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Résumé en français

La ré-identification de personnes (Re-ID) est une tâche bien établie dans les systèmes de
surveillance modernes qui vise à reconnaître des individus à travers des images capturées par
différentes caméras de surveillance sans champs de vision se chevauchant. Cette capacité ne
se limite pas à une simple avancée technique, elle joue un rôle crucial dans l’amélioration
de la sécurité publique, en facilitant par exemple le suivi d’individus dans les gares, les
aéroports ou les espaces urbains denses. Elle est également utilisée dans des secteurs variés,
notamment pour l’analyse comportementale en commerce, la gestion des flux piétons en
smart cities, ou encore le monitoring de patients en milieu hospitalier.

Cependant, le déploiement de modèles de Re-ID est généralement limité par l’écart
de domaine. Il s’agit de la disparité dans la distribution entre l’ensemble des données
d’entraînement (domaine source) et les données réelles rencontrées lors du déploiement (do-
maine cible). En effet, les performances des modèles de Re-ID tendent à dégrader lorsqu’ils
sont appliqués à un environnement différent de celui dans lequel ils ont été entraînés, en
raison des variations de conditions d’éclairage, d’angles de vue et de qualité des images.

Nous nous intéressons aux méthodes d’Adaptation de Domaine Non Supervisée (UDA)
qui ont émergé comme des outils puissants pour combler cet écart de domaine. En exploitant
les connaissances acquises à partir du domaine source labelisé, les méthodes UDA perme-
ttent aux modèles de s’adapter à de nouveaux environnements sans nécessiter de données
labelisée dans le domaine cible.

De plus, le déploiement de systèmes de Re-ID est de plus en plus soumis à des réglemen-
tations strictes sur les données, telles que le Règlement Général sur la Protection des Données
(RGPD) et le AI Act. Ces nouvelles réglementations ajoutent des contraintes critiques sur
le stockage et le transfert de données afin de protéger la vie privée des individus. Par con-
séquent, les méthodes traditionnelles d’UDA pour la Re-ID qui reposent sur le transfert et le
stockage de grands volumes de données de surveillance pour l’entraînement et l’adaptation
des modèles font face à des défis légaux et éthiques.

Pour adhérer aux contraintes de confidentialité, nous présentons deux nouveaux settings:
Online UDA (OUDA-Rid) et Distributed UDA (DUDA-Rid). OUDA-Rid se focalise sur
l’adaptation des modèles de Re-ID quand les données sont continuellement transmises par
des caméras de surveillance sans accès direct aux données stockées. Ce setting est crucial
pour les scénarios où les contraintes de confidentialité empêchent la rétention des données.
DUDA-Rid étend le concept d’adaptation de domaine à un setting distribué dans lequel le
processus d’adaptation est décentralisé à travers plusieurs caméras de surveillance, abordant
ainsi les défis des restrictions de transfert de données. Pour surmonter les défis imposés par
les settings susmentionnés, nous proposons dans cette thèse deux méthodes : Source-Guided
Similarity Preservation (S2P) et Fed-Protoid.

S2P est conçu pour relever les défis de l’UDA et de l’oubli catastrophique, en se concen-
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trant sur la contrainte de confidentialité liée au stockage des données. Au cours du proces-
sus d’apprentissage continu, S2P préserve les similarités de caractéristiques essentielles en
sélectionnant soigneusement un ensemble de support provenant du domaine source qui max-
imise la similarité avec les données cibles. Cette approche permet une adaptation continue
au domaine cible tout en respectant les réglementations liées au stockage des données.

Fed-Protoid est une méthode conçue pour faire face aux restrictions de transfert de don-
nées, en particulier l’interdiction de transférer des images de surveillance en dehors des
caméras. En employant une approche d’apprentissage fédéré, Fed-Protoid permet une adap-
tation de domaine non supervisée distribuée à travers plusieurs appareils/caméras.

