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Abstract

Abstract

Distributed learning has been studied intensively in recent years due to its practicality for a wide
range of applications where data transfer incurs high costs in terms of privacy and communication
bandwidth. In this context, it is crucial to design algorithms that are suitable for edge devices with
limited computational and communication capabilities, while still achieving optimal performance
in a distributed setting. However, this is a challenging task as the algorithm’s performance is
dependent on multiple factors such as the overlay communication network, the computational
capabilities, and the nature of the data on each device. The majority of research in distributed
learning has focused on the o#ine setting, where data is stored locally and the objective function
remains static throughout the learning process. However, this o#ine setting becomes unrealistic
for many machine learning applications as data is generated in a continuous manner. In this thesis,
we study the problem of distributed online learning, where multiple agents learn from streams of
data generated at local devices to reach a consensus on a global objective function. We propose
projection-free algorithms that are well-suited for a distributed setting. These algorithms are
carefully designed to achieve optimal regret bounds for various scenarios of online and distributed
learning, including delayed feedback, zeroth-order feedback for convex and non-convex functions.
We conduct an extensive theoretical study and experimentally validate the performance of our
algorithms by comparing them with existing ones on real-world problems. Furthermore, we provide
an empirical study on the energy consumption of training federated learning (FL) on edge devices,
taking into account data heterogeneity and the computation/communication trade-o! when varying
the number of devices and data partition.

L’apprentissage distribué a fait l’objet de recherches intensives ces dernières années en raison
de sa praticité pour une large gamme d’applications où le transfert de données entraîne des coûts
élevés en termes de confidentialité et de bande passante de communication. Dans ce contexte, il est
crucial de concevoir des algorithmes qui conviennent aux périphériques de bord avec des capacités
de calcul et de communication limitées, tout en atteignant des performances optimales dans un
environnement distribué. Cependant, c’est une tâche di"cile car les performances de l’algorithme
dépendent de plusieurs facteurs tels que le réseau de communication, les capacités de calcul et la
nature des données sur chaque périphérique. La majorité des recherches en apprentissage distribué
ont porté sur le paramètre hors ligne, où les données sont stockées localement et la fonction
objective reste statique tout au long du processus d’apprentissage. Cependant, ce paramètre
hors ligne devient irréaliste pour de nombreuses applications d’apprentissage automatique car les
données sont générées de manière continues. Dans cette thèse, nous étudions le problème de
l’apprentissage en ligne distribué, où plusieurs agents apprennent à partir de flux de données générés
sur des périphériques locaux pour atteindre un consensus sur une fonction objective globale. Nous
proposons des algorithmes sans projection qui sont bien adaptés à un environnement distribué.
Ces algorithmes sont conçus avec soin pour atteindre des bornes de regret optimales pour divers
scénarios d’apprentissage en ligne et distribué, y compris le delai de feedback, le bandit feedback
pour les fonctions convexes et non convexes. Nous menons une étude théorique approfondie et
validons expérimentalement les performances de nos algorithmes en les comparant à des algorithmes
existants sur des problèmes du monde réel. De plus, nous fournissons une étude empirique sur la
consommation d’énergie de l’apprentissage fédéré sur des périphériques de bord, en tenant compte
de l’hétérogénéité des données et du compromis entre calcul et communication lors de la variation
du nombre de périphériques et de la partition des données.
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1.1. Introduction

1.1 Introduction

Over the past decade, there has been a significant surge in the growth of machine learning and
AI applications. From image recognition to natural language processing, and now the proliferation
of generative AI, this growth has been fueled by advancements in computational power, research
breakthroughs, and most importantly, the ever-increasing volume of data. Data sourced from
various origins has emerged as valuable asset for training machine learning models, but it also
presents a major challenge for storage and processing. Typically, a machine learning application
gathers data from diverse sources, consolidates in a central database for processing and training,
and subsequently delivers it to end-users for inference. However, data collection and storage in a
centralized manner raises significant concerns about privacy as it may contain sensitive information
such as personal, financial, or medical data. Furthermore, data collection and storage create a
significant cost in terms of infrastructure and maintenance. To address these challenges, it is
imperative to develop machine learning techniques that can address the following constraints:

• "Data: How to train machine learning models without exposing sensitive data to third par-
ties?"

• "Resources: How can we reduce the cost of data storage and processing?"

The resolution to these challenges can be found within the framework of federated learning
(FL) [Kairouz2021], where multiple clients collaboratively train a machine learning model under
the coordination of a central server without disclosing the raw data. Essentially, clients train the
model on their individual datasets and send their model updates to the server for aggregation.
This method e!ectively addresses privacy concerns by keeping the data at sources. However,
scalability issues arise with a large number of clients since the communication between clients and
server can become a bottlenect, especially in slow or unreliable network conditions. Consequently,
decentralized learning (DL) has emerged as an alternative to FL, eliminating the need for a central
server. In DL, clients communicate directly with each other in a peer-to-peer fashion to exchange
model parameters and updates on their local datasets, ensuring global convergence of the objective
function without central server. A few significant works in this area are Decentralized Parallel
Stochastic Gradient Descent (D-PSGD) algorithm and its variants [Tang2018,Nedic2009,Ram2010,
Lian2017, Duchi2012, Yuan2016], adopts a decentralized approach to stochastic gradient descent
algorithm, treating a weighted sum of local objectives as the global objective. Clients are expected
to have an overlay communication network to facilitate communication with neighboring clients.
In each communication round, clients update their local models using locally stored data and
exchange model parameters with their immediate neighbors in the communication graph. This
process continues until global model achieves convergence. Accordingly, decentralized learning
encompasses two crucial aspects : 1) locally stored data on the client side; 2) a local optimization
process;

The first aspect raises numerous challenges for today’s distributed learning systems. The learn-
ing process is conducted on user-end devices such as smartphones, IoT devices, or edge servers,
which have limited storage capacity. As data is continuously generated on these devices, requiring
data storage might not be a pratical choice for an e"cient learning system. In this context, the
concept of online learning is a natural consideration to not only alleviate storage constraint but
also to adapt to the dynamic nature of the data. Regarding the second aspect of the optimiza-
tion process, Stochastic Gradient Descent (SGD) and its variants are the preferred algorithms
in many machine learning tasks. However, they might not be the optimal choice for for con-
strained optimization environments, such as decentralized learning, when it comes to small edge
and IoT devices. This is because the additional operation, such as the projection step, can in-
troduce substantial computational overhead and potentially hinder the learning process. In such
circumstances, the Frank-Wolfe algorithm, also known as conditional gradient, emerges as a more
attractive alternative to the family of projected gradient descent. Its projection-free nature helps
reduce the computational costs, making it a more suitable choice for resource-constrained devices,
such as edge and IoT devices.

In this thesis, we address the challenges of learning in a distributed and dynamic environment
by approaching it through the framework of online optimization. We aim to develop algorithms
solving constrained optimization problem that is suitable for distributed setting where the partic-
ipant in the learning process are primarily edge and IoT devices with limited storage capacity and

3



Chapter 1. Introduction

computational power. To this end, we focus on algorithms that belong to the Frank-Wolfe family,
which are projection-free by nature. This feature reduces the computational cost of the optimiza-
tion process while ensuring competitive performance compared to projection-based algorithms.

In the following sections, we will provide a formal description of the problem and review the
concept of online optimization in both centralized and distributed settings, using Online Gradient
Descent as the illustration algorithm. We will then introduce the vanilla Frank-Wolfe algorithm
and its online variant. Additionally, we will give a brief review of related work in the field of online
optimization. We will present our contributions and the outline of the thesis, along with some
common lemmas and notations that will be used throughout the thesis.

1.2 Notations and Preliminaries

We use boldface lower case and upper case letter to denote vector and matrix e.g x and X,
respectively . Given an undirected graph G = (V, E), we let |V| = n the total number of nodes.By
abuse of notation, we denote the agents by indice i → [n] where [n] = [1, . . . , n]. The set of
neighbors of an agent i → [n] is denoted N (i) := {j → [n] : (i, j) → E}. Consider a symmetric
matrix W → Rn→n

+ . We call by ω
i = |N (i)|, the degree of of vertex i, the entries wij defined as

follows.

wij =






1

1 + max{ω i, ω j} if (i, j) → E

0 if (i, j) ↑→ E ,i ↑= j

1↓
∑

j↑N (i) wij if i = j

We suppose the matrix W is doubly stochastic, i.e W1 = WT1 = 1 and denote by ε(W) the
absolute second largest eigenvalue of W, the spectral gap of W is denoted by ϑ(W) = 1↓ε(W). We
denote by t the time step and T the time horizon. In the distributed setting, we add a superscript
i to denote the dependance on the agent i e.g xi

t is the decision vector of agent i at time t. Then
we note by xt :=

1
n

∑n
i=1 x

i
t the average decision vector of all agents at time step t and finally, we

use the notation PK(x) to denote the projection of x onto the set K. In the following, we recall
some basic denitions that are commonly used in convex optimization and machine learning.

Gradient Tracking A common scenario in distributed optimization is that the agents do not
have access to the global objective function but only to their local functions f

i. This problem
is more pronounced when the data are heterogeneous between agents as the update direction of
each agent may not be aligned with the global objective. To mitigate this problem, one popular
technique in the literature is the use of gradient tracking [Lorenzo2016,Pu2018]. Let f : K ↔ R,
we define the tracking variable as gi

t. The gradient tracking mechanism can be formulated as, for
all i → [n] and t → [T ]:

gi
t+1 = ↗f

i(xi
t+1)↓↗f

i(xi
t) +

∑

j↑N (i)

wijg
j
t

From the above formulation, the tracking variable gi
t+1 is updated by the local gradient ↗f

i(xi
t+1)

and a bias correction term which helps aligning the update direction of each agent with the global
objective. By induction on t, one can easily verify that 1

n

∑n
i=1 g

i
t =

1
n

∑n
i=1 ↗f

i(xi
t)

Definition 1 (Convexity). Let K ↘ Rd. For all x,y → K and ε → [0, 1], K is said to be convex if

εx+ (1↓ ε)y → K

Let f be a function defined over the convex set K, f is convex if ≃x,y → K and ≃ε → [0, 1], we have

f(εx+ (1↓ ε)y) ⇐ εf(x) + (1↓ ε)f(y)

If f is di!erentiable, then f is convex if its verify ≃x,y → K,

⇒↗f(x),y ↓ x⇑ ⇐ f(y)↓ f(x)

4



1.3. Online Optimization

Definition 2 (Lipschitz Continuity). Let K ↘ Rd. A function f is said to be G-Lipschitz over K
if ≃x,y → K and ≃t → [T ], we have

|f(x)↓ f(y)| ⇐ G ⇓x↓ y⇓

Equivalently, the gradient of f is upper-bounded by G i.e ≃x → K, ⇓↗f(x)⇓ ⇐ G.

Definition 3 (Smoothness). Let K ↘ Rd. A function f is said to be ϖ-smooth over K if ≃x,y → K
and ≃t → [T ], we have

f(y) ⇐ f(x) + ⇒↗f(x),y ↓ x⇑+ ϖ

2
⇓y ↓ x⇓2

More over, if f is convex and the gradient of f is Lipschitz continuous i.e

⇓↗f(x)↓↗f(y)⇓ ⇐ ϖ ⇓x↓ y⇓

Then f is ϖ-smooth an the two definitions are equivalents.

Definition 4 (ϱp-norm). For p ⇔ 1, we define the ϱp-norm of a vector x → Rd as

⇓x⇓p :=

(
d∑

i=1

|xi|p
)1/p

For most chapters, if not specified otherwise, we will consider the ϱ2-norm and denote it by
⇓ · ⇓ for simplicity of notation. We make the following assumptions on the constraint set K, the
functions ft, t → [T ] and the adjacency matrix that will be used throughout this manuscript.

Assumption 1.2.1. The constraint set K is a compact convex set with diameter D and radius R,
i.e, ≃x,y → K, we have

D := sup
x,y↑K

⇓x↓ y⇓ R := sup
x↑K

⇓x⇓

Assumption 1.2.2. For all t → [T ], the functions ft are G-Lipschitz and ϖ-smooth over K for
some constants G and ϖ.

Assumption 1.2.3. Let W be the adjacency matrix of the communication graph G. We assume
that the graph G is connected and that the matrix W is doubly stochastic with ε(W) the second
largest eigenvalue of W. Then, there exist a smallest integer k0 that verifies :

ε(W) ⇐
(

k0

k0 + 1

)2

1.3 Online Optimization

The concept of online optimization can be cast into a repeated game between a player and an
environment. At each round, the player takes an action and subsequentially receive a loss/reward
from the environment. As the game goes on, the player tries to improves its decision mechanism
based on the outcomes of previous actions and the goal is to minimize (or maximize) the cumulative
loss (reward) over time. As opposed to the concept of batch learning where the data has an
underlying distribution. In online learning, we allow the sequenc to be deterministic, stochastic or
even adversarial. The performance of the player in a long run is often measured by a notion called
regret, which quantifies the gap between the player cumulative loss and the one of the best player
or in other word, how regret the player is for not following the best players actions. This notion of
regret can find its simlarity to the estimation error in the statistical learning theory where we take
the di!erence between the error of a hypothesis with the best one the the hypothesis class. The
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Chapter 1. Introduction

regret can also be interpreted as a measure of robustness as small regret guarentees the performance
of the player is as good as the best player in hindsight.

Formally, let f1, . . . , ft, ft : K ↔ R be a sequence of adversarial convex functions, defined over
a compact convex set K ↘ Rd. At each time t, the agent selects a point xt → K and incurs a loss
ft(xt). The agent then updates its strategy based on the incurred loss. We define regret as the
di!erence between the cumulative loss of the agent and the one of the optimal decision in hindsight,
formally, we note.

RT =
T∑

t=1

ft(xt)↓min
x↑K

T∑

t=1

ft(x) (1.1)

Algorithm 1 Online Learning
1: Input: K, T , x1.
2: for t = 1, 2, . . . , T do

3: Choose a point xt → K
4: Incurs loss ft(xt)
5: Update internal state
6: end for

The study of OCO dates back to the work of [Zinkevich2003] where the author proposed an
online variant of gradient descent algorithm 2. At each time t, the algorithm chooses the next
decision by taking a step in the direction of the negative gradient of the incurred loss. The result-
ing decision may fall outside the feasible set K and therefore must be projected back into the set.
This projection operation is often computationally expensive and may not be practical for certain
problems. Another popular family of algorithms for OCO is the Follow-The-Leader [Kalai2005].
This algorithm is based on the simple idea of choosing a decision in K that minimizes the cumula-
tives of previous losses. Although this algorithm fails to achieve a sublinear regret bound in many
cases [Hazan2016a], it is considered a reference point for many regularized algorithms, namely
Follow-Regularized Leader (FTRL) [Shalev-Shwartz2012, Abernethy2008] and Follow-Perturbed
Leader (FTPL) [Kalai2005,Hannan1958], which have served as one of the underlying mechanisms
for many of the algorithms proposed in this thesis. It should be noted that [Shalev-Shwartz2012]
also o!ers an online variant of the mirror descent algorithm, which is equivalent to FTRL [Shalev-
Shwartz2007] for lazy update with linear loss function, and both algorithms achieve the same regret
bound. For a comprehensive survey of OCO, we refer the reader to [Hazan2016a].

Algorithm 2 Online Gradient Descent
1: Input: K, T,x1.
2: for t = 1, 2, . . . , T do

3: Choose a point xt → K
4: Incurs loss ft(xt)
5: Compute gradient ↗ft(xt)
6: Update xt+1 = PK (xt ↓ ς↗ft(xt))
7: end for

1.3.1 Online Optimization Oracle

An online optimization oracle is a black-box optimization algorithm that solves the online opti-
mization problem. At each time t, the oracle receives a feedback function gt and a constraint set
K, and it must output a decision vt that satisfies the constraint and minimizes (resp. maximizes)
the given optimization problem. One common candidate of an online optimization oracle is the
OGD (algorithm 2). In this case, the feedback function is the gradient of the loss function and the
decision is the result of projection onto the constraint set of the gradient descent step.
A particular case of the online optimization oracle is the online linear oracle (OLO), where the
feedback function is linear. Let ⇒g1, · ⇑ , . . . , ⇒gt, · ⇑ be the sequence of linear loss functions. The
goal of the OLO is to select an extreme point vt → K that minimizes the cumulative loss, i.e.,
vt = argminv↑K

∑t
ω=1 ⇒gω ,v⇑. In the algorithms proposed in this thesis, we will use the OLO as a
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subroutine to solve the online optimization problem. The specificity of each OLO will be detailed
in the corresponding sections.

1.4 Distributed Online Optimization

We consider a network of cooperative agents connected via an undirected graph G = (V, E) and
n sequences of functions fi,1, . . . , fi,T . We suppose f

i
t : K ↔ R is convex and defined on a compact

convex set K ↘ Rd and define the global objective function as :

Ft(x) =
1

n

n∑

i=1

f
i
t (x) ≃t → [T ],x → K (1.2)

where we are interested in finding a sequence generation strategy that minimizes the cumulative
global loss over the time horizon T , which can be formulated as:

min
xt↑K

T∑

t=1

Ft(xt) (1.3)

At each round t, every agent i selects a decision xi
t from a feasible set K and incurs a loss f i

t (x
i
t),

where f
i
t revealed by the environment and is adversarial to the agents. Subsequently, each agent

adjusts its strategy on the basis of the history and current information received from neighboring
agents. At first glance, the problem of Distributed Online Optimization (DOO) may appear simi-
lar to Online Convex Optimization (OCO). However, DOO presents additional challenges. Firstly,
agents are not merely attempting to minimize their individual cumulative loss; they need to co-
operate to optimize the global objective Ft. This is challenging because agents do not have direct
access to the global loss function and only receive partial information on Ft through their local
functions f

i
t . Secondly, the individual decision variable

{
xi
t

}n

i=1
often di!ers for i ↑= j as each

agent’s decision-making process is based on its own local history and information exchange with
neighboring agents. This necessitates careful algorithm design to ensure that the agents reach a
consensus on the strategy that minimizes the cumulative global loss as defined in equation (1.3).
As a result, we consider the following regret formulation, termed individual regret for each agent
i → [n]:

Ri
T =

T∑

t=1

Ft(x
i
t)↓min

x↑K

T∑

t=1

Ft(x) (1.4)

which compares the cumulative global loss on agent’s strategy to that of the optimal decision in
hindsight.The goal derived from this formula is to design algorithms that achieve sublinear regret
for all agents i.e ≃i → [n],Ri

T = o(T ). It’s also worth noting that other regret formulation existe in
the context of DOO such as the network regret, which is defined as:

Rnetwork
T =

1

n

n∑

i=1

T∑

t=1

f
i
t (x

i
t)↓min

x↑K

T∑

t=1

Ft(x) (1.5)

while this formulation have similarities to the previous one, the underlying objective is quite
di!erent since it seeks is to minimize the cumulative loss of all agents in the network. Notably, this
does not inherently necessitates cooperation, as agents can simply choosing strategy that minimize
their own cumulative loss. In this thesis, if not stated otherwise, we will focus on the individual
regret formulation as defined in equation (1.4).

The field of distributed online optimization has witnessed substantial research in recent years,
finding applications in machine learning, game theory, control, and multi-agent systems. Previous
works in this domain include a distributed online projected subgradient descent algorithm intro-
duced by [Yan2013], and a distributed dual averaging technique extended to the online setting
by [Hosseini2013]. [Shahrampour2018] propose a distributed version of the online mirror descent
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algorithm and analyze its convergence properties for both exact and stochastic gradients. [Li2022]
also study distributed gradient descent methods with an additional gradient tracking step, provid-
ing theoretical guarantees for both exact and stochastic gradients. For a comprehensive survey on
recent developments in distributed online optimization, we refer the reader to [Li2023]. In each
chapter, we will present a dedicated section to the related works in the context of the problem at
hand.

1.5 Conditional Gradient Algorithm

The Conditional Gradient Algorithm, also known as the Frank-Wolfe [Frank1956], is a projection-
free method for solving constrained optimization problems. In many machine learning applications,
it is common to requires the model parameters to satisfy certain constraints. For example, to im-
prove memory e"ciency and prevent overfitting, one may require the weights of a machine learning
model to be sparse, which involves constraining the weights to belong to an L1 norm ball. Matrix
completion is another popular constrained optimization problem in recommender systems where
the matrix of user-item ratings is often incomplete. The goal is to fill in the missing entries for
recommendation and a common assumption in matrix completion is that the matrix has low rank
which requires a constraint set to be the nuclear norm ball.

The common approach for solving theses problems is projected gradient descent, where the
solution is projected onto the constraint set at each iteration. However, the projection step is
usually computationally expensive and may not be feasible in many large-scale problems. On the
other hand, the Conditional Gradient Algorithm (Algorithm 3) is a better alternative when the
constraint has a fast linear optimization. The idea of the Frank-Wolfe is to iteratively minimize the

Algorithm 3 Frank-Wolfe Algorithm
1: Input: A constraint set K, x0 → K, T .
2: for t = 1, 2, . . . , T do

3: vt = argminx↑K⇒↗f(xt),x⇑.
4: Choose a step size φt → [0, 1].
5: xt+1 = xt + φt(vt ↓ xt).
6: end for

first order approximation of the objective function and subsequently moving toward an extreme
point, solution of the minimization problem. Specifically, let f : K ↔ R be a di!erentiable convex
function,the Taylor’s expansion of f at a point x → K as follows:

f(x) ↖ f(y) + ⇒↗f(y),x↓ y⇑ ≃y → K (1.6)

Minimizing the right hand side of (1.6) over x → K consist of solving a linear problem ⇒↗f(y),x⇑
that yields a solution v as the extreme point of the constraint set that is mostly correlated with
the negative gradient ↓↗f(y). By moving the current iterate on that direction, the FW algorithm
ensures that all the points are feasible without the need for projection. The details of vanilla FW
is shown in Algorithm 3.

1.5.1 Online Frank-Wolfe

The study of Frank-Wolfe algorithm in online optimization has gained a lot of interest in recent year
since its projection-free nature makes it suitable for designing computational e"cient algorithm.
Online Frank-Wolfe is an online variant of FW that was proposed by [Hazan2012]. In constrast to
the online variant of Gradient Descent [Zinkevich2003] where the previous gradient is su"cient to
update the iterate. The adaptation of vanilla frank-wolfe to the online setting requires a surrogate
objective function Ft that take into account the historical information. As a consequence, OFW
apply the FW steps on this surrogate objective and solve the linear problem that still computational
e"cient in compared to the projection step in Online Gradient Descent.
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Algorithm 4 Online Frank-Wolfe
1: Input: A constraint set K, x0 → K, T .
2: for t = 1, 2, . . . , T do

3: Play xt

4: Observe ft(xt).
5: Ft(x) = ς

∑t
ω=1 ⇒↗fω (xω ),x⇑+ ⇓x↓ x1⇓2

6: vt = argminx↑K⇒↗Ft(xt),x⇑.
7: Choose a step size φt → [0, 1].
8: xt+1 = xt + φt(vt ↓ xt).
9: end for

1.5.2 Motivation Example

To illustrate the e"cient of Frank-Wolfe and Projection algorithm in Online setting, we run two
algorithm on a matrix completion problem [Hazan2012]. We are given a matrix Y → Rm→n with
yij being the rating of user i on item j. The matrix Y is sparse and the goal is to fill the missing
entries by estimating a low rank approximation of the matrix. This problem can formulated as
constraint optimization problem where the feasible region is the nuclear norm ball defined as :

K = {X → Rm→n : ⇓X⇓
↓
⇐ ↼}

where ↼ is the maximal rank of the matrix. We let the objective function is the square loss function
defined as:

f(X) =
1

2

∑

(i,j)

(xij ↓ yij)
2

To project the matrix to the nuclear norm ball, the OGD need to do a full singular value decom-
position of the matrix which is usually take O(mnmin(m,n)). On the other hand, the solving the
linear problem in OGD only need to compute the top-left and right singular vector which take only
linear time. To illustrate the running time of the two algorithm, we run the two algorithm on the
MovieLens100k dataset that has 100k observed entries, 943 users and 1682 items, we set ↼ = 100
and run the two algorithm 6000 iterations. We can see on the right figure of 1.1, the running time
of OGD is significantly higher than OFW. This is due to the fact that OGD takes in average 0.3
seconds to complete one round of computation while the amount for OFW is only 0.01 seconds
which is 30 times faster. More over, the running average loss also so show a better performance of
OFW in compared to OGD.

Figure 1.1: Running time of OGD and OFW on MovieLens100k dataset. Left figure shows the
running average loss of the two algorithms and the right figure show the running time of the two
algorithms.
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1.6 Contributions

In online optimization, an essential component is the feedback from the environment that is
received immediately after a decision is made. For instance, in a game, the player anticipates the
reward of an action to be revealed right after taking the action, or in a classification model, we
would like to receive the true label of the classified example promptly. However, this immediate
feedback might not be available in many real-world problems. A typical scenario for this problem
is online advert placement, where the advertiser only observes the user’s action of clicking or
purchasing the product after a few days or even months. Another typical scenario is in distributed
learning, where devices might have di!erent network or computation configurations. Consequently,
some devices might take longer to receive their feedback at the local level, leading to a delay in
sending or receiving information with neighboring agents. In this scenario, we pose the following
question:

"Can we still achieve an optimal regret bound in a delayed setting with a projection-free
algorithm?"

We address this question in Chapter 2 by proposing a variant of the Meta Frank-Wolfe algorithm
[Chen2018a] that can adapt to delayed feedback in both centralized and distributed settings. In
the centralized setting, we analyze the behavior of the online linear oracle when subjected to
delayed feedback and provide an upper bound on the Euclidean distance between the prediction
of the Online Linear Optimization (OLO) with and without delay. We structure the analysis of
Algorithm 5 around this result. We extend this idea to the distributed setting to derive an analysis
for Algorithm 6, where we demonstrate the dependence of the e!ect of delay on the network
topology. Finally, we provide numerical experiments on simulated and real-world data to illustrate
the performance of our algorithms.

Submodular functions are a class of functions that have extensive applications in machine
learning and optimization problems. One such application is in influential marketing, where the
objective is to identify a subset of influencers that can maximize the spread of information in
the network [Kempe2003]. Another popular application of submodularity is data subset selection,
where the goal is to find an optimal subset of data that is informative enough to train a model
accurately. Finding an optimal subset is NP-hard in general, but an approximate solution can
be obtained by a reformulation as submodular maximization problem [Wei2015]. In Chapter 3,
we study the problem the problem of submodular maximization via a continuous relaxation and
convex minimization in a distributed online setting. We propose a Frank-Wolfe-like algorithm that
requires each agent to compute only one gradient evaluation of the objective function per round,
which is a significant improvement over existing algorithms that require at least O(T 3/2) gradient
computations per agent per round. To achieve this result, we use a blocking procedure to partition
the horizon into blocks and consider the average of the objective function over each block as a virtual
objective function to be optimized. Consequently, each function ft becomes an estimate of the
virtual objective that needs to be queried only once. This idea was first developed by [Zhang2019] in
a centralized manner. We first consider the full information setting for convex and DR-Submodular
functions, where the agent has access to the first-order feedback of the objective function. We then
extend our analysis to the bandit setting, where the agent has access only to zeroth-order feedback
of the objective function. We provide a theoretical guarantee for our algorithms and demonstrate
their performance on a movie recommendation problem.

The era of learning on the edge has opened up many applications in the field of distributed
learning. One application field that has captured our attention is smart buildings, due to their high
environmental implications such as energy consumption, air quality and comfort, and greenhouse
gas emissions. Smart buildings are complex systems that consist of multiple sensors that capture
surrounding environment data, process, and adjust the overall system, on-device and in real-time,
to optimize the energy consumption and occupant comfort. This concept aligns with the framework
of distributed online optimization, where each sensor can be seen as an agent that optimizes its own
objective function (which may be non-convex by nature) while exchanging information with neigh-
boring agents to achieve a global consensus. Inspired by this application, we propose in Chapter 4
a Frank-Wolfe distributed online algorithm that minimizes non-convex loss functions under exact
and stochastic gradient settings. As opposed to the well-studied online convex optimization prob-
lem, the study of online non-convex optimization is still an open research question in the field of
machine learning. In the online convex setting, the performance of an algorithm is often measured
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by the regret (or normalized regret), which is the di!erence between the cumulative loss of the algo-
rithm and that of the best fixed decision in hindsight. However, this measure is not suitable for the
non-convex problem, as finding a global minimum is NP-hard in general. To address this challenge,
we propose a generalized measure of the Frank-Wolfe gap [Lacoste-Julien2016, Jaggi2013] to the
online setting, which we call call the convergence-gap. We provide a convergence rate of O(T↔1/2)
and O(T↔1/4) for the exact and stochastic gradient,respectively. To validate the performance of
the algorithm, we run numerical experiments on a time-series forecasting problem using a real-life
smart building dataset and measure the performance on various network size and topology.

Federated learning has gained significant attention in recent years due to its potential to train
machine learning models on edge devices without the need to transfer data to a central server. This
approach is particularly useful in scenarios where data privacy is a concern, such as in healthcare,
finance, and smart cities. However, training machine learning model on multiple edge devices
can be computationally expensive and energy-consuming, which can be a significant challenge for
devices with limited computational resources. In Chapter 5, we investigate the energy consumption
of federated learning on edge devices. We consider various federated learning algorithms, including
FedAvg, FedAdam, FedYogi, and FedAdaGrad, with di!erents local optimizer and hyperparameters
settings and measure their energy consumption on a real-world dataset. Our experiments show that
the energy consumption of federated learnings varies depending on the time to convergence, which
is influenced by the training configuration. We also highlight the important of client-sampling in
designing energy-e"cient FL algorithm, especially in a cross-silo setting. Our research provides
valuable insights into the energy consumption of federated learning algorithms and sets the stage
for future explorations in this field.
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Tableau 1.1: Notations

Notation Description

G Communication graph

n Total number of agents/devices/users/nodes

W Adjadcency matrix of G

ω(W) Second largest eigen value of W

K Constraint set

PK Projection operator on K

D Diameters of K

R Radius of K

T Time horizon

K Sub-iteration

f i
t Loss function of agent i at time t

xi
t Decision of agent i at time t

xt Average decision at time t

Ft Global loss function at time t

εit,k f i
t (x

i
t,k)→ f i

t (x
i
t,k→1)

dt Delay at time t

G Duality gap

Ri,T The individual regret of agent i at time T

RT The network regret at time T

R The rating matrix where Rij is the rating of user i for item j
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2.1. Introduction

2.1 Introduction

Many machine learning (ML) applications owe their success to factors such as e"cient opti-
mization methods, e!ective system design, robust computation, and the availability of enormous
amounts of data. In a typical situation, ML models are trained in an o#ine and centralized man-
ner. However, in real-life scenarios, significant portions of data are continuously generated locally
at the user level. Learning at the edge naturally emerges as a new paradigm to address such
issues. In this new paradigm, the development of suitable learning techniques has become a crucial
research objective. Responding to the requirements (of this new paradigm), online learning has
been intensively studied in recent years. Its e"cient use of computational resources, adaptabil-
ity to changing environments, scalability, and robustness against uncertainty show promise as an
e!ective approach for edge devices.

However, online learning/online convex optimization (OCO) problems typically assume that
the feedback is immediately received after a decision is made, which is too restrictive in many
real-world scenarios. For example, a common problem in online advertising is the delay that oc-
curs between clicking on an ad and taking subsequent action, such as buying or selling a product.
In distributed systems, the previous assumption is clearly a real issue. Wireless sensor/mobile
networks that exchange information sequentially may experience delays in feedback due to several
problems: connectivity reliability, varying processing/computation times, heterogeneous data and
infrastructures, and unaware-random events. This can lead to di"culties in maintaining coordi-
nation and e"cient data exchange, eventually a!ecting network performance and responsiveness.
Given these scenarios, the straightforward application of traditional OCO algorithms often results
in ine"cient resource utilization because one must wait for feedback before starting another round.
To address this need, this paper focuses on developing algorithms that can adapt to adversarial
delayed feedback in both centralized and distributed settings.

Model. We first describe the delay model in a centralized setting. Given a compact convex set
K ↙ Rd, at every time step t, the decision maker/agent chooses a decision xt → K and su!ers from
a loss function ft : K ↔ R. We denote by dt ⇔ 1 an arbitrary delay value of time t. In contrast
to the classical OCO problem, the feedback of iteration t is revealed at time t+ dt ↓ 1. The agent
does not know dt in advance and is only aware of the feedback of iteration t at time t + dt ↓ 1.
Consequently, at time t, the agent receives feedback from the previous iterations s → Ft, where
Ft = {s : s+ ds ↓ 1 = t}. In other words, Ft is the set of moments before time t such that the
corresponding feedbacks are released at time t. Moreover, the corresponding feedbacks are not
necessarily released in the order of their iterations. The goal is to minimize regret, which is defined
as:

RT :=
T∑

t=1

ft(xt)↓min
x↑K

T∑

t=1

ft(x)

In a distributed setting, we have additionally a set of agents connected over a network, represented
by a graph G = (V, E) where n = |V| is the number of agents. Each agent i → [n] can communicate
with (and only with) its immediate neighbors, that is, adjacent agents in G. At each time t ⇔ 1,
agent i takes a decision xi

t → K and su!ers a partial loss function f
i
t : K ↔ R, which is revealed

adversarially and locally to the agent at time (t+ d
i
t ↓ 1) — again, that is unknown to the agent.

