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Résumé: Suite à la publication sur la relativ-
ité générale (RG) par Einstein en 1915, la com-
munauté scientifique a exploré ses limites. La
découverte des trous noirs (TN) comme solu-
tions aux équations d’Einstein a révélé des po-
tentiels échecs de la RG, indiquant la néces-
sité d’un cadre plus large. En particulier, les
singularités au centre des TN, avec masse et
densité d’énergie infinies, perturbent l’espace-
temps, tandis que les TN astrophysiques ont
masse et énergie finies. Les singularités sug-
gèrent que la RG doit être améliorée ou rem-
placée par une théorie plus fondamentale, pos-
siblement quantique. Coupler la RG à la
théorie quantique des champs montrent des
déviations, et l’évaporation des TN par radi-
ation de Hawking introduit le paradoxe de la
perte d’information, soulignant le besoin d’une
théorie alternative. Ce manuscrit quantifie la
sensibilité de l’antenne spatiale interféromètre
laser (LISA) à observer des déviations de la
RG via le théorème du no-hair, stipulant qu’un
TN astrophysique, principalement un TN de
Kerr, est caractérisé par sa masse et son spin.
Après la collision de deux TN, le TN résiduel se
stabilise par radiation d’ondes gravitationnelles
dans une phase appelée ringdown, où la forme
d’onde est décomposée en ondes amorties carac-
térisées par des modes quasi-normaux (QNM).
En connaissant les QNM d’un TN, on peut
déterminer ses paramètres intrinsèques. Dans
la RG, la masse et le spin dérivés de chaque
QNM doivent être cohérents. Dans certaines
théories alternatives, cette cohérence n’est plus
valide. La relation entre masse et spin dans les
déviations de la RG pour différents QNM est
unique à la théorie alternative, souvent néces-
sitant des paramètres supplémentaires. Éval-
uer les déviations de la RG est mieux fait
en adoptant une approche agnostique au mod-
èle, supposant la RG avec petites déviations.
Cette étude suit cette approche en permet-
tant des déviations fractionnelles dans les QNM
décrivant le ringdown. J’étudie l’interaction

des harmoniques supérieures dans la descrip-
tion complète de l’inspiral-fusion-ringdown ob-
servée par le détecteur. La gamme de fréquences
des ondes gravitationnelles dépend de la masse
des sources. La réponse et la sensibilité de
LISA variant avec la fréquence, en consequence
le poids relatif des harmoniques supérieures
varie selon les sources. Les sources "légères",
autour de 105M⊙, se trouvent à la limite
de la sensibilité haute fréquence de LISA,
empêchant l’observation du ringdown. Les
sources "lourdes", autour de 108M⊙, se trou-
vent dans la bande de basses fréquences, adoucir
l’inspiral avec les phases de fusion et ringdown
contribuant principalement à la détectabilité.
D’ailleurs, la réponse de LISA dépendante de
la fréquence, peut rendre les modes supérieurs
(3, 3) ou (4, 4) plus dominant dans le rapport
signal/bruit que l’harmonique principal (2, 2).
Inclure les harmoniques supérieures et des car-
actéristiques comme l’excentricité ou la pré-
cession est nécessaire pour estimer avec préci-
sion les paramètres de la source, essentiels pour
les tests de la RG. Comprendre la réponse de
LISA selon différents paramètres de la source,
combiné à la connaissance des perturbations
des TN, fournit une base pour développer des
tests de la RG dans la phase de ringdown.
J’ai développé un code, Lisaring, intégrant ces
concepts et incluant la réponse de LISA pour
diverses descriptions de ringdown. Des out-
ils d’analyse des données temporelles dans un
cadre bayésien sont également inclus. J’ai
évalué la sensibilité de LISA à détecter des dévi-
ations de la RG dans la phase de ringdown
d’une source. Différentes hypothèses sur le prior
de paramètres peut impacter les résultats fin-
aux. Dans des conditions spécifiques, la pré-
cision d’estimation des QNM et des déviations
fractionnelles peut être calculée pour différentes
sources. Notamment, LISA pourrait tester la
RG avec une incertitude de 5 × 10−3% dans le
mode (3, 3, 0), quantifiant ainsi la sensibilité de
LISA aux déviations de la RG.
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Abstract: Following the publication of Ein-
stein’s General Relativity (GR) in 1915, scien-
tists began exploring its boundaries. The dis-
covery of black holes (BHs) as solutions to Ein-
stein’s equations highlighted potential break-
downs of GR, indicating a need for a broader
framework. Physical singularities, like those
at BH centers with infinite mass and energy
density, disrupt spacetime, while astrophysical
BHs have finite mass and energy. Singulari-
ties suggest GR needs improvement or replace-
ment by a more fundamental theory, possibly
a quantum theory of gravity. However, any at-
tempt to couple GR with quantum field the-
ory reveals deviations. This manuscript quanti-
fies Laser Interferometer Space Antenna (LISA)
sensitivity to observe deviations from GR in
the strong field regime via the no-hair theorem,
which states any astrophysical BH, believed to
be a Kerr BH, is characterized solely by its mass
and spin. After two BHs collide, the remnant
BH settles through gravitational wave radiation
in a phase called ringdown, during which the
gravitational waveform decomposes into damp-
ing waves characterized by quasi-normal modes
(QNMs). Given the BH’s mass and spin, one
can compute all possible QNMs. Conversely,
knowing a BH’s QNMs allows the determina-
tion of its intrinsic parameters. Within GR, the
mass and spin derived from each QNM should
be consistent. In some alternative theories, this
consistency does not hold. The relationship be-
tween mass and spin deviations from GR for
different QNMs is unique to the considered al-
ternative theory, often requiring additional pa-
rameters. BH spectra have been computed for
static or slowly rotating BHs in some alterna-
tive theories using perturbation theory. How-
ever, beyond-relativity numerical waveforms are
lacking due to complex dynamics. Assess-
ing deviations from GR is best done using a
model-agnostic approach, assuming GR while
allowing small deviations. This study adopts

this approach, permitting fractional deviations
from GR in QNMs. Firstly, I study the inter-
play of higher harmonics in the inspiral-merger-
ringdown description observed by the detector.
The mass of the sources shifts the gravitational
wave emission frequency range. Since LISA’s
response and sensitivity vary with frequency,
the mass affects the relative weight of higher
harmonics for different sources. ’Light’ sources
around 105M⊙ fall at LISA’s high-frequency
sensitivity edge, preventing observation of the
ringdown phase. Conversely, ’heavy’ sources
around 108M⊙ fall in LISA’s low-frequency
band, meaning the inspiral phase is barely ob-
served, with the merger and ringdown phases
primarily contributing to detectability. This ef-
fect, along with LISA’s frequency-dependent re-
sponse, may make higher modes like (3, 3) or
(4, 4) predominant in the signal-to-noise ratio
over the dominant harmonic (2, 2). Including
higher harmonics and features like eccentricity
or precession is necessary to accurately estimate
source parameters for GR tests. Understanding
LISA’s response to different source parameters,
combined with theoretical knowledge of BH per-
turbation, provides a foundation for developing
GR tests in the ringdown phase. I developed a
code, Lisaring, integrating these concepts and
including LISA’s response to various ringdown
descriptions. Bayesian framework time domain
data analysis tools are also included. After ver-
ifying its functionality, I assessed LISA’s sensi-
tivity to detect deviations from GR in a source’s
ringdown phase. Considering different hypothe-
ses on the prior parameters knowledge can sig-
nificantly impact results. Under specific as-
sumptions, the precision in estimating QNMs,
and thus possible fractional deviations, can be
computed for different sources. Specifically, for
a given set of extrinsic parameters, LISA could
probe GR to an uncertainty of 5×10−3% in the
(3, 3, 0) mode, achieving the objective of quan-
tifying LISA’s sensitivity to GR deviations.



Résumé:

La première détection des ondes gravitationnelles en 2015 a ouvert la voie à des
tests de la relativité générale (RG). La coalescence de trous noirs offre un environnement
idéal pour tester la RG dans le régime des champs gravitationnels forts. L’observatoire
spatial Laser Interferometer Space Antenna (LISA) pourra détecter ces évènements avec
un rapport signal-sur-bruit (SNR) élevé, permettant d’obtenir des détails extrêmement
précis sur ces phénomènes. Une binaire de trous noirs évolue en trois phases distinctes :
une phase spiralante Inspiral, suivi de la phase de coalescence Merger, pour finir en un trou
noir unique qui se relaxe vers son état fondamental durant la phase de Ringdown. Cette
séquence complète est désignée sous le nom d’IMR (inspiral-merger-ringdown). Cette
thèse porte sur l’étude de l’IMR dans son ensemble ainsi que sur l’analyse spécifique du
ringdown. La forme d’onde de l’IMR peut être décomposée en harmoniques sphériques
décrites par les nombres angulaires polaire et azimutal (l,m). Dans le régime du ringdown,
les ondes gravitationnelles émises peuvent être décrites comme une superposition d’ondes
qui s’atténuent avec le temps. Chaque onde est caractérisée par une fréquence complexe
appelée mode quasi-normal (QNM), indexée par les nombres angulaires polaire, azimutal et
d’overtone (l,m,n). La partie réelle de la fréquence correspond a la fréquence d’oscillation,
tandis que la partie imaginaire represent l’inverse du temps d’atténuation. En relativité
générale, les valeurs des QNM dépendent uniquement de la masse et du spin du trou noir
final, en accord avec le théorème du no-hair, qui stipule qu’un trou noir est entièrement
décrit par ces deux paramètres. Cependant, dans certaines théories alternatives à la RG,
la métrique est modifiée, entraînant une dépendance différente des QNM vis-à-vis de la
masse et du spin, ainsi que l’apparition de nouveaux paramètres supplémentaires – appelés
"cheveux" (hairs) du trou noir – qui signaleraient une déviation par rapport à la RG. La
relation entre masse et spin et les déviations de la RG pour différents QNM est unique
à la théorie sous-jacente. Par consequence, en analysant le spectre du trou noir, il est
possible de tester la RG en comparant les valeurs de masse et de spin obtenues à partir
de différents QNM.

Détectabilité des harmoniques supérieures avec LISA: La première question
que nous avons étudiée concerne la capacité de LISA à identifier la présence de modes
ou harmoniques supérieures dans la forme d’onde complète des binaires de trous noirs.
Actuellement, les évènements détectés par Ligo-Virgo-Kagra présentent une faible indica-
tion des modes supérieurs dans l’IMR. Toutefois, l’empreinte d’un QNM supérieur a été
faiblement identifiée pour le mode (2,2,1) lors du premier évènement GW150914. Dans le
but d’explorer la détectabilité des modes supérieurs avec LISA, j’ai effectué une analyse
bayésienne en comparant différents modèles. J’ai généré une forme d’onde incluant six har-
moniques supérieures : (2,2), (3,3), (4,4), (2,1), (3,2), (4,3). Puis, j’ai construit plusieurs
modèles en variant le nombre de modes pris en compte, et j’ai estimé les paramètres sur
le même jeu de données avec ces différents modèles. En faisant la comparaison des mod-
èles avec le rapport de leur evidences, j’ai pu quantifier la preference des donnés pour
chaque modèle et ainsi détecter la présence des harmoniques supérieures. Notamment, la
détectabilité des modes supérieurs dependent fortement du SNR. Même si la contribution



d’un mode est faible en termes de SNR, son absence dans la description de la forme d’onde,
peut induire des biais dans l’estimation des paramètres. Néanmoins, la valeur de ces biais
dépend du SNR total, car l’incertitude sur l’estimation est également liée au SNR. De
plus, j’ai démontré que le nombre de modes utilisés jusqu’à présent est insuffisant pour
décrire correctement les binaires attendues avec LISA, surtout si l’on souhaite tester la
RG à travers le théorème du no-hair.

Cette analyse a été réalisée avec Lisabeta, un programme incluant la réponse de
LISA aux formes d’ondes phénoménologiques dans le domaine fréquentiel, ce qui est
optimal pour calculer la vraisemblance des signaux de trous noirs supermassifs. Afin,
d’accélérer ces calculs j’ai utilisé une méthode appelé heterodyning, qui exploite la décom-
position de la forme d’onde en une partie lentement variable et une partie rapidement
variable avec la fréquence. Comme la phase variant lentement peut être définie sur une
grille parcimonieuse, cette méthode permet de réduire significativement le temps de con-
vergence.

Analyse du ringdown et test du théorème du no-hair: Dans la deuxième
partie de la these, l’analyse se concentre sur le ringdown, dans le but de tester le théorème
du no-hair. Pour cela, le signal doit être analysé à partir du début du ringdown, qui
correspond à des fréquences différentes selon les modes. Le domaine fréquentiel ne convient
donc plus, car chaque mode a une relation temps-fréquence distincte. J’ai donc développé
un code Lisaring permettant de générer le ringdown avec la réponse de LISA dans le
domaine temporel. Ce code permet également d’estimer les paramètres du système dans
différents scénarios. Le calcul de la vraisemblance dans le domaine temporel nécessite
l’utilisation de la matrice de covariance, ce qui implique une gestion rigoureuse de la
stabilité numérique et du temps de calcul. J’ai exploré plusieurs méthodes pour garantir
des calculs fiables et rapides, sans introduire de dégénérescences dans les distributions de
probabilités, telle qu’un plateau de vraisemblance.

Grace à ce code, j’ai pu étudier la détectabilité des déviations par rapport à la RG
en utilisant un modèle simplifié avec trois modes: (2,2,0), (3,3,0), (4,4,0), en tenant en
compte des déviations et en ajoutant du bruit dans mes simulations selon deux approches
différentes.

1. Première approche : Comparer la masse et le spin obtenus pour chaque fréquence
complexe estimée. Une divergence entre ces estimations pourrait indiquer une dévi-
ation par rapport à la RG.

2. Deuxième approach: Estimer la masse et le spin du trou noir final à partir de
l’IMR et vérifier si les fréquences des QNM respectent les prédictions de la RG. Une
déviation non nulle signale alors une violation potentielle du théorème du no-hair.

J’ai testé deux modèles pour évaluer leur performance dans la détection de telles
déviations :

• Un modèle agnostique, où seul le nombre de QNM est supposé connu, mais où
les écarts entre les masses et spins dérivés permettent de détecter une éventuelle
deviation de la RG.



• Un modèle contraint, où les QNM étudiés sont spécifiés à l’avance, ce qui permet
une estimation plus précise des déviations potentielles.

Avec les SNR élevés attendus pour LISA, j’ai démontré qu’il sera possible de détecter des
déviations par rapport à la relativité générale. À défaut d’en observer, il sera néanmoins
possible d’imposer des contraintes sur des théories alternatives à la RG.

Dans ce manuscrit, je fais un rappel des équations régissant les QNM. Je introduis
la réponse de LISA dans les domaines temporel et fréquentiel et je présent les méthodes
d’analyse ainsi que leurs résultats. Le principal apport de cette recherche est le développe-
ment d’un programme dédié à l’étude des déviations par rapport à la RG dans le ringdown,
offrant ainsi un outil crucial pour les futurs tests de la relativité générale avec LISA.



To my brother, Facundo
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Chapter 1

Introduction

I start this manuscript with an introduction to Gravitational Waves (GWs). I briefly
describe the framework of General Theory of Relativity (GR) in which gravitational waves
arise naturally from perturbations of the spacetime manifold (Sec. 1.2). I revisit their
generation, their effect on matter, and their detection. In Sec. 1.3 I present the Michelson
interferometer as the optimal instrument to detect GWs, and I finish with an introduction
of the different observatories and their characteristics in Sec. 1.4. This chapter is based
on [1–3] and I refer the reader to those references for further details. Most of the figures
have been produced by me with pages unless otherwise specified in the caption.

1.1 General relativity
One can not discuss Gravitational Waves (GWs) without presenting Einstein’s Gen-

eral Theory of Relativity (GR) which is built upon two pillars: the equivalence principle
and the covariance principle. The equivalence principle states that all bodies in a gravi-
tational field follow the same trajectories and therefore they can not be locally canceled
by non-inertial reference systems. To be locally canceled, the referential system should
have the same structure as the gravitational field, meaning that gravitational and inertial
forces are similar in nature and therefore indistinguishable. The covariance principle tells
us that all physical laws should remain invariant under a reference frame transformation.
Both statements give rise to the strong equivalence principle, which suggests that grav-
ity is geometrical in nature. Consequently, the transformation between reference systems
should be compatible with the gravitational field itself. Therefore, the transformation can
only be performed with the Levi-Civita connection ∇, such that the covariant derivative
of the metric g remains invariant, i.e. ∇g = 0. The theory of General Relativity pub-
lished by Albert Einstein in 1915 [4], satisfying the strong equivalence principle as well
as the special theory of relativity [5], successfully describes the gravitational field and its
interaction with matter.

Following the convention ηµν = diag(-1, +1, +1, +1), the line element takes the
form,
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ds2 = ηµνdx
µdxν . (1.1.1)

In this context, let me introduce the Riemann tensor describing the behavior of the space-
time as

Rµνρσ = ∂Γµνσ
∂xρ

−
∂Γµνρ
∂xσ

+ ΓµρλΓλνσ − ΓµσλΓλνρ. (1.1.2)

Note that I use the standard notation, using Latin indices (i, j, k, · · · ) to denote space
coordinates and Greek indices to denote spacetime coordinates (µ, ν, · · · ). The Christoffel
symbols read

Γµρσ = 1
2g

µλ(∂ρgσλ + ∂σgρλ − ∂λgρσ). (1.1.3)

Then, the Einstein’s field equation is

Rµν − 1
2gµνR+ Λgµν = 8πG

c4 Tµν , (1.1.4)

where gµν is the metric, c the speed of light, G Newton’s constant of gravity and Λ the
cosmological constant set to zero in the following since its low value (Λ ≃ 10−52 m−2 [6]),
is only relevant for large scales. The Ricci scalars and the Ricci tensors are defined in
terms of Riemann’s geometry as

R = gµνRµν , Rρσ = Rµρµσ. (1.1.5)

The field equation in Eq.(1.1.4) is the culmination of Einstein’s work, as it com-
pletely describes the interaction between matter and spacetime. To complete Einstein’s
framework, let me also introduce the geodesic equation,

ẋν∇ν ẋ
µ = 0 → ẍµ + Γµνρẋν ẋρ = 0, (1.1.6)

defining the existence of a curve upon which parallel transportation is guaranteed. These
geodesics are the previously mentioned trajectories. The dot (·) denotes the derivative
of the coordinate x with respect to the affine parameter s 1 (ẋ = dx/ds). Gravitational
waves can be easily derived from Einstein’s field equations as the result of perturbations
in the spacetime manifold.

1.2 Gravitational waves
Finding solutions to Einstein’s equations can be very difficult due to their non-

linearity, but one can obtain the linearized equations by working in the weak field where
the observer is far away from the source. Gravitational waves appear as ripples in the

1An affine parameter is defined such that its tangent vector v(s) = ∂s can be parallel transported
along itself: ∇vv = 0
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spacetime as a consequence of accelerating massive objects in the weak field. The per-
turbed metric can be written as a small perturbation hµν around the flat Minkowski metric
of spacetime ηµν such that

gµν = ηµν + hµν |hµν | ≪ 1, (1.2.1)

where higher orders of hµν can be neglected. Now, when introducing this condition to
Einstein’s filed equations, while adopting the Lorenz gauge defined as

∂µh̄µν = 0, (1.2.2)

where

h̄µν = hµν − 1
2ηµνh, h = ηµνh

µν , (1.2.3)

one ends up with the linearized equation which, after some work that can be followed in
Sec. A.1, reads

□h̄µν = −16πG
c4 Tµν . (1.2.4)

In the case of vacuum Tµν = 0, one consequently gets

□h̄µν =
(

− 1
c2∂t

2 + ∇2
)
h̄µν = 0. (1.2.5)

The solution to this D’Alembertian equation is a wave propagating at the speed of light.
Without digging into the creation of the perturbation, the resulting wave would still exist
far away from the source, where it propagates with a plane front. Moreover, every wave
solution can be written as the sum of plane waves of the form

h̄µν(x, t) = Aµνe
i(kβ ·xβ), (1.2.6)

with kβ, the wave vector, and Aµν a symmetric tensor carrying the polarization of the
wave with six degrees of freedom (d.o.f) in the Lorenz framework. However, the gauge in
Eq. (1.2.2) is not completely fixed since every coordinate can be transformed as

xµ → x′µ = xµ + ζµ. (1.2.7)

Therefore, it is also important to fix ζµ, with □ζµ = 0, to obey the Lorenz gauge. Because
in general relativity h̄µν transforms as

h̄µν → h̄′
µν = h̄µν + (∂µζν + ∂νζµ + ηµν∂ρζ

ρ), (1.2.8)

when one fixes ζµ, one also fixes h̄µν , constraining four of the six d.o.f in Aµν .
Then, one can impose the condition of ζ0 = 0, which automatically fixes the values

of ζi due to Lorenz gauge, obtaining

h0µ = 0, hii = 0, ∂ihij = 0. (1.2.9)

3
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This imposition is called the transverse-traceless (TT) gauge and gives rise to two
polarizations known as plus and cross (+,×). Alternative gravity theories could also have
scalar or vector polarizations, however not considered here.

Assuming a propagation in the z-axis, i.e. kβ = (0, 0, 0, z/c), Eq. (1.2.6) becomes

hTTµν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 sin (w(t− z/c)). (1.2.10)

The spatial representation of the effect of those polarizations acting on the position of test
particles in the x and y-axis are shown in Fig. 1.1.

Figure 1.1: Deformation of the spacetime in the x and y-axis by plus polarization (top),
and cross polarization (bottom).

1.2.1 Generation
In the following, I review how gravitational waves can emerge from Einstein equa-

tions as derived in [1; 2]. In the context of linearized theory, we have to assume very
separate sources to satisfy the weak gravitational field.

Keeping in mind that the Lorenz gauge satisfies

∂µh̄µν = 0 then−−−→ ∂µTµν = 0, (1.2.11)

is also fulfilled. Then, one can solve Eq. (1.2.4) via Green’s function method

h̄µν(x⃗) = 4G
c4

∫
d3x⃗′ 1

|x⃗− x⃗′|
Tµν(tret, x⃗′), (1.2.12)
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where x⃗ is the position where it is measured, while x⃗′ is the position of the source of
emission, and tret = t − |x⃗ − x⃗′|/c + x⃗′ · n̂/c, is the retarded time given by the measured
time minus the time it took for the information to travel from x⃗′ to x⃗, along the propagation
vector n̂. For a TT gauge, one can write

h̄TTij (x⃗) = 4G
r c4 Λij,kl(n̂)

∫
d3x⃗′ T kl(tret, x⃗′), (1.2.13)

where I used that at very large distances |x⃗ − x⃗′| = r, and where Λij,kl(n̂) is a projector
defined on the propagation vector n̂ as

Λij,kl(n̂) = Pik(n̂)Pjl(n̂) − 1
2Pij(n̂)Pkl(n̂) and Pij(n̂) = δij − ninj . (1.2.14)

With a Fourier transformation, one can perform a multipole expansion of the mo-
mentum tensor

T kl
(
t− r

c
+ x⃗′n̂

c
, x⃗′
)

≃
[
T kl + x′i ni

c
∂0T

kl + x′ix′j ninj
2c2 ∂2

0T
kl + ...

](
t− r

c
, x⃗′
)
. (1.2.15)

Then, Eq. (1.2.13) becomes

h̄TTij (x⃗) = 4G
r c4 Λij,kl(n̂)

[
Skl + nm

c
Ṡkl,m + nmnp

2c2 S̈kl,mp + ...
](
t− r

c

)
, (1.2.16)

where I used the definition of the momenta of the stress tensor

Sij(t) =
∫
d3xT ij(t, x⃗), (1.2.17a)

Sij,m(t) =
∫
d3xT ij(t, x⃗)xm, (1.2.17b)

Sij,mp(t) =
∫
d3xT ij(t, x⃗)xmxp. (1.2.17c)

and the time derivatives

Ṡij(t) =
∫
d3x Ṫ ij(t, x⃗) (1.2.17d)

S̈ij,m(t) =
∫
d3x T̈ ij(t, x⃗)xm, (1.2.17e)

...
S
ij,mp(t) =

∫
d3x

...
T
ij(t, x⃗)xmxp. (1.2.17f)

As shown below, the first line, Eq.(1.2.17a), is the conserved mass-energy, the second
line is the center of mass, which is also conserved, and the third row is the moment of
inertia, which is not conserved. To arrive at these statements is convenient to write those
equations in terms of the energy and momentum density, such that
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M i = 1
c2

∫
d3xT 00xi, P j = 1

c

∫
d3xT 0j (1.2.18a)

M ij = 1
c2

∫
d3xT 00xixj , P j,i = 1

c

∫
d3xT 0jxi. (1.2.18b)

From Eq. (1.2.11) and given the conservation of the Momentum/Energy tensor, it is easy
to notice that

∂µT
µ0 = 0 → ∂0T

00 = −∂iT i0, (1.2.19)

that leads to∫
V
d3x ∂0T

00 = −
∫
V
d3x ∂iT

0i = −
∫
∂V
dSiT 0i = 0 → cṀ = 0, (1.2.20)

resulting in the conservation of Eq. (1.2.17a). After some work, one can write the momen-
tum in terms of the mass, such that

Ṁ i = P i and Ṁ ij = P i,j + P j,i 2. (1.2.21)

Due to the symmetry of the tensor Sij , the right-hand side results in the conservation of
the mass dipole, hence the center of mass written in Eq. (1.2.17b). The mass quadrupole,
in Eq. (1.2.17c) is not conserved and thus becomes the leading order of the gravitational
radiation,

M̈ ij = Ṗ i,j + Ṗ j,i = 2Sij . (1.2.22)

Finally, the amplitude strain produced on the spacetime by a gravitational wave at
first order is related to the mass quadrupole radiation through

[
hTTij (t, x⃗)

]
quad

= 2G
r c4 Λij,kl(n̂)M̈kl

(
t− r

c

)
. (1.2.23)

In other words, the acceleration of masses is the leading process that can generate GWs. At
higher orders, changes in the angular momentum would also contribute to the generation
of GWs. However, it is easy to see that a rotating perfect sphere would not create GWs
due to energy conservation. I refer the reader to [2] for a detailed description of this topic.

The tensor Mkl, being a symmetric tensor, can be decomposed into an irreducible
representation of the rotation group as

Mkl = Qkl + 1
3δ

klMii, (1.2.24)

where Mii is the trace of the tensor Mij . In this representation, the term

Qkl ≡ Mkl − 1
3δ

klMii (1.2.25)

2This is because
∫

V
d3x ∂0T

00xixj = −
∫

V
d3x ∂iT

0ixixj =
∫

V
d3xT 0i∂i(xixj)

6



Introduction

is traceless by construction, which is what we need to express the mass density in the TT
gauge in terms of a spin-2 operator. Furthermore, the contraction of δkl with the projector
Λij,kl returns a zero value. So, without loss of generality, one can work with the irreducible
representation of the quadrupolar moment Qkl instead of Mkl.

Using Green’s function, one can take advantage of the spherical symmetry and
decompose it in terms of spherical harmonics. To that end, one should start with the
Poisson equation

∇2ϕ = −4πρ, (1.2.26)
which has the solution

ϕ(x) =
∫
d3x′ 1

|x− x′|
ρ(x′). (1.2.27)

The density is localized in the center of the spherical coordinates with a radius d, then
ρ = 0 if r > d. Hence, one can write the external potential in the following form

ϕ(x) = 4π
∞∑
l=0

l∑
m=−l

Qlm
2l + 1

Ylm(θ, ϕ)
rl+1 , (1.2.28)

where

Qlm =
∫
d3Y ∗

lm(θ′, ϕ′)r′lρ(x′). (1.2.29)

I used that |x| = r and |x′| = r′. The asterisk (∗) denotes the complex conjugate and the
spherical harmonics are defined as

Ylm(θ, ϕ) =
√

2l + 1
4π

(l −m)!
(l +m)! (−1)meimϕPlm(cos θ), (1.2.30)

with l the angular polar number, m the azimuthal angular number, and Plm(cos θ) the
associated Legendre polynomials of degree l and order m,

Plm(x) = (−1)m
2ll!

(
1 − x2

)m/2 dl+m
(
x2 − 1

)l
dxl+m . (1.2.31)

In this context, the Taylor expansion of Eq. (1.2.15) as r → ∞ can be written in
terms of spherical harmonics since

1
|x− x′|

= 4π
∞∑
l=0

l∑
m=−l

1
2l + 1

r′l

rl+1Y
∗
lm(θ′, ϕ′)Ylm(θ, ϕ). (1.2.32)

Nevertheless, keep in mind that in GR, the field ϕ is not a scalar but a tensor field
with a solution in the shape of Qµνlm. Then, the decomposition will occur under the spin-
weighted spherical harmonics sYlm, where the spin takes the value s = −2 for gravitational
fields. I will refer in the future to modes or harmonics to orders of this multipole expansion
based on spin-weighted spherical harmonics. The vector and tensor spherical harmonics
are also introduced in Sec. 3.2.1.
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1.2.2 Interaction with matter
In the absence of non-gravitational forces, a test mass in a metric with a proper

time τ will follow a geodesic defined by

d2xµ

dτ2 + Γµνρ(x)dxν
dτ

dxρ
dτ = 0. (1.2.33)

Therefore, a local frame in which the Christoffel symbol vanishes can always be selected,
letting that mass fall freely in that particular frame and time. The selection of a gauge
fixes the reference frame, so it is important to understand the observable physics related
to that frame.

In the case of a flat manifold without any mass distribution, two parallel geodesics
would remain parallel forever. But, in the presence of matter or a perturbation, those lines
will tend to deviate from the straight path. Therefore, when comparing the geodesics of two
neighboring particles, separated by ζµ one can relate their difference to the perturbation
of a passing GW. That is

d2(xµ + ζµ)
dτ2 + Γµνρ(x+ ζ)d(xν + ζν)

dτ
d(xρ + ζρ)

dτ = 0, (1.2.34)

then, expanding to leading order and subtracting Eq. (1.2.33), one obtains the geodesic
deviation

d2ζµ

dτ2 + 2Γµνρ(x)dxν
dτ

dζρ
dτ + ζσ∂σΓµνρ(x)dxν

dτ
dxρ
dτ = 0. (1.2.35)

Moreover, the geodesic deviation can be written in terms of the Riemann tensor. To do
so, the introduction of the covariant derivative is necessary

Dζµ

Dτ
= dζµ

dτ + Γµνρ(x)ζν dxρ
dτ . (1.2.36)

Then

D2ζµ

Dτ2 = d2ζµ

dτ2 + ∂σΓµνρ(x)ζν dxρ
dτ

dxσ
dτ + Γµνρ(x)dζν

dτ
dxρ
dτ

+ Γµνρ(x)ζν
[

− Γραβ(x)dxα
dτ

dxβ
dτ

]
+ Γµδγ(x)dζδ

dτ
dxγ
dτ + Γµδγ(x)Γδνρ(x)ζν dxρ

dτ
dxγ
dτ .

(1.2.37)

When plugging Eq. (1.2.35) into Eq. (1.2.37), some terms will cancel out leading to the
wanted relation

D2ζµ

Dτ2 = −Rµνρσζρ
dxν
dτ

dxσ
dτ . (1.2.38)

In conclusion, two nearby particles in the presence of mass/energy distribution, will
experience a tidal gravitational force determined by the Riemann tensor. Consequently,
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if no mass distribution is present, the tensor is zero and hence, the geodesic deviation is
null.

For the case of the TT frame, most of the components hµν vanish, except for µ, ρ =
i, j. Then, the only component of the Riemann tensor that survives is

Ri 0j0 = Ri0j0 = − 1
2c2∂

2
0h

TT
ij , (1.2.39)

thus, the differential geodesic reads

∂2
0ζ
i = 1

2ζ
j∂2

0h
TT
ij . (1.2.40)

The path of a gravitational wave will stretch and compress the spacetime manifold
according to its polarization via hTTij 3.

1.2.3 Detection
If one considers the test mass reference frame, the Christoffel symbol in Eq. (1.2.33)

will vanish, leaving the test mass undisturbed by the path of a gravitational wave. This
doesn’t mean it had no physical effect, rather, the effect was unobservable in that specific
reference frame. Taking this consideration and the analysis of the previous subsection into
account, it is more convenient to perform a different approach in which one evaluates the
proper distance of two bodies where the tidal effect is visible. This section is based on
[2; 7]. Thus, I refer the reader to those references for further information.

The line element in a Minkowski metric affected by a GW takes the form

ds2 = (ηµν + hµν) dxµdxν , (1.2.41)

where the gravitational strain propagating in the z-axis is

hµν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 sinω(t− z/c). (1.2.42)

Knowing that the element line for photons is ds2 = 0 → dt2 = gijdx
idxj , then, for

a wave propagating at the speed of light, the proper distance of two test particles at x⃗1
and x⃗2 is given by

∫ t

0
c dt′

√
gtt =

∫ x⃗2

x⃗1
dxidxjgij . (1.2.43)

Assuming that the coordinate position of the test particles depends only on x, i.e y = 0,
we can write

3Note that an observer in the TT frame will not be able to observe the variation, as he will also
suffer the same perturbation as the test masses.
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ct =
∫ L

dx
√
gxx =

∫ L

dx
√

(1 + hTT+ sinω(t− z/c)) ≃ L
(
1 + 1

2h
TT
+ sinωt

∣∣∣
z=0

)
, (1.2.44)

where L = |x1 − x2|. Hence, assuming that the distance between the test masses is much
larger than the wavelength at which the gravitational field changes, that is L ≪ λGW , one
can define the differential length δL between those two particles, as a consequence of a
crossing gravitational strain, as

δL

L
≃ 1

2h
TT
+ . (1.2.45)

In the TT frame, one can express the tidal effect on matter of each polarization
in the perpendicular coordinates of the propagation of the GW to the initial positions
(x0, y0):

h+ polarization

δx(t) =h+

2 x0 sinwt

δy(t) = − h+

2 y0 sinwt

h× polarization

δx(t) =h×

2 y0 sinwt

δy(t) =h×

2 x0 sinwt

Given the effect that GWs have on the matter, stretching in one direction and
simultaneously compressing in a perpendicular one, the best way to measure the amplitude
strain (hA, with A = +,×) is through the measurement of variations of those coordinates.

1.2.4 Sources
In Sec. 1.2.1, I mentioned that GWs are generated by accelerating massive objects or

a variation in their angular momentum. In the Universe, several objects can produce GWs,
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such as coalescing binary systems, continuous waves, unmodeled bursts, and stochastic
events. I proceed to describe them in the following. This section is based mostly on
[3; 8–11].

Coalescing binary systems

Binaries systems are composed of two compact objects interacting through the grav-
itational field. When one compact object experiences the gravitational pull of the other, it
can be captured within its gravitational potential, leading to inspiral orbits as it gradually
falls inward. The energy loss in the orbit’s decay is transformed into radiation in the form
of GWs. As the bodies draw closer, the velocity generated by gravitational potential in-
creases until they eventually merge into a single object. Depending on the final mass, this
merged object will most likely be a final Black Hole (BH). The waveform produced by this
kind of event is the direct result of the energy lost by the system, thus each stage of the
waveform can be related to each stage of the interaction. The first stage of the dynamics
describing the slow approach of the bodies is called the inspiral part and is characterized
by the progressive increase of the orbital frequency ν. Once the bodies are relatively close
to merging, the stage is known as the merger. This phase is characterized by the end of
the chirp-like signature, which means that the amplitude of the wave has reached its max-
imum value, the same as the orbital frequency. After the merger is concluded, one final
compact object remains in a very perturbed state that will relax to its fundamental state
in a stage called the ringdown. This last stage is characterized by a damping amplitude.
In general, one can refer to the IMR waveform as the complete waveform considering the
inspiral, the merger, and the ringdown.

It is worth mentioning that, by compact objects, I refer to White Dwarfs (WDs),
Neutron Stars (NSs), or BHs. In a binary system, the gravitational potential from the
companion could produce gravitational tides onto the compact object. If instead of com-
pact objects, one considers active stars, when the bodies approach, and the tides become
stronger than the gravitational force bounding the star itself, the star could be torn apart,
preventing any merger event. However, the torn material could eventually plunge into the
compact object as accreted matter, generating a different kind of GW [3]. Nevertheless,
in the early inspiral stage of the interaction, active stars can be considered as companions
to compact objects to generate GWs.

To quantify the expected strain amplitude for binary compact object mergers, we
can approximate Eq. (1.2.23) to

h ∼ 2G
Rc4Mv2. (1.2.46)

As an example, for an extragalactic binary of 106 M⊙, such as the result of two galaxies
somewhat similar to the Milky Way merging, at a distance R = 26 Gpc which corresponds
to a redshift 3, and a relativistic velocity v ≃ 0.3 c; the amplitude of the strain is h ∼ 10−16.
If we take into account Eq. (1.2.45), in order to observe such small variations we will need
very long rulers (L) and the ability to observe very small displacements of the order of
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δL ∼ 10−15 m. This kind of precision is achieved with interferometry, as I explain later in
Sec. 1.3.

Figure 1.4: Sketch of a binary system of two point masses in an orbit around a center of
mass at (0, 0).

More accurately, if one assumes a circular orbit for two bodies with mass m1 and
m2, total mass M and separation a, the angular orbital frequency according to Kepler’s
law is ν =

√
M/a3, assuming geometric units (G=c=1). If at the time t = 0, the bodies

are in the x-axis, as shown in Fig. 1.4, then the trajectories of both objects can be written
as

x1 = m2
M

a cos νt, y1 = m2
M

a sin νt, (1.2.47)

x2 = m1
M

a cos νt, y2 = m1
M

a sin νt, (1.2.48)

then, we can compute the quadrupolar moment M ij from Eq. (1.2.17c):

S00,ij =
∫
T 00xixjd

3x =
∫

[δ(x⃗− x⃗1)m1 + δ(x⃗− x⃗2)m2]xixjd3x (1.2.49)

= m1x
i
1x
j
1 +m2x

i
2x
j
2.

It is easy to see, for example, that

Mxx = m1

(
m2
M

a cos νt
)2

+m2

(
m1
M

a cos νt
)2

= m1m2
M

a2 cos2 νt. (1.2.50)

Hence, by computing the other quadrupolar terms, the quadrupolar radiation take the
form

M̈xx = −M̈yy = −2µa2ν2 cos 2νt = −2µ(Mν)2/3 cos 2νt, (1.2.51)
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M̈xy = M̈yx = −2µa2ν2 sin 2νt = −2µ(Mν)2/3 sin 2νt, (1.2.52)

where µ is the reduced mass ratio µ = m1m2/M .
To obtain the strain of the gravitational radiation, one can assume an observer at a

distanceR in the x-z plane, which using spherical coordinates n⃗ = (sin θ cosϕ, sin θ sinϕ, cos θ)
with ϕ = 0, it is n⃗ = (sin θ, 0, cos θ), see Fig. 1.5 for a visual representation. Knowing
that the polarized strain propagated in the z-axis is defined as Eq. (1.2.42) and using the
propagator projectors defined in Eq. (1.2.14), we obtain the corresponding expressions for
the strain polarizations

Figure 1.5: Spherical coordinates

h+ = (Λxx − Λyy)ij M̈
ij = cos2 θM̈xx − M̈yy (1.2.53)

h× = 2Λxy,ijM̈ ij = 2 cos θM̈xy. (1.2.54)

Hence, one can write the inspiral gravitational wave as

h+ = − 2
(
1 + cos2 θ

) µ
R

(Mν)2/3 cos [2ν(t−R) − ϕ0], (1.2.55)

h× = − 4 cos θ µ
R

(Mν)2/3 sin [2ν(t−R) − ϕ0], (1.2.56)

where one computes the waveform for the retarded time tret = t−R, instead of t, then R
is the distance to the observer, θ is the angle between the orbital momentum of the binary
and the observer, and the initial phase ϕ0 is considered to be the phase at t = 0. Note
that the frequency of the GW corresponds to twice the orbital frequency (ω = 2ν).
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Gravitational waves carry energy and angular momentum dissipated by the system
expressed as [11]

Lum = −dEGW
dt = 1

5⟨
...
M ij

...
M ij⟩ = 32

5 η
2 (Mν)10/3 , (1.2.57)

where η is the symmetric mass ratio η = (m1m2)/M2, and the triangular parenthesis
denotes the average on several gravitational wavelengths. At the same time, the energy of
the system in a given orbit is

Eorb = −m1m2
2a . (1.2.58)

Assuming the energy loss by the system is completely transformed into gravitational ra-
diation, then

Ė = −32
5 η

2 (Mν)10/3 = m1m2
2a2 ȧ. (1.2.59)

With this relation, we can integrate over ȧ to obtain the variation of the orbital
separation, which results in

a =
[256

5 ηM3(tc − t)
]1/4

, (1.2.60)

where tc is the time of coalescence defined as the time in which a tends to the zero value
(a → 0). One can instead, compute the orbital frequency,

ν =
[256

5 ηM5/3(tc − t)
]−3/8

. (1.2.61)

Therefore, the time it takes a binary to merge, keeping in mind that the frequency of the
GW is twice the orbital frequency (ω = 2ν) and (ω = fGW 2π), reads

∆t = 5
256ηM5/3 (πfGW )−8/3. (1.2.62)

Furthermore, in terms of the GW frequency, which I write in the following as f
(without the GW index), both polarizations can be written as

h̃+(f) =
√

5
6

1
4π2/3

M
5/6
c G

r c4 f−7/6
(
1 + cos2 θ

)
eiΦ̃(f), (1.2.63)

h̃×(f) =
√

5
6

1
4π2/3

M
5/6
c G

r c4 f−7/62 cos θeiΦ̃(f), (1.2.64)

where Mc is the chirp mass given by Mc = η3/5M and the wave phase Φ is given by the
evolution of the orbital frequency

Φorb =
∫

2πforb(t)dt.
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Using the definition of Eq. (1.2.59) and the fact that from Kepler law, ȧ/a = −2/3 ν̇/ν,
the phase at first order is

Φ̃(f) = 2πftc + ϕ0 − π

4 + 3
4 (8πMcf)−5/3 . (1.2.65)

Then, the total strain reads

h̃(f) = h̃+(f) − ih̃×(f). (1.2.66)

Once the two bodies are very close and the velocity becomes relativistic, this de-
scription is no longer valid, and one has to solve Einstein’s equations in the strong field by
accounting for higher-order expansions. This can be achieved numerically with computers.
Nowadays, there is a whole field dedicated to the numerical evolution of the dynamics in
the strong field regime, called Numerical Relativity (NR).

Continuous waves

This kind of wave can be generated by asymmetric rapid rotating NSs [12]. Such
asymmetry can be the result of a toroidal magnetic field or a protuberance in the surface
caused by a crack in the crust through thermal effects. The produced GW would have
a periodicity twice its rotation frequency. In addition, each NS has an equation of state
that could excite oscillation modes, such as the known r-mode [13]. These oscillations
could break the spherical symmetry, giving rise to GWs. Another cause would be the non-
isotropic continuous accretion of material. The spin rate of NS remains quasi-constant for
long periods, producing continuous GWs with a monochromatic frequency.

Unmodeled bursts

These are short-duration events, usually from a sudden expulsion of excess energy in
a system [12]. Even though few sources can generate this type of GW, the most well-known
are the Supernova (SN). There are two principal issues with this type of event. Firstly,
SN are rarely observed, one per century in the Milky Way is expected, which prevents
the determination of the characteristic waveform of its dynamics. Hence, their signatures
are unknown. Secondly, the undefined waveform of SN can be easily mistaken for artifact
noises such as glitches.

Stochastic background

A Stochastic Gravitational-Wave Background (SGWB) is any random gravitational
wave signal produced by a large number of weak, independent, and unresolved sources [8–
10]. It can have an astrophysical or a cosmological origin. In the first group, the stochastic
background can be composed of an incoherent sum of individual signals over the Universe’s
lifetime, such as the ones described above, but too faint or too far to be individually
distinguishable. The second case with cosmological origin, can also be composed of a large
number of unresolved sources but encompass processes in the early Universe unreachable
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by other techniques. Currently, our most detailed view of the first epoch of the Universe
comes from the last photon scattering, which decoupled from matter about 380.000 years
after the Big Bang. By studying the Cosmic Microwave Background (CMB), one can
portray an accurate picture of the Universe at early times, but the only way of crossing
the electromagnetic wall from the last scattering and ’look’ at earlier times is through the
gravitational field. Indeed, GWs can give us (extra) information about inflation, cosmic
strings, and phase transition at primordial times.

The magnitude of the SGWB is usually described by the dimensionless density
parameter ΩGW , in terms of the energy density per unit logarithmic frequency over the
critical energy density as [8]

ΩGW (f) = f

ρc

dρGW
df , (1.2.67)

where dρGW is the energy density of GWs in the interval [f, f + df ] and ρc = 3H2
0/8πG

is the critical energy density for a flat Universe. The Hubble parameter is defined as
H0 = 100h100 km/s/Mpc, where h100 = H0/100 is the reduced Hubble constant 4. The
GW density parameter can also be written in terms of the energy density spectrum Sh(f),

ΩGW = 4π2

3H2
0
f3Sh(f). (1.2.68)

The characteristic strain can be expressed in terms of the energy density spectrum
as

h̃c(f) =
√

2fSh(f). (1.2.69)

Several theoretical models of gravitational wave backgrounds predict characteristic strains
with a power-law dependence in the following way [10],

h̃c(f) = Aα
( f

fref

)α
, (1.2.70)

where Aα is the characteristic amplitude associated with the type of source coming from
different predictions depending on the theoretical scenario, with a spectral index α that
depends on the source, and fref typically set to 1 year or the most sensitive frequency of
the detector [9]. Then, through Eqs. (1.2.68) and (1.2.69), one can write the GW density
parameter as

ΩGW = Ωβ

( f

fref

)β
, (1.2.71)

where

Ωβ = 4π2

3H2
0
f2
refA

2
α, β = 2α+ 2. (1.2.72)

4Note that ΩGW (f)h2
100 is independent of the Hubble expansion rate, denoting a general de-

scription of the GW relative energy density, regardless of the value of H0 [9].
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Figure 1.6: Expansion and collision of nucleated bubbles. True vacuum bubbles
submerged in false vacuum plasma.

Regarding the spectral index introduced in Eq. (1.2.70), when studying a binary
coalescence background, it is necessary to set α = −2/3, β = 2/3, while α = −1, β = 0
for an inflationary background, making the spectrum independent on the frequency, i.e.
ΩGW = const. These spectral values can be derived from the power spectral density of
the overlap of many source realizations, see e.g. [10].

Phase transitions:
Phase transitions happen daily, for example, the transition of liquid water becoming

ice or steam. In those events, a change in the properties of matter occurs, including
parameters such as entropy, temperature, and volume. Thus, a transition of phase carries
an energy associated with it. Phase transitions are the result of spontaneous symmetry
breaking, where a field in an unstable minimum suddenly falls into the stable minima,
liberating energy. In a more general context, a system in a metastable minimum or false
vacuum undergoes a phase transition through quantum tunneling or thermal fluctuation
to reach the true vacuum or the stable minima [14]. In this process, the budget energy
is characterized by the order of the extrinsic parameters. It can be classified as First-
Order Phase Transition (FOPT), where the thermodynamic quantities are discontinuous,
resulting in a jump between the phases, or as second-order phase transition, where the
transition parameter is continuous at first order but discontinuous at second-order.

