In fact, if a penalty is applied too
strongly, the average performance can be reduced, as in the HalfCheetah-v3 environment. For
Hopper-v3, a α calibrated at 5 gives very good robustness performances, while for Walker2d-
v3, the value is closer to 2. This phenomenon was expected and was in agreement with our
formulation. Moreover, our algorithm outperforms the SAC algorithm for Robustness tasks in all
environments. Tuning of α must be chosen carefully, for example, α is chosen in {0, 1, ..., 5} for
Hopper-v3 and Walker2d-v3 whereas values of α are chosen smaller in {0, 0.1, 0.5.1, 1.5, 2} and
not in a bigger interval. As a rule of thumb for choosing α, we can look at the empirical mean
and variance at the end of the trajectories to see if the environment has rewards that fluctuate a
lot. The smaller the mean/variance ratio, the more likely we are to penalise our environment.
For HalfCheetah, the mean/variance ratio is about approximately 100, so we will favour smaller
penalties than for Walker2d where the mean/variance ratio is about 50 or 10 for Hopper.

The second surprising observation is that penalizing our objective also improves performance
in terms of stability during training and in terms of average performance, especially for Hopper
and Walker2d in Fig 4.4 or sometimes in Fig 4.3. Similar results are present in the work of
(Moskovitz et al. 2021), which gives an interpretation in terms of optimism and pessimism for
environments. This phenomenon is not yet explained, but it is present in environments that are
particularly unstable and have a lot of variance. The variance of the return is a consequence
of the stochasticity of the environment or of the policy. Intuitively, the most favorable settings
are thus the one with the most stochasticity. We have, however, observed that our method
remains interesting in low-stochasticity or non-stochasticity environments even if the policy is
not stochastic. A possible explanation is a better exploration thanks to the pessimistic approach.

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Relative mass

0

500

1000

1500

2000

2500

3000

3500

4000

M
ea

n
Re

wa
rd

SAC
=0
=2
=5

(a) Hopper-v3 (N)

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Relative mass

0

2000

4000

6000

8000

10000

12000

14000

M
ea

n
Re

wa
rd

SAC
=0
=0.5
=2

(b) HalfCheetah-v3 (N)

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Relative mass

0

1000

2000

3000

4000

5000

6000

7000

M
ea

n
Re

wa
rd

SAC
=0
=2
=5

(c) Walker-v3 (N)

Figure 4.1: y-axis : normalised mean ± standard deviation over 20 trajectories. x-axis : relative mass.

4.4.2 Results on discrete action spaces

We test our QRDQN algorithm with standard deviation penalization on discrete action space,
varying the length of the pole in Cartpole-v1 and Acrobot-v1 environments. We observe similar
results for the discrete environment in terms of robustness. Training is done for a length of the
pole equal to the x-axis of the black star on the graph, and then for testing, the length of the
pole is increased or decreased. We show that robustness is increased when we penalised our
distributional critic. We have compared our algorithm to PPO which has shown relatively good

85 4.5. Conclusion of Chapter 4

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Relative mass

0

500

1000

1500

2000

2500

3000

3500

4000

M
ea

n
Re

wa
rd

SAC
=0
=2
=5

(a) Hopper-v3 (wN)

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Relative mass

0

2000

4000

6000

8000

10000

12000

14000

16000

M
ea

n
Re

wa
rd

SAC
=0
=0.5
=2

(b) HalfCheetah-v3 (wN)

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Relative mass

0

1000

2000

3000

4000

5000

6000

M
ea

n
Re

wa
rd

SAC
=0
=2
=5

(c) Walker-v3 (wN)

Figure 4.2: y-axis : mean ± standard deviation over 20 test trajectories. x-axis: relative mass.

0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Number of steps 1e6

500

1000

1500

2000

2500

M
ea

n
Re

wa
rd

Mean Reward of 20 trajectories ± standard deviation
SAC

=0
=2
=5

(a) Hopper-v3 (N)

1 2 3 4 5
Number of steps 1e6

2000

4000

6000

8000

10000

12000

14000

16000

M
ea

n
Re

wa
rd

Mean Reward of 20 trajectories ± standard deviation
SAC

=0
=0.5
=2

(b) HalfCheetah-v3 (N)

1 2 3 4 5
Number of steps 1e6

0

1000

2000

3000

4000

5000

6000

M
ea

n
Re

wa
rd

Mean Reward of 20 trajectories ± standard deviation
SAC

=0
=2
=5

(c) Walker-v3 (N)

Figure 4.3: y-axis : mean over 20 trajectories ± standard deviation in function of timesteps.

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Number of steps 1e6

500

1000

1500

2000

2500

3000

3500

M
ea

n
Re

wa
rd

Mean Reward of 20 trajectories ± standard deviation
SAC

=0
=2
=5

(a) Hopper-v3 (wN)

1 2 3 4 5
Number of steps 1e6

2000

4000

6000

8000

10000

12000

14000

M
ea

n
Re

wa
rd

Mean Reward of 20 trajectories ± standard deviation
SAC

=0
=0.5
=2

(b) HalfCheetah-v3 (wN)

1 2 3 4 5
Number of steps 1e6

0

1000

2000

3000

4000

5000

6000

M
ea

n
Re

wa
rd

Mean Reward of 20 trajectories ± standard deviation
SAC

=0
=2
=5

(c) Walker-v3 (wN)

Figure 4.4: y-axis : mean over 20 trajectories ± standard deviation in function of timesteps.

results in terms of robustness for discrete action space in (Abdullah et al. 2019) as SAC does
not apply to discrete action space. The same phenomenon is observed in terms of robustness
as for continuous environments. However, the improvement in terms of mean performance on
Hopper and Walker2d environments is not observed. This is partly explained by the fact that the
maximum reward is reached in Cartpole and Acrobot quickly. An ablation study can be found
in annex C where we study the impact of penalization on our behavior policy during testing and
on the policy used during learning. It is shown that both are needed in the algorithm.

4.5 Conclusion of Chapter 4

In this Chapter, we have tried to show that by using a mean-standard deviation formulation
to choose our actions pessimistically, we can increase the robustness of our environment for
continuous and discrete environments without adding too much the complexity. A single fixed α
parameter must be tuned to obtain good performance without penalizing the average performance

Chapter 4. Robust Reinforcement Learning with Distributional Risk-averse formulation 86

100

length of the pole

0

100

200

300

400

500

600

M
ea

n
Re

wa
rd

PPO
=0
=5
=7

(a) CartPole-v1 (penal A)

0.5 1.0 1.5 2.0 2.5 3.0 3.5
length of the pole

400

300

200

100

0

M
ea

n
Re

wa
rd

PPO
=0
=1
=2
=3

(b) Acrobot-v1 (penal A)

Figure 4.5: Mean over 20 trajectories varying length’s pole, trained on the x-axis of the black star.

too much. Moreover, for some environments, it is relevant to penalize to increase the average
performance as well when there is many variability in the environment.

About limitations of this work : Convergence of the algorithm to a fix point is not shown
using only for mean-standard deviation penalisation in the greedy step. In fact there is no policy
improvement theorem with this formulation. Moreover it may be difficult to tune α in practice.
In the next Chapter, we will try to deal with these problems, deriving a Deep Robust formulation
with theoretical guarantees, avoiding the problem of estimation of a penalisation and trying to
find more interpretable uncertainty parameter α which can be easily tuned.

5

Ch
ap

te
r

Boostraping Expectile in Reinforcement
Learning

Contents
5.1 Related Work . 90
5.2 Background . 91

5.2.1 Markov Decision Processes . 91
5.2.2 Robust MDPs . 91
5.2.3 Expectiles . 92

5.3 ExpectRL method . 92
5.3.1 Expectile Bellman Operator . 92
5.3.2 The ExpecRL Loss . 93
5.3.3 ExpecRL method with Domain randomisation 94
5.3.4 Auto-tuning of the expectile α using bandit 94

5.4 Empirical Result on Mujoco . 95
5.5 Empirical Results on Robust Benchmark 96
5.6 Conclusion and perspectives . 98

Pessimism is a desirable concept in many Reinforcement Learning (RL) algorithms to stabilize
the learning and get an accurate estimation of the value function. This idea is developed in Double
Q-learning (Hasselt 2010), an RL technique designed to address the issue of overestimation bias
in value estimation, a common challenge in Q-learning and related algorithms. Overestimation
bias occurs when the estimated values of actions are higher than their true values, potentially
leading to a suboptimal policy. By maintaining two sets of Q-values and decoupling action
selection from value estimation, Double Q-learning provides a more accurate and less optimistic
estimate of the true values of actions. In general, Double Q-learning enhances the stability of
the learning process and these principles can be extended to deep RL known as Double Deep
Q-Networks (DDQN), a successful approach in various applications (Van Hasselt et al. 2016).
Pessimism also appears in the twin critic approach, the equivalent of Double Q-learning for
continuous action spaces, which requires training two critics to select the most pessimistic one.
Many state-of-the-art RL algorithms are based on this method, such as TD3 (Fujimoto et al.
2018) that uses this method to improve on DDPG (Lillicrap et al. 2015) and SAC (Haarnoja
et al. 2018a) that uses this trick to stabilize the learning of Q-functions and policies.

The idea of pessimism is also central in Robust RL (Moos et al. 2022), where the agent tries to
find the best policy under the worst transition kernel in a certain uncertainty space. It has been
introduced first theoretically in the context of Robust MDPs (Iyengar 2005, Nilim and El Ghaoui
2005) (RMDPs) where the transition probability varies in an uncertainty (or ambiguity) set.

Chapter 5. Boostraping Expectile in Reinforcement Learning 88

Hence, the solution of robust MDPs is less sensitive to model estimation errors with a properly cho-
sen uncertainty set, as RMDPs are formulated as a max-min problem, where the objective is to find
the policy that maximizes the value function for the worst possible model that lies within an uncer-
tainty set around a nominal model. Fortunately, many structural properties of MDPs are preserved
in RMDPs (Iyengar 2005), and methods such as robust value iteration, robust modified policy iter-
ation, or partial robust policy iteration (Ho et al. 2021) can be used to solve them. It is also known
that the uncertainty in the reward can be easily tackled while handling uncertainty in the transition
kernel is much more difficult (Kumar et al. 2022, Derman et al. 2021). Finally, the sample com-
plexity of RMDPs has been studied theoretically (Yang et al. 2021, Shi and Chi 2022, Clavier et al.
2023, Shi et al. 2023). However, these works usually assume having access to a generative model.

Robust RL (Moos et al. 2022) tries to bridge a gap with real-life problems, classifying its algo-
rithms into two distinct groups. The first group engages solely with the nominal kernel or the cen-
ter of the uncertainty set. To enhance robustness, these algorithms often adopt an equivalent risk-
averse formulation to instill pessimism. For instance, Clavier et al. (2022) employ mean-standard
deviation optimization through Distributional Learning to bolster robustness. Another strategy in-
volves introducing perturbations on actions during the learning process, as demonstrated by Tessler
et al. (2019), aiming to fortify robustness during testing. Another method, known as adversarial
kernel robust RL (Wang et al. 2023), exclusively samples from the nominal kernel and employs
resampling techniques to simulate the adversarial kernel. While this approach introduces a novel
paradigm, it also leads to challenges associated with poor sample complexity due to resampling and
requiring access to a generative model. Despite this drawback, the adversarial kernel robust RL
paradigm offers an intriguing avenue for exploration and development in the realm of robust RL. Fi-
nally, policy gradient (Kumar et al. 2023, Li et al. 2023) in the case of Robust MDPs is also an alter-
native. A practical algorithm using robust policy gradient with Wasserstein metric is proposed by
Abdullah et al. (2019), but this approach requires having access to model parameters which are usu-
ally not available in a model-free setting. The second category of algorithms engages with samples
within the uncertainty set, leveraging available information to enhance the robustness and general-
ization of policies to diverse environments. Algorithms within this category, such as IWOCS (Zoui-
tine et al. 2023), M2TD3 (Tanabe et al. 2022b), M3DDPG (Li et al. 2019a), and RARL (Pinto et al.
2017) actively interact with various close environments to fortify robustness in the context of RL.

In all these settings, the idea of pessimism is central. We propose here a new simple form of
pessimism based on expectile estimates that can be plugged into any RL algorithm. For a given
algorithm, the only modification relies on the critic loss in an actor-critic framework or in the
Q-learning loss for Q-function based algorithms. Given a target y (r, s′) = r + γQϕ,targ (s′, π(s′))
with reward r, policy π, we propose to minimize

L (ϕ,D) = E
(s,a,r,s′)∼D

[
Lα2
(
Qϕ(s, a)− y

(
r, s′))] ,

where Lτ2 is the expectile loss defined in Section 5.2.3. For α = 1/2, the expectile coincides with
the classical mean, and we recover the classical L2 loss of most RL algorithms. We denote this
modification as ExpectRL. In many RL algorithms, we are bootstrapping the expectation of the
Q-function over the next state, by definition of the classical Bellman equation.

Our method ExpectRL is equivalent to bootstrapping the expectile and not the expectation
of the Q value. Bootstraping expectiles still leads to an algorithm with the contraction mapping
property for the associated Expectile Bellman Operator, but adds pessimism by giving more
weight to the pessimistic next state compared to a classical expectation (see Section 5.2.3).

The ExpectRL modification is relevant in the context of the twin critic approach as when
employing this method, the challenge arises in effectively regulating the level of pessimism

89

through the application of the twin critic method, which remains heuristic for continuous action
spaces, although it has been studied in the discrete case by Hasselt (2010). Furthermore, the
acquisition of imprecise Q functions has the potential to yield detrimental outcomes in practical
applications, introducing the risk of catastrophic consequences. Using the ExpectRL method,
the degree of pessimism in learning the value or Q function is controlled through the parameter
α, and our first question is:

Can we replace the learning of two critics in the twin critic method, using only a simple
expectile bootstrapping?

In the Robust RL setting, ExpectRL can also be beneficial as by nature expectiles are
a coherent, convex risk measure, that can be written as a minimum of an expectation over
probability measure on a close convex set (Delbaen 2002). So implicitly bootstrapping an
expectile instead of an average leads to a robust RL algorithm. Compared to many Robust RL
algorithms, our method is simple in the sense that the α-expectile is more interpretable and easy
to choose than a penalization or trade-off parameter in mean-standard deviation optimization
(Clavier et al. 2022). ExpectRL has the advantage of being computationally simple compared to
other methods, as it uses all samples, compared to the work of Wang et al. (2023), that needs
resampling to induce robustness. Finally, our method is simple and can be adapted to practical
algorithms, compared to robust policy gradient methods such as Kumar et al. (2023), Li et al.
(2023). Moreover, while these algorithms can be considered more mathematically grounded and
less heuristic, the second group with IWOCS, M2DTD2, RARL (Zouitine et al. 2023, Tanabe
et al. 2022b, Li et al. 2019a, Pinto et al. 2017) tends to rely on heuristic approaches that exhibit
practical efficacy on real-world benchmarks. This dichotomy prompts the question:

Can we leverage ExpectRL method as a surrogate for Robust RL and formulate robust RL
algorithms that are both mathematically founded and requiring minimal parameter tuning?

By extending expectile bootstrapping (ExpectRL) with sampling from the entire uncertainty
set using domain randomization (DR), our approach bolsters robustness, positioning itself compet-
itively against the best-performing algorithms. Notably, our algorithm incurs low computational
costs relatively to other algorithms and requires minimal or no hyperparameter tuning. Our
contributions are the following.

Our first contribution, is to introduce ExpectRL, and demonstrate the efficacy of that
method as a viable alternative to the twin critic trick with L2 loss across diverse environments.
This substitution helps empirically control of the overestimation in the Q-function, thereby
reducing the computational burden associated with the conventional application of the twin trick,
which entails learning two critics.

The second contribution of our work lies in establishing that expectile bootstrapping or
ExpectRL facilitates the development of straightforward Deep Robust RL approaches. These
approaches exhibit enhanced robustness compared to classical RL algorithms. The effectiveness of
our approach combining ExpectRL with DR is demonstrated on various benchmarks and results
in an algorithm that closely approaches the state of the art in robust RL, offering advantages
such as lower computational costs and minimal hyperparameters to fine-tune.

Our third contribution introduces an algorithm, AutoExpectRL that leverages an automatic
mechanism for selecting the expectile or determining the degree of pessimism. Leveraging bandit
algorithms, this approach provides an automated and adaptive way to fine-tune the expectile

Chapter 5. Boostraping Expectile in Reinforcement Learning 90

parameter, contributing to the overall efficiency and effectiveness of the algorithm.

5.1 Related Work

TD3 and twin critics. To tackle the problem of over-estimation of the value function,
TD3 algorithm (Fujimoto et al. 2018) algorithm uses two critics. Defining the target ymin as
ymin (r, s′) = r+γmini=1,2Qϕi,targ (s′, π (s′)) , both critics are learned by regressing to this target,
such that, for i ∈ {1, 2},

L (ϕi,D) = E
(s,a,r,s′,d)∼D

(
Qϕi(s, a)− ymin

(
r, s′))2 .

Our approach is different as we do not consider the classic L2 loss and only use one critic. We
will compare ExpectRL to the classic TD3 algorithm both with twin critics and one critic to
understand the influence of our method.

Expectiles in Distributional RL. Expectiles have found application within the domain of
Distributional RL (RL), as evidenced by studies such as (Rowland et al. 2019, Dabney et al.
2018b, Jullien et al. 2023). It is crucial to note a distinction in our approach, where we specifically
focus on learning a single expectile to substitute the conventional L2 norm. This diverges from
the methodology adopted in these referenced papers, where the entire distribution is learned
using different expectiles. Moreover, they do not consider expectile statistics on the same random
variable as they consider expectiles of the full return.

Expectile in Offline RL and the IQL algorithm . Implicit Q-learning (IQL) (Kostrikov
et al. 2021) in the context of offline RL endeavors to enhance policies without the necessity of
evaluating actions that have not been encountered. Like our method, IQL employs a distinctive
approach by treating the state value function as a random variable associated with the action,
but achieves an estimation of the optimal action values for a state by utilizing a state conditional
upper expectile. In ExpectRL, we employ lower expectiles to instill pessimism on the next state
and approximate a minimum function, contrasting with the conventional use of upper expectiles
for approximating the maximum in the Bellman optimality equation.

Risk-Averse RL. Risk-averse RL, as explored in studies like Pan et al. (2019), diverges from
the traditional risk-neutral RL paradigm. Its objective is to optimize a risk measure associated
with the return random variable, rather than focusing solely on its expectation. Within this
framework, Mean-Variance Policy Iteration has been considered for optimization, as evidenced by
Zhang et al. (2021), and Conditional Value at Risk (CVaR), as studied by Greenberg et al. (2022).
The link between Robust and Risk averse MDPS has been highlighted by Chow et al. (2015) and
Zhang et al. (2023) who provide a mathematical foundation for risk-averse RL methodologies,
emphasizing the significance of coherent risk measures in achieving robust and reliable policies.
Our method lies in risk-averse RL as expectiles are a coherent risk measure (Zhang et al. 2023),
but to the best of our knowledge, the expectile statistic has never been considered before for
tackling robust RL problems.

Regularisation and robustness in RL. Regularization plays a pivotal role in the context
of Markov Decision Processes (MDPs), as underscored by Derman et al. (2021) or Eysenbach
and Levine (2021), who have elucidated the pronounced connection between robust MDPs and
their regularized counterparts. Specifically, they have illustrated that a regularised policy during

91 5.2. Background

interaction with a given MDP exhibits robustness within an uncertainty set surrounding the MDP
in question. In this work, we focus on the idea that generalization, regularization, and robustness
are strongly linked in RL or MDPs as shown by Husain et al. (2021), Derman and Mannor (2020),
Derman et al. (2021), Ying et al. (2021), Brekelmans et al. (2022). The main drawback of this
method is that it requires tuning the introduced penalization to improve robustness, which is not
easy in practice as it is very task-dependent. The magnitude of the penalization is not always
interpretable compared to α, the value of the expectile.

5.2 Background

5.2.1 Markov Decision Processes

We first define Robust Markov Decision Processes (MDPs) as MΩ = {Mω}ω∈Ω, with Mω =
{S,A, Pω, P 0

ω , rω, γ} the MDP with specific uncertainty parameter ω ∈ Ω. The chosen state
space S and action space A are subsets of real-valued vector spaces in our setting. The transition
probability density Pω : S × A × S → R, the initial state probability density P 0

ω : S → R, and
the immediate reward rω : S × A → R depend on ω. Moreover, we define Ps,a,w the vector
of Pω(s, a, .). The discount factor is denoted by γ ∈ (0, 1). Let πθ : S → A be a policy pa-
rameterized by θ ∈ Θ and π∗ the optimal policy. Given an uncertainty parameter ω ∈ Ω, the
initial state follows s0 ∼ P 0

ω . At each time step t ⩾ 0, the agent observes state st, selects action
at = πθ (st), interacts with the environment, and observes the next state st+1 ∼ Pω (· | st, at),
and the immediate reward rt = rω (st, at). The discounted return of the trajectory starting from
time step t is Rt = ∑

k⩾0 γ
krt+k. The action value function Qπθ(s, a, ω) and optimal action value

Q∗(s, a, ω) under ω is the expectation of Rt starting with st = s and at = a under ω; that is,

Qπθ,P (s, a, ω) = EPω ,πθ [Rt | st = s, at = a] , Q∗,P (s, a, ω) = EPω ,π∗ [Rt | st = s, at = a] ,

where E is the expectation. Note that we introduce ω to the argument to explain the Q-value
dependence on ω. Lastly, we define the value function as

V πθ,P (s, ω) = EPω ,πθ [Rt | st = s] , V ∗,P (s, ω) = EPω ,π∗ [Rt | st = s] .

In the following, we will drop the ω subscript for simplicity and define the expectile (optimal)
value function, that follows the recursive Bellman equation

V π,P (s) = vπ(s) = Ea∼π(·|s)[r(s, a) + γEPsa [V π,P]︸ ︷︷ ︸
≜Qπ,P s,a)

] , (5.1)

V ∗,P (s) = max
a∈A

(r(s, a) + γEPsa [V ∗,P]︸ ︷︷ ︸
≜Q∗,P (s,a)

)) . (5.2)

Finally, we define the classical Bellman Operator and optimal Bellman Operator that are
γ-contractions, so iteration of these operators leads V π,P or V ∗,P :

T π,PV (s) :=
∑
a

π(a|s)(r(s, a) + γEPsa [V]) (5.3)

T ∗,PV (s) := T π∗,PV (s) = max
a

(r(s, a) + γEPsa [V]) . (5.4)

5.2.2 Robust MDPs

Once classical MDPs are defined, we can define robust (optimal) Bellman operators T πU and T ∗
U ,

T πU V (s) := min
P∈U
T π,PV (s), T ∗

U V (s) := max
π∈∆(A)

min
P∈U
T π,PV (s), (5.5)

Chapter 5. Boostraping Expectile in Reinforcement Learning 92

where P belongs to the uncertainty set U . The optimal robust Bellman operator T ∗
U and robust

Bellman operator T πU are γ-contraction maps for any policy π (Iyengar 2005, Thm. 3.2) if the
uncertainty set U is a subset of ∆(S) where ∆(S) it the simplex of |S| elements so that the transi-
tion kernel is valid. Finally, for any initial values V π

0 , V
∗

0 , sequences defined as V π
n+1 := T πUV

π
n and

V ∗
n+1 := T ∗

UV
∗
n converge linearly to their respective fixed points, that is V π

n → V π
U and V ∗

n → V ∗
U .

5.2.3 Expectiles

Let’s first define expectiles. For α ∈ (0, 1) and X a random variable, the α-expectile is defined as
mα(X) = arg minm Ex[Lα2 (x−m)] with

Lα2 (u) = |α− 1{u<0}|u2 = αu2
+ + (1− α)u2

−,

where u+ = max(u, 0) and u− = max(−u, 0). We can recover the classical mean with m 1
2
(X) =

E[X] as L1/2
2 (u) = u2 .Expectiles are gaining interest in statistics and finance as they induce the

only law-invariant, coherent (Artzner et al. 1999) and elicitable (Gneiting 2011) risk measure.
Using the coherent property representation (Delbaen 2000), one has that ρ : L∞ → R is a
coherent risk measure if and only if there exists a closed convex set P of P -absolutely continuous
probability measures such that ρ(X) = infQ∈P EQ[X],∀X ∈ L∞. with L∞ the vector space of
essentially bounded measurable functions with the essential supremum norm. The uncertainty set
induced by expectiles as been described by Delbaen (2013) as mα(X) = minQ∈E EQ[X] such as

E =

Q ∈ P | ∃η > 0, η
√

α

1− α ≤
dQ

dP
≤

√
(1− α)
α

η

 (5.6)

where we define dQ
dP as the Radon-Nikodym derivative of Q with respect to P . Here, the uncer-

tainty set corresponds thus to a lower and upper bound on dQ
dP with a quantity depending on

the degree of uncertainty. For α = 1/2, the uncertainty set becomes the null set and we retrieve
the classical mean. This variational form of the expectile will be useful to link risk-sensitive and
robust MDPs formulation in the next section.

5.3 ExpectRL method

First, we introduce the Expectile Bellman Operator and then we will explain our proposed
method ExpectRL and AutoExpectRL that work both in classic and robust cases.

5.3.1 Expectile Bellman Operator

In this section, we derive the loss and explain our approach. Recall that for α ∈ (0, 1) and X a
random variable taking value x and following a probability law P , the α-expectile is denoted
mα(X) or mα(P, x) in the following. Writing the classical Bellman operator for q function

T π,PQ(s, a) = r(s, a) + γ⟨Psa, v⟩ = r(s, a) + γEs′∼Psa(·)[V (s′)].

and denoting Vsa the random variable which is equal to V (s′) with probability Psa(s′), it holds
that:

T π,PQ(s, a) = r(s, a) + γm 1
2
(Vsa) = r(s, a) + γm 1

2
(Psa, V).

93 5.3. ExpectRL method

Our method consists instead in considering the following Expectile Bellman operator

TαQ(s, a) = r(s, a) + γmα(Vsa). (5.7)

With α < 1
2 , Eq. (5.7) allows to learn a robust policy, in the sense that it is a pessimistic estimate

about the value we bootstrap according to the value sampled according to the nominal kernel.
Next, we define the expectile value of a given policy and the optimal expectile value as:

V π
α (s) = Ea∼π(·|s)[r(s, a) + γmα(Psa, V π

α)︸ ︷︷ ︸
≜qπα(s,a)

], (5.8)

V ∗
α (s) = max

a∈A
(r(s, a) + γmα(Psa, V ∗

α︸ ︷︷ ︸
≜q∗

α(s,a)

)). (5.9)

With α = 1
2 , we retrieve the standard Bellman equations but we consider α < 1

2 for the robust
case. Finally, we define (optimal) expectile Bellman Operator as:

T παV (s) =
∑
a

π(a|s)(r(s, a) + γmα(Psa, V)).

T ∗
αV (s) = max

a
(r(s, a) + γmα(Psa, V)).

Theorem 5.3.1. The (optimal) Expectile Bellman Operators are γ-contractions for the sup
norm. (proof in Appx. 16).

So as T πα and T ∗
α are γ-contractions, it justifies the definition of fixed point V π

α and V ∗
α .

The central idea to show that expectile bootstrapping or ExpectRL is implicitly equivalent to
Robust RL comes (Zhang et al. 2023) where we try to estimate the optimal robust value function
V ∗

E = maxπ minQ∈E V
π,Q.

Theorem 5.3.2. The (optimal) Expectile value function is equal to the (optimal) robust value
function

V ∗
α (s) = V π

E := max
π

min
Q∈E

V π,Q, V π
α (s) = V π

E := min
Q∈E

V π,Q (5.10)

where E is defined in 5.2.3. Proof can be found in 16.2. Note that his formulation does not
converge to the expectile of the value distribution but to V ∗

E the robust value function. Moreoever,
for α > 1/2, Now that expectile operators are defined, we will define the related loss.

5.3.2 The ExpecRL Loss

In this section, we present the method more from a computational and practical point of view.
As stated before, this method can be plugged into any RL algorithm where a Q-function is
estimated, which included any Q-function-based algorithm or some actor-critic framework during
the critic learning. For a given algorithm, the only modification relies on modifying the L2 loss
in the Q-value step by the Expectile loss. Given a target y (r, s′) = r + γQϕ,targ (s′, π(s′)) with
reward r, policy π, we propose to minimize

L (ϕ,D) = E
(s,a,r,s′)∼D

[
Lα2
(
Qϕ(s, a)− y

(
r, s′))] , (5.11)

where Lα2 is the expectile loss defined in Section 5.2.3. For α = 1/2, the expectile coincides with
the classical mean, and we retrieve the classical L2 loss present in most RL algorithms. We will
use TD3 as a baseline and replace the learning of the critic with this loss. The actor loss remains
the same in the learning process. With ExpectRL, only one critic is needed, replacing the double
critic present in this algorithm. We will compare our method with the classical TD3 algorithm
using the twin critic trick and TD3 with one critic to see the influence of our method.

Chapter 5. Boostraping Expectile in Reinforcement Learning 94

5.3.3 ExpecRL method with Domain randomisation

From a practical point of view, many Robust RL algorithms such as M2TD3 (Tanabe et al.
2022b), M3DDPG (Li et al. 2019a), and RARL (Pinto et al. 2017) not only interact with
the nominal environment but also with environments that belong to the uncertainty set U .
Sampling trajectories from the entire uncertainty set allows algorithms to get knowledge from
dangerous trajectories and allows algorithms to generalize better than algorithms that only
sample from the nominal. Receiving information about all environments that need to be robust
during the training phase, the algorithm tends to obtain better performance on minimum per-
formance over these environments on testing. With the same idea of generalization, Domain
Randomisation (DR) (Tobin et al. 2017) focuses not on the worst case under the uncertainty
set but on the expectation. Given a point of the uncertainty set Pω ∈ U , the DR objective is:
π∗

DR = arg maxπ Eω∈Ω,s∼P 0
ω
[V π(s, w)]. In other words, DR tries to find the best policy on average

over all environments in the uncertainty set. The approach we propose to be competitive on
a robust benchmark is to find the best policy using ExpectRL under domain randomization or

π∗
DR,α = arg max

π
Eω∈Ω,s∼P 0

ω
[V π
α (s, ω)] = arg max

π
Eω∈Ω,s∼P 0

ω
[min
Pω∈E

V π,P (s, ω)], (5.12)

where V π
α (s, ω) is the expectile value function under uncertainty kernel Pω and E defined in

Section 5.2.3. Using this approach, we hope to get sufficient information from all the environments
using DR and improve robustness and worse-case performance using ExpectRL. The advantage of
the approach is that any algorithm can be used for learning the policy, sampling from the entire
uncertainty set uniformly and replacing the critic loss of this algorithm learning with ExpecRl
loss. The effectiveness of this algorithm on a Robust benchmark will be conducted in Section
5.3. Getting an algorithm that is mathematically founded and which tries to get the worst-case
performance, the last question is how to choose the degree of pessimism or α ∈ (0, 1/2) in practice.
The following section tries to answer this question using a bandit algorithm to auto-tune α.

5.3.4 Auto-tuning of the expectile α using bandit

In the context of varying levels of uncertainty across environments, the selection of an appropriate
expectile α becomes contingent on the specific characteristics of each environment. To automate
the process of choosing the optimal expectile, we employ a bandit algorithm, specifically the
Exponentially Weighted Average Forecasting algorithm (Cesa-Bianchi and Lugosi 2006). We
denote this method as AutoExpectRL. This formulation adopts the multi-armed bandit problem,
where each bandit arm corresponds to a distinct value of α. We consider a set of D expectiles
making predictions from a discrete set of values {αd}Dd=1. At each episode m, a cumulative reward
Rm is sampled, and a distribution over arms pm ∈ ∆D is formed, where pm(d) ∝ exp (wm(d)).
The feedback signal fm ∈ R is determined based on the arm selection as the improvement in
performance, specifically fm = Rm −Rm−1, where Rm denotes the cumulative reward obtained
in the episode m. Then, wm+1 is obtained from wm by modifying only the dm according to
wm+1(dm) = wm(dm) + η fm

pm(d) where η > 0 is a step size parameter. The exponential weights
distribution over α values at episode m is denoted as pαm. This approach can be seen as a form of
model selection akin to the methodology presented by Pacchiano et al. (2020). Notably, instead
of training distinct critics and actors for each α choice, our approach updates one single neural
network for the critic and one single neural network for the actor. In both critic and actor, neural
networks are composed of one common body and different heads for every value of α, in our case 4
values for {αd}Dd=1 = {0.2, 0.3, 0.4, 0.5}. The critic’s heads correspond to the 4 expectile losses for
different values of α. The actor’s neural network is trained using 4 classical TD3 losses, evaluated
with action chosen by one specific head of the actor. Then in both critic and actor, the 4 losses are
summed, allowing an update of all heads at each iteration. Finally, the sampling of new trajectories

95 5.4. Empirical Result on Mujoco

TD3 Twin Critic TD3 1 critic ExpectRL best Expectile AutoExpectRL

Ant(×103) 3.65 ± 0.33 1.90 ± 0.07 4.46 ± 0.12 4.27 ± 0.25

HalfCheetah(×103) 10.91 ± 0.14 10.36 ± 0.54 10.42 ± 0.13 10.40 ± 0.09

Hopper(×103) 2.88 ± 0.10 2.022 ± 0.09 3.10 ± 0.05 3.03 ± 0.11

W alker(×103) 2.95 ± 0.12 2.35 ± 0.25 3.22 ± 0.11 3.02 ± 0.09

HumanoidStandup(×105) 1.101 ± 0.09 1.087 ± 0.09 1.197 ± 0.05 1.143 ± 0.010

Table 5.1: Expectile vs Twin-critic, Mean performance ± standard error, on 10 train seed

is done using the chosen head of the actor, proposed by the bandit algorithm. More details about
implementation can be found in Appendix 17. Intuitively, when the agent receives a higher reward
compared to the previous trajectory, the probability of choosing this arm is increased to encourage
this arm to be picked again. Note that the use of a bandit algorithm to automatically select
hyperparameters in an RL algorithm has been proposed in other contexts, such as Moskovitz et al.
(2021), Badia et al. (2020). The AutoExpectRL method allows picking automatically expectile
α and reduces hyperparameter tuning. Practical details can be found in Appendix 17 where
we expose the neural network architecture of this problem and associated losses. Note that this
approach does not work in the DR setting as uncertainty parameters change between trajectories in
DR. It is difficult for the algorithm to know if high or low rewards on trajectories come because the
uncertainty parameter leads to small rewards, or if it is due to bad expectile picked at this iteration.

5.4 Empirical Result on Mujoco

The Mujoco benchmark is employed in this experiment due to its significance for evaluating
robustness in the context of continuous environments, where physical parameters may vary. In
contrast, the Atari benchmark very deterministic with discrete action space without physical
parameters cannot change during the testing period. In this section, we compare the performance
of the TD3 algorithm using the twin critic method during learning, only one critic, and finally our
method ExpectRL. The different values of α are {αd}Dd=1 = {0.2, 0.3, 0.4, 0.5}. We can notice that
ExpectRL with α = 0.5 is exactly TD3 with one critic. Here, we only interact with the nominal
and there is no notion of robustness. The mean and standard deviation are reported in Table 5.1,
where we use 10 seeds of 3M steps for training, each evaluated on 30 trajectories. The last column
is our last algorithm, AutoExpectRL. In all environments except HalfCheetah, ExpectRL with fine-
tuning of α has the best score and AutoExpectRL has generally close results. The scores for every
expectiles can be found in Appendix19. In Halcheetah 5.1 environment, it seems that no pessimism
about Q-function is needed and our method ExpectRL is outperformed by TD3 with twin critic.
Similar observations have been observed in Moskovitz et al. (2021) on this environment. Moreover,
results for α = 0.5 and α = 0.4 are very close in Appendix 19 while the variance is reduced using
α = 0.4. Results of Table 5.1 show that it is possible to replace the twin critic approach with
only one critic with the relevant value of pessimism or expectile. Moreover, one can remark in
Appendix 19 that in Hopper, Walker, and Ant environment, high pessimism is needed to get an
accurate Q function and better results, with a value of α = 0.2 or α = 0.3 whereas less pessimism
with α = 0.4 is needed for HumanoidStandup and HalfCheetah. Note that the value of α = 0.5
is never chosen and leads to generally the worst performance as reported in column TD3 with

Chapter 5. Boostraping Expectile in Reinforcement Learning 96

TD3 mean ExpectRL mean Auto mean TD3 worst ExpectRL worst Auto worst

Ant1 2.76 ± 0.5 3.55 ± 0.65 3.55 ± 0.51 2.22 ± 0.5 2.65 ± 0.57 2.71 ± 0.43

Ant2 2.28 ± 0.09 2.50 ± 0.89 2.41 ± 0.77 1.59 ± 0.08 2.49 ± 0.94 2.42 ± 0.51

Ant3 0.31 ± 1.13 0.54 ± 0.08 0.53 ± 0.69 −0.99 ± 1.13 −0.94 ± 0.21 −0.88 ± 0.34

Half1 2.79 ± 0.22 3.05 ± 0.48 2.98 ± 0.19 −0.34 ± 0.04 −0.27 ± 0.19 −0.27 ± 0.21

Half2 2.63 ± 0.20 2.51 ± 0.41 2.58 ± 0.32 −0.53 ± 0.06 −0.223 ± 0.16 −0.23 ± 0.10

Half3 2.47 ± 0.18 2.45 ± 0.42 2.39 ± 0.15 −0.61 ± 0.08 −0.557 ± 0.27 −0.58 ± 0.09

Hopper1 2.39 ± 0.14 2.76 ± 0.04 2.52 ± 0.11 0.4 ± 0.02 0.44 ± 0.01 0.449 ± 0.15

Hopper2 1.54 ± 0.17 2.06 ± 0.01 1.87 ± 0.02 0.21 ± 0.04 0.32 ± 0.03 0.32 ± 0.03

Hopper3 1.15 ± 0.14 1.43 ± 0.02 1.433 ± 0.09 0.14 ± 0.03 0.25 ± 0.22 2.42 ± 0.19

Walker1 3.12 ± 0.2 3.66 ± 0.68 3.58 ± 0.27 0.68 ± 0.12 2.77 ± 0.15 1.99 ± 0.13

Walker2 2.70 ± 0.2 3.98 ± 0.58 3.88 ± 0.61 0.28 ± 0.07 1.36 ± 0.82 1.11 ± 0.15

Walker3 2.60 ± 0.18 3.84 ± 0.45 3.58 ± 0.15 0.17 ± 0.06 0.65 ± 0.12 0.87 ± 0.09

Humanoid1 1.03 ± 0.4 1.12 ± 0.25 1.13 ± 0.26 0.85 ± 0.07 0.97 ± 0.23 0.98 ± 0.24

Humanoid2 1.03 ± 0.3 1.13 ± 0.15 1.11 ± 0.12 0.73 ± 0.07 0.83 ± 0.23 0.80 ± 0.18

Humanoid3 1.01 ± 0.3 1.06 ± 0.13 1.05 ± 0.18 0.57 ± 0.04 0.71 ± 0.21 0.68 ± 0.09

Table 5.2: Result on Robust Benchmark for TD3 ExpectRL and AutoExpectRL. Results are ×103 bigger
for all environments except for Humanoid where results are ×105 bigger.

one critic which coincides with α = 0.5. Finally, the variance is also decreased using our method
compared to TD3 with twin critics or TD3 with one critic. Finally, our method AutoExectRL
allows choosing automatically the expectile almost without loss of performance and outperforming
TD3, except on the environment HalfCheetah. Learning curves can be found in Appendix 19.

5.5 Empirical Results on Robust Benchmark

This section presents an assessment of the worst-case and average performance and generalization
capabilities of the proposed algorithm. The experimental validation was conducted on optimal
control problems utilizing the MuJoCo simulation environments (Todorov et al. 2012). The
performance of the algorithm was systematically benchmarked against state-of-the-art robust
RL M2TD3 as it is state of the art compared to other algorithms methodologies, M3DDPG,
and RARL. Furthermore, a comparative analysis was undertaken with Domain Randomization
(DR) as introduced by Tobin et al. (2017) for a comprehensive evaluation. To assess the worst-
case performance of the policy π under varying uncertainty parameters ω ∈ Ω, following the
benchmark of Tanabe et al. (2022b), 30 evaluations of the cumulative reward were conducted
for each uncertainty parameter value ω1, . . . , ωK ∈ Ω. Specifically, Rk(π) denotes the cumulative
reward on ωk, averaged over 30 trials. Subsequently, Rworst(π) = min1⩽k⩽K Rk(π) (denoted (w)
in Table 5.2 and 5.3) was computed as an estimate of the worst-case performance of π on Ω.
Additionally, the average performance was computed as Raverage(π) = 1

K

∑K
k=1Rk(π) (denoted

(m) in Table 5.2 and 5.3). For the evaluation process, K uncertainty parameters ω1, . . . , ωK were
chosen according to the dimensionality of ω: for 1D ω, K = 10 equally spaced points on the
1D interval Ω; for 2D ω, 10 equally spaced points were chosen in each dimension of Ω, resulting
in K = 100 points; and for 3D ω, 10 equally spaced points were selected in each dimension of
Ω, resulting in K = 1000 points or different environments. Each approach underwent policy
training 10 times in each environment. The training time steps Tmax were configured as 2M, 4M,
and 5M for scenarios with 1D, 2D, and 3D uncertainty parameters respectively, following Tanabe

97 5.5. Empirical Results on Robust Benchmark

DR+ExpectRL(m) M2TD3(m) DR(m) DR+ExpectRL(w) M2TD3(w) DR(w)

Ant1 4.84 ± 0.43 4.51 ± 0.08 5.25 ± 0.1 3.36 ± 0.55 3.84 ± 0.1 3.51 ± 0.08

Ant2 5.63 ± 0.43 5.44 ± 0.05 6.32 ± 0.09 2.72 ± 0.42 4.13 ± 0.11 1.64 ± 0.13

Ant3 2.86 ± 1.03 2.66 ± 0.22 3.62 ± 0.11 0.28 ± 0.35 0.10 ± 0.10 −0.32 ± 0.03

Half1 5.3 ± 0.59 3.89 ± 0.06 5.93 ± 0.18 2.86 ± 0.99 3.14 ± 0.10 3.19 ± 0.08

Half2 5.25 ± 0.32 4.35 ± 0.05 5.79 ± 0.15 1.77 ± 0.31 2.61 ± 0.16 2.12 ± 0.13

Half3 4.52 ± 0.24 3.79 ± 0.09 5.54 ± 0.16 1.02 ± 0.24 0.93 ± 0.21 1.09 ± 0.06

Hopper1 2.58 ± 0.23 2.68 ± 0.11 2.57 ± 0.15 0.64 ± 0.20 0.62 ± 0.45 0.53 ± 0.26

Hopper2 2.53 ± 0.22 2.51 ± 0.07 1.89 ± 0.08 0.55 ± 0.07 0.53 ± 0.28 0.47 ± 0.02

Hopper3 2.21 ± 0.33 0.85 ± 0.07 1.5 ± 0.07 0.39 ± 0.07 0.28 ± 0.25 0.21 ± 0.03

Walker1 3.77 ± 0.89 3.70 ± 0.31 3.59 ± 0.26 3.41 ± 0.05 2.83 ± 0.39 2.19 ± 0.42

Walker2 4.75 ± 0.57 4.72 ± 0.12 4.54 ± 0.31 2.74 ± 0.61 3.14 ± 0.39 2.31 ± 0.51

Walker3 4.39 ± 0.37 4.27 ± 0.21 4.48 ± 0.16 1.14 ± 0.79 1.34 ± 0.43 1.32 ± 0.34

Humanoid1 1.21 ± 0.23 1.08 ± 0.04 1.12 ± 0.05 1.04 ± 0.86 0.93 ± 0.07 0.96 ± 0.06

Humanoid2 1.23 ± 0.22 0.97 ± 0.04 1.06 ± 0.04 0.86 ± 0.28 0.65 ± 0.07 0.73 ± 0.78

Humanoid3 1.12 ± 0.35 1.09 ± 0.06 1.04 ± 0.07 0.84 ± 0.26 0.62 ± 0.06 0.54 ± 0.34

Table 5.3: Result on Robust Benchmark for ExpectRL + DR , M2TD3 and DR. Results are ×103 bigger
for all environments except for Humanoid results are ×105 bigger. The mean performance is denoted (m)
and worst case (w).

et al. (2022b). Table 9.7 summarizes the different changes of parameters in the environments.
The final policies obtained from training were then evaluated for their worst-case performances
and average performance over all uncertainty parameters. The results are the following.

We first demonstrate that our method ExpectRl is more robust than the classical RL algo-
rithm. To do so, we conduct the benchmark task presented previously on TD3 algorithm (with
twin critic trick) as a baseline and our method ExpectRl. As exposed in Table 5.2, our method
outperforms TD3 in all environments on worst-case performance, which was expected as TD3
is not designed by nature to be robust and to maximize a worst-case performance. Moreover,
AutoExpectRL has good and similar performance compared to the best expectile like in Table 5.1.
As TD3 has sometimes very bad performance, our method also performs better on average over all
environments except HalfCheetah 2 and HalfCheetah 3. These two environments required more
exploration, and pessimism is in general not a good thing for these tasks. Moreover, robustness
is not needed in HalfCheetah environments that are already quite stable compared to other tasks
in Mujoco. However, ExpectRL needs to be compared with algorithms designed to be robust,
such as M2TD3 which has state-of-the-art performance on this benchmark.

If performance of ExpectRL in Table 5.2 and the performance of M2TD3 in Table 5.3 are
compared, we can observe a large difference on many tasks where M2TD3 outperforms, in general,
our method. This is because sampling trajectories from the entire uncertainty set allows M2TD3
to get knowledge from dangerous trajectories and allows the algorithm to generalize better than
our method, which only samples from the nominal. The comparison between methods is then not
fair for ExpectRl which has only access to samples from the nominal and this is why the method
ExpectRL + DR was introduced. Receiving information about all environments that need to be
robust during the training phase, the algorithm tends to obtain better performance on minimum
performance over these environments on testing. Table 5.3 shows the result on average and on
worst-case performance between our second method ExpectRL + DR with tuning of α against

Chapter 5. Boostraping Expectile in Reinforcement Learning 98

M2TD3 and DR approach. Recall that AutoExpectRL cannot be used with DR as mentioned
at the end of Section 5.3.4.

In terms of worst-case performance, our method outperforms 9 times M2TD3 (8 times in
bold and one time when DR is better in general for HalfCheetaht3) and has a worse performance
on 6 tasks compared to M2TD3. Our method is therefore competitive with the state of the
art in robust algorithms such as M2TD3, which already outperformed M3DDPG and RARL
on worst-case performance. Except on Hopper1, our method outperforms M2TD3 on average,
results which show that M2TD3 is very pessimistic compared to our method. However, in
terms of average results, we can see that DR, which is designed to be good on average across
all environments, generally performs better than our method and M2TD3 expect on Hopper,
Walker1 and 2, and HumanoidStandup which are not stable and need to be robustified to avoid
catastrophic performance that affect too much the mean performance over all environment.
Moreover, compared to M2TD3, our method ExpecRL, even without auto fine-tuning of α, has
the advantage of having fewer parameter tuning compared to the M2TD3 algorithm.

5.6 Conclusion and perspectives

We propose a simple method, ExpectRL to replace twin critic in practice, only replacing the classic
L2 loss of the critic with an expectile loss. Moreover, we show that it can also lead to a Robust
RL algorithm and demonstrate the effectiveness of our method combined with DR on a robust
RL Benchmark. The limitations of our method are that AutoExpectRL allows fine-tuning of α
only without combining with DR. About future perspectives, we demonstrate the effectiveness
of our method using as baselines TD3, but our method can be easily adapted to any algorithm
using a Q-function such as classical DQN, SAC, and other algorithms both with discrete or
continuous action space. Finally, theoretically, it would be interesting to study for example sample
complexity of this method compared to the classical RL algorithm. Finally, in this Chapter, the
agent try to find the best policy against an adversary that can easily pick the worst kernel in
the uncertainty set without any continuity between chosen adversarial transition kernel. In the
following Chapter we will try to relax this assumptions to reduce the influence of the adversary
and get better results, which allow a tradoff between robustness and performances in RL

6

Ch
ap

te
r

Time-Constrained Robust MDPs

Contents
6.1 Introduction . 99
6.2 Problem statement . 100
6.3 Related works . 102
6.4 Time-constrained robust MDP algorithms 103
6.5 Results . 105
6.6 Some Theoretical properties of TC-MDPS 107

6.6.1 On the optimal policy of TC . 107
6.6.2 Some Lipchitz-properties for non-stationary TC-RMPDS 107

6.7 Conclusion . 109

6.1 Introduction

Robust MDPs capture the problem of finding a control policy for a dynamical system whose
transition kernel is only known to belong to a defined uncertainty set. The most common
framework for analyzing and deriving algorithms for robust MDPs is that of sa-rectangularity
(Iyengar 2005, Nilim and El Ghaoui 2005), where probability measures on outcome states are
picked independently in different source states and actions (in formal notation, P(s′|s, a) and
P(s′|s̄, ā) are independent of each other). This provides an appreciable decoupling of worst
transition kernel search across time steps and enables sound algorithms like robust value iteration
(RVI). But policies obtained for such sa-rectangular MDPs are by nature very conservative
(Goyal and Grand-Clement 2018, Li et al. 2023), as they enable drastic changes in environment
properties from one time step to the next, and the algorithms derived from RVI tend to yield
very conservative policies even when applied to non-sa-rectangular robust MDP problems.

In this paper, we depart from the rectangularity assumption and turn towards a family of
robust MDPs whose transition kernels are parameterized by a vector ψ. This parameter vector
couples together the outcome probabilities in different (s, a) pairs, hence breaking the indepen-
dence assumption that is problematic, especially in large dimension Goyal and Grand-Clement
(2018). This enables accounting for the notion of transition model consistency across states and
actions: outcome probabilities are not picked independently anymore but are rather set across
the state and action spaces by drawing a parameter vector. In turn, we examine algorithms
for solving such parameter-based robust MDPs when the parameter is constrained to follow a
bounded evolution throughout time steps. Our contributions are the following.

1. We introduce a formal definition for parametric robust MDPs and time-constrained robust
MDPs, discuss their properties and derive a generic algorithmic framework (Sec. 6.2).

Chapter 6. Time-Constrained Robust MDPs 100

2. We propose three algorithmic variants for solving time-constrained MDPs, named vanilla
TC , Stacked-TC and Oracle-TC (Sec. 6.4), which use different levels of information in
the state space, and come with theoretical guaranties (Sec. 6.6).

3. These algorithms are extensively evaluated in MuJoCo (Todorov et al. 2012) benchmarks,
demonstrating they lead to non-conservative and robust policies (Sec. 6.5).

6.2 Problem statement

(Robust) MDPs. A Markov Decision Process (MDP) (Puterman 2014) is a model of a discrete-
time, sequential decision making task. At each time step, from a state st ∈ S of the MDP, an
action at ∈ A is taken and the state changes to st+1 according to a stationary Markov transition
kernel P (st+1|st, at), while concurrently receiving a reward r(st, at). S and A are measurable sets
and we write ∆(S) and ∆(A) the set of corresponding probability distributions. A stationary
policy π(·|s) is a mapping from states to distributions over actions, prescribing which action
should be taken in s. The value function V π,P of policy π maps state s to the expected discounted
sum of rewards EP,π[∑t γ

trt] when applying π from s for an infinite number of steps. An optimal
policy for an MDP is one whose value function is maximal in any state. In a Robust MDP
(RMDP) (Iyengar 2005, Nilim and El Ghaoui 2005), the transition kernel P is not set exactly
and can be picked in an adversarial manner at each time step, from an uncertainty set P . Then,
the pessimistic value function of a policy is V π

P (s) = minP∈P V
π,P (s). An optimal robust policy

is one that has the largest possible pessimistic value function V ∗
P in any state, hence yielding

an adversarial maxπ minP optimization problem. Robust Value Iteration (RVI) (Iyengar 2005,
Wiesemann et al. 2013) solves this problem by iteratively computing the one-step lookahead best
pessimistic value:

Vn+1(s) = T ∗
PVn(s) := max

π(s)∈∆(A)
min
P∈P

Ea∼π(s)[r(s, a) + EP [Vn(s′)]].

The T ∗
P operator is called the robust Bellman operator and the sequence of vn functions converges

to the robust value function v∗
P as long as the adversarial transition kernel belongs to the simplex

of ∆(S).
Zero-sum Markov Games. Robust MDPs can be cast as zero-sum two-players Markov

games (Littman 1994, Tessler et al. 2019) where B is the action set of the adversarial player.
Writing π̄ : S × A → ∆B the policy of this adversary, the robust MDP problem turns to
maxπ minπ̄ V π,π̄, where vπ,π̄(s) is the expected sum of discounted rewards obtained when playing
π (agent actions) against π̄ (transition models) at each time step from s. This enables introducing
the robust value iteration sequence of functions

Vn+1(s) := T ∗∗Vn(s) := max
π(s)∈∆(A)

min
π̄(s,a)∈∆(S)

T π,π̄Vn(s)

where T π,π̄ := Ea∼π(s)[r(s, a) + γEs′∼π̄(s,a)Vn(s′)] is a zero-sum Markov game operator. These
operators are also γ−contractions and converge to their respective fixed point V π,π̄ and V ∗∗ = V ∗

P
Tessler et al. (2019). This formulation will be useful to derive a practical algorithm in Section 6.4.

Often, this convergence is analyzed under the assumption of sa-rectangularity, stating that
the uncertainty set P is a set product of independent subsets of ∆(S) in each s, a pair. Quoting
Iyengar (2005), rectangularity is a sort of independence assumption and is a minimal requirement
for most theoretical results to hold. Within robust value iteration, rectangularity enables picking
π̄(st, at) completely independently of π̄(st−1, at−1). To set ideas, let us consider the robust MDP
of a pendulum, described by its mass and rod length. Varying this mass and rod length spans the

101 6.2. Problem statement

uncertainty set of transition models. The rectangularity assumption induces that π̄(st, at) can
pick a measure in ∆(S) corresponding to a mass and a length that are completely independent
from the ones picked in the previous time step. While this might be a good representation in
some cases, in general it yields policies that are very conservative as they optimize for adversarial
configurations which might not occur in practice.

We first step away from the rectangularity assumption and define a parametric robust MDP
as an RMDP whose transition kernels are spanned by varying a parameter vector ψ (typically
the mass and rod length in the previous example). Choosing such a vector couples together the
probability measures on successor states from two distinct (s, a) and (s′, a′) pairs. The main
current robust deep RL algorithms actually optimize policies for such parametric robust MDPs
but still allow the parameter value at each time step to be picked independently of the previous
time step.

Parametric MDPs. A parametric RMDP is given by the tuple (S,A,Ψ, Pψ, r) where the
transition kernel Pψ(s, a) ∈ ∆(S) is parameterized by ψ, and Ψ is the set of values ψ can take,
equipped with an appropriate metric. This yields the robust value iteration update :

Vn+1(s) = max
π(s)∈∆(A)

min
ψ∈Ψ
T πψ Vn(s) := max

π(s)∈∆(A)
min
ψ∈Ψ

Ea∼π(s)[r(s, a) + γEs′∼Pψ(s,a)Vn(s′)].

A parametric RMDP remains a Markov game and the Bellman operator remains a contraction
mapping as long as Pψ can reach only elements in the simplex of ∆(S), where the adversary’s
action set is the set of parameters instead of a (possibly sa-rectangular) set of transition kernels.

Time-constrained RMDPs (TC-RMDPs). We introduce TC-RMDPs as the family of
parametric RMDPs whose parameter’s evolution is constrained to be Lipschitz with respect to
time. More formally a TC-RMDP is given by the tuple (S,A,Ψ, Pψ, r, L), where ∥ψt+1−ψt∥ ≤ L,
that is the parameter change is bounded through time. In the previous pendulum example, this
might represent the wear of the rod which might lose mass or stretch length. Similarly, and
for a larger scale illustration, TC-RMDPs enable representing the possible evolutions of traffic
conditions in a path planning problem through a busy town. Starting from an initial parameter
value ψ−1, the pessimistic value function of a policy π is non-stationary, as ψ0 is constrained to
lay at most L-far away from ψ−1, ψ1 from ψ0, and so on. Generally, this yields non-stationary
value functions as the uncertainty set at each time step depends on the previous uncertainty
parameter. To regain stationarity without changing the TC-RMDP definition, we first change
the definition of the adversary’s action set. The adversary picks its actions in the constant set
B = B(0Ψ, L), which is the ball of radius L centered in the null element in Ψ. In turn, the state
of the Markov game becomes the pair s, ψ and the Markov game itself is given by the tuple
((S ×Ψ),A,B, Pψ, r), where the Lipschitz constant L is included in B. Thus, given an action
bt ∈ B and a previous parameter value ψt−1, the parameter value at time t is ψt = ψt−1 + bt.
Then, we define the pessimistic value function of a policy as a function of both the state s and
parameter ψ:

V π
B (s, ψ) := min

(bt)t∈N,
bt∈B

E
[∑

γtrt|ψ−1 = ψ, s0 = s, bt ∈ B, ψt = ψt−1 + bt, a ∼ π, st ∼ Pψt
]
,

V ∗
B (s, ψ) = max

π(s,ψ)∈∆(A)
V π

B (s, ψ).

In turn, an optimal robust policy is a function of s and ψ and the TC robust Bellman operators are:

Vn+1(s, ψ) := T ∗
Bvn(s, ψ) := max

π(s,ψ)∈∆A

T πB Vn(s, ψ),

:= max
π(s,ψ)∈∆A

min
b∈B

Ea∼π(s)[r(s, a) + γEs′∼Pψ+b(s,a)Vn(s′, ψ + b)].

This iteration scheme converges to a fixed point according to Th. 6.2.1.

Chapter 6. Time-Constrained Robust MDPs 102

Theorem 6.2.1. The time-constrained (TC) Bellman operators T πB and T ∗
B are contraction

mappings. Thus the sequences Vn+1 = T πB Vn and Vn+1 = T ∗
B vn, converge to their respective fixed

points V π
B and V ∗

B .

Proof of Th. 6.2.1 can be found in Appendix 25. We refer to this formulation as algorithm
Oracle-TC (see Section 6.4 for implementation details) since an oracle makes the current
parameter ψ visible to the agent. Therefore, it is possible to derive optimal policies for TC-
RMDPs by iterated application of this TC Bellman operator. These policies have the form
π(s, ψ). In the remainder of this paper, we extend state-of-the-art robust deep RL algorithms
to the TC-RMDP framework. In particular, we compare their performance and robustness
properties with respect to classical robust MDP formulations, we also discuss their relation with
the π(s) robust policies of classical robust MDPs.

If the agent is unable to observe the state variable ψ, it is not possible to guarantee the
existence of a stationary optimal policy of the form π(s). Similarly, there is no guarantee of
convergence of value functions to a fixed point. Nonetheless, this scenario, in which access to the
ψ parameter is not available, is more realistic in practice. It turns the two-player Markov game
into a partially observable Markov game, where one can still apply the TC Bellman operator but
without these guarantees of convergence. We call vanilla TC the repeated application of the TC
Bellman operator in this partially observable case. Vanilla TC will be tested in practice, and some
theoretical properties of the objective function will be derived using the Lipschitz properties (Sec
6.6).

6.3 Related works

Since our method is a non-rectangular, Deep Robust RL algorithm, (possibly non-stationary for
Stacked-TC and TC), we discuss the following related work.

Non-stationary MDPs. First, non-stationarity has been studied in the Bandits setting
in Garivier and Moulines (2008). Then, for episodic, non-stationary MDPs Even-Dar et al.
(2004), Abbasi Yadkori et al. (2013), Lecarpentier and Rachelson (2019) have explored and
provided regret bounds for algorithms that use oracle access to the current reward and transition
functions. More recently Gajane et al. (2018), Cheung et al. (2019) have facilitated oracle access
by performing a count-based estimation of the reward and transition functions based on the
recent history of interactions. Finally, for tabular MDPs, past data from a non-stationary MDP
can be used to construct a full Bayesian model Jong and Stone (2005) or a maximum likelihood
model Ornik and Topcu (2019) of the transition dynamics. We focus on the setting not restricted
to tabular representations.

Non-rectangular RMDPs. While rectangularity in practice is very conservative, it can be
demonstrated that, in an asymptotic sense, non-rectangular ellipsoidal uncertainty sets around the
maximum likelihood estimator of the transition kernel constitute the smallest possible confidence
sets for the ground truth transition kernel, as implied by classical Cramér-Rao bounds. This is in
accordance with the findings presented in § 5 and Appendix A of Wiesemann et al. (2013). More
recently, Goyal and Grand-Clement (2018) extends the rectangular assumptions using a factored
uncertainty model, where all transition probabilities depend on a small number of underlying
factors denoted w1, . . . ,wr ∈ RS, such that each transition probability Psa for every (s, a) is
a linear (convex) combination of these r factors. Finally, Li et al. (2023) use policy gradient
algorithms for non-rectangular robust MDPs. While this work presents nice theoretical guarantees
of convergence, there is no practical Deep RL algorithms for learning optimal robust policies.

103 6.4. Time-constrained robust MDP algorithms

Deep Robust RL Methods. Many Deep Robust algorithms exist such as M2TD3 Tanabe
et al. (2022a), M3DDPG Li et al. (2019a), or RARL Pinto et al. (2017), which are all based
on the two player zero-sum game presented in 6.2. We will compare our method against these
algorithms, except Li et al. (2019a) which is outperformed by Tanabe et al. (2022a) in general.
We also compare our algorithm to Domain randomization (DR) Tobin et al. (2017) that learns
a value function V (s) = maxπ Ep∼U(P)V

π
p (s) which maximizes the expected return on average

across a fixed (generally uniform) distribution on P. As such, DR approaches do not optimize
the worst-case performance but still have good performance on average. Nonetheless, DR has
been used convincingly in applications Mehta et al. (2020b), Akkaya et al. (2019). Finally,
the zero-sum game formulation has lead to the introduction of action robustness Tessler et al.
(2019) which is a specific case of rectangular MDPs, in scenarios where the adversary shares
the same action space as the agent and interferes with the agent’s actions. Several strategies
based on this idea have been proposed. One approach, the Game-theoretic Response Approach
for Adversarial Defense (GRAD) (Liang et al. 2023) builds on the Probabilistic Action Robust
MDP (PR-MDP) (Tessler et al. 2019). This method introduces time-constrained perturbations
in both the action and state spaces and employs a game-theoretic approach with a population
of adversaries. In contrast to GRAD, where temporal disturbances affect the transition kernel
around a nominal kernel, our method is part of a broader setting in which the transition kernel
is included in a larger uncertainty set. Robustness via Adversary Populations (RAP) (Vinitsky
et al. 2020) introduces a population of adversaries. This approach ensures that the agent develops
robustness against a wide range of potential perturbations, rather than just a single one, which
helps prevent convergence to suboptimal stationary points. Similarly, State Adversarial MDPs
(Zhang et al. 2020; 2021, Stanton et al. 2021, Liang et al. 2023) address adversarial attacks on
state observations, effectively creating a partially observable MDP. Finally, using rectangularity
assumptions, (Abdullah et al. 2019, Clavier et al. 2022) use Wasserstein and χ2 balls respectively
for the uncertainty set in Robust RL.

6.4 Time-constrained robust MDP algorithms

The TC-RMDP framework addresses the limitations of traditional robust reinforcement learning
by considering multifactorial, correlated, and time-dependent disturbances. Traditional robust
reinforcement learning often relies on rectangularity assumptions, which are rarely met in real-
world scenarios, leading to overly conservative policies. The TC-RMDP framework provides a
more accurate reflection of real-world dynamics, moving beyond the conventional rectangularity
paradigm.

We cast the TC-RMDP problem as a two-player zero-sum game, where the agent inter-
acts with the environment, and the adversary (nature) changes the MDP parameters ψ. Our
approach is generic and can be derived within any robust value iteration scheme, perform-
ing maxπ(s)∈∆(A) minψ∈Ψ Ea∼π(s)[r(s, a) + γEs′∼Pψ(s,a)vn(s′)] updates, by modifying the adver-
sary’s action space and potentially the agent’s state space to obtain updates of the form
maxπ(s,ψ)∈∆A

minb∈B Ea∼π(s)[r(s, a)+γEs′∼Pψ+b(s,a)Vn(s′)]. In Section 6.5, we will introduce time
constraints within two specific robust value iteration algorithms, namely RARL Pinto et al.
(2017) and M2TD3 Tanabe et al. (2022a) by simply limiting the search space for worst-case ψ at
each step. This specific implementation extends the original actor-critic algorithms. For the sake
of conciseness, we refer the reader to Appendix 28.1 for details regarding the loss functions and
algorithmic details.

Three variations of the algorithm are provided (illustrated in Figure 7.2) but all fall within
the training loop of Algorithm 6.

Chapter 6. Time-Constrained Robust MDPs 104

Figure 6.1: TC-RMDP training involves a temporally-constrained adversary aiming to maximize the
effect of temporally-coupled perturbations. Conversely, the agent aims to optimize its performance against
this time-constrained adversary. In orange, the oracle observation, and in blue the stacked observation.

Algorithm 6: Time-constrained robust training
Input: Time-constrained MDP: (S,A,Ψ, Pψ, r, L), Agent π, Adversary π̄

1 for each interaction time step t do
2 at ∼ πt(st, ψt) // Sample an action with Oracle-TC
3 or at ∼ πt(st, at−1, st−1) // Sample an action with Stacked-TC
4 or at ∼ πt(st) // Sample an action with TC
5 ψt+1 ∼ π̄t(st, at, ψt) // Sample the worst TC parameter
6 st+1 ∼ Pψt+1(st, at) // Sample a transition
7 B ← B ∪ {(st, at, r (st, at) , ψt, ψt+1, st+1)} // Add transition to replay buffer
8 {si, ai, r(si, ai), ψi, ψi+1, si+1}i∈[1,N] ∼ B // Sample a mini-batch of

transitions
9 πt+1 ← UpdatePolicy(πt) // Update Agent

10 π̄t+1 ← UpdatePolicy(π̄t) // Update Adversary

Oracle-TC . As discussed in Section 6.2, the Oracle-TC version includes the MDP state
and parameter value as input, π : S ×Ψ→ A. This method assumes that the agent has access
to the true parameters of the environment, allowing it to make the most informed decisions
and possibly reach the true robust value function. However, these parameters ψ are sometimes
non-observable in practical scenarios, making this method not always feasible.

Stacked-TC . Since ψ might not be observable but may be approximately identified by the
last transitions, the Stacked-TC policy uses the previous state and action as additional inputs
in an attempt to replace ψ, π : S ×A× S → A. This approach leverages the information in the
transitions, even though it might be insufficient for a perfect estimate of ψ. It aims to retain
(approximately) the convergence properties of the Oracle-TC algorithm.

Vanilla TC . Finally, the vanilla TC version takes only the state, π : S → A, as input, similar
to standard robust MDP policies. This method does not attempt to infer the environmental
parameters or the transition dynamics explicitly. Instead, it relies on the current state information
to guide the agent’s actions. While this version is the most straightforward and computationally
efficient, it may not perform as robustly as the Oracle-TC or Stacked-TC versions in environ-
ments with significant temporal disturbances, since it attempts to solve a partially observable
Markov game, for which there may not exist a stationary optimal policy based only on the
observation. Despite this, it remains a viable option in scenarios where computational simplicity
and quick decision-making are prioritized.

105 6.5. Results

6.5 Results

Experimental settings. This section evaluates the robust time-constrained algorithm’s per-
formance under severe time constraints and in the static settings. Experimental validation was
conducted in continuous control scenarios using the MuJoCo simulation environments (Todorov
et al. 2012). The approach was categorized into three variants. The Oracle-TC , where the
agent accessed environmental parameters π(st, ψ); the Stacked-TC , where the agent took in
input π(st, st−1, at−1); and the vanilla TC , which did not receive any additional inputs π(s). For
each variant of the time-constrained algorithms, we applied them to RARL (Pinto et al. 2017),
and M2TD3 Tanabe et al. (2022a), renaming them TC-RARL and TC-M2TD3, respectively.
The algorithms were tested against two state-of-the-art robust reinforcement learning algorithms,
M2TD3 and RARL. Additionally, the Oracle versions of M2TD3 and RARL, where the agent’s
policy included ψ in the input π : S × Ψ → A, were evaluated for a more comprehensive
assessment. Comparisons were also made with Domain Randomization (DR) (Tobin et al. 2017)
and vanilla TD3. (Fujimoto et al. 2018) to ensure a thorough analysis. A 3D uncertainty set
is defined in each environment P normalized between [0, 1]3. Appendix 30 provides detailed
descriptions of uncertainty parameters. Performance metrics were gathered after five million
steps to ensure a fair comparison. All baselines were constructed using TD3, and a consistent
architecture was maintained across all TD3 variants. The results presented below were obtained
by averaging over ten distinct random seeds. Appendices 37.3, 37.2, 37.1, and 35 discuss further
details on hyperparameters, network architectures, and implementation choices, including training
curves for our methods and baseline comparisons. In the following tables 6.1, 7.6, 7.7, the best
performances are shown in bold. Oracle methods, with access to optimal information, are shown
in black. Items in bold and green represent the best performances with limited information on
ψ, making them more easily usable in many scenarios. When there is only one element in bold
and green, this implies that the best overall method is a non-oracle method.

Ant HalfCheetah Hopper Humanoid Walker Agg.

Oracle M2TD3 1.11± 0.07 0.95± 0.1 1.51± 0.84 2.07± 0.19 1.31± 0.36 1.39± 0.31

Oracle RARL 0.72± 0.18 −0.71± 0.05 −1.3± 0.28 −2.8± 1.62 −0.19± 0.2 −0.86± 0.47

Oracle-TC -M2TD3 1.61± 0.32 2.76± 0.16 7.79± 1.0 1.69± 2.14 1.49± 0.41 3.07± 0.81

Oracle-TC -RARL 1.66± 0.32 2.63± 0.12 6.86± 1.46 0.19± 1.68 1.34± 0.11 2.54± 0.74

Stacked-TC -M2TD3 1.33± 0.21 2.4 ± 0.19 6.51 ± 0.59 −1.42± 1.44 1.69 ± 0.33 2.1± 0.55

Stacked-TC -RARL 1.48± 0.22 1.76± 0.08 3.28± 0.27 1.39± 0.57 1.01± 0.21 1.78± 0.27

TC -M2TD3 1.52± 0.2 2.42 ± 0.1 5.16± 0.2 4.02 ± 1.23 1.38± 0.25 2.9 ± 0.4

TC -RARL 1.57± 0.26 1.54± 0.15 2.04± 0.49 1.25± 1.91 0.89± 0.2 1.46± 0.6

TD3 0.0± 0.19 0.0± 0.27 0.0± 1.27 0.0± 1.18 0.0± 0.23 0.0± 0.63

DR 1.58 ± 0.2 1.59± 0.12 2.28± 0.42 0.87± 1.79 1.03± 0.19 1.47± 0.54

M2TD3 1.0± 0.19 1.0± 0.14 1.0± 0.96 1.0± 1.31 1.0± 0.31 1.0± 0.58

RARL 0.63± 0.2 −0.61± 0.18 −1.5± 0.33 0.8± 0.88 0.27± 0.25 −0.08± 0.37

Table 6.1: Avg. of normalized time-coupled worst-case performance over 10 seeds for each method

Chapter 6. Time-Constrained Robust MDPs 106

Performance of TCRMDPs in worst-case time-constrained. Table 6.1 reports
the worst-case time-constrained perturbation. To address the worst-case time-constrained
perturbations for each trained agent π∗, we utilized a time-constrained adversary using TD3
algorithm π̄∗ = minb∈B Ea∼π∗(s),b∼π̄(s,a,ψ)[r(s, a) + γEs′∼Pψ+b(s,a)vn(s′)] within a perturbation
radius of L = 0.001 for a total of 5 million steps. The sum of episode rewards was averaged
over 10 episodes. To compare metrics across different environments, each method’s score v was
standardized relative to the reference score of TD3. TD3 was trained on the environment using
default transition function parameters, with its score denoted as vTD3. The M2TD3 score, vM2TD3,
was used as the comparison target. The formula applied was (v− vTD3)/(|vM2TD3− vTD3|). This
positioned vTD3 as the minimal baseline and vM2TD3 as the target score. This standardisation
provides a metric that quantifies the improvement of each method over TD3 in relation to the
improvement of M2TD3 over TD3. In each evaluation environment, agents trained with the
time-constrained framework (indicated by TC in the method name) demonstrated significantly
superior performance compared to those trained using alternative robust reinforcement learning
approaches, including M2TD3 and RARL. Furthermore, they outperformed those trained through
domain randomisation (DR). Notably, even without directly conditioning the policy with ψ,
the time-constrained trained policies excelled against all baselines, achieving up to a 2.9-fold
improvement. The non-normalized scores are reported in Appendix 31. Additionally, when
policies were directly conditioned by ψ and trained within the robust reinforcement learning
framework, they tended to be overly conservative in the time-constrained framework. This is
depicted in Table 6.1, comparing the performances of Oracle RARL, Oracle M2TD3, Oracle
TC-RARL, and Oracle TC-M2TD3. Both policies also observe ψ. The only difference is that
Oracle RARL and Oracle M2TD3 were trained in the robust reinforcement learning framework,
while Oracle TC-RARL and Oracle TC-M2TD3 were trained in the time-constrained framework.
The performance differences under worst-case time-coupled perturbation are as follows: for
Oracle RARL (resp. M2TD3) and Oracle TC-RARL (resp. M2TD3), the values are −0.86
(1.39) vs. 2.54 (3.07). This observation highlights the need for a balance between robust
training and flexibility in dynamic conditions. A natural question arises regarding the worst-case
time-constrained perturbation. Was the adversary in the loop adequately trained, or might its
suboptimal performance lead to overestimating the trained agent’s reward against the worst-
case perturbation? The adversary’s performance was monitored during its training against all
fixed-trained agents. The results in Appendix 29 show that our adversary converged.

Robust Time-Constrained Training under various time fixed adversaries. The
method was evaluated against various fixed adversaries, focusing on the random fixed adversary
shown in Figure 6.2. This evaluation shows that robustly trained agents can handle dynamic and
unpredictable conditions. The random fixed adversary simulates stochastic changes by selecting
a parameter ψt at each timestep within a radius of L = 0.1. This radius is 100 times larger
than in our training methods. At the start of each episode, ψ0 is uniformly sampled from the
uncertainty set ψ0 ∼ U(P). This tests the agents’ adaptability to unexpected changes. Figures
6.2a through 6.2e show our agents’ performance. Agents trained with our robust framework
consistently outperformed those trained with standard methods. The policy was also assessed
against five other fixed adversaries: cosine, exponential, linear, and logarithmic. Detailed results
are provided in the Appendix. 31.1.

Performance of Robust Time-Constrained MDPs in the static setting. In static
environments, the Robust Time-Constrained algorithms were evaluated for worst-case and average
performance metrics, shown in Tables 7.6 and 7.7. A fixed uncertainty set P was used, dividing
each dimension of Ψ into ten segments, creating a grid of 1000 points (103). Each agent ran
five episodes at each grid point, and the rewards were averaged. The scores were normalized as
described for the time-constrained adversary analysis in Table 6.1. The raw data is provided in
Appendix 9.27 and 9.28. Performance scores were adjusted relative to the baseline vTD3 and

107 6.6. Some Theoretical properties of TC-MDPS

(a) Ant (b) HalfCheetah (c) Hopper

(d) Humanoid (e) Walker

Figure 6.2: Evaluation against a random fixed adversary, with a radius L = 0.1

vM2TD3. As a result, normalized results reveal distinct trends among agent configurations within
the TC-RMDP framework. The Oracle TC-M2TD3 variant achieved an average score of 3.12
7.7, while the Stacked TC-M2TD3 scored 2.23, indicating its resilience. Furthermore, in the
worst-case scenario, the TC-RARL and Stacked TC-RARL variants demonstrated adaptability,
with TC-RARL scoring 0.92 and TC-M2TD3 scoring 1.02 7.6. This performance highlights its
reliability in challenging static environments.

6.6 Some Theoretical properties of TC-MDPS

6.6.1 On the optimal policy of TC

Following Lemma 3.3 of (Iyengar 2005), it is known that in the rectangular case, there exists an
optimal policy of the adversary that is stationary, provided that the actor policy is stationary.
The TC-RMDP definition enforces a limitation on the temporal variation of the transition kernel.
Consequently, all stationary adversarial policies are constrained by this stipulation. In turn, this
guarantees that (under the hypothesis of sa-rectangularity) there always exists a solution to the
TC-RMDP that is also a solution to the original RMDP. In other words: optimizing policies for
TC-RMDPs do not exclude optimal solutions to the underlying RMDP. This sheds an interesting
light on the search for robust optimal policies, since TC-RMDPs shrink the search space of
optimal adversarial policies. In practice, this is confirmed by the previous experimental results
(Figure 7.6) where the optimal agent policy found by either Oracle-TC , Stacked-TC , or vanilla
TC actually outperforms the one found by M2TD3 or RARL in the non time-constrained setting.

6.6.2 Some Lipchitz-properties for non-stationary TC-RMPDS

In this subsection we slightly depart from the framework defined in Section 6.2 and study
the smoothness of the robust objective for vanilla TC or Stacked-TC . Th. 6.2.1 is no longer

Chapter 6. Time-Constrained Robust MDPs 108

Ant HalfCheetah Hopper Humanoid Walker Agg

Oracle M2TD3 1.02± 0.19 0.34± 0.23 0.97± 0.55 3.9± 3.65 0.3± 0.45 1.31± 1.01

Oracle RARL 0.62± 0.32 0.1± 0.02 0.48± 0.19 −2.59± 2.18 0.16± 0.21 −0.25± 0.58

Oracle-TC -M2TD3 0.1± 0.25 1.87± 0.1 0.49± 1.07 −0.8± 3.05 0.28± 0.38 0.39± 0.97

Oracle-TC -RARL 0.59± 0.36 1.55± 0.35 0.4± 0.16 1.19± 1.24 0.56± 0.39 0.86± 0.5

Stacked-TC -M2TD3 −0.05± 0.09 1.56 ± 0.16 1.08± 0.89 −0.83± 2.62 1.12± 0.5 0.58± 0.85

Stacked-TC -RARL 0.07± 0.13 0.76± 0.34 1.35 ± 0.93 1.75 ± 2.48 0.67± 0.32 0.92± 0.84

TC -M2TD3 −0.06± 0.08 1.49± 0.23 1.29± 0.29 1.21± 2.44 1.19 ± 0.34 1.02 ± 0.68

TC -RARL 0.14± 0.24 0.89± 0.3 1.5± 0.76 1.4± 4.57 0.67± 0.59 0.92± 1.29

TD3 0.0± 0.34 0.0± 0.06 0.0± 0.21 0.0± 2.27 0.0± 0.1 0.0± 0.6

DR 0.06± 0.16 1.07± 0.36 0.86± 0.82 0.04± 4.1 0.57± 0.37 0.52± 1.16

M2TD3 1.0 ± 0.27 1.0± 0.16 1.0± 0.65 1.0± 3.32 1.0± 0.63 1.0± 1.01

RARL 0.44± 0.3 0.13± 0.08 0.5± 0.22 0.44± 2.94 0.12± 0.09 0.33± 0.73

Table 6.2: Avg. of normalized static worst-case performance over 10 seeds for each method

Ant HalfCheetah Hopper Humanoid Walker Agg

Oracle M2TD3 1.13± 0.08 1.56± 0.24 1.12± 0.46 1.96± 1.53 1.23± 0.3 1.4± 0.52

Oracle RARL 0.7± 0.22 −1.4± 0.13 −0.77± 0.24 −2.6± 2.88 −1.13± 0.84 −1.04± 0.86

Oracle-TC -M2TD3 1.73± 0.09 4.35± 0.26 5.54± 0.13 2.12± 1.4 1.84± 0.37 3.12± 0.45

Oracle-TC -RARL 1.78± 0.02 4.32± 0.21 5.08± 0.48 0.42± 2.9 1.68± 0.24 2.66± 0.77

Stacked-TC -M2TD3 1.45± 0.38 3.78 ± 0.29 5.2 ± 0.29 −1.38± 1.67 2.11 ± 0.52 2.23± 0.63

Stacked-TC -RARL 1.52± 0.11 2.29± 0.23 2.91± 0.67 1.14± 2.19 1.21± 0.46 1.81± 0.73

TC -M2TD3 1.6± 0.06 3.71± 0.24 4.4± 0.6 3.28 ± 2.52 1.56± 0.23 2.91 ± 0.73

TC -RARL 1.67 ± 0.07 2.27± 0.22 1.79± 0.53 0.89± 2.19 1.01± 0.21 1.53± 0.64

TD3 0.0± 0.49 0.0± 0.22 0.0± 0.83 0.0± 1.36 0.0± 0.51 0.0± 0.68

DR 1.65± 0.05 2.31± 0.27 2.08± 0.49 1.15± 2.47 1.22± 0.34 1.68± 0.72

M2TD3 1.0± 0.11 1.0± 0.19 1.0± 0.55 1.0± 1.43 1.0± 0.65 1.0± 0.59

RARL 0.69± 0.13 −1.3± 0.54 −0.99± 0.11 0.47± 1.92 −0.35± 0.83 −0.3± 0.71

Table 6.3: Avg. of normalized static average case performance over 10 seeds for each method

109 6.7. Conclusion

applicable as ψ is not observed. However, we can still give smoothness of the objective starting
from Lipchichz conditions on the evolution of the parameter that leads to smoothness on reward
and transition kernel in the following definition 6.6.1.

