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Résumé 

Au cours des dernie res de cennies, la production et la consommation du contenu vide o a 

conside rablement augmente  et il est commune ment admis que 80 % du trafic Internet est constitue  

par de vide os. Dans ce cadre, la distribution des vide os publicitaires est encore domine e par le contenu 

payant (c'est-a -dire le contenu cre e  par une agence me dia qui paie un annonceur pour distribuer ce 

contenu). Cependant, le contenu vidéo organique progresse lentement mais su rement. Le terme 

« contenu organique » fait re fe rence a  un contenu dont la cre ation et/ou la distribution n'est pas 

payante. Dans la plupart des cas, il s'agit d'un contenu cre e  par l'utilisateur, avec une valeur publicitaire 

implicite, ou d'un contenu publicitaire distribue  par un utilisateur sur un re seau social. En pratique, un 

tel contenu est directement produit dans un format compresse  (par exemple AVC - Advanced Video 

Coding, HEVC - High efficiency Video Coding ou VVC - Versatile Video Coding) et est souvent partage  

par d'autres utilisateurs, sur le me me re seau social ou sur des re seaux sociaux diffe rents, cre ant ainsi 
une chaî ne virtuelle de distribution qui est e tudie e par les experts en marketing. 

Une telle application peut e tre mode lise e par au moins deux cadres scientifiques diffe rents, a  savoir la 

blockchain et l'empreinte (fingerprinting) vide o. D'une part, si l'on conside re d'abord les proble mes de 

distribution, la blockchain semble e tre une solution attrayante, car elle pre voit une solution se curise e, 

de centralise e et transparente pour suivre les changements de tout actif nume rique. Alors que la 

blockchain a de ja  prouve  son efficacite  dans une grande varie te  d'applications de distribution de 
contenu, ses applications lie es au multime dia restent rares et soule vent des contradictions 

conceptuelles entre les limitations des ressources de calcul/stockage disponibles dans la blockchain et 

la grande quantite  de donne es et les ope rations complexes que le traitement vide o exige. D'autre part, 

si l'on conside re d'abord les questions relatives au contenu multime dia, chaque e tape de la distribution 

peut e tre conside re e comme une ope ration de quasi-doublonnage (near-duplicate content). Ainsi, le 

suivi d'une vide o organique peut e tre assure  par le fingerprinting vide o qui regroupe les efforts de 

recherche consacre s a  l'identification des versions duplique es et/ou re plique es d'une se quence vide o 

dans un ensemble de donne es vide o de re fe rence. Alors que le suivi du contenu vide o dans le domaine 

non compresse  est un domaine de recherche riche, le fingerprinting vide o dans le domaine compresse  
est encore sous-explore . 

La pre sente the se e tudie la possibilite  de tracer un contenu vide o compresse , dans le contexte de sa 
propagation spontane e et incontro le e dans un re seau distribue , a  travers trois aspects principaux : 

 le suivi vide o au moyen de solutions base es sur la blockchain, malgre  la grande quantite  de 

donne es et les exigences de calcul des applications vide o, a priori incompatibles avec les 

solutions blockchain actuelles, 

 le fingerprinting vide o dans le domaine compresse , me me si la compression vide o est cense e 

exclure la redondance visuelle qui permet de retrouver le contenu vide o, 

 les synergies applicatives entre la blockchain et le fingerprinting vide o. 

Les principaux re sultats consistent en la conception, la spe cification et la mise en œuvre de : 

 COLLATE – une architecture de re partition du calcul et du stockage on-chain / off-chain, qui 

permet d'e tendre de manie re abstraite les ressources informatiques limite es de n'importe 

quelle blockchain par des ressources informatiques a  usage ge ne ral ; 

 COMMON – Compressed dOMain Marketing videO fiNgerprinting, qui de montre la possibilite  
de mode liser des empreintes vide o compresse es dans un cadre d'apprentissage profond ; 

 BIDDING – BlockchaIn-baseD viDeo fINgerprintinG, un pipeline de traitement de bout en bout 
qui permet de coupler l'empreinte vide o a  la solution d'e quilibrage de charge de la blockchain. 
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Abstract 

The last decades have seen video production and consumption rise significantly: TV/cinematography, 

social networking, digital marketing, and video surveillance incrementally and cumulatively turned 

video content into the predilection type of data to be exchanged, stored, and processed. It is thus 

commonly considered that 80% of the Internet traffic is video, and intensive and holistic efforts for 

devising lossy video compression solutions are carried out to reach the trade-off between video data 

size and their visual quality.  

Under this framework, marketing videos are still dominated by the paid content (that is, content 

created by the advertiser that pays an announcer for distributing that content). Yet, organic video 

content is slowly but surely advancing. In a nutshell, the term organic content refers to a content whose 

creation and/or distribution is not paid. In most cases, it is a user-created content with implicit 

advertising value, or some advertising content distributed by a user on a social network. In practice, 

such a content is directly produced by the user devices in compressed format (e.g. the AVC – Advanced 

Video Coding, HEVC – High efficiency Video Coding or VVC – Versatile Video Coding) and is often shared 

by other users, on the same or on different social networks, thus creating a virtual chain distribution 

that is studied by marketing experts. 

Such an application can be modeled by at least two different scientific methodological and technical 

frameworks, namely blockchain and video fingerprinting. On the one hand, should we first consider the 

distribution issues, blockchain seems an appealing solution, as it makes provisions for a secure, 

decentralized, and transparent solution to track changes of any digital asset. While blockchain already 
proved its effectiveness in a large variety of content distribution applications, its multimedia related 

applications stay scarce and rise conceptual contradictions between the strictly limited 

computing/storage resources available in blockchain and the large amount of data representing the 

video content as well as the complex operations video processing requires. On the other hand, should 

we first consider the multimedia content issues, each step of distribution can be considered as a near-

duplication operation. Thus, the tracking of organic video can be ensured by video fingerprinting that 

regroups research efforts devoted to identifying duplicated and/or replicated versions of a given video 

sequence in a reference video dataset. While tracking video content in uncompressed domain is a rich 
research field, compressed domain video fingerprinting is still underexplored. 

The present thesis studies the possibility of tracking compressed video content, in the context of its 

uncontrolled, spontaneous propagation into a distributed network, while specifically addressing:  

 video tracking by means of blockchain-based solutions, despite the large amount of data and 

the computation requirements of video applications, a priori incompatible with nowadays 

blockchain solutions 

 effective compressed domain video fingerprinting, even though video compression is 

supposed to exclude the very visual redundancy that allows video content to be retrieved. 

 applicative synergies between blockchain and fingerprinting frameworks. 

The main results consist in the conception, specification and implementation of: 

 COLLATE, an on-Chain Off-chain Load baLancing ArchiTecturE, thus making it possible for the 

intimately constrained computing, storage and software resources of any blockchain to be 
abstractly extended by general-purpose computing machine resources;  

 COMMON – Compressed dOMain Marketing videO fiNgerprinting, demonstrating the 

possibility of modelling compressed video fingerprint under deep learning framework 

 BIDDING – BlockchaIn-baseD viDeo fINgerprintinG, an end-to-end processing pipeline 

coupling compressed domain video fingerprinting to the blockchain load balancing solution. 
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NIP Nested Invariance Pooling 
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NN Neural Networks 
OCCE Off-Chain Connector Environment 
OCCU Off-Chain Connector Unit 
ORB Oriented FAST and Rotated BRIEF 
PNC Non Player Character 
PoA Proof of Authority 
PoC Proof of Concept 
PoS Proof of Stake 
Pow Proof of Work 
PKI Public Key Infrastructure 
RAM Random-Access Memory 
REST API Representational State Transfer 
RNN Recurrent Neural Network 
ROC Receiver Operating Characteristic 
SCCU Smart Contract Connector Unit 
SHA256 Secure Hash Algorithm 256-bit 
SIFT Scale-Invariant Feature Transform 
SSL/TLS Secure Sockets Layer/Transport Layer Security 
SURF Speeded Up Robust Features 
TIRI Temporal Informative Representative Image 
URL Uniform Resource Locator 
VBR Variable Bit-Rate 
VVC Versatile Video Coding 
Y Luma  
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Chapter I. Overview 
 

 

The present thesis deals with video content tracking for marketing applications. This chapter 

identifies the underlying context, the current-day conceptual and methodological limitations, 

as well as our main contributions. The dissemination activity is also mentioned.  
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I.1. Context 

The last decades have seen video production and consumption rise significantly: 

TV/cinematography, social networking, digital marketing, and video surveillance 

incrementally and cumulatively turned video content into the predilection type of data to 

be exchanged, stored, and processed. It is thus commonly considered that 80% of the 

Internet traffic is video [CIS18], and intensive and holistic efforts for devising lossy video 

compression solutions are carried out to reach the trade-off between video data size and 

their visual quality [OTH20]. As a valiant attempt in reducing the processing complexity, 

compressed domain video processing techniques are sometimes considered [AMM18; 
BEN10; HAS14; HEI15; MAN07; SHA11; SHA13]. 

Video has also become one of the most powerful tools in the digital marketer's arsenal, as 

it offers the ability to efficiently and seamlessly convey marketing messages, as brought 

forth in [STA24a] and illustrated in Figure 1. 

 

Figure 1: Worldwide advertising spending in billions of USD, between 2017 and 2028 (source: [STA24a]) 

 

While historically, video marketing was led by the traditional TV advertising, in the last 

few years, digital video advertising is taking over, as illustrated in Figure 2. This shift can 

be explained by the continues growth of the time spent on the different social platforms 

averaging 147 minutes per day in 2024 compared to 90 minutes in 2012 [STA24d], as well 

as the social networks penetration across all regions and generations, with an expected 

6.05 billion users in 2028, compered to 2.73 billion users back in 2017 [STA24c]. 

 

Figure 2: Revenue in the TV & Video Advertising market for different segments Worldwide from 2019 to 2029 (in 
billion U.S. dollars) (source: [STA24b]) 
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While the digital marketing is still dominated by the paid content (that is, content created 

by the advertiser and the distribution is paid for, in order to appear for a specific group of 

users for a specific number of times), organic video content is slowly but surely advancing. 

Organic video marketing refers to the use of video content that reaches audiences 

naturally, without any paid promotion. It could be in the form of tutorials, behind-the-

scenes footage, customer testimonials, or user-generated content, offering a more 

authentic connection between brands and clients. This implicit method of marketing 
thrives on platforms where users could share, engage and edit the content.  

The organic video content is most likely to be directly produced by the user (or, at least, 

nonprofessional) devices in one of the widely used compressed format (e.g. the AVC – 

Advanced Video Coding, HEVC – High efficiency Video Coding or VVC – Versatile Video 

Coding ) and is often shared by other users, on the same or on different social networks, 

thus creating a virtual distribution chain that can be studied by marketing experts, as 

illustrated in Figure 3. 

 

Figure 3: Organic video content distribution: some user-created content, with advertising value for a brand that is not 
controlling that content, can be shared on video platforms and/or social networks 

 

With all those new technological trends in the digital marketing, the term MarTech saw 

the light. MarTech is a blend of Marketing and Technology that was coined to define the 

integration of cutting-edge digital tools and marketing strategies in the modern business 

landscape as illustrated in Figure 4. It represents the integration of technology and 

software platforms in the planning, execution, and evaluation of marketing strategies. This 

interdisciplinary field encompasses a broad spectrum of tools and systems aimed at 

enhancing marketing effectiveness and operational efficiency. It spans across multiple 

domains, including but not restricted to Customer Relationship Management (CRM), 

Content Management Systems (CMS), social media management, email marketing, 
analytics, and automation platforms. 

MarTech solutions are mainly data-centric applications that focus on the collection, 

analysis, and visualization of a tremendous amount of data gathered from the social media 

and video streaming platforms. MarTech tools offer a deeper understanding of consumer 

behavior, preferences, and can identify emerging trends. Analytics are a vital component 

of the MarTech ecosystem, offering tools for measuring Key Performance Indicators (KPIs) 
and assessing campaign success. 
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Figure 4: MarTech main application scopes (Source: [DAS23]) 

 

The raise of the organic video dictates the need for new solutions capable to track the 

propagation of this type of new content throughout all the social networks. Such an 

application can be modeled by at least two different scientific, methodological and 

technical frameworks, namely blockchain and video fingerprinting.  

On the one hand, should we first consider the distribution issues, blockchain seems an 

appealing solution, as it makes provisions for a secure, decentralized, and transparent 

solution to track changes of any digital asset. While blockchain already proved its 

effectiveness in a large variety of content distribution applications, from cold chain 

monitoring [BAD18] to cryptofinance [DOS22], its multimedia related applications stay 

scarce [QUR20] and rise conceptual contradictions between the strictly limited 

computing/storage resources available in blockchain and the large amount of data 

representing the video content as well as the complex operations video processing 

requires. On the other hand, should we first consider the multimedia content issues, each 

step of distribution can be considered as a near-duplication1 operation. Thus, the tracking 

of organic video can be ensured by video fingerprinting (also referred to as content- based 

copy detection, near duplicate detection or semantic fingerprinting) that regroups research 

efforts devoted to identifying duplicated and/or replicated versions of a given video 

sequence (query) in a reference video dataset [DOU08, JIA16]. While tracking video 

content in uncompressed domain is a rich research field, compressed domain video 
fingerprinting is still underexplored [JIA16, ALL22, CHE24]. 

The present thesis studies the possibility of tracking advertising compressed video 

content, in the context of its uncontrolled, spontaneous propagation into a 

distributed network. Specifically, it explores the possibilities of achieving: 

                                                        

1 In this manuscript, near-duplicated content is defined according to [BEN10] as identical or approximately identical videos close to the 
exact duplicate of each other, but different in file formats, encoding parameters, photometric variations (color, lighting changes), editing 
operations (caption, logo and border insertion), different lengths, and certain modifications (frames add/remove). 
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 video tracking by means of blockchain-based solutions, despite the large 
amount of data and the computation requirements of video applications, a 
priori incompatible with nowadays blockchain solutions 

 effective compressed domain video fingerprinting, even though video 
compression is supposed to exclude the very visual redundancy that allows 
video content to be retrieved. 

 applicative synergies between blockchain and fingerprinting frameworks. 
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I.2. Blockchain-based video tracking 

Blockchain is a distributed ledger technology that offers secure, decentralized, and 

transparent data exchange [CHR16, TSC16, MON19, WAN19, ZHO20]. Each block in the 

chain records a set of transactions or data entries, and these blocks are cryptographically 

linked through a process where each block includes the unique hash of the previous one. 

One main property of this type of hashing is its bit-sensitivity, meaning that even the 

slightest change to the input, as small as a single bit, results in a completely different hash 

output. This way, the hash ensures the integrity of the entire chain, breaking the link with 

the succeeding block in case of alterations. This structure forms an immutable sequence 

of blocks, as illustrated in Figure 5, where any data tampering would require consensus 

from the entire network to be accepted. The cryptographic linkage not only secures the 

blockchain but also preserves its transparency, as all participants can verify and trust that 

the recorded data has not been altered. As a result, blockchain provides a robust and 
tamper-resistant system for securely managing data across decentralized environments. 

 

Figure 5:Simplified diagram of the cryptographical link between blocks (source [BOS19]) 

 

In the context of video tracking, blockchain’s primary advantage is its ability to provide an 

immutable record of content ownership, distribution, and usage. Each video can be 

assigned a unique identifier or hash that is stored on the blockchain, ensuring that the 

video’s origin and subsequent changes in ownership or distribution are recorded and 

accountable. Specifically for marketing applications, blockchain can be used to track the 

distribution of promotional videos across various platforms: the video identification 

information stored in blockchain allows marketers to monitor where the content under 

investigation has been distributed, viewed, etc. This also allow for any illicit duplication 

or redistribution of the video to be spotted out, as for instance, alcohol-related organic 
video content for teenagers. 

While blockchain offers various advantages for video tracking, this is not without 
challenges.  

First, the very content authentication in blockchain is based on digital hashing functions 

that produce a fixed-length digest output for any given input (e.g. 256 bits for SHA256 

function in use today [LIU23]) for any content to be identified. The bit sensitivity of the 

hash makes it highly secure for content authentication but cannot cope to the applicative 

constraints of visual content distribution, where transcoding, resizing, cropping, etc. 
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occurring during distribution produce entirely new hash values, rendering it ineffective 

for tracking modified media as shown in Figure 6 for the simplified case of images. 

 

Figure 6: Blockchain solutions are design to detect any modification in the recorded content, regardless of its impact in 
the content semantics 

 

Secondly, blockchain technologies impose strong computational constraints to ensure its 

well-functioning. Every operation, whether it is financial transaction, data insertion, or 

Smart Contract execution, must be verified and validated across a network of nodes. This 

decentralized validation guaranties the transparency and the immutability along the 

network. However, these advantages impose the computational limitation, especially 

when complex applications, such as the video tracking, are considered. Each blockchain 

platform has adopted strict algorithmic and architectural design rules in order to establish 

the balance between security, scalability and cost-efficiency. For instance, Ethereum, one 

of the most popular blockchain in use today [WAN19; CHE21] and the second largest 

blockchain network by market capitalization in 2024, requires all its Smart Contracts to 

be written in Solidity, a programming language tailored for the Ethereum Virtual Machine 

(EVM) [GIT24a]. By design, Solidity restricts many of the features that can be found in 

traditional programming languages like C, JAVA, and Python to reduce the excessive 

computational load on the network. For instance, it does not allow floating-point 

arithmetic that is computationally expensive. The use of fixed-point arithmetic can solve 

this design choice, but it presents its own limitations in term of precision, range, and code 

readability and maintenance. Another main aspect of Solidity's design is the restriction on 

certain arithmetic operations like the division. Although division is technically possible in 

Solidity, it is discouraged due to a drastic increase of the usage cost and gas costs (gas is 

the unit of complexity work needed to execute an operation in the blockchain) which 

directly translates into expensive transactions. Like Ethereum, Tezos is also a prominent 

blockchain platform that faces the same computational challenges through its proprietary 

programming language named Liquidity [GIT24b]. Liquidity follows a functional 

programming paradigm that limits the complexity of operations that can be executed on-

chain by restricting resource-intensive processes, such as deep recursion or extensive 

loops. It is designed to ensure that Smart Contracts remain lightweight and cost-effective. 

The functional paradigm, while efficient for the blockchain integrity, may not be well 

suited for sophisticated applications that require iterative processes or complex data 
structures. 
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Thirdly, the decentralized application (DApp) scalability is frequently considered among 

the most significant challenges. As the number of transactions on a blockchain increases, 

the computational effort required validating and processing the new blocks increases as 

well. This high demand can lead to delays, particularly in the case of video tracking 

applications coming across with millions of views and interactions in near real-time: each 

view, like, comment, or share would represent a new transaction that must be recorded 

on the blockchain! The high volume of interactions can overwhelm the blockchain, 

resulting in bottlenecks and repetitive delays in block mining process. This makes it 

difficult to maintain an accurate, real-time ledger for applications such as copyright 
enforcement or content monetization. 

Finally, storing the video fingerprints can become a significant functional issue, due to the 

blockchain’s reliance on gas fees, calculated based on the computational work and the size 

of the data being stored. For instance, gas fees in Ethereum are correlated with the amount 

of data being processed and transacted, meaning that as fingerprint size grows, so does 

the cost to store it. Even though video fingerprints are much smaller than full video 

sequences, their accumulation over time in a large-scale system becomes prohibitive. 

Moreover, storing the video fingerprints on-chain could face block size limitations since 

Blockchain blocks can only handle a finite amount of data, and transactions that include 
larger amounts of data. 

On this research item, the thesis contributions consist in: 
 methodological level: conception, specification and implementation of 

COLLATE, an on-Chain Off-chain Load baLancing ArchiTecturE, thus making it 
possible for the intimately constrained computing, storage and software 
resources of any blockchain to be abstractly extended by general-purpose 
computing machine resources;  

 experimental level: specifying an experimental testbed and carrying out the 
underling experiments for achieving the proof-of-concepts for visual content 
tracking on lightweight computing resources (namely, an ARM 
multiprocessor embedded platform, integrated into a Raspberry Pi), with 
illustrations for Ethereum and Tezos. 

  



Mohamed Allouche 

24 

I.3. Video Fingerprinting 

Video fingerprints are compact, unique digital identity representations that are obtained 

by analyzing key features from a video sequence. Such fingerprints are designed to 

identify video sequences reliably, even if the video has undergone a variety of 

transformations such as resizing, re-encoding, or modifications in contrast, white balance 

or color. Unlike metadata or watermarks, which are external identifiers, fingerprints are 

inherent to the video content itself and are extracted from its spatial, temporal, or visual 
characteristics as illustrated in Figure 7. 

 

Figure 7: Video fingerprinting concept 

 

Video fingerprint purpose is to offer a mechanism for visual content identification without 

needing to store the entire video sequence. This is particularly important in contexts such 

as copyright protection, Digital Rights Management (DRM), video content distribution 

platforms or fake news detection. One of the core strengths of video fingerprinting lies in 

its ability to match transformed versions of the same video, offering flexibility when 

content is shared across platforms that compress or alter the file in various ways. 

With a two-decade history, video fingerprinting is now a mature research field, with 

approaches targeting a joint functional optimization of the fingerprinting extraction and 

retrieving procedures. To this end, various methodological frameworks, from information 

theory to machine learning (including deep learning) are explored [JIA16; ALL22; CHE24]. 

Despite their conceptual and applicative varieties, they all operate (at least partially) at 

the pixel level, after the stream decoding2. In early fingerprinting systems, visual features 

such as edges, corners, or motion patterns are extracted directly from the pixel data. These 

features are then optimized to shape a compact representation that can be stored and later 

used for retrieval and comparison. The challenge here is to find a balance between 

generating fingerprints that are both unique (able to distinguish between different 

videos) and robust (able to match transformed versions of the same video). 