First-order phase transition involves bubble nucleation as a consequence of discon-
tinuities of energy density in the plasma. The true vacuum is contained within the walls
of a bubble, immersed in a false vacuum fluid where the symmetry is still conserved, see
Fig. 1.6. Once the symmetry is broken, part of the liberated latent heat raises the plasma
temperature while the other part is converted into kinetic energy of the bubble’s wall and
bulk motions of the fluid. Those bubbles can grow, collide, and percolate, generating
radiation in the form of gravitational waves [15; 16]. Hence, a signal from the FOPT is
expected to contribute to the SGWB. Meanwhile, it is not the case for a second-order
transition, where the possible generation of GW has a negligible contribution [16].

To understand the characteristic amplitude of a GW produced by a FOPT, one needs
to consider the different contributions to this process. The nucleated bubble expands with
constant acceleration, driven by the pressure difference between the low-energy interior
and high-energy exterior. However, this action can be counteracted by the friction of the
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plasma, leading to a constant velocity. In the expansion of the bubbles, the perturbation
in the fluid can cause a compression wave surrounding the bubble, giving rise to a sound
wave contribution even long after the collision or merger has been completed [17]. Given
the spherical symmetry of a bubble, a single bubble produces no gravitational waves. It
is only after a collision that the spherical symmetry is broken, and gravitational radiation
is emitted. High velocities and large energy densities provide the necessary conditions
to produce gravitational radiation [18]. Another contribution associated with the motion
of the bubble is the magneto-hydrodynamic turbulence in the surrounding plasma [15].
Finally, one can write the energy density of the gravitational waves produced by a FOPT
as the contribution of these three interactions: collision, sound waves, and turbulence.

Considering the early Universe, one can probe the Standard Model (SM) since it is
believed that all the forces were once combined in the Grand Unification Theory [19]. As
the Universe cooled down, the strong field became distinguishable from the electroweak
field, which sometime later also forked into electromagnetic and weak fields by a symmetry
breaking. The electroweak phase transition is not an FOPT, but some extensions of the
SM could change that statement [20]. Hence, the detection of GWs emitted by these
phase transitions would be an unequivocal probe of high-energy physics beyond the SM,
inaccessible by other means.

Inflation:
Inflation theory was introduced to solve the flatness problem and the horizon prob-

lem [19; 21]. The first one arises from the strange apparent coincidence of the present
energy density (that is, radiation, baryonic matter, dark matter, and dark energy) with
the critical energy density in the Universe, given by

ρ0 = 3H2
0

8πG + 3k
8πG, ρc = 3H2

0
8πG. (1.2.73)

This similarity calls for a flat Universe, hence a zero curvature (k = 0).
The second issue is visible in the CMB. The frozen picture of the recombination or

decoupling time is observed today as a perfect black body emission with a temperature
of ∼ 2.73 K. Moreover, observations from WMAP [22] and later from Planck [23] found
small anisotropies of the order of δT ∼ 10−5K [24]. Those fluctuations are believed to be
the seeds of galaxy formation. The real issue is that two points in the sky separated by an
angle larger than 1◦ are supposed to be causally disconnected at the recombination, but
instead, they present the same temperature, except for that small fluctuation δT . Then,
the question of how can this be possible if they were not causally connected arises.

As previously mentioned, inflation solves both dilemmas. Right after the Big Bang,
the Universe underwent an exponential growth of ∼ e60 [25], possibly as the result of
an inflationary scalar field ϕ slowly rolling to a minimum energy state. Once that point
was reached, any potential initial curvature was diluted, later, the inflation stopped, and
the reheating process began. In that expansion, points that were causally connected
were left outside the horizon or frozen out. When those scales re-entered the horizon,
they preserved that causal relation observable today in the CMB in the form of similar
temperatures, except for the small fluctuations.
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If one considers quantum field theory, all fields have quantum fluctuations associated
with them. Those variations in the inflationary and gravitation fields give rise to scalar and
tensor perturbations, respectively. The scalar fluctuations are established to be the small
anisotropies observed in the CMB, while for the gravitational fluctuations, B-modes are
expected to be found in the CMB [26]. In the case of SGWB, gravitational waves generated
during inflation could be detected at frequencies above 10−17 Hz with a spectrum related
to the tensor number density nt [27].

Cosmic Strings:
Cosmic Strings (CS) are hypothetical topological defects that may have formed

during a symmetry breaking in the early Universe. In the zero-width approximation, those
defects are represented in one dimension, hence strings, whose dynamics are obtained by
solving the Nambu-Goto action [28]. The action minimizes the area sheet traced by the
string as it travels through spacetime. Consequently, a network of CS grows at the same
scale as the expansion of the Universe. This means that CS behaves like radiation in the
radiation era and like matter in the matter era.

Figure 1.7: Formation of loops. When 2 strings intersect, they exchange partners closing
a loop, that will shrink emitting gravitational radiation.

When two points of the same CS or two different strings intersect, there is an
exchange of partners, giving rise to loops, a visual aid is shown in Fig. 1.7. This action
is known as intercommutation, and the probability of this action taking place is a rapidly
decreasing function of time because the string density is falling [29]. Once the loops are
created, they oscillate quasi-periodically, losing energy and making the loops shrink while
emitting radiation in the form of GWs to finally disappear. Moreover, cusps (points where
the string instantaneously reaches the speed of light) and kinks (discontinuities on the
tangent vector of a string) propagating on string loops would also generate gravitational
bursts. A stochastic background from 10−16 to 109 Hz could exist, depending on the
properties of the loops [30].

Cosmic strings are characterized by the dimensionless tension of the strings, Gµ ∼
(Tc/MPl)2 (c = 1), where µ is the mass per unit length, Tc the critical temperature at
which the symmetry breaks and MPl is the Planck mass. In general, a loop of size l
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Figure 1.8: Different observational constraints on the PBH fraction for the DM as a
function of the PHB mass. Credits: Villanueva et al. [31].

emitting gravitational radiation is expected to decay within a time approximated by

t = l/(ΓGµ), (1.2.74)

where Γ ∼ (50 − 100) is a coefficient denoting the number of strings in a Hubble vol-
ume [29]. The equations involved in the description of the CS are beyond the scope of
this manuscript, but in a rough approximation, the produced spectrum can be described
as ΩGW ∝ (Gµ)2 [8]. Then, one could relate the observed gravitational radiation with the
size of the loops, see Eq.(1.2.74), that would indirectly constrain the lifetime of a loop [8].

Primordial black holes:
Primordial Black Holes (PBH) are small BHs produced in the early Universe, right

after the Big Bang. In the inflation epoch, fluctuations in the curvature are believed to
occur. As the overdensities re-enter the Hubble radius, they would collapse into PBH.
Nevertheless, this is not the only mechanism to produce PBH, as many other possible
processes, such as preheating, phase transitions, early matter era, cosmic strings, domain
walls, and primordial magnetic fields, among others, were proposed and emerged in the
last decade, I refer the reader to [32] for a review on this topic. It is suggested that such
PBH could contribute to the undetected Dark Matter (DM) in the Universe or to the
seeds for Massive Black Holes (MBHs).

PBH could account for a fraction of the elusive DM. PBH are suspected to be
formed before nucleosynthesis since they do not contribute to the baryon abundance, and
thus, they can be considered as non-baryonic DM. A fraction of DM is needed to explain
the velocity rotation at the arms of spiral galaxies. However, the remaining part could
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Figure 1.9: Gravitational wave spectrum. Credits: LISA Red book [3].

be understood as PBH leading to observable effects, such as microlensing or dynamical
effects, see [31] for further information. Based on the same reference, constraints from
various observations are imposed on the masses of PBHs and their contribution to the
total DM fraction, as illustrated in Fig. 1.8.

After the first detection of GWs due to the coalescence of a Black Hole Binary (BHB),
PBH gained credibility [33; 34] as an alternative channel to explain the individual BHs
with masses around ∼ 25 M⊙ as to possible DM in the form of PBH. Additionally, the
James Webb Space Telescope (JWST) [35] spotted galaxies at high redshift [36] in an
epoch where astrophysical mechanisms fail to explain the existence of MBHs. Therefore,
PBH are strong candidates for MBHs in the early Universe, as their masses cannot be
achieved through stellar evolution.

In conclusion, PBH are expected to produce an SGWB, either from the merger
of PBH with different masses throughout the Universe or from their production at the
inflationary stage of the Universe.

Gravitational wave spectrum

To conclude the section on sources, it is essential to identify the frequency at which
one expects to observe the mentioned sources. The gravitational wave frequency is twice
the orbital frequency of a binary system, so it is straightforward to estimate the detectabil-
ity band of binary systems depending on their mass and the scale of their orbits. Note that
Massive Black Hole Binariess (MBHBs) lie in the low-frequency range of the spectrum,
with a downward trend for higher masses. This means that the final phase of the coales-
cence of galaxies falls between 10−3 to 10−10 Hz. The SGWB is less evident as it depends
on the source producing the stochastic background. In the case of SGWB with cosmo-
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logical origin, for instance, the electroweak symmetry breaking at E ∼ 160 GeV, could
produce GWs also below the milihertz regime. A sketch of the gravitational-wave spec-
trum is shown in Fig. 1.9. Note that depending on the frequency scale, different types of
observatories are indicated according to their sensitivity, which depends on the size of the
arms or rulers, as introduced at the beginning of this section. Keep in mind that a ruler is
sensitive to wavelengths larger than its length. In the following, I describe the mechanism
that ground-based and space-born detectors use to detect GWs: Interferometry.

1.3 Michelson interferometer
An interferometer works by overlapping two or more light sources to create an inter-

ference pattern. The basic configuration of a Michelson interferometer consists of a light
source, a beam splitter, a series of mirrors and lenses, and a photodetector that records
the interference pattern. Because of their wide application, there exist several sizes and
shapes of interferometers, though a simple layout of a basic one is sketched in Fig. 1.10.
The light emitted from the source hits the beam-splitter, which due to its disposition at
45◦, lets half of the beam pass through in the x-axis while reflecting the other half in
a perpendicular beam in the y-axis. Each beam is reflected in a mirror at a distance
L, to meet again at the splitter, which redirects both beams to the detector where the
interference information is collected.

(a) Michelson Interferometer (b) Interferometry fringe pattern

Figure 1.10: Sketch of a Michelson interferometer and the interference pattern
alternating from constructive to destructive interference. 5

Both beams should travel the same distance in a time τ = 2L/c. Then, the resulting
interference should be constructive, namely bright interference, since the two waves are in
phase. The effect of being completely out of phase would result in destructive interference,
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while a phase between both stages would create an intermediate interference pattern. By
tuning the phases to achieve a destructive interference pattern, a slight displacement would
be observable by the change in the pattern from a dark fringe to a bright fringe interference,
represented in white and red, respectively, in Fig. 1.10. In the case of a perturbation, such
as the one produced by a passing GW, the length of the arms would stretch and compress,
producing a difference in the arrival time of the beams. Using Eq. (1.2.44), which accounts
for the displacement of the test masses, the difference in the light travel time between the
two arms (L) is

δτ = τ1 − τ2 = 2L(1 + 1/2h+)
c

− 2L(1 − 1/2h+)
c

= 2L
c
h+. (1.3.1)

If one takes into account that a light beam with a frequency ν and amplitude A has
an electric field

E⃗ = A⃗ei2πνt, (1.3.2)

when both beams recombine in the photodetector, the resulting electromagnetic field is
the sum of them: E⃗ = E⃗1 +E⃗2. Therefore, the travel time difference can also be translated
into a phase difference ∆ϕ = 2πν∆τ . As the gravitational wave crosses the arms of the
interferometer, the interference would vary between destructive and constructive which
can be translated as a strain amplitude variation, producing a waveform in time h(t).

1.4 Detectors
The idea of the first gravitational waves detector was developed by Joseph Weber in

the 60’s [37; 38]. He developed what is now called the Weber antenna, which consists of a
solid aluminum cylinder bar of ∼ 2 m long by 0.96 m radius, suspended at its center. The
method exploits the fact that the energy and momentum carried by a GW would induce
the excitation of resonant modes of the object. As the bar rings down the excitation modes,
piezoelectric crystals near the center of the bar would translate the vibrations in a voltage
difference measuring the strain of the passing GW. Weber claimed several detections over
the years with no support from his peers, who attributed the findings to noise [37; 38].
He kept improving the sensitivity of the instrument and claimed the detection of GWs
from the supernova SN1987A, although the measurement was never confirmed. The claim
was and still is highly questionable since the sensitivity of this mechanism would not have
reached the required precision to detect the small displacement due to a GW. Regardless of
the validity of his results, his experiment and the enhancements he made to the instrument
paved the way for future interferometric detectors.

Nonetheless, it is important to mention that GWs have been detected indirectly in
the 80’s through observational means. The first indirect observation of GWs was reported
in 1989 by Alan Hulse and Joseph Taylor 6 , due to the decreasing orbit of a binary pulsar

6Their study allowed them to earn the Nobel Prize in 1993.
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Figure 1.11: Orbital decay of PSR B1913+16. The dots indicate the observed change in
the orbital period for a given date while the line illustrates the theoretically expected

change for a system emitting gravitational radiation, according to GR. Credits: Taylor
and Weisberg [39].

named B1913+16. A binary pulsar is composed of two NSs with strong magnetic fields
about 108−9 G, rapidly rotating in an axis tilted from the magnetic field dipole, producing
a lighthouse effect. Studying the binary, they realized that the period of the orbit had
been decreasing over the years, see their results in Fig. 1.11. The energy loss associated
with the decreasing period was consistent with GW radiation predicted by GR [39–41],
resulting in the first indirect detection of GWs.

1.4.1 Ground-based detectors
The most famous ground-based interferometer is the Laser Interferemeter Gravitational-

wave Observatory (LIGO) [42] as it was the first to detect a GW from the coalescence
of a BHBs on September 14, 2015 [43]. Nevertheless, there are other detectors such as
GEO600 [44], Virgo [45], and Kagra [46]. All these antennas work together in what is
called the LIGO-Virgo-KAGRA (LVK) Collaboration to cover the observations over the
whole sky. Even though antennas are considered to be all-sky surveys, they have some
blind spots. For this reason, the placement of several observatories all over the globe is
required to cover all the angles in the sky, which allows us to combine the results and
perform a good estimation of the sky localization of the source.
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The GEO 600 interferometer is a 600-meter interferometer located near Hanover in
Germany. In 2006, GEO600 reached the design sensitivity of h ∼ 3 × 10−22 Hz−1/2 at
about 700 Hz, but up to now no signal has been detected [44]. However, its presence is
fundamental, as it was the first antenna to be operational and constitutes the base for
second-generation interferometers. It is also frequently used to test technical innovations
for next-generation ground-based interferometers.

LIGO consists of three interferometers, H1 with 4 km arms and H2 with 2 km arms
located in Hanford, Washington, USA, and L1 also with 4 km arms located in Livingston,
Louisiana, USA. They have been operational since 2002, with a current catalog at the end
of O4a (first half of the fourth observational run) of about 170 detected sources, where
81 of them are unconfirmed but with significant probability [47]. The current sensitivity
allows to detect sources at ∼150 Mpc [47].

The Virgo interferometer located near Pisa, in Cascina, Italy, has 3 km arms and
joined the network at the end of the second observation run (O2). Its current sensitivity
has been compromised, reaching distances of 40 to 80 Mpc. Nevertheless, with a catalog of
many events [45] its participation in the O2 was essential to correctly locate the coalescence
of two NSs [48], which enabled the identification of its Electro-Magnetic (EM) counterpart
[49], a γ-ray burst observed by Fermi [50]. This event marked the beginning of the multi-
messenger astronomy era.

KAGRA is a 3 km arms interferometer placed underground in the Kamioka mine in
Japan. Even though the Japan region is known to be seismically active, the underground
placement allows to suppress the seismic noise. Contrary to other detectors it operates
at cryogenic temperatures with sapphire mirrors to suppress thermal noise. It joined
the network at the beginning of 2020, however, it is still tuning its operational mode to
achieve the design sensitivity, which at the moment allows it to detect sources at distances
no further than 10 Mpc [47].

The LIGO-India will be a 4 km armlength detector and is still in a development
stage [51]. It will complete the LVK network.

The construction of third-generation interferometers with higher sensitivity is planned
but pending approval. One is Cosmic Explorer, an American project with 40 km arm
length [52]. The other is a European collaboration, the Einstein Telescope (ET), that will
be placed underground in a European country that has yet to be decided. Instead of two
perpendicular arms like previous ground-based detectors, this detector is expected to have
three arms forming an equilateral triangle with a 10 km side [53].

Current detectors are in essence Michelson interferometers introduced in Sec. 1.3,
nonetheless, they had to evolve to gain sufficient sensitivity to achieve the detectability
regime. One property is that ideally the mirrors, also referred to as test masses, should be
free-falling. In ground-based laboratories that freedom can be approximated by hanging
the masses as pendulums [54]. The test masses are 40 kg cylindrical polish fused silica,
with a reflectivity of ∼ 99.99%, hanging from a 4th stages pendulum. The first three
stages consist of steel wire, while the last stage is made of silica fibers. This layout helps
to isolate the mirrors from vibration. This action is complemented by an internal seismic
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(a) LIGO in Levingston, USA (b) GEO600 in Hanover, Germany

(c) Virgo in Cascina, Italy (d) Kagra in Kamioka, Japan

Figure 1.12: Photos of the LVK Collaboration interferometers. Credits: LVK
Collaboration [12].

isolation system composed of movement sensors and mechanical devices that counter-act
movements generated by environmental vibration, allowing the test masses to be motion-
free.

Another important addition consists of another mirror between the splitter and the
mirror at the end of each arm [55]. The beam is then reflected several times, about 300,
between the test mass in the middle and the one at the end before recombining at the
photodetector with the beam from the other arm. This feature increases the effective
length of the arms without having to make them explicitly larger. The arm lengths of
LIGO are 4 km, but with this adaptation, the effective length becomes 1200 km. For the
3 km arms in Virgo, the effective length is around 850 km. This kind of adaptation is
called a Fabry-Pérot resonant cavity [55].

One property of the laser is that the frequency is monochromatic, so it can be set
according to the length variation. Increasing the laser power entails an increase in the
interferometer’s resolving power since it will sharpen the interference fringes. However,
too much power, also called shot noise, will inflict too much pressure on the test masses
and generate a displacement in the mirrors. So a balance between the shot noise and
the pressure radiation has to be set. In the case of LIGO-Virgo, that balance occurs
when the laser operates close to 750 kW. Since the input power is about 40 W, power
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Figure 1.13: Sensitivity curve in advanced Ligo. Credits: LIGO Collaboration [55].

recycling mirrors are placed in each arm to increase power. All the light that escapes
the Fabry-Perot cavity is constantly reflected into the interferometer by these recycling
mirrors, ensuring that nearly all of the laser light entering the arms follows a path back
to the reflective side of the power recycling mirror rather than to the photodetector [12].
Signal recycling mirrors are also placed before the photodiode detector to optimize the
sensitivity. A given bandwidth selected by the mirror’s reflectivity redirects the signal to
the interferometer, enhancing its size through resonance.

An ultra-high vacuum is needed to avoid statistical variations in the column density
of gas particles in the beam path over the 3 or 4-km tunnel. The noise model is calculated
by integrating the molecular velocity distribution. It is also important to prevent the
pressure applied by the residual gas components, hydrogen being the most dominant
contributor [55].

Sensitivity

The design sensitivity of advanced LIGO is shown in Fig. 1.13. Different noises
shape the final sensitivity curve [56]. The most constraining are the quantum noise, the
thermal noises, the seismic noise, and gravity gradients.

Quantum noise: This noise includes the effects of statistical fluctuations in shot
noise and radiation pressure due to photons’ quantum behavior. Shot noise is derived
from the Heisenberg principle, which entails an uncertainty in time and energy. This
variation can be interpreted as a lag in time or phase, hence mimicking a GW signal.
In the high-frequency range, a major contribution from this type is expected, while at
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low frequencies, the radiation pressure is expected to be the dominant contribution [55].
Of course, the effects of the radiation pressure fluctuations can be reduced by increasing
the mass of the mirrors or by decreasing the laser power at the expense of degrading the
sensitivity at higher frequencies.

Thermal noise: The operating range of the detector lies between the resonances of
the test masses and their pendulum suspensions, and thus the noise in the operating range
comes from the tails of these resonant modes [56]. Coating Brownian noise is the dominant
of the various test mass thermal noise terms. It arises from mechanical dissipation in the
mirror coatings. Mechanical loss in the bulk test masses is responsible for the substrate
Brownian noise term. To decrease this kind of noise the test masses should have a shape,
whose resonance frequency is not in the operating range.

Suspension thermal noise: It is primarily due to loss in the material of the sus-
pension. Any harmonic oscillator such as a pendulum has an energy described by the
pendulum frequency and the material frequency. Then, again a loss factor associated with
the resonant frequency is related to the mechanical noise of the material [57]. To lower this
noise, fused silica fibers are used in the final stage of the suspension. The four fibers that
hold the masses have a circular but variable diameter, being thin in the middle section
of the fiber, and about twice as thick near the ends, since this geometry minimizes the
thermal noise [55].

Seismic noise and gravity gradients: The ground motion has a severe impact at
low frequencies. To minimize this effect it is necessary to isolate the test masses. A
combination of passive and active instruments is introduced to make this possible. An
inertial free platform balancing over an inverted pendulum composes the active stage,
while the passive stage involves the multistage pendulum, which completely attenuates
the effect of this noise above 20 Hz.

Indeed, one can observe a cutoff in the lower frequency regime in Fig. 1.13, mainly
due to the seismic and thermal suspension noises. Therefore, it is not surprising that
having an interferometer in space is considered to overcome these constraints. In space,
no thermal suspension affects the free-falling test masses, and no seismic noise is present
either. Nevertheless, other noises will gain weight, as I describe in Sec. 2.4. Keep in mind
that there is a need to observe the lower frequency band, to open the door to other sources
such as MBHBs and Supermassive Black Hole Binarys (SMBHBs). See Fig. 1.9.

1.4.2 Space-born detectors
The idea of space-born interferometers arises naturally as an answer to overcome the

seismic noise and the suspension thermal noise when shifting to a lower frequency band.
In this regime, one can find the Laser Interferometer Space Antenna (LISA) that has

recently been adopted by the European Space Agency (ESA). The details of the mission
are not discussed here, but in Chapter 2, which is completely dedicated to the LISA
observatory. However, as a brief description, it is worth mentioning that its objective is to
detect GWs in the millihertz band, from 10−4 to 0.1 Hz [3]. The constellation consists of
three spacecraft in a triangular formation, to produce Michelson interferometers via laser
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beams exchanged between the three satellites with a 60◦ angle between arms of 2.5 million
km length. The equilateral formation will trail the Earth about 50 million km in the same
heliocentric orbit. The mission is expected to be launched at the end of 2035.

Figure 1.14: Schematic of space-born GW detectors in Earth’s orbit. Credits: Luo et al.
[58]

China has proposed to launch other two space-born telescopes also in the millihertz
band, Taiji [59] and TianQin [60]. Both have a similar design concept as LISA but with
different arm lengths. In the case of Taiji, the three spacecrafts will precede Earth in
its heliocentric orbit. The constellation will have a triangular formation with a length of
3 million km and a possible launch in 2033. TianQin is expected to orbit the Earth in
a

√
3 × 105 km size triangular setup, which allows reaching slightly higher frequencies,

covering part of the frequency gap between LISA and ground-based interferometers.
Other detectors, such as DECihertz Interferometer Gravitational-wave Observatory

(DECIGO) and B-DECIGO [61], have been planned to cover frequencies between 0.1 and
10 Hz. The mission is still in the development stage.

A collaboration network between two or more detectors would have great potential
to contrast and complement results, which would allow enlarging the science case with
GWs in the mHz band and above [58]. See Fig. 1.14 for a sketch of the potential location
of the different space-detectors.

1.4.3 Pulsar Timing Array
Pulsar Timing Array (PTA) is a network of many galactic pulsars. A schematic is

presented in Fig. 1.15. Pulsars are NS with a strong magnetic field that expels electro-
magnetic radiation through its poles in the form of jets. If the rotation axis differs from
the magnetic axis, the pulsar becomes a beacon with a frequency equal to its rotation.
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The rotation or spin of these objects is quite steady being around 10−3 to 10 s, with a
derivative of the order of 10−[12−20] s/s, which makes them very precise clocks.

Figure 1.15: Representation of the pulsar timing array in a perturbed spacetime
manifold.

To constitute the network of pulsars, only the fastest rotating pulsars with spins of
milliseconds are considered. Then, by knowing the precise time of arrival (ToA) one can
compute deviations from the expected value. There are several challenging features to
take into account when dealing with these astrophysical objects. For instance, the ToA
could be perturbed due to a passing cloud of matter in the emission line. Other effects
that can impact the ToA are the slowly varying spins that would introduce a residual
red noise, or the proper motion of the sources, as well as instrumental noises such as the
reference clocks or thermal noise in the telescopes to name but a few. For an isotropic,
unpolarized SGWB, the expected correlated response of a pair of pulsars follows the so-
called Hellings-Downs curve [62]. Hence, all the measurements of ToA of the pulsars are
combined to search for the presence of the Hellings-Down correlation. In an analogy to
the interferometer, the distance between the pulsar and the observer is the arm length of
the detector. Thanks to these very large rulers, the GW frequency window is from 10−9

to 10−6 Hz.
Recently studies from three collaborations, the European Pulsar Timing Array

(EPTA)[63], the Parkes Pulsar Timing Array (PPTA) [64] and the North American
Nanohertz Observatory for Gravitational Waves (NANOGrav) [65], found preliminary
evidence of a gravitational wave background [66–74]. Each collaboration collected (and
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keeps collecting) data for several years with different radiotelescopes and with different
arrays of pulsars, so the common signal could not be attributed to instrumental noises.
Of course, different analyses were and still are performed to properly identify the common
signal. Nevertheless, the most likely candidate is a stochastic background generated by
binaries of supermassive black holes.

There are three more collaborations: the Chinese Pulsar Timing Array (CPTA)
[75], the MeerKAT Pulsar Timing Array (MPTA) [76], and the Indian Pulsar Timing
Array (InPTA) [77] that recently started taking data, but with similar results [78? ]. The
contribution of these collaborations to a single data analysis could shed more light on the
nature of the stochastic background. The International Pulsar Timing Array (IPTA), a
group including EPTA, PPTA, NANOGrav, and InPTA, plans to perform such analysis
[79–81].
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Chapter 2

LISA

The Laser Interferometer Space Antenna (LISA) is an European Space Agency
(ESA) scientific space mission to detect gravitational waves in the range of millihertz.
It consists of three satellites in a triangular formation to produce interferometric mea-
surements. As a GW crosses one arm of the antenna, it will create a deformation of the
spacetime changing the relative distance between two test masses in distant spacecrafts.
Small distance variations are sensed by interferometry techniques, as I detail in Sec. 1.3.

The constellation will follow Earth at a distance of about 50 million kilometers in the
same heliocentric orbit, with an inclination of the constellation plane of 60◦ to the ecliptic
plane, a visual representation is shown in Fig. 2.2. This distance emerges as a compromise
between ground communication, and counter-productive gravitational interaction from
Earth. The triangular formation is opportune to produce different interferometers with
particular combinations of phasemeter measurements. In the following sections, I recall
the success of LISA Pathfinder in probing required technologies for LISA in Sec. 2.1.
Sec. 2.2 is used to exhibit a general description of the mission. I describe the components
of the Spacecraft (S/C) and the interferometry measurements in Sec. 2.3 and the expected
associated noises in Sec. 2.4. Afterward, I move to the post-processing description of the
interferometric measurements in Sec. 2.5. Once the data time series are produced, the
analyses to extract the science take place. In Sec. 2.6 I list the expected observations and
the science objectives of LISA in Sec. 2.7. This chapter is based mostly on [3; 82; 83].

2.1 LISA Pathfinder
LISA Pathfinder (LPF) was launched on December 3, 2015, and was in science

operation from March 1, 2016 to June 30, 2017. The satellite orbited the L1 point, located
some 1.5 million kilometers from Earth in the direction of the Sun. The mission was
conceived to test one of the central technologies for LISA. Its objective was to probe the
free-fall performance of two test masses, while inside of a spacecraft. A small interferometer
with a length of 38 cm was assembled within the spacecraft, with a test mass reflecting the
beam at each end of the arm [84]. Each gold-platinum test mass was allowed to free-fall
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within a vacuum container. The aim was to measure the displacement of the test masses.
The displacement yields the geodesic deviation of the test masses due to inertial and EM
forces from the container and the spacecraft itself. At low frequency 1 − 30 mHz the
dominant noise was identified as the Brownian motion of the test masses by the residual
gas in the container. Above that frequency, the interferometer readout noise was superior
to all the other noises.

Figure 2.1: Amplitude spectral density of the spurious differential acceleration between
the two test masses in LPF. Results from the first publication in blue [84], and the

improved results from the second publication in red [85]. Note the required ASD for
LISA and LPF mission above the obtained results in grey. Credits: LPF Collaboration

[85].

Between the first [84] and the second publication [85] of the results, the identification
and comprehension of spurious noises, like the pressure of the gas surrounding the test
mass, the electrostatic actuation force and the S/C rotation, allowed for an improvement
on the measurements. Notably the identification of glitches allowed for a noise reduction.
Even though the glitches were not completely understood, their characterization was useful
to produce a catalog with a large probability of being seen in LISA and to develop methods
to detect them [86]. Consequently, the accuracy of the Amplitude Spectral Density (ASD)
of the acceleration deviations exceeded the expectations [85]. The successful results of LPF
shown in Fig. 2.1, allow us to demonstrate the feasibility of the drag-free control by the
use of inertial sensors, the laser metrology system, and the ultra-precise micro-propulsion
system that will be adapted to LISA [87].
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Figure 2.2: Cartwheel motion of the three spacecraft and the constellation orbit position
with respect to the Sun and Earth. Credits: ESA [87].

2.2 Mission
In 2017 the project became a large mission for ESA. It was selected as an L3 mission

in ESA’s “Cosmic Vision 2015-2025” with a contribution from the National Aeronautics
and Space Administration (NASA) as a junior partner. The milestone of GWs detection
in 2015 by LIGO as well as the success of the LPF proof-of-concept, were decisive in tilting
the balance positively to its selection. After going through several studies on the science,
the technology involved, and the processes to analyze the data, the mission was considered
satisfactory for adoption in January 2024. This means that the development will go as
planned and in January 2025 the construction of the instrumentation should begin with
an estimated launch with Ariane 6.4 at the end of 2035 [87]. Once in space, around 2
years are needed for transfer and commissioning. When each S/C reaches its position in
the predefined orbit, the test masses will be set free to follow the geodesics. Each S/C
will also follow the free-falling test masses with the help of the Drag-Free Attitude Control
System (DFACS). After the deployment and consistency checks are finished, data taking
will start for a nominal duration of ∼ 4 years.

The first idea of a space interferometer dates from the 70’s. The proposed design of
the interferometer changed through the years to eventually evolve to the current design
of a triangular formation with 2.5 million kilometers of length. Thus, the constellation is
composed of three S/C deployed in a quasi-equilateral triangular formation orbiting the
Sun at 1 AU (astronomical unit). Each S/C will follow a particular heliocentric orbit
generating a motion of the constellation commonly known as a cartwheel, see Fig. 2.2.
A direct consequence of the cartwheel motion is that the path length of the arm in one
direction will not coincide with the opposite direction, as shown in Fig. 2.3. The constel-
lation as a whole would approximately preserve its formation, but the relative distance
between the S/Cs would slowly change through a year’s rotation. This movement results
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Figure 2.3: Representation of Sagnac effect due to cartwheel motion in LISA. Not to
scale.

in a variation of the arm lengths about 50000 km, which represents around 2% of the total
distance. Another consequence of moving S/Cs while emitting and receiving signals will
imprint a small variation in the response of the instrument to the gravitational wave.

In general, small displacements of the satellites or vibrations of the internal artifacts
can mimic the effect of GWs. Therefore the identification and characterization of noise
contributions are essential, among which one can consider these two main perturbations,
but extended in more detail in Secs. 2.3 and 2.4:

• Displacements of the test mass to the optical bench.

• Acceleration forces acting on the test masses.

The feasibility of LISA measurements relies on the characterization and suppression
of the noises via three techniques: split interferometry, time delay interferometry and
heterodyne interferometry, that I introduce in the following sections.

2.3 Instrumentation
Laser interferometry allows us to measure small displacements with high precision.

However, the constellation will suffer small perturbations, as I previously mentioned.
These perturbations can generate a noise that buries the strain of a GW. For that rea-
son their identification is crucial. In this section, I focus on the split interferometry and
heterodyne interferometry, which allow us to measure the test mass to test mass distance
[83]. With that goal, I describe now the instruments of the constellation.

In LISA, each S/C carries two Moving Optical Sub-Assembly (MOSA) each com-
posed of an Optical Bench (OB), a laser source, a phasemeter, a telescope, and a Gravitational
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Reference Sensor (GRS) where the Test Mass, often proof mass (TM) is placed, as shown
in Fig. 2.4. I describe each component in the following.

The beam light is generated at the laser source with a wavelength of 1064 nm and
a power of 2 W. A small fraction of this beam is redirected within the OB to track the
intrinsic motion of the instruments and the rest is sent to the distant S/C. The 30 cm
telescope’s function is to send and collect the laser beam whose power, after 2.5 × 106

km of traveling, decreases about 10 orders of magnitude, resulting in a received beam of
a few hundred picoWatts. This amount is not sufficient to be sent back to the emitted
S/C with a simple reflection, therefore a new beam with a locked phase is generated. The
locking of the phases is to ensure coherency between the beams. One of the laser beams
is chosen to be the master beam, while the others will have a locked phase to the master,
with a small frequency shift. The frequency shift, given two beams, serves to obtain a beat
note that allows us to perform a heterodyne measurement of the phase difference between
those two beams. This technique is called heterodyne interferometry. There exist several
configurations of phase locking, but one needs to make sure that the frequency difference
between two beams lies within the photodetector reading range. For this reason, a so-
called frequency plan is developed, see [88] and reference therein for more information on
this subject.

Figure 2.4: Components of the moving optical sub-assembly in spacecraft 1. Credits:
Bayle et al. [89].

The GRS was designed to contain the test mass and the hardware required to protect
and monitor it. The TM is a 46 mm cube made of pure gold-platinum weighing approx-
imately 2 kg. By caging the test mass it remains protected during the launch. Once in
flight, it is decaged, positioned, and released in free-fall without any residual inertial forces.
The GRS contains sensors to control the transversal displacements of the test mass, and
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mechanisms to compensate these displacements when required. Such mechanisms consist
of actuation forces to counteract rotational or translational accelerations. Moreover, there
are diagnostic systems including thermometers, magnetometers, and a radiation monitor
to track variations. A UV discharge system surrounding the cube is also in place to neu-
tralize the charge in case of cosmic rays or solar-charged particles. I refer to [3] for further
details.

Finally, the OB is where the actual interferometry takes place. The OB consists
of a baseplate made of Zerodur to guarantee the stability of the path length in case of
temperature variations since the material has a low coefficient of thermal expansion. Sev-
eral beam splitters, lenses, and mirrors to redirect the beams to different photodiodes
complete the bench. The photodiode signals are processed by the phasemeters to extract
the phase measurements that translate into displacements. There are three interferom-
eters: the Inter-Satellite Interferometer (ISI), the Test Mass Interferometer (TMI), and
the Reference Interferometer (RFI). All three interferometers are combined to compute
the test mass to test mass distance that allows us to detect the passing of a GW. The
partition of interferometers to asses different displacements or acceleration is known as
split interferometry. The recombination of the interferometry measurements allows us to
perform the GW detection by suppressing the S/C jitter as detailed in Sec. 2.5.2.

The ISI is a long-base interferometer that combines the laser beam generated in
the distant S/C with the one generated locally. This measurement carries the imprint of
the GWs as well as the information of the laser noise, both S/C jitters and the readout
noises. The RFI compares the two adjacent lasers within the same S/C, which allows in
particular for the assessment of the backlink noises. The TMI is a local interferometer that
follows the same path as the RFI but bounces on the TM before recombination. The phase
comparison of these two latter interferometers enables us to measure the displacement of
the test mass within the S/C. Note that the laser noise and the readout noise are common
to all measurements. See Fig. 2.4 for an elementary sketch.

Three interference measurements are produced per MOSA, resulting in six measure-
ments on board each S/C. The data is then filtered and down-sampled to be digitized
to be sent to Earth for post-processing. The rate for sending data to Earth is set to be
every 8 hours per day at a frequency of 4 Hz, which would generate glitches or gaps in
the measurements due to the antenna pointing. A protected period of up to 14 days is
foreseen in case of sources in the proximity of the merger. At that time, no maintenance
operations will be allowed to prevent corruption of the data.

2.4 Noises
In this section, I cover the main noises that will appear in the data streams as a

consequence of the instruments. Definitions and values are taken from [3; 83; 90]. In
the post-processing, several noises can be suppressed leaving a residual noise that will
determine the sensitivity of LISA to GWs. The resulting ASD is shown in Fig. 2.5.
The dominant noises are taken into account when simulating data and of course in the
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parameter estimation pipeline.
Regarding the assessment of the noise, I helped in an analysis of the laser injectors’

stability in OB prototypes in the ground segment equipment.

2.4.1 Laser noise

The laser implemented in LISA is a standard Nd:YAG laser source with a wavelength
of 1064 nm and an optical frequency of 282 THz [3]. The estimated ASD for that laser
is of the order of 10−13 Hz−1/2, while GWs have amplitudes around 10−21. Then, laser
noise is certainly the dominant noise in LISA by several orders of magnitude. It arises
from the frequency fluctuation in the laser beam that is transmitted along the whole
constellation. In the case of interferometry with coherent light and fixed arms, like ground-
based interferometers, the fluctuations cancel out when reaching the photodetector. The
complexity added in LISA with continuously varying arm lengths while rotating prevents
the suppression with the same techniques. The solution to overcome this issue relies on
post-processing called Time Delay Interferometry (TDI) introduced in Sec. 2.5.

2.4.2 Test mass acceleration noise

The Test Mass, often proof mass (TM) is supposed to free-fall, but any interact-
ing force would introduce deviations from the geodesic. Displacements from the geodesic
mimic the passage of a gravitational wave, therefore shielding the TM from those per-
turbations is crucial. As I previously described, GRS comprises several instruments to
protect, monitor, and act on the TM. All those mechanisms near the test mass will un-
avoidably introduce inertial forces. Gravitational gradients, particles generating pressure,
and EM radiation will all translate into residual noises on the test mass. Nonetheless, the
excellent performance of LPF taught us the procedure to achieve the required noise level
to observe GWs. The Power Spectral Density (PSD) of the test mass acceleration noise
is given by [82]

Sacc(f) =
(
3 × 10−15

)2
1 +

(
0.4 × 10−3Hz

f

)2
[1 +

(
f

8 × 10−3Hz

)4]
m2s−4Hz−1.

(2.4.1)
As mentioned in Sec. 2.1, the PSD is the result of different effects, such as the Brownian
motion, actuation force, stray electrostatic force, magnetic forces, temperature fluctua-
tions, coupling to MOSA and S/C motion and gravitational fluctuation among others
[90]. Yet, another noise that deserves to be mentioned is the Tilt-To-Length (TTL) cou-
pling. The TTL is the effect of a small rotation, i.e., a tilt in the TM, which translates into
a misalignment between the incident beam and the center of the TM, producing a small
pathlength variation. Great efforts to identify and correct it are being developed [91].
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2.4.3 Space craft jitter noise
The DFACS is responsible for monitoring the positions of both TMs, enabling the

S/C to follow them along their free-fall trajectories. Nevertheless, the S/C should still
be able to point the local OB to the OB at the distant S/C and to face the solar panel
towards the Sun. In addition, residual forces could produce fluctuations in the free-fall of
the S/C. These perturbations can be corrected via the ignition of thrusters. The micro-
Newton force achieved by thrusters allows for a precise position and orientation of the S/C.
As the S/C corrects its path, the whole assembly suffers perturbations and accelerations
that change the relative distance between TM and OB. This agitation noise is mainly a
consequence of thruster activity. Therefore, by knowing the TM-S/C coupling as well as
the thruster model and DFACS tracking, this noise can be reduced to become negligible
in the on-ground data processing [3].

2.4.4 OMS displacement noise
The Optical Metrology System (OMS) displacement noise encloses several artifact

noises impacting the effective path of the beams. For reference, this kind of noise was
called the readout noise in LPF. Within this noise group, one finds noises related to the
laser beam itself and its interaction with the TM or the medium, such as the shot noise,
electronic noise, thermoelastic distortion, and photodetectors noise, to name but a few.
In the assumption of uncorrelated noises, the estimated PSD results in a quadratic sum of
the different noises, with the phase originating in the backlink fibers, the dominant one.
The PSD noise then reads

Soms(f) =
(
15 × 10−12

)2
1 +

(
2 × 10−3Hz

f

)4
m2Hz−1. (2.4.2)

2.4.5 Clock noise
On board each S/C, there is an Ultra-Stable Oscillator (USO) that acts as a very

precise clock. Indeed, there are three unconnected clocks in the constellation. Hence,
each oscillator could independently drift, yielding a possible maximal shift of around 25
s in a 10-year duration. Another particular effect of the oscillator is the residual timing
jitter that can be translated into noise. The clock serves as a reference time for three
measurements; then, a residual jitter can affect those three measurements, namely:

• The absolute distance between S/Cs is obtained through a process called ranging.
It consists of exchanging pseudo-random codes within the laser beam. The received
information is then compared with the local pseudo-random code to estimate the
combination of the ranging and the clock drift which could be differentiated later in
on-ground data processing.
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• The USO triggers the Analog to Digital Converters (ADCs) to digitize the signal of
the photodiodes, which is then sent to the phasemeters. In this passage, any time
fluctuation will imprint an error in the measured phase.

• Once in the phasemeter, the phase measurements are time-stamped at a sampling
rate dependent on the master clock.

Thus, time jitter in the USO would unavoidably introduce fluctuations in the phase mea-
surements as well as erroneous absolute distances from the ranging.

2.4.6 Backlink noise
In the local interferometers, that is in the TMI and the RFI, beams from one MOSA

with the adjacent one are combined. Given the arrangement of both MOSAs within the
S/C, two approaches to transport the light are possible. The first is with mirrors and
lenses to create an optical beam path, and the second is with optical fibers, which is
the current baseline. In the beam transfer, the bent cable introduces a phase difference
between the path in one direction and the opposite direction. The required ASD for this
value is set to be [82]

Sµ(f) =
(
3 × 10−12

)2
1 +

(
2 × 10−3Hz

f

)4
m2Hz−1. (2.4.3)

Note that this value is below the OMS noise level, which will dominate over this term.
The contribution of all these noises delimits the sensibility of LISA. Of course, sev-

eral of them can cancel out or strongly be reduced in the on-ground processing. However,
many other noises will remain, determining the noise PSD of LISA. Roughly speaking, it
has two main contributors: the acceleration noise, which dominates at frequencies below
1 mHz and the OMS displacement, which dominates at higher frequencies. In Fig. 2.5, I
show the required ASD from [82] to achieve the science objectives, described in Sec. 2.7.
From now on, I will refer to the noise model of Eq. (2.4.1) and Eq. (2.4.2) as to the Science
Requirement Document (SciRD) noise, denoted to be the required noise level in [82].

2.5 Data post-processing
In a regular Michelson interferometer, the laser beam is divided in two, forming a

90◦ angle, albeit other angles are possible. Each beam travels along one arm, reflects
off a TM, and returns to the beamsplitter to be recombined in the phasemeter. With
measurements of the phase variation, one can infer the crossing of a gravitational wave
via length variations suffered by the arms, as explained in Sec. 1.3. However, LISA will
have unequal, flexing arms, meaning the triangular formation will neither be equilateral
nor stationary, as the arm lengths will vary independently by up to 2%, with velocities not
exceeding 12 m/s. Additionally, while the light travels 2.5 million km (about 8.3 seconds)
from one S/C to another, the satellites will move, leading to an unequal light travel time
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Figure 2.5: Amplitude spectral density required to achieve science objectives in blue. It
is dominated by acceleration in orange at low frequencies and OMS displacement at high

frequencies in green. The oscillation at high frequencies comes from the arm-length
penalty.

(ltt) for the incoming and outgoing beams at a single satellite. This phenomenon, known
as the Sagnac effect, will impact phase measurements, causing incomplete cancellation of
laser noise during beam recombination. To address this issue, an offline technique called
time delay interferometry (TDI) has been developed, primarily to reduce laser noise.

2.5.1 Interferometry
To describe the TDI combinations, we need first to understand what is measuring

each interferometer. Let’s introduce the configuration and indexing convention for the
LISA constellation. Fig. 2.6 provides a sketch of the three satellites in their triangular
formation, with each S/C labeled 1 through 3. As discussed in Sec.2.3, each satellite com-
prises two MOSAs along with internal instruments. Both the MOSAs and their internal
components are labeled using a two-index system, indicating the receiver and emitter S/C
numbers in that specific order, following the convention adopted in [92]. For example,
MOSA 23 refers to the MOSA on S/C 2 oriented toward S/C 3. The symbol D denotes
the time delay operator, defined later in the description of the TDI channels.

With the proper definitions in place, I will start with the simplest case scenario of
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Figure 2.6: Configuration and indices definition of the spacecrafts and its instruments.
Credits: Bayle et al. [92].

Michelson interferometry and build up from there.

Equal-arm interferometry

The simplest case of Michelson interferometry consists of two equal-length arms,
see Fig. 2.7b. In that case, the differential phase measured at the phasemeter is just the
difference of the phase at each arm,

y(t) = p

(
t− 2L

c

)
− p

(
t− 2L

c

)
= 0, (2.5.1)

where p is the measured phase including all possible laser noises, t the time of measure
taking, and L the arm length. Note that the phase variation is the difference in the phase
between the time of the data taking and the time of the emission which is twice the
arm length over the speed of light. In other words, the measurement corresponds to the
evolution of the phase in the ltt through both directions along the arm.

Unequal-arm interferometer

For an unequal-arm-length interferometer, the laser noise will no longer cancel.
Moreover, the larger the difference between the arms, the larger the magnitude of the
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(a) Equal-arm interferometer.
(b) Followed beam path to achieve laser noise

suppression for a triangular formation.

Figure 2.7: Equal-arm Michelson interferometer configuration and required path to
cancel laser noise. Credits: Bayle et al. [83; 89].

laser frequency fluctuations affecting the phase measurements [93]. Consequently one
needs to measure the laser phase individually for each arm,

y1(t) =p
(
t− 2L1

c

)
− p(t) + n1(t), (2.5.2)

y2(t) =p
(
t− 2L2

c

)
− p(t) + n2(t), (2.5.3)

where here the n represents other noises entering the phase measurement. Note that each
phase measurement has a different phase, p(t) for a given time t, and of course, since the
traveled path is different, the ltt at each arm would also vary. To obtain the total phase
variation one combines both beams in the post-treatment of the measurements,

y1(t) − y2(t) = p

(
t− 2L1

c

)
− �

�p(t) + n1(t) − p

(
t− 2L2

c

)
+ �

�p(t) − n2(t). (2.5.4)

Even with the assumption of n1(t) = n2(t), the previous expression is nonzero, indicating
that the interferometric phase is not zero. To achieve the laser cancellation one needs
to resend the beam of one arm to the other and vice-versa, see Fig. 2.8 for a visual
representation. That is

y1

(
t− 2L2

c

)
= p

(
t− 2L2

c
− 2L1

c

)
− p(t− 2L2

c
) + n1(t− 2L2

c
), (2.5.5)

y2

(
t− 2L1

c

)
= p

(
t− 2L1

c
− 2L2

c

)
− p(t− 2L1

c
) + n2(t− 2L1

c
). (2.5.6)

If we assume to know the noise entering the phase difference n1(t) and n2(t) for any
t in both arms or if the artifacts share the same perturbations, we can combine previous
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(a) Unequal-arm Michelson interferometer.