Similarly, denote F i
t = {s : s+d

i
s↓1 = t} as the set of feedbacks revealed to agent i at time t where

d
i
s is the delay of iteration s to agent i. Although the limitation in communication and information,

the agent i is interested in the global loss Ft(.) where Ft(.) =
1
n

∑n
i=1 f

i
t (.). In particular, at time

t, the loss of agent i for chosen xi
t is Ft(xi

t). Note that each agent i does not know Ft but has
only knowledge of f i

t — its observed cost function. The objective here is to minimize regret for all
agents:

RT := max
i

( T∑

t=1

Ft(x
i
t)↓min

x↑K

T∑

t=1

Ft(x)

)

2.1.1 Our contribution

The challenge in designing robust and e"cient algorithms for these problems is to address the
following issues simultaneously:
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Figure 2.1: Illustration of delayed feedback in distributed system. Given a time t, each agent holds
a distinct pool of available gradient feedback from s < t that is ready for computation at the current
time. The pool can also be empty if no feedback is provided.

• Uncertainty (online setting, agents observe their loss functions only after selecting their
decisions).

• Asynchronous (distributed setting with di!erent delayed feedback between agents)

• Partial information (distributed setting, agents know only its local loss functions while at-
tempting to minimize the cumulative loss).

• Low computation/communication resources of agents (so it is desirable that each agent per-
forms a small number of gradient computations and communications).

We introduce performance-guaranteed algorithms in solving the centralized and distributed
constraint online convex optimization problem with adversarial delayed feedback. Our algorithms
achieve an optimal regret bound for centralized and distributed settings. Specifically, we obtain
the regret bound of O(

∝
B) where B is the total delay in the centralized setting and B is the

average total delay over all agents in the distributed setting. Note that, if d is a maximum delay
of each feedback then our regret bound becomes O(

∝
dT ). This result recovers the regret bound

of O(
∝
T ) in the classic setting without delay (i.e., d = 1). Additionally, the algorithms can

be made projection-free by selecting appropriate oracles, allowing them to be implemented in
di!erent contexts based on the computational capacity of local devices. Finally, we illustrate the
practical potential of our algorithms and provide a thorough analysis of their performance which is
predictably explained by our theoretical results. The experiments demonstrate that our proposed
algorithms outperform existing solutions in both synthetic and real-world datasets.

Tableau 2.1: Comparisons to previous algorithms DGD [Quanrud2015] and DOFW [Wan2022a]
on centralized online convex optimization with delays bounded by d. Our algorithms are in bold.

Algorithm Centralized Distributed Adversarial Delay Projection-free Regret

DGD ↭ - ↭ - O(
∝
dT )

DOFW ↭ - ↭ ↭ O(T 3/4 + dT
1/4)

DeLMFW ↭ - ↭ ↭ O(
∝
dT )

De2MFW - ↭ ↭ ↭ O(
∝
dT )
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2.1.2 Related Work

Online Optimization with delayed feedback Over the years, studies on online optimization
with delayed feedback have undergone a swift evolution. [Zinkevich2009] shed light on the field
by focusing on the convergence properties of online stochastic gradient descent with delays. They
provide a regret bound of O(

∝
dT ) with d the delay value if d

2 ⇐ T . Later on, [Quanrud2015]
proposes a centralized (single-agent) gradient descent algorithm under adversarial delays. The
theoretical analysis of [Quanrud2015] entails a regret bound of O(

∝
B), where B is the total delay.

This bound becomes O(
∝
dT ) if d is the upper bound of delays. [Joulani2013] provided a black-

box style method to learn under delayed feedback. They showed that for any non-delayed online
algorithms, the additional regret in the presence of delayed feedback depends on its prediction
drifts. [Cao2021] developed an online saddle point algorithm for convex optimization with feed-
back delays. They achieved a sublinear regret O(

∝
dT ) where d is a fixed constant delay value.

Recently, [Wan2022a] proposed a first Frank-Wolfe-type online algorithm with delayed feedback.
They modified the Online Frank-Wolfe (OFW) for the unknown delays setting and provided a
regret bound of O(T 3/4 + dT

1/4). This is the current state of the art for projection-free (Frank-
Wolfe-type) algorithms with delays. Our bound of O(

∝
dT ) improves over the aforementioned

results.

Distributed Online Optimization. [Yan2013] introduced decentralized online projected sub-
gradient descent and showed vanishing regret for convex and strongly convex functions. In con-
trast, [Hosseini2013] extended distributed dual averaging technique to the online setting, using a
general regularized projection for both unconstrained and constrained optimization. A distributed
variant of online conditional gradient [Hazan2016a] was designed and analyzed in [Zhang2017]
that requires linear minimizers and uses exact gradients. Computing exact gradients may be
prohibitively expensive for moderately sized data and intractable when a closed form does not
exist. [Thang2022] proposes a decentralized online algorithm for convex function using stochas-
tic gradient estimate and multiple optimization oracles. This work achieves the optimal regret
bound of O(T 1/2) and requires multiple gradient evaluation and communication rounds. Later
on, [Nguyen2023] provide a decentralized algorithm that uses stochastic gradient estimate and
reduces communication by using only one gradient evaluation. More recent work on distributed
online optimization with feedback delays is proposed in [Cao2022]. The authors consider a dis-
tributed projected gradient descent algorithm where each agent has a fixed known amount of delay
di. They provide a regret bound of O(

∝
dT ) where d = maxi di but the delays di must be fixed

(non-adversarial).
Despite the growing number of studies on decentralized online learning in recent years, there

is a lack of research that accounts for the adversarial/online delayed feedback. In this paper, we
first present a centralized online algorithm and then extend it to a distributed online variant that
takes an adversarial delay setting into consideration.

2.2 Preliminaries

Online Linear Optimization Oracles In the context of the Frank-Wolfe (FW) algorithm, we
utilize multiple optimization oracles to approximate the gradient of the upcoming loss function by
solving an online linear problem. This approach was first introduced in [Chen2018a]. Specifically,
the online linear problem involves selecting a decision vt → K at every time t → [T ]. The adversary
then reveals a vector gt and loss function ⇒gt, · ⇑ to the oracle. The objective is to minimize the
oracle’s regret. A possible candidate for an online linear oracle is the Follow the Perturbed Leader
algorithm (FTPL) [Kalai2005]. Given a sequence of historical loss functions ⇒gε, · ⇑ , ϱ → [1, t] and
a random vector n drawn uniformly from a probability distribution D, FTPL makes the following
update.

v̂t+1 = argmin
v↑K

{
↽

t∑

ε=1

⇒gε,v⇑+ ⇒n,v⇑
}

(2.1)
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Chapter 2. Distributed Online Optimization with Delayed Feedback

Lemma 2.2.1 (Theorem 5.8 [Hazan2016a]). Given a sequence of linear loss function f1, . . . , fT .
Suppose that Assumptions 1.2.1 and 1.2.2 hold true. Let D be a the uniform distribution over
hypercube [0, 1]m. The regret of FTPL is

RT,O ⇐ ↽DG
2
T +

1

↽

∝
mD

where ↽ is learning rate of algorithm.

Delay Mechanism We consider the following delay mechanism. At round t, the agent receives
a set of delayed gradient ↗fs(xs) from previous rounds s ⇐ t such that s + ds ↓ 1 = t, where ds

is the delay value of iteration s. We denote by Ft = {s : s+ ds ↓ 1 = t} the set of indices released
at round t. Following this setting, the feedback of round t is released at time t + dt ↓ 1, and the
case dt = 1 is considered as no delay. We suppose that the delay value is unknown to the agent
and make no assumption about the set Ft. Consequently it is possible for the set to be empty
at any particular round. We extend the aforementioned mechanism to the distributed setting by
assuming that each agent has a unique delay value at each round t → [T ]. The delay value of agent
i at round t is denoted by d

i
t, and the set of delayed feedbacks of agent i at round t is denoted by

F i
t =

{
s : s+ d

i
s ↓ 1 = t

}
, which is distinct between agents.

2.3 Centralized Algorithm

We describe the procedure of Algorithm 5 in details. At each round t, the agent performs two
blocks of operations: prediction and update. During the prediction block, the agent performs K

iterations of FW updates by querying solutions from the oracles Ok, k → [K] and updates the sub-
iterate vector xt,k+1 using a convex combination of the previous one and the oracle’s output. The
agent then plays the final decision xt = xt,K+1 and incurs a loss ft(xt) which may not be revealed
at t due to delay. From the mechanism described in Section 2.2, there exists a set of gradient
feedbacks from the previous rounds revealed at t whose indices are in Ft. The update block
involves observing the delayed gradients evaluated at K sub-iterates of rounds s → Ft, computing
surrogate gradients {gt,k, k → [K]} by summing the delayed gradients and feeding them back to
the oracles {Ok, k → K}.

In our algorithm, the agent employs a suite of online linear optimization oracles, denoted
O1, . . . ,OK . These oracles utilize feedbacks accumulated from previous rounds to estimate the
gradient of the upcoming loss function. However, in the delay setting, these estimations may be
perturbed owing to a lack of information. For example, if there is no feedback from rounds t to t

↗,
that is, Fs = ′ for s → [t, t↗], the oracles will resort to the information available in round t ↓ 1 to
estimate the gradient of all rounds from t + 1 to t

↗ + 1. As a result, the oracle’s output remains
unchanged for these rounds, and decisions {xs : s → [t+ 1, t↗ + 1]} are not improved. Our analysis
for Algorithms 5 and 6 will be focused on assessing the impact of delayed feedback on the oracle’s
output.

The proof of Theorem 2.3.1 necessitates Lemmas 2.3.1 and 2.3.2. The former provides a bound
on the di!erence between the predictions of FTPL with and without delayed feedback at round
t, which depends on the number of unrevealed feedbacks. The latter establishes a bound on the
primal at a sub-iterate k in terms of the previous sub-iterate k↓1 and the gradient feedback. This
bound is crucial for the analysis of the regret of Algorithm 5. We will first prove Lemma 2.3.1 and
Lemma 2.3.2 before moving on to the proof of Theorem 2.3.1.

Lemma 2.3.1. Let v̂t be the FTPL prediction defined in Equation (2.1) and

vt = argmin
v↑K

{
↽

t↔1∑

ε=1

〈
∑

s↑Fω

gs,v


+ ⇒n,v⇑

}
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2.3. Centralized Algorithm

the prediction of FTPL with delayed feedback. For all t → [T ], we have:

⇓vt ↓ v̂t⇓ ⇐ ↽DG

∑

s<t

I{s+ds>t}

Proof. Recall from Lemma 2.2.1 that n is drawn from D, the uniform distribution over the hy-
percube [0, 1]m. Then D is (⇀, L)-stable with respect to the Euclidean norm such that ⇀ ⇐

∝
m

and L ⇐ 1 [Hazan2016a]. Let ft be a linear function defined as ft = ⇒gt, · ⇑. For ease of analysis,
we call ût = ↽

∑t↔1
ε=1 gε and ut = ↽

∑t↔1
ε=1

∑
s↑Fω

gs. We define ht(n) = argminv↑K {⇒n,v⇑}. By
definition of v̂t and vt, we have

v̂t = E [ht(n+ ût)] =



n
ht(n+ ût)p(n)dn =



n
ht(n)p(n↓ ût)dn (2.2)

and

vt = E [ht(n+ u)] =



n
ht(n)p(n↓ u)dn (2.3)

where p is the density function. From linearity of expectation and Cauchy-Schwarz inequality,

⇓vt ↓ v̂t⇓ ⇐


n
⇓ht(n)⇓ |p(n↓ u)↓ p(n↓ ût)|dn

=



n
⇓ht(n)↓ ht(0)⇓ |p(n↓ u)↓ p(n↓ ût)|dn

⇐ D



n
|p(n↓ u)↓ p(n↓ ût)|dn

⇐ DL ⇓u↓ ût⇓

⇐ ↽DLG

∑

s<t

I{s+ds>t} (2.4)

The first inequality follows from the fact that ht(n) and ht(0) are in K. The second inequality is
due to the stability of the distribution D. Since each function is G-Lipschitz, the distance between
u and ût is bounded by G multiplied by the number of functions whose feedback is not received
at time t, leading to the last inequality.

Algorithm 5 DeLMFW
Input: Constraint set K, number of iterations T , sub-iteration K, online oracles {Ok}

K
k=1, step sizes

ϑk ↑ (0, 1]

1: for t = 1 to T do

2: Initialize arbitrarily xt,1 ↑ K

3: for k = 1 to K do

4: Query vt,k from oracle Ok.

5: xt,k+1 ↓ (1→ ϑk)xt,k + ϑkvt,k.

6: end for

7: xt ↓ xt,K+1, play xt and incurs loss ft(xt)
8: Receive Ft = {s ↑ [T ] : s+ ds → 1 = t}
9: if Ft = ↔ then

10: do nothing

11: else

12: for k = 1 to K do

13: gt,k ↓
∑

s↑Ft
↗fs(xs,k)

14: Feedback ↘gt,k, · ≃ to oracles Ok.

15: end for

16: end if

17: end for

19



Chapter 2. Distributed Online Optimization with Delayed Feedback

Lemma 2.3.2 ( [Thang2022]). For every t → [T ] and k → [K]. Define ht,k = ft(xt,k+1) ↓ ft(x↓)
let A = max(3, G

ϑD ) and ςk = min(1, A
k ), it holds that

ht,k = ft(xt,k+1)↓ ft(x
↓) ⇐ 2ϖAD

2

k
+

k∑

k→=1

ςk→

(
k

ε=k→+1

(1↓ ςε)

)
⇒↗ft,k→ ,vt,k→ ↓ x↓⇑ (2.5)

Proof. See Lemma 2.7.1.

Theorem 2.3.1. Given a constraint set K. Let A = max

3, G

ϑD


, ςk = min

{
1, A

k

}
, and K =

∝
T .

Suppose that Assumptions 1.2.1 and 1.2.2 hold true. If we choose FTPL as the underlying oracle
and set ↽ = 1

G
↘
B

, the regret of Algorithm 5 is

T∑

t=1

[ft(xt)↓ ft(x
↓)] ⇐ 2ϖAD

2
∝
T + 3(A+ 1)


DG

∝
B +RT,O


(2.6)

where B =
∑T

t=1 dt, the sum of all delay values and RT,O is the regret of FTPL with respect to
the current choice of ↽.

Proof. Let xt,1, . . . ,xt,K+1 be the sequence of sub-iterate for a fixed time step t. Using Frank-Wolfe
updates and smoothness of ft, we have

ft(xt,k+1)↓ ft(x
↓) = ft(xt,k + ςk(vt,k ↓ xt,k))↓ ft(x

↓)

⇐ ft(xt,k)↓ ft(x
↓) + ςk ⇒↗ft,k,vt,k ↓ xt,k⇑+ ς

2
k
ϖ

2
⇓vt,k ↓ xt,k⇓2

⇐ ft(xt,k)↓ ft(x
↓) + ςk ⇒↗ft,k,vt,k ↓ xt,k⇑+ ς

2
k
ϖD

2

2
(K is bounded)

⇐ ft(xt,k)↓ ft(x
↓) + ςk [⇒↗ft,k,vt,k ↓ x↓⇑+ ⇒↗ft,k,x

↓ ↓ xt,k⇑] + ς
2
k
ϖD

2

2

⇐ ft(xt,k)↓ ft(x
↓) + ςk [⇒↗ft,k,vt,k ↓ x↓⇑+ ft(x

↓)↓ ft(xt,k)] + ς
2
k
ϖD

2

2

⇐ (1↓ ςk) [ft(xt,k)↓ ft(x
↓)] + ςk ⇒↗ft,k,vt,k ↓ x↓⇑+ ς

2
k
ϖD

2

2
(2.7)

Let ht,k = ft(xt,k+1)↓ ft(x↓), equation (2.7) becomes

ht,k ⇐ (1↓ ςk)ht,k↔1 + ςk ⇒↗ft,k,vt,k ↓ x↓⇑+ ς
2
k
ϖD

2

2
(2.8)

A direct application of Lemma 2.3.2 for k = K yields

ft(xt,K+1)↓ ft(x
↓) ⇐ 2ϖAD

2

K
+

K∑

k→=1

ςk→


K

ε=k+1

(1↓ ςε)


⇒↗ft,k,vt,k ↓ x↓⇑ (2.9)

Following the notation from Algorithm 5 and Lemma 2.3.1. For a fixed time t and any sub-iterate
k, vt,k and v̂t,k are respectively the predictions of the oracle Ok under delayed and non-delayed
feedback, the scalar product of equation (2.9) over T -round is written as

T∑

t=1

⇒↗ft,k,vt,k ↓ x↓⇑ =
T∑

t=1

⇒↗ft,k,vt,k ↓ v̂t,k⇑+
T∑

t=1

⇒↗ft,k, v̂t,k ↓ x↓⇑

⇐
T∑

t=1

⇒↗ft,k,vt,k ↓ v̂t,k⇑+
T∑

t=1

⇒↗ft,k, v̂t,k ↓ x↓⇑ (2.10)

In the first term on the right hand side of Equation (2.10), using the Cauchy-Schwartz inequality
and Lemma 2.3.1, we have

T∑

t=1

⇒↗ft,k,vt,k ↓ v̂t,k⇑ ⇐
T∑

t=1

⇓↗ft,k⇓ ⇓vt,k ↓ v̂t,k⇓ ⇐ ↽DG
2

T∑

t=1

∑

s<t

Is+ds>t ⇐ ↽DG
2
B (2.11)
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Recall that the objective function of the oracle Ok in non-delay setting is ⇒↗ft,k, · ⇑ and v̂t,k is
its prediction at time t, the second term of Equation (2.10) is bounded by the regret of Ok in
non-delay setting, RT,O. Specifically, we have

T∑

t=1

⇒↗ft,k, v̂t,k⇑ ⇐ min
x↑K

T∑

t=1

⇒↗ft,k,x⇑+RT,O ⇐
T∑

t=1

⇒↗ft,k,x
↓⇑+RT,O (2.12)

Recall that xt = xt,K+1, combining Equations (2.10) to (2.12) and summing Equation (2.9) over
T -rounds yields

T∑

t=1

[ft(xt)↓ ft(x
↓)] ⇐ 2ϖAD

2

K
T +

K∑

k→=1

ςk→


K

ε=k+1

(1↓ ςε)



↽DG

2
B +RT,O


(2.13)

Let ςk = A
k , we have

K

k→=k+1

(1↓ ςk→) ⇐ e
↔

∑K
k→=k+1 ϖk→ ⇐ e

↔
∑K

k→=ω
A
k→ ⇐ e

↔A
∫ K
k+2 ds/s ⇐

(
k + 2

K

)A

(2.14)

We have then,
K∑

k=1

ςk


K

k→=k+1

(1↓ ςk→)


⇐ min


1,

A

K


+min


1,

A

K ↓ 1


+min


1,

A

K ↓ 2


+

K↔3∑

k=1

A

k


k + 2

K

A

⇐3min


1,

A

K ↓ 2


+

A

K

K↔3∑

k=1

k + 2

k


k + 2

K

A↔1

⇐ 3 +
3A

K

K↔3∑

k=1


k + 2

K

A↔1

⇐ 3(A+ 1) (2.15)

From Equation (2.15), we deduce that
T∑

t=1

[ft(xt)↓ ft(x
↓)] ⇐ 2ϖAD

2

K
T +

K∑

k→=1

ςk→

(
K

ε=k+1

(1↓ ςε)

)

↽DG

2
B +RT,O



⇐ 2ϖAD
2

K
T + 3(A+ 1)


↽DG

2
B +RT,O



(2.16)

The theorem follows by letting ↽ = 1
G
↘
B

, K =
∝
T and choosing the oracle as FTPL with regret

RT,O.

Discussion The regret bound of Theorem 2.3.1 di!ers from that of the non-delayed MFW
[Chen2018a] by the additive term DG

∝
B which represents the total cost of sending delayed feed-

back to the oracles over T rounds (Lemma 2.3.1). If we assume that there exists a maximum value
d such that dt ⇐ d for all t → [T ]. Our regret bound becomes O(

∝
dT ) which coincides with the set-

ting in [Wan2022a], a delayed-feedback FW algorithm that achieves O(T 3/4+dT
1/4). Another line

of work is from [Joulani2013], a framework that addresses delayed feedback for any base algorithm.
By considering MFW as the base algorithm, their theoretical analysis suggests that the algorithm
also achieves O(

∝
dT ) regret bound. However, their delay value is not completely unknown to the

agent because it is time-stamped by maintaining multiple copies of the base algorithm. We em-
pirically show in Section 2.5 that this algorithm is highly susceptible to high delay values. Instead
of using FTPL, our algorithm has the flexibility to select any online algorithm as an oracle, for
example, Online Gradient Descent [Hazan2016a].

2.4 Distributed Algorithm

In this section, we extend Algorithm 5 to a distributed setting in which multiple agents collabo-
ratively optimize a global model. Our setting considers a fully distributed framework, characterized
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Chapter 2. Distributed Online Optimization with Delayed Feedback

by the absence of a server to coordinate the learning process. The setup is outlined as described
in Section 1.2.

At a high level, each agent maintains K copies of the oracles Oi
1, · · · ,Oi

K while performing
prediction and update at every round t. The prediction block consists of performing K FW-steps
while incorporating the neighbors’ information. Specifically, the agent computes at its local level
during the K steps a local average decision yi

t,k representing a weighted aggregation of its neighbor’s
current sub-iterates. The update vector is convex combination of the local average decision and
the oracle’s output. The final decision of agent xi

t is disclosed at the end of K steps. Lemma 2.7.2
shows that yi

t,k is a local estimation of the global average xt,k = 1
n

∑n
i=1 x

i
t,k as K increases.

Following the K FW-steps, the update block employs K gradient updates utilizing the de-
layed feedback from previous rounds. The agent observes the delayed gradients evaluated on theirs
corresponding subiterates and computes the local average gradient di

t,k through a weighted aggre-
gation of the neighbors’ current surrogates (18). The agent updates the surrogate gradient via a
gradient-tracking step (19) to ensure that it approaches the global gradient as K increases. It is
worth noting that feedback provided to the oracle contains information about delays experienced
by all neighboring agents. Consequently, the oracle Oi

k observes delayed feedback from ∞j↑N (i)Fj
t

instead of F i
t . This result highlights the dependency on the connectivity of the communication

graph when considering the e!ect of delayed feedback to the oracle’s output.

Theorem 2.4.1. Given a constraint set K. Let A = max

3, 3G

2ϑD ,
2ϑCd+Cg

ϑD


, ςk = min

{
1, A

k

}
,

and K =
∝
T . Suppose that Assumptions 1.2.1 and 1.2.2 hold true. If we choose FTPL as the

underlying oracle and set ↽ = 1
G
↘
B

, the regret of Algorithm 6 is

T∑

t=1


Ft(x

i
t)↓ Ft(x

↓)

⇐


GCd + 2ϖAD

2
∝

T + 3(A+ 1)

(
2
∝
nDG

(
ε (W)

1↓ ε(W)
+ 1

)∝
B +RT,O

)

where B = 1
n

∑n
i=1 Bi such that Bi is the sum of all delay values of agent i. Cd = k0

∝
nD

and Cg =
∝
nmax


ε(W)


G+ ϑD

1↔ϱ(W)


, k0ϖ (4Cd +AD)


and RT,O is the regret of FTPL with

respect to the current choice of ↽.

2.4.1 Technical Analysis

Before proceeding to analysis, we introduce some additional notations that will be used specifically
for distributed setting. For any vector xi → Rd

, ≃i → [n], we note xcat → Rdn a column vector
defined as xcat :=


x1≃

, . . . ,xn≃
≃. Let x be the average of xi over i → [n], the vector xcat is a

dn-vector where we stack n-times x i.e xcat :=

x≃

, . . . ,x≃

. For simplicity of notation, we note

↗f
i
t (x

i
t,k) := ↗f

i
t,k and ↗Ft,k := 1

n

∑n
i=1 ↗f

i
t,k. In order to incorporate the delay of agents at each

time-step t, we define ↗f
cat
t,k as described above using the sum of agent’s delay feedback, we note

then

↗f
cat
t,k =




∑

s↑F1
t

↗f
1≃
s,k , . . . ,

∑

s↑Fn
t

↗f
n≃
s,k




≃

(2.17)

and its homologous in the non-delay setting by ↗f̂
cat
t,k =

[
↗f

1≃
t,k , . . . ,↗f

n≃
t,k

]≃
. The variables

dcat
t,k , d̂

cat
t,k and gcat

t,k , ĝ
cat
t,k are defined similarly as described. Lastly, we define the slack variable

ωit,k := ↗f
i
t,k ↓↗f

i
t,k↔1, then the definition of ωt,k, ωcatt,k and ω

cat
t,k followed.

The proof of Theorem 2.4.1 is structured as follows:

• In Lemma 2.4.3, we establish a bound on the distance between the output of the FTPL
oracle with delayed feedback and its counterpart in the non-delayed setting in the dis-
tributed case.

• We utilize two important results, Lemmas 2.4.1 and 2.4.2, to bound the decreasing
distance between the decision/gradient local estimates and the global average.
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2.4. Distributed Algorithm

• The main derivation of the proof combines Lemmas 2.4.1 and 2.4.2 and uses Lemma 2.3.2
to establish an upper bound on the primal gap at time t (2.22). We then apply
Lemma 2.4.3 and the regret of the oracle in the non-delay setting to complete the main
part (2.23).

• The final derivation directly applies proposition 2.7.1 to bound the agent regret (2.24).

The detailed proof of the theorem is provided in the following section. We postpone some
missing proofs to the end of this chapter.

Lemma 2.4.1. Define Cd = k0
∝
nD, for all t → [T ], k → [K], we have

max
i↑[1,n]

∥∥yi
t,k ↓ xt,k

∥∥ ⇐ Cd

k
(2.18)

Proof. See Lemma 2.7.2.

Lemma 2.4.2. Define Cg =
∝
nmax


ε(W)


G+ ϑD

1↔ϱ(W)


, k0ϖ (4Cd +AD)


and recall the def-

inition of ↗Ft,k := 1
n

∑n
i=1 ↗f

i
t,k. For all t → [T ], k → [K], we have

max
i↑[1,n]

∥∥di
t,k ↓↗Ft,k

∥∥ ⇐ Cg

k
(2.19)

Proof. See Lemma 2.7.3.

Lemma 2.4.3. For all t → [T ], k → [K] and i → [n]. Let vi
t,k be the output of the oracle Oi

k

with delayed feedback and v̂i
t,k its homologous in non-delay case. Suppose that Assumptions 1.2.1

and 1.2.2 hold true. Choosing FTPL as the oracle, we have:

∥∥vi
t,k ↓ v̂i

t,k

∥∥ ⇐ 2↽
∝
nDG


ε (W)

1↓ ε(W)
+ 1


1

n

n∑

i=1

∑

s⇐t

I{s+di
s>t} (2.20)

where ↽ is the learning rate, ε(W) is the second-largest eigenvalue of W.

Algorithm 6 De2MFW
Input: Constraint set K, number of iterations T , sub-iterations K, online linear optimization oracles{
O

i
k : k ↑ [K]

}
for each agent i ↑ [n], step sizes ϑk ↑ (0, 1]

1: for t = 1 to T do

2: for every agent i = 1 to n do

3: Initialize arbitrarily xi
t,1 ↑ K

4: for k = 1 to K do

5: Query vi
t,k from oracle O

i
k

6: Exchange xi
t,k with neighbours N (i)

7: yi
t,k ↓

∑
j wijx

j
t,k

8: xt
i,k+1 ↓ (1→ ϑk)y

i
t,k + ϑkv

i
t,k

9: end for

10: xt
t ↓ xt

t,K+1, play xi
t and incurs loss f i

t (x
i
t)

11: Receive F
i
t =

{
s ↑ [T ] : s+ dis → 1 = t

}

12: if F
i
t = ↔ then

13: do nothing

14: else

15: gi
t,1 ↓

∑
s↑Fi

t
↗f i

s(x
i
s,1)

16: for k = 1 to K do

17: Exchange gi
t,k with neighbours N (i)

18: di
t,k ↓

∑
j↑N (i) wijg

j
t,k

19: gi
t,k+1 ↓

∑
s↑Fi

t

(
↗f i

s(x
i
s,k+1)→↗f i

s(x
i
s,k)

)
+ di

t,k

20: Feedback ↘di
t,k, · ≃ to oracles Oi,k

21: end for

22: end if

23: end for

24: end for
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Proof. See Lemma 2.7.4.

2.4.2 Proof of Theorem 2.4.1

Proof. Using smoothness, convexity of Ft and Frank-Wolfe updates, we have

Ft(xt,k+1)↓ Ft(x
↓) = Ft

(
xt,k + ςk

(
1

n

n∑

i=1

vi
t,k ↓ xt,k

))
↓ Ft(x

↓)

⇐Ft(xt,k)↓ Ft(x
↓) + ςk

〈
↗Ft(xt,k),

1

n

n∑

i=1

vi
t,k ↓ xt,k


+ ς

2
k
ϖ

2

∥∥∥∥∥
1

n

n∑

i=1

vi
t,k ↓ xt,k

∥∥∥∥∥

2

⇐Ft(xt,k)↓ Ft(x
↓) +

ςk

n

〈
↗Ft(xt,k),v

i
t,k ↓ xt,k

〉
+ ς

2
k
ϖD

2

2
(2.21)

⇐Ft(xt,k)↓ Ft(x
↓) +

ςk

n

n∑

i=1

〈
↗Ft(xt,k),v

i
t,k ↓ x↓

〉
+ ⇒↗Ft(xt,k),x

↓ ↓ xt,k⇑

+ ς

2
k
ϖD

2

2

⇐ (1↓ ςk) [Ft(xt,k)↓ Ft(x
↓)] +

ςk

n

n∑

i=1

〈
↗Ft(xt,k),v

i
t,k ↓ x↓

〉
+ ς

2
k
ϖD

2

2

⇐ (1↓ ςk) [Ft(xt,k)↓ Ft(x
↓)] +

ςk

n

n∑

i=1

〈
↗Ft(xt,k),v

i
t,k ↓ v̂i

t,k

〉
+

〈
↗Ft(xt,k), v̂

i
t,k ↓ x↓

〉
+ ς

2
k
ϖD

2

2

⇐ (1↓ ςk) [Ft(xt,k)↓ Ft(x
↓)] +

ςk

n

n∑

i=1

[〈
↗Ft(xt,k),v

i
t,k ↓ v̂i

t,k

〉
+

〈
d̂i
t,k, v̂

i
t,k ↓ x↓

〉]
+ ςk

2ϖCd + Cg

k
D + ς

2
k
ϖD

2

2

where the last inequality followed by observing that

〈
↗Ft(xt,k), v̂

i
t,k ↓ x↓

〉
=

〈
↗Ft(xt,k)↓↗Ft,k, v̂

i
t,k ↓ x↓

〉
+

〈
↗Ft,k, v̂

i
t,k ↓ x↓

〉

=
〈
↗Ft(xt,k)↓↗Ft,k, v̂

i
t,k ↓ x↓

〉
+
〈
↗Ft,k ↓ d̂i

t,k, v̂
i
t,k ↓ x↓

〉
+
〈
d̂i
t,k, v̂

i
t,k ↓ x↓

〉

⇐

ϖ
∥∥xt,k ↓ xi

t,k

∥∥+
∥∥∥↗Ft,k ↓ d̂i

t,k

∥∥∥

D +

〈
d̂i
t,k, v̂

i
t,k ↓ x↓

〉

⇐ 2ϖCd + Cg

k
D +

〈
d̂i
t,k, v̂

i
t,k ↓ x↓

〉

where the last two steps are direct application of Lemmas 2.4.1 and 2.4.2. Let A = max

3, 3G

2ϑD ,
2ϑCd+Cg

ϑD



and ςk = A
k , from Lemma 2.3.2 we have

Ft(xt,K+1)↓ Ft(x
↓) ⇐ 2ϖAD

2

K
+

1

n

n∑

i=1

K∑

k=1

ςk


K

ε=k+1

(1↓ ςε)

 [〈
d̂i
t,k, v̂

i
t,k ↓ x↓

〉
+
〈
↗Ft(xt,k),v

i
t,k ↓ v̂i

t,k

〉]

(2.22)

Summing equation (2.22) over T -rounds yields,

T∑

t=1

[Ft(xt)↓ Ft(x
↓)] ⇐ 2ϖAD

2
T

K
+

1

n

n∑

i=1

K∑

k=1

ςk

K

ε=k+1

(1↓ ςε)
T∑

t=1

[〈
d̂i
t,k, v̂

i
t,k ↓ x↓

〉
+
〈
↗Ft(xt,k),v

i
t,k ↓ v̂i

t,k

〉]

⇐2ϖAD2
T

K
+

1

n

n∑

i=1

K∑

k=1

ςk

K

ε=k+1

(1↓ ςε)



RT,O + 2↽
∝
nDG

2

(
ε(W)

1↓ ε(W)
+ 1

)
1

n

n∑

i=1

T∑

t=1

∑

s⇐t

I{s+di
s>t}





⇐2ϖAD2
T

K
+ 3(A+ 1)



RT,O + 2↽
∝
nDG

2

(
ε(W)

1↓ ε(W)
+ 1

)
1

n

n∑

i=1

T∑

t=1

∑

s⇐t

I{s+di
s>t}



 (2.23)
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From equation (2.23), we deduce that, for all i → [n],

T∑

t=1


Ft(x

i
t)↓ Ft(x

↓)

⇐

T∑

t=1


Ft(x

i
t)↓ Ft(xt)


+

T∑

t=1

[Ft(xt)↓ Ft(x
↓)]

⇐
T∑

t=1

G
∥∥xi

t ↓ xt

∥∥+
T∑

t=1

[Ft(xt)↓ Ft(x
↓)]

⇐GCdT

K
+

T∑

t=1

[Ft(xt)↓ Ft(x
↓)]

⇐GCd + 2ϖAD
2

K
T + 3(A+ 1)


RT,O + 2↽

∝
nDG

2

(
ε(W)

1↓ ε(W)
+ 1

)
1

n

n∑

i=1

T∑

t=1

∑

s<t

I{s+di
s>t}



⇐GCd + 2ϖAD
2

K
T + 3(A+ 1)


RT,O + 2↽

∝
nDG

2

(
ε(W)

1↓ ε(W)
+ 1

)
1

n

n∑

i=1

Bi



(2.24)

The theorem follows by letting ↽ = 1
G
↘
B

, K =
∝
T and B = 1

n

∑n
i=1 Bi. This concludes the

proof.