The fingerprinting conventional methods involve two core stages: fingerprint extraction 

and fingerprint retrieval. The extraction stage starts by video pre-processing, such as 

frame resizing, frame dropping, key-frame detection, and color modifications, which 

prepare the video for feature extraction. Local features can be derived using techniques 

like HOG (Histogram of Oriented Gradients), ORB (Oriented FAST and Rotated BRIEF), 

                                                        

2 This state-of-the art situation is different for video indexing, where previous attempts exploiting the 
compressed-domain information can be encountered [BEN10]. 
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time alignment operations (such as time origin synchronization and jitter cancellation) to 

ensure consistency across different video versions. The extracted information is then 

compared using similarity measures like Hamming distance, Euclidean norms, correlation 

coefficients, or maximum a posteriori probability. 

The deep learning-based methods leverage on the neural networks for implicitly learning 

the visual salient features of the content and for subsequently classify the queries in the 

corresponding classes. To this end, a large variety of models are considered, individually 

or combined. Just for illustration, spatial information can be addressed by AlexNet, VGG, 

ResNet, while temporal information by structures based on Long short-term memory 

(LSTM): Siamese LSTM, BiLSTM, ... 

As video content is predominantly recorded, stored, and transmitted in compressed 

formats, achieving fingerprinting directly at the level of compressed domain offers 

significant computational advantages, particularly when working with large-scale video 
datasets. 

To our knowledge, one of the earliest studies exploring compressed domain fingerprinting 

introduced a method that computes fingerprints based on both pixel-domain and MPEG-

2 stream information [CHO05]. Specifically, this method combines frame color histograms, 

ORB descriptors, and motion vector normalized histograms. Each of these components is 

individually matched using appropriate criteria, and the overall decision is reached by 

fusing the results from multiple features using a weighted additive voting model. This 

approach allows for a hybrid representation of both spatial and temporal video 

characteristics while still leveraging the compressed domain's efficiency. 

Since then, a few other studies have advanced similar ideas [JIA16; ALL22], yet the field 

remains relatively underexplored. It is worth noticing that the interest in identifying 

compressed video streams extends beyond traditional fingerprinting use cases. For 

example, identifying and tracking video streams delivered on specific platforms, such as 

YouTube or Netflix, has become an emerging area of research, given the growing demand 
for securing video content across different delivery channels [AFA22]. 

While compressed domain video fingerprinting offers promising computational 

advantages, several technical challenges must be addressed. One of the primary obstacles 

is the inherent loss of visual information that occurs during video compression. Lossy 

video encoding algorithms, such as AVC, HEVC or VVC, aim to eliminate redundant data 

from the stream representation to reduce stream size. This contradicts the very 

fingerprinting principle according to which visual data redundancy is explored for 

tracking the content. Consequently, designing robust fingerprinting techniques that can 

extract sufficient relevant information from compressed streams without compromising 

accuracy is a key research focus particularly as video compression becomes more 

aggressive to optimize bandwidth. 

Another challenge is the integration of compressed domain fingerprinting with deep 

learning-based methods. The same kind of conceptual contradiction also arise here, as 

deep learning models typically exploit data redundancy to learn effective feature 

representations, whereas video encoders are designed to minimize redundancy for 

compression purposes. Bridging this gap requires innovative architectures and learning 
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strategies that can operate effectively within the constraints of compressed data while still 

maintaining the discriminatory power required for fingerprinting tasks. 

The thesis contributions consist in a comprehensive methodological and 
experimental study on the possibility of achieving effective compressed domain 
video fingerprinting: 

 at the methodological level, both the fingerprinting extraction and 
fingerprinting matching are investigated, thus obtaining COMMON – 
Compressed dOMain Marketing videO fiNgerprinting:  

o the optimal steam syntax elements a priori likely to represent the 
fingerprint are studied and identified, 

o the possibility of modelling compressed modeling video fingerprint 
under conventional DL frameworks is studied and the underlying end-
to-end processing pipe-line are advanced by reconsidering and 
extended current-days DL architectures; 

 at the experimental level, the prof of concepts for marketing video content 
fingerprinting is achieved: 

o an experimental testbed is specified: 164 original marketing video 
sequences, 100 near-duplicated modifications of 10 typologies 
applied to each original sequence, 5 encoding formats (AVC, HEVC, 
VVC, VP9 and AV1) for any original and near-duplicated sequence, 

o experiments are performed and Accuracy, Precision and Recall values 
larger than 90% are reported, 

o methodological invariance with respect to the encoding format is 
brought forth. 
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I.4. Blockchain-fingerprinting applicative synergies 

Traditional video fingerprinting systems rely on centralized databases, where the digital 

signatures of video content are stored and verified. However, centralized architectures 

present several vulnerabilities that can cause trust loss of the entire system. Firstly, 

centralized databases are prone to hacking. If a malicious actor manages to gain access to 

fingerprints database, they can potentially alter or delete critical information, 

compromising the integrity of the retrieval system. Secondly, tampering with the database 

can result in unapproved changes to content verification mechanisms, undermining the 

authenticity of the video fingerprints. Additionally, data loss is also a concern, due to 

system failures, corruption, or mismanagement of storage facilities. Centralized databases 

are vulnerable to hardware malfunctions, natural disasters, or even human error, where 

entire databases can become permanently inaccessible leading to the loss all stored video 

fingerprints. 

As earlier explained, blockchain have a decentralized architecture, that eliminates the 

single point of failure risks and the need for a central authority, making it more resistant 

to different type of attacks as long as each one of active nodes of the network holds a copy 

of the blockchain, ensuring that there is no single point of failure. This decentralization 

not only makes blockchains more resilient to classic attacks but also ensures that the data 

is duplicated across multiple locations around the globe, providing a much higher level of 

fault tolerance. Furthermore, blockchain’s consensus mechanisms ensure that any 

changes to the data require approval from the majority of participants. This guarantees 

the immutability of the stored video fingerprints, offering a much higher level of data 

integrity than centralized systems can provide. Additionally, blockchain eliminates the 

need for a central authority to manage the system. This eliminates the potential risk for 

abuse of power since all nodes having equal control over the ledger and nullify the risk of 
single-point governance failure. 

Consequently, the possibility of establishing functional synergies between video 
fingerprinting and blockchains has also been studied in the present thesis. 

The thesis contribution consists in: 

 at the methodological level, the definition of BIDDING – BlockchaIn-baseD 
viDeo fINgerprintinG, an end-to-end processing pipeline for coupling 
compressed domain video fingerprinting to the blockchain load balancing 
solution. 

 at the experimental level, the proof of concepts for the effectiveness of the 
solutions, obtained on the same database, and in both PC and embedded 
blockchain (Ethereum, Tezos) environments. 
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I.5. Summary 

The main thesis contributions are regrouped in Table 1 and synoptically presented in 

Figure 8. 

 

Figure 8: Synopsis of thesis’s contributions: (1) COLLATE, an on-Chain Off-chain Load balancing, (2) COMMON - 
Compressed dOMain Marketing videO fingerprinting and (3) BIDDING – BlockchaIn-baseD viDeo fINgerprintinG 

 

Note that all the AI-related experiments are carried out by considering TensorFlow 

frameworks, namely TensorFlow v2.10.0 for server-oriented setups and tflite-runtime 

v2.14.0 for embedded setups. 

 

The dissemination activities cover journal and conference papers, as well as ISO standard 
contributions. 

Journal papers: 

 Allouche, M., Mitrea, M., 2022. Video fingerprinting: Past, present, and future. Front. Signal Process. 

2, 984169. https://doi.org/10.3389/frsip.2022.984169 

 Allouche, M., Mitrea, M., Moreaux, A., Kim, S.-K., 2021. Automatic Smart Contract generation for 

Internet of Media Things. ICT Express 7, 274–277. https://doi.org/10.1016/j.icte.2021.08.009 

 Allouche, M., Frikha, T., Mitrea, M., Memmi, G., Chaabane, F., 2021. Lightweight Blockchain 

Processing. Case Study: Scanned Document Tracking on Tezos Blockchain. Applied Sciences 11, 

7169. https://doi.org/10.3390/app11157169 

Conference papers: 

 Allouche, M., Mitrea, M., De Sousa Trias, C., HEVC Compressed Video Fingerprinting, accepted for 

IS&T Electronic Imaging, 2025. 

 Allouche, M., Colle, E., Zoughebi, M., De Sousa Trias, C., Mitrea, M., Green video encoder 

identification, accepted for IS&T Electronic Imaging, 2025. 

 Allouche, M., Ljubojevic, M., Mitrea, M., 2021. Visual document tracking and blockchain technologies 

in mobile world. Electronic Imaging 33, 1–7. 

https://doi.org/10.3389/frsip.2022.984169
https://doi.org/10.1016/j.icte.2021.08.009
https://doi.org/10.3390/app11157169
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 Allouche, M., Mitrea, M., De Sousa Trias, C., 2023. HEVC fingerprinting: conventional vs. ML methods. 

Case study: organic video content. TAIMA 2023. 

 

Contributions for ISO standards 

31 technical contributions for ISO/IEC JTC 1 SC29, reflected in the specification of a new standard ISO/IEC 

21000-23 Smart Contract for Media and in a new edition of an already existing standard, ISO/IEC 21000-22 

MPEG User Description. 

 

Table 1: Marketing video tracking issues, challenges, pain points, and thesis contributions 

Issues Challenges State of the art pain 
points 

Thesis contributions 

1 Blockchain 
based video 
tracking  

Ensure video 
identification in 
blockchain 
environments  

1. State of the art 
blockchains considers bit 
sensitive hash functions 
(SHA256) 

2. Blockchain computing 
and storage environments 
are currently limitative 

Main result: 
 methodological: COLLATE, an 

on-Chain Off-chain Load 
baLancing ArchiTecturE  
 on chain/off chain load 

balancer capable of 
seamlessly operate high 
complexity work load in any 
decentralized application 
(DApp) 

 Integration of multiple 
blockchain nodes in an 
embedded device 

 experimental: proof-of-
concepts for visual content 
tracking on lightweight 
computing resources 

Dissemination & outcomes: 
 [ALL21a],[ALL21b] 
 ISO standardization 

contributions 

Develop blockchain 
agnostic architecture 
that allows 
bidirectional data 
exchange between 
different blockchain 
environments and 
general purpose 
computing 
environments 

The amount of data that can 
be exchanged between 
blockchain components is 
limited, restricting the 
versatility of applicative 
workflows 

Efficient usage of 
blockchain on 
embedded devices 

Blockchain is well known of 
its huge energy 
consumption and the need 
of high computational 
powers for block generation 

2 Compressed 
domain video 
fingerprinting  

Define the fingerprint to 
be extracted from the 
compressed stream 
syntax elements 

Compressed domain 
content is a priori likely to 
eliminate the visual 
redundancy that would 
allow the visual content to 
be identified  

Main result: 
 methodological: COMMON – 

Compressed dOMain 
Marketing videO 
fingerprinting: 
 the optimal steam syntax 

elements a priori likely to 
represent the fingerprint are 
studied and identified, 

 the possibility of modelling 
compressed modeling video 
fingerprint under 
conventional DL frameworks 
is shown 

 experimental: an experimental 
testbed is specified:  
 Syntax element parser for 

MPEG-4 AVC and HEVC 
codecs capable of extracting 
the Luma and Chroma 
components as well as the 
prediction modes from all 
the macroblocks 

Identify DL structures 
able to match 
fingerprints in the 
compressed domain  

Usual DL methods benefits 
from the information 
redundancy to learn 
patterns; no prior study on 
the performance of those 
algorithms with the data 
extracted from compressed 
domain exists 

Proof of concept for the 
compressed domain 
fingerprinting system. 

An efficient fingerprint 
method should ensure the: 
- unicity 
- robustness 
- efficiency 
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 164 original marketing 
video sequences, 100 near-
duplicated modifications of 
10 typologies applied to 
each original sequence, 5 
encoding formats (AVC, 
HEVC, VVC, VP9 and AV1) for 
any original and near-
duplicated sequence, 

 experiments are performed 
and Accuracy, Precision and 
Recall values larger than 
90% are reported, 

 methodological invariance 
with respect to the encoding 
format is brought forth. 

Dissemination & outcomes: 
 [ALL22] 
 [ALL23], [ALL25a], [ALL25b] 

3. Blockchain-
fingerprinting 
applicative 
synergies 

Develop a zero-trust 
system for video 
tracking 

Both blockchain and video 
fingerprinting have 
interesting features that can 
help solve the video tracking 
problem but they were 
proposed as separate 
solution 

Main result: 
 methodological: BIDDING – 

BlockchaIn-baseD viDeo 
fINgerprintinG, end-to-end 
processing pipeline for coupling 
compressed domain video 
fingerprinting to blockchain 

 experimental: in both PC and 
embedded blockchain (Ethereum, 
Tezos) environments.  

Dissemination & outcomes: 
 [ALL21c] 
 ISO standardization contribution 
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Chapter II. State of the art 
 

 

This chapter presents the background works of the thesis and identifies the thesis main 

research directions.  
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The state-of-the-art section will be structured according to the two main content 
distribution frameworks this thesis deals with, namely blockchain and fingerprinting. 

 

II.1. Blockchain 

II.1.A. Fundamentals 

This section introduces basic blockchain concepts, acting as a foundation for further 

discussion within the paper. It doesn't exhaustively cover all aspects but provides key 

definitions necessary for understanding subsequent content. The definitions in this 

section are based on [NAK08; CHR16; TSC16; MON19; WAN19; ZHO20]. 

The word blockchain was coined in 2008, in financial context by Satoshi Nakamoto when 

introducing Bitcoin [NAK08]. Blockchain builds on the idea of peer-to-peer, zero-trust 

networks and provides a universal data set that every user can trust, even though they 

might not know neither trust each other. In other words, it provides a shared and trusted 

ledger of transactions, where immutable and encrypted copies of information are stored 
on every active node in the network. 

The structure of blockchain technology is meticulously designed to ensure security, 
transparency, and efficiency. It is composed of following primary elements: 

 Transactions represent the fundamental actions carried out by participants 

within the blockchain network. For example, in the context of Bitcoin [NAK08], a 

transaction involves the transfer of cryptocurrency between two parties. Each 

transaction is digitally signed by the sender, ensuring the authenticity and non-

repudiation of the transaction. 

 Blocks serve as the containers for these transactions. A block in the blockchain 

does not just store a single transaction; it aggregates several transactions that are 

validated and bundled together during a specific time period. For instance, a 

Bitcoin block contains a list of recent transactions, along with a timestamp and a 

reference (via a hash) to the previous block, as illustrated in Figure 5. This method 

of linking blocks ensures that each subsequent block reinforces the validation of 

the previous block and thereby the entire blockchain. 

 Chain of Blocks refers to the linked sequence of blocks, commonly known as the 

blockchain. Each block is connected to its predecessors and successors via a 

cryptographic hash contained in the block header as illustrated in Figure 5. This 

hash links each block to its previous block, creating a chain that is resistant to data 

modification. For instance, if an attacker attempts to alter a transaction in a 

previously confirmed block, the hash of the altered block would change, thus 

invalidating every subsequent block in the chain due to mismatched hashes. This 

chain reaction ensures the integrity of the blockchain's history. 
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The classic blockchain transaction process between Alice and Bob can be articulated in six 

distinct stages, forming a coherent workflow that ensures both transparency and security: 

 Initiation of Transaction: The process begins with Alice initiating a funds transfer 

to Bob, and is automatically and transparently performed. The identity of each 

participant is masked using pseudonyms, providing a layer of security and privacy 

within the network. 

 Transaction Encoding and Recording: Following the initiation, the transaction is 

encoded and subsequently recorded online alongside with other transactions, 

forming a new block. This aggregation is the preliminary step towards integration 

into the larger blockchain. 

 Verification by Network Participants: all network participants rigorously verify the 

integrity and validity of the block’s transactions. This verification utilizes advanced 

cryptographic techniques, ensuring that the system is impervious to fraud. Each 

participant has the capability to review all transactions, both historical and 

current, enhancing the transparency of the process. 

 Block Validation by Miners: Once the transactions within a block are approved, 

network members known as miners undertake the responsibility of validating the 

block. This step maintains the blockchain's integrity, as altering any record would 

require a simultaneous and collaborative effort by the majority of miners, a 

scenario highly unlikely due to the decentralized nature of the network. 

 Block Addition to Blockchain: Post-validation, the block is timestamped and 

officially added to the blockchain. This blockchain is accessible to all users and 

serves as a permanent and immutable ledger of all transactions, ensuring a reliable 

record that withstands any attempt at alteration. 

 Completion of Transaction: The final stage sees Bob receiving the transaction 

initiated by Alice. This transaction is now indelibly recorded on the blockchain, 

visible and verifiable by all network participants. 

 

This workflow demonstrates the robustness of blockchain technology, where security, 

transparency, and immutability are of prime importance. The use of asymmetric 

cryptography (also known as public key cryptography – PKI) ensures that each 

transaction is securely encrypted and only accessible to intended parties, thus 

maintaining privacy while being transparent and verifiable by all network participants. 

This secure and transparent aspect reflects the blockchain’s potential to revolutionize 
digital transactions, making it a foundational technology for modern digital interaction. 

 

II.1.B. Consensus 

Blockchain is a linked list of Blocks where each block contains a set of transactions. Each 

blockchain has a specific technique to create these blocks and orchestrate their insertion 

into the chain (processes known as mining or baking), as illustrated in Table 2. The most 

popular technique is the proof of work (PoW) used in blockchains like Bitcoin and 

Ethereum. Several other types of consensus algorithms are proposed in the literature such 
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as the Proof of Stake (PoS), or the Proof of Authority (PoA); they are considered by 

themselves or in conjunction with some optimization mechanisms like the case of Tezos, 
Cardano, Solana, VeChain, or GoChain, to mention but a few. 

Table 2: Comparison on between PoW, PoS, and PoA consensus algorithms 

Feature Proof of Work (PoW) Proof of Stake (PoS) Proof of Authority 
(PoA) 

Core Mechanism All users can be miners and 
solve complex cryptographic 
puzzles to validate transactions. 

Validators are chosen 
based on the amount of 
tokens they stake. 

Pre-selected validators 
validate transactions. 

Resource 
Dependence 

High computational power and 
electricity consumption. 

Relies on the possession of 
a large stake in the 
network. 

Relies on the identity and 
reputation of validators. 

Security Secured by computational work, 
which makes attacks costly. 

Security is based on 
economic stakes and 
penalties. 

Security is based on 
trustworthiness of the 
authorized validators. 

Speed and 
Efficiency 

Slower transaction validation 
and higher energy use. 

Faster validation and 
reduced energy 
consumption compared to 
PoW. 

High efficiency and speed, 
ideal for private networks. 

Decentralization 100% decentralized, anyone 
with high computational 
resources being able to 
participate. 

Less decentralized, based 
on the amount of tokens 
the user possess. 

Low decentralization, few 
validators being concerned. 

 

II.1.C. Smart Contracts 

Smart Contracts are self-executing contracts with the terms of the agreement directly 

written into lines of code that can adapt to various type of industries. The concept was 

advanced by Nick Szabo in 1994 [SZA94], long before blockchain, as a way to automate 

legal contract execution in digital environments. With the advent of blockchain platforms 

like Ethereum, Smart Contracts have found a practical application, as they can operate in 

a trustless environment and be executed automatically when a set of predefined 

conditions are met. This automation not only reduces the need for intermediaries and 

system administrators but also decreases the likelihood of fraud and disputes, ensuring 

that all parties adhere to the contract terms without bias or error. 

A Smart Contract can be illustrated as a software installed on the Blockchain that 

automatically executes a pre-programmed contractual commitment. It is not a legal 

document in itself, but it automates the execution of a contractual commitment. 

Once they are deployed, Smart Contracts are immutable and public, meaning that it cannot 

be altered, and its execution history is accessible for verification by all network 

participants. This feature has been pivotal in sectors such as supply chain management, 

where it ensures compliance and allows product tracking from production to delivery 
[BAD18]. 

The structure of the Smart Contract lifecycle is presented in Figure 9. Initially, an 

Agreement phase occurs where two or more parties identify a mutual opportunity and set 

the terms and conditions of the contract. Following this agreement, the Smart Contract 

Coding phase begins. In this stage, the agreed-upon terms are translated into a blockchain-

compatible programming language such as Solidity for Ethereum-based contracts or 
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Liquidity for Tezos-based contracts. The coding process is the most critical as it directly 

influences the contract's functionality and security, requiring developers to implement 

robust error-checking and validation mechanisms to prevent exploits and unintended 

operations.  

After the finalization of the code development, the code should be compiled into 

Michelson for Tezos or Bytecode for Ethereum. The Solidity code results in two files, the 

Bytecode which is the executable part and Application Binary Interface (ABI) which 

defines how to interact with contracts, both from outside the network and from other 
contract [ABI24].  

Next, the Encryption and Deployment phase takes place. The contract code is encrypted, 

and then deployed onto the blockchain. Upon deployment, the contract resides in an 

dormant (idle) state within the blockchain environment, waiting for its triggering 

conditions to be met. The Execution phase is initiated when the predefined conditions are 

fulfilled, such as the achievement of a specific date, the receipt of a payment… When 

activated, the Smart Contract executes the encoded instructions without the need for 

further human intervention. Finally, the Network Update phase solidifies the contract's 

actions within the blockchain. The results of the contract’s execution are immutably 

recorded on the blockchain and synchronized across all nodes within the network. This 

update ensures that every participant maintains an updated and consistent view of the 

ledger, reflecting the new state post-execution. The contract returns to its dormant 
statement waiting for its next execution. 

 

 

Figure 9: Smart Contract life cycle (source: [HOW24]) 

 

II.1.D. Tokens 

Tokens are abstract digital entities, created on blockchain and offering the possibility to 

represent any type of real-world assets (e.g. from art to real estates or IPR [SCH21]). 

Unlike primary cryptocurrencies like Ether or Tez, which are native to their specific 

blockchains, tokens are developed using standards set by the development and industrial 
communities.  

