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Abstract

A complete understanding of the hydrogen bond and proton transfer mechanism in water is still
lacking, since it requires an accurate potential energy surface (PES) and very expensive quan-
tum mechanical simulations of the nuclear part. Protonated water clusters are useful building
blocks to study the proton hopping dynamics, which we simulate here in the protonated water
hexamer H (H,0) by a combination of state-of-the-art quantum Monte Carlo (QMC) methods
and path-integral Langevin dynamics (PILD). We report a remarkably low thermal expansion
of the hydrogen bond from zero up to 300 K, after which the hydrogen bond strength weak-
ens. This behaviour is explained by proton delocalisation, which is favoured by the synergy
of nuclear quantum effects and thermal activation, making the near-room-temperature range
of 250K-300K optimal for proton transfer. In the second part of this work we test if machine
learning interatomic potentials (MLIPs), based on kernel methods or on neural networks, can
reproduce the PES of protonated water clusters that would be infeasible to simulate with current
high-level computational chemistry methods, either in size or in duration of the simulation. The
QMC+PILD learning approach yields very accurate results, which are however affected by the
intrinsic noise inherent in the stochastic sampling of both nuclear and electronic phase space.
We prove that the QMC noise is not necessarily detrimental to the learning of energies and
forces and we determine under which conditions one can derive accurate and reliable MLIPs
from QMC data.






Résumeé

Une compréhension complete des mécanismes qui gouvernent la liaison hydrogene et le trans-
fert de proton dans 1’eau fait encore défaut. Une difficulté majeure qui entrave notre compréhen-
sion de ces phénomenes est représentée par le temps de calcul important nécessaire & modéliser
les processus en jeu, nécessitant une surface d’énergie potentielle (PES) précise et un traite-
ment quantique a la fois des électrons et des noyaux. Dans ce cadre, les clusters d’eau protonée
sont des briques utiles pour étudier la dynamique des sauts de proton, car leur taille finie les
rend plus simples a traiter que l'eau liquide. Dans cette these, nous avons analysé les résultats
sur I’hexamere d’eau protonée HY (H,0)4 obtenus en combinant les méthodes de Monte Carlo
quantique (QMC) les plus avancées et la dynamique de Langevin par intégrales de chemin
(PILD). Nous avons découvert une expansion thermique de la liaison hydrogeéne remarquable-
ment faible de zéro jusqu’a 300 K, température aprés laquelle la liaison hydrogéne devient moins
forte. Ce comportement s’explique par la délocalisation du proton, favorisée par la synergie en-
tre effets quantiques nucléaires et activation thermique, ce qui rend la plage des températures
optimales pour le transfert de proton proche de celle ambiante (250K-300K). Dans la deuxiéme
partie de ce travail, nous avons vérifié que les potentiels interatomiques d’apprentissage au-
tomatique (MLIP), basés sur des méthodes a noyau (kernel methods) ou sur des réseaux de
neurones, peuvent reproduire le PES des clusters d’eau protonés. Leur dynamique serait im-
possible & reproduire avec les méthodes les plus précises de chimie théorique, a la fois en ter-
mes de taille et de durée de la simulation. En revanche, I'approche d’apprentissage basée sur
les données QMC+PILD donne des résultats trés précis, qui sont toutefois affectés par le bruit
intrinseque de 1’échantillonnage stochastique de I'espace des phases nucléaire et électronique.
Nous montrons cependant que le bruit QMC n’est pas préjudiciable a I’apprentissage automa-
tique des énergies et des forces et nous déterminons les conditions auxquelles on peut générer
des potentiels MLIP fiables en partant des données QMC.
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Introduction

The behaviour of the proton in water has long puzzled chemists and physicists, leading to cen-
turies of debate about all of its aspects [1-7]. This complexity is distilled into a simple chemical

expression:
H” (aq). (1)

This seemingly straightforward formula [8, 9] conceals a rich history of scientific inquiry into
how the proton is hydrated and diffuses in bulk water through the proton transfer (PT) mecha-
nism [10]. To this end, the structure and dynamics of the hydrated proton have been explored by
a wealth of experiments, supported by countless theoretical models and numerical simulations
[11, 12].

Molecular simulations [13], which provide full control over the accuracy of interatomic in-
teractions, offer a unique and detailed view of the proton jumping from one molecule to another.
However, since PT occurs over multiple length and time scales—from the hopping frequency
across adjacent water molecules to the breaking of a Hydrogen bond (H-bond) in second solva-
tion shell, followed by a rearrangement of the whole structure around the proton [ 14, 15 ]|—there
is often a trade-off between the accuracy of computational methods and the size and duration
of the simulation.

The goal of this thesis is twofold. First, we apply advanced methods that fully account for
the quantum nature of both the electrons and nuclei. Specifically, we use Quantum Monte Carlo
(QMC) as electronic structure method to derive the potential energy surface (PES) necessary to
drive the dynamics of the nuclei, described within the path integral formalism. Given the com-
putational cost of these highly accurate techniques, we focus on the protonated water hexamer,
H' (H,0),, to study the temperature effects on proton hydration and hopping.

The second objective is to bridge the gap between accuracy and the limitations imposed
by system size and simulation time. Over the last two decades, machine learning interatomic
potentials (MLIPs) have emerged as a tool that can reproduce the results of advanced electronic
structure calculations at a fraction of the cost. Here, we test on the Zundel cation H502+ whether
MLIPs can learn energies and forces derived from stochastic methods like QMC, providing a

stable and reliable potential energy surfaces on top of which we can run extended simulations.

1



2 Introduction

S0 &

O+

o
>4 ¥
o e e,

(a) Eigen ion (b) Zundel ion (c) Protonated water hexamer

Figurel.1l: Protonated water clusters considered in this work. (a) the Eigenion HyO,  isa fully solvated
hydronium H,0", (b) the Zundel ion H;O," is a solvated proton equally shared between two water
molecules, and (c) the protonated water hexamer H* (H,0); is the smallest cluster which includes both
forms of proton solvation.

The hydrated proton computational dilemma: system size vs.

accuracy

There are two approaches when it comes to simulating the hydrated proton: either it is embed-
ded in the bulk, modeled using periodic boundary conditions, or it is solvated in a finite-sized
water cluster, H (H,0),. The former approach is ideal for gaining a global understanding
of the Grotthuss mechanism [1], which describes the sequence of PT reactions between water
molecules. This process can be viewed as a series of proton hops across the H-bond network.
Given the length scale of this phenomenon, which can affect multiple molecules along a “water
wire” [16], computational efficiency is prioritized over precision in the electronic description.

On the other hand, protonated water clusters serve as the building blocks for our under-
standing of the hydrated proton, able to replicate key motifs and structures also found in the
bulk while maintaining high accuracy in the description of both electrons and nuclei. In fact, the
first attempts to explain PT were made by considering the two preferred solvation complexes
of the proton in water: the Eigen ion, HyO, " [17], and the Zundel ion, H;O," [18], as shown
in Fig. I.1a and Fig. I.1b, respectively. It did not take long for the computational community,
already engaged in water simulations since the early days of computer modeling [19, 20], to ad-
dress the challenges of determining the optimal geometry of solvated hydronium [21], as well
as the proton dynamics in the Zundel complex [22, 23].

Thesis outline

These pioneering studies on protonated water clusters were followed by many others, which
will be reviewed in subsequent Chapters. In the first part of the thesis we continue this line
of research by investigating the protonated water hexamer, I—I+(HZO)6, or H13O6+, shown in
Fig. L1c. It has been confirmed that both Eigen and Zundel complexes coexist in the hexamer
[24-26], which appears to be the smallest one able to exhibit this feature [12]. It follows that



this system is suitable to reproduce the isomerization process underlying the proton transfer.

In Chapter 1, we briefly introduce ab initio molecular dynamics (AIMD), a computer simula-
tion method where the system configurations are sampled by iteratively solving the equations
of motion using forces derived from quantum theory. Unlike empirical potentials with prede-
fined functional forms, AIMD significantly enhances the predictive power of our simulations,
allowing us to conduct detailed “in silico” experiments that would otherwise be unattainable.

Proton transfer occurs within the water matrix, an incredibly complex environment charac-
terized by multiple types of interactions. The strength of H-bonds is comparable to that of cova-
lent bonds, blurring the line between the two. The presence of a charged species also requires
careful consideration of long-range interactions, including Coulomb and van der Waals forces.
Additionally, the typical timescale for proton transport in water under ambient conditions is
around 1 picosecond [27], indicating a relatively small activation barrier. These considerations
lead us to the topic of Chapter 2, where we address the need for highly accurate electronic struc-
ture methods, such as quantum Monte Carlo.

Once the forces from electronic calculations are determined, or estimated, it is the nuclei’s
turn to move through molecular dynamics (MD), the focus of Chapter 3. Many experimental
findings on water suggest that nuclei, particularly lighter ones, should be treated quantum me-
chanically. Nuclear quantum effects (NQEs) are especially relevant for hydrogens and protons,
which can exhibit zero-point energy (ZPE), proton delocalization, energy discretization, and
proton tunneling [28, 29]. NQEs are significant in water [30-32], and in this Chapter we de-
scribe the MD schemes that allow to treat them, together with the noisy forces coming from
OMC calculations.

In Chapter 4, we present our results from applying the above methods to study the proto-
nated water hexamer, the largest system that can be studied by path integral molecular dynam-
ics and quantum Monte Carlo simulations with current computational means.

To extend our results to larger time and length scales, we must turn to potentials, the subject of
the second part of this thesis.

After discussing the advantages and limitations of various water potentials in Chapter 5, it
becomes clear that the primary challenge lies in capturing the complex variety of interactions in
water and modeling their quantum nature with predefined functional forms. The interpolation
of water’s PES and its extrapolation to larger clusters or to longer simulations is an attractive ap-
proach for better understanding PT. However, high dimensionality, nonlinearity, and the noise
affecting QMC-PES present significant challenges.

These considerations lead us to Chapter 6, which is devoted to machine learning interatomic
potentials (MLIPs). In recent years, machine learning (ML) methods have become increasingly
popular for solving high-dimensional regression problems across various disciplines, and chem-
istry and physics are no exception. Machine Learning refers to a broad range of techniques
designed to find meaningful patterns from a given dataset that forms the “experience” of the
learner, whether in classification tasks (assigning labels to data) or regression tasks (predicting
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continuous values). The strength of these algorithms lies in their adaptability, hence the expres-
sion data-driven modeling. Instead of assuming an expected functional form underlying the data,
these methods allow the learner to adapt based on the input data, making them highly flexible
and powerful.

Although MLIPs are widespread in the modeling community, little is known about their
ability to interpolate noisy data and reproduce reliable PES—an essential requirement for ex-
tending the findings of QMC-MD simulations. In Chapter 7 we conduct a comprehensive study
on the robustness of MLIPs in learning noisy PES estimated with stochastic electronic structure
methods. We apply well-established ML testing methods and rigorously compare the MLIP-
derived physics with the one obtained from ab initio calculations.

Finally, in Chapter 8, we summarize our main conclusions and outline potential directions
for future research.
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CHAPTER ].

Ab initio molecular dynamics

Atoms, molecules and condensed matter systems can be described as a collection of interacting
nuclei and electrons that require a quantum mechanical framework for understanding their
physical properties.

Consider a system of M nuclei with masses {m,},-1 ...»s and charges {¢Z,},-1 ... p»1, and N
electrons with mass m and charge ¢; let {(q,, p,},=1,...  denote the positions and momenta of
the nuclei, and {(r;, 7t;},_; ... 5 those of the electrons; to simplify the notation we will represent
the nuclear and electronic positions as single vectors, q = {q,};=1,...p and ¥ = {r;};=1 .. N,
respectively. The time evolution of such a compound follows the spin-free non-relativistic time-
dependent Schrodinger equation [33]:

0 -
iha‘lf (r,q,t) =HY (r,q,t), (1.1)

where ¥(r, q,t) is the total wavefunction and H is the Hamiltonian operator, which we can
obtain from the classical Hamiltonian H(r, q) of M positively charged particles interacting with
N negatively charged ones:

M p2 Z,Zpe? 1NN 702
Hr, Pa b Z a 1.2
(r,q) = Zz Z 22|r—r| 2Z|q — qpl 2,-,,1 Ir; — qql (12)

By replacing the momenta with their respective quantum operators in the position representa-
tion, p, = —ihV, = —ihV, and ; = —ihV, = —ihV;, we obtain:

2 ivz 1 i i Z,Zpe2  1MY 7 2 (13)
i=1 2 |1‘ - I' | 2 |q - qb' 2 ia |ri - qa'l ‘
T,

Tn e Vee Vnn Ven

M

Z

where we dubbed the nuclear kinetic energy T.,, the electronic kinetic energy T,, and we defined
the remaining Coulombic interaction terms V., V,,,, and V,, for later convenience.

The Hamiltonian does not depend on time, consequently Eq. 1.1 can be simplified into an
eigenvalue problem by assuming stationary states:

HY(r,q) = E¥(r,q). (1.4)
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Still, the problem posed by Eq. 1.4 is not exactly solvable, therefore one must resort to ap-
proximate methods. These are collectively known as ab initio molecular dynamics (AIMD),
meaning molecular dynamics ‘from first principles’, because they are based on pure quantum
theory alone, without relying on experimental data or ad hoc, though physically motivated,
parametrizations.

Different AIMD methods are defined by increasing levels of approximation. Since the result
of such procedure, namely the potential energy surface (PES), is a key object of this thesis, we
will spend a few lines on its derivation in Section 1.1, and we will explain how the concept of
PES has been exploited in the realm of quantum simulations of water in Section 1.2.

1.1 Born-Oppenheimer approximation

The first historical approximation from Born and Oppenheimer [34] is actually based on the
classical assumption that the nuclei are not far from equilibrium and the nuclear kinetic energy
T,, is small enough to be treated as a perturbation of the electronic Hamiltonian H,, owing to
the large mass difference between electrons and nuclei’

Hy=Te+ Voo + Vo + Ven- (1.5)

This is enough to justify an expansion of the quantum eigenvalue problem HY¥ (r; q) = E¥(r; q)
with respect to a power of the electron-nuclei mass ratio m,/M,, where M, is either one of the
nuclear masses or their mean. In the original paper the choice of the expansion parameter was
x* = m,/M,, but other choices are possible, for example in the mathematical physics community
k% = m,/M, is more common. In either case, the important point proved in the original paper
is that only even powers of x contribute to the energy. If we consider the latter convention up
to the second order, we arrive to

H = A, + «*H,, (1.6)

with H, = «/2T,,. The first term is the electronic energy, the second can be related to ionic
vibrations. Eventually, a quartic order term would describe the ionic rotational energy, and
higher order terms the coupling between the previous ones. Then, for several configuration
of the nuclei, q, and in the limit of ¥ — 0, it is assumed that it is possible to find the solution
of the eigenvalue problem of the unperturbed electronic Hamiltonian H,. Since sending « to
zero means that the nuclear kinetic energy vanishes, therefore the nuclei are fixed, H, is also
called clamped-nuclei Hamiltonian. The set of eigenfunctions of H, is used to calculate the full
electrons-ions wavefunction ¥ (r, q,¢) and its corresponding eigenvalue E, by simple product
with a nuclear wavefunction [36].

Y(r,q,t) =~ P(r;q)Q(q, ). (1.7)

Tt can be proved by energy argument that close to the ground state energy E, the kinetic term T, is automatically
small, without the need of exploiting the mass ratio. However, the latter is still necessary for a general proof of the
Born-Oppenheimer (BO) approximation that includes also excited states [35].
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We start by introducing an extension of Eq. (1.7), for the exact form of ¥(r, q,t), solution
of Eq. (1.1). This ansatz, named Born-Huang, comprises the sum of several terms, and it is
still based on the factorization of an electronic and a nuclear part [37, 38]. Following [39] we

introduce the Born-Huang ansatz:

¥(r,qt) =) ®(590(q1), (1.8)
I

where ®,(r; q) are orthonormal eigenfunctions of the time-independent electronic Schrodinger
equation for the clamped-nuclei Hamiltonian H,

H,®(r;q) = E(q)®;(x; q), (1.9)

and, as such, they span the space of the electronic degrees of freedom for fixed nuclei?, with q
treated as a parameter. Instead the nuclear wavefunctions ();(q, t) are described by functions
that are neither orthonormal nor normalized [40]. Inserting this ansatz in Eq. 1.1, followed by
multiplication on the left by the single adiabatic state ®; (r; q) and integration over the electronic

degrees of freedom r bring us to
00 (q, 1)
ih— 22 " q [ Z —V2 + Ek(q)] O, ) + ) Cuy(q,b), (1.10)
l
where the non-adiabatic coupling operator Cy; is a short notation for

Cy = fdrd);(r;q) [ Z —Vz] ®;(r;q) + Z Udrcb*(r q) (—ihV,) D (x; q)] [—ihV,].
(1.11)
Equations 1.10 and 1.11 tell us that the nuclear wavefunctions ();(q, f) evolve following the
adiabatic potential energy surface E; (q), for which the diagonal elements Cy represents a small
correction; eventually the nuclei can hop from one electronic state to another according to the
off-diagonal terms of the nonadiabatic coupling C;. This picture comprises several potential
energy surfaces, {E;(q)}.
The adiabatic approximation consists in neglecting the off-diagonal contributions of the cou-
pling matrix, simplifying Eq. 1.10 to

an(q, t)
zh—at [ Z

o Va T Ee(@ + Ce(q) | (g, ), (1.12)

which means that the quantum state k of the electrons never changes during the dynamics. In-
stead it adapts parametrically to the slow nuclear degrees of freedom. This would be equivalent
to inserting in the original Eq. 1.1 the single product state

Y(r,q,t) = P(r, )% (q,1). (1.13)

2The sum is done as if all the eigenfunctions of the basis were discrete, but actually one should either count also
contributions from the continuous spectrum, which is tricky, or approximate the total wavefunction on a restricted
set of eigenfunctions [35].
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A further step bring us to the original Born-Oppenheimer (BO) approximation, where even the
correction Cy is neglected:

A (qt)

h2
ot ‘[‘Z V3+Ek<q)]ﬂk<q,t)- (1.14)

ih o

For almost a century the BO approximation has proven to be a great tool to interpret chem-
istry concepts in the light of quantum mechanics. Also, it has been of paramount importantance
in the development of computational quantum chemistry, because it allows one to study the dy-
namics of a system relying solely on a single potential energy surface, most often the electronic
ground state one, Ey(q). This approximation is at the basis of Born-Oppenheimer molecular
dynamics (BOMD), which is one of the most widespread flavour of AIMD, together with Car-
Parrinello molecular dynamics [41].

1.2 AIMD of protonated water

Simple water models cannot capture its multifaceted behaviour, from the challenging phase
diagram to the complex H-bond network, which has an important role not only in reactions
in solution, but also in water ions dynamics. This is mainly due to the difficulty of modeling
the delicate interplay among strong covalent bonds, weak van der Waals interactions and the
H-bonds with a wide range of intensity. For this reason water is the perfect target of AIMD,
particularly in the CPMD and BOMD formalisms [11, 42-45]. Within this framwork proton
transfer in aqueous solution has been extensively simulated [43, 46-50].

Diagonal BO, which is just the adiabatic approximation with the diagonal contribution from
the coupling matrix, has been limited to geometry optimization [51] and the study of vibrational
states [52]. We note in passing that the field of nonadiabatic molecular dynamics, which extends
beyond the the framework described in Section 1.1, is an active field of research, with intriguing
applications in water ionization [53-55], eventually concerning proton transfer within ionized
water systems [56-58]. This approach enables a more accurate comparison with experimental
studies of water photodissociation in small, nevertheless neutral, clusters. As mentioned in the
Introduction, in this thesis we are not dealing with such systems and dynamics. The protonated
water clusters taken into account in this work have a total charge of +e and do not interact
with an external perturbation, hence ground state BOMD will be our workhorse. In particular
the ground state PES is the mathematical object that we will first compute with the electronic
structure calculations explained in Chap. 2, in order to use it in the nuclei classical and quantum
dynamics (Chap. 3). Then, in the second part of this thesis, we will fit the PES with methods
reported in Chap. 6.



CHAPTER 2

Electronic structure methods

Electronic structure methods aim to solve the electronic Schrodinger equation, in order to find
the energy eigenvalues and differentiate them with respect to the nuclear position to obtain
the forces necessary for the dynamics. We rewrite the time-independent Schrédinger equation
with the clamped-nuclei Hamiltonian (Eq. 1.9), by using the explicit form for the kinetic and
potential operators. We then have:

h N ) 1 N 62 1 NM Za62
=) Vi+3 - = ®(r;q) = E(q)P(x; q), 2.1
> ; 73 ZJ PERED N wi RSO ECL (2.1)

where we ignored the nuclear interaction term V,,, defined in Eq. (1.3), as it acts on the nuclear
coordinates only, and it sums just as a classical additive constant to the electronic energy. For
the sake of readability, we will often drop the dependence of the wavefunction on the electrons
degrees of freedom, r, as well as its parametric dependence on the nuclear coordinates, q. In
the next Section 2.1 we will see how to get the forces. In Section 2.2 we will briefly overview
what are the most common techniques in quantum chemistry, in order to motivate our choice
of an alternative method in this first part of thesis, namely quantum Monte Carlo, which is the
topic of Section 2.3.

2.1 Forces via the Hellmann-Feynman Theorem

The Hellmann-Feynman theorem provides a simple way of computing forces, once the wave-
function is found. It applies to any derivative of the expectation value of the Hamiltonian with

respect to any of its parameters. In our case we are interested in the nuclear position parameter,
q:
—f = Vy(PIH|D) = (9, PIH|D) + (P|9 H|D) + (P|H|0q D). (2.2)

By grouping together the derivatives on the bra and the ket, we obtain:
(g PIH|P) + (PIH|9P) = 94 (P|P) = 0, (2.3)

11
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since the wavefunction is normalized . This leaves us with only the middle term:

dE(q) 0H(q)
dq _<®(q)‘ doq

<I>(q)>, (2.4)

2.2 Deterministic quantum chemistry methods

The first distinction to make is between wave function-based methods and electronic density-
based methods. The former attempt to solve the eigenvalue problem by approximating the
electronic wavefunction, @, while the latter calculate the energy as a functional of the electronic
density, which has the advantage of depending on just three spatial coordinates. In this Section
we will review both approaches, some of which will be employed in the second Part of this
thesis. We begin with a central principle which is common to both methods.

2.2.1 The variational principle

Variational principles are omnipresent in physics. In particular, the formulation used to solve
eigenvalues problems in the context of wave mechanics, due to Rayleigh [59] and Ritz [60], has
found broad application later also in quantum chemistry.

The Rayleigh-Ritz variational principle in quantum mechanics states that given any normal-
ized state |®) of a many-body system belonging to the Hilbert space where a given Hamiltonian
H, acts, one always has that

(®|H|P) > E,, (2.5)

where Ej is the ground state energy and the equality holds only in the case |®) = |®), with
|®() defined as the ground-state. This principle provides a way to find the ground-state wave-

function, that is by energy minimization:

(PIH|D)

DD) (2.6)

Ey = mi
0 = min
Usually the wavefunction depends on one or more parameters with respect to which the en-
ergy is minimized. Among these methods, those based on independent-particle approximation,
namely the Hartree and the Hartree-Fock methods, are the starting point of many other more

advanced techniques.

2.2.2 Independent-particle approaches

In this brief overview we primarily follow the classic textbook by Szabo and Ostlund [61]. We
consider N electrons described by the variables x; = (r;,5;), where the r represents the position
and s; the spin of the electron.

In the absence of spin-orbit interaction, we can use a set K spatial molecular orbitals (MOs)
{yM°li = 1,2,---,N/2} and two orthonormal spin functions #(c) and B(¢) to define the set of N
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spin orbitals as a product between the spatial and spin functions:

Xoic1(x) = MO (r)a(o)

, (2.7)
Xoi(x) = yMOr)B(0)

which will inherit the orthonormality from the MOs. The latter are typically constructed as
linear combination of atomic orbitals (LCAO), which depend on the vector distance from the
nucleus q, to the electron r;, that s, r, = r; — q,. Approximations of atomic orbitals (AOs) basis
functions, also called primitives, are usually expressed as the product of an angular component
that depends on the direction f,,, such as spherical harmonics Y}, and a radial component that
depends just on the distance 7, = |r,|. For example, in the case of Slater-type orbitals (STOs)
[62] and Gaussian-type orbitals (GTOs) [63], the forms are given by the following equations:
which are usually constructed as linear combination of atomic orbitals (LCAO).

PSTO () o T Le~ETaY N (F,), (2.8)
YSTon (0) & The TNy, (2.9)

respectively. The principal quantum number # limits the range of the angular momentum quan-
tumnumbers, land m, with! € [0,n—I]and m € [—I, +]], used to define the spherical harmonics
Y}". For GTOs orbitals, in some cases, the priority is given to the choice of [, with n € [1,#,]
designating the number of Gaussians for each angular momentum shell.

Once a local basis of Nj, AOs is defined, {¢2°}, the MOs of a system of M atoms are defined

as
NbXM

yMO(r) = Z i, AO(yy, (2.10)

j=1
where the AOs are indexed according to local basis and to the specific atom they belong to.

In the Hartree method [64] the many-body wave function is expressed as a simple product

of single-particle wave functions, defined as the spin orbitals in Eq. (2.7):

D(r) = x1(xp)x2(X2) - xn (Xn7)- (2.11)

If we plug this wavefunction into equation (2.1), we obtain the energy:

N o1
EHartree = Z _E fdrl/]f (I‘)Vlzllﬂz(r)]

Z Z, [ drgpn— tpl(r)] (2.12)

+

e ~Mz -

_Zfodrdr YrOPr ') — ,|¢,< (') ]

where the three lines correspond to the contributions from the electrons kinetic energy, the at-

tractive ion-electron interaction and the Coulombic repulsion between electrons. The latter, also
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called Hartree direct term, Eyy, sums over all the possible products between the square moduli
of two wavefunctions, which gives the joint probability of two electrons being in the same posi-
tion. From these results, where the spins degrees of freedom are integrated out, we see that the
problem with the Hartree method is that the wavefunction does not respect the Pauli principle.

This issue is addressed by the Hartree-Fock (HF) approximation [65], where the wavefunc-
tion is represented by a single Slater determinant [66], which incorporates the anti-symmetry

required by the Pauli principle:

x1xy)  xao(xq) - an(xq)
<I>(r):L?C1(.X2) Xz(.xz) XN(-xz)‘ (2.13)

VN

X1(xn) Xo(xn) o xn(XN)

The resulting energy in the HF method is the same as in the Hartree method, with the addition
of an an exchange term Ey,
Exr = Enartree + Ex/ (2.14)
with
1Y 1
Ex=-3). [ drar ¢ mrg; () =g #1190, (2.15)
i#j
Notice the different order of the integration variables compared to the last term in Eq. (2.12)).
In this case, we are not dealing with the product of two electronic densities to account for their
Coulombic interaction. Instead, thanks to the Slater determinant, the HF method is able to
consider a purely quantum contribution to the energy, specifically the one due to the motion of
two electrons with parallel spins.
However, the methods discussed so far are considered uncorrelated methods, because they do
not account for the full correlation energy E., formally defined as

where E the true energy of the ground state, and EY; the Hartree-Fock energy in the infinite-
basis limit, meaning that the Slater derminant is composed using linear combination of an infi-
nite number of MOs.

The correlation energy has two components:

e Static correlation, which arrises when the correct electronic structure requires multiple con-
figurations, thus multiple determinants, to adequately describe the system. This is partic-

ularly important for bond dissociation.

e Dynamic correlation, which is related to the instantaneous interaction between electrons as
they move. Unlike static correlation, it does not have a multi-configurational character,
but it is necessary to correctly describe the electron-electron repulsion, especially in the

case of antiparallel spin.
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The purpose of advanced computational methods is to recover this fundamental contribution
to the energy, in order to correctly describe various phenomena that occur at scale of chemical
accuracy.

2.2.3 Beyond Hartree-Fock: correlation energy in wavefunction methods

Post-Hartree-Fock methods constitute a vast group of deterministic computational chemistry
techniques aimed at incorporating correlation energy to some extent. Although these methods
are not directly employed in this thesis, except for a fitted potential described in Section 5.2 that
is based on them, they are worth mentioning to justify our methodology.

1. The most straightforward way to improve upon HF is to include more determinants,
where one or more single-particle wavefunction are substituted by excited states. Two
of these methods are the Configuration Interaction (CI), where a linear combination of
multiple Slater determinants is optimized to recover E-, and Multi-Configuration Self-
Consistent Field (MCSCF), in which also the molecular orbitals are optimized. Being
multi-configurational by definition, these methods effectively capture the static correla-
tion, but exhibit a slow convergence when accounting for dynamic correlation, requiring
a large number of Slater determinants in the expansion. Full-CI represents the theoreti-
cal limit of considering an infinite sum of Slater determinants, and is rarely applied be-
yond diatomic and triatomic sytems. Like HF, these methods still rely on the variational
principle and in numerical analysis would be collectively indicated as Galerkin methods,
because the solution of the differential equation is approximated by projecting it onto a
finite-dimensional subspace spanned by the finite basis.

2. Moller-Plesset perturbation theory (MPPT) [67] is based on a perturbative expansion of
the wavefunction around the HF solution dDIO{F. The second-order perturbation approxi-
mation (MP2) is the most common level of approximation, using the lowest non-vanishing
correction term. Its computational costs is the lowest among the post-HF methods, esti-
mated at O(N?), with N the number of electrons.

