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Résumé
Les oscillations neuronales sont un élément essentiel de la dynamique cérébrale. L’activité syn-
chrone de réseaux de neurones et l’activité séquentielle de groupes de neurones en différents point
de l’espace sont considérées comme des mécanismes importants reliant l’activité des neurones
individuels aux fonctions cérébrales et au comportement. Dans cette thèse, je me concentre
d’abord sur les mécanismes donnant lieu au rythmes neuronaux, spécialement au rythme beta
qui est observé dans le cortex moteur des primates. J’étudie, ensuite la synchronisation par-
tielle, comme les états “chimériques” ou la synchronisation “à distance”, en utilisant le réseau
de connexions entres aires corticales du cerveau humain.

Les oscillations beta (13 − 30Hz), enregistrées, par exemple, en utilisant des singes entrainés
à une tâche de préhension avec délai, sont prépondérantes durant la préparation du mouve-
ment. Elles apparaissent sproradiquement et sont spatialement organisées de façon complexe
(par ex. en ondes plane, radiale ou spirale). Pour étudier l’origine et les caractéristiques des
oscillations beta, nous proposons un modèle simple du cortex moteur consistant en des popu-
lations neuronales excitatrices et inhibitrices locales, couplées par des connexions excitatrices à
plus longue portée. Ces modules reçoivent aussi des entrées stochastisques provenant d’autres
structures neurales. Ces entrées stochastiques sont de deux types : un premier consistant en des
entrées locales qui varient de module à module et un second correspondant à une entrée globale,
identique sur tous les modules. Nous avons montré que ce modèle reproduit la statistique des
données d’enrégistrement quand le temps de corrélation des entrées externes est court (∼ 25ms)
et le poids respectif des deux types d’entrée est choisi de façon appropriée. Le modèle reproduit
la distribution de la durée des bouffées d’oscillation beta, les proportions des différents types
d’ondes et leurs vitesses. Il permet aussi d’analyser théoriquement les oscillations beta.

Les états chimériques correspondent à la coexistence de dynamiques cohérente et incohérente.
Ils sont reliés au sommeil mono-hémisphérique de certains oiseaux ou mammifères marins et à
l’effet ‘première nuit" chez les humains. Nous proposons un réseau de neurones couplées à deux
couches (chaque couche représente un hémisphère et les liens entres les deux couches représente
leur couplage par le corps calleux) pour étudier les patrons d’activité du réseau cérébral. Ce
modèle réduit nous permet de trouver des états chimériques. De plus, nous étudions plus
généralement ce réseau à deux couches pour déterminer comment les paramètres structuraux
influent sur sa dynamique. Nous considérons aussi l’effet de délai dans la transmission des
signaux en distinguant les connections inter-couches, décrites par des synapses chimiques, des
synapses intra-couches décrites comme des synapses électriques.

La synchronisation à distance est caractérisée par la synchronisation de la dynamique de
paires de noeuds non physiquement connectés et non connectés par une chaine de noeuds syn-
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chronisés. Elle est considérée comme un mécanisme important de ségrégation et d’intégration des
fonctions cérébrales. En se fondant sur le réseau réel des connections cérébrales, nous montrons
que la synchronisation à distance peut être observée dans un réseau d’oscillateurs identiques.
pourvu que des délais appropriés soient pris en compte. Nous proposons un cadre nouveau,
consistant en de multiples réseaux en étoile connectés par des “feuilles” communes, pour com-
prendre la synchronisation à distance. Nous montrons, de plus, que ces feuilles partagées jouent
un rôle essentiel dans la synchronisation à distance.
Mots clés : oscillations synchronisation ondes neurosciences réseau complexe
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Abstract
Neuronal oscillations are an essential characteristic of the brain dynamics. The synchronous
activity of oscillating networks and the sequential movement in space of oscillating networks are
thought to be important mechanisms linking single-neuron activity to functions and behaviors.
In this thesis, first, I focus on the mechanisms of neuronal rhythms, particularly the beta rhythm
observed in the primate motor cortex. Then, I investigate partial synchronization such as
chimera states and remote synchronization based on the human cerebral cortex network.

Beta oscillations (13 − 30Hz), which are observed in monkeys when they are trained to
perform a delayed reach-to-grasp task, are prominent during movement preparation. Beta os-
cillations are sporadic and organized into complex patterns (e.g in planar, radial, spiral waves).
In order to study the origin and characteristics of beta oscillations, we propose a simple model
of the motor cortex based on local excitatory-inhibitory neuronal populations coupled by longer
range excitation. These modules also receive additional stochastic inputs from other neural
structures. We separate the stochastic inputs into two parts: one is local and varies from mod-
ule to module, and the other is global and consistent across all modules. We have shown that this
model can accurately reproduce the statistics of recording data when these external inputs are
correlated on a short time scale (∼ 25ms) and the two different components of external inputs
are appropriately weighted. The model reproduces the distribution of beta burst durations, the
proportion of the different observed wave types, and wave speeds. It also serves to provide a
theoretical analysis of beta oscillations.

Chimera states represent the coexistence of coherent and incoherent dynamics. They are
thought to be related to the unihemispheric sleep of some birds and marine mammals and to the
first-night effect of human beings. We present a two-layered network of coupled neurons (each
layer represents the left and right hemispheres of the cerebral cortex, respectively, and the links
between the two layers represent the inter-couplings through the corpus callosum) to study the
collective patterns of the brain network. This simplified model allows us to find chimera states
for brain networks. Further, we investigate the general two-layered network and study how
structural parameters shape the dynamics of the network. We also consider the effect of delay
due to the limited speed of signal transmission by distinguishing the inter- and intra-couplings
as chemical synapse couplings and electrical synapse couplings, respectively.

Remote synchronization is characterized by the synchronization of pairs of nodes that are
not directly connected via a physical link or any sequence of synchronized nodes. It is thought
to take a key role in supporting the segregation and integration of brain functions. Based
on the real network of the human cerebral cortex, we show that remote synchronization can
be observed in networks of identical oscillators, provided that an appropriate time delay is
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considered. We propose a new framework of multiple star-like graphs connected by common
leaf nodes to understand the mechanism of remote synchronization. We further show that the
common leaf nodes take a key role for the emergence of remote synchronization.
Keywords : oscillations synchronization waves neuroscience complex network
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Chapter I. Introduction

1 Research background

For centuries, scientists and philosophers have been fascinated by the brain. It is one of the
most complex systems made up of interconnected neurons. It controls our intelligence, sense,
movement and behavior, all of which define our humanity. Until now, the underlying operation
of the brain has remained a mystery and may continue to be so due to its extreme complex-
ity. However, the recent confluence of neuroscience and network science opens up a number
of new avenues for understanding brain functions from different perspectives. One important
area of research focuses on structure-function relationships in the brain, aiming to lead a better
understanding how structural networks give rise to rich and flexible neural dynamics. Another
promising area involves the mechanisms of neuronal activities. Neuronal oscillations, synchro-
nization, and propagating waves are three fundamental mechanisms for understanding brain
functions by coordinating neural activity within and between neuronal structures [1, 2, 3, 4].

Neuronal oscillations were firstly observed in human electroencephalogram (EEG) by Berger
who discovered the alpha rhythm (8−13Hz). More recently, the new high-resolution optical and
electrophysiological recording technologies led to the observation of neural oscillations at both
the macroscopic and mesoscopic scales in the developing and in the mature brain. The oscillatory
frequencies in the brain, which range from approximately 0.02 Hz to 600 Hz, are widely observed
at a variety of spatial and temporal scales and are thought to be related to a variety of brain
states and functions. Beta oscillations [5] have captured much attention in recent years. The
available data from experiments demonstrate that beta-band oscillations are associated with a
broad range of processes, including top-down mechanisms involved in cognitive and perceptual
processing, attention maintenance, sensorimotor integration, movement preparation and the
pathophysiology of movement disorders.

Neuronal synchronization is a fundamental mechanism to understand human cognition that
emerges from the coordinated activity of distributed large-scale brain networks operating at
different spatiotemporal scales. One of the most studied synchronization regimes in recent
years is partial synchronization including chimera states, remote synchronization and cluster
synchronization [6, 7, 8]. Significant progress has been achieved on understanding chimera states,
which involve the coexistence of synchronized and unsynchronized states. This counterintuitive
phenomenon is closely related to the unihemispheric sleep in some marine mammals and birds
and has recently gotten hot attention in neural systems. Remote synchronization is characterized
by the synchronization of pairs of nodes that are not directly connected via a physical link or any
sequence of synchronized nodes. It is thought to take a key role in supporting the segregation
and integration of brain functions.

Propagating waves reflecting phase offsets in spatiotemporal scales were noticed with the ad-
vent of simultaneous multichannel recordings. They can be spontaneously generated by recurrent
currents or evoked by external stimuli and form complex spatiotemporal patterns (including pla-
nar, radial and spiral waves). Propagating waves are thought to serve many functions in normal
behavior states and pathological brain states.

My Ph.D. research concentrated on neuronal oscillations, synchronization, and wave prop-
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1. Research background

agation in neuronal networks. My first project was to investigate partial synchronization in
the human network. We studied chimera states based on a two-layered human cerebral cortex
network and investigated how network characteristics shape the dynamics. This was followed
by a work about remote synchronization in the human cerebral cortex network, which aims to
understand the underlying mechanism of remote synchronization in brain functioning. Then I
focused on the mechanisms of neuronal rhythms, particularly the beta rhythm observed in the
primate motor cortex.

The organization of this manuscript is as follows:

• Chapter I covers a basic introduction to complex networks, a rich variety of single neuron
models and how to use mathematical tools to analyze the dynamical behavior of the
system.

• Chapter II introduces the experimental data we rely on to study beta oscillations in the
motor cortex of monkeys. It proposes a basic mechanism underlying the generation of
beta oscillations and presents a theoretical framework for describing this beta generation
mechanism.

• Chapter III is devoted to our work on partial synchronization, first with an emphasis on
chimera states based on a two-layered human network. Then, remote synchronization
associated with possible network structure is discussed.

• Chapter IV finally, summarize the general insights that have been gained and make a brief
discussion of envisioned future studies.

3



Chapter I. Introduction

2 Complex networks

We are surrounded by networks, such as the biological network of cellular interactions between
genes, proteins, and metabolites; the neuronal network which captures the connections between
neurons and is helpful to understand brain functions; the social communication networks such
as Google and Facebook which construct our interpersonal relationships; the virus networks
that control the spread of viruses such as Covid which has made devastating effects; the power
grid networks, the traffic networks and so on. Uncovering the structure of these networks, the
interplay between network components, as well as how dynamics affect the whole network is
crucial for us to address the problems of life. Studies of networks have a long history. Their
roots go back at least to 1736, when the Swiss mathematician Leonhard Euler published the
solution to the Königsberg bridge problem [9]. This new subfield of mathematics was called
graph theory [10]. In addition to the development in mathematical graph theory, the study
of networks has seen important achievements in the social sciences. At the dawn of the 21st
century, a new movement of interest and research in network science was triggered by Watts and
Strogatz with their study on small-world network [11], and the work of Barabási and Alberts on
scale-free network [12, 13]. Later, massive and comparative analysis of networks from different
fields has produced a new discipline, which we call network science today. It aims to understand
the common basic structures and the unifying principles behind the diverse complex networks.

In this section, we will introduce how to describe a network as a graph, as well as the basic
features of networks, such as degree, degree distribution, adjacency matrix, path, distance,
clustering coefficient and so on. Network science aims to build models that reproduce the
properties of real networks, so we also introduce some typical network models such as random
network, small-network, and scale-free network. Finally, we will give a special emphasis on the
study and modeling of brain networks.

2.1 Basic description of networks
To understand a complicated system, we must first understand how its components interact
with one another.

Node and Link
In network science, a network is a collection of a system’s components. The components are
typically referred to as nodes, and the direct connections between them are referred to as links.
The links can be distinguished as directed or undirected depending on whether the direction is
required. Here, we focus on undirected networks. Fig.2.1(a) provides an example of a network
with N = 6 nodes and L = 6 links. It will serve to illustrate the different quantities introduced
below.

Degree and degree distribution
An important property of each node is its degree, representing the number of links it has to
other nodes. We use ki to represent the degree of node i in the network. In an undirected
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2. Complex networks

Figure 2.1: Network description. (a) Network structure. (b) Degree distribution. (c) Adja-
cency matrix. (d) Clustering coefficient.

network, the total number of links L, can be expressed as the sum of the node degrees of the N

nodes,

L = 1
2

N∑
i=1

ki. (2.1)

• Average degree

The average degree in an undirected network is

⟨k⟩ = 1
N

N∑
i=1

ki = 2L

N
. (2.2)

• Degree distribution

5



Chapter I. Introduction

The likelihood that a randomly picked node in the network has degree k is given by the degree
distribution pk,

pk = Nk

N
(2.3)

where Nk is the number of the nodes with a degree equal to k. pk is a probability, and it is
normalized ∑∞

k=1 pk = 1. The relationship between average degree and degree distribution is

⟨k⟩ =
∞∑

k=0
kpk. (2.4)

The degree distribution of the network (Fig.2.1(a)) is shown in Fig.2.1(b), the average degree is
⟨k⟩ = 2.

Adjacency matrix
In order to represent the connectivity of a network, it is useful to introduce the network adjacency
matrix. The adjacency matrix of an undirected network of N nodes has N rows and N columns,
its elements Aij = 1 if there is a link between node j to node i, Aij = 0 if there is no link between
node j to node i. The adjacency matrix of an undirected network is symmetric Aij = Aji. The
relationship between adjacency matrix and degree is

ki =
N∑

i=1
Aij =

N∑
j=1

Aij . (2.5)

The adjacency matrix of the network in Fig.2.1(a) is shown in Fig.2.1(c).
Path and distance

In network science, distance is represented by path length. A path between nodes i1 and in is an
ordered list of n − 1 links P = (i1, i2), (i2, i3), ..., (in−1, in), the length of this path is n − 1. The
path between node1 and node6 shown in Fig.2.1(a) follows the route node1 → node2 → node6 ,
hence its length is n = 2.

• Shortest path

The shortest path between nodes i and j is the path with the fewest number of links, denoted
by dij .

• Average path length

The average distance of a network is given by ⟨d⟩, which is the average of the shortest path
length between all pairs of nodes,

⟨d⟩ = 1
N(N − 1)

∑
i ̸=j

dij . (2.6)

• Network diameter

The diameter of a network is the maximum shortest path in the network, denoted by dmax.

6



2. Complex networks

• Connectedness

In an undirected network nodes i and j are connected if there is a path between them, otherwise
they are disconnected and the distance dij = ∞. A network is connected if all pairs of nodes in
the network are connected. If there is at least one pair with dij = ∞, it is unconnected.

In Fig.2.1(a), there are two paths from node1 to node3: node1 → node2 → node3 or node1 →
node2 → node4 → node3, so the shortest path from node1 to node3 has length 2. The network
shown in Fig.2.1(a) is a connected network.

Clustering coefficient
The clustering coefficient captures the degree to which the neighbors of a given node are con-
nected to each other, which measures the network’s local link density. For a node i with degree
ki, the local clustering coefficient is defined by

Ci = 2Li

ki(ki − 1) (2.7)

where Li represents the number of links between the ki neighbors of node i. If Ci = 0, there is no
link between neighbors; if Ci = 1, all neighbors of node i are connected to each other and form
a complete graph. The clustering coefficient for a network is the average of Ci over all nodes,
⟨C⟩ = 1

N

∑N
i=1 Ci. It represents the probability that two neighbors of a randomly selected node

are connected to each other. The clustering coefficients of the network Fig.2.1(a) are shown in
Fig.2.1(d).

Communities
If there is a locally dense and connected subgraph in a network, the network has a community
structure. For example, in a social network, people who have the same hobbies are more likely
to interact with each other; in a biological network, cells that carry out a specific cellular
function tends to be active together, which was firstly identified by Ravasz and collaborators
[14]. Community structures are important because they allow us to rescale a large network
into a smaller network since the same communities often conduct the same functions or have
similar properties. However, finding the communities in a real network can be a difficult task.
Several methods for community finding have been developed such as Hierarchical clustering,
Girvan–Newman algorithm [15], Modularity maximization [16] and so on. In Fig.2.1(a), the
node2 − 4 can be seen as a community.

2.2 Topology of real networks
From the above, we know how to describe a network, but the majority of the networks we
encounter in reality do not have the reassuring regularity that we could have hoped for. Instead,
they possess complicated and disparate topological properties. However, despite their inherent
differences, most real networks are characterized by the same topological properties such as short
path length, high clustering coefficients, fat tailed shapes in the degree distribution, community
structures and so on. Understanding the common basic topology underneath these complex
architectures, and revealing the unifying principles behind these sophisticated networks, are
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Chapter I. Introduction

helpful for learning and controlling the dynamics of the network. During the last decades,
people have developed several typical network models to help us understand real networks. In
the following, we will introduce several classical network models.

Regular network
In network science, a regular network is a graph where each node has the same number of links,
like a ring network or a star network.

Random network
The systematic study of random graphs was initiated by Erdös and Rényi in 1959 [17]. Their
model is one of the best studied graph models. A random network as defined by Erdös and
Rényi is made up of N nodes with the links randomly drawn between these nodes. Each pair
of nodes is connected with a probability of p. There are two different definitions of a random
network:

Fixed link Model: N labeled nodes are connected with L randomly placed links.
Fixed probability Model: Each pair of N labeled nodes is connected with probability p.
We choose the fixed probability model. So one can construct a random network with the

following steps:
First, begin with N separated nodes and sets the probability p; then, choose a node pair and
produce a number between 0 and 1 at random, connect the selected node pair with a link if
the number exceeds p, else, leave them disconnected; finally, repeat step two for each of the
N(N − 1)/2 node pairs.

In order to honor Pál Erdós and Alfréd Rényi, who have played an important role in under-
standing the properties of these networks, such a random network is also called an Erdós-Rényi
network. The degree distribution of a random network follows the binomial distribution

Pk =
(

N − 1
k

)
pk(1 − p)N−1−k. (2.8)

When N ≫ ⟨k⟩, the degree distribution (Eq.2.8) is well approximated by the Poisson distribution

Pk = e−⟨k⟩ ⟨k⟩k

k! . (2.9)

The expected number of links in a random network is

⟨L⟩ = p
N(N − 1)

2 . (2.10)

The average degree of a random network is

⟨k⟩ = p(N − 1). (2.11)

The diameter of a random network is approximately given for N ≫ N by,

dmax ≈ ln N

ln⟨k⟩
. (2.12)
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2. Complex networks

The clustering coefficient for a random network is

C = p = ⟨k⟩
N − 1 . (2.13)

Small-word network
In most real networks, in spite of their large size, there is a relatively short path between any
two nodes. This feature is known as the small-world phenomenon, also known as six degrees of
separation.

Figure 2.2: The WS small-world model. (a-c) The network changes with probability p. (d)
The average path length d(p) (purple) and the clustering coefficient ⟨C(p)⟩ (green) change with
parameter p, d(0) and ⟨C(0)⟩ are got from the regular network (a). Taken from [11].

Duncan Watts and Steven Strogatz proposed the small-world network model in 1998 [11].
They constructed the small-world network with the following steps:
First, they began with a ring of nodes N (N is even). Each node is connected to its imme-
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diate and next nearest neighbors (high cluster coefficient), also known as a regular network
(Fig.2.2(a)). Then, with probability p, each link is rewired to a randomly chosen node (one
endpoint is kept unchanged, the other is chosen at random while preventing self-connection and
reconnection), this produces a small-world network (Fig.2.2(b)). If p = 1, all links are rewired
and one obtains a random network (Fig.2.2(c)).

Following the quantities we introduced before, a small-world network has relatively high
clustering coefficient and also displays short paths, the small-world property. The evolution of
network properties among regular, small world and random networks are shown in Fig.2.2. The
random network (for p = 1) displays the small-world property but with low clustering coeffi-
cient, the regular network (for p = 0) has high clustering coefficient but lacks the small-world
phenomenon.

Scale-free network
The networks we introduced above are homogeneous networks, which means that almost all
nodes are topologically equivalent. When studying the available datasets of real networks,
researchers have found that most real networks are heterogeneous and follow a power law shaped
degree distribution as shown in Fig.2.3. This kind of network is called a scale-free network, and
γ is the degree exponent,

pk ∼ k−γ(logpk ∼ −γlogk). (2.14)

Figure 2.3: The degree distribution of a network is generated by the Barabási-Albert
model. The figure shows pk (linearly-binned (purple), log-binned version (green)) for a single
network of size N=100,000 and γ=3. The straight line is added to guide the eyes and has a
slope γ=3. Taken from [18].
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A model created by Albert-László Barabási and Réka Albert, can generate scale-free net-
works. The BA model or the scale-free model [12] is defined as follows:
First, one starts from a network with m0 isolated nodes; then, at each time step t = 1, 2, 3, ..., N−
m0 a new node j with m (≤ m0) links is added to the network. The probability ∏(ki) that
a link will connect j to an existing node i with degree ki is linearly proportional to the actual
degree of i,

∏
(ki) = ki∑

j kj
. (2.15)

The evolution of the BA model is illustrated in Fig.2.4.

Figure 2.4: Evolution of the Barabási-Albert model. The image shows nine subsequent
steps to produce a Barabási-Albert network. Empty circles denotes the newly added node to
the network connecting its two links (m = 2) using a preferential attachment. Taken from [18].

In real networks, new nodes tend to link to the more connected nodes. This phenomenon
is called preferential attachment and can create nodes with a large number of links. These
nodes are called hub nodes. Hub nodes represent the most striking difference between a random
network and a scale-free network.

Because of the existence of the hub nodes, the diameter in the Barabási-Albert network, for
m > 1 and large N [19, 20] is

dmax ∼ ln N

ln ln N
(2.16)

which is smaller than the random network (Eq.2.12).
The clustering coefficient for scale-free network is small [21, 22]

⟨C⟩ ∼ (lnN)2

N
. (2.17)

The existence of the hub nodes and the fat power law make the network “robust yet fragile”
which is an important characteristic of real networks [23].
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2.3 Brain network
The human cerebral cortex consists of approximately 1011 neurons and 1014 synapses that are
organized into a complex network of local circuits and long-range fiber pathways. Experimental
studies have shown that the interactions of these neurons and synapses form the structural
substrate that supports brain functions. For example, the firing rate of spontaneously active
neurons in cortical areas strongly depends on the cortical networks in which they are embedded
[24]. Several studies indicate that despite the huge number of neurons and their interconnections,
the human cerebral cortex is governed by the optimizing principles of resource allocation and
constraint minimization [25]. So a main goal is to figure out the core connectivity structure of
the human cortex. However, it is controversial when one considers the different species, different
spatial and temporal scales if a unifying connectivity skeleton exists. One usually refers to three
different types of connectivity [26] according to the different methods used to measure it:

• Structural connectivity

It is the description of the physical connections, generally referring to white matter projections
linking cortical and subcortical regions. Structural connectivity is thought to be relatively stable,
and is commonly measured as a set of undirected links due to the fact that the projection
directions are not easy to discern.

• Functional connectivity

It is often defined as the temporal correlation (cross-correlation, mutual information, or spec-
tral coherence) between spatially distant points measured from neurophysiological activity data
like electroencephalography (EEG) and magnetoencephalography (MEG), local field potentials
(LFP), functional magnetic resonance imaging (fMRI) and positron emission tomography (PET).
It is highly time-dependent and can exhibit non-stationary fluctuations.

• Effective connectivity

It describes networks of causal influences between neural elements based on the identification of
graph models that best explain empirical data [27, 28, 29].

Both human and non-human brain networks exhibit a broad degree distribution [30]. The
distribution of the degree follows the exponential or power-law characteristic as we introduced
in the scale-free network. A high clustering coefficient and a short path length prosperity as
the small-world network can also be found in brain networks [31]. Closer analyses of brain net-
works have shown that brain networks also have “communities” property across multiple scales,
resulting in a hierarchical organization of nested “modules-within-modules” organizations [32].
These rich topology characteristics lead to a better understanding of how structural networks
give rise to rich and flexible neural dynamics.

Relatively complete information on neuroanatomical connectivity is now available for large-
scale networks at the level of segregated brain regions for some animals and mammalian species
[33, 34]. The Caenorhabditis elegans has a compact nervous system of 302 identified neurons,
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Figure 2.5: Human cerebral cortex. (a) Network structure. (b) Weighted adjacency matrix.
(c) Degree distribution. (d) Clustering coefficient distribution.
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whose connectivity has been fully mapped [35]. The connectivity of the cortico–cortical system
in the macaque monkey [36], and of the cortico–thalamic system in the cat [37] have also been
well mapped.

Fig.2.5 shows the statistical property of the human cerebral cortex measured by the diffusion
imaging and tractography method, which is a noninvasive mapping of white matter cortico-
cortical projections at high spatial resolution. In this network, a node represents a cortical
region of interest (ROI in neuroimaging refers to selecting a cluster of voxels or brain region
a priori when investigating a region for effects). A link represents the connection between two
ROIs, and the weight of each link represents the fiber density between the two connected ROIs.
The network consists of 998 nodes and 17,865 weighted links [38, 39].

Motor system
The motor system is functionally segregated and hierarchical organized. This means that it
is divided into a number of different areas that control different aspects of movement, and
that these areas are organized in a hierarchical manner. Specifically, the motor system can be
separated into four parts: the spinal cord, the brain stem, the motor cortex, and the association
cortex. It also contains two side loops: the basal ganglia and the cerebellum. They interact
with each other through connections with the thalamus as Fig.2.6 shows.

Figure 2.6: Schematic representation of the different levels and interconnections of
the motor system hierarchy. Taken from [40].

The motor cortex is an area that is involved in the planning, control, and execution of
voluntary movements. It includes the primary motor cortex, the premotor cortex, and the
supplementary motor area. Experiments with animals performing different motor tasks have
shown that the primary motor cortex is usually involved in the execution of movement and
has information or quantities like the force, the direction and the speed of a movement; the
premotor cortex appears to be involved in the selection of appropriate motor plans for voluntary
movements and the supplementary motor area (SMA) is involved in programming complex
sequences of movements and coordinating bilateral movements [41, 40, 42].

The generation of a voluntary movement, does not only involved the motor cortex, the basal
ganglia and the cerebellum also play important roles. The basal ganglia includes the caudate
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nucleus, the putamen, the globus pallidus, and the subthalamic nucleus. The basal ganglia is
involved in a complex loop that connects to various areas of the cortex. The information from
different areas of the cortex passes through the basal ganglia, then returns to the supplementary
motor area via the thalamus. Thus, they are thought to facilitate movement by integrating
information. The cerebellum receives information from other parts of the brain and relays it to
the motor cortex via the thalamus. It is thought to participate in fine- tuning and coordination
of movements.

