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Abstract

A complete understanding of the hydrogen bond and proton transfermechanism inwater is still
lacking, since it requires an accurate potential energy surface (PES) and very expensive quan-
tum mechanical simulations of the nuclear part. Protonated water clusters are useful building
blocks to study the proton hopping dynamics, which we simulate here in the protonated water
hexamerH+(H2O)6 by a combination of state-of-the-art quantumMonteCarlo (QMC)methods
and path-integral Langevin dynamics (PILD). We report a remarkably low thermal expansion
of the hydrogen bond from zero up to 300 K, after which the hydrogen bond strength weak-
ens. This behaviour is explained by proton delocalisation, which is favoured by the synergy
of nuclear quantum effects and thermal activation, making the near-room-temperature range
of 250K-300K optimal for proton transfer. In the second part of this work we test if machine
learning interatomic potentials (MLIPs), based on kernel methods or on neural networks, can
reproduce the PES of protonatedwater clusters thatwould be infeasible to simulatewith current
high-level computational chemistrymethods, either in size or in duration of the simulation. The
QMC+PILD learning approach yields very accurate results, which are however affected by the
intrinsic noise inherent in the stochastic sampling of both nuclear and electronic phase space.
We prove that the QMC noise is not necessarily detrimental to the learning of energies and
forces and we determine under which conditions one can derive accurate and reliable MLIPs
from QMC data.
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Résumé

Une compréhension complète des mécanismes qui gouvernent la liaison hydrogène et le trans-
fert de proton dans l’eau fait encore défaut. Une difficultémajeure qui entrave notre compréhen-
sion de ces phénomènes est représentée par le temps de calcul important nécessaire à modéliser
les processus en jeu, nécessitant une surface d’énergie potentielle (PES) précise et un traite-
ment quantique à la fois des électrons et des noyaux. Dans ce cadre, les clusters d’eau protonée
sont des briques utiles pour étudier la dynamique des sauts de proton, car leur taille finie les
rend plus simples à traiter que l’eau liquide. Dans cette thèse, nous avons analysé les résultats
sur l’hexamère d’eau protonée H+(H2O)6 obtenus en combinant les méthodes de Monte Carlo
quantique (QMC) les plus avancées et la dynamique de Langevin par intégrales de chemin
(PILD). Nous avons découvert une expansion thermique de la liaison hydrogène remarquable-
ment faible de zéro jusqu’à 300K, température après laquelle la liaison hydrogène devientmoins
forte. Ce comportement s’explique par la délocalisation du proton, favorisée par la synergie en-
tre effets quantiques nucléaires et activation thermique, ce qui rend la plage des températures
optimales pour le transfert de proton proche de celle ambiante (250K-300K). Dans la deuxième
partie de ce travail, nous avons vérifié que les potentiels interatomiques d’apprentissage au-
tomatique (MLIP), basés sur des méthodes à noyau (kernel methods) ou sur des réseaux de
neurones, peuvent reproduire le PES des clusters d’eau protonés. Leur dynamique serait im-
possible à reproduire avec les méthodes les plus précises de chimie théorique, à la fois en ter-
mes de taille et de durée de la simulation. En revanche, l’approche d’apprentissage basée sur
les données QMC+PILD donne des résultats très précis, qui sont toutefois affectés par le bruit
intrinsèque de l’échantillonnage stochastique de l’espace des phases nucléaire et électronique.
Nous montrons cependant que le bruit QMC n’est pas préjudiciable à l’apprentissage automa-
tique des énergies et des forces et nous déterminons les conditions auxquelles on peut générer
des potentiels MLIP fiables en partant des données QMC.

iii



Contents

Acronyms viii

List of Figures ix

List of Tables xiii

Introduction 1

I QuantumMonte Carlo driven ring polymer molecular dynamics 5

1 Ab initio molecular dynamics 7
1.1 Born-Oppenheimer approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 AIMD of protonated water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Electronic structure methods 11
2.1 Forces via the Hellmann-Feynman Theorem . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Deterministic quantum chemistry methods . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 The variational principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Independent-particle approaches . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Beyond Hartree-Fock: correlation energy in wavefunction methods . . . . 15
2.2.4 Density functional theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Quantum Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Forces in quantum Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Wavefunction optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3 The wave function ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.4 Preparation and optimization of the quantum Monte Carlo wavefunction 27

3 Ion dynamics 31
3.1 Classical dynamics at zero temperature . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Microcanonical ensemble and ergodicity . . . . . . . . . . . . . . . . . . . 31
3.1.2 Time evolution via Liouvillian operator . . . . . . . . . . . . . . . . . . . . 32
3.1.3 Velocity-Verlet algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Classical dynamics at finite temperature . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.1 Canonical ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

iv



Contents v

3.2.2 Thermostatting by Langevin dynamics . . . . . . . . . . . . . . . . . . . . 34
3.2.3 Bussi algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.4 Attaccalite-Sorella algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.5 Classical Momentum-Position Correlator . . . . . . . . . . . . . . . . . . . 40

3.3 Quantum dynamics in the path integral formalism . . . . . . . . . . . . . . . . . . 41
3.3.1 Nuclear quantum effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.2 Path integral simulations of water . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.3 From quantum path integrals to classical ring polymers . . . . . . . . . . . 43

3.4 Ring polymer molecular dynamics at zero temperature . . . . . . . . . . . . . . . 46
3.5 Ring polymer molecular dynamics at finite temperature . . . . . . . . . . . . . . . 47

3.5.1 Path Integral Langevin Equation . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5.2 Path integral Ornestein-Uhlenbeck dynamics . . . . . . . . . . . . . . . . . 48
3.5.3 Ring polymer and QMC: bead-grouping approximation . . . . . . . . . . 50

4 Thermal dependence of the hydrated proton and optimal proton transfer in the pro-
tonated water hexamer 53
4.1 Role of solvation: Zundel ion versus protonated water hexamer . . . . . . . . . . 55
4.2 Thermal expansion of the H-bond . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 A cooperative thermal-quantum species: the short-Zundel ion . . . . . . . . . . . 58
4.4 Projected two-dimensional PES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5 Optimal proton transfer from instantons statistics . . . . . . . . . . . . . . . . . . 63
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

II Machine learning interatomic potentials applied to quantumMonte Carlo 69

5 Analytic potentials: strength and limits 71
5.1 Force fields for water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Many body expansion-based potentials for neutral and protonated water . . . . . 73

6 Machine learning interatomic potentials 77
6.1 Global representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.1.1 Symmetrizing over pairwise distances . . . . . . . . . . . . . . . . . . . . . 78
6.2 Local representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.1 Atomic cluster expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2.2 Faber Christensen Huang Lilienfeld (FCHL19) descriptor . . . . . . . . . 84

6.3 Regression in the statistical learning framework . . . . . . . . . . . . . . . . . . . 88
6.4 Kernel methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.4.1 Kernel ridge regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.4.2 Learning energies via kernel methods . . . . . . . . . . . . . . . . . . . . . 92
6.4.3 Gaussian process regression kernel . . . . . . . . . . . . . . . . . . . . . . 94



vi Contents

6.4.4 Local kernels with operator quantum machine learning . . . . . . . . . . . 95
6.5 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.5.1 Optimization by gradient descent . . . . . . . . . . . . . . . . . . . . . . . 98
6.5.2 Neural networks for PES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.5.3 High-dimensional neural networks . . . . . . . . . . . . . . . . . . . . . . . 99
6.5.4 Graph neural networks and MACE . . . . . . . . . . . . . . . . . . . . . . . 100

6.6 Machine learning potentials for neutral and protonated water . . . . . . . . . . . 104

7 Assessing the quality of MLIPs trained on stochastic datasets 107
7.1 Classification of noise and errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2 The Zundel ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.3 Datasets description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.4 Applying Gaussian noise to energies and forces . . . . . . . . . . . . . . . . . . . . 114
7.5 Choice of MLIPs and learning protocol . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.6.1 Learning curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.6.2 Testing on physical observables . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.7 Preliminary results on the protonated water hexamer . . . . . . . . . . . . . . . . 132

8 Conclusions 137

Appendix 143

A Stochastic integration schemes 143
A.1 Solution to the Ornstein-Uhlenbeck process for the Bussi algorithm . . . . . . . . 143

B 2D projection of the protonated hexamer PES 145
B.1 Towards an accurate modeling of the potential energy surface . . . . . . . . . . . 145
B.2 Projected two-dimensional PES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

C ML potentials hyper-parameters 153
C.1 OQML with FCHL19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
C.2 MPNN with MACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Bibliography 155



Acronyms

ACE Atomic Cluster Expansion. 80–82, 84, 85, 88, 104
ACSFs Atom Centered Symmetry Functions. 80, 81, 87, 88, 101
AIMD ab initio molecular dynamics. 3, 8, 10, 56, 71

BO Born-Oppenheimer. 8, 10, 32, 43, 46
BOMD Born-Oppenheimer molecular dynamics. 10

CC Coupled Cluster. 15, 29, 73, 74, 104, 105, 112
CI Configuration Interaction. 15
CPMD Car-Parrinello molecular dynamics. 10, 112

DFT Density Functional Theory. 16, 18, 19, 22, 51, 104, 105, 112, 134

FCHL19 Faber Christensen Huang Lilienfeld. 80, 81, 84, 88, 89
FDT Fluctuation-Dissipation Theorem. 35
FPE Fokker-Planck equation. 36

GNN Graph neural network. 102, 103
GPR Gaussian process regression. 94, 135

H-bond Hydrogen bond. 1–3, 10, 18, 41–43, 53, 54, 56, 57, 66, 142
HDNN High-dimensional neural network. 100, 101, 104, 105

KRR Kernel ridge regression. 90, 121, 135

MACE Message-passing Atomic Cluster Expansion. 78, 104, 139, 140
MBE Many-body expansion. 73–75, 104, 108, 113, 118, 130, 131, 133, 139
MD Molecular Dynamics. 3, 32, 35, 53, 56, 59, 61, 63, 67, 108, 113–115, 117, 127, 128, 132, 134
ML Machine Learning. 4, 77, 78, 93, 100, 104, 105
MLIP Machine learning interatomic potential. 1, 2, 4, 79, 80, 100, 104, 105, 107–109, 111, 113,

118–120, 123, 127, 130–133
MP Møller-Plesset perturbation theory. 15, 55, 73, 74, 104, 105, 112

vii



viii Acronyms

MPNN Message-passing neural network. 102–104, 120

NN Neural network. 96, 98–101, 103
NQEs Nuclear Quantum Effects. 3, 41–43, 53, 54, 56–58, 62–66, 108, 112, 113, 139, 141

OQML Operator Quantum Machine Learning. 78, 95, 120, 121, 123, 126, 127, 130–132, 135, 139,
140

PCF Pair Correlation Function. 56, 58, 128, 135, 137
PES Potential Energy Surface. 1, 4, 8, 10, 32, 41–43, 46, 51, 54–56, 61, 71, 73, 75, 77, 78, 80, 92, 94,

99, 107, 108, 111–113, 115, 127, 128, 132, 134, 135, 139–142
PILD Path integral Langevin dynamics. 47, 67, 132
PILE Path integral Langevin equation. 48, 50
PIMC Path integral Monte Carlo. 42
PIMD Path integral molecular dynamics. 41–43, 59, 63–67
PIOUD Path integral Ornstein-Uhlenbeck process. 41, 48–50
PIPs Permutationally-invariant polynomials. 74, 79, 80, 99, 113
PT Proton Transfer. 1, 2, 4, 41, 55, 56, 63–66, 139

QMC Quantum Monte Carlo. 1–4, 19, 22, 23, 27, 28, 31, 37, 39, 51, 53, 56, 60, 61, 63, 64, 66, 67,
105, 107–110, 112–119, 123, 126, 132, 134, 139–142

RPMD Ring polymer molecular dynamics. 45, 51, 64, 108, 113, 130, 135

SDE Stochastic Differential Equation. 35, 36
SOAP Smooth Overlap of Atomic Positions. 80, 114

VMC Variational Monte Carlo. 19, 22, 23, 28, 29, 55, 56, 59, 61, 67, 109, 110, 113

ZPE Zero Point Energy. 3, 41–43



List of Figures

I.1 Protonated water clusters considered in this work . . . . . . . . . . . . . . . . . . . . 2

2.1 Water dimer dissociation energy curve as a function of 𝑑O1O2 obtained by VMC . . . 28

3.1 Cartoonish pictures of NQEs in an asymmetric double well potential mimicking the
H-bond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Quantum-classical ring polymer isomorphism . . . . . . . . . . . . . . . . . . . . . . 46
3.3 Classical and quantum Langevin dynamics algorithms . . . . . . . . . . . . . . . . . 51

4.1 Highlight of H13O6
+ in its Zundel configuration, . . . . . . . . . . . . . . . . . . . . . 54

4.2 Different regimes of the protonated water hexamer H13O6
+. . . . . . . . . . . . . . . 55

4.3 Comparison of the protonated water dimer and hexamer 𝑉O1O2 potential (left) and
equilibrium geometry (right) as a function of 𝑑O1O2 . . . . . . . . . . . . . . . . . . . . 56

4.4 Classical and quantum oxygen-oxygen 𝑔O1O2 . . . . . . . . . . . . . . . . . . . . . . . 57
4.5 𝜌2D computed from VMC-driven MD (left) and PIMD (right) at different tempera-

tures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.6 Bidimensional oxygen-oxygen/oxygen-proton distributions. . . . . . . . . . . . . . . 60
4.7 NQEs on the shuttling mode, and their impact on the interatomic potential 𝑉O1O2 . . 62
4.8 Population of the short Zundel, elongated Zundel and distorted Eigen species. . . . 63
4.9 Instanton statistics and proton hopping frequency. . . . . . . . . . . . . . . . . . . . . 65

6.1 Comparison between full distance matrix and local atomic environments in the pro-
tonated water hexamer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Local energy as sum of n-body terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3 Graphical explanation of ACE density trick . . . . . . . . . . . . . . . . . . . . . . . . 85
6.4 FCHL19 descriptor for a H+(H2O)6 configuration . . . . . . . . . . . . . . . . . . . . 89
6.5 Modeling the neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.6 Scheme of an artificial neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.7 Information flow in a single neuron embedded in a feedforward neural network . . 97
6.8 Scheme of a HDNN for a water system . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

ix



x List of Figures

6.9 Molecular graph and hop-distance between nodes . . . . . . . . . . . . . . . . . . . . 102

7.1 Relationship between the true observables, their stochastic estimate and their ma-
chine learning model prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2 The Zundel cation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.3 Dimensionality reduction of the Zundel ion classical and quantum trajectories. . . . 114
7.4 Histograms of QMC energy and forces standard deviations in H5O2

+ and H13O6
+in

classical simulations at 300K and 250K, respectively. . . . . . . . . . . . . . . . . . . 116
7.5 Distribution of the square root of Hessian’s diagonals entries (a) and invariance of

forces standard deviation distribution for different QMC samplings (b,c) in QMC-
driven classical simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.6 Dataset splitted into training and test sets. . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.7 Training set further splitted into smaller subsets of increasing size. . . . . . . . . . . 120
7.8 Random sampling vs. farthest point sampling for the selection of the training subsets.120
7.9 (a) Learning curves for 𝜎𝐸 = 27meV and (b) noise sensitivity curve for 𝑁train = 400. 124
7.10 Learning planes for (a) OQML and (b) MACE interatomic potentials. . . . . . . . . . 125
7.11 Pair correlation functions of HH, HO and OO in the Zundel ion at different temper-

atures (classical simulations). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.12 Reduced coordinates for the study of the proton transfer in the Zundel ion. . . . . . 130
7.13 Normalised 3-body correlation function 2d histograms obtained from MLIP-driven

classical simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.14 Significance of the difference of 𝑔(3) between MD simulations based on MBE and

MLIPs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.15 Learning curves of KRR schemes trained on H13O6

+ configurations treated at DFT
level (left), and QMC level (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.16 Radial distribution function in OQML-driven MD simulations of H13O6
+. . . . . . . 136

B1 Left-hand side: total energy variation of the cluster as a function of the 𝑑O1O2 distance
(𝑉1D). Right-hand side: its derivative, 𝜕𝑉1D/𝜕𝑑O1O2 , resulting in the force that drives
the O1-O2 stretching mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

B2 Left column: contour plot of 𝜕𝑉2D/𝜕𝛿H+ as a function of both 𝑑O1O2 and 𝛿H+ . Right
column: superposition of 𝜕𝑉2D/𝜕𝛿H+ , plotted as a function of 𝛿H+ at various (fixed)𝑑O1O2 values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

B3 Fit of the QMC estimates of the derivative of the Morse potential, 𝜕𝑉1D/𝜕𝑑O1O2 , as
defined in Eq. B.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

B4 𝑉1D determined from classicalMDat 100Kand from the averaged dataset of classical
MD at 250K and 350K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

B5 Fit of the QMC forces using 𝜕𝑉𝑑O1O2
(𝑥)/𝜕𝑥 as fitting function for different 𝑑O1O2 ,

where the potential 𝑉𝑑O1O2
(𝑥) is defined in Eq. B.6. . . . . . . . . . . . . . . . . . . . . 150

B6 Fit of the 𝑏 and 𝑐 dependence on the 𝑑O1O2 distance, based on the functional forms in
Eqs. B.7 and B.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151



List of Figures xi

B7 Left panel: contour plot of the 𝑉2D(𝑑O1O2 , 𝛿H+) 2D model potential. Right panel:
contour plot of the model-potential derivative 𝜕𝜕𝛿H+ 𝑉2D(𝑑O1O2 , 𝛿H+). . . . . . . . . . . 152





List of Tables

2.1 Water dimer binding energies for QMC variational wave functions obtained with
different types of basis set contractions. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Summary of the computational cost of the simulations on H+(H2O)6. . . . . . . . . . 67

7.1 Average QMC standard deviations along the trajectory generated by a QMC-driven
classical MD simulation of the Zundel ion at 300K. . . . . . . . . . . . . . . . . . . . 117

7.2 Progressively increasing standard deviation on energies and forces used to produce
the noise to add to MBE values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.3 Diagonal of 𝜖𝑓 in OQML. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

C.1 Hyper-parameters of the FCHL19 representation . . . . . . . . . . . . . . . . . . . . . 153
C.2 MACE hyper-parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

xiii





Introduction

The behaviour of the proton in water has long puzzled chemists and physicists, leading to cen-
turies of debate about all of its aspects [1–7]. This complexity is distilled into a simple chemical
expression:

H+(aq). (1)

This seemingly straightforward formula [8, 9] conceals a rich history of scientific inquiry into
how the proton is hydrated and diffuses in bulk water through the proton transfer (PT) mecha-
nism [10]. To this end, the structure anddynamics of the hydrated proton have been explored by
a wealth of experiments, supported by countless theoretical models and numerical simulations
[11, 12].

Molecular simulations [13], which provide full control over the accuracy of interatomic in-
teractions, offer a unique and detailed view of the proton jumping from onemolecule to another.
However, since PT occurs over multiple length and time scales—from the hopping frequency
across adjacent water molecules to the breaking of a Hydrogen bond (H-bond) in second solva-
tion shell, followed by a rearrangement of thewhole structure around the proton [14, 15]—there
is often a trade-off between the accuracy of computational methods and the size and duration
of the simulation.

The goal of this thesis is twofold. First, we apply advanced methods that fully account for
the quantum nature of both the electrons and nuclei. Specifically, we use QuantumMonte Carlo
(QMC) as electronic structure method to derive the potential energy surface (PES) necessary to
drive the dynamics of the nuclei, described within the path integral formalism. Given the com-
putational cost of these highly accurate techniques, we focus on the protonated water hexamer,
H+(H2O)6, to study the temperature effects on proton hydration and hopping.

The second objective is to bridge the gap between accuracy and the limitations imposed
by system size and simulation time. Over the last two decades, machine learning interatomic
potentials (MLIPs) have emerged as a tool that can reproduce the results of advanced electronic
structure calculations at a fraction of the cost. Here, we test on the Zundel cationH5O2

+ whether
MLIPs can learn energies and forces derived from stochastic methods like QMC, providing a
stable and reliable potential energy surfaces on top of which we can run extended simulations.
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this system is suitable to reproduce the isomerization process underlying the proton transfer.
In Chapter 1, we briefly introduce ab initiomolecular dynamics (AIMD), a computer simula-

tion method where the system configurations are sampled by iteratively solving the equations
of motion using forces derived from quantum theory. Unlike empirical potentials with prede-
fined functional forms, AIMD significantly enhances the predictive power of our simulations,
allowing us to conduct detailed “in silico” experiments that would otherwise be unattainable.

Proton transfer occurs within the water matrix, an incredibly complex environment charac-
terized by multiple types of interactions. The strength of H-bonds is comparable to that of cova-
lent bonds, blurring the line between the two. The presence of a charged species also requires
careful consideration of long-range interactions, including Coulomb and van der Waals forces.
Additionally, the typical timescale for proton transport in water under ambient conditions is
around 1 picosecond [27], indicating a relatively small activation barrier. These considerations
lead us to the topic of Chapter 2, where we address the need for highly accurate electronic struc-
ture methods, such as quantum Monte Carlo.

Once the forces from electronic calculations are determined, or estimated, it is the nuclei’s
turn to move through molecular dynamics (MD), the focus of Chapter 3. Many experimental
findings on water suggest that nuclei, particularly lighter ones, should be treated quantum me-
chanically. Nuclear quantum effects (NQEs) are especially relevant for hydrogens and protons,
which can exhibit zero-point energy (ZPE), proton delocalization, energy discretization, and
proton tunneling [28, 29]. NQEs are significant in water [30–32], and in this Chapter we de-
scribe the MD schemes that allow to treat them, together with the noisy forces coming from
QMC calculations.

In Chapter 4, we present our results from applying the above methods to study the proto-
nated water hexamer, the largest system that can be studied by path integral molecular dynam-
ics and quantum Monte Carlo simulations with current computational means.

To extend our results to larger time and length scales, we must turn to potentials, the subject of
the second part of this thesis.

After discussing the advantages and limitations of various water potentials in Chapter 5, it
becomes clear that the primary challenge lies in capturing the complex variety of interactions in
water and modeling their quantum nature with predefined functional forms. The interpolation
of water’s PES and its extrapolation to larger clusters or to longer simulations is an attractive ap-
proach for better understanding PT. However, high dimensionality, nonlinearity, and the noise
affecting QMC-PES present significant challenges.

These considerations lead us to Chapter 6, which is devoted tomachine learning interatomic
potentials (MLIPs). In recent years, machine learning (ML)methods have become increasingly
popular for solving high-dimensional regression problems across various disciplines, and chem-
istry and physics are no exception. Machine Learning refers to a broad range of techniques
designed to find meaningful patterns from a given dataset that forms the “experience” of the
learner, whether in classification tasks (assigning labels to data) or regression tasks (predicting
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continuous values). The strength of these algorithms lies in their adaptability, hence the expres-
sion data-driven modeling. Instead of assuming an expected functional form underlying the data,
these methods allow the learner to adapt based on the input data, making them highly flexible
and powerful.

Although MLIPs are widespread in the modeling community, little is known about their
ability to interpolate noisy data and reproduce reliable PES—an essential requirement for ex-
tending the findings of QMC-MD simulations. In Chapter 7 we conduct a comprehensive study
on the robustness of MLIPs in learning noisy PES estimated with stochastic electronic structure
methods. We apply well-established ML testing methods and rigorously compare the MLIP-
derived physics with the one obtained from ab initio calculations.

Finally, in Chapter 8, we summarize our main conclusions and outline potential directions
for future research.



Part I

QuantumMonte Carlo driven ring
polymer molecular dynamics
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CHAPTER 1
Ab initio molecular dynamics

Atoms, molecules and condensed matter systems can be described as a collection of interacting
nuclei and electrons that require a quantum mechanical framework for understanding their
physical properties.

Consider a system of 𝑀 nuclei with masses {𝑚𝑎}𝑎=1,⋯,𝑀 and charges {𝑒𝑍𝑎}𝑎=1,⋯,𝑀, and 𝑁
electrons with mass 𝑚 and charge 𝑒; let {(𝐪𝑎, 𝐩𝑎}𝑎=1,⋯,𝑀 denote the positions and momenta of
the nuclei, and {(𝐫𝑖, 𝝅𝑖}𝑖=1,⋯,𝑁 those of the electrons; to simplify the notation we will represent
the nuclear and electronic positions as single vectors, 𝐪 = {𝐪𝑎}𝑎=1,⋯,𝑀 and 𝐫 = {𝐫𝑖}𝑖=1,⋯,𝑁 ,
respectively. The time evolution of such a compound follows the spin-free non-relativistic time-
dependent Schrödinger equation [33]:

𝑖ℏ 𝜕𝜕𝑡Ψ (𝐫, 𝐪, 𝑡) = �̂�Ψ (𝐫, 𝐪, 𝑡) , (1.1)

where Ψ(𝐫, 𝐪, 𝑡) is the total wavefunction and �̂� is the Hamiltonian operator, which we can
obtain from the classical Hamiltonian𝐻(𝐫, 𝐪) of𝑀 positively charged particles interacting with𝑁 negatively charged ones:

𝐻(𝐫, 𝐪) = 𝑁∑𝑖=1
𝝅2𝑖2𝑚 + 𝑀∑𝑎=1

𝐩2𝑎2𝑚𝑎 + 12 𝑁∑𝑖,𝑗 𝑒2|𝐫𝑖 − 𝐫𝑗| + 12 𝑀∑𝑎,𝑏 𝑍𝑎𝑍𝑏𝑒2|𝐪𝑎 − 𝐪𝑏| − 12 𝑀𝑁∑𝑖,𝑎 𝑍𝑎𝑒2|𝐫𝑖 − 𝐪𝑎| . (1.2)

By replacing the momenta with their respective quantum operators in the position representa-
tion, �̂�𝑎 = −𝑖ℏ∇𝐫𝑎 = −𝑖ℏ∇𝑎 and �̂�𝑖 = −𝑖ℏ∇𝐫𝑖 = −𝑖ℏ∇𝑖, we obtain:

�̂� = − 𝑀∑𝑎=1
ℏ22𝑚𝑎∇2𝑎⏟⏟⏟⏟⏟�̂�n

− ℏ22𝑚 𝑁∑𝑖=1∇2𝑖⏟⏟⏟⏟⏟�̂�e

+ 12 𝑁∑𝑖,𝑗 𝑒2|𝐫𝑖 − 𝐫𝑗|⏟⏟⏟⏟⏟⏟⏟�̂�ee

+ 12 𝑀∑𝑎,𝑏 𝑍𝑎𝑍𝑏𝑒2|𝐪𝑎 − 𝐪𝑏|⏟⏟⏟⏟⏟⏟⏟�̂�nn

− 12 𝑀𝑁∑𝑖,𝑎 𝑍𝑎𝑒2|𝐫𝑖 − 𝐪𝑎|⏟⏟⏟⏟⏟⏟⏟�̂�en

, (1.3)

wherewe dubbed the nuclear kinetic energy �̂�n, the electronic kinetic energy �̂�𝑒, andwe defined
the remaining Coulombic interaction terms �̂�ee, �̂�nn and �̂�en for later convenience.

The Hamiltonian does not depend on time, consequently Eq. 1.1 can be simplified into an
eigenvalue problem by assuming stationary states:

�̂�Ψ(𝐫, 𝐪) = 𝐸Ψ(𝐫, 𝐪). (1.4)

7
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Still, the problem posed by Eq. 1.4 is not exactly solvable, therefore one must resort to ap-
proximate methods. These are collectively known as ab initio molecular dynamics (AIMD),
meaning molecular dynamics ‘from first principles’, because they are based on pure quantum
theory alone, without relying on experimental data or ad hoc, though physically motivated,
parametrizations.

Different AIMDmethods are defined by increasing levels of approximation. Since the result
of such procedure, namely the potential energy surface (PES), is a key object of this thesis, we
will spend a few lines on its derivation in Section 1.1, and we will explain how the concept of
PES has been exploited in the realm of quantum simulations of water in Section 1.2.

1.1 Born-Oppenheimer approximation
The first historical approximation from Born and Oppenheimer [34] is actually based on the
classical assumption that the nuclei are not far from equilibrium and the nuclear kinetic energy𝑇𝑛 is small enough to be treated as a perturbation of the electronic Hamiltonian 𝐻𝑒, owing to
the large mass difference between electrons and nuclei1

�̂�e = �̂�e + �̂�ee + �̂�nn + �̂�en. (1.5)

This is enough to justify an expansion of the quantum eigenvalue problem �̂�Ψ(𝐫; 𝐪) = 𝐸Ψ(𝐫; 𝐪)
with respect to a power of the electron-nuclei mass ratio 𝑚𝑒/𝑀0, where 𝑀0 is either one of the
nuclear masses or their mean. In the original paper the choice of the expansion parameter was𝜅4 = 𝑚𝑒/𝑀0, but other choices are possible, for example in themathematical physics community𝜅2 = 𝑚𝑒/𝑀0 is more common. In either case, the important point proved in the original paper
is that only even powers of 𝜅 contribute to the energy. If we consider the latter convention up
to the second order, we arrive to �̂� = �̂�e + 𝜅2�̂�n, (1.6)

with �̂�n = 𝜅1/2�̂�n. The first term is the electronic energy, the second can be related to ionic
vibrations. Eventually, a quartic order term would describe the ionic rotational energy, and
higher order terms the coupling between the previous ones. Then, for several configuration
of the nuclei, 𝐪, and in the limit of 𝜅 → 0, it is assumed that it is possible to find the solution
of the eigenvalue problem of the unperturbed electronic Hamiltonian 𝐻𝑒. Since sending 𝜅 to
zero means that the nuclear kinetic energy vanishes, therefore the nuclei are fixed, 𝐻𝑒 is also
called clamped-nuclei Hamiltonian. The set of eigenfunctions of 𝐻e is used to calculate the full
electrons-ions wavefunction Ψ(𝐫, 𝐪, 𝑡) and its corresponding eigenvalue 𝐸, by simple product
with a nuclear wavefunction [36].

Ψ(𝐫, 𝐪, 𝑡) ≈ Φ(𝐫; 𝐪)Ω(𝐪, 𝑡). (1.7)
1It can be proved by energy argument that close to the ground state energy𝐸0 the kinetic term𝑇𝑛 is automatically

small, without the need of exploiting the mass ratio. However, the latter is still necessary for a general proof of the
Born-Oppenheimer (BO) approximation that includes also excited states [35].
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We start by introducing an extension of Eq. (1.7), for the exact form of Ψ(𝐫, 𝐪, 𝑡), solution
of Eq. (1.1). This ansatz, named Born-Huang, comprises the sum of several terms, and it is
still based on the factorization of an electronic and a nuclear part [37, 38]. Following [39] we
introduce the Born-Huang ansatz:

Ψ(𝐫, 𝐪, 𝑡) = ∑𝑙 Φ𝑙(𝐫; 𝐪)Ω𝑙(𝐪, 𝑡), (1.8)

where Φ𝑙(𝐫; 𝐪) are orthonormal eigenfunctions of the time-independent electronic Schrödinger
equation for the clamped-nuclei Hamiltonian �̂�e

�̂�eΦ𝑙(𝐫; 𝐪) = 𝐸𝑙(𝐪)Φ𝑙(𝐫; 𝐪), (1.9)

and, as such, they span the space of the electronic degrees of freedom for fixed nuclei2, with 𝐪
treated as a parameter. Instead the nuclear wavefunctions Ω𝑙(𝐪, 𝑡) are described by functions
that are neither orthonormal nor normalized [40]. Inserting this ansatz in Eq. 1.1, followed by
multiplication on the left by the single adiabatic stateΦ∗𝑘(𝐫; 𝐪) and integration over the electronic
degrees of freedom 𝐫 bring us to

𝑖ℏ𝜕Ω𝑘(𝐪, 𝑡)𝜕𝑡 = [−∑𝑎 ℏ22𝑚𝑎∇2𝑎 + 𝐸𝑘(𝐪)]Ω𝑘(𝐪, 𝑡) + ∑𝑙 𝐶𝑘𝑙Ω𝑏(𝐪, 𝑡), (1.10)

where the non-adiabatic coupling operator 𝐶𝑘𝑙 is a short notation for

𝐶𝑘𝑙 = ∫d𝐫Φ∗𝑘(𝐫; 𝐪) [−∑𝑎 ℏ22𝑚𝑎∇2𝑎]Φ𝑙(𝐫; 𝐪) + ∑𝑎 1𝑚𝑎 [∫d𝐫Φ∗𝑘(𝐫; 𝐪)(−𝑖ℏ∇𝑎)Φ𝑙(𝐫; 𝐪)] [−𝑖ℏ∇𝑎].
(1.11)

Equations 1.10 and 1.11 tell us that the nuclear wavefunctions Ω𝑘(𝐪, 𝑡) evolve following the
adiabatic potential energy surface 𝐸𝑘(𝐪), for which the diagonal elements𝐶𝑘𝑘 represents a small
correction; eventually the nuclei can hop from one electronic state to another according to the
off-diagonal terms of the nonadiabatic coupling 𝐶𝑘𝑙. This picture comprises several potential
energy surfaces, {𝐸𝑘(𝐪)}.

The adiabatic approximation consists in neglecting the off-diagonal contributions of the cou-
pling matrix, simplifying Eq. 1.10 to

𝑖ℏ𝜕Ω𝑘(𝐪, 𝑡)𝜕𝑡 = [−∑𝑎 ℏ22𝑚𝑎∇2𝑎 + 𝐸𝑘(𝐪) + 𝐶𝑘𝑘(𝐪)]Ω𝑘(𝐪, 𝑡), (1.12)

which means that the quantum state 𝑘 of the electrons never changes during the dynamics. In-
stead it adapts parametrically to the slow nuclear degrees of freedom. This would be equivalent
to inserting in the original Eq. 1.1 the single product state

Ψ(𝐫, 𝐪, 𝑡) = Φ𝑘(𝐫, 𝐪)Ω𝑘(𝐪, 𝑡). (1.13)
2The sum is done as if all the eigenfunctions of the basis were discrete, but actually one should either count also

contributions from the continuous spectrum, which is tricky, or approximate the total wavefunction on a restricted
set of eigenfunctions [35].
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A further step bring us to the original Born-Oppenheimer (BO) approximation, where even the
correction 𝐶𝑘𝑘 is neglected:

𝑖ℏ𝜕Ω𝑘(𝐪, 𝑡)𝜕𝑡 = [−∑𝑎 ℏ22𝑚𝑎∇2𝑎 + 𝐸𝑘(𝐪)]Ω𝑘(𝐪, 𝑡). (1.14)

For almost a century the BO approximation has proven to be a great tool to interpret chem-
istry concepts in the light of quantummechanics. Also, it has been of paramount importantance
in the development of computational quantum chemistry, because it allows one to study the dy-
namics of a system relying solely on a single potential energy surface, most often the electronic
ground state one, 𝐸0(𝐪). This approximation is at the basis of Born-Oppenheimer molecular
dynamics (BOMD), which is one of the most widespread flavour of AIMD, together with Car-
Parrinello molecular dynamics [41].

1.2 AIMD of protonated water
Simple water models cannot capture its multifaceted behaviour, from the challenging phase
diagram to the complex H-bond network, which has an important role not only in reactions
in solution, but also in water ions dynamics. This is mainly due to the difficulty of modeling
the delicate interplay among strong covalent bonds, weak van der Waals interactions and the
H-bonds with a wide range of intensity. For this reason water is the perfect target of AIMD,
particularly in the CPMD and BOMD formalisms [11, 42–45]. Within this framwork proton
transfer in aqueous solution has been extensively simulated [43, 46–50].

Diagonal BO, which is just the adiabatic approximationwith the diagonal contribution from
the couplingmatrix, has been limited to geometry optimization [51] and the study of vibrational
states [52]. Wenote in passing that the field of nonadiabaticmolecular dynamics, which extends
beyond the the framework described in Section 1.1, is an active field of research, with intriguing
applications in water ionization [53–55], eventually concerning proton transfer within ionized
water systems [56–58]. This approach enables a more accurate comparison with experimental
studies of water photodissociation in small, nevertheless neutral, clusters. As mentioned in the
Introduction, in this thesis we are not dealingwith such systems and dynamics. The protonated
water clusters taken into account in this work have a total charge of +𝑒 and do not interact
with an external perturbation, hence ground state BOMD will be our workhorse. In particular
the ground state PES is the mathematical object that we will first compute with the electronic
structure calculations explained in Chap. 2, in order to use it in the nuclei classical and quantum
dynamics (Chap. 3). Then, in the second part of this thesis, we will fit the PES with methods
reported in Chap. 6.



CHAPTER 2
Electronic structure methods

Electronic structure methods aim to solve the electronic Schrödinger equation, in order to find
the energy eigenvalues and differentiate them with respect to the nuclear position to obtain
the forces necessary for the dynamics. We rewrite the time-independent Schrödinger equation
with the clamped-nuclei Hamiltonian (Eq. 1.9), by using the explicit form for the kinetic and
potential operators. We then have:

⎡⎢⎣ ℏ2𝑚 𝑁∑𝑖=1∇2𝑖 + 12 𝑁∑𝑖,𝑗 𝑒2|𝐫𝑖 − 𝐫𝑗| − 12 𝑁𝑀∑𝑖,𝑎 𝑍𝑎𝑒2|𝐫𝑖 − 𝐪𝑎| ⎤⎥⎦Φ(𝐫; 𝐪) = 𝐸(𝐪)Φ(𝐫; 𝐪), (2.1)

where we ignored the nuclear interaction term �̂�nn, defined in Eq. (1.3), as it acts on the nuclear
coordinates only, and it sums just as a classical additive constant to the electronic energy. For
the sake of readability, we will often drop the dependence of the wavefunction on the electrons
degrees of freedom, 𝐫, as well as its parametric dependence on the nuclear coordinates, 𝐪. In
the next Section 2.1 we will see how to get the forces. In Section 2.2 we will briefly overview
what are the most common techniques in quantum chemistry, in order to motivate our choice
of an alternative method in this first part of thesis, namely quantum Monte Carlo, which is the
topic of Section 2.3.

2.1 Forces via the Hellmann-Feynman Theorem
The Hellmann-Feynman theorem provides a simple way of computing forces, once the wave-
function is found. It applies to any derivative of the expectation value of the Hamiltonian with
respect to any of its parameters. In our case we are interested in the nuclear position parameter,𝐪: −𝐟 = ∇𝐪⟨Φ|�̂�|Φ⟩ = ⟨𝜕𝐪Φ|�̂�|Φ⟩ + ⟨Φ|𝜕𝐪�̂�|Φ⟩ + ⟨Φ|�̂�|𝜕𝐪Φ⟩. (2.2)

By grouping together the derivatives on the bra and the ket, we obtain:

⟨𝜕𝐪Φ|�̂�|Φ⟩ + ⟨Φ|�̂�|𝜕𝐪Φ⟩ = 𝜕𝐪 ⟨Φ|Φ⟩ = 0, (2.3)

11
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since the wavefunction is normalized . This leaves us with only the middle term:

𝑑𝐸(𝐪)𝑑𝐪 = ⟨Φ(𝐪) ∣∣∣∣𝜕�̂�(𝐪)𝜕𝐪 ∣∣∣∣ Φ(𝐪)⟩ , (2.4)

2.2 Deterministic quantum chemistry methods
The first distinction to make is between wave function-based methods and electronic density-
based methods. The former attempt to solve the eigenvalue problem by approximating the
electronic wavefunction,Φ, while the latter calculate the energy as a functional of the electronic
density, which has the advantage of depending on just three spatial coordinates. In this Section
we will review both approaches, some of which will be employed in the second Part of this
thesis. We begin with a central principle which is common to both methods.