2.5 Numerical Experiments

We evaluated the performance of our algorithms on the online multiclass logistic regression prob-
lem using two datasets: MNIST and FashionMNIST. MNIST is a well-known hand digit dataset
containing 60000 grayscale images of size (28 ∈ 28), divided into 10 classes, and FashionMNIST
includes images of fashion products with the same configuration. We conducted the experiment
using Julia 1.7 on MacOS 13.3 with 16GB of memory.

Centralized Setting Given an iteration t, the agent receives a subset Bt of the form bt =
{at, yt} → Rm∈{1, . . . , C}, consisting of the features vector at and the corresponding label yt. We
define the loss function ft as

ft(x) = ↓
∑

bt↑Bt

C∑

c=1

{
y
i
t = c

}
log

exp
〈
xc,ai

t

〉
∑C

ε=1 exp
〈
xε,ai

t

〉 (2.25)

where x must satisfy the constraint x → K such that K =
{
x → Rm→C

, ⇓x⇓1 ⇐ r
}
. Using the

MNIST dataset, we note m = 784, C = 10, r = 8, |Bt| = 60 and a total of T = 1000 rounds. To
evaluate the performance of the algorithm under di!erent delay regimes, we generated a random
sequence of delays dt such that dt ⇐ d for d → {21, 41, 61, 81, 101}. We compared the performance
of DeLMFW against DOFW [Wan2022a], a projection-free algorithm with adversarial delay, and
BOLD-MFW [Joulani2013], an online learning framework designed to handle delayed feedback.
Figure 2.2 displays the performance of the three algorithms under various delay regimes. In the
absence of delay, that is, d = 1 (left figure), DeLMFW and BOLD-MFW have the same performance
since both algorithms reduce to MFW [Chen2018a] with a regret of O(

∝
T ). Meanwhile, DOFW is

the classical OFW [Hazan2012] that guarantees a regret of O(T 3/4). The analysis in Theorem 2.3.1
suggests that DeLMFW achieves a regret of O(

∝
dT ) when the delay is upper-bounded by d. In

the case where d ⇐ T
1/2 (middle figure, d = 21), the dominant term in DOFW is T

3/4 whereas
DeLMFW takes advantage by incurring a regret of order

∝
dT ⇐ T

3/4. For d ⇔ T
1/2 (right figure,

d = 101), DOFW’s regret is dominated by the term dT
1/4, which is outperformed by DeLMFW,

particularly for high values of d. This result confirms our theoretical analysis in Section 2.3.
Figure 2.3 illustrates the total loss of DeLMFW and the other two algorithms when increasing d

to show the sensitivity of each algorithm in the presence of delays. As BOLD is a general framework
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Chapter 2. Distributed Online Optimization with Delayed Feedback

Figure 2.2: Cumulative Loss Comparison for Di!erent Delays Regimes. Left : Without delay.
Middle : Maximal delay 21. Right : Maximal delay 101

Figure 2.3: Total loss of BOLD-MFW, DOFW and DeLMFW when varying delay value.

that can be applied to any base algorithm, it is noticeable that it is susceptible to high levels of
delays. This phenomenon has also been observed in [Wan2022a] when utilizing BOLD with OFW,
highlighting the need for a customized design algorithms in the context of delayed feedback.

Distributed Setting In the second experiment, we examined the distributed online multiclass
logistic regression problem on the FashionMNIST dataset, using a network of 30 agents. The al-
gorithm was run on four di!erent topologies, including Erdos-Renyi, Complete, Grid, and Cycle.
At each iteration t → [T ], each agent i received a subset Bi

t of the form
{
ai
t, y

i
t

}
→ Rd ∈ {1, . . . , C},

which consisted of the feature vector ai
t and its corresponding label yit. The goal was to collabora-

tively optimize the global loss function Ft(x) =
1
n

∑n
i=1 f

i
t (x), where the local loss f

i
t was defined

in Equation (2.25).

For this experiment, we set m = 784, C = 10, r = 32, |Bi
t| = 2 and T = 1000 rounds. We

are interested in examining the e!ect of delays on network performance, and thus randomly select
f < n agents to have delayed feedback with a maximum value of 501. We compared the total loss
on each topology under these conditions, and present the result in Figure 2.4. We observe that the
presence of delayed agents has a significant impact on the network performance of Cycle graph as
the number of delayed agents increases, while the Complete graph is less a!ected. This result is
consistent with the analysis in Section 2.4 because the delay term in the regret bound depends on
the connectivity of the communication graph.

In Table 2.2, we report the change in total loss when increasing the number of delayed agents.
We observe that the average percentage change is smaller for Grid than for Erdos-Renyi when
compared with the network of non-delayed agents (f = 0). This result indicate that the generated
Erdos-Renyi graph is more sensitive to the presence of delayed agents.
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Figure 2.4: Total Loss with varying numbers of agents experiencing delayed feedback in the network.
(f = 0) for no delayed-agents.

Tableau 2.2: Total Loss of the algorithm running on 4 di!erent topology. We randomly select
f < n agents to have delay with maximal value to be 501. In parenthesis, the percentage of total
loss compared that of no delayed agents in the network (i.e f = 0).

f

Topology
Erd!s-Rényi Grid Complete Cycle

0 809.37 855.62 799.49 925.72

2 820.15 (+1.3%) 852.15 (-0.4%) 798.79 (-0.08%) 932.34 (+0.7%)

5 834.74 (+3.0%) 868.52 (+1.4%) 802.59 (+0.3%) 971.24 (+4.7%)

10 838.74 (+3.5%) 878.04 (+2.5%) 792.45 (-0.8%) 983.89 (+6.0%)

20 850.49 (+4.9%) 902.30 (+5.3%) 812.21 (+1.5%) 1119.24 (+18.9%)

2.6 Concluding Remarks

In this chapter, we propose two algorithms for solving the online convex optimization problem
with adversarial delayed feedback in both centralized and decentralized settings. These algorithms
achieve optimal O(

∝
dT ) regret bounds, where d is the upper bound of the delays. The exper-

imental results show that our algorithms outperform existing solutions in both centralized and
decentralized settings, which are predictable by our theoretical analysis. Although the algorithms
achieve good performance guarantees for the online convex optimization problem with adversar-
ial delays, they currently rely on exact gradients, which may not be feasible for many real-world
applications. Therefore, future research could explore the use of stochastic gradients with vari-
ance reduction techniques. Additionally, in decentralized settings, communication delays can be
practically challenging, and further improvements are needed in this area. Nevertheless, our work
demonstrates the potential of using Frank-Wolfe-type algorithms for solving constraint convex
optimization problems under adversarial delays, which is beneficial for learning on edge devices.
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2.7 Missing proofs of Chapter 2

Lemma 2.7.1 ( [Thang2022]). For every t → [T ] and k → [K]. Define ht,k = ft(xt,k+1) ↓ ft(x↓)
let A = max(3, G

ϑD ) and ςk = min(1, A
k ), it holds that

ht,k = ft(xt,k+1)↓ ft(x
↓) ⇐ 2ϖAD

2

k
+

k∑

k→=1

ςk→

(
k

ε=k→+1

(1↓ ςε)

)
⇒↗ft,k→ ,vt,k→ ↓ x↓⇑ (2.26)

Proof. The proof is based on an induction on k. For k = 1, ς1 = 1, we have ht,1 = ft(xt,2) ↓
ft(x↓) ⇐ GD since ft is G-Lipschitz and the constraint set K is bounded by D (Assumptions 1.2.1
and 1.2.2). More over, we have 2ϖAD

2 + ⇒↗ft,1,xt,1 ↓ x↓⇑ ⇔ 2ϖAD
2 ↓ ⇒↗ft,1,xt,1 ↓ x↓⇑ ⇔

2ϖAD2 ↓ GD ⇔ GD by assuming A ⇔ G
ϑD . We have then ht,1 ⇐ 2ϖAD

2 + ⇒↗ft,1,xt,1 ↓ x↓⇑
Assume that the inequality holds for k ↓ 1, we now prove for k. By definition of ht,k, we have

ht,k ⇐ (1↓ ςk)ht,k↔1 + ςk ⇒↗ft,k,vt,k ↓ x↓⇑+ ς
2
k
ϖD

2

2

⇐ (1↓ ςk)


2ϖAD

2

k ↓ 1
+

k↔1∑

k→=1

ςk→

(
k↔1

ε=k→+1

(1↓ ςε)

)
⇒↗ft,k→ ,vt,k→ ↓ x↓⇑



+ ςk ⇒↗ft,k,vt,k ↓ x↓⇑+ ς
2
k
ϖD

2

2

⇐ (1↓ ςk)


2ϖAD

2

k ↓ 1
+

k↔1∑

k→=1

ςk→


k↔1

ε=k→+1

(1↓ ςε)


⇒↗ft,k→ ,vt,k→ ↓ x↓⇑



+ ςk

k

ε=k+1

(1↓ ςε) ⇒↗ft,k,vt,k ↓ x↓⇑+ ς
2
k
ϖD

2

2

⇐ (1↓ ςk)
2ϖAD

2

k ↓ 1
+
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
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ε=k→+1

(1↓ ςε)


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k
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2
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+

k∑

k→=1

ςk→


k

ε=k→+1

(1↓ ςε)


⇒↗ft,k→ ,vt,k→ ↓ x↓⇑+ ς

2
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2

2

⇐ 2ϖAD
2
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↓ 2ϖA2

D
2

k (k ↓ 1)
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ϖA
2
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2k2
+
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
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(1↓ ςε)


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
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(1↓ ςε)


⇒↗ft,k→ ,vt,k→ ↓ x↓⇑
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
k

ε=k→+1

(1↓ ςε)


⇒↗ft,k→ ,vt,k→ ↓ x↓⇑
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k(k ↓ 1)
+

k∑

k→=1
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
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k
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
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where the last inequality follows from the fact that ϖA2 ⇔ 2ϖA for A ⇔ 3 and 1
k↔1↓

1
k(k↔1) ⇐

1
k .

Proposition 2.7.1. In the analysis, we make use of the following bounds

∥∥xt,k ↓ xi
t,k

∥∥ ⇐ 2Cd

k
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∥∥xi
t,k+1 ↓ xi

t,k

∥∥ ⇐ 4Cd +AD

k

Proof of claim. For the first bound, recall the definition of FW-update in Algorithm 6 and using
Lemma 2.7.2, we have

∥∥xt,k ↓ xi
t,k

∥∥ =
∥∥(1↓ ςk↔1)


xt,k↔1 ↓ yi

t,k↔1


+ ςk↔1


vt,k↔1 ↓ vi

t,k↔1

∥∥

⇐ Cd

k ↓ 1
↓ ACd

(k ↓ 1)2
+

AD

k ↓ 1
⇐ Cd

k ↓ 1
↓


ACd

(k ↓ 1)2
↓ AD

k ↓ 1



⇐ Cd

k ↓ 1
↓

ACd ↓AD

(k ↓ 1)2


⇐ Cd

k ↓ 1
⇐ 2Cd

k

Applying the first bound on the second one yields
∥∥xi

t,k+1 ↓ xi
t,k

∥∥ ⇐
∥∥xi

t,k+1 ↓ xt,k+1

∥∥+ ⇓xt,k+1 ↓ xt,k⇓+
∥∥xt,k ↓ xi

t,k

∥∥

⇐ 2Cd

k + 1
+

AD

k
+

2Cd

k

⇐ 4Cd +AD

k

Lemma 2.7.2 (Lemma 2.4.1). Define Cd = k0
∝
nD, for all t → [T ], k → [K], we have

max
i↑[1,n]

∥∥yi
t,k ↓ xt,k

∥∥ ⇐ Cd

k
(2.27)

Proof. We prove the lemma by induction, we first note that

∥∥ycat
t,k ↓ xcat

t,k

∥∥ =

∥∥∥∥(W ∋ Id)x
cat
t,k ↓

(
1

n
1n1

T
n

)
xcat
t,k

∥∥∥∥

=

∥∥∥∥

(
W ↓ 1

n
1n1

T
n

)
∋ Id


xcat
t,k

∥∥∥∥

=

∥∥∥∥

(
W ↓ 1

n
1n1

T
n

)
∋ Id

 
xcat
t,k ↓ xcat

t,k

∥∥∥∥

⇐ ε(W)
∥∥xcat

t,k ↓ xcat
t,k

∥∥ (2.28)

Let Cd = k0
∝
nD, the base case is verified for k → [1, k0] since

∥∥∥xcat
t,k ↓ xcat

t,k

∥∥∥ ⇐
∝
nD ⇐ Cd

k .
Suppose that the hypothesis is verified for k ↓ 1 ⇔ k0, we have

∥∥ycat
t,k ↓ xcat

t,k

∥∥ ⇐ ε(W)
∥∥xcat

t,k ↓ xcat
t,k

∥∥

= ε(W)
∥∥(1↓ ςk↔1)


ycat
t,k↔1 ↓ xcat

t,k↔1


+ ςk↔1


vcat
t,k↔1 ↓ vcat

t,k↔1

∥∥

⇐ ε(W)
∥∥ycat

t,k↔1 ↓ xcat
t,k↔1

∥∥+ ε(W)

∝
nD

k ↓ 1

⇐ ε(W)

(
Cd +

∝
nD

k ↓ 1

)

⇐ ε(W)Cd
k0 + 1

k0(k ↓ 1)

⇐ Cd

k
(2.29)

where we use the induction hypothesis in the third inequality and the last inequality follows the
fact that ε(W) k0+1

k0(k↔1) ⇐
k↔1
k · 1

k↔1 ⇐ 1
k . We conclude the proof by noting that

max
i↑[1,n]

∥∥yi
t,k ↓ xt,k

∥∥ ⇐

√√√√
n∑

i=1

∥∥∥yi
t,k ↓ xt,k

∥∥∥
2
=

∥∥ycat
t,k ↓ xcat

t,k

∥∥ ⇐ Cd

k
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Lemma 2.7.3 (Lemma 2.4.2). Define Cg =
∝
nmax


ε(W)


G+ ϑD

1↔ϱ(W)


, k0ϖ (4Cd +AD)



and recall the definition of ↗Ft,k := 1
n

∑n
i=1 ↗f

i
t,k. For all t → [T ], k → [K], we have

max
i↑[1,n]

∥∥di
t,k ↓↗Ft,k

∥∥ ⇐ Cg

k
(2.30)

Proof. We prove the lemma by induction. Following the idea from [Xie2019], we have

∥∥∥d̂cat
t,k ↓↗F

cat
t,k

∥∥∥ =

∥∥∥∥(W ∋ Id) ĝ
cat
t,k ↓

(
1

n
1n1

T
n

)
ĝcat
t,k

∥∥∥∥

=

∥∥∥∥

(
W ↓ 1

n
1n1

T
n

)
∋ Id


ĝcat
t,k

∥∥∥∥

=

∥∥∥∥

(
W ↓ 1

n
1n1

T
n

)
∋ Id

 
ĝcat
t,k ↓↗F

cat
t,k

∥∥∥∥

⇐ ε(W)
∥∥ĝcat

t,k ↓↗F
cat
t,k

∥∥ (2.31)

where the third equality and the last inequality are verified since

W ·↗F
cat
t,k =

1

n
1n1

T
n ·↗F

cat
t,k = ↗F

cat
t,k and

∥∥∥∥W ↓ 1

n
1n1

T
n

∥∥∥∥ ⇐ ε(W)

by [Koloskova2019, Lemma 16, (see appendix A)]. Using the gradient tracking step and Equa-
tion (2.31), we have

∥∥∥d̂cat
t,k ↓↗F

cat
t,k

∥∥∥ ⇐ ε(W)
∥∥ĝcat

t,k ↓↗F
cat
t,k

∥∥

= ε(W)
∥∥∥ωcatt,k + d̂cat

t,k↔1 ↓↗F
cat
t,k +↗F

cat
t,k↔1 ↓↗F

cat
t,k↔1

∥∥∥

⇐ ε(W)
∥∥∥d̂cat

t,k↔1 ↓↗F
cat
t,k↔1

∥∥∥+
∥∥∥ωcatt,k ↓ ω

cat
t,k

∥∥∥


⇐ ε(W)
∥∥∥d̂cat

t,k↔1 ↓↗F
cat
t,k↔1

∥∥∥+
∥∥ωcatt,k

∥∥


(2.32)

where the last inequality holds since

∥∥∥ωcatt,k ↓ ω
cat
t,k

∥∥∥
2
=

n∑

i=1

∥∥ωit,k ↓ ωt,k
∥∥2 =

n∑

i=1

∥∥ωit,k
∥∥2 ↓ n

∥∥ωt,k
∥∥2 ⇐

n∑

i=1

∥∥ωit,k
∥∥2 =

∥∥ωcatt,k

∥∥2 (2.33)

Moreover, using the smoothness of ft and Proposition 2.7.1, we have

∥∥ωcatt,k

∥∥2 =
n∑

i=1

∥∥ωit,k
∥∥2 ⇐

n∑

i=1

∥∥↗f
i
t,k ↓↗f

i
t,k↔1

∥∥2 ⇐
n∑

i=1

ϖ
2
∥∥xi

t,k ↓ xi
t,k↔1

∥∥2

⇐ nϖ
2

(
4Cd +AD

k ↓ 1

)2

(2.34)

Thus, we have
∥∥∥ωcatt,k

∥∥∥ ⇐
∝
nϖ

4Cd+AD
k↔1 . For the base case k = 1, we have

∥∥∥d̂cat
t,1 ↓↗F

cat
t,1

∥∥∥
2
=

∥∥∥∥

(
W ↓ 1

n
1n1

T
n

)
∋ Id


ĝcat
t,1

∥∥∥∥
2

⇐ ε
2(W)

∥∥ĝcat
t,1

∥∥2 ⇐ ε
2(W)

n∑

i=1

∥∥↗f
i
t,1

∥∥2 ⇐ nε
2(W)G2 (2.35)
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2.7. Missing proofs of Chapter 2

We have then
∥∥∥d̂cat

t,1 ↓↗F
cat
t,1

∥∥∥ ⇐
∝
nε(W)G. For k → (1, k0], by Equation (2.32)

∥∥∥d̂cat
t,k ↓↗F

cat
t,k

∥∥∥ ⇐ ε(W)
∥∥∥d̂cat

t,k↔1 ↓↗F
cat
t,k↔1

∥∥∥+
∥∥ωcatt,k

∥∥


⇐ ε(W)
∥∥∥d̂cat

t,k↔1 ↓↗F
cat
t,k↔1

∥∥∥+
√

nϖ2D2


⇐ ε
k↔1(W)

∥∥∥d̂cat
t,1 ↓↗F

cat
t,1

∥∥∥+
k∑

ω=1

ε
ω (W)

∝
nϖD

⇐ ε
k(W)

∝
nG+

ε(W)

1↓ ε(W)

∝
nϖD

⇐ ε(W)
∝
n

(
G+

ϖD

1↓ ε(W)

)

where in the second inequality, we use smoothness of ft and bound the distance
∥∥∥xi

t,k ↓ xi
t,k↔1

∥∥∥
by the diameters D. The third inequality resulted from applying the previous one recursively for
k → {1, . . . , k ↓ 1}. Using Taylor’s expansion of ε(W) and the bound in Equation (2.35), we obtain
the fourth inequality.

Let Cg =
∝
nmax


ε(W)


G+ ϑD

1↔ϱ(W)


, k0ϖ (4Cd +AD)


. We claim that

∥∥∥d̂cat
t,k↔1 ↓↗F

cat
t,k↔1

∥∥∥ ⇐ Cg

k ↓ 1

for all k ↓ 1 ⇔ k0. We prove the claim for round k. Using Equation (2.32), we have
∥∥∥d̂cat

t,k ↓↗F
cat
t,k

∥∥∥ ⇐ ε(W)
∥∥∥d̂cat

t,k↔1 ↓↗F
cat
t,k↔1

∥∥∥+
∥∥ωcatt,k

∥∥


⇐ ε(W)

(
Cg

k ↓ 1
+
∝
nϖ

4Cd +AD

k ↓ 1

)

⇐ ε(W)

(
Cg +

∝
nϖ (4Cd +AD)

k ↓ 1

)

⇐ ε(W)

(
Cg

k0 + 1

k0(k ↓ 1)

)

⇐ Cg

k
(2.36)

where the second inequality followed by the induction hypothesis and Equation (2.34). The fourth
inequality is a consequence of the definition of Cg and the final inequality resulted from the fact
that ε(W) k0+1

k0(k↔1) ⇐
1
k as k > k0. We conclude the proof by noting that

max
i↑[1,n]

∥∥∥d̂i
t,k ↓↗Ft,k

∥∥∥ ⇐

√√√√
n∑

i=1

∥∥∥d̂i
t,k ↓↗Ft,k

∥∥∥
2
=

∥∥∥d̂cat
t,k ↓↗F

cat
t,k

∥∥∥ ⇐ Cg

k

Lemma 2.7.4 (Lemma 2.4.3). For all t → [T ], k → [K] and i → [n]. Let vi
t,k be the output

of the oracle Oi
k with delayed feedback and v̂i

t,k its homologous in non-delay case. Suppose that
Assumptions 1.2.1 and 1.2.2 hold true. Choosing FTPL as the oracle, we have:

∥∥vi
t,k ↓ v̂i

t,k

∥∥ ⇐ 2↽
∝
nDG


ε (W)

1↓ ε(W)
+ 1


1

n

n∑

i=1

∑

s⇐t

I{s+di
s>t} (2.37)

where ↽ is the learning rate, ε(W) is the second-largest eigenvalue of W.

Proof. We call ui
t = ↽

∑t
ε=1 d

i
ε the accumulated delayed feedback of the oracle of agent i and

ûi
t = ↽

∑t
ε=1 d̂

i
ε its homologous in non-delay setting. Using the same computation in the proof of
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Lemma 2.3.1, we have

∥∥vi
t,k ↓ v̂i

t,k

∥∥ ⇐ D
∥∥ui

t,k ↓ ûi
t,k

∥∥ ⇐ D
∥∥ucat

t,k ↓ ûcat
t,k

∥∥ ⇐ ↽D

∥∥∥∥∥

t∑

ε=1

[
dcat
ε,k ↓ d̂cat

ε,k

]∥∥∥∥∥ (2.38)

By the definition ↗f
cat
t,k and ↗f̂

cat
t,k from equation (2.17), we have

t∑

ε=1

[
↗f

cat
ε,k ↓↗f̂

cat
ε,k

]
=

∑

s<t


↗f

1≃
s,k I{s+d1

s>t}, . . . ,↗f
n≃
s,k I{s+dn

s >t},
≃ (2.39)

and using the expansion

dcat
t,k =

k↔1∑

ω=1

(
Wk↔ω ↓ 1

n
1n1

T
n

)
∋ Id

 
↗f

cat
t,ω+1 ↓↗f

cat
t,ω



+

(
Wk ↓ 1

n
1n1

T
n

)
∋ Id


↗f

cat
t,1 +

(
1

n
1n1

T
n ∋ Id

)
↗f

cat
t,k (2.40)

from proposition 5, we bound the RHS of equation (2.38) as follows:
∥∥∥∥∥

t∑

ε=1

[
dcat
ε,k ↓ d̂cat

ε,k

]∥∥∥∥∥ ⇐
k↔1∑
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∥∥∥∥
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1n1
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∥∥∥∥∥
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∥∥∥∥
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n
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T
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∋ Id

∥∥∥∥

∥∥∥∥∥
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↗f
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ε,1 ↓ f̂
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ε,1

]∥∥∥∥∥+
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1

n
1n1

T
n ∋ Id

)∥∥∥∥∥
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ε=1
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↗f
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ε,k

]∥∥∥∥∥
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√√√√
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s,1I{s+di
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ε
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s⇐t

√√√√
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i=1

I{s+di
s>t} +G
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s⇐t

√√√√
n∑
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I{s+di
s>t}

⇐ 2G


ε(W)

1↓ ε(W)
+ 1

∑

s⇐t

√√√√
n∑

i=1

I{s+di
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⇐ 2
∝
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
ε(W)

1↓ ε(W)
+ 1

∑
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1

n

n∑
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n∑
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s>t}

where the (a) resulted from Lipschitzness of ft.
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3.1. Introduction

3.1 Introduction

Learning over data generated by sensors and mobile devices has gained a high interest in
recent years due to the continual interaction with users and the environment on a timely basis.
The patterns related to user’s behavior, preference, and the surrounding stochastic events become
a promising source for machine learning applications to be more and more reliable. However,
collecting such data in a centralized location has become problematic due to privacy concerns and
the high cost of data transfer over the network. Consequently, the learning methods that can
leave the data locally while e"ciently exploiting data patterns, such as decentralized learning, are
emerging as an alternative to traditional centralized learning.

Under the optimization scheme, learning in a decentralized manner consists of multiple in-
terconnected agents cooperating to optimize a global objective function where each agent de-
tains partial information of the interested function. Several works [Deori2016, Reisizadeh2019,
Yuan2016, Duchi2012, Zheng2018] have considered this setting for convex and strongly convex
functions. [Wai2017] also study the problem when the objective function is generally non-convex
whereas [Mokhtari2018b,Xie2019] proposes a decentralized algorithm to maximize monotone sub-
modular functions for both continuous and discrete domains. However, these works only consider
the o#ine setting which is not realistic since data constantly evolve in many real-world applica-
tions. In this chapter, we study decentralized online algorithms for optimizing both convex and
submodular functions.

Problem definition. Formally, we are given a compact convex set K ↙ Rd (w.l.o.g one can
assume that K ↙ [0, 1]d) and a set of agents connected over a network as introduced in Section 1.2.
At every time t → [T ], each agent i → V can communicate with (and only with) its immediate
neighbors and takes a decision xi

t → K. Subsequently, a cost/reward function f
i
t : K ↔ R is

revealed adversarially and locally to agent i. Note that in the bandit setting, agent i observes only
the value f

i
t (x

i
t) instead of the whole function f

i
t . Although each agent i observes only function

f
i
t (or the value f

i
t (x

i
t) in the bandit setting), agent i is interested in the cumulating cost/reward

Ft( · ) = 1
n

∑n
j=1 f

j
t ( · ). In particular, at time t, the cost/reward of agent i with the its chosen xi

t

is Ft(xi
t).

In the context of convex minimization, the functions f i
t ’s are convex and the goal of each agent

i is to minimize the total cumulating cost
∑T

t=1 Ft(xi
t) via local communication with its immediate

neighbors. Our objective is to design an algorithm with small regret. An online algorithm is
RT -regret if for every agent 1 ⇐ i ⇐ n,

T∑

t=1

Ft(x
i
t)↓min

x↑K

T∑

t=1

Ft(x) ⇐ RT

In the context of monotone DR-submodular maximization, the functions f i
t ’s are monotone DR-

submodular. Roughly speaking, a bounded di!erentiable and non-negative function F : [0, 1]d ↔
R+ is DR-submodular if for every x,y → [0, 1]d satisfying xi ⇐ yi, ≃i → [d], we have ↗F (x) ⇔
↗F (y). The goal of each agent i is to maximize the total cumulating reward

∑T
t=1 Ft(xi

t), again
via local communication with its immediate neighbors. Our objective is to design an algorithm
with an approximation ratio as close to 1 as possible and together with a small regret. An online
algorithm has a ϑ-regret of RT if for every agent 1 ⇐ i ⇐ n,

ϑ · max
x↑K

T∑

t=1

Ft(x)↓
T∑

t=1

Ft(x
i
t) ⇐ RT

3.1.1 Our contribution

The challenge in designing robust and e"cient algorithms for these problems is to simultaneously
address the following issues:

• Uncertainty (online setting, agents observe their loss functions only after selecting their
decisions).

• Partial information (decentralized setting, agents know only its local loss functions while
attempting to minimize the cumulated cost).
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• Low computation/communication resources of agents (so it is desirable that each agent per-
forms a small number of gradient computations and communications).

• Additionally, in the bandit setting, one has only limited feedback (agents can only observe
the function value of their decisions).

We present performance-guaranteed algorithms for solving the constraint convex and contin-
uous DR-submodular optimization problem in the decentralized and online setting with only one
gradient evaluation and low communications per agent per time step on average. Specifically, our
algorithms achieve the regret and the


1↓ 1

e


-regret bounds of O(T 4/5) for both convex and mono-

tone continuous DR-submodular functions. Using a one-point gradient estimator [Flaxman2005],
we extend the algorithms to the bandit setting in which the gradient is unavailable to the agents.
We obtain the


1↓ 1

e


-regret bound of O(T 8/9) for the bandit setting. It should be noted that the

1↓ 1
e


-regret of O(T 4/5) and O(T 8/9) matches the regret guarantees in the centralized online set-

tings. Besides, one can convert the algorithm to be projection-free (by selecting suitable oracles).
This property allows the algorithm to be implemented in various contexts based on the computing
capacity of local devices. We demonstrate the practical application of our algorithm on a Movie
Recommendation problem and present a thorough analysis of di!erent aspects of the performance
guarantee, the e!ects of network topology, and decentralization, which are predictably explained
by our theoretical results.

Algorithm Stochastic (1↓ 1/e)-Regret Communications Gradient

Gradient Evaluations

DMFW Yes O(T 1/2) 2 ·T 3/2
T

3/2

Monode-FW Yes O(T 4/5) 2 · #neighbors 1

Bandit Monode-FW - O(T 8/9) 2 · #neighbors -

Tableau 3.1: Comparison of previous work on adversarial decentralized online monotone DR-
submodular maximization (DMFW [Zhu2021]) and our proposed algorithms (in bold). The com-
munications and gradient evaluations are mesured per agent per time step.

3.1.2 Related Works

Distributed Online Optimization. [Zhang2017] introduces a distributed variant of the online
conditional gradient, which is designed and analyzed in their work. Another study by [Wan2022b]
proposes a distributed online conditional gradient algorithm that achieves the same regret bound
as [Zhang2017] but requires only sublinear communication rounds. However, computing exact
gradients may be prohibitively expensive for moderately sized data and intractable when a closed-
form solution does not exist. Many works propose stochastic variants, but only for gradient descent
methods, such as those presented by [Shahrampour2018] and [Li2022]. For conditional gradient
algorithms, [Zhu2021] proposes a decentralized online algorithm for maximizing monotone sub-
modular functions on a time-varying network using stochastic gradient estimates and multiple op-
timization oracles. This work achieves the optimal regret bound of O(T 1/2) but requires O(T 3/2)
gradient evaluations and communications per function. [Thang2022] also proposes a decentralized
online algorithm for convex functions using stochastic gradient estimates and multiple optimization
oracles, achieving the optimal regret bound for static networks. In this work, we advance further
by designing a distributed algorithm that uses stochastic gradient estimates and requires only one
gradient evaluation.

Monotone DR-submodular Maximization. The maximization of monotone DR-submodular
functions has been investigated in both o#ine and online settings. For the o#ine case, [Bian2017]
examined the problem where the constraint set is a down-closed convex set and demonstrated that
the greedy method [Calinescu2011], a variation of the Frank-Wolfe algorithm, ensures a (1↓ 1/e)-
approximation. [Hassani2017] demonstrated the restriction of the greedy method in a stochastic
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environment where only unbiased gradient estimates are available. Later, [Mokhtari2018a] intro-
duced an algorithm for maximizing monotone DR-submodular function over the general convex
set using new variance reduction techniques to accomplish (1 ↓ 1/e)-approximation in a stochas-
tic setting. [Chen2018a] suggested a method that achieves (1↓ 1/e,O(

∝
T ))-regret for maximizing

monotone Dr-submodular over a general convex set in an online setting. Subsequently, [Zhang2019]
introduced an approach that reduces the number of per-function gradient evaluations from T

3/2

to 1, while maintaining the same approximation ratio of (1 ↓ 1/e). They also presented a bandit
approach that achieves an expected (1 ↓ 1/e)-approximation ratio with regret T

8/9 to tackle the
same problem.

3.2 Preliminaries and Notations

Following the notations defined in Section 1.2, we use boldface letter e.g x to represent vectors
and we denote by xi

q,k the decision vector of agent i at time step k of phase q. If not specified
otherwise, we suppose that the constraint set K is a compact convex set with diameters D and
radius R i.e (Assumption 1.2.1). For two vectors x,y → Rd, we note x ⇐ y if xi ⇐ yi ≃i. We note
Bd and Sd the d-dimensional unit ball and the unit sphere, respectively.

A continuous function F : [0, 1]d ↔ R+ is DR-submodular if for any vectors x, y → [0, 1]d

such that x ⇐ y, for a constant ↼ > 0 and any basis vectors ei = (0, . . . , 1, . . . , 0) such that
x+ ↼ei → [0, 1]d and y + ↼ei → [0, 1]d.

F (x+ ↼ei)↓ F (x) ⇔ F (y + ↼ei)↓ F (y) (3.1)

For a di!erentiable function, the DR-property is equivalent to ↗F (x) ⇔ ↗F (y), ≃x ⇐ y → [0, 1]d.
More over, if F is twice-di!erentiable, the DR-property is equivalent to all entries of the Hessian
matrix being non-positive i.e ≃1 ⇐ i, j ⇐ d, ς2F

ςxiςxj
⇐ 0. A function F is monotone if ≃x ⇐ y →

[0, 1]d, we have F (x) ⇐ F (y).
In this chapter, we employ optimization oracles in our algorithm to solve an online linear

optimization problem given a feedback function and a constraint set. In particular, in the online
linear optimization problem, one must choose ut → K at every time 1 ⇐ t ⇐ T . The adversary
then discloses a vector dt and feedbacks the cost function ⇒ · ,dt⇑ where the goal is to minimize
the regret of the linear objective. Several algorithms [Hazan2016a], including the projection-free
follow-the-perturbed-leader algorithm o!er an optimum regret bound of RT = O(

∝
T ) for the

online linear optimization problem. One of these methods can be used as an oracle to solve the
online linear optimization problem.

