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Titre : Étalonnage de précision de l'impulsion des muons et mesure de la masse du boson Z avec l'expérience 
ATLAS, avec des collisions pp à √s = 13 TeV 

Mots clés : physique des particules, ATLAS, muon, Z boson 

Résumé : Le Modèle Standard constitue la base de la 
physique des particules moderne. Des mesures 
précises sont au cœur des études majeures. La 
découverte du boson de Higgs ouvre la voie à des 
mesures électrofaibles supplémentaires pour tester la 
cohérence du modèle. 

ATLAS est un détecteur polyvalent et l'une des 
expériences menées au LHC du CERN. Grâce à des 
systèmes de trajectographie et magnétique dédiés, 
l'expérience atteint une grande précision dans la 
mesure de l'élan des muons à l'état final. 

Dans ce contexte, la mesure de la masse du boson Z 
avec ATLAS fait partie de ces efforts. La masse du 
boson Z a été mesurée avec une excellente précision 
lors de l'expérience LEP au CERN, avec des 
incertitudes systématiques liées à la reconstruction 
réduites.​
Dans ATLAS, cette mesure implique la reconstruction 
des objets muons finaux, introduisant des biais 
correspondants. La comparaison entre les deux 
mesures suscite un grand intérêt scientifique et 
constitue un test des capacités d’ATLAS. 

Cette thèse porte sur l'étalonnage de l’impulsion des 
muons dans l’expérience ATLAS, avec des collisions 
pp, à une énergie dans le centre de masse de √s = 13 
TeV . 

​
ATLAS utilise des résonances, servant d'étalon”, pour 
l'étalonnage, comme le méson J/ψ et le boson Z. En 
comparant le spectre de masse di-muon entre la 
simulation et les données pour ces deux résonances, 
l'étalonnage est établi. 

L'étalonnage dans cette thèse s’inscrit dans le cadre 
des recommandations officielles d’ATLAS, mais 
également dans le contexte de la mesure de la masse 
du boson Z, ainsi que pour d’autres mesures 
électrofaibles, comme celle de la masse du boson W. 

Le travail se concentre sur les défis d'étalonnage à 
l’aide des outils officiels d’ATLAS, avec des résultats 
divisés en deux sections principales. 

La première section traite des travaux d'étalonnage 
réalisés pour l’expérience ATLAS. 

En particulier, la résolution relative de l'impulsion 
des muons dans ATLAS est étudiée pour le 
détecteur interne (Inner Detector, ID), le 
spectromètre à muons (Muon Spectrometer, MS), 
et les trajectoires combinées (Combined, CB). Ces 
études permettent de générer des cartes des 
incertitudes relatives à l'impulsion des muons pour 
les simulations et les données. 

​
Ces cartes révèlent des déficiences systématiques 
dans les sous-systèmes du détecteur ainsi que des 
désaccords dans les simulations. Elles sont ensuite 
intégrées dans le cadre de l'étalonnage officiel 
d’ATLAS afin d’évaluer leur potentiel pour améliorer 
la précision des étalonnages. Une comparaison des 
résultats est effectuée, avec et sans ces 
informations supplémentaires. Enfin, le processus et 
les résultats permettant d’établir les 
recommandations officielles d'étalonnage pour 
ATLAS sont présentés, séparément pour les 
trajectoires ID, MS et CB. 

La seconde partie de cette thèse se concentre sur 
l'étalonnage dans le contexte de la mesure de la 
masse du boson Z, incluant une analyse détaillée 
d’une mesure de cette masse avec l'étalonnage 
appliquée.​
Le processus d'étalonnage est modifié pour exclure 
la résonance du boson Z. Les corrections 
d'étalonnage sont obtenues à partir du méson J/ψ. 

À l’aide des outils officiels d’ATLAS, l'étalonnage est 
comparée pour les mésons J/ψ “prompts” et “non 
prompts”. Les distributions pour les deux types sont 
analysées, et les différences entre leurs calibrations 
sont discutées. Les paramètres d'étalonnage sont 
déterminés en fonction de la pseudorapidité du 
détecteur et de l'impulsion transverse des muons. 

Les paramètres d'étalonnage sont dérivés en 
fonction de la pseudorapidité du détecteur et de l' 
impulsion transversal du muon. 

Enfin, une évaluation des incertitudes d'étalonnage 
sur la masse du boson Z est extraite à l'aide d'un 
ajustement de vraisemblance, avec le canal 
di-muon. 

 



 

 

Title : Precise muon momentum calibration and Z mass measurement with the ATLAS experiment, using pp 
collisions at √s =  13 TeV 

Keywords : Particle Physics, ATLAS, muon, Z boson 

Abstract : Standard Model is the foundation of 
modern particle physics. Precise measurements  are 
in the center of major studies.  The  Higgs boson 
discovery probes for further Electro-Weak 
measurements, to test the consistency of the model. 

ATLAS is a multi-purpose detector and one of the 
experiments at the CERN LHC. With a dedicated 
tracking and magnetic system, the experiment 
achieves high precision measurements of the muon 
momentum at the final state.  

In that context, the Z mass measurement in ATLAS is 
part of these efforts. The Z boson mass has been 
measured with excellent accuracy in the LEP 
experiment at CERN, with minimal reconstruction 
systematic uncertainties. 

In ATLAS, the measurement involves the 
reconstruction of final muon objects introducing 
corresponding biases. The comparison between the 
two measurements is of high scientific interest and a 
test for ATLAS capabilities. 

The thesis investigates muon momentum calibration 
in the ATLAS experiment, with pp collisions, at center 
of mass energy √s =13 TeV. 

ATLAS uses "standard candles"  resonances for the 
calibration,  J/ψ meson and Z boson. By comparing 
di-muon mass spectrum in simulation and data, for 
the two resonances, the calibration is derived. 

The calibration in this thesis is in the context of official 
ATLAS recommendations but also for Z mass 
measurement primarily, but also other Electro-Weak 
measurements, such as the W mass measurement. 

The work focuses on calibration challenges using 
official ATLAS tools, with results divided into two 
main sections. 

The first section addresses calibration work 
performed for the ATLAS experiment. Specifically, the 
relative momentum resolution  of muons in ATLAS is 
investigated for the Inner Detector (ID), the Muon 
Spectrometer (MS), and the Combined (CB) tracks. 
From these studies, maps of the muon relative 
momentum uncertainty are generated for both 
simulation and data. 

These maps reveal systematic deficiencies in the 
detector subsystems and mis-modelings in the 
simulations.  

The maps are then integrated into the official ATLAS 
calibration framework to assess their potential for 
improving calibration precision, with a comparison 
of results both with and without this additional 
information. 

Lastly, the process and outcomes of deriving the 
official ATLAS calibration recommendations are 
presented. These recommendations are developed 
separately for the ID, MS, and CB tracks. 

The second part of this thesis focuses on calibration 
in the context a the Z mass measurement, including 
a detailed analysis of a Z mass measurement with 
the applied calibration. 

The calibration process is altered so it does not 
include the Z boson resonance. Calibration 
corrections are derived with the  J/ψ meson. 

Using official ATLAS tools, the calibration is 
compared for Prompt and Non-Prompt  J/ψ 
mesons. Kinematic distributions for both types are 
analyzed, and the differences between their 
calibrations are discussed.  

The calibration parameters  are derived as a 
function of detector pseudorapidity and muon 
transverse momentum. 

Lastly, an assessment of the calibration 
uncertainties on the Z boson mass is extracted 
using a likelihood fit, with the di-muon channel. 
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Résumé étendu en français

Le Modèle Standard constitue la base de la physique des particules moderne. Des mesures
précises sont au cœur des études majeures. La découverte du boson de Higgs ouvre la voie à
des mesures électrofaibles supplémentaires pour tester la cohérence du modèle.

ATLAS est un détecteur polyvalent et l’une des expériences menées au LHC du CERN.
Grâce à un système de suivi et de magnétisme dédié, l’expérience atteint une grande précision
dans la mesure de l’élan des muons à l’état final. Dans ce contexte, la mesure de la masse du
boson Z avec ATLAS fait partie de ces efforts. La masse du boson Z a été mesurée avec une ex-
cellente précision lors de l’expérience LEP au CERN, sans aborder les incertitudes systématiques
liées à la reconstruction.

Dans ATLAS, cette mesure implique la reconstruction des objets muons finaux, introduisant
des biais correspondants. La comparaison entre les deux mesures suscite un grand intérêt sci-
entifique et constitue un test des capacités d’ATLAS. Enfin, après application de la calibration
dérivée aux muons issus des désintégrations de candidats bosons Z, une évaluation des incerti-
tudes attendues sur la masse du boson Z est extraite à l’aide d’un ajustement de vraisemblance,
dans le canal di-muon. Cette thèse porte sur la calibration de l’élan des muons dans l’expérience
ATLAS, avec des collisions pp, à une énergie dans le centre de masse de

√
s = 13 TeV.

ATLAS utilise des résonances, appelées ”bougies étalon”, pour la calibration, comme le
méson J/ψ et le boson Z. En comparant le spectre de masse di-muon en simulation et en
données pour ces deux résonances, la calibration est établie.

La calibration dans cette thèse s’inscrit dans le cadre des recommandations officielles d’ATLAS,
mais également dans le contexte de la mesure de la masse du boson Z, ainsi que pour d’autres
mesures électrofaibles, comme celle de la masse du boson W

Le travail se concentre sur les défis de calibration à l’aide des outils officiels d’ATLAS, avec
des résultats divisés en deux sections principales. La première section traite des travaux de
calibration réalisés pour l’expérience ATLAS. En particulier, la résolution relative de l’élan
des muons dans ATLAS est étudiée pour le détecteur interne (Inner Detector, ID), le spec-
tromètre à muons (Muon Spectrometer, MS), et les trajectoires combinées (Combined, CB).
Ces études permettent de générer des cartes des incertitudes relatives de l’élan des muons pour
les simulations et les données.

Ces cartes révèlent des déficiences systématiques dans les sous-systèmes du détecteur ainsi
que des désaccords dans les simulations. Elles sont ensuite intégrées dans le cadre de calibration
officiel d’ATLAS afin d’évaluer leur potentiel pour améliorer la précision des calibrations. Une
comparaison des résultats est effectuée, avec et sans ces informations supplémentaires. Enfin,
le processus et les résultats permettant d’établir les recommandations officielles de calibration
pour ATLAS sont présentés, séparément pour les trajectoires ID, MS et CB.

La seconde partie de cette thèse se concentre sur la calibration dans le contexte de la mesure
de la masse du boson Z, incluant une analyse détaillée d’une mesure de cette masse avec la
calibration appliquée. Le processus de calibration est modifié pour exclure la résonance du
boson Z. Les corrections de calibration sont obtenues à partir du méson J/ψ.

À l’aide des outils officiels d’ATLAS, la calibration est comparée pour les mésons J/ψ
Prompts et Non Prompts. Les distributions pour les deux types sont analysées, et les différences
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entre leurs calibrations sont discutées. Les paramètres de calibration sont déterminés en fonc-
tion de la pseudorapidité du détecteur et de l’élan transverse des muons.

Les paramètres d’étalonnage sont dérivés en fonction de la pseudorapidité du détecteur et
du impulsion transversal du muon.

Enfin, une évaluation des incertitudes d’étalonnage sur la masse du boson Z est extraite à
l’aide d’un ajustement de vraisemblance, avec le canal di-muon.
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Abstract in German

Das Standardmodell ist die Grundlage der modernen Teilchenphysik. Präzise Messungen ste-
hen im Mittelpunkt wichtiger Studien. Mit der Entdeckung des Higgs-Bosons werden weit-
ere Messungen des elektroschwachen sektors durchgeführt, um die Konsistenz des Modells zu
überprüfen. ATLAS ist ein Mehrzweckdetektor und eines der Experimente am LHC des CERN.
Mit einem speziellen detector- und Magnetsystem erzielt das Experiment hochpräzise Messun-
gen des Myonenimpulses im Endzustand.

In diesem Zusammenhang ist die Messung der Z-Masse in ATLAS ein Teil dieser Bemühungen.
Die Masse des Z-Bosons wurde mit hervorragender Genauigkeit im LEP-Experiment am CERN
gemessen, ohne dass die systematischen Unsicherheiten bei der Rekonstruktion berücksichtigt
werden mussten. In ATLAS beinhaltet die Messung die Rekonstruktion von finalen Myonenob-
jekten, was entsprechende Verzerrungen mit sich bringt. Der Vergleich zwischen den beiden
Messungen ist von hohem wissenschaftlichen Interesse und ein Test für die Fähigkeiten von
ATLAS.

Die Arbeit untersucht die Kalibrierung des Myonenimpulses im ATLAS-Experiment mit
proton-proton-Kollisionen bei der Schwerpunktsenergie

√
(s) = 13 TeV. ATLAS verwendet

Standardkerzen“-Resonanzen für die Kalibrierung, das J/psi-Meson und das Z-Boson. Durch
den Vergleich des Di-Muonen-Massenspektrums in der Simulation und in den Daten für die
beiden Resonanzen wird die Kalibrierung abgeleitet.

Die Kalibrierung in dieser Arbeit steht im Zusammenhang mit den offiziellen ATLAS-
Empfehlungen, aber auch für die Z-Massenmessung in erster Linie, aber auch für andere elek-
troschwache Messungen, wie z.B. die W-Massenmessung.

Die Arbeit konzentriert sich auf die Herausforderungen bei der Kalibrierung mit den of-
fiziellen ATLAS-Werkzeugen, wobei die Ergebnisse in zwei Hauptabschnitte unterteilt sind.
Der erste Abschnitt befasst sich mit Kalibrierungsarbeiten, die für das ATLAS-Experiment
durchgeführt wurden. Konkret wird die relative Impulsauflösung von Myonen in ATLAS für
den Inner Detector (ID), das Muon Spectrometer (MS) und die Combined (CB) Spuren unter-
sucht. Aus diesen Studien werden Karten der relativen Impulsunsicherheit von Myonen sowohl
für die Simulation als auch für die Daten erstellt. Diese Karten zeigen systematische Mängel
in den Untersystemen des Detektors und falsche Modellierungen in den Simulationen auf. Die
Karten werden dann in den offiziellen ATLAS-Kalibrierungs-software integriert, um ihr Poten-
zial zur Verbesserung der Kalibrierungsgenauigkeit zu bewerten, wobei die Ergebnisse mit und
ohne diese zusätzlichen Informationen verglichen werden. Abschließend werden der Prozess und
die Ergebnisse der bestimmung der offiziellen ATLAS-Kalibrierungsempfehlungen vorgestellt.
Diese Empfehlungen werden getrennt für die ID-, MS- und CB-Spuren entwickelt.

Der zweite Teil dieser Arbeit befasst sich mit der Kalibrierung im Zusammenhang mit der
Z-Massenmessung, einschließlich einer detaillierten Analyse einer Z-Massenmessung mit der
angewandten Kalibrierung. Der Kalibrierungsprozess wird so verändert, dass er die Z-Boson-
Resonanz nicht berücksichtigt. Kalibrierungskorrekturen werden nur mit dem J/psi-Meson
abgeleitet.

Unter Verwendung offizieller ATLAS-werkzeuge wird die Kalibrierung für Prompt- und
Nicht-Prompt-J/ψ-Mesonen verglichen. Die kinematischen Verteilungen für beide Typen wer-
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den analysiert, und die Unterschiede zwischen den Kalibrierungen werden diskutiert. Die Kalib-
rierungsparameter werden als Funktion der Pseudorapidität des Detektors und des Transver-
salimpulses des Myons abgeleitet.

Schließlich wird nach Anwendung der abgeleiteten Kalibrierung auf Myonen aus Z-Kandidaten-
Zerfällen eine Bewertung der erwarteten Unsicherheiten für die Z-Bosonen-Masse mit Hilfe eines
Likelihood-Fits mit dem Di-Muon-Kanal extrahiert.
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Abstract in English

Standard Model is the foundation of modern particle physics. Precise measurements are in
the center of major studies. The Higgs boson discovery probes for further Electro-Weak mea-
surements, to test the consistency of the model. ATLAS is a multi-purpose detector and one
of the experiments at the CERN LHC. With a dedicated tracking and magnetic system, the
experiment achieves high precision measurements of the muon momentum at the final state.

In that context, the Z mass measurement in ATLAS is part of these efforts. The Z boson
mass has been measured with excellent accuracy in the LEP experiment at CERN, without
delving into reconstruction systematic uncertainties. In ATLAS, the measurement involves the
reconstruction of final muon objects introducing corresponding biases. The comparison between
the two measurements is of high scientific interest and a test for ATLAS capabilities.

The thesis investigates muon momentum calibration in the ATLAS experiment, with pp
collisions, at center of mass energy

√
s = 13 TeV. ATLAS uses ”standard candles” resonances for

the calibration, J/ψ meson and Z boson. By comparing di-muon mass spectrum in simulation
and data, for the two resonances, the calibration is derived.

The calibration in this thesis is in the context of official ATLAS recommendations but also
for Z mass measurement primarily, but also other Electro-Weak measurements, such as the W
mass measurement.

The work focuses on calibration challenges using official ATLAS tools, with results divided
into two main sections. The first section addresses calibration work performed for the ATLAS
experiment. Specifically, the relative momentum resolution of muons in ATLAS is investigated
for the Inner Detector (ID), the Muon Spectrometer (MS), and the Combined (CB) tracks.
From these studies, maps of the muon relative momentum uncertainty are generated for both
simulation and data. These maps reveal systematic deficiencies in the detector subsystems
and mis-modelings in the simulations. The maps are then integrated into the official ATLAS
calibration framework to assess their potential for improving calibration precision, with a com-
parison of results both with and without this additional information. Lastly, the process and
outcomes of deriving the official ATLAS calibration recommendations are presented. These
recommendations are developed separately for the ID, MS, and CB tracks.

The second part of this thesis focuses on calibration in the context a the Z mass mea-
surement, including a detailed analysis of a Z mass measurement with the applied calibration.
The calibration process is altered so it does not include the Z boson resonance. Calibration
corrections are derived with the J/ψ meson.

Using official ATLAS tools, the calibration is compared for Prompt and Non-Prompt J/ψ
mesons. Kinematic distributions for both types are analyzed, and the differences between their
calibrations are discussed. The calibration parameters are derived as a function of detector
pseudorapidity and muon transverse momentum.

Lastly, an assessment of the calibration uncertainties on the Z boson mass is extracted using
a likelihood fit, with the di-muon channel.
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Introduction

In this thesis, the Z mass is measured in the ATLAS experiment, using proton proton collisions,
at

√
s = 13 TeV. ATLAS is a generic high energy physics experiment, operating in the LHC.

One of the main objectives of the ATLAS experiment is to test the consistency of the Standard
Model. ATLAS has performed a series of Standard Model (SM) precise measurements, and
notably, in the electro weak sector the mW has been measured with excellent accuracy for Run-
1. This thesis aims to push the boundaries of current methodologies by deriving a Z boson mass
measurement with a low uncertainty. The measurement is performed through reconstructing
final state muons. Therefore, understanding and correcting detector biases introduced at the
reconstruction is crucial. Specifically, this thesis is focusing in charge independent effects on
muon transverse momentum pµT . Through the calibration procedure, which is the main theme
of this thesis, these biases are corrected.

In Chapter 1, the SM is presented with a focus on the derivation of the Z mass through
the Higgs mechanism. Fundamental particles, fermions and bosons, and their interactions are
presented. Moreover, the derivation of the Z boson through the Electro-Weak unification is
shown. The Z boson properties are presented and finally the LEP measurement is outlined to
motivate the current thesis.

In Chapter 2, the experimental apparatus is presented. First, the LHC is presented alongside
the proton filling scheme. ATLAS detector is introduced with the corresponding coordinates and
different detector regions. The magnetic field is presented, with a brief introduction on magnetic
field measurement non closures. Furthermore, the Inner Detector, the Muon Spectrometer
and the Calorimeter systems are presented, with a focus on muon detection and interaction
with the subsystems. Trigger algorithms and data acquisition are presented. Finally, track
reconstruction, muon interaction with the detector and muon track types are presented.

In Chapter 3, the official ATLAS calibrations tools are presented with technical details.
Two kind of momentum measurement biases are presented. First, charge dependent biases,
also referred as saggita biases are outlined. Their source and their effect is presented. Secondly,
non-charge dependent biases are presented. Their origin is presented, alongside the derivation
of the corresponding corrections. The corrections are derived through a dedicated algorithm,
and the parametrization of the momentum with scale and resolution parameters. The effect of
these parameters is shown on mµµ distributions, corresponding to the J/ψ and Z resonances.
Lastly, the J/ψ background derivation is presented.

In Chapter 4, calibration studies done for the Qualification Task (QT) and the Muon Mo-
mentum Calibration group of ALTAS are presented. For the QT, the pre-smearing procedure

was performed. Detector η and ϕ maps of
σ
p
µ
T
/pµTData

σ
p
µ
T
/pTMC

are derived for different pµT bins. Pro-

files of σpµT /p
µ
T are studied as a function of pµT for simulation and data. Momentum resolution

parametrization is tested by fitting a parametric function to these profiles. Lastly, from the
σ
p
µ
T
/pµTData

σ
p
µ
T
/pµTMC

maps a correction is derived and injected in the calibration procedure. In the second

part of Chapter 4, the results of the official muon momentum calibration are presented. Finally,
a validation is conducted to assess the quality of the calibration across detector η, ϕ, and pµT .
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In Chapter 5, the calibration in the context of the Z mass measurement is presented. First,
the overall strategy is discussed alongside challenges. The primary strategy involves deriving
calibration corrections as a function of detector η, using the J/ψ resonance, specifically for the
barrel region of the Inner Detector. First, a study is conducted to calibrate muons from J/ψ
mesons produced either near or displaced from the Interaction Point. Secondly, the calibration
as a function of η is presented, alongside the validation of the process. Finally, the pµT depen-
dence of the calibration parameters is derived, accounting for the fact that muons originating
from the Z resonance decay exhibit a different pµT spectrum compared to those from the J/ψ.

Finally, in Chapter 6, the Z mass measurement is derived using the calibration corrections
for the J/ψ. The simulation and data samples are presented. Systematic uncertainties are
outlined. The decay channel Z → µµ is used to derive signal templates for different mZ and
width ΓZ values. By morphing between the templates and a dedicated likelihood fit the final
result is derived, with a blinded mZ central value.
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Chapter 1

The Standard Model and the Z Boson

Contents

1.1 Standard Model of elementary particles . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.1 Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.2 Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 QED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3 QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.1 Parton Distribution Functions . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4 Weak Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.1 Mass Term-Gauge Invariance . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5 ElectroWeak Sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5.1 Higgs Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.5.1.1 The Goldstone Model . . . . . . . . . . . . . . . . . . . . . . . 24
1.5.1.2 The Higgs model and coupling to gauge fields . . . . . . . . . . 26
1.5.1.3 The Higgs field and SU(2)L ⊗ U(1)Y . . . . . . . . . . . . . . . 26
1.5.1.4 Yukawa couplings . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.5.1.5 Higgs Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.5.2 Z Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5.3 W and Z bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.5.3.1 Z Boson Properties . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.5.3.2 Z boson at Hadron Colliders . . . . . . . . . . . . . . . . . . . . 31
1.5.3.3 Previous Measurements of Z boson properties . . . . . . . . . . 33

1.1 Standard Model of elementary particles

The Standard Model (SM) is the basis and foundation of modern particle physics. It describes
three of the four fundamental forces of particle interactions. It’s framework give an accurate
description of electromagnetic, weak and strong nuclear force. With the discovery of the Higgs
boson by ATLAS and CMS experiments at the Large Hadron Collider, the SM puzzle got
completed. Theoretical predictions and experimental data are in excellent agreement up to the
current date, making the SM the best description of the universe until now.

Despite the success of the SM, there are still phenomena that remain unexplained. The
most important is gravity. The fourth fundamental force, is significantly weaker compared to
the other forces, making it difficult to probe SM predictions in relation to it. Furthermore, it
is unable to explain the imbalance of matter and anti-matter in the universe. Additionally, it
does not include a coherent mechanism for neutrino oscillations or the way their acquire mass.
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Due to these persistent questions a large part of the research is focused on beyond to the SM
theories.

The SM is based on Quantum Field Theory (QFT), which is relativistic quantum mechanics
where the Hilbert space of particles is called Fock space of quantum fields. In this framework
particles and their interactions are a result of field excitations. The dynamics of the quantized
fields is described by the Lagrangian density L(v, v̇), where v is the local function of the field
and it’s derivative v̇ . The equation of motion is derived from the principle of least action:

d

dt

∂L
∂v̇

− ∂L
∂v

= 0 (1.1)

The core of the SM is the fundamental particles and their interactions. The elementary
particles are displayed in the Figure 1.1. There are two large group of particles: fermions and
bosons. Fermions form matter and bosons are mediators of the fundamental forces.

Figure 1.1: Elementary Particles of the SM, taken from ref.[1]

SM is a gauge theory based on Quantum Field Theory (QFT) that describes interactions
between fundamental particles by the exchange of bosons. These bosons come forward from
demanding local gauge symmetry of the theory. The three symmetries governing the SM are:

GSM = SU(3)C ⊗ SU(2)L ⊗ U(1)Y (1.2)

where

• SU(3)C is a special unitary group with three elements, representing the strong interac-
tion (quantum chromodynamics, QCD) and is associated with the color charge.

• SU(2)L⊗U(1)Y represents the electro-weak interactions and is associated with the weak
isospin and weak hyper-charge.

SM is separated in three sections. The quantum electron dynamics (QED), the weak inter-
actions and the Quantum Chromo Dynamics. Also, a unification of QED and weak interaction
has been proved experimentally and it is called electroweak.

In the context of this chapter, for simplicity, the anti-particle notations is equal to the
particle one.
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Natural Units In the context of high energy physics, the natural units scheme is used to
simplify the notations. This involves the setting of fundamental constants of physics equal to
1. The standard natural units, which are also used in the thesis is the following:

• speed of light c=1

• reduced Planck constant h̄ = 1

This allows for quantities like mass to be written for example GeV/c2 → GeV or momentum
GeV/c→ GeV , whereas energy remains unchanged.

1.1.1 Fermions

Fermions are separated in quarks (left top group of Figure 1.1) and leptons (left bottom group
of Figure 1.1). Depending on their type, fermions interact with different fundamental forces.
They are characterized by half integer spin, therefore due to Dirac - Fermi statistics, they
can not occupy the same quantum state. Free fermions are solutions to the relativistic wave
equation of Dirac:

(iγµ∂µ −m)ψ = 0 (1.3)

where: ψ is the wave function of the fermion, or Dirac spinor. γµ are the gamma matrices,
which encode the spin structure. ∂µ represents the four-derivative with respect to spacetime
coordinates. m is the mass of the fermion. i is the imaginary unit.

Quarks are referred often as ”building blocks” of matter. They form hadrons, such as protons
and neutrons, and therefore are the basis of atoms. They interact with all fundamental forces
but their unique characteristic is the interaction with the strong force, allowing the creations
of hadrons. Due to the potential of the strong force the quarks are never found in isolation
but always form bound states. This phenomenon is called color confinement and it is analyzed
further in Section 1.3.

The six flavors of quarks are divided in three generations:

• Up (u) and Down (d): The lightest and most stable quarks, up and down quarks are
found in protons and neutrons, which make up ordinary matter.

• Charm (c) and Strange (s): Heavier and less stable quarks. Strange quarks play a role
in the formation of strange particles, such as kaons, while charm quarks are produced in
high-energy collisions. Charm quarks are particularly relative to this thesis as one of their
main bound states, J/ψ charmonium ( cc̄ ), is used extensively in the thesis . Also strange
hadrons as Kaons are used in modern particle physics to study violations of fundamental
physics symmetries to probe matter anti-matter asymmetry.

• Top (t) and Bottom (b): The heaviest of the quark flavors. The top quark is the most
massive elementary particle observed, while the bottom quark is significant in heavy
mesons such as B-mesons. The later play a significant role in ATLAS experiment. Due
to their large lifetime they have a distinct detector signature, allowing for their easy
identification. Also in the context of the thesis they play an important role as they allow
for the distinction of Prompt J/ψ and Non Prompt J/ψ in Chapter 5. Prompt J/ψ
produced directly near the Interaction Point, whereas Non Prompt J/ψ originate from
the decay of B-mesons and are typically produced at a measurable distance from the
interaction point. Top quarks are connected to crucial SM properties as the W and the
Higgs boson mass through higher order diagrams.
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The other group of fundamental fermions are the leptons. Their main distinction from
the quarks is that they don’t interact with the strong force. There are six leptons and they
are grouped into three generations, each consisting of a charged lepton and it’s corresponding
neutrino.

• Electron (e): It is the lightest and most stable of the charged leptons. Electrons are
found at atoms, orbiting around the nucleus. They are produced in abundance in the
universe.

• Muon (µ): A second-generation charged lepton. The muon has a much greater mass (
105.66 MeV ). It decays into an electron and neutrinos via the weak interaction. Muons
are relevant in the context of their thesis as they are the decay channel that the Z mass
is measured. Muons have a larger lifetime than τ and they do not decay in the ATLAS
detector making it possible to be easily identified by a dedicated detector system.

• Tau (τ): The heaviest of the charged leptons, the tau is a third-generation particle. Due
to its large mass, the tau is unstable and decays quickly into lighter particles, including
electrons, muons, and neutrinos through the week force. Due to their short lifetime, τ
leptons decay almost instantaneously, complicating their differentiation from other pro-
cesses that also produce leptons in the final state. As a result, τ tagging represents one
of the primary challenges faced by the ATLAS experiment. In the context of this thesis,
tau leptons are particularly significant as they contribute to the background for the signal
process Z → µµ̄.

• Neutrinos, electron, muon, tau (νe, νµ, ντ ): The corresponding neutrinos to electron,
µ and τ respectively. They have an extremely low mass and only interact elusively via
the weak force and gravity. Neutrinos are notoriously difficult to detect.

Particle Mass (GeV) Charge (e) Spin
Quarks

Up (u) 0.0022 +2
3

1
2

Down (d) 0.0047 −1
3

1
2

Charm (c) 1.28 +2
3

1
2

Strange (s) 0.096 −1
3

1
2

Top (t) 173.1 +2
3

1
2

Bottom (b) 4.18 −1
3

1
2

Leptons
Electron (e) 0.000511 −1 1

2

Electron Neutrino (νe) < 2.2× 10−6 0 1
2

Muon (µ) 0.1057 −1 1
2

Muon Neutrino (νµ) < 0.17× 10−3 0 1
2

Tau (τ) 1.7769 −1 1
2

Tau Neutrino (ντ ) < 18.2× 10−3 0 1
2

Table 1.1: Fermions in the Standard Model, taken from ref.[2].

1.1.2 Bosons

Bosons have integer spin. They follow Einstein - Bose statistics, meaning they can occupy the
same quantum state. This allows them to be mediators of fundamental particles between the
fermions.
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Bosons are solutions to different equations. Higgs, which is a scalar boson, is a solution to
the Klein Gordon equation, where the other bosons W,Z, γ are produced through interaction
with local gauge symmetries and the corresponding formalism is more complicated.

Scalar bosons are solutions to the relativistic wave equation of Klein Gordon:(
+
m2c2

h̄2

)
ϕ = 0 (1.4)

where ϕ is the field representing the boson, ≡ ∂µ∂
µ is the d’Alembertian operator, or the

wave operator in spacetime, m is the mass of the boson, c is the speed of light, h̄ is the reduced
Planck constant.

• Gauge Bosons (Spin 1): The fundamental forces are mediated by gauge bosons, all of
which have spin 1.

– Photon (γ): The photon mediates the electromagnetic force. It has spin 1 and is
massless.

– W and Z Bosons: The W+, W− bosons mediate the weak force. The Z0 bosons
mediate the electroweak force. They are vector bosons with spin-1.

– Gluons (g): Gluons are responsible for mediating the strong force between quarks.
They have spin 1 and are massless.

• Higgs Boson (Spin 0): The Higgs boson has spin 0. Its spinless nature allows it to
couple uniformly to other particles. It is connected to the Higgs mechanism, through
which particles acquire mass.

• Graviton (Hypothetical, Spin 2): In theoretical models of quantum gravity, the
graviton is proposed as the mediator of the gravitational force. It’s spin is hypothesized
to be 2. The graviton has not yet been experimentally observed.

Particle Interaction Mass (GeV) Spin
Photon (γ) Electromagnetic 0 1

W Boson (W±) Weak 80.379 1
Z Boson (Z0) ElectroWeak 91.1876 1
Gluon (g) Strong 0 1
Higgs (H) Mass 125.1 0

Table 1.2: Bosons in the Standard Model, taken from ref.[2]

1.2 QED

Quantum Electro Dynamics (QED) is the one of the most important parts of the SM, ref.
[3]. It consists of the foundations of the more complicated interactions (Weak and Strong). It
describes electromagnetic interactions between electrically charged particles.

Main foundation of QED is the notion that electrically charged particles, when interacting,
exchange photons. The photons, γ, are the mediators of the electromagnetic force and they
arise from local gauge symmetry.

In QED, a key principle, inspired by classical electromagnetism, is the introduction of an
additional field. Specifically the electromagnetic gauge field ensures that the fundamental
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laws of physics remain unchanged under local transformations. This concept preserves gauge
symmetry and allows for the consistent description of interactions between charged particles
and the photon field.

QED is required to preserve gauge invariance, local and global. In simpler terms, the
theory is required to hold in space-time transformations. This means that fundamental physics
properties of the system remain unchanged when the fermion wave function is transformed
under a space-time shift :

ψ(x) → ψ′(x) = eiα(x)ψ(x) (1.5)

The transformation changes the Dirac Lagrangian:

Lfermion = ψ̄(iγµ∂µ −m)ψ → ψ̄′(iγµ∂µ −m)ψ′ = e−iα(x)ψ̄(iγµ∂µ −m)eiα(x)ψ (1.6)

where m is the fermion mass. The effect of the derivative on the transformed wave function
will add a term (∂µα)ψ which breaks the local symmetry:

∂µψ → ∂µ(e
iα(x)ψ) = eiα(x)(∂µψ + i(∂µα)ψ) (1.7)

To treat this additional term introducing an additional gauge field is required Aµ, which is es-
sentially the photon. The interaction with the gauge field is introduced with covariant derivative
Dµ:

Dµ = ∂µ + iqAµ (1.8)

where q is the charge of the fermion. The photon field Aµ must be transformed the following
way under a local transformation:

Aµ(x) → Aµ(x)−
1

q
∂µα(x) (1.9)

This additional term will cancel the one presented in Relation 1.7.
To describe fully the QED, another term is needed for the Lagrangian. This which is a

kinematic term of the photon. It is the equivalent of Maxwell laws in Quantum Field Theory
(QFT). The term introduced is called field strength tensor F µν and is defined as:

F µν = ∂µAν − ∂νAµ (1.10)

Finally the QED Lagrangian, which is local and globally phase transformation symmetric is:

LQED = −1

4
F µνFµν + iψ̄γµDµψ −mψ̄ψ (1.11)

In conclusion, the QED Lagrangian has three terms. First a kinematic term without a mass
for the photon, the field tensor, a term of interaction of fermions with the photon gauge field
through the covariance derivative and a mass term for the fermions. It is important to note
that the field tensor term does not include photon self interactions, which is in contrast to what
occurs in both QCD and the weak interactions, where self-interactions are present.

1.3 QCD

Quantum Chromodyamics (QCD) is a gauge theory of the SM using SU(3)C symmetries, ref.
[4]. The theory describes the interactions of quarks, using the colour charge, by the exchange
of the gauge boson of QCD, gluons.
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The langrangian for free quarks, using equation 1.3, is:

L =
∑
j

q̄j(iγ
µ∂µ −mj)qj (1.12)

for j=1,2..,6 for the six quarks. The wave functions of the QCD are vectors in the colour space
(red, green blue), therefore: qj = (qr, qg, qb). Similarly to QED and the U(1) the QCD theory
must be invariant under SU(3) local gauge transformations. The transformation is:

q
′
= qeiαsλ⃗ ⃗θ(x) (1.13)

with αs the coupling to the strong force, λ are the Gell Mann matrices and θ(x) is a vector
of functions taking different values for space time x, with 8 elements. The eight elements are
the eight gluons required for the exchange of the colour charge between the quarks. The gluon
field tensor is:

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAbµA

c
ν (1.14)

where fabc are the structure constants of the SU(3) algebra.
The final QCD Lagrangian is:

LQCD = q̄ (iγµDµ −m) q − 1

4
Ga
µνG

aµν (1.15)

In conclusion the QCD gauge boson, the gluons are produced from requiring SU(3) gauge
invariance for colour triplets. The resulting Lagrangian 1.15 has a field strength tensor term
for the gluon field, which reflects the gluon kinematics and self interactions. In contrast with
QED, the gauge field is allowed to have self interactions due to the gfabcAbµA

c
ν term of the

Relation 1.14. They arise from the third term of 1.14, which reflect the non abelian structure
of the QCD.

The most important feature of the strong force is the corresponding potential. The potential
has two terms corresponding to two different regimes of the force. The first term corresponds
to high energies and small distances and is similar to electromagnetic potential:

V (r) ∼ −αs
r

(1.16)

In this regime αs becomes small and the quarks behave as they are almost ”free”. This prop-
erty is called asymptotic freedom. The second term corresponds to low energies and is more
significant in larger distances:

V (r) ∼ r (1.17)

The potential there becomes linear with distance which leads to the phenomenon of colour
confinement. Due to this term the quarks are not observed in colour singlet state, but always
bound in hadrons. Consequently the potential function makes QCD precision different in the
two energy regimes.

There are two kind of energy regimes where QCD goes into effect. One is the perturbative
regime where the coupling of the strong force αs is small, meaning the energy is high enough,
where the Feynman’s formalism can work and the matrix element of the interaction can be
expanded in orders of αs. The non perturbative regime is at effect in low energies or high
distances. There the αs is high enough to be unable to expand in orders of αs. The phenomena
at non perturbative QCD are hadronization and confinement of quarks in the hadrons. For this
QCD regime there are models such as lattice QCD and effective theories but Feynman formalism
do not work. Therefore the simulation of non perturbative QCD is of limited capabilities.

18



1.3.1 Parton Distribution Functions

An important factor, which influences the results of hadron collider experiments like ATLAS,
is the proton structure. At small energies the proton is mainly described by the valence quarks.
The momentum of the proton is divided in it’s parton. This division is not a simple 1/3 for
every parton, due to interactions between the partons, but the momentum of every parton is
described by a function. Additionally with increasing energy gluon-gluon pairs are creating sea
quarks. Therefore the distribution of the momentum in the proton becomes complicated. The
distribution of parton momentum is called Parton Distribution Functions (PDFs).