3. Coupled Cluster (CC) theory [68-70], considered the “golden standard” of quantum
chemistry computational methods, is based on applying the exponential of the excitation
operator T to the HF wave function, ®cc = eTq)gIF, allowing contribution from singly
excited, doubly excitated, and higher-order determinants. The most common variants are
those that account for single and double excitation (CCSD), with the option to include
triple excitations computed perturbatively in CCSD(T). In the latter case, the computa-
tional costs is O(N”) [71].



16 Chapter 2. Electronic structure methods

2.24 Density functional theory

The electronic density is defined as

N
p(r) = derl 8 N (Z o(r — ri)) |D(rq, ---,1rN)|2 (2.17)
i=1

Density Functional Theory (DFT) is the most widely used electronic structure method in ab
initio chemistry. and it is founded on two important theorems by Hohenberg and Kohn [72]. A
comprehensive and detailed treatment of DFT can be found in [73], from which we derive the
basic concepts.

First HK theorem
For an interacting system of electrons subjected to an external potential V., (r), the latter is fully and

uniquely determined, up to an additive constant, by the electronic ground state density po(r).

As a Corollary, determining the external potential also fully determines the Hamiltonian, and
thus all the many-body wavefunctions for all the states, from the ground state to the excited
ones. Therefore, all properties of the systems are completely determined by the ground-state
density pq (1)

Second HK theorem
For a given external potential V,y, the energy of the ground state is given by the global minimum of the
energy functional, defined as

E[po™)] = Te[po(®)] + Vee [0 ()] + Vext [00(1)] - (2.18)
Fuxlpeo]

where we have defined the universal functional Fyy [pq ], which is the same for electron systems, inde-

pendent of the external potential.

Thus, knowledge of the functional is sufficient to determine the ground state and the elec-
tronic density of the system. In our case, the external potential is that due to the presence of the

nuclei, i.e. the electron-nuclear interaction, Vo = V..

Kohn-Sham equations
Minimizing the energy functional in Eq. 2.18 is non-trivial, due to the presence of many-body
terms in the electron-electron interaction V.. Kohn and Sham proposed an elegant solution to
this problem [74], which has become the standard tool in DFT.

Their approach maps the many-body problem onto a single-particle problem characterized
by the same electronic density. According to the HK theorems, this auxiliary system will have

the same ground state energy of the real system of interest. The ground state energy of the
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auxiliary system, Eg, is described by a functional similar to the one we already encountered:

Es[p(m)] =Ts[p(®)] + Eg [o(0)] + Exc [0(1) ] + Eex [0(D) ], (2.19)

where Ey [p(r)] is the Hartree functional, analogous to the Hartree direct term of Eq. 2.12,
Exc [p(r)] is the exchange-correlation term, which account not only for the exchange contribu-
tion, as in Eq. 2.15, but also for additional correlation effects. Finally, T, [p(r)] and E. [p(r)]
represent the usual kinetic and external potential terms, respectively.

The exchange-correlation functional is defined as

Exc [p(M)] = Fux [o(M)] = (Ts [p(0) ] + Ex [p(0)]) - (2.20)
If we explicit the universal functional F as we defined it in the Second HK theorem in Eq. (2.18),
we get:

Exclom] =T[pm] =T [pM] + Vee [p()] + Eny [0()]), (2.21)
we notice that the XC functional accounts for everything that cannot be described by the Hartree
and HF methods.

The auxiliary independent-particle system automatically defines the single-particle auxil-

iary Hamiltonian,
- 1
H, = —EV + Vs(x,0), (2.22)

which consists of the kinetic energy operator and an effective local potential that depends on
electron position r and spin ¢. Since this is an independent particle Hamiltonian, the ground
state solution is determined by the electrons occupying first N eigenfunctions x; (r, o) of H, with
the lowest eigenvalues:

H.x:(r,0) = €;x;(r,0). (2.23)

Given the eigenfunctions, the definition of the density is straighforward:

N
p(r) = Z_ I (x, o). (2.24)

The idea behind the Kohn-Sham variational approach is to minimize the energy functional
of the auxiliary system with respect to the density p, defined as in Eq. 2.24:
5Es _ 5Ts + [ 5Eext 5EHartree 5EXC 5p(1‘, 7) _
oxi(xr,o)  Ooxi(x,o) op(r,0) op(r,0) op(r,0) | ox;(x,0)

VeXt<r)+VHartree (r) +VXC (r,0) :Vs (r,0)

0. (2.25)

Being the wavefunctions subjected to the orthonormalization constraints, this minimization
problem is analogous to the Rayleigh-Ritz variational approach for wavefunctions. In Eq. 2.25
we have grouped some functional derivatives into the effective potential that appears in 2.22.

Vi, 0) = Vet () + Vigariree (X) + Vxc (¥, 0) (2.26)

The KS equations 2.22, 2.26 and 2.25 are solved self-consistently: starting from an effective
potential V, the KS Hamiltonian is solved to obtain the electronic density, which is then used to
compute a new effective potential. This loop is iterated until the difference in electronic density

difference, between two iterations becomes smaller than a user-defined threshold.
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Choosing the right exchange-correlation functionals for water

We conclude this overview on DFT with one of its most critical aspects: choosing the right
exchange-correlation functional, particularly for water simulations. The XC functional Ey is the
key approximation of DFT, and selecting the appropriate one significantly affects the accuracy
of the results. However, more precise functionals often come with increased computational cost.

Common choices include the Local Density Approximation (LDA), where the Exc is given
by the sum of the Slater exchange energy of the HF formula (Eq. 2.15), while the local correla-
tion energy is fitted to the one of the homogeneous electrons gas, determined through accurate
quantum Monte Carlo simulations at different values of density p(r) [75, 76]; and the General-
ized Gradient Approximation (GGA), which are semi-local, as it also accounts for inhomogene-
ity in the electron density via the gradient of the density, Vpo(r). Examples of GGA functionals
include the Perdew-Burke-Ernzerhof (PBE) one [77], and the combination of the B88 exchange
functional [78] and Lee-Yang-Parr [79] correlation functional (BLYP). Despite their widespread
use, LDA performs poorly in water simulations as it overastimates the binding energy of the
water clusters [80, 81]. This issue is due to spurious exchange attraction at large distances [82].
GGAs functionals also have drawbacks, particularly in over-structuration of bulk liquid water,
which translates into a small diffusion constant, an overly large average number of H-bonds,
and a liquid phase less dense than the ice [83, 84]. Although these overbinding [85] effects
are more pronounced in the bulk than in water cluster, H-bonds play too crucial role in proton
hopping to be poorly reproduced.

The fact that local and semi-local XC functionals perform better in gas-phase water cluster
than in bulk water suggests the necessity of including many-body effects such as van der Waals
interactions. This can be done in several ways, the most simple being adding an atom-atom
attractive semiempirical pair potential having the London dispersion functional form, —Cg/R®
[86]. Another approach consists in including in the XC functional a non-local correlation term
EY that depends explicitly on the electron densities at spatially separated positions. These XC
functionals, generally dubbed van der Waals Density Functionals (vdW-DF), are defined as
follows:

Exc = E§S* + EXPA + EX, (2.27)

where the first term is a GGA exchange term [87], the second one is the Perdew-Wang local
correlation (PW86) [88], and the last term is the non-local contribution generally defined as

EIC11 o] = fdr dr'p(r)¢(r,t")p(x") (2.28)

where ¢(r,1’) is a function of 1/|r — 1’|, p(r), p(r'), and their gradients. The specific form of
¢(r,1") defines the type of vdW functional. In the second Part of this thesis we will use the
vdW-DF2 [89], which represents an improvement over the original vdW-DF [90], particularly
for systems with shorter range dispersion forces.

Inclusion of vdW interaction reduces the gap between DFT and advanced quantum chem-

istry methods [91], with an improved reproduction of oxygen-oxygen radial distribution func-
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tion with respect to GGA [92]. However vdW-DEFE2 functionals are not exempt from defects, as

they tend to understructure liquid water [93].

2.3 Quantum Monte Carlo

Quantum Monte Carlo (QMC) is a family of stochastic integration algorithms aimed to solve
various quantum problems. We refer the reader to [94, 95] for an introduction and to [96, 97]
for review papers. In this context, we are particularly interested in the Variational Monte Carlo
(VMC) variant, which is one of the earliest QMC methods [98, 99]. In VMC, a trial many-body
wavefunction of the electrons, ®1(r) = O (ry, -+, 1y), is first optimized using the variational
theorem, as other methods discussed earlier, and then used to estimate the variational energy
and other observables.

More precisely, the quantum expectation value of the Hamiltonian H, is computed with the
trial wavefunction @1 according to

<(1>T|He |¢T> — < ~ >_ fdrCD (I')Hq)T(l')
(@rldr) M ° J dr| @ (1) vMer

where r is again understood as the vector of all electron coordinates, (r{, -, r5). By changing

(2.29)

variable in the denominator, r — r’, and by multiplying both numerator and denominator by

@ (r), we can rewrite the expression of the VMC energy as

1D ()2 HDp(r)

= = > .
Ewe = [ A o m Sy = ) rTWEL® = (E1) 2 Eo, (2:30)
where we have defined the local energy
H®7(r)
= / 2.31
which is sampled according to the following probability distribution
[P ()2
() = ——————. 2.32
J i@ ()P (232

Therefore, VMC is an importance sampling technique, as the electronic configurations are not
sampled uniformly, but rather according to the amplitude of the trial wavefunction, |®|?.

In practice the probabily density 77 (r) is sampled using standard Monte Carlo Markov Chains
(MCMC) methods, such as the Metropolis-Hastings algorithm [100-102]. MCMC is a random
walk that sample the unknown probability distributions defined on a configuration space by
jumping from one configuration to another depending only on the current one. This method
is particuarly suited for solving integrals in high-dimensional spaces, as it is the case for the
3N-dimensional configuration space of the electronic degrees of freedom.

Given an observable O, the sample mean O of Nygep, configurations is an unbiased estimator

of the population mean (O),

(0)y~ 0 = Y Oy, (2.33)
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where O] = % is the local operator corresponding to the observable of interest, averaged of

the {r;} configurations distributed according to ¢ (r). For example, the energy E,c is estimated
through the local one E; :
N, gen

! E; (x;). (2.34)
1

gen j=
By virtue of the central limit theorem (CLT), we know that if the random variables E; (r;) are
independent and identically distributed (iid), and if 77(r) has a finite expected value E [E; | and
finite variance var [E; ] = E [(Ep — Eyyc)?], then in the limit of Ngen, = oo the sample mean E;
converges to a Gaussian distribution with the following expected value and variance:

E [E] =E[EL] = Evme, (2.35)
= var[E; ]
var[E] = —. (2.36)
Ngen

From the Eq. (2.36) we can see the strength of MC methods over deterministic ones: the intrinsic

- var[E; ]
O[E] = \|————, (2.37)
Ngen

depends only on the number of MC iterations, and not on the dimensionality of the integral.

statistical error,

Moreover, there are two interesting properties in the specific case of quantum Monte Carlo.
The zero variance property states that, in the limit the wavefunction ® approaching the exact
eigenfunction of H,, the local energy E; will also approach the exact value and becomes inde-
pendent of r, with the statistical uncertainty of E; vanishing. The zero-bias property implies that
the systematic error of the variational energy with respect to the exact energy E, vanishes in the
same limit.

The caveat is that MCMC provides correlated samples of the local operators, meaning that
two electronic configuration sampled at two step whose distance is smaller than a certain au-
tocorrelation time will not be independent. A simple and elegant statistical method to take into
account the correlation between samples is the block averaging [103] technique. We divide the

whole sampling in Ny blocks, each containing N samples. The average within the block will

be simply:
_ 1 s
Og=—)Y O, 2.38
B Ns l_Zl 1 ( )
while the total average is the average over the blocks:
_ 1 Ns_
O=— ) O, 2.39
N, l; b (2.39)

where the subscript b runs from 1 to the last block Np. If the blocks size N is larger than the
correlation time, it is safe to compute the variance of the sample mean as
_ var[0y]

var[O] = N (2.40)
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which in practice translates to the following standard formula:

_ 1 PN, (o N
m[o]zm N_BZ‘Ob_(N_Bb:ZiOb) (2.41)

The appropriate block size N, can be determined heuristically by running the average for
several size values and identifying the value of N the variance no longer increase. Alternatively,
one can estimate the autocorrelation time by considering the variance over the entire set. Calling
the local value of an operator O; = O(x;) for short, we have

N,

1 gen
var [O] = N2 Z cov [Oi, Oj] , (2.42)
gen 1]

where we used the normalized time autocorrelation function

cov [0;,0;] = ((0; = (0)) (O; = (O))).. (2.43)
The formula can be approximated by considering absolute “time” distance between two sam-
ples:
Ngen o0
var[O] ~ — Z Z c(t) = (2.44)
Ngen T 155
with the autocorrelation function redefined as:
2
c(t) = (0s0541) = (O) (2.45)
and
o c(f)
r_1+2t;m (2.46)

is the autocorrelation time which give us an estimation of the number of effectively independent

points in the whole sampled set.

2.3.1 Forces in quantum Monte Carlo

The evaluation of derivatives in quantum Monte Carlo is of paramount importance not only if
one is interested in the forces for the dynamics, but also for variational energy minimization,
which is usually done iteratively by using gradients, as we will see in Section 2.3.2. Unfortu-
nately, computing forces in QMC is not as straighforward as in other methods like DFT. Follow-

ing the same procedure as in 2.1, if we compute

we must account for all the dependencies of the energy functional with respect to nuclear po-
sitions. In addition to dependence on q through the Hamiltonian, E,,- has an explicit depen-

dence through @, if the latter is defined with localized basis set, as is often the case, and an
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implicit dependence through the variational parameters A, which are optimized for a given q.
By substituting Eq. 2.30 in Eq. 2.47, we can express the force as the sum of three contribution:

f — fHel-Fey | (Pulay | A (2.48)
where
fHel-Fey _ _ <VqEL>¢T (2.49a)
fPulay — _p <(EL — Eyme) [Vq log CIJ]>¢T (2.49b)
' = —VEypie - VoA (2.49¢)

The first term is the usual Hellman-Feynman contribution, the second is the Pulay term and the

last one contains the dependence on the variational parameter, and it is the most complicated

to compute.
Fortunately, when the true energy minimum and the true ground state are reached, the f*
is zero by definition: aEgA“AC = 0.

In the same way, when the wavefunction approaches an eigenstate of H,, the Pulay term van-
ishes, leaving only the Hellman-Feynman contribution. However, in practice, the wavefunction
is never an exact eigenstate of H,, and the Pulay stress poses a problem even in deterministic
quantum chemistry methods, because the wavefunction is always approximated using a finite
basis set.

Additionally, as with all observables in QMC, forces are computed as averages, which must
have a finite variance. A naive application of finite difference derivatives, with the finite step A
approaching zero, will end up in a diverging error on the forces, as the QMC energy difference
error remains constant, while A — 0. This problem has been addressed using correlated sam-
pling (CS) in VMC [104, 105] and DMC [106], and by Space-Warp Coordinate Transformation
(SWCT) [105], which provides an estimator of the force with zero variance. With SWCT, the
electronic coordinates r follow the nuclear ones q, when these are displaced, mimicking the
displacement of the charge around the nucleus. SWCT has been generalized to infinitesimal ion
displacements via algorithmic differentiation (AD) [107], which made the computational cost
of QMC forces only four times more expensive than the energy point calculation. Furthermore,
SWCT has recently been thoroughly tested [108] and refined in the VMC case to provide very
accurate forces for machine learning applications [109].

The issue of infinite variance is not limited only to the numerical approximations of the
derivatives, but also affects the analytical differentiation. Indeed, the f¢F¢Y term may diverge
as electron-ion distance approaches zero, and the f7"1& term diverges near the nodal surface,
where ®1(r) = 0. Several variance reduction methods has been proposed to tackle this issue,
specifically for the Hellman-Feynamn term [110, 111], or for both f1¢-f¢Y and 7118 in the peri-
odic boundary case [112] and the open one [113] as well.
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2.3.2 Wavefunction optimization

The main difficulty in applying the variational principle for wavefunction optimization arises
from the the fact that the target function, the energy, is known only statistically. Historically the
problem has been tackled first by running several independent energy runs [98, 114], but this
was limited in the number of variational parameters and by high computational cost.

A widely used iterative method for high-dimensional optimization is the steepest descent
algorithm !, which exploits the derivative information to drive the parameters towards the en-
ergy minimum. In our specific case, this would mean to use the f;, i.e. the energy derivative

with respect to the parameter A, to update the same parameter according to

, oE
/\k - )Lk = (SAk = —Aa—/\k = Afk (250)

which is equivalent to minimize the following cost function

arg;nin E+ ; (—5/\kfk + %M%)} . (2.51)
The issue with the steepest descent approach is that it assumes that all parameters are affected
by thes same curvature, but often some parameters are more difficult to optimize.

The solution is to take into account the geometry of the parameter space by using an appro-
priate metric, such as the Fisher information matrix, to evaluate the local curvature and compute
natural gradients [115]. This technique was introduced as the stochastic reconfiguration (SR)
algorithm by Sorella in the context of Green function Monte Carlo [116], and was later extended
to VMC [117, 118]. This method leverages the direct knowledge of the trial QMC wavefunction,
particularly concerning the Hilbert space topology in which it is defined, to achieve rapid con-
vergence. Here, we briefly describe the main ideas behind it 2.

Consider the variational parameter as a single vector of length p:

A= (Ag, A A,). (2.52)

We can define the logarithm derivative operator O as:

~ a a/\quA(I')
Ok(l') = a_/\kl()g (DA(I') = W, (253)
for ®, # 0.
We can express the variational wavefunction as
[Passr) = Py) + > oA ALV 0(0A%) = | 1+ ) A0k | [®y) + 0(5A%) (2.54)
A+0A A - k a/\k a k

LA stochastic variant of this algorithm, the stochastic gradient descent, is presented in Chapter 6, devoted to
machine learning, including the optimization of neural networks.

2The presentation here differs from the original as it emphasizes the analogies and the differences with the
steepest descent method. This derivation comes from the Lecture notes of Michele Casula’s course at the TREX
School on QMC with TurboRVB organized by TREX and SISSA in July 2023.
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0|
|Dpisn) =[Pa) + ;5/\k 8/\:> +0(0A%) =

(2.55)
= (1 + Zé/\kok) |CDA> + 0(5A2) =
k
We are interested in the normalized wavefunction,
- |D
|D4) = ?A) where @[] = {(PAlD,), (2.56)
DA
and in quantifying how much it changes:
|(5q~)> = |CT)A+5A> - |éA> . (257)
For this, we use the normed variation of the wavefunction ds? defined as
- o 2 .
ds? = |[@ary50) — | P2 )| = (6DI6D). (2.58)
Inserting Eq. 2.57 into Eq. 2.58 we get:
ds? =) 6AkAk (®a (Ox — Ok ) (Op — Op ) [®2) = ) 6AkSAk Sk, (2.59)

Kk’ "
where we have defined the stochastic reconfiguration matrix from the covariance matrix of the

logarithm derivative operator:

Skk’ = COV [Ok/ Ok’] (260)

which is also known as Fisher information metric F = 4S of the probability p) (x) o« ® /\(x)z.
Thus, instead of using the Euclidean metric, we can use the more appropriate Fisher information

metric to define our cost function:

) ds?
arg(s?m l— kaMk +ox | (2.61)
k
or, in matrix form:
) 1

arg‘;\nm [f&A + ES] (2.62)

from which we get the solution:
SA = ASTIf (2.63)

where f is the vector of energy derivatives. Notice that its expression is given by Eq. (2.49b),
as it is equivalent to the energy derivatives with respect to the ionic positions, with the notable
difference that the Helmann-Feynman contribution is zero because in this case only the wave

function, and not the Hamiltonian, depends on the parameters lambday.
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2.3.3 The wave function ansatz

As in Section 2.2.2, we describe N electrons using generalized coordinates, collectively indicated
asx = {x;} = {(r;,07)};_; ...y, while r stands for all the space coordinates only. For convenience
we restrict to the case of spin-unpolarized system, thatis N; = N; = N/2, but the same approach
has been applied also to the spin-polarized case [119, 120].

The wavefunction used in this work is the product of two contributions:

P(x) = Ppg(x) x /X (2.64)

where | is the Jastrow factor, a bosonic function of the electron degrees of freedom [121], while
® 55 is an antisymmetric function, thus fermionic, and it is also referred to as determinantal part
of the WF, because the easiest way to encode antisymmetry is through one ore more Slater
determinant. Such a compact form with the Jastrow in exponential form make ensure a rapid
convergence of the energy despite a large number of parameters A. In the following we describe
the functional form of each factor.

Antisymmetrized geminal power

The antisymmetric part can be built in different ways, the most straightforward would be a sin-
gle Slater determinant. In our case we consider a generalization of the Resonating Valence Bond
(RVB) wavefunction, first proposed by Pauling in quantum chemistry [122] to describe aromatic
molecules, and later reprised Anderson [123] in condensed matter to describe strongly corre-
lated system. The RVB-WF describes a superposition of all possible singlet pair configurations,
that is, any electron pair with total spin zero.

Specifically, the determinantal part is an antisymmetrized product of geminals (AGP), also
called pairing functions:

DPpg = Pacp(Xy, -+, Xy) = A[@(X1,X0), +, @(X,_1, %) ] (2.65)

where A is an operator that symmetrize the product of the pairing functions. In our choice ® 5cp
can be written in a compact form as a determinant [119]:

Dpcp(xq, . Xy,) = det (A;;) (2.66)
where A is a % X % matrix of all the possible pairings:
Aij = Q)(Xl, Xz). (267)

The geminals themselves are antisymmetric functions of two electrons coordinates written

as the product of a spatial symmetric part and a spin singlet:

V2

P(x1,%) = g(ry, 1) (2.68)
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The spatial function g(ry,1,) is defined starting from atom-centered basis as those in Eq.(2.8)
and (2.9),

s =Y ZA@WGT% e ) (269)

a,b Ot
where the indices 1 and v collect the nlm indices of the GTOs for short. The matrix of parameters,
= {/\Z’ﬁ’,} gives, for fixed GTO channels u and v, the strength of the valence bond between
atoms a and b, while for other atoms the parameters will vanish during the optimization phase.

If we diagonalizes the AGP matrix A, the expression in Eq. 2.69 simplifies to

Nmo

gr, 1) = ) AMORMO(r)xMO(r)) (2.70)
k

where the product is now only between molecular orbitals. If only the first N/2 of them are
retained, then the AGP matrix reduces to a Slater determinant wavefunction. One of the most
important advantages of the AGP Ansatz is that it is equivalent to a linear combination of Slater
determinants (i.e., multi-configurations), but the computational cost remains at the level of a
single-determinant one. The multi-configurational nature of the AGP ansatz is what makes it

suitable to take into account the static correlation.

Jastrow factor

The Jastrow factor is a function of the electron-electron and electron-ion distance, and as such
it has multiple roles. First of all, it deals with the dynamic correlation of the electrons and it
is fundamental to correctly describe the Van der Waals effects on the total energy [124], which
are related to charge fluctuations. Secondly, it limits the double occupation of orbitals, accord-
ingly with Pauli’s exclusion principle. Finally, it ensures that the Kato’s cusp conditions [125] is
properly taken into account. The latter imposes that the wavefunction slope at nuclei position
must have a cusp, a sharp change. Last, but not least, the presence of a Jastrow factor greatly
accelerate the convergence in the parameters also in the antisymmetric part.

Considering the its exponential shape given in Eq. 2.64, the Jastrow exponent is the sum of
three contributions:

J=h+]+]s (2.71)
The one-body term itself is
N M
ey, ) = =) > RZ)¥4u (Z4) Ary,), (2.72)
i a

which satisfies the aforementioned Kato’s cusp condition at electron-ion coalescence points, and

where
1 — e_b‘ri_qal

u(lr; — qul) =
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is a simple bounded function. In both r; and ¢; are the electron positions and spins respectively,
q. and Z, are the atomic positions and number, | are the atomic orbitals indices assigned to a
specific atom a.

In our specfic case, J; is applied only to hydrogen atoms, that are subjected to the bare
Coulomb potential; in the case of oxygens the latter is replaced by the Burkatzki-Filippi-Dolg
(BFD) potential [126].

In a similar way the two-body term manages the electron-electron cuspo conditions for an-

tiparallel spin electrons

N
Jo =) u(ry) (2.74)
i<j
Finally the last term,
N
Ja=) g1y, (2.75)
i<j

includes many-body correlations through the use of geminals g(r;, 1;) as defined in 2.69, as they
depend on the positions of two electrons i and j possibly belonging to two different atoms a and
b.

2.3.4 Preparation and optimization of the quantum Monte Carlo wavefunction

In this Section we show the wavefunction specifications as reported in the SI of Ref. [127]

Preparation: geminal embedded orbitals

Before running finite-temperature calculations, we optimize a QMC variational wave function
|<I>q> at zero temperature.

Both Jastrow and AGP expansions are developed over a primitive O(3s2pld) H(2slp) and
O(5s5p2d) H(4s2p) Gaussian basis functions, respectively. The primitive basis sets are then
contracted using the geminal embedded orbitals (GEOs) scheme [128], reducing significantly
the total number p of parameters describing the VMC wavefunction. This strategy is quite im-
portant to alleviate the computational burden of QMC, as in current optimization methods [117,
118, 129], which are based on iterative procedures that involve p x p matrices, the number of
QMC samplings has to be much larger than p.

Previous works on the Zundel ion [130, 131] found that the optimal balance between accu-
racy and computational cost for the determinantal part is reached by the O[8]H[2] contracted
GEO basis, in self-explaining notations. As the protonated water hexamer is a very similar sys-
tem, in this work we used the same O[8]H[2] GEO contraction for the AGP part. Moreover, we
further simplified the variational wavefunction previously developed for the Zundel ion, by con-
tracting also the Jastrow basis set, using the same GEO embedding scheme. We tried different
contraction sets, and tested them on the water dimer dissociation energy curve, as reported in

Fig 2.1. The water dimer is a stringent benchmark for the quality of our wave function, as it has
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a chemical complexity similar to the Zundel ion, with the main difference of being charge neu-
tral. Charge neutrality allows us to directly probe the Jastrow capability of controlling charge
fluctuations in the system, a fundamental property when coupled with the AGP determinantal
part[132].

0
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°

Distance between oxygens (A)

Figure 2.1: Water dimer dissociation energy curve as a function of dy o, obtained by VMC. A Jastrow-
Slater wave function has been employed, using different contracted basis sets in the Jastrow factor. Each
trial wave function is built using the same basis set for the determinantal part, which is optimised together
with the various Jastrow factors tested here. The black curve indicates the reference CCSD(T) result.
From [127, 133].

As shown in Fig. 2.1, we find a systematic improvement as the number of GEOs orbitals
increases, with the O[6]H[2] set yielding energies very close to the Jastrow primitive basis set
reference at all oxygen-oxygen distances. As reported in Tab. 2.1, this is obtained with a number
p of variational parameters significantly smaller than the one of the primitive basis set expansion.
Thus, we used the O[6]H[2] GEO basis set for the Jastrow factor, and the O[8]H[2] GEO basis
for the AGP part in all our subsequent molecular dynamics (MD) simulations of the protonated
water hexamer. This results into a total number of 6418 variational parameters, comprising
g’;’ﬁ,, /\‘;[,b,,, the parameters of the homogeneous one-body and two-body Jastrow factors, and the
linear coefficients of the Jastrow and determinantal basis sets (see Methods Section for a detailed
description of the wave function parameters).

A more extended description of the variational wave function can be found in Ref. [130].

Optimization on the run

Once the optimal contraction scheme has been established, it is time to run the dynamics. To
keep the simulation stable, the GTO exponents ; ,, (Eq. 2.9) in both the Jastrow and the AGP
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Basis set ‘ p ‘ Eping (kcal/mol)
Primitive Jastrow and primitive determinant 6303 4.46(8)
Primitive Jastrow and O[8]H[2] GEO determinant 2089 4.40(8)
O[6]H[2] GEO Jastrow and O[8]H[2] GEO determinant | 1283 4.26(8)

Table 2.1: Water dimer binding energies for QMC variational wave functions obtained with different
types of basis set contractions. The corresponding number p of variational parameters is also reported.

parts of the wavefunction are kept frozen. At each new ionic configuration, the wavefunction
must be reoptimized with methods as the one introduced in Section 2.3.2. Since the ionic posi-
tions are smoothly connected to those of the previous MD time step, the electronic parameters
will also evolve continuously. Therefore, only a few optimization steps are needed, especially
in comparison with an wavefunction optimization from scratch.






CHAPTER 3

lon dynamics

In this Chapter, we present the algorithms used for propagating the motion of the nuclei. Since
they are built upon well-established frameworks, we also provide the broader context in which
they are cast.

In Section 3.1, we introduce the formalism needed to sample observables at zero temper-
ature, which is then adapted to the finite temperature case in Section 3.2 using stochastic dif-
ferential equations. This framework is further extended to quantum simulations via the path
integral formalism, as explained in Section 3.3. The specific algorithms employed in this work
for classical simulations are the Bussi algorithm in presence of deterministic forces (Sec. 3.2.3),
and the Attaccalite-Sorella algorithm in presence of QMC forces (Sec. 3.2.4). In the case of quan-
tum simulations, both with deterministic and stochastically estimated forces, we used the Path
integral Ornstein-Uhlenbeck dynamics for quantum simulations, described 3.5.2.

