
HAL Id: tel-04958728
https://theses.hal.science/tel-04958728v1

Submitted on 20 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Apprentissage automatique pour l’évolution moléculaire
Luca Nesterenko

To cite this version:
Luca Nesterenko. Apprentissage automatique pour l’évolution moléculaire. Machine Learning
[stat.ML]. Université Claude Bernard - Lyon I, 2024. Français. �NNT : 2024LYO10225�. �tel-04958728�

https://theses.hal.science/tel-04958728v1
https://hal.archives-ouvertes.fr

i

THESE de DOCTORAT DE

L’UNIVERSITE CLAUDE BERNARD LYON 1

Ecole Doctorale 341

E2M2 - Evolution Ecosystèmes Microbiologie Modélisation

Discipline : Apprentissage profond

Soutenue publiquement le 18/11/2024, par :

Luca Nesterenko

Apprentissage automatique pour
l'evolution moléculaire

Devant le jury composé de :

Cocco, Simona Directrice de recherche, CNRS Paris Présidente

Scornavacca, Celine Directrice de recherche, CNRS Montpellier Rapporteure

Robin, Stéphane Professeur des universités, Sorbonne
Université Paris

Rapporteur

Pupko, Tal Professeur, Université Tel Aviv Israël Rapporteur

Gueguen, Laurent Maître de conférences, Université Lyon 1 Examinateur

Jay, Flora Chargée de recherche, CNRS Gif-sur-Yvette Examinatrice

Boussau, Bastien Directeur de recherche, CNRS Lyon Directeur de thèse

Jacob, Laurent Directeur de recherche, CNRS Paris Co-directeur de
thèse

	 	 	 	 	 	 This work is licensed under CC BY 4.0

Luca Nesterenko

Deep learning for
molecular evolution

PhD Thesis

Université Claude Bernard Lyon 1

November 18th, 2024

ii

“Phylogenetics illuminates the tapestry of life, weaving threads from the past
into the fabric of the present, offering us a glimpse into the evolutionary dance
that connects all living beings.”

GPT 3.5

iii

Contents

1 Introduction 7
1.1 Phylogenetic inference . 7

1.1.1 Phylogenetic trees . 8
Notation . 8
Interpretation of branch lenghts 8
Number of topologies 9
Tree space exploration 10
Tree rooting . 10

1.1.2 Parsimony . 11
1.2 Probabilistic models of molecular evolution 13

1.2.1 Model misspecification 15
1.2.2 Per-site rate variation 15
1.2.3 Gene trees and species trees 17

1.3 Likelihood methods . 18
1.3.1 Felsenstein’s pruning algorithm 18
1.3.2 IQtree . 20

1.4 Distance methods . 20
1.4.1 Model-based distances 21

ML estimate of distances under the Jukes-Cantor model 22
1.4.2 Neighbor joining . 24
1.4.3 Least squares . 25
1.4.4 Minimum evolution . 27

Balanced minimum evolution 27
1.4.5 FastTree . 28
1.4.6 FastME . 28
1.4.7 Advantages and limitations of distance-based methods . 29

1.5 Assessing the performances of phylogenetic reconstruction meth-
ods . 29
1.5.1 Comparing trees . 29
1.5.2 Bootstrap . 31
1.5.3 Supertree methods and quartet puzzling 32

1.6 Machine and deep learning . 32
1.6.1 Supervised learning . 33
1.6.2 Validation, overfitting, hyperparameters and regularisation 34
1.6.3 Fully connected neural networks 35
1.6.4 Convolutional neural networks 36
1.6.5 Attention . 39

iv

1.6.6 Invariance and equivariance 41
1.6.7 Interpretability . 42
1.6.8 Fine-tuning and transfer learning 42
1.6.9 Deep learning in phylogenetics 43

1.7 Simulation-based inference . 44
1.7.1 Approximate Bayesian Computation 45
1.7.2 Neural network-based methods 46

1.8 Supervised learning to estimate evolutionary distances 49

2 Phyloformer 51
2.1 Preface . 51
2.2 Introduction . 55
2.3 Results . 57

2.3.1 Likelihood-free phylogenetic inference with Phyloformer 57
2.3.2 Under a standard model of evolution, Phyloformer is as

accurate and much faster than ML 58
2.3.3 Under more realistic models, Phyloformer outperforms

all other inference methods 61
2.3.4 Phyloformer performs on par with ML methods on em-

pirical data . 62
2.4 Discussion . 63
2.5 Online methods . 65
2.6 Supplementary Methods . 71

2.6.1 Simulating phylogenies 71
Empirical tree distributions 71
Simulating trees . 71
Comparison of simulated and empirical trees 72

2.6.2 Simulating multiple sequence alignments 73
2.6.3 Detailed architecture of the Phyloformer network, train-

ing and fine-tuning . 74
2.6.4 Estimating posterior distributions 75

2.7 Supplementary Results . 76
2.7.1 Phyloformer’s attention maps reveal coevolution patterns 76
2.7.2 Phyloformer reconstructs likely trees 78
2.7.3 Short branches, not short distances, explain Phylo-

former’s deteriorating topological performance as the
number of leaves grows 78

2.8 Supplementary Figures . 81
2.9 Additional discussion . 87

3 Deepelican 93
3.1 Detecting shifts in selective pressure associated with a phenotype 93

3.1.1 Existing methods . 94
dN /dS methods . 94
Profile methods . 95

3.1.2 Model of evolution . 96
3.2 Deepelican . 97

3.2.1 Adapting the neural network architecture 98
3.2.2 Encoding global information 99

3.3 Simulations and training . 99
Simulations . 99

v

Training . 100
3.4 Results . 101

3.4.1 Testing with different tree sizes 101
3.4.2 Testing with different profiles 102
3.4.3 Speed and memory performances 103
3.4.4 Testing on empirical trees 104

More realistic simulations: ρ = 4 106
3.4.5 Testing on empirical alignments: The Prestin gene . . . 108
3.4.6 Testing on empirical data: Gene enrichment analysis . . 109

3.5 Discussion and future perspectives 110

4 DaNaiDeS 113
4.1 Introduction . 113

4.1.1 OmegaAI and DaNaiDeS 113
4.1.2 Simulations and training 114

4.2 Results . 116
4.2.1 Baseline divergence . 116
4.2.2 Mixed divergences . 117
4.2.3 Advantages of permutation invariance 118
4.2.4 Interpretability . 120

4.3 Discussion and future perspectives 121

5 Conclusion 123

1

Resumé

Comprendre l’histoire évolutive d’un groupe d’organismes est une tâche centrale
en biologie. En particulier, étant donné un ensemble de séquences codant
pour la même protéine chez plusieurs espèces, un objectif important est de
reconstruire l’arbre décrivant leur évolution à partir d’un ancêtre commun.
Bien qu’étant une étape cruciale dans plusieurs pipelines bioinformatiques,
cela représente un problème difficile en soi, car le nombre d’arbres possibles
augmente de manière superexponentielle avec le nombre d’espèces.

Les méthodes de pointe reposent sur des modèles probabilistes de l’évolution
des séquences et cherchent à maximiser la vraisemblance de l’arbre correspon-
dant. Cette stratégie n’est réalisable qu’avec des modèles très simplifiés. De
plus, elle est extrêmement coûteuse en termes de calculs et conduit parfois à
des estimations imprécises, notamment dans le cas de mauvaise specification
du modèle.

D’un autre côté, les simulations permettent de générer facilement de
grandes quantités de données à partir de ces modèles. L’objectif principal
de cette thèse a été d’explorer une approche d’apprentissage supervisé pour
résoudre ce problème dans un cadre d’inférence basé sur la simulation, sans
recours à la vraisemblance. Au lieu de maximiser la vraisemblance d’un modèle
d’évolution des séquences, nous avons généré des arbres phylogénétiques ainsi
que des séquences ayant évolué selon ces modèles, et les avons utilisés pour
apprendre une fonction, paramétrée par un réseau de neurones profond, qui
transforme un ensemble de séquences homologues en un ensemble de distances
évolutives.

L’arbre lui-même peut ensuite être reconstruit à partir de ces distances via
les méthodes dites basées sur la distance. Bien que des progrès notables aient
été réalisés ces dernières décennies pour améliorer ces méthodes, l’estimation
des distances est encore généralement effectuée dans le cadre du maximum de
vraisemblance par de simples comparaisons par paires, ce qui ne permet pas
d’exploiter pleinement l’information contenue dans l’alignement multiple des
séquences en entrée et qui conduit finalement à des précisions de reconstruction
inférieures par rapport à une approche de maximum de vraisemblance complète.
Le présent travail vise donc à combler cette lacune en proposant une prédiction
conjointe de toutes les distances évolutives, en tirant parti des développements
récents et des succès de l’apprentissage profond dans le traitement de données
à haute dimension et de séquences.

Nous montrons que ce nouveau paradigme peut améliorer les méthodes de
reconstruction phylogénétique existantes ou aboutir à des précisions similaires
pour de grands ensembles d’espèces pour lesquelles les méthodes actuelles

2 Contents

seraient trop coûteuses en ressources. Cette approche ouvre également la voie
à l’adoption de modèles d’évolution plus complexes et réalistes, pour lesquels
l’inférence, avec les méthodes basées sur la vraisemblance, serait intractable.

Nous discutons des avantages et de la flexibilité offerts par l’architecture
de réseau de neurones développée, qui peut facilement être adaptée pour
traiter différentes tâches d’inférence biologique connexes, démontrant ainsi son
efficacité dans l’analyse des données de séquences moléculaires.

3

Abstract

Understanding the evolutionary history of a group of organisms is a central task
in biology. In particular, given a set of sequences encoding the same protein in
multiple species, an important objective is to reconstruct the tree describing
their evolution from a common ancestor. While being an important step in
several bioinformatic pipelines this is a hard problem in itself given that with
more and more species the number of possible trees grows superexponentially.

The state-of-the-art relies on probabilistic models of sequence evolution and
seeks the tree that maximizes the corresponding likelihood. This strategy is
only feasible with very simplified models. Moreover, it is very computationally
expensive and sometimes leads to imprecise estimates, notably in the case of
model misspecification.

However, via simulations, it is simple to sample large quantities of data
from these models. The main objective of this thesis has been to explore a
supervised learning approach to the problem in a likelihood-free, simulation
based inference framework. Instead of maximizing the likelihood of a sequence
evolution model, we generated phylogenetic trees as well as sequences hav-
ing evolved according to these models, and used them to learn a function,
parameterized by a deep neural network, that transforms a set of homolo-
gous sequences into a set of evolutionary distances. The tree itself can be
reconstructed then from these distances via so called distance-based methods.
While in the last decades noticeable progress has been made in improving
these methods, the distance estimation in itself is typically still performed in
the maximum likelihood framework via simple pairwise comparisons. These
fail to fully exploit the information contained in the input multiple sequence
alignment, eventually leading to worse reconstruction accuracies with respect
to a full scale maximum likelihood approach. The present work then aims to
fill this gap with a joint prediction of all evolutionary distances leveraging
the recent developments and successes of deep learning in dealing with high
dimensional and sequence data.

We show that this new paradigm can improve existing phylogenetic re-
construction methods or lead to similar accuracies on large sets of species
for which existing methods would be too resource intensive. The approach
also paves the way to the adoption of more complex and realistic evolution
models under which inference, with existing likelihood-based methods, would
be intractable. We discuss the advantages and flexibility provided by the
developed neural network architecture which can easily be adapted to deal
with different related biological inference tasks showcasing its effectiveness in
dealing with molecular sequence data.

5

Outline of the thesis

Chapter 1, the introduction, aims at presenting the concepts and methods
used throughout the thesis in a concise yet self-contained way, providing the
context and the statistical framework the work is built upon. I firstly introduce
the problem of phylogenetic reconstruction outlining the phylogenetician’s
framework with the commonly employed models of evolution and tree recon-
struction methods discussing at once their advantages and limitations. A
brief introduction of deep learning follows, with a particular emphasis on its
applications in the fields related to molecular evolution, and on the basic
building blocks of the neural network architectures that will be considered
throughout this work. Finally a discussion of the recent advances that the deep
learning revolution has brought on in the field of simulation-based inference,
provides the main framework for our approach to phylogenetic reconstruction
and ohter problems in molecular evolution.

In chapter 2 I will present and discuss the main work that I carried out
throughout my thesis, the development of a neural network-based approach to
the problem of phylogenetic reconstruction via the joint estimation of evolu-
tionary distances between sequences inside a multiple alignment.

Chapter 3 stems from a project on which Estelle Bergiron, an M1 student,
has worked on for her internship, cotutored by me, Bastien Boussau and Julien
Barnier. In this work we adapted the developed neural network architecture
for a different task, namely the detection of sites subject to a selection shift
associated with a given phenotype.

Chapter 4 results from a joint project with Charlotte West, a PhD student
at EBI in Cambridge. Again, we adapted our network architecture to tackle
the main problem she’s been working on, namely the gene-wise detection of
positive selection. This allows us to once again showcase the flexibility of the
developed approach working this time with nucleotide instead of amino acid
data and allowing a direct comparison with a convolutional network trained
for the same task.

7

Chapter 1
Introduction

1.1 Phylogenetic inference
The principle underlying phylogenetic reconstruction is that all living or-
ganisms share a common ancestor and, as species diverge over time, they
accumulate differences. By analyzing these differences, researchers can infer a
“family tree”, or phylogeny, that reflects the underlying evolutionary history
via successive branching patterns. While the idea of a phylogeny to represent
the evolutionary relationships between different organism dates back to the
mid 19th century (figure 1.1), it is the advent of high-throughput sequenc-
ing technologies that has revolutionized the field with the development of
molecular phylogenetics. Working with sequence data instead of morphological
characters provides a more fine-grained trace of the evolutionary history of
a set of organisms and a more objective way to assess the differences they
accumulated over time. The starting point of such an approach is typically a
multiple sequence alignment (MSA), consisting in the retrieval from known
databases of supposedly homologous sequences, that is evolutionary related
through a common ancestor, and their subsequent arrangement in a matrix
having as rows all the sequences. This is done in a way which maximizes the
overall score of the alignment, specifically defined to ensure that each column
corresponds to a particular site in the ancestor sequence, possibly subject to
different mutations or insertion/deletion events through the course of evolution.
Nowadays phylogenetic inference has widespread applications across numerous
fields of biology with phylogenies being used for instance to trace the origins
and track the spread of pathogens, to study the evolution of cancer cells, to
prioritize species with unique evolutionary histories in conservation biology or
to assist the discovery of novel enzymes in biotechnology.

While the massive amount of data provided by sequencing technologies
promises to offer unprecedented insight into the evolutionary relationships
among species and the mechanisms of evolution, it comes with its challenges,
as the need for efficient computational methods to process and analyze large
datasets. Indeed whereas complex models that aim at accurately capturing the
evolutionary processes underlying data have been developed, their applicability
remains limited, given the computational bottleneck impeding their use for
large scale datasets. On the other hand the last decades have seen the rise
of machine learning and in particular of its subfield of deep learning, which
with its capabilities of leveraging massive amounts of high-dimensional data

8 Chapter 1. Introduction

to unravel their complex underlying relationships promises to revolutionize
many fields, including phylogenetics.

The subject of the present manuscript is situated at the intersection of
these two fields, molecular phylogenetics and deep learning, the goal of the
following introduction will then be to provide the context and framework in
which the thesis work has been carried on.

Figure 1.1: A phylogenetic
tree drawn by Charles Darwin, in
his first notebook on
Transmutation of Species, 1837.

1.1.1 Phylogenetic trees

In phylogenetics one typically takes into account only binary trees as evo-
lutionary events leading to the simultaneous divergence into more than two
species are assumed to be highly unlikely and can be approximated by several
bifurcations along a binary tree with arbitrarily small branches. Polytomies,
nodes with more than two descendants can still be considered in the literature
but this is typically done in order to represent uncertainty in the evolutionary
relationship between different lineages, whereas fully resolved trees are always
represented as binary, this will always be the case throughout this work.

Notation

Given a phylogenetic tree τ , a binary tree with each edge labelled with its
length, a non-negative real number, we shall denote by E(τ) the set of its
edges, which will often be referred to as branches, with l(e) the length of a
branch e and with V (τ) the set of the vertices (nodes) of τ . We will refer to
branches connecting leaves to their parent nodes as terminal or external while
denoting as internal the others, we shall also sometimes refer to the leaves as
tips or taxa and to their number as the size of the tree.

Interpretation of branch lenghts

Although it would be natural to assume so, most commonly in phylogenetics the
tree’s branch lengths do not represent the time passed between one branching
in the tree and the next (or the moment when the sequences are observed if
the next node is a leaf) but rather the amount of evolutionary change that a
sequence evolving along a branch has undergone, as we shall soon see, this
allows allows typically employed models of molecular evolution to take into
account different rates of evolution, i.e. different speeds at which sequences
evolve, along different branches. In such a framework trees in which the
rate of evolution is constant in each branch, referred to as ultrametric, are
said to follow the molecular clock hypothesis, according to which the rate of
evolutionary change is constant over time and across different lineages. This
assumption does allow to interpret the branch lenghts as the time (eventually

1.1. Phylogenetic inference 9

multiplied by the constant rate) passed between successive branching events,
but such a condition is rarely met in empirical data.

Number of topologies

A single topology is possible for an unrooted binary tree having 3 leaves,
namely the one with a single internal node of degree 3 connected to each
of them via a single branch. We can then notice that one can construct an
unrooted binary tree (UBT) with n leaves from one with n− 1, by choosing a
branch on which a new node is placed along with the branch connecting it to
the new leaf, and it is straightforward to see that every UBT on n leaves can
be constructed in such a way (Fig. 1.2).

b

a

c

c

a

d

b

c

a

b

d

d

a

c

b

c

a

d

b
e

e

a

d

b
c

e

c

d

b
a

c

a

d

e
b

c

a

e

b
d

d

a

c

b
e

e

a

c

b
d

e

d

c

b
a

d

a

c

e
b

d

a

e

b
c

b

a

d

c
e

e

a

d

c
b

e

d

c

b
a

d

a

c

e
b

d

a

e

b
c

Figure 1.2: Enumeration via step-wise addition of all unrooted binary trees for
increasing numbers of leaves.

Given that both the numbers of nodes and branches are increased by 2 in
this way it easily follows by induction that an UBT with n leaves has 2n− 2
nodes and 2n−3 branches. The same reasoning now allows us to enumerate all
the UBTs with n leaves: Given that there are at each step 2(n−1)−3 = 2n−5
choices for the branch along which to place the new node the number of
topologies on n leaves is given by #Tn = 3 · 5 · · · (2n− 5) = (2n− 5)!! (Figure
1.3). Given that rooting an UBT simply amounts to choosing a branch along
which the root is placed, a rooted binary tree with n leaves has 2n− 1 nodes
and 2n− 2 branches and the number of possible rooted binary topologies is
given by #T̂n = (2n− 3)!!.

4 6 8 10 12 14 16
n

101

103

105

107

109

1011

1013

1015

(2
n

5)
!!

Figure 1.3: Super-exponential
growth of the number of unrooted
binary topologies as a function of
n. One can see for instance that
there are already more then a
million possible topologies for a
tree with 10 leaves.

10 Chapter 1. Introduction

Tree space exploration

a

b

c

d

d

b

c

a

c

b

a

d

a

b

c

d

f
a

b

c

d

f

Figure 1.4: Two NNIs on the left and one SPR move on the right.

Given the vastness of the space of tree topologies, algorithms which seek the
best phylogenetic tree optimizing a given criterion generally cannot perform an
exhaustive search, testing each possible topology, except when working with
very small datasets. Criterion-based phylogenetic reconstruction algorithms
have then to resort to heuristics to partially explore the tree space. The most
popular techniques used by these hill climbing algorithms to go from a tree to
another are Nearest Neighbor Interchange (NNI) and Subtree Pruning and
Regrafting (SPR) (Figure 1.4). The first consists in selecting an interior edge
of the tree and swapping one of the two rooted subtrees stemming from one
end of the edge with one of the two stemming from the other. Given that a
tree τ ∈ Tn has n− 3 internal branches, the number of its NNI neighbors is
equal to 2(n− 3). An SPR tree rearrangement operation consists instead in
selecting an edge of the tree τ , detaching it from the latter at only one end
thus obtaining a pruned subtree, the latter is then reattached to τ , introducing
a new node, along one the remaining edges. It is easy then to see that NNI
moves are a special case of SPRs in which the pruned subtree is attached
along the branch joining the considered edge to one of the subtrees which are
on the other end of it. The number of SPR neighbors a tree τ ∈ Tn has is
2(n − 3)2(n − 7) [1] therefore such moves allow a more thorough local tree
space exploration, potentially allowing to escape local NNI minima.

Tree rooting

Under the molecular clock hypothesis, assuming that all lineages have evolved
with the same speed from their common ancestor, it is straightforward to
place the latter, the root of the tree, as the node equidistant from all the
leaves. We shall see that in the more general case, in which different rates of
evolution are allowed across different branches, the common assumption of
time reversibility made by the vast majority of evolution models implies that
a priori the placement of the root cannot be identified. A common method to
root a phylogenetic tree is then outgroup rooting which consists in including
in the analysis a group of sequences known for a fact to be only distantly
related to those under study, this entails that the root will necessarily find
itself on the branch joining this outgroup to the other sequences. In this work
we will use rooted trees to simulate the evolution of sequences along given
phylogenies, on the other hand we will not consider the problem of the root
placement when inferring trees: Whenever we will compare phylogenetic trees

1.1. Phylogenetic inference 11

these will always be considered as unrooted as all the metrics used to compare
trees throughout the manuscript are independent of their root placement.

1.1.2 Parsimony

In order to find a tree that best fits the data we have at hand one needs first
a criterion to choose among different trees. One of the first from an historical
point of view, and most intuitive among such criteria is loosely based on
the general principle of Occam’s razor which can be stated in very simplistic
terms as “The simplest explanation is usually the best one”. In the context of
phylogenetics this becomes “The preferred tree is the one that involves the
minimum amount of evolutionary changes”. This leads to the definition of
a parsimony score [2] for a given phylogenetic tree topology where inferred
ancestral states have been assigned to internal nodes, as the total number of
observable character changes having occurred along the branches of the tree.
In this framework the problem of phylogenetic reconstruction then becomes the
quest for the tree topology and assignment of ancestral sequences that minimize
this score. Beyond the limitations of such a rationale, which shall be further
discussed, such an approach still suffers from the vastness of the tree topology
space T . Indeed, while for a given topology the assignment of the sequences
to internal nodes which minimises the score (known as the small parsimony
problem) can be computed efficiently (O(nL) time complexity) via dynamic
programming with Fitch’s algorithm [2], the minimization across all possible
topologies is known to be an NP-hard problem [3][4] and in practice one has
to recur to heuristics in order to find a tree that is at least a local optimum
according to this criterion. Furthermore it is worth noting that the global
optimum need not be unique as several trees can be equally parsimonious.

C C T G

C A T C

A C T A 0 0 1

0

C C A

C

C

0 1 0

0

C A C

C

C

0 0 0

0

T T T

T

T

0 1 1

0

G C A

G

G

p(τ) = 1 + 1 + 0 + 2

Figure 1.5: Example of parsimony score of a tree for a toy alignment.

The parsimony criterion is not statistically consistent, that is even with
infinite amount of data (infinitely long sequences), one will not necessarily
obtain the correct tree. The standard example for this behavior is the phe-
nomenon known under the term long branch attraction (LBA): To show the
inconsistency of parsimony Felsenstein [5] considered a tree such as that on the
left in Figure 1.6 and showed that under a simple model of evolution, denoting
by P (xywz) the probability of observing the character pattern xywz at any
given site, if the two long branches are sufficiently longer than the three short
ones, then P (xyxy) > P (xxyy) where x and y are distinct characters. The
former pattern induces maximum parsimony to prefer the wrong topology on
the right of Figure 1.6, leading therefore, in the limit of infinite sequences,
the method to wrongly infer the latter topology as the one underlying the

12 Chapter 1. Introduction

x x x . . .

x y y . . .

y x x . . .

y y y . . .

a

b

c

d

a c

b d

a

b

c

d

Figure 1.6: Example of long branch attraction, true tree ((a, b), (c, d)); on the left
and wrong tree ((a, c), (b, d)); reconstructed by maximum parsimony in the limit of

infinite sequence length on the right.

observed sequence data.

The faulty assumption underlying parsimony is that each site, assumed to
be evolving independently, can undergo at most a single character change in
the process of evolution of a sequence along a branch. Indeed as illustrated
in figure 1.5 one can see the parsimony score of a tree in which the internal
node have been annotated with ancestral states as the sum of the per-site tree
lengths, where the length of a tree is defined as

l(τ) =
∑

e∈E(τ)
l(e) (1.1)

having made the assumption that l(e) ∈ {0, 1} ∀e ∈ E(τ). Equivalently this
amounts to consider the length of the tree regarding all sites at once, assuming
the length of an edge to be the Hamming distance between the sequences at
its ends, that is the number of sites at which the two sequences differ. We
will see that a more sophisticated method, minimum evolution 1.4.4, works
by minimizing the same tree length function, in that case however, the use of
an unbiased distance measure, which does take into account the possibility of
multiple substitutions and back-mutations along the branch, will guarantee
the statistical consistency of the method.

1.2. Probabilistic models of molecular evolution 13

1.2 Probabilistic models of molecular evolution
As the process of evolution is generally assumed to be memoryless most often
biological sequence evolution is modeled as a continuous-time Markov chain
[6][1]. Furthermore, a widespread assumption is that the evolution process is
independent and identically distributed (i.i.d.) at each site of the sequence
so that the evolution of a protein sequence of length L is modeled by L
i.i.d. Markov processes running along the branches of a common underly-
ing phylogenetic tree with the twenty amino acids alphabet as state space
A = {A, R, N, D, . . . , Y, V }.1

Let then the column vector of state probabilities be

X(t) = (pA(t), pR(t), pN (t), . . . , pV (t))T , (1.2)

where px(t) is the probability of finding the character x ∈ A at the considered
site at time t. Given the transition rate matrix Q = (qij), where qxy for
x, y ∈ A is the transition rate from amino acid x to amino acid y when x ̸= y
and qii = −∑

j ̸=i qij , the evolution process is governed by the differential
equation

X(t)′ = QX(t), (1.3)

from which immediately follows

X(t) = etQX(0). (1.4)

The elements Pxy(t) of the transition probability matrix P (t) provide then the
probability of a character changing from x to y in time t. Probabilistic models
of evolution generally further assume that the rates qxy are positive for x ̸= y
so that the Markov chain is ergodic, meaning that each state can reach any
other state, i.e. Pxy(t) > 0 for all x, y ∈ A. This entails that the chain admits
an unique stationary distribution π = (πx, x ∈ A)T to which X(t) tends as
the time t goes to infinity. This can be found solving

0 = Qπ,
∑
x∈A

πx = 1 (1.5)

or equivalently πX = X. Generally one assumes that the chain is at equilibrium
so that this is the distribution of the amino acid frequencies at each node
of the tree. One often refers to amino acid frequency distributions as amino
acid profiles, and while the simplifying assumption of all the sites sharing
the same profile is typically made, allowing different profiles in different sites
of the sequence is one way to increase the realism of a model of evolution.
We will encounter such more complex models in chapters 2 and 3, these will
furthermore allow the frequency distribution of each site to change over time.

Another common simplifying assumption in markovian models of protein
evolution, already mentioned when discussing tree rooting, is that of time-
reversibility:

πxqxy = πyqyx, (1.6)
1All the following applies as well if we model instead the evolution of nucleotide characters

with state space A = {A, G, C, T } or the evolution of codons with 61 states (as the three
stop codons are typically excluded).

14 Chapter 1. Introduction

meaning that when the process is stationary the frequency of mutations of
amino acid x into y is equal to that of y into x. In turn this allows us to
express the transition rates as a product of stationary frequencies and relative
rates, known as exchangeabilities:

qxy = sxyπy, (1.7)

with sxy = syx, reducing the number of parameters needed to describe the
model. These parameters, for commonly employed models such as LG, PAM,
JTT and WAG, are inferred from the analysis of large protein databases.

In this framework the expected number of substitutions occurring at
equilibrium in a site along a branch of length t is given by

t
∑

πi · (−qii) (1.8)

therefore in order to have one expected substitution per unit length Q is
typically normalised so that ∑

πi · (−qii) = 1. (1.9)

These models necessarily suffer from several limitations given the made
simplifying assumptions. The identical distribution of the random variables
which implies no rate variation between sites is limiting as for instance a
functionally important subregion of a coding sequence, such as that coding
for a protein binding domain, is clearly subject to a particular evolutionary
pressure and thus shouldn’t be modeled in the same way as less functionally
relevant sites [7]. We shall see in subsection 1.2.2 that this heterogeneity of
the rates of change across different sites can be modeled in the presented
framework. Other limitations on the other hand are harder to deal with, this is
the case for instance for the independence of sites assumption which completely
disregards epistatic phenomena such as the coevolution of amino acids that
share a contact point in the threedimensional structure of the folded protein
[8]. Whereas such phenomena can be taken into account via more complex
models, phylogenetic inference under these is hard, making their applicability
limited. This is notably the case in the Maximum Likelihood (ML) framework,
which will be discussed in section 1.3, given the intractability of these models’
likelihood functions.

One of the main goals of my PhD project has been the development of
a method that would be able to overcome such limitations, nonetheless the,
most commonly employed, simplified models discussed here have been the
starting point of my methodological explorations.

1.2. Probabilistic models of molecular evolution 15

1.2.1 Model misspecification

Several strategies had been devised and implemented in software (e.g. [9][10])
to choose the best fitting evolution model to analyse a dataset for phylogenetic
reconstruction. Different criteria, based on likelihood calculations, such as
AIC, AICc and BIC, have been introduced for model selection. These, defined
as scores to be minimized by the chosen model, are again founded in the
parsimony principle, with models having fewer parameters being preferred
unless the use of additional parameters sufficiently increases their fit to the
data. Although the authors in [11] showed that the models selected via
these strategies do not necessarily lead to a better topological accuracy with
respect to the one that one obtains using the most parameter-rich model
in the presented framework, namely GTR+I+G, the general time reversible
model allowing both for invariant sites and sites with Gamma-distributed rate
variation (subsection 1.2.2), thus arguing that the time-consuming step of
model selection may be unnecessary for the quest of the true tree topology, they
do show that simpler models found through model selection can provide better
estimates of branch lengths. As we shall see in chapter 2, accurate branch
lenght estimation is a particular strength of the phylogenetic reconstruction
method presented in this manuscript.

Similarly, model misspecification, the use for inference of a model different
from the true evolutionary process underlying the data being analysed, has
been shown to affect to a lesser extent the inference of the tree topology
while often leading to wide variations of inferred numerical parameters such
as branch lengths. Nevertheless under model misspecification no theoretical
guarantees can be made about the statistical consistency of likelihood (Section
1.3) or distance methods (Section 1.4) when the distance estimates are attained
employing the wrong model of evolution and cases in which a misspecified model
leads to serious errors in the inferred tree topology have been documented (e.g.
[12][13]). We also shall analyse the impact of such misspecification through
several simulations in chapter 2.

1.2.2 Per-site rate variation

Whereas in the presented framework the unconstrained tree branch lengths
which do not assume a molecular clock allow us to model rate variation
across different lineages, so far we have assumed the rate of variation to be
constant across sites, in empirical data this again may not accurately model the
evolution of residues at different positions, which may be subject to disparate
evolutionary pressures and thus evolve at different rates. It is customary thus
to model such variation assigning an evolutionary rate λi ∈ R≥0 to each site
i, so that all the sites in a sequence will be modeled as evolving along the
same tree with the branches rescaled by the factors λi for each different site.
Equivalently, this amounts to each site i evolving along the exact same tree
but according to the transition matrix λiQ. In current practice, it is common
to use for the distribution of rates a Gamma distribution [14],2, which is in
general parameterized by two positive real parameters parameters α, β and

2It is worth noting that there’s no particular biological reason justifying this choice which
is rather made for convenience given the flexibility and mathematical tractability of such a
distribution.

16 Chapter 1. Introduction

whose density function is given by the formula

f(x; α, β) = xα−1e−βxβα

Γ(α) , α, β > 0 (1.10)

Imposing the mean of the distribution to be equal to one (so that we can
still interpret the branch lengths as the expected numbers of substitutions,
now averaged across all the sites) we get α = β and therefore the distribution
having the density function

f(x, α) = αα

Γ(α)xα−1e−αx, α > 0 (1.11)

with mean 1 and variance 1/α, the function is plotted for different α values
in Figure 1.7. More precisely, for computational reasons, more often than
not it is not directly the Gamma distribution but rather a discretization of
it, with a finite number of classes, which is used by software implementations
of maximum likelihood: When using the discrete model Gamma-k [15], the
k-quantiles of the distribution are identified. Then the average values of λ in
each of the resulting k intervals are computed and these values are thereafter
used as the rate scaling factors λi for k classes, each with proportion 1/k.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Density function of the Gamma distribution for different values of

=0.1
=1
=5
=20

Figure 1.7: Probability density function of the Gamma distribution for different
values of the α parameter, as the latter goes to infinity the distribution tends to a Dirac
δ centered in 1 whereas as α goes to 0 more and more sites will have rates around zero

while the others will be spread out across large values.

Whereas using small values of k for the discrete Gamma model one incurs
in the risk for underestimating the largest rates [16], it has been shown that
using more categories provides a good approximation [17]. Nevertheless,
throughout this work, whenever we modeled rate variation, we rather used
the full continuous Gamma distribution in order to improve the realism of
the simulations on which our neural networks are trained, the same choice
was then made for inference under maximum likelihood in order to test the
method under the exact same model of evolution the data has been simulated
with.

1.2. Probabilistic models of molecular evolution 17

1.2.3 Gene trees and species trees

So far the reader may have been lead to think that the tree one reconstructs
from an MSA conveys directly the evolutionary past of a set of species, it
is worth then to clarify the difference between gene trees and species trees:
Typically phylogenetic trees are reconstructed from a set of homologous
sequences coding in different species for a specific gene, the evolutionary
history of the gene however may differ from the one of the species that carry
it [18].

gene duplication

a b c abc a b c abc

(a)

A
B

C
D

E
F

A
B

F
C

E
F

B
A

C
D

E
F

(b)

a b c d b c a d

(c)

Figure 1.8: Gene duplication (A), horizontal gene transfer (B) and incomplete lineage
sorting (C).

The main evolutionary events that can cause such a discrepancy are gene
duplications, which may lead to the incorrect species tree via an incomplete
sampling of homologous genes (Figure 1.8, A), horizontal transfers, transfers
of genes that can take place between different species leading the trees of the
involved genes to differ from the species one (Figure 1.8, B), and incomplete
lineage sorting: In the population of a common ancestor for any given gene there
are typically multiple variants (alleles) which co-exist within the population.
When a speciation event occurs, the different alleles of the gene are divided
among the newly diverged species. As the species continue to evolve, the gene
alleles in these species may not immediately “coalesce” into a single common
ancestor within each of them. This entails that lineages of these alleles may
persist such that the gene tree, constructed from these, shows a different
evolutionary history than the species tree (Figure 1.8, C).

These topics are beyond the scope of this work in which we focus on the
reconstruction of a single tree from a set of homologous sequences, nevertheless
it is worth pointing out that our phylogenetic reconstruction method presented
in chapter 2, given its parallelisability, is particularly suitable for inferring
multiple trees at once as it is the case when one wants to reconstruct several
gene trees. Furthermore we shall see how these considerations can help us test
the method on empirical data.

18 Chapter 1. Introduction

1.3 Likelihood methods
The state of the art approach to the problem of phylogenetic reconstruction, in
terms of accuracy of the reconstructed tree topologies and branch lengths, is
widely considered to be maximum likelihood, which, given the sequence data
X = {s1, s2, . . . , sm}, aims at maximising the likelihood of the parameters θ
(branch lengths and topology)

L(θ) = Pr(X | θ), (1.12)

that is the probability of the data conditional to the parameters under a specific
probabilistic model of molecular evolution. The issue with this approach is
twofold, first of all a major drawback of maximum likelihood-based methods is
their high computational cost which makes them unsuitable to deal with large
sets of sequences, secondly, as already discussed, such probabilistic models often
make several simplifying assumptions about the evolution process, assumptions
which are not necessarily met in real data, leading to biased predictions.

1.3.1 Felsenstein’s pruning algorithm

The assumption of evolution being i.i.d. at each site implies that the likelihood
of a tree given an MSA of sequences of length L can be expressed as the product
of L per-site likelihoods which at each site i can be computed independently.

L(τ |s1, . . . , sn) =
L∏

i=1
Li(τ |s1

i , . . . , sn
i) (1.13)

In what follows let us simply denote by L the per-site likelihood Li. We
shall present Felsenstein’s algorithm for the calculation of L along a given tree,
it uses dynamic programming and employs a bottom-up approach computing
recursively partial likelihoods Lp for each node p of the tree starting from
the leaves and going up to the root: For each leaf f a partial likelihood
vector Lf of size d (with d = 20, or d = 4, or d = 61, depending on the
alphabet one is working with) is initialized with all zeros except for a one in
the position corresponding to the amino-acid or nucleotide found at position i
in the sequence corresponding to the leaf. This reflects the fact that at the
leaf the character occupying position i is known for certainty, when there’s
uncertainty on the character on the other hand, due for instance to sequencing
errors, this can be easily accounted for, if there’s e.g. uncertainty between two
possible characters we can assign the value 1 to each and 0 to the other ones.

a b c

A G T

La Lb Lc

0
0
0
1

0
1
0
0

1
0
0
0

tl tr

l r

p

Lp = eQ
T tl · Ll ⊙ eQ

T tr · Lr

Figure 1.9: Left: partial likelihoods at the leaves of a tree, Right: Felsenstein’s
likelihood update at an internal node

1.3. Likelihood methods 19

Now, for each internal node p let us denote by r its right child, by l its left
one and by tr, tl respectively the lengths of the branches which connect them
to p (Figure 1.9, right), the partial likelihood vector component corresponding
to the character y, Lp(y) is then computed as

Lp(y) =
∑
x∈A

Pyx(tr)Lr(x) ·
∑
x∈A

Pyx(tl)Ll(x). (1.14)

In matrix notation we can simply write

Lp = P (tl) · Ll ⊙ P (tr) · Lr = eQT tl · Ll ⊙ eQT tr · Lr (1.15)

denoting with the ⊙ operator the Hadamard product, that is the element-wise
multiplication of two matrices. Finally

L(τ) =
∑
x∈A

πx · Lroot(x) = πT · Lroot. (1.16)

It is important to notice that the assumption of time reversibility implies
that the choice of the root for the calculation of the likelihood along the
tree can be made arbitrarily and does not affect the end result. Also, for
numerical stability reasons, typically what’s computed and maximized is not
the likelihood as is but rather its logarithm, known as log-likelihood, which
allows to replace with sums the products in the likelihood computations
in order to prevent underflows. In maximum likelihood-based phylogenetic
reconstruction software, once computed L in equation (1.16), the branches
of the tree are optimised through several iterative steps, during which the
likelihood needs to be computed again, in order to maximise its value. Then,
the exploration of the tree space is continued via topological rearrangement
moves in order to find a tree with a higher likelihood, furthermore, to avoid
local minima, typically a pool of candidate trees is retained at each step. In
practice maximum likelihood optimisation has a considerable computational
footprint: Felsestein’s algorithm in itself has a complexity of O(nLd2), if
a discrete Gamma model with k categories is employed then the per-site
likelihood is given by the sum over all categories, using efficient algorithms
for branch length optimisation and taking t iteration steps for the latter then
results in a O(ktnLd2) complexity per considered tree topology. Notably we
can observe that the quadratic dependency on the dimension of the state
space, the number of possible characters, is the main reason behind the i.i.d.
assumption that allows the factorization (1.13). When one drops such an
assumption the dimension of the state space increases exponentially in the
number s of sites considered jointly, codon-based models that consider s = 3
nucleotides jointly are an example of this with the dimension of the state
space (considering as well the typically excluded three stop codons) becoming
43 = 64, it is clear then that an approach which would consider all L sites in
a sequence dependent, results in a prohibitively high cost. On the other hand
we shall see in chapter 2 how Phyloformer, our proposed neural network-based
approach on the other hand is capable to handle a model of evolution with
pairs of coevolving sites, resulting in a state space of dimension 202 = 400,
without an overhead computational cost for inference.