Definition 6.6.1 (Reward/Kernel Lipchitz TC-RMDPs (Lecarpentier and Rachelson 2019)).
We say that a parametric RDMPs is time constrained if the parameter change is bounded through
time ie. ∥ψt+1 − ψt∥ ≤ L. Moreover, we assume that this variation in parameter implies a
variation in the reward and transition kernel of

∀s ∈ S, ∀a ∈ A, ∥Pt(· | s, a)− Pt+1(· | s, a)∥1 ≤ LP ; |rt(s, a)− rt+1(s, a)| ≤ Lr .

From a theoretical point of view, a TC-RMDP can be seen as a sequence of stationary MDPs
with time indexed reward and transition kernel rt, Pt that have continuity. More formally for
Mt = (S,A,Ψ, Pψt , rt, L = (Lp, Lr)), we can then define the sequence of stationary MDPs with
Lipchitz variation :

ML
t =

{
{Mt}tt′=t0 ;∃Lr ∈ R∀s ∈ S,∀a ∈ A,

∥∥∥Pψt′ (· | s, a)− Pψt′+1(· | s, a)
∥∥∥

1
≤ LP ;

|rt′(s, a)− rt′+1(s, a)| ≤ Lr
}
. (6.1)

Defining rkt as the random variable corresponding to the reward function at time step t for
stationary MDPs, but iterating with index k, the stationary rollout return at time t is G(π,Mt) =∑
k≥0 γ

krkt . Assuming that at a fixed t the reward and transition kernel rt, Pt are fixed, the
robust objective function is:

JR(π, t) := min
m={m′

t}
t

t′=t0
∈ML

t

E [G (π,m)] .

This leads to the following guarantee for vanilla TC and Stacked-TC algorithms.

Theorem 6.6.1. Assume TC-RMPDS with L = (Lr, LP) smoothness. Then ∀t ∈ N, rt ∈ [0, 1],

∀t ∈ N+,∀t0 ∈ N+, |JR(π, t0)− JR(π, t0 + t)| ≤ L′t , (6.2)

with L′ :=
(

γ
(1−γ)2LP + 1

1−γLr
)
.

This theorem states that a small variation of the Kernel and reward function will not affect
too much the robust objective. In other terms, despite the fact that the TC Bellman operator
may not admit a fixed point and yield a non-stationary sequence of value functions, variations of
the expected return remain bounded. Proof of the Th. 6.6.1 can be found in Appendix 26.

6.7 Conclusion

This paper presents a novel framework for robust reinforcement learning, which addresses the
limitations of traditional methods that rely on rectangularity assumptions. These assumptions
often result in overly conservative policies, which are not suitable for real-world applications
where environmental disturbances are multifactorial, correlated, and time-constrained. In order
to overcome these challenges, we proposed a new formulation, the Time-Constrained Robust
Markov Decision Process (TC-RMDP). The TC-RMDP framework is capable of accurately
capturing the dynamics of real-world environments, due to its consideration of the temporal
continuity and correlation of disturbances. This approach resulted in the development of three

Chapter 6. Time-Constrained Robust MDPs 110

algorithms: The three algorithms, Oracle-TC , Stacked-TC , vanilla TC which differ in the
extent to which environmental information is incorporated into the decision-making process.
A comprehensive evaluation of continuous control benchmarks using MuJoCo environments
has demonstrated that the proposed TC-RMDP algorithms outperform traditional robust RL
methods and domain randomization techniques. These algorithms achieved a superior balance
between performance and robustness in both time-constrained and static settings. The results
confirmed the effectiveness of the TC-RMDP framework in reducing the conservatism of policies
while maintaining robustness. Moreover, we provided theoretical guaranties for Oracle-TC
in Th. 6.2.1 and for Stacked-TC and vanilla TC in Th. 6.6.1. This study contributes to the
field of robust reinforcement learning by introducing a time-constrained framework that more
accurately reflects the dynamics observed in real-world settings. The proposed algorithms and
theoretical contributions offer new avenues for the development of more effective and practical RL
applications in environments with complex, time-constrained uncertainties. In the next Chapter,
we will provide a new Robust RL benchmark based on Mujoco to evaluate Robustness of RL
algorithm and improve reproducibility of Robust RL algorithm.

7

Ch
ap

te
r

RRLS: Robust Reinforcement Learning Suite

Contents
7.1 Introduction . 111
7.2 Problem statement . 112
7.3 Related works . 113

7.3.1 Reinforcement learning benchmark . 113
7.3.2 Robust Reinforcement Learning algorithms 114

7.4 RRLS: Benchmark environments for Robust RL 116
7.5 Benchmarking Robust RL algorithms 119
7.6 Conclusion . 122

7.1 Introduction

Reinforcement learning (RL) algorithms frequently encounter difficulties in maintaining perfor-
mance when confronted with dynamic uncertainties and varying environmental conditions. This
lack of robustness significantly limits their applicability in the real world. Robust reinforcement
learning addresses this issue by focusing on learning policies that ensure optimal worst-case per-
formance across a range of adversarial conditions. For instance, an aircraft control policy should
be capable of effectively managing various configurations and atmospheric conditions without
requiring retraining. This is critical for applications where safety and reliability are paramount
to avoid a drastic decrease in performance Morimoto and Doya (2005), Tessler et al. (2019).

The concept of robustness, as opposed to resilience, places greater emphasis on maintaining
performance without further training. In robust reinforcement learning (RL), the objective is
to optimize policies for the worst-case scenarios, ensuring that the learned policies can handle
the most challenging conditions. This framework is formalized through robust Markov decision
processes (MDPs), where the transition dynamics are subject to uncertainties. Despite significant
advancements in robust RL algorithms, the field lacks standardized benchmarks for evaluating
these methods. This hampers reproducibility and comparability of experimental results (Moos
et al. 2022). To address this gap, we introduce the Robust Reinforcement Learning Suite, a
comprehensive benchmark suite designed to facilitate rigorous evaluation of robust RL algorithms.

The Robust Reinforcement Learning Suite (RRLS) provides six continuous control tasks based
on Mujoco Todorov et al. (2012) environments, each with distinct uncertainty sets for training
and evaluation. By standardizing these tasks, RRLS enables reproducible and comparable
experiments, promoting progress in robust RL research. The suite includes four compatible
baselines with the RRLS benchmark, which are evaluated in static environments to demonstrate
their efficacy. In summary, our contributions are the following :

Chapter 7. RRLS: Robust Reinforcement Learning Suite 112

• Our first contribution aims to establish a standardized benchmark for robust RL, addressing
the critical need for reproducibility and comparability in the field (Moos et al. 2022). The
RRLS benchmark suite represents a significant step towards achieving this goal, providing
a robust framework for evaluating state-of-the-art robust RL algorithms.

• Our second contribution is a comparison and evaluation of different Deep Robust RL
algorithms in Section 7.5 on our benchmark, showing the pros and cons of different
methods.

7.2 Problem statement

Reinforcement learning. Reinforcement Learning (RL) (Sutton and Barto 2018) addresses
the challenge of developing a decision-making policy for an agent interacting with a dynamic
environment over multiple time steps. This problem is modeled as a Markov Decision Process
(MDP) (Puterman 2014) represented by the tuple (S,A, P, r), which includes states S, actions
A, a transition kernel P (st+1|st, at), and a reward function r(st, at). For simplicity, we assume
a unique initial state s0, though the results generalize to an initial state distribution p0(s). A
stationary policy π(s) ∈ ∆(A) maps states to distributions over actions. The objective is to find
a policy π that maximizes the expected discounted return

Jπ = Es0∼ρ[V π,P (s0)] = E
[∞∑
t=0

γtr(st, at)|at ∼ π, st+1 ∼ P, s0 ∼ ρ
]
, (7.1)

where V π,P is the value function of π, γ ∈ [0, 1) is the discount factor, and s0 is drawn from the
initial distribution ρ. The value function V π,P of policy π assigns to each state s the expected
discounted sum of rewards when following π starting from s and following transition kernel p.
An optimal policy π∗ maximizes the value function in all states. To converge to the (optimal)
value function, the value iteration (VI) algorithm can be applied, which consists in repeated
application of the (optimal) Bellman operator T ∗,P to value functions:

Vn+1(s) = T ∗Vn(s) := max
π(s)∈∆(A)

Ea∼π(s)[r(s, a) + EP [Vn(s′)]]. (7.2)

Finally, the Q function is also defined similarly to Equation (7.1) but starting from specific
state/action (s, a) as ∀(s, a) ∈ S ×A:

Qπ,P (s, a) = E
[∞∑
t=0

γtr(st, at)|at ∼ π, st+1 ∼ P, s0 = s, a0 = a
]
. (7.3)

Robust reinforcement learning. In a Robust MDP (RMDP) Iyengar (2005), Nilim and
El Ghaoui (2005), the transition kernel p is not fixed and can be chosen adversarially from an
uncertainty set P at each time step. The pessimistic value function of a policy π is defined as
V π

P (s) = minp∈P v
π
p (s). An optimal robust policy maximizes the pessimistic value function VP in

any state, leading to a maxπ minp optimization problem. This is known as the static model of
transition kernel uncertainty, as π is evaluated against a static transition model π. Robust Value
Iteration (RVI) (Iyengar 2005, Wiesemann et al. 2013) addresses this problem by iteratively
computing the one-step lookahead best pessimistic value:

Vn+1(s) = T ∗
PVn(s) := max

π(s)∈∆(A)
min
P∈P

Ea∼π(s)[r(s, a) + EP [Vn(s′)]]. (7.4)

This dynamic programming formulation is called the dynamic model of transition kernel un-
certainty, as the adversary picks the next state distribution only for the current state-action

113 7.3. Related works

Adversary
AgentEnvironment

Figure 7.1: Relation between Robust RL and Zero-sum Markov Game

pair, after observing the current state and the agent’s action at each time step (and not a full
transition kernel). The T ∗

P operator, known as the robust Bellman operator, ensures that the
sequence of Vn functions converges to the robust value function V ∗

P , provided the adversarial
transition kernel belongs to the simplex of ∆(S) and that the static and dynamic cases have the
same solutions for stationary agent policies Iyengar (2022).

Robust reinforcement learning as a two-player game. Robust MDPs can be repre-
sented as zero-sum two-player Markov games (Littman 1994, Tessler et al. 2019) where S̄, Ā are
respectively the state and action set of the adversarial player. In a zero-sum Markov game, the
adversary tries to minimize the reward or maximize −r. Writing π̄ : S̄ → Ā := ∆(S) the policy of
this adversary, the robust MDP problem turns to maxπ minπ̄ V π,π̄, where V π,π̄(s) is the expected
sum of discounted rewards obtained when playing π (agent actions) against π̄ (transition models)
at each time step from s. In the specific case of robust RL as a two player-game, S̄ = S × A.
This enables introducing the robust value iteration sequence of functions

Vn+1(s) := T ∗∗Vn(s) := max
π(s)∈∆(A)

min
π̄(s,a)∈∆(S)

T π,π̄Vn(s) (7.5)

where T π,π̄ := Ea∼π(s)[r(s, a) + γEs′∼π̄(s,a)Vn(s′)] is a zero-sum Markov game operator. These
operators are also γ−contractions and converge to their respective fixed point V π,π̄ and V ∗∗ = V ∗

P
Tessler et al. (2019). This two-player game formulation will be used in the evaluation of the
RRLS in Section 7.5.

7.3 Related works

7.3.1 Reinforcement learning benchmark

The landscape of reinforcement learning (RL) benchmarks has evolved significantly, enabling
the accelerated development of RL algorithms. Prominent among these benchmarks are the
Atari Arcade Learning Environment (ALE) Bellemare et al. (2012), OpenAI Gym Brockman
et al. (2016), more recently Gymnasium Towers et al. (2023), and the DeepMind Control Suite
(DMC) Tassa et al. (2018). The aforementioned benchmarks have established standardized
environments for the evaluation of RL agents across discrete and continuous action spaces,
thereby fostering the reproducibility and comparability of experimental results. The ALE has
been particularly influential, offering a diverse set of Atari games that have become a standard
testbed for discrete control tasks Bellemare et al. (2012). Moreover, the OpenAI Gym extended
this approach by providing a more flexible and extensive suite of environments for various RL
tasks, including discrete and continuous control Brockman et al. (2016). Similarly, the DMC Suite
has been essential for benchmarking continuous control algorithms, offering a set of challenging
tasks that facilitate evaluating algorithm performance Tassa et al. (2018). In addition to these

Chapter 7. RRLS: Robust Reinforcement Learning Suite 114

general-purpose benchmarks, specialized benchmarks have been developed to address specific
research needs. For instance, the DeepMind Lab focuses on 3D navigation tasks from pixel
inputs Beattie et al. (2016), while ProcGen Cobbe et al. (2019) offers procedurally generated
environments to evaluate the generalization capabilities of RL agents. The D4RL benchmark
targets offline RL methods by providing datasets and tasks specifically designed for offline learning
scenarios Fu et al. (2021), and RL Unplugged Gulcehre et al. (2020) offers a comprehensive suite
of benchmarks for evaluating offline RL algorithms. RL benchmarks such as Meta-World Yu
et al. (2021) have been developed to evaluate the ability of RL agents to transfer knowledge
across multiple tasks. Meta-World provides a suite of robotic manipulation tasks designed to
test RL algorithms’ adaptability and generalization in multitask learning scenarios. Similarly,
RLBench James et al. (2020) offers a variety of tasks for robotic learning, focusing on the
performance of RL agents in multi-task settings. Recent contributions such as the Unsupervised
Reinforcement Learning Benchmark (URLB) Lee et al. (2021) have further expanded the scope
of RL benchmarks by targeting unsupervised learning methods. URLB aims to accelerate
progress in unsupervised RL by providing a suite of environments and baseline implementations,
promoting algorithm development that does not rely on labeled data for training. Additionally,
the CoinRun benchmark Cobbe et al. (2020) and Sonic Benchmark Nichol et al. (2018) focus
on evaluating generalization and transfer learning in RL through procedurally generated levels
and video game environments, respectively. Finally, benchmarks like the Behavior Suite (bsuite)
Osband et al. (2019) have been designed to test specific capabilities of RL agents, such as memory,
exploration, and generalization. Closer to our work, safety in RL is another critical area where
benchmarks like SafetyGym Achiam and Amodei (2019) have been instrumental. SafetyGym
evaluates how well RL agents can perform tasks while adhering to safety constraints, which is
crucial for real-world applications where safety cannot be compromised. Despite the progress in
benchmarking RL algorithms, there has been a notable gap in benchmarks specifically designed
for robust RL, which aims to learn policies that perform optimally in the worst-case scenario
against adversarial environments. This gap highlights the need for standardized benchmarks
(Moos et al. 2022) that facilitate reproducible and comparable experiments in robust RL. In the
next section, we introduce existing robust RL algorithms.

Finally, a competing work Gu et al. (2024) published after ours, and which cites our research,
has many similarities as it is also a benchmark for robust RL. The differences between our work
are as follows. Their work includes a larger number of environments, which in a sense makes
it more comprehensive than ours. Our benchmark has been tested on robust RL algorithms
such as RARL, M2TD3, demonstrating its utility, whereas the competing work has not yet
been evaluated in this way in all tasks. Our benchmark differs in that it goes beyond simply
adding noise to the transition kernel; it provides a rigorous evaluation framework by varying
hyperparameters on a relevant grid or uncertainty set during the evaluation phase.

7.3.2 Robust Reinforcement Learning algorithms

Two principal classes of practical, robust reinforcement learning algorithms exist, those that can
interact solely with a nominal transition kernel (or center of the uncertainty set), and those that
can sample from the entire uncertainty ball. While the former is more mathematically founded,
it is unable to exploit transitions that are not sampled from the nominal kernel and consequently
exhibits lower performance. In this benchmark, only the Deep Robust RL as two-player games
that use samples from the entire uncertainty set are implemented.

Nominal-based Robust/risk-averse algorithms. The idea of this class of algorithms
is to approximate the inner minimum operator present robust Bellman operator in Equation
(7.4). Previous work has typically employed a dual approach to the minimum problem, whereby

115 7.3. Related works

the transition probability is constrained to remain within a specified ball around the nominal
transition kernel. Practically, robustness is equivalent to regularization (Derman et al. 2021) and
for example the SAC algorithm Haarnoja et al. (2018a) has been shown to be robust due to
entropic regularization. In this line of work, (Kumar et al. 2022) derived approximate algorithm
for RMPDS with Lp balls, (Clavier et al. 2022) for χ2 constrain and (Liu et al. 2022) for KL
divergence. Finally, Wang et al. (2023) proposes a novel online approach to solve RMDP. Unlike
previous works that regularize the policy or value updates, Wang et al. (2023) achieves robustness
by simulating the worst kernel scenarios for the agent while using any classical RL algorithm in the
learning process. These Robust RL approaches have received recent theoretical attention, from a
statistical point of view (sample complexity) (Yang et al. 2022, Panaganti and Kalathil 2022a,
Clavier et al. 2023, Shi et al. 2024) as well as from an optimization point of view (Grand-Clément
and Kroer 2021), but generally do not directly translate to algorithms that scale up to complex
evaluation benchmarks.

Deep Robust RL as two-player games. A common approach to solving robust RL
problems is cast the optimization process as a two-player game, as formalized by Morimoto and
Doya (2005), described in Section 7.2, and summarized in Figure 7.1. In this framework, an
adversary, denoted by π̄ : S ×A → P, is introduced, and the game is formulated as

max
π

min
π̄

E

[∞∑
t=0

γtr(st, at, st+1)|s0, at ∼ π(st), Pt = π̄(st, at), st+1 ∼ Pt(·|st, at)
]
.

Most methods differ in how they constrain π̄’s action space within the uncertainty set. A
first family of methods define π̄(st) = Pref + ∆(st), where pref denotes the reference (nominal)
transition function. Among this family, Robust Adversarial Reinforcement Learning (RARL)
(Pinto et al. 2017) applies external forces at each time step t to disturb the reference dynamics. For
instance, the agent controls a planar monopod robot, while the adversary applies a 2D force on the
foot. In noisy action robust MDPs (NR-MDP) (Tessler et al. 2019) the adversary shares the same
action space as the agent and disturbs the agent’s action π(s). Such gradient-based approaches
incur the risk of finding stationary points for π and π̄ which do not correspond to saddle points of
the robust MDP problem. To prevent this, Mixed-NE (Kamalaruban et al. 2020) defines mixed
strategies and uses stochastic gradient Langevin dynamics. Similarly, Robustness via Adversary
Populations (RAP) (Vinitsky et al. 2020) introduces a population of adversaries, compelling
the agent to exhibit robustness against a diverse range of potential perturbations rather than
a single one, which also helps prevent finding stationary points that are not saddle points.

Aside from this first family, State Adversarial MDPs (Zhang et al. 2020; 2021, Stanton
et al. 2021) involve adversarial attacks on state observations, which implicitly define a partially
observable MDP. This case aims not to address robustness to the worst-case transition function
but rather against noisy, adversarial observations.

A third family of methods considers the general case of π̄(st, at) = Pt or π̄(st) = pt, where
Pt ∈ P. Minimax Multi-Agent Deep Deterministic Policy Gradient (M3DDPG) (Li et al.
2019b) is designed to enhance robustness in multi-agent reinforcement learning settings but boils
down to standard robust RL in the two-agents case. Max-min TD3 (M2TD3) (Tanabe et al.
2022a) considers a policy π, defines a value function Q(s, a, p) which approximates Qπ,P (s, a) =
Es′∼P [r(s, a, s′) +γV π,P (s′)], updates an adversary π̄ so as to minimize Q(s, π(s), π̄(s)) by taking
a gradient step with respect to π̄’s parameters, and updates the policy π using a TD3 gradient
update in the direction maximizing Q(s, π(s), π̄(s)). As such, M2TD3 remains a robust value
iteration method that solves the dynamic problem by alternating updates on π and π̄, but since
it approximates Qπ,P , it is also closely related to the method we introduce in the next section.

Domain randomization. Domain randomization (DR) (Tobin et al. 2017) learns a value
function V (s) = maxπ Ep∼U(P)V

π
p (s) which maximizes the expected return on average across a

Chapter 7. RRLS: Robust Reinforcement Learning Suite 116

Figure 7.2: RRLS architecture

Figure 7.3: Visual representation of various reinforcement learning environments including Ant,
HalfCheetah, Hopper, Humanoid Stand Up, Inverted Pendulum, and Walker.

fixed distribution on P. As such, DR approaches do not optimize the worst-case performance.
Nonetheless, DR has been used convincingly in applications (Mehta et al. 2020a, OpenAI et al.
2019). Similar approaches also aim to refine a base DR policy for application to a sequence of
real-world cases (Lin et al. 2020, Dennis et al. 2020, Yu et al. 2018). For a more complete survey
of recent works in robust RL, we refer the reader to the work of Moos et al. (2022).

7.4 RRLS: Benchmark environments for Robust RL

This section introduces the Robust Reinforcement Learning Suite, which extends the Gymnasium
Towers et al. (2023) API with two additional methods: set params and get params. These
methods are integral to the ModifiedParamsEnv interface, facilitating environment parameter
modifications within the benchmark environment. Typically, these methods are used within
a wrapper to simplify parameter modifications during evaluation. In the RRLS architecture
(Figure 7.2), the adversary begins by retrieving parameters from the uncertainty set and setting
them in the environment using the ModifiedParamsEnv interface. The agent then acts based
on the current state of the environment, and the Mujoco Physics Engine updates the state
accordingly. The agent observes this updated state, completing the interaction loop. Multiple
MuJoCo environments are provided (Figure 7.3), each with a two default uncertainty sets,
inspired respectively by those used in the experiments of RARL (Pinto et al. 2017) (Table 9.11)
and M2TD3 (Tanabe et al. 2022a) (Table 7.2). This variety allows for a comprehensive evaluation
of robust RL algorithms, ensuring that the benchmarks encompass a wide range of scenarios.

Several MuJoCo environments are proposed, each with distinct action and observation spaces.
Figure 7.3 shows a visual representation of all provided environments. In all environments, the
observation space corresponds to the positional values of various body parts followed by their

117 7.4. RRLS: Benchmark environments for Robust RL

velocities, with all positions listed before all velocities. The environments are as follows:

• Ant: A 3D robot with one torso and four legs, each with two segments. The goal is to
move forward by coordinating the legs and applying torques on the eight hinges. The
action dimension is 8, and the observation dimension is 27.

• HalfCheetah: A 2D robot with nine body parts and eight joints, including two paws. The
goal is to run forward quickly by applying torque to the joints. Positive rewards are given
for forward movement, and negative rewards for moving backward. The action dimension
is 6, and the observation dimension is 17.

• Hopper: A 2D one-legged figure with four main parts: torso, thigh, leg, and foot. The
goal is to hop forward by applying torques on the three hinges. The action dimension is
3, and the observation dimension is 11.

• Humanoid Stand Up: A 3D bipedal robot resembling a human, with a torso, legs, and
arms, each with two segments. The environment starts with the humanoid lying on the
ground. The goal is to stand up and remain standing by applying torques to the various
hinges. The action dimension is 17, and the observation dimension is 376.

• Inverted Pendulum: A cart that can move linearly, with a pole fixed at one end. The
goal is to balance the pole by applying forces to the cart. The action dimension is 1, and
the observation dimension is 4.

• Walker: A 2D two-legged figure with seven main parts: torso, thighs, legs, and feet. The
goal is to walk forward by applying torques on the six hinges. The action dimension is 6,
and the observation dimension is 17.

The RRLS architecture enables parameter modifications and adversarial interactions using the
gymnasium Towers et al. (2023) interface. The set params and get params methods in the
ModifiedParamsEnv interface directly access and modify parameters in the Mujoco Physics
Engine. All modifiable parameters are listed in Appendix 34 and lie in the uncertainty set
described below.

Uncertainty Sets. Non-rectangular uncertainty sets (opposed to rectangular ones as defined
in (Iyengar 2005)) are proposed based on MuJoCo environments, detailed in Table 9.11. These
sets, based on previous work evaluating M2TD3 Tanabe et al. (2022a) and RARL Pinto et al.
(2017), ensure thorough testing of robust RL algorithms under diverse conditions. For instance,
the uncertainty range for the torso mass in the HumanoidStandUp 2 and 3 environments spans
from 0.1 to 16.0 (Table 9.11), ensuring challenging evaluation of RL methods. Three uncertainty
sets—1D, 2D, and 3D—are provided for each environment, ranging from simple to challenging.

RRLS also directly provides the uncertainty sets from the RARL (Pinto et al. 2017) paper.
These sets apply destabilizing forces at specific points in the system, encouraging the agent to
learn robust control policies.

Wrappers. We introduce environment wrappers to facilitate the implementation of various
deep robust RL baselines such as M2TD3 Tanabe et al. (2022a), RARL Pinto et al. (2017),
Domain Randomization Tobin et al. (2017), NR-MDP Tessler et al. (2019) and all algorithms
deriving from Robust Value Iteration, ensuring researchers can easily apply and compare different
methods within a standardized framework. The wrappers are described as follows:

• The ModifiedParamsEnv interface includes methods set params and get params, which
are crucial for modifying and retrieving environment parameters. This interface allows
dynamic adjustment of the environment during training or evaluation.

Chapter 7. RRLS: Robust Reinforcement Learning Suite 118

Table 7.1: List of parameters uncertainty sets based on M2TD3 in RRLS

Environment Uncertainty set P Reference values Uncertainty parameters

Ant 1 [0.1, 3.0] 0.33 torsomass

Ant 2 [0.1, 3.0]× [0.01, 3.0] (0.33, 0.04) torso mass; front left leg mass

Ant 3 [0.1, 3.0]× [0.01, 3.0]× [0.01, 3.0] (0.33, 0.04, 0.06) torso mass; front left leg mass; front right leg mass

HalfCheetah 1 [0.1, 3.0] 0.4 world friction

HalfCheetah 2 [0.1, 4.0]× [0.1, 7.0] (0.4, 6.36) world friction; torso mass

HalfCheetah 3 [0.1, 4.0]× [0.1, 7.0]× [0.1, 3.0] (0.4, 6.36, 1.53) world friction; torso mass; back thigh mass

Hopper 1 [0.1, 3.0] 1.00 world friction

Hopper 2 [0.1, 3.0]× [0.1, 3.0] (1.00, 3.53) world friction; torso mass

Hopper 3 [0.1, 3.0]× [0.1, 3.0]× [0.1, 4.0] (1.00, 3.53, 3.93) world friction; torso mass; thigh mass

HumanoidStandup 1 [0.1, 16.0] 8.32 torsomass

HumanoidStandup 2 [0.1, 16.0]× [0.1, 8.0] (8.32, 1.77) torso mass; right foot mass

HumanoidStandup 3 [0.1, 16.0]× [0.1, 5.0]× [0.1, 8.0] (8.32, 1.77, 4.53) torso mass; right foot mass; left thigh mass

InvertedPendulum 1 [1.0, 31.0] 4.90 polemass

InvertedPendulum 2 [1.0, 31.0]× [1.0, 11.0] (4.90, 9.42) pole mass; cart mass

Walker 1 [0.1, 4.0] 0.7 world friction

Walker 2 [0.1, 4.0]× [0.1, 5.0] (0.7, 3.53) world friction; torso mass

Walker 3 [0.1, 4.0]× [0.1, 5.0]× [0.1, 6.0] (0.7, 3.53, 3.93) world friction; torso mass; thigh mass

• The DomainRandomization wrapper enables domain randomization by sampling environ-
ment parameters from the uncertainty set between episodes. It wraps an environment
following the ModifiedParamsEnv interface and uses a randomization function to draw
new parameter sets. If no function is set, the parameter is sampled uniformly. Parameters
reset at the beginning of each episode, ensuring diverse training conditions.

• The Adversarial wrapper converts an environment into a robust reinforcement learning
problem modeled as a zero-sum Markov game. It takes an uncertainty set and the
ModifiedParamsEnv as input. This wrapper extends the action space to include adversarial
actions, allowing for modifications of transition kernel parameters within a specified
uncertainty set. It is suitable for reproducing robust reinforcement learning approaches
based on adversarial perturbation in the transition kernel, such as RARL.

• The ProbabilisticActionRobust wrapper defines the adversary’s action space as the
same action space as the agent. The final action applied in the environment is a convex sum
between the agent’s action and the adversary’s action: apr = αa+(1−α)ā. The adversarial
action’s effect is bounded by the environment’s action space, allowing the implementation
of robust reinforcement learning methods around a reference transition kernel, such as
NR-MDP or RAP.

Evaluation Procedure. Evaluating Robust Reinforcement Learning algorithms can feature
a large variability in outcome statistics depending on a number of minor factors (such as random

119 7.5. Benchmarking Robust RL algorithms

Table 7.2: List of parameters uncertainty sets based on RARL in RRLS

Environment Uncertainty set P Uncertainty parameters

Ant Rarl [−3.0, 3.0]×6 torso force x; torso force y; front left leg force x; front left leg force y; front right leg force x; front right leg force y

HalfCheetah Rarl [−3.0, 3.0]×6 torso force x; torso force y; back foot force x; back foot force y; forward foot force x; forward foot force y

Hopper Rarl [−3.0, 3.0]×2 foot force x; foot force y

HumanoidStandup Rarl [−3.0, 3.0]×6 torso force x; torso force y; right thigh force x; right thigh force y; left foot force x; left foot force y

InvertedPendulum Rarl [−3.0, 3.0]×2 pole force x; pole force y

Walker Rarl [−3.0, 3.0]×4 leg force x; leg force y; left foot force x; left foot force y

seeds, initial state, or collection of evaluation transition models). To address this, we propose a
systematic approach using a function called generate evaluation set. This function takes an
uncertainty set as input and returns a list of evaluation environments. In the static case, where the
transition kernel remains constant across time steps, the evaluation set consists of environments
spanned by a uniform mesh over the parameters set. The agent runs multiple trajectories in
each environment to ensure comprehensive testing. Each dimension of the uncertainty set is
divided by a parameter named nb mesh dim. This parameter controls the granularity of the
evaluation environments. To standardize the process, we provide a default evaluation set for
each uncertainty set (Table 9.11). This set allows for worst-case performance and average-case
performance evaluation in static conditions.

7.5 Benchmarking Robust RL algorithms

Experimental setup. This section evaluates several baselines in static and dynamic settings
using RRLS. We conducted experimental validation by training policies in the Ant, HalfCheetah,
Hopper, HumanoidStandup, and Walker environments. We selected five baseline algorithms:
TD3, Domain Randomization (DR), NR-MDP, RARL, and M2TD3. We select the most
challenging scenarios, the 3D uncertainty set defined in Table 9.11, normalized between [0, 1]3.
For static evaluation, we used the standard evaluation procedure proposed in the previous section.
Performance metrics were gathered after five million steps to ensure a fair comparison after
convergence. All baselines were constructed using TD3 with a consistent architecture across all
variants. The results were obtained by averaging over ten distinct random seeds. Appendices
35, 37.1, 37.2, and 37.3 provide further details on hyperparameters, network architectures,
implementation choices, and training curves.

Static worst-case performance. Tables 7.6 and 7.7 report normalized scores for each
method, averaged across 10 random seeds and 5 episodes per seed, for each transition kernel
in the evaluation uncertainty set. To compare metrics across environments, the score v of
each method was normalized relative to the reference score of TD3. TD3 was trained on the
environment using the reference transition kernel, and its score is denoted as vTD3. The M2TD3
score, vM2TD3, was used as the comparison target. The formula used to get a normalized score
is (v − vTD3)/(|vM2TD3 − vTD3|). This defines vTD3 as the minimum baseline and vM2TD3 as
the target. This standardization provides a metric that quantifies the improvement of each
method over TD3 relative to the improvement of M2TD3 over TD3. Non-normalized results
are available in Appendix 36. As expected, M2TD3, RARL and DR perform better in terms
of worst-case performance, than vanilla TD3. Surprisingly, RARL is outperformed by DR except
for HalfCheetah, Hopper, and Walker in worst-case performance. Finally, M2TD3, which is a
state-of-the-art algorithm, outperforms all baselines except on HalfCheetah where DR achieves
a slightly, non-statistically significant, better score. One potential explanation for the superior

Chapter 7. RRLS: Robust Reinforcement Learning Suite 120

performance of DR over robust reinforcement learning methods in the HalfCheetah environment is
that the training of a conservative value function is not necessary. The HalfCheetah environment
is inherently well-balanced, even with variations in mass or friction. Consequently, robust training,
which typically aims to handle worst-case scenarios, becomes less critical. This insight aligns with
the findings of Moskovitz et al. (2021), who observed similar results in this specific environment.
The variance in the evaluations also needs to be addressed. In many environments, high variance
prevents drawing statistical conclusions. For instance, HumanoidStandup shows a variance of
3.32 for M2TD3, complicating reliable performance assessments. Similar issues arise with DR in
the same environment, showing a variance of 4.1. Such variances highlight the difficulty of making
definitive comparisons across different robust reinforcement learning methods in these settings.

Table 7.3: Avg. of normalized static worst-case performance over 10 seeds for each method

Ant HalfCheetah Hopper HumanoidStandup Walker Average

TD3 0.0± 0.34 0.0± 0.06 0.0± 0.21 0.0± 2.27 0.0± 0.1 0.0± 0.6

DR 0.06± 0.16 1.07± 0.36 0.86± 0.82 0.04± 4.1 0.57± 0.37 0.52± 1.16

M2TD3 1.0± 0.27 1.0± 0.16 1.0± 0.65 1.0± 3.32 1.0± 0.63 1.0± 1.01

RARL 0.44± 0.3 0.13± 0.08 0.5± 0.22 0.44± 2.94 0.12± 0.09 0.33± 0.73

NR-MDP −0.25± 0.1 −0.10± 0.24 −0.31± 0.4 −2.22± 1.51 −0.04± 0.01 −0.58± 0.45

Static average performance. Similarly to the worst-case performance described above,
average scores across a uniform distribution on the uncertainty set are reported in Table 7.7.
While robust policies explicitly optimize for the worst-case circumstances, one still desires that
they perform well across all environments. A sound manner to evaluate this is to average their
scores across a distribution of environments. First, one can observe that DR outperforms the other
algorithms. This was expected since DR is specifically designed to optimize the policy on average
across a (uniform) distribution of environments. One can also observe that RARL performs worse
on average than a standard TD3 in most environments (except HumanoidStandup), despite having
better worst-case scores. This exemplifies how robust RL algorithms can output policies that
lack applicability in practice. Finally, M2TD3 is still better than TD3 on average, and hence this
study confirms that it optimizes for worst-case performance while preserving the average score.

Table 7.4: Avg. of normalized static average case performance over 10 seeds for each method

Ant HalfCheetah Hopper HumanoidStandup Walker Average

TD3 0.0± 0.49 0.0± 0.22 0.0± 0.83 0.0± 1.36 0.0± 0.51 0.0± 0.68

DR 1.65± 0.05 2.31± 0.27 2.08± 0.49 1.15± 2.47 1.22± 0.34 1.68± 0.72

M2TD3 1.0± 0.11 1.0± 0.19 1.0± 0.55 1.0± 1.43 1.0± 0.65 1.0± 0.59

RARL 0.69± 0.13 −1.3± 0.54 −0.99± 0.11 0.47± 1.92 −0.35± 0.83 −0.3± 0.71

NR-MDP 0.44± 0.03 −0.58± 0.17 −0.85± 0.001 −0.83± 0.24 −1.08± 0.01 −0.58± 0.15

Dynamic adversaries. While the static and dynamic cases of transition kernel uncertainty

121 7.5. Benchmarking Robust RL algorithms

lead to the same robust value functions in the idealized framework of rectangular uncertainty
sets, most real-life situations (such as those in RRLS) fall short of this rectangularity assumption.
Consequently, Robust Value Iteration algorithms, which train an adversarial policy π̄ (whether
they store it or not) might possibly lead to a policy that differs from those which optimize for
the original maxπ minp problem introduced in Section 7.2. RRLS permits evaluating this feature
by running rollouts of agent policies versus their adversaries, after optimization. RARL and
NR-MDP simultaneously train a policy π and an adversary π̄. The policy is evaluated against
its adversary over ten episodes. Observations in Table 7.5 demonstrate how RRLS can be used
to compare RARL and NR-MDP against their respective adversaries, in raw score. However,
this comparison should not be interpreted as a dominance of one algorithm over the other, since
the uncertainty sets they are trained upon are not the same.

Table 7.5: Comparison of RARL and NR-MDP across different environments

Method HumanoidStandup (104) Ant (103) HalfCheetah (102) Hopper (103) Walker (103)

RARL 9.84± 3.36 2.90± 0.70 −0.74± 6.69 1.04± 0.16 3.45± 1.13

NR-MDP 9.37± 0.14 5.58± 0.64 109.90± 4.74 3.14± 0.53 5.17± 0.89

Training curves. Figure 7.4 reports training curves for TD3, DR, RARL, and M2TD3 on the
Walker environment, using RRLS (results for all other environments in Appendix 35). Each agent
was trained for 5 million steps, with cumulative rewards monitored over trajectories of 1,000 steps.
Scores were averaged over 10 different seeds. The training curves illustrate the steep learning curve
of TD3 and DR in the initial stages of learning, versus their robust counterparts. The M2TD3
agent ultimately achieves the highest performance at 5 million steps. Similarly, RARL exhibits
a significant delay in learning, with stabilization occurring only toward the end of the training.
Figures 7.4d and 7.4c show a significant variance in training across different random seeds. This em-
phasizes the difficulty of comparing different robust reinforcement learning methods along training.

A comparison of algorithms of Chapters 5 and 6 In tables 7.7 and 7.6, we have reported
the normalised scores of algorithms ExpectRL and TC-MDPs presented in Chapters 5 and 6
such that the score is defined as (v − vTD3)/(|vM2TD3 − vTD3|). The results are for tasks Ant3,
Hopper3, Walker3, etc... where three physical parameters are changing at the time on evaluation.
In both tables 7.7 and 7.6, we have separated the performance of oracle algorithms, with the
highest values highlighted in green, and the performance of non-oracle algorithms, with the best
values underlined in black. The results are as follows:

• In terms of worst-case performance in table 7.6: the results of the TC-MDP oracle
algorithm are the most optimal, as it leverages additional information that is typically
unavailable in practical settings. However, M2TD3 performs very well in practice since it
is designed to effectively minimize the worst-case scenarios. The performance of both the
TC-MDP stack and the classical TC-MDP algorithm is also strong, though slightly lower
than that of M2TD3.

• In terms of average performance in table 7.7: the average performance of the
DR+ ExpectRL algorithm significantly surpasses that of M2TD3. In the context of DR+
ExpectRL, adding a distributional robustness component is highly beneficial. We also
observe that the TC-MDP algorithms achieve considerably superior performance. The

Chapter 7. RRLS: Robust Reinforcement Learning Suite 122

(a) Training curve on Walker with
TD3

(b) Training curve on Walker with DR

(c) Training curve on Walker with
RARL

(d) Training curve on Walker with
M2TD3

Figure 7.4: Averaged training curves for Walker over 10 seeds

inclusion of adversarial constraints leads to a less pessimistic adversary, which in turn
improves the average performance. An alternative interpretation is that this approach
considers non-rectangular uncertainty sets with dynamics constrained to be Lipschitz-
continuous.

In general, the conclusions regarding these methods are as follows: M2TD3 has lower variance
compared to the other algorithms and performs very well in terms of worst-case performance.
However, TC-MDP offers a better balance, with strong mean performance while still maintaining
good worst-case results. Finally, the ExpectRL algorithm is simpler than the others, as it utilizes
only a single network, and while it performs slightly lower in terms of worst-case performance, it
achieves strong results for mean performance.

7.6 Conclusion

This Chapter introduces the Robust Reinforcement Learning Suite (RRLS), a benchmark for
evaluating robust RL algorithms, based on the Gymnasium API. RRLS provides a consistent
framework for testing state-of-the-art methods, ensuring reproducibility and comparability. RRLS
features six continuous control tasks based on Mujoco environments, each with predefined uncer-
tainty sets for training and evaluation, and is designed to be expandable to more environments and
uncertainty sets. This variety allows comprehensive testing across various adversarial conditions.
We also offer four compatible baselines and demonstrate their performance in static settings.
Our work enables systematic comparisons of algorithms based on practical performance. RRLS
addresses the need for reproducibility and comparability in robust RL. By making the source
code publicly available, we anticipate that RRLS will become a valuable resource for the RL
community, promoting progress in robust reinforcement learning algorithms.

123 7.6. Conclusion

Ant HalfCheetah Hopper Humanoid Walker Agg

Oracle M2TD3 1.02± 0.19 0.34± 0.23 0.97± 0.55 3.9± 3.65 0.3± 0.45 1.31± 1.01

Oracle RARL 0.62± 0.32 0.1± 0.02 0.48± 0.19 −2.59± 2.18 0.16± 0.21 −0.25± 0.58

Oracle-TC -M2TD3 0.1± 0.25 1.87± 0.1 0.49± 1.07 −0.8± 3.05 0.28± 0.38 0.39± 0.97

Oracle-TC -RARL 0.59± 0.36 1.55± 0.35 0.4± 0.16 1.19± 1.24 0.56± 0.39 0.86± 0.5

Stacked-TC -M2TD3 −0.05± 0.09 1.56 ± 0.16 1.08± 0.89 −0.83± 2.62 1.12± 0.5 0.58± 0.85

Stacked-TC -RARL 0.07± 0.13 0.76± 0.34 1.35 ± 0.93 1.75 ± 2.48 0.67± 0.32 0.92± 0.84

TC -M2TD3 −0.06± 0.08 1.49± 0.23 1.29± 0.29 1.21± 2.44 1.19 ± 0.34 1.02 ± 0.68

TC -RARL 0.14± 0.24 0.89± 0.3 1.5± 0.76 1.4± 4.57 0.67± 0.59 0.92± 1.29

TD3 0.0± 0.34 0.0± 0.06 0.0± 0.21 0.0± 2.27 0.0± 0.1 0.0± 0.6

DR 0.06± 0.16 1.07± 0.36 0.86± 0.82 0.04± 4.1 0.57± 0.37 0.52± 1.16

M2TD3 1.0 ± 0.27 1.0± 0.16 1.0± 0.65 1.0± 3.32 1.0± 0.63 1.0± 1.01

RARL 0.44± 0.3 0.13± 0.08 0.5± 0.22 0.44± 2.94 0.12± 0.09 0.33± 0.73

ExpecRL + DR 0.74± 0.31 0.88± 0.29 1.09± 0.31 1.12± 2.49 0.85± 0.60 0.93± 0.79

Table 7.6: Avg. of normalized static worst-case performance over 10 seeds for each method

Chapter 7. RRLS: Robust Reinforcement Learning Suite 124

Ant HalfCheetah Hopper Humanoid Walker Agg

Oracle M2TD3 1.13± 0.08 1.56± 0.24 1.12± 0.46 1.96± 1.53 1.23± 0.3 1.4± 0.52

Oracle RARL 0.7± 0.22 −1.4± 0.13 −0.77± 0.24 −2.6± 2.88 −1.13± 0.84 −1.04± 0.86

Oracle-TC -M2TD3 1.73± 0.09 4.35± 0.26 5.54± 0.13 2.12± 1.4 1.84± 0.37 3.12± 0.45

Oracle-TC -RARL 1.78± 0.02 4.32± 0.21 5.08± 0.48 0.42± 2.9 1.68± 0.24 2.66± 0.77

Stacked-TC -M2TD3 1.45± 0.38 3.78 ± 0.29 5.2 ± 0.29 −1.38± 1.67 2.11 ± 0.52 2.23± 0.63

Stacked-TC -RARL 1.52± 0.11 2.29± 0.23 2.91± 0.67 1.14± 2.19 1.21± 0.46 1.81± 0.73

TC -M2TD3 1.6± 0.06 3.71± 0.24 4.4± 0.6 3.28 ± 2.52 1.56± 0.23 2.91 ± 0.73

TC -RARL 1.67 ± 0.07 2.27± 0.22 1.79± 0.53 0.89± 2.19 1.01± 0.21 1.53± 0.64

TD3 0.0± 0.49 0.0± 0.22 0.0± 0.83 0.0± 1.36 0.0± 0.51 0.0± 0.68

DR 1.65± 0.05 2.31± 0.27 2.08± 0.49 1.15± 2.47 1.22± 0.34 1.68± 0.72

M2TD3 1.0± 0.11 1.0± 0.19 1.0± 0.55 1.0± 1.43 1.0± 0.65 1.0± 0.59

RARL 0.69± 0.13 −1.3± 0.54 −0.99± 0.11 0.47± 1.92 −0.35± 0.83 −0.3± 0.71

ExpecRL + DR 1.08± 0.41 1.17± 0.35 2.61± 0.66 1.05± 1.42 1.02± 0.5 1.38± 0.67

Table 7.7: Avg. of normalized static average case performance over 10 seeds for each method

Part III

Bandit Theory

8

Ch
ap

te
r

VITS : Variational Inference Thompson
Sampling for contextual bandits

Contents
8.1 Introduction . 127
8.2 Thompson sampling for contextual bandits 130
8.3 Main results . 134

8.3.1 Linear Bandit . 134
8.4 Numerical experiments . 136

8.4.1 Linear and quadratic bandit . 136
8.5 MovieLens Dataset . 139
8.6 Conclusion and perspectives . 139

8.1 Introduction

In traditional Multi-Armed Bandit (MAB) problems, an agent, has to sequentially choose between
several actions (referred to as ”arms”), from which he receives a reward from the environment.
The arm selection process is induced by a sequence of policies, which is inferred and refined
at each round from past observations. These policies are designed to optimize the cumulative
rewards over the entire process. The main challenge in this task is to effectively manage a
suitable exploitation and exploration trade-off (Robbins 1952, Katehakis and Veinott 1987, Berry
and Fristedt 1985, Auer et al. 2002, Lattimore and Szepesvári 2020, Kveton et al. 2020). Here,
exploitation refers to selecting an arm that is currently believed to be the best based on past
observations, while exploration refers to selecting arms that have not been selected frequently in
the past in order to gather more information.

Contextual bandit problems is a particular instance of MAB problem, which supposes, at
each round, that the set of arms and the corresponding reward depend on a d-dimensional feature
vector called a contextual vector or context. This scenario has been extensively studied over the
past decades and learning algorithms have been developed to address this problem (Langford
and Zhang 2007, Abbasi-Yadkori et al. 2011, Agrawal and Goyal 2013, Kveton et al. 2020),
and they have been successfully applied in several real-world problem such as recommender
systems, mobile health and finance (Li et al. 2010, Agarwal et al. 2016, Tewari and Murphy 2017,
Bouneffouf et al. 2020). The existing algorithms for addressing contextual bandit problems can
be broadly categorized into two groups. The first category is based on maximum likelihood and
the principle of optimism in the face of uncertainty (OFU) and has been studied in (Auer et al.

Chapter 8. VITS : Variational Inference Thompson Sampling for contextual bandits 128

2002, Chu et al. 2011, Abbasi-Yadkori et al. 2011, Li et al. 2017, Ménard and Garivier 2017,
Zhou et al. 2020, Foster and Rakhlin 2020, Zenati et al. 2022).

The second category consists in randomized probability matching algorithms, which is based
on Bayesian belief and posterior sampling. Thompson Sampling (TS) is one of the most famous
algorithms that fall into this latter category. Since its introduction by Thompson (1933), it has
been widely studied, both theoretically and empirically (Agrawal and Goyal 2012, Kaufmann et al.
2012, Agrawal and Goyal 2013, Russo and Van Roy 2014; 2016, Lu and Van Roy 2017, Riquelme
et al. 2018, Jin et al. 2021). Despite the fact that OFU algorithms offer better theoretical
guarantees compared to classic TS-based algorithms, traditional TS methodologies still appeal
to us due to their straightforward implementation and empirical advantages. In Agrawal and
Goyal (2012), the authors claimed that: ”In applications like display advertising and news article
recommendation, TS is competitive with or better than popular methods such as UCB”. Similarly,
Chapelle and Li (2011) has examined the empirical performances of TS on both simulated and
real data. Their experiments demonstrate that TS outperforms OFU methods, leading them
to conclude: ”In any case, TS is very easy to implement and should thus be considered as a
standard baseline”. Taking all these factors into account, we have decided to focus on TS-based
algorithms for addressing contextual bandit problems.

Despite its relative simplicity, effectiveness and convergence guarantees, TS comes with a
computational burden which is to sample, at each iteration t ∈ N⋆, from an appropriate Bayesian
posterior distribution p̂t defined from the previous observations. Indeed, these posteriors are
usually intractable and approximate inference methods have to be used to obtain samples with
distributions ”close” to the posterior. The family of TS methods using approximate inference
methods will be referred to as approximate inference TS in the sequel. Among the simplest
approximate inference methods, Laplace approximation has been proposed for TS in Chapelle
and Li (2011). This method consists of approximating the posterior distribution p̂t by a Gaussian
distribution with a carefully chosen mean and covariance matrix. More precisely, the mean is a
mode of the target distribution which is typically found using an optimization algorithm, while the
covariance matrix is taken to be the negative Hessian matrix of the log posterior at the considered
mode. Despite this method is easy to implement, it may lead to poor posterior representations.
Indeed, while Laplace method achieves minimal optimality in terms of regret (Faury et al. 2022),
it doesn’t dictate the posterior convergence rate. More precisely, in Katsevich and Rigollet (2023)
it has been demonstrated that VI outperforms Laplace in terms of mean convergence by a factor
of 1/n . It is worth noting that the covariance rates remain the same for both methods. This
discrepancy can lead to inadequate approximations, especially in high-dimensional settings, as
highlighted in section I.4 of Katsevich and Rigollet (2023).

Another class of popular approximate inference methods are Markov Chain Monte Carlo
(MCMC) methods, such as Metropolis or Langevin Monte Carlo (LMC) algorithms. In the bandit
literature, LMC has been proposed to get approximate samples from TS posteriors for solving
traditional bandit problem in Mazumdar et al. (2020) and for contextual bandit problems in Xu
et al. (2022), Huix et al. (2023). Also, Lu and Van Roy (2017) have proposed to adapt Ensemble
Methods to the bandit setting. Roughly, the idea here is to maintain and incrementally update
an ensemble of statistically plausible models and to draw a uniform sample from this family at
each iteration.

Finally, Variational Inference (VI) (Blei et al. 2017) is another class of approximate method
that could be used to get samples from the posterior distribution. The core concept behind
VI is to find a distribution q̃, referred to as the variational posterior, to closely match the
true posterior p̂ in terms of Kullback-Leibler divergence (KL) within a predefined family of
distributions known as the variational family G. In general, the variational family is chosen to
make the optimization of the KL tractable and to be easy to sample from. In their work Urteaga

129 8.1. Introduction

and Wiggins (2018) propose the mean-field mixture of Gaussian variational family for TS. This
family of distributions is quite extensive and provides an accurate approximation for a wide range
of posterior distributions. However, in our perspective, it might not be the most suitable choice
for TS. Firstly, the optimization algorithm at each time step can be computationally expensive.
Secondly, the mean-field assumption assumes that the parameters are independent, a premise
that holds true in the regime of large, overparameterized models. In our perspective, this regime
may not align with the Bandit problem, which often operates in a setting where the number of
data points tends towards infinity in comparison to the model size. Finally, Yu et al. (2020) also
employs VI in more general graphical models but focuses on structured arms and rewards, where
the rewards are correlated through latent variables.

In this Chapter, we develop an efficient VI method that makes use of the whole family of non-
degenerate Gaussian distributions. This choice of VI family is supported by the Bernstein-Von
Mises theorem (Van der Vaart 2000) . This theorem, subject to specific regularity conditions,
asserts that a properly scaled version of the posterior converges to a Gaussian as the sample
size grows. When applied to contextual bandits, the data points progressively accumulate
over time, leading to the gradual concentration of the posterior around a dominant mode.
As a consequence, the Gaussian approximation becomes increasingly suitable for representing
the posterior in this particular setting. Furthermore, the covariance of the rescaled posterior
distribution tends to converge towards the inverse Fisher information matrix, which may not
necessarily be diagonal, thus justifying the need for a non-mean-field hypothesis. Our main
contributions can be summarized as follows:

Our first contribution is methodological. We develop a novel variant of the TS algorithm,
referred to as Variational Inference TS (VITS). Our method addresses the main challenges
encountered by the existing approximate TS algorithms and can be applied to a very large
class of TS posteriors. Moreover, it enjoys a low computational cost both theoretically and
empirically, since it boils down to adding a few optimization steps per round. We also propose
two approximate versions of VITS, called VITS− II and VITS− II Hessian-free, that scale
with the problem dimension.

Our second contribution is theoretical. We establish that our proposed methodology
achieves a sub-linear regret of order Õ(d3/2√T) (up to logarithmic term) in the linear contextual
bandit framework, where T is the number of rounds and d is the dimension of the policy parameter.
To the best of our knowledge, this is the first regret bound derived for VI in the context of
sequential learning.

Finally, our last contribution is to illustrate the empirical performances of our method on
a synthetic and on the real world dataset MovieLens (Lam and Herlocker (Lam and Herlocker)).
It has been shown that in many cases, VITS outperforms existing approximate TS algorithms
such as LMC algorithm.

Related work. The theoretical foundations of TS for linear contextual bandits were initially
explored by Agrawal and Goyal (2013). In this paper, the authors establish a sub-linear cumulative
regret bound Õ(d3/2√T) for Linear TS (Lin-TS). Compared to this study, our method achieves
a similar regret bound in the linear framework. However, it should be noted that Lin-TS is a
specialized algorithm that can be only used when the posterior is known and can be efficiently
sampled from.

As mentioned previously, VI has been suggested for TS in Urteaga and Wiggins (2018). This
paper introduces a TS algorithm called VTS that utilizes a mixture of mean-field Gaussian
distributions to approximate the sequence of posteriors. In comparison to this work, the setting
and the variational family we consider are richer than Urteaga and Wiggins (2018). A more

Chapter 8. VITS : Variational Inference Thompson Sampling for contextual bandits 130

detailed comparison is postponed in Appendix 42. Moreover, the methodology developed in
Urteaga and Wiggins (2018) does not come with any convergence guarantees. An empirical and
theoretical study of using LMC as approximate inference method for TS for contextual bandit
problems was carried out in Xu et al. (2022). This paper establishes that the resulting algorithm,
called LMC-TS, achieves a state-of-the-art sub-linear cumulative regret for linear contextual
bandits. Compared to this method, our approach yields a similar sub-linear regret in the same
setting. Finally, Zhang et al. (2020) suggests a TS method based on Neural Tangent Kernel.
While this performs well on real datasets, their method is much more expensive than previously
mentioned approaches, as it requires training a neural network.

Notation. For n ≥ 1, [n] represents the set of integers between 1 and n. N(µ,Σ) denotes the
d-multidimensional Gaussian probability distribution with mean µ ∈ Rd and covariance matrix
Σ ∈ Rd×d. The transpose of a matrix M is denoted by M⊤. For any symmetric-real matrix A,
λmax(A) and λmin(A) represent the maximum and minimum eigenvalues of A respectively. The
norm ∥ · ∥2 will refer to the 2-norm for vectors, and the operator norm for matrices. For any semi-
definite positive matrix A, the norm ∥x∥A denotes the Mahalanobis norm, i.e., ∥x∥A =

√
xAx⊤.

For any event E on a probability space, E refers to the complementary of E. Finally, 1 is the
indicator function and tr is the trace of a matrix.

8.2 Thompson sampling for contextual bandits

Contextual bandit: We now present in more details the contextual bandit framework. Let S
be a contextual space and consider A : S → 2A a set-valued action map, where 2A stands for the
power set of the action space A. For simplicity, we assume here that supx∈S Card(A(s)) < +∞. A
(deterministic or random) function π : S → A is said to be a policy if for any s ∈ S, π(s) ∈ A(s).
Then, for a fixed horizon T ∈ N⋆, a contextual bandit process can be defined as follows: at each
iteration t ∈ [T] and given the past observations Dt−1 = {(si, as, si)}i<t:

• The agent receives a contextual feature st ∈ S;
• The agent chooses an action at = πt(st) where πt is a policy sampled from Qt(·|Dt−1);
• Finally, the agent receives a reward rt sampled from R(·|st, at) given Dt−1. Here, R is a

Markov kernel on (A× S)× R, where R ⊂ R

For a fixed family of conditional distributions Q1:T = {Qt}t≤T , this process defines a random
sequence of policies, π1:T = {πt}t≤T with distribution still denoted by Q1:T by abuse of notation.
Let’s defined the optimal expected reward for a contextual vector s ∈ X and the expected reward
given x and any action a ∈ A(s) as follow

f⋆(s) = max
a∈A(s)

f(s, a) , f(s, a) =
∫
rR(dr|s, a) . (8.1)

The main challenge of a contextual bandit problem is to find the distribution Q1:T that minimizes
the cumulative regret defined as

CRegret(Q1:T) = ∑
i≤T Regretπii (8.2)

with Regretπii = f⋆(si)− f(si, πi(si)).

The main difficulty in the contextual bandit problem, comes from the fact that the reward
distribution R is intractable and must be inferred to find the best policy to minimize the

131 8.2. Thompson sampling for contextual bandits

instantaneous regret π 7→ f⋆(s)− f(s, π(s)) for a context s ∈ S. However, the estimation of R
may be in contradiction with the primary objective to minimize the cumulative regret (8.2), since
potential non-effective arms has to be chosen to obtain a complete description of R. Therefore,
bandit learning algorithms have to achieve an appropriate trade-off between exploitation of arms
which have been confidently learned and exploration of misestimated arms.

Thompson sampling: To achieve such a trade-off, we consider the popular Thompson
Sampling (TS) algorithm. Consider a parametric model {Rθ : θ ∈ Rd} for the reward distribution,
where for any θ, Rθ is a Markov kernel on (A× S)× R parameterized by θ ∈ Rd. We assume in
this paper that Rθ admits a density with respect to some dominating measure λref . An important
example are generalized linear bandits Filippi et al. (2010), Kveton et al. (2020). In particular, it
assumes that {Rθ(·|s, a) : θ ∈ Θ} is an exponential family with respect to λref , i.e., for s ∈ X
and a ∈ A,

dRθ
dλref

(r|s, a) = h(r) exp(g(θ, s, a)T(r)− C(θ, s, a)), (8.3)

for h : R→ R+, natural parameter and log-partition function g,C : Rd×X×A → R and sufficient
statistics T : R → R. The family is said to be in canonical form if g(θ, s, a) = ⟨ϕ(s, a), θ⟩ for
some feature map ϕ : S ×A → R and C(θ, s, a) = σ(⟨ϕ(s, a), θ⟩) for some link function σ. Linear
contextual bandits Chu et al. (2011), Abbasi-Yadkori et al. (2011) fall into this model taking
λref = Leb, T equals to the identity function,

h(r) = exp
(
−ηr2/2

)
and g(θ, s, a) = η ⟨ϕ(s, a), θ⟩, (8.4)

for some η > 0. As a result, Rθ(·|s, a) is simply the Gaussian distribution with mean ⟨ϕ(s, a), θ⟩
and variance 1/η. Finally Riquelme et al. (2018), Zhou et al. (2020), Xu et al. (2020) introduced
an extension of linear contextual bandits, referred to as linear neural contextual bandits where
g is a neural network with weights θ and taking as input a pair (x, a). With the introduced
notations, the likelihood function associated to the observations Dt at step t > 1 is given by

Lt(θ) ∝ exp
{
t−1∑
i=1

ℓ(θ|si, ai, ri)
}
, (8.5)

where the log-likelihood is given by ℓ(θ|si, ai, ri) = log(dRθ/dλref)(ri|xi, ai) . Choosing a prior
on θ with density p0 with respect to Leb, and applying Bayes formula, the posterior distribution
at round t ∈ [T] is given by

p̂t = Lt(θ)p0(θ)/Zt (8.6)

where Zt =
∫

Lt(θ)p0(θ)dθ denotes the normalizing constant and we used the convention that
p̂1 = p0. Moreover we define the potential function U(θ) ∝ − log p̂t(θ). Then, at each iteration
t ∈ [T], TS consists in sampling a sample θt from the posterior p̂t and from it, use as a policy,
π

(TS)
t (s) defined for any x by

π
(TS)
t (s) = aθt(s) , aθ(s) = arg max

a

∫
rRθ(dr|s, a) (8.7)

Since Zt is generally intractable, sampling from the posterior distribution is not in general an
option.

Variational inference TS: To address this challenge, practitioners often employ approximate
inference methods to generate samples from a distribution that is expected to be ”close” to the
actual posterior distribution. In this context, we specifically concentrate on the application of VI.

Chapter 8. VITS : Variational Inference Thompson Sampling for contextual bandits 132

In this scenario, we consider a variational family G which is a set of probability densities with
respect to the Lebesgue measure, from which it is typically easy to sample from. Then ideally, at
each round t ∈ [T], the posterior distribution p̂t is approximated by the variational posterior
distribution q̃t which is defined as:

q̃t = arg min
p∈G

KL(p|p̂t) , (8.8)

where KL is the Kullback-Leibler divergence. However, we have to determine at each round a
solution to the problem specified in (8.8). In this paper, we consider as variational family the
set of non-degenerate Gaussian distribution G = {N(µ,Σ) : µ ∈ Rd, Σ ∈ S∗

+} where N(µ,Σ) is
the Gaussian distribution with mean µ and covariance matrix Σ and S∗

+ is the set of symmetric
positive definite matrices. As explained in the introduction, this Gaussian variational family is
particularly relevant in bandit framework according to Bernstein-Von Mises theorem.

Presentation of VITS− I: As we will see, this choice of variational family will allow to derive
an efficient method for solving (8.8) using the Riemannian structure of G. As noted in Lambert
et al. (2022), G equipped with the Wasserstein distance of order 2 is a complete metric space
as a closed subset of P2(Rd), the set of probability distributions with finite second moment.
Recall that for two Gaussian distributions p0 = N(µ0,Σ0) and p1 = N(µ1,Σ1), their Wasserstein
distance has a closed form:

W 2
2 (p0, p1) = ∥µ0 − µ1∥2 + tr(Σ0 + Σ1 − 2(Σ1/2

0 Σ1Σ1/2
0)1/2) .

This Wasserstein distance on G allows to derive a Riemannian metric denoted g. The corresponding
geodesic is given through the exponential map. More precisely, for a Gaussian distribution
p = N(µp,Σp), this map is defined as

expp(µv,Σv) =(µp + µv + (Σv + I)(· − µp))#p = N(µp + µv, (Σv + I) Σp (Σv + I)) . (8.9)

With all these preliminaries, we can now present and motivate the algorithm developed in
Lambert et al. (2022) to efficiently solve (8.8). This method can be formalized as a Riemannian
gradient descent scheme on G. Firstly, we define the loss function Ft : p → KL(p|p̂t). Then,
following Lambert et al. (2022), we derive the gradient operator of Ft on G equipped with g as

∇gFt(p) = (
∫
∇Ut(θ)dp(θ),

∫
∇2Ut(θ)dp(θ)− Σ−1

p) (8.10)

where Σp is the covariance matrix of p. From this expression, the corresponding Riemannian
gradient descent Bonnabel (2013) using a step size ht > 0 defines the sequence of iterates
{qt,k}Ktk=1 recursively as:

qt,k+1 = expqt,k(−ht∇gFt(qt,k)) .

At each time step t, this sequence is initialized with variational posterior at the previous step, ie,
qt,0 = qt−1,Kt−1 . Please note that this warm initialization of the posterior results in an efficient
algorithm and has been directly used in our main theoretical result (see (A.376)). Combining
(8.9) and (8.10), this recursion amounts defining a sequence of means {µt,k}Ktk=1 and covariance
matrices {Σt,k}Ktk=1 by the recursions

µt,k+1 = µt,k − ht
∫
∇Ut(θ)dqt,k(θ),

Σt,k+1 = At,kΣt,kAt,k, qt,k+1 = N(µt,k+1,Σt,k+1)where At,k = I− ht(
∫
∇2Ut(θ)dqt,k(θ)− Σ−1

t,k)

133 8.2. Thompson sampling for contextual bandits

The main computational challenge in this recursion stems is that the integrals involved are
typically intractable. To overcome this issue, we employ a Monte Carlo procedure to approximate
these integrals. Subsequently, we consider a sequence of mean values denoted as {µ̃t,k}Ktk=1 and
covariance matrices {Σ̃t,k}K1

k=1 such that:

µ̃t,k+1 = µ̃t,k − ht∇Ut(θ̃t,k), Σ̃t,k+1 = Ãt,kΣ̃t,k Ãt,k

with Ãt,k = I− ht(∇2Ut(θ̃t,k)− Σ̃−1
t,k) ,

where θ̃t,k ∼ N(µ̃t,k, Σ̃t,k). Consequently, following Lambert et al. (2022) we obtain an algorithm
capable of addressing the problem defined in (8.8). However, this algorithm exhibits computational
inefficiency, particularly in high-dimensional scenarios. This inefficiency arises from the necessity
to sample from a Gaussian distribution with a non-diagonal covariance matrix during each
updating step k ∈ [Kt]. As a result, it becomes impractical for use in a contextual bandit
problem, where, at each time step t, we must solve the problem described in (8.8). This paper
introduces an improved version of the earlier algorithm, designed to efficiently address the
problem presented in (8.8). To achieve this, we begin by examining a sequence of matrices
denoted as Bt,k, defined by the following

Bt,k+1 =
{
I− ht∇2Ut(θ̃t,k)

}
Bt,k + ht(B−1

t,k)⊤ . (8.11)

It is important to note that Bt,k is a square-root matrix of the covariance of the variational
distribution Σ̃t,k, ie, Bt,kB⊤

t,k = Σ̃t,k. Then we can sample efficiently from the variational
distribution using Bt,k with θ̃t,k = µ̃t,k+Bt,kϵt,k , ϵ ∼ N(0, I). As a result, note that our method
does not require any Cholesky decomposition, which has a complexity of O(d3), contrary to the
algorithm derived in Lambert et al. (2022) and also in LinTS. The updating strategies for the
sequence of µ̃t,k and Bt,k are given by

µ̃t,k+1 = µ̃t,k − ht∇Ut(θ̃t,k); Bt,k+1 =
{
I− ht∇2Ut(θ̃t,k)

}
Bt,k + ht(B−1

t,k)⊤

θ̃t,k ∼ N(µ̃t,k, B⊤
t,kBt,k) .

From this methodology, we can now complete the description of our first algorithm, referred to
as VITS-I. At each step t, we consider the variational distribution q̃t = q̃t,Kt = N(µ̃t,Kt , B⊤

t,kBt,k)
which approximates the solution of (8.8). Then, at round t+ 1, VITS-I consists in sampling θ̃t+1
according to q̃t and choosing

πVITS−I
t+1 (s) = arg max

a∈A(s)
aθ̃t+1(s) . (8.12)

As in TS, the likelihood function and the posterior distribution p̂t+1 are updated following equa-
tions (8.5) and (8.6) using the new observed reward rt+1 distributed according to R(·|xt+1, at+1)
with at+1 = πVITS−I

t+1 (x). The round t + 1 is then concluded by solving q̃t+1 = q̃t+1,Kt+1 .
The pseudo-code associated with this algorithm is given in Algorithm 7 and Algorithm 8.

Algorithm 7: VITS algorithm
B1,1 = I/

√
λη , W̃1,1 = I/(ηλ) ,µ̃1,1 ∼ N(0, W̃1,1)

for t = 1, . . . , T do
receive xt ∈ S
sample θ̃t from q̃t,Kt = N(µ̃t,Kt , B⊤

t,Kt
Bt,k)

choose at = π(VITS)(xt) presented in (8.12)
receive rt ∼ R(·|xt, at)
update q̃t+1,Kt+1 using Alg. 8 or 9.

end for

Chapter 8. VITS : Variational Inference Thompson Sampling for contextual bandits 134

Algorithm 8: VITS-I
Parameters: step-size ht, number of iterations Kt

µ̃t,1 ← µ̃t−1,Kt−1 ,Bt,1 ← Bt−1,Kt−1

for k = 1, . . . ,Kt do
draw θ̃t,k ∼ q̃t,k = N(µ̃t,k, B⊤

t,kBt,k)
µ̃t,k+1 ← µ̃t,k − ht∇Ut(θ̃t,k)
Bt,k+1 ←

{
I− ht∇2(Ut(θ̃t,k))

}
Bt,k + ht(B−1

t,k)⊤

end for

Presentation of VITS-II: In high dimension, the computational cost of the recursion of mean
values and covariance matrices may be prohibitive since at each iteration k ∈ [Kt], it requires
inverting the matrix Bt,k. To tackle this computational issue, we propose a new version of VITS.
More precisely, the inverse of the square root covariance matrix B−1

t,k can be approximated using
a first order Taylor expansion in ht; see Appendix 41 for more details. We denote by Ct,k the
approximation of B−1

t,k , and we obtain recursions for the sequence of {Ct,k}k≤Kt and {Bt,k}k≤Kt
such that:

Ct,k+1 = Ct,k{I− ht(C⊤
t,kCt,k −∇2Ut(θ̃t,k))} ,

Bt,k+1 = (I− ht∇2Ut(θ̃t,k))Bt,k + htC
⊤
t,k .

This trick reduces the complexity from O(d3) to O(d2) for the computation of the inverse. This
version of VITS is referred to as VITS− II and is given in Algorithm 7 and 9.

Presentation of VITS− II Hessian-free: The most computationally intensive step in
VITS− II remains the computation of the Hessian of Ut. In scenarios with a large number of
data points and high dimensions, this step can become highly demanding. To avoid computing
the Hessian of Ut, we suggest to use the following property of Gaussian distribution which is the
result of a simple integration by part:∫

∇2UtdN(µ,Σ) =
∫

Σ−1(I− µ)∇U⊤
t dN(µ,Σ) . (8.13)

After approximating this right side integral using Monte Carlo, we derive a new sequence of
square-root covariance matrix {Bt,k}k≤Kt and inverse square-root covariance matrix {Ct,k}k≤Kt ,
defined recursively by:

Ct,k+1 = Ct,k{I− ht(C⊤
t,kCt,k −At,k)} ,

Bt,k+1 = (I− htAt,k)Bt,k + htC
⊤
t,k ,

where At,k = C⊤
t,kCt,k(θ̃t,k − µ̃t,k)∇U⊤

t (θ̃t,k) and θ̃t,k ∼ N(µ̃t,k, B⊤
t,kBt,k). This last version of

VITS is referred to as VITS− II Hessian-free and its pseudo-code is given in Algorithm 7 and
Algorithm 9, where (H) and (H free) are for respectively Hessian and Hessian Free version.
The computational complexity of all methods has been experimentally studied in a simple case,
as discussed in Section 47.

8.3 Main results

8.3.1 Linear Bandit

In this section, we are interested in convergence guarantees for VITS− I applied to the linear
contextual bandit framework. This framework consists in assuming that Rθ has form (8.3) with

135 8.3. Main results

Algorithm 9: VITS− II / VITS− II Hessian-free
Parameters: step-size ht, number of iterations Kt

µ̃t,1 ← µ̃t−1,Kt−1 , Bt,1 ← Bt−1,Kt−1

for k = 1, . . . ,Kt do
draw θ̃t,k ∼ q̃t,k = N(µ̃t,k, B⊤

t,kBt,k)
µ̃t,k+1 ← µ̃t,k − ht∇Ut(θ̃t,k)

At,k =

∇2(Ut(θ̃t,k)) (Hessian)

C2
t,k(θ̃t,k − µ̃t,k)(∇Ut(θ̃t,k))⊤ (Hessian free)

Bt,k+1 ←
{
I− htAt,k

}
Bt,k + htC

⊤
t,k

Ct,k+1 ← Ct,k(I− ht(C⊤
t,kCt,k −At,k))

end for

λref = Leb, T is the identity function and h and g are specified by (8.4):

dRθ
dLeb(r|s, a) ∝ exp

[
η(r − ⟨ϕ(s, a), θ⟩)2/2

]
. (8.14)

Assumption on the reward kernel R is the following:

Assumption 8.3.1. (Sub-Gaussian Reward Distribution) There exists R > 1 such that for any
s ∈ S, a ∈ A(s), ρ > 0, log

∫
exp{ρ(r − f(s, a))}R(dr|s, a) ≤ Rρ2 , where f is defined in 8.1

We could only assume that R > 0 in Assumption 8.3.1 since if a distribution is R-sub-
Gaussian, it is also R′-sub-Gaussian for any R′ ≥ R, however, we choose to set R ≥ 1 to ease the
presentation of our main results. We also assume that the model is well-specified.

Assumption 8.3.2. There exists θ⋆ such that R = Rθ⋆ and satisfying ∥θ⋆∥2 ≤ 1. Feature map
ϕ satisfies the boundedness condition.

Assumption 8.3.3. For any contextual vector x ∈ Rd and action a ∈ A(s), it holds that
∥ϕ(s, a)∥2 ≤ 1.

Uniform boundedness condition on the feature map is relatively common for obtaining
regret bounds for linear bandit problems (Agrawal and Goyal 2013, Xu et al. 2022, Kve-
ton et al. 2020, Abbasi-Yadkori et al. 2011). Note that Assumption (8.3.3) is equivalent to
sups∈X , a∈A(a)∥ϕ(s, a)∥2 ≤ Mϕ for some arbitrary but fixed constant Mϕ > 0, changing the
feature map ϕ by ϕ/Mϕ. Finally, we specify the prior distribution.

Assumption 8.3.4. The prior distribution is assumed to be zero-mean Gaussian distribution
with variance 1/(λη), where η also appears in the definition Rθ in (8.14),

While our theoretical results can readily be extended to accommodate a non-zero mean Gaus-
sian prior, for the sake of simplicity, we have chosen to center the prior. Under Assumption 8.3.4,
combining (8.6) and (8.14), the negative log posterior − log p̂t denoted by Ut is given by

Ut(θ) = η

2

(
t−1∑
i=1

(ϕ(ai, si)⊤θ − ri)2 + λ∥θ∥22

)
= η

2(θ⊤Vtθ − 2θ⊤bt +
t−1∑
i=1

r2
i) , (8.15)

Vt =λId +
t−1∑
i=1

ϕiϕ
⊤
i ∈ Rd×d, bt =

t−1∑
i=1

riϕi ∈ Rd×1.

Chapter 8. VITS : Variational Inference Thompson Sampling for contextual bandits 136

Therefore, it follows that the gradient of Ut is given by ∇Ut(θ) = η(Vtθ − bt) and its hessian
matrix is equal to ∇2Ut(θ) = ηVt. Consequently, we recover the well-known fact that the
posterior is a Gaussian distribution with mean µ̂t = V −1

t bt and covariance matrix Σ̂t = (ηVt)−1.
Denote by Q̃1:T the distribution on the sequence of policies induced by the sequence of variational
posterior {q̃t = N(µ̃t,Kt , B⊤

t,Kt
Bt,Kt)}t∈[T] obtained with VITS− I. We now state our main result

on the cumulative regret associated to VITS− I for linear contextual bandit, where a the proof
is provided in Appendix 39.

Theorem 8.3.5. Assume Assumptions 8.3.1 to 8.3.4 hold. For the choice of hyperparameters
{Kt, ht}t∈[T] and η specified in Section 39.2, for any δ ∈ (0, 1), with probability at least 1− δ, the
cumulative regret is bounded by

CRegret(Q̃1:T) ≤ CR2d
√
dT log

(
3T 3)

λ2 log
((1 + T/λd)

δ

)
where C ≥ 0 is a constant independent of the problem. Our main result shows that the

distribution of the sequence of policies generated by VITS− I results in a cumulative regret of
order Õ(d

√
dT). It is in the same order as the state-of-the-art cumulative regret obtained in

Agrawal and Goyal (2013) for LinTS. The number of optimization steps Kt we found are of order
κ2
t log(dT log(T)) where κt = λmax(Vt)/λmin(Vt). Following (Hamidi and Bayati 2020, Wu et al.

2020), if the diverse context assumption holds, the condition number is κt = O(1). Therefore,
under this previous assumption, VITS− I require a number of optimization steps that scale as
log(dT log(T)). Finally, Xu et al. (2022) derived similar bounds for TS using LMC for linear
contextual bandit problems. Although our proof is based on the linear case, it could be extended
to more general cases insofar as our updates remain Gaussian by definition of the variational
family. This allows the use of Gaussian (anti) concentration bound in the theoretical analysis.
This is in contrast to other approximation methods, which do not possess this advantage.

Comparison table. In this paragraph we have added a comparison table between Linear
TS (LinTS), Linear UCB (LinUCB), Feel-Good TS Huix et al. (2023), Zhang (2022), VITS− I,
VITS− II (VITS-I/II), VITS− II Hessian-free (VITS-II HF), Langevin Monte Carlo TS
(LMCTS) and Variational TS (VTS). The column ”Regret” corresponds to the theoretical regret
bound obtained by the algorithm. ”Complexity” is the computational complexity, more precisely
the symbol (++) corresponds to a regret O(

√
dT), (+) to O(d3/2√T) and (−) to no existing

regret bound. ” Linear” is set to Yes when the algorithm is designed only for the Linear Bandit
setting and No for general setting including Linear. The ”Conditioning” column describes the
algorithm’s robustness against the conditioning of the problem.

8.4 Numerical experiments

8.4.1 Linear and quadratic bandit

Our initial investigation focused on a toy setting where contextual vectors are sampled from
a Gaussian distribution. However, in this specific setting, the contextual vectors exhibit high
diversity, resulting in a posterior covariance matrix with a condition number of O(1). This
condition makes the optimization problem overly simplistic, as a result, all approximation
methods seem to perform identically in this simple well-conditioned problem. So we introduce a
novel setting in which the diversity of arms is controlled by a parameter, denoted as ζ. Firstly,
we consider a fixed pool of arms denoted as P = [s̃1, . . . , s̃n] with n = 50, where each arm s̃i
follows a normal distribution N(0d, Id). This fixed pool is relevant in real-world scenarios, such

137 8.4. Numerical experiments

Regret Complexity Linear Conditioning

LinTS + ++ Yes ++

LinUCB ++ ++ Yes ++

FG-TS ++ No

VITS-I/II + + No +

VITS-II HF - + + No +

LMC-TS + ++ No -

VTS - - No

as in a Recommender system, where this pool corresponds to the concept of a meta-user. Then,
at each step t ∈ [T], for every arm, we randomly sample a vector s̃i from the pool P , and the
contextual vector associated with this arm is defined as x = s̃i + ζϵ, where ϵ ∼ N (0d, Id). When
ζ has a high value, the corresponding user is far from the meta-user. Consequently, the diversity
among arms is high, resulting in a well-conditioned problem. However, in cases where ζ is low,
the problem is ill-conditioned and the optimization becomes challenging.

We consider the linear bandit and the quadratic bandit problems. In both settings, the
bandit environment is simulated using a random vector θ⋆ sampled from a normal distribution
N(0d, σ⋆Id). We opted for σ⋆ = 1/d to ensure that the variance of the scalar product x⊤θ⋆

remains independent of the dimension d. The parameter dimension d is set to 20 and we
consider a number of arms K = 50. In the linear bandit setting, the reward associated
with the contextual vector x, is r = s⊤θ⋆ + αϵ where ϵ ∼ N(0d, Id). However, to maintain
problem complexity independent of ζ, we have set the signal-to-noise ratio to a fixed value
of 1, meaning E[(s⊤θ⋆)2]/E[(αϵ)2] = 1. This implies that

√
1 + ζ2 = α. See Appendix 46 for

more details about the setting. In these experiments, we have chosen to compare VITS− II,
VITS− II Hessian-free, Linear TS (LinTS), and LMC-TS, with 10 and 50 iterations of
Langevin diffusion at each step. For VITS based algorithm, we have only used 10 updating steps.
We have omitted the performance of VITS− I since it experimentally performs identically to
VITS− II. For the algorithm VITS− II Hessian-free, we approximate the integral presented
in (8.13) using 20 Monte Carlo samples. This choice is made due to the observed instability
caused by the Monte Carlo error when considering high values of η. However, in our setting,
even with 20 Monte Carlo samples, VITS− II Hessian-free remains a faster method compared
to VITS− II. We also attempted to assess the performance of VTS, but, in the ill-conditioned
setting, it exhibited a linear and notably high cumulative regret. Consequently, we have opted to
exclude it from the figure for the sake of clarity and visibility. The mean and standard error are
reported for all experiments over 50 runs. The hyperparameter is provided in Appendix 43.

Chapter 8. VITS : Variational Inference Thompson Sampling for contextual bandits 138

0 200 400 600 800 1000
time step t

0

50

100

150

200

250

C
um

ul
at

iv
e

re
gr

et

UCB
TS
LMC-TS 10 steps
LMC-TS 50 steps
VITS-II
VITS-II Hessian-free

0 200 400 600 800 1000
time step t

0

50

100

150

200

C
um

ul
at

iv
e

re
gr

et

UCB
TS
LMC-TS 10 steps
LMC-TS 50 steps
VITS-II
VITS-II Hessian-free

Figure 8.1: Linear bandits, ζ = 0.1 (left), ζ = 1 (right).

Figure 8.1 illustrates the cumulative regret with respect to the time step t for a well-conditioned
problem (ζ = 1) and a ill-conditioned problem (ζ = 0.1). Firstly, for ζ = 1, it appears that all
methods exhibit similar performance, with the exception of LMC-TS with 10 steps, which slightly
underperforms. However, for ζ = 0.1, the optimization problem becomes harder and LMC-TS
underperforms even with 50 Langevin steps. This behaviour was expected in our setting, because
LMC requires a lot of iterations to converge to the posterior compared to VI. A more complete
explanation of this phenomenon can be found in Appendix 44. Finally, we can conclude that
VITS− II performs similarly to LinTS and that its Hessian-free version slightly underperforms
but is computationally more efficient.