In this Chapter, since we are focusing solely on nuclei, unlike the previous chapter, we will
denote the total number of atoms by N instead of M, as this notation is more customary in
statistical mechanics.

3.1 Classical dynamics at zero temperature

3.1.1 Microcanonical ensemble and ergodicity

Consider a system of N classical nuclei, described by a set of degrees of freedom I' = {p,q} =
{Pas 9ata=1,.n- In the following we will often adopt the collective notation p and q for all the
nuclei degrees of freedom, even when dealing with atoms with different masses. If the system is
in thermodynamic equilibrium, it is known from statistical mechanics that a property A, which
is a function A = A(T') of the degrees of freedom, can be derived by averaging it over the phase
space according to the probability density function p(I') associated with the ensemble taken
into consideration:

(AD) = [drpMAT). (3.1)

For a system with a constant number of particles N, volume V and energy E (NV E-ensemble,

31
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or microcanonical ensemble) the probability density function is

1
P = sy pd E-HT)  ESHD SE+A (3.2)

where () is the phase space volume corresponding to the shell of energy E:

Q= f 8 (E— H(I))dI = fESH(F)§E+A dr. (3.3)

Unfortunately only in a few cases the partition function can be evaluated analytically and
it is necessary to resort to approximations, numerical methods or numerical simulations. The
most common simulation methods are of two types: (i) Monte Carlo ones, in which the phase
space is sampled according to the appropriate probability distribution function associated to
the ensemble taken into consideration (direct computation of phase space or ensemble average);
(ii) Molecular Dynamics (MD), in which the phase space is explored exploiting the dynamical
equations of the system. For the latter method to be reliable, the dynamics must be ergodic,

which means that time averages are equal to ensemble averages in the limit T — oco:

1T
(A(T)) = YLIE)EOTIO ALAT(1). (3.4)

This computation is done in practice with a finite time step At and in a definite interval of time

T = NgepAt of simulation:
N, step

(A) AT()), (35)
=1

)~ N AT

step i

where the length of the simulation must be long enough in order to satisfy two conditions: the
phase space is explored as much as possible; all the phenomena at different time scales are
reproduced correctly.

3.1.2 Time evolution via Liouvillian operator

How is the system propagated in time? In Chapter 1 we started from a full quantum problem,
separating nuclei and electrons wavefunctions by means of the BO approximation. By writing
the nuclear wave function in a quantum fluid dynamics representation it is possible to derive
the classical equation of motion of the nuclei [39], which in its Newtonian form reads:

myq, = _vaEO(q) = fa' (3-6)

where E is the energy eigenvalue of the electronic Hamiltonian. This means that once we know
the solution to the eigenvalue problem for the electrons, i.e. once we know PES E;(q), already
introduced in Chapter 1, with any of the electronic structure methods described in Chapter 2, by
deriving it with respect to the coordinates of a single nucleus, q,, we obtain the force needed to
propagate it [134]. For this reason we can say that classical nuclei moves on the PES generated
by the electrons, which is explored and characterized during the MD simulation.
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In the context of the Hamiltonian formulation of classical mechanics, Equation (3.6) can
be studied in the Liouville formalism, which is particularly useful for formulating propagation
algorithms. The time evolution of momenta and positions can be rewritten as:

Pa = —anH =1, ar

4=V H=12 <5 =T HD, (37)
a m

a

where we used the Poisson bracket, which allows one to conveniently express the Liouville

operator in a compact form. Within this formalism, the Liouville operatore can be defined as
iL =V,HVy —VHV, = —{H, -}, (3.8)

so that the equation of motion and its formal solution read:

ar _ LT 3.9
a =1 , ( . )
() = elltr(0) = ¢/ Te a0y, (3.10)

respectively. In the last Equation, the Liouvillian is expressed as the sum of two terms, namely
il = iLP + iLq, where:
(3.11)

(3.12)

This formalism will reveal useful in establishing a common framework for the definition of var-

ious molecular dynamics algorithms.

3.1.3 Velocity-Verlet algorithm

The Verlet algorithm [135] is one of the simplest and most employed integration schemes since
its conception at the end of the 1960s. Being the starting point of many more sophisticated
methods as the ones showed later, we briefly remind its steps in its velocity variant [136].

The exponential that appears in Eq. 3.10 is approximatated according to the Suzuki-Trotter
second order decomposition [137, 138]:

o/ Lp0t/2,ilqdt iLyot/2 | O(512). (3.13)

Notice that if we were dealing with numbers at the exponent, the above Equation would be
exact without the need of the O(5t?) term. However, here we are dealing with operators which
in general do not commute with each other. Therefore, the product of the exponentials is an
approximations up to order O(5t2).

After the Suzuki-Trotter break-up, the velocity-Verlet steps are the following:

1. Propagate the particle momenta for ét/2

7 t t
pet+ ot/ =20 = (14 565, )p) =p + 3101 (319
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2. Propagate the ionic positions for dt,

PUH D) _ q(t)+5tw+5t2f(—t).
m m 2m

(3.15)

7 t
q(t+6t) = e qt) = (1 +otP0 q> q(t) = q(t)+6t

m

3. Evaluate the Born-Oppenheimer forces in the new positions (in our case, using ab initio

methods or machine learning potentials):

£(t + 6t) = —V4Eq (q(t + 1)) (3.16)

4. Propagate the particle momenta for the remaining half time step, from t + 6t/2 to t + 6t:

1 ot

p(t+6t) = e 2p(t + 6t/2) = p(t + 6t/2) + St + 0D, (3.17)
Notice that the only approximation is the Suzuki-Trotter breakup: the development of the ex-
ponential up to the first order, as in Eq. 3.14, 3.15 and 3.17, based on the small time step ¢t, is

exact, since terms involving powers of the gradients V, and V are zero.

3.2 Classical dynamics at finite temperature

3.2.1 Canonical ensemble

If we are interested in properties which depend on the temperature, we must look at a different
ensemble, namely the canonical one. In this case the probability density is different from the one
(3.2):

o—BHT)
o) = ZINV.T) (3.18)
where we have the usual prefactor § = 1/kgT and the partition function is defined as:
Z(N,V,T) = jdre—ﬁH @, (3.19)

As a final remark we remind that Z is related to the Helmholtz free energy F(N,V,T) = U—-TS
via:
F(N,V,T) = —kgTInZ(N,V,T). (3.20)

3.2.2 Thermostatting by Langevin dynamics

In order to sample the right distribution function (3.18) a number of thermostatting schemes
has been developed. They can be divided in two categories:

1. Deterministic thermostats, which correct the velocities of the particles in order to keep the

system at constant temperature. Among them, the Nosé-Hoover [139, 140] is one of the

most known.
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2. Stochastic thermostats, which treat the particles as Brownian ones, subjected to a dissipa-
tive force and a stochastic force, in addition to the external one, such that the constant
temperature condition is satisfied via the Fluctuation-Dissipation Theorem (FDT).

The second type of thermostats is suitable in dealing with the stochastic nature of forces gen-
erated by quantum Monte Carlo methods, therefore we will proceed in explaining their funda-
mentals features.

Stochastic thermostats in MD simulation are usually built upon Langevin equations, a class
of Stochastic Differential Equations (SDEs) originally conceived to describe the random motion
of a mesoscopic particle immersed in a thermal bath, that is a Brownian particle. Despite its
historical origin, the Langevin approach paved the way to an entire new field of stochastic pro-
cesses [141] and their applications to different natural phenomena and algorithms, including
the molecular dynamics thermostatting. In fact we are not dealing with a particle in a ther-
mal bath, but with an isolated system. Nevertheless we can employ the Langevin equation to
impose a dynamics at a fixed temperature by adding an opportune white noise.

In its under-damped differential form, the Langevin equation reads!

p(t) = —yp®) +£(q(t)) +n(t)

' p (3.24)
where at each step the random force #(t) is a random vector sampled from a multivariate Gaus-
sian white noise distribution N (0,dt). As such, these random vectors must satisfy the zero

mean condition

(n(t)) =0, (3.25)
and they must be statistically independent in time
(nyT () = 8t — Ha(q). (3.26)

The latter condition translates into the fluctuation-dissipation theorem, which relates the covari-

ance matrix of the stochastic forces, #(q), to the friction matrix y(q), also called damping matrix,

IThe rigorous way of writing Eq. (3.24) is by using stochastic differentials:

dp(t) = =y (q)p(t) dt + £ (q(t)) df + B (q(£)) dW(t)

3.21

dqt) = 2 ar, (321)
m

where dW (t) is a Wiener process, a continuous but non-differentiable function of time. Nevertheless, we can formally

define the Gaussian white noise as:
dW (1) .,

dr
Heuristically, we can say that dW ~ (dt)1/2, which distinguishes the time dependence of Brownian motion from

that of typical ballistic motion.
The solution of Eq. (3.21) is

n(t) = (}%rj}) B (3.22)

t t
P(t) =py— | ds (F(@p(t) +£(@) + [ dsB(q) (a(t)) dW(H). (3.23)

Despite its familiarity, solving such integrals requires a completely different and fascinating way of doing calculus,
for which the reader is referred to [141, 142]. In this exposition, we stick to the physicists dot notation.
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through a relation that involves the temperature T [143]:
2mkpT7y(q) = w(q). (3.27)

Notice that Eq. 3.24 is just the Newtonian formula to which we added the dissipation and
the fluctuation terms. As we did in Section 3.1.2, we can introduce a formalism to deal with the
probability distribution of an ensemble defined on the phase space. Indeed, it is well known
from theory that SDE problems can be treated from a macroscopic perspective using generalized
Fokker-Planck equation (FPE) [142].

If the particle were subjected to drift and diffusion forces only, with the drift depending
linearly on the momenta, we would have an Ornstein-Uhlenbeck (OU) process [144] in the
momenta space:

p) = —yp) +5(t) (3.28)

and the probability distribution p(p, q,t) would evolve in time according to the following FPE:

dop,aqt)  _ m R
- I;tq =77 (VPP+ 3V1%> p(p,q. 1) = —iLgpp(p,q, 1), (3.29)

drift diffusion

where we have defined the Fokker-Planck operator Lgp.
In the more general case including also the action of an external force f, like in Eq. (3.24),
we consider the Kramers-Klein operator instead:

which resembles the decomposition of the Liouvillian operator reported in Eq. 3.10, 3.11 and
3.12.
3.2.3 Bussi algorithm

The Bussi algorithm [145] can be described by the Suzuki-Trotter decomposition of operators

in Eq. 3.30:
piLikdt — e(iLP+iLq+iLFP)5t ~ oiLepdt/2 ez’LP(St/ZeiLq(St ein(St/Z eiiFP‘”/z, (3.31)

velocity-Verlet

where we can see we have a deterministic propagation step analogous to the velocity-Verlet algo-
rithm, sandwiched between two stochastic propagation steps based on the OU-process Equation
(3.28), where the BO forces do not act. It is possible to compute the exact thermostat propaga-
tion for any time interval Af [146]. This derivation can be found in Appendix A.

The whole propagation according to Eq. (3.31) comprises the following steps:

1. First analytical thermostatting of particle momenta

p(tt) = cip(t) + R (). (3.32)

2. Deterministic approximate propagation according to the Verlet algorithm:
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e Propagate the positions for an entire time-step 6t

q(t+ot) = e = q(t) + 5t%+) + 5t2f2(—2. (3.33)
e Compute the new BO forces according to the new configuration
£(t+0t) = —VV (q(t + ) . (3.34)
e Approximate the momenta given the old and the new forces
p(t= +0t) = TP p(tt) = p(tt) + wét. (3.35)
3. Last analytical thermostatting of particle momenta
p(t +6t) = cip(t™ + 6t) + o R(t + o). (3.36)

In all the thermostatting steps the coefficients, R is a Gaussian random vector, while ¢; and ¢,
are:

€1 = e Ve 0 =4[(1—e77) %, (3.37)
as motivated in Appendix A. The timestamps t* and ¢~ refer to the instants of time just after and
just before the application of the thermostat to the momenta, respectively. More precisely, p(t*)
in Eq. (3.32) are the momenta thermostatted for J¢/2; still, these are not the fully propagated
momenta yet, because the BO forces will act in the following step, according to the algorithm.
Analogously, p(t~ + 6t) in Eq. (3.36) are the momenta that still miss the last half-contribution
of the thermostat.

The limitation of this algorithm is that it can not deal with Born-Oppenheimer forces f intrin-
sically affected by a stochastic noise, such as those computed through QMC. The latter would
add more noise to the integration scheme, increasing the effective temperature of the simula-
tion.

3.2.4 Attaccalite-Sorella algorithm

The solutions to dynamics biased toward higher temperatures are based on noise covariance
correction schemes. Before introducing these, it is useful to switch to transformed variables:
q = qovm
= po/Vm
P=Po (3.38)
1= 1oV
f=1y/vm,
where the variables indexed by zeroes are the original coordinates. By applying this transfor-

mation to the variables involved in the Langevin equation 3.24, we would get:

p) = —y(@p®) +£(qt)) +nt)
qt) =p,

(3.39)



38 Chapter 3. lon dynamics

with the noise mean and covariance relations rescaled as:
(nH)y =0, (g’ (")) =&(Q)s(t —t') = 2kgTH(q)(t — 1), (3.40)

where in the last step we used fluctuation-dissipation relation without masses, at variance with
Eq. (3.27). Notice that the covariance matrix a deals with two types of correlation:

e Spatial correlation, or cross-correlation, between the vectorial forces components.

e Time correlation, which in the Markovian case is reduced to a §-function, in order to have

Gaussian white noise; otherwise we would have colored noise.

Time discretization approximation

The noise correction schemes, introduced by Attaccalite-Sorella (AS) in Ref. [112], and later
refined in Refs. [147, 148], are all based on the time discretization approximation.

We introduce it by first showing the formal solution of the rescaled Langevin Equation 3.39,
found by integrating from time ¢ to time #':

! t' -
p(t) —p(t) = L ds (=74p() + gy +71(5)),
qt’) —q(t) = (' = t)p.

(3.41)

Without further information, or approximations, the integration of the first equation in mo-

menta variables can be developped up to the following form:

' — t’ — ’
p(t’) _ p(t)e_ I dsYq(s) + L dse_7q(s>(t —s) (fq(s) + 1](8)) , (34:2)

where for readability we expressed the q(s)-dependences in subscript.
To further develop the solution, the time is discretized in small time intervals?, ' —t = t,
and in each of these interval the dependence of forces and friction matrix on the positions q is

neglected, resulting in the following constant values

f(qes)) =f(qt,)) = £,

— _ _ (3.43)
@) =7 (qt) =7,
that can be easily put outside of the integrals appearing in Eq. 3.42
(342) ~ p(tye T 4+ 7! (1—e ) (£, +1,) = p(he O + T, (£, +11,,). (3.44)

where we defined T,, = 7, ! (1 — 6_7"&). Then the solution of the scaled Langevin Eq. 3.39 can
be approximated as:

Pn+1 = Pne_in& + fn (fn + ’771)
Qn+1 = qn + Pyt

ZNotice that the introduction of this small timestep is a true approximation, that has nothing to do with the
stochastic differential formulation of SDE (Eq. 3.21).

(3.45)
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where we expressed the dependence on the discrete time t,, directly putting n as subscript for
short. The term #,, is the noise vector obtained from integration of the GWN #(t) in the time
interval [t,, — 6t/2,t, + 6t/2]:

t,+6t/2
dsy(s)e™1n (=), (3.46)
t,—0t/2

I VR
T = 2sinh(y, 6t/2)
where the prefactor outside of the integral accounts for the multiplication by T,, in Eq. 3.45.

The integrated noise is characterized by the following covariance matrix:

_ _ b+ OE/2 4582
YinYn

T\ _ — — e_im(tﬂ_r)e_in(t”_s) (1") T(S) . 3.47
Ot ) Isinh(7,,0/2) sinh(7,01/2) _L/N_L/z (') (347)

We know from Eq. 3.40 the covariance in the integral is nonzero only when the two noises are
evaluated at the same time, r = s, which implies that also the time intervals must be the same,
t,, = t,. Therefore, the covariance matrix reduces to <1]Z qn>

2

?2 t,+0t/2 5t

n - —5s —2 —

<11m11,{> Opn = <11n11,f> =— f e Tnla=9) dt | = kpT7, coth (7”5> . (3.48)
4sinh™ (6t/2) t,—5t/2

Noise correction

Knowing that the whole noise added by the thermostat should have a covariance matrix as
the one in Eq. 3.48, we can deduce a noise correction scheme where the actual random forces,
Hext n, are sampled according to a multivariate Gaussian distribution having a noise-corrected

covariance matrix:
<ﬂext,n”gxt,n> = <’1n”£> - <5fn5fr€> (349>

where <11n11,T1 > is determined as in Eq. (3.48), and the last term is the (integrated) QMC forces
covariance matrix, EQMC(q) = (of (q)chT(q)>. Equation 3.49 represents the core of the AS algo-
rithm.

Considering that the stochastic nature of QMC forces introduce additional spatially-correlated
noise at each time-step of the dynamics, a further development consists in optimizing the value
of the y matrix (which in this approach has non trivial off-diagonal matrix elements) by choos-
ing it such that y = &/2kgT, where the stochastic forces-covariance matrix reads as:

a(q) = apl + Mgz (q). (3.50)

In the above Equation, the first term of the sum is oy = 2kgT"y, the diagonal white noise contri-
bution whose parameter <y is selected by the user, and A is an additional user-tunable param-
eter to make the covariance matrix positive definite and, together with <, to lead to an optimal
damping matrix 79 and thus a more efficient Langevin dynamics.
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3.2.5 Classical Momentum-Position Correlator

The AS algorithm has later been improved with the Classical momentum-position correlator
(CMPC) algorithm [148, 149], in which the noise due to Langevin dynamics affects both posi-
tions and momenta. To account for this, new 6N-dimensional vectors that combines momenta

and positions coordinates, ionic forces and random forces vector are defined as:

@) el el e

respectively. These variables allow to write the Langevin Eq. (3.39) as
X=-9X+F+5&, (3.52)

where the 6N x 6N matrix 7 represents a generalized friction that couples both momenta and

7= (_7[ g), (3.53)

where 7 being the same 3N x3N friction matrix defined in Eq. (3.40), and I is the identity matrix.

positions:

The formal solution of Eq. (3.52) is similar to the one obtained in Eq. (3.42)
= ' =~ ’
X(t') = e 7 =DX(t) + ft dse? =) (F(X(s)) + E(s)) . (3.54)

If we express e~ 7% in terms of Pauli matrices

_ I 1 Qi
—2®I S ®0 iz @0y + 5 @0, (3.55)

<D

it is possible to express the solution Eq. (3.54) in a closed form:

Pn+1 = 6_7&1’11 +TI (fn + 77) (3'56)
du+1 = qn t 7pn +0O (fn + ’7) 7 (3-57)

where the time evolution has been discretized with timestep ét, and the subscripts refer to the
corresponding time interval, such that p,, = p(t,,), q,, = q(t,), and f,, = £f(q(t,,)). Notice that
also here we assumed that f,, and 7, do not vary withing the small time interval. The remaining
symbols in the above equations are defined as

T = 7 '(1-e,
© = 7 2(=1+70t+e 7,

tn+1
i = I j dte? =ty (h),
tVl
tn+1

i = (@) f dE(1 — eTEtus) )y (1), (3.58)
t

n
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The strength of CMPC algorithm is that it propagates momenta and positions simultaneously
in a single iteration thanks to the use of momentum-position correlation matrices. In particular,
according to Egs. (3.56)) and (3.57)), not only the momenta but also the positions are affected

by the integrated Langevin noise.

While more cumbersome, this derivation is useful because it introduces some ideas used to
derive the PIOUD algorithm in the PIMD formalism (see Section 3.5.2).

3.3 Quantum dynamics in the path integral formalism

3.3.1 Nuclear quantum effects

Nuclear Quantum Effects (NQEs) are the manifestation of the quantum nature of nuclei on
chemical properties that cannot be fully explained by classical physics. These effects are partic-
ularly significant for light nuclei, which can exhibit behaviors such as Zero Point Energy (ZPE),
proton delocalization, energy level quantization, and proton tunneling.

ZPE and proton delocalization arise directly from Heisenberg’s uncertainty principle, which
states that a quantum system will always have finite energy, even in its lowest energy state, and
that its exact position cannot be precisely determined. In molecular systems, ZPE is defined
as the energy difference between the vibrational ground state and the minimum of the Born-
Oppenheimer potential energy surface. It can be estimated as #icwy/2, where h = h/27m is the
reduced Planck’s constant and wj) is the frequency of the lowest vibrational mode.

Tunneling refers to the non-zero probability of a particle crossing an energy barrier without
needing thermal fluctuations, a process that is classically forbidden. This phenomenon depends
on both the energy scale involved and the mass of the particle; for example, tunneling is much
more likely for electrons [150] than for protons [28].

Due to the presence of hydrogen, NQEs have been observed in water systems [32], and
they play a crucial role in protonated water as well. In particular, NQEs affect Hydrogen bond
(H-bond) and the proton transfer (PT) mechanism [151], influencing the reaction rates of PT
[152].

In the case of PT along H-bond, an oversimplified but illustrative model of how quantum nu-
clei might behave can be described by reducing the full PES to a double-well potential (Fig. 3.1).
Taking the example of water, the double potential well is formed between the two oxygen atoms
sharing a proton, with the H' positioned in one of the wells. The central barrier and the symme-
try of the well change as the oxygen-oxygen distance OO varies: when the oxygens are pulled
farther apart, the barrier height increases, and the double well becomes asymmetric, as the pro-
ton tends to form a covalent bond with the nearest oxygen. Conversely, when OO decreases,
the barrier is lowered, and the potential well becomes more symmetric, making proton transfer
more feasible.
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(a) Delocalization and zero point energy (b) Proton tunneling

Figure 3.1: Cartoonish pictures of NQEs in an asymmetric double well potential mimicking the H-
bond. The deepest well on the left corresponds to the energy minimum of the proton bounded to an
oxygen by covalent bond at distance doy; the barrier is due to the energy that must be spent in order
to break the covalent bond and make the proton hop to the second oxygen. (a) The effect of Zero Point
Energy (ZPE) is to keep the proton above the Potential Energy Surface (PES), even in the ground state,
making easier to overcome the barrier by thermal effects and changing the way potential energy land-
scape is explored. For the same reason, the proton is delocalized. (b) Proton tunneling allow the proton
to overcome the potential energy barrier and then switch the covalent bond with the hydrogen one (in
this case the asymmetric double well potential would be inverted).

3.3.2 Path integral simulations of water

There are several methods to simulate quantum nuclei, one of the most common being the path
integral approach, which is based on Feynman'’s path integral formulation of quantum mechan-
ics [153]. This approach leverages the isomorphism between quantum mechanics and classical
statistical mechanics of polyatomic fluids.

This isomorphism was first exploited in Path integral molecular dynamics (PIMD) [154] and
Path integral Monte Carlo (PIMC) [155] simulations in the early 1980s. Since then, advances in
computational power have made these methods more mainstream [156].

Water systems were among the first subjects studied using PIMC [157] and PIMD [158]
simulations based on empirical force fields. More recent simulations of bulk water demonstrate
that NQEs influence macroscopic properties even at room temperature [32, 159].

Protonated water has also been extensively studied using these methods, in combination
with ab initio techniques, both in clusters [160, 161] and bulk water [48, 162]. PIMD simula-
tions have shown that the hydrated proton forms a fluxional defect in the H-bond network,
rather than existing in a specific hydration state. These simulations also revealed that the small
potential barrier is essentially washed out by ZPE, making proton delocalization important,
while proton tunneling is negligible [48]. This is in contrast to what has been observed in simu-
lations of the ice-X phase [163] and measured in small neutral water clusters [164, 165], as well
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as larger clusters [166].

3.3.3 From quantum path integrals to classical ring polymers

Following Ref. [167], our starting point is the Hamiltonian in Eq. (1.3). Using again

N 2
Hp,@) =) 5 +He(@ = To(p) + Va(a), (3.59)
a=1 a

where V,, (q) is the potential operator. Its value obtained within the BO approximation is the PES
Ey(q), which can be numerically evaluated by means of the methods described in the previous
Chapter. In what follows, for the sake of readability, we will drop the n subscript from Tn and
V., since we will deal only with the nuclear degrees of freedom.

In classical statistical mechanics the given ensemble implies a certain probability density
function defined on the phase space, p(I'), which is used to compute average values of observ-
ables. In quantum statistical mechanics this role is played by the density matrix, which in the

case of the Hamiltonian eigenstates defined in 1.14, (), (q), can be written as

Z Q) —————

where we have defined the coefficients f (E;) necessary to describe the canonical ensemble,

eI 10,2 3 ek 100 (4l (3.60)
k

e_,BEk
f(Ex) = = (3.61)
where the normalization constant Z is the quantum partition function, defined as
Z(N,V,T) =Tr[ePH], (3.62)
over which any observable can be averaged, such that
1 -BH
(A)= 5 Tr [Ae=FH]. (3.63)

Partition functions of quantum particle systems are less trivial than their classical coun-
terparts because one has to take into account the Bose or Fermi statistics. However, we as-
sume that the particles are distinguishable, while still treating them as quantum objects. Distin-
guishable quantum particles are also called Boltzmannons. Moreover, since the trace is basis-
invariant, we will work in the position basis and express the partition function as an integral in
3N-dimensions,

Z(N,V,T) = qu (qle=PH |q), (3.64)

where (q|e P |q) are matrix diagonal elements. Since the expression in Eq. 3.64 cannot be
solved analytically, one has to resort to approximations to evaluate Z.

The first one is to consider small contributions coming from the exponential matrix,

e PH = lim (e—ﬁH/P)P, (3.65)

P—»OO
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and evaluate each of the identical P small factors e #H/F by inserting them in Eq. 3.64, sand-
wiched between P — 1 resolutions of the identity:

I= [dqlq)(al (3.66)

This results in

Z(N,V,T) = qu dq?--dq” (qe PH |q2> <q2|e—ﬁH |q3> <qP—1|e—ﬁH |qp> <qP|e—ﬁH q) =

p
= [ TTaa" (e fa),
(3.67)

where in the last passage we renamed q — q; and we imposed the periodic boundary conditions
by requiring that q = q¥ = q‘"*1), to express the integral in a more compact form.

In order to evaluate the kinetic and potential contributions of the Hamiltonian we adopt
a second approximation, namely the Trotter-Suzuki decomposition that we already employed

before:
o—BHIP - ,~BV/2P ,~BT/P,~BV /2P (3.68)

Since we are in the positions basis, it is easy to evaluate the potential energy term for each
repeated factor, such as

<qb| e—ﬁf//zpe—ﬁT/Pe—ﬁV/zP |qb+1> — e—/&V(qh/zp <qb| e—/sT/P ‘qb+1> e—,BV(qb“)/ZP. (3.69)
For the kinetic energy term instead it is convenient to pass to the momentum representation,
<qb| e—BTIP |qb+1> _ j dp® dp?+! < blpb> < b| o—BT/P |pb+1> < b+1|qb+1> _

b b+1 /h o breb+1 b+1, b+1/h _
(27Th)3N/2,[ pl dpl+ieia’® 3 (pllpt+t) el P =

A S— 3.70
5(]3 pb+1> ( )
1 b, b Blpb12
= beip”(q"—q
(27th)3N/2 f dp’e
and solve the resulting N-dimensional Gaussian integral:
3P/2 .
< ble ,BT/P‘qb+1> 1 mp 2;3;1132< q"=q""H?
(2772 \ 27f 3.71
mP 3N/2 mP ( b_ b+1)2 ( ) )
— 625112 .
(5w

By inserting (3.69) and (3.70) in (3.67) we get:

mp \*"? 1) P) mpP q'+1)2 B b
Z = ALOO (27‘(ﬁh2> qu ~-dq) exp Z Zﬁh(q )<+ 13V(q ) (3.72)

Notice that for finite P, which will forcely be the case of computer simulations, the single nuclear

partition function is described as the configurational integral Q of a closed ring polymer made of
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P beads indexed by the superscript b, with a nearest neighbour harmonic interaction and the
external potential equivalent to the Born-Oppenheimer one, but scaled by /P.

To sample the ring polymer phase space it is useful to apply the quantum-classical mapping,
where, in addition to the beads positions, we also consider the fictitious momenta of the classical

ring polymer. Then, the phase space element is given by

rRP — (p%’...pf/p%/...,pg_llp}\]/...,pﬁlq%,...q!f/q%,...,qlli[_llqzl\[,.../qg), (373)

and the canonical partition function at temperature /P is the one of a system of N ring polymers
of P beads each interacting via an harmonic potentials between the nearest neighbours of a same

necklace, and subjected to and external potential which is given by the electrons:

bq2
pr2  mpP
Zygp > [ dq! - dq” dp! ---dpPeXp{ ;ﬁ[ o Zﬁzh(qb —q"% + IéV(qb)”- (3.74)

The classical Hamiltonian of the ring polymer is

Hgp = i > (ps)” + L 2( b+1y2 +1V< by (3.75)
RP 7 2 qa qQa P q ’ .
b=1 La=1 luﬂ

where we used fictitious masses y and we expressed the harmonic constant as

_ P
= 5

This Hamiltonian allows one to propagate the beads of the ring polymer according to the

(3.76)

usual equation of motion:

pl = —mw?(2q} — @b — q¥t ) + 3V V

:Pa/.ua

(3.77)

a technique named Ring polymer molecular dynamics (RPMD).