20 Chapter 1. Introduction

1.3.2 IQtree

Several software which reconstruct phylogenies in the maximum likelihood
framework exist. In this work we mainly compared the performances of our
newly developed phylogenetic reconstruction method with those of IQtree
[19], which has been shown to attain the best likelihoods among diverse
phylogenomic datasets [20], furthermore this choice allowed us to use its
inbuilt simulator Alisim [21] so that the performances of the method could be
assessed testing it under the exact same model of evolution under which the
data has been simulated. IQtree first estimates 100 parsimony trees along with
one reconstructed through a distance method, then optimizes branch lengths
and other parameters of the model of sequence evolution, while performing
local topological rearrangements (NNIs) to maximize the likelihood while
retaining a candidate tree set to avoid getting stuck in local minima.

1.4 Distance methods
I shall now discuss distance-based methods for phylogenetic reconstruction
which on the other hand are relatively fast compared to ML optimisation and
rather work through the estimation of distances between sequences. Such
distances are what will actually be predicting in the next chapter with the
proposed neural network architecture, to then reconstruct phylogenies with
one of the methods presented in this section.

A binary tree τ with positive branch lengths naturally defines a distance
on the set of its leaves as

dτ (i, j) =
∑

e∈P (i,j)
l(e), (1.17)

l(e) being the length of an edge and P (i, j) the set of edges on the path from
leaf i to leaf j along the tree, one oftens refers to these as evolutionary distances.
Conversely, a map d : X ×X → R satisfying d(x, y) = d(y, x), d(x, y) ≥ 0 and
d(x, x) = 0 for all x, y ∈ X, will be called a tree metric if there exists a tree
τ with leaves X such that equation (1.17) holds for each i, j ∈ X. Given a
map which satisfies the first three conditions we can construct a symmetric
distance matrix D where Di,j = dij := d(i, j). We say that such a matrix is
additive if d satisfies the so-called four point condition:

dxy + duv ≤ max{dxu + dyv, dxv + dyu}, (1.18)

for every (x, y, u, v) ∈ X4, or equivalently

dxy + duv ≤ dxu + dyv = dxv + dyu, (1.19)

eventually changing the labeling of the nodes (Figure 1.10).

1.4. Distance methods 21

x

y

u

v

dxy + duv ≤ dxu + dyv = dxv + dyu

Figure 1.10: Four point
condition, a necessary and
sufficient condition for a distance
to be a tree metric.

This can be shown to be equivalent to the map being a tree metric [22] (for
instance it is straightforward to see that it gives the triangular inequality if one
takes u = v), which is why the terms additive distance and tree metric are often
used interchangeably in the literature. One can notice that the definition of the
distance (1.17), can naturally be extended to all nodes in the tree, the term ad-
ditive then comes from the fact that these distances add up along the tree: if k
is a node on the path along the tree between nodes i and j then dτ

ik +dτ
kj = dτ

ij .

We shall see that the set of distances along a tree allows to reconstruct the
underlying phylogeny, but how does one normally compute such distances? A
naive approach would be to simply consider the Hamming distance between
two sequences, however it is apparent that this metric is not additive. Using it
one incurs in the same issues discussed in subsection 1.1.2 on parsimony, with
such a distance measure failing to account for the true number of substitutions
that may have occured along the branches in the tree that separate the two
sequences. To account for these, and provide an unbiased estimate of the true
evolutionary distances, distance estimation is again typically performed in the
maximum-likelihood framework as we’ll now see.

1.4.1 Model-based distances

Let si and sj be two sequences of the same length L, which we suppose to
have evolved according to a model of evolutionM such as those introduced in
1.2. Relying again on the assumption of independence between sites, one can
compute the probability of them being separated by time t as

L(t|si, sj) = P (t|si, sj) =
L∏

k=1
P

sj
k

si
k
(t). (1.20)

The maximum likelihood estimate of the distance between the two sequences
is then found by maximizing the above function:

dM = arg maxL(t|si, sj)t∈R≥0 . (1.21)

In general this is done numerically although we shall now see an example in
which, given the simplicity of the underlying model of evolution, an analytical
formula for the maximum likelihood estimate of the distance between two
sequences can be derived.

22 Chapter 1. Introduction

ML estimate of distances under the Jukes-Cantor model

The Jukes-Cantor model [23] is the simplest continuous Markov chain model
for the evolution of the 4 nucleotide characters A = {A, C, G, T}, it assumes
equal rates of transition between different characters so that it’s stationary
distribution is π = {1/4, 1/4, 1/4, 1/4} and, given the normalization 1.9,

Q =

−1 1/3 1/3 1/3
1/3 −1 1/3 1/3
1/3 1/3 −1 1/3
1/3 1/3 1/3 −1

 , (1.22)

matrix exponentiation then gives

P (t) = eQt =

1− a(t) a(t)/3 a(t)/3 a(t)/3
a(t)/3 1− a(t) a(t)/3 a(t)/3
a(t)/3 a(t)/3 1− a(t) a(t)/3
a(t)/3 a(t)/3 a(t)/3 1− a(t)

 , (1.23)

where for convenience we set a(t) = 1− 3
4

(
1− e− 4

3 t
)

so that

Pxy(t) =
{1

4 + 3
4e− 4

3 t if x = y
1
4 −

1
4e− 4

3 t if x ̸= y.
(1.24)

Now, given two sequences sj and si, let nxy the number of sites at which
sequence si presents the character x and sequence sj the character y. We can
express the likelihood of si and sj being separated by time t along the tree as

L(t|({nxy}x,y∈A2) =
∏

x,y∈A2

Pxy(t)nxy . (1.25)

We can find the value t̂ that minimizes L by finding the one that minimizes
its logarithm log(L), the latter being a monotone function, we have

log(L(t)) =
∑

x,y∈A2

nxy log(Pxy(t)) (1.26)

= log
(

a(t)
3

)
·

∑
x,y∈A2

x ̸=y

nxy + log(1− a(t)) ·
∑
x∈A

nxx

so that differentiating with respect to t and equating to 0 we obtain via the
chain rule

0 =

∑
x,y∈A2

x ̸=y

nxy

a(t̂)
· a′(t̂)−

∑
x∈A

nxx

1− a(t̂)
· a′(t̂), (1.27)

1.4. Distance methods 23

we can divide by a′(t̂) = e− 4
3 t̂ as the latter is always positive, and solving for

a(t̂) we then get

a(t̂) =

∑
x,y∈A2

x ̸=y

nxy

∑
x,y∈A2

x ̸=y

nxy + ∑
x∈A

nxx
=

∑
x,y∈A2

x ̸=y

nxy

∑
x,y∈A2

nxy
, (1.28)

we can observe now that the right hand side of this equation is simply the
ratio between the number of sites for which the two sequences differ and the
overall number of sites, i.e. their sequence length, this is thus the normalized
Hamming distance between the two sequences, also known as p-distance in
the context of phylogenetics, denoting by dp the latter we finally can solve for
t̂ obtaining

t̂ = −3
4 log

(
1− 4

3dp

)
. (1.29)

Figure 1.11: p-distance against the Jukes-Cantor model-based correction.

The formula allows for an estimate of the evolutionary distance between
the two sequences which takes into account multiple substitutions and back-
mutations. Nevertheless, as one can see in Figure 1.11, equation (1.29) breaks
down for values of dp bigger then 0.75 which limits its application in the case
of highly divergent sequences, beyond this point the sequences are said to be
saturated and it is not possible anymore to infer the expected distance from
the observed one via such an equation.

24 Chapter 1. Introduction

1.4.2 Neighbor joining

One of the most popular algorithms to reconstruct a phylogeny from a set
of distance estimates3 {dij} is the neighbor joining (NJ) algorithm [24][25]
which, once defined

Qd(i, j) = dij −
1

n− 2

∑
k ̸=i

dik +
∑
k ̸=j

djk

 , (1.30)

proceeds as follows:

Algorithm 1: Neighbor joining
1 Input : X = {s1, s2, . . . , sn}, D = {dij , i, j ∈ X};
2 Initialisation :
3 V (τ)← {}; #Nodes of the reconstructed tree
4 E(τ)← {}; #Edges of the reconstructed tree
5 while |X| > 3:
6 a, b = arg mini,j∈X Qd(i, j);
7 D ← {1

2(dia + dib − dab)}i∈X ∪ (D \ {dka, dkb}k∈X);
8 X ← {ja,b} ∪ (X \ {a, b});
9 la ← 1

2dab + 1
n−2 (∑k∈X dak − dbk) ;

10 lb ← dab − la;
11 V (τ)← V (τ) ∪ {a, b, ja,b};
12 E(τ)← E(τ) ∪ {{(a, ja,b}, la), ({b, ja,b}, lb)};
13 return (V (τ), E(τ));

Namely at each step it replaces the two elements a, b ∈ X which minimize
Qd with a single one ja,b adding to the constructed tree the leaves a, b, the node
ja,b and the edges from the leaves to said node, while replacing the distances
between either a or b and another element in X with their sum minus the
distance between a and b, divided by two. It is interesting to mention that
Saitou and Nei [24] showed that the lengths of the branches la and lb joining
the neighbors a and b computed at each step of the algorithm, correspond to
those one would get via an ordinary least squares estimate, an approach that
will discussed in the following subsection.

Figure 1.12: A clustering algorithm as NJ directly reconstructs a tree from a distance
matrix without explicitly optimizing any criterion.

3Here and elsewhere in this work, with a slight abuse of language, I will refer to these
distance estimates as distances even if they not necessarily satisfy the triangle inequality
and thus are not really distances in the mathematical sense.

1.4. Distance methods 25

The definition (1.30) of Qd, which takes into account both how close two
elements are to each other and how far they are from the remaining ones, is
linear in the distances (which also makes the algorithm scaling invariant if one
is concerned only in retrieving the tree topology), permutation invariant and is
guaranteed correctly finds the tree corresponding to a tree metric, furthermore
it can be showed that it is the unique criterion that satisfies these properties
[26].

While the algorithm, provided a tree metric, infallibly leads to the unique
associated tree, the distances estimates we compute from real data most often
are not additive failing to meet condition (1.18). For this another result comes
in help, ensuring the consistency of the algorithm even when the input distance
matrix is “nearly additive” [27]:

Theorem 1. Neighbor joining has l∞ radius 1
2 .

This means that the correct tree topology is guaranteed to be reconstructed
by the algorithm as long as the estimates of the distances given in input are at
most half the shortest edge length in the tree away from their true value. This
is enough to prove the statistical consistency of the algorithm, namely that if
the input distances are unbiased estimates of the true evolutionary distances
then in the limit of infinite sites the true underlying tree is guaranteed to be
found via NJ. Moreover, it has been observed that often neighbor joining is
successful even when such a sufficient condition is not satisfied [28]. As far
as computational complexity goes, we can notice that the implementation
(1) has an O

(
n3)

time complexity, this can be even reduced to an average
performance of Θ

(
n2)

implementing some heuristics [29] while alternatives
such as FastNJ [30] have been proposed with a running time of O

(
n2)

leading
to some loss of accuracy but remaining statistically consistent. A popular
variant of Neighbor Joining is BIONJ [31] which models the variances and
covariances of the estimated evolutionary distances to improve the selection of
the pair to join, namely the one which minimizes the variance of the updated
distance matrix. It is worth mentioning that if the input distance matrix
is additive then the corresponding tree can be recovered even with a more
naive algorithm which has O

(
n2)

complexity [32], the latter however lacks the
statistical guarantees just discussed. One drawback of the neighbor joining
algorithm is that, as the least squares approaches that will shall now encounter,
it can lead to unmeaningful negative branch lengths in the reconstructed tree.

1.4.3 Least squares

Given a predicted distance matrix let d̂ ∈ R(n
2) be the vector of predicted

distances ordered lexicographically4, and let dτ the corresponding vector of
distances between leaves along the tree τ defined as in equation (1.17), Cavalli-
Sforza and Edwards ([33]) consider the squared euclidean distance between
the predicted distance and the tree metric vectors

E = ||dτ − d̂||2 =
∑

i,j∈{1,...,n},i ̸=j

(dτ
sisj − d̂sisj)2, (1.31)

4Namely d̂ = (d̂s1s2 , d̂s1s3 . . . , d̂s2s3 , . . . , d̂sn−1sn)T

26 Chapter 1. Introduction

and formulate the tree reconstruction problem as the quest for the tree τ
which minimizes the value of E.

Figure 1.13: Factorisation of the distances vector of a phylogenetic tree as the
product of the tree’s path incidence matrix and the vector of the tree’s branch lengths

[34].

For a given topology the lengths to be assigned to its branches in order to
minimize E can easily be found, indeed the problem can be simply formulated
as an ordinary least square regression (OLS) one: let e1, . . . , e2n−3 be an
arbitrary ordering of the branches in τ and v = (l(ei))T

i∈{1,...,2n−3} be the
vector of their lengths, we can then define the path edge incidence matrix
X ∈ R(n

2)×(2n−3) so that Xij = 1 if the branch ej lies along the path in the
tree connecting the pair of leaves corresponding to the i-th component of dτ (
Figure 1.13). This allows us to write in matrix form

dτ = X · v (1.32)

and thus to formulate the problem as the minimization of

||Xv − d̂||2 (1.33)

which amounts to solving for v

d̂ = Xv, (1.34)

multiplying on the each side by XT we get XT d̂ = (XT X)v and thus

v̂ = (XT X)−1XT d̂. (1.35)

More generally different weights can be assigned to each summation term in
the equation: ∑

i,j∈{1,...,n},i ̸=j

wij(dτ
sisj − d̂sisj)2, (1.36)

the corresponding weighted least square (WLS) problem then leads to

v = (XT WX)−1XT Wd̂ (1.37)

where W ∈ is the diagonal matrix ∈ R(n
2)×(n

2) in which the weights wij along
the diagonal are again ordered lexicographically as in dτ and d̂. Different
weighting schemes have been proposed, for instance Fitch and Margoliash [35]
used wij = 1/(d̂si,sj)2 whereas wij = 1/d̂si,sj was proposed by Beyer et al. [36].
The cost of inverting the XT WX matrix is in general O(n3) although O(n2)
methods which exploit the structure of the tree to save computations had

1.4. Distance methods 27

been proposed [37][38]. Still, the problem of finding the tree which minimizes
remains NP-complete [3] and an heuristic exploration of the tree space is
needed in the quest of a tree which is optimal according to the criterion. It
is to be noted that v as obtained through OLS regression in equation (1.35)
is the best linear unbiased estimator according the Gauss-Markov theorem,
assuming equal variances in the distance estimates, the OLS estimation thus
implicitly makes the latter assumption whereas the WLS approach allows to
model different variances as the reciprocals of the weights wij , still making
the assumption that the covariances of the distance estimates are equal to
zero. This is still a simplifying assumption as estimates of distances whose
computation along the tree involves common branches will necessarily be
correlated. In principle this could be handled with a generalised least squares
regression (GLS) replacing W in equation (1.37) with the inverse of the
covariance matrix V of the distance estimates, these covariances however are
hard to obtain and the additional computational complexity of inverting the
V ∈ R(n

2)×(n
2) matrix limits the applicability of the approach. It is nevertheless

important to point out that no matter the weighting scheme the criterion
is statistically consistent, using unbiased distance estimates the true tree is
guaranteed to be recovered in the limit of infinite data by finding the one that
minimizes E even in the case of simple OLS. A drawback that least squares
approaches share with neighbor joining is that again the estimated branch
lengths are not guaranteed to be positive leading at times to negative branch
lengths which are void of biological interpretation.

1.4.4 Minimum evolution

A distance method related to the least squares approach is the Minimum
Evolution (ME) method [39][40] that searches among tree topologies, computing
again their branch lengths by least squares fitting, but aiming to minimize a
different overall criterion, namely the sum of these branches, the tree length,
instead of the squared distance between the predicted distance and the tree
metric vector. The criterion is justified by the proof in [41] that when the
branch lengths are estimated via OLS the expectation, under the underlying
evolution model, of the tree length for the true tree is the smallest among
all possible topologies, provided an unbiased estimate of the evolutionary
distances. While both the OLS and ME criteria are thus statistical consistent,
the authors in [40] have shown that ME is more efficient at recovering the true
tree with respect to OLS in the case of large evolutionary distances and not
very long sequences.

Balanced minimum evolution

Pauplin [42] proposed an alternative approach to OLS branch estimation in
which each clade is given the same weight and has shown that by doing so
we can express the length of a tree τ , whose branches have been fitted from a
predicted distance vector d̂ in this way, simply as

l(τ, d̂) =
∑
i,j

d̂ij

2δτ
ij

, (1.38)

28 Chapter 1. Introduction

where δτ
ij denotes the topological distance along the tree between leaves i and

j, that is the number of edges that separate them. The Balanced Minimum
Evolution (BME) problem can then be formulated as the search of the tree
topology τ such that the function in equation (1.38) is minimized. It is
interesting to remark that in order to find such a topology one does not even
need to estimate its branch lengths as only the topological distances on τ
and the predicted distances d̂ are involved in the formula. Given that l as
defined in equation (1.38) is a continuous function of d̂, to prove the statistical
consistency of the BME criterion it is sufficient to show that given the true
tree τ ,

l(τ ′, dτ) > l(τ, dτ) (1.39)

whenever τ ′ is different from τ . This was shown by Desper and Gascuel [43]
who further proved that the tree length estimate one obtains with the BME
approach is the same that one gets via a WLS in which the variance of each
distance estimate d̂ij is proportional to the exponential of the corresponding
topological distance 2δτ

ij . Furthermore they show that, if a tree τ is a local
minimum for an NNI topology search according to the BME criterion, then
all the branch length estimates of τ are positive provided that the distance
estimates d̂ij satisfy the triangular inequality while the positivity of the internal
branches is guaranteed even if the inequality is violated. Finally it is important
to mention that it has been proven [44] that the Neighbor-joining algorithm
selects at each step the pair to join which most decreases the whole tree length
as computed via Pauplin’s formula thus revealing that the algorithm is a
greedy heuristics for the BME criterion.

1.4.5 FastTree

Another method we shall encounter in the next chapter as a benchmark is
FastTree [45]. It reconstructs a starting tree using an algorithm inspired from
Neighbor-Joining [24] using profiles (the frequencies of each possible character
(including gaps) at each site) of extant and ancestral sequences instead of a
distance matrix, only computing the distance between two profiles if they are
promising candidates to be joined, and taking advantage of heuristics such as
those employed in FastNJ, this leads to a time complexity of O (L

√
n log n) for

this initial tree reconstruction. The tree is subsequently refined with NNI and
SPR topological rearrangements to optimize the balanced minimum evolution
criterion as defined in equation (1.38). Finally the tree is further improved
using an approximation of maximum likelihood with NNI topological moves.
FastTree is not therefore strictly a distance-based method, and as we will
discuss at the end of the next chapter, its accuracy can be mostly ascribed to
these likelihood-maximing moves.

1.4.6 FastME

FastME [46] computes a distance matrix using maximum likelihood, then
reconstructs a tree topology using BioNJ [31] and further refines it via NNI
and SPR topological rearrangements which seek to optimize the BME score
as defined in equation (1.38). In chapter 2 we shall use the same algorithm to
assess the performances in terms of phylogenetic reconstruction of Phyloformer,
using the distances predicted by our model instead of the ML estimates.

1.5. Assessing the performances of phylogenetic reconstruction methods 29

1.4.7 Advantages and limitations of distance-based methods

Distance methods such as neighbor joining can provide a fast alternative to
resource-intensive maximum likelihood optimization to reconstruct phyloge-
netic trees while remaining statistically consistent. This makes them suitable
for the analysis of large datasets5 for which a maximum likelihood approach
would be unfeasible, or in cases where a more complex model of evolution is
considered for which the likelihood function is intractable while unbiased esti-
mates of evolutionary distances can still be obtained. A significant advantage
of distance-based methods is their ability to work whenever a dissimilarity mea-
sure between different taxa can be computed, this allows them to be applicable
as well when working with unaligned sequences [47][48][49], sequence align-
ment being a costly and error-prone step, and with different inputs other than
molecular sequence data (such as immunological data [50], gene frequencies
[33] or sequence data enriched with protein structure information [51]), while
the combined analysis of multiple distance matrices can replace traditional
supertree approaches (subsection 1.5.3) [52][53]. Furthermore several tech-
niques have been developed for effectively imputing missing data [54],[55],[56]
allowing the methods to work even with incomplete distance matrices.

On the other hand numerous studies have shown that distance methods are
commonly less accurate than maximum likelihood or Bayesian ones, this can
be attributed to the fact that, as distance estimation is typically performed
considering each pair of sequences independently, such methods fail to exploit
the full information contained in the alignment data. For instance when
evolutionary rates vary between sites (subsection 1.2.2) likelihood methods
are able to propagate information from changes in one part of the tree to
inform the correction in others whereas a classical distance-based method is
inherently incapable of doing so [1], similarly the latter is not able to benefit
from the information about ancestral sequences as FastTree, parsimony and
likelihood methods do.

These considerations motivate the main contribution of this work, namely
the development of a distance estimation method which through a joint
prediction of all evolutionary distances exploits the information provided
by the entirety of the input MSA which, as we shall see, indeed leads to
significantly better distance estimates.

1.5 Assessing the performances of phylogenetic re-
construction methods

1.5.1 Comparing trees

Since phylogenetic trees cannot be directly observed but only inferred, primarily
via molecular data, the reliability of such inferred trees depends heavily on
the methods and models used for the reconstruction. As we have seen such
methods typically rely on several assumptions about evolution which may fail
to reflect the true complexity of the underlying biological process. Given such
a lack of ground truth, the accuracy of all tree reconstruction methods has
been primarily tested via simulations as these allow to directly compare the
reconstructed trees with the one along which the data has been simulated.

5Although the quadratic memory requirement to store the distance matrix can become a
bottleneck when datasets with several thousands of sequences need to be analysed.

30 Chapter 1. Introduction

One of the most commonly employed metric to compare two trees is the
Robinson-Foulds (RF) distance [57]: We can see each branch on a phylogenetic
tree as defining a bipartition (or split) of the set of its leaves, consisting in
the two subsets of leaves found in the two components obtained removing the
branch from the tree, paired with a weight (i.e., the branch length). Conversely
these 2n− 3 bipartitions fully characterize the tree. Let τ and τ ′ be two trees
with n leaves, A and B be the sets of the corresponding bipartitions induced
on the set of leaves {1, . . . , n}, and lτ (e) the weight of a bipartition e in the
tree τ , namely the length of the branch inducing the bipartition if the latter
is present in the tree τ and 0 otherwise. Then, the Robinson-Foulds distance
between τ and τ ′ is defined as the number of bipartitions not shared by the
two trees:

RF (τ, τ ′) = (|A ∪B| − |A ∩B|) , (1.40)

and its values range between 0 (when the two trees share the same topology)
and 4n− 6 when they have no leaf bipartition in common. We can observe
that the two trees are NNI neighbors if and only if RF (τ, τ ′) = 2. In order to
compare the values of the metric when testing phylogenetic tree reconstruction
methods on trees of different sizes throughout this work we will rather use the
normalized version of the metric

RFnorm(τ, τ ′) = 1
4n− 6 (|A ∪B| − |A ∩B|) , (1.41)

and with a slight abuse of notation denote simply as RF the latter.
While the RF distance only considers the tree topologies we can generalise

its formula to take the branch lengths into account, weighting each bipartition
by the square of its corresponding weight, this gives us the Kuhner-Felsenstein
distance [58]

KF (τ, τ ′) =
∑

e∈A∩B

(lτ (e)− lτ ′(e))2 +
∑

e∈A\B

lτ (e)2 +
∑

e∈B\A

lτ ′(e)2, (1.42)

which amounts to the square of the Euclidean distance between the weight
vectors lτ and lτ ′ and of which the unnormalized RF distance is a special case
when all branches on the two trees have length 1. The RF distance has been
criticized, among other reasons, for a lack of robustness as simply moving the
placement of one leaf on the tree (an SPR move on a terminal edge) can change
its value drastically (Figure 1.14), nevertheless, although several improvements
on it had been proposed, it remains the most widely used measure of topological
dissimilarity in phylogenetics given its simplicity and ease of calculation. For
this reason it is the one we adopted as well throughout this work whenever
a topological comparison of trees was warranted. Nevertheless, given the
aforementioned issues, as a sanity check we also kept an eye on another
topological metric, the quartet distance [59], defined as the fraction of 4-leaves
subtrees in τ and τ ′ which do not share the same topology, as this metric
is not affected as much by moving a single leaf from one part of the tree to
another.

1.5. Assessing the performances of phylogenetic reconstruction methods 31

1 8

3 5 7

2 4 6

8

5 7

12

3

4 6

Figure 1.14: Two trees which do not share any bipartition and thus have maximal
Robinson-Foulds distance although they differ only by the placement of species 1.

Finally we can compare two phylogenetic trees by computing their likeli-
hood under a given model via Felsestein’s algorithm (subsection 1.3.1) which
allows us to assess the performances of different reconstruction methods when
the model used for inference coincides with the one underlying the data, in
the case of model misspecification (subsection 1.2.1) such an approach is less
justifiable. Moreover, even when the model is correct, working only with a
finite number of sites will often lead to several trees having a higher likelihoods
with respect to that of the true one. Nevertheless, this allows to compare the
performances of the methods on empirical data (as it is done e.g. in [20]) for
which a reliable ground truth tree for the comparison is unavailable, and such
an approach can still provide a good assessment of different methods provided
that the employed model of evolution provides a sufficiently good fit of the
data being analysed.

1.5.2 Bootstrap

To assess the uncertainty in the phylogeny reconstructed by any given method,
a general and most commonly used technique is that of the bootstrap [60],
firstly applied in phylogenetics by Felsenstein [61]. Once reconstructed a
tree from an MSA of length L it consists of resampling, with replacement,
L sites among the original ones in order to produce an artificial alignment,
this will almost always miss some of the original sites while containing others
multiple times. The process is repeated k times (typically a few hundreds)
and a tree is reconstructed from each artificial alignment using the same
method as for the original one. The process then generates a set of trees
that can be summarized for instance by annotating the branches of the
originally reconstructed tree with support values, namely the proportion of
trees among the bootstrap samples in which the given branch (again seen
as the corresponding bipartition induced on the leaves) is found. Naturally
the whole bootstrap procedure is computationally expensive and exacerbates
the computational footprint of the underlying tree reconstruction method.
Although approximate techniques to obtain support values on phylogenies had
been devised (e.g. rapid bootstrap implemented in the ML software RAxML
[62] or ultrafast bootstrap implemented in IQ-Tree [63]), the computational
cost of bootstrap generally limits its applicability for large datasets. In this
work we did not resort to bootstrapping for uncertainty assessment but as we
shall see in the next chapter our newly introduced method for phylogenetic
reconstruction is particularly suitable for the inference of multiple trees at
once, even more so when the input MSAs share the same length as it is the
case when one wishes to compute bootstrap values. Possible extensions of our
method to compute uncertainty values associated to its prediction will also be
discussed.

32 Chapter 1. Introduction

1.5.3 Supertree methods and quartet puzzling

Sometimes one may wish to combine several, potentially overlapping, phyloge-
netic trees inferred for different subsets of taxa into a single comprehensive
one, describing the evolutionary history of all considered taxonomic units.
This may be the case if the complete tree cannot be obtained directly due to
limitations of the tree reconstruction method, computational bottlenecks, or
different and incompatible sources of data from which the partial trees are
inferred. To address these challenges, supertree methods have been developed,
with the most popular being Matrix Representation with Parsimony (MRP)
[64][65] which transforms the input trees into a matrix representing the splits
of all the considered taxa induced by the trees, with a supertree being then
inferred using parsimony. Whereas originally the method ignores branch length
information in the input trees, it has been extended to deal with metric trees
in [66] while variants which use heuristics for maximum likelihood optimisation
instead of maximum parsimony to construct the supertree from the matrix
also have been introduced [67]. Another class of approaches is that of quartet
methods which exploit the fact that the topologies induced on all subsets of four
leaves in a phylogenetic tree are sufficient to fully recover the latter. Among
these a popular one is quartet puzzling [68] which computes the maximum
likelihood solution6 for all quartets of taxa (which entails considering only the
three possible tree topologies for four leaves) with the full tree for all taxa
being then constructed via a majority-rule consensus. Although still slow
for many taxa, the method is much faster than computing directly the exact
maximum likelihood tree. Despite the popularity in the late 1990s and early
2000s of these methods for combining quartet trees, their accuracy was found
to be lower than that of ML or distance methods [69] slowing down research
in this direction.

1.6 Machine and deep learning
Over the last few years machine learning and most notably the subfield of deep
learning have seen unprecedented success in a wide range of scientific fields.
This success can be ascribed to different factors such as better algorithms, the
constant increase of labelled data available to train large deep neural networks,
open source software and increasing computing power with the exploitation of
graphical processing units (GPUs) as well as the development of dedicated
hardware for the training of neural networks such as Tensor Processing Units
(TPUs). Such advances have enabled breakthroughs in disparate areas like
natural language processing, computer vision, physics and biology, with neural
network-based approaches often attaining state of the art performances across
numerous tasks. While a comprehensive review of the domain is far beyond
the focus of the present work, I will provide an introduction to the essential
concepts of machine learning and building blocks of neural networks which
shall be brief, yet hopefully complete enough for the reader to be able to follow
the ensuing chapters.

6This is however applicable as well to any tree reconstruction method for four leaves.

1.6. Machine and deep learning 33

1.6.1 Supervised learning

Most machine learning algorithms can be classified in two broad categories, that
of supervised and that of unsupervised learning. Whereas the aim of supervised
learning is to train a model (a parameterized function) on labeled data,
learning to map input features to corresponding outputs for eventually making
predictions on new, previously unseen datapoints, unsupervised learning aims
at recovering patterns and relationships between the features of data when no
labelled outputs are available for training. In this work we shall solely focus on
the former paradigm. In this context we are typically working with a collection
of samples, data points xi associated to corresponding labels yi, which shall
be referred to as the training dataset, and our goal is to learn the parameters
θ of a function f whose output f(xi, θ) aims at predicting the corresponding
label yi (or customarily in classification problems, the distribution p(yi | xi) of
the latter given xi). Learning the predictor f , or training the model, is done
via the empirical minimization principle, by minimizing the training error or
empirical risk

Rn(f) = 1
n

n∑
i=1

L(yi, f(xi)), (1.43)

where L is a real-valued loss function measuring how far the predictions of
the model are from the desired output. Ultimately the goal of such a learning
task is for the predictor to be able to generalize to unseen data, that is, we
want the generalization error

R(f) = E(x,y)∼P L(y, f(x)), (1.44)

to be minimized, where P is the distribution underlying the data. The training
error then is an approximation of the generalisation one obtained using the
training samples. This paradigm distinguishes machine learning from classical
optimization such as that of the likelihood in phylogenetics via hill climbing
algorithms, the optimization is not performed on each new data point but
upfront, on samples supposedly issued from the same distribution as the ones
on which subsequently we wish to run the model for inference. In machine
learning one customarily works with functions which are differentiable with
respect to the parameters θ, as well as differentiable losses, so that one can
compute the gradient of 1.43:

∇L(θ) = 1
n

n∑
i=1
∇L(yi, f(xi, θ)), (1.45)

and update the model’s parameters via gradient descent:

θt+1 ← θt − λ∇L(θ), (1.46)

where λ is known as the learning rate and the update as a training step.
In practice, as the complexity of computing the full gradient (1.45) grows
linearly with the typically very high number of samples n, to avoid such a
computational bottleneck one rather computes stochastic gradients

1
|B|

∑
i∈B

∇L(yi, f(xi; θ)) (1.47)

34 Chapter 1. Introduction

where B ⊂ {1, . . . , n} is sampled uniformly at random at each step, the
samples {(xi, yi)}i∈B are then referred to as a batch and |B| as the batch
size. The stochastic gradient 1.47 provides an unbiased approximation of the
full gradient and the optimization of f using these gradients in the update
step (1.46) is known as Stochastic Gradient Descent (SGD), in practice one
chooses in advance a batch size b≪ n and then partitions the training dataset
in disjoint batches of size b, a full pass of training steps over these is then
referred to as an epoch. Several optimizers, algorithms to update the model
parameters during training, are commonly employed, notably variations of
SGD that employ per-parameter adaptive learning rates and use momentum
to accelerate convergence by adding a fraction of the previous update to the
current one, these include the popular Adam [70], RMSProp [71] and AdaGrad
[72]. Despite the techniques implemented by these methods, it is often still
beneficial to decrease the global learning rate λ over time, numerous learning
rate schedules have been proposed such as reducing λ linearly or exponentially
in the number of epochs or training steps, with the training of some models,
such as transformers, often also including a warm-up phase during which the
learning rate is increased up to a given maximum value before being decreased.

1.6.2 Validation, overfitting, hyperparameters and regularisa-
tion

Once trained a function f we can get an estimate of its generalization error by
computing the error on a test dataset, a previously held out dataset of samples
which we assume following the same distribution as those used during training.
Under this hypothesis the expected test error will be greater than or equal
to the expected training error. Ideally we want to reduce the gap between
the two as much possible, when such a gap is large we say that the model
is overfitting, having learned patterns which are only specific to the training
data and which fail to generalise to previously unseen data points. To avoid
this and reduce the generalisation error, several regularisation techniques can
be employed. The form of regularisation to employ, the type of function with
its set of parameters to be optimized, the learning rate, its schedule and the
optimizer to be used are all hyperparameters, settings that we can modify to
control the behavior of a learning algorithm but are not optimized by the
algorithm itself. The choice of which hyperparameters to use is typically based
on the performances of the learned predictor on a separate held out validation
dataset, with the validation error, which we can keep track of during training,
being a proxy of the test error: One can choose the best hyperparameters
as the ones that minimize the former to then assess the performances of the
predictor on the test dataset only when the learning process has completed.
This assures that the test error is an unbiased estimate of the generalisation
one as the test data plays no role in the optimization of the parameters of
the learned function nor in the choice the hyperparameters of the learning
algorithm. Some regularisation techniques are explicit as adding a penalisation
term to the loss, this is the case for instance for L2 regularisation which adds
an α∥ϑ∥22 term to the loss, where α is a positive real number and ϑ is a subset
of the function’s parameters θ. The rationale is that such a modification of
the loss shifts the optimum of the training error towards simpler functions
reducing the risk of overfitting the data. Other forms of regularization are
rather implicit, this is for instance the case of early stopping, which consists

1.6. Machine and deep learning 35

in stopping the optimization whenever the validation error does not decrease
for a certain number of epochs and returning the parameters for which the
learned function has the lowest validation error. Looking at the number of
steps or epochs the predictor is trained for as an additional hyperparameter,
early stopping can then be seen as a efficient selection criterion for the latter.

1.6.3 Fully connected neural networks
..
.

hidden
layers

input layer

output layer

x1 xd0

y1 . . . ydl

h0 = x

h1 = σ1(W
1h0 + b1)

h2 = σ2(W
2h1 + b2)

..
.

hl = σl(W
lhl−1 + bl)

= f (x, θ) = ŷ

Figure 1.15: Fully connected
neural network: The input is
processed via successive affine
functions intertwined with
non-linear activations and every
i-th component of layer k can
affect the j-th component in the
successive layer through the
weight W l

ij .

In deep learning, a subfield of machine learning, the predictor f one wishes
to learn is implemented through a neural network, the composition of several
functions, referred to as the layers of the network7, with their number being
referred to as its depth and the intermediate layers often being called hidden
layers. One of the simplest neural network architectures is that of fully
connected neural networks (FCNN) which process the input via a series of linear
(or rather affine) functions intertwined with non-linear activation functions
(figure 1.16): Whereas the composition of affine functions remains an affine
function, the introduction of such non-linearities allow modeling increasingly
complex and expressive functions. In such architectures the input x = h0 is
transformed through successive layers h1, . . . , hl = ŷ with the function defining
each layer hi = σi(W ihi−1 + bi) consisting in the multiplication by a weight
matrix ∈ Rdi×di−1 , the addition of a bias term ∈ Rdi and the element-wise
application of an activation function σi : R→ R . In practice it is customary
to use the same activation function σ across different layers, with the potential
exception of the last one σl depending on the task at hand:

• For regression tasks typically no activation function is applied to the
output layer given that for regression problems the network needs to
predict a continuous range of values and applying an activation function
could constrain the output, in this case the network’s output is then an
affine transformation of the features of the next to last layer. Exceptions
are made if the range of the output values is meant to be bounded in
which case an eventually scaled Sigmoid function can be used, or if the
predicted outputs are meant to be positive, in which case one can use
e.g. a Softplus function (figure 1.16).

• For binary classification tasks the Sigmoid activation is generally used to
ensure that the output is a between 0 and 1, so that it can be interpreted
as the probability that the input belongs to the positive class. On the
other hand for multi-class classification tasks (with m mutually exclusive

7Note that, depending on the context, the term layer is used to denote either one of these
intermediate functions or the representation of the input that the function gives rise to.

36 Chapter 1. Introduction

classes) the softmax activation

softmax(z) =
[

ez1∑m
k=1 ezk

, · · · ,
ezK∑m

k=1 ezk

]
(1.48)

is typically applied to the output layer, converting the outputs into a
probability distribution over the different classes.

−3 −2 −1 1 2

−0.5

0.5

1

1.5

2

2.5

x

y

Comparison of Different Activation Functions

ReLU
ELU

Softplus
GELU
Sigmoid

Figure 1.16: Some activation functions typically employed in deep neural networks:
•••••• ReLU(x) = max(0, x) (Rectified Linear Unit)
• ELU(x) = max(0, α(ex − 1)), α > 0 (Exponential Linear unit, plotted with

α = 1)
• Softplus(x) = log(1 + ex)
• GELU(x) = xΦ(x) (Gaussian Exponential Linear Unit, typically employed in

transformer architectures), where Φ(x) is the standard Gaussian cumulative
distribution function.

• Sigmoid σ(x) = 1
1+e−x

The parameters θ of a network such as that described above are the collec-
tion of all weights and biases. Whereas during optimization the output of the
last layer is driven to approximate the desired label, no explicit constraints are
imposed on the intermediate ones. As a result we can see a neural network as
a feature extractor, with the model learning the most suitable representation
of the data for the task at hand, sometimes referred to as an embedding, in
such intermediate layers.

1.6.4 Convolutional neural networks

Whereas fully connected layers, as those found in the neural networks just
described, operate on vector representations (or matrices if the input is pro-
cessed in batches), other components of neural networks may operate on data
having more than two dimensions: In general neural networks operate on
tensors, multi-dimensional arrays X ∈ Rd1×···×dm that can be seen as a gener-
alization of vectors and matrices to higher dimensions. In the following I shall
use a python-inspired notation to denote a sub-tensor of X, indicating with
X[a1:b1,a2:b2,...,am:bm], with 1 ≤ ai ≤ bi ≤ di for each i, the tensor obtained from
X by considering only the components going from ai to bi along dimension i,

1.6. Machine and deep learning 37

with the convention that when ai and bi are not written all the components
along dimension i shall be considered. I shall now define the convolution
operation in neural networks, although the concept is intuitive once grasped,
the equations describing it can become very cumbersome, to mitigate this to
some extent I introduce here another notation: Given two tensors A and B
having the same shape, A⋄B shall denote the operation of taking the sum of all
entries of their component-wise product (this coincides with the scalar product
of A and B if the latter are vectors, and with the Frobenius inner product if
they are matrices). This, combined with visual illustrations will (hopefully)
ease the understanding of the operation. Essentially a convolution is linear
transformation applied locally everywhere preserving the input’s structure.