The PDFs are used in the cross sections of deep inelastic scattering calculations to account
for this effect. The functions used are based at the DGALP approach ref.[5], which accounts
for the running of αs.The equations are:

∂fi(x,Q
2)

∂ lnQ2
=
∑
j

∫ 1

x

dz

z
Pij
(
z, αs(Q

2)
)
fj(

x

z
,Q2) (1.18)

where fi(x,Q
2) is the PDF, corresponding to the probability of parton i carrying moment x for

energy scale Q. and the splitting function. Pij(z, αs(Q
2)) is the splitting function describing

the propability of parton j splitting into a parton i carrying a fraction z of the original parton’s
momentum. The splitting function takes into account the running of αs with Q

2. The limits of
the integration are (x, 1) to cover for all possible values of z of the original parton’s momentum.
In Equation the sum is integrating over all parton types j.

PDF calculation is a complicated problem because of their connection with non perturbative
QCD regime. Therefore their effects are studied through global fits with data from several high
energy physics experiments that involve deep inelastic scattering in QCD. These fits use the Q2

and the x parametrization of the PDFs, to constrain different PDF models into data. Notable
eaxmples are the NNPDF approach which implements neural network models to interpolate
PDFs mainly from LHC ref.[6], CTEQ ref.[7]-[8], MSTW/MMHT ref.[10] which use data from
LHC, Tevatron and HERA.

In Figure 1.2, PDF model CT10 is displayed, which is used for the Z mass analysis. The
graphs illustrate the behavior of the PDFs as a function of the momentum fraction x for different
Q. It is evident that for different Q, meaning a energetic scattering on the partons, the sea
contribution by quarks and gluons is increasing for low momentum fraction x. The valence
quark contribution is slightly decreasing with Q.

In physics analysis, the PDF uncertainty is important to aces the effect of theoretical un-
certainty of parton momentum. They are usually by comparing the effect of different PDF
models to the kinematic variables. A common procedure is taken the envelope of the effect as
the uncertainty.
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Figure 1.2: CT10NNLO parton distribution functions for different Q. Valence u,d and sea
gluon, quark PDFs are displayed as a function of x. The values of Q are 2, 3.16, 8, 85 GeV.
The dashed curves are the central CT10 NLO fit. Taken from ref.[8]

1.4 Weak Interaction

The weak interaction came as necessity at the SM to explain experimental data. It explains a
variety of physical processes with radiation and nuclear decay being one of the most significant.
The most notable experiments to probe the search for the weak force is the Wu experiment.

In 1956, Chien-Shiung Wu conducted an experiment that provided evidence for the violation
of parity symmetry in weak interactions, ref. [11]. At the experiment cobalt-60 atoms nucleus
spin were aligned with a strong magnetic field. By observing the direction of the electrons
originating from β decay, she was able to prove the parity violation. Main proof of the violation
was that the electrons emitted had a preferred direction relative to the nuclear spin.

From that moment various experiments replicated similar results. The weak force has to
violate parity. This means that the interaction vector term presented in Dirac equation 1.3 has
to be altered to include a parity violation term in the equation. To include this kind of term
the probability current must use a vector - axial vector term:

jµ = ψ̄γµ(1− γ5)ψ (1.19)

with γ5 = iγ0γ1γ2γ3γ4. This kind of term will appear naturally after interacting with the gauge
fields of the weak force.

An important aspect of the weak force is the coupling of different flavour fermions and for
specific chirality configurations. A new symmetry is defined for the weak interaction, the weak
isospin I3W . Since weak force is known to interact only with left handed (LH) fermions and
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right handed (RH) anti-fermions, particles will carry different I3W depending on their chirality.
Left handed fermions have absolute value of I3W = 1/2 and right handed fermions have isospin
I3W = 0, not interacting therefore with the weak force. For this reason left handed fermions are
grouped into I3W doublets:

ΨL =

(
ψI3W=1/2

ψI3W=−1/2

)
,

(
νe
eL

)
,

(
νµ
µL

)
,

(
ντ
τL

)
,

(
uL
dL

)
,

(
cL
dL

)
,

(
tL
bL

)
(1.20)

Right handed fermions are represented by singlets of SU(2).
Weak interaction bosons arise with a similar fashion as a photon in QED, by demanding a

local gauge invariance. The Weak Interaction arises from SU(2) local phase transformations:

ψ → ψ
′
= ψeiα⃗(x)·

σ⃗
2 (1.21)

where α⃗(x): These are the local gauge transformation parameters, which depend on the space-
time position x and σ⃗

2
: The Pauli matrices σ⃗ = (σ1, σ2, σ3) are the generators of the SU(2)L

group. The factor of 1
2
accounts for spin-1

2
particles.

By doing an expansion of the exponential with a negligible constant g:

eiα⃗(x)·
σ⃗
2 = lim

g→0
[I +

(
igω⃗(x) · σ⃗

2

)
+ · · · ] (1.22)

Similarly to QED a covariance derivative is defined:

Dµ = ∂µ + i
g

2
W⃗ µ · σ⃗, (1.23)

with W⃗ µ the gauge field associated with the gauge bosons. By requesting the following for the
covariance derivative:

Ψ′γµD′
µΨ

′ = ΨγµDµΨ (1.24)

three boson gauge fields arise: W µ
1 ,W

µ
2 ,W

µ
3 . The interaction term of the gauge fields with the

fermions has the following form:

g

2
ΨγµW⃗ µ · σ⃗Ψ (1.25)

The two physical bosons W+ and W− can be written as linear combinations of W1 and W2:
W± = W1±W2√

2
. The corresponding probability currents can be written:

jµ± =
g√
2
Ψ̄Lγ

µσ±ΨL (1.26)

with σ± the spin ladder operators. For simplicity the doublet is replaced with:Ψ =

(
ν
l

)
.

Equation 1.26 can be transformed into a vector-axial vector form (Equation 1.19) to probe
parity violation:

jµ+ =
g√
2
ν̄γµ

1

2
(1− γ5)l (1.27)
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jµ− =
g√
2
l̄γµ

1

2
(1− γ5)ν (1.28)

There are are though two open questions. One is the W µ
3 , which has not been used until

now. It will be used for unification of the weak force with electromagnetism to form electroweak
theory. The second one is the mass term of the Diran equation, which has been ignored until
now.

1.4.1 Mass Term-Gauge Invariance

The mass term from dirac equations can be written as:

mψ̄ψ = m(ψ̄LψR + ψ̄RψL)

where:

• ψL = 1
2
(1− γ5)ψ is the left-handed component of the fermion.

• ψR = 1
2
(1 + γ5)ψ is the right-handed component of the fermion.

The mass term m(ψ̄LψR + ψ̄RψL) mixes the left-handed and right-handed fermions. However,
under the gauge transformations introduced in Section 1.4, these two components transform
differently. The left handed fermion wavefunction is a I3W doublet where the right handed
fermion is a singlet with I3W . One term will transform under the SU(2)L and the other not.
Therefore the mass term is not gauge invariant. This problem will be fixed with the Higgs
mechanism which is going to be discussed in Section 1.5.1.4.

1.5 ElectroWeak Sector

Electroweak (EW) theory is the unification of two of the four known fundamental forces: the
electromagnetic force and the weak nuclear force. In the 1960s, Sheldon Glashow (ref. [12]),
Abdus Salam (ref. [13]), and Steven Weinberg (ref. [14]) independently proposed a unified
theory Their work showed a unification of forces at higher energies.

EW theory is very important in the scope of this thesis because the Z boson arises from the
unification but also the interference between Z and γ is used to produce variations of the mZ

distribution to measure the Z mass.
The mathematical formalism of EW sector is part of the SU(2) ⊗ U(1) gauge group, with

generators the weak isospin T and weak hypercharge Y. The generators give rise to three W
bosons of weak isospin(W1,W2,W3) and the B boson of weak hypercharge. These bosons are
”massless” and they correspond to non physical fields. The physical bosons W±, Z0 and γ0 are
produced after the spontaneous symmetry breaking of the EW symmetry to SU(2)×U(1)Y to
U(1)em through the Higgs mechanism. The W µ

3 gauge field predicted by weak theory gives a
probability current:

jµW3
= g

(
ν̄ l̄

)
L
γµ
σ3
2

(
ν
l

)
L

(1.29)

→ jµW3
=

1

2
g
(
ν̄γµν − l̄γµl

)
(1.30)
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The field W µ
3 notably is associated with neutral current and has a similar structure as QED.

But still does not have a mass and does not explain massive neutral current.
To solve the mass problem which was also discussed in Section 1.4 Glashow proposed the

existence of massless Goldstone-like bosons Bµ. The new field will be connected to a new gauge
symmetry, similar to that of electromagnetism, weak hypercharge U(1)Y . And hypercharge is
given by:

Y = 2Q− I3W (1.31)

where Q us the electromagnetic charge and I3W the z component of the weak isospin. The weak
hypercharge is notable having different values for left handed and right handed particles due
to the I3W term.

The physical boson γ and Z will be a combination of W 3
µ and Bµ:

Aµ = Bµ cos θW +W µ
3 sin θW (photon, γ) (1.32)

Zµ = W µ
3 cos θW −Bµ sin θW (Z-boson) (1.33)

where θW is the Weinberg angle which mixes the physical fields Aµ,Zµ with the gauge fields
W µ

3 and Bµ. By convention the coupling of the Bµ to fermions will be given by: 1
2
g

′
Y

An important aspect of the model is the interdependence of SM parameters and the asso-
ciation of arbitrary gauge field properties to the physical field ones. By requesting:

jemµ = jYµ cos θW + jW3
µ sin θW (1.34)

and

jZµ = −jYµ sin θW + jW3
µ cos θW (1.35)

ones derives:

e = g sin(θW ) = g
′
cos θW (1.36)

and for a gz =
gw

cos θW
:

e = gZ cos θW sin θW (1.37)

The Equation (1.37) is important as it connects the coupling of electromagnetism to an EW
coupling of the Z boson and the weak mixing angle.

By advancing the probability current Equation (1.35) for the Z boson:

JµZ = gZ
(
I3W −Q sin2 θW

)
[ψ̄LγµψL]− gZQ sin2 θW [ψ̄RγµψR] → (1.38)

JµZ = gZcL[ψ̄LγµψL]− gZcR[ψ̄RγµψR] (1.39)

Which means that the Z boson couples differently with left handed and right handed fermions.
The W3 part of Z couples only to LH components (similarly to W±) and the Bµ part couples
equally LH, RH components. This gives a property for the Z boson which is calledAsymmetry.
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The probability current for the Z can also be expressed with the vector cV = cL + cR and
axial vector cA = cL − cR couplings:

JµZ =
gZ
2
ψ̄γµ[cV − cAγ5]u (1.40)

At the Appendix A are presented the couplings and the hypercharge for all fermions.
Finally EW Lagrangian, by ignoring mass terms, is derived:

LEW = −1

4
W a
µνW

aµν − 1

4
BµνB

µν + iΨ̄γµDµΨ (1.41)

In conclusion it is important to analyze the EW probability currents and Lagrangian. The
EW Lagrangian has multiple terms with different interpretations. The two first ones:W a

µνW
aµν

and BµνB
µν , are kinematic terms of EW bosons and allow for self interaction W and Z. Also

through the mixing, interaction is allowed between the boson themselves. The third term
Ψ̄Liγ

µ∂µΨL is the EW interaction term with the fermions. From this term W probability
currents emerged in Equations 1.27 1.28. From these probability currents it is visible that W
boson change the flavour of the lepton. Therefore, they couple netrinos with the corresponding
leptons. Finally from the probability current of Z in Equation 1.39, it is clear that the Z couples
differently to left handed and right handed particles. Also it decays similarly to a photon in
e,µ,τ or quark, but also it can decay to neutral netrinos.

Finally, there is still a problem with the mass terms in the Lagrangian, which does not the
respect gauge invariance. This will be solved with Higgs mechanism at the Section 1.5.1.

1.5.1 Higgs Mechanism

Higgs mechanism is a solution to the mass problem of EW boson and fermions. By adding a
scalar field at the Lagrangian and the spontaneous symmetry breaking, the particles acquires
mass.

First the Goldstone model is going to be presented which is a simple basis on the higgs
mechanism. Then the more complex higgs mechanism will be presented, the procedure for
acquiring the higgs mass is going to be discussed and finally the coupling of bosons and fermions
to the higgs field.

1.5.1.1 The Goldstone Model

In the Goldstone model, ref. [15], the Lagrangian has a kinematic term of complex scalar field
ϕ and a corresponding potential V :

L = (∂µϕ)
∗(∂µϕ)− V (ϕ), (1.42)

where V is the potential:

V (ϕ) = µ2|ϕ|2 + λ|ϕ|4, (1.43)

Here, µ2 and λ are constants, with λ > 0 ensuring the potential is bounded from below.
The sign of µ2 will determine whether symmetry breaking occurs. If µ2 > 0, the potential has
a minimum at ϕ = 0, and no symmetry breaking occurs. However, if µ2 < 0, the minimum
occurs at a non-zero value of ϕ, and the symmetry is spontaneously broken.
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Figure 1.3: Functional form of the potential V in Relation 1.43 as a function of imaginary and
real part of the complex scalar field ϕ for µ < 0. Taken from ref.[16]

When µ2 < 0, the potential takes the form of the ”Mexican hat” potential. By analytically
minimizing the potential, the vacuum expectation value (VEV) of the field ϕ is found.

To find the minimum of the potential, the derivative of V (ϕ) with respect to ϕ is calculated
and required to be to zero. And by solving for |ϕ|2:

dV (ϕ)

dϕ
= 0 → |ϕ|2 = −µ

2

2λ
. (1.44)

For µ2 < 0, this gives a positive value for |ϕ|2, and the vacuum expectation value (VEV) of ϕ
is defined as:

η2 =
−µ2

λ
. (1.45)

Thus, the VEV is:

η =

√
−µ

2

λ
. (1.46)

This shows that the field acquires a non-zero vacuum expectation value, spontaneously breaking
the U(1) symmetry.

Since the potential only depends on the magnitude of ϕ, and not on its phase, the vacuum
is degenerate. The set of possible vacua forms a circle, parameterized by the phase θ. The
vacuum configuration can be written as:

⟨ϕ⟩ = η√
2
eiθ (1.47)

where 0 ≤ θ ≤ 2 ∗ π is an arbitrary constant phase, indicating the degeneracy of the vacuum.
The physical vacuum can reside in any place in the degenerate vacua. By choosing a particular
one (a value for the θ of equation 1.47), U(1) symmetry is broken.

According to the Goldstone theorem, the spontaneous breaking of a continuous global sym-
metry leads to the existence of massless scalar particles, called Goldstone bosons. In this
example, the U(1) symmetry is spontaneously broken, and one massless Goldstone boson is
expected.

The Goldstone model scalar field, shown here, is mass less, but the Higgs boson is not
massless. By combining the spontaneous symmetry breaking, a gauge field and a scalar field,
the later can acquire mass, which is going to be presented in Section 1.5.1.2.
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1.5.1.2 The Higgs model and coupling to gauge fields

In the following analysis section the coupling of the higgs field with a arbitrary gauge field Rµ

is going to be displayed. The process of acquiring mass for the scalar field ϕ is going to be
presented.

Similarly to QED in Section 1.2, local gauge invariance is requested and therefore an asso-
ciated gauge field is defined Rµ. The Lagrangian is:

L = (Dµϕ)
†(Dµϕ)− V (ϕ)− 1

4
F a
µνF

aµν (1.48)

where F a
µν is the field strength tensor associated with the gauge field, Dµ is the covariant

derivative: Dµ = ∂µ − ieRµ.
By demanding the local gauge invariance:

ϕ(x) → ϕ
′
(x) = eia(x)ϕ(x) (1.49)

and for a small ax:

ϕ
′
(x) = ϕ(x) + ia(x)ϕ(x) (1.50)

Without loss of generality the field can be set to be real:

ϕ = η +
σ(x)√

2
(1.51)

with σ(x) a real scalar field. By substituting the 1.51 in the Lagrangian of 1.48:

L =
1

2
∂µσ∂

µσ − 1

2
2λη2σ2 − 1

4
F a
µνF

aµν +
1

2
2e2η2RµR

µ (1.52)

In equation 1.52 new terms emerged with the coupling of the scalar field with the gauge
field. The first term is the kinematic term of the scalar field. The second term is the mass term
that emerged by adding the gauge field to the lagrangian, with mass 2λη2. The third term is
the kinematic term of the gauge field Similarly with QED and Weak interactions. Finally a
mass term arises for the gauge field with a mass: 2e2η2.

In conclusion, adding a gauge field to the Goldstone model discussed in Section 1.5.1.1, with
the spontaneous symmetry breaking generates massive scalar and gauge fields. In this section
the gauge field was an arbitrary one. In Section 1.5.1.3 the higgs field with the SU(2)L⊗U(1)Y
symmetry is discussed.

1.5.1.3 The Higgs field and SU(2)L ⊗ U(1)Y

Using the EW Lagrangian 1.41 with the higgs model presented in Section 1.5.1.2 and the
spontaneous symmetry breaking, the W and Z bosons can acquire mass.

The fields can be written as:

Zµ =
1√

g2 + g′2

(
gW 3

µ − g′Bµ

)
(1.53)

Aµ =
1√

g2 + g′2

(
g′W 3

µ + gBµ

)
(1.54)
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By substituting at the EW Lagrangian with the new field definitions, the mass terms of the
new fields are:

L⇕⊣∫∫ =
1

2

(gη
2

)2 (
W+
µ

)2
+

1

2

(gη
2

)2 (
W−
µ

)2
+

1

2

(
η
√
g2 + g′2

2

)2

Z2
µ + 0 · A2

µ (1.55)

In conclusion the SM boson mass is parameterized by the same parameter of the Higgs model,
VEV η, as portrayed in Table 1.3.

Field Mass

H
√
2λη

W+
µ

gη
2

W−
µ

gη
2

Zµ
η
√
g2+g′2

2

Aµ 0

Table 1.3: Masses of the gauge bosons after EW symmetry breaking.

Moreover, the relation connecting W and Z boson mass and weak mixing angle is given by:

mZ =
mW

cos θW
(1.56)

Testing the consistency of the SM is crucial for the modern physics. This can be done by
measuring SM parameters as θW , couplings and boson masses independently probing the way
for precision and the discovery of potential new physics. In the ATLAS context there two
parallel analyses in Run-2 which have a common ground, the W and Z mass measurements.

1.5.1.4 Yukawa couplings

Fermions also acquire mass through the higgs field. This is reflected to the mass Yukawa terms
of the Lagrangian:

LY = −yf ψ̄LϕψR (1.57)

for ϕ the higgs field. The left-handed doubletψL transforms as a doublet under SU(2)L. The
Higgs Field Φ also transforms as a doublet under SU(2)L. The right handed singlet ψR trans-
forms as a singlet under SU(2)L, therefore it does not transform. By using the unitary gauge
for the higgs field:

Φ =

(
0

v+σ(x)√
2

)
(1.58)

the mass term becomes gauge invariant the fermions can acquire mass.

1.5.1.5 Higgs Discovery

Higgs discovery ref.[17] by ATLAS and CMS in 2012 was one of the most important events
in particle physics. The discovery confirmed the mechanism of symmetry breaking and mass
generation for fundamental particles. The measurement was done using proton proton collisions
with integrated luminosities of approximately 4.8fb−1 collected at

√
(s) = 7 TeV in 2011 and

5.8 fb−1 at
√
(s) = 8 TeV in 2012. The discovery had a magnificent significance of 5.9 σ. The

mass of higgs was measured: mH = 126.0± 0.4 (stat)± 0.4 (sys)GeV.
Channels that had a main role in the discovery are: H → γγ, H → ZZ → 4l and H →

WW → lνlν.
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Figure 1.4: Number of events as a function of massγγ. Taken from ref.[17].

1.5.2 Z Bosons

1.5.3 W and Z bosons

As shown in Section 1.5.1.3 the SM observables are correlated. Moreover, the higher order
diagrams can contribute to processes, correlating SM observables, through loop diagrams. To
verify the consistency of the Standard Model, measurements of its parameters must be con-
ducted both independently and in combination with one another.

The most prominent example, important in the context of the thesis is the W mass. The W
mass analysis in ATLAS is running parallel to the Z mass analysis and their work is intertwined,
especially in the calibration part. The W mass (mW ) is related to other parameters, such as
(mZ), the αem, and the Fermi constant (GF ). The relationship is corrected by radiative effects,
summarized in the ∆r parameter. This correction origins from the contributions of loops
diagram from various particles, with the most influential being the top quark and the Higgs
boson. The m2

W s parametrization from mZ , and ∆r is given by the Relation 1.59:

m2
W =

C(
1− m2

W

m2
Z

)
(1−∆r)

(1.59)

with C constant dependent on the electromagnetic and weak coupling. In Relation 1.60 the
∆r term is analysed in the contributions of top and Higgs mass + other high order terms:

∆r = ∆rt +∆rH +∆rothers ≈ C1M
2
t + C2 ln

(
m2
H

m2
Z

)
+ others (1.60)

with C1, C2 constants dependent from couplings. From Relations 1.59 and 1.60 is evident
the dependence ofmW directly frommZ but also frommt andmH . SincemZ has been measured
precisely in various experiments, the dependence from mt and mH has a bigger effect on mW .

In the Figure 1.5, the most recent MW measurement of ATLAS displayed in comparison of
other notable results from similar experiments. The ATLAS 2024 measurement of mW ref.[18]
is one of the most recent and indicates consistency with earlier measurements while being the
most precise to date.

In the Figure 1.5 (b), the 68% and 95% confidence level integrals formW andmt comparison
for two different fits are displayed. First fit is the global ElectroWeak Fit and the second fit is
the latest mW ref.[18] ATLAS measurement after the LHC mH and mt measurements. Notably
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Figure 1.5: (a) Present measured value of MW , compared to SM prediction from the global
electroweak fit, and to the measurements of LEP, Tevatron and the LHC. (b) The 68% and 95%
confidence level integrals of mW and mt for the electroweak global fit and the ATLAS

√
s = 7

TeV measurement. Taken from ref.[18].

at the ElectroWeak fit the unknown mass of the Higgs gives the high correlation shape. Through
the measurements of mH and mt, the mW correlation with the other masses got contained.

1.5.3.1 Z Boson Properties

Z Branching Ratios:

Decay Channel Branching Ratio (%)
Z → e+e− 3.3632
Z → µ+µ− 3.3662
Z → τ+τ− 3.3696

Total Leptonic Decays 10.1
Total Neutrino Decays 20

Z → hadrons 69.987

Table 1.4: Z boson decay branching ratios into leptons, neutrinos, and hadrons. Taken from
ref.[19].

LineShape: Z Lineshape is formed by multiple parameters. The peak is described by
a Breit Wigner distribution with an energy-dependent total width. The shape is defined by
three parameters, position of the peak, the width, and the height which are connected to
physical parameters of the boson, Z boson mass mZ , width of Z boson ΓZ and branching ratio
Γ(linlin)× Γloutlout.

Cross section of qq̄ → ll̄ for a given boson mass and width is proportional to the following
terms:

σ̂(ŝ) ∝
∑
i,j

αiαjViVjBijPij(ŝ) (1.61)

where αi and αj are the coupling constants associated with particles i and j, Vi and Vj are
generation mixing terms, Bij is the coupling factor for the initial and final states, and Pij(ŝ)
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is the propagator term, which relies on the the Breight Wigner parametrization and ŝ is the
available energy for the parton-level process. The sum runs over the propagators, in this case:
γ, Z and the interference Z/γ. The ŝ in practise is the boson mass at generator level for a
specific event.

Coupling factor is given by:

Bij = (vivj + aiaj)in (vivj + aiaj)out (1.62)

with v the vector couplings. And the propagator - Breit Wigner terms are given by:

Pij(ŝ) =
ŝ
[
(ŝ−m2

i )(ŝ−m2
j) +mimjΓiΓj

]
[(ŝ−m2

i )
2 + (miΓi)2]

[
(ŝ−m2

j)
2 + (mjΓj)2

] (1.63)

By using this parametrization the interference between Z and γ is taken into account. The
Lineshape of Z with all of the propagators contributing is displayed in Figure 1.10.

Also Lineshape is influenced by radiation in the initial or final state. This radiation is called
initial and final state radiation. It’s nature can be QED or QCD depending on the initial and
final state particles. It can influence heavily the tails of the Z mass distribution.

Asymmetry: In equation 1.39 the probability current of the Z boson decay at two leptons
reflects an asymmetry in the way the Z boson interacts with left and right handed fermions.
This leads to an angular asymmetry in the cross section with respect to the scattering angle θ,
relative to the axis of the incoming particles.

The matrix element of linlin → Z → loutlout using the EW probability current of 1.39 can
be expressed as:

〈
|Mfi|2

〉
∝
[(
cinL
)2

+
(
cinR
)2] [(

coutL

)2
+
(
coutR

)2]
(1 + cos2 θ) +

[(
cinL
)2 − (cinR )2] [(coutL

)2 − (coutR

)2]
cos θ

(1.64)

In Equation 1.64 there are two terms in orders of cos θ with different constants. This creates the
cross section behavior seen in Figure 1.7 for two hemispheres, Forward: 0 ≤ cos θ ≤ 1 Backward:

−1 ≤ cos θ ≤ 0. Two corresponding cross sections are defined: σB =
∫ 0

−1

d⟨|Mfi|2⟩
d cos θ

d cos θ and

σF =
∫ 1

0

d⟨|Mfi|2⟩
d cos θ

d cos θ
An EW observable is defined, called Forward Backward asymmetry:

AFB =
σF − σB
σF + σB

(1.65)

Measuring AFB can be expressed in terms of EW couplings and therefore is a critical component
of the SM. The AFB has been measured by several experiments. Notable examples are JADE
ref.[20] and LEP ref.[21]. The differential cross section dσ

d cos θ
as a function of cos θ is displayed

in Figure 1.7, from JADE experiment. The plot displays two predictions, one solid line which is
the QED only prediction and the dashed line including the Z contribution. The dashed line is
not symmetric with cos θ describing the data. LEP measured: AFB = 0.0171± 0.0010 ref.[21].
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Figure 1.6: Hemisphere definition in the rest frame of the Z boson. Forward and backward
hemispheres are defined to denote the asymmetry of the Z boson decay products, respect to
the decay angle θ.

Figure 1.7: Differential cross section from process: ee → µµ, JADE experiment. Solid line is
prediction calculated away from Z boson mass pole, with contribution only from QED, where
dashed line includes Z boson pole. Data are described from dashed line. Taken from ref.[20]

1.5.3.2 Z boson at Hadron Colliders

Most common process of producing Z boson at hadron colliders is the Drell-Yan process. It
involves the annihilation of a quark and an anti-quark from two different hadrons, the creation
of a Z/γ propagator and finally the decay to two leptons of opposite charge. Quarks have to
carry the same charge and flavor, but they can be either valence or sea quarks.
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Figure 1.8: Drell-Yan process Feynmann diagram for qq → Z → l+l−.

Z is produced in an abundance of di-muon processes in a hadron collider. A mass spectrum
of di-muon processes in ATLAS at

√
s = 7 TeV is displayed in Figure 1.9. There is a Drell-

Yan continuum thought the whole mass spectrum where γ dominates. At low energies there is
domination of QCD resonances (such as ω, ϕ, J/ψ and Υ). Above ≈ 10 GeV the γ contribution
from Drell-Yan falls as a power-law until the Z mass regime, where the Z mass peak is found.
Irelaxing musicn Figure 1.9 there is also contribution from di-boson processes which contribute
to the continuum but their cross section is too small to have a visible effect here.

Figure 1.9: Di-muon mass spectrum in CMS from Run-2 (2017 and 2018 campaigns). Taken
from ref.[22].

At Figure 1.10 the interference of Z and γ production through Drell-Yan process is plotted.
At low invariant masses (below 60 GeV), the production is dominated by the γ contribution, as
the Z boson does not contribute significantly at those energies. Around 80–100 GeV, Z contri-
bution dominates and shapes significantly the cross section. At high mass the Z contribution
is diminishing until the γ contribution becomes dominant again.

Around 80–100 GeV, the interference becomes large, both positive and negative, as the Z
boson contribution interferes with the photon.
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Figure 1.10: Theoretical prediction of Z, γ interference as a function ofmll at Drell-Yan process,
in the context of a hadron collider, calculated at LO in QCD. Top panel shows absolute values of
pure Z, pure γ and Z/γ interference. The bottom plot shows ratio of Zγ to γ pure contributions.
Black dotted line is at ≈ mZ pole. Taken from ref.[23].

Experimentally is not possible to distinguish from the final di-muon state the pure Z and
Z/γ interference contribution so the signal modeling have to take into account interference
terms.

1.5.3.3 Previous Measurements of Z boson properties

In the following sub-section previous measurements of the Z boson are going to be presented,
such as the one of LEP in CERN. This subsection motivates this thesis since at the end of the
thesis the reader can compare the LHC - ATLAS precision with the LEP one. Main difference
between the two is the type of particles collided. LEP used electrons and positrons which
have by default a ”clean” signal compared to complex processes happening though QCD at
the LHC. LEP achieved a highly precise measurement by carefully calibrating the beam energy
and conducting detailed scans of the beam energy around the Z pole. In contrary, in ATLAS,
the scope is to reconstruct the final state objects, reconstruct the di-muon mass distribution
and therefore introduce reconstruction systematic uncertainties. The comparison of a precise
beam calibration and a detector calibration process, in the context of a Z mass measurement,
is deemed to be of large scientific interest.

Properties of Z the boson have been at the center of many physics analyses. EW unification
was one of the major breakthroughs of modern particle physics. The first experiment to find
experimental evidence of a unification of electrodynamics and weak force was at the Gargamelle
bubble chamber at CERN ref.[24], by identifying weak neutral current. This paved the way for
the discovery of the Z boson at Super Proton Synchrotron (SPS) of CERN, from the experiments
UA1 and UA2 ref.[25].

Later, W and Z bosons got studied extensively at LEP. At CERN, where the Large Hadron
Collider resides now, the LEP collider was based. LEP was a 27 kilometers long electron
positron collider and operated as a ”factory” of Z boson for the experiments located at it’s
ring. These four experiments, ALEPH, DELPHI, L3 and OPAL, took data from 1989 to 1995
contributed to precise measurements of the resonance.

Main attribute of the measurements was the fact that the collider center of mass energy was
scanned at values near the Z mass resonance peak 88-94 GeV. By performing a cross section
the experiments were able to provide a precise result on Z mass and width. At the same time,
SLD experiment with the linear collider, SLAC, provided Z properties measurements. For the

33



context of the thesis the focus will be on the LEP experiments.
For the beam energy calibration several methods were used. The most significant, con-

tributing to the precision of the final result is the Resonant Depolarization, which is going
to be analyzed in short here. Basic principle was the de-polarization of transverse polarized
(compared to the beam axis) electrons, in a controlled way with an oscillating horizontal mag-
netic field. By observing the effects of this controlled de-polarization, the beam energy can
accurately be determined. This is possible because the frequency of the spin precession (the
rate at which the spins rotate) is directly related to the energy of the particles. The number
of spins precessions per revolution, the spin tune νs, is related to the beam energy with the
relation:

Ebeam =
νs ×mec

2

(ge − 2)/2
= 0, 440648GeV× νs (1.66)

with (ge − 2)/2 the magnetic moment anomaly of the electron, me is the electron mass and
c is the speed of light. The de-polarizing field is applied to the electrons once per turn in
the ring. So once per turn the depolarizing field is in phase with the spin precession. The
depolarization then will occur with an independent rate from the integer part of the spin tune.
The depolarizing magnetic field is applied at a frequency that matches the fractional part of the
spin tune. Specifically, the resonance happens at the fractional part of νs − int(νs) multiplied
by the revolution frequency of the of the particles frev:

fdep = (νs − int(νs))× frev (1.67)

where frev is known from the beam energy. The experiment locates the resonance by varying
the frequency of the depolarizing field within successively smaller ranges to match the fractional
spin tune and determine the beam energy with high precision.

The LEP measurement, ref.[21], included the simultaneous determination of different EW
parameters related to the Z boson. The basic principle of the measurement was the scanning
of the center of mass energy around the Z pole and doing a cross section measurement. This
method resulted in a measurement with minimal uncertainties, independent from the recon-
struction of the final state particles. The great advantage of the electron positron beam is the
fact that beam energy and initial state energy can be known very precisely. Therefore, the error
on the mass was dominated by the uncertainty in the absolute energy scale and the difference
between the scans of the energy.

The cross section of Equation (1.61) was used for eē→ ff̄ with the Brei-Wigner parametriza-
tion of Equation (1.63). By fitting the observed cross section data to the Breit-Wigner resonance
curve, and utilizing the precise knowledge of the center-of-mass energy, the mass of the Z boson
can be determined with high accuracy. The measurement procedure is displayed in Figure 1.11.
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Figure 1.11: LEP hadronic cross-sections, as a function of centre-of-mass energy. The points
correspond to the cross scection measurments parametrized by the Breit-Wigner distribution
and the centre-of- mass energy. The shaded area represents the cross-section, deconvoluted for
the effects of QED. Taken from ref.[21].

The combined results from the 4 experiments and the combination of all leptons channels
are presented in Table 1.5. The combined LEP measurement achieved an excellent result of
σmZ

= 0.002 GeV.

Parameter Value mZ ΓZ σ0
h Rℓ A0,ℓ

FB

mZ [GeV] 91.1875± 0.0021 1.00
ΓZ [GeV] 2.4952± 0.0023 -0.023 1.00
σ0
h [nb] 41.540± 0.037 -0.045 -0.297 1.00
Rℓ 20.767± 0.025 0.033 0.004 0.183 1.00

A0,ℓ
FB 0.0171± 0.0010 0.055 0.003 0.006 -0.056 1.00

Table 1.5: Results for the mZ measurement with correlations and uncertainties.

Other than the Z value it self an interesting aspect of the LEP experiments is the correlation
of the parameters fitted. Specifically, since the mZ and ΓZ shape mµµ distribution the correla-
tion between them will be also discussed in the context of the thesis.Consequently, comparing
the correlations between the Lineshape method used by LEP and the approach adopted in this
thesis offers a interesting field for analysis. In the Table 1.5 the post fit correlation between
EW observables is displayed. The most interesting correlation in the context of the thesis is
the one of mZ and ΓZ . It is evident that there is a small anti-correlation effect ≈ 2%.

LEP measurement utilized all available Z decay channels, hadronic and leptonic. In total
available events were ≈ 17, 221, 000. For ATLAS the available Z, without cuts, in data are:
≈ 41, 000, 000 million. Even though ATLAS has a larger sample, the process of reconstructing
the final state objects is expected to increase the systematic uncertainty contribution.
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LHC and the ATLAS Detector
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In this Section the experimental setup is going to be analyzed. The analysis starts from
the creation of the protons beams to be injected into the particle collider. Then a detailed
examination of the ATLAS detector and its subsystems will be presented. Additionally, the
interactions of particles with various detector components will be examined, with a special
focus on muons. The reconstruction of muon candidates and the analysis of their tracks will
also be thoroughly explored. Also trigger systems and data acquisition will be discussed.

2.1 The Large Hadron Collider

Large Hadron Collider(LHC) and ATLAS are experimental high energy physics machinery
located in Genena Switzerland. LHC accelerates and collides hadrons and experiments like
ATLAS analyze the outcome of the collisions, ref. [26]. In the LHC ring reside four particle
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detector experiments: ATLAS, CMS, ALICE and LHCb. A small analysis of the LHC and the
beam formation will take place in this subsection.

The collider resides in a circular tunnel, with a circumference of 26.7 km , at a depth from
50 to 175 mm underground. In the tunnel used to operate the Large Electron Collider (LEP).
LHC operates from 2008 to today. It had delivered protons at different energies depending on
the data taking period. During the first period (Run 1) the LHC derived protons at center of
mass (c.o.m) energy of 7 and 8 TeV, the second period (Run 2) at c.o.m of 13 TeV and the
third one at c.o.m. of 13.6 TeV.

For the protons to be collided in the LHC and at the position of the experiments a big
chain of events take place. Beam has to be created, formulated in order to be stable in the ring
and then accelerated to the energies required. Injection scheme is presented graphically in 2.1.
First a cloud of protons is created by stripping the electrons from the atoms of a hydrogen gas
using a strong electric field. Secondly, the protons are injected into linear particle accelerator
Linac4, where they are accelerated to 160 MeV (red line in Figure 2.1). Next, they pass to
Proton Synchrotron Booster (PSB), accelerated to 2 GeV and injected to Proton Synchrotron
(PS) and accelareated to 26 GeV (green and blue circles in Figure 2.1). Before LHC, they are
injected to Super Proton Synchrotron (SPS) to increase their energy to 450 GeV (red circle in
2.1). At LHC (blue circle in 2.1) they are accelerated to 13 TeV in the course of the Run-2 (7
and 8 TeV in Run-1 and 13.6 in Run-3).

Figure 2.1: Proton injection scheme from Linac to LHC, taken from ref.[27]

In LHC there are two anti-parallel beam pipes, with beams traveling in the opposite direc-
tion. To accelerate and formulate the beam a complex system of magnet dipoles and quadruples
is used. Dipoles are used for acceleration in each turn in the LHC where the quadruples are
used for focusing. Also higher order magnets are used to correct beam imperfections.

The magnets are operating in superconducting phase in order to deliver the high values of
magnetic field. Superconductivity is succeeded with cooling them at a temperature of 1.9 K
using superfluid Helium-4.

2.2 ATLAS Detector

2.2.1 General Introduction

The ATLAS detector in LHC is a multipurpose subatomic particles detector based on energy
and track reconstruction of charged particles passing though it’s various sectors. ATLAS is
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having three large subsystems: Inner Detector(ID), Calorimeters and Muon Spectrometer(MS).
The detector is one of the largest in the world, it is composed from a barrel cylindrical section
around the Interaction Point(IP) and two Endcaps an the detector proximity, having a total
length of 46m and a radius of 25m. To measure the charged particle energy two magnet systems
are used, which bend the charged particles. Energy is measured from the track curvature. To
measure the energy of photons and other not charged particles a calorimeter system is used.
All of these systems will be discussed thoroughly below. Since muons are interacting mainly in
the Inner Detector and the Muon Spectrometer focus will be given on these systems.

There are three Runs, meaning three large data taking periods, in the history of ATLAS.
Run 1 of the LHC spanned from 2009 to 2013 and achieved center of mass energy of 7 and
8 TeV. With the data collected (25 fb−1) in Run 1 higgs boson was announced. Then Run
2 spanned from 2015 to 2018 which took place after upgrades both in detector, luminosity,
software and algorithm level. Run 2 data (150 fb−1) are going to be used in the context of this
thesis. Run 2 achieved a center of mass energy of 13 TeV. Run 3 which is currently running
achieved increased luminosity and center of mass energy 13.5 TeV. In the context of this thesis
also shifts have been done in the experiment in Run 3 in trigger and run control desks.

The detector main parts are:

• Inner Detector is a tracker, which measures the bent trajectory of charged particles
under the magnetic field and the primary and secondary interaction vertices.

• Electromagnetic Calorimeter and Hadronic Calorimeter are used for the detection
of showers and jets, electromagnetic and hadronic respectively.