According to [ETH24c], two types of tokens are used in Smart Contracts, namely non-

fungible and fungible tokens. Non-fungible tokens are unique—one token represents one 

piece of an asset or one user, whereas fungible tokens are identical and uniform.  
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Ethereum communities are the first to adapt a standardization aspect to tokens by the 

implementation of token standards such as ERC-20 for fungible tokens and ERC-721 for 

non-fungible tokens (NFTs) [ETH24a], which have pioneered the development of a vast 

array of decentralized applications (DApps). These tokens can serve multifarious 

purposes ranging from digital currencies to representation of physical assets. Similar to 

Ethereum, Tezos supports fungible and non-fungible tokens through its FA1.2 and FA2 

standards, which ensure high interoperability and flexibility for developers [OPE24a]. 

 

II.1.E. Blockchain dependency: Tezos vs. Ethereum 

While the presentation before tries to bring forth the common principles, note that 

blockchain solutions are developed to optimize specific issues and very little (if any) 

provision is made for interoperability. Hence, Table 3 is meant to show the differences and 

complementarities between the two platforms considered in the present thesis, namely 

Ethereum and Tezos. 

Table 3: Comparison of basic concepts in Ethereum and Tezos 

Technical 
Aspect 

Ethereum Tezos 

Design 
philosophy 

Decentralized applications and DeFi platform Self-amending crypto-ledger designed to avoid 
hard forks 

Consensus 
mechanism 

Proof of Work (PoW), known for high energy 
consumption 

Liquid Proof of Stake (LPoS) reduces energy 
use and allows decentralized staking 

Transaction 
speed 

15-30 transactions per second Approximately 40 transactions per second, 
scalable with network upgrades 

Scalability 
solutions 

Limited; primarily network upgrades and EIPs 
without fundamental changes to scalability 

On-chain governance facilitates seamless and 
continuous upgrades 

Network 
upgrade 
mechanism 

Ethereum Improvement Proposals (EIPs) for 
upgrades 

Protocol upgrades are voted on and 
implemented by token holders 

Security 
features 

Smart Contract audits, EVM for executing code Formal verification of contracts and on-chain 
governance for security patches 

Smart 
Contract 
language 

Solidity, Vyper [ETH24b] Liquidity, LIGO, SmartPy, Archetype [LAN24] 

Developer 
ecosystem 

Extensive, with a large number of developers and 
tools 

Growing, supported by an increasing range of 
development tools 

Code  
example 
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II.2. Fingerprinting 

The fingerprinting state of the art was studied in [ALL22], from which the present thesis 

borrows its main elements. 

 

II.2.A. Definition 

Video fingerprints is best understood by drawing an analogy to the human fingerprints as 

illustrated in Figure 10. The patterns of dermal ridges on the human fingertips are natural 

identifiers for humans. Although they convey very little information compared to the 

entire human, human fingerprints can uniquely identify a person even if the person 
changes haircuts, clothes, or wears a wig or a disguise, [IDR97; GAR16; JIA16; ALL22]. 

Analogously, video fingerprints are video identifiers. The fingerprints must be able to 

uniquely identify visual contents even if it goes under multiple set of transformations. The 

transformations a video can undergo will be further referred to as modifications, 

distortions, or attacks. The resulting video which is transformed, modified, distorted or 
attacked will be denoted as a copy, a replica or a near-duplicated video.  

 

Figure 10: Human fingerprinting versus video fingerprinting 

 

A video fingerprint is a compact, distinctive digital representation of a video that allows 
its unique identification across a variety of contexts, even when the video undergoes 
transformations such as resizing, compression, or cropping. Unlike metadata-based 
methods or watermarking techniques, which rely on external information insertion, video 
fingerprinting extracts features directly from the content itself. These features may 
include key visual patterns, motion sequences, or color distributions. Video fingerprints 
must remain stable across the application specific distortions to ensure robust 
recognition of both original and modified versions of the sequence. 
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By focusing on characteristics already present in the clip, video fingerprints provide a 
reliable mechanism for video identification, particularly useful for content tracking, 
copyright protection, and duplicate detection across diverse platforms. They ensure that 
the video’s identity remains verifiable despite changes, making it resilient against 
intentional or unintentional alterations. 

 

II.2.B. Applicative scope 

The applicative scope of video fingerprint can be identified through synergies and 

complementarities with video indexing [IDR97] and video watermarking [DIG08]. 

Video indexing could be historically identify as the first framework for content-based 

searching and retrieval, tracing its roots back to efforts in the late 1990s [IDR97; BUR10]. 

Assuming a video repository, the goal of video indexing is to identify all the video 

sequences that are visually related to a query. For instance, assuming the query is a video 

showing some Panda bears and the repository consist of some wild animal sequences, a 

video indexing solution searches for all sequences in the repository that contain Panda 

bears, as well as sequences containing the same type of background, as illustrated in 

Figure 11. To this end, salient features (referred to as descriptors) are extracted from the 

query and compared to the descriptors of all the sequences in that repository. The visual 

descriptors capture the visual essence of each sequence, such as color distributions, 

motion patterns, edges, or object shapes. Once extracted, the descriptors are compared 

using a pre-defined similarity measure that quantifies the visual proximity between two 

sequences. A pre-calibrated threshold is often set to determine when two video 

descriptors are considered a match, allowing the system to efficiently search large video 
datasets. 

 

Figure 11: Video indexing principle: a binary descriptor is extracted from a query video to retrieve any other related 
visual content in the dataset 

 

Digital watermarking [DIG08] deals with the identification of any modified version of 

video content, Figure 12. In this case, assuming again a video sequence representing some 

Panda bears is displayed on a screen and that the screen content is recorded by an external 

camera, the original content should be identifiable from the camera recorded version. To 

this end, some extra information (referred to as mark or watermark) is imperceptibly 

inserted (or, as a synonym, embedded) into the video content prior to its release 
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(distribution, storage, display, ...). By detecting the watermark in a potentially modified 

version of the watermarked video content, the original content shall be unambiguously 

identified. Of course, the watermark shall not be recovered from any unmarked content 

(be it visually related to the original content or not). This technique ensures that even 

altered versions of a video can easily be traced back to their original source. One of the 

primary use cases includes copyright protection, where media owners and producers can 

identify unauthorized distribution by tracking the watermark in pirated copies. 

Watermarking techniques can address the challenges related to broadcast monitoring, 

rights management, content management but only under the condition that the content is 

already watermarked, (i.e. the additional information is inserted in the multimedia 

content before its distribution). 

 

Figure 12: Video watermarking principle: a binary watermark is imperceptibly inserted (embedded) in the video 
sequence; this way, the watermarked sequence can be subsequently identified even when its content is modified 

(maliciously or not) 

 

Video fingerprinting also deals with identifying slightly modified (replicated, or near 

duplicated) content, yet its approach is different with respect to both indexing and 

watermarking, as illustrated in Figure 7 and Figure 13. Coming back to the previous two 

examples, video fingerprinting shall also track a near-duplicated video sequence (e.g., a 

screen recorded Panda sequence) back to its original (e.g., the Panda original sequence) 

that is stored in a video repository. Yet, unlike indexing, any other sequence, even visually 

related to it (e.g., the same Panda bear at a different time of the day and/or in different 

postures) shall not be detected as identical. To this end, some salient information (referred 

to as fingerprint or perceptual hash) is extracted from the query video sequence (note that 

this information is not previously inserted in the content, as in case of watermarking 

sequences). By comparing (according to a similarity measure and a preestablished 

threshold) the query fingerprint to the reference sequence fingerprints, a decision on the 

visual identity between the video sequences shall be made. 
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Figure 13: Video fingerprinting principle: a binary descriptor extracted from a query video (fingerprint) can 

unambiguously identify all the near-duplicated versions of that content. 

 

By comparing among them these three methodological frameworks, it can be noted that: 

 Indexing and fingerprinting share the concept of tracking content via information 

directly extracted from that content (that is, both indexing and fingerprinting are 

passive tracking technique). However, while fingerprinting tracks the content 

instance, indexing rather focuses on identifying related or similar semantic content 

families. From an application standpoint, fingerprinting emphasizes unicity by 

tracking exact copies, whereas indexing accommodates wide range of semantic 

variations. 

 Watermarking and fingerprinting share the possibility of tracking both an original 

content and its replicas modified under a given level of accepted distortion. 

However watermarking requires the insertion of additional information (that is, 

watermarking is an active tracking technique), whereas fingerprinting solely 

exploits information extracted from the very content to be tracked. This makes 

watermarking more adaptable for active tracking, while fingerprinting operates 
without altering the content offering passive tracking. 

A fingerprinting methodology often requires the following three main properties: 

 First, the unicity (or uniqueness) property assumes that different contents (i.e., 

content that is neither the query nor one of its near-duplicated versions) result in 

different fingerprints (in the sense of the similarity measure and of its related 

threshold). 

 Secondly, the robustness property relates to the possibility of identifying as similar 

sequences that are near-duplicated. The transformations a video can undergo will 

be further referred to as modifications, distortions, or attacks. The video that is 

obtained through transformations, modifications, distortions, or attacks will be 

denoted as a copy, a replica video, a near duplicated video or an attacked video. 

While these terms are conceptually similar, fine distinction among them can be 

made for some specific applicative fields. 
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 Finally, the dataset search efficiency property ensure that the computation of the 

fingerprints and the matching procedure is optimized offering low, application 

dependent computation time. The dataset search efficiency is assessed by the 

average computation time needed to identify a query in the context of a considered 

video fingerprinting use case (that is, execution time on a given processing 

environment and on a given repository). 

Nowadays, any fingerprinting method can usually be separated to the two main steps in a 

generic fingerprinting computing pipeline: fingerprinting extraction (that is, spatio-

temporal salient information extraction) and fingerprinting matching (that is, comparing 

salient information extracted from two different video sequences). These two basic steps 

are, in their turn, composed of several sub-steps [DOU08; LEE08; XIN09]. On the one hand, 

the fingerprint extraction generally includes video pre-processing (e.g., frame resizing, 

letterboxing removal, frame dropping or key-frame detection), global feature extraction, 

local feature extraction, local/global feature description, temporal information retrieval, 

and the means for accelerating the search in the dataset (inversed file, etc.). On the other 

hand, the fingerprint detection process generally includes some time-alignment 

operations (e.g., jitter cancelation, time origin synchronization), followed by information 
matching. 

 

II.2.C. Evaluation framework 

State of the art methods consider fingerprinting as a binary problem, whose performances 

are empirically evaluated according to the four types of situations that can be encountered 

during the fingerprinting matching: 

• False positive (fp): also referred to as false alarms, the system erroneously 

retrieved a reference video as a copy of the input. 

• False negative (fn): also referred to as missed detections, the system erroneously 

did not retrieve a reference video which is a copy of the input. 

• True positive (tp): the system correctly retrieved a reference video that is a copy of 

the input. 

• True negative (tn): the system correctly did not retrieve a reference video which 

was not a copy of the input. 

The measures above are formalized into performance indicators, as follows: 

• To evaluate the database search efficiency property, the average processing time 

required by the fingerprinting system to identify the query video within the 

database and to output the result is considered. 

• To evaluate the uniqueness property, two evaluation criteria are considered in the 

literature: the probability of false alarm (Pfa) and the precision rate (Prec) defined 

as: 

𝑃𝑓𝑎 =
𝑓𝑝

𝑓𝑝 + 𝑓𝑛 + 𝑡𝑝 + 𝑡𝑛
 



Video tracking for marketing applications 

43 

𝑃𝑟𝑒𝑐 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

• To evaluate the robustness property, two evaluation criteria are considered in the 

literature: the probability of missed detection (Pmd) and the recall rate (Rec) 

defined as: 

𝑃𝑚𝑑 =
𝑓𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑛 + 𝑓𝑝
 

𝑅𝑒𝑐 =  
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

• To evaluate the trade-off between uniqueness and robustness, the Accuracy and the 

F1 score are computed. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑛 + 𝑓𝑝
 

The F1 score is computed only in the case of correctly identified copies, as the 
harmonic mean of Prec (precision) and Rec (recall) rates and defined as: 

𝐹1 =  
2 × 𝑃𝑟𝑒𝑐 × 𝑅𝑒𝑐

𝑃𝑟𝑒𝑐 + 𝑅𝑒𝑐
 

 

An efficient fingerprinting method (featuring both unicity and robustness) should jointly 

ensure low values for Pfa and Pmd while having Prec and Rec values close to 1. The actual 
thresholds for these entities depend on the specific use case. 

Although Prec and Rec are two measures commonly used in the evaluation of any 

information retrieval system, they are not statistical measures, as they do not consider the 

tn (true negative) results. Hence, to comprehensively present the properties of a system, 

Pfa and Pmd should also be considered. In practice, several other derived and/or 

complementary performance indicators can be considered, such as the F1 score, the ROC 

(Receiver Operating Characteristic), the AUC (Area Under the Curve), or the mAP (mean 

Average Precision). 

 

II.2.D. Information theory based fingerprinting methods 

1. Main directions 

As a common ground, these methods stem from image processing, machine learning, and 

information theory concepts and leverage the fingerprinting extraction on three 

incremental levels [GAR16]. 

First, in an attempt to get to frame aspect distortion invariance, the fingerprinting is 

extracted from derived representations such as 2D-DWT (2D Discrete Wavelet Transform) 

coefficients [GAR16], 3D-DCT (3D Discrete Cosine Transform) coefficients [COS06], pixel 

differences between consecutive frames, temporal ordinal measure of average intensity 

blocks in successive frames [HAM01], visual attention regions [XIN09], quantized block 
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motion vectors, ordinal ranking of average grey level of frame blocks, quantized compact 

Fourier–Mellin transform coefficients, ordinal histograms of frames [CHA05], color layout 
descriptor, ...  

Secondly, frame content distortion invariance can be achieved by the complementary 

between global features incorporating geometric information (e.g., centroid of gradient 

orientations of keyframes [LEE08] or invariant moments of frames edge representation) 

and local features based on interest points (corner features, Hessian-Affine, Harris points, 

Scale-Invariant Feature Transform (SIFT), Speeded Up Robust Features (SURF)) generally 
described under the Bag of Visual Words (BoVW) framework [DOU08; JIA11]. 

Thirdly, video format distortion invariance is generally handled by using a large variety of 

additional synchronization mechanisms, pair designed with the feature selection, from 

synchronization block, based on wavelet coefficients to K-Nearest Neighbors matching 

[LAW07] of interest points or Viterbi-like algorithms [WEI11]. 

These main directions as well as their mutual combinations serve as basis for a large 

variety of studies, as presented in Figure 14 that is structured in three layers, shaped as 
hemicycles: 

 the outer blue layer relates to local feature description, exemplified through MPEG-

CDVS (Compact Descriptors for Visual Search), ORB (Oriented Fast and Rotated 

BRIEF), SURF, Transformed domains, SIFT, CS-LBP (Center-symmetric Local Binary 

Patterns), and HOG (Histogram of Oriented Gradient). 

 The middle grey layer relates to global features, exemplified through luminance 

component, color histograms, and BoVW. 

 The inner blue layer relates to the temporal features, exemplified through 

luminance spectrogram, motion vectors, histogram correlation, optical flow, and 
TIRI (Temporal Informative Representative Image). 

The order of the classes in each hemicycle is chosen to allow for a better visual 

representation of the synergies among them. The studies represented in grey-shadowed 

rectangles correspond to conventional methods while the studies represented in white 

rectangles correspond to NN-based method that also include conventional modules. 

 

Figure 14: Conventional fingerprinting method synopsis: the hemicycles (areas) related to the local, global, and 
temporal features are located at the outer, middle, and inner parts of the figure, respectively. Inside each hemicycle, 

examples of state-of-the-art solutions are presented. Conventional methods are presented in gray-shadowed 
rectangles while NN-based methods that also include conventional modules are represented in white rectangles. 
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2. Methods overview 

Structural modeling and temporal analysis form the backbone of several advanced 

fingerprinting techniques. For instance, [TAN09] employs a network flow model to 

integrate visual similarity and temporal consistency, effectively transforming frame 

matching into a search for maximal paths. Similarly, [CHO05] and [WAN16] emphasize the 

temporal aspects of video content. [CHO05] models videos as temporal graphs to identify 

salient features through motion vector analysis, while [WAN16] structures video 

sequences around key frames to utilize color correlation histograms, focusing on the 

sequential nature of frames for enhanced temporal context. Additionally, [SUN17] adopts 

a contourlet Hidden Markov Tree model, capturing multidirectional and multiscale 

information, linking coefficient states across the video structure for a robust analysis. 

Feature extraction is another pivotal area where techniques such as those in [DOU10], 

[YAN12], and [JIA12] focus on capturing detailed local and global visual features. These 

studies use advanced methods like SURF points and histograms of oriented gradients 

combined with relative mean intensity to extract distinctive features from video frames. 

The approach not only aids in creating robust fingerprints but also adapts well to various 

video modifications, enhancing the robustness of the fingerprinting process. 

Furthermore, [HOU15] and [THO15] extend the feature extraction by integrating multiple 

features including color histograms and optical flow, ensuring that both motion and color 
data contribute to the fingerprint. 

Dimensionality reduction and efficient matching strategies are crucial for handling large 

datasets and ensuring quick retrieval times. [LIU19] introduces the rHash method, which 

simplifies the fingerprint matching process by reducing frame rates and resolution, 

followed by binary operations to streamline the fingerprint structure. Techniques like the 

Double Optimal Projection in [NIE15] and the clustering methods in [MAO16] further 

emphasize reducing fingerprint dimensionality, which helps in managing the vast 

amounts of data involved in video processing. Moreover, [YUA16] leverages the Shearlet 

transform to handle both low and high frequency aspects, obtaining optimized 

fingerprints for quick matching processes. 

3. Discussion 

The previous section brings to light that the fingerprinting conventional methods form a 

fragmented landscape. While the general methodological framework is unitary, each study 

ambitions to take a different applicative challenge, from searching of strongly modified 

sequences in reduced-size video datasets to reducing the complexity and the execution 

time of the fingerprint matching. 

These research efforts can be timely illustrated in Figure 15. This figure covers the 2009—

2019 time span and presents the key conceptual ideas (the dark-blue, left block) as well 

as the methodological enablers in fingerprinting extraction (the blue, right-upper block) 

and matching (the light-blue, right-lower block). For a specific year, the information 

presented in Figure 14 may correspond to several references. 
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Figure 14 and Figure 15 shows that the state-of-the-art is versatile enough to 

pragmatically offer solutions to specific applicative fields, without being able to provide 
the ultimate fingerprinting method. 

 

Figure 15: Incremental evolution of the conventional methods. 

 

II.2.E. Neural Network based methods 

1. Main directions 

The class of NN-based video fingerprinting methods is incremental with respect to the 

conventional fingerprinting methods presented in Section II.2.D. It inherits its basic 

conceptual workflow: pre-processing video sequence, extracting spatial and temporal 

information, eventually aggregating them into various derived representations (be they 
binary or not).  

However, NN-based video fingerprinting methods rely (at least partially) on various types 

of NN, from AlexNet [KRI12] and ResNet [HE16] to CapsNet [SAB17] and LSTM [HOC97], 

sometimes requiring specifically designed architectures [ZHI18]. Yet, such an approach 

does not exclude the usage of partial conventional solutions in conjunction with NN, e.g., 

BoVW can be considered as an aggregation tool of visual features extracted by 

Convolutional Neural Networks (CNN) [ZHA19]. Moreover, the matching algorithm 

generally comes across with the NN considered in the extraction phase. 

These main directions will be illustrated by a selection of 20 studies, published since 2016. 

The relationship among and between them is depicted in Figure 16, that is also structured 

in three hemicycles (as Figure 14), yet their meanings are slightly different: 

 The outer blue layer corresponds to the spatial features, exemplified through: 

CRBM(Conditional Restricted Boltzmann Machine), ResNet, NIP (Nested 

Invariance Pooling), VGGNet, AlexNet, GoogleNet, new structures designed to the 

fingerprinting purpose, RetinaNet, and Tracked HetConv-MK (heterogeneous 

convolutional multi-kernel). 
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 The middle gray layer corresponds to temporal features, exemplified through: 

weight correlation, LSTM (Long- Short Term Memory), SiameseLSTM (Siamese 

LSTM), Deep Metric Learning, and BiLSTM (bidirectional LSTM). 

 The inner blue layer corresponds to spatial-temporal features, exemplified 

through: 3D-ResNet50, and CapsNets structures. 

The order of the classes in each hemicycle is again chosen to allow for a better visual 
representation of the synergies among them. 

 

Figure 16: NN-based fingerprinting method synopsis: the hemicycles (areas) related to the spatial, temporal and 
spatial-temporal features are located at the outer, middle, and inner parts of the figure, respectively. Inside each 

hemicycle, examples of state-of-the-art solutions are presented 

 

2. Methods overview 

The state-of-the-art shows that, as a rule, CNNs are innovatively integrated with 

traditional computer vision techniques to optimize feature extraction processes.  

For instance, [JIA16] and [ZHO19] apply CNNs in conjunction with systems like the Bag of 

Visual Words (BoVW) to improve the organization and analysis of extracted features. 

These studies utilize architectures such as AlexNet not only to capture spatial and 

temporal features from video streams but also to process these features through layers 

that enhance their utility for tasks like video copy detection and content retrieval. 

Similarly, [ZHA19] exploits CNNs for extracting robust feature vectors, which are then 

utilized in a BoVW framework for efficient retrieval of top-k video clips, showcasing the 

adaptability of CNNs to various aspects of video processing. 

Further exploring the depth of CNN activations, studies like [KOR17; LIU18; DIL24] focus 

on utilizing intermediate outputs from CNN layers. [KOR17] employs these activations to 

create frame-level histograms which are aggregated into video-level histograms, 

enhancing the detail and richness of the information captured for video retrieval. On the 

other hand, [LIU18] takes a spatial fingerprinting approach, leveraging CNN-detected 

visual objects which are then binarized and processed through intricate thresholding 

operations to create distinct fingerprints for each video. Moreover, the features [DIL24] 

considered as fingerprints are derived from both convolutional and fully connected layers 

of a pre-trained VGG-16 model. The method propose a triple loss framework coupled with 

a homemade DNN for fingerprint matching. 
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The integration of CNNs with recurrent neural network (RNN) architectures also marks a 

significant trend, as illustrated by [HU18] and [YAO18]. These studies combine the spatial 

feature extraction capabilities of CNNs with the temporal processing power of RNNs, 

particularly using Long Short-Term Memory (LSTM) units. This combination allows for a 

comprehensive analysis that captures both the immediate visual details and the dynamic 

content changes over time, thereby enhancing the accuracy and reliability of the video 

detection process. 