In practice, it may not be possible to use a full gradient due to the vast quantity of data and
processing restrictions. To address this issue, our approach utilizes an unbiased stochastic gradient
in place of the gradient and proposes a variance reduction technique for distributed optimization
based on a rigorous analysis that may be applied to problems of independent interest. Additional
to the assumptions defined in Section 1.2, we make the following assumptions for the next two
sections.

Assumption 3.2.1. The function ft verifies Assumption 1.2.2 and its stochastic gradient ↗̃ft(x)

is unbiased, uniformly upper-bounded and has a bounded variance, i.e., E
[
↗̃ft(x)

]
= ↗ft(x),

∥∥∥↗̃ft(x)
∥∥∥ ⇐ G0, and E

∥∥∥↗̃ft(x)↓↗ft(x)
∥∥∥
2

⇐ ⇀

2
0.

Assumption 3.2.2. For all t → [T ] and i → [n], △B → R+ s.t supx↑K |f i
t (x)| ⇐ B

Assumption 3.2.3. There exist a number r ⇔ 0 such that rBd ↙ K

37



Chapter 3. Distributed Online Algorithm for DR-Submodular Optimization

3.3 Full Information Setting

This section thoroughly describes the algorithm for both convex and DR-submodular optimiza-
tion. Recall that each agent receives a function f

i
t at every time t → [T ]. We partition time steps

into Q blocks, each of size K so that T = QK. For each block q → [Q], we define f
i
q as the average

of the K functions within the block. Additionally, each agent 1 ⇐ i ⇐ n maintains K online linear
optimization oracles Oi,1, . . . ,Oi,K . Let ⇀q → SK be a random permutation of function indexes
for all agents.

At a high level, at each block q, the agent i performs K-steps of Frank-Wolfe algorithm, where
the update vector is a combination of the oracles’ outputs and the aggregate of its neighbors’
current decisions. The final decision xi

q for the block q is disclosed at the end of K steps, such
that at each time step in the block, agent i plays the same decision xi

q.
More specifically, following the Frank-Wolfe steps, agent i performs K gradient updates using

the estimators f i
φq(k)

. It calculates the stochastic gradient of the permuted function f
i
φq(k)

evaluated
at the corresponding decision vector xi

q,k and thereafter exchanges information with its neighbors.
It then computes a variance reduction version ãi

q,k of the vector d̃i
q,k and returns ⇒ãi

q,k, · ⇑ as the
cost function at time ⇀

↔1
q (k) to the oracle Oi

k. The vectors d̃i
q,k are subtly constructed to capture

progressively more information on the accumulating cost functions.
Note that the use of random permutation ⇀q is crucial here. By that, all the permuted functions

f
i
φq(k)

become an estimation of f i
q, i.e., E[f i

φq(k)
] = f

i
q. Therefore the gradient of f i

φq(k)
is likewise an

estimation of the gradient of f i
q. One can think of f i

q as an artificial objective function for which we
have access to its gradient estimates, where each estimation is one gradient evaluation per function
within the block. As a result, conducting K gradient updates of f i

q turns out to be executing one
gradient update for each of the K functions. Using this approach, initiated in [Zhang2019], we can
e!ectively reduce the gradient evaluation number to 1 for each arriving function f

i
t .

Since we deal with both convex and submodular, there are modifications to adapt for both
kinds of optimization problem. The online optimization oracle’s objective function should be
minimized for convex optimization and maximized for submodular optimization. The decision
update for convex problems is a convex combination of the aggregated neighbors’ decisions yi

q,k

and the oracle’s output vi
q,k, i.e.,

xi
q,k+1 = (1↓ ςk)y

i
q,k + ςkv

i
q,k, ςk → [0, 1] (3.2)

whereas the update for the submodular optimization problem is achieved by shifting the aggregated
decisions towards the direction of the oracle’s output by a step-size ςk, i.e.,

xi
q,k+1 = yi

q,k + ςkv
i
q,k, ςk → [0, 1] (3.3)

For convex functions, the initialization can be any random point inside the constraint set, however
for submodular functions, this value should be set to 0. We give a formal description in Algorithm 9.

Theorem 3.3.1 (Convex Case). Given a convex set K and assume that Ft is convex. Setting
Q = T

2/5
,K = T

3/5
, T = QK and step-size ςk = 1

k . Let ϑk = 2
(k+3)2/3

and ϑk = 1.5
(K↔k+2)2/3

when
k →


1, K

2


and k →


K
2 + 1,K


respectively. Then, the expected regret of Algorithm 9 is at most

E [RT ] ⇐

GD + 2ϖD2


T

2/5 +

C + 6D


N +

∝
M


T

4/5 +
3

5
ϖD

2
T

2/5 log(T ) (3.4)

where N = k0 ·nGmax{ε2


1 + 2

1↔ϱ2


, 2} and M = max{M1,M2} where M0 = 4


V

2
d + ⇀

2
1


+

128V 2
d , M1 = max


52/3


Vd + 2

42/3
G0

2
,M0


and M2 = 2.55


V

2
d + ⇀

2
1


+

28V 2
d

3

Theorem 3.3.2 (Submodular Case). Given a convex set K and assume that the function Ft

is monotone continuous DR-submodular. Setting Q = T
2/5

,K = T
3/5

, T = QK and step-size
ςk = 1

K . Let ϑk = 2
(k+3)2/3

and ϑk = 1.5
(K↔k+2)2/3

when k →

1, K

2 + 1


and k →

K
2 + 2,K



respectively. Then, the expected

1↓ 1

e


-regret is at most

E [RT ] ⇐
3

2
ϖD

2
T

2/5 +

C + 3D(N +

∝
M


T

4/5 (3.5)

where the constants are defined in Theorem 3.3.1
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Algorithm 7 Monode Frank-Wolfe
Input: A convex set K, a time horizon T , a block size K, online linear optimization oracles
Oi,1, . . . ,Oi,K for each agent 1 ⇐ i ⇐ n, step sizes ςk → (0, 1) for all 1 ⇐ k ⇐ K, number of blocks
Q = T/K

1: Initialize linear optimizing oracle Oi
k for all 1 ⇐ k ⇐ K

2: for q = 1 to Q do

3: for every agent 1 ⇐ i ⇐ n do

4: Initialize xi
q,1 and set ãt

i,0 ▽ 0
5: for 1 ⇐ k ⇐ K do

6: Let vi
q,k be the output of oracle Oi

k at phase q.
7: Send xi

q,k to all neighbours N(i)

8: Once receiving xj
q,k from all neighbours j → N(i), set yi

q,k ▽
∑

j Wijx
j
q,k.

9: Update xi
q,k+1 as (3.2) or (3.3).

10: end for

11: Choose xi
q ▽ xi

q,K+1 and agent i plays the same xi
q for every time t in phase q.

12: Let ⇀q be a random permutation of 1, . . . ,K — times in phase q.
13: for 1 ⇐ k ⇐ K do

14: Let s = ⇀
↔1
q (k)

15: Query the values of ↗̃f
i
k(x

i
q,s)

16: end for

17: Set g̃i
q,1 ▽ ↗̃f

i
φq(1)

(xi
q,1)

18: for 1 ⇐ k ⇐ K do

19: Send g̃i
q,k to all neighbours N(i).

20: After receiving g̃j
q,k from all neighbours j → N (i), compute d̃i

q,k ▽
∑

j↑N(i) Wij g̃
j
q,k and

g̃i
q,k+1 ▽


↗̃f

i
φq(k+1)(x

i
q,k+1)↓ ↗̃f

i
φq(k)

(xi
q,k)


+ d̃i

q,k

21: ãi
q,k ▽ (1↓ ϑk) · ãi

q,k↔1 + ϑk · d̃i
q,k.

22: Feedback function ⇒ãi
q,k, · ⇑ to oracles Oi

k. (The cost of the oracle Oi
k at block q is

⇒ãi
q,k,v

i
q,k⇑.)

23: end for

24: end for

25: end for

As stated in the preceding paragraph, the distinction between convex and submodular optimiza-
tion can be found in line 9 of Algorithm 9 and in the oracle optimization subroutine. To achieve
the regret bound mentioned in Theorems 3.3.1 and 3.3.2, we use follow-the-perturbed-leader as the
oracle with regret RT = C

∝
T . In the case of convex optimization, one may use online gradient

descent to obtain the same outcome, but this method is more computationally intensive because
it involves a projection step onto the constraint set.

3.3.1 Technical Analysis

For the ease of analysis, we note ⇀q(k) to be the permutation of k at phase q. We define the average
function of the remaining (K ↓ k) functions as

F̄q,k(x) =
1

K ↓ k

K∑

ε=k+1

Fφq(ε)(x) =
1

K ↓ k

K∑

ε=k+1

1

n

n∑

i=1

f
i
φq(ε)

(x)

(3.6)

where Fφq(ε)(x) =
1
n

∑n
i=1 f

i
φq(ε)

(x). We also define

f̂
i
q,k =

1

K ↓ k

K∑

ε=k+1

f
i
φq(ε)

(xi
q,ε), ↗f̂

i
q,k =

1

K ↓ k

K∑

ε=k+1

↗f
i
φq(ε)

(xi
q,ε) (3.7)
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as the average of the remaining (K ↓ k) functions and stochastic gradients of f i
φq(ε)

(xi
q,ε) respec-

tively. Then we note,

F̂q,k =
1

n

n∑

i=1

f̂
i
q,k, ↗F̂q,k =

1

n

n∑

i=1

↗f̂
i
q,k, (3.8)

In the same spririt of f̂ i
q,k, we define

ĝi
q,k =

1

K ↓ k

K∑

ε=k+1

gi
q,ε, d̂i

q,k =
1

K ↓ k

K∑

ε=k+1

di
q,ε (3.9)

We let Fq,1 ↘ · · · ↘ Fq,k to be the ⇀-field generated by the permutation up to time k and
Hq,1 ↘ · · · ↘ Hq,k another ⇀-field generated by the randomness of the stochastic gradient estimate
up to time k.

Assumption 3.3.1. Let

d̃t

T

1
be a sequence such that E

[
d̃t

∣∣ Ht↔1

]
= dt where Ht↔1 is the

filtration of the stochastic estimate up to t↓ 1.

The proof of Theorem 3.3.1 and Theorem 3.3.2 are proceeded as follows :

• We begin by deriving upper bounds on the expected distance between the local gradient
average d̂i

q,k and the remaining global average ↗F̂ q, k, as detailed in Lemma 3.3.1. We
also establish a bound between d̂i

q, k ↓ 1 and its variance reduced estimates ãi
q,k in

Lemma 3.3.4.

• The proof of Lemma 3.3.4 involves two additional lemmas, 3.3.3 and 3.3.2, which provide
bounds on the variance of the stochastic local gradient d̃i

q,k and the norm of the local
gradient di

q,k, respectively.

• These two lemmas are instrumental in proving Proposition 3.3.2, where we bound the
sum of expected distances between the full block average gradient ↗Fq, k ↓ 1 and the
variance reduced estimates ãi

q, k over K sub-iterations.

• The results from Proposition 3.3.2 are then utilized to derive the regret bounds in
Theorems 3.3.1 and 3.3.2.

• For the proof of Theorem 3.3.2, we also employ Lemma 3.3.5 to derive an upper bound
on the primal gap for DR-submodular function.

The detailed proofs will be presented in the subsequent section, with some remaining proofs
postponed to the end of this chapter.

Lemma 3.3.1. Suppose that each of f
i
φq(k)

is ϖ-smooth. Using the Frank-Wolfe update of xi
q,k,

the average of the remaining (K ↓ k) gradient approximation d̂i
q,k satisfies

max
i↑[1,n]

E
[∥∥∥d̂i

q,k ↓↗F̂q,k

∥∥∥
]
⇐






N

k
k →


1,

K

2



N

K ↓ k + 1
k →


K

2
+ 1,K



where N = nGk0 max{ε(W)

1 + 2

1↔ϱ(W)


, 2}.

Proof. See Lemma 3.7.1.

Lemma 3.3.2. Let Vd = 2nG


ϱ(W)
1↔ϱ(W) + 1


, the local gradient is uniformly upper-bounded, i.e,

≃i → [n] , ≃k → [K].
∥∥∥di

q,k

∥∥∥ ⇐ Vd.

Proof. See Lemma 3.7.2.
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Lemma 3.3.3. Under Assumption 3.2.1 and let ⇀
2
1 = 4n

(
G+G0
1

ε(W)↔1

)2

+ 2⇀2
0


. For i → [n] , k →

[K], the variance of the local stochastic gradient is uniformly bounded i.e

E
∥∥∥di

q,k ↓ d̃i
q,k

∥∥∥
2

⇐ ⇀

2
1

Proof. See Lemma 3.7.3.

Lemma 3.3.4 (Lemma 6, [Zhang2019]). Under Assumption 3.3.1, Lemma 3.3.2, Lemma 3.3.3
and setting ϑk = 2

(k+3)2/3
and ϑk = 1.5

(K↔k+2)2/3
for k →


K
2


and k →


K
2 + 1,K


respectively, we

have

E
[∥∥∥d̂i

q,k↔1 ↓ ãi
q,k

∥∥∥
]
⇐






∝
M

(k + 4)1/3
k →


K

2



∝
M

(K ↓ k + 1)1/3
i →


K

2
+ 1,K

 (3.10)

where M = max{M1,M2} where M1 = max{52/3 (Vd + L0)
2
,M0}, M0 = 4


V

2
d + ⇀

2

+ 32

∝
2Vd

and M2 = 2.55

V

2
d + ⇀

2

+

7
∝
2Vd

3
and L0 = 2

42/3

∥∥∥d̃i
q,1

∥∥∥

Proof. See Lemma 3.7.4

Proposition 3.3.1. Let F q,k↔1 and F̂q,k↔1 defined as in equations (3.6) and (3.8),respectively.
Under boundedness and smoothness assumptions (1.2.1,1.2.2), we have

E
[∥∥∥↗F q,k↔1(xq,k)↓↗F̂q,k↔1

∥∥∥
]
⇐ ϖD (3.11)

Proof. Following the definition of F q,k↔1 and F̂q,k↔1, we have

E
[∥∥∥↗F q,k↔1(x

k
q )↓↗F̂q,k↔1

∥∥∥
]

= E
∥∥∥∥∥

1

K ↓ k + 1
·
1

n

K∑

ε=k

n∑

i=1


↗f

i
φq(ε)

(xq,k)↓↗f
i
φq(ε)


xi
q,ε


∥∥∥∥∥



⇐ E


1

K ↓ k + 1
·
1

n

K∑

ε=k

n∑

i=1

∥∥∥↗f
i
φq(ε)

(xq,k)↓↗f
i
φq(ε)


xi
q,ε

∥∥∥



⇐ E


1

K ↓ k + 1
·
1

n

K∑

ε=k

n∑

i=1

ϖ
∥∥xq,k ↓ xi

q,ε

∥∥


(by ϖ-smoothness)

⇐ ϖD (3.12)

Proposition 3.3.2. Let F q,k(xq,k) be defined as in equation (3.6) and ãi
q,k the variance reduction

estimates. Under boundedness and smoothness assumptions, for all q → [Q], i → [n], we have

K∑

k=1

E
∥∥↗F q,k↔1(xq,k)↓ ãi

q,k

∥∥ ⇐ ϖD +

N +

∝
M


3K2/3 (3.13)

where N and M are defined in lemma 3.3.1 and lemma 3.3.4 respectively.

Proof.

K∑

k=1

E
∥∥↗F q,k↔1(xq,k)↓ ãi

q,k

∥∥ ⇐
K∑

k=1

E
[∥∥∥↗F q,k↔1(xq,k)↓↗F̂q,k↔1

∥∥∥
]
+

K∑

k=1

E
[∥∥∥↗F̂q,k↔1 ↓ ãi

q,k

∥∥∥
]

⇐ ϖD +
K∑

k=1

E
[∥∥∥↗F̂q,k↔1 ↓ d̂i

q,k↔1

∥∥∥
]
+

K∑

k=1

E
[∥∥∥d̂i

q,k↔1 ↓ ãi
q,k

∥∥∥
]

(3.14)
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where we have used Proposition 3.3.1 and triangle inequality in the last inequality. Using Lemma 3.3.1,
we have

K∑

k=1

E
[∥∥∥↗F̂q,k↔1 ↓ d̂i

q,k↔1

∥∥∥
]

=

K/2∑

k=1

E
[∥∥∥↗F̂q,k↔1 ↓ d̂i

q,k↔1

∥∥∥
]
+

K∑

k=K/2+1

E
[∥∥∥↗F̂q,k↔1 ↓ d̂i

q,k↔1

∥∥∥
]

⇐
K/2∑

k=1

N

k
+

K∑

k=K/2+1

N

K ↓ k + 1
(3.15)

By Lemma 3.3.4, we also have

K∑

k=1

E
[∥∥∥d̂i

q,k↔1 ↓ ãi
q,k

∥∥∥
]

=

K/2∑

k=1

E
[∥∥∥d̂i

q,k↔1 ↓ ãi
q,k

∥∥∥
]
+

K∑

k=K/2+1

E
[∥∥∥d̂i

q,k↔1 ↓ ãi
q,k

∥∥∥
]

⇐
K/2∑

k=1

∝
M

(k + 4)1/3
+

K∑

k=K/2+1

∝
M

(K ↓ k + 1)1/3
(3.16)

Combining equation (3.15) and equation (3.16), equation (3.14) is written as

K∑

k=1

E
∥∥↗F q,k↔1(x

k
q )↓ ãi

q,k

∥∥

⇐ ϖD +

K/2∑

k=1

(
N

k
+

∝
M

(k + 4)1/3

)
+

K∑

k=K/2+1

(
N

K ↓ k + 1
+

∝
M

(K ↓ k + 1)1/3

)

⇐ ϖD +

N +

∝
M

K/2∑

k=1

1

(k + 4)1/3
+

N +

∝
M

 K∑

k=K/2+1

1

(K ↓ k + 1)1/3

⇐ ϖD +

N +

∝
M

K/2∑

k=1

1

k1/3
+

N +

∝
M

K/2∑

l=1

1

l1/3

⇐ ϖD + 2

N +

∝
M

 K/2

0

1

s1/3
ds

⇐ ϖD + 2

N +

∝
M

 3

2

(
K

2

)2/3

⇐ ϖD +

N +

∝
M


3K2/3 (3.17)

3.3.2 Proof of Theorem 3.3.1

Proof. Using smoothness of Fφq(k) and the convexity of Fφq(k), we have

E

F̄q,k↔1(xq,k+1)↓ F̄q,k↔1(x

↓)


⇐ (1↓ ςk)E

F̄q,k↔1(xq,k)↓ F̄q,k↔1(x

↓)

+

ςk

n

n∑

i=1

E
〈
ãi
q,k,v

i
q,k ↓ x↓

〉

+
ςk

n
D

n∑

i=1

E
∥∥↗F̄q,k↔1(xq,k)↓ ãi

q,k

∥∥+ ϖ

2
ς
2
kD

2 (3.18)
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As E

F̄q,k↔1(xq,k)↓ F̄q,k↔1(x↓)


= E


F̄q,k↔2(xq,k)↓ F̄q,k↔2(x↓)


, we can apply equation (3.18)

recursively for k → {1, . . . ,K}, thus

E

F̄q,0(xq)↓ F̄q,0(x

↓)


⇐
K

k=1

(1↓ ςk)E

F̄q,0(xq,1)↓ F̄q,0(x

↓)

+

K∑

k=1

K

k→=k+1

(1↓ ςk→)
ςk

n

n∑

i=1

E

⇒ãi

q,k,v
i
q,k ↓ x↓⇑



+
K∑

k=1

K

k→=k+1

(1↓ ςk→)
ςk

n
D

n∑

i=1

E
∥∥↗F̄q,k↔1(xq,k)↓ ãi

q,k

∥∥+ ϖ

2
D

2
K∑

k=1

K

k→=k+1

(1↓ ςk→)ς2k

(3.19)

Choosing ςk = 1
k , we have

K

k=r

(1↓ ςk) ⇐ exp

(
↓

K∑

k=r

1

k

)
⇐ r

K

We have then,

E

F̄q,0(xq)↓ F̄q,0(x

↓)


⇐ 1

K
E

F̄q,0(xq,1)↓ F̄q,0(x

↓)

+

K∑

k=1

k + 1

K
·
1

k
·
1

n

n∑

i=1

E

⇒ãi

q,k,v
i
q,k ↓ x↓⇑



+
K∑

k=1

k + 1

K
·
1

k
·
1

n
D

n∑

i=1

E
∥∥↗F̄q,k↔1(xq,k)↓ ãi

q,k

∥∥+ ϖ

2
D

2
K∑

k=1

k + 1

K
·
1

k2
(3.20)

Which maybe simplified by using k+1
K · 1

k ⇐ 2
K .

E

F̄q,0(xq)↓ F̄q,0(x

↓)


⇐ 1

K
E

F̄q,0(xq,1)↓ F̄q,0(x

↓)

+

2

K
·
1

n

K∑

k=1

n∑

i=1

E

⇒ãi

q,k,v
i
q,k ↓ x↓⇑



+
2

K
·
1

n
D

K∑

k=1

n∑

i=1

E
∥∥↗F̄q,k↔1(xq,k)↓ ãi

q,k

∥∥+ ϖD
2

2

2

K

K∑

k=1

1

k

⇐ GD

K
+

2

K
·
1

n

K∑

k=1

n∑

i=1

E

⇒ãi

q,k,v
i
q,k ↓ x↓⇑



+
2

K
·D


ϖD +


N +

∝
M


3K2/3


+

ϖD
2

K
logK (3.21)

where we have used Proposition 3.3.2, G-Lipschitz property of F̄q,0 and boundedness of K. Since
T = QK and assume that the oracle at round k has a regret of order O

∝
Q

, i.e

E


Q∑

q=1

⇒ãi
q,k,v

i
q,k ↓ x↓⇑


⇐ C

√
Q

then, the expected regret of the algorithm upper bounded by

E [RT ] = E


Q∑

q=1

K

F̄q,0(xq)↓ F̄q,0(x

↓)



⇐ QGD + CKQ
1/2 + 2QD


ϖD +


N +

∝
M


3K2/3


+QϖD

2 logK

⇐ QGD + CKQ
1/2 + 2QϖD

2 + 6D

N +

∝
M


QK

2/3 +QϖD
2 logK

⇐

GD + 2ϖD2


Q+ CKQ

1/2 + 6D

N +

∝
M


QK

2/3 +QϖD
2 logK (3.22)
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Setting Q = T
2/5 and K = T

3/5, we have

E [RT ] ⇐

GD + 2ϖD2


T

2/5 +

C + 6D


N +

∝
M


T

4/5 +
3

5
ϖD

2
T

2/5 log(T ) (3.23)

Lemma 3.3.5. If Ft is monotone continous DR-submodular and ϖ-smoothness, xt,k+1 = xt,k +
1
Kvt,k for k → [K], then

Ft(x
↓)↓ Ft(xt,k+1) ⇐ (1↓ 1/K) [Ft(x

↓)↓ Ft (xt,k)]

↓ 1

K
[↓⇓↗Ft(xt,k)↓ dt,k⇓D + ⇒dt,k,vt,k ↓ x↓⇑] + ϖD

2

2K2
(3.24)

Proof. See Lemma 3.7.5

3.3.3 Proof of Theorem 3.3.2

Proof. We apply Lemma 3.3.5 with Ft = F̄q,k↔1, xt,k = xq,k and dt,k = 1
n

∑n
i=1 ã

i
q,k, we have

F̄q,k↔1(x
↓)↓ F̄q,k↔1(xq,k+1) ⇐

(
1↓ 1

K

)
F̄q,k↔1(x

↓)↓ F̄q,k↔1(xq,k)


+
1

K
·
1

n

n∑

i=1

∥∥↗F̄q,k↔1(xq,k)↓ ãi
q,k

∥∥D +
〈
ãi
q,k,x

↓ ↓ vi
q,k

〉
+

ϖ

2

D
2

K2
(3.25)

As E

F̄q,k↔1(x↓)↓ F̄q,k↔1(xq,k)


= E


F̄q,k↔2(x↓)↓ F̄q,k↔2(xq,k)


, we can apply equation (3.25)

recursively for k → {1, . . . ,K}, thus

E

F̄q,0(x

↓)↓ F̄q,0(xq)

⇐

(
1↓ 1

K

)K

E

F̄q,0(x

↓)↓ F̄q,0(xq,1)


+
1

K
·
1

n

n∑

i=1

K∑

k=1

E
∥∥↗F̄q,k↔1(xq,k)↓ ãi

q,k

∥∥D

+

1

K
·
1

n

n∑

i=1

K∑

k=1

E
〈
ãi
q,k,x

↓ ↓ vi
q,k

〉
+

ϖ

2

D
2

K

(3.26)

Note that
(
1↓ 1

K

)K

⇐ 1

e
and F̄q,0(xq,1) ⇔ 0, we have

E
(

1↓ 1

e

)
F̄q,0(x

↓)↓ F̄q,0(xq)


⇐ 1

K
·
1

n

n∑

i=1

K∑

k=1

E
∥∥↗F̄q,k↔1(xq,k)↓ ãi

q,k

∥∥D


+
1

K
·
1

n

n∑

i=1

K∑

k=1

E
〈
ãi
q,k,x

↓ ↓ vi
q,k

〉
+

ϖ

2

D
2

K
(3.27)

Let T = QK, using Proposition 3.3.2 and note that the oracle has a regret RQ ⇐ C
∝
Q. We have

E [RT ] = E


Q∑

q=1

K

(
1↓ 1

e

)
F̄q,0(x

↓)↓ F̄q,0(xq)



⇐ D

n

Q∑

q=1

K∑

k=1

E
∥∥↗F̄q,k↔1(xq,k)↓ ãi

q,k

∥∥+ 1

n

Q∑

q=1

n∑

i=1

K∑

k=1

E
〈
ãi
q,k,x

↓ ↓ vi
q,k

〉
+

ϖ

2
QD

2

⇐ QD


ϖD +


N +

∝
M


3K2/3


+KC

√
Q+

ϖQD
2

2
(3.28)

Setting Q = T
2/5 and K = T

3/5, the expected regret of the algorithm is upper bounded by

E [RT ] ⇐ T
2/5


ϖD

2 +

N +

∝
M


3T 2/5


+ CT

4/5 +
ϖD

2
T

2/5

2

⇐ 3

2
ϖD

2
T

2/5 +

C + 3D(N +

∝
M


T

4/5 (3.29)
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3.4 Bandit Setting

This section describes a bandit algorithm for a decentralized submodular maximization. We let
K be a down-closed convex set. A major di!erence between this algorithm and the previous one is
the function’s value f

i
t (x

i
t) being the only information provided to the agent. It does not know of

the value incurred if it had chosen another decision in the constraint set. As a consequence, this
setting makes access to the gradient impossible for the agent. To circumvent this limitation, we use
the one-point gradient estimate [Flaxman2005] and adapt the biphasic bandit setting [Zhang2019]
to our decentralized algorithm.

We recall that for a function ft defined on K ↘ Rd, it admits a ⇁-smoothed version for any
⇁ > 0, given as

f̂t,↼(xt) = Ev⇒Bd [ft(xt + ⇁v)]

where v is drawn uniformly random from the d-dimensional unit ball. The value of f̂t,↼ at a point x
is the average of ft evaluated across the d-dimensional ball of radius ⇁ centered at x. This function
inherits various functional properties from ft, therefore becomes a suitable approximation for ft,
as shown in the following lemma.

Lemma 3.4.1 (Lemma 2 [Chen2020], Lemma 6.6 [Hazan2016a]). Let f be a monotone con-
tinuous DR-submodular function. If f is ϖ-smooth, G-Lipschitz, then so is f̂↼ and we have∥∥∥f̂↼(x)↓ f(x)

∥∥∥ ⇐ ⇁G. More over, if we choose u uniformly from the unit sphere Sd↔1, the following
equation holds

↗f̂t,↼(x) = Eu⇒Sd↑1


d

⇁
ft(x+ ⇁u)u


(3.30)

Lemma 3.4.1 shows that a decision that maximizes f̂t,↼ can also maximizes ft approximately.
The ⇁-smooth version additionally provides a one-point gradient estimate that can be used to
estimate the gradient of ft by evaluating the function at a random point on the (d↓1)-dimensional
sphere of radius ⇁. It is important to note that the point x + ⇁u may be outside the set when
x is near to the constraint set’s boundary. For this reason, we let K↗ ↘ K be the ⇁-interior of K
that verifies : ≃x → K↗, B(x, ⇁) ↘ K, and solve the optimization problem on the new set K↗. By
shrinking the constraint set down to K↗, we assure that the point x+ ⇁u is in K for any point x in
K’. More over, if the distance d(K↗

,K) between K↗ and K is small enough, we can approximately
get the optimal regret bound on the original constraint set K by running the bandit algorithm on
K↗. The detail on the construction of K↗ is given is Lemma 3.4.2

The biphasic setting consist of partitioning T into Q blocks of size L, with each block consisting
of two phases: exploration and exploitation. Each agent i performs K < L steps of exploration by
updating the decision vector xi

q,k using equation (3.3). During the exploration phase, rather than
playing the final decision as in Algorithm 9, the agent draws uniformly a random vector ui

q,k from
Sd↔1 and plays xi

q,k+⇁ui
q,k for the function f

i
φq(k)

, as it can only estimate the gradient at the point
it plays. The gradient estimate h̃i

q,k is then computed using equation (3.30), followed by a local
aggregation and variance reductions steps, the final step consisting of feeding the variance reduction
vector ãi

q,k back to the oracle Oi
k. The remaining L↓K iterations are used for exploitation, where

each agent plays the final decision x
i
q to obtain a high reward. We give the detail in Algorithm 8.

Lemma 3.4.2 (Lemma 1, [Zhang2019]). Let K is down-closed convex set and ⇁ is is su"ciently
small such that ↼ =

↘
d+1
r ⇁ < 1. The set K↗ = (1↓ ↼)K + ⇁1 is convex, compact and down-closed

⇁-interior of K satisfies d(K,K↗) ⇐
∝

d

R
e + 1


+ R

r


⇁

Theorem 3.4.1. Let K be a down-closed convex and compact set. We suppose the ⇁-interior K↗

verify Lemma 3.4.2. Let Q = T
2/9

, L = T
7/9

,K = T
2/3, ⇁ = r

↘
d+2

T
↔1/9 and ϑk = 2

(k+2)2/3
,

ςk = 1
K . Then the expected


1↓ 1

e


-regret is upper bounded

E [RT ] ⇐ ZT
8/9 +

ϖD
2

2
T

1/9 +
3

2
D

d

∝
d+ 2



r
Pn,ϱ(W)T

2/9 + ϖD
2
T

3/9 (3.31)
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Algorithm 8 Bandit Monode Frank-Wolfe
Input: Smoothing radius ⇁, ⇁-interior K↗ with lower bound u, a time horizon T , a block size L,
number of exploration step K. Online linear optimization oracles Oi,1, . . . ,Oi,K for each player
1 ⇐ i ⇐ n, step sizes ςk, ϑk → (0, 1) for all 1 ⇐ k ⇐ K, number of blocks Q = T/L

1: Initialize linear optimizing oracle Oi
k for all 1 ⇐ k ⇐ K

2: for q = 1 to Q do

3: for every agent 1 ⇐ i ⇐ n do

4: Initialize xi
q,1 ▽ u and set ãt

i,0 ▽ 0
5: Update xi

q,k using line 5 to 10 of Algorithm 9. Choose xi
q ▽ xi

q,K+1
6: Let ⇀q be a random permutation of 1, . . . , L — times in phase q.
7: for 1 ⇐ ϱ ⇐ L do

8: Let s = ⇀
↔1
q (ϱ)

9: if ϱ ⇐ K then

10: play f
i
q,ε


xi
q,s + ⇁ui

q,s


where ui

q,s → Sd↔1. - Exploration
11: else

12: play f
i
q,ε


xi
q


. - Exploitation

13: end if

14: end for

15: Set g̃i
q,1 ▽ d

↼ f
i
φq(1)


xi
q,1 + ⇁ui

q,1


ui
q,1

16: for 1 ⇐ k ⇐ K do

17: Let h̃i
q,k = d

↼ f
i
φq(k)


xi
q,k + ⇁ui

q,k


ui
q,k

18: Send g̃i
q,k to all neighbours N(i).

19: After receiving g̃j
q,k from all neighbours j → N(i), compute d̃i

q,k ▽
∑

j↑N(i) Wij g̃
j
q,k

20: g̃i
q,k+1 ▽ h̃i

q,k+1 ↓ h̃i
q,k + d̃i

q,k

21: ãi
q,k ▽ (1↓ ϑk) · ãi

q,k↔1 + ϑk · d̃i
q,k.

22: Feedback function ⇒ãi
q,k, · ⇑ to oracles Oi

k. (The cost of the oracle Oi
k at block q is

⇒ãi
q,k,v

i
q,k⇑.)