2.2.1 The variational principle
Variational principles are omnipresent in physics. In particular, the formulation used to solve
eigenvalues problems in the context of wave mechanics, due to Rayleigh [59] and Ritz [60], has
found broad application later also in quantum chemistry.

The Rayleigh-Ritz variational principle in quantum mechanics states that given any normal-
ized state |Φ⟩ of a many-body system belonging to the Hilbert space where a givenHamiltonian�̂�e acts, one always has that ⟨Φ| �̂� |Φ⟩ ≥ 𝐸0, (2.5)

where 𝐸0 is the ground state energy and the equality holds only in the case |Φ⟩ = ∣Φ0⟩, with∣Φ0⟩ defined as the ground-state. This principle provides a way to find the ground-state wave-
function, that is by energy minimization:

𝐸0 = minΦ ⟨Φ|𝐻 |Φ⟩⟨Φ|Φ⟩ . (2.6)

Usually the wavefunction depends on one or more parameters with respect to which the en-
ergy isminimized. Among thesemethods, those based on independent-particle approximation,
namely the Hartree and the Hartree-Fock methods, are the starting point of many other more
advanced techniques.

2.2.2 Independent-particle approaches
In this brief overview we primarily follow the classic textbook by Szabo and Ostlund [61]. We
consider 𝑁 electrons described by the variables 𝐱𝑖 = (𝐫𝑖, 𝑠𝑖), where the 𝐫 represents the position
and 𝑠𝑖 the spin of the electron.

In the absence of spin-orbit interaction, we can use a set 𝐾 spatial molecular orbitals (MOs){𝜓MO𝑖 |𝑖 = 1, 2,⋯ ,𝑁/2} and two orthonormal spin functions 𝛼(𝜎) and 𝛽(𝜎) to define the set of 𝑁
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spin orbitals as a product between the spatial and spin functions:

⎧{⎨{⎩
𝜒2𝑖−1(𝐱) = 𝜓MO𝑖 (𝐫)𝛼(𝜎)𝜒2𝑖(𝐱) = 𝜓MO𝑖 (𝐫)𝛽(𝜎) , (2.7)

which will inherit the orthonormality from the MOs. The latter are typically constructed as
linear combination of atomic orbitals (LCAO), which depend on the vector distance from the
nucleus 𝐪𝑎 to the electron 𝐫𝑖, that is, 𝐫𝑎 = 𝐫𝑖−𝐪𝑎. Approximations of atomic orbitals (AOs) basis
functions, also called primitives, are usually expressed as the product of an angular component
that depends on the direction ̂𝐫𝑎, such as spherical harmonics 𝑌𝑚𝑙 , and a radial component that
depends just on the distance 𝑟𝑎 = |𝐫𝑎|. For example, in the case of Slater-type orbitals (STOs)
[62] and Gaussian-type orbitals (GTOs) [63], the forms are given by the following equations:
which are usually constructed as linear combination of atomic orbitals (LCAO).

𝜓STO𝑎,𝑙𝑚𝑛(𝐫𝑎) ∝ 𝑟𝑛−1𝑎 𝑒−𝜁𝑟𝑎𝑌𝑚𝑙 ( ̂𝐫𝑎), (2.8)

𝜓GTO𝑎,𝑙𝑚𝑛(𝐫𝑎) ∝ 𝑟𝑙𝑎𝑒−𝜁𝑟2𝑎𝑌𝑚𝑙 ( ̂𝐫𝑎), (2.9)

respectively. The principal quantum number 𝑛 limits the range of the angular momentum quan-
tumnumbers, 𝑙 and𝑚, with 𝑙 ∈ [0, 𝑛−𝑙] and𝑚 ∈ [−𝑙,+𝑙], used to define the spherical harmonics𝑌𝑚𝑙 . For GTOs orbitals, in some cases, the priority is given to the choice of 𝑙, with 𝑛 ∈ [1, 𝑛𝑙]
designating the number of Gaussians for each angular momentum shell.

Once a local basis of 𝑁𝑏 AOs is defined, {𝜓AO𝑘 }, the MOs of a system of 𝑀 atoms are defined
as 𝜓MO𝑖 (𝐫) = 𝑁𝑏×𝑀∑𝑗=1 𝜇𝑖𝑗𝜓AO𝑗 (𝐫), (2.10)

where the AOs are indexed according to local basis and to the specific atom they belong to.
In the Hartree method [64] the many-body wave function is expressed as a simple product

of single-particle wave functions, defined as the spin orbitals in Eq. (2.7):

Φ(𝐫) = 𝜒1(𝐱1)𝜒2(𝐱2)⋯𝜒𝑁(𝐱𝑁). (2.11)

If we plug this wavefunction into equation (2.1), we obtain the energy:

𝐸Hartree = 𝑁∑𝑖 [−12 ∫d𝐫𝜓∗𝑖 (𝐫)∇2𝑖 𝜓𝑖(𝐫)]
− 𝑁∑𝑖 ⎡⎢⎣

𝑀∑𝑎 𝑍𝑎 ∫d𝐫𝜓∗𝑖 (𝐫) 1|𝐫 − 𝐪𝑎|𝜓𝑖(𝐫)⎤⎥⎦
+ 𝑁∑𝑖 ⎡⎢⎣12

𝑁∑𝑖≠𝑗 ∫∫d𝐫 d𝐫′𝜓∗𝑖 (𝐫)𝜓∗𝑗 (𝐫′) 1|𝐫 − 𝐫′|𝜓𝑖(𝐫)𝜓𝑗(𝐫′)⎤⎥⎦ ,
(2.12)

where the three lines correspond to the contributions from the electrons kinetic energy, the at-
tractive ion-electron interaction and the Coulombic repulsion between electrons. The latter, also
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called Hartree direct term, 𝐸H, sums over all the possible products between the square moduli
of two wavefunctions, which gives the joint probability of two electrons being in the same posi-
tion. From these results, where the spins degrees of freedom are integrated out, we see that the
problem with the Hartree method is that the wavefunction does not respect the Pauli principle.

This issue is addressed by the Hartree-Fock (HF) approximation [65], where the wavefunc-
tion is represented by a single Slater determinant [66], which incorporates the anti-symmetry
required by the Pauli principle:

Φ(𝐫) = 1√𝑁!
∣∣∣∣∣∣∣∣
𝜒1(𝐱1) 𝜒2(𝐱1) ⋯ 𝜒𝑁(𝐱1)𝜒1(𝐱2) 𝜒2(𝐱2) ⋯ 𝜒𝑁(𝐱2)⋮ ⋮ ⋱ ⋮𝜒1(𝐱𝑁) 𝜒2(𝐱𝑁) ⋯ 𝜒𝑁(𝐱𝑁)

∣∣∣∣∣∣∣∣
. (2.13)

The resulting energy in the HF method is the same as in the Hartree method, with the addition
of an an exchange term 𝐸X, 𝐸HF = 𝐸Hartree + 𝐸X, (2.14)

with 𝐸X = −12 𝑁∑𝑖≠𝑗 ∫d𝐫 d𝐫′𝜙∗𝑖 (𝐫)𝐫𝜙∗𝑗 (𝐫′) 1|𝐫 − 𝐫′|𝜙𝑖(𝐫′)𝜙𝑗(𝐫). (2.15)

Notice the different order of the integration variables compared to the last term in Eq. (2.12)).
In this case, we are not dealing with the product of two electronic densities to account for their
Coulombic interaction. Instead, thanks to the Slater determinant, the HF method is able to
consider a purely quantum contribution to the energy, specifically the one due to the motion of
two electrons with parallel spins.

However, the methods discussed so far are considered uncorrelated methods, because they do
not account for the full correlation energy 𝐸𝐶, formally defined as

𝐸𝐶 ∶= 𝐸0 − 𝐸0
HF, (2.16)

where 𝐸0 the true energy of the ground state, and 𝐸0
HF the Hartree-Fock energy in the infinite-

basis limit, meaning that the Slater derminant is composed using linear combination of an infi-
nite number of MOs.

The correlation energy has two components:

• Static correlation, which arrises when the correct electronic structure requires multiple con-
figurations, thus multiple determinants, to adequately describe the system. This is partic-
ularly important for bond dissociation.

• Dynamic correlation, which is related to the instantaneous interaction between electrons as
they move. Unlike static correlation, it does not have a multi-configurational character,
but it is necessary to correctly describe the electron-electron repulsion, especially in the
case of antiparallel spin.
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The purpose of advanced computational methods is to recover this fundamental contribution
to the energy, in order to correctly describe various phenomena that occur at scale of chemical
accuracy.

2.2.3 Beyond Hartree-Fock: correlation energy in wavefunction methods

Post-Hartree-Fock methods constitute a vast group of deterministic computational chemistry
techniques aimed at incorporating correlation energy to some extent. Although these methods
are not directly employed in this thesis, except for a fitted potential described in Section 5.2 that
is based on them, they are worth mentioning to justify our methodology.

1. The most straightforward way to improve upon HF is to include more determinants,
where one or more single-particle wavefunction are substituted by excited states. Two
of these methods are the Configuration Interaction (CI), where a linear combination of
multiple Slater determinants is optimized to recover 𝐸𝐶, and Multi-Configuration Self-
Consistent Field (MCSCF), in which also the molecular orbitals are optimized. Being
multi-configurational by definition, these methods effectively capture the static correla-
tion, but exhibit a slow convergence when accounting for dynamic correlation, requiring
a large number of Slater determinants in the expansion. Full-CI represents the theoreti-
cal limit of considering an infinite sum of Slater determinants, and is rarely applied be-
yond diatomic and triatomic sytems. Like HF, these methods still rely on the variational
principle and in numerical analysis would be collectively indicated as Galerkin methods,
because the solution of the differential equation is approximated by projecting it onto a
finite-dimensional subspace spanned by the finite basis.

2. Møller-Plesset perturbation theory (MPPT) [67] is based on a perturbative expansion of
the wavefunction around the HF solution ΦHF0 . The second-order perturbation approxi-
mation (MP2) is themost common level of approximation, using the lowest non-vanishing
correction term. Its computational costs is the lowest among the post-HF methods, esti-
mated at O(𝑁5), with 𝑁 the number of electrons.

3. Coupled Cluster (CC) theory [68–70], considered the “golden standard” of quantum
chemistry computational methods, is based on applying the exponential of the excitation
operator �̂� to the HF wave function, ΦCC = 𝑒�̂�ΦHF0 , allowing contribution from singly
excited, doubly excitated, and higher-order determinants. The most common variants are
those that account for single and double excitation (CCSD), with the option to include
triple excitations computed perturbatively in CCSD(T). In the latter case, the computa-
tional costs is O(𝑁7) [71].
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2.2.4 Density functional theory

The electronic density is defined as

𝜌(𝐫) = 𝑁 ∫𝑑𝐫1 ⋯𝐫𝑁 ⎛⎜⎝
𝑁∑𝑖=1 𝛿(𝐫 − 𝐫𝐢)⎞⎟⎠ ∣Φ(𝐫1,⋯ , 𝐫𝑁)∣2 (2.17)

Density Functional Theory (DFT) is the most widely used electronic structure method in ab
initio chemistry. and it is founded on two important theorems by Hohenberg and Kohn [72]. A
comprehensive and detailed treatment of DFT can be found in [73], from which we derive the
basic concepts.

First HK theorem
For an interacting system of electrons subjected to an external potential 𝑉ext(𝐫), the latter is fully and
uniquely determined, up to an additive constant, by the electronic ground state density 𝜌0(𝐫).
As a Corollary, determining the external potential also fully determines the Hamiltonian, and
thus all the many-body wavefunctions for all the states, from the ground state to the excited
ones. Therefore, all properties of the systems are completely determined by the ground-state
density 𝜌0(𝐫)
Second HK theorem
For a given external potential �̂�ext the energy of the ground state is given by the global minimum of the
energy functional, defined as

𝐸 [𝜌0(𝐫)] = �̂�e [𝜌0(𝐫)] + �̂�ee [𝜌0(𝐫)]+⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟𝐹HK[𝜌0] �̂�ext [𝜌0(𝐫)] . (2.18)

where we have defined the universal functional 𝐹HK [𝜌0], which is the same for electron systems, inde-
pendent of the external potential.

Thus, knowledge of the functional is sufficient to determine the ground state and the elec-
tronic density of the system. In our case, the external potential is that due to the presence of the
nuclei, i.e. the electron-nuclear interaction, �̂�ext = �̂�ne.

Kohn-Sham equations
Minimizing the energy functional in Eq. 2.18 is non-trivial, due to the presence of many-body
terms in the electron-electron interaction 𝑉ee. Kohn and Sham proposed an elegant solution to
this problem [74], which has become the standard tool in DFT.

Their approach maps the many-body problem onto a single-particle problem characterized
by the same electronic density. According to the HK theorems, this auxiliary system will have
the same ground state energy of the real system of interest. The ground state energy of the
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auxiliary system, 𝐸𝑠, is described by a functional similar to the one we already encountered:𝐸𝑠 [𝜌(𝐫)] = 𝑇𝑠 [𝜌(𝐫)] + 𝐸H [𝜌(𝐫)] + 𝐸XC [𝜌(𝐫)] + 𝐸ext [𝜌(𝐫)] , (2.19)
where 𝐸H [𝜌(𝐫)] is the Hartree functional, analogous to the Hartree direct term of Eq. 2.12,𝐸XC [𝜌(𝐫)] is the exchange-correlation term, which account not only for the exchange contribu-
tion, as in Eq. 2.15, but also for additional correlation effects. Finally, 𝑇𝑠 [𝜌(𝐫)] and 𝐸ext [𝜌(𝐫)]
represent the usual kinetic and external potential terms, respectively.

The exchange-correlation functional is defined as𝐸XC [𝜌(𝐫)] = 𝐹HK [𝜌(𝐫)] − (𝑇𝑠 [𝜌(𝐫)] + 𝐸H [𝜌(𝐫)]) . (2.20)
If we explicit the universal functional 𝐹 as we defined it in the SecondHK theorem in Eq. (2.18),
we get: 𝐸XC [𝜌(𝐫)] = 𝑇 [𝜌(𝐫)] − 𝑇𝑠 [𝜌(𝐫)] + 𝑉ee [𝜌(𝐫)] + 𝐸H [𝜌(𝐫)]), (2.21)
we notice that the XC functional accounts for everything that cannot be described by theHartree
and HF methods.

The auxiliary independent-particle system automatically defines the single-particle auxil-
iary Hamiltonian, �̂�𝑠 = −12∇ + 𝑉𝑠(𝐫, 𝜎), (2.22)
which consists of the kinetic energy operator and an effective local potential that depends on
electron position 𝐫 and spin 𝜎 . Since this is an independent particle Hamiltonian, the ground
state solution is determined by the electrons occupying first𝑁 eigenfunctions 𝜒𝑖(𝐫, 𝜎) of �̂�𝑠 with
the lowest eigenvalues: �̂�𝑠𝜒𝑖(𝐫, 𝜎) = 𝜖𝑖𝜒𝑖(𝐫, 𝜎). (2.23)
Given the eigenfunctions, the definition of the density is straighforward:

𝜌(𝐫) = 𝑁∑𝑖 |𝜒𝑖(𝐫, 𝜎)|2. (2.24)

The idea behind the Kohn-Sham variational approach is to minimize the energy functional
of the auxiliary system with respect to the density 𝜌, defined as in Eq. 2.24:𝛿𝐸𝑠𝛿𝜒𝑖(𝐫, 𝜎) = 𝛿𝑇𝑠𝛿𝜒𝑖(𝐫, 𝜎) + [ 𝛿𝐸ext𝛿𝜌(𝐫, 𝜎) + 𝛿𝐸Hartree𝛿𝜌(𝐫, 𝜎) + 𝛿𝐸XC𝛿𝜌(𝐫, 𝜎)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟𝑉ext(𝐫)+𝑉Hartree(𝐫)+𝑉XC(𝐫,𝜎)=𝑉𝑠(𝐫,𝜎)

𝛿𝜌(𝐫, 𝜎)𝛿𝜒𝑖(𝐫, 𝜎) = 0. (2.25)

Being the wavefunctions subjected to the orthonormalization constraints, this minimization
problem is analogous to the Rayleigh-Ritz variational approach for wavefunctions. In Eq. 2.25
we have grouped some functional derivatives into the effective potential that appears in 2.22.𝑉𝑠(𝐫, 𝜎) = 𝑉ext(𝐫) + 𝑉Hartree(𝐫) + 𝑉XC(𝐫, 𝜎) (2.26)

The KS equations 2.22, 2.26 and 2.25 are solved self-consistently: starting from an effective
potential𝑉𝑠, the KSHamiltonian is solved to obtain the electronic density, which is then used to
compute a new effective potential. This loop is iterated until the difference in electronic density
difference, between two iterations becomes smaller than a user-defined threshold.
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Choosing the right exchange-correlation functionals for water

We conclude this overview on DFT with one of its most critical aspects: choosing the right
exchange-correlation functional, particularly forwater simulations. TheXC functional𝐸XC is the
key approximation of DFT, and selecting the appropriate one significantly affects the accuracy
of the results. However, more precise functionals often comewith increased computational cost.

Common choices include the Local Density Approximation (LDA), where the 𝐸XC is given
by the sum of the Slater exchange energy of the HF formula (Eq. 2.15), while the local correla-
tion energy is fitted to the one of the homogeneous electrons gas, determined through accurate
quantum Monte Carlo simulations at different values of density 𝜌(𝐫) [75, 76]; and the General-
ized Gradient Approximation (GGA), which are semi-local, as it also accounts for inhomogene-
ity in the electron density via the gradient of the density, ∇𝜌(𝐫). Examples of GGA functionals
include the Perdew-Burke-Ernzerhof (PBE) one [77], and the combination of the B88 exchange
functional [78] and Lee-Yang-Parr [79] correlation functional (BLYP). Despite their widespread
use, LDA performs poorly in water simulations as it overastimates the binding energy of the
water clusters [80, 81]. This issue is due to spurious exchange attraction at large distances [82].
GGAs functionals also have drawbacks, particularly in over-structuration of bulk liquid water,
which translates into a small diffusion constant, an overly large average number of H-bonds,
and a liquid phase less dense than the ice [83, 84]. Although these overbinding [85] effects
are more pronounced in the bulk than in water cluster, H-bonds play too crucial role in proton
hopping to be poorly reproduced.

The fact that local and semi-local XC functionals perform better in gas-phase water cluster
than in bulk water suggests the necessity of including many-body effects such as van der Waals
interactions. This can be done in several ways, the most simple being adding an atom-atom
attractive semiempirical pair potential having the London dispersion functional form, −𝐶6/𝑅6
[86]. Another approach consists in including in the XC functional a non-local correlation term𝐸nl𝐶 that depends explicitly on the electron densities at spatially separated positions. These XC
functionals, generally dubbed van der Waals Density Functionals (vdW-DF), are defined as
follows: 𝐸XC = 𝐸GGA

X + 𝐸LDA
C + 𝐸nl

C , (2.27)

where the first term is a GGA exchange term [87], the second one is the Perdew-Wang local
correlation (PW86) [88], and the last term is the non-local contribution generally defined as

𝐸nl
C [𝜌] = ∫d𝐫 d𝐫′𝜌(𝐫)𝜙(𝐫, 𝐫′)𝜌(𝐫′) (2.28)

where 𝜙(𝐫, 𝐫′) is a function of 1/|𝐫 − 𝐫′|, 𝜌(𝐫), 𝜌(𝐫′), and their gradients. The specific form of𝜙(𝐫, 𝐫′) defines the type of vdW functional. In the second Part of this thesis we will use the
vdW-DF2 [89], which represents an improvement over the original vdW-DF [90], particularly
for systems with shorter range dispersion forces.

Inclusion of vdW interaction reduces the gap between DFT and advanced quantum chem-
istry methods [91], with an improved reproduction of oxygen-oxygen radial distribution func-
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tion with respect to GGA [92]. However vdW-DF2 functionals are not exempt from defects, as
they tend to understructure liquid water [93].

2.3 QuantumMonte Carlo
Quantum Monte Carlo (QMC) is a family of stochastic integration algorithms aimed to solve
various quantum problems. We refer the reader to [94, 95] for an introduction and to [96, 97]
for review papers. In this context, we are particularly interested in the Variational Monte Carlo
(VMC) variant, which is one of the earliest QMC methods [98, 99]. In VMC, a trial many-body
wavefunction of the electrons, Φ𝑇(𝐫) = Φ𝑇(𝐫1,⋯ , 𝐫𝑁), is first optimized using the variational
theorem, as other methods discussed earlier, and then used to estimate the variational energy
and other observables.

More precisely, the quantum expectation value of the Hamiltonian �̂�e is computed with the
trial wavefunction Φ𝑇 according to⟨Φ𝑇 ∣ 𝐻e ∣Φ𝑇⟩⟨Φ𝑇 |Φ𝑇⟩ ≡ ⟨�̂�e⟩ = ∫d𝐫Φ∗𝑇(𝐫)�̂�Φ𝑇(𝐫)∫d𝐫|Φ𝑇(𝐫)|2 = 𝐸VMC, (2.29)

where 𝐫 is again understood as the vector of all electron coordinates, (𝐫1,⋯ , 𝐫𝑁). By changing
variable in the denominator, 𝐫 → 𝐫′, and by multiplying both numerator and denominator byΦ𝑇(𝐫), we can rewrite the expression of the VMC energy as

𝐸VMC = ∫d𝐫 |Φ𝑇(𝐫)|2∫d𝐫′|Φ𝑇(𝐫′)|2 �̂�Φ𝑇(𝐫)Φ𝑇(𝐫) = ∫d𝐫𝜋(𝐫)𝐸𝐿(𝐫) = ⟨𝐸𝐿⟩ ≥ 𝐸0, (2.30)

where we have defined the local energy

𝐸𝐿 = �̂�Φ𝑇(𝐫)Φ𝑇(𝐫) , (2.31)

which is sampled according to the following probability distribution

𝜋(𝐫) = |Φ𝑇(𝐫)|2∫d𝐫′|Φ𝑇(𝐫′)|2 . (2.32)

Therefore, VMC is an importance sampling technique, as the electronic configurations are not
sampled uniformly, but rather according to the amplitude of the trial wavefunction, |Φ|2.

In practice the probabily density𝜋(𝐫) is sampledusing standardMonteCarloMarkovChains
(MCMC) methods, such as the Metropolis-Hastings algorithm [100–102]. MCMC is a random
walk that sample the unknown probability distributions defined on a configuration space by
jumping from one configuration to another depending only on the current one. This method
is particuarly suited for solving integrals in high-dimensional spaces, as it is the case for the
3N-dimensional configuration space of the electronic degrees of freedom.

Given an observable O, the sample mean 𝑂 of 𝑁gen configurations is an unbiased estimator
of the population mean ⟨O⟩,

⟨O⟩ ≈ 𝑂 = 1𝑁gen

𝑁gen∑𝑖=1 �̂�𝐿(𝐫𝑖), (2.33)
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where �̂�𝐿 = �̂�Φ𝑇Φ𝑇 is the local operator corresponding to the observable of interest, averaged of
the {𝐫𝑖} configurations distributed according to 𝜙(𝐫). For example, the energy 𝐸VMC is estimated
through the local one 𝐸𝐿:

𝐸VMC = ⟨𝐸⟩ ≈ 𝐸 = 1𝑁gen

𝑁gen∑𝑖=1 𝐸𝐿(𝐫𝑖). (2.34)

By virtue of the central limit theorem (CLT), we know that if the random variables 𝐸𝐿(𝐫𝑖) are
independent and identically distributed (iid), and if 𝜋(𝐫) has a finite expected value 𝔼[𝐸𝐿] and
finite variance var [𝐸𝐿] = 𝔼 [(𝐸𝐿 − 𝐸VMC)2], then in the limit of 𝑁gen → ∞ the sample mean 𝐸𝐿
converges to a Gaussian distribution with the following expected value and variance:

𝔼[𝐸] = 𝔼 [𝐸𝐿] = 𝐸VMC, (2.35)

var[𝐸] = var[𝐸𝐿]𝑁gen
. (2.36)

From the Eq. (2.36)we can see the strength ofMCmethods over deterministic ones: the intrinsic
statistical error, 𝜎[𝐸] = √var[𝐸𝐿]𝑁gen

, (2.37)

depends only on the number of MC iterations, and not on the dimensionality of the integral.
Moreover, there are two interesting properties in the specific case of quantum Monte Carlo.

The zero variance property states that, in the limit the wavefunction Φ approaching the exact
eigenfunction of �̂�e, the local energy 𝐸𝐿 will also approach the exact value and becomes inde-
pendent of 𝐫, with the statistical uncertainty of 𝐸𝐿 vanishing. The zero-bias property implies that
the systematic error of the variational energy with respect to the exact energy 𝐸0 vanishes in the
same limit.

The caveat is that MCMC provides correlated samples of the local operators, meaning that
two electronic configuration sampled at two step whose distance is smaller than a certain au-
tocorrelation time will not be independent. A simple and elegant statistical method to take into
account the correlation between samples is the block averaging [103] technique. We divide the
whole sampling in 𝑁𝐵 blocks, each containing 𝑁𝑠 samples. The average within the block will
be simply:

𝑂𝐵 = 1𝑁𝑠
𝑁𝑠∑𝑖=1𝑂𝑖, (2.38)

while the total average is the average over the blocks:

𝑂 = 1𝑁𝐵
𝑁𝐵∑𝑏=1𝑂𝑏. (2.39)

where the subscript 𝑏 runs from 1 to the last block 𝑁𝐵. If the blocks size 𝑁𝑠 is larger than the
correlation time, it is safe to compute the variance of the sample mean as

var [𝑂] = var [𝑂𝑏]𝑁𝐵 (2.40)
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which in practice translates to the following standard formula:

var [𝑂] ≈ 1𝑁𝐵 − 1 ⎡⎢⎢⎣
1𝑁𝐵

𝑁𝑏∑𝑏=1𝑂2𝑏 − ⎛⎜⎜⎝ 1𝑁𝐵
𝑁𝑏∑𝑏=1𝑂𝑏⎞⎟⎟⎠

2⎤⎥⎥⎦ . (2.41)

The appropriate block size 𝑁𝑠 can be determined heuristically by running the average for
several size values and identifying the value of𝑁𝑠 the variance no longer increase. Alternatively,
one can estimate the autocorrelation time by considering the variance over the entire set. Calling
the local value of an operator 𝑂𝑖 = 𝑂(𝐫𝑖) for short, we have

var [𝑂] = 1𝑁2gen
𝑁gen∑𝑖,𝑗 cov [𝑂𝑖, 𝑂𝑗] , (2.42)

where we used the normalized time autocorrelation function

cov [𝑂𝑖, 𝑂𝑗] = ⟨(𝑂𝑖 − ⟨𝑂⟩) (𝑂𝑗 − ⟨𝑂⟩)⟩ . (2.43)

The formula can be approximated by considering absolute “time” distance between two sam-
ples:

var [𝑂] ≈ 1𝑁2gen
𝑁gen∑𝑖

+∞∑𝑡=−∞ 𝑐(|𝑡|) = 𝜏𝑁gen
𝜎2(𝑂) (2.44)

with the autocorrelation function redefined as:

𝑐(𝑡) = ⟨𝑂𝑠𝑂𝑠+𝑡⟩ − ⟨𝑂⟩2 (2.45)

and 𝜏 = 1 + 2 ∞∑𝑡=1
𝑐(𝑡)𝑐(0) (2.46)

is the autocorrelation time which give us an estimation of the number of effectively independent
points in the whole sampled set.

2.3.1 Forces in quantumMonte Carlo
The evaluation of derivatives in quantum Monte Carlo is of paramount importance not only if
one is interested in the forces for the dynamics, but also for variational energy minimization,
which is usually done iteratively by using gradients, as we will see in Section 2.3.2. Unfortu-
nately, computing forces in QMC is not as straighforward as in other methods like DFT. Follow-
ing the same procedure as in 2.1, if we compute

𝐟 = −∇𝐪𝐸VMC[Φ], (2.47)

we must account for all the dependencies of the energy functional with respect to nuclear po-
sitions. In addition to dependence on 𝐪 through the Hamiltonian, 𝐸VMC has an explicit depen-
dence through Φ, if the latter is defined with localized basis set, as is often the case, and an
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implicit dependence through the variational parameters 𝝀, which are optimized for a given 𝐪.
By substituting Eq. 2.30 in Eq. 2.47, we can express the force as the sum of three contribution:

𝐟 = 𝐟Hel-Fey + 𝐟Pulay + 𝐟𝝀, (2.48)

where 𝐟Hel-Fey = −⟨∇𝐪𝐸𝐿⟩Φ𝑇 (2.49a)

𝐟Pulay = −2 ⟨(𝐸𝐿 − 𝐸VMC) [∇𝐪 logΦ]⟩Φ𝑇 (2.49b)

𝐟𝝀 = −∇𝝀𝐸VMC ⋅ ∇𝐪𝝀. (2.49c)

The first term is the usual Hellman-Feynman contribution, the second is the Pulay term and the
last one contains the dependence on the variational parameter, and it is the most complicated
to compute.

Fortunately, when the true energy minimum and the true ground state are reached, the 𝐟𝝀
is zero by definition: 𝜕𝐸VMC𝜕𝝀 = 0.

In the sameway, when thewavefunction approaches an eigenstate of �̂�e, the Pulay term van-
ishes, leaving only the Hellman-Feynman contribution. However, in practice, the wavefunction
is never an exact eigenstate of �̂�e, and the Pulay stress poses a problem even in deterministic
quantum chemistry methods, because the wavefunction is always approximated using a finite
basis set.

Additionally, as with all observables in QMC, forces are computed as averages, which must
have a finite variance. A naive application of finite difference derivatives, with the finite step Δ
approaching zero, will end up in a diverging error on the forces, as the QMC energy difference
error remains constant, while Δ → 0. This problem has been addressed using correlated sam-
pling (CS) in VMC [104, 105] and DMC [106], and by Space-Warp Coordinate Transformation
(SWCT) [105], which provides an estimator of the force with zero variance. With SWCT, the
electronic coordinates 𝐫 follow the nuclear ones 𝐪𝑎 when these are displaced, mimicking the
displacement of the charge around the nucleus. SWCT has been generalized to infinitesimal ion
displacements via algorithmic differentiation (AD) [107], which made the computational cost
of QMC forces only four times more expensive than the energy point calculation. Furthermore,
SWCT has recently been thoroughly tested [108] and refined in the VMC case to provide very
accurate forces for machine learning applications [109].

The issue of infinite variance is not limited only to the numerical approximations of the
derivatives, but also affects the analytical differentiation. Indeed, the 𝐟Hel-Fey term may diverge
as electron-ion distance approaches zero, and the 𝐟Pulay term diverges near the nodal surface,
where Φ𝑇(𝐫) = 0. Several variance reduction methods has been proposed to tackle this issue,
specifically for the Hellman-Feynamn term [110, 111], or for both 𝐟Hel-Fey and 𝐟Pulay in the peri-
odic boundary case [112] and the open one [113] as well.
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2.3.2 Wavefunction optimization
The main difficulty in applying the variational principle for wavefunction optimization arises
from the the fact that the target function, the energy, is known only statistically. Historically the
problem has been tackled first by running several independent energy runs [98, 114], but this
was limited in the number of variational parameters and by high computational cost.

A widely used iterative method for high-dimensional optimization is the steepest descent
algorithm 1, which exploits the derivative information to drive the parameters towards the en-
ergy minimum. In our specific case, this would mean to use the 𝑓𝑘, i.e. the energy derivative
with respect to the parameter 𝜆𝑘, to update the same parameter according to

𝜆′𝑘 − 𝜆𝑘 = 𝛿𝜆𝑘 = −Δ 𝜕𝐸𝜕𝜆𝑘 = Δ𝑓𝑘 (2.50)

which is equivalent to minimize the following cost function

argmin𝝀 ⎡⎢⎣𝐸 + ∑𝑘 (−𝛿𝜆𝑘𝑓𝑘 + 12Δ𝛿𝜆2𝑘)⎤⎥⎦ . (2.51)

The issue with the steepest descent approach is that it assumes that all parameters are affected
by thes same curvature, but often some parameters are more difficult to optimize.

The solution is to take into account the geometry of the parameter space by using an appro-
priatemetric, such as the Fisher informationmatrix, to evaluate the local curvature and compute
natural gradients [115]. This technique was introduced as the stochastic reconfiguration (SR)
algorithm by Sorella in the context of Green functionMonte Carlo [116], andwas later extended
to VMC [117, 118]. This method leverages the direct knowledge of the trial QMCwavefunction,
particularly concerning the Hilbert space topology in which it is defined, to achieve rapid con-
vergence. Here, we briefly describe the main ideas behind it 2.

Consider the variational parameter as a single vector of length 𝑝:
𝝀 = (𝜆1, 𝜆2,⋯ , 𝜆𝑝) . (2.52)

We can define the logarithm derivative operator 𝑂𝑘 as:

�̂�𝑘(𝐫) = 𝜕𝜕𝜆𝑘 logΦ𝝀(𝐫) = 𝜕𝜆𝑘Φ𝝀(𝐫)Φ𝝀(𝐫) , (2.53)

for Φ𝝀 ≠ 0.
We can express the variational wavefunction as

∣Φ𝝀+𝛿𝝀⟩ = ∣Φ𝝀⟩ + ∑𝑘 𝛿𝜆𝑘 𝜕 ∣Φ𝝀⟩𝜕𝜆𝑘 + 𝑜(𝛿𝝀2) = ⎛⎜⎝1 + ∑𝑘 𝛿𝜆𝑘𝑂𝑘⎞⎟⎠ ∣Φ𝝀⟩ + 𝑜(𝛿𝝀2) (2.54)

1A stochastic variant of this algorithm, the stochastic gradient descent, is presented in Chapter 6, devoted to
machine learning, including the optimization of neural networks.

2The presentation here differs from the original as it emphasizes the analogies and the differences with the
steepest descent method. This derivation comes from the Lecture notes of Michele Casula’s course at the TREX
School on QMC with TurboRVB organized by TREX and SISSA in July 2023.
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∣Φ𝝀+𝛿𝝀⟩ = ∣Φ𝝀⟩ + ∑𝑘 𝛿𝜆𝑘 𝜕 ∣Φ𝝀⟩𝜕𝜆𝑘 + 𝑜(𝛿𝝀2) =
=⎛⎜⎝1 + ∑𝑘 𝛿𝜆𝑘𝑂𝑘⎞⎟⎠ ∣Φ𝝀⟩ + 𝑜(𝛿𝝀2) = (2.55)

We are interested in the normalized wavefunction,

∣Φ̃𝝀⟩ = ∣Φ𝝀⟩∥Φ𝝀∥ where ∥Φ𝝀∥ = √⟨Φ𝝀|Φ𝝀⟩, (2.56)

and in quantifying how much it changes:

∣𝛿Φ̃⟩ = ∣Φ̃𝝀+𝛿𝝀⟩ − ∣Φ̃𝝀⟩ . (2.57)

For this, we use the normed variation of the wavefunction 𝑑𝑠2 defined as

𝑑𝑠2 = ∥∣Φ̃𝝀+𝛿𝝀⟩ − ∣Φ̃𝝀⟩∥2 = ⟨𝛿Φ̃|𝛿Φ̃⟩ . (2.58)

Inserting Eq. 2.57 into Eq. 2.58 we get:

𝑑𝑠2 = ∑𝑘𝑘′ 𝛿𝜆𝑘𝛿𝜆𝑘′ ⟨Φ̃𝝀∣ (𝑂𝑘 − 𝑂𝑘) (𝑂𝑘′ − 𝑂𝑘′) ∣Φ̃𝝀⟩ = ∑𝑘𝑘′ 𝛿𝜆𝑘𝛿𝜆𝑘′𝑆𝑘𝑘′ , (2.59)

where we have defined the stochastic reconfiguration matrix from the covariance matrix of the
logarithm derivative operator: 𝑆𝑘𝑘′ = cov [𝑂𝑘, 𝑂𝑘′] (2.60)

which is also known as Fisher information metric 𝐹 = 4𝑆 of the probability 𝑝𝝀(𝑥) ∝ Φ𝝀(𝐱)2.
Thus, instead of using the Euclideanmetric, we can use themore appropriate Fisher information
metric to define our cost function:

argmin𝛿𝝀 ⎡⎢⎣−∑𝑘 𝑓𝑘𝛿𝜆𝑘 + 𝑑𝑠22Δ ⎤⎥⎦ , (2.61)

or, in matrix form:
argmin𝛿𝝀 [𝐟𝛿𝝀 + 12Δ𝑆] (2.62)

from which we get the solution: 𝛿𝝀 = Δ𝑆−1𝐟 (2.63)

where 𝐟 is the vector of energy derivatives. Notice that its expression is given by Eq. (2.49b),
as it is equivalent to the energy derivatives with respect to the ionic positions, with the notable
difference that the Helmann-Feynman contribution is zero because in this case only the wave
function, and not the Hamiltonian, depends on the parameters 𝑙𝑎𝑚𝑏𝑑𝑎𝑘.
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2.3.3 The wave function ansatz
As in Section 2.2.2, we describe𝑁 electrons using generalized coordinates, collectively indicated
as 𝐱 = {𝐱𝑖} = {(𝐫𝑖, 𝜎𝑖)}𝑖=1,⋯,𝑁 , while 𝐫 stands for all the space coordinates only. For convenience
we restrict to the case of spin-unpolarized system, that is𝑁↑ = 𝑁↓ = 𝑁/2, but the same approach
has been applied also to the spin-polarized case [119, 120].

The wavefunction used in this work is the product of two contributions:

Φ(𝐱) = ΦAS(𝐱) × 𝑒𝐽(𝐱) (2.64)

where 𝐽 is the Jastrow factor, a bosonic function of the electron degrees of freedom [121], whileΦAS is an antisymmetric function, thus fermionic, and it is also referred to as determinantal part
of the WF, because the easiest way to encode antisymmetry is through one ore more Slater
determinant. Such a compact form with the Jastrow in exponential form make ensure a rapid
convergence of the energy despite a large number of parameters 𝝀. In the following we describe
the functional form of each factor.