Emerging neural network technologies like Capsule Neural Networks (CapsNet) have also 

been explored, as in [XIN21], which uses CapsNet to capture hierarchical feature 

relationships more effectively. This approach is especially beneficial in scenarios where 

video data may exhibit significant variations in appearance and motion, providing a robust 

framework that maintains high accuracy despite such challenges. 

Deep metric learning (DML) has found its place in enhancing the discriminative 

capabilities of video fingerprinting models. For example, [KOR17b] introduces a triplet-

based network that refines feature comparison and matching, focusing on optimizing the 

loss functions to better differentiate between similar and dissimilar videos, thereby 

improving the overall precision of the system. A similar triple loss function coupled with 

a custom made DNN was presented by [DIL24] 

Hybrid models that combine convolutional approaches with hashing techniques to create 

compact yet effective fingerprints of video content also show substantial advancements. 

[ANU20; LI21; XIN21; ZHA21] illustrate this approach by integrating multi-kernel 

convolutional filters with bidirectional LSTM networks or quadruplet fully connected CNN 

structures to produce binary codes that effectively summarize video content for quick 
retrieval and matching. 

Methods using compressed video streams are also studied. [PRO24] presents a near-

duplicate video retrieval method using the compressed representation by partially decode 

the video and extraction the residual elements as well as the motion vectors as 

fingerprints when a visual transformer model is used for matching. On the other hand, 

[AFA22] develops a method for identifying YouTube videos in network traffic by utilizing 

a fingerprinting technique that addresses inconsistencies in Variable Bit-Rate (VBR) 

streaming, followed by a custom CNN model for the matching process. 

 

3. Discussion 

A global retrospective view on the investigated NN-based methods is presented in Figure 

17 that is paired designed with Figure 15. It originates in 2016 and presents, for each 

analyzed year, the key conceptual ideas (the dark-blue, left block) as well as the 

methodological enablers in fingerprinting (the blue, right block). Note that in this case the 

fingerprint extraction and matching are merged (as they are tightly coupled). 
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Figure 17: Evolution of the NN methods 

 

The rapid evolution of neural network-based fingerprinting, highlighted as an emerging 

research field since 2016, significantly expands upon the methodological framework 

established by conventional fingerprinting approaches. Fingerprint extraction gradually 

shifted from considering NN solution at an individual level (e.g., spatial or temporal 

features) to holistic, 3D neural networks capable of capturing integrated spatio-temporal 

features effectively. Intermediate solutions that blend neural network techniques with 

conventional image processing tools, such as SURF, TIRI, or BoVW, also demonstrate 

significant progress, bridging the gap between traditional methodologies and modern 

computational capabilities. These hybrid models, which integrate deep learning with 

traditional hashing or encoding strategies, address the complex challenges of managing 

large-scale video datasets, enhancing detection precision and recall, and improving the 

efficiency of video retrieval systems. By continuously advancing the integration and 

optimization of diverse analytical techniques, these innovative approaches bring to light 

their capabilities to solve the scalability, precision, and operational efficiency of video 

fingerprinting challenges. 

 

II.2.F. Towards compressed domain fingerprinting 

The conventional video encoding/decoding scheme involves several stages to efficiently 

compress/decompress a video stream, as presented in Figure 18. Initially, the video 

undergoes pre-processing to optimize the data for encoding. Following this, the video is 

partitioned into segments called slices that can be independently processed, enhancing 

parallel processing capabilities and overall efficiency. The prediction stage utilizes spatial 

(within the same frame) and temporal (across different frames) elements to predict video 

content, significantly reducing redundancy before transformation. The residual signals 

are then transformed by the DCT or DST functions in order to compact the residual energy 

into a low-frequency components. These coefficients are then quantized, reducing 

precision and removing less visible details to the human eye. The entropy coding stage 

further compresses the data by applying the Context-adaptive binary arithmetic coding 

(CABAC) lossless data compression method. Finally, the bitstream generation packages 

the compressed data into a formatted bitstream more adapted to storage or transmission. 
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The decoding process is paired designed: except for the Quantization, all other operations 

are one-to-one functions. 

 

Figure 18: Main HEVC steps in video encoding/decoding 

 

As video content is preponderantly recorded, stored, and transmitted in compressed 

formats, fingerprints extracted directly from the compressed stream will beneficially 

eliminate the need for decoding operations. While early studies [NGO05], [LI13] already 

considered MPEG motion vectors as a partial information in fingerprinting applications, 

[REN16] can be considered as an incremental step: the fingerprinting computation 

combines features from the decompressed domain and features from MPEG-2 stream 

level. The fingerprint is a combination of the color histograms, ORB descriptors and 

motion vector normalized histogram. The video fingerprint is the set of key frame 

fingerprints. The matching procedure is individually performed at the level of the three 

components and the overall decision is achieved through fusing decisions made on 

multiple features by a weighted additive voting model. [PRO24] tackled the compressed 

domain challenge by using the motion vectors and the residuals extracted from each GOP 

composing a HEVC video. It is stated that this method allows reducing the computation 

duration twice compared to uncompressed domain methods. For the matching process, 

the authors studied different transformers and concluded that DINO_vits16 and 

VisFormer_small models are both capable to efficiently retrieve near duplicate videos. 

Another way to solve the compressed domain video tracking is to focus on the network 

stream generated once the video is being streamed. [SCH17] presents a method for 

fingerprinting video streams, using distinct packet burst patterns related to the content, 

where the very burst of information delivered to the end user serve as the fingerprint. A 

specific CNN model is then used for the matching step. Inspired by these results, the study 

in [AFA22; LI18] further investigates the capabilities of the data collected by a Middleman 
present in the network, by extracting the information from the Wi-Fi traffic.  
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II.3. Summary 

This state-of-the-art study not only brings to light the current day limitations of the two 

basic technologies of relevance for the thesis, namely blockchain and fingerprinting, but 
also put them in the perspective of their mutual integration, as follows: 

On the one hand, when putting the blockchains in the perspective of supporting 

fingerprinting-like operations, multifold inner limitations are encountered, and answers 
to open questions are expected: 

 How can the bit sensitive hash functions (e.g. SHA256) cope with the plurality of 

digital representations for the same visual content? 

 How the formal limitations in the amount of data that can be exchanged between 

blockchain components are reflected in the versatility of applicative workflows 

that go beyond simple transactions? 

 While the energy consumption generally associated to blockchain functioning and 

the need of high computational powers for block generation are curiously accepted 

in digital banking, can it still be accepted in other applicative fields?  

On the other hand, when putting the fingerprinting solutions in the perspective of effective 

compressed stream processing, the state of the art becomes scarce, with some ad-hoc 

solutions, rather pragmatic then addressing the problem at the conceptual level. 

Consequently, open questions expect accurate answers in this field: 

 While very little (if any) visual redundancy is expected to still be present in 

compressed stream syntax elements, how can near-duplicated visual content be 

identified as similar? 

 While DL methods benefit from redundancy to learn patterns, how can the 

fingerprints be clustered?  

 While fingerprints are expected to reach a trade-off between uniqueness and 

robustness, are classifiers an effective trend in compressed domain fingerprinting? 

 While sophisticated DL techniques seem promising for compressed domain 

fingerprinting, would them still applicative effective? 

The thesis structure is also oriented according to the findings in the state-of-the-art 

analysis. First, in Chapter III On-chain / off-chain processing, the blockchain 

computing environment will be revisited in order to allow effective load balancing 

between on-chain and off-chain components, thus allowing complex workflow to be 

backboned by blockchains. Secondly, in Chapter IV Compressed domain video 

fingerprinting, the possibility of achieving compressed domain video fingerprinting 

will be demonstrated based on ML and DL approaches. Finally, the Chapter V 

Blockchain-fingerprinting applicative synergies shows the effective coupling of the 
two content tracking paradigms the present thesis deals with.  
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Chapter III. On-chain / off-

chain processing  
 

 

This chapter will present an on-chain / off-chain load balancing methodological framework, 

making it possible for synergies between the blockchain main properties and general 

purposes computing systems to be established. Direct applicative instantiations will be also 

hinted to.   
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When looking forward towards ensuring complex computation operations on a 

blockchain, a twofold deadlock is met. On the one hand, enriching the current day 

blockchain workflows (on-chain) with larger programming functionalities and computing 

resources is forbidden by the blockchain costs (gas). On the other hand, benefiting from 

conventional, general purposes computing environment (off-chain) is intrinsically limited 

in security, immutability and trust properties. Faced to this problem, the present thesis 

identifies the optimal trade-off between blockchains and general purposes computing 

environment, by establishing the architectural framework for ensuring the zero-trust on-

chain / off-chain load balancing and by demonstrating its effectiveness on a use-case 
related to video recording. 

 

To this end, the present section designs COLLATE, on-Chain Off-chain Load baLancing 

ArchiTecturE, in Section III.1, then presents its open source code in Section III.2, before 

demonstrating its effectiveness on an ISO/IEC 23093 Internet of Media Things (IoMT) 

video camera use cases in Section III.3. 

 

III.1. COLLATE 

The landscape of blockchain technology continues to evolve, offering opportunities for 

innovation across various sectors. As blockchain networks and applications complexity 

grow, efficiently managing the computational load becomes a main challenge. This section 

presents the concept of on-chain and off-chain load balancing as a strategic solution to this 

challenge, ensuring that new distributed applications (DApps) with high complexity can 

be effectively integrated to blockchain environments, while reaching the trade-off 
between performance and security. 

In the realm of distributed ledger, a contrast is made between the on-chain and off-chain 

operations, each serving distinctive roles within DApps. On-chain operations occur 

directly on the blockchain and are prized for their security and transparency. Each on-

chain action is validated and recorded on the network's ledger, ensuring an immutable 

and transparent record that upholds the integrity and the well-functioning of the 
blockchain. 

On the contrary, off-chain mechanisms create a supplementary environment designed to 

manage tasks and computation outside the main blockchain. This approach could be 

particularly beneficial for processing complex computations that are beyond the capacity 

of the main ledger, thereby enabling a broader spectrum of decentralized solutions. Off-

chain solutions can significantly enhance the scalability and efficiency of blockchain 

applications by handling data-intensive or complex tasks that would otherwise bog down 
the blockchain with excessive processing demands and high transaction fees. 

To face such an antagonism, it is essential to follow a load balancing strategy as early as in 

the design phase of any new DApps. This load balancing step involves partitioning the 

application into two distinct logical blocks, each tailored to meet specific needs: 
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 High Sensitivity Block: This segment of the application leverages the inherent 

security and transparency of the blockchain. It is ideal for functions that require 

strict security constraints, such as asset transactions and royalty distributions. By 

running these operations on-chain, the application ensures that all actions are 

transparent and tamper-proof, enriching the trust and reliability properties of the 

overall decentralized application. 

 High Complexity Block: This segment is suited for the application tasks that demand 

extensive computational resources or complex computation, beyond the 

capabilities of typical Smart Contract languages (i.e. operations that require long 

processing times or the use of high-performance computing resources like GPUs). 

Off-chain mechanisms can efficiently handle such tasks by exploiting external 

systems or specialized hardware, thereby preserving the overall blockchain’s 

performance and speed as well as the application specifications. 

 

From the conceptual point of view, the orchestration in the joint execution of High 

Sensitivity Block and High Complexity Block requires the conception, design and 

integration of new type of component, further referred to as Load Manager. In other 

words, the Load Manager ensures the on-chain / off-chain balancing and the strict 

respect of functional rules of blockchains. The underlying logical workflow we advanced 
[ALL21] and is explained here after. 

To this end, the Load Manager should secure a robust communication with both the 

blockchain and the off-chain computing environment, and the corresponding two 
connectors are illustrated in Figure 19.  

 

Figure 19: Generic On-chain/off-chain load balancing architecture: the communication between the load balancer and 
the DApp are presented in orange, the on-chain interactions are presented in blue, and the off-chain actions are 

presented in green 

 

The communication with the blockchain is ensured by the Smart Contract Connector Unit 

(SCCU), which is directly linked to the blockchain, enabling it to execute transactions and 
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receive real-time blockchain updates. This connection is essential for remaining 

synchronized with the blockchain's state and to react to issues or changes as they arise. 

For the communication with the Off-Chain Computing Environment (OCCE), the Off-Chain 

Connector Unit (OCCU) module is introduced. OCCU ensure a secure communication 

network via private network initialization and end-to-end encryption system between the 

Load Manager and OCCE.  

The functioning of the on-chain / off-chain load balancing will be presented by 
considering the its three main stages, namely Initialization, Processing and Finalization. 

 

III.1.A. Initialization 

1. Smart Contract initialization 

Smart Contract development is a critical phase for blockchain applications and both Tezos 

and Ethereum blockchains offer distinct approaches to the development and deployment 

of Smart Contracts, based on their distinct execution environments. This section shows 

how Smart Contract are initialized in Tezos and Ethereum, as illustrated in Figure 20, 
explaining both the similarities and differences between them. 

 

Figure 20: Conventional Smart Contract workflow 

 

 Plan and design step forms the basis of Smart Contract development on both Tezos 

and Ethereum. This step requires a deep understanding in the legal field as well as 

the application sector. First, all the conditions and terms agreed on between all the 

parties should be listed and illustrated in the form of logic conditions (often 

structured as a series of if...then... statements). Second, the state 

management, interaction protocols, and the token standards (if needed) should be 

agreed on. 

 Program the Smart Contract step focus on the translation of the conditions into 

high-level code that encapsulates the business logic of the Smart Contract, detailing 

transaction mechanisms, conditional executions, and data management 

procedures. Programming Smart Contracts on Ethereum often relays on Solidity 

language [GIT24a] while Tezos allows developers to use several officially 

supported languages namely Liquidity, SmartPy, and LIGO [LAN24]. 

 Compile the Smart Contract step transforms the high-level code into a blockchain-

executable format. Ethereum compiles Solidity into bytecode executed by the 

Ethereum Virtual Machine (EVM). Tezos, on the other hand, compiles its high-level 

languages into Michelson code for execution on its own virtual machine. 
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 Test and validation is a compulsory step, given the significant risks raised by the 

immutability of the deployed Smart Contracts. Both blockchains stress the 

importance of rigorous testing and auditing, employing unit, integration, and 

system tests. These tests are typically conducted on testnets offering the same 

particularities as the mainnet but running on mock currency, eliminating 

financial risk during the testing phase. Additionally, Tezos enhances the reliability 

of its Smart Contracts through the integration of formal verification tools, which 

provide a mathematical guarantee that the contracts will function as intended. 

 Deployment step sends the compiled Smart Contract to the blockchain where it 

becomes alive and public. The deployment step in both blockchains requires gas 

fees, although the cost may vary significantly depending on the network congestion 

and computational complexity of the Smart Contract. 

 

2. Load Manager initialization 

The Load Manager orchestrates the work be done by on-chain and off-chain resources 

in order to answer the DApp requests. This module functions within a robust environment 

that integrates various components to ensure seamless operations and enhanced security. 

To ensure the Load Manager is set to effectively handle its responsibilities, its 

initialization involves several key stages, as illustrated in Figure 21: 

 

Figure 21: Simplified workflow for Load Manager initialization and configuration 

 

 On-chain related initialization step configures the module to comply with 

blockchain protocols and settings. This includes setting up Smart Contract 

interfaces, initializing blockchain listeners, and setting transaction rules. Next, the 

synchronization with the blockchain network takes place. During this phase, the 

module is updated with the last blocks states, ensuring accurate and real-time 
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transaction validations and Smart Contract executions. Robust security protocols 

are also established during this step by implementing cryptographic procedures, 

such as digital signatures and hash functions, to secure transaction data and 

sensitive information. Finally, the blockchain wallets are created and set with an 

initial amount of asset to guaranty the execution of tests. 

 Off-Chain Related Initialization step starts by setting up and configuring OCCU to 

handle computationally intensive tasks. To this end, the Load Manager 

determines the DApp needs related to the off-chain timely computation and 

storage resources. Security and high availability are of a high concern for the off-

chain part. Security includes setting up encrypted channels for data exchange 

between the blockchain and external servers, such as SSL/TLS protocols [KRA13]. 

Additionally, enhanced isolation is achieved through the creation of private 

networks, providing an extra layer of protection and control over the data 

environment. The load balancing configuration, scaling strategies, and failure 

management are designed to ensure performance stability and high availability. 

Continuous performance monitoring tools (e.g. CPU and RAM usage) complement 

this setup. 

 External Communication Initialization step covers the development and 

integration of Application Programming Interfaces (APIs) that coordinate the 

communication between the Load Manager and the DApp. Those APIs are 

associated with robust authentication and authorization protocols such as OAuth, 

API keys, or JWT (JSON Web Tokens) ensuring that only authorized DApps can 

initiate actions or access data managed by the Load Manager. Finally, the system 

conducts comprehensive integration testing to ensure that all communication 
interfaces work seamlessly with the DApps. 

 

3. Off-Chain Computing Environment initialization 

The Off-Chain Computing Environment (OCCE) is tailored to the specific needs of 

applications and may include a variety of powerful computing resources such as CPUs, 

GPUs, Application-Specific Integrated Circuits (ASICs), or Field Programmable Gate Arrays 

(FPGAs). OCCE serves as a complement to blockchain by executing the computationally 

intense algorithms, which are far beyond the capability of standard blockchain 
technologies and/or by ensuring gas-fee exempted storage. 

The initialization of the OCCE shared numerous aspect with classic servers. It is configured 

to manage high-load processes and provide computational power where needed. This 

configuration ensures that the OCCE can handle large-scale computations seamlessly by 

the adaptation of automatic scaling mechanisms. At this point, all the algorithms and 

operations running on the OCCE are pre-programmed and all participating parties have 

agreed on their functioning. This agreement is significant for maintaining trust and 

transparency among all stakeholders and users, thus aligning with the decentralized 

nature of blockchain technologies. Complementary measurements can be implemented in 

the core of the algorithms to further insure the system trust like AI model watermarking 

[TRI24]. The specification of disaster recovery plans should also be agreed on in advance. 
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To this end, the continuous monitoring² tools already mentioned are installed as well. 

Other than the computing capabilities, advanced security protocols are deployed to 
protect against different type of attacks and potential security breaches. 

 

III.1.B. On-chain / off-chain processing 

Once the system is initialized, it is autonomously functioning, without the need for any 

further external intervention. This self-effectiveness is highlighted in the lifecycle of a 

DApp request, from its request to the receiving of the expected results, as illustrated in 
Figure 22: 

1. DApp request: The processing is started by DApp, that, based on user interactions 

such as clicks or command inputs, sends a request to the Load Manager. This 

request specifies the nature of the task, which may involve data retrieval, 

computation, or transaction execution. 

2. Transaction via SCCU: The load manager analyses the request and define the on-

chain part and the off-chain part. Then it initiates the transactions with the 

blockchain using the SCCU, executing either asset transactions or instructions 

within a Smart Contract. The SCCU ensures that these transactions are constructed, 

signed, and broadcast correctly. The transaction construction includes defining the 

core transaction details such as the sender, recipient, amount, gas limits, and 

nonce, while also formatting inputs to comply with the application's binary 

interface (ABI) specifications. 

3. Blockchain Processing and Event Detection: once the transaction is submitted, the 

blockchain network processes it. The Load Balancer, actively monitoring the 

network, detects events such as transaction confirmations or Smart Contract 

triggers. This event-driven approach allows the system to responds dynamically to 

changes or results from the blockchain. 

4. Data Parsing and Job Creation via OCCU: After detecting the relevant blockchain 

events, the Load Manager parses the transaction confirmations or Smart 

Contract state changes and events. Using the OCCU, it formulates job requests for 

the OCCE modules. 

5. Job Execution by OCCE: The OCCE receives the job added to a queue and executes it 

as soon as one of the resources is available. 

6. Result Handling: Upon completion of the off-chain computation, the results are 

encapsulated and securely transmitted back to the Load Manager. 

7. Completion Confirmation to DApp: Finally, the Load Manager confirms the 

successful completion of the entire process to the DApp and sends back the 

obtained results as well as the confirmation of the blockchain transaction, allowing 

the DApp to update accordingly and inform the user. 
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Figure 22: Interaction scenario between the DApp and the load manager 

 

III.1.C. Finalization 

In order to finalize the On-chain / Off-chain load balancing system, a structured and 

methodical approach is of a great importance to follow a specific order in shutting down 

the componence. 

1. The Off-Chain Computing Environment is the first element to turn off. A cool down 

system is required for this step: any existing jobs should be allowed to finish and 

return the result, while any new specific computing job should be denied. This 

process can take from seconds up to several minutes (the maximum duration can 

be set by the system administrator) based on the number and nature of the 

processes executed on the environment. All the processes in Idle state will shut 

down directly. 

2. Once all tasks in the OCCE are completed, the OCCU can now be safely 

decommissioned by releasing all the resources that were dedicated to Off-chain 

computations. 

3. After a stabilization period where the unperformed jobs get reimbursed, the 

communication channels between the Load Manager and the DApp are closed. This 

turns the system inaccessible for any further request from the user. 

4. As the Smart Contracts deployed by the Load Manager could still have assets 

attached to them, the system administrator makes a series of transaction to the 

Smart Contracts to direct all the available asset to a secure wallet. 

5. The SCCU is next to be turned down as it is the end of the functional life of the Smart 

Contracts, and no more communication with be blockchain is required. 

6. The final step is to shut down the Load Manager module. This should be 

straightforward and easy task since all its communication with the three parties 

has been ended. 