1D convolutions

We shall start by defining the one-dimensional convolution operation between
two vectors: Let v ∈ Rl and k ∈ Rm, with l ≥ m then we can define the
convolution of the two vectors v ∗ k ∈ Rl−m+1 by

(v ∗ k)i = v[i:i+m] · k, (1.49)

so that the output of the operation can be visualised as sliding k, often referred
to as convolutional filter or kernel, along the vector v and taking dot products
along the way (figure 1.17). Here we implicitly assumed that at each step the
filter is shifted by one unit, more generally we can set this shift, the stride of
the convolution, to allow bigger jumps, the result of a convolution with stride
s ∈ N+ is then defined by

(v ∗s k)i = v[is:is+m] · k, (1.50)

for each i such that is + m ≤ l. Notice that the application of the convolution
operation reduces the size of the input vector whenever m > 1, this may be
limiting in a deep neural network architecture in which we wish to process the
input through several such operations, and can be accommodated by padding
the input vector i.e. extending it on both sides with 0s in order for the output
to have the desired dimension (figure 1.17, right).

v[1:3]

v[2:4]

v[3:5]

■·k ■·k ■·k

k

v ∗ k

0 0 0 0

0 0 0 0

0 0 0 0

■·k ■·k ■·k

k

v ∗2 k

vv

Figure 1.17: One-dimensional convolution of two vectors, with stride 1 (left), and
with stride 2 and valid zero-padding to retain the input dimension (right).

38 Chapter 1. Introduction

2D convolutions

■⋄K ■⋄K

■⋄K ■⋄K

V[1:2,1:3] V[1:2,2:4]

V[2:3,1:3] V[2:3,2:4] s = (1, 2)

V

K

V ∗s K

V[1:2,1:3,:] V[1:2,2:4,:]

V[2:3,2:4,:]V[2:3,1:3,:]

■⋄K ■⋄K

■⋄K ■⋄K

s = (1, 2)

V

K

V ∗s K

Figure 1.18: Two-dimensional convolution over a two-dimensional or a three-
dimensional input.

The operation generalises naturally when the input and the convolutional
filters are two-dimensional: Suppose now W ∈ Rl1×l2 and K ∈ Rm1×m2 , with
l1 ≥ m1 and l2 ≥ m2 and let s = (s1, s2) ∈ N2

+. We define then the convolution
of the two matrices with stride s by

(W ∗s K)i,j = W[isi:is1+m1,js2:js2+m2] ⋄K (1.51)

for all i such that is1 + m1 ≤ l1 and is2 + m1 ≤ l2 (figure 1.18, left). Again
padding can be used to accommodate the desired output dimensions. Similarly
2D convolutions can be applied to three-dimensional inputs, as it is typically
done when processing an image with the third dimension representing the
pixel intensity in the channels R,G and B, in this case W ∈ Rl1×l2×l3 and
K ∈ Rm1×m2×l3 , and the convolution is defined by 8

(W ∗s K)i,j = W[isi:is1+m1,js2:js2+m2,:] ⋄K (1.52)

Finally, we can have any number n of filters stacked together, with n typically
being referred to as the number of output features of the convolution operation.
In this case K = [K1, . . . , Kn], with each Ki ∈ Rm1×m2×l3 if we’re convolving
over a three-dimensional input, and the result of the operation is defined by

(W ∗s K)i,j,k = W[isi:is1+m1,js2:js2+m2,:] ⋄Kk. (1.53)

A convolutional layer in a neural network is then defined by one of the
above operations combined with the addition of a bias term, followed by the
application of an activation function such as those described in the previous
subsection. Another operation commonly employed in convolutional neural
networks is that of pooling, a down-sampling technique that reduces the
dimensions of the input, we can see this again as a window sliding across
the input, with a given size and stride, whose output at each step is a

8Notice that this is a 2D convolution as the convolutional filter slides along the first two
dimensions, the output is still a two-dimensional matrix (figure 1.18, right).

1.6. Machine and deep learning 39

summary statistics of the values of the considered sub-tensor of the input,
such as the average or the maximum. Finally, typical convolutional neural
networks (CNNs) also include fully connected layers which operate on the
input tensor after a flattening operation which preserves the data in the
tensor and simply reshapes it into a vector. It is worth pointing out that in
principle the convolution operations defined above can be expressed as simple
matrix multiplications, convolutional layers can then be seen as a special
case of fully connected ones in which the weight matrices are very sparse and
contain many repeated values, this parameter sharing allows them to reduce
the computational burden of processing high-dimensional data and acts again
as a form of regularisation.

1.6.5 Attention

The self-attention mechanism has been recently popularized in the context
of natural language processing [73] with the introduction of the transformer
neural network architecture. Since then it has been proven to be among
the most successful methods for learning from sequential data [74][75] both
in the context of natural language [76][77] and biological sequences [78][79],
allowing notably to model long range dependencies, a problem with which
previously employed architectures such as recurrent neural networks (RNNs)
struggled [80]. In a nutshell, self-attention defines a mechanism to update
one object zi using all elements in a set {zj}j=1,...,m through a (query, key,
value) triplet of functions acting on individual objects. The update replaces
zi by a weighted average of all value(zj), where the weights are computed
from query(zi) and the corresponding key(zj). The value function therefore
defines what information of an object zj should be provided to others, and
the interaction between query and key determines how much is shared from a
given zj to another zi. For example, the popular dot-product attention (figure
1.19), used in the original transformer architecture [73], relies on learned linear
embeddings of vectors z ∈ Rd to define a query q, a key k and a value v:

qi = ziW
Q ∈ Rd, ki = ziW

K ∈ Rd, vi = ziW
V ∈ Rd. (1.54)

Denoting K ∈ Rd×m the matrix whose columns are the (kj)j=1,...,m, it updates

every element zi by z′
i = ∑m

j=0 si,j ·vj , where (si,1, . . . , si,m) := softmax
(

q⊤
i K√

d

)
simply contains dot products between qi and every kj , scaled by

√
d and

forced to sum to one by the softmax function. The weights si,j are known
as attention scores and indicate how much the value vj contributes to the
updated representation z′

i of zi.

40 Chapter 1. Introduction

Z

z3

z2

z1

Input embeddings

WQ

WK

WV

Q

Queries

K

Keys

V

Values

S

Attention scores

Z
′

z
′
3

z
′
2

z
′
1

Context-aware embeddings

Figure 1.19: Visualization of the scaled dot product attention mechanism, the
keys, queries and values are computed as K = ZW K , Q = ZW Q, V = ZW V , the
updated embeddings z′ are then given by the product SV via the attention scores

matrix S = softmax(QKT)/
√

d.

Several such updates can be recursively applied to the m elements, pro-
gressively sharing information across them and thus allowing for context-aware
embeddings, for instance in the context of machine translation, in which
attention has been originally introduced, this allows taking into account the
context, i.e. the sentence, a word finds itself in, as the latter may affect its
meaning. Finally, often what is used in practice is multi-head self attention,
which conceptually allows focusing on several different features of the inputs.
It is realized using h so-called attention heads, that is h different triplets
(W Q

i , W K
i , W V

i), i ∈ {1 . . . h}, each computing a set of outputs with the afore-
mentioned attention mechanism. The outputs corresponding to each input
and the different attention heads are then concatenated and multiplied by a
common matrix W O. Because the query, key and value functions act on single
objects, they define a flexible framework to share information across elements
of a set, regardless of their number or order. As we shall see this natural
equivariance (see subsection 1.6.6) with respect to the order of the input
elements may be beneficial but isn’t always a desired property, for instance
in the aforementioned context of machine translation one typically wishes to
take into account the position of a word inside a sentence and not represent
the latter simply as a “bag of words”. To obviate the issue the authors in
[73] resort to positional encoding, explicitly adding this positional information
to the representations given in input to the network, in particular for each
position p they define the vector PE(p) via

PE(p)2i = sin
(

p

10000 2i
d

)
, PE(p)2i+1 = cos

(
p

10000 2i
d

)
, (1.55)

for each i ≤ d/2, where d (assumed to be even) is the dimension of the vector
that the encoding is added to. This choice of using sine and cosine functions
for positional encoding in transformers, rather than directly encoding the
position as a single scalar (e.g. just appending it to the input representation),
is motivated by the fact that the periodicity of the functions helps models
to generalize to sequences longer than those encountered during their train-
ing, and by the fact that this can allow the network to easily exploit relative
positions as for any k PE(p+k) can be represented as a linear function of PE(p).

1.6. Machine and deep learning 41

1.6.6 Invariance and equivariance

In recent years it has become increasingly clear that deep neural networks
can greatly benefit from the exploitation of the symmetries underlying the
input data. Specifically, depending on the task at hand, one may wish for the
learned function to be equivariant for certain transformations of the input,
which can be formalized as a group G acting on the input space, so that
whenever an element of the group acts on the input the output is transformed
accordingly. We have seen for instance how the self-attention mechanism is
equivariant for permutations on the input so that Attention(σ(z1, · · · , zm)) =
σ(Attention((z1, · · · , zm))) for any permutation in the symmetric group Sm.
On the other hand for different problems one may wish for the learned function
to be invariant for certain transformations: f̂(g(x)) = f̂(x) for any g ∈ G.

When discussing convolutional neural networks we already have encoun-
tered both cases, indeed the convolution operation is equivariant 9 for the
group of translations s1Z + s2Z defined by the stride vector s = (s1, s2),
whereas subsequently applying a maximum pooling step makes the whole
operation translation-invariant. These are often desired properties in image
processing tasks, for instance in the context of object classification we wish
the network to be still able to classify the input image even if the concerned
object in it is shifted by some amount of pixels. In CNNs such properties are
attained through the parameter sharing which allows reducing the complexity
of the model: In general enforcing the network to be invariant or equivariant
effectively reduces the input space X to its quotient X/G, this typically leads
a model to generalize better because the latter doesn’t overfit to specific con-
figurations of the input (such as the position of an object in an image) which
are irrelevant to the learning task. Furthermore, accounting for such trans-
formations generally leads to more efficient learning as not taking them into
account in the structure of the network warrants for data augmentation if one
doesn’t want such potential transformations of the input to affect the model’s
performances: standard CNNs for instance are not invariant for reflections or
rotations of input images so that one may need to enrich the training dataset
with many possible variations of the same image in order for the network
to handle these transformations correctly. Several structurally invariant or
equivariant neural networks have been proposed to deal with different groups
of transformations, for instance the previously mentioned limitations of CNNs
can be overcome with G-CNNs [81] which through a higher degree of param-
eters sharing can implement layers equivariant to rotations and reflections.
To deal with rotations and translations in 3D space architectures such as
the SE(3)-Transformer [82] have been devised. In the context of processing
nucleotide sequences, networks equivariant to reverse-complementation have
been introduced [83].

One group of transformation of particular relevance for the work presented
in this manuscript is that of permutations of sequences inside an MSA. Sev-
eral expedients have been devised to deal with these. Within the context
of population genetics, [84] sorted aligned sequences by similarity before
feeding them to a non-invariant function, while [85], [86] directly devised
permutation-equivariant prediction functions. More specifically, [85] used a

9Or rather locally equivariant given that this ceases to hold when we reach the border of
the tensor we’re convolving along.

42 Chapter 1. Introduction

so-called exchangeable network that first applied the same function, a one-
dimensional convolutional neural network, to each sequence and then applied
a permutation invariant function, such as the average across sequences, at
each site. [86] chose a more progressive approach where they also applied the
same convolutional network to each sequence, but iteratively concatenated to
the obtained representation of each sequence the average over the current rep-
resentation of all sequences in the alignment. This process makes all sequences
converge to a common representation across iterations.

1.6.7 Interpretability

Deep learning models have been often referred to as “black boxes” given the
difficulty in deciphering their inner workings. Indeed whereas the coefficient of
e.g. a linear regression are easy to interpret as the weights given to each input
variable to form a prediction, this becomes increasingly hard for non-linear
functions having hundreds of thousands or millions of parameters. Nevertheless,
several techniques such as model interpretability tools (e.g. LIME [87]) and
visualization methods (e.g. saliency maps [88]), have been developed to
provide insights into how deep learning models make predictions [89][90][91].
Feature maps, the outputs of convolutional layers in CNNs, provide a way
to understand how the network processes its input, showing for instance
how for image-processing related tasks these networks typically capture basic
visual elements like edges and textures in their initial layers to then detect
more complex patterns and shapes as the image is further processed in the
subsequent layers [92]. The idea of saliency maps on the other hand is to
compute the gradient of the model’s output with respect to the input. This
then tells us how much infinitesimal changes in each feature of the input
would affect the network’s output highlighting the most relevant ones for the
model’s prediction. Notably in the field of bioinformatics convolutional filters
have been shown to be interpretable as sequence motifs, recurring patterns of
nucleotides that play functional roles [93] [94]. In attention-based architectures,
as the ones that will be presented in the following chapters of this manuscript,
one can gain some understanding by inspecting the attention maps S (figure
1.19), with the attention scores indicating for each embedding the ones that
contribute the most to its update. We shall visualise several such attention
maps in the following chapters and see how they can help us explain the
considered networks’ capabilities.

1.6.8 Fine-tuning and transfer learning

An advantage of deep neural networks is that one can often exploit their
efficiency in feature extraction to adapt a pretrained model to a task which
is novel, but related to the one that the model has been previously trained
on. Such a technique is known as transfer learning and generally consists in
stacking additional layers upon those of the pretrained network (eventually
removing some of the last layers which may extract features that are too
task-specific) and retraining the resulting model on the new task while keeping
the pretrained layers “frozen”, that is updating only the parameters of the
newly added layers during the optimization procedure. This is particularly
useful when few labelled data points for the new task are available, notably
large language models (LLMs) based on the transformer architecture such

1.6. Machine and deep learning 43

as BERT [76] and GPT [77] are commonly pretrained on a mask language
modeling task which involves predicting missing words in a text, allowing
them to learn effective representations of words in the context of natural
language. Once pretrained, these models can then be employed via transfer
learning for a different downstream task such as sentiment analysis or text
classification. The same paradigm has been followed for biological sequence
processing with transformer models such as ProtBERT [79], ESM [95] and
DNABERT [96] being pretrained to predict missing amino acids or nucleotides
inside a sequence, to be then used for tasks like secondary structure prediction,
protein classification or identification of transcription factor binding sites. On
the other hand when the novel task is very similar to the one the network has
been already trained on, or even is the exact same task but applied to data
points issuing from a different distribution, case known as domain adaptation,
one can rather resort to fine-tuning, simply taking the parameters of the
trained model as a starting point for the optimization on the new training
dataset, without stacking more layers or necessarily freezing any of them. In
particular we shall see in the following chapters how networks trained on data
issuing from a specific model of molecular evolution can be easily adapted via
fine-tuning if the model or its parameters are changed.

1.6.9 Deep learning in phylogenetics

While the application of deep learning methods in phylogenetics is still rela-
tively underdeveloped with respect to other fields, the recent years have seen
the development of several approaches which aim to exploit the promises of
deep learning for different tasks related to phylogenetic reconstruction. A nice
review of such developments is given by [97] (Figure 1.20).

Figure 1.20: Neural network-based approaches to phylogenetic reconstruction,
including our method, Phyloformer, which will be presented in the next chapter [97].

[98] and [99] proposed likelihood-free methods (section 1.7) for phylogenetic
inference framing the problem as a classification across possible topologies.
Given the super-exponential growth of the number of possible unrooted tree
topologies in the number of sequences, they restricted themselves to quartet
trees, that could then be combined to obtain larger trees via the quartet
puzzling algorithm (subsection 1.5.3). Both methods relied on convolutional
neural networks sensitive to the order of the sequences in the alignment. More

44 Chapter 1. Introduction

recently, while still considering mostly quartet trees, [100] proposed a network
that, exploiting the symmetries of the trees is independent of the sequence
order, and reported accuracies similar to [99] using fewer training samples,
nevertheless the generalisability of the approach to deal with larger trees is not
straightforward and the authors report the method already underperforming,
with respect to traditional phylogenetic reconstruction approaches, when
dealing with alignments with five sequences. [101] showed that the accuracy of
the network introduced in [99] was lower than that of ML or distance methods
when evaluated on more difficult problems involving long branches and shorter
sequences (200 sites), for both quartet trees and trees with 20 leaves. [102]
proposed a generative adversarial network for phylogenetic inference. While
also likelihood-free, this approach required a new training for each inference,
and did not scale beyond fifteen species. [103] introduced a distance-based
learning method for the related problem of adding new tips into an existing
tree. Beyond the issues of scalability which derive from framing the problem
as a classification one, the aforementioned approaches focus solely on the
topology of the inferred tree ignoring its branch lengths, on the other hand
[104] proposed a deep learning approach to estimate the branch lengths on
given topologies with four leaves. Another class of approaches has rather
focused on optimising the tree space exploration, with [105] using firstly a
traditional machine learning model, namely a random forest regressor, to
predict optimal, likelihood-maximising, SPR moves, the authors then resorted
to reinforcement learning and a fully connected neural network architecture
in a follow-up paper [106], and showed that, allowing for suboptimal moves
during the tree space exploration, the method could outperform state of the art
techniques. Finally, beyond direct phylogenetic reconstruction, deep learning-
based techniques have shown their potential in dealing with related tasks
such as model selection [107], [108] and imputing missing data in incomplete
distance matrices [56].

1.7 Simulation-based inference
Beyond phylogenetics, the development of increasingly complex models and
simulators to represent reliably the processes underlying the empirical data
we can observe, has been carried on in numerous domains of science. While
such simulations can model said processes with increasing realism, this comes
at the expenses of the computational challenge represented by the inverse
problem of inferring the parameters of these models which best describe the
data at hand, limiting their applicability for large scale analyses. As already
discussed, this computational bottleneck represents the primary reason behind
the several simplifying assumptions made by the commonly employed models in
phylogenetics in order for the corresponding likelihood function to be tractable.
The problem is further exacerbated in the context of Bayesian inference where
the goal is typically to calculate, instead of a point estimate of the parameters
maximising the likelihood, the whole posterior distribution of the parameters
given the observed data and a prior P (θ) on the former:

P (θ | x) = P (x | θ)P (θ)∫
P (x | ϑ)P (ϑ)dϑ

. (1.56)

1.7. Simulation-based inference 45

The integral over all the parameters θ in the denominator in equation (1.56)
then represents another source of intractability beyond that of the likelihood
function in problems with a high-dimensional parameter space, and is typically
dealt with via Markov Chain Monte Carlo (MCMC) [109][110] or variational
inference (VI) methods [111][112][113].

To tackle this problem of statistical inference under intractable likelihoods
several approaches have been devised, falling under the umbrella term of
simulation-based inference, with the term likelihood-free inference being used
somewhat interchangeably, the latter can nevertheless be a bit misleading
given that several of these approaches do work by trying to estimate the
intractable likelihood.

1.7.1 Approximate Bayesian Computation

Among these methods the most popular is indubitably Approximate Bayesian
Computation (ABC) [114][115] (figure 1.21) (see [116] for a review of the
applications in evolution and ecology).

Figure 1.21: Diagram of the
Approximate Bayesian
Computation method for
posterior parameter distribution
estimation [115].

The idea underpinning the method is to overcome the intractability of the
likelihood function using simulated data in order to approximate the posterior
distribution via rejection sampling. The method operates through the choice
of a set of summary statistics S(x) for the data x aimed at reducing the
dimensionality of the latter, the choice of a distance measure ρ, and of a
non-negative tolerance treshold ε. It then proceeds as follows: Once computed
the summary statistics of the observed data S(x), a given (typically very
high) number of parameters θ1, . . . , θn is sampled from the prior distribution
and each is fed into the simulator to produce a simulated data point xθi

,
the rejection step then consists in discarding the simulated data points for
which ρ(S(x), S(xθi

)) > ε. The distribution of the parameter values for which
the corresponding simulated datapoint has been retained is subsequently
used as a proxy of the entire posterior distribution, the idea being that the
likelihood of a datapoint xθi

is approximated by the probability of the condition
ρ(S(x), S(xθi

)) ≤ ε being satisfied. If the summary statistics are sufficient,

46 Chapter 1. Introduction

that is if they capture all the relevant information regarding the parameter θ
(more formally, if the conditional distribution of the data x given the statistics
S(x) is independent of θ), then inference with ABC becomes exact in the
limit of the number of samples n → ∞ and ε → 0. Despite the widespread
application of ABC, the method suffers from several drawbacks. Firstly, it
is not amortized as inference for a new observation x′ requires repeating
most of its steps, secondly, the quality of inference depends on the summary
statistics which need to be carefully chosen and rarely are sufficient with an
almost inevitable loss of information occurring in the dimensionality reduction
step. The quality of inference then depends also on the tolerance treshold
ε, with large values leading to poor approximations, whereas the acceptance
probability goes to 0 along with ε while also typically exponentially decreasing
as the dimensionality of the parameter space increases [117], both these factors
can then lead to a prohibitively expensive number of simulations necessary to
get good approximations.

1.7.2 Neural network-based methods

In recent years numerous approaches to the problem, based on neural networks
have seen their development, this is logical given that deep learning models of-
fer the opportunity of solving the aforementioned shortcomings of ABC. Indeed
such models are known for their capability in handling high-dimensional data
and for automatic feature extraction which allows them to progressively learn
from the data a set of informative features that are most effective to handle
the problem at hand, without requiring human supervision and handcrafted
summary statistics. Neural network methods are then typically amortized,
often offering very fast inference after the single upfront computational cost
of training the model. Thirdly, by using the entirety of the simulated data
to train a model without a sampling rejection step, the neural network-based
approaches provide a better sample efficiency which generally goes along with
better performances of such methods with respect to ABC [118]. Whilst
reviewing the vast and rapidly growing literature on such methods is outside
the scope of this work, it is worth mentioning the three classes in which most
of these can be categorized. The first is known as Neural Posterior Estimation
(NPE) [119][120] and encompasses methods which directly aim at approximat-
ing the posterior distribution (1.56) by training a conditional neural density
estimator [121]. The main advantage of these methods is that they allow fully
amortized Bayesian inference as, once trained on simulated data, obtaining
an estimate of the posterior for a new observed datapoint involves simply
a single forward pass in the neural network. Neural Likelihood Estimation
(NLE) [122][123] on the other hand, aims at approximating the likelihood
P (x | θ) instead of the posterior P (θ | x), by training a density estimator to
map simulation parameters to data. This approach leads then to a density
which can be evaluated and sampled from, when it comes to posterior inference
such methods are therefore only partially amortized as their use in conjuction
with techniques as MCMC or VI is warranted for each new datapoint. Such is
the case as well for the third category of methods, Neural Ratio Estimation
(NRE) [124][125], which instead of performing conditional density estimation,
train neural networks to ultimately predict an approximation of the likelihood
ratio function P (x | θ0)/P (x | θ1) by training a classifier to discern datapoints

1.7. Simulation-based inference 47

generated under the different parameters θ0 and θ1.

While [126] provides a review of the developments in the field of simulation-
based inference, the paper only focuses on methods, as those discussed above,
whose aim is ultimately to approximate the full posterior distribution p(θ | x),
whereas more straightforward approaches to provide point estimates of the true
parameters θ as a function of the data x by training a model on simulations,
framing the problem as a regression one in a supervised learning context, are not
discussed, arguing that their probabilistic interpretation is less straightforward.
Still I can try to provide here such an interpretation in the Bayesian framework:

Suppose we want to estimate a parameter θ, having a prior distribution π,
given an observation x, with an estimator f(x). Let us recall the definition of
a Bayes estimator as the one that minimizes the posterior expected loss, that
is posterior expected value of a loss function given an observation x

Eθ|x[L(θ, f(x))], (1.57)

across all x. Let us now consider a setting in which the observations follow a
probability distribution P (x | θ) induced by a probabilistic model M(θ) and
that we can sample data from the latter via a simulator. We can then adopt
a supervised learning approach and use the prior distribution π(θ) simulate
training data points (θ,M(θ)) in order to train, with a loss function L, a
model, such as a deep neural network, to learn an estimator function f(x). In
this setting the generalisation error 1.44 is the expected loss over the entire
data distribution accounting for the variability in θ described by the prior and
in the observed data x given θ, governed by the likelihood P (x | θ):

R(f) = Eθ∼π(θ)[Ex∼P (x|θ)[L(θ, f(x))]] (1.58)

=
∫ ∫

L(θ, f(x))P (x | θ)π(θ)dxdθ,

or equivalently, using Bayes’ theorem P (x | θ)π(θ) = π(θ | x)P (x),

R(f) =
∫ ∫

L(θ, f(x))π(θ | x)P (x)dxdθ = Ex∼P (x)[Eθ|x[L(θ, f(x)]], (1.59)

where P (x) =
∫

P (x | θ)π(θ)dθ is the marginal distribution of the data x. This
shows that in this setting the generalisation error is the expected value of the
expected posterior loss across all data points. Minimising the generalisation
error here, via the training error proxy, is then equivalent to minimising the
expected posterior loss across all datapoints which therefore ideally leads the
learned function to coincide with the Bayes estimator. The nature of this
estimator then depends on the choice of the loss, for instance if one choses a
quadratic L2 loss L(θ, a) = (θ − a)2, then the expected posterior loss becomes

h(a) =
∫

(θ − a)2π(θ | x)dθ, (1.60)

differentiating with respect to a and equating to 0 one then finds

a

∫
π(θ | x)dθ =

∫
π(θ | x)θdθ, (1.61)

from which follows, given that the integral on the left hand side equals to one,

48 Chapter 1. Introduction

that the Bayes estimator θ̂ is given by the posterior mean E[θ | x]. Similarly
one can show that an L1 absolute error loss L(θ, a) = |θ − a| leads θ̂ to be the
posterior median. On the other hand if one wanted the Bayes estimator to
coincide with the mode of the posterior distribution, that is the maximum a
posteriori (MAP) estimate θMAP = arg maxa π(a | x), then the 0-1 loss

L(θ, a) =
{

0 if a = θ

1 if a ̸= θ
(1.62)

would have to be employed, but the latter not being differentiable in θ and
having a zero gradient almost everywhere, makes it not suitable for this learning
setting whereas using a smooth approximation thereof, such as the logistic
function, leads again the Bayes estimator to coincide with the posterior mean.
Finally it is worth noting that in the case in which, instead of a single scalar
value, multiple parameters are estimated at once so that θ is a vector in Rd, all
the above reasonings are straightforward to generalise, in this case for instance
the L1 loss would lead the Bayes estimator to be the vector of the marginal
medians θ̂ = (median(π(θ1|x)), median(π(θ2|x)), . . . , median(π(θd|x))).

Although to our knowledge a comprehensive review of methods employing
the paradigm just described is missing in the literature, this approach is
becoming increasingly popular and has proven its success in the estimation
of model parameters in disparate fields such as spatial point process theory
[127], physical modeling [128], phylogenetics [104], epidemiology [129] and
notably population genetics (a review of such a supervised learning paradigm
in the field, based either on real or simulated data, is provided by [130]),
with the estimation of effective population size [86], the identification and
characterization of selective sweeps [84] or recombination hotspots [131]. For
the latter task the authors in [85] adopt a different approach, following [132]
and [133], reframing the regression problem to predict at once the mean and
variance of an approximate posterior distribution instead of a simple point
estimate of the parameters, this allows them to get uncertainty estimates
of the inferred parameters and fit the approach in the previously described
framework of predicting posterior distributions. The authors of [86] on the
other hand, while still predicting point parameter estimates, subsequently use
the latter as summary statistics for an ABC approach, this again allows them
to approximate the posterior distribution and explore the advantages of such
a combination of the two frameworks. On the other hand such expedients may
not be necessary when a model is trained on a classification task instead of a
regression one, as the former approach already provides the probabilities for
the parameter of interest being in each class and thus a posterior distribution,
this is the case e.g. for the previously mentioned topology classifiers for
phylogenetic inference, and will also hold true for the neural networks I shall
present in chapters 3 and 4.

1.8. Supervised learning to estimate evolutionary distances 49

1.8 Supervised learning to estimate evolutionary
distances

Given the context and the premises provided in this chapter we are ready
to encounter in the following one our novel approach to phylogenetic re-
construction. The approach, falling into the framework described in the
previous section, will consist in generating labelled training data, with each
data point consisting in an MSA (s1, . . . , sn) as well as the pairwise distances
(ds1s2 , ds1s3 . . . , ds2s3 , . . . , dsn−1sn) on the tree that its sequences evolved along.
This will be done through a simulator, sampling from a probabilistic model of
evolution such as those described in section 1.2, to subsequently train a deep
neural network for the regression task of predicting evolutionary distances
on such a dataset. Such a prediction will be made jointly for all the pairs
of sequences in the input MSA, rather then considering them independently.
This will allow the network to exploit the information contained in the whole
alignment for each distance estimate and thus to overcome this limitation of
traditional distance estimation approaches. The predicted distances can then
be used to reconstruct a phylogeny via any of the methods described in section
1.4, with the statistical consistence of distance-based methods justifying the
approach with the guarantee of recovering the true phylogenetic tree as long as
we can compute sufficiently accurate estimates of the evolutionary distances.
In order to feed the input data into the network, we need a suitable represen-
tation, we shall resort to one-hot encoding to represent different characters in
an MSA as a set of orthogonal vectors, each containing all zeros but a one in
the index corresponding to the character, this is the prevalent representation
for biological sequence data [134] and allows to avoid the inductive bias of im-
plicitly assigning an unmeaningful ordering of the characters. Such encodings
can then be stacked together, preserving the spatial relationship of the MSA,
to obtain a representation of the latter as a tensor (figure 1.22).

G
C

A
A

A
C

A
C

G
A

C
T

0
0

1
1

1
0

1
0

0
1

0
0

d0

em
be
dd
ing

dim
ens

ion

n seq
uen

ces

0
1

0
0

1
0

0
0

0
0

0
1

L site
s

A
C

G
T

0
1

0
0

0
0

1

0
0

0
1

0

1
0

0
0

Figure 1.22: One-hot encoding of a multiple sequence alignment, in practice, except
for the model presented in chapter 4, we will actually be working with amino acid
sequences so that each character will be encoded with a vector of size 22 (to account

for each amino acid and the two symbols X and −).

Notice that by feeding the entire MSA into the network we are avoiding
any potential loss of information entailed by the use of summary statistics,
rather relying on the network to learn automatically the features that are most
relevant for the prediction task. Given the importance of the prior distribution
for the learning task, the parameters of the simulations will be chosen with

50 Chapter 1. Introduction

a particular care, trying to match them with those inferred from empirical
alignments. Finally, given the discussion in subsection 1.6.6, we devised our
neural network architecture to exploit all the symmetries of the problem. One
such symmetry is the invariance of the tree topology and branch lengths to
permutations of sequences in the MSA: p(τ |s1, . . . , sn) = p(τ |σ(s1), . . . , σ(sn))
for any σ ∈ Sn, such an invariance will be attained through a network which
is equivariant to sequence permutations, any permutation σ of the input
sequences will result in the corresponding permutation σ′ ∈ S(n

2) induced
by σ on the predicted distances. The other symmetry stems from the i.i.d
assumption made by the evolution models presented in section 1.2 which
entails that p(θ|X1, . . . , XL) = p(θ|σ(X1), . . . , σ(XL)) ∀σ ∈ SL, where Xi

denotes the i-th column of the alignment, again this will be accounted for
with the proposed network being invariant for permutations of the sites. Both
invariances will be attained through a high degree of parameter sharing.

51

Chapter 2
Phyloformer

2.1 Preface
In this chapter I will present the main work of this thesis, the development of
Phyloformer, a neural network that predicts evolutionary distances in order
to reconstruct phylogenetic trees, relying on the potentials offered by deep
learning and simulation-based inference, in an attempt to overcome some of the
limitations of traditional phylogenetic reconstruction methods presented in the
previous chapter. The main findings of this work have been put together in an
article, “Phyloformer: Fast, accurate and versatile phylogenetic reconstruction
with deep neural networks”, a preprint of which can be found at https:
//www.biorxiv.org/content/10.1101/2024.06.17.599404v1, and which is
currently submitted to Molecular Biology and Evolution. I shall incorporate
the text here in its entirety, with minor adjustments to make it fit the format of
the present manuscript. The development of the method has been a long and
winding journey with numerous challenges along the way. The text presented
here represents thus only the façade of the great amount of work that has
been put into the project. The discussion of all attempted approaches, along
with the uncountable failed or inconclusive experiments, would have made
the present work lenghty and difficult to read. The choice to simply present
the polished manuscript, the tip of the iceberg, has therefore been made,
nevertheless I shall provide some background on the project here and an
additional discussion will be carried out at the end of this chapter.

An earlier preprint (https://www.biorxiv.org/content/10.1101/2022.
06.24.496975v1), dating back to 2022 and for which we already received
positive feedback and interest both from the machine learning and the phy-
logenetics communities, predates the one presented in this chapter. In it we
showed the promises of our approach, demonstrating how it could surpass
a previously published neural network-based method [99] and attain equal
or superior performances with respect to a maximum likelihood approach
(figure 2.1), whilst running significantly faster, when trained and tested on a
complex model of evolution, showing as well its robustness to deviations from
the parameters the network has been trained on.

https://www.biorxiv.org/content/10.1101/2024.06.17.599404v1
https://www.biorxiv.org/content/10.1101/2024.06.17.599404v1
https://www.biorxiv.org/content/10.1101/2022.06.24.496975v1
https://www.biorxiv.org/content/10.1101/2022.06.24.496975v1

52 Chapter 2. Phyloformer

Figure 2.1: Violin plots of
normalized Robinson-Foulds
distances between the true trees
and the trees estimated by 5
different methods, on datasets
generated with different sets of
parameters which reflect different
difficulties in phylogenetic
reconstruction. Results are shown
for DNN3 (the neural network
presented in [99]), IQ-TREE with
ModelFinder, Maximum
Parsimony , NJ (with Hamming
distances), and Phyloformer.
Although our network was
trained only on simulations
generated with the easiest set of
parameters (first dataset, upper
left corner) it manages to always
concentrate more mass towards
low RF distance values than all
other methods. As a result it
outperforms them all in 9 out of
12 test datasets in terms of mean
RF distance.

The complex model of evolution, developed in [99], combined 9 different
amino acid substitution matrices, modeling rate heterogeneity across sites and
site-specific amino acid equilibrium frequencies, as well as heterogeneity across
branches in both the rate of sequence evolution and equilibrium frequencies.
The parameters of such a model, notably the branch lengths, however were
hard to interpret, motivating us to move on, resorting to a different alignment
simulation pipeline. Still we wanted to showcase the capabilities of our method
to deal with complex models under which likelihood calculations are hard,
this lead us to consider in the final manuscript Cherry, which accounts for
pairwise site dependencies and SelReg, which models heterogeneous selective
pressures. Moreover, while in the first preprint we showed that our approach
could surpass traditional distance-based methods even under a more common
model of evolution, the gap between Phyloformer and IQ-TREE widened
quickly as the number of leaves of the trees we tested the methods on grew
(figure 2.2). These rapidly decaying performances of our network on larger
trees had to be dealt with in order to provide to the end users a versatile and
reliable phylogenetic reconstruction tool beyond a simple proof of concept.

2.1. Preface 53

Figure 2.2: Mean performances of IQ-TREE (ML, State Of The Art, orange),
PAM+NJ (distance method, blue), and Phyloformer (ours, green) on datasets varying
in the number of leaves (left) or the number of sites (right). Shaded areas correspond
to 95% confidence intervals of the mean. 150 trees were reconstructed for each number

of leaves or each number of sites.

The main hypothesis to explain the degraded performance of Phyloformer
on larger trees was the observation that, simulating all branch lengths with
the same distribution as we did, larger trees have a longer average path length
between leaves, which results in longer distances (given by the cumulative
branch lengths along the path). These long distances can fall outside the range
of distances seen by the network during training. Indeed we realized that, while
perhaps reasonable for trees of fixed size, the simulation scheme we adopted,
directly following the one presented in [99], isn’t suited for trees with varying
number of leaves: In realistic datasets subsampling larger trees by pruning
them should ideally lead to the same distribution on the pairwise distances. A
great deal of effort has then been put into the development of a simulation
scheme for trees of varying sizes with realistic branch lengths. Despite several
discussions with researchers who have devoted their career to phylogenetics, it
has been hard to find a consensus on what would be the ideal way to simulate
such trees. Indeed the work is unprecedented as, even if simulations have been
used to compare the performances of phylogenetic tree reconstruction methods
for decades, the dependency of the reconstruction method itself on the prior
used to train the model in the presented context of simulation based inference
warrants for an increased realism of the simulations, beyond the one that
would be sufficient to simply compare the performances of different methods.
The simulation procedure we eventually adopted still has its limitations but I
do believe it represents a step forward in this direction given the reasonable
performances on empirical data of Phyloformer, the model presented in this
chapter as well as those of Deepelican, presented in the following one.

54 Chapter 2. Phyloformer

Phyloformer: Fast, accurate and versatile

phylogenetic reconstruction with deep neural

networks

Luca Nesterenko1†, Luc Blassel1†, Philippe Veber1,
Bastien Boussau1‡, Laurent Jacob2‡

1Laboratoire de Biométrie et Biologie Évolutive, Villeurbanne, France.
2Laboratory of Computational and Quantitative Biology, Paris, France.

Contributing authors: luca.nesterenko@univ-lyon1.fr;
luc.blassel@univ-lyon1.fr; philippe.veber@univ-lyon1.fr;
bastien.boussau@univ-lyon1.fr; laurent.jacob@cnrs.fr;

†Equal contribution
‡Equal contribution

Abstract

Phylogenetic inference aims at reconstructing the tree describing the evolution of
a set of sequences descending from a common ancestor. The high computational
cost of state-of-the-art Maximum likelihood and Bayesian inference methods lim-
its their usability under realistic evolutionary models. Harnessing recent advances
in likelihood-free inference and geometric deep learning, we introduce Phylo-
former, a fast and accurate method for evolutionary distance estimation and
phylogenetic reconstruction. Sampling many trees and sequences under an evo-
lutionary model, we train the network to learn a function that enables predicting
the former from the latter. Under a commonly used model of protein sequence
evolution and exploiting GPU acceleration, it outpaces fast distance methods
while matching maximum likelihood accuracy on simulated and empirical data.
Under more complex models, some of which include dependencies between sites,
it outperforms other methods. Our results pave the way for the adoption of
sophisticated realistic models for phylogenetic inference.

Keywords: phylogenetic reconstruction, neural network, attention, machine learning,
regression

1

2.2. Introduction 55

2.2 Introduction
Phylogenetics, the reconstruction of evolutionary relationships between biolog-
ical entities, is used in many research domains to provide essential insights into
evolutionary processes. It is employed in epidemiology to track viral spread
[135], in virology to identify events of recombination [136], in biochemistry
to evaluate functional constraints operating on sequences [137], in ecology to
characterize biodiversity [138]. Central to these works, the phylogeny is a
binary tree whose internal nodes correspond to ancestral entities, branches
represent the amount of evolutionary divergence, and leaves correspond to
extant entities. Most of the time, molecular phylogenies are estimated from
aligned nucleotide or amino acid sequences using probabilistic model-based
approaches in the Maximum Likelihood (ML) or Bayesian frameworks. The
models typically describe the probability of substitution events along a branch
of the phylogenetic tree, whereby an amino acid (or nucleotide) is replaced
by another. Parameters of these models include rates of substitution, the
topology of the phylogeny, and its branch lengths—representing the expected
number of substitutions per site occuring along that branch. In the ML frame-
work, parameter inference is achieved by heuristics that attempt to maximize
the likelihood. In the Bayesian framework, it is often achieved by Markov
Chain Monte Carlo algorithms that sample the posterior distribution. Both
approaches are computationally expensive for two reasons. First, they need
to explore the space of tree topologies, which grows super-exponentially in
the number of leaves [1]. Second, this exploration involves numerous compu-
tations of the likelihood, each obtained with a costly sum-product algorithm
(Felsenstein’s pruning algorithm [139]). This computational cost has kept
researchers from using more realistic models of sequence evolution, which
would for instance take into account interactions between sites of a protein (as
in e.g., [8]). Such simplifications are well-known to be problematic, as several
reconstruction artifacts directly associated to model violations were discovered
early in the history of model-based phylogenetic reconstruction [140]–[142].
Much faster methods exist, but they are generally less accurate [143]. In
particular, distance methods (e.g., Neighbor Joining (NJ) [24], BioNJ [144],
FastME [46]) build a hierarchical clustering of sequences based on some es-
timate of their evolutionary pairwise distances, i.e., the sum of the branch
lengths along the path between pairs of sequences on the true unobserved
phylogenetic tree. NJ is guaranteed to reconstruct the true tree topology
if applied to the true distances [27], making the problem of estimating the
tree and the set of distances equivalent. In practice, distances are typically
estimated under the same probabilistic models as ML and Bayesian methods
but considering each pair separately—whereas the latter consider all sequences
at once—which greatly simplifies computations but discards part of the global
information contained in the full set of homologous sequences.