Antisymmetrized geminal power

The antisymmetric part can be built in different ways, the most straightforward would be a sin-
gle Slater determinant. In our case we consider a generalization of the Resonating Valence Bond
(RVB)wavefunction, first proposed byPauling in quantumchemistry [122] to describe aromatic
molecules, and later reprised Anderson [123] in condensed matter to describe strongly corre-
lated system. The RVB-WF describes a superposition of all possible singlet pair configurations,
that is, any electron pair with total spin zero.

Specifically, the determinantal part is an antisymmetrized product of geminals (AGP), also
called pairing functions:

ΦAS = ΦAGP(𝐱1,⋯ , 𝐱𝑛) = ̂𝐴 [𝜑(𝐱1, 𝐱2),⋯ , 𝜑(𝐱𝑛−1, 𝐱𝑛)] (2.65)

where ̂𝐴 is an operator that symmetrize the product of the pairing functions. In our choiceΦAGP
can be written in a compact form as a determinant [119]:

ΦAGP(𝐱1,⋯ , 𝐱𝑛) = det (𝐴𝑖𝑗) (2.66)

where 𝐀 is a 𝑁2 × 𝑁2 matrix of all the possible pairings:

𝐴𝑖𝑗 = 𝜑(𝐱1, 𝐱2). (2.67)

The geminals themselves are antisymmetric functions of two electrons coordinates written
as the product of a spatial symmetric part and a spin singlet:

𝜑(𝐱1, 𝐱2) = 𝑔(𝐫1, 𝐫2)𝛿(𝜎𝑖, ↑)𝛿(𝜎𝑗, ↓) − 𝛿(𝜎𝑖, ↓)𝛿(𝜎𝑗, ↑)√2 . (2.68)
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The spatial function 𝑔(𝐫1, 𝐫2) is defined starting from atom-centered basis as those in Eq.(2.8)
and (2.9),

𝑔(𝐫𝑖, 𝐫𝑗) = 𝑀∑𝑎,𝑏
𝑁b∑𝑣,𝑢 𝜆𝑎𝑏𝑣𝑢𝜓GTO𝑎,𝑣 (𝐫𝑖)𝜓GTO𝑏,𝑢 (𝐫𝑗) (2.69)

where the indices 𝑢 and 𝑣 collect the 𝑛𝑙𝑚 indices of theGTOs for short. Thematrix of parameters,𝚲 = {𝜆𝑎,𝑏𝑢,𝑣} gives, for fixed GTO channels 𝑢 and 𝑣, the strength of the valence bond between
atoms 𝑎 and 𝑏, while for other atoms the parameters will vanish during the optimization phase.

If we diagonalizes the AGP matrix 𝚲, the expression in Eq. 2.69 simplifies to

𝑔(𝐫𝑖, 𝐫𝑗) = 𝑁MO∑𝑘 𝜆MO𝑘 𝜒MO𝑘 (𝐫𝑖)𝜒MO𝑘 (𝐫𝑗) (2.70)

where the product is now only between molecular orbitals. If only the first 𝑁/2 of them are
retained, then the AGP matrix reduces to a Slater determinant wavefunction. One of the most
important advantages of the AGP Ansatz is that it is equivalent to a linear combination of Slater
determinants (i.e., multi-configurations), but the computational cost remains at the level of a
single-determinant one. The multi-configurational nature of the AGP ansatz is what makes it
suitable to take into account the static correlation.

Jastrow factor

The Jastrow factor is a function of the electron-electron and electron-ion distance, and as such
it has multiple roles. First of all, it deals with the dynamic correlation of the electrons and it
is fundamental to correctly describe the Van der Waals effects on the total energy [124], which
are related to charge fluctuations. Secondly, it limits the double occupation of orbitals, accord-
ingly with Pauli’s exclusion principle. Finally, it ensures that the Kato’s cusp conditions [125] is
properly taken into account. The latter imposes that the wavefunction slope at nuclei position
must have a cusp, a sharp change. Last, but not least, the presence of a Jastrow factor greatly
accelerate the convergence in the parameters also in the antisymmetric part.

Considering the its exponential shape given in Eq. 2.64, the Jastrow exponent is the sum of
three contributions: 𝐽 = 𝐽1 + 𝐽2 + 𝐽3. (2.71)

The one-body term itself is

𝐽h1(𝐫1,⋯ , 𝐫𝑁) = − 𝑁∑𝑖
𝑀∑𝑎 (2𝑍𝑎)3/4𝑢 ((2𝑍𝐴)1/4𝑟𝑖𝑎) , (2.72)

which satisfies the aforementionedKato’s cusp condition at electron-ion coalescence points, and
where 𝑢(|𝐫𝑖 − 𝐪𝑎|) = 1 − 𝑒−𝑏|𝐫𝑖−𝐪𝑎|2𝑏 ; (2.73)
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is a simple bounded function. In both 𝐫𝑖 and 𝜎𝑖 are the electron positions and spins respectively,𝐪𝑎 and 𝑍𝑎 are the atomic positions and number, 𝑙 are the atomic orbitals indices assigned to a
specific atom 𝑎.

In our specfic case, 𝐽1 is applied only to hydrogen atoms, that are subjected to the bare
Coulomb potential; in the case of oxygens the latter is replaced by the Burkatzki-Filippi-Dolg
(BFD) potential [126].

In a similar way the two-body term manages the electron-electron cuspo conditions for an-
tiparallel spin electrons

𝐽2 = 𝑁∑𝑖<𝑗 𝑢(𝑟𝑖𝑗) (2.74)

Finally the last term,

𝐽3 = 𝑁∑𝑖<𝑗 𝑔(𝐫𝑖, 𝐫𝑗), (2.75)

includes many-body correlations through the use of geminals 𝑔(𝐫𝑖, 𝐫𝑗) as defined in 2.69, as they
depend on the positions of two electrons 𝑖 and 𝑗 possibly belonging to two different atoms 𝑎 and𝑏.
2.3.4 Preparation and optimization of the quantumMonte Carlo wavefunction
In this Section we show the wavefunction specifications as reported in the SI of Ref. [127]

Preparation: geminal embedded orbitals

Before running finite-temperature calculations, we optimize a QMC variational wave function∣Φ𝐪⟩ at zero temperature.
Both Jastrow and AGP expansions are developed over a primitive O(3s2p1d) H(2s1p) and

O(5s5p2d) H(4s2p) Gaussian basis functions, respectively. The primitive basis sets are then
contracted using the geminal embedded orbitals (GEOs) scheme [128], reducing significantly
the total number 𝑝 of parameters describing the VMC wavefunction. This strategy is quite im-
portant to alleviate the computational burden of QMC, as in current optimizationmethods [117,
118, 129], which are based on iterative procedures that involve 𝑝 × 𝑝 matrices, the number of
QMC samplings has to be much larger than 𝑝.

Previous works on the Zundel ion [130, 131] found that the optimal balance between accu-
racy and computational cost for the determinantal part is reached by the O[8]H[2] contracted
GEO basis, in self-explaining notations. As the protonated water hexamer is a very similar sys-
tem, in this work we used the same O[8]H[2] GEO contraction for the AGP part. Moreover, we
further simplified the variationalwavefunction previously developed for the Zundel ion, by con-
tracting also the Jastrow basis set, using the same GEO embedding scheme. We tried different
contraction sets, and tested them on the water dimer dissociation energy curve, as reported in
Fig 2.1. The water dimer is a stringent benchmark for the quality of our wave function, as it has
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Basis set 𝑝 Ebind (kcal/mol)
Primitive Jastrow and primitive determinant 6303 4.46(8)

Primitive Jastrow and O[8]H[2] GEO determinant 2089 4.40(8)
O[6]H[2] GEO Jastrow and O[8]H[2] GEO determinant 1283 4.26(8)

Table 2.1: Water dimer binding energies for QMC variational wave functions obtained with different
types of basis set contractions. The corresponding number 𝑝 of variational parameters is also reported.

parts of the wavefunction are kept frozen. At each new ionic configuration, the wavefunction
must be reoptimized with methods as the one introduced in Section 2.3.2. Since the ionic posi-
tions are smoothly connected to those of the previous MD time step, the electronic parameters
will also evolve continuously. Therefore, only a few optimization steps are needed, especially
in comparison with an wavefunction optimization from scratch.





CHAPTER 3
Ion dynamics

In this Chapter, we present the algorithms used for propagating the motion of the nuclei. Since
they are built upon well-established frameworks, we also provide the broader context in which
they are cast.

In Section 3.1, we introduce the formalism needed to sample observables at zero temper-
ature, which is then adapted to the finite temperature case in Section 3.2 using stochastic dif-
ferential equations. This framework is further extended to quantum simulations via the path
integral formalism, as explained in Section 3.3. The specific algorithms employed in this work
for classical simulations are the Bussi algorithm in presence of deterministic forces (Sec. 3.2.3),
and the Attaccalite-Sorella algorithm in presence of QMC forces (Sec. 3.2.4). In the case of quan-
tum simulations, both with deterministic and stochastically estimated forces, we used the Path
integral Ornstein-Uhlenbeck dynamics for quantum simulations, described 3.5.2.

In this Chapter, since we are focusing solely on nuclei, unlike the previous chapter, we will
denote the total number of atoms by 𝑁 instead of 𝑀, as this notation is more customary in
statistical mechanics.

3.1 Classical dynamics at zero temperature

3.1.1 Microcanonical ensemble and ergodicity

Consider a system of 𝑁 classical nuclei, described by a set of degrees of freedom 𝚪 = {𝐩, 𝐪} ={𝐩𝑎, 𝐪𝑎}𝑎=1,⋯,𝑁 . In the following we will often adopt the collective notation 𝐩 and 𝐪 for all the
nuclei degrees of freedom, evenwhen dealingwith atomswith differentmasses. If the system is
in thermodynamic equilibrium, it is known from statistical mechanics that a propertyA, which
is a function 𝐴 = 𝐴(𝚪) of the degrees of freedom, can be derived by averaging it over the phase
space according to the probability density function 𝜌(𝚪) associated with the ensemble taken
into consideration: ⟨𝐴(𝚪)⟩ = ∫𝑑𝚪𝜌(𝚪)𝐴(𝚪). (3.1)

For a systemwith a constant number of particles𝑁, volume𝑉 and energy𝐸 (𝑁𝑉𝐸-ensemble,
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or microcanonical ensemble) the probability density function is

𝜌(𝚪) = 1Ω(𝑁,𝑉, 𝐸)𝛿 (𝐸 − 𝐻(𝚪)) 𝐸 ≤ 𝐻(𝚪) ≤ 𝐸 + Δ (3.2)

where Ω is the phase space volume corresponding to the shell of energy 𝐸:
Ω = ∫𝛿 (𝐸 − 𝐻(𝚪))d𝚪 = ∫𝐸≤𝐻(𝚪)≤𝐸+Δ d𝚪. (3.3)

Unfortunately only in a few cases the partition function can be evaluated analytically and
it is necessary to resort to approximations, numerical methods or numerical simulations. The
most common simulation methods are of two types: (i) Monte Carlo ones, in which the phase
space is sampled according to the appropriate probability distribution function associated to
the ensemble taken into consideration (direct computation of phase space or ensemble average);
(ii) Molecular Dynamics (MD), in which the phase space is explored exploiting the dynamical
equations of the system. For the latter method to be reliable, the dynamics must be ergodic,
which means that time averages are equal to ensemble averages in the limit 𝑇 → ∞:

⟨𝐴(𝚪)⟩ = lim𝑇→∞ 1𝑇 ∫𝑇
0 𝑑𝑡𝐴(𝚪(𝑡)). (3.4)

This computation is done in practice with a finite time step Δ𝑡 and in a definite interval of time𝑇 = 𝑁stepΔ𝑡 of simulation:

⟨𝐴(𝚪)⟩ ≈ 1𝑁stepΔ𝑡
𝑁step∑𝑖=1 𝐴(𝚪(𝑡𝑖)), (3.5)

where the length of the simulation must be long enough in order to satisfy two conditions: the
phase space is explored as much as possible; all the phenomena at different time scales are
reproduced correctly.

3.1.2 Time evolution via Liouvillian operator
How is the system propagated in time? In Chapter 1 we started from a full quantum problem,
separating nuclei and electrons wavefunctions by means of the BO approximation. By writing
the nuclear wave function in a quantum fluid dynamics representation it is possible to derive
the classical equation of motion of the nuclei [39], which in its Newtonian form reads:

𝑚𝑎 ̈𝐪𝑎 = −∇𝑎𝐸0(𝐪) = 𝐟𝑎. (3.6)

where 𝐸0 is the energy eigenvalue of the electronic Hamiltonian. This means that once we know
the solution to the eigenvalue problem for the electrons, i.e. once we know PES 𝐸0(𝐪), already
introduced in Chapter 1, with any of the electronic structuremethods described in Chapter 2, by
deriving it with respect to the coordinates of a single nucleus, 𝐪𝑎, we obtain the force needed to
propagate it [134]. For this reason we can say that classical nuclei moves on the PES generated
by the electrons, which is explored and characterized during the MD simulation.
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In the context of the Hamiltonian formulation of classical mechanics, Equation (3.6) can
be studied in the Liouville formalism, which is particularly useful for formulating propagation
algorithms. The time evolution of momenta and positions can be rewritten as:⎧{⎨{⎩

�̇�𝑎 = −∇𝐪𝑎𝐻 = 𝐟𝑎̇𝐪𝑎 = ∇𝐩𝑎𝐻 = 𝐩𝑎𝑚𝑎
↔ 𝜕𝚪𝜕𝑡 = − {𝐻, 𝚪} , (3.7)

where we used the Poisson bracket, which allows one to conveniently express the Liouville
operator in a compact form. Within this formalism, the Liouville operatore can be defined as

𝑖�̂� ≡ ∇𝐩𝐻∇𝐪 − ∇𝐪𝐻∇𝐩 = −{𝐻, ⋅} , (3.8)

so that the equation of motion and its formal solution read:
d𝚪
d𝑡 = 𝑖�̂�𝚪, (3.9)

𝚪(𝑡) = 𝑒𝑖�̂�𝑡𝚪(0) = 𝑒𝑖(�̂�𝐩+�̂�𝐪)𝑡𝚪(0), (3.10)
respectively. In the last Equation, the Liouvillian is expressed as the sum of two terms, namely𝑖�̂� = 𝑖�̂�𝐩 + 𝑖�̂�𝐪, where: 𝑖�̂�𝐪 = ̇𝐪 ⋅ ∇𝐪 = 𝐩𝑚 ⋅ ∇𝐪, (3.11)

𝑖�̂�𝐩 = �̇� ⋅ ∇𝐩 = 𝐟 ⋅ ∇𝐩. (3.12)
This formalism will reveal useful in establishing a common framework for the definition of var-
ious molecular dynamics algorithms.

3.1.3 Velocity-Verlet algorithm
The Verlet algorithm [135] is one of the simplest and most employed integration schemes since
its conception at the end of the 1960s. Being the starting point of many more sophisticated
methods as the ones showed later, we briefly remind its steps in its velocity variant [136].

The exponential that appears in Eq. 3.10 is approximatated according to the Suzuki-Trotter
second order decomposition [137, 138]:

𝑒𝑖�̂�𝐩𝛿𝑡/2𝑒𝑖�̂�𝐪𝛿𝑡𝑒𝑖�̂�𝐩𝛿𝑡/2 +O(𝛿𝑡2). (3.13)

Notice that if we were dealing with numbers at the exponent, the above Equation would be
exact without the need of theO(𝛿𝑡2) term. However, here we are dealing with operators which
in general do not commute with each other. Therefore, the product of the exponentials is an
approximations up to order 𝑂(𝛿𝑡2).
After the Suzuki-Trotter break-up, the velocity-Verlet steps are the following:

1. Propagate the particle momenta for 𝛿𝑡/2
𝐩(𝑡 + 𝛿𝑡/2) = 𝑒𝑖�̂�𝐩𝛿𝑡/2𝐩(𝑡) = (1 + 𝛿𝑡2 𝐟 ⋅ ∇𝐩)𝐩(𝑡) = 𝐩(𝑡) + 𝛿𝑡2 𝐟(𝑡). (3.14)
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2. Propagate the ionic positions for 𝛿𝑡,
𝐪(𝑡+𝛿𝑡) = 𝑒𝑖�̂�𝐪𝛿𝑡𝐪(𝑡) = (1 + 𝛿𝑡𝐩(𝑡)𝑚 ⋅ ∇𝐪)𝐪(𝑡) = 𝐪(𝑡)+𝛿𝑡𝐩(𝑡 + 𝛿𝑡/2)𝑚 = 𝐪(𝑡)+𝛿𝑡𝐩(𝑡)𝑚 +𝛿𝑡2 𝐟(𝑡)2𝑚 .

(3.15)

3. Evaluate the Born-Oppenheimer forces in the new positions (in our case, using ab initio
methods or machine learning potentials):

𝐟(𝑡 + 𝛿𝑡) = −∇𝐪𝐸0 (𝐪(𝑡 + 𝛿𝑡)) . (3.16)

4. Propagate the particle momenta for the remaining half time step, from 𝑡 + 𝛿𝑡/2 to 𝑡 + 𝛿𝑡:
𝐩(𝑡 + 𝛿𝑡) = 𝑒𝑖�̂�𝐩𝛿𝑡/2𝐩(𝑡 + 𝛿𝑡/2) = 𝐩(𝑡 + 𝛿𝑡/2) + 𝛿𝑡2 𝐟(𝑡 + 𝛿𝑡). (3.17)

Notice that the only approximation is the Suzuki-Trotter breakup: the development of the ex-
ponential up to the first order, as in Eq. 3.14, 3.15 and 3.17, based on the small time step 𝛿𝑡, is
exact, since terms involving powers of the gradients ∇𝐩 and ∇𝐪 are zero.

3.2 Classical dynamics at finite temperature
3.2.1 Canonical ensemble
If we are interested in properties which depend on the temperature, we must look at a different
ensemble, namely the canonical one. In this case the probability density is different from the one
(3.2):

𝜌(𝚪) = 𝑒−𝛽𝐻(𝚪)𝑍(𝑁,𝑉, 𝑇) , (3.18)

where we have the usual prefactor 𝛽 = 1/𝑘𝐵𝑇 and the partition function is defined as:

𝑍(𝑁,𝑉, 𝑇) = ∫d𝚪𝑒−𝛽𝐻(𝚪). (3.19)

As a final remark we remind that 𝑍 is related to the Helmholtz free energy 𝐹(𝑁,𝑉, 𝑇) = 𝑈−𝑇𝑆
via: 𝐹(𝑁,𝑉, 𝑇) = −𝑘𝐵𝑇 ln𝑍(𝑁,𝑉, 𝑇). (3.20)

3.2.2 Thermostatting by Langevin dynamics
In order to sample the right distribution function (3.18) a number of thermostatting schemes
has been developed. They can be divided in two categories:

1. Deterministic thermostats, which correct the velocities of the particles in order to keep the
system at constant temperature. Among them, the Nosé-Hoover [139, 140] is one of the
most known.
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2. Stochastic thermostats, which treat the particles as Brownian ones, subjected to a dissipa-
tive force and a stochastic force, in addition to the external one, such that the constant
temperature condition is satisfied via the Fluctuation-Dissipation Theorem (FDT).

The second type of thermostats is suitable in dealing with the stochastic nature of forces gen-
erated by quantum Monte Carlo methods, therefore we will proceed in explaining their funda-
mentals features.

Stochastic thermostats in MD simulation are usually built upon Langevin equations, a class
of Stochastic Differential Equations (SDEs) originally conceived to describe the randommotion
of a mesoscopic particle immersed in a thermal bath, that is a Brownian particle. Despite its
historical origin, the Langevin approach paved the way to an entire new field of stochastic pro-
cesses [141] and their applications to different natural phenomena and algorithms, including
the molecular dynamics thermostatting. In fact we are not dealing with a particle in a ther-
mal bath, but with an isolated system. Nevertheless we can employ the Langevin equation to
impose a dynamics at a fixed temperature by adding an opportune white noise.

In its under-damped differential form, the Langevin equation reads1

�̇�(𝑡) = −𝜸𝐩(𝑡) + 𝐟 (𝐪(𝑡)) + 𝜼(𝑡)̇𝐪(𝑡) = 𝐩𝑚, (3.24)

where at each step the random force 𝜼(𝑡) is a random vector sampled from a multivariate Gaus-
sian white noise distribution N (0,d𝑡). As such, these random vectors must satisfy the zero
mean condition ⟨𝜼(𝑡)⟩ = 𝟎, (3.25)

and they must be statistically independent in time

⟨𝜼(𝑡)𝜼𝑇(𝑡′)⟩ = 𝛿(𝑡 − 𝑡′)𝜶(𝐪). (3.26)

The latter condition translates into the fluctuation-dissipation theorem, which relates the covari-
ance matrix of the stochastic forces, 𝜶(𝐪), to the friction matrix 𝜸(𝐪), also called damping matrix,

1The rigorous way of writing Eq. (3.24) is by using stochastic differentials:

d𝐩(𝑡) = −𝜸(𝐪)𝐩(𝑡)d𝑡 + 𝐟 (𝐪(𝑡))d𝑡 + 𝐁 (𝐪(𝑡))d𝐖(𝑡)
d𝐪(𝑡) = 𝐩𝑚 d𝑡, (3.21)

where d𝐖(𝑡) is aWiener process, a continuous but non-differentiable function of time. Nevertheless, we can formally
define the Gaussian white noise as:

”𝜼(𝑡) = lim
d𝑡→0𝐁d𝐖(𝑡)

d𝑡 ”. (3.22)

Heuristically, we can say that d𝐖 ≈ (d𝑡)1/2, which distinguishes the time dependence of Brownian motion from
that of typical ballistic motion.

The solution of Eq. (3.21) is

𝐩(𝑡) = 𝑝0 − ∫𝑡
0 d𝑠 (𝜸(𝐪)𝐩(𝑡) + 𝐟(𝐪)) + ∫𝑡

0 d𝑠𝐁(𝐪) (𝐪(𝑡))d𝐖(𝑡). (3.23)

Despite its familiarity, solving such integrals requires a completely different and fascinating way of doing calculus,
for which the reader is referred to [141, 142]. In this exposition, we stick to the physicists dot notation.
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through a relation that involves the temperature 𝑇 [143]:

2𝑚𝑘𝐵𝑇𝜸(𝐪) = 𝜶(𝐪). (3.27)

Notice that Eq. 3.24 is just the Newtonian formula to which we added the dissipation and
the fluctuation terms. As we did in Section 3.1.2, we can introduce a formalism to deal with the
probability distribution of an ensemble defined on the phase space. Indeed, it is well known
from theory that SDEproblems can be treated fromamacroscopic perspective using generalized
Fokker-Planck equation (FPE) [142].

If the particle were subjected to drift and diffusion forces only, with the drift depending
linearly on the momenta, we would have an Ornstein-Uhlenbeck (OU) process [144] in the
momenta space: �̇�(𝑡) = −𝜸𝐩(𝑡) + 𝜼(𝑡) (3.28)
and the probability distribution 𝜌(𝐩, 𝐪, 𝑡) would evolve in time according to the following FPE:𝜕𝜌(𝐩, 𝐪, 𝑡)𝜕𝑡 = −𝜸 (∇𝐩𝐩⏟

drift

+ 𝑚𝛽 ∇2𝐩)⏟
diffusion

𝜌(𝐩, 𝐪, 𝑡) = −𝑖�̂�FP𝜌(𝐩, 𝐪, 𝑡), (3.29)

where we have defined the Fokker-Planck operator �̂�FP.
In the more general case including also the action of an external force 𝐟, like in Eq. (3.24),

we consider the Kramers-Klein operator instead:

𝑖�̂�KK = 𝑖�̂�𝐩 + 𝑖�̂�𝐪 + 𝑖�̂�FP (3.30)

which resembles the decomposition of the Liouvillian operator reported in Eq. 3.10, 3.11 and
3.12.

3.2.3 Bussi algorithm
The Bussi algorithm [145] can be described by the Suzuki-Trotter decomposition of operators
in Eq. 3.30: 𝑒𝑖�̂�KK𝛿𝑡 = 𝑒(𝑖�̂�𝐩+𝑖�̂�𝐪+𝑖�̂�FP)𝛿𝑡 ≈ 𝑒𝑖�̂�FP𝛿𝑡/2 𝑒𝑖�̂�𝐩𝛿𝑡/2𝑒𝑖�̂�𝐪𝛿𝑡𝑒𝑖�̂�𝐩𝛿𝑡/2⏟⏟⏟⏟⏟⏟⏟⏟⏟

velocity-Verlet
𝑒𝑖�̂�FP𝛿𝑡/2, (3.31)

wherewe can seewe have a deterministic propagation step analogous to the velocity-Verlet algo-
rithm, sandwiched between two stochastic propagation steps based on theOU-process Equation
(3.28), where the BO forces do not act. It is possible to compute the exact thermostat propaga-
tion for any time interval Δ𝑡 [146]. This derivation can be found in Appendix A.

The whole propagation according to Eq. (3.31) comprises the following steps:

1. First analytical thermostatting of particle momenta

𝐩(𝑡+) = 𝑐1𝐩(𝑡) + 𝑐2𝐑(𝑡). (3.32)

2. Deterministic approximate propagation according to the Verlet algorithm:
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• Propagate the positions for an entire time-step 𝛿𝑡
𝐪(𝑡 + 𝛿𝑡) = 𝑒𝑖�̂�𝐪𝛿𝑡 = 𝐪(𝑡) + 𝛿𝑡𝐩(𝑡+)𝑚 + 𝛿𝑡2 𝐟(𝑡)2𝑚 . (3.33)

• Compute the new BO forces according to the new configuration

𝐟(𝑡 + 𝛿𝑡) = −∇𝐪𝑉 (𝐪(𝑡 + 𝛿𝑡)) . (3.34)

• Approximate the momenta given the old and the new forces

𝐩(𝑡− + 𝛿𝑡) = 𝑒𝑖�̂�𝐩𝛿𝑡𝐩(𝑡+) = 𝐩(𝑡+) + 𝐟(𝑡) + 𝐟(𝑡 + 𝛿𝑡)2 𝛿𝑡. (3.35)

3. Last analytical thermostatting of particle momenta

𝐩(𝑡 + 𝛿𝑡) = 𝑐1𝐩(𝑡− + 𝛿𝑡) + 𝑐2𝐑(𝑡 + 𝛿𝑡). (3.36)

In all the thermostatting steps the coefficients, 𝐑 is a Gaussian random vector, while 𝑐1 and 𝑐2
are: 𝑐1 = 𝑒−𝜸 𝛿𝑡2 𝑐2 = √(1 − 𝑒−𝜸𝛿𝑡) 𝑚𝛽 , (3.37)

asmotivated in Appendix A. The timestamps 𝑡+ and 𝑡− refer to the instants of time just after and
just before the application of the thermostat to the momenta, respectively. More precisely, 𝑝(𝑡+)
in Eq. (3.32) are the momenta thermostatted for 𝛿𝑡/2; still, these are not the fully propagated
momenta yet, because the BO forces will act in the following step, according to the algorithm.
Analogously, 𝑝(𝑡− + 𝛿𝑡) in Eq. (3.36) are the momenta that still miss the last half-contribution
of the thermostat.

The limitation of this algorithm is that it can not deal with Born-Oppenheimer forces 𝐟 intrin-
sically affected by a stochastic noise, such as those computed through QMC. The latter would
add more noise to the integration scheme, increasing the effective temperature of the simula-
tion.

3.2.4 Attaccalite-Sorella algorithm
The solutions to dynamics biased toward higher temperatures are based on noise covariance
correction schemes. Before introducing these, it is useful to switch to transformed variables:

𝐪 = 𝐪0√𝑚𝐩 = 𝐩0/√𝑚𝜼 = 𝜼0√𝑚𝐟 = 𝐟0/√𝑚,
(3.38)

where the variables indexed by zeroes are the original coordinates. By applying this transfor-
mation to the variables involved in the Langevin equation 3.24, we would get:

�̇�(𝑡) = −𝜸(𝐪)𝐩(𝑡) + 𝐟 (𝐪(𝑡)) + 𝜼(𝑡)̇𝐪(𝑡) = 𝐩, (3.39)
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with the noise mean and covariance relations rescaled as:

⟨𝜼(𝑡)⟩ = 𝟎, ⟨𝜼(𝑡)𝜼𝑇(𝑡′)⟩ = 𝜶(𝐪)𝛿(𝑡 − 𝑡′) = 2𝑘𝐵𝑇𝜸(𝐪)𝛿(𝑡 − 𝑡′), (3.40)

where in the last step we used fluctuation-dissipation relation without masses, at variance with
Eq. (3.27). Notice that the covariance matrix 𝜶 deals with two types of correlation:

• Spatial correlation, or cross-correlation, between the vectorial forces components.

• Time correlation, which in the Markovian case is reduced to a 𝛿-function, in order to have
Gaussian white noise; otherwise we would have colored noise.

Time discretization approximation

The noise correction schemes, introduced by Attaccalite-Sorella (AS) in Ref. [112], and later
refined in Refs. [147, 148], are all based on the time discretization approximation.

We introduce it by first showing the formal solution of the rescaled Langevin Equation 3.39,
found by integrating from time 𝑡 to time 𝑡′:

𝐩(𝑡′) − 𝐩(𝑡) = ∫𝑡′
𝑡 d𝑠 (−𝜸𝐪𝐩(𝑠) + 𝐟𝐪(𝑠) + 𝜼(𝑠)) ,

𝐪(𝑡′) − 𝐪(𝑡) = (𝑡′ − 𝑡)𝐩. (3.41)

Without further information, or approximations, the integration of the first equation in mo-
menta variables can be developped up to the following form:

𝐩(𝑡′) = 𝐩(𝑡)𝑒−∫𝑡′𝑡 d𝑠𝜸𝐪(𝑠) + ∫𝑡′
𝑡 d𝑠𝑒−𝜸𝐪(𝑠)(𝑡′−𝑠) (𝐟𝐪(𝑠) + 𝜼(𝑠)) , (3.42)

where for readability we expressed the 𝐪(𝑠)-dependences in subscript.
To further develop the solution, the time is discretized in small time intervals2, 𝑡′ − 𝑡 = 𝛿𝑡,

and in each of these interval the dependence of forces and friction matrix on the positions 𝐪 is
neglected, resulting in the following constant values

𝐟(𝐪(𝑠)) = 𝐟 (𝐪(𝑡𝑛)) ≈ 𝐟𝑛𝜸(𝐪(𝑠)) = 𝜸 (𝐪(𝑡𝑛)) ≈ 𝜸𝑛, (3.43)

that can be easily put outside of the integrals appearing in Eq. 3.42

(3.42) ≈ 𝐩(𝑡)𝑒−𝜸𝑛𝛿𝑡 + 𝜸−1𝑛 (1 − 𝑒−𝜸𝑛𝛿𝑡) (𝐟𝑛 + 𝜼𝑛) = 𝐩(𝑡)𝑒−𝜸𝑛𝛿𝑡 + 𝚪𝑛 (𝐟𝑛 + 𝜼𝑛) . (3.44)

where we defined 𝚪𝑛 = 𝜸−1𝑛 (1 − 𝑒−𝜸𝑛𝛿𝑡). Then the solution of the scaled Langevin Eq. 3.39 can
be approximated as:

𝐩𝑛+1 = 𝐩𝑛𝑒−𝜸𝑛𝛿𝑡 + 𝚪𝑛 (𝐟𝑛 + 𝜼𝑛)𝐪𝑛+1 = 𝐪𝑛 + 𝐩𝑛𝛿𝑡 (3.45)

2Notice that the introduction of this small timestep is a true approximation, that has nothing to do with the
stochastic differential formulation of SDE (Eq. 3.21).
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where we expressed the dependence on the discrete time 𝑡𝑛 directly putting 𝑛 as subscript for
short. The term 𝜼𝑛 is the noise vector obtained from integration of the GWN 𝜼(𝑡) in the time
interval [𝑡𝑛 − 𝛿𝑡/2, 𝑡𝑛 + 𝛿𝑡/2]:

𝜼𝑛 = 𝜸𝑛2 sinh(𝜸𝑛𝛿𝑡/2)
𝑡𝑛+𝛿𝑡/2∫𝑡𝑛−𝛿𝑡/2 d𝑠𝜼(𝑠)𝑒−𝜸𝑛(𝑡𝑛−𝑠), (3.46)

where the prefactor outside of the integral accounts for the multiplication by 𝚪𝑛 in Eq. 3.45.
The integrated noise is characterized by the following covariance matrix:

⟨𝜼𝑚𝜼𝑇𝑛⟩ = 𝜸𝑚𝜸𝑛4 sinh(𝜸𝑚𝛿𝑡/2) sinh(𝜸𝑛𝛿𝑡/2)
𝑡𝑚+𝛿𝑡/2∫𝑡𝑚−𝛿𝑡/2

𝑡𝑛+𝛿𝑡/2∫𝑡𝑛−𝛿𝑡/2 𝑒−𝜸𝑚(𝑡𝑛−𝑟)𝑒−𝜸𝑛(𝑡𝑛−𝑠) ⟨𝜼(𝑟)𝜼𝑇(𝑠)⟩ . (3.47)

We know from Eq. 3.40 the covariance in the integral is nonzero only when the two noises are
evaluated at the same time, 𝑟 = 𝑠, which implies that also the time intervals must be the same,𝑡𝑚 = 𝑡𝑛. Therefore, the covariance matrix reduces to ⟨𝜼𝑇𝑛𝜼𝑛⟩

⟨𝜼𝑚𝜼𝑇𝑛⟩ 𝛿𝑚𝑛 = ⟨𝜼𝑛𝜼𝑇𝑛⟩ = 𝜸2𝑛4 sinh2(𝛿𝑡/2) ⎛⎜⎜⎜⎝
𝑡𝑛+𝛿𝑡/2∫𝑡𝑛−𝛿𝑡/2 𝑒−𝜸𝑛(𝑡𝑛−𝑠) d𝑡⎞⎟⎟⎟⎠

2 = 𝑘𝐵𝑇𝜸2𝑛 coth(𝜸𝑛 𝛿𝑡2 ) . (3.48)

Noise correction

Knowing that the whole noise added by the thermostat should have a covariance matrix as
the one in Eq. 3.48, we can deduce a noise correction scheme where the actual random forces,𝜼ext,𝑛, are sampled according to a multivariate Gaussian distribution having a noise-corrected
covariance matrix: ⟨𝜼ext,𝑛𝜼𝑇

ext,𝑛⟩ = ⟨𝜼𝑛𝜼𝑇𝑛⟩ − ⟨𝛿𝐟𝑛𝛿𝐟𝑇𝑛 ⟩ (3.49)

where ⟨𝜼𝑛𝜼𝑇𝑛⟩ is determined as in Eq. (3.48), and the last term is the (integrated) QMC forces
covariance matrix, 𝜶QMC(𝐪) = ⟨𝛿𝐟(𝐪)𝛿𝐟𝑇(𝐪)⟩. Equation 3.49 represents the core of the AS algo-
rithm.

Considering that the stochastic nature ofQMC forces introduce additional spatially-correlated
noise at each time-step of the dynamics, a further development consists in optimizing the value
of the 𝜸 matrix (which in this approach has non trivial off-diagonal matrix elements) by choos-
ing it such that 𝛾 = ̄𝛼/2𝑘𝐵𝑇, where the stochastic forces-covariance matrix reads as:

𝜶(𝐪) = 𝛼0 ̄𝐈 + Δ0𝜶QMC(𝐪). (3.50)

In the above Equation, the first term of the sum is 𝛼0 = 2𝑘𝐵𝑇𝛾, the diagonal white noise contri-
bution whose parameter 𝛾 is selected by the user, and Δ0 is an additional user-tunable param-
eter to make the covariance matrix positive definite and, together with 𝛾, to lead to an optimal
damping matrix 𝜸 and thus a more efficient Langevin dynamics.
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3.2.5 Classical Momentum-Position Correlator
The AS algorithm has later been improved with the Classical momentum-position correlator
(CMPC) algorithm [148, 149], in which the noise due to Langevin dynamics affects both posi-
tions and momenta. To account for this, new 6𝑁-dimensional vectors that combines momenta
and positions coordinates, ionic forces and random forces vector are defined as:

𝐗 = ⎛⎜⎝𝐩𝐪⎞⎟⎠ , 𝐅 = ⎛⎜⎝𝐟𝟎⎞⎟⎠ , 𝚵 = ⎛⎜⎝𝜼𝟎⎞⎟⎠ , (3.51)

respectively. These variables allow to write the Langevin Eq. (3.39) as

�̇� = − ̂𝜸𝐗 + 𝐅 + 𝚵, (3.52)

where the 6𝑁 × 6𝑁 matrix ̂𝜸 represents a generalized friction that couples both momenta and
positions: ̂𝜸 = ⎛⎜⎝ 𝜸 𝟎−𝐈 𝟎⎞⎟⎠ , (3.53)

where 𝜸 being the same 3𝑁×3𝑁 frictionmatrix defined in Eq. (3.40), and 𝐈 is the identitymatrix.
The formal solution of Eq. (3.52) is similar to the one obtained in Eq. (3.42)

𝐗(𝑡′) = 𝑒−�̂�(𝑡′−𝑡)𝐗(𝑡) + ∫𝑡′
𝑡 d𝑠𝑒�̂�(𝑠−𝑡′) (𝐅(𝐗(𝑠)) + 𝚵(𝑠)) . (3.54)

If we express 𝑒−�̂�𝛿𝑡 in terms of Pauli matrices

̂𝜸 = 𝜸2 ⊗ 𝐈 − 𝐈2 ⊗ 𝝈𝑥 + 𝑖 𝐈2 ⊗ 𝝈𝑦 + 𝜸2 ⊗ 𝝈𝑧, (3.55)

it is possible to express the solution Eq. (3.54) in a closed form:

𝐩𝑛+1 = 𝑒−𝜸𝛿𝑡𝐩𝑛 + 𝚪 (𝐟𝑛 + ̃𝜼) (3.56)𝐪𝑛+1 = 𝐪𝑛 + 𝜸𝐩𝑛 + 𝚯(𝐟𝑛 + ̃̃𝜼) , (3.57)

where the time evolution has been discretized with timestep 𝛿𝑡, and the subscripts refer to the
corresponding time interval, such that 𝐩𝑛 = 𝐩(𝑡𝑛), 𝐪𝑛 = 𝐪(𝑡𝑛), and 𝐟𝑛 = 𝐟(𝐪(𝑡𝑛)). Notice that
also here we assumed that 𝐟𝑛 and 𝜸𝑛 do not vary withing the small time interval. The remaining
symbols in the above equations are defined as

𝚪 = 𝜸−1(1 − 𝑒−𝜸𝛿𝑡),𝚯 = 𝜸−2(−1 + 𝜸𝛿𝑡 + 𝑒−𝜸𝛿𝑡),
̃𝜼 = 𝚪−1 𝑡𝑛+1∫𝑡𝑛 d𝑡𝑒𝜸(𝑡−𝑡𝑛+1)𝜼(𝑡),
̃̃𝜼 = (𝚯𝜸)−1 𝑡𝑛+1∫𝑡𝑛 d𝑡(1 − 𝑒𝜸(𝑡−𝑡𝑛+1))𝜼(𝑡). (3.58)
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The strength of CMPC algorithm is that it propagates momenta and positions simultaneously
in a single iteration thanks to the use of momentum-position correlation matrices. In particular,
according to Eqs. (3.56)) and (3.57)), not only the momenta but also the positions are affected
by the integrated Langevin noise.