The first step to initiate a voluntary movement is to select an appropriate response. It is
accompanied by increased electrical activity in the frontal region of the cortex and the motor
cortex is activated. Then, the motor cortex set the ideal plan for the movement with the
information offered by other parts of the cortex. The second step is to plan the movement in
physical terms. During this process, the motor cortex calls on other parts of the brain (such
as the central grey nuclei and the cerebellum) to help initiate and coordinate the sequential
activation of the muscles. The third step is to execute the movement, the axons of neurons in
the motor cortex carry the expected movement information to the spinal cord, which connects
directly to the muscles and causes the movement [43].
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3 Neuroscience

The term “computational neuroscience” was coined by Eric L. Schwartz in 1985 when he orga-
nized a conference in Carmel, California, to better understand the principles that govern the de-
velopment, structure, physiology, and cognitive abilities of the nervous system at many different
structural scales, including the biophysical, the circuit, and the systems levels [44]. Theoretical
neuroscience models aim to capture the essential features of the biological system at multiple
spatio-temporal scales. Computational models frame hypotheses that can be directly tested by
biological or psychological experiments. The main fields of computational neuroscience include
single-neuron modeling, memory and synaptic plasticity, cognition, discrimination, learning, and
network behavior [45].

In this section, we will introduce the structure and electrical properties of a neuron. We
focus on simplified models for the dynamics of a single neuron, like the Hodgkin-Huxley model,
the Fizhugo-nagumo model, the Integrated-and-fire model, and also on some network models.

3.1 Introduction to neurons
Neurons (which are electrically excitable cells) are frequently referred to as “fundamental units”
of the nervous system, forming the foundation of the nervous system alongside glial cells (non-
neuronal cells) that provide structural and metabolic support [46]. They communicate with
each other via synapses. There are approximately 8.6 × 1010 neurons in the human brain. Each
neuron has 7,000 synaptic connections to other neurons on average [47].

Components of the neuron
A typical neuron is divided into three functionally distinct parts known as cell body (soma), one
or more dendrites, and a single axon [45], as shown in Fig.3.1. The cell body contains at least
one nucleolus and serves as the “central processing unit”, performing an important nonlinear
processing step; the dendrites serve as the “receiver”, collecting signals from other neurons and
transmitting them to the soma; and the axon serves as the “launcher”, transmitting information
away from the soma to different neurons.

The synapse is a structure that permits a neuron (the presynaptic neuron) to pass a signal
to another neuron or to a target effector cell (the postsynaptic cell). It is widely assumed to
also play a role in memory formation. The word “synapse” was introduced in 1897 by the
English neurophysiologist Charles Sherrington [49] and its existence was demonstrated in 1956
by Sanford Palay [50]. Based on the type of signals, synapses can be divided into two main
types: electrical synapses and chemical synapses (see Fig.3.2).

The existence of electrical synapses was first demonstrated between escape-related giant
neurons in the crayfish in the late 1950s. An electrical synapse is an electrically conductive
contact between two nearby neurons. It forms a gap junction, which is a short gap between the
pre- and postsynaptic neurons, separated by about 3.8 nanometers. Each gap junction comprises
several channels that allow ions and even medium-sized molecules to move from one cell to the
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Figure 3.1: Structure of a typical neuron. Taken from [48].

next, forming the information transmission process (see Fig.3.2(b)).
Chemical synapses transmit information by releasing neurotransmitter molecules from presy-

naptic vesicles into a tiny region (the synaptic cleft, about 20 to 40 nanometer wide), where
neurotransmitter molecules bind to neurotransmitter receptors on postsynaptic cells. As com-
pared with electrical synapses, due to the involvement of neurotransmitters, chemical synapses
produce slower changes in the membrane potential of postsynaptic neuron. Signals produced via
chemical synapses are also more modifiable than electrical synapses. Another important char-
acteristic of chemical synapses is that they pass information directionally while the electrical
synapses are mostly bidirectional.

Action potential
Because of the maintenance of a voltage gradient across its membrane, a neuron can generate
an all-or-none electrochemical pulse. In this so-called “action potential”, the voltage changes
significantly over a short interval, due to the movement of specific types of ions controlled by
the voltage-gated channels on the neuron membrane. The process of the action potential can
be separated into four steps as Fig.3.3 shows:
(1) Resting state. The ability of sodium and potassium ions to pass through the membrane is

maintained in dynamic equilibrium, and the cell has a net negative charge on the inside.
(2) Depolarization. The neuron sodium channels open when the action potential is triggered,
causing a large influx of sodium ions into the cell, resulting in a net positive charge in the neuron
relative to the extracellular fluid.
(3) Repolarization. The sodium channels close and the potassium channels open when the
action potential peak is reached, increasing the potassium flux into the extracellular fluid and
decreasing the membrane potential to a negative value.
(4) Refractory period. After an action potential is generated, this is the period when the
excitable cell cannot produce another action potential.
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Figure 3.2: The structure of synapses. (a) Chemical synapse, (b) Electrical synapse, taken
from [51].

Figure 3.3: Ions movement during an action potential. Key: (a) Sodium (Na+) ion. (b)
Potassium (K+) ion. (c) Sodium channel. (d) Potassium channel. (e) Sodium-potassium pump.
Taken from [52].

18



3. Neuroscience

A synapse can be classified as an excitatory synapse or an inhibitory synapse based on the
distinct possible consequences on a postsynaptic cell. Excitatory synapses release neurotrans-
mitters that increase the likelihood of an action potential in a postsynaptic cell, while inhibitory
synapses have the opposite effect.

Spike train
If one ignores the brief duration of an action potential, a spike train is a recorded sequence of

Figure 3.4: Firing rates are approximated by different procedures. (a) Spike trains of 20
units from experiment data when a monkey is trained to do an instructed delayed reach-to-grasp
task [53]. (b) Discrete-time firing rate are obtained by binning time and counting spikes with
T = 5ms. (c) Computed firing rate using a Gaussian window function with σ = 3ms.

times when a neuron fires an action potential. It can be described by

p(t) =
n∑

i=1
δ(t − ti) (3.1)
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where δ is Dirac function. The pattern of spike times varies as the stimulus changes, and it is
often typically described statistically or probabilistically. One can define the firing rate

r = n

T
= 1

T

∫ T

0
dτp(τ) (3.2)

where n is the total number of spikes over a time interval of length T . Since spike counts can
only take integer values, the rates computed by this method will always be integer multiples
of 1

T and take discrete values as Fig.3.2(b) shows. In order to avoid this, one usually uses
sliding windows or continuous windows functions like Gaussian windows to make the firing rate
smoother as shown in Fig.3.2(c).

The Gaussian window is defined by

w(τ) = 1√
2πσ

exp(− τ2

2σ2 ) (3.3)

where σ controls the temporal resolution of the resulting rate, playing a role analogous to T .

3.2 Single neuron models
In this section, we will introduce some biological neuron models, such as the Hodgkin-Huxley
model, which describes the membrane voltage as a function of the input current and the activa-
tion of ion channels; the Fitzhugh-Nagumo model, which is a simplification of the Hodgkin–Huxley
model; the Integrate-and-Fire models which describes the membrane voltage as a function of
the input current and predicts the spike times.

Hodgkin-Huxley model
Biological neuron models seek to explain the mechanisms underlying nervous system function.
The Hodgkin-Huxley model [54] was proposed by Alan Hodgkin and Andrew Huxley in 1952
to explain the ionic mechanisms underlying the initiation and propagation of action potentials
in the squid giant axon with data obtained from the voltage-clamp technique. It is widely
regarded as one of the most significant conceptual breakthroughs in computational neuroscience.
This achievement earned Alan Hodgkin and Andrew Huxley the Nobel Prize in Physiology on
Medicine in 1963.

The Hodgkin–Huxley model is a conductance-based model that represents the biophysical
characteristic of cell membranes as shown in Fig.3.5.

The mathematical model is described by the following equations:

I = Cm
dVm

dt
− ḡKn4(EK − Vm) − ḡNam3h(ENa − Vm) − ḡL(EL − Vm),

dn

dt
= αn(Vm)(1 − n) − βn(Vm)n,

dm

dt
= αm(Vm)(1 − m) − βm(Vm)m,

dh

dt
= αh(Vm)(1 − h) − βh(Vm)h. (3.4)
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Figure 3.5: Basic components of Hodgkin–Huxley-type models. Cm is the membrane
capacitance, gn(n = Na, K), gL are ion channels and leak conductances, respectively; En, EL

are batteries that drive the flow of ions of ion channels and leak channel, respectively; Ip is the
current input. Taken from [55].

where I is the total membrane current, Cm is the membrane capacitance, Vm is the membrane
potential, EK , ENa and EL are the potassium, sodium, and leak reversal potentials, respec-
tively; ḡp (p = (n, m, h)) is the maximal value of the conductance, n, m, and h are associated
with potassium channel activation, sodium channel activation, and sodium channel inactivation,
respectively. The functions αp, βp with p = (n, m, h) take the form:

αp(Vm) = p∞(Vm)/τp,

βp(Vm) = (1 − p∞(Vm))/τp. (3.5)

where p∞ is the steady state value for activation. The specific expressions are:

αn(Vm) = 0.01(Vm + 55)
1 − exp(−(Vm+55)

10 )
,

βn(Vm) = 0.125 exp(−(Vm + 65)
80 ),

αm(Vm) = 0.1(Vm + 40)
1 − exp(−(Vm+40))

10
,

βm(Vm) = 4 exp(−(Vm + 65)
18 ),

αh(Vm) = 0.07 exp(−(Vm + 65)
20 ),

βh(Vm) = 1
1 + exp(−(Vm+35))

10
. (3.6)
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Figure 3.6: The dynamics of the Hodgkin-Huxley model with different stimulus cur-
rent I. (a) Membrane voltage. (b) Ion channel currents. (c) Potassium channel activation n,
sodium channel activation m, and sodium channel inactivation h. (d) Input current.

The ion channel kinetics in Eq.3.4 can be written in another useful form by dividing by
(αp(Vm) + βp(Vm)),

τp(Vm)dp

dt
= p∞(Vm) − p,

τp(Vm) = 1
αp(Vm) + βp(Vm) ,

p∞ = αp(Vm)
αp(Vm) + βp(Vm) . (3.7)
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Figure 3.7: The voltage-dependent functions of the Hodgkin-Huxley model. (a) The
steady-state levels of activation and inactivation of the Na conductance m∞, h∞, and activation
of the K conductance n∞. (b) The voltage-dependent time constants that control the rates at
which these steady-state levels are approached for the three gating variables.

Parameters
Symbol Definition Value unit
I Total membrane current - µA/cm2

Cm Membrane capacitance 1.0 µF/cm2

EK Potassium reversal potential -77 mV

ENa Sodium reversal potential 50 mV

EL Leak reversal potential -55 mV

ḡK Maximal potassium conductance 36 mS/cm2

ḡNa Maximal sodium conductance 120 mS/cm2

ḡL Maximal leak conductance 0.3 mS/cm2

n Potassium gating variable
m Sodium activation gating variable
h Sodium inactivation gating variable

Table 3.1: Hodgkin-Huxley model parameters

Fig.3.6 shows the dynamic trace of the Hodgkin-Huxley model. Fig.3.7 shows the voltage-
dependent functions of the Hodgkin-Huxley model for m, h, n. The parameters used in HH
model are given in Table.3.1.

Fitzhugh-Nagumo model
The Hodgkin-Huxley model is a realistic and biophysical model for studying the dynamic behav-
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ior of neural networks, but due to the many variables in its equations, the amount of calculation
required in numerical simulation is large. So simplified models have been proposed for large-
scale network calculations. The simplified Fitzhugh-Nagumo model was proposed by Richard
FitzHugh in 1961 and then tested by the equivalent electric circuit (shown in Fig.3.8) in the
following year by J. Nagumo et al. [56, 57]. It is successful to explain the basic properties of
excitability as exhibited by the more complex Hodgkin-Huxley model.

Figure 3.8: Equivalent circuit diagram of the Fitzhugh-Nagumo model. C is the mem-
brane capacitance, L is the induction coil, R is the resistance, I is the current inputs. Taken
from [57].

The equations for this model are:

dv

dt
= v − v3

3 − w + I,

dw

dt
= ϕ(v + a − bw). (3.8)

where v is the membrane potential, w is a recovery variable, I is the magnitude of the stimulus
current, and a, b, ϕ are constant number with values a = 0.7, b = 0.8,ϕ = 0.08. Although this
model is not biological, it is useful as a didactic tool to introduce the dynamics of spike generation
through phase plane analysis. When the external stimulus exceeds a certain threshold value, the
system exhibits a characteristic excursion in phase space which is typical for spike generation.

The dynamics of the Fitzhugh-Nagumo model is shown in Fig.3.9.
Integrate-and-Fire model

Although the Fitzhugh-Nagumo model reduces computation from four variables to two variables,
the numerical integration of the equations of the Fitzhugh–Nagumo model is still computation-
ally expensive when considering complex systems of neurons. So further simplifications of these
models need to be considered.
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Figure 3.9: The dynamics of the Fitzhugh-Nagumo model with different stimulus
current I. The other parameters are: a = 0.7, b = 0.8, ϕ = 0.08.

• Integrate-and-Fire model:

The Integrate-and-fire model, first described by Louis Lapicque in 1907 [58], is one of the earliest
simple models of a neuron. The equation for this model reads

I = Cm
dVm

dt
(3.9)

where Cm is the membrane capacitance, Vm is the membrane voltage, I is the input current.
When the input current causes the membrane voltage to reach the threshold Vth, one spike
occurs and the voltage is reset to the resting potential. Then, Eq.3.9 is used until the next
spike occurs. As the input current increases, the firing frequency of the model increases linearly
without bound, which is not biologically realistic, so further extensions are considered necessary.

• Leaky integrate-and-fire model (LIF):

As compared with the Integrate-and-fire model, this model considers the diffusion of ions through
the membrane as a “leak” term as shown in Fig.3.10.

The equation of this model is

Cm
dVm

dt
= gL(EL − Vm) + I (3.10)

or

τm
dVm

dt
= (EL − Vm) + IRm (3.11)

where Vm is the membrane potential, gL is the leak conductance, EL is the resting potential, I

is the external input current, and τm = Cm
gL

(τm = RmCm) is the membrane time constant.
The dynamics of the leaky integrate-and-fire model is shown in Fig.3.11.
When the input current is constant, the relationship between the firing rate and the input

current is

r =
{

[τref + τmln(RmI+EL−Vreset
RmI+EL−Vth

)]−1 ifI > Ith = Vth−EL
Rm

0 ifI < Ith = Vth−EL
Rm

(3.12)

25



Chapter I. Introduction

Figure 3.10: Equivalent circuit diagram of the Integrate-and-fire model.

Figure 3.11: The dynamics of the leaky Integrate-and-fire model with different stim-
ulus current I. (a) Membrane voltage. (b) Input current. The other parameters are: Vth =
-55.0 mV , Vreset= -75.0 mV , τm = 10.0 ms, gL = 10.0 nS, EL = -70.0 mV , tref = 2.0 ms.
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Figure 3.12: The theoretical (green) and simulated (blue) firing rates of the leaky
Integrate-and-fire model with different stimulus current I. The parameters are: Vth =
-55.0 mV , Vreset= -75.0 mV , τm = 10.0 ms, gL = 10.0 nS, EL = -70.0 mV , tref = 2.0 ms.

Fig.3.12 shows the theoretical firing rate (Eq.3.12) and the firing rate measured in simulation
as a function of the input current for the LIF model. This type of relation between the firing
rate and the input current is called the f − I curve of the neuron.

• Exponential integrate-and-fire model (EIF):

In comparison to the leaky integrate-and-fire model, the exponential integrate-and-fire model
modifies how neurons generate action potentials [59]. The threshold for the spike initiation
is replaced in the EIF by a depolarizing non-linear term, mimicking the sodium conductance
activation. The equation of this model is

τm
dVm(t)

dt
= (EL − Vm) + IRm + ∆T exp(Vm − Vth

∆T
) (3.13)

where Vm is the membrane potential, Vth is the intrinsic membrane potential threshold, τm is
the membrane time constant, Em is the resting potential, and ∆T is the sharpness of action
potential initiation, usually around 1 mV for cortical pyramidal neurons.

Fig.3.13(a) shows the dynamics of the EIF model, Fig.3.13(b) shows the f − I curve of the
EIF model.

Natural inputs are usually complex, and time-varying. In order to mimic this, one can
consider different models of input currents:

• Gaussian white noise (GWN)

Gaussian white noise is a zero-mean, stable and ergodic random process described by the fol-
lowing essential property: any two GWN values, no matter how close in time, are statistically
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Figure 3.13: The dynamics of the EIF model. (a) The membrane potential. (b) The
input current. (c) The firing rate VS input current from simulation. The parameters are:
Vth = −55.0mV , Vreset = −75.0mV , τm = 10.0ms, gL = 10.0nS, EL = −70.0mV , tref = 2.0ms,
∆T = 1mV .

independent, which means that the autocorrelation function of a GWN process is zero for nonzero
lags. The dynamics of the EIF model with a constant mean current and fluctuations described
by GWN is shown in Fig.3.14.

One can note that the spike train is not regular anymore. It can be described by introducing
statistical measures such as the coefficient of variation (CV) of the interspike interval (ISI)

CVISI = stdISI

meanISI
. (3.14)

For regular inputs, CVISI=0, larger CV values mean that the spikes are more irregular as
shown in Fig.3.15.

• Ornstein-Uhlenbeck process (OU)

Another noise input that is often used is the Ornstein-Uhlenbeck (OU) process. It corresponds
to filtered white noise and it can be described by

τη
dη(t)

dt
= µ − η(t) +

√
2σητηξ(t) (3.15)

one has for the mean of η, E[η(t)] = µ and for its autocovariance [η(t)η(t + τ)] = σηe−|t−τ |/τη .
ση is the variance of the process in its stationary state, τη is the time scale controlling the decay
of the OU process autocorrelation. Fig.3.16 shows the dynamics of the EIF with OU process
input current.

3.3 Synaptic current
Mathematical models for different kinds of synapses can be described as follows.

Electrical synapses
Ions can flow between two neurons via gap junctions, according to the properties of electrical
synapses discussed previously. A mathematical model of electrical synapses can be established
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Figure 3.14: The dynamics of the exponential integrate-and-fire model with Gaussian
white noise (µ = 150pA, σ = [0, 3]) Input I. (a, c) Input currents. (b, d)Membrane voltages.
The other parameters are: Vth = −55.0mV , Vreset = −75.0mV , τm = 10.0ms, gL = 10.0nS,
EL = −70.0mV , tref = 2.0ms, ∆T = 1mV .

Figure 3.15: The ISI distribution with different σ for GWN of the EIF model.
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Figure 3.16: The dynamics of EIF model with OU noise of different τη (τη =
[20, 500]ms). (a, d) Input Currents. (b, d) Membrane voltage. (c, e) The distribution of
ISI. The other parameters are: µ = 150pA, ση = 40, Vth = −55.0mV , Vreset = −75.0mV ,
τm = 10.0ms, gL = 10.0nS , EL = −70.0mV , tref = 2.0ms, ∆T = 1mV .

using Ohm’s law as [60]

Iij(t) = gij(Vj(t) − Vi(t)) (3.16)

where Iij is the current from synapse j to synapse i, and gij is the conductance between them.
Chemical synapses

For chemical synapses, the presynaptic cell releases neurotransmitter moleculars into the synapse.
Some bind to receptors on the postsynaptic cell surface, directly influencing the state of an as-
sociated ion channel, thus forming an excitatory or an inhibitory postsynaptic transmembrane
current (EPSC or IPSC). A mathematical description of chemical synapses can be established
as:

Isyn(t) = gsyn(t)(V (t) − Esyn) (3.17)

where Esyn and gsyn are the synapse reversal potential and time-dependent conductance, respec-
tively. For inhibitory synapses Esyn = −75mV , whereas for excitatory synapses Esyn ≈ 0mV .
An exponential decay is a simple choice for the time course of the synaptic conductance in
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Eq.3.17,

gsyn(t) =
∑

f

ḡsyne−(t−tf )/τ Θ(t − tf ) (3.18)

where τ is the decay time constant, ḡsyn is the maximum conductivity, tf denotes the arrival
time of a presynaptic action potential and Θ is the Heaviside step function. For some synapses,
the postsynaptic current is more complex and made up of two different components, a fast one
with a decay time constant of a few milliseconds, and a slower one with a decay time often ten
times slower than the fast one. If one also considers the smooth rise of the synaptic response,
the postsynaptic conductance can be described by [45],

gsyn(t) =
∑

f

ḡsyn(1 − e−(t−tf )/τrise)

(ae−(t−tf )/τfast + (1 − a)e−(t−tf )/τslow)Θ(t − tf )
(3.19)

where a is the relative weight of the fast component, and τrise is the rise time of the synaptic
conductance.

An excitatory postsynaptic potential (EPSP) is a postsynaptic potential that increases the
likelihood of a postsynaptic neuron to fire an action potential, whereas an inhibitory postsynaptic
potential (IPSP) has the inverse effect. The neurotransmitter often associated with EPSP in the
brain is the amino acid glutamate. AMPA receptors and NMDA receptors are the most common
types of excitatory receptor channels in the brain. AMPA receptors lead to a fast EPSC whereas
NMDA receptors lead to a slower EPSC. GABA (gamma-Aminobutyric acid) receptors are the
most common inhibitory receptors.

The dynamics of postsynaptic current for different kinds of synapses are shown in Fig.3.17.
The corresponding parameters are provided in Table.3.2

Parameters
Type ḡsyn Esyn(mV ) τrise(ms) τfast(ms) τslow(ms) a
GABAA 40 -75 1 6 100 1
GABAB 40 -75 50 300 500 0.8
AMPA 8 0 1 6 100 1
NMDA 8 0 50 50 100 0.8

Table 3.2: Postsynaptic current parameters.

Synapses on the exponential integrate-and-firing rate model
We consider a synaptic input current Isyn which includes both excitatory and inhibitory com-
ponents. Then, the total synaptic current can be described by

Isyn(Vm, t) = gE(t)(EE − Vm) + gI(t)(EI − Vm) (3.20)

where gE , gI are the excitatory and inhibitory conductances, respectively. We simply modeled
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Figure 3.17: Dynamics of postsynaptic current after a single presynaptic spike of
GABAA, GABAB, AMPA, NMDA. The parameters are given in Table.3.2.

them as exponential functions,

dgA(t)
dt

= ḡA

∑
k

δ(t − tk) − gA(t)
τA

, A ∈ {E, I}. (3.21)

So the membrane potential dynamics of the EIF neuron under synaptic current drive can be
described by:

τm
dVm(t)

dt
= (EL − Vm(t)) + (gE(t)(EE − Vm(t)) + gI(t)(EI − Vm(t)) + I)Rm

+ ∆T exp(Vm(t) − Vth

∆T
). (3.22)

We assume that the input spikes are Poissonian spike trains. An example of the membrane
potential trace of this model is shown in Fig .3.18 (a). The presynaptic spike trains are generated
with average rates is 5Hz, 10Hz for the excitatory and inhibitory inputs, respectively. Here,
The model with 80 independent excitatory synapses and 20 inhibitory ones (see Fig .3.18 (b,
c)).

The “Free membrane potential” describes the membrane potential of the neuron when its
spike generation mechanism is removed.
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Figure 3.18: The membrane potential of the EIF model with Poissonian spike trains.
(a) The membrane potentials. (b) The excitatory spike trains (NE = 80, rE = 5Hz). (c) The
inhibitory spike trains (NI = 20, rI = 10Hz). (d, e) The traces of the excitatory and inhibitory
conductances. The other parameters are given in Table.3.3.
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Parameters
Symbol Definition Value unit
τm Membrane time constant 10 ms

τE Excitatory synapse time constant 2 ms

τI Inhibitory synapse time constant 5 ms

EE Excitatory synapse reversal potential 0 mV

EI Inhibitory synapse reversal potential -75 mV

EL Leak reversal potential -70 mV

ḡE Maximal excitatory synapse conductance 3 nS

ḡI Maximal inhibitory synapse conductance 3 nS

ḡL Leak conductance 10 nS

Vth Spike threshold potential -55 mV

∆T Sharpness of action potential initiation 1 mV

Table 3.3: Synapse current on the EIF model parameters

3.4 Network models
Understanding how individual neurons release action potentials in response to time-varying
inputs is critical for understanding how information is encoded in the brain. A typical neuron
receives thousands of synaptic inputs. The membrane potential dynamics in response to such
time-varying inputs are extremely complicated. As a result, simplified phenomenological models
that ignore biophysical aspects are frequently used to depict the input-output transformation
of individual neurons. For example, building networks with firing rates rather than action
potentials is a simple and widely used approach. This firing rate model description has been
used in many studies since the seminal ones [61, 62]. Firing-rate models are much easier to
simulate on computers and to develop analytic calculations. In this section, we will introduce
the basic of the firing rate model descriptions.

Firing rate model

• Feedforward network

We consider the feedforward network shown in Fig.3.19(a)), where v denotes the activity of the
postsynaptic neurons, u is the activity of the presynaptic neurons, and M is the synaptic weight
matrix between them. The firing rate description is

τ
dv
dt

= −v + Φ(Iext), Iext = M · u (3.23)

τ is the time constant that determines how rapidly the firing rate approaches its steady-state
value for a constant Iext. Φ is the f − I curve. It can be the threshold linear function Φ(I) =
[I − Ith]+, or the sigmoidal function, Φ(I, a, θ) = 1

1+exp[−a(I−θ)] + 1
1+exp(aθ) , with a, θ is the gain

and threshold of the f − I curve respectively. Φ can also be the f − I curve from a specific
neuron model like Fig.3.12 or from a real neuron coming from experimental data.

34



3. Neuroscience

The firing rate model can also be used for recurrent networks, such as excitatory-and-
inhibitory network[63]:

• Recurrent network

For the recurrent network shown in Fig.3.19 (b), the description of the output layer firing rate
is

τ
dv
dt

= −v + Φ(W · u + M · v). (3.24)

It can also be written in terms of the dynamics of the current,

τ
dI
dt

= −I + Iext + M · Φ(I). (3.25)

• Excitatory-Inhibitory network

It is convenient to describe a network structure of excitatory and inhibitory neurons (Fig.3.19
(c)) by separating the two neuronal populations,

τE
dIE
dt

= −IE + Iext
E + MEE · Φ(IE) + MEI · Φ(II),

τI
dII
dt

= −II + Iext
I + MIE · Φ(IE) + MII · Φ(II). (3.26)

Figure 3.19: Network models. (a)Feedfoward network. (b) Recurrent network. (c) Excitatory-
Inhibitory network.