7. In the case of using a private blockchain that served only for this application, this 
is turned down by disconnecting and turning off all associated nodes. 
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III.1.D. Potential usage 

COLLATE has been conceived and design with the specific purpose of keeping its workflow 

at a conceptual level, thus ensuring independence with both the blockchain structure and 
the specific DApp. 

The previous sections show that at least up to some extent, two different blockchain 

infrastructures (Ethereum and Tezos) can equally accommodate such a solution, 

assuming the specific needs related to initialization and development of Smart Contract 

are properly delt with.  

From thee workflow standpoint, each step is evaluated based on its requirement for 

security, cost, speed, and complexity to determine the most suitable processing 

environment. By well-balancing on-chain and off-chain operations, the system maintains 

the blockchain properties while addressing its limitations, resulting in robust, scalable, 

and efficient DApps capable of supporting complex and dynamic use cases across various 

sectors as illustrated in Table 4. 

 

Table 4 Examples of use cases that can benefit from the on-chain/off-chain load balancing 

Blockchain 
application 

On-chain Off-chain 

Financial investment, e.g. 
[ZHA22] 

- Risk level agreement 
- Asset transactions 
- Management fees 

- Real time market tracking 
- Risk assessment algorithm 
- Market predictions 

Cold Chain Management, 
e.g. [BAD18] 

- Provenance tracking 
- Temperature and storage condition 
monitoring 

- Quality certifications 
- Product spoilage alert (error) 

- Route optimization 
- Supermarket inventory prediction 

Healthcare, e.g. [AL-N24] - Permission for patient record access  
- Allergy and disease logs 
- Drug prescription  

- MRI scan analysis 
- NN model for brain tumor detection 
- Genomic data analysis 

Gaming, e.g. [PFE20] - In-game purchases (e.g. Gems) 
- In-game item ownership transfer (sell, 
trade, ...) 

- Service subscription 

- Real-time multiplayer gameplay 
- AI-driven non-player character (NPC) 
actions 

Media and copyright, e.g. 
[MOR23b] 

- Royalty distribution 
- Licensing and content usage rights 
(personal, commercial, distribution, …) 

- Near-duplicate tracking 
- Content recommendation system 
- QoS optimization  
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III.2. Implementation 

The following section presents the development grounds for the on-chain/off-chain 

module, ensuring optimal load balancing and efficient resource utilization.  

The workflow, synoptically presented in Figure 23, is structured into distinct modules to 
streamline development and ensure robust system performance upon deployment.  

Different modules may require the expertise of different engineers and developers 

varying from system architect for planning and designing the different modules, 

application specific developer (i.e. a neural network classifier requires a data scientist 
meanwhile a high-resolution medical imaging requires an embedded systems engineer).  

 

Figure 23: On-chain/off-chain load balancing architecture development workflow 

 

III.2.A. Plan and Design 

This foundational phase involves strategic planning and detailed design, setting the stage 

for subsequent development efforts. The project's scope and requirements are defined, 

focusing on the overall project challenges and possible issues. This includes selecting the 

off-chain computation needs and the well-suited blockchain network understanding the 

transaction types, Smart Contract capabilities offered by each blockchain. 

 

III.2.B. Programming 

The programming phase of the on-chain / off-chain load balancing architecture is broken 

down to three major sections: 

 The Smart Contracts and tokens are developed to ensure the applicative continuity 

yet to benefit from the security and immutability aspects within the blockchain. 

For applications that run on multiple blockchains, it is important to ensure that all 

the functions have the same declaration, same input and same output, which will 

facilitate the interaction with the SCCU. To further facilitate the interaction 
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between the Smart Contracts and the SCCU, Events are implemented in the Smart 

Contract functions to trigger the targeted conditions, as illustrated in Figure 24. On 

the other end on the system, Figure 25 shows how the events are handled in the 

Load Manager. Similar to the Events, alerts with clear and details messages are 

returned in case of an important condition is not satisfied as shown in Figure 26 

and Figure 27. A security aspect in developing these Smart Contracts is to have a 

function that allow to securely managing the authorization aspects (i.e. list of SCCU 

addresses have the permission to transact Smart Contract functions that the public 

blockchain users cannot). The additional step of compiling the high-level code in 

order to obtain blockchain executable code. The Solidity code results in two files, 

the Bytecode which is the executable part but also the Application Binary Interface 

(ABI) The import and initialization of the Smart Contract via the ABI is illustrated 

by Figure 28. 

 The Load Manager is composed of three main blocks. First, the central controller, 

determining whether tasks should be executed on-chain or off-chain based on 

predefined criteria such as transaction cost and execution speed. Second, the SCCU 

is a piece of software (e.g. developed in Python3 in the thesis) to interface with the 

Ethereum and Tezos blockchains, handling transaction submissions and Smart 

Contract interactions. It uses the Web3 library [MET24] for Ethereum, Figure 28, 

and PyTezos library [PYT24] for Tezos to facilitate communications. Third, the 

OCCU is developed to manage and interact with the OCCE, securing the 

communications and collecting continuous health checks. A monitoring dashboard 

for the OCCE metrics can be coupled with OCCU. 

 The complex algorithms are developed using conventional programming 

languages like C/C++, JAVA, or Python based on the task requirements. 

 

 

Figure 24: Snapshot of the event declaration and emission in Solidity 

 

Figure 25: Python Code for Listening to Ethereum Events 
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Figure 26: Failure condition in Solidity 

 

 

Figure 27: Failure condition in Liquidity 

 

Figure 28: Python code to import Smart Contract and token addresses and ABIs after being deployed 
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III.2.C. Test and validation 

This testing phase starts with validating the three developed sections followed with 

testing the overall application integration: 

 Testing the Smart Contracts encompasses a series of validations to confirm that 

they operate as intended. This process begins with unit testing, where each 

function of the Smart Contract is tested in isolation to early detect any issue. 

Integration tests follow, where the Smart Contracts are deployed on testnets to 

audit the way they would function in a live environment. The integration tests help 

identifying any issue interacting with the blockchain platforms or unexpected 

behaviors under different conditions. The main objective is to ensure that the 

Smart Contracts are secure, performant, and free from vulnerabilities that could be 

exploited once deployed which could be fetal to all the system since malfunctioning 

contracts cannot be fixed or deleted from the blockchain. 

 Testing the Load Manager, as the central controller of the system, requires 

attentive testing to validate its ability correctly routing the tasks between on-chain 

and off-chain processes as intended. Functional testing and performance testing 

are performed to evaluate the Load Manager efficiency under various load 

scenarios to ensure that it can handle real-world operating conditions. Stress tests 

are applied to gauge its robustness and recovery from extreme conditions, 

ensuring the Load Manager remains stable and reliable. 

 Testing the Off-Chain Program relates to validating the complex algorithms focus 

on computational accuracy, ensuring that the algorithms perform the expected 

calculations correctly and efficiently. Security testing is performed to safeguard the 

off-chain components from potential cyber-attacks, ensuring that all the resources 

are secure from unauthorized access or manipulation. 

 End-to-End System Testing represents the end-to-end system testing. It evaluates 

the complete system performance, usability, and reliability validation. It includes 

user acceptance testing to ensure the system meets all specified requirements and 

is ready for live deployment. Realistic scenarios that replicate typical DApp actions 

are employed to see how the system manages and executes these within the live 

operational environment. This final phase of testing helps guarantee that the 

system is fully prepared for deployment and operation, facing real-world 

applications at scale. 

 

III.2.D. Deployment 

The deployment phase of the on-chain / off-chain load balancing workflow is transitioning 

all components into a live operational state. Although the development and testing phases 

of the system components could be done in any order, the deployment phase should follow 

a precise order: (1) Of-Chain Computing Environment and the Load Manager core 

application and Off-Chain Connector Unit, (2) Smart Contract Connector Unit and the 

blockchain specific initializations, (3) the deployment of the communication channels 

with the DApp. 
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III.3. Use case demonstration: celebs identification in live 

IoMT video camera 

 

III.3.A. Celebs identification as an on-chain / off-chain deployment 

The ISO/IEC 23093 series, also known as MPEG-IoMT (Internet of Media Things), outlines 

an architecture that includes APIs and data flowing between various Media Things 

(MThings) such as MCameras, MMicrophones, MDisplays, MAnalysers, or MStorages. 

[ISO20; ISO22; MIT19] This standard facilitates the design, orchestration, and operation 

of these devices across a broad range of tasks, including acquisition, rendering, 

processing, and storage of multimedia content. Additionally, the IoMT standards 

incorporate provisions for integrating blockchain technologies with MThings. Specifically, 

the standard defines APIs and mechanisms for transactions, enabling the use of digital 

currencies or fiat money to pay MThings for their services, as the example of the MCamera 

use case that will be presented in this section. 

The use of a live video camera in conjunction with a blockchain has been studied in 

[ALL21b]. 

The sequence diagram presented by Figure 29 illustrates the interaction flow between a 

decentralized application (DApp), a blockchain, an IoMT device represented by a Media 

Camera (MCamera) integrating a Smart Contract (presented in Figure 30), a Load 

Manager, and an artificial intelligence (AI) off-chain application. This use case is part of 

an IoMT system where various components work together to stream a live football event 

with players performance analytics. Here’s a breakdown of the steps depicted in the 

diagram: 

1. GetVideoCostPerMinute: The decentralized application (DApp) initiates a 

request to the MCamera to determine the cost of a football live stream per minute, 

specifying the cryptocurrency or token types that will be used for payment. the 

Solidity implementation of this method is shown in Figure 31. 

2. GetWalletAddress: Upon the DApp request, the Mcamera responds by 

providing a wallet address specific to the transaction type. The address is derived 

from Smart Contracts deployed on the blockchain enhancing the transparency and 

reliability of the system. 

3. SendToken: The DApp sends the required tokens to the wallet address received 

in the previous step. This transaction is executed on the blockchain, leveraging its 

secure environment to ensure that tokens are transferred without the risk of fraud 

or loss. 

4. CheckTransactionCompletion: After initiating the token transfer, the DApp 

continually checks the blockchain to verify if the transaction has been successfully 

completed using the transactionID automatically generating when initiating the 

transaction. 



Mohamed Allouche 

68 

5. GetVideoURL: Once the transaction is confirmed, the DApp requests the video 

URL from the MCamera passing the transactionID as a proof of payment. 

6. CheckTransactionCompletion: This step ensures that the transaction 

related to the video stream request are completed and confirmed. 

7. GetPlayerID: The DApp uses the video timestamp to request a player identity 

from the MCamera. This step is essential for correlating specific video frames with 

the correct player, facilitating accurate performance analysis. 

8. FaceRecognition: The Load Manager associate to the MCamera transfer the 

DApp request to the off-chain AI Application who processes the video to perform 

face recognition and associates the recognized face with a player ID before sending 

back the results to the MCamera. The MCamera finally returns the playerID to the 

DApp. 

9. GetPlayerPerformance: The DApp requests the performance data of the 

player using their playerID and an eventID from the MCamera. Note that, a payment 

process is also associated to this step, but it was not illustrated to simplify the 

sequence diagram. 

10. AnalyzePerformance: The AI Application analyzes the player’s performance 

using complex algorithms to assess metrics like speed, passes accuracy, distance 

run during the match and overall efficiency. This analysis is performed off-chain 

due to its computational intensity and sends the results back to the MCamera that 

returns it to the DApp for further use  

11. PlaceBet: This step if not a part of the IoMT use case, it was added to show how 

the DApp could communicate with different entities over the same blockchain 

resulting in a complex and branched systems with multi actors. 

Throughout this process, the MCamera interactions between the blockchain and the off-

chain components demonstrate a dynamic use case in which blockchain technology 

ensures secure transactions and data integrity, while the off-chain components handle 

computationally intensive tasks like video analysis and face recognition. This architecture 

efficiently divides the workload between on-chain and off-chain processes, optimizing 

both security and performance in an IoMT environment. 
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Figure 29: Sequence diagram for an IoMT use case involving DApp, Blockchain, MCamera, AI off-chain App 
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Figure 30: MCamera Smart Contract initialization 

 

Figure 31: Smart Contract code to get the MCamera cost per minute 

 

III.3.B. Experimental illustrations 

This subsection illustrates the experiments related to the on-chain / off-chain deployment 

on Ethereum platforms. Similar results are obtained for the Tezos platform. 
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The user-friendly management of the Ethereum DApp through a visual interface is 

illustrated in Figure 32. The user has thus access to the main Smart Contract functions 
presented in Figure 29. 

 

Figure 32: Visual interface for the Ethereum DApp 

 

The on-chain functioning is illustrated through Figure 33 that shows the joint 

monetization of the services, according to the preestablished costs managed by the Smart 
Contract, and the blockchain transactional fees, imposed by the blockchain governance.  

 

Figure 33: Service monetization and blockchain fees 
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The orchestration of the events triggering off-chain actions and the underlying token 

management (purchase and transfer) are illustrated in Figure 34 and Figure 35, 
respectively. 

 

Figure 34: On-chain event triggering off-chain execution 

 

 

Figure 35: On-chain event triggering token management 
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III.4. Summary 

The present Chapter starts from the conceptual contradiction between the blockchain 

restricted capabilities (computing, storage, exchanging) and their potential benefits for 

multimedia processing. To reach a trade off in this respect, COLLATE, on-Chain Off-chain 

Load baLancing ArchiTecturE is conceived, designed, open source implemented and 
experimentally validated.  

COLLATE results in the functional optimization of blockchain applications, ensuring that 

each task is processed in the most appropriate environment. This strategic partitioning 

not only enhances the functionality and efficiency of DApps but also helps maintain the 

scalability of the blockchain infrastructure, making it more adaptable to a variety of 

advanced uses in an increasingly digital world. For instance, the Figure 36 illustrates the 

improvements COLLATE provides compared to state-of-the-art solutions with maximum 

gas fees of 55 603 for Ethereum and 2 100 for Tezos, that are significantly lower than the 
upper technical limits set at 30M and 1M, respectively. 

 

Figure 36: COLLATE effectiveness 

 

We emphasize one key aspect related to the COLLATE security. Of course, when multiple 

processing environments are orchestrated, the data communication between the entities 

is intuitively considered as a security failure point, and particular attention was paid in 

this respect, as previously explained. Firstly, the data exchanged through the OCCU are 

encrypted by an https mechanism: in this way, the off-chain virtual machine is controlled 

only by trusted entities. Secondly, specific security constraints are considered during 

Smart Contract programming, in order to ensure the integrity and the non-repudiation of 

all accepted requests; implicitly, an attacker that was able to pass the https level of security 

is thereby referred from rewriting the on-chain data. Thus, the Smart Contract will record 

whatever actions trigger its entry points. Moreover, if an outcome in the contract depends 

on at least one user argument, the Smart Contract will not accept any additional user-
supplied inputs until the off-chain process finishes the in-progress tasks. 

This architecture considers the general blockchain principles, while the code presented in 

this manuscript correspond to Tezos and Ethereum.  

Note that in the present thesis, we focused on the Smart Contract workflow; the issues 

related to tokens and to blockchain interoperability being addressed in [MOR23a]. 
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As a final remark, note that to the best of our knowledge, COLLATE is the first of its kind 

solution for virtually extending blockchain infrastructures with computing, storage and 

programming facilities. It can be considered as an incremental level over the current-day 

ORACLE solutions [ETH24d] and [DOC24] that allows for external data to be input to 

Smart Contracts, without being able to make provisions for computation or storage 

resources related to those data. 
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Chapter IV. Compressed 

domain video 

fingerprinting 
 

 

This chapter brings forth a comprehensive study about whether and how video fingerprinting 

can be achieved out of processing compressed stream elements. It encompasses aspects 

related to stream syntax element identification and extraction, to an ML based PoC as well as 

to DL based functional solution.  
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As the world increasingly turns to digital video use in all life aspects [CIS18], the need for 

efficient video fingerprinting becomes more and more important. Most of the studies 

reviewed in the state-of-the-art Section II.2 necessitate decoding the video streams prior 

to fingerprinting, a process that is both computationally expensive and time-consuming.  

The current thesis explores the feasibility of compressed domain fingerprinting that offers 

the potential to bypass the decompression stage, thus promising significant gains in 

processing speed and resource efficiency. Yet, deep learning compressed domain 

fingerprinting reveals contradiction both at the conceptual and operational levels. 

At a conceptual level, compressed domain video fingerprinting face three main challenges: 

 How to extract the content in the compressed stream level while remaining robust 

against various encoding parameters and transcoding? 

 How to represent a family of near-duplicate content by a unique fingerprint if no 

more redundancy is left at the level of compressed streams? 

 How ML/DL models can be trained on data that does not have either spatial or 

temporal redundancy? 

On the operational front, the main question relates to the very possibility of fitting video 

fingerprinting under the ML frameworks. On the one hand, the robustness property of the 

fingerprinting method dictates the possibility to track near-duplicate content, thus 

pointing to a conventional classification problem. Yet, conventional classifiers are a priori 
likely to contradict the fingerprinting uniqueness property.  

Also on the operation front, note that ML and DL solutions are known to be complex from 

the computation point of view, so another a priori question relates to whether the 

computational overhead associated to cutting-edge classifiers (e.g. transformers) would 

not, in fine, contradict the very goal of fast, efficient fingerprinting. 

When trying to mitigate these tensions, we followed a bottom-up approach. First, 

Section IV.1 Stream syntax elements and visual tracking discusses the compressed domain 

stream syntax elements and their potential usefulness for video fingerprinting 

applications. Secondly, Section IV.2 ML-based proof of concepts presents the proof of 

concepts for compressed domain video fingerprinting through a basic ML approach, 

namely decision trees. Then, the compressed domain fingerprinting problem is stated and 

solved in its general form under the DL framework in Section IV.3 COMMON. The issues 

related to scaling up towards real-life applications are discussed in Section IV.4 COMMON 
at work, while a retrospective view on the method is provided in Section IV.5 Summary.  

Note that each step was designed to simplify the system's structure, focusing on 
maximizing efficiency and effectiveness. 
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IV.1. Stream syntax elements and visual tracking 

IV.1.A. From human vision to stream syntax elements 

The nowadays video encoding landscape features a dual trend. On the one hand, from the 

research perspective, the last decades have seen Advanced Video Coding AVC (formally 

referred to as H.264, or MPEG-4 Part 10) being replaced by High Efficiency Video Coding 

HEVC (formally referred to as H.265, or MPEG-H Part 2) and by Versatile Video Coding 

VVC (formally referred to as H.266 or MPEG-I Part 3). Yet, from the industrial perspective, 

the current day solutions mainly consider MPEG-4 AVC with HEVC expected to take over 

in the upcoming years [STE24]. To cope with this duality, the manuscript will present the 

main syntax elements related to HEVC; yet, the experiments are carried out for both 

MPEG-4 AVC and HEVC (only HEVC being included in the manuscript). Moreover, VVC will 

be studied as a robustness criterion.  

HEVC significantly enhances the efficiency of video compression, offering a reduction in 

data requirements up to 50% compared to AVC while maintaining equivalent video 

quality. Alternatively, it can provide significantly improved video quality at the same bit 

rate, particularly for high-resolution videos. However, these enhanced compression 

performances come with increased complexity in both encoding and decoding processes 

[COR12]. The enhancements in HEVC, such as more flexible block partitioning, bigger 

blocks and larger variety of coding modes, demand higher computational resources, 

which can challenge its implementation particularly for real-time applications or with 

limited resources platforms, like single board computers, for instance (e.g. Raspberry Pi). 

In most ways, HEVC is an improved, expanded version of AVC, employing similar encoding 

concepts and processes. The video encoding can be broken down to four key operations. 

First, video frames are divided into Groups of Pictures (GoP), each is composed of an initial 

I frame and followed by a sequence of P and B frames. In this step, each frame is 

partitioned into blocks. The encoder then predicts the similarities among the blocks in a 

frame and among the frames in the same GoP, transforms the prediction errors, Quantizes 

the resulting coefficients obtained and applies entropy Coding to further compress the 

video. The decoding process, presented in Figure 37, simply reverses main steps to 
reconstruct the video from the compressed file. 

The complexity of decoding is associated with all video content analysis solutions since 

the vast majority of applications are processing fully-decoded video content as illustrated 

in the state of the art (Section II.2) where features are often extracted in the pixel level. 

Therefore, in order to reduce the fingerprinting algorithm complexity, the challenge is to 

extract the fingerprints from representations as close as possible to the binary 
compressed stream. 

Consequently, the present study goes further and takes the challenge to investigate the 

possibility of ensuring fingerprint extraction closer to the compressed stream to ensure 

the trade-off between the decoding operation complexity and the level of redundancy still 

existing in the compressed stream. From this point of view, the decision to extract the 

fingerprint after the Inverse quantization and before the Inverse transformation was 

made, as illustrated in Figure 37. This decision is not only a strategic choice to optimize 
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complexity but also aligns with established practices in compressed-domain video 

watermarking, as evidenced by prior research [HAS14]. Extracting the fingerprint at this 

level is supposedly capable of eliminating the impact of Quantization parameter attacks 

making the overall system more robust. 

 

Figure 37: HEVC decoding process and fingerprint extraction 

 

In order to further tailor the approach to the unique challenges of video fingerprinting, it 

is important to differentiate between videos that are semantically related but distinct, the 

method avoids using information from inter-frames. Instead, the focus is shifted to I-

frames, which are self-contained frames that hold all the necessary visual information. 

This choice is also strategic because I-frames are less affected by the common variations 

introduced through repeated re-encoding, making the fingerprinting process more stable 

and reliable across different postings of the video. The exclusive selection of I-frame 

information reduces the size of the fingerprint and elements the needs to have an extra 

complex task to extract the key frames. 

When determining which specific information to extract from an I-frame for video 

fingerprinting, the luma and chroma coefficients, as well as their intra prediction modes 
are a priori likely to be considered.  

At this level, we shall consider 5 complete matrices: Luminance (Y), Chrominance red (Cr), 

Chrominance blue (Cb), intra prediction luminance (IntraY), and intra prediction 

Chrominance (IntraC). 

The relationship between human vision and such stream syntax elements is illustrated in 
Figure 38, Figure 39, Figure 40 and Figure 41.  