23: end for

24: end for

25: end for

where we note Z =

1↓ 1

e

 ∝
d

R
e + 1


+ R

r


G

r
↘
d+2

+

2↓ 1

e


G

r
↘
d+2

+ 2ϖ + C and Pn,ϱ(W) =

k0 ·nBmax

ε(W)


1 + 2

1↔ϱ(W)


, 2

+ 41/3

(
24n2

(
1

1
ε(W)↔1

+ 1

)2

+ 8n

(
1

( 1
ε(W)↔1)2

+ 2

))1/2

3.4.1 Technical Analysis

Let f
↼
t (x) = Ev↑Bd [ft (x+ ⇁v)] and recall its gradient ↗f

↼
t (x) = Eu↑Sd↑1


d
↼ ft (x+ ⇁u)u


. We

define the average function

F̄
↼
q,k(x) =

1

L↓ k

L∑

ε=k+1

F
↼
φq(ε)

(x) =
1

L↓ k

L∑

ε=k+1

1

n

n∑

i=1

f
i,↼
φq(ε)

(x) (3.32)

and the average of the remaining (L↓ k) functions of f i,↼
φq(ε)

(xi
q,ε) over n agents as

F̂
↼
q,k =

1

n

n∑

i=1

f̂
i,↼
q,k =

1

L↓ k

L∑

ε=k+1

1

n

n∑

i=1

f
i,↼
φq(ε)

(xi
q,ε) (3.33)

where F
↼
φq(ε)

(x) = 1
n

∑n
i=1 f

i,↼
φq(ε)

(x) and f̂
i,↼
q,k = 1

L↔k

∑L
ε=k+1 f

i,↼
φq(ε)

(xi
q,ε). Then, the one-point

gradient ↗F̄
↼
q,k and ↗F̂

↼
q,k come naturally with the above definitions. Let Hq,1 ↘ · · · ↘ Hq,k be

the ⇀-fields generated by the randomness of the stochastic gradient estimate up to time k.

gi,↼
q,k = E


g̃i
q,k|Hq,k↔1


, di,↼

q,k = E
[
d̃i
q,k|Hq,k↔1

]
, ↗f

i,↼
φq(k)

(xi
q,k) = E

[
h̃i
q,k

]
(3.34)
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and

ĝi,↼
q,k =

1

L↓ k

L∑

ε=k+1

gi,↼
q,ε, d̂i,↼

q,k =
1

L↓ k

L∑

ε=k+1

di,↼
q,ε, (3.35)

The roadmap for the proof of Theorem 3.4.1 is structured as follows:

• We start by setting bounds on the expected distance between the local gradient average
d̂i,↼

q, k and the global gradient ↗F̂
↼
q, k, as well as between d̂i,↼

q, k and the variance
reduction estimate ãi

q, k, as detailed in Lemmas 3.4.5 and 3.4.6.

• To establish the bound in Lemma 3.4.6, we utilize auxiliary results from Lemmas 3.4.3
and 3.4.4, which provide measures for the norm and variance of the local gradient esti-
mate.

• Leveraging the results from Lemmas 3.4.5 and 3.4.6, we then derive an upper bound
on the total expected distance between the remaining global gradient and the variance
reduction estimate, as shown in Proposition 3.4.1. This allows us to further derive an
upper bound on the expected regret for the one-point estimate global function F

↼
φq(ε)

in
terms of Q, L, and the optimal point in K↗, as outlined in Proposition 3.4.2.

• Finally, the proof of Theorem 3.4.1 is completed by applying Lemma 3.4.2 and Propo-
sition 3.4.2 to Proposition 3.4.3.

Lemma 3.4.3. For i → [n] , k → [K]. Let V
↼
d = 2nd

↼B


ϱ(W)

1↔ϱ(W) + 1

, the local gradient is upper-

bounded, i.e
∥∥∥di,↼

q,k

∥∥∥ ⇐ V
↼
d

Proof. See Lemma 3.7.2.

Lemma 3.4.4. Under Assumption 3.2.2, the variance of the local gradient estimate is uniformly
bounded, i.e

E
∥∥∥di,↼

q,k ↓ d̃i,↼
q,k

∥∥∥
2

⇐ 4n

(
d

⇁
B

)2




1


1

ϱ(W) ↓ 1
2 + 2



 (3.36)

Proof. See Lemma 3.7.6.

Lemma 3.4.5. Let N = k0 ·nB d
↼ max


ε(W)


1 + 2

1↔ϱ(W)


, 2

. Under Assumptions 1.2.3 and 3.2.2,

for k → [K], we have

max
i↑[1,n]

E
[∥∥∥d̂i,↼

q,k ↓↗F̂
↼
q,k

∥∥∥
]
⇐ N

k
(3.37)

Proof. See Lemma 3.7.7.

Lemma 3.4.6 (Lemma 10, Lemma 11 [Zhang2019]). Under Lemma 3.4.3 and lemma 3.4.4 and
setting ϑk = 2

(k+3)2/3
, we have

E
[∥∥∥d̂i,↼

q,k↔1 ↓ ãi
q,k

∥∥∥
]
⇐

∝
M0

(k + 3)1/3
, k → [K] (3.38)

where M0 = 42/3 d2

↼2B
2


24n2

(
1

1
ε(W)↔1

+ 1

)2

+ 8n

(
1

( 1
ε(W)↔1)2

+ 2

)

Proof. See Lemma 3.7.8.
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Proposition 3.4.1. Let F ↼
q,k↔1 be the average of the remaining functions at iteration k (see equa-

tion (3.32)) and ãi
q,k be the gradient variance reduction estimates. Let N and M0 be defined as in

Lemmas 3.4.5 and 3.4.6. Recall that K is the number of exploration steps, using Proposition 3.3.1,
Assumption 1.2.1 and smoothness of F ↼

φq(ε)
, for all q → [Q], we have

K∑

k=1

E
∥∥↗F̄

↼
q,k↔1(xq,k)↓ ãi

q,k

∥∥ ⇐ ϖD +
3

2


N +

√
M0


K

2/3 (3.39)

Proof of claim.

K∑

k=1

E
∥∥↗F̄

↼
q,k↔1(xq,k)↓ ãi

q,k

∥∥ ⇐
K∑

k=1

E
[∥∥∥↗F̄

↼
q,k↔1(xq,k)↓↗F̂

↼
q,k↔1

∥∥∥
]
+

K∑

k=1

E
[∥∥∥↗F̂

↼
q,k↔1 ↓ ãi

q,k

∥∥∥
]

⇐ ϖD +
K∑

k=1

E
[∥∥∥↗F̂

↼
q,k↔1 ↓ d̂i,↼

q,k↔1

∥∥∥
]
+

K∑

k=1

E
[∥∥∥d̂i,↼

q,k↔1 ↓ ãi
q,k

∥∥∥
]

⇐ ϖD +
K∑

k=1

N

k
+

K∑

k=1

∝
M0

(k + 3)1/3

⇐ ϖD +

N +

√
M0

 K∑

k=1

1

(k + 3)1/3

⇐ ϖD +
3

2


N +

√
M0


K

2/3 (3.40)

where Proposition 3.3.1 still verified in the second inequality since f
i,↼
φq(ε)

is ϖ-smooth and the third
inequality is the result of Lemma 3.4.5 and Lemma 3.4.6

Proposition 3.4.2. Let F
↼
φq(ε)

be the average over n agents of the permuted one-point estimates
(see equation (3.32)). Let N and M0 be defined as in Lemmas 3.4.5 and 3.4.6 and C a constant
verifies RQ ⇐ C

∝
Q. By Assumption 1.2.1 and smoothness of F ↼

φq(ε)
, the expected primal gap over

Q blocks and L iterations is bounded by :

Q∑

q=1

L∑

ε=1

E
(

1↓ 1

e

)
F

↼
φq(ε)

(x↓

↼)↓ F
↼
φq(ε)

(xq)


⇐ LϖD

2

K
+

3LD

N +

∝
M0



2K1/3
+ LC

√
Q+

ϖQLD
2

2K

(3.41)

Proof of claim. Using Lemma 3.7.5 with Ft = F̄
↼
q,k↔1, xt,k = xq,k and dt,k = 1

n

∑n
i=1 ã

i
q,k, we have

F̄
↼
q,k↔1(x

↓

↼)↓ F̄
↼
q,k↔1(xq,k+1) ⇐

(
1↓ 1

K

)
F̄

↼
q,k↔1(x

↓

↼)↓ F̄
↼
q,k↔1(xq,k)



+
1

K
·
1

n

n∑

i=1

∥∥↗F̄
↼
q,k↔1(xq,k)↓ ãi

q,k

∥∥D +
〈
ãi
q,k,x

↓

↼ ↓ vi
q,k

〉
+

ϖ

2

D
2

K2
(3.42)

Similarly to the proof of Theorem 3.3.2 and using Proposition 3.4.1, we note

E
(

1↓ 1

e

)
F̄

↼
q,0(x

↓

↼)↓ F̄
↼
q,0(xq)



⇐ 1

K
·
1

n

n∑

i=1

K∑

k=1

E
∥∥↗F̄

↼
q,k↔1(xq,k)↓ ãi

q,k

∥∥D

+

1

K
·
1

n

n∑

i=1

K∑

k=1

E
〈
ãi
q,k,x

↓

↼ ↓ vi
q,k

〉
+

ϖ

2

D
2

K

⇐ D

K

(
ϖD +

3

2


N +

√
M0


K

2/3

)
+

1

K
·
1

n

n∑

i=1

K∑

k=1

E
〈
ãi
q,k,x

↓

↼ ↓ vi
q,k

〉
+

ϖ

2

D
2

K

(3.43)
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Thus, we can write
Q∑

q=1

L∑

ε=1

E
(

1↓ 1

e

)
F

↼
φq(ε)

(x↓

↼)↓ F
↼
φq(ε)

(xq)


=

Q∑

q=1

LE
(

1↓ 1

e

)
F̄

↼
q,0(x

↓

↼)↓ F̄
↼
q,0(xq)



⇐ LD

K

(
ϖD +

3

2


N +

√
M0


K

2/3

)
+ LC

√
Q+

ϖ

2

QLD
2

K

⇐ LϖD
2

K
+

3LD

N +

∝
M0



2K1/3
+ LC

√
Q+

ϖQLD
2

2K
(3.44)

Proposition 3.4.3 (Theorem 4 [Zhang2019]). Let ft a monotone DR-Submodular function and
f̂t its one-point estimation. Let x↓

↼ the optimal solution in K↗ and ⇀q the permutation function of
block q → [Q]. Using lemma 3.4.2,assumptions 1.2.2 and 3.2.2, we have

E [RT ] ⇐
(
1↓ 1

e

)
d (K,K↗)GT +

(
2↓ 1

e

)
GT ⇁ + 2BQK

+ E


Q∑

q=1

L∑

ε=1

(
1↓ 1

e

)
f̂φq(ε)(x

↓

↼)↓ f̂φq(ε)(xq)



Proof.

E [RT ] = E
(

1↓ 1

e

) T∑

t=1

ft(x
↓)↓

T∑

t=1

ft(xt)


= E


T∑

t=1

(
1↓ 1

e

)
ft(x

↓)↓ ft(xt)



=
T∑

t=1

E
(

1↓ 1

e

)
ft(x

↓)↓ ft(xt) +

(
1↓ 1

e

)
ft(x

↓

↼)↓
(
1↓ 1

e

)
ft(x

↓

↼)



=
T∑

t=1

E
(

1↓ 1

e

)
ft(x

↓)↓
(
1↓ 1

e

)
ft(x

↓

↼) +

(
1↓ 1

e

)
ft(x

↓

↼)↓ ft(xt)



=

(
1↓ 1

e

) T∑

t=1

[ft(x
↓)↓ ft(x

↓

↼)] +
T∑

t=1

E
(

1↓ 1

e

)
f̂t(x

↓

↼)↓ f̂t(xt)



+

(
1↓ 1

e

) T∑

t=1

E
[
ft(x

↓

↼)↓ f̂t(x
↓

↼)
]
+

T∑

t=1

E
[
f̂t(xt)↓ ft(xt)

]

⇐
(
1↓ 1

e

)
d (K,K↗)GT +

T∑

t=1

(
1↓ 1

e

)
f̂t(x

↓

↼)↓ f̂t(xt)


+

(
1↓ 1

e

)
GT ⇁ +GT ⇁

=

(
1↓ 1

e

)
d (K,K↗)GT +

(
2↓ 1

e

)
GT ⇁ +

T∑

t=1

E
(

1↓ 1

e

)
f̂t(x

↓

↼)↓ f̂t(xt)



=

(
1↓ 1

e

)
d (K,K↗)GT +

(
2↓ 1

e

)
GT ⇁

+
Q∑

q=1

L∑

ε=1

E
(

1↓ 1

e

)
f̂φq(ε)(x

↓

↼)↓ f̂φq(ε)(xq)


+

Q∑

q=1

K∑

k=1

E
[
f̂φq(ε)(xq)↓ f̂φq(k)(xφq(k))

]

⇐
(
1↓ 1

e

)
d (K,K↗)GT +

(
2↓ 1

e

)
GT ⇁ +

Q∑

q=1

L∑

ε=1

E
(

1↓ 1

e

)
f̂φq(ε)(x

↓

↼)↓ f̂φq(ε)(xq)


+ 2BQK

3.4.2 Proof of Theorem 3.4.1

Proof. Recall the values of N and M0 from Lemma 3.4.5 and Lemma 3.4.6, we have

N = k0 ·nB
d

⇁
max


ε(W)

(
1 +

2

1↓ ε(W)

)
, 2


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M0 = 42/3
d
2

⇁2
B

2



24n2

(
1

1
ϱ(W) ↓ 1

+ 1

)2

+ 8n




1


1

ϱ(W) ↓ 1
2 + 2









Pn,ϱ(W) = k0 ·nBmax


ε(W)

(
1 +

2

1↓ ε(W)

)
, 2



+ 41/3



24n2

(
1

1
ϱ(W) ↓ 1

+ 1

)2

+ 8n




1


1

ϱ(W) ↓ 1
2 + 2









1/2

Then one can see that N +
∝
M0 = d

↼BPn,ϱ(W). We let ⇁ = r
↘
d+2

T
↔1/9, then d

↼ =
d(

↘
d+2)
r T

1/9,
Q = T

2/9
, L = T

7/9 and K = T
2/3. We apply Proposition 3.4.3 with ft = Ft, f̂φq(ε) = F

↼
φq(ε)

and
xq = xq; using Lemma 3.4.2 and Proposition 3.4.2, we have

E [RT ] ⇐
(
1↓ 1

e

)(∝
d

(
R

e
+ 1

)
+

R

r

)
GT ⇁

↽ +

(
2↓ 1

e

)
GT ⇁ + 2BQK

+
Q∑

q=1

L∑

ε=1

E
(

1↓ 1

e

)
F

↼
φq(ε)

(x↓

↼)↓ F
↼
φq(ε)

(xq)



⇐
(
1↓ 1

e

)(∝
d

(
R

e
+ 1

)
+

R

r

)
GT ⇁

↽ +

(
2↓ 1

e

)
GT ⇁ + 2BQK

+
LϖD

2

K
+

3LD

N +

∝
M0



2K1/3
+ LC

√
Q+

ϖQLD
2

2K

⇐
(
1↓ 1

e

)(∝
d

(
R

e
+ 1

)
+

R

r

)
GT ⇁

↽ +

(
2↓ 1

e

)
GT ⇁ + 2BQK

+
LϖD

2

K
+

3LD d
↼Pn,ϱ(W)

2K1/3
+ LC

√
Q+

ϖQLD
2

2K

⇐
(
1↓ 1

e

)(∝
d

(
R

e
+ 1

)
+

R

r

)
GT

r∝
d+ 2

T
↔1/9 +

(
2↓ 1

e

)
GT

r∝
d+ 2

T
↔1/9

+ 2ϖT 2/9
T

2/3 + T
7/9

ϖD
2
T

↔2/3 +
3

2
T

7/9
D

d

∝
d+ 2



r
T

1/9
Pn,ϱ(W)T

↔2/3

+ T
7/9

CT
1/9 +

ϖ

2
T

2/9
T

7/9
D

2
T

↔2/3

⇐
(

1↓ 1

e

)(∝
d

(
R

e
+ 1

)
+

R

r

)
G

r∝
d+ 2

+

(
2↓ 1

e

)
G

r∝
d+ 2

+ C


T

8/9

+
ϖD

2

2
T

6/9 +



2ϖ +
3

2
D

d

∝
d+ 2



r
Pn,ϱ(W)



T
5/9 + ϖD

2
T

4/9

⇐
(

1↓ 1

e

)(∝
d

(
R

e
+ 1

)
+

R

r

)
G

r∝
d+ 2

+

(
2↓ 1

e

)
G

r∝
d+ 2

+ 2ϖ + C


T

8/9

+
ϖD

2

2
T

1/9 +
3

2
D

d

∝
d+ 2



r
Pn,ϱ(W)T

2/9 + ϖD
2
T

3/9

3.5 Experiments

We run the algorithm on a movie recommendation problem, with the goal of identifying a set
of k movies that satisfy all users. Our setting is closely related to the one in [Mokhtari2018b]
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and [Xie2019]. We use the MovieLens dataset, which contains one million ratings ranging from 1
to 5 from 6000 users on 3883 movies. We divided the data set into T batches B1, . . . , BT , with
each batch Bt containing ratings from 50 users. We chose Complete, Line, Grid, and Erdos-Renyi
graphs with linked probability 0.2. We set the number of nodes/agents equals to 10, 25, and 50.
At each iteration t, the agent i receives a subset of ratings B

i
t ↘ Bt. Let M be the set of movies

and U the set of users; we note r(u,m) the rating of user u → U for movies m → M. Let S ↘ M
a collection of movies such that |S| = k, the facility location function associated to each agent i

denoted,

f(Bi
t, S) = f

i
t (S) =

1

|Bi
t|

∑

u↑Bi
t

max
m↑S

r(u,m) (3.45)

We denote by K =

x → [0, 1]d |

∑d
j=1 xj = k


. The multilinear extension of f t

i is defined as,

F
i
t (x) =

∑

S⇑M

f
i
t (S)



j↑S

xj



ε ⇓↑S

(1↓ xε) , ≃x → K (3.46)

The goal is to maximize the global objective function Ft(x) = 1
n

∑n
i=1 F

i
t (x), subject to x → K

while using only local communication and partial information for each local functions.

Figure 3.1: Performance of the algorithm on complete graphs with varying nodes (10, 25, 50) -
Left: (1 ↓ 1/e)-Regret, Right: Ratio of the algorithm’s objective value to an o#ine centralized
Frank-Wolfe.

Figure 3.1 shows the

1↓ 1

e


-regret of the algorithm for k = 20 on a complete graph with

di!erent node’s configuration. We observe that increasing network size leads to a decrease in
regret value, which is expected in a decentralized setting because information distributed across
a larger set of nodes makes reaching consensus more di"cult. Recall that the algorithm uses the
same value for each function ft in block q. If we set K = 17 and Q = 6, we can expect a stepwise-
like curve since the objective function’s value changes significantly at each round t mod 17. In
a small graph configuration, this value change is more pronounced, bringing the cumulative sum
of the objective function closer to the


1↓ 1

e


-optimal value. Figure 3.1 depicts the ratio of

our algorithm’s objective value on a complete graph to an o#ine centralized Frank-Wolfe. As t

increases, the ratio approaches one, demonstrating that our algorithm’s performance is comparable
to that of an o#ine setting if we run the algorithm for many rounds, particularly in a 10-nodes
configuration. Thus, the results validate our theoretical analysis in the previous section.

Figure 3.2 shows the average value of the objective function over T rounds for all graph types
when the number of movie suggestions k is varied in a 50-node configuration. The average degree
for Erdos-Renyi, Complete, Grid, and Line is 5.8, 51, 5.4, and 4, respectively. As a result, we
observe lower performance on less connected graphs when compared to other graph settings. We
also notice that increasing the value of k is equivalent to relaxing the cardinality constraint, which
results in better performance on the objective function.
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Chapter 3. Distributed Online Algorithm for DR-Submodular Optimization

Figure 3.2: Average rewards over T rounds as function of cardinality constraint.

3.6 Concluding remarks

In this chapter, we propose a decentralized online algorithm for optimizing convex and mono-
tone continuous DR-submodular functions with regret and


1↓ 1

e


-regret bound of O(T 4/5). The

extension of the algorithm to the bandit setting ensures a

1↓ 1

e


-regret bound of O(T 8/9). A de-

tailed analysis is given when the constraint set is either a general convex set or a downward-closed
convex set under full information and bandit settings, respectively. In addition, the experiment
results on a real-life movie recommendation problem assess the interest of the proposed algorithm
for learning in decentralized settings.
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3.7. Missing proofs of Chapter 3

3.7 Missing proofs of Chapter 3

3.7.1 Section 3.3 : Full Information Setting

Lemma 3.7.1 (Lemma 3.3.1). Suppose that each of f
i
φq(k)

is ϖ-smooth. Using the Frank-Wolfe
update of xi

q,k, the average of the remaining (K ↓ k) gradient approximation d̂i
q,k satisfies

max
i↑[1,n]

E
[∥∥∥d̂i

q,k ↓↗F̂q,k

∥∥∥
]
⇐






N

k
k →


1,

K

2



N

K ↓ k + 1
k →


K

2
+ 1,K



where N = nGk0 max{ε(W)

1 + 2

1↔ϱ(W)


, 2}.

Proof. We will prove the lemma by induction using similar technique in Lemma 2.7.3. Recall the
following notations

d̂cat
q,k =

[
d̂1≃
q,k, . . . , d̂

n≃
q,k

]≃
, ĝcat

q,k =

ĝ1≃
q,k, . . . , ĝ

n≃
q,k

≃
, ↗F̂

cat
q,k =

[
↗F̂

≃

q,k, . . . ,↗F̂
≃

q,k

]≃
(3.47)

and let the slack variables as

⇁
i
q,k := ↗f̂

i
q,k ↓↗f̂

i
q,k↔1, ⇁̄q,k :=

1

n

n∑

i=1


↗f̂

i
q,k ↓↗f̂

i
q,k↔1


= ↗F̂q,k ↓↗F̂q,k↔1 (3.48)

then, following the definition in 2.17, we note

⇁
cat
q,k =


⇁
1≃
q,k, . . . , ⇁

n≃
q,k

≃
, ⇁̄

cat
q,k =


⇁̄
≃

q,k, . . . , ⇁̄
≃

q,k

≃

By similar analysis to equation (2.31), we have

∥∥∥d̂cat
q,k ↓↗F̂

cat
q,k

∥∥∥
2
=

n∑

i=1

∥∥∥d̂i
q,k ↓↗F̂q,k

∥∥∥
2

⇐ ε(W)2
n∑

i=1

∥∥∥ĝi
q,k ↓↗F̂q,k

∥∥∥
2

= ε(W)2
∥∥∥ĝcat

q,k ↓↗F̂
cat
q,k

∥∥∥
2

(3.49)

We can deduce that

E
[∥∥∥d̂cat

q,k ↓↗F̂
cat
q,k

∥∥∥
]
⇐ ε(W)E

[∥∥∥ĝcat
q,k ↓↗F̂

cat
q,k

∥∥∥
]

= ε(W)E
[∥∥∥⇁catq,k + d̂cat

q,k↔1 ↓↗F̂
cat
q,k +↗F̂

cat
q,k↔1 ↓↗F̂

cat
q,k↔1

∥∥∥
]

⇐ ε(W)

E
[∥∥∥d̂cat

q,k↔1 ↓↗F̂
cat
q,k↔1

∥∥∥
]
+ E

∥∥⇁catq,k ↓ ⇁̄
cat
q,k

∥∥


⇐ ε(W)

E
[∥∥∥d̂cat

q,k↔1 ↓↗F̂
cat
q,k↔1

∥∥∥
]
+ E

∥∥⇁catq,k

∥∥


(3.50)

since

∥∥⇁catq,k ↓ ⇁̄
cat
q,k

∥∥2 =
n∑

i=1

∥∥⇁iq,k ↓ ⇁̄q,k

∥∥2 ⇐
n∑

i=1

∥∥⇁iq,k
∥∥2 ↓ n

∥∥⇁̄q,k
∥∥2 ⇐

n∑

i=1

∥∥⇁iq,k
∥∥2 =

∥∥⇁catq,k

∥∥2 (3.51)
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Notice that we can bound the expected value of ⇁cat by

E
[∥∥⇁catq,k

∥∥2
]
= E


n∑

i=1

∥∥⇁iq,k
∥∥2


=

n∑

i=1

E
∥∥∥↗f̂

i
q,k ↓↗f̂

i
q,k↔1

∥∥∥
2


=
n∑

i=1

E

E
∥∥∥↗f̂

i
q,k ↓↗f̂

i
q,k↔1

∥∥∥
2 ∣∣ Fq,k↔1



=
n∑

i=1

E



E




∥∥∥∥∥

∑K
ε=k+1 ↗f

i
φq(ε)

(xi
q,ε)

K ↓ k
↓

∑K
ε=k ↗f

i
φq(ε)

(xi
q,ε)

K ↓ k + 1

∥∥∥∥∥

2
∣∣ Fq,k↔1









=
n∑

i=1

E



E




∥∥∥∥∥

∑K
ε=k+1 ↗f

i
φq(ε)

(xi
q,ε)

(K ↓ k)(K ↓ k + 1)
↓

↗f
i
φq(k)

(xi
q,k)

K ↓ k + 1

∥∥∥∥∥

2
∣∣ Fq,k↔1









⇐ n

(
2G

K ↓ k + 1

)2

(3.52)

using Jensen’s inequality, we can deduce that

E
∥∥⇁catq,k

∥∥ ⇐

√

E
∥∥∥⇁catq,k

∥∥∥
2

⇐ 2

∝
nG

K ↓ k + 1
(3.53)

We are now proving the lemma by induction, when k = 1, we have

E
∥∥∥d̂cat

q,1 ↓↗F̂
cat
q,1

∥∥∥
2

= E


n∑

i=1

∥∥∥d̂i
q,1 ↓↗F̂q,1

∥∥∥
2

⇐ ε(W)2E


n∑

i=1

∥∥∥ĝi
q,1 ↓↗F̂q,1

∥∥∥
2


⇐ ε(W)2E


n∑

i=1

∥∥∥↗f̂
i
q,1 ↓↗F̂q,1

∥∥∥
2

⇐ ε(W)2E


n∑

i=1

∥∥∥↗f̂
i
q,1

∥∥∥
2

⇐ nε(W)2G2

where we have used Lipschitzness of f in the last inequality. We now suppose that 1 ⇐ k ⇐ k0,
from equations (2.32) and (3.53)

E
[∥∥∥d̂cat

q,k ↓↗F̂
cat
q,k

∥∥∥
]
⇐ ε(W)


E
[∥∥∥d̂cat

q,k↔1 ↓↗F̂
cat
q,k↔1

∥∥∥
]
+ E

∥∥⇁catq,k

∥∥


⇐ ε(W)k↔1∝
nG+ 2

k∑

ω=1

ε(W)ω
∝
nG

⇐ ε(W)
∝
nG+ 2

ε(W)

1↓ ε(W)

∝
nG

= ε(W)
∝
nG

(
1 +

2

1↓ ε(W)

)
(3.54)

We set N0 = k0
∝
nGmax{ε(W)


1 + 2

1↔ϱ(W)


, 2}, we claim that E

[∥∥∥d̂cat
q,k ↓↗F̂

cat
q,k

∥∥∥
]
⇐ N0

k
for

k →

k0,

K
2 + 1


. Recall that K ↓ k + 1 ⇔ k ↓ 1, by equations (2.32) and (3.53) and induction

hypothesis, we have

E
[∥∥∥d̂cat

q,k ↓↗F̂
cat
q,k

∥∥∥
]
⇐ ε(W)


E
[∥∥∥d̂cat

q,k↔1 ↓↗F̂
cat
q,k↔1

∥∥∥
]
+ E

∥∥⇁catq,k

∥∥


⇐ ε(W)

(
N0

k ↓ 1
+

2
∝
nG

K ↓ k + 1

)

⇐ ε(W)

(
N0

k ↓ 1
+

2
∝
nG

k ↓ 1

)

⇐ ε(W)

(
N0 + 2

∝
nG

k ↓ 1

)

⇐ ε(W)

(
N0

k0 + 1

k0(k ↓ 1)

)

⇐ N0

k
(3.55)
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where we have used the fact that ε(W)(W)
k0 + 1

k0(k ↓ 1)
⇐ 1

k
in the last inequality. When k →


K
2 + 1,K


, we claim that E

[∥∥∥d̂cat
q,k ↓↗F̂

cat
q,k

∥∥∥
]
⇐ N0

K ↓ k + 1
. The base case k = K

2 + 1 is verified
by equation (3.55),

E
[∥∥∥d̂cat

q,k ↓↗F̂
cat
q,k

∥∥∥
]
⇐ N0

K
2 + 1

⇐ N0
K
2

⇐ N0

K ↓ (K2 + 1) + 1
(3.56)

For k ⇔ K
2 + 2, using equations (2.32) and (3.53) and the induction hypothesis, we have

E
[∥∥∥d̂cat

q,k ↓↗F̂
cat
q,k

∥∥∥
]
⇐ ε(W)


E
[∥∥∥d̂cat

q,k↔1 ↓↗F̂
cat
q,k↔1

∥∥∥
]
+ E

∥∥⇁catq,k

∥∥


⇐ ε(W)

(
N0

K ↓ k + 2
+

2
∝
nG

K ↓ k + 1

)

⇐ ε(W)

(
N0 + 2G

K ↓ k + 1

)

⇐ ε(W)

(
N0

k0 + 1

k0(K ↓ k + 1)

)

⇐ N0

K ↓ k + 1
(3.57)

Recall that

1∝
n
E


n∑

i=1

∥∥∥d̂i
q,k ↓↗F̂q,k

∥∥∥


⇐ E




(

n∑

i=1

∥∥∥d̂i
q,k ↓↗F̂q,k

∥∥∥
2
)1/2



 = E
[∥∥∥d̂cat

q,k ↓↗F̂
cat
q,k

∥∥∥
]

(3.58)

The desired result followed from equations (3.55), (3.57) and (3.58) where N =
∝
nN0

max
i↑[1,n]

E
[∥∥∥d̂i

q,k ↓↗F̂q,k

∥∥∥
]
⇐






N

k
k →


1,

K

2



N

K ↓ k + 1
k →


K

2
+ 1,K

 (3.59)

Lemma 3.7.2 (Lemma 3.3.2). Let Vd = 2nG


ϱ(W)
1↔ϱ(W) + 1


, the local gradient is uniformly upper-

bounded, i.e, ≃i → [n] , ≃k → [K].
∥∥∥di

q,k

∥∥∥ ⇐ Vd.

Proof. We use the same notation introduced in equation (2.17). Let’s define

dcat
q,k =


d1≃
q,k, . . . ,d

n≃
q,k

≃ → Rnd
, ↗f

cat
φq(k)

=
[
↗f

1
φq(k)

(x1
q,k)

≃
, . . . ,↗f

n
φq(k)

(xn
q,k)

≃

]≃
→ Rnd (3.60)

and

↗F
cat
φq(k)

=
[
↗F

≃

φq(k)
, . . . ,↗F

≃

φq(k)

]≃
=


1

n

n∑

i=1

↗f
i
φq(k)

(xi
q,k)

≃
, . . . ,

1

n

n∑

i=1

↗f
i
φq(k)

(xi
q,k)

≃

≃

(3.61)

Using the local gradient expansion in proposition 5, we have

dcat
q,k =

k↔1∑

ω=1

(
Wk↔ω ↓ 1

n
1n1

T
n

)
∋ Id


↗f

cat
φq(ω+1) ↓↗f

cat
φq(ω)



+

(
Wk ↓ 1

n
1n1

T
n

)
∋ Id


↗f

cat
φq(1)

+

(
1

n
1n1

T
n ∋ Id

)
↗f

cat
φq(k)

(3.62)
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Recall that ⇓W ∋ Id⇓ = ⇓W⇓. Taking the norm on equation (3.62), we have

∥∥dcat
q,k

∥∥ ⇐ 2
∝
nG

k↔1∑

ω=1

ε(W)k↔ω +
∝
nG


ε(W)k + 1


⇐ 2

∝
nG

(
ε(W)

1↓ ε(W)
+ 1

)
(3.63)

where we have used
∥∥∥↗f

cat
φq(ω+1) ↓↗f

cat
φq(ω)

∥∥∥ ⇐ 2
∝
nG,

∥∥Wk ↓ 1
n1n1T

n

∥∥ ⇐ ε(W)k and
∥∥ 1
n1n1T

n

∥∥ ⇐ 1

in the first inequality. We have ≃i → [n]

∥∥di
q,k

∥∥ ⇐
n∑

i=1

∥∥di
q,k

∥∥ ⇐
∝
n

(
n∑

i=1

∥∥di
q,k

∥∥2
)1/2

=
∝
n
∥∥dcat

q,k

∥∥ (3.64)

one can obtain the desired result.

Lemma 3.7.3 (Lemma 3.3.3). Under Assumption 3.2.1 and let ⇀
2
1 = 4n

(
G+G0
1

ε(W)↔1

)2

+ 2⇀2
0


.