Adaptive timescale firing rate model
Recently, Ostojic and Brunel (OB) [64] introduced a model in which the timescale τ depends
on the firing rate. This “adaptive” rate model successfully produced an accurate description
of firing rate dynamics of an EIF neuron model with relatively strong time-varying inputs (see
Fig.3.20. OB called this model the “adaptive timescale firing rate model” .

OB considered that the mapping between input current and output firing rate can be rep-
resented with the linear-nonlinear (LN) cascade, which means that the input current is first
filtered by a linear filter and then followed by a static non-linear transformation to get the firing
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Figure 3.20: Comparison between PSTH and LN cascade, rate model, adaptive time
scale firing model for the EIF model (The Peri-stimulus time histogram (PSTH) is
the time dependent firing rate that is calculated by averaging the neuron spike rate
over trials). Taken from [64].
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rate. This LN models provide a good approximation of the input-output transform of spiking
neurons.

OB considered an input current I(t) to the neuron, divided into a signal and a noise parts:

I(t) = Isignal(t) + Inoise(t),
Inoise(t) = I0 + σξ(t), ⟨ξ(t)ξ(t′)⟩ = δ(t − t′). (3.27)

The input signal Isignal is identical across trials. It is taken to be a specific realization of
an O-U process with a standard deviation Is and correlation time τs; Inoise is an uncorrelated
background noise given by a Gaussian process, with a mean I0 and a standard deviation σ.
Inoise varies from trial to trial.

The firing rate r(t) of the neuron can be described by using a linear-nonlinear cascade

r(t) = F (D ∗ s(t)),

D ∗ s(t) =
∫ ∞

0
dτD(τ)s(t − τ), s(t) = Isn(t). (3.28)

where s is the input signal, D is a temporal linear filter, F is a static non-linearity, n(t) is a
Gaussian process of zero mean, unit variance and correlation time τs.

OB considered two extreme situations:

• The signal amplitude is small enough Is → 0.

In this situation, Eq.3.28 can be linearized as

r(t) = F (0) + F ′(0)IsD ∗ n(t), F (0) = r0. (3.29)

The firing rate of a spiking neuron is given by

r(t) = r0 + IsRn ∗ n(t) (3.30)

with Rn(t) is the rate response function of the neuron in presence of white noise [65]. By
comparing with Eq.3.29 and Eq.3.30, we can identify that the function F ′(0)D is equivalent to
Rn(t), with Rn(t) is dependent on r0 and σ.

• The correlation time τs → ∞.

In the LN cascade approximation,

r(t) = F (D0s(t)). (3.31)

And the above equation resembles the response function of the f − I curve:

r(t) = Φ(I0 + s(t)) (3.32)
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with Φ is a transfer function that depends on the variance σ of background noise. By comparing
Eq.3.31 and Eq.3.32, OB obtained

F (L) = Φ(I0 + L/D0). (3.33)

Then OB extended the formula to the full parameter space with F ′(0) = 1, D0 = Φ′(I0) and got

D(t) = Rn(t),
F (L) = Φ(I0 + L/Φ′(I0)). (3.34)

For EIF models, the linear filter is exponential with a single, effective timescale τeff

Deff = A exp(−t/τeff ),
A = Φ′(r0)/τeff . (3.35)

And the LN cascade (Eq.3.28) can be rewritten as (see [64] for a detailed explanation):

r(t) = Φ(I),

τeff
dI

dt
= −I + I0 + s(t),

τeff = τm∆T
Φ′(I)

r
. (3.36)

The timescale τeff is dependent on the instantaneous firing rate r. This is the reason why OB
called this model, the adaptive time scale firing rate model.

Fitted adaptive timescale firing rate model
More recently, Anirudh et al. [66] modeled the adaptive timescale model by taking the exponen-
tial kernel that best fitted the firing rate response to an oscillating current at different frequencies
based on [67]. They computed the response function for the EIF neuron for frequencies from 1
Hz to 1000 Hz with a linear spacing of 1 Hz and input currents I with step size 0.1mV . Then,
they fitted the firing-rate response by the Fourier transform of an exponential decay in the time
domain with A√

1+(i2πfτeff )2 for each value. They fit one which gave the minimum squared error
between the original data to get the time constant. Fig.3.21(a, b) shows the f − I curve and
τF AT (I) and τOB(I) (see [64]). This fit function more accurately describes population-level os-
cillations of an E–I spiking neuron module than the adaptive time scale model (see Fig.3.21(c)).
Anirudh et al. called this model, the fitted adaptive timescale rate model.

τF AT dI

dt
= −I + I0 + s(t),

r(t) = Φ(I). (3.37)

Firing rate models have been actively used to model the activity of large populations of neu-
rons and synapses using interval distribution, autocorrelation, noise spectrum, and other mea-
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Figure 3.21: The FAT rate model for the EIF model. (a) The f-I curve . (b) The fitted
adaptive timescale τF AT (I) and the adaptive timescale τOB(I). (c) Comparison of autocorrela-
tion of the excitatory activity between the spiking EIF module and estimates of different models.
Adapted from [66].

surement methods. They have been particularly useful to understand brain rhythms, synaptic-
based working memory, and to account for experimental data such as LPFs in monkeys and
EEGs in humans.

The successful application of the rate concept to neural data has also facilitated the study
of how the neuron type, the network structure, the synaptic current model, and the external
inputs influence the dynamics. In the next chapter, we will base on the FAT model to study
beta oscillations in the motor cortex of monkeys.
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4 Dynamics

In the previous sections, we showed how to characterize neural systems using mathematical
equations. In this section, we will recall how to utilize fundamental analysis techniques to get
insight into the evolution of such systems. We particularly focus on the possible long-term
behaviors of the system dynamics near some particular points.

4.1 Dynamical systems
The temporal evolutions of a system consisting of n variables are given by ordinary differential
equations of the first order 

dX1
dt = f1(X1, X2, · · · , Xn, t)

dX2
dt = f2(X1, X2, · · · , Xn, t)

...
dXn

dt = fn(X1, X2, · · · , Xn, t)

A vectorial formulation is used for the set of quantities, so that the system can be written as:

dX
dt

= F(X, t). (4.1)

The vector X belongs to the space Rn, called phase space, the dimension of the space is n, also
called the number of degrees of freedom of the system. Given the initial condition X0, the path
followed by the system in the phase space during time is called the trajectory or orbit of the
system. F is a vector field, function of Rn × R in R. The map ϕ associated to each initial
condition of the subsequent trajectory X(t) is called the flow of the field vector. If F has no
explicit dependence on t, the system is called autonomous, otherwise, the system is called non-
autonomous. A non-autonomous system can be transformed into an autonomous one by adding
t as one more dimension of the system. If F is a linear function of X, then the system is a linear
system, otherwise, it is a nonlinear system. When the initial conditions are given, the solution of
the equation is determined. A linear system is easy to solve. The linear superposition of different
solutions of the equation is still a solution of the equation, that is, the superposition principle
is satisfied. In general, natural systems are nonlinear, and analytical solutions to nonlinear
equations are difficult to obtain. Thanks to the rapid development of computer technology,
one can use computers to perform numerical calculations and obtain approximate solutions to
equations.

When studying a dynamical system, if we are only interested in its long-term behavior,
we must study the stable attractors of the system. In the following section, we will introduce
mathematical methods for studying the simpler attractors named the fixed points of the system.
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4.2 Attractors
The definition of an attractor [68] is a set of the phase space invariants under the action of
the flow, which means that if one chooses a point on the attractor as an initial condition, the
system’s trajectory will follow the attractor and stay on it indefinitely. Each attractor has an
attraction basin that contains all of the initial conditions that will yield asymptotically joining
trajectories. The most common attractors are stable fixed points, limit cycles (a closed isolated
trajectory in the phase space, which is periodic), the limit torus (quasiperiodic), and strange
attractors (chaotic).

4.3 Linear stability analysis
Fixed points are the particular points of the phase space which satisfy

F(X∗) = 0. (4.2)

This means that, for a given initial condition, if the dynamical system does not depend on time,
it is a fixed point. Fixed points can be stable or unstable.

To get an idea of what the trajectories look like near a fixed point X∗, we can linearize the
equations around the fixed point. Considering X near X∗: X= X∗ + δX with δX small, we
have

dX∗

dt
+ d(δX)

dt
= F(X∗ + δX). (4.3)

Then consider the Taylor expansion of each function

d(δX)
dt

= f(X∗) + ∂f1
∂X1

|X∗δX1 + ∂f2
∂X2

|X∗δX2 + · · · + ∂fn

∂Xn
|X∗δXn. (4.4)

The equation can be written as:

d(δX)
dt

≃ F(X∗) + L|X∗δX (4.5)

L is jacobian matrix of F, and with F(X∗) = 0, we obtain

d(δX)
dt

= L|X∗δX. (4.6)

The solutions to this equation are the form of δX(t) = e(tL|X∗ )δX(0). For the eigenvalues with
strictly positive real parts, the system will go away from X(0), the corresponding eigenvectors
are unstable; when the eigenvalues have strictly negative real parts, the system will go to X(0),
the corresponding eigenvectors are stable; if the eigenvalues have imaginary parts, it will lead
to an oscillating behavior which is superimposed on the trend given by the real part.
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To gain a better understanding, we consider a bidimensional dynamical system of the form
dX1
dt = f1(X1, X2)

dX2
dt = f2(X1, X2)

We consider a small perturbation in the vicinity of a fixed point,

X = X∗ + δX =
(

x∗
1 + δx1

x∗
2 + δx2

)
(4.7)

We linearize the system around the fixed point X∗ and using Lij = ∂fi
∂Xj

|X∗ , we obtain


dδx1

dt = L11δx1 + L12δx2
dδx2

dt = L21δx1 + L22δx2

we rewrite it as:

d

dt

(
δx1

δx2

)
=
(

L11 L12

L21 L22

)(
δx1

δx2

)
. (4.8)

Then, we compute the characteristic polynomial P (λ),

Det(L − λ1) =
∣∣∣∣∣L11 − λ L12

L21 L22 − λ

∣∣∣∣∣ (4.9)

= λ2 − Tr(L)λ + Det(L) (4.10)

where 1 denotes the identity matrix, Tr(L) = (L11 + L22), Det(L) = (L11L22 − L12L21). The
eigenvalues are the zeros of P (λ) :

λ1,2 = Tr(L) ±
√

(Tr(L))2 − 4Det(L)
2 . (4.11)

When Tr(L)2 − 4Det(L) ≥ 0: λ1,2 are real, and the fixed points can be classified as:

• Stable nodes: λ1 < 0, λ2 < 0

• Unstable nodes: λ1 > 0, λ2 > 0

• Saddle points: λ1λ2 < 0

When Tr(L)2 − 4Det(L) < 0: λ1,2 have complex part σ ± iω, the fixed points can be classified
as:

• Stable spiral: σ < 0

• Unstable spiral: σ > 0

• Center: σ = 0
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Fig.4.1 shows the summary of the above cases.

Figure 4.1: Stability diagram of 2D dynamic system.

4.4 Bifurcations
In general, the vector field F is dependent on parameters, and the system’s behavior is affected
by the values of those parameters. This means that fixed points can be created or destroyed,
or the stability of those fixed points can be changed. This is referred to as bifurcation [68],
and the parameters where this type of change occurs are referred to as bifurcation points.
Common example of bifurcations include saddle-node bifurcations, transcritical bifurcations,
pitchfork bifurcations and Hopf bifurcations. The bifurcation diagram depicts the fixed points
as a function of the parameter value. Typically, the set of stable fixed points is represented by
a solid line, while the set of unstable fixed points is represented by a dashed line, as shown in
Fig.4.2.

In the following, we will recall several classical bifurcations of a vector field F depending
only on one parameter.

Saddle-node bifurcation
This kind of bifurcation corresponds to the apparition or annihilation of a pair of fixed points.
Its normal form is

ẋ = r − x2. (4.12)

• When r < 0, the system has no real solutions;
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• When r > 0, the system has two fixed points ±
√

r, one is stable and the other one is
unstable, r = 0 is the bifurcation point as shown in Fig.4.2(a).

Transcritical bifurcation
This bifurcation corresponds to an exchange of stability between two fixed points. Its normal
form is

ẋ = rx − x2. (4.13)

The fixed points are x∗ = 0 and x∗ = r, which gives:

• When r < 0, x∗ = 0 is stable and x∗ = r is unstable;

• When r > 0, x∗ = 0 is unstable and x∗ = r is stable, r = 0 is bifurcation point as shown
in Fig.4.2(b).

Pitchfork bifurcation
Supercritical bifurcation:
The normal form of the supercritical pitchfork bifurcation is

ẋ = rx − x3. (4.14)

The system has one or three fixed points (x∗ = 0, ±
√

r) which depend on the sign of parameter
r,

• When r < 0, the system has one fixed point x∗ = 0 which is stable;

• When r > 0, the system has three fixed points, x∗ = 0 is unstable, x∗ = ±
√

r are stable,
as shown in Fig.4.2(c).

Subcritical bifurcation:
The normal form of the subcritical pitchfork bifurcation is:

ẋ = rx + x3 (4.15)

The stability of fixed points is the inverse of the supercritical bifurcation case, as shown in
Fig.4.2(d).

Hopf bifurcation
Supercritical case:
This bifurcation corresponds to the emergence of a periodic solution from a stationary solution.
The normal form of the Hopf bifurcation is

ż = z((µ + iγ) − |z|2) (4.16)

where z is complex and µ, γ is real and γ ̸= 0. To do the linear stability analysis, we write
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Figure 4.2: Bifurcation diagram (blue real line is fixed, red dashed line is unstable).
(a) Saddle-node bifurcation. (b) Transcritical bifurcation. (c) Supercritical pitchfork bifurcation.
(d) Subcritical pitchfork bifurcation.

z = x + iy, then, ẋ = µx − γy − x(x2 + y2)

ẏ = γx + µy − y(x2 + y2)

The jacobian matrix at (0, 0) is

L|(0,0) =
(

µ −γ

γ µ

)
. (4.17)

• When µ < 0,the fixed point (0, 0) is stable

• When µ > 0, the fixed point (0, 0) is unstable. To understand what happens to the
trajectories when µ > 0, we use the other decomposition of a complex number with
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modulus and phase: z = reiθ which givesṙ = µr − r3

θ̇ = γ

which is the form of supercritical pitchfork bifurcation, the fixed point r = √
µ is stable

and θ = γt + θ0

Subcritical case:

ż = z((µ + iγ) + |z|2) (4.18)

Leading to unstable limit cycles solution for µ < 0. The Hopf bifurcation diagram as shown in
Fig.4.3.

Figure 4.3: Hopf bifurcation. (a) supercritical Hopf bifurcation; (b)subcritical Hopf bifurca-
tion. Adapted from [69].
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4.5 Stability analysis of the fitted adaptive timescale (FAT) rate

model
We consider the rate-model description of an E-I module. It is obtained by coupling an excitatory
and an inhibitory neuronal population, each described as:

τE(IE)dIE

dt
= −IE + wEErE − wEIrI + Iext

E

τI(IE)dII

dt
= −II + wIErE − wIIrI + Iext

I (4.19)

where rE , rI are the firing rates of the excitatory and inhibitory populations, rE = Φ(IE), rI =
Φ(II). τE , τI are the response times and depend on the current I as shown in Fig.4.4. wEE ,
wEI , wIE , wII are the synaptic weights between the excitatory and the inhibitory neuronal
populations. Iext

E , Iext
I represent the external inputs. We choose the steady firing rates: rs

E , rs
I =

[5, 10]Hz, thus,

Iext
E = Is

E − wEErs
E + wEIrs

I ,

Iext
I = Is

I − wIErs
E + wIIrs

I . (4.20)

Figure 4.4: Fitted adaptive timescale (FAT) rate model. (a) E-I model. (b) Firing rate
current f-I curve. (c) Fitted adaptive timescale current τ -I curve.

We consider two different sets of values for the synaptic weights:

• A: wEE = 2.06mV · s, wEI = 1.0mV · s, wIE = 2.0mV · s, wII = 0.43mV · s

• B: wEE = 2.46mV · s, wEI = 1.0mV · s, wIE = 2.0mV · s, wII = 0.43mV · s

Examples of trajectories for IE , II are shown in Fig.4.5.
In order to analyze the stability of these two cases, we first find the equations of the null-

isoclines for IE and II , That is the parameter values such that dIE
dt = 0, dII

dt = 0. The equilibria
are found as the crossing between the null-isoclines as Fig.4.6 shows.
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Figure 4.5: The trajectories of the fitted adaptive timescale (FAT) rate model with
different synaptic weights. A: wEE = 2.06mV · s, wEI = 1.0mV · s, wIE = 2.0mV · s,
wII = 0.43mV · s; B: wEE = 2.46mV · s, wEI = 1.0mV · s, wIE = 2.0mV · s, wII = 0.43mV · s.
The blue line corresponds to the excitatory current, the red line corresponds to the inhibitory
current.

The Jacobian matrix of the model is

L|(E∗I∗) =
(

(−1 + wEEΦ′(I∗
E)/τ∗

E −wEIΦ′(I∗
I )/τ∗

I

wIEΦ′(I∗
E)/τ∗

E (−1 − wIIΦ′(I∗
I ))/τ∗

I

)
. (4.21)

The corresponding eigenvalues for these two cases are shown in Fig.4.7.

• A: λRe < 0, λIm ̸= 0, the trajectory is a stable spiral

• B: λRe > 0, λIm ̸= 0, the trajectory is an unstable spiral

So, as introduced before, this corresponds to a Hopf bifurcation.
In order to see how the stability of the FAT model changes when we vary the synaptic

weights, we take the solutions of Eq.4.21 as linear combinations of two exponentials in time,
exp(λt). The two arguments λ are solutions of

τEτIλ2 + ((γ + 1)τE + (1 − α)τI)λ + (1 − α)(γ + 1) + β = 0 (4.22)
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4. Dynamics

Figure 4.6: The null-isoclines and vector field of the FAT rate model for different
synaptic weights. The dotted lines are null-isoclines, the grey lines are trajectories, the colored
points represent equilibrium points, the dark blue lines are trajectories near the equilibrium
points.

Figure 4.7: The eigenvalues of FAT rate model for different synaptic weights.
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with

α = Φ′(I∗
E)wEE ,

β = Φ′(I∗
E)Φ′(I∗

I )wIEwEI ,

γ = Φ′(I∗
I )wII . (4.23)

We now use the stability analysis that we introduced before. The real parts of the roots are
negative when the two following conditions hold,

α < 1 + (γ + 1)τE

τI
,

β > (α − 1)(γ + 1). (4.24)

The roots have imaginary parts when

β <
((γ + 1)τE + (1 − α)τI)2

4τEτI
+ (α − 1)(γ + 1). (4.25)

The corresponding stability phase diagram of the FAT rate model is shown in Fig.4.8, for the
stationary state values, rs

E , rs
I = [5, 10]Hz, and for wII = 0.43mV · s.
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Figure 4.8: The stability phase diagram of the FAT rate model as a function of
synaptic weights. Stable regions with complex eigenvalues (light green) and real eigenvalues
(dark green) as well as unstable regions with complex eigenvalues (light blue) and real eigenvalues
(dark blue) are shown for the stationary state rs

E , rs
I = [5, 10]Hz, wII = 0.43mV · s. The

parameters for the points A and B are: A: wEE = 2.06mV ·s, wEI = 1.0mV ·s, wIE = 2.0mV ·s;
B: wEE = 2.46mV · s, wEI = 1.0mV · s, wIE = 2.0mV · s.
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Beta oscillation in the motor cortex
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5 Basic introduction of neuronal oscillations

5.1 Neural rhythms
Synchronous rhythms are a key mechanism for shaping the temporal coordination of neural
activity across the brain, covering more than four orders of magnitude in frequency, from ap-
proximately 0.02 to 600 Hz [70]. Neural oscillations in humans were originally observed by
Hans Berger in 1924 [71]. More recently, the new high-resolution optical and electrophysio-
logical (EEG) recording technologies led to the observation of neural oscillations at both the
macroscopic and mesoscopic scales of the cortex. Oscillatory activity in the brain is widely
observed at a variety of spatial and temporal scales and is thought to play different roles in
neural information processing. A plethora of experimental studies support a functional role for
the variety of neural oscillations [72], which are briefly described below.

Theta rhythm (4-8 Hz)
It is mainly observed in the hippocampus and several other brain regions connected to the
hippocampus [73]. Studies have suggested that these rhythms are correlated to some short-
memory tasks [74] and various voluntary behaviors, such as exploration, spatial navigation and
alert states in rats, which suggests that it may reflect the integration of sensory information
with motor output [75, 76]. A lot of evidence indicates that theta rhythm in the neocortex is
associated with REM sleep, the transition from sleep to waking [77], and human meditation [78].

Alpha rhythm (8-13 Hz)
It was first discovered by German neurologist Hans Berger who also is the inventor of the
EEG [71]. Recent studies have found that the alpha rhythm is present at different stages of
the wake-sleep cycle [79] mainly centered in the occipital lobe. Another study has found that
the appearance of the alpha rhythm with open eyes can be a predictor of visual information
processing in working memory.

Beta rhythm (13-30 Hz)
It was initially observed in the primary motor cortex [71]. Then with the help of the electroen-
cephalogram (EEG) and local field potentials (LFPs) technology, it was observed across the
sensorimotor cortex of both human and non-human primates. Studies have shown that beta
power increases during movement planning or steady postural configurations and attenuates as
movement begins [80, 81, 82, 83]. More recently, it has been observed using multi-electrode ar-
rays that beta oscillations can come as planar or more complex waves propagating horizontally
on the motor cortex [84, 85, 86].

Gamma rhythm (30-80 Hz)
One of the earliest reports described gamma activity in the visual cortex of awake monkeys [87].
Later the gamma rhythm has been extensively studied in the visual cortex [88, 89]. It is thought
to correlate with large scale brain network activity and cognitive phenomena such as working
memory, attention[90], perceptual grouping, and can be increased in amplitude via meditation
or neurostimulation [91]. The gamma rhythm is observed as neural synchrony induced by both
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conscious and subliminal visual stimuli. It has also shed light on how neural synchrony may
explain stochastic resonance in the nervous system [92, 93].

High-frequency rhythm (>80 Hz)
The high-frequency rhythm that occurs in physiological state during immobility and sleep is
thought to be involved in memory consolidation [94]. Studies have shown that it is also associated
with pathophysiology of the brain like epileptic seizures and schizophrenia [95, 96].

These and other rhythms are bound by a hierarchical relationship, and can temporally coexist
in the same or in different structures and interact with each other. They are associated with
brain state changes, facilitating the effectiveness of message exchange between brain areas.

Many neurological and mental disorders are associated with rhythm alteration. For example,
enhanced beta oscillations in motor areas are a symptom of Parkinson’s disease [97, 98, 99],
gamma oscillations are diminished in schizophrenia [100, 101], depression is characterized by
changes in sleep spindles and hypersynchrony is a sign of epilepsy [102]. So understanding how
these neural rhythms are formed and which cognitive behaviors they reflect on is critical for us.

5.2 Network synchronization mechanisms
What is the underlying basis of synchronous cortical rhythms? Thanks to the confluence of
computational neuroscience and experimental development, their mechanisms are being revealed.
Depending on the source of the inputs, the mechanisms behind the rhythms which synchronize
neurons can be divided into two types: oscillatory synaptic recurrent inputs and correlated but
random external inputs [72].

Oscillatory synaptic interaction inputs
We consider two types of neurons: excitatory pyramidal neurons and inhibitory interneurons.
So the synaptic interactions can be classified as:

• Recurrent excitation between pyramidal neurons. Experiments and modeling have revealed
that AMPA receptor mediated excitatory synapses are adequate for synchronizing the low
frequency (5–10 Hz) rhythmic bursting carbachol induced rhythm in vitro [103], but
insufficiently to account for the synchronized oscillations at high frequency.

• Reciprocal inhibition between interneurons. Many studies have shown that inhibition can
improve neural synchrony in a broad frequency range[104, 105, 106]. Wang and Buzsaki
discovered synchrony in the gamma frequency band with GABAergic interneurons [107],
and experiments conducted by Whittington, Traub and collaborators have been the first
to report experimentally synchronous oscillations around 40Hz in the rat hippocampus in
vitro [108].

• Reciprocal interactions between excitatory and inhibitory neurons. Wilson and Cowan [62]
proposed a firing rate model of reciprocal interactions between excitatory and inhibitory
neural populations and this model was successfully used to explain gamma oscillations in
the olfactory bulb and hippocampus [109, 110]. The oscillatory cycle dynamics begin as
the fast excitation drives up neural firing with positive feedback until the inhibition catches
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up and brings the population activity down, as the excitatory drive to interneurons fades,
the network recovers from inhibition, and the cycle begins again. At the macroscopic scale
of the cortex, both the inhibitory interneuronal network mechanism and the excitatory-
inhibitory feedback loop mechanism are present [111].

Recent studies have also shown that electrical synapses with gap junctions contribute to neural
synchrony. Compared with chemical synapses, electrical synapses are faster and bidirectional so
they are especially important for synchronizing the fast rhythms [112, 113].

Correlated stochastic input
When the intrinsic oscillation frequencies of the neurons are roughly the same and the correlated
stochastic input is broad-band and faster than the period of the intrinsic neuronal oscillation,
the network will exhibit synchronous oscillation even though the neurons do not directly interact
[114, 115], Galán et al. [116, 117] successfully used this correlation-induced stochastic synchrony
to model the olfactory bulb dynamics.

Studies that combined LFPs and single-unit (or multi-unit) recordings discovered that co-
herent oscillation exists with units in the LFPs with irregular spike trains. For example, high
CVISIs (the CV of the ISI) are recorded from the primary visual cortex of cat and monkey during
anesthetised and awake states[118, 119, 120, 121], and from behaving monkeys prefrontal cor-
tex [122, 123], and motor cortex [124]. Computational models of spiking neuron networks have
shown how synchrony could emerge in recurrent networks with noisy units. Brunel and Hakim
[125, 126, 127] have shown that a network oscillation can be produced with sparse synchro-
nization in pyramidal cells and interneurons under strong noise and strong recurrent inhibition.
Interestingly, studies have shown that the oscillation frequency produced by I-I loop is generally
higher than that produced by E-I loop. When inhibition is sufficiently strong, the frequencies are
mainly controlled by the kinetics of synaptic transmission and tend to be in the upper gamma
range or higher[128, 129, 130].