Ensemble, ces méthodes présentent une solution intégrale pour le déploiement de sys-
tèmes de Re-ID de personnes qui se conforment aux lois et réglementations récentes sur
la protection des données. En comblant l’écart de domaine sous les conditions strictes de
contraintes de stockage et de transfert de données, S2P et Fed-Protoid ouvrent la voie à la
prochaine génération de Re-ID de personnes préservant la vie privée.

Nous validons l’efficacité des frameworks proposés, S2P et Fed-Protoid, à travers divers
scénarios, y compris des tâches d’adaptation de domaine réel à réel et synthétique à réel.
L’évaluation est réalisée sur des ensembles de données de référence en Re-ID, tels que
Market-1501, MSMT17, CUHK03 et RandPerson, et couvre différents contextes représen-
tatifs des défis rencontrés dans des déploiements réels.
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Chapter 1

Introduction

1.1 Video Surveillance Systems

1.1.1 Context

For many centuries, surveillance has been an essential component of organized civilizations.
It refers to any set of devices or mechanisms that can recognize, monitor, and track the
movements of one or more people. Traditionally, the primary uses of surveillance have been
in the military and for security, when watchmen and guards carried out the manual procedure.

In the mid-20th century, the world witnessed big changes that steadily transformed the
surveillance landscapes with the development of the first closed-circuit television (CCTV)
systems. At first, the CCTV systems were mainly used to monitor rocket launches but
quickly found their way into public safety and surveillance. In the latter part of the 20th
century, the digital revolution spurs the rapid evolution of surveillance systems. Moving
from analog to digital systems enhanced the capabilities of data storage, retrieval, and pro-
cessing. Moreover, the appearance of Internet and Wireless technologies further expanded
the scope of surveillance systems, making them capable of monitoring and managing data
remotely and in real-time.

Recently, the integration of Artificial Intelligence (AI) and machine learning into surveil-
lance systems has been a pivotal breakthrough, enabling new functionalities like facial recog-
nition, gait analysis, and person re-identification. Thanks to these advancements, the ability
of surveillance systems to identify and track individuals has significantly improved in diverse
settings, going from controlled environments like airports and office buildings to crowded
open public spaces.

1



CHAPTER 1

1.1.2 Integration to Various Sectors

Video surveillance systems have been widely integrated into various sectors, demonstrating
their adaptability and necessity in today’s modern society. For example, transportation and
traffic management heavily rely on surveillance to monitor traffic, manage congestion, and
ensure safety in public transport. In the retail and commerce sectors, these systems are be-
coming essential for security, loss prevention, and even for analyzing consumer behavior to
enhance store layouts and improve the shopping experience. The concept of "smart cities"
also relies on surveillance systems for urban planning, contributing to safer, more effective,
and sustainable urban environments. The integration of surveillance systems is not limited
to these sectors, since they can also be integrated in educational institutions, industrial envi-
ronments, and healthcare facilities.

1.1.3 Surveillance and Privacy in the Era of AI: Balancing Innovation
with Ethical Constraints

Through the years, surveillance systems have evolved, mirroring society’s changing needs
and advancing capabilities. These systems have grown from their simplistic analog form
to become complex digital networks that are further enhanced by AI. Modern surveillance
systems, equipped with digital cameras, provide not only visual capabilities but also possess
an analytical component to interpret the observed imagery and footage. This led to the
development of technologies like facial recognition and person re-identification (Re-ID),
which have transformed surveillance from manual review of recorded videos after incidents
to active monitoring. Now, surveillance systems are capable of analyzing videos in real time
without human intervention. In particular, Person Re-ID stands out as an excellent example
of innovation since it enables systems to recognize and track people across various camera
views. It also makes operations more effective by making the monitoring process simpler,
cutting down on the need for people to watch the security camera footage all the time.