(b) Followed beam path to achieve laser noise
suppression with TDI 1.5. for a triangular

formation.

Figure 2.8: Unequal-arm Michelson interferometer configuration and required path to
cancel laser noise with TDI 1.5. The illustration on the right also serves to take into

account the Sagnac effect. Credits: Bayle et al. [83; 89].

equations to achieve the laser noise suppression,

y1

(
t− 2L2

c

)
− y2

(
t− 2L1

c

)
− (y1(t) − y2(t)) =

p

(
t− 2L2

c
− 2L1

c

)
− p

(
t− 2L2

c

)
− p

(
t− 2L1

c
− 2L2

c

)
+ p

(
t− 2L1

c

)
− p

(
t− 2L1

c

)
+ p

(
t− 2L2

c

)
= 0.

(2.5.7)

Flexing-arm interferometer

Now let us imagine that the arm length depends on time, then Eq. (2.5.7) will not
be zero. If we use Eqs. (2.5.5) and (2.5.6), with the arm length time dependency, we see
that the two terms that no longer cancel are,

p

(
t− 2L2(t)

c
− 2L1(t− 2L2/c)

c

)
̸= p

(
t− 2L1(t)

c
− 2L2(t− 2L1/c)

c

)
. (2.5.8)

However, this difference can be reduced by repeating another full tour of the photons in
the opposite direction, as shown in Fig. 2.9. In the case of a constant velocity of the arms,
the suppression of the laser frequency fluctuations is achieved. Naturally, this does not
completely reflect the situation for LISA, and some residual laser noise is expected.

2.5.2 Interferometer measurements
In the case of LISA, where the power of the beam is not strong enough to bounce

and make the way back to the emitter S/C, one can synthesize a transponder arm off-line,
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Figure 2.9: Followed beam path to achieve laser noise suppression with TDI 2.0 for a
triangular formation. Credits: Bayle et al. [83].

Figure 2.10: LISA equivalent transponder arm. Credits: Bayle et al. [89].

by combining the path of a photon in one direction with the reverse path at an arm length
travel time before (∼ t− 8.3). If we define them as

y1(t) =p1

(
t− L

c

)
− p1(t), (2.5.9)

y2(t) =p2

(
t− L

c

)
− p2(t), (2.5.10)

then,

y(t) ≡ y2(t− L) − y1(t) = p1(t− 2L/c) − p1(t), (2.5.11)
is the equivalent of a transponder arm. See Fig. 2.10 for a visual representation.

However, since the arm length is not the same for the emitted beam as for the
received beam, due to the Sagnac effect 1, one will in general write

yrs(t) = ps

(
t− Lrs

c

)
− ps(t), (2.5.12)

1This notion was introduced in Sec. 2.2, see Fig. 2.3
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where the lower indices r, s determine the receiving and sending S/C respectively. More-
over, let’s also use the time delay operator Drs, which accounts for the time delay between
the emission of a photon in MOSAsr and the reception in the distant MOSArs, see Fig. 2.6.
The time delay operator is defined as

Drs f(t) = f

(
t− Lrs(t)

c

)
, (2.5.13)

where f(t) is any time-dependent function, Lrs is the arm length from the sending to the
receiving S/C. Its compact form of chained delay operators is

Di1i2···in = Di1i2Di2i3 · · ·Din−1in . (2.5.14)

In the following, I will decompose the intrinsic information collected by the different
interferometers within each MOSA. Those measurements allow one to compute the total
phase measurement at the end of each arm, known also as the link response.

The ISI corresponds to the resulting phase from the laser combination from the
distant OB and the local OB. Hence, one can decompose the signal as the sum of the local
laser pij ; the distant laser pji with the associated time delay Dij ; the OMS displacement
noises introduced before with the clock noise as N I

ij for interferometer I ; OB displacements
as ∆ij ; and a projected gravitational wave crossing the beam Hij . The ISI signal in S/C1
facing S/C2 reads then

isi12 = H12 +D12p21 −
(
D12

d∆21/dt

c

)
︸ ︷︷ ︸

distant beam

−
(
p12 + d∆12/dt

c

)
︸ ︷︷ ︸

local beam

+ N ISI
12︸ ︷︷ ︸

readout

. (2.5.15)

Note that the interferometer measurements are expressed in dimensionless units.
The TMI accounts for the TM displacement within the S/C by comparing the adjacent
beam with the local beam. In this path, there is a contribution phase shift from the
backlink noise due to the optical fiber connection N bl

12, and a contribution from the TM
local displacement N δ

12. Note that factor 2 indicates twice the displacement since the light
bounces in the TM, covering twice that distance. In the MOSA12 reads

tmi12 = p13 +
(
d∆31/dt

c
+N bl

12

)
︸ ︷︷ ︸

adjacent beam

−
(
p12 + d∆12/dt

c
+ 2N δ

12

)
︸ ︷︷ ︸

local beam

+NTMI
12︸ ︷︷ ︸

readout

. (2.5.16)

Finally, the RFI measures the acceleration of the S/C and other intrinsic noises

rfi12 = p13 +
(
d∆31/dt

c
+N bl

12

)
︸ ︷︷ ︸

adjacent beam

−
(
p12 + d∆12/dt

c

)
︸ ︷︷ ︸

local beam

+NRFI
12︸ ︷︷ ︸

readout

. (2.5.17)
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The other five inter-spacecraft interferometers can be obtained with cyclic permutations of
the indices. It is important to mention that the Doppler effect due to relative velocities of
the S/C, when emitting and receiving photons, is not taken into account in these equations.
The reason is that in the codes described in Chapter 4, this effect is not considered either.
I refer to [89] if one would like to include it.

To recombine all interferometers to compute the link response, let me introduce the
letters ξ and η as combinations of measurements to suppress the S/C jitter and the distant
laser noise, respectively:

ξ12 = isi12 + rfi12 − tmi12
2 +D12

(
rfi21 − tmi21

2

)
,

η12 = ξ12 + rfi21 − tmi23
2 .

(2.5.18)

Here again, the remaining combinations are obtained by circular permutation of indices.
To cancel the rest of the laser noises one needs to apply time delay interferometry

described in the next section.

2.5.3 Time delay interferometry
Time Delay Interferometry (TDI) was first proposed by Armstrong, Estabrook, and

Tinto [94–97] as a solution to reduce the laser noise due to unequal arm length. Nonethe-
less, other authors also studied this issue [98; 99]. The method is to apply delays to
the phasemeter measurements and combine them linearly to eliminate the laser noise in
a set of measurements known as channels X,Y, Z. The technique was later extended
to non-stationary satellites [100–102] to account for the flexing of the arms. The first
combination is commonly known as TDI 1.0, but if one wants to account for the Sagnac
effect, one should use TDI 1.5. The second case for flexing arms is known as TDI 2.0 or
second-generation Michelson interferometry.

Continuing with the previous notation one can express the component X for the
first-generation TDI as

X1.5 = (1 −D121) (η13 +D13η31)
− (1 −D131) (η12 +D12η21) ,

(2.5.19)

and for the second-generation TDI

X2 = (1 −D121 −D12131 +D1312121) (η13 +D13η31)
− (1 −D131 −D13121 +D1213131) (η12 +D12η21) .

(2.5.20)

The two other components Y, Z can be obtained by cyclic permutations.
Naturally, these channels share instrumental noise, and therefore, they are highly

correlated. Over the years, several possible combinations emerged, see [103] for a detailed
description. However, there are optimal combinations to obtain quasi-orthogonal channels
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that allow to minimize the instrumental noise cross-correlation [104]. Named after their
inventors, Armstrong, Estabrook, and Tinto, their expressions are the following

An = 1√
2

(Zn −Xn), En = 1√
6

(Xn − 2Yn + Zn), Tn = 1√
3

(Xn + Yn + Zn), (2.5.21)

where index n indicates the TDI generation. The channel T has low sensitivity to GWs
at low frequency, thus it is a good null channel to estimate the noises in the constellation
as well as for the search of stochastic backgrounds. However, better performance has been
demonstrated with another channel named ξ, see [105].

Nonetheless, there are other techniques to synthesize the passage of a GW in LISA.
One approach consists of canceling the laser frequency noise by applying principal com-
ponent analysis (PCA) to a set of shifted data samples [106]. There also exists another
method called TDI∞ [107] that uses a large amount of data and a matrix approach for
the delays. However, the most robust approach continues to be the TDI.

2.5.4 End to end pipeline
This section summarizes the transformation of raw data into meaningful information

about the Universe. The processing of phase measurements within the S/Cs up to the
TDI output channels is termed L0-L1 data, covering Sec.2.5.2 to Sec.2.5.3. Once these raw
measurements reach Earth, diagnostics and calibrations are applied, including proper time
synchronization between S/Cs, ranging, orbit control, OB motion correction, laser noise
reduction via TDI, and clock noise corrections. It is also worth noting that new approaches
are being investigated to conduct some onboard processing prior to TDI combination,
potentially enhancing LISA’s sensitivity [108–110]. The TDI output, or level-1 (L1) data,
will then undergo analysis to detect GWs and refine noise levels. At this stage, two
main parallel branches emerge: first, a search for GWs based on various source templates,
and second, a low-latency pipeline aimed at rapidly detecting MBHB merger events to
enable prompt telescope redirection for potential EM counterparts. Later, Parameter
Estimation (PE) is performed for all sources, a process known as level-2 (L2) data analysis
or the Global Fit (GF). Finally, level-3 (L3) data involves the completion of source catalogs,
providing the scientific community with comprehensive datasets for further exploration of
LISA’s discoveries. This process is iterative, with potential feedback loops between L2
and L1 stages. The following section details the steps involved in progressing from L1 to
L3. See Fig. 2.11 for an overview.

2.6 Observation
LISA is an all-sky observatory sensitive to all sources simultaneously. Contrary to

ground-based interferometers, whose main targets are sources observable for a maximum
of a few seconds, LISA-targeted sources remain a long time in the band, which means that
several signals will overlap in the data. Given the high complexity, the question of our
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Figure 2.11: Representation of the data levels and the end-to-end pipeline. Credits:
LISA Red book [3].

ability to disentangle various events is a valid one. In the following section, I outline some
expected sources and the data analysis community’s efforts toward achieving the Global
Fit.

In the frequency range of LISA, we expect to observe a lot of different sources, from
black hole binaries in many sizes and mass ratios to galactic binaries, up to stochastic
backgrounds with astrophysical or cosmological origin. See Fig. 2.12 for possible sources
in LISA’s frequency band

2.6.1 Sources
The crossing of a GW has a very well-defined signature depending on the source

involved, see Fig. 2.13. I will now go through the signatures of the sources that are
expected to be detected in the frequency band of LISA.

Massive black hole binary

Massive Black Hole Binaries (MBHB) systems involve two BHs of similar mass, with
a mass ratio up to ∼20. One can define the mass ratio as the ratio between the heavier BH
over the lighter one, q = m1/m2 ≥ 1. The inverse relation is also accepted. Nevertheless,
I will use this convention throughout the manuscript. The mass of the BHs could be of
the order of 104 up to ∼ 108 M⊙. The result of two galaxies merging would eventually
lead to the coalescence of MBHB of these characteristics. These sources can be observed
throughout the Universe, allowing us to study the population of these enormous objects.
Some of these events are expected to be very loud, which means that they could have
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Figure 2.12: Illustration of primary sources expected to be observed by LISA in the
Amplitude-frequency plane. Among the sources, we find massive black hole binaries,

galactic binaries and their confusion noise, extreme mass ratio inspiral binaries, and solar
mass binaries delimited by the sensitivity level of LISA. Credits: LISA Red book [3].

an Signal-to-Noise Ratio (SNR) above a few thousand [82]. Indeed, this kind of source
would be the loudest one in LISA. Consequently, a precise description of their dynamics
is crucial. Systematic errors in the waveform template would unavoidably result in biased
parameters. Therefore, a significant effort is being put into the development of accurate
waveforms within the dedicated working groups in the LISA Consortium.

There are different methods to describe the dynamics of these sources. The first
method is the Post-Newtonian (PN) expansion. As its name states, one works with Ein-
stein’s field equations in the weak field and expands them in terms of the velocity, i.e.,
v/c ≪ 1. To this day, the expansion is known to be up to 4.5 PN [111], which means that
the expansion on v/c is computed until order 9, i.e., (v/c)9. Each PN order informs us
on complementary features of the system, such as the spins, spin-orbit coupling, or back
reaction, among others. When the velocity approaches the speed of light (v ∼ 0.3c), this
method breaks down. This happens close to the Innermost Stable Circular Orbit (ISCO) 2.
In other words, one can use the PN approach to describe the inspiral of the binary, but
not the merger.

The next method is the already mentioned Numerical Relativity (NR). NR is an
algorithm that solves numerically Einstein’s equations in the strong field. Since the break-

2This definition is introduced later in Sec. 3.1.
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Figure 2.13: Waveforms of gravitational radiation for different sources. Credits: LISA
Red book [3].

through of Pretorius in 2005 [112] in the convergence of the solutions of the equations,
several groups consistently work to generate substantial catalogs of waveforms [113–116]
that can cover mass ratios up to ∼18 and different spin configurations, including preces-
sion in some cases. Precession arises when the spins of the BHs are not aligned with the
normal of the orbital plane. Currently, there are thousands of NR waveforms available.
A setback of NR is the amount of time it takes to solve one single system, which can be
weeks. If one wants to increase the mass ratio or the number of cycles before the merger,
that computational time increases considerably. Therefore, another technique for large
mass ratios and a larger number of cycles is in place, the Self-force (SF).

Self-force relies on perturbation theory with expansions of the metric in terms of, by
our convention, the inverse of the mass ratio (ϵ = m2/m1). It assumes that the massive
non-rotating object defines the background metric and the geodesics, while the lighter
mass will create a small perturbation of the metric. Given the non-linear nature of GR,
the adiabatic term (0PA ∼ ϵ−1) involves dissipative effects of the first order self-force
(1SF), and the first post-adiabatic term (1PA ∼ ϵ0) involves dissipative effects of second
order self-force (2SF) along with first-order conservative effects [117; 118]. Recently, there
have been improvements accounting for the spin of the secondary object [119; 120], as
well as an extension to equal-mass binaries [121; 122]. As its accuracy levels up with
other methods, its limitation is yet to be seen. Nevertheless, solutions have been found
for Schwarzchild BHs but not for Kerr BHs so far.

The Effective One-Body (EOB) formalism uses the Hamiltonian to describe the
system dynamics. It assumes a conservative part of the dynamics (Hamiltonian), which
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maps the two-body conservative dynamics into a test particle in an effective external
metric; a radiation-reaction part that will be the expression for the non-conservative energy
ressumed from the conservative part; and the radiation of the coalescing system. With
these three ingredients, the formalism completely determines the waveform. I refer the
reader to [123–127] for more information.

Combining the methods described above, we can produce a waveform of BHBs over
a vast parameter space. Nevertheless, to perform PE we need fast waveform generators,
which is not the case for all the previous methods. To satisfy this need other methods
arose, namely surrogate models which interpolate numerical data sets [128], and phe-
nomenological models such as IMRPhenom [129–131], that generate the waveform as a
polynomial expansion of amplitude and phase in terms of the frequency, with coefficients
that have been previously calibrated to PN, NR or EOB-NR solutions.

Although there have been new developments in all the approaches, more improve-
ments are needed to achieve unbiased parameter estimation with LISA’s sensitivity [132;
133].

Extreme- and intermediate-mass ratio inspiral

Extreme Mass-Ratio Inspirals (EMRIs) and Intermediate Mass-Ratio Inspirals (IMRIs)
enclose binary black holes with a large variety of mass ratios from 20-30 up to 104. Sources
with a mass ratio of O(108) are extremely mass ratio inspirals (XMRI). Moreover, the small
object is not required to be a BH, it could be any compact object. This scenario is of-
ten encountered in BHs in the center of galaxies with many compact objects orbiting the
massive black hole. The orbits from these systems are very dynamic, undergoing three
kinds of variations: azimuthal motion, precession of the periapsis, and precession of the
orbital plane. Furthermore, given the large mass ratio, higher harmonics will inevitably
appear. Remember that higher harmonics are next-to- and higher-next-to-leading order
in the decomposition of Einstein’s equation in terms of spherical harmonics. Both effects
give rise to very complex waveforms staying in the LISA frequency band for long periods.
Then, errors in the phase would pile up over the many cycles O(105). For that reason,
very accurate waveforms are essential.

A large number of cycles until the plunge is expected, and PN expansion gives the
true solution to a given order, but it is not the complete waveform. Other methods,
such as SF, are needed. Great efforts to include features of eccentricity, spins of both
objects, and inclination are currently ongoing. The augmented analytic kludge (AAK)
describes a short segment of the evolution in a fast way. The AAK, see [134] and references
therein, uses the quadrupole emission from a Keplerian orbit as the baseline but imposes
relativistic effects such as precession and radiation reaction. The obtained parameters are
then mapped to match the frequencies of numerical kludge. That is the expressions derived
from PN expansions from an exact Kerr geodesic and fit to perturbative calculations
from SF waveforms. Nowadays, the most used phenomenological waveform generator is
the Fast-EMRI-waveform (FEW) [134–143]. Even though they present good accuracy
to truthful waveforms to perform a search, they fail to estimate the parameter of more
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realistic waveforms, since precession and eccentricity are not yet included.

Galactic binary

GB are systems composed of two compact objects, such as NSs, WDs, BHs, and
combinations of them, orbiting around one another. The system of WD-WD slowly loses
energy through the emission of GWs with orbital periods of minutes to hours. Thus,
they remain in a slowly progressively varying orbit. Consequently, they present a quasi-
monochromatic frequency with a frequency derivative of the order of f/103. They are
found mainly in the Galactic plane, although other sky locations are possible. They
remain for a long time in the inspiral stage, allowing the waveform to be described as
a sinusoidal wave with a slowly time-changing phase Taylor-expanded at 2nd order in
frequency [3].

In our Galaxy, there are about 107 systems with these characteristics. Only a fraction
of them will be observed by LISA [144]. Moreover, some will serve as verification binaries,
denoting binaries that we know through EM observations that orbit in the LISA frequency
band. However, a large quantity will not be individually resolved, generating a background
confusion noise. The amount of detectable binaries and their background is one issue that
the Data Analysis (DA) community in LISA is trying to address.

Stellar mass black holes binary

Stellar-Mass Black Hole Binariess (sBHBs) are BHs with masses of the order of the
Sun (M⊙), regardless of their origin [3]. Galactic or extra-galactic sBHBs will have even
shorter orbital periods than Galactic Binaries (GBs) entering at LISA’s high frequency.
This will allow us to detect sources in the inspiral stage years before the possible merger
in the LVK or ET band, giving birth to GW-multi-band detection [145].

Stochastic background

SGWB are composed of many different sources with low SNR, too low to be indi-
vidually resolvable. From astrophysical origin, I mentioned already the confusion noise
arising from the GBs, but of course, BHB and EMRIs could also produce a stochastic
signal, with a typical profile of ΩGW ∝ f2/3. Particularly, the GBss follow a characteristic
distribution towards the center of the Galaxy. Due to LISA’s motion, the galactic confu-
sion noise can be modulated over a year, differentiating it from the rest of the background
noise.

Other SGWBs could stem from various phenomena in the early universe, known
as sources with cosmological origin. They can come from First-Order Phase Transition
(FOPT), which in the frequency band of LISA corresponds to a phase transition at the
TeV energy scale [3]. This is the energy scale of the electroweak phase transition, which
could probe particle physics beyond the SM. Cosmic Strings (CS) could also probe physics
beyond-SM, with a current constrain of Gµ ∼ 10−11 achieved by PTA at low frequency
(10−9 − 10−6 Hz) and Gµ < 10−14 from LVK observations [146]. LISA could extend this
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boundary up to Gµ ∼ 10−17 for Nambu-Goto strings [147]. Inflation and PBHs can also
contribute to SGWBs. PBHs gained weight to explain DM concentrations. Further details
on the nature of cosmological sources were given in Sec. 1.2.4 and references therein.

Most of the SGWB waveforms are determined by one or more frequency-broken
power-laws with a characteristic frequency that will mark the peak of the amplitude. The
characteristic frequency, as well as the index of the power-law, depend on the assumed
model which can be very complex. For example, in the case of the FOPT, the waveform
could be described by up to three characteristic frequencies, one per each gravitational
wave contribution: collisions Ω(coll)

GW , sound waves Ω(sw)
GW or magneto-hydrodynamics Ω(turb)

GW ,
producing a specific waveform for the different contributions. Perhaps the biggest obsta-
cle in terms of DA, besides the expected low SNR, is that these waveforms are hard to
differentiate from the instrumental noise. Moreover, the model dependency of the wave-
forms complicates the search for SGWB. Nevertheless, efforts to generate searches with
independent-model waveforms are explored [148; 149].

2.6.2 Global fit
Several of the above-mentioned sources will stay in the LISA frequency band for

many days, weeks, months, and even years. This translates into signal-dominated data,
where all types of sources would overlap. Thus, a technique to disentangle the different
sources is crucial. The fitting is required to account for the overlap of signals, but given the
different time scales, the only way to obtain accurate parameters is to perform a PE of all
sources all at once. If we estimate source by source and extract it, any biased parameter
would damage the possible characterization of another source. To overcome this issue, a
methodology called the Global Fit (GF) will be implemented. With this technique, the
estimated sources are not subtracted but re-estimated in a sequential iteration with priors
from the previous iteration. The procedure is quite complex, although a simple visual
representation of the pipeline steps is shown in Fig. 2.14. Note that it is displayed as
a wheel to suggest that several iterations are required. After each search, the noise and
instrument model is again estimated. This is because the identification of sources and
the estimation of parameters will have an impact on the estimation of the noise and the
instrument model, and vice-versa.

Probably the most natural way to start is with the MBHBs, as their SNR is large,
and their merger is well localized in the time-series data. Once identified, one could carry
on with GBss. Note that the SNR of GBss accumulates over time, so they might not be
detected at first, but they will become louder as the signal accumulates in time. For this
step, one could use techniques like Reverse Jump Monte Carlo Markov Chain (RJMCMC),
where extra dimensions in the parameter volume are continuously added or subtracted.
With this method, not only the source parameters are estimated, but also the number
of sources. Also note that given the frequency dependence of these sources, a frequency
domain search is preferred. EMRIs or sBHBs are the next logical sources, and lastly, the
SGWB and noise model should be estimated at the same time. The noise model also
contains the unresolved GBss, i.e., the time-evolving GBs confusion noise.
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Figure 2.14: Data analysis wheel. It shows the path of the data throughout the pipeline.
Note that after the search for a particular source, the noise and the instrument model

will be estimated again.

The LISA Data Challenge Working Group (LDCWG) working group, releases every
few years, different data analysis challenges for the DA community to solve. Results
obtained by several groups [150] on the “Sangria” challenge [151; 152], demonstrated the
feasibility of the GF for MBHBs and GBss. A visualization of the Sangria dataset is
presented in Fig. 2.15.

The viability of the GF is already proven for those sources in LISA’s Red book [3].
The LDCWG is currently working on improving the results and including artifact noises,
such as gaps or glitches as well as other sources. Once all the sources are identified and
cataloged, the scientific investigation begins.

2.7 Science objectives
The science case of LISA is very broad and rich. The objectives have been describe

in a series of “White papers” [147; 153; 154] as well as in the “Red book” [3], exploiting
the science one can do with the detection of GWs from a full variety of sources. In the
following, I will give a short summary of them, based on [3].

S01: Study the formation and evolution of compact binary stars and the
structure of the Universe

By studying GBss as well as BHs, one can infer the population of these sources in
the local Universe, so far only known from electromagnetic observations. The parameters
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Figure 2.15: Sangria dataset challenge. Credits: LDC [151].

inferred from their waveforms could shed light on the evolution of such binaries and the
rate of their coalescence, which would also impact explosive events (kilo and supernovae)
and heavy material production. As the compact stars become closer, tidal effects would
result in mass transfer. Understanding the outcome of this effect could provide valuable
insights into the structure and formation history of our Galaxy. The science objectives
consist of:

• Formation and evolution pathways of dark compact binary stars in the Milky Way
and neighboring galaxies.

• The Milky Way mass distribution.

• The interplay between GWs and tidal dissipation.

S02: Trace the origins, growth, and merger histories of massive black
holes

The large SNR from MBHB allows for precise measurements of their masses and
spins, sky localization, and distances. All these parameters would help to describe the
population of MBHs. With a sensitivity range above z∼10, the history of MBH formation
could be unraveled. The science objectives are:

• Discover seed BHs at cosmic ionization.

• Study the growth mechanism and merger history of MBH from the epoch of the
earliest quasars.
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• Identify the electromagnetic counterparts of MBHB coalescence

S03: Probe the properties and immediate environments of black holes in
the local Universe using EMRIs and IMRIs

The phase and amplitude of EMRIs/IMRIs over 104 cycles should be known with
high accuracy, allowing us to infer the masses, spins, inclination, eccentricity, distance,
and sky localization. By studying the relation between spins, inclination, and eccentricity,
one could estimate the conditions that made the system evolve to the way it would be
detected. Any variation in the phase could indicate the presence of matter surrounding
the binary. The science objectives are:

• Study the properties and immediate environment of Milky Way-like MBHs using
EMRIs.

• Study intermediate MBH population using IMRIs.

S04: Understand the astrophysics of stellar black holes

Over a hundred sBHBs have been detected in ground-based detectors with high
accuracy on their intrinsic parameters. However, given the low inspiral SNR , other
parameters such as the eccentricity can not be constrained. Measuring the eccentricity
and the inclination of the binary at a lower frequency, as LISA could do years before the
merger, would clarify the formation channel of the heaviest sources found by the LVK
Collaboration. The science objectives are:

• Study statistical properties of Stellar-Mass Black Holes (sBHs) far from the merger.

• Detecting high mass sBHBs and probing their environment.

• Enabling multiband and multimessenger observations at the time of coalescence.

S05: Explore the fundamental nature of gravity and black holes

Given the large SNR expected for MBHB events and the exact phase knowledge in
EMRIs, precise parameters of the systems are estimated. In the presence of new fields
the structure of the final BH for the case of mergers or central BH for EMRIs, could
display signatures beyond GR. Another type of signature could be extra polarizations of
the strain. By studying these sources one could learn about the anatomy of these massive
objects in the strong field regime as well as their emission and propagation. The science
objectives are:

• Use ringdown characteristics observed in MBHB coalescence to test whether the
post-merger objects are the MBHs predicted by GR.

• Use EMRIs to explore the multipolar structure of MBHs and search for the presence
of new light fields.
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• Test the presence of beyond-GR emission channels.

• Test the propagation properties of GWs.

My thesis focuses on studying the sensitivity of LISA to the first item in this science
objective. In the last stage of the event, i.e. the ringdown, the remnant BH will oscillate
with a characteristic complex frequency determined only by the mass and the spin. Any
deviation of the BH’s spectrum could indicate the presence of an alternative theory as we
shall see.

S06: Probe the rate of expansion of the Universe with standards sirens

In the case of an MBHB embedded in gas, the material can fall to the BHs dur-
ing the inspiral and during or after the merger. If so, electromagnetic emission at those
moments is expected, transforming them to bright sirens, where the redshift is accurately
measured. EMRIs instead, are not expected to have EM counterparts, but their redshift
can be obtained through identification with the center of the host galaxy. When combin-
ing the bright and dark sirens, one could constrain cosmological parameters such as the
Hubble constant H0, the matter spectral density ΩM , or the dark energy equation of state
parameter w0. The science objectives are:

• Cosmology from bright sirens: MBHB.

• Cosmology from dark sirens: EMRI.

• Cosmology at all redshifts: combining local and high-redshift LISA standard sirens
measurements.

S07: Understand stochastic GW backgrounds and their implications for
the early Universe and TeV-scale particle physics

Once all targeted sources are removed from the data, or at least identified, there will
remain a stochastic background from astrophysical and cosmological origin. Both types of
backgrounds have distinctive signatures that allow for differentiation. The characterization
of the parameters within each framework would help to give complementary information
on the binaries population and to probe physics beyond the SM respectively. The science
objectives are:

• Characterise the astrophysical SGWB.

• Measure, or set upper limits on, the spectral shape of the cosmological SGWB.

• Characterise the large-scale anisotropy of the SGWB.
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S08: Search for GW burst and unforeseen sources

Everything that has not been explained, like unforeseen sources or signatures from
cosmological features, such as kinks or cusps from cosmic strings. The science objectives
are:

• Search for cusps and kinks of cosmic strings.

• Search for unmodelled sources.
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Chapter 3

Black hole perturbation

This chapter is dedicated to the description of the reaction of a black hole to per-
turbations. When a BH is perturbed, resonant modes inside the BH are excited. These
modes will later fade away through the emission of gravitational radiation in the form
of damped waves. This means that after the perturbation, whatever its origin might be,
the BH returns to its fundamental state through the emission of GWs characterized by
resonant modes called Quasi-Normal Modes (QNMs). Each QNM is defined by an oscilla-
tion frequency and a damping time that only depends on the BH’s parameters mass and
spin, as we shall see. A deviation from GR in the strong field regime might impact the
values of the QNMs that rest on the intrinsic BH’s parameters. The main goal of this
chapter is to introduce the GR pillars on which the no-hair theorem is built. In general,
there is an abuse of language when speaking about the no-hair theorem since the need
for extra parameters to describe the QNMs are not necessarily extra “hairs” in the sense
of conserved charges. Throughout this manuscript, I also refer to the no-hair theorem as
to the absence of parameters beyond the mass and the spin to explain the relaxation of
perturbed BHs.

I begin by briefly describing BHs as solutions of Einstein’s equations in Sec. 3.1 and
with the perturbed Schwarzschild BHs framework in Sec. 3.2. After an introduction to the
Newman-Penrose (NP) formalism in Sec. 3.3, I continue with the Kerr BH perturbation
in Sec. 3.4. In Sec. 3.5, I indicate the path towards the solution of the QNMs, and I
finish with the description of the ringdown as a superposition of QNMs in Sec. 3.6. The
following sections are based mostly on the references [155–161], and I refer the reader to
those for further details.

3.1 Black holes
Soon after Einstein developed the General Theory of Relativity (GR), he started

working on approximate solutions to describe the spacetime surrounding spherical ob-
jects such as the Sun or planets. But it was Karl Schwarzschild, a few months after the
publication of GR, who discovered an exact solution to the gravity field equation [162].
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Under a change of coordinates to work on a spherical basis, the line element of the
Minkowski metric can be written as

ds2 = −dt2 + dr2 + r2
(
dθ2 + sin2 θdϕ2

)
, (3.1.1)

where constant values of t and r give rise to a sphere in a given volume and a two-sphere in
spacetime. Then, the idea of a spherically symmetric spacetime becomes a natural choice
for spherical objects.

A spacetime is said to be stationary if there exists a timelike Killing 1 vector ξµ =
(∂/∂t)µ in that spacetime. Keep in mind that Latin indices denote space coordinates,
while Greek indices denote spacetime coordinates. Then, the group of isometries results
in timelike curves. In addition, a spacetime is said to be static if there exists a spacelike
hyper-surface Σ which is orthogonal to the orbits or curves of the isometry. In other
words, spacetime is static, if on top of stationarity, its geometry remains invariant under
a time reversal (t → −t), which is a consequence of ξ[µ∇νξρ]

2, where ∇ is the covariant
derivative and the squared brackets denote the anti-symmetric component. Hence, a static
spherically symmetric spacetime takes the form

ds2 = −f(r)dt2 + h(r)dr2 + r2
(
dθ2 + sin2 θdϕ2

)
, (3.1.2)

allowing us to reduce the 10 unknown functions of the spacetime into two, f(r) and h(r).
The exact derivation of the functions f(r) and h(r) are standard and beyond the

scope of this chapter, but one can get them by solving Einstein’s equations with this
metric and imposing Rab = 0 for a vacuum spacetime. One can find the full derivation for
instance in [156]. Altogether, it gives the expression of the metric found by Schwarzschild
in 1916 [162],

ds2 = −
(

1 − 2M
r

)
dt2 +

(
1 − 2M

r

)−1
dr2 + r2

(
dθ2 + sin2 θdϕ2

)
. (3.1.3)

The Schwarzschild solution is the only “spherically symmetric vacuum” solution 3. Note
that one recovers Minkowski space if M = 0, and also as r → ∞, which is a property
known as asymptotic flatness 4. Here, M is the Arnowitt-Deser-Misner (ADM) mass that
assumes an asymptotically flat spacetime, which is analog to the Newtonian understanding
of the mass.

The Schwarschild metric, which is a BH solution, as we shall see, is not the only
solution to Einstein equations since other types of BHs are also solutions. The solution for

1Killing vectors ξν are those that fulfil the Killing equation ∇µξν − ∇νξµ = 0. A differential
manifold has at most n(n+1)/2 Killing vectors with n the dimension. Every Killing vector implies
the existence of conserved quantities associated with geodesic motion.

2Frobenius theorem guarantees that a vector u is orthogonal to the hyper-surface Σ if and only
if this equation is satisfied.

3Birkhoff theorem states that any spherically symmetric vacuum solution to Einstein field equa-
tions is isometric to Schwarzschild solution.

4Asymptotically flat spacetimes represent ideally isolated systems. See, e.g., Ch.11 from [156].
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charged BHs was introduced by Reissner and Nordström [163; 164] when considering the
Einstein-Maxwell equations. With q being the electric charge of the BH, the line element
reads

ds2 = −
(

1 − 2M
r

+ q2

r2

)
dt2 +

(
1 − 2M

r
+ q2

r2

)−1

dr2 + r2
(
dθ2 + sin2 θdϕ2

)
. (3.1.4)

The axially spherically symmetric solution, that is a rotating BH, was discovered by Kerr
in 1963 [165]. In the Boyer-Lindquist coordinates it reads

ds2 = −
(

1 − 2Mr

ρ2

)
dt2 − 4Mr

ρ2 a sin2 θdtdϕ+ Σ
ρ2 sin2 θdϕ2 + ρ2

∆ dr2 + ρ2dθ2, (3.1.5)

where

a = J/M, ρ2 = r2 + a2 cos2 θ,

∆ = r2 − 2Mr + a2, Σ =
(
r2 + a2

)2
− a2∆ sin2 θ.

(3.1.6)

There also exists the combined solution of a charged and rotating BH, the Kerr-Newman
metric [166], that can be written as the Kerr metric but with ∆ = r2 − 2Mr + a2 + q2.

For non-rotating BHs, at the Schwarzschild radius rSch = 2M , the escape velocity
becomes comparable to the speed of light (v = c). Then, it is natural to assume that any
particle at this radius will not be able to escape the object. Particles crossing rSch = 2M
are forever trapped inside the sphere. In consequence, the object does not emit nor reflect
light and can be considered as a perfect black body. This particularity, plus the singularity
at its center discussed in the following subsection, leads these objects to eventually be
coined as “black holes”.

One important feature that was discovered by Hawking [167], Carter [168], Israel
[169] and Robinson [170] is that there is a “uniqueness” on each solution 5. In other
words, they derived what is known as the no-hair theorem, which states that BHs are
characterized only by these three 6 conserved parameters : the mass M , the spin a and
the charge q. The dependence of the metric on these parameters is further introduced in
Sec. 3.4.1, where the direct relation can be observed for instance, in Eq. (3.4.20) in that
same section.

3.1.1 Horizons
A remarkable issue of the Schwarzschild solution is that the metric coefficients be-

come singular at r = 0 and r = 2M . But, because the coefficients f(r) = h(r)−1 define the
metric, it should be possible to find a new coordinate system in which the coefficients do

5See also p.292 from Chandrasekhar’s book [171] for a full demonstration.
6Three or two or one, depending on the assumed metric.
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not generate a singularity. This is true at r = 2M , where using, for example, the Regge-
Wheeler tortoise coordinate (r∗ = r+2M ln

∣∣ r
2M − 1

∣∣), one can see that it is a “coordinate
singularity”. However, it is not possible at r = 0, which is a “physical singularity”.

Note that for Kerr and Kerr-Newmann solutions, the physical singularity occurs at
ρ = 0 → r = 0 and θ = π/2, called the ring singularity, and the coordinate singularity
occurs at ∆ = 0 → r± = M ±

√
M2 − a2 − (q2), giving rise to two solutions, the inner

(r−) and outer (r+) solutions. Moreover, these radii are null surfaces (ξµξµ = gtt = 0) that
take the name of event horizon. They denote the change in the structure of two casually
disconnected regions, the inside timelike (ξµξµ < 0) region and the outside spacelike
(ξµξµ > 0) region. Once this boundary is crossed in the ingoing direction, nothing can
cross again in the outgoing direction, since superluminal (v>c) velocities are required to
escape the gravitational potential.

By computing the energy from the static Killing vector ξµ and the angular momen-
tum from the rotational Killing ϕµ = (∂/∂ϕ)µ, one can obtain the gravitational potential
of the stationary BH. For a massive particle (with a timelike geodesic ds2 = −1), there are
two roots in the gravitational potential depending on the radius, at r = 6M and r = 3M .
The radius r = 6M is a stable point in the potential, i.e., a minimum value, while r = 3M
is an unstable point in the potential, i.e., a maximum value. Thus, the Innermost Stable
Circular Orbit (ISCO) is marked at r = 6M . Between 3M and 6M , there are no more sta-
ble orbits, indicating that nothing can remain in that region for long periods, either they
escape, or they fall into the BH. At a radius smaller than 3M , there are no orbits at all.
Hence, depending on the energy of the massive particle in-falling, it can remain in a stable
orbit at r = 6M or fall to the singularity with orbital trajectories between 6M and 3M
and plunge directly after that point. If, on the other hand, one considers a photon (with
null geodesic ds2 = 0), there is only one unstable root at 3M , denoting what is known as
the light ring or photon sphere. Photons traveling at a distance of r = 3M with energy
lower than the BH’s potential at that distance are forever trapped in the photon sphere,
while photons traveling at a distance smaller than 3M fall directly into the BH. Photons
traveling close to the BH, at a distance larger than the light ring, can be deflected. The
deflection angle depends on their energy and the mass of the BH, which could result in
two outcomes: a small deflection in the trajectory allows the particle to continue its path,
while a big deflection in the trajectory results in the particle being trapped by the BH’s
gravitational potential. The first case gives rise to the known lensing effect, that bends
the light.

In the case of the Kerr BH, the norm of the timelike Killing field reads

ξµξµ = gtt = a2 sin2 θ − ∆
ρ2 , (3.1.7)

which becomes positive, thus spacelike, in the region where r2 + a2 cos2 θ + (q2) − 2Mr < 0.
The region lying outside the BH is called the ergosphere, that is at

r+ < r < M +
√
M2 − (q2) − a2 cos2 θ. (3.1.8)
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Figure 3.1: Sketch of a rotating black hole with both horizons, the ergosphere region,
and the singularity ring at r = 0 when θ = π/2.

See Fig. 3.1 for a visual representation. This translates into a “drag of the inertial frame”
where an observer in this region is forced to rotate in the same direction as the rotation
of the BH with an angular velocity equal to

Ω = dϕ
dt = − gtϕ

gϕϕ
= a

(
r2 + a2 − ∆

)
(r2 + a2)2 ∆a2 sin2 θ

. (3.1.9)

Note that in the case of a ≥ M , that is extremal BHs, Eq. (3.1.8) becomes imaginary,
making the horizon disappear. This means that there could be a naked singularity. i.e.,
without a horizon. However, this situation is forbidden by Penrose’s cosmic censorship
conjecture [172], according to which no naked singularities can arise out of non-singular
initial conditions in asymptotically flat spacetimes. A consequence of cosmic censorship
is that classical BHs do not shrink. The size of a BH is given by the area of the event
horizon, which, in analogy to the entropy, can never decrease, giving rise to Hawking’s
Area theorem [173]. However, Hawking showed that BHs can indeed shrink or evaporate
through a process called Hawking radiation [174]. In quantum physics, vacuum loops
can be generated through the creation and later annihilation of a pair of particles and
antiparticles. Hawking radiation is the consequence of such antiparticles entering the BH
while particles escape in the opposite direction. As the antiparticles enter the BH, they
decrease the energy of the BH and, therefore, the mass.

One of the first questions that arose with this new family of metrics, that is be-
side the Minkowsky metric, was the stability of the solutions. To probe their stability,
small perturbations can be applied. The stability of the Minkowsky metric itself was
demonstrated by Christodoulou and Klainerman in 1993 [175]. A thorough analysis of
the stability of Schwarzschild and Kerr metrics can be found in [176–178]. I cover the
perturbation of the Schwarzschild BH and the Kerr BH in the following sections.
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3.2 Perturbation of Schwarzschild BH
The interest in describing the Schwarzschild perturbation is to pave the way for

a more complex metric like the Kerr metric. The incorporation of rotation has a large
impact not only on the metric but also on the perturbation evolution.

One can consider a massless scalar field ϕ in a curved background such as a Schwarzschild
metric, whose evolution is determined by the massless Klein-Gordon equation

□ϕ = (
√

−g)−1∂µ
[
(gµν

√
−g)∂ν

]
ϕ = 0 (3.2.1)

where g is the determinant of gµν . Given the spherical symmetry of the background, one
can expand ϕ(x) in spherical harmonics as

ϕ(t, r, θ, ϕ) = 1
r

∞∑
l=0

l∑
m=−l

alm(t, r)Ylm(θ, ϕ), (3.2.2)

where alm(t, r) is the complex amplitude carrying information of the potential and the
source, decomposed in spherical harmonics 7.

When introducing Eq. (3.2.2) and the Schwarzschild metric from Eq. (3.1.3) into
Eq. (3.2.1), one can see that derivatives of the spherical harmonics arise. To better un-
derstand the underlying symmetries of the spherical basis let us introduce the tetrad
formalism.

The tetrad formalism consists of a four-vector field that generates the hypersurface.
In general, it is natural to work on a basis characterized by the symmetry of the studied
system or by its conserved charges. This can be achieved through a change of coordinates
to a more practical basis. Hence, let me introduce the usual orthonormal basis, which in
Cartesian coordinates read

e0 = ∂

∂t
, ex = ∂

∂x
, ey = ∂

∂y
, ez = ∂

∂z
, (3.2.3)

and in the spherical basis read

e0 = ∂

∂t
, er = ∂

∂r
, eθ = 1

r

∂

∂θ
, eϕ = 1

r sin θ
∂

∂ϕ
. (3.2.4)

Since Cartesian coordinates are related to the spherical coordinates through

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ, (3.2.5)

one can always relate both bases through ei = Λiaea, where i runs over the Cartesian
coordinates (x1, x2, x3 = x, y, z) and a 8 runs over the spherical coordinates (x1, x2, x3 =
r, θ, ϕ). That is

7This decomposition, as well as the spherical harmonics, were previously introduced in Sec. 1.2.1.
8Note the introduction of Latin indices starting at a for the tetrad basis elements.
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exey
ez

 =

 sin θ cosϕ sin θ sinϕ cos θ
r cos θ cosϕ r cos θ sinϕ −r sin θ

−r sin θ sinϕ r sin θ cosϕ 0

 ·

ereθ
eϕ

 (3.2.6)

In general, one can write the gradient ∇⃗ as

∇⃗ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
= r̂

∂

∂r
+ θ̂

1
r

∂

∂θ
+ ϕ̂

1
r sin θ

∂

∂ϕ
, (3.2.7)

and the Laplacian ∇2

∇2 = ∇⃗ · ∇⃗ =
(
r̂
∂

∂r
+ θ̂

1
r

∂

∂θ
+ ϕ̂

1
r sin θ

∂

∂ϕ

)
·
(
r̂
∂

∂r
+ θ̂

1
r

∂

∂θ
+ ϕ̂

1
r sin θ

∂

∂ϕ

)

= 1
r2

[
∂

∂r

(
r2 ∂

∂r

)
+ 1

sin θ
∂

∂θ

(
sin θ ∂

∂θ

)
+ 1

sin2 θ

∂2

∂2
ϕ

]
.

(3.2.8)

The angular momentum in spherical coordinates takes the form

L⃗ = −i (r̂ × ∇) = i

(
ϕ̂
∂

∂θ
− θ̂

sin θ
∂

∂ϕ

)
(3.2.9)

then, the angular operator is

L2 = − (r̂ × ∇)2 = −r2∇2 + ∂

∂r

(
r2 ∂

∂r

)
= −

[
1

sin θ
∂

∂θ

(
sin θ ∂

∂θ

)
+ 1

sin2 θ

∂2

∂2
ϕ

]
. (3.2.10)

The spherical harmonic is

Ylm = Clme
imϕPlm(cos θ)

= Clm
(
eiϕ sin θ

)m [(l−m)/2]∑
j=0

almj(cos θ)l−m−2j (3.2.11)

with

Clm ≡ (−1)m
(2l + 1

4π
(l −m)!
(l +m)!

)1/2
,

almj ≡ (−1)j
2lj!(l − j)!

(2l − 2j)!
(l −m− 2j)! .

(3.2.12)

The angular operator acting on the spherical harmonic Ylm gives

L2Ylm = l(l + 1)Ylm. (3.2.13)
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3.2.1 Spherical harmonics
If one wants to exploit the spherical symmetry, the use of spherical harmonics is very

advantageous. In linear theories, the field’s multipole components evolve independently of
each other. Then, when dealing with scalar fields one can use the scalar spherical harmonic
decomposition. In the case of vector fields, one must use the vector spherical harmonics.
Furthermore, for tensor fields where multipole components are coupled together, the use
of tensor spherical harmonics is required [155]. In the following, I present the construction
of the spherical harmonics for the three types of fields and show why they are important
in the description of the BH perturbation.

A scalar field can be decomposed in terms of scalar spherical harmonics as

S(t, r, θ, ϕ) =
∑
lm

alm(t, r)Ylm(θ, ϕ). (3.2.14)

If instead of a scalar field, one has a vector field, it can be written as

Vµ(t, r, θ, ϕ) =
∑
α

∑
lm

bαlm(t, r) [Y α
lm(θ, ϕ)]µ , (3.2.15)

where the index µ after the brackets denotes the propagation along the coordinate (t, r, θ, ϕ).
This is [Y α

lm(θ, ϕ)]µ = xµY
α
lm(θ, ϕ) also written sometimes with a comma for simplicity, as

Y α
lm,µ(θ, ϕ), nonetheless keep in mind that the comma here, does not denote a derivative!

And where, α denotes the components of the new tetrad basis, as shown below. For
completeness, one can write the propagation as

n̂ = (n̂x, n̂y, n̂z)
= (sin θ cosϕ, sin θ sinϕ, cos θ), (3.2.16)

then,

n̂x + in̂y = eiϕ sin θ,
n̂z = cos θ.