While more cumbersome, this derivation is useful because it introduces some ideas used to
derive the PIOUD algorithm in the PIMD formalism (see Section 3.5.2).

3.3 Quantum dynamics in the path integral formalism

3.3.1 Nuclear quantum effects

Nuclear Quantum Effects (NQEs) are the manifestation of the quantum nature of nuclei on
chemical properties that cannot be fully explained by classical physics. These effects are partic-
ularly significant for light nuclei, which can exhibit behaviors such as Zero Point Energy (ZPE),
proton delocalization, energy level quantization, and proton tunneling.

ZPE and proton delocalization arise directly fromHeisenberg’s uncertainty principle, which
states that a quantum system will always have finite energy, even in its lowest energy state, and
that its exact position cannot be precisely determined. In molecular systems, ZPE is defined
as the energy difference between the vibrational ground state and the minimum of the Born-
Oppenheimer potential energy surface. It can be estimated as ℏ𝜔0/2, where ℏ = ℎ/2𝜋 is the
reduced Planck’s constant and 𝜔0 is the frequency of the lowest vibrational mode.

Tunneling refers to the non-zero probability of a particle crossing an energy barrier without
needing thermal fluctuations, a process that is classically forbidden. This phenomenon depends
on both the energy scale involved and the mass of the particle; for example, tunneling is much
more likely for electrons [150] than for protons [28].

Due to the presence of hydrogen, NQEs have been observed in water systems [32], and
they play a crucial role in protonated water as well. In particular, NQEs affect Hydrogen bond
(H-bond) and the proton transfer (PT) mechanism [151], influencing the reaction rates of PT
[152].

In the case of PT alongH-bond, an oversimplified but illustrativemodel of how quantum nu-
clei might behave can be described by reducing the full PES to a double-well potential (Fig. 3.1).
Taking the example of water, the double potential well is formed between the two oxygen atoms
sharing a proton, with the H+ positioned in one of the wells. The central barrier and the symme-
try of the well change as the oxygen-oxygen distance OO varies: when the oxygens are pulled
farther apart, the barrier height increases, and the double well becomes asymmetric, as the pro-
ton tends to form a covalent bond with the nearest oxygen. Conversely, when OO decreases,
the barrier is lowered, and the potential well becomes more symmetric, making proton transfer
more feasible.
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as larger clusters [166].

3.3.3 From quantum path integrals to classical ring polymers
Following Ref. [167], our starting point is the Hamiltonian in Eq. (1.3). Using again

𝐻(𝐩, 𝐪) = 𝑁∑𝑎=1
𝐩2𝑎2𝑚𝑎 + 𝐻e(𝐪) = �̂�n(𝐩) + �̂�n(𝐪), (3.59)

where �̂�n(𝐪) is the potential operator. Its value obtainedwithin the BOapproximation is the PES𝐸0(𝐪), which can be numerically evaluated by means of the methods described in the previous
Chapter. In what follows, for the sake of readability, we will drop the n subscript from �̂�n and�̂�n, since we will deal only with the nuclear degrees of freedom.

In classical statistical mechanics the given ensemble implies a certain probability density
function defined on the phase space, 𝜌(Γ), which is used to compute average values of observ-
ables. In quantum statistical mechanics this role is played by the density matrix, which in the
case of the Hamiltonian eigenstates defined in 1.14, Ω𝑘(𝐪), can be written as

𝜌 = ∑𝑘 ∣Ω𝑘⟩ ⟨Ω𝑘∣ 𝑒−𝛽𝐻 ∣Ω𝑘⟩
Z

⟨Ω𝑘∣ = ∑𝑘 𝑓 (𝐸𝑘) ∣Ω𝑘⟩ ⟨Ω𝑘∣ , (3.60)

where we have defined the coefficients 𝑓 (𝐸𝑘) necessary to describe the canonical ensemble,

𝑓 (𝐸𝑘) = 𝑒−𝛽𝐸𝑘
Z

, (3.61)

where the normalization constant Z is the quantum partition function, defined as

Z(𝑁,𝑉, 𝑇) = Tr [𝑒−𝛽𝐻] , (3.62)

over which any observable can be averaged, such that

⟨𝐴⟩ = 1
Z

Tr [𝐴𝑒−𝛽𝐻] . (3.63)

Partition functions of quantum particle systems are less trivial than their classical coun-
terparts because one has to take into account the Bose or Fermi statistics. However, we as-
sume that the particles are distinguishable, while still treating them as quantum objects. Distin-
guishable quantum particles are also called Boltzmannons. Moreover, since the trace is basis-
invariant, we will work in the position basis and express the partition function as an integral in3𝑁-dimensions,

Z(𝑁,𝑉, 𝑇) = ∫d𝐪 ⟨𝐪∣ 𝑒−𝛽𝐻 ∣𝐪⟩ , (3.64)

where ⟨𝐪∣ 𝑒−𝛽𝐻 ∣𝐪⟩ are matrix diagonal elements. Since the expression in Eq. 3.64 cannot be
solved analytically, one has to resort to approximations to evaluate Z .

The first one is to consider small contributions coming from the exponential matrix,

𝑒−𝛽𝐻 = lim𝑃→∞ (𝑒−𝛽𝐻/𝑃)𝑃 , (3.65)
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and evaluate each of the identical 𝑃 small factors 𝑒−𝛽𝐻/𝑃 by inserting them in Eq. 3.64, sand-
wiched between 𝑃 − 1 resolutions of the identity:

𝐼 = ∫d𝐪 ∣𝐪⟩ ⟨𝐪∣ . (3.66)

This results in

Z(𝑁,𝑉, 𝑇) = ∫d𝐪d𝐪2 ⋯d𝐪𝑃 ⟨𝐪∣ 𝑒−𝛽𝐻 ∣𝐪2⟩ ⟨𝐪2∣ 𝑒−𝛽𝐻 ∣𝐪3⟩⋯ ⟨𝐪𝑃−1∣ 𝑒−𝛽𝐻 ∣𝐪𝑃⟩ ⟨𝐪𝑃∣ 𝑒−𝛽𝐻 ∣𝐪⟩ =
= ∫ 𝑃∏𝑏=1d𝐪𝑏 ⟨𝐪𝑏∣ 𝑒−𝛽𝐻/𝑃 ∣𝐪𝑏+1⟩ ,

(3.67)

where in the last passagewe renamed𝐪 → 𝐪1 andwe imposed the periodic boundary conditions
by requiring that 𝐪 = 𝐪(1) = 𝐪(𝑃+1), to express the integral in a more compact form.

In order to evaluate the kinetic and potential contributions of the Hamiltonian we adopt
a second approximation, namely the Trotter-Suzuki decomposition that we already employed
before: 𝑒−𝛽𝐻/𝑃 ≈ 𝑒−𝛽�̂�/2𝑃𝑒−𝛽�̂�/𝑃𝑒−𝛽�̂�/2𝑃. (3.68)

Since we are in the positions basis, it is easy to evaluate the potential energy term for each
repeated factor, such as

⟨𝐪𝑏∣ 𝑒−𝛽�̂�/2𝑃𝑒−𝛽�̂�/𝑃𝑒−𝛽�̂�/2𝑃 ∣𝐪𝑏+1⟩ = 𝑒−𝛽�̂�(𝐪𝑏)/2𝑃 ⟨𝐪𝑏∣ 𝑒−𝛽�̂�/𝑃 ∣𝐪𝑏+1⟩ 𝑒−𝛽�̂�(𝐪𝑏+1)/2𝑃. (3.69)

For the kinetic energy term instead it is convenient to pass to the momentum representation,

⟨𝐪𝑏∣ 𝑒−𝛽�̂�/𝑃 ∣𝐪𝑏+1⟩ = ∫d𝐩𝑏 d𝐩𝑏+1 ⟨𝐪𝑏|𝐩𝑏⟩ ⟨𝐩𝑏∣ 𝑒−𝛽�̂�/𝑃 ∣𝐩𝑏+1⟩ ⟨𝐩𝑏+1|𝐪𝑏+1⟩ =
= 1(2𝜋ℏ)3𝑁/2 ∫d𝐩𝑏 d𝐩𝑏+1𝑒𝑖𝐪𝑏⋅𝐩𝑏/ℏ𝑒−𝛽[𝐩𝑏]22𝑚𝑃 ⟨𝐩𝑏|𝐩𝑏+1⟩⏟⏟⏟⏟⏟𝛿(𝐩𝑏−𝐩𝑏+1) 𝑒𝑖𝐪𝑏+1⋅𝐩𝑏+1/ℏ =
= 1(2𝜋ℏ)3𝑁/2 ∫d𝐩𝑏𝑒𝑖𝐩𝑏⋅(𝐪𝑏−𝐪𝑏+1)/ℏ𝑒−𝛽[𝐩𝑏]22𝑚𝑃 ,

(3.70)

and solve the resulting 𝑁-dimensional Gaussian integral:

⟨𝐪𝑏∣ 𝑒−𝛽�̂�/𝑃 ∣𝐪𝑏+1⟩ = 1(2𝜋ℏ)3𝑁/2 ( 𝑚𝑃2𝜋𝛽)3𝑃/2 𝑒 𝑚𝑃2𝛽ℏ2 (𝐪𝑏−𝐪𝑏+1)2

= ( 𝑚𝑃2𝜋𝛽ℏ2)
3𝑁/2 𝑒 𝑚𝑃2𝛽ℏ2 (𝐪𝑏−𝐪𝑏+1)2 . (3.71)

By inserting (3.69) and (3.70) in (3.67) we get:

Z = lim𝑃→∞( 𝑚𝑃2𝜋𝛽ℏ2)
3𝑃/2 ∫d𝐪(1) ⋯d𝐪(𝑃) exp⎧{⎨{⎩−

𝑃∑𝑏=1 [ 𝑚𝑃2𝛽ℏ(𝐪𝑏 − 𝐪𝑏+1)2 + 𝛽𝑃𝑉(𝐪𝑏)]⎫}⎬}⎭ (3.72)

Notice that for finite 𝑃, whichwill forcely be the case of computer simulations, the single nuclear
partition function is described as the configurational integralQ of a closed ring polymer made of
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𝑃 beads indexed by the superscript 𝑏, with a nearest neighbour harmonic interaction and the
external potential equivalent to the Born-Oppenheimer one, but scaled by 𝛽/𝑃.

To sample the ring polymer phase space it is useful to apply the quantum-classical mapping,
where, in addition to the beads positions, we also consider the fictitiousmomenta of the classical
ring polymer. Then, the phase space element is given by

𝚪RP = (𝐩11,⋯𝐩𝑃1 , 𝐩12,⋯ , 𝐩𝑃𝑁−1, 𝐩1𝑁 ,⋯ , 𝐩𝑃𝑁 , 𝐪11,⋯𝐪𝑃1 , 𝐪12,⋯ , 𝐪𝑃𝑁−1, 𝐪1𝑁 ,⋯ , 𝐪𝑃𝑁), (3.73)

and the canonical partition function at temperature𝛽/𝑃 is the one of a systemof𝑁 ring polymers
of 𝑃 beads each interacting via an harmonic potentials between the nearest neighbours of a same
necklace, and subjected to and external potential which is given by the electrons:

ZRP ∝ ∫d𝐪1 ⋯d𝐪𝑃 d𝐩1 ⋯d𝐩𝑃 exp
⎧{⎨{⎩−

𝑃∑𝑏=1𝛽 ⎡⎢⎣[𝐩
𝑏]22𝜇 + 𝑚𝑃2𝛽2ℏ(𝐪𝑏 − 𝐪𝑏+1)2 + 𝛽𝑃𝑉(𝐪𝑏)⎤⎥⎦⎫}⎬}⎭ . (3.74)

The classical Hamiltonian of the ring polymer is

𝐻RP = 𝑃∑𝑏=1
⎡⎢⎣

𝑁∑𝑎=1⎛⎜⎝[𝐩𝑏𝑎]22𝜇𝑏𝑎 + 12𝑚𝜔2(𝐪𝑏𝑎 − 𝐪𝑏+1𝑎 )2⎞⎟⎠ + 1𝑃𝑉(𝐪𝑏)⎤⎥⎦ , (3.75)

where we used fictitious masses 𝜇 and we expressed the harmonic constant as

𝜔 = √𝑃𝛽ℏ . (3.76)

This Hamiltonian allows one to propagate the beads of the ring polymer according to the
usual equation of motion:

⎧{⎨{⎩
�̇�𝑏𝑎 = −𝑚𝑎𝜔2(2𝐪𝑏𝑎 − 𝐪𝑏−1𝑎 − 𝐪𝑏+1𝑎 ) + 1𝑃∇𝐪𝑏𝑎𝑉̇𝐪𝑏𝑎 = 𝐩𝑏𝑎/𝜇𝑎 (3.77)

a technique named Ring polymer molecular dynamics (RPMD).
These equations are not easy to integrate because of the slow convergence of Eq. (3.77):

the harmonic term increases with the number of beads 𝑃, resulting in stiffer vibration modes,
while the potential term 𝑉 decreases with 𝑃, i.e. the molecular vibrations due to the BO PES
become less important [168]. To solve this issue we switch to normal modes coordinates, so that
the harmonic oscillators are decoupled. This is equivalent to diagonalize the matrix 𝐌 used to
define the quadratic form of the harmonic interactions:

𝑀𝑏,𝑐 = 2𝛿𝑏,𝑐 − 𝛿𝑏,𝑐+1 − 𝛿𝑏,𝑐−1 𝑏, 𝑐 ∈ [1,⋯ , 𝑃], (3.78)

where 𝑏 and 𝑐 refers to beads of the same ring polymer, and the matrix satisfies periodic bound-
ary condition in the rows. The transformation is found simply by constructing the unitary ma-
trix 𝐔 of eigenvectors of 𝐌:

̃𝐪𝑏𝑎 = 1√𝑃
𝑃∑𝑐=1𝑈𝑏𝑐𝐪𝑐𝑎. (3.79)
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Low T High T

Figure 3.2: Quantum-classical ring polymer isomorphism. Intuitive picture of the quantum-classical
isomorphism: at low temperature light nuclei are described by ring polymers made of many replicas of
the particles interacting via an harmonic potential to simulate their true quantum nature.

This allows one to rewrite the ring polymer Hamiltonian with decoupled harmonic oscillators:

̂̃𝐻RP = 𝑃∑𝑏=1
𝑁∑𝑎=1 ⎡⎢⎣[𝐩

𝑏𝑎]22𝑚𝑏𝑎 + 12𝑚𝜔2𝑃𝜆𝑏 [ ̃𝐪𝑏𝑎]2⎤⎥⎦ + 1𝑃 𝑃∑𝑏=1𝑉(𝐪𝑏( ̃𝐪𝑏1,⋯ , ̃𝐪𝑏𝑁)), (3.80)

with 𝜆’s eigenvalues of 𝐌,

𝜆2𝑘−1 = 𝜆2𝑘−2 = 2𝑃 [1 − cos(2𝜋(𝑘 − 1)𝑃 )] . (3.81)

3.4 Ring polymer molecular dynamics at zero temperature
Time evolution of the ring polymer can be computed by an algorithm analogous to the velocity-
Verlet presented in Section 3.1.3, with the only difference that a back and forth normal modes
transformation needs to be applied in the position propagation step.

We still use symmetric splitting of the propagator:

𝑒𝑖�̂�RP𝛿𝑡 ≈ 𝑒𝑖�̂�RP𝐩 𝛿𝑡2 𝑒𝑖�̂�RP𝐪 𝛿𝑡𝑒𝑖�̂�RP𝐩 𝛿𝑡2 , (3.82)

where we used the superscript RP to indicate that we are propagating the whole ring polymer.

1. Propagate the particle momenta after 𝛿𝑡/2 using the forces derived from the potential of
the RP Hamiltonian:

𝐩𝑏𝑎(𝑡 + 𝛿𝑡/2) = 𝑒𝑖�̂�𝐩𝛿𝑡/2𝐩𝑏𝑎(𝑡) = (1 + 𝛿𝑡2 𝐟𝑏𝑎 ⋅ ∇𝐩𝑏𝑎)𝐩𝑏𝑎(𝑡) = 𝐩𝑏𝑎(𝑡) + 𝛿𝑡2 𝐟𝑏𝑎(𝑡); (3.83)

2. Switch to normal mode coordinates and propagate them of a time step 𝛿𝑡 according to the
free RP Hamiltonian Eq. (3.75), then switch back again to cartesian coordinates:

�̃�𝑏𝑎 ← 1√𝑃
𝑃∑𝑐=1𝑈𝑏𝑐𝐩𝑐𝑎,

̃𝐪𝑏𝑎 ← 1√𝑃
𝑃∑𝑐=1𝑈𝑏𝑐𝐪𝑐𝑎, (3.84)
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⎛⎜⎝�̃�𝑏𝑎(𝑡 + 𝛿𝑡)̃𝐪𝑏𝑎(𝑡 + 𝛿𝑡)⎞⎟⎠ = ⎛⎜⎝ cos𝜔𝛿𝑡 −𝑚𝑎𝜔 sin𝜔𝛿𝑡1𝑚𝑎𝜔 sin𝜔𝛿𝑡 cos𝜔𝛿𝑡 ⎞⎟⎠⎛⎜⎝�̃�𝑏𝑎(𝑡)̃𝐪𝑏𝑎(𝑡)⎞⎟⎠ ; (3.85)

𝐩𝑏𝑎 ← 1√𝑃
𝑃∑𝑐=1𝑈†𝑏𝑐�̃�𝑐𝑎,

𝐪𝑏𝑎 ← 1√𝑃
𝑃∑𝑐=1𝑈†𝑏𝑐 ̃𝐪𝑐𝑎, (3.86)

3. Switch back from normal mode to real coordinates in order to evaluate the forces in the
new positions 𝐟𝑏𝑎(𝑡 + 𝛿𝑡) = −∇𝐪𝑏𝐸0 (𝐪𝑏(𝑡 + 𝛿𝑡) . (3.87)

4. Propagate the particle momenta for the remaining half time step 𝛿𝑡/2
𝐩𝑏𝑎(𝑡 + 𝛿𝑡) = 𝐩𝑏𝑎(𝑡 + 𝛿𝑡/2) + 𝛿𝑡2 𝐟𝑏𝑎(𝑡 + 𝛿𝑡/2); (3.88)

3.5 Ring polymer molecular dynamics at finite temperature
As for the classical counterpart, there are different schemes for finite temperature simulations of
a quantum system, from the deterministic Nosé-Hoover chain [169] to stochastic thermostatting
algorithms, the latter complessively designated as Path integral Langevin dynamics (PILD).
In normal modes representation, where the bead momenta {𝐩𝑏}𝑏=1,⋯,𝑃 are rotated into �̃�𝑘, the
corresponding under-damped Langevin equation are:

⎧{⎨{⎩
̇�̃�𝑘 = −𝑚𝜔2𝑏 ̃𝐪𝑘 − 𝜸𝑘𝐩𝑘 + 𝜼𝑘(𝑡)̇̃𝐪𝑘 = ̃𝐪𝜇 , (3.89)

where the noise vector is still defined by Gaussian white noise 𝝃𝑘 multiplied by a factor which
accounts not only the friction matrix 𝜸𝑘, but also for the ring polymer temperature and the
number of beads:

𝜼𝑘(𝑡) = √√√⎷2𝑚𝜸𝑘𝑃𝛽 𝝃𝑘𝑡 , (3.90)

and 𝜔𝑘 = 2�̃�𝑃 sin (𝑘−1)𝜋𝑃 is the frequency of the 𝑘-th harmonic mode.
Two examples of Path integral Langevin integrators are the Path integral Langevin equa-

tion (PILE) [170], which is the quantum version of the Bussi algorithm, and the Path integral
Ornstein-Uhlenbeck process (PIOUD) [133] algorithm.

3.5.1 Path Integral Langevin Equation
The Trotter-Suzuki breakup in the Path integral Langevin equation (PILE) algorithm is analo-
gous to Eq. (3.31), 𝑒𝑖�̂�PILE𝛿𝑡 = 𝑒𝑖�̂�FP

𝛿𝑡2 𝑒𝑖�̂�RP𝐩 𝛿𝑡2 𝑒𝑖�̂�RP𝐪 𝛿𝑡𝑒𝑖�̂�RP𝐩 𝛿𝑡2⏟⏟⏟⏟⏟⏟⏟⏟⏟𝑒𝑖�̂�RP𝛿𝑡 𝑒𝑖�̂�FP
𝛿𝑡2 , (3.91)
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where in place of the velocity-Verlet propagation there is the procedure described in Section 3.4.
More in details, the steps are the following:

1. Switch from real to normal mode coordinates to apply the exact thermostatting.

�̃�𝑘(𝑡+) = 𝑒𝑖�̂�FP
𝛿𝑡2 �̃�𝑘 = 𝑐𝑘1�̃�𝑘(𝑡) + √𝑚𝑃𝛽 𝑐𝑘2𝝃𝑘. (3.92)

2. Propagate the ring polymer according to the RP Hamiltonian(3.75), following the three
steps described in Section 3.4.

3. Repeat step one to finally thermostatting the last half time step 𝛿𝑡/2.
�̃�𝑘(𝑡 + 𝛿𝑡) = 𝑒𝑖�̂�FP

𝛿𝑡2 �̃�𝑘(𝑡− + 𝛿𝑡/2) = 𝑐𝑘1�̃�𝑘(𝑡− + 𝛿𝑡/2) + √𝑚𝑃𝛽 𝑐𝑘2𝝃𝑘. (3.93)

In the above steps, the values of 𝑐𝑏1 and 𝑐𝑏2 are specified as those in the Bussi algorithm (Eq.
3.37):

𝑐𝑘1 = 𝑒−𝜸𝑘 𝛿𝑡2 𝑐𝑘2 = √1 − [𝑐𝑘1]. (3.94)

In the normal mode representation, the optimal choice of 𝜸𝑘 is [170]

𝜸𝑘 = ⎧{⎨{⎩
1/𝜏0 𝑘 = 02𝜔𝑘 𝑘 > 0 (3.95)

where 𝜏0 is a separate thermostat time constant for the centroid.

3.5.2 Path integral Ornestein-Uhlenbeck dynamics
The quantum generalization of the CMPC algorithm, namely the Path Integral Momentum-
Position correlator, is based on a matrix similar to the one in (3.53), but of size 6𝑁𝑃 × 6𝑁𝑃
to account for the interbeads harmonic forces:

̂𝜸 = ⎛⎜⎝ 𝜸 𝐊−𝐈 𝟎⎞⎟⎠ , (3.96)

where 𝐊 is a 3𝑁𝑃 × 3𝑁𝑃 matrix defined as

𝐾𝑏1𝑎1𝑥1,𝑏2𝑎2𝑥2 = �̃�2𝑃𝛿𝑥1𝑥2𝛿𝑎1𝑎2 (2𝛿𝑏1,𝑏2 − 𝛿𝑏1,𝑏2−1 − 𝛿𝑏1,𝑏2+1) , (3.97)

where the row and column indices, separated by the comma, are described as a collection of
indices for the beads 𝑏, which must be contiguous, and the atom 𝑎 and cartesian coordinates 𝑥,
which must be the same, because the harmonic forces couples same atom components.

Unfortunetaly in this case, the simultaneous propagation of positions and momenta would
lead to a sub-optimal sampling, because soft modes of molecular vibration are overdamped by
the ring polymer vibration modes, which become stiffer as 𝑃 increases.
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The Path integral Ornstein-Uhlenbeck process (PIOUD) algorithm represents both an im-
provement and generalization to stochastic forces of the methods illustrated before. It relies on
a different decomposition of the Fokker-Planck propagator, based on the separation of physical
modes and the fictitious harmonic modes [133],

𝑖�̂�KK = 3𝑁𝑃∑𝑖=1 [F𝑖∇𝐩𝑖 + 𝐩𝑖∇𝐪𝑖⏟⏟⏟⏟⏟⏟⏟
Hamiltonian

− 3𝑁𝑃∑𝑗=1 𝛾𝑖𝑗 (∇𝐩𝑖𝐩𝑗 + 𝑘𝐵𝑇𝑃∇𝐩𝑖∇𝐩𝑗) ]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
thermostat

(3.98)

where the indices run over all particles and replicas.
To solve this problem, the two contribution can be treated separately, by decomposition of

the generalized force F and the friction matrix in Born-Oppenheimer and harmonic oscillator
terms:

F = 𝐟BO + 𝐟𝜔, (3.99)

𝜸 = 𝜸BO + 𝜸𝜔. (3.100)

Consequently, also the stochastic Liouvillian can be decomposed in:

𝑖�̂�KK = 𝑖�̂�BO + 𝑖�̂�𝜔 (3.101)

𝑖�̂�𝜔 = 3𝑁𝑃∑𝑖=1
⎡⎢⎣𝐟𝜔𝑖 ∇𝐩𝑖 + 𝐩𝑖∇𝐪𝑖 − 3𝑁𝑃∑𝑗=1 𝛾𝜔𝑖𝑗 (∇𝐩𝑖𝐩𝑗 + 𝑘𝐵𝑇𝑃∇𝐩𝑖∇𝐩𝑗)⎤⎥⎦ (3.102)

𝑖�̂�BO = 3𝑁𝑃∑𝑖=1
⎡⎢⎣𝐟BO𝑖 ∇𝐩𝑖 + 𝐩𝑖∇𝐪𝑖 − 3𝑁𝑃∑𝑗=1 𝛾BO𝑖𝑗 (∇𝐩𝑖𝐩𝑗 + 𝑘𝐵𝑇𝑃∇𝐩𝑖∇𝐩𝑗)⎤⎥⎦ (3.103)

𝑒𝑖�̂�KK𝛿𝑡 ≈ 𝑒𝑖�̂�BO𝛿𝑡/2𝑒𝑖�̂�𝜔𝛿𝑡𝑒𝑖�̂�BO𝛿𝑡/2 (3.104)

Steps:

1. Update the particles momenta according on the knowledge of the BO- and stochastic
forces. This translates onto using an equation equivalent to the general solution of the
Langevin equation as Eq. (3.42), with the assumption that 𝐟BO and 𝜸BO are constant in
the small timestep, as in Eq. (3.43):

𝐩(𝑡− + 𝛿𝑡/2) = 𝐩(𝑡)𝑒−𝜸BO𝛿𝑡/2 + ∫𝑡+𝛿𝑡/2
𝑡 d𝑠𝑒𝜸𝐪(𝑡′−𝑠) [𝐟BO𝐪 + 𝜼(𝑠)] (3.105)

In case of deterministic forces, the update can be done in the real coordinates space, while
for stochastic forces first one must switch to the frame that diagonalizes the Langevin
damping matrix 𝜸BO.

2. Apply a back and forth normal mode transformation that propagates the harmonic part
by 𝛿𝑡 and thermalizes the ring polymer, according to the equations:

𝐩(𝑡+ + 𝛿𝑡/2) = 𝚲1,1𝐩(𝑡− + 𝛿𝑡/2) + 𝚲1,2𝐪(𝑡) + 𝚪 ̃𝜼 (3.106)

𝐪(𝑡 + 𝛿𝑡) = 𝚲2,1𝐩(𝑡− + 𝛿𝑡/2) + 𝚲2,2𝐪(𝑡) + 𝚯 ̃̃𝜼 (3.107)
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where the only forces contribution comes from the harmonic couplings, and not the BO-
forces. Notice that the update of the position is 𝛿𝑡, while for themomenta we complete the
half step in BO- and stochastic fores started at point 1, while the harmonic forces are fully
propagated for the entire time step. Since we are missing the last half BO and stochas-
tic contribution, we use the notation 𝑡+ + 𝛿/2. The matrices 𝚲 are the lengthy results of
analytic integration, reported in Ref. [133]. The noise and forces 6𝑁𝑃-dimensional contri-
bution are computed as:

𝚵 = ⎛⎜⎝𝚪 ̃𝜼𝚯 ̃̃𝜼⎞⎟⎠ = ∫𝑡𝑛+1𝑡𝑛 d𝑡𝑒�̂�(𝑡−𝑡𝑛+1) ⎛⎜⎝𝜼𝟎⎞⎟⎠ , (3.108)

𝐅 = ⎛⎜⎝𝚪𝐟𝑛𝚯𝐟𝑛⎞⎟⎠ = ̂𝜸−1 (𝐈 − 𝑒�̂�(𝑡−𝑡𝑛+1))⎛⎜⎝𝐟𝑛𝟎 ⎞⎟⎠ , (3.109)

3. Evaluate the ionic forces in the new positions via

𝐟(𝑡 + 𝛿𝑡) = −∇𝐪𝑉 (𝐪(𝑡 + 𝛿𝑡)) (3.110)

4. Update again the particle momenta for the last half of time step, 𝛿𝑡/2, as done in step 1.

𝐩(𝑡 + 𝛿𝑡) = 𝐩(𝑡+ + 𝛿/2)𝑒−𝜸BO𝛿𝑡/2 + ∫𝑡+𝛿𝑡/2
𝑡 d𝑠𝑒𝜸𝐪(𝑡′−𝑠) [𝐟BO𝐪 + 𝜼(𝑠)] (3.111)

PIOUD can be used also with deterministic forces. In that case, 𝛾BO = 0, as there is no need
of correcting BO forces with an additional Langevin thermostat, since they are not affected by
any noisy contribution. We would like to note that in case of deterministic forces it is always
more convenient to use PIOUD rather than PILE, because there is one less Trotter breakup in
the former integrator. Indeed, in PIOUD the Liouvillian factor related to 𝑒𝑖𝐿FP𝛿𝑡/2𝑒𝑖𝐿RP𝐪 𝛿𝑡𝑒𝑖𝐿FP𝛿𝑡/2 is
integrated in a single shot, without breaking it into three factors as in PILE. This feature allows
one to use larger time steps in PIOUD for an enhanced stability.

3.5.3 Ring polymer and QMC: bead-grouping approximation
Usually, ab initio RPMD studies are based on a PES provided by DFT, for which the computa-
tional cost of force evaluation is necessarily proportional to 𝑃. Therefore, most of the techniques
proposed to lighten this computational burden focus on decreasing the number of evaluations
of the ionic forces. This has been achieved by ring polymer contraction [171, 172], or by re-
ducing the number of quantum replicas using generalized Langevin Equations that leverage
colored noise that mimics nuclear quantum fluctuations [173].

Although these methods could be effectively incorporated in a QMC framework too, the
main computational bottleneck in our case is the large number of variational parameters, rather
than the large value of 𝑃. Indeed, each bead at each iteration has its own optimal wavefunction,|Ψ(𝑘)𝐪 ⟩, for 𝑘 = 1,… , 𝑃, which minimizes the variational energy at the nuclear configuration 𝐪𝑏.
Consequently, we need to find the best variational parameters set,

𝝀(𝑘) = {𝑔𝑎𝑘,𝑏𝑘𝜇,𝜈 , 𝜆𝑎𝑘,𝑏𝑘𝜇,𝜈 , 𝑏𝑘, 𝜁 𝑘𝑙,𝑛,…}, (3.112)
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for each wavefunction.
To overcome this major difficulty, we exploit the local nature of the Gaussian basis sets used

in the expansion of both the Jastrow and AGP factors. In fact, the most relevant dependence of
the wavefunction on the ionic positions 𝐪 comes explicitly from the basis set, and less from the
electronic variational parameters, which depend on them only indirectly.

It is therefore convenient to make the approximation of defining 𝑁groups groups of neigh-
boring beads and constraining the wavefunction parameters to be equal for all beads in the
same group. Since a group shares the same parameters, the corresponding energy gradients
are then averaged over the quantum replicas constituting the group. In this way, we improve
the statistics by a factor of 𝑃/𝑁groups. We obtain less noisy parameters even though the resulting
wavefunction is not exactly optimized for each quantum replica. This approximation is system-
atically improvable between two extremes: if one takes𝑁groups = 𝑃, the electronic result is exact,
whereas 𝑁groups = 1 constitutes the roughest approximation. In the latter case, one performs a
fully quantum dynamics with almost the same statistics as the one with classical nuclei.

a)

Classic NVT
stochastic thermostat

Bussi
algorithm

Classic momentum
-position correlator

Attaccalite-Sorella
algorithm

deterministic forces stochastic forces

b)

Quantum NVT
stochastic thermostat

Path integral
Langevin (PILE)

Path integral
momentum-position
correlator (PIMPC)

Path integral
Ornstein-Uhlenbeck
dynamics (PIOUD)

deterministic forces stochastic forces

Figure 3.3: Classical and quantumLangevin dynamics algorithms. In greenwhat it is used in this thesis





CHAPTER 4
Thermal dependence of the hydrated
proton and optimal proton transfer in

the protonated water hexamer

In this Chapter1, we report our study of the protonated water hexamer H13O6
+ by MD simu-

lations, fully retaining the nuclear quantum nature of the atoms using path integral methods
(Chap. 3), and treating the electrons at the QMC level (Chap. 2). As wementioned in the intro-
duction, this system is the smallest protonated water cluster that includes the two limiting com-
plexes involved in the proton transfer: the Eigen cation, which appears as H3O+(H2O)5, and
the Zundel cation, included in the hexamer as H5O2

+(H2O)4. Both cations are fully solvated up
to the first shell. Although the protonated water hexamer exhibits several isomers [174–176],
in this work we consider its Zundel-like configuration because it is the one that most closely
resembles the hydrated proton in bulk water, solvated up to the second shell (Figure 4.1). Even
when the system will fall into distorted Eigen minimum, as it will described later, the structure
of the second solvation shell will remain the one typically associated to the Zundel, with four
water molecules.

To investigate the proton dynamics in the system, we start from the analysis of its potential
energy surface, reported in Section 4.1, and compare it with the one of the Zundel cation as
reported in Refs. [127, 133]. While the latter systemmisses a large part of water solvation effects,
the former includes the full contribution of the first and second shells of the solvated proton.

In Section 4.2, we show that the Hydrogen bond (H-bond)mediated by the hydrated proton
exhibits a remarkably low thermal expansion from zero temperature up to 300K, with a nearly
temperature-independent length that becomes shorter than the classical-ion counterpart in the[200-350]K temperature range. As we will see, the strength of the H-bond results from a non-
trivial cooperation ofNQEs and thermal activation. Indeed,NQEs strongly affect the vibrational
levels of the proton shuttling mode bridging the central O1 and O2 oxygen atoms. These levels

1These results have been published in Ref. [127], on which most of this Chapter is based.
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rations covering regions with 𝑑O1O2 ∈ [2.5-2.7]Å, and the peak position rapidly shifts to larger
values. Configurations with such a large ⟨𝑑O1O2⟩ are of distorted-Eigen type [181, 183].

4.3 A cooperative thermal-quantum species: the short-Zundel ion
To refine our structural analysis, we compute the bidimensional distribution function 𝜌2D, which
correlates the oxygen-oxygen (O1O2) and the oxygen-proton (O1/2H+, meaning that the oxygen
can either be O1 or O2) distances, and study its temperature dependence 𝜌2D = 𝜌2D(𝑇). They
are shown in Fig. 4.5 for both classical and quantum simulations.

To highlight the difference, in Fig. 4.6, we show the contour plot of the temperature-driven𝜌2D variation by taking 𝜌2D(250K) as reference. Four temperature variations are explored: 100K,200K, room temperature (RT), and 350K (from the top to the bottom of Fig. 4.6).
In the classical protonated hexamer (Fig. 4.6, left column), rising the temperature from 250K

up to 350K tends to stretch ⟨𝑑O1O2⟩, by promoting configurations from the elongated Zundel
(blue central distribution with 𝑑O1O2 ∈ [2.38-2.5]Å in Fig. 4.6) to an Eigen-like arrangement
with larger 𝑑O1O2 and a proton much more localised on one of the two central oxygen atoms
(red wings). The situation is reversed at lower temperatures (100K and 200K) if compared to
the 250K reference, with positive (red) variations in the elongated Zundel and negative (blue)
variations in the wings. Thus, for classical nuclei, there is a progressive depletion of the elon-
gated Zundel and a corresponding population of the distorted-Eigen wings upon temperature
rise. Short-Zundel configurations, highlighted in Fig. 4.6 by a gray background, seem to play a
very marginal role in the temperature-driven density distribution shift.

The scenario is strikingly different with quantum nuclei (right column), particularly at the
lowest temperatures (100Kand 200K). In this regime, distorted-Eigen configurations are barely
populated or depleted, and the density shift upon rising temperature takes place between the
elongated-Zundel region and the short-Zundel sector. The latter is significantlymore populated
at 250K than at lower temperatures at the expense of the elongated Zundel, which instead loses
density with respect to the classical counterpart at the same temperature.

In the higher-temperature limit, at 350K, NQEs are less relevant and, by consequence, the
classical and quantum variations have a qualitatively similar behaviour. In both classical and
quantum case, we notice the presence of red wings at large oxygen-oxygen distances (𝑑O1O2 ∈[2.5-2.7]Å), which are the signature of thermally activated Eigen-like states, with a strongly lo-
calised proton. This is related to less frequent elongated-Zundel configurations, indicated by the
depleted distribution for 𝑑O1O2 < 2.5Å, confirming that the distorted-Eigen configurations are
indeed promoted by high temperature. For quantum nuclei, the corresponding depletion goes
well below the elongated-Zundel region, by touching also short-Zundel configurations, down
to 𝑑O1O2 ∼ 2.3Å, at variance with the classical case, where the short-Zundel configurations are
not involved.
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4.4 Projected two-dimensional PES

To interpret these results, we first construct an accurate effective potential by projecting the
full PES, computed during QMC-driven classical MD calculations, onto the degrees of freedom
mostly relevant to understand the dynamics of the hydratedproton. These are the 𝑑O1O2 distance
and the proton sharing coordinate 𝛿H+ , referenced to the midpoint of the O1H+O2 complex:

𝛿H+ ≡ 𝑑O1/2H+ − 𝑑O1O2/2, (4.1)

with 𝑑O1/2H+ the O1/2-H+ distance projected onto the O1O2 direction. The resulting two-
dimensional (2D) potential is 𝑉2D = 𝑉2D(𝑑O1O2 , 𝛿H+). We refer the reader to Appendix B for
technical details about the PES projection. We highlight that the potential 𝑉2D is derived here
at VMC quality. We also notice that 𝛿H+ is the vibrational coordinate of the proton shuttling
mode, while 𝑑O1O2 is related to the stretching mode of the two water molecules in the cluster
core.