Here we present Phyloformer, a phylogenetic inference method exploit-
ing all sequences at once with the speed of distance methods. Importantly,
Phyloformer can handle complex models of sequence evolution for which like-
lihood computations would not be feasible. We build on recent advances
in deep learning for multiple sequence alignments [MSAs, 145] and in the
likelihood-free inference paradigm (Fig. 2.3). Sometimes referred to as
simulation-based inference [118], this paradigm exploits the fact that simulat-
ing data under probabilistic models of sequence evolution is computationally

56 Chapter 2. Phyloformer

affordable, even in cases where computing likelihoods under these models is
expensive. Through simulation we sample a large number of phylogenetic
trees and MSAs evolved along these trees, given a probabilistic model under
which we want to perform phylogenetic inference. We then learn a function
that takes an MSA as input and outputs the evolutionary distances between
all pairs of sequences on the tree. This function provides a point inference
of the full set of pairwise distances under the chosen probabilistic model,
conditional to the observed MSA. Learning the function is computationally
intensive, but once done, Phyloformer can be used in combination with a
distance method to reconstruct a tree from an MSA very rapidly, regardless of
the complexity of the model of sequence evolution. We show that under the
common LG+GC model [146], Phyloformer leads to phylogenies as accurate as
state of the art ML methods but runs two orders of magnitude faster. Under
more realistic models, e.g. accounting for pairwise dependencies between sites,
Phyloformer provides more accurate estimates than all other inference methods.

Related work [97] offer a recent review on deep learning for phylogenetics.
[98], [99] proposed likelihood-free methods for phylogenetic inference, by
casting the problem as a classification across possible topologies. Given the
super-exponential growth of the number of possible unrooted tree topologies
in the number of sequences, they restricted themselves to trees with four
leaves (quartet trees), that could then be combined to obtain larger trees [68].
Both methods relied on convolutional neural networks and were therefore
sensitive to the order of the sequences in the alignment and restricted to a
fixed sequence length—smaller sequences being accommodated with padding.
More recently, while still only considering quartet trees, [100] proposed a
network that was independent of sequence order, and reported accuracies
similar to [99] using fewer training samples. [101] showed that the accuracy of
the network introduced in [99] was lower than that of ML or distance methods
when evaluated on difficult problems involving long branches and shorter
sequences (200 sites), for both quartet trees and trees with 20 leaves. [102]
proposed a generative adversarial network for phylogenetic inference. While
also likelihood-free, this approach required a new training for each inference,
and did not scale beyond fifteen species. [103] introduced a distance-based
learning method for the related problem of adding new tips into an existing
tree. Our work is also related to the recent corpus of methods predicting
contact between pairs of residues from MSAs, a crucial step in protein structure
prediction [145], [147]. These methods infer distances between sites (columns
in the MSA) whereas we infer distances between sequences (rows in the MSA).
Our network is trained end-to-end to predict distances, whereas the [145]
network is pre-trained on a masked language modeling task to learn a data
representation that is then used as input for residue contact prediction learning.

2.3. Results 57

Phyloformer
network:

Simulator

TLGRSPSC

TQPSVPKC

TQPRAKTC

TGVPVPAC

Sample
as much as required

Use sampled inputs/outputs
to optimize Phyloformer learnable parameters

Axial attention
block (x6)

Embedding
and pairwise
average

...

Output:
Evolutionary distances

Pair representation

Input:
One-Hot encoded MSA

...
Fully connected layer
(same on each pair)

+
Average across sites

FastME
(at inference time)

...

One-hot encoding

(for each pair separately, update all sites) (for each site separately, update all pairs)
Site-level attention Pair-level attention

...

...

Evolutionary
distances

...

Sum of
branch lengths

(1) Sample tree
from prior distribution π

(2) Sample alignment
from p(MSA|tree)

(a)

(b)

(c)

(d)

A V ... Y T
A 1 0 ... 0 0

(a) , (b) ...
Y 0 0 ... 1 0

(a) (b)

(d)

(d)...

..
.

(a)

(a)

Figure 2.3: Learning a function that reconstructs a phylogenetic tree from an
MSA. We simulate phylogenetic trees and evolve MSAs along these trees under a given
probabilistic model (Simulator panel). Once encoded, we use the examples of MSAs and
corresponding trees to optimize the prediction function, described in the Phyloformer
network panel. Each square denotes a vector of dimension d representing one site
in one sequence or pair in the MSA, where the value of d can be different at each
step. Phyloformer starts (bottom left) from a one-hot encoded MSA, and builds a
representation for the pairs. These pairs then go through several axial attention blocks
which iteratively build a new representation for each pair that accounts for the entire
MSA, by successively sharing information across sites within each pair and across pairs
within each site (See The Phyloformer neural network). The sharing mechanism relies
on self-attention (central panel). We finally use a fully connected network on each site of
the resulting representation and average across sites to predict the evolutionary distance
between each pair (bottom right). At training time, we compare these distances against
real one to optimize the network parameters Φ. At inference time, we feed them to

FastME to reconstruct a phylogeny.

2.3 Results

2.3.1 Likelihood-free phylogenetic inference with Phyloformer

Phyloformer is a learnable function for reconstructing a phylogenetic tree from
an MSA representing a set of homologous sequences (Fig. 2.3). It produces
an estimate, under a chosen probabilistic model, of the distances between all
pairs of sequences, which is then fed to a fast clustering method to infer a
phylogenetic tree. The key feature of Phyloformer is its ability to produce
pairwise distance estimates that account for all sequences in the alignment—
providing more accuracy than the fast approaches that consider each pair of
sequences independently—without computing likelihoods—leading to much
faster inference than full ML or Bayesian approaches.

58 Chapter 2. Phyloformer

For a given model of sequence evolution p(MSA|τ, θ) describing how an
observed MSA evolves conditionally to a phylogeny τ and evolutionary param-
eters θ—substitution rates, equilibrium frequencies—and priors π(θ) and π(τ),
we generate a large number of samples {(MSA, τ, θ)} under the unnormalized
posterior p(MSA, τ, θ) = p(MSA|τ, θ)π(θ)π(τ) (Fig. 2.3, Simulator panel).
We then use these samples to build a function estimating the tree τ , by opti-
mizing a parameterized function FΦ(MSA) that takes the MSA as input and
outputs an estimate of τ . More precisely we output point estimates of the
distances between pairs of aligned sequences in τ , and minimize the average
absolute error between these point estimates and the real distances, which
amounts to estimating the median of the posterior distribution p(MSA|τ, θ),
see Supplementary Methods 2.6.4. Assuming that the family of functions
described by FΦ is expressive enough and that enough samples are used, this
approach offers posterior inference under the model (π, p), effectively replacing
likelihood evaluations by samplings of p(MSA|τ, θ).

Our FΦ relies on self-attention—a mechanism popularized by the Trans-
former architecture [73]—to build a vector representation for each pair of
sequences that contains all the information from the MSA required to de-
termine the corresponding distance. During each self-attention block, the
representation of each pair is updated using information extracted from all
others. The learnable weights of the block determine how much each pair
weighs in the update of any particular pair, as well as what information it
contributes. More precisely, we maintain a separate representation for each
position within each pair, and alternate between a separate update for each
site—whereby information is shared among pairs as we just described—and a
similar separate update for each pair whereby information flows among the
sites [145], [148]. Following the attention blocks, we use a fully connected neu-
ral network on the enriched representation of each pair of sequences to predict
the corresponding distance on the phylogenetic tree. The initial representation
of each pair is an average of the one-hot encodings of its sequences, that is
blind to the rest of the MSA. Because the learnable weights are chosen to
make the predicted distances as close as possible to the real ones, we expect
them to adaptively extract an MSA-aware representation for each pair, that
captures the relevant information from all sequences.

2.3.2 Under a standard model of evolution, Phyloformer is as
accurate and much faster than ML

We first assessed the performances of Phyloformer on data generated under
the LG+GC model of sequence evolution which combines the LG matrix of
amino-acid substitution [146] with rate heterogeneity across sites [149]. The
LG model is widely used, implemented in many phylogenetic tools [150]–[153]
and amenable to likelihood computation, making it a good model to compare
against state of the art ML inference methods. Following [154], we sampled
trees under a birth-death process, subsequently rescaling the branches to
simulate variations of the rate of sequence evolution. We chose simulation
parameters to match empirical data in the HOGENOM [155] and RaxMLGrove
[156] databases (see Online methods). We then evolved MSAs of 50 sequences
and 500 sites under LG+GC along these trees, and used the resulting data
to train Phyloformer. We compared Phyloformer (PF) followed by FastME
to reconstruct the tree from estimated distances against two ML methods,

2.3. Results 59

IQTree and FastTree, and one distance method, FastME using LG pairwise
distances. Fig. 2.4a shows the average Kuhner-Felsenstein (KF) distance [58]
between the true and reconstructed phylogeny for each of these methods over
500 samples from the same model for increasing numbers of leaves. The KF
distance is widely used to compare phylogenies and captures both topological
and branch length reconstruction errors. Phyloformer achieved a performance
similar to ML methods. It is noteworthy that this performance was stable
across numbers of leaves, even though our network was trained on 50-leave
phylogenies only. The performance was also stable when doing inference over
a range of sequence lengths, even though Phyloformer was trained only on
alignments with 500 positions (Supplementary Figs. 2.21 and 2.22). The
distance method was much less accurate. Interestingly, the high accuracy of
Phyloformer was achieved with the lowest runtime among all benchmarked
methods (Fig. 2.5). In particular, it was up to 135 times faster than the ML
method IQTree, for a similar accuracy. FastTree—a faster and supposedly
less accurate heuristic for ML—also had similar accuracy on this dataset, but
remained one order of magnitude slower than Phyloformer. Phyloformer was
even twice as fast as FastME combined with LG distances. As Phyloformer
itself runs FastME to reconstruct a tree from its distance estimates, this
difference indicates that inferring distances that exploit the full MSA with
a trained Phyloformer on a GPU is actually faster than computing the ML
distances independently for each pair. Conversely, Phyloformer was the most
memory intensive method, using up to 7.4GB of GPU RAM (Supplementary
Fig. 2.23), although this can be halved in some cases by using automatic
mixed precision.

20 40 60 80 100
Number of leaves

0.4

0.6

0.8

1.0

1.2

1.4

K
uh

ne
r-

Fe
ls

en
st

ei
n

di
st

an
ce

a)

20 40 60 80 100
Number of leaves

0.2

0.4

0.6

0.8

1.0

M
ea

n
ab

so
lu

te
 e

rr
or

b)

20 40 60 80 100
Number of leaves

0.06

0.07

0.08

0.09

0.10

0.11

N
or

m
al

iz
ed

 R
ob

in
so

n-
Fo

ul
ds

 d
is

ta
nc

e

c)

FastME
FastTree

IQTree_LG+GC PF+FastME

Figure 2.4: Performance measures for different tree reconstruction method.
a) Kuhner-Felsenstein (KF) distance, which takes into account both topology and
branch lengths of the compared trees; b) mean absolute error (MAE) on pairwise
distances, which ignores topology; c) normalized Robinson-Foulds (RF) distance, which
only takes into account tree topology. The alignments for which trees are inferred, were
simulated under the LG+GC sequence model and are all 500 amino acids long. For each
measure, we show 95% confidence intervals estimated with 1000 bootstrap samples.

Fig. 2.4b&c stratify the reconstruction error in terms of their topology
(panel c, using the normalized Robinson-Foulds (RF) metric [57]) and pairwise
distances (panel b, using the Mean Absolute Error (MAE) between true and
estimated distances). Regardless of the criterion, Phyloformer dominated

60 Chapter 2. Phyloformer

20 40 60 80 100
Number of leaves

10
1

10
0

10
1

10
2

10
3

E
la

ps
ed

 ti
m

e
(s

ec
)

FastME
FastTree

IQTree_LG+GC
IQTree_MF

PF+FastME

Figure 2.5: Execution time for different tree reconstruction methods on the LG+GC
test set with alignments of length 500. For IQTree ModelFinder (MF) times were mea-
sured on the Cherry testing set (see Section 2.3.3). For all methods except Phyloformer,
total wall time was measured. For Phyloformer, the elapsed time is the sum of the time
it takes to infer the distances and the time FastME takes to infer the tree from these
distances. It is important to note that the distance prediction time does not include the
time it takes to load the Phyloformer weights to the GPU as we did that once before

inferring distances for all the testing alignments.

FastME by being both faster and more accurate. On the other hand, Phylo-
former reconstructed topologies that were less accurate than ML methods,
and increasingly so for larger numbers of leaves, but estimated distances as or
more accurately. A possible explanation for this discrepancy is that since we
control the tree diameter in our simulation, larger trees have shorter branches
on average. As branch lengths decrease, the number of mis-predicted branches
increases leading to larger topological errors (see Supplementary Results 2.7.3
for an in-depth explanation).

Finally, we investigated the ability of Phyloformer to handle gaps contained
in empirical MSAs because of insertion-deletion (indel) events that have
occurred during sequence evolution. Standard models of sequence evolution
consider gaps as wildcard ‘X’ characters, and thus cannot benefit from the
information they provide. Models that account for insertion-deletion processes
are more complicated to implement and more costly to run [157], but can
easily be included using our paradigm. We fine-tuned the Phyloformer network
previously trained on ungapped LG+GC data on a smaller dataset that includes
indels, inserted through a model of insertion/deletion events in Alisim [21],
choosing parameters as in [158]. Fig. 2.6 shows that the accuracy of all
methods dropped on alignments that include gaps compared to alignments
that do not (Fig. 2.4), probably because gaps remove information from the
alignments. However the difference between Phyloformer and ML methods
shrinked, with Phyloformer outperforming ML methods according to the RF
metric for 10 to 30-leaf trees. This is likely due to Phyloformer’s ability to
extract information from gaps, which are encoded as a separate character and
not as a wildcard character.

2.3. Results 61

20 40 60 80 100
Number of leaves

0.4

0.6

0.8

1.0

1.2

1.4

K
uh

ne
r-

Fe
ls

en
st

ei
n

di
st

an
ce

a)

20 40 60 80 100
Number of leaves

0.2

0.4

0.6

0.8

1.0

M
ea

n
ab

so
lu

te
 e

rr
or

b)

20 40 60 80 100
Number of leaves

0.08

0.10

0.12

0.14

0.16

N
or

m
al

iz
ed

 R
ob

in
so

n-
Fo

ul
ds

 d
is

ta
nc

e

c)

FastME
FastTree

IQTree_LG+GC PF_Indel+FastME

Figure 2.6: Tree comparison metrics for different tree reconstruction methods on
the LG+GC+indels test set (alignment length=500). Legend as in Fig. 2.4, with
Phyloformer fine-tuned on alignments with gaps named PFIndel+FastME and in cyan.

2.3.3 Under more realistic models, Phyloformer outperforms
all other inference methods

Because ML and Bayesian inference approaches must compute the likelihood,
in practice they can only be used under simple models such as LG+GC
for which these likelihood calculations are affordable. Phyloformer on the
other hand can reconstruct phylogenies under arbitrarily complex models of
sequence evolution, as long as we can efficiently sample training data from
these models. We now illustrate this feature by considering inference tasks
under two substitution models that relax common simplifying assumptions:
independence between sites, and the homogeneity of selective constraints
across sites. The first model we used (Cherry, Supplementary Methods 2.6.2)
is derived from a model of sequence evolution that includes pairwise amino-acid
interactions [159]. ML inference under such a model would be very costly
for two reasons: the substitution matrix has size 400× 400, and would need
to be applied to pairs of interacting sites, which would need to be identified
with additional computations. The second model (SelReg, Supplementary
Methods 2.6.2) draws different selective regimes for each site of the alignment:
a site can evolve under neutral evolution, negative selection, or persistent
positive selection. ML inference under such a model is achievable with a
mixture model [e.g., 160], but costly, because the SelReg mixture includes 263
distinct amino acid profiles, plus a profile for neutral evolution, and a different
matrix for positively selected sites. We fine-tuned the Phyloformer network
previously trained under the LG+GC model on alignments sampled under the
Cherry or the SelReg model. We compared its performances against the same
methods as before, but allowing IQTree to search for the best evolution model
available (with the Model Finder option). Fig. 2.7 shows that under both the
Cherry and SelReg models all methods performed worse than under LG+GC,
presumably because both models decrease the information provided by a given
number of sites, by including pairwise correlations (Cherry), or positively
selected sites that are likely to saturate (SelReg). However, Phyloformer
outperformed all other methods by a substantial margin, with KF distances
around 1 whereas others range between 2 and up to 10 for IQTree under

62 Chapter 2. Phyloformer

SelReg. Of note, the Model Finder option was costly, further increasing the
computational edge of Phyloformer (Fig. 2.5). Not using this option markedly
decreased the accuracy of IQTree on the Cherry alignments (Supplementary
Figs. 2.19 and 2.20). As we observed under LG+GC, Phyloformer was better
at estimating distances than topologies (Fig. 2.7), with the latter becoming
more challenging for larger numbers of leaves. Nonetheless, the RF distances of
Phyloformer remained lower than for other methods, except for SelReg on trees
with more than 40 leaves where it was only outperformed by IQTree—which
in turn had the worst distance estimates among all benchmarked methods.

20 40 60 80 100

0.10

0.15

0.20

0.25

0.30

0.35

N
or

m
al

iz
ed

 R
ob

in
so

n-
Fo

ul
ds

 d
is

ta
nc

e a)
Cherry

20 40 60 80 100

b)
SelReg

20 40 60 80 100
Number of leaves

0

2

4

6

8

10

K
uh

ne
r-

Fe
ls

en
st

ei
n

di
st

an
ce

c)

20 40 60 80 100
Number of leaves

d)

FastME
FastTree

IQTree_MF
PF_Cherry+FastME

PF_SelReg+FastME

Figure 2.7: Normalized Robinson-Foulds distance (above) and Kuhner-Felsenstein
distance (below) for different tree reconstruction methods on the Cherry (left) and

SelReg (right) test sets (alignment length=500).

2.3.4 Phyloformer performs on par with ML methods on em-
pirical data

We compared the performance of Phyloformer and other methods on 346
orthologous gene alignments from 36 Cyanobacteria [161], reasoning that good
reconstruction methods should more often infer trees that match the tree
obtained on the concatenated gene alignments. We compared the LG+GC-
with-indel version of Phyloformer to the same three methods assessed in
section 2.3.2. Fig. 2.8a shows that Phyloformer performed as well as the
other standard methods on empirical data, and did so faster.

2.4. Discussion 63

We conducted a similar analysis on gene-trees over many different species
and orders obtained from [20]. In this study the authors collected a large
number of sequence datasets and inferred gene-trees using IQTree and FastTree
under the evolutionary model found by IQTree’s ModelFinder for each align-
ment. For IQTree they inferred 10 trees and only kept the one with the best
likelihood. The authors also reconstructed species trees from concatenated
alignments for each dataset. We reconstructed trees on the gene families
where at least 80% of alignments were classified as LG by IQTree using the
LG+GC-with-indel version of Phyloformer with FastME. We then compared
our gene trees as well as the ones from [20] to the concatenate trees. Here
again, Fig. 2.8b shows that in most cases Phyloformer performed as well as
the best of 10 trees estimated with ML methods. Here the computational
speed of Phyloformer shines as we were able to infer about 12, 000 trees in
under two hours with one GPU. In [20], the authors measured execution times
of only 10% of tree inference tasks, for which the total runtimes of IQTree
and FastTree were approximately 10.5 days and 4 hours respectively. On the
same subset of trees, we measured the total runtime of Phyloformer+FastME
and standalone FastME at approximately 11.5 and 15 minutes respectively.
Furthermore, Phyloformer consistently produced trees with a higher likelihood
than FastME trees though still lower than pure ML methods (Supplementary
Fig. 2.15).

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 R
ob

in
so

n-
Fo

ul
ds

 d
is

ta
nc

e

a)

ShenA9 WhelA7 BoroA6 NagyA1 StruA5
Dataset

b) Tree inference
method

FastTree
IQTree
PF_Indel+FastME
FastME

Figure 2.8: Comparison of topology reconstruction accuracy between Phyloformer
and other methods on empirical data. In both panels, we show the normalized Robinson-
Foulds distance between reconstructed gene trees and the corresponding concatenate
tree. In a) inferred gene trees on alignments from [161] using the same pipeline as
in Section 2.3.2 and with the gap-aware version of Phyloformer shown in Fig. 2.6. In
b) gene-alignments, species trees and some gene trees were obtained from [20]. We
inferred gene-trees using the gap-aware version of Phyloformer and FastME as in panel
a). The IQTree predictions were made in [20] under the evolutionary model found by
IQTree-ModelFinder, then 10 predictions were done and only the one with the best
likelihood was kept. The datasets shown here, have ≥ 80% of alignments detected as

LG by IQTree.

2.4 Discussion
Drawing on recent breakthroughs in likelihood-free inference and geometric
deep learning, we have demonstrated that Phyloformer achieves rapid and
precise phylogenetic inference. The likelihood-free paradigm only requires
samples from the probabilistic model of sequence evolution, which allows
inference under much more complex models than ML or Bayesian inference.
Furthermore we exploited an amortized form of this paradigm, requiring a

64 Chapter 2. Phyloformer

single training of a neural network that takes an MSA as input and outputs
evolutionary distances between pairs of sequences—as opposed to approaches
like ABC [117] that require a new sampling step at each inference. We based
our neural network on axial self-attention, an expressive mechanism that
accounts for the symmetries of the MSA and seamlessly handles arbitrary
numbers of sequences of any length.

Phyloformer was faster and as accurate as ML inference methods on data
sampled under the standard LG+GC model. Computing likelihoods under
LG+GC is expensive but possible, making ML inference the gold standard:
reaching the same accuracy faster was the best outcome one could hope for. On
the other hand, computing likelihoods under more complex models accounting
for local dependencies (Cherry) or heterogeneous selective pressures (SelReg)
is too costly, forcing ML methods to work under misspecified models whereas
Phyloformer can still perform inference under the correct model, without any
effect on its speed. As a result, Phyloformer yields the most accurate inference
by a substantial margin while retaining its computational edge.

More generally, we stress that likelihood-free inference using neural net-
works has a model-based nature identical to ML or Bayesian methods. It
formally estimates the posterior distribution defined by the prior and proba-
bilistic model used to simulate training data, accessing this model through
sampling instead of likelihood evaluations. As such, it is not immune to
model misspecification: we observed for example that Phyloformer trained
on LG+GC underperformed on data simulated under Cherry or SelReg and
vice-versa (Supplementary Figs. 2.19, 2.20 and 2.28). Rather than replacing
model choice, we believe that the crucial contribution of a likelihood-free
method like Phyloformer is to offer a way to work under more realistic models
of sequence evolution that were so far not amenable to inference.

It is noteworthy that the inference speed that we report for Phyloformer was
recorded on a GPU, a less widespread hardware than the CPU used for other
methods, which may limit its interest for analysing a single gene alignment
under models amenable to ML. However, we expect Phyloformer to have a
significant impact in experiments where many reconstructions are necessary,
e.g. for bootstrapping, reconstructing several gene trees from whole genomes
or transcriptomes, or where more complex models are warranted. Another
current limitation of Phyloformer is its scalability. The current bottleneck
is on its memory usage, mostly driven by applying self-attention to pairs
of sequences. A better scaling version could be obtained by working at the
sequence level— attempts to do so have so far led to lower accuracies.

An important extension of Phyloformer will be to train with a topological
loss function, e.g. directly minimizing the RF metric rather than a distance
metric. Such a version would address the gap that we observed between
accuracies in distance and topological reconstruction, and could also lead to a
more scalable method by working around the need for all pairwise distances—
of quadratic size in the number of sequences whereas the tree itself has linear
numbers of nodes and edges. We also believe that extending Phyloformer
to unaligned sequences will be of interest, both because multiple alignments
are computationally intensive, and because they are error-prone. This could
be addressed by including the alignment step in the network [162], [163].
Alternatively, one could forego alignment altogether, e.g. by producing a
length-independent representation early in the neural network.

2.5. Online methods 65

We expect that Phyloformer will have its largest impact on phylogenetic
inference after versions are trained on a collection of more realistic models of
sequence evolution which could include nucleotides, variations along the se-
quence or between branches and position-specific dependencies among sites [8],
[164], [165]. Our self-attention network could exploit these latter dependencies
via the addition of positional encodings—a standard approach in the trans-
formers literature. Beyond phylogenetic reconstruction, our network can be
trained to infer other parameters of the simulation model. This would provide
an efficient and flexible way to study phylodynamics, phylogeography, and
selective pressures operating on the sequences, for instance.

2.5 Online methods

The Phyloformer neural network

Phyloformer is a parameterized function FΦ that takes as input an MSA of
n sequences of length L and outputs an estimate of the N =

(n
2
)

distances
between all pairs of sequences. Φ denotes the set of learnable parameters of
FΦ. We then input these distances to FastME [46] to obtain a phylogenetic
tree (Fig. 2.3).

The Phyloformer network starts with a one-hot encoding of the aligned
sequences: every sequence x is represented as a matrix φ(0)(x) ∈ {0, 1}22×L

in which column j contains a single non-zero element φ
(0)
ij (x) = 1, whose

coordinate i ∈ {1, . . . , 22} denotes the amino acid or gap present in sequence
x at position j. It then represents each pair (x, x′) of sequences in the MSA
by the average of their individual representations i.e., with a slight abuse
of notation, φ(0)(x, x′) = 1

2

(
φ(0)(x) + φ(0)(x′)

)
. Of note, φ(0)(x, x′) does not

depend on the order of sequences x and x′. At this stage, the network represents
each site within each pair independently of all others, encoding information
such as “at site 4, sequences x and x′ contain a Leucine and an Isoleucine”.
The whole purpose of Fϕ is to account for relevant information about the
evolutionary distance between x and x′ contained in other sequences from the
alignment. To extract this information, Fϕ uses r = 6 self-attention layers [73]
that iteratively build updated φ(l)(x, x′) ∈ d× L representations of each pair
using all others in the MSA. More precisely, we use axial attention [145, Fig.
2.3, central panel] and successively update each pair (resp. site) separately
by sharing information across sites (resp. pairs). Along each axis, we rely
on a modified linear attention [166, see Scalable self-attention], with h = 4
attention heads and embeddings of dimension 64 for the value matrix and only
1 for the query and key matrices. The r axial attention blocks of Phyloformer
output for every pair of sequences a tensor φ(r)(x, x′) ∈ Rd×L informed by all
other pairs in the same MSA. We convert this representation into a single
estimate of the evolutionary distance between x and x′ by applying an Rd → R
fully connected layer to each site of each pair, followed by an average over
the sites. We provide more details on the FΦ architecture in Supplementary
Section 2.6.3.

Accounting for symmetries

It is now well understood that accounting for known symmetries is key to
the success of deep learning, as formalized in geometric deep learning [167].

66 Chapter 2. Phyloformer

Following this principle, we parameterize the function FΦ by a neural network
that exploits two symmetries of the estimation task: the estimated evolutionary
distances should not depend on the order of the n sequences or L sites in
the MSA. More precisely, we want FΦ to be equivariant by permutations of
the sequences: if it returns values dab, dac, dbc when presented with sequences
(a, b, c), it should return dac, dbc, dab when given (c, a, b) as input. On the
other hand, FΦ should be invariant to permutations of the sites—any such
permutation should lead to the same FΦ distances. This last point may seem
counterintuitive as the order of residues in a protein matters for its function,
and it is known that close residues do not evolve independently. Nonetheless
in all our experiments we train—or pre-train—FΦ on data generated under the
LG+GC model, which is site-independent. The self-attention updates act on
the Rd representations of a site within a pair of sequences regardless of their
order, yielding the desired equivariances. Enforcing these equivariances would
be more difficult if the updates were general functions acting on entire MSAs
represented by Rd×N×L tensors. The final average across sites within each
pair makes FΦ invariant rather than equivariant by permutation of these sites.
In addition because none of the operations in FΦ depend on the number of
sites or pairs, we can use the same FΦ seamlessly on MSAs with an arbitrary
number of sequences of arbitrary length.

Scalable self-attention

Naive implementations of self-attention over M elements scale quadratically
in M—in our case, both the number of sites and pairs of sequences. Indeed,
softmax attention as introduced by [73] is parameterized by three matrices
Q, K, V ∈ RM×d for some embedding dimension d, respectively called Queries,
Keys and Values, and every update for an element i computes attention
weights (si,1, . . . , si,M) = softmax

(
q⊤

i K√
d

)
. We resorted to the linear attention

of [166], who exploited the fact that sij = ⟨ϕ(qi),ϕ(kj)⟩∑M

h=1⟨ϕ(qi),ϕ(kh)⟩
for some non-linear

infinite-dimensional mapping ϕ : Rd → H to a Hilbert space H [168] and
proposed to replace ϕ by some other non-linear, finite-dimensional mappings
ϕ̃ : Rd → Rt. We can then re-write the self-attention updates z′

i = ∑M
j=1 si,jvj

as

z′
i =

∑M
j=1 ϕ̃(qi)⊤ϕ̃(kj)vj∑M
h=1 ϕ̃(qi)⊤ϕ̃(kh)

=
ϕ̃(qi)⊤ ∑M

j=1 ϕ̃(kj)vj

ϕ̃(qi)⊤ ∑M
h=1 ϕ̃(kh)

. (2.1)

Because we can pre-compute each of the two sums and re-use it for every
query, this simple factorization reduces both the number of operations and
memory usage from O(M2 · L · d) to O(M · L · d · t). Following [166] we used
an ELU-based mapping [169]

ϕ̃(x) =
{

x + 1, if x > 0
exp{(x)} if x ≤ 0,

where the operation is applied entrywise, yielding ϕ̃(x) ∈ Rd vectors for x ∈ Rd.
In our experiments, we used d = 64 for the Values matrix, but noticed that
using d = 1 for Queries and Keys led to slightly lower training-loss values
(Supplementary Fig. 2.27a), while substantially reducing the memory footprint
of the self-attention layers (Supplementary Fig. 2.27b). This observation is

2.5. Online methods 67

consistent with recent research showing that Transformers and other neural
networks learn through gradual rank increase [170], [171]. However, apply-
ing (2.1) with queries and keys of dimension 1 leads to identical updates z′

i

for all elements. To work around this issue, we normalized each update by the
average of queries and the sum of keys instead of the usual sum of attention
weights, leading to

z′
i = ϕ̃(qi)

M−1 ∑M
g=1 ϕ̃(qg)

·
∑M

j=1 ϕ̃(kj)vj∑M
h=1 ϕ̃(kh)

. (2.2)

Training Phyloformer

We trained FΦ using 6 NVIDIA A100 80GB GPUs on simulated examples
through a loss function (see Metrics) comparing the estimated and true
evolutionary distance (Fig. 2.3). We used the Adam optimizer [172], batches
of size 4 and a maximum learning rate of 10−3 with 3000 linear warmup steps
followed by a linear decrease of 213,270 steps, corresponding to 30 epochs. We
also implemented an early stopping criterion that stopped training when the
validation loss did not decrease over 5 successive 3000 step intervals.

We first trained an F pre
Φ function that served as a starting point for

all the functions used in our experiments, by optimizing Φ with respect to
the MAE loss for 20 epochs (≈ 79 hours) over the 170,616 examples (see
Section 2.5) simulated under LG+GC, saving a model every 3000 steps,
and eventually retaining the one with lowest Robinson-Foulds error (see
Metrics) over the validation dataset (17016 examples). For the results in
Fig. 2.4, we further optimized the parameters of F pre

Φ for 4 epochs (20 hours)
with respect to the MRE loss leading to a slightly improved error over small
distances (Supplementary Fig. 2.24) and on the overall Robinson-Foulds metric
(Supplementary Fig. 2.18). For the results in Figs. 2.6 and 2.7 we further
optimized the parameters of F pre

Φ for the MAE loss on gapped MSAs and
MSAs generated under the Cherry or SelReg substitution models respectively
(see Datasets).

68 Chapter 2. Phyloformer

Baselines

IQTree LG+GC [19, p. v2.2.0] reconstructs phylogenies in the Maximum
Likelihood framework. It first estimates several parsimony trees along
with one reconstructed through a distance method, then optimizes branch
lengths and other parameters of the model of sequence evolution, while
performing local topological rearrangements (Nearest Neighbor Inter-
changes, NNIs) to maximize the likelihood. We ran it with the LG
model of amino acid substitution [146] combined with a continuous
gamma distribution to model rate heterogeneity across site [14]. In our
experiments we did 5 rounds of NNIs since we observed that optimizing
for more rounds rarely improved the topology of the final tree while
substantially adding to the running time. The software was run with
iqtree2 -T 1 -m LG+GC -n 5.

IQTree MF uses the Model finder (MF) mode of IQTree [173], in which
likelihoods of an initial tree are computed for a large set of substitution
models and models of rate-heterogeneity accross sites. The best fitting
model is selected using BIC. The rest of the tree search is done as above
but using the selected model for likelihood estimations. The software
was run with iqtree2 -T 1 -n 5.

FastTree [45, v2.1.11 SSE3] reconstructs a starting tree using an algorithm
inspired from Neighbor-Joining [24] which is subsequently refined with
topological rearrangements to optimize the minimum evolution criterion.
The tree is then improved using maximum likelihood with NNIs. It was
run under the LG+G4 model of sequence evolution. The software was
run with fasttree -lg -gamma.

FastME [46, p. v2.1.6.4] computes a distance matrix using Maximum Like-
lihood, then reconstructs a tree topology using BioNJ [31] and further
refines it via topological rearrangements which seek to optimize the
Balanced Minimum Evolution score. In virtually all performed experi-
ments we observed that the FastME tree search algorithm led to slightly
better performances than the neighbor joining algorithm [24]. We didn’t
resort to the --gamma option as in our experiments we observed that
this lead to worse performances. Using FastME as our baseline distance
method makes the comparison with Phyloformer insightful, as the only
difference between the two methods is the distance matrix used as in-
put. The software was run with fastme --nni --spr --protein=LG
to reconstruct trees using the inbuilt evolutionary distance estimation
and simply with fastme --nni --spr when Phyloformer’s predicted
distance matrix was provided.

All methods were run on a single CPU thread (Intel Xeon E5-2660 2.20GHz)
except for Phyloformer distance prediction which was run on a single GPU
(NVIDIA V100 32GB).

2.5. Online methods 69

Datasets

We generated ultrametric phylogenies under a birth-death process. We used
50-leaf trees for training, and 10-leaf to 100-leaf trees for testing. We rescaled
branch lengths as in [154] to yield non-ultrametric trees. Finally, we rescaled
each tree to resemble trees found in public empirical databases. We used each
rescaled phylogeny to simulate one MSA with AliSim [21] for the LG+GC
model, or in-house code for Cherry, or Pastek [174] for SelReg. For LG+GC, we
sampled the parameter of the gamma distribution to match values estimated
on empirical data. We provide more details in Supplementary Methods 2.6.

Metrics

We now describe the metrics used throughout this article to compare phyloge-
nies or optimize our network.

Let di be the ith of N true evolutionary distances in a phylogeny, and d̂i

the corresponding estimate output by a given tree inference method. Then
the mean absolute error (MAE) and mean relative error (MRE) are defined as

ℓMAE = 1
N

N∑
i=1
|di − d̂i| and ℓMRE = 1

N

N∑
i=1

|di − d̂i|
di

.

When used to compute the loss during Phyloformer training, d̂i values
correspond to distance estimates directly output by FΦ. When used as a
metric (e.g. in Fig. 2.4) we use d̂i values extracted from the reconstructed tree,
by summing all branch lengths on the paths between each pair of leaves—even
for Phyloformer— in order to fairly compare different methods.

In phylogenetic trees, each branch describes a bipartition of the set of
leaves, paired with a weight (i.e., the branch length). Let A and B be the
sets of leaf-bipartitions describing trees TA and TB, and we,T the weight of a
bipartition e in tree T . Then, the Normalized Robinson-Foulds distances and
the Kuhner-Felsenstein distance between TA and TB can be written

RFnorm(TA, TB) = (|A|+ |B|)−1 (|A ∪B| − |A ∩B|)
and KF (TA, TB)2 =

∑
e∈A∩B

(we,TA
− we,TB

)2 +
∑

e∈A\B

w2
e,TA

+
∑

e∈B\A

w2
e,TB

.

Code and data availability

The code for Phyloformer, the pretrained models, and all the datasets analyzed
in this work can be found at
https://github.com/lucanest/Phyloformer.

Acknowledgements

The authors thank Dexiong Chen, Flora Jay, Martin Ruffel, Johanna Trost
for insightful discussions.

This work was funded by the Agence Nationale de la Recherche (ANR-
20-CE45-0017). It was granted access to the HPC/AI resources of IDRIS
under the allocation AD011011137R1 made by GENCI. We estimate that our

https://github.com/lucanest/Phyloformer

70 Chapter 2. Phyloformer

computations on GPUs to experiment different architectures, and to train
and test the networks have generated about 520kgs eCO2. This includes
15kgs eCO2 for training the final PF network on LG-GC. Part of this work
was performed using the computing facilities of the CC LBBE/PRABI. The
taxon silhouettes in Fig. 2.3 are modified from public domain images in the
PhyloPic database.

2.6. Supplementary Methods 71

2.6 Supplementary Methods
Here we provide a detailed description of our protocol to sample trees and
multiple sequence alignments along these trees.

2.6.1 Simulating phylogenies

We chose our simulation parameters to generate trees similar to empirical tree
distributions.

Empirical tree distributions

We collected 63, 245 phylogenies from the HOGENOM and 4, 893 phylogenies
from the RaxMLGrove databases. In order to have the same order of mag-
nitude across datasets we multiplied by 10 the frequency of the latter in the
distribution. We furthermore kept all the trees with diameters in the range
(0.02, 15), discarding 9, 055 trees out of 112, 175. The trees sampled from
the HOGENOM database correspond to the rooted "nocore" trees from the
phyla Delta-Epsilon (7, 687 trees), Alpha-proteobacteria (14, 125 trees), Beta-
proteobacteria (11, 961 trees), Tenericutes (1, 634 trees), Archaea (7, 658 trees),
Spirochaetes (3, 600 trees), Cyanobacteria (4, 898 trees) and Bacteroidetes-
Chlorobi (11, 682 trees). The trees sampled from RaxMLGrove correspond to
all the trees reconstructed from MSAs of amino acid sequences.