For i → [n] , k → [K], the variance of the local stochastic gradient is uniformly bounded i.e

E
∥∥∥di

q,k ↓ d̃i
q,k

∥∥∥
2

⇐ ⇀

2
1

Proof. We denote d̃cat the stochastique version of dcat, following equation (3.62), we have

d̃cat
q,k =

k↔1∑

ω=1

(
Wk↔ω ↓ 1

n
1n1

T
n

)
∋ Id


↗̃f

cat
φq(ω+1) ↓ ↗̃f

cat
φq(ω)



+

(
Wk ↓ 1

n
1n1

T
n

)
∋ Id


↗̃f

cat
φq(1)

+

(
1

n
1n1

T
n ∋ Id

)
↗̃f

cat
φq(k)

(3.65)

Then, we have

dcat
q,k ↓ d̃cat

q,k =
k↔1∑

ω=1

(
Wk↔ω ↓ 1

n
1n1

T
n

)
∋ Id


↗f

cat
φq(ω+1) ↓ ↗̃f

cat
φq(ω+1) + ↗̃f

cat
φq(ω)

↓↗f
cat
φq(ω)



+

(
Wk ↓ 1

n
1n1

T
n

)
∋ Id


↗f

cat
φq(1)

↓ ↗̃f
cat
φq(1)


+

(
1

n
1n1

T
n ∋ Id

)
↗f

cat
φq(k)

↓ ↗̃f
cat
φq(k)



(3.66)

By Assumption 3.2.1 and Jensen’s inequality, we have

E
∥∥∥↗f

cat
φq(ω)

↓ ↗̃f
cat
φq(ω)

∥∥∥
2

= E


n∑

i=1

∥∥∥↗f
i
φq(ω)


xi
q,ω


↓ ↗̃f

i
φq(ω)


xi
q,ω

∥∥∥
2


⇐

√√√√
n∑

i=1

E
∥∥∥↗f i

φq(ω)


xi
q,ω


↓ ↗̃f i

φq(ω)


xi
q,ω

∥∥∥
2

⇐

∝
n⇀0 (3.67)
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Taking the second moment of equation (4.12), we have

E
∥∥∥dcat

q,k ↓ d̃cat
q,k

∥∥∥
2


⇐E




(

k↔1∑

ω=1

∥∥∥∥W
k↔ω ↓ 1

n
1n1

T
n

∥∥∥∥
∥∥∥↗f

cat
φq(ω+1) ↓ ↗̃f

cat
φq(ω+1) + ↗̃f

cat
φq(ω)

↓↗f
cat
φq(ω)

∥∥∥

)2




+ E
∥∥∥∥

(
Wk ↓ 1

n
1n1

T
n ∋ Id

)
↗f

cat
φq(1)

↓ ↗̃f
cat
φq(1)


+

(
1

n
1n1

T
n ∋ Id

)
↗f

cat
φq(k)

↓ ↗̃f
cat
φq(k)

∥∥∥∥
2


⇐E




(

k↔1∑

ω=1

∥∥∥∥W
k↔ω ↓ 1

n
1n1

T
n

∥∥∥∥
∥∥∥↗f

cat
φq(ω+1) ↓ ↗̃f

cat
φq(ω+1) + ↗̃f

cat
φq(ω)

↓↗f
cat
φq(ω)

∥∥∥

)2




+ 4

(
E
∥∥∥∥W

k ↓ 1

n
1n1

T
n

∥∥∥∥
2 ∥∥∥↗f

cat
φq(1)

↓ ↗̃f
cat
φq(1)

∥∥∥
2

+ E

∥∥∥∥
1

n
1n1

T
n

∥∥∥∥
2 ∥∥∥↗f

cat
φq(k)

↓ ↗̃f
cat
φq(k)

∥∥∥
2
)

⇐4n (G+G0)
2

(
k↔1∑

ω=1

ε(W)k↔ω

)2

+ 4n⇀2
0


ε(W)2k + 1



⇐4n (G+G0)
2
(

ε(W)

1↓ ε(W)

)2

+ 4n⇀2
0(ε(W) + 1) ⇐ 4n




(

G+G0
1

ϱ(W) ↓ 1

)2

+ 2⇀2
0



 (3.68)

where the first inequality holds since E
[
↗f

cat
φq(ω+1) ↓ ↗̃f

cat
φq(ω+1) + ↗̃f

cat
φq(ω)

↓↗f
cat
φq(ω)

]
= 0. The

second inequality follows the fact that ⇓a+ b⇓2 ⇐ 4

⇓a⇓2 + ⇓b⇓2


. The third inequality comes

from Assumption 3.2.1 and the analysis in Lemma 3.3.2. Finally, one can obtain the desired result

by noticing E
∥∥∥di

q,k ↓ d̃i
q,k

∥∥∥
2

⇐

∑n
i=1 E

∥∥∥di
q,k ↓ d̃i

q,k

∥∥∥
2

= E

∥∥∥dcat
q,k ↓ d̃cat

q,k

∥∥∥
2


Lemma 3.7.4 (Lemma 3.3.4). Under Assumption 3.3.1, Lemma 3.3.2, Lemma 3.3.3 and setting
ϑk = 2

(k+3)2/3
and ϑk = 1.5

(K↔k+2)2/3
for k →


K
2


and k →


K
2 + 1,K


respectively, we have

E
[∥∥∥d̂i

q,k↔1 ↓ ãi
q,k

∥∥∥
]
⇐






∝
M

(k + 4)1/3
k →


K

2



∝
M

(K ↓ k + 1)1/3
i →


K

2
+ 1,K

 (3.69)

where M = max{M1,M2} where M1 = max{52/3 (Vd + L0)
2
,M0}, M0 = 4


V

2
d + ⇀

2

+ 32

∝
2Vd

and M2 = 2.55

V

2
d + ⇀

2

+

7
∝
2Vd

3
and L0 = 2

42/3

∥∥∥d̃i
q,1

∥∥∥

Proof. In order to prove the lemma, we only need to bound E
∥∥∥d̂i

q,k↔1 ↓ ãi
q,k

∥∥∥
2

, following the

decomposition in [Zhang2019], we have

E
∥∥∥d̂i

q,k↔1 ↓ ãi
q,k

∥∥∥
2

= E

∥∥∥d̂i
q,k↔1 ↓ (1↓ ϑk)ã

i
q,k↔1 ↓ ϑkd̃

i
q,k

∥∥∥
2


= ϑ
2
kE

∥∥∥d̂i
q,k↔1 ↓ d̃i

q,k)
∥∥∥
2

+ (1↓ ϑk)

2E
∥∥∥d̂i

q,k↔1 ↓ d̂i
q,k↔2

∥∥∥
2


(3.70)

+ (1↓ ϑk)
2E

∥∥∥d̂i
q,k↔2 ↓ ãi

q,k↔1

∥∥∥
2


+ 2ϑk(1↓ ϑk)E
[〈

d̂i
q,k↔1 ↓ d̃i

q,k, d̂
i
q,k↔1 ↓ d̂i

q,k↔2

〉]

+ 2ϑk(1↓ ϑk)E
[〈

d̂i
q,k↔1 ↓ d̃i

q,k, d̂
i
q,k↔2 ↓ ãi

q,k↔1

〉]

+ 2(1↓ ϑk)
2E

[〈
d̂i
q,k↔1 ↓ d̂i

q,k↔2, d̂
i
q,k↔2 ↓ ãi

q,k↔1

〉]
(3.71)
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The first part of the above equation is written as

E
∥∥∥d̂i

q,k↔1 ↓ d̃i
q,k)

∥∥∥
2

= E


Eφ

∥∥∥d̂i
q,k↔1 ↓ d̃i

q,k)
∥∥∥
2 ∣∣ Fq,k↔1



= E

Eφ

∥∥∥d̂i
q,k↔1 ↓ di

q,k + di
q,k ↓ d̃i

q,k)
∥∥∥
2 ∣∣ Fq,k↔1



⇐ E

Eφ

∥∥∥d̂i
q,k↔1 ↓ di

q,k

∥∥∥
2
+
∥∥∥di

q,k ↓ d̃i
q,k)

∥∥∥
2
+ 2⇒d̂i

q,k↔1 ↓ di
q,k,d

i
q,k ↓ d̃i

q,k⇑
∣∣ Fq,k↔1


(3.72)

Using the definition of d̂i
q,k↔1, Lemma 3.7.2 and Lemma 4.4.1 and law of total expectation, we

have

E

Eφ

∥∥∥d̂i
q,k↔1 ↓ di

q,k

∥∥∥
2 ∣∣ Fq,k↔1


= E


V arφ


di
q,k

∣∣ Fq,k↔1


⇐ E

[
Eφ

[∥∥di
q,k

∥∥2 ∣∣ Fq,k↔1

]]
⇐ V

2
d

(3.73)

E

Eφ

∥∥∥di
q,k ↓ d̃i

q,k)
∥∥∥
2

|Fq,k↔1


⇐ ⇀

2
1 (3.74)

Recall that Hq,k is the filtration related to the randomness of d̃i
q,k and d̂i

q,k↔1 and di
q,k is Fq,k-

measurable, then one can write

E
[
Eφ

[〈
d̂i
q,k↔1 ↓ di

q,k,d
i
q,k ↓ d̃i

q,k

〉 ∣∣ Fq,k↔1

]]

=E
[〈

d̂i
q,k↔1 ↓ di

q,k,d
i
q,k ↓ d̃i

q,k

〉]

=E
[
Eφ

[〈
d̂i
q,k↔1 ↓ di

q,k,d
i
q,k ↓ d̃i

q,k

〉 ∣∣ Fq,k

]]

=E
[〈

d̂i
q,k↔1 ↓ di

q,k,Eφ

[
di
q,k ↓ d̃i

q,k

∣∣ Fq,k

]〉]
(by Fq,k-measurability)

=E
[
Ed̃

[〈
d̂i
q,k↔1 ↓ di

q,k,Eφ

[
di
q,k ↓ d̃i

q,k

∣∣ Fq,k

]〉] ∣∣ Hq,k↔1

]

=E
[〈

d̂i
q,k↔1 ↓ di

q,k,Ed̃

[
Eφ

[
di
q,k ↓ d̃i

q,k

∣∣ Fq,k

] ∣∣ Hq,k↔1

]〉]

=E
[〈

d̂i
q,k↔1 ↓ di

q,k,Eφ

[
Ed̃

[
di
q,k ↓ d̃i

q,k

∣∣ Hq,k↔1

] ∣∣ Fq,k

]〉]
(by Fubini’s theorem)

=0 (3.75)

where the last equation holds since Ed̃

[
d̃i
q,k

∣∣ Hq,k↔1

]
= di

q,k. Combining equations (3.73) to (3.75),
equation (3.72) is upper bounded by

E
∥∥∥d̂i

q,k↔1 ↓ d̃i
q,k)

∥∥∥
2

⇐ V

2
d + ⇀

2
1 ↫ V (3.76)

We are now bounding E
∥∥∥d̂i

q,k↔1 ↓ d̂i
q,k↔2

∥∥∥
2

, using the definition of d̂i

q,k and Lemma 3.7.2. We
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have

E
∥∥∥d̂i

q,k↔1 ↓ d̂i
q,k↔2

∥∥∥
2


=E

Eφ

∥∥∥d̂i
q,k↔1 ↓ d̂i

q,k↔2

∥∥∥
2 ∣∣ Fq,k↔2



=E



Eφ




∥∥∥∥∥

∑K
ε=k d

i
q,ε

K ↓ k + 1
↓

∑K
ε=k↔1 d

i
q,ε

K ↓ k + 2

∥∥∥∥∥

2
∣∣ Fq,k↔2









=E



Eφ




∥∥∥∥∥

∑K
ε=k d

i
q,ε

K ↓ k + 1
↓

∑K
ε=k d

i
q,ε

K ↓ k + 2
↓

di
q,k↔1

K ↓ k + 2

∥∥∥∥∥

2
∣∣ Fq,k↔2









=E



Eφ




∥∥∥∥∥

∑K
ε=k d

i
q,ε

(K ↓ k + 1)(K ↓ k + 2)
↓

di
q,k↔1

K ↓ k + 2

∥∥∥∥∥

2
∣∣ Fq,k↔2









⇐E



Eφ








∑K

ε=k

∥∥∥di
q,ε

∥∥∥
(K ↓ k + 1)(K ↓ k + 2)

+

∥∥∥di
q,k↔1

∥∥∥
K ↓ k + 2





2

∣∣ Fq,k↔2









⇐ 4V 2
d

(K ↓ k + 2)2
↫ L

(K ↓ k + 2)2
(3.77)

More over, we have

E
[〈

d̂i
q,k↔1 ↓ d̃i

q,k, d̂
i
q,k↔1 ↓ d̂i

q,k↔2

〉]

=E
[
Eφ,d̃

[〈
d̂i
q,k↔1 ↓ d̃i

q,k, d̂
i
q,k↔1 ↓ d̂i

q,k↔2

〉 ∣∣ Fq,k↔1,Hq,k↔1

]]

=E
[〈

Eφ,d̃

[
d̂i
q,k↔1 ↓ d̃i

q,k

∣∣ Fq,k↔1,Hq,k↔1

]
, d̂i

q,k↔1 ↓ d̂i
q,k↔2

〉]

=0 (3.78)

since Ed̃

[
d̃i
q,k

∣∣ Hq,k↔1

]
= di

q,k and Eφ

[
di
q,k

∣∣ Fq,k↔1

]
= d̂i

q,k. Using the same argument, we can
deduce

E
[〈

d̂i
q,k↔1 ↓ d̃i

q,k, d̂
i
q,k↔2 ↓ ãi

q,k↔1

〉]

=E
[
Eφ,d̃

[〈
d̂i
q,k↔1 ↓ d̃i

q,k, d̂
i
q,k↔2 ↓ ãi

q,k↔1

〉 ∣∣ Fq,k↔1,Hq,k↔1,

]]

=E
[〈

Eφ,d̃

[
d̂i
q,k↔1 ↓ d̃i

q,k

∣∣ Fq,k↔1,Hq,k↔1

]
, d̂i

q,k↔2 ↓ ãi
q,k↔1

〉]

=0 (3.79)

where we have use law of total expectation and conditional unbiasness of d̃i
q,k. Using Young’s

inequality and equation (3.77), one can write

E
[〈

d̂i
q,k↔1 ↓ d̂i

q,k↔2, d̂
i
q,k↔2 ↓ ãi

q,k↔1

〉]

⇐ E


1

2↼k

∥∥∥d̂i
q,k↔1 ↓ d̂i

q,k↔2

∥∥∥
2
+

↼k

2

∥∥∥d̂i
q,k↔2 ↓ ãi

q,k↔1

∥∥∥
2


⇐ L

2↼k(K ↓ k + 2)2
+

↼k

2
E
∥∥∥d̂i

q,k↔2 ↓ ãi
q,k↔1

∥∥∥
2


(3.80)

With the above analysis, we can deduce that

E
∥∥∥d̂i

q,k↔1 ↓ ãi
q,k

∥∥∥
2

⇐ ϑ

2
kV + (1↓ ϑk)

2 L

(K ↓ k + 2)2
+ (1↓ ϑk)

2E
∥∥∥d̂i

q,k↔2 ↓ ãi
q,k↔1

∥∥∥
2


+ (1↓ ϑk)
2

(
L

↼k(K ↓ k + 2)2
+ ↼kE

∥∥∥d̂i
q,k↔2 ↓ ãi

q,k↔1

∥∥∥
2
)

(3.81)
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Setting ↼k = ⇀k

2 , we have

E
∥∥∥d̂i

q,k↔1 ↓ ãi
q,k

∥∥∥
2

⇐ ϑ

2
kV + (1↓ ϑk)

2
(
1 +

2

ϑk

)
L

(K ↓ k + 2)2

+ (1↓ ϑk)
2

1 +

ϑk

2


E
∥∥∥d̂i

q,k↔2 ↓ ãi
q,k↔1

∥∥∥
2


⇐ ϑ
2
kV +

(
1 +

2

ϑk

)
L

(K ↓ k + 2)2
+ (1↓ ϑk)E

∥∥∥d̂i
q,k↔2 ↓ ãi

q,k↔1

∥∥∥
2


(3.82)

For k ⇐ K
2 + 1, we set ϑk = 2

(k+3)2/3
and recall that K ↓ k + 2 ⇔ k, equation (3.82) is written as:

E
∥∥∥d̂i

q,k↔1 ↓ ãi
q,k

∥∥∥
2


⇐ 4

(k + 3)4/3
V +


1 + (k + 3)2/3


L

k2
+

(
1↓ 2

(k + 3)2/3

)
E
∥∥∥d̂i

q,k↔2 ↓ ãi
q,k↔1

∥∥∥
2


⇐ 4

(k + 3)4/3
V +


1 + (k + 3)2/3

 16L

(k + 3)2
+

(
1↓ 2

(k + 3)2/3

)
E
∥∥∥d̂i

q,k↔2 ↓ ãi
q,k↔1

∥∥∥
2


⇐ 4

(k + 3)4/3
V +

16L

(k + 3)4/3
+

16L

(k + 3)4/3
+

(
1↓ 2

(k + 3)2/3

)
E
∥∥∥d̂i

q,k↔2 ↓ ãi
q,k↔1

∥∥∥
2


⇐ 4V + 32L

(k + 3)4/3
+

(
1↓ 2

(k + 3)2/3

)
E
∥∥∥d̂i

q,k↔2 ↓ ãi
q,k↔1

∥∥∥
2


↫ M0

(k + 3)4/3
+

(
1↓ 2

(k + 3)2/3

)
E
∥∥∥d̂i

q,k↔2 ↓ ãi
q,k↔1

∥∥∥
2


(3.83)

We consider the base step where k = 1,

E
∥∥∥d̂i

q,0 ↓ ãi
q,1

∥∥∥
2

= E




∥∥∥∥∥
1

K

K∑

ε=1

di
q,ε ↓

2

42/3
d̃i
q,1

∥∥∥∥∥

2




⇐
(
Vd +

2

42/3

∥∥∥d̃i
q,1

∥∥∥
)2

⇐
(
Vd +

2

42/3
G0

)2

↫ (Vd + L0)
2 (3.84)

Set M1 = max

52/3 (Vd + L0)

2
,M0


. For k →


K
2 + 1


, we claim that E

∥∥∥d̂i
q,k↔1 ↓ ãi

q,k

∥∥∥
2

⇐

M1

(k + 4)2/3
. Suppose the claim holds for k ↓ 1, we have

E
∥∥∥d̂i

q,k↔1 ↓ ãi
q,k

∥∥∥
2

⇐ M1

(k + 3)4/3
+ E

∥∥∥d̂i
q,k↔2 ↓ ãi

q,k↔1

∥∥∥
2
(

1↓ 2

(k + 3)2/3

)

⇐ M1

(k + 3)4/3
+

M1

(k + 3)2/3
·
(k + 3)2/3 ↓ 2

(k + 3)2/3

⇐
M1


(k + 3)2/3 ↓ 1



(k + 3)4/3

⇐ M1

(k + 4)2/3
(3.85)
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since
(k + 3)2/3 ↓ 1

k + 3)4/3
⇐ 1

(k + 4)2/3
. For k →


K
2 + 1,K


, we set ϑk =

1.5

(K ↓ k + 2)2/3
, thus

E
∥∥∥d̂i

q,k↔1 ↓ ãi
q,k

∥∥∥
2

⇐ 2.55V

(K ↓ k + 2)4/3
+

(
1 +

4

3
(K ↓ k + 2)2/3

)
L

(K ↓ k + 2)2

+ E
∥∥∥d̂i

q,k↔2 ↓ ãi
q,k↔1

∥∥∥
2
(

1↓ 1.5

(K ↓ k + 2)2/3

)

⇐ 2.55V

(K ↓ k + 2)4/3
+

L

(K ↓ k + 2)4/3
+

4

3

L

(K ↓ k + 2)4/3

+ E
∥∥∥d̂i

q,k↔2 ↓ ãi
q,k↔1

∥∥∥
2
(

1↓ 1.5

(K ↓ k + 2)2/3

)

⇐ 2.55V + 7L/3

(K ↓ k + 2)4/3
+ E

∥∥∥d̂i
q,k↔2 ↓ ãi

q,k↔1

∥∥∥
2
(

1↓ 1.5

(K ↓ k + 2)2/3

)

↫ M2

(K ↓ k + 2)4/3
+ E

∥∥∥d̂i
q,k↔2 ↓ ãi

q,k↔1

∥∥∥
2
(

1↓ 1.5

(K ↓ k + 2)2/3

)
(3.86)

Let M = max {M1,M2} and k →

K
2 + 1,K


, we claim that E

∥∥∥d̂i
q,k↔1 ↓ ãi

q,k

∥∥∥
2

⇐ M

(K ↓ k + 1)2/3
.

The base step is verified by equation (3.85). We now suppose the claim holds for k↓ 1, let’s prove
for k.

E
∥∥∥d̂i

q,k↔1 ↓ ãi
q,k

∥∥∥
2

⇐ M

(K ↓ k + 2)4/3
+

M

(K ↓ k + 2)2/3
·
(K ↓ k + 2)2/3 ↓ 1.5

(K ↓ k + 2)2/3

=
M


(K ↓ k + 2)2/3 ↓ 0.5



(K ↓ k + 2)4/3

⇐ M

(K ↓ k + 1)2/3
(3.87)

Thus, from equation (3.85) and equation (3.87), we have

E
∥∥∥d̂i

q,k↔1 ↓ ãi
q,k

∥∥∥
2

⇐






M

(k + 4)2/3
k →


1,

K

2



M

(K ↓ k + 1)2/3
k →


K

2
+ 1,K

 (3.88)

Thus, using Jensen inequality, we have

E
[∥∥∥d̂i

q,k↔1 ↓ ãi
q,k

∥∥∥
]
⇐

√

E
∥∥∥d̂i

q,k↔1 ↓ ãi
q,k

∥∥∥
2


=

√

E
∥∥∥d̂i

q,k↔1 ↓ ãi
q,k

∥∥∥
2


⇐






∝
M

(k + 4)1/3
k →


1,

K

2



∝
M

(K ↓ k + 1)1/3
k →


K

2
+ 1,K

 (3.89)

Lemma 3.7.5 (Lemma 3.3.5). For Ft a monotone continous DR-submodular and ϖ-smoothness,
xt,k+1 = xt,k + 1

Kvt,k for k → [K], we

Ft(x
↓)↓ Ft(xt,k+1) ⇐ (1↓ 1/K) [Ft(x

↓)↓ Ft(xt,k]) (3.90)

↓ 1

K
[↓⇓↗Ft(xt,k)↓ dt,k⇓D + ⇒dt,k,vt,k ↓ x↓⇑] + ϖD

2

2K2
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Proof. Followng the idea of [Chen2018a] and using ϖ-smoothness of Ft,

Ft(xt,k+1) ⇔ Ft(xt,k) + ⇒Ft(xt,k),xt,k+1 ↓ xt,k⇑ ↓
ϖ

2
⇓xt,k+1 ↓ xt,k⇓2

⇔ Ft(xt,k) +
1

K

〈
Ft(xt,k),v

i
t,k

〉
↓ ϖ

2

D
2

K2
(since ⇓vt,k⇓ ⇐ D)

⇔ Ft(xt,k) +
1

K
[⇒↗Ft(xt,k)↓ dt,k,vt,k ↓ x↓⇑+ ⇒↗Ft(xt,k),x

↓⇑+ ⇒dt,k,vt,k ↓ x↓⇑]↓ ϖ

2

D
2

K2

(3.91)

By Cauchy-Schwarz’s inequality, note that,

⇒↗Ft(xt,k)↓ dt,k,vt,k ↓ x↓⇑ ⇔ ↓⇓↗Ft(xt,k)↓ tt,k⇓D

Using concavity along non-negative direction and monotonicity of Ft, we have,

Ft(x
↓)↓ Ft(xt,k) ⇐ Ft(x

↓ ̸ xt,k)↓ Ft(xt,k)

⇐ ⇒↗Ft(xt,k), (x
↓ ̸ xt,k)↓ xt,k⇑

= ⇒↗Ft(xt,k), (x
↓ ↓ xt,k) ̸ 0⇑

⇐ ⇒↗Ft(xt,k),x
↓⇑ (3.92)

then, equation (3.91) becomes
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Adding and substracting Ft(x↓) and multiply both side by ↓1 yields Lemma 3.7.5.

3.7.2 Section 3.4 : Bandit Setting

Lemma 3.7.6 (Lemma 3.4.4). Under Assumption 3.2.2, the variance of the local gradient estimate
is uniformly bounded, i.e
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Proof. By Assumption 3.2.2, we have
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Following the same analysis in equation (4.14), we have
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The lemma follows by remarking that E
∥∥∥di,↼
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Proof. The proof is essentially based on the one of Lemma 3.7.1. Note that we keep the same
notation with a superscipt ⇁ to indicate the smooth version of f and related variables. By definition
of the one-point gradient estimator and Assumption 3.2.2, equation (3.52) becomes
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By Jensen’s inequality, we deduce that
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When k = 1, following the same derivation in equation (3.54), we have
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Let k → [2, k0], from equation (2.32) and equation (3.99)
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∝
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the induction hypothesis, we have
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Using the inequality in equation (3.58) and the above result, the lemma is then proven.

Lemma 3.7.8 (Lemma 3.4.6). Under Lemma 3.4.3 and lemma 3.4.4 and setting ϑk = 2
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,
we have
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Proof. The proof follows the same idea in Lemma 10 and Lemma 11 of [Zhang2019] with di!erent
constants. We will evoques in details in the following section. Following the same decomposition
in the proof of Lemma 3.7.4, we have
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By the definition in equation (3.35), we have E
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Invoking Lemma 3.4.4, we have
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and
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by following the same analysis in equation (3.75). We now claim that equation (3.103) is bounded
above by
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More over, taking the idea from equations (3.77) to (3.80), we have
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by using Young’s inequality. Setting ↼k = ⇀k
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Setting L ⇔ 2K and ϑk = 2
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Suppose that the induction hypothesis holds for k ↓ 1, one can easily verify for k since
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4.1. Introduction

4.1 Introduction

The popularity of sensors and IoT devices has the potential to generate and, equivalently, accu-
mulate data in order of Zeta bytes [MacCarthy2018] annually. High throughput, low latency, data
consumption, and network dependencies are often the key metrics in designing high-performance
learning algorithms under the constraint of low-power computing. In recent times, there has been
an alternate trend to process data in the cloud or dump into a centralized database. Commonly
known as edge computing, the new paradigm embraces the idea of using interconnected comput-
ing nodes to reduce high bandwidth-consuming data uploads, privacy preservation of data, and
knowledge on the fly. Smart building applications typically have a profound implication on the
environment in terms of energy savings, reduction of green house emissions, etc. Predicting the
future often forms the basis of corrective actions taken by such apps and can be regarded as a
predominant use case of machine learning. Typically, data is generated in various zones by hetero-
geneous sensors, creating a distributed learning environment. Recently, improvements in network
communication and edge computing have enhanced the hardware-software interface. Consequently,
the practical option of implementing a machine learning model on-site and analyzing data in real
time has emerged as an alternative to transmitting data to a centralized database. Optimizing
problems to maintain robust solutions under the uncertainty of the future is a nice feature for
such cyber-physical systems. Contrary to the classical train-test-deploy framework, online learn-
ing o!ers continuous learning where, during run-time, a batch of sensor data has the potential to
update an AI model on site. This work aligns with the edge computing paradigm by proposing
a distributed and online learning algorithm. Online learning helps to better adapt to the uncer-
tainty of the future, where the data pattern continually changes over time. The designed algorithm
repeatedly chooses a high-performance strategy given a set of actions compared to the best-fixed
action in hindsight. Instead of having a centralized mediator, the distributed environment pro-
motes peer-to-peer knowledge exchanges while prohibiting data sharing between learners. Many
proposed distributed online algorithms use gradient descent-based methods to solve constraint
problems. Such an approach requires projection into the constraint set, which usually involves in-
tensive computation, which is not best suited in the context of sensors and IoT. We aim to design a
competitive, robust algorithm in the distributed and online setting that has the flexibility of being
projection-free.

Problem setting We are given a convex set K ↙ Rd and a set of agents connected over a
network represented by a graph G = (V,E) where n = |V | is the number of agents. At every
time t → [T ], each agent i → V can communicate with (and only with) its immediate neighbors, ie,
adjacent agents in G and makes a decision xt

i → K. Subsequently, a batch of new data is revealed
exclusively to the agent i and, from its own batch, a non-convex cost function f

i
t : K ↔ R is

induced locally. Although each agent i observes only a function f
i
t , agent i is interested in the

cumulative cost Ft( · ) where Ft( · ) := 1
n

∑n
i=1 f

i
t ( · ). In particular, at time t, the cost of agent i

with its chosen xi
t is Ft(xi

t). The objective of each agent i is to minimize the total cumulative cost∑T
t=1 Ft(xi

t) through local communication with its immediate neighbors.
In the online convex optimization setting, a standard measure of performance is the regret (or

the normalized version) which compares the total cost of every agent to that of the best solution
in hindsight, that is, for all i → [n],

RT =
1

T

(
T∑

t=1

Ft(x
i
t)↓min

x↑K

T∑

t=1

Ft(x)

)

However, the concept of regret is ill-defined in the for non-convex objectives, as there is no guarantee
of a global minimum’s existence. This makes it challenging to evaluate the performance of agents
against an optimal solution. In such cases, an alternative performance measure in the o#ine
setting is the distance to stationary points, which often provides a su"cient condition for algorithm
convergence to a local minimum. In the setting Frank-Wolfe algorithm, a natural stationarity
measure for non-convex settings is the duality gap [Jaggi2013,Lacoste-Julien2016], defined as :

Gt(x) = max
v↑K

⇒↗Ft(x),x↓ v⇑

It is important to note that Gt(x) is non-negative, and Gt(x) = 0 if and only if x is a stationary point
of the function Ft. We extend this duality gap to the online setting by defining the convergence
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gap as:

max
v↑K

1

T

T∑

t=1

⇒↗Ft(xt),xt ↓ v⇑

In the same spirit as regret, the convergence measures the tocal cost of agents to that of the best
stationary point in hindsight. When the function Ft are convex, the convergence gap is always
upper bounded by the regret. Moreover, when the problem becomes o#ine, that is, all Ft are the
same, the convergence gap measures the speed of convergence to a stationary solution.

4.1.1 Our contribution

The challenge in designing robust and e"cient algorithms for the problem is to resolve the following
issues together: the uncertainty (online setting, agents observe their own loss functions only after
choosing their decisions), the partial information (distributed setting, agents know only its own loss
functions while aiming to minimize the cumulating cost), and the nonconvexity of the loss functions.
As a starting point, we consider the Meta Frank-Wolfe (MFW) algorithm [Chen2018b] in the
(centralized, convex) online setting and the distributed Frank-Wolfe (DFW) algorithm [Wai2017]
in the distributed (o#ine) setting. However, these algorithms work either in the online setting or
in the distributed one but not both together. The di"culty in our problem, as mentioned earlier,
is to resolve all issues together.

In the paper, we present algorithms, subtly built on MFW and DFW algorithms, that achieve
the convergence gap of O(T↔1/2) and O(T↔1/4) in cases where the exact gradients or only stochastic
gradients of loss functions are available, respectively. Note that in the former, the convergence
gap of O(T↔1/2) asymptotically matches the best-regret guarantee even in the centralized o#ine
settings with convex functions. In addition, one can convert the algorithms to be projection-free
by choosing the appropriate oracles used in the algorithm. This property provides flexibility to
apply the algorithms to di!erent settings depending on the computing capacity of local devices.
Our work applies to online neural network optimization amongst a group of autonomous learners.
We demonstrate the practical utility of our algorithm in a smart building application where zones
mimic learners optimizing a temperature forecasting problem. We provide a thorough analysis of
our algorithms in di!erent angles of the performance guarantee (quality of solutions), the e!ects of
network topology, and decentralization, which are predictably explained by our theoretical results.

4.1.2 Related Work

Distributed Online Optimization. Authors [Yan2013] introduced decentralized online pro-
jected subgradient descent and showed vanishing regret for convex and strongly convex functions.
In contrast, Hosseini et al. [Hosseini2013] extended distributed dual averaging technique to the
online setting using a general regularized projection for both unconstrained and constrained opti-
mization. A distributed variant of online conditional gradient [Hazan2016a] was designed and ana-
lyzed in [Zhang2017] that requires linear minimizers and uses exact gradients. However, computing
exact gradients may be prohibitively expensive for moderately sized data and intractable when a
closed-form does not exist. In this work, we go a step ahead in designing a distributed algorithm
that uses stochastic gradient estimates and provides a better regret bound than in [Zhang2017].

Learning on the edge. Over the year, edge computing has become an exciting alternative for
cloud-based learning by processing the data closer to end devices while ensuring data confidentiality
and reducing transmission. [Wang2018] proposes a distributed framework for non-i.i.d data using
multiple gradient descent-based algorithms to update local models and a dedicated edge unit for
global aggregation. Another popular approach is to reduce the memory size of classical machine
learning models to meet edge resource constraints. [Shotton2013] and [Nan2016] similarly takes
this idea by building a tree-based learning framework with a considerable reduction in memory
using compression and pruning. At the same time, [Gupta2017] introduce an edge-friendly version
of k-nearest neighbor [Cover1967] by projecting the data into a lower-dimensional space. Besides
traditional machine learning algorithms, adapting deep learning models to work on edge devices is
an emerging research domain. In [Chiliang2019,Lin2017], the authors propose a pruning technique
on convolutional network for faster computation while preserving the model ability. Another
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approach using weight quantization is proposed in [Simons2019]. The current dominant paradigm
is federated learning [McMahan2017,Kairouz2021], where o#ine centralized training is performed
through a star network with multiple devices connected to a central server. However, decentralized
training is more e"cient than centralized one when operating on networks with low bandwidth
or high latency [Lian2017, He2018]. In this paper, we go one step further by studying arbitrary
communication networks without a central coordinator and the local data (so local cost functions)
evolve.

Thermal Profiling a Building. Usually, building monitoring sensors are distributed across a
building and thus acts as a scattered data lake with potentially heterogeneous patterns. Indoor
temperature is an important factor in controlling Heating Ventilation Air Conditioning systems
that maintain ambient comfort within a building [Gupta2015]. Typically such embedded systems
run in anticipatory mode where temperature prediction [Cai2019] of controlled building zones helps
in maintaining thermal consistency. A multitude of factors e!ect the thermal profile like outdoor
environment, opening/closing of windows, number of occupants, etc, which are hard to get and
often rely on intrusive mechanisms to gather the data. Researchers have utilized deep learning
models [Zamora-Martinez2014] in the context of online learning of temperature, but lack the
benefit of interacting with multiple similar sensors. This study seeks to generate a thermal profile
of a building by only utilizing temperature data from multiple zones of a building in order to
extract patterns about thermal variation. The proposed methodology not only processes data on
the fly [Abdel-Aziz2019], but also identifies meaningful topological data exchange networks that
can best predict multi zonal temperature settings.