These equations are not easy to integrate because of the slow convergence of Eq. (3.77):
the harmonic term increases with the number of beads P, resulting in stiffer vibration modes,
while the potential term V' decreases with P, i.e. the molecular vibrations due to the BO PES
become less important [168]. To solve this issue we switch to normal modes coordinates, so that
the harmonic oscillators are decoupled. This is equivalent to diagonalize the matrix M used to

define the quadratic form of the harmonic interactions:
Mbe = g5bc _ gbetl _gbe=1 o e1,..-,P], (3.78)

where b and c refers to beads of the same ring polymer, and the matrix satisfies periodic bound-
ary condition in the rows. The transformation is found simply by constructing the unitary ma-

trix U of eigenvectors of M:

P
qa = T Z‘ ubcqa (379>
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Low T High '\l'

Figure 3.2: Quantum-classical ring polymer isomorphism. Intuitive picture of the quantum-classical
isomorphism: at low temperature light nuclei are described by ring polymers made of many replicas of
the particles interacting via an harmonic potential to simulate their true quantum nature.

This allows one to rewrite the ring polymer Hamiltonian with decoupled harmonic oscillators:

N _ 1 P ~ ~
Hyp = Z >, [ o mwz% (@8] |+ 5 ). V@@, ., (3.80)
—1a=1L “Mg b=1
with A’s eigenvalues of M,
2k —1
AZk—l = AZk—Z =2P [1 — COSs (%)] . (381)

3.4 Ring polymer molecular dynamics at zero temperature

Time evolution of the ring polymer can be computed by an algorithm analogous to the velocity-
Verlet presented in Section 3.1.3, with the only difference that a back and forth normal modes
transformation needs to be applied in the position propagation step.

We still use symmetric splitting of the propagator:

Lot JLET G LST Ot iigp%, (3.82)
where we used the superscript RP to indicate that we are propagating the whole ring polymer.

1. Propagate the particle momenta after 6¢/2 using the forces derived from the potential of
the RP Hamiltonian:

i ot ot
ph(t +6t/2) = e 2ph(t) = (1 +5f -Vpg) Pa() =pa() + 5 fah;  (383)

2. Switch to normal mode coordinates and propagate them of a time step t according to the
free RP Hamiltonian Eq. (3.75), then switch back again to cartesian coordinates:

(3.84)
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~b _ . Nb
([ju(t + 5t)) _ ( cos.wcSt muwsmwét) (}?(t)); (3.85)

Go(t + ot) ﬁ sin wét cos wot qs
P
\/—— D Ujcph

P
A— Z ubcqal

3. Switch back from normal mode to real coordinates in order to evaluate the forces in the

(3.86)

new positions
f5(t+0t) = =V Eo (q°(t + 6t) . (3.87)

4. Propagate the particle momenta for the remaining half time step 6t/2

ot
pl(t + ot) = pb(t + 5t/2) + Eff;(t + 6t/2); (3.88)

3.5 Ring polymer molecular dynamics at finite temperature

As for the classical counterpart, there are different schemes for finite temperature simulations of
a quantum system, from the deterministic Nosé-Hoover chain [169] to stochastic thermostatting
algorithms, the latter complessively designated as Path integral Langevin dynamics (PILD).
In normal modes representation, where the bead momenta {Pb}bzll...,p are rotated into f)k, the

corresponding under-damped Langevin equation are:

o (3.89)

Jk
{13 = —mw?§* — 7 pk + ()
q =3

where the noise vector is still defined by Gaussian white noise & multiplied by a factor which
accounts not only the friction matrix 7k, but also for the ring polymer temperature and the
number of beads:

(3.90)

and wy = 2wp sin (k_Pl )T is the frequency of the k-th harmonic mode.

Two examples of Path integral Langevin integrators are the Path integral Langevin equa-
tion (PILE) [170], which is the quantum version of the Bussi algorithm, and the Path integral
Ornstein-Uhlenbeck process (PIOUD) [133] algorithm.

3.5.1 Path Integral Langevin Equation

The Trotter-Suzuki breakup in the Path integral Langevin equation (PILE) algorithm is analo-
gous to Eq. (3.31),

- 7St RP It 7 RP RP‘> 7
eiLpiEdt — ezLFP2 ezL = zL ot zL zLFp2 (3‘91>

ezLRpét
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where in place of the velocity-Verlet propagation there is the procedure described in Section 3.4.
More in details, the steps are the following:

1. Switch from real to normal mode coordinates to apply the exact thermostatting.
1o d mP
pr () = el = ckpk(t) + ,’ Fc'gf;k. (3.92)

2. Propagate the ring polymer according to the RP Hamiltonian(3.75), following the three
steps described in Section 3.4.

3. Repeat step one to finally thermostatting the last half time step 6t/2.
T P
ﬁk(t +6t) = ezLFP%?k(t_ +0t/2) = Cllcpk(t_ + 0t/2) + %Cégk, (393)

In the above steps, the values of ¢} and ¢} are specified as those in the Bussi algorithm (Eq.
3.37):

T E ek = T[], (3.94)

k —
cp=e 1

In the normal mode representation, the optimal choice of 7k is [170]

1/7 k=0
7<= |1/ (3.95)
Zwk k>0

where 7 is a separate thermostat time constant for the centroid.

3.5.2 Path integral Ornestein-Uhlenbeck dynamics

The quantum generalization of the CMPC algorithm, namely the Path Integral Momentum-
Position correlator, is based on a matrix similar to the one in (3.53), but of size 6NP x 6NP

to account for the interbeads harmonic forces:

= v K
= , 3.96
(9 -
where K is a 3NP x 3NP matrix defined as
Kbl’hxlzbzazxz = wlz’éxlxz(sﬂﬂz (25b1’b2 - 5b1'b2_1 - 5b1'b2+1) ’ (3.97)

where the row and column indices, separated by the comma, are described as a collection of
indices for the beads b, which must be contiguous, and the atom a and cartesian coordinates x,
which must be the same, because the harmonic forces couples same atom components.

Unfortunetaly in this case, the simultaneous propagation of positions and momenta would
lead to a sub-optimal sampling, because soft modes of molecular vibration are overdamped by
the ring polymer vibration modes, which become stiffer as P increases.
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The Path integral Ornstein-Uhlenbeck process (PIOUD) algorithm represents both an im-
provement and generalization to stochastic forces of the methods illustrated before. It relies on
a different decomposition of the Fokker-Planck propagator, based on the separation of physical

modes and the fictitious harmonic modes [133],

3NP 3NP
Ly = Z [FiVp, + PiVq, — Z 7 (Vp[pj n kBTPVpl_Vp]_) | (3.98)
i=1 Hamiltonian J= thermostat

where the indices run over all particles and replicas.

To solve this problem, the two contribution can be treated separately, by decomposition of
the generalized force F and the friction matrix in Born-Oppenheimer and harmonic oscillator
terms:

F =£00 ¢+ fv, (3.99)

T=7" +7 (3.100)

Consequently, also the stochastic Liouvillian can be decomposed in:

R 3NP 3NP
i, = Zl £V, +pV Z 7 (Vp,pj + ks TPV, Y, ) (3.102)
i=
. 3NP 3NP
iLpo =) |50V, +pV Z O (Vp,p; + ks TPV, Y, ) (3.103)
i=1
eiLkkOt o iLBo0t/2 il 5t pilpodt/2 (3.104)

Steps:

1. Update the particles momenta according on the knowledge of the BO- and stochastic
forces. This translates onto using an equation equivalent to the general solution of the
Langevin equation as Eq. (3.42), with the assumption that f?° and 780 are constant in

the small timestep, as in Eq. (3.43):

_ FROL2 =
p(t™ +6t/2) = p(t)e‘"’BO‘S”2 + L dse”a" ™Y [£50 + ()] (3.105)

In case of deterministic forces, the update can be done in the real coordinates space, while
for stochastic forces first one must switch to the frame that diagonalizes the Langevin

damping matrix 7]30

2. Apply a back and forth normal mode transformation that propagates the harmonic part
by 6t and thermalizes the ring polymer, according to the equations:

qt +0t) = Ap 1p(t™ + 6t/2) + Ay oq(t) + Off (3.107)



50 Chapter 3. lon dynamics

where the only forces contribution comes from the harmonic couplings, and not the BO-
forces. Notice that the update of the position is ¢, while for the momenta we complete the
half step in BO- and stochastic fores started at point 1, while the harmonic forces are fully
propagated for the entire time step. Since we are missing the last half BO and stochas-
tic contribution, we use the notation t* + 4/2. The matrices A are the lengthy results of
analytic integration, reported in Ref. [133]. The noise and forces 6N P-dimensional contri-

bution are computed as:

zo(17)_ j gttt (1) (3.108)
oi) 0
It ~—1 = f
F= n — 7~ I-— e')’(t_tn-H) n , 3.109
[or,) =7 (=) 5 1)

3. Evaluate the ionic forces in the new positions via

£(t+6t) = —VoV (q(t + 0)) (3.110)
4. Update again the particle momenta for the last half of time step, 6t/2, as done in step 1.
) BROE2 =
p(t+6t) = p(tt + 5/2)6‘7]305”2 + J; dse”at" =) [fgo + 1](5)] (3.111)

PIOUD can be used also with deterministic forces. In that case, ygo = 0, as there is no need
of correcting BO forces with an additional Langevin thermostat, since they are not affected by
any noisy contribution. We would like to note that in case of deterministic forces it is always
more convenient to use PIOUD rather than PILE, because there is one less Trotter breakup in
the former integrator. Indeed, in PIOUD the Liouvillian factor related to e‘l?*/ 2,iL4" 0t iLepdt/2 g
integrated in a single shot, without breaking it into three factors as in PILE. This feature allows

one to use larger time steps in PIOUD for an enhanced stability.

3.5.3 Ring polymer and QMC: bead-grouping approximation

Usually, ab initio RPMD studies are based on a PES provided by DFT, for which the computa-
tional cost of force evaluation is necessarily proportional to P. Therefore, most of the techniques
proposed to lighten this computational burden focus on decreasing the number of evaluations
of the ionic forces. This has been achieved by ring polymer contraction [171, 172], or by re-
ducing the number of quantum replicas using generalized Langevin Equations that leverage
colored noise that mimics nuclear quantum fluctuations [173].

Although these methods could be effectively incorporated in a QMC framework too, the
main computational bottleneck in our case is the large number of variational parameters, rather
than the large value of P. Indeed, each bead at each iteration has its own optimal wavefunction,
|‘I’flk )y, fork = 1,..., P, which minimizes the variational energy at the nuclear configuration qb .

Consequently, we need to find the best variational parameters set,

k pk k pk
AR = (g A bR, T, (3.112)
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for each wavefunction.

To overcome this major difficulty, we exploit the local nature of the Gaussian basis sets used
in the expansion of both the Jastrow and AGP factors. In fact, the most relevant dependence of
the wavefunction on the ionic positions q comes explicitly from the basis set, and less from the
electronic variational parameters, which depend on them only indirectly.

It is therefore convenient to make the approximation of defining Ny ,.ps groups of neigh-
boring beads and constraining the wavefunction parameters to be equal for all beads in the
same group. Since a group shares the same parameters, the corresponding energy gradients
are then averaged over the quantum replicas constituting the group. In this way, we improve
the statistics by a factor of P/Ng;qps- We Obtain less noisy parameters even though the resulting
wavefunction is not exactly optimized for each quantum replica. This approximation is system-
atically improvable between two extremes: if one takes N eroups = P, the electronic result is exact,
whereas Ng,ps = 1 constitutes the roughest approximation. In the latter case, one performs a

fully quantum dynamics with almost the same statistics as the one with classical nuclei.

a)

deterministic forces r Classic NVT 1 stochastic forces
Lstochastic thermostatJ

| [ |

Bussi Classic momentum Attaccalite-Sorella
algorithm -position correlator algorithm

b)

deterministic forces ( Quantum NVT 1 stochastic forces
Lstochastic thermostatJ

U
Path integral Path integral
[ Lazat:vil:tflglri:f) } Ornstein-Uhlenbeck momentum-position
g dynamics (PIOUD) correlator (PIMPC)

Figure 3.3: Classical and quantum Langevin dynamics algorithms. In green what it is used in this thesis






CHAPTER 4

Thermal dependence of the hydrated
proton and optimal proton transfer in
the protonated water hexamer

In this Chapter!, we report our study of the protonated water hexamer H;304 " by MD simu-
lations, fully retaining the nuclear quantum nature of the atoms using path integral methods
(Chap. 3), and treating the electrons at the QMC level (Chap. 2). As we mentioned in the intro-
duction, this system is the smallest protonated water cluster that includes the two limiting com-
plexes involved in the proton transfer: the Eigen cation, which appears as H;O" (H,0)s5, and
the Zundel cation, included in the hexamer as H502+ (H,O)4. Both cations are fully solvated up
to the first shell. Although the protonated water hexamer exhibits several isomers [174-176],
in this work we consider its Zundel-like configuration because it is the one that most closely
resembles the hydrated proton in bulk water, solvated up to the second shell (Figure 4.1). Even
when the system will fall into distorted Eigen minimum, as it will described later, the structure
of the second solvation shell will remain the one typically associated to the Zundel, with four

water molecules.

To investigate the proton dynamics in the system, we start from the analysis of its potential
energy surface, reported in Section 4.1, and compare it with the one of the Zundel cation as
reported in Refs. [127, 133]. While the latter system misses a large part of water solvation effects,
the former includes the full contribution of the first and second shells of the solvated proton.

In Section 4.2, we show that the Hydrogen bond (H-bond) mediated by the hydrated proton
exhibits a remarkably low thermal expansion from zero temperature up to 300 K, with a nearly
temperature-independent length that becomes shorter than the classical-ion counterpart in the
[200-350] K temperature range. As we will see, the strength of the H-bond results from a non-
trivial cooperation of NQEs and thermal activation. Indeed, NQEs strongly affect the vibrational
levels of the proton shuttling mode bridging the central O, and O, oxygen atoms. These levels

IThese results have been published in Ref. [127], on which most of this Chapter is based.
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“® o

O+

e @,

Figure 4.1: Highlight of H;;04" in its Zundel configuration, with a Zundel-core (yellow) solvated by
four water molecules (light blue).

are then thermally occupied according to the dg o, distance of a given configuration. We can
thus distinguish three regimes (see Fig. 4.2):

(i) “short-Zundel” configurations with the shortest dg ,, where the proton along the shut-
tling mode feels a quadratic potential close enough to its energy minimum and it is per-

fectly shared between the two central water molecules;

(ii) “elongated-Zundel” configurations for intermediate dg ,, comprising the equilibrium
distance, where a potential energy barrier starts to develop in between O, and O, and

the proton is delocalised only due to NQEs;

(ili) “distorted-Eigen” configurations at even larger d ,, where the central barrier is large
enough that the hydrated proton is localised on one of the two flanking water molecules,

forming an Eigen-like complex.

In Section 4.3 we will see that the occurrence of short-Zundel configurations is key to under-
stand the H-bond thermal robustness and to enhance the proton transfer dynamics. Despite
being energetically disfavoured by the short dg o, distances at the classical level, these config-
urations are populated thanks to the synergistic action of NQEs and temperature, yielding a
sweet spot for proton transfer in the [250-300] K temperature range. This last observation is
supported by a 2-dimensional projection of the PES on the most relevant coordinates in Section
4.4. Once the thermal dependence of the structure of H1306+ is established, we can conduct
the instanton dynamics analysis, which is presented in Section 4.5. The instanton is defined as

a quantum proton configuration that connects instantaneously two steady states represented by
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<§ fgé 0;36@2
AR, e £ 2

short Zundel elongated Zundel distorted Eigen

Figure 4.2: Different regimes of the protonated water hexamer H;;04 . Left panel: short-Zundel con-
figuration with a Zundel center (H;0,") in colors and its first solvation shell (4 H,0) in gray shades.
Central panel: elongated Zundel with the quantum nature of hydrogen atoms highlighted by the full
representation of its imaginary-time positions in a PI configuration. Right panel: distorted-Eigen config-
uration with an Eigen cation (HyO, ") in colors accompanied by two solvating water molecules (2 H,O)
in gray shades. The O;, O, and H" labels are used throughout the paper to refer to the corresponding
atoms, as indicated here.

the two minima of a double well potential, stretching across two water molecules. A summary
of the results, motivating the work done in the second Part of this thesis, close this Chapter in

the Discussion Section 4.6.

4.1 Role of solvation: Zundel ion versus protonated water hexamer

To quantify the impact of the solvation shell on the Zundel core, we compare in Fig. 4.3 the O;-
O, potential, Vo, o, (left), and the corresponding classical equilibrium geometry (right) of the
two clusters at various dg, o, (distance between the 2 central oxygen atoms). At shortdg o,, the
slope of the protonated hexamer V, o, is slightly larger than the Zundel one, due to a greater
electrostatic repulsion because of steric hindrance. At large dg, o,, the protonated hexamer PES
is softer than the Zundel one, because the solvating H,O molecules enhance the polarisability of
the core atoms. As we will see later, the balance between short- and long-range repulsion, once
supplemented with the zero-point energie (ZPE), is key to quantify the relative abundance of
short-Zundel and distorted-Eigen configurations, and thus, it allows for a quantitative under-
standing of the PT mechanism.

The VMC equilibrium O;0, distance is found to be do 0, = dmin = 2.3930(5) A, in good
agreement with MP2 calculations for the protonated hexamer, the most widely used post Hartree-
Fock theory to study water clusters. As mentioned in Chap. 2, VMC has a milder scale with
the system size than MP2, allowing one to perform extensive calculations of the protonated
hexamer.

We also find the H;30¢" equilibrium do,0,, represented by a vertical dashed line in Fig. 4.3,
tobe ~ 0.05 A, larger than the H;O," one. More importantly, at variance with the Zundel cation,
which is centrosymmetric [177, 178], the protonated water hexamer equilibrium geometry is
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asymmetric with classical ions. This fundamental symmetry modification of the PES is induced
by solvation effects, which tend to stabilize the hexamer into its elongated-Zundel configuration.
This can rationalise some THz /FTIR absorption spectroscopy fingerprints of the solvated proton
[179], which have been related to a fast inter-conversion between the (distorted-) Eigen and
(short-) Zundel forms.

The PT energy barrier vanishes at dp,0, = dsymm = 2.38 A, a distance that separates the
short Zundel below from the elongated-Zundel configurations above. The height of the barrier
is less than 100K (in kp units) at d,,;,, rapidly increasing as a function of dg ,. We therefore
expect several consequences on the hydrated proton distribution and on its mobility at finite
temperature, once the NQEs are taken into account.

12 T T : 1.7

Zundel VMC v Zundel VMC —e— ||/ ‘
Zundel LRDMC Hexamer VMC —e— /
Hexamer VMC v 1.6 |

Hexamer LRDMC

=\

Energy [Kcal/mol]

22 23 24 25 26 2.2 2.3 24 2.5 2.6
do,o, [Al do,0, (A)

Figure 4.3: Comparison of the protonated water dimer and hexamer V;, o, potential (left) and equi-
librium geometry (right) as a function of dg, (5, Vertical dashed lines indicate the corresponding equi-
librium dg o, Notice that VMC and lattice regularised diffusion Monte Carlo (LRDMC) [180] energies

are in nice statistical agreement for dp o, € [2.3-2.6] A, the phase-space range explored by our MD sim-
ulations.

4.2 Thermal expansion of the H-bond

To understand how the dynamics of the hydrated proton evolves with temperature, QMC-driven
AIMD simulations are relevant. Such calculations are carried out for both classical and quan-
tum nuclei of the H;;04 " ion, within the temperature interval T € [50-350] K, thanks to the
methodological developments detailed in Ref. [133] and in the previous Chapters. At these
conditions, the clusters are stable during the simulated time frame (= 30 ps), allowing us to
access the thermal properties of the hydrated proton and the O;H O, bond over an extended
temperature range.

From our QMC-MD simulations, we extract the normalised Pair Correlation Function (PCF)
80,0, for the two oxygen atoms O; and O, of the cluster core (Fig. 4.4). The expected broad-
ening of the PCFs due to nuclear quantisation is significant over the whole temperature range
(Fig. 4.4(b)). Only at temperatures as high as 350K, the classical go o, (Fig. 4.4(a)) starts re-
sembling the quantum distribution. This implies that the NQEs cannot be neglected for tem-
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peratures up to this value, above ambient conditions. We also notice that, when comparing to
the Zundel ion results [161], the peak position is shifted up by at least ~ 0.01 A. Thus, it ap-
pears that the H;304 " cluster frequently adopts elongated-Zundel configurations [50, 181, 182]
at the lowest temperatures considered here. This is at variance with the protonated water dimer,
where the hydrated proton lives in a single minimum symmetrically located between the two
water molecules.

Focusing our attention to (dp,o,) (Fig. 4.4(c)), its classical and quantum behaviours are
remarkably different as a function of temperature. On the one hand, the classical dg, o, keeps
increasing with temperature, as more energy is given to the intermolecular vibration modes. On
the other hand, the quantum d, o, displays a nearly flat behaviour with the cluster temperature,
up to 300K. This very low thermal expansion extended over a wide temperature range leads
to a temperature regime where dg o, for the quantum system become shorter than the classical
values at the same temperatures. This is clearly seen in Fig. 4.4(c). We will come back to this
point later.
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Figure 4.4: Classical and quantum oxygen-oxygen go o, pair correlation functions as a function of
temperature. The dashed vertical lines indicate the average <doloz> distance for each simulation, at the
corresponding temperature. The dotted vertical line is located at the classical equilibrium geometry.
Panel c) shows the T-dependence of the (dg ,) average distance. The classical equilibrium geometry is
represented by a short-dashed horizontal black line. At 250K and 300K the oxygen-oxygen distance is
shortened by NQEs with respect to the classical counterpart.

Finally, as the temperature further increases, the NQEs reduction weakens the central H-
bond strength. Consequently, do o, spreads out, due to stochastic fluctuations of the core and
the solvent, and a more classical regime is reached, when the averaged dg, o, values for classical
and quantum nuclei meet again. The PCF distributions display longer tails, with more configu-
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rations covering regions with dg o, € [2.5-2.7] A, and the peak position rapidly shifts to larger
values. Configurations with such a large (dp,0,) are of distorted-Eigen type [181, 183].

4.3 A cooperative thermal-quantum species: the short-Zundel ion

To refine our structural analysis, we compute the bidimensional distribution function p,p, which
correlates the oxygen-oxygen (O;0,) and the oxygen-proton (O; ,H ", meaning that the oxygen
can either be O; or O,) distances, and study its temperature dependence p,p = pop(T). They
are shown in Fig. 4.5 for both classical and quantum simulations.

To highlight the difference, in Fig. 4.6, we show the contour plot of the temperature-driven
pop variation by taking o, (250 K) as reference. Four temperature variations are explored: 100K,
200K, room temperature (RT), and 350K (from the top to the bottom of Fig. 4.6).

In the classical protonated hexamer (Fig. 4.6, left column), rising the temperature from 250 K
up to 350K tends to stretch (dg, o,), by promoting configurations from the elongated Zundel
(blue central distribution with dp o, € [2.38-2.5] A in Fig. 4.6) to an Eigen-like arrangement
with larger do o, and a proton much more localised on one of the two central oxygen atoms
(red wings). The situation is reversed at lower temperatures (100 K and 200 K) if compared to
the 250 K reference, with positive (red) variations in the elongated Zundel and negative (blue)
variations in the wings. Thus, for classical nuclei, there is a progressive depletion of the elon-
gated Zundel and a corresponding population of the distorted-Eigen wings upon temperature
rise. Short-Zundel configurations, highlighted in Fig. 4.6 by a gray background, seem to play a
very marginal role in the temperature-driven density distribution shift.

The scenario is strikingly different with quantum nuclei (right column), particularly at the
lowest temperatures (100 K and 200 K). In this regime, distorted-Eigen configurations are barely
populated or depleted, and the density shift upon rising temperature takes place between the
elongated-Zundel region and the short-Zundel sector. The latter is significantly more populated
at 250 K than at lower temperatures at the expense of the elongated Zundel, which instead loses
density with respect to the classical counterpart at the same temperature.

In the higher-temperature limit, at 350 K, NQEs are less relevant and, by consequence, the
classical and quantum variations have a qualitatively similar behaviour. In both classical and
quantum case, we notice the presence of red wings at large oxygen-oxygen distances (dop,0, €
[2.5-2.7] A), which are the signature of thermally activated Eigen-like states, with a strongly lo-
calised proton. This is related to less frequent elongated-Zundel configurations, indicated by the
depleted distribution for dg o, < 2.5 A, confirming that the distorted-Eigen configurations are
indeed promoted by high temperature. For quantum nuclei, the corresponding depletion goes
well below the elongated-Zundel region, by touching also short-Zundel configurations, down
todo,0, ~ 2.3 A, at variance with the classical case, where the short-Zundel configurations are

not involved.
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Figure 4.5: p,p computed from VMC-driven MD (left) and PIMD (right) at different temperatures.
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Figure 4.6: Bidimensional oxygen-oxygen/oxygen-proton distributions. Difference between bidimen-
sional oxygen-oxygen/oxygen-proton distributions p,p obtained by QMC-driven LD simulations for clas-
sical (left panels) and quantum (right panels) particles, computed at different temperatures. The bidi-
mensional distribution computed at 250K is taken as reference. Positive (negative) regions are in red
(blue) color. The black filled circles correspond to the zero-temperature equilibrium geometries of the
H,;0," ion at a fixed dp,0, distance. The coloured background highlights the three different regimes
explained in the paper: the short Zundel (gray), the elongated Zundel (yellow), and the distorted Eigen
(green) species.



4.4. Projected two-dimensional PES 61

4.4 Projected two-dimensional PES

To interpret these results, we first construct an accurate effective potential by projecting the
full PES, computed during QMC-driven classical MD calculations, onto the degrees of freedom
mostly relevant to understand the dynamics of the hydrated proton. These are the dg, o, distance
and the proton sharing coordinate 4,;+, referenced to the midpoint of the O, H"O, complex:

(SH+ = dol/zH* — d0102/2/ (41)

with dol/2H+ the O, /2-H+ distance projected onto the O;0, direction. The resulting two-
dimensional (2D) potential is Vop = Vop(do,0,, 64+)- We refer the reader to Appendix B for
technical details about the PES projection. We highlight that the potential V,p is derived here
at VMC quality. We also notice that 4+ is the vibrational coordinate of the proton shuttling
mode, while dg o, is related to the stretching mode of the two water molecules in the cluster

core.

Given VZD(doloz, i), we then proceed to quantize the variable é,;+. Indeed, while dolo2
can be taken as classical, for it is related to the motion of heavier oxygen atoms of mass 1, the
dyy+ coordinate must be quantised, owing to the light mass (myy) of the hydrated proton. At the
leading order in 2myy / (mg +my), we separate the stretching mode from the shuttling one, by in-
voking an adiabatic Born-Oppenheimer type of approximation (Chapter 1) for the two species
[184]. We finally solve quantum-mechanically the Hamiltonian of a proton in the potential
V5H+ = Vop (@, 64+)la=g, 010, at fixed dg, o, value. In Fig. 4.7(a-c) we plot tk:e ground state distri-
bution and eigenvalues obtained for three distances, i.e. at dg o, = 2.375 A, in the short-Zundel
region close to the boundary between the short and the elongated Zundel, at dg o, = 2.495 A,
in the elongated-Zundel region close to the frontier between the elongated Zundel and the dis-
torted Eigen, and finally at dp o, = 2.585 A, deep into the distorted Eigen regime.

One can notice three different quantum behaviours of the vibrational shuttling mode, that
provide a more quantitative ground to the three-regime distinction made at the beginning. In
the short Zundel, V5H+ is indeed a quadratic potential with a single minimum at the core center,
which widens as dg, o, gets close to dgymm, = 2.38 A, a distance where it becomes quartic because

its curvature falls to zero before changing sign.

The ground state energy, i.e. the zero point energy (ZPE) of the shuttling mode, decreases
as the potential widens, as reported in Fig. 4.7(d). In the elongated Zundel, a central barrier
starts to develop, with a ground-state proton distribution that stays uni-modal thanks to a ZPE
larger than its height, till dp o, ~ 2.5 A, where the ZPE equals the barrier height. In this regime,
for dp o, € [dsymm, 2.5A], the ZPE is particularly small, due to the quartic Iolature of V5H+,
and weakly do, o,-dependent, as shown in Fig. 4.7(d). Finally, for do o, > 2.5 A, we enter the
distorted-Eigen regime, with an even larger central barrier > 1000K, such that the quantum
proton is instantaneously localised in one of the two wells, and its distribution is then bimodal.

The ZPE starts to rise again as dg o, is stretched, with a slope steeper - in absolute value - than
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Figure 4.7: NQEs on the shuttling mode, and their impact on the interatomic potential V, ,. We quan-
tize the proton shuttling mode 4+, defined as the displacement along the segment connecting the two
oxygen atoms in the core of the cluster from its mid-point position. We study the ground-state wave func-
tion and the first 5 eigenvalues for the confining potential Vs ., as a function of dg ¢, Panels a), b) and c)

report the ground state wave function and the lowest 5 energy levels for dg o, = 2.375,2.495 and 2.585 A,
respectively. In panel d), the variation of the zero-point (ground-state) energy (ZPE) as a function
of do, 0, is explicitly plotted. While the ZPE dependence is very flat in the elongated-Zundel region
(depicted by the yellow shaded area), the ZPE increases in both short-Zundel (gray shaded area) and
distorted-Eigen (green shaded area) regions, with a much steeper slope in the latter. In panel e), the
ZPE is added to the classical interatomic potential Vi, ¢, (solid blue line) to yield the quantum-corrected
effective interatomic potential (solid dark-pink line) between the two inner oxygen atoms.

the ZPE decrease in the short Zundel, because it is now set by the much deeper lateral minima

of the double-well potential. This can be seen again in Fig. 4.7(d).