• Muon Spectrometer is a tracking detector of muons, consists mainly of Trigger systems.

• Solenoid magnet to bend the charged particles in the Inner Detector.

• Toroid magnet is used to bend muons in the Muon Spectrometer.

A rough analysis of the particle interaction is the following one. Charged particles trans-
verse through the tracker, Inner Detector, leaving track hits. Then depending on their nature
they are stopped in the Calorimeter. Electrons and pions are stopped almost completely in the
Electromagnetic calorimeter. Hadrons deposit their energy in the Hadronic calorimeter. Pho-
tons do not interact with the tracker and leave a signal only in the calorimeter. Muons leave
a track in the Inner Detector. Then interact faintly with the calorimeter depositing a small
amount of energy and then leaving a clear signal in the muon spectrometer. The momentum
measurement of the charged particles is possible by the usage a magnetic field in the Inner
Detector and the Muon Spectrometer. Lastly, neutrinos escape the detector undetected, and
their momentum and energy are measured indirectly. This is achieved by analyzing the final
state signatures of the other particles involved in the interaction.

2.2.2 Coordinate System of ATLAS and associated variables

ATLAS coordinates is a very basic concept in order to understand the analysis as the kinematics
of the reconstructed particles are based on the ATLAS coordinate system. In this subsection
coordinates of ATLAS and associated variables used in the context of the thesis are presented.

ATLAS coordinate system is based on a right handed system with the origin at the Inter-
action Point(for x-y axis) and z axis along the beam pipe. At the transverse plain, the y axis
points upward and the x axis from the Interaction Point to the center of LHC. The coordinate
system is shown graphically in Figure 2.2.
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Figure 2.2: Coordinates System of ATLAS. IP at the center of the cylinder is the Interaction
Point. θ is the angle from the beam z-axis. ϕ is the azimuthal angle in the transverse χ − y
plane, with X pointing to LHC ring center, taken from ref.[28]

Usually, in ATLAS the analysis is performed in terms of angles. For the transverse plain,
the angle ϕ is measured around the beam axis (z-axis) and has values: 0o < ϕ < 360o. The θ is
the angle from the z-axis and has values: 0o < ϕ < 90o. Instead of θ ATLAS analyses usually
use rapidity (Y ) and pseudo-rapidity (η). Y advantage is it’s invariance under Lorentz boosts
along the beam axis. η is an approximation of rapidity, and under circumstances (when particle
energy is significantly larger from it’s mass) also is invariant under Lorentz boosts along the
beam axis.

Rapidity is defined as:

Y =
1

2
ln(

E + pZ
E − pZ

) (2.1)

with E and pZ energy and pZ momentum at beam axis. Pseudo-rapidity is defined as:

η = ln tan(
θ

2
) (2.2)

where θ is the polar angle with respect to the beam axis. Pseudo-rapidity is important in the
context of the ATLAS detector as detector systems have a strong dependence from η in terms
of structure, performance, and reconstruction capabilities.

Other important variables used in ATLAS is the impact parameters: d0 and z0. They are
defined as the perpendicular distance of the closest approach of a particle track to the primary
vertex in the transverse plane (d0) and along the beam axis (z0). They are computed by using
Inner Detector information.

The detector’s performance varies across different segments, with certain regions excelling or
under performing under specific conditions. The most significant distinction is among different η
regions. This phenomenon originates in differences of the detector’s structure and configuration
across η regions, which also varies the precision of track reconstruction between these regions.
Broadly, the detector can be grouped into three big η regions. Roughly the detector has three
regions in η:

• Barrel: |η| < 1.05. It is the central part of the detector. It surrounds the beamline and
at it’s center is the interaction point.

• Intermediate: 1.05 < |η| < 1.4. This intermediate region serves as a transition between
the barrel and endcap regions. It handles particle trajectories that are at a moderate angle
relative to the beamline. Measurements providing a blend of the measurement qualities
from barrel and endcaps. Also magnetic field complicated shape makes the intermediate
regions harder to simulate.
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• Endcaps: |η| > 1.4. Systems positioned at the ends of the detector, the endcaps cover the
forward and backward directions. They are optimized for tracks that are more parallel to
the beam axis and play an important role in extending the detector’s coverage to higher
η values.

2.2.3 Magnetic Field

To measure the momenta and the charges of final state particles a magnetic field apparatus is
used, ref.[29]. The magnetic systems have two geometries as displayed in Figure 2.3. It consists
of a central superconductive solenoid and superconductive toroid systems:

• Central Solenoid: Cylindrical coil surrounds the Inner Detector, as shown in Figures
2.3a and 2.3b. It’s axial length is 5.3 m and it’s diameter 2.56 m. It’s center coincides
with the beam axis. It provides an axial magnetic field of 2 Tesla for the bending of
charged particles in the Inner Detector. Particles from such a field are deflected in the
transverse plain. The solenoid has been measured with a precise dedicated system inserted
in the solenoid apparatus, ref. [30]. Due to the nature of the measurement one side of
the structure was open, making the measured magnetic field asymmetric in the z (or
η) direction. Corrections of magnetic field residuals are inserted, but a part of this
asymmetry can be also absorbed in momentum calibration. Also according to experts
the magnetic field in the solenoid is known to a precision of 0.5 mTesla and for a magnetic
field of 2 Tesla, this means that the magnetic field is calculated with a precision of about
2%. This is also something to be addressed by the momentum calibration.

• Toroid Magnets: Toroid magnets have two different geometries as shown in Figure 2.3a.
At the barrel |η| < 1, magnetic bending is provided by the large barrel toroid and at the
endcaps 1.4 < |η| < 2.7 two smaller toroid systems are added. The barrel and endcap
magnets consists of eight superconductive coils each. The barrel coil length is 35.3 m
and 5.4 m in height. In the end-cap there are two toroid systems positioned beyond the
forward hadronic calorimeter. Toroid magnet systems generate a corresponding magnetic
field in order to bend particles in the Muon Spectrometer, in the azimuthal plain. The
main advantage of such a field is that it’s direction is perpendicular to the direction of
flight of the particles and deflects the particles in the η plain. The field varies in η due to
interaction of the detector and support systems with the magnetic field. The shape of the
magnetic field is displayed as a function of η in Figure 2.4. At the region 1 < |η| < 1.4,
usually referred as the transition region, muon tracks are deflected by a combination of
the barrel and the endcap fields. The complex nature of the magnetic field in ATLAS
increases the sensitivity of this region to potential mis-simulation of the magnetic field.
Notably, there is a region, at η ≈ 1.4 and ≈ 1.6 where the magnetic field reaches almost
0. This complex nature of the field in these regions is expected to be affecting also the
muon momentum calibration, which is a main theme for this thesis.
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(a) Geometry of magnetic systems in ATLAS
(b) Field Lines for the solenoid and toroidal
field

Figure 2.3: Magnet systems a) and field lines b) in ATLAS, taken from ref.[31]

Figure 2.4: Toroid magnetic field integral as a function of detector η for different ϕ. Taken
from ref. [32]

The magnetic field is calculated through a complicated procedure which is outside the scope
of the thesis. It’s precision influences the absolute accuracy of the momentum scale. In the
muon spectrometer, the field is highly non-uniform, making it’s calculation there particularly
challenging. Non closures can introduce both strong muon momentum scale and resolution
effects.

2.2.4 The Inner Detector

The Inner Detector (ID) is one of the most essential components of the ATLAS detector. It
is designed for precise tracking and momentum measurements of charged particles and it is
characterized of high spacial granularity. It’s sub-systems in order from the inner to the outer
part are : the Pixel Detector, the Semiconductor Tracker (SCT), and the Transition Radiation
Tracker (TRT), each of these systems will be analyzed thoroughly in this subsection.

The ID has four main features are:
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• Precise measurement of transverse momentum charge and impact parameter of the par-
ticles.

• Reconstruction of the primary and secondary vertex.

• Discrimination between electrons and photons, as the photon will not interact with the
ID, in contrast with the electron which will be bent from the magnetic field and will give
signal.

• Tagging of the b-jets and τ leptons.

Figure 2.5: Inner Detector Graphic Representation, taken from ref. [33]

In the Figure 2.5 a detailed view of the Inner Detector is presented. Inner Detector shape
is cylindrical with two distinct regions, the barrel and the endcaps. Diameter is 2.1 meters and
length is 6.2 meters. Modules in the barrel are cylindrical where in the endcaps systems have
disk structure. Barrel systems are the Pixel, Semiconductor tracker and Transition radation
tracker.
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Figure 2.6: Detailed graphics of the barrel Region Modules in the Inner Detector, taken from
ref.[52]

Figure 2.7: Detailed graphics of the End Caps Region Modules in the Inner Detector, while a
10 GeV charged particle transverse through it for different pseudorapidity values: 0.3, 1.4, 2.2,
taken from ref.[34]

In Figure 2.6 the four layers of the Pixel detector is presented with green color starting only
at 33.25 mm from the beam pipe center. Then the four layers of the SCT and finally the straws
of the TRT are the largest in volume part of the Inner Detector.

Figure 2.7 provides a detailed representation of the Inner Detector in the endcaps, illustrat-
ing examples of a particle traversing through the detector. In the endcaps there are three Pixel
disks near the interaction point. The structure of the SCT also changes at the end-caps at disk
modules. The TRT being the outermost part does not have a different structure between barrel
and endcaps.

2.2.4.1 Subsystems

All sub-systems are used for track reconstruction but only TRT give also particle identification
information. Pixel and SCT use silicon 285 mm thick p+ on n− silicon sensors which give
excellent track position information. TRT utilize gaseous detectors and transition material to
obtain information on the particle type.
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The Silicon Pixel Detector has the purpose of high precise measurements of tracks of
charged particles at the proximity of the interaction point, only 3.3 mm from the LHC beam line.
It consists from four layers of silicon pixels, 92 million overall, giving high spacial granularity,
needing 1736 sensor modules for the Read Out. Pixel size is 50 x 400 µm2 for the external
layers and 50 x 250 µm2 for the innermost layer (IBL). It’s shape is cylindrical at the barrel
region and it consists of five disks to cover the acceptance at the end-caps. In order to ensure
the performance of the detector in conditions of heavy radiation the whole system of the Silicon
Pixel Detector is cooled to − 10Co

The Semiconductor Tracker is made from 4088 modules of silicon strips grouped in four
concentric layer-barrels and nine disks at the end-caps. In order to define a track point each
barrel or disk gives two strip signals at a stereo angle which are combined to build a space-point.
SCT outputs four space-points for the particles originating from the interaction region.

SCT consists of the barrel and the endcaps different sub-systems. In the barrel part it is
consisted from 4 layers of silicon-strip sensors, with cylindrical models homocentric with their
center being the the interaction point. At the endcaps region the SCT consists from 9 disks in
each side.

Both Pixel and SCT suffer from radiation damage due to the pixel detector structure.
Radiation can lead to damaged or dead pixels which reduces the efficiency of over times during
ATLAS lifetime. Especially, during Run-2 which had elevated luminosity compared to Run-1
this effects was more significant. For example in the end of Run-2 charge collection efficiency
at the Pixel detector dropped from 99 % to around 80% at the start of the Run-2.

The Transition Tracker is the third and outermost segment of the Inner Detector. The
transition tracker is consisted from 300,000 drift tubes. The drift tubes contain a gas mixture
of 70% Xe, 27% CO2 and a grounded wire. Passing charged particles ionise the gas and free
electrons absorbed by the wire give rise to an electrical signal. The TRT information is used
for track reconstruction but also provides information of the type of the particle passing. The
spaces between the tubes are filled with polymer fibres (barrel) and foils (endcaps) to create
transition radiation. The high relativistic particles have a probability of radiation emission
as they transverse different material boundaries. This effect depends on the relativistic factor
γ = E

m
and can be used for particle identification. In the context of ATLAS this is useful

especially for charged pions and electrons passing through TRT, as the two type of particles
have distinct response. For muons this feature is not that relevant since muons also have a
reconstructed track in the muon spectrometer.

2.2.4.2 τ and b tagging

τ tagging is an important feature of the ID and is essential in the context of this thesis. Decays
of Z bosons in τ τ̄ events can influence heavily the Z mass measurement as their background
shape in mµµ distributions are similar to the signal shape.

The Inner Detector provides excellent and precise secondary vertex reconstruction. The τ
has a short lifetime and decays in electrons and muons. Electrons deposit all their energy in
the calorimeters so only the τ → µ is a plausible background. The τ events can’t be identified
by the displayed secondary vertex compared to the primary one due to their short τ lifetime.
Therefore it is challenging with the current algorithms to differentiate Z → τ ¯tau from Z → µµ̄
events.

b tagging is also essential for many physics analyses in ATLAS and also particularly in the
context of this thesis, which is done by using primarily ID information. b-tagging, in this thesis,
is useful as it enables differentiating between J/ψ mesons produced near the interaction point
from direct gluon gluon fusion from J/ψ mesons produced at a displaced vertex originated from
b physics. The above influence the calibration procedure used in the context of this thesis as
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analyzed in Chapter 5.3. The procedure of b tagging is essential then to be understood in a
primary level. b tagging is based on the properties of b-hadrons, lifetime and high mass.

High mass of b-hadrons lead to larger multiplicity in in final state compared to other pro-
cesses. Furthermore, their lifetime: τ ≈ 1.5 ps lead to a decay length of ≈ 450 µm. Therefore,
they travel several milliliters in the laboratory frame, before decaying, giving a largely displaced
secondary vertex. To identify these displaced second vertices variables like the impact parame-
ters are used. Impact parameter is the distance of closest approach of the track to the collision
point— of the tracks of the charged particle decay products. They are calculated from the
Inner Detector apparatus since it consists of the most precise tracking system of ATLAS. Their
precise measurement is essential for the accurate reconstruction of kinematics and b tagging.
The measurement uncertainty depend on the algorithm it self, the detector capabilities and the
detector damage over time.

2.2.5 The Muon Spectrometer

The Muon Spectrometer (MS) resides at the the outermost part of the ATLAS detector. It’s
purpose is the muon identification, reconstruction and it is connected to dedicated triggers
for muon detection. It’s coverage is extended at forward regions of η = 2.7. Detector size is
approximately 22 m in diameter and 44 m in length.

The MS consists of four types of sub-detectors. It’s dedicated systems can do muon mo-
mentum measurements with a relative resolution of about 3% at low pµT and about 10% for
muons of pµT ≈ 1TeV . Its operation is based on the magnetic deflection of muon tracks within
a system of three superconducting air-core toroidal magnets. The magnetic field generated is
toroidal, effectively deflecting particles in the R− z plane.

The MS has two main purposes:

• Muon triggering and identification.

• Muon track reconstruction.

To achieve that, there are dedicated sub-detector systems consisting of precision and trigger
systems. The detector systems in MS are: Resistive Plate Chambers (RPS), Thin Gap Cham-
bers(TGC), Small-Strip Thin-Gap Chambers and Monitored Drift Tubes(MDT).

In the Figure 2.8 the MS structure in x− y and z − y plains is shown.
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(a) Large Sectors

(b) Small Sectors

Figure 2.8: Schematic view of the muon spectrometer in the x-y (top) and z-y(bottom). Taken
from ref.[35]

As shown in the Figure, the MS has an η and ϕ structure. It is separated in two group
of systems geometrically. In η it consists of the barrel systems (−1.05 < η < 1.05) and the
end-cap (1.05 < |η| < 2.7) systems. In Figure 2.8 (bottom) the barrel systems as designated
with light blue and end-caps with deep blue.

The barrel systems have three stations, consisted from MDT and RPS chambers. The
three cylindrical stations have a radius 5, 7.5 and 10 m respectively for the inner middle and
outer stations. The end-cap systems are organized in concentric disks modules around the
beam axis. Distance from interaction point is 7.4, 10.8 and 21.5 m. In the azimuth plane MS
consists of 16 fold segments as shown in Figure 4.20a. The structures are arranged in Small and
Large Sectors to follow the magnet arrangement. The Large Sectors cover the region between
toroid coils in the barrel where the Small Sectors cover the azimuthal range of the coils.

In the barrel region, the precision measurement of the muon tracks is performed by the
MDT’s. Three stations of RPCs are used for trigger function, bunch-crossing identification and
the second coordinate measurements. RPCs lie on the two sides of the MDT or only on the
side below or above the outer MDT. This is presented in the top graph of Figure 2.8 with red
lines as the RPC systems residing above the outermost blue squares(MDT) for the large sectors
and below for the small sectors.
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2.2.5.1 The Precision Chambers

The MDT system can detect the position of the muon as it transverses the tube with an
accuracy of less than a 0.1 mm. They are composed of 3 cm wide aluminum tubes filled with
a gas mixture. Muons ionize the gas as they transverse, producing a signal. The tubes are
assembled into modules, with each module containing several layers of tubes to provide multiple
measurements of the muon’s position. Each MDT module provides 6 to 8 measurements in η
along the muon track with a single hit resolution in the precision (r z bending) plane of about
80 µm. MDT is the main provider of muon tracks for the MS and it covers all the detector as
shown in 4.20b.

The CSC are multi-wire proportional chambers with multiple layers of anode wires between
cathode planes. CSC are filled with a gas mixture for the charged particle to ionize. Their key
functions are triggering, precise spacial and time measurements. The measurement is done in
r-z plane with a single hit resolution of about 60 µm and can provide a time measurement with
a resolution of 3.6 ns. CSC are important at the forward region providing high granularity
measurements for muons with small angles with respect to the beam axis.

2.2.5.2 The Trigger Chambers

The RPC systems are used for fast muon triggering and precise timing. They lie in the barrel
region and the effectively cover the MDT modules. They consist from two charged parallel
resistive plates, with a gas volume in between. Their fast response time allows correlation of
detected particles with specific collision events. RPC also used for calculation of time of flight
of muons in the detector.

The TGC are used mainly for Level 1 triggering in the forward η region: 1 < |η| < 2.4.
Also they are used for η, ϕ position measurements with an average spatial resolution of 5-10
mm. Their structure is similar to the CSC. The timing resolution of the TGCs, approximately
4 ns, is crucial for identifying bunch crossings.

2.2.5.3 Muon Triggers

The trigger coverage is shown at the Figure 4.20b. The trigger system achieves 99% coverage
in the end-cap region but only 80% coverage in the barrel region (|η| < 0.1). This reduced
coverage in the barrel is due to limited detector presence in areas occupied by cabling and
channel-processing technical machinery. In the barrel region the muon trigger is based at the
hits in the RPC. In the end-cap the muon trigger is based on the hits in the TGC of the middle
layer, called the Big Wheel.

The high pµT triggers are used for single muon signatures, while the low pµT triggers are used
in coincidence with other trigger objects to select multi-muon events. In the context of this
thesis, di-muon triggers are the most essential, due to the signal: Z → µµ.

There is a series of background processes firing muon triggers in the Muon Spectrometer.
These processes can be showers not fully contained in the calorimeter, cosmic rays, low mo-
mentum charged particles originating from the end-cap toroid magnets and beam shielding.
All these processes have different time characteristics compared to muons produced in the pp
collisions. Therefore to reduce background to the L1 system coincidence algorithms are applied.
To suppress the background there is a coincidence requirement between the Big Wheel TGC
and end-caps TGC.
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2.2.6 Calorimeters

The ATLAS calorimeters play a important role for the precise measurement of particle energies
and identification. Particles loose energy as they transverse the calorimeters with various way
depending on particle type and energy. This energy lost is measured providing information on
the particle kinematic properties. Using different techniques and materials calorimeters measure
electron, pion, jets and photon energy. Total calorimeter coverage in ATLAS is |η| < 4.9, with
various subsystems included.

Calorimeter technology is based on a simple principle. The particles charged or not charged
enter a dense material, where they are forced to decay and create showers. Secondly, there
is also ”active” material, which collect the energy emitted through ionization of the charged
final state particles, mostly electrons. This kind of calorimeter is called sampling calorimeter.
Depending on experimental apparatus also the dense material can be dropped and only an
”active” one can be used. These calorimeters are called uniform. There two kind of showers,
electromagnetic and hadronic ones. In the electromagnetic, main mechanism is the pair produc-
tion of photons and the ionization and Bremsstrahlung from electrons. In the ATLAS energy
regime, main mechanism being Bremsstrahlung for electrons at the start of the electromagnetic
shower and ionization for the ones produced at the end of it. In hadronic showers main mecha-
nism is QCD interactions between the hadron and the nucleus of the dense material. Hadronic
showers are more complex and have a non trivial internal structure. They also include smaller
electromagnetic showers from photons and electrons emitted. Different kind of materials and
different kind of configurations promote electromagnetic or hadronic showers. In ATLAS there
two different systems for the two kind of showers: the Electromagnetic Calorimeter (ECAL)
and the Hadronic Calorimeter(HCAL).

Active materials used in the calorimeters are Liquid Argon(LAr) and Crystal scintillators.
Each with individual advantages and drawbacks. LAr offers detector uniformity, radiation
resistance, high granularity. Drawbacks are of technical nature with the most significant being
the fact that LAr must be kept in extremely low temperature to remain liquid. Advantages of
Crystal scintillators are also mainly of technical nature. Their cost being the most important.
One problem they encounter is the damage done to the crystal and it’s scintillation capabilities
deterioration in hard radiation environments.

General structure of the whole calorimeter system from the center to the outermost part is:

1. Presampler: Active Material to correct for energy loss before the calorimeter.

2. Strip Layer: Active Material strips with high spatial granularity.

3. ECAL: Electromagnetic calorimeter.

4. HCAL: Hadronic calorimeter.

Presampler is a system positioned in front of the calorimeters, surrounding the Inner
Detector, to correct for energy lost by the particles before they enter in the calorimeter. Pre-
sampler is essential to measure accurately the total energy of the particles which deposit their
energy in the calorimeter. It consists of a thin layer of active material (Liquid Argon). By
measuring energy deposited in the Presampler and combining information from Inner Detector
trajectories an estimation is derived on the particle energy before it enter the calorimeter. The
exact algorithm is outside the scope of this thesis.

Second in order is the Strip Layer. This is a thin layer of fine cells of active material
of Liquid Argon which provide high spatial granularity. Strip layer provides the connection of
energy bulks in the calorimeter with particle individual trajectories. One of the most significant
functions of the Strip Layer is the separation of π0 and γ. π0 decay into two photons. If the
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granularity is not high enough the two photons can be identified as one single photon. Strip
Layer allows for that separation. Strip layer cover only the region: |η| < 1.8.

The ECAL, third in order, is responsible for the measurement of the energies of electrons,
pions and photons. It is a sampling calorimeter and consists of layers of lead absorbers inter-
leaved with layers of active material, Liquid Argon (LAr), which produces signals proportional
to the energy deposited by particles. Photons are forced to pair production and the electrons
to emit Bremm radiation in the dense lead. Electrons and photons as they interact with ECAL
create electromagnetic showers, and therefore their whole energy is deposited in the calorimeter.
ECAL is divided in small cells which provide a three-dimensional granularity. It is divided into
barrel (|η| < 1.475 ) and two endcaps (1.375 < |η| < 3.2) parts. It’s structure is often men-
tioned as accordion like. Cells are placed in alternating order in respect with lead absorbers,
read out electrodes and liquid argon in order to ensure there are no cracks in azimuth plain.

The HCAL surrounds the ECAL and it is designed to measure the energy of hadrons
such as protons, neutrons, and mesons. The HCAL utilizes dense materials such as steel or
scintillating tiles interspersed with layers of active material, typically either scintillating plastic
or gaseous detectors, to capture and measure the energy of hadronic showers. Further analysis
of the hadronic showers are considered out the context of the thesis.

Figure 2.9: ATLAS Calorimeter systems. Taken from ref.[37]

When a muon passes through the calorimeter system, it typically leaves behind a small
amount of energy due to ionization and minimal electromagnetic interactions. This energy
deposition is usually much smaller compared to that of electrons or hadrons, making muons
appear as minimally ionizing particles within the calorimeter. The usual ammount of energy
deposit in ≈ 3 GeV.

2.3 Trigger and Data Acquisition

In the context of particle physics, a ”trigger” is a system designed to select interesting events
from the vast number of final state particles occurring after the initial state collisions. A trigger
is a mixture of hardware and software algorithms that decides which events are to be kept in the
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data storage. The trigger system also categorizes events into different groups based on specific
physics analysis goals, streamlining the final analysis process. This categorization ensures that
data relevant to various research objectives are grouped, making the final physics analysis more
manageable and effective. The Trigger in the Run-2 configuration have two levels:

• Level 1 (L1): The first stage of event selection in ATLAS. It’s purpose is to make
quick decisions using information from the Calorimeters and the Muon Spectrometer.
It’s primary use is the fast decision making. The L1 trigger is capable of making rapid
decisions within a small time margin of about 2.5 µs per event, corresponding to the bunch
crossing rate of 40 MHz at the LHC. At it’s hardware side it uses Field-Programmable
Gate Arrays (FPGAs) and Application-Specific Integrated Circuits (ASICs) to achieve
the required speed and flexibility.

• High-Level Trigger (HLT): The second level of trigger. Receives the events selected
by the Level-1 trigger and utilizes detector information from all sub-detectors, including
the calorimeters, muon systems, tracking detectors, and other specialized detectors. The
HLT is doing a more sophisticated analysis of each event and it is capable of running on
more complex algorithms to distinguish between different processes. The HLT is running
using CPUs (Central Processing Units) and GPUs (Graphics Processing Units) for its
computations.

HLT plays a crucial role as it can categorize the events based on their signature to different
physics streams. That way events can be categorized for different research purposes as b-physics,
Higgs physics, SM and all the categories ATLAS experiment is interested in.

In the context of this analysis, single and double muon trigger are of interest and Physics
Main B physics streams, as Physics Mains includes a lot of Z events and B Physics stream is
rich in J/ψ and Υ mesons.

One significant aspect of the trigger system is the pre-scale system. Pre-scale method is an
algorithm which selectively reduce the rate at which certain types of events are recorded. Some
processes which are not interesting to new physics in the context of ATLAS are considered
not essential and therefore not all of them are recorder. A pre-scale is essentially a number
which indicates how many candidate events are going to be rejected and not recorded. A pre-
scale is applied on a specific trigger which is sensitive to the ”uninteresting” processes. It can
vary within a single run and across different data-taking campaigns. As the trigger definitions
evolve, pre-scales are adjusted accordingly to optimize the data collection process. Pre-scale is
a fraction: 1

X
which means that one event is going to be recorder for every X event candidates

firing the trigger.
In Figure 2.10 the comparison of Physics and B-Physics streams in terms of output rate,

as a function of different campaigns of Run-2 (2016,2017,2018). In 2016 the relevant triggers
for b-physics are heavily pre-scaled making the contributions from Physics Main and B Physics
comparable. In 2017 and 2018 triggers related to b-physics are not pre-scaled and therefore the
contribution of B Physics Stream is larger compared to Physics Main one.
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(a) Physics Main, B Physics and Exotic streams rates per run for 2016

(b) Physics Main, B Physics streams rates per run for 2018

Figure 2.10: Physics Main and B Physics streams for Run-2 taken from ref.[38]. 2017 is
displayed as it is similar to 2018.

2.3.0.1 Trigger Matching and Passing

Trigger passing and matching are two offline selections connected to trigger configurations.
Trigger passing: Trigger passing refers to the kinematic selection corresponding to the

trigger. In the context of ATLAS the majority of triggers have a pµT selection. Also a trigger
can have a selection on the number of final state particles in a process or a mass selection.
When an event is selected by the trigger then it means it ”passes” the kinematic selection. The
trigger passing can influence heavily kinematic distributions.

Trigger Matching: Trigger matching is a process of matching objects in an event that
have passed the trigger system with objects that are reconstructed offline during the event
reconstruction stage. For this process dedicated algorithms are utilized. The trigger matching
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mainly influences the normalization and has little effect on kinematic distributions.

2.4 Track Reconstruction

2.4.1 Helix Parameters

In this subsection a small introduction on general track reconstruction is going to take place.
Electron reconstruction is going to be discussed shortly and a detailed muon reconstruction is
presented in Chapter 2.5.

Tracks in the context of the ATLAS experiment are particle trajectories as they are recon-
structed after passing the detector. Track is, in principle, a mathematical representation of the
trajectory, derived using information from various detector parts. Direct track information in
ATLAS are provided by the Inner Detector and the Muon Spectrometer. Utilizing different
algorithms and considering different detector parts, the fitted track can vary.

Track reconstruction of a particle passing through the detector is parameterized by 5 param-
eters, which are necessary for describing a helix trajectory. In the ATLAS terminology, these
parameters are commonly referred to as the helix parameters. As the particle leave hits-signals
in the detector and it’s trajectory is bent by the magnetic field the following parameters are
fitted during tracking:

• Curvature q
|p| . This represents the charge divided by it’s reconstructed momentum and

it is equal to q
|p| =

1
B×r , where B is magnetic field strength and r radius of particle helix

movement in magnetic field.

• Transverse impact parameter d0. This represents the distance of the particle vertex from
the beam axis in the transverse plain, as shown in Figure 2.11.

• Longitudinal impact parameter z0. This represents the distance of the particle vertex
from the interaction point in the longitudinal plain, as shown in Figure 2.11.

• ϕ0 represents the azimuth angle.

• θ represents the polar angle.

Figure 2.11: Impact Parameters sketch: transverse d0 and longitudinal z0, with the atlas
coordinate system, Taken from ref.[39].

As particles traverse the detector, they leave a track path. From this track, the helix
parameters are determined using a global χ2 fit. The uncertainties in these parameters are
estimated from the covariance matrix of the fit.
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2.4.2 Track Reconstruction in the Inner Detector

Track reconstruction in the Inner Detector measures the impact parameters and momentum of
charged particles. Main algorithm works from the center of the detector to the outermost parts
and it is usually referred as inside-out. It associates first the silicon hits and then extrapolating
the trajectory to the TRT. Tracks with a minimum number of silicon hits and the ones passing
a cut in the transverse and longitudinal impact parameter are kept. Main steps in the inside -
out algorithm is :

1. Formation of Space Points: Creation of clusters of hit space points of Pixel, SCT and
TRT detectors.

2. Track reconstruction seeded by space points: First space points are grouped in sets. Sets
of three space-points form a seed using information either from Pixel-only, SCT-only or
Pixel and SCT mixed seed. A selection is implemented in each seed depending on pµT ,
impact parameter resolution criteria. Seeds track are required to match a forth point
with an extrapolated trajectory.

3. Out of all the seeds tested, many are excluded. Among those that are selected, some are
more likely to correspond to an actual trajectory. Seeds are getting ranked based on the
probability to correspond to a real track. This systems favors tracks with a higher score.
An additional neural network clustering algorithm has been implemented for the Pixel
clusters to separate multiple particle tracks in dense environments.

4. TRT track extension: Candidate trajectories with the highest ranking score are extrapo-
lated to TRT and a valid set of matching drift circles is matched to the trajectory, if they
exist. To improve the momentum resolution the track is refitted using all information
from Pixel, SCT and TRT combined hits.

2.4.3 Track Extrapolation

In order to match muon tracks through different detector segments there is a dedicated track
extrapolation algorithm ref.[40]. This algorithm ”transports” the muon track through the
magnetic field by solving the equation of motion of the particle.

d2r

ds2
=
q

p

dr

ds
×B(r) + g(p, r)

dr

ds
, (2.3)

where represents the position of the particle along the trajectory s, s is the trajectory, q is
the muon (or anti-muon) charge, B is the magnetic field and g(p,r) is an energy loss function.
As the muon transverses through intermediate material the algorithm takes into account the
augmentation of the error of track parameters from material effects.

2.4.4 Muon momentum resolution

Muon momentummeasurement has a corresponding uncertainty. This uncertainty is parametrized
by the experiments special conditions. In ATLAS a standard high energy physics experiment
is followed, ref.[41].
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Ionization Muons deposit energy as they transverse material through ionization. Muons in
the energy range of ATLAS are considered minimum ionizing particles. Their energy loss de-
pends on the material. In the inner detector the energy loss in insignificant. In the calorimeters,
where denser material is present, they can loose up to 3 GeV through ionization. The energy
loss of charged particles is given by the simplified Bethe Bloch formula ref. [42]:

−dE
dx

= C1β
2 ·
(
ln
(
C2 · β2γ2

)
− β2

)
(2.4)

with C1 and C2 constants connected to material and electromagnetic interaction, β the
fraction of speed of light of the particle and γ the relativistic Lorentz factor. For small energies
this term is dominant and tends to be constant in larger energies.

Multiple Scattering Charged particles scatter in material, interacting electromagnetically
with the nucleus of the material. It has been proven that multiple scattering is independent
from energy of the charged particle and it is dependent from the thickness and the radiation
length of the material, ref.[43].

Magnetic Field The magnetic field is utilized to bend the particles, allowing their momen-
tum to be calculated from the curvature of their trajectory. For particles with lower energy and
in the presence of a stronger magnetic field, the curvature is larger, leading to a more accurate
momentum measurement. Conversely, for particles with higher energy or in a weaker magnetic
field, the curvature is smaller, resulting in less accurate momentum measurements. This res-
olution term is called also intrinsic resolution term. The momentum and it’s uncertainty of a
charged particle is measured through the Sagitta s:

p =
L2qB

8s
→ σp =

√( p

2L
σL

)2
+
(p
s
σs

)2
+
( p
B
σB

)2
(2.5)

where L is the is the distance between the outermost measurements of the tracking system and
B the magnetic field strength. By assuming that the uncertainty of the magnetic field strength
and the distance L is negligible:

σp =

√(p
s
σs

)2
→ σp

p
=

8p

L2qB
σs (2.6)

Therefore, the relative momentum uncertainty is proportional to the momentum of the
muon and inverse proportional to the magnetic field.

Combining ionization, multiple scattering and magnetic field effects, the relative uncertainty
of transverse momentum is:

σpµT
pµT

=

√(
r0
pµT

)2

+ r21 + (r2 · pµT )
2 (2.7)

Relative momentum uncertainty of ATLAS is about 3% over a wide range of pµT , reaching
10% at pµT = 1 TeV. Depending on the detector part used for the track reconstruction the
relative uncertainty can vary, as explained in Section 2.5.
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2.5 Muons in ATLAS, tracking and reconstruction

Muons are charged particles which transverse the whole detector and they exit without de-
caying. Their track is reconstructed by using their hits in the Inner Detector and the Muon
Spectrometer. Also they interact with the electromagnetic and hadronic calorimeters leaving
a minimum amount of energy. In the context of this analysis the understanding of the muon
properties and their interaction with ATLAS is essential as both the J/ψ (which is going to be
used for calibration in the context of this thesis) and the Z resonances, decay to muon pairs. In
the following subsection the reconstruction and the identification of muon objects in ATLAS are
presented. Muon reconstruction in the Inner Detector is analyzed thoroughly in the Chapter
2.2.4.

Muon originate from various processes, including Drell-Yann or b- physics. They transverse
through the detector interacting with multiple parts while their trajectories are bent from the
magnetic field. In the Inner Detector they leave track signals but they loose almost no energy.
As they pass from the calorimeter system they deposit a small amount of energy and finally
they leave track hits in the Muon Spectrometer System.

Muons can loose energy with ionization, Brehmsstralung and pair production. In ATLAS,
muons loose a small percentage of their energy in calorimeters with ionization. For the muons
investigated in this thesis which is above 4 GeV, the muon energy is enough to have reached the
plateau of the Beth-Bloch formula and therefore the contribution of this is almost independent
with the pµT of the muon.

2.5.1 Muon Track Types

Different components of the detector and various reconstruction algorithms yield distinct muon
track types, such as Inner Detector (ID), Muon Spectrometer (MS or ME), and Combined
(CB) tracks. This diversity affects the analysis by influencing the physics objects themselves,
reconstruction efficiency, and background rejection. The choice of detector components used for
muon track reconstruction directly impacts the precision and accuracy of muon measurements,
which are critical for achieving reliable analysis results. Each part of the ATLAS Detector has its
strengths and limitations in terms of spatial resolution, momentum resolution, and coverage.
The Inner Detector provides excellent momentum resolution for low momentum muons and
precise tracking information in the barrel region of the detector but it’s capabilities deteriorate
in the end-caps. The Muon Spectrometer is specifically designed for detecting and measuring
the momentum of muons and have advanced muon reconstruction capabilities in the end-caps
regions.

Also discriminating signal muons from background particles is crucial for any muon analysis.
Different detector parts have different capabilities in identifying and rejecting background par-
ticles. For instance, the Inner Detector can provide precise track reconstruction and vertexing,
allowing for efficient rejection of background tracks originating from proton-proton collisions.
Meanwhile, the Muon Spectrometer can identify muons based on their energy deposition and
track curvature in the magnetic field, aiding in the rejection of non-muon background particles.

In order to achieve the precision goal of the Z boson mass measurement the reconstruction
of muons and the efficiency of the various ATLAS detector parts have to be understood. The
muon candidates tracks can be reconstructed in the following ways:

• Inner Detector(ID): Hits used only from the Inner Detector to reconstruct tracks pointing
to muon chamber hits.

• Muon Spectrometer(MS and ME): MS:Hits used only from the Muon spectrometer to
reconstruct track. MS is the track as it is fitted in the Muon Spectrometer. Close hits in
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Figure 2.12: Muon reconstruction algorithm examples, red lines depict the track hits used for
the corresponding reconstruction algorithm. Taken from ref.[44].

the MDT chambers are fitted to produce segments. Each chamber produce a segment.
Finally the segments from three chambers are used to reconstruct a track. ME: MS
tracks are projected back to the interaction point and refitted with a relaxed constraint,
incorporating the energy loss in the calorimeter.

• Combined(CB): Combined muons are reconstructed by matching ME tracks and ID
tracks, combining them with a global χ2 fit. The algorithm is following an outside-in
path. The information from MS is used to begin the muon reconstruction seed algorithm
and at as a second step the algorithm moves to the ID part. In order to achieve the best
possible momentum resolution, the hits at the muon system are updated using informa-
tion from the combined fit. This improves the the expected errors of the hits and finally
the CB muon is reconstructed.

• Segment tagged(ST): muons consist of a fitted ID track and a MS segment track

• Calorimeter tagged(CT): muons consist of a fitted ID track and an energy deposit in the
calorimeters.

In Figure 2.12 these reconstruction algorithms examples are displayed for hypothetical
muons passing through the detector.

In Figure 2.13 the relative uncertainty on pµT using cosmic rays data is compared for ID, CB
and MS tracks.
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Figure 2.13: Comparison of ATLAS muon track relative uncertainty for 2009 cosmic muon rays
for different reconstruction algorithms, ID, MS and CB. Taken from ref.[45].

ID tracks (black dots) in smaller energies (from pµT = 0 to ≈ 70 GeV) have a better pµT
resolution compared to CB and MS tracks. In Figure 2.13 it is evident that the ID is the best
option in the pµT regime (6GeV < pµT < 100GeV ) of the analysis (for J/ψ calibration and Z
mass measurement). CB tracks in low pµT are comparable to the ID ones. Depending on the
detector region and pµT regime, CB tracks show similarities to either the ID or the MS. In the
barrel region, where the ID performs better, CB tracks resemble the ID tracks. In the end-cap,
where the MS demonstrates better performance, the CB behavior resembles the MS tracks.