For Quadratic bandit in Fig 8.2, the reward is r = (s⊤θ⋆)2 +αϵ. This setting is similar to the
Linear setting, but we ensure the condition E[(s⊤θ⋆)4]/E[(αϵ)2] = 1 to still get the signal-to-noise
ratio equals to 1. This implies a slight different condition α = (ζ2 + 1)

√
3 + 6/d, see Appendix

46. Moreover, a simple MLP with two hidden layers of 20 neurons is used for LMC, VITS− II,
and its Hessian-free version as neural network architecture. Performance in Fig 8.2 are similar
to linear bandits where VITS− II slightly performs better than its Hessian-free version but
outperforms both LMC and LinTS algorithms as LinTS is not adapted for this setting. The
gap between LMC and our algorithm is smaller in the well-conditioned setting than in the
ill-conditioned, which was also expected. Finally, additional experience on non-contextual bandits
can also be found in Appendix 45.

0 200 400 600 800 1000
time step t

0

1000

2000

3000

4000

5000

C
um

ul
at

iv
e

re
gr

et

LinTS
LMC-TS 10 steps
LMC-TS 50 steps
VITS-II
VITS-II Hessian-free

0 200 400 600 800 1000
time step t

0

2000

4000

6000

8000

C
um

ul
at

iv
e

re
gr

et

LinTS
LMC-TS 10 steps
LMC-TS 50 steps
VITS-II
VITS-II Hessian-free

Figure 8.2: Quadratic bandit, ζ = 0.1(left), ζ = 1(right).

139 8.5. MovieLens Dataset

8.5 MovieLens Dataset

In this section, we evaluate VITS on the MovieLens dataset, consisting of one million ratings
by 6040 users for 3952 movies. We adopt the setup proposed in Aouali et al. (2022), involving
a low-rank factorization of the rating matrix to yield 5-dimensional representations for users
(sj ∈ R5) and movies (θi ∈ R5). Movies are treated as potential actions, and context xt is
uniformly sampled from the pool of user vectors. We consider logistic rewards, sampled from
Ber(µ(s⊤

j θi)), where µ is the sigmoid function. We conduct 50 simulations, each involving 100
randomly selected movies.Our prior distribution employs a Gaussian distribution with mean µ0
and covariance Σ0 = diag(σ0). Here, µ0 and σ0 represent the mean and variance of movie vectors
across all dimensions. This setting deviates somewhat from our theoretical framework, where we
consider a unified posterior distribution for all arms using a feature map function ϕ representing
context-action pairs. In the MovieLens context, each arm possesses an individual posterior
distribution. These two settings closely align when the feature map is the vector concatenation
function. In practice, we can apply VITS or LMC at each arm to obtain posterior samples. In this
experiment, we compare LinTS against LMC-TS, VITS− II, and the VITS− II Hessian-free
variant. LMC-TS uses 10 Langevin updating steps. It’s crucial to note that for each time step t
and each arm a, LMC-TS requires running Langevin diffusion to obtain a new parameter with low
correlation to the previous one. This leads to a high computational complexity for LMC-TS. In
contrast, VITS for each arm only involves sampling from a low-dimensional Gaussian distribution
and updating the variational posterior corresponding to the chosen arm. This approach offers
significant computational efficiency.

0 1000 2000 3000 4000 5000
time step t

0

25

50

75

100

125

150

175

200

C
um

ul
at

iv
e

re
gr

et

LinTS
VITS-II
VITS-II Hessian-free
LMC-TS

Figure 8.3: Cumulative regret for MovieLens dataset.

Figure 8.3 reveals that LinTS is ill-suited for this particular task, as it assumes rewards
to be linear while the approximated algorithms outperform LinTS, as they specifically target
the logistic posterior. Remarkably, VITS appears to slightly outperform LMC-TS, despite its
computational efficiency advantages.

8.6 Conclusion and perspectives

This paper presents two novel TS algorithms called VITS− I, VITS− II that use VI as an
approximation method. Moreover, VITS− I algorithms provide robust theoretical guarantees, in
particular a cumulative regret bound of Õ(d

√
dT) in the linear setting.

One limitation of our analysis is that the regret bound derived is limited to the linear

Chapter 8. VITS : Variational Inference Thompson Sampling for contextual bandits 140

setting while the interest of our algorithm relies on nonlinear tasks. Additionally, we introduce a
third algorithm named VITS− II Hessian-free, which offers enhanced computational efficiency.
This algorithm removes the computations of Hessian, resulting in faster execution. Finally, all
algorithms have been extensively evaluated in both simulated and real problems.

Part IV

Conclusion, Bibliography and
Appendix

Conclusion & Perspectives

I n this conclusion we first summarize or contributions and then raise some open questions
related to our work.

8.6.1 Conclusion on our Contribution

In this thesis, we have built brick by brick all the ingredients to solve the Robust RL problem in
real world settings. Our first question was how to design more sample efficient algorithm and use
robust RL algorithm? Let us see what elements of answer we brought to answer this question.

In Chapter 2, we study the sample complexity of obtaining an ϵ-optimal policy in Robust
discounted Markov Decision Processes (RMDPs), given only access to a generative model of
the nominal kernel. We consider uncertainty sets defined with an Lp-ball (recovering the TV
case), and study the sample complexity of any planning algorithm (with high accuracy guarantee
on the solution) applied to an empirical RMDP estimated using the generative model. In the
general case, we prove a sample complexity of Õ(H

4|S||A|
ϵ2) for both the sa- and s-rectangular

cases (improvements of |S| and |S||A| respectively). When the size of the uncertainty is small
enough, we improve the sample complexity to Õ(H

3|S||A|
ϵ2), recovering the lower-bound for the

non-robust case for the first time and a robust lower-bound.
In Chapter 3 , we refine the result of Chapter 2, assuming access to a generative model that

samples from the nominal MDP, we examine the sample complexity of RMDPs using a class of
generalized Lp norms as the ’distance’ function for the uncertainty set, under two commonly
adopted sa-rectangular and s-rectangular conditions. Our results imply that RMDPs can be
more sample-efficient to solve than standard MDPs using generalized Lp norms in both sa- and s-
rectangular cases, potentially inspiring more empirical research. We provide a near-optimal upper
bound and a matching minimax lower bound for the sa-rectangular scenarios. For s-rectangular
cases, we improve the state-of-the-art upper bound and also derive a lower bound using L∞
norm that verifies the tightness. Compared to Chapter 2, we improve the sample complexity,
showing that it is possible to obtain sample complexity that are lower than in classical MDPs.
This part gives a promising avenue to derive algorithm that can achieve lower sample complexity
while be more robust on perturbations.

Then we study Deep Robust RL in In Chapter 4 where we try to approximate the Robust
Reinforcement Learning constrained with a χ2-divergence using an approximate Risk-Averse
formulation. We show that the classical Reinforcement Learning formulation can be robustified
using Standard deviation penalization of the objective. Two algorithms based on Distributional
Reinforcement Learning, one for discrete and one for continuous action space are proposed and
tested on classical Gym environment to demonstrate the robustness of the algorithms.

In Chapter 5, a new form of implicit robustness in RL using expectile boostraping. Using
these technique avoid to estimate a penalisation like in 4. Many classic Reinforcement Learning
(RL) algorithms rely on a Bellman operator, which involves an expectation over the next states,
leading to the concept of bootstrapping. To introduce a form of pessimism, we propose to replace

Conclusion & Perspectives 144

this expectation with an expectile. In practice, this can be very simply done by replacing the L2
loss with a more general expectile loss for the critic. Introducing pessimism in RL is desirable
for various reasons, such as tackling the overestimation problem (for which classic solutions
are double Q-learning or the twin-critic approach of TD3) or robust RL (where transitions are
adversarial). We study empirically these two cases. For the overestimation problem, we show
that the proposed approach, ExpectRL, provides better results than a classic twin-critic. On
robust RL benchmarks, involving changes of the environment, we show that our approach is more
robust than classic RL algorithms. We also introduce a variation of ExpectRL combined with
domain randomization which is competitive with state-of-the-art robust RL agents. Eventually,
we also extend ExpectRL with a mechanism for choosing automatically the expectile value, that
is the degree of pessimism.

Subsequently in the Chapter 6, we try to derive new algorithm without rectangularity
assumptions. The rectangularity assumptions in RL Traditional robust reinforcement learning
often depends on rectangularity assumptions, where adverse probability measures of outcome
states are assumed to be independent across different states and actions. This assumption, rarely
fulfilled in practice, leads to overly conservative policies. To address this problem, we introduce
a new time-constrained robust MDP (TC-RMDP) formulation that considers multifactorial,
correlated, and time-dependent disturbances, thus more accurately reflecting real-world dynamics.
This formulation goes beyond the conventional rectangularity paradigm, offering new perspectives
and expanding the analytical framework for robust RL. We propose three distinct algorithms, each
using varying levels of environmental information, and evaluate them extensively on continuous
control benchmarks. Our results demonstrate that these algorithms yield an efficient tradeoff
between performance and robustness, outperforming traditional deep robust RL methods in
time-constrained environments while preserving robustness in classical benchmarks.

In the Chapter 7, we introduce the Robust Reinforcement Learning Suite (RRLS), a benchmark
suite based on Mujoco environments. RRLS provides six continuous control tasks with two
types of uncertainty sets for training and evaluation. Our benchmark aims to standardize robust
reinforcement learning tasks, facilitating reproducible and comparable experiments, in particular
those from recent state-of-the-art contributions, for which we demonstrate the use of RRLS. It
is also designed to be easily expandable to new environments. The source code is available at
https://github.com/SuReLI/RRLS.

Finally, in the Chapter 8, we tackle the problem of representation of the posterior in the
bandit problem using Thompson sampling algorithms with arbitrary posterior distribution learned
using Variational inference. We introduce and analyze a variant of the Thompson sampling
(TS) algorithm for contextual bandits. At each round, traditional TS requires samples from the
current posterior distribution, which is usually intractable. To circumvent this issue, approximate
inference techniques can be used and provide samples with distribution close to the posteriors.
However, current approximate techniques yield to either poor estimation (Laplace approximation)
or can be computationally expensive (MCMC methods, Ensemble sampling...). In this paper,
we propose a new algorithm, Varational Inference TS (VITS), based on Gaussian Variational
Inference. This scheme provides powerful posterior approximations which are easy to sample
from, and is computationally efficient, making it an ideal choice for TS. In addition, we show
that VITS achieves a sub-linear regret bound of the same order in the dimension and number of
round as traditional TS for linear contextual bandit. Finally, we demonstrate experimentally the
effectiveness of VITS on both synthetic and real world datasets.

https://github.com/SuReLI/RRLS

145 Conclusion & Perspectives

8.6.2 Future Work and Perspectives

Finally, I would like to end this dissertation with a more personal view on what remains to be
done and how our work can be applied to real-world scenarios. The different contributions of
this thesis remains mostly theoretical but we could use these tools for practical applications and
Simulation to Real. Therefore, I believe there are still many issues and open question that nay
need to be addressed before use our method, algorithm and results to other applications.

Extension of the theoretical result to other robust definition settings. A first step
would be to adapt our approach to encompass alternative definitions and settings, with a view
to enhancing our understanding. It would be beneficial to examine the divergence between
probabilities in the definition of RMDPs, such as the KL or χ2. Furthermore, while the model-
based approach with a generative model is a promising avenue for investigation within the
Simulation to Real framework, it would be beneficial to consider the question of online settings,
as recently explored in Lu et al. (2024), and the potential of model-free settings. Additionally, it
would be valuable to investigate how robustness for different divergences could potentially reduce
the range of the value function. This question could also be relevant for understanding the role
of different pessimistic penalisation in certain offline RL algorithms.

Identify novel Deep Robust algorithms combine concepts from Deep RL and theory.
A principal objective of this thesis was to derive a novel Deep Robust RL algorithm in practice,
based on the existing theoretical framework. Further investigation may be required to ascertain the
potential benefits of combining computer science concepts such as DR with risk-averse formulations
such as the expectile in Chapter 5. It would maybe be beneficial to investigate whether ideas
from the foundations model and meta-reinforcement learning can be employed to identify a
policy that generalises well to downstream tasks with robust Markov decision processes (MDPs).
This could potentially lead to the design of a more sample-efficient algorithm. Furthermore,
the question of how to derive implicit robustness with straightforward penalisation/estimation
remains an avenue for further exploration.

Generalisation versus Performance in RL. Further investigation is required to gain a
deeper understanding of the trade-off between generalisation and performance in (Robust) RL.
This will enable the development of policies that generalise more effectively while maintaining
good performance on the nominal kernel with low sample complexity. It may be the case that
a different form of robustness is more suitable in practice than that which is based on theory.
Finally, the question of how to circumvent rectangularity assumptions, as discussed in Chapter
6, is also pivotal in practice to achieve algorithms and performances that are not excessively
conservative.

Evaluation, metric and benchmark to understand Robustness in RL As is the case
in numerous domains within machine learning, the question of how to evaluate and identify
pertinent tasks represents a fundamental challenge in the field of robust reinforcement learning
(RL). Based on the Mujoco simulator, we propose RRLS, a normalised benchmark presented in
Chapter 7. However, this question remains incomplete and would require the inclusion of more
realistic and challenging tasks to evaluate the robustness and generalisation of RL algorithms.

Are RMDPs a new way for doing some exploration in RL ? A final proposition for
consideration is whether Robust RL facilitates superior exploration, given that it necessitates a

Conclusion & Perspectives 146

minimal number of samples to reach a solution in theory. It may be the case that, in certain
instances, the robust value functions exhibit relatively favourable performance. One potential
approach would be to initially target a robust value function, capitalising on the concept of
reducing the variability of the value function at the outset. Subsequently, at the conclusion of the
training period, a non-robust value function could be targeted in order to enhance performance.
This could be achieved by reducing the parameter that controls robustness. (the parameter α
in Chapter 4 and 5) during the training represents a potential method for implementing the
aforementioned idea.

Bibliography
Abbasi Yadkori, Y., P. L. Bartlett, V. Kanade, Y. Seldin, and C. Szepesvári (2013). Online learning in

markov decision processes with adversarially chosen transition probability distributions. Advances in
neural information processing systems 26.

Abbasi-Yadkori, Y., D. Pál, and C. Szepesvári (2011). Improved algorithms for linear stochastic bandits.
Advances in neural information processing systems 24.

Abbasi-Yadkori, Y., D. Pál, and C. Szepesvári (2011). Improved algorithms for linear stochastic bandits.
In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger (Eds.), Advances in Neural
Information Processing Systems, Volume 24. Curran Associates, Inc.

Abdullah, M. A., H. Ren, H. B. Ammar, V. Milenkovic, R. Luo, et al. (2019). Wasserstein robust
reinforcement learning. arXiv preprint arXiv:1907.13196.

Abramowitz, M. and I. A. Stegun (1964). Handbook of mathematical functions with formulas, graphs,
and mathematical tables, Volume 55. US Government printing office.

Achiam, J., S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, et al. (2023). Gpt-4 technical report. arXiv
preprint arXiv:2303.08774.

Achiam, J. and D. Amodei (2019). Benchmarking safe exploration in deep reinforcement learning.
Agarwal, A., S. Bird, M. Cozowicz, L. Hoang, J. Langford, et al. (2016). Making contextual decisions

with low technical debt.
Agarwal, A., S. Kakade, and L. F. Yang (2020). Model-based reinforcement learning with a generative

model is minimax optimal. In Conference on Learning Theory, pp. 67–83. PMLR.
Agrawal, S. and N. Goyal (2012). Analysis of thompson sampling for the multi-armed bandit problem. In

Conference on learning theory, pp. 39–1. JMLR Workshop and Conference Proceedings.
Agrawal, S. and N. Goyal (2013). Thompson sampling for contextual bandits with linear payoffs. In

International conference on machine learning, pp. 127–135. PMLR.
Akkaya, I., M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, et al. (2019). Solving rubik’s cube with

a robot hand. arXiv preprint arXiv:1910.07113.
Aouali, I., B. Kveton, and S. Katariya (2022). Generalizing hierarchical bayesian bandits. arXiv preprint

arXiv:2205.15124.
Artzner, P., F. Delbaen, J.-M. Eber, and D. Heath (1999). Coherent measures of risk. Mathematical

finance 9(3), 203–228.
Auer, P. (2002). Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine

Learning Research 3(Nov), 397–422.
Auer, P., N. Cesa-Bianchi, and P. Fischer (2002). Finite-time analysis of the multiarmed bandit problem.

Machine learning 47(2), 235–256.
Azar, M., R. Munos, and H. J. Kappen (2013a). Minimax pac bounds on the sample complexity of

reinforcement learning with a generative model. Machine learning 91(3), 325–349.
Azar, M. G., R. Munos, M. Ghavamzadeh, and H. Kappen (2011). Reinforcement learning with a near

optimal rate of convergence.
Azar, M. G., R. Munos, and H. J. Kappen (2013b). Minimax PAC bounds on the sample complexity of

reinforcement learning with a generative model. Machine learning 91(3), 325–349.
Badia, A. P., B. Piot, S. Kapturowski, P. Sprechmann, A. Vitvitskyi, et al. (2020). Agent57: Outperforming

the atari human benchmark. In International conference on machine learning, pp. 507–517. PMLR.

Badrinath, K. P. and D. Kalathil (2021). Robust reinforcement learning using least squares policy iteration
with provable performance guarantees. In International Conference on Machine Learning, pp. 511–520.
PMLR.

Bai, C., L. Wang, Z. Yang, Z. Deng, A. Garg, et al. (2022). Pessimistic bootstrapping for uncertainty-driven
offline reinforcement learning. arXiv preprint arXiv:2202.11566.

Bai, Y., T. Xie, N. Jiang, and Y.-X. Wang (2019). Provably efficient Q-learning with low switching cost.
arXiv preprint arXiv:1905.12849.

Beattie, C., J. Z. Leibo, D. Teplyashin, T. Ward, M. Wainwright, et al. (2016). Deepmind lab.
Beck, C. L. and R. Srikant (2012). Error bounds for constant step-size Q-learning. Systems & control

letters 61(12), 1203–1208.
Behzadian, B., M. Petrik, and C. P. Ho (2021). Fast algorithms for l∞-constrained s-rectangular robust

mdps. Advances in Neural Information Processing Systems 34.
Bellemare, M., Y. Naddaf, J. Veness, and M. Bowling (2012). The arcade learning environment: An

evaluation platform for general agents. Journal of Artificial Intelligence Research 47.
Bellemare, M. G., W. Dabney, and R. Munos (2017). A distributional perspective on reinforcement

learning. 34th International Conference on Machine Learning, ICML 2017 1, 693–711.
Bellemare, M. G., Y. Naddaf, J. Veness, and M. Bowling (2013). The arcade learning environment: An

evaluation platform for general agents. Journal of Artificial Intelligence Research 47, 253–279.
Bellini, F. and E. Di Bernardino (2017). Risk management with expectiles. The European Journal of

Finance 23(6), 487–506.
Bellini, F., B. Klar, A. Müller, and E. R. Gianin (2014). Generalized quantiles as risk measures. Insurance:

Mathematics and Economics 54, 41–48.
Bellman, R. (1957). A markovian decision process. Journal of mathematics and mechanics, 679–684.
Bellman, R. (1966). Dynamic programming. science 153(3731), 34–37.
Berridge, K. C. (2007). The debate over dopamine’s role in reward: the case for incentive salience.

Psychopharmacology 191, 391–431.
Berry, D. A. and B. Fristedt (1985). Bandit problems: sequential allocation of experiments (monographs

on statistics and applied probability). London: Chapman and Hall 5(71-87), 7–7.
Bertsekas, D. P. (2017). Dynamic programming and optimal control (4th edition). Athena Scientific.
Bertsimas, D., V. Gupta, and N. Kallus (2018). Data-driven robust optimization. Mathematical

Programming 167(2), 235–292.
Blanchet, J., M. Lu, T. Zhang, and H. Zhong (2023). Double pessimism is provably efficient for

distributionally robust offline reinforcement learning: Generic algorithm and robust partial coverage.
arXiv preprint arXiv:2305.09659.

Blanchet, J. and K. Murthy (2019). Quantifying distributional model risk via optimal transport. Mathe-
matics of Operations Research 44(2), 565–600.

Blei, D. M., A. Kucukelbir, and J. D. McAuliffe (2017). Variational inference: A review for statisticians.
Journal of the American statistical Association 112(518), 859–877.

Bonnabel, S. (2013). Stochastic gradient descent on riemannian manifolds. IEEE Transactions on
Automatic Control 58(9), 2217–2229.

Bouneffouf, D., I. Rish, and C. Aggarwal (2020). Survey on applications of multi-armed and contextual
bandits. In 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE.

Brekelmans, R., T. Genewein, J. Grau-Moya, G. Delétang, M. Kunesch, et al. (2022). Your policy
regularizer is secretly an adversary. arXiv preprint arXiv:2203.12592.

Brockman, G., V. Cheung, L. Pettersson, J. Schneider, J. Schulman, et al. (2016). Openai gym.
Cesa-Bianchi, N. and G. Lugosi (2006). Prediction, learning, and games. Cambridge university press.
Chapelle, O. and L. Li (2011). An empirical evaluation of thompson sampling. Advances in neural

information processing systems 24.
Chen, Z., S. T. Maguluri, S. Shakkottai, and K. Shanmugam (2020). Finite-sample analysis of stochastic

approximation using smooth convex envelopes. arXiv preprint arXiv:2002.00874.

Cheung, W. C., D. Simchi-Levi, and R. Zhu (2019). Reinforcement learning under drift. arXiv preprint
arXiv:1906.02922.

Chow, Y., A. Tamar, S. Mannor, and M. Pavone (2015). Risk-sensitive and robust decision-making: a
cvar optimization approach. Advances in neural information processing systems 28.

Chu, W., L. Li, L. Reyzin, and R. Schapire (2011). Contextual bandits with linear payoff functions. In
G. Gordon, D. Dunson, and M. Dud́ık (Eds.), Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, Volume 15 of Proceedings of Machine Learning Research, Fort
Lauderdale, FL, USA, pp. 208–214. PMLR.

Clavier, P., S. Allassonière, and E. L. Pennec (2022). Robust reinforcement learning with distributional
risk-averse formulation. arXiv preprint arXiv:2206.06841.

Clavier, P., T. Huix, and A. Durmus (2023). Vits: Variational inference thomson sampling for contextual
bandits. arXiv preprint arXiv:2307.10167.

Clavier, P., E. L. Pennec, and M. Geist (2023). Towards minimax optimality of model-based robust
reinforcement learning. arXiv preprint arXiv:2302.05372.

Clavier, P., E. Rachelson, E. L. Pennec, and M. Geist (2024). Bootstrapping expectiles in reinforcement
learning. arXiv preprint arXiv:2406.04081.

Cobbe, K., C. Hesse, J. Hilton, and J. Schulman (2019). Leveraging procedural generation to benchmark
reinforcement learning. arXiv preprint arXiv:1912.01588.

Cobbe, K., C. Hesse, J. Hilton, and J. Schulman (2020). Leveraging procedural generation to benchmark
reinforcement learning. In International conference on machine learning, pp. 2048–2056. PMLR.

Dabney, W., G. Ostrovski, D. Silver, and R. Munos (2018a). Implicit quantile networks for distributional
reinforcement learning. 35th International Conference on Machine Learning, ICML 2018 3, 1774–1787.

Dabney, W., G. Ostrovski, D. Silver, and R. Munos (2018b). Implicit quantile networks for distributional
reinforcement learning. In International conference on machine learning, pp. 1096–1105. PMLR.

Dabney, W., M. Rowland, M. G. Bellemare, and R. Munos (2017). Distributional reinforcement learning
with quantile regression. 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, 2892–2901.

Delbaen, F. (2000). Draft: Coherent risk measures. Lecture notes, Pisa.
Delbaen, F. (2002). Coherent risk measures on general probability spaces. Advances in finance and

stochastics: essays in honour of Dieter Sondermann, 1–37.
Delbaen, F. (2013). A remark on the structure of expectiles. arXiv preprint arXiv:1307.5881.
Dennis, M., N. Jaques, E. Vinitsky, A. Bayen, S. J. Russell, et al. (2020). Emergent complexity and

zero-shot transfer via unsupervised environment design. Neural Information Processing Systems.
Derman, E., M. Geist, and S. Mannor (2021). Twice regularized mdps and the equivalence between

robustness and regularization. Advances in Neural Information Processing Systems 34, 22274–22287.
Derman, E. and S. Mannor (2020). Distributional robustness and regularization in reinforcement learning.

arXiv preprint arXiv:2003.02894.
Derman, E., Y. Men, M. Geist, and S. Mannor. Robustness and regularization in reinforcement learning.

In NeurIPS 2023 Workshop on Generalization in Planning.
Dong, J., J. Li, B. Wang, and J. Zhang (2022). Online policy optimization for robust MDP. arXiv

preprint arXiv:2209.13841.
Dong, K., Y. Wang, X. Chen, and L. Wang (2019). Q-learning with UCB exploration is sample efficient

for infinite-horizon MDP. arXiv preprint arXiv:1901.09311.
Duchi, J., P. Glynn, and H. Namkoong (2016). Statistics of robust optimization: A generalized empirical

likelihood approach. arXiv preprint arXiv:1610.03425.
Duchi, J. and H. Namkoong (2018). Learning models with uniform performance via distributionally robust

optimization. arXiv preprint arXiv:1810.08750.
Duchi, J. C. and H. Namkoong (2021). Learning models with uniform performance via distributionally

robust optimization. The Annals of Statistics 49(3), 1378–1406.
Even-Dar, E., S. M. Kakade, and Y. Mansour (2004). Experts in a markov decision process. Advances in

neural information processing systems 17.

Eysenbach, B. and S. Levine (2021). Maximum entropy rl (provably) solves some robust rl problems.
arXiv preprint arXiv:2103.06257.

Fatemi, M., T. W. Killian, J. Subramanian, and M. Ghassemi (2021). Medical dead-ends and learning
to identify high-risk states and treatments. Advances in Neural Information Processing Systems 34,
4856–4870.

Faury, L., M. Abeille, K.-S. Jun, and C. Calauzènes (2022). Jointly efficient and optimal algorithms for
logistic bandits. In International Conference on Artificial Intelligence and Statistics, pp. 546–580.
PMLR.

Filippi, S., O. Cappe, A. Garivier, and C. Szepesvári (2010). Parametric bandits: The generalized linear
case. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta (Eds.), Advances in
Neural Information Processing Systems, Volume 23. Curran Associates, Inc.

Foster, D. and A. Rakhlin (2020). Beyond ucb: Optimal and efficient contextual bandits with regression
oracles. In International Conference on Machine Learning, pp. 3199–3210. PMLR.

Fu, J., A. Kumar, O. Nachum, G. Tucker, and S. Levine (2021). D4rl: Datasets for deep data-driven
reinforcement learning.

Fujimoto, S., H. Hoof, and D. Meger (2018). Addressing function approximation error in actor-critic
methods. In International conference on machine learning, pp. 1587–1596. PMLR.

Gajane, P., R. Ortner, and P. Auer (2018). A sliding-window algorithm for Markov decision processes
with arbitrarily changing rewards and transitions. arXiv preprint arXiv:1805.10066.

Gao, R. (2020). Finite-sample guarantees for wasserstein distributionally robust optimization: Breaking
the curse of dimensionality. arXiv preprint arXiv:2009.04382.

Garivier, A. and E. Moulines (2008). On upper-confidence bound policies for non-stationary bandit
problems. arXiv preprint arXiv:0805.3415.

Gautron, R., D. Baudry, M. Adam, G. N. Falconnier, G. Hoogenboom, et al. (2024). A new adaptive
identification strategy of best crop management with farmers. Field Crops Research 307, 109249.

Geist, M., B. Scherrer, and O. Pietquin (2019). A theory of regularized markov decision processes. In
International Conference on Machine Learning, pp. 2160–2169. PMLR.

Gneiting, T. (2011). Making and evaluating point forecasts. Journal of the American Statistical
Association 106(494), 746–762.

Gotoh, J.-y., M. J. Kim, and A. E. Lim (2018). Robust empirical optimization is almost the same as
mean–variance optimization. Operations research letters 46(4), 448–452.

Goyal, V. and J. Grand-Clement (2018). Robust markov decision process: Beyond rectangularity. arXiv
preprint arXiv:1811.00215.

Goyal, V. and J. Grand-Clement (2022). Robust markov decision processes: Beyond rectangularity.
Mathematics of Operations Research.

Grand-Clément, J. and C. Kroer (2020a). First-order methods for wasserstein distributionally robust mdp.
arXiv preprint arXiv:2009.06790.

Grand-Clément, J. and C. Kroer (2020b). Scalable first-order methods for robust mdps. arXiv preprint
arXiv:2005.05434.

Grand-Clément, J. and C. Kroer (2021). Scalable first-order methods for robust mdps. In Proceedings of
the AAAI Conference on Artificial Intelligence, Volume 35, pp. 12086–12094.

Greenberg, I., Y. Chow, M. Ghavamzadeh, and S. Mannor (2022). Efficient risk-averse reinforcement
learning. Advances in Neural Information Processing Systems 35, 32639–32652.

Gu, S., L. Shi, M. Wen, M. Jin, E. Mazumdar, et al. (2024). Robust gymnasium: A unified modular
benchmark for robust reinforcement learning. Github.

Gulcehre, C., Z. Wang, A. Novikov, T. L. Paine, S. G. Colmenarejo, et al. (2020). Rl unplugged:
Benchmarks for offline reinforcement learning.

Haarnoja, T., A. Zhou, P. Abbeel, and S. Levine (2018a). Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International conference on machine learning,
pp. 1861–1870. PMLR.

Haarnoja, T., A. Zhou, P. Abbeel, and S. Levine (2018b). Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. 35th International Conference on Machine Learning,
ICML 2018 5, 2976–2989.

Hamidi, N. and M. Bayati (2020). On worst-case regret of linear thompson sampling. arXiv preprint
arXiv:2006.06790.

Han, S., S. Su, S. He, S. Han, H. Yang, et al. (2022). What is the solution for state adversarial multi-agent
reinforcement learning? arXiv preprint arXiv:2212.02705.

Hasselt, H. (2010). Double q-learning. Advances in neural information processing systems 23.
Ho, C. P., M. Petrik, and W. Wiesemann (2018). Fast bellman updates for robust mdps. In International

Conference on Machine Learning, pp. 1979–1988. PMLR.
Ho, C. P., M. Petrik, and W. Wiesemann (2021). Partial policy iteration for l1-robust markov decision

processes. J. Mach. Learn. Res. 22, 275–1.
Hoeffding, W. (1994). Probability inequalities for sums of bounded random variables. In The collected

works of Wassily Hoeffding, pp. 409–426. Springer.
Huang, S., R. F. J. Dossa, C. Ye, J. Braga, D. Chakraborty, et al. (2022). Cleanrl: High-quality

single-file implementations of deep reinforcement learning algorithms. Journal of Machine Learning
Research 23(274), 1–18.

Huix, T., M. Zhang, and A. Durmus (2023). Tight regret and complexity bounds for thompson sampling
via langevin monte carlo. In F. Ruiz, J. Dy, and J.-W. van de Meent (Eds.), Proceedings of The
26th International Conference on Artificial Intelligence and Statistics, Volume 206 of Proceedings of
Machine Learning Research, pp. 8749–8770. PMLR.

Husain, H., K. Ciosek, and R. Tomioka (2021). Regularized policies are reward robust. In International
Conference on Artificial Intelligence and Statistics, pp. 64–72. PMLR.

Iyengar, G. (2022). Robust dynamic programming. Technical report, CORC Tech Report TR-2002-07.
Iyengar, G. N. (2005). Robust dynamic programming. Mathematics of Operations Research 30(2),

257–280.
Jafarnia-Jahromi, M., C.-Y. Wei, R. Jain, and H. Luo (2020). A model-free learning algorithm for

infinite-horizon average-reward MDPs with near-optimal regret. arXiv preprint arXiv:2006.04354.
Jain, A., G. Patil, A. Jain, K. Khetarpal, and D. Precup (2021). Variance penalized on-policy and

off-policy actor-critic. arXiv preprint arXiv:2102.01985.
James, S., Z. Ma, D. R. Arrojo, and A. J. Davison (2020). Rlbench: The robot learning benchmark and

learning environment. IEEE Robotics and Automation Letters 5(2), 3019–3026.
Jin, C., Z. Allen-Zhu, S. Bubeck, and M. I. Jordan (2018). Is Q-learning provably efficient? In Advances

in Neural Information Processing Systems, pp. 4863–4873.
Jin, C., A. Krishnamurthy, M. Simchowitz, and T. Yu (2020). Reward-free exploration for reinforcement

learning. In International Conference on Machine Learning, pp. 4870–4879. PMLR.
Jin, T., P. Xu, J. Shi, X. Xiao, and Q. Gu (2021). Mots: Minimax optimal thompson sampling. In

International Conference on Machine Learning, pp. 5074–5083. PMLR.
Jin, Y., Z. Yang, and Z. Wang (2021). Is pessimism provably efficient for offline RL? In International

Conference on Machine Learning, pp. 5084–5096.
Jong, N. K. and P. Stone (2005). Bayesian models of nonstationary Markov decision processes. Planning

and Learning in A Priori Unknown or Dynamic Domains, 132.
Jullien, S., R. Deffayet, J.-M. Renders, P. Groth, and M. de Rijke (2023). Distributional reinforcement

learning with dual expectile-quantile regression. arXiv preprint arXiv:2305.16877.
Kakade, S. (2003). On the sample complexity of reinforcement learning. Ph. D. thesis, University of

London.
Kamalaruban, P., Y. ting Huang, Y.-P. Hsieh, P. Rolland, C. Shi, et al. (2020). Robust reinforcement

learning via adversarial training with langevin dynamics. Neural Information Processing Systems.
Karush, W. (2013). Minima of functions of several variables with inequalities as side conditions. In Traces

and emergence of nonlinear programming, pp. 217–245. Springer.

Katehakis, M. N. and A. F. Veinott (1987). The multi-armed bandit problem: Decomposition and
computation. Math. Oper. Res. 12, 262–268.

Katsevich, A. and P. Rigollet (2023). On the approximation accuracy of gaussian variational inference.
arXiv preprint arXiv:2301.02168.

Kaufman, D. L. and A. J. Schaefer (2013). Robust modified policy iteration. INFORMS Journal on
Computing 25(3), 396–410.

Kaufmann, E., N. Korda, and R. Munos (2012). Thompson sampling: An asymptotically optimal
finite-time analysis. In International conference on algorithmic learning theory, pp. 199–213. Springer.

Kearns, M. J. and S. P. Singh (1999). Finite-sample convergence rates for Q-learning and indirect
algorithms. In Advances in neural information processing systems, pp. 996–1002.

Klopp, O., K. Lounici, and A. B. Tsybakov (2017). Robust matrix completion. Probability Theory and
Related Fields 169(1-2), 523–564.

Kober, J., J. A. Bagnell, and J. Peters (2013). Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research 32(11), 1238–1274.

Kostrikov, I., A. Nair, and S. Levine (2021). Offline reinforcement learning with implicit q-learning. arXiv
preprint arXiv:2110.06169.

Kozuno, T., W. Yang, N. Vieillard, T. Kitamura, Y. Tang, et al. (2022). Kl-entropy-regularized rl with a
generative model is minimax optimal. arXiv preprint arXiv:2205.14211.

Kumar, A., A. Levine, T. Goldstein, and S. Feizi (2022). Certifying model accuracy under distribution
shifts. arXiv preprint arXiv:2201.12440.

Kumar, N., E. Derman, M. Geist, K. Levy, and S. Mannor (2023). Policy gradient for s-rectangular robust
markov decision processes. arXiv preprint arXiv:2301.13589.

Kumar, N., K. Levy, K. Wang, and S. Mannor (2022). Efficient policy iteration for robust markov decision
processes via regularization. arXiv preprint arXiv:2205.14327.

Kuznetsov, A., P. Shvechikov, A. Grishin, and D. Vetrov (2020). Controlling overestimation bias with
truncated mixture of continuous distributional quantile critics. In International Conference on Machine
Learning, pp. 5556–5566. PMLR.

Kveton, B., M. Zaheer, C. Szepesvari, L. Li, M. Ghavamzadeh, et al. (2020). Randomized exploration in
generalized linear bandits. In S. Chiappa and R. Calandra (Eds.), Proceedings of the Twenty Third
International Conference on Artificial Intelligence and Statistics, Volume 108 of Proceedings of Machine
Learning Research, pp. 2066–2076. PMLR.

Lam, S. and J. Herlocker. Movielens dataset.
Lambert, M., S. Bonnabel, and F. Bach (2022). The recursive variational gaussian approximation (r-vga).

Statistics and Computing 32(1), 10.
Lambert, M., S. Chewi, F. Bach, S. Bonnabel, and P. Rigollet (2022). Variational inference via wasserstein

gradient flows. arXiv preprint arXiv:2205.15902.
Langford, J. and T. Zhang (2007). The epoch-greedy algorithm for contextual multi-armed bandits.

Advances in neural information processing systems 20(1), 96–1.
Lattimore, T. and C. Szepesvári (2020). Bandit algorithms. Cambridge University Press.
Lecarpentier, E. and E. Rachelson (2019). Non-stationary markov decision processes, a worst-case approach

using model-based reinforcement learning. Advances in neural information processing systems 32.
Lee, K., L. Smith, A. Dragan, and P. Abbeel (2021). B-pref: Benchmarking preference-based reinforcement

learning. arXiv preprint arXiv:2111.03026.
Li, G., C. Cai, Y. Chen, Y. Wei, and Y. Chi (2023). Is Q-learning minimax optimal? a tight sample

complexity analysis. Operations Research.
Li, G., Y. Chi, Y. Wei, and Y. Chen (2022). Minimax-optimal multi-agent RL in Markov games with a

generative model. Neural Information Processing Systems.
Li, G., L. Shi, Y. Chen, Y. Chi, and Y. Wei (2022). Settling the sample complexity of model-based offline

reinforcement learning. arXiv preprint arXiv:2204.05275.
Li, G., L. Shi, Y. Chen, Y. Gu, and Y. Chi (2021). Breaking the sample complexity barrier to regret-optimal

model-free reinforcement learning. Advances in Neural Information Processing Systems 34.

Li, G., Y. Wei, Y. Chi, and Y. Chen (2024). Breaking the sample size barrier in model-based reinforcement
learning with a generative model. Operations Research 72(1), 203–221.

Li, G., Y. Wei, Y. Chi, Y. Gu, and Y. Chen (2020). Breaking the sample size barrier in model-based
reinforcement learning with a generative model. Advances in neural information processing systems 33,
12861–12872.

Li, G., Y. Yan, Y. Chen, and J. Fan (2023). Minimax-optimal reward-agnostic exploration in reinforcement
learning. arXiv preprint arXiv:2304.07278.

Li, L., W. Chu, J. Langford, and R. E. Schapire (2010). A contextual-bandit approach to personalized
news article recommendation. In Proceedings of the 19th international conference on World wide web,
pp. 661–670.

Li, L., Y. Lu, and D. Zhou (2017). Provably optimal algorithms for generalized linear contextual bandits.
In D. Precup and Y. W. Teh (Eds.), Proceedings of the 34th International Conference on Machine
Learning, Volume 70 of Proceedings of Machine Learning Research, pp. 2071–2080. PMLR.

Li, M., T. Sutter, and D. Kuhn (2023). Policy gradient algorithms for robust mdps with non-rectangular
uncertainty sets. arXiv preprint arXiv:2305.19004.

Li, S., Y. Wu, X. Cui, H. Dong, F. Fang, et al. (2019a). Robust multi-agent reinforcement learning
via minimax deep deterministic policy gradient. In Proceedings of the AAAI conference on artificial
intelligence, Volume 33, pp. 4213–4220.

Li, S., Y. Wu, X. Cui, H. Dong, F. Fang, et al. (2019b). Robust multi-agent reinforcement learning
via minimax deep deterministic policy gradient. In Proceedings of the AAAI conference on artificial
intelligence, Volume 33, pp. 4213–4220.

Li, Y., T. Zhao, and G. Lan (2022). First-order policy optimization for robust markov decision process.
arXiv preprint arXiv:2209.10579.

Liang, Y., Y. Sun, R. Zheng, X. Liu, T. Sandholm, et al. (2023). Game-theoretic robust reinforcement
learning handles temporally-coupled perturbations. In The Second Workshop on New Frontiers in
Adversarial Machine Learning.

Lillicrap, T. P., J. J. Hunt, A. Pritzel, N. Heess, T. Erez, et al. (2015). Continuous control with deep
reinforcement learning. arXiv preprint arXiv:1509.02971.

Lin, Z., G. Thomas, G. Yang, and T. Ma (2020). Model-based adversarial meta-reinforcement learning.
In Advances in Neural Information Processing Systems, Volume 33, pp. 10161–10173.

Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement learning. In Machine
learning proceedings 1994, pp. 157–163. Elsevier.

Liu, S., K. Y. Ngiam, and M. Feng (2019). Deep reinforcement learning for clinical decision support: a
brief survey. arXiv preprint arXiv:1907.09475.

Liu, Z., Q. Bai, J. Blanchet, P. Dong, W. Xu, et al. (2022). Distributionally robust q-learning. In
International Conference on Machine Learning, pp. 13623–13643. PMLR.

Lu, M., H. Zhong, T. Zhang, and J. Blanchet (2024). Distributionally robust reinforcement learning
with interactive data collection: Fundamental hardness and near-optimal algorithm. arXiv preprint
arXiv:2404.03578.

Lu, X. and B. Van Roy (2017). Ensemble sampling. Advances in neural information processing systems 30.
Ma, Y. J., D. Jayaraman, and O. Bastani (2021). Conservative offline distributional reinforcement learning.
Mahmood, A. R., D. Korenkevych, G. Vasan, W. Ma, and J. Bergstra (2018). Benchmarking reinforcement

learning algorithms on real-world robots. In Conference on robot learning, pp. 561–591. PMLR.
Mannor, S., D. Simester, P. Sun, and J. N. Tsitsiklis (2004). Bias and variance in value function estimation.

In Proceedings of the twenty-first international conference on Machine learning, pp. 72.
Mazumdar, E., A. Pacchiano, Y.-a. Ma, P. L. Bartlett, and M. I. Jordan (2020). On thompson sampling

with langevin algorithms. arXiv preprint arXiv:2002.10002.
McDiarmid, C. et al. (1989). On the method of bounded differences. Surveys in combinatorics 141(1),

148–188.
Mehta, B., M. Diaz, F. Golemo, C. J. Pal, and L. Paull (2020a). Active domain randomization. In

Proceedings of the Conference on Robot Learning, Volume 100, pp. 1162–1176.

Mehta, B., M. Diaz, F. Golemo, C. J. Pal, and L. Paull (2020b). Active domain randomization. In
Conference on Robot Learning, pp. 1162–1176. PMLR.

Ménard, P. and A. Garivier (2017). A minimax and asymptotically optimal algorithm for stochastic
bandits. In International Conference on Algorithmic Learning Theory, pp. 223–237. PMLR.

Mnih, V., K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, et al. (2013). Playing atari with deep
reinforcement learning.

Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, et al. (2015). Human-level control through
deep reinforcement learning. Nature 518(7540), 529–533.

Montague, P. R., P. Dayan, and T. J. Sejnowski (1996). A framework for mesencephalic dopamine systems
based on predictive hebbian learning. Journal of neuroscience 16(5), 1936–1947.

Moos, J., K. Hansel, H. Abdulsamad, S. Stark, D. Clever, et al. (2022). Robust reinforcement learning:
A review of foundations and recent advances. Machine Learning and Knowledge Extraction 4(1),
276–315.

Morimoto, J. and K. Doya (2005). Robust reinforcement learning. Neural computation 17(2), 335–359.
Moskovitz, T., J. Parker-Holder, A. Pacchiano, M. Arbel, and M. Jordan (2021). Tactical optimism and

pessimism for deep reinforcement learning. Advances in Neural Information Processing Systems 34,
12849–12863.

Nam, D. W., Y. Kim, and C. Y. Park (2021). Gmac: A distributional perspective on actor-critic framework.
In International Conference on Machine Learning, pp. 7927–7936. PMLR.

Nichol, A., V. Pfau, C. Hesse, O. Klimov, and J. Schulman (2018). Gotta learn fast: A new benchmark
for generalization in rl. arXiv preprint arXiv:1804.03720.

Nilim, A. and L. El Ghaoui (2005). Robust control of markov decision processes with uncertain transition
matrices. Operations Research 53(5), 780–798.

OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, et al. (2019). Solving rubik’s cube with a
robot hand. arXiv preprint arXiv: Arxiv-1910.07113.

Ornik, M. and U. Topcu (2019). Learning and planning for time-varying mdps using maximum likelihood
estimation. arXiv preprint arXiv:1911.12976.

Osband, I., Y. Doron, M. Hessel, J. Aslanides, E. Sezener, et al. (2019). Behaviour suite for reinforcement
learning. arXiv preprint arXiv:1908.03568.

Pacchiano, A., M. Phan, Y. Abbasi Yadkori, A. Rao, J. Zimmert, et al. (2020). Model selection in
contextual stochastic bandit problems. Advances in Neural Information Processing Systems 33,
10328–10337.

Packer, C., K. Gao, J. Kos, P. Krähenbühl, V. Koltun, et al. (2018). Assessing generalization in deep
reinforcement learning. arXiv preprint arXiv:1810.12282.

Pan, X., D. Seita, Y. Gao, and J. Canny (2019). Risk averse robust adversarial reinforcement learning. In
2019 International Conference on Robotics and Automation (ICRA), pp. 8522–8528. IEEE.

Panaganti, K. and D. Kalathil (2022a). Sample complexity of robust reinforcement learning with a
generative model. In International Conference on Artificial Intelligence and Statistics, pp. 9582–9602.
PMLR.

Panaganti, K. and D. Kalathil (2022b). Sample complexity of robust reinforcement learning with a
generative model. In International Conference on Artificial Intelligence and Statistics, pp. 9582–9602.
PMLR.

Panaganti, K., Z. Xu, D. Kalathil, and M. Ghavamzadeh (2022). Robust reinforcement learning using
offline data. arXiv preprint arXiv:2208.05129.

Petrik, M. and R. H. Russel (2019). Beyond confidence regions: Tight bayesian ambiguity sets for robust
mdps. Advances in neural information processing systems 32.

Pinto, L., J. Davidson, R. Sukthankar, and A. Gupta (2017). Robust adversarial reinforcement learning.
In International Conference on Machine Learning, pp. 2817–2826. PMLR.

Puterman, M. L. (1990). Markov decision processes. Handbooks in operations research and management
science 2, 331–434.

Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons.

Qiaoben, Y., X. Zhou, C. Ying, and J. Zhu (2021). Strategically-timed state-observation attacks on deep
reinforcement learning agents. In ICML 2021 Workshop on Adversarial Machine Learning.

Raffin, A., A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, et al. (2019). Stable baselines3.
Raffin, A., A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, et al. (2021). Stable-baselines3: Reliable

reinforcement learning implementations. Journal of Machine Learning Research 22(268), 1–8.
Rahimian, H. and S. Mehrotra (2019). Distributionally robust optimization: A review. arXiv preprint

arXiv:1908.05659.
Rashidinejad, P., B. Zhu, C. Ma, J. Jiao, and S. Russell (2021). Bridging offline reinforcement learning

and imitation learning: A tale of pessimism. Neural Information Processing Systems (NeurIPS).
Réda, C. (2022). Combination of gene regulatory networks and sequential machine learning for drug

repurposing. Ph. D. thesis, Université Paris Cité.
Riedmiller, M. (2005). Neural fitted q iteration–first experiences with a data efficient neural reinforcement

learning method. In Machine Learning: ECML 2005: 16th European Conference on Machine Learning,
Porto, Portugal, October 3-7, 2005. Proceedings 16, pp. 317–328. Springer.

Riquelme, C., G. Tucker, and J. Snoek (2018). Deep bayesian bandits showdown: An empirical com-
parison of bayesian deep networks for thompson sampling. In International Conference on Learning
Representations.

Robbins, H. (1952). Some aspects of the sequential design of experiments. Bulletin of the American
Mathematical Society 58(5), 527–535.

Rowland, M., R. Dadashi, S. Kumar, R. Munos, M. G. Bellemare, et al. (2019). Statistics and samples in
distributional reinforcement learning. In International Conference on Machine Learning, pp. 5528–5536.
PMLR.

Roy, A., H. Xu, and S. Pokutta (2017). Reinforcement learning under model mismatch. Advances in
neural information processing systems 30.

Rudin, W. et al. (1964). Principles of mathematical analysis, Volume 3. McGraw-hill New York.
Russel, R. H., B. Behzadian, and M. Petrik (2019). Optimizing norm-bounded weighted ambiguity sets

for robust mdps. arXiv preprint arXiv:1912.02696.
Russo, D. and B. Van Roy (2014). Learning to optimize via posterior sampling. Mathematics of Operations

Research 39(4), 1221–1243.
Russo, D. and B. Van Roy (2016). An information-theoretic analysis of thompson sampling. The Journal

of Machine Learning Research 17(1), 2442–2471.
Schaul, T., J. Quan, I. Antonoglou, and D. Silver (2015). Prioritized experience replay. arXiv preprint

arXiv:1511.05952.
Scherrer, B. (2013). Performance bounds for λ policy iteration and application to the game of tetris.

Journal of Machine Learning Research 14(4).
Scherrer, B., M. Ghavamzadeh, V. Gabillon, B. Lesner, and M. Geist (2015). Approximate modified policy

iteration and its application to the game of tetris. J. Mach. Learn. Res. 16(49), 1629–1676.
Scherrer, B. and B. Lesner (2012). On the use of non-stationary policies for stationary infinite-horizon

markov decision processes. Advances in Neural Information Processing Systems 25.
Schulman, J., S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel (2015). Trust region policy optimization.

32nd International Conference on Machine Learning, ICML 2015 3, 1889–1897.
Schulman, J., F. Wolski, P. Dhariwal, A. Radford, and O. Klimov (2017a). Proximal policy optimization

algorithms. arXiv. PPO algorithm premier papier¡br/¿Important à citer¡br/¿¡br/¿.
Schulman, J., F. Wolski, P. Dhariwal, A. Radford, and O. Klimov (2017b). Proximal policy optimization

algorithms. arXiv preprint arXiv:1707.06347.
Shi, L. and Y. Chi (2022). Distributionally robust model-based offline reinforcement learning with

near-optimal sample complexity. arXiv preprint arXiv:2208.05767.

Shi, L., G. Li, Y. Wei, Y. Chen, and Y. Chi (2022). Pessimistic Q-learning for offline reinforcement
learning: Towards optimal sample complexity. In Proceedings of the 39th International Conference on
Machine Learning, Volume 162, pp. 19967–20025. PMLR.

Shi, L., G. Li, Y. Wei, Y. Chen, M. Geist, et al. (2023). The curious price of distributional robustness in
reinforcement learning with a generative model. arXiv preprint arXiv:2305.16589.

Shi, L., G. Li, Y. Wei, Y. Chen, M. Geist, et al. (2024). The curious price of distributional robustness in
reinforcement learning with a generative model. Advances in Neural Information Processing Systems 36.

Sidford, A., M. Wang, X. Wu, L. Yang, and Y. Ye (2018). Near-optimal time and sample complexities for
solving markov decision processes with a generative model. Advances in Neural Information Processing
Systems 31.

Silver, D., J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, et al. (2017). Mastering the game of
Go without human knowledge. Nature 550(7676), 354–359.

Singh, R., Q. Zhang, and Y. Chen (2020). Improving robustness via risk averse distributional reinforcement
learning. In Learning for Dynamics and Control, pp. 958–968. PMLR.

Singh, S. P. and R. C. Yee (1994). An upper bound on the loss from approximate optimal-value functions.
Machine Learning 16(3), 227–233.

Smirnova, E., E. Dohmatob, and J. Mary (2019a). Distributionally robust reinforcement learning. arXiv
preprint arXiv:1902.08708.

Smirnova, E., E. Dohmatob, and J. Mary (2019b). Distributionally robust reinforcement learning.
Stanton, S., R. Fakoor, J. Mueller, A. G. Wilson, and A. Smola (2021). Robust reinforcement learning for

shifting dynamics during deployment. In Workshop on Safe and Robust Control of Uncertain Systems
at NeurIPS.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine learning 3(1),
9–44.

Sutton, R. S. and A. G. Barto (2018). Reinforcement learning: An introduction. MIT press.
Tamar, A., S. Mannor, and H. Xu (2014). Scaling up robust MDPs using function approximation. In

International conference on machine learning, pp. 181–189. PMLR.
Tan, K. L., Y. Esfandiari, X. Y. Lee, and S. Sarkar (2020). Robustifying reinforcement learning agents via

action space adversarial training. In 2020 American control conference (ACC), pp. 3959–3964. IEEE.
Tanabe, T., R. Sato, K. Fukuchi, J. Sakuma, and Y. Akimoto (2022a). Max-min off-policy actor-critic

method focusing on worst-case robustness to model misspecification. In Advances in Neural Information
Processing Systems.

Tanabe, T., R. Sato, K. Fukuchi, J. Sakuma, and Y. Akimoto (2022b). Max-min off-policy actor-critic
method focusing on worst-case robustness to model misspecification. Advances in Neural Information
Processing Systems 35, 6967–6981.

Tassa, Y., Y. Doron, A. Muldal, T. Erez, Y. Li, et al. (2018). Deepmind control suite.
Tessler, C., Y. Efroni, and S. Mannor (2019). Action robust reinforcement learning and applications in

continuous control. In International Conference on Machine Learning, pp. 6215–6224. PMLR.
Tewari, A. and S. A. Murphy (2017). From ads to interventions: Contextual bandits in mobile health. In

Mobile Health - Sensors, Analytic Methods, and Applications.
Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another in view of the

evidence of two samples. Biometrika 25(3-4), 285–294.
Tobin, J., R. Fong, A. Ray, J. Schneider, W. Zaremba, et al. (2017). Domain randomization for transferring

deep neural networks from simulation to the real world. In 2017 IEEE/RSJ international conference
on intelligent robots and systems (IROS), pp. 23–30. IEEE.

Todorov, E., T. Erez, and Y. Tassa (2012). Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033. IEEE.

Towers, M., J. K. Terry, A. Kwiatkowski, J. U. Balis, G. d. Cola, et al. (2023). Gymnasium.
Tsybakov, A. B. (2009). Introduction to nonparametric estimation, Volume 11. Springer.
Urṕı, N. A., S. Curi, and A. Krause (2021). Risk-averse offline reinforcement learning. arXiv preprint

arXiv:2102.05371.

Urteaga, I. and C. Wiggins (2018). Variational inference for the multi-armed contextual bandit. In
International Conference on Artificial Intelligence and Statistics, pp. 698–706. PMLR.

v. Neumann, J. (1928). Zur theorie der gesellschaftsspiele. Mathematische annalen 100(1), 295–320.
Van der Vaart, A. W. (2000). Asymptotic statistics, Volume 3. Cambridge university press.
Van Hasselt, H., A. Guez, and D. Silver (2016). Deep reinforcement learning with double q-learning. In

Proceedings of the AAAI conference on artificial intelligence, Volume 30.
Vershynin, R. (2018). High-dimensional probability: An introduction with applications in data science,

Volume 47. Cambridge university press.
Vieillard, N., T. Kozuno, B. Scherrer, O. Pietquin, R. Munos, et al. (2020). Leverage the average: an

analysis of kl regularization in rl. arXiv preprint arXiv:2003.14089.
Vieillard, N., O. Pietquin, and M. Geist (2020). Munchausen reinforcement learning. Advances in Neural

Information Processing Systems 33, 4235–4246.
Vinitsky, E., Y. Du, K. Parvate, K. Jang, P. Abbeel, et al. (2020). Robust reinforcement learning using

adversarial populations. arXiv preprint arXiv:2008.01825.
Wainwright, M. J. (2019). Stochastic approximation with cone-contractive operators: Sharp ℓ∞-bounds

for Q-learning. arXiv preprint arXiv:1905.06265.
Wang, H. and X. Y. Zhou (2020). Continuous-time mean–variance portfolio selection: A reinforcement

learning framework. Mathematical Finance 30(4), 1273–1308.
Wang, K., U. Gadot, N. Kumar, K. Levy, and S. Mannor (2023). Robust reinforcement learning via

adversarial kernel approximation. arXiv preprint arXiv:2306.05859.
Wang, S., N. Si, J. Blanchet, and Z. Zhou (2023). A finite sample complexity bound for distributionally

robust q-learning. arXiv preprint arXiv:2302.13203.
Wang, Y. and S. Zou (2021). Online robust reinforcement learning with model uncertainty. Advances in

Neural Information Processing Systems 34.
Wang, Z., T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, et al. (2016). Dueling network architectures for

deep reinforcement learning. In International conference on machine learning, pp. 1995–2003. PMLR.
Wiesemann, W., D. Kuhn, and B. Rustem (2013). Robust markov decision processes. Mathematics of

Operations Research 38(1), 153–183.
Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement

learning. Machine learning 8, 229–256.
Wolff, E. M., U. Topcu, and R. M. Murray (2012). Robust control of uncertain markov decision processes

with temporal logic specifications. In 2012 IEEE 51st IEEE Conference on Decision and Control
(CDC), pp. 3372–3379. IEEE.

Wu, W., J. Yang, and C. Shen (2020). Stochastic linear contextual bandits with diverse contexts. In
International Conference on Artificial Intelligence and Statistics, pp. 2392–2401. PMLR.

Xie, T., N. Jiang, H. Wang, C. Xiong, and Y. Bai (2021). Policy finetuning: Bridging sample-efficient
offline and online reinforcement learning. Advances in neural information processing systems 34.

Xu, H. and S. Mannor (2012). Distributionally robust Markov decision processes. Mathematics of
Operations Research 37(2), 288–300.

Xu, P., Z. Wen, H. Zhao, and Q. Gu (2020). Neural contextual bandits with deep representation and
shallow exploration. arXiv preprint arXiv:2012.01780.

Xu, P., H. Zheng, E. V. Mazumdar, K. Azizzadenesheli, and A. Anandkumar (2022). Langevin monte
carlo for contextual bandits. In International Conference on Machine Learning, pp. 24830–24850.
PMLR.

Xu, Z., K. Panaganti, and D. Kalathil (2023). Improved sample complexity bounds for distributionally
robust reinforcement learning. In International Conference on Artificial Intelligence and Statistics, pp.
9728–9754. PMLR.

Yan, Y., G. Li, Y. Chen, and J. Fan (2022). The efficacy of pessimism in asynchronous Q-learning. arXiv
preprint arXiv:2203.07368.

Yan, Y., G. Li, Y. Chen, and J. Fan (2023). The efficacy of pessimism in asynchronous q-learning. IEEE
Transactions on Information Theory.

Yang, I. (2017). A convex optimization approach to distributionally robust markov decision processes
with wasserstein distance. IEEE Control Systems Letters 1, 164–169.

Yang, K., L. Yang, and S. Du (2021). Q-learning with logarithmic regret. In International Conference on
Artificial Intelligence and Statistics, pp. 1576–1584. PMLR.

Yang, W., H. Wang, T. Kozuno, S. M. Jordan, and Z. Zhang (2023). Avoiding model estimation in robust
markov decision processes with a generative model. arXiv preprint arXiv:2302.01248.

Yang, W., L. Zhang, and Z. Zhang (2021). Towards theoretical understandings of robust markov decision
processes: Sample complexity and asymptotics. arXiv preprint arXiv:2105.03863.

Yang, W., L. Zhang, and Z. Zhang (2022). Toward theoretical understandings of robust markov decision
processes: Sample complexity and asymptotics. The Annals of Statistics 50(6), 3223–3248.

Yang, W. H. (1991). On generalized holder inequality.
Yin, M., Y. Bai, and Y.-X. Wang (2021). Near-optimal offline reinforcement learning via double variance

reduction. arXiv preprint arXiv:2102.01748.
Ying, C., X. Zhou, H. Su, D. Yan, and J. Zhu (2021). Towards safe reinforcement learning via constraining

conditional value-at-risk.
Yu, T., B. Kveton, Z. Wen, R. Zhang, and O. J. Mengshoel (2020). Graphical models meet bandits:

A variational thompson sampling approach. In International Conference on Machine Learning, pp.
10902–10912. PMLR.

Yu, T., D. Quillen, Z. He, R. Julian, A. Narayan, et al. (2021). Meta-world: A benchmark and evaluation
for multi-task and meta reinforcement learning.

Yu, W., C. K. Liu, and G. Turk (2018). Policy transfer with strategy optimization. International
Conference On Learning Representations.

Zenati, H., A. Bietti, E. Diemert, J. Mairal, M. Martin, et al. (2022). Efficient kernelized ucb for contextual
bandits. In International Conference on Artificial Intelligence and Statistics, pp. 5689–5720. PMLR.

Zhang, H., H. Chen, D. S. Boning, and C.-J. Hsieh (2021). Robust reinforcement learning on state
observations with learned optimal adversary. In International Conference on Learning Representations.

Zhang, H., H. Chen, C. Xiao, B. Li, M. Liu, et al. (2020). Robust deep reinforcement learning against
adversarial perturbations on state observations. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,
and H. Lin (Eds.), Advances in Neural Information Processing Systems, Volume 33, pp. 21024–21037.

Zhang, J. and P. Weng. Safe distributional reinforcement learning.
Zhang, R., Y. Hu, and N. Li (2023). Regularized robust mdps and risk-sensitive mdps: Equivalence, policy

gradient, and sample complexity. arXiv preprint arXiv:2306.11626.
Zhang, S., B. Liu, and S. Whiteson (2021). Mean-variance policy iteration for risk-averse reinforcement

learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Volume 35, pp. 10905–10913.
Zhang, T. (2022). Feel-good thompson sampling for contextual bandits and reinforcement learning. SIAM

Journal on Mathematics of Data Science 4(2), 834–857.
Zhang, W., D. Zhou, L. Li, and Q. Gu (2020). Neural thompson sampling. arXiv preprint arXiv:2010.00827.
Zhang, Z., Y. Zhou, and X. Ji (2020). Almost optimal model-free reinforcement learning via reference-

advantage decomposition. Advances in Neural Information Processing Systems 33.
Zhao, C., O. Sigaud, F. Stulp, and T. M. Hospedales (2019). Investigating generalisation in continuous

deep reinforcement learning. arXiv preprint arXiv:1902.07015.
Zhou, D., L. Li, and Q. Gu (2020). Neural contextual bandits with ucb-based exploration. In International

Conference on Machine Learning, pp. 11492–11502. PMLR.
Zhou, Z., Q. Bai, Z. Zhou, L. Qiu, J. Blanchet, et al. (2021). Finite-sample regret bound for distributionally

robust offline tabular reinforcement learning. In International Conference on Artificial Intelligence and
Statistics, pp. 3331–3339. PMLR.

Ziegler, D. M., N. Stiennon, J. Wu, T. B. Brown, A. Radford, et al. (2019). Fine-tuning language models
from human preferences. arXiv preprint arXiv:1909.08593.

Zouitine, A., D. Bertoin, P. Clavier, M. Geist, and E. Rachelson (2024a). Rrls: Robust reinforcement
learning suite. arXiv preprint arXiv:2406.08406.

Zouitine, A., D. Bertoin, P. Clavier, M. Geist, and E. Rachelson (2024b). Time-constrained robust mdps.

Zouitine, A., E. Rachelson, and M. Geist (2023). Revisiting the static model in robust reinforcement
learning. In Sixteenth European Workshop on Reinforcement Learning.

Appendix

Appendix of Chapter 2

1 Overview and useful inequalities

The appendix is organized as follows

• In Appendix 1.1, a comprehensive table with state-of-the-art complexity for every distance.

• In Appendix 1.2, we provide more details/explanations on the difference between our
formulation on the one of Kumar et al. (2022) and Derman et al. (2021).

• In Appendix 1.3, we give more details about our algorithm : DRVI LP.

• In Appendix 1.4, we give some useful inequalities frequently used in the proofs.

• In Appendix 2, we prove Theorem 2.4.1.

• In Appendix 3, we prove Theorem 2.5.1.

Finally, the proofs for the s-rectangular and sa-rectangular cases are often very similar. If
this is true, we will combine them in a single proof with the two cases detailed when needed.

1.1 Table of sample Complexity

Table 9.1: Sample Complexity for different metric and s- or sa rectangular assumptions with σ the
radius of uncertainty set, H the horizon factor, ϵ the precicion, p̄, σ0,p = (1− γ)/(2γS1/q). the smallest
positive state transition probability of the nominal kernel visited by the optimal robust policy (see Yang
et al. (2021)).

Panaganti and
Kalathil (2022a)

Yang et al. (2021) Shi and Chi
(2022)

Our σ ≥ 0 Our σ0,p >
σ > 0

Shi et al. (2023)
σ > 1 − γ

Shi et al. (2023)
0 < σ < 1 − γ

TV
(sa)

Õ
(

S2AH4
ϵ2

)
Õ
(

S2AH4(2+σ)2

ϵ2σ2

)
× Õ

(
SAH4

ϵ2

)
Õ
(

SAH3
ϵ2

)
Õ
(

SAH2
ϵ2σ

)
Õ
(

SAH3
ϵ2

)
TV
(s)

× Õ
(

S2A2H4(2+σ)2

ϵ2σ2

)
× Õ

(
SAH4

ϵ2

)
Õ
(

SAH3
ϵ2

)
× ×

Lp
(sa)

× × × Õ
(

SAH4
ϵ2

)
Õ
(

SAH3
ϵ2

)
× ×

Lp
(s)

× × × Õ
(

SAH4
ϵ2

)
Õ
(

SAH3
ϵ2

)
× ×

χ2

(sa)
Õ
(

S2AσH4
ϵ2

)
Õ
(

|S|2|A|(1+σ)2H4

ε2(
√

1+σ−1)2

)
× × × Õ

(
SAσH4

ϵ2

)
Õ
(

SAσH4
ϵ2

)
χ2

(s)
× Õ

(
|S|2|A3|(1+σ)2H4

ε2(
√

1+σ−1)2

)
× × × ×

KL
(sa)

Õ
(

|S|2|A| exp(H)H4

σ2ε2

)
Õ
(

S2AH4
p̄2ϵ2σ2

)
Õ
(

SAH4
p̄ϵ2σ4

)
× × × ×

KL
(s)

× Õ
(

S2A2H4
p̄2ϵ2σ2

)
× × × × ×

Chapter 9. Appendix of Chapter 2 164

1.2 Relation with the work of Kumar et al. (2022) and Derman et al. (2021)

In the work of Derman et al. (2021) close forms for RMDPs with Lp norms are derived assuming
the following uncertainty set :

Assumption 1.1. (sa-rectangularity in Derman et al. (2021))

Usa,σ∥.∥p
(P 0) := (r0 +R)×

(
P 0 + P

)
,R = ×s∈S,a∈ARs,a,Rs,a =

{
rs,a ∈ R | ∥rs,a∥p ≤ αs,a

}
P = ×s∈S,a∈APs,aPs,a = {Ps,a : S → R, ∥Ps,a∥p ≤ σs,a}

Using these uncertainty sets leads to the following Bellman Operator :

Theorem 1.2 (Derman et al. (2021)). The sa-rectangular Robust Bellman operator is equivalent
to a regularized non-robust Bellman operator: for rs,aV,π(s, a) = −

(
αs,a + γσs,a ∥V ∥q

)
+ r0(s, a) as

we have
T π,σV (s) = ⟨πs, rs,aV,π(s, a) + γ

∑
s′

P 0 (s′ | s, a
)
V
(
s′)⟩A

Using this formulation, they get a closed form for the inner minimization problem and for
the Robust Bellman Operator

The work Kumar et al. (2022) modifies the work of Derman et al. (2021) using Kernel that
sum to 1, ∑s′ Ps,a(s′) = 0 in their definition, but using this uncertainty set, it is still possible to
get a robust kernel out of the simplex. Using this formulation, they also get a closed form for
the inner minimization problem and for the Robust Bellman Operator.

Assumption 1.3. (sa-rectangularity in Kumar et al. (2022))

Usa,σ∥.∥p
(P 0) := (r0 +R)×

(
P 0 + P

)
,R = ×s∈S,a∈ARs,a,Rs,a =

{
rs,a ∈ R | ∥rs,a∥p ≤ αs,a

}
P = ×s∈S,a∈APs,aPs,a = {Ps,a : S → R |

∑
s′

Ps,a
(
s′) = 0, ∥Ps,a∥p ≤ σs,a}

Using these uncertainty sets where robust Kernel may not belong anymore to the simplex as
they do not assume P 0 + Ps,a ≥ 0. This leads to the following Bellman Operator :

Theorem 1.4 (Kumar et al. (2022)). The sa-rectangular Robust Bellman operator is equivalent
to a regularized non-robust Bellman operator: for rs,aV,π(s, a) = −

(
αs,a + γσs,aspq(V)

)
+ r0(s, a),

as we have
T π,σV (s) = ⟨πs, rs,aV,π(s, a) + γ

∑
s′

P 0 (s′ | s, a
)
V
(
s′)⟩A

where spq(V) in defined in Def. 2.3.1.These results are due to the following lemma.

Lemma 1.5 (Kumar et al. (2022). Duality for the minimization problem for sa rectangular
case with Lp norm without simplex constrain).

inf
P :
∑

s′ P (s′)=0∥P−P̂s,a∥p≤σs,a
PV = P̂s,aV − σs,aspq(V)

Our analysis assumes the positivity of the kernel function, P 0 + Ps ≥ 0 in s-rectangular or
P 0 + Ps,a ≥ 0 for sa-rectangular case. Using this more realistic assumption, we can not obtain a
closed form of the robust Bellman operator. However, we are still able to compute a dual form for
the inner minimization problem of RMDPs. With our definition of rectangularity in the simplex:

165 1. Overview and useful inequalities

Assumption 1.6. (sa-rectangularity) We define sa-rectangular Lp-constrained uncertainty set
as

Usa,σ∥.∥p
(P 0) := (r0 +R)×

(
P 0 + P

)
,

R = ×s∈S,a∈ARs,a,P = ×s∈S,a∈APs,a,Rs,a = {rs,a ∈ R | |rs,a| ≤ αs,a}

Ps,a = {Ps,a : S → R |
∑
s′

Ps,a(s′) = 0, P0,s,a + Ps,a ≥ 0, , ∥Ps,a∥p ≤ σs,a}

and using κD(v) = inf
{
u⊤v : u ∈ D

}
, we obtain :

Lemma 1.7 (Duality for the minimization problem for sa rectangular case with Lp norm).

κP̂s,a
(V) = max

µ≥0
{P̂s,a(V − µ)− σs,aspq(V − µ)}

Proof can be found on Appendix 2.5. Contrary to previous lemma in Kumar et al. (2022),
there is an additional max operator in our dual formulation. Interestingly, their formulation is a
relaxation of our Lemmas 2.3.3 as their formulation does not assume the positivity of the kernel.
Their relaxation allows practical algorithms with close form, but still suffer from non-exact
formulation of RMDPs with robust Kernel that are not in the simplex.

One crucial point in our analysis is that Bellman Operator for RMDPs is a γ- contraction for
robust kernel in the simplex for any radius σ (see Iyengar (2005)). For Kumar et al. (2022) and
Derman et al. (2021) the range of σ where their Robust Bellman Operator is a contraction is
smaller than 1−γ

γS1/q (see Proposition 4 of Derman et al. (2021)) which is the range where we have
minimax optimality in our Theorem 2.5.1. For σ > 1−γ

γS1/q , there is no contraction anymore. In
the following, we will assume that robust kernels belong to the simplex to use γ-contraction in
our proof of sample complexity and ensure convergence of the following Distributionally Robust
value Iteration for Lp norms for any σ Algoritm 11.

1.3 Model based DRVI LP algorithm

Algorithm 10: DRVI LP: Distributionally robust value iteration DRVI for LP norms
with sa−rectangular assuptions
1 input: empirical nominal transition kernel P̂0; reward function r; uncertainty level σ.
2 initialization: Q̂0(s, a) = 0, V̂0(s) = 0 for all (s, a) ∈ S ×A.
3 for t = 1, 2, · · · , T do
4 for ∀s ∈ S, a ∈ A do
5 Set Q̂t(s, a) according to (A.309) for sa−rectangular ;
6 for ∀s ∈ S do
7 Set V̂t(s) = maxa Q̂t(s, a);

8 output: Q̂T , V̂T and π̂ obeying π̂(s) = arg maxa Q̂T (s, a).

We propose Alg. 11 to solve robust MDPs in the case of LP norms using value Iteration with
sa- rectangularity assumptions. First, we can remark that directly solving classical RMDPs
formulation is computationally costly as it requires an optimization over an S-dimensional
probability simplex at each iteration, especially when the dimension of the state space S is
large. However, using strong duality like Iyengar (2005) for the TV , one can also solve using

Chapter 9. Appendix of Chapter 2 166

the dual problem of this formulation. The equivalence between the two formulations can be
found in Lemma 2.3.3. Using the dual form, the optimization (A.2) reduces to a 2-dimensional
optimization problem that can be solved efficiently using any 2−dimensional convex solver if
there exists an analytic form of the span-semi norm. Then the iterates

{
Q̂t
}
t≥0 of DRVI for LP

norms converge linearly to the fixed point Q̂⋆, owing to the appealing γ-contraction property of
robust MDPs in the simplex. From an initialization Q̂0 = 0, the update rule at the t-th (t ≥ 1)
iteration can be formulated as for sa-rectangular case as:

∀(s, a) ∈ S ×A : Q̂t(s, a) =r(s, a) + max
µ≥0

P̂ (V̂t−1 − µ)− σs,aspq(V̂t−1 − µ) (A.1)

=r(s, a) + max
αλ,ω
P̂

∈Aλ,ω
P̂

P̂[V̂t−1]
αλ,ω
P̂

− σs,aspq([V̂t−1]
αλ,ω
P̂

) (A.2)

where the variational family Aλ,ω

P̂
is a 2−dimensional variational family defined in (A.11).

The specific form of the dual problem depends on the choice of the norm. In the case of L1,
L2, or L∞, span semi-norms involved in dual problems have closed form (respectively equals to
median, variance, or span), and equation A.2 corresponds to a 2-D minimization problem.

But in general cases, one has to compute span-semi norms that can be easily computed using
binary search solving ∑

s

sign (v(s)− ωp(v)) |v(s)− ωp(v)|
1
p−1 = 0

to compute ωq and then setting the semi norm spq(v) = ∥v − ωq∥. Recall the q-variance function
spq : S → R and q-mean function ωq : S → R be defined as

spq(v) := min
ω∈R
∥v − ω1∥q, ωq(v) := arg min

ω∈R
∥v − ω1∥q.

See Kumar et al. (2022) for discussion about computing span semi norms. So in the general
case, we can also compute the maximum solving :

∀(s, a) ∈ S ×A : Q̂t(s, a) =r(s, a) + max
αλ,ω
P̂

∈Aλ,ω
P̂

P̂[V̂t−1]
αλ,ω
P̂

− σs,a
∥∥∥∥[V̂t−1]

αλ,ω
P̂

− w
∥∥∥∥
q
,

Using any 2−D convex optimization algorithm solves the problem as this problem is jointly
concave in (λ,w) because (λ,w) → −

∥∥∥∥[V̂t−1]
αλ,ω
P̂

− w
∥∥∥∥
q

is concave using norm property and

(λ,w)→ P̂[V̂t−1]
αλ,ω
P̂

also. Then the sum is concave.

Finally, in the sa-case we compute the best policy which is the greedy policy of the final
Q-estimates Q̂T as the final policy π̂:

∀s ∈ S : π̂(s) = arg max
a

Q̂T (s, a).

1.4 Useful Inequalities and notations

Here we present some useful inequalities used frequently in the derivation. Consider any P a
transition matrix and σs for s rectangular uncertain sets or σsa for sa- uncertainty sets, then for
1 = (1, 1, ..., 1)⊤ :

167 1. Overview and useful inequalities

(1− γP)−1 (γσs) 1 < σ

1− γ1 and (1− γP)−11 ≤ 1
1− γ1 (A.3)

∀q ∈ N∗, spq(.) ≤ 2 ∥.∥q < 2S1/q ∥.∥∞ , sp(.)∞ ≤ 2 ∥.∥∞ (A.4)

spq(.) ≤ 2 ∥.∥q ≤ 2 ∥.∥q (A.5)

Eq. (A.3) is true, taking the supremum norm of the left-hand side inequality. Eq. (A.4) and
Eq. (A.5) come from properties of norms, see Eq. (1) from Scherrer (2013). Finally we denote
the truncation operator for a vector α ∈ RS ,

[V]α :=
{
α(s), if V (s) > α(s)
V (s), otherwise.

1.5 Robust Bellman Operator and robust Q values

This is proof of Lemma 2.3.5:

Lemma 1.8. Robust Bellman Operator for sa− and s− rectangular are :

T π,σV (s) =
∑
a

π(a|s)
(
− αs,a + r0(s, a) + γ

∑
s′

P 0(s′, s, a)v(s′) + γ min
P∈Ps,a

PV
)

T π,σ̃V (s) = −∥πs∥q αs + γ min
Pπ∈Ps

P πV +
∑
a

π(a|s)
(
r0(s, a) + γP 0(s′|s, a)V (s′)

)
Proof. For sa-rectangular: by rectangularity

T π,σV (s) =
∑
a

π(a|s)
(
− αs,a + r0(s, a) + γ min

P∈P0
s,a

PV
)

=
∑
a

π(a|s)
(
− αs,a + r0(s, a) + γ min

P∈Ps,a
PV + P0,s,aV

)
For s−rectangular case :

T π,σ̃V (s) = min
Pπ∈P0

s

γPV + min
R∈R0

s

∑
a

π(a|s)R(s, a)

=
∑
a

π(a|s)r0(s, a) + min
R∈Rs

∑
a

π(a|s)R(s, a) +
∑
a

π(a|s)γ
∑
s′

P 0(s′|s, a)V (s′)

+ min
Pπ∈Ps,

γP πV

(a)=
∑
a

π(a|s)
(
r0(s, a) +

∑
s′

P 0(s′|s, a)V (s′)
)
− αs ∥πs∥q + min

Pπ∈Ps
γP πV

where (a) comes from Holder’s inequality.

Lemma 1.9. For sa− and s− rectangular,

Qπ,σ(s, a) = r
(s,a)
Qπ + γP 0

s,aV
π,σ, (A.6)

Qπ,σ̃(s, a) = rsQπ + γP 0
s,aV

π,σ̃ (A.7)

Chapter 9. Appendix of Chapter 2 168

with

r
(s,a)
Qπ = r0(s, a)− αs,a + γ min

P∈Ps,a
PV π,σ (A.8)

rsQπ = r0(s, a)−
(πs(a)
∥πs∥q

)q−1
αs + γ min

Pπ∈Ps
P πV π,σ̃ (A.9)

Proof. The result comes directly as for sa-rectangular the following relations hold,

V π,σ(s) =
∑
a

π(a|s)Qπ,σ(s, a) and

and for s-rectangular case

V π,σ̃(s) =
∑
a

π(a|s)Qπ,σ̃(s, a).

Then using fixed point equation of Bellman operator: T π,σV π,σ(s) = V π,σ(s) or T π,σV π,σ̃(s) =
V π,σ̃(s) and previous Lemma 1.8 for the expression of T π,σV π,σ(s), we can identify the robust Q
values that give the result

2 An H4 bound for Lp-balls

To lighten notations, we remove superscript σ or σ̃ in most places and denote for example V π

instead of V π,σ for sa-rectangular sets.

Lemma 2.1 (Decomposition of the bound).∥∥∥Q∗ −Qπ̂
∥∥∥

∞
≤
∥∥∥Q∗ − Q̂π∗

∥∥∥
∞

+
∥∥∥Q̂π∗ − Q̂π̂

∥∥∥
∞

+
∥∥∥Q̂π̂ −Qπ̂∥∥∥

∞

Proof.

0 ≤ Q∗ −Qπ̂ = Q∗ − Q̂∗︸︷︷︸
≥Q̂π∗

+Q̂∗ − Q̂π̂ + Q̂π̂ −Qπ̂

≤ Q∗ − Q̂π∗ + Q̂∗ − Q̂π̂ + Q̂π̂ −Qπ̂

⇒ ∥Q∗ −Qπ̂∥∞ ≤ ∥Q∗ − Q̂π∗∥∞ + ∥Q̂∗ − Q̂π̂∥∞ + ∥Q̂π̂ −Qπ̂∥∞

This decomposition is the starting point of our proofs for both Theorems 2.4.1 and 2.5.1. In
this decomposition, the second term satisfies ∥Q∗ − Q̂π∗∥∞ ≤ ϵopt by definition. This term goes
to 0 exponentially fast as the robust Bellman operator is a γ-contraction. The two last terms
∥Q∗ − Q̂π∗∥∞ and ∥Q̂π̂ −Qπ̂∥∞ need to be controlled using concentration inequalities between
the true MDP and the estimated one. To do so, we need concentration inequalities such as the
following Lemma 2.2.

Lemma 2.2 (Hoeffding’s inequality for V). For any V ∈ R|S| with ∥V ∥∞ ≤ H, with probability
at least 1− δ, we have

max
(s,a)

∣∣∣P 0V − P̂V
∣∣∣ ≤ H

√
log(2|S∥A|/δ)

2N .

169 2. An H4 bound for Lp-balls

Proof. For any (s, a) pair, assume a discrete random variable taking value V (i) with probability
P 0
s,a(i) for all i ∈ {1, 2, · · · , |S|}. Using Hoeffding’s inequality (Hoeffding 1994) and ∥V ∥∞ ≤ H:

P
(
P 0V − P̂V ≥ ε

)
≤ exp

(
−Nε2/(2H2)

)
and P

(
P̂V − P 0V ≥ ε

)
≤ exp

(
−Nε2/(2H2)

)
.

Then, taking ε = H
√

2 log(2|S||A|/δ)
N , we get

P

∣∣∣P 0V − P̂V
∣∣∣ ≥ H

√
log(2|S||A|/δ)

N

 ≤ δ

|S||A|
.