We can now correct the classical O;-O, potential, defined as Vg o,
VZD(doloz,5H+)| B g+ =Omins where (SEE‘ is the V,p minimum at fixed alolo2 value, by adding
the ZPE Vdg o,, obtained from the quantisation of the shuttling mode é;+. The resulting
potential is plotted in Fig. 4.7(e). Remarkably, the anharmonic classical V o, potential
becomes harmonic after ZPE-correction. It is a consequence of the much larger ZPE in the
distorted-Eigen configurations than in the short Zundel, which compensates for the underlying
V0,0, anharmonicity. This rationalises two main features. On the one hand, it explains the
very low thermal expansion of (dg o,), being the average position in a harmonic potential
temperature-independent. On the other hand, it proves that NQEs enhance the occurrence of

short-Zundel configurations upon heating, while the distorted Eigen is penalised by its large
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ZPE with respect to the classical counterpart. The enhancement of the occurrence of Zundel
configurations by NQEs is also revealed by the population analysis showed in the left panel of
Fig. 4.8. One can see that the short-Zundel population has a peak in the [250-350] K range,
in accordance with the instanton analysis of Section 4.5. Notice however that the population
here is taken all over the sample, and not only over the instanton instances. = Raising the
temperature above the sweet spot region promotes a larger distorted-Eigen population. This
is detrimental for the short-Zundel population, which indeed falls down. The maximum in
the short-Zundel population corresponds to the sweet spot in the PT, showing once again the
key role played by the short-Zundel species in optimizing the PT. It is interesting to study
the impact of NQEs on the species population at 300 K. This is reported in the right panel of
Fig. 4.8. At this temperature quantum effects favour the occurrence of the short-Zundel species
with respect to the distorted Eigen states, penalised by a larger zero point energy, absent in
classical calculations where the relative occurrence between the two species is reversed. This
behaviour is in agreement with the outcome of Ref. [185], where a similar difference between
classical and quantum populations has been found.

Above RT, the distorted Eigen configurations will eventually become dominant again. This
can be understood within this framework as well. Indeed, thermal excitations are energetically
more available in the distorted Eigen, where the spacing between the ZPE and the first-excited

state shrinks, and higher excited states are piled up more densely than in the short and elongated
Zundel (see Fig. 4.7(a-c)).
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Figure 4.8: Population of the short Zundel, elongated Zundel and distorted Eigen species. On the
left, as evaluated from the QMC-driven PIMD trajectories, and plotted as a function of temperature. The
species are defined based on their dg o, distance computed for the centroids. On the right, at 300 K,
evaluated from both classical and quantum QMC-driven MD.

4.5 Optimal proton transfer from instantons statistics

The analysis made so far highlights the paramount importance of the NQEs to set the non-trivial
temperature behaviour of the H;;04 " cluster. At this stage, direct information about the excess
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proton dynamics along the QMC-PIMD trajectory is necessary to estimate more quantitatively

its impact on the PT processes occurring in the system.

One way to achieve this goal is by analysing the statistics of selected transition-state (TS)
configurations, defined by means of instanton theory. Within the PI formalism, the instanton
path seamlessly connects the reactants and products minima, along the minimal action trajec-
tory, periodic in the quantum imaginary time 7 = Bh [186]. It provides a generalisation of the
TS theory for anharmonic quantum systems [187], and it has been very recently applied in a
QMC framework [188, 189], by efficiently recovering the proper scaling of ground-state tunnel-
ing rates. TS configurations are therefore identified as those where each half of the instanton
path is located on either side of the central O;0, midpoint, sampled during the QMC-PIMD.

With the aim at resolving the contribution of the three different regimes to the PT dynam-
ics, we collect the instanton events and compute their statistical distribution as a function of
do,0,- We plot the instanton density distribution function in Fig. 4.9(a) at various tempera-
tures. To deepen our analysis, we compute also the cumulative density distribution function in
Fig. 4.9(b), after normalising it based on the algorithmic frequency of the instanton occurrences,
as counted during our QMC-PIMD simulations. Although this does not give direct access to
real-time quantities, the RPMD with Langevin thermostat has been shown to yield physically
reliable information on frequencies and frequency variations [190]. Note that the coupling with
the Langevin thermostat is kept constant across the full temperature range analysed here [190].
The fully integrated frequency distribution gives the total proton hopping frequency, plotted in
Fig. 4.9(c) as a function of temperature. This shows a clear maximum located in the [250-300] K
temperature range. Consequently, we expect the hydrated proton mobility to be optimal in a
near-RT window, with a maximised Grotthus diffusion. To understand the source of this tem-
perature “sweet spot”, in the same panel (c) we plot the contribution to the total frequency of
instanton events occurring in the short-Zundel region. This is yielded by the cumulative fre-
quency distribution of panel (b) evaluated at the boundaries between short and elongated Zun-
del, ie. atdp o, = dsymm- The short-Zundel contribution to the total frequency shows a peak
of the same intensity as the total one in the same temperature range, clearly pointing to the
key role played by thermally activated short-Zundel configurations to the PT dynamics. The
short-Zundel arrangement enables instantaneous proton jumps between the two sides of the
cation, since there is no barrier to cross. Thus, the “sweet spot” constitutes the best compromise
between acquiring enough thermal energy to access short-distance configurations, boosted by
NQEs, and controlling the amplitude of the chemical (covalent or H-) bonds fluctuations, that
might trap the proton into an asymmetric well. Indeed, at larger temperatures (> 300K), the
onset of distorted-Eigen and the corresponding fall of short-Zundel configurations localize the
hydrated proton around its closest oxygen atom, thus reducing its shuttling probability. A sim-
ilar non-monotonous PT behaviour has experimentally been found in bulk water by assessing
the limiting conductivities of the H;O" and D3O species [191]. Thanks to these measures, per-
formed at 20 MPa, the excess molar conductivities due to PT have been estimated. They show a
peak located at a temperature in between 420 K and 430 K. In this temperature range and at the



4.6. Discussion 65

0.025 T T T \. .\ T T

N full contribution ——
< C) short Zundel events
3 2 0020 |
IS -
- 2 0015 | 1

oy

4
@ >
= £
% 0.021- b) 4 & 0.010 + 1
3 2
oy c
2
E 001l | & 0.005 | 1
2
kS
g 0.000 I | 1 ! | ! ! |
© 0.00 ‘ * 0 50 100 150 200 250 300 350 40

2.25 2.3 2.35 2.4 2.45 25 2.55 T (K)
0,0, distance (A)

Figure 4.9: Instanton statistics and proton hopping frequency. a) Instanton distribution resolved as a
function of the d o, distance for different temperatures. b) Cumulative distribution of a) normalised
by the occurrence frequency of the instanton (proton hopping) events during the PIMD simulations. c)
Proton hopping frequency as a function of temperature, together with the contribution coming from the
short Zundel configurations, with do o, < dgymm = 2.38 A. The dsymm Value is reported as vertical dashed
line in panels a) and b). Here, we report simulations performed also at 400K, a temperature at which
the cluster is still stable or meta-stable.

pressure conditions of the experiment, the water density is only 7-8% smaller than the standard
conditions [192], a regime comparable to the one of our cluster.

Beside this PT mechanism, which is adiabatic in nature and driven by the synergy of ZPE and
thermal effects, NQEs could also contribute to the proton diffusion by means of instantaneous
tunneling, which can further accelerate the PT dynamics. By computing the root-mean-square
(RMS) displacement correlation functions[ 193] over the instantons population, we verified that
tunneling events could take place only in the distorted Eigen and in the intermediate tempera-
ture range . This additional PT channel has however a marginal effect with respect to the main
mechanism unveiled here. Indeed, Fig. 4.9(c) shows that the “sweet spot” is mainly due to PT

events originating in short-Zundel configurations, where quantum tunneling is not relevant.

4.6 Discussion

Using highly accurate QMC-PIMD simulations of the H,;304" cation at finite temperature, we
found a remarkably low thermal expansion of the protonated water hexamer core. It stems from
a cooperative action of both NQEs and thermal effects, which leads to the emergent behaviour
of short-Zundel species as PT booster, where the excess proton is perfectly shared between two

neighbouring water molecules. The relevance of short-Zundel configurations is enhanced by
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NQEs, which instead penalize the distorted-Eigen states, having a larger ZPE. In the intermedi-
ate temperature range, comprising RT, the occurrence of short-Zundel events is maximised by
thermal population, leading to a “sweet spot” in the PT dynamics. Around these temperatures,
distorted-Eigen states can still contribute to PT with quantum tunneling processes, although oc-
curring at much lower rates. The cluster core spreads out again at larger temperatures, as soon
as stronger thermal fluctuations favor the formation of more classical distorted-Eigen structures,

where the proton gets strongly localised in one of the flanking molecules.

The short-Zundel quantum species is crucial for an efficient proton diffusion, as the short-
ness of its structure enables a fast charge redistribution during the adiabatic PT process. Recent
progress in ultrafast broadband two-dimensional (2D) IR spectroscopy [194, 195] allowed to
probe the vibrational properties of protonated water at vibrational frequencies around the hy-
drated proton stretching mode, by measuring the lowest-lying excitations in the mid-infrared
continuum [195]. These state-of-the-art experiments revealed a strongly inhomogeneous be-
haviour of the pump-probe spectra, implying large structural distributions in proton asymme-
try and O, 0, distance. Therefore, the traditional “Zundel limit” [18] needs to be revisited and
extended, in order to cover the broad range of structures detected experimentally [196, 197].
In particular, the occurrence of qualitatively different short H-bond configurations, straightfor-
wardly connected with the short-Zundel species described here, has been detected and high-
lighted in a recent fully solvated (HF,) (H,O)q experiment through femtosecond 2D IR spec-
troscopy in Ref. [198]. The present work crucially extends those findings by providing a temper-
ature resolved analysis of the short H-bond events and by revealing their fundamental relation
with the PT dynamics.

While proton transfer and proton transport occur in a variety of environments, from solu-
tions to membrane proteins and fuel-cell membranes, the protonated water hexamer is one of
the smallest clusters to incorporate most of the PT experimental features and solvation effects
at the leading order. According to Ref. [199], one more hydration layer is needed to reach the
water bulk limit. From this viewpoint, the hexamer is close to that limit, and some relevant ef-
fects, emerging already at this size, can be transferred to larger systems. Our findings thus call
for further efforts to explore the temperature behaviour of the proton dynamics and transport
both in aqueous systems and in other extended environments, by keeping the same accuracy as
the one delivered by our QMC-driven PIMD approach in the protonated water hexamer.

In Tab. 4.1, we report the complete list of VMC+PILD simulations done for the protonated
water hexamer. Owing to their importance, particularly long simulations are performed for the
quantum case at temperatures of 50, 100, 200, and 300 K. In all simulations, we generated at least
1850000 electronic Monte Carlo configurations to optimise the wave function at each step of MD
or PIMD. The resulting total CPU time per time step is reported in the Table. these calculations
have been run on parallel machines, with two levels of parallelisation. The first one is based
on the parallel sampling of the electronic degress of freedom, the second one is built upon the
coupled dynamics of each beads. Notice that in our framework PIMD is not more costly than
classical MD, thanks to the “bead grouping approximation” (Chapter 3).
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quantum simulations classical simulations
T (K) N beads N, iterations titeration (h) N, iterations titeration (h)

50 128 35282 119.41 - -
100 128 52184 24.42 21454 42.02
150 64 11218 - - -
200 64 32553 95.71 20478 103.61
250 32 23912 92.21 24154 123.5!
300 32 31929 106.31 22656 109.91
350 32 18489 102.41 26481 130.51
400 32 23026 120.91 27517 134.01

Table 4.1: Summary of the computational cost of the simulations on H* (H,0),. In both classical and
quantum calculations, a time step Jt of 1 ft is used for all temperatures. The CPU time per time step
(titeration) 1S also reported in hours.

! calculations done on 68-core Intel Xeon Phi 7250 CPU (Knights Landing) nodes at 1.40 GHz.

2: calculations done on dual-processor (2x64 cores) AMD Rome (Epyc) compute nodes at 2.6 GHz.

At the moment, simulating larger structures or longer dynamics can be achieved only by
overcoming the high computational cost of QMC. This goal could be achieved by training ef-
ficient atomistic machine learning potentials on QMC, which is the topic of the second Part of
this thesis.
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CHAPTER 5

Analytic potentials: strength and limits

Accurate simulations from first principles are quite demanding in terms of computational cost
and became feasible only with contemporary advancements in hardware and software. Even
today, these simulations are limited by system size and simulation time, depending on the
method’s scaling with the number of electrons and the intrinsic complexity of the electronic
wavefunction. Consequently, before the advent of AIMD and continuing to the present, signif-
icant effort has been dedicated to developing force fields, also known as analytic potentials to

stress on their functional form.

Force fields (FF) aim to provide the PES through a parametrized function that describes
both intramolecular and intermolecular forces. The latter includes all interactions that do not
lead to the formation of chemical bonds [200]. The absence of explicit electrons does not elim-
inate quantum mechanical considerations, as non-bonding interactions must still be carefully
modeled to account not only for electrostatics like polarization, but also for quantum effects,

such as exchange repulsion at short distances and dispersion forces over long ranges.

Depending on the origin of the data set used to fit the FF parameters, force fields can be
categorized as empirical force fields (EFF), semi-empirical force fields (SEF), or force fields en-
tirely fitted to ab initio data. Interestingly, even before the rise of machine learning, there was
a trend towards fitting FFs more with synthetic data rather than experimental data [201]. This
shift was driven not just by data availability and production costs reduced by “in silico experi-
ments”, but also by the need of force fields general enough to reproduce the quantum properties
of molecules and build bottom-up explanation of chemical phenomena, rather than just casting
experimental knowledge into predefined functional forms. Indeed a major drawback of EFFs
that they are usually tailored to specific laboratory conditions or applications, and the parame-
ters are often calibrated to reproduce a few specific properties, which significantly limits their
prediction power and the range for exploratory work. For example if the FF has to be used in a
biological context, it will be parameterized for ambient temperature and atmospheric pressure.

In this Chapter we are going to present the analytical potentials developed specifically for
water in Section 5.1, and we will focus particularly on those based on many-body expansion

in Section 5.2, which will be used later in Chapter 7 to produce a dataset of protonated water
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clusters configurations with their respective energy and forces.

5.1 Force fields for water

Due to its fundamental role in chemistry and biology, water has become one of the most ex-
tensively modeled and parameterized compounds in computational chemistry. An exhaustive
presentation of water models is beyond the scope of this thesis; for more detailed information,
the reader is referred to appropriate literature [201-204]. However, some of these models are
worth mentioning because they will be partially used in the following work and have paved
the way towards applying functional form-agnostic and data-driven methods to the realm of
interatomic potentials. Moreover, they introduced key ideas that are still used in case of new
physics-aware machine learning potentials [205].

Pioneering water models based on empirical data are still used today in macroscopic sim-
ulations due to their relatively low computational cost. These classical force fields use point
charges to account for Coulomb interactions, usually neglect polarization, while dispersion and
repulsion typically are represented by a Lennard-Jones (L]) term [206].

Examples include the Transferable Intermolecular Potentials based on n = 3,4,5 Point
sites (TIPnP) for both charges and L] terms [207-210], and Single Point Charges (SPC), with
just three atomic sites [211]. Despite improvements with the inclusion of flexibility in wa-
ter monomers (TIP4PF [212], SPC/Fw [213]), long-range electrostatics by Ewald summations
(TIP4P-Ew [214]), and inclusion of quantum effects (q-TIP4P/F [215], g-SPC/Fw [216]), these
empirical force fields are limited in reproducing the effects of the strong anisotropy of electronic
distribution and do not account for the non-additivity of interactions.

It is only with the availability of ab initio data that the derivation of polarizable force fields
(PFFs) became possible; PFF replace simple point charges by higher-order multipoles in order
to approximate the electronic cloud, in combination with perturbation theory to rigorously de-
scribe polarization and induction [217]. Examples of models with such features, sometimes
including molecular flexibility, are the Anisotropic Site Potentials (ASP) [218], the Symmetry
Adapted Perturbation Theory (SAPT) water models [219], and the Thole-Type Models (TTM)
[220-223]. Except for TTM, the first two typically consider only pairwise interactions, incorpo-
rating adjustments for many-body effects if necessary.

All the models mentioned above are mainly used in large simulations of water, especially in
biochemical systems where macromolecules interact with a large water matrix. However, they
lack two fundamental features. First, their simple analytic form does not capture the complex-
ity of short-range quantum effects such as exchange, nor it correctly describe the electrostatic
interactions and charge transfer. For example, the point-charge approximation is an oversim-
plification to the well known diffuse spherical charge density, and cannot correctly account for
the interaction energy of overlapping charge distributions. Also the Lennard-Jones interaction
term, originally proposed for closed-shell systems, is not suitable for water, leading to a large

value of the first peak of the oxygen-oxygen pair correlation function [202]. Secondly, only a
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few can be generalized to include reactions and interactions with water ions, and this requires
significant effort. This has only been accomplished with TTM-type models [224], which explic-
itly account for n-body contributions. The need to combine this feature with a potential with a
flexible functional form brings us to the last family of water models, the many-body expansion-
based ones.

5.2 Many body expansion-based potentials for neutral and

protonated water

The Many-body expansion (MBE) [225] is a fragmentation method that allows one to decom-
pose the total energy of a molecular system as the sum of n-body contributions, where the
smallest unit can be either a single atom or molecule. MBE reads as

M M M M
i=1

i<j i<j<k i<j<k<l

where M is the number of monomers. For a M-body cluster the formula expanded up to the
M-body order is exact. The n-body contributions are computed as corrections to (n-1)-body
ones:

AE;j = Eyjx — AE;; — AEj — AEy; — E; — E; — E;. (5.3)

Since the number of terms scales factorially with M, in practice the expansion is usually trun-
cated at the 3- or 4-body term, still allowing to go beyond the pairwise additivity of usual ana-
lytic potentials.

In the case of water, the smaller unit of the expansion is the single H,O monomer, and
for each n-body term separate PES are fitted to large datasets containing both cluster and con-
densed phase data computed with accurate quantum chemistry methods (MP2 and/or CC). To
correctly bridge the gap in the short-range interactions between analytic potentials and ab initio
method, highly flexible functions are employed.

Water models based on MBE are the CCpol [226-228], the dielectric polarizable point (DPP)
[229], the Huang-Braams-Bowman (HBB) [230-232], and the MB-pol [233-238]. The purely-
data driven potential used to fit the monomers in HBB relies on Permutationally-invariant poly-
nomials (PIPs) [239-242]; seemingly, MB-pol uses PIPss, and has been tested with other ma-
chine learning tools [243]. MBE-based potentials gave among the best results in reproducing
both cluster spectroscopic properties and bulk phase diagrams, often in combination with ML
techniques, either to fit n-body terms [244] or to accelerate MBE itself [245-247]. Other con-
tributions from n-body terms require special techniques, for which the reader is referred to a
dedicated review [248].

As an example of such potentials, we focus on an improved version of HBB, WHBB [249],

because it will be used later. The WHBB expansion consists of the following contributions up
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to the third order:

N
Vivres (L, Z V1b<z>+Z[ Va0, 1) Sy + VMG, ) (1= S |+ ) Vay(irj S,
i>j i>j>k

(5.4)
where the monomer potential V7, is from Partridge-Schwenke [250], the 2-body term is a func-
tion that switches between a PIPs fit to CCSD(T) energies VCCSD(T) (i,j) and TTM3-F interac-
tion V) IM3F(j, j) through S,, depending if the two monomers i and j are in the short- or long-
range regime, and the 3-body term V3, is a PIPs fit to MP2 energies. Further improvements
to WHBB have been proposed, namely q-AQUA [251] and q-AQUA-pol [252], but for our pur-
poses, WHBB suffices.

The potential for water ions in the MBE framework is naively obtained by including the
charged species in the expansion [253-257]. In the case of protonated water, the simplest
charged monomer is the hydronium H;O" ion. For example, the protonated water clusters
mentioned in the first part of the thesis, namely the Zundel and of the protonated water hex-

amer, are represented by the following expansion:

_ M (1) (2)
Vio,t = Vil + VG + V{2, (5.5)
(1) (2) (3) (3) (4)
Vir 1,00, = HO++ZVw +ZVWW+ZVhww+vawwk+zvhwwwk (5.6)
ijk ijk

proposed in [255] and [175], respectively. Here h stands for the hydronium and w; for the i-th
water molecule.
In the light of the WHBB model, the latter can also be written as:

Vit 41,00, = V0t + Vwass ((H20)5) + Z V,f’; , Zk V;(fzi,l w0, (5.7)
i ij,
These protonated WHBB/q-AQUA PES have been extensively employed in the study of vibra-
tional properties by Bowman et al. [175, 198, 256, 258-260].

Although molecular dynamics can be performed using MBE-PES, the necessity of assigning
atoms to specific monomers renders the MBE approach unsuitable for modeling chemical reac-
tions. Reactive many body expansion (RMBE), based on the sum MBE energy over all possible
assignments of atoms to monomers, has been proposed specifically for the study of the proto-
nated water hexamer [261]. Imposing a smooth distance cut-off to the interaction makes the
RMBE scale polynomially with the system size.

We mention that only a few other reactive force fields have been developed, ReaXX [262]
and Multistate-Empirical Valence Bond (MS-EVB) [15, 181, 183, 185, 199, 263-267], which of-
fered many of the insights presented in the Introduction. Unfortunately MS-EVB need to be
reparametrised depending on the system at hand, and it is computationally demanding.

The idea of describing atomic interaction within a fixed cutoff by means of permutationally
invariant polynomials, able to fit any PES without explicit knowledge of the underlying physics

but the permutational symmetries of alike atoms, anticipated key ideas of machine learning
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potentials (MLIPs). Moreover, MLIPs can manage bond breaking, a necessary property to cor-
rectly describe any change in atoms assignement across different molecules, proton hopping
included. MLPs will be the topic of the next Chapter.






CHAPTER 6

Machine learning interatomic potentials

Machine Learning (ML) is an umbrella term that refers to any partially or fully automated tech-
nique capable of identifying meaningful patterns in a given set of observations, which consti-
tute the “experience” of the learner. Typical problems addressed by ML include classification,
which involves assigning discrete labels to observed data, and regression, the continuous gen-
eralization of classification, which involves finding a mapping between dependent variables y
and independent variables X. ML parameters, if present, describe how the learner approaches
the data provided during the training, rather than specifying a predetermined functional form
expected to underlie the data. In fact the strength of these algorithms lies in their adaptability
to the data, hence the term data-driven modeling, often used interchangeably with ML.

Fitting the Potential Energy Surface (PES) is a regression problem that can be stated as fol-
lows: given a set of Ny.,;, = N molecular configurations containing the stoichiometry Z and the

Cartesian coordinates q of N,; nuclei,
{ Xitiz1,.n = {Zi, Qiti=1,..N (6.1)

what is the functional dependence of the corresponding energy and forces

{Yi}izl,v--,N = {(Ei/ fi)}izl,-~~,N ? (6'2>

This type of setting is called supervised learning because, during training, the algorithm has ac-
cess to both the input and output data of the function it is expected to mimic.

Unfortunately, Cartesian coordinates R alone are not suitable for learning algorithms, be-
cause they do not transform under basic symmetry operations belonging to the group of Eu-
clidean isometries as the energy does [268]. In fact from the molecular Hamiltonian (Eq. 1.2)
it follows that the energy of a molecule is E(3)-invariant, while the Cartesian coordinates are
not. E(3)-invariance means that for a transformation G, being it a translation 7, a rotation R
or a reflection S, applied to the coordinates of a molecule, the energy and the forces change as
follows:

E(Z,G(R)) = E(Z,R) (6.3)

£(Z,G(R)) =G (£(Z,R)) (6:4)

77
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Moreover, both energy and forces are invariant under permutations P of identical atoms,
a property that stems from the summation over atomic indices in the Hamiltonian. A cum-
bersome way to ensure the learning of these symmetries would be data augmentation, which
involves transforming and replicating the dataset according to all the symmetries. However,

this would result in an excessively large dataset.

Much of the research effort in ML for chemistry and materials science has been devoted to
finding the best way to represent data in a manner that can handle symmetries. Other desirable
properties of such representations, or descriptors, include injectivity, or completeness, meaning
that different structures map to different descriptors, and the differentiability, which is necessary

in order to compute the gradient of the energy and get the forces.

Descriptors can be carefully crafted based on expert knowledge—a process known as feature
engineering in the ML community—or they can be deduced automatically, a setting referred to

as end-to-end learning, where the algorithm itself transforms the input data.

Given the broad scope of the topic, we will review only those descriptors that will be em-
ployed in this thesis. We begin with the two main categories of representations for molecules
and their PES: global representations in Section 6.1 and local representations in Section 6.2.

Then, after briefly rephrasing the regression problem in the statistical learning framework
(Section 6.3), we will introduce the two big families of machine learning methods for non-linear
fitting: kernel methods and neural networks in Sections 6.4 and 6.5, respectively. In each of them
we will focus on the two machine learning potentials used in this work, kernel ridge regression
through Operator Quantum Machine Learning (OQML) and the Message-passing neural net-
work Atomic Cluster Expansion (MACE).

Finally, in Section 6.6 we will give an overview of what has already been done in water

simulations with machine learning interatomic potentials.

6.1 Global representations

As the name suggests, global representations take full advantage of the geometry of the entire
molecule. An important limitation of these descriptors is the fixed number of atoms they can
consider, or the fact that, when describing compounds of multiple sizes, it is the larger one that
will determine the scaling properties of the whole calculation. For the same reason, extensions
for use in bulk systems is not straighforward; however, this is not a problem when fitting the

PES of a single molecule.

6.1.1 Symmetrizing over pairwise distances

The Coulomb matrix [269] is worth mentioning for its simplicity as the first example of a global

representation. The entries of the matrix C contain the reciprocal of pairwise interatomic dis-
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tances multiplied by the atomic numbers Z of the pair:

1—-24 . .
=7 i=j
2 7

ek J

The CM naturally incorporates the E(3)-invariances, but it is not symmetric with respect to the
exchange of two atoms. This issue has been addressed for CMs specifically by sorting [270] or
by using a bag-of-bonds approach [271].

The already mentioned PIPs also address this issue, but they are limited to 10 atoms [240],
which makes them more suitable in combination with a many-body expansion in terms of

monomers of limited size.

6.2 Local representations

We can exploit the many-body expansion introduced in the previous chapter and write the en-

ergy of a collection of N,; atoms as a many-atom expansion,

Naf 1 Nat 1 Nat
E=) VOR) +5) V() +3; ) V(A G 90) + (6.6)
a " ab " abc
where the potentials terms are symmetric in the atomic positions q,, and zero if two or more

indices are identical [272]. From the equation we can extract the single atomic contribution as

N, N,
1 at 1 at

g, =V, + 5 Z VO (q,, qp) + 3 Z VO (qu qp Re) + -+ (6.7)
b " be

At this point, two approximations become necessary. First, the expansion must be truncated
at the Kth order. Secondly, interactions are considered only between atoms within a fixed ra-
dial cutoff, as depicted in Fig. 6.1. This significant approximation is partially justified by the
principle of the nearsightedness of electronic matter (NEM), which asserts that local electronic
properties are significantly influenced by the effective external potentials—such as those gener-
ated by other atoms—only at nearby points [273]!. In both cases, the number of elements in the
sum of the (K+1)-body term scales as NX, where N, is the average number of neighbors within
the cutoff, making the evaluation of atomic energy computationally intensive.

This is where Machine learning interatomic potential (MLIP) come into play. Two funda-
mental concepts have been crucial to the successful application of data-driven approaches to

interatomic potentials:

1. Interpolating the PES through local atomic contributions learned using highly flexible
models.

Electronic matter may be nearsighted, but it cannot be fooled! An electronic property, such as the density
n, is primarily determined by the effective potential in the vicinity of that point. However, the effective potential
itself, generated by nearby atoms, can be influenced by other atoms that are far away due to long-range electrostatic
interactions. This brings us to the longstanding problem of including long-range interactions in MLIP [274].
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2. Using n-point correlations of the atomic density instead of n-atom correlations.

The idea of point 1 is to described the local atomic environment is described using 2- and
3-body correlation-based representations, which are then used as input for highly general non-
linear functions. These functions can fit virtually any type of interaction, effectively reproducing
higher-order n-body terms as well. However, the impressive accuracy of these methods often
comes at the cost of low interpretability. This idea was pioneered in 2007 when Behler and
Parrinello proposed incorporating the permutational symmetry of atoms by considering only
the atomic contributions &, to the total energy E [275]:

N elem

Nuy N,
E=) Ex)= ) Y &x), (6.8)

X

where we used £,(x,) to emphasize that each £, = £(x,;) must be evaluated using the same
predictive method for atoms of the same element x, considering the local atomic environment,
represented by a local descriptor x,,; we also remind that M is the total number of atoms, Ngjem
is the total number of atomic species, and N, is the number of atoms belonging to the same ele-
ment. It is important to clarify that despite the notation, x is a label for the element type, while
x is a vector representing an atom, and these should not be confused. Once the permutational
symmetry is ensured through the partition of energy among atoms, the local atomic environ-
ment descriptors must respect the symmetries of the E(3) group. In the specific case of [275],
Atom Centered Symmetry Functions (ACSFs) were used as descriptors, and high-dimensional
neural networks served as fitting method. Since then, local descriptors have been the subject of
extensive research. The same ACSFs have been deeply explored [276], followed by many other
representations, such as the Smooth Overlap of Atomic Positions (SOAP) [277], and the Faber
Christensen Huang Lilienfeld (FCHL19) [278, 279].