5.3 Propagating waves in the brain
Studies have shown that the neural rhythms that we introduced above are not always fully syn-
chronized with zero phase lag, but that their organization into traveling waves is widespread in
non-human primates and the human brain at multiple scales. They are related to cognition. For
example, the gamma waves found in primary visual cortical are thought to reflect the dynamic of
stimulus-modulated information transfer [131, 132], the hippocampal theta oscillations are found
to be strongly related to memory and spatial navigation [133], the beta waves were associated
with movement preparation [84]. In addition, Studies of computational and theoretical neurosci-
entists have shown that these waves can be generated by computational models [134, 135]. See
Ref. [4] for a review of propagating waves in different brain areas like the thalamus, the cortex
and the thalamocortical system under different brain states (anesthetized and awake) from both
experimental and computational points of view.
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6 Beta oscillation in motor cortex

Beta frequency oscillations (13–30 Hz) in sensorimotor cortices [136] and basal ganglia structures
have been studied in both humans [137, 138, 139] and animals, including monkeys [80, 86, 140],
and cats [141] with electroencephalography (EEG), magnetoencephalography (MEG) and local
field potential (LFP) tools. These oscillations occur during stable postures and decrease during
active states. Many classical studies have shown that beta oscillations are pronounced during
the movement preparatory period and are attenuated as the beginning of movements [80, 84, 85,
142, 86, 143]. The beta rhythm may correspond to an “idling rhythm” in the motor system [144]
or it may correspond to a “status quo” of the sensorimotor system. Instead of reflecting a mere
lack of movement, studies have shown that beta oscillations may promote existing motor set and
posture while compromising processing related to new movements [83, 145, 146]. For example,
Gilbertson et al. [83] have shown that reinforced beta oscillations are associated with impaired
new movement in the cerebral cortical motor areas in healthy subjects. So beta oscillations may
be compatible with an “active-akinetic" process [5]. Interestingly, Roelfsema et al. have found
that beta oscillation occurs when cats expect the upcoming of a predicted event [147] and may
reflect anticipatory processes.

Studies have shown that beta oscillations are related to the top-down mechanisms involved
in cognitive and perceptual processing [148, 149, 150, 151]. For example, Buschman et al.
[148] found prominent beta oscillations during a search regime which corresponds to a strong
endogenous top-down processing when they trained monkeys to detect an object either in a
pop-out regime or a serial search regime. Several studies using the attentional blink paradigm
also support this hypothesis [152, 153].

In some reports, beta oscillations are considered as a repeated cycle of oscillatory activity
sustained over time. However, many studies have shown that beta oscillations occur sporadically
in bursts that last less than 150 ms [154, 155]. The timing and duration of these bursts are
critical for normal functioning of the motor system [99, 156, 157]. Beta oscillations are also
found related to pathological movements, like those of patients with Parkinson’s disease who
have trouble initiating movements [158, 159, 160].

So understanding how beta oscillations are generated will promote a better understanding
of their functional roles. However, the underlying mechanism of beta oscillations and how they
reflect underlying neural population dynamics have remained elusive. Several lines of evidence
point to beta rhythms as being generated in basal ganglia and thalamic structures [161, 162, 163]
and as a reflection of external inputs to the motor cortex. Alternatively, beta rhythms may
originate independently in each area. This is supported by transcranial magnetic stimulation
(TMS) perturbation studies which show that different cortical regions have intrinsic oscillation
frequencies [164, 165, 166]. Recently Sherman et al. [157, 167] proposed that beta oscillations
can emerge from the combination of these two mechanisms.

Rubino et al. [84] found that the beta oscillations in the motor cortex, when monkeys are
trained to do an instructed delay task, can organize into traveling waves. The propagating speeds
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are around 30 cm/s along one dominant direction (anterior–posterior in primary motor cortex;
medio-lateral in dorsal pre-motor cortex). The amplitudes and the phases of beta oscillations
encode information about monkey’s behaviors. This supports the hypothesis that the beta
oscillations do not just represent an “idling rhythm” but suggest that they could perform useful
computation. Rule et al. and Denker et al.[85, 86] have shown that LFP beta oscillations in the
motor cortex also travel across the cortex with more complex patterns (radial, spiral waves).
Several methods have been developed to detect and analyze these patterns [168, 85, 86].

Here, we first describe the experimental data published by [53] to analyze the beta oscillation
in motor cortex. Then we develop a model to explain the origin of beta oscillations.

6.1 Experimental data introduction
The data published in Ref. [53] includes two electrophysiological datasets recorded by 10-by-
10 Utah electrode arrays (96 active electrodes and 4 non-active electrodes) implanted in the
motor cortex of two macaque monkeys (N and L) which were are trained to do an instructed
delayed reach-to-grasp task. The datasets contain: the raw neural signals (sampled at 30 kHz,
broadly band-pass filtered to 0.3Hz-7.5kHz); the local field potential (a downsampled and
filtered version of the raw neural signals sampled at 1 kHz, and broadly band-pass filtered to
0.3Hz-250Hz); time stamps and spike waveforms of offline sorted single and multi units (93/49
and 156/19 (SUA/MUA) for the two monkeys, respectively); as well as the specific time of
tasks and behavioral events recorded along with the electrophysiological data. All of these data
provide the material for our study.

Figure 6.1: Overview of the experimental design. (a) Sketches of the monkeys performing
the reach-to-grasp task. (b) The time axis of events and visual cues. Taken from [53].

The design of the experiment
In Refs. [86, 53], two monkeys were trained to grasp an object with different grips either a side
grip (SG) or a precision grip (PG), depending on the position of the fingers when the monkeys
hold the object, as shown in Fig.6.1 (a). Then the grips are further distinguished depending on
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whether the object should be pulled using either a high or a low force (HF and LF, respectively).
The instructions are given by the illumination of specific combinations of two LEDs. Specifically,
the experiment is initiated by the monkeys deactivating the table switch (home position). This
lights the WS-ON signal lights which are kept on for 400 ms to inform the monkeys that the
trial has begun. Then the first cue (CUE-ON) is given, and after 300 ms it is turned off (CUE-
OFF). A 1000 ms preparatory delay follows before the second cue (GO-ON) is given. Then the
monkeys initiate the movement. The movement is composed of reaching, grasping, pulling and
holding the object in the position window for 500 ms before rewarding juice is provided. What
we focus on is the preparatory period (from CUE-OFF to GO-ON, around 1 s) when the beta
power is elevated. So in the following, we mainly analyze the data during this period.

The recording session of monkeys L and N lasted 11:49 and 16:43 min in which they per-
formed 204 and 160 trials, respectively. The trial types alternated randomly between trials, with
135 correct trials for monkey and 142 correct trials for monkey L as shown in Fig.6.2.

Figure 6.2: Overview of the experimental trial. Taken from [53].

Figure 6.3: Locations of the Utah arrays. Monkey N (left), monkey L (right), the red
channels are invalid channels.

The position maps of the electrode arrays for two monkeys are shown in Fig.6.3. The arrays
are placed between the primary motor cortex (M1) and the dorsal or ventral premotor cortex
(PMd or PMv) of the right hemisphere. Each electrode is 1.5 mm long with an inter-electrode
distance of 400 µm. Besides 4 non-active electrodes, monkey L has 2 (electrode IDs: 2, 4) invalid
electrodes and monkey has 7 (electrode IDs: 15, 23, 38, 45, 46, 53, 67) invalid electrodes (which
are detected by abnormal signals). In order to better analyze the spatial characteristic of the
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signals, we replaced the signal of each bad electrode with the mean signal of its effective nearest
neighbors.

Spike waveform
The recording sessions include the spike unit waveforms. They can be used for spike sorting
with a specific algorithm described in Ref. [53]. The statistics of the spike durations and spike
amplitudes are shown in Fig.6.4. The spike duration can be used to classify the single unit as
excitatory or inhibitory.

Figure 6.4: Overview of the spike data for monkey N (left) and L (right). (a) The
distribution of spike durations. (b) The distribution of spike amplitudes. (c) The relationship
between spike durations and spike amplitudes.

Firing rates of excitatory and inhibitory neurons
Following Ref. [169], we define spikes with a narrow width (shorter than 0.4 ms) as inhibitory
neurons, whereas spikes with a broad width (longer than 0.41 ms) are considered to be excitatory
neurons. For monkey L, there are 93 single units, 73 are inhibitory (their average firing rate is
16.23 Hz) and 12 are excitatory (the average firing rate is 12.26 Hz); for monkey N, there are
156 single units, 54 are inhibitory (their average firing rate is 13.70 Hz) and 97 are excitatory the
average firing rate is 8.71 Hz (due to a small missing 0.1 ms interval in the unit classification,
the sum of excitatory and inhibitory units does not exactly match the total number of single
units). The statistics of the firing rate is obtained by convolving the spike trains with a Gaussian
window as explained in Chapter.I. As shown in Fig.6.5, the units display large CVs (larger than
1) during the preparatory period. This means that although beta oscillations are prominent,
the neurons do not fire periodically. Beta oscillations thus appear to be a collective phenomenon
arising from the sparse synchronization [127] of different non-oscillating units.

Signal
Fig.6.6 exhibits the metadata in a temporal frame around TS-ON of trial 1 of electrode ID 7 for
monkey N which includes the raw signals (sampled at 30 kHz, and broadly band-pass filtered to
0.3 Hz–7.5 kHz), LFPs (low-pass filtered at 250 Hz), spikes, and events.
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Figure 6.5: The statistic of firing rates and CV of spiketrains for monkeys N (left)
and L (right). First row: all unit; second row: inhibition neurons with narrow spike width
(NS units); third row: excitatory neurons with broad spike width (BS units).

Figure 6.6: Example of data presentation. The data comes form monkey N (trial ID 1,
electrode ID 7), raw signal (black), LFP (blue and red), spikes, and event (dash).
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6.2 Analysis of experimental data
We analyze the LFP signals using the power spectrum, their auto- and cross-correlation, and the
statistics of the beta bursts. We use an improved method for detecting traveling waves based
on previous work [86, 85]. Illustrative results are presented below.

Power spectrum
As introduced before, the beta rhythm is one of the most prominent types of oscillation activity
in the motor cortex. It is believed to relate to movement preparation. The LFP signals are
modulated by the behavioral state of the monkey. Spectrograms can be used as a way of vi-
sualizing the change of a nonstationary signal’s frequency content over time. Consistent with
previous results, the beta oscillations are prominent during the movement preparation but at-
tenuated during the movement execution for both monkeys (see Fig.6.7, the electrode-averaged,
trial-averaged, time-resolved spectrograms).

Figure 6.7: The spectrograms of LFPs. (a) Monkey N. (b) Monkey L, the data used from
the whole period of the trials (from TS-ON to STOP), the spectrograms calculated as electrode-
averaged, trial-averaged.

The power spectrum is used to assess the dominant frequencies in the LFPs. We use the
Welch’s average periodogram algorithm to calculate the power spectrum (the psd function of the
Python package scipy, with the Hanning window, the length of each segment is nperseg = 1024
, and sampling frequency fs = 1kHz). The spectrograms were calculated using spectrogram
function of the Python package scipy, the length of each segment is nperseg = 512 and the
number of points of overlap between segments is noverlap = 500.

Correlation
We use the spatiotemporal correlation to demonstrate how different LFPs are related to each
other in space ( ∆d) and time (∆t). The correlation is defined by,

Cor(∆d, ∆t) = 1
N∆d

∑
Dis(m,n)=∆d

1
N∆t

∑
t=0,1...T −∆t

(I(m, t) − Ī(m))(I(n, t + ∆t) − Ī(n))

(m, n = 1, . . . , N) (6.1)
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where I is the LFP signal. m, n are the indices of the LFP signals, N (N = 100) is the total
number of different LFP signals. Dis(m, n) is the Euclidean distance between signal m and
signal n, N∆d denotes the number of the signals when the distance difference Dis(m, n) equals
to ∆d. N∆t denotes the number of time points with a time difference of ∆t. T is the total
duration of the signal.

Oscillatory data filtering
Our goal is to analyze the spatial arrangement of the oscillatory activity over the electrode
arrays. To ensure that the data are properly displayed, the following procedures are applied as
in Ref. [86]:

Figure 6.8: Data Filtering process of LFPs. (a) Original LFPs. (b) Filtered normalized
signals, the data from monkey N (trial ID 1).

• First, we filter the LFP signals on each electrode (a third-order Butterworth filter, filtfilt
function of the Python package scipy ) to a specific frequency range (pass band: 13–30
Hz).

• Then, due to the different amplitude scales between electrodes, the LFP signal amplitude
of each electrode is normalized using the z-scores. This allows one to assess the relative
changes in amplitude between different electrodes.

• Next, the analytical signal Ix,y(t) (x, y are the coordinates of the channel in the electrode
array) is obtained by applying the Hilbert transform function of the Python package on the
normalized, filtered LFP at each electrode position (x, y). We retrieve the instantaneous
signal amplitude ax,y(t) from Ix,y(t) by taking its module, and the instantaneous phase
ϕx,y(t) by taking its argument (angle). Obtained maps ax,y(t) and ϕx,y(t) are used for
beta burst detection and wave patterns detection, respectively.

Compared with the raw LFP signals, the filtered, and normalized ones are smoother (see in
Fig.6.8) and are more convenient for performing spatial pattern recognition.

Beta burst determination
As previously introduced, the beta oscillations are transient during the movement preparatory
period. To detect them, the beta burst threshold is determined in terms of percentiles of the
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signal amplitude distribution following Ref. [156]. In our case, the threshold is set at the 75th

percentile of the analytical amplitude distribution. The onset of a burst is defined as the time
point at which the analytical amplitude exceeds the given threshold amplitude, its duration is
obtained as the time point at which the amplitude falls below this threshold (see Fig.6.9(b), the
sky blue areas correspond to beta bursts). We define the beta burst amplitude as the average
amplitude over that beta burst duration.

Figure 6.9: Beta burst detection. (a) Raw signal of monkey N (trial ID:1, electrode ID: 1).
(b) The real part of the analytic signal (blue) and the amplitude of the analytical signal (dark
blue). The threshold for beta burst is also shown (red dotted line). (c) Spectrograms of the
signal shown in (a).

Detection of spatiotemporal patterns
We observed different types of waves (synchronized, planar, radial, spiral, random) on the basis
of the phase map. To demonstrate the spatial organization of the oscillatory activity across the
electrode arrays, we followed the method of identifying wave patterns as previously described in
Ref. [86] with some modifications. Three additional maps (the phase gradient map Γxy(t), the
directionality map ∆xy(t), and the gradient coherence map Λxy(t)) were constructed as defined
in Ref. [86]. The phase gradient map Γxy(t) and the directionality map ∆xy(t) are used to
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calculate the circular variances of phase and phase directionality which are then used to identify
the synchronized waves and planar waves. The gradient coherence map Λxy(t) is used to find
the critical points. Then these classified critical points are used to distinguish radial and spiral
waves. The remaining nonclassified patterns are defined as random waves (see Fig.6.12 for the
steps of wave detection).

• Phase gradient map. For the electrode at position (x, y), its phase gradient is obtained as
the average difference of the x-axis (or y-axis) of the phase map at its k nearest neighbors.
We use k = 2 to obtain a smooth map that is convenient for the analysis (for the boundary
electrodes, only the nearest neighbors are considered). The map of phase gradients is

Γxy(t) = 1
Nx

∑
x′=−k,··· ,−1,1,··· ,k

(ϕ(x + x′, y) − ϕ(x, y)/|x′| · ejα)+

1
Ny

∑
y′=−k,··· ,−1,1,··· ,k

(ϕ(x, y + y′) − ϕ(x, y)/|y′| · ejα)
(6.2)

where α denotes the angular direction between the electrode locations, Nx (Ny) is the
number of neighbors along the x-axis (or y-axis).

The phase speed is defined by

v(t) = 2πfβ

|Γ|
(6.3)

where fβ is the average frequency of the beta oscillation and fβ = 21.5Hz which is obtained
from the power spectrum of the metadata. |Γ| is the average phase gradient. The inter-
electrode distance is 400 µm.

• Phase directionality map. The vector of the phase gradient map Γxy(t) is normalized to
its unit length. It merely indicates the magnitude-independent direction of the local phase
gradient. The phase directionality map is

∆xy(t) = Γxy(t)
|Γxy(t)| . (6.4)

• Gradient coherence map. In order to get a smoother map to distinguish complex waves,
the gradient coherence map is defined as an average of the directionality map over its
k-nearest neighbors, where Nxy is the number of its k-nearest neighbors,

Λxy(t) = 1
Nxy

∑
x′,y′∈(−k,··· ,−1,0,1,··· ,k)

∆x+x′,y+y′(t). (6.5)

• Circular variance of phases. Synchronized waves are commonly observed with identical
phase angles and small random phase gradient directionalities. Therefore, the circular
variance of phases σp (similar to an order parameter) is introduced in Ref. [86]as a mea-
sure to determine the similarity of the phase across the arrays. The synchronized degree
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increases with σp(t), σp(t) = 1 indicates that the electrodes are totally synchronized while
σp(t) = 0 denotes that they are in a disordered state.

σp(t) = | 1
N

∑
x,y∈(1,··· ,

√
N)

ejΦx,y(t)| ∈ [0, 1]. (6.6)

N is the total number of electrodes.

• Circular variance of phase directionality. To measure how well phase gradients align across
the arrays, the circular variance of the phase directionality is introduced in Ref. [86]. A
perfect planar wave is observed when σg(t) = 1, meaning that all phase gradients point in
the same direction. This measure is similar to the PGD measure defined in Ref. [84].

σg(t) = |N−1 ∑
x,y∈(1,··· ,

√
N)

∆x,y(t)| ∈ [0, 1]. (6.7)

N is the total number of electrodes.

Planar wave patterns are characterized by a non-zero phase gradient that points in the same
direction at each electrode, and are thus well characterized by a large value of σg(t) ≥ 0.5.
Perfectly synchronized patterns exhibit the same phase at each electrode (large σp(t) >

0.85), and random phase gradient directionality (small σg(t) < 0.5).

Figure 6.10: Critical point example. (a-b) Radial waves with sink or source point. (c-d)
Spiral waves with source or center point.

• Critical point analysis. Complex waves are classified on the basis of critical points in the
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Chapter II. Beta oscillation in the motor cortex

local gradient coherence map. Minima, maxima, and saddle points can be distinguished
by the direction of sign change in the local gradient coherence map [170]. The centers of
spiral waves are required to show coherent positive or negative curl. It can be calculated by
taking a line integral of the local gradient coherence map surrounding each point. Points
around which this line integral equals nonzero multiples of 2π (the threshold we used is
±π) are singularities and are the centers of spiral waves; if there is only one extremum
and the line integral surrounding this critical point equals zero, we have a radial wave.
Fig.6.10 shows vector fields for radial waves (a-b) and spiral waves (c-d). Otherwise, the
pattern is classified as a random wave.

Fig.6.11 shows an example of the phases and phase gradients for different kinds of waves for
monkey N. The planar wave is distinguished by non-zero phase gradients and almost identical
phase gradient directions. The synchronized wave by the same phases and a random distribution
of phase gradients. The radial wave by one critical point in gradient coherence map and non-zero
phase gradients.
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Figure 6.11: Example of complex waves for monkey N. The first row shown the phase and
its isolines, the second row show the distribution of the phase gradient. (a) Planar wave. (b)
Synchronized wave. (c) Radial wave. (d) Random wave.

Data treatment follows the workflow shown in Fig.6.12. It includes data filtering to extract
the analytical phase and amplitude; the construction of the phase and phase gradient to obtain
the vector map for the indexes used for wave classification; and the judgment rule of the different
indexes to distinguish complex patterns.
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Figure 6.12: Data flow diagram for the methodological framework.

7 Mechanisms of generating beta oscillation

As discussed before, there are two different basic hypotheses on the origin of beta oscillations
in the motor cortex. One is that they are as a reflection of inputs coming from basal ganglia
and thalamic structures, the other is that they emerge within the neocortex as a consequence of
internal dynamics. In the following, we will establish a network model that includes both these
effects as the basis of beta oscillations. First, we introduce the network model and present the
theoretical analysis of the model. Then, we will tie it with the experimental evidence, showing
that our coupled network model is adequate for capturing the transient beta oscillation and
propagating waves characteristics of beta oscillation in the motor cortex.

7.1 Description of the FAT dynamic network model
Modeling groups have aimed to bring light to the origin and the organization mechanism of
the neural oscillatory activity for decades [171, 4]. The seminal work [62] introduced a simple
description of neural network dynamics with a set of coupled mean-field equations of excita-
tory and inhibitory neuron populations. Dynamical systems analysis methods have shown that
these equations exhibit multistability and limit cycles, where the frequency of the oscillation is
a monotonic function of the stimulus strength. The combination of mathematical tractability
and dynamical richness of rate models has promoted numerous studies of the synchronization

67



Chapter II. Beta oscillation in the motor cortex

of spatially-coupled neural networks in the oscillatory regime [172, 173, 174, 175, 135]. Studies
[126, 128, 129] have suggested that rhythms in the beta and gamma range arise from sparse
synchronization [127] between excitatory (E) and inhibitory (I) neuronal populations with re-
ciprocal interactions. The impact of structured connectivity and the influence of delay on sparse
synchronization of spiking networks have been further studied in [176, 177, 178].

Ostojic et al. [64] proposed an “adaptive” firing rate model that accurately describes the
dynamics of EIF spiking neurons. Building on this progress. Kulkarni et al. [66] more recently
developed a “fitted adaptive timescale” (FAT) rate model which matches well the dynamics of
EIF spiking neuron network. Kulkarni et al. [66] analyzed the dynamic regimes of the FAT
model as the function of the synaptic coupling strengths, and further studied the dynamics
of a chain of oscillatory E–I modules coupled by a distance-dependent long-range excitation.
Here, we generalize the FAT rate model by taking into account distant-dependent delays and
the kinetics of synaptic currents in a two-dimensional network. We also consider fluctuating and
correlated in time external inputs with both global and local spatial components. The model
successfully reproduces the transient beta oscillation and traveling waves of the recording data.
Below, we will describe this network model in detail.

Network structure
With the aim of comparing with experimental data including its spatial patterns, we consider a
two-dimensional network, similar to the multielectrode array used in the experiment as shown in
Fig.7.1. In our model, different modules are connected by long-range excitatory couplings (see
in Fig.7.1 (a)). The coupling strength takes a Gaussian form that decreases with the distance
between modules (Fig.7.1(c)). It is described by

C(x) = 1
Z

exp(−|x|2/l2), Z =
∑

x
exp(−|x|2/l2),∑

x
C(x) = 1, x = (x, y) (7.1)

where x = (x, y) stands for the position in the array.
In order to reduce the impact of the boundary effects, we take the outermost layers (grey,

fixed modules in Fig.7.1 (b)) to stay at a fixed value. The other modules (black, simulated
modules) are simulated as described by Eq.7.2. Below, only the center parts (10×10, blue) are
used for the analysis (Fig.7.1(b)).

We start by generalizing the FAT model used in the previous work [66], by considering two
features that have not been taken into account in Ref. [66], namely recurrent inhibition between
interneurons wII and distant-dependent delay. The dynamics of the E-I modules locates at
positions x of the two-dimensional square array are

τE(IE)dIE

dt
(x, t) = −IE(x, t) + Iext

E (x, t) + Isyn
EE (x, t) − Isyn

EI (x, t),

τI(II)dII

dt
(x, t) = −II(x, t) + Iext

I (x, t) + Isyn
IE (x, t) − Isyn

II (x, t). (7.2)
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Figure 7.1: Schematic structure of the simulation network. (a) Schematic description of
the network model with recurrent couplings between excitatory neurons and inhibitory neurons.
The modules are connected by the long-range excitatory couplings. The fluctuating external
inputs are separated into an identical global part (orange) on all modules and local parts (purple)
different from module to module. (b) Two-dimensional network (grey: fixed modules; black:
simulated modules; blue: modules are used for the analysis). (c) Coupling strength map of one
module with its neighbors (connectivity range l = 2).

The recurrent synaptic currents between excitatory and inhibitory neurons are described by

Isyn
AE (x, t) = wAE

∑
y

C(|x − y|)rE(y, t − D|x − y|),

Isyn
AI (x, t) = wAIrI(x, t), A ∈ {E, I}. (7.3)

In a spiking network, the stochastic component of the population depends on the number of
neurons in the network. In order to take into account this stochastic component, the firing rate
is described as one deterministic part depending on the mean current plus one stochastic term,

rA = Φ(IA) +
√

Φ(IA)/NAξ, A ∈ {E, I} (7.4)

where NE , NI are numbers of excitatory and inhibitory neurons in each module. Their relative
proportion is NE

NI
= 4; ξ is a Gaussian white noise which satisfies < ξ(t)ξ(t′) >= δ(t − t

′).
The fluctuations of the external inputs are described as stochastic Ornstein-Uhlenbeck (O-U)

processes, made up of local ξ(x) and global ξg parts ( see Fig.7.1(a)). The proportion between
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them is controlled by c,

Iext
A = Iext,0

A + σext
A η, σext

A = wext
A νext, A ∈ {E, I},

τext
dη

dt
(x, t) = −η(x, t) + √

τext[
√

1 − c ξ(x, t) +
√

c ξg(t)],

⟨ξ(x, t)ξ(x′, t′)⟩ = δ(t − t′)δx,x′ , ⟨ξg(t)ξg(t′)⟩ = δ(t − t′). (7.5)

wext
E , wext

I are the synaptic coupling strengths of the external inputs into excitatory neurons and
inhibitory neurons, respectively.

wext
E = wEE , wext

I = 2wIE (7.6)

νext is the amplitude of the external input fluctuations, τext is the correlation time scale of O-U
processes. The constant external inputs Iext,0

E , Iext,0
I are chosen to impose the steady firing rates

rs
E = 5Hz,rs

I = 10Hz, with

Iext,0
A = Is

A − wAErs
E + wAIrs

I , A ∈ {E, I}. (7.7)

7.2 Stability analysis of the FAT network model
Theoretical analysis is helpful for us to determine network states and oscillation frequencies.
Here, we first analyze the different dynamical regimes of the network model. Then we calculate
the power spectrum and correlation to help us determine the parameters that match well the
experimental data.