Simulating trees

We trained all neural networks presented in our work on trees/alignments
with 50 leaves/sequences, and considered smaller and larger numbers for
testing. We followed the same procedure for all trees. Following [154] we
simulated each tree using a birth-death process which returns an ultrametric
tree using dendropy’s treesim.birth_death_tree method [175, p. v4.6.1],
then obtained a non-ultrametric tree by rescaling the branches of the tree.
To do so we simulated changes of the rate of evolution by running a process
that generates small and big rate changes from the root of the tree to the
leaves. Then we rescaled all the trees, irrespective of the number of leaves, to
match the distribution of diameters (maximum pairwise distance in the tree)
observed in empirical data (subsection 2.6.1). For each tree we sampled a
diameter from this distribution, and added gaussian noise to provide variation
(µ = d, σ = d/10, with d the sampled diameter).

Given that all trees share the same diameter distribution irrespective of
their number of leaves, trees with more leaves will have a larger number
of short branches. This leads to a distribution shift between training and
testing data (see Supplementary Fig. 2.17a). Moreover very short distances
also lead to duplicate sequences during the alignment simulation step. To
mitigate this and avoid too many alignments with duplicate sequences, we
further rescaled terminal branches, resampling their length l from a normal
distribution, centered around the minimum allowed valued µ = 0.001, and
having σ = 0.005, until we reached l ≥ µ. Supp. Fig. 2.9 illustrates the whole
tree simulation pipeline.

72 Chapter 2. Phyloformer

Individual branch

rescaling

Global branch

rescaling by

diameter

Short terminal

branches

rescaling

Figure 2.9: Tree simulation pipeline: we simulate an ultrametric tree with a birth-
death process, rescaling the branches individually to simulate changes in the rates of
evolution, then rescaling all the branches to match a diameter sampled from empirical
data, and finally rescaling terminal branches which are too short to make them longer

than the minimum allowed value.

Comparison of simulated and empirical trees

To make sure the simulations were realistic enough we computed several statis-
tics of the training trees: mean distance between leaves, standard deviation
of distances, maximum distance, mean branch length, standard deviation of
branch lengths, maximum branch length, mean root to leaf distances, standard
deviation of root to leaf distances. We compared these statistics to those of
the trees extracted from the empirical databases. The distributions of the
statistics were markedly different between the two databases (Supplementary
Fig. 2.10) and we chose simulation parameters to overlap with both.

0 10 20
principal component 1

6

4

2

0

2

4

6

8

10

pr
in

ci
pa

l c
om

po
ne

nt
 2

dataset
Training
RAxMLGrove
HOGENOM

Figure 2.10: The distribution of trees used to train and test our networks is similar
to the empirical tree distributions. Left: Distributions of the considered tree statistics
for the empirical tree datasets and the training simulations. The blue curves correspond
to simulated trees, the orange curves to RAxMLGrove trees, and the green curves to
HOGENOM trees. Right: Two component PCA based on all 8 statistics for the three

datasets (1000 points per dataset shown).

2.6. Supplementary Methods 73

2.6.2 Simulating multiple sequence alignments

In the following we describe how we simulated alignments along the generated
phylogenies. Given that the whole tree+alignment simulation pipeline still
leads to some alignments having duplicate sequences, we simulate a larger
number of data points than we need and discard alignments with duplicated
sequences and the corresponding trees.

LG+GC We generated alignments under the LG+GC model of evolution
along the trees with the Alisim software implemented in IQTree2. We sampled
the α parameters of the continuous gamma distribution from those inferred by
IQTree on 12, 408 alignments from the HOGENOM core database, and added
gaussian noise to ensure variation (µ = α, σ = α/10, with α the sampled
value). A threshold of 0.05 was set for the minimum allowed value.

LG+GC+Indels We simulated alignments as above but with an additional
step for the simulation of indels. We used the simulation procedure of [158],
who retrieved indel-specific parameters for the rich indel model (RIM) [176]
from empirical MSAs in the TreeBASE database [177]. We limited the sequence
length for the indel simulation to be in (500, 4000) and cropped the alignments
to have a sequence length L = 500.

SelReg The SelReg model of evolution accounts for different selective regimes
for each site of the alignment. It is a codon based Mutation-Selection model
[178] in which each codon site is associated to one of 263 empirically assessed
profiles [174] which store the fitness of each possible amino acid occurring
at the site. The rate of substitution of a codon into another is stored in a
61 × 61 matrix and depends upon the fitness profiles, and a 4 × 4 matrix
of mutation rates between A, C, G, T [174]. Under this model, a site can
evolve under neutral evolution, when all amino acids have the same fitness,
under negative selection, in which case one or several amino acids have higher
fitnesses and are therefore selected at the given position, or under persistent
positive selection which leads the fitness profile of a site to continuously change
along the phylogeny to adapt to an ever-changing selective pressure [179].
Both for training and testing we used the Pastek simulator [174] to evolve
alignments along the simulated phylogenies, sampling each site’s selective
regime with probabilities of 25%, 50% and 25% respectively.

Cherry Cherry is a model of sequence evolution that represents pairwise
amino-acid interactions by using a 400× 400 transition matrix inferred from
15,051 Pfam MSAs with associated structure data which was used to determine
contacting sites [159]. We used the Cherry model to simulate evolution along
the training and testing phylogenies. The resulting MSAs, of length L = 500
contain 250 pairs of adjacent coevolving sites. Although in these simulations
the coevolving sites are side by side it is important to note that this does not
affect in any way the presented results as none of the considered methods
exploit positional information for the reconstruction of the phylogeny: the
distance and ML methods assume that sites evolve independently of each
other, and our network, which does not use positional encoding, is invariant
to permutations of the columns in the input MSA.

74 Chapter 2. Phyloformer

2.6.3 Detailed architecture of the Phyloformer network, train-
ing and fine-tuning

Distance
Matrix

One-Hot encoded
Sequence
Alignment

Layer Norm

Row
Multi-Head

Linear Attention

+

Layer Norm

Column
Multi-Head

Linear Attention

+

Fully
Connected

Layer Norm

+

Sequence
embedding

Pairwise
Average

Position-Wise
Fully

Connected

Site
Average

r× KC QC VC

KR QR VR

Figure 2.11: Network
architecture of Phyloformer. We
embed the one-hot encoded
amino acids (a vector in R22 for
each position-sequence pair in the
input alignment) in Rd via a
position-wise fully connected
layer. We then take pairwise
averages over sequences to obtain
a representation in Rd×N×L of all
the pairs of sequences in the
alignment. Up to here each
encoded amino acid is processed
independently. The subsequent
r = 6 axial attention blocks then
allow them to interact building a
context aware representation.
After these multiple blocks we
add a last position-wise fully
connected layer with a softplus
activation and a single output
feature. Finally averaging over
sites gives us the final network
prediction.

The neural network architecture of the Phyloformer model is essentially
that of an encoder-only transformer with Pre-Layer normalization [73], [180],
with 6 attention blocks, an embedding dimension of d = 64, and 4 attention
heads for a total number of 308, 449 trainable parameters. The network
takes as input the one-hot encoded representation of an MSA as a tensor in
R22×n×L and transforms it through a position-wise fully connected layer which
acts identically on each amino acid representation to embed it into Rd. We
then take pairwise averages over the rows (corresponding to the sequences in
the MSA) of the resulting tensor in Rd×n×L to obtain one in Rd×N×L, with
N =

(n
2
)
, having as rows the representations of each pair of sequences from

which the network will eventually predict evolutionary distances. Subsequently
the tensor is processed through 6 attention blocks. We resort here to the
axial attention paradigm [148], which has been employed to deal with MSA
data [145], and which allows passing information across positions in two steps.
First through an attention mechanism applied to each row, allowing to share
information across all sites in a given pair of sequences. Second through an
attention mechanism applied to each column, permitting the same information
flow across all pairs of sequences at a given site. We include one LayerNorm
normalization layer before and one skip connection layer after each of the
row-wise, column-wise attention and fully connected layers (Fig. 2.11). As
standard practice in the transformer literature, we use, for the final position-
wise fully connected neural network inside each block, a hidden dimension
dh = 4×d, using a GELU activation function [181] following [145]. We deviate
from the implementation in [145] by allowing for independent attention maps
for each row, and by using the novel variant of the linear attention mechanism
[166] described in section 2.5 of the main text. At the end of the attention

2.6. Supplementary Methods 75

Network
Name

Starting
Network

Batch
Size

Dataset
Size

Model of
evolution

Effective
number of

Steps/Epochs
GPUs
used

Target
learning

rate

Target
schedule

steps

Selected
checkpoint

step
Loss

Function

PFBase
Initialized
network 4 170k LG+GC 145.18k/20.5 6×A100 10−3 213.2k 144k MAE

PF PFBase 4 200k LG+GC 40.3k/4.32 6×A100 10−4 66k 40,3k MRE

PFIndel PFBase 1 55k LG+GC+indels 240k/17.45 4×V100 10−3 240k 136.5k MAE

PFCherry PFBase 4 1M Cherry 30k/0.72 6×A100 10−3 66k 18k MAE

PFSelReg PFBase 4 1M SelReg 66k/1.58 6×A100 10−3 66k 66k MAE

Table 2.1: Details of the training runs for all considered networks. We trained these
networks with the Adam optimizer [172] and selected the best checkpoint based on the
loss on a separate validation dataset. All models were trained using a linear learning
rate schedule with 3000 steps of warmup followed by linear decay for a total of steps
shown in the target steps column. The effective number of steps the models trained for
after early stopping is also shown. We either used NVIDIA A100 GPUs with 80GB of

VRAM or NVIDIA V100 GPUs with 32GB of VRAM.

blocks a last position-wise feed forward layer with a softplus activation (which
ensures the positivity of the outputs) and a single output feature transforms
the representation into a RN×L tensor, before an average over the sites gives
the final network’s prediction of the evolutionary distances as an RN vector.

We recapitulate the training procedure for each version of Phyloformer used
in our manuscript in Table 2.1, and the relationship between these different
versions in Fig. 2.12.

Initialized Network

PFBase

PF

PFIndel PFCherry

PFSelReg

LG-GC samples
MAE loss

LG-GC samples
MRE loss

LG-GC+indels
samples
MAE loss

Cherry samples
MAE loss

SelReg samples
MAE loss

Figure 2.12: Trained versions of Phyloformer considered in the manuscript.

2.6.4 Estimating posterior distributions

Here we intend to provide some intuition on why our neural network trained on
simulated data provides a likelihood-free estimator of the posterior distribution
p(τ |MSA). More precisely for our network minimizing the MAE, it provides
an estimate of the median of this distribution. We consider a two-sequence
alignment for which the network outputs a single scalar predicting their
evolutionary distance—and the tree τ is reduced to a single branch. Using
enough sampling, we could generate several {(τi, MSA)}ti=1 where we sampled
different values τi of the distance from the prior π(τ) which all led to sampling
the same MSA from p(MSA|τ). The set {τi}ti=1 is a sample of the unnormalized

76 Chapter 2. Phyloformer

posterior distribution of τ |MSA. For any particular choice of the parameters Φ,
our network will produce the same output FΦ(MSA) = δ for all these sampled
alignments. Optimizing Φ over this restricted set of samples, i.e., to minimize
t−1 ∑t

i=1 |δ − τi|, would therefore lead FΦ to output a median of the {τi}ti=1,
which is identical to the median of the posterior p(τ |MSA).

In this artificial example, using a parameterized network would be a clear
overkill, and a single scalar would suffice. In practice however, it is unlikely
that we ever sample the same MSA twice or that the MSA for which we
want to do inference was even once among the samples. This justifies using a
parameterized FΦ that interpolates between the n available observations by
minimizing n−1 ∑n

i=1 |FΦ(MSAi) − τi| over Φ. By doing so, it produces an
amortized estimator for the median of the posterior distribution of τ |MSA
that borrows information among close samples.

2.7 Supplementary Results

2.7.1 Phyloformer’s attention maps reveal coevolution pat-
terns

Figure 2.13: Row attention maps (rescaled and averaged over all alignments and
sequence pairs) obtained during inference on Cherry test data with the cherry fine-tuned
model (left) and the base one (right). Only the first 20 sites are shown here for ease of
visualisation. Attention heads from 1 to 4 along the columns and attention blocks from
1 to 6 along the rows. The 2×2 blocks along the diagonal show that the model identifies
sites that are coevolving and takes it into account for distance predictions. Interestingly
the coevolution pattern can also be observed in the maps of the non fine-tuned model
which has only been trained on alignments simulated without any coevolution. When
the models run on the LG+GC test data without coevolution only 1 × 1 blocks along

the diagonal can be seen (Table 2.2).

The linear attention approach that we use in this work does not compute
attention maps explicitly. Nonetheless, we can obtain these maps by computing
A = ϕ(Q) · ϕ(K)T . Focusing on attention across sites, which axial attention

2.7. Supplementary Results 77

Network on
test dataset: PFCherry on Cherry PFBase on Cherry PFCherry on LG PFBase on LG

a, mean of Āi,j values, |i− j| = 1 0.256 0.255 0.120 0.135
b, mean of Āi,j values, |i− j| > 1 0.098 0.115 0.121 0.136
Ratio a/b 4.424 3.408 0.999 0.995
mean of Āi,j values, i = j 0.579 0.535 0.542 0.523

Table 2.2: Quantitative measure of the behaviour of the base network and the
fine-tuned network on the different test datasets of 20-leaves trees. We denote here by
Ā the rescaled attention maps averaged across all 24 attention heads (4 in each of the
6 blocks) and all alignments. Whereas the values Āi,j , i = j, along the diagonal, are
naturally higher for all combinations of network-test dataset, only when the networks

are run on data containing coevolution the Āi,j , |i − j| > 1, values stand out.

performs separately for each pair, we obtained
(n

2
)

maps of dimension RL×L.
Inspecting these maps can provide insight into the network’s inner workings.
In particular to investigate the performances of our approach in the simulations
which take site coevolution into account, we computed the row attention maps
(24 in total corresponding to each block and attention head) during inference
on a subset (corresponding to the alignments with 20 sequences) of the test
data generated both under the Cherry and LG+GC evolution model, using
both the base model and the model fine-tuned on Cherry data. We averaged
all L × L maps of each head and layer over all sequence pairs and further
averaged over all alignments which gave us 2-dimensional matrices that can
be visualized as heatmaps. To take into account both the cases where a
pair of position receives particularly low or high attention score, we centered
the attention maps values around 0, took their absolute value and finally
normalized them to be between 0 and 1. Fig. 2.13 (left panel) shows that
averaged attention maps obtained on data simulated with pairs of coevolving
sites contain high values in 2× 2 blocks along the diagonal. Remarkably we
observed the same pattern on attention maps obtained on the same Cherry
alignments with the network that we trained on LG+GC alignments, where
each site evolved independently (Fig. 2.13, right panel). Our understanding is
that both versions of the neural network have learned to share information
between correlated sites, regardless of their position (again, no positional
information is available to our network). The block pattern that we observe is
just a consequence of coevolving sites being near each others in the Cherry
alignments over which we compute these attention maps.

This can explain why PFBase’s performances appear to be less affected
compared to FastME and FastTree although all methods are subject to the
same extent of model misspecification. Similarly this could be the reason why
the base model still achieves state of the art performance across all metrics
for smaller trees (Fig. 2.19).

On the other hand, as expected, we do not observe such pattern when
running either version of the network on the LG+GC test data (Table 2.2)
except for naturally occurring high values along the main diagonal.

78 Chapter 2. Phyloformer

2.7.2 Phyloformer reconstructs likely trees

While working under a model amenable to likelihood calculations we can also
compare the performances of the different methods in terms of the likelihood
of the reconstructed tree. In Fig. 2.14 we can see the ratio of the log-likelihood
values (computed by IQTree on the LG+GC test dataset) of the true and the
predicted tree for the different methods. Higher likelihood trees lead to lower
ratios. Despite the fact that our network does not explicitly optimize the tree
likelihood, we observe that our method typically reconstructs trees with higher
likelihoods than the true ones, as observed with the full scale ML approaches.
This highlights the difference with the standard distance-based method which
shows the opposite trend. Similarly when testing the different approaches on
the empirical data one observe that the trees reconstructed by Phyloformer
consistently have higher likelihoods than those inferred by FastME (Fig. 2.15,
where for each tree we plot the likelihood of the one inferred by the different
methods divided by that of the one inferred by IQ-TREE10 for comparison).

20 40 60 80 100
Number of leaves

0.996

0.998

1.000

1.002

1.004

Lo
g-

lik
el

ih
oo

d
R

at
io

FastME
FastTree

IQTree_LG+GC
PF+FastME

True Tree

Figure 2.14: Log-likelihood ratios (L(Tpredicted)/L(Treal)) for trees inferred from
MSAs simulated under the LG+GC model. We use the true known simulated tree

compute L(Treal).

2.7.3 Short branches, not short distances, explain Phyloformer’s
deteriorating topological performance as the number of
leaves grows

Phyloformer yields larger relative errors on small pairwise distances (Figs. 2.24
and 2.26). It is natural to think that the increase in topological error along
with the number of leaves might be due to a corresponding increase in smaller
pairwise distances within such trees. However, Fig. 2.16 partly disproves
this. Indeed the distribution of pairwise distances stays relatively stable
across trees with different numbers of leaves with only a slight shift towards
smaller distances for bigger trees. Somewhat paradoxically, the smallest
pairwise distances are found in the trees with the lowest number of leaves,
in particular 10-leaf trees. This is due to our simulation procedure where
simulated (tree,alignments) pairs with duplicated sequences are discarded. In
trees with fewer leaves, small distances do not necessarily imply small branches

2.7. Supplementary Results 79

ShenA9 WhelA7 BoroA6 NagyA1 StruA5
Dataset

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

Lo
g-

Li
ke

lih
oo

d
ra

tio
 w

ith
 IQ

Tr
ee

Tree inference
method

FastTree
PF_Indel+FastME
FastME

Figure 2.15: Log-likelihoods ratios between inferred tree and best one found by
IQTree (L(Tpredicted)/L(TIQT ree)) for the trees reconstructed on empirical alignments

from [20].

therefore small distances are less likely to lead to duplicated sequences than in
larger trees and therefore are more likely to be part of the testing data. This
important distribution shift between 10-leaf trees and trees with more leaves
most likely explains Phyloformer’s relatively poor performance on these small
trees.

Given that the distribution of empirical tree-diameters we sample from
to rescale simulated trees is the same regardless of the simulated number of
leaves (see Section 2.6), the distribution of branch lengths within the trees
changes with the number of leaves. Indeed Fig. 2.17a shows that the average
branch length decreases as the number of leaves increases inducing a shift in
the distribution of branch lengths in our simulated testing data compared to
our training data. In parallel, Fig. 2.17b shows that Phyloformer mis-predicts
shorter branches, and branches of the simulated trees that are recovered in
Phyloformer trees are on average ≈ 10 times longer than those that are not
found in Phyloformer trees. Therefore, since (1) Phyloformer is more likely to
make mistakes for shorter branches and (2) due to our rescaling of trees with
empirical diameters, trees with more leaves are more likely to have shorter
branches, it stands to reason that as the number of leaves grows so does the
number of mis-predicted branches and consequently so does Phyloformer’s
topological error.

80 Chapter 2. Phyloformer

10
3

10
2

10
1

10
0

10
1

Pairwise Distance

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

Number of leaves
10
20
30
40
50
60
70
80
90
100

Figure 2.16: Distribution of pairwise distances, stratified by number of leaves in
simulated testing data.

Figure 2.17: Distribution of branch lengths and its effect on Phyloformer perfor-
mance.

a) Distribution of branch lengths in simulated test trees, stratified by number of leaves.
b) Distribution of branch lengths for branches recovered or not in Phyloformer trees,

stratified by number of leaves.

2.8. Supplementary Figures 81

2.8 Supplementary Figures

0.300

0.325

0.350

0.375

0.400

0.425

0.450

0.475

K
uh

ne
r-

Fe
ls

en
st

ei
n

di
st

an
ce

a)

0.065

0.070

0.075

0.080

0.085

0.090

0.095

0.100

N
or

m
al

iz
ed

 R
ob

in
so

n-
Fo

ul
ds

 d
is

ta
nc

e b)

20 40 60 80 100
Number of leaves

0.15

0.20

0.25

0.30

M
ea

n
A

bs
ol

ut
e

E
rr

or

c)

20 40 60 80 100
Number of leaves

0.08

0.10

0.12

0.14

0.16

0.18

M
ea

n
R

el
at

iv
e

E
rr

or

d)

PF+FastME PF_Base+FastME

Figure 2.18: Performances of the base model (PFBase+FastME) against the model
fine-tuned with a mean relative error loss (PF+FastME). For each measure, we show 95%
confidence intervals estimated with 1000 bootstrap samples.Performance is measured
with: a) Kuhner-Felsenstein distance; b) normalized Robinson-Foulds distance; c)

mean absolute error (MAE); d) mean relative error.

20 40 60 80 100
Number of leaves

1

2

3

4

5

6

7

K
uh

ne
r-

Fe
ls

en
st

ei
n

di
st

an
ce

a)

20 40 60 80 100
Number of leaves

0

1

2

3

4

5

6

M
ea

n
ab

so
lu

te
 e

rr
or

b)

20 40 60 80 100
Number of leaves

0.10

0.15

0.20

0.25

0.30

0.35

N
or

m
al

iz
ed

 R
ob

in
so

n-
Fo

ul
ds

 d
is

ta
nc

e

c)

FastME
FastTree

IQTree_LG+GC
IQTree_MF

PF+FastME
PF_Cherry+FastME

Figure 2.19: Performance measures for different tree reconstruction method on data
simulated under the Cherry model.

a) Kuhner-Felsenstein distance b) mean absolute error (MAE) on pairwise distances c)
normalized Robinson-Foulds (RF) distance. The alignments for which trees are inferred
were simulated under the Cherry sequence model and are all 500 amino acids long. For
each measure, we show 95% confidence intervals estimated with 1000 bootstrap samples.
Trees were inferred with (1) maximum likelihood methods: IQTree with LG+GC model,
IQTree with model finder option and FastTree, (2) the commonly used FastME distance
method and (3) Phyloformer models either trained on LG+GC or trained on LG+GC

and fine-tuned on Cherry data.

82 Chapter 2. Phyloformer

20 40 60 80 100
Number of leaves

0

2

4

6

8

10

K
uh

ne
r-

Fe
ls

en
st

ei
n

di
st

an
ce

a)

20 40 60 80 100
Number of leaves

0

2

4

6

8

10

12

M
ea

n
ab

so
lu

te
 e

rr
or

b)

20 40 60 80 100
Number of leaves

0.10

0.15

0.20

0.25

N
or

m
al

iz
ed

 R
ob

in
so

n-
Fo

ul
ds

 d
is

ta
nc

e

c)

FastME
FastTree

IQTree_LG+GC
IQTree_MF

PF+FastME
PF_SelReg+FastME

Figure 2.20: Performance measures for different tree reconstruction method on data
simulated under the SelReg model.

a) Kuhner-Felsenstein (KF) distance; b) mean absolute error (MAE) on pairwise
distances; c) normalized Robinson-Foulds (RF) distance. The alignments for which
trees are inferred were simulated under the SelReg sequence model and are all 500
amino acids long. For each measure, we show 95% confidence intervals estimated with
1000 bootstrap samples. Trees were inferred with (1) maximum likelihood methods:
IQTree with LG+GC model, IQTree with model finder option and FastTree, (2) the
commonly used FastME distance method and (3) Phyloformer models either trained on

LG+GC or trained on LG+GC and fine-tuned on SelReg data.

20 40 60 80 100
Number of leaves

0.5

1.0

1.5

2.0

K
uh

ne
r-

Fe
ls

en
st

ei
n

di
st

an
ce

Alignment length = 250

20 40 60 80 100
Number of leaves

Alignment length = 500

20 40 60 80 100
Number of leaves

Alignment length = 1000

FastME FastTree IQTree_LG+GC PF+FastME

Figure 2.21: Effect of alignment length on the Kuhner-Felsenstein distance. Perfor-
mance is measured on alignments simulated under the LG+GC model. 95% confidence

intervals are estimated with 1000 boostrap samples.

2.8. Supplementary Figures 83

20 40 60 80 100
Number of leaves

0.04

0.06

0.08

0.10

0.12

N
or

m
al

iz
ed

 R
ob

in
so

n-
Fo

ul
ds

 d
is

ta
nc

e
Alignment length = 250

20 40 60 80 100
Number of leaves

Alignment length = 500

20 40 60 80 100
Number of leaves

Alignment length = 1000

FastME FastTree IQTree_LG+GC PF+FastME

Figure 2.22: Effect of alignment length on the normalized Robinson-Foulds distance.
Performance is measured on alignments simulated under the LG+GC model. 95%

confidence intervals are estimated with 1000 boostrap samples.

20 40 60 80 100
Number of leaves

10
4

10
5

10
6

10
7

M
ax

im
um

 R
S

S
 (k

B
)

FastME
FastTree

IQTree_LG+GC PF+FastME

Figure 2.23: Memory usage during tree inference for selected tree inference methods.
For methods executed on the CPU (FastME, IQTree and FastTree) the maximum
resident set size (RSS), measured with the /usr/bin/time executable is shown. For
Phyloformer, the maximum number of GPU allocated bytes added to FastME’s memory

usage is shown.

84 Chapter 2. Phyloformer

10
1

10
0

10
1

Reference Pairwise Distance Percentile

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
ea

n
R

el
at

iv
e

D
iff

er
en

ce
 o

n
pa

irw
is

e
di

st
an

ce

FastME
FastTree

IQTree_LG+GC
PF+FastME

PF_Base+FastME

Figure 2.24: Mean Relative Difference (MRD) per percentile of true pairwise
distances. The MRD is defined as ℓMRD = N−1 ∑N

i=1 d−1
i (di − d̂i) with N the number

of pairwise distances and, di and d̂i the true and estimated pairwise distances respectively.
In this figure the PFBase+FastME model’s performance is shown in addition to that
of the MRE-fine-tuned PF+FastME model. The fine-tuning with MRE improved the
performance on smaller pairwise distances especially with the MRD for the smallest
percentile improving from −0.1 (PFBase+FastME) to ≈ 0 (PF+FastME). Overall, the
curve of the MRE-fine-tuned PF+FastME is flatter and closer to 0 than all other tree

inference methods.

20 40 60 80 100
Number of leaves

0.10

0.15

0.20

0.25

0.30

0.35

M
ea

n
R

el
at

iv
e

E
rr

or
 o

n
pa

irw
is

e
di

st
an

ce

FastME
FastTree

IQTree_LG+GC PF+FastME

Figure 2.25: Mean relative error (MRE) per number of leaves for tree inference
methods. Performance is measured on 500-amino acid long MSAs simulated under the
LG+GC model. 95% Confidence intervals are estimated with 1000 bootstrap samples.

2.8. Supplementary Figures 85

(a) LG+GC (b) Cherry

(c) SelReg

Figure 2.26: 2-dimensional histogram of predicted vs real distances on (a) the
LG+GC, (b) Cherry and (c) SelReg test datasets. Under the LG+GC model (a),
FastME tends to underestimate longer distances. This is expected as long distances give
rise to multiple substitutions per site which are hard to detect when looking at pairs
of sequences separately. PF on the other hand, exploiting the information contained
in the whole alignment, recovers long distances more accurately. IQTree tends to
overestimate all distances. On data simulated with Cherry (b), standard methods
overestimate distances, long ones in particular. This is expected as the Cherry model
considers pairs of interacting sites as states, and not the indvidual sites themselves.
A substitution at the level of the pair can affect both sites, which is interpreted by
site-independent models as two independent substitutions. After training on Cherry
alignments, Phyloformer predicts accurate distances. On data simulated with SelReg
(c), standard methods overestimate distances. Two reasons can explain this. First, the
data has been simulated with site-wise vectors of amino acid equilbrium frequencies,
whereas the inference model assumes that all sites share a single vector of amino acid
frequencies. Second, the model of rate heterogeneity across sites used in inference (the
gamma model) assumes a continuous distribution of rates, and probably does not fit well
on data in which sites evolved under negative selection, neutral evolution, or positive
selection. After training on SelReg data, Phyloformer predicts distances accurately.

86 Chapter 2. Phyloformer

0 2 4 6 8 10
Epoch

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
A

E
 L

os
s

Attention
Full
Kernel
Rank 1

Loss Type
Train
Val

(a) MAE loss per attention function.

2 3 4 6 10
Batch Size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
ea

k
A

llo
ca

te
d

G
P

U
 B

yt
es

1e10

Attention
Kernel
Rank 1

(b) Peak training memory usage per attention
function.

Figure 2.27: a) Training and validation MAE loss per epoch for the same model
with different attention functions: Full scaled dot product attention, Linear Kernel
attention and our version of Rank 1 Linear Kernel attention. b) Peak allocated bytes
on the GPU for the same model with either Linear Kernel attention or our Rank 1
version of Linear Kernel attention. All measures were done on 50 leave simulated trees.

LG+GC

Indels

Cherry

SelReg

3.4e-01 3.7e-01 1.1e+00 1.7e+00

3.2e+00 5.8e-01

2.5e+00 1.0e+00

6.1e+00 6.1e-01

Kuhner-Felsenstein distance

8.2e-02 9.3e-02 1.1e-01 1.2e-01

4.2e-01 1.3e-01

1.8e-01 1.2e-01

1.4e-01 1.2e-01

Normalized Robinson-Foulds distance

PF

PF_In
de

l

PF_C
he

rry

PF_S
elR

eg

LG+GC

Indels

Cherry

SelReg

1.2e-01 1.3e-01 8.0e-01 1.4e+00

3.4e+00 2.0e-01

1.5e+00 2.7e-01

5.3e+00 1.5e-01

Mean Absolute Error

PF

PF_In
de

l

PF_C
he

rry

PF_S
elR

eg

7.5e-02 8.1e-02 3.1e-01 8.1e-01

4.9e+00 1.1e-01

5.2e-01 9.0e-02

5.1e+00 7.4e-02

Mean Relative Error

1

2

3

4

5

6

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1

2

3

4

5

1

2

3

4

5

Figure 2.28: Effects of model specification for Phyloformer. We measured the
performance of Phyloformer models (columns from left to right) fine-tuned with MRE
on LG+GC, or fine tuned with MAE on LG+GC data with indels, on Cherry data or
on SelReg data. For each model, the performance was measured on 50-leaf trees and
corresponding alignments simulated with (rows from top to bottom) LG+GC, LG+GC
with indels, Cherry and SelReg. Performance was measured with Kuhner-Felsenstein
distance; normalized Robinson-Foulds distance; mean absolute error (MAE) ; mean

relative error

2.9. Additional discussion 87

2.9 Additional discussion
The previous page was the end of Phyloformer manuscript, here I shall provide
some additional discussion and some more insight into the work behind it.

Insertions and deletions

The performances of the PFIndel model 2.6 are remarkable with our method
outcompeting the others across all considered metrics, on trees with up to 30
leaves. These results are attained despite the model having been fine-tuned on
a dataset three times smaller than the one employed to train the original one.
Additional experiments, testing different methods on artificial alignments in
which all the information pertaining the substitution process had been removed,
allowed us to confirm that Phyloformer is able to exploit to a certain extent the
phylogenetic information provided solely by the gaps, a characteristic shared
with FastTree, whereas IQTree, treating gaps as missing characters doesn’t.
It is worth pointing out here that in the considered simulations, although
the process of substitution is independent and identically distributed at each
position, the indel process introduces correlations in adjacent columns of the
resulting MSA whenever an insertion or a deletion with length > 1 occurs.
This entails that the architecture presented here, invariant to permutations
of sites in the MSA, is not ideal for the problem, being incapable to fully
exploit such correlations: Let us consider for instance an insertion or deletion
event of length 2, while the network can identify that a gap is present in the
same sequence in two different columns, it lacks the information that these
are adjacent, information that would suggest that the presence of the gaps
is due to a common indel event rather than two independent ones. Again,
this limitation could be overcome simply adding a positional encoding to the
network’s input MSA representation which could improve its performances on
these simulations and on empirical data.

FastTree and the advantages of ML optimization

One striking trend one can observe in the presented results is that, while
FastTree leads to trees with lower likelihood values with respect to IQTree
(figures 2.14 and 2.15), in terms of topological accuracy the two methods
generally exhibit the same performances. This is remarkable given the compu-
tational advantage that FastTree has over the full ML method. Such a trend
was already reported in [182] in which the authors observe no substantial
differences between RAxML-NG, IQ-TREE, and FastTree in terms of RF and
quartet distances when the methods are tested on simulated data. Such an
observation leads them to discuss the issues that come with testing phyloge-
netic reconstruction methods on empirical data when one takes as a reference
the tree with the highest likelihood among those found by different methods.
In the context of our work, a supplementary analysis on the LG+GC test
dataset was conducted, looking at the starting trees of IQTree and FastTree
as well as the trees obtained by the latter after the BME optimization step,
before the NNI moves which maximise their likelihood. The results showed
that before the likelihood maximisation both methods provide trees which,
in terms of topological accuracy, are no better than the ones reconstructed
with Phyloformer, this permitted us to conclude that in this case, where the

88 Chapter 2. Phyloformer

likelihood of the model is tractable, ML optimization moves are highly effective
in minimising the RF distance, we shall further discuss in chapter 5 possible
strategies to improve the performances of a method such as ours in this case.

Attention mechanism

Different implementations of attention mechanisms have been explored during
this thesis work. Looking at the column attention maps of a Phyloformer model,
instead of the row ones, indicates that during this step each pair representation
pays more attention to the pairs it shares one of the sequences with. This
observation suggested that a sparse attention approach, allowing only such
interactions could be tried, nevertheless while its performances appeared to
be on par with those of a full attention mechanism the resulting complexity in
the number of sequences was O(n3) and a way to combine this with a linear
attention mechanism (which in turn has O(n2) complexity working on the
pairs of sequences) couldn’t be found. As for the linear attention, multiple
versions have been tried before settling on the one presented in [166] which
with respect to others has the advantage of maintaining the permutational
equivariance. Finally, the rank-1 version presented in this paper is an example
of how sometimes in research one makes progress in unexpected ways: The
version on which the Phyloformer model presented in the first preprint relied
was the result of an inaccurate implementation of the mechanism proposed
in [166], roughly equivalent to the rank-1 version presented here. Rather
than seeing this just as a bug we realized it could be a feature as ultimately
for the problem at hand it retains the same performances as the full rank
implementation while being more efficient.

Coevolution patterns

The ability of Phyloformers models to identify coevolution patterns exhibited
in figure 2.13 is quite interesting, even more so as it appears to emerge even in
networks that have been trained solely on alignments without coevolving sites.
A natural question that arises is whether these models could showcase the
same ability when run on empirical alignments, to test this I investigated if we
could fit a function of the attention maps to predict empirical contact maps,
used as a proxy of coevolution patterns in this case, as the authors of [145]
do, unfortunately the results were inconclusive but I do believe that further
research in this direction could be fruitful.

Is length generalization an issue?

During the development of Phyloformer, in several tests of our model we have
observed that it seemed to perform on par or even better than maximum
likelihood in the reconstruction of trees with 20 leaves, the same number on
which the model initially had been trained on. We already discussed how
this could be explained by the shift in the distribution of distances between
training and testing data given by the initially adopted tree simulation scheme,
nevertheless the hypothesis that the number of sequences itself could play a
role, with the model suffering from length generalisation, a phenomenon known
in the transformers literature [183], could not be excluded. To investigate this

2.9. Additional discussion 89

phenomenon several experiments had been conducted, testing the model on
simulations with different schemes to rescale the branch lengths in order to
match the distribution of evolutionary distances in the training data to that
of the test trees. These include, apart from the finally adopted strategy to
rescale the branch lengths in order to make all trees have the same diameter
distribution as in the training data (matching the empirical one), trying to
scale the branch lengths in order to make the mean of the distribution match
and different quantile normalizations strategies (for the branch lengths or the
evolutionary distances). The results of several of these experiments lead us
to believe that the model was indeed performing best when given the same
number of sequences it has been trained on, for instance we observed better
performances when bigger alignments were cut into several subalignments with
20 sequences each and the predicted distances were combined to reconstruct
the entire tree. Eventually, moving from training the model on alignments
with 20 sequences to alignments with 50 sequences allowed us to conclude that
the main factor affecting the model’s performances was the total number of
distances it has seen during training rather then the size of the training MSAs,
phenomena as the one previously mentioned can then be partly explained
by the advantages given by model averaging. Indeed, the phenomenon of
the model at times performing better for trees with 20 leaves can still be
observed to a certain extent in the plots shown in this chapter, even if the
networks we presented here have been trained exclusively on 50-leaf trees, for
instance figures 2.19 and 2.20 show that, in terms of RF distance, even the
non-fine-tuned network attains state of the art performances on the Cherry and
SelReg test datasets for trees up to 20 leaves, while in figure 2.18, panel b, we
can see that both PF and PFBase attain the minimum of the Robinson-Foulds
distance for trees with 20 leaves. This is probably an artifact of the simulation
procedure. As we discussed in subsection 2.7.3 two phenomena are at play, on
the one hand, given that we always use the same distribution of diameters,
bigger trees contain more small distances, leading the peak of their distribution
to slowly shift to the left as the number of leaves increases (figure 2.16), on the
other the resampling procedure to avoid duplicate sequences filters out trees
with branches which are to short to provide variation in the corresponding
alignment, this phenomenon is less prominent in smaller trees, these therefore
retain more small distances as, given the shorter paths along the trees, these
lead to short branches to a lesser extent. The trees with 20 leaves, among the
ones considered for testing, then likely represent a sweet-spot between the two
phenomena leading to easier inference for our model.

Optimization

The optimization of the models presented in this chapter has been a consider-
able challenge in itself, significant work has gone into making the training more
efficient and robust through the exploration of different optimizers and warmup
schedules. A source of instability has been identified to be the automatic
mixed precision (AMP) as implemented in PyTorch we had been employing to
reduce the computational footprint of training the models, notably getting rid
of the AMP made retraining models easier and allowed for efficient fine-tuning.
As for the learning rate schedule, the warm-up schedule adopted here helped
stability during training, in the next two chapters however we shall see that

90 Chapter 2. Phyloformer

these types of models can also be trained with a simple constant learning rate,
although very small values for the latter are sometimes warranted to avoid
optimization issues.

MRE fine-tuning

In particular training the Phyloformer model under the MRE loss has been
challenging due to optimization difficulties (as one can notice in table 2.1 PF is
the only network which has been trained with a learning rate of 10−4 instead of
10−3). This was expected as small values (small distances) in the denominator
lead to very big loss values and the use of such a loss in regression problems is
often not recommended given that it leads the model to underestimate larger
values prioritizing accurate predictions for the smaller ones. Nevertheless,
empirical risk minimization based on MRE is still consistent [184], and in our
case the approach was justified by several experiments which highlighted the
accuracy of the network on smaller distances as one of the main factors behind
the performances of the method in terms of topological accuracy. Given that
the fine-tuning of the model under this loss improved its performances the
reader may wonder why the same strategy wasn’t adopted for the networks
fine-tuned on the more complex models of evolutions PFIndel, PFSelReg and
PFCherry, or at least why PFBase instead of the better performing PF was
chosen as a starting point for these fine-tunings. This is simply due to the
chronological order in which the experiments had been carried on, we had
already trained PFIndel, PFSelReg and PFCherry before the optimization under
the MRE loss which lead to the PF model. Although we believe that the same
strategy could improve their performances as well, the showcased results of
Phyloformer method on the more complex models of evolution we considered
are already remarkable so we didn’t feel the need to retrain the networks for
the purpose of this paper.