The combined reconstruction using information from both the ID and MS, exploiting their
complementary advantages, improves the overall muon reconstruction efficiency and accuracy.
The CB tracks then use the advantages of both. CB tracks are excellent for generic studies
which include muons. For the level of precision required, however, their dependence on MS
tracks makes them unsuitable for this analysis.
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Chapter 3

Muon Calibration in ATLAS
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Muon momentum measurement is a crucial part in ATLAS analyses. However, the accuracy

of these measurements can be sensitive to biases due to detector imperfections, reconstruction
algorithms and false simulation of the detector properties. Understanding and correcting these
biases is essential for ensuring the precision of physics results obtained. Biases in muon mo-
mentum measurements can have significant implications for physics analyses. They can distort
the shape of invariant mass distributions, affect the reconstruction efficiency of certain decay
channels, and introduce systematic uncertainties in cross-section measurements. Inaccurate
momentum measurements can lead to misinterpretation of physics signals, ”hide” the discovery
potential of new particles, and decrease the precision of fundamental parameter measurements.
For sensitive measurements, such as the Z mass measurement, accuracy and precision are cru-
cial.

Addressing muon momentum biases requires a multi step procedure involving detector cal-
ibration, alignment procedures, and advanced reconstruction algorithms, ref. [46]. Calibration
techniques use known particle resonances to validate the result of the muon momentummeasure-
ment, known also as ”standard candles”. Alignment procedures ensure the proper alignment of
detector components, reducing spatial distortions and mis-alignments. Advanced reconstruc-
tion algorithms, including track fitting and momentum estimation techniques, aim to minimize
biases introduced during track reconstruction.

During alignment a correction is derived by minimizing a global χ2 of track-hit residuals.
After alignment, where the track has been corrected ensuring that the particle track has a spiral
path, there are still remaining biases to be addressed. This method is ”blind” to misalignment
called ”weak modes”. These biases are addressed by momentum calibration. In calibration,
there two groups of biases that are corrected, one charge dependent due to rotations of the
detector, and charge independent effects which are mostly due to magnetic field mis-modeling
and stochastic nature of processes such as muon energy losses in the calorimeter and multiple
scattering.
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3.1 Charge Dependent effects

A crucial bias is the charge dependent bias due to detector rotations in the transverse plain.
These distortions introduce a bias to the Sagitta measured during tracking, which due to the
influence of the magnetic field have opposite effects on negative and positive charged particles.
This bias is corrected by introducing Sagitta bias correction. Essentially the assumed position
of different detector parts are shifted and rotated in order to measure afterwards the correct
position of the particle. In practice, the correction corrects the pµT charged particle tracks in
data, as if the detector was not rotated.

The Sagitta correction is a complicated process since different detector parts in the Inner
Detector and the Muon Spectrometer can be shifted in different angles. Therefore, maps of the
corrections are extracted with a dedicated fit and a fine η and ϕ binning. The maps correct the
momentum independently of ID, CB and ME tracks. Essentially the correction is the angle of
the rotation.

Due to the magnetic field, a rotation of the detector has an opposite effect on the negative
and positive muons. One has a reconstructed track with lesser curvature and one with larger
curvature than the real track. This leads to a charge dependent effect.

Figure 3.1: Two different kind of distortion effects on the transverse plain of the detector.
The left one corresponds to sagitta bias, charge dependent and rotation effects. The right one
corresponds to charge-independent, radial displacement and magnetic field effects. Taken from
ref.[47]

In figure 3.1 the effect of the sagitta bias on the track reconstruction is shown on the
left graph. The rotation angle between the two daughter particles in the graph is the same,
but because one will get reconstructed with less curvature (left black line) and the other one
with more curvature (right black line) the effect will be opposite on the two opposite charged
particles.

If one detector module is rotated with a small rotation a the unbiased Sagitta is connected
with the biased one with the relation:

sbias = s+ qda

where q is the charge of the track, and d is the distance from the origin to the second layer of
the detector. The radius of the track ρ, is going to be biased ρbiased in the following way:

1

ρT
=

1

ρ
+ q

8da

l2

Since pµT is proportional to the magnetic field and the radius of the track B × ρ and if ignoring
magnetic field biases the biased pµT of the particle can be expressed as:

1

pbiasedT

=
1

pT
− q ∗ δs
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where δs is a quantity that corresponds to the impact of the Sagitta bias measurement to the
q/pT and pbiasedT is the pT is the one measured from the detector. Therefore, the corrected
transverse momentum can be written as:

pcorrectedT =
pbiasedT

1 + qδs(η, ϕ)pbiasedT

(3.1)

where the δs is the bias introduced by the rotations in the momentum which will be η and ϕ
dependent. ATLAS standard methods produce maps of δs with a binning of 24× 24 for η and
ϕ.

Effect of Sagitta bias corrections on the mass distributions are displayed on Figure 3.2, using
barrel muons. The sagitta bias corrections used correspond to the official ATLAS recommen-
dation of sagitta bias.

(a) J/ψ (b) Z

Figure 3.2: Examples of effect of Sagitta bias correction at the mJ/ψ and mZ distributions,
using barrel muons. Samples used for the plots are simulation. a) J/ψ Parameters. b) Z.
The corrections used in this example are the ones used in the thesis for all studies, for charge
dependent effects.

3.2 Non-charge dependent effects

The correction of non-charge dependent biases are the second step of the muon momentum
calibration procedure. There are two kind of biases. First, the momentum scale biases, which
influence primarily the mean of the mass distribution and secondly the resolution effects, affect-
ing primarily the tails of the mass distribution. Their origin is usually hard to disentangle. Main
source is the complex magnetic field, inaccurate magnetic field measurement, as mentioned in
Chapter 2.2.3. The magnetic field data is subject to biases. On the other hand, the magnetic
field used for the reconstruction of MC is a ”perfect” calculation of the magnetic field using Biot
Savart law. Another source is detector deformations not addressed by the Sagitta corrections
and alignment. The resolution biases smear the muon momentum, widening the distributions.
Their effect is the miss simulation of the stochastic nature of interaction of particles with the
detector. These effects are primarily, energy loss and multiple scattering.

This section focuses on the standard ATLAS calibration procedure and it’s variations used
in the context of the thesis. For muon momentum calibration a dedicated framework is used.
The program applies the desired selection and produces templates of mass distributions for the
three ID, CB and ME track types. The framework nominally performs joint calibrations fits of
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Figure 3.3: Exaggerated sketch for display purposes. Overlayed histograms, of hypothetical
simulation and data, showing the mass distributions of the Z boson. The simulation does not
include biases. Data is subject to biases, scale effects which move the mean of the distribu-
tion and resolution effects, due to stochastic effects in the calculation of muon resolution, as
explained in 2.4.4.

J/ψ and Z mass distributions. Finally, the framework with applying variations of the selection,
produces systematic estimations on the calibration parameters. The fit process is done with
a dedicated minimizing algorithm using templates and a minimum likelihood estimation by
interpolating between the templates.

3.3 Scale and Resolution Calibration in ATLAS

The two effects to be corrected are scale effects, which bias mainly the mean of the distribution
where the resolution effects make the distributions wider. An exaggerated sketch of the effects,
for a Z mass example, is displayed in Figure 3.3.

Each track type ID, CB and ME the calibration parameters are derived independently. The
reconstructed momentum of the muon pµT is parametrized as follows: For ID tracks:

pCalibratedT,ID =
pµT

MC + ds1 ∗ pMC
T

1 +
√
(g1 ∗ dr1)2 + (g2 ∗ dr2 ∗ pMC

T )2
(3.2)

For CB tracks:

pCalibratedT,CB =
pMC
T + ds0 + ds1 ∗ pMC

T

1 +
√
(g1 ∗ dr1)2 + (g2 ∗ dr2 ∗ pMC

T )2
(3.3)

For ME tracks:

pCalibratedT,ME =
pMC
T + ds0 + ds1 ∗ pMC

T

1 +
√

(g0 ∗ dr0
pMC
T

)2 + (g1 ∗ dr1)2 + (g2 ∗ dr2 ∗ pMC
T )2

(3.4)

with:

• ds0: constant scale correction accounting for low pµT energy loss effects, only for MS and
CB tracks calibrations since there is not material budget before the ID where the muon
looses energy

• ds1: scale correction term accounting for radial distortions and magnetic field mis-modeling
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• dr0: resolution correction term accounting for fluctuation of the energy loss the muon as
it goes through the calorimeter. Needed only for MS and CB tracks.

• dr1: constant resolution correction term accounting for multiple scattering.

• dr2: resolution term accounting for residuals mis-alignments and mis-modeling of the
magnetic field, also for the intrinsic resolution of the detectors.

• gi, i = 0, 1, 2 are Gaussian terms that smear the distribution. With mean 0 and σgaus = 1.

The correction relation is slightly different for ID and MS tracks. In the Inner Detector
there is no energy loss from the muons corresponding terms. Therefore, ds0 and dr0 are set to
0 when calibrating the ID tracks.

In the Figure 3.4, examples of effects of calibration parameters on the mJ/ψ and mZ distri-
butions. A nominal, without any corrections template, is compared to templates corrected for
the calibration parameters. All parameters are set to the same value to compare the effects.
Since J/ψ and Z have different pµT distributions the effect of one parameter, for the same value,
can have different impact on the mass distribution. Examples of pµT originating from J/ψ and
Z distributions are displayed in Appendix

Tdistributionssec : J/PsiandZsigma
µ
pTdistributions)and(c)representtheeffectsofthescaleparameteronmJ/ψ

and mZ , respectively. These two parameter effects can be readily disentangled: the ds0 param-
eter introduces a tilt in the distributions, while the ds1 parameter shifts the entire distribution.
ds1 has a larger contribution as it is multiplied with pµT

(c) and (d) correspond to the resolution parameters. The effect of the dr0 as it is multiplied
to pµT

−1 it is more relevant to J/ψ than Z. The dr2 has a larger effect on the mZ distribution
as it is multiplied with pµT .
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(a) Scale Parameters effect on mJ/ψ (b) Resolution Parameters effect on mJ/ψ

(c) Scale Parameters effect on mZ (d) Resolution Parameters effect on mZ

Figure 3.4: Examples of effect of calibration parameters at the mJ/ψ and mZ distributions. (a)
and (c) Scale Parameters. (b) and (d) Resolution Parameters

3.3.1 Iteration Scheme

Calibration is η, ϕ and pµT dependent. The phase space is divided in regions calibrated depending
on the configuration. The calibration phase space dependence is presented for the different
calibrations taking place in this thesis in Table 3.1.

Track Type Official ATLAS Z Mass
ID Tracks η η(pµT intergrated) | pµT (η integrated)

CB Tracks η, ϕ
MS Tracks η, ϕ

Table 3.1: Calibration phase space binning for official ATLAS and Z mass measurement cali-
brations.

In the official ATLAS algorithm depending on the track type, the fit is sensitive to different
phase space observables. For ID tracks, there is a negligible ϕ dependence expected, as ID
is uni-some in ϕ. Therefore, the ID calibration is fitting parameters as a function of η. For
the CB and ME tracks a different approach is used. Due to the ϕ structures of the Muon
Spectrometer, which are the Small and the Large sectors, the fit includes the ϕ direction. The
algorithm separates muons belonging in Small and Large sectors for each η region. The Small
and Large sectors are fitted independently for each η bin.

Calibration parameters take different values on different regions of the phase space. If a
mother particle (J/ψ or Z) decays to muons belonging in two different phase space regions, the
fit has to handle two sets of calibration parameters. Therefore, each histogram for a region of
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interest will contain muons originating from multiple regions and finally a matrix of multiple
set of calibration parameters have to be calculated simultaneously. To solve the this problem
an iterative procedure is followed.

In the first iteration only muons belonging to the same region of phase space are selected.
The phase space regions used are broad enough, to have sufficient event yield. This way a
calibration is derived for all the phase space. In the next iterations, by having an estimation
for all phase space regions, finer regions are used and the muons can belong to multiple regions
of the phase space. The detailed procedure is presented in Appendix B.

3.3.2 Fit Methodology

In summary the framework follows this algorithm in each iteration:

1. Corrections Applied: At the start of each iteration there are two kind of corrections
applied to the pµT on the sample (data or MC). If it is data the pµT is corrected with the
sagitta bias correction. If it is MC the muon pµT is corrected for scale and resolution
parameters with the values obtained from the previous iteration.

2. Selection: Apply selection on MC (signal and background) and data. Selection is using
an η,ϕ and pµT scheme. Depending on the track fitted the ϕ dependency is dropped. ID
calibration uses only an η dependence and CB, ME include a ϕ one. Nominally there are
18 regions fitted in η and if there is a ϕ dependence all the Large Sectors in an η region
will be fitted simultaneously and all the Small Sectors will be fitted simultaneously in a
separate fit independently from the Large Sectors.

On top of that, there is an additional pµT based selection. The framework uses nominally
4 pµT bins to build 4 templates per detector region calibrated, 2 J/ψ originated and 2
Z originated muon pµT bins. In the selection there is a fundamental difference in the
method between J/ψ and Z. For the J/ψ the algorithm builds two histograms based on
the sub-leading muon pµT and for the Z it builds 2 histograms based on the leading muon
pµT .

3. Selection of muons to fit: If the MC muon falls in the η,ϕ region of interest it is
not corrected from the previous iteration (from step 1). The values obtained from the
previous iteration will be used a starting value for the current iteration. If the muon falls
outside the region of interest, it’s pµT is corrected according to the values of the previous
iteration (step 1).

4. J/ψ Background Estimation:After the data, signal and Z background histograms have
been filled per region, the J/ψ background has to be evaluated. For the background of J/ψ
using a parametric function fit of signal plus background with a data driven method the
background shape and number of events is extracted. The procedure of J/ψ background
fit is presented in Section 3.3.3.

5. Minimization: A simple minimizing algorithm provides the first estimation for the pa-
rameters. These values are injected into a dedicated likelihood minimization algorithm,
which uses signal simulation templates with varying correction parameters and interpo-
lation between them.

For the minimization procedure and the parameters calculation the calibration framework
uses Minuit ref.[48]. The code uses two kind of minimizers:
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• Simplex: First a SIMPLEX (algorithm implemented in Minuit ref.[48]) minimizer is used.
This minimizer consists of three stages. In the first step it computes scale parameters my
comparing the mean between data and MC with χ2. Secondly, it computes the resolution
parameters by comparing again by a χ2 the mean and the Standard Deviation between
the two distributions. This first two stages are called High Level χ2. Finally the minimizer
uses a binned χ2 to correct all the parameters simultaneously.

• GridScan: GridScan provides a higher precision minimization. This algorithm takes as
input the Simplex minimization of the parameters creating a ”grid” of templates. To
create the grid it reads the input minimized value for each calibration parameter and it
creates reference values of the parameters around the input values. The reference values
are chose by the user. By applying the reference values of the calibration parameters to
the MC samples a 3D grid of templates is created. Finally it calculates a negative log
likelihood for each point of the grid and interpolates between the likelihood values. This
was there is a continuous value of the likelihood in the calibration parameters space. The
minimization is handled by Minuit. The algorithm is based movement morphing methods
already implemented in other ATLAS analyses ref. [49].

3.3.3 J/ψ Background

J/ψ background is fitted with a parametric analytical fit and it is not taken from simulation.
The background corresponds to a continuum, which receives contributions from the Drell-Yan
process and hadron decays that is difficult to simulate due to non perturbative QCD regime
dominating. By considering an analytical model for the signal and the background and fitted
them both at the data distribution an estimation is derived for the background shape and yield.

Given the good resolution mainly in the barrel region the final state radiation tail of the
J/ψ mass distribution has to be accounted for by the parametric fit of the signal model of the
J/ψ. Therefore, the model used for the signal model sum of a Crystal Ball and a Gaussian
function to account for additional resolution effects. Crystal Ball and Gaussian share the same
mean:

Nsignal = N ∗ (Gauss(µ, σ) + CB(µ, σ, α, η))

where N is a normalization factor between Crystal Ball and Gauss. The Crystal Ball function
combines a Gaussian core for the central peak region and a power-law tail for deviations. The
function is ideal for asymmetric distributions. The Crystal Ball function ref.[50] is defined as
follows:

f(x;α, n, x̄, σ) =

exp
(
− (x−x̄)2

2σ2

)
, for x−x̄

σ
> −α

A
(
B − x−x̄

σ

)−n
, for x−x̄

σ
≤ −α

(3.5)

Where:

• x: the variable of interest (e.g., energy or mass),

• x̄: the peak position or mean of the Gaussian part,

• σ: the standard deviation of the Gaussian core,

• α: defines the point where the Gaussian core transitions into the power-law tail (on the
left-hand side of the peak),
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• n: the exponent that controls the shape of the power-law tail,

• A: normalization factor ensuring continuity between the Gaussian and power-law regions,

A =
(
n
|α|

)n
exp

(
− |α|2

2

)
,

• B: a parameter that ensures the continuity of the function and its derivative at the
transition point, B = n

|α| − |α|.

The model is fitted to the simulation to calculate shape parameters and finally only the
mean and the sigma of the Crystal Ball are allowed to float when fitting the data sample. The
di-muon background of the J/ψ is non resonant and parametrized using either an exponential or
a Chebysev of the second order. The official ATLAS calibration uses nominally the exponential
model and the calibration parameters derived by using the Chebysev are used as a systematic
uncertainty.
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(a) Signal Model Parametric fir for 6.3 <

psub−leadingT < 9 GeV

(b) Signal and Background to Data Model

Parametric fit for 6.3 < psub−leadingT < 9 GeV

(c) Signal Model Parametric fir for 9 <

psub−leadingT < 20 GeV

(d) Signal and Background to Data Model

Parametric fit for 9 < psub−leadingT < 20 GeV

Figure 3.5: Examples of analytical parametric fits of signal and background in order to derive
the background component, produced in the context of thesis. First, the fit is performed on
the signal mass templates (a and c) with a sum of a Crystal Ball and a Gauss. In the next
step the fit is performed on the data(b and d) with an exponential model for the background.
Distributions shown use Inner Detector muons and one of the muons belonging to the interval:
0 < η < 0.4

In Figure 3.5 the analytical fit procedure for the J/ψ background estimation is shown.
J/ψ background and signal analytical functions parameters are re-evaluated in each itera-

tion. As corrections parameters fluctuate in each iteration the mµµ signal distributions vary as
well. This can lead to parametric analytical fits changing from iteration to iteration. Therefore,
in each iteration the templates are corrected with the calibration parameters of the previous
iteration and the signal+background analytical fit takes place on the corrected template.

67



3.3.4 Z background

The Z background is calculated through simulation. The main background processes are di-
boson, top anti-top pair and Z → µµ

In the Table 3.2 the background processes are presented.

Table 3.2: Z Background Processes for Z → µµ

Background Processes
W + µ+ ν
Z → τ+τ−

W− → l−ν and W+ → l+ν
WZ → lνll
ZZ → llll
ZZ → ννll
WZ → qqll
ZZ → qqll

tt̄

3.4 Calibration Validation

In the context of the thesis a calibration validation framework was developed. The framework
is inspired by codes already used by ATLAS for the calibration. Purpose of the validation is to
compare the calibration as a function of multiple parameters. The goal is to test the calibration
method and its accuracy and find non closures or mis-modelings to be taken further into
consideration. The calibration framework will also be used further in the Z mass measurement
analysis for comparison of calibration methods.

After the calibration parameters are derived for the needs of the thesis they are injected in
the validation framework. The framework algorithm has the following structure:

1. Simulation samples are corrected for non-charge dependent effects. The simulation is re-
weighted with a di-muon pT −Y re-weighting map, to match pT distribution of simulation
to the data one. The data samples are corrected for charge dependent biases.

2. Distributions are produced using for the selection a kinematic variable. This kinematic
variable are η, ϕ pµT of the leading muon or the di-muon.

3. (Only for the J/ψ) The background yield and shape of the J/ψ is derived from a para-
metric fit, as described in the Section 3.3.3. The background distribution derived is added
to the signal.

4. The core of the di-muon distribution is fitted with the convolution of a Crystal Ball and
a Gaussian function, for both MC and data. The two functions share a common mean
and a different variance. The common mean and the σ of the Crystal ball are plotted as
a function of the selection kinematic variable.

The above are repeated for nominal, up and down systematic variations of the calibration
parameters. The contributions are added in quadrature to evaluate the uncertainties.

An advantage of the validation framework is the testing of the calibration in finer binning
than the calibration one. This way shapes and non-closures in fine detector regions can be
detected and treated accordingly.
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The validation framework is under development. The σ of the Crystal Ball is used to study
the effect of the calibration in the smearing of the mass distributions. The σ of the Gaus is
ignored for now, in the future the two σ will used for the validation.

3.5 Samples

In this Section, are presented the technical details over the samples used in the official ATLAS
calibration scheme.

The data belong to full Run-2 luminosity with pp collisions. They are derived from Physics
Main and B Physics data streams.

Physics main contains higher pµT triggers and is suitable for Z analysis and J/ψ ones with
very energetic muons. B Physics having lower pµT triggers is suitable for a J/ψ analysis.

For the Z MC generation information can be found at the Chapter 6.1. For the J/ψ are
produced using Pythia 8 ref.[51] with CTEQ6L1 PDF set ref.[7].

The pre-selection in sample level is:

Pre-Selection Values
Quality Working Point Medium

Vertex Cut |d0|
σ(d0)

< 3, |z0 × sin θ| < 0.5 mm

Pre-selection Resonances mass cut Z: 66 < mµµ < 125 GeV
J/ψ: 2.6 < mµµ < 3.5 GeV

Table 3.3: Pre-selection for pre-smearing studies.

Trigger choice for the official calibration procedure is:

Table 3.4: HLT triggers that are used to select Z boson candidates.

Year Trigger
2015 HLT mu20 iloose L1MU15 —- HLT mu40
Rest HLT mu26 ivarmedium —- HLT mu50

Table 3.5: HLT triggers that are used to select J/ψ boson candidates.

Year Main Trigger Alternative Trigger
2015 HLT 2mu4 bJpsimumu -
2016 HLT 2mu6 bJpsimumu —- HLT 2mu6 bJpsimumu delayed -
2017 HLT 2mu6 bJpsimumu Lxy0 L1BPH-2MU6 2DR15 2MU6 HLT mu11 mu6 bJpsimumu
2018 HLT 2mu6 bJpsimumu Lxy0 L1BPH-2MU6 2DR15 2MU6 HLT mu11 mu6 bJpsimumu
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Chapter 4

General Studies in Calibration

This chapter is split of two parts. Both correspond to studies and work done on muon mo-
mentum calibration but not for the Z mass analysis.One focus is the pre-smearing correction
study, while the other is the 2017 calibration results for the ATLAS Run-2 new samples release
of data and simulation. Both studies focus on the non charge dependent bias part of momen-
tum calibration. The charge dependent biases corrections have been already pre-applied in the
samples.

In the first part, the effect of the muon momentum uncertainty at the calibration is studied as
part of the ATLAS Qualification Task. Distributions of relative pµT uncertainty are presented
and the process of deriving them is explained. Furthermore, 2D maps in η and ϕ of muon
momentum relative uncertainty are studied, for different pµT bins. A hypothesis is proposed
suggesting that the calibration exhibits non-closure due to observed differences in relative muon
momentum uncertainty between MC and data. To address this, these differences are mapped
and incorporated into the calibration procedure. The calibration results are then compared
with and without the inclusion of these maps to evaluate their impact.

In the second part, the calibration results are presented using the official ATLAS calibration
method. Samples calibrated belong to a new release of data and simulation, with improved
reconstruction with respect to the previous release. A description of the systematic uncertainties
is given and the distributions before and after calibration are presented for ID, CB and ME
track. Subsequently, the corrections and the χ2 per degree of freedom post-calibration are
plotted as functions of η. Finally, validation graphs are provided, examining non-closures and
the efficiency of the calibration as a function of muon kinematic variables.

4.1 Pre-Smearing Corrections

4.1.1 Calibration Implementation on Relative pT Uncertainty

To justify this study, the impact of the calibration on the relative uncertainty distributions
is analyzed. Main point of this subsection is to give a short insight on the process from
ATLAS sample level of σq/p to

σpT
pT

distributions Additionally, the goal is to show that the

pµT calibration is not capable to match
σpT
pT

distributions between simulation and data. This
difference is assumed to be a source of additional uncertainty. Addressing this issue potentially
can help the calibration fit to converge further. Relative uncertainty distributions in ID, CB
and MS and profiles with η and pµT calibrated MC and data are going to be displayed.
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4.1.1.1 σq/p distributions

Initially, three distributions of absolute uncertainty—corresponding to the ID, MS, and CB—for
both J/ψ and Z will be presented. These distributions are selected from the barrel, the inter-
mediate region, and the end-cap. Relative momentum uncertainty is determined following the
helix parameter fit detailed in the Chapter 2.4.1. The J/ψ and Z studies are shown separately
as the pµT distribution of the muons originating from the two resonances differentiate distinc-
tively, as shown seen in Appendix D.2. The muons from J/ψ and Z decays are differentiated by
adding a selection for the mµµ: 2.8 < mµµ < 3.3 GeV for the J/ψ, and 70 < mµµ < 110 GeV for
the Z. The sole purpose of the Figures 4.1, 4.3, 4.4 and 4.6 is to demonstrate the differences in
MC and data that exist in sample level, before transforming σq/p to σpT /pT . The distributions
of σq/p are displayed and commented in more detail for all track types and η bins where for
the other distributions only some examples will be displayed and the rest are provided on the
Appendix D.1 - D.2.
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Figure 4.1: Distributions of σq/p for CB muons in the J/ψ mass region 2.8 < mµµ < 3.3 GeV
in three η ranges.
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Figure 4.2: Distributions of σq/p for ID muons in the J/ψ mass region 2.8 < mµµ < 3.3 GeV
in three η ranges.
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Figure 4.3: Distributions of σq/p for ME muons in the J/ψ mass region 2.8 < mµµ < 3.3 GeV
in three η ranges.
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Figure 4.4: Distributions of σq/p for CB muons in the Z mass region 70 < mµµ < 110 GeV in
three η ranges.
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Figure 4.5: Distributions of σq/p for ID muons in the Z mass region 70 < mµµ < 110 GeV in
three η ranges.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

6−10×

(q/p)  σ

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

F
ra

ct
io

n 
of

 E
ve

nt
s

MC-Jpsi_uncalib

Data

-1=13 TeV, 139 fbs
ME_0.05<eta<0.10 -2.95<phi<2.95

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
(q/p)  σ

0.9
0.92
0.94
0.96
0.98

1
1.02
1.04
1.06
1.08

1.1

F
ra

ct
io

n 
of

 E
ve

nt
s

10
6−

×
[1/GeV]

(a) 0.05 < η < 0.10

[1/GeV]

(b) 1.15 < η < 1.20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

6−10×

(q/p)  σ

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

F
ra

ct
io

n 
of

 E
ve

nt
s

MC-Jpsi_uncalib

Data

-1=13 TeV, 139 fbs
ME_2.40<eta<2.45 -2.95<phi<2.95

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
(q/p)  σ

0.9
0.92
0.94
0.96
0.98

1
1.02
1.04
1.06
1.08

1.1

F
ra

ct
io

n 
of

 E
ve

nt
s

10
6−

×
[1/GeV]

(c) 2.40 < η < 2.45

Figure 4.6: Distributions of σq/p for ME muons in the Z mass region 70 < mµµ < 110 GeV in
three η ranges.
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In the Figures 4.1, 4.3, 4.4 and 4.6, the CB and ME case for muons coming from Z and
J/ψ resonances are displayed. There are no distinct peaks in the distributions, this comes from
not including ϕ dependence in these plots, since CB and ME subsystems have a corresponding
dependence. For the purpose of this simple display of distributions only the η dependence is
considered enough, as detailed maps will be shown later.

Regarding the CB case, it is evident that it exhibits a better performance than ID and ME.
In the barrel, the CB distribution has a shape close to the ID one, where in the end-cap the
shape is closer to the ME case. In the J/ψ case the agreement between data and MC is better
than the Z.

An increase of this disagreement with pµT is hinted from comparing J/ψ and Z plots. Since
J/ψ has a peak in pµT ≈ 6-8 GeV and Z ≈ 44 GeV this signals a deterioration of the agreement
with pµT , something to be discussed thoroughly later in the chapter. Also in the Z case, it is
prominent that the uncertainty in the simulation is pushed to lower values as shown in Figures
4.4 - 4.6.

Regarding ME, Figures 4.3, 4.6 (a) and (b) the distribution is broader compared to the
corresponding plots in the ID and CB case (4.1, 4.2, 4.4 and 4.5) due to the increased muon
momentum resolution. This originates from the ME tracks reconstruction. In the ME case,
there is the contribution of energy loss uncertainty in low pµT (relevant for the J/ψ) which
broadens the distribution relatively to the other cases. Moreover, this contribution is influenced
by additional effects, as it depends on the material budget the muon traverses before reaching
the Muon Spectrometer. The observed broadening also arises from the poorer performance of
the Muon Spectrometer (ME) in the barrel region compared to the Inner Detector (ID), as
analyzed in Chapter 2.5.

4.1.1.2 σpT distributions

To derive the σpµT distributions the following transformation took place:

σpT =
1

(q/p) sin θ

√(
σq/p
q/p

)2

+

(
cos θ

sin θ
σθ

)2

(4.1)

Secondly, the corresponding σpT distributions are displayed, after the Relation 4.1 has been
applied.

Regarding σpT , only an example for J/ψ and one for Z are going to be displayed for bar-
rel region, CB tracks. The rest of the distributions for intermediate and end-cap are in the
Appendix D.1. CB is a combination of ID and ME tracks. Therefore, displaying ID and ME
separately is considered unnecessary.
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[GeV]

(a) J/ψ CB Barrel

[GeV]

(b) Z CB Barrel

Figure 4.7: Distributions of σpT for CB muons, with a mµµ selection for the J/ψ resonance
(2.8 < mµµ < 3.3 GeV) and the Z boson resonance (70 < mµµ < 110 GeV). 0.05 < η < 0.10.

In this case, the shape differences between data and MC, observed in σq/p (Figures 4.1-4.6),
are propagated in the two Figures 4.7a and 4.7b. Primarily, it is evident that the J/ψ have
peaks in lower values (≈ 0.2−0.3) than the Z (≈ 0.4−0.6). This originates to the dependence of
σpT with pµT . Another critical aspect that influences the shape of the distributions is the trigger
configuration. The double peak, in the J/ψ case, originates in the double trigger configuration
used. While in the Z case 4.7b one muon trigger is used. Further commenting on these
distributions and the CB histograms for three η ranges(barrel, intermediate and end-cap) are
shown in Appendix D.1

4.1.1.3 Calibrated σpT /pT distributions

Finally, profiles of relative momentum uncertainty (rel.unc.) σpT /pT distributions in low η and
ϕ are produced from low to high pµT . For the subsection the muon momentum is corrected
for biases. The calibrations used for this correction, are the official results coming from Muon
Performance Group of ATLAS. The key observation here is that the calibration fails to account
for the differences observed.

The profiles exhibited in this section were produce by a dedicated ATLAS framework for
muon momentum uncertainty studies. In the context of this thesis, the framework was modified
to apply calibration corrections directly to the samples.

[GeV]

(a) 0.05 < η < 0.10

[GeV]

(b) 1.15 < η < 1.20

GeV[GeV]

(c) 2.40 < η < 2.45

Figure 4.8: Muon ID track profiles of σpT /pT as a function of pµT , data and Calibrated MC

Primarily, it is important to highlight the behavior of the σpT /pT with pµT in the Figures
4.8 - 4.10. In all cases, the relative uncertainty is rising with momentum. This originates from
the third term of intrinsic resolution, r2, of the Relation 2.7. The second, constant with pµT ,
term of multiple scattering, is relevant for all cases. Therefore, all the graphs begin from non
zero values for pµT ≈ 0. Regarding ID, there is almost a linear rise with pµT both in MC and
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Figure 4.9: Muon CB track profiles of σpT /pT as a function of pµT , data and Calibrated MC.

GeV

[GeV]

(a) 0.05 < η < 0.10

[GeV]

(b) 1.15 < η < 1.20

[GeV]

(c) 2.40 < η < 2.45

Figure 4.10: Muon ME track profiles of σpT /pT as a function of pµT , data and Calibrated MC.

data. This is what is expected from the Relation 2.7 since only the second and third term
are relevant. Regarding ME (Figures 4.10 (a)-(c)), all three terms of Relation 2.7 are relevant.
Therefore, at low pµT , where the first inverse with pµT term in Relation 2.7 is dominant, the
relative uncertainty is starting from higher values. Afterwards, it decreases quadratically and
at intermediate pµT ≈ 20GeV , the third term starts being dominant. Finally, the uncertainty
rises again with almost a linear behavior. Regarding CB (Figure 4.9), as expected, is a mixture
of ID and ME behaviors.

In all cases (Figures 4.8 - 4.10, from (a) to (c)), the agreement progressively worsens as
η increases toward the forward region. This behavior is anticipated, as the complexity of the
magnetic field increases in the forward region, making its accurate calculation more challenging
and leading to larger non-closure effects. Comparing the ID Figure 4.8, CB Figure 4.9 and ME
Figure 4.10 for the same η bin it is evident that the ID has the best agreement. The CB has
a similar behavior in barrel but the ratio plot is deviating from 1 moving forward in η. Finally
the ME Figure 4.10 displays the worst agreement.

In Figures 4.8 - 4.10, the calibrated MC and the data display a difference persisting after
applying the calibration. This suggests the possibility of a calibration non-closure. In the
following sections, the pre-smearing method will be introduced as a targeted approach to address
this issue.

4.1.2 Covariance Maps

In this Section, profile maps of
σpT
pT Data

/
σpT
pT MC

are exhibited, produced in the context of the

thesis.
The main challenge in this process is determining the optimal binning for the maps, ensuring

that differences between MC and data are captured while avoiding low number of events in
individual bins. After examining the distributions of rel.unc. within each bin, it was concluded
that a detector binning of 320 for ϕ, 108 for η, and 10 bins for pµT is sufficient for the purposes
of this analysis.
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In the ratio maps of rel.unc.Data/rel.unc.MC (Figures 4.11 - 4.13) there are structures be-
tween MC and data, in regions much finer than the regions used by the calibration.

An additional selection was applied to exclude muons with nonphysical, large relative un-
certainties (rel.unc.). These muons, which can distort the mean of the rel.unc. profile, predom-
inantly appear in the ME tracks, less so in ID tracks, and rarely in CB tracks. The rel.unc.
values for these outliers range from approximately 100% to 200%. To mitigate their impact,
a selection of rel.unc. < 20% was applied. These outliers, corresponding to muons with prob-
lematic tracking fits, are considered nonphysical and are therefore excluded from this study.

The maps include full Run-2. A minor study was done to investigate possible changes at
the maps through the different campaigns. Since no significant effect was found, all the years
were grouped to produce the maps.

Examples of ratio maps rel.unc.Data/rel.unc.MC for MS, CB and ID are displayed, for three
pµT bins, in the Figures 4.11, 4.12 and 4.13.
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Figure 4.11: Map of: rel.unc.Data/rel.unc.MC for 5 < pµT < 10 GeV
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Figure 4.12: Map of: rel.unc.Data/rel.unc.MC for 15 < pµT < 30 GeV
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Figure 4.13: Map of: rel.unc.Data/rel.unc.MC for 80 < pµT < 300 GeV

In Figure 4.10 (and in Figures 4.14 - 4.15 in the following subsection 4.1.3), the relative
uncertainty increases as a function of η. The ratio maps reveal distinct structures in the
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detector, which correspond to specific subsystems. This suggests that the observed effect is not
due to random mis-modeling but rather indicates a systematic mis-modeling of the detector.
More structures are present in the ratio maps as the pµT increases. This signals an increase of
disagreement between MC and data with pµT .

The ID is better simulated in comparison to the ME and CB track types, as less structures
are present in the ratio data/MC maps. Furthermore, ID maps display a flat ratio in η and ϕ
of one. For example, in the 4.13 at the 55 to 80 GeV pµT bin, in both ME and CB, appear green
bins (meaning a ratio above 1.4) where the ID display less structures and less bins with out
of scale ratios. This is expected, as the Inner Detector has simpler systems and less complex
magnetic field. Therefore, ID tracks, are less sensitive to mis-modeling.

Regarding the ID maps, the detector’s uniform response in ϕ is shown clearly at the maps.
With increasing pµT there are structures appearing in ID maps. Notably, in the Figure 4.13
(b), the intermediate region, outside the barrel (|η| > 1.05) the rel.unc. disagreement increases
significantly. This is due to change of the ID systems at that region, which have decreased
performance, compared to the barrel region.

Regarding the CB and ME maps, the subsystems of the detector and support systems are
visible in all the ratio maps. In contrast to the ID, both ME and CB exhibit a stronger ϕ
dependence in the ratio of data/MC for the relative uncertainty (rel.unc.). This indicates a
mis-modeling of the detector. The mis-modeling arises not only from the material itself but
also from the inaccurate simulation of the magnetic field in the Muon Spectrometer.

In the CB and ME ratio maps there are eight structures at the region 1.4 < |η| < 2.7. These
structures correspond to the small end-cap toroid coils. These are related to mis-modeling of the
coil material. Additionally, around the coils there are shapes of high ratios (with green color).
This issue arises from two main sources. First, the magnetic field in these regions is highly
complex due to the interference between the small toroid coils and the large ones, indicating
potential mis-modeling of the magnetic field in the inter-coil regions. Second, these regions
house the CSC detectors, which, for a significant portion of Run-2, were under-performing.

In the negative ϕ range (≈ 1.4 − 1.9), a shape is observed in the central η region (≈ −1
to 1), attributed to the mis-modeling of the metallic material in the support structures of
the Muon Spectrometer and ATLAS. Additionally, repetitive shapes are visible across all ϕ at
|η| ≈ 1.2, which correspond to other supporting structures of the Muon Spectrometer. This
hinders a material mis-modeling or a magnetic field mis-calculation around metallic supporting
structures.

From Figures 4.11 to 4.13, and by comparing the CB (a) map with the ID (b) and ME (c),
the behavior of CB tracks is clearly illustrated. In the barrel and intermediate regions, CB
tracks are closer to the ID, while in the end-cap region, they more closely resemble the ME
tracks.

4.1.3 Fitting of Relative Uncertainty

In this Section, a study of rel.unc. as a function pµT is presented. As shown in Section 4.1.2,
the ratio rel.unc.data

rel.unc.MC
has a pµT , η and ϕ dependence. The study is presented for the first Large

Sector and positive η. Further results, from other detector regions are not presented to avoid
redundancy.