Finally, using a union bound:

P

max
(s,a)

∣∣∣P 0V − P̂V
∣∣∣ ≥ H

√
2 log(2|S||A|/δ)

N

 ≤∑
s,a

P

∣∣∣P 0V − P̂V
∣∣∣ ≥ H

√
2 log(2|S∥A|/δ)

N

 ≤ δ.

This completes the concentration proof. Next we will look at the contraction argument of
the robust Bellman operator.

Lemma 2.3 (Contraction of infimum operator). For D = Ps,a or Ps, the function

∀s, a, v 7→ κD(v) = inf
{
u⊤v : u ∈ D

}
is 1-Lipchitz.

Proof. We have that

∀(s, a) ∈ S ×A, κPs,a (V2)− κPs,a (V1) = inf
p∈Ps,a

p⊤V2 − inf
p̃∈Ps,a

p̃⊤V1 = inf
p∈Ps,a

sup
p̃∈Ps,a

p⊤V2 − p̃⊤V1

≥ inf
p∈Ps,a

p⊤ (V2 − V1) = κPs,a (V2 − V1) .

Then ∀ε > 0, there exists Ps,a ∈ Ps,a such that

P⊤
s,a (V2 − V1)− ε ≤ κPs,a (V2 − V1) .

Using those two properties,

κPs,a (V1)− κPs,a (V2) ≤ P⊤
s,a (V1 − V2) + ε ≤ ∥Ps,a∥1 ∥V1 − V2∥+ ε = ∥V1 − V2∥+ ε,

where we used the Holder’s inequality. Since ε is arbitrary small, we obtain, κPs,a (V1) −
κPs,a (V2) ≤ ∥V1 − V2∥. Exchanging the roles of V1 and V2 give the result. The proof is similar
for Ps.

Note that an immediate consequence is the already known γ- contraction of the robust
Bellman operator.

Lemma 2.4 (Upper-bounds of
∥∥∥Qπ̂ − Q̂π̂∥∥∥

∞
and

∥∥∥Q∗ − Q̂π∗
∥∥∥

∞
).∥∥∥Qπ̂ − Q̂π̂∥∥∥

∞
≤ γ

1− γ max
s,a

∣∣∣κP̂s,a
(V̂ π̂)− κP0,s,a(V̂ π̂)

∣∣∣ ,∥∥∥Q∗ − Q̂π∗
∥∥∥

∞
≤ γ

1− γ max
s,a

∣∣∣κP̂s,a
(V ∗)− κP0,s,a(V ∗)

∣∣∣ .

Chapter 9. Appendix of Chapter 2 170

Proof. For the first inequality, since we can rewrite the robust Q-function for any uncertainty
sets on the dynamics as Qπ̂ (s, a) = r − αs,a + γκP0,s,a

(
V π̂
)

(see Eq. (2.3.5)), or replacing αs,a

by αs
(
π̂s(a)
∥π̂s∥q

)q−1
in the s- rectangular case:

Qπ̂ (s, a)− Q̂π̂ (s, a) (a)= γκP0,s,a

(
V π̂
)
− γκP̂s,a

(
V̂ π̂
)

= γ
(
κP0,s,a

(
V π̂
)
− κP0,s,a

(
V̂ π̂
))

+ γ
(
κP0,s,a

(
V̂ π̂
)
− κP̂s,a

(
V̂ π̂
))

with Ps,a defined in Assumption 2.3.1 and P̂s,a with the same definition but centered around the
empirical MDP. Hence, taking the supremum norm ∥.∥∞,∥∥∥Qπ̂ − Q̂π̂∥∥∥

∞
= max

s,a

∣∣∣γ (κP0,s,a

(
V π̂
)
− κP0,s,a

(
V̂ π̂
))

+ γ
(
κP0,s,a

(
V̂ π̂
)
− κP̂s,a

(
V̂ π̂
))∣∣∣

(b)
≤ γ

∥∥∥V π̂ − V̂ π̂
∥∥∥

∞
+ max

s,a

∣∣∣γ (κP0,s,a

(
V̂ π̂
)
− κP̂s,a

(
V̂ π̂
))∣∣∣

≤ γ
∥∥∥V π̂ − V̂ π̂

∥∥∥
∞

+ γmax
s,a

∣∣∣κP̂s,a
(V̂ π̂)− κP0,s,a(V̂ π̂)

∣∣∣
(c)
≤ γ

∥∥∥Qπ̂ − Q̂π̂∥∥∥
∞

+ γmax
s,a

∣∣∣κP̂s,a
(V̂ π̂)− κP0,s,a(V̂ π̂)

∣∣∣ .
Line (a) comes from the rectangularity assumption, (b) uses the triangular inequality and the
1-contraction of the infimum in Lemma 2.3, (c) uses the fact that ∥V π − V̂ π∥∞ ≤ ∥Qπ − Q̂π∥∞
for any π. As 1− γ < 1, we get the first stated result.

One can note that the proof is true for any policy, so it is also true for both π̂ and π∗ which
concludes the proof. This proof is written for the sa-rectangular assumption, it is also true for
the s-rectangular case with slightly different notations, replacing D = P0,s,a by D = P0,s. Now
we need to find new form for κ for both s and sa rectangular assumptions.

For the second claim,∥∥∥Q∗ − Q̂π∗
∥∥∥

∞
≤ γ

1− γ max
s,a

∣∣∣κP̂s,a
(V ∗)− κP0,s,a(V ∗)

∣∣∣ .
we are using a slightly different modification:

Q∗ (s, a)− Q̂π∗ (s, a) (a)= γκP0,s,a (V ∗)− γκP̂s,a

(
V̂ π∗)

= γκP0,s,a (V ∗)− γκP0,s,a

(
V̂ π∗)+ γκP0,s,a

(
V̂ π∗)− γκP̂s,a

(
V̂ π∗)

≤ γ
∥∥∥Q∗ − Q̂π∗

∥∥∥
∞

+ max
s,a

∣∣∣κP̂s,a
(V ∗)− κP0,s,a(V ∗)

∣∣∣
using the same arguments as in the first inequality. Solving gives the result.

We denote [V]α as its clipped version by some non-negative vector α, namely,

[V]α(s) :=
{
α(s), if V (s) > α(s),
V (s), otherwise.

(A.10)

Defining the gradient of P 7→ ∥P∥ as ∇∥P∥, λ > 0, a positive scalar and ω is the generalized
mean defined as the argmin in the definition of the span semi norm in Def.2.3.1, we derive two
optimization lemmas.

171 2. An H4 bound for Lp-balls

Lemma 2.5 (Duality for the minimization problem for sa rectangular case.). Denoting P̂ the
vector P̂s,a or P 0 for P0,s,a ,

κP̂s,a
(V̂ π̂) = max

µ≥0
{P̂(V̂ π̂ − µ)− σs,aspq(V̂ π̂ − µ)} = max

µλ,ω
P̂

∈Mλ,ω

P̂

{P̂(V̂ π̂ − µλ,ω
P̂

)− σs,aspq(V̂ π̂ − µλ,ω
P̂

)}

= max
αλ,ω
P̂

∈Aλ,ω
P̂

P̂[V̂ π̂]
αλ,ω
P̂

− σs,aspq([V̂ π̂]
αλ,ω
P̂

).

κP0,s,a(V ∗) = max
µ≥0
{P 0(V ∗ − µ)− σs,aspq(V ∗ − µ)} = max

µλ,ω
P0 ∈µλ,ω

P0

{P 0(V ∗ − µλ,ωP 0)− σs,aspq(V ∗ − µλ,ωP 0)}

= max
αλ,ω
P0 ∈Aλ,ω

P0

P 0[V ∗]
αλ,ω
P0
− σs,aspq([V ∗]

αλ,ω
P0

).

where

Aλ,ω
P = {αλ,ωP : αλ,ωP (s) = ω + λ|∇ ∥P∥p (s) : λ > 0, w > 0, P ∈ ∆(S), αλ,ωP ∈

[
0, 1

1− γ

]S
}

(A.11)

Mλ,ω
P = {µλ,ωP = V − αλ,ωP , λ, ω ∈ R+, P ∈ ∆(S), µ ∈ RS+, µ

λ,ω
P =

[
0, 1

1− γ

]S
} (A.12)

(A.13)

and with [V]α :=
{
α(s), if V (s) > α(s)
V (s), otherwise.

For L1 or TV , case , the vector αλ,ωP reduces to a 1 dimensional scalar such as α ∈ [0, 1/(1−γ)].

Proof. First, we will show that

κP̂s,a
(V̂ π̂) = max

µ≥0
{P̂(V̂ π̂ − µ)− σs,aspq(V̂ π̂ − µ)}

The second equation of this lemma is the same as the first one, replacing the center of the ball
constrain P̂s,a by P 0

s,a and π̂ by π∗. By definition,

κP̂s,a(V̂
π̂) = min

P∈∆s,
∥∥P−P̂

∥∥
p
≤σs,a

∑
s′

P (s′)V̂ π̂(s′) = P̂s,aV̂
π̂ + min

y,∥y∥p≤σs,a,1y=0,y≥−P̂

∑
s′

y(s′)V̂ π̂(s′)

where we use the change of variable y(s′) = P (s′)− P̂(s′). Then writing the Lagrangian we get
for µ ∈ RS+,γ ∈ R the Lagrangian variables:

P̂V̂ π̂ + max
µ≥0,ν∈R

min
y:∥y∥p≤σs,a

−
∑
s′

µ(s)P̂(s′) +
∑
s′

(y(s′)(V̂ π̂(s′)− µ(s′)− ν) (A.14)

(a)= P̂V̂ π̂ + max
µ≥0,ν∈R

−
∑
s′

µ(s′)P̂(s′)− σs,a
∥∥∥(V̂ π̂(s′)− µ(s′)− ν)

∥∥∥
q

(A.15)

(b)= max
µ≥0

P̂(V̂ π̂ − µ)− σs,aspq(V̂ π̂ − µ) (A.16)

Chapter 9. Appendix of Chapter 2 172

where (a) is true using the equality case of Holder’s inequality and (b) is the definition of the
span semi-norm (see Def. 2.3.1). The value that maximizes the inner maximization problem in
A.15 in ν is the q-mean (see Def. 2.3.1) by definition denoted ω. Now the aim is to prove that

max
µ≥0
{P̂(V̂ π̂ − µ)− σs,aspq(V̂ π̂ − µ)} = max

µλ,ω
P̂

∈Mλ,ω

P̂

{P̂(V̂ π̂ − µλ,ω
P̂

)− σs,aspq(V̂ π̂ − µλ,ω
P̂

)}.

First, as the norm is differentiable (which true for Lp, p ≥ 2), we have that the equality (a)
comes from the generalized Holder’s inequality for arbitrary norms Yang (1991), namely, defining
z = (V̂ π̂ − µ− ω), it satisfies

z = ∥z∥q∇∥y∥p (A.17)

The quantity ν is replaced by the generalized mean for equality in (b) while (A.93) comes from
Yang (1991). Using complementary slackness Karush (2013)we define B = {s ∈ S : µ(s) > 0}

∀s ∈ B : y∗(s) = −P̂ (s), (A.18)

which leads to the following equality by plugging the previous (A.18) in (A.93) and defining
z∗ = V̂ π̂ − µ∗ − ω:

∀s ∈ B, z∗(s) = ∥z∗∥q∇
∥∥∥P̂∥∥∥

p
(s) (A.19)

or

∀s ∈ B, V̂ π̂(s)− µ∗(s) = ω + λ∇
∥∥∥P̂∥∥∥

p
(s)=̂αλ,ω

P̂
(A.20)

by letting λ = ∥z∗∥q ∈ R+ . Note that for s ∈ B, ∇∥y∥p = ∇∥P∥p only depends on P (s) and not
on other coordinates due to definition of Lp norm.

We can remark that v−µ∗ is P dependent, but if P is known, the best µ∗ is only determined
by one 2 dimensional parameters λ = ∥v − µ∗ − ν∥q and ω ∈ R+. Moreover, when P̂ is fixed, the
scalar ω is a constant is fully determined by P , v and µ∗. This is why the quantity defined αλ

P̂
varies through 2 parameter λ and ω. Given this observation, we can rewrite the optimization
problem as :

max
µ≥0
{P̂(V̂ π̂ − µ)− σs,aspq(V̂ π̂ − µ)} = max

µλ,ω
P̂

∈Mλ,ω

P̂

{P̂(V̂ π̂ − µλ,ω
P̂

)− σs,aspq(V̂ π̂ − µλ,ω
P̂

)} (A.21)

= max
αλ,ω
P̂

∈Aλ,ω
P̂

P̂[V̂ π̂]
αλ,ω
P̂

− σs,aspq([V̂ π̂]
αλ,ω
P̂

) (A.22)

where we defined the maximization problem on µ not in RS but at the optimal in the variational
family denote Mλ,ω

P = {µλ,ωP = V̂ π̂ − αλ,ωP , λ, ω ∈ R+, P ∈ ∆(S), µ ∈ RS+, µ
λ,ω
P =

[
0, 1

1−γ

]S
}.

We can rewrite the optimization problem in terms of αP with

[V]
αλ,ω
P̂

(s) :=

α
λ,ω

P̂
, if V (s) ≥ αλ,ω

P̂

V (s), otherwise.

Note that for TV or L1, this lemma holds, but the vector αλ,ω
P̂

reduces to a positive scalar
denoted α which is equal to

∥∥∥V̂ π̂ − µ∗
∥∥∥

∞
according to Iyengar (2005). The thing which is of

capital importance is that the second part of the equation spq([V̂ π̂]α) does not depend on P̂.

173 2. An H4 bound for Lp-balls

Lemma 2.6 (Duality for the minimization problem for s rectangular case.). Considering a
projection matrix associated with a given policy π such that P πs (s′) = ∑

a π(a|s)Ps,a(s′) and
denoting P̂ π ∈ Rs the vector P̂ πs (.) or P 0,π for P 0,π

s (.), we have:

κP̂s
(V̂ π̂) =

∑
a

π̂(a|s) max
αλ,ω
P̂s,a

∈Aλ,ω
P̂s,a

((
P̂s,a[V̂ π̂]

αλ,ω
P̂s,a

− σs ∥πs∥q spq([V̂ π̂]
αλ,ω
P̂s,a

)
))

κP0,s(V ∗) =
∑
a

π(a|s) max
αλ,ωP0,s,a

∈Aλ,ωP0,s,a

((
P0,s,a[V ∗]

αλ,ωP0,s,a
− σs ∥πs∥q spq([V ∗]

αλ,ωP0,s,a
)
))

)

with [V]α(s) :=
{
α(s), if V (s) > α

V (s), otherwise.

Proof. The second equation is the same replacing the center of the ball constrain P̂ πs by P 0,π

and π̂ by π∗. By definition,

κP̂s(V̂
π̂)(s) = min

P π̂s ∈(∆s),P π̂s ∈P̂s
P π̂s V̂

π̂(s)

(a)=
∑
a

π̂(a|s)P̂s,aV̂ π̂ + min
∥σs,a∥p≤σs

∑
a

π̂(a|s) min
y,∥y∥p≤σs,a,1y=0,y≥−P̂

∑
s′

y(s′)V̂ π̂

where we use the change of variable y(s′) = Ps,a(s′) − P̂s,a(s′) in (a). Then we case use the
previous lemma for sa rectangular assumption, Lemma 2.3.3. Then,

min
∥σs,a∥p≤σs

∑
a

π̂(a|s) min
y,∥y∥p≤σs,a,1y=0,y≥−P̂s,a

∑
s′

y(s′)V̂ π̂

= min
∥σs,a∥p≤σs

∑
a

π̂(a|s) max
µ≥0

(
− P̂s,aµ− σs,aspq(V̂ π̂ − µ)

)

=
∑
a

max
µ≥0

(
π̂(a|s)(−P̂s,aµ)− max

∥σs,a∥p≤σs

∑
a

π̂(a|s)σs,aspq(V̂ π̂ − µ)
)

=
∑
a

max
µ≥0

(
π̂(a|s)(−P̂s,aµ)− σs ∥πs∥q spq(V̂ π̂ − µ)

)

we can exchange the min and the max as we get concave-convex problems in σs,a and µ ,
((v. Neumann 1928)) in the second line and using Holder’s inequality in the last line. Finally, we
obtain:

κP̂s(V̂
π̂) =

∑
a

max
µ≥0

(
π̂(a|s)(P̂s,a(V̂ π̂ − µ)− σs ∥πs∥q spq(V̂ π̂ − µ))

)

(a)=
∑
a

π̂(a|s) max
αλ,ω
P̂s,a

∈Aλ,ω
P̂s,a

((
P̂s,a[V̂ π̂]

αλ,ω
P̂s,a

− σs ∥πs∥q spq([V̂ π̂]
αλ,ω
P̂s,a

)
))

)

Chapter 9. Appendix of Chapter 2 174

where in (a) we use Lemma 2.3.3. Second claim is the same replacing V̂ π̂ by V ∗, π̂ by π∗ and P̂
by P 0. Then we derive a new decomposition of the difference the two minimum.

Lemma 2.7. For s and sa rectangular assumptions,

∣∣∣κP̂s,a
(V̂ π̂)− κP0,s,a(V̂ π̂)

∣∣∣ ≤ max
{

max
s,a

∣∣∣∣∣∣∣ max
µ∈µλ,ω

P0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V̂ π̂ − µλ,ωP 0

s,a
)

∣∣∣∣∣∣∣︸ ︷︷ ︸
=:gs,a(αλ,ωP ,V̂ π̂)

, (A.23)

max
s,a

∣∣∣∣∣∣∣ max
µλ,ω
P̂0
s,a

∈Mλ,ω

P̂0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V̂ π̂ − µλ,ω

P̂ 0
s,a

)

∣∣∣∣∣∣∣︸ ︷︷ ︸
=:gs,a(αλ,ω

P̂
,V̂ π̂)

}
(A.24)

∣∣∣κP̂s
(V ∗)− κP0,s(V ∗)

∣∣∣ ≤ max
{

max
s,a

∣∣∣∣∣∣∣ max
µ∈µλ,ω

P0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V ∗ − µλ,ωP 0

s,a
)

∣∣∣∣∣∣∣︸ ︷︷ ︸
=:gs,a(αλ,ωP ,V ∗)

, (A.25)

max
s,a

∣∣∣∣∣∣∣ max
µλ,ω
P̂0
s,a

∈Mλ,ω

P̂0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V ∗ − µλ,ω

P̂ 0
s,a

)

∣∣∣∣∣∣∣︸ ︷︷ ︸
=:gs,a(αλ,ω

P̂
,V ∗)

}
(A.26)

Proof.∣∣∣κP̂s,a
(V ∗)− κP0,s,a(V ∗)

∣∣∣ (A.27)

=
∣∣∣ max
µλ,ω
P0
s,a

∈Mλ,ω

P0
s,a

{
P 0
s,a(V ∗ − µ)− σs,a (sp((V ∗ − µ))∗)

}

− max
µλ,ω
P̂0
s,a

∈Mλ,ω

P̂0
s,a

{
P̂ 0
s,a(V ∗ − µλ,ω

P̂ 0
s,a

)− σs,a
(

sp((V ∗ − µλ,ω
P̂ 0
s,a

))∗

)} ∣∣∣
≤ max

{∣∣∣ max
µλ,ω
P0
s,a

∈Mλ,ω

P0
s,a

{
P 0
s,a(V ∗ − µλ,ωP 0

s,a
)− σs,a

(
sp((V ∗ − µλ,ωP 0

s,a
))∗
)}

− max
µλ,ω
P0
s,a

∈Mλ,ω

P0
s,a

{
P̂ 0
s,a(V ∗ − µλ,ωP 0

s,a
)− σs,a

(
sp((V ∗ − µλ,ωP 0

s,a
))∗
)} ∣∣∣; (A.28)

∣∣∣ max
µλ,ω
P̂0
s,a

∈Mλ,ω

P̂0
s,a

{
P̂ 0
s,a(V ∗ − µλ,ω

P̂ 0
s,a

)− σs,a
(

sp((V ∗ − µλ,ω
P̂ 0
s,a

))∗

)}
(A.29)

− max
µλ,ω
P̂0
s,a

∈Mλ,ω

P̂0
s,a

{
P 0
s,a(V ∗ − µλ,ω

P̂ 0
s,a

)− σs,a
(

sp((V ∗ − µλ,ω
P̂ 0
s,a

))∗

)} ∣∣∣}

≤ max
{ ∣∣∣∣∣∣∣ max

µ∈µλ,ω
P0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V ∗ − µλ,ωP 0

s,a
)

∣∣∣∣∣∣∣︸ ︷︷ ︸
=:gs,a(αλ,ωP ,V ∗)

,

∣∣∣∣∣∣∣ max
µλ,ω
P̂0
s,a

∈Mλ,ω

P̂0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V ∗ − µλ,ω

P̂ 0
s,a

)

∣∣∣∣∣∣∣︸ ︷︷ ︸
=:gs,a(αλ,ω

P̂
,V ∗)

}
(A.30)

175 2. An H4 bound for Lp-balls

where in the first equality we use Lemma 2.5. The final inequality is a consequence of the
1-Lipschitzness of the max operator. Taking the supremum over s, a gives the result. Replacing
V ∗ by V̂ π̂ gives the other inequality. The result for s rectangular are the same as

∑
a

π(a|s) max
{ ∣∣∣∣∣∣∣ max

µ∈µλ,ω
P0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V ∗ − µλ,ωP 0

s,a
)

∣∣∣∣∣∣∣︸ ︷︷ ︸
=:gs,a(αλ,ωP ,V ∗)

, (A.31)

∣∣∣∣∣∣∣ max
µλ,ω
P̂0
s,a

∈Mλ,ω

P̂0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V ∗ − µλ,ω

P̂ 0
s,a

)

∣∣∣∣∣∣∣︸ ︷︷ ︸
=:gs,a(αλ,ω

P̂
,V ∗)

}
(A.32)

≤ max
{

max
s,a

∣∣∣∣∣∣∣ max
µ∈µλ,ω

P0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V ∗ − µλ,ωP 0

s,a
)

∣∣∣∣∣∣∣︸ ︷︷ ︸
=:gs,a(αλ,ωP ,V ∗)

, (A.33)

max
s,a

∣∣∣∣∣∣∣ max
µλ,ω
P̂0
s,a

∈Mλ,ω

P̂0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V ∗ − µλ,ω

P̂ 0
s,a

)

∣∣∣∣∣∣∣︸ ︷︷ ︸
=:gs,a(αλ,ω

P̂
,V ∗)

}
(A.34)

Note that at this point, quantities for s and sa rectangular is the same as the part with
span semi norms cancelled. Now, note that the main problem is that we can not apply classical
Hoeffding’s inequality as P̂ is dependent of data as V̂ π̂. We need to decouple V̂ π̂ using s
absorbing MDPS as in Agarwal et al. (2020) but using Hoeffding arguments. First, we will use a
concentration for V ∗.

Lemma 2.8. For sa and s-rectangular, with probability 1− δ, it holds:

∣∣∣κP̂s,a
(V ∗)− κP0,s,a(V ∗)

∣∣∣ ≤ 2
√

L

2N(1− γ)2 +
2L|S|1/q∥1S∥q(p− 1)

N(1− γ)

with L = log
(
18∥1∥qSAN/δ

)
Proof. First, we can use previous Lemma 2.7∣∣∣κP̂s,a

(V ∗)− κP0,s,a(V ∗)
∣∣∣ (A.35)

≤ max
{ ∣∣∣∣∣∣∣ max

µ∈µλ,ω
P0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V ∗ − µλ,ωP 0

s,a
)

∣∣∣∣∣∣∣︸ ︷︷ ︸
=:gs,a(αλ,ωP ,V ∗)

,

∣∣∣∣∣∣∣ max
µλ,ω
P̂0
s,a

∈Mλ,ω

P̂0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V ∗ − µλ,ω

P̂ 0
s,a

)

∣∣∣∣∣∣∣︸ ︷︷ ︸
=:gs,a(αλ,ω

P̂
,V ∗)

}
(A.36)

First, we control gs,a(αλ,ωP , V ∗). To do so, we use for a fixed αλ,ωP and any vector V ∗ that is
independent with P̂ 0, the Hoeffding’s inequality, one has with probability at least 1 − δ with
sa-rectangular notations,

Chapter 9. Appendix of Chapter 2 176

gs,a(αλ,ωP , V ∗) =
∣∣∣∣(P 0

s,a − P̂ 0
s,a

)
[V ∗]

αλ,ωP

∣∣∣∣ ≤
√√√√ log

(
2
δ

)
(1− γ)22N (A.37)

Once pointwise concentration derived, we will use uniform concentration to yield this lemma.
First, union bound, is obtained noticing that gs,a(αλ,ωP , V ∗) is 1-Lipschitz w.r.t. λ and ω as
it is linear in λ and ω. Moreover, λ∗ = ∥V ∗ − µ∗ − ω∥q obeying λ∗ ≤ ∥1∥q

1−γ . The quantity
ω ∈ [0, 1/(1−γ)] as it is always smaller that V ∗ by definition. We construct then a 2-dimensional
a ε1-net Nε1 over λ∗ ∈ [0, ∥1∥q

1−γ] and ω ∈ [0, 1/(1 − γ)] whose size satisfies |Nε1 | ≤
(3∥1∥q
ε1(1−γ)

)2

(Vershynin 2018). Using union bound and (A.194), it holds with probability at least 1− δ
SA that

for all λ ∈ Nε1 ,

gs,a(αλP , V ∗) ≤

√√√√2 log
(
SA|Nε1 |

δ

)
2N(1− γ)2 . (A.38)

Using the previous equation and also (A.193), it results in using notation log
(

18SAN
δ

)
= L,

gs,a(αλP , V ∗)
(a)
≤ sup

αλP∈Nε1

∣∣∣(P 0
s,a − P̂ 0

s,a

)
[V ∗]αλP

∣∣∣+ ε1

(b)
≤

√√√√ log
(
SA|Nε1 |

δ

)
2(1− γ)2N

+ ε1 (A.39)

(c)
≤

√√√√ log
(2SA|Nε1 |

δ

)
2N(1− γ)2 +

log
(2SA|Nε1 |

δ

)
3N(1− γ)

(d)
≤
√

L

2N(1− γ)2 + L

3N(1− γ)

≤ 2
√

L

2(1− γ)2N
(A.40)

where (a) is because the optimal α∗ falls into the ε1-ball centered around some point inside Nε1

and gs,a(αλP , V ∗) is 1-Lipschitz with regard to λ and ω, (b) is due to Eq. (A.38), (c) arises from

taking ε1 =
log
(

2SA|Nε1 |
δ

)
3N(1−γ) , (d) is verified by |Nε1 | ≤

(3∥1∥q
ε1(1−γ)

)2
≤ 9N∥1∥q and that variance of a

ceiling function of a vector is smaller than the variance of non-ceiling vector.

For Lp with p ≥ 2, contrary to the previous term, the second term gs,a(αλP̂ , V) is more difficult
as we need concentration, but there is an extra dependency in the data thought the parameter
αλ
P̂

. Note that this term does not exist as α is a constant for TV . We need to decouple this
problem using absorbing MDPs. Then it leads to

177 2. An H4 bound for Lp-balls

gs,a(αλ,ωP̂ , V ∗) (A.41)

= | max
µλ,ω
P̂0
s,a

∈Mλ,ω

P̂0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V ∗ − µλ,ω

P̂ 0
s,a

)| (A.42)

= | max
µ∈Mλ,ω

P̂0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V ∗ − µλ,ωP 0

s,a
) +

(
P 0
s,a − P̂ 0

s,a

)
(µλ,ωP 0

s,a
− µλ,ω

P̂ 0
s,a

)| (A.43)

≤ | max
µλ,ω
P0
s,a

∈Mλ,ω

P0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V ∗ − µλ,ωP 0

s,a
) (A.44)

+ max
µλ,ω
P̂0
s,a

∈Mλ,ω

P̂0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(µλ,ωP 0

s,a
− µλ,ω

P̂ 0
s,a

)| (A.45)

In the first equality, we add the term µλ,ωP 0
s,a

to retrieve the previous concentration problem, fixing
P 0
s,a and optimizing λ, ω. In the second, we extend the max using triangular inequality. The

first term in the last equality is exactly the term we have controlled previously, while the second
one needs more attention. We decouple the dependency of the data, and then controlling the
difference between the µ. Then using the characterization of the optimal µ from equation (A.96):(

P 0
s,a − P̂ 0

s,a

)
(µλ,ωP 0

s,a
− µλ,ω

P̂ 0
s,a

) =
∑
s′

λ
(
P 0
s,a(s′)− P̂ 0

s,a(s′)
)

(∇
∥∥∥P 0

s,a

∥∥∥
p
(s′)−∇

∥∥∥P̂ 0
s,a(s′)

∥∥∥
p
)

As the norm is C2 for p ≥ 2, using Mean value theorem, we know that

∥∥∥∥(∇∥∥∥P 0
s,a

∥∥∥
p
−∇

∥∥∥P̂ 0
s,a

∥∥∥
p
)
∥∥∥∥

2
≤ sup

x∈∆(S)

∥∥∥∇2∥x∥p
∥∥∥

2

∥∥∥(P 0
s,a − P̂ 0

s,a)
∥∥∥

2
.

For Lp = ∥x∥p norms, p ≥ 2, we have simple taking derivative twice:

∇2∥x∥p = p− 1
Lp

(
Ap−2 − gpgTp

)
with

A = Diag
(

abs(x)
Lp

)
gp = Ap−2

(
x

Lp

)
.

and Lp the norm, where Diag is the diagonal matrix. However, as x ≤ Lp, A ≤ I, we get

H ≤ p− 1
∥x∥p

≤ (p− 1)|S|1/q (A.46)

where the 1/Lp is minimized for the uniform distribution. Then using Cauchy-Swartz inequality,
it holds (

P 0
s,a − P̂ 0

s,a

)
(µλ,ωP 0

s,a
− µλ,ω

P̂ 0
s,a

) ≤ (p− 1)λ|S|1/q
∥∥∥(P 0

s,a − P̂ 0
s,a

)∥∥∥2

2
. (A.47)

Then the question is how to bound the quantity
∥∥∥(P 0

s,a − P̂ 0
s,a

)∥∥∥2

2
. To do so, we will use Mac

Diarmid inequality.

Chapter 9. Appendix of Chapter 2 178

Definition 2.1. Bounded difference property
A function f : X1× . . .Xn → R satisfies the bounded difference property if for each i = 1, . . . , n

the change of coordinate from si to s′
i may change the value of the function at most on ci

∀i ∈ [n] : sup
x′
i∈Xi

∣∣f (x1, . . . , xi, . . . , xn)− f
(
x1, . . . , x

′
i, . . . , xn

)∣∣ ≤ ci
In our case, we consider f (X1, . . . , Xn) = ∥∑n

k=1Xk∥2. Then we can notice that by triangle
inequality for any x1, . . . , xn and x′

k with Xi,s′ = P i0,s,a(s′)− P 0
s,a(s′) (index i holds for index of

sample generated from the generative model) that

f (x1, . . . , xk, . . . , xn) = ∥x1 + . . .+ xn∥2 ≤
∥∥x1 + . . .+ xn − xk + x′

k

∥∥
2 +

∥∥xk − x′
k

∥∥
2

≤ f
(
x1, . . . , x

′
k, . . . , xn

)
+ 2

Theorem 2.9. (McDiarmid’s inequality). McDiarmid et al. (1989) Let f : X1× . . .Xn → R be a
function satisfying the bounded difference property with bounds c1, . . . , cn. Consider independent
random variables X1, . . . , Xn, Xi ∈ Xi for all i. Then for any t > 0

P [f (X1, . . . , Xn)− E [f (X1, . . . , Xn)] ≥ t] ≤ exp
(
− 2t2∑n

i=1 c
2
i

)

Using McDiarmid’s inequality and union bound, we can bound the term as here(∥∥∥(P 0
s,a − P̂ 0

s,a

)∥∥∥
2
− E[

∥∥∥(P 0
s,a − P̂ 0

s,a

)∥∥∥
2
]
)2
≤ 2N log(|S||A|/δ))

N2

with probability 1− δ/(|S||A|). Moreover, the additional term can be bounded as follows:

E[
∥∥∥(P 0

s,a − P̂ 0
s,a

)∥∥∥2

2
] = E[

∑
s′

(P 0
s,a(s′)− P 0

s,a(s′))2 = E[
∑
s′

(1
N

N∑
i

Xi,s′)2]

with Xi,s′ = P i0,s,a(s′)− P 0
s,a(s′) is one sample sampled from the generative model. Then

E[
∥∥∥(P 0

s,a − P̂ 0
s,a

)∥∥∥2

2
] = 1

N2
∑
s′

Var(
N∑
i

Xi,s)
a= 1
N2

N∑
i

∑
s′

Var(Xi,s)

= 1
N2

N∑
i

E(
∑
s′

X2
i,s) ≤

4
N

where (a) the last equality comes from the independence of the random variables and where the
last inequality comes from the fact the maximum of two elements in the simplex is bounded by 2.
Finally, regrouping all the terms, we obtain with probability 1− δ/(|S||A|):

∥∥∥(P 0
s,a − P̂ 0

s,a

)∥∥∥2

2
=
(∥∥∥(P 0

s,a − P̂ 0
s,a

)∥∥∥
2
− E[

∥∥∥(P 0
s,a − P̂ 0

s,a

)∥∥∥
2
]
)2

+ E[
∥∥∥(P 0

s,a − P̂ 0
s,a

)∥∥∥2

2
]

+ 2E
[∥∥∥(P 0

s,a − P̂ 0
s,a

)∥∥∥
2

]2(∥∥∥(P 0
s,a − P̂ 0

s,a

)∥∥∥
2
− E[

∥∥∥(P 0
s,a − P̂ 0

s,a

)∥∥∥
2
]
)

≤ 2N log(|S||A|/(δ)))
N2 + 4

N
+

√
4
N

√
2N log(|S||A|/(δ)))

N

≤ 10 log(|S||A|/(δ))
N

= L′

N

179 2. An H4 bound for Lp-balls

with L′ = 10 log(|S||A|/(δ)). Finally, plugging the previous equation in (A.204):

max
µ∈µλ

P̂0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(µλP 0

s,a
− µ)| ≤ max

λ

∥∥∥(P 0
s,a − P̂ 0

s,a

)∥∥∥2

2
S1/q(p− 1)λ.

This term can be easily controlled by taking the supremum over λ which is a 1 dimensional
parameter. Then we can bound λ ∈ [0, H∥1S∥q]. Indeed,

λ∗ = ∥V ∗ − µ∗ − ω∥q ≤ ∥V
∗∥q ≤ H∥1S∥q.

Finally, we obtain:

max
λ

∥∥∥(P 0
s,a − P̂ 0

s,a

)∥∥∥2

2
S1/qλ ≤

L′|S|1/q∥1S∥q(p− 1)
N(1− γ) .

Regrouping all terms:

gs,a(αλP̂ , V
∗) ≤ | max

µλ
P0
s,a

∈Mλ

P0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V ∗ − µλP 0

s,a
)

+ max
µλ
P̂0
s,a

∈Mλ

P̂0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(µλP 0

s,a
− µλ

P̂ 0
s,a

)| (A.48)

≤ 2
√

L

2N(1− γ)2 +
L′|S|1/q∥1S∥q(p− 1)

N(1− γ) ≤ 2
√

L

2N(1− γ)2 +
2L|S|1/q∥1S∥q(p− 1)

N(1− γ)
(A.49)
(A.50)

For the specific case of TV which is not C2 smooth, this lemma still holds as in (A.193), we
only need to control one term without the dependency on data in the supremum as αλP reduces
to a scalar α which does not depend on P . Then extra decomposition using smoothness of the
norm is not needed, as the only remaining term in the max in (A.193) is the left hand side term.

Lemma 2.10 (s-absorbing MDPs for Hoeffding’s concentration Inequalities).

As in Agarwal paper Agarwal et al. (2020), we define for a state s and a scalar u, the
MDP called Ms,u such that: Ms,u is identical to M except that state s is absorbing in Ms,u, i.e.
PMs,u(s | s, a) = 1 for all a, and the reward at state s in Ms,u is (1− γ)u. The remainder of the
transition model and reward function are identical to those in M . In the following, we will use
V π
s,u to denote the value function V π

Ms,u
and correspondingly for Q and reward and transition

functions to avoid notational clutter. Then, we have that for all policies π :

V π
s,u(s) = u

because s is absorbing with reward (1− γ)u. For some state s, we will only consider the MDP
Ms,u for u in a finite set Us with

Us ⊂ [V ⋆(s)−∆δ,NV
⋆(s) + ∆δ,N] .

with ∆δ,N := γ
(1−γ)2

(
2
√

L
2N + 2L|S|1/q∥1S∥q(p−1)

N

)
The set Us consists of evenly spaced elements

in this interval, where we set the size of |Us| appropriately later on. As before, we let M̂s,u

Chapter 9. Appendix of Chapter 2 180

denote the MDP that uses the empirical model P̂ instead of P , at all non-absorbing states and
abbreviate the value functions in M̂s,u as V̂ π

s,u. Then we have for a fix a state s, action a, a finite
set Us, and δ ≥ 0, that for all u ∈ Us: with probability greater than 1− δ, it holds :

|(P̂s,a − P 0
s,a)[V π̂

u]
αλ,ωP
| ≤ (A.51)

1
(1− γ)

(
2

√√√√√ log
(

18SAN |Us|∥1∥q
δ

)
2N +

2 log
(

18SAN |Us|∥1∥q
δ

)
|S|1/q∥1S∥q(p− 1)

N

)
(A.52)

This is exactly 2.8 in equation (A.193) to the finite set Us as now V π̂
u and P̂s,a are now independent.

Lemma 2.11 (Agarwal et al. (2020), Lemma 7). Let u∗ = V ⋆
M (s) and uπ = V π

M (s). We have

V ⋆
M = V ⋆

s,u⋆ , and for all policies π, V π
M = V π

Mπ
s,uπ

Proof can be found in Agarwal et al. (2020), Lemma 7.

Lemma 2.12. For any u, u′, s and policy π:

∥∥∥Qπs,u −Qπs,u′

∥∥∥
∞
≤
∣∣u− u′∣∣

Proof. To obtain the result in our robust MDP setting, we need a similar stability property like
in Lemma 8 of Agarwal et al. (2020), but for the robust value functions. It turns out that this a
direct consequence of the property for classical MDP. Agarwal in Agarwal et al. (2020) show
equation A.53 for classical MPDs, then we have for RMDPs:

|QπMs,u
(s, a)−QπMs,u′ (s, a)| ≤ 1

1− γ |u− u
′| (A.53)

⇒| inf
M
QπMs,u

(s, a)− inf
M
QπMs,u

(s, a)| ≤ 1
1− γ |u− u

′| (A.54)

⇒| sup
π

inf
M
QπMs,u

(s, a)− sup
π

inf
M
QπMs,u

(s, a)| ≤ 1
1− γ |u− u

′|. (A.55)

which concludes the proof for RMDPs.

Lemma 2.13 (Hoeffding’s Concentration for dependent variables). Removing s, a notations for
kernels,

∣∣∣∣(P 0 − P̂
)
· [V̂ ⋆]

αλ,ωP

∣∣∣∣ ≤ 1
(1− γ)

(
2

√√√√√ log
(

18SAN |Us|∥1∥q
δ

)
2N +

2 log
(

18SAN |Us|∥1∥q
δ

)
|S|1/q∥1S∥q(p− 1)

N

)
(A.56)

+ 2 min
u∈Us

∣∣∣V̂ ⋆(s)− u
∣∣∣ (A.57)

181 2. An H4 bound for Lp-balls

Proof.∣∣∣∣(P 0 − P̂
)
· [V̂ ⋆]

αλ,ωP

∣∣∣∣ (A.58)

=
∣∣∣∣(P 0 − P̂

)
·
(

[V̂ ⋆]
αλ,ωP
− [V ⋆

s,u]
αλ,ωP

+ [V ⋆
s,u]

αλ,ωP

)∣∣∣∣ (A.59)

≤
∣∣∣∣(P 0 − P̂

)
·
(

[V̂ ⋆]
αλ,ωP
− [V ⋆

s,u]
αλ,ωP

)∣∣∣∣+ ∣∣∣∣(P 0 − P̂
)
·
(

[V ⋆
s,u]

αλ,ωP

)∣∣∣∣ (A.60)

(a)
≤ 1

(1− γ)
(
2

√√√√√ log
(

18SAN |Us|∥1∥q
δ

)
2N +

2 log
(

18SAN |Us|∥1∥q
δ

)
|S|1/q∥1S∥q(p− 1)

N

)
(A.61)

+ 2
∥∥∥V̂ ⋆ − V ⋆

s,u

∥∥∥
∞

(A.62)

(b)
≤ 1

(1− γ)
(
2

√√√√√ log
(

18SAN |Us|∥1∥q
δ

)
2N +

2 log
(

18SAN |Us|∥1∥q
δ

)
|S|1/q∥1S∥q(p− 1)

N

)
(A.63)

+ 2
∣∣∣V̂ ⋆(s)− u

∣∣∣ (A.64)

(A.65)

where (a) is A.51 or Hoeffding’s inequality for s-absorbing MDPs. By Lemmas 2.11 and 2.12,∥∥∥∥[V̂ ⋆]
αλ,ωP
− [V ⋆

s,u]
αλ,ωP

∥∥∥∥
∞
≤
∥∥∥∥[V̂ ⋆ − V ⋆

s,u]
αλ,ωP

∥∥∥∥
∞
≤
∥∥∥V̂ ⋆ − V ⋆

s,u

∥∥∥
∞

=
∥∥∥∥V̂ ⋆

s,V̂ ⋆(s) − V
⋆
s,u

∥∥∥∥
∞
≤
∣∣∣V̂ ⋆(s)− u

∣∣∣ .
which is point (b). The last min operator in the result comes from the fact that the previous

equation holds for all u ∈ Us, we take the best possible choice, which completes the proof of the
first claim.

Lemma 2.14 (Crude bound for Robust MDPs). This lemma is needed for next Lemma 2.15 but
the proof differs from the classical MDP setting. For s and sa rectangular assumptions,∥∥∥Q∗ − Q̂π∗

∥∥∥
∞
≤ ∆δ,N and

∥∥∥Q∗ − Q̂∗
∥∥∥

∞
≤ ∆δ,N (A.66)

with ∆δ,N = γ

(1− γ)2

(
2
√

L

2N +
2L|S|1/q∥1S∥q(p− 1)

N

)
(A.67)

Proof. For the first claim :∥∥∥Qπ − Q̂π∥∥∥
∞

= max
s,a

∣∣∣γ (κP0,s,a (V π)− κP̂s,a (V π)
)

+ γ
(
κP̂s,a (V π)− κP̂s,a

(
V̂ π
))∣∣∣

(b)
≤ max

s,a

∣∣∣γ (κP0,s,a (V π)− κP̂s,a (V π)
)∣∣∣+ γ

∥∥∥V π − V̂ π
∥∥∥

∞
(b)
≤ γmax

s,a

∣∣∣κP̂s,a
(V π)− κP0,s,a(V π)

∣∣∣+ γ
∥∥∥Qπ − Q̂π∥∥∥

∞
.

where we use contraction of κ, lemma 2.3 in (a) and
∥∥∥Qπ − Q̂π∥∥∥

∞
≤
∥∥∥V π − V̂ π

∥∥∥
∞

in (c) for
any π. Solving we get :∥∥∥Qπ − Q̂π∥∥∥

∞
≤ γ

1− γ max
s,a

∣∣∣κP̂s,a
(V π)− κP0,s,a(V π)

∣∣∣

Chapter 9. Appendix of Chapter 2 182

Then using Lemma 2.7, we obtain :

∥∥∥Qπ − Q̂π∥∥∥
∞
≤ γ

1− γ max
s,a

∣∣∣κP̂s,a
(V π)− κP0,s,a(V π)

∣∣∣
Taking π = π∗, V π∗ is independent of the data and we can use Lemma 2.8. Finally, we have

∥∥∥Q∗ − Q̂π∗
∥∥∥

∞
≤ γ

1− γ
∥∥∥(P̂ − P 0)V π

∥∥∥
∞
≤ γ

1− γ
(
2
√

L

2N(1− γ)2 +
2L|S|1/q∥1S∥q(p− 1)

N(1− γ)
)

For the second point, using s or sa rectangular assumptions,

∥∥∥Q∗ − Q̂∗
∥∥∥

∞
≤
∥∥∥T π∗

Usap Q
∗ − T̂ π̂∗

Usap Q
∗ + T̂ π̂∗

Usap Q
∗ − T̂ π̂∗

Usap Q̂
∗
∥∥∥

∞

≤
∥∥∥T π∗

Usap Q
∗ − T̂ π̂∗

Usap Q
∗
∥∥∥

∞
+
∥∥∥T̂ π̂∗

Usap Q
∗ − T̂ π̂∗

Usap Q̂
∗
∥∥∥

∞
(a)
≤
∥∥∥T π∗

Usap Q
∗ − T̂ π̂∗

Usap Q
∗
∥∥∥

∞
+ γ

∥∥∥Q∗ − Q̂∗
∥∥∥

∞
(b)
≤
∥∥∥κP̂s,a(V

∗)− κP0,s,a(V ∗)
∥∥∥

∞
+ γ

∥∥∥Q∗ − Q̂∗
∥∥∥

∞

Then using Lemma 2.7, and solving we get :∥∥∥Q∗ − Q̂∗
∥∥∥

∞

γ

1− γ
∥∥∥κP̂s,a(V

∗)− κP0,s,a(V ∗)
∥∥∥

∞

Finally using Lemma 2.8, we obtain

∥∥∥Q∗ − Q̂∗
∥∥∥

∞
≤ γ

(1− γ)2

(
2
√

L

2N +
2L|S|1/q∥1S∥q(p− 1)

N

)
which concludes the proof.

Lemma 2.15 (Similar to Agarwal, Agarwal et al. (2020) lemma 9 but for RMPDs). With
probability 1− δ, we have:

min
u∈Us

∣∣∣V̂ ⋆(s)− u
∣∣∣ ≤ 4γ

(
2
√

L

2N +
2L|S|1/q∥1S∥q(p− 1)

N

)
Proof. The proof can be found in Agarwal et al. (2020) and is similar for RMDs than for
classical MPDs and consists in choosing Us to be the evenly spaced elements in the interval[
V ⋆(s)−∆δ/2,NV

⋆(s) + ∆δ/2,N
]
, then finally the size of Us is chosen to be |Us| = 1

(1−γ)2 . Using
lemma , with probability greater than 1− δ/2, we have V̂ ⋆(s) ∈

[
V ⋆(s)−∆δ/2,NV

⋆(s) + ∆δ/2,N
]

for all s according to Lemma 2.14. This implies using that that V̂ π∗will land in one of |Us|−1evenly
sized sub-intervals of length 2∆δ/2,N :

min
u∈Us

∣∣∣V̂ ⋆(s)− u
∣∣∣ ≤ 2∆δ/2,N
|Us| − 1 = 2

|Us| − 1
γ

(1− γ)2

(
2
√

L

2N +
2L|S|1/q∥1S∥q

N

)
≤ 4γ

(
2
√

L

2N +
2L|S|1/q∥1S∥q(p− 1)

N

)

183 2. An H4 bound for Lp-balls

Lemma 2.16 (Relation between concentration of robust and non-robust MDPs). With probability
1− δ, we get:

max
s,a

∣∣∣κP̂s,a
(V π̂)− κP0,s,a(V π̂)

∣∣∣ ≤ 10
(1− γ)

(√ L′′

2N +
L′′|S|1/q∥1S∥q(p− 1)

N

)
+ 2ϵopt.

max
s,a

∣∣∣κP̂s,a
(V ∗)− κP0,s,a(V ∗)

∣∣∣ ≤ 10
(1− γ)

(√ L′′

2N +
L′′|S|1/q∥1S∥q(p− 1)

N

)
.

with L′′ = log
(

32SAN∥1∥q
δ(1−γ)

)
Proof. Using Lemma 2.7, we directly have the first inequality equality part of the first statement:

max
s,a

∣∣∣κP̂s,a
(V̂ π̂)− κP0,s,a(V̂ π̂)

∣∣∣
is bounded by either by

max
(s,a)

max
αλ,ωP ∈Aλ,ωP

∣∣∣∣(P 0 − P̂
)

[V̂ π̂]
αλ,ωP

∣∣∣∣
or

max
(s,a)

max
αλ,ω
P̂

∈Aλ,ω
P̂

∣∣∣∣(P 0 − P̂
)

[V̂ π̂]
αλ,ω
P̂

∣∣∣∣ .
We know that in both cases that

max
(s,a)

∣∣∣∣(P 0 − P̂
)

[V̂ π̂]
αλ,ωP

∣∣∣∣ ≤ max
(s,a)
|(P 0 − P̂)([V̂ π̂]

αλ,ωP
− [V̂ ∗]

αλ,ωP
)|+ max

(s,a)
|(P 0 − P̂)[V̂ ∗]

αλ,ωP
|,

using |[V̂ π̂]
αλ,ωP
| − |[V̂ ∗]

αλ,ωP
| ≤ |([V̂ π̂ − V̂ ∗]

αλ,ωP
)| ≤ |(V̂ π̂ − V̂ ∗)| and combining Lemma 2.13

and 2.15, for |Us| = 1
(1−γ)2 , with probability 1− δ, we have :

|
(
P 0 − P̂

)
[V̂ π̂]

αλ,ωP
| ≤4γ

(
2
√
L′′

2N +
2LS1/q∥1S∥q

N

)
+ 1

(1− γ)
(
2
√
L′′

2N +
2L′′S1/q∥1S∥q

N

)
+ 2ϵopt.

≤ 10
(1− γ)

(√ L′′

2N +
L′′|S|1/q∥1S∥q(p− 1)

N

)
+ 2ϵopt.

The proof is exactly the same by replacing π̂ by π∗ but without the 2ϵopt , which gives the
second stated result. Again, this proof is written for the sa-rectangular assumption, it is also true
for the s-rectangular case with slightly different notations, replacing D = P0,s,a by D = P0,s.

These two inequalities are the core of our proof, as the closed form solution of the min
problem in the robust setting only depends on α, σ and the current value function.

Theorem 2.17. Suppose δ > 0, ϵ > 0 and σ > 0, let π̂ be any ϵopt -optimal policy for M̂ , i.e.∥∥∥Q̂π̂ − Q̂⋆∥∥∥
∞
≤ ϵopt . If

N ≥ Cγ2L′′

(1− γ)4ϵ2
,

Chapter 9. Appendix of Chapter 2 184

we get ∥∥∥Q∗ −Qπ̂
∥∥∥

∞
≤ ϵ+ 3γϵopt

1− γ

with probability at least 1− δ, where C is an absolute constant. Finally, for Ntotal = N |S||A|
and H = 1/(1− γ), we get an overall complexity of

Ntotal = Õ
(
H4SA

ϵ2

)
.

Proof.

∥∥∥Q∗ −Qπ̂
∥∥∥

∞

(a)
≤
∥∥∥Q∗ − Q̂∗

∥∥∥
∞

+
∥∥∥Q̂∗ − Q̂π̂

∥∥∥
∞

+
∥∥∥Q̂π̂ −Qπ̂∥∥∥

∞
(b)
≤ ϵopt + γ

(1− γ)

(
max
s,a

∣∣∣κP̂s,a (V ∗)− κPs,a (V ∗)
∣∣∣+ max

s,a

∣∣∣κPs,a

(
V π̂
)
− κPs,a

(
V π̂
)∣∣∣)

(c)
≤ 20γ

(1− γ)2

(√ L′′

2N +
L′′|S|1/q∥1S∥q(p− 1)

N

)
+ ϵopt + 2γϵopt

1− γ

≤ 20γ
(1− γ)2

(√ L′′

2N +
L′′|S|1/q∥1S∥q(p− 1)

N

)
+ ϵopt + 2γϵopt

1− γ
(d)
≤ ϵ+ 3γϵopt

1− γ

Inequality (a) is due to Lemma 2.1. Inequality (b) comes from Lemma 2.4. Finally, inequality (c)
comes from Lemma 2.16 and inequality (d) from the form of N in the theorem. For N ≥ H4SA,
the second term proportional to 1/N is very small compared to the asymptotic term in 1/

√
N

for small ϵ. Note that S1/q∥1S∥q = |S| for L2 norm for example. This proof holds for both s-
and sa-rectangular assumptions.

3 Towards minimax optimal bounds

We start from the same decomposition as the proof of Theorem 2.4.1 proved in Lemma 2.1:∥∥∥Q∗ −Qπ̂
∥∥∥

∞
≤
∥∥∥Q∗ − Q̂π∗

∥∥∥
∞

+
∥∥∥Q̂π∗ − Q̂π̂

∥∥∥
∞

+
∥∥∥Q̂π̂ −Qπ̂∥∥∥

∞
.

However, we need tighter concentration arguments for this proof.
In the following, we will frequently use the fact that, for any policy π, written below for the

s-rectangular case (a similar expression can be obtained for the sa-rectangular case, adapting
the regularized reward),

Recall, the fix point equation for Qπ can be written as :

Qπ =
(
I − γP 0,π

)−1
(r0 − αs

(
πs/ ∥πs∥q

)q−1
+ γ inf

Pπ∈Ps
P πV π) (A.68)

It will be applied notably to π̂ and π∗ (recall that Q∗ = Qπ
∗), in the RMDP but also in the

empirical one.

185 3. Towards minimax optimal bounds

Lemma 3.1. For s-rectangular we have(
I − γP 0,π

)−1
rs
Q̂π
−
(
I − γP̂ π

)−1
rs
Q̂π

(a)=
(
I − γP 0,π

)−1 ((
I − γP̂ π

)
−
(
I − γP 0,π

))
Q̂πs

= γ
(
I − γP 0,π

)−1 (
P 0,π − P̂ π

)
Q̂πs

= γ
(
I − γP 0,π

)−1
(P 0 − P̂)V̂ π

s

and for optimal policy

(
I − γP 0,π∗)−1

rs
Q̂π∗
s
−
(
I − γP̂ π∗)−1

rs
Q̂π∗
s

= γ
(
I − γP 0,π∗)−1

(P 0 − P̂)V̂ π∗
s (A.69)(

I − γP 0,π̂
)−1

rs
Q̂π̂s
−
(
I − γP̂ π̂

)−1
rs
Q̂π̂s

= γ
(
I − γP 0,π̂

)−1
(P 0 − P̂)V̂ π̂

s (A.70)

The solution is a bit different as rs
Q̂π

is the regularized form of the Lp optimization problem

with simplex constraints which correspond to rs
Q̂π

= r0 −
(

π∗
s

∥π∗
s∥q

)q−1
αs + γ infPπ∈Ps P

πV̂ π or for

sa case : r(s,a)
Q̂π

= r0 − αsa + γ infPπ∈Ps P
πV̂ π

Indeed, even without close form, we can write the problem with an expectation over the
nominal and the infimum problem.

Lemma 3.2 (Upper bound on Q∗ − Q̂π∗ and on Qπ̂ − Q̂π̂, all Q values are now with robust
under simplex constraints.).

∥∥∥Q∗ − Q̂π∗
∥∥∥

∞
≤γ

∥∥∥(I − γP 0,π∗)−1(P 0 − P̂)V̂ π∗
∥∥∥

∞
+ 2γσS1/q

1− γ
∥∥∥Q∗ − Q̂π∗

∥∥∥
∞∥∥∥Qπ̂ − Q̂π̂∥∥∥

∞
≤γ

∥∥∥∥(I − γP 0,π̂
)−1

(P 0 − P̂)V̂ π̂

∥∥∥∥
∞

+ 2γσS1/q

1− γ
∥∥∥Qπ̂ − Q̂π̂∥∥∥

∞

Proof.

Q∗ − Q̂π∗

=
(
I − γP 0,π∗)−1

(r0 −
(π∗

s

∥π∗
s∥q

)q−1
αs + inf

Pπ∈Ps
P πV ∗)

−
(
I − γP̂ π∗)−1

(r0 −
(π∗

s

∥π∗
s∥q

)q−1
αs + inf

Pπ∈Ps
P πV̂ π∗)

=
(
I − γP 0,π∗)−1

(r0 −
(π∗

s

∥π∗
s∥q

)q−1
αs + γ inf

Pπ∈Ps
P πV ∗)

−
(
I − γP 0,π∗)−1

(r0 −
(π∗

s

∥π∗
s∥q

)q−1
αs + γ inf

Pπ∈Ps
P πV̂ π∗)

+
(
I − γP 0,π∗)−1

(r0 −
(π∗

s

∥π∗
s∥q

)q−1
αs + γ inf

Pπ∈Ps
P πV̂ π∗)

−
(
I − γP̂ π∗)−1

(r0 −
(π∗

s

∥π∗
s∥q

)q−1
αs + γ inf

Pπ∈Ps
P πV̂ π∗)

(a)=γ
(
I − γP 0,π∗)−1

(P 0 − P̂)V̂ π∗ +
(
I − γP 0,π∗)−1

γ

(
inf

Pπ∈Ps
P πV ∗ − inf

Pπ∈Ps
P πV̂ π∗

)
where in (a) we use previous Lemma 3.1.

Chapter 9. Appendix of Chapter 2 186

Hence, taking the supremum norm ∥.∥∞,∥∥∥Q∗ − Q̂π∗
∥∥∥

∞
=∥∥∥∥γ (I − γP 0,π∗)−1

(P 0 − P̂)V̂ π∗ +
(
I − γP 0,π∗)−1

γ

(
inf

Pπ∈Ps
P πV ∗ − inf

Pπ∈Ps
P πV̂ π∗

)∥∥∥∥
∞

(b)
≤
∥∥∥∥γ (I − γP 0,π∗)−1

(P 0 − P̂)V̂ π∗
∥∥∥∥

∞
+
∥∥∥∥(I − γP 0,π∗)−1

γ

(
inf

Pπ∈Ps
P πV ∗ − inf

Pπ∈Ps
P πV̂ π∗

)∥∥∥∥
∞

(c)
≤
∥∥∥∥γ (I − γP 0,π∗)−1

(P 0 − P̂)V̂ π∗
∥∥∥∥

∞
+ γ

1− γ | inf
Pπ∈Ps

P πV ∗ − inf
Pπ∈Ps

P πV̂ π∗ |

(d)
≤
∥∥∥∥γ (I − γP 0,π∗)−1

(P 0 − P̂)V̂ π∗
∥∥∥∥

∞
+ γ

1− γ sup
Pπ∈Ps

P π | V ∗ − V̂ π∗ |

(e)
≤
∥∥∥∥γ (I − γP 0,π∗)−1

(P 0 − P̂)V̂ π∗
∥∥∥∥

∞
+ γ

1− γ sup
P :∥P∥p≤σs,

∑
s
P (s)=0

P | V ∗ − V̂ π∗ |

(f)
≤
∥∥∥∥γ (I − γP 0,π∗)−1

(P 0 − P̂)V̂ π∗
∥∥∥∥

∞
− γ

1− γ inf
P :∥P∥p≤σs,

∑
s
P (s)=0

−P | V ∗ − V̂ π∗ |

(g)
≤
∥∥∥∥γ (I − γP 0,π∗)−1

(P 0 − P̂)V̂ π∗
∥∥∥∥

∞
+ γσS1/q

1− γ spq,π∗(Q∗ − Q̂π∗)

(h)
≤
∥∥∥∥γ (I − γP 0,π∗)−1

(P 0 − P̂)V̂ π∗
∥∥∥∥

∞
+ 2γσS1/q

1− γ
∥∥∥Q∗ − Q̂π∗

∥∥∥
∞

where (b) is the triangular inequality, (c) Eq. (A.3), (d) is the triangular inequality for
seminorms, (d) is |infA f − infA g| ≤ supA |f − g|., (e) is a relaxation (f) is the relation between
sup and inf, (g) is lemma 1 of Kumar et al. (2022)), (h) is inequality for seminorms and norms
(A.4).

For brevity in the remaining analysis, let us define the shorthand:

L = log(8|S||A|/((1− γ)δ)).

Recall, slightly abusing the notation, for V ∈ RS , we define the vector VarP (V) ∈ RS×A as
VarP (V) = P (V)2 − (PV)2.

Lemma 3.3 (Agarwal et al. (2020), Lemma 9). With probability greater than 1− δ,

∣∣∣(P 0 − P̂)V̂ ⋆
∣∣∣ ≤

√
8L
N

√
VarP 0

(
V̂ ⋆
)

+ ∆′
δ,N1

∣∣∣(P 0 − P̂)V̂ π⋆
∣∣∣ ≤

√
8L
N

√
VarP 0

(
V̂ π⋆

)
+ ∆′

δ,N1

where ∆′
δ,N =

√
cL

N
+ cL

(1− γ)N and c is a universal constant smaller than 16.

Proof. The proof of Agarwal et al. (2020) holds for classical MDP but can be adapted to the
robust setting using all lemmas proved for the bound in H4 previously. Lemma 2.11,2.12
,2.14,2.15,A.53 are needed but the main difference is that we are using Berstein’s inequality
and not Hoeffding’s inequality. The idea is first, as in the previous proof, to apply Berstein’s
inequality to independent variables using s absorbing MDPs then using Lemma 2.15.

187 3. Towards minimax optimal bounds

Proof. Similar to Agarwal et al. (2020), we first show that

∣∣∣(P 0 − P̂
)
· V̂ ⋆

∣∣∣ ≤
√

2 log (4 |Us| /δ)
N

√
VarP 0

(
V̂ ⋆
)

+ min
u∈Us

∣∣∣V̂ ⋆(s)− u
∣∣∣
1 +

√
2 log (4 |Us| /δ)

N

+ 2 log (4 |Us| /δ)
(1− γ)3N

∣∣∣(P 0 − P̂
)
· V̂ π⋆

∣∣∣ ≤
√

2 log (4 |Us| /δ)
N

√
VarP 0

(
V̂ π⋆

)
+ min
u∈Us

∣∣∣V̂ π⋆(s)− u
∣∣∣
1 +

√
2 log (4 |Us| /δ)

N

+ 2 log (4 |Us| /δ)
(1− γ)3N

First, with probability greater than 1− δ, we have that for all u ∈ Us.∣∣∣(P 0 − P̂
)
· V̂ ⋆

∣∣∣ =
∣∣∣(P 0 − P̂

)
·
(
V̂ ⋆ − V ⋆

s,u + V ⋆
s,u

)∣∣∣
(a)
≤
∣∣∣(P 0 − P̂

)
·
(
V̂ ⋆ − V ⋆

s,u

)∣∣∣+ ∣∣∣(P 0 − P̂
)
·
(
V ⋆
s,u

)∣∣∣
(b)
≤
∥∥∥V̂ ⋆ − V ⋆

s,u

∥∥∥
∞

+

√
2 log (4 |Us| /δ)

N

√
VarP 0

(
V ⋆
s,u

)
+ 2 log (4 |Us| /δ)

(1− γ)3N

(c)=
∥∥∥V̂ ⋆ − V ⋆

s,u

∥∥∥
∞

+

√
2 log (4 |Us| /δ)

N

√
VarP 0

(
V̂ ⋆ − V ⋆

s,u − V̂ ⋆
)

+ 2 log (4 |Us| /δ)
(1− γ)3N

(d)
≤
∥∥∥∥V̂ ⋆ − V ⋆

M̂s,u

∥∥∥∥
∞

1 +

√
2 log (4 |Us| /δ)

N

+

√
2 log (4 |Us| /δ)

N

√
VarP 0

(
V̂ ⋆
)

+ 2 log (4 |Us| /δ)
(1− γ)3N

using the triangle inequality in (a), (b) classical Berstein’s inequality, (d) for variance and
Lemmas 2.11 and 2.12 such as∥∥∥V̂ ⋆ − V ⋆

s,u

∥∥∥
∞

=
∥∥∥∥V̂ ⋆

s,V̂ ⋆(s) − V
⋆
s,u

∥∥∥∥
∞
≤
∣∣∣V̂ ⋆(s)− u

∣∣∣ .
It is true for u ∈ Us, so we take the best possible choice, which completes the proof of the

first claim. The proof of the second claim is similar. Then using Lemma 2.15 gives the final
concentration theorem.

Lemma 3.4 (Azar et al. (2013a), Lemma 7). This is an adaptation of Azar et al. (2013a) to
RMDPs. For any policy π,∥∥∥∥(I − γP 0,π

)−1√
VarP 0 (V π)

∥∥∥∥
∞
≤
√

2
(1− γ)3 ,

where P 0 is the nominal transition model of M .

Proof. This proof is exactly the same for Robust and non robust MDPs, as it uses only standard
computations such as the Jensen inequality and no robust form which are specific to this problem.
The main difference is that we are doing the proof on the nominal of our robust set P 0, considering
the regularized robust Bellman operator and associated regularized reward functions.

Chapter 9. Appendix of Chapter 2 188

Azar et al. (2013a) introduce the variance of the sum of discounted rewards starting at
state-action (s, a),

Σπ(s, a) := E[|
∑
t≥0

γtr0(st, at)−Qπ(s, a)|2|s0 = s, a0 = a],

and we defined the same variance for robust MDPs using robust rewards r(s,a)
Qπ and rsQπ and

using robust Q-function instead of classical Q-function in the definition of Σ. Then, in their
Lemma 6 they show that, for any π:

Σπ = VarP 0 (V π) + γ2P 0,πΣπ,

which is, in fact, a Bellman equation for the variance. The proof is exactly the same for RMDPs
considering our robust reward r

(s,a)
Qπ or rsQπ and not classical r0. Note that this is thanks to the

regularized form of robust RMDPs. Finally, Lemma 3.4 is the same as their Lemma 7 considering
robust rewards. This lemma is usually called the total variance lemma. This completes the
proof.

Lemma 3.5. The following upper bound holds with probability 1− δ:

∥∥∥Qπ̂ − Q̂π̂∥∥∥
∞
< (CN + Cσ)

∥∥∥Qπ̂ − Q̂π̂∥∥∥
∞

+γ4
√

L

N(1− γ)3 +
γ∆′

δ,N

1− γ + γϵopt
1− γ

2 +
√

8L
N

 (A.71)

with CN = γ
1−γ

√
8L
N and Cσ = 2γσS1/q

1−γ .

189 3. Towards minimax optimal bounds

Proof.

∥∥∥Qπ̂ − Q̂π̂∥∥∥
∞

(a)
≤ γ

∥∥∥∥(I − γP 0,π̂
)−1

(P 0 − P̂)V̂ π̂

∥∥∥∥
∞

+ 2γσS1/q

1− γ
∥∥∥Qπ̂ − Q̂π̂∥∥∥

∞

(b)
≤ γ

∥∥∥∥(I − γP π̂)−1
(P 0 − P̂)V̂ ⋆

∥∥∥∥
∞

+ γ

∥∥∥∥(I − γP 0,π
)−1

(P 0 − P̂)
(
V̂ π̂ − V̂ ⋆

)∥∥∥∥
∞

+2γσS1/q

1− γ
∥∥∥Qπ̂ − Q̂π̂∥∥∥

∞

(c)
≤ γ

∥∥∥∥(I − γP 0,π̂
)−1

(P 0 − P̂)V̂ ⋆

∥∥∥∥
∞

+ 2γϵopt
1− γ + 2γσS1/q

1− γ
∥∥∥Qπ̂ − Q̂π̂∥∥∥

∞

(d)
≤ γ

∥∥∥∥(I − γP 0,π̂
)−1 ∣∣∣(P 0 − P̂)V̂ ⋆

∣∣∣∥∥∥∥
∞

+ 2γϵopt
1− γ + 2γσS1/q

1− γ
∥∥∥Qπ̂ − Q̂π̂∥∥∥

∞

(e)
≤ γ

√
8L
N

∥∥∥∥∥(I − γP 0,π̂
)−1

√
VarP 0

(
V̂ ⋆
)∥∥∥∥∥

∞
+ 2

γ∆′
δ,N

1− γ + 2γϵopt
1− γ + 2γσS1/q

1− γ
∥∥∥Qπ̂ − Q̂π̂∥∥∥

∞

(f)
≤ γ

√
8L
N

∥∥∥∥∥(I − γP 0,π̂
)−1

(√
VarP 0

(
V π̂
)

+
√

VarP 0

(
V π̂ − V̂ π̂

)
+
√

VarP 0

(
V̂ π̂ − V̂ ⋆

))∥∥∥∥∥
∞

+
γ∆′

δ,N

1− γ + 2γϵopt
1− γ + 2γσ

1− γ
∥∥∥Qπ̂ − Q̂π̂∥∥∥

∞

(g)
≤ γ

√
8L
N

√

2
(1− γ)3 +

√∥∥∥V π̂ − V̂ π̂
∥∥∥2

∞
1− γ + 2ϵopt

1− γ

+
γ∆′

δ,N

1− γ + 2γϵopt
1− γ + 2γσ

1− γ
∥∥∥Qπ̂ − Q̂π̂∥∥∥

∞

(h)
≤ γ

√
8L
N

√ 2
(1− γ)3 +

∥∥∥Qπ̂ − Q̂π̂∥∥∥
∞

1− γ + 2ϵopt
1− γ

+
γ∆′

δ,N

1− γ + 2γϵopt
1− γ + 2γσS1/q

1− γ
∥∥∥Qπ̂ − Q̂π̂∥∥∥

∞

= γ

√
8L
N

√ 2
(1− γ)3 +

∥∥∥Qπ̂ − Q̂π̂∥∥∥
∞

1− γ

+
γ∆′

δ,N

1− γ + γϵopt
1− γ

2 +
√

8L
N

+ 2γσS1/q

1− γ
∥∥∥Qπ̂ − Q̂π̂∥∥∥

∞

= (CN + Cσ)
∥∥∥Qπ̂ − Q̂π̂∥∥∥

∞
+ 4γ

√
L

N(1− γ)3 +
γ∆′

δ,N

1− γ + γϵopt
1− γ

2 +
√

8L
N

with CN = γ
1−γ

√
8L
N and Cσ = 2γσS1/q

1−γ .

We have that (a) is true by Lemma 3.2, (b) is by the triangular inequality using V̂ π̂ =
V̂ π̂ + V̂ ⋆ − V̂ ⋆, (c) is from the definition of ϵopt and Eq. (A.3), (d) is by positivity of the classic
horizon inverse matrix, that is (I − γP)−1 = ∑

t>0 γ
tP t > 0, (e) is by Lemma 3.3, (f) is by

the triangular inequality for the variance (which is, in fact, a seminorm) and decomposing
V̂ ⋆ = V̂ ⋆ + V̂ π̂ − V̂ π̂ + V π̂ − V π̂, (g) is by Lemma 3.4, uses the definition of ϵopt and takes the
sup over (s, a) of the variance in the second term, and eventually (h) is because we have that
∥V π − V̂ π∥∞ ≤ ∥Qπ − Q̂π∥∞ for any π.

Chapter 9. Appendix of Chapter 2 190

Lemma 3.6. The following upper bound holds with probability 1− δ:

∥∥∥Q∗ − Q̂π∗
∥∥∥

∞
< (CN + Cσ)

∥∥∥Q∗ − Q̂π∗
∥∥∥

∞
+ γ4

√
L

N(1− γ)3 +
γ∆′

δ,N

1− γ . (A.72)

with CN = γ
1−γ

√
8L
N and Cσ = 2γσS1/q

1−γ .

Proof.

∥∥∥Q∗ − Q̂π∗
∥∥∥

∞

(a)
≤ γ

∥∥∥∥(I − γP 0,π∗)−1
(P 0 − P̂)V̂ π∗

∥∥∥∥
∞

+ 2γσS1/q

1− γ
∥∥∥Q∗ − Q̂π∗

∥∥∥
∞

(b)
≤ γ

∥∥∥∥(I − γP 0,π∗)−1 ∣∣∣(P 0 − P̂)V̂ π∗
∣∣∣∥∥∥∥

∞
+ 2γσS1/q

1− γ
∥∥∥Q∗ − Q̂π∗

∥∥∥
∞

(c)
≤ γ

√
8L
N

∥∥∥∥∥(I − γP 0,π∗)−1
√

VarP 0

(
V̂ π∗

)∥∥∥∥∥
∞

+ 2
γ∆′

δ,N

1− γ + 2γσS1/q

1− γ
∥∥∥Q∗ − Q̂π∗

∥∥∥
∞

(d)
≤ γ

√
8L
N

∥∥∥∥∥(I − γP 0,π∗)−1
(√

VarP 0 (V ∗) +
√

VarP 0

(
V ∗ − V̂ π∗

))∥∥∥∥∥
∞

+
γ∆′

δ,N

1− γ + 2γσS1/q

1− γ
∥∥∥Q∗ − Q̂π∗

∥∥∥
∞

(e)
≤ γ

√
8L
N

√

2
(1− γ)3 +

√∥∥∥V ∗ − V̂ π∗
∥∥∥2

∞
1− γ

+
γ∆′

δ,N

1− γ + 2γσS1/q

1− γ
∥∥∥Q∗ − Q̂π∗

∥∥∥
∞

≤ γ

√
8L
N

√ 2
(1− γ)3 +

∥∥∥Q∗ − Q̂π∗
∥∥∥

∞
1− γ

+
γ∆′

δ,N

1− γ + 2γσS1/q

1− γ
∥∥∥Q∗ − Q̂π∗

∥∥∥
∞

= (CN + Cσ)
∥∥∥Q∗ − Q̂π∗

∥∥∥
∞

+ 4γ
√

L

N(1− γ)3 +
γ∆′

δ,N

1− γ

with CN = γ
1−γ

√
8L
N and Cσ = 2γσS1/q

1−γ .

We have that (a) is true by Lemma 3.2, (b) is by the positivity of the classic horizon inverse
matrix, (c) is by Lemma (3.3), (d) is by the triangular inequality for the variance (which is a
seminorm), (e) is by Lemma 3.4 and taking the sup over (s, a) of the variance in the second term,
and eventually (h) is because ∥V π − V̂ π∥∞ ≤ ∥Qπ − Q̂π∥∞ for any π.

As the event on which ∆′
δ,N is the same in the two previous Lemma 3.5 and Lemma 3.6, we

can obtain the following.

Theorem 3.7. For 0 < Cσ ≤ 1/2 and 0 < CN + Cσ < 1, with probability 1− δ, we get:

∥∥∥Q∗ −Qπ̂
∥∥∥

∞
<

1
1− (CN + Cσ)

8γ
√

L

N(1− γ)3 +
2γ∆′

δ,N

1− γ + γϵopt
1− γ

2 +
√

8L
N

+ ϵopt.

Proof. This result is obtained by combining the two previous Lemmas 3.5 and 3.6 and passing
the term in (CN + Cσ) to the left-hand side.

191 3. Towards minimax optimal bounds

Note that Cσ +CN < 1 implies Cσ = 2γσS1/q

1−γ < 1 and hence σ < 1−γ
2γS1/q . Now we need to pick

CN < 1− Cσ. Let CN ≤ 1− Cσ − η, for any 0 < η < 1− Cσ the previous inequality becomes

∥∥∥Q∗ −Qπ̂
∥∥∥

∞
<

8
η
γ

√
L

N(1− γ)3 +
2γ∆′

δ,N

η(1− γ) + γϵopt
η(1− γ)

2 +
√

8L
N

+ ϵopt.

As ∆′
δ,N =

√
cL
N + cL

(1−γ)N , the term in 1/
√
N is given by 8γ

√
LH3/2

η
√
N

(
1 + 1/4

√
c/H

)
and is

smaller than ϵ whenever
N ≥ 64γ2LH3(1 + 1/4

√
c/H)2

η2ϵ2
.

We will use c < 16 and H ≥ 1 and use the stronger constraint

N ≥ 256γ2LH3

η2ϵ2
.

Along the same line, the term in 1/N is 2γcLH2

ηN which is smaller than ϵ whenever

N ≥ 2γcLH2

ϵ
.

Now, CN < 1− η − Cσ means

γ

1− γ

√
8L
N

< 1− η − Cσ

hence
N >

8Lγ2H2

(1− η − Cσ)2 .

We deduce that whenever

N ≥ max
(

256γ2LH3

η2ϵ2
,
2γcLH2

ϵ
,

8Lγ2H2

(1− η − Cσ)2

)

= 256γ2LH3

η2 max
(

1
ϵ2
,

cη

128Hγϵ,
η2

64H(1− η − Cσ)2

)

the error is smaller than 2ϵ up to the ϵopt terms.
This bounds reduces to

N ≥ Cγ2LH3

ϵ2

with C = 256/η2 if
ϵ ≤ min

(128H
η

,
√

64H 1− η − Cσ
η

)
.

Note that ϵ ∈ [0, H) and η < 1 so that the previous condition simplifies to

ϵ ≤
√

64H 1− η − Cσ
η

= ϵ0.

If we want to obtain an arbitrary ϵ0, it suffices thus to take η arbitrarily small leading to the
constant C = 256/η2 to be arbitrarily large.

Note that if ϵ0 ≥ O(H1/2+δ) then 1/η > O(Hδ) which adds a H2δ factor to the bound on N .

Chapter 9. Appendix of Chapter 2 192

However, for any κ
√
H and for any Cσ, it exists an η independent of H so that ϵ0 =

8
√
H 1−η−Cσ

η = κ
√
H, hence the result stated in Theorem 2.5.1. Now, as L = log(8|S||A|/((1− γ)δ)),

the previous condition can be summarized by

Ntotal = N |S||A| = Õ
(
H3|S||A|

ϵ2

)

provided ϵ < ϵ0. Finally, taking σ0 = 1−γ
8γ which gives Cσ = 1/4 and η = 1/2 so that CN ≤ 1/4,

we obtain C = 1024 and ϵ0 =
√

16H.

Appendix of Chapter 3

4 Other related works

Here we provide additional discussion of related work that could not be fit into the main paper
due to space considerations. We limit our discussions to the tabular setting with finite state and
action spaces provable RL algorithms.

Classical reinforcement learning with finite-sample guarantees. A recent surge in
attention for RL has leveraged the methodologies derived from high-dimensional probability and
statistics to analyze RL algorithms in non-asymptotic scenarios. Substantial efforts have been de-
voted to conducting non-asymptotic sample analyses of standard RL in many settings. Illustrative
instances encompass investigations employing Probably Approximately Correct (PAC) bonds in
the context of generative model settings (Kearns and Singh 1999, Beck and Srikant 2012, Li et al.
2022, Chen et al. 2020, Azar et al. 2013b, Sidford et al. 2018, Agarwal et al. 2020, Li et al. 2023;
2020, Wainwright 2019) and the online setting via both in PAC-base or regret-based analyses (Jin
et al. 2018, Bai et al. 2019, Li et al. 2021, Zhang et al. 2020, Dong et al. 2019, Jin et al. 2020, Li et al.
2023, Jafarnia-Jahromi et al. 2020, Yang et al. 2021) and finally offline setting (Rashidinejad et al.
2021, Xie et al. 2021, Yin et al. 2021, Shi et al. 2022, Li et al. 2022, Jin et al. 2021, Yan et al. 2022).

Robustness in reinforcement learning. Reinforcement learning has had notable achieve-
ments but has also exhibited significant limitations, particularly when the learned policy is
susceptible to deviations in the deployed environment due to perturbations, model discrepancies,
or structural modifications. To address these challenges, the idea of robustness in RL algorithms
has been studied. Robustness could concern uncertainty or perturbations across different Markov
Decision Processes (MDPs) components, encompassing reward, state, action, and the transition
kernel. Moos et al. (2022) gives a recent overview of the different work in this field.

The distributionally robust MDP (RMDP) framework has been proposed (Iyengar 2005) to
enhance the robustness of RL has been proposed. In addition to this work, various other research
efforts, including, but not limited to, Zhang et al. (2020; 2021), Han et al. (2022), Clavier et al.
(2022), Qiaoben et al. (2021), explore robustness regarding state uncertainty. In these scenarios,
the agent’s policy is determined on the basis of perturbed observations generated from the state,
introducing restricted noise, or undergoing adversarial attacks. Finally, robustness considerations
extend to uncertainty in the action domain. Works such as Tessler et al. (2019), Tan et al.
(2020) consider the robustness of actions, acknowledging potential distortions introduced by an
adversarial agent.

Given the focus of our work, we provide a more detailed background on progress related to dis-
tributionally robust RL. The idea of distributionally robust optimization has been explored within
the context of supervised learning (Rahimian and Mehrotra 2019, Gao 2020, Duchi and Namkoong
2018, Blanchet and Murthy 2019) and has also been extended to distributionally robust dynamic
programming and Distributionally Robust Markov Decision Processes (DRMDPs) such as in

Chapter 9. Appendix of Chapter 3 194

(Iyengar 2005, Xu and Mannor 2012, Wolff et al. 2012, Kaufman and Schaefer 2013, Ho et al. 2018,
Smirnova et al. 2019a, Ho et al. 2021, Goyal and Grand-Clement 2022, Derman and Mannor 2020,
Tamar et al. 2014, Badrinath and Kalathil 2021). Despite the considerable attention received, both
empirically and theoretically, most previous theoretical analyses in the context of RMDPs adopt
an asymptotic perspective (Roy et al. 2017) or focus on planning with exact knowledge of the
uncertainty set (Iyengar 2005, Xu and Mannor 2012, Tamar et al. 2014). Many works have focused
on the finite-sample performance of verifiable robust Reinforcement Learning (RL) algorithms.
These investigations encompass various data generation mechanisms and uncertainty set formu-
lations over the transition kernel. Closely related to our work, various forms of uncertainty sets
have been explored, showcasing the versatility of approaches. Divergence such as Kullback-Leibler
(KL) divergence is another prevalent choice, extensively studied by Yang et al. (2021), Panaganti
and Kalathil (2022b), Zhou et al. (2021), Shi and Chi (2022), Xu et al. (2023), Wang et al. (2023),
Blanchet et al. (2023), who investigated the sample complexity of both model-based and model-
free algorithms in simulator or offline settings. Xu et al. (2023) considered various uncertainty sets,
including those associated with the Wasserstein distance. The introduction of an R-contamination
uncertainty set Wang and Zou (2021), has been proposed to tackle a robust Q-learning algorithm
for the online setting, with guarantees analogous to standard RL. Finally, the finite-horizon
scenario has been studied by Xu et al. (2023), Dong et al. (2022) with finite-sample complexity
bounds for (RMDPs) using TV and χ2 divergence. More broadly, other related topics have been
explored, such as the iteration complexity of policy-based methods (Li et al. 2022, Kumar et al.
2023), and regularization-based robust RL (Yang et al. 2023). Finally, Badrinath and Kalathil
(2021) examined a general sa-rectangular form of the uncertainty set, proposing a model-free
algorithm for the online setting with linear function approximation to address large state spaces.