Working with sequence representations

Currently the bottleneck limiting the direct application of the Phyloformer
model to alignments with more than a few hundred sequences is given by
its memory consumption. While naturally bigger trees can be dealt with
either with supertree methods (subsection 1.5.3) or combining the distances
predicted on smaller subalignments, it would be desirable to have a more
scalable method. While no matter that the complexity of a method based
on evolutionary distances will at best remain quadratic in the number of
sequences, as it already is in our case, we still can hope to be able to reduce
the computational footprint of the method for practical applications, given
the high coefficient of the quadratic term that stems from the linear attention
on all the pairs of sequences. A great deal of work has then been put in
trying to develop a version of the Phyloformer network that would work
using a representation of the sequences instead of the pairs thereof. Such a
network would have the same architecture but would be missing the pairwise
average over the sequences step and the final average over the sites, the
representation of the MSA the network would be working with, a tensor in
Rn×L×d, would then represent in the final step a context-aware embedding of

2.9. Additional discussion 91

each sequence in RL×d (with the context being provided by all other sequences
in the alignment). The final output of the network, the distance for each pair
of sequences, could then be given by the Euclidean distances between these
embeddings (or of a transformation thereof). Numerous approaches have been
explored, including learning a custom symmetric bilinear form as in [162] to
extract the pairwise distances from the embeddings instead of simply taking
their Euclidean distance. Additionally, given that the elementwise square
root of phylogenetic distance matrices has been proven to be Euclidean [185]
[186] we tried using such a transformation (replacing the labels to predict
with their square roots), whereas the growing literature on representations of
trees in hyperbolic spaces [187] [188], including applications to phylogenetics
[189][190][191] lead us to try using hyperbolic distances to extract the network’s
predictions from the embeddings1. Unfortunately hyperbolic approaches lead
to numerous optimisation issues whereas the others resulted in networks with
fairly good performances on alignments with the same number of sequences
they have been trained on but which failed to generalise to smaller or bigger
trees. In conclusion, further work will be needed in this direction to develop a
more scalable version of our model.
We shall however see in the following two chapters how, for different prediction
tasks, the architecture developed for Phyloformer can effectively work with a
sequence representation as the one described here, offering great computational
efficiency.

1Of note the approach adopted [192] to embed sequences in an hyperbolic space is
conceptually close to the one discussed here, nevertheless the authors do not explore
applications to phylogenetic reconstruction and the resulting embeddings are not context-
aware, with each sequence being processed independently.

93

Chapter 3
Deepelican

The work presented in this chapter stems from a project on which Estelle
Bergiron, an M1 student, has worked on for her internship, cotutored by me,
Bastien Boussau and Julien Barnier. The work builds upon the one that has
been carried by Louis Duchemin during his PhD thesis for the development of
the Pelican method. Although the neural network-based approach presented
in this chapter is fundamentally different, the two methods tackle the same
problem, the detection of sites subject to a selection shift associated with a
given phenotype, and the name Deepelican was chosen for the model presented
here as an hommage to its non-neural counterpart.

3.1 Detecting shifts in selective pressure associated
with a phenotype

We have already encountered in the previous chapter a model of evolution
which takes into account different selective pressures that may act on a site,
the three scenarios we considered in those simulations were:

• The absence of selection, otherwise known as neutral evolution, which
entails all amino acids having the same fitness, so that the evolution
of a site subject to no selective pressure can be modeled with a simple
continuous time Markov chain such as those introduced in section 1.2.

• Negative, or purifying, selection, in which case one or few amino acids
have higher fitnesses with respect to the others and are therefore selected
for (respectively the others are selected against) at the given position.

• Persistent positive selection, which leads the fitness profile of a site to
continuously change along the phylogeny to adapt to an ever-changing
selective pressure as the one that may rise from the co-evolution of
competing species that find themselves in an evolutionary arms race,
such as the one that often can be observed in host–parasite dynamics.

One evolutionary scenario that has not been considered in these simulations
though, is that of a shift in selection, namely the change of the fitness profile
of a site which happens episodically along the phylogeny. Such a shift may
arise when the evolutionary pressure acting on one or multiple sites changes
following for instance a change in the environmental conditions or the arisal of

94 Chapter 3. Deepelican

a new phenotype (potentially caused by such an environmental change). This
scenario in particular, the change of the fitness profile of one or several sites
correlated with a phenotypic change, is the one I will be focusing on in this
chapter. I shall present a novel method, Deepelican, for detecting the sites
which have undergone a shift in selective pressure (figure 3.1, right) given a
multiple sequence alignment and the phenotypic traits which can be observed
at the leaves of the phylogeny the sequences and the phenotypic trait evolved
along (figure 3.1, left). While possible extensions of the method to multiple
or continuous traits will be discussed, I shall focus here on the case where
the trait is discrete and binary and which will therefore be denoted either by
0 or 1 or, alternatively, as background and foreground, sites associated with
the phenotype shall further be referred to as positive while the others will be
denoted as negative.

T51

T44

T17

T5

T46

T41

T2

T22

T4

T3
8

T3
0

T4
3

T4
0

T4
7

T5
9

T
57

T
25

T
45

T
54

T
26

T
36

T
52

T
8

T21
T19

T15
T3

T6

T13

T39

T31

T60

T32

T10

T29

T7

T9

T53

T16
T5
8

T2
7

T5
5

T3
7T1
2T4
8T
20T
33T
14T
11

T
34

T
28T
1T
56T35T24T18T42

T50
T49

T23

T54 -YGL-LS-LQPKP-AY-AGE
T42 V-T-LLHTKKLVPNLA-M--
T1 L-SCSQYSNKLVGNLL-AGF
T47 -Y-L-P--LRLVA-SR---A
T8 -L-L--S-L-TVL-TI-ELT
T22 -PDL-N--VRS---------
T43 -Y-L-P---RLED-YR--AA
T17 -PS--K--F--P--A-----
T32 -LAE--A-DI-PL-QERD-D
T51 -PS--K--F--P--A-----
T46 -LYR--T-P--G--E-----
T56 L-FCTRDYNKLVGNLL-ATI
T53 H-SFL-EYL-----VVTLPQ
T15 FLR---E---LQ--GNI-A-
T25 -Y-L-P--LRLEA-TC--AA
T20 V-STILHTLKLQVNLE-LSI

Figure 3.1: On the left evolution of a binary phenotypic trait along a phylogeny
(represented by the two different colorings of the branches), on the right the correspond-
ing multiple sequence alignment with the sites associated with the phenotypic change

highlighted.

3.1.1 Existing methods

Existing methods for the task can be mainly classified in two categories:

dN /dS methods

The first category consists of methods working at the codon level and relying
on the ω metric. ω is defined as the ratio of non-synonymous to synonymous
substitutions dN /dS a codon has undergone during evolution along one or
several branches of a phylogenetic tree, the synonymous substitutions being
those that although changing the codon do not change the amino acid it codes
for due to the redundancy of the genetic code, and the non-synonymous being
those that do lead to a change of the coded amino acid. Indeed dN /dS is a useful
metric to detect the intensity of selective pressure as in the absence of selection
on the scale of amino acids one would expect the number of synonymous
and non-synonymous substitutions to be roughly equal and therefore a value
of ω ≈ 1, in the case of purifying selection amino acid changes, that is
non-synonymous substitutions, are selected against, this scenario can then
be detected by an ω value < 1, finally persistent positive selection on the

3.1. Detecting shifts in selective pressure associated with a phenotype 95

contrary pushes the amino acid with higher fitness to change continuously and
is therefore characterized by ω > 1. Finally the evolutionary scenario we focus
on here is characterized by an initial ω value which is smaller than 1 up to
the selection shift, a transient phase during which the value becomes greater
than 1 as adaptation to the shifted selective pressure takes place, followed by
another phase in which the ω value becomes again smaller than 1 provided
that no other selection shift arises (figure 3.2).

Figure 3.2: Different cases of selection regimes for a site, with the corresponding
values for the ω metric visualised along with the associated changes in the fitness profile

of the site [193]. The shifted selection regime will be the focus of this chapter.

The transient nature of the value in the case of shifted selection in particular
might cause dN /dS to be less effective in detecting this evolutionary scenario
[194]. One such method is the popular “branch-site model A” implemented
in the codeml program inside PAML [195] which compares the likelihood of
having different ω values for different branches in the phylogeny against that of
model having one global set of ω values through a likelihood ratio test (LRT).

Profile methods

The other category of methods comprises of those that do not rely on inferring
dN /dS values across the phylogeny but rather on amino-acid frequency profiles,
which can be used as a proxy of their fitness 1. Again inference is typically
performed in the maximum likelihood framework and a likelihood test can
be performed for each site to compare the likelihood of a model allowing a
different profile per phenotypic trait against that of a model having a unique
profile per site which does not change along the phylogeny. Two such models
are considered in this chapter: Multinomial, reportedly the fastest profile
method, which does not take into account the phylogeny and does not assume
an underlying model of evolution, and Pelican, an efficient implementation
of maximum likelihood inference under the TDG09 model [196] and which
has been shown to have comparable performances with the best performing

1For this reason, with a slight abuse of notation, we shall use the terms frequency and
fitness profile interchangeably throughout this chapter.

96 Chapter 3. Deepelican

methods [174]. More specifically, the Multinomial method models the observed
amino acid frequencies at a given site i with multinomial distributions and
compares the two hypotheses:

• H0: A single profile describes the frequencies of amino acids observed in
all sequences at a given site.

• H1: Two distinct profiles describe the observed frequencies at a site
depending on the sequence’s phenotypic trait.

Denoting by θ0 the vector of observed amino acid frequencies at site i looking
at all sequences, by θ0

1 the vector of observed frequencies at site i corresponding
to sequences with phenotype 0 and by θ1

1 the one corresponding to sequences
with phenotype 1, we can compute the likelihoods under the two models as:

• L(H0) = ∏n
j=1 P

(
sj

i | θ0
)

• L(H1) = ∏n
j=1 P

(
sj

i | θ
φ(sj)
1

)
Where P is the probability given by the multinomial distribution, sj

i the amino
acid found at position i in the sequence sj , and φ(s) ∈ {0, 1} the phenotype
associated to the sequence s.

Pelican on the other hand takes into account the annotated phylogeny τ
and models the evolution along its branches with a continuous time Markov
chain model described by a transition matrix Q (The WAG transition matrix
is used by default) and by either a single stationary distribution π (hypothesis
H0) or by two distributions π0 and π1 (hypothesis H1) depending on the
phenotypic trait annotation of the branch along which the sequence is evolving.
Felsestein’s pruning algorithm (subsection 1.3.1) is used to compute likelihoods
along the phylogeny and the distributions π, π0, π1 which maximize them are
found so that in this case

• L(H0) = maxπ P (si | Q, π, τ)

• L(H1) = maxπ0,π1 P (si | Q, π0, π1, τ)

Where this time P is the probability given by the model of evolution. For
both methods one can then compute the LRT statistic

D = 2 (log (L (H1))− log (L (H0))) (3.1)

and its significance can be tested with a chi-square distribution, having a num-
ber of degrees of freedom equal to the difference in the number of parameters
estimated under hypotheses H1 and H0, which provides a p-value for the site
being identified as positive.

3.1.2 Model of evolution

The model of evolution employed for all the alignment simulations, both for
training and testing the introduced model, again implemented in the Pastek
software, is a codon-based Mutation-Selection model, the same as in [174]
and [197] , which allows only transitions between codons differing by at most
one nucleotide and which weights the probability of such a transition by a
factor proportional to the fitness difference between the corresponding amino

3.2. Deepelican 97

acids: At the root of the tree, for each site i, an amino acid frequency profile
βi is sampled, by default among the 263 representative profiles selected by
[197] among those experimentally assessed in [198]. Given such a profile, the
evolution along the branches of the tree of the codon associated to the site is
then governed by the transition matrix Qi ∈ R61×61 such that

qi
xy =

µxy ·

Si
xy

1−e
−Si

xy
if x ̸= y

−
∑

y ̸=x qi
xy otherwise

(3.2)

where

µxy =
{

Juv if codon y is obtained from x changing one nucleotide u to v

0 otherwise
(3.3)

where J is the transition matrix for the Jukes-Cantor model we already
encountered in subsection 1.4.1 , and

Si
xy = ρ log

βi
AA(y)

βi
AA(x)

(3.4)

where ρ is a positive scaling factor which governs the intensity of selection
and βi

AA(x) is the frequency in the profile βi corresponding to the amino acid
encoded by the codon x. Finally, to simulate the effect of episodic shifts in
selection, two distinct profiles βi

0 and βi
1 (corresponding to the two different

phenotypes) are actually sampled at the root for each positive site, the profile
βi

0 is initially assigned to the site and then the site’s profile, which governs
its evolution through equations 3.2, 3.3 and 3.4, switches from βi

0 to βi
1 or

viceversa any time a phenotypic change along the tree is encountered. Whereas
in [174] simulations were run on empirical phylogenies already annotated with
the phenotypic traits along them, for the simulations presented in this chapter
the evolution of a phenotypic trait along a phylogeny was simulated as well
by simply modeling it as a two-state continuous Markov chain running along
the branches of the tree, with the root being assigned to state 0 and with the
rate of substitution being set so that the expected number of substitutions
along the longest path from the root to a leaf is equal to 2.

3.2 Deepelican
As described in subsection 3.1.1 the Pelican method requires an annotated
phylogeny whereas most generally in empirical data one only has access to the
annotation of the leaves, corresponding to the observable phenotypes. If the
trait annotation of the phylogeny is not given to the method, the phenotypes
of the internal nodes are inferred by maximum parsimony via Fitch’s algorithm
using the input phylogenetic tree and leaf annotation. The idea underlying
the development of Deepelican instead was to skip the tree reconstruction and
annotation steps altogether in order to have an accurate method capable of
predicting positive sites directly from the MSA and the leaves annotation, the
model was therefore trained end to end to predict for each site the probability
of it being positive given only the aforementioned data in input.

98 Chapter 3. Deepelican

Multiple sequence alignment,
Leaf annotations

Prediction
Tree

reconstruction

Tree

annotation

Pelican

Deepelican

Figure 3.3: Inference paradigm using the Deepelican model compared to Pelican.

This paradigm is illustrated in figure 3.3 and was motivated by the demon-
strated capabilities of a model such as Phyloformer to deal with MSA data
and capture phylogenetic information. Of note this is analogous to what is
done in the context phylodynamics by the authors of [199] who use a similar
architecture to the one employed throughout this work and which allows them
to skip the usually necessary tree reconstruction step for the inference of
epidemiological parameters.

3.2.1 Adapting the neural network architecture

21

n

seq
uen

ces

L site
s

Initial
embedding

d

em
be
dd
ing

dim
ens

ion

n

seq
uen

ces

L site
s

transformer
blocks

d

em
be
dd
ing

dim
ens

ion

n

seq
uen

ces

L site
s

position-wise
FC

n

seq
uen

ces

L site
s

sequence-wise average

L site
s

Figure 3.4: Overview of how Deepelican processes the one-hot encoding representation
of an input MSA, the only differences with the Phyloformer architecture are the missing

sequence-to-pair step and the final average over the sequences instead of the sites.

Given the results presented in the previous chapter the neural network archi-
tecture of Deepelican was chosen to closely mirror that of Phyloformer, with
minor changes to make it suitable to the task, namely that of a per-site binary
classification. A schema of how an alignment is processed by deepelican is
depicted in 3.4: After an embedding through a position-wise fully connected
layer the MSA representation goes through several axial transformer blocks
that once more rely on the low rank variant of the linear attention mechanism
described in chapter 2, a final position-wise feed forward layer without any
activation function and a single output feature then gives us a Rn×L tensor
that, once averaged over the sequences and passed through a sigmoid function
gives us the final network’s prediction of the per-site probabilities as a RL

vector. During inference, when a binary classification needs to be made, a site
will be classified as positive if the corresponding output probability is greater
than 0.5. The trained model presented in this chapter has 8 attention blocks,
an embedding dimension of d = 64, and 4 attention heads totalling 410,819
trainable parameters. It is worth noticing that despite having a larger number
of parameters with respect to the Phyloformer model, Deepelican misses the

3.3. Simulations and training 99

pairwise average over the sequence representations step, working therefore
with a representation in which the rows directly correspond to the sequences
in the input MSA and not to the pairs thereof. Such a difference makes its
computational footprint, both in terms of memory and execution time, linear
at once in the number of sequences and in the number of sites. This provides,
as we shall see in subsection 3.4.3, a significantly more scalable method capable
therefore of handling seamlessly alignments with several hundreds of sequences.

3.2.2 Encoding global information

Another main difference with respect to the problem of evolutionary distance
prediction is the representation of the input which is fed to the model, indeed
whereas Phyloformer took simply an encoding of the MSA as input, for the
task at hand we need to provide to Deepelican the annotation of the phenotypic
traits at the leaves as well. This raises the question of how to encode a global
value shared across all the sites in a sequence, namely the phenotype associated
to the latter. To do so two different approaches have been tested, the first
consisted in simply encoding the phenotype along a supplementary dimension
extending each one-hot encoded vector either with a 0 or a 1 depending on
the phenotype associated to the sequence the amino acid finds itself in (which
results in an input tensor with dimensions (N, L, 22)), the second relied on
adding a sinusoidal positional encoding vector to the one-hot encoded one,
encoding thus the two different phenotypes with a vector corresponding to
position 0 and one corresponding to position 1 respectively (without changing
the dimensions (N, L, 21) of the input tensor). Denoting by e(c) the encoding
of a character (amino acid or gap) and by s(c) the sequence in which the
character being encoded finds itself in we thus have:

PE(x,2i) = sin
(

x

10002i/21

)
, PE(x,2i+1) = cos

(
x

10002i/21

)
(3.5)

and
e(c) = one-hot(c) + PEφ(s(c)). (3.6)

Although such a nonstandard usage of positional encodings is rare in the
literature it appeared as effective as the other encoding approach in preliminary
experiments, eventually leading to its adoption for the model presented in this
chapter, of note it is the same approach adopted in [199] to encode the age of
the sequences in the input MSA.

3.3 Simulations and training
Simulations

To train and test the Deepelican model alongside the other methods, phylo-
genetic trees were again simulated following the exact same procedure as in
subsection 2.6.1. Alignments were simulated along those with the Pastek sim-
ulator using the previously described model of evolution, a notable difference
in the whole simulation pipeline with respect to that adopted for Phyloformer
is that in this framework the duplicate sequences seldom appearing in align-
ments simulated along trees with short branches were kept thus avoiding the
re-simulation step described in subsection 2.6.1. This choice was made for
simplicity as in this framework, given that predictions are made at the site

100 Chapter 3. Deepelican

level, the presence of duplicate sequences wouldn’t give rise to the potential
issues discussed in chapter 2, their presence indeed would at worst provide
redundant information.

Whereas in [174] different methods were compared on simulations with
a fixed proportion of positive sites, namely 10%, the simulations we relied
on in this chapter were made slightly more diverse, drawing uniformly from
{0.05, 0.1, 0.15, 0.2, 0.25, 0.3} the proportion of positive sites in each simulated
alignment.

The simulations were further enriched with the presence of gaps, to intro-
duce the latter in the simulations a simple model was employed in this case. We
relied on a custom implementation of the TKF91 model of insertion-deletion
[200] which typically models the latter as a birth-death process running along
the branches of the tree. Allowing insertion events though wouldn’t be straight-
forward in the considered framework as naturally the question of which class
to assign to the newborn site would arise, to avoid this the simplifying choice
of allowing only deletion events was made, with gap deletion rates drawn
uniformly from {0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3} for each alignment. A value
of ρ = 0.5 for the intensity of selection parameter was used to train the base
model whereas ρ = 4 has been used to obtain the fine-tuned version presented
in subsection 3.4.4

Training

The models presented in this chapter were all trained with a fixed learning rate
of 10−3 using the Adam optimizer and a batch size of 20 on a single NVIDIA
RTX A4000 GPU with 16GB of VRAM. Since in this case we’re dealing with
a per-site binary classification task the loss under which the models had been
optimized was chosen to be the commonly employed binary cross entropy
(BCE) L(ŷ, y) = − (y log(ŷ) + (1− y) log(1− ŷ)) . As for constant sites in the
MSA no meaningful prediction can be made regarding the association with
the phenotype, during the training of the model a binary mask is applied to
exclude the latter from the loss calculation, similarly, the predictions for the
sites which are constant in the MSA are not considered in the computation of
different performance metrics for all the methods considered in this chapter.
Furthermore, to deal with class imbalance during training, the positive sites in
the input MSA are selected and an equal number of negative sites is sampled
in order to compute the loss on a balanced proportion of sites belonging to
each class.2 The base model was trained for 19 epochs on 400k alignments
with 50 sequences and 250 sites using a validation dataset of 20k alignments,
the fine-tuned model was trained on 20k alignments for 5 epochs with the
same hyperparameters as the base one.

2In hindsight this was a poorly chosen strategy as by doing so one effectively makes the
proportion of positive sites in the input MSA irrelevant, indeed overall this is equivalent to
having simply trained the model on alignments with 50% of positive sites. This penalises
equally type I and type II errors, whereas to apply the network to empirical alignments, with
potentially thousands of sites, or even millions at the genomic scale, one is rather interested
in reducing the number of false positives. This could have been done either by computing the
loss for all sites, instead of a subsample, during training, or by simply simulating alignments
with a 50% positive sites proportion and assigning different weights in the loss for the two
classes.

3.4. Results 101

3.4 Results

3.4.1 Testing with different tree sizes

Firstly the base Deepelican model was tested on alignments simulated under
the same conditions as the training data, only varying the number of leaves of
the simulated trees. Figure 3.5 shows the comparison of the performances of
the model with those of Multinomial and Pelican in terms of area under the
Precision-Recall curve (PR-AUC) and in terms of simple balanced accuracy
(BAcc), namely the average of the per-class accuracies. Whereas PR-AUC
is the same metric already used to compare different methods in [174] and
[197], it is important to note that the BAcc metric, looking at which one
would be lead to think that Multinomial is doing better than Pelican here, is
less meaningful for these two methods given that Pelican is reportedly not
well-calibrated [193], furthermore the threshold chosen here to classify a site
as positive is when the corresponding p-value is < 0.05, i.e. the same that
was used to assess the performances of the method on empirical data [193].
As we shall see this choice indeed leads Pelican to have a better BAcc with
respect to that of Multinomial when the methods are tested on simulations
using a more realistic value of ρ = 4, whereas in this case with ρ = 0.5 a better
threshold choice could have been made as the PR-AUC metric does indicate
the advantage of Pelican over the simpler Multinomial method. Given these
premises, the choice to report this metric was still made as it is the one we
kept track of alongside the loss during the training of Deepelican and it is a
simple and intuitive indicator of its performances across different simulation
settings.

20 30 40 50 60 70 80 90 100
Number of leaves

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

PR
-A

UC

Method
Multinomial
Pelican
Deepelican

20 30 40 50 60 70 80 90 100
Number of leaves

0.52

0.54

0.56

0.58

0.60

BA
cc

Method
Multinomial
Pelican
Deepelican

Figure 3.5: Performances of different methods tested on simulated trees with
increasing number of leaves (100 per tree size) and alignments of length 250 simulated
along them. 95% confidence intervals estimated with 1000 bootstrap samples are shown.

As expected the performances of all methods improve with the tree size
as the additional information provided by the growing number of sequences
allows one to better identify positively selected sites. While the capability
of all methods to identify positive sites is limited, reflecting the difficulty of
the problem, which as we shall see is to be attributed to the low value of
ρ = 0.5 governing the intensity of selection chosen for these simulations, one
can see that the newly developed Deepelican method outperforms the others
no matter the tree size. These performances are attained by the model despite
not being given in input the original tree the sequences evolved along as it
is the case for Pelican and with a significantly lower computational footprint
with respect to the latter as we shall see in subsection 3.4.3

102 Chapter 3. Deepelican

3.4.2 Testing with different profiles

Given the showcased remarkable performances of Deepelican naturally the
question of what may explain them is raised, in particular one may hypothesize
that they are due to the fact that the training phase of the model allowed it
to learn the 263 fitness profiles employed in the simulations and would fail
to generalise in evolutionary scenarios in which a different set of profiles is
involved. To test such an hypothesis we once again tested Multinomial, Pelican
and Deepelican on alignments which were simulated using different sets of
profiles, for this we employed the ones from [201]. These consist of 14,509
sets of profiles (one per Orthomam gene alignment), for a total of 8, 895, 129.
These profiles were estimated with a mutation-selection model [201] while it is
worth reminding that on the other hand the 263 frequency profiles from [198]
used in the training simulations for the model were instead obtained through
an experimental deep mutational scanning. As one can see in table 3.1 the
results of the experiment show that actually the positive site detection task
for alignments simulated using these profiles appears to be slightly easier for
all methods, Deepelican included.

Method 263 profiles 8,895,129 profiles
BAcc PR-AUC BAcc PR-AUC

Multinomial 0.542 0.239 0.562 0.278
Pelican 0.526 0.240 0.542 0.281

Deepelican 0.585 0.289 0.599 0.305

Table 3.1: Performance Metrics for Different Methods on simulations under different
sets of profiles, 300 alignments with 50 sequences and 250 amino acid were simulated
for both tests, using for each alignment the same set from [198] or sampling uniformly

one of the 14,509 sets from [201] respectively.

Further investigation is required to pinpoint the reasons of such a difference,
for instance looking at the Jensen–Shannon divergence between the profiles as
had been done in [197], this however goes beyond the scope of the experiment,
which was simply to rule out the overfitting of the Deepelican model with
respect to the profiles used in the simulations it has been trained on. Given
that no drop in the performances has been observed one can safely assume
that the method is generalisable to evolutionary scenarios in which different
amino acid profiles are involved and overfitting with respect to the latter is
not an issue.

3.4. Results 103

3.4.3 Speed and memory performances

As previously mentioned the different neural network architecture of Deepelican
with respect to Phyloformer makes its computational complexity linear both
in the numbers of sites and sequences. As we can see in figure 3.6, where we
compare its execution time with that of Pelican, this gives the method a great
computational edge even when the model is run on a CPU.

20 30 40 50 60 70 80 90 100
Number of leaves

101

102

103

104

Ti
m

e
(s

)

Inference time

Method
Deepelican GPU
Deepelican CPU
Pelican

Figure 3.6: Inference time (in
seconds) for different methods on
100 test alignments of length 250
for increasing numbers of leaves.
It is worth to point out that the
inference time for Pelican here
includes that of Multinomial as
well, as the latter is run by
default in the Pelican software
prior to the Pelican analysis,
nevertheless this time overhead is
negligible given that the former’s
execution time is several orders of
magnitude smaller [174].

For this comparison both Deepelican CPU and Pelican were run on a
single CPU thread (Intel Core i7-10700 CPU 2.90GHz) while Deepelican
GPU was run on an NVIDIA RTX A4000 GPU. Both on CPU and GPU
Deepelican was run with a batch size of one. One can see here that the neural
network approach is 2 to 3 orders of magnitude faster. Similarly the memory
consumption of the method is no longer a bottleneck with a maximum of 1.4
GB required for inference on the alignments with 476 sequences simulated
along the HIV phylogeny (subsection 3.4.4). Again the parallelisation of
inference is straightforward by simply running the model with larger batch
sizes which in this case can be easily handled given the relatively low memory
footprint of running the model.

104 Chapter 3. Deepelican

3.4.4 Testing on empirical trees

Figure 3.7: Empirical trees along which alignments were simulated: Orthomam,
Amaranthaceae and Rodents (top), Cyperaceae and HIV (bottom).

The performances of the three considered methods were further tested simu-
lating alignments under the same model of evolution but along five empirical
phylogenies already considered in [174]. The experiments shown here further
differ from the ones there reported in that, notwithstanding the fact the
phylogenies are already annotated with different phenotypic traits, here the
latter are re-simulated along the branches as described in section 3.3. Multiple
alignments evolved along the same tree will then have different corresponding
trait annotations for the sequences. The phylogenies in question are depicted
in figure 3.7 and are:

• Orthomam: A 116 leaves phylogeny of mammalian species. [202]

• Amaranthaceae: A 179 leaves phylogeny of a family of flowering plants.
[203]

• Rodents: A 32 leaves phylogeny of rodent species.[197]

• Cyperaceae: A 79 leaves phylogeny of another family of flowering plants.
[204]

• HIV: A 476 leaves phylogeny of HIV strains. [205]

100 alignments, again with 50 sequences and 250 sites, were simulated
along each phylogeny and the results of testing the three methods on them are
reported in table 3.2, Precision-Recall curves are further shown in figure 3.8.

3.4. Results 105

Method Amaranthaceae Cyperaceae HIV Orthomam Rodents
BAcc PR-AUC BAcc PR-AUC BAcc PR-AUC BAcc PR-AUC BAcc PR-AUC

Multinomial 0.515 0.236 0.519 0.213 0.545 0.235 0.514 0.209 0.506 0.209
Pelican 0.507 0.251 0.513 0.217 0.527 0.261 0.503 0.212 0.505 0.216

Deepelican 0.520 0.251 0.551 0.240 0.549 0.255 0.527 0.229 0.537 0.227

Table 3.2: Performance metrics for different methods on alignments simulated along
5 different empirical phylogenies.

Whereas the PR-AUC values reported in the table are averaged over all
alignments simulated along an empirical phylogeny, the curves in the figure
are obtained computing the precision and recall of different methods for all
the per-site predictions (250 · 100 minus the number of constant sites) for a
given phylogeny.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve: Orthomam
Multinomial
Pelican
Deepelican

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

Precision-Recall Curve: Amaranthaceae
Multinomial
Pelican
Deepelican

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve: Rodents
Multinomial
Pelican
Deepelican

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve: Cyperaceae
Multinomial
Pelican
Deepelican

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve: HIV
Multinomial
Pelican
Deepelican

Figure 3.8: Precision-Recall curves obtained considering all per-site predictions of
the different methods for the alignments simulated along 5 empirical phylogenies.

We can observe then a relative performance drop for Deepelican when
tested on these simulations: It remains the best performing one on 4 out of
5 dataset but it is on par with Pelican on the Amaranthaceae dataset and
is surpassed by the latter on the HIV one. The HIV tree is the largest one,
having a number of leaves one order of magnitude bigger than those used for
training the Deepelican model, therefore some issue of length generalisation
might play a role here. To further interpret these results we can resort to
the same statistics considered in subsection 2.6.13 to visualise the empirical
phylogenies alongside the simulated one from Deepelican’s training dataset,
a two component PCA plot based on these statistics is shown in figure 3.9.
Zooming in we can see that indeed the Amaranthaceae tree falls slightly outside
the distribution of those used for training the model and that the others, with
the exception of Cyperaceae, fall on the edge of it, notably Orthomam. This
can explain Deepelican’s relative performance drop and shows a limitation of
our tree-simulation protocol.

3That is: Mean distance between leaves, standard deviation of distances, maximum
distance, mean branch length, standard deviation of branch lengths, maximum branch
length, mean root to leaf distances and standard deviation of root to leaf distances.

106 Chapter 3. Deepelican

5 0 5 10 15
Principal Component 1

2

0

2

4

6

P
rin

ci
pa

l C
om

po
ne

nt
 2

2 component PCA
Training
Orthomam
Amaranthaceae
Rodents
Cyperaceae
HIV

4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8
Principal Component 1

0.10

0.08

0.06

0.04

0.02

0.00

0.02

P
rin

ci
pa

l C
om

po
ne

nt
 2

2 component PCA

Training
Orthomam
Amaranthaceae
Rodents
Cyperaceae
HIV

Figure 3.9: Two components PCA plot of the simulated and empirical phylogenies,
the PCA is based on the same tree statistics that were considered in subsection 2.6.1,
full plot on the left (10k trees sampled from the training dataset) and zoomed-in view

on the right.

More realistic simulations: ρ = 4

All the alignment simulations presented so far have been obtained using the
value ρ = 0.5 for the intensity of selection in the simulator. This choice was
somewhat arbitrary and, as previously pointed out, makes the inference task
particularly hard, leading to PR-AUC values which greatly differ from those
reported in [174]. We therefore now show how the use of a more realistic
value of ρ = 4, chosen in [197] to fit empirical data, affects them. Again 100
alignments were simulated along each empirical phylogeny and the results
are presented in a table (3.3) and visualized with full Precision-Recall curves
(figure 3.10). Alongside the methods already considered we included the
performances of a fine-tuned version of the Deepelican model, here denoted
as Deepelican4. The latter was obtained further training Deepelican, on a
significantly smaller dataset, consisting of 20k alignments, simulated in the
exact same fashion as the ones already used to train the Deepelican model,
only setting the ρ value in the simulator to 4 instead of 0.5.

Method Amaranthaceae Cyperaceae HIV Orthomam Rodents
BAcc PR-AUC BAcc PR-AUC BAcc PR-AUC BAcc PR-AUC BAcc PR-AUC

Multinomial 0.667 0.686 0.741 0.758 0.779 0.769 0.655 0.661 0.594 0.707
Pelican 0.696 0.809 0.779 0.841 0.811 0.854 0.676 0.728 0.625 0.715

Deepelican 0.741 0.804 0.769 0.815 0.771 0.808 0.699 0.731 0.715 0.753
Deepelican4 0.777 0.841 0.834 0.881 0.823 0.861 0.768 0.792 0.777 0.839

Table 3.3: Performance metrics for different methods with on alignments simulated
with ρ = 4 along 5 different empirical phylogenies.

3.4. Results 107

As expected the results show greatly improved performances for all methods,
with those of Multinomial and Pelican now resembling the ones reported in
[174]. The performance of Deepelican, which was trained only on a much
harder task, generalise quite well staying clearly above those of Multinomial,
the method is nevertheless surpassed by Pelican in this setting. On the
other hand the fine-tuning of the model proves to be successful with the new
Deepelican4 version attaining the best performances across all the datasets.
This shows at once that, although the use parameters that differ between
training and testing data does affect the performances of the model, the latter
shows some robustness to such a misspecification, and that the model can be
easily adapted to deal with different evolutionary scenarios.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

Precision-Recall Curve: Orthomam
Multinomial
Pelican
Deepelican
Deepelican4

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.5

0.6

0.7

0.8

0.9

1.0
Pr

ec
isi

on
Precision-Recall Curve: Amaranthaceae

Multinomial
Pelican
Deepelican
Deepelican4

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

Precision-Recall Curve: Rodents
Multinomial
Pelican
Deepelican
Deepelican4

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

Precision-Recall Curve: Cyperaceae
Multinomial
Pelican
Deepelican
Deepelican4

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

Precision-Recall Curve: HIV
Multinomial
Pelican
Deepelican
Deepelican4

Figure 3.10: Precision-Recall curves obtained considering all per-site predictions
of the different methods for the alignments simulated with ρ = 4 along 5 empirical

phylogenies.

108 Chapter 3. Deepelican

3.4.5 Testing on empirical alignments: The Prestin gene

To assess the performances of the novel method on empirical data the fine-tuned
version Deepelican4, which from now on we shall just denote as Deepelican for
simplicity, will be used. An empirical alignment we chose to test our model on
is the one of the Prestin gene, which codes for a protein which plays a crucial
role in hearing in mammals, and is studied here with respect to its association
to the echolocation phenotype, a trait that has independently evolved in bats
and whales through convergent evolution. This allowed us to compare in figure
3.11 the predictions of Deepelican with those of Pelican and to the sites found
to be associated with the phenotype in [206].

0 100 200 300 400 500 600 700
Site

0.2

0.4

0.6

0.8

1.0

Ou
tp

ut
 p

ro
ba

bi
lit

y

7 308 384
392

497

554

568

576

601639

661
685
689

691

725

423

186

7

2238

186

308

362

384

392

423

474

497

554568

576

592

593

601

619

639

661

685

689691

703

725

1e−04

1e−03

1e−02

1e−01

1e+00

0 200 400 600
site

p−
va

lu
e

transmembrane domain hydrogen bond Li et al 2010 colocated

ILE 384

Figure 3.11:
Deepelican’s (above)
and Pelican’s (below)
predictions [193] for
the Prestin gene, in
red the sites reported
by Li et al. [206], in
green the sites found
by Pelican with a
p-value < 10−2 but
not previously
reported in the
literature. The
reported site indexes
along the sequence
here are the ones
relative to the human
sequence of Prestin
which contains three
gaps at the positions
374-376 in the
Orthomam multiple
sequence alignment of
the gene.

As Pelican Deepelican finds site 186 which although not directly reported
in the publication is bound to the reported site 392 by an hydrogen bond
which probably causes the sites to be coevolving. Overall, although with an
higher proportion of potentially false positives, most probably to be attributed
to the incorrect way class imbalance was dealt with during training, the ability
of the neural network to recover relevant sites appears to be comparable to
that of Pelican.

3.4. Results 109

3.4.6 Testing on empirical data: Gene enrichment analysis

As discussed in [193] the speed efficiency of a method such as Pelican allows
its use for genome-wide association analyses, and, given the clear-cut compu-
tational edge that Deepelican has over the former, this is even more true for
the method presented here. To showcase the potential of the method in this
context Deepelican was run on all 14509 gene MSAs from Orthomam, using
again the phenotypic annotation of echolocating species at the leaves. This
allowed us to compare the performances of Pelican and Deepelican in identify-
ing genes reported in the literature as being involved in sound processing and
thus potentially associated to the echolocation phenotype. In order to do so
one needs to aggregate the per-site predictions into a single per-gene value,
the Pelican method used in [193] an adapted version of Fisher’s method [207],
which allows to aggregate p-values from multiple independent tests having the
same null hypothesis into a single statistic, namely just taking the sum of the
k = 5 best (lowest) per-site p-values for each gene. Here we simply adapted
this method for aggregating the probabilities given by Deepelican into a single
per-gene score using the sum of the k best (highest) per-site probabilities. In
figure 3.12 we can see the results of such an experiment, the 14509 genes were
sorted according to the computed score and their rank n is shown along the
x axis, on the y axis the cumulative number of genes reportedly associated
with sound processing progressively identified among the first n ranked genes
is plotted. We show the performances of Pelican (using k = 5 as in [193]), of a
random baseline and of Deepelican using the values 1, 5 and 10 for k.

0 2000 4000 6000 8000 10000 12000 14000

0
10

20
30

40
50

60
70

S
ou

nd
 p

ro
ce

ss
in

g
ge

ne
s

Pelican
Deepelican_top1
Deepelican_top5
Deepelican_top10
random

0 200 400 600 800 1000

0
5

10
15

20

S
ou

nd
 p

ro
ce

ss
in

g
ge

ne
s

Pelican
Deepelican_top1
Deepelican_top5
Deepelican_top10
random

Figure 3.12: Gene enrichment analysis with respect to sound processing genes, with
all the 14509 Orthomam genes on the left and zooming on the first 1000 genes on the

right.

We can see that although the signal provided by Deepelican is weaker than
that of Pelican, it is still noticeably above the random baseline, showing the
ability of the method to make meaningful predictions at the gene-level as well.

110 Chapter 3. Deepelican

3.5 Discussion and future perspectives
The results in this chapter showcase the versatility of the developed neural
network architecture with a novel method for detecting sites having undergone
a selection shift associated to a phenotypic trait, which can outperform previous
methods in all the considered simulations while running up to three orders
of magnitude faster. The success of the model can be partly attributed
to the capability of such architectures do deal with MSA data and encode
phylogenetic relationships as already demonstrated by Phyloformer, this can be
visualised in figure 3.13 where an (averaged) row attention map, (computed as
in subsection 2.7.1) is shown alongside the tree along which the corresponding
alignment was simulated. Although it is not straightforward to ascertain to
which extent the phenomenon is simply due to the similarity of the input
sequences, the different clades in the tree are reflected in corresponding blocks
of the attention map suggesting indeed the capability of the model to capture
phylogenetic information.