Person Re-ID refers to the task of recognizing a person of interest across different scenes
or camera feeds, even when their appearance may change due to changes in viewpoint, light-
ing, or pose. This task is crucial for effective surveillance since it enables continuous tracking
of persons of interest across extensive public or semi-public areas. However, during the de-
ployment of Person Re-ID systems, they encounter a crucial challenge which is Domain Shift
[1], also referred to as Domain Gap. Domain shift is an omnipresent problem across numer-
ous computer vision tasks, but it becomes particularly crucial and evident in the deployment
of Person Re-ID systems in real-world scenarios. It mainly refers to the discrepancy between
the data on which a model is trained (source domain) and the data it encounters in real-world
applications (target domain). This gap results in a decrease in performance since the model’s
learned representations may not well generalize to new and unseen environments. Moreover,
addressing the domain shift comes with another issue related to the collection of labeled
data from the target domain. Firstly, acquiring such labeled data is too costly and time-
consuming. Secondly, and perhaps more critically, the process of collecting and annotating
data in target domains can raise serious privacy concerns, since tagging captured images of
individuals in public areas with unique identifiers to train Person Re-ID models creates and
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stores potentially private information about individuals’ locations and activities.

In many countries, the growth of surveillance systems has urgently raised ethical ques-
tions, particularly about privacy. The state of surveillance today illustrates a complex balanc-
ing act: safeguarding the interests of individual rights while meeting the larger community’s
need for safety. This conflict is best exemplified by the Person Re-ID task, which raises
important concerns regarding individual privacy and consent while also providing substan-
tial benefits for collective security and efficiency. It is also important to understand the more
general risk of such technologies when exploited by authoritarian and totalitarian regimes [2,
3]. These forms of governance might use surveillance systems as a tool to further widespread
their centralized control and limit political freedoms. Such misuse underlines the importance
of implementing and deploying surveillance systems that are aligned with ethical guidelines
to prevent the weakening of democratic principles and protect personal liberties.

This thesis focuses on the understanding of privacy regulations and their impact on the
Re-ID models, specifically addressing the following question: How can Re-ID models be
adapted to comply with the constraints imposed by these regulations? The goal is to develop
novel solutions and frameworks that ensure a balance between technological advancement
and the critical need for privacy protections. In the following section, we will explore in
more detail the specifics of the Person Re-ID task and highlight the main challenges that this
thesis aims to address.

1.2 Person Re-Identification

1.2.1 Definition and Overview

The primary goal of Person Re-ID is to identify a person of interest across a network of
cameras in diverse environments. More precisely, it tells whether a person, as a query, has
appeared in another place, captured by a different camera, or even the same camera but at
a different time instant. Technically speaking, a Person Re-ID system can be broken down
into three steps (Fig. 1.1):

1. Person Detection: This task involves identifying and locating individuals within video
frames.

2. Person Tracking: After individuals are detected, the person tracking task keeps mon-
itoring their movements throughout the different frames in the video. It is akin to
following a person as they move through various scenes in the video.

3. Person Retrieval: The last step is person retrieval, which is often considered the
main and primary focus in many Person Re-ID studies. This involves recognizing
and matching an individual across different cameras or periods, guaranteeing that the
person of interest remains the same despite changes in viewpoint, lighting, or even
clothing. In this thesis, if not specified, Person Re-ID will always refer to the person
retrieval task.

Historically, the Person Re-ID was not formally recognized as a separate field and was
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(a) Person Detection (b) Person Tracking (c) Person Retrieval 

Figure 1.1: General Pipeline of Person Re-ID. Figure inspired from [4]

mainly integrated with multi-camera tracking, which fuses appearance models with geometry
calibration across disjoint cameras [5]. The term "person re-identification" made his first
appearance in 2005, when researchers started focusing on re-identifying individuals as they
re-entered the camera’s field of view, using dynamic Bayesian network to correlate labels and
features like color and spatial-temporal cues [6]. The emergence of Convolutional Neural
Networks (CNN) [7] has greatly impacted the computer vision community. The great success
in tasks like image classification [8] has affected almost all the research fields including
Person Re-ID. This success has spread to Person Re-ID in 2014 where [9] employs for the
first time a more general way that can learn a similarity metric directly from image pixels
using Siamese Networks. These first works have laid a robust foundation that has led to big
improvements in the field, inspiring other researchers to come up with new ideas and better
understand how to adapt neural network architectures for the task of Person Re-ID.