(3.2.17)

The vector spherical harmonics are constructed via [155]

Y l′
lm(θ, ϕ) =

l′∑
m′=−l′

1∑
m′′=−1

(1 l′m′′m′|lm)ξm′′
Y l′m′ (3.2.18)

where (l′′l′m′′m′|lm) are the Clebsch-Gordan coefficients and the basis vectors ξm′′ are
defined as [155]

ξ0 = ez, ξ1 = −ex + iey√
2

, ξ−1 = ex − iey√
2

. (3.2.19)
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Note that I define the α in the spherical harmonics in Eq. (3.2.15) as l′ = l ± 1, 0
components which are combinations of ξm. However, these “pure-orbital harmonics” are
not optimal to describe radiation, as they are not purely longitudinal nor purely transverse.
Hence, a new basis can be constructed for the vector field to be decomposed as

Vµ(t, r, θ, ϕ) =
∑
lm

(
Elm(t, r)Y (E)

lm,µ(θ, ϕ) +Blm(t, r)Y (B)
lm,µ(θ, ϕ) +Rlm(t, r)Y (R)

lm,µ(θ, ϕ)
)
,

(3.2.20)
where E and B emerge analogously to the electric E and magnetic B fields that are
transversal to the propagation, while R is the radial component, longitudinal to the prop-
agation. These three components denote the three d.o.f of a massive spin-1 particle. This
new basis is now optimal for describing a “pure-spin vector harmonic” as

Y
(E)
lm = 1√

2l(l + 1)
r∇Ylm,

Y
(B)
lm = i√

2l(l + 1)
L⃗Ylm,

Y
(R)
lm = 1√

2
n⃗ Ylm,

(3.2.21)

with ∇ the gradient, L⃗ the angular momentum and n⃗ the propagation vector. One can see
that describing the vector spherical harmonics on this basis is convenient, as the relation
to the scalar spherical harmonics is simple. Another reason for working on this basis, is
that the electric component and the radial component transform under an even parity,
while the magnetic component transforms under an odd parity, i.e.

Y
(R)
lm → (−1)lY (R)

lm ,

Y
(E)
lm → (−1)lY (E)

lm ,

Y
(B)
lm → (−1)l+1Y

(B)
lm .

(3.2.22)

If one takes now the case of a tensor field, it could 9 be written as

Tµν(t, r, θ, ϕ) =
∑
αβ

∑
lm

cαβlm(t, r)
[
Y αβ
lm (θ, ϕ)

]
µν

(3.2.23)

where α and β run over the ten different components from the chosen basis.
The tensor spherical harmonics can be generated from a combination of the vector

basis, such that [155]

tm =
1∑

m′=−l′

1∑
m′′=−1

(1 1m′′m′|2m)ξm′ ⊗ ξm
′′
, (3.2.24)

9As long as the radial part can be separated from the angular part.
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and a single basis tensor

3−1/2δ = −
1∑

m′=−l′

1∑
m′′=−1

(1 1m′′m′|0 0)ξm′ ⊗ ξm
′′
. (3.2.25)

They give rise to six representations of the basis, which in terms of Cartesian coordinates
read

t±2 = 1
2 (ex ⊗ ex − ey ⊗ ey) ± 1

2 i (ex ⊗ ey + ey ⊗ ex) ,

t±1 = ∓1
2 (ex ⊗ ez + ez ⊗ ex) − 1

2 i (ey ⊗ ez + ez ⊗ ey) ,

t0 = 1√
6

(−ex ⊗ ex − ey ⊗ ey + 2ez ⊗ ez) ,

δ = (ex ⊗ ex + ey ⊗ ey + ez ⊗ ez) .

(3.2.26)

By coupling these basis tensors to the spherical harmonics, one obtains the tensor spherical
harmonic basis

Y 2l′,lm(θ, ϕ) =
l′∑

m′=−l′

2∑
m′′=−2

(l′ 2m′m′′|lm)Y l′m′(θ, ϕ) tm′′
,

Y 0l,lm(θ, ϕ) = −Y lm(θ, ϕ)3−1/2δ

(3.2.27)

with l′ = l ± 0, 1, 2. For fixed l,m, θ, ϕ, the pure-spin tensor spherical harmonics with the
proper basis transformation from Eq. (3.2.6), reads

Y L0,lm = n⃗⊗ n⃗ Y lm,

Y T0,lm = 1√
2

(δ − n⃗⊗ n⃗) Y lm,

Y E1,lm =
( 2
l(l + 1)

)1/2 [
n⃗⊗ r∇Y lm

]s
,

Y B1,lm =
( 2
l(l + 1)

)1/2 [
n⃗⊗ iL⃗Y lm

]s
,

Y E2,lm =
(

2(l − 2)!
(l + 2)!

)1/2 [
L⃗L⃗Y lm

]sTT
,

Y B2,lm =
(

2(l − 2)!
(l + 2)!

)1/2 [
ir∇L⃗Y lm

]sTT
,

(3.2.28)

where indices L, T,E, and B represent the longitudinal, transversal, electric-type, and
magnetic-type harmonic components with an even parity for the first three and odd parity
for the latter component. The index s denotes the symmetric part of the tensor, sTT
denotes the symmetric part of the transverse-traceless tensor and the index l′ = 0, 1, 2
(second upper-index) denotes the spin of the field.
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Combining previous results, one can write a tensor in terms of tensor spherical
harmonics as

Tµν(t, r, θ, ϕ) =
∑
lm

(
Alm(t, r)Y (axial)

lm,µν (θ, ϕ) +Blm(t, r)Y (polar)
lm,µν (θ, ϕ)

)
, (3.2.29)

where I implicitly make the distinction between the odd parity (axial) and even parity
(polar) components. Tensors with this kind of decomposition, are solutions to the Laplace
equation ∇2Ψ = 0 [155].

Hence, a perturbation on the metric can also be decomposed as

hµν(t, r, θ, ϕ) =
∑
lm

(
h

(axial)
lm (t, r)Y (axial)

lm,µν (θ, ϕ) + h
(polar)
lm (t, r)Y (polar)

lm,µν (θ, ϕ)
)
. (3.2.30)

It is important to understand that not all ten components of the metric transform
in the same way under a rotation of a two-sphere 10. Schwarzschild BHs are stationary,
which means that the time component t is decoupled from the radial component r and
the angular components θ, ϕ. At the same time, due to the spherical symmetry, the radial
component r is decoupled from the angular components θ, ϕ. Altogether, this means that
one can simplify their transformation by writing

[
Y tt
lm

]
ij

= δ0
i δ

0
jYlm,[

Y tα
lm

]
ij

= δ0
i Y

α
lm,j ,

(3.2.31)

where i, j run over the angular coordinates (θ, ϕ). The same is applied to the radial
coordinate by changing t → r. Then, the components of the metric perturbation transform
as follows

hµν =



S S V
S S V

V V T


. (3.2.32)

This means that h00, h01 and h11 transform as scalars, while (h02, h03) and (h12, h13)
transform as vectors and (h22, h33, h23) transform as a tensor. Note that I ignored the
symmetric components. This representation gives rise to:

10I introduced the two-sphere concept when deriving the BH metric in Sec. 3.1 for t and r
constant.
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three single scalar components S1,2,3 =
[
Y tt
]

00
,
[
Y L0

]
11
,
[
Y Rt

]
01
,

two vector components V 1,2 =
[
Y E1

]
1j
,
[
Y B1

]
1j
,

and three tensor components T 1,2,3 =
[
Y T0

]
ij
,
[
Y E2

]
ij
,
[
Y B2

]
ij
,

(3.2.33)

where here i, j run over the components 2 and 3, i.e. the angular components (θ, ϕ).

To better define the decomposition of the perturbation, let us redo the computation
of Eq. (3.2.1) for a scalar field decomposed as Eq. (3.2.2) in the Schwarzschild metric
defined in Eq. (3.1.3). If the perturbation produced on the metric can be decomposed as
in Eq. (3.2.30) and re-defining

[
Y αβ
lm

]
µν

→
[
Tαβlm

]
µν

one can write the ten tensors, known

as the Zerilli tensors
[
Tαβlm

]
µν

, with Eqs. (3.2.21) and (3.2.28), such that

hµν(t, r, θ, ϕ) =
∑
αβ

∑
lm

hαβlm(t, r)
[
Tαβlm

]
µν
, (3.2.34)

where

T ttlm =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Ylm, TL0
lm =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

Ylm,

TRtlm = i√
2


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

Ylm, T T0
lm = r2

√
2


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 sin2 θ

Ylm,

TEtlm = ir

(2l(l + 1))1/2


0 0 ∂θ ∂ϕ
0 0 0 0
∂θ 0 0 0
∂ϕ 0 0 0

Ylm, TE1
lm = r

(2l(l + 1))1/2


0 0 0 0
0 0 ∂θ ∂ϕ
0 ∂θ 0 0
0 ∂ϕ 0 0

Ylm,

71



BH perturbation

TBtlm = r

(2l(l + 1))1/2


0 0 −(1/ sin θ)∂ϕ sin θ∂θ
0 0 0 0

−(1/ sin θ)∂ϕ 0 0 0
sin θ∂θ 0 0 0

Ylm,

TB1
lm = ir

(2l(l + 1))1/2


0 0 0 0
0 0 −(1/ sin θ)∂ϕ sin θ∂θ
0 −(1/ sin θ)∂ϕ 0 0
0 sin θ∂θ 0 0

Ylm,

TE2
lm =r2

( (l − 2)!
2(l + 2)!

)1/2


0 0 0 0
0 0 0 0
0 0 W X
0 0 X − sin2 θW

Ylm,

TB2
lm = − ir2

( (l − 2)!
2(l + 2)!

)1/2


0 0 0 0
0 0 0 0
0 0 −(1/ sin θ)X sin θW
0 0 sin θW sin θX

Ylm,

(3.2.35)

with the operators X,W defined as

X = 2∂θ∂ϕ − 2 cot θ∂ϕ,

W = ∂2
θ − cot θ∂θ − 1

sin2 θ
∂2
ϕ.

(3.2.36)

Note that the Zerilli tensors can be separated in an angular and a radial part as[
Tαβlm

]
µν

= cαβ(r)
[
tαβlm(θ, ϕ)

]
µν
. (3.2.37)

This means that the radial coefficients cαβ(r) can be absorbed in hαβlm(t, r), leading to

hµν(t, r, θ, ϕ) =
∑
αβ

∑
lm

hαβlm(t, r)
[
tαβlm(θ, ϕ)

]
µν
. (3.2.38)

Keep in mind that, from Eq. (3.2.29), the perturbation can be separated into an axial
polarization and a polar polarization. Thus, the perturbation consists of three components
with axial polarization (Bt, B1, B2) and seven components with polar polarization (tt,
L0, Rt, T0, Et, E1, E2).

3.2.2 Regge-Wheeler gauge
In 1957, Tulio Regge and John A. Wheeler [158] found a framework to work with

BH perturbations for the axial polarization by choosing a gauge. So, the first thing one
should do is to find the gauge that allows one to work with the axial polarization.

The transformation of a vector, presented already in Chapter 1, takes the form
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xµ → x′µ = xµ + ζµ, (3.2.39)

then, a metric perturbation transforms as

hµν → h′
µν = hµν +Dµζν +Dνζµ, (3.2.40)

where Dµ is the covariant derivative associated with the metric via the Christoffel symbols
in the following way

Dµζν = ∂µζν − Γρνµζρ. (3.2.41)

From Eqs. (3.2.20) and (3.2.21) is straightforward to see that a four-vector field ζµ
can be decomposed into vector spherical harmonics with an axial and a polar polarization,
such that

ζ0 =
∞∑
l=0

l∑
m=−l

ζ
(t)
lmYlm,

ζi =
∞∑
l=0

l∑
m=−l

ζ
(R)
lm ni Ylm

+
∞∑
l=1

l∑
m=−l

[
ζ

(E)
lm ∂i Ylm + ζ

(B)
lm

i

r
LiYlm

]
.

(3.2.42)

With this decomposition, one could fix an axial gauge, such that ζ(t)
lm = ζ

(R)
lm = ζ

(E)
lm = 0.

In that case, the notation of the gauge takes the form

ζax0 (x⃗) = 0, ζaxi (x⃗) =
∞∑
l=1

l∑
m=−l

Λlm(t, r) i
r
Li Ylm, (3.2.43)

where ζ(B)
lm is redefined as Λlm(t, r). Keeping in mind that i runs over the spherical space

components and µ over the spherical spacetime components, we can re-write

ζaxµ (x⃗) =
∞∑
l=1

l∑
m=−l

Λlm(t, r)
(

0, 0,− 1
sin θ∂ϕYlm, sin θ∂θYlm

)
. (3.2.44)

In order to apply the transformation to the axial vectors ζaxα , let us first write the
components of the axial perturbation h

(axial)
µν directly from Eqs. (3.2.35)

h(axial)
µν =


0 0 hBt 1

sin θ∂ϕ −hBt sin θ∂θ
0 0 hB1 1

sin θ∂ϕ −hB1 sin θ∂θ
∗ ∗ 2hB2

(
1

sin θ∂θ∂ϕ − cos θ
sin2 θ

∂ϕ
)

hB2
(
cos θ∂θ + 1

sin θ∂
2
ϕ − sin θ∂2

θ

)
∗ ∗ ∗ −2hB2 (sin θ∂θ∂ϕ − cos θ∂ϕ)

Ylm,
(3.2.45)
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where the asterisk (∗) is the symmetric element of the matrix and where hBj are functions
depending on the time and on the radial component hBj(t, r), that need to be defined
with Einstein’s equations.

Then, using Eq. (3.2.40) with Eqs. (3.2.41) and (3.2.45) ones sees that the transfor-
mation for the axial perturbation is

hBtlm → hBtlm + ∂0Λlm (l ≥ 1), (3.2.46a)

hB1
lm → hB1

lm +
(
∂r − 2

r

)
Λlm (l ≥ 1), (3.2.46b)

hB2
lm → hB2

lm − Λlm (l ≥ 2). (3.2.46c)

If one chooses Λlm = hB2
lm then, when transforming the last axial component (B2),

it will vanish. Note that hB2
lm is defined for l ≤ 2 then, l=1 can be chosen to cancel the

hBt1m transformation. Hence, the perturbation in this Regge-Wheeler (RW) gauge takes
the form

hRWαβ =
∞∑
l=2

l∑
m=−l

hBtlm

[
tBtlm

]
αβ

+
∞∑
l=1

l∑
m=−l

hB1
lm

[
tB1
lm

]
αβ
. (3.2.47)

or in another more common representation where h0
lm = hBtlm and h1

lm = hB1
lm ,

hRWαβ =


0 0 h0

lm
1

sin θ∂ϕ −h0
lm sin θ∂θ

0 0 h1
lm

1
sin θ∂ϕ −h1

lm sin θ∂θ
∗ ∗ 0 0
∗ ∗ 0 0

Ylm. (3.2.48)

With this metric, one can now compute Einstein’s equations keeping in mind that
the metric transformation will affect the Ricci tensor such that

R′
µν → Rµν + δRµν ,

δRµν = δΓρµρ,ν − δΓρµν,ρ,

δΓρµρ = 1
2g

µλ(∂ρhσλ + ∂σhρλ − ∂λhρσ).
(3.2.49)

Thus, by computing the Christoffel symbols for the perturbation one can see that only
three Ricci components are non-trivially satisfied (δRµν = 0),

δRtϕ :A(r)
(
∂2
rh

0 − ∂t∂rh
1 − 2

r
∂th

1
)

+ 1
r2

[4M
r

− l(l + 1)
]
h0 = 0, (3.2.50a)

δRrϕ : 1
A(r)

(
∂2
t h

1 − ∂t∂rh
0 + 2

r
∂th

0
)

+ 1
r2 [l(l + 1) − 2]h1 = 0, (3.2.50b)

δRθϕ : 1
A(r)∂th

0 − ∂r
(
A(r)h1

)
= 0, (3.2.50c)
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with A(r) =
(
1 − 2M

r

)
and where I suppressed the lm dependency for clarity. Note that

Eq. (3.2.50a) is automatically satisfied if the other two are satisfied 11. Then, one can
define a new function

Qlm(t, r) = 1
r
A(r)h1

lm(t, r), (3.2.51)

such that Eq. (3.2.50c) becomes

∂th
0
lm = A(r)∂r(rQlm). (3.2.52)

Then, Eq. (3.2.50b) is

∂2
t

(
rQlm
A(r)

)
− ∂r (A(r)∂rrQlm) + 2

r
A(r)∂rrQlm + 1

r2 [l(l + 1) − 2] rQlm = 0. (3.2.53)

If one considers the tortoise coordinate r∗ = r+2M ln
∣∣ r

2M − 1
∣∣ instead of the radial

coordinate, one could easily find that

∂r∗ =
(

1 − 2M
r

)
∂r, (3.2.54)

then, introducing the change in Eq. (3.2.53), one could, after some work, re-write the
equation as (

∂2
t − ∂2

r∗

)
Qlm + V RW

l (r)Qlm = 0, (3.2.55)

with the RW potential as

V RW
l (r) =

(
1 − 2M

r

)[
l(l + 1)
r2 − 6M

r3

]
. (3.2.56)

Now, if one performs a Fourier transform to the function Qlm

Qlm(t, r) =
∫ ∞

−∞

dω

2π Q̃lm(ω, r)e−iωt, (3.2.57)

then, one could find the one-dimensional Schrödinger-type wave equation

d2

dr2
∗
Q̃lm +

[
ω2

c2 − V RW
l

]
Q̃lm = S̃axlm, (3.2.58)

where S̃axlm is the source term decomposed also in terms of axial tensor spherical harmonics,
taken to be zero in the development of the equations as we are far away from the source.
Nevertheless, one should consider their contribution to the wave equation and impose
boundary conditions tending to zero as the observer distances from the source.

11One has to take the derivative of Eq. (3.2.50a) and change the δth
0
lm and δ2

t h
1
lm with their

definition from Eqs. (3.2.50c) and (3.2.50b).
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3.2.3 Zerilli gauge
The framework to obtain the polar solution to a perturbed BH was developed by

Frank Zerilli in 1970 [159]. In contra-position to the three components for the axial
polarization, the polar polarization has seven components, as we saw. Following the same
steps as for the RW gauge, first, we have to choose the polar gauge. The four-vector field
takes the form

ζpolα (x) =
∞∑
l=0

l∑
m=−l

(
ζ

(t)
lm(t, r)Ylm, ζ(R)

lm (t, r)Ylm, 0, 0
)

+
∞∑
l=1

l∑
m=−l

ζ
(E)
lm (t, r) (0, 0, ∂θYlm, ∂ϕYlm) .

(3.2.59)

Then, the polar perturbation h
(polar)
µν is

h(polar)
µν =


A(r)H0 H1 h0∂θ h0∂ϕ

∗ H2
A(r) h1∂θ h1∂ϕ

∗ ∗ r2 [K +G∂θ∂θ] G (∂θ∂ϕ − cot θ∂ϕ)
∗ ∗ ∗ r2 [K sin2 θ +G (∂ϕ∂ϕ − sin θ cos θ∂ϕ)

]
Ylm,

(3.2.60)

whereH0, H1, H2, h0, h1,K,G are functions of the time and the radial coordinate. They de-
pend on the angular numbers (l,m) and are connected to the seven components tt, Rt, L0,
Et,E1, T0, E2 respectively. One can obtain the transformation using Eqs. (3.2.40) and (3.2.41),
which results in

httlm → httlm −
[
2∂0ζ

(t)
lm − A(r)2M

r2 ζ
(R)
lm

]
, (3.2.61a)

hRtlm → hRtlm −
[
∂0ζ

(R)
lm + ∂rζ

(t)
lm − 2M

A(r)r2 ζ
(t)
lm

]
, (3.2.61b)

hL0
lm → hL0

lm −
[
2∂0ζ

(R)
lm + 2M

A(r)r2 ζ
(R)
lm

]
, (3.2.61c)

hT0
lm → hT0

lm −
[
2rA(r)ζ(R)

lm − l(l + 1)ζ(E)
lm

]
, (3.2.61d)

hEtlm → hEtlm −
[
ζ

(t)
lm + ∂0ζ

(E)
lm

]
, (3.2.61e)

hE1
lm → hE1

lm −
[(
∂r − 2

∂2

)
ζ

(E)
lm + ζ

(R)
lm

]
, (3.2.61f)

hE2
lm → hE2

lm − ζ
(E)
lm . (3.2.61g)

In this case, when fixing ζ(E)
lm to hE2

lm , the transformation will become zero for l ≥ 2.
In hE1

lm , one can also choose ζ(R)
lm to cancel the transformation for l ≥ 1 and then also
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ζ
(t)
lm for l ≥ 1 to cancel hEtlm. When fixing these components, the remaining parts of the

equations can no longer be constrained, as there are only three d.o.f. Hence, the four
remaining components that construct the polar perturbations or Zerilli (Z) gauge read

hZαβ =
∞∑
l=0

l∑
m=−l

[
httlm

[
tttlm

]
αβ

+ hL0
lm

(
tL0
lm

)
αβ

]

+
∞∑
l=1

l∑
m=−l

hRtlm

[
tRtlm

]
αβ

+
∞∑
l=2

l∑
m=−l

hT0
lm

[
tT0
lm

]
αβ
.

(3.2.62)

In the matrix representation, the decomposition takes the form

hZαβ =


httlm hRtlm 0 0
∗ hL0

lm 0 0
0 0 hT0

lm 0
0 0 0 hT0

lm sin2 θ

Ylm, (3.2.63)

where I used

httlm(t, r) = A(r)H0,

hL0
lm(t, r) = A−1(r)H2,

hT0
lm(t, r) = r2K,

hRtlm(t, r) = H1.

(3.2.64)

For this metric, seven Ricci components survive, namely

A(r)
(
A(r)∂r∂rK +

(
3 − 5M

r

) 1
r
∂rK − A(r)

r
∂rH2

− 1
r2

[
(H2 −K) + l(l + 1)

2 (H2 +K)
] )

= 0,
(3.2.65a)

∂t

(
∂rK + 1

r
(K −H2) − M

r(r − 2M)K
)

− l(l + 1)
2r2 H1 = 0, (3.2.65b)

1
A(r)

( 1
A(r∂t∂tK−1 −M/r

r
∂rK − 2

r
∂tH1 +A(r)∂rH0

+ 1
r2 (H2 −K) + l(l + 1)

2r2 (K −H0)
)

= 0,
(3.2.65c)

∂r (A(r)H1) − ∂t(H2 +K) = 0; (3.2.65d)
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−∂tH1 +A(r)∂r(H0 −K) + 2M
r2 H0 + 1 −M/r

r
(H2 −H0) = 0, (3.2.65e)

− 1
A(r)∂t∂tK +A(r)∂r∂rK +A(r)2

r
∂rK − 1

A(r)∂t∂tH2

+2∂r∂tH1 −A(r)∂r∂rH0 +
(

1 − M

r

)[ 2
r − 2M∂tH1 − 1

r
∂rH2

]
− 1
r

(
1 + M

r

)
∂H0 − 1

2r2 l(l + 1)(H2 −H0) = 0,

(3.2.65f)

1
2(H0 −H2) = 0. (3.2.65g)

Following the same steps as before changing the radial coordinate to the tortoise
coordinate, and implementing a Fourier transform one can find after some work, a single
wave equation known as the Zerilli equation,

d2

dr2
∗
Z̃lm +

[
ω2

c2 − V Z
l

]
Z̃lm = S̃pollm , (3.2.66)

where S̃pollm is the source term decomposed also in terms of polar tensor spherical harmonics,
and with the Zerilli potential defined as

V Z
l (r) =

(
1 − 2M

r

) 2λ2(λ+ 1)r3 + 6λ2Mr2 + 18λM2r + 18M3

r3(λr + 3M)2 , (3.2.67)

λ = (l − 1)(l + 2)
2 . (3.2.68)

The Zerilli function, independently of the chosen gauge 12, is defined as [179]

Z(t, r) ≡ 4re4vk2 + l(l + 1)rk1
l(l + 1) − 2 + 6M/r

(3.2.69)

where ev = 1 − 2M/r and that is connected to the components through

G = k3,

h1 = k4,

K = k1 − e2v

r

[
r2∂rk3 − 2k4

]
,

H2 = 2e2vk2 + r∂rk1 + (1 + r∂rv) k1 − ev∂r
[
r2ev∂rk3 − 2evk4

]
.

(3.2.70)

12Indeed, the chosen gauge was the one in which G = h0 = h1 = 0, when fixing hEt
lm, h

E1
lm , h

E2
lm

transformations.
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For completeness, it is worth mentioning that Chandrasekhar [157] showed that
the Regge-Wheeler and the Zerilli potentials are equivalent since both potentials can be
written as

V RW,Z = 6M∂r∗f + (6M)2f2 + κf, (3.2.71)

where

κ = λ(λ+ 2), f = A(r)
r(λr + 6M) . (3.2.72)

This feature is known as iso-spectrality and means that the solutions to a wave
equation with a RW potential will also be solutions to a wave equation with a Zerilli
potential.

3.3 Newman-Penrose formalism
This section introduces the Newman-Penrose (NP) 13 formalism, which is crucial for

the description of the Kerr BH perturbation. In the previous section, we saw that, for a
Schwarzschild BH, the stationarity and the spherical symmetry of the metric, enabled the
decoupling of the metric perturbation into a radial part and an angular part described by
spherical harmonics. In the case of a rotating BH, which tends to an oblate shape, the
spherical symmetry is broken. That means that the previous decomposition is no longer
possible and other approaches are needed. In 1973 Teukolsky [160] found a way to separate
the perturbation wave equation into a radial and an angular part by implementing the NP
formalism to describe Kerr’s metric. Hence, the need for this section where I introduce the
framework that Teukolsky used. For this section, I use the references [157; 160; 161; 180].

As I previously mentioned, the tetrad formalism serves to change to another basis
system, where symmetries of the object or structure in question can be exploited. More-
over, the tetrad does not need to be a coordinate basis such as the Cartesian or the
spherical coordinates, they can be a non-coordinate basis. To understand the notation for
the tetrad formalism let us first review some properties. A tetrad field is denoted by

eα(a), for a = 1, 2, 3, 4, (3.3.1)

where (a) labels denote the tetrad component and α the tensor coordinate component.
Note that the notation with the parenthesis is to highlight the non-coordinate basis. Each
tetrad vector field allows us to change from the coordinate basis to the non-coordinate or
tetrad basis via

e(a) = eα(a)eα, e(a) = (e−1)(a)
α eα, where eα = ∂

∂xα
. (3.3.2)

Then, if one applies a change of basis onto a tensor, it transforms as
13Not to be confused with Post-Newtonian (PN) expansion.
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T
(a)(b)
(c) = (e−1)(a)

α (e−1)(b)
β eγ(c)T

αβ
γ . (3.3.3)

Analogous to the Christoffel symbols in a coordinate basis, the Ricci rotation co-
efficients inform us on the differentiation of the metric in different directions in a non-
coordinate basis. They are defined as 14

γ
(a)
(b)(c) = e(a)∇(b)e(c). (3.3.4)

Where ∇ is the affine connection, which acts as 15

∇(b)e(c) =∇eb

(
eγ(c)eγ

)
= eβ(b)∇β

(
eγ(c)eγ

)
= eβ(b)∂βe

γ
(c)eγ + eγ(c)e

β
(b)∇β (eγ)

= eβ(b)∂βe
γ
(c)eγ + eγ(c)e

β
(b)Γ

α
βγeα = eβ(b)

(
∂βe

γ
(c) + eα(c)Γ

γ
βα

)
eγ

= eβ(b)

(
∂γe

α
(c) + eα(c)Γ

γ
βα

)
(e−1)(a)

γ e(a) ≡ γ
(a)
(b)(c)e(a).

(3.3.5)

A consequence of this transformation is that, given two tetrad vectors on a non-
coordinate basis they no longer commute and tensors representing the structure emerge.
Correspondingly, these tensors are called the structure constants and they can be written
in terms of the Lie brackets as[

e(a), e(b)
]

=
(
γ

(c)
(b)(a) − γ

(c)
(a)(b)

)
e(c) = C

(c)
(a)(b)e(c). (3.3.6)

Continuing with the metric description in the tetrad basis, the Riemann tensors take
the form 16

R(a)(b)(c)(d) = ∂(c)γ(a)(b)(d) − ∂(d)γ(a)(b)(c) + γ(b)(a)(f)
[
γ

(f)
(c)(d) − γ

(f)
(d)(c)

]
+ γ(f)(a)(c)γ

(f)
(b)(d) − γ(f)(a)(d)γ

(f)
(b)(c).

(3.3.7)

And finally the Bianchi identity ∇[σRγδ]αβ = 0 17 can be expressed as

∇[(f)R(c)(d)](a)(b) = 1
6

∑
(c)(d)(f)

∂(f)R(a)(b)(c)(d) −
[
γ

(m)
(a)(f)R(m)(b)(c)(d) + γ

(m)
(b)(f)R(a)(m)(c)(d)

+γ(m)
(c)(f)R(a)(b)(m)(d) + γ

(m)
(d)(f)R(a)(b)(c)(m)

]
.

(3.3.8)
14Keep in mind that the Christoffel symbols are defined as Γα

βγ = eα∇βeγ .
15I use here the above Christoffel’s equation and that ∇βe

γ
(c) = ∂βe

γ
(c).

16Note that it differs from Eq. (1.1.2) since in non-coordinate basis the second term does not
cancel, γ(f)

(c)(d) ̸= γ
(f)
(d)(c), while in a coordinate basis, they cancel since the Christoffel symbols are

symmetric Γα
βγ = Γα

γβ .
17Keep in mind that the squared brackets denote the anti-symmetric component of the tensor.
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The Newman-Penrose formalism is based on a special choice of basis vectors, the
null tetrads. This means that it is constructed upon a series of null vectors, see Fig. 3.2
for a visual representation in the Cartesian basis. For a Riemann metric, the components
of the Weyl tensor, introduced later in Eq. (3.3.16), are projected along these null vectors.
Consequently, this formalism allows us to consider perturbations on the curvature of the
metric, instead of perturbations on the BH. The four vectors defined by Ezra Newman
and Roger Penrose [180] are

zµ(a) = (lµ, nµ,mµ, m̄µ) . (3.3.9)

The vectors lµ and nµ are real, while mµ is complex and m̄µ is its complex conjugate.
These vectors are chosen to satisfy

gµν l
µlν = gµνn

µnν = gµνm
µmν = gµνm̄

µm̄ν = 0,
gµν l

µmν = gµν l
µm̄ν = gµνn

µmν = gµνn
µm̄ν = 0,

gµν l
µnν = −1, gµνm

µm̄ν = 1.
(3.3.10)

Then, the metric takes the form

gµν = gµν =


0 −1 0 0

−1 0 0 0
0 0 0 1
0 0 1 0

 . (3.3.11)

Therefore, it can be written as

gµν = −lµnν − nµlν +mµm̄ν + m̄µmν . (3.3.12)

A Minkowsky metric in Cartesian coordinates can be defined in terms of these null
tetrads as

lµ = 1√
2

(1, 0, 0, 1), mµ = 1√
2

(0, 1, i, 0),

nµ = 1√
2

(1, 0, 0,−1), m̄µ = 1√
2

(0, 1,−i, 0).
(3.3.13)

The covariant derivative operators also have different symbols, represented by

∇(a) = (lµ∇µ, n
µ∇µ,m

µ∇µ, m̄
µ∇µ) ≡

(
D,∆, δ, δ̄

)
(3.3.14)

And the Ricci rotation coefficients γabc called now spin coefficients, are designated by
Greek letters 18 in the following way

18Note that there is a (-) sign with respect to NP’s paper [180], because of the their chosen
metric signature convention (+,-,-,-).
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Figure 3.2: Representation of the Newman-Penrose null tetrad in Cartesian coordinates.

κ ≡ −γ131 = −(∇ν lµ)lµmν , ϱ ≡ −γ134 = −(∇ν lµ)mµm̄ν ,

σ ≡ −γ133 = −(∇ν lµ)mµmν , τ ≡ −γ132 = −(∇ν lµ)mµnν ,

λ ≡ γ244 = (∇νnµ)m̄µm̄ν , µ ≡ γ243 = (∇νnµ)m̄µmν ,

ν ≡ γ242 = (∇νnµ)m̄µnν , π ≡ γ241 = (∇νnµ)m̄µlν ,

ϵ ≡ −1
2 [γ121 − γ341] = − 1

2 [(∇ν lµ)nµlν − (∇νmµ)m̄µlν ] ,

γ ≡ −1
2 [γ122 − γ342] = − 1

2 [(∇ν lµ)nµnν − (∇νmµ)m̄µnν ] ,

α ≡ −1
2 [γ124 − γ344] = − 1

2 [(∇ν lµ)nµm̄ν − (∇νmµ)m̄µm̄ν ] ,

β ≡ −1
2 [γ123 − γ343] = − 1

2 [(∇ν lµ)nµmν − (∇νmµ)m̄µmν ] .

(3.3.15)

Note that for clarity, I suppress the parenthesis () notation indicating the tetrad basis,
and will remain suppressed in the following.

3.3.1 Representation of the Weyl, the Ricci, and the Rie-
mann tensors

In a hypersurface, the Weyl tensor Cµνρσ is defined as

Cµνρσ = Rµνρσ − 1
2 (gµρRνσ − gµσRνρ − gνρRµσ − gνσRµρ)

+1
6R (gµρgνσ − gµσgνρ) .

(3.3.16)

The Weyl tensors carry only the trace-free part of the Riemann tensors, due to the the
contraction of any pair of indices being zero Cµνµρ = 0. Moreover, they have the same
symmetric and antisymmetric properties as the Riemann tensor,
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Cµνρσ = Cρσµν = −Cνµρσ. (3.3.17)

Furthermore, Weyl tensors have the property of being invariant under conformal transfor-
mations 19, and thus, they determine the causal structure of the manifold.

Knowing that the Riemann tensors are related to those of Weyl and Ricci via
Eq. (3.3.16), one can obtain

R1313 = C1313, R1234 = C1234, R2323 = C2323,

R1212 = C1212 +R12 − 1
6R, R1314 = 1

2R11,

R1324 = C1324 + 1
12R, R2324 = 1

2R22,

R3434 = C3434 −R34 − 1
6R, R3132 = −1

2R33,

R1213 = C1213 + 1
2R13, R1334 = C1334 + 1

2R13,

R1223 = C1223 − 1
2R23, R2334 = C2334 + 1

2R23,

(3.3.18)

and the additional complex-conjugate relations via the exchange of indices 3 and 4.
In the NP formalism, one can compute the Weyl tensors via Eq. (3.3.16) using the

NP metric from Eq. (3.3.11). Nevertheless, it is easy to see from Eqs. (3.3.18) that only
ten of the Weyl tensors are independent. They are represented by five complex scalars
known as the Weyl scalars in the following way

Ψ0 ≡ C1313 = Cµνρσl
µmν lρmσ,

Ψ1 ≡ C1213 = Cµνρσl
µnν lρmσ,

Ψ2 ≡ C1342 = Cµνρσl
µmνm̄ρnσ,

Ψ3 ≡ C1242 = Cµνρσl
µnνm̄ρnσ,

Ψ4 ≡ C2424 = Cµνρσn
µm̄νnρm̄σ.

(3.3.19)

The remaining five tensors can be derived via a linear combination of tensorsQµνρσzµ(a)z
ν
(b)z

ρ
(c)z

σ
(d),

that will survive or vanish under contractions of the vectors zµ(a). The vectors here, are
NP vectors (e.g. lµ), and the coefficients Qµνρσ represent the Weyl tensors 20. Finally,
one can write

C1334 = −Ψ1, C1212 = C3434 = (Ψ2 + Ψ∗
2) ,

C2443 = −Ψ3, C1234 = − (Ψ2 − Ψ∗
2) .

(3.3.20)

An interesting property on the Weyl scalars is that [180]:
19A conformal transformation has the form gµν(x) → g′

µν(x) = e2ϕ(x)gµν(x), with ϕ(x) an
arbitrary function.

20See Chandrasekhar’s book [157], Eqs. (295-299) for a detailed computation.
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• Ψ0 is the ingoing transversal gravitational radiation and asymptotically behaves as
Ψ0 ∼ 1/r5

• Ψ1 is the ingoing longitudinal gravitational radiation and asymptotically behaves as
Ψ1 ∼ 1/r4

• Ψ2 is the Coulomb term, representing the monopole of the source and asymptotically
behaves as Ψ2 ∼ 1/r3

• Ψ3 is the outgoing longitudinal gravitational radiation and asymptotically behaves
as Ψ3 ∼ 1/r2

• Ψ4 is the outgoing transversal gravitational radiation and asymptotically behaves
as Ψ4 ∼ 1/r

The ten components of the Ricci tensor are defined in terms of seven scalars known
as the Ricci scalars. Four of them are real (Φ00,Φ11,Φ22,Λ), and three of them are complex
(Φ01,Φ02,Φ12) with their respectively complex conjugate (Φ10,Φ20,Φ21),

Φ00 ≡ 1
2R11 = 1

2Rµν l
µlν , Φ11 ≡ 1

4(R12 +R34) = 1
4Rµν (lµnν +mµm̄ν) ,

Φ22 ≡ 1
2R22 = 1

2Rµνn
µnν , Λ ≡ 1

12(R12 −R34) = 1
12Rµν (lµnν −mµm̄ν) ,

Φ02 ≡ 1
2R33 = 1

2Rµνm
µmν , Φ20 ≡ 1

2R44 = 1
2Rµνm̄

µm̄ν ,

Φ01 ≡ 1
2R13 = 1

2Rµν l
µmν , Φ10 ≡ 1

2R14 = 1
2Rµν l

µm̄ν ,

Φ12 ≡ 1
2R23 = 1

2Rµνn
µmν , Φ21 ≡ 1

2R24 = 1
2Rµνn

µm̄ν .

(3.3.21)

With these expressions, one can find the Bianchi identities. To that end let us first
consider the commutation relation given by the Lie brackets in Eq. (3.3.6). Then, by using
the definition in Eq. (3.3.14), one can write 21

[e2, e1] = [∆,D] = (γc12 − γc21) ec

= (γ112 − γ121) e1 + (γ212 − γ221) e2 + (γ312 − γ321) e3 + (γ412 − γ421) e4

= γ121∆− γ212D + (γ312 − γ321) δ̄ + (γ412 − γ421) δ.
(3.3.22)

Considering the other commutators and expressing them in terms of Eqs. (3.3.15), one
can write them in the following way

∆D −D∆ = − (γ + γ̄)D − (ϵ+ ϵ̄)∆+ (τ̄ + π) δ + (τ + π̄) δ̄, (3.3.23a)
δD −Dδ = − (ᾱ+ β − π̄)D − κ∆+ (ϱ̄+ ϵ− ϵ̄) δ + σδ̄, (3.3.23b)

21Keep in mind that e1 = −e2 = D, e2 = −e1 = ∆, e3 = e4 = δ, e4 = e3 = δ̄.
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δ∆−∆δ = − (τ − ᾱ− β)∆+ ν̄D − (µ− γ + γ̄) δ − λ̄δ̄, (3.3.23c)

δ̄δ − δδ̄ = − (µ̄− µ)D − (ϱ̄− ϱ)∆−
(
α− β̄

)
δ + (β − ᾱ) δ̄. (3.3.23d)

If one compares now with Eq. (3.3.6), it is easy to see that the structure constants can be
written in terms of the spin coefficients, such that

C1
21 = − (γ + γ̄) , C1

31 = π̄ − ᾱ− β, C1
32 = ν̄, C1

43 = µ− µ̄

C2
21 = − (ϵ+ ϵ̄) , C2

31 = −κ, C2
32 = ᾱ+ β − τ, C2

43 = ϱ− ϱ̄

C3
21 = (τ̄ + π) , C3

31 = ϵ+ ϱ̄− ϵ̄, C3
32 = γ − γ̄ − µ, C3

43 = β̄ − α,

C4
21 = (τ + π̄) , C4

31 = σ, C4
32 = −λ̄, C4

43 = ᾱ− β.

(3.3.24)

Keeping in mind that the Riemann tensors have the form of Eq. (3.3.7), one can express
them in terms of the Weyl scalars, Ricci scalars and the spin coefficients in the following
way

R1313 : Dσ − δκ = σ (3ϵ− ϵ̄+ ϱ+ ϱ̄) + κ (π̄ − τ − 3β − ᾱ) + Ψ0 (3.3.25a)

R1314 : Dϱ− δ̄κ =
(
ϱ2 + σσ̄

)
+ ϱ (ϵ+ ϵ̄) − κ̄τ − κ

(
3α+ β̄ − π

)
+ Φ00 (3.3.25b)

R1312 : Dτ −∆κ = ϱ (τ + π̄) + σ (τ̄ + π) + τ (ϵ+ ϵ̄) − κ (3γ + γ̄) + Ψ1 + Φ00 (3.3.25c)
...

I write here only the first three components as an example, but the expression for all
18 tensors can be found in the Appendix A.2, and the remaining 18 tensors are complex
conjugates of those.

If one considers the Bianchi identities defined in Eq. (3.3.8) and the relation of
Riemann tensors with Weyl tensors as in Eq. (3.3.18), one can write the identity

∇[4R13]13 = ∇4R1313 + ∇1R1334 + ∇3R1341 = 0

= ∇4C1313 + ∇1

(
C1313 + 1

2R12

)
− 1

2∇3R11,
(3.3.26)

where the first term takes the form

∇4C1313 = ∂4C1313 − gpq [γp14Cq313 + γp34C1q13 + γp14C13q3 + γp34C131q]
= ∂4C1313 − 2 (γ214 + γ344)C1313 + 2γ314 (C1213 + C4313)
= δ̄Ψ0 − 4αΨ0 + 4ϱΨ1.

(3.3.27)

The second term is

∇1C1334 = ∂1C1334 − gpq [γp11Cq334 + γp31C1q34 + γp11C13q4 + γp31R133q]
= ∂1C1334 − [(γ211 + γ341)C1334 + γ131 (C1234 − C3434)

+γ231C1314 + γ141C1332 + γ131C1324 + γ241C1331]
= −DΨ1 + 2ϵΨ1 − 3κΨ2 + πΨ0,

(3.3.28)
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and the last two Ricci terms are

1
2 (∇1R12 − ∇3R11) =DΦ01 − δΦ00 − 2 (ϵ+ ϱ̄) Φ01 − 2σΦ10

+ 2κΦ11 + κ̄Φ02 − (π̄ − 2ᾱ− 2β) Φ00.
(3.3.29)

All together reads

∇[4R13]13 :
(
δ̄ − 4α+ π

)
Ψ0 + (4ϱ−D + 2ϵ) Ψ1 − 3κΨ

2 = −2κΦ11

−κ̄Φ02 + (π̄ − 2ᾱ− 2β) Φ00.

(3.3.30)

Following the same steps one can find the remaining seven Bianchi identities, which can be
found in Appendix A.3. However, because we will need it later, I will also write ∇[2R13]13

∇[2R13]13 :∆Ψ0 − δΨ1 − (4γ − µ)Ψ0 + 2(2τ + β)Ψ1 − 3σΨ2 = −DΦ20 + δΦ01

+ 2(π̄ − β)Φ01 − 2κΦ12 − λ̄Φ00 + 2σΦ11 + (ϱ̄+ 2ϵ− 2ϵ̄)Φ02.

(3.3.31)

Keep in mind that Einstein’s field equations are expressed in terms of the Ricci
tensors and scalars via,

Rab − 1
2gabR = 8πG

c4 Tab −→ Rab = 8πG
c4

(
Tab − 1

2gabT
)
. (3.3.32)

Then, in vacuum, the right-hand side of Eqs.(3.3.30) and (3.3.31) will cancel. Nevertheless,
in general, one should include them in terms of the energy-momentum components, since

Rabz
azb = 8πG

c4 T̄abz
azb, (3.3.33)

where T̄ab =
(
Tab − 1

2gabT
)

is the traceless energy-momentum tensor.

3.3.2 Tetrad transformations
To complete the tetrad formalism let me introduce Lorentz transformations to the

null tetrad basis vectors, which can be separated into three classes of transformations:

1. Class I: leave the vector l unchanged,

2. Class II: leave the vector n unchanged,

3. Class III: leave directions l, n unchanged, but rotate an angle θ in the m-m∗ plane.
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Thus, each class of transformation can be written as

I : l → l, m → m + al, m∗ → m∗ + a∗l, n → n + a∗m + am∗ + aa∗l; (3.3.34)
II : n → n, m → m + bn, m∗ → m∗ + b∗n, l → l + b∗m + bm∗ + bb∗n; (3.3.35)

III : l → A−1l, n → An, m → eiθm, m∗ → e−iθm∗. (3.3.36)

where a and b are complex functions and A and θ are real functions.
For the class I, the corresponding Weyl scalars transform as

Ψ0 → Ψ0, Ψ1 → Ψ1 + a∗Ψ0, Ψ2 → Ψ2 + 2a∗Ψ1 + (a∗)2Ψ0,

Ψ3 → Ψ3 + 3a∗Ψ2 + 3(a∗)2Ψ1 + (a∗)3Ψ0,

Ψ4 → Ψ4 + 4a∗Ψ3 + 6(a∗)2Ψ2 + 4(a∗)3Ψ1 + (a∗)4Ψ0.

(3.3.37)

For the class II, the transformation of the Weyl scalars are

Ψ4 → Ψ4, Ψ3 → Ψ3 + bΨ4, Ψ2 → Ψ2 + 2bΨ3 + b2Ψ4,

Ψ1 → Ψ1 + 3bΨ2 + 3b2Ψ3 + b3Ψ4,

Ψ0 → Ψ0 + 4bΨ1 + 6b2Ψ2 + 4b3Ψ3 + b4Ψ4.

(3.3.38)

And finally, for the class III transformations, the Weyl scalars take the form

Ψ0 → A−2e2iθΨ0, Ψ1 → A−1eiθΨ1, Ψ2 → Ψ2,

Ψ3 → A1e−iθΨ3, Ψ4 → A2e−2iθΨ4.
(3.3.39)

Consequently, one can also find the spin coefficients for all classes.
When looking at the above Weyl scalars in Eqs. (3.3.37) to (3.3.39), one notes that

depending on the Lorentzian transformation, the scalars undergo a characteristic change.
Then, it is possible to choose a frame in which some scalars vanish. This leads to a
classification known as the Petrov classification and is defined as:

i. Petrov type I : Ψ0 = 0,

ii. Petrov type II : Ψ0 = Ψ1 = 0,

iii. Petrov type III : Ψ0 = Ψ1 = Ψ2 = 0,

iv. Petrov type D : Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0,

v. Petrov type N : Ψ0 = Ψ1 = Ψ2 = Ψ3 = 0,

vi. Petrov type O : Ψ0 = Ψ1 = Ψ2 = Ψ3 = Ψ4 = 0.

From this classification, the Goldberg-Sachs theorem [181] emerged, which states
that in vacuum:
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1. if the Riemann tensor is of type II and Ψ0 = Ψ1 = 0, then κ = σ = 0, and conversely
if κ = σ = 0 then Ψ0 = Ψ1 = 0, and hence the tensor is of type II;

2. if the Riemann tensor is of type D and Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0, then κ = σ = ν =
λ = 0, and conversely.

In the NP formalism, all the GR black hole solutions are Riemann tensors of type
D, which allows for a simple description, as we shall see.