In Figures 4.14 and 4.15, the profile of the relative uncertainty (rel.unc.) is shown as a
function of pµT for different η bins. Additionally, a parametric fit is performed, utilizing the
parametrization of rel.unc. with pµT , Relation 2.7. Crucial points could be concluded about
the calibration of ”pre-smearing corrections” from the difference of the fit in MC and data.
Examples of these fits are given for ME tracks. The CB tracks are not going to displayed since
it is a mixture of ID and ME responses as discussed in Section 4.1.1. Examples of ID fits are

77



displayed in Appendix D.3.
The tables and the graphs of the fits are repeated for the cases where the muons originate

from J/ψ or Z decay. This approach is employed because the J/ψ have falling pµT distributions
beyond approximately 10 GeV, whereas the pµT distributions for the Z boson rise until around 44
GeV. Therefore, studying the behavior of muon resolution uncertainties from different sources
as a function of pµT is valuable for understanding the underlying trends and discrepancies. The
distinction of muons originating in Z decay or J/ψ decay is done by implementing a mass cut.

The fit is performed in the first Large Sector, and for 50 η bins from 0 to 2.60. To avoid
redundancy only ME tracks are displayed in this subsection.

Bin
rMC
0 −rData

0

rData
0

%
rMC
1 −rData

1

rData
1

%
rMC
2 −rData

2

rData
2

%

0.05< η <0.10 0 8 0
0.10< η <0.15 0 2 0
0.15< η <0.20 0 2 0

1.20< η <1.25 3 3 18
1.25< η <1.30 0 4. 60
1.30< η <1.35 0 2 1

2.45< η <2.50 8 13 96
2.50< η <2.55 21 19 96
2.55< η <2.60 96 -14 -73

Table 4.1: Difference of parametrization fits in MC and Data for ME muons coming from J/ψ
resonance decay.

(a) 0.30 < η < 0.35 (b) 2.40 < η < 2.45

(c) 2.50 < η < 2.55

Figure 4.14: Relative muon momentum uncertainty vs pµT for MC and data using muons from
J/ψ resonance decay for ME tracks
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Muons from J/ψ decay-ME Table 4.1 displays the pull between MC and data of the fitted
parameters r0, r1 and r2, for ME muons originating from J/ψ resonance decay. Corresponding
graphs of rel.unc. as a function of pµT for data and simulation are displayed in the Figure
4.14. Both in the table and the relevant plots, the difference between simulation and data is
increasing with η and pµT .

Bin
rMC
0 −rData

0

rData
0

%
rMC
1 −rData

1

rData
1

%
rMC
2 −rData

2

rData
2

%

0.05< η <0.10 11 2 17
0.10< η <0.15 7 2 9
0.15< η <0.20 4 2 8

1.20< η <1.25 0 10 8
1.25< η <1.30 0 5 17
1.30< η <1.35 6 4 7

2.45< η <2.50 0 6 34
2.50< η <2.55 5 7 34
2.55< η <2.60 2 7 35

Table 4.2: Difference of parametrization Fits in MC and Data for ME muons coming from Z

(a) 0.2 < η < 0.25 (b) 1.8 < η < 1.85

(c) 2.5 < η < 2.55

Figure 4.15: Relative muon momentum uncertainty vs pµT for MC and data using muons from
Z resonance decay for ME tracks

Muons from Z decay-ME Table 4.2 displays the pull of the parameters r0, r1 and r2,
for ME muons originating from Z resonance decay. Corresponding graphs of rel.unc. as a
function of pµT for data and simulation are displayed in the Figure 4.15. Both in the table and
the plots the difference between simulation and data is increasing with η and pµT . In Figure
4.15, an example is displayed of failing fits (1.8 < η < 1.85), which fail to describe the points.
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Failing fits exist in intermediate region. Due to complex magnetic field, the relative uncertainty
parametrization deviates from standard form.

Notably, in the Figure 4.15, the difference between MC and data grows with pµT and in
the table 4.2 the parameter with the largest pull is the r2, pointing at a mismatch at the r2
parameter as also observed in Tables 4.1.

It is important to underline the fact that the difference seems larger for the third parameter
r2 of Relation 2.7 in the Tables 4.1 - 4.2, which is the one connected to the magnetic field. As
expected, pulls are larger in regions where the magnetic field is complex.

Also by comparing the Z table and the J/ψ Table, from 1.4 < η < 1.45 to 2.55 < η < 2.60
the pull for r2 between data and MC is larger for J/ψ case table (≈ 70 − 80%) comparing to
the Z case table (≈ 30− 50%).Since muons originating from the J/ψ decay have lower pµT than
those from the Z boson, this suggests that the pre-smearing correction may primarily benefit
one of the two ”standard candles.” Consequently, the pre-smearing correction should be tested
in calibrations involving only one of the resonances.

This discrepancy between the parameters fitted in data and MC in the ME fits signals a
potential need to implement the pre-smearing corrections while fitting the dr2 parameter.

4.1.4 Calibration with pre-smearing

4.1.4.1 Methodology

The dominant method used in this study is: derive a weight from the ratio maps and incorporate
it in the correction calibration Relations 3.2, 3.3 and 3.4. The weight-correction derived is the
bin content of the map that the muon belongs to. The correction is inserted in the calibration
relation by multiplying it with a resolution calibration parameter during the fit. The study has
been repeated for multiplying the correction with dr1 and dr2. As commented in Section 4.1.3,
r2 parameter deviates between MC and data, in parametric fits of rel.unc. as a function of pµT .
Therefore, only the main results where the correction was multiplied with dr2 parameter are
going to be presented here. Rest of studies, including CB results and results of applying the
corrections to dr1 parameters, are not displayed here to avoid redundancy. The overall results
were presented in the ATLAS Muon Performance Group to evaluate the method.

4.1.4.2 Results

Finally, in this section calibration results will be presented with the corresponding χ2/Degrees
of Freedom (D.o.F.). The χ2/D.o.F. as a function of η is used as a validation of the overall
method.

ID Results obtained from the ID tracks are displayed here.
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Figure 4.16: Nominal calibration and pre-smearing calibration χ2/ Degrees of Freedom as a
function of η for pre-smearing parameter dr2, using J/ψ and Z, ID tracks

Figure 4.17: Nominal calibration and pre-smearing calibration χ2/ Degrees of Freedom as a
function of η for pre-smearing parameter dr2, using Z, ID tracks

ME Results obtained from the ME tracks are displayed here.

(a) Large Sectors (b) Small Sectors

Figure 4.18: Nominal calibration and pre-smearing calibration χ2/ Degrees of Freedom as a
function of η for pre-smearing parameter dr2, using Z, ME tracks
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(a) Large Sectors (b) Small Sectors

Figure 4.19: Nominal calibration and pre-smearing calibration χ2/ Degrees of Freedom as a
function of η for pre-smearing parameter dr2, using Z and full Run-2 MC and Data, ME tracks

(a) Large Sectors (b) Small Sectors

Figure 4.20: Nominal calibration and pre-smearing calibration χ2/ Degrees of Freedom as a
function of η for pre-smearing parameter dr2, using J/ψ and Z, ME tracks

4.1.5 Conclusions

In the Section 4.1 the work performed in the context of QT for the ATLAS experiment, was
presented. First, the derivation of muon rel.unc. was presented with corresponding graphs.
Secondly, two dimensional maps (η, ϕ) of rel.unc. were presented, for different pµT . Furthermore,
the rel.unc. was studied as a function of pµT . The difference between MC and data increased
with pµT . From parametric fits on the rel.unc. it was apparent that the r2 parameter is the main
parameter deviating between MC and data. For this reason the calibration dr2 parameter was
multiplied with the correction derived.

In the results presented in Section 4.1.4, a comparison between nominal and pre-smearing
calibrations reveals that, in most cases, the method was unsuccessful. In some examples shown,
there was notable improvement in the values of χ2/D.o.F., such as applying the correction to
Z resonance calibrations for the ID (Figure 4.17). Another example of reduced χ2 is shown in
the Figure 4.20 for calibrating Z and J/ψ for ME tracks. The results shown, were presented
and passed to the experts for further analysis.

82



4.2 2017-Official Calibration Recommendations

In this Section, the results of the calibration, for the official recommendations of ATLAS Muon
Performance group, are presented. The calibration is performed for the campaigns 2017 of
ATLAS Run-2 and for all type of tracks: ID, CB and ME.

The calibration is fitting simultaneously the Z and J/ψ ”standard candles”. Goal is to
have an accurate calibration for all η, ϕ and pµT . Technical details and methodology of the
ATLAS official calibration are presented in the Chapter 3. Selection and samples description
are presented in the Chapter 3.5.

4.2.1 Data and simulation comparison

For completeness purposes, a set of kinematic variables is presented, for simulation and data.
The distributions only for the J/ψ are presented in this Section. Regarding the Z samples
the selection is similar to the one used for the main Z mass analysis of this thesis. Therefore,
the display of kinematic variables in this Section is redundant. The corresponding plots are
provided in Chapter 6.1.2.

(a) Leading muon pµT (b) Sub-leading muon pµT

(c) di-muon pµµT

Figure 4.21: Comparison of data and simulation (J/ψ) for kinematic observables, for 2.8 <
mµµ < 3.3

In the Figure 4.21, kinematic distributions are displayed, in the mass integral 2.8 < mµµ <

3.3, for simulation and data. In the Figure 4.21 (a), the pleading−µT distributions is displayed. It
is evident that there is a large effect in small pleading−µT < 10 GeV. The observed discrepancy
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appears to be non-physical, likely resulting from unknown errors in the sample provided by the
ATLAS Muon Momentum Calibration group. This error is believed to originate from an issue
in the data distribution, potentially due to one of the triggers being unintentionally pre-scaled.
Since the standard triggers used are typically not pre-scaled, this discrepancy suggests an error
in the data preparation process. In the Figure 4.21 (b), the sub-leading pµT distribution is
displayed. The effect is negligible in this plot. In the Figure 4.21 (c), the pµµT distribution is
shown. The effect is again visible at values pµµT < 20 GeV.

4.2.2 Method

For the ID, CB and MS track types, different set of parameters are fitted as mentioned in
Chapter 3. For ID and CB all parameters used in the track type are fitted during calibration,
where in ME case the dr2 is calculated with a tracking procedure and injected in the calibration
procedure as constant.

The nominal case will be running until Iteration 20. From Iteration 1 to 8 is running on
Simplex, and at Iteration 9 GridScan is added. The result from iteration 9-14 is averaged
and the mean over iterations is used as input in iteration 15. This is expected to lead to
the stabilization of the parameters in some regions. Finally, the average result from iteration
15 to 20 is taken as the nominal values of the parameters. For the systematic uncertainties,
the iteration 12 to 20 is running and the average of even iterations is used as the value to be
compared with the nominal. Finally to derive the systematic values for each region and for each
parameter the distance of each systematic (average of even iterations 12-20) from the nominal
(average iterations 15-20) is compared. The variation with the larger distance from the nominal
will be regarded as the value of the systematic.

The list of calibration systematic uncertainties, along with the methodology used to derive
them, is analyzed in Appendix C.

4.2.3 Results 2017

The Results from 2017 are presented here for the ID,CB and ME track types. For each track
type, mµµ distributions of barrel and end-cap regions are going to be presented. Only the Large
Sector distributions of CB and ME are displayed here, to avoid redundancy. Additionally, the
parameters of the calibration are going to be presented as a function of η for all track types.
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4.2.3.1 ID

(a) J/ψ 6.3 < psub−leadingT < 9.0 GeV (b) J/ψ 9.0 < psub−leadingT < 20.0 GeV

(c) Z 20.0 < pleadingT < 50.0 GeV (d) Z 50.0 < pleadingT < 300.0 GeV

Figure 4.22: Region 1 ID: at least of the muons belong to the region 0 < η < 0.4. mµµ

distributions for J/ψ and Z resonances, post GridScan distributions.
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(a) J/ψ 6.3 < psub−leadingT < 9.0 GeV (b) J/ψ 9.0 < psub−leadingT < 20.0 GeV

(c) Z 20.0 < pleadingT < 50.0 GeV (d) Z 50.0 < pleadingT < 300.0 GeV

Figure 4.23: Region 18 ID: at least of the muons belong to the region −2.6 < η < −2.3. mµµ

distributions for J/ψ and Z resonances, post GridScan distributions.
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Figure 4.25: χ2/D.o.F. between the signal+background and data mass distributions, after
calibration, as a function of η, for 2017 ID tracks.

(a) ds1 (b) dr1

(c) dr2

Figure 4.24: ds1,dr1 and dr2 muon momentum calibration corrections as a function η for 2017
ID tracks. Points are average over iterations and error bars are systematic uncertainties.

In the Figures 4.22 and 4.23, two examples from ID track mµµ distributions are displayed, for
barrel and end-cap regions. There is a large widening of the distributions from the barrel to
the end-caps. This originates in the poor momentum resolution of the ID for |η| > 1.05.

In the Figure 4.24 the calibration parameters ds1, dr1 and dr2 are shown as a function
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of η. The ds1 exhibits small error bars in the barrel region, originating in the Z and J/ψ
different scales systematic uncertainty. Where in more forward regions, outside the barrel, the
ID tracks have a considerably worse performance. The fits at these regions are unstable leading
to increased systematic uncertainties.

Notably there is an asymmetry in the scale as a function of η and specifically in the outermost
barrel (0.8 < |η| < 1.05). The shapes seen in the negative values, at η ≈ −1.1, originate from
the measurement of the magnetic solenoid field. Due to an asymmetry in the way it was
measured, the scale correction is larger for this region.

In Figure 4.24 (b), the dr1 parameter is plotted as a function of η. In the forward regions,
muons traverse more material and are consequently subjected to increased multiple scattering.
As a result, muons in these regions require larger dr1 corrections compared to those in the
barrel region.

In the Figure 4.24 (c) the dr2 parameters is shown as a function of η. The dr2 behavior
follows magnetic field patterns in the detector.

4.2.3.2 CB

(a) J/ψ 6.3 < psub−leadingT < 9.0 GeV (b) J/ψ 9.0 < psub−leadingT < 20.0 GeV

(c) Z 20.0 < pleadingT < 50.0 GeV (d) Z 50.0 < pleadingT < 300.0 GeV

Figure 4.26: Region 1 Large CB: at least of the muons belong to the region 0 < η < 0.4, First
Large Sector. mµµ distributions for J/ψ and Z resonances, post GridScan distributions.
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(a) J/ψ 6.3 < psub−leadingT < 9.0 GeV (b) J/ψ 9.0 < psub−leadingT < 20.0 GeV

(c) Z 20.0 < pleadingT < 50.0 GeV (d) Z 50.0 < pleadingT < 300.0 GeV

Figure 4.27: Region 18 Large CB: at least of the muons belong to the region −2.6 < η < −2.4,
Large Sector. mµµ distributions for J/ψ and Z resonances, post GridScan distributions.
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Figure 4.29: χ2/D.o.F. between the signal+background and data mass distributions, after
calibration, as a function of η, for 2017 CB tracks.

(a) ds0 as a function of η (b) ds1 as a function of η

(c) dr1 as a function of η (d) dr2 as a function of η

Figure 4.28: ds0, ds1,dr1 and dr2 muon momentum calibration corrections as a function of η for
2017 CB tracks. Points are average over iterations and error bars are systematic uncertainties.

The χ2/D.o.F. is displayed in the Figure 4.29, for the nominal calibration. The fit is less
successful at the end-cap and the intermediate region than the barrel. Intermediate region has
the larger values in χ2/D.o.F.. In these regions, the magnetic field exhibits complex structures,
making it challenging for the fit to accurately account for them.
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The graphs of muon momentum corrections for both scale and resolution, shown in Figures
4.28, indicate that the corrections are generally larger in the intermediate region compared to
the barrel and end-cap. This observation aligns with the presence of more complex magnetic
field structures in the intermediate region, as evidenced by the higher correction values.

In the Figure 4.28, the scale parameter ds0 is plotted as a function of η for the Small and
Large Sectors. The ds0 parameter exhibits large systematic uncertainties, making it difficult to
separate its dependence from η.

In the Figure 4.28 (b), the ds1 scale is plotted as a function fo η for Small and Large Sectors.
In the barrel region, the large sectors require larger corrections compared to the small sec-

tors. According to experts, this discrepancy arises from the challenges in accurately measuring
the magnetic field in the large sectors of the barrel. Regarding larger η, Small and Large ds1
corrections are converging. In both the cases there is a structure at ≈ 1.4, where a large abso-
lute value of ds1 is needed. In this region the magnetic field is particularly complex and hard
to model. Also in this region the toroid field reaches 0 Tesla value, as mentioned in Chapter
2.2.3, making the region even more sensitive to mis-modelings.

In the Figures 4.28 (c) and (d), the resolution parameters dr1 and dr2 are plotted as a func-
tion of η, for Small and Large Sectors. The two sectors converge for the resolution parameters.
Their dependence from η is almost uniform in the barrel regions. At intermediate regions there
is an increase of the resolution parameters values, and it drops for high |η| > 2. Since the CB
tracks are a combination of MS and ID tracks, and the two resolution parameters are highly
correlated, disentangling and explaining this behavior becomes challenging.
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4.2.3.3 ME

(a) J/ψ 6.3 < psub−leadingT < 9.0 GeV (b) J/ψ 9.0 < p
sub−leading

T < 20.0 GeV

(c) Z 20.0 < pleading < 50.0 GeV (d) Z 50.0 < pleading < 300.0 GeV

Figure 4.30: Region 1 Large ME: at least of the muons belong to the region 0 < η < 0.4, First
Large Sector. mµµ distributions for J/ψ and Z resonances, post GridScan distributions.
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(a) Mass J/ψ 6.3 < p
sub−leading

T < 9.0)

(b) Mass J/ψ 9.0 < p
sub−leading

T < 20.0

(c) Z 20.0 < pleading < 50.0 GeV

(d) Z 50.0 < pleading < 300.0 GeV)

Figure 4.31: Region 18 Large ME: at least of the muons belong to the region −2.6 < η < −2.4,
Large Sector. mµµ distributions for J/ψ and Z resonances, post GridScan distributions.
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The correction parameters and the χ2/D.o.F. as a function of η are displayed in the Figures
4.32 and 4.33.

(a) ds0 as a function of η (b) ds1 as a function of η

(c) dr0 as a function of η

(d) dr1 as a function of η (e) dr2 as a function of η

Figure 4.32: ds0 and ds1,dr0 dr1 and dr2 muon momentum corrections as a function of η for
2017 ME tracks. Points are average over iterations and error bars are systematic uncertainties.
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Figure 4.33: χ2/D.o.F. between the signal+background and data mass distributions, after
calibration, as a function of η, for 2017 ME tracks.

The results of the calibration for the MS are displayed for two examples of barrel and end-
cap region in the Figures 4.30 and 4.31. The end-cap distributions, are comparable in variance
with the barrel distributions, pointing to the relatively increased performance of MS at the
end-cap compared to the ID.

In Figure 4.32 the scale parameters ds0, ds1 and the resolution parameters dr0, dr1 and dr2
are displayed as a function of η for Large and Small Sectors. Their behavior is similar to the
case of the Figure 4.28, for CB tracks. Therefore, their commenting is redundant and they are
displayed for completeness.

In the χ2/D.o.F. graphs for the CB (Figure 4.29) and the ME (Figure 4.33) the Small
Sectors exhibits larger χ2/D.o.F. values than the Large Sector. This discrepancy arises from
the more complex magnetic field structures in the Small Sectors, which are more challenging
to model accurately compared to the field in the Large Sectors.

In all post calibrationmµµ plots, a noticeable difference in the calibration quality is observed
between the J/ψ and Z resonances. The Z plots exhibit a successful closure and the ratio plots
are flat under the peak. In the J/ψ case, there are remaining structures in the ratio plots. This
is connected to a major theme of this thesis, as it hinders the dependence of the scale from
pµT . As mentioned, the calibration is favoring the Z resonance due to the greater availability of
simulated events. Consequently, a non closure in the J/ψ post fit plots is appearing. This is
treated with a systematic of scale calibration in the official ATLAS algorithm.

4.2.4 Validation

Using the validation framework, the calibration is systematically evaluated for the Z resonance.
The mean and variance of the mµµ distributions, in simulation and data, are compared as func-

tions of ηleading−µ, ϕleading−µ, and pleading−µT , pre and post-calibration. Validation is displayed
for CB tracks, other track types are not presented here to avoid redundancy, given their simi-
larity to the CB track calibration results. The J/ψ validation is presented in the Appendix E.
Non closures and problematic calibration regions will be reported to the corresponding muon
calibration team of ATLAS.

4.2.4.1 CB Z

ηleading−µ : In Figures 4.34 and 4.35, the mean and the σ of themµµ distributions are displayed
as a function of ηleading−µ.
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(a) Pre-calibration (b) Post-calibration

Figure 4.34: Pre and post calibration mean of mµµ distribution (70 < mµµ < 110 GeV) as a
function of ηleading−µ.

(a) Pre-calibration (b) Post-calibration

Figure 4.35: Pre and post calibration σCR of mµµ distribution (70 < mµµ < 110 GeV) as a
function of ηleading−µ.

Regarding mean, a dependence with ηleading−µ is observed pre-calibration, both in simulation
and data. This dependence originates primarily in the magnetic field in both cases. While the
magnetic field shape is modeled in both data and MC samples, certain biases present in the
data are absent in the MC. Consequently, the dependence of the mean on ηleading−µ appears
smoother in the MC samples.

There is an approximately flat dependence of the mean in the barrel and at the intermediate
region there is a clear structure for 1 < |ηleading−µ| < 1.5. This structure arises from the intricate
nature of the toroidal magnetic field in this region. Before the calibration, the corresponding
region has the largest difference between MC and data, and especially at |ηleading−µ| ≈ 1.5,
more than 0.1%. This is caused by the magnetic field ”hole” at the solenoid field and generally
it’s complex shape in that region, as mentioned in Chapter 2.2.3.

Post-calibration, the agreement reaches the level of 10−3 GeV in the majority of the regions,
while in others it deteriorates up to 2 × 10−2 GeV. The intermediate region exhibits outliers
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with significant non-closure. This is attributed to the complex magnetic field structures in this
area, highlighting the need for finer binning in the calibration to capture all underlying effects.
The high-uncertainty bin observed in the Figure 4.34 (b) originates from a failed parametric fit
of the mµµ distribution.

Regarding σ, a clear dependence with ηleading−µ is observed. This is primarily due to the
varying resolution of the detector systems across different η regions, which affects the precision
of muon momentum measurements. The barrel region exhibits the best resolution, as the CB
tracks are closely aligned with the ID, where the Inner Detector provides high-precision mea-
surements. In forward regions, the momentum resolution deteriorates, leading to a broadening
of the mµµ distributions. In very high |η|, the CB tracks increasingly resemble the ME tracks,
resulting in a decrease in σ.

Before calibration, the agreement between data and MC is approximately 2 × 10−1 GeV.
After calibration, it improves significantly to 1 × 10−2 GeV in the barrel region and 5 × 10−2

GeV in the forward regions. However, in the positive forward ηleading−µ region, outliers remain
with discrepancies up to 10−1 GeV. These non-closures in ηleading−µ require further investigation
by the ATLAS muon calibration group.

Overall, the majority of the regions exhibit a negative σdata − σMC after the calibration.
Over smearing, is a known problem with the current calibration algorithm of ATLAS and there
are active studies in the calibration group to address this issue.

ϕleading−µ : In the Figures 4.36 and 4.37, the mean and the σ of the mµµ distributions are
displayed as a function of ϕleading−µ.

(a) Pre-calibration (b) Post-calibration

Figure 4.36: Pre and post calibration mean of mµµ distribution (70 < mµµ < 110 GeV) as a
function of ϕleading−µ.
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(a) Pre-calibration (b) Post-calibration

Figure 4.37: Pre and post calibration σCR of mµµ distribution (70 < mµµ < 110 GeV) as a
function of ϕleading−µ.

Overall, the mean and σ exhibit a weaker dependence on ϕleading−µ compared to ηleading−µ.
This dependence arises from detector deformations and the complex structures of the toroid
magnetic field between the large and small sectors.

Comparison of the mean figures, pre and post-calibration, reveals that the calibration ef-
fectively addresses the discrepancies observed prior to calibration. Before calibration, the dif-
ference between MC and data is approximately 5 × 10−2GeV. Post-calibration, most regions
exhibit an agreement within 10−3GeV, with some outliers around −0.02GeV. In these re-
gions, the toroid magnetic field becomes complex, and the current calibration binning lacks the
resolution to fully capture the underlying structures.

The σ exhibits a smaller dependence with ϕleading-µ compared to the ηleading-µ case. Post-
calibration, an over-smearing effect is observed in the σdata−σMC plot, similar to the one shown
for ηleading-µ, in Figure 4.35 (b).

pleading−µ
T : In the Figures 4.38 and 4.39, the mean and the σ of the mµµ distributions are

displayed as a function of pleading−µT .
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(a) Pre-calibration (b) Post-calibration

Figure 4.38: Pre and post calibration mean of mµµ distribution (70 < mµµ < 110 GeV) as a

function of pleading−µT .

(a) Pre-calibration (b) Post-calibration

Figure 4.39: Pre and post calibration σCR of mµµ distribution (70 < mµµ < 110 GeV) as a

function of pleading−µT .

Regarding the mean, a distinct dependence of the mean with pleading-µT is exhibited, in sim-
ulation and data. This dependence primarily arises from kinematic effects and the background
mass distribution. Additionally, the agreement between MC and data also exhibits a pleading-µT

dependence. This is a known issue, originating from a non-closure of the calibration function,
and is a major factor addressed in this thesis.

The meandata − meanMC, in the first bin 25 < pleading-µT < 30 GeV, is positive. This phe-
nomenon arises because the calibration is optimized to describe the data best around the Z
pµT regime (approximately 44 GeV). In subsequent bins, there is excellent agreement, within
the order of 10−3 GeV. However, in the last bin, where pleading-µT > 100 GeV, the agreement
deteriorates to 6×10−2 GeV. This discrepancy at high pµT is treated as a systematic uncertainty
in the standard ATLAS calibration approach.
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4.2.5 Conclusions

In this section, the official recommendations for ATLAS muon momentum calibration were
presented. In the first part, mµµ distributions were presented for the different tracks, alongside
with the fitted calibration corrections. The method showed a closure on the Z resonance. From
the validation plots it is apparent that there is an average closure in the order of 10−3 GeV for
the mean, and 10−2 GeV for the σ.

Lastly, a comparison is made between the recommendations prepared in this thesis and
the official ones from ATLAS for another release of samples. In the Figure 4.40, the mean of
mµµ distributions is shown as a function of ηleading−µ, using muons originating from Z resonance
decay, for the two validations. A comparison demonstrates that the calibration developed in this
thesis achieves a level of precision comparable to that of the previous ATLAS recommendations.
There is a notable difference in the uncertainties between the two validations. The uncertainties
presented in this thesis have smaller error bars, suggesting a potential underestimation of
uncertainties. Since validation is an ongoing project, this is something to investigate further.

(a) Post calibration validation prepared
in the context of the thesis and muon mo-
mentum group recommendations

(b) Post calibration validation of ATLAS
recommendation, taken from ref.[46]

Figure 4.40: Post calibration figures of meanmµµ, as a function of ηleading−µ, for the calibration
recommendations prepared in this thesis and the official ATLAS recommendations of a previous
release. Muons originate from the Z resonance decay.

Further non closures and discrepancies are to be reported in the Muon Momentum Calibra-
tion group of ATLAS, as the recommendations extraction is a project in progress.
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Calibration for Z Boson Mass
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In this Chapter the calibration for the Z mass studies are going to be analyzed. First, the
challenges and the overall strategy are going to be discussed. A study regarding the Prompt
J/ψ, which are directly produced in the collision, and Non-Prompt J/ψ, which originate from
the decay of longer-lived particles such as b-hadrons, is analyzed. This study influences the
muon kinematic selection in the main calibration algorithm. The results of the calibration, in
the context of the Z mass measurement, as a function of ηµ and pµT separately are presented.

Results for the calibration as a function of pµT are presented for different trigger configura-
tions. Different trigger choices introduce different selections to the kinematic variables. This
can influence heavily the kinematic distributions and their agreement between simulation and
data. For the precision required for a Z boson mass measurement to include and study these
effects is important.
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5.1 Strategy for a Z Boson Mass Measurement Calibra-

tion

5.1.1 Introduction

The Z boson mass measurement in ATLAS requires a stable and accurate calibration, with
as negligible uncertainty contribution as possible. The main challenge in the analysis is the
reconstruction of the leptons which introduces reconstruction systematic effects in contrast with
the LEP measurement which did not require such a procedure as described in the Chapter 1.

Therefore reconstruction related biases have to be corrected before moving to the measure-
ment. This procedure is done through pµT calibration. First, the calibration must account for
charge dependent effects, which should, in principle, have minimal impact on the Z mass mea-
surement, as they primarily affect the tails of the mass distribution. Second, the charge inde-
pendent effects have to be corrected, which account primarily for magnetic field miss-modeling
and multiple scattering. In the Inner Detector calibration configuration, there are three pa-
rameters, which account for scale and resolution effects, have to be calculated as mentioned in
Equation 3.2, Chapter 3.3.

5.1.2 Available Resonances

ATLAS calibration frameworks and algorithms use a joint calibration of the ”standard candles”
J/ψ and Z. Calibration, in that case, is sensitive to Z mass value used in the simulation and it
can bias the final measurement. Consequently the Z boson resonance has to be excluded from
the calibration algorithm. Available di-muon resonances are Υ and J/ψ. Both resonances have
a background contribution which is hard to simulate as it originates from hadron decays and
Drell-Yan processes. Therefore, it is a non-resonant background. The background shape has to
be modeled using an analytical function with a data driven method. Since there are three Υ
mesons(1S,2S,3S), the calibration procedure is more complex as more parameters are needed
for the analytical fit. This is due to the fact that the resolution of the Inner Detector is not
low enough to distinguish efficiently between the three peaks. This poses significant challenges
in achieving precise calibration of Υ. Moreover, the lower cross section of Υ, results in reduced
number of Υ mesons compared to the J/ψ in data. The remaining J/ψ events can offer a more
precise calibration, as the muon resolution enables a clear separation between the J/ψ (1S) and
the excited ψ (2S) states.

5.1.3 Main Strategy and pµT dependence

One significant aspect of the analysis is that the calibration is not constant with pµT . The
parametrization of pµT , derived from the calibration parameters ds1, dr1, and dr2 presented
for the ID case in Equation 3.2, may not account for all the necessary effects, leading to
a pronounced dependence of the scale on pµT . Additionally, a dependence of the resolution
parameters should not be excluded.

Main strategy for the calibration in the context of the Z mass analysis is calibrating the
J/ψ resonance as a function ηµ. Secondly, extrapolating the calibration parameters from J/ψ
pµT regime (≈ 7 GeV) to the Z pµT regime ≈ 44 GeV. Calibration will be carried out for ID track
muons in the barrel region, where the Z mass measurement will also be conducted. There-
fore, first an accurate and with negligible statistical uncertainty J/ψ has to be derived in ηµ.
Next, the systematic uncertainties on that calibration have to be understood and studied. As
discussed in Chapter 2.2.4, the Inner Detector does not have a significant ϕµ structure. This
is reflected in the calibration, where a ϕµ dependence is not anticipated. Consequently, only
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Figure 5.1: Muon pµT in truth level, as generated from Monte Carlo generators before recon-
struction, from three different decays, J/ψ Prompt, Non Prompt and Z. Only selection applied
is: pµT > 6.3 GeV. Histograms are normalized to their own integral and secondly to the J/ψ
Prompt Integral

the ηµ dependence will be examined at a primary level. Particular focus will be placed on the
scale parameter ds1, as it has a strong influence on the mean of the di-muon distributions.
An incorrect calculation of its value could introduce a significant bias in the Z mass measure-
ment. Additionally, the uncertainties in the scale parameter ds1 are expected to significantly
contribute to the uncertainty in the Z mass measurement. In contrast, the uncertainties in the
resolution parameters are expected to have a lesser impact.

In the Figure 5.1, the truth level distributions of the pµT originating from J/ψ (Prompt
and Non Prompt) and Z are presented. The J/ψ and the Z have a significantly different pµT
distribution. The J/ψ resonance exhibits a peak at approximately 7 GeV, while the Z resonance
peaks at around 44 GeV. The substantial ”gap” between the dominant pµT of the J/ψ and that
of the Z resonance presents a significant challenge for accurate extrapolation. An overlap region
exists in the intermediate range of pµT , from 10 to approximately 24 GeV, where the Z boson
contribution is negligible, and the area is dominated by J/ψ. The second overlap region lies
above 24 GeV, where the contribution from J/ψ is minimal, and the area is predominantly
influenced by Z bosons. The first one will be excluded off due to triggers after reconstruction
which require both muon pµT > 25 GeV. Moreover, the Non Prompt are slightly more energetic,
something to be discussed in the Chapter 5.3.

Another factor to investigate in the context of Z mass analysis calibration is the calibration
of J/ψ produced in b hadron decays, far way from the interaction point, which is called Non
Prompt J/ψ. The J/ψ produced directly from gluon gluon fusion are called Prompt, near the
interaction point. Diagrams of the two production mechanisms are found in Section 5.3 and
Figure 5.7. This study is necessary since Non Prompt J/ψ are more sensitive to background
contribution leading to potential calibration non closures. Additionally, the pµT distribution
between the two production mechanisms is different in J/ψ and muons which could lead to non
closures, if these differences are not understood. The corresponding study in Chapter 5.3 will
influence muon selection for the main Z mass analysis calibration.

The main limiting factor of the calibration in the context of the Z mass analysis is the
amount of simulated events. J/ψ simulation samples, used in the timeline of this thesis, have a
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Figure 5.2: Global momentum scale ϵs as function of pµT using muons from J/ψ decay and 2018
campaign Data. From ref.[52]

sufficient size for calibration as a function of ηµ, but for the pµT it is not sufficient for a complete
study. This influence the number of regions fitted in the calibration algorithm. By increasing
the number of regions fitted finer corrections can be derived and therefore a more precise
result. A balance should be found between amount of regions in pµT fitted, to avoid having
regions with too few events, which would make the calibration fit unstable and not precise.
A strong dependence on pµT is observed. Consequently, at large pµT , where the number of J/ψ
drops exponentially, a larger sample would permit more accurate studies. A large number of
bins is required for pµT extrapolation to study the pµT dependence as accurately as possible, given
the observed strong dependence.

In addition, another key point of the analysis is the trigger choice because it can influence
the number of events, the shape of the distributions and consequently their agreement between
simulation and data. The pre-scale factors in data samples, as they have been presented in
Chapter 2.3, can influence the relative contribution of triggers in the pµT distribution, leading
potentially in an increase of disagreement between simulation and data.

5.1.4 Previous studies of muon momentum scale in ATLAS

Studies on dependence of scale from pµT have been conducted before in the ATLAS experiment,
paving a way for the Z mass analysis calibration. In the ref.[52], the scale, radial and longitu-
dinal distortions are studied. The article utilizes 2018 campaign data to study the scale as a
function of pµT . The article looks into the ϵs and ϵz, ϵr, the absolute momentum scale and the
scale originating from radial and longitudinal distortions respectively.

The method described in the article differs significantly from the one presented in this
thesis. The article uses only data to derive the scale. Also the fit procedure is fitting all the
pµT simultaneously, similarly to the sagitta bias fit described in Chapter 3.1.In contrast, this
thesis compares Monte Carlo simulations to data in order to derive the calibration corrections,
employing an iterative procedure as outlined in Chapter 3.3. Consequently, the plots and
results from the paper serve as a motivation for this research rather than influencing the central
argument of the thesis. The dependence of scale from pµT can be studied in a generic way from
this study and inspire the Z mass analysis calibration. In the article, radial and longitudinal
scale is found to be compatible to zero and global momentum scale is found to have a significant
impact.

In the Figure 5.2, the scale as a function of pµT is shown. At low pµT (6 - 20 GeV) there are
fluctuations and shapes which do not correspond to a clear dependence from pµT . At 6 GeV to
10 GeV there is a limited plateau, between 10 and 20 GeV a dip is observed and for larger pµT
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values a slow rising trend which reaches a steady plateau at ≈ 45 GeV. The high pµT plateau
means that even if a stronger dependence and not clear shapes are expected in low pµT , the
momentum scale of muons at Z pµT regime have relatively a flat dependence.

Moreover, in the article radial biases are considered compatible with zero using muons
coming both from Z and J/ψ resonances separately. Therefore, the assumption in this thesis
is that they are compatible with zero.

5.1.5 Alternative Calibration Strategies and methods

To attain the desired level of accuracy, the Z mass analysis explores various calibration methods
that could offer greater precision than the official ATLAS tools utilized in this thesis. For the
sake of completeness, some of these alternative calibration methods are presented here.

The calibration method of this thesis uses an iteration procedure as described in Chapter
3.3. This approach is taken to surpass the challenge of calibrating muons from the same di-muon
pair that are located in different detector regions. Another method currently implemented by
the analysis is to fit together all the regions of the detector in a joint fit. This is already done in
Sagitta bias measurement as described in ref.[52]. The challenge of this method is to constraint
the fit for all the regions of the detector and for multiple parameters, scale and resolution.

One approach to minimizing the number of floating parameters during the fit is to determine
some of them using the J/ψ and fit the remaining parameters with a different particle. The
Z mass analysis follows the scheme of simultaneously fitting both the scale and resolution
parameters, where the resolution parameter originating from multiple scattering is derived from
the J/ψ mass, while the resolution parameter associated with the magnetic field is obtained
from the Z mass. To avoid mZ dependence the later is measured using the Collins-Soper frame,
which is the rest frame of the boson, and the pseudo-mass observable ref.[53]. That way the
distribution fitted is independent from the value of mZ .

To study the dependence of the scale with pµT , the Z mass analysis is using a material
budget systematic. The hypothesis is that the amount of material in the Inner Detector is
miss-modeled leading to a dependence of the scale from the pµT .

5.2 Data and Simulation Samples

5.2.1 Selection

Data originate from BPhysics and Physics Main data streams defined in Chapter 2.3, for all
campaigns. MC was simulated using Pythia8 event generator ref.[51] with A14 add-on, a tune
for ATLAS physics. To add the effect of QED final state radiation the samples were interfaced
with Photos++ ref.[73]. Simulation samples ref.[74] were processed with Geant4 ref.[75] for the
detector effects.

The triggers used belong to the general trigger list and the MCP trigger list found in
Appendix I . The choice of trigger is an essential part of the calibration for the Z mass as it
can influence heavily the pµT distribution. The general trigger list provides a larger number of
available events. However, the triggers used may be pre-scaled, making the calibration sensitive
to any imperfections in the simulation of the trigger configuration in the MC.