1.2.2 The role of Person Re-Identification in modern Surveillance

Modern intelligent video surveillance has been gaining a lot of attention in recent years.
Along with detection and tracking, Person Re-ID has emerged as an essential component
for having complete surveillance systems. The capability of Person Re-ID in recognizing
individuals across different camera views is not only critical for tracking individuals in public
spaces but also for identifying persons of interest across disjoint cameras in surveillance
systems without the need for human supervision.

Over the years, the domain of Person Re-ID has witnessed considerable advancements.
Lately, the emergence of end-to-end deep learning approaches and large pre-trained models
has marked a remarkable leap forward, boosting the performance of Person Re-ID while ad-
dressing its main challenges such as domain shift and privacy constraints alignment. These
developments have highlighted the importance of Person Re-ID, establishing it as an indis-
pensable component and crucial element within modern surveillance systems.

The importance of Person Re-ID can be also reflected in its diverse applications across
various sectors, such as:
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• Public Safety: Person Re-ID can assist law enforcement agencies in establishing pub-
lic safety. In fact, integrating Person Re-ID technology with surveillance cameras can
help authorities track persons of interest and identify potential suspects. Hence, par-
ticipating in monitoring public spaces more efficiently.

• Retail Analytics: Person Re-ID can enhance customers’ experience by providing in-
sights into preferences, frequented sections, and purchasing trends, aiding in product
placement, store layout, and targeted marketing strategies.

• Smart Cities: Person Re-ID is a pillar in the design and the development of smart
cities since it supports their main initiatives ranging from managing pedestrian flows
and public safety to crowd control and handling large public gatherings.

• Healthcare: In healthcare facilities, the Person Re-ID can also be applied to monitor
patients and manage staff workflows, contributing to overall safety and efficiency.

• Social Robotics: Person Re-ID plays a crucial role in the field of social robotics since
it enhances a robot’s ability to interact differently with each individual. In fact, by
identifying and distinguishing between different individuals, social robots can tailor
their interactions according to the preferences, behaviors, and needs of each person.
Person Re-ID also enables robots to remember past interactions with individuals, al-
lowing them to build on previous experiences to enhance future interactions.

1.2.3 Challenges in Person Re-Identification

Despite significant progress in recent years, Person Re-ID, along with all computer vision
tasks, remains inherently complex and faces distinct challenges.

The early research mainly focused on addressing the fundamental challenges related to
Person Re-ID such as variations in lighting, pose, camera views, and occlusion. For example,
two disjoint cameras, within the same surveillance system, one that is directly facing the
sunlight and the other one that is placed in a shaded zone where sunlight does not reach will
capture the same person differently, which leads to an increase of the intra-class variation.

With the integration of end-to-end deep learning architectures, the Person Re-ID algo-
rithms are now capable of producing robust features to those variations. Now, the focus of
the community has shifted towards more complex challenges related to the deployment of
Person Re-ID systems in real-world applications and can be categorized, but not limited to,
domain shift and the increasing concerns regarding the standards of ethics and privacy. In
what follows, we will discuss these identified challenges associated with deploying Person
re-ID systems.

Domain Shift In computer vision, a model is generally trained and evaluated on images
drawn from the same domain (source domain), meaning that the training set and the evalua-
tion set are drawn from the same distribution. However, when evaluating on another domain
(target domain) with images drawn from a slightly different distribution, the performance of
the model usually drops drastically. Commonly referred to as domain shift, domain gap or
domain drift, this disparity between source and target domains occurs very often in practice
for all computer vision tasks such as semantic segmentation [10], image classification [11,
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12, 13], and particularly for Person Re-ID task [14, 15].