Given 𝑉2D(𝑑O1O2 , 𝛿H+), we then proceed to quantize the variable 𝛿H+ . Indeed, while 𝑑O1O2
can be taken as classical, for it is related to the motion of heavier oxygen atoms of mass 𝑚O, the𝛿H+ coordinate must be quantised, owing to the light mass (𝑚H) of the hydrated proton. At the
leading order in 2𝑚H/(𝑚O+𝑚H), we separate the stretchingmode from the shuttling one, by in-
voking an adiabatic Born-Oppenheimer type of approximation (Chapter 1) for the two species
[184]. We finally solve quantum-mechanically the Hamiltonian of a proton in the potential𝑉𝛿H+ ≡ 𝑉2D(𝛼, 𝛿H+)|𝛼=𝑑O1O2

at fixed 𝑑O1O2 value. In Fig. 4.7(a-c) we plot the ground state distri-
bution and eigenvalues obtained for three distances, i.e. at 𝑑O1O2 = 2.375Å, in the short-Zundel
region close to the boundary between the short and the elongated Zundel, at 𝑑O1O2 = 2.495Å,
in the elongated-Zundel region close to the frontier between the elongated Zundel and the dis-
torted Eigen, and finally at 𝑑O1O2 = 2.585Å, deep into the distorted Eigen regime.

One can notice three different quantum behaviours of the vibrational shuttling mode, that
provide a more quantitative ground to the three-regime distinction made at the beginning. In
the short Zundel, 𝑉𝛿H+ is indeed a quadratic potential with a single minimum at the core center,
whichwidens as 𝑑O1O2 gets close to 𝑑symm ≃ 2.38Å, a distance where it becomes quartic because
its curvature falls to zero before changing sign.

The ground state energy, i.e. the zero point energy (ZPE) of the shuttling mode, decreases
as the potential widens, as reported in Fig. 4.7(d). In the elongated Zundel, a central barrier
starts to develop, with a ground-state proton distribution that stays uni-modal thanks to a ZPE
larger than its height, till 𝑑O1O2 ≃ 2.5Å, where the ZPE equals the barrier height. In this regime,
for 𝑑O1O2 ∈ [𝑑symm, 2.5Å], the ZPE is particularly small, due to the quartic nature of 𝑉𝛿H+ ,
and weakly 𝑑O1O2-dependent, as shown in Fig. 4.7(d). Finally, for 𝑑O1O2 > 2.5Å, we enter the
distorted-Eigen regime, with an even larger central barrier > 1000K, such that the quantum
proton is instantaneously localised in one of the two wells, and its distribution is then bimodal.
The ZPE starts to rise again as 𝑑O1O2 is stretched, with a slope steeper - in absolute value - than







64 Chapter 4. Temperature effects on proton hydration and proton hopping in water

proton dynamics along the QMC-PIMD trajectory is necessary to estimate more quantitatively
its impact on the PT processes occurring in the system.

One way to achieve this goal is by analysing the statistics of selected transition-state (TS)
configurations, defined by means of instanton theory. Within the PI formalism, the instanton
path seamlessly connects the reactants and products minima, along the minimal action trajec-
tory, periodic in the quantum imaginary time 𝜏 = 𝛽ℏ [186]. It provides a generalisation of the
TS theory for anharmonic quantum systems [187], and it has been very recently applied in a
QMC framework [188, 189], by efficiently recovering the proper scaling of ground-state tunnel-
ing rates. TS configurations are therefore identified as those where each half of the instanton
path is located on either side of the central O1O2 midpoint, sampled during the QMC-PIMD.

With the aim at resolving the contribution of the three different regimes to the PT dynam-
ics, we collect the instanton events and compute their statistical distribution as a function of𝑑O1O2 . We plot the instanton density distribution function in Fig. 4.9(a) at various tempera-
tures. To deepen our analysis, we compute also the cumulative density distribution function in
Fig. 4.9(b), after normalising it based on the algorithmic frequency of the instanton occurrences,
as counted during our QMC-PIMD simulations. Although this does not give direct access to
real-time quantities, the RPMD with Langevin thermostat has been shown to yield physically
reliable information on frequencies and frequency variations [190]. Note that the couplingwith
the Langevin thermostat is kept constant across the full temperature range analysed here [190].
The fully integrated frequency distribution gives the total proton hopping frequency, plotted in
Fig. 4.9(c) as a function of temperature. This shows a clear maximum located in the [250-300]K
temperature range. Consequently, we expect the hydrated proton mobility to be optimal in a
near-RT window, with a maximised Grotthus diffusion. To understand the source of this tem-
perature “sweet spot”, in the same panel (c) we plot the contribution to the total frequency of
instanton events occurring in the short-Zundel region. This is yielded by the cumulative fre-
quency distribution of panel (b) evaluated at the boundaries between short and elongated Zun-
del, i.e. at 𝑑O1O2 = 𝑑symm. The short-Zundel contribution to the total frequency shows a peak
of the same intensity as the total one in the same temperature range, clearly pointing to the
key role played by thermally activated short-Zundel configurations to the PT dynamics. The
short-Zundel arrangement enables instantaneous proton jumps between the two sides of the
cation, since there is no barrier to cross. Thus, the “sweet spot” constitutes the best compromise
between acquiring enough thermal energy to access short-distance configurations, boosted by
NQEs, and controlling the amplitude of the chemical (covalent or H-) bonds fluctuations, that
might trap the proton into an asymmetric well. Indeed, at larger temperatures (> 300K), the
onset of distorted-Eigen and the corresponding fall of short-Zundel configurations localize the
hydrated proton around its closest oxygen atom, thus reducing its shuttling probability. A sim-
ilar non-monotonous PT behaviour has experimentally been found in bulk water by assessing
the limiting conductivities of the H3O+ andD3O+ species [191]. Thanks to thesemeasures, per-
formed at 20 MPa, the excess molar conductivities due to PT have been estimated. They show a
peak located at a temperature in between 420K and 430K. In this temperature range and at the
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NQEs, which instead penalize the distorted-Eigen states, having a larger ZPE. In the intermedi-
ate temperature range, comprising RT, the occurrence of short-Zundel events is maximised by
thermal population, leading to a “sweet spot” in the PT dynamics. Around these temperatures,
distorted-Eigen states can still contribute to PT with quantum tunneling processes, although oc-
curring at much lower rates. The cluster core spreads out again at larger temperatures, as soon
as stronger thermal fluctuations favor the formation ofmore classical distorted-Eigen structures,
where the proton gets strongly localised in one of the flanking molecules.

The short-Zundel quantum species is crucial for an efficient proton diffusion, as the short-
ness of its structure enables a fast charge redistribution during the adiabatic PT process. Recent
progress in ultrafast broadband two-dimensional (2D) IR spectroscopy [194, 195] allowed to
probe the vibrational properties of protonated water at vibrational frequencies around the hy-
drated proton stretching mode, by measuring the lowest-lying excitations in the mid-infrared
continuum [195]. These state-of-the-art experiments revealed a strongly inhomogeneous be-
haviour of the pump-probe spectra, implying large structural distributions in proton asymme-
try and O1O2 distance. Therefore, the traditional “Zundel limit” [18] needs to be revisited and
extended, in order to cover the broad range of structures detected experimentally [196, 197].
In particular, the occurrence of qualitatively different short H-bond configurations, straightfor-
wardly connected with the short-Zundel species described here, has been detected and high-
lighted in a recent fully solvated (HF2)– (H2O)6 experiment through femtosecond 2D IR spec-
troscopy in Ref. [198]. The present work crucially extends those findings by providing a temper-
ature resolved analysis of the short H-bond events and by revealing their fundamental relation
with the PT dynamics.

While proton transfer and proton transport occur in a variety of environments, from solu-
tions to membrane proteins and fuel-cell membranes, the protonated water hexamer is one of
the smallest clusters to incorporate most of the PT experimental features and solvation effects
at the leading order. According to Ref. [199], one more hydration layer is needed to reach the
water bulk limit. From this viewpoint, the hexamer is close to that limit, and some relevant ef-
fects, emerging already at this size, can be transferred to larger systems. Our findings thus call
for further efforts to explore the temperature behaviour of the proton dynamics and transport
both in aqueous systems and in other extended environments, by keeping the same accuracy as
the one delivered by our QMC-driven PIMD approach in the protonated water hexamer.

In Tab. 4.1, we report the complete list of VMC+PILD simulations done for the protonated
water hexamer. Owing to their importance, particularly long simulations are performed for the
quantum case at temperatures of 50, 100, 200, and 300K. In all simulations, we generated at least
1850000 electronic Monte Carlo configurations to optimise the wave function at each step ofMD
or PIMD. The resulting total CPU time per time step is reported in the Table. these calculations
have been run on parallel machines, with two levels of parallelisation. The first one is based
on the parallel sampling of the electronic degress of freedom, the second one is built upon the
coupled dynamics of each beads. Notice that in our framework PIMD is not more costly than
classical MD, thanks to the “bead grouping approximation” (Chapter 3).
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quantum simulations classical simulations𝑇(K) 𝑁beads 𝑁iterations 𝑡iteration(h) 𝑁iterations 𝑡iteration(h)
50 128 35282 119.41 - -
100 128 52184 24.42 21454 42.02
150 64 11218 - - -
200 64 32553 95.71 20478 103.61
250 32 23912 92.21 24154 123.51
300 32 31929 106.31 22656 109.91
350 32 18489 102.41 26481 130.51
400 32 23026 120.91 27517 134.01

Table 4.1: Summary of the computational cost of the simulations on H+(H2O)6. In both classical and
quantum calculations, a time step 𝛿𝑡 of 1 ft is used for all temperatures. The CPU time per time step
(𝑡iteration) is also reported in hours.1: calculations done on 68-core Intel Xeon Phi 7250 CPU (Knights Landing) nodes at 1.40 GHz.2: calculations done on dual-processor (2x64 cores) AMD Rome (Epyc) compute nodes at 2.6 GHz.

At the moment, simulating larger structures or longer dynamics can be achieved only by
overcoming the high computational cost of QMC. This goal could be achieved by training ef-
ficient atomistic machine learning potentials on QMC, which is the topic of the second Part of
this thesis.





Part II

Machine learning interatomic potentials
applied to quantumMonte Carlo
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CHAPTER 5
Analytic potentials: strength and limits

Accurate simulations from first principles are quite demanding in terms of computational cost
and became feasible only with contemporary advancements in hardware and software. Even
today, these simulations are limited by system size and simulation time, depending on the
method’s scaling with the number of electrons and the intrinsic complexity of the electronic
wavefunction. Consequently, before the advent of AIMD and continuing to the present, signif-
icant effort has been dedicated to developing force fields, also known as analytic potentials to
stress on their functional form.

Force fields (FF) aim to provide the PES through a parametrized function that describes
both intramolecular and intermolecular forces. The latter includes all interactions that do not
lead to the formation of chemical bonds [200]. The absence of explicit electrons does not elim-
inate quantum mechanical considerations, as non-bonding interactions must still be carefully
modeled to account not only for electrostatics like polarization, but also for quantum effects,
such as exchange repulsion at short distances and dispersion forces over long ranges.

Depending on the origin of the data set used to fit the FF parameters, force fields can be
categorized as empirical force fields (EFF), semi-empirical force fields (SEF), or force fields en-
tirely fitted to ab initio data. Interestingly, even before the rise of machine learning, there was
a trend towards fitting FFs more with synthetic data rather than experimental data [201]. This
shift was driven not just by data availability and production costs reduced by “in silico experi-
ments”, but also by the need of force fields general enough to reproduce the quantumproperties
of molecules and build bottom-up explanation of chemical phenomena, rather than just casting
experimental knowledge into predefined functional forms. Indeed a major drawback of EFFs
that they are usually tailored to specific laboratory conditions or applications, and the parame-
ters are often calibrated to reproduce a few specific properties, which significantly limits their
prediction power and the range for exploratory work. For example if the FF has to be used in a
biological context, it will be parameterized for ambient temperature and atmospheric pressure.

In this Chapter we are going to present the analytical potentials developed specifically for
water in Section 5.1, and we will focus particularly on those based on many-body expansion
in Section 5.2, which will be used later in Chapter 7 to produce a dataset of protonated water
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clusters configurations with their respective energy and forces.

5.1 Force fields for water
Due to its fundamental role in chemistry and biology, water has become one of the most ex-
tensively modeled and parameterized compounds in computational chemistry. An exhaustive
presentation of water models is beyond the scope of this thesis; for more detailed information,
the reader is referred to appropriate literature [201–204]. However, some of these models are
worth mentioning because they will be partially used in the following work and have paved
the way towards applying functional form-agnostic and data-driven methods to the realm of
interatomic potentials. Moreover, they introduced key ideas that are still used in case of new
physics-aware machine learning potentials [205].

Pioneering water models based on empirical data are still used today in macroscopic sim-
ulations due to their relatively low computational cost. These classical force fields use point
charges to account for Coulomb interactions, usually neglect polarization, while dispersion and
repulsion typically are represented by a Lennard-Jones (LJ) term [206].

Examples include the Transferable Intermolecular Potentials based on 𝑛 = 3, 4, 5 Point
sites (TIPnP) for both charges and LJ terms [207–210], and Single Point Charges (SPC), with
just three atomic sites [211]. Despite improvements with the inclusion of flexibility in wa-
ter monomers (TIP4PF [212], SPC/Fw [213]), long-range electrostatics by Ewald summations
(TIP4P-Ew [214]), and inclusion of quantum effects (q-TIP4P/F [215], q-SPC/Fw [216]), these
empirical force fields are limited in reproducing the effects of the strong anisotropy of electronic
distribution and do not account for the non-additivity of interactions.

It is only with the availability of ab initio data that the derivation of polarizable force fields
(PFFs) became possible; PFF replace simple point charges by higher-order multipoles in order
to approximate the electronic cloud, in combination with perturbation theory to rigorously de-
scribe polarization and induction [217]. Examples of models with such features, sometimes
including molecular flexibility, are the Anisotropic Site Potentials (ASP) [218], the Symmetry
Adapted Perturbation Theory (SAPT) water models [219], and the Thole-Type Models (TTM)
[220–223]. Except for TTM, the first two typically consider only pairwise interactions, incorpo-
rating adjustments for many-body effects if necessary.

All the models mentioned above are mainly used in large simulations of water, especially in
biochemical systems where macromolecules interact with a large water matrix. However, they
lack two fundamental features. First, their simple analytic form does not capture the complex-
ity of short-range quantum effects such as exchange, nor it correctly describe the electrostatic
interactions and charge transfer. For example, the point-charge approximation is an oversim-
plification to the well known diffuse spherical charge density, and cannot correctly account for
the interaction energy of overlapping charge distributions. Also the Lennard-Jones interaction
term, originally proposed for closed-shell systems, is not suitable for water, leading to a large
value of the first peak of the oxygen-oxygen pair correlation function [202]. Secondly, only a
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few can be generalized to include reactions and interactions with water ions, and this requires
significant effort. This has only been accomplished with TTM-type models [224], which explic-
itly account for n-body contributions. The need to combine this feature with a potential with a
flexible functional form brings us to the last family of water models, the many-body expansion-
based ones.

5.2 Many body expansion-based potentials for neutral and
protonated water

The Many-body expansion (MBE) [225] is a fragmentation method that allows one to decom-
pose the total energy of a molecular system as the sum of n-body contributions, where the
smallest unit can be either a single atom or molecule. MBE reads as

𝐸 = 𝑀∑𝑖=1𝐸𝑖 + 𝑀∑𝑖<𝑗 Δ𝐸𝑖𝑗 + 𝑀∑𝑖<𝑗<𝑘Δ𝐸𝑖𝑗𝑘 + 𝑀∑𝑖<𝑗<𝑘<𝑙Δ𝐸𝑖𝑗𝑘𝑙 + ⋯ (5.1)

where M is the number of monomers. For a M-body cluster the formula expanded up to the
M-body order is exact. The n-body contributions are computed as corrections to (n-1)-body
ones: Δ𝐸𝑖𝑗 = 𝐸𝑖𝑗 − 𝐸𝑖 − 𝐸𝑗, (5.2)

Δ𝐸𝑖𝑗𝑘 = 𝐸𝑖𝑗𝑘 − Δ𝐸𝑖𝑗 − Δ𝐸𝑗𝑘 − Δ𝐸𝑘𝑖 − 𝐸𝑖 − 𝐸𝑗 − 𝐸𝑘. (5.3)

Since the number of terms scales factorially with M, in practice the expansion is usually trun-
cated at the 3- or 4-body term, still allowing to go beyond the pairwise additivity of usual ana-
lytic potentials.

In the case of water, the smaller unit of the expansion is the single H2O monomer, and
for each 𝑛-body term separate PES are fitted to large datasets containing both cluster and con-
densed phase data computed with accurate quantum chemistry methods (MP2 and/or CC). To
correctly bridge the gap in the short-range interactions between analytic potentials and ab initio
method, highly flexible functions are employed.

Watermodels based onMBE are the CCpol [226–228], the dielectric polarizable point (DPP)
[229], the Huang-Braams-Bowman (HBB) [230–232], and the MB-pol [233–238]. The purely-
data driven potential used to fit the monomers in HBB relies on Permutationally-invariant poly-
nomials (PIPs) [239–242]; seemingly, MB-pol uses PIPss, and has been tested with other ma-
chine learning tools [243]. MBE-based potentials gave among the best results in reproducing
both cluster spectroscopic properties and bulk phase diagrams, often in combination with ML
techniques, either to fit n-body terms [244] or to accelerate MBE itself [245–247]. Other con-
tributions from n-body terms require special techniques, for which the reader is referred to a
dedicated review [248].

As an example of such potentials, we focus on an improved version of HBB, WHBB [249],
because it will be used later. The WHBB expansion consists of the following contributions up
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to the third order:

𝑉WHBB(1,⋯ ,𝑁) = 𝑁∑𝑖=1𝑉1𝑏(𝑖)+ 𝑁∑𝑖>𝑗 [𝑉CCSD(T)2𝑏 (𝑖, 𝑗)𝑆2𝑏 + 𝑉TTM3-F2𝑏 (𝑖, 𝑗)(1 − 𝑆2𝑏)]+ 𝑁∑𝑖>𝑗>𝑘𝑉3𝑏(𝑖, 𝑗, 𝑘)𝑆3𝑏,
(5.4)

where the monomer potential 𝑉1𝑏 is from Partridge-Schwenke [250], the 2-body term is a func-
tion that switches between a PIPs fit to CCSD(T) energies 𝑉CCSD(T)2𝑏 (𝑖, 𝑗) and TTM3-F interac-
tion 𝑉TTM3-F2𝑏 (𝑖, 𝑗) through 𝑆2𝑏 depending if the two monomers 𝑖 and 𝑗 are in the short- or long-
range regime, and the 3-body term 𝑉3𝑏 is a PIPs fit to MP2 energies. Further improvements
to WHBB have been proposed, namely q-AQUA [251] and q-AQUA-pol [252], but for our pur-
poses, WHBB suffices.

The potential for water ions in the MBE framework is naively obtained by including the
charged species in the expansion [253–257]. In the case of protonated water, the simplest
charged monomer is the hydronium H3O+ ion. For example, the protonated water clusters
mentioned in the first part of the thesis, namely the Zundel and of the protonated water hex-
amer, are represented by the following expansion:

𝑉H5O2
+ = 𝑉(1)ℎ + 𝑉(1)𝑤 + 𝑉(2)ℎ,𝑤, (5.5)

𝑉H+(H2O)6 = 𝑉H5O2
+ + ∑𝑖=2𝑉(1)𝑤𝑖 + ∑𝑖,𝑗 𝑉(2)𝑤𝑖,𝑤𝑗 + ∑𝑖,𝑗 𝑉(3)ℎ,𝑤𝑖,𝑤𝑗 + ∑𝑖,𝑗,𝑘𝑉(3)𝑤𝑖,𝑤𝑗,𝑤𝑘 + ∑𝑖,𝑗,𝑘𝑉(4)ℎ,𝑤𝑖,𝑤𝑗,𝑤𝑘 , (5.6)

proposed in [255] and [175], respectively. Here ℎ stands for the hydronium and 𝑤𝑖 for the 𝑖-th
water molecule.

In the light of the WHBB model, the latter can also be written as:

𝑉H+(H2O)6 = 𝑉H3O+ + 𝑉WHBB((H2O)5) + ∑𝑖,𝑗 𝑉(3)ℎ,𝑤𝑖,𝑤𝑗 + ∑𝑖,𝑗,𝑘𝑉(4)ℎ,𝑤𝑖,𝑤𝑗,𝑤𝑘 . (5.7)

These protonated WHBB/q-AQUA PES have been extensively employed in the study of vibra-
tional properties by Bowman et al. [175, 198, 256, 258–260].

Althoughmolecular dynamics can be performed usingMBE-PES, the necessity of assigning
atoms to specific monomers renders the MBE approach unsuitable for modeling chemical reac-
tions. Reactive many body expansion (RMBE), based on the sum MBE energy over all possible
assignments of atoms to monomers, has been proposed specifically for the study of the proto-
nated water hexamer [261]. Imposing a smooth distance cut-off to the interaction makes the
RMBE scale polynomially with the system size.

We mention that only a few other reactive force fields have been developed, ReaXX [262]
and Multistate-Empirical Valence Bond (MS-EVB) [15, 181, 183, 185, 199, 263–267], which of-
fered many of the insights presented in the Introduction. Unfortunately MS-EVB need to be
reparametrised depending on the system at hand, and it is computationally demanding.

The idea of describing atomic interaction within a fixed cutoff by means of permutationally
invariant polynomials, able to fit any PES without explicit knowledge of the underlying physics
but the permutational symmetries of alike atoms, anticipated key ideas of machine learning
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potentials (MLIPs). Moreover, MLIPs can manage bond breaking, a necessary property to cor-
rectly describe any change in atoms assignement across different molecules, proton hopping
included. MLPs will be the topic of the next Chapter.





CHAPTER 6
Machine learning interatomic potentials

Machine Learning (ML) is an umbrella term that refers to any partially or fully automated tech-
nique capable of identifying meaningful patterns in a given set of observations, which consti-
tute the “experience” of the learner. Typical problems addressed by ML include classification,
which involves assigning discrete labels to observed data, and regression, the continuous gen-
eralization of classification, which involves finding a mapping between dependent variables 𝐲
and independent variables 𝐗. ML parameters, if present, describe how the learner approaches
the data provided during the training, rather than specifying a predetermined functional form
expected to underlie the data. In fact the strength of these algorithms lies in their adaptability
to the data, hence the term data-driven modeling, often used interchangeably with ML.

Fitting the Potential Energy Surface (PES) is a regression problem that can be stated as fol-
lows: given a set of 𝑁train = 𝑁 molecular configurations containing the stoichiometry 𝑍 and the
Cartesian coordinates 𝐪 of 𝑁at nuclei,

{ 𝐗𝑖}𝑖=1,⋯,𝑁 = {𝑍𝑖, 𝐪𝑖}𝑖=1,⋯𝑁 (6.1)

what is the functional dependence of the corresponding energy and forces

{𝐲𝑖}𝑖=1,⋯,𝑁 = {(𝐸𝑖, 𝐟𝑖)}𝑖=1,⋯,𝑁 ? (6.2)

This type of setting is called supervised learning because, during training, the algorithm has ac-
cess to both the input and output data of the function it is expected to mimic.

Unfortunately, Cartesian coordinates 𝐑 alone are not suitable for learning algorithms, be-
cause they do not transform under basic symmetry operations belonging to the group of Eu-
clidean isometries as the energy does [268]. In fact from the molecular Hamiltonian (Eq. 1.2)
it follows that the energy of a molecule is E(3)-invariant, while the Cartesian coordinates are
not. E(3)-invariance means that for a transformation G, being it a translation T , a rotation R

or a reflection S , applied to the coordinates of a molecule, the energy and the forces change as
follows: 𝐸 (𝑍,G(𝐑)) = 𝐸 (𝑍,𝐑) (6.3)𝐟 (𝑍,G(𝐑)) = G (𝐟(𝑍,𝐑)) (6.4)
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Moreover, both energy and forces are invariant under permutations P of identical atoms,
a property that stems from the summation over atomic indices in the Hamiltonian. A cum-
bersome way to ensure the learning of these symmetries would be data augmentation, which
involves transforming and replicating the dataset according to all the symmetries. However,
this would result in an excessively large dataset.

Much of the research effort in ML for chemistry and materials science has been devoted to
finding the best way to represent data in a manner that can handle symmetries. Other desirable
properties of such representations, or descriptors, include injectivity, or completeness, meaning
that different structures map to different descriptors, and the differentiability, which is necessary
in order to compute the gradient of the energy and get the forces.

Descriptors can be carefully crafted based on expert knowledge—a process known as feature
engineering in the ML community—or they can be deduced automatically, a setting referred to
as end-to-end learning, where the algorithm itself transforms the input data.

Given the broad scope of the topic, we will review only those descriptors that will be em-
ployed in this thesis. We begin with the two main categories of representations for molecules
and their PES: global representations in Section 6.1 and local representations in Section 6.2.

Then, after briefly rephrasing the regression problem in the statistical learning framework
(Section 6.3), wewill introduce the two big families of machine learningmethods for non-linear
fitting: kernelmethods and neural networks in Sections 6.4 and 6.5, respectively. In each of them
we will focus on the two machine learning potentials used in this work, kernel ridge regression
through Operator Quantum Machine Learning (OQML) and the Message-passing neural net-
work Atomic Cluster Expansion (MACE).

Finally, in Section 6.6 we will give an overview of what has already been done in water
simulations with machine learning interatomic potentials.

6.1 Global representations

As the name suggests, global representations take full advantage of the geometry of the entire
molecule. An important limitation of these descriptors is the fixed number of atoms they can
consider, or the fact that, when describing compounds of multiple sizes, it is the larger one that
will determine the scaling properties of the whole calculation. For the same reason, extensions
for use in bulk systems is not straighforward; however, this is not a problem when fitting the
PES of a single molecule.

6.1.1 Symmetrizing over pairwise distances

The Coulombmatrix [269] is worth mentioning for its simplicity as the first example of a global
representation. The entries of the matrix 𝐂 contain the reciprocal of pairwise interatomic dis-
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tances multiplied by the atomic numbers 𝑍 of the pair:

𝐶𝑖𝑗 = ⎧{⎨{⎩
12𝑍2.4, 𝑖 = 𝑗𝑍𝐼𝑍𝐽∥𝐫𝐼−𝐫𝐽∥ , 𝑖 ≠ 𝑗 . (6.5)

The CM naturally incorporates the E(3)-invariances, but it is not symmetric with respect to the
exchange of two atoms. This issue has been addressed for CMs specifically by sorting [270] or
by using a bag-of-bonds approach [271].

The already mentioned PIPs also address this issue, but they are limited to 10 atoms [240],
which makes them more suitable in combination with a many-body expansion in terms of
monomers of limited size.

6.2 Local representations
We can exploit the many-body expansion introduced in the previous chapter and write the en-
ergy of a collection of 𝑁at atoms as a many-atom expansion,

𝐸 = 𝑁at∑𝑎 𝑉(1)(𝐑𝑎) + 12! 𝑁at∑𝑎𝑏 𝑉(2)(𝐪𝑎, 𝐪𝑏) + 13! 𝑁at∑𝑎𝑏𝑐 𝑉(3)(𝐪𝑎, 𝐪𝑏, 𝐪𝑐) + ⋯ , (6.6)

where the potentials terms are symmetric in the atomic positions 𝐪𝑎, and zero if two or more
indices are identical [272]. From the equation we can extract the single atomic contribution as

E𝑎 = 𝑉(1)(𝐪𝑎) + 12! 𝑁at∑𝑏 𝑉(2)(𝐪𝑎, 𝐪𝑏) + 13! 𝑁at∑𝑏𝑐 𝑉(3)(𝐪𝑎, 𝐪𝑏, 𝐑𝑐) + ⋯ . (6.7)

At this point, two approximations become necessary. First, the expansion must be truncated
at the Kth order. Secondly, interactions are considered only between atoms within a fixed ra-
dial cutoff, as depicted in Fig. 6.1. This significant approximation is partially justified by the
principle of the nearsightedness of electronic matter (NEM), which asserts that local electronic
properties are significantly influenced by the effective external potentials—such as those gener-
ated by other atoms—only at nearby points [273]1. In both cases, the number of elements in the
sum of the (K+1)-body term scales as𝑁𝐾𝑐 , where𝑁𝑐 is the average number of neighbors within
the cutoff, making the evaluation of atomic energy computationally intensive.

This is where Machine learning interatomic potential (MLIP) come into play. Two funda-
mental concepts have been crucial to the successful application of data-driven approaches to
interatomic potentials:

1. Interpolating the PES through local atomic contributions learned using highly flexible
models.

1Electronic matter may be nearsighted, but it cannot be fooled! An electronic property, such as the density𝑛, is primarily determined by the effective potential in the vicinity of that point. However, the effective potential
itself, generated by nearby atoms, can be influenced by other atoms that are far away due to long-range electrostatic
interactions. This brings us to the longstanding problem of including long-range interactions in MLIP [274].
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2. Using n-point correlations of the atomic density instead of n-atom correlations.

The idea of point 1 is to described the local atomic environment is described using 2- and
3-body correlation-based representations, which are then used as input for highly general non-
linear functions. These functions can fit virtually any type of interaction, effectively reproducing
higher-order n-body terms as well. However, the impressive accuracy of these methods often
comes at the cost of low interpretability. This idea was pioneered in 2007 when Behler and
Parrinello proposed incorporating the permutational symmetry of atoms by considering only
the atomic contributions E𝑎 to the total energy 𝐸 [275]:

𝐸 = 𝑁at∑𝑎 E(𝐱𝑎) = 𝑁elem∑𝑥
𝑁𝑥∑𝑎 E𝑥(𝐱𝑎), (6.8)

where we used E𝑥(𝐱𝑎) to emphasize that each E𝑎 = E(𝐱𝑎) must be evaluated using the same
predictive method for atoms of the same element 𝑥, considering the local atomic environment,
represented by a local descriptor 𝐱𝑎; we also remind that 𝑀 is the total number of atoms, 𝑁elem
is the total number of atomic species, and 𝑁𝑥 is the number of atoms belonging to the same ele-
ment. It is important to clarify that despite the notation, 𝑥 is a label for the element type, while𝐱 is a vector representing an atom, and these should not be confused. Once the permutational
symmetry is ensured through the partition of energy among atoms, the local atomic environ-
ment descriptors must respect the symmetries of the E(3) group. In the specific case of [275],
Atom Centered Symmetry Functions (ACSFs) were used as descriptors, and high-dimensional
neural networks served as fitting method. Since then, local descriptors have been the subject of
extensive research. The same ACSFs have been deeply explored [276], followed by many other
representations, such as the Smooth Overlap of Atomic Positions (SOAP) [277], and the Faber
Christensen Huang Lilienfeld (FCHL19) [278, 279].

Often these expansions of the atomic environment are truncated at the three- or four-body
term, tomeet efficiency needs by limiting the scaling of the descriptor evaluation to𝑁2𝑐 or𝑁3𝑐 , re-
spectively. It has been demonstrated that this truncationmakes the atomic descriptor incomplete,
meaning that injectivity requirement is not satisfied [280]. Although this does not constitute
a major problem in most practical settings, it has motivated the research of a more systematic
methods of including arbirary body orders of correlation. Descriptors able to do this are themo-
ment tensor potentials (MTP) [281], the PIPs [240], and the Atomic Cluster Expansion (ACE)
[282]. The latter in particular brings us to the second key idea ofMLIPs, the ‘density trick’ [283],
already anticipated by MTP and partially with SOAP. This technique is based on the fact that
the n-point correlations of the atomic density around a central atom can provide a linear basis
to expand any local property, atomic energies included [284], greatly simplyfing computation
like the one in Eq. 6.7.

For complete reviews of descriptors, we refer the reader to the relevant literature [285–287].
It is worth noting that abstract approaches to descriptor design highlighted that atom-centered
representations are variations of the same mathematical object [288], and that they can be re-
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with the expansion coefficients obtained by projection 𝐽𝜇𝜈 = ⟨Φ𝜇𝜈 |𝐸𝑎(𝝈)⟩. The sum run over all
possible cluster sizes 𝑘, and it is possible to rewrite it in a single-bond representation to make it
more similar to the original Eq. 6.7:

E𝑎(𝝈) = ∑𝑏 ∑𝑥 ∑𝑣 𝐽(1)𝑥𝑣 𝜙𝑥𝑣(𝐫𝑏𝑎)
+ 12! ∑𝑏1<𝑏2

∑𝑥1𝑥2
∑𝑣1𝑣2

𝐽(2)𝑥1𝑣1𝑥2𝑣2𝜙𝑥1𝑣1(𝐫𝑏1𝑎)𝜙𝑥2𝑣2(𝐫𝑏2𝑎)
+ 13! ∑𝑏1<𝑏2<𝑏3

∑𝑥1𝑥2𝑥3
∑𝑣1𝑣2𝑣3

𝐽(3)𝑥1𝑣1𝑥2𝑣2𝑥3𝑣3𝜙𝑥1𝑣1(𝐫𝑏1𝑎)𝜙𝑥2𝑣2(𝐫𝑏2𝑎)𝜙𝑥3𝑣3(𝐫𝑏3𝑎)
+ ⋯ .

(6.18)

To make the step to the atomic basis easier, it is possible to rewrite the above expansion with
unrestricted sums with new coefficients, 𝑐. These are defined in such a way that self-interaction
terms involving products of more single-bonds basis function on the same atom, for example𝜙𝑥1𝑣1(𝐫𝑏1𝑎)𝜙𝑥2𝑣2(𝐫𝑏1𝑎), are zero.

E𝑎(𝝈) = ∑𝑏 ∑𝑥 ∑𝑣 𝑐(1)𝑥𝑣 𝜙𝑥𝑣(𝐫𝑏𝑎)
+ 12! ∑𝑏1𝑏2

∑𝑥1𝑥2
∑𝑣1𝑣2

𝑐(2)𝑥1𝑣1𝑥2𝑣2𝜙𝑥1𝑣1(𝐫𝑏1𝑎)𝜙𝑥2𝑣2(𝐫𝑏2𝑎)
+ 13! ∑𝑏1𝑏2𝑏3

∑𝑥1𝑥2𝑥3
∑𝑣1𝑣2𝑣3

𝑐(3)𝑥1𝑣1𝑥2𝑣2𝑥3𝑣3𝜙𝑥1𝑣1(𝐫𝑏1𝑎)𝜙𝑥2𝑣2(𝐫𝑏2𝑎)𝜙𝑥3𝑣3(𝐫𝑏3𝑎)
+ ⋯ .

(6.19)

Until now we just wrote the original many-atom expansion as linear combination of single-
bonds terms, but we did not solve the problem of the 𝑁𝐾𝑐 scaling. The trick for this is to just
reorder the summations such that the sum over all neighbors 𝑏 is done first. This is equivalent
to define an atomic basis as the projection of the density of atoms of element 𝑧 in the neighborhood
of the central atom onto single-bond basis functions:

𝐴𝑎,𝑣𝑥 = ⟨𝜌𝑥𝑎 |𝜙𝑣𝑥| =⟩ ∑𝑏∶𝑧𝑏=𝑥𝜙𝑣𝑥(𝐫𝑏𝑎) (6.20)

where the density of atoms of element 𝑥 is defined as

𝜌𝑥𝑎(𝐫) = ∑𝑏 𝛿𝑧𝑏𝑥𝛿(𝐫 − 𝐫𝑏𝑎), (6.21)

Then the atomic energy becomes a polynomial in 𝐴
E𝑎(𝝈) = ∑𝑥 ∑𝑣 𝑐(1)𝑥𝑣 𝐴𝑎,𝑣𝑥

+ ∑𝑥1𝑥2
∑𝑣1≤𝑣2

𝑐(2)𝑥1𝑣1𝑥2𝑣2𝐴𝑎,𝑣1𝑥1𝐴𝑎,𝑣2𝑥2
+ 13! ∑𝑥1𝑥2𝑥3

∑𝑣1≤𝑣2≤𝑣3
𝑐(3)𝑥1𝑣1𝑥2𝑣2𝑥3𝑣3𝐴𝑎,𝑣1𝑥1𝐴𝑎,𝑣2𝑥2𝐴𝑎,𝑣3𝑥3

+ ⋯ .
(6.22)
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A visual example of this procedure is represented in Fig. 6.3.
A further step in the ACE expansion is imposing the symmetries wementioned at the begin-

ning of the Chapter. For example rotational invariance may be imposed by restricting the sum
over the spherical harmonics indices 𝜈 = (𝑣1𝑣2) such that only products of spherical harmon-
ics that can be reduced to a representation of the identity of the rotation group. This is done
by reducing the products of the atomic bases 𝐴𝑎,𝑛𝑙𝑚 using Clebsch-Gordan coefficients (or the
analogous Wigner 3𝑗 symbols), which imposes conditions on the values of 𝑙 𝑚.

𝐵(1)𝑎𝑛 = 𝐴𝑎𝑛00, (6.23)

𝐵(2)𝑎𝑛1𝑛2𝑙 = 𝑙∑𝑚=−𝑙(−1)𝑚𝐴𝑎𝑛1𝑙𝑚𝐴𝑎𝑛2𝑙−𝑚, (6.24)

𝐵(3)𝑎𝑛1𝑛2𝑛3𝑙1𝑙2𝑙3 = 𝑙1∑𝑚1=𝑙1
𝑙2∑𝑚2=𝑙2

𝑙3∑𝑚3=𝑙3
⎡⎢⎣ 𝑙1 𝑙2 𝑙3𝑚1 𝑚2 𝑚3⎤⎥⎦𝐴𝑎𝑛1𝑙1𝑚1𝐴𝑎𝑛2𝑙2𝑚2𝐴𝑎𝑛3𝑙3𝑚3 , (6.25)

The final energy can be written as:

E𝑎(𝝈) = ∑𝑛 𝑐(1)𝑛 𝐵(1)𝑎𝑛 + ∑𝑛1𝑛2𝑙 𝑐(2)𝑛1𝑛2𝑙𝐵(2)𝑎𝑛1𝑛2𝑙 + ∑𝑛1𝑛2𝑛3𝑙1𝑙2𝑙3
𝑐(3)𝑛1𝑛2𝑛3𝑙1𝑙2𝑙3 𝐵(3)𝑎𝑛1𝑛2𝑛3𝑙1𝑙2𝑙3 + ⋯ (6.26)

or, in a more compact form: 𝐸𝑎(𝝈) = ∑𝐾𝑛𝑙 𝐜(𝐾)𝐧𝐥 𝐁(𝐾)𝑎𝐧𝐥 (6.27)

6.2.2 Faber Christensen Huang Lilienfeld (FCHL19) descriptor

As for all the atom-centered representations, the molecule 𝑚 is represented by the collection 𝐗
of the descriptors 𝐱 of all the 𝑁at atoms belonging to it.