Steady state
The steady state of the deterministic network is chosen such that the excitatory and inhibitory
populations have the steady firing rates rs

E , rs
I . We consider first the limit when the number of

the neurons in a module N → ∞ to eliminate the intrinsic stochastic effect. The steady firing
rates are

rs
A = Φ(Is

A), A ∈ {E, I}. (7.8)

In this situation, the synaptic currents are also steady as the synaptic couplings are fixed and
the firing rates are steady,

Isyn
AB (x, t) = Isyn,s

AB = wABrs
B, A ∈ {E, I}, B ∈ {E, I}. (7.9)

The external inputs are constant with σext = 0 as described by Eq.7.7.
Bifurcation

The stability of the steady firing state can be assessed by imposing constant external currents
and by computing the dynamics of small perturbations around the steady state. We proceed
along similar lines to the analysis of stability in Chapter.I.
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First, we linearize Eq.7.2 around the steady state with

IA(x, t) = Is
A + δIA(x, t), A ∈ {E, I}. (7.10)

We get the linear equations,

τE(Is
E)dδIE

dt
(x, t) = −δIE(x, t) + δIsyn

EE (x, t) − δIsyn
EI (x, t),

τI(Is
I )dδII

dt
(x, t) = −δII(x, t) + δIsyn

IE (x, t) − δIsyn
II (x, t). (7.11)

Then we perform the transformation

δIA(x, t) = δĨA(q, σ) exp(σt + iq · x), A ∈ {E, I}. (7.12)

Substituting this expression into the linear equations to see how the perturbation evolves and
using a vector notation I = (IE , II) for the currents, we get the stability equation,

L̃EI(q, σ) · δI(q, σ) = 0 (7.13)

with the matrix

L̃EI(q, σ) =


1 + στE(Is

E) − αC(q, σ) wEIΦ′
I(Is

I )

−wIE Φ′
E(Is

E) C(q, σ) 1 + στI(Is
I ) + γ

 . (7.14)

The function C(q, σ) is the Fourier transform of the coupling function with the propagation
delay D taken into account,

C(q, σ) =
∑

x
exp(−iq · x − σ|x|D)C(|x|) (7.15)

The determinant of the matrix L̃EI(q, σ) is given by W (q, σ),

W (q, σ) = [1 + στE(Is
E) − αC(q, σ)] [1 + στI(Is

I ) + γ] + β C(q, σ) = 0 (7.16)

with

α = wEEΦ′
E(Is

E),
β = wIEwEIΦ′

E(Is
E)Φ′

I(Is
I ),

γ = wIIΦ′
I(Is

I ). (7.17)

When σ = 0, the growth rate vanishes. Which signals the real instability line. It is straight-
forward to show from Eq.7.16 that it occurs for,

β = (α − 1
C(q, 0))(1 + γ), and β = (α − 1)(1 + γ) when q = 0. (7.18)
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The Hopf bifurcation line corresponds to the parameter for which, σ = iω, when the growth
rate is purely imaginary. As above, it can be obtained in a parametric form, with α and β as
functions of the oscillation frequency ω and the recurrent inhibition γ by separating the real and
imaginary parts of W (q, σ) (Eq.7.16). By solving the resulting linear equations for α and β, we
get

α = τI + (1 + γ)τE

τI

Re[C(q, iω)]
|C(q, iω)|2 + ω2τEτI − (1 + γ)

ωτI

Im[C(q, iω)]
|C(q, iω)|2 , (7.19)

β = α(1 + γ) + [ω2τEτI − (1 + γ)]Re[C(q, iω)]
|C(q, iω)|2 − ω[(1 + γ)τE + τI ] Im[C(q, iω)]

|C(q, iω)|2 .

Figure 7.2: The stability phase diagram of the network model with synaptic coupling
strengths α and β. The gray line is the “real instability” line, the colorful lines are the Hopf
bifurcation lines for different D (D = 0: sky blue line, D = 1.3ms: dark blue line), the color
corresponding to the oscillation frequency.

The stability diagram of the network model is shown in Fig.7.2. The colored lines are the
bifurcation lines for different delay D. The oscillation frequency at each point is given by the
vertical color bar on the right. If we want to keep the oscillation frequency around the beta
range, the parameters have to be chosen near a narrow “tip area” (the area near the intersection
of the Hopf line and real instability line). This appears as a biologically unrealistic “fine tuning”
of parameters. In order to avoid it, we recall the works of [128, 176], which show that the kinetics
of the synaptic currents play an important role in determining its oscillation frequency. Thus,
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we take into account the kinetic kernels for the synaptic currents and replace Eq.7.3 by

Isyn
AE (x, t) = wAE

∫ t

duSE(t − u)
∑

y
C(|x − y|)rE(y, u − D|x − y|)),

Isyn
AI (x, t) = wAI

∫ t

duSI(t − u)rI(x, u). (7.20)

SE , SI are the kinetic kernels of the synaptic currents with the normalization
∫

dt SA(t) = 1, A ∈
{E, I}.

SA(t) = θ(t − τA
l )

τA
d − τA

r

{exp[−(t − τA
l )/τA

d ] − exp[−(t − τA
l )/τA

r ]}, A ∈ {E, I} (7.21)

where τE
r , τ I

r , τE
d , τ I

d , τE
l , τ I

l are the rise times, decay times and latencies of excitatory and
inhibitory neurons for the synaptic currents. θ(t) denotes the Heaviside function, θ(t) = 1 if
t > 0 and 0 otherwise.

For the convenience of the simulation, we introduce supplementary variables JEE , JEI , JIE , JII .
Then the Eq.7.20 can be rewritten as

τE
d

dIsyn
AE

dt
(x, t) = −Isyn

AE (x, t) + JAE(x, t),

τE
r

dJAE

dt
(x, t) = −JAE(x, t) + wAE

∑
y

C(x − y)rE(y, t − τE
l − D|x − y|)),

τ I
d

dIsyn
AI

dt
(x, t) = −Isyn

AI (x, t) + JAI(x, t),

τ I
r

dJAI

dt
(x, t) = −JAI(x, t) + wAIrI(x, t − τ I

l ) A ∈ {E, I}. (7.22)

This also allows one to easily obtain the expressions of the synaptic currents in terms of the
module activities using Eq.7.13,

δ̃I
syn
BA(q, σ) = wBAC(q, σ)S̃A(σ) δ̃IA(q, σ), A ∈ {E, I}, B ∈ {E, I} (7.23)

where the functions S̃E(σ), S̃I(σ) are the Laplace transforms of SE(t) and SI(t) (Eq.7.21) with

S̃A(σ) = exp(−στA
l )

(1 + στA
r )(1 + στA

d )
, A ∈ {E, I}. (7.24)

In the presence of the synaptic currents with finite kinetics, the matrix (Eq.7.14) is replaced
by

L̃EI(q, σ) =


1 + στE(Is

E) − α C(q, σ)S̃E(σ) wEI Φ′
I(Is

I )S̃I(σ)

−wIE Φ′
E(Is

E) C(q, σ)S̃E(σ) 1 + στI(Is
I ) + γS̃I(σ)

 . (7.25)
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The determinant of the matrix L̃EI(q, σ) is

W (q, σ) =
[
1 − α Cl(q, σ) T̃E(σ)

] [
1 + γ T̃I(σ))

]
+ β Cl(q, σ) T̃E(σ)T̃I(σ) = 0 (7.26)

where α, β, γ are given in Eq.7.17, and the notation T̃A(σ) is described by

T̃A(σ) = S̃A(σ)
1 + τA(Is

A)σ , A ∈ {E, I}. (7.27)

Following our previous calculation, we set σ = iω in Eq.7.26. Separating the real and
imaginary parts and solving for the α and β, the Hopf bifurcation line is obtained in parametric
form,

α =
Im
{

C(q, iω)
[
T̃I(iω)T̃E(iω) + γ|T̃I(iω)|2T̃E(iω)

]}
|C(q, iω)|2 |T̃E(iω)|2 Im[T̃I(iω)]

,

β =
Im
[
C(q, iω)T̃E(iω)

]
|1 + γT̃I(iω)|2

|C(q, iω)|2 |T̃E(iω)|2 Im[T̃I(iω)]
. (7.28)

Figure 7.3: The dynamic of the network model. (a) The stability diagram of the network
model with functions of α and β, the green area is the oscillating network regime, the blue area
is the steady network regime, the colorful lines are the Hopf bifurcation lines for different D
(D = 0: real line, D = 1.3 ms: dotted line), the color corresponds to the oscillation frequency.
(b) show the traces of the rE and rI for the steady network (SN) and the oscillating network
(ON) in (a). (c) Firing rates are plotted as rE VS rI . Parameters are: NE , NI → ∞, c = 1.0,
the other parameters correspond to SN and ON are given in Table.8.1.

When the kinetics of the synaptic currents are considered in our network model, the beta
frequency is no longer limited to the “tip area” (see Fig.7.2 and Fig.7.3(a)). The colored lines
are the bifurcation lines for different delay D, and the corresponding color is the oscillation
frequency. It is obvious that the delay slows down the oscillation (D = 1.3ms: the solid colored
line, D = 0ms: the dotted colored line). The theoretical analysis helps us in selecting appropriate
parameters for the network to exhibit beta range oscillations. The evolution traces of rE and
rI for the steady network (SN, real line) and the oscillating network (OS, star line) are shown
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in Fig.7.3(b). The SN returns to fixed firing rates after a few oscillation cycles while the ON
exhibits regular oscillations. A different representation is shown in Fig.7.3(c) by plotting rE vs
rI ( SN: blue, ON: green).

7.3 Theoretical analysis of power spectrum and correlation
The stochastic effects in the FAT network model have two sources as previously discussed: one
comes from the fluctuation of the neuron population and the other one from fluctuating external
inputs. We consider these stochastic effects by linearizing Eq.7.2 around the steady state and
solving it in Fourier space. We define the Fourier transform

δIA(x, t) =
∫ +π

−π

∫ +π

−π

dqx

2π

dqy

2π

∫ +∞

−∞

dω

2π
δ̃IA(q, ω) exp[i(q · x + ωt)], A ∈ {E, I}. (7.29)

Then we obtain

L̃EI(q, iω) · δ̃I(q, iω) = F(q, iω). (7.30)

The matrix L̃EI(q, iω) is given by Eq.7.25. The stochastic forcing term FA(q, iω) includes the
two kinds of stochastic effects. It reads,

FA(q, iω) = σext
A η̃(q, ω)+ (7.31)

wAEC(q, iω)S̃E(iω)
√

rs
E

NE
ξ̃E(q, ω) − wAI S̃I(iω)

√
rs

I

NI
ξ̃I(q, ω), A ∈ {E, I}.

Solution of the linear system (Eq.7.30) provides the expressions of the Fourier components of
the currents. For the excitatory current, one obtains

δ̃IE(q, ω) = 1
(1 + iωτE)

VE(q, iω)
W (q, iω) (7.32)

with W (q, iω) given by Eq.7.26, and VE(q, iω) by the expression

VE(q, iω) = FE(q, iω)
[
1 + γT̃I(iω)

]
− FI(q, iω)wEIΦ′

I T̃I(iω). (7.33)

The fluctuating external inputs are separated into a global part ξg and a local part ξ(x). So the
Fourier components of the external inputs are

η̃(q, ω) =
√

τext

1 + iωτext

[√
1 − c ξ̃(q, ω) +

√
c(2π)2δ2(q)ξ̃g(ω)

]
(7.34)

with

⟨ξ̃(q, ω)ξ̃∗(q′, ω′)⟩ = (2π)3δ(ω − ω′)δ2(q − q′),
⟨ξ̃g(ω)ξ̃∗

g(ω′)⟩ = 2πδ(ω − ω′). (7.35)
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For the finite-size noise of the excitatory and the inhibitory populations, one has similarly,

⟨ξ̃E(q, ω)ξ̃∗
E(q′, ω′)⟩ = ⟨ξ̃I(q, ω)ξ̃∗

I (q′, ω′)⟩ = (2π)3δ(ω − ω′)δ2(q − q′). (7.36)

The current-current correlation function is obtained by averaging the product of the currents
(Eq.7.32) over the noises,

⟨δ̃IE(q, ω)δ̃I
∗
E(q′, ω′)⟩ = 2πδ(ω − ω′){(2π)2δ2(q − q′)SN

EE(q, ω) (7.37)
+ [(1 − c)(2π)2δ2(q − q′) + c(2π)4δ2(q)δ2(q′)]Sext

EE(q, ω)}.

Sext
EE(q, ω) is related to the external inputs,

Sext
EE(q, ω) =

τext

∣∣∣σext
E + (γσext

E − σext
I wEIΦ′

I)T̃I(iω)
∣∣∣2

[1 + (ωτext)2][1 + (ωτE)2]|W (q, iω)|2 . (7.38)

SN
EE(q, ω) describes the effect of finite-size noise,

SN
EE(q, ω) = 1

|W (q, iω)|2

{
rs

E

NE
w2

EE

∣∣∣∣1 + (γ − β

α
)T̃I(iω)

∣∣∣∣2 ∣∣∣C(q, iω)T̃E(iω)
∣∣∣2

+ rs
I

NI

w2
EI

∣∣∣S̃I(iω)
∣∣∣2

1 + (ωτE)2

 . (7.39)

They provide the expression of the current-current correlation in real space,

⟨δ̃IE(x, t)δ̃IE(x′, t′)⟩ =
∫ +∞

−∞

dω

2π
exp[iω(t − t′)]

{
c Sext

EE(0, ω) (7.40)

+
∫ +π

−π

∫ +π

−π

dqx

2π

dqy

2π

[
(1 − c)Sext

EE(q, ω) + SN
EE(q, ω)

]
exp[iq · (x − x′)]

}
.

The power spectrum is

S(ω) = cSext
EE(0, ω) +

∫ +π

−π

∫ +π

−π

dqx

2π

dqy

2π
[(1 − c)Sext

EE(q, ω) + SN
EE(q, ω)]. (7.41)

As illustrated in Fig.7.3, without the stochastic effects, the network states either are at a
steady state (SN) after a few oscillations or in an oscillating state (ON) with regular oscillations.
None of these can account for the beta bump in the power spectrum seen in the experimental
data. Fluctuating external inputs change the stability of the steady state as shown in Fig.7.4(a),
which illustrates the stability diagram of the network model as the functions of Iext

E and Iext
I

(the synaptic couplings are corresponding to SN in Table.8.1). If we choose the steady network
(SN, blue point) as a basic state, the time-varying external inputs lead the SN to move along
the black line and enter the oscillation area from time to time, causing the firing rate to wax and
wane as shown in the graph of Fig.7.4(c). The corresponding theoretical and simulated power
spectrum are shown in Fig.7.4(b). The inclusion of fluctuating external inputs creates a bump
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7. Mechanisms of generating beta oscillation

Figure 7.4: The network model SN with external inputs. (a) The stability diagram as
functions of the external currents Iext

E , Iext
I . (b) The theoretical and simulated power spectrum

of the network model with external inputs (simulation data in (c)). (c) The time traces of the
firing rates rE , rI . (d) Same data as (c) but plotted as rI Vs rE . Parameters: N → ∞, the other
parameters are as SN in Table.8.1.
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in the beta range on the power spectrum, which is consistent with experiment recordings. This
encouraged us to compare other characteristics of the simulated network to experimental data.

7.4 The analysis of the parameters
Can this model account for other observed phenomena in the experimental data, such as sporadic
beta bursts and complex waves? Where do these characteristics originate from? Here, we analyze
the network model step by step based on these characteristics (frequency, correlation, beta burst,
and waves) using both theoretical analysis and numerical simulations to see how the dynamics
of the network model depend on different choices of the parameters.

In our model, the intrinsic finite-size noise is controlled by the number of neurons N in each
module; the external inputs are defined by the correlation time τext, the proportion between
global and local noise c and the amplitude νext. These parameters act together and by choosing
them in an appropriate way, we will be able to account for beta oscillations in the motor cortex.

The theoretical expression for the power spectrum allows us to easily find the appropriate
frequency range as a function of the essential parameters α (the strength of recurrent excitation),
β (the strength of feedback inhibition through the disynaptic E-I loop) and γ (the strength of
autoinhibition of interneurons) with different delay D and excitatory connectivity parameter
l. We fixed D = 1.3ms which corresponds to the speed of propagation along unmyelinated
horizontal axons and l = 2 which corresponds to the typical range of excitatory connections.
For convenience, we also fixed γ = 0.87 and just change α, β and other variables related to
stochastic effects. We choose two points as base states for the network, one in the steady state
(SN) and one in an oscillating state (ON) as shown in Fig.7.3 and investigate how the fluctuating
external inputs affect the dynamic of the network model. For SN, we can also get the power
spectrum from the analytical formula Eq.7.41. In the following, we show both the theoretical
and simulated power spectrum for SN and only the simulated one for ON.

Fluctuating stochastic effects on frequency
We start by analyzing how the fluctuations in the model influence the spectral properties.

• Finite-size noise. First, we just assume that the stochastic effects only come from the
number of neurons N without external inputs. Fig.7.5 depicts how the power spectrum
changes with different N (2 × 103 − 2 × 105) for SN and ON. For SN (Fig.7.5(a-b)), finite-
size noise cannot account for the widened beta bump and also does not account for the
power at low frequencies, even when the noise is large (N ∼ 2 × 103); for ON (Fig.7.5(c-
d)), the finite-size noise is too small to strongly perturb its original regular oscillation,
so the power spectrum is too spiky when compared with the experimental ones. It also
displays an obvious second bump around 50Hz which is not seen in the experimental
data. So intrinsic stochastic effects cannot account for the power spectrum observed in
experimental data. This leads us to further consider the external inputs.
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Figure 7.5: Intrinsic finite-size effect on power spectrum for SN (a-b) and ON (c-d).
(a) The real lines are the theoretical results, the start lines are the simulation results for SN with
N = 2×103, blue; N = 2×104, purple; N = 2×105, green. (b) Same lines as (a) but normalized
by N . (c, d) The simulated power spectrum for ON. The other parameters are corresponding
to SN and ON in Table.8.1.
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Figure 7.6: How the external inputs (controlled by νext, τext, c) affect the power spec-
trum for SN (a-f) and ON (g-l). (a-b, g-h) The influence of the external inputs amplitude
νext. (c-d, i-j) The influence of the external inputs correlation time τext. (e-f, k-l) The influence
of the external inputs fraction c. The other parameters are corresponding to SN and ON in
Table.8.1.

• Fluctuating external inputs. The external inputs are characterized by their amplitude
νext, their correlation time τext and the fraction c of global inputs. Fig.7.6 illustrates
how they influence the power spectrum. The first row (Fig.7.6(a-b, g-h)) show how the
amplitude of the external inputs νext shapes the power spectrum. Fig.7.6(b, h) show the
power spectrum as in Fig.7.6(a, g) but normalized by ν2

ext. For SN (Fig.7.6(a-b)), the
power spectrum becomes wider as the amplitude νext increases. An intermediate level of
noise is optimal: too little noise (νext = 0.2Hz, blue line) would not be sufficient to create
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Chapter II. Beta oscillation in the motor cortex

a bump in the power spectrum, whereas too much noise (νext = 3Hz, green line) would
cause anharmonicity of beta oscillations (with a second bump around 50 Hz). In addition,
significant power appears at low frequencies when νext is suitably chosen (bigger than 0.2
Hz); for ON, the effect is opposite as compared to SN, a large νext (νext = 3Hz, green
line) destroys the original spiky power spectrum and makes it more similar to what is seen
in the experimental data. The second row (Fig.7.6(c-d, i-j)) and third row (Fig.7.6(e-f,
k-l)) show how the power spectrum depends on the external inputs correlation time τext

and on the fraction c with different fixed νext, respectively. From the figures, we can see
that τext and c have a similar effect on SN and ON as νext does.

In summary, a suitable power spectrum based on the essential parameters α, β, γ, D, l is
primarily determined by the external inputs (amplitude νext, correlation time τext and fraction c).
The intrinsic stochasticity coming from the number of neurons is insufficient to cause transient
beta activity. We should moderately adjust the parameters related to external inputs to make
the simulation currents comparable with recording signals.

The effect of the fraction c between the global part and the local part of the
external inputs on the correlation between modules
As can be seen in Fig.8.5, the correlation between different modules decreases with distance,
but there is still some degree of correlation (∼ 0.5) at a long distance. Many factors influence
the correlation in our model depending on its state. The correlation for SN is primarily affected
by parameter c, which controls the fraction between the global noise (c) that makes the network
synchronized and the local noise (1 − c) that has an inverse effect. Fig.7.7 (a-f) show the phase
diagram of the evolution of the IEs for different c (0.1, 0.4, 0.7). The network becomes more and
more synchronized as c increases. The best fit is obtained with recordings of monkey L when c

is about 0.4. For ON (Fig.7.7 (g-l)), the network starts with highly synchronized oscillations. If
the external inputs amplitude is small (ν = 0.2Hz, Fig.7.7 (g-i)), the fraction c has a negligible
effect on the correlation. When the external inputs amplitude is large enough (ν = 1.0Hz,
Fig.7.7 (j-l)), the situation is similar to SN.
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Figure 7.7: The correlation with c for SN (a-f)) and ON (g-l). (a, d, g, j) The phase
diagram of the current trace for different c (0.1, 0.4, 0.7). (b, e, h, k) The autocorrelation. (c,
f, i, l) The correlation with distance. The other parameters are corresponding to SN and ON in
Table.8.1.

The influence of the external inputs on beta bursts
As previously stated, the fluctuating effects will change the stability of the network and cause
occasional beta bursts. In our model, the beta burst duration mainly depends on the correlation
time τext of the external inputs.

Fig.7.8(a-b, f-g) show the spectra for different τext for SN and ON. By comparing figures
Fig.7.8(a) and Fig.7.8(b) (or Fig.7.8(f) and Fig.7.8(g) for ON), one sees that a larger τext causes
the beta bursts to continue for a longer time. The relationship between τext and the beta burst
duration is shown in Fig.7.8(c, h). They are seen to be positively correlated. Analysis of the
experimental data shows that during the movement preparatory period, the burst duration is
less than 100ms. So this leads us to keep τext smaller than 50ms in our model. Fig.7.8 (d, i), (e,
j) show the distributions of the beta burst amplitudes and durations for different νext. For SN
and ON, νext has little effect on the shape of the beta burst duration distribution, while it has a
significant effect on the amplitude distribution for ON. Only large νext can make the amplitude
distribution similar to the experimental data (Fig8.3).
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Figure 7.8: External effect on the beta burst for SN (a-e) and ON (f-j). The spectra for
different τext( (a, f) τext = 25ms, (b, g) τext = 200ms). (c, h) The violin plot of the relationship
between the τext and the beta burst duration. (d, i), (e, j) The distribution of the amplitude
and beta burst duration for different νext. The other parameters are corresponding to SN and
ON in Table.8.1.

In conclusion, the duration of beta burst mainly depends on the correlation time of the
external inputs τext. τext should be less than 50ms to avoid the beta burst duration being too
long.

The influence of the external inputs amplitude νext on the waveform
The pioneering study [84] has shown that LFP beta oscillations in the motor cortex travel as
planar waves, propagating at speeds around 30cm/s. Later, several studies have shown that
these signals also exhibit more complex patterns as radial waves, or spiral waves [86, 85]. In our
model, we have found that traveling waves can be observed if we choose the network parameters
near the Hopf bifurcation line. The external input amplitude will influence the proportion of
planar waves. Fig.7.9 shows different wave type proportions and the distribution of planar wave
speeds as one changes the external inputs amplitude νext. For SN (see Fig.7.9(a)), the original
network is in a relatively disordered state. As one increases the external input amplitude, it first
increases the chance to make the network enter the oscillating phase and has a synchronizing
effect. This increases the proportion of planar waves and also their speeds. While, above a
certain amplitude (∼ 2Hz), large external inputs have a desynchronizing effect. This makes
the network more desynchronized and thus the planar wave speeds also decrease. For ON (see
Fig.7.9(b)), the original network is in a relatively synchronized oscillating state. Increasing the
stochastic effects has no obvious influence on the proportion of planar waves but it acts as a
desynchronizing effect that slows down the wave speeds.
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Figure 7.9: The influence of the external inputs amplitude νext on the wave kinds
and the planar speed for SN (a) and ON (b). Pla.(green), Syn.(blue), Rad.(orange),
Ran.(purple) stand for planar wave, synchronized, radial wave, random, respectively. The point
in the speed violin is the mean speed corresponding to the value shown, and the arrow is the
standard deviation of the speed. The other parameters are corresponding to SN and ON in
Table.8.1.

The influence of the excitatory connection range l on the wave directions
Studies have shown that the direction of planar waves at different location in the motor cortex
has an orientational preference [84] which may reflect the underlying structure of the cortex. In
the previous results, we used the same l for both axes in our network architecture and found
no orientational preference in the direction, see Fig.7.10(a-c). To investigate the origin of this
phenomenon, we choose different l for the range of excitatory connecting along the x-axis and
y-axis (as shown in Fig.7.10(d)). The proportion of the wave direction is then found to have an
obvious trend that is related to the anisotropy in l. We set lx = 1.0 and ly = 2.0, which indicates
that connections have a longer range along the y-axis. Oscillations tend to be more synchronized
along y-axis, and there are more planar waves propagating along the x-axis (Fig.7.10(f)). As
compared with the isotropic case, the anisotropy of the connectivity strength has little effect on
the proportion of wave types, but it dramatically influences the direction of planar waves.
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Figure 7.10: Influence of connectivity anisotropy on planar wave propagation direc-
tion. (a-c) Isotropic connectivity, (d-f) Anisotropic connectivity, (a, d) An example of the
connectivity strength of module in position (7,6). (b, e) The wave kinds pie. (c, f) Distribution
of propagation directions of planar waves. The other parameters are corresponding to SN and
ON in Table.8.1.
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8 Comparison with experimental data and simulations of the

FAT network model
How do the simulation results compare with experimental data? We choose a network model in
which each module has recurrent interaction between its excitatory and inhibitory populations.
These local modules are connected by distance-dependent long range excitatory couplings. In
addition, we consider external inputs which have two different components, one is local and
different from module to module, and another one is global and the same for all modules.
Through the above analysis, we know how every parameter shapes the dynamics of the model.
To obtain simulation results that are comparable to recording data, first, we need to choose
suitable synaptic coupling strengths α, β, γ to make the network exhibits beta oscillations when
receiving fluctuating inputs. Then, we need to adjust the correlation time of the external inputs
τext to fit the beta burst durations. The fraction of global external inputs c mainly controls
the correlation, and the amplitude of the external inputs νext has a significant influence on the
planar waves. These factors do not work alone but are linked together to account for the beta
oscillations in our network model. Here, we choose two different sets of parameters (SN and
SN’, the corresponding parameters are given in Table.8.1) to compare with the two sets of data,
SN corresponds to monkey L, and SN’ corresponds to monkey N. Below, we consider the local
excitatory currents as a proxy for the LFP in the recordings. Thus, the analysis results compare
the LFPs for the monkey data to the excitatory currents IE in the simulations.