3.4 Perturbation of Kerr BH
A Minkowsky metric in the NP formalism takes the form of Eq. (3.3.13), while the

Kerr metric in Boyer-Lindquist coordinates can be written as

lµ = 1
∆
(
r2 + a2,∆, 0, a

)
,

nµ = 1
2ρ2

(
r2 + a2,−∆, 0, a

)
,

mµ = 1√
2

1
r + ia cos θ

(
ia sin θ, 0, 1, i

sin θ

)
,

(3.4.1)

where, a,∆ and ρ are defined in Eq. (3.1.6), and m̄µ is the complex conjugate of mµ. This
vector field is known as the Kinnersley tetrad and completely determines the metric of
black holes. The covariant derivatives are

D = 1
∆
[
(r2 + a2)∂t + ∆∂r + a∂ϕ

]
,

∆ = 1
2ρ2

[
(r2 + a2)∂t − ∆∂r + a∂ϕ

]
,

δ = 1√
2

1
r + ia cos θ

[
(ia sin θ)∂t + ∂θ + i

sin θ∂ϕ
]
.

(3.4.2)

The covariant form of the Kinnersley tetrad is

lµ = 1
∆
(
−∆, r2 + a2 cos2 θ, 0, a∆ sin2 θ

)
,

nµ = 1
2ρ2

(
−∆,−r2 − a2 cos2 θ, 0, a∆ sin2 θ

)
,

mµ = 1√
2

1
r + ia cos θ

(
−ia sin θ, 0, r2 + a2 cos2 θ, i(r2 + a2) sin θ

)
.

(3.4.3)

The non-vanishing spin coefficients for this null tetrad depending on the γ-symbols
are given by
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γ122 = 1
(r2 + a2 cos2 θ)2

[
(r −M)(r2 + a2 cos2 θ) − r∆

]
, γ134 = 2ia cos θ

r2 + a2 cos2 θ
,

γ132 = −
√

2 ia sin θ
(r2 + a2 cos2 θ)(r + ia cos θ) , γ324 = ia∆ cos θ

(r2 + a2 cos2 θ)2 ,

γ213 =
√

2 a2 sin θ cos θ
(r2 + a2 cos2 θ)(r + ia cos θ) , γ334 = − (ia+ r cos θ)√

2(r + ia cos θ)2 sin θ
,

γ243 = ∆
2(r2 + a2 cos2 θ)(r + ia cos θ) , γ341 = 1

r + ia cos θ ,

(3.4.4)

and thus,

κ = σ = λ = ν = ϵ = 0, π = − ia sin θ√
2(r − ia cos θ)2 ,

ϱ = 1
r − ia cos θ , τ = ia sin θ√

2(r2 + a2 cos2 θ)
,

β = cot θ
2
√

2(r + ia cos θ)
, µ = − ∆

2(r2 + a2 cos2 θ)2(r − ia cos θ) ,

α = β̄ − π, γ = −µ+ r −M

2(r2 + a2 cos2 θ) .

(3.4.5)

Because of the previously mentioned Goldberg-Sachs theorem, the fact that κ, σ, λ and ν

vanish, means that Ψ0,Ψ1,Ψ3 and Ψ4 vanish as well. I will not demonstrate it here 22,
but when developing Eq. (3.3.19) using the spin coefficients, it is straightforward to see
that the Goldberg-Sachs conditions are satisfied. Moreover, one can also find that

Ψ2 = M

(r − ia cos θ)3 = Mϱ3. (3.4.6)

3.4.1 Teukolsky master equation
With all the definitions in place, let us start introducing a perturbation to a Kerr

BH in the NP formalism, as implemented in 1973 by Saul Teukolsky [160]. This is done
through a decomposition of the tetrads such that

l = lA + lB, n = nA + nB, m = mA + mB, (3.4.7)

where A is the unperturbed metric and B is the perturbation at first order (linear order).
In the same way, all the other NP quantities also decompose into a background metric
and the perturbed metric

Ψ2 = ΨA
2 + ΨB

2 , D = DA +DB, etc. (3.4.8)
22One can find the derivation in [157], Sec.56
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For the case of the Schwarzschild metric, it was shown in the previous section that
the wave equation can be decoupled into a radial and an angular part. Since in the
NP formalism, the Schwarzschild and the Kerr metric are very similar, then the Kerr
wave equation should also allow for a two-functions decoupling [160]. The gravitational
quantities of interest are the ingoing and the outgoing radiation Ψ0, Ψ4, respectively.

Let us decompose the Bianchi identities defined in Eqs. (3.3.30), (3.3.31) and the
Riemann tensor defined in Eq. (3.3.25a) into the background metric A and the perturbation
B,

(
δ̄ − 4α+ π

)A
ΨB

0 + (4ϱ−D + 2ϵ)A ΨB
1 − 3κBΨA

2 = 4π
[
(δ + π̄ − 2ᾱ− 2β)A TBll

+ (2ϱ̄+ 2ϵ−D)A TBlm
]

(3.4.9)

(∆− 4γ + µ)AΨB
0 − (δ − 4τ − 2β)AΨB

1 − 3σBΨA
2 = 4π

[
(δ + 2π̄ − 2β)ATBlm

−(D − ϱ̄− 2ϵ+ 2ϵ̄)ATBmm
]

(3.4.10)

(D − 3ϵ+ ϵ̄− ϱ− ϱ̄)A σB − (π̄ − τ − 3β −ᾱ+ δ)A κB − ΨB
0 = 0, (3.4.11)

where I use that κA, σA,ΨA
0 ,ΨA

1 vanish for a Kerr metric and that the Ricci scalars ΦA

vanish for vacuum, but keeping the source term tensor for the perturbation ΦB. In the
following, I suppress the background metric index A for clarity. As a result of vanishing
terms in other Bianchi identities, the background Ψ2 satisfies

DΨ2 = 3ϱΨ2, δΨ2 = 3τΨ2. (3.4.12)

If these relations are introduced in Eq. (3.4.11), one finds

(D − 3ϵ+ ϵ̄− 4ϱ− ϱ̄)A Ψ2σ
B − (δ + π̄ − 4τ −3β − ᾱ) Ψ2κ

B − ΨB
0 Ψ2 = 0. (3.4.13)

Now, the key point to derive the Teukolsky master equation is to eliminate Ψ1 from
previous Bianchi identities in Eqs. (3.4.9) and (3.4.10). It can be achieved by using the
following commutation

[D − (p+ 1)ϵ+ qϱ+ ϵ̄− ϱ̄] (δ − pβ + qτ)
− [δ − (p+ 1)β + qτ − ᾱ+ π̄] (D − pϵ+ qϱ) = 0,

(3.4.14)

with p and q arbitrary constants. This commutation does not affect other relations of
the Type D metric [160]. The following step is to multiply (D − 3ϵ− 4ϱ+ ϵ̄− ϱ̄) to
Eq. (3.4.10) and (δ − 4τ − 3β − ᾱ+ π̄) to Eq. (3.4.9), and subtract them.
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(
δ̄ − 4α+ π

)
(δ − 4τ − 3β − ᾱ+ π̄) ΨB

0 − 3 (δ − 4τ − 3β − ᾱ+ π̄)κBΨ2

− (D − 2ϵ− 4ϱ) (δ − 4τ − 3β − ᾱ+ π̄) ΨB
1 = T1

−
(∆− 4γ + µ) (D − 3ϵ− 4ϱ+ ϵ̄− ϱ̄) ΨB

0 − (D − 3ϵ− 4ϱ+ ϵ̄− ϱ̄) 3σBΨ2

−(δ − 4τ − 2β) (D − 3ϵ− 4ϱ+ ϵ̄− ϱ̄) ΨB
1 = T2

(
δ̄ − 4α+ π

)
(δ − 4τ − 3β − ᾱ+ π̄) ΨB

0 − (∆− 4γ + µ) (D − 3ϵ− 4ϱ+ ϵ̄− ϱ̄) ΨB
0

+3 (D − 3ϵ− 4ϱ+ ϵ̄− ϱ̄)σBΨ2 − 3 (δ − 4τ − 3β − ᾱ+ π̄)κBΨ2 = T1 − T2,

(3.4.15)

where Ti is just a constant representing the right-hand side of Eqs. (3.4.9) and (3.4.10),
which depend on the source tensors (or Ricci tensors). Indeed, the Ψ1 component vanishes
via the commutation relation from Eq. (3.4.14) when p = 2 and q = −4. Furthermore,
the residuals depend on Ψ2,and are solutions of Eq. (3.4.13), thus, they can be replaced
by Ψ0Ψ2, leading to

[(
δ̄ − 4α+ π

)
(δ − 4τ − 3β − ᾱ+ π̄)

− (∆− 4γ + µ) (D − 3ϵ− 4ϱ+ ϵ̄− ϱ̄) + 3Ψ2] ΨB
0 = 4πT0,

(3.4.16)

where

T0 = (δ + π̄ − 2ᾱ− 2β)TBll − (δ − 4τ − 3β − ᾱ+ π̄) (2ϱ̄+ 2ϵ−D)TBlm
+ (D − ϱ̄− 2ϵ+ 2ϵ̄)TBmm − (D − 3ϵ− 4ϱ+ ϵ̄− ϱ̄) (δ + 2π̄ − 2β)TBlm.

(3.4.17)

This set of equations is the decoupled equation for Ψ0. Note that the derivatives of
l and n (i.e. D,∆) acting on Ψ0, do not mix with the derivatives of m and m∗ (i.e. δ, δ̄),
enabling the decoupling. Moreover, given that the choice of l and n are invariant in the
NP formalism, it is possible to obtain the decoupled equation for the outgoing radiation
Ψ4 by exchanging l ↔ n and m ↔ m∗. Hence,

[(δ − τ + 4β)
(
δ̄ − τ̄ + β̄ + 3α+ 4π

)
− (D + 4ϵ− ϱ) (∆− 3γ − 4µ+ γ̄ − µ̄) + 3Ψ2] ΨB

4 = 4πT4,
(3.4.18)

with

T4 =
(
δ̄ − τ̄ + 2α+ 2β̄

)
TBnn −

(
δ̄ + 4π + 3α− τ̄ + β̄

)
(∆+ 2µ̄+ 2γ)TBnm∗

+ (∆+ µ̄+ 2γ − 2γ̄)TBm∗m∗ − (∆+ 3γ + 4µ− γ̄ + µ̄) (δ − 2τ̄ + 2α)TBnm∗ .
(3.4.19)
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Consequently, the Teukolsky master equation takes the form

[
(r2 + a2)2

∆ − a2 sin2 θ

]
∂Ψ2

∂2
t

+ 4Mar

∆
∂Ψ2

∂t∂ϕ
+
[
a2

∆ − 1
sin2 θ

]
∂Ψ2

∂2
ϕ

−∆−s ∂

∂r

(
∆s+1

) ∂Ψ
∂r

− 1
sin θ

∂

∂θ

(
sin θ∂Ψ

∂θ

)
− 2s

[
a(r −M)

∆ − i cos θ
sin2 θ

]
∂Ψ
∂ϕ

−2s
[
M(r2 − a2)

∆ − r − ia cos θ
]
∂Ψ
∂t

+
(
s2 cot2 θ − s

)
Ψ = 4πρT,

(3.4.20)

where s is the spin weight of the field, T is the source term associated to the field, and
Ψ is the field quantity. For instance, in the case of outgoing gravitational radiation, the
values are

s = −2, Ψ = ρ4Ψ4 and T = 2ρ4T4; (3.4.21)

and for ingoing gravitational radiation

s = 2, Ψ = Ψ0 and T = 2T0. (3.4.22)

For other fields, such as scalar s = 0, neutrino s = ±1/2, or electromagnetic s = ±1,
I refer the reader to Teukolsky’s paper [160].

Keeping in mind that the Weyl scalar depends on the Weyl tensor

Ψ4 = C2424 = Cµνρσn
µm̄νnρm̄σ, (3.4.23)

and that the gravitational radiation depends on the Riemann tensor

R0µ0ν = −1
2 ḧ

TT
µν , (3.4.24)

which, at the same time depends on the Weyl scalar (see Eqs. (3.3.18)), one can relate the
Weyl scalar for outgoing radiation with the gravitational radiation strain in the following
way,

Ψ4 = R2424 = R0µ0νn
0m̄µn0m̄ν

= −1
4 ḧ

TT
µν m̄

µm̄ν = −1
8
(
ḧTTxx − ḧTTyy − 2iḧTTxy

)
= −1

4
(
ḧTT+ − iḧTT×

)
,

(3.4.25)

where I use the definition of Eq. (3.3.13).
To conclude the Teukolsky derivation, it is worth mentioning again, that the most

important result from Teukolsky’s work is that, a Kerr metric written in the NP formalism
can be decomposed into its radial and angular components such that
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Ψ(t, r, θ, ϕ) = e−iωteimϕR(r)S(θ), (3.4.26)

where R(r) and S(θ) satisfy

∆−s ∂

∂r

(
∆s+1

) ∂R
∂r

+
(
K2 − 2is(r −M)K

∆ + 4isωr − λ

)
R = 0, (3.4.27)

1
sin θ

∂

∂θ

(
sin θ∂S

∂θ

)
+
(
a2ω2 cos2 θ − m2

sin2 θ
− 2aωs cos θ − 2ms cos θ

sin2 θ
− s2 cot2 θ + s+ A

)
S = 0, (3.4.28)

where, K ≡ (r2 + a2)ω− am, λ ≡ A + a2ω2 − 2amω and A is the separation constant. For
fixed values of s,m, aω the eigenvalues are labeled by l. Consequently the eigenfunctions
are labelled as R = sRlm(r, aω) and S = sSlm(θ, aω), as well as A = sAlm(aω).

3.4.2 Eigenfunctions
Radial equation

For the radial function, it is useful to make the following transformation

Rlm = ∆s/2(r2 + a2)1/2Rlm,
dr∗
dr = r2 + a2

∆ , (3.4.29)

leading the radial equation to become

∂2
r∗R +

[
K2 − 2is(r −M)K + ∆(4isωr − λ)

(r2 + a2)2 −G2 − ∂r∗G

]
R = 0, (3.4.30)

with G = s(r−M)/(r2 +a2)+r∆/(r2 +a2)2. Then, when r → ∞ (r∗ → ∞), it is possible
to write the radial equation as

∂2
r∗R +

(
ω2 + 2isω/r

)
R ≈ 0, (3.4.31)

with asymptotic solutions R = r±se∓iωr∗ . The radial function for outgoing gravitational
radiation, that is, spin s = −2, takes the form

R ∼ e−iωr∗/r (outgoing waves),
R ∼ r3eiωr∗ (ingoing waves).

(3.4.32)

For the event horizon r → r+ (r∗ → −∞), one can write
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∂2
r∗R +

[
k2 − 2is(r+ −M)k

2Mr+
− s2(r+ −M)2

(2Mr+)2

]
R ≈ 0, (3.4.33)

with k = ω −ma/2Mr+ and where the asymptotic solution for the radial transformation
R = ∆±s/2e±ikr∗ with spin s = −2 takes the form

R ∼ ∆2e−ikr∗ (outgoing waves),
R ∼ eikr∗ , (ingoing waves).

(3.4.34)

Combining both boundaries, one can write

R =
{
Aine

ikr∗ +Aout∆2e−ikr∗ (r∗ → −∞)
Binr

3eiωr∗ +Bout
1
re

−iωr∗ (r∗ → ∞).
(3.4.35)

Note that the ingoing or outgoing index depends on the natural description of the wave,
not on the physical space of the BH. At the horizon, the outgoing waves refer to waves
falling into the black hole. Thus, the boundary conditions are determined by Binr

3eiωr∗

at infinity (r∗ → ∞); and Aout∆2e−ikr∗ at the horizon (r∗ → −∞). These two conditions
will bind the system.

Angular equation

The angular equation can be written as an eigenvalue equation involving two oper-
ators, such that

(h0 + h1)S = −ES, (3.4.36)

where

h0 = 1
sin θ∂θ

( 1
sin θ∂θ

)
−
(
m2 + s2 + 2ms cos θ

sin2 θ

)
,

h1 = a2ω2 cos2 θ − 2aωs cos θ.
(3.4.37)

Note that the first operator depends on θ,m and s while the second operator depends on
θ, a and ω. Therefore, one can in general write the part of the equation that does not
depend on the rotation (aω = 0) in the following way

h0S = −ES, (3.4.38)

that has known solutions, such that
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S(θ, ϕ) =sYlm(θ, ϕ), l = |s|, |s| + 1, . . . ,
E =l(l + 1) − l ≤ m ≤ l.

(3.4.39)

The functions sYlm(θ, ϕ) are a complete set of functions called spin-weighted spherical
harmonics, and are defined as

sYlm(θ, ϕ) =
√

2l + 1
4π dlm,s(θ)eimϕ

dlm,s =
k=k2∑
k=k1

(−1)k
k!

√
(l +m)!(l −m)!(l − s)!(l + s)!

(k −m− s)!(l +m− k)!(l − k + s)! cos
(
θ

2

)2l+m−2k+s
sin
(
θ

2

)2k−m−s

(3.4.40)

with k1 = max(0,m+ s) and k2 = min(l +m, l + s). The tensor spherical decomposition
introduced in Sec. 3.2.1 can also be written in terms of these spin-weighted spherical
harmonics when using the NP formalism, see for instance [155].

The addition of the operator h1 can be understood as a perturbation in the form of
a rotation, changing the spherical solution (aω = 0) to the spheroidal solution (aω ̸= 0).
Hence, in the perturbation approximation, the eigenvalue problem becomes

sElm(aω) =l(l + 1) − ⟨slm|h1|slm⟩ + . . . ,

sSlm(θ, ϕ, aω) = sYlm(θ, ϕ) +
∑
l′ ̸=l

⟨sl′m|h1|slm⟩
l(l + 1) − l′(l′ + 1) sYl

′m(θ, ϕ) + . . . ,
(3.4.41)

where

〈
sl′m

∣∣h1
∣∣slm〉 =

∫
dΩ sYl′m(θ, ϕ) h1 sYlm(θ, ϕ). (3.4.42)

For this operator, one could use the formulation [161]:

〈
sl′m

∣∣cos2 θ
∣∣slm〉 =1

3δll
′ + 2

3

( 2l + 1
2l′ + 1

)1/2 〈
l2m0

∣∣l′m〉 〈l2 − s0
∣∣l′ − s

〉
,

〈
sl′m

∣∣cos θ
∣∣slm〉 =

( 2l + 1
2l′ + 1

)1/2 〈
l1m0

∣∣l′m〉 〈l1 − s0
∣∣l′ − s

〉
,

(3.4.43)

where ⟨l1l2m1m2|LM⟩ are the Clebsh-Gordan coefficients. Thus, the eigenvalue for spin
s ̸= 0, can be written as

sElm(aω) =l(l + 1) − 2aω s2m

l(l + 1) + O
[
(aω)2

]
(s ̸= 0). (3.4.44)
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For simplicity, the eigenfunctions can be written in the spherical harmonic represen-
tation, as

sSlm(θ, ϕ, aω) =
∑
l′

sCmll′(aω)sYl′m(θ, ϕ), (3.4.45)

where sCmll′ are known as the mode-mixing coefficients.
To conclude, because the operator h1, defined in Eq. (3.4.37), depends on the angle

via a cosine, the following symmetries apply

−sSlm(θ, ϕ, aω) = sSlm(π − θ, ϕ, aω), −sElm(aω) = sElm(aω),
sSlm(θ, ϕ,−aω) = sSl−m(π − θ, ϕ, aω) sElm(−aω) = sEl−m(aω).

(3.4.46)

3.5 Solution to the perturbation
The next step would be to obtain and understand the solutions of this Sturm-

Liouville problem. I will not cover the numerical methods to solve the problem, since
one can see for example [182; 183], for complete reviews. One approach is an eigenvalue
problem which can be solved using Leaver’s continued fraction method [184] or the spectral
eigenvalue approach [185]. Many other methods have been studied over the years, however,
these two approaches are the most used nowadays given their convergence. To understand
the problem we are facing, let me describe the method of Green’s functions since it is the
simplest way to appreciate its physical meaning. This section is based on [13; 186–188].

3.5.1 Green’s function
The wave equation has boundary conditions given by the radial equation at the

horizon and at spatial infinity. A technique that allows the inclusion of these boundary
conditions as initial data is the Laplace transform, which similarly to Fourier transform,
converts a real variable t in the time domain, to a variable s in the frequency domain,
although the s variable in this case, is complex. The Laplace transform for a solution to
the wave equation in the time domain, such as in Eqs. (3.4.30) and (3.4.36), is

Φ̂(s, x) =
∫ ∞

0
e−stΦ(t, x)dt, (3.5.1)

for Re(s)> 0. Then, the transform Φ̂(s, x) satisfies the differential equation

Φ̂′′(s, x) +
(
−s2 − V (x)

)
Φ̂(s, x) = I(s, x), (3.5.2)

where the source term I(s, x) is determined by the initial data
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I(s, x) = −sΦ|t=0 − ∂Φ
∂t

∣∣∣∣
t=0

. (3.5.3)

Conversely, given a solution of Eq. (3.5.2), the time-dependent perturbation can be ob-
tained via

Φ(t, x) = 1
2πi

∫ ε+i∞

ε−i∞
estΦ̂(s, x)ds, (3.5.4)

where ε > 0 is an infinitesimal quantity in the real plane, chosen to cover all singularities
in the complex s-plane.

One should first find the homogeneous solution of the differential equation

Φ̂′′(s, x) +
(
−s2 − V (x)

)
Φ̂(s, x) = 0. (3.5.5)

Given a Green function Ĝ(s, x, x′), that satisfies

[
∂2
x − s2 − V (x)

]
Ĝ(s, x, x′) = δ(x− x′), (3.5.6)

the corresponding inhomogeneous solution is given by

Φ̂(s, x) =
∫ ∞

−∞
Ĝ(s, x, x′)I(s, x′)dx′. (3.5.7)

The Green function is constructed as

Ĝ(s, x, x′) = 1
W (s)

[
θ(x− x′)Φ̂−(s, x′)Φ̂+(s, x) + θ(x′ − x)Φ̂−(s, x)Φ̂+(s, x′)

]
, (3.5.8)

where Φ̂−(s, x) and Φ̂+(s, x) are two linearly independent solutions for the homogeneous
solution, and W (s) = Φ̂−(s, x)∂xΦ̂+(s, x) − Φ̂+(s, x)∂xΦ̂−(s, x) is the Wronskian of those
functions.

Then, Φ̂(s, x) can be written using Eqs. (3.5.7) and (3.5.8) as

Φ̂(s, x) = 1
W (s)Φ̂+(s, x)

∫ x

−∞
Φ̂−(s, x′)I(s, x′)dx′

+ 1
W (s)Φ̂−(s, x)

∫ ∞

x
Φ̂+(s, x′)I(s, x′)dx′.

(3.5.9)

It is useful to close the integral path of Eq. (3.5.4), to evaluate the integral through
the residue theorem
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∮
estf̂(s, x)ds = 2πi

∑
q

Res
(
estf̂(s, x), sq

)
. (3.5.10)

Consequently, the solution will be given by the poles of the function which corresponds to
the zeros of the Wronskian. Altogether this reads

Φ(t, x) = 1
2πi

∫ ε+i∞

ε−i∞
estΦ̂(s, x)

∫ ∞

−∞
Ĝ(s, x, x′)I(s, x′)dx′ ds

= 1
2πi

∮
est

1
W (s)

[
Φ̂+(s, x)

∫ x

−∞
Φ̂−(s, x′)I(s, x′)dx′

+Φ̂−(s, x)
∫ ∞

x
Φ̂+(s, x′)I(s, x′)dx′

]
ds

=
∑
q

esqtRes
( 1
W (s) , sq

)[
Φ̂+(s, x)

∫ x

−∞
Φ̂−(s, x′)I(s, x′)dx′

+Φ̂−(s, x)
∫ ∞

x
Φ̂+(s, x′)I(s, x′)dx′

]
.

(3.5.11)

The solution to this equation is a set of discrete complex frequencies ω = ωR + iωI ,
called Quasi-Normal Modes (QNMs), see Fig. 3.3 for a visual representation. They behave
like resonant normal modes, but their imaginary part is associated with a damping time,
which calls for the prefix quasi. Quasi-normal modes are formally defined by solutions
that satisfy purely outgoing boundary conditions 23,

Ψ(x)x→−∞ → e−iωx, Ψ(x)x→+∞ → e+iωx, (3.5.12)

for a time dependence of e−iωt. Then, quasi-normal frequencies of stable systems must
have a negative imaginary part. In other words, if the integral admits solutions whose
amplitudes grow in time, that is, if the imaginary part is positive (ωI > 0), then the
BH becomes unstable. As a result, a small perturbation would generate growing waves,
absorbing the energy of the BH away. If on the contrary, the imaginary part is negative
(ωI < 0), the BH is stable as it will radiate energy for a small amount of time. Vishvesh-
wara [189] showed that the Sturm-Liouville equation for the Schwarzschild BH, only has
a solution of frequencies with a negative imaginary part, which prevents any instability,
since the modes exponentially decay with time.

In contra-position, normal modes are solutions of classical oscillating objects, which
means that they are resonant modes given by real frequencies (ω ∈ R). The dynamics of
that object can be described as a sum of stationary waves, where each wave oscillates at
a given frequency in time but whose amplitude does not move in space.

23Note that this notation might look contra-intuitive because of the chosen convention for the
time dependence, which is negative.
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Figure 3.3: Integration path Γ in the complex s-plane for the inverse Laplace
transformation, where S1, . . . , S8 are the first eight poles of the Green’s function.

Credits: Nollert [186].

3.5.2 Teukolsky solution via Green’s function
It is straightforward to identify the functions and variables to write the Teukolsky

equation in the Green formalism. However, one needs to consider the boundary conditions
for the rotating BH already studied in the asymptotically radial behavior in Sec. 3.4.2.
Given the negative time convention, the imaginary part of the complex frequency should be
negative in order to obtain stable solutions, consequently, this effect will change the natural
interpretation of the wave radiation. Note that it differs from Detweiler’s notation [188]
where ω = −σ and the time has a positive sign. Imposing the condition that nothing can
escape from the singularity towards the horizon (r∗ → −∞) for Rr+(ω, r∗) and that no
wave can come from the spatial infinity (r∗ → ∞) for R∞(ω, r∗), one can express their
asymptotic behaviors as

Rr+(ω, r∗) ≃
{

∆2eikr∗ (r∗ → −∞),
Aout(ω)r3eiωr∗ +Ain(ω)1

re
−iωr∗ (r∗ → ∞),

(3.5.13)

and

R∞(ω, r∗) ≃
{
Bout(ω)eikr∗ +Bin(ω)∆2e−ikr∗ (r∗ → −∞),
r3eiωr∗ (r∗ → ∞),

(3.5.14)
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where k = −ω + ma/2Mr+ is updated from the previously definition in Eq. (3.4.35).
Then, the Wronskian of these two independent solutions is a function that only depends
on ω,

W (ω) = Rr+(ω, r∗)∂r∗R∞(ω, r∗) −R∞(ω, r∗)∂r∗Rr+(ω, r∗)
= 2iωAin(ω) = 2iωBout(ω).

(3.5.15)

For the differential equation

R′′
lm(ω, r∗) +

[
ω2 − V (r∗)

]
Rlm(ω, r∗) = I(ω, r∗), (3.5.16)

the solution in terms of Green’s function takes the form

Rlm(ω, r∗) =
∫ ∞

−∞
G(ω, r∗, r

′
∗)I(ω, r′

∗)dr′
∗

Rlm(ω, r) = R∞(ω, r∗)
W (ω)

∫ r

r+

r′2 + a2

∆(r′) Rr+(ω, r′)I(ω, r)dr′

+ Rr+(ω, r∗)
W (ω)

∫ ∞

r

r′2 + a2

∆(r′) R∞(ω, r′)I(ω, r)dr′.

(3.5.17)

Since we are interested in the gravitational radiation at spatial infinity (r → ∞), we
can write

Rlm(ω, r → ∞) = lim
r→∞

R∞(ω, r∗)
W (ω)

∫ r

r+

r′2 + a2

∆(r′) Rr+(ω, r′)I(ω, r)dr′

= r3eiωr∗

2iωAin

∫ r

r+

r′2 + a2

∆(r′) Rr+(ω, r′)I(ω, r)dr′

= r3eiωr∗Zoutlm ,

(3.5.18)

where Zoutlm is the function that carries all the information of the boundaries Ain and
on the source terms I.

Finally, the gravitational radiation can be expressed as

Ψ(t, r → ∞, θ, ϕ) =
∞∑
l=0

l∑
m=−l

e−iωteimϕRlm(ω, r)Slm(ω, θ)

= r3 (1 − 2M/r)
2π

∞∑
l=0

l∑
m=−l

eimϕ
∫ ∞+iε

∞−iε
e−iω(t−r∗)Zoutlm (ω, r)Slm(ω, θ)dω,

(3.5.19)

where I used the definition of Eq. (3.4.29). The last step is to close the contour path of the
integration to obtain the remaining solutions. Its derivation is beyond the scope of this
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chapter. Nevertheless, it is important to mention that when closing the contour path, a
power-law tail appears as a consequence of the branch cut. In general, its contribution to
gravitational radiation is small and negligible for QNMs detection. I present in Fig. A.1
in Appendix A.4 a visual representation of the tail with its explanation. Its introduction
here would require detailed information given in the next sections.

3.6 Ringdown waveform
This final section is intended to translate all the previous information into the de-

scription of the ringdown, the last stage of the BHB coalescence. Once the two BHs have
merged into a final one, it will be an excited state. As it relaxes, it will emit GWs described
by BH perturbation theory.

The function that solves the wave equation with the boundary conditions can be
decomposed into a radial part Rlm(r, ω) and an angular part Slm(θ, ω), such that

Ψ(t, r, θ, ϕ) = 1
2π

∫ ∞∑
l=0

l∑
m=−l

e−iωteimϕRlm(r, ω)Slm(θ, ω)dω. (3.6.1)

The radial and angular eigenfunctions depend on the complex frequency and the separation
constant for a given pair of (l,m), see Eqs. (3.4.27), in consequence, both (angular and
radial equations) need to be solved at the same time. This can be done, for instance, with
Leaver’s fractional method [184] or via the spectral approach [185].

The zeros of the Wronskian and therefore, the Zeros of Ain, in the Sturm-Lioville
problem for a perturbed BH are known as QNMs as mentioned in Sec. 3.5.1, and represent
the characteristic complex frequencies (ω = ωRe + iωIm) of a perturbed BH, also known
as BH spectrum. Since Ain does not depend on the source terms I(ω, r), the values of
the QNMs depend only on the metric and thus on the parameters of the BH, regardless of
the origin of the perturbation itself. The boundary conditions associated with BHs give
rise to complex frequencies with a negative imaginary part (ωIm < 0), which conditions
the stability of the BH. This means that BHs are stable under perturbations since they
return to their stationary state through the emission of gravitational radiation during a
period given by the damping time τ = 1/ωIm.

Considering the following approximations

Ψ4 = Ψρ−4 ∝ 1
r

∑
lm

e−iωteimϕAlmSlm(θ, ω), (3.6.2)

Ψ4 ∼ ḧ = ḧ+ − iḧ× → h ∼ Ψ4
ω2 , (3.6.3)

one can, without loss of generality, express the gravitational emission of a perturbed BH
as
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h(t, r, θ, ϕ) = M

r

∑
lmn

Almn 2Slmn(θ, ϕ)e−iωlmnt. (3.6.4)

Here, Almn, not to be confused with the separation constant Alm, is the amplitude of
each QNM absorbing the ω−2

lmn factor from Eq. (3.6.3). I include the index n for the
overtones since the solution for a given pair (l,m) and fixed parameters has n solutions, n
poles. Then, the waveform will be a sum of solutions (ωlmn) decomposed in spin-weighted
spheroidal harmonics Slmn(θ, ϕ) = eimϕSlmn(θ), also labeled by (l,m, n) as polar and
azimuthal angular numbers, and overtone respectively. The radial dependency enhances
the decomposition in terms of spin-weighted spheroidal harmonics labeled by (l,m, n),
which, contrary to spherical harmonics, do not present a complete set and, thus, some
solutions can degenerate.

3.6.1 BH spectrum
In order to find the QNMs values, one needs to solve the Sturm-Liouville problem

with the boundary conditions at the horizon and spatial infinity. There are several methods
to obtain the solutions. One example is to consider a Pöschl-Teller potential [190; 191],
which will return an exact analytical solution. However, in general, one needs to call upon
approximations or numerical methods to solve the equation. Such is the case of the WKB
method, although it presents an issue since it involves a Taylor series expansion where
convergence is not guaranteed. Other methods with similar issues are also applicable,
see [182] for a summary of different methods. The continued fraction method, or Leaver’s
method in the BH perturbation context, is one of the few methods along with the spectral
eigenvalue approach [185] that shows convergence. The main idea is to consider the angular
function satisfying Eq. (3.4.27) which can be expressed as

sSlm = eaωu(1 + u)k−(1 − u)k+
∞∑
p=0

ap(1 + u)p, (3.6.5)

where k± = |m± s|/2 and u = cos θ. The expansion coefficients ap are obtained from the
three-term recurrence relation

α0a1 + β0a0 = 0, αpap+1 + βpap + γpap−1 = 0, p = 1, 2, . . . (3.6.6)

where

αp = − 2(p+ 1)(p+ 2k− + 1),

βp = p(p− 1) + 2p(k− + k+ + 1 − 2aω) −
[
a2ω2 + s(s+ 1) + Alm

]
− [2aω(2k− + s+ 1) − (k− + k+)(k− + k+ + 1)] ,

γp = 2aω(p+ k− + k+ + s).

(3.6.7)
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For a given a,m, ω and s, the separation constant Alm can be found by the continued
fraction equation, resulting from Eqs. (3.6.6), and finding the zeros for increasing p

0 = β0 − α0γ1
β1 − α1γ2

β2− α2γ3
β3−...

. (3.6.8)

Given the similarity of the radial expression and the boundary conditions, the radial
function can be written similarly (see Leaver’s paper [184] for its definition). In that case,
the complex frequency ω can be found by the continued fraction method, given the values
of a,m,Alm and s. Therefore, both equations are simultaneously solved until convergence.
The separation constant tends to Alm = l(l + 1) − s(s + 1) as a → 0, then it is natural
to start with the Schwarzschild case and slowly compute the solutions for higher angular
momentum.

QNM values

Nowadays, the values of the QNMs are known with fairly high precision, as various
authors worked on their numerical computation [13; 186; 192]. I base this section on those
references. Moreover, E. Berti made publicly available a code to compute them [193], and
there also exists a python package called qnm [194] that returns the wanted QNM for a
given set of (s, l,m, n, a) parameters. Although the latter employs the spectral eigenvalue
approach [185] rather than the fractional method.

From now on, I will write the complex frequency or QNMs as

ω̃lmn = ωlmn − i/τlmn, (3.6.9)

to differentiate the real part from the imaginary part of the frequency.
Each QNM solution has a positive and a negative real part (±ωlmn > 0), being both

solutions to the eigenvalue problem, see Fig. 3.4 for a visual representation. The solutions
are often called ordinary modes if ωlmn > 0 and mirror modes if ωlmn < 0. When the
rotation is included (a ̸= 0), the spectrum splits into the different values of m = −l, . . . , l
as shown in Fig. 3.5.

Depending on the sign of the angular number m and the sign of ωlmn, one defines
the modes as prograde or retrograde, depending on the literature (see e.g.[195; 196]). Fur-
thermore, the frequencies with positive m are related to the negative m by the following
symmetry

−ωlmn = ωl−mn, τlmn = τl−mn, A∗
lmn = Al−mn. (3.6.10)

This effect can be seen in Fig. 3.6, where I use the same convention as in [197],
calling prograde modes the QNMs with positive frequency values and retrograde modes
the ones with negative frequency values.
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Figure 3.4: Quasi-normal modes spectrum for a Schwarzschild BH (j=0), for l = 2, 3 and
n = 0, . . . , 20 denoting the points from the bottom to the top in that order. Generated

with qnm [194].

A fitting that relates the QNM values and the BH intrinsic parameters is useful
to obtain the inverse relation. That is, given a QNM value, we want to know the BH
parameters (M, j = a/M) 24. This was first studied by Echevarria [198], then by Berti
et al. [192] and later improved by London et al. [199]. As an example, I write here the
parametrization from [192]:

Mωlmn =f1 + f2(1 − j)f3 , (3.6.11a)
ωlmnτlmn/2 =q1 + q2(1 − j)q3 , (3.6.11b)

where f1, f2, f3, q1, q2 and q3 are the fitted coefficients listed in Table 3.1. The complete
tables can be found in [192] as Tables (VIII, IX, X). Indeed, this fit allows us to obtain
the values of the spin and the mass of the BH for any pair of (ωlmn, τlmn).

Overtones and starting time

The initial time of the ringdown is still a topic under discussion, since it is ill-defined,
from a physical point of view [200]. Where does the linear perturbation theory become
valid in a non-linear theory such as GR? The answer is elusive and perhaps not even
well posed. The common practice to understand linear behavior is to fit the superposition

24There is an abuse of language regarding af and j, as sometimes both are used to indicate the
adimensional spin |j| < 1. Even though j = a/M .
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Figure 3.5: Quasi-normal modes spectrum for a Kerr BH with spin j = [0.0, 0.1, . . . 0.9]
for l=2, n=0. Generated with qnm [194].

m n f1 f2 f3 q1 q2 q3
2 0 1.5251 -1.1568 0.1292 0.7000 1.4187 -0.4990

1 1.3673 -1.0260 0.1628 0.1000 0.5436 -0.4731
2 1.3223 - 1.0257 0.1860 -0.1000 0.4206 -0.4256

Table 3.1: Fitting coefficients for the frequencies ω̃lmn with l = 2. Credits: Table
adapted from Berti et al. [192].

of waves characterized by the QNM onto highly precise NR waveforms. The hypothesis
that the merger occurs at the luminosity peak, that is when Ψ4 is maximal, marks the
beginning of the ringdown 25. However, due to the presence of non-linear effects, the start
of the ringdown should be shifted to a more retarded time. Several analyses showed that
the starting time varies for each QNM index since the amplitude of each mode becomes
constant at different times [197; 200–203]. The accepted time is considered to be around
10tM , where tM = t c3/M G is an adimensional value. Nevertheless, this accepted time is
not engraved in stone, and in general, several starting times in the vicinity of the luminosity
peak should be investigated. See for example [197; 201; 204–206] for further discussion.

Overtones are ordered according to their damping time. This means that the fun-
damental overtone (n = 0), has the longer damping time and thus, it is the longer-living
QNM in the waveform. The closer one moves to the merging time, higher overtones will
dominate the waveform. However, analyses over NR waveforms showed that higher over-

25Even though tpeak(Ψ4) < tpeak(h) [200].
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Figure 3.6: Quasi-normal modes spectrum for a Kerr BH with spin j = [0.0, 0.1, . . . 0.9]
for l=2, m=|l|, n=0. The left side corresponds to retrograde modes, while prograde

modes are on the right side of the figure. Generated with qnm [194].

tones are detectable up to a given point, Baibhav et al. [200] define this limit as n = 2,
since higher overtones could be fitting features introduced by the non-linear nature of GR.
For further discussion on these topics and their connection, I refer the reader to [200–203]
for example. Nevertheless, it is worth mentioning that the presence of the first overtone
of the dominant QNM, i.e. (2,2,1), has been inferred for the event GW150914 (see the
discussion on its detectability [201; 207–211]).

Amplitudes

The amplitude and phase of each QNM, have also been an element of study for
some time [197; 204; 212–214]. From Eqs. (3.6.1) and (3.5.19) one can observe that the
amplitudes carry information of the source terms and the complex frequency ωlmn. Then,
the amplitudes will be given by the initial state of the BH, that is, before the perturbation,
which in the case of a merger binary is related to the parameters of the two initial BHs,
i.e., the progenitors. This was studied by Kamaretsos et al. [212; 213]. Analyzing NR
waveforms, they found a relation between the amplitudes and the symmetric mass ratio for
non-spinning BHs. The study was later expanded, among others, by London et al. [204] to
include the final spin dependency for rotating BHs, and also by Cheung et al. [197] albeit,
with a dependency on the plus and minus adimensional spins,

χ− = (qχ1 − χ2)/1 + q, χ+ = (qχ1 + χ2)/1 + q, (3.6.12)
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where χ1, χ2 are the individual adimensional aligned spin of the progenitors and q the
mass ratio. Then, one can write each amplitude and phase as a function of the intrinsic
parameters Ξ,

Almn(m1,m2, χ1, χ2) = Almn(Ξ),
ϕlmn(m1,m2, χ1, χ2) = ϕlmn(Ξ).

(3.6.13)

Mode mixing

The mixing of the modes is a feature that arises naturally when expressing the
spin-weighted spheroidal harmonics in terms of the spin-weighted spherical harmonics as
I previously introduced in Sec. 3.4.2:

sSlm(θ, ϕ, aω̃) = sYlm(θ, ϕ) +
∑
l′ ̸=l

⟨sl′m|h1|slm⟩
l(l + 1) − l′(l′ + 1) sYl

′m(θ, ϕ) + . . . (3.6.14)

It can be expressed as

sSlm(θ, ϕ, aω̃) =
∑
l′

sσl′m′lm(aω̃)sYl′m(θ, ϕ), (3.6.15)

and where sσl′m′lm are the mode-mixing coefficients, previously defined as 2Cml′l. From
now on, I fix the gravitational field spin s = −2 and I also include the overtone index,
since ω̃lmn depends on the overtone n. Various authors [131; 215] computed the values of
spherical-spheroidal mixing coefficients, defined as

−2σl′m′lmn(aω̃lmn) = δm′m

∫
Ω

−2Y
∗
l′m′(θ)−2Slmn(aω̃lmn, θ)dΩ, (3.6.16)

where I used that Slmn(θ, ϕ) = eimϕSlmn(θ) and Ylm(θ, ϕ) = eimϕYlm(θ). Since δm′m is the
Kronecker delta, one can drop the prime in the first m. Consequently, these coefficients
can be found in the literature without the first m at all σl′lmn or even written as µml′ln.
With this representation, the gravitational strain at the ringdown takes the form

h(t, r, θ, ϕ,Ξ) = M

r

∑
l′

∑
lmn

Al′mlmn(Ξ, aω̃lmn)−2Yl′m(θ, ϕ)e−iω̃lmn(t−t0), (3.6.17)

where

Al′mlmn(Ξ, aω̃lmn) = Almn(Ξ)−2σl′mlmn(aω̃lmn). (3.6.18)
Note that I also include in the equation the starting time t0, previously discussed.

To complete this subject, QNMs can also be mixed as a result of the reference frame
choice or the extraction point in terms of NR computations. This effect was first observed
in NR waveforms by B. Kelly and J. Baker. [216] and further analyzed for example in
[195; 197].
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Non-linearity

In the weak field, the linear approach is allowed as it dominates over the non-linear
features. However, in the strong field, the linear approach falls short of describing the
gravitational dynamics as non-linear effects become relevant. In the perturbation theory
framework, one could try to include second-order effects as done for instance in [217–220].
In that case, second-order QNMs appears in the ringdown under the following condition

ω
(2)
lm = ωl1m1 + ωl2m2 , (3.6.19)

if and only if

|l1 − l2| < l < l1 + l2 and m = m1 +m2 < |l|, (3.6.20)

where the upper index (2) denotes the second-order contribution. Furthermore, this fea-
ture was observed in NR waveforms first by London et al.[204] when performing QNM
analysis in the ringdown regime. In addition, one can also see [196; 221].

3.7 Deviations from GR
In previous sections, I describe the framework of perturbation theory, in which the

test of the no-hair theorem enables us to probe GR in the ringdown regime. However,
neither the cause of deviations from GR nor their signatures are introduced. This small
section, based on [183; 222; 223], introduces the framework for modified gravity.

The theory of general relativity is the accepted standard theory of gravity, as it
successfully describes the interplay between matter and spacetime in all scales, except at
the quantum level, at the order of Planck’s mass [225]. This is, of course, assuming, that
the cosmological constant ΛCDM accelerating the cosmic expansion is an external field.
Indeed, there are different opinions on the role of a cosmological constant, as it should
be included in the metric of GR as well, rather than as an external field. Moreover, to
include the high energy regime, there is a great effort in connecting the classical field of
gravity with quantum field theory, giving rise to quantum gravity. To cover all scales,
there has been the development of a plethora of modified theories of gravity over the
years, see Fig. 3.7 for an informative sketch. The list of alternative theories is long, and
their description would take me a long time, thus I refer the reader to [154; 222–224]
for detailed reviews. Nevertheless, it is important to mention that Lovelock’s theorem
[226; 227], imposes that GR is the only theory of gravity in four dimensions, that fulfills
the local gravitational action which contains only second derivatives in the equations of
motion. Then, to construct alternative theories of gravity, one should implement at least
one of the following requirements:

• break diffeomorphism invariance (non-minimal coupling);
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Figure 3.7: A map of various modified gravity models proposed in the literature. Credits:
Shankaranarayanan et al. [224]

• allow for higher dimensions (than 4-D);

• allow for higher derivatives (beyond 2nd order);

• include more fields than the metric tensor (add extra degrees of freedom).

Regarding the first point, diffeomorphism invariance can be restored via the Stück-
elberg technique [228], which introduces an extra field called the Stückelberg field [229].
Regarding the second point, only 4 dimensions have been detected and higher dimen-
sional theories have an effective description in 4 dimensions, which is sufficient to describe
low-energy phenomena [225]. This leaves us with two more detectable possibilities, the
addition of higher derivatives and the addition of fields.

The addition of extra fields, such as scalars, vectors, or tensor fields, leads to an
additional dynamical equation for the corresponding field. In this group, one could mention
the Brans-Dicke theory [230] or the Horndeski theory [231] to name but a few. In the
case of theories with higher-order derivatives, they could also yield more d.o.f as extra
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propagating modes appear. In general, from a mathematical point of view, these theories
can be very complicated to deal with. In this group, the f(R) gravity is probably the
most general model [232]. Nevertheless, the detectability of this new d.o.f. need to be
suppressed at the Solar System scale, where GR is well tested and no extra d.o.f. has been
detected [233]. Therefore, in the case of a modified theory, there are screening mechanisms
to suppress any modification to GR at that scale, see e.g. [222] for a review on screening
mechanisms.

Since a modification to GR, involves either a modification to the background metric,
to the dynamics, and/or to the boundary conditions, the spectrum of QNMs is also ex-
pected to be modified. In general, these modifications change the QNM values depending
on the considered theory. Additionally, keep in mind, that the separation of a metric into a
radial and an angular component depends on the symmetries of the problem. This means
that the description of a modified theory, in terms of a separable wave equation analogous
to the Teukolsky master equation, is not straightforward. Another important feature of
alternative theories is that iso-spectrality 26 is rarely fulfilled. Despite these issues, there
have been several recent developments in the calculation of non-GR QNMs. For that, on
top of the perturbation, an expansion in the spin or the coupling constant is considered.
This is the method used primarily for slowly rotating BHs in different alternative theories,
e.g. [234–237]. For rapidly rotating BHs in effective field theories with higher derivatives,
there is the work from [238; 239], for Einstein-dilaton Gauss-Bonnet gravity (EdGB), see
[240; 241]; for dynamical Chern-Simons (dCS), see [242]; and for new numerical software
to compute the QNM values in beyond-GR theories, such as Einstein-scalar-Gauss-Bonnet
with the spectral method, see [243; 244].