𝐗 = [𝐱1,⋯ , 𝐱𝑁at] (6.28)

If we denote a generic atom with 𝑎, its environment is described by two types of symmetry
functions (other terms can be added, but they would decrease the performances):

𝐱𝑎 = [𝐆𝟐-body𝐚 , 𝐆𝟑-body𝐚 ], (6.29)

where we dropped the single molecule superscript 𝑚. Each of the two term is a collection on its
own:

• Two-body radial functions,𝐆𝟐-body𝐚 , describe the distribution of chemical elements around
the central atom 𝑎. It is physically related to the coordination number and it scales linearly
with the number of elements 𝑁elem of possible elements in the atomic environment. In
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Figure 6.3: Graphical explanation of ACE density trick. In general the energy will be the sum of n-body
terms contribution, up to the (𝑁𝑐 + 1)th order, which includes all the atoms in the local environment. If
we consider combination of single-bonds function to form the n-body terms, allowing repetitions, each
(K+1)-body term will contain 𝑁𝐾𝑐 contributions, which can be costly to evaluate, considering that this
has to be done for each atom in themolecule. Amore convenient way of evaluating the energy is by using
products of the atomic basis (2nd and 6th lines), which scales linearly with the number of neighbours.
Once the atomic basis is defined, it can be employed for higher-order contributions to the total energy
(2-, 3- and higher body contribution), which do not depends on the number of nearby atoms.
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fact it is defined as a collection of element-wise radial functions 𝐺2-body𝑎 (𝑥𝛼) where 𝑥𝛼 is
one of the possible elements:

𝐆𝟐-body𝐚 = [𝐺2-b𝑎 (𝑥1),⋯ ,𝐺2-b𝑎 (𝑥𝑁elem)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟𝑁elem

], (6.30)

where each term is given by the sum of all the contributions coming from all the atoms of
the same chemical species, and it is based on the reciprocal distance only:

𝐺2-body𝑎 (𝑥) = ∑𝑏∶𝑍𝑏=𝑍𝑥
𝐺2-body(𝑟𝑎𝑏) (6.31)

where 𝑟𝑎𝑏 is the reciprocal distance between atoms 𝑎 and 𝑏.
• Three-body functions, 𝐆𝟑-body𝐚 , describes the distribution of angles and distances between

triplet of elements around the central atom (with the species of the central kept fixed).
The scaling with the number of possible elements is given by all the possible non-ordered
combination with repetition of chemical elements:

(𝑁elem + 𝑁elem(𝑁elem − 1)2! ) = 12𝑁elem(𝑁elem + 1) (6.32)

𝐆𝟑-body𝐚 = [𝐺3-b𝑎 (𝑥1, 𝑥1), 𝐺3-b𝑎 (𝑥1, 𝑥2),⋯ ,𝐺3-b𝑎 (𝑥1, 𝑥𝑁el), 𝐺3-b𝑎 (𝑥2, 𝑥2),⋯ ,𝐺3-b𝑎 (𝑥𝑁el , 𝑥𝑁el)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟𝑁el(𝑁el+1) ],
(6.33)

where each term is a shorthand for

𝐺3-b𝑎 (𝑥, 𝑥′) = ∑𝑏∶𝑍𝑏=𝑍𝑥𝑐∶𝑍𝑐=𝑍𝑥′
𝐺3-b(𝑅𝑠, 𝑟𝑎𝑏, 𝑟𝑎𝑐, 𝜃𝑎𝑏𝑐, 𝜃𝑐𝑎𝑏, 𝜃𝑏𝑐𝑎), (6.34)

as before we have the sum over different contribution coming from couple of atoms in the
atomic environment, taking into account the reciprocal distance with the central atom and
the three angles formed by the triplet.

Now we have a closer look to the specific functional form of the 2- and 3-body function intro-
duced so far in the summation.

Two-body functions

The radial basis functions set is defined over a grid, centered on the considered atom, of 𝑛𝑅𝑠2
points, that is, the discrete variable 𝑅𝑠 can assume 𝑛𝑅𝑠2 values (24 by default), from 𝑟cut𝑛𝑅𝑠2 to a
cutoff radius 𝑟cut above which the environment is not considered anymore local. The height of
the bin at each 𝑅𝑠 is given by the sum of all the contributions of the kind 𝐺2-body(𝑟𝑎𝑏) coming
from all the atoms belonging to the same chemical element:

𝐺2-body(𝑟𝑎𝑏) = 𝜉2(𝑟𝑎𝑏)𝑓cut(𝑟𝑎𝑏) 1𝑅𝑠𝜎(𝑟𝑎𝑏)𝑒−
(ln𝑅𝑠−𝜇(𝑟𝑎𝑏))22𝜎(𝑟𝑎𝑏)2 , (6.35)
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where 𝜇(𝑟𝑎𝑏) and 𝜎(𝑟𝑎𝑏) are parameters of the log-normal distribution; these parameters depend
on the interatomic distance, 𝑟𝑎𝑏, and a hyper-parameter, 𝑤, defined as follows:

𝜇(𝑟𝑎𝑏) = ln
⎛⎜⎜⎜⎜⎝

𝑟𝑎𝑏√1 + 𝑤𝑟2𝑎𝑏
⎞⎟⎟⎟⎟⎠ , (6.36)

𝜎(𝑟𝑎𝑏)2 = ln⎛⎜⎝1 + 𝑤𝑟2𝑎𝑏⎞⎟⎠ , (6.37)

In the equation (6.35), the form of the two body scaling function, 𝜉2(𝑟𝑎𝑏) has been found by
previous studies to be suitable for obtaining higher regression weights to terms that contribute
the most to the total energy 𝜉2(𝑟𝑎𝑏) = 1𝑟𝑁2𝑎𝑏 . (6.38)

The soft cut-off function used here is the same as the one proposed in other representations
such as ACSFs:

𝑓cut(𝑟𝑎𝑏) = ⎧{⎨{⎩
12 (cos (𝜋𝑟𝑎𝑏𝑟cut ) + 1) if 𝑟𝑎𝑏 ≤ 𝑟𝑐𝑢𝑡0 if 𝑟𝑎𝑏 > 𝑟𝑐𝑢𝑡. (6.39)

All the hyper-parameters ( the width parameter of the log-normal distribution, 𝑤; the ex-
ponent of the scaling function, 𝑁2; the cut-off distance, 𝑟cut; and the number of radial basis
functions, 𝑛𝑅𝑠2) have been optimized on different datasets throughMonte Carlo by the authors,
but can in principle be adapted to specific datasets, at the price of loosing their universal validity.
Their actual values will be reported in Appendix C.

Three-body functions

The three-body functions encode the distances of an atom to neighboring pairs of atoms in the
environment of the atom, as well as the angle between the triplet. The resulting function is a
product of the following terms:

𝐺3-b(𝑟𝑎𝑏, 𝑟𝑎𝑐, 𝜃𝑎𝑏𝑐,𝜃𝑐𝑎𝑏, 𝜃𝑏𝑐𝑎) =𝜉3𝐺3-body
radial (𝑟𝑎𝑏, 𝑟𝑎𝑐)𝐺3-body

angular(𝜃𝑐𝑎𝑏)𝑓cut(𝑟𝑎𝑏)𝑓cut(𝑟𝑐𝑎)𝑓cut(𝑟𝑏𝑐), (6.40)

where there is a radial basis function defined as:

𝐺3-body
radial (𝑟𝑎𝑏, 𝑟𝑎𝑐) = √𝜂3𝜋 exp⎛⎜⎜⎝−𝜂3 (12 (𝑟𝑎𝑏 + 𝑟𝑎𝑐) − 𝑅𝑠)2⎞⎟⎟⎠ , (6.41)

where 𝜂3 is a parameter that controls the width of the radial distribution functions and again𝑅𝑠 is the location of the radial gridpoints, in total 𝑛𝑅𝑠3 (20 by default). The three-body scaling
function, 𝜉3 is 𝜉3 = 𝑐3 1 + 3 cos(𝜃𝑐𝑎𝑏) cos(𝜃𝑎𝑏𝑐) cos(𝜃𝑏𝑐𝑎)(𝑟𝑎𝑏𝑟𝑏𝑐𝑟𝑐𝑎)𝑁3 , (6.42)



88 Chapter 6. Machine learning interatomic potentials

here any 𝜃𝐴𝐵𝐶 is the angle ̂𝐴𝐵𝐶. Finally, the angular term 𝐺3-body
angular collects two forms:

𝐺3-body
angular(𝜃𝑐𝑎𝑏) = ⎧{⎨{⎩

𝐺cos𝑛 (𝜃𝑐𝑎𝑏) = exp(− (𝜍𝑛)22 ) (cos(𝑛𝜃𝑐𝑎𝑏) − cos(𝑛(𝜃𝑐𝑎𝑏 + 𝜋))𝐺sin𝑛 (𝜃𝑐𝑎𝑏) = exp(− (𝜍𝑛)22 ) (sin(𝑛𝜃𝑐𝑎𝑏) − sin(𝑛(𝜃𝑐𝑎𝑏 + 𝜋))), (6.43)

where 𝑛𝐹 is the order of expansion (usually fixed to 1) and 𝜍 is a hyper-parameter describing
the width of the angular Gaussian function.

Length of the representation of an atomic environment

According to the number of 2- and 3-body functions,𝑁elem and𝑁elem(𝑁elem+1) respectively, the
number of bins in each single 2- and 3-body function (𝑛𝑅𝑠2 and 𝑛𝑅𝑠3 respectively) and the order
of expansion of the angular term (𝑛𝐹), the total length of the atomic environment descriptor is:

𝑁elem × 𝑛𝑅𝑠2 + 𝑁elem × (𝑁elem + 1) × 𝑛𝑅𝑠3 × 𝑛𝐹 (6.44)

For example, in the case of water clusters, we have only 2 types of elements, 𝑁elem = 2, and
using the default values of the expansion numbers (𝑛𝑅𝑠2, 𝑛𝑅𝑠3, 𝑛𝐹) = (24, 20, 1), the description
of each atomic environment is a vector of 168 entries, showed as an example in Fig. 6.4

Relation to ACE

As showed in [282], it is possible to find connection between theACSFs and theACEdescriptors.
Since FCHL19 is a variation on Behler’s ACSFs, we can apply the same logic here. First of all
the 2-body functions of FCHL19 are just radial function that can be used in any other descriptor,
included the 𝐵(1) term in ACE. In the 3-body functions the angular dependence is given by
cos(𝜃𝑐𝑎𝑏); an analogous dependence on the cosine of the angle between 2 atoms and the central
one can be easily obtained from 𝐵(2) by means of the addition theorem for spherical harmonics:

4𝜋2𝑙 + 1 𝑙∑𝑚=−𝑙(−1)𝑚𝑌𝑚𝑙 ( ̂𝐫𝑏𝑎)𝑌−𝑚𝑙 ( ̂𝐫𝑐𝑎) = 𝑃𝑙(cos(𝜃𝑐𝑎𝑏)) (6.45)

where 𝑃𝑙 are Legendre polynomials.

6.3 Regression in the statistical learning framework
For a more comprehensive and in-depth exploration of the statistical learning framework, we
refer to [289, 290].

We start from a set of observations formed by couples of independent and dependent vari-
ables (𝐱1, 𝐲1),⋯ , (𝐱𝑁train , 𝐲𝑁train)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Train set
∈ X × Y , (6.46)

where X is the domain set, or sample/instance space, and Y is called label or target set; in our
case they would be the molecule representations and the corresponding tuples of energy and
forces (𝐸, 𝐅), respectively.
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of a predictor is through the empirical risk minimization (ERM) learning rule:

min𝑓 [𝐿𝑠 [(𝑓 (𝐱𝑖), 𝐲𝑖)𝑖=1,⋯,𝑛]] = min𝑓 ⎡⎢⎣ 1𝑁 𝑁∑𝑖=1 𝑙𝑠 (𝑓 (𝐱𝑖), 𝐲𝑖)⎤⎥⎦ , (6.48)

where 𝑙𝑠 is an appropriate loss function which measure the error given a true value 𝐲𝑖 and the
prediction 𝑓 (𝐱𝑖), while 𝐿𝑠 is the total loss. However in most of the cases the regularized loss
minimization (RLM) learning rule is adopted, where the functional to be minimized is:

min𝑓 [𝐿𝑠(𝑓 ) + 𝑅(𝑓 )] , (6.49)

where the first term is the empirical risk defined above, 𝑅(𝑓 ) is the regularization term which
controls the complexity of the hypothesis class F from which 𝑓 is selected: it should be large
enough to contain the functions that can solve the problem, but not too large, otherwise the
algorithm could overfit the data or be unstable under slight change of its input.

An example is the regularized least-squares linear regression, where the unknown function𝑓𝐰 is approximated by the hyperplane that minimizes the squared distance between the pre-
dicted and the true function value.

min𝐰 ⎡⎢⎣ 1𝑁 𝑁∑𝑖=1(⟨𝐰, 𝐱𝑖⟩ − 𝑦𝑖)2 + 𝜆 ‖𝐰‖2⎤⎥⎦ , (6.50)

where 𝜆 is a hyper-parameter which controls the trade-off between high empirical risk or high
complexity. Now the predictor function 𝑓𝐰(𝐱) is defined as a dot product between the instance𝐱 and the vector of coefficients 𝐰, as usual in linear regression; the loss function is the squared
loss, the regularization function is the Tikhonov one. This kind of regression is called ridge
regression.

6.4 Kernel methods
Here, we introduce Kernel ridge regression (KRR)methods. We refer to [290, 291] for a broader
and deeper view on these subjects.

6.4.1 Kernel ridge regression
Kernel methods extend what we have seen above with linear regression to nonlinear functions.
The samples {𝐱𝑖} are mapped to a high-dimensional Hilbert space called feature space2,H, where
the learning task can be reduced to a linear regression. The explicit feature map can be formally
defined as

𝜙 ∶ X → H𝐱 ↦ 𝐪 ∶= 𝜙(𝐱), (6.51)

2NB: these features are different from those produced in the features engineering step we introduced in Sec. 6.1
and 6.2; that one in our case means ”descriptor engineering”



6.4. Kernel methods 91

given the high number of dimensions of feature space (up to infinite), it can be costly if not
impossible to compute the features of a given sample 𝐱. The “kernel trick” is a way around this
problem: if we rewrite the problem of (6.50) in a more general way by considering the vectors
belonging to the feature space we obtain

argmin𝐰 [𝐿𝑠 (⟨𝐰, 𝜙(𝐱𝑖)⟩,⋯ ⟨𝐰, 𝜙(𝐱𝑁)⟩; 𝐲) + 𝑅(‖𝐰‖)] , (6.52)

we can apply the representer theorem [292], which states that there exists a vector 𝜶 ∈ ℝ𝑛 such
that the optimal solution of the equation (6.52) can be written as:

𝐰 = 𝑁∑𝑖=1 𝛼𝑖𝜙(𝐱𝑖). (6.53)

This allows one to rewrite the optimization problem (6.52) as:

argmin𝜶 ⎡⎢⎣𝐿𝑠 ⎛⎜⎜⎝
𝑁∑𝑗=1 𝛼𝑗⟨𝜙(𝐱𝑗), 𝜙(𝐱1)⟩,⋯ , 𝑁∑𝑗=1 𝛼𝑗⟨𝜙(𝐱𝑗), 𝜙(𝐱𝑁)⟩; 𝐲⎞⎟⎟⎠ + 𝑅⎛⎜⎜⎝

√√√⎷
𝑁∑𝑖𝑗 𝛼𝑖𝛼𝑗⟨𝜙(𝐪𝑗), 𝜙(𝐪𝑖)⟩⎞⎟⎟⎠⎤⎥⎦ ,

(6.54)
in which we notice that the features appear only in the dot product in the feature space. In the
particular case of regularized least squares we have

argmin𝜶 ⎡⎢⎢⎣
𝑁∑𝑖 ⎛⎜⎜⎝

𝑁∑𝑗=1 𝛼𝑗⟨𝜙(𝐱𝑗), 𝜙(𝐱𝑖)⟩ − 𝑦𝑖⎞⎟⎟⎠
2 + 𝜆 𝑁∑𝑖𝑗 𝛼𝑖𝛼𝑗⟨𝜙(𝐱𝑗), 𝜙(𝐪𝑖)⟩⎤⎥⎥⎦ . (6.55)

Now we define the kernel function K as
K ∶X × X → ℝ(𝐱, 𝐱′) ↦ K(𝐱, 𝐱′) = ⟨𝜙(𝐱′), 𝜙(𝐱)⟩, (6.56)

which implies that the kernel must be symmetric, that is K(𝐱, 𝐱′) = K(𝐱′, 𝐱), and positive defi-
nite. Equation (6.54) can be written as an optimization problem with respect to the coefficients𝜶,

argmin𝜶 ⎡⎢⎣𝐿𝑠 ⎛⎜⎜⎝
𝑁∑𝑗=1 𝛼𝑗K(𝐱𝑗, 𝐱1),⋯ , 𝑁∑𝑗=1 𝛼𝑗K(𝐱𝑗, 𝐱𝑁); 𝐲⎞⎟⎟⎠ + 𝑅⎛⎜⎜⎝

√√√⎷
𝑁∑𝑖𝑗 𝛼𝑖𝛼𝑗K(𝐱𝑗, 𝐱𝑖)⎞⎟⎟⎠⎤⎥⎦ , (6.57)

for which we do not need direct access to the elements in the features space H through the
explicit mapping 𝜙, we need only to know how to perform the inner product K(𝐱, 𝐱′), that is,
the kernel function, or equivalently, the Gram matrix 𝐊:

𝐾𝑖𝑗 = K(𝐱𝑖, 𝐱𝑗) = ⟨𝜙(𝐱𝑖), 𝜙(𝐱𝑗)⟩. (6.58)

Particularly for the least-squares, the Gram matrix 𝐊 allows one to write (6.55) in a com-
pact way by constructing the label vector 𝐲𝑇 = (𝑦1,⋯ , 𝑦𝑁) and the vector of coefficients𝜶𝑇 = (𝛼1,⋯ , 𝛼𝑁):

argmin𝜶 ⎡⎢⎢⎣
𝑁∑𝑖 ⎛⎜⎜⎝

𝑁∑𝑗=1 𝛼𝑗𝐾𝑖𝑗 − 𝑦𝑖⎞⎟⎟⎠
2 + 𝜆 𝑁∑𝑖𝑗 𝛼𝑖𝛼𝑗𝐾𝑖𝑗⎤⎥⎥⎦ , (6.59)
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argmin𝜶 [∥𝐊𝜶 − 𝐲∥2 + 𝜆𝜶𝑇𝐊𝜶] . (6.60)

Once we learn the coefficients 𝜶, we can calculate the prediction on a new instance 𝐱∗ by simply
computing the dot product:

⟨𝐰, 𝜙(𝐱∗)⟩ = 𝑁∑𝑗 𝛼𝑗⟨𝜙(𝐱𝑗), 𝜙(𝐱∗)⟩ = 𝑁∑𝑗 𝛼𝑗K(𝐱𝑗, 𝐱∗). (6.61)

Before treating the specific case of energy learning, we mention one of the most commonly
used kernel, which will be used also later, the Gaussian one, also called radial basis function
(RBF):

K(𝐱, 𝐱′) = 𝑒− ∥𝐱−𝐱′∥222𝜎2 = 𝑒− (𝐱−𝐱′)22𝜎2 = 𝑒− 𝐱22𝜎2 − 𝐱′22𝜎2 + 𝐱𝐱′𝜎2 =
= 𝑒− 𝐱22𝜎2 − 𝐱′22𝜎2 ⎛⎜⎜⎝1 + 𝐱𝐱′𝜎2 + 12! (𝐱𝐱′𝜎2 )2 + 13! (𝐱𝐱′𝜎2 )3 + ⋯⎞⎟⎟⎠ =
= 𝑒− 𝐱22𝜎2 − 𝐱′22𝜎2 ⎛⎜⎝1 ⋅ 1 + 𝐱𝜎 ⋅ 𝐱′𝜎 + 1√2! 𝐱

2𝜎2 ⋅ 1√2! 𝐱
′2𝜎2 + 1√3! 𝐱

3𝜎3 ⋅ 1√3! 𝐱
′3𝜎3 + ⋯⎞⎟⎠ =

= ⟨𝜙(𝐱), 𝜙(𝐱′)⟩,
(6.62)

where the passages makes evident that we have implicitly employed the mapping:

𝜙(𝐱) = 𝑒− 𝐱22𝜎 ⎡⎢⎣1, 𝐱𝜎 , 1√2! 𝐱
2𝜎2 , 1√3! 𝐱

3𝜎3 ,⋯⎤⎥⎦ . (6.63)

6.4.2 Learning energies via kernel methods
Now we can apply the concepts developed in the previous section to the specific problem of
fitting the PES. In the case of global representations, we can write the training set as

(𝐗1, 𝐸1),⋯ , (𝐗𝑛, 𝐸𝑛),⋯ , (𝐗𝑁 , 𝐸𝑁) (6.64)

The training step consists in solving the minimization problem (6.55) in its matrix inversion
problem form (Eq. 6.60), where 𝐊 is a square matrix of shape 𝑁train × 𝑁train.

Instead of just inverting the equation according to a naive loss minimization, it is common
practice in ML to reduce the complexity of the hypothesis class of the function, in this case
represented by the regression coefficients, by introducing a penalty for too large coefficients.
This learning rule is called regularized loss minimization (RLM). This is done also to stabilize
the learning algorithm, which means that a slight change of its input should not change too
much its output. One of the most employed regularization function is the Tikhonov one we
have already seen in Eq. (6.50):

𝑅(𝜶) = 𝜆 ‖𝜶‖22 = 𝜆 𝑁∑𝑛 𝛼2𝑛, (6.65)
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In our case the kernel ridge regression is done by solving the minimization problem:

argmin𝜶 [12 ‖𝐊𝜶 − 𝐄‖22 + 𝜆2𝜶𝑇𝐊𝜶] (6.66)

The solution can be written in the following closed-form:

𝜶 = (𝐊 + 𝕀𝝀)−1 𝐄. (6.67)

In practice this solution is usually determined not by direct inversion of the matrix, but by sin-
gular value decomposition, to deal with the large dimension of the training set.

Once the coefficients are found, the total energy of a query molecule 𝑚 would be given by

𝐸∗𝑚 = 𝐸∗(𝐗𝑚) = 𝑁∑𝑛 𝐾𝑚𝑛𝛼𝑛 = 𝑁∑𝑛 K(𝐗∗𝑚, 𝐗𝑛)𝛼𝑛. (6.68)

where the 𝛼’s are the regression coefficients, and the kernel matrix entries are given by a kernel
based function, which for example could be

𝐾∗𝑚𝑛 = K(𝐗𝑛, 𝐗∗𝑚) = exp⎛⎜⎜⎝−∥𝐗𝑛 − 𝐗∗𝑚∥222𝜎 ⎞⎟⎟⎠ (6.69)

If we want to predict the energies of 𝑁test = 𝑀 molecules, we can collect them in a single vector𝐄∗ = [𝐸∗1, 𝐸∗2,⋯ , 𝐸∗𝑀]𝑇 and express the above equation in matrix form:

𝐄∗ = 𝐊∗𝜶 (6.70)

If we are describing the compound by local atomic environments 𝐱, these are compared by
locally defined kernels; the total energy of a molecule is now expressed as a sum of local atomic
energies:

𝐸∗𝑚 = ∑𝑎∈𝑚 E(𝑥∗𝑎) = ∑𝑎∈𝑚
𝑁∑𝑛=1 ∑𝑏∈𝑛K(𝐱∗𝑏, 𝐱𝑎)𝛼𝑛 (6.71)

where 𝑚 and 𝑛 are the test and train configuration indices, and for short notation we indicated
with 𝑎 ∈ 𝑚 and 𝑏 ∈ 𝑛 the atoms belonging to them. If we rearrange the sumwe can still consider
a “global kernel”, given by the sum of local ones:

𝐸∗𝑚 = 𝑁∑𝑛=1 ∑𝑎∈𝑚 ∑𝑏∈𝑛K(𝐱𝑏, 𝐱∗𝑎)𝛼𝑛 = 𝑁∑𝑛=1𝐾∗𝑚𝑛𝛼𝑗, (6.72)

and as we did for the true global kernel in Eq. 6.70, we can write the above equation in algebraic
form, 𝐄∗ = 𝐊∗𝜶. In both cases the kernel matrix 𝐊∗ has a shape of 𝑀×𝑁. However, in the latter
case, the matrix entries 𝐾𝑚𝑛 do not correspond to true kernel functions. In fact this compact
form hides the sum over the atoms used to build the basis. Using again RBF as an example, we
can write 𝐾∗𝑚𝑛 = ∑𝑎∈𝑚 ∑𝑏∈𝑛K(𝐱𝑏, 𝐱∗𝑎) = ∑𝑎∈𝑚 ∑𝑏∈𝑛 𝛿𝑍𝑏,𝑍𝑎 exp⎛⎜⎜⎝∥𝐱𝑏 − 𝐱∗𝑎∥222𝜎 ⎞⎟⎟⎠ . (6.73)

where the Kronecker-delta 𝛿𝑍𝑏,𝑍𝑎 has been introduced to compute the local kernel only between
atoms of the same type, following the prescription of Eq. (6.8).
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6.4.3 Gaussian process regression kernel
What has been exposed so far can be studied also from a Bayesian viewpoint. For a general treat-
ment of the subject see [293], for its application to PES learning see [294]. In particular Gaussian
process regression (GPR) offers an alternative to fit simultuneously energies and forces, with
kernels of the form: ⎡⎢⎣𝐄𝐅⎤⎥⎦ = ⎡⎢⎣ 𝐊 − 𝜕𝜕𝐫𝑇 𝐊− 𝜕𝜕𝐫𝐊 𝜕2𝜕𝐫𝜕𝐫𝑇 𝐊⎤⎥⎦ 𝜶. (6.74)

where the dimensions are (𝑁 + 3𝑁at𝑁) × (𝑁 +𝑁at𝑁), with the usual 𝑁 the number of samples
in the training set and 𝑁at the number of atoms in each sample. Now the cost function is:

argmin𝜶 ⎡⎢⎢⎣
12 ∥∥∥∥⎡⎢⎣ 𝐊 − 𝜕𝜕𝐫𝑇 𝐊− 𝜕𝜕𝐫𝐊 𝜕2𝜕𝐫𝜕𝐫𝑇 𝐊⎤⎥⎦ 𝜶 − ⎡⎢⎣𝐄𝐅⎤⎥⎦∥∥∥∥

2
2 + 𝜆2𝜶𝑇 ⎡⎢⎣ 𝐊 − 𝜕𝜕𝐫𝑇 𝐊− 𝜕𝜕𝐫𝐊 𝜕2𝜕𝐫𝜕𝐫𝑇 𝐊⎤⎥⎦ 𝜶⎤⎥⎥⎦ (6.75)

with solution:

𝜶 = ⎛⎜⎜⎝⎡⎢⎣ 𝐊 − 𝜕𝜕𝐫𝑇 𝐊− 𝜕𝜕𝐫𝐊 𝜕2𝜕𝐫𝜕𝐫𝑇 𝐊⎤⎥⎦ + 𝕀𝜆⎞⎟⎟⎠
−1 ⎡⎢⎣𝐄𝐅⎤⎥⎦ (6.76)

Energies and forces can be obtained with:

𝐄 = [𝐊,− 𝜕𝜕𝐫𝑇𝐊]𝜶 (6.77)

𝐅 = − 𝜕𝜕𝐫𝐄 = [− 𝜕𝜕𝐫𝐊,− 𝜕2𝜕𝐫𝜕𝐫𝑇𝐊]𝜶 (6.78)

It is also possible to use only forces labels during the training to produce accurate and still
energy-conservingmolecular force fields. This process goes under the nameof gradient-domain
machine learning (GDML) [295], the equations are formally similar to the previous ones, just
restricted to the lower-right (𝑁 + 3𝑁at𝑁) × (𝑁 + 3𝑁at𝑁) submatrix:

𝐅 = [ 𝜕2𝜕𝐫𝜕𝐫𝑇 𝐊]𝜶 (6.79)

argmin𝜶 ⎡⎢⎣12 ∥∥∥∥ 𝜕2𝜕𝐫𝜕𝐫𝑇𝐊 − 𝐅∥∥∥∥
2
2 + 𝜆2𝜶𝑇 𝜕2𝜕𝐫𝜕𝐫𝑇𝐊𝜶⎤⎥⎦ (6.80)

𝜶 = ([ 𝜕2𝜕𝐫𝜕𝐫𝑇𝐊] + 𝕀𝜆)−1 𝐅. (6.81)

The only difference is that now the energies are predicted up to an integration constant 𝑐, which
can be useful only when doing the final test with direct comparison of energy values:

𝐄 = [− 𝜕𝜕𝐫𝑇𝐊]𝜶 + 𝑐, (6.82)

which in our case has been determined during the training by computing the average difference
between the predicted energies and the true ones.
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6.4.4 Local kernels with operator quantum machine learning
Within the context of kernel-based regression, it has been proposed [296] that not only the
energies can be used as labels, but also any observable that is related to differential operators
acting on the energy. This framework is namedOperator QuantumMachine Learning (OQML)
and it is useful in those cases in which forces are available, since it has been shown [297] that
they can improve the prediction both in energy and forces.

The kernel matrix looks different from the previous one, as now the column index runs
not just on the configurations in the training set, but on all the atoms of all the training set
configurations: 𝐾OML𝑖𝐽 = ∑𝐼∈𝑖 K(𝐱𝐽 , 𝐱𝐼) (6.83)

which is no more a square-matrix, as the dimensions of 𝐊OML are 𝑁×𝑀𝑁. To take into account
also the forces we consider the derivative of the kernel entry with respect to the coordinate of
the atoms belonging to the configuration-row:

− 𝜕𝜕𝑟∗𝐾𝐾OML𝑖𝐽 = −∑𝐼∈𝑖
𝜕𝜕𝑟𝐾K(𝐱𝐽 , 𝐱𝐼) 𝐾 ∈ [1,⋯ , 3𝑀], (6.84)

where the derivative is computed as shown in the previous section and𝐾 runs up to 3𝑀 because
we are considering a particular configurations. We can express the least-squares algorithm in
matrix form as the minimization of the cost function:

argmin𝜶 ⎡⎢⎢⎣
∥∥∥∥⎡⎢⎣𝐄𝐅⎤⎥⎦ − ⎡⎢⎣ 𝐊OML− 𝜕𝜕𝐫∗𝐊OML

⎤⎥⎦ 𝜶OML∥∥∥∥
2
2
⎤⎥⎥⎦ (6.85)

where the dimensions of the kernel matrix, derivatives part included, are (3𝑀𝑁 + 𝑁) × 𝑀𝑁,
with 𝑁 the number of samples in the training set and 𝑀 the number of atoms in each sample.
Here there is no regularization factor, but since this equation is solved with singular value de-
composition (SVD), the threshold below which singular value are no more considered can be
treated as 𝜆.
6.5 Neural networks
Another way of managing non-linearity is through neural networks, which have been inspired
by how the brain works. The idea of modeling network of neurons dates back to 1943 [298],
while the first physical implementation of a single artificial neuron able to learn to distinguish
pictures is Rosenblatt’s perceptron [299]. Both the biological and artificial neuron are depicted
in Fig. 6.5. The biological neuron receives various inputs through chemical signals at the den-
drites. If a certain threshold of signals is reached, themessage is electrically propagated through
the axon and passed to other neurons at the synapses. Similarly, the perceptron receives an in-
put vector of values, and if a weighted sum of these values exceeds a threshold, it spikes an
output signal, encoded as a Heaviside step-function or as another non-linear function. A single
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Figure 6.6: Scheme of an artificial neural network.
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Figure 6.7: Information flow in a single neuron embedded in a feedforward neural network.

neurons connected to it from the layer (𝑡 − 1):
𝑎(𝑡−1)𝑖 = 𝑑𝑡−1∑𝑗=1 (𝑤(𝑡−1)𝑗𝑖 )𝑇 𝑦(𝑡−1)𝑗 = (𝐰(𝑡−1)𝑖 )𝑇𝐲(𝑡−1) (6.87)

where in the last step we expressed the sum as a matrix-vector product. The output of a neuron
is simply the application of the activation function to the input:

𝑦(𝑡)𝑖 = 𝜎 ((𝐰(𝑡−1)𝑖 )𝑇𝐲(𝑡−1) + 𝑏(𝑡−1)) , (6.88)

where 𝑏(𝑡−1) is the bias of the neuron
We can also adopt a layer point of view, by defining the weight matrix 𝐖𝑡 of shape 𝑑𝑡 × 𝑑𝑡−1,

whose rows are the transposed weight vectors 𝐰(𝑡)𝑗 between layer (𝑡 − 1) and layer (𝑡),
𝐖𝑡 = [𝐰(𝑡)1 , 𝐰(𝑡)2 ,⋯ ,𝐰(𝑡)𝑑𝑡 ]𝑇 . (6.89)
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It follows that we can write the total input from layer (𝑡 − 1) to layer 𝑡 as:
𝐚(𝑡) = 𝐖𝑡𝐲(𝑡−1) (6.90)

and the total output from layer 𝑡 to layer (𝑡 + 1) as:

𝐲(𝑡) = 𝝈 (𝐖𝑡𝐲(𝑡−1)) (6.91)

Since we will deal with only FFNN, we will refer to them simply as Neural network (NN).
From a functional point of view, a NN is a function with the following domain of applica-

tions: 𝑓𝑉,𝐸,𝜎,𝑤 ∶ ℝ|𝑉0|−1 → ℝ|𝑉𝑇 |. (6.92)

where the parameters {𝑉, 𝐸, 𝜎} define the architecture of the neural network. The hypothesis
class of a network is defined by fixing its architecture

HNN𝑉,𝐸,𝜎 = {𝑓𝑉,𝐸,𝜎,𝑤 ∶ 𝑤 ∶ 𝐸 → ℝ} (6.93)

where 𝑤 is the function that assign a weight to each node. Once the hypothesis class is defined,
we can denote the neural network as 𝑓𝐰, where 𝐰 stands for all the weights, which are the
parameters to be learned. Hence training the NN means finding the optimal set of weights that
minimize the loss.

6.5.1 Optimization by gradient descent
Differently from kernels, the optimization of a NN with respect to a loss function does not have
a closed form solution. Therefore we rely on iterative procedures, which minimize the loss
function by taking its gradient with respect to the learning parameters, here the weights:

𝐰[𝑛+1] = 𝐰[𝑛] − 𝜂𝑛𝛁𝐰𝐿(𝑓𝐰), (6.94)

where 𝜂𝑛 is an adaptive learning rate, which decreases at each iteration 𝑛 according to a power
law or an exponential law; the idea is that at the beginning it is advisible to update the weights
spanning the most possible of the loss function landscape, and avoid slow convergence; but
closer to the minimum the update of the weights should be smaller, to avoid instability. Such
algorithms are collectively designated as gradient descent algorithms, and will eventually land
on a local minimum of the loss function 𝐿.

In order to avoid the iteration to be stuck in local minima of the loss function, stochastic
gradient descent (SGD) algorithm are commonly employed [302]. The training set is randomly
partitioned in minibatches, and at each iteration the gradient is computed on a single randomly
picked minibatch. Other benefits of these methods may include a sort of regularization that
prevents overfitting [303]. One of the most common SGD algorithm is the Adaptive Moment
Estimation (ADAM) [304], which exploits first and secondmomenta of the gradient to calculate
an adaptive learning rate.
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In the case of NNs, the partial derivative with respect to a weight 𝑤(𝑡)𝑗𝑖 is computed as:

𝜕𝐿𝜕𝑤(𝑡)𝑗𝑖 = 𝜕𝐿𝜕𝑎(𝑡)𝑖
𝜕𝑎(𝑡)𝑖𝜕𝑤(𝑡)𝑗𝑖 = Δ(𝑡)𝑖 𝜕𝜕𝑤(𝑡)𝑗𝑖

⎛⎜⎜⎝
𝑑𝑡−1∑𝑗′=1𝑤(𝑡)𝑗′𝑖 𝑦(𝑡)𝑗′ ⎞⎟⎟⎠ = Δ(𝑡)𝑖 𝑦(𝑡−1)𝑗 (6.95)

where we see that between layer (𝑡 − 1) and (𝑡), Δ(𝑡)𝑖 can be expressed recursively as a function
of the weights of the successive layer (𝑡 + 1):

Δ(𝑡)𝑖 = 𝜕𝐿𝜕𝑎(𝑡)𝑖 = 𝜕𝐿𝜕𝑦(𝑡)𝑖
𝜕𝑦(𝑡)𝑖𝜕𝑎(𝑡)𝑖 = ⎛⎜⎜⎝

𝑑𝑡+1∑𝑘=1
𝜕𝐿𝜕𝑎(𝑡+1)𝑘

𝜕𝑎(𝑡+1)𝑘𝜕𝑦(𝑡)𝑖
⎞⎟⎟⎠𝜎 ′ (𝑎(𝑡)𝑖 ) = ⎛⎜⎜⎝

𝑑𝑡+1∑𝑘=1 Δ(𝑡+1)𝑘 𝑤(𝑡+1)𝑖𝑘 ⎞⎟⎟⎠𝜎 ′ (𝑎(𝑡)𝑖 )
(6.96)

with the initial condition being just the gradient of the loss function with respect to the weights
of the last layer, Δ𝑇𝑖 = 𝜕𝐿𝜕𝑎(𝑇)𝑖 . (6.97)

This means that in order to find the gradient of the loss function with respect to all the weight,
Eq. 6.97 has to be backpropagated [305]. Once the gradient is determined, it can be used in
SGD algorithms to optimize the weights.

6.5.2 Neural networks for PES
We mention that in 1990s the first NNs applied to PES fitting were global in nature [306–309].
Since the seminal paper of Behler and Parrinello [275], with a few exceptions [310], nearly all
neural network potentials (NN-PES) relied on the local atomic environment approximation
discussed in Sec. 6.2. The only global NN-PES nowdays are based on techniques to construct
permutationally invariant global basis function, for example PIPs+NN [311]. For an historical
overview of neural network potentials, we refer to [312]. In the following Section, we will focus
on the two architecture employed in this thesis.

6.5.3 High-dimensional neural networks
High-dimensional neural network (HDNN) are a collection of disjointed sub-FFNNs designed
to compute the atomic contributions to the energy and the forces acting on individual atoms.
Only the output of these sub-networks are combined to yield the total energy of a givenmolecule.
Despite the name, the single elemental sub-networks are relatively shallow compared to typical
image processingNNs. Usually, they consists of only 2-3 layers, while thewidth of the networks
rarely exceeds 40 nodes. The name ’high-dimensional’ likely refers to the breathrough concept
of using multiple sub-networks, as illustrated in Fig. 6.8. In the literature, this architecture is
often referred to as Behler-Parrinello neural networks (BPNNs).