5 Further discussions of Theorem 3.4.1 and Theorem 3.4.3

• What norms are included in the Definition 3.2.1? In our upper bound result Theorems
3.4.3 and 3.4.1, we upper bound the sample complexity for C2 norms and TV. The set
of C2 smooth norm is very large as it includes all, Lp norm, weighted, rescaled Lp norms
for p ≥ 2. Weighted norms can be useful in practice, to get more weights on dangerous
specific states in Robust MDPs formulation such as in Russel et al. (2019). Moreover, note
that our result can generalize to metric or pseudo metric (which are not homogeneous
ie ∥λ∥ = |λ|∥x∥∀x ∈ Rn, λ ∈ R) with norms of the form x 7→ ϕ−1(∑n

k=1, ϕ(|xk|)) with ϕ
a convex incising function such as the norm is still positive, definite positive. Choosing
ϕ(x) = xp leads to the Lp norms.

• Assumptions on γ in Theorems 3.4.1 and 3.4.3, and Assumptions on γ for lower bound.
When γ is small (e.g., γ ∈ (0, 1

2] leads to the effective horizon length is at most 2), the
sequential structure almost disappears and is much less of interest for RL community. So
people Li et al. (2020) Yan et al. (2023) usually focus on reasonable range γ ∈ (c, 1) for
some small positive constant c, such as γ ∈ [1

2 , 1). However, the theorems can be directly
extended to a broader range of γ ∈ (c, 1) along with c as small as desired so that almost
cover the full range (0, 1).

• Why final results on s depend on π̂?
Theorem 3.4.3 is π̂ data dependent which is randomness-dependent measure. However,
taking the minimum of this quantity leads to the same bound as is sa-rectangular, so to
illustrate that it is possible to get tighter bounds for s-rectangular with instance-dependent
RMDPs, we decide to write also randomness-dependent quantity, while the less tight upper
bound is written also in the theorem, taking the first term in the min operator in (3.21).

195 6. Preliminaries

• Why our results are still true for TV ? Theorems 3.4.1 and 3.4.3 are stated for C2 smooth
norms, however, our result is still true for TV which is not C2 as in this specific case, the
dual of the optimization problem becomes a 1−dimensional problem. In this case in the
main concentration lemma 7.4, the additional term involving smoothness term denoted
CS is not present and the bound is simpler as is not required this additional term.

• Why burn-in or sufficiently small ϵ condition is not too restrictive? The burn-in term
in Th. 3.4.1 and 3.4.3 is proportional to 1/ϵ where the ”sample complexity” term is
proportional to 1/ϵ2. The smooth term depending on CS or burn-in is then not too large
for sufficiently small ϵ compared to the other term, which will give final sample complexity.

• Why this is not extendable to f -divergence currently? The f-divergence as a distinct family of
divergence is beyond the scope of this paper. Current proof for arbitrary norms cannot be di-
rectly extended since the key phenomenon of shrinking range of the robust value function has
not been verified for f -divergence yet, while it is promising as an interesting future direction.

6 Preliminaries

These quantities appear in the dual formulation of the robust optimization problem and more
preciously the dual span semi norm sp(.)∗ note that for L2, we retrieve the classical mean with the
definition of ω) With slight abuse of notation, we denote 0 (resp. 1) as the all-zero (resp. all-one)
vector. We then introduce the notation [T] := {1, · · · , T} for any positive integer T > 0. Then,
for all 1 ≤ i ≤ n, for two vectors x = [xi]1≤i≤n and y = [yi]1≤i≤n, the notation x ≤ y (resp. x ≥ y)
means xi ≤ yi (resp. xi ≥ yi) . Finally, for any vector x, the notation is overloaded by letting
x◦2 =

[
x(s, a)2]

(s,a)∈S×A (resp. x◦2 =
[
x(s)2]

s∈S), Finally, we drop the subscript ∥.∥ to write
Uσ∥.∥(·) = Uσ(·) for both sa- and s- rectangular assumptions such that we write uncertainty set in
the for sa-rectangular case U sa,σ(.) or U s,σ̃(.) in the s-rectangular assumptions.

Matrix and Vector Notations. We define the following notation.

• r ∈ RSA the reward function, such that r(s,a) = r(s, a) for all (s, a) ∈ S ×A.

• P 0 ∈ RSA×S the nominal transition kernel matrix using P 0
s,a as the (s, a)-th row.

• P̂ 0 ∈ RSA×S the estimated nomimal transition kernel matrix with P̂ 0
s,a as the (s, a)-th row.

• Ππ ∈ {0, 1}S×SA the projection matrix associated with a policy π

Ππ =

1⊤
π(1) 0⊤ · · · 0⊤

0⊤ 1⊤
π(2) · · · 0⊤

...
...

. . .
...

0⊤ 0⊤ · · · 1⊤
π(S)

, (A.73)

where 1⊤
π(1), 1⊤

π(2), . . . , 1⊤
π(S) ∈ RA are simplex vector such as

1⊤
π(1) = (π(a1|s1), π(a2|s1), ..., π(aA|s1)).

Chapter 9. Appendix of Chapter 3 196

• The two matrices P V ∈ RSA×S , P̂ V ∈ RSA×S represent the probability transition kernel in
the uncertainty set that leads to the worst-case value for any vector V ∈ RS . Moreover,
the quantities P Vs,a (resp. P̂ Vs,a) stands for the (s, a)-th row of the transition matrix P V

(resp. P̂ V). In sa-rectangular case , the (s, a)-th rows of these transition matrices are
defined as

P Vs,a = argminP∈U sa,σ(P 0
s,a)PV, and P̂ Vs,a = argminP∈U sa,σ(P̂ 0

s,a)PV. (A.74a)

Moreover, the shorthand notation defined below is used

P π,Vs,a := P V
π,σ

s,a = argminP∈U sa,σ(P 0
s,a)PV π,σ, (A.74b)

P π,V̂s,a := P V̂
π,σ

s,a = argminP∈U sa,σ(P 0
s,a)PV̂ π,σ, (A.74c)

P̂ π,Vs,a := P̂ V
π,σ

s,a = argmin
P∈U sa,σ(P̂ 0

s,a)PV
π,σ, (A.74d)

P̂ π,V̂s,a := P̂ V̂
π,σ

s,a = argmin
P∈U sa,σ(P̂ 0

s,a)PV̂
π,σ. (A.74e)

In the following, we define the corresponding probability transition matrices which are
denoted by P π,V ∈ RSA×S , P π,V̂ ∈ RSA×S , P̂ π,V ∈ RSA×S and P̂ π,V̂ ∈ RSA×S .

• Using the projection over π, the matrices P π ∈ RS×S , P̂ π ∈ RS×S , P π,V ∈ RS×S , P π,V̂ ∈
RS×S , P̂ π,V ∈ RS×S and P̂

π,V̂ ∈ RS×S represent probability transition matrices w.r.t.
policy π.

P π := ΠπP 0, P̂ π := ΠπP̂ 0, P π,V := ΠπP π,V , P π,V̂ := ΠπP π,V̂ ,

P̂
π,V := ΠπP̂ π,V , and P̂

π,V̂ := ΠπP̂ π,V̂ . (A.75)

For s-rectangular, we will use the same notation for these transition matrices. Finally, we
denote P πs as the s-th row of the transition matrix P π.

• rπ ∈ RS is the reward function restricted to the actions chosen by π, rπ = Ππr.

• VarP (V) ∈ RSA is the variance for a given transition kernel P ∈ RSA×S and vector V ∈ RS ,
we denote the (s, a)-th row of VarP (V) as

VarP (s, a) := VarPs,a(V). (A.76)

6.1 Additional definitions and basic facts

For any norm smooth ∥.∥ introduced in 3.2.1, we define the span semi norm as

Definition 6.1 (Span semi norm). Given any norm ∥ · ∥, we define the span semi norm as:
sp(x) = minω∈R ∥v − ω1∥ and the generalized mean as ω(x) := arg minω∈R ∥x− ω1∥.

Let vector P ∈ R1×S and vector V ∈ RS , we define the variance

VarP (V) := P (V ◦ V)− (PV) ◦ (PV). (A.77)

The following lemma bounds the Lipschitz constant of the variance function.

Lemma 6.1. (Shi et al. (2023) , Lemma 2) Assuming 0 ≤ V1, V2 ≤ 1
1−γ which obey ∥V1−V2∥∞ ≤

x, then for P ∈ ∆(S), one has

|VarP (V1)−VarP (V2)| ≤ 2x
(1− γ) . (A.78)

197 6. Preliminaries

Lemma 6.2. (Panaganti and Kalathil 2022b, Lemma 6) Consider any δ ∈ (0, 1). For any fixed
policy π and fixed value vector V ∈ RS, one has with probability at least 1− δ,

∣∣∣∣√Var
P̂π

(V)−
√

VarPπ(V)
∣∣∣∣ ≤

√√√√2∥V ∥2∞ log
(

2SA
δ

)
N

1.

6.2 Empirical robust MDP M̂rob Bellman equations

We define the robust MDP M̂rob = {S,A, γ,Uσ(P̂ 0), r} based on the estimated nominal distribu-
tion P̂ 0 in (3.11). Then, we denote the associated robust value function (resp. robust Q-function)
are V̂ π,σ (resp. Q̂π,σ) qnd we can notice that that Q̂⋆,σ is the unique-fixed point of T̂ σ(·) (see
Lemma 6.3), the empirical robust Bellman operator constructed using P̂ 0. Finally, similarly to
(3.9), for M̂rob, the Bellman’s optimality principle gives the following robust Bellman consistency
equation (resp. robust Bellman optimality equation) for sa-rectangular assumptions:

Q̂π,σ(s, a) = r(s, a) + γ inf
P∈U sa,σ(P̂ 0

s,a)
PV̂ π,σ, (A.79a)

Q̂⋆,σ(s, a) = r(s, a) + γ inf
P∈U sa,σ(P̂ 0

s,a)
PV̂ ⋆,σ. (A.79b)

Using matrix notation, we can write the robust Bellman consistency equations as

Qπ,σ = r + γ inf
P∈U sa,σ(P 0)

PV π,σ and Q̂π,σ = r + γ inf
P∈U sa,σ(P̂ 0)

PV̂ π,σ, (A.80)

which imply

V π,σ = rπ + γΠπ inf
P∈U sa,σ(P 0)

PV π,σ (i)= rπ + γP π,V V π,σ,

V̂ π,σ = rπ + γΠπ inf
P∈U sa,σ(P̂ 0)

PV̂ π,σ (ii)= rπ + γP̂
π,V̂

V̂ π,σ, (A.81)

where (i) and (ii) hold by the definitions in (A.73), (A.74) and (A.75). For s-rectangular, we can
define the same notation, removing a subscript:

V π,σ = rπ + γΠπ inf
P∈U s,̃σ(P 0)

PV π,σ (i)= rπ + γP π,V V π,σ,

V̂ π,σ = rπ + γΠπ inf
P∈U s,̃σ(P̂ 0)

PV̂ π,σ (ii)= rπ + γP̂
π,V̂

V̂ π,σ, . (A.82)

6.3 Properties of the robust Bellman operator and dual representation

The robust Bellman operator (cf. (3.10)) shares the γ-contraction property of the standard
Bellman operator as:

(Iyengar 2005, Theorem 3.2) Given γ ∈ [0, 1), the robust Bellman operator T σ(·) (cf. (3.10))
is a γ-contraction w.r.t. ∥ · ∥∞. More formally, for any Q1, Q2 ∈ RSA s.t. Q1(s, a), Q2(s, a) ∈[
0, 1

1−γ
]

for all (s, a) ∈ S ×A, one has

∥T σ(Q1)− T σ(Q2)∥∞ ≤ γ ∥Q1 −Q2∥∞ . (A.83)

Chapter 9. Appendix of Chapter 3 198

It can be also shown that, Q⋆,σ is the unique fixed point of T σ(·) obeying 0 ≤ Q⋆,σ(s, a) ≤ 1
1−γ

for all (s, a) ∈ S ×A.

One of the main contributions is to derive the dual form of optimization problem using arbitrary
norms. These lemma take ideas from Iyengar (2005) and are adapted to arbitrary norms and not
only TV distance.

Dual equivalence of the robust Bellman operator. Fortunately, the robust Bellman
operator can be evaluated efficiently by resorting to its dual formulation, and this idea is central
in all proofs for RMPDs. Dual formulation of RMDPs have been introduced in (Iyengar 2005)
but the proof was done uniquely for the TV and the χ2 case. Before continuing, for any V ∈ RS ,
we denote [V]α as its clipped version by some non-negative vector α, namely,

[V]α(s) :=
{
α, if V (s) > α(s),
V (s), otherwise.

(A.84)

Defining the gradient of P 7→ ∥P∥ as ∇∥P∥, λ > 0, a positive scalar and ω is the generalized
mean defined as the argmin in the definition of the span semi norm in Def.6.1, we derive two
optimization lemmas.

Lemma 6.3 (Strong duality using norm ∥·∥ in the sa-rectangular case.). Consider any probability
vector P ∈ ∆(S) and any fixed uncertainty level σ, we abbreviate the notation of the uncertainty
set U sa,σ

∥.∥ (P) (cf. (3.3)) as U sa,σ(P). For any vector V ∈ RS obeying V ≥ 0, recalling the definition
of [V]α in (A.84), one has

inf
P∈U sa,σ(P)

PV = max
µλ,ωP ∈Mλ,ω

P

{
P (V − µλ,ωP)− σ

(
sp((V − µλ,ωP))∗

)}
. (A.85)

= max
αλ,ωP ∈Aλ,ωP

{
P [V]

αλ,ωP
− σ

(
sp([V]

αλ,ωP
)∗

)}
(A.86)

where sp()∗ is defined in Def..6.1. Here, the two auxiliary variational family Aλ,ω
P ,Mλ,ω

P are
defined as below:

Aλ,ω
P = {αλ,ωP : αλ,ωP (s) = ω + λ|∇∥P∥(s) : λ > 0, w > 0, P ∈ ∆(S), αλ,ωP ∈

[
0, 1

1− γ

]S
} (A.87)

Mλ,ω
P = {µλ,ωP = V − αλ,ωP , λ, ω ∈ R+, P ∈ ∆(S), µ ∈ RS+, µ

λ,ω
P =

[
0, 1

1− γ

]S
}. (A.88)

(A.89)

For L1 or TV , case , the vector αλ,ωP reduces to a 1 dimensional scalar such as α ∈ [0, 1/(1−γ)].

Proof.

inf
P∈U sa,σ(P)

PV = inf
{P:P∈∆s,∥P−P∥≤σ}

∑
s′

P(s′)V (s′)

= PV + inf
{y:∥y∥≤σ,1y=0,y≥−P}

∑
s′

y(s′)V (s′)

where we use the change of variable y(s′) = P(s′)− P(s′) for all s′ ∈ S. Then the Lagrangian
function of the above optimization problem can be written as follows:

199 6. Preliminaries

inf
P∈Uσs,a(P)

PV =PV + sup
µ≥0,ν∈R

inf
{y:∥y∥≤σ}

−
∑
s′

µ(s)P(s′) +
∑
s′

(y(s′)(V (s′)− µ(s′)− ν) (A.90)

(a)= PV + sup
µ≥0,ν∈R

−
∑
s′

µ(s′)P(s′)− σ
∥∥(V (s′)− µ(s′)− ν1)

∥∥
∗ (A.91)

(b)= sup
µ≥0

P(V − µ)− σsp(V − µ)∗ (A.92)

where µ ∈ RS
+, ν ∈ R are Lagrangian variables, (a) is true using the equality case of Cauchy-Swartz

inequality for dual norm Yang (1991), and (b) is due to is the definition of the span semi-norm
(see (6)). The value that maximizes the inner maximization problem in (A.91) in ω(V, µ) is the
generalized-mean by definition denoted with abbreviate notation ω. If the norm is differentiable,
then we have that the equality (a) comes from the generalized Holder’s inequality for arbitrary
norms Yang (1991), namely, defining z = (V − µ− ω), it satisfies

z = ∥z∥∗∇∥y∥ (A.93)

The quantity ν is replaced by the generalized mean for equality in (b) while (A.93) comes from
Yang (1991). Using complementary slackness Karush (2013)stackness let B = {s ∈ S : µ(s) > 0}

∀s ∈ B : y∗(s) = −P (s), (A.94)

which leads to the following equality by plugging the previous (A.94) in (A.93) and defining
z∗ = V − µ∗ − ω:

∀s ∈ B, z∗(s) = ∥z∗∥∗∇∥P∥(s) (A.95)

or

∀s ∈ B, V (s)− µ∗(s) = ω + λ∇∥P∥(s)=̂αλ,ωP (A.96)

by letting λ = ∥z∗∥∗ ∈ R+ . Note that here the hypothesis of 3.2.1 are use and especially
separability is needed to ensure that for s ∈ B, ∇∥y∥ = ∇∥P∥ only depend on P (s) and not on
other coordinates, which is true form generalized Lp norms. We can remark that v − µ∗ is P
dependent, but if P is known, the best µ∗ is only determined by one 2 dimensional parameters
λ = ∥v − µ∗ − ν∥∗ and ω ∈ R+. Moreover, when P is fixed, the scalar ω is a constant is fully
determined by P , v and µ∗. This is why the quantity defined αλP varies through 2 parameter λ
and ω. Given this observation, we can rewrite the optimization problem as :

sup
µ≥0

P(V − µ)− σsp(V − µ)∗ = sup
µλ,ωP ∈Mλ,ω

P

P(V − µλ,ωP)− σsp((V − µλ,ωP))∗ (A.97)

= sup
αλ,ωP ∈Aλ,ωP

P[V]
αλ,ωP
− σsp([V]

αλ,ωP
)∗ (A.98)

where we defined the maximization problem on µ not in RS but at the optimal in the
variational family denote Mλ,ω

P = {v − αλ,ωP , (λ, ω) ∈ R2
+, P ∈ ∆(S)}. We can rewrite the

optimization problem in terms of αP with [V]
αλ,ωP

defined in A.84. Contrary to the TV case,
α is not a scalar but αλ,ωP belongs to a variational family only determined by two parameter.
Note that this lemma is still true writing subgradient and not gradient of P . As we assume
C2-regularity on norms, the subgradient space of the norm reduce to the singleton of the gradient
in our case. C2 smoothness will be needed in concentration part while it is possible to be more
general in optimization lemmas. Note that for TV or L1, this lemma holds, but the vector αλ,ωP
reduces to a positive scalar denoted α which is equal to ∥v − µ∗∥∞ according to Iyengar (2005).

Chapter 9. Appendix of Chapter 3 200

Lemma 6.4 (Strong duality for the distance induced by the norm ∥∥ in the s-rectangular case.).
Consider any probability vector P π := ΠπP ∈ ∆s for P ∈ ∆(S)A , any fixed uncertainty level σ̃
and the uncertainty set U s,σ̃

∥.∥ (P), we abbreviate the subscript to use U s,σ̃(P) := U s,σ̃
∥.∥ (P). Then for

any vector V ∈ RS obeying V ≥ 0, recalling the definition of [V]α in (A.84), one has

inf
P∈U s,̃σ(P)

PπV =
∑
a

π(a|s)(
(

max
αλ,ωPsa∈Aλ,ωPsa

Psa[V]
αλ,ωPsa
− σ̃ ∥πs∥∗ sp([V]

αλ,ωPsa
)∗
)
. (A.99)

with the definition of sp()∗ in 6 and where the variational family Aλ,ω
P is defined as :

Aλ,ω
P = {α ∈

[
0, 1/(1− γ)

]S
, α = ω + λ|∇∥P∥| := αλ,ωP } (A.100)

(A.101)

with ω is the generalized mean defined as the argmin in the definition of the span semi norm
in 6.1 and λ, ω a positive scalar. Moreover, for L1 or TV , case, the vector αλ,ωP reduces to a 1
dimensional scalar such as α ∈ [0, 1/(1− γ)].

In the proof of the previous lemma, we decompose this problem s-rectangular radius σ̃ into
sa-rectangular sub-problem with respectively radius σsa.

Proof.

inf
Pπ∈U s,̃σ(Pπ)

PπV = inf
{σsa:∥σsa∥≤σ̃}

inf
P ′∈U sa,σ(Psa)

∑
a

π(a|s)P ′V

(a)=
∑
a

π(a|s)PsaV + min
{σsa:∥σsa∥≤σ̃}

∑
a

π(a|s) min
{y:∥y∥≤σsa,1y=0,y≥−Psa}

∑
s′

y(s′)V

where we use the change of variable y(s′) = Psa(s′) − Psa(s′) in (a). Then we case use the
previous lemma for sa rectangular assumption, Lemma 6.3. Then,

min
{σsa:∥σsa∥≤σ̃}

∑
a

π(a|s) min
{y,∥y∥≤σs,a,1y=0,y≥−Psa}

∑
s′

y(s′)V

= min
{σsa:∥σsa∥≤σ̃}

∑
a

π(a|s) max
µ≥0

(
− Psaµ− σsasp(V − µ)∗

)

=
(∑

a

π(a|s) max
µ≥0

{
(−Psaµ)− max

{σsa:∥σsa∥≤σ̃}

∑
a

π(a|s)σsp(V − µ)∗
})

=
∑
a

π(a|s) max
µ≥0

{
(−Psaµ)− σ̃ ∥πs∥∗ sp(V − µ)∗

}
.

We can exchange the min and the max as we get concave-convex problems in σ and µ in the
second line according to minimax theorem (v. Neumann 1928) and using Cauchy Swartz inequality
which is attained in the last equality. Finally, we obtain:

inf
P∈U s,̃σ(P)

PπV =
∑
a

π(a|s)
(

max
µ≥0

Psa(V − µ)− σ̃ ∥πs∥∗ sp(V − µ)∗
)

(a)=
∑
a

π(a|s)
(

max
αλ,ωPsa∈Aλ,ωPsa

Psa[V]
αλ,ωPsa
− σ̃ ∥πs∥∗ sp([V]

αλ,ωPsa
)∗
)

201 7. Proof of the upper bound : Theorem 3.4.1 and 3.4.3

where in (a) we use the previous lemma for sa− rectangular case. Note that as we are using
sa-rectangular case, for TV or L1, this lemma holds, but the vector αλP reduces to a positive
scalar denoted α which is equal to ∥v − µ∗∥∞. (See also Iyengar (2005)).

7 Proof of the upper bound : Theorem 3.4.1 and 3.4.3

7.1 Technical lemmas

We begin with a key lemma concerning the dynamic range of the robust value function V π,σ

(cf. (3.7)), which produces tighter control when σ is large; the proof is deferred to Appendix 7.3.1.
This lemma allows tighter control compared to Clavier et al. (2023).
Lemma 7.1. In sa−rectangular case (see (3.3), for any nominal transition kernel P ∈ RSA×S,
any fixed uncertainty level σ, and any policy π, its corresponding robust value function V π,σ

(cf. (3.7)) satisfies

sp(V π,σ)∞ ≤
1

γmax{1− γ,Cgσ}
(A.102)

where Cg = 1/(mins ∥es∥) is a geometric constant depending on the geometry of the norm. For
example, for Lp, norms p ≥ 1, Cg ≥ 1 which reduce the sample complexity. In s-rectangular case,
we obtain a slightly different lemma because of the dependency on π.
Lemma 7.2. The infinite span semi norm can be controlled as follows for every s in s-rectanuglar
case (See (3.5)):

sp(V π,σ)∞ ≤
1

γmax{1− γ, ∥πs∥∗Cgσ̃}
≤ 1
γmax{1− γ,mins ∥πs∥∗Cgσ̃}

(A.103)

where Cg = 1
mins ∥es∥ is a geometric constant depending on the geometry of the norm. These

lemmas are required to get tight bounds for the sample complexity. The main difference between
sa- and s- rectangular case is that we have an extra dependency on ∥πs∥∗, which represents how
stochastic the policy can be in s rectangular MDPs.
Lemma 7.3. Consider an MDP with transition kernel matrix P and reward function 0 ≤ r ≤ 1.
For any policy π and its associated state transition matrix Pπ := ΠπP and value function
0 ≤ V π,P ≤ 1

1−γ (cf. (3.1)), one has for sa- and s- rectangular assumptions.

(I − γPπ)−1
√

VarPπ(V π,P) ≤
√

8
γ2(1− γ)2 sp(V π,P)∞1.

See 7.3.7 for the proof

7.2 Proof of Theorem 3.4.1 and Theorem 3.4.3

The first decomposition of the proof of Theorem 3.4.1 and Theorem 3.4.3 Agarwal et al. (2020)
while the argument needs essential adjustments in order to adapt to the robustness setting. One
has by assumptions using any planner in empirical RMDPs :∥∥V̂ ⋆,σ − V̂ π̂,σ

∥∥
∞ ≤ εopt, (A.104)

using previous inequality, performance gap
∥∥∥V ⋆,σ − V π̂,σ

∥∥∥
∞

, can be upper bounded using 3 steps.

Chapter 9. Appendix of Chapter 3 202

First step: subdivide the performance gap in 3 terms. We recall the definition of the
optimal robust policy π⋆ with regard to Mrob and the optimal robust policy π̂⋆, the optimal
robust value function V̂ ⋆,σ (resp. robust value function Q̂π,σ) w.r.t. M̂rob. Then, the performance
gap V ⋆,σ − V π̂,σ can be decomposed in one optimization term and two statistical error terms

V ⋆,σ − V π̂,σ =
(
V π⋆,σ − V̂ π⋆,σ

)
+
(
V̂ π⋆,σ − V̂ π̂⋆,σ

)
+
(
V̂ π̂⋆,σ − V̂ π̂,σ

)
+
(
V̂ π̂,σ − V π̂,σ

)
(i)
≤
(
V π⋆,σ − V̂ π⋆,σ

)
+
(
V̂ π̂⋆,σ − V̂ π̂,σ

)
+
(
V̂ π̂,σ − V π̂,σ

)
(ii)
≤
(
V π⋆,σ − V̂ π⋆,σ

)
+ εopt +

(
V̂ π̂,σ − V π̂,σ

)
(A.105)

where (i) holds by V̂ π⋆,σ − V̂ π̂⋆,σ ≤ 0 since π̂⋆ is the robust optimal policy for M̂rob, and (ii)
comes from (A.104) and definition of optimization error. The proof aims to control the last
remaining terms in (A.105) using concentration theory and sufficiently big number of step N . To
do so, we will consider a more general term V̂ π,σ − V π,σ for any policy π even if control of these
two terms slightly differ at the end. Using (A.81), it holds that for both sa- and s-rectangular
assumptions:

V̂ π,σ − V π,σ = rπ + γP̂
π,V̂

V̂ π,σ −
(
rπ + γP π,V V π,σ)

=
(
γP̂

π,V̂
V̂ π,σ − γP π,V̂ V̂ π,σ

)
+
(
γP π,V̂ V̂ π,σ − γP π,V V π,σ

)
(i)
≤ γ

(
P π,V V̂ π,σ − P π,V V π,σ

)
+
(
γP̂

π,V̂
V̂ π,σ − γP π,V̂ V̂ π,σ

)
,

where (i) holds because P π,V̂ V̂ π,σ ≤ P π,V V̂ π,σ because of the optimality of P π,V̂ (see. (A.74)).
Factorizing terms leads to the following equation

V̂ π,σ − V π,σ ≤ γ
(
I − γP π,V

)−1 (
P̂
π,V̂

V̂ π,σ − P π,V̂ V̂ π,σ
)
. (A.106)

In the same manner, we can also obtain a lower bound of this quantity:

V̂ π,σ − V π,σ = rπ + γP̂
π,V̂

V̂ π,σ −
(
rπ + γP π,V V π,σ

)
=
(
γP̂

π,V̂
V̂ π,σ − γP π,V̂ V̂ π,σ

)
+
(
γP π,V̂ V̂ π,σ − γP π,V V π,σ

)
≥ γ

(
P π,V̂ V̂ π,σ − P π,V̂ V π,σ

)
+
(
γP̂

π,V̂
V̂ π,σ − γP π,V̂ V̂ π,σ

)
≥ γ

(
I − γP π,V̂

)−1 (
P̂
π,V̂

V̂ π,σ − P π,V̂ V̂ π,σ
)
. (A.107)

Using both (A.106) and (A.107), we obtain infinite norm control:∥∥V̂ π,σ − V π,σ
∥∥

∞ ≤ γmax
{∥∥∥ (I − γP π,V)−1 (

P̂
π,V̂

V̂ π,σ − P π,V̂ V̂ π,σ
)∥∥∥

∞
,∥∥∥(I − γP π,V̂)−1 (

P̂
π,V̂

V̂ π,σ − P π,V̂ V̂ π,σ
)∥∥∥

∞

}
. (A.108)

By decomposing the error in a symmetric way, he have∥∥V̂ π,σ − V π,σ
∥∥

∞ ≤ γmax
{∥∥∥ (I − γP̂ π,V)−1 (

P̂
π,V

V π,σ − P π,V V π,σ
)∥∥∥

∞
,∥∥∥(I − γP̂ π,V̂)−1(

P̂
π,V

V π,σ − P π,V V π,σ
)∥∥∥

∞

}
. (A.109)

203 7. Proof of the upper bound : Theorem 3.4.1 and 3.4.3

Armed with these inequalities, we can use concentration inequalities to upper bound the two
remaining terms

∥∥V̂ π⋆,σ − V π⋆,σ
∥∥

∞ and
∥∥V̂ π̂,σ − V π̂,σ

∥∥
∞ in (A.105). Taking π = π̂, applying

(A.108) leads to
∥∥V̂ π̂,σ − V π̂,σ

∥∥
∞ ≤ γmax

{∥∥∥(I − γP π̂,V̂)−1 (
P̂
π̂,V̂

V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ
)∥∥∥

∞
,∥∥∥ (I − γP π̂,V)−1 (

P̂
π̂,V̂

V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ
)∥∥∥

∞

}
. (A.110)

Finally, π = π⋆, applying (A.109) gives us∥∥V̂ π⋆,σ − V π⋆,σ
∥∥

∞ ≤ γmax
{∥∥∥(I − γP̂ π⋆,V)−1(

P̂
π⋆,V

V π⋆,σ − P π⋆,V V π⋆,σ
)∥∥∥

∞
,∥∥∥(I − γP̂ π⋆,V̂)−1(

P̂
π⋆,V

V π⋆,σ − P π⋆,V V π⋆,σ
)∥∥∥

∞

}
. (A.111)

Note that to control
∥∥V̂ π⋆,σ − V π⋆,σ

∥∥
∞, we use decomposition not depending on π̂ for value

function as V π⋆,σ is deterministic and fixed, allowing use of classical concentration analysis tools.
This decomposition is the same for both sa-rectangular and s-rectangular case.

Second step: bound first term and second term in (A.111) to control ∥V̂ π⋆,σ − V π⋆,σ∥∞
To control the two terms in (A.111), we use lemma 7.4 based Bernstein’s concentration argument
and whose proof is in Appendix 7.3.3.

Lemma 7.4. For both sa− and s-rectangular setting, consider any δ ∈ (0, 1), with probability
1− δ, it holds:

∣∣∣P̂ π⋆,V V π⋆,σ − P π⋆,V V π⋆,σ
∣∣∣ ≤ 2

√
L

N

√
VarPπ⋆ (V ⋆,σ) + 3LCS ∥1∥∗

N(1− γ) 1 (A.112)

with L = 2 log(18 ∥1∥∗ SAN/δ) and where VarPπ⋆ (V ⋆,σ) is defined in (A.76). Moreover, for
the specific case of TV , this lemma is true without the smoothness term 3LCS∥1∥∗

N(1−γ) .

Armed with the above lemma, now we control the first term on the right-hand side of
(A.111) as follows:(

I − γP̂ π
⋆,V
)−1(

P̂
π⋆,V

V π⋆,σ − P π⋆,V V π⋆,σ
)

(a)
≤
(
I − γP̂ π

⋆,V
)−1∥∥∥P̂ π⋆,V V π⋆,σ − P π⋆,V V π⋆,σ

∥∥∥
∞

(b)
≤
(
I − γP̂ π

⋆,V
)−1(

2
√
L

N

√
VarPπ⋆ (V ⋆,σ) + 3LCS ∥1∥∗

N(1− γ)

)

≤
(
I − γP̂ π

⋆,V
)−1 3LCS ∥1∥∗

N(1− γ) 1 + 2
√
L

N

(
I − γP̂ π

⋆,V
)−1√

Var
P̂
π⋆,V (V ⋆,σ)︸ ︷︷ ︸

=:R1

+ 2
√
L

N

(
I − γP̂ π

⋆,V
)−1

√∣∣∣∣Var
P̂π⋆

(V ⋆,σ)−Var
P̂
π⋆,V (V ⋆,σ)

∣∣∣∣︸ ︷︷ ︸
=:R2

+ 2
√
L

N

(
I − γP̂ π

⋆,V
)−1(√

VarPπ⋆ (V ⋆,σ)−
√

Var
P̂π⋆

(V ⋆,σ)
)

︸ ︷︷ ︸
=:R3

, (A.113)

Chapter 9. Appendix of Chapter 3 204

where (a) holds as the matrix
(
I − γP̂ π

⋆,V
)−1

is positive definite, (b) holds due to Lemma 7.4,
and the last point holds from the following decomposition for variance and triangular inequality

√
VarPπ⋆ (V ⋆,σ) =

(√
VarPπ⋆ (V ⋆,σ)−

√
Var

P̂π⋆
(V ⋆,σ)

)
+
√

Var
P̂π⋆

(V ⋆,σ)

≤
(√

VarPπ⋆ (V ⋆,σ)−
√

Var
P̂π⋆

(V ⋆,σ)
)

+
√∣∣∣∣Var

P̂π⋆
(V ⋆,σ)−Var

P̂
π⋆,V (V ⋆,σ)

∣∣∣∣+√
Var

P̂
π⋆,V (V ⋆,σ).

Finally, the fact that P̂ π
⋆,V is a stochastic matrix, so(

I − γP̂ π
⋆,V
)−1

1 =
(
I +

∞∑
t=1

γt
(
P̂
π⋆,V

)t)
1 ≤ 1

1− γ 1. (A.114)

Armed with these inequalities, the three terms R1,R2,R3 in (A.113) can be controlled separately.

• Consider R1. We first introduce the following lemma, whose proof is postponed to
Appendix 7.3.4.

Lemma 7.5. Consider any δ ∈ (0, 1). With probability at least 1− δ, one has

(
I − γP̂ π

⋆,V
)−1√

Var
P̂
π⋆,V (V ⋆,σ) ≤ 4

√√√√√(1 +
(√

L
(1−γ)2N + CS∥1∥∗L

N(1−γ)

))
γ3(1− γ)2 max{1− γ,Cgσ}

1

≤ 4

√√√√√(1 +
(√

L
(1−γ)2N + CS∥1∥∗L

N(1−γ)

))
γ3(1− γ)3 1

with L = 2 log
(18∥1∥∗SAN

δ

)
in the sa-rectangular case. In the s-rectangular case, it holds:

(
I − γP̂ π

⋆,V
)−1√

Var
P̂
π⋆,V (V ⋆,σ) ≤ 4

√√√√√ (
1 +

(√
L

(1−γ)2N + CS∥1∥∗L
N(1−γ)

))
γ3(1− γ)2 max{1− γ,Cgσ̃mins ∥πs∥∗}

1

≤ 4

√√√√√(1 +
(√

L
(1−γ)2N + CS∥1∥∗L

N(1−γ)

))
γ3(1− γ)3 1

Using Lemma 7.5 and inserting back to (A.113) gives in sa-rectangular case

R1 = 2
√
L

N

(
I − γP̂ π

⋆,V
)−1√

Var
P̂
π⋆,V (V ⋆,σ)

≤ 8

√√√√ L

γ3(1− γ)2 max{1− γ,Cgσ}N

(
1 +

√
L

(1− γ)2N
+ CS ∥1∥∗ L
N(1− γ)

)
1. (A.115)

• Consider R2. First, denote V ′ := V ⋆,σ − η1 η ∈ R, by Lemma 7.1, we have for any π,

0 ≤ min
η
∥V − η1∥∞ ≤

1
γmax{1− γ,Cgσ}

(A.116)

205 7. Proof of the upper bound : Theorem 3.4.1 and 3.4.3

for sa-rectangular case or in s-rectangular we obtain

0 ≤ min
η
∥V − η1∥∞ ≤

1
γmax{1− γ, σ̃Cg ∥πs∥∗}

(A.117)

by the definition of the span semi norm. Moreover, we can use Holder with L1 and L∞ we
have for both sa and s-rectangular case to as it holds that:

∣∣Var
P̃s,a

(V ⋆,σ)− VarPs,a(V ⋆,σ)
∣∣ =

∣∣Var
P̃s,a

(V ′)− VarPs,a(V ′)
∣∣

≤
∥∥P̃s,a − Ps,a∥∥1

∥∥V ′∥∥2
∞

a
≤ σ1

(γ2(max (1− γ), Cgσ)2

≤ 1
γ2 max{(1− γ), σCg}

. (A.118)

In the first inequality, we use
∥∥V ′∥∥2

∞ =
∥∥V ′2∥∥

∞ and and we use Lemma 7.1 in (a) where
Cgσ = σ1.
With the same arguments for s-rectangular, we obtain for V ′ := V ⋆,σ − η1, η ∈ R,∣∣Ππ⋆

(
Var

P̃s
(V ⋆,σ)− VarPs(V ⋆,σ)

)∣∣ =
∣∣Ππ⋆

(
Var

P̃s
(V ′)− VarPs(V ′)

)∣∣
≤ |

∑
a

π∗(a|s)
∑
s′

(P̃s(s′, a)− Ps(s′, a))V ′(s′)2| (A.119)

≤
∥∥V ′∥∥2

∞
∑
a

∑
s′

π∗(a|s)(P̃s(s′, a)− Ps(s′, a))
a
≤
∥∥V ′∥∥2

∞σ̃ ∥π
∗
s∥∗C

s
g1 (A.120)

b
≤
σ̃Csg ∥π∗

s∥∗
∥∥V ′∥∥

∞
γ ∥π∗

s∥∗ σ̃Csg
1 ≤

∥∥V ′∥∥
γ

1. (A.121)

where (a) comes Eq A.175, (b) comes lemma 7.2 or more precisely eq (A.188). Then, taking
the sup over s in the previous equations, it holds

∣∣Ππ⋆
(
Var

P̃s
(V ⋆,σ)− VarPs(V ⋆,σ)

)∣∣ ≤ infη∈R+
∥∥V − η1′∥∥
γ

1 (A.122)

≤ 1
γ2σ̃mins ∥π∗

s∥∗Cg
1. (A.123)

Applying the previous inequality, it holds in sa-rectangular case:

R2 = 2
√
L

N

(
I − γP̂ π

⋆,V
)−1

√∣∣∣∣Var
P̂π⋆

(V ⋆,σ)−Var
P̂
π⋆,V (V ⋆,σ)

∣∣∣∣
= 2

√
L

N

(
I − γP̂ π

⋆,V
)−1

√∣∣∣Ππ⋆
(
Var

P̂ 0(V ⋆,σ)−Var
P̂π⋆,V

(V ⋆,σ)
)∣∣∣

≤ 2
√
L

N

(
I − γP̂ π

⋆,V
)−1√∥∥∥Var

P̂ 0(V ⋆,σ)−Var
P̂π⋆,V

(V ⋆,σ)
∥∥∥

∞
1

≤ 2
√
L

N

(
I − γP̂ π

⋆,V
)−1

√
1

γ2 max{1− γ,Cgσ}
1 (A.124)

≤ 4
√

L

γ2(1− γ)2 max{1− γ,Cgσ}N
1, (A.125)

Chapter 9. Appendix of Chapter 3 206

where the last inequality uses
(
I − γP̂ π

⋆,V
)−1

1 ≤ 1
1−γ 1 (cf. (A.114)) for sa-rectangular. In

the s-rectangular case, we obtain a different result as

R2 = 2
√
L

N

(
I − γP̂ π

⋆,V
)−1

√∣∣∣∣Var
P̂π⋆

(V ⋆,σ)−Var
P̂
π⋆,V (V ⋆,σ)

∣∣∣∣
= 2

√
L

N

(
I − γP̂ π

⋆,V
)−1

√∣∣∣Ππ⋆
(
Var

P̂ 0(V ⋆,σ)−Var
P̂π⋆,V

(V ⋆,σ)
)∣∣∣

≤ 2
√
L

N

(
I − γP̂ π

⋆,V
)−1

√
1

γ2 max{1− γ,mins ∥π∗
s∥∞Cgσ̃}

1 (A.126)

≤ 2
√

L

γ2(1− γ)2 max{1− γ,mins ∥π∗
s∥∞σ̃Cg}N

1, (A.127)

• Consider R3. The following lemma plays an important role.
Applying Lemma 6.2 and using π = π⋆ and V = V ⋆,σ, it holds

√
VarPπ⋆ (V ⋆,σ)−

√
Var

P̂π⋆
(V ⋆,σ) ≤

√√√√2∥V ⋆,σ∥2∞ log
(

2SA
δ

)
N

1,

which can be inserted in (A.113) to gives

R3 = 2
√
L

N

(
I − γP̂ π

⋆,V
)−1 (√

VarPπ⋆ (V ⋆,σ)−
√

Var
P̂π⋆

(V ⋆,σ)
)

≤ 4
(1− γ)

log
(
SAN
δ

)
∥[V ⋆,σ∥∞
N

1 ≤ 4L
(1− γ)2N

1, (A.128)

where the last line uses
(
I − γP̂ π

⋆,V
)−1

1 ≤ 1
1−γ 1 (cf. (A.114)).

Finally, inserting the results of R1 in (A.115), R2 in (A.125), R3 in (A.128), and (A.114) back
into (A.113) gives(

I − γP̂ π
⋆,V
)−1(

P̂
π⋆,V

V π⋆,σ − P π⋆,V V π⋆,σ
)

(A.129)

≤ 8

√√√√ L

γ3(1− γ)2 max{1− γ,Cgσ}N

(
1 +

√
L

(1− γ)2N
+ CS ∥1∥∗ L
N(1− γ)

)
1 + 3LCS ∥1∥∗

N(1− γ)2 1

+ 2
√

2L
γ2(1− γ)2 max{1− γ,Cgσ}N

1 + 4L
(1− γ)2N

1

≤ 10

√√√√ 2L
γ3(1− γ)2 max{1− γ,Cgσ}N

(
1 +

√
L

(1− γ)2N
+ CS ∥1∥∗ L
N(1− γ)

)
1 + 4L

(1− γ)2N
1

(A.130)

+ 3LCS ∥1∥∗
N(1− γ)2 1

≤ 160

√√√√ L(1 + CS∥1∥∗
N(1−γ))

(1− γ)2 max{1− γ,Cgσ}N
1 + 7LCS ∥1∥∗

N(1− γ)2 1, (A.131)

207 7. Proof of the upper bound : Theorem 3.4.1 and 3.4.3

where the last inequality holds by the fact γ ≥ 1
4 and letting N ≥ L

(1−γ)2 . We have the same
result for s-rectangular, replacing, max{1− γ,Cgσ} by max{1− γ,mins ∥π∗

s∥∗ σ̃Cg}.

Now we are ready to control second term in (A.111) to control ∥V̂ π⋆,σ − V π⋆,σ∥∞. To
proceed, applying Lemma 7.4 on the second term of the right-hand side of (A.111) leads to

(
I − γP̂ π

⋆,V̂
)−1(

P̂
π⋆,V

V π⋆,σ − P π⋆,V V π⋆,σ
)

≤
(
I − γP̂ π

⋆,V̂
)−1(

2
√
L

N

√
VarPπ⋆ (V ⋆,σ) + 3LCS ∥1∥∗

N(1− γ)

)

≤
(
I − γP̂ π

⋆,V̂
)−1L′CS ∥1∥∗

N(1− γ) + 2
√
L

N

(
I − γP̂ π

⋆,V̂
)−1√

Var
P̂
π⋆,V̂

(V̂ π⋆,σ)︸ ︷︷ ︸
=:R4

2
√
L

N

(
I − γP̂ π

⋆,V̂
)−1

(√
Var

P̂
π⋆,V̂

(V π⋆,σ − V̂ π⋆,σ)
)

︸ ︷︷ ︸
=:R5

+ 2
√
L

N

(
I − γP̂ π

⋆,V̂
)−1

√√√√∣∣∣∣∣Var

P̂π⋆
(V ⋆,σ)−Var

P̂
π⋆,V̂

(V ⋆,σ)
∣∣∣∣∣

︸ ︷︷ ︸
=:R6

+ 2
√
L

N

(
I − γP̂ π

⋆,V̂
)−1 (√

VarPπ⋆ (V ⋆,σ)−
√

Var
P̂π⋆

(V ⋆,σ)
)

︸ ︷︷ ︸
=:R7

. (A.132)

We now bound the above four terms R4,R5,R6,R7 separately.

• Using Lemma 7.3 with P = P̂ π
⋆,V̂ , π = π⋆ and V = V̂ π⋆,σ which follow V̂ π⋆,σ = rπ⋆ +

γP̂
π⋆,V̂

V̂ π⋆,σ, and in view of (A.114), the term R4 in (A.132) can be controlled as follows:

R4 = 2
√
L

N

(
I − γP̂ π

⋆,V̂
)−1√

Var
P̂
π⋆,V̂

(V̂ π⋆,σ)

≤ 2
√
L

N

√√√√8 min{sp(V̂ π⋆,σ)∗, 1/(1− γ))
γ2(1− γ)2 1

≤ 8
√

L

γ3(1− γ)2 max{1− γ,Cgσ}N
1, (A.133)

where the last inequality is due to Lemma 7.1 for sa-rectangular case and with the same
quantity replacing max{1− γ, σ} by max{1− γ,mins ∥π∗

s∥∗ σ̃} in the s− rectangular case.

• For bounding R5, we can simply use (A.114)) to get

R5 = 2
√
L

N

(
I − γP̂ π

⋆,V̂
)−1√

Var
P̂
π⋆,V̂

(V π⋆,σ − V̂ π⋆,σ)

≤ 2
√

L

(1− γ)2N

∥∥∥V ⋆,σ − V̂ π⋆,σ
∥∥∥

∞
1. (A.134)

Chapter 9. Appendix of Chapter 3 208

R5 ≤ 2
√

L

(1− γ)2N

∥∥∥V ⋆,σ − V̂ π⋆,σ
∥∥∥

∞
1. (A.135)

• The term R6 can upper bounded as (A.125) as follows:

R6 ≤ 2
√

2L
γ2(1− γ)2 max{1− γ,Cgσ}N

1. (A.136)

for sa-rectangular case and with the same quantity replacing max{1− γ,Cgσ} by max{1−
γ,mins ∥π∗

s∥∗ σ̃Cg} in the s− rectangular case.

• Finally, R7 can be controlled the same as (A.128) shown below:

R7 ≤
4L

(1− γ)2N
1. (A.137)

Combining the results in (A.133), (A.135), (A.136), and (A.137) and inserting back to (A.132)
leads to for N ≥ L

(1−γ)2

(
I − γP̂ π

⋆,V̂
)−1(

P̂
π⋆,V

V π⋆,σ − P π⋆,V V π⋆,σ
)
≤ 8

√√√√ L(1 + CS∥1∥∗
N(1−γ))

γ3(1− γ)2 max{1− γ,Cgσ}N
1

+ 2
√

L

(1− γ)2N

∥∥∥V ⋆,σ − V̂ π⋆,σ
∥∥∥

∞
1 + 2

√
2L

γ2(1− γ)2 max{1− γ,Cgσ}N
1 + 7LCS ∥1∥∗

N(1− γ)2

≤ 80

√√√√ L(1 + CS∥1∥∗
N(1−γ))

(1− γ)2 max{1− γ,Cgσ}N
1 + 2

√
L

(1− γ)2N

∥∥∥V ⋆,σ − V̂ π⋆,σ
∥∥∥

∞
1 + 7LCS ∥1∥∗

N(1− γ)2 1,

(A.138)

where the last inequality follows from the assumption γ ≥ 1
4 . Finally, inserting (A.131) and

(A.138) back to (A.111) yields

∥∥∥V̂ π⋆,σ − V π⋆,σ
∥∥∥

∞
≤ max

{
160

√√√√ L(1 + CS∥1∥∗
N(1−γ))

(1− γ)2 max{1− γ,Cgσ}N
+ 7LCS ∥1∥∗
N(1− γ)2 ,

80

√√√√ L(1 + CS∥1∥∗
N(1−γ))

(1− γ)2 max{1− γ,Cgσ}N
+ 2

√
L

(1− γ)2N

∥∥∥V ⋆,σ − V̂ π⋆,σ
∥∥∥

∞
+ 7LCS ∥1∥∗
N(1− γ)2

}

≤ 160

√√√√ L(1 + CS∥1∥∗
N(1−γ))

(1− γ)2 max{1− γ,Cgσ}N
+ 14LCS ∥1∥∗

N(1− γ)2 , (A.139)

where the last inequality holds by taking N ≥ 16 log(SANδ)
(1−γ)2 rearranging terms. In s-rectangular

case, we obtain the same result, replacing max{1− γ,Cgσ} by max{1− γ,mins ∥π∗
s∥∗Cgσ̃}.

Third step: controlling ∥V̂ π̂,σ − V π̂,σ∥∞ or bounding the first and second term in
(A.110). Unlike the earlier term, one has to face a more complicated statistical dependency
between π̂ and the empirical RMDP. To begin with, we introduce the following lemma which
controls the main term on the right-hand side of (A.110), which is proved in Appendix 7.3.5.

209 7. Proof of the upper bound : Theorem 3.4.1 and 3.4.3

Lemma 7.6. Consider any δ ∈ (0, 1). Taking N ≥ L′′ with probability at least 1− δ, one has
for sa- or s-rectangular case :

∣∣∣P̂ π̂,V̂ V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ
∣∣∣ ≤ 2

√
L′

N

√
VarP 0

s,a
(V̂ ⋆,σ)1 + 2εopt1 + 15L′′CS ∥1∥∗

N(1− γ)

≤ 2
√

L′′

(1− γ)2N
1 + 2εopt1 + 14L′′CS ∥1∥∗

N(1− γ) 1. (A.140)

with L′′ = 2 log
(54∥1∥∗SAN

2

(1−γ)δ

)
. Moreover, for TV this lemma holds but without the geometric term

14L′′CS∥1∥∗
N(1−γ) 1. Taking the sup over s gives the final result.

With Lemma 7.6 in hand, we have to control first term in (A.110)(
I − γP π̂,V̂

)−1(
P̂
π̂,V̂

V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ
)

(i)
≤
(
I − γP π̂,V̂

)−1 ∣∣∣∣P̂ π̂,V̂ V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ

∣∣∣∣
≤ 2

√
L′

N

(
I − γP π̂,V̂

)−1√
Var

P π̂
(V̂ ⋆,σ) +

(
I − γP π̂,V π̂

)−1
(

2εopt

)
1 (A.141)

+
(
I − γP π̂,V π̂

)−1 14L′′CS ∥1∥∗
N(1− γ) 1

(ii)
≤
(

2εopt
1− γ

)
1 + 2

√
L′

N

(
I − γP π̂,V̂

)−1√
Var

P π̂,V̂
(V̂ π̂,σ)︸ ︷︷ ︸

=:S1

+ 2
√
L′

N

(
I − γP π̂,V̂

)−1
√∣∣∣∣Var

P π̂,V̂
(V̂ ⋆,σ)−Var

P π̂,V̂
(V̂ π̂,σ)

∣∣∣∣︸ ︷︷ ︸
=:S2

+ 2
√
L′

N

(
I − γP π̂,V̂

)−1
√∣∣∣∣Var

P π̂
(V̂ ⋆,σ)−Var

P π̂,V̂
(V̂ ⋆,σ)

∣∣∣∣︸ ︷︷ ︸
=:S3

+14L′′CS ∥1∥∗
N(1− γ)2 1, (A.142)

where (i) and (ii) hold by the fact that each row of (1− γ)
(
I − γP π̂,V̂

)−1
is a probability vector

that falls into ∆(S). The remainder of the proof will focus on controlling the three terms in
(A.142) separately.

• For S1, we introduce the following lemma, whose proof is postponed to 7.3.6.

Lemma 7.7. Consider any δ ∈ (0, 1). Taking N ≥ L′′

(1−γ)2 one has with probability at least
1− δ, for sa− rectangular

(
I − γP π̂,V̂

)−1√
Var

P π̂,V̂
(V̂ π̂,σ) ≤ 6

√√√√√ (
1 + εopt + L′′CS∥1∥∗

N(1−γ)

)
γ3(1− γ)2 max{1− γ, σ}1

≤ 6

√√√√√(1 + εopt + L′′CS∥1∥∗
N(1−γ)

)
(1− γ)3γ3 1.

Chapter 9. Appendix of Chapter 3 210

and for s-rectangular

(
I − γP π̂,V̂

)−1√
Var

P π̂,V̂
(V̂ π̂,σ) ≤ 6

√√√√√ L′′
(
1 + εopt + CS∥1∥∗

N(1−γ)

)
γ3(1− γ)2 max{1− γ,Cgσ̃mins ∥π̂s∥∞}

1

≤ 6

√√√√√L′′
(
1 + εopt + CS∥1∥∗

N(1−γ)

)
(1− γ)3γ2 1.

Applying Lemma 7.7 and (A.114) to (A.142) leads to

S1 = 2
√
L′

N

(
I − γP π̂,V̂

)−1√
Var

P π̂,V̂
(V̂ π̂,σ)

≤ 12
√

L′′

γ3(1− γ)2 max{1− γ,Cgσ}N
1. (A.143)

for sa-rectangular and the same quantity replacing max{1− γ,Cgσ} by
max{1− γ,Cgσ̃mins ∥π̂s∥∗} for s− rectangular case.

• Applying Lemma 6.1 with ∥V̂ ⋆,σ − V̂ π̂,σ∥∞ ≤ εopt and (A.114), S2 can be controlled as

S2 = 2
√
L′′

N

(
I − γP π̂,V̂

)−1
√∣∣∣∣Var

P π̂,V̂
(V̂ ⋆,σ)−Var

P π̂,V̂
(V̂ π̂,σ)

∣∣∣∣
≤ 4

√
L′′

N

(
I − γP π̂,V̂

)−1
√
εopt

1
1− γ

2
≤ 8

√
εoptL′′

(1− γ)4N
1. (A.144)

• S3 can be controlled similar to R2 in (A.125) as follows:

S3 = 2
√
L′′

N

(
I − γP π̂,V̂

)−1
√∣∣∣∣Var

P π̂
(V̂ ⋆,σ)−Var

P π̂,V̂
(V̂ ⋆,σ)

∣∣∣∣
≤ 4

√
L′′

N

(
I − γP π̂,V̂

)−1
√

1
γ2 max{1− γ,Cgσ}

1 (A.145)

≤ 8
√

L′′

γ2(1− γ)2 max{1− γ,Cgσ}N
1 (A.146)

for sa-rectangular and replacing max{1− γ, σ} by max{1− γ, σ̃mins ∥π̂s∥∗} for s− rectan-
gular case.

Finally, summing up the results in (A.143), (A.144), and (A.146) and inserting them back to

211 7. Proof of the upper bound : Theorem 3.4.1 and 3.4.3

(A.142) yields: taking N ≥ L′′

(1−γ)2 , with probability at least 1− δ,

(
I − γP π̂,V̂

)−1 (
P̂
π̂,V̂

V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ
)
≤
(2εopt

1− γ

)
1 + 14L′′CS ∥1∥∗

N(1− γ)2 1

+ 12

√√√√√ L′′
(
1 + εopt + CS∥1∥∗

N(1−γ)

)
γ3(1− γ)2 max{1− γ,Cgσ}N

1 + 8
√

εoptL′

(1− γ)4N
1+ (A.147)

8
√

L′

γ2(1− γ)2 max{1− γ,Cgσ}N
1

≤ 16

√√√√√ L′′
(
1 + εopt + CS∥1∥∗

N(1−γ)

)
γ3(1− γ)2 max{1− γ, σ}N 1 +

(
2εoptγ

(1− γ) + 8
√

εoptγL′

(1− γ)4N
1 + 15L′′CS ∥1∥∗

N(1− γ)2 1
)

(A.148)

(A.149)

for sa-rectangular and the same quantity replacing max{1− γ, σ} by max{1− γ, σ̃mins ∥π̂s∥∗}
for s− rectangular case. In this step, it is harder to decouple terms as V̂ π̂ depends on data both
in π̂ and V̂ .

Step 5: controlling ∥V̂ π̂,σ − V π̂,σ∥∞: bounding the second term in (A.110). Towards
this, applying Lemma 7.6 leads to in sa-rectangular case:

(
I − γP π̂,V

)−1(
P̂
π̂,V̂

V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ
)
≤
(
I − γP π̂,V

)−1∣∣∣P̂ π̂,V̂ V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ
∣∣∣

≤ 2
√
L′′

N

(
I − γP π̂,V

)−1√
Var

P π̂
(V̂ ⋆,σ) +

(
I − γP π̂,V

)−1
(

2εopt

)
1 (A.150)

+
(
I − γP π̂,V

)−1L′′14CS ∥1∥∗
N(1− γ) 1

≤
(

2εopt
(1− γ)

)
1 + 2

√
L′′

N

(
I − γP π̂,V

)−1√
Var

P π̂,V
(V π̂,σ)︸ ︷︷ ︸

=:S4

+
(
I − γP π̂,V

)−1 14L′′CS ∥1∥∗
N(1− γ) 1

+ 2
√
L′

N

(
I − γP π̂,V

)−1√
Var

P π̂,V
(V̂ π̂,σ − V π̂,σ)︸ ︷︷ ︸

=:S5

+ 2
√
L′′

N

(
I − γP π̂,V̂

)−1
√∣∣∣∣Var

P π̂,V
(V̂ ⋆,σ)−Var

P π̂,V
([V̂ π̂,σ)

∣∣∣∣︸ ︷︷ ︸
=:S6

+ 2
√
L′′

N

(
I − γP π̂,V̂

)−1
√∣∣∣∣Var

P π̂
(V̂ ⋆,σ)−Var

P π̂,V
([V̂ ⋆,σ)

∣∣∣∣︸ ︷︷ ︸
=:S7

. (A.151)

We shall bound each of the terms separately.

• Applying Lemma 7.3 with P = P π̂,V , π = π̂, and taking V = V π̂,σ which obeys V π̂,σ =

Chapter 9. Appendix of Chapter 3 212

rπ̂ + γP π̂,V V π̂,σ, the term S4 can be controlled similar to (A.133) as follows:

S4 ≤ 8

√√√√√ L′′
(
1 + εopt + CS∥1∥∗

N(1−γ)

)
γ3(1− γ)2 max{1− γ,Cgσ}N

1. (A.152)

for sa-rectangular and the same quantity replacing max{1− γ,Cgσ} by
max{1− γ,mins ∥π̂s∥∗ σ̃Cg} for s− rectangular case.

• For S5, it is observed that

S5 = 2
√
L′′

N

(
I − γP π̂,V

)−1√
Var

P π̂,V
(V̂ π̂,σ − V π̂,σ)

≤ 2
√

L′′

(1− γ)2N

∥∥∥V π̂,σ − V̂ π̂,σ
∥∥∥

∞
1. (A.153)

• Next, observing that S6 and S7 are almost the same as the terms S2 (controlled in (A.144))
and S3 (controlled in (A.146)) in (A.142), it is easily verified that they can be controlled
as follows

S6 ≤ 4
√

εoptL′′

(1− γ)4N
1, S7 ≤ 4

√
L′′

γ2(1− γ)2 max{1− γ,Cgσ}N
1. (A.154)

for sa-rectangular and the same quantity replacing max{1− γ, σ} by max{1− γ,mins ∥π̂s∥∗ σ̃}
for s− rectangular case. Then inserting the results in (A.152), (A.153), and (A.154) back to
(A.151) leads to

(
I − γP π̂,V

)−1(
P̂
π̂,V̂

V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ
)

(A.155)

≤
(

2εopt
(1− γ)

)
1 + 8

√√√√√ L′′
(
1 + εopt + CS∥1∥∗

N(1−γ)

)
γ3(1− γ)2 max{1− γ, σ}N 1 + 14L′′CS ∥1∥∗

N(1− γ)2 1

+ 2
√

L′′

(1− γ)2N

∥∥∥V π̂,σ − V̂ π̂,σ
∥∥∥

∞
1 + 4

√
L′′εopt

(1− γ)4N
1 + 4

√
L′′

γ2(1− γ)2 max{1− γ,Cgσ}N
1

≤ 12

√√√√√ L′′
(
1 + εopt + CS∥1∥∗

N(1−γ)

)
γ3(1− γ)2 max{1− γ, σ}N + 4

√
L′′

(1− γ)2N

∥∥∥V π̂,σ − V̂ π̂,σ
∥∥∥

∞
1 (A.156)

+ 3εopt
(1− γ)1 + 14L′′CS ∥1∥∗

N(1− γ)2 1. (A.157)

(A.158)

Taking N ≥ 16L′′

1−γ , we obtain 2εopt
(1−γ) + 4εopt

√
L′′

(1−γ)4N 1 ≤ 3εopt
(1−γ) with probability at least 1− δ,

213 7. Proof of the upper bound : Theorem 3.4.1 and 3.4.3

inserting (A.148) and (A.156) back to (A.110)

∥∥∥V̂ π̂,σ − V π̂,σ
∥∥∥

∞
≤ max

{
16

√√√√√ L′′
(
1 + εopt + CS∥1∥∗

N(1−γ)

)
γ3(1− γ)2 max{1− γ, σ}N +

(2εoptγ

(1− γ) + 14L′′CS ∥1∥∗
N(1− γ)2

)
,

12

√√√√√ L′′
(
1 + εopt + CS∥1∥∗

N(1−γ)

)
γ3(1− γ)2 max{1− γ, σ}N + 4

√
L′′

(1− γ)2N

∥∥∥V π̂,σ − V̂ π̂,σ
∥∥∥

∞
(A.159)

+ 3εopt
(1− γ) + 14L′′CS ∥1∥∗

N(1− γ)2

}

≤ 48

√√√√√ L′′
(
1 + εopt + CS∥1∥∗

N(1−γ)

)
γ3(1− γ)2 max{1− γ,Cgσ}N

+ 6εopt
(1− γ) + 28L′′CS ∥1∥∗

N(1− γ)2 (A.160)

for sa-rectangular and the same quantity, replacing max{1−γ,Cgσ} by max{1−γ, σ̃mins ∥π̂s∥∗}
for s− rectangular case. The proof is similar for TV without the geometric term depending on
CS .

Step 6: summing all the previous inequalities results. Using all the previous results
in (A.139) and (A.160) and inserting back to (A.105) complete the proof as follows: taking
N ≥ 16L′′

(1−γ)2 , γ > 1/4, , with probability at least 1− δ, for sa-rectangular

∥∥V ⋆,σ − V π̂,σ
∥∥

∞ ≤
∥∥V π⋆,σ − V̂ π⋆,σ

∥∥
∞ + εopt +

∥∥V̂ π̂,σ − V π̂,σ
∥∥

∞

≤ εopt + 48

√√√√√ L′′
(
1 + εopt + CS∥1∥∗

N(1−γ)

)
γ3(1− γ)2 max{1− γ,Cgσ}N

+ 6εopt
(1− γ) + 28L′′CS ∥1∥∗

N(1− γ)2

+ 160

√√√√ L(1 + CS∥1∥∗
N(1−γ))

(1− γ)2 max{1− γ,Cgσ}N
+ 14LCS ∥1∥∗

N(1− γ)2

≤ 8εopt
1− γ + 42L′′CS ∥1∥∗

N(1− γ)2 + 1508

√√√√ L′′(1 + CS∥1∥∗
N(1−γ))

(1− γ)2 max{1− γ,Cgσ}N
(A.161)

where the last inequality holds by γ ≥ 1
4 and N ≥ 16L′′

(1−γ)2 for sa-rectangular and the same quantity
replacing max{1 − γ, σ} by max{1 − γ, σ̃mins{∥π∗

s∥∗}} for s− rectangular case. The proof is
similar for TV without the geometric term depending on CS .

7.3 Proof of the auxiliary lemmas

7.3.1 Proof of Lemma 7.1

Similarly to Shi et al. (2023), denoting s0 the argmax of V π,σ such that V π,σ (s0) = mins∈S V
π,σ(s)

using recursive Bellman’s equation

Chapter 9. Appendix of Chapter 3 214

max
s∈S

V π,σ(s) = max
s∈S

Ea∼π(·|s)

[
r(s, a) + γ inf

P∈Uσ(Ps,a)
PV π,σ

]
(A.162)

≤ max
(s,a)∈S×A

(
1 + γ inf

P∈Uσ(Ps,a)
PV π,σ

)
(A.163)

where the second line holds since the reward function r(s, a) ∈ [0, 1] for all (s, a) ∈ S ×A.
Then we construct for any (s, a) ∈ S ×A, P̃s,a ∈ RS by reducing the values of some elements

of Ps,a such that Ps,a ≥ P̃s,a ≥ 0 and ∑s′

(
Ps,a (s′)− P̃s,a (s′)

)
= σCs,ag . with Cs,ag = 1

∥es0∥
It

lead to P̃s,a + σCs,ag e⊤
s0 ∈ U

σ
∥∥ (Ps,a), where es0 is the standard basis vector supported on s0, since

1
2
∥∥∥P̃s,a + σCs,ag e⊤

s0 − Ps,a
∥∥∥ ≤ 1

2
∥∥∥P̃s,a − Ps,a∥∥∥+

Cs,ag σ∥es0∥
2 = σ/2 + σ/2 = σ (A.164)

Consequently,

inf
P∈Uσ∥.∥(Ps,a)

PV π,σ ≤
(
P̃s,a + σCs,ag e⊤

s0

)
V π,σ ≤

∥∥∥P̃s,a∥∥∥1
∥V π,σ∥∞ + σV π,σ (s0)Cs,ag (A.165)

≤ (1− Cs,ag σ) max
s∈S

V π,σ(s) + σCs,ag min
s∈S

V π,σ(s) (A.166)

where the second inequality holds by∥∥∥P̃s,a∥∥∥1
=
∑
s′

P̃s,a
(
s′) = −

∑
s′

(
Ps,a

(
s′)− P̃s,a (s′))+

∑
s′

Ps,a
(
s′) = 1− σCs,ag (A.167)

Plugging this back to the previous relation gives

max
s∈S

V π,σ(s) ≤ 1 + γ(1− Cs,ag σ) max
s∈S

V π,σ(s) + γCs,ag σmin
s∈S

V π,σ(s) (A.168)

which, by rearranging terms, yields

max
s∈S

V π,σ(s) ≤
1 + γCs,ag σmins∈S V

π,σ(s)
1− γ(1− Cs,ag σ) (A.169)

≤ 1
(1− γ) + γCs,ag σ

+ min
s∈S

V π,σ(s) ≤ 1
γmax{1− γ,Cs,ag σ}

+ min
s∈S

V π,σ(s) (A.170)

So rearranging terms it holds :

sp(V π,σ)∞ ≤
1

γmax{1− γ,Cs,ag σ}
(A.171)

or taking the sup over s:

sp(V π,σ)∞ ≤
1

γmax{1− γ,Cgσ}
(A.172)

As we pick the supreme over s, the quantity, Cs,ag is replaced by Cg = 1/(mins ∥es∥) to obtain a
control for every s.

215 7. Proof of the upper bound : Theorem 3.4.1 and 3.4.3

7.3.2 Proof of Lemma 7.2

Similarly to 7.1 denoting s0 the argmax of V π,σ such that V π,σ (s0) = mins∈S V
π,σ(s) using

recursive Bellman’s equation

max
s∈S

V π,σ(s) = max
s∈S

Ea∼π(·|s)

[
r(s, a) + γ inf

P∈U σ̃(Ps)
PV π,σ̃

]
(A.173)

≤ max
s∈S

(
1 + γ inf

Pπ∈U σ̃(Pπs)
PπV π,σ̃

)
(A.174)

where the second line holds since the reward function r(s, a) ∈ [0, 1] for all (s, a) ∈ S×A.Then
we construct for any s ∈ S P̃s ∈ RS×A by reducing the values of some elements of Ps such that
Ps ≥ P̃s ≥ 0 and

∀a ∈ A,
∑
s′

(
Ps
(
s′, a

)
− P̃s

(
s′, a

))
= σs,aC

s
g

where Csg is defined as 1/∥es∥. Writting ∥σs,a∥ ≤ σ̃ we construction σs,a such that∑
a

π(a|s)
∑
s′

(
Ps
(
s′, a

)
− P̃s

(
s′, a

))
= ∥πs∥∗ σ̃Csg . (A.175)

Not that this construction is possible as it is simply Cauchy Swartz equality case. It leads to
P̃s + σe⊤

s0,a ∈ U
σ̃ (Ps), where es0,a ∈ RS×A is the standard basis vector supported on s0 which is

equal to 1 at s0 for every a and otherwise.

1
2
∥∥∥P̃s + σs,aC

s
ge

⊤
s0,a − Ps

∥∥∥ ≤ 1
2
∥∥∥P̃s − Ps∥∥∥+

σ̃∥es0∥Csg
2 = σ̃/2 + σ̃/2 (A.176)

as Csg∥σs,aes0,a∥ is equal to Csg σ̃∥es0∥ Consequently,

inf
Pπ∈Uσ(Ps)

PπV π,σ̃ ≤ Ππ
(
P̃ πs + σCsge

⊤
s0

)
V π,σ̃ (A.177)

=
∑
a

∑
s′

P̃s(s′, a)π(a|s)V π,σ̃(s′) + σes0,aC
s
gV

π,σ̃ (s0)π(a|s) (A.178)

≤
∑
a

sup
s′

[V π,σ̃(s′)](
∑
s′

P̃s(s′, a)))π(a|s) + V π,σ̃ (s0)π(a|s)σs,aCsg (A.179)

(a)= max
s∈S

V π,σ(s)
∑
a

(1− σCsg)π(a|s) +
∑
a

V π,σ̃ (s0)π(a|s)σs,aCsg (A.180)

(b)= max
s∈S

V π,σ(s)(1− σ̃Csg) ∥πs∥∗ + ∥πs∥∗ σ̃C
s
g min
s∈S

V π,σ̃(s) (A.181)

≤ (1− Csg σ̃) max
s∈S

V π,σ(s) + σCsg min
s∈S

V π,σ̃(s) (A.182)

where ∥π∥∞ is the norm of the vector π(.|s) and where (a) holds because∑
s′

P̃s
(
s′) = −

∑
s′

(
Ps
(
s′)− P̃s (s′))+

∑
s′

Ps
(
s′) = 1− σs,aCsg (A.183)

Chapter 9. Appendix of Chapter 3 216

Finally (b) is due to (A.175) and using Holder’s inequality in the second term. Plugging this
back to the previous relation gives

max
s∈S

V π,σ̃(s) ≤ 1 + γ(1− σ̃Csg ∥πs∥∗) max
s∈S

V π,σ(s) + γ ∥πs∥∗ σ̃C
s
g min
s∈S

V π,σ̃(s) (A.184)

which, by rearranging terms, yields

max
s∈S

V π,σ̃(s) ≤
1 + γσ̃ ∥πs∥∗Csg mins∈S V

π,σ̃(s)
1− γ(1− Csg σ̃ ∥πs∥∗) (A.185)

≤ 1
(1− γ) + ∥πs∥∗ γCsg σ̃

+ min
s∈S

V π,σ̃(s) (A.186)

≤ 1
(1− γ) + γ ∥πs∥∗Csg σ̃

+ min
s∈S

V π,σ̃(s) (A.187)

≤ 1
γmax{1− γ,Csg ∥πs∥∗ σ̃}

+ min
s∈S

V π,σ̃(s). (A.188)

So rearranging and taking the sumpremum over all sterm it holds :

sp(V π,σ̃)∞ ≤
1

γmax{1− γ,mins ∥πs∥∗Cgσ̃}
. (A.189)

As we pick the supreme over s ovf this quantity, Csg is replaced by Cg = 1/mins ∥es∥.

7.3.3 Proof of Lemma 7.4

Proof. Concentration of the robust values function. with probability 1− δ, it holds:

∣∣∣P π,Vs,a V − P̂ π,Vs,a V
∣∣∣ ≤ 2

√
L

N

√
VarP 0

s,a
(V) + 3LCS ∥1∥∗

N(1− γ)

217 7. Proof of the upper bound : Theorem 3.4.1 and 3.4.3

with L = 2 log(18 ∥1∥∗ SAN/δ) and First we can use optimization duality such as in (A.99):

∣∣∣P π,Vs,a V − P̂ π,Vs,a V
∣∣∣ (A.190)

=
∣∣∣ max
µλ,ω
P0
s,a

∈Mλ,ω

P0
s,a

{
P 0
s,a(V − µ)− σ (sp((V − µ))∗)

}

− max
µλ,ω
P̂0
s,a

∈Mλ,ω

P̂0
s,a

{
P̂ 0
s,a(V − µ

λ,ω

P̂ 0
s,a

)− σ
(

sp((V − µλ,ω
P̂ 0
s,a

))∗

)} ∣∣∣
≤ max

{∣∣∣ max
µλ,ω
P0
s,a

∈Mλ,ω

P0
s,a

{
P 0
s,a(V − µ

λ,ω
P 0
s,a

)− σ
(
sp((V − µλ,ωP 0

s,a
))∗
)}

− max
µλ,ω
P0
s,a

∈Mλ,ω

P0
s,a

{
P̂ 0
s,a(V − µ

λ,ω
P 0
s,a

)− σ
(
sp((V − µλ,ωP 0

s,a
))∗
)} ∣∣∣; (A.191)

∣∣∣ max
µλ,ω
P̂0
s,a

∈Mλ,ω

P̂0
s,a

{
P̂ 0
s,a(V − µ

λ,ω

P̂ 0
s,a

)− σ
(

sp((V − µλ,ω
P̂ 0
s,a

))∗

)}
(A.192)

− max
µλ,ω
P̂0
s,a

∈Mλ,ω

P̂0
s,a

{
P 0
s,a(V − µ

λ,ω

P̂ 0
s,a

)− σ
(

sp((V − µλ,ω
P̂ 0
s,a

))∗

)} ∣∣∣}

≤ max
{ ∣∣∣∣∣∣∣ max

µ∈µλ,ω
P0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V − µλ,ωP 0

s,a
)

∣∣∣∣∣∣∣︸ ︷︷ ︸
=:gs,a(αλ,ωP ,V)

,

∣∣∣∣∣∣∣ max
µλ,ω
P̂0
s,a

∈Mλ,ω

P̂0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V − µλ,ω

P̂ 0
s,a

)

∣∣∣∣∣∣∣︸ ︷︷ ︸
=:gs,a(αλ,ω

P̂
,V)

}
(A.193)

where in the first equality we use Lemma 6.3. The final inequality is a consequence of the
1-Lipschitzness of the max operator. First, we control gs,a(αλ,ωP , V). To do so, we use for a fixed
αλ,ωP and any vector V that is independent with P̂ 0, the Bernstein’s inequality, one has with
probability at least 1− δ with sa-rectangular notations,

gs,a(αλ,ωP , V) =
∣∣∣∣(P 0

s,a − P̂ 0
s,a

)
[V]

αλ,ωP

∣∣∣∣ ≤
√√√√2 log

(
2
δ

)
N

√
VarP 0

s,a
(V) +

2 log
(

2
δ

)
3N(1− γ) . (A.194)

Once pointwise concentration derived, we will use uniform concentration to yield this lemma.
First, union bound, is obtained noticing that gs,a(αλ,ωP , V) is 1-Lipschitz w.r.t. λ and ω as
it is linear in λ and ω. Moreover, λ∗ = ∥V − µ∗ − ω∥∗ obeying λ∗ ≤ ∥1∥∗

1−γ . The quantity
ω ∈ [0, 1/(1− γ)] as it is always smaller that V by definition. We construct then a 2-dimensional
a ε1-net Nε1 over λ∗ ∈ [0, ∥1∥∗

1−γ] and ω ∈ [0, 1/(1 − γ)] whose size satisfies |Nε1 | ≤
(3∥1∥∗
ε1(1−γ)

)2

(Vershynin 2018). Using union bound and (A.194), it holds with probability at least 1− δ
SA that

for all λ ∈ Nε1 ,

gs,a(αλP , V) ≤

√√√√2 log
(2SA|Nε1 |

δ

)
N

√
VarP 0

s,a
(V) +

2 log
(2SA|Nε1 |

δ

)
3N(1− γ) . (A.195)

Chapter 9. Appendix of Chapter 3 218

Using the previous equation and also (A.193), it results in using notation 2 log
(18SAN∥1∥∗

δ

)
= L,

gs,a(αλP , V)
(a)
≤ sup

αλP∈Nε1

∣∣∣(P 0
s,a − P̂ 0

s,a

)
[V]αλP

∣∣∣+ ε1

(b)
≤

√√√√2 log
(
SA|Nε1 |

δ

)
N

√
VarP 0

s,a
(V) +

2 log
(2SA|Nε1 |

δ

)
3N(1− γ) + ε1 (A.196)

(c)
≤

√√√√2 log
(2SA|Nε1 |

δ

)
N

√
VarP 0

s,a
(V) +

log
(2SA|Nε1 |

δ

)
N(1− γ)

(d)
≤

√
L

N

√
VarP 0

s,a
(V) + L

N(1− γ) (A.197)

≤

√
L

N
∥V ∥∞ + L

N(1− γ)

≤ 2
√

L

(1− γ)2N
(A.198)

where (a) is because the optimal α falls into the ε1-ball centered around some point inside Nε1

and gs,a(αλP , V) is 1-Lipschitz with regard to λ and ω, (b) is due to Eq. (A.195), (c) arises from

taking ε1 =
log
(

2SA|Nε1 |
δ

)
3N(1−γ) , (d) is verified by |Nε1 | ≤

(3∥1∥∗
ε1(1−γ)

)2
≤ 9N∥1∥ and that variance of

a ceiling function of a vector is smaller than the variance of non-ceiling vector , and the last
inequality comes from the fact ∥V ⋆,σ∥∞ ≤ 1

1−γ and taking N ≥ 2 log
(18SAN∥1∥∗

δ

)
= L.

Contrary to the previous term, the second term gs,a(αλP̂ , V) is more difficult as we need concen-
tration. Still, the data has an extra dependency through the parameter αλ

P̂
. We need to decouple

this problem using absorbing MDPs. Then it leads to

gs,a(αλ,ωP̂ , V) (A.199)

= | max
µλ,ω
P̂0
s,a

∈Mλ,ω

P̂0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V − µλ,ω

P̂ 0
s,a

)| (A.200)

= | max
µ∈Mλ,ω

P̂0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V − µλ,ωP 0

s,a
) +

(
P 0
s,a − P̂ 0

s,a

)
(µλ,ωP 0

s,a
− µλ,ω

P̂ 0
s,a

)| (A.201)

≤ | max
µλ,ω
P0
s,a

∈Mλ,ω

P0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V − µλ,ωP 0

s,a
) + max

µλ,ω
P̂0
s,a

∈Mλ,ω

P̂0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(µλ,ωP 0

s,a
− µλ,ω

P̂ 0
s,a

)|. (A.202)

In the first equality, we add the term µλ,ωP 0
s,a

to retrieve the previous concentration problem, fixing
P 0
s,a and optimizing λ, ω. In the second, we extend the max using triangular inequality. The first

term in the last equality is exactly the term we have controlled previously, while the second one
needs more attention. We decouple the data’s dependency, then control the difference between
the µ. Then using the characterization of the optimal µ from equation (A.96):(

P 0
s,a − P̂ 0

s,a

)
(µλ,ωP 0

s,a
− µλ,ω

P̂ 0
s,a

) =
∑
s′

λ
(
P 0
s,a(s′)− P̂ 0

s,a(s′)
)

(∇
∥∥∥P 0

s,a

∥∥∥−∇∥∥∥P̂ 0
s,a

∥∥∥)
Here we assume that the subgradient is a gradient as we assume that the norm is C2. The
question that arises is whether the gradient of the norm is Lipschitz.

219 7. Proof of the upper bound : Theorem 3.4.1 and 3.4.3

Note that we are considering the worst case as (µλ,ωP 0
s,a
− µλ,ω

P̂ 0
s,a

) can be zero in the case where
µ the Lagrangian variable is equal to zero. Finally, note that we can also control this term when
one of the two terms µλ,ωP 0

s,a
or µλ,ω

P̂ 0
s,a

is equal to zero as µλ,ω
P̂ 0
s,a

and µλ,ωP 0
s,a

smaller that V because
V − µ need to be positive in equation (A.92). In this case, classical control using Bernstein’s
inequality without uniform concentration can be applied, giving the same result. In the worst
case where all terms in (µλ,ωP 0

s,a
− µλ,ω

P̂ 0
s,a

) are non zero, assuming that the norm is C2, using mean
value theorem, we know that

∥∥∥(∇∥∥∥P 0
s,a

∥∥∥−∇∥∥∥P̂ 0
s,a

∥∥∥)∥∥∥
2
≤ sup

x∈∆(S)

∥∥∥∇2∥x∥
∥∥∥

2

∥∥∥(P 0
s,a − P̂ 0

s,a)
∥∥∥

2
.