As an example, in the case of higher derivatives in an effective field theory, one can
write the action as [238]

SEFT =
∫ 1

16πd
4x
√

|g|
[
R+ ℓ4

(
λevenR3 + λoddR̄3

)
+ ℓ6

(
ε1C2 + ε2CC̄ + ε3C̄2

)
+ O(ℓ8)

]
,

(3.7.1)
where

R3 = R ρσ
µν R δγ

ρσ R µν
δγ , R̄3 = R ρσ

µν R δγ
ρσ R̄ µν

δγ (3.7.2)
C = RµνρσR

µνρσ, C̄ = RµνρσR̄
µνρσ, (3.7.3)

with λeven, λodd, ε1, ε2, ε3 coupling constants, ℓ the length scale, and the top bar (̄ ) repre-
senting the dual space,

R̄µνρσ = 1
2ϵ

µναβR ρσ
αβ . (3.7.4)

Then, the potential in the wave equation can be written as the GR black hole’s poten-
tial plus a perturbation depending on the spin (V → V RW + δVs), which results in a
perturbation of the eigenvalues with respect to GR eigenvalues, given by

26I introduced this concept at the end of Sec. 3.2.3.
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ω±
lmn = ωKerr + αq

M
∆ωq,±lmn, (3.7.5)

where the q index represents the spin expansion order, and where the sign ± is the parity.
Note that this specific model depends on the coupling constant α and the mass of the object
M , so this kind of theory might be suppressed for supermassive objects. Nevertheless,
perturbations in the QNMs are seen across different theories beyond GR where the metric
solution is not a Kerr BH and small perturbations in the potential could lead to instabilities
[229; 245]. Consequently, in general, one considers a model-independent description of the
QNM. This means, that one measures deviations from GR, in the sense of differences
between non-GR QNMs and GR QNMs. Retaking the complex frequencies of Eq. (3.6.9),
one can write

ωnon−GR
lmn =ωGR

lmn(Mf , af ) + ∆ωlmn, (3.7.6a)
τnon−GR
lmn =τGR

lmn(Mf , af ) + ∆τlmn, (3.7.6b)

where ∆ωlmn and ∆τlmn are the difference of the frequency and damping time in the
(l,m, n) mode. However, a more common parametrization is used, that is

ωnon−GR
lmn =ωGR

lmn(Mf , af )(1 + δωlmn), (3.7.7a)
τnon−GR
lmn =τGR

lmn(Mf , af )(1 + δτlmn), (3.7.7b)

where δωlmn and δτlmn are the fractional deviations of the frequency and damping time
in the (l,m, n) mode.

3.8 Short summary
In this chapter, I presented the theoretical framework needed for the development

of my work. After the coalescence of two BHs, they merge to produce a final BH. That
perturbed BH will settle down through the emission of GWs which can be described as
a superposition of oscillating waves characterized by a complex frequency. The values
of these frequencies, called QNMs, are solutions to the Teukolsky master equation, thus
they depend only on the mass and the spin of Kerr BH. The use of Newman-Penrose
tetrad formalism allowed Teukolsky to separate the wave equation into a radial and an
angular part, enabling the computation of the spectrum of rotating BHs. The solution for
Schwarzschild BHs was previously found by Regge and Wheeler for the axial polarization
and by Zerilli for the polar polarization. All these historical developments at a time when
GWs were not yet detected, paved the way for tests of GR in the ringdown, which is one
of the science objectives of LISA. In the following sections, I describe my work toward
that end, based on the description of fractional deviations from GR.
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Chapter 4

Methodology

The goal of this thesis is to analyze the possibility of testing the no-hair hypothesis
with the detection of GWs produced by the coalescence of MBHBs with LISA. Conse-
quently, before being able to say something about the detection and sensitivity of LISA to
possible deviations from GR, some previous analysis and consistency checks are in order.
I start with an introduction to the general context and state-of-the-art as well as the steps
to achieve my goal in Sec. 4.1. I then describe the response of LISA as a transformation
applied to the signal in Sec. 4.2. Then, Sec. 4.3 explains the Bayesian framework to ana-
lyze the data. The tools to generate an injection as well as the templates are covered in
Secs. 4.4 and 4.5, leaving the results for the next chapter. This chapter, along with the
subsequent chapters containing the results and conclusions, represent the core of my work
and have been, or are in the process of being published [132; 246].

4.1 General context
The first detection of gravitational waves with LIGO [42; 247] produced by the coa-

lescence of a black hole binary GW150914 [43], marked the beginning of the GW astronomy
era. At the same time, its detection opened a window to probe physics beyond the stan-
dard model and general relativity. Since that first detection, the scientific community has
been eager to test GR in the strong field regime [248–251].

Indeed GR can be tested for instance, through the no-hair theorem by analyzing the
ringdown phase. The no-hair theorem, as previously presented, is a prediction of GR, that
states that any Kerr BH is characterized by only two parameters: its mass and its spin
(Mf , af ) [167–170; 252]. In the last stage of the coalescence, once formed, the perturbed
BH is expected to settle down to a Kerr BH through the emission of GWs. As detailed in
the previous section, the radiation of a Kerr BH can be written a superposition of damped
sinusoidals [160; 161]. The strain in the plus and cross polarizations reads

h+(t) − ih×(t) =
∑
lmn

hlmn(t)−2Slmn(af ω̃lmn; θ, φ), (4.1.1)
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where,

hlmn(t) = Almne
i(ϕlmn−ω̃lmnt). (4.1.2)

The complex frequencies ω̃lmn are the solution of Teukolsky master equation, Eq. (3.4.27),
where the real part is the oscillation frequency, while the imaginary part corresponds to
the inverse of the damping time

ω̃lmn = ωlmn − i/τlmn. (4.1.3)

The values of the QNMs are characterized by the metric structure and thus for a remnant
Kerr BH, they depend only on the mass and spin (Mf , af )[168]. In contrast, the amplitude
and phase associated with each mode (Almn, ϕlmn) correspond to their excitation in the
pre-merger, thus depending on the initial BHs parameters [212; 213]. In the presence of an
alternative theory to GR, the values of the complex frequency might deviate from those
of GR [234; 235; 252]. Thus, one approach to probe the no-hair conjecture is with BH
spectroscopy [198; 253]. Since in GR, the values of the BH spectrum are defined solely by
the mass Mf and spin af of the final BH, when studying the spectrum of the remnant
BH, one can recover those two parameters, for example with Eqs.(3.6.11) relating the
mass and spin with the frequency and damping time of each mode. Then, the comparison
of pairs of mass and spin obtained from different QNMs should be consistent with each
other, while in the presence of an alternative theory, the pairs of values could deviate from
each other [192; 212; 214; 253]. Note that more than one QNM is required to perform
this analysis. Another method where only one QNM is needed, involves the comparison
of estimated parameters in the pre- and post-merger regime. A third method called the
“merger-ringdown" test has also been proposed to check for consistency between both
regimes [254]. It is based on the relation between the amplitude and phase of the QNMs
with the properties of the progenitors.

During the fourth observational run (O4), over a hundred sources have been confi-
dently observed by the LVKCollaboration [47]. Hints of spherical higher harmonics have
been found [255] in the full Inspiral-Merger-Ringdown (IMR) waveform for some events.
Nevertheless, the signatures of QNMs (analyzing only the ringdown) seem to hide be-
low the noise floor. However, the presence of the first overtone of the dominant QNM, i.e.
(2, 2, 1), has possibly been inferred for the first event GW150914 [201; 207] (see the discus-
sion on its detectability [208–211]). As the sensitivity of current and future interferometers
increases [53; 82; 247], we expect to be able to detect more QNMs, hopefully already from
O4. However, the question of whether a deviation from GR is unmistakably observable
remains. Up to the O3 catalog, various analyses were made with results always in accor-
dance with GR [248–251; 256; 257]. A more reliable analysis to confidently discriminate
any alternative theory would be to carry out a null hypothesis comparison in a Bayesian
analysis. However, this endeavor presents quite a challenge since that means that BH’s
spectra should be solved for alternative theories. There have been various developments
in computing beyond-GR BH’s spectra, primarily for static or slowly rotating BHs in dif-
ferent alternative theories, e.g. [234–236; 240], see however [239] for rapidly rotating BHs
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in effective field theories and references in Sec. 3.7. Given the lack of waveform catalogs
including deviations from GR, the best we can do is to allow for deviations from GR in a
model-independent way in the injection and search templates.

To the best of my knowledge, when I started this project, nobody had considered
the detailed response of LISA in studying QNMs. Therefore, I began with the simplest
case, gradually adding more complex features as I progressed. In consequence, the study
is divided into two stages. The first stage examines LISA’s capability to distinguish and
identify different spherical harmonics, referred to as “Detectability of higher harmonics”.
The second stage focuses on identifying deviations from general relativity in the ringdown
phase, which I will refer to as “Detectability of deviations from GR in QNMs."

4.1.1 Detectability of higher harmonics
For the Detectability of higher harmonics, I use the full IMR waveform and the

reason is two-fold. One property of phenomenological waveforms such as IMRPhenom-
family [129; 130; 204], besides its rapid generation is that the description of the waveforms
is decomposed in terms of spin-weighted spherical harmonics, similar to NR waveforms.
Thus, the analysis of harmonics is straightforward. Moreover, phenomenological wave-
forms, which are parameterized functions dependent on the frequency, can incorporate
LISA’s response as a transfer function, which also depends on the frequency as we shall
see. This approach enables the generation of very fast waveforms for data simulation and
inference in the Frequency Domain (FD). Operating in the FD is advantageous because
it allows for the diagonalization of the covariance matrix, yielding the Power Spectral
Density (PSD).

The frequency-dependent nature of phenomenological waveforms poses a significant
challenge for ringdown analysis. Each harmonic exhibits a unique frequency dependence,
leading to variations in frequency across harmonics at any given moment. Considering
that LISA’s response also depends on the frequency, it implies an impossibility to segment
the signal precisely at the start of ringdown1 without contamination because each mode
will have a different initial frequency. Using the same frequency grid for all modes will un-
avoidably introduce pre-ringdown information. Alternatively, one could consider applying
a window in the Time Domain (TD) at t0 for all modes before performing the analysis
in the FD. The inconvenience of this method is that any sharp window will introduce
leakage in the Fourier transform, and any smooth window will introduce pre-ringdown
information. This obstacle can be avoided by conducting the entire analysis in the TD.
Nevertheless, this approach has its challenges. Computing each likelihood in the TD adds
extra complexity because the covariance matrix can no longer be diagonalized. Addition-
ally, one must consider the increased computational time required for the (inverse) Fourier
transform and the high numerical sensitivity of the manipulation of matrices.

Another reason to use the full IMR waveform is that the decomposition is done in

1The start of the ringdown is ill-defined, but in general, one uses the luminosity peak as a
reference point. See Sec. 3.6.1 and references therein.
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terms of spherical harmonics. However, during the ringdown phase, the use of spheroidal
harmonics inherently leads to mode mixing 2. Phenomenological waveforms are calibrated
to NR waveforms but use the first order approximation for spherical-spheroidal mixing
sSlm(θ, ϕ, aω̃) ≃ sYlm(θ, ϕ). Consequently, the ringdown regime of these waveforms is not
suited to be described as QNMs solutions with high precision. Due to these constraints, I
assess the detectability of higher harmonics through the detection of spherical harmonics
in the full IMR waveform, postponing the QNMs analysis for the second stage.

Investigating the role of higher harmonics in MBHB signals is essential because of
the high SNR these events will have in LISA. The analysis of such strong signals will
be sensitive to many subdominant features in the waveform and, in particular, to higher
harmonics beyond the dominant (2, 2) mode. Modes with different m are often considered
orthogonal since their phases scale differently with the orbital phase as mϕorb, leading
to destructive interference. In LISA, this is no longer the case for the merger-ringdown
phase, where a large SNR is accumulated over only a few wave cycles. Cross-terms of the
harmonics yield an SNR contribution in the likelihood, which can also affect the parameter
inference. Thus, the absence of higher harmonics in the template will induce biases in the
parameter estimation.

The correct estimation of the parameters of the full waveform is crucial, in particular,
to test the no-hair theorem. In one of the methods introduced in Sec. 4.1 to test GR in
the ringdown, the estimated final parameters from the full IMR or pre-merger waveform
are compared with those obtained from the ringdown [249]. The difference between these
two sets of estimated parameters could be understood as a possible deviation from GR.
Therefore, one should know the intrinsic parameters such as the total mass M , the mass
ratio q, and the individual spins Si of the initial BHs with enough accuracy and precision
to avoid possible biases. Keep in mind that with the progenitors’ parameters, one can
compute the values of final mass and spin (Mf , af ) (see, e.g., [129; 258]), thus allowing
one to perform BH spectroscopy. Nonetheless, one should also determine the extrinsic
parameters from the IMR or premerger estimation to analyze the ringdown regime.

Before this work, the full LISA response (including high-frequency effects) had not
been taken into account to study ringdown signals. In this study, I evaluate our ability
to identify and differentiate modes of a plausible source detected by LISA and investigate
the possible consequences of ignoring modes. To this end, I make use of the software
lisabeta [259], which incorporates LISA’s response to the source waveform, as described
in Sec. 4.2.1. I then explain the study methodology in Sec. 4.4, including the analysis of
the contribution of the modes to the total SNR for general cases. Results and discussions
are given in the next chapter.

4.1.2 Detectability of GR deviations with QNMs
In this exploratory study, I address the question of the extent to which LISA becomes

sensitive to a deviation from GR in the ringdown phase of BHB coalescence. Possible devi-

2See Sec. 3.6.
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ations from GR with LISA sources have been studied in [260] using the pSEOBNRv5HM
waveform [257; 261]. In that work, the full IMR has been taken into account to find
deviations present only in the ringdown. While using the full IMR is an advantage for
low SNR sources it has its downside for high SNR, as systematic errors in the full IMR
waveform, derived from the non-inclusion of eccentricity, precession or higher harmonics
might bias the estimated parameters of the remnant. In this work, I consider a more
flexible prior knowledge of parameters, assuming a raw posterior distribution of the final
BH parameters estimated from the IMR as uniform priors for this analysis. Moreover, in
[260], the analysis assumes deviations in the spherical harmonics representation, while I
perform the study with possible deviations in the QNMs, that is, the spheroidal harmonics
representation. I use two approaches to analyze LISA sensitivity to detect deviations from
GR, namely an agnostic approach and the deviations approach, as we shall see in Sec. 4.5.
I will also discuss the outcome of different assumptions on the priors.

This study is performed in the time domain. The description of the ringdown as a
superposition of waves characterized by the QNMs is well defined in the TD, as well as the
starting point of the signal3. The inclusion of LISA’s response in the TD is also possible,
but this approach requires more computational time compared to the FD. Several tools,
such as LISA gwresponse, PyTDI and LISAinstrument packages [262–264], are available
to simulate noise and data in the TD. However, these tools are computationally expensive,
as they were designed for robust data simulation rather than for data analysis. Therefore,
the development of a particular code to generate fast ringdown signals, incorporating the
response of LISA and a TD data analysis framework is needed.

My contribution to the LISA community includes not only the analyses detailed be-
low but also the development of a code in collaboration with J-B. Bayle and Q. Baghi [265],
which will soon be publicly available. This code Lisaring, facilitates TD data analysis
for MBHB sources. A key advantage of this code is its flexibility, as various theories or
tests can easily be included. For instance, I will soon incorporate tools to perform the
analysis and parameter estimation of signals with memory effect [266]. The memory ef-
fect is the signature of the passage of a GW, where the relative distances of freely falling
observers are permanently modified with respect to the original ones. In particular, the
displacement or non-linear memory effect is a prediction of GR that could be observable
with LISA [267]. The ultimate goal is to develop a GR-test pipeline for MBHBs, that
would constitute another piece of the global fit puzzle.

4.2 LISA Response
This section describes the transformation of a signal when it enters the LISA de-

tector, which is crucial to performing reliable data analysis. In the traceless-transverse
gauge, the gravitational strain is expressed as [2]

3Although the physical starting point of the ringdown is not well-defined, the start of a signal
at t0 is.
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hTT = e+h+ + e×h×, (4.2.1)

where functions e+,× are the polarization tensors given by

e+ =u⃗⊗ u⃗− v⃗ ⊗ v⃗,

e× =u⃗⊗ v⃗ + v⃗ ⊗ u⃗.
(4.2.2)

The vectors v⃗ and u⃗ together with the propagation vector k⃗, in spherical coordinates,
locate the source in the observational frame,

u⃗ ={sinλ,− cosλ, 0}, (4.2.3a)
v⃗ ={− sin β cosλ,− sin β sinλ, cosβ}, (4.2.3b)
k⃗ ={− cosβ cosλ,− cosβ sinλ,− sin β}. (4.2.3c)

In the Solar System Barycenter (SSB) frame, β, λ is the ecliptic latitude and ecliptic
longitude respectively, see Fig. 4.1a for a visual representation.

(a) Source location in the SSB frame (b) Polarization angle

Figure 4.1: Geometric representation of the localization of the source in the SSB frame.

There is another degree of freedom characterized by the polarization angle ψ intro-
duced by a rotation along the propagation vector between the source frame and the SSB
frame, see Fig. 4.1b for a sketch. In the SSB frame, the transformation of the polarization
tensors reads

ϵ+ = e+ cos 2ψ + e× sin 2ψ,
ϵ× = −e+ sin 2ψ + e× cos 2ψ.

(4.2.4)
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Combining all the geometric definitions, the source’s gravitational strain projected
onto the arms of LISA in the direction of the propagation of the laser n̂, reads

Hrs(t) = n̂rs(t) [ϵ+h+(t) + ϵ×h×(t)] n̂rs(t),
= (h+(t) cos 2ψ − h×(t) sin 2ψ) n̂rs(t) · e+ · n̂rs(t)

+ (h+(t) sin 2ψ + h×(t) cos 2ψ) n̂rs(t) · e× · n̂rs(t),
(4.2.5)

where ‘r’ stands for receiver and ‘s’ stands for sender. That means that those letters take
the values 1,2 or 3, according to the three S/Cs. Consequently, the are two measurements
per pair of S/Cs, one in each direction, resulting in six combinations 4. The unit vector
n̂rs is the vector from the emitting to the receiving S/C, thus denoting the laser trajectory,
as shown in Fig. 4.2.

Figure 4.2: Representation of the gravitational strain projected onto the LISA arms
depending on the direction of propagation of the lasers.

The output data from a GW signal seen by LISA will be transformed because of the
synthetic transponder arm introduced in Secs. 2.5.2 and 2.5.3. To simulate the transfer
function applied onto a GW signal, let us study the trajectory of a photon from the laser
source generated in S/C3 facing S/C1. In the presence of a perturbation, the line element
of a photon can be written as

ds2 = (ηαβ + hαβ)dxαdxβ

= −c2dt2 + (δij + hij) dxidxj .
(4.2.6)

Then, the time that the photon takes to travel from one S/C to the other, i.e. the light
travel time (ltt), is given by ∫

dt = 1
c

∫ x⃗1

x⃗3

√
δij + hijdxidxj . (4.2.7)

4Note the ordering of those indices, which follows the last convention adopted in [92].
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Note that instead of the gravitational strain, we want to measure the time-dependent
gravitational strain as seen by LISA, then we exchange hij → Hrs(t), also note that the
space interval is just the arm length between the two S/Cs, i.e. L31, and that the time is
already measured in a unique time reference t, being t1 the departure time from S/C1 and
t3 the arrival time at S/C3. In the case of a moving constellation, the measured strain Hij ,
defined in Eq. (4.2.5), will depend on the position of the detector, which varies with time.
Consequently, one can write the integration of the the strain depending on the position of
measurement x⃗(r′), as ∫ t3

t1
dt′ ≃ 1

c

∫ L31

0

√
1 +H31(t(r′), x⃗(r′))dr′, (4.2.8)

which expanded in a series of Taylor at first order, leading to∫ t3

t1
dt′ ≃ 1

c

∫ L31

0
1 + 1

2H31(t(r′), x⃗(r′))dr′, (4.2.9)

In general, the arm length L31 will not remain constant, as both S/Cs slowly move through
space, then L31 → L31(x⃗(t)). However, as an approximation, one can assume that the
distance of the S/Cs remains constant by fixing the ltt at ∼ 8.3 s, simulating fixed arm
length 5. While this assumption will not have a large impact on the low-frequency response,
it will affect high frequencies and thus, its variation must be considered in a “real-like”
simulation. Hence, the position of the photon can be approximated to the departure’s
position from S/C1, plus the distance traveled in the n̂31 direction, and analogously for
the time, then

x⃗(r′) ≃ x⃗1(t1) + r′ · n̂31(t1), (4.2.10)
t(r′) ≃ t1 + r′/c (4.2.11)

Now, if we want to measure the projected strain H31 at a given time t′, one should consider
the time t at which the GW crossed the arm at a given position, plus the time it took a
photon in that point, to arrive to the detector, i.e the retarded time. This allows one to
write the projected GW on the L31 path as

H31(x⃗(r′), t(r′)) → H31

(
t(r′) − k⃗ · x⃗(r′)

c

)
(4.2.12)

= H21

(
t1 − k⃗ · x⃗1(t1)

c
+ 1 − k⃗ · n̂31(t1)

c
r′
)
, (4.2.13)

where k⃗ is the propagation vector of the GW defined in Eq. (4.2.3). Then, the ltt becomes

t3 ≃ t1 + L31
c

+ 1
2c

∫ L31

0
H31

(
t1 − k⃗ · x⃗1(t1)

c
+ 1 − k⃗ · n̂31(t1)

c
r′
)
dr′. (4.2.14)

5Keep in mind that ∼ 8.3 s is the time that a photon takes to travel 2.5 × 106 km.
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In Sec. 1.3, I said that since the Michelson interferometer is sensitive to frequencies and
phases, then we should try to obtain this equation in terms of the frequency shift, which
can be obtained by integrating and computing its derivative with respect to the emitted
time t1, arriving to

y31(t1) ≃ 1
2
(
1 − k⃗ · n̂31(t1)

) [H31

(
t1 − k⃗ · x⃗1(t1)

c

)
−H31

(
t1 − k⃗ · x⃗3(t3)

c
+ L31

c

)]
(4.2.15)

where x⃗3(t3) ≃ x⃗1(t1) + L31n̂31(t1) is the receiver position at reception time. Note that
the above equation depends on both, the emission and the reception time t1, t3, however,
it is possible to write it only in terms of the reception time t3. If one assumes that the
S/Cs move slowly enough, such that x⃗1(t1) ≃ x⃗1(t3) and thus n31(t1) ≃ n31(t3), one can
write the link response for any pair of receiving, emitting S/Cs indexed by r, s as

yrs(tr) ≃ 1
2
(
1 − k⃗ · n̂rs(tr)

) [Hrs

(
tr − Lrs(tr) − k⃗ · x⃗r(tr)

)
−Hrs

(
tr − k⃗ · x⃗s(tr)

)]
,

(4.2.16)

where I used c = 1. Keep in mind that these links’ responses are the inputs to generate
the TDI channels X, Y , and Z, introduced in Sec. 2.5.3 as

X = (1 −D121 −D12131 +D1312121) (y13 +D13y31) (4.2.17)
− (1 −D131 −D13121 +D1213131) (y12 +D12y21)

where Dij is the delay operator and its combined operator reads,

Drs f(t) = f (t− Lrs(t)) , Di1i2···in = Di1i2Di2i3 · · ·Din−1in . (4.2.18)

with f(t) any function dependent on t and where the quasi-orthogonal channels are con-
structed by

A = 1√
2

(Z −X), (4.2.19a)

E = 1√
6

(X − 2Y + Z), (4.2.19b)

T = 1√
3

(X + Y + Z). (4.2.19c)

Indeed, the orbital motion of the constellation translates into a time variation in the
orientation of the detector relative to the SSB frame. Note that this introduces modula-
tions on the signal observed by LISA, as is noticeable from the explicit time-dependent
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functions, and the delays in the instrumental response given by Eqs. (4.2.5), (4.2.16)
and (4.2.17). In LISA’s frequency band, the observation of MBHBs can last from days to
weeks, depending on the total mass and frequency evolution. Consequently, their wave-
forms can strongly be affected by these modulations. In other words, the time delays and
the variation of those delays will leave an imprint on the measured signal.

Depending on the signal that one wants to study, it is convenient to work in the time
domain or the Fourier domain. Another method called wavelets, considering the time-to-
frequency correspondence is also possible, however not used here, see e.g. [268]. While
working in the TD, the response of LISA can be included rather in a straightforward way
through the previous equations, its inclusion in the FD requires some computation.

4.2.1 Response in Fourier domain
An interesting feature about working in Fourier’s domain, besides the uncorrelated

noise that can be diagonalized, is that the waveform can be completely characterized for
each mode by an amplitude and a phase. In terms of the response of LISA, it was shown
e.g. in [269], that the modulations and delays introduced by LISA can be interpreted as
a transfer function. I proceed to describe this operation, for which I need to recall the
MBHB waveforms. This section is based on [11; 269; 270].

MBHB waveform

The full IMR strain of an MBHB can be decomposed in spin-weighted spherical
harmonics, such that

h̃(f) =
∑
l≥2

l∑
m=−l

−2Ylm(ι, φ)h̃lm(f), (4.2.20)

where −2Ylm is the gravitational field spherical harmonics defined in Eq. (3.4.40), the
inclination and the initial phase are denoted by (ι, φ), which I drop in the following for
clarity. Note that I use the inclination instead of θ to define the angle between the normal
of the orbital plane and the line of sight. Consequently, each polarization can be written
in terms of the modes as

h̃+ =1
2
∑
l,m

(
Ylmh̃lm + Y ∗

l−mh̃
∗
lm

)
, (4.2.21a)

h̃× =1
2
∑
l,m

(
Ylmh̃lm − Y ∗

l−mh̃
∗
lm

)
. (4.2.21b)

The gravitational strain hlm for each mode in the full IMR waveform can be described
in terms of an amplitude Alm and a phase Φlm, both depending on the intrinsic parameters
of the source and the frequency, as follows

h̃lm(f,Ξ) = Alm(f,Ξ) eiΦlm(f,Ξ). (4.2.22)
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Figure 4.3: Decomposition of the gravitational strain hlm in the time domain, in its
spherical components labeled by the angular numbers (l,m) indicated in the legend.

Produced with BH toolkit package [271].

In phenomenological waveforms, the amplitude and phase for each mode are ex-
pressed as concatenations of three polynomial functions of frequency, corresponding to
the inspiral, merger, and ringdown stages. These functions have coefficients calibrated to
PN, NR, and/or sEOBNR waveforms. A visual representation in the time domain of an
NR waveform decomposed in spherical harmonics is shown in Fig. 4.3.

Non-precessing binary systems have an advantageous symmetry relation between
prograde m and retrograde −m modes given by

h̃l−m(f) = (−1)lh̃∗
lm(−f). (4.2.23)

Note that here the definition of prograde and retrograde modes differs from the one used
for QNMs in Sec. 3.6. In the case of an isolated BH, there is no orbital angular momentum
to refer to, and the direction of the modes depends solely on the direction of its angular
momentum J . However, in the case of a binary system, where each BH’s spin and the
orbital angular momentum can have a different orientation, the orbital referential frame is
used to define prograde or retrograde modes, regardless of the total angular momentum.
In addition, an approximation often employed in the FD is to consider only positive or
negative frequencies, in consequence, we have

h̃lm(f) ≃ 0 form > 0, f < 0, (4.2.24a)
h̃lm(f) ≃ 0 form < 0, f > 0, (4.2.24b)
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h̃l0(f) ≃ 0. (4.2.24c)

This approximation allows us to describe each polarization as

h̃+,×(f) =
∑
l

∑
m>0

K+,×
lm h̃lm(f), (4.2.25)

where I introduce

K+
lm =1

2
(

−2Ylm + (−1)l−2Y
∗
l−m

)
, (4.2.26a)

K×
lm = i

2
(

−2Ylm − (−1)l−2Y
∗
l−m

)
. (4.2.26b)

Combining previous equations, one obtains the final expression for the strain ob-
served by LISA in the SSB frame as

h̃SSB(f) =
∑
l,m

Plmh̃lm(f), (4.2.27)

where

Plm = ϵ+K
+
lm + ϵ×K

×
lm

= 1
2
[

−2Ylm(e+ + i e×)e−2iψ + (−1)l−2Y
∗
l−m(e+ − i e×)e2iψ

]
.

(4.2.28)

Note that Plm depends not only on (l,m) and (ι, φ) due to the spherical harmonics,
but also on the parameters defining the reference frame, such as the sky localization (β, λ)
and the polarization ψ introduced in Eqs.(4.2.2), (4.2.3) and (4.2.4).

Modulation and time delays in FD

A time modulation F (t) to a time-varying delay D(t) in the strain can be expressed
as [269]

s(t) = F (t)hD(t), where hD(t) = h(t+D(t)). (4.2.29)

With the convention to Fourier transform a function F being

F̃ (f) =
∫
dt e2iπftF (t), (4.2.30)

a time delay in the frequency domain takes the form

hD(t) =
∫
df e−2iπf(t+D(t))h̃(f). (4.2.31)

Now, if one performs a Fourier transformation with the modulation F (t) and the
delay D(t), it could be expressed as [269]
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s̃(f) =
∫
dt e2iπftF (t)

∫
df ′ e−2iπf ′(t+D(t))h̃(f ′)

=
∫
df ′h̃(f − f ′)

∫
dt e2iπft e−2iπ(f−f ′)D(t)F (t)︸ ︷︷ ︸

G(f−f ′,t)

.
(4.2.32)

The second term can be related to a frequency-dependent function of time G(f, t) and
thus its transformation will be G̃(f, f ′). Note that h̃(f − f ′) appears because of the delay,
which can be Taylor expanded to recover the leading order in time. Then, it is possible
to approximately express the response of each link in terms of the spherical harmonics in
the frequency domain as

ỹrs(f) =
∑
lm

T lm
rs (f) h̃lm(f), (4.2.33)

where T lm
rs (f) = Glmrs (f, tlmf ) is the kernel carrying information on the modulation and

time-delay of the links response. It is defined as [269]

Glmrs (f, t) = iπfLrs
2 sinc

[
πfLrs

(
1 − k⃗ · n̂rs(t)

) ]
×

eiπf(Lrs+k⃗·[x⃗r(t)+x⃗s(t)]) n̂rs(t) · Plm · n̂rs(t).
(4.2.34)

The way to relate the frequency variation with time is through a time-to-frequency
correspondence such as in the Stationary Phase Approximation (SPA), see [272; 273] for
more information. This approximation works only for the slowly increasing phase, namely
the inspiral-merger part, however, it is possible to extend it to the merger-ringdown when
defined as [269; 270]

tlmf ≡ − 1
2π

dΦlm

df
. (4.2.35)

To simplify the transfer function in the frequency domain, some assumptions can be
made:

• the arm length is the same in both directions since the motion of the beam relative
to the S/C is not taken into account, i.e. L12 = L21;

• the constellation forms an equilateral triangle, then the arms will remain equal and
constant, i.e. L12 = L23 = L31 = L.

Using these assumptions and after factoring out several terms, one can write the
response in terms of channels A,E, T as

Ã = i
√

2 sin(2πfL)
e−2iπfL [(1 + z)(ỹ13 + ỹ31) − ỹ32 − zỹ23 − ỹ12 − zỹ21] , (4.2.36a)
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Ẽ = i
√

2 sin(2πfL)√
3e−2iπfL [(1 − z)(ỹ31 + ỹ13) + (2 + z)(ỹ21 − ỹ23) + (1 + 2z)(ỹ12 − ỹ32)] ,

(4.2.36b)

T̃ =4 sin(πfL) sin(2πfL)√
3e−3iπfL [ỹ12 − ỹ21 + ỹ23 − ỹ32 + ỹ31 − ỹ13] , (4.2.36c)

with z ≡ e2iπfL. Note that, under these assumptions, the response is for a detector with
a fixed triangular equilateral setup.

4.3 Bayesian inference
In a Bayesian analysis, the posterior distribution of a set of parameters θ for a given

model M on the observed data d, is expressed as

p(θ|d,M) = p(d|θ,M) p(θ|M)
p(d|M) , (4.3.1)

where p() is the probability, θ are the physical parameters of the source, M is the model or
any other context considered. The first term in the numerator p(d|θ,M) is the likelihood,
also denoted as L(θ). The second term in the numerator p(θ|M) is the prior of the
parameters, usually denoted as π(θ), and p(d|M) in the denominator is the evidence Z
or marginal likelihood, which is computed as the integral of the likelihood over the whole
parameter’s hyper-volume,

Z =
∫

Θ
L(θ)π(θ)dθ. (4.3.2)

In the following, I drop the indication of the model M unless explicitly needed.
The likelihood for a Gaussian noise with a covariance matrix C takes the form

L = 1√
det(2πC)

e− 1
2 (d−h(θ))†C−1(d−h(θ)), (4.3.3)

which can be written as

ln L = −1
2(d− h(θ)|d− h(θ)) − 1

2 ln(det(2πC))

= (d|h(θ)) − 1
2(h(θ)|h(θ)) − 1

2(d|d).
(4.3.4)

Here, I used that the last term in the first equation is a constant and can be neglected,
the same applies to the last term in the second equation since it does not depend on the
estimated parameters and represents a multiplicative constant in the likelihood. I also
used the definition of the noise-weighted inner product, which in the frequency domain is
given by

(ã|b̃) = 4Re
∫ ∞

0

ã(f)b̃∗(f)
Sn(f) df, (4.3.5)

125



Methodology

where Sn is the noise’s PSD and the asterisk (∗) denotes the complex conjugate. The
noise-weighted inner product in the time domain reads

(a|b) =
N−1∑
i,j=0

aiC−1
ij bj , (4.3.6)

where i and j run over the covariance matrix elements given by the total time ∑ ti =
N · ∆t = T . The full log-likelihood is a sum over the log-likelihoods of the uncorrelated
instrumental channels A,E, T ,

ln L =
∑

I=A,E,T
ln LI (4.3.7)

In general, I will ignore channel T, as it is not very sensitive to GWs [104].
At the maximum value of the likelihood, the estimated waveform agrees with the

injected signal. That is when h(θ) = d, then Eq. (4.3.4) takes a zero value correspond-
ing to the maximum likelihood. Consequently, the parameters that return the maximum
likelihood will be the parameters that coincide with the injected ones. It is worth men-
tioning that this is true when the waveform model agrees with the true one, keeping in
mind that there are several waveforms with more or less parameters that could fit well the
data. Nonetheless, only one waveform model would be the correct one. In this Bayesian
framework, there exists a way to compute the preference of the data towards one model
over another. It is given by the Bayes factor B, defined as the ratio of the evidence of two
models

B = Zα

Zβ

π(Mα)
π(Mβ) → log B = log Zα − log Zβ. (4.3.8)

This means that if the log of the Bayes factor is positive, the evidence of model α is
higher than the evidence of the model β, and thus the data is better explained by the
model α than by the model β. Note that I assumed the same prior belief for both models
π(Mα) = π(Mβ) to arrive at the right-hand side equation.

4.4 Detectability of higher harmonics
This section is based on the published article “Detectability of higher harmonics with

LISA” [132] written by me and collaborators. However, some modifications were made for
a better integration into the manuscript.

This study aims to quantify the ability of LISA to identify the presence of different
spherical harmonics in an MBHB event. The detectability of the modes is related to the
total SNR, but also to the relative SNR of the modes. In this framework, there are two
main parameters to consider in the computation of the SNR: the luminosity distance
(Dl) and the mass (M). While the distance is just a scaling factor that affects all modes
similarly, the mass moves the signal to lower and higher frequencies affecting the relative
weight of the inspiral and merger-ringdown. Since the observed signal is characterized by
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the redshifted mass, I will distinguish between the source-frame mass and the observed
(redshifted) mass.

As an analogy to the luminosity peak in the time domain, I use here an ad-hoc
frequency-domain definition of a frequency peak as the frequency at the maximum value
of the observed characteristic rescaled TDI variables6 for each mode, which I introduce
below. This re-scalization serves to avoid an infinity SNR at the zeros of the PSD as a
consequence of the arm length’s resonances. They are defined as [270]

ã, ẽ = e−2iπfL

i
√

2 sin(2πfL)
× Ã, Ẽ, (4.4.1a)

t̃ = e−3iπfL

2
√

2 sin(πfL) sin(2πfL)
× T̃ , (4.4.1b)

where Ã, Ẽ and T̃ are defined in Eq. (4.2.36). With the time-to-frequency correspondence
from Eq. (4.2.35), the frequency peak lies at about 2.4tM (where tM = t c3/M G is an
adimensional quantity) after the time of coalescence. In the observational frame of LISA,
this parameter corresponds approximately to the beginning of ringdown regime 7.

The redshifted mass of the source will move the frequency peaks through the spec-
trum, as shown in Fig. 4.4. This feature translates into a dependency on the contribution
of each mode given the sensitivity of LISA at the frequency peaks. For this reason, it
is interesting to study the contribution of each mode in terms of the mass. Results are
shown in the next Section 4.4.1. Once the contribution of different modes in the general
case is known, one can focus on a specific event as an example.

4.4.1 Study of the mode contributions to the SNR
The SNR builds up in time and frequency and is defined by ρ as

ρ2 =
∑
lm

∑
l′m′

∑
I=A,E

4 Re
∫ HI

lm(f)HI
l′m′

∗(f)
Sn(f) df, (4.4.2)

where the sum over independent channels (index I) extends over channels A,E with
the same PSD noise denoted by Sn. The assumed PSD is drawn from the science re-
quirement model SciRD [274] introduced in Sec. 2.4, including the galactic white dwarf
confusion noise with subtraction of identified sources over one year. Note that I use Hlm

instead of hlm, because LISA’s instrumental response and TDI post-processing combining
Eqs. (4.2.33) to (4.2.36) are included. They read

Ha
lm(f) =hlm(f) · i

√
2 sin(2πfL)
e−2iπfL ·

[
(1 + z(f))(T lm

13 (f) + T lm
31 (f))

6By characteristic I mean the TDI observed channel multiplied by the frequency. A factor 2 is
sometimes introduced in the literature.

7Keep in mind the discussion on the starting point of the ringdown in Sec. 3.6.1.
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Figure 4.4: Frequency peak dependency of the various harmonic modes for two given
sources with different redshifted masses. Cool colors denote a heavy source of ∼ 108 M⊙,

while warm colors denote a lighter source of ∼ 106 M⊙.

− T lm
32 (f) − z(f)T lm

23 (f) − T lm
12 (f) − z(f)T lm

21 (f)
]
, (4.4.3a)

He
lm(f) =hlm(f) · i

√
2 sin(2πfL)√
3e−2iπfL ·

[
(1 − z(f))(T lm

31 (f) + T lm
13 (f))

+ (2 + z(f))(T lm
21 (f) − T lm

23 (f)) + (1 + 2z(f))(T lm
12 (f) − T lm

32 (f))
]
,

(4.4.3b)

where z(f) = e2iπfL. For convenience, I use the notation of the inner product of the
modes, defined as

(lm|l′m′) =
∑
I

4 Re
∫ HI

lm(f)HI
l′m′

∗(f)
Sn(f) df. (4.4.4)

Then the squared SNR can be written as

ρ2 =
∑
lm

∑
l′m′

(lm|l′m′). (4.4.5)

In Eq. (4.4.4), the cross-terms (lm|l′m′), with lm ̸= l′m′ have no reason to be
positive and can contribute negatively to the total SNR. In other words, the phases can
be constructive or destructive, which depend on the values of the ecliptic latitude β and
longitude λ, the inclination ι, the phase ϕ, the polarization angle ψ and the mass ratio
q. An illustration of this outcome can be seen in Fig. 4.5. For this example, I use the
parameters written in Table 4.1 with a redshifted total mass of ∼ 2.44 × 106 M⊙. In
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Figure 4.5: Contribution of cross-terms (22|l′m′) to ρ2. We can observe how the
cumulative squared SNR changes from positive to negative values and vice-versa until

after the ringdown, where it remains constant. The frequency peak of the mode (2, 2) is
shown here for guidance. Each mode peaks at a different frequency, so the stabilization

period starts at a different point for each pair of modes.

Fig. 4.5, I show the (22|l′m′) cross-terms of the accumulated squared SNR ρ2 varying
between positive and negative values depending on the frequency. Note that after a given
point towards the end of the coalescence, the SNR remains constant since there is no more
contribution either positive or negative. This point is close to the frequency peak for each
pair of modes, occurring at a distinct frequency for each mode pair. Therefore, I plot the
frequency peak of the (2, 2) mode with a dotted black line as a guide. In Table 4.1, the
parameters χi represent the aligned dimensionless spin of the two BHs for nonprecessing
binaries.

4.4.2 Dependency on mass and frequency
The next natural step to understanding the detectability of modes is to analyze the

contribution of each pair of modes to the total SNR for different sources. In general,
the SNR depends on all parameters of the source, the distance and the total mass being
the dominant ones. To simplify this analysis, I fix most parameters to arbitrary values,
listed in Table 4.1 and let the mass vary. Note that the results, particularly the details
of the hierarchy between modes and cross-terms, might depend on the choice of the listed
parameters. For each source’s total mass and frequency bin, I compute the accumulated
SNR for each mode and normalize it to the total SNR. Since the ratio of the total mass
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(a) Ratio contribution of the square terms (lm|lm) to the total squared SNR.

(b) Highest ratio contributions of the cross-terms (lm|l′m′) to the total squared
SNR.

Figure 4.6: Cumulative contribution to the squared SNR of pairs of modes depending on
the total redshifted mass. In the top row, we find the square terms with the largest

ratios. The quadrupolar square term represents most of the contribution for low-mass
sources, while it slowly decreases for more massive ones. The opposite happens for terms
(33|33) and (44|44) albeit to a smaller extent. The cross-terms are shown in the last two

rows. They oscillate between ∼ 1% and 5%, especially near the ringdown, illustrated
with a dotted line for the mode (2, 2) as guidance. This percentage can represent an

SNR of tens for a total SNR of thousands.
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Table 4.1: Source parameters in the SSB frame with aligned spins and redshifted
masses.

Parameter Value Parameter Value
Mass (M⊙) [105, 5 × 109] β (rad) π/2

q (Mass ratio) 2 λ (rad) π
χ1 0.5 ϕ (rad) π/2
χ2 0.5 ψ (rad) π/2

redshift 3 ι (rad) π/3

over the luminosity distance increases for higher masses, the normalization allows me to
compare the contribution of each mode regardless of their absolute SNR value.

I gather the results in a set of plots in Figs. 4.6a and 4.6b. Each panel of the figure
corresponds to a mode and shows the squared SNR dependence on both the source mass
and the observed frequency. Then, for a given mass, we can observe how the squared
SNR accumulates in frequency for each pair of modes. Each set of plots has its color
bar where warmer colors towards orange-brown correspond to larger accumulated SNR
contributions. The numbers at the right of the bars represent the contribution ratio of
each pair of modes to the total squared SNR ρ2. Note that I use squared SNR instead
of SNR so that the sum of all contributions is equal to 1. This choice also allows me to
highlight the negative contributions that I mentioned before, as well as their direct impact
on the likelihood, see Eqs. (4.3.4) and (4.4.5). That said, the most noticeable feature is
the positive contribution of the square terms (lm|lm) over all the frequencies, while in
contrast, the cross-terms (lm|l′m′) can have negative contributions. I decided to plot the
frequency peak of the (2, 2) mode (diagonal dotted line) as a mapping guide since the
contribution to the SNR considerably changes in the merger-ringdown regime. Depending
on the mode, the SNR variation will start before or after this frequency line.

In the left plot of Fig. 4.6a, one notes that the contribution of (22|22) to ρ2 is
between 80% to 94% of the total, up to masses ∼ 4 × 106 M⊙, while it decreases to 30%
around masses of ∼ 108 M⊙. The rectangular darker area at the bottom right, between
frequencies [10−3 − 5 × 10−2] Hz and masses [105 − 2 × 106] M⊙, indicates that most of
the SNR comes from the inspiral part. This is expected since the waveform peaks outside
or at the limit of the LISA frequency band. The pair (33|33) (in the center) has a small
contribution for low masses but exhibits a considerable increase up to 21% for high masses
around 108 M⊙. Finally, the case of (44|44) (right plot) shows a similar behavior but is
augmented by a factor ∼ 2.5, representing about 54% of the total SNR for large-mass
MBHBs. In other words, if the redshifted total mass of the system is larger than 108 M⊙,
the contribution of the quadrupolar mode will no longer dominate. It can represent half
of the mode (4, 4) and only a factor of 1.5 bigger than the mode (3, 3). This highlights
the importance of including higher harmonics to describe MBHB signals.

The second set of plots in Fig. 4.6b shows the cross-term pairs of modes that make
the highest contributions to the squared SNR, representing approximately from 1% to 5%
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of the total. This percentage might seem small, but for MBHBs with a total SNR of 1000,
the cross-term contribution can be from 10 to 50. Even though the contributions can be
negative, I use their absolute value for comparison. The reason is that the sign depends
on the extrinsic parameters and the mass ratio, which vary from source to source, but are
fixed here to arbitrary values for the sake of an illustration.

The position of the mode’s frequency peak relative to the LISA sensitivity curve is
driven by the mass of the source. Therefore, the SNR of higher modes can become more
relevant than the (2, 2) mode for large mass events.

Dependency on source mass and redshift

To represent the impact of the mass and the distance on the SNR, as mentioned in
Sec. 4.4, I show in Figs. 4.7a and 4.7b the contour plots for different modes depending
on the total mass in the source frame. I chose a source with the parameters listed in
Table 4.1 for the sake of an illustration. However, the contributions would change with
different parameters. Note that the lower bound of the total SNR is 10, which is the
adopted threshold for MBHB detection in LISA [82; 274].

In these figures, we can see the high contribution of the square terms |(l,m = l|l,m =
l)|1/2 as well as the highest-contributing cross-terms such as |(22|21)|1/2, |(22|32)|1/2 and
|(33|32)|1/2. The pairs |(22|33)|1/2 and |(22|32)|1/2 exhibit a drop in the SNR for systems
with a total source mass around 106 M⊙, depending on the redshift. This effect results
from the specific choice of parameters of the source. It is also visible in Fig. 4.5, where
some cross-terms have a null cumulative contribution to the total squared SNR. For
completeness, another contour plot for a source with different parameters, demonstrating
the mass and redshift dependence of the modes with a different SNR contribution shape
is attached in Appendix B.

To assess how the mass ratio affects the SNR, I show in Fig. 4.8 the contour plots
of the mass ratio versus total source mass for the same source with parameters given in
Table 4.1 and a fixed redshift of z = 2. The absence of contribution at leading PN order
of modes with odd m for equal mass ratio, see e.g. [275], is illustrated here. We can also
note the importance of higher modes for sources with masses around 106M⊙, and mass
ratios between 2 and 15.

4.4.3 Data and models
To understand the impact of higher modes in the parameter inference, I inject an

MBHB source signal with six modes. The parameters used to generate this source were
taken from the LDCWG Sangria’s catalog [152], and detailed in Table 4.2, where the
subscript L in the extrinsic parameters means that it is expressed in the LISA frame at
the time of coalescence tc. I also use the redshifted chirp mass Mc instead of the mass. The
parameters χi represent the aligned BH’s dimensionless spin for nonprecessing binaries and
DL is the luminosity distance.
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(a) Contour plot with the contributions of square pairs of modes |(lm|lm)|1/2.