Often these expansions of the atomic environment are truncated at the three- or four-body
term, to meet efficiency needs by limiting the scaling of the descriptor evaluation to N? or N2, re-
spectively. It has been demonstrated that this truncation makes the atomic descriptor incomplete,
meaning that injectivity requirement is not satisfied [280]. Although this does not constitute
a major problem in most practical settings, it has motivated the research of a more systematic
methods of including arbirary body orders of correlation. Descriptors able to do this are the mo-
ment tensor potentials (MTP) [281], the PIPs [240], and the Atomic Cluster Expansion (ACE)
[282]. The latter in particular brings us to the second key idea of MLIPs, the “density trick” [283],
already anticipated by MTP and partially with SOAP. This technique is based on the fact that
the n-point correlations of the atomic density around a central atom can provide a linear basis
to expand any local property, atomic energies included [284], greatly simplyfing computation
like the one in Eq. 6.7.

For complete reviews of descriptors, we refer the reader to the relevant literature [285-287].
It is worth noting that abstract approaches to descriptor design highlighted that atom-centered

representations are variations of the same mathematical object [288], and that they can be re-
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duced to truncated expansion of the more general ACE framework. Moreover, this similarities
have been made apparent also in message-passing frameworks [284].

Since in this thesis we are going to employ several descriptors (FCHL19, ACSFs and those
automatically built through message-passing extending from ACE), we will write down the
main ideas behind ACE [282] and FCHL19 [279].

Full distance matrix Local distance matrix

Node
Node
Distance (A)

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Node Node

Figure 6.1: Comparison between full distance matrix and local atomic environments in the protonated
water hexamer. On the left the distance matrix of the protonated water hexamer, on the right its masked

representation when only atomic environment with 7., = 3 A are considered. Atoms are numbered as
in Fig. 6.9.

6.2.1 Atomic cluster expansion

Consider an atom a surrounded by N, atoms falling into a sphere with given radius 7. Its
atomic environment is fully described by

0q = {rlalzll 24,22, /TN ars ZNC} ’ (6.9)

where each relation with a neighbouring atom b is fully characterized by the vector separating
aand b, r,, = q; — q,, and atomic species of b, z, as in Fig. 6.2. For the sake of readability, we
will drop the a that refers to the central atom.
The atomic cluster expansion allow to systematically decompose a property of an atom 4,
like its energy
Ea(0) = E(T1q Tan =+ TN0), (6.10)

in contributions coming from each element of the powerset of its neighbouring atoms. By group-
ing different subsets of o having the same number of elements K, we get (K+1)-body contribu-
tions.

ACE is based on progressive definition of basis functions: first the single-bond basis, then
cluster one and finally the atomic basis. The single-bond basis is made of functions that fully
describe the central atom and a neighbouring one. Considering the variablesr = r, and z;, = z
for short, an element of this basis is given by:

()bxv(rlz) = 5(2 - x)qonlm(r) (611)
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' _ 2-body_ 3-bod 7-bod
,"_ termsy+ termsy+ o+ termsy

Figure 6.2: Local energy as sum of n-body terms. We aim to describe the local atomic contribution to
the total energy. Here we consider the central proton in the hexamer as an example. For simplicity we
choose a radial cutoff such that it contains only the adjacent water molecules, for a total of N, = 6 atoms
in the surrounding.

where the index x serves to distinguish among different chemical elements basis, and v is a
collective index in place of those of a spatial function ¢,,;,,,. The latter is defined as a product

between a radial part R,;; and a spherical harmonic Y7, describing the angular part:

Pim (1) = Ry (1) Y1, (), (6.12)

From this functions one can build a complete and possibly orthogonal basis:

Z f dr, (r,2)Pp, (¥, 2) = 8,50, (6.13)
N @i 1,2) P (1, 2) = 3t —1') 0,0 (6.14)

An atomic environment can be described as a collection of clusters y of K atoms {b]-} =1, K/
excluded the central one, 4. Consider clusters of fixed size K. Then the bonds will be
u = (bia,bya,---,bga) and their respective single-bond indices can be collected in the list
v = (vq,0y,+,0k). The cluster basis around the atom a can be built from products of single-
bond functions and can be indexed with yp and v:

K
D, (0) = Py, (0,0) P, (00) P (Tpa) = [ | @0, (20,0, (6.15)
i=1

If there are more chemical species Ngjem,, the bonds list should not change under permutation
alike atoms and can be rewritten simply as 1 = (ky,, ky,, -, kxNel ), wherek, +k, + ---+kxNel =K,
while the cluster basis is

Ng ky
Dy (@) = Py g, (0) = H u Pro, (Xp a2 (6.16)

The cluster basis will inherit the completeness and orthogonality from the single-bond basis,
allowing to expand a local property like the local atomic energy as

E(@) =) 0@y (0) (6.17)

nv
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with the expansion coefficients obtained by projection | v = <<I> WIE 2(0) > The sum run over all
possible cluster sizes k, and it is possible to rewrite it in a single-bond representation to make it
more similar to the original Eq. 6.7:

E,(0) = Z Z ZLE%} o (1)

+ DIl Z Z Z ]?lezvz(lyxlvl( bla)(l’xzvz(rbza)

b1<b2 X1X2 U102 (6.18)

1
+ 31 Z Z Z ]J(C?lezvzx303¢xlvl (To,0) Py, (Fop0) Pryo; (Tpza)

" by<by<bz X1X2X3 V10203
+ ..
To make the step to the atomic basis easier, it is possible to rewrite the above expansion with

unrestricted sums with new coefficients, c. These are defined in such a way that self-interaction

terms involving products of more single-bonds basis function on the same atom, for example

(levl (rbla)gbxﬂ2 (rbla), are zero.

gu((T) = Z Z Z C;%J)q)xv(rbu)

2
Z Z Z CJ(‘l)lezvz(le% (rblﬂ)(szUz(rbz”)

b 1by X1%2 U103 (6.19)

1 3
+§ Z Z Z Cg‘l)lezvzxsvsgbxlvl<rb1ﬂ)¢xzvz(rbzﬂ)¢x3v3<rb3“)

by byby X1X2%3 010203
+ ..

Until now we just wrote the original many-atom expansion as linear combination of single-

bonds terms, but we did not solve the problem of the NX scaling. The trick for this is to just

reorder the summations such that the sum over all neighbors b is done first. This is equivalent

to define an atomic basis as the projection of the density of atoms of element z in the neighborhood
of the central atom onto single-bond basis functions:

Agox = (03100 =) D" pox(Tpq) (6.20)

b:zp=x

where the density of atoms of element x is defined as
ox(r) = Z 02,x0(r — 1), (6.21)
b
Then the atomic energy becomes a polynomial in A
ga (o) = Z Z CJ(C%)AI,Z,UX
+ Z Z C.g(%)UleUz a lelAﬂ,Uzﬁ?Cz

X1Xp Uq <‘02

1 YOV
+ § Cxllezvzx3v3Aa lelAa vzsza U3X3
T X1X2X3 vq <v,<v3

(6.22)

+ .-
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A visual example of this procedure is represented in Fig. 6.3.

A further step in the ACE expansion is imposing the symmetries we mentioned at the begin-
ning of the Chapter. For example rotational invariance may be imposed by restricting the sum
over the spherical harmonics indices v = (v1v,) such that only products of spherical harmon-
ics that can be reduced to a representation of the identity of the rotation group. This is done
by reducing the products of the atomic bases A, ,,;,,, using Clebsch-Gordan coefficients (or the

analogous Wigner 3j symbols), which imposes conditions on the values of [ m.

1
Bb(m) = AunOOr (623)
(2) l
Ban1n21 - Z (_1)mAanllmAzmzl—mr (624-)
m=—I1
l [
(3) 2 3
Ban1n2n3 = Z Z Z { }AzmlllmlAanzlzmzAan3l3m3/ (6'25)
1213 my=ly my=ly my=ly LM1 T2 T3
The final energy can be written as:
(1)p(1) 2) @ (3) (3)
ZC Ban' + Z Cnlnzl anynyl + Z C”l”z”sB’mlnzns o (6.26)
nqnyl mtong  Ihll; Ll
L,
or, in a more compact form:
K K
Ey(0) =) cBL) (6.27)
Knl

6.2.2 Faber Christensen Huang Lilienfeld (FCHL19) descriptor

As for all the atom-centered representations, the molecule m is represented by the collection X
of the descriptors x of all the N,; atoms belonging to it.
X = [Xl, ooy, xNat] (628)

If we denote a generic atom with g, its environment is described by two types of symmetry
functions (other terms can be added, but they would decrease the performances):

x, = [GXPody G3bodyy (6.29)

where we dropped the single molecule superscript m. Each of the two term is a collection on its
own:

e Two-body radial functions, G b4y Jescribe the distribution of chemical elements around
the central atom 4. It is physically related to the coordination number and it scales linearly
with the number of elements N, of possible elements in the atomic environment. In
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Figure 6.3: Graphical explanation of ACE density trick. In general the energy will be the sum of n-body
terms contribution, up to the (N, + 1)th order, which includes all the atoms in the local environment. If
we consider combination of single-bonds function to form the n-body terms, allowing repetitions, each
(K+1)-body term will contain N K contributions, which can be costly to evaluate, considering that this
has to be done for each atom in the molecule. A more convenient way of evaluating the energy is by using
products of the atomic basis (2nd and 6th lines), which scales linearly with the number of neighbours.
Once the atomic basis is defined, it can be employed for higher-order contributions to the total energy
(2-, 3- and higher body contribution), which do not depends on the number of nearby atoms.
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fact it is defined as a collection of element-wise radial functions Gg'bOdy(x,x) where x,, is
one of the possible elements:

Gi-bOdy == [G%-b<x1)/ tty Gl%-b (xNelem)]’ (6'30)
N,

elem

where each term is given by the sum of all the contributions coming from all the atoms of

the same chemical species, and it is based on the reciprocal distance only:
Gi_bOdy (x) = Z G2—body<rab> (631)
bIZbZZX

where r,, is the reciprocal distance between atoms a and b.

e Three-body functions, Gg’b(’dy, describes the distribution of angles and distances between
triplet of elements around the central atom (with the species of the central kept fixed).
The scaling with the number of possible elements is given by all the possible non-ordered

combination with repetition of chemical elements:

N jom (N, -1 1
(Nelem + clem 2e!1em ) = ENelem(Nelem + 1) (632)

3-bod _ . _ . .
Ga y = [Gg b(xlrxl)/ Gg b(x1/x2)/ tty Gg b(xlr xNel)’Gg b(x2/ x2)/ tty Gg b<xNe11xNel):|/

Ng (Ng+1)
(6.33)
where each term is a shorthand for
Gg-b (x, x,) = Z GS-b (RSl Yabr Tacs HabCI Qcabf gbca ), (6'34>
b:Zb :Zx
c:Z.=2.

as before we have the sum over different contribution coming from couple of atoms in the
atomic environment, taking into account the reciprocal distance with the central atom and
the three angles formed by the triplet.

Now we have a closer look to the specific functional form of the 2- and 3-body function intro-
duced so far in the summation.

Two-body functions

The radial basis functions set is defined over a grid, centered on the considered atom, of ng,,

points, that is, the discrete variable Ry can assume ng,, values (24 by default), from ,:;“; to a

cutoff radius r.,; above which the environment is not considered anymore local. The height of

the bin at each R, is given by the sum of all the contributions of the kind GZbody (y 1) coming
from all the atoms belonging to the same chemical element:

_ (nRs—pu(rgp))?

GZPY (11) = & (Fap)feut (Fap) 200 (6.35)

—_—€
Rsa(rab)
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where y(r,,) and o (r,;,) are parameters of the log-normal distribution; these parameters depend

on the interatomic distance, r,;, and a hyper-parameter, w, defined as follows:

) = In | — |, (6.36)
1+ o
ab

7 (r)? = In (1 + %) (6.37)
ab

In the equation (6.35), the form of the two body scaling function, ¢, (7,;) has been found by
previous studies to be suitable for obtaining higher regression weights to terms that contribute
the most to the total energy

1
C2(Tap) = - (6.38)
rab

The soft cut-off function used here is the same as the one proposed in other representations
such as ACSFs:
1 T, .
5 (cos (r—") + 1) if oy < Ty

cut

Jeut(ap) = (6.39)

if Tap > Yoyt

All the hyper-parameters ( the width parameter of the log-normal distribution, w; the ex-
ponent of the scaling function, N;; the cut-off distance, 7.,;; and the number of radial basis
functions, ng,,) have been optimized on different datasets through Monte Carlo by the authors,
but can in principle be adapted to specific datasets, at the price of loosing their universal validity.
Their actual values will be reported in Appendix C.

Three-body functions

The three-body functions encode the distances of an atom to neighboring pairs of atoms in the
environment of the atom, as well as the angle between the triplet. The resulting function is a

product of the following terms:

Ga_b (ng; Tacr Qabc19cab/ gbca) =

3-bod 3-body

(6.40)
63 Gradialy ( Tabs Tac ) Gangular ( Hcab )f cut (rab )f cut (rca )f cut ( T'pe ) ’

where there is a radial basis function defined as:

2
. 1
Gfaz(i)iy(r”b’ ruc) - \@exp (_173 (E (r”b + ruc) - RS) )’ (641>

where 73 is a parameter that controls the width of the radial distribution functions and again
R, is the location of the radial gridpoints, in total ng3 (20 by default). The three-body scaling

function, g3 is

14+ 3cos(0.,4p) cos(8,pc) cOS(Open)

63 =C3 , (642)
(rabrbcrca)z\[3
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3-body

angular collects two forms:

here any 6, pc is the angle ABC. Finally, the angular term G

2
G (0.4p) = exp (—%) (cos(nb,p) — cos(n (B, + 7))

3-body _
G (eCﬂb) - . (gn)z . .
G?qm(gcab) = exp <_T) (Sln(ngcab) - Sln(n(gcub + 7-[)))/

angular

(6.43)

where np is the order of expansion (usually fixed to 1) and ¢ is a hyper-parameter describing
the width of the angular Gaussian function.

Length of the representation of an atomic environment

According to the number of 2- and 3-body functions, Ngjer, and Ngjem (Nejem +1) respectively, the
number of bins in each single 2- and 3-body function (ng¢, and ng; respectively) and the order
of expansion of the angular term (nf), the total length of the atomic environment descriptor is:

Nelern X NRep + Nelern X (Nelem + 1) X NRg3 X NF (6-44)

For example, in the case of water clusters, we have only 2 types of elements, Nyjor, = 2, and
using the default values of the expansion numbers (11, gs3, 11p) = (24,20, 1), the description

of each atomic environment is a vector of 168 entries, showed as an example in Fig. 6.4

Relation to ACE

As showed in [282], it is possible to find connection between the ACSFs and the ACE descriptors.
Since FCHL19 is a variation on Behler’'s ACSFs, we can apply the same logic here. First of all
the 2-body functions of FCHL19 are just radial function that can be used in any other descriptor,
included the BV term in ACE. In the 3-body functions the angular dependence is given by
cos(8.,p); an analogous dependence on the cosine of the angle between 2 atoms and the central
one can be easily obtained from B‘® by means of the addition theorem for spherical harmonics:

4 {

21 +1 m;l(_l) YZ (rbtl)Yl_ (Teq) = PZ(COS(Qcab)) (6.45)

where P are Legendre polynomials.

6.3 Regression in the statistical learning framework

For a more comprehensive and in-depth exploration of the statistical learning framework, we
refer to [289, 290].
We start from a set of observations formed by couples of independent and dependent vari-
ables
(X1, Y1), (XNyr YNg) € X X Y, (6.46)
Train set

where & is the domain set, or sample/instance space, and ) is called label or target set; in our

case they would be the molecule representations and the corresponding tuples of energy and

forces (E, F), respectively.
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In the statistical learning framework the regression problem is rephrased as: assuming that
the data are generated according to an unknown joint distribution D over X x Y, which we
can write as D = D((x,y)Ix)D(x), what is the function (called also predictor, or model) f that

minimizes the probability I’ of sampling x and missing its right target y, i.e.

P[f]1:=D{(xy) : f(x) #y})? (6.47)

where P is a functional whose domain is all the functions belonging to an hypothesis class .
This can be recast into the minimization of the true risk, Ly, which is defined through this same
probability.

The true risk can not be evaluated, since we do not know D and we do not have a disposal

an infinite number of couples (x,y) to compute it. A more practical way to measure the success
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Figure 6.4: FCHL19 descriptor fora H" (H,0), configuration. Each row represent an single atomic envi-
ronment of 168 entries, distributed in columns of different element-wise n-body terms: the first two are
2-body terms (24 bins each), the last three are the 3-body terms (20 bins each), containing angular infor-
mation. We can see how the third hydrogen, which is the proton, is the only one showing a double peak
2-body correlation with both oxygens and hydrogens. Overall difference can be noticed also between
the central Zundel oxygens, at the 4th and 13th columns, with respect to all the solvation oxygens, and
between hydrogens in the solvation shell and Zundel hydrogens.
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of a predictor is through the empirical risk minimization (ERM) learning rule:

1 N
n}in [Ls [(f(xi)IYz’)i:L...,n]] = rr}in lﬁ ; Is (f (x;), Yi>] ’ (6.48)

where [, is an appropriate loss function which measure the error given a true value y; and the
prediction f (x;), while L is the total loss. However in most of the cases the regularized loss
minimization (RLM) learning rule is adopted, where the functional to be minimized is:

min [L,(f) + ()], (6.49)

where the first term is the empirical risk defined above, R(f) is the regularization term which
controls the complexity of the hypothesis class 7 from which f is selected: it should be large
enough to contain the functions that can solve the problem, but not too large, otherwise the
algorithm could overfit the data or be unstable under slight change of its input.

An example is the regularized least-squares linear regression, where the unknown function
fw is approximated by the hyperplane that minimizes the squared distance between the pre-
dicted and the true function value.

1 N
min N;(<w,xi>—yi)2+/\IIW|I2 : (6.50)
1=

where A is a hyper-parameter which controls the trade-off between high empirical risk or high
complexity. Now the predictor function f,, (x) is defined as a dot product between the instance
x and the vector of coefficients w, as usual in linear regression; the loss function is the squared
loss, the regularization function is the Tikhonov one. This kind of regression is called ridge
regression.

6.4 Kernel methods

Here, we introduce Kernel ridge regression (KRR) methods. We refer to [290, 291] for a broader
and deeper view on these subjects.

6.4.1 Kernel ridge regression

Kernel methods extend what we have seen above with linear regression to nonlinear functions.
The samples {x;} are mapped to a high-dimensional Hilbert space called feature spacez, H, where
the learning task can be reduced to a linear regression. The explicit feature map can be formally
defined as

p: X ->H

(6.51)
X q:=¢Xx),

ZNB: these features are different from those produced in the features engineering step we introduced in Sec. 6.1
and 6.2; that one in our case means ”descriptor engineering”
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given the high number of dimensions of feature space (up to infinite), it can be costly if not
impossible to compute the features of a given sample x. The “kernel trick” is a way around this
problem: if we rewrite the problem of (6.50) in a more general way by considering the vectors
belonging to the feature space we obtain

argvinin [Ls ({w, p(x;)), - (W, p(xN)); Y) + R(wWI) ], (6.52)

we can apply the representer theorem [292], which states that there exists a vector « € R” such
that the optimal solution of the equation (6.52) can be written as:

N
w = Zwi¢(xi). (6.53)
i=1
This allows one to rewrite the optimization problem (6.52) as:

N N N
arg min [Ls (Za]-<¢<x]->,¢<x1>>, = Zaj<¢<xj>,¢<xN>>;y) +R (JZaia]-@(q]-),wqi»ﬂ,
@ j=1 j=1 ij

(6.54)
in which we notice that the features appear only in the dot product in the feature space. In the

particular case of regularized least squares we have

2 N
argmm [Z (sz {P(x;), p(x;)) — yi) +A Zaiaj@(xj),qb(qm] . (6.55)
i

Now we define the kernel function K as
K:AxX->R
(6.56)
(x,x") = K(x,x") =(p(X'), p(x)),

which implies that the kernel must be symmetric, that is K(x,x") = K(x',x), and positive defi-
nite. Equation (6.54) can be written as an optimization problem with respect to the coefficients

&,

(6.57)

N N
argmm[ (Zoc IC( xl),---,Z(x]-lC(xj,xN);y)+R(\JZo¢ia]-IC(x]-,xi)) ,
j=1 ij

for which we do not need direct access to the elements in the features space H through the

explicit mapping ¢, we need only to know how to perform the inner product IC(x,x"), that is,
the kernel function, or equivalently, the Gram matrix K:

Kij = K(xilxj) = <(P(Xi)l (P(X]>> (658)

Particularly for the least-squares, the Gram matrix K allows one to write (6.55) in a com-

pact way by constructing the label vector yI = (y;,-,yn) and the vector of coefficients

= (0‘11 /aN):

, (6.59)

argmm lz (Z ;K — yl) +A i ;0K
ij
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argmin [||Koc - y||2 + )chKoc] . (6.60)
o

Once we learn the coefficients &, we can calculate the prediction on a new instance x* by simply

computing the dot product:
N N
(W, (X)) =Y a(p(x), p(x*)) = > aK(x;, x*). (6-61)
J i

Before treating the specific case of energy learning, we mention one of the most commonly
used kernel, which will be used also later, the Gaussian one, also called radial basis function
(RBF):

Hx X,HQ _(x=x /2 b%

]C(x, x’) =e 202 202 — =¢ 202 202+U2 —

=e =
xx 1 /xx'\°
=¢ 2(72 0—2 1 + 02 + § 02 + .- e ( )
: 6.62
1 x2 1 x? 1 x> 1 x3
202 (1.1 4 =- -l =

x x
= == +-
c o Jauo? [Juo?  [30d @03

=e 202 20

= (p(x), 9(x)),

where the passages makes evident that we have implicitly employed the mapping;:

) 22 1 x 1 x2 1 x3 (6.63)
X) =e¢e 20 — — . .
¢ o B

6.4.2 Learning energies via kernel methods

Now we can apply the concepts developed in the previous section to the specific problem of
fitting the PES. In the case of global representations, we can write the training set as

(X1/E1>/"'/(Xn/En)/"'/(XN/EN) (664)

The training step consists in solving the minimization problem (6.55) in its matrix inversion
problem form (Eq. 6.60), where K is a square matrix of shape Niin X Nizain-

Instead of just inverting the equation according to a naive loss minimization, it is common
practice in ML to reduce the complexity of the hypothesis class of the function, in this case
represented by the regression coefficients, by introducing a penalty for too large coefficients.
This learning rule is called regularized loss minimization (RLM). This is done also to stabilize
the learning algorithm, which means that a slight change of its input should not change too
much its output. One of the most employed regularization function is the Tikhonov one we

have already seen in Eq. (6.50):

N
R(a) = Allal; =AY a2, (6.65)
n
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In our case the kernel ridge regression is done by solving the minimization problem:
. 1 2 A T
argmin | = |[Ka — E|; + za' Ka (6.66)
w 2 2
The solution can be written in the following closed-form:
a=(K+I1) "E (6.67)

In practice this solution is usually determined not by direct inversion of the matrix, but by sin-
gular value decomposition, to deal with the large dimension of the training set.

Once the coefficients are found, the total energy of a query molecule m would be given by

N N
Ep = E* (X)) = ) Kty = - KOG, X))t (6.68)
n n

where the a’s are the regression coefficients, and the kernel matrix entries are given by a kernel

based function, which for example could be

2
X5, — Xl
Ko = KX, X5) = exp (——” 5 me (6.69)

If we want to predict the energies of N.; = M molecules, we can collect them in a single vector
E* = [E],E5, -, E}‘VI]T and express the above equation in matrix form:
E* = K*'a (6.70)

If we are describing the compound by local atomic environments x, these are compared by
locally defined kernels; the total energy of a molecule is now expressed as a sum of local atomic

energies:
N
En=) Exn=) > > K& x)a, (6.71)
aem aeEmn=1ben

where m and n are the test and train configuration indices, and for short notation we indicated
witha € mand b € n the atoms belonging to them. If we rearrange the sum we can still consider

a “global kernel”, given by the sum of local ones:

N N
Ep=Y > % Ko x)a, = ;;K;;maj, (6.72)

n=1a€mpen
and as we did for the true global kernel in Eq. 6.70, we can write the above equation in algebraic
form, E* = K*a. In both cases the kernel matrix K* has a shape of M x N. However, in the latter
case, the matrix entries K,,,, do not correspond to true kernel functions. In fact this compact

form hides the sum over the atoms used to build the basis. Using again RBF as an example, we

o2
Kin= Y Y Koupxp) =Y Y 87, 7 exp (W) (6.73)

aempen aempen

can write

where the Kronecker-delta §;, », has been introduced to compute the local kernel only between
atoms of the same type, following the prescription of Eq. (6.8).
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6.4.3 Gaussian process regression kernel

What has been exposed so far can be studied also from a Bayesian view point. For a general treat-
ment of the subject see [293 ], for its application to PES learning see [294]. In particular Gaussian

process regression (GPR) offers an alternative to fit simultuneously energies and forces, with

E K -2K
l l = |: 5 aaer ]a. (6.74.)
F _gK 8rarTK

where the dimensions are (N 4+ 3N,N) x (N 4+ N,N), with the usual N the number of samples

kernels of the form:

in the training set and N,; the number of atoms in each sample. Now the cost function is:

2
1| x -%K E A K --%K
argmin | = 5 I e — +-al | a e (6.75)
w 2[|-2£K =-2%K F 2 -=-K ——K
or ororT 2 or ororT
with solution: .
K —-%K] E
w= I+ 1A (6.76)
—2K 2K F
or ororT
Energies and forces can be obtained with:
B 0
E=|K->7K|a (6.77)
A i K (6.78)
T T arar|” '

It is also possible to use only forces labels during the training to produce accurate and still
energy-conserving molecular force fields. This process goes under the name of gradient-domain
machine learning (GDML) [295], the equations are formally similar to the previous ones, just
restricted to the lower-right (N + 3N;;N) x (N + 3N,;N) submatrix:

2
F= [;TK] « (6.79)
o K F2+/\T i K (6.80)
rgmin | < — - .
T8 2 | ararT 5 2% GroxT "
P2 -
=(|—=K|+IA| F 6.81
“ ([ararT ] * ) (6:81)

The only difference is that now the energies are predicted up to an integration constant ¢, which

can be useful only when doing the final test with direct comparison of energy values:

_ d
E = _ar_TK x+c, (682)

which in our case has been determined during the training by computing the average difference
between the predicted energies and the true ones.
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6.4.4 Local kernels with operator quantum machine learning

Within the context of kernel-based regression, it has been proposed [296] that not only the
energies can be used as labels, but also any observable that is related to differential operators
acting on the energy. This framework is named Operator Quantum Machine Learning (OQML)
and it is useful in those cases in which forces are available, since it has been shown [297] that
they can improve the prediction both in energy and forces.

The kernel matrix looks different from the previous one, as now the column index runs
not just on the configurations in the training set, but on all the atoms of all the training set
configurations:

KML = %" K(x7, %) (6.83)

Iei
which is no more a square-matrix, as the dimensions of K®M! are N x MN. To take into account
also the forces we consider the derivative of the kernel entry with respect to the coordinate of

the atoms belonging to the configuration-row:

0 d
KOME = Y % pox,x) K e[l -,3M], (6.84)
ory, 1l ; org

where the derivative is computed as shown in the previous section and K runs up to 3M because
we are considering a particular configurations. We can express the least-squares algorithm in
matrix form as the minimization of the cost function:

2
E KOML
i — OML 6.85
argimnl [F] [_%KOML}“ ] (6.85)

2

where the dimensions of the kernel matrix, derivatives part included, are (3MN + N) x MN,
with N the number of samples in the training set and M the number of atoms in each sample.
Here there is no regularization factor, but since this equation is solved with singular value de-
composition (SVD), the threshold below which singular value are no more considered can be
treated as A.

6.5 Neural networks

Another way of managing non-linearity is through neural networks, which have been inspired
by how the brain works. The idea of modeling network of neurons dates back to 1943 [298],
while the first physical implementation of a single artificial neuron able to learn to distinguish
pictures is Rosenblatt’s perceptron [299]. Both the biological and artificial neuron are depicted
in Fig. 6.5. The biological neuron receives various inputs through chemical signals at the den-
drites. If a certain threshold of signals is reached, the message is electrically propagated through
the axon and passed to other neurons at the synapses. Similarly, the perceptron receives an in-
put vector of values, and if a weighted sum of these values exceeds a threshold, it spikes an
output signal, encoded as a Heaviside step-function or as another non-linear function. A single
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neuron, however, is limited in its expressive power and can only solve problems that are lin-
early separable [300]. It is by connecting multiple perceptrons that we create a neural network,
which for this reason is also called multilayer-perceptron.

Input Weights Sum  Activation  Output

Ranvier node

mmr
!