Figure 38 illustrates one I frame from which three macroblocks will be investigated: a top-

left one (illustrated in red), a center one (illustrated in yellow) and a right-bottom one 

(illustrated in green). These three macroblocks have been selected as they correspond to 

three types of visual content: natural uniform (the block in red), natural with details (the 

block in yellow) and text (the block in green). When comparing among them Figure 39, 

Figure 40 and Figure 41, it can be noticed that the value and the distribution of stream 

syntax elements intrinsically depends on the type of content they are corresponding to. 
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Figure 38 Representation of one I-frame, from which three macroblocks will be investigated: a top-left one (in red), a 
center one (in yellow) and a right-bottom (in green). 

 

Figure 39: Different representations for the macroblock in red (top-left) 

 

Figure 40: Different representations for the macroblock in yellow (center) 

 

Figure 41: Different representations for the macroblock in green (bottom-right) 
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IV.1.B. Extracting stream syntax elements 

In order to extract the syntax elements, a parser was developed. Among the four decoding 

main steps, only the Entropy decoding and the inverse quantization are required, as 
illustrated in Figure 37.  

The parser is integrated in the open source HEVC reference software [GIT24c]. The 

reference software offers different applications, but during this study, only the 

TAppDecoder and the libraries communicating with it are updated. 

The parser exclusively extracts the I-frame and save the residual syntax elements, which 

are composed of the luma and chroma residuals. These residuals represent the difference 

or error between predicted and actual pixel values in a compressed video, highlighting 
changes in brightness and color that are not captured in prediction compression phase.  

Alongside with the Luma and Chroma residuals, the Intra prediction modes are also 

recorded. The obtained information includes the method of prediction (e.g., spatial or 

temporal prediction), its associated prediction parameters, and the prediction error signal 

(referred to as the residual signal). 

For each frame, the parsed syntax elements are collected and grouped by type. Then, the 

syntax elements from all the video frames are collected and stored. The output of the 

parser is recorded in a collection of TXT files to facilitate future use on the extracted syntax 

elements. 

The parser developed in the thesis is available in open source at [GIT24e] and its 
functioning is illustrated by Figure 42, Figure 43 and Figure 44. 

 

Figure 42: Flow of function calls leading to the parser 

 

The Figure 42 illustrates stream syntax elements flow, as implemented in the 

TAppDecoder method. The primary function, TAppDecoder::decode(), serves as 

the initial entry point, followed by TDecTop::decode(), which orchestrates the stream 

decoding operations. To process video slices, TDecSlice::decodeSlice() is 

invoked, wherein the decoding is further refined by TDecCu::decodeCtu(). This 

function processes the Coding Tree Units (CTUs). At this stage, 

TDecCu::extractFingerprint()checks if the CTU type correspond to an I frame, 

as illustrated in Figure 43, then extracts the syntax elements from each CTU, subsequently 
concatenating them into a single output file per frame for each element type. 

In cases where luma and chroma share similar intra prediction modes, HEVC includes the 

DM_CHROMA_IDX flag to facilitate this linkage. However, for more precise intra prediction 
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chroma mode tracing, the chroma modes are associated with their modes rather than 

relying on that flag, as shown in Figure 44, ensuring that the chroma mode predictions are 
as accurate as possible, thus capturing the true characteristics of the video data. 

 

 

Figure 43: Check if the slice is I frame 

 

 

Figure 44: Extraction of intra prediction modes for the Chroma component 
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IV.2. ML-based proof of concepts 

Conventional video fingerprinting methods, operating in uncompressed domain, make 

intensive usage of basic ML solutions like KNN for instance, for clustering descriptors like 
SIFT and SURF, as detailed in Section II.2.  

Consequently, as we expect the compressed domain video fingerprinting to be a more 

complex problem, we shall start our study by considering binary trees, conventionally 
considered as more performant than KNN [HAS18]. 

Decision tree is a non-parametric supervised learning ML model used for classification 

and regression tasks [SCI24]. The prediction process is composed of a sequence of 

comparisons of the input’s features with pre-learned threshold values, as illustrated in 

Figure 45. Starting from the top node commonly referred to as the root node, and going 

downward towards the leaves, in each decision node the result of the comparison 

determines if the input goes left or right in the tree (generally left means that the condition 

was fulfilled, right means otherwise). When the query reaches a leaf (an end node) the 

decision is made. Although decision trees are recognized for their straightforward, 

interpretable nature, they are not without limitations, being prone to overfitting, 
especially if they grow deep without constraints [SCI24]. 

 

 

Figure 45: Binary decision tree principle 

 

IV.2.A. Fingerprint extraction 

As even the basic binary decision tree requires a series of comparisons, the full set of 

syntax elements extracted in Section IV.1 (Y, Cr, Cb, IntraY and IntraC) cannot be directly 

used as fingerprinting. 

To reach a practical feasibility of the ML based fingerprinting, a two-steps preprocessing 

phase is considered. 

First, all zero-value entries are removed from the data representation, thus reducing the 
fingerprint's size and drastically improve processing speed. 

Secondly, the IntraY and IntraC information is skipped, and the Y, Cr, Cb values are 

represented by their statistics. This way, for each frame, and for the Y, Cr, and Cb 
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components, the fingerprinting is presented as the number of non-zero elements, the 

mean, the standard deviation, the minimum and the maximum values. 

When combined, such frame-level fingerprints are concatenated to result in the entire 

video's fingerprint. 

 

IV.2.B. Fingerprint matching 

Building on the foundational principles of decision trees, the method we advance for 

fingerprinting matching leverages multiple binary decision trees to enhance the accuracy 

of the results, as illustrated in Figure 46. 

The matching block is composed of N individual decision trees, where N corresponds to 

the total number of the original videos present in the dataset. Each binary decision tree is 

trained to identify one specific video, making decisions at each node. These decisions 

evaluate each frame fingerprint, directing the data down different branches of the tree 
based on the outcomes (Yes or No) of these evaluations.  

The decision-making criteria at each node are predetermined during the specific tree's 

training phase that involves selecting the important features to be examined and setting 

thresholds for each. As the fingerprint navigates through the paths of a specific tree, it 

reaches the leaf nodes where a final classification is made on whether the query is a near-
duplicate of that particular video or not.  

Such a process is repeated along all the trees, which leads to a list of potential candidates 
to the video. 

 

Figure 46: Binary decision tree-based method presentation 
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IV.2.C. Experimental results 

1. Database specification 

A comprehensive testbed comprising original video sequences and their altered 

duplicates are considered in the experiments. The corpus consists of 865 original video 
sequences of organic video, provided by VIDMIZER.  

Each video sequence length varies between 6 sec. and 65 sec. In the case of longer videos, 

several chunks are extracted without having interlaying frames. For each original video 

sequence, we generate eight near-duplicate sequences through a series of systematic 

transformations. These transformations are designed to simulate common alterations 

that might occur in real-world scenarios as illustrated in Figure 47 and include: 

- Picture-in-Picture (PiP): This involves embedding a smaller version of a different 

video or a logo all along the original video duration, mimicking scenarios where 

additional content is overlaid onto the primary video. 

- Blurring: To simulate the impact of loss of video details, three distinct blurring 

settings are applied. Each setting varies the intensity and spread of the blur effect, 

presenting the degradation that might occur during video transmission or from 

encoding artifacts. 

- Brightness Adjustment: the attack alters the brightness of the video in three 

incremental steps. This transformation tests the fingerprint’s sensitivity to changes 

in illumination and can be considered similar to some social media filters. 

- Text Insertion: Overlaying text onto video frames simulates common modifications 
such as commenting or subtitling. 

Each of these 8 transformations is applied with in conjunction with noise addition and re-

encoding. 

 

Figure 47: Database sample and attacks example; the commercial logo on the right-up corner was blurred in this 
illustration to avoid any potential conflict of interest 
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2. Result illustrations 

The decision tree is based on the scikit-library [SCI24] with the ‘gini’ criterion, a maximal 

depth of D, the minimal number of samples to create a node equal to 2, and weights on the 
two classes to balance the decisions. 

The fingerprinting detection is stated as a binary decision problem. The query extracted 

and formatted from any sequence is successively process by each and every decision tree. 

The dataset is split in training and testing subset, on an 80% - 20% basis. 

The process is illustrated in Figure 48, Figure 49 and Figure 50. Figure 48 illustrates the 

simplest case, namely a single video sequence, solely the Y component and D = 3. Figure 

49 goes one step further in complexity, as it illustrates, for the same video sequence, the 

case in which both luminance and chrominance components are considered, and D = 5. 
Figure 50 resumes the case presented in Figure 49 for D = 10. 

 
Figure 48 Example of the decision tree classification using only Luma syntax element; D = 3. 

 

 
Figure 49: Example of the decision tree classification using Luma and Chroma syntax elements; D = 5. 
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Figure 50: Example of the decision tree classification using Luma and Chroma syntax elements; D = 10. 

 

The quantitative results obtained by computing the mean performances of all decision 

trees on the entire test dataset (original and attacked sequences) are presented in Table 

5. They present the performance metrics of the matching method across different tree 

depths, using either Y component alone or combined Y, Cr, Cb components revealing clear 

patterns in Accuracy, Precision, Recall, F1 score, probability of false alarm (Pfa), and 

probability of missed detection (Pmd) as the depth of the tree increases. 

 

Table 5: Result for the decision tree matching method 

 Depth Accuracy Precision Recall F1 score Pfa Pmd 

Y 3 0.82 0.99 0.82 0.90 0.17 1.9e-04 
5 0.87 0.99 0.87 0.93 0.12 1.9e-04 
10 0.94 0.99 0.94 0.96 0.05 3.7e-04 
15 0.97 0.99 0.97 0.98 0.02 5.7e-04 
20 0.98 0.99 0.98 0.99 0.01 7.7e-04 

Y, Cr, Cb 3 0.88 0.99 0.88 0.93 0.11 1.3e-04 
5 0.92 0.99 0.92 0.95 0.07 1.5e-04 
10 0.96 0.99 0.96 0.98 0.03 2.6e-04 
15 0.98 0.99 0.98 0.98 0.01 3.6e-04 
20 0.98 0.99 0.98 0.99 0.01 4.6e-04 
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For both configurations, as the tree’s depth increases from 3 to 20, a notable improvement 

in the Accuracy, Recall, and F1 score (for a preserved 0.998 value of Precision) has been 
obtained.  

The same variation in D value is also reflected in better error probabilities: Pfa decreases 

from 0.170 to 0.011 in configuration using only the luma residual elements, and from 

0.118 to 0.011 in the configuration using all three syntax elements residual; Pmd remains 
low across all depths.  

However, there are limits when increasing the D value, as it makes the solution more 

sensitive to overfitting [SCI24], especially when the depth exceeds the number of features 
which is 5 for the configuration using only luma, and 15 for the luma and chroma. 

The values in Table 5 also show that both luminance and chrominance information are 

required for fingerprinting applications: integrating both luma (Y) and chroma (Cr, Cb) 

components tends to improve the accuracy of video fingerprinting models, as the increase 

of the number and of the diversity of features allows the construction of a more accurate 

model and a richer set of information for the model to learn from. 

Note that the results presented in Table 5 are obtained in a highly unbalanced context: 

only 8 elements in the “near-duplicated” class and around 7500 in the complementary 

class and show a significant number of false positives.  

When going deeper into a qualitative evaluation of these false positive, it was pointed out 

that they are mainly brought by content belonging to the same initial sequence (before it 

being chunked in less than 1min) or by content semantically close (yet different) from the 

query, as illustrated in Figure 51. 

 

 

Figure 51: Example of false positives induced by the ML based method. The query sequence (at the left) results in false 
positive belonging to the same content but at different time moments (in the middle) or by visually related contents 

moments (at the right) 
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IV.2.D.  Summary 

The values presented in Table 5 can be considered as a successful PoC for our approach: 

it is thus demonstrated that video fingerprinting can be achieved in compressed domain. 

In other words, it is demonstrated that conventional ML solutions, like binary trees, can 
learn features derived from compressed stream syntax elements.  

However, note that the applicative performances of such solutions are intrinsically limited 
by three inner binary trees mechanisms:  

 the computational limits impose the use of statistics computed over the stream 

syntax elements instead of the stream syntax elements per-se,  

 the depth of the trees that is a priori expected to increase the performances is 

limited by an overfitting side effect, 

 the memory footprint prohibitively grows with the number of video sequences to 

be fingerprinted.  

Hence, when putting these results in the perspective of a practical application, several 

shortcomings are encountered. First, the performances in terms of false positives are close 

to 10% and this is mainly due to frame-level visual similarity. Note that the inherent 

complexity of binary trees makes complicated the use of Intra prediction information. 

Secondly, the approach is inherently bound to binary decisions and is conceptually 
unscalable, at least when imposing a pre-established complexity threshold. 

Consequently, the results presented in this section should be considered just as door open 

towards future investigations that will be presented here-after. 
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IV.3. COMMON 

To overcome the challenges presented in the Section IV.2, the COMMON is introduced 

using DL models to solve the compressed fingerprinting challenge.  

 

IV.3.A. Fingerprint extraction 

While using CNNs such as ResNet and MobileNet, the pre-processing of the input media is 

essential to optimize model performance. Traditional methodologies in the uncompressed 

domains generally manipulate data in the RGB color space, which exhibit uniform 

statistical properties conducive to straightforward processing. In contrast, syntax 

elements within the compressed domain present sparse distributions, predominantly 

characterized by zero-value coefficients as illustrated in Section IV.1.A. Thus, the standard 

image resizing techniques such as Nearest Neighbor, Bicubic, and Bilinear interpolations 

are not suitable for the data extracted in the compressed domain as they would amplify 
the sparsity, complicating the feature matching process. 

In order to better accommodate the data characteristics of compressed video streams, a 

different resizing strategy is used to conduct this study, based on the method proposed by 

[GAR16]. A sorting algorithm that prioritizes elements according to the magnitude of their 

luma coefficients is implemented. This process involves sorting the frame elements in 

descending order based on their absolute values and extracting the top N coefficients. This 

method preserves the most significant data points that contribute to the overall video 
content definition as illustrated in Figure 52 and Figure 53. 

Furthermore, for chroma residual elements and intra prediction modes, the selection is 

directly tied to their corresponding luma positions. Specifically, chroma and intra 

prediction elements located at the same spatial coordinates as the top N luma coefficients 

are also selected, regardless of their individual values. This ensures that the chroma and 

intra predictions are consistent with the significant luma elements, preserving the 
integrity of the video's color and texture information. 

 

Figure 52: RGB color space resizing algorithms 

 

Figure 53: Residual elements resizing algorithms 
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This strategy is applied to the Y components, and the related Cr, Cb and prediction 

components are selected so as to represent the fingerprint. 

 

IV.3.B. Fingerprint matching 

In our study, we consider a DL structure composed a backbone and three additional layers, 

as illustrated in Figure 54. 

Candidate models for the backbone components are the widest used convolutional Neural 

Network (CNN), namely the ResNet family [HE16] (ResNet18, ResNet50, ResNet101) and 

MobileNetV3small [HOW19]. Note that following our initial objective of reducing the end-

to-end fingerprinting complexity, we avoid more sophisticated classification solutions, 

like transforms, for instance. 

As usual in classification applications, a dense classification layer is positioned at the 

output (denoted by O3 in Figure 54), to map the previously obtained features to the final 

output classes. This backbone should be completed by additional layers meant to solve the 

two previous identified issues. 

 

Figure 54: DL-based fingerprinting model: 1 input and 2 output layers (in green) are considered around the backbone 
and the final Classifier layer (in blue). 

 

On the one hand, prior to the backbone, an input pre-processing layer, denoted by I1, is 

added. I1 is dense and is expected to serve for the weighting of the heterogeneous 

information included in the fingerprint (Y, Cr, Cb, and their corresponding intra prediction 

modes) to be learned. Note that in uncompressed domain fingerprinting, such a layer is 

not required, as the backbone is already designed for weighting the RGB components of a 
pixel. 

On the other hand, two post-processing layers (denoted by O1 and O2 in Figure 54), are 

included in the model. O1 and O2 are both dense, with dropout rates of 25% and 50%, 

respectively. These two layers are added for two complementary reasons. First, as the 

backbone is fed with a combination of compressed stream syntax elements, its task is 

more complex to be learned than the conventional (pixel) classification task for which it 

was designed. Secondly, the fingerprint matching task should find the balance between 

the uniqueness and robustness properties, that translates on a trade-off between correctly 

retrieving near-duplicated contents and avoiding semantically related yet different 

contents. 
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IV.3.C. Experiment results 

1. Database specification 

Uncompressed domain video fingerprinting solutions benefit from already available 

databases. Specifically, conventional methods can be benchmarked on challenge 

databases (e.g. TRECVID) while deep-learning solutions on general purposes computer 

vision datasets, e.g. YLI-MED [BER15] or Youtube-8M [ABU16]. However, such databases 

cannot be considered in our study, as they are either already encoded with legacy 

encoders (like MPEG-2 or MPEG-4 AVC) or presented as tensors obtained from some 

specific key-frames. Consequently, our experimental study starts by organizing the 

reference content to be processed, and to this end, we shall consider two complementary 
databases.  

The UVG database [LIU13] is available in raw format. In the present study, it is encoded by 

the VideoLAN implementation of HEVC [VID24]. UVG is composed of 16 natural 

3840x2160 video sequences, with variable lengths ranging from 2.5 to 12 sec. The 

encoding process provides an average of 3.2 I frame per video (min. 2, max. 12). A total of 

4983 frames is generated from this dataset. Note that UVG is designed as a generic end-

to-end video encoding benchmarking database, with no direct relevance for the organic 

video applications. The organic video content is represented in our study by home-made 

database, referred to as VID and composed of 164 video excerpts, 1920x1080, from 

advertising content provided by an industrial company. This content was edited so as to 

not include duplicated/reused content in different sequences. VID sequences durations 

range from 5 to 180 sec. and they contain an average of 6.5 I frame per video (min. 1, max. 
41). A total of 117769 frames are included in this dataset.  

These two reference databases are subsequently subjected to a set of 10 different near-

duplicated transformations, as follows. Firstly, 5 luminance/colorimetry modifications are 

applied: brightness, contrast, Gamma, hue, and saturation modifications. For each 

individual type of modification, 10 different relative increasing/decreasing parameters of 

maximum 33% are considered. Secondly, 3 types of video editing operations are 

performed, namely insert logo (image size equals to 200x500 pixels, randomly placed in 

the frame), insert subtitle, and central zoom (by 10 values between 10% and 30%). Finally, 

two video encoding modifications are considered, namely CRF (Constant Rate Factor) and 

QP (Quantizing Parameter) changes. The former was applied 10 times, with parameters 
ranging between 20 and 40, while the latter by 10 values ranging from 8 to 35. 

 

2. Experimental setup 

The experiments are performed on in-premises servers, with Xeon E5 E5-1650 v3 @ 

3.50GHz, 4 threads CPU, 32 GB of RAM and GeForce 1080Ti GPU. 



Video tracking for marketing applications 

93 

The NN models are implemented in Python 3.9 using the TensorFlow v2.10.0 framework. 

For the backbone, we use ResNet50, ResNet101 and MobileNetV3small proposed by Keras 
[KER24] while ResNet18 implementation is available in [GIT24d]. 

The complete set of experiments is composed of 120 configurations: 2 databases (UVG, 

VID), 4 backbones (ResNet18, 50 and 101, MobileNetV3small), 3 fingerprinting sizes 

(32x32, 64x64, and 128x128) and 5 NN configurations.  

ResNet models have been trained for 100 epochs, with a batch size of 64. The initial 

learning rate is set to 0.1 and kept unchanged during the first 10 epochs; then, an 

exponential relative decay of 0.15 each three epochs is considered. The training dataset is 

composed of 80% of the dataset. For each content in the training dataset, a Monte Carlo 

simulated version of the near duplicated modification is also considered. The validation is 

achieved by considering 20% of the database (without any Monte Carlo simulation). The 

same strategy is applied for MobileNet: in this case, if the results are not stable, 50 more 
epochs are added. 

5 configurations are considered during evaluation: Baseline (Backbone and O3), End-to-

End (I1, backbone, O1, O2, O3) and three intermediate models obtained by combining a 

subset of the elements presented in Figure 54, namely (1) B-01 standing for the 

combination of the Backbone and the O1 dense layer, (2) B-O1-O2 standing for the 

combination of the Backbone and the O1 and O2 dense layers and (3) I-B-O1, standing for 
the combination of the I, Backbone and the O1 dense layer. 

 

3. Result illustrations 

The intermediate results are presented in Figure 55 – Figure 62 while a global view on the 

performances is provided by Table 6 and Table 7. 

 

Experiment #1: Syntax element choice  

Figure 55 displays the convergence of an End-to-End Resnet50 model trained with 

different combinations of input data on a 64x64 fingerprinting size for the VID dataset. It 

shows the training loss and the validation accuracy curves for three distinct data input 
variations.  

The orange curve represents the model using only the luma residual elements (Y), 

achieving a maximum validation Accuracy of 0.55. The yellow curve, representing the 

model that utilizes both luma and chroma residual elements (Y, Cr, Cb), shows an 

improvement compared to the first model with the best Accuracy reaching 0.805.  

The green curve indicates the model that includes all five extracted syntax elements (Y, Cr, 

Cb, IntraY, IntraC), demonstrating the quickest improvement in learning and the highest 
Accuracy, topping out at 0.897. 



Mohamed Allouche 

94 

These results show that the combination of Luma and Chrome information, both as 

residuals and prediction modes is necessary when targeting convenient applicative 
performances. 

 

Figure 55: Syntax element selection Resnet50 (64x64) 

 

The results presented in Figure 55 demonstrate that incorporating a larger set of syntax 

elements enhances the overall performance of the fingerprint matching. The model that 

integrates all five syntax elements outperforms the others, achieving the highest 

validation accuracy of 89.7%. So based on these results, the inclusion of all five syntax 

elements will be adopted for the following experiments. Note that results similar to those 

presented in Figure 55 are obtained for all the 4 investigated backbones. 