The problem of domain shift, which arises in the case where deploying a Person Re-ID
model on a target dataset, results in a significant drop in performance [1]. Typically, a Person
Re-ID model trained on a set of images collected in Paris, might not produce satisfactory
results in New Delhi, because the distribution of the target domain does not necessarily align
with the source domain distribution. As an example, Fig. 1.2 illustrates the domain shift
between two commonly used datasets in Person Re-ID (CUHK03 and PRID). It is apparent
that each dataset has its distinct visual style, categorizing them into separate domains. These
differences lead to a notable decrease in the performance of Person Re-ID models [14]. Such
discrepancies pose a significant hurdle in practice since manually annotating data for every
new domain is impractical due to time, resource, and privacy constraints.

An effective approach to deal with domain shift under the unavailability of the target
domain labels is known as Unsupervised Domain Adaptation (UDA) [16]. Essentially, UDA
aims to train and adapt a model on a source domain while conserving good accuracy on the
target domain all without requiring any labels from the target domain. In this thesis, we focus
on different UDA techniques to overcome these challenges.

Figure 1.2: Illustration of the domain shift between two Person Re-ID datasets (CUHK03 and
PRID). We also show images from two different cameras within the PRID dataset. Source:
[17]

Ethics and Privacy The great advances in AI technology are nowadays changing the way
we work, make decisions, and interact with the world around us. At this stage of develop-
ment, AI is now being integrated into various sectors, ranging from healthcare and finance to
personalized advertising and surveillance. However, this rapid development and integration
are raising serious ethical and privacy concerns that necessitate careful consideration. When
we talk about the ethics of AI, we are systematically thinking about making sure these tech-
nologies are fair, responsible, and transparent. Moreover, privacy challenges are paramount,
as AI’s capability to process, analyze, and make decisions based on vast amounts of personal
data poses risks to individual privacy and data protection rights.
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The European Union’s General Data Protection Regulation (GDPR) and the recently pro-
posed AI Act together form a comprehensive text law to ensure the ethical use of AI, with
a strong focus on data privacy and protection. In fact, the GDPR, effective since May 25,
2018, provides a foundational approach to data privacy, emphasizing the fundamental princi-
ples that are lawfulness, fairness, transparency, and accountability when processing personal
data. As for the AI Act, it seeks to regulate high-risk systems by imposing requirements
for adherence to ethical standards. In general, it ensures that AI systems are designed and
operated in a manner that protects individuals’ rights by integrating GDPR principles into
the operation and functionality of the AI systems.

In this thesis, we give high importance to ethics and privacy since naturally Person Re-
ID involves images of people that are categorized as sensitive data. On one hand, under the
GDPR: person images are considered a special category of personal data, requiring higher
protection due to their sensitivity (Chap. 2 Art. 9). On the other hand, the AI Act focuses
more on regularizing the use of biometric identification systems. By considering them as
a form of "high-risk" AI systems, the AI Act prohibits the use of identification systems
in publicly accessible spaces for the purpose of law enforcement unless certain exceptions
apply (AI Act 5.2.2).

Most of the Person Re-ID systems do not comply with the laws stated in both the GDPR
and the AI Act. The two main constraints that should be addressed and respected in the
Person Re-ID are related to data storage and data transfer:

• Data Storage: GDPR, states, through its principles on "data minimization" (Chap.2
Art. 5.c) and "storage limitation" (Chap. 2 Art. 5.e), that personal data must be kept no
longer than is necessary for the purposes for which data are collected and processed. It
introduces strict requirements for data handling, including the need for secure storage
and the limitation of data retention periods. The AI Act further complements these
principles by emphasizing the ethical use of AI technologies, ensuring they comply
with data protection laws and respect individuals’ privacy.