Sencsie

Sheathed axon

Figure 6.5: Modeling the neuron. On the left a biological neuron [301], on the right its artificial imple-
mentation in the perceptron

Axon hillock Myelin cell

A feedforward neural network (FFNN), schemed in Fig. 6.6, is a predictor composed by:

o A directed acyclic graph G = (V,E), where the nodes V are the neurons processing the
information and the edges E are the link propagating it between neurons.

o A weight function w : E - R, which assign a weight to each edge.

e An activation function ¢ : R —» R, which model each neurons non-linear response in

. . . . . -1
every nodes. Some examples are step functions sign(x), or sigmoid functions (1 +e™*) .

The network is organized in layers V;, meaning that the set of nodes can be decomposed

into a union of disjoint non-empty subsets,
T
v=JV, (6.86)
t=0

where T is the depth of the network, that is the number of layers such that every edge in E
connects somenodein V;_; tosomenodein V;, forsomet € [T]. Vis the inputlayer, it contains
m + 1 neurons, where m is the dimensionality of the input space; this means that Vi € [m] the
output of neuron i in Vj is simply x;. The last neuron of the first layer, i = m + 1 = |V| = d,,
is the constant neuron, which always output 1. The layers V7, -, V_; are called hidden layers,
and the last one, V7, is the output layer, which gives the prediction. Each layers has a width
d; = |V,|, and the total size the networks is given by the number of nodes, |V|, while its width is
given by the largest layer, max; |V,;| = max, d;.

The neural network is called feedforward because the information flows in one direction—
from input to output—without any cycle or loop. At the level of a single neuron at the index
i of a layer t, as sketched in Fig. 6.7, its input aEt) is the weighted sum of the outputs of all the
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Figure 6.7: Information flow in a single neuron embedded in a feedforward neural network.

neurons connected to it from the layer (t — 1):

— — T — —_ _
af ™ =3 (wfi™) yV = )Ty (687)
j=1

where in the last step we expressed the sum as a matrix-vector product. The output of a neuron
is simply the application of the activation function to the input:

yO =g (<ngt—1>)Ty<t—1> +b-D), (6.88)

where b~ is the bias of the neuron
We can also adopt a layer point of view, by defining the weight matrix W, of shape d; xd;_4,
whose rows are the transposed weight vectors w;t) between layer (t — 1) and layer (¢),

T
W, = [wl®,wif), o, wi] (6.89)



98 Chapter 6. Machine learning interatomic potentials

It follows that we can write the total input from layer (¢ — 1) to layer ¢ as:
al) =w,yt-b (6.90)
and the total output from layer f to layer (¢ + 1) as:
y® = o (Wyt=D) (6.91)

Since we will deal with only FFNN, we will refer to them simply as Neural network (NN).
From a functional point of view, a NN is a function with the following domain of applica-
tions:
fvEew: RVOT - RIVr (6.92)

where the parameters {V,E, o} define the architecture of the neural network. The hypothesis
class of a network is defined by fixing its architecture

/HE,NE,U = {fV,E,U,w tw:E— R} (6.93)

where w is the function that assign a weight to each node. Once the hypothesis class is defined,
we can denote the neural network as f,,, where w stands for all the weights, which are the
parameters to be learned. Hence training the NN means finding the optimal set of weights that
minimize the loss.

6.5.1 Optimization by gradient descent

Differently from kernels, the optimization of a NN with respect to a loss function does not have
a closed form solution. Therefore we rely on iterative procedures, which minimize the loss

function by taking its gradient with respect to the learning parameters, here the weights:
witth = wlnl — Vo LR, (6.94)

where 77,, is an adaptive learning rate, which decreases at each iteration n according to a power
law or an exponential law; the idea is that at the beginning it is advisible to update the weights
spanning the most possible of the loss function landscape, and avoid slow convergence; but
closer to the minimum the update of the weights should be smaller, to avoid instability. Such
algorithms are collectively designated as gradient descent algorithms, and will eventually land
on a local minimum of the loss function L.

In order to avoid the iteration to be stuck in local minima of the loss function, stochastic
gradient descent (SGD) algorithm are commonly employed [302]. The training set is randomly
partitioned in minibatches, and at each iteration the gradient is computed on a single randomly
picked minibatch. Other benefits of these methods may include a sort of regularization that
prevents overfitting [303]. One of the most common SGD algorithm is the Adaptive Moment
Estimation (ADAM) [304 ], which exploits first and second momenta of the gradient to calculate

an adaptive learning rate.
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In the case of NN, the partial derivative with respect to a weight w](f ) is computed as:

oL oL dat"
AD w'PyD ), (t=1)
w®  oa ® aw(t) A; S ]Z Y | = B0y, (6.95)
]1 ]z =

where we see that between layer (t — 1) and (), Aft) can be expressed recursively as a function
of the weights of the successive layer (¢ + 1):

(t) dy, (t+l) dp,
t 3511(}‘) ay(t) au(t) = aal(ct+1) ay(t) t

(6.96)
with the initial condition being just the gradient of the loss function with respect to the weights

of the last layer,
r oL

F= (6.97)

This means that in order to find the gradient of the loss function with respect to all the weight,
Eq. 6.97 has to be backpropagated [305]. Once the gradient is determined, it can be used in
SGD algorithms to optimize the weights.

6.5.2 Neural networks for PES

We mention that in 1990s the first NNs applied to PES fitting were global in nature [306-309].
Since the seminal paper of Behler and Parrinello [275], with a few exceptions [310], nearly all
neural network potentials (NN-PES) relied on the local atomic environment approximation
discussed in Sec. 6.2. The only global NN-PES nowdays are based on techniques to construct
permutationally invariant global basis function, for example PIPs+NN [311]. For an historical
overview of neural network potentials, we refer to [312]. In the following Section, we will focus

on the two architecture employed in this thesis.

6.5.3 High-dimensional neural networks

High-dimensional neural network (HDNN) are a collection of disjointed sub-FFINNs designed
to compute the atomic contributions to the energy and the forces acting on individual atoms.
Only the output of these sub-networks are combined to yield the total energy of a given molecule.
Despite the name, the single elemental sub-networks are relatively shallow compared to typical
image processing NNs. Usually, they consists of only 2-3 layers, while the width of the networks
rarely exceeds 40 nodes. The name "high-dimensional’ likely refers to the breathrough concept
of using multiple sub-networks, as illustrated in Fig. 6.8. In the literature, this architecture is
often referred to as Behler-Parrinello neural networks (BPNNSs).

While the training process via backpropagation of the loss function’s derivatives with re-
spect to the weights 6.95 is well known, an often overlooked feature of these networks is how

the forces are computed in the forward propagation step. Rather than calculating numerically
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the atomic forces via finite difference, these forces can be obtained analytically using the for-
ward derivative with respect to the descriptors. For example, the forces can be derived from the

sum of local energies as:
N

f=-VE=-V) £(x,). (6.98)

If we focus on a single atom a force component f, we can apply the chain rule [276]:

oo _If 9E (xg) _ R0 (xy) 0%,

908 I, oq" (6.99)

a a

The partial derivatives of the descriptors with respect to the Cartesian coordinates can be com-
puted explicitly, or by means of symbolic or automatic differentiation. The partial derivatives
of the local energies with respect to the input vector x of the NN instead are given by the matrix
product of the Jacobians of each layer:

o0&
5% IO yr2) - Jix) (6.100)

where each Jacobian J; is given by:
Ji(ys) = diag [0" (Wiy; 1 + by ] W, (6.101)
Alternatively, each Jacobian with respect to the input x can also be defined recursively as:
Ji(x) = diag [¢" (Wyy;_1(x) + b)) W] 1 (%) (6.102)

whereJ;(x) =1 € R%1%o jg the identity matrix, as usual in the forward derivative definition in
automatic differentiation.
These computations are essential for obtaining forces and run molecular dynamics with

MLIPs, and are common also in ML as input sensitivity analysis [313].

6.5.4 Graph neural networks and MACE

Structural formulas in chemistry suggest that the most natural way to represent a molecule for
mathematical analysis is as a graph, G = (V,E). While we already introduced graphs in the
previous subsection on neural networks, in this context, each node v € V represents an atom,
and the edges between two nodes (1,v) € E are undirected and purely based on the distance
matrix D, rather than on actual chemical bonds. An example of such a graph for the protonated
water hexamer is shown in the left panel of Fig. 6.9.

Graphs are a good starting point for machine learning chemistry, because the desired per-
mutational symmetry translates to node-order equivariance, which is a fundamental property
of graphs. Predictions on a graph can be of three types: predictions on nodes, predictions on
edges and global prediction on the overall structure. Our focus is on predictions at the node
level—specifically, the atoms—since we are interested in local atomic contribution to the total

energy and in the forces acting on atoms. Additionally, we aim at computing the descriptor of



6.5. Neural networks

Cartesian
coordinates

101

Input Hidden Hidden Output
Layer Layer 1 Layer 2 Layer

N—(

A4
\\%’4’/"
R

77
\\"(l;‘ WA
@‘t"‘@um@
i‘l“'%@
S IR

N\ 7 ‘A‘\‘V\Q

Oxygen
atomic
energy

ydrogen
atomic
energy

Figure 6.8: Scheme of a HDNN for a water system. A combination of the schemes in [314] (under
the CC-BY), where we stress that there are separated network to process the environments of different
atomic species. A structure is completely defined by its cartesian coordinates and its atomic species,
reported in the first column. The second column is the input layer of the NN and it is formed by the
atomic environment descriptors, which are a collection of Atom Centered Symmetry Functions (ACSFs),
[G1,G,, G3]; the central atom is linked to its respective environment with a full line, in fact we distinguish
between oxygen descriptors, xo (in red), and hydrogen descriptors, xy (in blue); in principle all the
atoms are considered when building the descriptors, hence all the cartesian coordinates are linked to the
input layer (see the dashed lines of oxygens going to the descriptors of hydrogens, and vice versa); in
practice, the atoms that are outside the radial cutoff will not contribute in defining x. From the input
layer we have the usual feedforward propagation through a shallow network of 2-3 hidden layers, that
determines the atomic energy contribution of each atom, in the output layer. Summing over all the Ef,
and Ef; gives us the total energy of the molecule, E,.
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Hops distances

Node

12 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19
Node

Figure 6.9: Molecular graph and hop-distance between nodes. Left panel: molecular graph of the
protonated water hexamer when only atomic environment with 7., = 3 A are considered. The edges in
bold are actual covalent bonds. Right panel: distances between the nodes of the molecular graph. Violet
squares are the elements of the adjacency matrix and are the same colored squares of the right panel of
Fig. 6.1; considering more messages passing, each node becomes “aware” of the presence of other atoms
outside of the radial cutoff.

each node in an automated manner. In the case of graphs, the predicted features of their con-
stituents are referred to as embeddings, as they are directly derived from the structure in which
they belong to.

While one could apply separated neural networks to each element of the graph, doing so
one would miss the advantages of a graph-based representation of molecular data. Instead
of considering individual entities in isolation, graph neural networks (Graph neural network
(GNN)s) are a family of neural networks that can extract and use features from the underlying
graph through an iterative process. To describe this node-representation learning, we adopt the
framework of Message-passing neural network (MPNN) [315], a type of GNN that includes
convolutional graph neural networks (CGNNSs) in which different elements of the graphs ex-
change messages to determine their own features.

Consider a node v and its learnable features hi(JO). These features are tuned to h§t+1> at each
stept € (0,T — 1) through a learnable update function U;, which depends on the previous
representation, hz(,” and a message mj(\t/) that collects the information from its neighbouring

nodes, N,,.

(v)

h+D = U, (hét),m,(\?(v)) ) (6.103)

Here, each iteration can be thought as analogous to a layer in standard neural network, which is
why we used the same indexing (t) for the iterative step and the layers of a NN in Sec. 6.5. The
message m/(\tf)(v) is constructed by a pooling function p, designed to be permutationally invariant.
Specifically, m involves of two operations: gather the neighbouring embeddings through single

messages function M(h,,), and aggregate them with a permutationally invariant operation, the
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simplest being the summation.

)  _ t)
m{), =p ({M(hw )}weN(v)) (6.104)
Once all the features have been computed, a learnable readout function f, which acts on all the
nodes, either separately or collectively, produces the prediction we are interested in

v =f((1")ey) (6:105)
In the MPNN framework, all the components described as learnable can be implemented using
a neural network. Graph neural network are a rapidly expanding field of research with appli-
cations to network science. For a concise yet comprehensive reference on GNN see [316]. In
the following we will focus on how the above framework can be exploited in machine learning
chemistry.

Quantum chemistry simulation and drug discovery have been major drivers for GNN devel-
opment, with numerous MPNN models emerging over he past decade [317]. Message-passing
offers the appealing feature of going beyond the local atomic environment approximation by
allowing multiple messages to be exchanged across the molecular graph. In the right panel of
Fig. 6.9, we see a generalized adjacency matrix. The adjacency matrix A € RIV*VI encodes the
connectivity of the molecular graph, indicating the presence of edges:

Alu,v]=1 if (u,v) €E (6.106)

Alu,v] =0 otherwise
With the first messages (violet squares), the nodes know their local atomic environment, like the
local descriptors we introduced in 6.2. With subsequent updates of the embeddings (green and
yellow squares respectively), the nodes can receive information about atoms beyond the atomic
environment radial cutoff. Of course the updates come with an non-neglible computational
cost. Additionally, the internal features must be equivariant, meaning that the messages must
encode the necessary isometries, much like how convolution in convolutional neural network
encodes the translational symmetry.

One of the most promising MPNN-potential is MACE [318], based on ACE [282] which
extends beyond the local description of the atomic environment. Each atom/node v in the layer
(t) is represented by a state

0" = (qu Zp b)) (6.107)

where the position q; and the chemical element Z, do not change at each update, while it is
the case of the node embeddings h{/’, which contains equivariant tensors. The embeddings are
updated following the scheme of typical MPNN, using a linear combination of the messages
coming from neighbouring atoms. The messages are constructed by embedding the edges us-
ing learnable radial basis and spherical harmonics containing the angular information of the
neighbours, in combination with previous node features. In order guarantee features equivari-
ance, the 2-body features pooled from the neighbouring atoms and combined through Clebsch-
Gordan coefficients. Higher order features are built using the same procedure, with the differ-
ence that they are combined through tensor products, which are then symmetrised.
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6.6 Machine learning potentials for neutral and protonated water

Apart from the already cited ML-based MBE-potentials [244], several MLIPs for water have
been proposed and reviewed [319]. Kernel-based and HDNN potentials are the most used
MLIPs, both showing similar performance, with the most critical step being database construc-
tion [320]. HDNN fitted to DFT data enabled studies on the influence of van der Waals inter-
actions on hydrogen-bond structures [321]. Solid and liquid water have been simulated using
MACE-based foundation models [322] and DeePMD, a deep neural network potential with au-

tomatic representation learning [323].

Nearly all the simulations mentioned so far are DFT-based, inheriting its limitations, particu-
larly the choice of the exchange-correlation functional and water overstructuration. At the same
computational cost, higher accuracy datasets from explicitly correlated methods are necessarily
smaller in size, leading to methods that focus on refining a base model. This can be achieved
by initially training on a dataset computed with lower-tier electronic structure methods, such
as DFT or MP2, followed by two possible approaches: building a model that learns the differ-
ence with a more complex method like CCSD(T) (a technique known as A-learning) [324]),
or fine-tuning the model itself through transfer learning.Transfer learning involves improving
the weights of an already trained model by learning from a few high-accuracy energies. This
as been demonstrated also for bulk water, progressing from HF, BLYP, revPBE0-D3 to CCSD,
CCSD(T), and auxiliary-field Monte Carlo [325]. Additionally, handling long-range electro-
statics with a simpler model allows the MLIP to focus on short-range interactions, which can
also be seen as stacking models of increasing accuracy, as done in combining interpolated mul-
tipoles with ML-learned short-range interactions in flexible cartesian multiple combined with
GAP (FCM/GAP) [326]. These techniques have been applied to bulk water, as demonstrated
by augmenting a simple electrostatics model based on partial charges with a HDNN trained via
transfer learning from DFT-level to MP2 and then CCSD(T)-level [327].

Managing long-range interactions remains one of the hardest tasks in MLIPs [274, 328], a
longstanding problem also noted in previous classical water force fields, as briefly reviewed in
Chap. 5. Long Distance Equivariant (LODE) descriptors have been proposed to capture long-
range interactions based on the local value of an atom-density potential [329]. Additionally,
MLIPs that consider polarization and charge transfer [330] are still under development, though
most have not yet been applied to water systems.

The only type of MLIPs of this kind applied to water systems use the local atomic environ-
ment of a single molecule to infer the position of maximally localized Wannier centers (ML-
WCs), computed from DFT. This approach has the benefit of relying solely on ab initio calcula-
tions without the need for an arbitrary definition of partial charges. Notable examples include
the self-consistent neural network (SCFNN) by Remsing et al. [331, 332], and the DeePMD ex-
tension with electrostatics by Car et al. [333, 334 ], which has been successfully applied to water
ionization [335, 336]. Extending these models to charged systems or other methods beyond
DFT would be interesting, though this generalization is not straightforward.
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Simulations of protonated water using MLIPs have been more limited in terms of methods
and systems compared to neutral water [319]. Notable studies include HDNN trained on DFT
data [337], extending up to the protonated water octamer, H" (H,0)g, and HDNN trained on
high-accuracy CCSD(T) for the Zundel cation [338], as well as the hydronium ion [339] and the
Eigen complex [340]. Learning multiple clusters H* (HyO)p1,... 4 [341] enabled extrapolation
to the protonated water hexamer in its Zundel configuration [342].

We are not aware of works applying MLIPs directly to the protonated water hexamer treated
with advanced methods able to taking into account electronic correlation, such as CCSD(T) or
QMC.






CHAPTER i

Assessing the quality of MLIPs trained

on stochastic datasets

In the last two decades machine learning interatomic potentials (MLIPs) like those presented
in Chapter 6 emerged as a tool to combine the speed of parametrized potentials with the accu-
racy of sophisticated electronic structure methods, bridging the best of the two worlds [275].
By replacing application-tailored functional forms of typical force fields (Chapter 5) with a
data-driven approach, MLIPs can fit any PES, provided that a large enough set of single-point
calculations done with any electronic structure technique is available. Yet, they are mainly used
to fit energy and forces that might be biased by the underlying approximations, or by the level
of theory. Therefore, we find appealing employing them with QMC estimates of the PES, which
are very accurate and, despite the noise, unbiased. This approach has already been successfully
applied in several studies [325, 343-345], eventually in combination with A-machine learning
[346]. The effect of noise on the learning algorithms has also been investigated in some previous
works [347-349].

In this Chapter we undertake a thorough study on the robustness of MLIPs in learning noisy
PES estimated with stochastic electronic structure methods. One of our goals is to answer to the
following questions: how does the QMC noise affect the quality of the simulations? What is
the “breaking point” of MLIPs with respect to the noise amplitude? How is this related to the
size of the training set? As pointed out in Ref. [348], the trade-off between the number of
datapoints used in the training, and the accuracy of each estimate, meant as stochastic error
on the single datapoint, is one of the keys to efficiently exploit QMC methods in the context
of MLIPs. However, it is not clear up to which level of noise this trade-off can be applicable.
In order to study the learning efficiency as a function of a progressively larger noise level, we
purposedly corrupted a model PES with gradually increasing noise, on which different types of
MLIPs were trained. To quantify their reliability we then analyzed not only the corresponding
standard test errors and learning curves, but also we carried out production runs to measure the
standardized difference of physical observables between ab initio dynamics and MLIP-driven
one.
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In Section 7.1 we introduce Ceperley’s classification of the noise and errors involved when
applying fitting methods to data affected by noise. This scheme allows one to design a learn-
ing protocol and systematically interpret the results and the performance of the learning algo-
rithms.

In the same spirit of the first part of this thesis, we want to study protonated water clusters.
Therefore, in Section 7.2 we introduce the benchmark of our choice for the application of MLIPs,
namely the Zundel ion, H;O,". Being the smallest protonated water cluster, this system is
the starting point to study the impact of NQEs and the mechanism of proton transfer in water.
Indeed, it requires an explicit quantum treatement of the nuclei to properly account for all its
features. Thus the Zundel ion is a good benchmark to test the reliability of MLIPs in reproducing
proton hopping between water molecules, and their robustness in RPMD simulations.

In Section 7.3 we briefly summarise the datasets on which this work is based. All our proto-
nated water clusters datasets are sampled by Langevin dynamics (LD), a flavour of MD where
the NVT ensemble is sampled using a stochastic thermostat; both its classical and path integral
variants are introduced in Chapter 3. The PES reference is provided by a stochastic method, pre-
cisely variational Monte Carlo (Chapter 2), and a deterministic one based on the Many-body
expansion (MBE), where the n-body terms are fitted to energies from deterministic computa-
tional chemistry methods, as described in Chapter 5.

This latter dataset is then corrupted with noise of increasing intensity aimed to imitate the
effects of QMC stochastic sampling of energy and forces, as discussed in Section 7.4. While re-
ducing the Gaussian white noise has long been a key focus in the QMC community, the structure
of noise across samples of the PES has been less explored. However, this issue can potentially
play a critical role in the context of PES fitting with MLIPs.

Once the QMC noise is correctly reproduced and added to the clean MBE energy and forces,
we train on such datasets both kernel- and neural network-based MLIPs, following the protocol
described in Section 7.5.

In Section 7.6 we outline our comparative approach: while standard tests errors and learn-
ing curves represent the most direct way to probe the MLIPs, as we do in Section 7.6.1, the
importance of tests based on actual physical quantities in assessing the quality of a MLIP has
been demonstrated [350, 351]. For this reason we included in the analysis the evaluation of
both static quantities, like the radial distribution functions, and dynamic quantities, like the ve-
locity autocorrelation functions. This evaluation is carried out by averaging the standardized
difference between the above physical quantities computed along different trajectories initial-

ized with different starting configurations, as explained in Section 7.6.2.

Finally, in Section 7.7 we show some preliminary results on the learning of the protonated
water hexamer.
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7.1 Classification of noise and errors

We are interested in finding the true energy E(q;) and the true forces f(q;) of each configuration
belonging to a dataset of N = N configurations, {q;};-1,... n.,,- using a MLIP trained on Ny,
configurations, {q;, E;, f;};—1,... .., » Where E; = E(q;) and {; = £(q;).

We follow the work of Ceperley et al. [348] in the definition of the errors involved when
training MLIPs, as represented in Fig. 7.1.

Dataset stochastic error § and standard deviation ¢

Let EY = Ey(q;) and f} = f,(q;) be the VMC estimates of the energies and the forces, respec-
tively. For the sake of readability, we will put a v in superscript whenever a quantity is estimated
by a single-point VMC run!.

The total error in EY and fl‘-’ consists of two components: the stochastic error, § E, and Sfi, which
arises from the intrinsic randomness of the quantum Monte Carlo method, and the systematic
error, or bias, which results from the approximations inherent in the method itself, like the basis
set error. Hereafter, we assume that the VMC estimates E}’ and flV are unbiased, namely they

are not affected by any systematic error.

In this study we also assume that the true energies and forces are known. This is in general
not true, but in our “whole dataset fitting” approach, the knowledge of the ground truth will
be used to study the robustness of the ML process against noise. Then, the stochastic error

associated with each element of the dataset is known and can be written as

0p(q;) = E; — EY, 71)
5;/(‘311) = fi - fy = fi - VCIIEY

where in the case of the forces we have a vector of stochastic errors, one for each component:

sy (5V 8V, &Y 8 i i ianz) (7.2)

fiayx’ “f iary’ " f a1z’ fzazx’ 7 fdayx? VU f apy’ Cf dapz

We define the stochastic error vectors associated to the dataset, g and &, as those vectors whose

entries are QMC errors associated to each single configurations in the whole test set:

5%1 E, — EY
oY E, —EY

Se=| B |= 2 2 (7.3)
5§N Ex — EY,

!In the notation of Chapter 2, we would have E(q) = Ev(q) and f(q) = fV(q).



110 Chapter 7. Assessing the quality of MLIPs trained on stochastic datasets

5 fiax—fix fix— OEY /091 x
5}2 1 fiay =y fiay — 9EY/0q1,
LYy
5 fii: =1, fi1,z—9EY/9q1,.
5f — . ,7:},1,2 — : — (74)
' \{N'M"‘ INMx = N M S M — OEN /9
f\?’/M/y Iy —h ZY],M,y Iy — OEX/9qn,y

(SfN,M,z \fN,M,z _fZYI,M,z \/fN,M,z - aEXI/aQM,z

where in the case of energies we have a Ni.;-long vector, while for forces the total length depends
not only on the number of configurations in the test set, but also on the number of atoms in each
configuration and the dimensionality of the coordinates. In the case of a homogeneous dataset
where only a single type of systems appears in different 3D configurations, this translates in a
3 X Nyt X M-long stochastic forces error, where M is the number of atoms in the system.

We recall that in the usual QMC setting, the exact values of 5)5’ (q;) and 5}’ (q;) are not known.
They are random variables normally distributed around zero (due to the fact that we assumed
unbiased VMC estimates) with variance ((TI‘S/(qi))2 and (U'X(qi))z, as estimated according to
statistical methods of Chapter 2. For example, consider a single configuration in the dataset,
q;, and its energy E;. The QMC estimate of EY is affected by a stochastic error with standard
deviation formally defined as

var[E; (q;)]

. 7.5
Nyon (7.5)

o¥(q) = o[E(q)] =
where we made explicit the parametric dependence on the fixed nuclear configuration q;, for
which we sampled N, electronic configurations.
As we did for the stochastic errors, we can define the dataset standard deviation vectors, o
and o, whose “dataset norm” is given by

XY,z >

1 N 5 1 N M
log| = 0 = N Z (U}E’i) and log| = o = \JW Z Z Z (U}i/,a,d) , (7.6)

d

which are an estimate of the dataset norms of g and .

Fitting error p
In practice, only the QMC estimates EV and £V, are really available, so when we measure the
fitting error pg, also defined as test error in the ML context, we are dealing with the following

quantity:
EY — ET
Ey — E¥ 1Y 2
PE = : PE = \JNZ‘[E},_E?] , (7.7)
EX - EX

where we used the root mean square error (RMSE), at variance with the mean absolute error
(MAE), which is also used in ML. An analogous definition holds for the forces fitting error, ps.
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Noisy data f,

Noisy data Ey,

Ps

Fitted model E,,,

Fitted model £,

Exact energy E

Exact forces f

Figure 7.1: Relationship between the true observables, their stochastic estimate and their machine
learning model prediction trough the three types of errors: o, p, €. Fixing the number of test configura-
tions, Ny, and defining the errors as vectors allows one to relate them through triangular inequalities:
lp— ol < e <|p+ ol From [348].

In noiseless datasets, the test error is expected to decrease with an increasing training set
Nirain following a power law [289]
o~ O(Ng&, (7.8)

train

which defines the “learning curve”. For noisy dataset it is expected that a plateau dependent

on the average noise will limit p from below, such that:

p ~ ON i) +8(0). (7.9)

train

Model error e
On a more regular basis, what we are interested in is the model error, that is, how far the model

is from the ground truth values:

E™ — E;
E' —E, 1 2
EMt — Ey

Unfortunately the only error available during the training and test procedure is the fitting
error, so it would be interesting to study the relation between the three types of error on E and f,
{0E, PE, €E, 0%, pg, €5}, exemplified in Fig. 7.1, in a controlled setup. In the perspective of applying
MLIPs to study proton transfer in water, we simulate small protonated water clusters using
deterministic PES, gradually adding stochastic noise to the clean dataset. The deterministic

PES will be our ground truth and the dataset corrupted by adding stochastic noise will mimic
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+

o

Figure 7.2: The Zundel cation.

the behaviour of a QMC dataset with a tunable stochastic error. As introduced in Chapter 5,
among the best and efficient methods to study protonated water clusters there are the many-
body expansion-based PES, which are complex enough to reproduce some non-trivial aspects
of the proton in water. The simplest of such systems is the Zundel ion, which is the topic of the

next Section.

7.2 The Zundel ion

The Zundel ion [18], H50," in Figure 7.2, is the smallest water cluster exhibiting non-trivial
proton transfer, and its compact size facilitates a comprehensive and systematic study of the PT
problem.

Indeed the Zundel ion has been extensively studied with all possible electronic structure
methods, from DFT [352] and CPMD [162, 353], to MP2 [354, 355] and coupled cluster includ-
ing different levels of excitations, CCD(T) [356] and CCSD(T) [355, 357]. Furthermore, due to
the significant influence of NQEs in hydrogen dynamics, the Zundel cation is frequently used
to test and validate new approaches able to deal with quantum nuclei, such as multiconfigura-
tion time-dependent Hartree [52]), multiple time step integrators and ring-polymer contraction
[358], and the PIOUD algorithm itself [133].

More importantly, a vast amount of experimental data is available for comparison. The rapid
development of spectroscopic instruments has enabled the probing of vibrational properties in
ionic species, leading to numerous studies [194, 359] on the HsO, ™" ion.