In pre-selection phase, events with two muons are chosen and they are required to match and
to pass one of the triggers, as defined in Chapter 2.3, in the trigger lists used. The kinematic
selection is presented in the Table 5.2. This selection corresponds to main calibration in the
context of the Z mass measurement: Section 5.4 and 5.5. Non Prompt and Prompt J/ψ
calibration selection is specified in the Section 5.3.
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MC 2015-16 17,000,000
Data 2015-16 71,000,000
MC 2017 20,000,000
Data 2017 84,000,000
MC 2018 25,000,000
Data 2018 133,000,000

MC overall 58,000,000
Data overall 280,000,000

Table 5.1: Available di-muon pairs for the three campaigns before trigger matching and passing,
at the momentum range of the calibration studies: pµT > 6.3 GeV and the mass range of the
J/ψ resonance: 2.6 < mµµ < 3.5 GeV

Selection
pµT > 6.3 GeV

2.7 < mµµ < 3.5 GeV
−1.05 < ηµ < 1.05

d0
σd0

< 3

z0 × sin θ < 0.5 mm

Table 5.2: Kinematic selection criteria for muon events. This selection corresponds to the main
calibration in the context of the Z mass measurement: Section 5.4 and 5.5. Non Prompt and
Prompt J/ψ calibration selection is specified in the Section 5.3.

In the Figure 5.3, histograms of event yield during selection process are presented, for data
and MC Prompt and Non Prompt J/ψ. The Prompt and the Non Prompt J/ψ are defined
in Section 5.3.1. The simulation samples presented are not scaled to the corresponding cross
section values and luminosity. The muons are restricted in the J/ψ mass range. Selection cuts
are applied one after the other from the left to the right:
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(a) 2015-16 (b) 2017

(c) 2018

Figure 5.3: Cut flow histograms showing the number of events after each selection criteria for
data, and MC Prompt and Non Prompt J/ψ. J/ψ definitions are presented in Section 5.3.1.
The x-axis represents the selection criteria applied sequentially. First bin corresponds to signal
dominant phase space region: 2.7 < mµµ < 3.5 GeV and pµT > 6.3 GeV.

In the Figure 5.3, the number of events in the barrel region (−1.05 < ηµ < 1.05) are shown
in the final bin of each histogram. Due to the limited number of simulated events, the final
selection contains a significantly low event yield. This poses a significant challenge for the
analysis, as it limits the number of bins available for both calibration as a function of ηµ and
pµT . In ηµ, the ds1 for barrel ID is expected to be relatively flat but for the pµT extrapolation,
where a strong dependence is expected, a low number of bins is possible to lead to an imperfect
extrapolation.

5.2.2 Data and Simulation Comparison

Kinematic distributions are compared between simulation and data. The calibration required
for this measurement’s precision is sensitive to various simulation mis-modelings, such as de-
tector distortions and mis-modeling of the magnetic field.

The results will be repeated for different trigger configurations, as these can significantly
impact the kinematic distributions. As demonstrated in Section 5.5 of this chapter, the choice
of trigger can strongly affect the pµT dependence of the scale. For 2017 and 2018 there will be
a comparison between the general trigger list and the MCP trigger list choice. For 2015-16 the
MCP triggers are not present in the samples. As a result, such a comparison is not feasible.
Therefore, for the 2015-16 data, only the general trigger list will be used. The general trigger
list has a larger number of events both in simulation and in data. The selection used in the
kinematic plots to be presented are relevant for the main study of ηµ and pµT calibration in
the context of the Z mass analysis. Only muons at the barrel region are relevant and di-muon
events produced near the interaction point.

In the Figure 5.4, the leading muon pµT is shown for the three campaigns. Regarding 2017
and 2018, there are trigger effects which can be seen at the ratio plots as shapes. These trigger
effects occur in regions of pleading−µT where key triggers impose thresholds in both configurations,
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specifically at pleading−µT ≈ 11 GeV and pleading−µT ≈ 20 GeV. These effects are expected to have
an effect on the calibration, and mostly in the calibration dependent from pµT presented in
section 5 of the chapter. Regarding 2015-16, the trigger effect is visible at pleading−µT ≈ 20 GeV.

Using the MCP trigger list, a double trigger peak is observed at low pµ,leadingT , for the two
triggers applied. Both triggers apply significantly different cuts on pµ,leadingT , resulting in the
observed double peak. The general trigger selection has a clear peak followed by a declining
distribution, with the exception of a slight rise observed at pleading−µT ≈ 20 GeV.

The choice of trigger configuration, depending on the campaign, results in variations in the
slope at high pµ,leadingT . In the 2018 histogram, the ratio plots show a flat trend in the high-pµT
region for the general trigger configuration, whereas the MCP trigger list exhibits a rising slope,
reaching values of approximately 1.3. For the 2017 campaign, both configurations display a
steadily rising trend in the corresponding ratio plots. Similarly, a rising trend is observed for
the 2015–16 campaign.

(a) 2018 (b) 2017

(c) 2015-16

Figure 5.4: Leading muon pµT for simulation and data using different trigger lists: MC and
Data for general trigger list, MCP MC and MCP Data for MCP trigger list. Selection applied
is corresponding to Table 5.2

In the Figure 5.5, the sub-leading muon pµT is shown for the three campaigns. Trigger effects
are less visible in the ratio plots. Depending on the campaign the Data to MC agreement has
opposite slides with pµ,subleadingT . The 2018 have a falling one and the 2017, 2015-16 have a steep
rising one.
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(a) 2018 (b) 2017

(c) 2015-16

Figure 5.5: Sub-leading muon pµT for simulation and data using different trigger list: MC and
Data for general trigger list, MCP MC and MCP Data for MCP trigger list. Selection applied
is corresponding to Table 5.2

In the Figure 5.6, the pµµT is shown for the three campaigns. These histograms are important
because of the J/ψ pµµT − Y µµ re-weighting used in the ηµ and pµT calibration presented in this
chapter on sections 4 and 5. Trigger effects are evident in the ratio plots, as well in the low pµµT
region. Different trends are observed depending on the campaign. Most important effect is on
2017 and 2015-16, where there is a large disagreement shape at the ratio plots above pµµT ≈ 60
GeV. Since these ratios will be used in the re-weighting procedure, an effect is expected at the
pµT calibration.

The ultra high values observed are likely to originate in overlap of events in the data samples.
Specifically, there are some events which overlap between the two data streams, Physics Main
and BPhys. This effect was not possible to be corrected in the timeline of the thesis.
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(a) 2018 (b) 2017

(c) 2015-16

Figure 5.6: Di-muon pT for simulation and data for different using different trigger list: MC
and Data for general trigger list, MCP MC and MCP Data for MCP trigger list. Selection
applied is corresponding to Table 5.2

5.3 Prompt - Non Prompt J/ψ Calibration

In this Section, two different sets of calibrations are being compared, one for muons coming
from Prompt J/ψ decays and one for Non Prompt J/ψ decays. Two studies are performed
depending on the separation variable used between Prompt and Non Prompt J/ψ. One is a
short study where the variables used for the separation are the standard ATLAS analysis ones
(d0 significance and z0× sin θ) and a more complete study as separation variable the transverse
decay length of the parent particle of the J/ψ. Only 2017 campaign samples were used in this
section.

The main motivation for comparing muon calibration between Prompt and Non-Prompt
J/ψ samples arises from the need to ensure precise and accurate calibrations. By adding the
Non Prompt J/ψ in the calibration the statistics increase almost by a factor of two in simulated
events and in data. Thus, one might anticipate a reduction in the statistical uncertainty of the
fits during the calibration process. J/ψ mesons can originate either directly from the primary
collision or from the decay of longer-lived particles such as b-hadrons. These two sources can
exhibit different kinematic characteristics, potentially leading to discrepancies in the calibration
process. By comparing the muon calibration between Prompt and Non-Prompt J/ψ samples,
the aim is to identify and correct any biases or variations between the two. The result of this
study gives a answer on the muon selection implemented to differentiate between Prompt and
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Non Prompt in the Zmass analysis calibration .

5.3.1 Prompt - Non Prompt Mesons

Figure 5.7 illustrates the production of Prompt and Non-Prompt J/ψ. Prompt J/ψ are gen-
erated near the interaction point through various processes, including direct production from
gluon-gluon fusion or decays of higher-mass excited charmonium states such as ψ(2S) or χc.
In contrast, Non-Prompt J/ψ originate from the decays of beauty mesons. The two categories
can be experimentally distinguished, as Non-Prompt J/ψ are predominantly produced at a
displacement from the interaction point due to the long lifetime of b-mesons.

beam-axis

p
p

B
 meson

Non 
Prompt 

J/ѱ
 

beam-axis

p
p

Prompt
J/ѱ

Figure 5.7: Sketch of Prompt and Non Prompt J/ψ production. Prompt J/ψ are produced
close to the interaction point, where Non Prompt J/ψ are produced in majority displayed, after
the decay of B mesons.

5.3.2 d0/σd0 ,|z0 × sin θ| study
The simulation and data distributions are influenced from multiple factors such as the ηµ, pµT
selection, separation variable between Prompt and Non Prompt and the triggers used. A key
feature of this study is the separation variables used for the distinction of the two. A standard
choose of selection is: | d0

σd0
| < 0.3 and |z0 × sin θ| < 0.5 mm. Corresponding distributions are

shown in the Figures 5.8a and 5.8b.
In the Figures 5.8a and 5.8b, data (red) is a mixture of the Prompt (blue) and Non Prompt

(green) J/ψ distributions. The distributions correspond to full Run-2 merged and they are
normalized to the data histogram. Regarding d0/σd0 , a peak around 0 is observed, corresponding
to J/ψ particles produced near the interaction point, originating from both Prompt and Non-
Prompt processes. As expected, the contribution of Prompt around 0is larger compared to the
Non Prompt, but the later exhibit also a lower peak. The Prompt J/ψ contributions becomes
negligible at |4|. In larger values, the main contribution originates from Non Prompt J/ψ. In
the Figure 5.8b the same behavior is observed. All distributions show a peak at 0, originating
from muons produced near the interaction point, with the majority of the contribution coming
from Prompt J/ψ. Around 0.2, the Prompt contribution nearly vanishes, and the Non-Prompt
contribution becomes the dominant one.

These variables are used for the first study. Two sets of calibrations were produced depend-
ing on the Non Prompt J/ψ definition. The HLT triggers used for the short studies are the
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Figure 5.8: d0 significance and |z0× sin θ| distributions for data, Prompt and Non Prompt MC.
Only selection applied is pµT > 6.3 GeV and 2.7 < mµµ < 3.5.

MCP trigger list, described in Appendix I. The triggers chosen are for the corresponding cam-
paign (2017) are not pre-scaled, which lead to a better agreement of pµT distributions between
data and MC. The initial selection used to distinguish between Prompt and Non-Prompt J/ψ
in the preliminary study is presented in the table 5.4.

Selection
pµT > 6.3 GeV

2.7 < mµµ < 3.5 GeV

Table 5.3: Selection criteria for
muon events.

Prompt Non-Prompt
|d0/σd0| < 3 |d0/σd0| > 3
|z0 sin θ| < 0.5
mm

|z0 sin θ| > 0.5
mm

Table 5.4: Selection applied to muons, to
separate Prompt and Non Prompt J/ψ
candidates for d0 significance and z0 sin θ
selection

The selection criteria in Table 5.4 are designed to minimize the contamination between
Prompt and Non-Prompt J/ψ candidates in the samples. As a result, the number of Non-
Prompt J/ψ candidates in the simulation is low, leading to a large statistical uncertainty in
the corresponding calibrations.
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Figure 5.9: Scale as a function of ηµ for two different samples, Prompt and Non Prompt J/ψ,
as described in the Table 6.14b156ΓZfigure.caption.166ults are average over iterations and error
bars are the standard deviation

In the Figure 5.9, the Non Prompt J/ψ calibration exhibits a large statistical uncertainty
due to the low number of events in the corresponding simulation sample. A less negative scale
is found for the Non Prompt than for the Prompt in all the ηµ bins. This is an indication of
the scale dependence from the pµT of the muons, as Non Prompt J/ψ tend to have larger pµT .

5.3.3 Lxy study

Lxy variable and samples The main study of Prompt and Non Prompt J/ψ calibrations
uses another variable for the separation of the two, the transverse decay length Lxy, where
Lxy is the distance a particle travels in the transverse plane from the primary vertex to the
secondary vertex where it decays. Lxy is computed as:

Lxy = ∆⃗S × p⃗µµT
|pµµT |

= cosΦ× |∆⃗S|

where ∆⃗S is the decay length of the parent particle or the three dimensional distance between

primary secondary vertex, p⃗µµT is the pµµT candidate J/ψ transverse momentum and Φ is the
angle between them, as shown in the Figure 5.10.
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Figure 5.10: Lxy sketch in the x,y,z axis system of ATLAS. The red arrow corresponds to decay
length of parent particle and the black arrow is the momentum of the J/ψ. IP corresponds to
Interaction Point.

The Lxy distribution in Prompt and Non Prompt J/ψ simulation is shown in the Figure
5.11.

Figure 5.11: Prompt (blue) and Non Prompt (red) simulation histograms of J/ψ Lxy. Non
Prompt histogram is normalized to Prompt.

The separation of Prompt and Non Prompt J/ψ is visually clearer than the one seen in the
Figures 5.8a -5.8b, therefore the Lxy variable is chosen for the separation of two for the following
study. Additionally, Lxy is a variable that describes the di-muon resonance itself, while the d0
significance and z0×sin θ characterize the individual muons. Therefore, is worthwhile to explore
Lxy as a separation variable between J/ψ events.

In the Figure 5.11, Prompt J/ψ exhibit a clear peak centered around 0. Prompt though has
a negligible contribution towards positive values. This tail is originating to resolution effects
but also to a reconstruction non closure. Both Prompt and Non Prompt have a minor negative
tail which has an insignificant number of events below −4 mm. The negative values in majority
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are present both in Prompt and Non Prompt due to resolution but as well could be in the cases
the J/ψ candidate’s momentum is pointing to the opposite direction from the ∆⃗S computed
and the Φ angle is between π

2
and π. The Non Prompt distribution shows a small percentage of

entries with negative values (around 1%), whereas the Prompt distribution is more symmetric
around 0, with a slight preference for the positive side. This asymmetry arises because Non-
Prompt J/ψ mesons are more energetic and boosted, causing their preferred flight direction to
align with that of the parent particle.

A similar analysis could be performed using the d0 significance and interaction point con-
straint, and a result similar to the one presented in this study is expected. Further information
on the reconstruction of displaced secondary vertices and b-tagging can be found in Chapter
2.2.4.

The Prompt and Non Prompt J/ψ populations are separated in this study with the selection
presented in the Table 5.6.

Selection
pµT > 6.3 GeV

2.7 < mµµ < 3.5 GeV

Table 5.5: Selection criteria for
muon events.

- Prompt
Non-
Prompt

Lxy < 0.2 mm > 0.5 mm

Table 5.6: Selection applied to Prompt and
Non Prompt J/ψ candidates for Lxy based
selection

With this selection two well separated samples of Prompt and Non Prompt J/ψ are obtained.
In the Prompt sample there is a low contamination of Non Prompt about 2% and in the Non
Prompt sample there is a contribution of 1% in Prompt.

For the Lxy studies the general trigger list for 2017 campaign is used, presented in Appendix
I. The triggers can include selection on Lxy and other kinematic variables. Therefore, they are
a critical aspect of this study as they can shape the kinematic distributions such as J/ψ mass
and pµT , influencing the calibration comparison between Prompt and Non Prompt.

To justify the use of the general trigger list over the MCP list, kinematic distributions are
compared and analyzed for both trigger configurations. In the following Figures, distributions
of Prompt and Non Prompt are shown, for two different trigger configurations:
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(a) Prompt and Non Prompt mµµ with MCP
trigger list
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(b) Prompt and Non Prompt mµµ with com-
plete trigger list

Figure 5.12: Comparison ofmµµ distributions between Prompt and Non Prompt J/ψ simulation
for two different trigger configurations. Non Prompt distributions are scaled to Prompt ones.

In the Figures 5.14a and 5.14b, the agreement between Prompt and Non Prompt mµµ

distributions depend on the trigger configuration chosen. The origin of this discrepancy can
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Figure 5.13: Comparison of pµµT distributions between Prompt and Non Prompt J/ψ simulation
for two different trigger configurations. Non Prompt distributions are scaled to Prompt ones.

be traced to the Lxy cuts applied to the di-muon in the MCP trigger list, which primarily
affects the pµT distributions originating from Non-Prompt J/ψ. This is clearly reflected in Fig-
ure 5.13, which shows the pµµT distributions. One of the peaks, associated with the trigger
HLT_2mu6_bJpsimumu_Lxy0_L1BPH_2M9_2MU6_BPH_2DR15_2MU6, is absent in the Non-Prompt
J/ψ case. This absence is due to the Lxy selection present in the trigger. In the pµµT distribu-
tions, where the general trigger list is utilized, shown in Figure 5.13b, the agreement between
the two is better, making this configuration the most suitable for this study. It is advantageous
to use the configuration in which the kinematic distributions align most closely between sim-
ulation and data, ensuring that any discrepancies observed between the two calibrations are
well understood. In Figure 5.13, the choice of the Lxy cut on the Non-Prompt J/ψ favors more
energetic Non-Prompt J/ψ, leading to a difference between the Prompt and Non-Prompt J/ψ
kinematic distributions, such as the pµT distributions.

Calibration Comparison As a first stage, the comparison of the calibration between Prompt
and Non Prompt is investigated. No pµµT re-weighting is applied, which is going to be used in
the second part of the study. The full pµT range is used, with three pµT bins used per ηµ region
based on the pµT of the sub-leading: 6.3 < psubleadingT < 9 GeV, 9 < psubleadingT < 20 GeV and
20 < psubleadingT < 60 GeV.
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(a) Prompt J/ψ (b) Non Prompt J/ψ

Figure 5.14: mµµ post-calibration distributions for Prompt (a) and Non Prompt (b) J/ψ,

5th iteration. Example for first pT bin: 6.3 < psubleadingT < 9 GeV and first ηµ bin: ηµpos or
ηµneg ∈ 0 < ηµ < 0.4. Complete trigger list used.

In the Figure 5.14, Prompt and Non Prompt J/ψ are shown after the likelihood minimization
algorithm for iteration 5 and for the first ηµ bin: ηµpos or ηµneg ∈ 0 < ηµ < 0.4. Only the first

pT bin here is shown 6.3 < psubleading−µT < 9 GeV since a similar level of agreement is found in
other

The post-calibration agreement between data and MC is successful below the peak for both
the Prompt and Non-Prompt J/ψ cases, as shown in Figure 5.14. Non Prompt J/ψ is more
sensitive to background contribution as observed in the Figure 5.14 (b). As an example for
the ηµ region shown, the percentage of background yield fitted to the data yield for the three
psub−leadingT bins is presented in the table 5.7. Two observations are extracted from the table.
First, the background contribution is nearly twice as large in the Non-Prompt case compared
to the Prompt case. This makes the Non-Prompt calibration more sensitive to the background
model, potentially introducing biases into the calibration process. In contrast, an incomplete
background model for the Prompt J/ψ case is less likely to result in calibration inaccuracies,
as the background contribution is limited. A second observation is the fact that background
percentage is increasing with pµT , which is an interesting observation for the calibration as a
function of pµT , to be presented later in this Chapter.

NBkg/NData% Prompt NBkg/NData% Non Prompt

6.3 < psub−leadingT < 9 7.2 20.1

9 < psub−leadingT < 20 GeV 8.7 20.1

20 < psub−leadingT < 60 GeV 12.5 21.4

Table 5.7: Percentage of background fitted to data yield for the three pT bins used in the study.

A better pos-fit agreement is seen in the Figure 5.14 (a) (b) in the Prompt case compared
to the Non Prompt one. This is considered mainly as a problem of the background fit non
closure due to the larger background contribution.

The comparison of calibration results for the scale parameter as a function of ηµ are shown
in the Figure 5.15a:
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(a) Scale ds1 (b) χ2/(Degrees of Freedom)

Figure 5.15: Scale and χ2/(Degrees of Freedom) between signal+background and data, as a
function of ηµ, for Prompt (blue) and Non-Prompt (red) J/ψ samples, as defined in Table 5.6.
χ2/ computed by comparing MC and data histogram, post-calibration. ID tracks. Points are
average over iterations and error bars are Standard Deviation.

In Figure 5.15a, the calibration parameter for scale is shown for both Prompt and Non-
Prompt J/ψ. Large error bars are observed in the case of Non-Prompt J/ψ, which arise
from two sources. The most significant reason is the low number of events at the simulated
Non Prompt sample. The second reason is the large background contribution in Non Prompt
resulting in some regions to a background shape fit fail in large ηµ regions. In the Prompt
case similar behavior is observed in the large |ηµ| bins of 2.3 to 2.6. This behavior is rising
due to low number of events and very high background contribution in the endcaps regions
resulting in some background fails. Since the Z mass analysis is only using the barrel region
the focus should be given to the six central points in the -1.05 to 1.05 ηµ. Overall Prompt
calibrations has an excellent performance and a statistical uncertainty of the order of 10−5 in
the barrel region. Non Prompt has slightly larger standard deviation over iterations due to
the low number of events in the simulation and the fact that the background contribution is
larger in the Non Prompt. Since the background shape is fitted using a parametric function
rather than derived from simulation, its behavior is less well understood, especially when the
background contribution is significant. This can increase the likelihood of inaccuracies in the
calculation, potentially introducing additional instability in the iterative process.

The χ2 to degrees of freedom (d.o.f.) as a function of ηµ is shown in the Figure 5.15b.The
larger χ2/d.o.f. for the Non-Prompt J/ψ calibrations suggests a potential non-closure in the
calibration compared to the Prompt J/ψ. Given that the primary difference between the
two is the background contribution, it is inferred that the discrepancy observed in this plot
between the Prompt and Non-Prompt J/ψ calibrations is due to an imperfect representation
of the background shape. It the central region there is a clear difference between the two
distributions. The Prompt fits exhibit a better convergence as reflected by the χ2 to degrees
of freedom values. On the contrary at the intermediate regions ( 1.5 < |ηµ| < 2 ) there is a
tendency for agreement between the two calibrations regarding the quality of the fit. But in
the endcap, the Non Prompt case have points which are far above 2 and are out of scale in the
given graph.

A study was conducted to test the hypothesis of background non-closure in the calibration
fit, which is presented in Appendix F.2. In this study, the nominal calibration is compared to an
alternative one, which utilizes a more complex background model. Furthermore, in Appendix
F.1 the comparison of the resolution parameters for the Prompt and the Non Prompt J/ψ
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calibrations is presented.

Calibration Comparison, Re-weighting Study Finally, an additional study is con-
ducted to further investigate the discrepancy between the two calibrations.The pµµT distributions
for Prompt data, Prompt simulation, and Non Prompt simulation are re-weighted to match
the corresponding distributions in Non-Prompt data. The re-weighting is performed by a 2-
dimensional re-weighting map of pµµT and rapidity Y µµ. The process accounts for two effects,
one is the higher pµT of the Non Prompt J/ψ and the other is physics differences as mentioned
earlier due to the two different production mechanisms. The re-weighting in data samples is not
a common technique, as it changes the physics properties of the actual data collected from the
detector. Therefore, this is just a trial study not to be used in the actual analysis calibration.
The three maps are shown in the Figure 5.19.

Figure 5.16: Non Prompt MC to Non Prompt
data re-weighting map

Figure 5.17: Prompt data to Non Prompt
data re-weighting map

Figure 5.18: Prompt MC to Non Prompt data
re-weighting map

Figure 5.19: Re-weighting maps to Non Prompt J/ψ data pµµT and Yµµ distributions.

In all the Figures 5.16, 5.17, and 5.18, Non-Prompt data exhibits higher pµµT than the Prompt
MC and data, as well as Non-Prompt MC, as indicated by the yellow zone on the right side of
the maps. This phenomenon in the Prompt maps is explained by the fact that Non Prompt
J/ψ, produced far from the interaction point, tend to be more energetic. In the Non Prompt
MC maps, however, it suggests a mis-modeling of the pµµT distribution.

In the two re-weighting map Figures 5.16 and 5.18, a structure is appearing in the 0.7 of Y
from lower pµµT to higher pµµT . In Figure 5.16, the pµµT distribution of Non Prompt data exhibits
a similar structure to that of Non Prompt MC, which remains visible up to approximately 60
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GeV. In contrast, in the Prompt MC case shown in Figure 5.18, the structure is less apparent
between 10 GeV and approximately 40 GeV. This difference arises due to the higher pµµT of
Non-Prompt data, which obscures the structure at higher pµµT values. This structure is non
present in data re-weighting map (Figure 5.17) therefore signaling that this structure is likely
related to a detector effect. It’s significance and origin are beyond from the scope of this study
so as an effect it will be corrected by the p

J/ψ
T re-weighting.

In the re-weighting procedure, a new weight is derived from these maps and multiplied with
the existing event weight. For each event, the new weight is determined by identifying the bin
corresponding to the event’s p

J/ψ
T and |Y J/ψ| values on the map. To ensure continuity between

bins, a linear interpolation is carried out between the identified bin and its neighboring ones. To
ensure there are no large weights which could affect the distributions in a un-physical manner
weights are restricted to the range: [0.7,1.3].

The results from this study are exhibited in the Figures 5.20.

Figure 5.20: Scale as a function of ηµ for Prompt (blue) and Non Prompt(red) J/ψ samples,
Prompt data and MC and Non Prompt MC are re-weighted to Non Prompt data as defined in
Table 5.6. ID tracks. Points are average over iterations and error bars are Standard Deviation.

In the Figure 5.20 there is a clear difference between Prompt and Non Prompt calibrations
persisting after the re-weighting. The two calibrations show a closer agreement in comparison
to Figure 5.15a, where no re-weighting is applied. Notably, the issue of larger error bars
persists. The larger background contributions in the Non-Prompt J/ψ sample significantly
impact the understanding of the J/ψ pT distribution. As a result, further studies on Non-
Prompt calibrations are considered beyond the scope of this thesis. Given the sufficiently
large Prompt J/ψ sample, which enables a calibration with minimal statistical uncertainty
(approximately 10−5 for scale) in the barrel region, the inclusion of the Non-Prompt J/ψ
sample is deemed unnecessary, as its addition does not enhance the precision of the calibration.
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5.4 Calibration as a function of ηµ

In this Section, the muon momentum calibration as a function of ηµ in the context of the Z
mass analysis is going to be analyzed. First, the method and technical details are presented.
Examples of mass distributions are shown, pre and post calibration. Corrections of momentum
scale and resolution as functions of ηµ and the process of deriving them are presented, with the
corresponding systematic uncertainties.

Muon momentum calibration in ηµ is necessary to correct for non charge dependent bias
effects. Since the calibration in Z mass analysis is focused in the ID tracks, there is no con-
tribution from energy loss of the muons in these biases. The origin of the biases corrected are
radial displacements, magnetic field miss-simulation and multiple scattering.

5.4.0.1 Method

After the Non Prompt Study of subsection 5.3 an exclusion of Non Prompt J/ψ is decided.
Lxy variable is considered to have similar results with the d0 significance and the |z0 × sin θ|
variables used frequently in ATLAS analyses for the separation of the Prompt and the Non
Prompt J/ψ samples. Therefore, the d0 significance and |z0×sin θ| will be used for the selection
of Prompt and Non-Prompt J/ψ. To exclude the majority of Non Prompt J/ψ the kinematic
selection of Table 5.2.

Deriving the calibration with different configurations as discussed in Chapter 3.3 produces
systematic variations of the calibration parameters. A major challenge for the Z mass analysis
is the calibration in ηµ and the extrapolation of correction parameters. Therefore, statistical
uncertainty per region over iterations and the systematic uncertainties were analyzed thoroughly
and understood during the thesis. The main source of systematic uncertainties are the ones
obtained from technical changes in the calibration and selection, to ensure that the process
is independent from the specific methodology chosen, as well as variations of the analytical
background fit. A detailed analysis of the systematic uncertainties is provided in Chapter C.
For this calibration algorithm, only the systematic uncertainties relevant to the J/ψ resonance
will be considered:

• pµT down: pµT binning for the sub-leading muon (S.L.)is changed from 6.3 < pS.L.T < 9 GeV
and 9 < pS.L.T < 20 GeV to 6.3 < pS.L.T < 8 GeV and 8 < pS.L.T < 20.

• pµT up: pT binning is changed from 6.3 < pS.L.T < 9 GeV and 9 < pS.L.T < 20 GeV to
6.3 < pS.L.T < 12 GeV and 12 < pS.L.T < 20 GeV.

• Background Parametrization: background model is changed from exponential to a Cheby-
sev of the second order.

• Background Technique: Signal model is changed from a Gauss and a Crystal Ball to a
double Crystal Ball one. The Crystal Balls share a common mean and a different σ, α
and ηµ.

• J/ψ Bin Reduce: mµµ histogram limits change from 2.8 to 3.4 GeV to 2.75 and 3.5 GeV.

• J/ψ Bins down: Number of bins are reduced from 90 to 60.

Systematic variations are calculated as follows: the nominal calibration is first performed
for a sufficient number of iterations. Each systematic variation is run for the same number of
iterations, with the mean over last ten iterations to be taken as the value for that systematic.
The means of all systematic variations are compared to the nominal mean, and the variation
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with the largest deviation from the nominal is identified as the systematic uncertainty. Depend-
ing on whether this difference is positive or negative, the systematic variation is categorized as
either an ”up” or ”down” variation.

The ηµ calibration employs twelve regions within the barrel region. This number of regions
is selected to ensure that each contains a sufficient number of events to allow for stable fits.
Muons in the data samples are corrected for charge dependent effects with Sagitta bias produced
by the ATLAS official recommendation. ηµ calibration is repeated for all campaigns.

A summary of the ηµ calibration procedure is the following:

• From Iteration 5 to Iteration 14, a likelihood minimization method is employed to estimate
the calibration parameters.

• In Iteration 15, the average calibration parameters from Iterations 5 to 14 are used as
input values instead of the results from Iteration 14. This approach helps stabilize the fit
across iterations and minimizes the statistical uncertainty of the calibration parameters.
The final results are derived from Iterations 15 to 20, with the calibration parameter
values taken as the mean across these iterations and the statistical uncertainty calculated
as their standard deviation.

• The iterative procedure also impacts the analytical fit used to estimate the background
contribution, including the parameters of the Gaussian and Crystal Ball distributions.
To aid convergence, the analytical fit parameters from one iteration are carried forward
and injected as initial values for the next iteration. The results of the analytical fits are
stored for each ηµ region in every iteration and used as input for subsequent iterations.

Finally, a re-weighting of the pµµT distribution is applied, utilizing a pµµT −Y µµ map to match
the pµµT distribution of the MC to that of the data. This re-weighting helps mitigate additional
mis-modelings that could introduce calibration bias. The calibration is performed exclusively
in the barrel region, as it is the focus of the Z mass analysis. The process is repeated separately
for the 2015-16, 2017, and 2018 campaigns.

5.4.0.2 Results

Figures 5.21 and 5.22, present a comparison of the mµµ distributions in data and MC, before
and after the application of the calibration. One example is shown for the central barrel region,
and another for the outermost barrel region.
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(a) Pre-Calibration distributions for the pT
bin :6.3 < psub−leadingT < 9 GeV

(b) Post-calibration distributions for the pT
bin :6.3 < psub−leadingT < 9 GeV

(c) Pre-calibration distributions for the pT bin

:9 < psub−leadingT < 20 GeV

(d) Post-calibration distributions for the pT
bin :9 < psub−leadingT < 20 GeV

Figure 5.21: mµµ distributions before (a and c) and after (b and d) calibration. One of the
muons is required to be in ηµ region: 0 < ηµ < 0.4
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(a) Pre-Calibration, pT bin :6.3 <

psub−leadingT < 9 GeV

(b) Post-calibration, pT bin :6.3 <

psub−leadingT < 9 GeV

(c) Pre-calibration, pT bin :9 < psub−leadingT <
20 GeV

(d) Post-calibration, pT bin :9 <

psub−leadingT < 20 GeV

Figure 5.22: mµµ distributions before (a and c) and after (b and d) calibration. One of the
muons is required to be in ηµ region: −1.05 < ηµ < −0.8

The mass distributions of −1.05 < ηµ < −0.8 region in the Figure 5.22 are wider than the
ones presented in the Figure 5.21 of 0 < ηµ < 0.4. This is pointing to the increase of the
muon momentum resolution with ηµ. Post calibration agreement between calibrated MC and
data mass distributions is larger in the first 6.3 < psub−leadingT < 9 GeV bin in both Figures
5.21 b) and 5.22 (b) compared to the second 9 < psub−leadingT < 20 pT GeV bins 5.22 d) and
5.22 (d). This phenomenon is observed for two reasons. First, the second pT bin has fewer
number of events compared to the first one, leading to the fit prioritizing in the minimization
the parameter values that describe the first pT bin. Second, the phenomenon is pointing to
a significant scale parameter ds1 dependence with pµT , which complicates the fit’s ability to
accurately calibrate both bins.

In both Figures 5.21 (b) and 5.22 (b), the ratio plots at the bottom of the figures are flat
beneath the resonance peak, which confirms the accuracy of the scale calibration. However, in
the tails of the distributions, the fit becomes less precise, and some structures are observed.
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The observed discrepancies are attributed to imperfections in the calibration algorithm and
the low number of events in the tails. The ds1 scale parameter, which is the most significant
for Z mass measurement, has a more pronounced effect on the position of the distributions.
Consequently, the structures seen in the tails are considered to be non-closure effects, which
are acceptable and do not require further attention within the scope of this study.

The scale ds1, the resolution dr1 and dr2 are presented in the Figure 5.23.

(a) ds1 parameter (b) dr1 parameter

(c) dr2 parameter

Figure 5.23: Calibration Parameters as a function of ηµ for the three campaigns and ID muons.
Points are average over iterations and the error bars are systematic uncertainties for the corre-
sponding iterations.

In the Figure 5.23 the calibration correction parameters for 2018,17,15-16 are shown with
their systematic uncertainties contribution. The scale ds1 (a) is relatively flat for the inner
barrel region of −0.8 < ηµ < 0.8 with a value ≈ 10−3. From 0.8 to 1.05 and from −0.8 to
−1.05 scale exhibits an anti - symmetric behavior with opposite behavior in the corresponding
ηµ bins. The anti-symmetric behavior, and specifically the large negative values observed in the
bin −0.8 to −1.05, are likely caused by the solenoid magnetic field measurement, as mentioned
in Chapter 2.2.3. Moreover, it is known that magnetic field in the intermediate region has a
complex nature which requires larger corrections at the corresponding regions.

In the barrel region systematic uncertainty is ≈ 10−5 for scale parameter, for all campaigns,
which is sufficient for the scope of the Z mass analysis calibration.

Additionally, the resolution parameters (b) and (c) in the barrel region are relatively flat
compared to the corrections observed at higher ηµ. This behavior arises from the minimal
variations in material and magnetic field within the barrel region.

The scale parameter exhibits a comparatively smaller contribution to the overall systematic
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uncertainties when compared to the two resolution parameters, especially when considered in
relation to their respective nominal values. The larger uncertainties in the resolution param-
eters do not significantly contribute to the Z mass uncertainty. Therefore, the larger error
bars observed are not considered an obstacle for achieving a precise Z mass calibration. On
the opposite side, the scale parameter systematic uncertainties are dominant in the Z mass
measurement.

In Appendix G, in tables G.1, G.2 and G.3 the dominant systematic per ηµ region for the
three parameters are presented for 2017 campaign. Goal of this study is to understand the
main systematic contributions and their nature.

Furthermore, a crucial part of the calibration is the statistical uncertainty per iterations as
the procedure is iterative. To proceed in the analysis and in the calibration the precision and
stability of the parameters over iterations have to be verified. In Appendix G the average over
iteration studies are presented.

5.4.0.3 Validation

For the validation two sets of plots are presented. One is the mµµ distribution pre and post
calibration. The second is the validation framework graphs as presented in 3.4.

(a) Pre Calibration (b) Post Calibration

Figure 5.24: Mass distribution of J/ψ of data and simulation plus background distributions.
Pre and post calibration, with muons: 6.3 < psubleadingT < 30 GeV. The samples correspond to
2017 campaign and corrected for the ηµ calibration presented in the Figure 5.23.

In the Figure 5.24, mass distributions of data and simulation + background are shown for
muons belonging only to the barrel region, with 6.3 < psubleadingT < 30 GeV. These distributions
are presented before and after the calibration corrections. An excellent accuracy of the calibra-
tion is observed. Specifically, under the J/ψ resonance peak (≈ 2.9 to 3.2 GeV). In the tails
there are some structures observed. This phenomenon arises from two factors: the non-closure
of the resolution parameters and the pµT dependence of the calibration parameters. The ma-
jority of muons included in the mµµ distributions presented, are low-pµT muons, for which the
calibration is highly accurate. However, for higher pµT muons, non-closure effects in the calibra-
tion are expected, potentially contributing to the structures observed in the post-calibration
figure.

Using the validation framework, presented in Chapter 3.4, the calibration is evaluated as
a function of kinematic variables. The mean and σ of mµµ distributions from simulation and
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data are compared as functions of ηleading−µ, ϕleading−µ, and pleading−µT . These comparisons are
shown before and after the calibration. The validation results for 2017 are presented here, while
results for other years are included in Appendix G.3.

(a) Pre Calibration (b) Post Calibration

Figure 5.25: Mean of the mµµ distribution as a function of ηleading−µ before and after calibration
applied. The samples correspond to 2017 campaign, corrected for the calibration as a function
of ηµ presented in the Figure 5.23.

(a) Pre Calibration (b) Post Calibration

Figure 5.26: σ of the mµµ distribution as a function of ηleading−µ before and after calibration
applied. The samples correspond to 2017 campaign, corrected for the calibration as a function
of ηµ presented in the Figure 5.23.

ηleading−µ : Figures 5.25 and 5.26 display the mean and σ of the mµµ distributions as functions
of ηleading−µ. The validation binning is set to the same binning as the calibration.
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Before the calibration, regarding the mean, there are insignificant modulations in the MC
but for the data there is a clear dependence of the mean from ηµ. This is due to the effect of
the charge independent momentum biases, present in data. It is important to note that the
disagreement observed prior to calibration corresponds to the precision of the measurement
of the solenoid magnetic field strength (≈ 2%), as mentioned in the Chapter 2.2.3. In the
data, there is an asymmetry in the mean from negative to positive η. Additionally, a clear
structure appears in −0.9 < ηleading−µ < −0.8 and therefore the MC needs a larger correction,
in this region, to describe the data. This originates, probably, from the solenoid magnetic
field measurement, which in the negative η direction was less accurate due to the dedicated
technique, as mentioned in the Chapter 2.2.3.

Post calibration, the simulation aligns closely with the data. Some points exhibit a persis-
tent, negligible difference. The most prominent ones are the bins −1.05 < ηleading−µ < −0.9
and 0 < ηleading−µ < 0.2. These non closure effects originate in structures, present in data, with
finer binning than the calibration binning.

Regarding σ, a widening of the mµµ distributions is observed, from central barrel to outer
barrel. This occurs due to the degradation of muon resolution with η. Post calibration, the
agreement between data and MC reaches an accuracy of 10−3 GeV. There are multiple re-
gions with reduced closure. This is due to the Gaussian smearing, which introduces additional
uncertainty in the process.