8.1 Power spectrum
The average power spectrums of the LFPs during CUE-OFF to GO-ON for monkey L (purple)
and monkey N (red) are shown in Fig.8.1(a) and Fig.8.2(a). The power spectrum is obtained
by averaging across all electrodes (96 active electrodes) and all trials (135 trials for monkey N,
142 trials for monkey L). For both monkeys, an obvious bump between 13-30 Hz is seen in the
power spectrum, while the peak frequency in the power spectrum is a little different, around
23Hz, 20Hz for monkey L and monkey N, respectively.

The power spectra which are obtained from the simulation results of the network model SN
and SN’ are shown in Fig.8.1 (b) and Fig.8.1 (b).
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Figure 8.1: Comparison of the power spectrum between monkey L (a) and the simu-
lation of the network model SN (b). The insert figure is the frequency distribution where
the peak power spectrum occurs.

Figure 8.2: Comparison of the power spectrum between monkey N (a) and the sim-
ulation of the network model SN′ (b).
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8.2 The statistics of the beta bursts
The statistical properties of the beta bursts for monkey L and the network model SN are showed
in Fig.8.3. The average beta burst duration of monkey L is relatively short, around 60 ms (see
in Fig.8.3(b)), while the simulated beta burst durations are a little longer, with an average
value around 75 ms (see in Fig.8.3(e)). Fig.8.3(a, d) are the amplitude distributions of the
analytical signals for monkey L and SN, the dark color corresponds to the beta burst amplitudes.
The relationship between the beta burst amplitudes and the beta burst durations is shown in
Fig.8.3(c, f) for monkey L and SN, respectively. The color bar corresponds to the density of the
points. In general, the beta burst amplitudes and durations are positively correlated.

Fig.8.4 is the same figure as Fig.8.3 but for the comparison between monkey N and the
network model SN’.

Figure 8.3: Comparison of the beta bursts between monkey L (a-c) and the simulation
of the network model SN (d-f). (a, d) The distribution of the amplitudes. (b, e) The
distribution of the beta burst durations. (c, f) Relationship between the beta burst amplitudes
and the beta burst durations.
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Figure 8.4: Comparison of the beta bursts between monkey N (a-c) and the simulation
of the network model SN′(d-f). (a, d) The distribution of the beta burst amplitudes. (b,
e) The distribution of the beta burst durations. (c, f) Relationship between the beta burst
amplitudes and the beta burst durations.
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8.3 Correlation
The comparison of the LFP correlations for monkey L and the simulation network SN is shown
in Fig.8.5. Fig.8.5(a, d) are the correlation maps with distance and time difference. Fig.8.5(b,
e) and Fig.8.5(c, f) show the autocorrelation and the correlation changes with distance. The tail
of the correlation at long distance has a limiting value around 0.5 for monkey L, which means
that the distant electrodes are relatively synchronized.

The comparison of correlation between monkey N and the network model SN’ is shown in
Fig.8.6.

Figure 8.5: Comparison of the correlation between monkey L (a-c) and the simulation
of the network model SN (d-f). (a, d) Correlation phase diagram as the function of the
time difference and distance difference. (b, e) The autocorrelation. (c, f) The correlation with
distance.
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Figure 8.6: Comparison of the correlation between monkey N (a-c) and the simulation
of the network model SN′(d-f). (a, d) Phase diagram of the correlation as the function of
the time difference and distance difference. (b, e) The autocorrelation. (c, f) The correlation
with distance.
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8.4 Waves
Fig.8.7 depicts the statistics of the different waves. Fig.8.7 (a-d) are the phase maps and the
distributions of the phase gradients for a planar wave and a radial wave for monkey L. The
simulated waves of the model SN are shown in Fig.8.7(g-j). Fig.8.7(e, k) are the distributions
of the planar wave speeds for monkey L and the network model SN. Both average speeds are
around 30 cm/s. Fig.8.7 (f, l) are the proportions of the different waves. Complex waves are seen
as in experimental data, while the proportions of the different wave types are slightly different.

The comparison of the waves for monkey N and the network model SN’ is shown in Fig.8.8.
One can also notice that the proportions of the different wave types vary between monkey N and
monkey L. Compared with monkey L, monkey N has less synchronized waves (56.4% in monkey
L while just 19.2% in monkey N), thus the planar wave speeds are slower.

Figure 8.7: Comparison of the wave between monkey L (a-f) and the simulation of
the network model SN (g-i). (a-b, g-h) Phase and the distribution of phase gradient of the
planar wave (monkey L: LFPs, SN: excitatory currents IE . (c-d, i-j) Same as (a-b, g-h) but
for radial wave. (e, k) The distribution of the planar wave speed. (f, l) The proportion of the
different kinds of waves.
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Figure 8.8: Comparison of the wave between monkey N (a-f) and the simulation of
the network model SN′ (g-i). (a-b, g-h) The phase and the distribution of phase gradient
of the planar wave. (c-d, i-j) Same as (a-b, g-h) but for radial wave. (e, k) The distribution of
the planar wave speed. (f, l) Proportion of the different kinds of waves.
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8. Comparison with experimental data and simulations of the FAT network model

Parameters

Symbol Value Unit Definition

SN SN’ ON SN0

rs
E , rs

I 5,10 Hz Steady firing rates

Is
E , Is

I -6.28,-3.62 mV Currents at rs
E , rs

I

τ s
E , τ s

I 8.74,7.14 ms Adaptive membrane time constant at rs
E , rs

I

Φ′
E(Is

E), Φ′
I(Is

I ) 1.46,2.30 Firing rate gains at rs
E , rs

I

τE
r , τ I

r 0.70 ms Rise time of synaptic currents

τE
d , τ I

d 3.50 ms Decay time of synaptic currents

τE
l , τ I

l 0.50 ms Latency of synaptic currents

l 2 Excitatory connectivity range

NE , NI 16000, 4000 Neuron numbers in each E-I module

τext 25 ms Correlation time of external input fluctuations

νext 2 Hz External input amplitude fluctuations

Iext,0
E , Iext,0

I 9.72,0.08 6.12,0.08 13.72,0.08 5.72,0.08 mV External currents

wext
E 0.96 1.12 0.96 1.20 mV·s External input onto excitatory neurons synaptic coupling strength

wext
I 4.16 3.60 4.96 3.60 mV·s External input onto inhibitory neurons synaptic coupling strength

wII 0.87 0.87 0.87 0.87 mV·s Recurrent synaptic coupling strength (I to I)

wIE 1 1 1 1 mV·s Recurrent synaptic coupling strength (E to I)

wEE 0.96 1.12 0.96 1.20 mV·s Recurrent synaptic coupling strength (E to E)

wEI 2.08 1.80 2.48 1.80 mV·s Recurrent synaptic coupling strength (I to E)

D 1.30 1.30 1.30 0 ms Propagation delay between to nearest E-I modules

c 0.40 0.30 0.40 0.30 Proportion of global external inputs

Table 8.1: FAT network model parameter table.

Numerical methods
The network architecture is shown in Fig.7.1. The mathematical model is FAT network model.
All equations are computed using a first-order Euler-Maruyama integration method programmed
in C, with a time step dt = 0.01ms. Python programs were used for data analysis and to draw
the figures. For model SN, ON, SN′, SN0, the distributions and averages in all figures were
obtained by performing 20 independent network simulations of 10 s of simulated time each.
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CHAPTER III

Partial synchronization in the human
cerebral cortex network
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9 Introduction

9.1 Brain synchronization with cognitive functions
Neurons do not function alone, they are embedded in networks of functionally specialized brain
regions, in which they influence each other through synaptic connections. One mechanism that
is likely to be deeply involved in the communication within them is neural synchronization
[179]. It refers to the oscillations of neuron activity within a specific band of frequencies that
can become transiently phase-locked with that of another group of neurons between different
brain regions, as it has been seen with assistance from electrophysiological recordings, such as
electroencephalography(EEG), magnetoencephalography (MEG), electrocorticography (ECoG),
and local field potentials(LFPs) [180]. Such transient phase locking can play a number of
roles, including facilitating communication of information between the neural groups and even
performing computational functions. As we introduced in Chapter.II, different rhythms have
been shown to be associated with a variety of cognitive functions, such as perception, memory,
attention, and consciousness. In addition, many cognitive dysfunctions such as schizophrenia,
autism, anxiety and obsessive-compulsive disorders are related to neural synchronization [181].

Several synchronization regimes exist for intra- and inter-regional coordination of neural ac-
tivity during cognition. One of the most-studied regimes is phase synchronization [179, 182].
It refers to the processes in which neurons oscillate with consistent relative phase angles at
a common frequency. It is ubiquitously observed between spatially segregated cortical ar-
eas and it is thought to facilitate the integration of information across various regions in
the brain including frontoparietal [183, 184, 185], frontotemporal [186, 187] and thalamocor-
tical areas [188]. It is thought to serve various cognitive processes such as working memory
[189, 183, 184, 185, 187, 186], memory retrieval [190], and selective attention [188]. Another
dominant synchronization regime is cross-frequency phase-amplitude [191], which represents a
process in which the amplitude of a high-frequency rhythm is modulated by the phase of a low-
frequency rhythm. It is observed in or between various brain structures (temporal cortex, basal
ganglia, medial-lateral prefrontal and frontoparietal areas). It is linked to numerous cognitive
processes (selective attention, working memory, memory sequencing, abstract goal maintenance,
and reward processing). For an overview of studies on synchronization, we refer the reader to
Refs. [179, 181].

The cognitive processes do not involve the entire brain but rather arise from integrated
processes of distributed but interconnected brain areas. So the association between interacting
neurons and the neural network topologies is widely investigated [192, 193]. Although the ex-
treme complexity of the brain (which consists of around 1011 neurons connected by around 1014

synapses) is daunting, efforts by a combination of computational neuroscience and experimental
technology have made impressive progress. One can extract the network from electrophysio-
logical recordings. Then, one can consider neural dynamics on the network nodes to represent
cognitive activities. After that, one compare the network outputs with the measured data of
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cognitive tasks to fit the model. Finally, one can use network dynamics to predict cognition and
behaviors.

Brain networks can be derived from anatomical or physiological observations, resulting in
structural and functional networks, respectively as we introduced in Chapter.I. The structural
connectivity consist of anatomical connections linking a set of neural elements. It can be obtained
by diffusion spectrum imaging (DSI). The structural connectivity is undirected and thought to
be relatively stable. The brain network we introduced in Chapter.I is a structural network and
exhibits various structural characteristics.

The node dynamics can be described by neuronal models at multiscales, from single neuronal
models like the HH model, the FHN model, the LIF model to network models like firing rate
model as we introduced in Chapter.I.

The researches have focused on structure-function relationships of brain networks, leading to
a better understanding of how structural networks give rise to rich and flexible neural dynamics.
In the following, we will introduce several partial synchronization mechanisms which are thought
to be related to cognition based on the brain network.

9.2 Partial synchronization
Different from traditional synchronization, neuronal synchronization in brain networks involves
only a subset of its total neurons due to the extreme complexity of the brain networks. It is
in fact a partial synchronization [194]. Studies about partial synchronization can be classified
into three classes which are chimera states, remote synchronization and cluster synchronization
[195, 196]. They are depicted in Fig.9.1.

Figure 9.1: Schematic illustration of partial synchronization. The colors of nodes rep-
resent their dynamics. (a) Chimera state, nodes are divided into two parts, a coherent part
(orange nodes in shadow area) and an incoherent part (nodes with different colors). (b) Remote
synchronization, two orange nodes are synchronized while they are not directly connected. (c)
Cluster synchronization, there are two clusters, the orange one and the blue one, where nodes
in the same cluster are synchronized.

Chimera states (CS)
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In Greek mythology, the chimera refers to a hybrid monster, which has the head of a lion, the
body of a goat, and a tail of a dragon. Abrams and Strogatz [197] named chimera state the state
of mixed synchronous and asynchronous behavior in a network of identical coupled oscillators.
This is schematically represented in Fig.9.1(a) where the orange nodes are synchronized while
the nodes with different colors are not. It was originally found by Kuramoto and Battogtokh
[198]. Since then, an elaborate investigation of the existence, stability, and robustness of CS in a
large variety of different systems are studied, such as chaotic systems [199, 200], high-dimensional
systems [201, 202, 203, 204, 205], experimental systems [206, 207, 208, 209] and neural systems
[210, 211, 212, 213]. A variety of coupling topologies have also been concerned when studying
CS, such as globally coupled networks [209, 214, 215, 216, 217, 218], locally coupled networks
[219, 220, 221, 222], complex networks [223, 224], and real brain networks [225, 226]. Recently,
the involvement of the spatiotemporal dynamics has facilitated the new classifications of CS such
as traveling chimera [227], chimera death [228] and multichimera [229]. There are many natural
phenomena that show similarities with CS and may be linked to functional dynamics, such as
the unihemispheric sleep found in mammals [230, 231] and even the first-night effect in human
sleep [232]; ventricular fibrillation which is related to sudden cardiac death in humans exhibits
spiral chimera states [233]; the possibility of synchronization in power distribution networks and
social systems [203]. See Refs. [203, 6, 234] for a review of chimera states.

Remote synchronization (RS)
Remote synchronization [235] is characterized by the synchronization of pairs of nodes that are
not directly connected via a physical link or any sequence of synchronized nodes, as shown in
Fig.9.1(b). It has been experimentally observed among coupled analog electronic circuits [236,
237, 238]. RS is thought to be useful for information transfer. Recent studies have found that RS
may lead to the emergence of cluster synchronization, global synchronization and more complex
patterns [8, 239, 240, 241]. More recently, studies [242, 243] have shown remote propagation
(where a signal is not successfully propagated to the neighbors of the source node but to its
neighbors’ neighbors) in neural networks.

According to the properties of oscillators in networks, homogeneous or inhomogeneous, the
mechanisms for the appearance of RS can be considered in:

• RS in networks of homogeneous oscillators

Nicosia et al. [244] have found that RS can be observed in the network of homogeneous oscillators
with symmetric topologies. Thus, symmetries of the network structure are fundamental for the
emergence of this kind of remote synchronization. Gambuzza et al. [245] exploited symmetric
topologies in designing strategies for the control of synchronization between groups of nodes in
complex networks.

• RS in networks of inhomogeneous oscillators

RS was initially observed by Bergner et al. [235] in a star network of Stuart-Landau oscillators.
The hub node is different from other leaf nodes due to parametric mismatch. The hub has
a frequency set to 2.5, while the other leaf nodes have different but approximately the same
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oscillation frequency around 1.0. This inhomogeneous parameter causes the hub node to syn-
chronize leaf nodes but it is not entrained with them. Thus the hub node acts as a “transmitter”.
This star-like RS is not only confined to a star network but is also consistently observed in tree
networks and complex networks with hubs [240, 238]. Sawicki et al. [246, 247] studied RS in
multiplex networks, where a relay layer acts as a “transmitter”.

Cluster synchronization
Cluster synchronization (see Fig.9.1(c)) denotes a network which can be decomposed into several
clusters, in which the oscillators of the same cluster are synchronized to the same trajectory, but
the oscillators of different clusters are not [8, 248, 249]. The appearance of cluster synchroniza-
tion is related to the symmetries of network topology in complex networks. Recently, studies
have shown that the emergence of cluster synchronization can be also found without symmetry
when nodes receive the same total amounts of inputs from their neighboring nodes in different
clusters [250]. Cluster synchronization has been experimentally demonstrated in a system of
chaotic optoelectronic oscillators [251, 249].

These three kinds of partial synchronization are not completely independent of each other.
For example, RS caused by the symmetric topology we introduced above can be considered as
a particular case of cluster synchronization. Chimera state and cluster synchronization can be
found simultaneously (Refs. [214, 252]), which have demonstrated that stable chimera states
can emerge from two or more symmetry clusters (at least one stable and one unstable) that
make up the entire fully symmetric network.

In the following, we will exploit chimera states and remote synchronization in the brain
network to study the relationship between dynamics and structures.
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10 Chimera states in the brain network

Previous studies of chimera states have mainly focused on phase oscillators. In recent years,
many studies have drawn attention on neural systems. For example, Sakaguchi et al. [210] and
Glaze et al. [211] investigated chimera states in coupled Hodgkin-Huxley neurons with different
coupling topologies. Olmi et al. [253] studied chimera states on two symmetrically coupled
populations of leaky integrate-and-fire neurons. Omelchenko et al. [254, 255] demonstrated
that chimera states are robust with respect to perturbations of FitzHugh-Nagumo neurons.
Hizanidis et al. [256] studied chimera states with Hindmarsh-Rose neuron models. Calim et
al. [257] investigated the emergence of chimera states in nonlocal networks of Morris-Lecar
neurons coupled via chemical synapses. Tian et al. [258] studied how electromagnetic induction
influences the chimera states of neural networks with the time delay effects. Bansal et al. [225]
and Huo et al. [229] used the neural mass models [62, 259, 260] to study the multi-scaled chimera
state in brain networks.

In neural systems, Hizanidis et al. [261] studied chimera states on the modular neural
network of C. elegans soil worm; Ramlow et al. [262, 263] analyzed the collective dynamics of
FitzHugh-Nagumo neurons in an empirical structure, which was derived from diffusion-weighted
magnetic resonance imaging with 90 cortical and subcortical regions (nodes); Bansal et al.
[225] explored how large-scale brain architecture affects brain dynamics and functions by nine
cognitive regions (obtained by stimulating 76 regions) with a neural mass model; Huo et al.
[226] considered the diversity of dynamical patterns in the brain network with a case of adaptive
coupling, and more recently, they studied chimera states with multiple spatial scales and revealed
a positive correlation between the synchronization preference and the degree of symmetry of the
connectivity of the region in the network [229]. They used a concept of effective symmetry to
build the structural trees and dynamical hierarchical trees and found a close matching between
them.

In the following, we consider FHN neurons on the brain network to study chimera states.
We consider the brain network as a two-layered network with the left and right hemispheres
of the cerebral cortex being different layers, respectively, and study how the properties of the
network influence the dynamics of the network.

10.1 Introduction of the two-layered network model
Two-layered network structure
The brain network that we used consists of 998 nodes and 17865 links. Further analysis has
shown that there are 9 isolated nodes that we are not interested in, so we removed them and
there are 989 remaining nodes. In a macroscopic view, the brain network can be considered
as the right and left hemispheres connected by the corpus callosum. In our network, the right
hemispheric subnetwork has 496 nodes (from i = 1 to 496) with 8037 links between them, the
average degree is ⟨k⟩ ≈ 32.4; the left hemispheric subnetwork has 493 nodes (from i = 497 to
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989) with 7773 links between them, the average degree is ⟨k⟩ ≈ 31.5, and there are 2055 inter-
connecting links between these two hemispheres. The connection matrix of this brain network
is shown in Fig.10.1(b). The clustering coefficients of the right and left hemispheres are 0.46
and 0.47, respectively. (see Fig.10.1(c, d)).

Figure 10.1: Two-layered cerebral cortex network. (a) 989 nodes distribute on the right and
left hemispheres of the cerebral cortex network (496 nodes for the right hemisphere, 493 for the
left hemisphere). (b) Connection matrix of the cerebral cortex network. (c) Degree distribution
of the right (red) and left (blue) hemispheres of the cerebral cortex network, the average degree
of the right and left hemispheres are 32.4, and 31.5, respectively. (d) Clustering coefficient
distribution of the right (red) and left (blue)hemispheres of the cerebral cortex network, the
average clustering coefficient of the right and left hemispheres are 0.46, and 0.47, respectively.

For simplicity and intuitiveness of the explanation, we use a schematic network to represent
our real two-layered brain network as shown in Fig.10.8 where the lines stand for the couplings.
We use real lines (lin) and dotted lines (lout) to distinguish the intra- and inter-couplings, the
same name convention is used for the coupling strength λin and λout.

100



10. Chimera states in the brain network

Figure 10.2: Schematic figure of the two-layered brain network model. Where A and B
represent the two hemispheres, respectively, “circles” denote the nodes or neurons, and the real
lines and the dotted lines represent the intra- and inter-couplings, respectively.

General dynamical description of the network
As we previously introduced, the communication within neurons mainly proceeds through two
ways, one is through chemical synapses (which are slower) and the other one is through electrical
synapses (which are faster). In most neural systems, these two types of synapses can be present
independently or simultaneously. In the human brain, the communication between the left
and right hemispheres has to go through the long corpus callosum and thus causes some time
delays due to the limited speed of signal transmission and processing. Thus, we consider two
different situations, one is a simple situation in which both synapses are effectively represented as
electrical synapses; the other is a mixed situation in which the intra-connections are represented
as electrical synapses while the longer inter-connections are represented as chemical synapses.

We use the FHN neurons to represent the behavior of each node in the network, for subnet-
works A, B

• Network with electrical synapses
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where i = 1, 2, · · · , Na(Nb) is the index of the node, ua
i (ub

i) and va
i (vb

i ) represent the
activator and inhibitor variables of FHN neurons, respectively. ka

in,i (kb
in,i) and ka

out,i (kb
out,i)

are the intra- and inter-degrees of nodes i, respectively. Aij (Bij) and (AB)ij denote the
intra- and inter-coupling matrices, respectively. ϵ is a small parameter characterizing
the separation of slow and fast time scales and is fixed as ϵ = 0.05. a is the excitable
parameter, when |a| > 1, the neuron is in the excitable state; when |a| < 1, the neuron is
in the oscillatory state [254, 212, 264]. Here we are interested in the oscillatory state, so
we fix a = 0.5.

The relative coupling strength is represented by the rotational coupling matrix D, which
takes into account both direct- and cross-couplings between u and v [254, 256, 212],

D =
(

duu duv

dvu dvv

)
=
(

cos α sin α

− sin α cos α

)
(10.2)

where α is the coupling phase that represents the relative phase difference of interacting
nodes.
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• Network with electrical and chemical synapses
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with

gj = gmax[exp−(t−ts
j−τ)/τd − exp−(t−ts

j−τ)/τr ] (10.4)

where gmax describes the maximal synaptic conductance between neurons, uth denotes the
synaptic reversal potential, τ is the time delay between connected neurons, ts

j represents the
synaptic spiking, τd and τr stand for the decay and rise time of the function and determine
the duration of the response. We here take the parameters gmax = 0.35, uth = 0, τd = 10,
and τr = 1.

10.2 The measurement of chimera states
In order to clearly distinguish between coherent and incoherent parts, we introduce the average
phase velocity as defined in Ref. [136],

ωa
i (ωb

i ) = 2πMi

∆T
i = 1, 2, · · · , Na(Nb) (10.5)

where ∆T is the time interval window used to measure the average phase speed of nodes when
the system has evolved into a steady state. Mi is the measured firing number of node i during
this time window, ∆T should be sufficiently large to contain enough firings Mi.

Several methods have been developed to measure chimera states. The most popular one is
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by introducing the order parameter,

r(t)eiΦ(t) = 1
N

N∑
j=1

eiθj(t) (10.6)

where r(t) represents the phase coherence of oscillators at time t. Φ(t) is the average phase of
all oscillators. θj is the phase of the oscillator j. The network is completely synchronized when
r = 1, disordered state when r = 0. For the network with two groups, if for one group r ≈ 1
while for the other one r ≈ 0, the network is in a chimera state.

Recently, Kemeth et al. [265] developed a more general way to distinguish chimera states.
They extended the method to any type of dynamical system, not just limited to ensembles of
phase oscillators as the order parameter did. They used the local curvature as a measurement
for spatial coherence. For one dimensioned system, the local curvature of the observation is
quantified by the second derivative, or more generally by the Laplacian D for any number of
spatial dimensions,

D̂f = ∆x2Df = f(x + ∆x, t) − 2f(x, t) + f(x − ∆x, t) (10.7)

where f represents the spatial data on a snapshot at time t. For a synchronous system, |D̂| = 0,
while finite |D̂| means that the system is asynchronous with fluctuations. In order to measure
the relative size of spatially coherent regions, Kemeth et al. [265]considered the normalized
probability density function g of |D̂|. For a fully synchronized system g(|D̂| = 0) = 1, while
a totally unsynchronized system gives a value g(|D̂| = 0) = 0. A value between 0 and 1 of
g(|D̂| = 0) indicates the coexistence of coherence and incoherence and denotes a chimera state.

For a complex network, Kemeth et al. [265] took a threshold δ = 0.01Dm to neglect minor
changes, which will not influence the qualitative outcome. Dm indicates the maximal value of
|D̂|. The correlation measurement reads,

g0(t) =
∫ δ

0
g(t, |D̂|)d(|D̂|) (10.8)

We use the average value g1 = ⟨g0(t)⟩t over a stable period to measure the synchronization
of the system:

g1 =


0 unsynchronized state

(0, 1) chimera state

1 synchronized state

(10.9)

10.3 Chimera states on the two-layered brain network
Can we find chimera states in this two-layered brain network model? If so, what requirements
about the couplings should be satisfied for the emergence of chimera states? In order to answer
these questions, in the following, we study how the coupling strengths, which are characterized
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by parameters α, λin, λout, influence the dynamical behaviors of the network.
Different states on the two-layered brain network

Simulations showed that the brain network exhibits various dynamics when parameters are
varied both with electrical synapses alone or with mixed electrical and chemical synapses. They
can be divided into four typical states according to the dynamics of each hemisphere as shown in
Fig.10.3 (Here, we just show the example of the network with electrical synapses, similar result
hold for the mixed synapses network). The up row and down row represent the right hemisphere
and the left hemisphere about the average phase speeds wi at time t, respectively. The insets
are the corresponding dynamics of ui at the moment t.

Figure 10.3: Four typical states in the two-layered brain network. The up and down
panels represent the right and left hemispheres, respectively. The panels show the average
phase speed wi, and the insets are their corresponding dynamics of ui at the moment t. (a, e)
Unsynchronized state, with gr

1 ≈ 0, gl
1 ≈ 0. (b, f) Chimera state, with gr

1 = 0.33, gl
1 = 0.32. (c,

g) Unihemispheric sleep-like state, with gr
1 ≈ 0, gl

1 ≈ 1. (d, h) Synchronized state, with gr
1 ≈ 1,

gl
1 ≈ 1. The parameters for different states are given in Table.10.1.

Parameters

State
Symbol

α λin λout

Synchronized state π
2 − 0.1 0.1 0.3

Chimera state π
2 − 0.1 0.1 1.8

Unihemispheric sleep-like state π
2 − 0.1 0.4 3.5

Unsynchronized state π
2 − 0.1 4.0 3.5

Table 10.1: Parameters for four typical states on two-layered brain network

For the first situation (Fig.10.3(a, e)), both ωr
i and ωl

i are randomly distributed, which means
that both the right and left hemispheres are in an incoherent state, with gr

1 ≈ 0, gl
1 ≈ 0. We call

this case an unsynchronized state. Different from the previous situation, a subset of oscillators
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Figure 10.4: Same figure as Fig.10.3 but with rearranging the nodes by their average
phase velocities.