As the norm is C2, is continuous and as the simplex is bounded, this quantity exists according
to the Extreme value theorem. It is possible to compute this contact depending on S for explicit
norms such as Lp. Indeed, for L2:

∇2∥x∥2 =
(I − x

⊗
x)

∥x∥2
2

∥x∥2
≤ 1
∥x∥2

I ≤ 1
minx∈∆(S) ∥x∥2

I =
√
S

where ⊗ is the Kronecker product. So we have an upper bound independent of x. For Lp = ∥x∥p
norms, p ≥ 2, we have simple taking derivative twice:

∇2∥x∥p = p− 1
Lp

(
Ap−2 − gpgTp

)
with

A = Diag
(

abs(x)
Lp

)

gp = Ap−2
(
x

Lp

)
.

where Diag is the diagonal matrix. However, as x ≤ Lp, A ≤ I, we get

H ≤ p− 1
∥x∥p

≤ (p− 1)S1/q = CS (A.203)

where the 1/Lp is minimized for the uniform distribution. Then using Cauchy Swartz inequality,
it holds (

P 0
s,a − P̂ 0

s,a

)
(µλ,ωP 0

s,a
− µλ,ω

P̂ 0
s,a

) ≤ λ
∥∥∥(P 0

s,a − P̂ 0
s,a

)∥∥∥2

2
. (A.204)

Then the question is how to bound the quantity
∥∥∥(P 0

s,a − P̂ 0
s,a

)∥∥∥2

2
. To do so, we will use McDiarmid

inequality.

Definition 7.1. Bounded difference property
A function f : X1× . . .Xn → R satisfies the bounded difference property if for each i = 1, . . . , n

the change of coordinate from si to s′
i may change the value of the function at most on ci

∀i ∈ [n] : sup
x′
i∈Xi

∣∣f (x1, . . . , xi, . . . , xn)− f
(
x1, . . . , x

′
i, . . . , xn

)∣∣ ≤ ci

Chapter 9. Appendix of Chapter 3 220

In our case, we consider f (X1, . . . , Xn) = ∥∑n
k=1Xk∥2. Then we can notice that by triangle

inequality for any x1, . . . , xn and x′
k with Xi,s′ = P 0

i,s,a(s′)− P 0
s,a(s′) (index i holds for index of

sample generated from the generative model) that

f (x1, . . . , xk, . . . , xn) = ∥x1 + . . .+ xn∥2 ≤
∥∥x1 + . . .+ xn − xk + x′

k

∥∥
2 +

∥∥xk − x′
k

∥∥
2

≤ f
(
x1, . . . , x

′
k, . . . , xn

)
+ 2

Theorem 7.8. (McDiarmid’s inequality). McDiarmid et al. (1989) Let f : X1× . . .Xn → R be a
function satisfying the bounded difference property with bounds c1, . . . , cn. Consider independent
random variables X1, . . . , Xn, Xi ∈ Xi for all i. Then for any t > 0

P [f (X1, . . . , Xn)− E [f (X1, . . . , Xn)] ≥ t] ≤ exp
(
− 2t2∑n

i=1 c
2
i

)

Using McDiarmid’s inequality and union bound, we can bound the term here(∥∥∥(P 0
s,a − P̂ 0

s,a

)∥∥∥
2
− E[

∥∥∥(P 0
s,a − P̂ 0

s,a

)∥∥∥
2
]
)2
≤ 2N log(|S||A|/δ))

N2

with probability 1− δ/(|S||A|). Moreover, the additional term can be bounded as follows:

E[
∥∥∥(P 0

s,a − P̂ 0
s,a

)∥∥∥2

2
] = E[

∑
s′

(P 0
s,a(s′)− P 0

s,a(s′))2 = E[
∑
s′

(1
N

N∑
i

Xi,s′)2]

with Xi,s′ = P 0
i,s,a(s′)− P 0

s,a(s′) is one sample sampled from the generative model. Then

E[
∥∥∥(P 0

s,a − P̂ 0
s,a

)∥∥∥2

2
] = 1

N2
∑
s′

Var(
N∑
i

Xi,s)
a= 1
N2

N∑
i

∑
s′

Var(Xi,s) (A.205)

= 1
N2

N∑
i

E(
∑
s′

X2
i,s) ≤

4
N

(A.206)

where (a) the last equality comes from the independence of the random variables, and where the
last inequality comes from the fact the maximum of two elements in the simplex is bounded by 2.

Moreover, we know that,

E
[∥∥∥(P 0

s,a − P̂ 0
s,a

)∥∥∥
2

]2
≤ E[

∥∥∥(P 0
s,a − P̂ 0

s,a

)∥∥∥2

2
] (A.207)

due to Jensen’s inequality. Finally, regrouping the two terms, we obtain with probability
1− δ/(|S||A|):

∥∥∥(P 0
s,a − P̂ 0

s,a

)∥∥∥2

2
=
(∥∥∥(P 0

s,a − P̂ 0
s,a

)∥∥∥
2
− E

[∥∥∥(P 0
s,a − P̂ 0

s,a

)∥∥∥
2

])2
+
(
E
[∥∥∥(P 0

s,a − P̂ 0
s,a

)∥∥∥
2

])2

+ 2E
[∥∥∥(P 0

s,a − P̂ 0
s,a

)∥∥∥
2

](∥∥∥(P 0
s,a − P̂ 0

s,a

)∥∥∥
2
− E

[∥∥∥(P 0
s,a − P̂ 0

s,a

)∥∥∥
2

])
a
≤ 2N log(|S||A|/(δ)))

N2 + 4
N

+

√
4
N

√
2N log(|S||A|/(δ)))

N

≤ 10 log(|S||A|/(δ))
N

= L′

N

221 7. Proof of the upper bound : Theorem 3.4.1 and 3.4.3

where in first inequality use (a + b)2 = a2 + b2 + 2ab and where in (a) we combine equation
(A.207) and (A.206) and (A.205).

with L′ = 10 log(|S||A|/(δ)). Finally, plugging the previous equation in (A.204):

max
µ∈µλ

P̂0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(µλP 0

s,a
− µ)| ≤ max

λ

∥∥∥(P 0
s,a − P̂ 0

s,a

)∥∥∥2

2
CSλ.

This term can be easily controlled by taking the supremum over λ, which is a 1 dimensional
parameter. Then we can bound λ ∈ [0, H ∥1∥∗]. Indeed,

λ∗ = ∥V − µ∗ − η∥∗ ≤ ∥V ∥∗ ≤ H ∥1∥∗ .

Finally, we obtain:

max
λ

∥∥∥(P 0
s,a − P̂ 0

s,a

)∥∥∥2

2
CSλ ≤

L′CS ∥1∥∗
N(1− γ) .

Regrouping all terms:

gs,a(αλP̂ , V) ≤ | max
µλ
P0
s,a

∈Mλ

P0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V − µλP 0

s,a
) + max

µλ
P̂0
s,a

∈Mλ

P̂0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(µλP 0

s,a
− µλ

P̂ 0
s,a

)|

≤ 2
√
L

N

√
VarP 0

s,a
(V) + L′CS ∥1∥∗

N(1− γ) + L

N(1− γ)

≤ 2
√
L

N

√
VarP 0

s,a
(V) + 3LCS ∥1∥∗

N(1− γ) (A.208)

(A.209)

We can recognize that the second term is a second-order term as long as N ≥ (CS ∥1∥∗)2, we can
regroup the two terms. Finally, as gs,a(αλP̂ , V) ≥ gs,a(αλP , V), we obtain

∣∣∣P π,Vs,a V − P̂ π,Vs,a V
∣∣∣ ≤ 2

√
L

N

√
VarP 0

s,a
(V) + 3LCS ∥1∥∗

N(1− γ) (A.210)

It is important to note that the geometry of the norm is present in the second order term 3LCS∥1∥
N(1−γ)

but this term is negligible as it is proportional to 1/N with regard to the variance term in 1/
√
N .

Moreover, note that the quantity CS ∥1∥∗ = S for L2 norms.
For the specific case of TV which is not C2 smooth, this lemma still holds as in (A.193), we

only need to control one term without the dependency on data in the supremum as αλP reduces
to a scalar α which does not depend on P . Then extra decomposition using smoothness of the
norm is not needed, as the only remaining term in the max in (A.193) is the left-hand side term.

For the s-rectangular case, the first equation can be rewritten simply by factorizing by π(a|s)
using lemma 6.4.

Chapter 9. Appendix of Chapter 3 222

∣∣∣P π,Vs,a V − P̂ π,Vs,a V
∣∣∣ =

∣∣∣∑
a

π(a|s) max
µλ
P0
s,a

∈Mλ

P0
s,a

{
P 0
s,a(V − µ)− σ (sp((V − µ))∗)

}

− max
µλ
P̂0
s,a

∈Mλ

P̂0
s,a

{
P̂ 0
s,a(V − µλP̂ 0

s,a
)− σ

(
sp((V − µλ

P̂ 0
s,a

)∗

)} ∣∣∣ (A.211)

≤
∑
a

π(a|s)
(
2
√
L

N

√
VarP 0

s,a
(V) + LCS ∥1∥∗

N(1− γ)
)

(A.212)

= 2
√
L

N

√
VarP 0

s,a
(V) + 3LCS ∥1∥∗

N(1− γ) (A.213)

using sa-rectangular results, which gives the result for s-rectangular case.
Combining this lemma with a matrix notation using union bound, one has with probability

1− δ:

∣∣∣P̂ π∗,V V π∗,σ − P π∗,V V π∗,σ
∣∣∣ ≤ 2

√
L

N

√
VarP ∗ (V ⋆,σ) + 3LCS ∥1∥∗

N(1− γ) 1 (A.214)

(A.215)

7.3.4 Proof of Lemma 7.5

Using the same argument as in (A.265), it holds that for any α∗ solution of (A.102)

(
I − γP̂ π

⋆,V
)−1√

Var
P̂
π⋆,V (V ⋆,σ) =

√
1

1− γ

√√√√ ∞∑
t=0

γt
(
P̂
π⋆,V

)t
Var

P̂
π⋆,V (V ⋆,σ). (A.216)

Then we can control Var
P̂
π⋆,V (V ⋆,σ) . Defining V ′ := V ⋆,σ−η1, η ∈ R, we use Bellman’s equation

in (A.81)) which lead to

V ′ = V ⋆,σ − η1 ≤ V ⋆,σ − η1 = rπ⋆ + γP π
⋆,V V ⋆,σ − η1 (A.217)

=rπ⋆ + γP π
⋆,V V ⋆,σ − γσsp(V ⋆,σ)∗ − η1 (A.218)

= r′
π⋆ + γP̂

π⋆,V
V ′ + γ

(
P π

⋆,V − P̂ π
⋆,V
)
V ⋆,σ − γσsp(V ⋆,σ)∗ (A.219)

= r′
π⋆ + γP̂

π⋆,V
V ′ + γ

(
P π

⋆,V − P̂ π
⋆,V
)
V ⋆,σ (A.220)

≤ r′
π⋆ + γP̂

π⋆,V
V ′ + γ

(
P π

⋆,V − P̂ π
⋆,V
)
V ⋆,σ (A.221)

where in the second line we use Lemma 6.3. and we define r′
π⋆ = rπ⋆ − (1− γ)η < rπ⋆ < 1.

We obtain the same result in s-rectangular case using lemma 6.4 instead. Then

223 7. Proof of the upper bound : Theorem 3.4.1 and 3.4.3

Var
P̂
π⋆,V (V ⋆,σ) (a)= Var

P̂
π⋆,V (V ′) = P̂

π⋆,V (
V ′ ◦ V ′)− (P̂ π⋆,V V ′) ◦ (P̂ π⋆,V V ′)

= P̂
π⋆,V (

V ′ ◦ V ′)− (P̂ π⋆,V V ′) ◦ (P̂ π⋆,V V ′)
(b)
≤ P̂

π⋆,V (
V ′ ◦ V ′)− 1

γ2

(
V ′ − r′

π⋆ − γ
(
P π

⋆,V − P̂ π
⋆,V
)
V ⋆,σ

)◦2

= P̂
π⋆,V (

V ′ ◦ V ′)− 1
γ2V

′ ◦ V ′ + 2
γ2V

′ ◦
(
r′
π⋆ + γ

(
P π

⋆,V − P̂ π
⋆,V
)
V ⋆,σ

)
− 1
γ2

(
r′
π⋆ + γ

(
P π

⋆,V − P̂ π
⋆,V
)
V ⋆,σ

)◦2

(c)
≤ P̂

π⋆,V (
V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′ + 2

γ2 ∥V
′∥∞1 (A.222)

+ 2
γ
∥V ′∥∞

∣∣∣(P π⋆,V − P̂ π⋆,V)V ⋆,σ
∣∣∣ (A.223)

≤ P̂ π
⋆,V (

V ′ ◦ V ′)− 1
γ
V ′ ◦ V ′ + 2

γ2 ∥V
′∥∞1 (A.224)

+ 2
γ
∥V ′∥∞

(
2
√

L

(1− γ)2N
+ 3CS ∥1∥∗ L

N(1− γ)
)
1, (A.225)

where (a) holds by the fact that VarPπ(V − η1) = VarPπ(V) for any scalar η, (b) follows from
(A.221), moreover (c) comes from 1

γ2V
′ ◦ V ′ ≥ 1

γV
′ ◦ V ′ and −1 ≤ rπ⋆ − (1− γ)Vmin1 = r′

π⋆ ≤
rπ⋆ ≤ 1. Finally, the inequality is due to Lemma 7.4. Plugging (A.225) into (A.216) gives,(

I − γP̂ π
⋆,V
)−1√

Var
P̂
π⋆,V (V ⋆,σ) (A.226)

≤
√

1
1− γ

(∞∑
t=0

γt
(
P̂
π⋆,V

)t(
P̂
π⋆,V (

V ′ ◦ V ′)− 1
γ
V ′ ◦ V ′ + 2

γ2 ∥V
′∥∞1 (A.227)

+ 2
γ
∥V ′∥∞

(
2
√

L

(1− γ)2N
+ 3CS ∥1∥∗ L

N(1− γ)
)
1
))1/2

(i)
≤
√

1
1− γ

√√√√∣∣∣∣ ∞∑
t=0

γt
(
P̂
π⋆,V

)t (
P̂
π⋆,V (V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′

)∣∣∣∣
+
√

1
1− γ

√√√√ ∞∑
t=0

γt
(
P̂
π⋆,V

)t(2
γ2 ∥V

′∥∞1 + 2
γ
∥V ′∥∞

(
2
√

L

(1− γ)2N
+ 3CS ∥1∥∗ L

N(1− γ)
)
1
)

≤
√

1
1− γ

√√√√∣∣∣∣ ∞∑
t=0

γt
(
P̂
π⋆,V

)t [
P̂
π⋆,V (V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′

]∣∣∣∣ (A.228)

+

√√√√√(2 + 2
(
2
√

L
(1−γ)2N + 3CS∥1∥∗L

N(1−γ)

))
∥V ′∥∞

(1− γ)2γ2 1, (A.229)

using in (i) the triangle inequality. The final part of the proof focuses on the first term, which
follows ∣∣∣∣ ∞∑

t=0
γt
(
P̂
π⋆,V

)t(
P̂
π⋆,V (

V ′ ◦ V ′)− 1
γ
V ′ ◦ V ′

)∣∣∣∣
=
∣∣∣∣(∞∑

t=0
γt
(
P̂
π⋆,V

)t+1
−

∞∑
t=0

γt−1
(
P̂
π⋆,V

)t) (
V ′ ◦ V ′) ∣∣∣∣ ≤ 1

γ
∥V ′∥2∞1 (A.230)

Chapter 9. Appendix of Chapter 3 224

using recursion between the two sums. Then, using (A.230) back to (A.229) leads to
(
I − γP̂ π

⋆,V
)−1√

Var
P̂
π⋆,V (V ⋆,σ)

≤
√
∥V ∥2∞
γ(1− γ)1 + 3

√√√√√(1 +
(√

L
(1−γ)2N + CS∥1∥∗L

N(1−γ)

))
∥V ′∥∞

(1− γ)2γ2 1

≤ 4

√√√√√(1 +
(√

L
(1−γ)2N + CS∥1∥∗L

N(1−γ)

))
∥V ′∥∞

(1− γ)2γ2 1 (A.231)

≤ 4

√√√√√(1 +
(
1
√

L
(1−γ)2N + CS∥1∥∗L

N(1−γ)

))
∥V ′∥∗

(1− γ)2γ2 1 (A.232)

Taking the infimum over η in the right-hand side, recall V ′ := V ⋆,σ − η1, we obtain the definition
of the span semi norm.

(
I − γP̂ π

⋆,V
)−1√

Var
P̂
π⋆,V (V ⋆,σ) ≤ 4

√√√√√(1 +
(√

L
(1−γ)2N + CS∥1∥∗L

N(1−γ)

))
sp(V ⋆,σ)∗

(1− γ)2γ2 1

≤ 4

√√√√√(1 +
(√

L
(1−γ)2N + CS∥1∥∗L

N(1−γ)

))
γ3(1− γ)2 max{1− γ,Cgσ}

1 (A.233)

≤ 4

√√√√√(1 +
(√

L
(1−γ)2N + CS∥1∥∗L

N(1−γ)

))
γ3(1− γ)3 1, (A.234)

where the penultimate inequality follows from applying Lemma 7.1 with P = P 0 and π = π⋆:

sp(V ⋆,σ)∗ ≤
1

γmax{1− γ,Cgσ}

or with an extra factor for s rectangular assumptions.

sp(V ⋆,σ)∗ ≤
1

γmax{1− γ,mins ∥πs∥∗ σ̃Cg}
.

7.3.5 Proof of Lemma 7.6

In this proof, we will sa-rectangular notations, for any (s, a) ∈ S×A, using the results in (A.193).
In the sa-rectangular case:

∣∣∣∣P̂ π̂,V̂s,a V̂
π̂,σ − P π̂,V̂s,a V̂

π̂,σ

∣∣∣∣ ≤ max
{ ∣∣∣∣(P 0

s,a − P̂ 0
s,a

) [
V̂ π̂,σ]

αλ,ω∗
Ps,a

∣∣∣∣ ,
∣∣∣∣∣(P 0

s,a − P̂ 0
s,a

) [
V̂ π̂,σ]

αλ,ω∗
P̂s,a

∣∣∣∣∣ }
(A.235)

The first term in this max can be bounded using:

225 7. Proof of the upper bound : Theorem 3.4.1 and 3.4.3

∣∣∣∣(P 0
s,a − P̂ 0

s,a

) [
V̂ π̂,σ]

αλ,ω∗
Psa

∣∣∣∣ (A.236)

(a)
≤
(∣∣∣∣(P 0

s,a − P̂ 0
s,a

) [
V̂ ⋆,σ]

αλ,ω∗
Psa

∣∣∣∣+ ∣∣∣∣(P 0
s,a − P̂ 0

s,a

)([
V̂ π̂,σ]

αλ,ω∗
Psa

−
[
V̂ ⋆,σ]

αλ,ω∗
Psa

)∣∣∣∣)
≤
(∣∣∣(P 0

s,a − P̂ 0
s,a

) [
V̂ ⋆,σ

]
αλ,ω∗
Psa

∣∣+ ∥∥∥P 0
s,a − P̂ 0

s,a

∥∥∥
1

∥∥∥∥[V̂ π̂,σ]
αλ,ω∗
Psa

−
[
V̂ ⋆,σ

]
αλ,ω∗
Psa

∥∥
∞

)
(b)
≤
∣∣∣∣(P 0

s,a − P̂ 0
s,a

) [
V̂ ⋆,σ]

αλ,ω∗
Psa

∣∣∣∣+ 2
∥∥∥V̂ π̂,σ − V̂ ⋆,σ

∥∥∥
∞

(c)
≤
∣∣∣∣(P 0

s,a − P̂ 0
s,a

) [
V̂ ⋆,σ]

αλ,ω∗
Psa

∣∣∣∣+ 2εopt (A.237)

where (a) comes from the triangle inequality, and (b) comes from
∥∥P 0

s,a − P̂ 0
s,a

∥∥
1 ≤ 2 and∥∥[V̂ π̂,σ

]
αλ,ω∗
Psa

−
[
V̂ ⋆,σ

]
αλ,ω∗
Psa

∥∥
∞ ≤

∥∥V̂ π̂,σ − V̂ ⋆,σ
∥∥

∞, and (c) follows from the definition of the
optimization error in (A.104). The second term of the max can be controlled in the same manner,
i.e.:

∣∣∣∣(P 0
s,a − P̂ 0

s,a

) [
V̂ π̂,σ]

αλ,ω∗
P̂sa

∣∣∣∣ ≤ ∣∣∣∣(P 0
s,a − P̂ 0

s,a

) [
V̂ ⋆,σ]

αλ,ω∗
P̂sa

∣∣∣∣+ 2εopt (A.238)

≤ | max
µλ
P0
s,a

∈Mλ

P0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V̂ ⋆,σ − µλP 0

s,a
) + max

µλ
P̂0
s,a

∈Mλ

P̂0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(µλP 0

s,a
− µλ

P̂ 0
s,a

)| (A.239)

+ 2εopt (A.240)

where the last inequality follow the decomposition of (A.199). Finally, to control the remaining
term

max
µλ
P0
s,a

∈Mλ

P0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V̂ ⋆,σ − µλP 0

s,a
) = max

αλP∈AλP

{
(P 0

s,a − P̂ 0
s,a) [V]αλP

}
(A.241)

(A.240) for any given α ∈ [0, αλ,ω∗
Psa

[⊂
[
0, 1

1−γ
]S in the variational family with one parameter

λ, with the dependency between V̂ ⋆,σ and P̂ 0, we resort to the following leave-one-out argument
or absorbing MDPs used in (Agarwal et al. 2020, Li et al. 2022, Shi and Chi 2022, Clavier et al.
2023). To begin, we create a collection of auxiliary RMDPs that exhibit the intended statistical
independence between robust value functions and the estimated nominal transition kernel. These
auxiliary RMDPs are designed to be minimally distinct from the initial RMDPs, subsequently,
we manage to control the relevant term within these auxiliary RMDPs and demonstrate that its
value closely approximates the target quantity for the desired RMDP. Recall that the empirical
infinite-horizon robust MDP M̂rob is defined using the nominal transition kernel P̂ 0. Inspired by
Agarwal et al. (2020), we can construct an auxiliary absorbing robust MDP M̂s,u

rob for each state
s and any non-negative scalar u ≥ 0, so that it is the same as M̂rob except for the transition
properties in state s. These auxiliary MDPS are called absorbing MDPs are have been used for
the first time in the context of RMDPS in Clavier et al. (2023). Defining the reward function
and nominal transition kernel of M̂s,u

rob as P s,u and rs,u, which are expressed as follows using the
same notation as Shi et al. (2023):

{
rs,u(s, a) = u ∀a ∈ A,
rs,u(s̃, a) = r(s̃, a) ∀(s̃, a) ∈ S ×A and s̃ ̸= s.

(A.242)

Chapter 9. Appendix of Chapter 3 226

{
P s,u(s′ | s, a) = 1(()s′ = s) ∀(s′, a) ∈ S ×A,
P s,u(· | s̃, a) = P̂ 0(· | s̃, a) ∀(s̃, a) ∈ S ×A and s̃ ̸= s,

(A.243)

Nominal transition probability at state s of the auxiliary M̂s,u
rob never leaves state s once entered,

which gives the name absorbing to these auxiliary RMPDs. Finally, we define the robust Bellman
operator T̂ σs,u(·) associated M̂s,u

rob as

T̂ σs,u(Q)(s̃, a) = rs,u(s̃, a) + γ inf
P∈U sa,σ(P s,us̃,a)

PV, with V (s̃) = max
a

Q(s̃, a). (A.244)

in sa-rectangular case and with stochastic policy in s-rectangular case. Using these auxiliary
RMDPs we can remark equivalence between M̂rob and the auxiliary RMDP M̂s,u

rob fixed-point.
First, Q̂⋆,σ is the unique-fixed point of T̂ σ(·) with associated value V̂ ⋆,σ. We will show that the
robust value function V̂ ⋆,σ

s,u⋆ obtained from the fixed point of T̂ σs,u(·)is the same as the the robust
value function V̂ ⋆,σ derived from T̂ σ(·), as long as we choose u as

u⋆ := u⋆(s) = V̂ ⋆,σ(s)− γ inf
P∈U sa,σ(es)

PV̂ ⋆,σ. (A.245)

with es is the s-th standard basis vector in RS . This assertion is verified as:

• First for state s′ ̸= s, for all a ∈ A: it holds

rs,u
⋆(s′, a) + γ inf

P∈U sa,σ(P s,u⋆
s′,a)
PV̂ ⋆,σ = r(s′, a) + γ inf

P∈U sa,σ(P̂ 0
s′,a)
PV̂ ⋆,σ

= T̂ σ(Q̂⋆,σ)(s′, a) = Q̂⋆,σ(s′, a), (A.246)

where the first equality holds because of (A.242) and (A.243), and the last inequality comes
from that Q̂⋆,σ is the fixed point of T̂ σ(·) (see Lemma 6.3) and the definition of the robust
Bellman operator in (3.13).

• Then for state s, for any a ∈ A :

rs,u
⋆(s, a) + γ inf

P∈Uσ(P s,u⋆s,a)
PV̂ ⋆,σ = u⋆ + γ inf

P∈U sa,σ(es)
PV̂ ⋆,σ

= V̂ ⋆,σ(s)− γ inf
P∈U sa,σ(es)

PV̂ ⋆,σ + γ inf
P∈U sa,σ(es)

PV̂ ⋆,σ = V̂ ⋆,σ(s), (A.247)

using in the first equality is the definition of P s,u⋆s,a in (A.243) and where we use the definition
of u⋆ in (A.245) in the second one.

Finally, we have proved that there exists a fixed point Q̂⋆,σs,u⋆ of the operator T̂ σs,u⋆(·) by taking

{
Q̂⋆,σs,u⋆(s, a) = V̂ ⋆,σ(s) ∀a ∈ A,
Q̂⋆,σs,u⋆(s′, a) = Q̂⋆,σ(s′, a) ∀s′ ̸= s and a ∈ A.

(A.248)

we have confirmed the existence of a fixed point of the operator T̂ σs,u⋆(·) with corresponding value
function V̂ ⋆,σ

s,u⋆ that coincide with V̂ ⋆,σ. Note that the corresponding properties between M̂rob

and M̂s,u
rob in Step 1 and Step 2 hold in fact for any uncertainty set and s- or sa-rectangular

assumptions. Equipped with these fixed point equalities, we can use concentration inequalities
to show this lemma.

227 7. Proof of the upper bound : Theorem 3.4.1 and 3.4.3

Concentration inequality using an ε-net for all reward values u. First we can verify
that

0 ≤ u⋆ ≤ [V̂ ⋆,σ(s)]
αλ,ω∗
Ps,a

≤ V̂ ⋆,σ(s) ≤ 1
1− γ . (A.249)

Then, we define a Nε2-net over the interval
[
0, 1/(1− γ)

]
, where |Nε2 | the size of the net can

be controlled by |Nε2 | ≤ 3
ε2(1−γ) (Vershynin 2018). The only parameter that varies is λ in the

variation family, αλPsa so we have 1-dimensional control and not a vector in RS . Then similarly to
Lemma 6.3, it holds that for each u ∈ Nε2 , there exists a unique fixed point Q̂⋆,σs,u of the operator
T̂ σs,u(·), which satisfies 0 ≤ Q̂⋆,σs,u ≤ 1

1−γ · 1. Consequently, the corresponding robust value function
can be upper bounded by

∥∥∥V̂ ⋆,σ
s,u

∥∥∥
∞
≤ 1

1−γ . Using (A.243) and (A.242) by construction for all
u ∈ Nε2 , M̂s,u

rob is statistically independent of P̂ 0
s,a. This independence indicates that [V̂ ⋆,σ

s,u]α and
P̂ 0
s,a are independent for a fixed α. Using (A.197) and (A.198) and taking the union bound over

all (s, a, α) ∈ S × A ×Nε1 , u ∈ Nε2 gives that, with probability at least 1 − δ, it holds for all
(s, a, u) ∈ S ×A×Nε2 that

max
αλ,ωPsa∈Aλ,ωPsa

∣∣∣∣(P 0
s,a − P̂ 0

s,a

) [
V̂ ⋆,σ
s,u

]
αλ,ω∗
Psa

∣∣∣∣ ≤ 2

√√√√2 log
(18∥1∥∗SAN |Nε2 |

δ

)
N

√
VarP 0

s,a
(V̂ ⋆,σ
s,u) (A.250)

+ ε2

≤ 2

√√√√2 log
(18∥1∥∗SAN |Nε2 |

δ

)
(1− γ)2N

+ ε2, (A.251)

Finally, we use uniform concentration to obtain the lemma. Recalling that u⋆ ∈
[
0, 1

1−γ
]

(see
(A.249)), we can always find some u ∈ Nε2 such that |u− u⋆| ≤ ε2. Consequently, plugging in
the operator T̂ σs,u(·) in (A.244) yields

∀Q ∈ RSA :
∥∥∥T̂ σs,u(Q)− T̂ σs,u⋆(Q)

∥∥∥
∞

= |u− u⋆| ≤ ε2

We can then remark that the fixed points of T̂ σs,u(·) and T̂ σs,u⋆(·) obey

∥∥∥Q̂⋆,σs,u − Q̂⋆,σs,u⋆∥∥∥∞
=
∥∥∥T̂ σs,u(Q̂⋆,σs,u)− T̂ σs,u⋆(Q̂

⋆,σ
s,u⋆)

∥∥∥
∞

≤
∥∥∥T̂ σs,u(Q̂⋆,σs,u)− T̂ σs,u(Q̂⋆,σs,u⋆)

∥∥∥
∞

+
∥∥∥T̂ σs,u(Q̂⋆,σs,u⋆)− T̂ σs,u⋆(Q̂

⋆,σ
s,u⋆)

∥∥∥
∞

≤ γ
∥∥∥Q̂⋆,σs,u − Q̂⋆,σs,u⋆∥∥∥∞

+ ε2,

where we use that the operator T̂ σs,u(·) is a γ-contraction. It gives that:

∥∥∥Q̂⋆,σs,u − Q̂⋆,σs,u⋆∥∥∥∞
≤ ε2

(1− γ) and
∥∥∥V̂ ⋆,σ

s,u − V̂
⋆,σ
s,u⋆

∥∥∥
∞
≤
∥∥∥Q̂⋆,σs,u − Q̂⋆,σs,u⋆∥∥∥∞

≤ ε2
(1− γ) . (A.252)

Finally to control the first term in (A.240), using the identity V̂ ⋆,σ = V̂ ⋆,σ
s,u⋆ or fixed point

relation between the two RMPDS, established in previous step of the proof gives that: for all

Chapter 9. Appendix of Chapter 3 228

(s, a) ∈ S ×A,

max
αλ,ωPs,a∈Aλ,ωPs,a

∣∣∣∣(P 0
s,a − P̂ 0

s,a

)
[V̂ ⋆,σ]

αλ,ωPs,a

∣∣∣∣
≤ max

αλ,ωPs,a∈Aλ,ωPs,a

∣∣∣∣(P 0
s,a − P̂ 0

s,a

)
[V̂ ⋆,σ]

αλ,ωPs,a

∣∣∣∣
(a)
≤ max

αλ,ωPs,a∈Aλ,ωPs,a

{∣∣∣∣(P 0
s,a − P̂ 0

s,a

)
[V̂ ⋆,σ
s,u]

αλ,ωPs,a

∣∣∣∣+ ∣∣∣∣(P 0
s,a − P̂ 0

s,a

)(
[V̂ ⋆,σ
s,u]

αλ,ωPs,a
− [V̂ ⋆,σ

s,u⋆]αλPs,a

)∣∣∣∣}
(b)
≤ max

αλ,ωPs,a∈Aλ,ωPs,a

∣∣∣∣(P 0
s,a − P̂ 0

s,a

)
[V̂ ⋆,σ
s,u]αλPs,a

∣∣∣∣+ 2ε2
(1− γ)

(c)
≤ 2ε2

(1− γ) + ε2 + 2

√√√√2 log
(18∥1∥∗SAN |Nε2 |

δ

)
N

√
VarP 0

s,a
(V̂ ⋆,σ
s,u) +

4 log
(18∥1∥∗SAN |Nε2 |

δ

)
3N(1− γ)

≤ 3ε2
(1− γ) + 2

√√√√2 log
(18∥1∥∗SAN |Nε2 |

δ

)
N

√
VarP 0

s,a
(V̂ ⋆,σ) +

4 log
(18∥1∥∗SAN |Nε2 |

δ

)
3N(1− γ)

+ 2

√√√√2 log
(18∥1∥∗SAN |Nε2 |

δ

)
N

√∣∣∣VarP 0
s,a

(V̂ ⋆,σ)−VarP 0
s,a

(V̂ ⋆,σ
s,u)

∣∣∣
(d)
≤ 3ε2

(1− γ) + 2

√√√√
2

log
(18∥1∥∗SAN |Nε2 |

δ

)
N

√
VarP 0

s,a
(V̂ ⋆,σ) + 2

√√√√4ε2 log
(18∥1∥∗SAN |Nε2 |

δ

)
N(1− γ)2 (A.253)

≤ 2
√
L′′

N

√
VarP 0

s,a
(V̂ ⋆,σ) +

14 log
(54∥1∥∗SAN |Nε2 |

δ

)
N(1− γ) (A.254)

≤ 16
√

L′′

(1− γ)2N
, (A.255)

with L′′ = log
(54∥1∥∗SAN

2

(1−γ)δ

)
where (a) comes from triangular inequality, (b) is due (A.252), for

any α ∈ RS

∣∣∣(P 0
s,a − P̂ 0

s,a

) (
[V̂ ⋆,σ
s,u]α − [V̂ ⋆,σ

s,u⋆]α
)∣∣∣ ≤ ∥∥∥P 0

s,a − P̂ 0
s,a

∥∥∥
1

∥∥∥[V̂ ⋆,σ
s,u]α − [V̂ ⋆,σ

s,u⋆]α
∥∥∥

∞

≤ 2
∥∥∥V̂ ⋆,σ

s,u − V̂
⋆,σ
s,u⋆

∥∥∥
∞
≤ 2ε2

(1− γ) , (A.256)

(c) follows from (A.250), (d) holds using Lemma 6.1 with (A.252). Here, the two last inequalities

hold by letting ε2 =
2 log

(
18∥1∥∗SAN|Nε2 |

δ

)
N , which gives |Nε2 | ≤ 3

ε2(1−γ) ≤
3N
1−γ , and the last inequal-

ity holds by the fact VarP 0
s,a

(V̂ ⋆,σ) ≤ ∥V̂ ⋆,σ∥∞ ≤ 1
1−γ and letting N ≥ 2 log

(54∥1∥∗SAN
2

(1−γ)δ

)
= L′′.

Rewriting (A.235), the first term of the max is controlled.

max
{ ∣∣∣∣(P 0

s,a − P̂ 0
s,a

) [
V̂ π̂,σ]

αλ∗
Ps,a

∣∣∣∣ ,
∣∣∣∣∣(P 0

s,a − P̂ 0
s,a

) [
V̂ π̂,σ]

αλ∗
P̂s,a

∣∣∣∣∣ }

229 7. Proof of the upper bound : Theorem 3.4.1 and 3.4.3

The second term can be controlled by the same term as the first one plus an additional term with∣∣∣∣∣(P 0
s,a − P̂ 0

s,a

) [
V̂ π̂,σ]

αλ∗
P̂s,a

∣∣∣∣∣ ≤
| max
µλ
P0
s,a

∈Mλ

P0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V̂ ⋆,σ − µλP 0

s,a
) + max

µλ
P̂0
s,a

∈Mλ

P̂0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(µλP 0

s,a
− µλ

P̂ 0
s,a

)|

and similarly to previous lemma in (A.208), the residual or term in the right in the previous
equation can be controlled with L′CS∥1∥∗

N(1−γ) Finally, putting (A.254) and (A.255) back into Equation
(A.240) and using Eq. (A.255) with probability at least 1− δ we obtain

∣∣∣∣P̂ π̂,V̂s,a V̂
π̂,σ − P π̂,V̂s,a V̂

π̂,σ

∣∣∣∣ ≤ max
αλ,ωPs,a∈Aλ,ωPs,a

∣∣∣∣(P 0
s,a − P̂ 0

s,a

)
[V̂ ⋆,σ]

αλ,ωPs,a

∣∣∣∣+ 2εopt

≤ 2
√
L′

N

√
VarP 0

s,a
(V̂ ⋆,σ) + 2εopt + 14L′′CS ∥1∥∗

N(1− γ)

≤ 2
√

L′′

(1− γ)2N
+ 2εopt + 14L′′CS ∥1∥∗

N(1− γ) , (A.257)

∀(s, a) ∈ S ×A. Using matrix form we obtain finally:

∣∣∣∣P̂ π̂,V̂ V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ

∣∣∣∣ ≤ 2
√
L′′

N

√
VarP 0

s,a
(V̂ ⋆,σ)1 + 2εopt1

≤ 2
√

L′′

(1− γ)2N
1 + 2εopt1.+

14L′′CS ∥1∥∗
N(1− γ) 1 (A.258)

The proof is similar in the s-rectangular case, factorising by π(a|s), like in in 7.4. Moreover,
the proof is similar for TV without the geometric term depending on CS .

7.3.6 Proof of Lemma 7.7

We always use the same manner as in Appendix 7.3.4. Similarly to (A.216), it holds:

(
I − γP π̂,V̂

)−1√
Var

P π̂,V̂
(V̂ π̂,σ) ≤

√
1

1− γ

√√√√ ∞∑
t=0

γt
(
P π̂,V̂

)t
Var

P π̂,V̂
(V̂ π̂,σ). (A.259)

In order to upper bound Var
P π̂,V̂

(V̂ π̂,σ), we define V ′ := V̂ π̂,σ − η1 with η ∈ R. Using as
(A.223), it holds

Var
P π̂,V̂

(V̂ π̂,σ) ≤ P π̂,V̂
(
V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′ + 2

γ2 ∥V
′∥∞1 + 2

γ
∥V ′∥∞

∣∣∣∣(P̂ π̂,V̂ − P π̂,V̂) V̂ π̂,σ

∣∣∣∣
≤ P π̂,V̂

(
V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′+ (A.260)

2
γ2 ∥V

′∥∞1 + 2
γ
∥V ′∥∞

(
2
√

L′′

(1− γ)2N
+ 2εopt + 14L′′CS ∥1∥∗

N(1− γ)

)
1, (A.261)

Chapter 9. Appendix of Chapter 3 230

where the last inequality makes use of Lemma 7.6. Plugging (A.261) back into (A.259) leads to

(
I − γP π̂,V̂

)−1√
Var

P π̂,V̂
(V̂ π̂,σ)

(a)
≤
√

1
1− γ

√√√√∣∣∣∣ ∞∑
t=0

γt
(
P π̂,V̂

)t (
P π̂,V̂ (V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′

)∣∣∣∣
+

√√√√ 1
(1− γ)2γ2

(
2
√

L′′

(1− γ)2N
+ 2εopt + 14L′′CS ∥1∥∗

N(1− γ)

)
∥V ′∥∞1

(b)
≤
√
∥V ′∥2∞
γ(1− γ)1 +

√√√√√√
(

2
√

L′′

(1−γ)2N + 2εopt + 14L′′CS∥1∥∗
N(1−γ)

)
∥V ′∥∞

(1− γ)2γ2 1

(c)
≤
√
∥V ′∥2∞
γ(1− γ)1 + 5

√(
1 + εopt + L′′CS ∥1∥∗

N(1− γ)
) ∥V ′∥∞

(1− γ)2γ2 1 (A.262)

≤ 6
√(

1 + εopt + L′′CS ∥1∥∗
N(1− γ)

) ∥V ′∥∞
(1− γ)2γ2 1, (A.263)

where (a) is the same as (A.229), (b) holds by repeating the argument of (A.230), (c) follows
by taking N ≥ L′′

(1−γ)2 and then the last inequality holds by ∥V ′∥∞ ≤ ∥V ⋆,σ∥∞ ≤ 1
1−γ . Then

taking the infimum over η in the right-hand side of the equation in the definition of V ′ and using
sp(.)∞ ≤ ∥.∥∗ gives

(
I − γP π̂,V̂

)−1√
Var

P π̂,V̂
(V̂ π̂,σ) ≤ 6

√(
1 + εopt + L′′CS ∥1∥∗

N(1− γ)
) sp(V)∞

(1− γ)2γ2 1

Finally, applying Lemma 7.1 with P = P̂ 0 and π = π̂ yields

sp(V̂ π̂,σ)∗ ≤
1

γmax{1− γ, γCgσ}
, (A.264)

for sa-rectangular or

sp(V̂ π̂,σ)∗ ≤
1

γmax{1− γ,mins ∥π̂∥∗ σ̃}

in the s-rectangular case, which can be inserted into (A.263) and gives in sa-rectangular case:

(
I − γP π̂,V̂

)−1√
Var

P π̂,V̂
(V̂ π̂,σ) ≤ 6

√√√√√ (
1 + εopt + L′′CS∥1∥∗

N(1−γ)

)
γ3(1− γ)2 max{1− γ, σ}1

≤ 6

√√√√√(1 + εopt + L′′CS∥1∥∗
N(1−γ)

)
(1− γ)3γ3 1

where first inequalities comes from that we can bound it Eq. left-hand side of equation
(A.263) by ∥V ′∥∞ ≤ ∥V ⋆,σ∥∞ ≤ 1

1−γ . Proof for s-rectangular is similar, but requires adding an
extra factor depending on the norm of the current policy and we have:

231 7. Proof of the upper bound : Theorem 3.4.1 and 3.4.3

(
I − γP π̂,V̂

)−1√
Var

P π̂,V̂
(V̂ π̂,σ) ≤ 6

√√√√√ (
1 + εopt + L′′CS∥1∥∗

N(1−γ)

)
γ3(1− γ)2 max{1− γ,Cgσ̃mins ∥π̂s∥∞}

1

≤ 6

√√√√√(1 + εopt + L′′CS∥1∥∗
N(1−γ)

)
(1− γ)3γ2 1.

7.3.7 Proof of Lemma 7.3

First, if each row of Pπ belongs to the simplex ∆(S), it lead that the row of (1− γ) (I − γPπ)−1

falls into ∆(S). Then,

(I − γPπ)−1
√

VarPπ(V π,P) = 1
1− γ (1− γ) (I − γPπ)−1

√
VarPπ(V π,P)

(a)
≤ 1

1− γ

√
(1− γ) (I − γPπ)−1 VarPπ(V π,P)

=
√

1
1− γ

√√√√ ∞∑
t=0

γt (Pπ)t VarPπ(V π,P), (A.265)

where (a) is due to Jensen’s inequality. Then for any η ∈ R+, V ′ := V π,P − η1 , we can upper
bound VarPπ(V π,P) :

VarPπ(V π,P) (i)= VarPπ(V ′) = Pπ
(
V ′ ◦ V ′)− (PπV ′) ◦ (PπV ′)

(ii)
≤ Pπ

(
V ′ ◦ V ′)− 1

γ2
(
V ′ − rπ + (1− γ)η1

)
◦
(
V ′ − rπ + (1− γ)η1

)
= Pπ

(
V ′ ◦ V ′)− 1

γ2V
′ ◦ V ′ + 2

γ2V
′ ◦ (rπ − (1− γ)η1) (A.266)

− 1
γ2 (rπ − (1− γ)η1) ◦ (rπ − (1− γ)η1)

≤ Pπ
(
V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′ + 2

γ2 ∥V
′∥∞1 ≤ Pπ

(
V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′ + 2

γ2 ∥V
′∥∞1, (A.267)

where (i) holds by the fact that VarPπ(V π,P − b1) = VarPπ(V π,P) for any scalar b and V π,P ∈ RS ,
(ii) follows from V ′ ≤ rπ + γPπV

π,P − η1 = rπ − (1− γ)η1 + γPπV
′, and the last line arises from

1
γ2V

′ ◦ V ′ ≥ 1
γV

′ ◦ V ′ and ∥rπ − (1− γ)η1∥∞ ≤ 1. for η ∈ [0, 1/(1− γ)[. Plugging (A.267) back

Chapter 9. Appendix of Chapter 3 232

to (A.265) leads to

(I − γPπ)−1
√

VarPπ(V π,P) ≤
√

1
1− γ

√√√√ ∞∑
t=0

γt (Pπ)t
(
Pπ (V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′ + 2

γ2 ∥V
′∥∞1

)
(i)
≤
√

1
1− γ

√√√√∣∣∣∣ ∞∑
t=0

γt (Pπ)t
(
Pπ (V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′

) ∣∣∣∣+
√

1
1− γ

√√√√ ∞∑
t=0

γt (Pπ)t 2
γ2 ∥V

′∥∞1

≤
√

1
1− γ

√√√√∣∣∣∣(∞∑
t=0

γt (Pπ)t+1 −
∞∑
t=0

γt−1 (Pπ)t
)

(V ′ ◦ V ′)
∣∣∣∣+

√
2∥V ′∥∞1
γ2(1− γ)2

(ii)
≤
√
∥V ′∥2∞1
γ(1− γ) +

√
2∥V ′∥∞1
γ2(1− γ)2

≤
√

8∥V ′∥∞1
γ2(1− γ)2 , (A.268)

(A.269)

where (i) holds due to, (ii) holds by following recursion between the two sums, and the last
inequality holds because∥V ′∥∞ ≤ 1

1−γ . Then taking the minimum over η in the right-hand side
of the equation gives the result.

(I − γPπ)−1
√

VarPπ(V π,P) ≤
√

8sp(V π,P)∞
γ2(1− γ)2

However, we also ∥V ′∥∞ ≤ ∥V π,P ∥∞ ≤ 1
1−γ in (A.268). So finally, the result is

(I − γPπ)−1
√

VarPπ(V π,P) ≤
√

8
γ2(1− γ)2 sp(V π,P)∞1.

8 Proof of Theorem 3.4.2

In this section, we focus on the scenarios in the uncertainty sets are constructed with (s, a)-
rectangularity condition with some general norms. Towards this, we firstly observe that for the
two limiting cases ℓ1 norm and ℓ∞ norm, one has ∥p1 − p2∥1 ≤ 2 and ∥p1 − p2∥∞ ≤ 1 for any
two probability distribution p1, p2 ∈ RS . Namely, the accessible ranges of the uncertainty level σ
for ℓ1 norm and ℓ∞ norm are (0, 2] and (0, 1], respectively. In addition, we have

∀p1, p2 ∈ RS : ∥p1 − p2∥∞ ≤ ∥p1 − p2∥ ≤ ∥p1 − p2∥1 (A.270)

for any norm ∥ · ∥. It indicates that the accessible range of the uncertainty level σ∥·∥ for any
given norm ∥ · ∥ is between

(
0, σmax

∥·∥
]
, where 1 ≤ σmax

∥·∥ ≤ 2.
To continue, we specify the definition of the uncertainty set with sa-rectangularity condition

with some given general norm ∥ · ∥ as below: for any nominal transition kernel P ∈ RSA×S ,

Uσ∥·∥(P) := Uσ∥·∥(P) = ⊗ Uσp (Ps,a), Uσ∥·∥(Ps,a) :=
{
P ′
s,a ∈ ∆(S) :

∥∥∥P ′
s,a − Ps,a

∥∥∥ ≤ σ∥·∥
}
.

(A.271)

Then, we recall the assumption of the uncertainty radius σ∥·∥ ∈
(
0, σmax

∥·∥ (1− c0)
]

with 0 < c0 < 1.

Then, resorting to the same class of hard MDPs in (Shi et al. 2023, Section C.1), we can
complete the proof by directly following the same proof pipeline of Shi et al. (2023, Section C)
by replacing σ with σmax

∥·∥ σ∥·∥.

233 9. Proof of Theorem 3.4.4

9 Proof of Theorem 3.4.4

Developing the lower bound for the cases with s-rectangular uncertainty set involves several new
challenges compared to that of (s, a)-rectangular cases. Specifically, the first challenge is that the
optimal policy can be stochastic and hard to be characterized with a closed form for the RMDPs
with a s-rectangular uncertainty set, rather than deterministic polices in (s, a)-rectangular cases.
Such richer and smoother class of optimal policies makes slightly changing the transition kernel
generally could only leads to a smoothly changed stochastic optimal policy instead of a completely
different one. Such reduced changing of optimal policy further gives smaller performance gap,
thus challenges of a tighter lower bound. Second, most of the hard instances in the literature
are constructed as SA states with a constant number of action spaces without loss of generality.
While when it comes to s-rectangular uncertainty set, the action space size becomes important
and can’t be assumed as a constant anymore. So a new class of instances are required.

To address these challenges, in this section, we construct a new set of hard RMDP instances
for two limiting cases: ℓ1 norm and ℓ∞ norm.

9.1 Construction of the hard problem instances

Before proceeding, we introduce two useful sets related to the state space and action space as
below:

S = {0, 1, . . . , S}, and A = {0, 1, · · · , A− 1}.

In this section, we construct a set of RMDPs termed as Mℓ∞ , which consists of S(A − 1)
components including S(A − 1) components, each associates with some different state-action
pair. Specifically, it is defined as

Mℓ∞ :=
{
Mθ =

(
S,A,Uσ(P θ), r, γ

)
| θ ∈ Θ =

{
(i, j) : (i, j) ∈ S ×A \ {0}

}}
. (A.272)

We introduce the detailed definition of Mℓ∞ by introducing several key components of it
sequentially. In particular, for any RMDP Mθ ∈ Mℓ∞ , the state space is of size 2S, which
includes two classes of states X = {x0, x1, · · · , xS−1} and Y = {y0, y1, · · · , yS−1}. The action
space for each state is A of A possible actions. So we have totally 2S states and there is in total
2SA state-action pairs.

Armed with the above definitions, we can first introduce the following nominal transition
kernel: for all (s, a) ∈ X ∪ Y ×A

P (0,0)(s′ | s, a) =

p1(s′ = yi) + (1− p)1(s′ = xi) if s = xi, a = 0, ∀i ∈ S

q1(s′ = yi) + (1− q)1(s′ = xi) if s = xi, a ̸= 0, ∀i ∈ S

1(s′ = s) if s ∈ Y

(A.273)

Here, p and q are set according to

0 ≤ p ≤ 1 and 0 ≤ q = p−∆ (A.274)

for some p and ∆ > 0 that will be introduced momentarily.

Chapter 9. Appendix of Chapter 3 234

Then we introduce the S(A−1) components insideM∞. Namely, for any (i, j) ∈ S ×A\{0},
the nominal transition kernel of M(i,j) is specified as

P (i,j)(s′ | s, a) =

p1(s′ = yi) + (1− p)1(s′ = xi) if s = xi, a = j

q1(s′ = yi) + (1− q)1(s′ = xi) if s = xi ∈ X , a = 0

P (0,0)(s′ | s, a) otherwise

(A.275)

In words, the nominal transition kernel of each variant M(i,j) only differs slightly from that
of the basic nominal transition kernel P (0,0) when s = xi and a = {0, j}, which makes all the
components inside Mℓ∞ closed to each other.

In addition, the reward function is defined as

∀a ∈ A : r(s, a) =

1 if s ∈ Y

0 otherwise.
(A.276)

Uncertainty set of the transition kernels. Recall the following useful notation for any
transition probability P , i.e., the transition vector associated with some state s is denoted as:

Ps := P (·, · | s) ∈ R1×SA, P 0
s := P 0(·, · | s) ∈ R1×SA. (A.277)

With this in hand, the uncertainty set (definition in (3.5)) with ℓ∞ norm for any P θ with θ ∈ Θ
can be represented as:

U s,σ̃
∞ (P θs) := U s,σ̃

∥.∥ (P θs) =
{
P ′
s ∈ ∆(S)A :

∥∥∥P ′
s − P θs

∥∥∥ ≤ σ̃ = σ∥1∥∞ = σ
}
. (A.278)

So without loss of generality, we set the radius σ ∈ (0, (1−c0)] with 0 < c0 < 1. Before proceeding,
we observe that as the uncertainty set above is defined with respect to ℓ∞, it directly implies
that for each (s, a) ∈ S ×A, the uncertainty set is independent and can be decomposed as

U s,σ̃
∞ (P θs) = ⊗U s,σ̃

∥.∥ (P θs,a) =
{
P ′
s,a ∈ ∆(S) :

∥∥∥P ′
s,a − P θs,a

∥∥∥ ≤ σ}. (A.279)

Notably, this indicates that using s-rectangular uncertainty set with ℓ∞ norm as the divergence
function is analogous to the case of using (s, a)-rectangular uncertainty set with ℓ∞ norm. As
a result, we follow the pipeline of the prior art Shi et al. (2023, Section C) which established
the minimax-optimal lower bound for (s, a)-rectangular RMDPs with TV distance, which is
analogous to the ℓ∞ case. Towards this, we set p, q,∆ as the same as the ones in Shi et al.
(2023, Section C.1), where we recall the expressions of p, q,∆ for self-contained as below: taking
c1 := c0

2 ,

p = (1 + c1) max{1− γ, σ} and ∆ ≤ c1 max{1− γ, σ}, (A.280)

which ensure several facts:

0 ≤ p ≤ 1 and p ≥ q ≥ max{1− γ, σ}. (A.281)

235 9. Proof of Theorem 3.4.4

Value functions and optimal policies. For each RMDP instance Mθ ∈Mℓ∞ , with some
abuse of notation, we denote π⋆θ as the optimal policy. In addition, let V π,σ

θ (resp. V ⋆,σ
θ) represent

the corresponding robust value function of any policy π (resp. π⋆θ) with uncertainty level σ.
Armed with these notations, the following lemma shows some essential properties concerning the
value functions and optimal policies; the proof is postponed to Appendix 9.3.

Lemma 9.1. Consider any Mθ ∈Mℓ∞ and any policy π, one has

∀(i, j) ∈ Θ : V π,σ
(i,j)(xi) ≤

γ
(
zπ(i,j) − σ

)
(1− γ)

(
1 +

γ

(
zπ(i,j)−σ

)
1−γ(1−σ)

)
(1− γ (1− σ))

, (A.282)

where zπ(i,j) is defined as

∀(i, j) ∈ Θ : zπ(i,j) := pπ(j |xi) + q [1− π(j |xi)] . (A.283)

In addition, the robust optimal value functions and the robust optimal policies satisfy

∀(i, j) ∈ Θ, s ∈ X : V ⋆,σ
(i,j)(s) = γ (p− σ)

(1− γ)
(
1 + γ(p−σ)

1−γ(1−σ)

)
(1− γ (1− σ))

(A.284)

and

π⋆(i,j)(j |xi) = 1 and π⋆(i,j)(0 | s) = 1 ∀s ∈ X \ {xi}. (A.285)

In words, this lemma shows that for any RMDPM(i,j), the optimal policy on state xi satisfies
π⋆(i,j)(j |xi) = 1 and will focus on a = 0 for all other states s ∈ X \ {xi}.

9.2 Establishing the minimax lower bound

Step 1: converting the goal to estimate (i, j). Now we are in position to derive the lower
bound. Recall the goal is to control the following quantity associated with any policy estimator
π̂ based on the dataset with in total Nall samples:

max
(i,j)∈Θ

P(i,j)

{
max
s∈X ∪Y

(
V ⋆,σ

(i,j)(s)− V
π̂,σ

(i,j)(s)
)}
≥ max

(i,j)∈Θ
P(i,j)

{
max
s∈X

(
V ⋆,σ

(i,j)(s)− V
π̂,σ

(i,j)(s)
)}

. (A.286)

To do so, we can invoke a key claim in Shi et al. (2023) here since our problem setting can be
reduced to the same one in Shi et al. (2023): With ε ≤ c1

32(1−γ) , letting

∆ = 32(1− γ) max{1− γ, σ}ε ≤ c1 max{1− γ, σ} (A.287)

which satisfies (A.280), it leads to that for any policy π̂ and all (i, j) ∈ Θ,

V ⋆,σ
(i,j)(xi)− V

π̂,σ
(i,j)(xi) ≥ 2ε

(
1− π̂(j |xi)

)
,

∀s ∈ X \ {xi} : V ⋆,σ
(i,j)(s)− V

π̂,σ
(i,j)(s) ≥ 2ε

(
1− π̂(0 | s)

)
. (A.288)

Before continuing, we introduce a useful notation for the subset of Θ excluding the cases with
state i is selected:

∀i ∈ S : Θ−i = Θ \ {(i′, j) : i′ = i, j ∈ A \ {0}}. (A.289)

Chapter 9. Appendix of Chapter 3 236

Armed with the above facts and notations, we first suppose there exists a policy π̂ such that
for some (i, j) ∈ Θ,

P(i,j)
{
V ⋆,σ

(i,j)(xi)− V
π̂,σ

(i,j)(xi) ≤ ε
}
≥ 3

4 . (A.290)

which in view of (A.288) indicates that we necessarily have π̂(j |xi) ≥ 1
A with probability at

least 3
4 .

As a result, taking

j′ = arg max
a∈A

π̂(a |xi), (A.291)

we are motivated to construct the following estimate of θ:

θ̂

{
= (i, j′) if j′ > 0
∈ G−w if j′ = 0,

(A.292)

which satisfies

P(i,j)
{
θ̂ = (i, j)

}
≥ P(i,j)

{
j′ = j

}
≥ P(i,j)

{
π̂(j |xi) >

1
A

}
≥ 3

4 . (A.293)

Step 2: developing the probability of error in testing multiple hypotheses. Before
proceeding, we discuss the dataset consisting of in total Nall independent samples. Observing that
each RMDP inside the setMℓ∞ are constructed symmetrically associated with one pair of states
(xi, yi) for all i ∈ S and another action j ∈ A× {0}, respectively. Therefore, it is obvious that
the dataset is supposed to be generated uniformly on each (xi, yi, j) to maximize the information
gain, leading to Nall

S(A−1) samples for any states-action (xi, yi, j) with i ∈ S, j ∈ A \ {0}.

Then we are ready to turn to the hypothesis testing problem over (i, j) ∈ Θ. Towards this,
we consider the minimax probability of error defined as follows:

pe := inf
ϕ

max
(i,j)∈Θ

{
P(i,j)

(
ϕ ̸= (i, j)

)}
, (A.294)

where the infimum is taken over all possible tests ϕ constructed from the dataset introduced
above.

To continue, armed with the above dataset with Nall independent samples, we denote µi,j
(resp. µi,j(s, a)) as the distribution vector (resp. distribution) of each sample tuple (s, a, s′) under
the nominal transition kernel P (i,j) associated with M(i,j). With this in mind, combined with
Fano’s inequality from Tsybakov (2009, Theorem 2.2) and the additivity of the KL divergence
(cf. Tsybakov (2009, Page 85)), we obtain

pe ≥ 1−Nall

max
(i,j),(i′,j′)∈Θ,(i,j)̸=(i′,j′)

KL
(
µi,j |µi′,j′)+ log 2

log |Θ|
(i)
≥ 1−Nall max

(i,j),(i′,j′)∈Θ,(i,j) ̸=(i′,j′)
KL
(
µi,j |µi′,j′)− 1

2

= 1
2 −Nall max

(i,j),(i′,j′)∈Θ,(i,j)̸=(i′,j′)
KL
(
µi,j |µi′,j′) (A.295)

where (i) holds by log |Θ| ≥ 2 log 2 as long as S(A − 1) are large enough. Then following the
same proof pipeline of Shi et al. (2023, Section C.2), we can arrive at

pe ≥
1
2 −

Nall
S(A− 1)

4096
c1

(1− γ)2 max{1− γ, σ}ε2 ≥ 1
4 , (A.296)

237 9. Proof of Theorem 3.4.4

if the sample size is selected as

Nall ≤
c1S(A− 1)

16396(1− γ)2 max{1− γ, σ}ε2 . (A.297)

Step 3: summing up the results together. Finally, we suppose that there exists an
estimator π̂ such that

max
(i,j)∈Θ

P(i,j)

[
max
s∈X ∪Y

(
V ⋆,σ

(i,j)(s)− V
π̂,σ

(i,j)(s)
)
≥ ε

]
<

1
4 , (A.298)

then according to (A.286), we necessarily have

∀s ∈ X : max
(i,j)∈Θ

P(i,j)
[
V ⋆,σ

(i,j)(s)− V
π̂,σ

(i,j)(s) ≥ ε
]
<

1
4 , (A.299)

which indicates

∀s ∈ X : max
(i,j)∈Θ

P(i,j)
[
V ⋆,σ

(i,j)(s)− V
π̂,σ

(i,j)(s) < ε
]
≥ 3

4 . (A.300)

As a consequence, (A.293) shows we must have

∀(i, j) ∈ Θ : P(i,j)
[
θ̂ = (i, j)

]
≥ 3

4 (A.301)

to achieve (A.298). However, this would contract with (A.296) if the sample size condition in
(A.297) is satisfied. Thus, we complete the proof.

9.3 Proof of Lemma 9.1

Without loss of generality, we first consider any M(i,j) with (i, j) ∈ S ×A \ {0}. Following the
same routine of Shi et al. (2023, Section C.3.1), we can verify that the order of the robust value
function V π,σ

(i,j) over different states satisfies

∀k ∈ S : V π,σ
(i,j)(xk) ≤ V

π,σ
(i,j)(yk), (A.302)

which means the robust value function of the states inside X are always not larger than the
corresponding states inside Y.

Then we denote the minimum of the robust value function over states as below:

V π,σ
(i,j),min := min

s∈S
V π,σ

(i,j)(s). (A.303)

In the following arguments, we first take a moment to assume V π,σ
(i,j),min = V π,σ

(i,j)(xi). With
this in mind, we arrive at

V π,σ
(i,j)(yi) = 1 + γ (1− σ)V π,σ

(i,j)(yi) + γσV π,σ
(i,j),min =

1 + γσV π,σ
(i,j)(xi)

1− γ (1− σ) . (A.304)

Then, when we move on to the characterization of the robust value function at state xi. To
do so, we notice two important facts:

1) The nominal transition probability P
(i,j)
xi,a at state-action pair (xi, a) for any a ∈ A is a

Bernoulli distribution (see (A.275) and (A.273)). The TV distance and the ℓ∞ norm
between two Bernoulli distribution are the same.

Chapter 9. Appendix of Chapter 3 238

2) Invoking the definitions of the nominal transition probability in (A.275) and (A.273), we
have

P
(i,j)
xi,j

= p1(s′ = yi) + (1− p)1(s′ = xi)
P (i,j)
xi,a = q1(s′ = yi) + (1− q)1(s′ = xi) ∀a ∈ A \ {j}. (A.305)

With the above two facts in hand, our problem setting is reduced to the same one in Shi et al.
(2023) and can reuse the results in Shi et al. (2023, Section C.3.1) to achieve

V π,σ
(i,j)(xi) ≤

γ

(
zπ(i,j)−σ

)
1−γ(1−σ)

(1− γ)
(

1 +
γ

(
zπ(i,j)−σ

)
1−γ(1−σ)

) . (A.306)

and

π⋆(i,j)(j |xi) = 1

V ⋆,σ
(i,j)(xi) =

γ

(
zπ
⋆

(i,j)−σ
)

1−γ(1−σ)

(1− γ)

1 +
γ

(
zπ
⋆

(i,j)−σ
)

1−γ(1−σ)

 =
γ(p−σ)

1−γ(1−σ)

(1− γ)
(
1 + γ(p−σ)

1−γ(1−σ)

) . (A.307)

Analogously, we can verify that for other xk ∈ X \ {xi},

π⋆(i,j)(0 |xk) = 1

V ⋆,σ
(i,j)(xk) =

γ(p−σ)
1−γ(1−σ)

(1− γ)
(
1 + γ(p−σ)

1−γ(1−σ)

) . (A.308)

10 DRVI for sa− rectangular algorithm for arbitrary norm

In order to compute the fixed point of T̂ σ, distributionally robust value iteration (DRVI), is
defined in Algorithm 11. For sa-rectangularity, starting from an initialization Q̂0 = 0, the update
rule at the t-th (t ≥ 1) iteration is the following ∀(s, a) ∈ S ×A:

Q̂πt (s, a) = T̂ σQ̂πt−1(s, a) = r(s, a) + γ inf
P∈U sa,σ

∥.∥ (P̂ 0
s,a)
PV̂t−1, (A.309)

where V̂t−1(s) = maxπ Q̂πt−1(s, a) for all s ∈ S.
Directly solving (A.309) is computationally expensive since it involves optimization over a

S-dimensional probability simplex at each iteration, especially when the dimension of the state
space S is large. Fortunately, given strong duality (A.309) can be equivalently solved using
its dual problem, which concerns optimizing a two variable (λ and ω) and thus can be solved
efficiently. The specific form of the dual problem depends on the choice of the norm ∥.∥, which
we shall discuss separately in Appendix 6.3. To complete the description, we output the greedy
policy of the final Q-estimate Q̂T as the final policy π̂, namely,

∀s ∈ S : π̂(s) = arg max
a

Q̂T (s, a). (A.310)

239 10. DRVI for sa− rectangular algorithm for arbitrary norm

Algorithm 11: Distributionally robust value iteration (DRV I) for infinite-horizon
RMDPs for sa-rectangular for arbitrary norm
1 input: empirical nominal transition kernel P̂ 0; reward function r; uncertainty level σ;

number of iterations T .
2 initialization: Q̂0(s, a) = 0, V̂0(s) = 0 for all (s, a) ∈ S ×A.
3 for t = 1, 2, ..., T do
4 for s ∈ S, a ∈ A do
5 Set Q̂t(s, a) according to (A.309);
6 for s ∈ S do
7 Set V̂t(s) = maxa Q̂t(s, a);

8 output: Q̂T , V̂T and π̂ obeying π̂(s) := arg maxa Q̂T (s, a).

Encouragingly, the iterates
{
Q̂t
}
t≥0 of DRV I converge linearly to the fixed point Q̂⋆,σ, owing to

the appealing γ-contraction property of T̂ σ.
Using Algorithm 11, it allows getting an ϵopt error in the empirical MDP in the sa-rectangular
case. In the s-rectangular case, finding an algorithm to get ϵopt is more difficult to use, as the
policy is not deterministic anymore and 11 cannot anymore be applied. For Lp norms, Clavier
et al. (2023) derived an algorithm but for arbitrary norm we need to consider a more general
problem for arbitrary norm in Appendix 8

Appendix of Chapter 4

11 Proof of mean-standard deviation formulation as a robust
problem

We consider the following equality for P the distribution of trajectories following π and nominal
kernel P 0:

min
P∈Dχ2 (P∥P0)≤α

Q(P,π)(s, a) = Q(P 0,π)(s, a)− α1/2VP 0 [Z(s, a)]
1
2 (A.311)

Consider here that τ is drawn from P. Writing R̃(τ) = R(τ)− Eτ∼P 0 [R(τ)]

∥Eτ∼P[R(τ)]− Eτ∼P0 [R(τ)]∥ =
∥∥∥∥∫

τ
R̃(τ)

(
P(τ)− P0(τ)

)
dτ

∥∥∥∥
=
∥∥∥∥∥
∫
τ
R̃(τ)

√
P0(τ)

(
P(τ)− P0(τ)

)√
P0(τ)

dτ

∥∥∥∥∥
≤
∥∥∥∥∫

τ
R̃(τ)2P0(τ)dτ

∥∥∥∥ 1
2
∥∥∥∥∥
∫
τ

(
P(τ)− P0(τ)

)2
P0(τ) dτ

∥∥∥∥∥
1
2

= VP0 [R(τ)]
1
2Dχ2(P∥P0)

1
2

because of positivity of divergence and of the variance, norms are removed. We get equality if
for λ ∈ R :

R̃(τ)P0(τ) = λ(P(τ)− P0(τ)) ⇐⇒ P(τ) = P0(τ)(1 + 1
λ
R̃(τ)) (A.312)

However, P(τ) needs to be positive and sum to one as it is a measure. The last condition is
respected but if λ ≤ 0 we need

∥∥∥R̃(τ)/λ
∥∥∥ ≤ 1 to ensure positivity of P(τ) . In this case we obtain

from A.312 that Dχ2(P∥P0) = VP0R
λ2 . Replacing the divergene in the inequality, the following

result holds :

∥Eτ∼P[R(τ)]− Eτ∼P0 [R(τ)]∥ ≤ VP0(R(τ))
λ

So for a constrained problem such that Dχ2(P∥P0) ≤ α, we obtain:

min
P∈Dχ2 (P∥P0)≤α

Q(P,π) = Q(P 0,π) − α1/2V[Z(s, a)]
1
2

Chapter 9. Appendix of Chapter 4 242

with the maximum value of α equals to Dχ2(P∥P0) = VP0 [R̃(τ)]
λ2 ≤

VP0[R(τ)]

∥R̃∥2
∞

= ∥R̃∥2
2

∥R̃∥2
∞

≤ 1 If
our problem is constrained, we obtain the following results with the maximum attained for
Dχ2(P∥P0) = α :

min
P∈Dχ2 (P∥P0)≤α

Q(P,π) = Q(P0,π) − α1/2V[Z(s, a)]
1
2 (A.313)

and the formulation of our algorithm becomes :

πk+1 ∈ Gα (Zk) = G(ξα(Zk) = arg maxπ∈Π.⟨E[Zk]− α1/2√V[Zk], π⟩

Zk+1 = (T πk+1)m Zk
,

12 Further results on continuous action space

12.1 Normalised results

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Relative mass

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
ea

n
Re

wa
rd

SAC
=0
=2
=5

(a) Hopper-v3 (wN)

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Relative mass

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Re

wa
rd

SAC
=0
=0.5
=2

(b) HalfCheetah-v3 (wN)

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Relative mass

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
ea

n
Re

wa
rd

SAC
=0
=2
=5

(c) Walker-v3 (wN)

Figure A12.1: y-axis : normalised mean ± standard deviation over 20 trajectories. x-axis : relative
mass.

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Relative mass

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
ea

n
Re

wa
rd

SAC
=0
=2
=5

(a) Hopper-v3 (N)

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Relative mass

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
ea

n
Re

wa
rd

SAC
=0
=2
=5

(b) HalfCheetah-v3 (N)

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Relative mass

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
ea

n
Re

wa
rd

SAC
=0
=2
=5

(c) Walker-v3 (N)

Figure A12.2: y-axis : normalised mean ± standard deviation over 20 trajectories. x-axis : relative
mass.

The results were normalised to better reflect the improvement without being biased by the
average performance which is higher with a distributional critic.

243 13. Further Experimental Details

13 Further Experimental Details

All experiments were run on a cluster containing an Intel Xeon CPU Gold 6230, 20 cores, and all
experiments were performed on a single CPU between 3 and 6 hours for continuous control and
less than 1 hour for the discrete control environment.

Pre-trained models will be available for all algorithms and environments on a GitHub link.
The Mujoco OpenAI Gym task licensing information is given at

https://github.com/openai/gym/blob/master/LICENSE.md. The baseline implementation of
PPO, SAC, TQC, and QRDQN can be found in Raffin et al. (2019). Moreover, hyperparameters
across all experiments used are displayed in Table 9.3, 9.2 and 9.4 .

14 Ablation study for discrete action space on Cartpole-v1

The purpose of this ablation study is to look at the influence of penalization in the discrete
action space with QRDQN. In the figures below, we look at the influence of penalizing only
during training, which will have the effect of choosing less risky actions during training in order
to increase robustness. This curve is denoted Train penalized.

Then we look at the influence of penalizing only once the policy has been learned using classic
QRDQN without penalization. Only mean-var actions are selected here during testing and not
during training. This experience is denoted Train Penalization.

Finally, we compare its variants with our algorithm called Full penalization. The results of
the ablation are: to achieve optimal performance, both phases are necessary.

When penalties are applied only during training. Good performance is generally obtained
close to the length 1 where we train our algorithm. However, the performance is difficult to
generalize when the pole length is increased,increased, as we do not penalize during testing.

When we penalize only during testing: even if the performances deteriorate, we see that it
tends to add robustness because the curves have less tendency to decrease when we increase the
length of the pole. The performances are not very high as we play different acts than those taken
during the learning.

So both phases are necessary for our algorithm. Penalizing during training allows for safer
exploration and penalizing during testing allows for better generalization.

The ablation study for the continuous case is more difficult to do. Indeed, the fact that the
penalty occurs only in the gradient descent phase makes it difficult to penalize only in the test
phase.

0 1 2 3 4 5 6 7 8
Relative mass

100

200

300

400

500

M
ea

n
Re

wa
rd

Full penalization
Test penalization
Train penalization

(a) α = 1

0 1 2 3 4 5 6 7 8
Relative mass

100

200

300

400

500

M
ea

n
Re

wa
rd

Full penalization
Test penalization
Train penalization

(b) α = 3

Chapter 9. Appendix of Chapter 4 244

0 1 2 3 4 5 6 7 8
Relative mass

100

200

300

400

500

M
ea

n
Re

wa
rd

Full penalization
Test penalization
Train penalization

(a) α = 5

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Relative mass

100

200

300

400

500

M
ea

n
Re

wa
rd

Full penalization
Test penalization
Train penalization

(b) α = 7

15 Further Experimental Details

For HalfCheetah-v3 , penalisation is chosen in [0, 2] and not [0, 5] like in Walker-v3 and Hopper-v3.
This choice depend on

245 15. Further Experimental Details

Table 9.2: Table of best hyperparameter for Cartpole-v1

Hyperparameter QRDQN with standard deviation penalisation PPO

Learning Rate 2.3e-3 3e-4

Optimizer Adam Adam

Replay Buffer Size 10e5 N/A

Number of Quantiles 10 N/A

Huber parameter κ 1 N/A

Penalisation α {0,1,3,5,7 } N/A

Network Hidden Layers for Policy N/A 256:256

Network Hidden Layers for Critic 256:256 256:256

Number of samples per Minibatch 64 256

Discount factor γ 0.99 0.99

Target smoothing coefficient β .0.005 N/A

Non-linearity ReLu ReLu

Target update interval 10 N/A

Gradient steps per iteration 1 1

Entropy coefficient N/A 0

GAE λ 0.95 0.8

Chapter 9. Appendix of Chapter 4 246

Table 9.3: Table of best hyperparameter for Acrobot-v1

Hyperparameter QRDQN with standard deviation penalisation PPO

Learning Rate 6.3e-4 3e-4

Optimizer Adam Adam

Replay Buffer Size 50 000 N/A

Number of Quantiles 25 N/A

Huber parameter κ 1 N/A

Penalisation α {0, 0.5, 1, 2, 3} N/A

Network Hidden Layers for Critic 256:256 256:256

Network Hidden Layers for Policy N/A 256:256

Number of samples per Minibatch 128 64

Discount factor γ 0.99 0.99

Target smoothing coefficient β .0.005 N/A

Non-linearity ReLu ReLu

Target update interval 250 N/A

Gradient steps per iteration 4 1

Entropy coefficient N/A 0

GAE λ 0.95 0.95

247 15. Further Experimental Details

Table 9.4: Table of best hyperparameter for all continuous environments

Hyperparameter TQC with standard deviation penalisation SAC

Learning Rate linear decay (lr) from 7.3e-4 lr from 7.3e-4

Optimizer Adam Adam

Replay Buffer Size 106 106

Expected Entropy Target −dimA −dimA

Number of Quantiles 25 N/A

Huber parameter κ 1 N/A

Penalisation α {0, 1, ...5} N/A

Network Hidden Layers for Policy 256:256 256:256

Network Hidden Layers for Critic 512:512:512 256:256

Number of dropped atoms 2 N/A

Number of samples per Minibatch 256 256

Discount factor γ 0.99 0.99

Target smoothing coefficient β .0.005 0.005

Non-linearity ReLu ReLu

Target update interval 1 1

Gradient steps per iteration 1 1

Appendix of Chapter 5

16 Proof

Theorem 16.1.
(T πα V)(s) =

∑
a

π(a|s)(r(s, a) + γmα(Psa, V)). (A.314)

this is a contraction:

The expectile satisfies the following properties (Bellini et al. 2014, Bellini and Di Bernardino
2017):

1. Translation invariance: mτ (X + h) = mα(X) + h

2. Monotonicity: X ≤ Y a.s.⇒ mτ (X) ≤ mα(Y)

3. Positive homogeneity:
λ ≥ 0⇒ mα(λX) = λmτ (X)

4. Superadditivity, for α ≤ 1
2 ,mτ (X + Y) ≥ mα(X) +mα(Y).

So,

(T πα V1)(s)− (T πα V2)(s) =
∑
a

π(a|s)(r(s, a) + γmα(Psa, V1)) (A.315)

−
∑
a

π(a|s)(r(s, a) + γmα(Psa, V2)) (A.316)

= γ
∑
a

π(a|s)(mα(Psa, V1)−mα(Psa, V2)) (A.317)

≤ γ
∑
a

π(a|s)(mα(Psa, V2 + ∥V2 − V1∥∞)−mα(Psa, v2)) (A.318)

(by monotonicity) and V1 ≤ V2 + ∥V2 − V1∥∞)
= γ

∑
a

π(a|s)(mα(Psa, V2) + ∥V2 − V1∥∞ −mα(Psa, V2)) (by translation invariance) (A.319)

= γ∥V2 − V1∥∞. (A.320)

In the same manner, T ∗
α is also a contraction, as the only line of this proof that differs

is replacing the expectation by a maxa. As maximum operator 1-Lipschitz, (ie) maxa f(a) −
max g(a) ≤ max f(a) − g(a), we obtain γ- contraction results also for the optimal Bellman
operator T ∗

α.
Similar ideas exist in Zhang et al. (2023), which show similar properties for risk-sensitive

MDPs defined through a convex risk measure, even though they do not consider explicitly the
expectile which is a convex risk measure for α < 1/2.

Chapter 9. Appendix of Chapter 5 250

Theorem 16.2. The (optimal) Expectile value function is equal to the (optimal) robust value
function

V ∗
α (s) = V π

E := max
π

min
Q∈E

V π,Q (A.321)

V π
α (s) = V π

E := min
Q∈E

V π,Q (A.322)

where E is defined in section 5.2.3 or below.

Proof. This theorem is just an adaptation of Theorem 2 in Zhang et al. (2023) where we use
expectile risk measure mα(X) which implicitly defined the uncertainty set for robust E such that
:

mα(X) = min
Q∈E

EQ[X];

E =

Q ∈ P | ∃η > 0,
√

α

1− αη ≤
dQ

dP
≤

√
(1− α)
α

η

where P is the set of P -absolutely continuous probability measures. In Theorem Zhang et al.
(2023), they link Risk sensitive MDPs (in our case expectile formulation) with Regularised Robust
MDPs. In our case, we can rewrite the classical RMDPs to Regularised-Robust MDPs such that:

V ∗
E = max

π
min
Q∈E

V π,Q = max
π

min
Q∈E

E
[∑

t

γtr(st, at)
]

= max
π

min
Q∈P

E
[∑

t

γt(r(st, at) + γD(Pt;st,at , Qt;st,at)
]

with D a penalty function that can be chosen as KL divergence for example and Pt;st,at the
transition kernel at time t with current state action (st, at).For the expectile risk measure, the
corresponding D is simply:

D(P,Q) =

0 if η

√
α

1−α ≤ P (s)/Q(s) ≤
√

(1−α)
α η,∀s ∈ S

+∞ otherwise.

where η is defined in 5.2.3. Using Theorem 2 of Zhang et al. (2023), we have directly that :

V ∗
α (s) = V π

E := max
π

min
Q∈E

V π,Q (A.323)

V π
α (s) = V π

E := min
Q∈E

V π,Q. (A.324)

17 AutoExpectRL algorithm description

In the section, we gives implementation details of our algorithm AutoExpectRL. First, we choose
a neural network that has 4 heads for the critic, one per value of α, leading to 4 estimates of the

251 17. AutoExpectRL algorithm description

Algorithm 12: AutoExpectRL
1: Initialize critic networks Qϕd and actor πθ ∀d ∈ [1, 4]

Initialize target networks for all networks, i.e. ∀d ∈ [1, 4] ϕ′
d ← ϕd, θ′

d ← θd
Initialize replay buffer and bandit probabilities B ← ∅, pα1 ← U([0, 1]D)

2: for episode in m = 1, 2, . . . do
3: Initialize episode reward Rm ← 0
4: Sample expectile αm ∼ pαm
5: for time step t = 1, 2, . . . , T do
6: Select noisy action at = πθd(st) + ϵ, ϵ ∼ N (0, s2), obtain rt+1, st+1 where d is the index

in the bandit problem of chosen expectile αm
7: Add to total reward Rm ← Rm + rt+1
8: Store transition B ← B ∪ {(st, at, rt+1, st+1)}
9: Sample N transitions B = (s, a, r, s′)Nn=1 ∼ B.

10: Update Critics(B, θ′, ϕ′) according to (A.326).
11: if t mod b then
12: UpdateActor(T, θ, ϕ) according to (A.327).
13: Update ϕ′

d: ϕ′
d ← τϕd + (1− τ)ϕ′

d, d ∈ {1, 4}
14: Update θ′: θ′

d ← τθd + (1− τ)θ′
d

15: end for
16: Update bandit pα weights using : wm+1(d) = wm(d) + ηRm−Rm−1

pαm(d)
17: end for

pessimist Q-function, Qϕd(s, a), ∀d ∈ [1, 4]. Even if some parameters are shared in the body of
the network, we denote parameters of the critic as ϕ = {ϕ1, ϕ2, ϕ3, ϕ4}. A similar network is used
for actor neural network, with four heads, one per policy πθd , ∀d ∈ [1, 4]. with θ = {θ1, θ2, θ3, θ4}.