ϕleading−µ In the Figures 5.27 and 5.28, the mean and the σ of themµµ distributions are shown
as a function of ϕleading−µ.

(a) Pre Calibration (b) Post Calibration

Figure 5.27: Mean of themµµ distribution as a function of ϕleading−µ before and after calibration
applied. The samples correspond to 2017 campaign, corrected for the calibration as a function
of ηµ presented in the Figure 5.23.
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(a) Pre Calibration (b) Post Calibration

Figure 5.28: σ of the mµµ distribution as a function of ϕleading−µ before and after calibration
applied. The samples correspond to 2017 campaign, corrected for the calibration as a function
of ηµ presented in the Figure 5.23.

By comparing the mean before and after calibration, it is evident that the calibration aligns
the simulation closer to the data, although it has a negligible effect on the shape of the mean
as a function of ϕleading−µ. After the calibration, residual non-closure patterns remain, most
prominently in the negative central region (−1 < ϕleading−µ < 0). In this area, the non-closure
values reach up to 0.5 × 10−4 GeV, which constitutes a significant effect given the precision
required for the Z mass measurement. The shapes observed in the data arise from deformations
of the detector in the transverse plane or magnetic field residuals, which the calibration as a
function of ηµ was unable to fully address.

The σ plots exhibit a dependence with ϕleading−µ. For the ID tracks, a dependence of σ with
ϕ, is not expected. This effect is difficult to disentangle and is likely connected with the fact
that the corresponding plot is inclusive in η. In the σ graphs there a notable improvement after
the calibration, with remaining non closures. These non closure are not expected to contribute
significantly in the Z mass measurement and they are ignored in the context of the thesis.

pleading−µ
T : In the Figures 5.29 and 5.30, the mean and the σ of the mµµ distributions are

shown as a function of pleading−µT .
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(a) Pre Calibration (b) Post Calibration

Figure 5.29: Mean of the mµµ distribution as a function of pleading−µT before and after calibration
applied. The samples correspond to 2017 campaign, corrected for the calibration as a function
of η presented in the Figure 5.23.

(a) Pre Calibration (b) Post Calibration

Figure 5.30: σ of the mµµ distribution as a function of pleading−µT before and after calibration
applied. The samples correspond to 2017 campaign, corrected for the calibration as a function
of η presented in the Figure 5.23.

Regarding the mean, there are structures of non-closure remaining after the calibration.
Specifically, there is a trend of disagreement that grows with pleading−µT . In the first pleading−µT

bin, the difference is positive because the calibration as a function of η describes muons of
average pµT ≈ 9− 10 GeV. For larger pleading−µT , the trend of difference between data and MC is
negative, reflecting the pµT dependence of the scale.

The σ plots reveal a widening of the mass distribution with increasing pleading−µT . This effect
arises due to the deterioration of muon resolution at higher pµT . Interestingly, in the highest
pleading−µT bin, the σ decreases. This behavior is attributed to the fact that the displayed σ
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corresponds to the Crystal Ball function, where at high pµT the Gauss function contribution
becomes more prominent. Overall, for the σ, the calibration improves the agreement between
the simulation and the data, with the highest pleading−µT bin exhibiting a non closure.

Consequently, the calibration as a function of pµT is necessary to be studied. The corre-
sponding studies are shown in Section 5.5.

5.4.1 ϕµ scale residuals

To treat the non closures shown in the validation as a function of ϕleading−µ, in the Figure
5.27, a dedicated post calibration procedure is performed. To obtain the corrections, the
samples of simulation are calibrated with the corrections obtained in the Section 5.4.0.2 and
the calibration is repeated for a few iterations. The calibration was performed by integrating
over ηµ and utilizing a binning in ϕµ. All parameters were allowed to float in the calibration
fit. The resolution parameters were found to be negligible and compatible with zero. The scale
residuals in ϕµ and the validation as a function of ϕleading−µ are shown in the Figure 5.31.
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(a) ds1 parameter (b) mean of mµµ as a function of ϕleading−µ

Figure 5.31: a) Scale parameter ds1 as a function of ϕµ for 1.05 < η < 1.05. b) Validation
of calibration, mean of mµµ as a function of ϕleading−µ after correcting for the ϕµ residuals
commented in 5.4.0.3.

The statistical uncertainty is of the order of 10−6 for the ds1 parameter. In the validation
shown in the Figure 5.31 (b), the agreement after applying the ϕµ residual correction is improved
compared to that presented in the Figure 5.27. In most regions, the difference in the mean
between data and MC is compatible with zero. However, some outliers are observed, which
can be attributed to the finer binning used for validation compared to the binning chosen for
calibration.

5.5 Calibration as a function of pµT
In this subsection, the dependence of the calibration with pµT is presented. Calibration, due
to a non closure of the pµT parametrization from scale and resolution parameters, has a pµT
dependence which is necessary to be accounted for, in order to calibrate muons originating
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from Z decays. Calibration is performed in different pµT bins with muons belonging to a single
ηµ bin: −1.05 < ηµ < 1.05.

The main challenge for this study is the limited size of simulated J/ψ signal. The strong
dependence with pµT requires as much as pµT bins as possible to study the pµT dependence ac-
curately. But at the same time the individual bins need to have sufficient events to ensure
calibration fits with minimal statistical uncertainty. pµT binning chosen is in a way to ensure a
balance between the two requirements.

5.5.0.1 Method

Calibration procedure is similar to the ηµ calibration presented in the Section 5.4. The phase
space observable of interest is changed from ηµ to pµT . For every pµT bin, at least one of the
muons, positive or negative, is required to be in the bin of interest. For each pµT bin, three
parameters of interest are defined: one scale parameter, ds1, and two resolution parameters,
dr1 and dr2.

In these calibration fits, all parameters for ID muons (ds1, dr1, dr2) are allowed to float. The
resolution parameter dr1 is expected to be independent of pµT , whereas ds1 and dr2 are more
likely to show such dependence. However, primary attention is given to the ds1 calibration with
pµT , as it has the most significant impact on the Z mass measurement.

An important aspect of the pµT calibration is the choice of the triggers. In general, the cali-
bration process is sensitive to the difference in the simulation and data pµT distributions. Since
one of the trigger’s major characteristic is the pµT selection they can influence the data-simulation
agreement. Additionally, pre-scale trigger factors can impact the discrepancy between the two,
resulting in acquiring different pµT calibration results depending on the choice of trigger. Con-
sequently different triggers choices are used to construct a systematic uncertainty from the pµT
extrapolation. For the corresponding study two different trigger configurations are compared.
One of the general trigger list and one of the MCP one. The importance of comparing the
two pµT calibrations arises from the fact that the general trigger list includes several triggers
which are pre-scaled and therefore influence heavily the agreement between data and simulation
pµT distributions. In the ηµ calibration such a study is less important since ηµ calibration is
inclusive in pµT and less sensitive to these effects. In both calibrations to correct for the trigger
miss-simulation effect a pµµT re-weighting is applied.

For 2017 and 2018 MCP triggers are almost not at all pre-scaled. On the contrary in
the general trigger list there many triggers heavily pre-scaled. Trigger lists are found in the
Appendix I. For the 2015-16 campaign, MCP triggers are absent in the samples processed. The
general trigger list used for 2015-16 includes heavily pre-scaled triggers. This is expected to
have an impact on the kinematic distributions and on the accuracy of the calibration. The pµT
re-weighting procedure is expected to cover efficiently the possible biases.

5.5.0.2 Results

In the Figures 5.32 to 5.34, the results for 2015-16, 2017, 2018 are presented.
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Figure 5.32: Calibration Parameters as a function of pµT for the campaign 2015-16 and ID,
barrel muons. Points are average over iterations 15 to 20 and the error bars are the standard
deviation over iterations.
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Figure 5.33: Calibration Parameters as a function of pµT for the campaign 2017 and ID, barrel
muons. Points are average over iterations 15 to 20 and the error bars are the standard deviation
over iterations.
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Figure 5.34: Calibration Parameters as a function of pµT for the campaign 2018 and ID, barrel
muons. Points are average over iterations 15 to 20 and the error bars are the standard deviation
over iterations.

ds1: In the Figures 5.32a, 5.33a and 5.34a, the scale ds1 as a function of pµT is presented for
the three campaigns. Two separate calibrations are presented, one using the MCP trigger list
and the other using general trigger lists (Defined in Appendix I ), for the years 2017 and 2018.
Depending on the campaign the difference of the two calibrations is less or more significant.

The pµT dependence of ds1 is fitted with a negative exponential one. In this model the scale
that is computed from the calibration procedure, dsfitted1 , is parameterized as:

dsfitted1 = dstrue1 − e−slope×p
µ
T

with dstrue1 is the true value of the scale ds1 that is constant with pµT , the exponential part
is it’s correction for the low pµT values that do not follow a steady with pµT dependence and
slope is the exponential constant. The parametric function is plotted on the graphs with the
same color as indicated for the points in the legend. It is not a function that corresponds to
a specific physics based model. Rather, it is a phenomenological approach. The parametric
function, does not fully describe the shape of the data points, which display fluctuations with
pµT , indicating unresolved mis-modeling issues beyond those currently addressed.

Additionally, it is hypothesized that trigger mis-modeling may be responsible for the outlier
points, particularly in regions where the leading and sub-leading distributions diverge signif-
icantly. Another hypothesis is that in these pµT ranges there is significant overlap between
Physics Main and B Physics streams. These points are the fourth point for 2015-16 and 2017
campaigns. A minor study has been conducted for the outlier bin 11 < pµT < 12 GeV of 2017
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campaign. It’s existence have a large impact on the dependence of ds1 from the pmuT and it gives
a non physical shape in the calibration. The main hypothesis of this study is that since the
pµT = 11 GeV is a cut value for one of the main triggers: HLT_mu11_mu6_bJpsimumu,there is a
possibility that in a minimal interval above 11 GeV the distributions of leading and sub-leading
are significantly different resulting this point. To test this hypothesis a calibration has been
produced with excluding muons with pµT from 11 to 11.7 GeV from the selection. In Appendix
H.1. the nominal and the hypothesis calibrations are compared for the scale parameters. The
other parameters are of less importance in the extrapolation process and for this study their
comparison is considered redundant. The alternative pµT binning did not resolve the issue and
the outlier point continues to exist.

In addition to ensuring agreement between the two calibrations, another critical aspect to
address is the overall shape of the scale as a function of pµT . Across all three campaigns, the
overall dependence of ds1 with pµT exhibits a consistent pattern. The shape agrees with the
validation plots produced for the calibration as a function of ηµ in Section 5.4.0.3, Figure 5.29.
In the 2015-16 case, the pµT dependence appears more pronounced compared to the 2017-2018
cases, as the scale shows a persistent upward trend in the final bins, increasing sharply with
pµT . In contrast, the 2017 graph indicates that the scale levels off, reaching a plateau around
pµT ≈ 12 GeV. The prominence of this plateau varies depending on the choice of trigger due to
the last bin above 30 GeV. In the 2018 graph, the plateau is again visible at the same region.
The last bin resides significantly above the bins from pµT

µ ≈ 12− 30 GeV. The last bins in all
campaigns show slow or a sharp rise with pµT . Without additional events in the MC sample the
study has reached it limits.

Consequently, a slow rise of the scale above the plateau region pµT ≈ 12−30 GeV can not be
excluded. At the same time, the extremely high values indicated in the 2015-16, 2018 campaigns
for the high pµT are believed to be results of unstable fit due to low number of events in the
simulation. For this reason, in the context of this thesis the parametric function is considered
to be stable above the plateau region.

The region pµT < 20 GeV is less important for this study since Z mass analysis includes muons
with pµT > 21 GeV. A potential deviation in the low pµT bins between the two calibrations does
not significantly impact the Z mass analysis. In contrast, the higher pµT bins are more important.
At the last bins of the Figures 5.33a and 5.34a for 2017 and 2018 campaigns the high pµT bin
is significantly different in the two trigger selections. At this high pµT , the number of available
simulation events is low. First, the fits themselves can become unstable due to the low number
of events, potentially leading to a ”false” result. Secondly, the re-weighting when performed
with low number of events can result to un-physical weights which influence the distributions.
Moreover, as presented in the Figure 5.6, there are high values of Data/MC ratio for the
pµµT distributions. These values will lead to high weights and, as noted, likely originate from
overlapping events between the Main Physics and BPhys streams. Lastly, an incorrect mixture
of Prompt and Non Prompt J/ψ can distort significantly the high pµT bin result, as Non Prompt
is dominant in high pµT , as shown in the Figure 5.1.

dr1: In the Figures 5.32b, 5.33b and 5.34b, the resolution parameter dr1 as a function of pµT is
presented for the three campaigns. This resolution parameter is characterized with an increased
standard deviation over iterations relatively to it’s value. It’s value is considered to be constant
with pµT since values from the first to the last bin are compatible within the uncertainty margin.
The parametric function is therefore a linear one. The difference between the two calibrations
for the 2017 and 2018 campaigns is negligible and it is considered zero.

dr2: In the Figures 5.32c, 5.33c and 5.34c, the resolution parameter dr2 as a function of pµT is
presented for the three campaigns. In this parameter there is a pµT dependence is observed. dr2
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parameter though have negligible values and in the pµT regime of the J/ψ it’s contribution is
low. Therefore, it’s value is considered constant with pµT and it is fitted with a linear function.
The difference between the two calibrations for the 2017 and 2018 campaigns is negligible and
it is considered zero.

A key aspect to consider is the interplay between the two resolution parameters, as their
correlation is significant during the fitting process. A significant pµT is not expected but one is
seen clearly in all the corresponding Figures for dr1 and dr2. Given that dr1 increases with pµT
while dr2 decreases, it is likely that this behavior is driven by their strong correlation. A good
practice would be to ”lock” the values of dr1 in the ηµ calibration values and float only dr2.
This way final result would be less prone to correlation between resolution parameters.

5.6 Conclusions

First, the overall strategy was outlined, emphasizing the necessity of utilizing the J/ψ resonance.
This approach facilitates the study of the pµT dependence of the calibration, with particular
attention given to the scale.

Afterwards, the data and simulation samples and the kinematic distributions were presented
for the three campaigns, and two different trigger configurations in the Figures 5.4, 5.5 and 5.6.
Different ratio’s were observed in the Data/MC ratio plots depending on the trigger list choice.
Most importantly a large ratio was observed for high values of pµµT . A possible root is the non
correct mixture of Prompt and Non Prompt J/ψ in the simulation.

A study was performed to investigate selection choices on Prompt and Non Prompt J/ψ.
The study’s main goal was to create two separate samples with a negligible contamination
between Prompt and Non Prompt. This separation is possible by using the muon d0/σd0 and
z0 × sin θ or the di-muon Lxy. The calibration between the two samples was compared for the
two different selection choices. By comparing scale ds1 as function of ηµ for Prompt and Non
Prompt two conclusions are derived:

• The Non Prompt J/ψ produced far from the interaction point are more energetic. This
is reflected in the ds1 results.

• The Non-Prompt calibration is affected by issues with fit quality. This is due to incom-
plete background estimation and signal simulation. Since Non Prompt includes B-meson
physics, it is sensitive non perturbative QCD physics, which is hard to simulate accurately.

Since Prompt calibrations has shown a statistical uncertainty of ≈ 10−5 for the scale, the
majority of Non Prompt J/ψ is decided to be dropped. Rest of the calibration studies use
therefore the muons selection: |d0/σd0 | < 3 and |z0 × sin θ| < 0.5 mm.

The calibration studies proceeded to a calibration as a function of ηµ for all campaigns.
Scale at the inner-most barrel has almost a uniform dependence with ηµ. At the outermost
barrel, scale deviates from uniformity, due to discontinuations of the detector there and the
complex nature of the magnetic field in intermediate regions. Systematic variations of the
calibration were produced. Relative systematic uncertainties are in the order of ≈ 0.01 for the
barrel region. Resolution parameters have larger relative uncertainties but are not expected to
contribute significantly in the Z mass measurement.

Validation plots demonstrated a good agreement between MC and data post-calibration,
particularly for the ηµ dependence of the mean and the σ of the mµµ distributions. However,
some residual non-closure effects remain, which can be attributed to the calibration binning
not being sufficiently fine. As a function of ϕleading−µ and pleading−µT there are remaining non
closures after the calibration. For the case of ϕleading−µ a second calibration as a function of ϕµ

was able to address the non closures.
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Finally, a calibration was presented for the barrel region as a function of pµT . Scale parameter
showed a rising shape with pµT which is not possible to fit with a trivial parametric function,
for example a linear one. The parametric function chosen to describe the scale dependence was
an inverse exponential. Overall, a plateau is reached at higher pµT which is important for the Z
mass measurement.

Additionally, the scale dependence had a major difference when fitted with two different
trigger configurations. This is considered as a systematic in the Z mass measurement. The
source is likely to be connected with the overlap between the BPhys and Physics Main streams.
As one of the trigger configurations use more triggers, it is possible to increase the overlap.

At the dependence of scale from pµT there were two categories of outlier points. The first
one, present for the 2015-16 and 2017 campaigns at intermediate pµT < 20 are likely to originate
in trigger effects. The second type of outlier points are the ones at pµT > 30. Their origin comes
from non physical effects. The major one being the number of simulated events, which are
very low in these bins, leading to non accurate fits during calibration. Secondly the incorrect
mixture of Prompt and Non Prompt J/ψ can influence greatly the agreement between data
and MC pµT distributions.

Resolution parameters showed a low dependence from pµT but due to large statistical un-
certainties they can be considered stable with pµT . Specifically they showed an anti-correlating
behavior which could be an effect of fit configuration. As an alternative the dr1 could have
been kept stable with pµT and float only the dr2 to avoid heavy correlation effects.

5.6.0.1 Outlook

To improve the results presented for calibration as a function of pµT , a correction can be included
to accurately describe Prompt and Non Prompt J/ψ ratio with pµT . This is possible by studying
variables with distinct behavior in Prompt and Non Prompt J/ψ. A good example is the d0/σd0
distribution. Producing templates of d0/σd0 for different pµT bins, Prompt and Non Prompt
simulation and data, as in the Figure 5.8a. By comparing the simulation templates to the data
one, an accurate description of the ratio between them can be derived, as a function of pµT .

Post calibration, the simulation aligns closely with the data. Some points exhibit a persis-
tent, negligible difference. The most prominent ones are the bins 1.05 < ηleading−µ < 0.9 and
0 < ηleading−µ < 0.2. These non closure effects are believed to originate in structures, present
in data, with a finer dependence than the binning chosen for the calibration.

Additionally, the calibration as a function of pµT showed a dependence from the year pro-
cessed. This is likely due to the overlap between data streams and a minor reconstruction error
existing in the samples. With the availability of improved samples, these effect will not exist.

Furthermore, a simulation sample with more available events can provide stable fits for the
high pµT bins. Also a finer binning will be possible to study better the pµT scale dependence.
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Z Mass Measurement
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In this Chapter, the Z mass measurement procedure and analysis are presented. A dedicated

framework is used for Negative Likelihood fits to determine the Z mass.
First, there will be an analysis of the data and simulation samples used for Z mass measure-

ment, alongside the selection performed. The muon momentum correction choices and effect
on the Z mass are going to be discussed. A dedicated weighting procedure is presented, which
produce Z mass distributions for different mass and width variations. Lastly, the results of the
statistical analysis are presented with the systematic uncertainties, using a blinded likelihood
fit.

6.1 Data and Simulation Samples

Data samples corresponds to data taken throughout the full Run-2 for proton-proton collisions,
for a total integrated luminosity 150 fb−1 a center of mass energy of

√
s = 13 TeV. Data are

chosen from Main Physics stream of ATLAS for all campaigns.
For the simulation samples, dedicated MC generators were used. For the W and Z the

Powheg generator was utilized, with up to Next to Leading Order ( NLO ) for QCD [66] -
[69], using the CT10 PDF [70], interfaced to Pythia8 [51] using the AZNLO tune [72]. To
add the effect of QED final state radiation the samples were interfaced with Photos++ [73].
Simulation samples [74] were processed with Geant4 [75] for the detector effects. The list of
background processes are presented in Chapter 3.3.4. Simulation normalization is scaled to
ATLAS luminosity values using the cross sections from PDG [2].

Trigger selection is presented in the Table 6.1.
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Year Trigger
2015 HLT mu20 iloose L1MU15 OR HLT mu40

2016,17,18 HLT mu26 ivarmedium OR HLT mu50

Table 6.1: Trigger list used for the samples of Z mass measurement

6.1.1 Selection

Event selection is displayed in the Table 6.2.

Selection for Signal Region
Only two muons
Muon trigger matched
Muons Isolated
Opposite charge
Both pµT > 25 GeV
Both |ηµ| < 1.05
66 < mµµ < 116 GeV

Table 6.2: Selection for Z mass measurement, data and simulation samples.

Selection of two muon events is crucial to exclude background with multiple leptons at the
final stage as tt̄ or di-boson processes. Trigger matching and passing are crucial for proper
normalization, ensuring that the selected events correspond to the applied trigger conditions.
Additionally, applying isolation selection on muons is essential to suppress background events
where muons are produced inside jets or in association with other particles. This isolation
criteria improves the purity of the sample by reducing contamination from non-prompt or
secondary muons. This cut significantly reduces the background contributions, especially from
tt̄. Opposite charge is important, as Z → µ+µ− by definition must include a muon and an
anti-muon. The pµT > 25 GeV selection removes lower-energy background processes and further
tightens the event selection to signal-like events. The |η| < 1.05 selection is crucial to exclude
muons that do not belong in the barrel region, as tracking systems outside the barrel region
of the Inner Detector have poorer resolution. Additionally, selecting muons within the Z mass
range, 66 < mµµ < 116 GeV, is essential for the measurement. At this stage, the background
is nearly fully suppressed, and the data event yield is accurately described by the signal plus
background processes.

6.1.2 Comparison of Data and Simulation

In the Figure 6.1, the cut flow histograms are displayed for the three campaigns for data
and simulation (signal and background). Cut flow histograms are normalized to luminosity of
the individual years. After the opposite sign selection, at the last three bins, there is good
agreement between simulation and data. Background contributes significantly in the first bin
(”No cut”). As the cut flow histogram progresses to the signal region the background becomes
negligible. The mass selection is reducing the background to an percentage of ≈ 1%.
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(a) 2015-16 (b) 2017

(c) 2018

Figure 6.1: Cut flow histograms for simulation (signal and background) and data.

Kinematic distributions are important to understand underlying effects and the quality
of the measurement. In the Figures 6.2, 6.3, 6.4 the leading, sub-leading and di-muon pT
distributions are shown. There is a trend observed in the ratio plots of increasing disagreement
towards larger values. Specifically, in the Figures leading Figures for all campaigns there is a
trend which is visible at pleadingT ≈ 90 GeV. For the sub-leading, this discrepancy is relevant
for pictures psub−leadingT ≈ 50 GeV. A noticeable discrepancy is also observed at high pµµT > 100
GeV. These discrepancies exhibited in all pT kinematic distributions notably increase at higher
values. This is primarily attributed to the absence of higher-order diagrams at the Next-
to-Next-to-Leading Order (NNLO) for the signal, which grow in significance as the energy
increases.

In the Figures 6.5 and 6.6, leading ηµ and Yµµ distributions are presented. Angle related
distributions are sensitive to the lack of higher order diagrams, mis-modeling of angle kinematic
variables but also deformations of the detector, not corrected at the calibration procedure.
Corresponding Figures, show an excellent agreement between MC and data. Therefore, in the
context of the thesis, it is concluded that there is no study needed for angle mis-modeling.
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(a) 2015-16 (b) 2017

(c) 2018

Figure 6.2: pleading−µT distributions for the three campaigns, simulation (signal+background)
and data, using selection of Table 6.2. Simulation samples are scaled to Run-2 luminosity.
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(a) 2015-16 (b) 2017

(c) 2018

Figure 6.3: psubleading−µT distributions for the three campaigns, simulation (signal+background)
and data, using selection of Table 6.2. Simulation samples are scaled to Run-2 luminosity.
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(a) 2015-16 (b) 2017

(c) 2018

Figure 6.4: pµµT distributions for the three campaigns, simulation (signal+background) and
data, using selection of Table 6.2. Simulation samples are scaled to Run-2 luminosity.
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(a) 2015-16 (b) 2017

(c) 2018

Figure 6.5: ηleading−µ distributions for the three campaigns, simulation (signal+background)
and data, using selection of Table 6.2. Simulation samples are scaled to Run-2 luminosity.
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(a) 2015-16 (b) 2017

(c) 2018

Figure 6.6: Rapidity Y µµ distributions for the three campaigns, simulation (signal+background)
and data, using selection of Table 6.2. Simulation samples are scaled to Run-2 luminosity.

6.2 Systematic Uncertainties

Systematic uncertainties are a crucial part in precision measurements such as the determination
of the Z boson mass. Systematic uncertainties, unlike statistical uncertainties that diminish
with larger datasets or improved methods, originate from potential biases in experimental
procedures or theoretical models. These uncertainties reflect limitations in the precision of
measurements due to factors such as calibration errors, detector performance and modeling
assumptions.

In the context of the Z mass there is a wide range of systematic uncertainties to take into
account. Systematic uncertainties are evaluated by varying each source within its estimated
range and observing the corresponding impact on the Z mass measurement. The magnitude of
the change is taken as the systematic uncertainty for that source.

The list of systematic uncertainties applied in the analysis:

• η calibration: For the η calibration systematic uncertainties one template is created for
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Figure 6.7: PDF uncertainty effect on the signal sample. Produced by Emilien Chapon. The
red band represents the PDF uncertainty. This uncertainty is determined by comparing all
PDF models to the nominal CT18NNLO and selecting the model with the largest deviation as
the uncertainty estimate.

each variation of the calibration parameters. Additionally, the number of systematic
uncertainties for each parameter will be equal to the number of regions used in the cal-
ibration. In each template produced for a specific η region, the strategy is to describe
the parameter of interest within that region using either the up or down variation, while
all other regions are modeled with the nominal parameters. This approach isolates the
impact of variations in a single η region on the calibration or measurement, enabling a
focused study of systematic effects. The systematic uncertainties correspond to the three
calibration parameters ds1, dr1 and dr2.

• Luminosity: Luminosity is a critical aspect of the ATLAS experiment, as it directly affects
the normalization of cross section measurements. There is an associated experimental
uncertainty. It originates from inefficiencies of the detector LUCID [77], which measures
luminosity. recorded by ATLAS has an uncertainty. Relative luminosity uncertainty for
each year is displayed in Table 6.3:

Year 2015 2016 2017 2018
Lumi.Uncertainty % 1.13 0.89 1.13 1.10

Table 6.3: Relative uncertainty of Luminosity for Run-2, taken from [76]

In the Z mass fits, in the context of the thesis, a larger uncertainty is given for the
luminosity to cover for additional uncertainties. Most importantly, the PDF uncertainty is
included in the luminosity uncertainty, because as seen in the Figure 6.7 the PDF’s change
the normalization and don’t influence the shape it self strongly. Since PDF uncertainties
are not available in the timescale of the thesis, their contribution is considered to be
covered by the luminosity uncertainty.

• Extrapolation calibration: In the Chapter 5.5.0.2, it is shown that two different choices
in the trigger configuration give different extrapolation behavior. The difference between
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the two is added as a symmetric systematic uncertainty. The source of this systematic
is likely connected to the overlap issue between the data streams used. Therefore, it
is a systematic uncertainty likely to be resolved with processing another samples for
the calibration. Due to this ambiguity the results are presented with and without this
systematic uncertainty.

List of systematic uncertainties not yet applied in this thesis:

• Signal and background cross section: Signal and background cross sections are associ-
ated with theoretical uncertainties that must be incorporated into the fitting procedure.
These uncertainties arise mainly for missing higher order diagrams in the simulation. By
including these uncertainties, the fit can appropriately scale the relevant samples and im-
prove convergence. Due to the negligible contribution of the background, the fit cannot
adequately account for luminosity, as well as signal and background cross sections. To
effectively calculate the cross sections a control region is needed, which is not available
in the context of the thesis. Furthermore, because of the minimal background presence,
luminosity and signal cross sections effectively have the same effect. To account for the
above the signal and background cross sections uncertainties are not included in the fit.
Their contribution is absorbed by the luminosity uncertainty.

• NNLO: Due to missing of higher order corrections in the signal sample there is a disagree-
ment between data and simulation as presented in the Chapter 6.1.2 for higher energies.
This effect will be treated with a corresponding systematic.

• FRS: Final state radiation variations, which correspond to different Photos settings, can
have an effect on the tails of the mµµ distribution. A dedicated re-weighting can be
applied to construct a corresponding systematic uncertainty.

• PDF: PDF’s are a important aspect of hadron collider experiments, as analyzed in Section
1.3.1. Their contribution was studied in the context of the Z mass measurement and
was found to have a minor effect on the shape itself. On the contrary main effect was
on the normalization of the signal. This is shown in the Figure 6.7. Consequently the
corresponding uncertainty is going be covered by the luminosity uncertainty in the context
of the thesis.

• Efficiency uncertainties: Efficiency in ATLAS is prone to uncertainties which are con-
nected to imperfections of the algorithms and limitations of the detector. Efficiency has
different values for different regions of the kinematic phase space. Therefore efficiency
uncertainty does not change only the normalization but possibly introduce shapes to the
kinematic distributions.

In the Figure 6.8, the systematic variations of the calibration, up down and nominal, are
presented. The scale variations influence mainly the mean of the histogram where the resolution
change the smearing of the distribution.
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(a) Example of scale systematic, from η cali-
bration region 0 < η < 0.4.

(b) Example of resolution systematic, from η
calibration region 0 < η < 0.4.

Figure 6.8: Example of systematic uncertainties (ds1, dr1, dr2) on the signal shape.

6.3 Mass templates

In this Section, the method of template production is presented. Templates are a key feature
of the measurement. By fitting a parametric function in the mZ − ΓZ phase space, the fit can
capture the dependence of the two parameters of interest over a continuous range of values.
This allows for a more precise characterization of their relationship and provides a framework
for simultaneously optimizing both parameters within the phase space.

To produce the variations the simulation at truth level is acquired. By computing the Breit-
Wigner distribution for different mass and width of the Z corresponding weights are derived.
The re-weighting is calculated per event and it is dependent from the mass of the boson in
generator level. With these weights, variations of the mass distribution are produced.

The weight is the ratio of the cross sections for target mass and width σtarget(M
target
Z ,ΓtargetZ )

to the nominal one σnominal(M
initial
Z ,ΓinitialZ ):

weight =
σtarget(M

target
Z ,ΓtargetZ )

σnominal(M initial
Z ,ΓinitialZ )

(6.1)

The cross sections are derived from Equation 1.61 for the Z Line-shape of Chapter 1.5.3.1.
The shape of the Z/γ interference is plotted in the Figure 1.10, Chapter 1.5.3.2. In the

Figure 6.9, variations of Z mass and width effect on the mµµ distribution are compared. The
nominal case corresponds to 91.185 GeV and 2.5 GeV. Two cases of large offset are compared.
For the Z mass, an offset of 100 MeV, and for the Width, 50 MeV.

The Z mass variations have larger effect in the central bins of the histogram. The mass
variations move the mean of the distribution. The width variations have a different effect.
Their main effect is on the central bins of the histograms. In the high tail the effect is less
significant than the low tail. Moreover, it has a large correlation with the integral of the
histogram. The low tail effect is due to the natural ”tilt” of the distribution at lower tail due
to final state ration of the muons. It’s main effect is to change the number of events in the mµµ

histogram.
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(a) mZ variations comparison (b) ΓZ variations comparison

Figure 6.9: Examples of the template for Mass (a) and Width (b) variations. Width(2.5 GeV)
and Mass(91.185 GeV) correspond to the nominal case. In the ratio plot the nominal to the
corresponding variation case is plotted. The simulation sample used is the 2017 campaign one.

(a) mµµ bin at the low edge (b) mµµ bin at the middle (c) mµµ bin at the high edge

Figure 6.10: Examples of the morphing for two mµµ distribution bins relative event yield. One
template is the reference template and value is fixed at 1 in the graph. The other templates are
compared to the reference template. Reference template is the hypothesis: mZ = 91.185 GeV
ΓZ = 2.5 GeV. On x axis is mZ in GeV, y axis is ΓZ in GeV, z axis is the relative event yield.

In the Figure 6.10, morphing (interpolation) examples are given for three bins of the mZ

distribution. The morphing function chosen is quadratic in the 2D phase space of mZ and ΓZ .
No difference in the quality of fit was found with a linear function. This means that the ΓZ and
mZ variations change linearly the template event yield in each bin. In the Figure 6.10, the three
mZ relative yield examples are from different regions of the mZ distribution. Analyzing these
morphing examples is crucial to understand the behavior of the templates. From the example
at the lower edge of the distributions (a), the linear dependence is shown clearly. In the (b)
example, the bin shown resides close to the central bin of the distribution. The variations of
mZ have a more significant impact on the relative event yield than those in ΓZ . In the (c)
example, the bin resides at the upper tail of the distribution. There it is clear that the mZ has
a big impact on the relative event yield, where the ΓZ has almost no effect.

6.4 Likelihood Fit and Results

6.4.1 Likelihood Fit and method

6.4.1.1 Likelihood Function

To derive the Z mass measurement and uncertainties a likelihood fit method [78] is used.
The parameters fitted are grouped into two categories according to their roles in the analysis.
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Parameters of interest (POI) and nuisance parameters (NP). Parameters of interest are
the primary parameters be determined by the fit. The fit is configured in a way to accurately
determine the best-fit value of these parameters. In the context of this analysis the POI are the
mZ and ΓZ . The nuisance parameters are proxies to systematic uncertainties. The likehood
function is the function:

L(n⃗|θ⃗, µ⃗) =
∏
bin

P (nbin|Sbin(θ⃗, µ⃗) +Bbin(θ⃗, µ⃗)) ·
∏
j

G(θj), (6.2)

where:

• n⃗ represents the observed data in each bin,

• θ⃗ denotes the constrained nuisance parameters associated with systematic uncertainties,

• µ⃗ contains the unconstrained parameters, including the parameters of interest and any
unconstrained nuisance parameters,

• P (nbin|Sbin+Bbin) is the Poisson probability of observing nbin events in a given bin, given

the expected signal Sbin(θ⃗, µ⃗) and background Bbin(θ⃗, µ⃗),

• G(θj) represents the Gaussian prior for each constrained nuisance parameter θj.

In Bayesian statistics, estimators are treated as random variables. This allows nuisance
parameters to be marginalized (integrated out), contributing to the overall uncertainty of the
parameter estimation. In contrast, within the frequentist approach, nuisance parameters must
be estimated simultaneously alongside the POIs. This transforms the fitting procedure into a
multi-dimensional likelihood maximization problem.

When fitting models with multiple unknown parameters, including both POIs and nuisance
parameters, the profile likelihood method is commonly employed. This method is used to test a
specific hypothesized value of the parameter of interest while accounting for the uncertainties in
the nuisance parameters. In practice, it profiles out the nuisance parameters by maximizing the
likelihood with respect to them, allowing a more accurate comparison between the hypothesized
value of the parameter of interest and its alternatives.

By using prior information profile likelihood fit can constrain systematic uncertainties. The
total likelihood is structured as:

Ltotal = Lphys(xdata|µ, ˆ̂θ)× Lsubs(
ˆ̂
θ|θ̂, σθ)

where, Lphys(xdata|µ, ˆ̂θ) is the physical likelihood function, which depends on the data xdata, the

parameter of interest µ, and the profiled nuisance parameters
ˆ̂
θ. The second term, Lsubs(

ˆ̂
θ|θ̂, σθ),

is the subsidiary likelihood, which constrains the nuisance parameters θ using prior information
(such as external measurements). The nuisance parameters θ are constrained by a Gaussian
distribution with known mean θ̂ and uncertainty σθ. This reflects the prior knowledge we have
about the nuisance parameters.

The procedure is the following:
Profiling over the Nuisance Parameters: The nuisance parameters θ are ”profiled”

by maximizing the likelihood function for each fixed value of µ, the parameter of interest.

Mathematically, this means finding
ˆ̂
θ = argmaxθ Lµ=const.(θ), the value of θ that maximizes the

likelihood for a fixed µ.
Estimating the Parameter of Interest: Once the nuisance parameters are profiled, the

next step is to maximize the total likelihood with respect to µ. This gives the best estimate

µ̂ = argmaxµ L(µ,
ˆ̂
θ), where

ˆ̂
θ is the previously profiled nuisance parameter. The likelihood

now depends on the profiled value of
ˆ̂
θ.
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6.4.1.2 Hessian Matrix

To calculate the correlation of the nuisance parameters and the POI a Hessian Matrix of
the likelihood function is used. According to the standard Gaussian error propagation the
correlation between parameters is calculated using the second derivatives.

ρij =
Cov(θi, θj)√
Var(θi)Var(θj)

(6.3)

where V ar(θi) are the diagonal elements of the covariance matrix and Cov(θi, θj) are the off
diagonal terms in the covariance matrix for the elements i,j. The hessian matrix is given by:

H =


∂2f
∂θ21

∂2f
∂θ1∂θ2

. . . ∂2f
∂θ1∂θn

∂2f
∂θ2∂θ1

∂2f
∂θ22

. . . ∂2f
∂θ2∂θn

...
...

. . .
...

∂2f
∂θn∂θ1

∂2f
∂θn∂θ2

. . . ∂2f
∂θ2n

 (6.4)

To handle the above complicated fit, dedicated minimization algorithm Minuit2, ref. [48],
is utilized.

6.4.1.3 Pull Plots

To observe the quality of the fit and to compare the behavior of the nuisance parameters before
and after the fit the pull plots are utilized. At the pull plots the pull Pulli for parameter i is
computed:

Pulli =
nobs
i − nfit

i

σi
(6.5)

where nobs
i is the observed value for bin i, nfit

i is the predicted value from the fit, σi is the
uncertainty in the observed value nobs

i .
A well fitted model will have the pull for all parameters distributed around zero.

6.4.2 Results

In order to to bias the analysis the mZ is blinded in fit. This mean that the data distribution is
re-weighted by the procedure described in the Section 6.3, but with the target mass unknown.
The target mass resides in blinded interval of MPDG

Z ± 50MeV.
In Figures 6.11 and 6.12, results of the fit on the mµµ distributions are displayed, for

201516 and 2018 campaigns. In both pre-fit plots (a), a trend is observed in the tails of the
distribution, which becomes evident in the ratio plot. This trend makes it challenging to
interpret and attribute the pre-fit discrepancies between data and simulation to specific sources
or mis-modelings. In the post-fit plots (b), the ratio appear nearly flat, indicating that the fit
is successful and the model accurately describes the blinded data.
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(a) Pre fit (b) Post Fit

Figure 6.11: Pre and Post fit mµµ distributions for 201516 campaign

(a) Pre fit (b) Post fit

Figure 6.12: Pre and Post fit mµµ distributions for 2018 campaign

Post fit correlation matrix between nuisance parameters and the parameters of interest is
presented in the Figure 6.13. The correlation between the two parameters of interest is the
most important part of the the correlation study. Notably the correlation between the two
displayed is ≈ 5%. This this is a crucial point, as it demonstrates that a mZ measurement is
feasible without a simultaneous ΓZ fit.