While the training process via backpropagation of the loss function’s derivatives with re-
spect to the weights 6.95 is well known, an often overlooked feature of these networks is how
the forces are computed in the forward propagation step. Rather than calculating numerically



100 Chapter 6. Machine learning interatomic potentials

the atomic forces via finite difference, these forces can be obtained analytically using the for-
ward derivative with respect to the descriptors. For example, the forces can be derived from the
sum of local energies as:

𝐟 = −𝛁𝐸 = −𝛁𝑁𝑎𝑡∑𝑎 E(𝐱𝑎). (6.98)

If we focus on a single atom 𝑎 force component 𝑓 𝛼𝑎 , we can apply the chain rule [276]:

𝑓 𝛼𝑎 = −𝑁𝑎𝑡∑𝑎 𝜕E(𝐱𝑎)𝜕𝑞𝛼𝑎 = −𝑁𝑎𝑡∑𝑎 𝜕E(𝐱𝑎)𝜕𝐱𝑎 𝜕𝐱𝑎𝜕𝑞𝛼𝑎 . (6.99)

The partial derivatives of the descriptors with respect to the Cartesian coordinates can be com-
puted explicitly, or by means of symbolic or automatic differentiation. The partial derivatives
of the local energies with respect to the input vector 𝐱 of the NN instead are given by the matrix
product of the Jacobians of each layer:𝜕E𝜕𝐱 = 𝐉𝑇(𝐲𝑇−1)𝐉𝑇−1(𝐲𝑇−2)⋯ 𝐉1(𝐱) (6.100)

where each Jacobian 𝐉𝑡 is given by:

𝐉𝑡(𝐲𝑡) = diag [𝜎 ′(𝐖𝑡𝐲𝑡−1 + 𝐛𝑡)]𝐖𝑡. (6.101)

Alternatively, each Jacobian with respect to the input 𝐱 can also be defined recursively as:

𝐉𝑡(𝐱) = diag [𝜎 ′(𝐖𝑡𝐲𝑡−1(𝐱) + 𝐛𝑡)]𝐖𝑡𝐉𝑡−1(𝐱) (6.102)

where 𝐉1(𝐱) = 𝐈 ∈ ℝ𝑑1×𝑑0 is the identity matrix, as usual in the forward derivative definition in
automatic differentiation.

These computations are essential for obtaining forces and run molecular dynamics with
MLIPs, and are common also in ML as input sensitivity analysis [313].

6.5.4 Graph neural networks and MACE
Structural formulas in chemistry suggest that the most natural way to represent a molecule for
mathematical analysis is as a graph, 𝐺 = (𝑉, 𝐸). While we already introduced graphs in the
previous subsection on neural networks, in this context, each node 𝑣 ∈ 𝑉 represents an atom,
and the edges between two nodes (𝑢, 𝑣) ∈ 𝐸 are undirected and purely based on the distance
matrix𝐷, rather than on actual chemical bonds. An example of such a graph for the protonated
water hexamer is shown in the left panel of Fig. 6.9.

Graphs are a good starting point for machine learning chemistry, because the desired per-
mutational symmetry translates to node-order equivariance, which is a fundamental property
of graphs. Predictions on a graph can be of three types: predictions on nodes, predictions on
edges and global prediction on the overall structure. Our focus is on predictions at the node
level—specifically, the atoms—since we are interested in local atomic contribution to the total
energy and in the forces acting on atoms. Additionally, we aim at computing the descriptor of
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Figure 6.8: Scheme of a HDNN for a water system. A combination of the schemes in [314] (under
the CC-BY), where we stress that there are separated network to process the environments of different
atomic species. A structure is completely defined by its cartesian coordinates and its atomic species,
reported in the first column. The second column is the input layer of the NN and it is formed by the
atomic environment descriptors, which are a collection of Atom Centered Symmetry Functions (ACSFs),[𝐺1, 𝐺2, 𝐺3]; the central atom is linked to its respective environmentwith a full line, in fact we distinguish
between oxygen descriptors, 𝐱O (in red), and hydrogen descriptors, 𝐱H (in blue); in principle all the
atoms are considered when building the descriptors, hence all the cartesian coordinates are linked to the
input layer (see the dashed lines of oxygens going to the descriptors of hydrogens, and vice versa); in
practice, the atoms that are outside the radial cutoff will not contribute in defining 𝐱. From the input
layer we have the usual feedforward propagation through a shallow network of 2-3 hidden layers, that
determines the atomic energy contribution of each atom, in the output layer. Summing over all the 𝐸𝑎

O
and 𝐸𝑎

H gives us the total energy of the molecule, 𝐸tot.
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simplest being the summation. 𝐦(𝑡)
N (𝑣) = 𝜌({𝐌(𝐡(𝑡)𝑤 )}𝑤∈N (𝑣)) (6.104)

Once all the features have been computed, a learnable readout function 𝑓 , which acts on all the
nodes, either separately or collectively, produces the prediction we are interested in𝐲∗ = 𝑓 ({𝐡(𝑇)𝑣 }𝑣∈𝑉) (6.105)
In the MPNN framework, all the components described as learnable can be implemented using
a neural network. Graph neural network are a rapidly expanding field of research with appli-
cations to network science. For a concise yet comprehensive reference on GNN see [316]. In
the following we will focus on how the above framework can be exploited in machine learning
chemistry.

Quantum chemistry simulation and drug discovery have beenmajor drivers for GNNdevel-
opment, with numerous MPNN models emerging over he past decade [317]. Message-passing
offers the appealing feature of going beyond the local atomic environment approximation by
allowing multiple messages to be exchanged across the molecular graph. In the right panel of
Fig. 6.9, we see a generalized adjacency matrix. The adjacency matrix 𝐀 ∈ ℝ|𝑉|×|𝑉| encodes the
connectivity of the molecular graph, indicating the presence of edges:⎧{⎨{⎩

𝐀[𝑢, 𝑣] = 1 if (𝑢, 𝑣) ∈ 𝐸𝐀[𝑢, 𝑣] = 0 otherwise
. (6.106)

With the firstmessages (violet squares), the nodes know their local atomic environment, like the
local descriptors we introduced in 6.2. With subsequent updates of the embeddings (green and
yellow squares respectively), the nodes can receive information about atoms beyond the atomic
environment radial cutoff. Of course the updates come with an non-neglible computational
cost. Additionally, the internal features must be equivariant, meaning that the messages must
encode the necessary isometries, much like how convolution in convolutional neural network
encodes the translational symmetry.

One of the most promising MPNN-potential is MACE [318], based on ACE [282] which
extends beyond the local description of the atomic environment. Each atom/node 𝑣 in the layer(𝑡) is represented by a state 𝜎(𝑡)𝑖 = (𝐪𝑣, 𝑍𝑣, 𝐡(𝑡)𝑣 ) (6.107)
where the position 𝐪𝑖 and the chemical element 𝑍𝑣 do not change at each update, while it is
the case of the node embeddings 𝐡(𝑡)𝑣 , which contains equivariant tensors. The embeddings are
updated following the scheme of typical MPNN, using a linear combination of the messages
coming from neighbouring atoms. The messages are constructed by embedding the edges us-
ing learnable radial basis and spherical harmonics containing the angular information of the
neighbours, in combination with previous node features. In order guarantee features equivari-
ance, the 2-body features pooled from the neighbouring atoms and combined through Clebsch-
Gordan coefficients. Higher order features are built using the same procedure, with the differ-
ence that they are combined through tensor products, which are then symmetrised.
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6.6 Machine learning potentials for neutral and protonated water

Apart from the already cited ML-based MBE-potentials [244], several MLIPs for water have
been proposed and reviewed [319]. Kernel-based and HDNN potentials are the most used
MLIPs, both showing similar performance, with the most critical step being database construc-
tion [320]. HDNN fitted to DFT data enabled studies on the influence of van der Waals inter-
actions on hydrogen-bond structures [321]. Solid and liquid water have been simulated using
MACE-based foundation models [322] and DeePMD, a deep neural network potential with au-
tomatic representation learning [323].

Nearly all the simulationsmentioned so far are DFT-based, inheriting its limitations, particu-
larly the choice of the exchange-correlation functional andwater overstructuration. At the same
computational cost, higher accuracy datasets from explicitly correlated methods are necessarily
smaller in size, leading to methods that focus on refining a base model. This can be achieved
by initially training on a dataset computed with lower-tier electronic structure methods, such
as DFT or MP2, followed by two possible approaches: building a model that learns the differ-
ence with a more complex method like CCSD(T) (a technique known as Δ-learning) [324]),
or fine-tuning the model itself through transfer learning.Transfer learning involves improving
the weights of an already trained model by learning from a few high-accuracy energies. This
as been demonstrated also for bulk water, progressing from HF, BLYP, revPBE0-D3 to CCSD,
CCSD(T), and auxiliary-field Monte Carlo [325]. Additionally, handling long-range electro-
statics with a simpler model allows the MLIP to focus on short-range interactions, which can
also be seen as stacking models of increasing accuracy, as done in combining interpolated mul-
tipoles with ML-learned short-range interactions in flexible cartesian multiple combined with
GAP (FCM/GAP) [326]. These techniques have been applied to bulk water, as demonstrated
by augmenting a simple electrostatics model based on partial charges with a HDNN trained via
transfer learning from DFT-level to MP2 and then CCSD(T)-level [327].

Managing long-range interactions remains one of the hardest tasks in MLIPs [274, 328], a
longstanding problem also noted in previous classical water force fields, as briefly reviewed in
Chap. 5. Long Distance Equivariant (LODE) descriptors have been proposed to capture long-
range interactions based on the local value of an atom-density potential [329]. Additionally,
MLIPs that consider polarization and charge transfer [330] are still under development, though
most have not yet been applied to water systems.

The only type of MLIPs of this kind applied to water systems use the local atomic environ-
ment of a single molecule to infer the position of maximally localized Wannier centers (ML-
WCs), computed from DFT. This approach has the benefit of relying solely on ab initio calcula-
tions without the need for an arbitrary definition of partial charges. Notable examples include
the self-consistent neural network (SCFNN) by Remsing et al. [331, 332], and the DeePMD ex-
tension with electrostatics by Car et al. [333, 334], which has been successfully applied to water
ionization [335, 336]. Extending these models to charged systems or other methods beyond
DFT would be interesting, though this generalization is not straightforward.
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Simulations of protonated water using MLIPs have been more limited in terms of methods
and systems compared to neutral water [319]. Notable studies include HDNN trained on DFT
data [337], extending up to the protonated water octamer, H+(H2O)8, and HDNN trained on
high-accuracy CCSD(T) for the Zundel cation [338], as well as the hydronium ion [339] and the
Eigen complex [340]. Learning multiple clusters H+(H2O)n=1,⋯,4 [341] enabled extrapolation
to the protonated water hexamer in its Zundel configuration [342].

We are not aware of works applyingMLIPs directly to the protonatedwater hexamer treated
with advanced methods able to taking into account electronic correlation, such as CCSD(T) or
QMC.





CHAPTER 7
Assessing the quality of MLIPs trained

on stochastic datasets

In the last two decades machine learning interatomic potentials (MLIPs) like those presented
in Chapter 6 emerged as a tool to combine the speed of parametrized potentials with the accu-
racy of sophisticated electronic structure methods, bridging the best of the two worlds [275].
By replacing application-tailored functional forms of typical force fields (Chapter 5) with a
data-driven approach, MLIPs can fit any PES, provided that a large enough set of single-point
calculations done with any electronic structure technique is available. Yet, they are mainly used
to fit energy and forces that might be biased by the underlying approximations, or by the level
of theory. Therefore, we find appealing employing themwith QMC estimates of the PES, which
are very accurate and, despite the noise, unbiased. This approach has already been successfully
applied in several studies [325, 343–345], eventually in combination with Δ-machine learning
[346]. The effect of noise on the learning algorithms has also been investigated in some previous
works [347–349].

In this Chapter we undertake a thorough study on the robustness ofMLIPs in learning noisy
PES estimated with stochastic electronic structure methods. One of our goals is to answer to the
following questions: how does the QMC noise affect the quality of the simulations? What is
the ”breaking point” of MLIPs with respect to the noise amplitude? How is this related to the
size of the training set? As pointed out in Ref. [348], the trade-off between the number of
datapoints used in the training, and the accuracy of each estimate, meant as stochastic error
on the single datapoint, is one of the keys to efficiently exploit QMC methods in the context
of MLIPs. However, it is not clear up to which level of noise this trade-off can be applicable.
In order to study the learning efficiency as a function of a progressively larger noise level, we
purposedly corrupted amodel PES with gradually increasing noise, on which different types of
MLIPs were trained. To quantify their reliability we then analyzed not only the corresponding
standard test errors and learning curves, but alsowe carried out production runs tomeasure the
standardized difference of physical observables between ab initio dynamics and MLIP-driven
one.

107
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In Section 7.1 we introduce Ceperley’s classification of the noise and errors involved when
applying fitting methods to data affected by noise. This scheme allows one to design a learn-
ing protocol and systematically interpret the results and the performance of the learning algo-
rithms.

In the same spirit of the first part of this thesis, we want to study protonated water clusters.
Therefore, in Section 7.2 we introduce the benchmark of our choice for the application of MLIPs,
namely the Zundel ion, H5O2

+. Being the smallest protonated water cluster, this system is
the starting point to study the impact of NQEs and the mechanism of proton transfer in water.
Indeed, it requires an explicit quantum treatement of the nuclei to properly account for all its
features. Thus the Zundel ion is a good benchmark to test the reliability ofMLIPs in reproducing
proton hopping between water molecules, and their robustness in RPMD simulations.

In Section 7.3 we briefly summarise the datasets on which this work is based. All our proto-
nated water clusters datasets are sampled by Langevin dynamics (LD), a flavour of MD where
the NVT ensemble is sampled using a stochastic thermostat; both its classical and path integral
variants are introduced in Chapter 3. The PES reference is provided by a stochastic method, pre-
cisely variational Monte Carlo (Chapter 2), and a deterministic one based on the Many-body
expansion (MBE), where the n-body terms are fitted to energies from deterministic computa-
tional chemistry methods, as described in Chapter 5.

This latter dataset is then corrupted with noise of increasing intensity aimed to imitate the
effects of QMC stochastic sampling of energy and forces, as discussed in Section 7.4. While re-
ducing theGaussianwhite noise has long been a key focus in theQMCcommunity, the structure
of noise across samples of the PES has been less explored. However, this issue can potentially
play a critical role in the context of PES fitting with MLIPs.

Once the QMC noise is correctly reproduced and added to the cleanMBE energy and forces,
we train on such datasets both kernel- and neural network-basedMLIPs, following the protocol
described in Section 7.5.

In Section 7.6 we outline our comparative approach: while standard tests errors and learn-
ing curves represent the most direct way to probe the MLIPs, as we do in Section 7.6.1, the
importance of tests based on actual physical quantities in assessing the quality of a MLIP has
been demonstrated [350, 351]. For this reason we included in the analysis the evaluation of
both static quantities, like the radial distribution functions, and dynamic quantities, like the ve-
locity autocorrelation functions. This evaluation is carried out by averaging the standardized
difference between the above physical quantities computed along different trajectories initial-
ized with different starting configurations, as explained in Section 7.6.2.

Finally, in Section 7.7 we show some preliminary results on the learning of the protonated
water hexamer.



7.1. Classification of noise and errors 109

7.1 Classification of noise and errors

We are interested in finding the true energy 𝐸(𝐪𝑗) and the true forces 𝐟(𝐪𝑗) of each configuration
belonging to a dataset of 𝑁 = 𝑁test configurations, {𝐪𝑗}𝑗=1,⋯,𝑁test , using a MLIP trained on 𝑁train
configurations, {𝐪𝑖, 𝐸𝑖, 𝐟𝑖}𝑖=1,⋯,𝑁train , where 𝐸𝑖 = 𝐸(𝐪𝑖) and 𝐟𝑖 = 𝐟(𝐪𝑖).

We follow the work of Ceperley et al. [348] in the definition of the errors involved when
training MLIPs, as represented in Fig. 7.1.

Dataset stochastic error 𝛿 and standard deviation 𝜎
Let 𝐸V𝑖 = 𝐸V(𝐪𝑖) and 𝐟V𝑖 = 𝐟V(𝐪𝑖) be the VMC estimates of the energies and the forces, respec-
tively. For the sake of readability, wewill put a V in superscript whenever a quantity is estimated
by a single-point VMC run1.

The total error in 𝐸V𝑖 and 𝐟V𝑖 consists of two components: the stochastic error, 𝛿𝐸𝑖 and 𝜹𝐟𝑖 , which
arises from the intrinsic randomness of the quantum Monte Carlo method, and the systematic
error, or bias, which results from the approximations inherent in the method itself, like the basis
set error. Hereafter, we assume that the VMC estimates 𝐸V𝑖 and 𝐟V𝑖 are unbiased, namely they
are not affected by any systematic error.

In this study we also assume that the true energies and forces are known. This is in general
not true, but in our “whole dataset fitting” approach, the knowledge of the ground truth will
be used to study the robustness of the ML process against noise. Then, the stochastic error
associated with each element of the dataset is known and can be written as

𝛿V𝐸(𝐪𝑖) = 𝐸𝑖 − 𝐸V𝑖 ,𝜹V𝐟 (𝐪𝑖) = 𝐟𝑖 − 𝐟V𝑖 = 𝐟𝑖 − ∇𝐪𝑖𝐸V𝑖 . (7.1)

where in the case of the forces we have a vector of stochastic errors, one for each component:

𝜹V𝐟 = (𝛿V𝑓 ,𝑖𝑎1𝑥, 𝛿V𝑓 ,𝑖𝑎1𝑦, 𝛿V𝑓 ,𝑖𝑎1𝑧, 𝛿V𝑓 ,𝑖𝑎2𝑥,⋯ , 𝛿V𝑓 ,𝑖𝑎𝑀𝑥, 𝛿V𝑓 ,𝑖𝑎𝑀𝑦, 𝛿V𝑓 ,𝑖𝑎𝑀𝑧) . (7.2)

We define the stochastic error vectors associated to the dataset, 𝜹𝐸 and 𝜹𝐟, as those vectors whose
entries are QMC errors associated to each single configurations in the whole test set:

𝜹𝐸 = ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝛿V𝐸1𝛿V𝐸2⋮𝛿V𝐸𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐸1 − 𝐸V1𝐸2 − 𝐸V2⋮𝐸𝑁 − 𝐸V𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7.3)

1In the notation of Chapter 2, we would have 𝐸(𝐪) = 𝐸V(𝐪) and 𝐟(𝐪) = 𝐟V(𝐪).
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𝜹𝐟 =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛿V𝑓1,1,𝑥𝛿V𝑓1,1,𝑦𝛿V𝑓1,1,𝑧⋮ 𝛿V𝑓𝑁,𝑀,𝑥𝛿V𝑓𝑁,𝑀,𝑦𝛿V𝑓𝑁,𝑀,𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑓1,1,𝑥 − 𝑓 V1,1,𝑥𝑓1,1,𝑦 − 𝑓 V1,1,𝑦𝑓1,1,𝑧 − 𝑓 V1,1,𝑧⋮𝑓𝑁,𝑀,𝑥 − 𝑓 V𝑁,𝑀,𝑥𝑓𝑁,𝑀,𝑦 − 𝑓 V𝑁,𝑀,𝑦𝑓𝑁,𝑀,𝑧 − 𝑓 V𝑁,𝑀,𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑓1,1,𝑥 − 𝜕𝐸V1/𝜕𝑞1,𝑥𝑓1,1,𝑦 − 𝜕𝐸V1/𝜕𝑞1,𝑦𝑓1,1,𝑧 − 𝜕𝐸V1/𝜕𝑞1,𝑧⋮𝑓𝑁,𝑀,𝑥 − 𝜕𝐸V𝑁/𝜕𝑞𝑀,𝑥𝑓𝑁,𝑀,𝑦 − 𝜕𝐸V𝑁/𝜕𝑞𝑀,𝑦𝑓𝑁,𝑀,𝑧 − 𝜕𝐸V𝑁/𝜕𝑞𝑀,𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7.4)

where in the case of energieswehave a𝑁test-long vector, while for forces the total length depends
not only on the number of configurations in the test set, but also on the number of atoms in each
configuration and the dimensionality of the coordinates. In the case of a homogeneous dataset
where only a single type of systems appears in different 3D configurations, this translates in a3 × 𝑁test ×𝑀-long stochastic forces error, where 𝑀 is the number of atoms in the system.

We recall that in the usual QMC setting, the exact values of 𝛿V𝐸(𝐪𝑖) and 𝜹V𝐟 (𝐪𝑖) are not known.
They are random variables normally distributed around zero (due to the fact that we assumed
unbiased VMC estimates) with variance (𝜎V𝐸(𝐪𝑖))2 and (𝝈V𝐟 (𝐪𝑖))2, as estimated according to
statistical methods of Chapter 2. For example, consider a single configuration in the dataset,𝐪𝑖, and its energy 𝐸𝑖. The QMC estimate of 𝐸V𝑖 is affected by a stochastic error with standard
deviation formally defined as

𝜎V𝐸(𝐪𝑖) = 𝜎[𝐸(𝐪𝑖)] = √var[𝐸𝐿(𝐪𝑖)]𝑁gen
, (7.5)

where we made explicit the parametric dependence on the fixed nuclear configuration 𝐪𝑖, for
which we sampled 𝑁gen electronic configurations.

As we did for the stochastic errors, we can define the dataset standard deviation vectors, 𝝈𝐸
and 𝝈𝐟, whose “dataset norm” is given by

|𝝈𝐸| = 𝜎𝐸 = √√√⎷ 1𝑁 𝑁∑𝑖 (𝜎V𝐸𝑖)2 and |𝝈𝐟| = 𝜎𝐟 = √√√⎷ 13𝑀𝑁 𝑁∑𝑖
𝑀∑𝑎

𝑥,𝑦,𝑧∑𝑑 (𝜎V𝑓𝑖,𝑎,𝑑)2, (7.6)

which are an estimate of the dataset norms of 𝜹𝐸 and 𝜹𝐟.
Fitting error 𝜌
In practice, only the QMC estimates 𝐸V and 𝐟V, are really available, so when we measure the
fitting error 𝝆𝐸, also defined as test error in the ML context, we are dealing with the following
quantity:

𝝆𝐸 = ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝐸V1 − 𝐸𝑚1𝐸V2 − 𝐸𝑚2⋮𝐸V𝑁 − 𝐸𝑚𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝜌𝐸 = √√√⎷ 1𝑁 𝑁∑𝑖 [𝐸V𝑖 − 𝐸𝑚𝑖 ]2, (7.7)

where we used the root mean square error (RMSE), at variance with the mean absolute error
(MAE), which is also used in ML. An analogous definition holds for the forces fitting error, 𝝆𝐟.
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Exact energy 𝐸

Noisy data �̂�V

Fitted model �̂�𝑚𝜎𝐸

𝜌𝐸

𝜖𝐸

Exact forces 𝐟

Noisy data ̂𝐟V

Fitted model ̂𝐟𝑚

𝜎𝐟
𝜌𝐟

𝜖𝐟
Figure 7.1: Relationship between the true observables, their stochastic estimate and their machine
learning model prediction trough the three types of errors: 𝝈, 𝝆, 𝝐. Fixing the number of test configura-
tions, 𝑁test, and defining the errors as vectors allows one to relate them through triangular inequalities:|𝝆 − 𝝈| ≤ 𝝐 ≤ |𝝆 + 𝝈|. From [348].

In noiseless datasets, the test error is expected to decrease with an increasing training set𝑁train following a power law [289] 𝜌 ∼ O(𝑁−𝛼
train), (7.8)

which defines the “learning curve”. For noisy dataset it is expected that a plateau dependent
on the average noise will limit 𝜌 from below, such that:

𝜌 ∼ O(𝑁−𝛼
train) + 𝑔(𝜎). (7.9)

Model error 𝝐
On a more regular basis, what we are interested in is the model error, that is, how far the model
is from the ground truth values:

𝝐𝐸 = ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝐸𝑚1 − 𝐸1𝐸𝑚2 − 𝐸2⋮𝐸𝑚𝑁 − 𝐸𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝜖𝐸 = √ 1𝑁 ∑𝑖 [𝐸𝑚𝑖 − 𝐸𝑖]2. (7.10)

Unfortunately the only error available during the training and test procedure is the fitting
error, so it would be interesting to study the relation between the three types of error on 𝐸 and 𝐟,{𝝈𝐸, 𝝆𝐸, 𝝐𝐸, 𝝈𝐟, 𝝆𝐟, 𝝐𝐟}, exemplified in Fig. 7.1, in a controlled setup. In the perspective of applying
MLIPs to study proton transfer in water, we simulate small protonated water clusters using
deterministic PES, gradually adding stochastic noise to the clean dataset. The deterministic
PES will be our ground truth and the dataset corrupted by adding stochastic noise will mimic





7.3. Datasets description 113

7.3 Datasets description

The datasets are generated using Langevin dynamics because stochastic thermostatting is well-
suited to deal with both noisy forces, such as those coming from QMC, and deterministic ones,
allowing for a direct comparison between QMC andMLIP trajectories. For classical simulations
over deterministic PES we use the Bussi algorithm (Section 3.2.3); for classical simulation over
stochastically estimated PES we use the Attaccalite-Sorella algorithm (Section 3.2.4); for quan-
tum simulations we use the PIOUD algorithm (Section 3.5.2), as it is designed to run with both
deterministic and stochastic forces. The Zundel dynamics are driven by the deterministic MBE-
PES [255]. We generate trajectories at different temperatures from 50K to 600K, comprising
30.000 steps of 𝛿𝑡 = 0.5 fs, for a total of 15ps of physical simulation time.

In Figure 7.3 we plot some of the MD-generated datasets in a space of reduced dimension.
Specifically we employed the principal covariates regression (PCovR) technique [363], a com-
bination of principal component analysis (PCA) and linear regression which allows one to vi-
sualize basic structure-property relationships. In our case we applied it to local atomic envi-
ronments of the Zundel obtained from the 300K MBE-driven trajectory, which will also be our
starting point for the application of MLIPs. In Fig.7.3a we see that, by considering the total
energy as a target, all configurations are sorted for increasing energy values along PCovR[1].
At the same time, in Fig.7.3 we notice that the second principal covariates correlates well with
the oxygen-oxygen distance, without explicit human input. This distance is one of the most im-
portant internal coordinates in the Zundel cation, as it is for the protonated water hexamer as
well (Chapter 4). The automatic recognition of 𝑑OO as one of the principal covariates indicates
both good sampling of the configuration space and the appropriateness of the dimensionality
reduction parameters.

Once we can rely on this technique, we can use it to visualize the other datasets. The bottom
panels of Fig. 7.3 illustrates how increasing the temperature translates to a wider exploration
of the PES, especially in classical simulation. On the other hand, we see that the inclusion of
NQEs through RPMD makes the necklace explore a larger space, and this happens already at
low temperatures, where a higher number of beads can bring the ring polymer configurations
far from the classical ones.

We also use two classical trajectories based on VMC-estimated PES, one at 50K of 39999
steps and another at 300K of 19163 steps. The former is much longer because at each step of
the dynamics the electronic QMC sample to estimate 𝐸V(𝐪) and 𝐟V(𝐪) is smaller: 𝑁gen = 81920
against 𝑁gen = 331776.

Besides these datasets extracted directly from (PI)MD simulations, we generated noisy
datasets by adding artificial stochastic errors to the deterministic baseline (see Section 7.4).
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Figure 7.3: Dimensionality reduction of the Zundel ion classical and quantum trajectories. The dimen-
sionality reduction algorithm is based on the SOAP representation of the local atomic environments, as
implemented in the Librascal package [364]. SOAP is conceptually similar to the ACE descriptor pre-
sented inChapter 6. The SOAPparameters are the following: cutoff=3.0, max_radial=6, max_angular=4,
atomic_gaussian_width=0.3, cutoff_function=’ShiftedCosine’ of width=0.5, radial_basis=’Gto’ with
accuracy=1e-6, center_atom_weight=1.0.

7.4 Applying Gaussian noise to energies and forces

Given a configuration 𝐪, the QMC estimates of its energy and forces are respectively affected by
uni-variate and multivariate Gaussian white noise. These noises are characterized by the stan-
dard deviations 𝜎V𝐸(𝐪) and 𝝈V𝐟 (𝐪), which depend on the number of QMC stochastic samplings𝑁gen as 1/√𝑁gen. When several configurations {𝐪𝑖}𝑖=1,⋯,𝑁MD are collected along the trajectory,
and for each of them 𝐸 and 𝐟 are estimatedwith the same number of QMC samples𝑁gen, it is not
a priori clear how the standard deviations 𝜎V𝐸(𝐪𝑖) and 𝝈V𝐟 (𝐪𝑖) are distributed across the training
dataset. In other words, we do not know whether different points on the PES have the same
error bars, a condition known as homoscedasticity, or if they have varying error bars, referred to
as heteroscedasticity. We are aware only that pointwise the energy error of a single configuration
should follow a normal distribution.
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To analyse their actual distribution we take all the configurations and their respective
standard deviations, {𝐪𝑖, 𝜎V𝐸(𝐪𝑖), 𝝈V𝐟 (𝐪𝑖)}, from classical QMC-driven MD simulations for both
H5O2

+ and H13O6
+ (Chapter 4). By binning 𝜎V𝐸(𝐪𝑖) for both systems in Figures 7.4a and 7.4c,

it turns out that its distribution is almost normally distributed. However, this does not seem to
be the case for the standard deviation in the force components, 𝜎V𝑓 , even when selecting the con-
tributions from a specific species (Figure 7.4b and 7.4d). This behaviour is partially explained
by the finite size of the system in open boundary condition, at variance with periodic systems
where the average force experienced by the atoms is more isotropic. Another source of modula-
tion comes from the non-equivalent role played by the different ions in the system. The relative
size of the errors will thus depend on the corresponding force component. Figure 7.4h, relative
to the protonated water hexamer, clearly shows that atoms of the same species but having dif-
ferent roles in the cluster can show different distributions in the error. Specifically, the oxygen
atoms in the Zundel core exhibit larger errors compared to those in the solvation shell (see the
two red peaks), and the central proton is affected by a larger error than all the other hydrogens
(the green and orange peaks, respectively). On the other hand, the multi-modal distribution of𝝈𝐟 components can be mapped into a single-peaked one when we consider the norm |𝝈𝐟| of the
3M-dimensional vectors, as in Figures 7.4e and 7.4g. 𝜎𝐸 and |𝝈𝐟| are single-peaked because they
represent collective properties of the system as a whole.

Although computing the norm of the entire forces error vector restores the isotropy of the
error distribution, from species-selected plots (Figures 7.4f and 7.4h) it is apparent that in order
to mimic the QMC error in an inhomogeneous and finite-size system it is necessary to consider
different standard deviations for each species belonging to the system. The qualitative analysis
above give us some indication on how to produce the artificial noise with which wewill corrupt
the deterministic datasets. In the case of energies, the standard deviation �̂�𝐸 is taken as the
average over all the ensemble {𝜎𝐸(𝐪𝑘)}𝑘=1,⋯,𝑁tot in the dataset. Regarding the forces, we average
over all the forces standard deviation components 𝜎𝑓 (X) affecting a specific species X, including
their multiplicity 𝑀X:

𝜎𝑓𝑥(X) = 𝜎𝑓𝑦(X) = 𝜎𝑓𝑧(X) = 𝜎𝑓 (X) = √√√⎷ 13𝑁tot𝑀X

𝑁tot∑𝑘
𝑀X∑𝑎

𝑥,𝑦,𝑧∑𝑑 (𝜎V𝑓𝑖,𝑎,𝑑)2 . (7.11)

The species-specific averages of the standard deviations are reported in Table 7.1, highlighting
the multivariate property of the forces noise.

Pushing the standard deviation analysis further, we can study how the specific geometry of
the system at hand influences the error distribution. Indeed it has been suggested [147] that the
variance of the local forces 𝐟𝐿 (Chapter 2) acting on a fixed configuration 𝐪, formally defined as

var [𝐟𝐿] = 𝔼[(𝐟𝐿 − 𝐟VMC) (𝐟𝐿 − 𝐟VMC)𝑇] , (7.12)
is proportional to the dynamical matrix, that is, to the Hessian 𝐇(𝐪), computed as the second
derivative of the energy with respect to all the couples of cartesian coordinates

𝐻𝑥𝑦 = 𝜕2𝐸(𝐪)𝜕𝑞𝑥𝜕𝑞𝑦 . (7.13)
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Average standard deviation H5O2
+

𝜎𝐸 41meV𝜎𝑓 134meV/Å𝜎𝑓 (O) 201meV/Å𝜎𝑓 (H) 108meV/Å𝜎𝑓 (H+) 113meV/Å
Table 7.1: AverageQMC standard deviations along the trajectory generated by aQMC-driven classical
MD simulation of the Zundel ion at 300K.

Since the forces are vectorial quantities, the expression in Eq. (7.12) is called variance-covariance
matrix, 𝚺𝐟(𝐪), and it reads

𝚺𝐟(𝐪) = ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
var [𝑓1𝑥(𝐪)] cov [𝑓1𝑦(𝐪), 𝑓1𝑥(𝐪)] ⋯ cov [𝑓𝑀𝑧(𝐪), 𝑓1𝑥(𝐪)]

cov [𝑓1𝑦(𝐪), 𝑓1𝑥(𝐪)] var [𝑓1𝑦] ⋯ cov [𝑓𝑀𝑧(𝐪), 𝑓1𝑦(𝐪)]⋮ ⋮ ⋱ ⋮
cov [𝑓𝑀𝑧(𝐪), 𝑓1𝑥(𝐪)] cov [𝑓1𝑦(𝐪), 𝑓𝑀𝑧(𝐪)] ⋯ var [𝑓𝑀𝑧]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (7.14)

where the diagonal terms are the variances of the forces components, while the off-diagonal
terms represent the covariances across different components. These covariances are simultane-
ous, meaning that they are computed for the same electronic configuration 𝐫 during the QMC
sampling, and do not measure the time lag-covariances.

In practice, the variance-covariance matrix can be estimated using the formula

𝚺𝐟(𝐪) ≈ 1𝑁gen(𝑁gen − 1)
𝑁gen∑𝑖=1 (𝐟𝐿(𝐪, 𝐫𝑖) − 𝐟V(𝐪))(𝐟𝐿(𝐪, 𝐫𝑖) − 𝐟V(𝐪))𝑇 , (7.15)

where we made explicit the dependence of the local force on the electronic coordinates 𝐫𝑖 sam-
pled by the QMC algorithm. The diagonals terms of this expression are the squared standard
deviation (𝜎V𝑓𝑎𝑑(𝐪))2

.
We tested this hypothesis by computing the Hessian of all Zundel configurations sampled

by QMC-drivenMD . To do so we used the Tapenade[365] automatic differentiation tool, which
for instance have been exploited also for fast and accurate computation of the forces in the dy-
namics. Then we computed the vector of sorted eigenvalues of𝐇(𝐪) for each configuration 𝐪 in
the dataset, and we compared them with the respective vectors of sorted eigenvalues of 𝚺𝐟(𝐪),
configuration wise. The comparison consisted in evaluating the degree of alignment of such
vectors based on the normalised dot product, 12 + 12 𝐮⋅𝐯‖𝐮‖‖𝐯‖ , obtaining an average score of 0.89.

Also, the distribution of the square root of the entries all the Hessians’ diagonals in the
dataset closely resembles the distribution of all the standard deviations on the force components
(Figure 7.5a).

Since the average involved in Equation (7.15) is over electronic configurations, the only way
the molecular structure dependence could possibly enter in such QMC stochastic estimate of
observables would be through electron-ion coupling. For our purposes we simulated the QMC
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noise using both Hessian-correlated multivariate Gaussian white noise (GWN), and uncorre-
lated multivariate GWN where just the variances are element-dependent (as in Table 7.1). We
recall that in both cases we are in presence of time-uncorrelated noise, and that the correlation is
meant between components of force error vector estimated in a single-point calculation. Since
the Hessian does not change much among contiguous configurations along the trajectory, it
could implicitly introduce some correlation in the QMC-driven dynamics, which however is
taken in consideration in the noise-correcting Langevin dynamics scheme described in Chapter
2.

As in preliminary runs we did not observe much difference in the performance of MLIPs
trained on both Hessian-correlated and uncorrelated noise, we limited the study on the latter
type of noise, as it is easier to generate while still keeping the information contained in the diag-
onal of 𝐇. Given the scalar standard deviation 𝜎𝐸 and the 21-dimensional one on the forces 𝝈𝐟,
we sampled as many random scalars {𝛿𝐸(𝐪𝑖)}𝑖=1,⋯,𝑁train and random vectors {𝜹𝐟(𝐪𝑖)}𝑖=1,⋯,𝑁train
as configurations in our datasets, and multiplied them by different factors 𝑘. This is meant to
reproduce QMC sampling at different values of 𝑁gen, as reported in Table 7.2.

𝜎𝐸(meV) 11 22 27 41 54 67 77 94 109 133 149 163𝜎𝑓 (meV/Å) 39 78 97 145 194 238 274 335 388 475 531 581

Table 7.2: Progressively increasing standard deviation on energies and forces used to produce the
noise to add to MBE values.

The fact that all the components of the forces vector can be multiplied by the same factor
is graphically justified in the bottom panels of Figure 7.5, where we see that the shape of the
standard deviation distribution does not change much for different values 𝑁gen (Fig. 7.5b), es-
pecially in the main peaks which are those we could clearly associate to specific elements (see
Fig.7.4b and d). Indeed they can be mapped to each other by rescaling them with the square
root of their QMC sample size (Fig. 7.5c). Incidentally, the scale-invariance shown in Fig. 7.5c
also demonstrates that the force error distribution is largely temperature independent.

We then corrupted the clean MBE energies and forces by simple addition of the noise, as if
they were produced by a stochastic method, as follows:

�̃�𝑘(𝐪) = 𝐸MBE(𝐪) + 𝑘𝛿𝐸(𝐪) (7.16)

̃𝐟𝑘(𝐪) = 𝐟MBE(𝐪) + 𝑘𝜹𝐟(𝐪), (7.17)

with 𝛿𝐸 and 𝜹𝐟 normally distributed with zero mean and variance given by the square of the
averaged standard deviation as reported in Table 7.2. We stress that for 𝜹𝐟 the variance is species
dependent.

7.5 Choice of MLIPs and learning protocol
We choose two of the MLIPs model exposed in the Chap. 6:
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1. Hyper-parameters tuning. Hyper-parameters are those parameters of the learningmodel
that cannot be adaptively learned and must be set “by hand”: there is no closed-form ex-
pression as for the regression coefficients, nor an iterative procedure. In the case of OQML,
hyper-parameters are the 𝜎 ’s, representing the the Gaussian kernel width and regulariza-
tion coefficient 𝜆. In the case of MACE, there a several hyper-parameters settings how
the neural network is optimised. In our study we varied the irreducible representations,
radial cutoff, number of epochs and batch size, as well as the energy/forces weights ra-
tios and at which point of the learning this ratio should change (swa). Details about the
hyper-parameters can be found in Appendix C. They can be tuned by a grid search over
different couples of values. The grid is exhaustively explored at low training subset size,
then it is reduced to the most significant regions based on the best parameters found in
the previous runs. For example, in the case of OQML the couple of hyper-parameters to
optimize are 𝝃𝑘 = (𝜆𝑖, 𝜎𝑗).