Given 4 target yd (r, s′) = r + γQϕd,targ (s′, πθd(s′)) with reward r, policy πθd , we propose to
minimize the AutoExpectRL critic loss

Lauto (ϕ,D) = E
(s,a,r,s′)∼D

[4∑
d=1

Lαd2
(
Qϕd(s, a)− yd

(
r, s′))] . (A.325)

which as associated UpdateCritics(B, θ, ϕ) function which is a gradient ascent using :

∆ϕ ∝ ∇ϕ
1
|B|

∑
(s,a,r,s′)∈B

4∑
d=1

Lαd2
(
Qϕd(s, a)− yd

(
r, s′)) . (A.326)

The actor of our algorithm AutoExpectRL is updated according to the gradient of the sum of
the actor’s head losses or UpdateActor(T, θ, ϕ):

∆θ ∝ ∇θ
1
|B|

∑
s∈B

4∑
k=1

Qϕk (s, πθk(s)) . (A.327)

The dimension of our neural network is related to the dimension of the classical network
of TD3. First, we choose a common body of share weights for our neural network of hidden
dimension [400, 300]. Then our network is composed of 4 heads, each with final matrix weights of
dimensions 300× 1 where 1 represents the value of one pessimist Q-function Qk. The dimension

Chapter 9. Appendix of Chapter 5 252

of the actor-network hidden layers is similar to the critic network for share weights, but the
non-shared weights between the last hidden layer and the 4 policies have dimension 300× |A|.
Finally, the sampling of new trajectories is done using the actor head with the chosen current α
proposed by the bandit algorithm using πθd with d the index of the chosen expectile.

The algorithm can be summarised as in Algorithm 12. The blue parts are parts that differ
from the traditional TD3 algorithm, as they are related to the bandit mechanism or ExpectRL
losses. Note that the parameter b, the delay between the update of the critic and the actor, is
usually chosen as 2 in TD3 algorithm. Finally, in the update of the bandit, an extra parameter,
the learning rate η of the gradient ascent must be chosen. This parameter influences how fast
the bandit converges to an arm, and in our case is chosen as 0.2 like in Moskovitz et al. (2021)
which uses bandit to fine-tune parameters in Rl algorithm. for all environments. Finally, in the
testing phase of the benchmark, the best arm is chosen to maximize the reward.

18 Hyperparameters

Hyperparameter Value

Learning rate actor 3e− 4

Learning rate critic 3e− 3

Batch size 100

Memory size 3e5

Gamma 0.99

Polyak update τ 0.995

Number of steps before training 7e4

Train frequency and gradient step 100

Network Hidden Layers (Critic) [400, 300] like original implementation of TD3

Network Hidden Layers (Actor) [400, 300] like original implementation of TD3

Table 9.5: Hyperparameters

All experiments were run on an internal cluster containing a mixture of GPU Nvidia Tesla
V100 SXM2 32 Go. Each run was performed on a single GPU and lasted between 1 and 8 hours,
depending on the task and GPU model. Our baseline implementations for TD3 is Raffin et al.
(2021) where we use the same base hyperparameters across all experiments, displayed in Table
??.

253 19. AutoExpecRL vs other expectiles on Robust benchmark for mean on Table 5.1

19 AutoExpecRL vs other expectiles on Robust benchmark for
mean on Table 5.1

This section illustrates the fact that ExpecRL method outperforms on robust benchmark TD3
algorithm. Without any hyperparameter tuning, AutoExpecRL achieves a similar performance
to ExpecRL with the best expectile, finding the best arms in the bandit problem. In Ant and
Hopper environments, the best expectile is frequently very low, typically α = 0.2 our 0.3 where
this is less the case for HalfCheetah and Humanoid where the best expectile is bigger. Finally,
we can remark that smaller expectiles give better performance in terms of min performance
while for average metric, higher expectiles are chosen, which is also verified in Table 9.6 for DR
benchmark.

Figure A19.5: Mean performance as a function of the expectile, non-robust case (corresponding to
Table 5.1).

0.0 0.2 0.4 0.6 0.8 1.0
step 1e6

0

1000

2000

3000

4000

5000

pe
rfo

rm
an

ce

Ant-v3

0.2
0.3
0.4
0.5
0.5 twin
auto

0.0 0.2 0.4 0.6 0.8 1.0
step 1e6

0

2000

4000

6000

8000

10000

12000

pe
rfo

rm
an

ce

HalfCheetah-v3

0.2
0.3
0.4
0.5
0.5 twin
auto

0.0 0.2 0.4 0.6 0.8 1.0
step 1e6

0

500

1000

1500

2000

2500

3000

3500

pe
rfo

rm
an

ce

Hopper-v3

0.2
0.3
0.4
0.5
0.5 twin
auto

0.0 0.2 0.4 0.6 0.8 1.0
step 1e6

0

500

1000

1500

2000

2500

3000

3500

pe
rfo

rm
an

ce

Walker-v3

0.2
0.3
0.4
0.5
0.5 twin
auto

Figure A19.6: Learning curves non-robust case (corresponding to Table 5.1).

Chapter 9. Appendix of Chapter 5 254

20 Worst case performance for AutoExpecRL and ExpecRL (only
nominal samples) or Table 5.2.

20.1 For 1D uncertainty greed benchmark

Figure A20.7: Min performance as a function of the expectile, robust case (corresponding to Table 5.2).

25521. Average performance for AutoExpecRL and ExpecRL(only nominal samples) or Table 5.2.

20.2 For 2D uncertainty greed benchmark

Figure A20.8: Min performance as a function of the expectile, robust case (corresponding to Table 5.2).

20.3 For 3D uncertainty greed benchmark

Figure A20.9: Min performance as a function of the expectile, robust case (corresponding to Table 5.2).

21 Average performance for AutoExpecRL and ExpecRL(only nom-
inal samples) or Table 5.2.

Chapter 9. Appendix of Chapter 5 256

21.1 For 1D uncertainty greed benchmark

Figure A21.10: Min performance as a function of the expectile, robust case (corresponding to Table 5.2).

21.2 For 2D uncertainty greed benchmark

Figure A21.11: Min performance as a function of the expectile, robust case (corresponding to Table 5.2).

257
22. Additional details for expectiles on Robust benchmark for worst-case and mean on Table 5.3

21.3 For 3D uncertainty greed benchmark

Figure A21.12: Min performance as a function of the expectile, robust case (corresponding to Table 5.2).

22 Additional details for expectiles on Robust benchmark for
worst-case and mean on Table 5.3

23 Uncertainty sets used for Robust benchmark

Chapter 9. Appendix of Chapter 5 258

Env Min Mean

Ant1 3 3

Ant2 2 3

Ant3 2 3

HalfCheetah1 3 3

HalfCheetah2 3 3

HalfCheetah3 3 3

Hopper1 3 4

Hopper2 3 4

Hopper3 3 3

Walker1 3 4

Walker2 4 4

Walker3 3 3

HumanoidStandup1 3 3

HumanoidStandup2 2 3

HumanoidStandup3 2 3

Table 9.6: Best Expectile in DR for ExpectRL

259 23. Uncertainty sets used for Robust benchmark

Table 9.7: Uncertainty sets used for Robust benchmark

Environment Uncertainty Set Ω Reference Parameter Uncertainty Parameter Name

Baseline MuJoCo Environment: Ant

Ant 1 [0.1, 3.0] 0.33 torso mass

Ant 2 [0.1, 3.0] × [0.01, 3.0] (0.33, 0.04) torso mass × front left leg mass

Ant 3 [0.1, 3.0] × [0.01, 3.0] × [0.01, 3.0] (0.33, 0.04, 0.06) torso mass × front left leg mass × front right leg mass

Baseline MuJoCo Environment: HalfCheetah

HalfCheetah 1 [0.1, 4.0] 0.4 world friction

HalfCheetah 2 [0.1, 4.0] × [0.1, 7.0] (0.4, 6.36) world friction × torso mass

HalfCheetah 3 [0.1, 4.0] × [0.1, 7.0] × [0.1, 3.0] (0.4, 6.36, 1.53) world friction × torso mass × back thigh mass

Baseline MuJoCo Environment: Hopper

Hopper 1 [0.1, 3.0] 1.00 world friction

Hopper 2 [0.1, 3.0] × [0.1, 3.0] (1.00, 3.53) world friction × torso mass

Hopper 3 [0.1, 3.0] × [0.1, 3.0] × [0.1, 4.0] (1.00, 3.53, 3.93) world friction × torso mass × thigh mass

Baseline MuJoCo Environment: HumanoidStandup

HumanoidStandup 1 [0.1, 16.0] 8.32 torso mass

HumanoidStandup 2 [0.1, 16.0] × [0.1, 8.0] (8.32, 1.77) torso mass × right foot mass

HumanoidStandup 3 [0.1, 16.0] × [0.1, 5.0] × [0.1, 8.0] (8.32, 1.77, 4.53) torso mass × right foot mass × left thigh mass

Baseline MuJoCo Environment: Walker

Walker 1 [0.1, 4.0] 0.7 world friction

Walker 2 [0.1, 4.0] × [0.1, 5.0] (0.7, 3.53) world friction × torso mass

Walker 3 [0.1, 4.0] × [0.1, 5.0] × [0.1, 6.0] (0.7, 3.53, 3.93) world friction × torso mass × thigh mass

Appendix of Chapter 6

24 Appendix

The Appendix is structured as follow :

• In Appendix 25, proof for fix point of Oracle-TC algorithm for can be found.

• In Appendix 26, proof for algorithm Vanilla TC and Stacked-TC can found about robust
objective.

• In Appendix 29, the adversary training was sanity-checked within the time-constrained
evaluation.

• In Appendix 28, all implementation details are provided.

• In Appendix 31, all raw results are presented.

• In Appendix 32, the computer resources and training wall clock time are detailed.

• In Appendix 33, the broader impact and limitations are discussed.

25 Proof of Theorem 6.2.1

Proof. The Proof is similar to Iyengar (2005), using the fact that Pψ+b belongs to the simplex,
we get contraction of the operator and convergence to a fix point V ∗

B. Not that to converge to
the fix point, there is no need of rectangularity.

Recall the recursion

Vn+1(s, ψ) = max
π(s,ψ)∈∆A

min
b∈B

T πb Vn(s, ψ) := max
π(s,ψ)∈∆A

min
b∈B

Ea∼π(s)[r(s, a) + γEs′∼Pψ+bVn(s′, ψ′)]

(A.328)

First we prove that the TC Robust Operator T πB is a contraction. Let V1, V2 ∈ Rn. Fix s ∈ S,
and assume that T πBV1(s, ψ) ≥ T πBV2(s, ψ). Then fix ϵ > 0 and pick π s.t given s ∈ S,

inf
b∈B

Epψ+b

[
r (s, π(s)) + γV1

(
s′, ψ′)] ≥ T πBV1(s, ψ′)− ϵ. (A.329)

First we pick a probability measure P ′ such that P ′ = Pψ+b, b ∈ B, such that

EP ′
[
r (s, π(s)) + γV2

(
s′, ψ′)] ≤ inf

b∈B
EP ′

[
r (s, π(s)) + γV2

(
s′, ψ′)]+ ϵ. (A.330)

Chapter 9. Appendix of Chapter 6 262

Then it lead to

0 ≤ T πB V1(s, ψ)− T πB V2(s, ψ) ≤
(

inf
P∈B

EP
[
r (s, π(s)) + γV1

(
s′, ψ′)]+ ϵ

)
(A.331)

−
(

inf
P∈B

EP
[
r (s, π(s)) + γV2

(
s′, ψ′)]) (A.332)

≤
(
EP ′

[
r (s, π(s)) + γV1

(
s′, ψ′)]+ ϵ

)
− (A.333)(

EP ′
[
r (s, π(s)) + γV2

(
s′, ψ′)]− ϵ) , (A.334)

= γEP ′ [V1 − V2] + 2ϵ, (A.335)
≤ γEP ′ |V1 − V2|+ 2ϵ (A.336)
≤ γ∥V1 − V2∥∞ + 2ϵ. (A.337)

where last inequality is Holder’s inequality between L1 and L∞ norms, use probability measure
in the simplex such as ∥P ′∥1 = 1. Doing the same thing but in the case where T πB V1(s) ≤ T πB V2(s)
, it holds

∀s ∈ S, |T πB V1(s)− T πB V2(s)| ≤ γ∥V1 − V2∥∞ + 2ϵ , (A.338)

i.e. ∥T πB V1−T πB V2∥∞ ≤ γ∥V1−V2∥∞ +2ϵ. As we can choose ϵ arbitrary small, this establishes
that the TC Bellman operator is a γ-contraction. Since T πB is a contraction operator on a Banach
space, the Banach fixed point theorem implies that the operator equation T πB V = V has a unique
solution V = V π

B . A similar proof can be done for optimal operator T ∗
B . The only difference is

the maximum operator which is 1−Lipschitz. So T ∗
B is also a contraction. Then, once proved

that operators are γ− contraction, following (Iyengar 2005) (Th. 5), we have that the fixed point
of this recursion is exactly :

V π
B (s, ψ) := min

(bt)t∈N,
bt∈B

E
[∑

γtrt|ψ−1 = ψ, s0 = s, bt ∈ B,ψt = ψt−1 + bt, a ∼ π, st ∼ Pψt
]
, (A.339)

V ∗
B(s, ψ) = max

π(s,ψ)∈∆A

V π
B (s, ψ) . (A.340)

for (optimal) TC Bellman Operator.

26 Guaranties for non-stationary Robust MDPS

Recall that we represent a non-stationary robust MDPs (NS-RMDP) as a stochastic sequence,
{M = {Mi}∞t=t0 , of stationary MDPs Mt ∈M, whereM is the set of all stationary MDPs. Each
Mt is a tuple,

(
S,A, Pt, rt, γ, ρ0), where S The set of possible states is denoted by S, the set of

actions by A, the discounting factor by γ, the start-state distribution by ρ0, and the reward
distribution by rt. The reward distribution, denoted by rt : S × A → ∆(R), is the probability
distribution of rewards. The transition function, represented by Pt : S × A → ∆(S), is the
probability distribution of transitions between states. The symbol ∆ denotes the simplex. For all
Mt ∈M, we assume that the state space, action space, discount factor, and initial distribution
remain fixed. A policy is represented as a function π : S → ∆(A). In general, we will use
subscripts t to denote the time evolution during an episode and superscripts k to denote the
time step assuming reward or kernel t which is stationary, assuming that the reward function is
not changing as it is at time step t stationary. That rkt is the random variables corresponding to
the state, action, and reward at time step t for stationary, but iterating with index k.

263 27. Proof Theom 6.6.1

Definition 26.1 (Lipschitz of sequence of MDPs). We denote the sequence of kernel and reward
function P = {Pt}∞t=t0 and R = {rt}∞t=t0 . We define a sequence of MDP is L = (Lr, LP)-Lipchitz
if m = {mt}∞t=t0 ∈M

L with

ML
t =

{
{Mt}tt′=t0 ;∃(Lr, LP) ∈ R2

+∀t ∈ N, ∀s ∈ S, ∀a ∈ A, ∥Pt′(· | s, a)− Pt′+1(· | s, a)∥1 ≤ LP

;
∣∣r′
t(s, a)− rt′+1(s, a)

∣∣ ≤ Lr}
Assuming that for a time steps the reward function is stationary, we can compute the average

return as:

Definition 26.2. Non-robust objective function, assuming that G(π,Mt) = ∑
k≥0 γ

krkt , the
return is we assume stationary with reward function rt

J (π, t) = E[G(π,Mt)] = (1− γ)−1 ∑
s∈S

dπ (s,Mt)
∑
a∈A

π(a | s)rt(s, a). (A.341)

with dπ the state occupancy measure defined in (A.342).

Definition 26.3 (Robust (optimal) Return of NS-RMDPs). Let a return of π for any mt ∈Mt

be G(π,Mt) := ∑∞
k=0 γ

krkt with kernel transition Pt following π, with ∀k, t, rkt ∈ [0, 1], and the
Robust non-stationary expected return with variation of kernel

Let the robust performance of π for episode t be

JR(π, t) := min
m={m′

t}
t

t′=t0
∈ML

t

E [G (π,m)]

27 Proof Theom 6.6.1

∀t ∈ N+, ∀t0 ∈ N+, |JR(π, t0)− JR(π, t0 + t)| ≤ L′t.

with L′ :=
(

γ
(1−γ)2LP + 1

1−γLr
)

Proof of Theorem 6.6.1. First, this difference can be upper bounded in the non robust case as:
By definition, we can rewrite non-robust objective function and occupancy measure as.

dπ (s,Mt) = (1− γ)
∞∑
k=0

γk Pr (St = s | π,Mt) , (A.342)

J (π,Mt) = (1− γ)−1 ∑
s∈S

dπ (s,Mt)
∑
a∈A

π(a | s)rt(s, a). (A.343)

First, we can decompose the problem into sub-problems such that

∀t ∈ N+,∀t0 ∈ N+, |J(π, t0)− J(π, t0 + t)| ≤ |
t0+t−1∑
t′=t0

|J(π,Mt′)− J(π,Mt′+1)| (A.344)

Chapter 9. Appendix of Chapter 6 264

using triangular inequality. Looking at differences between two time steps:

(1− γ)|J(π,Mt)− J(π,Mt+1)|

=
∣∣∣∣∣∑
s∈S

dπ (s,Mt)
∑
a∈A

π(a | s)rt(s, a)−
∑
s∈S

dπ (s,Mt+1)
∑
a∈A

π(a | s)rt+1(s, a)
∣∣∣∣∣

=
∣∣∣∣∣∑
s∈S

∑
a∈A

π(a | s) (dπ (s,Mt) rt(s, a)− dπ (s,Mt+1) rt+1(s, a))
∣∣∣∣∣

=
∣∣∣∣∣∑
s∈S

∑
a∈A

π(a | s) (dπ (s,Mt) (rt+1(s, a) + (rt(s, a)− rt+1(s, a)))− dπ (s,Mt+1) rt+1(s, a))
∣∣∣∣∣

=
∣∣∣∑
s∈S

∑
a∈A

π(a | s) (dπ (s,Mt)− dπ (s,Mt+1)) rt+1(s, a)

+
∑
s∈S

∑
a∈A

π(a | s)dπ (s,Mt) (rt(s, a)− rt+1(s, a))
∣∣∣

(a)
≤
∑
s∈S

∑
a∈A

π(a | s) |dπ (s,Mt)− dπ (s,Mt+1)| |rt+1(s, a)|

+
∑
s∈S

∑
a∈A

π(a | s)dπ (s,Mt) |rt(s, a)− rt+1(s, a)|

(b)
≤
∑
s∈S

∑
a∈A

π(a | s) |dπ (s,Mt)− dπ (s,Mt+1)|+ LR
∑
s∈S

∑
a∈A

π(a | s)dπ (s,Mt)

=
∑
s∈S
|dπ (s,Mt)− dπ (s,Mt+1)|+ Lr

where (a) is triangular inequality, (b) is definition of of supremum of reward in the assumptions
and reward bounded by 1. Then, let P πt ∈ R|S|×|S| be the transition matrix (s′ in rows and
s in columns) resulting due to π and Pt, i.e., ∀t, P πt (s′, s) := Pr (St+1 = s′ | St = s, π,Mt), and
let dπ (·,Mt) ∈ R|S| denote the vector of probabilities for each state, then Finally we can easily
bound the difference of occupation measure as :

∑
s∈S
|dπ (s,Mt)− dπ (s,Mt+1)| (A.345)

(d)
≤ γ(1− γ)−1 ∑

s′∈S

∣∣∣∣∣∑
s∈S

(
P πt

(
s′, s

)
− P πt+1

(
s′, s

))
dπ (s,Mt)

∣∣∣∣∣ (A.346)

≤ γ(1− γ)−1 ∑
s′∈S

∑
s∈S

∣∣P πt (s′, s
)
− P πt+1

(
s′, s

)∣∣ dπ (s,Mt) (A.347)

= γ(1− γ)−1 ∑
s′∈S

∑
s∈S

∣∣∣∣∣∑
a∈A

π(a | s)
(
Pr
(
s′ | s, a,Mt

)
− Pr

(
s′ | s, a,Mt+1

))∣∣∣∣∣ dπ (s,Mt) (A.348)

≤ γ(1− γ)−1 ∑
s′∈S

∑
s∈S

∑
a∈A

π(a | s)
∣∣Pr

(
s′ | s, a,Mt

)
− Pr

(
s′ | s, a,Mt+1

)∣∣ dπ (s,Mt) (A.349)

= γ(1− γ)−1 ∑
s∈S

∑
a∈A

π(a | s)dπ (s,Mt)
∑
s′∈S

∣∣Pr
(
s′ | s, a,Mt

)
− Pr

(
s′ | s, a,Mt+1

)∣∣ (A.350)

≤ γ(1− γ)−1 ∑
s∈S

∑
a∈A

π(a | s)dπ (s,Mt)LP (A.351)

= γLP
(1− γ) , (A.352)

265 27. Proof Theom 6.6.1

which gives regrouping all terms:

|J(π,Mt)− J(π,Mt+1)| ≤ Lr
1− γ + γLP

(1− γ)2 . (A.353)

where the stationary MDP Mt+1 can be chosen as the minimum over the previous MDPs
at time step t such as |Pr (s′ | s, a,Mt)− Pr (s′ | s, a,Mt+1)| ≤ Lp. Rewriting previous equation
(A.353), it holds that

∣∣∣∣∣∣
[
Eπ,P [G (π,m)]− min

m={m′
t}
t+1
t′=t

Eπ,P [G (π,m)]
]∣∣∣∣∣∣ ≤ Lr

1− γ + γLP
(1− γ)2 = L′. (A.354)

Now considering non robust objective :

∣∣∣JR (π, t)− JR (π, t+ 1)
∣∣∣ (A.355)

=

∣∣∣∣∣∣∣ min
m={m′

t}
t

t′=t0
∈ML

E [G (π,m)]− min
m={m′

t}
t+1
t′=t0

∈ML
t+1

E [G (π,m)]

∣∣∣∣∣∣∣ (A.356)

=

∣∣∣∣∣∣ min
m={m′

t}
t

t′=t0
∈ML

t

[
E [G (π,m)]− min

m={m′
t}
t

t′=t0
∈ML

t

min
m={m′

t}
t+1
t′=t

E [G (π,m)]
]∣∣∣∣∣∣ (A.357)

≤ max
m={mt}tt=t0 ∈ML

t

∣∣∣∣∣∣
[
E [G (π,m)]− min

m={m′
t}
t+1
t′=t

E [G (π,m)]
]∣∣∣∣∣∣ (A.358)

where first equality is the definition of the robust objective, second equality is decomposition
of minimum across time steps and final inequality is simply a property of the min such as
|min a−min b| ≤ sup |a− b|.

Finally plugging A.354 in (A.358), it holds that

∣∣∣JR (π, t)− JR (π, t+ 1)
∣∣∣ (A.359)

=

∣∣∣∣∣∣∣ min
m={m′

t}
t

t′=t0
∈ML

Eπ,P [G (π,m)]− min
m={m′

t}
t+1
t′=t0

∈ML

Eπ,P [G (π,m)]

∣∣∣∣∣∣∣ ≤
Lr

1− γ + γLP
(1− γ)2 .

(A.360)
:=L′. (A.361)

Combining t times the previous equation gives the result:

∀t ∈ N+, ∀t0 ∈ N+, |JR(π, t0)− JR(π, t0 + t)| ≤ L′t.

with L′ :=
(

γ
(1−γ)2LP + 1

1−γLr
)

Chapter 9. Appendix of Chapter 6 266

28 Implementation details

28.1 Algorithm

Algorithm 13: Time-constrained robust training
Input: Time-constrained MDP: (S,A,Ψ, pψ, r, L), Agent π, Adversary π̄

1 for each interaction time step t do
2 at ∼ πt(st, ψt) // Sample an action with Oracle-TC
3 at ∼ πt(st, at−1, st−1) // Sample an action with Stacked-TC
4 at ∼ πt(st) // Sample an action with TC
5 ψt+1 ∼ π̄ϕ(st, at, ψt) // Sample the worst TC parameter
6 st+1 ∼ pψt+1(st, at) // Sample a transition
7 B ← B ∪ {(st, at, r (st, at) , ψt, ψt+1, st+1)} // Add transition to replay buffer
8 {si, ai, r(si, ai), ψi, ψi+1, si+1}i∈[1,N] ∼ B // Sample a mini-batch of

transitions
9 θc ← θc − α∇θcLQ(θc) // Critic update phase

10 θa ← θa − α∇θaLπ(θa) // Actor update
11 ϕc ← ϕc + α∇ϕcLQ̄(ϕc) // Adversary Critic update phase
12 ϕa ← ϕa + α∇ϕaLπ̄(ϕa) // Adversary update

Note that in Time-constrained robust training Algorithm in section 28.1, LQ and Lπ are as
defined by (Fujimoto et al. 2018) double critics and target network updates are omitted here for
clarity

In Table 9.8, for the stack algorithm, si is defined as si ← si ∪ si−1 ∪ ai−1 for Stacked-TC ,
and for the Oracle-TC version, si ← si ∪ ψi.

Loss Function Equation

LQθc (TC-RARL) E [Qθc(si, ai)− r(si, ai) + γminj=1,2Qθc(si+1, π(si+1))]

Lπ(θa) (TC-RARL) −E [Qθc(si, πθa(si))]

Lπ̄(θa) (TC-RARL) E
[
Q̄θc(si, ai, π̄(si, ai), ψi)

]
LQ̄(θc) (TC-RARL) E

[
Q̄θc(si, ai)− r(si, ai) + γminj=1,2 Q̄θc(si+1, πθa(si+1), π̄θa(si+1, ai+1, ψi+1))

]
LQθc Shared (TC-M2TD3) E [Qθc(si, ai)− r(si, ai) + γminj=1,2Qθc(si+1, πθa(si+1), π̄θa(si+1, ai+1, ψi+1))]

Lπ(θa) (TC-M2TD3) E [Qθc(si, ai, π̄θa(si, ai), ψi)]

Lπ̄(θa) (TC-M2TD3) −E
[
Q̄θc(si, ai, π̄θa(si, ai, ψi))

]
Table 9.8: Summary of Loss Functions for TD3 in TC-RARL and TC-M2TD3

28.2 Neural network architecture

We employ a consistent neural network architecture for both the baseline and our proposed
methods for the actor and the critic components. The architecture’s design ensures uniformity
and comparability across different models.

The critic network is structured with three layers, as depicted in Figure A37.30a, the critic
begins with an input layer that takes the state and action as inputs, which then passes through
two fully connected linear layers of 256 units each. The final layer is a single linear unit that

267 29. Sanity check on the adversary training in the time-constrained evaluation

outputs a real-valued function, representing the estimated value of the state-action pair.
The actor neural network, shown in Figure A37.30b, also utilizes a three-layer design. It

begins with an input layer that accepts the state as input. This is followed by two linear layers,
each consisting of 256 units. The output layer of the actor neural network has a dimensionality
equal to the number of dimensions of the action space.

(a) Critic neural network architecture (b) Actor neural network architecture

Figure A28.13: Actor critic neural network architecture

28.3 M2TD3

We utilized the official M2TD3 Tanabe et al. (2022a) implementation provided by the original
authors, accessible via the GitHub repository for M2TD3 and Oracle M2TD3.

For the TC-M2TD3 or variants, we implemented the M2TD3 algorithm as specified. To
simplify our approach, we omitted the implementation of the multiple ψ̂ network and the system
for resetting ψ̂. We replace with an adversary which π̄ : S × A × Ψ → Ψ which minimize
Q(s, a, ψ).

28.4 TD3

We adopted the TD3 implementation from the CleanRL library, as detailed in Huang et al.
(2022).

29 Sanity check on the adversary training in the time-constrained
evaluation

A natural question arises regarding the worst time-constrained perturbation. Whether we
adequately trained the adversary in the loop, or its suboptimal performance might lead to
overestimating the trained agent reward against the worst-case time-constrained perturbation.
We monitored the adversary’s performance during its training against a fixed agent to address
this. The attached figure shows the episodic reward (from the agent’s perspective) during the
adversary’s training over 5 million timesteps, with a perturbation radius of L = 0.001. Each

https://github.com/akimotolab/M2TD3

Chapter 9. Appendix of Chapter 6 268

Hyperparameter Default Value

Policy Std Rate 0.1

Policy Noise Rate 0.2

Noise Clip Policy Rate 0.5

Noise Clip Omega Rate 0.5

Omega Std Rate 1.0

Min Omega Std Rate 0.1

Maximum Steps 5e6

Batch Size 100

Hatomega Number 5

Replay Size 1e6

Policy Hidden Size 256

Critic Hidden Size 256

Policy Learning Rate 3e-4

Critic Learning Rate 3e-4

Policy Frequency 2

Gamma 0.99

Polyak 5e-3

Hatomega Parameter Distance 0.1

Minimum Probability 5e-2

Hatomega Learning Rate (ho lr) 3e-4

Optimizer Adam

Table 9.9: Hyperparameters for the M2TD3 Agent

curve is an average of over 10 seeds. The plots show a rapid decline in reward during the initial
stages of training, followed by quick stabilization. The episodic reward stabilizes early in the
Ant (Figure A29.14a) environment, indicating quick convergence. Similarly, in the HalfCheetah

269 30. Uncertainty set in MuJoCo environments

Hyperparameter Default Value

Maximum Steps 5e6

Buffer Size 1× 106

Learning Rate 3× 10−4

Gamma 0.99

Tau 0.005

Policy Noise 0.2

Exploration Noise 0.1

Learning Starts 2.5× 104

Policy Frequency 2

Batch Size 256

Noise Clip 0.5

Action Min -1

Action Max 1

Optimizer Adam

Table 9.10: Hyperparameters for the TD3 Agent

(Figure A29.14b) environment, the reward shows a sharp initial decline and stabilizes, suggest-
ing effective training. For Hopper (Figure A29.14c), the reward decreases and then levels off,
reflecting adversary convergence. Although the reward is more variable in the HumanoidStandup
(Figure A29.14d) environment, it ultimately reaches a steady state, confirming adequate training.
Finally, in the Walker environment, the reward pattern demonstrates a quick drop followed by
stabilization, indicating convergence. These observations confirm that the adversaries were not
undertrained. The rapid convergence to a stable performance across all environments ensures
the accuracy of the worst time-constrained perturbations estimated during training.

30 Uncertainty set in MuJoCo environments

The experiments of Section 6.5 follow the evaluation protocol proposed by (Tanabe et al. 2022a)
and based on MuJoCo environments (Todorov et al. 2012). These environments are designed
with a 3D uncertainty sets. Table 9.11 lists all environments evaluated and their uncertainty
sets. The uncertainty sets column defines the ranges of variation for the parameters within each
environment. The reference parameters column indicates the nominal or default values. The

Chapter 9. Appendix of Chapter 6 270

(a) Ant: Episodic reward of the trained agent during
adversary training

(b) HalfCheetah: Episodic reward of the trained
agent during adversary training

(c) Hopper: Episodic reward of the trained agent
during adversary training

(d) HumanoidStandup: Episodic reward of the
trained agent during adversary training

(e) Walker: Episodic reward of the trained agent
during adversary training (f) Legend for algorithm

Figure A29.14: Episodic reward of the trained agent during the training of the adversary across different
environments. Each plot represents the performance over 5 million timesteps, with rewards averaged
across 10 seeds. The perturbation radius is set to L = 0.001 for all adversaries.

uncertainty parameters column describes the physical meaning of each parameter.

271 31. Raw results

Table 9.11: List of environment and parameters for the experiments

Environment Uncertainty set P Reference values Uncertainty parame-
ters

Ant [0.1, 3.0]×[0.01, 3.0]×
[0.01, 3.0]

(0.33, 0.04, 0.06) torso mass; front left
leg mass; front right
leg mass

HalfCheetah [0.1, 4.0]× [0.1, 7.0]×
[0.1, 3.0]

(0.4, 6.36, 1.53) world friction; torso
mass; back thigh
mass

Hopper [0.1, 3.0]× [0.1, 3.0]×
[0.1, 4.0]

(1.00, 3.53, 3.93) world friction; torso
mass; thigh mass

HumanoidStandup [0.1, 16.0]×[0.1, 5.0]×
[0.1, 8.0]

(8.32, 1.77, 4.53) torso mass; right foot
mass; left thigh mass

Walker [0.1, 4.0]× [0.1, 5.0]×
[0.1, 6.0]

(0.7, 3.53, 3.93) world friction; torso
mass; thigh mass

31 Raw results

Table 9.12 reports the non-normalized time-constrained (with a radius of L = 0.001) worst-case
scores, averaged across 10 independent runs for each benchmark. Table 9.27 reports the static
worst case score obtained by each agent across a grid of environments, also averaged across 10
independent runs for each benchmark. Table 9.28 reports the static average case score obtained
by each agent across a grid of environments, also averaged across 10 independent runs for each
benchmark.

31.1 Fixed adversary evaluation

At the beginning of each episode, ψ0 ∼ U(Ψ) is selected for every fixed adversary. The episode
length is 1000 steps. To begin with, the random fixed adversary simulates stochastic changes. It
selects a parameter ψt at each timestep within a radius of L = 0.1, which is 100 times larger
than in our training methods. This tests the agents’ adaptability to unexpected changes. In
contrast, the cosine fixed adversary introduces deterministic changes using a cosine function.
The radius of L = 0.1 scales the frequency of the cosine function, ensuring smooth and periodic
variations. Additionally, a phase shift at the start of each episode ensures different starting
points. Meanwhile, the linear fixed adversary employs a linear function. The parameters change
linearly from the initial value to either one of a vertex of the uncertainty set Ψ over 1000 steps.
Furthermore, the exponential fixed adversary uses an exponential function. Parameters change
exponentially from the initial value to either of a vertex of the uncertainty set Ψ over 1000
steps. This ensures smooth and predictable variations. Similarly, the logarithmic fixed adversary
uses a logarithmic function. Parameters change logarithmically from the initial value to either
of a vertex of the uncertainty of the uncertainty set Ψ over 1000 steps, ensuring smooth and
predictable variations. Agents trained under the time-constrained framework outperform all

Chapter 9. Appendix of Chapter 6 272

Table 9.12: Avg. of time-constrained worst-case performance over 10 seeds for each method

Environment Ant HalfCheetah Hopper HumanoidStandup Walker

Method

Oracle M2TD3 5768± 395 3521± 187 1241± 125 116232± 1454 4559± 757

Oracle RARL 4387± 667 −50± 99 344± 113 68979± 10641 1811± 342

Oracle TC-M2TD3 7268± 704 7507± 284 3386± 323 114411± 16973 5344± 536

Oracle TC-RARL 7534± 781 7526± 311 3169± 311 101182± 12083 4783± 382

Stacked TC-M2TD3 6502± 450 6377± 517 3047± 394 85524± 11448 5724± 828

Stacked TC-RARL 6955± 690 5319± 223 1747± 153 107913± 5514 4152± 483

TC-M2TD3 7181± 591 6516± 232 2511± 45 129183± 9120 4964± 531

TC-RARL 7473± 361 4989± 284 1475± 158 108669± 17764 3971± 351

DR 7247± 925 4986± 363 1642± 104 109618± 11479 4380± 488

M2TD3 5622± 435 3671± 405 1120± 220 102839± 12987 4078± 644

RARL 4348± 574 382± 366 240± 104 106768± 4051 2388± 559

TD3 2259± 424 1808± 503 777± 407 104877± 12063 1893± 361

273 31. Raw results

Table 9.13: Avg. of raw static worst-case performance over 10 seeds for each method

Ant HalfCheetah Hopper Humanoid Walker

dr 19.78± 394.84 2211.48± 915.64 245.01± 167.21 64886.87± 30048.79 1318.36± 777.51

m2td3 2322.73± 649.3 2031.9± 409.7 273.6± 131.9 71900.97± 24317.35 2214.16± 1330.4

oracle m2td3 2370.93± 473.56 319.67± 599.26 267.41± 111.47 93123.84± 26696.17 736.59± 944.76

oracle rarl 1396.88± 777.46 −278.84± 54.36 167.5± 38.2 45635.24± 15974.44 459.74± 437.02

oracle tc m2td3 120.74± 618.23 4273.31± 246.91 168.7± 217.94 58687.26± 22321.77 710.99± 799.08

oracle tc rarl 1328.27± 890.49 3458.52± 893.22 150.54± 33.12 73276.78± 9110.33 1299.88± 812.63

rarl 960.11± 744.01 −211.8± 218.73 170.46± 45.73 67821.86± 21555.24 360.31± 186.06

stacked tc m2td3 −242.98± 212.98 3467.34± 418.64 289.37± 182.18 58515.04± 19186.25 2475.58± 1057.03

stacked tc rarl 37.77± 320.71 1414.37± 876.91 344.37± 190.1 77357.17± 18186.34 1518.86± 668.13

td3 −123.64± 824.35 −546.21± 158.81 69.3± 42.77 64577.24± 16606.51 114.41± 211.05

tc m2td3 −271.34± 191.15 3286.67± 603.14 333.36± 60.04 73428.2± 17879.28 2603.59± 706.63

tc rarl 209.04± 575.89 1738.59± 782.71 376.01± 155.4 74840.68± 33496.45 1513.65± 1239.3

Table 9.14: Avg. of raw static average case performance over 10 seeds for each method

env name Ant HalfCheetah Hopper HumanoidStandup Walker

algo-name

dr 7500.88± 143.38 6170.33± 442.57 1688.36± 225.59 110939.89± 22396.41 4611.24± 463.42

m2td3 5577.41± 316.95 4000.98± 314.76 1193.32± 254.9 109598.43± 12992.35 4311.2± 877.89

oracle m2td3 5958.21± 237.32 4930.18± 390.96 1249.62± 212.74 118273.54± 13891.06 4616.05± 407.94

oracle rarl 4684.83± 648.14 36.19± 216.52 380.39± 110.14 76920.58± 26135.3 1451.39± 1132.87

oracle-tc m2td3 7739.65± 254.65 9536.92± 429.14 3281.92± 61.79 119737.21± 12697.2 5442.85± 499.78

oracle-tc-rarl 7889.1± 56.0 9474.0± 341.69 3071.17± 220.39 104348.01± 26249.98 5220.2± 318.07

rarl 4650.55± 395.03 206.71± 887.25 276.37± 52.42 104764.87± 17400.85 2493.26± 1113.74

stacked tc m2td3 6912.76± 1116.81 8583.55± 479.97 3124.06± 133.27 88039.74± 15138.11 5809.54± 703.92

stacked-tc-rarl 7123.07± 332.33 6130.71± 384.05 2072.75± 306.48 110843.2± 19887.32 4596.79± 619.2

vanilla 2600.43± 1468.87 2350.58± 357.12 733.18± 382.06 100533.0± 12298.37 2965.47± 685.39

vanilla-tcm2td3 7366.9± 169.58 8467.64± 397.42 2756.5± 273.91 130305.38± 22865.1 5070.71± 315.7

vanilla-tc-rarl 7558.58± 198.37 6092.61± 365.68 1558.26± 242.17 108635.71± 19848.21 4325.42± 283.04

Chapter 9. Appendix of Chapter 6 274

Environment Ant HalfCheetah Hopper HumanoidStandup Walker

Method

Oracle TC-M2TD3 7782± 915 8805± 165 2365± 199 116791± 12572 5148± 558

Oracle TC-RARL 8041± 470 8727± 227 2120± 96 107733± 11975 4896± 326

Oracle M2TD3 5830± 542 4445± 186 1222± 111 118861± 1365 4584± 787

Oracle RARL 4628± 514 −51± 60 370± 141 81583± 16526 1829± 356

Stacked TC-M2TD3 6888± 738 7400± 385 2114± 138 88436± 10750 5278± 845

Stacked TC-RARL 7045± 904 5992± 427 1940± 93 106213± 6770 4430± 389

TC-M2TD3 7156± 692 7530± 185 2157± 112 129599± 13556 4931± 568

TC-RARL 7554± 948 5751± 482 1445± 203 105144± 16813 4112± 329

DR 7572± 629 6048± 349 1416± 168 105677± 16333 4371± 431

M2TD3 5588± 516 4180± 70 1018± 271 107692± 10414 4176± 783

RARL 4347± 567 240± 250 390± 130 103583± 9217 1925± 501

TD3 4017± 518 2028± 1250 1944± 246 91205± 11350 2860± 419

Table 9.15: Avg. performance against time-constrained fixed random adversary with a radius L = 0.1
over 10 seeds for each method

baselines in all environments for each fixed adversary, except when compared to the oracle
TC method, which has access to ψ. In this case, the stacked-TC or TC methods outperform
all baselines in all environments for the cosine, logarithmic, and exponential adversaries and
outperform the fixed adversary baseline in 4 out of 5 instances for the random and linear fixed
adversaries.

31.2 Agents training curve

We conducted training for each agent over a duration of 5 million steps, closely monitoring the
cumulative rewards obtained over a trajectory spanning 1,000 steps. To enhance the reliability of
our results, we averaged the performance curves across 10 different seeds. The graphs in Figures
A35.26 to A31.25 illustrate how different training methods, including Domain Randomization,
M2TD3, RARL, Oracle RARL ,Oracle M2TD3, TC RARL, TC M2TD3, Stacked TC RARL and
Stacked TC M2TD3, impact agent performance across various environments.

275 31. Raw results

Table 9.16: Avg. performance against time-constrained fixed cosine adversary with a radius L = 0.1
over 10 seeds for each method

Environment Ant HalfCheetah Hopper HumanoidStandup Walker

Method

Oracle M2TD3 5528± 637 3453± 266 1016± 48 119813± 3281 3589± 863

Oracle RARL 4550± 626 −79± 34 371± 140 74116± 7890 1593± 326

Oracle TC-M2TD3 7586± 1345 8174± 383 1946± 104 115506± 12470 4464± 781

Oracle TC-RARL 7522± 1435 7838± 810 1735± 138 110535± 12702 4442± 591

Stacked TC-M2TD3 6269± 849 7173± 509 1734± 157 88157± 10654 4888± 567

Stacked TC-RARL 6510± 1395 5385± 445 1519± 118 105696± 5243 3848± 404

TC-M2TD3 6350± 769 6797± 609 1413± 167 130892± 11544 4611± 632

TC-RARL 7124± 912 5109± 348 1172± 129 102864± 13308 3548± 545

DR 6975± 992 5490± 384 1091± 169 109227± 17068 3851± 612

M2TD3 5330± 684 3634± 321 938± 158 108136± 9755 4126± 644

RARL 4153± 602 154± 261 363± 58 103366± 7604 1689± 465

TD3 4025± 557 2784± 370 1317± 189 94352± 10101 2020± 355

Chapter 9. Appendix of Chapter 6 276

Table 9.17: Avg. performance against a fixed linear adversary over 10 seeds for each method

Environment Ant HalfCheetah Hopper HumanoidStandup Walker

Method

Oracle M2TD3 5811± 121 3560± 167 1216± 326 118829± 846 4431± 615

Oracle RARL 4447± 600 −122± 64 308± 62 81498± 12860 1503± 450

Oracle TC-M2TD3 7919± 595 7495± 268 2983± 252 117610± 11682 4952± 415

Oracle TC-RARL 8069± 151 7443± 236 2805± 352 110314± 9354 4613± 257

Stacked TC-M2TD3 7003± 812 6365± 335 2714± 198 89556± 11115 5256± 675

Stacked TC-RARL 7328± 251 5301± 86 1616± 137 105137± 7903 4234± 385

TC-M2TD3 7622± 413 6451± 246 2228± 131 129501± 10326 4844± 417

TC-RARL 7675± 143 4881± 251 1277± 288 105566± 15551 3906± 381

DR 7713± 412 5290± 103 1419± 122 108711± 16696 4307± 309

M2TD3 5444± 225 3810± 69 970± 323 106311± 9771 4128± 727

RARL 4651± 446 218± 138 346± 22 101477± 8947 1894± 515

TD3 3493± 475 1462± 1246 1722± 366 89934± 10644 2396± 416

277 31. Raw results

Table 9.18: Avg. performance against a fixed logarithmic adversary over 10 seeds for each method

Environment Ant HalfCheetah Hopper HumanoidStandup Walker

Method

Oracle M2TD3 5561± 580 3086± 163 957± 165 119214± 2525 4148± 630

Oracle RARL 4911± 177 −145± 67 293± 49 79522± 13470 1618± 142

Oracle TC-M2TD3 7963± 796 6625± 204 2577± 171 116664± 11798 4818± 451

Oracle TC-RARL 8061± 821 6532± 304 2572± 177 108213± 10684 4375± 382

Stacked TC-M2TD3 7315± 478 5863± 290 2283± 122 87691± 11133 4931± 735

Stacked TC-RARL 7514± 62 4770± 145 1426± 197 104193± 8030 3939± 369

TC-M2TD3 7910± 90 5657± 280 1702± 226 128467± 10762 4664± 412

TC-RARL 7686± 208 4475± 238 1082± 298 104835± 16040 3636± 428

DR 7883± 67 4721± 146 1166± 332 106171± 16867 3995± 313

M2TD3 5371± 279 3565± 105 802± 271 104002± 11606 4206± 712

RARL 4620± 763 231± 110 340± 44 102004± 9925 1919± 499

TD3 3678± 623 576± 983 1389± 327 88952± 11367 1956± 360

Chapter 9. Appendix of Chapter 6 278

Table 9.19: Avg. performance against a fixed exponential adversary over 10 seeds for each method

Environment Ant HalfCheetah Hopper HumanoidStandup Walker

Method

Oracle M2TD3 5860± 93 3780± 137 1271± 224 119205± 1217 4767± 815

Oracle RARL 4585± 674 −88± 79 302± 41 82063± 13274 1611± 342

Oracle TC-M2TD3 7491± 624 8256± 269 2894± 244 118476± 11683 5161± 289

Oracle TC-RARL 7724± 368 8000± 250 3036± 293 110092± 10754 4650± 503

Stacked TC-M2TD3 6903± 365 7041± 302 2721± 214 91077± 11945 5310± 882

Stacked TC-RARL 7061± 222 5741± 249 1825± 145 104793± 6758 4376± 342

TC-M2TD3 7318± 299 7139± 387 2408± 113 129966± 10823 4910± 663

TC-RARL 7441± 133 5326± 220 1457± 163 106491± 14605 4017± 439

DR 7389± 206 5691± 121 1564± 99 106290± 17502 4224± 660

M2TD3 5466± 318 3909± 332 1062± 272 107097± 9551 4274± 582

RARL 4556± 729 228± 181 351± 24 102096± 8291 2053± 493

TD3 3771± 228 2302± 343 2201± 219 90496± 9487 2768± 538

279 32. Computer ressources

Table 9.20: Average wall-clock time for each algorithm

Wall-clock time

TD3 14h

M2TD3 16h

RARL 18h

TC 16h

Stacked TC 16h

Oracle TC 16h

32 Computer ressources

All experiments were run on a desktop machine (Intel i9, 10th generation processor, 64GB RAM)
with a single NVIDIA RTX 4090 GPU. Averages and standard deviations were computed from
10 independent repetitions of each experiment.

33 Broader impact

This paper aims to advance robust reinforcement learning. It addresses general mathematical
and computational challenges. These challenges may have societal and technological impacts,
but we do not find it necessary to highlight them here.

33.1 Limitations

While our proposed Time-Constrained Robust Markov Decision Process (TC-RMDP) framework
significantly advances robust reinforcement learning by addressing multifactorial, correlated,
and time-dependent disturbances, several limitations must be acknowledged. The TC-RMDP
framework assumes that the parameter vector ψ that governs environmental disturbances is
known during training. In real-world applications, obtaining such detailed information may not
always be feasible. This reliance on precise parameter knowledge limits the practical deployment
of our algorithms in environments where ψ cannot be accurately measured or inferred. Our
approach assumes that the environment’s dynamics can be accurately parameterized and that
these parameters remain within a predefined uncertainty set Ψ. This assumption might not hold in
more complex or highly dynamic environments where disturbances are not easily parameterized or
when the uncertainty set Ψ cannot comprehensively capture all possible variations. Consequently,
the robustness of the learned policies might degrade when facing disturbances outside the
considered parameter space. Addressing these limitations in future work.

Chapter 9. Appendix of Chapter 6 280

(a) Training curve on Ant with Domain Random-
ization

(b) Training curve on HalfCheetah with Domain
Randomization

(c) Training curve on Hopper with Domain Ran-
domization

(d) Training curve on HumanoidStandup with Do-
main Randomization

(e) Training curve on Walker with Domain Ran-
domization

Figure A31.15: Averaged training curves for the Domain Randomization method over 10 seeds

281 33. Broader impact

(a) Training curve on Ant with M2TD3 (b) Training curve on HalfCheetah with M2TD3

(c) Training curve on Hopper with M2TD3
(d) Training curve on HumanoidStandup with
M2TD3

(e) Training curve on Walker with M2TD3

Figure A31.16: Averaged training curves for the M2TD3 method over 10 seeds

Chapter 9. Appendix of Chapter 6 282

(a) Training curve on Ant with RARL (b) Training curve on HalfCheetah with RARL

(c) Training curve on Hopper with RARL
(d) Training curve on HumanoidStandup with
RARL

(e) Training curve on Walker with RARL

Figure A31.17: Averaged training curves for the RARL method over 10 seeds

283 33. Broader impact

(a) Training curve on Ant with TD3 (b) Training curve on HalfCheetah with TD3

(c) Training curve on Hopper with TD3 (d) Training curve on HumanoidStandup with TD3

(e) Training curve on Walker with TD3

Figure A31.18: Averaged training curves for the TD3 method over 10 seeds

Chapter 9. Appendix of Chapter 6 284

(a) Training curve on Ant with Oracle RARL
(b) Training curve on HalfCheetah with Oracle
RARL

(c) Training curve on Hopper with Oracle RARL
(d) Training curve on HumanoidStandup with Ora-
cle RARL

(e) Training curve on Walker with Oracle RARL

Figure A31.19: Averaged training curves for the Oracle RARL method over 10 seeds

285 33. Broader impact

(a) Training curve on Ant with Oracle M2TD3
(b) Training curve on HalfCheetah with Oracle
M2TD3

(c) Training curve on Hopper with Oracle M2TD3
(d) Training curve on HumanoidStandup with Ora-
cle M2TD3

(e) Training curve on Walker with Oracle M2TD3

Figure A31.20: Averaged training curves for the Oracle M2TD3 method over 10 seeds

Chapter 9. Appendix of Chapter 6 286

(a) Training curve on Ant with Oracle M2TD3
(b) Training curve on HalfCheetah with Oracle
M2TD3

(c) Training curve on Hopper with Oracle M2TD3
(d) Training curve on HumanoidStandup with Ora-
cle M2TD3

(e) Training curve on Walker with Oracle M2TD3

Figure A31.21: Averaged training curves for the Oracle M2TD3 method over 10 seeds

287 33. Broader impact

(a) Training curve on Ant with Oracle TC-RARL
(b) Training curve on HalfCheetah with Oracle TC-
RARL

(c) Training curve on Hopper with Oracle TC-
RARL

(d) Training curve on HumanoidStandup with Ora-
cle TC-RARL

(e) Training curve on Walker with Oracle TC-RARL

Figure A31.22: Averaged training curves for the Oracle TC-RARL method over 10 seeds

Chapter 9. Appendix of Chapter 6 288

(a) Training curve on Ant with Oracle TC-M2TD3
(b) Training curve on HalfCheetah with Oracle TC-
M2TD3

(c) Training curve on Hopper with Oracle TC-
M2TD3

(d) Training curve on HumanoidStandup with Ora-
cle TC-M2TD3

(e) Training curve on Walker with Oracle TC-
M2TD3

Figure A31.23: Averaged training curves for the Oracle TC-M2TD3 method over 10 seeds

289 33. Broader impact

(a) Training curve on Ant with Stacked TC-M2TD3
(b) Training curve on HalfCheetah with Stacked
TC-M2TD3

(c) Training curve on Hopper with Stacked TC-
M2TD3

(d) Training curve on HumanoidStandup with
Stacked TC-M2TD3

(e) Training curve on Walker with Stacked TC-
M2TD3

Figure A31.24: Averaged training curves for the Stacked TC-M2TD3 method over 10 seeds

Chapter 9. Appendix of Chapter 6 290

(a) Training curve on Ant with Stacked TC-RARL
(b) Training curve on HalfCheetah with Stacked
TC-RARL

(c) Training curve on Hopper with Stacked TC-
RARL

(d) Training curve on HumanoidStandup with
Stacked TC-RARL

(e) Training curve on Walker with Stacked TC-
RARL

Figure A31.25: Averaged training curves for the Stacked TC-RARL method over 10 seeds

Appendix of Chapter 7

34 Modifiable parameters

The following tables list the parameters that can be modified in different MuJoCo environments
used in the Robust Reinforcement Learning Suite. These parameters are accessed and modified
through the set params and get params methods in the ModifiedParamsEnv interface.

Parameter Name

Torso Mass

Front Left Leg Mass

Front Left Leg Auxiliary Mass

Front Left Leg Ankle Mass

Front Right Leg Mass

Front Right Leg Auxiliary Mass

Front Right Leg Ankle Mass

Back Left Leg Mass

Back Left Leg Auxiliary Mass

Back Left Leg Ankle Mass

Back Right Leg Mass

Back Right Leg Auxiliary Mass

Back Right Leg Ankle Mass

Table 9.21: Modifiable parameters from Ant environment

35 Training curves

We conducted training for each agent over a duration of 5 million steps, closely monitoring the
cumulative rewards obtained over a trajectory spanning 1,000 steps. To enhance the reliability of
our results, we averaged the performance curves across 10 different seeds.The graphs in Figures
A35.26 to A35.29 illustrate how different training methods, including Domain Randomization,

Chapter 9. Appendix of Chapter 7 292

Parameter Name

World Friction

Torso Mass

Back Thigh Mass

Back Shin Mass

Back Foot Mass

Forward Thigh Mass

Forward Shin Mass

Forward Foot Mass

Table 9.22: Modifiable parameters from Halfcheetah environment

Parameter Name

World Friction

Torso Mass

Thigh Mass

Leg Mass

Foot Mass

Table 9.23: Modifiable parameters from Hopper environment

M2TD3, RARL, and TD3 impact agent performance across various environments.

36 Non-normalized results

Table 9.27 reports the non-normalized worst case scores, averaged across 10 independent runs for
each benchmark. Table 9.28 reports the average score obtained by each agent across a grid of
environments, also averaged across 10 independent runs for each benchmark.

37 Implementation details

37.1 Neural network architecture

We employ the same neural network architecture for all baselines for the actor and the critic
components. The architecture’s design ensures uniformity and comparability across different
models.

The critic network is structured with three layers, as depicted in Figure A37.30a, the critic

293 37. Implementation details

Parameter Name

Torso Mass

Lower Waist Mass

Pelvis Mass

Right Thigh Mass

Right Shin Mass

Right Foot Mass

Left Thigh Mass

Left Shin Mass

Left Foot Mass

Right Upper Arm Mass

Right Lower Arm Mass

Left Upper Arm Mass

Left Lower Arm Mass

Table 9.24: Modifiable parameters from Humanoid Stand Up environment

Parameter Name

World Friction

Torso Mass

Thigh Mass

Leg Mass

Foot Mass

Left Thigh Mass

Left Leg Mass

Left Foot Mass

Table 9.25: Modifiable parameters from Walker environment

begins with an input layer that takes the state and action as inputs, then passes through two
fully connected linear layers of 256 units each. The final layer is a single linear unit that outputs
a real-valued function, representing the estimated value of the state-action pair.

The actor neural network, shown in Figure A37.30b, also utilizes a three-layer design. It

Chapter 9. Appendix of Chapter 7 294

Parameter Name

Pole Mass

Cart Mass

Table 9.26: Modifiable parameters from Inverted Pendulum environment

Table 9.27: Avg. of raw static worst-case performance over 10 seeds for each method

Ant HalfCheetah Hopper Humanoid StandUp Walker

DR 19.78± 394.84 2211.48± 915.64 245.01± 167.21 64886.87± 30048.79 1318.36± 777.51

M2TD3 2322.73± 649.3 2031.9± 409.7 273.6± 131.9 71900.97± 24317.35 2214.16± 1330.4

RARL 960.11± 744.01 −211.8± 218.73 170.46± 45.73 67821.86± 21555.24 360.31± 186.06

NR-MDP −744.94± 484.65 −818.64± 63.21 5.73± 8.87 48318.45± 11092.99 16.42± 3.5

TD3 −123.64± 824.35 −546.21± 158.81 69.3± 42.77 64577.24± 16606.51 114.41± 211.05

begins with an input layer that accepts the state as input. This is followed by two linear layers,
each consisting of 256 units. The output layer of the actor neural network has a dimensionality
equal to the number of dimensions of the action space.

37.2 M2TD3

We use the official M2TD3 Tanabe et al. (2022a) implementation provided by the original authors,
accessible via the GitHub repository for M2TD3.

Table 9.28: Avg. of raw static average case performance over 10 seeds for each method

env name Ant HalfCheetah Hopper Humanoid Standup Walker

algo-name

DR 7500.88± 143.38 6170.33± 442.57 1688.36± 225.59 110939.89± 22396.41 4611.24± 463.42

M2TD3 5577.41± 316.95 4000.98± 314.76 1193.32± 254.9 109598.43± 12992.35 4311.2± 877.89

RARL 4650.55± 395.03 206.71± 887.25 276.37± 52.42 104764.87± 17400.85 2493.26± 1113.74

NR-MDP 4197.80± 90.66 1388.90± 283.25 340.15± 3.65 92972.45± 2251.18 1501.05± 453.96

TD3 2600.43± 1468.87 2350.58± 357.12 733.18± 382.06 100533.0± 12298.37 2965.47± 685.39

https://github.com/akimotolab/M2TD3

295 37. Implementation details

Hyperparameter Default Value

Policy Std Rate 0.1

Policy Noise Rate 0.2

Noise Clip Policy Rate 0.5

Noise Clip Omega Rate 0.5

Omega Std Rate 1.0

Min Omega Std Rate 0.1

Maximum Steps 5e6

Batch Size 100

Hatomega Number 5

Replay Size 1e6

Policy Hidden Size 256

Critic Hidden Size 256

Policy Learning Rate 3e-4

Critic Learning Rate 3e-4

Policy Frequency 2

Gamma 0.99

Polyak 5e-3

Hatomega Parameter Distance 0.1

Minimum Probability 5e-2

Hatomega Learning Rate (ho lr) 3e-4

Optimizer Adam

Table 9.29: Hyperparameters for the M2TD3 Agent

37.3 TD3

We adopted the TD3 implementation from the CleanRL library, as detailed in Huang et al.
(2022).

Chapter 9. Appendix of Chapter 7 296

Hyperparameter Default Value

Maximum Steps 5e6

Buffer Size 1× 106

Learning Rate 3× 10−4

Gamma 0.99

Tau 0.005

Policy Noise 0.2

Exploration Noise 0.1

Learning Starts 2.5× 104

Policy Frequency 2

Batch Size 256

Noise Clip 0.5

Action Min -1

Action Max 1

Optimizer Adam

Table 9.30: Hyperparameters for the TD3 Agent

38 Computer ressources

All experiments were run on a desktop machine (Intel i9, 10th generation processor, 64GB RAM)
with a single NVIDIA RTX 4090 GPU. Averages and standard deviations were computed from
10 independent repetitions of each experiment.

297 38. Computer ressources

(a) Training curve on Ant with Domain Random-
ization

(b) Training curve on HalfCheetah with Domain
Randomization

(c) Training curve on Hopper with Domain Ran-
domization

(d) Training curve on HumanoidStandup with Do-
main Randomization

(e) Training curve on Walker with Domain Ran-
domization

Figure A35.26: Averaged training curves for the Domain Randomization method over 10 seeds

Chapter 9. Appendix of Chapter 7 298

(a) Training curve on Ant with M2TD3 (b) Training curve on HalfCheetah with M2TD3

(c) Training curve on Hopper with M2TD3
(d) Training curve on HumanoidStandup with
M2TD3

(e) Training curve on Walker with M2TD3

Figure A35.27: Averaged training curves for the M2TD3 method over 10 seeds

299 38. Computer ressources

(a) Training curve on Ant with RARL (b) Training curve on HalfCheetah with RARL

(c) Training curve on Hopper with RARL
(d) Training curve on HumanoidStandup with
RARL

(e) Training curve on Walker with RARL

Figure A35.28: Averaged training curves for the RARL method over 10 seeds

Chapter 9. Appendix of Chapter 7 300

(a) Training curve on Ant with TD3 (b) Training curve on HalfCheetah with TD3

(c) Training curve on Hopper with TD3 (d) Training curve on HumanoidStandup with TD3

(e) Training curve on Walker with TD3

Figure A35.29: Averaged training curves for the TD3 method over 10 seeds

301 38. Computer ressources

(a) Critic neural network architecture (b) Actor neural network architecture

Figure A37.30: Actor critic neural network architecture

Appendix of Chapter 8

39 Proof of the regret bound

39.1 Proof of Theorem 8.3.5

While Lambert et al. (2022) establishes quantitative bounds on the bias introduced by Algorithm 8
for the VI of the posterior. Combining this result with the one derived in Agrawal and Goyal
(2013) for TS leads to sub-optimal regret bounds. It is similar to LMC-TS Xu et al. (2022)
which had to make a clever adaptation of Agrawal and Goyal (2013). Similar to this work, we
need here to revise the proof of Agrawal and Goyal (2013) to VITS. We give in this section the
main steps of our proofs. Each step is based on Lemmas which are stated and proved in the
next sections. First, we define the filtration (Ft)t∈{0,...,T−1} such that for any t ∈ [T], Ft−1 is
the σ-field generated by Ht−1 and xt where Ht−1 = {(xs, as, rs)}s≤t−1 is the observations up to
t− 1 and xt is the contextual vector at step t. For some feature map ϕ : S ×A → R and for any
t ∈ [T], we denote by

∗
ϕt = ϕ(xt, a⋆t) , ϕt = ϕ(xt, at) ,

the features vector of the best arm a⋆t and the features vector of the arm at chosen by VITS at
time t respectively. the difference between the best expected reward and the expected reward
obtained by VITS is denoted by

∆t =
∗
ϕtθ

⋆ − ϕ⊤
t θ

⋆ .

At each round t ∈ [T], we consider the set of saturated arms St and unsaturated arms Ut defined
by

St =
⋂

a∈A(xt)
{∆t(a) > g(t) ∥ϕ(xt, a)∥V −1

t
} , (A.362)

and Ut = A(xt)\ St where V −1
t is defined in (8.15) and

g(t) = CR2d
√

log(t) log(T)/λ3/2 ,

for some constant C ≥ 0 independent of d, t and T . In addition, consider the events Etrue
t and

Evar
t such that ⋂

a∈A(xt)
{|ϕ(xt, a)⊤µ̂t − ϕ(xt, a)⊤θ⋆| ≤ g1(t) ∥ϕ(xt, a)∥V −1

t
} ⊂ Etrue

t

Evar
t =

⋂
a⊂A(xt)

{|ϕ(xt, a)⊤θ̃t − ϕ(xt, a)⊤µ̂t| ≤ g2(t) ∥ϕ(xt, a)∥V −1
t
} ,

where µ̂t is given by µ̂t = V −1bt and bt is given in (8.15). The specific definitions of Etrue
t , g, g1

and g2 are given in Section 39.3 of the supplementary. Nevertheless, by definition, it holds that
g1(t) + g2(t) ≤ g(t).

Chapter 9. Appendix of Chapter 8 304

1. For ease of notation, the conditional expectation Eπ1:T∼Q1:T [·] and probabilities Pπ1:T∼Q1:T (·)
with respect to the σ-field Ft−1 are denoted by Et[·] and Pt(·) respectively. Therefore, with
these notations, we have by definition of the cumulative regret:

CRegret(Q̃1:T) =
T∑
t=1

∆t .

We now bound for any t ∈ [T], with high probability, ∆t(at). To this end, in the next
step of the proof, we show that the stochastic process (Xt)t∈[T] defined below is a (Ft)t∈[T]
super-martingale.

Xt =
t∑

s=1
Ys

with
Ys = ∆s − cg(s)∥ϕs∥V −1

s
/p− 2/s2 ,

where p ∈ (0, 1) and c is a sufficiently large real number, independent of d, T and s.

2. Showing that (Xt)t∈[T] is a super-martingale. We consider the following decomposition

Et[∆t(at)] = Et[∆t(at)1Etrue
t

] + Et[∆t(at)|Etrue
t]Pt(Etrue

t)
≤ Et[∆t(at)1Etrue

t
] + Pt(Etrue

t) , (A.363)

where we used for the last inequality that ∥θ⋆∥2 ≤ 1 and Assumption 8.3.3. Then, since
Etrue
t ∈ Ft−1, we have,

Et[∆t(at)1Etrue
t

] = 1Etrue
t

Et[∆t(at)|Evar
t]Pt(Evar

t) + 1Etrue
t

Et[∆t(at)|Evar
t]Pt(Evar

t)
≤ 1Etrue

t
[Et[∆t(at)|Evar

t] + Pt(Evar
t)] (A.364)

where in the last line we have used that ∆t(at) ≤ 1 again. Denote by āt = arg mina∈Ut ∥ϕ(xt, a)∥V −1
t

and ϕt = ϕ(xt, āt). Then, given Etrue
t and Evar

t we have

∆t(at) =
∗
ϕ⊤
t θ

⋆ − ϕ⊤
t θ

⋆

=
∗
ϕ⊤
t θ

⋆ − ϕ⊤
t θ

⋆ + ϕ
⊤
t θ

⋆ − ϕ⊤
t θ

⋆

(a)
≤ g(t)∥ϕt∥V −1

t
+ ϕ

⊤
t θ

⋆ − ϕ⊤
t θ

⋆

(b)
≤ g(t)∥ϕt∥V −1

t
+ (ϕ⊤

t θ̃t + g(t)∥ϕt∥V −1
t

)− (ϕ⊤
t θ̃t − g(t)∥ϕt∥V −1

t
)

(c)
≤ (2∥ϕt∥V −1

t
+ ∥ϕt∥V −1

t
)g(t) (A.365)

where inequality (a) is due to āt ∈ Ut, and therefore ∆t(āt) ≤ g(t)∥ϕt∥V −1
t

, inequality
(b) uses that given Etrue

t and Evar
t , for any ϕ ∈ Rd, |ϕ⊤θ̃t − ϕ⊤θ⋆| ≤ g(t)∥ϕ∥V −1

t
since by

definition g1(t) + g2(t) ≤ g(t); finally, the arm at maximizes the quantity ϕ(xt, at)⊤θ̃t,
ϕ

⊤
t θ̃t − ϕ⊤

t θ̃t is obviously negative, which implies inequality (c).
Moreover, given Etrue

t and Evar
t ,

Et[∥ϕt∥V −1
t

] = Et[∥ϕt∥V −1
t
|at ∈ Ut]Pt(at ∈ Ut) + Et[∥ϕt∥V −1

t
|at ∈ St]Pt(at ∈ St)

(a)
≥ ∥ϕt∥V −1

t
Pt(at ∈ Ut)

(b)
≥ (p− 1/t2)∥ϕt∥V −1

t

305 39. Proof of the regret bound

where (a) is due to the definition of ϕt, i.e. for any a ∈ Ut, ∥ϕt∥V −1
t
≤ ∥ϕ(xt, a)∥V −1

t
,

and (b) uses Lemma 39.2 with p ∈ (0, 1). Here is one of the main differences with the
proof conducted by Agrawal and Goyal (2013). Indeed, to obtain such a bound, we need
to carefully dig into the convergence of the the sequence of means {µ̃t,Kt}k∈[1,Kt] and
covariance matrices {Σ̃t,Kt}k∈[1,Kt] to obtain a fine-grained analysis of the distribution of
q̃t. Therefore, using equations (A.364) and (A.365)

1Etrue
t

Et[∆t(at)] ≤
(2
p− 1/t2 + 1

)
g(t)Et[∥ϕt∥V −1

t
] + 1

t2
≤ cg(t)

p
Et[∥ϕt∥V −1

t
] + 1

t2
,

where c is a sufficiently large real number independent of the problem. Plugging this
bounds in A.363, we obtain

Et[∆t(at)] ≤
cg(t)
p

Et[∥ϕ∥V −1
t

] + 1
t2

+ Pt(Etrue
t)

Applying Lemma 39.1 yields

Et[∆t(at)] ≤
cg(t)
p

Et[∥ϕ∥V −1
t

] + 2
t2
.

This is another important difference with the original proof of Agrawal and Goyal (2012)
which uses our precise convergence study for {µ̃t,Kt}k∈[1,Kt]. Then, it follows that (Xt)t∈[T]
is a (Ft)t∈[T]-super martingale.

3. Concentration for (Xt)t∈[T]. Note that (Xt)t∈[T] is a super-martingale with bounded
increments: for any t ∈ [T]

|Xt+1 −Xt| = |Yt+1|

= |∆t(at)−
cg(t)
p
∥ϕt∥V −1

t
− 2
t2
|

(a)
≤ |∆t(at)(at)−

cg(t)√
λp
− 2
t2
|

≤ 3cg(t)√
λp

,

where in (a) we have used that

∥ϕt∥V −1
t
≤ ∥ϕt∥V −1

1
≤ 1/

√
λ

and inequality (b) is due to ∆t(at) ≤ 1, 2/t2 ≤ 2 and 3cg(t)/(p
√
λ) > 2 for an appropriate

choice of the numerical constant c. Therefore, applying Azuma-Hoeffding inequality (Lemma
(40.3)), with probability 1− δ it holds that

XT ≤

√√√√2 log(1/δ)
T∑
s=1

9c2g(s)2

p2λ
≤
√

18 log(1/δ) c
2

p2λ
g(T)2T ,

using that g(T) ≥ g(t).

Chapter 9. Appendix of Chapter 8 306

4. Conclusion. The super-martingale (Xt)Tt=1 is directly linked to the cumulative regret by

XT =
T∑
t=1

Yt

=
T∑
s=1

∆t − cg(t)∥ϕt∥V −1
t
/p− 2/t2

= CRegret(Q̃1:T)−
T∑
t=1

cg(t)∥ϕt∥V −1
t
/p+ 2/t2

then taking the expectation and using the super-martingale previous argument of the proof,
we obtain the following upper bound for the cumulative regret :

CRegret(Q̃1:T) ≤
T∑
t=1

cg(t)
p
∥ϕt∥V −1

t
+
√

18 log(1/δ) c
2

p2λ
g(T)2T + π2

3 .

using that ∑+∞
t=1 1/t2 ≤ π2/6. As a result, applying Lemma 39.3 yields

CRegret(Q̃1:T) ≤ cg(T)
p

√
2dT log

(
1 + T/(λd)

)
+ cg(T)

p
√
λ

√
18 log(1/δ)T + π2

3 .

Using the definition of g(T) in (A.363), we get

CRegret(Q̃1:T) ≤ CR2d

λ2 log
(
3T 3

)√
dT log

(
1 + T/(λd)

)
log

(
1/δ

)
,

where C ≥ 0 is a constant, independent of the problem, which completes the proof.

39.2 Hyperparameters choice and values

In this section, we define and discuss the values of the main hyperparameters.

Parameter η : is the inverse of the temperature. The lower is η, the better is the exploration.
It is fixed to

η = 4λ2/(81R2d log
(
3T 3

)
) ≤ 1 (A.366)

Parameter λ : is the inverse of the standard deviation of the prior distribution. It controls
the regularization. The lower is λ, the better is the exploitation. This parameter is fixed but
lower than 1.

Parameter ht : is the step size used in all Algorithms. It is fixed to

ht = λmin(Vt)/(2η(λmin(Vt)2 + 2λmax(Vt)2)) (A.367)

Parameter Kt : is the number of gradient descent steps performed. It is fixed to

Kt = 1 + 2(1 + 2κ2
t) log

(
2Rκtd2T 2 log2(3T 3)

)
. (A.368)

Therefore the number of gradient descent steps is Kt ≤ O(κ2
t log(dT log(T))).

307 39. Proof of the regret bound

39.3 Useful definitions

Definition 39.1. (Variational approximation) Recall that p̂t(θ) ∝ exp(−Ut(θ)) is the
posterior distribution. And q̃t is the variational posterior distribution in the sense that

q̃t = arg min
p∈G

KL(p|p̂t) ,

where G is a variational family. In this paper we focus on the Gaussian variational family and we
denote by µ̃t and Bt respectively the mean and the square root covariance matrix of the variational
distribution, ie,

q̃t = N(µ̃t, BtB⊤
t) .

The values of µ̃t and Bt are obtained after running Kt steps of algorithm 8 or 9. Note that the
sequence of means {µ̃t,k}Ktk=1 is defined recursively by

µ̃t,k+1 = µ̃t,k − ht∇Ut(θ̃t,k)
= µ̃t,k − htηVt(θ̃t,k − µ̂t)

where θ̃t,k ∼ N(µ̃t,k, B⊤
t,kBt,k) and we have used that ∇Ut(θ) = η(Vtθ − bt) (see equation

(8.15)). Consequently, µ̃t,k is also Gaussian and we denote by m̃t,k and W̃t,k its mean and
covariance matrix, ie, µ̃t,k ∼ N(m̃t,k, W̃t,k). Furthermore, the sequence of square root covariance
matrix {Bt,k}Ktk=1 is defined recursively in Algorithm 8 by

Bt,k+1 =
{

I− ht∇2(Ut(θ̃t,k))
}
Bt,k + (B⊤

t,k)−1

= {I− ηhtVt}Bt,k + ht(B⊤
t,k)−1

where we have used that ∇2(Ut(θ)) = ηVt for the linear bandit case (see (8.15)). Let denote by
Σ̃t,k = Bt,kB

⊤
t,k the covariance of the variational posterior q̃t,k. For ease of notation we denote

by At = I− ηhtVt, it follows that

Σ̃t,k+1 = AtΣ̃t,kAt + 2htAt + h2
t Σ̃−1

t,k

If Λt,k = Σ̃t,k − 1/ηV −1
t denotes the difference between the covariance matrix of the varational

posterior and the true posterior, therefore it holds that

Λt,k+1 = AtΣ̃t,kAt + 2htAt + h2
t Σ̃−1

t,k − 1/ηV −1
t

= AtΛt,kAt + 2htAt − 2htI + ηh2
tVt + h2

t Σ̃−1
t,k

= AtΛt,kAt − ηh2
tVt + h2

t Σ̃−1
t,k

= AtΛt,kAt − h2
t ηVtΛt,kΣ̃−1

t,k

In the case of VITS− II, the sequence of square root covariance matrix {Bt,k}k≤Kt and the
sequence of inverse square root covariance matrix {Ct,k}k≤Kt are defined recursively in Algorithm
9 by

Ct,k+1 = Ct,k{I− ht(C⊤
t,kCt,k −∇2Ut(θ̃t,k))}

Bt,k+1 = (I− ht∇2Ut(θ̃t,k))Bt,k + htC
⊤
t,k .

Nevertheless, we will show that this approximation does not impact the cumulative regret bound.
Note that all sequences are deterministic in the specific setting of linear bandit, because the
Hessian of ∇2Ut(θ̃) does not depend on θ̃. In VITS-II, we obtain the following form for Λt,k, see
Lemma ??.

Λt,k+1 = AtB
2
t,kAt + 2htAt(Bt,kCt,k + CTt,kB

T
t,k) + h2

tC
2
t,k − 1/ηV −1

t

Chapter 9. Appendix of Chapter 8 308

Definition 39.2. (Concentration events)
The main challenge for the proof of Theorem 8.3.5, is to control the probability of the following

events: for any t ∈ [T] we define

• Êtrue
t =

{
for any a ∈ A(xt) : |ϕ(xt, a)⊤µ̂t − ϕ(xt, a)⊤θ⋆| ≤ g1(t) ∥ϕ(xt, a)∥V −1

t

}
• Etrue

t = Êtrue
t

⋂{
|ξt| < R

√
1 + log 3t2

}⋂{
∥W̃−1/2

t,Kt
(µ̃t,Kt − m̃t,Kt)∥ ≤

√
4d log 3t3

}
• Evar

t =
{

for any a ∈ A(xt) : |ϕ(xt, a)⊤θ̃t − ϕ(xt, a)⊤µ̂t| ≤ g2(t) ∥ϕ(xt, a)∥V −1
t

}
,

where g1(t) = R
√
d log(3t3) +

√
λ and g2(t) = 10

√
d log(3t3)/(ηλ) and ξt is the R-sub Gaussian

noise of the reward definition defined by the relation

rt = ϕ⊤
t θ

⋆ + ξt . (A.369)

The first event Êtrue
t controls the concentration of ϕ(xt, a)⊤µ̂t around its mean. Similarly,

event Evar
t controls the concentration of ϕ(xt, a)⊤θ̃t around its mean. Note that compared to

Agrawal and Goyal (2013), in our case, it is important to include within Etrue
t , the concentration

of the distributions ξt and W̃−1/2
t,Kt

(µ̃t,Kt − m̃t,Kt). Consequently, conditionally on Etrue
t and Evar

t

it holds that: for any a ∈ A(xt)

|ϕ(xt, a)⊤θ̃t − ϕ(xt, a)⊤θ⋆| ≤
(
R
√
d log(3t3) +

√
λ+ 10

√
d log(3t3)/(ηλ)

)
∥ϕ(xt, a)∥V −1

t

≤ 12R
√
d log(3t3)/(ηλ) ∥ϕ(xt, a)∥V −1

t

(a)= 108dR2

λ3/2

√
log(3t3) log(3T 3)∥ϕ(xt, a)∥V −1

t

:= g(t)∥ϕ(xt, a)∥V −1
t

, (A.370)

where in (a), we have used that η = 4λ/
(
81R2d log

(
3T 3)) and in the last inequality we have used

that g(t) = CR2d
√

log(t) log(T)/λ3/2.

39.4 Main lemmas

Lemma 39.1. (Concentration lemma for µ̂t)
Recall the definition of the event Etrue

t in (39.2). Therefore, for any t ∈ [T], it holds that

P(Etrue
t) ≥ 1− 1

t2
(A.371)

This lemma shows that the mean of the posterior distribution µ̂t is concentrated around the true
parameter θ⋆ with high probability.

Proof. Firstly, we apply Lemma 40.4, with mt = ϕt/
√
λ = ϕ(xt, at)/

√
λ and ϵt =

(
rat(t) −

ϕ⊤
t θ

⋆
)
/
√
λ, where rat(t) is sampled from the R-sub-Gaussian reward distribution of mean ϕ⊤

t θ
⋆.

Let’s define the filtration F ′
t = {aτ+1,mτ+1, ϵτ}τ≤t. By the definition of F ′

t, mt is F ′
t−1-measurable.

Moreover, ϵt is conditionally R/
√
λ-sub-Gaussian due to Assumption 8.3.1 and is a martingale

difference process because E[ϵt|F ′
t−1] = 0. If we denote by

Mt = Id + 1/λ
t∑

τ=1
mτm

τ
τ = 1/λVt+1 ,

309 39. Proof of the regret bound

and

ζt =
t∑

τ=1
mτ ϵτ ,

Then, Lemma 40.4 shows that ∥ζt∥M−1
t
≤ R/

√
λ

√
d log

(
t+1
δ′

)
with probability at least 1 − δ′.

Moreover, note that

M−1
t−1(ζt−1 − θ⋆) = M−1

t (1/λbt − 1/λ
t−1∑
τ=1

ϕτϕ
⊤
τ θ

⋆ − θ⋆)

= M−1
t−1(1/λbt −Mt−1θ

⋆)
= µ̂t − θ⋆ .

Note that ||θ⋆||M−1
t−1

= ∥θ⋆M−1/2
t−1 ∥2 ≤ ∥θ⋆∥2∥M

−1/2
t−1 ∥2 ≤ ∥θ⋆∥2, where the last inequality is

due to Assumption 8.3.2. Then, for any arm a ∈ A(xt) we have

|ϕ(xt, a)⊤µ̂t − ϕ(xt, a)⊤θ⋆| = |ϕ(xt, a)M−1
t−1(ξt−1 − θ⋆)|

≤ ∥ϕ(xt, a)∥M−1
t−1
∥ξt−1 − θ⋆∥M−1

t−1

≤ ∥ϕ(xt, a)∥M−1
t−1

(∥ξt−1∥M−1
t−1

+ ∥θ⋆∥M−1
t−1

)

≤
√
λ

(
R/
√
λ

√
d log

(
t

δ′

)
+ 1

)
∥ϕ(xt, a)∥V −1

t

=
√
λ

(
R/
√
λ
√
d log(3t3) + 1

)
∥ϕ(xt, a)∥V −1

t

=
(
R
√
d log(3t3) +

√
λ

)
∥ϕ(xt, a)∥V −1

t

:= g1(t)∥ϕ(xt, a)∥V −1
t

.

This inequality holds with probability at least δ′ = 1/(3t2).
Moreover, recall the definition of the R-subGaussian noise of the reward definition in section

39.2
rt = ϕ⊤

t θ
⋆ + ξt

Then it holds that P(|ξt| > x) ≤ exp
(
1− x2/R2). It follows that P(|ξt| ≤ R

√
1 + log 3t2) ≥

1 − 1/(3t2), for any t ≤ 1. Finally, recall the definition of W̃t,k, µ̃t,k and m̃t,k in section 39.1.
Consequently, the term W̃

−1/2
t,Kt

(µ̃t,Kt − m̃t,Kt) is gaussian with mean 0 and an identity covariance
matrix. Therefore, it holds that

P
(
∥W̃−1/2

t,Kt
(µ̃t,Kt − m̃t,Kt)∥ ≤

√
4d log 3t3

)
≥ 1− 1/(3t2) (A.372)

Consequently, we have

P
(
Êtrue
t

⋂{
|ξi| < R

√
1 + log 3t2

}⋂{
∥W̃−1/2

t,Kt
(µ̃t,Kt − m̃t,Kt)∥ ≤

√
4d log 3t3

})
≥ 1− 1

t2
,

where Êtrue
t is defined is 39.2

Chapter 9. Appendix of Chapter 8 310

Lemma 39.2. Probability of playing an unsaturated arm
Given Etrue

t defined in section (39.2), the conditional probability of playing an unsaturated
arm is strictly positive and is lower bounded as

1Etrue
t

Pt(at ∈ Ut) := P(at ∈ Ut|Ft−1) ≥ 1Etrue
t

(p− 1/t2) , (A.373)

where p = 1/
√

2πe and Ut is defined in (A.362).