 

Experiment #2: Model composition and convergency 

The experimental results are presented in Figure 56 and Figure 57. These two figures are 

structured the same way. The abscissa corresponds to the number of training epochs, the 

left ordinate to the value of the training loss function while the right ordinate to the 

Accuracy, Prec and Rec values (between 0 and 1). Figure 56 and Figure 57 consider the 

largest fingerprinting size studied in our experiments (namely 128x128) and cover all the 

5 variations for the DL model introduced in Section IV.3.B, namely Baseline, End-to-End, 

as well as the intermediate B-01, B-O1-O2 and I-B-O1. Note that only the cases of Resnet18 

and MobileNet as component of the Backbone are illustrated in these figures, yet similar 
results are obtained for the other backbone components. 

Figure 56 and Figure 57 show the training loss and the validation accuracy, precision and 

recall for the VID and UVG databases, respectively. The visual analysis of the results thus 

presented brings forth that although the same convergence value tends to be reached, this 
process is faster and smoother for Resnet18.  

When MobileNet is considered, an interesting behavior, contradicting a rule of thumb in 

DL applied to pixel domain, is identified: although the UVG dataset has less classes than 

VID, a backbone based on MobileNet provides worst classification performances for UVG. 

Two explanations can be provided. On the one hand, UVG classification case is easier, but 
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the training dataset is also smaller than in the VID case. On the other hand, this result may 

be linked to the difference in the very nature of the processed data, that are now stream 
syntax elements and no longer pixels.  
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Figure 56: Experimental study on the DL solution components, VID dataset, 128x128 fingerprints 
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Figure 57: Experimental study on the DL solution components, UVG dataset, 128x128 fingerprints 
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Experiment #3: The impact of the fingerprint size 

The impact of the fingerprint size in the quantitative results is illustrated in Figure 58 and 
Figure 59, that correspond to the VID and UVG databases, respectively.  

These figures are organized the same way as Figure 56 and Figure 57 and consider 

Resnet18 as backbone, and two models, namely Baseline and End-to-End. Two fingerprint 

sizes are considered, namely 32x32, 64x64, as the cases of 128x128 fingerprints are 

already illustrated in Figure 56 and Figure 57.  

The numerical values show that the less performant solution correspond to 32x32 

fingerprints, thus reaching an a priori expectation: the more information about the video 
content we process, the better the performances.  

However, the same expectation is not validated when comparing the results obtained in 

the cases of 64x64 and 128x128 fingerprints. Here again, two different explanations can 
be provided.  

On the one hand, a limitation in database size might be invoked and considered that the 

DL classifier is not completely trained for 128x128 fingerprints; however, the shapes of 

the training curves do not support such an explanation. 

On the other hand, a deeper analysis of the stream syntax elements show that they contain 

lot of uniform values (0, 1 or 2), and increasing the fingerprint size from 64x64 to 128x128 

does not bring discriminant information for the classifier. 

 

Experiment #4: Distribution of errors in fingerprint classification 

Our analysis went deeper into detail and investigated the repartition of the errors over the 

video fingerprinting sequences. To this end, we illustrate the confusion matrices in Figure 
60, Figure 61, and Figure 62.  

Figure 60 and Figure 61 correspond to the VID database, End-to-End configuration, 32x32 

fingerprints, and with two different backbones, namely Resnet18 and MobileNet, 

respectively. In these two figures, the video sequences to be fingerprinted are ordered 

according to their content creator (clients of VIDMIZER, that are anonymized in this study) 

and implicitly, to the type of content that is imposed the Creative Direction of that content 

creator. This ordering is represented by horizontal and vertical lines, creating some virtual 

super-classes, containing visually related content. 

However, the visual inspection of Figure 60 and Figure 61 shows that although the 

distribution of the errors cannot be considered as uniform, it cannot be considered as 

related to the video content either. This demonstrates that the visual redundancy has been 

eliminated from the complex stream syntax elements (at least from conventional DL 

classifiers points of view) and that the fingerprinting matching is achieving by learning 
the very syntax elements values.  

Figure 62 represents the same investigation, carried out on the UVG database. As this 

database contains by design visually unrelated contents, the idea of super-classes no 
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longer make sense. Yet, it can be again noticed that the error, although non uniformly 

distributed, do not show any clear clustering tendency. 

 

 

Figure 58: The impact of the fingerprint size in the performances, illustrated for the End-to-End (at the left) and 
Backbone (at the right), for the VID dataset 

  

 

 

Figure 59: The impact of the fingerprint size in the performances, illustrated for the End-to-End (at the left) and 
Backbone (at the right), for the UVG dataset  
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Figure 60: Confusion matrix, End-to-End model with Resnet18 as backbone, 32x32 fingerprint, VID dataset 
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Figure 61: Confusion matrix, End-to-End model with MobileNet as backbone, 32x32 fingerprint, VID dataset 

    

Figure 62: Confusion matrix, End-to-End model, 32x32 fingerprint, UVG dataset; Resnet18 as backbone (left) vs. 
MobileNet as backbone (right)  
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Experiment #5: Synoptic view on the quantitative results  

After incrementally studying the DL compressed-domain fingerprinting throughout the 

previous 4 experiments, the complete set quantitative results will be synoptically 

presented now in Table 6 and Table 7. 

Table 6 focusses on Resnet18 and MobileNet, and investigates the Accuracy (Acc), 

Precision (Prec) and Recall (Rec), by presenting the corresponding values multiplied by 

100. The columns are grouped in three areas, according to the three investigated 

fingerprinting sizes. The rows are organized at three recursive levels: firstly, according to 

the two databases (UVG and VID), then to the backbone component (ResNet18 or 
MobileNet), and finally according to the 5 above-mentioned model configurations.  

The values reported in Table 6 demonstrates the practical effectiveness of DL-based 
video fingerprinting by using only data extracted from the compressed domain. 

When Resnet18 is included in the backbone, Acc values for the UVG database are higher 

than 0.9, irrespective to the model. Two exceptions are encountered, namely 64x64 

fingerprints and B - I1 configuration (that is, when removing the O1 and O2 layers), and 

for 128x128 fingerprints and B - I1 - O2 configuration (that is, when removing the O1 

layer). It can also be noticed that the Prec and Rec values are well balanced, with average 

relative differences lower than 3%. When considering the VID database, the same general 

trend is followed, yet the configurations resulting in Acc values lower than 0.9 are 

different. In its turn, when included as backbone, MobileNet results in Acc values larger 

than 0.8 for the UVG database while featuring some values as low as 0.567 in the case of 

VID database.  

Table 6 also provides information about the usefulness of the I1, O1 and O2 layers added 

over the Baseline model. When considering the Resnet18 as backbone component and the 

UVG database, the baseline model is always outperformed by a configuration including at 

least one additional layer. This is not the case for the VID database where the baseline is 

the better solutions for 32x32 and 128x128 fingerprints, while being outperformed by the 

configuration including O1 and O2 in the case of 64x64 fingerprint. Also notice that the 

End-to-End configuration is never the better choice. When considering MobileNet as 

backbone, the conclusions change: the End-to-End is the best solution, with a singular 

exception: the 64x64 fingerprint and the UVG dataset, when it is outperformed by 0.5% 

by the B, I1, O2 configuration. 

When comparing the results obtained on the VID dataset to the ones obtained on the UVG 

dataset, we would have expected better results on UVG, as it is a priori simpler, covering 

only 16 reference sequences. This result is confirmed for the End-to-End configuration 

but not for all the other four investigated configurations, as already pointed out in 
Experiment #2.  

As a final remark related to the values in Table 6, we would have expected to notice a 

significant impact of the size of the fingerprint in the Acc: intuitively, the larger the size of 

the fingerprint the better the Acc. However, the results show that such a tendency is not 

always confirmed, as already pointed out in Experiment #3.  
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Table 6: Accuracy (Acc.), Precision (Pre.), and Recall (Rec.) according to the fingerprinting size, database, and model 
configuration; the numerical values are multiplied by 100. 

 32x32  64x64  128x128 
Acc. Prec. Rec.  Acc. Prec. Rec.  Acc. Prec. Rec. 

U
V

G
 R
es
N
et
1
8

 Baseline (B) 91.2 92.2 90.6  95.9 96 95.7  96.1 96.2 95.9 
B, O1, O2 93 93.5 92.7  98 98.1 97.9  98.2 98.5 97.9 
B, I1 95.7 95.9 95.4  88.2 88.5 87.9  96.3 96.4 96.1 
B, I1, O2 92.8 93.1 92.4  96.6 96.8 96.4  83.9 94.5 60.8 
End-to-End  94.2 94.8 93.7  97 97 96.8  97.7 98.2 97.4 

M
o
b
il
eN

et
 Baseline (B) 81 81.5 80.2  87.1 87.1 86.8  86.4 86.7 86.2 

B, O1, O2 80 81.9 79.5  85.3 86.5 85.1  91.3 91.3 91.3 
B, I1 85.4 86.6 84.9  87 87.4 86.7  88.8 88.6 89.1 
B, I1, O2 85.4 86.6 84.9  91.5 92.2 91.2  89.9 92.5 89.1 
End-to-End  87 88.5 84.2  91 91.6 90.8  95.2 95.3 94.5 

V
ID

 R
es
N
et
1
8

 Baseline (B) 94 96 93.1  94.6 96.3 89.6  95.3 97 94.6 
B, O1, O2 93.7 95.8 92.7  95.8 98.9 95  92.9 97.9 92.1 
B, I1 90.7 93.4 89.8  90.9 93.8 89.6  91.2 93.7 90.2 
B, I1, O2 88.3 91.5 87.4  94.3 96.5 93.4  92.7 95.9 91.8 
End-to-End  88.7 91.2 87.6  91.4 94.2 90.2  92.2 94.9 91.3 

M
o
b
il
eN

et
 Baseline (B) 59.4 66.8 55.2  88.1 90.8 86.9  90.3 92.2 89.3 

B, O1, O2 60.3 75.6 52.9  86.9 90.2 85.3  82.5 86.9 81.3 
B, I1 68.9 76.3 65.7  89.3 91.5 88.3  91.9 93.8 91.1 
B, I1, O2 56.3 71.1 48.9  90.9 92.9 90  91.9 94 91 
End-to-End  86.6 93.7 83  91.8 94.2 91  94.2 96.2 93.3 

 

Table 7 complements the detailed information provided in Table 6 with a global 

information about the cases in which different components are considered in backbone, 

namely Resnet50 and Resnet101. Table 7 presents the Acc, Prec and Rec values multiplied 

by 100, corresponding to the End-to-End case. The results show that the global trend 

brought forth by the values in Table 6 is kept for the new backbone components. However, 

Table 7 also shows that the claim of Resnet architecture being robust against degradation 

[HE16] seems false in the compressed domain, as Resnet50 and Resnet101 are always 

outperform either by ResNet18 or by MobileNet. The impact of the fingerprinting size in 

the Acc value is now confirmed for the ResNet18 and MobileNet, while being contradicted 
by Resnet50 and Resnet101. 

Table 7: Accuracy (Acc.), Precision (Pre.), and Recall (Rec.) according to the fingerprinting size, database, the End-to-
End configurations and with different backbone components; the numerical values are multiplied by 100 

 32x32  64x64  128x128 
Acc. Prec. Rec.  Acc. Prec. Rec.  Acc. Prec. Rec. 

U
V

G
 Resnet18 94.2 94.8 93.7  97 97 96.8  97.7 98.2 97.4 

Resnet50 81.5 87.8 80.2  87.4 89 87.2  93.2 93.5 92.5 
Resnet101 87.1 88.8 86.6  91.8 92.6 91.7  85.4 88.1 84 
MobileNet 87 88.5 84.2  91 91.6 90.8  95.2 95.3 94.5 

V
ID

 

Resnet18 88.7 91.2 87.6  91.4 94.2 90.2  92.2 94.9 91.3 
Resnet50 87.1 90.2 86  88.7 91.1 87.7  86.3 88.7 85.4 
Resnet101 74.5 80.1 72.4  88.3 90.7 87.5  84.6 87.8 83.3 
MobileNet 86.6 93.7 83  91.8 94.2 91  94.2 96.2 93.3 
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IV.4. COMMON at work 

To the best of our knowledge, Section IV.3 COMMON introduced and discussed the first 

DL-based solution for video fingerprint based on stream syntax elements. The 

experimental results presented in Table 6 and Table 7 demonstrate its effectiveness for 

both industry relevant and scientific databases. 

We shall go one step further toward the COMMON practical usage, by investigating three 

applicative issues, namely the robustness against video reencoding in Section IV.4.A, the 

possibility of extending on-the-fly the database in Section IV.4.B, and the possibility of 

applying day-by-day modifications on the trained model without affecting its 
performances in Section IV.4.C. 

 

IV.4.A. Video encoder dependency 

The main question raised by any compressed domain processing solution relates to the 

dependency of the results with respect to the codec choice. In other words, while the 

results presented in the previous section relate to the HEVC video codec, what happens if 

the video sequence is encoded in MPEG-4 AVC or in VVC? 

Of course, all stream syntax elements intrinsically depend on the coding technology and 

trying the extract the fingerprinting directly from new type of stream would be both a 

conceptual and technological nonsense. 

Hence, changing the video encoding format will be considered as an additional type of 

attack. The COMMON robustness against it is evaluated after a reencoding the attacked 

sequences back into the HEVC format and the results are presented in Table 8, for the VID 

database, and an End-to-End configuration backboned by Resnet18 and 64x64 
fingerprints.  

Table 7 shows that the initial (prior to reencoding in MPEG-4 AVC / VVC) performances 

were of 91.4, 94.2, and 90.2 in terms of Accuracy, Precision, and Recall, respectively.  

Hence, Table 8 shows that changing the video codec to MPEG-4 AVC does not result in 

decrease in the performances, the Accuracy being even increase by 0.06. Yet, variations in 

performances are encountered for the VVC encoder, that results in values of 0.84, 0.87 and 

0.82 in terms of Accuracy, Precision, and Recall, respectively.  

After this experimental validation, our study went one step further and also considered 

two video codecs developed outside ISO and ITU communities, namely vp9 [MUK13] and 

av1 [CHE18]. For these two cases, the applicative performances are more severely 

impacted, with the Accuracy values going down to 0.67 and 0.77, respectively. Yet, note 

that in this situation also corresponds to severe modifications in the quality of the original 
content, subjected to two successive lossy encoding operations.  
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Table 8: Accuracy, Precision, and Recall, after encoding HEVC data test in AVC (first line) and VVC (second line); the 
detection is preceded by an HEVC reencoding.  

 
Accuracy Precision Recall 

HEVC->AVC->HEVC 0.92 0.95 0.91 

HEVC->VVC->HEVC 0.84 0.87 0.82 

HEVC->vp9->HEVC 0.67 0.72 0.65 

HEVC->av1->HEVC 0.77 0.80 0.76 

 

IV.4.B. Database extensibility 

The behavior of the COMMON method when the database is expected to be dynamically 

updated is now to be studied. 

 

Experiment #1: Training from scratch with a larger classifier 

The naî ve approach would be to train from scratch, either by considering a unique model 

with a larger number of classes or by splitting the dataset into sub-sets of a fixed number 

of elements and creating different models for each subset.  

For instance, consider the VID database and the case in which the database is expended 

by about 10% (e.g. 16 additional video sequences are supposed to be added to the 

database). We consider the best configuration identified by the experiments in the Section 

IV.3.C, namely Resnet18, B-O1-O2-O3 and 64x64 fingerprinting. As the number of classes 

is now enlarged, we must change the O3 accordingly (this is the layer of classification, and 

it should have the same size as the number of classes). The results obtained when 

retraining the model are illustrated in Figure 63 (that is organized the same way as Figure 

56):  Accuracy = 0.93, Precision = 0.96 and Recall = 0.92 are thus obtained. When 

comparing these values to the results presented in Table 6, we can state the COMMON 

methodology is stable with respect to small variations (about 10%) in class number. 

 

 

 

Figure 63: Increasing the database by 10%: illustrations for VID database, Resnet18, B-O1-O2-O3, 64x64 fingerprints 
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Of course, as such an approach requires a consequent training time, and is not suitable for 

adding on-the-fly new sequences to the database. Hence, we studied the possibility of 

extending the number of classes with a minimal extra training effort. Consequently, fine 

tuning solutions are looked for in the next experiments. 

 

Experiment #2: Fine-tuning 

Be there the VID dataset, and we consider as basis the best configuration brought forth 

Table 6, namely Resnet18, B-O1-O2-O3 and 64x64 fingerprints, resulting in Accuracy = 

0.93, Precision = 0.96, and Recall = 0.9302. 

We load the pre-trained COMMON model, and we create a new dense layer to replace O3. 

The new dense have the same weights and bias for the first N outputs (already existing in 

the initial dataset) and initializes the M new ones (M = N/10) with random values.  

On this basis, three fine-tuning strategies are followed, as illustrated in Figure 64 and 

detailed in Experiments 2.a, 2.b and 2.c here after. The experimental results are presented 

in Table 9. 

 

Figure 64: Increasing the database by 10%: fine-tuning strategies detailed in Experiments 2.a, 2.b, and 2.c. The 
elements frozen or trained are represented by the snowflake and processing symbols, respectively. 

 

Experiment #2.a: Fine-tuning the complete O3 layer 

In this experiment, the backbone and the O1 and O2 layers are frozen, while the O3 layer 

is completely fined tuned.  

The model is trained for extra 20 epochs, alternatively on all (new and old) or on new data. 



Video tracking for marketing applications 

107 

A learning rate equal to 1/10 of the learning rate used to train the initial model is 

considered when processing the global dataset; when processing only the new dataset, 
the learning rate equals 1/100 of the initial learning rate. 

The validation is alternatively done, this time on the old or on the new data. 

The experimental results corresponding to the 4 investigated configuration (2 possible 

training datasets and 2 possible testing datasets) are presented in the first three lines in 

Table 9. 

 

Experiment #2.b: Fine-tuning the new elements in the O3 layer 

In this experiment, the backbone, the O1 and O2 layers, as well as the elements (weights 

and biases) corresponding to the initial N classes in O3 are frozen, while M new elements 
(weights and biases) in the O3 layer are fined tuned.  

The same learning and testing strategy as in Experiment #2.a are considered.  

The experimental results are presented in the lines 4,5 and 6 in Table 9. 

 

Experiment #2.c: Fine-tuning the three output layers O1, O2 and O3 

In this experiment, all the three output layers O1, O2 and O3 are finetuned, while the 

backbone is frozen.  

The same learning and testing strategy as in Experiment #2.a are considered.  

The experimental results are presented in the lines 7, 8 and 9 in Table 9. 

 

Table 9: Increasing the database by 10%: fine-tuning for VID datasets, Resnet18, B-O1-O2-O3 and 64x64 fingerprints. 
The fine tuning strategies are illustrated in Figure 64. 

 Metric All the data training New data only training 
Old Dataset New Classes Old Dataset New Classes 

Experiment #2.a 
finetune: O3 

Accuracy 0.93 0.64 0.51 0.86 
Precision 0.96 0.71 0.55 0.91 
Recall 0.91 0.55 0.49 0.80 

Experiment #2.b 
finetune: new 
weights in O3 

Accuracy 0.92 0.60 0.91 0.42 
Precision 0.96 0.64 0.94 0.46 
Recall 0.91 0.50 0.90 0.38 

Experiment #2.c 
Finetune: 

O1+O2+O3 

Accuracy 0.93 0.88 0.56 0.57 
Precision 0.96 0.92 0.71 0.83 
Recall 0.92 0.85 0.48 0.31 

 

Table 9 shows the performances and the limitations when trying to extend the video 

fingerprinting database without a complete learning process, as the one illustrated in 

Figure 64, for instance. 

It is thus established that these three finetuning strategies are complementary.  
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The first finetuning strategy (cf. Experiment 2.a), in line with current-day finetuning 

approaches, cannot serve our purposes: either the model still recognizes the old classes 

but does not succeed in learning the new ones or, on the contrarily, learns the new ones 

while forgetting the old ones.  

The second finetuning strategy (cf. Experiment 2.b) is designed in this study and preserves 

the performances on the old data classes (even when trained only on the new data), yet 
remains limited on the performances on the new classes.  

The third finetuning strategy (cf. Experiment 2.c) is also designed in this study and seems 

the most performant one: when applied on all dataset, it preserves the performances on 

the old data classes while learning quite convenient the new ones: for the new M classes, 

Accuracy, Precision and Recall values of 0.88, 0.92, and 0.85 are obtained, respectively. 

However, note that compressed-domain finetuning is more restrictive than state of the art 

finetuning: our application requires both the new and the old datasets to be processed 

during finetuning. Yet, we can still speak about finetuning, as the most complex training 

operation (the DL classifier) is frozen. 

 

IV.4.C. Fingerprinting model stability 

The last years testified not only a raise in the usage of DL solutions but, at the same, time 

a trend towards various post-training modifications made over DL models. For instance, 

model pruning and parameter quantization are today operations likely to occur during the 

usage of any trained model. Consequently, we shall study now how COMMON behaves 

when the trained fingerprinting models are subjected to such modifications. 

Pruning involves identifying and removing redundant components (e.g., weights, neurons, 

or layers) from a neural network. By redundant component it is understood component 
whose removal has little to no significant impact on the model’s performance [TEN24].  

Pruning has as objective to get to smaller, faster, and less memory-intensive models, 

efficient and deployable even in resource-constrained environments.  

The same objective is also target by the model quantizing, defined as process of converting 

the model weights representation to reduced precision data types as 16 bit floats (suitable 
for GPU acceleration) or 8 bit integers (suitable for CPU execution) [GHO21, TEN24]. 

In our experiments, a weighted, magnitude-base pruning is applied, on a layer-based 

approach. Two thresholds are considered, namely 50% and 80%. The quantizing is 

applied in one of the extreme cases, namely post-pruning weights dynamic reduction to 

int8.  

The experimental results are presented in Table 10 and Table 11. 