(b) Contour plot with the highest SNR contributions of cross-terms
|(lm|l′m′)|1/2.

Figure 4.7: Contour plot for the root squared absolute cumulative value of contributions
|(lm|l′m′)|1/2. The dotted line corresponds to the total SNR with a threshold ≥ 10,

plotted here for comparison. I remark the subdominant contribution of |(33|33)|1/2 and
|(44|44)|1/2 after the quadrupolar square term. Note the 0-contributions in some
cross-terms due to the representation of a single system with fixed parameters.
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Figure 4.8: Contour plots for mass ratio with respect to the total mass. The plot
highlights the contribution of higher modes for sources of ∼ 106 M⊙ and mass ratios up
to 15. SNR decreases slowly when increasing the mass ratio by a few units for a fixed

mass.

Two datasets were considered, one without noise and another with instrumental
noise and the galactic noise with the subtraction of identified sources over one year. The
noise was generated with the same PSD assumed in Sec. 4.4.2. Each dataset includes two
TDI channels, A and E. In both cases, the frequency band is restricted to the interval
[10−5 − 5 × 10−2] Hz. To estimate the source parameter for various models I used a nested
sampling algorithm. I chose the sampler dynesty [276], as it allows one to obtain ap-
proximate evidence estimates (see Sec. 4.3 and particularly Eq. 4.3.2). As a consistency
check, one collaborator also ran ptemcee, a parallel-tempered Markov Chain Monte Carlo
ensemble sampler [277; 278]. We obtained consistent results with the two samplers, with
a slightly better convergence for ptemcee, which, however, does not allow for direct evi-
dence computation, and integration over the thermodynamis evidence is required. I report
dynesty results in the following. I use an adaptive heterodyned likelihood to speed up the
likelihood computation, which I describe in Sec. 4.4.4, however, one can also see [279; 280]
and references therein for more information.

I consider six models for the parameter estimation, where each one describes the
waveform with a certain number of modes. The first model generates the gravitational
signature with only the quadrupolar mode (2, 2). The other models (see Table 4.3 for
models’ definition) include an increasing number of higher harmonics, ranked by their SNR
contribution (lm|lm), as observed in Fig. 4.7a. This amounts to first selecting successive
(l,m = l) modes with increasing l and then the (l,m = l − 1) modes.

The used priors are uniform for all parameters in the intervals written in Table 4.2,
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Table 4.2: Parameters of the MBHB source with SNR 744 chosen from Sangria’s
LDC catalog for redshifted mass without precession, along with the flat priors

intervals used in the inference.

Parameter Value Prior
Mc (M⊙) 857080.8396 [104, 5 × 107]

q 2.7589 [1, 10]
χ1 -0.5488 [−1, 1]
χ2 0.2317 [−1, 1]

DL (Mpc) 40084.6792 [104, 5 × 106]
tc (s) 0.0 [−600, 600]

βL (rad) -0.6186 [−π/2, π/2]
λL (rad) 2.2782 [0, 2π]
ϕ (rad) 0.2492 [−π, π]

ΨL (rad) 1.5158 [0, π]
ι (rad) 2.5969 [0, π]

Table 4.3: Each model is indexed according to the number of modes included in
the waveform generation.

Model Modes (l,m)
M1 (2, 2)
M2 (2, 2), (3, 3)
M3 (2, 2), (3, 3), (4, 4)
M4 (2, 2), (3, 3), (4, 4), (2, 1)
M5 (2, 2), (3, 3), (4, 4), (2, 1), (3, 2)
M6 (2, 2), (3, 3), (4, 4), (2, 1), (3, 2), (4, 3)

except for the chirp mass which has a uniform prior in logarithmic scale. I use the whole
physically allowed interval for the extrinsic parameters, while a raw estimation of the
expected values for the intrinsic ones. I use a narrow prior for the coalescence time as it
can easily be spotted in the detection process but with a difference of up to 500 seconds
between the LISA and the SSB reference frame. Note that the polarization ψ is allowed
to go from 0 to π and not 2π, to prevent parameter degeneracy, given that in the antenna
pattern, the polarization is always preceded by a factor 2 as shown in Eq. (4.2.4). The
results and the discussion of this analysis are presented in Chapter 5.

The results were obtained using the Cluster of IN2P3, CNRS, where each run took
between 20 hs and 25 hs, depending on the number of modes, in a single CPU with 16 Gb
of memory. The number of live points was set to 2200, and the convergence was achieved
when the error in the evidence (dlogz) reached the 10−4 value. This value was selected by
analyzing the importance weight and the likelihood Probability Density Function (PDF)
for different runs.
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4.4.4 Heterodyne likelihood in FD
In a simulation of data without noise, one can use an adaptive frequency grid to

describe all the features of a waveform without loss of information. This allows for faster
computation of likelihoods since only a hundred points are used to generate the waveform.
In a more realistic scenario, where noise enters the detector at a given sampling rate, the
use of a frequency grid is no longer possible, as one would be neglecting the covariance
matrix between points and information would be lost. Nevertheless, there is a way to
compute fast likelihoods accounting for the whole array of frequencies, it is called hetero-
dyne likelihood [279; 280]. The main idea behind this method is to exploit the fact that
the data has a two-scale frequency variation. One is given by the slowly changing part of
a signal and the second is given by the rapidly changing noise and rapidly changing part
of a signal. If the waveform template describing a signal is

h(f) = A(f)eiϕ(f), (4.4.6)

then, the ratio of two signals ζ(f) = h(f)/h(f) close to the maximum likelihood, will
be a slowly varying function. Here h is a reference waveform with a likelihood near the
maximum value.

Additionally, knowing that the likelihood of a template waveform h(f) for some data
d(f) is

ln L = −1
2
(
d− h

∣∣d− h
)
, (4.4.7)

one can decompose the likelihood terms into slow varying and fast-varying components,
such that

(
d
∣∣h) = 2

∫
d(f)h∗(f) + h(f)d∗(f)

Sn(f) df

= 2
∫

(κ(f)ζ∗(f) + κ∗(f)ζ(f)) df
(4.4.8)

where κ(f) = d(f)h∗(f)/Sn(f) is a rapidly varying function and ζ(f) the slowly varying
function. Similarly one can write

(
h
∣∣h) = 2

∫
h(f)h∗(f) + h(f)h∗(f)

Sn(f) df

= 4
∫
σ(f)|ζ(f)|2df

(4.4.9)

where σ2(f) = |h(f)|2/Sn(f) for the case of LISA is a slowly varying function, except
at high frequencies. Moreover, in terms of the reference waveform, the likelihood can be
written as
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ln L = −1
2
(
h+ r − h

∣∣h+ r − h
)

= −1
2
(
r
∣∣r)− 1

2
(
∆h
∣∣∆h)+

(
r
∣∣∆h) , (4.4.10)

where r = d − h is the reference residual and ∆h is the waveform difference between
the reference waveform and the estimated waveform. In which case, the slowly varying
function becomes ∆ζ(f) = ∆h(f)/h(f) = 1 − ζ(f). Note that, in general, the error
introduced by terms of ∆h is small when using an adaptive frequency grid. Furthermore,
the integrals being sums over frequency can be efficiently computed using an expansion
in discrete Legendre polynomials or quadratic polynomials for the real and the imaginary
part. In conclusion, the slowly varying functions are fast generated with a frequency grid,
while the rapidly varying functions are generated with the full frequency array only once
and stored.This allows us to improve the computational time to estimate the parameters
of a noisy signal.

4.5 Detectability of GR deviations with QNMs
This section is based on the article “Exploring tests of the no-hair theorem with

LISA”[246] written by me and collaborators. However, some modifications were made for
a better integration into the manuscript.

To study LISA’s sensitivity to probing GR in the ringdown phase of MBHBs, I
focus on testing the no-hair conjecture. As introduced in Section 3.1, the no-hair hy-
pothesis asserts that in GR, Kerr BH are characterized solely by two parameters: mass
and spin. Consequently, these two parameters uniquely describe the spacetime manifold,
leading to the uniqueness of black holes. This uniqueness also contributes to the so-called
information loss paradox, as any two black holes with the same mass and spin parame-
ters are indistinguishable, regardless of their history or origin. However, the information
loss issue is beyond the scope of my work and I concentrate on the uniqueness aspect
and the description of black holes in terms of mass and spin. This principle holds within
GR, but it has been shown that BH spectra might differ in alternative theories of gravity
[234–236; 239; 240]. The discrepancies between the expected spectra in GR and those in
beyond-GR theories are referred to as "deviations" and are typically measured as fractional
deviations from GR. My focus is to quantify LISA’s ability to detect these deviations.
The advantage of using this framework is that it is model-independent, hence one could
constrain different alternative theories with a single analysis.

4.5.1 Data
The analysis procedure consists of generating a toy model describing the ringdown

phase of an MBHB as the sum of damped oscillations with the response of LISA. The
sum of damped oscillations in the ringdown of MBHB is given by
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h(t) =
∑
lmn

hlmn(t)−2Slmn(af ω̃lmn; θ, φ), (4.5.1)

with

hlmn(t) = Mf

Dl
Almn(Ξ, t)ei(ϕlmn(Ξ,t)−ω̃′

lmnt). (4.5.2)

The complex frequency with a tilde includes an allowed fractional deviation from GR in
the real and the imaginary part, see Sec. 3.7, as first introduced by [212]

ω′
lmn =ωGR

lmn(Mf , af )(1 + δωlmn), (4.5.3a)
τ ′
lmn =τGR

lmn(Mf , af )(1 + δτlmn), (4.5.3b)

then

ω̃′
lmn = ω′

lmn − i/τ ′
lmn. (4.5.4)

The GR index indicates the values obtained within the GR framework. There are differ-
ent ways to compute these complex frequencies, I recommend [182] for a review on this
topic. Here I make use of the qnm package [194], which is based on a spectral approach
[185]. I recall that Ξ stands for the intrinsic redshifted parameters of the progenitors
Ξ = (m1,m2, χ1, χ2) and Dl is the luminosity distance.

Spheroidal harmonics can be related to spherical harmonics through

sSlmn = sYlm +
∑
l ̸=l′

⟨sl′m| h1 |slm⟩
l(l + 1) − l′(l′ + 1) + · · · , (4.5.5)

where I drop the dependence on (af ω̃lmn; θ, φ) for clarity, and where

h1 = a2ω2 cos2 θ − 2aωs cos θ. (4.5.6)

The functions sYlm are the already discussed spin weighted spherical harmonics and dΩ is
the solid angle. It is easy to see from Eqs. (4.5.5) and (4.5.6), that one recovers the solution
for the non-rotating (Schwarzschild) BH in spherical harmonic basis when af → 0.

In Sec. 3.6 I introduced mode mixing as a consequence of the representation choice
in perturbation theory in terms of spheroidal harmonics, as opposed to the spherical
harmonics which is the most natural representation in NR. The relation between both
bases can be described by the spherical-spheroidal mixing coefficients, given by

σl′m′lmn(af ) = δm′m

∫
Ω

−2Y
∗
l′m′(θ)−2Slmn(af ω̃lmn; θ)dΩ, (4.5.7)
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Table 4.4: Parameters for MBHB injection

Parameter Value Parameter Value
m1(M⊙) 9384087 m2(M⊙]) 3259880

χ1 0.555 χ2 -0.525
ι (rad) π/3 ϕ (rad) π/4
β (rad) π/2 λ (rad) π/3
Dl(Mpc) 50000 q 2.878
Mf (M⊙) 1.2175649 ×107 af 0.821
δω220 0.0 δτ220 0.0
δω330 0.01 δτ330 0.05
δω440 0.03 δτ440 0.1
SNR 587

where I use that Slmn(θ, ϕ) = eimϕSlmn(θ) and Ylm(θ, ϕ) = eimϕYlm(θ). With this repre-
sentation, the strain takes the form

h+(t) − ih×(t) =
∑
l′

∑
lmn

hlmn(t)σl′mlmn(af )−2Yl′m(θ). (4.5.8)

In this work, the amplitudes and phases used in Eq. (4.5.2) belong to fittings made
by L. London [204; 281], where the mode mixing is already included. Thus I will consider
amplitudes labelled with (l′mlmn) as

Al′mlmn = Almnσl′mlmn. (4.5.9)

In order to consider the following three QNMs, namely [(2, 2, 0), (3, 3, 0), (4, 4, 0)],
I include [(2, 2, 2, 2, 0), (3, 2, 2, 2, 0), (3, 3, 3, 3, 0), (3, 3, 3, 3, 0), (4, 4, 4, 4, 0)], see Eq. (4.5.9).
Indeed, the resulting signal is a sum of decaying waves with amplitudes and phases for
lmn = [(2, 2, 0), (3, 3, 0), (4, 4, 0)].

I also set a fractional deviation to those QNMs equal to δωlmn = [0.0, 0.01, 0.03] and
δτlmn = [0.0, 0.05, 0.01] in the same QNM order. Of course, more QNMs could and should
be added, but to create a proof of concept, I decided to include only these three, leaving
more complex searches for future work. I consider input data including a GW signal with
and without noise. The sampling rate is set to 1 second as a compromise between the
planned sampling rate of 0.25 s, the typical duration of the ringdown for a heavy source
(about 7000 s for a 107 M⊙) and the number of data points N = 8192. The parameters
used for the source injection are listed in Table 4.4. Note that I use ι as the inclination
angle instead of θ. I also write the ringdown SNR as well as the final parameters for the
remnant BH, obtained with Eqs. (3.6) and (3.8) from [129].
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(a) Ringdown strain in spherical harmonics decomposition

(b) Ringdown strain observed by the links

(c) Ringdown strain in TDI channels

Figure 4.9: Ringdown waveform evolution within Lisaring.
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4.5.2 Lisaring
As I mentioned before, I had to develop a specific code to deal with ringdown analyses

with LISA in the time domain, namely Lisaring [265]. The evolution of the parameters
listed in Table 4.4 to the final product is shown in Figs. 4.9. Once the ringdown waveform
is generated with the previous setup, we can decompose it in terms of spherical harmonics
or terms of the plus and cross polarizations h+, h×. Then, the six links response are
computed with Eq. (4.2.16) with ESA LISA science orbit files [282] generated with the
LISA orbits package [283]. Afterward, the combination of the links with the appropriated
retarded times is in place to produce the TDI channels A, E, and T with Eqs. (4.2.17)
to (4.2.19).

One special feature that is worth mentioning is that in the TDI generation, there is
a difference of about 70 seconds between the time computed in the first link and the time
computed for the last link. Keep in mind that for the TDI 2.0, the combination of eight
links with retarded time is needed, this is equivalent to 8.3 s× 8 ≃ 67s, but since the arm
lengths vary, this value can be slightly larger. This translates into corrupted data for the
first ∼ 70 s in the TDI channels, as demonstrated in Fig. 4.9c. Then, one needs to cut
those ∼ 70 s when performing data analysis. The code performs this cut by default when
computing likelihoods.

To finalize this section, as a consistency check, I compared the obtained channel
values with the channels generated with the LISA gwresponse and PyTDI packages for
the same waveform. One can see the residuals of both signals in Fig. 4.10. Here I show
the residuals for channel X, which are of the order of 10−22 (2 orders of magnitude smaller
than the signal) resulting from the different conventions in computing TDI. While I
compute always the retarded time, PyTDI considers a previous point in time and computes
the advanced times, then the starting time of the signals differs by about 60 s. Since the
signal is expressed with a given cadence, the difference is non-zero, leaving a small residual.
Nonetheless, both methods are in good agreement.

4.5.3 Templates
To assess the detectability of deviations from GR in the QNMs I generate a wave-

form with the features discussed in Sec. 4.5.1 and the response of LISA introduced in
Secs. 4.2 and 4.5.2 with the parameters listed in Table 4.4. Then, I try to estimate the
injected parameters with a template that can take two forms, as two approaches are being
considered: the agnostic approach and the deviation approach. In the agnostic approach
one assumes that the ringdown waveform is described by

h+ − ih× =
∑
k

Ake
i(ϕk−ω̃kt). (4.5.10)

In this approach, the complex frequency can take any value as well as the amplitudes
and phases. Note also that any dependence of the spheroidal harmonic is absorbed in the
amplitude and the phase. In this description, no mode mixing is specified. For example, in
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Figure 4.10: Residuals between GWresponse + PyTDI and Lisaring.

this approach, it would not be possible to know how much of the (2, 2, 0) QNM contribution
comes from the spherical harmonic (2, 2) or from the (3, 2). It differs from Eq. (4.1.1) as no
assumption is made on the value of the complex frequency nor the spherical contribution
to any QNM. Without loss of generality, we can call this approach “agnostic” despite the
fixed number of modes k.

In the deviation approach, I assume the framework of GR but allow for a small
“deviation” in the complex frequencies, that is

h+ − ih× =
∑
lmn

Almne
−t/τ ′

lmn+i(ϕlmn−ω′
lmnt) (4.5.11)

where ω′
lmn and τ ′

lmn are the deviated frequency and damping time from Eqs. (4.5.3). In
this case, one recovers GR when the deviations are zero. I impose which QNMs are present
and look for each pair of deviations. Then, I compare the results from both approaches
and discuss the information one can extract from them.

In this toy model, the injection and the recovery template have the same starting
time. By fixing the starting time no error is introduced in the waveform due to the
uncertainty of the ringdown starting time. Consequently, I do not try to evaluate any
systematic uncertainties coming from the definition of the starting time of the ringdown,
which is still under debate [200; 202; 205]. However, when dealing with real data, where
one does not know the appropriate starting point, several starting times in the vicinity
of the luminosity peak should be considered (see for example [201; 207; 211]). I also fix
the sky localization to the true value. Thus, no error from this parameter is introduced
in the waveform either. A visual representation of the impact on the ringdown waveform
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Figure 4.11: Uncertainty for given waveform with a sky localization posterior
distribution. The blue line marks a waveform with a fixed sky localization and the

shaded light-blue curve represents the waveform’s uncertainty if the sky localization has
an error of ±0.05 radians →∼ 8 deg2.

due to a sky localization error of approximately ±0.05 radians (about ∼ 8 deg2) is shown
in Fig. 4.11. Both issues will be left for future exploration.

Before jumping to the results, let us describe one particular feature that I had to
analyze to introduce it in Lisaring for the computation of the likelihood.

4.5.4 Likelihood computation
One of the major concerns when working in the time domain is the manipulation of

the covariance matrix, since its inverse is required to compute the likelihood. To obtain
the covariance matrix, I use the same method as in [203] with an analytical PSD. Namely,
assuming stationarity, one can generate the covariance matrix as a symmetric Toeplitz
matrix, such that

Cij = ρ(|i− j|), (4.5.12)

where, ρ(k), k = |i − j|, is the Auto-Covariance Function (ACF) that can be estimated
from noise-only data in the TD with a length longer than N or as the inverse Fourier
transformation from a PSD. In this study, in the absence of real data, I use the latter
option generating the ACF from the LISA science requirements document SciRD [274]
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PSD 8, which takes the following form

ρ(k) = 1
2T

N−1∑
j=0

S(|fj |)e2πijk/N . (4.5.13)

Working with matrices usually demands a lot of computational time and, because
of their numerical instability, special care has to be taken. To reduce the computational
time, one can take advantage of different methods such as the Cholesky decomposition
[284] or the Levinson recursion [285; 286] among others.

The Cholesky method consists of decomposing the covariance matrix into two ma-
trices, a lower triangular matrix and its conjugate transpose such that

Cij =
∑
l

LilL
∗
lj , (4.5.14)

then the inner product becomes

(a|b) =
N−1∑
i,j=0

αiβj , (4.5.15)

where

αi =
∑
l

L−1
il al. (4.5.16)

For the time domain analysis, I use another method to compute the likelihood which
relies on the Preconditioned Conjugation Gradient (PCG) [287] in combination with the
Jain method [288], which I explain next. The use of the bayesdawn package [289], with
the implementation of these two methods allows for fast computation of the vectors

aj = aiC−1
ij . (4.5.17)

Then, the inner product of Eq. (4.3.6) becomes a much faster product of vectors

(a|b) =
N−1∑
j=0

ajbj . (4.5.18)

Preconditioned conjugation gradient (PCG)

The conjugation gradient is a numerical technique to solve systems of linear equa-
tions Ax = b, where A is a symmetric positive definite matrix. The idea of the method is
to solve the equation through a recursion with an initial guess x0, which gives an initial
residual r0. If one considers a function

F (x) = 1
2x

T Ax− xT b, (4.5.19)

8I introduced the PSD equations of this noise in Sec 2.4.
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one can see that its gradient is F ′(x) = Ax− b, thus by finding the x that minimizes F (x)
is the same as solving Ax = b. For every x, the gradient points in the direction in which
F (x) increases the most, whereas the opposite direction points to the critical point and
thus to F ′(x) = 0. Then, the residual at the k iteration rk = b − Axk decreases until a
given tolerance is reached and the algorithm stops. In general, the convergence of a matrix
An×n is obtained with n iterations, however, the number of iterations will vary with the
condition number of the matrix. The condition number of a matrix is given by

κA = ||A−1|| ||A||, (4.5.20)

then if κA ≃ O(10), the matrix is said to be well conditioned and the solution will be
found in n iterations, and badly conditioned if the value is much larger than one κ ≫ 1.

The preconditioned conjugation gradient is an extension of the conjugation gradient
to solve more challenging problems with an ill-conditioned matrix or even with gaps making
it hard to solve9. The trick is to solve a related problem Ã x̃ = b̃, with a condition number
close to one κÃ ≃ 1. Both systems are related via the following expressions

Ã = B1/2A, x̃ = B1/2y, b̃ = B1/2b, (4.5.21)

where B could be chosen, for example, as diag(a11, a22, . . . , ann), but other choices might
work as well. Then, instead of solving Ax = b, one should solve the related problem

My = b̃, (4.5.22)

where y = B−1/2x and M = B1/2AB1/2. Following the technique presented before to
solve the system, one obtains the preconditioned solution.

In conclusion, the PCG method is crucial for ill-conditioned matrices, such as the
one generated from LISA’s ACF, with a condition number of κ ≈ 107 10.

Jain method

The Jain method consists of a fast inversion of a Toeplitz matrix via a Fast Fourier
Transform (FFT) [288]. It differs from Levinson’s technique to solve these problems, as
it is not a recursive algorithm and therefore yields an exact solution in O(N log2N) com-
putations [288]. Moreover, since the equations are non-recursive, a parallel architecture
is possible. It is based on the idea that any banded Toeplitz matrix, also known as non-
circulant Toeplitz matrix, can be decomposed in a circular matrix Tc and a perturbation
matrix Tb in the following way

T = Tc − Tb, (4.5.23)
9In that case the covariance matrix has chunks of lines with zero values.

10This value is obtained for an ACF of 22000 points at 0.2 Hz, but it might vary depending on
the sampling rate and the length.
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where the circulant matrix has the form,

T =



t0 t−1 · · · t−p 0 0 tq · · · t1

t1
...

... tq
tq 0
0 0
0 t−p

t−p
...

... t−1
t−1 · · · t−p 0 0 tq · · · t1 t0



, (4.5.24)

See Fig. 4.12 and Eq. (4.5.24) for a visual representation of the Toeplitz matrices.
The advantage of using this decomposition is that the circulant matrix Tc can easily be
solved via FFT as the inverse Discret Fourier Transform (DFT) of the sequence ỹ(ω) =
b̃(ω)/λ̃(ω), where the tilde denotes the DFT and [288]

λ(ω) = t0 +
q∑

k=1
tke

ikω +
p∑

k=1
t−ke

−ikω, (4.5.25)

with ω = 2πm/N , 0 ≤ m ≤ N − 1, and tk the values defined in Eq. (4.5.24), and b, y

defined in Eq.(4.5.21). Nevertheless, the solution for the circulant matrix Tc can also be
obtained via other recursive methods, such as the PCG or Levinson. In that case, one
computes afterward the solution for the perturbation matrix Tb, thanks to the relation
ỹ(ω) = b̃(ω)/λ̃(ω). For reference, t0 is the first element of the ACF, which corresponds to
the black color in Fig. 4.12, while t−p is the first element in the first column of Tb and tq
the first element in the first row of Tb, both in light grey.

(a) Toeplitz banded
matrix T .

=

(b) Toeplitz circulant
matrix Tc.

-

(c) Toeplitz pertubation
matrix Tb.

Figure 4.12: Visual representation of a banded Toeplitz matrix decomposition.

Then, one has to solve the system for the Toeplitz perturbation matrix Tb to find
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the solution of x that fulfills

T x = b. (4.5.26)

Reformulating, one arrives to

Tc x = b+ Tb x −→ x = y + T−1
c Tb x, (4.5.27)

where y = T−1
c b. In that case, and denoting from now on T−1

c = T , one can write,

x = y + T

u0
v

 , (4.5.28)

with the definitions

u = f xf , v = g xi, (4.5.29)

where f and g are respectively the q × q upper and the p × p lower triangle matrices of
Tb and where I define xi the p× 1 initial values {x1, · · ·xp} and xf the q × 1 final values
{xN−q+1, · · ·xN}. Thus, applying the same partition (initial, middle, and final) to the
inverse circulant matrix and the circulant result y,

T =

 T ii T im T if

T mi T mm T mf

T fi T fm T ff

 , y =

 yi

ym

yf

 , (4.5.30)

one can obtain with the definitions from Eqs. (4.5.28) and (4.5.29) the identities

g−1v = xi = T iiu+ T ifv + yi, (4.5.31)
f−1u = xf = T fiu+ T ffv + yf . (4.5.32)

The combination of these identities is the solution of x.
To relate these methods to the computation of the likelihood. The idea is to solve

aj(θ) = ai(θ)C−1
ij . (4.5.33)

For that, I use the algorithm that applies the Jain method to decompose a non-
circular Toeplitz matrix into a circulant and a perturbation matrix and then I use the PCG
technique to solve the circulant matrix with a large condition number. This is achieved
by solving the system Ãx̃ = b̃ where Ã is the transformed Toeplitz matrix resulting from

Ã = B1/2A = B1/2Cij , b̃ = B1/2ai = [1 0 0 · · · 0 0], x̃ = aj . (4.5.34)
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Table 4.5: Comparison of convergence and computational time for computation of
vector aj(θ) with different methods.

Method Computational time (s) Convergence
Scipy 15.1 ± 1.25 ✓

Levinson-Jain 0.099 ± 0.004 ✗

PCG-Jain 8.2 ± 0.211 ✓

PCG 30 ± 1.37 ✗

Once the preconditioned solution is obtained, the solution for the perturbation ma-
trix is computed with Jain’s method. Finally, once the vector is obtained, I can compute
the product of the vectors

(a|b) =
N−1∑
j=0

aj(θ)bj(θ) =
N−1∑
j=0

x̃jbj(θ), (4.5.35)

that are the key to the computation of the likelihood in the time domain.

Numerical stability check

To complete this section I show the comparison with the other two methods, just
as a consistency check for precision and computational time. Numerical precision in the
computation of the vector in Eq. (4.5.33) is required to calculate the likelihood. A vector
with numerical instability will translate into a plateau likelihood. This means that the
likelihood does not have a clear maximum, since it presents a flat behaviour near the true
parameters. This feature prevents one from finding the parameters’ true values.

To prevent the plateau likelihood but also to guarantee the fast but accurate compu-
tation of the vector, I compared four methods: Scipy, Levinson-Jain, PCG-Jain and PCG.
The first method uses the scipy [290] package to compute the Toeplitz matrix and its in-
verse. Then, this inverted matrix is used to compute Eq. (4.5.33). The second method uses
the Jain method to decompose the matrix in a circulant and a perturbation component
while solving the circulant Toeplitz matrix via Levinson’s recursion. The third method is
similar but solves the matrix via the PCG technique. And lastly, the fourth method is
via the PCG technique without a previous Jain decomposition. The numerical stability
can be observed in Fig. 4.13. Using the scipy method results in a numerically unstable
vector because of the high condition number of SciRD’s ACF, which is κSciRD ∼ 2 × 106

for 213 = 8192 points at 1 Hz. A similar outcome for the Levinson-Jain method, which,
after 8192 iterations, the requested tolerance of 10−6 was not achieved. The other two
methods have equivalent numerical behavior, being the main difference in the convergence
and computational time, resumed in Table 4.5. Because of the results of this comparison,
I chose the PCG-Jain method to compute the likelihood in the TD.
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Figure 4.13: Visual representation of the stability of the vector aj(θ), computed with
different methods.
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Results

In this chapter, I show and discuss the results obtained in the two different analyses
previously introduced.

5.1 Detectability of higher harmonics
This section is based on the published article “Detectability of higher harmonics with

LISA”[132] written by me and collaborators. However, some modifications were made for
a better integration into the manuscript.

5.1.1 SNR and Bayes factor
Before presenting the Bayes factor and parameter estimation results, I would like

to discuss the expectations regarding the contribution of modes. The example considers
a source event randomly chosen from the LDCWG Sangria’s catalog with an SNR ∼ 744,
see Table 4.2. Converting the redshifted total mass to the source-frame total mass with a
redshift of 4.3, I obtain a value of 2.28 × 105 M⊙. Using Fig. 4.7, with this source-frame
mass, one can expect the term (22|22) to be the dominant contributor, whereas the rest
of the SNR will come from (33|33) and (44|44) and the cross-terms (22|21) and (22|32).
This is a simple estimation since the source parameters are not precisely the same as the
ones listed in Table 4.1, but it will give us a rough estimation.

The actual contribution from each pair of modes is plotted in Fig. 5.1, where I
show the squared SNR contribution for each pair of modes for the full IMR signal of the
example source. Both axes correspond to the modes, so the intersection represents the pair
of modes (lm|l′m′). In the diagonal of the matrix-like table, one finds the square terms,
while in the upper and lower triangle, one encounters the symmetric cross-terms. The
value in each box indicates the squared SNR of each pair of modes, whose absolute value
is shown by the color bar. One can see that the pair (22|22) indeed accounts for the largest
contribution as expected, followed by the pairs (22|21), (33|33), and (22|33). The color
gradient observed when descending in the diagonal line is a consequence of the hierarchical
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Figure 5.1: Final value of squared SNR of each pair of modes (lm|l′m′) for our example.
Note the positive values for the square terms and the decreasing values in the diagonal.

In contra-position, note the negative values for pairs with different ‘m’ except for
cross-terms (22|21) and (44|32). An interesting result is the relatively high value of

(22|21), the second highest value.

ordering of modes. One striking difference with Fig. 4.7 is the high contribution of (22|21)
when compared to (33|33), showing that the details of the mode contributions will vary
for different sources with different parameters.

Even if the final value of a mode’s SNR is small for the complete IMR signal, it
does not mean that its impact is negligible in relative terms everywhere in frequency,
particularly in the pre-merger phase. This feature can be observed in Fig. 5.2, where
I represent the squared SNR absolute value as a function of the frequency. The pairs’
contributions are separated into groups to make the figures readable. One can see how
some terms dominate in their group below a frequency that approximately corresponds to
the merger, after which they later decrease. This happens for the pair (22|32) in the top-
right figure or (21|32) in the bottom-left figure. Thus, statements about modes’ relative
importance, generally depend on the total accumulated SNR.

To quantify LISA’s ability to identify the presence of modes, I compute the Bayes
factor using the dynesty sampler [276]. I compare all the modelsMk with k = 1, . . . , 5 with
M6 (the models’ definition is presented in Table 4.3). The results gathered in Table 5.1
show clear negative values for all of them. This means the model with six modes is
preferred and describes the data better than all other models, as expected. Even the value
of -84 (-100 with noise) shows a significant preference for the model M6 over M5, where
only the mode (4, 3) is absent. Thus, even the weakest modes in this setting should be
identified as present in the data, which indicates that LISA observations will be capable
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(a) Square terms (lm|lm) (b) Cross-terms (22|l′m′)

(c) Cross-terms (21|l′m′) (d) Cross-terms (lm|l′m′)

Figure 5.2: Cumulative contribution to the squared SNR (in absolute value) of different
pairs of modes depending on the frequency. The upper left figure shows the contribution
of the square pairs, where we can see the quadrupolar making the higher contribution.
All the other figures show cross-terms, from where we can highlight the contribution of
the quadrupolar mode with higher modes (22|l′m′), which are predominant over other

cross-terms.

of identifying waveform modes beyond the ones available in current waveform models.
This result advocates using waveforms with all available higher harmonics to capture all
the physics in LISA signals and further developing waveforms with higher mode contents.
In the following section, I investigate whether ignoring these weaker higher modes would
produce biased parameter estimation results.

5.1.2 Posterior and parameter bias
To assess the impact of the mode’s contribution on the estimation of the parameters,

I show in Fig. 5.3 the posterior distribution of the logarithm of the chirp mass logMc, the
mass ratio q and individual adimensional spins χ1, χ2. Keep in mind, that these intrinsic
parameters are relevant to the description of the remnant BH (see Sec. 3.4). The complete
array of the parameter’s posterior distribution can be found in Fig. B.2 in Appendix B.2.

I show here the six models for comparison. Intersected black lines represent the true
values, and each model’s posterior distribution is distinguished by the color code indicated
in the legend. The parameter estimation for the model with only the quadrupolar mode
(green color) leads to biased estimates. As we increase the number of harmonics in the
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Figure 5.3: Marginalized posterior distribution on mass and spin parameters for noisy
data. The six models with different numbers of modes are represented here. The

posterior of the model M6 (blue) finds the true values with high accuracy, while other
models tend to induce biases, especially for spin parameters.
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Table 5.1: Bayes factor for all models compared to the injected model

Bayes factor Noiseless dataset Noisy dataset
log(Z1/Z6) -6845 -6873
log(Z2/Z6) -976 -1015
log(Z3/Z6) -237 -259
log(Z4/Z6) -109 -134
log(Z5/Z6) -84 -100

Table 5.2: Estimated value for models M1 and M6, for the two datasets with noise.

Parameter True value Estimated value with Estimated value with
M1 (with noise) M6 (with noise)

logMc (M⊙) 5.93302 5.93374+0.00019
−0.00016 5.93304+0.00009

−0.00010
q 2.759 2.414+0.012

−0.012 2.759+0.013
−0.023

χ1 -0.549 -0.888+0.009
−0.008 -0.549+0.011

−0.021
χ2 0.232 0.996+0.004

−0.018 0.231+0.057
−0.030

models, the parameter posterior mean values get closer to the injected values. We observe
that the posterior of model M6 (in blue) is centered on the true value for all parameters,
which is expected since the signal is injected and recovered with the same model. By
comparing models with 3 and 4 modes (M3 and M4, orange and pink, respectively), we
observe a better estimation of spin parameters when the mode (2, 1) is included in the
waveform (model M4). This observation is consistent with the large relative contribution
of (22|21) indicated by Fig. 5.1. The explanation of the importance of the (2, 1) mode
and whether this is generic or specific to this example source are left for future investiga-
tions. PhenomHM generates the inspiral phase of the waveform with PN approximation,
where the (2, 1) mode carries the leading order aligned-spin information 1. Then, it is not
surprising that for highly aligned or anti-aligned spins, this mode becomes important.

In Table 5.2, I list the parameter’s injected values and the estimated values, with
models M1 and M6 in the presence of instrumental and galactic noise. The Table with-
out noise is provided in the Appendix B.2. The super- and subscripts indicate the 68%
confidence interval. In both cases, i.e., with and without noise, the model featuring only
the dominant quadrupole mode is inaccurate in finding the true values. In contrast, the
estimated mean value with all modes is consistent with the injection. Surprisingly, the
values obtained with the noisy data and the M6 template appear closer to the injection
than the ones obtained without noise. Note that the posterior distributions are not per-
fectly Gaussian and the mean value can be shifted due to tails. I performed another run
with a different realization of the noisy data, obtaining similar results as the data without
noise. The evidence obtained with both noisy realization encompasses the evidence ob-
tained with the data without noise. Therefore, this particular result can be interpreted as

1See e.g. Eqs. (4.17b) in [275].
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a fortuitous outcome of statistical fluctuations. The results of that analysis are shown in
the Appendix B. In conclusion, for the medium-SNR and medium-mass case studied (see
Fig. 4.7), the absence of higher modes would already result in biased estimated values.
These biases would only get worse for higher-SNR and higher-mass systems.

In Fig. 5.4, I illustrate the impact of the parameter biases on the reconstruction of
the post-merger waveform. I randomly select 2000 samples from posterior distributions
obtained with models M1, M3, and M6 and generate the waveform in the time domain
with the same model. Fig. 5.4a serves as a visual representation of the amplitude and
phase from the results obtained by each model. We cannot distinguish individual lines
due to the small statistical error: the posteriors are centered around biased parameters
but with a small dispersion. The waveform reconstruction would therefore be “confidently
wrong". Trying to infer a ringdown analysis with IMR information from biased analyses
would presumably corrupt GR test. If one compares M3 and M6 (in orange and blue,
respectively), enlarging the image, one sees visible differences in the post-merger phase.
This feature, consistently with the significant Bayes factor for model M6 over model M3,
highlights the contribution of less dominant modes such as (2,1), (3,2), and (4,3).

One of the tests looking for deviations from GR in ringdown signals consists of
comparing the final mass and spin inferred from the ringdown signal with the values derived
from the IMR posteriors using formulas fitted on numerical relativity; the consistency
between the two estimates is the focus of the test. I do not perform a ringdown analysis
here, as it is done in the next section. Still, I illustrate in Fig. 5.4b how the parameter
biases found in the IMR parameter estimation would translate into erroneous mass and
spin. Using the same fitted formulas as in PhenomHM [131] (see Eqs. (3.6) to (3.8) in
[129]), I derived the final mass and spin for 2000 randomly distributed points within the
posterior distribution for each model. The IMR parameter biases would translate into
significantly biased Mf and af . In this figure, the addition of higher modes shows no clear
trend for the final mass, but we can appreciate how the introduction of weaker higher
modes helps to obtain a more accurate final spin for the remnant BH. Those models
are M4, M5, and M6, in pink, purple, and blue, respectively. It is worth mentioning the
scattered distribution of M5, which is the result of the bimodal distribution of individual
spins and the mass ratio illustrated in Fig. 5.3.

5.1.3 Modeling error and SNR dependency

The magnitude of the bias on each parameter depends on the SNR and the template
waveform used for the inference, hence on the model Mk (with k = 1, . . . , 6). To properly
analyze this issue, let’s introduce some definitions. Within the Fisher approximation, valid
in principle in the high-SNR limit, the statistical error in each parameter σθ produced by
the noise for a given waveform is determined as

σθi
=
√

Γ−1
ii , (5.1.1)
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(a) Waveform obtained with models M1, M3, and M6 with parameters
sampled from posterior distributions of the corresponding model.

(b) Derivation of mass and spin of the final BH from posteriors distribution
using models M1 to M6 compared with the true values.

Figure 5.4: Illustrative effect of biased parameters in the ringdown. In the top figure, we
see waveforms generated with the same model as the one used in the inference, obtained
from 2000 posterior samples for three models θ̂(M1,3,6). We can see the consistency of
the models with the injection, albeit its parameter bias. The bottom figure shows the

mass and spin of the remnant derived from each set of parameters for all models (colored
dots) and the true value (crossing black lines). This is a visual representation of the

impact of biased parameters on the remnant BH.
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Figure 5.5: Comparison of the error in the intrinsic parameters posterior distribution for
all models (Mk, k = 1, . . . , 6 in color) with the error derived from the Fisher

approximation (in black). Due to its large value, the Fisher bias for M1 in the spins and
mass ratio lies outside the plot. We observe consistency between the Fisher computation

and posteriors for models Mk with k = 3, 4, 5, 6 as the bias decreases.

where Γij =
(
∂h
∂θi

| ∂h∂θj

)
is the Fisher information matrix. In this framework, the statistical

error scales directly as SNR−1.
The bias ∆θ(Mk) or “modeling error" due to the use of an incorrect template is

defined as [291]

∆θi = θ̂0
i − θ̂temp

i =
∑
j

Γ−1
ij (θk)

(
∂hk
∂θj

|δhk

)
, (5.1.2)

where k refers to model Mk, with k = 1, . . . , 5 and δhk = h0 − hk is the difference
between the true waveform and the template waveform with model Mk. The template
model corresponds to waveforms generated with the modes defined in Table 4.3, so δhk is
simply the sum of the ignored modes.

If the statistical error σθ is larger than the error produced using an incorrect template
∆θ(Mk), one can consider the bias irrelevant. On the contrary, if the statistical error is
smaller than the modeling error, the waveform model is not sufficiently accurate to describe
the data, and the bias becomes relevant.

I first check in Fig. 5.5 whether the bias observed in the posterior distributions is
consistent with the value obtained from the approximate Fisher bias formula in Eq. (5.1.2).
I show the bias from each model (black dot) and the error distribution obtained from the
sampler (in colors) for intrinsic parameters. In the case of M1, we observe that the Fisher
bias is much larger than the one found by sampling for all parameters, sometimes lying
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Figure 5.6: Comparison of the error in the posterior distribution of extrinsic parameters
for all models (Mk, k = 1, . . . , 6 in color) and modeling error (in black).
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outside the plot. For adimensional spins, this may be because their values are limited to
the interval [-1, 1] in the sampler, whereas they are unconstrained in the Fisher matrix
computation. In the case of M2, the opposite happens, and the posterior distribution
exhibits a slightly larger error than the bias predicted by the Fisher analysis. Overall, from
model M3 to M6, both errors become more and more consistent as parameter biases shrink.
Thus, one can rely on the analytical bias obtained with the Fisher approximation for the
intrinsic parameters. The same analysis for extrinsic parameters gave disagreeing results,
with typically an overestimation of the bias with the Fisher approximation compared to
the sampled posteriors. When comparing the modeling error on the extrinsic parameters
obtained from the Fisher information with the ones obtained from posterior distributions,
see Fig. 5.6, one can observe some tension. The model M1 is the least accurate, as some
Fisher bias values lie outside the range in the plots. As one introduces more modes,
the difference between analytical and experimental results tends toward zero. Thus, one
expects the analytical bias to be trustworthy for Mk with k ≥ 4. As previously mentioned,
the discrepancy could come from the constraint set on the parameter space explored by
the sampler, which is absent from the Fisher derivation. This can be seen for example
in the polarization ψL and phase ϕ, where some analytical points are outside the allowed
range. Another possible explanation is the multimodality of some extrinsic parameters,
such as the ecliptic latitude βL in LISA’s frame and the source inclination ι, especially for
M1. One can also observe that most of the errors obtained with the Fisher information can
change if one used for instance adimensional spin parameters such as χ+ and χ− instead of
individual spins χ1 and χ2. Furthermore, the numerics of Fisher matrices are notoriously
delicate. The observed discrepancy between extrinsic errors is left for future investigation.

A natural question arises about the minimum SNR at which higher modes become
important in the parameter estimation. In other words, given a certain SNR, how many
modes do we need to describe the waveform adequately? One way to answer this question
is by comparing the approximate statistical error for each parameter σθ with the systematic
bias induced by an incorrect model ∆θ(Mk). This comparison is performed in Fig. 5.7,
where I show the errors for the intrinsic parameters as a function of SNR. Varying the SNR
amounts to changing the value of the luminosity distance DL, leaving all other parameters
unchanged. The Fisher bias in models M1 and M2 are inconsistent with posteriors, as
observed in Fig. 5.5. For this reason, I will not discuss them, although they are plotted
in the figure. The black diagonal line corresponds to the statistical error in the model
parameters (σθ), and the color lines represent the modeling error produced by the wrong
waveform template (Mk). With the same color code as the modeling error, I mark the value
of SNR in dotted lines at which the modeling error becomes higher than the statistical
error.

Figure 5.7’s top left panel shows that the model M3 (in pink), which includes modes
(2, 2), (3, 3), and (4, 4), does not describe accurately enough the signal for sources with
SNR ≥ 129 since the chirp mass bias becomes more significant than the statistical error.
Similarly, the model M4 is sufficient until the SNR reaches 189 and M5 until 984. Since
the SNR of the considered source in this work is around 744, the value of the chirp mass
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Figure 5.7: Comparison of the statistical error (in black) and modeling errors (in colors)
for relevant parameters in function of the SNR. When the statistical error becomes

smaller than the modeling error, that model no longer fits the data well and biases the
estimated parameters. The SNR for this transition is marked with dotted lines in the

correspondent color for each incorrect template (models Mk, k = 1, . . . , 5).
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inferred with the model M5 (in yellow) should be within the estimated error. However, to
accurately infer the other parameters, the model M5 works until an SNR of 107 for the
mass ratio, 156 for χ1, and 215 for χ2. Then, with an SNR of 744, this model will correctly
estimate the chirp mass but induce biases for all other parameters. For consistency, one
can look at the inferred values from the Bayesian analysis with M5 in Fig. 5.3 and confirm
this statement within the 68% confidence level.

This analysis does not derive a limit on the number of modes needed to describe an
event observed by LISA. Still, it provides maximum SNR values to correctly estimate the
parameters with a given model if less than these six modes are present in the waveform.
Extrapolating from this example, one finds that generally, sources detected by LISA with
SNR of hundreds will require using waveforms with at least six modes to estimate all in-
trinsic parameters correctly. Note that the Fisher error in Eq. (5.1.1) and its scaling with
SNR−1 are only approximate and are best valid for high-SNR and nondegenerate posteri-
ors, so this estimate does not replace a complete parameter estimation study, although it
gives an idea of the outcome.

5.2 Detectability of GR deviations with QNMs
This section is based on the article “Exploring tests of the no-hair theorem with

LISA”[246] written by me and collaborators. However, some modifications were made for
a better integration into the manuscript.

In this study, I consider two approaches, an agnostic approach, where no assumption
on the source parameters is made except on the number of observable QNMs; and the
deviations approach, where fractional deviations of specific QNMs are estimated. For each
approach, I perform two runs: with and without noise. The injected noise corresponds to
the instrumental SciRD 2 noise, with the addition of the galactic noise and subtraction of
identified sources over one year. In the following, I discuss the results of the noisy dataset
obtained with the dynesty [276] sampler. In terms of computational resources, for the
agnostic approach each run took about 24 hrs of CPU in 8 cores, each one with 8 Gb of
memory. The number of live points was set to 2048 and the convergence was achieved
when the error in the evidence (dlogz) reached the 0.01 value. This value was selected
by analyzing the importance weight and the likelihood PDF for different runs. For the
second approach, the run took around 10 hrs for the noiseless data and 15 hs for the noisy
data. They were also parallelized in 8 cores with 8 Gb memory. The live points and the
convergence were set to the same values as in the first approach.

5.2.1 Agnostic approach
As introduced in Sec. 4.5, the parameters used here are θ = {Ak, ϕk, ωk, τk} with

k = 1, 2, 3 accounting for the three QNMs [(2, 2, 0), (3, 3, 0), (4, 4, 0)]. To avoid any degen-
eracy between the modes, I impose the condition of hyper-triangulation in the frequency.

2SciRD noise PSD introduced in Sec. 2.4.
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Figure 5.8: Posterior distribution for the agnostic case with 4 dimensions per mode
{Ak, ϕk, ωk, τk }. Posterior distribution without noise injection in red, with noise

injection in blue, and injected value marked with black lines. Overall, the distributions
agree with the true values, with some fluctuations in the noisy case as expected.
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Figure 5.9: Posterior distribution of the pairs of complex frequencies in the spectrum
map. Each mode ‘k’ is associated with one color, purple, pink, or green. The spectrum

of the true BH is represented with colored crosses with their QNM label nearby.