Figure 10.5: The evolution of the ui over time represents four typical states (corre-
sponding to Fig.10.4).
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with exactly the same values of ωr
i and ωl

i are found in both hemispheres (Fig.10.3(b, f)), which
means that parts of the nodes are synchronized while others are out of synchronization, so they
are both in chimera states (gr

1 = 0.33, gl
1 = 0.32). A surprising result is shown in Fig.10.3(c, g),

where the right hemisphere is an incoherent state with randomly distributed ωr
i while the left

hemisphere is in a totally coherent state with the same ωl
i. This is similar to the unihemispheric

sleep introduced before. We call it a unihemispheric sleep-like state with gr
1 ≈ 0, gl

1 ≈ 1.
For convenience, the chimera state and the unihemispheric sleep-like state are called partially
synchronized state. In Fig.10.3(d, h), both hemispheres are totally synchronized and we call
this case a synchronized state (gr

1 ≈ 1, gl
1 ≈ 1).

When considering complex networks, it is hard to define space. Inspired by the previous
work [223], we rearrange the nodes by the ascending order of ωi, such that i ≥ j if ωi ≥ ωj .
Fig.10.4 shows the results corresponding to Fig.10.3, but with rearranging the order of nodes.
It is significantly simpler to distinguish the characteristics of the different states. Therefore, we
favor the use of the rearranged states in the following.

Fig.10.5 show the evolution of the ui over time for different states shown in Fig.10.4.
By further comparison, we have found that in our simulation, the coupling strengths λin, λout

are quite different for these four typical states. For the unsynchronized state (Fig.10.4(a, e)),
λin = 0.1, λout = 0.3; the synchronized state (Fig.10.4(d, h)) has quite strong coupling strengths
(λin = 4.0, λout = 3.5) when compared with the unsynchronized state; the coupling strengths
for the chimera state (Fig.10.4(b, f)) are λin = 0.1, λout = 1.8, and are in an intermediate
state; while, a dramatic increase of the λout accounts for the appearance of the unihemispheric
sleep-like state (Fig.10.4(c, g)), with λin = 0.4, λout = 3.5.

We use λin and λout to stand for the intra- and inter-couplings within or between the right and
left hemispheres. The different strengths may reflect some neurophysiological communication
information. Firstly, the unsynchronized state with both weak λin and λout coupling strengths
may indicate the absence of active brain functions. A typical situation corresponding to this state
is the resting state of brain with random behaviors. Secondly, for chimera states with weak λin

and relatively strong λout, the relatively strong λout may imply some communications between
the two hemispheres of cerebral cortex, indicating that a normal functional state involves an
ensemble of neurons distributed across different brain regions. Thirdly, relatively strong λin but
very strong λout of the unihemispheric sleep-like state are beyond the couplings for a normal
brain functional state. This may be launched by vigilance and thus is consistent with the
first-night effect in human. Finally, the synchronized state with both very strong λin and λout

represents an abnormal synchronization, which is well known for epileptic seizures.
In summary, the coupling strengths have an obvious influence on the states of the brain

network. When the coupling strength parameters α, λin and λout are matched, the normal brain
function state, chimera states may occur. In the following, we will study how the dynamics of
the brain network depend on the coupling strengths.

The impact of the coupling strengths
There are three characteristic parameters related to the coupling strengths, the coupling phase
α, the intra-coupling λin and the inter-coupling λout. We use g1 (Eq.10.9) to stand for the
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state of the network. Fig.10.6 show the phase diagrams of g1 for the right (up) and left (down)
hemispheres with electrical synapses, respectively. Fig.10.6(a, c), represent the values of g1 in
the parameter plane of λin and λout for fixed α = π/2 − 0.1. One can see that the increase of
λin, λout makes the network more coherent. Fig.10.6(b, d) shows how the network state changes
with λout and α when fixed λin = 3.0. The network state is sensitive to the parameters so that
the unsynchronized state, partially synchronized state and synchronized state are distributed in
the phase diagram.

Figure 10.6: Phase diagram of g1 for the two-layered brain network with electric
inter-coupling. The up panels are for the right hemisphere and the down panels are for the
left hemisphere. (a, c) The phase diagram of g1 in the parameter plane of λin and λout for
α = π/2 − 0.1. (b, d) The phase diagram of g1 in the parameter plane of λout and α for a fixed
λin = 3.0.

Fig.10.7 shows the corresponding results when the inter-couplings are described by chemical
synapses with τ = 0 for the two-layered brain network. Comparing with the corresponding
situation with electrical synapses only (Fig.10.6), one finds that the areas of synchronization
(the red parts) in Fig.10.6 disappear. Instead, one sees more partial synchronized states, indi-
cating that the chemical inter-coupling destroys the global synchronization. This is reasonable
as a healthy person should not show the behavior of epileptic seizure characterized by global
synchronization.

In sum, the real brain network has a special topology of community structure selected by
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Figure 10.7: Phase diagram of g1 for the two-layered brain network with chemical
inter-coupling. The up panels are for the right hemisphere and the down panels are for the
left hemisphere. (a, c) The phase diagram of g1 in the parameter plane of λin and λout for
α = π/2 − 0.1. (b, d) The phase diagram of g1 in the parameter plane of λout and α for fixed
λin = 3.0.
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nature. This structure is favorable to the diversity of brain dynamics.

10.4 Analysis of chimera states on general two-layered network
While the network of Fig.10.1 corresponds to a specific brain network, it is useful to consider a
more general situation. For this purpose, we keep the characteristic features of Fig.10.1 but allow
the key parameters such as the size N , the coupling strengths λin and λout, and the number of
inter-coupling links lout to vary and study how they shape the collective behavior of the network.

Figure 10.8: A general model of brain network with size N = 200, average degree
⟨k⟩ = 10, and clustering coefficient C = 0.5 in each subnetwork. This is rewired from a
random network by the algorithm of the rewiring approach introduced in Ref. [266].

As we introduced in Chapter.I, the brain network has a small-world property that is charac-
terized by a high local clustering coefficient and a short path length between any (distant) pair of
nodes due to the existence of relatively few long-range connections. This modular organization
can support both segregated/specialized and distributed/integrated information processing. In
this sense, a general model of brain network has to be a modular network, represented by a large
clustering coefficient C. We here use the algorithm of the rewiring approach to generate this
modular network from a random network [266]. In detail, we first start from two random sub-
networks with size N = 200, average degree ⟨k⟩ = 10, with a total network size 2N = 400. We
gradually increase the clustering coefficients C of the subnetworks to a larger value. Then, we
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randomly add links between the two subnetworks A and B until the number of inter-connected
links reaches lout. Fig.10.8 shows the obtained network with C = 0.5, lout = 300 which will be
considered as the general model of brain network.

The general two-layered network show the diversity of dynamical behaviors (the unsynchro-
nized state, chimera state, unihemispheric sleep-like state and synchronized state) that we found
in the brain network as shown in Fig.10.9.

Figure 10.9: Four typical states in the general two-layered network. The up and down
panels represent the subnetworks A and B, respectively. The panels show the average phase
speed wi, and the insets are their corresponding dynamics of ui at the moment t. (a, e) Unsyn-
chronized state. (b, f) Chimera state. (c, g) Unihemispheric sleep-like state. (d, h) Synchronized
state. The parameters for different states are given in Table.10.2.

Parameters

State
Symbol

α λin λout

Synchronized state π
2 − 0.1 0.2 0.5

Chimera state π
2 − 0.1 0.5 1.8

Unihemispheric sleep-like state π
2 − 0.1 0.5 2.5

Unsynchronized state π
2 − 0.1 1.0 3.0

Table 10.2: Parameters for four typical states on the general two-layered network

In the same way as we analyzed the brain network, we also study how the key parameters
α, λin, λout and lout influence the dynamics of this general network. Fig.10.10 show the phase
diagram of g1 for the general two-layered network with electrical connections.

From Fig.10.10(a, d), one sees that when the intra-coupling strength λin is small (around
< 0.5) the number of inter-coupling links do not take effect. For larger λin, the increases of the
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lout makes the network more synchronized. Fig.10.10(b, e) show the phase diagram of g1 with
the function of λin and λout for fixed α = π/2 − 0.1 and lout = 100, one can see that λout has a
similar effect as lout. Fig.10.10(c, f) show the phase diagram of g1 with the function of λout and
α for fixed λin = 0.6 and lout = 100, one can see that the network is sensitive to the change of
α, and obvious arc-shapes bounder lines for the synchronized state can be observed.

Fig.10.11 shows g1 for the same parameter panels of as those of Fig.10.10 but with chemical
inter-connections. We can see that the involvement of the chemical connections broadens the
partially synchronized state which is consistent with the brain network.

Figure 10.10: Phase diagram of g1 for the general two-layered network with electric
inter-coupling. The up panels are for the subnetwork A, and the down panels are for the
subnetwork B. (a, d) The phase diagram of g1 in the parameter plane of λin and lout for
α = π/2 − 0.1 and λout = 0.5. (b, e) The phase diagram of g1 in the parameter plane of λin and
λout for fixed α = π/2 − 0.1 and lout = 100. (c, f) The phase diagram of g1 in the parameter
plane of λout and α for fixed λin = 0.6 and lout = 100.
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Figure 10.11: Phase diagram of g1 for the general two-layered network with chemical
inter-coupling. The up panels are for the subnetwork A, and the down panels are for the
subnetwork B. (a, d) The phase diagram of g1 in the parameter plane of λin and lout for
α = π/2 − 0.1 and λout = 0.5. (b, e) The phase diagram of g1 in the parameter plane of λin and
λout for fixed α = π/2 − 0.1 and lout = 100. (c, f) The phase diagram of g1 in the parameter
plane of λout and α for fixed λin = 0.6 and lout = 100.

The robustness of network size
Considering that the real cerebral cortex network that is modeled here ( Fig.10.1) has a network
size much larger than N = 200, it is necessary to discuss the robustness with variation of the
size N in the general model of the human brain network. For this purpose, we here consider a
case with N = 1000, average degree ⟨k⟩ = 50, and C = 0.5. Fig.10.12 and Fig.10.13 show the
phase diagram of g1 for electrical inter-connections and chemical inter-connections, respectively.
Comparing the corresponding panels of Fig.10.10, Fig.10.11 with N = 200 and of Fig.10.12,
Fig.10.13 with N = 1000, respectively, we see that they are qualitatively similar to each other,
confirming that the collective behaviors are robust to a change on network size.
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Figure 10.12: Phase diagram of g1 for the general two-layered network (N = 1000)
with electric inter-coupling. The up panels are for the subnetwork A, and the down panels
are for the subnetwork B. (a, d) The phase diagram of g1 in the parameter plane of λin and lout

for α = π/2 − 0.1 and λout = 0.5. (b, e) The phase diagram of g1 in the parameter plane of λin

and λout for fixed α = π/2 − 0.1 and lout = 500. (c, f) The phase diagram of g1 in the parameter
plane of λout and α for fixed λin = 0.8 and lout = 500.
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Figure 10.13: Phase diagram of g1 for the general two-layered network (N = 1000)
with chemical inter-coupling. The up panels are for the subnetwork A, and the down panels
are for the subnetwork B. (a, d) The phase diagram of g1 in the parameter plane of λin and lout

for α = π/2 − 0.1 and λout = 0.5. (b, e) The phase diagram of g1 in the parameter plane of λin

and λout for fixed α = π/2 − 0.1 and lout = 500. (c, f) The phase diagram of g1 in the parameter
plane of λout and α for fixed λin = 0.8 and lout = 500.

A brief explanation for the arc-shape borderline of synchronization
In the phase diagram of g1 with λout and α in Fig.10.6, Fig.10.10 and Fig.10.12, there are obvious
arc-shaped borderlines. In order to understand their origin, we propose a brief theoretical
analysis.

For a synchronized state, we have δu ≡ uj − ui = 0 and δv ≡ vj − vi = 0, while for a
unsynchronized state, both δu and δv evolve with time. Thus the synchronization borderlines
distinguish the synchronized ad unsynchronized areas. The values of δu and δv for the points at
the borderlines will be in between the two limits. In this sense, we may approximately assume
that both δu and δv are non-zero and non-time dependent at the borderline of synchronization,
i.e. non-zero constants. On the other hand, the total coupling from Eq.10.3 can be approximately
written as:

y = (λin + λout)[cos(α)δu + sin(α)δv] (10.10)

The dynamics of the network is determined by the value of y. A constant y gives a line with
networks in the same state. For a given y, with other parameters fixed, we get the relationship
between λout and α shown in Fig.10.14, where the lines for three values of y are plotted. The
λout vs α lines are arc-shaped, explaining the arc-shaped patterns in the parameter plane of λout

and α of Fig.10.6, Fig.10.10 and Fig.10.12.
This also explains the relationship of λin and λout in Fig.10.6, Fig.10.10 and Fig.10.12, where
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Figure 10.14: The borderlines of synchronization in the parameter plane of λout and
α. The parameters are taken as δu = 3.0, δv = 0.5, λin = 0.1, and α ∈ (π/2, π/2). The three
curves correspond to y = 1.0, 1.5 and 2.0, respectively.

an increase of λin corresponds to a decrease of λout.
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11 Remote synchronization in the brain network

11.1 Introduction of RS in neural networks
Many experimental studies have revealed synchronous discharge of neurons distributed in differ-
ent structures of the cerebral cortex, such as the hippocampal formation and thalamus [7, 267].
This phenomenon is known as zero time lag synchronization, which is the same as remote syn-
chronization (RS). What is more, studies have shown that the synchrony of neuronal activity
is not limited to short-range interactions within a cortical patch, but is observed across cortical
regions, including interhemispheric areas [268]. For example, König et al. [269] have found
long-range synchronization during gamma oscillations in the cat visual cortex, and Soteropoulos
et al. [270] observed extensive oscillatory synchronization between the cerebellum and motor
cortex during monkeys performing a precision grip task. As the axonal conduction delays among
distant regions can amount to several tens of milliseconds, it is necessary to consider the effect
of delay involved in the neuronal communication of neuronal systems. When axonal conduc-
tion delays are considered, Vicente et al. [271] have shown a network topology in which two
populations of cells can become synchronized by a third mediating population.

Another way to reproduce the long-range synchronization in the brain network would be to
take into account symmetry. Many studies have shown that the remote synchronization observed
between cortical regions without apparent neural links is closely related to the underlying sym-
metry structure [244]. Recently, Vuksanovic et al. [272] have shown that remote synchronization
between pairs of nodes not directly linked can also arise from the symmetry of the interactions
in the resting-state functional networks. This symmetry can be defined by the size of shared
neighborhoods of the synchronized nodes. A larger joint neighborhood positively correlates with
a higher level of synchrony. In this mechanism, symmetric topologies are not sufficient to ac-
count for the appearance of remote synchronization, it results from the interaction between the
structure and dynamics of the system.

Different from previous mechanisms in which remote synchronization is caused by time delay
or symmetry, Vlasov et al. [240] have found that a hub node can drive synchronization of
peripheral oscillators while remaining asynchronous itself in the brain network. They refer to
this as “hub-driven remote synchronization".

In the following, we will study RS in the human cerebral cortex with homogeneous oscillators
when considering the effect of time delay, and reveal the underlying structure and process for
the emergence of RS.

11.2 Simulation of RS in the human cerebral cortex network
We study RS based on the structural network of the human cerebral cortex (Fig.10.1), which
includes 989 nodes and 17,865 weighted links.

Dynamical description of the human cerebral cortex network
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We use a simple oscillatory model, the Staurt-Landau model to represent the dynamics of the
neural nodes. The Stuart-Landau model is the normal form of the Hopf bifurcation, which cap-
tures the essential features of the system near the bifurcation point [273]. The Hopf bifurcation
widely appears in biological and chemical systems [274] and is often used to study oscillatory
behavior and brain dynamics [174, 275, 276]. The Stuart-Landau model is defined as follows

u̇j = (α + iω − |uj |2)uj + ε
N∑

k=1
Wjk(uk(t − τ) − uj(t)), (11.1)

where u ∈ C, i =
√

−1 is the imaginary unit, j = 1, 2, · · · , N = 989 is the number of nodes, Wjk

denotes the weighted connection matrix of the human cerebral cortex [38, 39].
√

α and ω are
the amplitude and natural frequency of the oscillator, respectively. ε is the coupling strength,
and τ is the time delay. For the realization of numerical simulations, Eq.11.1 can be rewritten
as

ẋi = (α − x2
i − y2

i )xi − ωyi + ε
N∑

j=1
Wij(xj(t − τ) − xi(t)),

ẏi = ωxi + (α − x2
i − y2

i )yi + ε
N∑

j=1
Wij(yj(t − τ) − yi(t)), (11.2)

where xi and yi represent the real and imaginary parts of ui, respectively. Here, we fix α = 1.0
and ω = 2.0.

Appearance of RS in the human cerebral cortex network
According to Eq.11.1, the dynamics of the cerebral cortex network depend on the coupling
strength ε and delay time τ . Fig.11.1(a) shows the behaviors of the nodes of the cerebral cortex
when ε = 0.1 and τ = 0.5. The different colors of the nodes represent the values of x at a
moment t. Although the dynamics of most nodes are different from each other, there are some
nodes with the same colors which means that they are synchronized. In order to more intuitively
show the behavior of nodes, we pick the node i = 189 with its 40 neighbors as an example as
shown in Fig.11.1(b). From Fig.11.1(b), we surprisingly find that 19 of the 40 leaf nodes are
synchronized (red color) with each other but unsynchronized with the hub node, indicating that
they form a cluster of RS.

Fig.11.1 shows the behavior of the human cerebral cortex network for a single snapshot,
so the question is: is this RS phenomenon stable or occasional? To answer this question, we
computed the Pearson’s correlation coefficient matrix of all pairs of nodes over a period of time
t as shown in Fig.11.2. From Fig.11.2, we see that some nodes are highly correlated (red color),
which means that they are relatively stably synchronized.

To show it more clearly, we chose node i = 189 and its four synchronized leaf nodes as an
example and show their dynamical evolution. Fig.11.3 shows the evolution of the hub node (real
line) and its four arbitrary synchronized leaf nodes (dotted lines), Fig.11.3 (a) and Fig.11.3(b)
represent the evolution of x and ẋ, respectively. At the beginning, these five nodes have different
values. After a short time of evolution (t > 70), the four leaf nodes become synchronized but
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Figure 11.1: RS in the human cerebral cortex network. (a) The behaviors of all the 989
nodes on the network of the human cerebral cortex with τ = 0.5 and ε = 0.1, where the color
of nodes represents the value of x at a moment. (b) An example of RS for node i = 189 and its
40 neighboring nodes from (a).

Figure 11.2: Correlation matrix of the nodes. Pearson’s correlation coefficient among each
pair of nodes when τ = 0.5 and ε = 0.1. The red color means they are highly synchronized.
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Figure 11.3: The evolution of the hub node and four arbitrary synchronized leaf
nodes in Fig.11.1(b). The real line stands for the hub nodes, the dotted lines stand for the
leaf nodes. (a) The evolution of x. (b) The evolution of ẋ.

unsynchronized with the hub node, further confirming that RS is stable.
Detection steps of RS in the cerebral cortex network

As introduced before, RS in networks of homogeneous oscillators comes from the symmetries of
the network or from single star network. Is this consistent with our findings? To answer this
question, we extract some RS structures in the cerebral cortex network. The steps are as follows.
First, we simulate the node dynamics and calculate their correlation matrix. The correlation
matrix is then used to find the nodes that have RS among their leaf nodes. If the synchronized
leaf nodes are directly linked, we cut them and keep only the remaining nodes and their links.

By the above approach, Fig.11.4 shows six typical patterns of RS for τ = 0.5 and ε = 0.1.
Similar patterns of RS can also be found for other sets of parameters τ and ε. From Fig.11.4,
it is clear that some RS patterns have star network structures (Fig.11.4(a, d), while some RS
patterns include two or more hub nodes (Fig.11.4(b-c, e-f) (black nodes are hub nodes, green
nodes are common leaf nodes, the other colors nodes are the leaf nodes, same color leaf nodes
belong to one cluster). This finding may be significant as it is different from the paradigmatic
pattern of RS with only one hub node analyzed in previous studies [235, 240].

11.3 A new mechanism for the emergency of RS
In order to better observe the characteristics of these RS patterns, we delete the other nodes, and
just keep the nodes included in the RS patterns. Fig.11.5 show skeletons of the RS structures in
the cerebral cortex network. We find that RS is observed not only in the network with one hub
node, but that it is also observed in the network with more hubs (red nodes). Further analysis
shows that RS patterns with more than one hub node, share the common structure that any
two star networks are connected by some common leaf nodes (purple nodes).

To understand this mechanism, we present a new framework of RS as shown in Fig.11.6,
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Figure 11.4: Six example patterns of RS. Each pattern is chosen by the conditions: there is
no synchronization between the hub and its leaf nodes, and there are no direct links among the
synchronous leaf nodes. The parameters are: τ = 0.5, ε = 0.1.

Figure 11.5: The skeleton structures of RS patterns. The red nodes are hub nodes, the
purple nodes are common leaf nodes that link the single star networks, the blue nodes are leaf
nodes.
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Figure 11.6: A schematic figure of the new framework of RS. The nodes with red, blue
and pink numbers represent the hub, leaf and common leaf nodes, respectively.

where two single star networks are connected by their shared common leaf nodes (the nodes
with red, blue and purple represent the hub, leaf and common leaf nodes, respectively).

In order to study this RS process more precisely, we introduce measures for RS. The most
common measure for RS is the order parameter introduced before, which is defined as

r(t)eiΦ(t) = 1
N

N∑
j=1

eiθj(t), (11.3)

where r and Φ are the module and argument of the mean field, respectively. θj is the phase
variable of node j, defined as θj = tan−1(yj/xj). N is the number of nodes for consideration.
The order parameter r is unity for synchronization, 0 for a totally random phase distribution,
and in between 0 and 1, otherwise.

First, we study how the parameter coupling strength ε influences the emergence of RS. We
calculate r for different combinations of nodes as we change ε. In detail, we let rl1 be the order
parameter for the leaf cluster of hub node 1 in Fig.11.6 (the leaf nodes 3 − 7); rl2 for the leaf
cluster of hub node 2 (the leaf nodes 10 − 16); rl for all the leaf nodes (both the leaf nodes 3 − 7
and 10 − 16); rcl for all the leaf nodes and common leaf nodes (the nodes 3 − 16); and r for all
the nodes (the nodes 1 − 16).

Fig.11.7(a) shows how rl1, rl2, rl, rcl, r depend on ε when τ = 1.1 for the schematic network
(Fig.11.6). As ε increases, rl1, rl2 are first to become close to 1 at a critical value εc1 = 0.125,
while the r and rc and rcl remain less than 0.5. This means that only the leaf nodes of hub
nodes 1 and 2 become synchronized and they are unsynchronized with their hub nodes. So RS
exists independently in each single star network. Then, the second critical transition appears
around εc2 = 0.325. When ε becomes larger than εc2, rl and rcl almost simultaneously arrive at
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Figure 11.7: Synchronization order parameters as a function of coupling strength.
(a) Dependence of the order parameters rl1, rl2, rl, rcl and r on the coupling strength ε. (b)
Dependence of the order parameters rl, rcl and r on the coupling strength ε0 of the two common
nodes for fixing the other coupling strength as ε = 0.4. The parameter τ = 1.1.
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1, which means all leaf nodes including the common leaf nodes are synchronized. For the same ε

value, r is still less than 1, so a bigger cluster of RS exists between all leaf nodes and hub nodes.

Figure 11.8: Evolution of xi for six typical nodes in Fig.11.6. where the curves with “1”
and “2” represent the behaviors of two hub nodes, “3” and “10” for two leaf nodes from the two
leaf clusters, respectively, and “8” and “9” for the two common leaf nodes. (a) and (b) represent
the cases of ε = 0.275 and 0.6, respectively.

In order to clearly explain the RS process, the evolution of x for some typical nodes for two
different cases is shown in Fig.11.8. Specifically, we choose two hub nodes “1” and “2”, two
leaf nodes “3” and “10”, two common leaf nodes “8” and “9” and show their evolutions when
ε = 0.275 and ε = 0.6, respectively. When ε = 0.275 (Fig.11.8(a)), all of these six nodes are
unsynchronized. When ε = 0.6 (Fig.11.8(b)), we can see the two hub nodes “1” and “2” are
synchronized and the leaf nodes “3” and “10” are also synchronized, but the hub nodes are
unsynchronized with the leaf nodes, indicating the emergence of RS when ε > εc2 in Fig.11.7.

In summary, the process of RS in a network with more than one hub node is as follows: first,
the star network achieves RS independently, and they are not synchronized with one another.
Then the common leaf nodes and all leaf nodes are synchronized resulting in two RS clusters
gradually merging into a larger RS cluster.

Another interesting finding is that with increase of ε, the common leaf nodes and all leaf
nodes become synchronized almost at the same time, so it is not clear whether the common
leaf nodes take a role in this process. To answer this question, we fix the coupling strength ε

for other links but just change the coupling strength that includes common leaf nodes (“8” and
“9”). To distinguish, we call it ε0. Fig.11.7(b) show how rl, rcl and r depend on ε0 when the
other coupling strengths are fixed at ε = 0.4. From Fig.11.7(b), we make three observations:
(i) the synchronization order parameter r is less than both rl and rcl for the whole range of ε0,
indicating that the hub nodes cannot synchronize with the leaf nodes by increasing ε0; (ii) there
are two critical points for the rl, rcl and r when changing the ε0. rl and rcl become approximately
equal to 1.0 for ε0 > 0.15, indicating that a synchronization between the two clusters has been
induced by the common leaf nodes at ε0 ≈ 0.15; (iii) all the three curves jump down at the
second critical point where ε0 > 0.54. This indicates that a stronger ε0 destroys RS. That is,
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RS exists only for a middle range of ε0 values. Therefore, we conclude that common leaf nodes
do take a key role for RS in the framework of Fig.11.6.

In order to study how τ and ε influence the dynamics of the network, we show the phase
diagrams for rl1, rl, rcl and r of the network (Fig.11.6) with the functions of parameters τ and ε

in Fig.11.9. In Fig.11.9, we have found that when τ = 0 the network is completely synchronized
no matter the value of ε, which is consistent with previous results that RS can be only observed
with nonidentical oscillators. Further, we can see that for τ = 3.0, the situation is almost the
same as τ = 0. This means that the effect is periodic in the value of τ . It corresponds to the
oscillatory period of nodes which is about 3.0. It is obvious that the synchronized area in panel
r is less than the other three panels of rl1, rl and rcl, which thus guarantee the emergence of
RS in such a network. By comparing Fig.11.9(a) and (b) for rl1 and rl, we can see that the
synchronized area for rl1 is clearly less than for that rl, which means that RS in star networks
is much easier than in more than one hub node networks.