0 2 4 6 8
branch length

10

20

30

40

50

60

ta
xa

 T50 T11 T32 T26 T29 T23 T34 T24 T37 T1 T52 T56 T18 T6 T16 T22 T59 T58 T40 T57 T27 T21 T12 T4 T9 T51 T48 T53 T35 T17 T8 T44 T30 T20 T19 T13 T46 T3 T33 T38 T5 T14 T36 T2 T55 T47 T10 T41 T43 T7 T60 T25 T54 T28 T15 T39 T31 T42 T45 T49

T5
0

T1
1

T3
2

T2
6

T2
9

T2
3

T3
4

T2
4

T3
7 T1 T5
2

T5
6

T1
8 T6 T1
6

T2
2

T5
9

T5
8

T4
0

T5
7

T2
7

T2
1

T1
2 T4 T9 T5
1

T4
8

T5
3

T3
5

T1
7 T8 T4
4

T3
0

T2
0

T1
9

T1
3

T4
6 T3 T3
3

T3
8 T5 T1
4

T3
6 T2 T5
5

T4
7

T1
0

T4
1

T4
3 T7 T6
0

T2
5

T5
4

T2
8

T1
5

T3
9

T3
1

T4
2

T4
5

T4
9

T50
T11
T32
T26
T29
T23
T34
T24
T37
T1

T52
T56
T18
T6

T16
T22
T59
T58
T40
T57
T27
T21
T12
T4
T9

T51
T48
T53
T35
T17
T8

T44
T30
T20
T19
T13
T46
T3

T33
T38
T5

T14
T36
T2

T55
T47
T10
T41
T43
T7

T60
T25
T54
T28
T15
T39
T31
T42
T45
T49

Figure 3.13: 60-leaves phylogenetic tree on the left and the first row attention map
(averaged over the 4 heads and the 250 sites) of Deepelican during inference on the

alignment simulated along corresponding tree on the right.

Despite the undeniable advantages of the presented approach it is important
to discuss its limitations, figure 3.11 suggests that the model, when run on
empirical data, could be prone to output a high proportion of false positives,
this behaviour likely stems from the poorly chosen way in which we dealt
with class imbalance during training, this however is straightforward to adjust
and hopefully will lead the model to exhibit better performances. Whereas
in [174] the authors show that Pelican’s performances improve with the tree
length, an exhaustive assessment of the parameters which affect our model’s
performances the most hasn’t been carried out yet and could better pinpoint
the most advantageous use-cases for the method.

Furthermore, regardless the promising performances on empirical data, the
experiments have shown that the model is somewhat sensitive to differences
between training and testing data, the analyses in subsection 3.4.4 in particular
show how the performances of Deepelican can be affected by out of distribution
trees and thus underline a limitation in the tree simulation protocol suggesting
that an improvement of the latter could lead to a corresponding improvement
of the performances of Deepelican and possibly Phyloformer. Concerning the

3.5. Discussion and future perspectives 111

simulation of the alignments a lot can still be improved, although reasonable
values were chosen, no big effort was made to make the proportion of positive
sites and the deletion rates as realistic as possible. Similarly the simulations
could be improved by sampling different values for the ρ parameter which
ideally would again be chosen from a distribution that fits well empirical data.
Finally, the choice of setting the expected number of trait changes from the
root to the farthest leaf to 2 is somewhat arbitrary and could be improved in
a similar fashion.

All the aforementioned limitations can partly explain the worse perfor-
mances of Deepelican with respect to Pelican in the gene enrichment experi-
ment in subsection 3.4.6, another perspective to improve the capabilities of the
method in detecting relevant genes would be to explore the relevant literature
to come up with a more suitable probability aggregation method than the
naive adaptation of Pelican’s gene-wise truncated Fisher score. It will also be
interesting to perform the same analysis with respect to the other phenotypes
that have been considered in [193].

Also, given the great performances of the presented method, it would be
enticing to compare it as well to the other best performing methods considered
in [174], namely codeml and Diffsel, as the results presented here suggest
that our method could attain the state of the art across a wide range on
evolutionary scenarios.

Finally, a possible extension of the method to continuous traits and to
multiple discrete traits is definitely worth to be explored. Whereas dealing
with the first case could be straightforward as a continuous value can be used
in the encoding 3.5, as it is done in [199], dealing with a non-binary discrete
phenotype may require a different encoding strategy in the case in which
imposing an ordering of the encoded phenotypes is not desirable.

113

Chapter 4
DaNaiDeS

4.1 Introduction
The aim of the present chapter is to present some preliminary results of an
ongoing collaboration with Charlotte West who is currently pursuing her PhD
with Nick Goldman at the European Bioinformatics Institute in Cambridge.
The problem that she set to tackle during her thesis is the identification of genes
containing sites subject to positive selection, which, as we already discussed
in the previous chapter can be characterized by a ratio of non-synonymous
to synonymous substitutions ω = dN /dS > 1. Given that likelihood-based,
state of the art methods for the task are computationally very demanding,
this problem has been again framed as a prediction task in a supervised
learning simulation-based inference, with the development of OmegaAI [208],
a convolutional neural network which takes in input a nucleotide MSA and
outputs a single binary prediction, to classify whether the alignment contains
sites (codons) which have been subject to positive selection or not. Here we
shall present DaNaiDeS, a deep neural network essentially based on the same
architecture as Phyloformer and Deepelican, adapted to deal with the same
problem as OmegaAI. The head-to-head comparison between the two models
will allow us to further discuss the advantages of the architecture presented in
this work.

4.1.1 OmegaAI and DaNaiDeS

OmegaAI is a convolutional neural network with an architecture based on that
presented in [98], it comprises of six convolutional layers which gradually reduce
the size of the representation of the input MSA through convolutions and
average pooling operation, a final global pooling reduces this representation
to a single vector which is fed into a fully connected layer with a single output
feature, representing the network’s prediction. The input MSA is represented
via a one-hot encoding of the characters in the alphabet {A, C, G, T,−}. It
is worth noting that, whereas the final global pooling allows the network to
process alignments with different numbers of sites, the first convolutional filter
in the network with size (m, 3) (figure 4.1, right), constrains the number of
sequences in input to be m, the same number the model has been trained
with, making the applicability of the model to smaller or bigger alignments
less straightforward, the authors in [208] therefore fixed the value of m to 8
and did not explore the capabilities of the model to deal with more sequences.

114 Chapter 4. DaNaiDeS

Figure 4.1: Convolutions
employed by the OmegaAI (right)
and DaNaiDes (left) models to
embed the initial one-hot
encoded MSA representation.
Whereas a a convolutional filter
of size (m, 3) is used in the
OmegaAI model, DaNaiDeS’s
(1, 3) filter allows for
generalisability to alignments
with different numbers of
sequences and guarantees the
invariance of the network’s
predictions to permutations of
sequences in the input MSA.

We have seen on the other hand that an architecture as that of Phylo-
former or Deepelican allows handling alignments of varying size (along both
dimensions) seamlessly, we then chose the architecture of DaNaiDeS to closely
mirror that of Deepelican. A minor adaptation was warranted as Deepelican
provides a per-site prediction whereas here we want the network to output
a single per-alignment predicted value, this was accomodated simply adding
an additional average over the sites step1 before the final average over the
sequence representations. The only other difference between the two networks
is then the initial embedding of the one-hot representation, whereas Deepelican
and Phyloformer processed the vector encodings of amino acids independently
via a convolution with stride (1, 1), for DaNaiDeS we chose a stride of (1, 3)
in order for the model to embed codons (figure 4.1, left), effectively dividing
by 3 the size of the input representation along the sites dimension. Finally,
the DaNaiDeS models presented in this chapter are a bit smaller than the
ones we’ve seen in the previous one, having 6 attention blocks (each with 4
attention heads, using the same rank-1 variant of the linear attention mech-
anism employed in the previous chapters) and working with an embedding
dimension d = 32, the total number of trainable parameters in these models
then amounts to 80,321 (whereas for comparison OmegaAI has 2,643,841 of
them).

It is worth noting that, as it was the case for Deepelican, both OmegaAI
and DaNaiDeS, being trained end-to-end to detect the presence of positive
selection solely from an MSA, grant direct inference without having to rely
on a phylogenetic tree, the latter is on the other hand warranted by the state
of the art, maximum likelihood codeml program, implemented in the PAML
software [195], to which the authors of [208] compare the performances of the
OmegaAI method.

4.1.2 Simulations and training

In the present work we solely relied on the same datasets used to train and
test the OmegaAI models in order to provide a fair comparison of the two
neural network architectures. All alignments were simulated along a symmetric
ultrametric tree with 8 leaves where all the branches share the same length,

1As ultimately it’s the maximum value of ω in the input alignment which matters for the
prediction, a different aggregation strategy, taking the maximum across the sites instead of
the average, has been explored, this however lead to sligthly worse performances.

4.1. Introduction 115

further referred to as divergence, δ (figure 4.2). The same divergence value was
used inside each different testing and training dataset with the sole exception
of the mixed training dataset we shall consider in subsection 4.2.2.

δδ

δδ δδ

δδ δδ δδ δδ

Figure 4.2: Tree along which all the
training and testing MSAs were simulated.
A single divergence value
δ ∈ {0.1, 0.2, . . . , 0.9, 1} was used in each
different training and testing dataset with
the exception of the mixed training
dataset considered in subsection 4.2.2.

The model of evolution employed to simulate MSAs, of varying lengths,
along such trees is a codon-based model of evolution [209], implemented in
INDELIBLE [210]. The model allows among site variation of selective pressure,
modeling each codon site as belonging to one of three classes, each with a
corresponding value of ω sampled from a given distribution. The label of the
alignment to predict will be then given by the distribution chosen for the
sites belonging to the third class: These are simulated using an ω > 1 value
if the MSA represents an example of positive selection and with an ω ≤ 1
value otherwise. An equal proportion of MSAs belonging to each class was
simulated for each training and testing dataset. Insertion and deletions events
were simulated as well, setting a fixed value of 1 for the ratio of insertion to
deletions and a fixed value of 0.1 for the ratio of indel to substitution events.
The specifics of the simulation procedure can be found in [208] to which we
refer the reader for further details. To assess the capabilities of the OmegaAI
models to handle misalignment errors that often are found in empirical data,
the authors removed the gaps from the simulated sequences and realigned
them with a commonly employed aligner. The Clustal Omega [211] aligner
was used to realign the sequences in the training datasets whereas MAFFT,
PRANKaa and PRANKc [212] were additionally employed for the testing
datasets. 1 million samples were generated for each training dataset and 2
thousands for each testing one.

The two DaNaiDeS models which we shall present in this chapter were
both trained with a fixed learning rate of 10−4 using the Adam optimizer
and a batch size of 40 on a single NVIDIA RTX A4000 GPU with 16GB
of VRAM. As OmegaAI and Deepelican the models were optimized under a
BCE loss. Both models presented in subsections 4.2.1 and 4.2.2 were trained
on 1M alignments with varying sequence lengths, ranging from 306 to 3945
nucleotides, with a mean of about of about 1000, using a validation dataset
of 10k alignments, for 18 and 23 epochs respectively. Working with different
lengths, as equal dimensions are warranted for batched inputs to a neural
network, the alignments were grouped by the result q of their integer division
by 102 and each of their one-hot encoding representation was then zero-padded
to have length 102q + 102 along the sites dimension.

116 Chapter 4. DaNaiDeS

4.2 Results

4.2.1 Baseline divergence

Clustal MAFFT PRANKaa PRANKc true
Aligner

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

A
cc

ur
ac

y

Method
DaNaiDeS
OmegaAI
PAML

Clustal MAFFT PRANKaa PRANKc true
Aligner

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

P
R

-A
U

C

Method
DaNaiDeS
OmegaAI
PAML

Clustal MAFFT PRANKaa PRANKc true
Aligner

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

R
O

C
-A

U
C

Method
DaNaiDeS
OmegaAI
PAML

Figure 4.3: Performances of DaNaiDeS, OmegaAI and PAML on the 2k test dataset
simulated with divergence δ = 0.2 (the same used for the training data of the two NN
models). The performances are assessed on MSAs obtained realigning the sequences
with different aligners (sorted by their accuracy along the x axis), the results on the
true (not realigned) alignments directly issued from the simulator are shown as well for

the two neural networks.

While the authors in [208] trained and tested a different OmegaAI model for
each value of divergence δ ∈ {0.1, 0.2, . . . , 0.9, 1}, in this subsection we shall
only consider the performances of DaNaiDeS trained and tested on alignments
simulated with the value that they chose as a baseline, namely δ = 0.2. The
generalisation to different values on the other hand will be discussed in the
next subsection. In figure 4.3 we compare, on a test dataset generated with this
baseline value for the parameter, the performances of three methods: OmegaAI
and DaNaiDeS, both trained on alignments with the same divergence, and
PAML. The performances are assessed here in terms of three metrics, accuracy,
PR-AUC, and the area under the receiver operating characteristic curve ROC-
AUC. While both DaNaiDeS and OmegaAI where trained exclusively on
sequences realigned with Clustal, all methods were tested on the same dataset
obtained using different aligners, with the results on the true (not realigned)
alignments being shown as well for the two neural networks. It is worth noting
that here PAML is given the true underlying simulation tree in input. Looking
at the figure we can observe that the performances of all methods improve
with the quality of the input alignment (having sorted the different aligners
along the x axis according to their tendency to produce alignment errors [208]).
While DaNaiDeS slightly underperforms with respect to OmegaAI here its
performances remain distinctly superior to those of PAML, whose predictive

4.2. Results 117

capability appears to be markedly more sensitive to the quality of the aligned
MSA with respect to that of the neural networks. In [208] the authors argue
that, beyond the practical advantage of using the faster and less resource
intensive Clustal aligner for training, training the model with higher amounts
of misalignment may improve the model’s robustness without affecting its
capability to leverage the quality of the input alignment, for instance they
show that using instead the more accurate PRANKc for the training dataset
leads to a model which is less accurate when faced with Clustal alignments
while its performance gain on PRANKc alignments is marginal.

4.2.2 Mixed divergences

As in [208] we set to test the generalisibility of the network to different diver-
gence values. To do so we trained DaNaiDeS on a mixed dataset, consisting
again of 1M alignments with corresponding labels, this time simulated with
different values δ ∈ {0.1, 0.2, . . . , 0.9, 1}, sampled in equal proportions. We
did not resort to fine-tuning but retrained the model from scratch in order to
provide a fair comparison between the DaNaiDeS model and the OmegaAI
one trained on the same dataset. Figure 4.4 shows the performances of this
model, DaNaiDeS mixed, across different divergence values and using different
aligners for the test MSAs, compared against those of OmegaAI mixed (trained
on the same dataset), OmegaAI (a different model, trained specifically on
1M alignments simulated with δ, shown for each divergence value δ), and
PAML. In the figure we can observe that here the two neural networks trained
on the mixed divergence dataset show a strikingly different behaviour, on
one hand the performances of DaNaiDes mixed decrease with the increasing
amounts of divergence in the test sets, as naturally higher divergence values
make the problem harder, with PAML and OmegaAI showing the same trend,
on the other hand OmegaAI mixed appears to loose most of the predictive
capabilities of OmegaAI, in terms of accuracy, outside the range of divergences
{0.6, 0.7, 0.8}, with a surprising peak in performances corresponding to δ = 0.7.
Looking at the PR-AUC and ROC-AUC values one can see that the drop in
performances of the model is not that drastic for lower divergence values in
terms of these metrics indicating that a different threshold value, instead of the
usual 0.5, to classify an alignment as positive would be warranted here. For
DaNaiDeS mixed the phenomenon can be observed to a certain extent as well,
whereas in the previous subsection the accuracy of the model increased along
with that of the aligner, here the DaNaiDes mixed model, in terms of accuracy,
appears to be performing worse as the quality of the alignment increases, with
its accuracy even dropping to 0.5 for the dataset with divergence δ = 0.7
realigned using PRANKc, whereas the PR-AUC and ROC-AUC values do
show a performance increase which generally goes along with the quality of
the input alignments. Further investigation is required to pinpoint the reasons
behind this phenomena.

118 Chapter 4. DaNaiDeS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Divergence

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

A
cc

ur
ac

y

Method
DaNaiDeS_mixed
OmegaAI_mixed
PAML
OmegaAI

Aligner
Clustal
MAFFT
PRANKaa
PRANKc

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Divergence

0.5

0.6

0.7

0.8

0.9

P
R

-A
U

C Method
DaNaiDeS_mixed
OmegaAI_mixed
PAML
OmegaAI

Aligner
Clustal
MAFFT
PRANKaa
PRANKc

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Divergence

0.5

0.6

0.7

0.8

0.9

R
O

C
-A

U
C

Method
DaNaiDeS_mixed
OmegaAI_mixed
PAML
OmegaAI

Aligner
Clustal
MAFFT
PRANKaa
PRANKc

Figure 4.4: Performances in terms of accuracy, PR-AUC and ROC-AUC of the
mixed OmegaAI and DaNaiDeS models on alignments with different divergences (2k per
divergence) and obtained using different aligners. The results for PAML and OmegaAI
(a different model, trained specifically on 1M alignments for each divergence) are shown

as well for reference.

Given the very different behaviour of the compared neural network-based
approaches, whether DaNaiDeS has a better capability to handle different
divergence values is debatable. Nevertheless we can observe that, unlike those
of OmegaAI mixed, the performances of the DaNaiDeS mixed model remain
above those of PAML across all divergences and according to all considered
metrics, naturally decreasing as higher divergences make the problem harder.

4.2.3 Advantages of permutation invariance

We already discussed the advantages of exploiting the symmetries of the
underlying problem via invariant or equivariant transformations of the input
(subsection 1.6.6). The direct comparison between DaNaiDeS and OmegaAI
allows us here to showcase this with a concrete example, indeed, whereas the
DaNaiDeS neural network architecture is structurally invariant to permutations
of the input MSA, that is not the case for OmegaAI which breaks the invariance
through the application of a convolutional filter of size (8× 3) to the initial
one-hot encoded input (figure 4.1). In figure 4.5, we show the performances,
in terms of accuracy of DaNaiDeS and OmegaAI when the two models are
tested on a dataset generated under the exact same parameter settings under
which the models have been trained on, but in which the rows of the input
MSAs have been randomly shuffled before feeding them into the models.

4.2. Results 119

Clustal MAFFT PRANKaa PRANKc
Aligner

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

A
cc

ur
ac

y

Method
DaNaiDeS
OmegaAI

Clustal MAFFT PRANKaa PRANKc
Aligner

0.82

0.84

0.86

0.88

0.90

0.92

P
R

-A
U

C

Method
DaNaiDeS
OmegaAI

Clustal MAFFT PRANKaa PRANKc
Aligner

0.80

0.82

0.84

0.86

0.88

0.90
R

O
C

-A
U

C

Method
DaNaiDeS
OmegaAI

Figure 4.5: Performances for different aligners of the DaNaiDeS and OmegaAI
models when tested on a dataset (2k alignments, δ = 0.2) in which the rows of the

alignments have been randomly shuffled before being processed by the networks.

As expected, no noticeable difference can be observed between the per-
formances of DaNaiDes here with respect to those showcased (figure 4.3) on
aligments simulated in the same way but without shuffling the sequences inside
each MSA. OmegaAI on the other hand suffers from the sequence reordering
with its accuracy now falling below that of DaNaiDes. This suggests that the
OmegaAI network has learned to rely on the order of the input sequences,
partially reflecting the structure of the underlying tree, during training, failing
then to generalise when this structure is not provided. The authors in [197]
furthermore show that a similar drop in performances on the testing dataset
can be observed when the OmegaAI model has been trained solely on shuffled
MSAs which do not directly provide information regarding the underlying
tree topology along which the sequences have evolved. This suggests that, to
attain the same performances as those of the model trained and tested without
shuffling the sequences, such a training dataset would have to be enlarged
either by simulating more MSAs or via data augmentation, enriching the
dataset with several different permutations of the sequences in the alignments.
The structural invariance of DaNaiDeS with respect to these permutations
then shows an undeniable advantage of its architecture, allowing for a better
training sample efficiency and permitting its direct applicability, without any
predictive capability loss, when no information regarding the tree topology is
explicitly provided.

120 Chapter 4. DaNaiDeS

4.2.4 Interpretability

Whereas inspecting the row attention maps of the DaNaiDeS models presented
in this chapter one can again identify the structure of the underlying tree, as it
was the case for Deepelican, for the problem tackled here it is more interesting
to look at the model’s column attention maps.

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

12
4

12
8

13
2

13
6

14
0

14
4

14
8

15
2

15
6

16
0

16
4

16
8

17
2

17
6

0

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

12
4

12
8

13
2

13
6

14
0

14
4

14
8

15
2

15
6

16
0

16
4

16
8

17
2

17
6

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175

Figure 4.6: Example of interpretability of the column attention maps of DaNaiDeS,
on the left we show the heatmap of the per-codon ω values used to simulate an alignment,
on the right a column attention map of DaNaiDeS (corresponding to the first head of the
second attention block, averaged over all 8 sequences) obtained feeding the alignment
to the model. We can see that the model tends to pay more attention to the columns of
its internal representation (corresponding to triplets of columns in the input nucleotide
MSA), for which the corresponding true ω values are the highest: In this particular
case the phenomenon is apparent for codons 37, 132 and 136 and can be observed to a

lesser extent for codon 85.

Indeed, as one can see in figure 4.6, these attention maps can reveal the
codons in the input alignments which have undergone positive selection, which
the model learns to identify to ultimately predict whether the alignment
contains any or not. Such attention values could then be used as a proxy to
provide per-site predictions without explicitly adapting the network’s archi-
tecture and retraining the model for the task. This visualisation is similar to
the one presented in [208] where the authors show that codons with high ω
values correlate with columns with high values in the OmegaAI’s saliency map.
Although the results are similar, the way these visualisations are obtained is
fundamentally different: Whereas saliency maps are derived computing the
gradient of the model’s output with respect to the input, the attention maps
presented here can be computed directly during the forward pass. This makes
them rather analogous to the feature maps of the convolutional layers in the
OmegaAI model, the key difference here is that the DaNaiDeS model preserves
the spatial structure and dimensions of the input throughout all its layers,
making such maps more easily interpretable. Furthermore, the saliency maps
in [208] reveal that the sites towards the right end of the input MSAs tend to
influence the OmegaAI model’s prediction to a significantly lesser extent, it
is argued then that this could be attributed to the way the model is trained,
zero-padding the sequences to the right end to accomodate variable lengths
when batching inputs: This could induce the model to learn to rely less on the
positions towards the right end of the MSA, as these positions will typically

4.3. Discussion and future perspectives 121

contain many zeros and will thus be less informative for the network’s predic-
tion. We can point out here that, although an analogous strategy is employed
to train the DaNaiDeS models, the network being invariant to permutations of
the codons (triplets of adjacent columns in the MSA), it exploits no positional
information and thus cannot learn to rely less or more on different regions in
the input alignment for its predictions.

4.3 Discussion and future perspectives
The preliminary results presented in this chapter demonstrate once again
the flexibility provided by the developed neural network architecture to deal
with MSA data across different tasks. In particular we have seen here how
the DaNaiDeS model can effectively be employed for the problem of per-
alignment positive selection detection, discussing its advantages with respect
to a previously developed NN architecture, namely its generalisibility to MSAs
of arbritrary size along both dimensions and its invariance to permutations
of sequences inside the MSA. While the results in subsection 4.2.1 show the
model slightly underperforming with respect to the convolutional network
we compared it to, its performances remain competitive showing a clearcut
advantage with respect to the state of the art, maximum-likelihood-based
approach. Furthermore we believe that a more extensive hyperparameter
search, beyond the limited one that had been carried out at this stage of the
project, could provide an improvement of said performances. The results of a
hyperparameter search carried out on a subset of the training data for instance
hint to the fact that in this case the full linear attention mechanism may be
better performing with respect to the rank-1 variant we employed, providing
more expressivity which may be warranted by the problem at hand.

Another research direction worthy of further exploration is whether posi-
tional encoding can help improve the performances of the model. Indeed, while
the employed model of substitution entails that the evolution of each codon is
independent and identically distributed, again the introduction of indel events
breaks the symmetry of the simulation process. This entails that a model such
as DaNaiDeS, invariant to permutations of the input codons cannot exploit the
potential information provided by adjacent gaps in the alignment and could
benefit from some positional information. Some initial experiments suggested
that this was indeed the case: A model trained with an initial convolution with
stride (1, 1) instead of (1, 3), embedding thus all adjacent triplets of nucleotides
in the input alignment instead of just the codons in the correct reading frame,
seemed to provide slightly better performances, this however came with the
computational overhead of working with a three times longer representation
of the data. To avoid such an overhead a model working with a stride of (1, 3)
but with a sinusoidal positional encoding added to the codon embeddings
was trained, again such a model showed marginally better performances with
respect to those presented in this chapter, nevertheless, when the model was
tested shuffling the codon positions no drop in performances was observed
indicating thus that the model has not learned to rely on such positional
information for its predictions. Further investigations are therefore required
to pinpoint whether a model which actually exploits such information could
be advantageous.

122 Chapter 4. DaNaiDeS

As of the time of writing an approach to predict per-site ω values, using
an architecture such as that of DaNaiDeS, framing thus the problem as a
per-site regression one, is being explored. It will be interesting to compare its
prediction with respect to those that one could obtain fitting a linear regressor
on the values of the column attention maps shown in the previous subsection
(as it has been done e.g. in [145] to predict distances between sites in the 3D
structure of a protein from the attention maps of the MSA transformer model,
or to predict Hamming distances [213] from the same attention maps).

Finally, the generalisability to different numbers of sequences provided by
the DaNaiDeS model allows training and testing it on a wider range of tree
simulations. More realistic simulations, beyond the simple 8 leaf tree used so
far, as those we have employed in the previous chapters, can be used to make
the model more robust and applicable to empirical data.

123

Chapter 5
Conclusion

In this work I explored the promises offered by deep learning and simula-
tion based inference in the context of phylogenetic reconstruction and for
related tasks in the field of molecular evolution. In chapter 2 we showed
how the proposed method provides more accurate predictions with respect to
existing distance-based approaches in all considered experiments. Moreover,
the method shows the potential to outperform resource-intensive maximum-
likelihood methods under more complex evolution models with a fraction of the
computational cost, paving the way to the adoption of more realistic models of
molecular evolution for inference. The developed neural network architecture
allows dealing with MSAs of varying sizes, exploiting the symmetries of the
problem at hand, and in chapters 3 and 4 I’ve shown that the architecture
is effectively adaptable to other inference tasks concerning sequences which
share an evolutionary history, again outperforming costly maximum-likelihood
methods.

I will conclude this manuscript briefly discussing some potential future
work directions.

Self supervised pretraining vs end-to-end learning

Most commonly transformers models such as ProtBERT [79] and ESM [95]
are pretrained on a large corpus of unlabeled data via self-supervised learning
with a task as masked token prediction before being fine-tuned for the target
task. This is typically done as for the target task not enough labeled data
may be available which would allow to train the models from scratch directly
for it. In the scenarios we considered throughout this work however this
is not the case, as in the context of SBI, simulations make the amount of
available labeled data virtually infinite. Studies show that the benefits of
pretraining diminish with the increase of task-specific data [214] and that
when the latter is abundant direct end-to-end training of a model may be
preferable as it avoids the resource-intensive pretraining step, while such a
step could even be counterproductive as the prior learned during pretraining
may later hurt the performances of the model on the downstream task [215].
However, the goal ultimately is being able to use networks as those presented
in this work for accurate inference on empirical data, not simulations. Despite
the efforts to make the simulations realistic a gap between these and real data
will necessarily remain. It is not clear then if including a pretraining phase for

124 Chapter 5. Conclusion

such models, using real alignments, could lead them to learn representations
which are more effective in capturing the complexity of empirical data, such a
phase then may potentially have a regularization effect preventing the models
from overfitting features which are simulation-specific. Besides, given the
showcased adaptability of the proposed neural network to different tasks
related to molecular evolution, it is not to exclude that a pretrained model
could be useful to transfer knowledge across different domains. In general to
bridge the simulations-to-real gap it would be worth exploring different domain
adaptation techniques, with some of them having recently found success in
the context of population genetics [216][217].

On the fly simulations

A strategy that hasn’t been fully explored in this work but which may be
adopted for future endeavors is that of on the fly simulation, namely training
networks such as those presented in this work on freshly simulated data points
at each step instead of using a fixed training dataset for several epochs, this
has better statistical guarantees [85] and removes the risk of overfitting the
training data altogether. Of note, despite the use of a fixed training dataset,
the fine-tuning of the PFCherry model actually fits into this framework, with
the model having been trained for 0.72 epochs, effectively never seing the same
training data point twice, while that of PFSelReg model comes close to this
having been trained for only 1.58 epochs (table 2.1).

Measuring uncertainty in the predictions

The Phyloformer method presented in chapter 2, provides only point estimates
of the evolutionary distances without any measure of uncertainty. A way to
obviate this limitation would be to follow the approach discussed in [132]
and [133], modifying the regression task to predict at once the mean and
variance of a posterior distribution instead of simple point estimates. Beyond
the interest in itself of having such a measure of uncertainty, which could also
aid the interpretation of the performances of the model, having an estimate of
the variance in the predictions could potentially improve its performances via
phylogenetic reconstruction methods such as weighted least squares (subsection
1.4.3) or BIONJ, which exploit the variance in the distance estimates to provide
more accurate predictions. I shall mention another, more direct, tempting
approach that could have been taken and may be considered in the future.
The final vector of predicted distances provided by the Phyloformer network
is given by the average over the sites dimension of the final representation
of the input data, it is tempting to think then that each column of such
a representation represents a per-site estimate of the distance vector to be
predicted, however unfortunately if one looks at all these per site “predictions”
of a given distance, their distribution does not seem to reflect any site-specific
information, with many values around 0 and several others way above the
true distance, compensating the former in order for the average to be a good
estimate. A strategy that could have been adopted when training the model
would have been taking as its predictions, instead of the average over all sites,
an average over a subset of the latter, randomly sampled at each time, which
would have then forced the model to provide meaningful estimates at each
position. The variance of the distribution of these values across the sites could

Chapter 5. Conclusion 125

have been then interpreted as a measure of uncertainty for the corresponding
predicted distance.

Alignment-free phylogenetic reconstruction

The alignment of homologous sequences, an NP-hard problem in itself [218], is
a costly and error-prone step therefore extending the method presented here
to be able to deal with unaligned sequence would provide a great advantage.
The approach holds promises as in principle the computation of evolutionary
distances does not necessarily require the sequences to be aligned, with several
alignment free distance-based phylogenetic reconstruction methods, often
based on k-mer frequencies, having been proposed in recent years [219][220][48].
Moreover we have seen how an approach as ours can allow direct inference for
different tasks bypassing steps, such as the reconstruction of a phylogenetic
tree, which are usually required by other methods, it is tempting then to
assess whether this could be the case for the alignment step as well. The most
straightforward way to implement this would simply be providing to a model
such as Phyloformer the unaligned sequences in input instead of an MSA,
padding the shorter ones with zeros so that each sequence representation has
the same length, and adding positional information via positional encoding.
Whether this would be effective is to be assessed and some modifications to
the architecture may be warranted but I feel this is definitely an approach
worth to be explored.

127

Bibliography

[1] J. Felsenstein and J. Felenstein, Inferring phylogenies. Sinauer associates
Sunderland, MA, 2004, vol. 2.

[2] W. M. Fitch, “Toward defining the course of evolution: Minimum
change for a specific tree topology,” Systematic Biology, vol. 20, no. 4,
pp. 406–416, 1971.

[3] W. H. Day and D. Sankoff, “Computational complexity of inferring phy-
logenies by compatibility,” Systematic Biology, vol. 35, no. 2, pp. 224–
229, 1986.

[4] L. R. Foulds and R. L. Graham, “The steiner problem in phylogeny is
np-complete,” Advances in Applied mathematics, vol. 3, no. 1, pp. 43–49,
1982.

[5] J. Felsenstein, “Cases in which parsimony or compatibility methods will
be positively misleading,” Systematic zoology, vol. 27, no. 4, pp. 401–
410, 1978.

[6] R. Nielsen, Statistical methods in molecular evolution. Springer, 2006.
[7] J. Felsenstein and G. A. Churchill, “A hidden markov model approach

to variation among sites in rate of evolution.,” Molecular biology and
evolution, vol. 13, no. 1, pp. 93–104, 1996.

[8] C. L. Kleinman, N. Rodrigue, N. Lartillot, and H. Philippe, “Statistical
Potentials for Improved Structurally Constrained Evolutionary Mod-
els,” Molecular Biology and Evolution, vol. 27, no. 7, pp. 1546–1560,
Jul. 2010.

[9] D. Posada and K. A. Crandall, “Modeltest: Testing the model of dna
substitution.,” Bioinformatics (Oxford, England), vol. 14, no. 9, pp. 817–
818, 1998.

[10] D. Darriba, G. L. Taboada, R. Doallo, and D. Posada, “Prottest-hpc:
Fast selection of best-fit models of protein evolution,” in Euro-Par 2010
Parallel Processing Workshops: HeteroPar, HPCC, HiBB, CoreGrid,
UCHPC, HPCF, PROPER, CCPI, VHPC, Ischia, Italy, August 31–
September 3, 2010, Revised Selected Papers 16, Springer, 2011, pp. 177–
184.

[11] S. Abadi, D. Azouri, T. Pupko, and I. Mayrose, “Model selection
may not be a mandatory step for phylogeny reconstruction,” Nature
communications, vol. 10, no. 1, p. 934, 2019.

128 Bibliography

[12] L. Shavit Grievink, D. Penny, M. D. Hendy, and B. R. Holland, “Phy-
logenetic tree reconstruction accuracy and model fit when proportions
of variable sites change across the tree,” Systematic biology, vol. 59,
no. 3, pp. 288–297, 2010.

[13] T. R. Buckley, “Model misspecification and probabilistic tests of topol-
ogy: Evidence from empirical data sets,” Systematic Biology, vol. 51,
no. 3, pp. 509–523, 2002.

[14] Z. Yang, “Maximum-likelihood estimation of phylogeny from DNA
sequences when substitution rates differ over sites.,” Molecular biology
and evolution, vol. 10, no. 6, pp. 1396–1401, 1993.

[15] Z. Yang, “Maximum likelihood phylogenetic estimation from dna se-
quences with variable rates over sites: Approximate methods,” Journal
of Molecular evolution, vol. 39, pp. 306–314, 1994.

[16] E. Susko, C. Field, C. Blouin, and A. J. Roger, “Estimation of rates-
across-sites distributions in phylogenetic substitution models,” System-
atic biology, vol. 52, no. 5, pp. 594–603, 2003.

[17] F. Jia, N. Lo, and S. Y. Ho, “The impact of modelling rate heterogeneity
among sites on phylogenetic estimates of intraspecific evolutionary rates
and timescales,” PLoS One, vol. 9, no. 5, e95722, 2014.

[18] W. P. Maddison, “Gene trees in species trees,” Systematic biology,
vol. 46, no. 3, pp. 523–536, 1997.

[19] B. Q. Minh, H. A. Schmidt, O. Chernomor, et al., “IQ-TREE 2: New
Models and Efficient Methods for Phylogenetic Inference in the Genomic
Era,” eng, Molecular Biology and Evolution, vol. 37, no. 5, pp. 1530–
1534, May 2020.

[20] X. Zhou, X.-X. Shen, C. T. Hittinger, and A. Rokas, “Evaluating
fast maximum likelihood-based phylogenetic programs using empirical
phylogenomic data sets,” Molecular Biology and Evolution, vol. 35,
no. 2, pp. 486–503, Feb. 1, 2018.

[21] N. Ly-Trong, S. Naser-Khdour, R. Lanfear, and B. Q. Minh, “AliSim:
A Fast and Versatile Phylogenetic Sequence Simulator for the Genomic
Era,” Molecular Biology and Evolution, vol. 39, no. 5, msac092, May
2022.

[22] P. Buneman, “A note on the metric properties of trees,” Journal of
combinatorial theory, series B, vol. 17, no. 1, pp. 48–50, 1974.

[23] T. H. Jukes, C. R. Cantor, et al., “Evolution of protein molecules,”
Mammalian protein metabolism, vol. 3, no. 24, pp. 21–132, 1969.

[24] N. Saitou and M. Nei, “The neighbor-joining method: A new method
for reconstructing phylogenetic trees.,” Molecular biology and evolution,
vol. 4, no. 4, pp. 406–425, 1987.

[25] J. A. Studier and K. J. Keppler, “A note on the neighbor-joining
algorithm of saitou and nei.,” Molecular biology and evolution, vol. 5,
no. 6, pp. 729–731, 1988.

[26] D. Bryant, “On the uniqueness of the selection criterion in neighbor-
joining,” Journal of Classification, vol. 22, no. 1, pp. 3–15, 2005.

Bibliography 129

[27] K. Atteson, “The performance of neighbor-joining methods of phy-
logenetic reconstruction,” Algorithmica, vol. 25, no. 2, pp. 251–278,
1999.

[28] R. Mihaescu, D. Levy, and L. Pachter, “Why neighbor-joining works,”
Algorithmica, vol. 54, no. 1, pp. 1–24, 2009.

[29] T. Mailund, G. S. Brodal, R. Fagerberg, C. N. Pedersen, and D. Phillips,
“Recrafting the neighbor-joining method,” BMC bioinformatics, vol. 7,
no. 1, pp. 1–8, 2006.

[30] I. Elias and J. Lagergren, “Fast neighbor joining,” Theoretical computer
science, vol. 410, no. 21-23, pp. 1993–2000, 2009.

[31] O. Gascuel, “BIONJ: An improved version of the NJ algorithm based on
a simple model of sequence data,” eng, Molecular Biology and Evolution,
vol. 14, no. 7, pp. 685–695, Jul. 1997.

[32] M. S. Waterman, T. F. Smith, M. Singh, and W. A. Beyer, “Additive
evolutionary trees,” Journal of theoretical Biology, vol. 64, no. 2, pp. 199–
213, 1977.

[33] L. L. Cavalli-Sforza and A. W. Edwards, “Phylogenetic analysis. mod-
els and estimation procedures,” American journal of human genetics,
vol. 19, no. 3 Pt 1, p. 233, 1967.

[34] F. Pardi and O. Gascuel, “Distance-based methods in phylogenetics,”
2016.

[35] W. M. Fitch and E. Margoliash, “Construction of phylogenetic trees:
A method based on mutation distances as estimated from cytochrome
c sequences is of general applicability.,” Science, vol. 155, no. 3760,
pp. 279–284, 1967.

[36] W. A. Beyer, M. L. Stein, T. F. Smith, and S. M. Ulam, “A molecular
sequence metric and evolutionary trees,” Mathematical Biosciences,
vol. 19, no. 1-2, pp. 9–25, 1974.

[37] D. J. Bryant and P. J. Waddell, “Rapid evaluation of least squares and
minimum evolution criteria on phylogenetic trees,” 1997.

[38] O. Gascuel, “Bionj: An improved version of the nj algorithm based on
a simple model of sequence data.,” Molecular biology and evolution,
vol. 14, no. 7, pp. 685–695, 1997.

[39] K. K. Kidd and L. A. Sgaramella-Zonta, “Phylogenetic analysis: Con-
cepts and methods.,” American journal of human genetics, vol. 23,
no. 3, p. 235, 1971.

[40] A. Rzhetsky and M. Nei, “Statistical properties of the ordinary least-
squares, generalized least-squares, and minimum-evolution methods of
phylogenetic inference,” Journal of molecular evolution, vol. 35, pp. 367–
375, 1992.

[41] A. Rzhetsky and M. Nei, “Theoretical foundation of the minimum-
evolution method of phylogenetic inference.,” Molecular biology and
evolution, vol. 10, no. 5, pp. 1073–1095, 1993.

[42] Y. Pauplin, “Direct calculation of a tree length using a distance matrix,”
Journal of Molecular Evolution, vol. 51, pp. 41–47, 2000.

130 Bibliography

[43] R. Desper and O. Gascuel, “Theoretical foundation of the balanced min-
imum evolution method of phylogenetic inference and its relationship
to weighted least-squares tree fitting,” Molecular Biology and Evolution,
vol. 21, no. 3, pp. 587–598, 2004.

[44] O. Gascuel and M. Steel, “Neighbor-joining revealed,” Molecular biology
and evolution, vol. 23, no. 11, pp. 1997–2000, 2006.

[45] M. N. Price, P. S. Dehal, and A. P. Arkin, “Fasttree 2–approximately
maximum-likelihood trees for large alignments,” PloS one, vol. 5, no. 3,
e9490, 2010.