This condition restricts the second frequency to be larger than the first one, and the third
to be larger than the second. Then, the uniform prior of each frequency will decrease with
respect to the previous one, like an inverted triangle in the prior volume. The amplitudes
have a logarithmic uniform prior in [−23, −16], while the frequency has a uniform prior
in [10−5, 0.1] and the damping time in [1, 105]. The phase is allowed to take any value in
the range [0, 2π].

In Fig. 5.8, I present the posterior distribution of the injection without noise in red,
with noise in blue, and the injected values with black lines. Remember that the values
of the deviations injected in the waveform have been introduced in Table 4.4. I show 12
parameters, 4 for each QNM. In general, the Gaussian distributions converge to the true
values, with some minor fluctuations in the noisy case, as expected. In the figure I have
already labeled the name of the QNMs ’k’ since I know them from the injection. However,
in the future LISA data analysis, one will not know which modes are present. Therefore
the first thing one should do is to find the QNM corresponding to each label k = lmn. The
identification of QNMs could be done by comparing the values of the complex frequency
(ωk, τk) with pairs of (ωlmn, τlmn) corresponding to an assumed mass and spin obtained
from an IMR analysis carried out beforehand. I present the idea of this technique in
Fig. 5.9. The scatter points correspond to the values of the posterior distribution for
k = 1 in purple, k = 2 in pink, and k = 3 in green. The colored crosses correspond
to the values of (ωlmn, τlmn) easily identified with the QNM labels written nearby. By
looking at this figure, one can already notice that there might be a deviation, as there is
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Figure 5.10: Posterior distribution for the mass and spin computed with Eq. (5.2.1) for
each pair of (ωlmn, τlmn). Note the agreement of (2,2,0) with the true value while the
other two modes diverge, making evidence of a deviation from GR in those modes.

only one mode that can be confidently identified with the posterior distributions, that is
k : 1 = (2, 2, 0). The other two clusters of points could be assigned to their nearest QNM,
namely k : 2 = (3, 3, 0) and k : 3 = (4, 4, 0). At this stage, one could make one of the two
following hypotheses:

(i) The IMR estimation is trustworthy and the final mass and spin are taken to be the
true values. In this case, the dominant mode could exhibit deviations from GR as
well as all the other harmonics.

(ii) The IMR estimation on mass and spin can have systematic errors and therefore the
analysis should be done relying only on QNMs. We can identify a QNM that does
not present a deviation of GR and assume the inferred mass and spin from that
QNM as the true value.

One possible way to check for consistency between QNMs is to trace back the mass
and spin of the remnant BH, using, for example, the fittings from [192]:

Mωlmn =f1 + f2(1 − j)f3 , (5.2.1a)
ωlmnτlmn/2 =q1 + q2(1 − j)q3 , (5.2.1b)
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Figure 5.11: Computed mass for spins in the range [0.8-0.9] with Eq. 5.2.1 with a 99%
confidence level, from the estimated mean values of (ωlmn, τlmn)

with f1, f2, f3, q1, q2 and q3 fitting parameters introduced in Table 3.1. The complete tables
can be found in [192] as Tables (VIII, IX, X). Thus, with any pair of (ωlmn, τlmn) one can
compute first the value of the spin and then the value of the mass.

If one takes samples within the posterior distribution of each mode and uses Eqs. (5.2.1),
one ends up with a distribution for the mass and the spin as in Fig. 5.10. We could notice
already from Fig. 5.9 that the posteriors of the mass and spin obtained from different
QNMs would not overlap completely. Here, in Fig. 5.10, we can confirm it by observ-
ing three different mean values for the spin without any overlap and three distributions
for the mass with overlap between values computed from (3, 3, 0) in pink and (4, 4, 0) in
green. Notably, the true value denoted by a black line does not fit perfectly with the mean
value of the (2, 2, 0) in purple. This is due to small fluctuations in the (ω, τ) mean value,
which can be seen in Fig. 5.8, and the fact that Eqs. (5.2.1) are fitting functions and thus,
intrinsic errors of the order of ∼ 1 − 3% [192] are propagated to the mass and the spin.

To better understand the differences in the posteriors, one could alternatively follow
the approach adopted in [214]. That is, using Eqs. (5.2.1) to compute the mass for a given
spin and compare the values obtained from different QNMs. It is seemingly the same
computation as before, but it avoids propagating errors from the spin fitting as it remains
fixed. This representation can be seen in Fig 5.11, where the true value is marked with a
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(a) Fractional deviation obtained in ω220 and
τ220

(b) Fractional deviation obtained in ω330 and
τ330

(c) Fractional deviation obtained in ω440 and
τ440

Figure 5.12: Posterior distribution of the fractional deviations in the complex frequency
obtained from the posterior distribution of ωk, τk, with respect to the GR QNMs with

true values of Mf , af , for k = lmn found in the source.
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golden or a black star, and the shadow lines correspond to the 99% confidence level. The
standard deviation for the mass is related to the standard deviations of ω and τ . Note the
narrow uncertainty bands derived from the frequencies ωlmn for any lmn, as a result of
the precision on the frequencies posteriors. The mass and spin obtained from the (2, 2, 0)
mode are consistent with the injected value, while the others exhibit deviations from it
and thus from GR.

Using the IMR masses and spins as references

At this stage, we can initiate the discussion on the two hypotheses stated above. I
will start with the first assumption (i). Imagine one wants to quantify the deviation at
each mode’s frequency to put some constraints in an alternative theory. In that case, one
has to compare the posterior distributions of frequency and damping time with the QNM
values for a BH with the IMR estimated final mass and spin. To simplify, I assume that the
parameters estimated from the IMR analysis equal the exact injected values. Results can
be seen in Fig. 5.12, where I compute the fractional deviation as the difference between the
posterior distribution in each mode and the true complex frequency value normalized by
the true value. In this figure, we can see that each posterior agrees with the injected value
within 2σ. The dashed blue lines mark the quantiles (0.16, 0.84), i.e. the 1σ distribution.

However, using reference values for the mass and the spin is inconsistent with the
agnostic philosophy. Keep in mind that, the mean values estimated from an IMR analysis
could present a bias. Moreover, using the whole parameter posterior distribution instead of
mean values would better allow for the propagation of uncertainties. Then, the comparison
should be made with the complex frequency computed with an IMR posterior distribution
of the estimated mass and spin and not only the mean values.

Relying only on QNM characterization

Without a posterior distribution from an IMR waveform inference, I now adopt the
second of the two above hypotheses and use the mass and spin obtained from the dominant
mode as reference values. While I already showed above that the dominant mode agrees
within a 99% credible confidence with the injected parameters, there is a risk in assuming
that the (2, 2, 0) mode does not deviate from GR. Correspondingly, deviations in the
dominant mode might also appear. In a beyond-GR theory, the values of QNMs will
return different masses and spin highlighting the deviation from GR. Whether it affects
the dominant mode or the subdominant modes needs to be studied case by case with
different alternative theories.

Now, to quantify the deviations in this framework, one should translate the differ-
ences in mass and spin into deviations in ω and τ in terms of δω, δτ , see Eqs. (4.5.3), (4.5.4).
To this end, I assumed that the posterior distribution obtained from the (2, 2, 0) mode
is the “true" description of the remnant BH in GR. One can then compute the QNM
spectrum with the derived mass and spin from that mode. This computation is shown in
Fig 5.13, where we observe the posterior of the three complex frequencies ω̃lmn computed
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Figure 5.13: Posterior distribution of each mode, generated from the posterior
distribution of mass and spin derived from the (2,2,0) mode, compared with true

spectrum.

with the mass and spin derived from the dominant mode {M̂f220, âf220}. The GR values
are marked with colored crosses on top of the distributions. As stated, deviations might
appear in the (2, 2, 0) mode. Thus, comparing the mass and spin estimated from this BH
spectroscopy with those inferred from the full IMR waveform would be informative.

Given the distributions without deviations, one can measure the deviation for each
parameter. For that, one needs to compare the obtained complex frequency from the
sampler (lmn) with the values of the computed complex frequency obtained with the mass
and spin from the (2, 2, 0) mode (lmn(M̂f220, âf220)) for each mode. This is analogous as
comparing Fig. 5.10 with Fig. 5.13. In Fig. 5.14, the distribution of GR complex frequencies
computed with the mass and spin derived from the (2, 2, 0) mode is shown in pink for the
(3, 3, 0) mode at the top and in the bottom in green for the (4, 4, 0) mode. We can easily
differentiate them from the non-GR values obtained from the sampler in blue. A simple
equation to quantify this tension is commonly used [292; 293]

Nσ = |µA − µB|√
σ2
A + σ2

B

, (5.2.2)

where A and B are two different models, µ is the estimated mean value and σ is the
standard deviation. This equation gives the number of standard deviations between two
posterior distributions in one dimension. This simple definition can be used as a means to
estimate uncertainties in the following. For the injected values in Table 4.4, the computed
standard deviation from GR values is shown in Table 5.3. Should this be observed, I
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(a) Posterior distribution of ω330 and τ330 against the distribution
within GR.

(b) Posterior distribution of ω440 and τ440 against the distribution
within GR.

Figure 5.14: Evidence of deviations in the frequency and damping time computed with
the estimated final mass and spin. I show the posterior distribution of the complex

frequency for each mode in blue, against the computed posterior distribution in the GR
framework for the parameters derived from the (2, 2, 0) modes in pink for the (3, 3, 0)

mode at the top and in green for the (4, 4, 0) at the bottom.

169



Results

(a) Fractional deviation from GR in ω̃330.

(b) Fractional deviation from GR in ω̃440.

Figure 5.15: Evidence of deviations in the frequency and damping time computed with
the estimated final mass and spin. I show the posterior distributions of the difference of
the obtained posterior with respect to the mean value of the estimated GR QNM from
(2, 2, 0) mode. By doing so, the fractional deviation becomes evident. One can see the

obtained fractional deviation of the (3, 3, 0) mode on the top and of the (4, 4, 0) mode on
the bottom. The damping time agrees with the injected value (black lines) for both

modes, while the frequency presents a bias due to the high sensitivity to the remnant
parameters estimated from the (2, 2, 0) mode.170
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Table 5.3: Computed uncertainty from GR for the injected parameters in the
agnostic case.

NσGR (3,3,0) NσGR (4,4,0)
δω 10.31 28.46
δτ 7.97 5.62

would have detected a deviation from GR in ω330 with more than 10 standard deviations
with respect to the (2, 2, 0) mode. It is also important to note that even though I was
able to distinguish a deviation from GR with high precision, the injected value does not
correspond to the recovered value, thus indicating a bias.

Therefore, with the hypothesis (ii) this kind of analysis would allow us to differen-
tiate GR from another theory. However, if one tries to put constraints on that alternative
theory, one might fail as the recovered values of the deviations are not exactly the same
as the injected ones. This can be seen in Fig. 5.15, where the injected value (in black)
does not appear in the posterior distribution of Fig. 5.14a. Indeed, the estimated value is
not consistent with δω330 = 0.01. The possible explanation is that I used the GR value
inferred from the mass and spin from the distribution obtained with the (2, 2, 0) mode.
Remember that I assumed no deviation from GR in the dominant mode. Even if the mass
and spin computed from the (2, 2, 0) mode agree with the true values, the assumption
of non-deviation in this mode might have strong implications, as any fluctuation on the
(2, 2, 0) mode will translate into fluctuations in the estimated mass and spin and therefore
in the characterization of the (3, 3, 0) and (4, 4, 0) modes. Certainly, the computation of
the QNMs highly depends on the mass and spin, thus small variations of those intrinsic
parameters translate to larger variations on the complex frequency parameter space.

One can avoid this type of discrepancy by using the posterior distribution of the mass
and spin inferred from the full IMR instead of the posterior inferred from the (2, 2, 0) mode.
Again, this implies that the IMR analysis should provide unbiased values. In the present
analysis, the mass and spin from the (2, 2, 0) mode were consistent within 2σ with the
injected value.

5.2.2 Deviation approach
In the following, I discuss the results of the deviation template. For this search,

I defined beforehand which QNMs appeared in the waveform. I also assumed that the
dominant mode did not have deviations from GR. Imposing this condition enables us to
break the degeneracy between the mode’s fractional deviations from GR and the BH mass
and spin. Alternatively, one can fix the mass and the spin, but allow the whole QNM
spectrum to present deviations.

The parameters used in this approach are θ = {Mf , af , A220, ϕ220, Ak, ϕk, δωk, δτk}
with k=[(3, 3, 0), (4, 4, 0)]. The mass and spin have a uniform prior within a range of 10%
around the injected value, this is [0.9, 1.1]×Mf and [0.9, 1.1]×af . The phase has a uniform
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Figure 5.16: Posterior distribution for the deviation template. Results are shown without
noise injection in red, with noise injection in blue, and the injected values are marked

with black lines. Overall the distributions agree with the true values, with some
fluctuations in the noisy case as expected.
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(a) Fractional deviations in (3, 3, 0)

(b) Fractional deviations in (4, 4, 0)

Figure 5.17: Posterior distribution of fractional deviations in modes (3, 3, 0) and (4, 4, 0)
directly from the sampler. Dashed lines denote the 1σ error and the black lines denote

the injected value. Agreeing results with high precision are obtained.
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Table 5.4: Computed deviation uncertainty from GR for the injected parameters
in the deviation approach.

NσGR(3,3,0) NσGR(4,4,0)
δω 16.34 27.81
δτ 7.98 5.06

prior in the range [0,2π], while the amplitudes have a logarithmic uniform prior in [-23,
-16]. Lastly, the deviations have a uniform prior in the range δω, δτ = [-0.2, 0.2]. This
range arises naturally from the QNMs that I choose, as the relative difference between two
QNMs is bigger than 0.2:

|ω220 − ω330|
ω220

> 0.2. (5.2.3)

For QNMs with closer spectrum such as (2, 2, 0) and (2, 2, 1), there is a switch on the
labels, producing a degeneracy between those two modes and exhibiting a bimodal pos-
terior distribution. For this reason, I did not include the QNM (2, 2, 1) in the analysis,
even though its presence might have been detected in GW150914 [207] albeit with small
significance, see the discussion [201; 207–211]. I leave the integration of this particular
case to be studied in the future.

In Fig. 5.16 I show the posterior distribution with and without noise injection in
blue and red respectively. Injected values are marked with black lines. One can observe
the consistency between both results with the true values.

Note that in this approach, the analysis is straightforward. The fractional deviations
in the spectrum are direct results of the sampler since the deviations found in each QNM
already account for the estimated mass and spin. In Fig. 5.17 I zoom in the deviations
of the [(3, 3, 0), (4, 4, 0)] modes from Fig. 5.16. The posterior distributions agree with the
injected values with high accuracy and precision. The uncertainty on the deviations from
GR fractional parameters δω and δτ with this template are listed in Table 5.4. Under
the assumption of no deviation in the (2, 2, 0), the same hypothesis (ii) as in the previous
analysis, it is possible to derive constraints on an alternative theory, since the injected
values are within the posterior distributions. A caution message is imperative here. The
template considered, by construction, does not allow deviations in the dominant mode.
The effect of a fractional deviation in the (2, 2, 0) mode, when not considered in the search
template needs further investigation. Nevertheless, to constrain an alternative theory the
model-independent template might not be enough, and specific templates for beyond-GR
theories are required.

Given that the value of the standard deviation for each parameter is inversely pro-
portional to the SNR, there is a way to estimate the SNR needed to observe a specific
deviation from GR with a given uncertainty in terms of standard deviation. I will expand
on this idea in the following section.
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(a) Fractional deviation for (3, 3, 0) mode with both
methods

(b) Fractional deviation for (4, 4, 0) mode with both
methods

Figure 5.18: Comparison of the posterior distribution of the fractional deviations for
modes (3, 3, 0) and (4, 4, 0) for the two different methods. Posterior distribution obtained

for the deviation approach in orange against the agnostic approach in green. Injected
values are marked by the black lines intersection.
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5.2.3 Discussion
In the perspective of testing the no-hair theorem and possible deviations from GR

with the LISA instrument, I explore the extent to which one can extract the largest
amount of information through two different analyses in terms of two generic templates.
One possible approach is to compare the posterior distribution of fractional deviations in
frequency and damping times δωk, δτk from the different approaches. Thus, the comparison
of both methods can be observed in Fig. 5.18, where the posterior distribution of deviations
for the agnostic approach are shown in orange and the results for deviations approach in
green. The injected values are denoted by black lines. The second approach gives more
accurate results, making it possible to constrain alternative theories to GR. One should
keep in mind, however, that the agnostic result is based on the premise that no deviation
from GR is allowed in the (2, 2, 0) mode. If one relaxes this constraint and assumes that
the IMR estimation is accurate enough to fix the mass and the spin values, then a deviation
in the dominant mode can be considered and the deviations of higher harmonics would
be consistent with the injected values, as seen in Fig. 5.12. However, this result strongly
depends on the estimated mass and spin from the full IMR template, whose values can be
biased from the true values if features like higher harmonics, eccentricity, or precession,
to name only a few, are not considered.

5.3 Test of GR versus SNR
In this section, I discuss the SNR needed to claim a deviation from GR with different

parameters. Towards this goal, I will use the deviation template, which provides the best
consistency. I compute the standard deviation in the same way as in Eq. 5.1.1,

σθi
=
√

Γ−1
ii , (5.3.1)

with Γii the Fisher matrix computed as the inner product of the partial derivatives with
respect to the parameters, defined in Eq. (4.3.6)

Γii =
(
∂a(θi)
∂θi

∣∣∣∂b(θi)
∂θi

)
. (5.3.2)

The results are presented in Table 5.5, showing the consistency between the error
obtained from the Bayesian analysis with the Fisher forecast. Even if the Fisher matrix
underestimates the uncertainty for δτ440, possibly due to the noise injection, one can still
extract information from the other parameters.

From Eq. (5.3.1) we see how the value of the uncertainty varies as the inverse of
the SNR, so naturally the standard deviation in the different parameters decreases as the
SNR increases. Consequently, it is related to a given source’s total mass and luminosity
distance. One can therefore estimate the deviation uncertainty, needed to claim a deviation
from GR with 5σ, for a given mass and redshift. Of course, the number of sigmas Nσ is
itself constrained by the value of the fractional deviation, as shown in Eq. (5.2.2).
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Figure 5.19: Uncertainty for fractional deviations from GR in ω and τ in modes (3,3,0)
and (4,4,0) with respect to the source total mass and the redshift. These values are

obtained for the fixed parameters listed in Table 4.4.
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Table 5.5: Uncertainty computed with the Fisher matrix (second column) and
obtained with the sampler (third column).

σFM σsampler
δω330 0.587 × 10−3 0.602 × 10−3

δτ330 6.252 × 10−3 6.648 × 10−3

δω440 1.047 × 10−3 1.101 × 10−3

δτ440 11.978 × 10−3 20.28 × 10−3

I show in Fig. 5.19 the uncertainty for the parameters with possible deviations from
the GR values using the deviation template, such as (δω330, δτ330, δω440, δτ440). Several
assumptions have been made from the beginning of the study, therefore the result I present
does not provide a general detection forecast. Nevertheless, this analysis provides a qual-
itative understanding of LISA’s ability to observe deviations from GR in the ringdown
phase of an MBHB coalescence. The uncertainty on the fractional deviations is repre-
sented in terms of the source total mass and the redshift since they are the dominant
contributors to the SNR. Note that I let all other source parameters be fixed to the same
values listed in Table 4.4. Consequently, the estimates shown in Fig. 5.19 are source-
dependent, i.e. valid for the particular BH I chose as a case study. Another choice of BH
parameters would change this result. Different inclinations, spins, and mass ratios would
inevitably change the relative amplitude between QNMs and thus the uncertainty in each
mode’s complex frequency.

The color code on the right-hand side of Fig. 5.19 indicates the value of the un-
certainty on the fractional QNM frequencies, obtained with the Fisher matrix for the
considered example source. For instance, looking at areas where σ ≥ 0.001, LISA should
be able to detect deviations from GR in δω330 at the level of 5 standard deviations or more
if the deviation from GR is of the order of 0.025 taking δGR = 5σ, for sources between 106

to 107 M⊙ through the whole universe, i.e. for any redshift. Considering smaller devia-
tions, a deviation from GR of 0.0005 would be distinguishable for sources below redshift
1 and the total mass of the order of 107M⊙. At first glance, one could conclude that
the most severe limits will come from the evidence or lack of it in the frequencies δωlmn
because of the high sensitivity of LISA to frequency variations. The expected population
of MBHB for heavy seeds encloses sources in the range [104 − 107]M⊙ up to redshift 10.
This range is extended to lower mass sources in the case of light seeds [3]. Hence, even if
LISA does not observe some of these golden sources, the expectation to test the no-hair
theorem in “near” sources in the range of [106 − 107]M⊙ looks very promising.
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Chapter 6

Conclusions and prospects

This chapter serves to present the list of conclusions of previous analyses and to
comment on future work and prospects.

6.1 Conclusions on detectability of higher har-
monics

I studied the contribution of IMR higher modes of an MBHB source to the total
SNR. I observed how this contribution depends on the event’s redshifted mass through
the observed frequency, directly related to LISA’s response and sensitivity. I also showed
that the cross-terms could contribute constructively or destructively to the total SNR,
depending on the signal frequency and observational parameters. I presented a map guide
of the relevance of each mode given the mass of an event. I highlighted the role of higher
modes for MBHBs with masses above the order of 108 M⊙. In LISA, large mass sources
enhance the contribution of modes with higher frequencies so that the quadrupolar mode
might no longer dominate.

To compare sensitivity performances, I defined different models including different
harmonics. One could distinguish higher modes by comparing the Bayesian evidence for
different models. In the example of a noisy signal with six modes, the model M6, which
includes the same higher modes as in the injection, was the preferred one, as expected. The
model M6 showed a very significant Bayes factor compared to models with fewer modes.
Furthermore, I found that the absence of modes in the waveform template can bias the
parameter estimation for high SNR sources due to the non-orthogonality of the modes in
the merger-ringdown phase. Biased binary parameters can lead to a biased inference of
the remnant BH’s mass and spin. This effect can corrupt the no-hair theorem test and
lead to misinterpretations.

I was able to quantify the SNR needed to distinguish models by comparing statis-
tical errors of the injected waveform parameters with the modeling errors produced using
an incomplete template (Mk, k = 1, . . . , 5). In other words, given a certain SNR, I could
specify the modes needed to infer the parameters without significant bias. This quantifica-

179



Conclusions and prospects

tion depends on the actual waveform, which includes six modes in the analysis. In reality,
such a situation is unlikely, as we expect more modes in the dynamics. Hence, this study
does not derive a limit on the number of observable modes, which is still an open question
that can be answered once more harmonics are implemented in the waveforms. However,
this work demonstrates the need for higher modes in the waveform templates to perform
accurate GW source characterization with LISA. Besides, featuring precession and eccen-
tricity in the inspiral stage will also be necessary, while mode-mixing and non-linearity
[196; 204; 215; 221] will become essential features in the ringdown.

The ability of LISA to identify different modes allows me to consider GR tests on
more solid grounds, including the test of the no-hair theorem, which is the subject of the
second study of this manuscript.

6.2 Conclusions on detectability of GR deviations
with QNMs

In this study, I used two approaches to explore the no-hair theorem with LISA:
the agnostic approach where no assumption on the source parameters is made except on
the number of present QNMs; and the deviations approach, where fractional deviations of
specific QNMs are targeted.

The advantage of the agnostic approach, is that no hypotheses on the event are
required, except for the number of QNMs which could also be inferred by performing a
Bayesian model comparison not demonstrated here. In this analysis the frequency and
damping time for each QNM were estimated. By comparing the mass and spin derived
from the complex frequencies I identified different values for each QNM, resulting in in-
consistency between QNMs in the GR framework. I also quantified these deviations as
fractional deviations from GR, which entails a delicate interpretation of the results depend-
ing on the assumptions made. Indeed, the hypothesis of no-GR-deviation in the dominant
mode is too restrictive to correctly identify the injected deviation of each QNM, despite
being consistent within 2σ with the true values. However, this kind of discrepancy can
be circumvented by contrasting the results with the posterior distributions obtained from
an IMR analysis, presuming that physical effects like eccentricity or others are included
to avoid biased parameters. Hence this procedure requires an unbiased IMR analysis to
compare the results to.

The deviation approach, showed better results for the fractional deviation values.
However, prior assumptions are required to recover the injected values. Particularly, I
assumed a fixed number of observable QNMs as well as further constraints in the priors
volume. Using the fact that no significant deviation in the dominant mode is observed, one
does not need to rely on an IMR analysis since those parameters are estimated. Including
the mass and spin in the parameter estimation enables us to absorb small variations
that convert into relatively large errors in the complex frequency parameters. Thus, the
hypothesis of non-deviation in the dominant mode allows us to find the injected QNM
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deviations confidently. When allowing deviations in the dominant mode, extra care or
further constraints in the priors are necessary due to the degeneracy between Mf , af and
δω220, δτ220. Such an analysis is left for the future.

In consequence, combining both methods could improve the characterization of pos-
sible deviations from GR. Thus, one optimized method would be to perform an agnostic
search to determine a descriptive set of QNMs and a raw estimation of the mass and spin
to be compared to the IMR parameters. Once this is done, specific deviations for each
QNM could be targeted, taking special care in the prior probability definition for each
mode, as mode degeneracies and label switching may arise.

Finally, I also evaluated the impact of redshift and total mass on the observable
deviations from GR in the BH’s spectrum with the deviation template. From this analysis,
I was able to estimate that in the best-case scenario, i.e., with “golden” sources, the strong
regime of GR could be tested up to 5×10−3%. However, these sources do not dominate the
estimated population of black holes in the heavy or light seeds models. Nevertheless, the
prospects of testing GR in the ringdown signal from sources with masses [106 −107]M⊙ at
redshift ≤ 5 are very promising, with a detectable fractional deviation of δω330 = 5×10−2%
in the (3, 3, 0) mode’s frequency.

6.3 Prospects
Throughout the manuscript, I mentioned that some analyses were left to be explored

in the future. A few of them are already in progress and others need extra development.
Regarding the first analysis, that is Detectability of higher harmonics with LISA, the

fact that ignoring higher harmonics in events with an SNR over a hundred already returned
biased parameters is something to be of concern. While waveforms with higher precision
including a larger number of higher harmonics are not developed, no major progress can
be made in this context.

On the one hand, LVK is gaining sufficient sensitivity that already requires more
precise waveforms. Moreover, third-generation detectors are expected to observe events
with higher SNR. Thus the need for highly precise waveforms, including precession, ec-
centricity, and higher harmonics is essential. On the other hand, MBHBs correspond to
BHs with a mass of ∼ 106M⊙, like the ones in the center of galaxies. Then, these kind of
events are expected to take place in very perturbed environments. This means that several
effects such as accretion disks, third bodies, or even dark matter need to be included as
well. The numerical error in current waveforms exceeds the statistical error expected for
third-generation detectors, see for instance [133; 294–296]. In conclusion, more develop-
ment is required to achieve the waveform precision that third-generation detectors need.
Keep in mind that, not only population models might be affected by biased parameters,
but also unbiased parameters are crucial to perform GR-tests.

For the case of the second analysis, that is Detectability of GR deviations with QNMs,
there are still many analyses to conduct. Looking ahead, I aim to exploit the capabilities of
my code in various scenarios. Firstly, I intend to expand previous analyses by considering
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different starting times and addressing a more realistic case. Secondly, I plan to include
sky localization in the estimation of the parameters, given that the IMR analyses yield a
posterior distribution and not a fixed mean value. By incorporating a larger prior of sky
localization and the starting time into the analysis, I aim to investigate how uncertainties
in these parameters influence our ability to detect deviations from GR in gravitational
wave signals. This examination will provide valuable insights into the robustness of our
methods and the reliability of our conclusions when performing GR tests.

In a parallel effort, I am analyzing NR waveforms with the response of LISA, to see
if we are sensitive to the same quantity of QNMs that Cheung et al. [197] observed in their
study with an infinite SNR. In their work, when a mode’s amplitudes did not stabilize
after a certain time, that mode was not included. Then, the detectability of the modes was
constrained by different starting times. For this reason, in my study, even though the sky
localization remains fixed, the starting time is allowed to take different values, since the
amplitude of the modes vary with the starting time. This kind of analysis will also allow
us to assess the detectability of non-linear modes with LISA. This is a study in progress.

A third study, not yet developed, would be to test LISA’s ability to observe iso-
spectrality, which involves examining whether different polarizations exhibit similar QNM
spectra. In a broader sense, I aspire to explore various alternative theories of gravity and
incorporate them into the code to test their predictions. One other option is to include the
theoretical memory effect into the code to perform parameter estimation analysis, see e.g.
[266] for a brief but clear summary of memory effects. This can be achieved for instance,
through the incorporation of the GWmemory package [297].

The idea of having a pipeline dedicated to performing GR tests in MBHB is essential
if we want to test GR. This pipeline would constitute another piece in the large structure
of global fit that will benefit from the noise level updates. Such incorporation will enable
us to probe fundamental physics with massive black hole binaries from the detection of
GW with LISA.
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Appendix A

Complementary equations and
information

A.1 Resolution to the linearized equation
A perturbation on a Minkowski metric is introduced into Einstein’s equation, through

Eq. (1.1.3), thus

Γµρσ = 1
2η

µβ(∂ρhσβ + ∂σhρβ − ∂βhρσ) −
(((((((((((((((1
2h

µβ(∂ρhσβ + ∂σhρβ − ∂βhρσ) .

Since the second term is of the order of h2 and |h| ≪ 1, it can be neglected. With these
Christoffel symbols, the Riemann tensor takes the form

Rµνρσ = ∂ρ
[1
2η

µβ(∂νhσβ + ∂σhνβ − ∂βhνσ)
]

− ∂σ
[1
2η

µβ(∂νhρβ + ∂ρhνβ − ∂βhνρ)
]
+

((((((((((((((((((((((((((((((

1
4
[
ηµβ(∂λhρβ + ∂ρhλβ − ∂βhαρ)ηλα(∂νhασ + ∂σhνα − ∂αhνσ)

]
−

((((((((((((((((((((((((((((((

1
4
[
ηµβ(∂λhσβ + ∂σhλβ − ∂βhασ)ηλα(∂νhαρ + ∂ρhνα − ∂αhνρ)

]
.

Here again, the third and fourth terms are of the order of h2, then only the first two terms
are kept

Rµνρσ = 1
2η

µβ
(
∂ρ∂νhσβ + �����∂ρ∂σhνβ − ∂ρ∂βhνσ − ∂σ∂νhρβ − �����∂σ∂ρhνβ + ∂σ∂βhνρ

)
+ O(h2).

Finally,
Rµνρσ = 1

2
(
∂ρ∂νh

µ
σ − ∂σ∂νh

µ
ρ − ∂ρ∂

µhνσ + ∂σ∂
µhνρ

)
+ O(h2).
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The Ricci tensors become

Rνσ = Rµνµσ = 1
2
(
∂µ∂νh

µ
σ − ∂σ∂νh

µ
µ − ∂µ∂

µhνσ + ∂σ∂
µhνµ︸ ︷︷ ︸

□hνσ

)
+ O(h2).

The Ricci scalar, or curvature as usually known, results in

R = Rνν = gνσRνσ = 1
2
(
∂µ∂νh

µν + ∂ν∂µhνµ − ∂ν∂νh− □hνν
)

+ O(h2) = ∂µ∂νh
µν − □h+ O(h2).

Then,

Gµν = Rµν − 1
2gµνR

= 1
2
(
∂σ∂µh

σ
ν + ∂ν∂

σhµσ − ∂ν∂µh− □hµν
)

− 1
2gµν

(
∂σ∂ρh

σρ − □h
)

+ O(h2)

= 1
2
(
∂σ∂µh

σ
ν + ∂ν∂

σhµσ − ∂ν∂µh− □hµν − ηµν∂σ∂ρh
σρ + ηµν□h

)
+ O(h2).

Plugging the definition from the Lorenz gauge in Eq. (1.2.2) into Einstein tensor,

h̄µν = hµν − 1
2ηµνh −→ hµν = h̄µν + 1

2ηµνh,

one finally obtains,

Gµν = 1
2
(
∂σ∂µh̄

σ
ν + 1

2∂σ∂µη
σ
νh+ ∂ν∂

σh̄µσ + 1
2∂ν∂

σηµσh− ∂ν∂µh

− □h̄µν − 1
2□ηµνh− ηµν∂σ∂ρh̄

σρ − 1
2ηµν∂σ∂ρη

σρh+ ηµν□h
)

+ O(h2).

Working out this expression, one can see that some terms vanish, namely,

Gµν = 1
2
(
∂σ∂µh̄

σ
ν +

H
HHH

1
2∂ν∂µh + ∂ν∂

σh̄µσ +
H

HHH

1
2∂ν∂µh − XXXX∂ν∂µh − □h̄µν

−
��

���1
2□ηµνh − ηµν∂σ∂ρh̄

σρ −
��

����1
2ηµν∂σ∂

σh + ����ηµν□h
)

+ O(h2)

= 1
2
(
∂σ∂µh̄

σ
ν + ∂ν∂

σh̄µσ − □h̄µν − ηµν∂σ∂ρh̄
σρ
)

+ O(h2).

Then,

−2Gµν = □h̄µν − ∂µ∂
σh̄σν − ∂ν∂

σh̄µσ + ηµν∂
ρ∂σh̄σρ + O(h2).

Setting the cosmological constant to zero, one obtains the linearized Einstein field
equations:

Gµν = 8πG
c4 Tµν

−2Gµν = −16πG
c4 Tµν = □h̄µν − ∂µ ∂

σh̄σν︸ ︷︷ ︸
=0

−∂ν ∂σh̄µσ︸ ︷︷ ︸
=0

+ηµν∂ρ ∂σh̄σρ︸ ︷︷ ︸
=0

,

where the under-braced terms are similar and equal to zero because of the Lorenz gauge,
arriving at

□h̄µν = −16πG
c4 Tµν .
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A.2 Riemann tensors in NP formalism

I present here, 18 of the 36 Riemann tensors, or a combination of them in the NP
formalism as defined in Eq. (3.3.7) in terms of the spin coefficients and the Weyl and Ricci
scalars. The remaining 18 are complex conjugates of these equations. They read,

R1313 : Dσ − δκ = σ (3ϵ− ϵ̄+ ϱ+ ϱ̄) + κ (π̄ − τ − 3β − ᾱ) + Ψ0, (A.2.1a)

R1314 : Dϱ− δ̄κ =
(
ϱ2 + σσ̄

)
+ ϱ (ϵ+ ϵ̄) − κ̄τ − κ

(
3α+ β̄ − π

)
+ Φ00,

(A.2.1b)
R1312 : Dτ −∆κ = ϱ (τ + π̄) + σ (τ̄ + π) + τ (ϵ+ ϵ̄) − κ (3γ + γ̄) + Ψ1 + Φ00,

(A.2.1c)
1
2 (R3414 −R1214) : Dα− δ̄ϵ = α(ρ+ ϵ̄− 2ϵ) + βσ̄ − β̄ϵ− κλ− κ̄γ + π(ϵ+ ρ) + Φ10,

(A.2.1d)
1
2 (R1213 −R3413) : Dβ − δϵ = σ(α+ π) + β(ρ̄− ϵ̄− κ(µ+ γ) − ϵ( ¯α− π̄) + Ψ1, (A.2.1e)
1
2 (R1212 −R3412) : Dγ −∆ϵ = α(τ + π̄) + β(τ̄ + π) − γ(ϵ+ ϵ̄) − ϵ(γ + γ̄)

+ τπ − νκ+ Ψ2 + Φ11 − Λ, (A.2.1f)
R2441 : Dλ− δ̄π = (ρλ+ σ̄µ) + π(π + α− β) − νκ̄− λ(3ϵ− ϵ̄) + Φ20,

(A.2.1g)
R2431 : Dµ− δπ = (ρ̄µ+ σλ) + π(π̄ − ᾱ+ β) − µ(ϵ+ ϵ̄) − νκ+ Ψ2 + 2Λ,

(A.2.1h)
R2421 : Dµ−∆π = µ(π + τ̄) + λ(π̄ + τ) + π(γ − γ̄) − ν(3ϵ+ ϵ̄) + Ψ3 + Φ21,

(A.2.1i)
R2442 : ∆λ− δ̄ν = −λ(µ+ µ̄+ 3γ − γ̄) + ν(3α+ β̄ + π − τ̄) − Ψ4, (A.2.1j)
R3143 : δρ− δ̄σ = ρ(ᾱ+ β) − σ(3α− β̄) + τ(ρ− ρ̄) + κ(µ− µ̄) − Ψ1 + Φ01,

(A.2.1k)
1
2 (R1234 −R3434) : δα− δ̄β = (µρ− λσ) + αᾱ+ ββ̄ − 2αβ + γ(ρ− ρ̄)

+ ϵ(µ− µ̄) − Ψ2 + Φ11 + Λ, (A.2.1l)
R2443 : δλ− δ̄µ = ν(ρ− ρ̄) + π(µ− µ̄) + µ(α+ β̄) + λ(ᾱ− 3β) − Ψ3 + Φ21,

(A.2.1m)
R2423 : δν −∆µ = (µ2 + λλ̄) + µ(γ + γ̄) − ν̄π + ν(τ − 3β − ᾱ) + Φ22,

(A.2.1n)
1
2 (R1232 −R3432) : δγ −∆β = γ(τ − ᾱ− β) + µτ − σν − ϵν̄ − β(γ − γ̄ − µ) + αλ̄+ Φ12,

(A.2.1o)
R1332 : δτ −∆σ = (µσ + λ̄ρ) + τ(τ + β − ᾱ) − σ(3γ − γ̄) − κν̄ + Φ02,

(A.2.1p)
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R1324 : ∆ρ− δ̄τ = −(ρµ̄+ σλ) + τ(β̄ − α− τ̄) = ρ(γ + γ̄) + νκ− Ψ2 − 2Λ,
(A.2.1q)

1
2 (R1242 −R3442) : ∆α− δ̄γ = ν(ρ+ ϵ) − λ(τ + β) + α(γ̄ − µ̄) + γ(β̄ − τ̄) − Ψ3.

(A.2.1r)

A.3 Bianchi identities in NP formalism
I present the remaining Bianchi identities in the NP formalism introduced in Eq. (3.3.31).

Note, that for simplicity I use the covariant derivative notation of dot-comma R13[13;4] in-
stead of ∇[4R13]13.

R13[13;4] : (δ̄ − 4α+ π)Ψ0 + (4ϱ−D + 2ϵ)Ψ1 − 3κΨ2 =
− 2κΦ11 − κ̄Φ02 + 2σΦ10 + (2ϵ+ 2ϱ̄−D)Φ01 + (π̄ − 2ᾱ− 2β + δ) Φ00,

(A.3.1a)
R13[13;2] : (∆− 4γ + µ)Ψ0 + (4τ + β − δ)Ψ1 − 3σΨ2 =

(2π̄ − 2β + δ)Φ01 − 2κΦ12 − λ̄Φ00 + 2σΦ11 + (ϱ̄+ 2ϵ− 2ϵ̄−D)Φ02, (A.3.1b)
R13[21;4] : λΨ0 + (2α− δ̄ − 2π)Ψ1 + (D − 3ϱ)Ψ2 + 2κΨ3 =

2ϱΦ11 + σ̄Φ02 − 2DΛ + (δ̄ − 2α− 2τ̄)Φ01 − 2τΦ01 − (µ̄− 2γ − 2γ̄ +∆)Φ00,
(A.3.1c)

R13[43;2] : − νΨ0 + (2µ− 2γ +∆)Ψ1 + (3τ − δ)Ψ2 − 2σΨ3 =
2τΦ11 − ν̄Φ00 − 2ϱΦ12 + 2δΛ + (2µ̄− 2γ +∆)Φ01 + (τ̄ − 2β̄ + 2α− δ̄)Φ02,

(A.3.1d)
R42[13;4] : − 2λΨ1(δ̄ + 3π)Ψ2 + (2ϱ−D − 2ϵ)Ψ3 − κΨ4 =

− 2µΦ10 + 2πΦ11 − 2δ̄Λ − κ̄Φ22 + (2ϱ̄− 2ϵ−D)Φ21 − (2ᾱ− 2β − π̄ − δ)Φ20,
(A.3.1e)

R42[21;4] : 3λΨ2 − (δ̄ + 4π + 2α)Ψ3 + (D + 4ϵ− ϱ)Ψ4 =
2σΦ11 − λ̄Φ00 − 2κΦ12 + (2π̄ − 2β + δ)Φ01 − (µ̄+ 2γ − 2γ̄ −D)Φ02, (A.3.1f)

R42[13;2] : − 2νΨ1 + (3µ+∆)Ψ2 + (2τ − 2β − δ)Ψ3 − σΨ4 =
2πΦ12 − 2µΦ11 − λ̄Φ20 − 2∆Λ + (2π̄ + 2β + δ)Φ21 + (ϱ̄− 2ϵ− 2ϵ̄−D)Φ22,

(A.3.1g)
R42[43;2] : − 3νΨ2 + (2γ + 4µ+∆)Ψ3 + (τ − 4β − δ)Ψ4 =

2λΦ12 − 2νΦ11 − ν̄Φ20 + (2µ̄+ 2γ +∆)Φ21 + (τ̄ − 2α− 2β̄ − δ̄)Φ22. (A.3.1h)

A.4 Power-law tail
As I mentioned in Sec. 3.5.2, when one closes the path of the integral to solve Green’s

function via the residues theorem, one encounters a power-law tail in addition to the QNMs
values. The contribution of this tail in the total mode’s waveform can be seen in Fig. A.1,
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where I show the absolute value of Ψ4 for a Schwarzschild BH with (l,m = 2, 2). One
can subtract the contribution of different overtones to study the residues. Then, when
sequentially subtracting waves corresponding to an increasing overtone (l,m, n = 2, 2, n),
one can observe the power-law tail emerging as a residual. Note that the tail is about 5
orders of magnitude below the fundamental overtone at tM ∼ 20 1. As one goes further
from the merger, the difference tends to be smaller, reaching a comparable magnitude at
tM ∼ 80. However, this value is about 10 orders of magnitude smaller than the initial
amplitude at tM = 0, hence making it very hard to detect the tail at late times.

1Keep in mind that tM = t c3/M G is an adimensional value.
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Figure A.1: Presence of the power-law tail in the (l,m = 2,2) mode of a non-rotating BH
when the overtones are subtracted. Data offered by Rodrigo Panosso Macedo.
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Appendix B

Complementary results on the
detectability of higher harmonics

B.1 Dependency on source mass and redshift
In order to show how the source parameters impact the null cumulative contribution,

I generate a new contour plot of the SNR contribution in terms of the pair of modes in
Fig. B.1. For this particular case, I use the parameters listed in Tab. B.1, where I change
only the adimentional spins and the mass ratio. Note how the zero SNR contributions are
localized at different masses than in Fig. 4.7.

Table B.1: Source parameters in the SSB frame with aligned spins and redshifted
masses.

Parameter Value Parameter Value
Mass (M⊙) [104, 5 × 109] β (rad) π/2

q (Mass ratio) 3 λ (rad) π
χ1 0.7 ϕ (rad) π/2
χ2 −0.2 ψ (rad) π/2

ι (rad) π/3

B.2 Posterior and parameter bias
I include in Fig. B.2 the posterior distribution for all the eleven parameters for

models Mk with k ≥ 2. The model with only the dominant mode is not included since the
posteriors from M1 are very wide reducing the visibility of the other modes. I also include
the estimated values for the noisy and noiseless dataset for the intrinsic parameters in
Table B.2.
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Figure B.1: Contour plot with the contributions of pairs of modes |(lm|l′m′)|1/2.190
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Figure B.2: Marginalized posterior distribution for all parameters for models Mk with
k ≥ 2. Note the high accuracy of the estimated mean value of all parameters found with

the model M6.
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The fact that the noiseless dataset returned less accurate parameters than the noisy
dataset called the attention of the article’s referee [132]. Therefore I show in Fig. B.3
the posterior distribution for all the eleven parameters for models M6 without noise and
with two different noise realizations. This analysis allowed us to confirm that the better
estimation for the noisy case than for the noiseless case, is due to a statistical probability.
This can also be seen in Table B.3, where I compare the estimated values for the noiseless
and both noisy datasets. One can see that the second noise realization estimates less
accurate results than the first noise realization. This demonstrates that the first analysis
unexpectedly returned very accurate results, but that it is not always the case.
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Figure B.3: Marginalized posterior distribution for all parameters for model M6 without
noise and with two different noise realizations.
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B.3 List of acronyms
ACF Auto-Covariance Function

ADC Analog to Digital Converter

ASD Amplitude Spectral Density

BH Black Hole

BHB Black Hole Binary

CMB Cosmic Microwave Background

CS Cosmic Strings

DA Data Analysis

DECIGO DECihertz Interferometer Gravitational-wave Observatory

DFT Discret Fourier Transform

DFACS Drag-Free Attitude Control System

d.o.f degrees of freedom

DM Dark Matter

EM Electro-Magnetic

EMRI Extreme Mass-Ratio Inspiral

EOB Effective One-Body
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ESA European Space Agency

ET Einstein Telescope

FD Frequency Domain

FFT Fast Fourier Transform

FOPT First-Order Phase Transition

GBs Galactic Binaries

GF Global Fit

GR General Theory of Relativity

GRS Gravitational Reference Sensor

GW Gravitational Wave

IMR Inspiral-Merger-Ringdown

IMRI Intermediate Mass-Ratio Inspiral

ISCO Innermost Stable Circular Orbit

ISI Inter-Satellite Interferometer

JWST James Webb Space Telescope

LDC LISA Data Challenge
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LDCWG LISA Data Challenge Working Group

LIGO Laser Interferemeter Gravitational-wave Observatory

LISA Laser Interferometer Space Antenna

LPF LISA Pathfinder

ltt light travel time

LVK LIGO-Virgo-KAGRA

MBH Massive Black Hole

MBHB Massive Black Hole Binaries

MOSA Moving Optical Sub-Assembly

NP Newman-Penrose

NR Numerical Relativity

NS Neutron Star

OB Optical Bench

OMS Optical Metrology System

PBH Primordial Black Holes

PCG Preconditioned Conjugation Gradient
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PDF Probability Density Function

PE Parameter Estimation

PN Post-Newtonian

PSD Power Spectral Density

PTA Pulsar Timing Array

QNM Quasi-Normal Mode

RFI Reference Interferometer

RW Regge-Wheeler

S/C Spacecraft

sBH Stellar-Mass Black Hole

sBHB Stellar-Mass Black Hole Binaries

SciRD Science Requirement Document

SF Self-force

SGWB Stochastic Gravitational-Wave Background

SM Standard Model

SMBHB Supermassive Black Hole Binary
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SN Supernova

SNR Signal-to-Noise Ratio

SPA Stationary Phase Approximation

SSB Solar System Barycenter

TD Time Domain

TDI Time Delay Interferometry

TM Test Mass, often proof mass

TMI Test Mass Interferometer

ToA time of arrival

TT transverse-traceless

TTL Tilt-To-Length

USO Ultra-Stable Oscillator

WD White Dwarf

Z Zerilli
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