Given the availability of large quantity of experimental and theoretical data, the Zundel
is widely used as a benchmark system for parametrized PES and new ab initio methods as well.
Within the QMC framework, the accuracy of the Jastrow correlated AGP wave function has been
tested on the Zundel complex [130]. Another class of methods tested on this system are those
based on MS-EVB [263-265, 360 ], which paved the way for their application to extended systems
[361, 362]. At the same time, parametrised PES generated through ML schemes [338] have also
been benchmarked on the Zundel cation. We recall also that among the first applications of
PIPs-fitted PES at coupled cluster accuracy, there is the one from Bowman [255], based on the
many-body expansion (Chapter 5). This is the PES that we will use as deterministic reference

model
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7.3 Datasets description

The datasets are generated using Langevin dynamics because stochastic thermostatting is well-
suited to deal with both noisy forces, such as those coming from QMC, and deterministic ones,
allowing for a direct comparison between QMC and MLIP trajectories. For classical simulations
over deterministic PES we use the Bussi algorithm (Section 3.2.3); for classical simulation over
stochastically estimated PES we use the Attaccalite-Sorella algorithm (Section 3.2.4); for quan-
tum simulations we use the PIOUD algorithm (Section 3.5.2), as it is designed to run with both
deterministic and stochastic forces. The Zundel dynamics are driven by the deterministic MBE-
PES [255]. We generate trajectories at different temperatures from 50K to 600K, comprising
30.000 steps of 6t = 0.5fs, for a total of 15 ps of physical simulation time.

In Figure 7.3 we plot some of the MD-generated datasets in a space of reduced dimension.
Specifically we employed the principal covariates regression (PCovR) technique [363], a com-
bination of principal component analysis (PCA) and linear regression which allows one to vi-
sualize basic structure-property relationships. In our case we applied it to local atomic envi-
ronments of the Zundel obtained from the 300K MBE-driven trajectory, which will also be our
starting point for the application of MLIPs. In Fig.7.3a we see that, by considering the total
energy as a target, all configurations are sorted for increasing energy values along PCovR[1].
At the same time, in Fig.7.3 we notice that the second principal covariates correlates well with
the oxygen-oxygen distance, without explicit human input. This distance is one of the most im-
portant internal coordinates in the Zundel cation, as it is for the protonated water hexamer as
well (Chapter 4). The automatic recognition of dop as one of the principal covariates indicates
both good sampling of the configuration space and the appropriateness of the dimensionality

reduction parameters.

Once we can rely on this technique, we can use it to visualize the other datasets. The bottom
panels of Fig. 7.3 illustrates how increasing the temperature translates to a wider exploration
of the PES, especially in classical simulation. On the other hand, we see that the inclusion of
NQEs through RPMD makes the necklace explore a larger space, and this happens already at
low temperatures, where a higher number of beads can bring the ring polymer configurations

far from the classical ones.

We also use two classical trajectories based on VMC-estimated PES, one at 50K of 39999
steps and another at 300K of 19163 steps. The former is much longer because at each step of
the dynamics the electronic QMC sample to estimate EV(q) and fV(q) is smaller: Ngen, = 81920
against Ny, = 331776.

Besides these datasets extracted directly from (PI)MD simulations, we generated noisy

datasets by adding artificial stochastic errors to the deterministic baseline (see Section 7.4).
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Figure 7.3: Dimensionality reduction of the Zundel ion classical and quantum trajectories. The dimen-
sionality reduction algorithm is based on the SOAP representation of the local atomic environments, as
implemented in the Librascal package [364]. SOAP is conceptually similar to the ACE descriptor pre-
sented in Chapter 6. The SOAP parameters are the following: cutoff=3.0, max_radial=6, max_angular=4,
atomic_gaussian_width=0.3, cutoff_function="ShiftedCosine’ of width=0.5, radial_basis="Gto’ with
accuracy=1e-6, center_atom_weight=1.0.

7.4 Applying Gaussian noise to energies and forces

Given a configuration q, the QMC estimates of its energy and forces are respectively affected by
uni-variate and multivariate Gaussian white noise. These noises are characterized by the stan-
dard deviations a,‘sf(q) and 0’2’(q), which depend on the number of QMC stochastic samplings
Nge
and for each of them E and f are estimated with the same number of QMC samples N, it is not

nas1/ ,[Ngen. When several configurations {q;};—1,... n,,, are collected along the trajectory,

a priori clear how the standard deviations 0 (q;) and o (q;) are distributed across the training
dataset. In other words, we do not know whether different points on the PES have the same
error bars, a condition known as homoscedasticity, or if they have varying error bars, referred to
as heteroscedasticity. We are aware only that pointwise the energy error of a single configuration

should follow a normal distribution.
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To analyse their actual distribution we take all the configurations and their respective
standard deviations, {q;, Ug(q,-), O'E’(ql-) }, from classical QMC-driven MD simulations for both
H:;0," and H;30," (Chapter 4). By binning ¢y (q;) for both systems in Figures 7.4a and 7.4c,
it turns out that its distribution is almost normally distributed. However, this does not seem to
be the case for the standard deviation in the force components, (7}/, even when selecting the con-
tributions from a specific species (Figure 7.4b and 7.4d). This behaviour is partially explained
by the finite size of the system in open boundary condition, at variance with periodic systems
where the average force experienced by the atoms is more isotropic. Another source of modula-
tion comes from the non-equivalent role played by the different ions in the system. The relative
size of the errors will thus depend on the corresponding force component. Figure 7.4h, relative
to the protonated water hexamer, clearly shows that atoms of the same species but having dif-
ferent roles in the cluster can show different distributions in the error. Specifically, the oxygen
atoms in the Zundel core exhibit larger errors compared to those in the solvation shell (see the
two red peaks), and the central proton is affected by a larger error than all the other hydrogens
(the green and orange peaks, respectively). On the other hand, the multi-modal distribution of
o¢ components can be mapped into a single-peaked one when we consider the norm |o¢| of the
3M-dimensional vectors, as in Figures 7.4e and 7.4g. o and |o¢| are single-peaked because they
represent collective properties of the system as a whole.

Although computing the norm of the entire forces error vector restores the isotropy of the
error distribution, from species-selected plots (Figures 7.4f and 7.4h) it is apparent that in order
to mimic the QMC error in an inhomogeneous and finite-size system it is necessary to consider
different standard deviations for each species belonging to the system. The qualitative analysis
above give us some indication on how to produce the artificial noise with which we will corrupt
the deterministic datasets. In the case of energies, the standard deviation 0 is taken as the
average over all the ensemble {0£(q) }x=1,... N, in the dataset. Regarding the forces, we average
over all the forces standard deviation components 0 (X) affecting a specific species X, including
their multiplicity My:

1 Niot Mx x,Y,2 2
77, (%) = 77,00 = 0 (X) = 0700 = | 31— Xk: Za: Zd: GE (7.11)

The species-specific averages of the standard deviations are reported in Table 7.1, highlighting
the multivariate property of the forces noise.

Pushing the standard deviation analysis further, we can study how the specific geometry of
the system at hand influences the error distribution. Indeed it has been suggested [147] that the
variance of the local forces f; (Chapter 2) acting on a fixed configuration q, formally defined as

T
var [f; ] = E [(fL — fyme) (fL — fyme) ]r (7.12)
is proportional to the dynamical matrix, that is, to the Hessian H(q), computed as the second
derivative of the energy with respect to all the couples of cartesian coordinates

_ 9?E(q)
W 99,0q,

(7.13)
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Figure 7.4: Histograms of QMC energy and forces

ent elements are characterized by different standar
between the two oxygens in the Zundel core of the
the solvation shell (black lines in g).

eV/A

standard deviations in H;O,"* and H;;0,” in classi-
cal simulations at 300K and 250K, respectively. While the energy standard deviation histograms (a,c)
have a shape that can be compared to a Gaussian bell, the forces in both the Zundel ion and the proto-
nated water hexamer show several peaks (b,d). These peaks can be associated to different elements, but
even with this resolution their shape is far from the normal one (coloured lines in b and d). To restore
a Gaussian distribution in forces standard deviations, we compute their norm (e,g). Notice that differ-
d deviations (f,g). This distinction is necessary even
protonated water hexamer, and those that belong to
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Average standard deviation H5Oz+
g 41 meV
oy 134meV/A

af(O) 201 meV/é
ch(H) 108 meV/A
op(H") 113meV/A

Table 7.1: Average QMC standard deviations along the trajectory generated by a QMC-driven classical
MD simulation of the Zundel ion at 300 K.

Since the forces are vectorial quantities, the expression in Eq. (7.12) is called variance-covariance
matrix, X¢(q), and it reads

var [fi,(q)] cov [fi, (@), fix (@] -+ cov [fur=(Q), fix(q)]

cov [f1,(Q), fix (@) ] var [f1, ] e cov [tz (@), 1y (@) ]

Zi(q) = (7.14)

oV [tz (@), fie(@)]  cov [fry (@) furz(@)] - var [fu, ]

where the diagonal terms are the variances of the forces components, while the off-diagonal
terms represent the covariances across different components. These covariances are simultane-
ous, meaning that they are computed for the same electronic configuration r during the QMC
sampling, and do not measure the time lag-covariances.

In practice, the variance-covariance matrix can be estimated using the formula

N, gen

Z (fL(q,ri) - f\,(q))(fL(q,ri) - fv(q)>

T
Ngen(Ngen - 1) i=1 ’

Li(q) = (7.15)

where we made explicit the dependence of the local force on the electronic coordinates r; sam-

pled by the QMC algorithm. The diagonals terms of this expression are the squared standard
2

deviation ((IJYd (q)) .

We tested this hypothesis by computing the Hessian of all Zundel configurations sampled
by QMC-driven MD . To do so we used the Tapenade[365] automatic differentiation tool, which
for instance have been exploited also for fast and accurate computation of the forces in the dy-
namics. Then we computed the vector of sorted eigenvalues of H(q) for each configuration q in
the dataset, and we compared them with the respective vectors of sorted eigenvalues of X¢(q),

configuration wise. The comparison consisted in evaluating the degree of alignment of such
1 uv
2 TullivI

Also, the distribution of the square root of the entries all the Hessians” diagonals in the

vectors based on the normalised dot product, % + , obtaining an average score of 0.89.
dataset closely resembles the distribution of all the standard deviations on the force components
(Figure 7.5a).

Since the average involved in Equation (7.15) is over electronic configurations, the only way
the molecular structure dependence could possibly enter in such QMC stochastic estimate of

observables would be through electron-ion coupling. For our purposes we simulated the QMC
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noise using both Hessian-correlated multivariate Gaussian white noise (GWN), and uncorre-
lated multivariate GWN where just the variances are element-dependent (as in Table 7.1). We
recall that in both cases we are in presence of time-uncorrelated noise, and that the correlation is
meant between components of force error vector estimated in a single-point calculation. Since
the Hessian does not change much among contiguous configurations along the trajectory, it
could implicitly introduce some correlation in the QMC-driven dynamics, which however is
taken in consideration in the noise-correcting Langevin dynamics scheme described in Chapter
2.

As in preliminary runs we did not observe much difference in the performance of MLIPs
trained on both Hessian-correlated and uncorrelated noise, we limited the study on the latter
type of noise, as it is easier to generate while still keeping the information contained in the diag-
onal of H. Given the scalar standard deviation oz and the 21-dimensional one on the forces o7,
we sampled as many random scalars {0g(q;)}i-1,... n,.,, and random vectors {6¢(q;)}i=1,... N,
as configurations in our datasets, and multiplied them by different factors k. This is meant to
reproduce QMC sampling at different values of N, as reported in Table 7.2.

op(meV) 11 22 27 4 54 67 77 94 109 133 149 163
(Tf(meV/A) 39 78 97 145 194 238 274 335 388 475 531 581

Table 7.2: Progressively increasing standard deviation on energies and forces used to produce the
noise to add to MBE values.

The fact that all the components of the forces vector can be multiplied by the same factor
is graphically justified in the bottom panels of Figure 7.5, where we see that the shape of the
standard deviation distribution does not change much for different values N, (Fig. 7.5b), es-
pecially in the main peaks which are those we could clearly associate to specific elements (see
Fig.7.4b and d). Indeed they can be mapped to each other by rescaling them with the square
root of their QMC sample size (Fig. 7.5¢). Incidentally, the scale-invariance shown in Fig. 7.5c
also demonstrates that the force error distribution is largely temperature independent.

We then corrupted the clean MBE energies and forces by simple addition of the noise, as if
they were produced by a stochastic method, as follows:

Ex(q) = Enpr(q) + kop(q) (7.16)

fi(q) = fupr(q) + kd¢(q), (7.17)

with §¢ and J¢ normally distributed with zero mean and variance given by the square of the
averaged standard deviation as reported in Table 7.2. We stress that for J¢ the variance is species
dependent.

7.5 Choice of MLIPs and learning protocol

We choose two of the MLIPs model exposed in the Chap. 6:
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Figure 7.5: Distribution of the square root of Hessian’s diagonals entries (a) and invariance of forces
standard deviation distribution for different QMC samplings (b,c) in QMC-driven classical simu-
lations. If the distribution of oy is affected by the geometry (the Hessian) of the molecule through the
ion-electrons coupling, its multimodal shape should not change much upon different value of QMC sam-
pling N, This appears to be the case, as the 50K and 300K H;0," datasets have been sampled with
very different number of QMC step (central panel), and when we scale the 50K distribution considering
the square root of the ratio of the number of steps, the two distributions overlap with a very good overlay
of the main peaks (c).

e The kernel method based on operator quantum machine learning (OQML)
e The message passing neural network framework as implemented in MACE.

Some details about hyper-parameters and settings of these two methods can be found in Ap-
pendix C.

We list here the steps we followed to generated the MLIP in the OQML and MPNN frame-
work. The procedure is standard and has been implemented using scikit-learn Python pack-
age [366].

Separation of training and test set with shuffling

The size of the training set is fixed so that the ratio between the Ni,;, and the whole dataset
size is 70%. The remaining 30% is the test set, and it is put aside during the whole training
procedure. The effective training is done over smaller training sub-set of increasing size. The

goal is to study the relationship in Equations (7.8) and (7.9).

Model selection and validation
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Figure 7.6: Dataset splitted into training and test sets.
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Figure 7.7: Training set further splitted into smaller subsets of increasing size.
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Figure 7.8: Random sampling vs. farthest point sampling for the selection of the training subsets.
Training subsets of increasing size can be selected by different approaches. Since in this work we are
mainly interested in the effect of the noise, for simplicity we will just use randomly selected configurations
(a). Notice however how in this way most of the sampled configurations are concentrated in the region
with an higher Boltzmann weight. While this does not constitute a big issue in the case of the Zundel,
for more complex systems with different minima and transition states this could be a problem. Popular
approaches include farthest point sampling (FPS) [367, 368], a greedy algorithm where the training points
are selected by maximizing the diversity of the configurations. This diversity is commonly computed in
the descriptor space (as is the case here), or it is based on a kernel-based similarity, which automatically
defines a distance in the features space. One should be aware that FPS should still be applied after the first
train-test split (b), otherwise the distance matrix, maximized over the whole dataset, would exploit the
information of configurations not included in the training set (c), implying some information leakage.
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1. Hyper-parameters tuning. Hyper-parameters are those parameters of the learning model
that cannot be adaptively learned and must be set “by hand”: there is no closed-form ex-
pression as for the regression coefficients, nor an iterative procedure. In the case of OQML,
hyper-parameters are the ¢’s, representing the the Gaussian kernel width and regulariza-
tion coefficient A. In the case of MACE, there a several hyper-parameters settings how
the neural network is optimised. In our study we varied the irreducible representations,
radial cutoff, number of epochs and batch size, as well as the energy/forces weights ra-
tios and at which point of the learning this ratio should change (swa). Details about the
hyper-parameters can be found in Appendix C. They can be tuned by a grid search over
different couples of values. The grid is exhaustively explored at low training subset size,
then it is reduced to the most significant regions based on the best parameters found in
the previous runs. For example, in the case of OQML the couple of hyper-parameters to

optimize are {; = (A;, ;).

2. Model cross-validation. For each point ;. of the grid parameters we run k-fold Cross-
validation (CV). This means that the training subset is further divided into equally-sized
and non-overlapping k sets, called folds, respectively (here k = 3), and the model is
trained (KRR) on all of them, considered as a single train subset, except one (called val-
idation set), which is used to test the performance (i.e. measure the error) and validate
the model, that is, the hyper-parameters. The procedure is repeated k times, each one ex-
cluding a different fold from the training. The purpose of this is to compute the error on

different folds and then considering the average.

Train on
1U2U3U4

Train on

1U2U3U5 Validation

set

Train on

1U2U4U5 Validation

set

Train on

1U3U4U5 Validation

set

Train on
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3. The error definition depends on which labels we are training the model. In general it has
the form

N,

val

1 1 Nya M
L@ == D (B = EJ' @) + (= Vg D ) [l — 6760

2
’

(7.18)

Where M represents the number of atoms, the superscript “val” refers to the true labels
from the validation set (the subset momentarily excluded from training), while the super-
script m indicates the labels predicted by the model. The coefficients p and p—1 are used to
weight the contributions of energies and forces differently, creating a Pareto front. While
this can be useful during the error evaluation in the fitting phase, we observed minimal
performance differences for various p values at this stage of learning. Therefore, we chose
p = 0.5. If the training is based solely on energy or forces, only the first or second term is
used to compute the validation error, respectively.

Once the hyper-parameters have been selected, the training is done again on the whole train-
ing subset, without any division in k-fold, so that it exploits all the data at disposal.

Test. The model trained on the subset with the chosen hyper-parameters is tested on the test set
which was put aside in the first place. The predicted energies and forces are compared with the
true ones in what we called fitting error, pr and pg, in Section 7.1, using either root mean square
errors (RMSE) or mean absolute error (MAE).

7.6 Results

7.6.1 Learning curves

The goal of the learning curve is to show the scaling of the performance of a model, measured as
fitting error p, with fixed hyper-parameters with respect to the size of the training set, Ny 4i,-

10 = p(Ntrain)/ (719)

In this work for each training subset size we retrain the model from scratch, allowing the hyper-
parameters to change and adapt depending on the configurations. This would measure how
effective is the learning algorithm as a whole with respect to Ni,jn.

An example of a learning curve is shown in Figure 7.9a, where we plot both the model
errors, € and €¢, as well as the fitting errors, pg and py, the latter being the only metric available
in standard settings.

One of the most noticeable aspects in the energy learning curves is the difference between
the OQML and MACE trends. OQML exhibits a steady behavior from small training set sizes
up to 1600 configurations, although training beyond this point with kernel methods becomes

computationally demanding.
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In contrast, MACE proved more difficult to optimize in the presence of noise for small train-
ing set sizes. As a result, the curve starts at 200 configurations, with both high model errors
(ep) and test errors (o). However, once the model converges, its performance slightly sur-
passes that of OQML. Due to its implementation and design, MACE can be trained on larger
datasets more easily than OQML, as shown by its learning curve extending up to 3200 configu-
rations. The force learning curves show comparable behavior. Another prominent observation
from these graphs is the significant gap between the fitting errors and model errors for both
energy and forces, with p and e following almost parallel trajectories.

In this study we are also interested in the noise sensitivity curve, that shows the influence of
the underlying noise on the machine learning algorithm for fixed training set size, as in Figure
7.9b. The most striking property emerging from this plot is that the test error p is a rather
pessimistic estimate of how far the model is from the ground truth, showed instead by the €
curves. This large difference could be a signal of the fact that we are in presence of good MLIPs
models, that is, models that are only slightly affected by the QMC noise, as they are defined in
[348]. However, we notice that for large input noise, the assumption of a linear relation between

€ and o,

€ =10 + €, (7.20)

does not hold anymore in the case of MACE energy prediction for (og,0f) >
(77 meV,274meV/A), which is the point at which MACE performance on E becomes
worse than the OQML one. Notice that crossover already happens in the “linear regime” in the
forces plot, precisely at (o, oF) > (41 meV, 145meV/A), which is an interesting point, since
it is the noise level used in our QMC-driven molecular dynamics simulation, as reported in
Table 7.1.

The observations made so far can be summarised using learning tables (Fig. 7.10), where
both the influence of the noise and of the training set size on the fitting and model errors are
plotted in a compact 2-dimensional plot. Indeed, the learning curves are the result of fixed-noise
performances (rows), while the noise sensitivity curves are the result of fixed-training set-size
performances (columns).

As noted in the curves described above, OQML shows a more steady performance with
respect to Ny, and noise levels than MACE (the lower scores on forces for Ny.,;, = 800 are
probably due to sub-optimal exploration of the hyper-parameter grid in the validation phase).
This result will be contrasted in the next Section, when we will measure performance on the
base of physically sounded test, rather than based on statistics only. Again, MACE energies
converge quite fast for level of noise up to 0 = 41 meV, with a number of configuration of
Nirain = 400 enough to reach the accuracy of noiseless-trained models (first row). Above that
level of noise, MACE learning curves start to be less consistent, indicating a departure from the
“linear regime” of Eq. (7.20).

The learning tables also potentially allow for a “diagonal” reading of the relationship be-

tween training set size and noise. As mentioned in Section 7.1, the level of precision ¢V of
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a) Learning curves (noise level: o = 27meV and o;= 97meV/A)
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Figure7.9: (a) Learning curve for o = 27 meV and (b) noise sensitivity curve for N,;, = 400. Results
on the energies are reported on the left column, while the performance on forces are plotted in the right
one. The second row of plots in the noise sensitivity (b) is an inset of what is shown in the graphs above,
corresponding to a zoom on the same yellow area.
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energies and forces QMC estimates depends on the number of electronic samples according to
oV o 1/[Ngens (7.21)

meaning that training sets characterized by the same /N, /0" ratio have equivalent compu-
tational costs. This comparison can help reveal whether precision or the exploration of the
configuration space is more crucial for the model’s performance. Improvements for larger train-
ing sets with lower accuracy suggest that exploring the configuration space is more important,
while improvements for smaller training sets with higher accuracy indicate that the configu-
ration space is already well-explored, and enhancing the quality of estimation should be the
priority.

In our case, the fact that the energy error e for the model trained on a dataset with noise
below g = 54meV rapidly converges to the energy error of the model trained on the clean
dataset ([15.2-17.3] meV) limits the scope of this analysis. It is clear that further improvements
must come from more advanced training set selection techniques, such as those mentioned in
Fig.7.8).

Nevertheless, this type of analysis can still be applied to the force predictions of the OQML
model, as shown in Table 7.3, Here, we observe a slight improvement in performance, suggesting

Training setsize 100 200 400 1600
af(meV/A> 97 145 194 388
ef(meV/A> 321 27.7 265 255

Table 7.3: Diagonal of ¢; in OQML.

that better training set selection strategies would benefit not only energy predictions but also
force predictions (we excluded the diagonal point (274 meV/ A, 800) due to a non-optimal grid
search).

In the case of MACE, we quickly enter a non-linear performance regime, indicating that noise
has a significant impact on the model’s error. This is further supported by the observation that,
although MACE's force errors are lower than those of OQML, its performance is approximately
four times worse than MACE trained on a clean dataset (see the first two rows of €7 in MACE

learning table, Fig. 7.10):

MACE ~ MACE
f,0=39meV/A ~ 4€f,clean (7.22)

whereas for OQML, the performance degradation is only about twice as bad as the clean train-
ing:
OQML
f,0=39meV/A
(see the first two rows of €; in OQML learning table, Fig. 7.10).

~ 2e9PIL (7.23)

f clean’

7.6.2 Testing on physical observables

To relate how the noise in the learned PES impacts the MLIP-driven molecular dynamics we

need a systematic way of comparing physical observables across their whole variability range.
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Since most observables statistical distributions are computed as empirical histograms cumu-
lated along the trajectory, we can test their compatibility following the method detailed in Ref.
[369].

Let us describe the histogram of an observable collected during the dynamics as a collection
of B couples of values, {(1,,0})},-1 .. p associated to each bin b, where n,, are the number of
events in the bin and ¢}, is an estimate of the standard deviation of that number, usually com-
puted by block averaging techniques. Now consider two molecular dynamics simulation runs
at the same conditions (for instance, the same temperature), with the only difference that one
is based on the reference PES («) and the other is based on the machine learned PES (8). Then

we will have two histograms:

(nlpu Ula)/ (nZa/ UZa)/ (anu UBIX>

(7.24)
(n1p,018), (N2p, 02p),*+ (Npg, Opg)-
The normalised significance of the difference of two bins is defined as
npy — Kn
R (7.25)

2 2,2
i, +K Tig

where K is a normalisation factor, usually the ratio between the total volume of observations
in the two histograms. In the denominator of Eq. (7.25), ,/U,fa + Kzabzﬁ = ¢, where o is the
stochastic error of ny, — Knyg, assuming that 1, Knyg are two independent measures. Since we
will deal mostly with already normalised histograms, which are obtained from MD simulations
having the same number of time steps of the same duration, in most of our use of the formula
above we will have K = 1. Then we can define a 2-dimensional measure of the distance, or
similarity, between the two histograms as the average of the significance S computed on all the

bins, and its variance:

N . 1 & 1 8 n
(S,Var [S]) = (EZSB,mZ(Sb—S)Z) (726)
b b

It is important to notice that the average should be computed only for those bins where at least
one of the two histograms have a signal, otherwise we would underestimate S. If the average
significance of the difference S is lower than 3, meaning that the difference between observed
quantities is within 3¢, we can say that the quantities are compatible. As it is good practice
in molecular dynamics simulations, we produced multiple independent runs (4 in our specific
case) for each temperature and type of PES. Then, we mediated S over the independent MD runs,
at fixed temperature and PES. This further consideration provides a more reliable measure of
the spread of the significance, because it is based on multiple physical tests, rather than just
being based on the statistics of a single run of the ML-PES. Indeed, by running mutiple MD
simulations with independent initial conditions we can explore a richer variety of configurations

upon which the binned observables are computed.
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The two observables that we considered are the pair correlation function, which give us
a global picture of the compatibility of the simulations, and the 3-body correlation function
between the two oxygens and the central proton, which is an important quantity for the study
of the proton transfer, as we have seen in Chapter 4. These observables are detailed in what

follows.

Pair correlation function
The Pair Correlation Functions (PCFs) are the distribution of the interatomic distances between

couple of atoms belonging to specific elements (possibly the same element):

Nx Ny

g2 =Y > (6(ai—qil - 1) (7.27)
i=1 j=1

where (-) is the ensemble average, practically computed along the single MD trajectory, ¢ is the
Dirac delta function, and Ny and Ny are the numbers of atoms of types X and Y, respectively.
Usually, when dealing with liquids, this quantity is multiplied by the prefactor 1/NyNy, and
divided by the volume of the spherical shell within [r,r 4 dr], yielding the radial distribution
functions (RDF). Since we are more interested in comparing the distribution of the peaks of
the PCFs between different simulations, dividing by the shell volume would only reduce the
height of the peaks, making it more diffucult to visualize the differences. Therefore, we did not

consider any prefactor. In Figure 7.11 we show an example of such histograms.

3-body correlation function of O;, O, and H*

In Figure 7.12 we show the reduced coordinates used in the three-body correlation function,
g(3) (O 02H+), which involves two oxygens, O, and O,, and the central proton, H*. More pre-
cisely, ¢'® measures the correlation between the distance of the two oxygens (do,0,), and the
relative position of the central proton with respect to the flanking oxygens atoms, as represented
in Figure 7.12. Formally, we define it as

8o oyt ) = <(S(cfolo2 — )8 =) +0o0, — V0o —y))  (7.28)

As we saw in Chapter 4, this quantity is relevant in the study of the proton shuttling between
two water molecules, and, given the reduced dimension of the Zundel cation, it exhaustively
describes the PT mechanism in this system, as the are no solvation effects.

A graphical example of these correlation functions can be found in Figure 7.13, where we
plot the 2D histograms using a density color code for the height of the bins. At variance with
the 1D histogram of ¢‘®, where the standard deviation is explicitly plotted, in this case we
dedicated (NO: the rightmost column) two columns to the standardized difference between
the values of the bins in MLIPs simulations with respect to the MBE-based ones. The difference
is standardized as it has been described in Section 7.6.2, and the values up to 3¢ are showed.
Differences that are equal or larger than 4¢ are all represented with the same color (violet), as

we do not consider them statistically compatible.
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Figure 7.11: Pair correlation functions of HH, HO and OO in the Zundel ion at different temperatures
(classical simulations).
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Figure 7.12: Reduced coordinates for the study of the proton transfer in the Zundel ion.

Normalised significance of the difference

In Figure 7.14 we plot the normalised significance of the difference in the case of the g/®. Anal-
ogous plots for other quantities conveys similar observations, therefore will be put them in
Appendix C.

Independently from the noise level added to the training energies and forces, from a global
point of view the first trends that we notice is the strong influence of the physical setup of the
simulation, namely the temperature and the use of quantum nuclei, on the MLIPs performance.
The training dataset was extracted from 300K classical simulations, which makes the MLIPs
reliable at lower or equal temperatures values, while at 400 K (d, h) most of the simulations are
unstable. This is expected, as higher temperatures allow for a broader exploration of the con-
figuration space, making more likely to run into a configuration which is far from the training
dataset. At the same time, training on classical simulation translates into poorer performance in
RPMD simulations, which show instabilities already in dynamics at the training temperature
(Fig. 7.14g). These observations are generally valid also for MLIPs trained on deterministic
datasets, and are expected already from the inspection of the dataset broadening in the dimen-
sionality reduction shown in Figures 7.3d and 7.3e.

From the point of view of noise, in classical simulations at low temperatures (100K and
200K) both OQML and MACE show analogous robustness at any noise level. Differently, in
quantum simulations at low temperatures their behaviour is quite different: MACE shows
reliable results up to (o, oF) = (77 meV,274meV/A), with a ladder-shaped histogram pro-
file showing decreasing performance, coherently with the increase of the noise level. On the
other hand, while OQML performs very well with most of its normed difference bars way be-
low the limit of 3¢, its behaviour is less predictable, as the shown by the “spike” correspond-
ing to the the simulation where the training dataset has been corrupted with noise level of
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