[46] V. Lefort, R. Desper, and O. Gascuel, “Fastme 2.0: A comprehen-
sive, accurate, and fast distance-based phylogeny inference program,”
Molecular biology and evolution, vol. 32, no. 10, pp. 2798–2800, 2015.

[47] A. Zielezinski, H. Z. Girgis, G. Bernard, et al., “Benchmarking of
alignment-free sequence comparison methods,” Genome biology, vol. 20,
pp. 1–18, 2019.

[48] M. Balaban, N. A. Bristy, A. Faisal, M. S. Bayzid, and S. Mirarab,
“Genome-wide alignment-free phylogenetic distance estimation under a
no strand-bias model,” Bioinformatics Advances, vol. 2, no. 1, vbac055,
2022.

[49] A. Criscuolo, “A fast alignment-free bioinformatics procedure to infer
accurate distance-based phylogenetic trees from genome assemblies,”
Research Ideas and Outcomes, vol. 5, e36178, 2019.

[50] V. M. Sarich and A. C. Wilson, “Immunological time scale for hominid
evolution,” Science, vol. 158, no. 3805, pp. 1200–1203, 1967.

[51] W. Cao, L.-Y. Wu, X.-Y. Xia, X. Chen, Z.-X. Wang, and X.-M. Pan, “A
sequence-based evolutionary distance method for phylogenetic analysis
of highly divergent proteins,” Scientific Reports, vol. 13, no. 1, p. 20 304,
2023.

[52] M. Binet, O. Gascuel, C. Scornavacca, E. J. P. Douzery, and F. Pardi,
“Fast and accurate branch lengths estimation for phylogenomic trees,”
BMC bioinformatics, vol. 17, pp. 1–18, 2016.

[53] A. Criscuolo, V. Berry, E. J. Douzery, and O. Gascuel, “Sdm: A fast
distance-based approach for (super) tree building in phylogenomics,”
Systematic biology, vol. 55, no. 5, pp. 740–755, 2006.

[54] X. Xia, “Imputing missing distances in molecular phylogenetics,” PeerJ,
vol. 6, e5321, 2018.

[55] A. Criscuolo and O. Gascuel, “Fast nj-like algorithms to deal with
incomplete distance matrices,” BMC bioinformatics, vol. 9, pp. 1–16,
2008.

[56] A. Bhattacharjee and M. S. Bayzid, “Machine learning based imputation
techniques for estimating phylogenetic trees from incomplete distance
matrices,” BMC genomics, vol. 21, no. 1, p. 497, 2020.

[57] D. F. Robinson and L. R. Foulds, “Comparison of phylogenetic trees,”
Mathematical biosciences, vol. 53, no. 1-2, pp. 131–147, 1981.

[58] M. K. Kuhner and J. Felsenstein, “A simulation comparison of phy-
logeny algorithms under equal and unequal evolutionary rates.,” Molec-
ular biology and evolution, vol. 11, no. 3, pp. 459–468, 1994.

Bibliography 131

[59] G. F. Estabrook, F. McMorris, and C. A. Meacham, “Comparison of
undirected phylogenetic trees based on subtrees of four evolutionary
units,” Systematic Zoology, vol. 34, no. 2, pp. 193–200, 1985.

[60] B. Efron, “Bootstrap methods: Another look at the jackknife,” in
Breakthroughs in statistics: Methodology and distribution, Springer,
1992, pp. 569–593.

[61] J. Felsenstein, “Confidence limits on phylogenies: An approach using
the bootstrap,” evolution, vol. 39, no. 4, pp. 783–791, 1985.

[62] A. Stamatakis, P. Hoover, and J. Rougemont, “A rapid bootstrap
algorithm for the raxml web servers,” Systematic biology, vol. 57, no. 5,
pp. 758–771, 2008.

[63] B. Q. Minh, M. A. T. Nguyen, and A. Von Haeseler, “Ultrafast approx-
imation for phylogenetic bootstrap,” Molecular biology and evolution,
vol. 30, no. 5, pp. 1188–1195, 2013.

[64] B. R. Baum, “Combining trees as a way of combining data sets for
phylogenetic inference, and the desirability of combining gene trees,”
Taxon, vol. 41, no. 1, pp. 3–10, 1992.

[65] M. A. Ragan, “Phylogenetic inference based on matrix representation
of trees,” Molecular phylogenetics and evolution, vol. 1, no. 1, pp. 53–58,
1992.

[66] F.-J. Lapointe and G. Cucumel, “The average consensus procedure:
Combination of weighted trees containing identical or overlapping sets
of taxa,” Systematic Biology, vol. 46, no. 2, pp. 306–312, 1997.

[67] N. Nguyen, S. Mirarab, and T. Warnow, “Mrl and superfine+ mrl: New
supertree methods,” Algorithms for Molecular Biology, vol. 7, pp. 1–13,
2012.

[68] K. Strimmer and A. Von Haeseler, “Quartet puzzling: A quartet
maximum-likelihood method for reconstructing tree topologies,” Molec-
ular biology and evolution, vol. 13, no. 7, pp. 964–969, 1996.

[69] V. Ranwez and O. Gascuel, “Quartet-based phylogenetic inference:
Improvements and limits,” Molecular biology and evolution, vol. 18,
no. 6, pp. 1103–1116, 2001.

[70] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization,
Jan. 29, 2017.

[71] G. Hinton, Neural networks for machine learning - lecture 6a: Overview
of mini-batch gradient descent, Coursera Lecture, https://www.cs.
toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf,
2012.

[72] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization.,” Journal of machine
learning research, vol. 12, no. 7, 2011.

[73] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[74] M. Zaheer, G. Guruganesh, K. A. Dubey, et al., “Big bird: Transform-
ers for longer sequences,” Advances in Neural Information Processing
Systems, vol. 33, 2020.

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

132 Bibliography

[75] Ž. Avsec, V. Agarwal, D. Visentin, et al., “Effective gene expression
prediction from sequence by integrating long-range interactions,” Nature
Methods, vol. 18, no. 10, pp. 1196–1203, 2021.

[76] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[77] T. Brown, B. Mann, N. Ryder, et al., “Language models are few-shot
learners,” Advances in neural information processing systems, vol. 33,
pp. 1877–1901, 2020.

[78] A. Rives, J. Meier, T. Sercu, et al., “Biological structure and function
emerge from scaling unsupervised learning to 250 million protein se-
quences,” Proceedings of the National Academy of Sciences, vol. 118,
no. 15, 2021.

[79] A. Elnaggar, M. Heinzinger, C. Dallago, et al., “Prottrans: Towards
cracking the language of life’s code through self-supervised deep learning
and high performance computing,” arXiv preprint arXiv:2007.06225,
2020.

[80] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependen-
cies with gradient descent is difficult,” IEEE transactions on neural
networks, vol. 5, no. 2, pp. 157–166, 1994.

[81] T. Cohen and M. Welling, “Group equivariant convolutional networks,”
in International conference on machine learning, PMLR, 2016, pp. 2990–
2999.

[82] F. Fuchs, D. Worrall, V. Fischer, and M. Welling, “Se (3)-transformers:
3d roto-translation equivariant attention networks,” Advances in neural
information processing systems, vol. 33, pp. 1970–1981, 2020.

[83] V. Mallet and J.-P. Vert, “Reverse-complement equivariant networks
for dna sequences,” Advances in neural information processing systems,
vol. 34, pp. 13 511–13 523, 2021.

[84] L. Flagel, Y. Brandvain, and D. R. Schrider, “The Unreasonable Ef-
fectiveness of Convolutional Neural Networks in Population Genetic
Inference,” Molecular Biology and Evolution, vol. 36, no. 2, pp. 220–238,
Dec. 2018.

[85] J. Chan, V. Perrone, J. Spence, P. Jenkins, S. Mathieson, and Y. Song,
“A likelihood-free inference framework for population genetic data using
exchangeable neural networks,” in Advances in Neural Information
Processing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, Eds., vol. 31, Curran Associates, Inc.,
2018.

[86] T. Sanchez, J. Cury, G. Charpiat, and F. Jay, “Deep learning for
population size history inference: Design, comparison and combination
with approximate bayesian computation,” Molecular Ecology Resources,
vol. 21, no. 8, pp. 2645–2660, 2021.

[87] M. T. Ribeiro, S. Singh, and C. Guestrin, “" why should i trust you?"
explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and
data mining, 2016, pp. 1135–1144.

Bibliography 133

[88] K. Simonyan, “Deep inside convolutional networks: Visualising image
classification models and saliency maps,” arXiv preprint arXiv:1312.6034,
2013.

[89] P. Linardatos, V. Papastefanopoulos, and S. Kotsiantis, “Explainable
ai: A review of machine learning interpretability methods,” Entropy,
vol. 23, no. 1, p. 18, 2020.

[90] Q.-s. Zhang and S.-C. Zhu, “Visual interpretability for deep learning: A
survey,” Frontiers of Information Technology & Electronic Engineering,
vol. 19, no. 1, pp. 27–39, 2018.

[91] W Samek, “Explainable artificial intelligence: Understanding, visualiz-
ing and interpreting deep learning models,” arXiv preprint arXiv:1708.08296,
2017.

[92] M. D. Zeiler and R. Fergus, “Visualizing and understanding convo-
lutional networks,” in Computer Vision–ECCV 2014: 13th European
Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part I 13, Springer, 2014, pp. 818–833.

[93] B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey, “Predicting
the sequence specificities of dna-and rna-binding proteins by deep
learning,” Nature biotechnology, vol. 33, no. 8, pp. 831–838, 2015.

[94] P. K. Koo and S. R. Eddy, “Representation learning of genomic sequence
motifs with convolutional neural networks,” PLoS computational biology,
vol. 15, no. 12, e1007560, 2019.

[95] Z. Lin, H. Akin, R. Rao, et al., “Evolutionary-scale prediction of
atomic-level protein structure with a language model,” Science, vol. 379,
no. 6637, pp. 1123–1130, 2023.

[96] Y. Ji, Z. Zhou, H. Liu, and R. V. Davuluri, “DNABERT: pre-trained
Bidirectional Encoder Representations from Transformers model for
DNA-language in genome,” Bioinformatics, vol. 37, no. 15, pp. 2112–
2120, Feb. 2021.

[97] Y. K. Mo, M. W. Hahn, and M. L. Smith, “Applications of Machine
Learning in Phylogenetics,” Molecular Phylogenetics and Evolution,
p. 108 066, Mar. 2024.

[98] A. Suvorov, J. Hochuli, and D. R. Schrider, “Accurate Inference of Tree
Topologies from Multiple Sequence Alignments Using Deep Learning,”
Systematic Biology, vol. 69, no. 2, pp. 221–233, Sep. 2019.

[99] Z. Zou, H. Zhang, Y. Guan, and J. Zhang, “Deep residual neural
networks resolve quartet molecular phylogenies,” Molecular biology and
evolution, vol. 37, no. 5, pp. 1495–1507, 2020.

[100] X. Tang, L. Zepeda-Nuñez, S. Yang, Z. Zhao, and C. Solís-Lemus,
“Novel symmetry-preserving neural network model for phylogenetic
inference,” Bioinformatics Advances, vol. 4, no. 1, vbae022, Feb. 2024.

[101] P. Zaharias, M. Grosshauser, and T. Warnow, “Re-evaluating deep
neural networks for phylogeny estimation: The issue of taxon sampling,”
Journal of Computational Biology, 2022.

[102] M. L. Smith and M. W. Hahn, “Phylogenetic inference using generative
adversarial networks,” Bioinformatics, vol. 39, no. 9, btad543, Sep.
2023.

134 Bibliography

[103] Y. Jiang, M. Balaban, Q. Zhu, and S. Mirarab, “DEPP: Deep Learn-
ing Enables Extending Species Trees using Single Genes,” Systematic
Biology, syac031, Apr. 2022.

[104] A. Suvorov and D. R. Schrider, “Reliable estimation of tree branch
lengths using deep neural networks,” PLOS Computational Biology,
vol. 20, no. 8, e1012337, 2024.

[105] D. Azouri, S. Abadi, Y. Mansour, I. Mayrose, and T. Pupko, “Harnessing
machine learning to guide phylogenetic-tree search algorithms,” Nature
communications, vol. 12, no. 1, p. 1983, 2021.

[106] D. Azouri, O. Granit, M. Alburquerque, Y. Mansour, T. Pupko, and
I. Mayrose, “The tree reconstruction game: Phylogenetic reconstruction
using reinforcement learning,” Molecular Biology and Evolution, vol. 41,
no. 6, 2024.

[107] S. Abadi, O. Avram, S. Rosset, T. Pupko, and I. Mayrose, “Modelteller:
Model selection for optimal phylogenetic reconstruction using machine
learning,” Molecular biology and evolution, vol. 37, no. 11, pp. 3338–
3352, 2020.

[108] S. Burgstaller-Muehlbacher, S. M. Crotty, H. A. Schmidt, F. Reden, T.
Drucks, and A. von Haeseler, “Modelrevelator: Fast phylogenetic model
estimation via deep learning,” Molecular Phylogenetics and Evolution,
vol. 188, p. 107 905, 2023.

[109] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller, “Equation of state calculations by fast computing machines,”
The journal of chemical physics, vol. 21, no. 6, pp. 1087–1092, 1953.

[110] W. K. Hastings, “Monte carlo sampling methods using markov chains
and their applications,” 1970.

[111] L. Saul and M. Jordan, “A mean field learning algorithm for unsuper-
vised neural networks,” in Learning in graphical models, Springer, 1998,
pp. 541–554.

[112] M. J. Wainwright, M. I. Jordan, et al., “Graphical models, exponen-
tial families, and variational inference,” Foundations and Trends® in
Machine Learning, vol. 1, no. 1–2, pp. 1–305, 2008.

[113] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference: A
review for statisticians,” Journal of the American statistical Association,
vol. 112, no. 518, pp. 859–877, 2017.

[114] D. B. Rubin, “Bayesianly justifiable and relevant frequency calculations
for the applied statistician,” The Annals of Statistics, pp. 1151–1172,
1984.

[115] M. Sunnåker, A. G. Busetto, E. Numminen, J. Corander, M. Foll, and C.
Dessimoz, “Approximate bayesian computation,” PLoS computational
biology, vol. 9, no. 1, e1002803, 2013.

[116] M. A. Beaumont, “Approximate bayesian computation in evolution and
ecology,” Annual review of ecology, evolution, and systematics, vol. 41,
no. 1, pp. 379–406, 2010.

[117] K. Csilléry, M. G. Blum, O. E. Gaggiotti, and O. François, “Approx-
imate bayesian computation (abc) in practice,” Trends in Ecology &
Evolution, vol. 25, no. 7, pp. 410–418, 2010.

Bibliography 135

[118] J.-M. Lueckmann, J. Boelts, D. Greenberg, P. Goncalves, and J. Macke,
“Benchmarking simulation-based inference,” in Proceedings of The 24th
International Conference on Artificial Intelligence and Statistics, A.
Banerjee and K. Fukumizu, Eds., ser. Proceedings of Machine Learning
Research, vol. 130, PMLR, 2021, pp. 343–351.

[119] J.-M. Lueckmann, P. J. Goncalves, G. Bassetto, K. Öcal, M. Nonnen-
macher, and J. H. Macke, “Flexible statistical inference for mechanistic
models of neural dynamics,” Advances in neural information processing
systems, vol. 30, 2017.

[120] D. Rezende and S. Mohamed, “Variational inference with normalizing
flows,” in International conference on machine learning, PMLR, 2015,
pp. 1530–1538.

[121] M. Magdon-Ismail and A. Atiya, “Neural networks for density esti-
mation,” Advances in Neural Information Processing Systems, vol. 11,
1998.

[122] G. Papamakarios, D. Sterratt, and I. Murray, “Sequential neural likeli-
hood: Fast likelihood-free inference with autoregressive flows,” in The
22nd international conference on artificial intelligence and statistics,
PMLR, 2019, pp. 837–848.

[123] J.-M. Lueckmann, G. Bassetto, T. Karaletsos, and J. H. Macke, “Likelihood-
free inference with emulator networks,” in Symposium on Advances in
Approximate Bayesian Inference, PMLR, 2019, pp. 32–53.

[124] M. U. Gutmann, R. Dutta, S. Kaski, and J. Corander, “Likelihood-free
inference via classification,” Statistics and Computing, vol. 28, pp. 411–
425, 2018.

[125] O. Thomas, R. Dutta, J. Corander, S. Kaski, and M. U. Gutmann,
“Likelihood-free inference by ratio estimation,” Bayesian Analysis,
vol. 17, no. 1, pp. 1–31, 2022.

[126] K. Cranmer, J. Brehmer, and G. Louppe, “The frontier of simulation-
based inference,” Proceedings of the National Academy of Sciences,
vol. 117, no. 48, pp. 30 055–30 062, 2020.

[127] N. Vihrs, “Using neural networks to estimate parameters in spatial
point process models,” Spatial Statistics, vol. 51, p. 100 668, 2022.

[128] L. Gabrielli, S. Tomassetti, S. Squartini, C. Zinato, et al., “Introducing
deep machine learning for parameter estimation in physical modelling,”
in Proceedings of the 20th international conference on digital audio
effects, 2017.

[129] J. Voznica, A. Zhukova, V. Boskova, et al., “Deep learning from phylo-
genies to uncover the epidemiological dynamics of outbreaks,” Nature
Communications, vol. 13, no. 1, p. 3896, 2022.

[130] D. R. Schrider and A. D. Kern, “Supervised machine learning for
population genetics: A new paradigm,” Trends in Genetics, vol. 34,
no. 4, pp. 301–312, 2018.

[131] J. R. Adrion, J. G. Galloway, and A. D. Kern, “Predicting the Land-
scape of Recombination Using Deep Learning,” Molecular Biology and
Evolution, vol. 37, no. 6, pp. 1790–1808, Feb. 2020.

136 Bibliography

[132] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” in Advances
in Neural Information Processing Systems, I. Guyon, U. V. Luxburg,
S. Bengio, et al., Eds., vol. 30, Curran Associates, Inc., 2017.

[133] D. A. Nix and A. S. Weigend, “Estimating the mean and variance
of the target probability distribution,” in Proceedings of 1994 ieee
international conference on neural networks (ICNN’94), IEEE, vol. 1,
1994, pp. 55–60.

[134] S. Tsimenidis, E. Vrochidou, and G. A. Papakostas, “Omics data and
data representations for deep learning-based predictive modeling,”
International Journal of Molecular Sciences, vol. 23, no. 20, p. 12 272,
2022.

[135] J. Hadfield, C. Megill, S. M. Bell, et al., “Nextstrain: Real-time tracking
of pathogen evolution,” Bioinformatics, vol. 34, no. 23, pp. 4121–4123,
Dec. 2018.

[136] M. I. Nelson, C. Viboud, L. Simonsen, et al., “Multiple Reassortment
Events in the Evolutionary History of H1N1 Influenza A Virus Since
1918,” PLoS Pathogens, vol. 4, no. 2, e1000012, Feb. 2008.

[137] M. J. Harms and J. W. Thornton, “Evolutionary biochemistry: Reveal-
ing the historical and physical causes of protein properties,” Nature
reviews. Genetics, vol. 14, no. 8, pp. 559–571, Aug. 2013.

[138] B. Perez-Lamarque, M. Öpik, O. Maliet, et al., “Analysing diversifica-
tion dynamics using barcoding data: The case of an obligate mycorrhizal
symbiont,” eng, Molecular Ecology, vol. 31, no. 12, pp. 3496–3512, Jun.
2022.

[139] J. Felsenstein, “Evolutionary trees from dna sequences: A maximum
likelihood approach,” Journal of molecular evolution, vol. 17, no. 6,
pp. 368–376, 1981.

[140] W. G. Weisburg, S. J. Giovannoni, and C. R. Woese, “The Deinococcus-
Thermus phylum and the effect of rRNA composition on phylogenetic
tree construction,” eng, Syst Appl Microbiol, vol. 11, pp. 128–34, Jan.
1989.

[141] Z. Yang, “Among-site rate variation and its impact on phylogenetic
analyses,” Trends in Ecology & Evolution, vol. 11, no. 9, pp. 367–372,
Sep. 1996.

[142] M. J. Telford, M. J. Wise, and V. Gowri-Shankar, “Consideration of
RNA Secondary Structure Significantly Improves Likelihood-Based Es-
timates of Phylogeny: Examples from the Bilateria,” Molecular Biology
and Evolution, vol. 22, no. 4, pp. 1129–1136, Apr. 2005.

[143] S. Guindon and O. Gascuel, “A Simple, Fast, and Accurate Algorithm
to Estimate Large Phylogenies by Maximum Likelihood,” Systematic
Biology, vol. 52, no. 5, pp. 696–704, Oct. 2003.

[144] O. Gascuel, “Bionj: An improved version of the nj algorithm based on
a simple model of sequence data.,” Molecular biology and evolution,
vol. 14, no. 7, pp. 685–695, 1997.

Bibliography 137

[145] R. M. Rao, J. Liu, R. Verkuil, et al., “Msa transformer,” in Proceedings
of the 38th International Conference on Machine Learning, M. Meila
and T. Zhang, Eds., ser. Proceedings of Machine Learning Research,
vol. 139, PMLR, 2021, pp. 8844–8856.

[146] S. Q. Le and O. Gascuel, “An improved general amino acid replacement
matrix,” Molecular biology and evolution, vol. 25, no. 7, pp. 1307–1320,
2008.

[147] J. Jumper, R. Evans, A. Pritzel, et al., “Highly accurate protein struc-
ture prediction with alphafold,” Nature, vol. 596, no. 7873, pp. 583–589,
2021.

[148] J. Ho, N. Kalchbrenner, D. Weissenborn, and T. Salimans, “Axial at-
tention in multidimensional transformers,” CoRR, vol. abs/1912.12180,
2019.

[149] Z. Yang, “Maximum likelihood phylogenetic estimation from DNA
sequences with variable rates over sites: Approximate methods,” eng,
Journal of Molecular Evolution, vol. 39, no. 3, pp. 306–14, Sep. 1994.

[150] A. Rambaut, Seq-Gen, http://tree.bio.ed.ac.uk/software/
seqgen/, 2017.

[151] J. P. Huelsenbeck and F. Ronquist, “Mrbayes: Bayesian inference of
phylogenetic trees,” Bioinformatics, vol. 17, no. 8, pp. 754–755, 2001.

[152] Z. Yang, “Paml 4: Phylogenetic analysis by maximum likelihood,”
Molecular biology and evolution, vol. 24, no. 8, pp. 1586–1591, 2007.

[153] S. Höhna, M. J. Landis, T. A. Heath, et al., “RevBayes: Bayesian
Phylogenetic Inference Using Graphical Models and an Interactive
Model-Specification Language,” en, Systematic Biology, vol. 65, no. 4,
pp. 726–736, Jul. 2016, Publisher: Oxford Academic.

[154] G. J. Szöllõsi, S. Höhna, T. A. Williams, D. Schrempf, V. Daubin,
and B. Boussau, “Relative time constraints improve molecular dating,”
Regular Manuscript, vol. 71, no. 4, pp. 797–809, 2022.

[155] HOGENOM, http://hogenom.univ-lyon1.fr/, 2019.
[156] D. Höhler, W. Pfeiffer, V. Ioannidis, H. Stockinger, and A. Stamatakis,

“Raxml grove: An empirical phylogenetic tree database,” Bioinformatics,
vol. 38, no. 6, pp. 1741–1742, 2022.

[157] B. D. Redelings and M. A. Suchard, “Incorporating indel informa-
tion into phylogeny estimation for rapidly emerging pathogens,” BMC
Evolutionary Biology, vol. 7, no. 1, p. 40, 2007.

[158] J. Trost, J. Haag, D. Höhler, L. Jacob, A. Stamatakis, and B. Boussau,
“Simulations of sequence evolution: How (un) realistic they are and
why,” Molecular Biology and Evolution, vol. 41, no. 1, msad277, 2024.

[159] S. Prillo, Y. Deng, P. Boyeau, X. Li, P.-Y. Chen, and Y. S. Song,
“Cherryml: Scalable maximum likelihood estimation of phylogenetic
models,” Nature methods, vol. 20, no. 8, pp. 1232–1236, 2023.

[160] L. Si Quang, O. Gascuel, and N. Lartillot, “Empirical profile mixture
models for phylogenetic reconstruction,” Bioinformatics, vol. 24, no. 20,
pp. 2317–2323, Oct. 2008.

http://tree.bio.ed.ac.uk/software/seqgen/
http://tree.bio.ed.ac.uk/software/seqgen/
http://hogenom.univ-lyon1.fr/

138 Bibliography

[161] G. J. Szöllősi, W. Rosikiewicz, B. Boussau, E. Tannier, and V. Daubin,
Data from: Efficient exploration of the space of reconciled gene trees,
version 1, Artwork Size: 45688314 bytes Pages: 45688314 bytes, Aug. 7,
2013.

[162] F. Llinares-López, Q. Berthet, M. Blondel, O. Teboul, and J.-P. Vert,
“Deep embedding and alignment of protein sequences,” Nature Methods,
vol. 20, no. 1, pp. 104–111, 2023.

[163] S. Petti, N. Bhattacharya, R. Rao, et al., “End-to-end learning of
multiple sequence alignments with differentiable Smith–Waterman,”
Bioinformatics, vol. 39, no. 1, btac724, Nov. 2022.

[164] B. Boussau and M. Gouy, “Efficient Likelihood Computations with
Nonreversible Models of Evolution,” Systematic Biology, vol. 55, no. 5,
pp. 756–768, Oct. 2006.

[165] S. Blanquart and N. Lartillot, “A Site- and Time-Heterogeneous Model
of Amino Acid Replacement,” Molecular Biology and Evolution, vol. 25,
no. 5, pp. 842–858, May 2008.

[166] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret, Transformers
are rnns: Fast autoregressive transformers with linear attention, PMLR,
2020.

[167] M. M. Bronstein, J. Bruna, T. Cohen, and P. Velickovic, “Geometric
deep learning: Grids, groups, graphs, geodesics, and gauges,” CoRR,
vol. abs/2104.13478, 2021.

[168] B. Schölkopf and A. J. Smola, Learning with kernels : support vector ma-
chines, regularization, optimization, and beyond (Adaptive computation
and machine learning). MIT Press, 2002.

[169] D. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep
network learning by exponential linear units (elus),” in 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings, Y. Bengio and
Y. LeCun, Eds., 2016.

[170] E. Abbe, S. Bengio, E. Boix-Adserà, E. Littwin, and J. M. Susskind,
Transformers learn through gradual rank increase, 2023.

[171] J. Zhao, Y. Zhang, B. Chen, F. T. Schaefer, and A. Anandkumar,
Incremental low-rank learning, 2023.

[172] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization,
2015.

[173] S. Kalyaanamoorthy, B. Q. Minh, T. K. Wong, A. Von Haeseler, and
L. S. Jermiin, “Modelfinder: Fast model selection for accurate phyloge-
netic estimates,” Nature methods, vol. 14, no. 6, pp. 587–589, 2017.

[174] L. Duchemin, V. Lanore, P. Veber, and B. Boussau, “Evaluation of
methods to detect shifts in directional selection at the genome scale,”
Molecular Biology and Evolution, vol. 40, no. 2, msac247, 2023.

[175] J. Sukumaran and M. T. Holder, “Dendropy: A python library for
phylogenetic computing,” Bioinformatics, vol. 26, no. 12, pp. 1569–
1571, 2010.

Bibliography 139

[176] G. Loewenthal, D. Rapoport, O. Avram, et al., “A probabilistic model
for indel evolution: Differentiating insertions from deletions,” Molecular
biology and evolution, vol. 38, no. 12, pp. 5769–5781, 2021.

[177] W. H. Piel, M. Donoghue, M. Sanderson, and L Netherlands, “Treebase:
A database of phylogenetic information,” in Proceedings of the 2nd
International Workshop of Species, vol. 2000, 2000.

[178] A. L. Halpern and W. J. Bruno, “Evolutionary distances for protein-
coding sequences: Modeling site-specific residue frequencies.,” Molecular
biology and evolution, vol. 15, no. 7, pp. 910–917, 1998.

[179] A. U. Tamuri and M. d. Reis, “A mutation-selection model of protein
evolution under persistent positive selection,” en, bioRxiv, p. 2021.05.18.444611,
May 2021, Publisher: Cold Spring Harbor Laboratory Section: New
Results.

[180] R. Xiong, Y. Yang, D. He, et al., “On layer normalization in the
transformer architecture,” in International Conference on Machine
Learning, PMLR, 2020, pp. 10 524–10 533.

[181] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),”
arXiv preprint arXiv:1606.08415, 2016.

[182] D. Höhler, J. Haag, A. M. Kozlov, and A. Stamatakis, “A representative
performance assessment of maximum likelihood based phylogenetic
inference tools,” bioRxiv, pp. 2022–10, 2022.

[183] C. Anil, Y. Wu, A. Andreassen, et al., “Exploring length generalization
in large language models,” Advances in Neural Information Processing
Systems, vol. 35, pp. 38 546–38 556, 2022.

[184] A. De Myttenaere, B. Golden, B. Le Grand, and F. Rossi, “Mean abso-
lute percentage error for regression models,” Neurocomputing, vol. 192,
pp. 38–48, 2016.

[185] D. M. de Vienne, G. Aguileta, and S. Ollier, “Euclidean nature of
phylogenetic distance matrices,” Systematic biology, vol. 60, no. 6,
pp. 826–832, 2011.

[186] M. Layer and J. A. Rhodes, “Phylogenetic trees and euclidean embed-
dings,” Journal of mathematical biology, vol. 74, pp. 99–111, 2017.

[187] M. Nickel and D. Kiela, “Poincaré embeddings for learning hierarchical
representations,” Advances in neural information processing systems,
vol. 30, 2017.

[188] N. Monath, M. Zaheer, D. Silva, A. McCallum, and A. Ahmed, “Gradient-
based hierarchical clustering using continuous representations of trees in
hyperbolic space,” in Proceedings of the 25th acm sigkdd international
conference on knowledge discovery & data mining, 2019, pp. 714–722.

[189] H. Matsumoto, T. Mimori, and T. Fukunaga, “Novel metric for hyper-
bolic phylogenetic tree embeddings,” Biology Methods and Protocols,
vol. 6, no. 1, bpab006, 2021.

[190] Y. Jiang, P. Tabaghi, and S. Mirarab, “Learning hyperbolic embedding
for phylogenetic tree placement and updates,” Biology, vol. 11, no. 9,
p. 1256, 2022.

140 Bibliography

[191] M. Macaulay, A. Darling, and M. Fourment, “Fidelity of hyperbolic
space for bayesian phylogenetic inference,” PLoS computational biology,
vol. 19, no. 4, e1011084, 2023.

[192] G. Corso, Z. Ying, M. Pándy, P. Veličković, J. Leskovec, and P. Liò,
“Neural distance embeddings for biological sequences,” Advances in
Neural Information Processing Systems, vol. 34, pp. 18 539–18 551, 2021.

[193] L. Duchemin, “Phylogenetic detection of protein sites associated to a
phenotype, at the genome scale,” Ph.D. dissertation, Université Claude
Bernard-Lyon I, 2023.

[194] S. Parto and N. Lartillot, “Molecular adaptation in rubisco: Discrimi-
nating between convergent evolution and positive selection using mech-
anistic and classical codon models,” PloS one, vol. 13, no. 2, e0192697,
2018.

[195] Z. Yang, “Paml 4: Phylogenetic analysis by maximum likelihood,”
Molecular biology and evolution, vol. 24, no. 8, pp. 1586–1591, 2007.

[196] A. U. Tamuri, M. Dos Reis, A. J. Hay, and R. A. Goldstein, “Identi-
fying changes in selective constraints: Host shifts in influenza,” PLoS
computational biology, vol. 5, no. 11, e1000564, 2009.

[197] C. Rey, V. Lanore, P. Veber, et al., “Detecting adaptive convergent
amino acid evolution,” Philosophical Transactions of the Royal Society
B, vol. 374, no. 1777, p. 20 180 234, 2019.

[198] J. D. Bloom, “Identification of positive selection in genes is greatly im-
proved by using experimentally informed site-specific models,” Biology
direct, vol. 12, pp. 1–24, 2017.

[199] V. Garot, L. Blassel, L. Nesterenko, A. Zhukova, S. Alizon, and L. Jacob,
“Phylodynamics without phylogenies: Deep-learning-based inference of
epidemiological parameters from sequence alignments,” In preparation,
2024.

[200] J. L. Thorne, H. Kishino, and J. Felsenstein, “An evolutionary model for
maximum likelihood alignment of dna sequences,” Journal of Molecular
Evolution, vol. 33, pp. 114–124, 1991.

[201] T. Latrille, J. Joseph, D. Hartasánchez, and N. Salamin, “Mammalian
protein-coding genes exhibit widespread beneficial mutations that are
not adaptive,” 2023.

[202] C. Scornavacca, K. Belkhir, J. Lopez, et al., “Orthomam v10: Scaling-
up orthologous coding sequence and exon alignments with more than
one hundred mammalian genomes,” Molecular Biology and Evolution,
vol. 36, no. 4, pp. 861–862, 2019.

[203] M. V. Kapralov, J. A. C. Smith, and D. A. Filatov, “Rubisco evolution
in c4 eudicots: An analysis of amaranthaceae sensu lato,” PloS one,
vol. 7, no. 12, e52974, 2012.

[204] G. Besnard, A. M. Muasya, F. Russier, E. H. Roalson, N. Salamin,
and P.-A. Christin, “Phylogenomics of c4 photosynthesis in sedges
(cyperaceae): Multiple appearances and genetic convergence,” Molecular
Biology and Evolution, vol. 26, no. 8, pp. 1909–1919, 2009.

Bibliography 141

[205] B. Murrell, J. O. Wertheim, S. Moola, T. Weighill, K. Scheffler, and
S. L. Kosakovsky Pond, “Detecting individual sites subject to episodic
diversifying selection,” PLoS genetics, vol. 8, no. 7, e1002764, 2012.

[206] Y. Li, Z. Liu, P. Shi, and J. Zhang, “The hearing gene prestin unites
echolocating bats and whales,” Current Biology, vol. 20, no. 2, R55–R56,
2010.

[207] R. A. Fisher, “Statistical methods for research workers,” in Break-
throughs in statistics: Methodology and distribution, Springer, 1970,
pp. 66–70.

[208] C. R. Walker, C. West, S. Arasti, et al., “Detecting interspecific positive
selection using convolutional neural networks,” bioRxiv, 2024.

[209] R. Nielsen and Z. Yang, “Likelihood models for detecting positively
selected amino acid sites and applications to the hiv-1 envelope gene,”
Genetics, vol. 148, no. 3, pp. 929–936, 1998.

[210] W. Fletcher and Z. Yang, “Indelible: A flexible simulator of biological
sequence evolution,” Molecular biology and evolution, vol. 26, no. 8,
pp. 1879–1888, 2009.

[211] F. Sievers, A. Wilm, D. Dineen, et al., “Fast, scalable generation of
high-quality protein multiple sequence alignments using clustal omega,”
Molecular systems biology, vol. 7, no. 1, p. 539, 2011.

[212] A. Loytynoja and N. Goldman, “Phylogeny-aware gap placement pre-
vents errors in sequence alignment and evolutionary analysis,” science,
vol. 320, no. 5883, pp. 1632–1635, 2008.

[213] U. Lupo, D. Sgarbossa, and A.-F. Bitbol, “Protein language models
trained on multiple sequence alignments learn phylogenetic relation-
ships,” Nature Communications, vol. 13, no. 1, p. 6298, 2022.

[214] K. He, R. Girshick, and P. Dollár, “Rethinking imagenet pre-training,”
in Proceedings of the IEEE/CVF international conference on computer
vision, 2019, pp. 4918–4927.

[215] D. Hernandez, J. Kaplan, T. Henighan, and S. McCandlish, “Scaling
laws for transfer,” arXiv preprint arXiv:2102.01293, 2021.

[216] Z. Mo and A. Siepel, “Domain-adaptive neural networks improve super-
vised machine learning based on simulated population genetic data,”
PLoS Genetics, vol. 19, no. 11, e1011032, 2023.

[217] Z. Wang, J. Wang, M. Kourakos, et al., “Automatic inference of demo-
graphic parameters using generative adversarial networks,” Molecular
ecology resources, vol. 21, no. 8, pp. 2689–2705, 2021.

[218] I. Elias, “Settling the intractability of multiple alignment,” Journal of
Computational Biology, vol. 13, no. 7, pp. 1323–1339, 2006.

[219] J. C. Aledo, “Phylogenies from unaligned proteomes using sequence
environments of amino acid residues,” Scientific reports, vol. 12, no. 1,
p. 7497, 2022.

[220] R. Tang, Z. Yu, and J. Li, “Kinn: An alignment-free accurate phylogeny
reconstruction method based on inner distance distributions of k-mer
pairs in biological sequences,” Molecular Phylogenetics and Evolution,
vol. 179, p. 107 662, 2023.

142 Bibliography

	Introduction
	Phylogenetic inference
	Phylogenetic trees
	blackNotation
	Interpretation of branch lenghts
	blackNumber of topologies
	blackTree space exploration
	blackTree rooting

	blackParsimony

	blackProbabilistic models of molecular evolution
	blackModel misspecification
	blackPer-site rate variation
	blackGene trees and species trees

	blackLikelihood methods
	blackFelsenstein's pruning algorithm
	blackIQtree

	Distance methods
	blackModel-based distances
	blackML estimate of distances under the Jukes-Cantor model

	Neighbor joining
	blackLeast squares
	blackMinimum evolution
	blackBalanced minimum evolution

	blackFastTree
	blackFastME
	blackAdvantages and limitations of distance-based methods

	Assessing the performances of phylogenetic reconstruction methods
	blackComparing trees
	blackBootstrap
	blackSupertree methods and quartet puzzling

	blackMachine and deep learning
	Supervised learning
	Validation, overfitting, hyperparameters and regularisation
	Fully connected neural networks
	Convolutional neural networks
	Attention
	Invariance and equivariance
	Interpretability
	Fine-tuning and transfer learning
	blackDeep learning in phylogenetics

	blackSimulation-based inference
	Approximate Bayesian Computation
	Neural network-based methods

	blackSupervised learning to estimate evolutionary distances

	Phyloformer
	Preface
	Introduction
	Results
	Likelihood-free phylogenetic inference with Phyloformer
	Under a standard model of evolution, Phyloformer is as accurate and much faster than ML
	Under more realistic models, Phyloformer outperforms all other inference methods
	Phyloformer performs on par with ML methods on empirical data

	Discussion
	Online methods
	Supplementary Methods
	Simulating phylogenies
	Empirical tree distributions
	Simulating trees
	Comparison of simulated and empirical trees

	Simulating multiple sequence alignments
	Detailed architecture of the Phyloformer network, training and fine-tuning
	Estimating posterior distributions

	Supplementary Results
	Phyloformer's attention maps reveal coevolution patterns
	Phyloformer reconstructs likely trees
	Short branches, not short distances, explain Phyloformer's deteriorating topological performance as the number of leaves grows

	Supplementary Figures
	Additional discussion

	Deepelican
	Detecting shifts in selective pressure associated with a phenotype
	Existing methods
	dN/dS methods
	Profile methods

	Model of evolution

	Deepelican
	Adapting the neural network architecture
	Encoding global information

	Simulations and training
	Simulations
	Training

	Results
	Testing with different tree sizes
	Testing with different profiles
	Speed and memory performances
	Testing on empirical trees
	More realistic simulations: =4

	Testing on empirical alignments: The Prestin gene
	Testing on empirical data: Gene enrichment analysis

	Discussion and future perspectives

	DaNaiDeS
	Introduction
	OmegaAI and DaNaiDeS
	Simulations and training

	Results
	Baseline divergence
	Mixed divergences
	Advantages of permutation invariance
	Interpretability

	Discussion and future perspectives

	Conclusion