4.2 Preliminaries

We recall the notations and concepts defined in Section 1.2. We denote the convex set by K
and the decision vector of agent i at time step k of phase t by xi

t,k. We let G be an undirected
graph with adjacency matrix W → Rn→n

+ , where n = |V| is the number of agents. We assume
that the matrix W is doubly stochastic, meaning that W1 = WT1 = 1. Boldface letters, such as
x, represent vectors. We denote the decision vector of agent i at time step t by xi

t. We assume
that the constraint set K satisfies Assumption 1.2.1 and the functions f

i
t satisfy Assumption 1.2.2

with constants ϖ, G. The stochastic estimates f̃
i
t satisfy Assumption 3.2.1 with constants ⇀0

and G0. The functions f
i
t are not necessarily convex, and we denote the global loss function by

Ft( · ) = 1
n

∑n
i=1 f

i
t ( · ). For further details on notation, we refer to Section 1.2.

In our algorithm, we make use of linear optimization oracles, whose role is to resolve an online
linear optimization problem given a feedback function and a constraint set. Specifically, in the on-
line linear optimization problem, at each time 1 ⇐ t ⇐ T , one has to select ut → K. Subsequently,
the adversary reveals a vector dt and feedbacks the cost function ⇒dt, · ⇑. The objective is to min-
imize regret, that is, 1

T

∑T
t=1 ⇒ut,dt⇑ ↓minu↑K

∑T
t=1 ⇒u,dt⇑


. Several algorithms [Hazan2016a]

provide an optimal regret bound of RT = O(1/
∝
T ) for the online linear optimization problem.

These algorithms include the online gradient descent algorithm or the follow-the-perturbed-leader
algorithm (projection-free). One can pick one of such algorithms to be an oracle that solves the
online linear optimization problem.

In the next section, after introducing and recalling useful notions, we will first provide an
algorithm for the setting with exact gradients. Subsequently, building on the salient ideas of that
algorithm, we extend to the more realistic setting with stochastic gradients.
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4.3 An Algorithm with Exact Gradients

Assume that the exact gradients of the loss functions f
i
t are available (or can be computed).

The high-level idea of the algorithm is the following. In the algorithm, at every time t, each agent i
executes the steps K of the Frank-Wolfe algorithm where every update vector (for iterations k → [K]
where the parameter K will be chosen later) is constructed by combining the output of the linear
optimization oracles Oj

k and the current vectors of its neighbors j → N(i). During this execution,
a set of feasible solutions {xi

t,k : k → [K]} is computed. The solution xi
t for each agent i → [n]

is then randomly chosen uniformly among {xi
t,k : k → [K]}. Subsequently, after communicating

and aggregating the information related to functions f
t
j for j → N(i), the algorithm computes a

vector di
t,k and feedbacks ⇒di

t,k, · ⇑ as the cost function at time t to the oracle Oi
k for k → [K]. The

vectors di
t,k’ are subtly built so that they capture step by step more and more information on the

cumulating cost functions. The formal description is given in Algorithm 9.

Algorithm 9 Distributed Online Algorithm
Input: A convex set K, a time horizon T , a parameter K, online linear optimization oracles
Oi

1, . . . ,Oi
K for each agent i → [n], step sizes ςk → (0, 1) for all k → [K]

1: for t = 1 to T do

2: for every agent i → [n] do

3: Initialize arbitrarily xi
t,1 → K

4: for k → [K] do

5: Let vi
t,k be the output of oracle Oi

k at time step t.
6: Send xi

t,k to all neighbors N(i)

7: Once receiving xt
j,k from all neighbors j → N(i), set yi

t,k ▽
∑

j Wijxt
j,k.

8: Compute xi
t,k+1 ▽ (1↓ ςk)yi

t,k + ςkvi
t,k.

9: end for

10: Choose xt
i ▽ xi

t,k for 1 ⇐ k ⇐ K with probability 1
K and play xi

t

11: Receive function f
i
t

12: Set gi
t,1 ▽ ↗f

i
t (x

t
i,1)

13: for k → [K] do

14: Exchange gi
t,k with neighbours N (i)

15: di
t,k ▽

∑
j↑N (i) wijg

j
t,k and

16: gi
t,k+1 ▽


↗f

i
t (x

i
t,k+1)↓↗f

i
t (x

i
t,k)


+ di

t,k.

17: Feedback function
〈
di
t,k, ·

〉
to oracles Oi

k.
18: end for

19: end for

20: end for

Theorem 4.3.1. Let K be a convex set with diameter D. Assume that functions Ft (possibly non
convex) verify Assumption 1.2.2 with ϖ and G. Choosing step size ςk = min


1, A

kϑ


where A → R+

and ↼ → (0, 1). Then, Algorithm 1 guarantees that for all i → [n]:

max
x↑K

1

T

T∑

t=1

Exi
t

〈
↗Ft(x

i
t),x

i
t ↓ x

〉
⇐ GDA

↔1

K1↔⇁
+

M

K⇁(1↓ ↼)
+RT

where we note

M = (ϖCd + Cg)D +AD
2
ϖ/2 + 2Cd (ϖD +G)

Cd = k0
∝
nD; Cg =

∝
nmax


ε(W)


G+ ϑD

1↔ϱ(W)


, k0ϖ (4Cd +AD)


(see Lemmas 2.4.1 and 2.4.2)

and RT is the regret of online linear minimization oracles. Choosing K = T , ↼ = 1/2 and oracles
as gradient descent or follow-the-perturbed-leader with regret RT = O


T

↔1/2

, we obtain the gap

convergence rate of O

T

↔1/2

.
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4.3.1 Technical Analysis

Before presenting the proof of Theorem 4.3.1, we first introduce some specific notations. Recall
the definition of duality gap as :

G(x) = max
y↑K

⇒↗F (x),x↓ y⇑

We denote by Gt and Gt,k the duality gap at time t and at sub-iteration k as:

Gt = max
x↑K

⇒↗Ft(xt),xt ↓ x⇑ Gt,k = max
x↑K

⇒↗Ft(xt,k),xt,k ↓ x⇑

where we note by x = 1
n

∑n
i=1 x

i as the global decision. If we let xt,k = argminx↑K ⇒↗Ft(xt,k),x⇑
be the optimal solution at time t and sub-iterate k. Then, we have that Gt,k = ⇒↗Ft(xt,k),xt,k ↓ xt,k⇑.
Finally, we denote by Ext [ · ] the expectation over the random choice in {1, . . . ,K} with probability
1
K .

The structured approach for the proof of Theorem 4.3.1 is as follows:

• We start by deriving an upper bound on the distance between the global gradient
↗Ft(xt,k) and the local gradient di

t,k using results from Lemmas 2.4.1 and 2.4.2.

• The above distance bound, combined with ϖ-smoothness of Ft, allows us to bound the
duality gap Gt,k, as shown in equation (4.5).

• The proof then proceeds by setting an upper bound on the expectated duality gap
Ext [Gt] over K random choices. We employ Lemma 4.3.1 to establish a connection
between the expected duality gap at the agent level Gi

t, k and Gt,k, as indicated in
equation (4.8).

• We finalize the proof by averaging over T iterations and applying Jensen’s inequality.

The detailed proof of Theorem 4.3.1 will be presented in the subsequent section. The proofs
of lemmas 2.4.1 and 2.4.2 are provided in Section 2.7 respectively.

Lemma 4.3.1. For every i → [n] and k → [K], it holds that

Gi
t,k = max

x↑K

〈
↗Ft(x

i
t,k),x

i
t,k ↓ x

〉
⇐ max

x↑K

⇒↗Ft(xt,k),xt,k ↓ x⇑+ (ϖD +G)
2Cd

k⇁

Proof. Fix i → [n] and k → [K]. We have
〈
↗Ft(x

i
t,k),x

i
t,k ↓ x

〉
= ⇒↗Ft(xt,k),xt,k ↓ x⇑+

〈
↗Ft(x

i
t,k)↓↗Ft(xt,k),xt,k ↓ x

〉
⇑+ ⇒↗Ft(x

i
t,k),x

i
t,k ↓ xt,k⇑

Using Lemma 2.4.1, we have

max
x↑K

〈
↗Ft(x

i
t,k),x

i
t,k ↓ x

〉
⇐ max

x↑K

⇒↗Ft(xt,k),xt,k ↓ x⇑+max
x↑K

〈
↗Ft(x

i
t,k)↓↗Ft(xt,k),xt,k ↓ x

〉

+
〈
↗Ft(x

i
t,k),x

i
t,k ↓ xt,k

〉
⇑

⇐ max
x↑K

⇒↗Ft(xt,k),xt,k ↓ x⇑+ (ϖD +G)
∥∥xi

t,k ↓ xt,k

∥∥

⇐ max
x↑K

⇒↗Ft(xt,k),xt,k ↓ x⇑+ (ϖD +G)
2Cd

k⇁

4.3.2 Proof of Theorem 4.3.1

Proof. By ϖ-smoothness, for k → [K]:

Ft (xt,k+1)↓ Ft (xt,k) ⇐ ⇒↗Ft (xt,k) ,xt,k+1 ↓ xt,k⇑+
ϖ

2
⇓xt,k+1 ↓ xt,k⇓2 (4.1)
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Using proposition 7, the inner product in (4.1) can be written as :

⇒↗Ft (xt,k) ,xt,k+1 ↓ xt,k⇑ = ςk

〈
↗Ft (xt,k) ,

1

n

n∑

i=1

vi
t,k ↓ xt,k



= ςk

〈
↗Ft (xt,k) ,

1

n

( n∑

i=1

vi
t,k ↓ n ·xt,k

)

=
ςk

n

n∑

i=1

〈
↗Ft (xt,k) ,v

i
t,k ↓ xt,k

〉
(4.2)

Let xt,k → argminx↑K⇒↗Ft(xt,k),x⇑. Hence,

Gt,k = max
x↑K

⇒↗F (xt,k),xt,k ↓ v⇑ = ⇒↗F (xt,k),xt,k ↓ xt,k⇑

We have :
〈
↗Ft (xt,k) ,v

i
t,k ↓ xt,k

〉

= ⇒↗Ft (xt,k)↓ di
t,k,v

i
t,k ↓ xt,k⇑+ ⇒di

t,k,v
i
t,k ↓ xt,k⇑+ ⇒↗Ft (xt,k) ,xt,k ↓ xt,k⇑

⇐ ⇓↗Ft (xt,k)↓ di
t,k⇓⇓vi

t,k ↓ xt,k⇓+ ⇒di
t,k,v

i
t,k ↓ xt,k⇑+ ⇒↗Ft (xt,k) ,xt,k ↓ xt,k⇑

⇐ ⇓↗Ft (xt,k)↓ di
t,k⇓D + ⇒di

t,k,v
i
t,k ↓ xt,k⇑+ ⇒↗Ft (xt,k) ,xt,k ↓ xt,k⇑.

where we use Cauchy-Schwarz in the first inequality. Using lemmas 2.4.1 and 2.4.2 and ϖ-
smoothness of F t,

∥∥↗Ft (xt,k)↓ di
t,k

∥∥

⇐

∥∥∥∥∥↗Ft (xt,k)↓
1

n

n∑

i=1

↗f
i
t (y

i
t,k)

∥∥∥∥∥+

∥∥∥∥∥
1

n

n∑

i=1

↗f
i
t (y

i
t,k)↓ di

t,k

∥∥∥∥∥

⇐

∥∥∥∥∥
1

n

n∑

i=1

↗f
t
i (xt,k)↓

1

n

n∑

i=1

↗f
i
t (y

i
t,k)

∥∥∥∥∥+

∥∥∥∥∥
1

n

n∑

i=1

↗f
i
t (y

i
t,k)↓ di

t,k

∥∥∥∥∥

⇐ 1

n

n∑

i=1

∥∥↗f
t
i (xt,k)↓↗f

i
t (y

i
t,k)

∥∥+

∥∥∥∥∥
1

n

n∑

i=1

↗f
i
t (y

i
t,k)↓ di

t,k

∥∥∥∥∥

⇐ ϖ

n

n∑

i=1

∥∥xt,k ↓ yi
t,k

∥∥+

∥∥∥∥∥
1

n

n∑

i=1

↗f
i
t (y

i
t,k)↓ di

t,k

∥∥∥∥∥ (by ϖ smoothness)

⇐ ϖCd + Cg

k⇁

Thus,

〈
↗Ft (xt,k) ,v

i
t,k ↓ xt,k

〉
⇐

(
ϖCd + Cg

k⇁

)
D + ⇒di

t,k,v
i
t,k ↓ xt,k⇑ ↓ Gt,k

Upper bound the right hand side of equation (4.2) by the above inequality, we have :

⇒↗Ft (xt,k) ,xt,k+1 ↓ xt,k⇑ ⇐ ςk
(ϖCd + Cg)D

k⇁
+

ςk

n

n∑

i=1

⇒di
t,k,v

i
t,k ↓ xt,k⇑ ↓ ςkGt,k (4.3)

Combining equation (4.1) with equation (4.3) and re-arrange the terms, as ςk = A
kϑ , we have :

ςkGt,k ⇐ Ft (xt,k)↓ Ft (xt,k+1) + ςk
(ϖCd + Cg)D

k⇁
+

ςk

n

n∑

i=1

⇒di
t,k,v

i
t,k ↓ at

k⇑+ ς
2
kD

2 ϖ

2
(4.4)

Dividing by ςk yields :

Gt,k ⇐ k
⇁

A
(Ft (xt,k)↓ Ft (xt,k+1)) +

(ϖCd + Cg)D

k⇁
+

1

n

n∑

i=1

⇒di
t,k,v

i
t,k ↓ xt,k⇑+ ςkD

2 ϖ

2
(4.5)
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Let Gt be a random variable such that Gt = Gt,k with probability 1
K . We are now bounding Ext [Gt].

By equation (4.5), using the definition of ςk = A
kϑ , G-Lipschitz of Ft and the fact that k → [K], we

have

Ext


Gt] =

1

K

K∑

k=1

Gt,k

⇐ K
⇁
GDA

↔1

K
+

(ϖCd + Cg)D

K

K∑

k=1

1

k⇁
+

1

nK

K∑

k=1

n∑

i=1

⇒di
t,k,v

i
t,k ↓ xt,k⇑+

AD
2
ϖ/2

K

K∑

k=1

1

k⇁

⇐ GDA
↔1

K1↔⇁
+

(ϖCd + Cg)D +AD
2
ϖ/2

K

K∑

k=1

1

k⇁
+

1

nK

K∑

k=1

n∑

i=1

⇒di
t,k,v

i
t,k ↓ xt,k⇑

⇐ GDA
↔1

K1↔⇁
+

(ϖCd + Cg)D +AD
2
ϖ/2

K

K
1↔⇁

1↓ ↼
+

1

nK

K∑

k=1

n∑

i=1

⇒di
t,k,v

i
t,k ↓ xt,k⇑

⇐ GDA
↔1

K1↔⇁
+

(ϖCd + Cg)D +AD
2
ϖ/2

K⇁(1↓ ↼)
+

1

nK

K∑

k=1

n∑

i=1

〈
di
t,k,v

i
t,k ↓ xt,k

〉
(4.6)

Summing the above inequality for t → [T ] and note that 1
T

∑T
t=1⇒di

t,k,v
i
t,k ↓ xt,k⇑ is the regret of

the oracle Oi
k, we get

1

T

T∑

t=1

Ext


Gt] ⇐

GDA
↔1

K1↔⇁
+

(ϖCd + Cg)D +AD
2
ϖ/2

K⇁(1↓ ↼)
+RT (4.7)

By uniformly random choice of xi
t (over all xi

t,k for k → [K]) in the algorithm, we have

1

T

T∑

t=1

Exi
t


max
x↑K

⇒↗Ft(x
i
t),x

i
t ↓ x⇑


=

1

T

T∑

t=1

1

K

K∑

k=1


max
x↑K

⇒↗Ft(x
i
t,k),x

i
t,k ↓ x⇑



⇐ 1

T

T∑

t=1

1

K

K∑

k=1


max
x↑K

⇒↗Ft(xt,k),xt,k ↓ x⇑+ (ϖD +G)
2Cd

k⇁



=
1

T

T∑

t=1


Ext [Gt] + 2Cd (ϖD +G)

1

K

K∑

k=1

1

k⇁



⇐ 1

T

T∑

t=1


Ext [Gt] + (2Cd (ϖD +G))

K
1↔⇁

K(1↓ ↼)


(4.8)

⇐ 1

T

T∑

t=1


Ext [Gt] +

2Cd (ϖD +G)

K⇁(1↓ ↼)



⇐ GDA
↔1

K1↔⇁
+

(ϖCd + Cg)D +AD
2
ϖ/2

K⇁(1↓ ↼)
+

2Cd (ϖD +G)

K⇁(1↓ ↼)
+RT

=
GDA

↔1

K1↔⇁
+

M

K⇁(1↓ ↼)
+RT

where we have used the definition

Ext [Gt] = Ext


max
x↑K

⇒↗Ft(xt,k),xt,k ↓ x⇑


and denote by M = (ϖCd + Cg)D+AD
2
ϖ/2+ 2Cd (ϖD +G). Using Jensen’s inequality, we have

:

max
x↑K

1

T

T∑

t=1

Exi
t


⇒↗Ft(x

i
t),x

i
t ↓ x⇑


⇐ 1

T

T∑

t=1

Exi
t


max
x↑K

⇒↗Ft(x
i
t),x

i
t ↓ x⇑


(4.9)

The theorem follows equation (4.9), equation (4.8) and equation (4.7) and setting K = T .
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4.4 Algorithm with Stochastic Gradients

Assumption 4.4.1. The function ft verifies Assumption 1.2.2 and its stochastic gradient ↗̃ft(x)

is unbiased, uniformly upper-bounded and has a bounded variance, i.e., E
[
↗̃ft(x)

]
= ↗ft(x),

∥∥∥↗̃ft(x)
∥∥∥ ⇐ G0, and E

∥∥∥↗̃ft(x)↓↗ft(x)
∥∥∥
2

⇐ ⇀

2
0.

In this section, we generalize the previous algorithm to handle the stochastic case, where the
agent has access only to a noisy stochastic function. The key di!erence between the two algorithms
is the variance reduction technique used in 18 of Algorithm 10. We treat ãi

t,k as an estimator of
the stochastic local gradient d̃i

t,k and update it using a momentum-like approach [Mokhtari2017,
Ruszczy$ski1980,Ruszczy$ski2008,Yang2016] with a parameter ϑk , as shown below:

ãi
t,k = (1↓ ϑk)ã

i
t,k↔1 + ϑkd̃

i
t,k

Since each function f
i
t is stochastic, the local gradient d̃i

t,k is a noisy estimate of di
t,k and, con-

sequently, of the global gradient ↗Ft(xi
t,k). Using d̃i

t,k as feedback for the oracle may lead to
divergence in the algorithm due to the presence of non-vanishing noise. To address this, we replace
the noisy local gradient d̃i

t,k with the variance-reduced feedback ãi
t,k and gradually decrease the

momentum parameter ϑk to 0. This iteratively reduces the noise of the feedback variable by uti-
lizing past gradient estimates. Furthermore, we demonstrate that the noise on the feedback ãi

t,k

decrease to 0 at a rate of O(k↔2⇁/3), where ↼ → (0, 1), as shown in Lemma 4.4.2.

Algorithm 10 Stochastic online decentralized algorithm
Input: A convex set K, a time horizon T , a parameter x, online linear optimization oracles
Oi

1, . . . ,Oi
K for each player i → [n], step sizes ςk → (0, 1) for all k → [K]

1: Initialize linear optimizing oracle Oi
k for all k → [K]

2: for t = 1 . . . T do

3: for every agent i → [n] do

4: Initialize arbitrarily xi
t,1 → K and set ãi

t,0 ▽ 0
5: for k = 1 . . .K do

6: Query vi
t,k from Oi

k.
7: Exchange xi

t,k with neighbours N (i)

8: yi
t,k ▽

∑
j wijx

j
t,k.

9: xi
t,k+1 ▽ (1↓ ςk)yi

t,k + ςkvi
t,k.

10: end for

11: Choose xi
t ▽ xi

t,k for k → [K] with probability 1
K and play xi

t

12: Receive function f
i
t and an unbiased gradient estimate ↗̃f

i
t

13: Set g̃i
t,1 ▽ ↗̃f

i
t (x

t
i,1)

14: for k = 1 . . .K do

15: Exchange g̃i
t,k with neighbours N (i).

16: d̃i
t,k ▽

∑
j↑N (i) wij g̃

j
t,k

17: g̃t
i,k+1 ▽


↗̃f

i
t (x

i
t,k+1)↓ ↗̃f

i
t (x

i
t,k)


+ d̃i

t,k.
18: ãi

t,k ▽ (1↓ ϑk) · ãi
t,k↔1 + ϑk · d̃i

t,k.
19: Feedback function ⇒ãi

t,k, · ⇑ to oracles Oi
k.

20: end for

21: end for

22: end for

Theorem 4.4.1. Let K be a convex set with diameter D. Assume that the functions f
i
t ’s verify

Assumption 1.2.2 with constant ϖ, G and its stochastic estimate f̃
i
t ’s verify Assumption 4.4.1 with

constant ⇀0 and G0. Then, let A → R↓
+ and the step-sizes ςk = min{1, A

k3/4 } , we have for all
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i → [n], we have

max
x↑K

E

1

T

T∑

t=1

Exi
t

〈
↗Ft


xi
t


,xi

t ↓ x
〉

⇐ N

K1/4
+

M

K3/4
+RT

where we note M = 2D ((ϖCd + Cg) +ADϖ + 8Cd (ϖD +G)), N = GDA
↔1+2Q1/2

D and Q,Cd, Cg

are defined in Lemmas 2.4.1, 2.4.2 and 4.4.2. Choosing K = T and oracles with regret RT =
O(

∝
T ), we obtain the convergence gap of O


T

↔1/4

.

4.4.1 Technical Analysis

In this section, we are going to provide the proof for Theorem 4.4.1. We will continue to use the
same notation that was introduced in Section 4.3.1, but we will substitute the exact gradients
with their stochastic equivalents. Since the primary distinction between the two algorithms lies in
the variance reduction method, we will develop some additional results to manage the stochastic
nature of the gradients.

The proof of Theorem 4.4.1 is structured as follows:

• We first derive a bound on the variance of the local stochastic gradient d̃it,k in Lemma 4.4.1

• In Proposition 4.4.1, we quantify the distance between two consecutive local gradient
di
t,k+1 and di

t,k.

• From the results in Lemma 4.4.1 and Proposition 4.4.1, we can establish the distance be-
tween the local gradient di

t,k and the variance reduction estimate ãi
t,k the in Lemma 4.4.2.

• The main part proceeds by combining the results from Equation (4.6) from Section 4.3.1
and Lemma 4.4.2 to establish an upper bound on the expected duality gap Ext [Gt]. Fol-
lowing the same steps as in Section 4.3.1, we use Lemma 4.3.1 to establish the connection
between the expected duality gap at local level Gi

t,k and the global duality gap Gt,k.

• We finalize the proof by avering over T rounds and use Jensen’s inequality to establish
the final result.

The detailed proofs of Theorem 4.4.1 are presented in the subsequent section and we postpone
the proof of the lemmas and propositions to the end of the chapter.

Lemma 4.4.1. Under Assumption 4.4.1 and let ⇀
2
1 = 4n

(
G+G0
1

ε(W)↔1

)2

+ 2⇀2
0


. For i → [n] , k →

[K], the variance of the local stochastic gradient is uniformly bounded i.e

E
∥∥∥di

t,k ↓ d̃i
t,k

∥∥∥
2

⇐ ⇀

2
1

Proof. See Lemma 4.7.2.

Proposition 4.4.1. For t → [T ], i → [n], it holds that,

⇓di
t,k+1 ↓ di

t,k⇓ ⇐ B

(k + 3)⇁

where B = 9Cg + 5ϖ (4Cd +AD).

Proof. See Proposition 4.7.1.

Lemma 4.4.2. Let Q = max

52⇁/3

∥∥di
t,1 ↓ ãi

t,1

∥∥2 , 4⇀2
1 + 2B2


, where ⇀

2
1 = 4n

(
G+G0
1

ε(W)↔1

)2

+ 2⇀2
0



and B are defined in Lemma 4.4.1 and Proposition 4.4.1. For i → [n] and k → [K], we have

E
[∥∥di

t,k ↓ ãi
t,k

∥∥2
]
⇐ Q

(k + 4)2⇁/3

Proof. See Lemma 4.7.1.
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4.4.2 Proof of Theorem 4.4.1

Proof. By equation (4.6) in the proof of theorem 4.3.1, we have:

Ext [Gt] ⇐
GDA

↔1

K1/4
+

2D ((ϖCd + Cg) +ADϖ)

K3/4
+

1

nK

K∑

k=1

n∑

i=1

⇒di
t,k,v

i
t,k ↓ xt,k⇑

⇐ GDA
↔1

K1/4
+

2D ((ϖCd + Cg) +ADϖ)

K3/4
+

1

nK

K∑

k=1

n∑

i=1

〈
di
t,k ↓ ãi

t,k,v
i
t,k ↓ xt,k

〉
+

1

nK

K∑

k=1

n∑

i=1

〈
ãi
t,k,v

i
t,k ↓ xt,k

〉

⇐ GDA
↔1

K1/4
+

2D ((ϖCd + Cg) +ADϖ)

K3/4
+

1

nK

K∑

k=1

n∑

i=1

∥∥di
t,k ↓ ãi

t,k

∥∥ ∥∥vi
t,k ↓ xt,k

∥∥+
1

nK

K∑

k=1

n∑

i=1

〈
ãi
t,k,v

i
t,k ↓ xt,k

〉

⇐ GDA
↔1

K1/4
+

2D ((ϖCd + Cg) +ADϖ)

K3/4
+

D

nK

K∑

k=1

n∑

i=1

∥∥di
t,k ↓ ãi

t,k

∥∥+
1

nK

K∑

k=1

n∑

i=1

〈
ãi
t,k,v

i
t,k ↓ xt,k

〉

We take the average over T iterations and the expectation over the randomness of the stochastic
gradient estimates. We obtain:

E

1

T

T∑

t=1

Ext [Gt]



⇐ GDA
↔1

K1/4
+

2D ((ϖCd + Cg) +ADϖ)

K3/4
+

D

nK

K∑

k=1

n∑

i=1

E
∥∥di

t,k ↓ ãi
t,k

∥∥+ E


1

nKT

K∑

k=1

n∑

i=1

T∑

t=1

⇒ãi
t,k,v

i
t,k ↓ xt,k⇑



⇐ GDA
↔1

K1/4
+

2D ((ϖCd + Cg) +ADϖ)

K3/4
+

Q
1/2

D

K

K∑

k=1

1

(k + 4)1/4
+ E


1

nKT

K∑

k=1

n∑

i=1

T∑

t=1

〈
ãi
t,k,v

i
t,k ↓ xt,k

〉


⇐ GDA
↔1

K1/4
+

2D ((ϖCd + Cg) +ADϖ)

K3/4
+

2Q1/2
D

K1/4
+ E


1

nLT

K∑

k=1

n∑

i=1

T∑

t=1

〈
ãi
t,k,v

i
t,k ↓ xt,k

〉


⇐ GDA
↔1

K1/4
+

2D ((ϖCd + Cg) +ADϖ)

K3/4
+

2Q1/2
D

K1/4
+RT

where we have used the fact that
∑K

k=1
1

(k+4)1/4
⇐ 2K3/4 on the and the regret of the online

optimization oracles RT . Recall that,

Ext [Gt] = Ext


max
x↑K

⇒↗Ft (xt) ,xt ↓ x⇑


Using lemma 4.3.1, we have

E

1

T

T∑

t=1

Exi
t


max
x↑K

〈
↗Ft


xi
t


,xi

t ↓ x
〉


⇐ E


1

T

T∑

t=1

Ext


max
x↑K

⇒↗Ft (xt) ,xt ↓ x⇑


+
2Cd (ϖD +G)

K⇁(1↓ ↼)

⇐ GDA
↔1

K1/4
+

2D ((ϖCd + Cg) +ADϖ)

K3/4
+

2Q1/2
D

K1/4
+

8Cd (ϖD +G)

K3/4
+RT

=
GDA

↔1 + 2Q1/2
D

K1/4
+

2D ((ϖCd + Cg) +ADϖ + 8Cd (ϖD +G))

K3/4
+RT

The result follows by setting K = T , M = 2D ((ϖCd + Cg) +ADϖ + 8Cd (ϖD +G)) and Jensen’s
inequality of the max function on the left-hand side of the inequality.

4.5 Experiments

The data-set used for experimentation comes from a 7 storey building with 24 sensor equipped
zones [Pipattanasomporn2020].The zone-wise knowledge exchange happens through the edges of
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an undirected graph of n nodes participating in the learning process. For every round t, each node
i receives a batch Bt

i of 32 time-series sequences corresponding to a look-back period 13 timestep
to predict the temperature of the next timestep. We extract the data from March 7th to April
20th for training, set L equal to 360, ↼ = 0.95 and A = 1. A min-max scaler is used to normalize
the data and we apply a rolling window with stride 1 on the original time series. Each node is
embedded with a model built from a two-layers long-short-time-memory (LSTM) network followed
by a fully connected layer. Denote the output of the model i for a data sequence b at time t by
ŷ
t
i,b and its ground truth by y

t
i,b. Consider the ϱ1 loss as the objective function :

L(ŷti,b, yti,b) =






(ŷti,b ↓ y
t
i,b)

2

2
if |ŷti,b ↓ y

t
i,b| ⇐ 1

|ŷti,b ↓ y
t
i,b|↓ 1

2 otherwise.

Consider the constraint set K = {x → Rd
, ⇓x⇓1 ⇐ r}, where x is the model’s weight, d its di-

mension and r = 1. The (normalized) loss incurred by the data of agent i is 1
|Bt

i |

∑
b↑Bt

i
L(ŷti,b, yti,b).

The global loss function incurred by the overall data is

F
t(x) =

1

| ∞n
i=1 Bt

i |
∑

b↑⇔n
i=1B

t
i

L(ŷti,b, yti,b),

that can be written as F t(x) = 1
n

∑n
i=1 f

t
i (x) where f

t
i (x) =

1
|Bt

i |

∑
b↑Bt

i
L(ŷti,b, yti,b). Note that the

non-convexity here is due to the non-convexity of ŷti,b as a function of xt
i. In the following section,

if not specify otherwise, we call loss the temporal average of the global loss function F
t defined as

1
T

∑T
t=1 F

t.

4.5.1 Prediction Performance

Figures 4.1 shows the loss and gap values for di!erent network sizes. The implementation justifies
our theoretical results about the convergence of the gap. Besides, we also observe the convergence
of loss value, an expected implication of the gap convergence. We set M the number of prediction
points between the 21st and 24th of April and n the number of zones within one configuration. We
use the mean absolute error (MAE = 1

nM

∑n
i=1

∑M
m=1 |ŷi,m ↓ yi,m|) and mean square error (MSE

= 1
nM

∑n
i=1

∑M
m=1 (ŷi,m ↓ yi,m)2) as a measure between the prediction and the ground truth. We

observe that increasing nodes in a network does not always lead to better online performance.
In-fact, a 7 node configuration achieves the lowest MSE (0.65) and MAE (0.78) for floors 6 and 7.
We see a 40 % drop in MSE and 20 % reduction in MAE for floor 6 zonal models when 3 extra
peers from floor 7 joined the group. We observe 19 % and 25 % increase in MSE and MAE values
by adding zonal nodes from floor 7 to a 10 node group. This can be best argued by the fact that
the top floor of a building has a non identical thermal variation with the rest of the storeys.

Figure 4.1: Loss and Gap values of di!erent network size on complete topology (Plot on log-scale)

4.5.2 E!ect of Network Topology

We study the e!ect of topology in learning for a 7 node configuration with a complete, cycle and
line graph containing 28, 7 and 6 edges respectively and with 13 nodes having 78,13 and 12 edges
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respectively. For both 7 (Table 4.1) and 13 (Table 4.2) node configurations, we observe that the
complete graph yields the least amount of prediction error, mean absolute error → [0.66, 1.3]↖C.
However we note the peculiarity that the line graph can perform better than a cycle graph and
has roughly a 10 % error margin compared to the complete configuration.

Topology Metric Mean Var Max Min

Cycle
MAE 1.09 0.48 1.80 0.56

MSE 0.78 0.21 1.09 0.52

Complete
MAE 0.77 0.38 1.47 0.27

MSE 0.64 0.20 1.04 0.39

Line
MAE 0.81 0.53 1.95 0.24

MSE 0.66 0.28 1.26 0.34

Tableau 4.1: Impact of Topology on 7 learners configuration.

Topology Metric Mean Var Max Min

Cycle
MAE 1.51 1.46 6.16 0.36

MSE 0.94 0.38 1.90 0.48

Complete
MAE 1.26 0.82 3.64 0.32

MSE 0.85 0.27 1.50 0.42

Line
MAE 1.38 0.91 3.17 0.50

MSE 0.90 0.35 1.66 0.49

Tableau 4.2: Impact of Topology on 13 learners configuration.

4.5.3 E!ect of Decentralization

Figure 4.2: Loss ratio of decentralized and centralized Meta Frank-Wolfe on di!erent network size.

We are interested in understanding the role of decentralization in terms of accuracy of zonal
learners. Let LMFW (t) be the loss from Meta Frank Wolfe (MFW) at time t. The approximation
ratio A(t) = LDMFW (t)

LMFW (t) at time t represents how worse is our decentralized version compared to a
centralized optimization. A(t) ⇐ Bmax will mean our algorithm performs no worse than Bmax times
of the MFW. On figure 4.2, we plot the ratio A(t) for a 13 node network and show that A(t) ⇐ 1.4.
The 7 node network has the closest approximation bounded by 1.35 which can be explained by
earlier insights on performance accuracy. We notice that the 10 node network performs worse till
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t = 200 and after t ⇔ 250 or 21 hours, the approximation ratio becomes close to centralised version
with less than 20 % error.