Proof. If we suppose that ∀a ∈ St, ϕ(xt, a⋆t)⊤θ̃t ≥ ϕ(xt, a)⊤θ̃t, then at ∈ Ut. Indeed, The
optimal arm a⋆t is obviously in the unsaturated arm set (Ut) and ϕ(xt, at)⊤θ̃t ≥ ϕ(xt, a⋆t)⊤θ̃t by
construction of the algorithm. Hence we have

P(at ∈ Ut|Ft−1) ≥ P(
∗
ϕ⊤θ̃t ≥ ϕ(xt, a)⊤θ̃t,∀a ∈ St|Ft−1)

Subsequently, given events Etrue
t and Evar

t we have{ ∗
ϕ⊤θ̃t ≥ ϕ(xt, a)⊤θ̃t, ∀a ∈ St

}
⊃
{ ∗
ϕ⊤θ̃t ≥

∗
ϕ⊤θ⋆

}
.

Indeed, for any a ∈ St,

ϕ(xt, a)⊤θ̃t
(a)
≤ ϕ(xt, a)⊤θ⋆ + g(t)∥ϕ(xt, a)∥Σ̂t
(b)
≤

∗
ϕ⊤θ⋆ ,

where (a) uses that Etrue
t and Evar

t hold. And in inequality (b) we have used that a ∈ St, ie,
∗
ϕ⊤
t θ

⋆ − ϕ(xt, a)⊤θ⋆ := ∆t(a) > g(t)∥ϕ(xt, a)∥Σ̂t .
Consequently,

P(
∗
ϕ⊤θ̃t ≥

∗
ϕ⊤θ⋆|Ft−1) = P(

∗
ϕ⊤θ̃t ≥

∗
ϕ⊤θ⋆|Ft−1,Evar

t)P(Evar
t) + P(

∗
ϕ⊤θ̃t ≥

∗
ϕ⊤θ⋆|Ft−1,Evar

t)P(Evar
t)

≤ P(
∗
ϕ⊤θ̃t ≥ ϕ(xt, a)⊤θ̃t,∀a ∈ St|Ft−1) + P(Evar

t)

Therefore,

P(at ∈ Ut|Ft−1) ≥ P(
∗
ϕ⊤
t θ̃t ≥

∗
ϕ⋆t θ

⋆|Ft−1)− P(Evar
t)

≥ p− 1
t2
,

where the last inequality is due to Lemma 40.2 and Lemma 40.1 with p = 1/(2
√

2πe).

Lemma 39.3. (Upper bound of
∑T
t=1 ∥ϕt∥Σ̂t) The following lemma we will be useful in the

derivation of the regret bound later in the proof.

T∑
t=1
∥ϕt∥V −1

t
≤

√
2dT log

(
1 + T

λd

)

Proof. Recall the relation between the 1-norm and 2-norm for a d-dimensional vector, ie, ∥ · ∥1 ≤√
d∥ · ∥2. Hence, it follows that

T∑
t=1
∥ϕt∥V −1

t
≤

√√√√T T∑
t=1
∥ϕt∥2V −1

t

311 39. Proof of the regret bound

Firs, recall the definition of Vt = λI∑t−1
s=1 ϕsϕ

⊤
s in (8.15). Therefore, we apply Lemma 11 and

Lemma 10 of Abbasi-Yadkori et al. (2011), then we have
T∑
t=1
∥ϕt∥2V −1

t
≤ 2 log detVt

detλI

≤ 2 log (λ+ T/d)d
λd

= 2d log
(
1 + T

λd

)
.

Consequently,
T∑
t=1
∥ϕt∥V −1

t
≤

√
2dT log

(
1 + T

λd

)

39.5 Technical Lemmas

39.5.1 Upper bound of variational mean concentration term

In this section the objective is to bound the mean variational concentration term, ie, |ϕ⊤(m̃t,k−µ̂)|.

Lemma 39.4. Given Etrue
t defined in section (39.2), the expected mean of the variational posterior

at time step t after Kt steps of gradient descent m̃t,Kt, defined in section (39.1), is equal to:

m̃t,Kt =
t−1∑
j=1

t−1∏
i=j

AKi−1
i (µ̂j − µ̂j+1) + µ̂t (A.374)

where Ai = I− ηhiVi.

Proof. Recall the definitions of µ̃t,k and m̃t,k in section 39.1. Moreover, this section also presents
the sequence {µ̃t,k}Ktk=1 defined recursively in Algorithm 7 by:

µ̃t,k+1 = µ̃t,k − htηVt(θ̃t,k − µ̂t) .

Note that {µ̃t,k}Ktk=1 is a sequence of Gaussian samples with mean and covariance matrix m̃t,k

and W̃t,k+1 respectively (see (39.1)). Then, we have,

m̃t,k+1 = E[µ̃t,k+1]
= m̃t,k − ηhtVt(m̃t,k − µ̂t)
= (I− htηVt)m̃t,k + ηhtVtµ̂t

Now, we recognise an arithmetico-geometric sequence, therefore the solution is:

m̃t,k = (I− htηVt)k−1(m̃t,1 − µ̂t) + µ̂t

Moreover, in the algorithm we use that µ̃t,1 = µ̃t−1,Kt−1 , which implies that m̃t,1 = m̃t−1,kt−1 and
Wt,1 = Wt−1,Kt−1 . Hence, we have

m̃t,Kt =
t∏
i=1

(I− ηhiVi)Ki−1(m̃1,1 − µ̂1) +
t−1∑
j=1

t∏
i=j+1

(I− ηhiVi)Ki−1(µ̂j − µ̂j+1) + µ̂t (A.375)

Moreover, the mean of the variational posterior is initialized at µ̃1,1 = 0d, then the expected
mean of the variational posterior m̃1 = µ̂1 = 0d. Therefore the first term of (A.375) is null.

Chapter 9. Appendix of Chapter 8 312

Lemma 39.5. Given Etrue
t , for any ϕ ∈ Rd, it holds that

|ϕ(m̃t,Kt − µ̂t)| ≤
t−1∑
j=1

t−1∏
i=j

(1− ηhλmin(Vi))Ki−1∥ϕ∥V −1
j
∥ϕj∥V −1

j

(
g1(t)/

√
λ+R

√
1 + log(3t2)

)

where m̃t,Kt is the expected mean of the variational posterior at time step t after Kt steps of
gradient descent, ie, m̃t,Kt = E[µ̃t,Kt], (see section 39.1). Recall that g1(t) = R

√
d log(3t3) +

√
λ

(see section: 39.2).

Proof. Lemma 39.4 gives us that m̃t,Kt = ∑t−1
j=1

∏t−1
i=j A

Ki−1
i (µ̂j− µ̂j+1)+ µ̂t where Ai = I−ηhiVi.

Then, for any ϕ ∈ Rd, the term we want to upper bound is:

|ϕ⊤(m̃t,Kt − µ̂t)| ≤
t−1∑
j=1
|ϕ⊤

t−1∏
i=j

AKi−1
i (µ̂j − µ̂j+1)| , (A.376)

We can notice that the previous term only depends on the difference between the mean
posterior at time j and the one at time j+1, which can be upper bounded. Recall the different
relations between Vj , bj , rj , ϕj and Σ̂j in the linear bandit setting (see equation (8.15)):
Vj+1 = Vj + ϕjϕ

⊤
j , bj+1 = bj + rjϕj and µ̂j = V −1

j bj , then by Sherman–Morrison formula we
have:

V −1
j+1 = (Vj + ϕjϕ

⊤
j)−1 = V −1

j −
V −1
j ϕjϕ

⊤
j V

−1
j

1 + ϕ⊤
j V

−1
j ϕj

(A.377)

The difference between the mean posterior at time j + 1 and the one at time j becomes:

µ̂j+1 − µ̂j = V −1
j+1bj+1 − V −1

j bj

= (V −1
j −

V −1
j ϕjϕ

⊤
j V

−1
j

1 + ϕ⊤
j V

−1
j ϕj

)(bj + rjϕj)− V −1
j bj

= rjV
−1
j ϕj −

V −1
j ϕjϕ

⊤
j V

−1
j

1 + ϕ⊤
j V

−1
j ϕj

(bj + rjϕj)

=
V −1
j ϕj

1 + ϕ⊤
j V

−1
j ϕj

{
−ϕ⊤

j µ̂j − rjϕ⊤
j V

−1
j ϕj + rj(1 + ϕ⊤

j V
−1
j ϕ⊤

j)
}

=
V −1
j ϕj(rj − ϕ⊤

j µ̂j)
1 + ϕ⊤

j V
−1
j ϕj

(a)=
V −1
j ϕj(ϕ⊤

j θ
⋆ + ξj − ϕ⊤

j µ̂j)
1 + ϕ⊤

j V
−1
j ϕj

(b)
≤ V −1

j ϕj(ϕ⊤
j θ

⋆ + ξj − ϕ⊤
j µ̂j) (A.378)

where in (a) we have used that rj = ϕ⊤
j θ

⋆ + ξj with ξj is sampled from a R-Subgaussian
distribution. Inequality (b) is due to ϕ⊤

j V
−1
j ϕi = ∥ϕj∥2V −1

j

> 0.

313 39. Proof of the regret bound

Subsequently, combining equations (A.376) and (A.378), we obtain the following upper bound

|ϕ(m̃t,Kt − µ̂t)| ≤
t−1∑
j=1

t−1∏
i=j
|ϕ⊤AKi−1

i (µ̂j − µ̂j+1)|

(a)
≤

t−1∑
j=1

t−1∏
i=j

∣∣∣ϕ⊤AKi−1
i V −1

j ϕj(ϕ⊤
j θ

⋆ + ξj − ϕ⊤
j µ̂j)

∣∣∣
(b)
≤

t−1∑
j=1

t−1∏
i=j

(1− ηhλmin(Vi))Ki−1ϕ⊤V
−1/2
j V

−1/2
j ϕj |(ϕ⊤

j θ
⋆ + ξj − ϕ⊤

j µ̂j)|

(c)
≤

t−1∑
j=1

t−1∏
i=j

(1− ηhλmin(Vi))Ki−1∥ϕ∥V −1
j
∥ϕj∥V −1

j
|(ϕ⊤

j θ
⋆ + ξj − ϕ⊤

j µ̂j)|

(d)
≤

t−1∑
j=1

t−1∏
i=j

(1− ηhλmin(Vi))Ki−1∥ϕ∥V −1
j
∥ϕj∥V −1

j

(
g1(t)/

√
λ+R

√
1 + log(3t2)

)

In the inequality (a) we have used equation (A.378), in (b) the relation AKi−1
i = (I−ηhiVi)Ki−1 ⪯

(1− ηhiλmin(Vi))Ki−1 Id, in (c) the definition of ∥ϕ∥V −1
t

=
√
ϕ⊤V −1

t ϕ =
√
ϕ⊤V

−1/2
t

√
V

−1/2
t ϕ =

ϕ⊤V
−1/2
t , and finally (d) is due to |ξi| < R

√
1 + log 3t2 as Etrue

t holds and |ϕ⊤
i (θ⋆ − µ̂t)| ≤

g1(t)
∥∥∥ϕ⊤

i

∥∥∥
V −1
t

≤ g1(t)/
√
λ

Lemma 39.6. Given Etrue
t , for any ϕ ∈ Rd, if the number of gradient descent of Algorithm 8 is

such that for t ≥ 2
Kt ≥ 1 + 2(1 + 2κ2

t) log
(
4R
√
dT log(3T 3)

)
,

then it holds that

|ϕ(m̃t,Kt − µ̂t)| ≤
2∥ϕ∥V −1

t

λ

This lemma provides the upper bound for variational mean concentration term.

Proof. Firstly, we can apply Lemma 39.5, it gives us

|ϕ(m̃t,Kt − µ̂t)| ≤
t−1∑
j=1

t−1∏
i=j

(1− ηhtλmin(Vt))Ki−1∥ϕ∥V −1
j
∥ϕj∥V −1

j

(
g1(t)/

√
λ+R

√
1 + log(3t2)

)

where g1(t) = R
√
d log(3t3) +

√
λ. Moreover, for t ≥ 2,

R
√

1 + log 3t2 + g1(t)/
√
λ ≤ R

√
log 3t2 +R

√
d log (3t3) /λ+R+ 1 (A.379)

≤ 4R
√
d log 3t2/λ (A.380)

where we have used that R ≥ 1 and λ ≤ 1. Moreover, for any j ∈ [1, t] we have

∥ϕ∥V −1
j
≤ ∥ϕ∥2/

√
λ (A.381)

≤ λmax(Vt)1/2∥ϕ∥V −1
t
/
√
λ (A.382)

= λmax(Vt)1/2∥ϕ∥V −1
t
/λ1/2 (A.383)

Let’s define ϵ =
(
4R
√
dt log(3t2)

)−1
≤ 1/2 and let’s take Ki such that (1−htλmin(Vt))Ki−1 ≤

ϵ, this condition will be explained later in the proof. It follows that

Chapter 9. Appendix of Chapter 8 314

|ϕ(m̃t,Kt − µ̂t)| ≤
t−1∑
j=1

t−1∏
i=j

(1− ηhtλmin(Vt))Ki−1∥ϕ∥V −1
j
∥ϕj∥V −1

j
ϵ−1

(a)
≤
∥ϕ∥V −1

t
λmax(Vt)1/2

λ

t−1∑
j=1

t−1∏
i=j

(1− htλmin(VT))Ki−1ϵ−1

(b)
≤
∥ϕ∥V −1

t

λ

t−1∑
j=1

ϵt−j−1

(c)
≤
∥ϕ∥V −1

t

λ
× 1

1− ϵ
(d)
≤

2∥ϕ∥V −1
t

λ
,

where (a) comes from equations (A.381) and (A.380). The point (b) comes that λmax(Vt) ≤
√
t

because λ ≤ 1 and definition of ϵ, then (c) from the geometric series formula. Finally, in (d), we
have used ϵ ≤ 1/2.

Now, let’s focus on that condition on Ki presented previously. For any i ∈ [t], recall the
definition of the step size ht in 39.1.

hi = λmin(Vi)
2η(λmin(Vi)2 + 2λmax(Vi)2) ,

and define κi = λmax(Vi)/λmin(Vi). Therefore, it holds that

(1− ηhiλmin(Vi))Ki−1 =
(

1− 1
2(1 + 2κ2

i)

)Ki−1

For any ϵ > 0, we want that (1− hiλmin(Vi))Ki−1 ≤ ϵ. Hence we deduce that

Ki ≥ 1 + log(1/ϵ)
log
(
1− 1/(2(1 + 2κ2

i))
) .

Moreover, if 0 < x < 1 then we have −x > log(1− x), if follows that

Ki ≥ 1 + 2(1 + 2κ2
i) log(1/ϵ) .

We note that,

log(1/ϵ) = log
(
4R
√
dt log 3t3

)
≤ log

(
4R
√
dT log 3T 3

)
.

Finally, taking Ki ≥ 1 + 2(1 + 2κ2
i) log

(
4R
√
dT log(3T 3)

)
, we obtain the condition

(1− ηhiλmin(Vt))Ki−1 ≤ ϵ ,

which concludes the proof.

315 39. Proof of the regret bound

39.5.2 Control the variational covariance matrix

The objective of this section is to control the following term: |ϕ⊤
(
θ̃t,k − µ̃t,k

)
|. As θ̃t,k is a

sample from a Gaussian distribution with mean µ̃t,k, the previous term will be controlled using
Gaussian concentration and an upper bound of the norm of the variational covariance matrix
Σ̃t,k. Recall the definitions of parameters Σ̂t, Bt,k, θ̃t,k and µ̃t,k in section 39.1.

Lemma 39.7. For any t ∈ [T] and k ∈ [Kt], the following relation holds:

(H) : Σ̃t,k ⪰ V −1
t /(2η) (A.384)

Proof. The sequence {Σ̃t,n}t∈[T], n∈[kt] is initialized by Σ̃1,1 = I/(λη) = V −1
1 /η ⪰ V −1

t /(2η).
Hence, (H) holds for the pair t = 1 and k = 1. Therefore, to conclude the proof, we have to show
that the following transitions are true:

• for any t ∈ [T], if (H) holds at step (t,Kt) then it stays true at step (t+ 1, 1) (recursion in
t),

• for any k ∈ [Kt], if (H) holds at step (t, k) then it stays true at step (t, k + 1) (recursion in
k).

Firstly, let’s focus on the first implication and suppose that (H) holds at step (t,Kt). Therefore
we have

Σ̃t+1,1
(a)= Σ̃t,Kt

(b)
⪰ V −1

t /(2η)
(c)
⪰ V −1

t+1/(2η)

where (a) comes from the initialization of the sequence {Σ̃t,k}k∈[kt], (b) from the hypothesis (H)
at step (t,Kt). And finally, (c) is due to Vt+1 = Vt + ϕtϕ

⊤
t ⪰ Vt. Then we can conclude that (H)

holds at step (t+ 1, 1).
Now we focus on the second implication and we suppose that (H) holds at step (t, k). For

ease of notation we denote by Zt,k := Σ̃t,k − V −1
t /(2η). Therefore using the recursive definition

of Σ̃t,k given in section (39.1), we have

Zt,k+1 = AtΣ̃t,kAt + 2htAt + h2
t Σ̃−1

t,k − V
−1
t /(2η)

= AtZt,kAt + 2htAt + h2
t Σ̃−1

t,k − htI + ηh2
tVt/2

= AtZt,kAt + htI− 3h2
t ηVt/4 + h2

t Σ̃−1
t,k

where in the last inequalities we have used that At = (I − ηh2
tVt). Moreover, all terms in the

previous inequality are positive semi-definite. Indeed, as (H) holds at step (t, k), we know that
Zt,k ⪰ 0 and then that AtZt,kAt ⪰ 0. Moreover, Σ̃t,k ⪰ V −1

t /(2η) ⪰ 0, so Σ̃−1
t,k ⪰ 0. Finally, recall

the definition of ht in section (39.1)

ht ≤
λmin(Vt)

2η(λmin(Vt)2 + 2λmax(Vt)2)

= 1/κt
2ηλmax(Vt)((1/κt)2 + 1)

= 4
3ηλmax(Vt)

× 3/κt
8(1 + (1/κ2

t))

≤ 4
3ηλmax(Vt)

,

Chapter 9. Appendix of Chapter 8 316

where κt = λmax(Vt)/λmin(Vt) ≥ 1. Consequently, the matrix I − 3ηhtVt/4 is also positive
semi-definite. Subsequently, we have

Zt,k+1 ⪰ 0 .

Lemma 39.8. For any ϕ ∈ Rd, let Bt,k the square root of the covariance matrix defined in
Algorithm (8). It holds that

∥Bt,Ktϕ∥2 ≤ 1/√η
(
1 +

√
∥Vt∥2Ct

)
∥ϕ∥V −1

t

∥Bt,Ktϕ∥2 ≥ 1/√η
(
1−

√
∥Vt∥2Ct

)
∥ϕ∥V −1

t

where Ct = 1/λ∑t−1
j=1

∏t
i=j+1

(
1− 3htη

2 λmin(Vi)
)Ki−1

.

Proof. Recall the recursive relation of Λt,k defined in Section (39.1).

Λt,k+1 = AtΛt,kAt − ηh2
tVtΛt,kΣ̃−1

t,k ,

Hence, we have the following relation on the norm of Λt,k+1:

∥Λt,k+1∥2 ≤ ∥At∥2∥Λt,k∥2∥At∥2 + ηh2
t ∥Vt∥2∥Λt,k∥2∥Σ̃−1

t,k∥2

=
(
λmax(At)2 + ηh2

tλmax(Vt)λmax(Σ̃−1
t,k)
)
∥Λt,k∥2

(a)=
(
1− 2ηhtλmin(Vt) + η2h2

tλmin(Vt)2 + ηh2
tλmax(Vt)λmax(Σ̃−1

t,k)
)
∥Λt,k∥2

=
(

1− 3htη
2 λmin(Vt) + ηht{ht(ηλmin(Vt)2 + λmax(Vt)λmax(Σ̃−1

t,k))− λmin(Vt)/2}
)
∥Λt,k∥2

(b)
≤
(

1− 3htη
2 λmin(Vt)

)
∥Λt,k∥2 ,

where (a) uses that λmax(At) = 1 − ηhλmin(Vt). Finally, inequality (b) is due to: Σ̃t,k ⪰
V −1
t /(2η) (Lemma 39.7). Indeed it implies that

ht(ηλmin(Vt)2 + λmax(Vt)λmax(Σ̃−1
t,k)) ≤ ht(ηλmin(Vt)2 + 2ηλmax(Vt)2)

≤ λmin(Vt)/2 ,

where the inequality comes from the definition of the step size: ht ≤ λmin(Vt)/
(
2η(λmin(Vt)2 +

317 39. Proof of the regret bound

2λmax(Vt)2)
)
. Subsequently,

∥Λt,Kt∥2 ≤
(

1− 3htη
2 λmin(Vt)

)
∥Λt,Kt−1∥2

≤
(

1− 3htη
2 λmin(Vt)

)Kt−1
∥Σ̃t,1 − 1/ηV −1

t ∥2

=
(

1− 3htη
2 λmin(Vt)

)Kt−1
∥Σ̃t−1,kt−1 − 1/ηV −1

t ∥2

≤
t−1∏
i=1

(
1− 3htη

2 λmin(Vi)
)Ki−1

∥Σ̃1,1 − 1/ηV −1
1 ∥2 (A.385)

+
t−1∑
j=1

t∏
i=j+1

(
1− 3htη

2 λmin(Vi)
)Ki−1

∥1/ηV −1
j − 1/ηV −1

j+1∥2

(a)
≤ 1
η

t−1∑
j=1

t∏
i=j+1

(
1− 3htη

2 λmin(Vi)
)Ki−1

∥V −1
j − V −1

j+1∥2

(b)
≤ 1
λη

t−1∑
j=1

t∏
i=j+1

(
1− 3htη

2 λmin(Vi)
)Ki−1

,

:= Ct/η

where in (a) we have used that Σ̃1,1 = 1
λη I = 1/ηV −1

1 . Moreover ∥V −1
j −V

−1
j+1∥2 = ∥

(
V −1
j ϕjϕ

⊤
j V

−1
j

)
/
(
1−

ϕ⊤
j V

−1
j ϕj

)
∥2 see result (A.377). It implies that ∥V −1

j − V −1
j+1∥2 ≤ ∥V

−1
j ∥22 ≤ ∥V

−1
1 ∥22 = 1/λ.

Finally, for any ϕ ∈ Rd,

∥Bt,Ktϕ∥2 =
√
ϕ⊤B⊤

t,Kt
Bt,Ktϕ

=
√
ϕ⊤Σ̃t,Ktϕ

=
√
ϕ⊤(Σ̃t,Kt − 1/ηV −1

t)ϕ+ 1/ηϕ⊤V −1
t ϕ

≤ ∥ϕ∥2
√
∥Σ̃t,Kt − 1/ηV −1

t ∥2 + 1/√η∥ϕ∥V −1
t

where the last inequality comes from the fact that for a, b > 0,
√
a+ b <

√
a+
√
b, Moreover,

∥ϕ∥2 = ∥ϕV −1/2
t V

1/2
t ∥2

≤ ∥ϕ∥V −1
t
∥V 1/2

t ∥2

Consequently, we have

∥Bt,Ktϕ∥2 ≤ 1/√η
(
1 +

√
∥Vt∥2Ct

)
∥ϕ∥V −1

t

The lower bound of this lemma

∥Bt,Ktϕ∥2 ≥ 1/√η
(
1−

√
∥Vt∥2Ct

)
∥ϕ∥V −1

t

is obtained because

Chapter 9. Appendix of Chapter 8 318

∥Bt,Ktϕ∥2 =
√
ϕ⊤B⊤

t,Kt
Bt,Ktϕ

=
√
ϕ⊤Σ̃t,Ktϕ

=
√
ϕ⊤(Σ̃t,Kt − 1/ηV −1

t)ϕ+ 1/ηϕ⊤V −1
t ϕ

≥ −∥ϕ∥2
√
∥Σ̃t,Kt − 1/ηV −1

t ∥2 + 1/√η∥ϕ∥V −1
t

≤ ∥Bt,Ktϕ∥2 ≥ 1/√η
(
1−

√
∥Vt∥2Ct

)
∥ϕ∥V −1

t
,

where the first inequality comes from remarkable identity
√
a−
√
b <
√
a+ b for a, b > 0.

Lemma 39.9. For any t ∈ [T] and a ∈ A(xt), if the number of gradient descent steps of
Algorithm 8 is Kt ≥ 1 + 4(1 + 2κ2

t) log(2T)/3 , then with probability at least 1− 1/t2, we have

|ϕ(xt, a)⊤
(
θ̃t,Kt − µ̃t,Kt

)
| ≤

√
4d log(t3)/η

(
1 + 1/

√
λ
)
∥ϕ(xt, a)∥V −1

t

Proof. For any a ∈ A(xt), if Kt ≥ 1 + 4(1 + 2κ2
t) log(2T)/(3η), Lemma ?? gives us that

|ϕ(xt, a)⊤
(
θ̃t,Kt − µ̃t,Kt

)
| ≤ ∥B−1

t,Kt
(θ̃t,Kt − µ̃t,Kt)∥2∥ϕ(xt, a)⊤Bt,Kt∥2

≤ ∥B−1
t,Kt

(θ̃t,Kt − µ̃t,Kt)∥2(1/√η)
(
1 + 1/

√
λ
)
∥ϕ∥V −1

t
.

where first inequality comes from classical matrix norm inequality and the second one is previous
lemma ??, recall that θ̃t,Kt ∼ N(µ̃t,Kt , Bt,KtB⊤

t,Kt
), henceB−1

t,Kt
(θ̃t,Kt−µ̃t,Kt) ∼ N(0, Id). Therefore,

with probability 1− 1/t2 we have

B−1
t,Kt

(θ̃t,Kt − µ̃t,Kt) ≤
√

4d log(t3) .

Finally, we conclude that with probability 1− 1/t2, it holds that

|ϕ(xt, a)⊤
(
θ̃t,Kt − µ̃t,Kt

)
| ≤

√
4d log(t3)/η

(
1 + 1/

√
λ
)
∥ϕ(xt, a)∥V −1

t
.

39.5.3 Concentration of the mean of the Variational posterior around its mean

In this section, the objective is the show to concentration of µ̃t,k around its mean m̃t,k More
precisely, we want an upper bound of |ϕ⊤ (µ̃t,k − m̃t,k) |.

Lemma 39.10. For any t ∈ [T] and k ∈ [Kt], we have the following relation

W̃t,k+1 = (I− ηhtVt)W̃t,k(I− ηhtVt)T + η2h2
tVtE[Σ̃t,k]Vt

where the sequence {W̃t,k}Ktk=1 is introduced in section 39.1. (Recall : µ̃t,k ∼ N(m̃t,k, W̃t,k))

Proof. In this section, we focus on the covariance matrix W̃t,k (see definition 39.1), by definition
we have

W̃t,k+1 = E[(µ̃t,k+1 − m̃t,k+1)(µ̃t,k+1 − m̃t,k+1)⊤]
= E[at,k+1a

⊤
t,k+1] ,

319 39. Proof of the regret bound

where at,k is the difference between µ̃t,k and its mean. For ease of notation, let’s define Ωt,k :=
θ̃t,k − m̃t,k, then we have

at,k+1 = µ̃t,k − m̃t,k − ηhtVt(θ̃t,k − m̃t,k) = µ̃k − m̃t,k − ηhtVtΩt,k.

Consequently,

at,k+1a
⊤
t,k+1 = (µ̃t,k − m̃t,k)(µ̃t,k − m̃t,k)⊤ − ηhtVtΩt,k(µ̃t,k − m̃t,k)⊤

− ηht(µ̃t,k − m̃t,k)Ω⊤
t,kVt + η2h2

tVtΩt,kΩ⊤
t,kVt

Moreover, note that θ̃t,k = µ̃t,k + Bt,kϵt,k where ϵt,k ∼ N(0, I). Subsequently we have Ωt,k =
µ̃t,k−m̃t,k+Σ̃1/2

t,k ϵt,k. Then we have E[Ωt,kΩ⊤
t,k] = W̃t,k+E[Bt,kB⊤

t,k], E[Ωt,k(µ̃t,k−m̃t,k)⊤] = Wt,k,
and E[(µ̃t,k − m̃t,k)Λ⊤

t,k] = W̃t,k. Finally we obtain that

W̃t,k+1 = E[at,k+1a
⊤
t,k+1]

= W̃t,k − ηhtVtW̃t,k − ηhtW̃t,kVt + η2h2
tVtW̃t,kVt + η2h2

tVtE[Bt,kB⊤
t,k]Vt

= (I− ηhtVt)W̃t,k(I− ηhtVt)⊤ + η2h2
tVtE[Bt,kB⊤

t,k]Vt .

Lemma 39.11. Recall that µ̃t,Kt, the mean of the variational posterior after Kt steps of
gradient descent, is a sample from the Gaussian with mean m̃t,Kt and covariance matrix W̃t,Kt,
ie, µ̃t,Kt ∼ N(m̃t,Kt , W̃t,Kt). Recall the definition of Λt,k = Σ̃t,k − 1/ηV −1

t , and let denote by
Γt,k = W̃t,k − JtV −1

t , where Jt = ht(2I− ηhtVt)−1Vt.
This Lemma shows that the 2-norm of Γt,Kt is controlled by

∥Γt,Kt∥2 ≤
t∑

j=1

6κjhj∥Vj∥2
λ

j∑
r=1

t∏
i=r

DKi−1
i ,

where κj = λmax(Vj)/λmin(Vj) and Di = I− 3ηhiλmin(Vi)/2.

Proof. Lemma (39.10) gives us that

W̃t,k+1 = AtW̃t,kAt + η2h2
tVtΣ̃t,kVt ,

where At = I− ηhtVt.
Note that Jt and Vt commute, therefore we have

AtJtV
−1
t At = JtV

−1
t − 2htηJt + η2h2

tJtVt .

Consequently, by combining the two previous equations we obtain

Γt,k+1 = AtΓt,kAt − 2htηJt + η2h2
tJtVt + ηh2

tVt + η2h2
tVtΛt,kVt

= AtΓt,kAt + η2h2
tVtΛt,kVt − htηJt(2I− ηhtVt) + ηh2

tVt

= AtΓt,kAt + η2h2
tVtΛt,kVt .

It follows that

∥Γt,k+1∥2 ≤ ∥At∥22∥Γt,k∥2 + η2h2
t ∥Vt∥22∥Λt,k∥2

Chapter 9. Appendix of Chapter 8 320

Therefore, iterating over k gives us

∥Γt,k+1∥2 ≤ ∥At∥2k2 ∥Γt,k∥2 + η2h2
t

k−1∑
j=0
∥At∥2j2 ∥Vt∥

2
2∥Λt,k−j∥2 .

Moreover, Equation (A.385) is used to controls the following quantity

∥Λt,k∥2 ≤
(

1− 3ηht
2 λmin(Vt)

)k−1
∥Λt,1∥2 .

Let’s denote by Dt = 1− 3ηhtλmin(Vt)/2, Subsequently

∥Γt,k+1∥2 ≤ ∥At∥2k2 ∥Γt,k∥2 + η2h2
t

k−1∑
j=0
∥At∥2j2 ∥Vt∥

2
2D

k−j−1
t ∥Λt,1∥2 .

However, ∥At∥22 = (1− ηhtλmin(Vt))2 < (1− 3ηht
2 λmin(Vt)), because ηht ≤ 1/(4λmin(Vt)). Conse-

quently, the geometric sum has a common ratio strictly lower than 1, then it is upper bounded
by:

k−1∑
j=0

(
∥At∥22

(1− 3ηht
2 λmin(Vt))

)j
≤

+∞∑
j=0

(
∥At∥22

(1− 3ηht
2 λmin(Vt))

)j

=
1− 3ηht

2 λmin(Vt)
1− 3ηht

2 λmin(Vt)− ∥At∥22

≤
1− 3ηht

2 λmin(Vt)
1/2 ηhtλmin(Vt)− η2h2

tλmin(Vt)2

≤ 6
ηhtλmin(Vt)

, (A.386)

where in the first inequality we have used that the ratio of the previous sum is positive. In the
last inequality we have used that ηht ≤ 1/(6λmin(Vt)) in the denominator and we can remove
the negative part of the numerator. Therefore, it holds that

∥Γt,k+1∥2 ≤ ∥At∥2k2 ∥Γt,k∥2 + 6ηκthtDk−1
t ∥Vt∥2∥Λt,1∥2 ,

where the last inequality comes from (A.386) and the definition of κt = λmax(Vt)/λmin(Vt).
Finally, iterating over t yields to:

∥Γt,k+1∥2 ≤ ∥At∥2k2

t−1∏
j=1
∥Aj∥

2(Kj−1)
2 ∥Γ1,1∥2 +

t−1∑
j=1
∥At∥2k2

t−1∏
i=j+1

∥Ai∥2(Ki−1)
2

(
6ηκjhjD

Kj−1
j ∥Vj∥2∥Λt,1∥2

)
+ 6ηκthtDk−1

t ∥Vt∥2∥Λt,1∥2

≤
t−1∑
j=1
∥At∥2k2

t−1∏
i=j+1

∥Ai∥2(Ki−1)
2

(
6ηκjhjD

Kj−1
j ∥Vj∥2∥Λt,1∥2

)
+ 6ηκthtDk−1

t ∥Vt∥2∥Λt,1∥2 ,

where in the last inequalities we have used that W1,1 is initialized such that W1,1 = 1/(11ηλ)I
and that J1V1 = h1(2I− ηh1λI)−1 = 1/(11ηλ)I because h1 = 1/(6ηλ). Finally, we can conclude

∥Γt,Kt∥2 ≤
t−1∑
j=1
∥At∥2(Kt−1)

2

t−1∏
i=j+1

∥Ai∥2(Ki−1)
2

(
6ηκjhjD

Kj−1
j ∥Vj∥2∥Λt,1∥2

)
+ 6ηκthtDKt−1

t ∥Vt∥2∥Λt,1∥2

=
t∑

j=1

t∏
i=j+1

∥Ai∥2(Ki−1)
2

(
6ηκjhjD

Kj−1
j ∥Vj∥2∥Λt,1∥2

)

≤
t∑

j=1

t∏
i=j

DKi−1
i

(
6ηκjhj∥Vj∥2∥Λt,1∥2

)
,

321 39. Proof of the regret bound

where in the last inequality we have used that ∥At∥22 ≤ Dt. Moreover, equation (A.385) gives us
that ∥Λj,1∥2 ≤ 1/(ηλ)∑j

r=1
∏j−1
l=r D

Kl−1
l . Consequently, it holds that

∥Γt,Kt∥2 ≤
t∑

j=1

6κjhj∥Vj∥2
λ

j∑
r=1

j−1∏
l=r

DKl−1
l

t∏
i=j

DKi−1
i

=
t∑

j=1

6κjhj∥Vj∥2
λ

j∑
r=1

t∏
i=r

DKi−1
i .

Lemma 39.12. For any t ≥ 2, given Etrue
t , if the number of gradient descent steps is Kt ≥

1 + 4(1 + 2κ2
t) log

(
2κtd2T log2(3T 3)

)
/3, therefore it holds that

|ϕ⊤ (µ̃t,Kt − m̃t,Kt) | ≤
(√

3
ηλd log(3t3) +

√
4d log(3t3)/(11η)

)
∥ϕ∥V −1

t
.

Proof. For any ϕ ∈ Rd,

|ϕ⊤ (µ̃t,Kt − m̃t,Kt) | ≤ ∥ϕ⊤W̃
1/2
t,Kt
∥2∥W̃−1/2

t,Kt
(µ̃t,Kt − m̃t,Kt))∥2 , (A.387)

where W̃
1/2
t,Kt

is the unique symmetric square root of W̃t,Kt . Firstly, given Etrue
t , the term

∥W̃−1/2
t,Kt

(µ̃t,Kt − m̃t,Kt)∥2 <
√

4d log(3t3).
Then, we observe that√

4d log(3t3)∥W̃ 1/2
t,Kt

ϕ∥2 =
√

4d log(3t3)ϕW̃t,Ktϕ
⊤

≤
√

4d log(3t3)ϕΓt,Ktϕ⊤ +
√

4d log(3t3)ϕJtV −1
t ϕ⊤ , (A.388)

where Jt = ht(2I− ηhtVt)−1Vt = (2V −1
t /ht − ηI)−1 and Γt,k = W̃t,k − JtV −1

t .
Moreover, √

ϕJtV
−1
t ϕ⊤ = ∥(JtV −1

t)1/2ϕ∥2
(a)= ∥J1/2

t V
−1/2
t ϕ∥2

≤ ∥J1/2
t ∥2∥ϕ∥V −1

t
,

where in inequality (a) we have used that Jt and V −1
t commute.

Recall that Vt is a symmetric matrix, therefore we have λmin(Vt)I ⪯ Vt ⪯ λmax(Vt)I. It follows
that

2
htλmax(Vt)

I ⪯ 2
ht
V −1
t ⪯ 2

htλmin(Vt)
I.

Recall the definition of ht = λmin(Vt)/
(
2η(λmin(Vt)2 + λmax(Vt)2)

)
. Consequently, the previous

relation becomes (4η(1 + 2κ2
t)

κt
− η

)
I ⪯ 2

ht
V −1
t − ηI ⪯

(
3η + 8ηκ2

t

)
I . (A.389)

Chapter 9. Appendix of Chapter 8 322

The left hand term is obviously positive, therefore it holds that

∥J1/2
t ∥2 = ∥(2

ht
V −1
t − ηI)−1/2∥2

≤
√

κt
η(4 + 8κ2

t − κt)

≤ 1√
η(4 + 7κ2

t)

≤ 1√
11η .

Finally, √
4d log(3t3)ϕJtV −1

t ϕ⊤ ≤
√

4d log(3t3)/(11η)∥ϕ∥V −1
t

.

Now, we focus on the first term of equation A.388. Lemma 39.11 gives us that

∥Γt,Kt∥2 ≤
t∑

j=1

6κjhj∥Vj∥2
λ

j∑
r=1

t∏
i=r

DKi−1
i

≤
t∑

j=1

κj
ηλ

j∑
r=1

t∏
i=r

DKi−1
i ,

where in the last inequality we have used that ht∥Vt∥2 = κt/
(
2η(1 + 2κt)

)
≤ 1/(6η). For any

j ∈ [2, t], let’s define ϵj = 1/(2(κjd2t2 log2(3t3))). Additionally, let’s fix Ki such that DKi−1
i ≤ ϵj

(this condition will be explained later in the Lemma). Subsequently, we have

4d log
(
3t3
)
∥Vt∥2/(ηλ)

t∑
j=1

κj

j∑
r=1

t∏
i=r

DKi−1
i ≤ 4d log

(
3t3
)
∥Vt∥2/(ηλ)

t∑
j=1

κj

j∑
r=1

ϵt−r+1
j

≤ 2∥Vt∥2
t2ηλd log(3t3)

t∑
r=1

t∑
j=r

ϵt−rj

(a)
≤ 2∥Vt∥2
t2ηλd log(3t3)

t∑
r=1

t∑
j=r

(1
2d2t2 log2(3t3)

)t−r

≤ 2∥Vt∥2
tηλd log(3t3)

t∑
r=1

t− r + 1
t

(1
2d2t2 log2(3t3)

)t−r
(b)
≤ 2∥Vt∥2
tηλd log(3t3)

t∑
r=1

(1
2d2t2 log2(3t3)

)t−r
(c)
≤ 2∥Vt∥2
ηtλd log(3t3)

t−1∑
u=0

(1
25
)u

≤ 3
ηλd log(3t3) ,

where in (a) we have used that ϵj ≤ 1/(2(d2t2 log2(3t3)). Inequality (b) is due to t−r+1 ≤ t. The
inequality (c) is obtained because 1/(2d2t2 log2 3t3) ≤ 1/(4× log2(8)) ≤ 1/25 and u = t− r. For
the last inequality we have used the geometric series formula and ∥Vt∥2 = ∥λI +∑t−1

s=1 ϕϕ
⊤∥2 ≤

λ+ t− 1 ≤ t, because λ ≤ 1.

323 40. Concentration and anti-concentration

Consequently, as ∥ϕ∥2 ≤ ∥V 1/2
t ∥2∥ϕ∥V −1

t
, we obtain

√
4d log(3t3)ϕΓt,Ktϕ⊤ ≤

√
3

ηλd log(3t3)∥ϕ∥V −1
t

. (A.390)

Moreover, the previous inequalities hold if (1− (3/2)ηhiλmin(Vi))Ki−1 ≤ ϵ, following a similar
reasoning than in section 39.5.2, it follows that we need

Kt ≥ 1 + 4(1 + 2κ2
t) log

(
2κtd2T 2 log2(3T 3)

)
/3

40 Concentration and anti-concentration

Lemma 40.1. (Concentration lemma for θ̃t)
For any t ∈ [T], given Etrue

t , the following event is controlled

P(Evar
t |Ft−1) ≥ 1− 1

t2

Proof. Firstly, if t = 1, the condition is obvious because P(Evar
t |Ft−1) ≥ 0. For the rest of the

proof, we assume that t ≥ 2. Recall the definition of the event Evar
t :

Evar
t =

{
for any a ∈ A(xt), |ϕ(xt, a)⊤θ̃t − ϕ(xt, a)⊤µ̂t| ≤ g2(t)∥ϕ(xt, a)∥V −1

t

}
.

with g2(t) = 10
√
d log(3t3)/(ηλ).

Let a ∈ A(xt), it holds that

|ϕ(xt, a)⊤(θ̃t − µ̂t)| ≤ |ϕ(xt, a)⊤(θ̃t,Kt − µ̃t,Kt)|+ |ϕ(xt, a)⊤(µ̃t,Kt − m̃t,Kt)|+ |ϕ(xt, a)⊤(m̃t,Kt − µ̂)| ,

where θ̃t = θ̃t,Kt is a sample from the variational posterior distribution trained after Kt steps of
Algorithm 8. µ̃t,Kt and Σ̃t,Kt are, respectively, the mean and covariance matrix of the variational
posterior. Moreover, µ̃t,Kt is gaussian with mean m̃t,Kt and covariance matrix W̃t,Kt (see section
39.1). If the number of gradient descent steps is K(1)

t ≥ 1 + 4(1 + 2κ2
t) log(2T)/3, then Lemma

39.9 shows that with probability at least 1− 1/t2, we have

|ϕ(xt, a)⊤
(
θ̃t,Kt − µ̃t,Kt

)
| ≤

√
4d log(t3)/η

(
1 + 1/

√
λ
)
∥ϕ(xt, a)∥V −1

t

≤ 4
√
d log(t3)/(ηλ)∥ϕ(xt, a)∥V −1

t
,

where the last inequality is due to λ ≤ 1.
Similarly, Lemma 39.12 shows that for any t ≥ 2, given Etrue

t , if
K2
t ≥ 1 + 4(1 + 2κ2

t) log
(
2κtd2T 2 log2(3T 3)

)
/3, therefore we have

|ϕ(xt, a)⊤ (µ̃t,Kt − m̃t,Kt) | ≤
(√

3
ηλd log(3t3) +

√
4d log(3t3)/(11η)

)
∥ϕ(xt, a)∥V −1

t

where in the last simplification we have used λ ≤ 1.

Chapter 9. Appendix of Chapter 8 324

Finally, Given Etrue
t , let’s apply Lemma 39.6 with a number of gradient descent steps such

K
(3)
t ≥ 1 + 2(1 + 2κ2

t) log
(
4R
√
dT log(3T 3)

)
, we obtain that

|ϕ(m̃t,Kt − µ̂t)| ≤ 2/λ∥ϕ(xt, a)∥V −1
t
.

Note that Kt = 1 + 2(1 + 2κ2
t) log

(
2Rκtd2T 2 log2(3T 3)

)
≥ max{K(1)

t ,K
(2)
t ,K

(3)
t } (see Equa-

tion (A.368)), then with probability at least 1− 1/t2 we have

|ϕ(xt, a)⊤
(
θ̃t,k − µ̂t

)
| ≤ |ϕ(xt, a)⊤

(
θ̃t,k − µ̃t,k

)
|+ |ϕ(xt, a)⊤ (µ̃t,k − m̃t,k) |+ |ϕ(xt, a)⊤ (m̃t,k − µ̂) |

≤
(
4
√
d log(t3)/(ηλ) +

√
3

ηλd log(3t3) +
√

4d log(3t3)/(11η) + 2/λ
)
∥ϕ(xt, a)∥V −1

t

≤ 10
√
d log(3t3)/(ηλ)∥ϕ(xt, a)∥V −1

t

≤ g2(t)∥ϕ(xt, a)∥V −1
t

.

where the last inequality holds because t ≥ 2, λ ≤ 1 and η ≤ 1.

Lemma 40.2. (Anti-concentration lemma) Given Etrue
t , if the number of gradient steps is

Kt = 1 + 2(1 + κ2
t) log

(
2Rκtd2T 2 log2(3T 3)

)
Therefore, it holds that

P
(∗
ϕ⊤
t θ̃t,k >

∗
ϕ⊤
t θ

⋆
)
≤ p ,

where p = 1/(2
√

2πe)

Proof. Firstly, note that

P
(∗
ϕ⊤
t θ̃t,Kt >

∗
ϕ⊤
t θ

⋆
)

= P

 ∗
ϕ⊤
t θ̃t,Kt −

∗
ϕ⊤
t m̃t,Kt√

∗
ϕ⊤
t Σ̃t,Kt

∗
ϕt +

∗
ϕ⊤
t W̃t,Kt

∗
ϕt

>

∗
ϕ⊤
t θ

⋆ −
∗
ϕ⊤
t m̃t,Kt√

∗
ϕ⊤
t Σ̃t

∗
ϕt +

∗
ϕ⊤
t W̃t,Kt

∗
ϕt

 .

Recall that
∗
ϕ⊤
t µ̃t ∼ N

(∗
ϕ⊤
t m̃t,

∗
ϕtW̃t,k

∗
ϕ⊤
t

)
and

∗
ϕ⊤
t θ̃t,Kt ∼ N

(∗
ϕ⊤
t µ̃t,k,

∗
ϕ⊤
t Σ̃t

∗
ϕt
)
.

Therefore, using the conditional property of Gaussian vectors, we have
∗
ϕ⊤
t θ̃t ∼ N

(∗
ϕ⊤
t m̃t,

∗
ϕtΣ̃t

∗
ϕ⊤
t +

∗
ϕtW̃t

∗
ϕ⊤
t

)
.

Consequently, we have to control the term

Yt :=
(∗
ϕ⊤
t θ

⋆ −
∗
ϕ⊤
t m̃t,Kt

)
/
(√ ∗

ϕ⊤
t Σ̃t,Kt

∗
ϕt,Kt +

∗
ϕ⊤
t W̃t,Kt

∗
ϕt,Kt

)
and use the Gaussian anti-concentration lemma (Lemma 40.5). First, in this lemma, we suppose
that Etrue

t holds, therefore we have

|
∗
ϕ⊤
t (µ̂t − θ⋆)| ≤ g1(t)∥

∗
ϕt∥V −1

t

=
(
R
√
d log(3t3) +

√
λ

)
∥

∗
ϕt∥V −1

t
.

325 40. Concentration and anti-concentration

Moreover, as the number of gradient descent, defined in section 39.2 is upper than K
(1)
t =

1 + 2(1 + 2κ2
i) log

(
4R
√
dT log(3T 3)

)
, then Lemma 39.6 gives us that

|
∗
ϕ⊤
t (m̃t,Kt − µ̂t)| ≤

2∥
∗
ϕt∥V −1

t

λ
.

Consequently, the numerator of Yt is upper bounded by

|ϕ∗⊤
t (θ⋆ − m̃t,Kt)|

a
≤ |

∗
ϕ⊤
t (θ⋆ − µ̂t,Kt)|+ |

∗
ϕ⊤
t (µ̂t,Kt − m̃t,Kt)|

(b)
≤
(
R
√
d log(3t3) +

√
λ+ 2

λ

)
∥

∗
ϕ⊤
t ∥V −1

t

Regarding the denominator of Yt, we need a lower bound for ∥Bt,k
∗
ϕt∥2. Lemma 39.8 for

VITS-Ior ?? for VITS-IIgives us that

∥Bt,Ktϕ∥2 ≥ 1/√η
(
1−

√
∥Vt∥2Ct

)
∥

∗
ϕt∥V −1

t

with

−C1/2
t = −

(1
λ

t−1∑
j=1

t∏
i=j+1

(1− 3htη
2 λmin(Vt))Ki−1

)1/2
. (A.391)

Finally, we find a lower bound to this quantity.

∥Bt,Ktϕ∥2 ≥ 1/√η
(
1−

√
∥Vt∥2Ct

)
∥

∗
ϕt∥V −1

t

(a)=
∥

∗
ϕt∥V −1

t√
η

(
1−

√
∥Vt∥2

(1
λ

t−1∑
j=1

t∏
i=j+1

(1− 3htη
2 λmin(Vt))Ki−1

)1/2)
(b)=
∥

∗
ϕt∥V −1

t√
η

(
1−

(t−1∑
j=1

ϵt−j−1
)1/2

)

(c)=
∥

∗
ϕt∥V −1

t√
η

(
1−

(t−2∑
j=0

ϵj
)1/2

)

(d)
≥
∥

∗
ϕt∥V −1

t√
η

(
1− 1

9t1/4

)
(e)
≥
∥

∗
ϕt∥V −1

t√
η

(
1− 1

9
)

=
8∥

∗
ϕt∥V −1

t

9√η

with (a) is A.391. Where (b) we use ∥Vt∥2 ≤ t and setting ϵ = (4t)−1, point (c) comes from a
change of variable, (d) comes from the fact that for any t ≥ 1, ∑t−2

j=0 ϵ
j < 1/(81

√
t). Finally, (e)

comes from that 1/t by can be upper bounded by 1 for any t.

Chapter 9. Appendix of Chapter 8 326

Finally, regrouping the nominator and the denominator, we have the following expression for
Yt:

Yt ≤
∗
ϕ⊤
t θ

⋆ −
∗
ϕ⊤
t m̃t,Kt√

∗
ϕ⊤
t Σ̃t,Kt

∗
ϕt,Kt +

∗
ϕ⊤
t W̃t,Kt

∗
ϕt,Kt

≤
∗
ϕ⊤
t θ

⋆ −
∗
ϕ⊤
t m̃t,Kt∥∥∥ ∗

ϕt
∥∥∥

Σ̃t,Kt

≤
R
√
d log(3t3) +

√
λ+ 2

λ

8/(9√η)

≤
9R
√
d log(3t3)√η

2λ

Recall the definition of η in Section 39.2

η = 4λ2

81R2d log(3T 3)

Consequently, it yields that |Yt| ≤ 1.
Finally, Lemma 40.5 gives us that

P
(∗
ϕ⊤
t θ̃t,Kt >

∗
ϕ⊤
t θ

⋆
)
≥ 1

2
√

2πe

40.1 Auxiliary Lemmas

Lemma 40.3. (Azuma-Hoeffding inequality) We define {Xs}s∈[T] a super-martingale as-
sociated to the filtration Ft. If it holds that for any s ≥ 1, |Xs+1 −Xs| ≤ cs+1. Then for any
ϵ > 0, we have

P(XT −X0 ≥ ϵ) ≤ exp
(
− ϵ2

2∑T
s=1 c

2
s

)
.

Lemma 40.4. (Martingale Lemma Abbasi-Yadkori et al. (2011)) Let (Ft)t≥0 be a
filtration, (mt)t≥1 be an Rd-valued stochastic process such that mt is (F ′

t−1)-measurable, (ϵt)t≥1
be a real-valued martingale difference process such that ϵt is (F ′

t)-measurable. For t ≥ 0, define
ζt = ∑t

τ=1mτ ϵτ and Mt = Id + ∑t
τ=1mτm

⊤
τ , where Id is the d-dimensional identity matrix.

Assume ϵt is conditionally R-sub-Gaussian. Then, for any δ′ > 0, t ≥ 0, with probability at least
1− δ′,

∥ζt∥M−1
t
≤ R

√
d log

(
t+ 1
δ′

)
where ∥ζt∥M−1

t
=
√
ζ⊤
t M

−1
t ζt

Lemma 40.5. (Gaussian concentration (Abramowitz and Stegun 1964)) Suppose Z is
a Gaussian random variable Z ∼ N

(
µ, σ2), where σ > 0. For 0 ≤ z ≤ 1, we have

P(Z > µ+ zσ) ≥ 1√
8π
e− z2

2 , P(Z < µ− zσ) ≥ 1√
8π
e− z2

2 (A.392)

327 41. Approximation of our algorithm and complexity

And for z ≥ 1, we have

e−z2/2

2z
√
π
≤ P(|Z − µ| > zσ) ≤ e− z2

2

z
√
π

41 Approximation of our algorithm and complexity

In this section, the objective is to approximate the inversion of the matrix Bt,k of Algorithm
8. Indeed, Algorithm 8, requires to compute the inversion of a d× d matrix at each step t and
k, which represents a complexity of O(d3). In the approximated version of Algorithm 8, we
consider both the sequence of square root covariance matrix {Bt,k}Ktk=1 and the sequence of their
approximations {Ct,k}Ktk=1 such that: for any t ∈ [T] and k ∈ [Kt]

Ct,k ≈ B−1
t,k .

Recall the recursive definition of Bt,k,

Bt,k+1 = {I− htAt,k)}Bt,k + ht(B⊤
t,k)−1

≈ {I− htAt,k)}Bt,k + htC
⊤
t,k , (A.393)

where At,k = B2
t,k(θ̃t,k − µ̃t,k)(∇Ut(θ̃t,k)⊤ if the hessian free algorithm is used or At,k = ∇2U(θ̃t,k)

otherwise. Recall that θ̃t,k ∼ N(µ̃t,k, Bt,kB⊤
t,k). Furthermore, we can now focus on the definition

of the sequence {Ct,k}Ktk=1. Firstly, we recall that

Bt,k+1 = {I− htAt,k}Bt,k + ht(B⊤
t,k)−1

= {I + ht((B⊤
t,k)−1(Bt,k)−1 −At,k}Bt,k.

Then, let’s use a first order Taylor expansion of the previous equation in ht, we obtain the
approximated inverse square root covariance matrix:

Ct,k+1 = C−1
t,k {(I− ht(C

⊤
t,kCt,k −At,k)}. (A.394)

Note that the lower is ht, the better is the approximation and in our case the step size ht is
decreasing with t. The approximated recursive definition of the square root covariance matrix
defined in equation (A.393) and its approximated inverse defined in equation (A.394) are used
to defined our the approximated version of VITS called VITS− II and is presented in Algorithm
9. Moreover, note that the updating step of Algorithm 9 uses only matrix multiplication and
sampling from independent Gaussian distribution N(0, I). Therefore the global complexity of the
overall algorithm is O(d2).

42 Discussion on the difference between the algorithm of Urteaga
and Wiggins (2018) and our algorithm VITS.

The main difference between our setting and the one of Urteaga and Wiggins (2018) is the bandit
modelisation. Indeed, given a context x and an action a, in our setting, the agent receives a
reward r ∼ R(·|x, a). Consequently, a parametric model Rθ is used to approximate the reward
distribution and it yields to a posterior distribution p̂. In the setting of Urteaga and Wiggins
(2018), the agent receives a reward r ∼ Ra(·|x). Then, it considers a set of parametric models

Chapter 9. Appendix of Chapter 8 328

{Rθa}Ka=1 and a set of posterior distributions: {p̂a}Ka=1. The setting we have used in this paper is
richer as it consider the correlation between the arms distributions compared to Urteaga and
Wiggins (2018) which consider that the arm distributions are independents. For example, if we
consider the case of the Linear bandit. In this setting, the posterior distribution is Gaussian.
With the modelisation of Urteaga and Wiggins (2018), we have for any a ∈ [K], p̂a := N(µa,Σa),
where µa ∈ Rd and Σa ∈ Sd+. However, with our modelisation, p̂ := N(µ,Σ), where µ ∈ Rd×K

and Σ ∈ Sd×K
+ . We can see that the covariance matrix Σ encodes the correlations between the

different arms, which is not the case of {Σa}Ka=1. In addition, in our setting, we can consider any
model for the mean of the reward distribution. For example we can choose g(θ, x, a) as a Neural
Networks. This kind of model is unusable in the formulation of Urteaga and Wiggins (2018).

Moreover, the approximate families used in both papers are different. Indeed, we consider the
family of non-degenerate Gaussian distributions, and Urteaga and Wiggins (2018) is focused on
the family of mixture of mean-field Gaussian distribution. The mixture of Gaussian distribution
is richer than the classic Gaussian distribution. However, the non mean-field hypothesis allow to
keep the correlation between arms distributions.

Furthermore, VTS from Urteaga and Wiggins (2018) scales very poorly with the size of
the problem. The variational parameters are very large: α ∈ RK×M , β ∈ RK×M , γ ∈ RK×M ,
u ∈ RK×M×d, V ∈ RK×M×d×d where K is the number of arms, M is the number of mixtures
and d the parameter dimension. In addition, the parameter updating step is also very costly in
term of memory and speed. We have re-implemented an efficient version of their algorithm in
JAX in order to scale as much as possible but many memory problems occur.

Finally, our algorithm comes with theoretical guarantees in the Linear Bandit case and
outperforms empirically the others approximate TS methods. VTS performs poorly in practice
and has no theoretical guarantee, even in the Linear case.

43 Hyper-parameters tuning

This section summarizes the different grid-search used to compute all the plots in this paper for
the algorithms: LinTS, LMC-TS„ VITS− I, VITS− II and VITS− II Hessian-free.

Parameter Value

inverse temperature η 10, 100, 500, 1000

regularization λ 0.1, 1, 10

Table 9.31: LinTS hyperparameter grid-search

329 44. Experimental comparison between Langevin Monte Carlo and VI

Parameter Value

inverse temperature η 10, 100, 500, 1000

regularization λ 0.1, 1, 10

Nb gradient steps Kt 10, 50

learning rate h 0.001, 0.01, 0.1

Table 9.32: LMC-TS hyperparameter grid-search

Parameter Value

inverse temperature η 10, 100, 500, 1000

regularization λ 0.1, 1, 10

Nb gradient steps Kt 10

learning rate h 0.001/η, 0.01/η, 0.1/η

Monte Carlo samples 1 (Hessian) and 20 (Hessian-free)

Table 9.33: VITS hyperparameter grid-search

44 Experimental comparison between Langevin Monte Carlo
and VI

In this section, we conduct an experimental comparison between Langevin Monte Carlo (LMC)
and two variants of Variational Inference (VI), denoted as VI-I and VI-II, in approximating a
specific target distribution. Our target distribution is a straightforward Gaussian distribution,
represented as p⋆ = N(µ⋆,Σ⋆). We perform LMC, VI-I, and VI-II for a designated number of
iterations. In each iteration, we calculate the Kullback-Leibler distance between the approximated
distribution and the target distribution. In this context, all distributions generated by LMC,
VI-I, and VI-II take the form of Gaussians. To compute the mean and covariance matrix for
LMC, we perform parameter averaging over the results obtained after 1000 burn-in steps (which
are excluded from the plotted data). Then, the training is stopped when

KL(qk,p⋆) ≤ ϵ , (A.395)

or if the number of steps exceeds 50000 steps.
Figure A44.31 illustrates the relationship between the condition number of Σ⋆ and the number

of steps needed to achieve (A.395). We conducted these experiments with three different step
sizes and repeated them across 100 different seeds. The red dashed line in the figure represents
the maximum allowable number of iterations.

Chapter 9. Appendix of Chapter 8 330

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Condition number

102

103

104

Nu
m

be
r o

f s
te

ps
Step size: 0.01

VI-I
VI-II
LMC

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Condition number

102

103

104

Nu
m

be
r o

f s
te

ps

Step size: 0.05
VI-I
VI-II
LMC

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Condition number

101

102

103

104

Nu
m

be
r o

f s
te

ps

Step size: 0.1
VI-I
VI-II
LMC

Figure A44.31: Comparison Langevin Monte Carlo and Variational inference

The first observation drawn from these figures is that VI-I and VI-II exhibit identical behavior,
even when using a relatively large step size of 0.1. The second finding suggests that both LMC
and VI exhibit a linear dependency on the condition number. However, we cannot definitively
conclude that one algorithm is more robust in the face of varying condition numbers. Lastly, the
third conclusion highlights that VI consistently requires fewer iterations to achieve (A.395).

45 Additional Results on non-contextual bandits

45.1 Linear and logistic bandit on synthetic data (non contectual)

In this subsection, we consider a contextual bandit setting with a parameter dimension d = 10
and a number of arms K = 10. The bandit environment is simulated by a random vector θ⋆ ∈ Rd

sampled from a normal distribution N(0, Id) and subsequently scaled to unit norm. To create
a complex environment that necessitates exploration, we define the set of contextual vectors
as S := {θ⋆, θ⋆ϵ , x2, . . . , xK}. Here, θ⋆ϵ is defined as (θ⋆ + ϵ)/∥(θ⋆ + ϵ)∥2, where ϵ is sampled
from a normal distribution with mean 0 and standard deviation 0.1. This contextual vector
corresponds to a small modification of θ⋆. The other contextual vectors are sampled from a
normal distribution N(0, 1) and then scaled to unit norm.

Linear bandit scenario. Here, the true reward R(·|xa, a) associated to an action a ∈
{1, . . . ,K} and an arm xa ∈ Rd corresponds to the distribution of ra = x⊤

a θ
⋆ + ξ, where the noise

ξ is sampled from N(0, I). In this complex setting, we can calculate the expected reward for each
arm as follows: µ0 = E[r0] = 1, µ1 ≈ 1 < µ0, and for any i > 1, µi < µ1. Intuitively, the first and
second arms offered high rewards, while the remaining arms offered low rewards. On the other
hand, finding the optimal arm is challenging and needs a significant amount of exploration.

Logistic bandit framework. We consider the same contextual set S, but the true reward
R(·|xa, a) associated to an action a ∈ {1, . . . ,K} and an arm xa now corresponds to ra ∼
Ber(σ(⟨xa, θ⋆⟩)), where Ber is the Bernoulli distribution, and σ(x) = 1/(1 + e−x) is the logistic
function. Similarly to the linear bandit, the logistic framework introduces a complex environment
where a significant amount of exploration is required to accurately distinguish between the first
and second arm.

331 46. Details about experiences in synthetic contextual bandits with synthetic data

Figure A45.33: Logistic Bandits

Figure A45.32: Linear Bandits

Figures A45.32 and A45.33 display the cumulative regret (8.2) obtained by various TS
algorithms, namely Linear TS (LinTS), Langevin Monte Carlo TS (LMC-TS), Variational TS
(VTS), VITS-I and VITS-II in the linear and logistic bandit settings. The figure shows the mean
and standard error of the cumulative regret over 20 samples. As depicted in Figure A45.32,
VITS-I outperforms the other approximate TS algorithms in the linear bandit scenario. Note
that the cumulative regret of VITS-I and VITS-II is comparable to that of Lin-TS, which uses
the true posterior distribution. This observation highlights the efficiency of the variational TS
algorithms in approximating the true posterior distribution and achieving similar performance to
the Lin-TS algorithm. Figure A45.33 shows that VITS outperforms all other TS algorithms in
the logistic setting too. This highlights the importance of employing approximation techniques in
scenarios where the true posterior distribution cannot be sampled exactly. Moreover, both figures
illustrate that VITS-II achieves a comparable regret to VITS-I while significantly reducing the
computational complexity of the algorithm. Finally, as emphasized earlier, the settings we have
chosen require a good tradeoff between exploration and exploitation that LMC-TS cannot achieve,
as illustrated by the histogram in Figure A45.32.

46 Details about experiences in synthetic contextual bandits
with synthetic data

In this subsection, we provide more details about the toy example derive in this paper. Firstly,
we consider a fixed pool of arms denoted as P = [x̃1, . . . , x̃n] with n = 50, where each arm x̃i

Chapter 9. Appendix of Chapter 8 332

follows a normal distribution N(0d, Id). Then, at each step t ∈ [T], for every arm, we randomly
sample a vector x̃i from the pool P , and the contextual vector associated with this arm is defined
as x = x̃i + ζϵ, where ϵ ∼ N (0d, Id). The bandit environment is simulated using a random vector
θ⋆ sampled from a normal distribution N(0d, σ⋆Id). We opted for σ⋆ = 1/d to ensure that the
variance of the scalar product x⊤θ⋆ remains independent of the dimension d. Indeed, both linear
and quadratic settings, the reward only depends on the scalar product between the context and
the true parameter. If we denote by x[i] and θ⋆[i] the ith coordinate of the vector x and θ⋆

respectively, then the scalar product is defined by

x⊤θ⋆ =
d∑
i=1

x[i]θ⋆[i],

and its variance is defined by

V[x⊤θ⋆] = V[
d∑
i=1

x[i]θ⋆[i]]

=
d∑
i=1

V[x[i]]V[θ⋆[i]]

= dσ⋆ V[x[i]].

In the previous equations we have used that all coordinates are independents identically distributed
and centered. Therefore, taking σ⋆ = 1/d ensure that the variance of the scalar product remains
independent of d. In the linear bandit setting, the reward depends linearly on the contextual
vector x, more precisely,

r = x⊤θ⋆ + αϵ ,

where ϵ ∼ N(0d, Id). However, to maintain problem complexity independent of ζ, we have set
the signal-to-noise ratio to a fixed value of 1. This signal-to-noise ratio is the ratio between
E[(x⊤θ⋆)2] and E[(αϵ)2]. Firstly,

E[(x⊤θ⋆)2] = V[x⊤θ⋆]
= V[x[i]]
= 1 + ζ2 ,

where in the last equation we have used that x = x̃i + ζϵ and V[x[i]] = 1 + ζ2. Moreover, the
denominator of the signal-to-noise ratio is E[(αϵ)2] = α2. Consequently, a signal-to-noise ratio
equals to 1 implies that

√
1 + ζ2 = α.

In the quadratic bandit setting, the reward depends quadratically on the contextual vector x,
more precisely,

r = (x⊤θ⋆)2 + αϵ ,

where ϵ ∼ N(0, I). In this setting, the reward also depends only on the scalar product between x
and θ⋆, thus, we also choose σ⋆ = 1/d. We also ensure a signal-to-noise equal to 1, it implies
a more sophisticated condition on the noise: α = (ζ2 + 1)

√
3 + 6/d. More precisely, in the

quadratic setting, the signal-to-noise ratio is defined as follow

E[(x⊤θ⋆)4]
E[(αϵ)2] = 1.

333 47. Computation complexity and Computational Power

Firstly,

E(x⊤θ⋆)4] = E[(
d∑
i=1

x[i]θ⋆[i])4]

= E

[
d∑
i=1

(x[i]θ⋆[i])4 + 4
d∑
i=1

∑
j ̸=i

(x[i]θ⋆[i])3x[j]θ⋆[j] + 6
d∑
i=1

∑
j<i

(x[i]θ⋆[i])2(x[j]θ⋆[j])2

+ 12
d∑
i=1

∑
j ̸=i

∑
k ̸=i,k<j

(x[i]θ⋆[i])2x[j]θ⋆[j]x[k]θ⋆[k] + 24
d∑
i=1

∑
j<i

∑
k<j

∑
l<k

x[i]θ⋆[i]x[j]θ⋆[j]x[k]θ⋆[k]x[l]θ⋆[l]
]

=
d∑
i=1

E[x[i]4]E[θ⋆[i]4] + 6
d∑
i=1

∑
j<i

E[x2
i]E[x2

j]E[θ⋆[i]2]E[θ⋆[j]2]

= 9(ζ2 + 1)2

d
+ 6

(
d

2

)
(ζ2 + 1)2

d2

= (ζ2 + 1)2(9
d

+ 3(d− 1)
d

)

= (ζ2 + 1)2(6
d

+ 3)

which gives that α = (ζ2 + 1)
√

3 + 6/d

47 Computation complexity and Computational Power

We conduct an experimental comparison between Langevin Monte Carlo (LMC) and three variants
of Variational Inference, denoted as VITS− I, VITS− II and VITS− II Hessian-free, in
approximating a specific target distribution. Our target distribution is a straightforward Gaussian
distribution, represented as p⋆ = N(µ⋆,Σ⋆). At each iteration, we calculate the Kullback-Leibler
distance between the approximated distribution and the target distribution. In this context, all
distributions generated by LMCTS, VITS− I, VITS− II and VITS− II Hessian-free take the
form of Gaussians. To compute the mean and covariance matrix for LMC, we perform parameter
averaging. As both the posterior and its approximation are Gaussians, the Kullback-Leibler
divergence is easily tractable. Then, the training is stopped when

KL(qk, p⋆) ≤ ϵ

or if the number of steps exceeds 10000 steps.
The following Figure illustrates the relationship between the obtained Kullback- Leibler

divergence and the computational time needed to achieve 47. The computational time is the total
time (in second) required to run all updating steps of the algorithm. This experiment is repeated
across 1000 different seeds to compute the confidence interval. We decide not to compare with
LinTS or LinUCB algorithms as they do not allow to approximate complex posteriors compared
to LMCTS and VITS algorithms.

Chapter 9. Appendix of Chapter 8 334

1 2 3 4 5 6
Kullback Leibler

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

0.011

tim
e

(s
)

LMC-TS VITS-I VITS-II Hessian free VITS-II

This figure shows that VITS− II and VITS− II Hessian-free are faster (in term of compu-
tational time) than LMCTS to obtain a certain Kullback-Leibler divergence. Note that VITS− I
is the slowest algorithm, this is due to the costly inverse matrix calculation.

In this work, we use GPUs v100-16g or v100-32g for running our code with GPU Nvidia
Tesla V100 SXM2 16 Go and CPUs with 192 Go per node.

Titre : Apprentissage par renforcement robuste : théorie et pratique

Mots clés : processus décisionnel de Markov, appentissage par renforcement, robustesse

Résumé : ’apprentissage par renforcement (RL)
est un paradigme d’apprentissage automatique
qui aborde la question de la prise de décision
séquentielle. Dans ce paradigme, l’algorithme,
désigné comme un agent, réagit à des interac-
tions avec un environnement. À chaque interac-
tion, l’agent effectue une action dans l’environne-
ment, observe un nouvel état de l’environnement et
reçoit une récompense en conséquence. L’objectif
de l’agent est d’optimiser une récompense cumu-
lative, qui est définie par l’utilisateur pour s’aligner
sur la tâche spécifique à accomplir dans l’environne-
ment. La théorie du processus décisionnel de Markov
(MDP) est utilisée pour formaliser ce concept. Ce-
pendant, en cas de mauvaise spécification du modèle
ou d’erreur dans la fonction de transition de l’envi-
ronnent ou de la récompense, les performances du
RL peuvent diminuer rapidement. Pour résoudre ce
problème, le concept de MDP robustes a émergé,
l’objectif étant d’identifier la politique optimale sous
l’hypothèse que le noyau de transition appartient à

un ensemble d’incertitude. Cette thèse présente une
étude théorique de la complexité d’échantillonnage
des MDP robustes, ou de la quantité de données
nécessaires pour atteindre une erreur arbitrairement
petite. Ces résultats démontrent que dans certains
cas, cette complexité peut être inférieure à celle des
MDP classiques, ce qui constitue une voie promet-
teuse pour concevoir de nouveaux algorithmes ef-
ficaces sur le plan de l’échantillonnage. La thèse
se poursuit par des propositions de nouveaux algo-
rithmes RL robustes pour renforcer les performances
de RL ayant des ensembles d’action continus. Notre
méthode est basée sur les MDP averses aux risques
et les jeux à somme nulle, dans lesquels l’adversaire
peut être considéré comme un agent qui change
l’environnement dans le temps. En conclusion, la
dernière section présentera des nouvelles tâches
pour l’évaluation des algorithmes RL robustes, qui
manquent de références pour l’évaluation des perfor-
mances.

Title : Robust Reinforcement Learning : Theory and Practice

Keywords : Robust Markov Decision Process, Robust Reinforcement Learning

Abstract : einforcement learning (RL) is a machine
learning paradigm that addresses the issue of se-
quential decision-making. In this paradigm, the algo-
rithm, designated as an agent, responds to interac-
tions with an environment. At each interaction, the
agent performs an action within the environment, ob-
serves a new state of the environment, and receives
a reward in consequence. The objective of the agent
is to optimise an cumulative reward, which is defined
by the user to align with the specific task at hand
within the environment. The Markov Decision Pro-
cess (MDP) theory is used in order to formalise these
concepts. However, in the event of mispecifications or
errors in the transition or reward function, the perfor-
mance of RL may decline rapidly. To address this is-
sue, the concept of robust MDPs has emerged, whe-
reby the objective is to identify the optimal policy un-

der the assumption that the transition kernel belongs
to a bounded uncertainty set. This thesis presents
a theoretical study of the sample complexity of ro-
bust MDPs, or the amount of data required to achieve
an arbitrary small convergence error. It demonstrates
that in certain cases, the sample complexity of robust
MDPs can be lower than for classical MDPs, which
is a promising avenue for the derivation of sample-
efficient algorithms. The thesis then goes on to de-
rive new robust RL algorithms to strengthen the per-
formance of RL in continuous control. Our method is
based on risk-averse MDPs and zero-sum games, in
which the adversary can be seen as an agent that
change the environment in the time. In conclusion, the
final section present a benchmark for the evaluation of
robust RL algorithms, which currently lack a reprodu-
cible benchmarks for performance assessment.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Contents
	Remerciements
	Résumé court
	Abstract
	Notations
	1 Introduction
	1.1 Résumé et introduction en français
	1.1.1 Détails des différentes contributions du manuscrit

	1.2 Introduction
	1.2.1 Overview of the manuscript and contributions

	1.3 Background
	1.3.1 Reinforcement Learning and Markov Decision Processes
	1.3.2 Deep Reinforcement Learning
	1.3.3 Robust Markov Decision Processes
	1.3.4 Deep Robust RL as a zero-sum game

	I Theory of Robust Markov Decision Processes
	2 Towards Minimax Sample Complexity of Robust RL
	2.1 Introduction
	2.2 Related Work
	2.3 Preliminaries
	2.3.1 Markov Decision Process
	2.3.2 Robust Markov Decision Process
	2.3.3 Generative Model Framework

	2.4 Sample Complexity with Lp-balls
	2.4.1 Discussion
	2.4.2 Sketch of Proof

	2.5 Toward minimax optimal sample complexity
	2.5.1 Discussion
	2.5.2 Sketch of proof

	2.6 Conclusion

	3 Near-Optimal Distributionally Robust Reinforcement Learning with General Lp Norms
	3.1 Introduction
	3.2 Problem Formulation: Robust Markov Decision Processes
	3.3 Distributionally Robust Value Iteration
	3.4 Theoretical guarantees
	3.4.1 sa-rectangular uncertainty set with general smooth norms
	3.4.2 s-rectangular uncertainty set with general norms

	3.5 Conclusion

	II Practical Robust Reinforcement Learning
	4 Robust Reinforcement Learning with Distributional Risk-averse formulation
	4.1 Introducion
	4.2 Robust formulation in greedy step of AVI.
	4.3 Algorithms based on Distributional RL
	4.3.1 Distributional RL using quantile representation
	4.3.2 Mean-standard deviation RL with discrete action space
	4.3.3 Mean-standard deviation Maximum Entropy RL for continuous action space

	4.4 Experiments
	4.4.1 Results on continuous action spaces
	4.4.2 Results on discrete action spaces

	4.5 Conclusion of Chapter 4

	5 Boostraping Expectile in Reinforcement Learning
	5.1 Related Work
	5.2 Background
	5.2.1 Markov Decision Processes
	5.2.2 Robust MDPs
	5.2.3 Expectiles

	5.3 ExpectRL method
	5.3.1 Expectile Bellman Operator
	5.3.2 The ExpecRL Loss
	5.3.3 ExpecRL method with Domain randomisation
	5.3.4 Auto-tuning of the expectile using bandit

	5.4 Empirical Result on Mujoco
	5.5 Empirical Results on Robust Benchmark
	5.6 Conclusion and perspectives

	6 Time-Constrained Robust MDPs
	6.1 Introduction
	6.2 Problem statement
	6.3 Related works
	6.4 Time-constrained robust MDP algorithms
	6.5 Results
	6.6 Some Theoretical properties of TC-MDPS
	6.6.1 On the optimal policy of TC
	6.6.2 Some Lipchitz-properties for non-stationary TC-RMPDS

	6.7 Conclusion

	7 RRLS: Robust Reinforcement Learning Suite
	7.1 Introduction
	7.2 Problem statement
	7.3 Related works
	7.3.1 Reinforcement learning benchmark
	7.3.2 Robust Reinforcement Learning algorithms

	7.4 RRLS: Benchmark environments for Robust RL
	7.5 Benchmarking Robust RL algorithms
	7.6 Conclusion

	III Bandit Theory
	8 VITS : Variational Inference Thompson Sampling for contextual bandits
	8.1 Introduction
	8.2 Thompson sampling for contextual bandits
	8.3 Main results
	8.3.1 Linear Bandit

	8.4 Numerical experiments
	8.4.1 Linear and quadratic bandit

	8.5 MovieLens Dataset
	8.6 Conclusion and perspectives

	IV Conclusion, Bibliography and Appendix
	Conclusion & Perspectives
	8.6.1 Conclusion on our Contribution
	8.6.2 Future Work and Perspectives

	Bibliography
	Appendix
	Appendix of Chapter 2
	1 Overview and useful inequalities
	1.1 Table of sample Complexity
	1.2 Relation with the work of kumar2022efficient and derman2021twice
	1.3 Model based DRVI LP algorithm
	1.4 Useful Inequalities and notations
	1.5 Robust Bellman Operator and robust Q values

	2 An H4 bound for Lp-balls
	3 Towards minimax optimal bounds

	Appendix of Chapter 3
	4 Other related works
	5 Further discussions of Theorem 3.4.1 and Theorem 3.4.3
	6 Preliminaries
	6.1 Additional definitions and basic facts
	6.2 Empirical robust MDP M"0362Mrob Bellman equations
	6.3 Properties of the robust Bellman operator and dual representation

	7 Proof of the upper bound : Theorem 3.4.1 and 3.4.3
	7.1 Technical lemmas
	7.2 Proof of Theorem 3.4.1 and Theorem 3.4.3
	7.3 Proof of the auxiliary lemmas

	8 Proof of Theorem 3.4.2
	9 Proof of Theorem 3.4.4
	9.1 Construction of the hard problem instances
	9.2 Establishing the minimax lower bound
	9.3 Proof of Lemma 9.1

	10 DRVI for sa- rectangular algorithm for arbitrary norm

	Appendix of Chapter 4
	11 Proof of mean-standard deviation formulation as a robust problem
	12 Further results on continuous action space
	12.1 Normalised results

	13 Further Experimental Details
	14 Ablation study for discrete action space on Cartpole-v1
	15 Further Experimental Details

	Appendix of Chapter 5
	16 Proof
	17 AutoExpectRL algorithm description
	18 Hyperparameters
	19 AutoExpecRL vs other expectiles on Robust benchmark for mean on Table 5.1
	20 Worst case performance for AutoExpecRL and ExpecRL (only nominal samples) or Table 5.2.
	20.1 For 1D uncertainty greed benchmark
	20.2 For 2D uncertainty greed benchmark
	20.3 For 3D uncertainty greed benchmark

	21 Average performance for AutoExpecRL and ExpecRL(only nominal samples) or Table 5.2.
	21.1 For 1D uncertainty greed benchmark
	21.2 For 2D uncertainty greed benchmark
	21.3 For 3D uncertainty greed benchmark

	22 Additional details for expectiles on Robust benchmark for worst-case and mean on Table 5.3
	23 Uncertainty sets used for Robust benchmark

	Appendix of Chapter 6
	24 Appendix
	25 Proof of Theorem 6.2.1
	26 Guaranties for non-stationary Robust MDPS
	27 Proof Theom 6.6.1
	28 Implementation details
	28.1 Algorithm
	28.2 Neural network architecture
	28.3 M2TD3
	28.4 TD3

	29 Sanity check on the adversary training in the time-constrained evaluation
	30 Uncertainty set in MuJoCo environments
	31 Raw results
	31.1 Fixed adversary evaluation
	31.2 Agents training curve

	32 Computer ressources
	33 Broader impact
	33.1 Limitations

	Appendix of Chapter 7
	34 Modifiable parameters
	35 Training curves
	36 Non-normalized results
	37 Implementation details
	37.1 Neural network architecture
	37.2 M2TD3
	37.3 TD3

	38 Computer ressources

	Appendix of Chapter 8
	39 Proof of the regret bound
	39.1 Proof of Theorem 8.3.5
	39.2 Hyperparameters choice and values
	39.3 Useful definitions
	39.4 Main lemmas
	39.5 Technical Lemmas

	40 Concentration and anti-concentration
	40.1 Auxiliary Lemmas

	41 Approximation of our algorithm and complexity
	42 Discussion on the difference between the algorithm of urteaga2018variational and our algorithm VITS.
	43 Hyper-parameters tuning
	44 Experimental comparison between Langevin Monte Carlo and VI
	45 Additional Results on non-contextual bandits
	45.1 Linear and logistic bandit on synthetic data (non contectual)

	46 Details about experiences in synthetic contextual bandits with synthetic data
	47 Computation complexity and Computational Power