Luminosity has a large correlation with width ΓZ . This occurs because the distribution is
broadened by the width while the total number of events remains constant. As a result, when
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the luminosity is used to normalize the simulation to the data, a correlation between the two
parameters emerges.

Then nuisance parameters connected to the calibration have a large correlation with the
two parameters of interest. For the scale nuisance parameters there is a large correlation with
the mZ . The correlation value changes depending on the η region that the nuisance parameter
belongs to. There is a trend in negative η regions to have a larger correlation. For the ΓZ there is
a strong correlation with the resolution parameters nuisance parameters. By comparing Figure
6.9 (b), which illustrates the effect of width variations, with the impact of resolution parameters
in the Figure 6.8, it is evident that the shape of these effects is quite similar. Consequently,
this strong correlation is expected.

Moreover, a strong correlation is observed between resolution nuisance parameters of dif-
ferent η regions. This is an important observation since the calibration fit does not take into
account correlations between the η regions of the calibration.

Figure 6.13: Hessian correlation matrix between the parameters of nuisance and parameters of
interest
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In the Table 6.4, likelihood fit results on mZ and ΓZ are presented for the 2015-16, 2018
campaigns. mZ uncertainty is ≈ 2 MeV for all years making the measurement an extremely
accurate one with the current systematic uncertainties used. The central value is blinded. Thus,
the focus is on the differences in the fit results across the years, rather than the absolute values.
The fitted value of mref.

Z for 2015-16 is used as a reference point for comparison.

2015-16

mZ mref.
Z ± 0.0012(stat.)± 0.0011(syst.) GeV

ΓZ 2.5004± 0.0003(stat.)± 0.0003(syst.) GeV

2018

mZ mref.
Z + 0.0075± 0.0010(stat.)± 0.0012(syst.) GeV

ΓZ 2.4952± 0.0004(stat.)± 0.0003(syst.) GeV

Table 6.4: m
(blinded)
Z and ΓZ values post fit, and systematic uncertainties from η calibration.

2015-16 fitted mref.
Z value is used as a reference.

Using the BLUE combination method for uncorrelated measurements [79] a combined result
is obtained:

m
(blinded)
Z = mref.

Z + 0.00356± 0.002GeV,

ΓZ = 2.4990± 0.0003GeV.

Results are repeated with the extrapolation systematic to asses it’s impact on the uncer-
tainty of the fit. In the Table 6.5 likelihood fit results on mref.

Z and ΓZ are presented for the
2015-16, 2018 campaigns.

2015-16

mZ mref.
Z ± 0.0012(stat.)± 0.0025(syst.) GeV

ΓZ 2.5004± 0.0003(stat.)± 0.0003(syst.) GeV

2018

mZ mref.
Z + 0.0071± 0.0010(stat.)± 0.0025(syst.) GeV

ΓZ 2.4952± 0.0004(stat.)± 0.0003(syst.) GeV

Table 6.5: m
(blinded)
Z and ΓZ values post fit, and systematic uncertainties from η calibration +

extrapolation systematic uncertainty. 2015-16 fitted mZ value is used as a reference (ref.).

Using the BLUE combination method for uncorrelated measurements [79] a combined result
is obtained:

m
(blinded)
Z = mref.

Z + 0.00366± 0.0028GeV,

ΓZ = 2.4990± 0.0004GeV.

In the Figures 6.14, the ranking plots for the two POI are displayed. Results are presented
only for 2018 campaign to avoid redundancy. Ranking plots display the pull and pre, post fit
impact of the most significant nuisance parameters on a POI.
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(a) mZ (b) ΓZ

Figure 6.14: Ranking plots for mZ and ΓZ POIs, 2018 campaign. Nuisance parameter numbers
indicated correspond to different bins of the calibration procedure. Scale NPs are connected
with scale parameter systematic uncertainties. s1 NPs are connected to resolution parameter
dr1 systematic uncertainties.

Regarding the mZ ranking plot, there are strong pulls observed. As expected, scale NPs are
dominant. First, the extrapolation NP has the largest effect on the Z mass. Post calibration
though, the corresponding uncertainty is constrained. Possibly, this signals that the pµT depen-
dence of the scale is flat in the Z pµT range. Some NPs, such as the MUON (Scale 10), exhibit
a large pull. This phenomenon is hard to disentangle. Likely, it is connected with calibration
non-closures. Luminosity, is heavily constrained and pulled post fit. This is expected as the
luminosity uncertainty was inflated pre fit to incorporate additional systematic uncertainties.

Regarding the ΓZ ranking plot, the dominating NPs are the ones connected with dr1 cali-
bration resolution parameter, as expected. No strong pulls are observed, but the majority of
the pulls are titled to positive values. This phenomenon is hard to disentangle without further
calibration studies.

6.5 Conclusions

In this Chapter the Z mass measurement is presented. First, data and simulation samples are
presented. From the comparison of kinematic distributions, the effect of missing higher order
corrections on the signal is presented. Notably, there is a trend of disagreement for higher
values of pµT and pµµT . By deriving signal templates and through a dedicated likelihood fit the
final measurement is derived. The templates for width and the mass have distinctively different
shape, allowing for a separate measurement of the two. Finally, by incorporating calibration
systematic uncertainties and blinding the central value the final results are: mblinded

Z = mref.
Z +

0.00356± 0.002GeV and ΓZ = 2.4990± 0.0003GeV.
The 2015-16 and 2018 years exhibit a difference between the mean values fitted. This is

likely due to calibration non closures in the ϕ direction and an incorrect pµT extrapolation due
to known issues existing in the samples processed. With a more precise calibration a closure
between the different years is expected.

Since the central value is blinded, the primary focus is on the uncertainties. The values
presented here correspond to an approximation of the final calibration uncertainties on the Z
mass, assuming that the extrapolation systematic is appropriately handled from the analysis.
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Chapter 7

Conclusions

In this thesis the mZ measurement was discussed using proton proton collision data from
ATLAS. Main focus was given to the calibration procedure to correct for charge independent
effects.

In Chapter 4, the qualification task and calibration work for ATLAS was presented. First,
the calibration ”pre-smearing” corrections procedure were presented. To derive the pre-smearing

corrections the σpµT /p
µ
T was studied. Maps of

σ
p
µ
T
/pTData

σ
p
µ
T
/pTMC

were derived for the three muon track

types: ID, CB and ME. The comparison of the three shows that the CB resembles ID in the
barrel and ME at the end-cap regions. From the maps it is derived that the ME and CB
tracks are sensitive to mis-modeling of the toroid magnetic field and the complex systems of
the Muon Spectrometer. Structures of mis-modeling are observed in the small toroid systems
and a systematic deficiency of the detector CSC. The Inner Detector, on the other hand, ex-
hibits excellent an performance and a uniformity in ϕ. By studying the σpµT /pT as a function of
pµT and fitting the corresponding plots with an analytical function, it is derived that the σpµT /pT
discrepancy between MC and data is increasing with pµT . Finally, corrections were derived
from the maps and injected into the ATLAS calibration framework. In most cases no signifi-
cant improvement was found in the final result, compared to the nominal ATLAS calibration
procedure.

In Chapter 5 the process of deriving calibration parameters as a function of η and pµT is
presented, using the J/ψ meson resonance . First a study is done for the calibration comparison
of Prompt and Non Prompt J/ψ, focusing on scale ds1 as a function of η. Separate samples of
the two were produced and compared using the decay length Lxy. It is concluded that the Non
Prompt J/ψ is sensitive to calibration non closures due to it’s large background contribution
and the non perturbative QCD interference in it’s production. The majority of Non Prompt
J/ψ are chosen to be excluded through kinematic selection from the analysis.

Secondly, the η calibration is presented. For the η calibration the innermost barrel has
a uniform response where in the outermost parts it deviated from this picture. The η cali-
bration has negligible systematic uncertainties paving the way for an accurate Z boson mass
measurement.

For the pµT calibration the trigger choice can influence heavily the dependence of the scale
ds1 with pµT . A strong dependence is observed for the scale but for intermediate pµT ≈ 10− 20
GeV a plateau is reached. At higher values there is an nonphysical dependence from pµT which
originates in double counting of data in the Main and BPhys streams. The resolution parameters
are withing statistical uncertainty in the different pµT bins. Therefore, are considered to be
constant with pµT in the context of this thesis.

Lastly, in Chapter 6,the Z mass measurement is performed. Templates of mZ and ΓZ
variations were produced using a Z lineshape approach. By using a dedicated likelihood fit the
width and the mass were calculated simultaneously. The final combined result, with using η
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calibration systematic uncertainties and a blinded mass value, is: mblinded
Z = mref.

Z +0.00356±
0.002GeV and ΓZ = 2.4990± 0.0003GeV.

The result obtained exhibits a low systematic uncertainty. In conclusion, the calibration
tools of ATLAS derive an accurate calibration, with a low systematic uncertainty for the mZ

by using the J/ψ resonance. In other words, the muon reconstruction algorithms of ATLAS
and specifically in the barrel of the tracker system, are proven to provide excellent and precise
measurements of the pµT .

Outlook

Calibration with the ATLAS tools has exhibited an excellent performance. Nevertheless, there
is room for improvement and comparison with other methods.

Calibration To enhance the obtained results, it is crucial to repeat the calibration as a
function of pµT without data overlap. This approach will allow for a more accurate description
of the scale as a function of pµT . Furthermore, analyzing the relative cross sections of Prompt
and Non-Prompt J/ψ can contribute to achieving a more accurate calibration for high pµT .

Moreover, using a non iterative method, which calibrates all the ηµ and pµT bins simultane-
ously, can have a better estimation on the correlation between bins, potentially leading to more
accurate results.

Another interesting topic would be the use of the calibration presented in this thesis in the
context of the W mass measurement. In this case, the conditions are more challenging since
there is also the missing energy part of the reconstruction and increased precision is required.
Additionally, the W mass measurement is performed using the whole η range, and not only in
barrel, making the approach of this thesis challenging. Since Inner Detector is deteriorating in
performance in forward regions, the calibration procedure used in this thesis can be potentially
inadequate for a W mass measurement. Alternatively, a Combined Tracks approach could be
followed in that case.

Z mass For the Z mass a major problem in this thesis is the non capability of the fit to
constraint the background yield. This is not regarded as a major issue, since background is
negligible. However, utilizing a control region to constrain the background could potentially
improve convergence further.
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Appendix A

Fermions EW Couplings

Fermion Q I3
W CL CR CV CA

νe, νµ, ντ 0 +1
2

+1
2

0 +1
2

+1
2

e−, µ−, τ− −1 −1
2

−0.27 0.23 −0.04 −1
2

u, c, t +2
3

+1
2

0.35 −0.15 +0.19 +1
2

d, s, b −1
3

−1
2

−0.42 0.08 −0.35 −1
2

Table A.1: Values of CR, CL, Q, and I
3
W for different fermions.
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Appendix B

Calibration Iteration Scheme

Calibration ATLAS algorithm utilizes an iteration scheme. An outline of this scheme is de-
scribed in the following:

• First Iteration: Only muons that belong to the same region are selected. This way an
independent calibration is derived for each region.

• Second Iteration: Since there is a calibration correction for all available phase space, from
the first iteration, now muons are allowed to belong to different regions. The regions used
can be finer in this iteration. For the second muon of the pair the procedure is a bit
different. If it belongs to the region of interest then it is also fitted, but if it belongs to
another region of the phase space, then the corrections for it are injected from the first
iteration.

• Third Iteration: The procedure is the same but now the phase space binning can be even
finer. For an ID calibration the same binning will be kept for all the other iterations.

• Fourth Iteration: For the official ATLAS calibration, for the MS and CB calibrations ϕ
dependence is introduced, which corresponds to the Large and Small Sectors.

• Fifth Iteration: Advanced template likelihood method is used for the minimization.
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Appendix C

Calibration Systematics

Below the list of systematic uncertainties for the ATLAS calibration procedure is analysed:

• J/ψ and Z pT range: changing the nominal pT range selection for the templates produced.

Decay Process Nominal Range Modified Range

J/ψ decay
6.3 < pS.L.T < 9 GeV 6.3 < pS.L.T < 8 GeV

9 < pSub−LeadingT < 20 GeV 8 < pS.L.T < 20 GeV
6.3 < pS.L.T < 12 GeV - 12 < pS.L.T < 20 GeV

Z decay
20 < pL.T < 50 GeV 20 < pL.T < 40 GeV
50 < pL.T < 300 GeV 40 < pL.T < 300 GeV

20 < pL.T < 80 GeV - 80 < pL.T < 300 GeV

Table C.1: Comparison of the nominal and modified pT ranges for muons from J/ψ and Z
decays.

• J/ψ and Z mass range: templates with different Mµµ windows.

For the J/ψ this is essential as the background is more dominant at the tails and it is an
exponential falling function. Therefore the region further from theMµµ peak is influenced
from the background domination and the specific choises of the MC generators used in the
simulation of the process J/ψ. Also on the upper side of the J/ψ nominal template range
of Mµµ = 3.5 GeV there is a minor contribution of J/ψ 2S which also can contribute
variations of the background shape fitted. The template window is shifted as: 2.75 ¡
Mµµ < 3.4 GeV.

For the Z this is essential as the regions farther from the peak is sensitive from Initial
and Final State Radiation and the running of the αEMZ which can influence at the tails
the shape of the signal. The template model is changed to: 75 ¡ Mµµ < 115 GeV.

• J/ψ background model: different model for the fit of J/ψ background shape. The nominal
exponential model is altered with a chebysev polynominal of the second order.

• J/ψ signal modeling: changing the signal modeling during the data driven method of
background calculation. The nominal model of Crystal Ball and Gauss is replaced with a
sum of two Crystal Balls. The signal model fitted, influences the final background shape
fitted resulting to a systematic in the calibration.

• Histogram Templates Binning: number of bins of templates changes, for J/ψ from 90 to
60 bins and for Z from 200 to 150 bins.
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• J/ψ and Z separate scale calibration: produces two different calibrations using only J/ψ
and Z. This is essential as the calibration is not accounting properly the pT dependence
of scale. To account for this a systematic is defined where only the scale parameter ds1
is allowed to float during two different calibrations, one using only J/ψ and another one
using only Z.

• Z pT re-weighting: templates of MZ
µµ are produced by using a different pT distribution of

the Z from the nominal one(produced by Powheg + Pythia), the one produced by Sherpa.
The nominal pZT distribution is re-weighted to the Sherpa one by deriving a weight. This
weight is multiplied to the total weight of the signal Z MC. This systematic covers Z
related theory uncertainties.
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Appendix D

Pre-Smearing Studies

D.1 J/ψ and Z σpT distributions

In this section σµpT distributions are displayed for simulation and data, CB tracks. Muons
originate from di-muon decays for J/ψ:2.9 < mµµ < 3.3 and Z:77 < mµµ < 110. Examples are
displayed for barrel, intermediate and end-cap region. CB tracks have similar behavior to ID
tracks in barrel region and to ME tracks in the end-cap.

(a) J/ψ CB Barrel (b) J/ψ CB Intermediate (c) J/ψ CB end-cap

Figure D.1: J/ψ CB

(a) Z CB Barrel (b) Z CB Intermediate (c) Z CB EndCaps

Figure D.2: Z CB

D.2 J/ψ and Z pT distributions

In this section pµT distributions are displayed for simulation and data, CB tracks. Muons
originate from di-muon decays for J/ψ:2.9 < mµµ < 3.3 and Z:77 < mµµ < 110. Examples are
displayed for barrel, intermediate and end-cap region. CB tracks have similar behavior to ID
tracks in barrel region and to ME tracks in the end-cap.
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(a) J/ψ CB Barrel (b) J/ψ CB Intermediate (c) J/ψ CB EndCaps

Figure D.3: pµT distributions for CB muon tracks. Muons are required to be in the J/ψ mass
range: 2.9 < mµµ < 3.3.

(a) Z CB Barrel (b) Z CB Intermediate (c) Z CB EndCaps

Figure D.4: pµT distributions for CB muon tracks. Muons are required to be in the Z mass
range: 77 < mµµ < 110.

D.3 Fits of Relative Uncertainty

In this Section, examples of relative pµT uncertainty parametric fits are presented, according to
the Relation 2.7, for ID muon traks. The section is complementary to the Chapter 4.1.3. In
the Tables D.1 and D.2, the pulls for r1 and r2 are presented for ID muon tracks for several η
bins. The pulls are derived from fitting Relation 2.7 to graphs of relative pµT uncertainty as a
function of pµT , for simulation and Data.

In this case, the pull for the parameter r2 is larger in most bins, and mainly in larger η.
Signaling a signal data disagreement growing with pµT . Furthermore, compared to the ME
Tables 4.1 - 4.2 the pulls of r2 in the ID tables are significantly lower. This is due to the better
knowledge of the magnetic field in the central solenoid system compared to the more complex
nature of the Toroid one of the Muon Spectrometer.
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Bin
rMC
1 −rData

1

rData
1

%
rMC
2 −rData

2

rData
2

%

0.05< η <0.10 0 0
0.10< η <0.15 2 2
0.15< η <0.20 1 2

1.20< η <1.25 0 5
1.25< η <1.30 0 4
1.30< η <1.35 1 4

2.45< η <2.50 0 0
2.50< η <2.55 0 1
2.55< η <2.60 0 6

Table D.1: Pull of parametrization fits in MC and data for ID muons coming from Z resonance
decay

Bin
rMC
1 −rData

1

rData
1

%
rMC
2 −rData

2

rData
2

%

0.05< η <0.10 1 11
0.10< η <0.15 0 8
0.15< η <0.20 0 9

1.20< η <1.25 0 3
1.25< η <1.30 0 10
1.30< η <1.35 0 5

2.45< η <2.50 0 0
2.50< η <2.55 2 5
2.55< η <2.60 2 31

Table D.2: Pull of parametrization fits in MC and data for ID muons coming from J/ψ resonance
decay
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Appendix E

Validation of CB tracks - J/ψ

ηleading−µ : In Figures E.1 and E.2 the mean and the σ of the distributions are displayed as
a function of ηleading−µ.

(a) Pre-calibration (b) Post-calibration

Figure E.1: Pre and post calibration mean of mµµ distribution (2.8 < mµµ < 3.3 GeV) as a
function of ηleading−µ.
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(a) Pre-calibration (b) Post-calibration

Figure E.2: Pre and post calibration σCR of mµµ distribution (2.8 < mµµ < 3.3 GeV) as a
function of ηleading−µ.

For the mean and σ plots, the shape as a function of ηleading−µ is similar to the Z case,
Figure 4.34 and 4.35.

For the mean, the agreement between MC and data after the calibration is in the order of
10−3 GeV. For the σ the agreement is again in the order 10−3 GeV. Some outliers are in the
order of 10−2 GeV.

ϕleading−µ : In Figures E.3 and E.4 the mean and the σ of the distributions are displayed as
a function of ϕleading−µ.

(a) Pre-calibration (b) Post-calibration

Figure E.3: Pre and post calibration mean of mµµ distribution (2.8 < mµµ < 3.3 GeV) as a
function of ϕleading−µ.
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(a) Pre-calibration (b) Post-calibration

Figure E.4: Pre and post calibration σCR of mµµ distribution (2.8 < mµµ < 3.3 GeV) as a
function of ϕleading−µ.

For the mean and σ plots, the shape as a function of ϕleading−µ is similar to the Z case,
Figures 4.36 and 4.37.

For the mean there is an excellent agreement between data and MC, in the order of 10−3

GeV. In the σ there is large outlier point, which is deemed as non physical and further inves-
tigation is needed. Apart from that, the agreement is excellent at the order of 10−3 GeV.

pleading−µT : In Figures E.5 and E.6 the mean and the σ of the distributions are displayed as
a function of pleading−µT .

(a) Pre-calibration (b) Post-calibration

Figure E.5: Pre and post calibration mean of mµµ distribution (2.8 < mµµ < 3.3 GeV) as a

function of pleading−µT .
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(a) Pre-calibration (b) Post-calibration

Figure E.6: Pre and post calibration σCR of mµµ distribution (2.8 < mµµ < 3.3 GeV) as a

function of pleading−µT .

The calibration is inclusive in pµT . Due the Z simulation sample which has more available
events, the fit converges closer to the Z values. The pµT of the scale ds1 parameter creates a
slope of disagreement seen in the mean plot as a function of pleading−µT . The expected behavior,
post calibration, is the slope to start from positive values and the agreement to increase as the
momentum of the muons is closer to the momentum of the muons coming from Z. In contrast,
at the subtraction plot there is an ever increasing of a negative slope. This happens likely due
an known problem of kinematic distributions in the J/ψ data samples and it is considered as
non physical, as mentioned in Section 4.2.1.
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Appendix F

Non Prompt Studies

In this Apprendix section complementary figures and studies on the Prompt - Non Prompt
calibration comparison are presented.

F.1 Resolution parameters for Prompt-Non Prompt Cal-

ibration

In Figures F.1a,F.1b the resolution parameters for Prompt and Non Prompt J/ψ , as they are
defined in Table 5.3 in the Lxy studies, are compared. Their behavior is less essential for the
Z mass measurement analysis but it is investigated for completeness. The dr1 parameter is
showing no clear trend between the two calibrations. For Non Prompt J/ψ again the error
bars, which correspond to standard deviation over iterations, are larger. In the barrel region
the agreement resides within the statistical uncertainty. At endcaps there are points which
show a substantial difference between two calibrations. In these regions the background fit
is challenged even more and the simulation statistics are substantially lower compared to the
central ones and therefore these difference are regarded as fit non closures. dr2 n parameter
has a similar behavior, there is good agreement in central and intermediate regions and within
the uncertainties.

(a) dr1 parameter (b) dr2 parameter

Figure F.1: Resolution parameters and χ2/(Degrees of Freedom) comparison for calibrations
of Prompt and Non Prompt J/ψ as they are defined in Chapter 5.3

.
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F.2 Background studies

For the background shape fit non closure a minor study has been done. Technical details and χ2,
scale and resolution as a function of η can be found in Apprendix F. The main goal of this short
study is to observe if an alternative model for the background with more flexibility in the slope
can lead a more stable and accurate calibration for the Non Prompt case. The hypothesis is that
a more complex background model with more flexibility could describe better the background
distribution as the nominal exponential model has only one slope variable. Adding though
additional parameters to the fit should be handled with care as more parameters have to be
fitted per region per iteration and therefore possibly increasing instability of calibrations with
iterations. The χ2 as a function of η for the iterations 6-12 is going to be compared for two
cases. One case is the nominal exponential background model and a new one which can be
more flexible in shape. For this study a Chebysev polynomial of the third order is used as new
model. The signal is kept at the nominal model ( the sum of a Crystal Ball and a Gaussian
distribution ). The samples used for this minor study is the Non Prompt one, as it is defined
by the Lxy selection of Table 5.6. In Figure F.3 of χ2 of the two calibrations as a function of η
in Apprendix F the two central η bins at the Chebysev polynomial model case have decreased
χ2, but in the rest of the barrel regions the two calibrations are compatible in the statistical
uncertainty margin. There there is no indication that this effect reduces significantly χ2 in all
barrel and therefore for the rest of the studies to be made the nominal background model is
used for the Non Prompt.

In Figure F.2, a scale comparison is presented for the two Non-Prompt sample calibrations,
each utilizing different background models. In the central barrel region (|η| < 0.4), the two
calibrations show complete agreement. However, in the intermediate and outermost barrel
regions (0.4 < |η| < 1.05), the scale for the Chebyshev model begins to shift towards the
ds1. values of the Prompt nominal calibration. This trend is further illustrated in Figure
F.4, where ds1, is plotted for the Prompt (using the exponential background model) and Non-
Prompt (using the Chebyshev background model) samples. There the Prompt and Non Prompt
calibration are closer compared to the one presented in Figure 5.15a. The observed differences
between the two calibrations remain, though certain regions with the new background model
show a tendency to align more closely with the Prompt calibration values.

In the following Figures two calibrations with two different background models are com-
pared. The one is with exponential background model and the other one is with a Chebysev of
third order polynomial:
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Figure F.2: Scale ds1 as a function of η for two
different calibrations for Chebysev and Expo-
nential background models

Figure F.3: χ2/(Degrees of Freedom as a func-
tion of η for two different calibrations for
Chebysev and Exponential background mod-
els

The points used Figures F.3 and F.2 are from iteration 5 to iteration 12. Points are the
mean and the error bars are the standard deviation.

Figure F.4: Scale ds1 as a function of η for
two different calibrations for Non Prompt (
Chebysev for background model ) and Prompt
( exponential for background model )
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Appendix G

eta Calibration results

G.1 Calibration Parameters, Statistical uncertainty 2017

In Figure G.1 the calibration parameters for ID, 2017 are presented as they are fitted between
Iteration 15 and Iteration 20. Points are mean over iterations and error bars are standard
deviation over iterations:

(a) ds1 parameter (b) dr1 parameter

(c) dr2 parameter

Figure G.1: Calibration Parameters for the campaign 2017 and ID muons. Points are average
over iterations 15 to 20 and the error bars are standard deviation over the corresponding
iterations.

In Figure G.1 in Appendix G the points are the average over iterations and the error bars are
the Standard Deviation over iterations. The scale parameter in Figure G.1 a) is the most stable
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in barrel region compared to the resolution parameters in Figures G.1 b) and c). The standard
deviation for the scale parameter is ≈ 1 × 10−6 for the central barrel region (0 < η < 0.8)
and at the outer barrel (0.8 < |η| < 1.05) is reaching ≈ 1 × 105. The statistical uncertainty
for the scale is excellent for the precision required and it’s contribution is almost half than the
systematic contribution for most of the barrel regions.
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G.2 Table of Dominant Systematics

For the scale parameter all the regions are shown for completeness and for the resolution
parameters only the barrel regions are kept. The systematic with the larger distance from the
parameter in a given η region is regarded as the positive or negative systematic variation. As
mentioned the most significant systematic uncertainties for the Z mass calibration analysis are
the scale ones. Therefore there is a focus in analysing the corresponding uncertainties. At
the Table G.1 the dominant systematic contributions for the scale ds1 are shown for the down
and up contribution. Dominating systematic in the down variation, which is the larger one
compared to the up variation, are the background and signal modeling ones as observed in
Figure 5.23a. In the barrel region (−1.05 < η¡1.05) the dominant ones are the ones related to
the J/ψ pT binning and the background analytical ones. This signals an imperfect modeling
of the signal and shape of J/ψ. At the resolution parameters in the −1.05 < η < 1.05 regions
the dominant systematic uncertainties are the ones connected to pT binning of the sub-leading
muon. Therefore the choice of the pT binning is expected to influence more the tails of the
mass signal distributions where the background model and signal model can have a significant
impact on the scale.

Tables of dominant systematic contribution for the calibration parameters defined in Equa-
tion 3.2, Chapter 3.3 for the ID tracks are presented in the Tables G.1, G.1 and G.3.

η Bin Down Systematic Contribution Up Systematic Contribution
−2.6 < η < −2.3 Background Parameterization J/ψ pT Up
−2.3 < η < −2.0 Background Parameterization J/ψ pT Up
−2.0 < η < −1.7 Background Technique J/ψ pT Up
−1.7 < η < −1.5 Background Technique J/ψ Bins Reduce
−1.5 < η < −1.25 Background Technique Background Parameterization
−1.25 < η < −1.05 Background Technique J/ψ pT Up
−1.05 < η < −0.8 J/ψ Bins Reduce Background Parameterization
−0.8 < η < −0.4 Background Technique Background Parameterization
−0.4 < η < 0.0 J/ψ pT Up J/ψ pT Down
0.0 < η < 0.4 J/ψ Bins Down Background Parameterization
0.4 < η < 0.8 Background Parameterization J/ψ pT Up
0.8 < η < 1.05 J/ψ Bins Down J/ψ Bins Reduce
1.05 < η < 1.25 Background Technique J/ψ pT Up
1.25 < η < 1.5 Background Technique J/ψ pT Up
1.5 < η < 1.7 Background Technique J/ψ pT Up
1.7 < η < 2.0 Background Technique J/ψ pT Up
2.0 < η < 2.3 Background Technique J/ψ pT Up
2.3 < η < 2.6 Background Parameterization J/ψ pT Up

Table G.1: Systematic contributions for the η bins used in calibration for the scale parameter
ds1. 2017 campaing
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η Bin Down Systematic Contribution Up Systematic Contribution
−1.05 < η < −0.8 J/ψ pT Down J/ψ Bins Down
−0.8 < η < −0.4 Background Parameterization J/ψ Bins Reduce
−0.4 < η < 0.0 J/ψ pT Down J/ψ pT Up
0.0 < η < 0.4 J/ψ pT Up J/ψ Bins Down
0.4 < η < 0.8 J/ψ Bins Reduce J/ψ Bins Down
0.8 < η < 1.05 J/ψ Bins Reduce J/ψ pT Down
1.05 < η < 1.25 J/ψ Bins Reduce J/ψ pT Down

Table G.2: Systematic contributions for the η bins used in calibration for the scale parameter
dr1. 2017 campaing

η Bin Down Systematic Contribution Up Systematic Contribution
−1.05 < η < −0.8 J/ψ Bins Down J/ψ pT Up
−0.8 < η < −0.4 J/ψ Bins Reduce Background Parameterization
−0.4 < η < 0.0 J/ψ Bins Down J/ψ pT Down
0.0 < η < 0.4 Background Technique J/ψ pT Up
0.4 < η < 0.8 Background Technique J/ψ Bins Reduce
0.8 < η < 1.05 J/ψ Pt Down J/ψ pT Up
1.05 < η < 1.25 J/ψ Pt Down J/ψ pT Up

Table G.3: Systematic contributions for the η bins used in calibration for the scale parameter
dr2. 2017 campaing

G.3 Validation for η, Z mass Calibration

In this Section, validation plots of calibration are presented as a function of muon kinematic ob-
servables. The calibration is performed as a function of η, presented in Chapter 5.4. In Chapter
5.4.0.3, the validation is presented for the 2017 campaign. Here are presented complementary
plots from 2015-16 and 2018 campaigns.

The validation plots presented in this section exhibit behavior consistent with those dis-
cussed in the main text. To avoid redundancy, the commentary on these plots is kept minimal.
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G.3.1 ηleading−µ

(a) Mean as a function of ηleading-µ (b) Variance as a function of ηleading-µ

Figure G.2: Mean and variance as a function of ηleading-µ after calibration has been applied.
The samples used are from 2015-16 and are corrected for the η calibration presented in Figure
5.23.

(a) Mean as a function of ηleading-µ (b) Variance as a function of ηleading-µ

Figure G.3: Mean and variance as a function of ηleading-µ after calibration has been applied.
The samples used are from 2018 and are corrected for the η calibration presented in Figure
5.23.

In Figures G.2, G.3 the mean and the σ are displayed as a function of ηleading-µ, for 2015-16
and 2018 respectively. In both cases the agreement is in the order of 10−4 for the mean 10−3

for the σ. In 2015-16 there is a shape of non closure in negative ηleading-µ > −0.5. Since there
is a known error in the samples used, it is hard to disentangle the effect. With another sample
used for the calibration, in the future, the non closure is expected to be treated.
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G.3.2 ϕleading−µ

(a) Mean as a function of ϕleading-µ (b) Variance as a function of ϕleading-µ

Figure G.4: Mean and variance as a function of ϕleading-µ after calibration has been applied.
The samples used are from 2015-16 and are corrected for the η calibration presented in Figure
5.23.

(a) Mean as a function of ϕleading-µ (b) Variance as a function of ϕleading-µ

Figure G.5: Mean and variance as a function of ϕleading-µ after calibration has been applied.
The samples used are from 2018 and are corrected for the η calibration presented in Figure
5.23.

In Figures G.4, G.5 the mean and the σ are displayed as a function of ϕleading-µ, for 2015-16
and 2018 respectively. The structures seen are in data and simulation are similar to the ones
already discussed for the 2017 case, presented in Chapter 5.4.0.3.
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G.3.3 pleading−µT

(a) Mean as a function of pleading-µT (b) Variance as a function of pleading-µT

Figure G.6: Mean and variance as a function of pleading-µT after calibration has been applied.
The samples used are from 2015-16 and are corrected for the η calibration presented in Figure
5.23.

(a) Mean as a function of pleading-µT (b) Variance as a function of pleading-µT

Figure G.7: Mean and variance as a function of pleading-µT after calibration has been applied.
The samples used are from 2018 and are corrected for the η calibration presented in Figure
5.23.

In Figures G.6, G.7 the mean and the σ are displayed as a function of pleading-µT , for 2015-16 and
2018 respectively.

The mean agreement between MC and data differs significantly for all years. Specifically for
the 2015-16 the disagreement is rising with pleading-µT , where for the 2018 there is the opposite
effect. In the bins pleading-µT > 10 GeV there is absolute agreement between MC and data. This
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effect is likely connected to the data overlap between the BPhys and Physics Main stream,
which can be affected from the year processed in the samples.

At the σ plots similar behavior is seen to the 2017 Figures presented in Chapter 5.4.0.3. In
the 2018 case there is a data outlier point, this is regarded as the outcome of a failed parametric
fit to the di-muon mass distribution.
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Appendix H

pT Extrapolation

H.1 Fifth Bin 2017

In this chapter a minor study of the 2017 calibration revisits the results with a different con-
figuration. Goal is to remove the outlier fifth bin presented at the Figure 5.33a. This outlier
makes the extrapolation of the scale with pT more challenging and deviates from a smooth
extrapolation shape. The hypothesis of this study is that the outlier point arises from the
HLT_mu11_mu6_bJpsimumu trigger, which is used in both the MCP and the general trigger list.
Since the trigger applies a cut of pµT = 11 GeV for the leading muon, the outlier may result
from the significant difference between the leading and sub-leading muon distributions at the
threshold where the trigger becomes effective. Since these studies are sensitive to changes and
miss simulations of the pµT distribution by excluding a negligible window in pT around the trig-
ger effect region ≈ 11 GeV. Therefore a second calibration is presented with a window in pµT
where the muons are excluded. This region is the pµT = 11 − 11.7 GeV. The two calibration
results presented in the Figure H.1 correspond to the iterations 5 - 9. The points are the mean
over iterations and the error bars correspond to standard deviation over iterations. The two
calibration use slight different bin configuration for the fifth and the sixth bin since in the trial
one there is the exclusion window.

0 20 40 60 80 100
 [GeV]

T

muonp

0.0016−

0.0014−

0.0012−

0.001−

0.0008−

0.0006−

0.0004−

0.0002−

0

ds
1

Yes ReWei-Sag, MCP Triggers

Yes ReWei-Sag, Gap, MCP Triggers

Figure H.1: Enter Caption

In Figure H.1 the calibration with the gap is compared to the nominal used for 2017 with
MCP trigger list. In both calibrations there is p

J/ψ
T re-weighting used and sagitta corrections.
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The problem with the fifth bin is not fixed but there is a visible difference between the two
calibrations.The calibration with the gap (red points) converges to a smoother configuration
in the final bins compared to the nominal calibration (black points). Notably, the seventh and
eighth bins are closer in the gap trial calibration. The red line in Figure H.1 is a parametric fit
of an inverse exponential and corresponds to the red points. It is overlapping with the black
line corresponding to the black points.

Ultimately the two calibrations are close. The fifth bin outlier is not treated with this study.
It is not excluded that a wider gap in the pµT would resolve this issue but a detailed study of
this is out of the timescale and scope of the thesis.
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Appendix I

Trigger lists

The choice of trigger is important for the calibration procedure. As presented in section 5 of
Chapter 5.5.0.2 the trigger list used can have a direct impact on the calibration result. In
section 2 of the Chapter 5.2.2 also kinematic distributions on muons are presented for the
different choice of trigger. In this Apprendix section are presented the trigger lists used this
thesis.

One is called MCP trigger list. It is the trigger list used by ATLAS official group for the
J/ψ samples in muon momentum calibration and is shown in Table I.1

MCP trigger list (2017, 2018)

HLT mu11 mu6 bJpsimumu
HLT 2mu6 bJpsimumu Lxy0 L1BPH 2M9 2MU6 BPH 2DR15 2MU6

Table I.1: MCP trigger list

The main advantage of this trigger list is that it includes non pre-scaled triggers which
ensure a better agreement between data and MC in the kinematic distributions of the muons.
Though it includes only two triggers therefore excluding some di-muon events.

In order to get more muons coming from J/ψ candidates another trigger list, which in the
context of the thesis is called general trigger list. This list includes more triggers relevant for
J/ψ studies but the disadvantage is that some triggers are heavily pre-scaled, which could lead
to increased disagreement in muon kinematic distributions. Since trigger configurations and
the pre-scale factors change per campaign there different general trigger lists for 2015-16 and
2017-2018. In general trigger lists the ATLAS recommended ones are included.

The general trigger list for 2017 and 2018 campaigns is presented at the Table I.2

General Trigger List for 2017/2018

HLT mu22 mu8noL1
HLT mu20 2mu4 JpsimumuL2
HLT mu20 2mu2noL1 JpsimumuFS
HLT 2mu6 bBmumux BpmumuKp L1BPH dash 2M9 dash 2MU6 BPH dash 2DR15 dash 2MU6
HLT mu11 mu6 bJpsimumu Lxy0
HLT mu11 mu6 bDimu Lxy0
HLT mu11 mu6 bDimu
HLT mu11 mu6 bJpsimumu
HLT 2mu6 bJpsimumu Lxy0 L1BPH dash 2M9 dash 2MU6 BPH dash 2DR15 dash 2MU6
HLT 2mu6 bJpsimumu L1BPH dash 2M9 dash 2MU6 BPH dash 2DR15 dash 2MU6

Table I.2: List of HLT Triggers

189



The general trigger list for the 2015-16 campaign is shown at I.3.

General Trigger List for 2015-16

HLT mu10 mu6 bJpsimumu delayed
HLT 2mu14
HLT mu6 mu4 bJpsimumu
HLT 2mu10
HLT mu22 mu8noL1
HLT mu20 2mu4 JpsimumuL2
HLT mu20 2mu2noL1 JpsimumuFS
HLT 2mu6 bBmumux BpmumuKp L1BPH dash 2M9 dash 2MU6 BPH dash 2DR15 dash 2MU6
HLT mu11 mu6 bJpsimumu Lxy0
HLT mu11 mu6 bDimu Lxy0
HLT mu11 mu6 bDimu
HLT mu11 mu6 bJpsimumu
HLT 2mu6 bJpsimumu Lxy0 L1BPH dash 2M9 dash 2MU6 BPH dash 2DR15 dash 2MU6
HLT 2mu6 bJpsimumu L1BPH dash 2M9 dash 2MU6 BPH dash 2DR15 dash 2MU6

Table I.3: General trigger list for 2015-16
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