11.4 A brief theoretical analysis of the process of RS
For the convenience of the theoretical analysis, we let uj = ρjeiθj and rewrite Eq.11.1 in polar
coordinates,

ρ̇i = αρi − ρ3
i + ε

N∑
j=1

Aij(ρj cos(θj(t − τ) − θi(t)) − ρi),

θ̇i = ω + ε
N∑

j=1

ρj

ρi
Aij sin(θj(t − τ) − θi(t)), (11.4)

where the weight matrix Wij in the human cerebral cortex network is replaced by the adjacency
matrix Aij for the network of Fig.11.6.

Then we write the dynamic equations for leaf, common leaf and hub nodes, respectively. For
leaf nodes, we have

ρ̇i = (α − ρ2
i − ε)ρi + ερh cos(θh(t − τ) − θi(t)),

θ̇i = ω + ε
ρh

ρi
sin(θh(t − τ) − θi(t)), (11.5)

where ρh and θh represent the amplitude and phase of a hub node, respectively.
Similarly, for hub nodes, we have

ρ̇h = αρh − ρ3
h + ε

N∑
j=1

Ahj(ρj cos(θj(t − τ) − θh(t)) − ρh),

θ̇h = ω + ε
N∑

j=1

ρj

ρh
Ahj sin(θj(t − τ) − θh(t)). (11.6)
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And for common leaf nodes, it reads

ρ̇c = αρc − ρ3
c + ε

2∑
j=1

Acj(ρj cos(θj(t − τ) − θc(t)) − ρc),

θ̇c = ω + ε
2∑

j=1
Acj

ρj

ρc
sin(θj(t − τ) − θc(t)). (11.7)

Next, we study the synchronization manifolds among leaf nodes, common leaf nodes and hub
nodes. We first discuss the synchronization between the leaf nodes that come from the same
cluster. From Eq.11.5, we have

θ̇j − θ̇i = ε
ρh

ρj
sin(θh(t − τ) − θj(t)) − ε

ρh

ρi
sin(θh(t − τ) − θi(t)). (11.8)

It is obvious that θj = θi and ρj = ρi is a synchronization solution for Eq.11.8. To find
the critical coupling strength εc1 for this solution, we go back to the jacobian matrix of Eq.11.5
for the synchronization manifold. By simple operations, we find that the condition for two
eigenvalues of the jacobian matrix to be negative is

εc1 >
α − 3ρ2

i

1 + ρh
ρi

cos(θh(t − τ) − θi(t))
(11.9)

As α − 3ρ2
i < α, the critical value of εc1 will be generally smaller than α. On the other hand,

from Eq.11.9, we can see that the value of εc1 depends on the time delay τ . These analytical
results are consistent with the numerical results of Figs.11.7 and 11.9.

Then, we consider the synchronization between the hub and leaf nodes. From Eqs.11.5 and
11.6 we have

θ̇h − θ̇i = ε
N∑

j=1

ρj

ρh
Ahj sin(θj(t − τ) − θh(t)) − ε

ρh

ρi
sin(θh(t − τ) − θi(t)). (11.10)

We first consider a simple situation when τ = 0, the jacobian matrix of the synchronization
manifold (θh(t) − θi(t) = 0) is

M = −ε
N∑

j=1

ρj

ρh
Aij cos(θh(t) − θj(t)) − ε

ρh

ρi
cos(θh(t) − θi(t)). (11.11)

For the synchronization manifold of θh = θi, the eigenvalue of Eq.11.11 is always negative
(−ε(∑N

j=1
ρj

ρh
Aij + ρh

ρi
)), indicating that the synchronization manifold is stable. Thus, we will

not have RS for τ = 0. This is consistent with our numerical simulations in Fig.11.9 and also
consistent with the previous result that RS can be only observed in non-identical oscillators [235,
240, 239, 245, 244]. However, when τ ̸= 0, the solution will be complex. The synchronization
manifold of θh = θi cannot guarantee θj(t−τ)−θh(t) = 0 and θh(t−τ)−θi(t) = 0 in Eq.11.10. In
this case, the eigenvalue of the jacobian matrix depends on time either positive or negative thus
is unstable. According to the above analysis, we can see that τ ̸= 0 is the necessary condition

126
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for RS in the identical oscillators of Eq.11.1. This result is consistent with the observations in
Fig.11.7 and Fig.11.9.

Next, we discuss the synchronization between the leaf nodes and common leaf nodes. From
Eqs.11.5 and 11.7, we have

θ̇c − θ̇i = ε
2∑

j=1
Acj

ρj

ρc
sin(θj(t − τ) − θc(t)) − ε

ρh

ρi
sin(θh(t − τ) − θi(t)) (11.12)

It is easy to see that θc = θi and ρc = ρi is generally not a synchronization solution of Eq.11.12.
In this case, the eigenvalues of jacobian matrix depend on time and hub nodes, which is complex
to give a solution.

Finally, we discuss the synchronization between the hub nodes and common leaf nodes.
Doing a similar analysis as above, we find that θc = θh and ρc = ρh is not a synchronization
solution. On the other hand, considering that the two common nodes “8” and “9” take the
same role in the RS process of network Fig.11.6, we would like to treat them as a whole like a
combined entity. In this sense, we may consider the common leaf nodes as a virtual “hub” node
while the two real hub nodes “1” and “2” as virtual “leaf” nodes. Thus, RS between the two
virtual “leaf” nodes can be induced by the new virtual “hub” node. This prediction is confirmed
in Fig.11.8(b). Once the two hub nodes “1” and “2” are synchronized, Eq.11.10 will be the same
for all the leaf nodes in the two leaf clusters of Fig.11.6 and thus result in RS for all the leaf
nodes. This explains how the common leaf nodes induce RS for all the leaf nodes belonging to
different clusters.
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Chapter III. Partial synchronization in the human cerebral cortex network

Figure 11.9: Phase diagrams in the ε − τ plane for the case with the same coupling
for all the links. where (a)-(d) represent the values of rℓ1, rℓ, rcℓ and r, respectively.
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CHAPTER IV

Conclusion and Perspectives

This thesis investigates neuronal activities such as oscillations, synchronization, and wave prop-
agation using neuronal networks. The goal is to understand related brain functions and how the
underlying mechanisms rely on the interaction of dynamics and structures. Specifically, first,
we studied beta oscillations and beta propagating waves that are observed in the motor cortex
of monkeys when they are trained to do a delayed reach-to-grasp task. Then, we introduced
partial synchronization mechanisms such as chimera states and remote synchronization based
on a human cerebral cortex network.

Neural rhythms are one of the most obvious features of neural dynamics. They are related
to various brain functions and are a daily tool for the diagnosis of neurological dysfunction.
Classic studies have shown that neural rhythms depend on neural structures and the behavioral
state of the animal. Here, what I was interested in are beta oscillations, corresponding to the
frequency band range 13 − 30Hz, which are prominent during movement preparation.

First, we analyzed the experimental data of Ref.[53] when monkeys are trained to do a delayed
reach-to-grasp task. An obvious beta bump in power spectrum is present during the movement
preparation period. Moreover beta oscillations are sporadic and organized into complex waves
(planar, radial, spiral waves). Then, in order to study the origin and characteristics of beta
oscillations, we proposed a simple model of the motor cortex based on local excitatory-inhibitory
neuronal populations coupled by longer range excitation. These modules also receive additional
stochastic inputs from other neural structures. We separated the stochastic inputs into two parts:
one that is local and varies from module to module, and the other one that is global and consistent
across all modules. We have shown that this model can accurately reproduce the statistics of
recording data when these external inputs are correlated on a short time scale (25ms) and the
two different components of external inputs are appropriately weighted. The model reproduces
the distribution of beta burst durations, the proportion of the different observed wave types,
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and wave speeds. We have also provided a basic theoretical analysis of beta oscillations.
Debate exists regarding the origin of beta oscillations in the cortex. One hypothesis is that

they are a reflection of inputs coming from basal ganglia and thalamic structures [161, 162, 163],
the other is that they emerge within the neocortex as a consequence of internal dynamics [164,
165, 166]. In our model, we adopted the intermediate view, previously advocated by Sherman
et al. [157], that beta oscillations are generated by recurrent interactions in the motor cortex
but are strongly modulated by inputs from other structures. This needs to be tested in further
experiments.

We proposed that external inputs have both local and global components. The existence of
a global component appears consistent with the presence of global inhibition in the motor cortex
during movement preparation [277]. In addition, considering the thalamo-cortical connectivity
[278], the described diffused connectivity from calbindin-positive matrix neurons could be the
source of our global inputs while core parvalbumin-positive neurons could be the source of our
local inputs. This requires further experiments assessing the origin of synaptic inputs.

The propagating waves found in the motor cortex have an orientational preference [84] (an-
terior–posterior in primary motor cortex; mediolateral in dorsal pre-motor cortex) which may
reflect the underlying structure of the cortex. So we considered anisotropic long-range connec-
tivity. We have found that traveling waves are found to preferentially propagate along the axis
where connectivity decays the fastest. This also needs to be tested in further experiments.

Traveling waves have been shown to carry information about the subsequent movement [84]
and shape the dynamics of the movement itself [279, 280, 281, 282, 283]. However, it is unclear
how the external inputs influence the beta oscillation and further reflect the functions. Further
investigation of this important topic is required.

When the brain functions normally, some but not all neurons function together. Neurons
are embedded in networks of functionally specialized brain regions, which reflects in fact a
partial synchronization. Here we studied chimera states and remote synchronization based on
the anatomy of human cerebral cortex. We focused on structure-function relationships of brain
networks, leading to a better understanding of how structural features give rise to rich and
flexible neural dynamics.

For chimera states in the human cerebral cortex network, we presented a two-layered brain
network model of coupled neurons to study the collective patterns of the brain network. This
model allowed us to find that the two-layered brain network may have different states such as
chimera states in either one hemisphere or the whole network, reminiscent of both the unihemi-
spheric sleep for some birds and marine mammals and the first-night effect for human beings.
Further, we investigated the general two-layered network and studied how the structure param-
eters shape the dynamics of the network. We also considered the effect of delays due to the
limited speed of signal transmission by distinguishing the inter- and intra-coupling as chemical
synapse couplings and electrical synapse couplings, respectively.

Although this two-layered network can well explain the influence of the key parameters of
structures on the rich patterns of the brain network, our model still has some limitations. For
example, we treated the coupling between neurons as fixed constants but, in some cases, they
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can vary in time due to synaptic platicity. Moreover, we used a single neuron model to represent
the dynamics of a node. It perhaps could be better replaced by mean-field models such as the
firing rate model or the neural mass model that we used to denote beta oscillations.

Remote synchronization is a potential mechanism used to account for the segregation and
integration of the brain which is thought to take key roles in supporting the normal functions
of the brain network. Based on the real network of the human cerebral cortex, we have shown
that remote synchronization can be observed in systems of identical oscillators, provided that an
appropriate time delay is considered. A new framework is presented to account for the emergence
of remote synchronization in which a network with two hub nodes or more is connected by
common leaf nodes. We have found that these common leaf nodes take a key role in inducing
remote synchronization for the leaf nodes belonging to different leaf clusters.

Previous studies have shown that remote synchronization may be found in networks of ho-
mogeneous oscillators with symmetric topologies or in networks of inhomogeneous oscillators
with a parametric mismatch. Here, we have shown a third possibility that seems to require an
intricate interplay between structure and dynamics. However, the specific relationship of the
phenomenon with the topological features of the network remains to be more fully investigated.
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A. Analysis of single FAT module

A Analysis of single FAT module

For the interested reader, we detail the analysis of a single E-I module. The model is based
on the recurrent coupling between an excitatory population and an inhibitory population as
follows:

τE(IE)dIE

dt
(t) = −IE(t) + Iext

E (t) + Isyn
EE (t) − Isyn

EI (t)

τI(II)dII

dt
(t) = −II(t) + Iext

I (t) + Isyn
IE (t) − Isyn

II (t) (A.1)

where τE , τI are the response time in this model, depending on the current as shown in Fig.4.4
(c). Isyn

EE , Isyn
IE , Isyn

IE , Isyn
II are the recurrent currents between the excitatory and the inhibitory

populations, Iext
E , Iext

I are the external inputs.
We consider the kinetic model for the synaptic currents,

Isyn
BA = wBA

∫ t

duSA(t − u)rA(u), A ∈ {E, I}, B ∈ {E, I}, (A.2)

SA(t) = θ(t − τA
l )

τA
d − τA

r

{exp[−(t − τA
l )/τA

d ] − exp[−(t − τA
l )/τA

r ]}, A ∈ {E, I}. (A.3)

SE , SI are the kinetic kernels of the synaptic currents, normalized such that
∫

dt SA(t) = 1, A ∈
{E, I}; τE

r , τ I
r , τE

d , τ I
d , τE

l , τ I
l are the rise times, decay times and latencies of the excitatory and

the inhibitory of synaptic currents. θ(t) denotes the Heaviside function, θ(t) = 1 if t > 0 and 0
otherwise. rE , rI , are the firing rates which are related to the currents by rA = Φ(IA), A ∈ {E, I},
and which are shown in Fig. 4.4 (b). We also consider the stochastic component that comes
from the finite number of neurons as in a spiking network. So the firing rate contains one
deterministic part depending on the current plus one stochastic term,

rA = Φ(IA) +
√

Φ(IA)/NAξ, A ∈ {E, I}. (A.4)

NE , NI are the numbers of the excitatory and inhibitory neurons, with the proportion NE
NI

= 4.
ξ is a Gaussian white noise which satisfies < ξ(t)ξ(t′) >= δ(t − t

′).
For the external inputs, the terms Iext,0

E , Iext,0
I are chosen to impose the steady firing rates

rs
E , rs

I ,

Iext,0
A = Is

A − wAErs
E + wAIrs

I , A ∈ {E, I} (A.5)

The fluctuation term of the external inputs η are chosen as stochastic Ornstein-Uhlenbeck (O-U)
processes,

Iext
A = Iext,0

A + σext
A η, σext

A = wext
A νext, A ∈ {E, I} (A.6)

τext
dη

dt
(t) = −η(t) + √

τextξ(t), < ξ(t)ξ(t′) >= δ(t − t
′) (A.7)
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where wext
E , wext

I are the synaptic coupling strengths of external inputs onto the excitatory neu-
rons and the inhibitory neurons, respectively.

wext
E = wEE , wext

I = 2wIE (A.8)

νext is the amplitude of the external input fluctuations, τext is the correlation time scale of the
O-U processes.

A.1 The stability analysis
We first analyze the dynamic regimes of this model, following the method we introduced before.
We linearize Eq.A.1 around the steady state,

IA(t) = Is
A + δIA(t), A ∈ {E, I} (A.9)

Then we get the linear equations,

τE(Is
E)dδIE

dt
(t) = −δIE(t) + δIsyn

EE (t) − δIsyn
EI (t),

τI(Is
I )dδII

dt
(t) = −δII(t) + δIsyn

IE (t) − δIsyn
II (t). (A.10)

We consider an exponential dependence in time of the currents

δIA(t) = δĨA(σ) exp(σt), A ∈ {E, I}. (A.11)

Using a vector notation for the currents I = (IE , II), the perturbation evolves according to

L̃EI(σ) · δI = 0 (A.12)

with the matrix

L̃EI(σ) =


1 + στE(Is

E) − αS̃E(σ) wEIΦ′
I(Is

I )S̃I(σ)

−wIE Φ′
E(Is

E)S̃E(σ) 1 + στI(Is
I ) + γS̃I(σ)

 . (A.13)

The functions S̃E(σ) and S̃I(σ) are the Laplace transforms of SE(t) and SI(t) (Eq.A.3) with

S̃A(σ) = exp(−στA
l )

(1 + στA
r )(1 + στA

d )
, A ∈ {E, I}. (A.14)

The condition of existence of a non-trivial solution of Eq.A.12 determines the growth rate σ,
namely,

W (σ) = det[L̃EI(σ)] = 0 ⇒ [1 − αT̃E(σ)][1 + γ T̃I(σ)] + βT̃E(σ)T̃I(σ) = 0 (A.15)

134



A. Analysis of single FAT module

with

T̃A(σ) = S̃A(σ)
1 + τA(Is

A)σ , A ∈ {E, I}, (A.16)

α = wEEΦ′
E(Is

E),
β = wIEwEIΦ′

E(Is
E)Φ′

I(Is
I ),

γ = wIIΦ′
I(Is

I ).
(A.17)

The real instability line is obtained when the growth rate vanishes σ = 0,

β = (α − 1)(γ + 1). (A.18)

The Hopf bifurcation line corresponds to the parameter for which the growth rate is purely
imaginary σ = iω. It can be obtained in parametric form, with α and β as functions of the
frequency ω and of the recurrent inhibition γ by separating the real and imaginary parts of
Eq.A.15. Solving the resulting linear equations for α and β we get

α = Im[T̃I(iω)T̃E(iω) + γ|T̃I(iω)|2T̃E(iω)]
|T̃E(iω)|2 Im[T̃I(iω)]

,

β = Im[T̃E(iω)]|1 + γT̃I(iω)|2

|T̃E(iω)|2 Im[T̃I(iω)]
. (A.19)

The dynamic regimes as functions of synaptic weights α, β are shown in Fig.A.1(a). The
lines with different colored dotted lines are the bifurcation lines that distinguish the oscillating
state regime (above the bifurcation line) from the steady state regime (below the bifurcation
line) for different γ. The real lines are the real instability line defined as Eq.A.18. We chose two
example points with oscillating (OS) and steady (SS) states for γ = 2 and show their traces with
time in Fig.A.1(b). We can see that the SS module will stay at the steady state while the OS
module will exhibit regular oscillations. Fig.A.1(c) shows the same traces as in (b) but plotted
as rE VS rI .

A.2 Power spectrum and correlation
We consider the two types of stochastic effects, one coming from the finite-size of the neuron
population and the other one from external inputs. We linearize Eq.A.1 around the steady state
(Eq.A.9) and solve it in Fourier space. We define the Fourier transform

δIA(t) =
∫ +∞

−∞

dω

2π
δ̃IA(ω) exp(iωt), A ∈ {E, I},

ξ(t) =
∫ +∞

−∞

dω

2π
ξ̃(ω) exp(iωt), < ξ̃(ω)ξ̃∗(ω′) >= 2πδ(ω − ω′). (A.20)
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Figure A.1: The dynamic of single FAT model.(a) The stability phase diagram as function
of synaptic weights α and β for different fixed γ (green, 0; purple, 1; orange, 2). (b) The
firing rates of the excitatory (blue) and inhibitory (red) for the steady state (SS, real line) and
oscillating state (OS, star line). (c) rE VS rI for the same data plot in (b). Parameters: SS :
wEE = 2.06mV ·s, wEI = 2.40mV ·s, wIE = 1.00mV ·s, wII = 0.87mV ·s OS: wEE = 2.06mV ·s,
wEI = 3.00mV · s, wIE = 1.00mV · s, wII = 0.87mV · s.

Then we obtain the equation

L̃EI(iω) · δ̃I(iω) = F(iω). (A.21)

We solve this equation and get the stochastic forcing term F (iω),

FA(iω) = wAES̃E(iω)
√

rs
E

NE
ξ̃E(ω) − wAI S̃I(iω)

√
rs

I

NI
ξ̃I(ω) + σext

A η̃(ω), A ∈ {E, I}. (A.22)

For the excitatory current,

δ̃IE(iω) = 1
(1 + iωτE)

VE(iω)
W (iω) (A.23)

with W (iω) and VE(iω) are given by

VE(iω) = FE(iω)[1 + γT̃I(iω)] − FI(iω)wEIΦ′
I T̃I(iω),

W (iω) = [1 − αT̃E(iω)][1 + γ T̃I(iω)] + βT̃E(iω)T̃I(iω). (A.24)

The Fourier components of the external input fluctuations and the finite-size noise are

η̃(ω) = ξ̃(ω)
1 + iωτext

, ⟨ξ̃(ω)ξ̃∗(ω′)⟩ = 2πδ(ω − ω′),

⟨ξ̃E(ω)ξ̃∗
E(ω′)⟩ = ⟨ξ̃I(ω)ξ̃∗

I (ω′)⟩ = 2πδ(ω − ω′). (A.25)
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So the current-current correlation function is obtained as

⟨δ̃IE(iω)δ̃I
∗
E(iω′)⟩ = 2πδ(ω − ω′)SEE(ω)

= 2πδ(ω − ω′)(Sext
EE(ω) + SN

EE(ω)) (A.26)

SEE(ω) = (Sext
EE(ω) + SN

EE(ω)) is the power spectrum. Sext
EE(ω) relates to the extend input noise

part by the expression

Sext
EE(ω) =

∣∣∣σext
E + (γσext

E − σext
I wEIΦ′

I)T̃I(iω)
∣∣∣2

[1 + (ωτext)2][1 + (ωτE)2]|W (iω)|2 . (A.27)

SN
EE(ω) relates to the finite-size noise part,

SN
EE(ω) = 1

|W (iω)|2 { rs
E

NE
w2

EE |1 + (γ − β

α
)T̃I(iω)|2|T̃E(iω)|2

+ rs
I

NI

w2
EI |S̃I(iω)|2
1 + (ωτE)2 }.

(A.28)

So the expression of the current-current correlation in real space is

⟨δ̃IE(t)δ̃IE(t′)⟩ =
∫ +∞

−∞

dω

2π
exp[iω(t − t′)]SEE(ω). (A.29)

Fig.A.2 shows the traces of the currents of the steady state after adding the fluctuating
inputs.

Figure A.2: The currents traces (IE, blue, II , red) of the FAT model. (a) Steady State
(SS) shown in Fig.A.1 (a). (b) SS With the external inputs, parameters are: wEE = 2.06mV · s,
wEI = 2.40mV · s, wIE = 1.00mV · s, wII = 0.87mV · s, N = 50000, τext = 25ms, νext = 0.2Hz.

The power spectrum and the correlation of IE from the analytical expression and the simu-
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lation results are shown in Fig.A.3.

Figure A.3: Power spectrum and correlation of IE for the single FAT model with
external inputs. (a) Power spectrum. (b) Log plot of (a). (c) Autocorrelation, (theory, blue
real line, simulation, green dot line).

138



B. The effect of chemical synapse delay on chimera states

B The effect of chemical synapse delay on chimera states

As introduced in Eq.10.3, when considering the chemical inter-connections, we also consider
the effect of delay. It is reasonable because in the human brain, the communication between
the left and right hemispheres has to go through the long corpus callosum and thus causes
some time delay, due to the limited speed of signal transmission and processing. So, for longer
inter-connections in our model, it is interesting to consider the effect of time delay.

Here we show the phase diagram of g1 for the delay τ with the other parameters α, λin, λout

and lout (only for the general two-layered network). From Fig.B.1 and Fig.B.2, we see that the
time delay increases the chimera states areas in the parameters panel. Interestingly, we have
found that time delay effect makes an obvious borderline that distinguishes the chimera states
and the unsynchronized states, which may be important for brain functions.

Figure B.1: Phase diagram of g1 for the two-layered brain network with time delay
chemical inter-coupling. The up panels are for the right hemisphere and the down panels
are for the left hemisphere. (a, d) The phase diagram of g1 in the parameter plane of τ and λout

for α = π/2 − 0.1 and λin = 0.5. (b, e) The phase diagram of g1 in the parameter plane of τ
and α for fixed λin = 0.5 and λout = 2.0. (c, f) The phase diagram of g1 in the parameter plane
of τ and λin for fixed λout = 0.5 and α = π/2 − 0.1 .
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Figure B.2: Phase diagram of g1 for the general two-layered network (N = 1000) with
time delay chemical inter-coupling. The up panels are for the subnetwork A, and the down
panels are for the subnetwork B. (a, e) The phase diagram of g1 in the parameter plane of τ and
lout for α = π/2−0.1, λin = 0.1 and λout = 0.5. (b, f) The phase diagram of g1 in the parameter
plane of τ and λout for fixed α = π/2 − 0.1 λin = 0.5 and lout = 500. (c, g) The phase diagram
of g1 in the parameter plane of τ and α for fixed λin = 0.8,λout = 1.0 and lout = 500. (d, h) The
phase diagram of g1 in the parameter plane of τ and λin for fixed λout = 0.5,α = π/2 − 0.1 and
lout = 500.
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MOTS CLÉS

oscillations, synchronisation, ondes, neurosciences, réseau complexe

RÉSUMÉ

Les oscillations corticales sont une caractéristique essentielle du cerveau et sont impliquées dans plusieurs fonctions per-
ceptives et cognitives. La synchronisation et la propagation similaire à des ondes, de l’activité des populations neuronales,
sont reliés aux fonctions corticales et au comportement. Dans cette thèse, je m’ intéresse d’abord aux oscillations beta,
des oscillations avec des fréquences entre 13Hz et 30Hz, qui sont observées durant la préparation des mouvements.
Je propose un modèle simple du cortex moteur fondé sur des populations locales de neurones excitateurs et inhibiteurs
couplées à plus longues distances par des connexions excitatrices, qui reçoivent de plus des entrées fluctuantes en
provenance d’autres régions cérébrales. Je montre que ce modèle reproduit de façon précise, les caractéristiques des
oscillations beta et des ondes enregistrées expérimentalement, quand les entrées externes sont bien choisies. J’étudie
ensuite différents modes d’activité dans lesquels seulement une partie seulement des neurones sont synchronisés, en
utilisant la connectivité du cortex cérébral humain. Je mets en evidence plusieurs caractérisques structurales du réseau
qui conduisent à une synchronisation partielle. Cela contribue à mieux comprendre comment la structure du réseau
cérébral permet une dynamique neurale riche et flexible.

ABSTRACT

Cortical oscillations are an essential characteristic of the brain, which are involved in many perceptual and cognitive op-

erations. The synchronization and the wavelike propagation of the activity of neuronal populations are cortical features

that are related to functions and behaviors. In this thesis, first, I study beta oscillations, oscillations with frequencies be-

tween 13Hz and 30Hz, which are observed during movement preparation. I propose a simple model of the motor cortex

based on local excitatory-inhibitory neuronal populations coupled by longer range excitation and which receives fluctuat-

ing inputs from other cerebral structures. I show that the model accurately reproduces the features of beta oscillations

and waves in recording data when external inputs are suitably chosen. Then, I investigate different patterns of activity

when only a fraction of the neurons are synchronized, based on the anatomy of human cerebral cortex. I find that some

particular features in the network structure lead to partial synchronization. This contributes to a better understanding of

how the brain network structure gives rise to rich and flexible neural dynamics.

KEYWORDS

oscillations, synchronization, waves, neuroscience, complex network
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