Table 10 investigates the pruning and quantization effects on the Accuracy of DL-based 

compressed domain fingerprinting, on VID database and 64x64 fingerprints. The four 

backbone candidates are successively considered, namely MobileNet, Resnet18, Resnet50 

and Resnet101. The values reported in Table 10 show that Resnet18 is the only backbone 
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featuring a quite stable behavior against pruning and quantizing, with minor decreases in 

Accuracy. On the contrary, when considering MobileNet, Resnet50 or Resnet101 as 
backbones, the Accuracy performances are destroyed. 

 

Table 10: Pruning and quantization effects on the Accuracy of DL-based compressed domain fingerprinting, on VID 
database and 64x64 fingerprints. 

 COMMON Pruned 
(50%) 

Pruned (50) & 
Quantized (int8) 

Pruned 
(80%) 

Pruned (80) & 
Quantized (int8) 

MobileNet 0.85 0.79 0.78 0.57 0.57 
Resnet18 0.93 0.93 0.90 0.90 0.89 
Resnet50 0.87 0.83 0.82 0.22 0.21 

Resnet101 0.83 0.82 0.82 0.33 0.31 

 

Table 11 investigates the pruning and quantization effects on the pruning and quantization effects 

on the size (in MB) of the DL-based compressed domain fingerprinting model, when save on a 

memory support. The experimental configuration considers the VID database, 64x64 fingerprints, 

and TensorFlow. The values reported in Table 11 show an overall gain in storage footprint by a 

factor of 4, irrespective of the model considered in the backbone and of the pruning parameter. 

This factor 4, that can be explained by a quantizing from 32 bits floating point values 8 bit integers, 

rather shows a limitation of the DL frameworks in data management, than a result related to 

COMMON. 

 

Table 11: Pruning and quantization effects on the size (in MB) of the DL-based compressed domain fingerprinting 
model when save on a memory support (VID database, 64x64 fingerprints, TensorFlow). 

 COMMON Pruned (50%) & 
Quantized (int8) 

Pruned (80%) & 
Quantized (int8) 

MobileNet 24.08 6.12 6.12 
Resnet18 47.45 11.90 11.90 
Resnet50 156.43 39.50 39.50 
Resnet101 229.47 58.14 58.14 
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IV.5. Summary 

The present Section presents a first of its kind, comprehensive study on the possibility of 

fingerprinting video content based on compressed stream syntax elements. The 

illustrations correspond to the HEVC standard while MPEG-4 AVC and VVC stand as 

validation criteria. 

The study is two folded and encompasses an ML-based proof of concepts and a DL-based 
functional solution.  

While the advantages and limitations of each of these two approaches are discussed in 

respective sections, we would like to emphasize here one additional feature of such an 

approach. 

Conventional fingerprint methods usually take place in 2 times: offline phase or 

initialization phase that consist of create the reference fingerprinting database, and an 

online phase where the system is running, and a new query video retrieval process is 

initiated [GAR16]. For the model well-functioning, the reference database should be easily 

and effectively accessible which can present a challenge as the system get bigger.  

For instance, the complete VID dataset (original and near-duplicated content) sums up to 

135 GB, while the underlying fingerprint sizes are presented in Table 12. 

Table 12: Fingerprint and storage management 

Fingerprint size Disk size (GB) Compressed size/zip file (GB) 
32x32 4.95 0.49 
64x64 18.43 1.56 
128x128 72.33 5.01 

 

For NN based matching algorithms, the reference database is not required while deploying 

the system. The only required data is the COMMON model weights which are generally 

more compact than the entire database. For instance, the End-to-End COMMON model 

backboned by Resnet18 accounts, prior to pruning and quantizing, 47MB and this size can 
be reduced by a factor 4 by pruning and quantizing, cf. Table 11.  

It can thus be ascertained that the DL-based solution we advance reduces the storage 

footprint requirements by factors between 10 (when considering 32x32 fingerprints and 

in absence of pruning and quantizing) and 400 (when considering 128x128 fingerprints 

and in presence of pruning and quantizing). 

This experimental result demonstrates that the coupling of compressed-domain 

fingerprint to DL not only increases the processing speed but also reduces the storage 

requirements. Note that this benefic property was obtained as the structure we designed 

(cf. Figure 54) considers conventional DL classifiers and the need for complex structures 
(e.g. transformers) has not been identified.  
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Chapter V. Blockchain-

fingerprinting applicative 

synergies 
 

 

This section presents the mutual benefits obtained when coupling blockchain and 

fingerprinting solutions. 
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V.1. BIDDING presentation 

While the previous Chapter III On-chain / off-chain processing and Chapter IV Compressed 

domain video fingerprinting delt with the possibility of virtually extending the 

computation and storage of blockchains as well as achieving compressed-domain video 

fingerprinting, the present Chapter establishes functional synergies between them. 

The solution advanced in the thesis is represented by an end-to-end processing pipeline, 

further referred to as BIDDING – BlockchaIn-baseD viDeo fINgerprintinG. 

BIDDING is conceptually illustrated in Figure 65, while its functioning is illustrated as a 

sequence diagram in Figure 66 and detailed here-after. 

 

Figure 65: BIDDING workflow distribution 

 

According to in Figure 65, when the user wants to check the uniqueness of a digital 

document, the fingerprint computation is launched through the graphic interface. Then, a 

transaction to the Smart Contract address precising the entry point and passing the 

fingerprint as an argument is made. As soon as the Smart Contract is triggered, it blocks 

the access of other users to avoid conflicts and avoid any potential security issues. When 

the block containing that transaction is processed and validated (e.g., by the miner or 

baker), the user receives the transaction receipt containing its details and the connector 

receives a notification event that is subscribed to. The connector fetches the user’s request 

and forwards it to the Python script where the document fingerprint is compared with all 

previous fingerprints processed by the system, and then returns the matching process 

results to the connector. At this stage, the connector uses a moderator account to make a 

transaction to the Smart Contract with the results. The Smart Contract authorizes the 
moderator transaction, allowing the user to access again and notify the user via an Event. 

The sequence diagram presented by Figure 66 illustrates the interaction flow between a 

DApp, a blockchain, a Load Manager module as presented in Section III.1 and a 

COMMON model as presented in Section IV.3. It is one of the use cases for video 

authenticity application / decentralized video notary system where a user can upload a 
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video, check whether it presents an original work or not. Here’s a breakdown of the steps 

depicted in the diagram: 

1. regiter_video: the DApp initiates a request to the Load Manager to register 

a new video in the blockchain providing its name and URL. 

2. generate_fingerprint: the off-chain environment extracts the fingerprint 

from the compressed domain generation (N, 64, 64, 5) matrix with N equal to the 

number of I frames in the video sequence and return the result to the Load 

Manager. Note that the blockchain implementation requires the number of I 

frames to be limited at 10. 

3. register_video: before registering the video in the blockchain, the Load 

Manager transforms the fingerprint into Base64 words and apply a lossless 

compression to further optimize the size of the fingerprint yet being reversible. 

The register_video Smart Contract function takes as input the compressed 

video fingerprint, the video name and URL. Before validating the transaction, the 

blockchain runs a preliminary verification that the URL is not already present in 

this database. 

4. is_video_original: the DApp requests a rigorous check about the video 

authenticity by providing the fingerprint. 

5. check_video_exist: the Load Manager validates that the fingerprint 

provided correspond to the list of known videos and whether the DApp is the 

owner of that video or not as well as if it was already flagged as original content. 

6. match_video: the off-chain COMMON module receives the fingerprint and runs 

the matching DL model to identify potential near-duplicates. 

7. Update_originality: is case of no matches to the video among the known 

sequences for the model, the Load Manager transacts the information to the 

blockchain and inform the DApp of the results. 

 

Figure 66: BIDDING execution sequence diagram 
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V.2. BIDDING deployment 

The BIDDING workflow is alternatively deployed on types of setups, namely server 

oriented or Raspberry Pi oriented, as illustrated in Figure 67. In the two cases, TensorFlow 

frameworks are considered, namely TensorFlow v2.10.0 for server-oriented setups and 

tflite-runtime v2.14.0 for embedded setups. 

 

 

Figure 67: Two alternative BIDDING deployment set-ups: the off-line model might be based on a server or even a 
Raspberry Pi. 

Initialization  

If the node was turned down or run for the first time, it’s initialization can take long time 

so the node gets synchronized with rest of the networks, as illustrated in Figure 68 and 
Figure 69 for Tezos and Ethereum blockchains, respectively. 

We emphasize that the deployment is successful even when considering emended 

computing infrastructure (Raspberry Pi), as illustrated in Figure 70 for the case of Tezos, 
and in Figure 71 and Figure 72 for the case of Ethereum. 

 

Figure 68: Tezos blockchain initialization and synchronization phase; the node is running in a testnet 
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Figure 69: Ethereum blockchain initialization and synchronization phase; the node is running in a private network  

 

 

Figure 70: Raspberry Pi resources consumption during initialization of Tezos testnet 

 

 

Figure 71: Raspberry Pi resource utilization running Ethereum node 
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Figure 72: Register Video Solidity implementation 

 

Deployment 

Once the solution initialized, the Smart Contracts are compiled and deployed, as 

illustrated in Figure 73 and Figure 74 for the Ethereum case. 

Figure 74 also provides detail information about the fees (in ETH) corresponding to the 

deployment (represented into a red box), to registering a new video in the database 

(represented into a green box), and to checking the existence of a query video in the 

database (represented into a blue box). When comparing the values corresponding to 

registering a new video in the database (0.000954 ETH) to the value corresponding to 

checking the existence of a query video (0.000039 ETH), a factor of about 25 is 

encountered. Such a value validates our approach: although blockchain fees related to 

massive data related to video processing are significantly higher (by a factor of 25) than 

conventional transactions, thanks to BIDDING, they are not prohibitive in practice. 

  

Figure 73: Ethereum Smart Contract deployment 
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Figure 74: Snapshot of the Smart Contract history capturing transaction hash (Txn Hash), method invoked, block 
number, transaction initiator (From), recipient (To), Ether value transferred (Value), transaction fee (Txn fee) 

 

BIDDING has also been deployed on Tezos. While the same general trend is followed, the 

ratio between the fees corresponding to conventional and to video processing operations 

is larger. Actually, when comparing the values corresponding to registering a new video in 
the database (0.467 ꜩ composed as follow baker fee 0.00096 ꜩ and storage fee 0.467 ꜩ) 

to the value corresponding to checking the existence of a query video (0.000918 ꜩ that 

present only the baker fee since no data has been added), a ratio of about 500 is 
encountered.  

 

Execution 

To forbid the access to edit the originality flag, only an authorized group of users is allowed 

to execute it which can be edited by the Smart Contract creator of the Smart Contract, as 

illustrated in Figure 75 (code) and Figure 76 (execution screenshot) for the Ethereum 
blockchain.  

 

Figure 75: Smart Contract constructor and functions to edit the list of authorized addresses 
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Figure 76: Authorized addresses only can update the originality 

 

For this application the communication between the DApp and the Load Manager is 

ensured thanks to a REST API developed using a python framework (FastAPI), as 

illustrated in Figure 77. 

When evaluating the fingerprinting matching time on the off-chain side (common for both 

Ethereum and Tezos implementations), average values of 0.06 sec. and 0.8 sec. are 

recorded for the server-based and embedded-based setups, respectively, as illustrated in 

Figure 78 and Figure 79. 

Note that while in server-based setup a small variability of the results is encountered 

(with maximal variations lower than 0.0008 sec.); yet, in the case of the embedded-based 

setup, the processing time is constant over all the video queries. Rather than being 

connected to our methodological setup, this invariance shows that current-day tflite-

runtime v2.14.0 behavior is not really matched to the hardware resources, thus hiding the 
very computational specificities of the tasks. 

 

 

Figure 77: List of the available endpoints available to the DApp 
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Figure 78: Off-chain fingerprinting processing time for server setups; each iteration corresponds to a batch of 128 
fingerprints 

 

Figure 79: Off-chain fingerprinting processing time for embedded setups 
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V.3. Summary 

The present Chapter V Blockchain-fingerprinting applicative synergies investigates the 

possibility of establishing synergies between the COLLATE blockchain load balancing 

solution and the COMMON compressed domain video fingerprinting. It lays between two 

incremental questioning realms. 

First, at the very integration level, binding together COLLATE and COMMON rise doubts 

about the viability of such a complex end-to-end processing workflow. Secondly, at the 

application level, doubts about whether the to be deployed solution reaches the a priori 

consensual objectives expected from any blockchain application are rose. Such objective 

are set in conjunction with the execution speed and the blockchain inner fees. Specifically, 

current day practices expect for a new transactional block to be produced each 12 sec. on 

a Ethereum environment [ETH24e] and each 10 sec. for a Tezos environment [OPE24b]. 

In parallel, the maximum fees possible for producing a block are set at 30 000 000 gas 

units [ETH24e] and 1 040 000 gas units per transaction [OPE24c], for the same two 

blockchain environments, respectively. 

Figure 80 wraps up the different BIDDING advantages and demonstrates the effectiveness 

of BIDDING by two key quantitative results: 

 The fingerprinting matching time correspond to general expectancies in 

advertising video tracking, namely 0.06 sec. and 0.8 sec when considering server 

based and Raspberry Pi based off-chain environments, respectively, 

 The underlying blockchain fees are not prohibitive (cf. Figure 74): although the fees 

related to video processing are significantly higher (by a factor of 25) than usual 
operations, they stay non-prohibitive (0.000954 ETH). 

 

Figure 80: BIDDING performances in term of gas fee and fingerprint matching duration 

 

As a final remark, note that any blockchain solution is ultimately and intrinsically 

unscalable, and that state-of-the-art solutions mainly consider the consensus protocol 

adjustment and/or layer 2 adjustment as palliatives when user/data volumetry is at stake. 

From this perspective, BIDDING has as advantage its backward compatibility while 

offering as alternative the possibility of dynamically adjusting the block size, composition 



Mohamed Allouche 

122 

and pace. Moreover, fees related to massive data storage can be significantly reduced by 

using complementary solutions, like IPFS (Inter Planetary File System) or secured off-
chain data storage as discussed in [MOR23]. 
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Chapter VI. Conclusion 
 

 

This chapter concludes our work, highlighting our contributions and putting them in 

perspective on the current-day mutations in the digital content landscape, covering its 

typology, distribution and computing aspects.  
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VI.1. A retrospective view on the results  

The present thesis deals with compressed-domain video content tracking and considers 

two complementary scientific methodological and technical frameworks, blockchain and 
video fingerprinting.  

When individually considered, these two frameworks come with complementary 

properties, encompassing from security, decentralized and transparent processing to 

robust and unique tracking of near duplicated visual content.  

Hence, establishing synergies between these two approaches would potentially open the 

door towards a whole range of versatile and customizable applications for video content 

tracking.  

Yet, when trying to pragmatically benefit from such synergies, several conceptual, 

methodological and technical dead-locks are identified: 

 blockchain-based video tracking can be possible only if the current-day 

storage/computing/programming blockchain capabilities are virtually upgraded 

at the levels required by video processing applications, 

 compressed-domain video stream syntax elements are not promising candidates 

for fingerprints composition, as they are a priori uncorrelated with the content 

visual features, 

 applicative synergies between blockchain and fingerprinting frameworks are 

scarce in state-of-the-art studies. 

While the main thesis contributions are detailed in Chapter I Overview, in Table 1 and 

illustrated in Figure 8,we shall briefly recap here some main issues: 

 COLLATE, an on-Chain Off-chain Load baLancing ArchiTecturE, making it possible 

for the intimately constrained computing, storage and software resources of any 

blockchain to be abstractly extended by general-purpose computing machine 

resources; the distinctive factor of this architecture are (1) the platform generality 

(demonstrated for both Ethereum and Tezos platforms) and (2) its backward 

compatibility (demonstrated by the seamless integration of already existing Smart 

Contracts and AI algorithms, on the on-chain and off-chain fronts, respectively); the 

experiment validation relates to an use case of relevance for ISO/IEC 23093 – 

Internet of Media Things, namely the monetization of an AI algorithm deployed for 

celebrity recognition.  

 COMMON – Compressed dOMain Marketing videO fiNgerprinting, demonstrating 

the possibility of modelling compressed video fingerprint under deep learning 

framework; the distinctive factors of this solution are (1) the PoC for compressed-

domain stream syntax elements fingerprinting, (2) the robustness against codec 

modification, and (3) the stability with respect to mundane deep learning 

modifications, like pruning and/or quantizing; the experiments relate to two 

databases, of relevance for scientific community (UVG) or for the industrial partner 

(VIDMIZER) and show Accuracy, Precision and Recall values larger than 0.9. 
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 BIDDING – BlockchaIn-baseD viDeo fINgerprintinG, an end-to-end processing 

pipeline coupling compressed domain video fingerprinting to the blockchain load 

balancing solution; the distinctive factors of this processing pipeline are (1) the 

functional generality (demonstrated though de deployment of a realistic AI-based 

video fingerprinting scenario), and (2) the fine-grain control, allowing for a priori 

complex AI tasks to be deployed on embedded devices while interacting with 

blockchains; the experiments correspond to an use case of relevance for or 

industrial partner (VIDMIZER) and show that the blockchain security properties 
can be granted without any loss in Accuracy, Precision and Recall values. 

 

  



Video tracking for marketing applications 

127 

VI.2. Perspectives  

 

The digital content field is expected to face multiple revolutions that will change not only 

its very typology but also its distribution and processing frameworks. Consequently, the 

research perspectives of the thesis work will be drawn according to these three items, as 

illustrated in Figure 81 and detailed here-after.  

 

Perspective 1: COMMON extensions: fingerprint for AI generated visual content and for AI 

Over the last 20 years, the sources of content creation have already undergone essential 

changes: professional content (cinematography, TV, ...) has very quickly been dethroned 

by self-produced content: as an example, in 2012, 72 hours of video were posted every 

minute on social networks! Self-produced content, in its turn, was quickly dethroned by 

content generated by automated video production and processing solutions: as early as 

2018, 140 hours of video surveillance content were generated every second, in London 

alone. This trend has been accentuated by autonomous vehicles (more than 8 cameras on 
board a single autonomous car) and, more recently, by generative AI solutions. 

Note that from the content tracking point of view, AI generated content come with a two 

folded problem: the generated content and the AI in itself, that becomes now a new type 
of digital content.  

Hence, in an incremental order, the first two directions of research open in the manuscript 
are the fingerprinting of AI generated content and the fingerprinting of the AI itself.  

Note that research related to AI processing, where AI is considered as a new type of 

content, is already started (e.g. AI compression in ISO/IEC JTC1 SC29 a.k.a. MPEG) and the 

specific topic of AI fingerprinting is just launched inside MPAI standardization 

organization. 

Moreover, on a longer time perspective, note that the findings related to AI fingerprinting 

will also represent a basis for approaching the fingerprinting of AI-based, end-to-end 
video coded content.  

 

Perspective 2: COLLATE extensions: web3.0-based AI computing  

The evolution of the digital world is intrinsically linked to the evolution of the web, which, 

despite its relatively short history, is already in its third generation. The last decade of the 

20th century corresponded to web1.0, also known as the “read-only web”, characterized 

by static content, uploaded and downloaded by users, with sporadic updates reserved for 

professionals (or, at least, informed users). Its successor, web 2.0, is also known as the 

“social web”: driven by the emergence of social networks and the exponential growth of 

their users, content becomes dynamic, with continuous content updates requiring no 

technical knowledge. Nevertheless, in both cases, processing was (at least conceptually) 

centralized and dependent on trusted authorities (social networks, certificate providers, 



Mohamed Allouche 

128 

etc.). Since 2014, web 3.0 or the “decentralized web” has opposed web 2.0 with a strategy 

based on distributed computing in a network where nodes are equal and security is 
assured by design, without the need for a trusted third party. 

Yet, for time being, AI is not accounted as a web3.0 application and this is mainly because 

of their underlying computational complexity as well as of their lock-in with their 

processing environments.  

Under this framework, COLLATE extensions will be able to accommodate complex, 
collaborative and distributed AI-applications to be deployed. 

 

Perspective3: BIDDING extensions: Secure edge-computing video fingerprinting  

6G networks offer the multimedia players (camera producers, infrastructure operators, 

service providers, broadcasters, journalists, etc.) unforeseen opportunities: proximity 

computing and storage resources enabling the execution of complex AI algorithms, 

transmission latencies reduced by factors ranging from 100 to 1000, bandwidth (for a 

given latency) increased by a factor of 1000, and carbon footprint reduction. This frees 

multimedia players from the constraints of distribution, processing and storage 

(read/write) latencies, enabling them to abstract the multimedia processing chain into a 

unitary operation in terms of time and resources. 

This framework, which is conducive to economic and societal innovation, comes up 

against a lack of confidence in the content generated in this way. For example, video 

content captured by a 6G connected camera may be maliciously modified by a local AI 
before it even reaches a trusted server. 

Under this framework, coupling at the very edge level video fingerprinting and blockchain 

will contribute to establish trust and to a smoother adoption of 6G. 

 

Figure 81: Short-term research perspectives for the work carried out in the thesis. 
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Abstract : Au cours des dernie res 
de cennies, la production et la 
consommation du contenu vide o a 
conside rablement augmente  et il est 
commune ment admis que 80 % du trafic 
Internet est constitue  par de vide os. Dans 
ce cadre, le traçage du contenu vide o 
compresse  et subissant un enchainement 
de distributions sur des re seaux sociaux 
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Abstract : Over the last few decades, the 
production and consumption of video 
content has significantly increased, and it 
is widely estimated that 80% of Internet 
traffic is video. In this context, the 
tracking of compressed video content 
undergoing subsequent distributions on 
social networks and/or video platforms 
is a problem that can be addressed by 
both blockchain and video fingerprinting. 

The main results consist in the design, 
specification and implementation of: (1) 
an on-chain/off-chain load balancing 
architecture, (2) a methodological 
framework demonstrating the possibility 
of achieving compressed video 
fingerprinting under the deep learning 
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