2. Model cross-validation. For each point 𝝃𝑘 of the grid parameters we run 𝑘-fold Cross-
validation (CV). This means that the training subset is further divided into equally-sized
and non-overlapping 𝑘 sets, called folds, respectively (here 𝑘 = 3), and the model is
trained (KRR) on all of them, considered as a single train subset, except one (called val-
idation set), which is used to test the performance (i.e. measure the error) and validate
the model, that is, the hyper-parameters. The procedure is repeated 𝑘 times, each one ex-
cluding a different fold from the training. The purpose of this is to compute the error on
different folds and then considering the average.
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3. The error definition depends on which labels we are training the model. In general it has
the form

𝐿val(𝝃𝑘) = 𝑝 1𝑁val

𝑁val∑𝑖 (𝐸val𝑖 − 𝐸𝑚𝑖 (𝝃𝑖))2 + (𝑝 − 1) 13𝑁val𝑀
𝑁val∑𝑖

𝑀∑𝑎 ∥𝐟val𝑖 − 𝐟𝑚𝑖 (𝝃𝑖)∥2 , (7.18)

Where 𝑀 represents the number of atoms, the superscript ”val” refers to the true labels
from the validation set (the subset momentarily excluded from training), while the super-
script𝑚 indicates the labels predicted by themodel. The coefficients 𝑝 and 𝑝−1 are used to
weight the contributions of energies and forces differently, creating a Pareto front. While
this can be useful during the error evaluation in the fitting phase, we observed minimal
performance differences for various 𝑝 values at this stage of learning. Therefore, we chose𝑝 = 0.5. If the training is based solely on energy or forces, only the first or second term is
used to compute the validation error, respectively.

Once the hyper-parameters have been selected, the training is done again on the whole train-
ing subset, without any division in 𝑘-fold, so that it exploits all the data at disposal.

Test. The model trained on the subset with the chosen hyper-parameters is tested on the test set
which was put aside in the first place. The predicted energies and forces are compared with the
true ones in what we called fitting error, 𝝆𝐸 and 𝝆𝐟, in Section 7.1, using either root mean square
errors (RMSE) or mean absolute error (MAE).

7.6 Results
7.6.1 Learning curves
The goal of the learning curve is to show the scaling of the performance of a model, measured as
fitting error 𝜌, with fixed hyper-parameters with respect to the size of the training set, 𝑁train.

𝜌 = 𝜌(𝑁train), (7.19)

In this work for each training subset size we retrain the model from scratch, allowing the hyper-
parameters to change and adapt depending on the configurations. This would measure how
effective is the learning algorithm as a whole with respect to 𝑁train.

An example of a learning curve is shown in Figure 7.9a, where we plot both the model
errors, 𝜖𝐸 and 𝜖𝐟, as well as the fitting errors, 𝜌𝐸 and 𝜌𝐟, the latter being the only metric available
in standard settings.

One of the most noticeable aspects in the energy learning curves is the difference between
the OQML and MACE trends. OQML exhibits a steady behavior from small training set sizes
up to 1600 configurations, although training beyond this point with kernel methods becomes
computationally demanding.
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In contrast, MACE proved more difficult to optimize in the presence of noise for small train-
ing set sizes. As a result, the curve starts at 200 configurations, with both high model errors
(𝜖𝐸) and test errors (𝜌𝐸). However, once the model converges, its performance slightly sur-
passes that of OQML. Due to its implementation and design, MACE can be trained on larger
datasets more easily than OQML, as shown by its learning curve extending up to 3200 configu-
rations. The force learning curves show comparable behavior. Another prominent observation
from these graphs is the significant gap between the fitting errors and model errors for both
energy and forces, with 𝜌 and 𝜖 following almost parallel trajectories.

In this study we are also interested in the noise sensitivity curve, that shows the influence of
the underlying noise on the machine learning algorithm for fixed training set size, as in Figure
7.9b. The most striking property emerging from this plot is that the test error 𝜌 is a rather
pessimistic estimate of how far the model is from the ground truth, showed instead by the 𝜖
curves. This large difference could be a signal of the fact that we are in presence of good MLIPs
models, that is, models that are only slightly affected by the QMC noise, as they are defined in
[348]. However, we notice that for large input noise, the assumption of a linear relation between𝝐 and 𝝈, 𝝐 = 𝜂𝝈 + 𝝐0, (7.20)

does not hold anymore in the case of MACE energy prediction for (𝜎𝐸, 𝜎𝑓 ) >(77meV, 274meV/Å), which is the point at which MACE performance on 𝐸 becomes
worse than the OQML one. Notice that crossover already happens in the “linear regime” in the
forces plot, precisely at (𝜎𝐸, 𝜎𝑓 ) > (41meV, 145meV/Å), which is an interesting point, since
it is the noise level used in our QMC-driven molecular dynamics simulation, as reported in
Table 7.1.

The observations made so far can be summarised using learning tables (Fig. 7.10), where
both the influence of the noise and of the training set size on the fitting and model errors are
plotted in a compact 2-dimensional plot. Indeed, the learning curves are the result of fixed-noise
performances (rows), while the noise sensitivity curves are the result of fixed-training set-size
performances (columns).

As noted in the curves described above, OQML shows a more steady performance with
respect to 𝑁train and noise levels than MACE (the lower scores on forces for 𝑁train = 800 are
probably due to sub-optimal exploration of the hyper-parameter grid in the validation phase).
This result will be contrasted in the next Section, when we will measure performance on the
base of physically sounded test, rather than based on statistics only. Again, MACE energies
converge quite fast for level of noise up to 𝜎𝐸 = 41meV, with a number of configuration of𝑁train = 400 enough to reach the accuracy of noiseless-trained models (first row). Above that
level of noise, MACE learning curves start to be less consistent, indicating a departure from the
“linear regime” of Eq. (7.20).

The learning tables also potentially allow for a “diagonal” reading of the relationship be-
tween training set size and noise. As mentioned in Section 7.1, the level of precision 𝜎V of
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energies and forces QMC estimates depends on the number of electronic samples according to

𝜎V ∝ 1/√𝑁gen, (7.21)

meaning that training sets characterized by the same √𝑁train/𝜎V ratio have equivalent compu-
tational costs. This comparison can help reveal whether precision or the exploration of the
configuration space is more crucial for the model’s performance. Improvements for larger train-
ing sets with lower accuracy suggest that exploring the configuration space is more important,
while improvements for smaller training sets with higher accuracy indicate that the configu-
ration space is already well-explored, and enhancing the quality of estimation should be the
priority.

In our case, the fact that the energy error 𝜖𝐸 for the model trained on a dataset with noise
below 𝜎𝐸 = 54meV rapidly converges to the energy error of the model trained on the clean
dataset ([15.2-17.3]meV) limits the scope of this analysis. It is clear that further improvements
must come from more advanced training set selection techniques, such as those mentioned in
Fig. 7.8).

Nevertheless, this type of analysis can still be applied to the force predictions of the OQML
model, as shown inTable 7.3, Here, we observe a slight improvement in performance, suggesting

Training set size 100 200 400 1600𝜎𝑓 (meV/Å) 97 145 194 388𝜖𝑓 (meV/Å) 32.1 27.7 26.5 25.5

Table 7.3: Diagonal of 𝜖𝑓 in OQML.

that better training set selection strategies would benefit not only energy predictions but also
force predictions (we excluded the diagonal point (274meV/Å, 800) due to a non-optimal grid
search).

In the case ofMACE,wequickly enter a non-linear performance regime, indicating that noise
has a significant impact on the model’s error. This is further supported by the observation that,
althoughMACE’s force errors are lower than those of OQML, its performance is approximately
four times worse than MACE trained on a clean dataset (see the first two rows of 𝜖𝑓 in MACE
learning table, Fig. 7.10): 𝜖MACE𝑓 ,𝜎=39meV/Å ≈ 4𝜖MACE𝑓 ,clean (7.22)
whereas for OQML, the performance degradation is only about twice as bad as the clean train-
ing: 𝜖OQML𝑓 ,𝜎=39meV/Å ≈ 2𝜖OQML𝑓 ,clean , (7.23)
(see the first two rows of 𝜖𝑓 in OQML learning table, Fig. 7.10).

7.6.2 Testing on physical observables
To relate how the noise in the learned PES impacts the MLIP-driven molecular dynamics we
need a systematic way of comparing physical observables across their whole variability range.
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Since most observables statistical distributions are computed as empirical histograms cumu-
lated along the trajectory, we can test their compatibility following the method detailed in Ref.
[369].

Let us describe the histogram of an observable collected during the dynamics as a collection
of 𝐵 couples of values, {(𝑛𝑏, 𝜎𝑏)}𝑏=1,⋯,𝐵 associated to each bin 𝑏, where 𝑛𝑏 are the number of
events in the bin and 𝜎𝑏 is an estimate of the standard deviation of that number, usually com-
puted by block averaging techniques. Now consider two molecular dynamics simulation runs
at the same conditions (for instance, the same temperature), with the only difference that one
is based on the reference PES (𝛼) and the other is based on the machine learned PES (𝛽). Then
we will have two histograms:

(𝑛1𝛼, 𝜎1𝛼), (𝑛2𝛼, 𝜎2𝛼),⋯ (𝑛𝐵𝛼, 𝜎𝐵𝛼)(𝑛1𝛽, 𝜎1𝛽), (𝑛2𝛽, 𝜎2𝛽),⋯ (𝑛𝐵𝛽, 𝜎𝐵𝛽). (7.24)

The normalised significance of the difference of two bins is defined as

𝑆𝑏 = 𝑛𝑏𝛼 − 𝐾𝑛𝑏𝛽√𝜎2𝑏𝛼 + 𝐾2𝜎2𝑏𝛽
, (7.25)

where 𝐾 is a normalisation factor, usually the ratio between the total volume of observations
in the two histograms. In the denominator of Eq. (7.25), √𝜎2𝑏𝛼 + 𝐾2𝜎2𝑏𝛽 = 𝜎 , where 𝜎 is the
stochastic error of 𝑛𝑏𝛼−𝐾𝑛𝑏𝛽, assuming that 𝑛𝑏𝛼 𝐾𝑛𝑏𝛽 are two independent measures. Since we
will deal mostly with already normalised histograms, which are obtained fromMD simulations
having the same number of time steps of the same duration, in most of our use of the formula
above we will have 𝐾 = 1. Then we can define a 2-dimensional measure of the distance, or
similarity, between the two histograms as the average of the significance ̄𝑆 computed on all the
bins, and its variance:

( ̄𝑆,var [ ̄𝑆]) = ⎛⎜⎝1𝐵 𝐵∑𝑏 𝑆𝐵, 1𝐵(𝐵 − 1) 𝐵∑𝑏 (𝑆𝑏 − ̄𝑆)2⎞⎟⎠ . (7.26)

It is important to notice that the average should be computed only for those bins where at least
one of the two histograms have a signal, otherwise we would underestimate ̄𝑆. If the average
significance of the difference ̄𝑆 is lower than 3, meaning that the difference between observed
quantities is within 3𝜎 , we can say that the quantities are compatible. As it is good practice
in molecular dynamics simulations, we produced multiple independent runs (4 in our specific
case) for each temperature and type of PES. Then, wemediated ̄𝑆 over the independentMD runs,
at fixed temperature and PES. This further consideration provides a more reliable measure of
the spread of the significance, because it is based on multiple physical tests, rather than just
being based on the statistics of a single run of the ML-PES. Indeed, by running mutiple MD
simulationswith independent initial conditionswe can explore a richer variety of configurations
upon which the binned observables are computed.
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The two observables that we considered are the pair correlation function, which give us
a global picture of the compatibility of the simulations, and the 3-body correlation function
between the two oxygens and the central proton, which is an important quantity for the study
of the proton transfer, as we have seen in Chapter 4. These observables are detailed in what
follows.

Pair correlation function
The Pair Correlation Functions (PCFs) are the distribution of the interatomic distances between
couple of atoms belonging to specific elements (possibly the same element):

𝑔(2)
XY (𝑟) = 𝑁X∑𝑖=1

𝑁Y∑𝑗=1 ⟨𝛿(|𝐪𝑖 − 𝐪𝑗| − 𝑟)⟩ (7.27)

where ⟨⋅⟩ is the ensemble average, practically computed along the single MD trajectory, 𝛿 is the
Dirac delta function, and 𝑁X and 𝑁Y are the numbers of atoms of types X and Y, respectively.
Usually, when dealing with liquids, this quantity is multiplied by the prefactor 1/𝑁X𝑁Y, and
divided by the volume of the spherical shell within [𝑟, 𝑟 + d𝑟], yielding the radial distribution
functions (RDF). Since we are more interested in comparing the distribution of the peaks of
the PCFs between different simulations, dividing by the shell volume would only reduce the
height of the peaks, making it more diffucult to visualize the differences. Therefore, we did not
consider any prefactor. In Figure 7.11 we show an example of such histograms.

3-body correlation function of O1, O2 and H+

In Figure 7.12 we show the reduced coordinates used in the three-body correlation function,𝑔(3)(O1O2H+), which involves two oxygens, O1 and O2, and the central proton, H+. More pre-
cisely, 𝑔(3) measures the correlation between the distance of the two oxygens (dO1O2), and the
relative position of the central protonwith respect to the flanking oxygens atoms, as represented
in Figure 7.12. Formally, we define it as

𝑔(3)
O1O2H+(𝑥, 𝑦) = ⟨𝛿( ̂𝑑O1O2 − 𝑥)𝛿( ̂𝑑O1H+ − 𝑦) + 𝛿( ̂𝑑O1O2 − 𝑥)𝛿( ̂𝑑O2H+ − 𝑦).⟩ (7.28)

As we saw in Chapter 4, this quantity is relevant in the study of the proton shuttling between
two water molecules, and, given the reduced dimension of the Zundel cation, it exhaustively
describes the PT mechanism in this system, as the are no solvation effects.

A graphical example of these correlation functions can be found in Figure 7.13, where we
plot the 2D histograms using a density color code for the height of the bins. At variance with
the 1D histogram of 𝑔(2), where the standard deviation is explicitly plotted, in this case we
dedicated (NO: the rightmost column) two columns to the standardized difference between
the values of the bins in MLIPs simulations with respect to the MBE-based ones. The difference
is standardized as it has been described in Section 7.6.2, and the values up to 3𝜎 are showed.
Differences that are equal or larger than 4𝜎 are all represented with the same color (violet), as
we do not consider them statistically compatible.
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Although the MACE normalised significance of the difference is compatible for most of
the noise levels in classical simulation at 100K and 200K, it is interesting that classical sim-
ulations show slightly worse performance at 100K than 200K, with highest differences for𝜎𝐸 = 11meV, 22meV, 109meV, and the quantum one as well for 𝜎𝐸 ≤ 77meV. While in the
latter case this can be explained by the wider extension of the necklace at the lowest tempera-
ture (128 beads against 64), as it was shown also in Figure 7.3d, in the classical case could be
a symptom of the fact that despite being in an interpolation regime (the classical configuration
space explored at 100K is a subset of the one explored at 300K), the simulation could be more
sensible to the precision with which the PES shape is reproduced. Again, the solution for this
could be mixing datasets produced at different temperatures, especially exploiting the fact that
at low temperatures the QMC wavefunction updates from on step to another of the dynamics
are less drastic than those at higher temperatures.

7.7 Preliminary results on the protonated water hexamer
Preliminary work on applying MLIPs to the protonated water hexamer was conducted as a val-
idation of the results obtained from QMC-PILD simulations (Chapter 4). Although our QMC-
trainedMLIP forH13O6

+ did not yet reach the robustness needed for long simulations, it proved
useful in identifying a subsampling issue in the original QMC-MD. Specifically, the classical
QMC-driven simulation at 100K displayed a peculiar symmetrized radial distribution function
of the central proton relative to the two oxygens. Further inspection, through comparison with
the OQML-driven dynamics, confirmed that this was an artifact.

The initial attempts to study the effectiveness of learning H13O6
+ followed a strategy similar

to that used for the Zundel ion: comparing the performance of an MLIP trained on a noiseless,
deterministic dataset against the same MLIP trained on QMC data.

This type of comparison can be done by analysing learning curves, but it does not allow for
a detailed investigation of the noise’s effect on the physics of the model, as the underlying PES
sampled by the two electronic structure methods is inherently different. In fact, when compar-
ing physical observables accumulated over MD trajectories based on different PES, it becomes
challenging to distinguish the effects due to the influence of noise from the effects of a different
level of theory. The analysis is further complicated by the presence of multiple isomers, with
transition rates between them varying across different PES. This adds another layer of difficulty
when comparing observables.

Nevertheless, we present here some of the key results observed.

Datasets

Starting from the same H13O6
+ configurations generated by QMC-driven MD simulations

(Chapter 4), we calculated the energy and forces at the DFT level using Quantum ESPRESSO (QE)
[370, 371]. The DFT calculations have been carried out using the PBE functional, corrected for
the inclusion of van der Waals interactions [89], as mentioned in Chapter 2.
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Within this computational framework, two issues arise: firstly, we are studying an isolated
cluster using periodic boundary conditions imposed by the periodic basis set used by QE. Sec-
ondly, we are dealing with a charged cluster, which, despite the relatively simplemonopole-like
term of the hydrogen ion, still implies the presence of long-range interactions.

For such an isolated charged molecule, a large simulation cell is needed to model the sur-
rounding vacuum and to avoid interactions between periodic replicas. Moreover, as the system
is non-periodic, a high energy cutoff for the plane-wave expansion must be employed.

To address the challenge of simulating a charged system under periodic boundary con-
ditions, two solutions have been proposed: the Makov-Payne (M-P) correction [372], which
corrects the total energy, and the Martyna-Tuckerman (M-T) correction [373], which corrects
both the total energy and the self-consistent potential. In this study, we applied the Martyna-
Tuckerman correction as it offered greater stability, with the error either decreasing or remain-
ing at the same order of magnitude between consecutive runs.

MLIP: kernel ridge regression methods

We used the FCHL19 representation in a kernel ridge regression framework, using several
types of kernel, all described in Section 6.4: from energy-only learning (Sec. 6.4.2), to Gaussian
process-type kernels for energies and forces (Sec. 6.4.3), to operator quantummachine learning
(Sec. 6.4.4).

The resulting learning curves are reported in Figure 7.15. We observe that the DFT-OQML
learning curves exhibit the expected power-law behavior described by Eq. (7.8), in contrast to
the QMC-OQML learning curves, which appear flatter on a log-log scale. From the results on
the Zundel complex (Section 7.6.1), we know that flat learning curves in the fitting error (𝜌)may
still hide some effective model training, at least before overfitting. This is partially evidenced by
the fact that, despite the flatness of 𝜌𝑓 , the test error on energies (𝜌𝐸) continues to improve.

In both DFT and QMC learning, including forces during training proves invaluable, as it
significantly enhances energy prediction accuracy and accelerates error convergence. Addition-
ally, models trained solely on forces (yellow curves) can accurately reproduce energies through
simple integration, while deriving the forces from energy only training is a muchmore diffucult
task.

The best-performingOQMLpotential, according to the test errormetric, was amodel trained
on 720 configurations selected via farthest point sampling applied to the 250K dataset. We
used this model in real dynamics simulations and computed the resulting radial distribution
functions in both classical simulations (Figure 7.16a) and ring-polymer molecular dynamics
(Figure 7.16b).

Interestingly, as with the Zundel complex, the PCFs at low temperatures (50K)—both clas-
sical and quantum—are among the worst reproduced. This suggests that even in regions of the
PES reachable by simple thermal fluctuations, the dataset may have gaps, an issue that can be
exacerbated in RPMD simulations.







CHAPTER 8
Conclusions

The purpose of this thesis was twofold: on the one hand we aimed at studying Proton Transfer
(PT) in the protonated water hexamer by means of advanced computational methods, namely
quantum Monte Carlo (QMC) and path integral molecular dynamics (PIMD). On the other
hand, we assessed the robustness of current machine learning interatomic potentials (MLIPs)
in fitting accurate but noisy potential energy surfaces (PES) estimated throughQMCand PIMD,
with the final goal of producing a QMC-trained PES for protonated water clusters. These goals
are two sides of the same coin, the one of accuracy versus computational cost trade-off.

In the first part we showed the delicate interplay between thermal and NQEs in determin-
ing the range of temperatures at which proton transfer is optimal. We found that we have to
include in the picture the contribution coming from the short-Zundel configurations, which are
enhanced in quantum simulations. This result can be cast in a long-standing debate around
the identity of the hydrated proton, and in this context we proved the need of going beyond
the simplicistic classification into Zundel and Eigen moieties. Recent computational [374] and
experimental [194, 195] findings also go in this direction.

Research on water systems has always exploited cutting-edge computational methods. This
means that further progress in understanding proton solvation and diffusion in water will re-
quire accurate and unbiased PES as those delivered by QMC, together with the inclusion of
NQEs. To overcome the computational burden of these methods, MLIPs are the most promis-
ing path. Motivated by the necessity of extending our simulations both in system size and
simulation time, we investigated resilience of MLIPs, designed for noiseless data, when trained
on energies and forces affected by a known level of noise, as in the QMC case.

Using the Zundel cation H5O2
+ as a benchmark, we built the “reference” training set by

sampling configurations through MBE potential-driven. Then, we corrupted the dataset by
adding errors sampled from multivariate Gaussian white noise characterised by increasing lev-
els of variance (𝜎2). We chose two types of ML potential, one based on kernel ridge regression,
OQML, and one based on message passing neural network framework, MACE. The final goal
was to check their reliability in production runs, and if it is possible to measure it in advance. To
this end, we found out that the fitting error, referred to also as test error 𝜌, can be a poor metric,
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as already pointed out in Refs. [350, 351], and this seems particularly true when learning QMC.
Indeed we proved that the distance between the MLIP predicted energies and forces and the
true ones (model error 𝜖) is lower than the test error measured between the predictions and the
noisy labels. The naive test error is useful as a first indication on the success of the learning, and
can signal if more configurations should be included in the training set.

To go beyond learning curves analysis, we established a rigorous and standardised way of
evaluating the quality of the simulations based on physical observables such as radial distribu-
tion functions or higher order correlation functions (𝑔(2) and 𝑔(3), respectively, from Chapter 7)
and which are particularly important in the system at hand. Using this metric, we found out
that, at variance with OQML,MACE shows amore predictable behaviour with respect to the in-
put noise affecting the training set. By predictablewemean that the quality of theMACE-driven
dynamics degradates almostmonotonically at increasing levels of noise, which is an appreciable
property. OQML, despite showing even better performances at the low temperatures regimes,
can “break” the simulation for unexpected levels of input noise.

Perspectives
Thanks to years of research on variance reduction and to the application of automatic differ-
entiation, estimating accurate forces with QMC comes with a slightly higher cost than the one
required by the energies. Also interpolating the PES and its gradient translates into higher
computational needs, but the usefulness of derivative information in learning such complex
and high-dimensional surfaces, in contrast to methods based on energy only, is out of question.
This is apparent in the learning curves of the protonated water hexamer, where the inclusion of
the forces makes the convergence on the energy error much faster than the models trained only
on energies. The vectorial information contained in the forces is notmerely quantitative, but it is
qualitatively different from, for instance, simply includingmore energy points. Indeed, far from
being just additional data with respect to plain, scalar energies, gradients provide a “smoother”
view on the energy landscape. This is even more important when learning only noisy energies,
as applying the derivative operator on the interpolated surface would potentially increase the
errors [375, 376].

Moreover, within a stochastic electronic structuremethod, including forces in the training set
rather than energies can becomemore andmore convenient as the system size increases. Indeed,
while the energy scales extensively with the system size, and so its error, the force information
stays local, and its relative error distribution follows the dynamical matrix eigenvalues, as we
have quantitatively verified in this thesis.

A further direction for improvement could involve generating training sets with optimally dis-
tributed configurations. In this study, classical simulations were employed to reconstruct the
PES, as they allow nuclei to move freely without the interference of zero-point energy (ZPE),
which distorts the true shape of the PES. However, ring polymer molecular dynamics (RPMD)
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also offer an intriguing pathway: exploiting the extension of the necklace towards regions that
would be otherwise inaccessible or unlikely to be explored in classical simulation just by ther-
mal fluctuations. Specifically, since NQEs enable protons to more frequently overcome barri-
ers, RPMD simulations may provide richer statistical data to better capture the barrier shape,
although ZPE effects must still be accounted for.

Since selecting the best configuration for PES learning is a common problemwhen applying
MLIPs, much of the research effort in the ML community has been devoted to find recipes to
construct or improving training set-. The most straighforward one, only partially explored in
the preliminary work on the hexamer, is farthest point sampling (FPS), where the training set
is sparsified by sampling the most different configuration in terms of descriptors, or by max-
imising the kernel distance in some high-dimensional feature vector space.

A promising alternative is active learning based on a measure of uncertainty of prediction
[377–379]: the higher is the uncertainty in some region of the PES, themore configurations from
this very same region should be included in the training set. In contrast with a posteriori active
selection of the training configuration, another possibility is represented by an on-the-fly active
sampling through uncertainty-driven dynamics [380], a method that has been dubbed “hyper-
active learning” [381]. This is based on the idea that the Boltzmann weights that characterise
MD-sampled distribution are not ideal when it comes to MLIP training. The appeal of these
methods also lies in their ability to measure uncertainty [382], which would be interesting to
compare with the noise of QMC-based datasets. This is especially important given the need to
go beyond test error when evaluating a model’s performance.

Recently, a simulation-oriented training has been proposed, which depends on (i) ‘property-
based metric’ to describe the quality of the simulations, and on (ii) an optimization strategy
based on the samemetric [383]. This physically motivated construction of the training set relies
on measuring how well an observable is reproduced with respect to the reference, implying
that the observable itself must not be computationally intensive to evaluate. We believe that
this property-based training points in the direction we took when we pushed the MLIP analysis
toward molecular dynamics quality testing. In fact, once we know that 𝑔(2) and 𝑔(3) are well
reproduced in MLIP-driven dynamics of H5O2

+ and H13O6
+, we can run longer simulations to

gather more statistics about instantons in these systems.

Another important aspect to investigate when applyingMLIPs to QMCdata is how the intensity
of noise impacts the learning algorithm in relation to the size of the system. For instance, with
a fixed training set size, does a larger number of atoms with similar local environments lead to
error compensation, thereby facilitating learning, or does the complexity of the PES outweigh
the benefits of having more similar atomic environments?

Answering to the previous question would improve our understanding of the relation be-
tween noise and size of the system, especially in the perspective of learning a QMC-level of
theory PES in order to improve the statistics of our QMC-driven simulations, building upon the
findings that we reported in the first part of this thesis.
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As stated in the Introduction, studying the proton transfer in bulk water is not just a matter
of longer simulations based on very accurate cluster-PES. One should also take into account
the solvation effects, hence considering the influence of adding more water molecules, read
solvation shells [199], around the proton. Embeddings of such kind are usually constructed
using quantum mechanics/molecular mechanics schemes (QM/MM) [384], which has been
recently applied to the problem of PT in bulk water [385]. Given its nature of fluxional defects
that propagates across the H-bond network of bulk water [48], the hydrated proton embedding
is not an easy task, requiring on-the-fly adaptive partitioning [386, 387].

While there are limited studies on QMC/MMpol applications [388], some ML/MM frame-
work have been recently proposed, like the deep potential range correction (DPRc) [389], suc-
cessfully employed also in PIMD simulations [390], or electrostatic embedding of arbitrary
MLIPs trained on molecular system in vacuo [391], which indeed is our case. Graph neural
networks have been tested in ML/MM settings [392], as well as the ANI neural network poten-
tial [393].

Whether these solutions can be widely adopted will also depend on advances in the de-
velopment of MLIPs capable of handling long-range interactions, particularly electrostatics, as
discussed in Chapter 6 in our brief review of water potentials. This appealing approach would
allow one to combine the accuracy and the speed of a QMC-MLIP core region with a molecular
mechanics solvation environment.
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APPENDIX A
Stochastic integration schemes

In this Appendix, we provide the useful formulae to understand the algorithmic developments
introduced in the Chapter 3.

A.1 Solution to the Ornstein-Uhlenbeck process for the Bussi
algorithm

We aim at solving the Ornstein-Uhlenbeck process stochastic differential equation. Its differen-
tial form is the following:

𝑝(𝑡 + d𝑡) − 𝑝(𝑡) = d𝑝 = −𝛾𝑝(𝑡)d𝑡 + 𝐵d𝑊(𝑡). (A.1)

To simplify the notation, we use scalar quantities, and we ignore the possible dependences on
the positions, like the one of 𝐵 = 𝐵(𝑞).

To solve the equation, we consider the expectation values and the variance of the random
variable 𝑝:

𝔼[𝑝(𝑡 + Δ𝑡) − 𝑝(𝑡)] = −𝛾 𝔼 [𝑝(𝑡)]d𝑡 → 𝔼 [𝑝(𝑡 + Δ𝑡)] = 𝑝0𝑒−𝛾Δ𝑡, (A.2)

var [𝑝(𝑡)] = 𝔼 [𝑝(𝑡 + Δ𝑡)2] − 𝔼 [𝑝(𝑡 + Δ𝑡)]2= 𝔼[𝑝(𝑡 + Δ𝑡)2] − 𝑝20𝑒−2𝛾Δ𝑡. (A.3)

In order to find the first term of the previous equation, we write

d[𝑝(𝑡)2] = [𝑝(𝑡 + d𝑡)]2 − [𝑝(𝑡)]2= [𝑝(𝑡)(1 − 𝛾 d𝑡) + 𝐵(𝑞(𝑡))d𝑊]2 − [𝑝(𝑡)]2= −2𝑝(𝑡)2𝛾 d𝑡 + 2𝑝(𝑡)𝐵(𝑞(𝑡))d𝑊 + 𝐵2(d𝑊)2. (A.4)

Taking the expected value of the above quantity, we get

d𝔼[𝑝(𝑡)2] = −2𝔼 [𝑝(𝑡)2] 𝛾 d𝑡 + 𝐵2 d𝑡, (A.5)
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whereweused twoproperties: (1) the fact that d𝑊(𝑡)2 = d𝑡, and (2) the fact that 𝑝(𝑡) andd𝑊(𝑡)
are statistically independent, therefore the expectation value of their product is the product of
their expectation values, which is zero for d𝑊.

Differentiating the previous equation we get:

d
d𝑡 𝔼 [𝑝(𝑡)2] = −2𝔼 [𝑝(𝑡)2] 𝛾 d𝑡 + 𝐵2 d𝑡 (A.6)

with solution 𝔼[𝑝(𝑡)2] = 𝑝0𝑒−2𝛾𝑡 + (𝐵22𝛾) (1 − 𝑒−2𝛾𝑡) (A.7)

Inserting what we have found in the initial equation for the variance, we finally obtain:

var [𝑝(𝑡)] = (1 − 𝑒−2𝛾𝑡) (A.8)

By combining the average and a random Gaussian vector multiplied by the above factor, we
obtain the first step of the Bussi algorithm.



APPENDIX B
2D projection of the protonated

hexamer PES

B.1 Towards an accurate modeling of the potential energy surface
We exploit the calculation of VMC forces not only to perform QMC-driven classical and quan-
tum LD, but also to extract the best PES fitting functional form for the excess proton and for
the water-water interaction in the Zundel core. The final goal is to derive the two-dimensional
(2D) model potential 𝑉2D = 𝑉2D(𝑑O1O2 , 𝛿H+), where 𝑑O1O2 is the distance between the two cen-
tral oxygen atoms and 𝛿H+ is the proton sharing coordinate, referenced to the midpoint of the
O1H+O2 complex: 𝛿H+ ≡ ̃𝑑O1/2H+ −𝑑O1O2/2, with ̃𝑑O1/2H+ the O1/2H+ distance projected onto the
O1O2 direction. The projection of the full interatomic potential on the restricted 2D manifold is
done by integrating the other degrees of freedom over the thermal partition function, sampled
during the MD, i.e.

𝑉2D(𝑑O1O2 , 𝛿H+) ≡ ⟨𝑉(𝑥1, 𝑥2,⋯ , 𝑥3𝑁)𝛿(𝑥1 − 𝑑O1O2)𝛿(𝑥2 − 𝛿H+)⟩ , (B.1)

where ⟨…⟩ is the average over the partition function of the classical/quantum statistical ensem-
ble at fixed temperature, and 𝑉 is the 3𝑁-dimensional potential depending on the generalised
nuclear coordinates of the full system, 𝐗 = (𝑥1, 𝑥2,⋯ , 𝑥3𝑁).

Analogously, one can define the one-dimensional (1D) potential acting between O1 and O2
as 𝑉1D = 𝑉1D(𝑑O1O2) ≡ ⟨𝑉(𝑥1,⋯ , 𝑥3𝑁−2)𝛿(𝑥1 − 𝑑O1O2)⟩ , (B.2)
according to previous notations. Derivatives of the previous potentials with respect to 𝑑O1O2
and/or 𝛿H+ can be defined in the same way. For instance,𝜕𝑉2D𝜕𝛿H+ ≡ ⟨𝜕𝑉(𝑥1, 𝑥2,⋯ , 𝑥3𝑁−2)𝜕𝑥2 𝛿(𝑥1 − 𝑑O1O2)𝛿(𝑥2 − 𝛿H+)⟩ , (B.3)

and 𝜕𝑉1D𝜕𝑑O1O2
≡ ⟨𝜕𝑉(𝑥1, 𝑥2,⋯ , 𝑥3𝑁−2)𝜕𝑥1 𝛿(𝑥1 − 𝑑O1O2)⟩ . (B.4)
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Given these definitions, we can proceed with the calculations of the corresponding quan-
tities with the aim at modeling the potentials 𝑉1D and 𝑉2D. To do so, we will integrate the
other degrees of freedom using the classical Boltzmann distribution in ⟨…⟩, as generated by the
QMC-driven classical Langevin dynamics at 100, 250 and 350K. Employing the classical parti-
tion function has the advantage that the potentials sampled in this way will tend to the original
PES of the system as 𝛽 → ∞, while the quantum partition function will lead to averaged po-
tentials biased by quantum fluctuations even in the zero temperature limit. To compute these
quantities from anMD sampling, the 𝛿-functions in their definitions above are replaced by bins,
whose size is given by the spacing between neighbouring points.

In Fig. B1, we study the 𝑉1D(𝑑O1O2) potential depending on the water-water distance 𝑑O1O2
(left column), and its derivative 𝜕𝑉1D/𝜕𝑑O1O2 (right column). As one can see, the energy pro-
file, at the left-hand side, is much more noisy than the behavior of its gradient, from where
we can extract a precise value of the equilibrium 𝑑O1O2 distance, and the evolution of the po-
tential around the minimum. This shows the advantage of computing QMC forces in order to
determine the PES, and suggests that a robust way of deriving the 𝑉1D potential is by fitting
and integrating its derivatives, rather than by directly fitting the energies, as pointed out also
in machine learning potentials interpolating noisy PES (Chapter 7).

In Fig. B2, we study the 𝑉2D(𝑑O1O2 , 𝛿H+) potential depending on the proton coordinate 𝛿H+ ,
at various (fixed) 𝑑O1O2 distances. In the left column, we show 𝜕𝑉2D/𝜕𝛿H+ in a contour plot as
a function of both 𝑑O1O2 and 𝛿H+ . Positive (negative) values of 𝜕𝑉2D/𝜕𝛿H+ are coloured in red
(blue). The white region indicates the extrema of the 2D-PES. The classical proton is clearly
asymmetric for 𝑑O1O2 ≳ 2.37Å, with a minimum departing from the 𝛿H+ = 0 axis. In the right
column, the same information is provided by superposing 𝜕𝑉2D/𝜕𝛿H+ plotted as a function of𝛿H+ and taken at fixed 𝑑O1O2 distances.

B.2 Projected two-dimensional PES
Using the data obtained in Sec. B.1, let us determine an analytic form for the 𝑉2D(𝑑O1O2 , 𝛿H+)
potential, which depends on both 𝑑O1O2 and 𝛿H+ coordinates. This will take into account the
variation of the proton-oxygen potential along the proton shuttling mode as the distance be-
tween the two inner water molecules varies.

We first derive the 𝑉1D potential between the two water molecules, which depends only on
the 𝑑O1O2 stretching coordinate, by fitting the derivatives shown in Fig. B1, for the simulation
at 100K, which yields less noisy datapoints than the one at higher temperatures. As fitting
function, we choose the Morse potential, such that:

𝑉1D(𝑥) = 𝐷(1 − 𝑒−𝑤(𝑥−𝑑𝑒))2 (B.5)

where we have chosen to set the zero of energy at the potential minimum, that is, at the equilib-
rium distance 𝑑𝑒; 𝐷 and 𝑤 represent the depth and the width of the potential well, respectively.















APPENDIX C
ML potentials hyper-parameters

C.1 OQML with FCHL19

OQMLallows to fit simultaneously energies and forces leveraging on local atomic environments,
which in our case are described using the FCHL19 representation.

As all descriptors, FCHL19 comes with some hyper-parameters, which are described in Sec-
tion 6.2.2. These hyper-parameter can in principle be adapted to the specific dataset at hand,
but in our case we used the default ones, already optimised on different and heterougenous
datasets through Monte Carlo by the authors, as well as already tested on the Water40 dataset
[278]. Their values are listed in the Table C.1

Hyper-parameter 𝐸 learning 𝐸 + 𝐟 learning𝑛𝑅𝑠2 22 24𝑛𝑅𝑠2 17 22𝑟cut 8.0 8.0𝑤 0.41 0.32𝜂3 0.97 2.7𝑁2 2.4 1.8𝑁3 2.4 0.57𝑐3 45.8 13.4𝜍 𝜋 𝜋
Table C.1: Hyper-parameters of the FCHL19 representation. Depending on the type of labels that are
learned, only energies or both energies and forces, they can be slightly different. From Ref. [279].

Also the regression method itself, OQML, comes with some hyper-parameters. Since there
is not a closed-form expression of the optimisation problem, neither an iterative procedure,
these hyper-parameters need to be tuned “by hand”. This is usually done by algorithms that
spans a portion of the grid of all the possible combination of hyper-parameters values, such as
GridSearch.
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C.2 MPNN with MACE

Hyper-parameter Value
model ’MACE’
config_type_weights ’”Default”:1.0’
E0s ’average’
r_max 6.0Å
num_radial_basis 8
num_cutoff_basis 5
correlation 3
num_interactions 2
MLP_irreps ’16x0e’
radial_MLP ’[64, 64, 64]’
hidden_irreps ’128x0e + 128x1o’
num_channels None
max_L None
valid_fraction 0.1
loss ’weighted’
compute_stress False
forces_weight 100.0
swa_forces_weight 10.0
energy_weight 1.0
swa_energy_weight 100.0
optimizer ’adam’
amsgrad True
batch_size 20
valid_batch_size 1
lr 0.01
swa_lr 0.001
weight_decay 5e-07
scheduler ’ReduceLROnPlateau’
lr_factor 0.8
scheduler_patience 50
lr_scheduler_gamma 0.9993
swa True
start_swa 80
ema True
ema_decay 0.99
max_num_epochs 100
patience 2048
eval_interval 2

Table C.2: MACE hyper-parameters.
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