4.6 Concluding remarks

In this chapter, we presented an online algorithm aimed at minimizing non-convex loss functions
that are aggregated from local data distributed across a network. We introduced a measure called
the convergence gap, which is a generalized version of the Frank-Wolfe gap in the online setting,
and demonstrated a convergence rate of O(T↔1/2) and O(T↔1/4) for the exact and stochastic
gradient settings, respectively. To validate our theoretical analysis, we performed experiments
using a real-life smart building dataset. The results of these experiments highlight the value of
our approach for learning in distributed settings. However, it is important to note that while the
algorithms achieve good performance in terms of regret-like measures, the convergence gap does
not directly guarantee finding a stationary point of the objective function. A potential avenue for
future work is to investigate convergence to a stationary point of each local function Ft by analyzing
the duality gap and examining the function variations. This line of research could lead to a more
comprehensive understanding of the algorithm’s performance in online nonconvex optimization
problems.
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4.7 Missing proofs of Chapter 4

Lemma 4.7.1 (Lemma 4.4.2). Let Q = max

52⇁/3

∥∥di
t,1 ↓ ãi

t,1

∥∥2 , 4⇀2
1 + 2B2


, where ⇀

2
1 =

4n

(
G+G0
1

ε(W)↔1

)2

+ 2⇀2
0


and B are defined in Lemma 4.4.1 and Proposition 4.4.1. For i → [n]

and k → [K], we have

E
[∥∥di

t,k ↓ ãi
t,k

∥∥2
]
⇐ Q

(k + 4)2⇁/3

Proof. The proof follows similar idea to the one of Lemma 3.3.4 and Lemma 3 in [Zhang2020]. We
state it here for completeness. By definition of variance reduction step, we have

E
[∥∥di

t,k ↓ ãi
t,k

∥∥2
]
= E

∥∥∥di
t,k ↓ (1↓ ϑk)ã

i
t,k↔1 ↓ ϑkd̃

i
t,k

∥∥∥
2


=E
∥∥∥di

t,k + ϑkd
i
t,k ↓ ϑkd

i
t,k + (1↓ ϑk)ã

i
t,k↔1 ↓ ϑkd̃

i
t,k

∥∥∥
2


=E
∥∥∥(1↓ ϑk)d

i
t,k + ϑk


di
t,k ↓ d̃i

t,k


+ (1↓ ϑk)ã

i
t,k↔1

∥∥∥
2


=E
∥∥∥(1↓ ϑk)


di
t,k ↓ di

t,k↔1


+ (1↓ ϑk)


di
t,k↔1 ↓ ãi

t,k↔1


+ ϑk


di
t,k ↓ d̃i

t,k

∥∥∥
2


=ϑ
2
kE

∥∥∥di
t,k ↓ d̃i

t,k)
∥∥∥
2

+ (1↓ ϑk)

2E
[∥∥di

t,k ↓ di
t,k↔1

∥∥2
]
+ (1↓ ϑk)

2E
[∥∥di

t,k↔1 ↓ ãi
t,k↔1

∥∥2
]

+ 2ϑk(1↓ ϑk)E
[〈

di
t,k ↓ d̃i

t,k,d
i
t,k ↓ di

t,k↔1

〉]
+ 2ϑk(1↓ ϑk)E

[〈
di
t,k ↓ d̃i

t,k,d
i
t,k↔1 ↓ ãi

t,k↔1

〉]

+ 2(1↓ ϑk)
2E
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(4.10)

Recall that E
[
d̃i
t,k

]
= di

t,k, we have the following results

E
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〉]
= 0 and E
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i
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t,k↔1

〉]
= 0

From Lemma 4.4.1 and Proposition 4.4.1, we have:
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From Young’s inequality, we have
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Combining the above results with equation (4.10), we have
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4.7. Missing proofs of Chapter 4

Let ↼k = ⇀k

2 , since ϑk = 2
(k+3)2ϑ/3 , we have ↼k = 1

(k+3)2ϑ/3 . Then, we have
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We will prove the result by induction. For k = 1, we let Q1 = E
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t,1 ↓ ãi
t,1
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]

and we define
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.Suppose the result holds for k ↓ 1, we have
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q,k↔1

∥∥2
]

⇐ Q0

(k + 3)4⇁/3
+

(
1↓ 2

(k + 3)2⇁/3

)
Q

(k + 3)2⇁/3

⇐ Q0

(k + 3)4⇁/3
+

Q

(k + 3)2⇁/3
·
(k + 3)2⇁/3 ↓ 2

(k + 3)2⇁/3

⇐
Q

(k + 3)2⇁/3 ↓ 1



(k + 3)4⇁/3
⇐ Q

(k + 4)2⇁/3

since (k+3)2ϑ/3
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(k+4)2ϑ/3 for all k ⇔ 1. The proof is complete.

Lemma 4.7.2 (Lemma 4.4.1). Under Assumption 4.4.1 and let ⇀
2
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1

ε(W)↔1

)2

+ 2⇀2
0


.

For i → [n] , k → [K], the variance of the local stochastic gradient is uniformly bounded i.e
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Then, we have
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(4.12)

By Assumption 4.4.1 and Jensen’s inequality, we have
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Taking the second moment of equation (4.12), we have
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where the first inequality holds since E
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. The third inequality comes from

Assumption 4.4.1 and the analysis in Lemma 3.3.2. Finally, one can obtain the desired result by
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where we triangle inequality, smoothness of ft and Proposition 2.7.1, Lemmas 2.4.1 and 2.4.2 with
an additional parameter ↼ on the learning rate.

Remark 1. By lemma 4.4.2 and Jensen’s inequality, we can deduce the following inequality
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5.1. Introduction

5.1 Introduction

Federated learning is a new machine learning paradigm that allows multiple clients to collab-
oratively train a model without the need to share data. This approach is particularly useful in
applications where preserving privacy is required such as healthcare, financial services, or where
the cost of transferring data is not a!ordable. In this setting, each client trains a machine-learning
model on its private data and exchanges the parameters with a server at each communication
round. The server orchestrates the process by selecting clients, setting configuration, and handling
client aggregation. In contrast to traditional machine learning where only one machine learning
model is trained in a centralized manner, we are facing a situation where a few to thousands of
machines work collaboratively to train a model. This setting raises new challenges such as commu-
nication overhead, data/machine heterogeneity, and more importantly, in the context of climate
change and sustainable AI, the energy consumption (EC) and environmental impact of the system.

The energy consumed by centralized learning (CL) has been well studied in the literature for
many ML applications [Strubell2019, Henderson2020, Luccioni2023] and at the level of ML com-
panies [Patterson2022, Wu2022]. The interest in the energy consumed by federated learning has
been increasing, along with the rise of data coming from mobile device applications. For exam-
ple [Qiu2023] studies the carbon emission of training FL model on embedded devices such as Jetson
Xavier and Tegra while comparing with EC of centralized training for the same task. They show
that the EC of FL is higher than centralized training due to the communication overhead, espe-
cially when training with only 1 local epoch. [Savazzi2022] show that tradeo!s can be made to make
training less consuming at the edge, by adapting the number of rounds and the communication e"-
ciency. The findings are based on energy models rather than on measurements. [Wu2022] compare
the carbon emitted by centralized and federated learning for the Transformer model, including the
additional energy consumed by communication. Their conclusion is not clear: it depends on the
hardware used for CL and whether renewable energy fuels the data center. [Patterson2024] are
more resolved. Studying the energy consumed by smartphones in the context of Google FL, they
find that in one use case, smartphones require more than 12 times the energy centralized settings
would have consumed on a similar task. They support this by estimating the PUE of smartphones
to be around 3, based on charger e"ciency and user charging behavior.

Existing literature focuses on comparing CL and FL when both settings are fundamentally
di!erent by the purposes and constraints. CL relies on hardware designed to be computationally
e"cient while edge devices need to limit their power and energy consumption. FL has to deal with
distributed and non-IID data when CL operates on huge IID databases and its goal is training
foundation models from scratch. Additionally, there is a lack of recommendations on how to reduce
the energy consumed by FL. The particular settings of FL suggest that new opportunities can be
found to reduce the energy consumed. The energy models proposed in the literature don’t take
into account the joint dependency of parameters on the training and the energy consumed. For
example, fewer local epochs reduce the energy consumed by the client but required more rounds
to reach desired target. Moreover, there is no existing study on the impact of dataset size and the
optimizer on the total energy consumption.

This particular setting raises the following questions :

• What is the impact of FL hyperparameters choices on the energy consumption of the system?

The federated learning setting often involves an interdisciplinary approach where machine learning,
distributed systems, algorithm design, and hardware are combined. This interdisciplinary approach
creates a challenging environment when it comes to EC measurement as it depends on the hardware
used for training, the communication network, and the choice of algorithm. For example, training a
model GPU is more energy e"cient than training on a CPU, or training on embedded devices GPU
such as Jetson Xavier is even more e"cient than traditional GPU [Lacoste2019]. In the context
of FL, the communication overhead is a major factor that can impact the EC of the system, the
communication at the server side increases with the number of clients might leads to higher EC
on server side due to the amount of data to be processed and communicated with clients. On the
otherhand, number of communication rounds between server and clients is an important factor to
be considered as balancing between computation/communication on clients sides.

In this chapter, we aim to answer the above question in two steps : 1) measuring the energy
consumption of each client in FL setting under highly heterogenous data using multiple devices
connected through a network, and study the impact of FL parameters on the EC of each clients
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and the total EC of the system; 2) studying the EC variation when increasing the number of active
clients in the training process, which implicitly increase the variance to the global model and the
communication overhead.

5.1.1 Federated Learning

We consider n clients [1, . . . , n] and a central parameter server (PS) acts as a coordinator of the
training process. Each client i → [n] has a local dataset Di following a distribution Di such that
Di ↑= Dj for i ↑= j i.e heterogenous data distribution. The goal of the federated learning is to learn
a global model by minimizing the global loss function F (x) defined as :

min
x

F (x) :=
n∑

i=1

wifi(x)

where fi is local loss function on each client, defined as fi(x) = Ez⇒Di [ϱ(x, z)] and wi is the
weight of client i that can be set based on the number of samples in the local dataset. At each
communication round t → [T ], a set of selected clients St is chosen to participate in the training
process and receive the global parameter xt. Each client i → St updates its parameters xi

t+1

by minimizing its local loss function fi using an local optimizer Opt and send back the updated
parameters to the PS. The process is repeated for T communication rounds. The PS updates the
global parameter xt using the local parameters received from clients as follows :

xt+1 = A
{

wi,x
i
t+1

}|St|

i=1



where A is an aggregation methods that di!ers by the chosen strategy. The detailed pseudo
algorithm is described in Algorithm 11.

Algorithm 11 Federated Learning
1: Initialize x0

2: for each communication round t = 1, . . . , T do

3: Server select a set of clients St

4: Server broadcast xt to all clients in St

5: for each client i → St do

6: xi
t,0 = xt

7: for each local epoch e = 0, . . . , E ↓ 1 do

8: xi
t,e+1 = Opt(fi,xi

t,e)
9: end for

10: xi
t+1 = xi

t,E
11: end for

12: xt+1 = A
{

wi,xi
t+1

}|St|

i=1



13: end for

The setting of FL encompasses a few important choices such as the number of clients participate
on each round of training |St|, the local epochs E, the heterogeneity of clients which influence the
choice of aggreation methods A and also the local optimizer Opt. The choice of these parameters
will have an impact on the convergence of the model, the communication overhead and also the
energy consumption of the system. In the next few sections, we will study in depth the impact of
these settings on the training of FL and see how it can impact the overall EC of the system.

5.2 Experiment Setting

We executed all experiments on nodes from the Estats cluster of the large-scale test beds for
experimental research called Grid’5000 [Balouek2013]. This cluster was selected because its nodes
have similar computational capabilities as embedded devices specialized for AI training.

The nodes in this cluster have the following specifications:
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5.2. Experiment Setting

• System model: Nvidia Jetson AGX Xavier

• CPU: 1 Nvidia Carmel (Carmel), aarch64, 8 cores

• GPU: NVIDIA GV10B, Volta architecture

• Memory: 32 GiB

• TDP: 30W

For all experiments, we used Ubuntu 20.04 as available on the Grid’5000 testbed. In order to
increase consumption stability and the consistency of our results, we have set the CPU frequency
to the maximum supported. We also installed an Nvidia GPU driver when relevant, with default
power management configuration. Nvidia processors are equipped with power meters that monitor
the instant power consumed by the GPU, the CPU, and the memory. At the beginning of each
experiment, we launch the Jetson-stats application1 to monitor the CPU and GPU power and usage
of each host. The acquisition frequency is 1Hz. We wait 30 seconds between each experiment to
make sure that the hosts have the time to cool down and that the temperature doesn’t impact the
power. We also record the time taken to complete the training process.

We utilize the Flower framework to manage client-server communication and other federated
learning (FL) related configurations in our experiments. We measure the energy consumption of
training various FL algorithms, including FedAvg [McMahan2023] and adaptive methods such as
FedAdam, FedYogi, and FedAdaGrad [Reddi2021]. Stochastic gradient descent is employed as the
client optimizer (Opt) for these methods. Additionally, we consider also FedAvg with other types
of Opt including Stochastic Frank-Wolfe (SFW) [Hazan2016b] and Adam [Kingma2015].

We consider the CIFAR-10 dataset which is divided into client shards using a Dirichlet distri-
bution with ↼ = 0.5. Each client has access to one shard, and we vary the number of splits to be
10, 20, 30, 50, or 100, depending on the configuration. The model architecture is ResNet-18 where
BatchNorm layer is replaced with a GroupNorm layer of 32 groups to make it more suitable for
the FL setting. Cross-entropy is used as the loss function and we maintain a batch size of 32. We
divide the client data into an 80-20 train-validation split. The client learning rate is set to 0.0316
with momentum to 0.9 for all client optimizers except Adam. For adaptive strategies, we set the
server learning rate to 0.01.

For FedAvg-SFW, an L2 norm ball with a diameter of 300 is used as the constraint [Pokutta2020].
For FedAvg-Adam, we set ϖ1 and ϖ2 to 0.9 and 0.999, respectively. We repeat each experiment
five times and report the average results.For all experiments, we set the target accuracy to 0.75.
The table below summarizes the common settings for all strategies.

ϖ Batch Size Client LR Server LR #Groups Momentum

0.5 32 0.0316 0.01 32 0.9

Tableau 5.1: Common parameter setting for all strategies

5.2.1 Full Client Participation

In this section, we present the results of training FL algorithms when the data is split into 10
shards following the Dirichlet distribution, as described in the previous section. We consider the
scenario of full client participation, i.e., |St| = 10, ≃t → [T ]. For each algorithm, experiments are
conducted for 1 and 5 local epochs, measuring the time taken to complete the training process and
the energy consumption of each client host. For each communication round, "fit time" refers to
the time taken to complete client local training on its dataset, and "fit energy" refers to the energy
consumed during this process. These metrics are measured individually for each client.

Figures 5.1a and 5.1b show the average fit time across clients for all algorithms for 1 and 5
local epochs, respectively. The average fit time is not uniform among clients, even though each
client has the same model architecture and optimization settings. This is due to the heterogeneous

1https://rnext.it/jetson_stats/reference/jtop.html#jtop.jtop.power
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nature of the data split among clients, not only in terms of label distribution but also in the number
of samples, causing variations in the number of client optimization steps needed to complete one
local epoch. From these graphs, it is evident that the server aggregation strategy has almost no
impact on the client fit time since strategies using SGD as the local optimizer, such as FedAvg and
adaptive strategies, show the same average fit time. However, replacing SGD with Adam or SFW
in FedAvg results leads to an increase in the average fit time. This is because Adam and SFW
involve more computational steps than SGD to complete one optimization step. Comparing the
two graphs, it is clear that the average fit time for 5 local epochs is approximately 5 times higher
than for 1 local epoch, which is expected since the number of optimization steps is 5 times greater.

(a) Fit duration of each client of 1 local epoch (b) Fit duration of each client of 5 local epoch

Figure 5.1: Fit duration of each client for di!erent local epochs

Figure 5.2: Evolution of the energy consumed during training for 1 local epoch

Figures 5.2 and 5.3 show the fit energy for 1 and 5 local epochs throughout the training process,
respectively. Our first observation is that the variation in fit energy between clients correlates with
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Figure 5.3: Evolution of the energy consumed during training for 5 local epochs

the time required to complete the local training in Figure 5.1, as the energy consumption is directly
proportional to the time taken to complete the training process. We also observe that the energy
consumption is uniform across communication rounds for each client. From these two figures, we
can see a significant impact of the server aggregation method and the number of local epochs on
the time to convergence. For 1 epoch, FedAdagrad takes the most rounds to reach the desired
accuracy, whereas FedAvg is the fastest. In terms of energy consumption, FedAvg and other
adaptive strategies have similar values as expected since they use the same client optimizer. When
using other local optimizers with FedAvg, there is an increase in energy consumption, especially
for SFW, which consumes the most energy per round of training. The results di!er between 1
and 5 local epochs in terms of round to convergence. FedAdam and FedAvg-Adam are the slowest
to reach the desired accuracy. Moreover, we observe an anormal increase in energy consumption
with FedYogi at client 8 in compares to other strategy using SGD as local optimizer. This requires
further investigation to understand the reason behind this.

Table 5.2 presents a summary of the training for each strategy for 1 and 5 local epochs, along
with the corresponding measures. The columns "Server" and "Client" represent the total energy
consumed by the server and clients, respectively whereas "Total" is the sum of server and client
energy. We also report the total client fit energy and the average fit energy for each strategy, as
well as the total time in minutes to reach the desired accuracy. It is observed that training with 5
local epochs is more energy e"cient for FedAdagrad and FedAvg, showing a clear reduction in total
energy consumption, whereas other strategies exhibit a slight increase in energy consumption when
switching from 1 to 5 local epochs. For the FedAvg strategy, using SGD as the local optimizer
is more energy e"cient than using Adam or SFW. Interestingly, for 1 local epoch, FedAvg with
Adam and SFW shows relatively high energy consumption compared to FedAvg with SGD, despite
having the same server computation. We suggest this is due to the time taken by each strategy to
achieve the desired accuracy, which is faster for FedAvg with SGD than with Adam or SFW. This
observation requires further investigation to understand the underlying reasons.

In conclusion, both the number of local epochs and the choice of optimizer has a signficant im-
pact on the energy consumption of FL training. Increasing the number of local epochs multiplies
the energy consumed proportionnaly to the increase but it also reduces the number of training
rounds needed to reach to targeted accuracy since each round is more e!ective in terms of learin-
ing. The optimizer is less impactful in regards of round energy consumption since the additional
computation per round is not signficiant. But it has a strong relation to the number of training
round thus impacting the total energy consumed by training.
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Strategy Epoch Round Time (min)
Energy (Wh)

Server Client Total Total Fit Average Fit

FedAdagrad 1 181 76.87 13.15 141.56 154.71 61.69 0.0340

5 40 38.26 5.34 102.94 108.27 79.51 0.1987

FedAdam 1 123 52.27 9.00 96.95 105.96 42.27 0.0343

5 45 42.31 5.91 115.44 121.35 89.85 0.1996

FedAvg 1 119 50.23 6.90 93.65 100.55 41.05 0.0344

5 33 30.91 4.35 85.20 89.55 66.90 0.2027

FedYogi 1 128 54.81 9.41 100.62 110.04 43.81 0.0342

5 43 40.32 5.62 110.80 116.42 86.64 0.2014

FedAvg-Adam 1 155 66.53 11.42 126.52 137.94 57.62 0.0371

5 43 42.62 5.93 119.15 125.08 92.52 0.2151

FedAvg-SFW 1 150 68.29 11.46 126.59 138.06 60.00 0.0400

5 31 33.94 4.64 87.63 92.26 69.54 0.2243

Tableau 5.2: Training summary of each strategy for 1 and 5 local epochs. Red color indicates the
lowest value of corresponding columns for 5 local epochs. Blue color indicates the lowest value of
corresponding columns for 1 local epoch.

5.2.2 Increased Active Clients

In this section, we examine the energy evolution as the number of active clients increases during
the training process. The data is split into multiple shards in a non-IID manner, with the number
of shards being 10, 20, 30, 50, 70, and 100, corresponding to the number of active clients. It is
important to note that this setup reduces the data size on each client, thus decreasing computation
time but, conversely, increases the number of communication rounds required to achieve the desired
accuracy. To ensure fair measurement for each participant, we maintain the number of clients
participating in each communication round |St| at 10. This means that for large pools of active
clients, we randomly assign a client to one of the hosts so that each host handles only one client
per round. We keep the local epoch to 1 and consider two strategies: FedAvg-SFW and FedAdam,
using the same settings as in the previous section. Figure 5.4 reports the total energy consumption
and the time to convergence for di!erent numbers of active clients. Recall that the total energy
consumption is the sum of the energy consumed by both the clients and the server during the
training process. We observe in fig. 5.4a that the total energy increases with the number of active
clients for both strategies, except for FedAvg-SFW, where there is a drop in energy between 70 and
100 active clients. This drop in energy is due to the total training time for 70 active clients being
higher than for 100 active clients in the case of FedAvg-SFW (Figure 5.4b). We also observe that
the total energy consumption for FedAvg-SFW is higher than for FedAdam except for 100 active
clients. This aligns with the results from the previous section when full client participation was
considered. An explanation for the behavior of FedAvg-SFW between 70 and 100 active clients is
the randomness of client selection in each round.

In fact, client selection is done randomly for both fitting and evaluation at each communication
round. When running multiple experiments with the same settings, we observe that this random
process significantly impacts the time to convergence of FL. The algorithm may fit on one subset of
clients and evaluate on another subset with large gradient dissimilarity from the fitted set, leading
to slow convergence as more sampling is required. This behavior is even more pronounced as
the number of active clients increases, as the global model encounters higher variance due to noisy
client stochastic updates. This observation is confirmed in Figure 5.5, where we report the accuracy
curves of FedAdam (fig. 5.5a) and FedAvg-SFW (fig. 5.5b) for all numbers of active clients. We
can see that with a higher number of active clients, the noisier the curve becomes.
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(a) Total training energy consumption in Watt-hour
(y-axis) for each pool of active clients

(b) Time to convergence in seconds (y-axis) for each
pool of active clients. Value above the bar indicates
time in hours.

Figure 5.4: Energy consumption (left) and time to convergence (right) for di!erent number of
active clients.

(a) Fit duration of each client of 1 local epoch (b) Fit duration of each client of 5 local epoch

Figure 5.5: Fit duration of each client for di!erent local epochs

5.3 Concluding Remarks

In this research, we investigate the energy usage of Federated Learning (FL) algorithms on
edge devices. We showed that the energy consumption of FL algorithms is significantly influenced
by the choice of hyperparameters, such as the number of local epochs, the local optimizer, and
the aggregation strategy. Additionally, we discovered that client selection is crucial to the overall
energy consumption of the system, as it can prolong the algorithm’s convergence time, due to
the unpredictability in the client selection process. We also observed that the server’s energy
consumption is negligible compared to that of the clients. For future work, we aim to explore the
communication costs of FL algorithms on each client and the server. We also intend to broaden
our study to include di!erent datasets and various edge device configurations.
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Conclusion

Conclusion

In this thesis, we have introduced a series of algorithms that address the challenges of distributed
online optimization problems, specifically tailored for edge devices with limited computational
resources. We have examined various settings of online optimization problems, including online
convex optimization with adversarial delayed feedback, online distributed optimization for convex
and monotone submodular functions, and online non-convex optimization in a distributed setting.

For adversarial delayed feedback, our algorithms achieve the optimal regret bound of O(
∝
dT )

in both centralized and distributed settings with bounded delay. Experimental results show that
our algorithms outperform existing solutions in terms of regret. Potential future directions include
adapting these algorithms to stochastic gradients with variance reduction to make them more
practical for real-world applications and addressing communication delays in distributed settings.

To reduce the communication cost in online distributed setting of projection-free algorithm, we
proposed an approach that only need one gradient query at each round, thus reducing the commu-
nication complexity to O(T ). The algorithm achieves regret and (1↓ 1

e )-regret bounds of O(T 4/5).
We also extend the algorithm to bandit setting while ensuring a (1↓ 1

e )-regret bound of O(T 8/9)
for DR-Submodular functions. We provided a detailed analysis for scenarios where the constraint
set is either a general convex set or a downward-closed convex set, under full information and
bandit settings, respectively. Experimental results on a real-life movie recommendation problem
highlight the e"cacy of the proposed algorithm for learning in decentralized settings.

Additionally, we presented an online algorithm aimed at minimizing non-convex loss functions
aggregated from local data distributed across a network. We introduced the convergence gap,
a generalized version of the Frank-Wolfe gap in the online setting, demonstrating convergence
rates of O(T↔1/2) and O(T↔1/4) for exact and stochastic gradient settings, respectively. Our
experiments using a real-life smart building dataset validate the theoretical analysis and underscore
the value of our approach for learning in distributed settings. Future work could investigate
convergence to a stationary point of each local function Ft by analyzing the duality gap and
examining function variations, potentially leading to a more comprehensive understanding of the
algorithm’s performance in online non-convex optimization problems.

Lastly, we study the energy consumption of distributed learning algorithms on edge devices.
We highlight the important role of hyperparameters, such as local epochs, local optimizers and
client sampling methods in the energy consumption of federated learning algorithms. Overall, our
research demonstrates significant advancements in the development of projection-free algorithms
for various online optimization problems, providing valuable insights and setting the stage for
future explorations in this field.
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Appendix A. Useful Results

A.1 Inequalities

Proposition 1 (Jensen’s Inequality). Let f be a convex function defined over a convex set K, and
let x1,x2, . . . ,xn → K. Then for any positive weights w1, w2, . . . , wn (i.e., wi > 0 for all i and∑n

i=1 wi = 1), we have

f

(
n∑

i=1

wixi

)
⇐

n∑

i=1

wif(xi).

Proposition 2 (Cauchy Schwartz Inequality). For any vectors a, b → Rd, we have

|⇒a, b⇑| ⇐ ⇓a⇓ ⇓b⇓ .

Proposition 3 (Young’s Inequality). For vectors a,b → Rn and for all positive real numbers p, q

such that 1
p + 1

q = 1, we have:

|⇒a, b⇑| ⇐ ⇓a⇓p

p
+

⇓b⇓q

q

Proposition 4 ( [Koloskova2019], Lemma 16). Let W be a stochastic matrix and denote by ε(W)
its second largest eigenvalue. Then, we have

∥∥∥∥W
n ↓ 1

n
11T

∥∥∥∥ ⇐ ε(W)n.

Proof. As W is a stochastic matrix, the first eigenvector associated with eigenvalue 1 is written as
u1 = 1

↘
n
1. Using SVD decomposition W = U!UT , we have

∥∥∥∥W
n ↓ 1

n
11T

∥∥∥∥ =

∥∥∥∥U!nUT ↓ 1

n
11T

∥∥∥∥ =
∥∥U!nUT ↓ u1u

T
1

∥∥

=

∥∥∥∥∥∥∥∥∥∥∥∥

U!nUT ↓U





1 0 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0




UT

∥∥∥∥∥∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥∥∥∥∥

!n ↓





1 0 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0





∥∥∥∥∥∥∥∥∥∥∥∥

= ε(W)n.

A.2 Lemmas

Proposition 5. Let W be a stochastic matrix and denote by ε(W) its second largest eigenvalue.

We call dcat
t,k =

[
d1≃
t,k , . . . ,d

n≃
t,k

]≃
→ Rdn the concatenation of local average gradient updates at round

t and sub-iteration k. Then, for all t → [T ], k → [K], we have

dcat
t,k =

k↔1∑

ω=1

(
Wk↔ω ↓ 1

n
1n1

T
n

)
∋ Id

 
↗f

cat
t,ω+1 ↓↗f

cat
t,ω



+

(
Wk ↓ 1

n
1n1

T
n

)
∋ Id


↗f

cat
t,1 +

(
1

n
1n1

T
n ∋ Id

)
↗f

cat
t,k

By taking the norm on both side of the equation, we have

∥∥dcat
t,k

∥∥ ⇐ 2
∝
nG

(
ε(W)

1↓ ε(W)
+ 1

)
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Proof.

dcat
t,k = (W ∋ Id)


↗f

cat
t,k ↓↗f

cat
t,k↔1 + dcat

t,k↔1



=(W ∋ Id)

↗f

cat
t,k ↓↗f

cat
t,k↔1


+ (W ∋ Id)

2 ↗f
cat
t,k↔1 ↓↗f

cat
t,k↔2 + dcat

t,k↔2



=
k↔1∑

ω=1

[
(W ∋ Id)

k↔ω ↗f
cat
t,ω+1 ↓↗f

cat
t,ω

]
+ (W ∋ Id)

k ↗f
cat
t,1 (A.1)

=
k↔1∑

ω=1

[
(W ∋ Id)

k↔ω ↗f
cat
t,ω+1 ↓↗f

cat
t,ω

]
+ (W ∋ Id)

k ↗f
cat
t,1 ↓

k↔1∑

ω=1


↗F

cat
t,ω+1 ↓↗F

cat
t,ω


↓↗F

cat
t,1 +↗F

cat
t,k

=
k↔1∑

ω=1

(
Wk↔ω ↓ 1

n
1n1

T
n

)
∋ Id

 
↗f

cat
t,ω+1 ↓↗f

cat
t,ω


+

(
Wk ↓ 1

n
1n1

T
n

)
∋ Id


↗f

cat
t,1 +

(
1

n
1n1

T
n ∋ Id

)
↗f

cat
t,k

where the fourth equality holds since ↗F
cat
φq(k)

↓
∑k↔1

ω=1


↗F

cat
φq(ω+1) ↓↗F

cat
φq(ω)


↓↗F

cat
φq(1)

= 0. The

fifth equality can be deduced using ↗F
cat
φq(k)

=

1
n1n1T

n ∋ Id


↗f

cat
φq(k)

and (W ∋ Id)
k =


Wk ∋ Id


.

Recall that ⇓W ∋ Id⇓ = ⇓W⇓. Taking the norm on equation (A.1), we have

∥∥dcat
q,k

∥∥ ⇐ 2
∝
nG

k↔1∑

ω=1

ε(W)k↔ω +
∝
nG


ε(W)k + 1


⇐ 2

∝
nG

(
ε(W)

1↓ ε(W)
+ 1

)

where we have used
∥∥∥↗f

cat
φq(ω+1) ↓↗f

cat
φq(ω)

∥∥∥ ⇐ 2
∝
nG,

∥∥Wk ↓ 1
n1n1T

n

∥∥ ⇐ ε(W)k and
∥∥ 1
n1n1T

n

∥∥ ⇐ 1

in the first inequality.

Proposition 6. For all the algorithms presented in this thesis, the following bounds hold for all
t → [T ], k → [K] and i → [n]:

∥∥xt,k ↓ xi
t,k

∥∥ ⇐ 2Cd

k

∥∥xi
t,k+1 ↓ xi

t,k

∥∥ ⇐ 4Cd +AD

k

Proof. For the first bound, recall the definition of FW-update in Algorithm 6 and using Lemma 2.7.2,
we have

∥∥xt,k ↓ xi
t,k

∥∥ =
∥∥(1↓ ςk↔1)


xt,k↔1 ↓ yi

t,k↔1


+ ςk↔1


vt,k↔1 ↓ vi

t,k↔1

∥∥

⇐ Cd

k ↓ 1
↓ ACd

(k ↓ 1)2
+

AD

k ↓ 1
⇐ Cd

k ↓ 1
↓


ACd

(k ↓ 1)2
↓ AD

k ↓ 1



⇐ Cd

k ↓ 1
↓

ACd ↓AD

(k ↓ 1)2


⇐ Cd

k ↓ 1
⇐ 2Cd

k

Applying the first bound on the second one yields
∥∥xi

t,k+1 ↓ xi
t,k

∥∥ ⇐
∥∥xi

t,k+1 ↓ xt,k+1

∥∥+ ⇓xt,k+1 ↓ xt,k⇓+
∥∥xt,k ↓ xi

t,k

∥∥

⇐ 2Cd

k + 1
+

AD

k
+

2Cd

k

⇐ 4Cd +AD

k

Proposition 7. For every t → [T ], k → [K], it holds that

xt,k+1 ↓ xt,k = ςk

(
1

n

n∑

i=1

vi
t,k ↓ xt,k

)
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Proof. Using definition of yi
t,k and xi

t,k+1, we have

xt,k+1 =
1

n

n∑

i=1

xi
t,k+1 =

1

n

n∑

i=1


(1↓ ςk)y

i
t,k + ςkv

i
t,k


=

1

n

n∑

i=1



(1↓ ςk)




n∑

j=1

wijx
j
t,k



+ ςkv
i
t,k





= (1↓ ςk)
1

n

n∑

i=1




n∑

j=1

wijx
j
t,k



+
1

n
ςk

n∑

i=1

vi
t,k = (1↓ ςk)

1

n

n∑

j=1


xj
t,k

n∑

i=1

wij


+

1

n
ςk

n∑

i=1

vi
t,k

= (1↓ ςk)
1

n

n∑

j=1

xj
t,k +

1

n
ςk

n∑

i=1

vi
t,k = (1↓ ςk)xt,k +

1

n
ςk

n∑

i=1

vi
t,k

= xt,k + ςk

(
1

n

n∑

i=1

vi
t,k ↓ xt,k

)

where we use the doubly stochastic property of W i.e ≃j → [n],
∑n

i=1 wij = 1.
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