• Data Transfer: GDPR ensures that the transfer of personal data should only occur
under conditions that fully respect the protection of the data subjects’ rights. In Chap.
5 Art. 44-49, the GDPR imposes strict requirements on data transfer that include trans-
fers based on adequacy decisions, appropriate safeguards like Binding Corporate rules
(BCRs) or Standard Contractual Clauses (SSCs), or specific derogations for particular
situations. The AI Act’s focus on transparency and accountability in the use of AI
systems necessitates clear documentation and justification of data transfers, especially
when deploying AI models that have been trained on datasets collected from diverse
jurisdictions.
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1.3 Research Focus and Contributions

Aside from earlier challenges in Person Re-ID, we are more particularly interested in ad-
dressing two mentioned challenges: domain shift and privacy. More precisely, this thesis
concentrates on bridging the domain shift and enhancing privacy in Person Re-ID applica-
tions. The main motivation of our research is to develop solutions that will not only enable
efficient performance across varied domains but also respect the ethical principles and the
privacy of the individuals’ data being processed.

Most of the papers addressing the problem of domain shift in Person Re-ID adopt strate-
gies developed within the Unsupervised Domain Adaptation (UDA) field. However, these
approaches often do not comply with the latest GDPR laws and AI Act requirements. In this
thesis, we argue that there is a need for novel and appropriate design of UDA approaches
to align with existing regulations. The work conducted in this thesis has led to three papers
being accepted at international conferences and has also contributed to the filling of two
patents. Our main contributions can be listed as follows:

1. Adapting and Benchmarking UDA methods under data storage constraints: we
introduce and explore the Online Unsupervised Domain Adaptation (OUDA) setting
for Person Re-ID. This novel setting aims at simultaneously addressing online adapta-
tion and privacy protection. We extend three existing offline UDA frameworks to fit the
OUDA setting. Conducting evaluations across four different datasets yields insightful
findings on the performance of classical UDA approaches and their limitations.

• Hamza Rami, Matthieu Ospici, and Stéphane Lathuilière. "Online Unsuper-
vised Domain Adaptation for Person Re-identification.". In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, 2022.

2. Improving adaptation under data storage constraints: we introduce the Source
Guided Similarity Preservation (S2P) framework, designed to address the challenges
of catastrophic forgetting and domain shift in the OUDA setting. The flexibility of S2P
allows it to seamlessly incorporate almost any existing UDA method to adhere to the
privacy requirements. We test S2P on both real-to-real and synthetic-to-real OUDA
tasks using four different datasets. S2P consistently outperforms prior state-of-the-art
UDA methods, showing that it is possible to achieve significant performance while
respecting the data privacy related to data storage.

• Hamza Rami, Jhony H. Giraldo, Nicolas Winckler and Stéphane Lathuilière.
"Source-Guided Similarity Preservation for Online Person Re-Identification.". In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV), 2024.

• European Patent No. 23305260.4: "Method, device, and computer program for
adapting an ANN model for person re-identification on a target domain."

3. Adaptation without data transfer: we introduce and explore the Distributed Unsu-
pervised Domain Adaptation (DUDA-Rid) setting that does not allow any transfer of
images from the cameras, making a first in the field. Moreover, we propose the Fed-
Protoid algorithm that employs prototypes within a federated learning framework to
simultaneously tackle distributed learning and domain shift. Through rigorous test-
ing on both real-to-real and synthetic-to-real scenarios across different datasets, Fed-
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Protoid demonstrates superior performance over existing state-of-the-art methods. Ad-
ditionally, we introduce an enhanced version, Fed-Protoid++, that integrates Vision
Transformers (ViTs) and leverages self-supervised pre-training techniques, resulting
in additional performance improvements in DUDA-Rid.

• Hamza Rami, Jhony H. Giraldo, Nicolas Winckler and Stéphane Lathuilière.
"Privacy-Preserving Adaptive Re-Identification without Image Transfer.", In Pro-
ceedings of the European Conference on Computer Vision (ECCV), 2024.

• European Patent No. 24305312.1: "Method for performing privacy-preserving
federated learning in the framework of re-identification."
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Chapter 2

Literature Review

As previously outlined, this thesis proposes two innovative approaches leveraging Continual
Learning and Federated Learning to address the domain gap challenge in deploying Person
Re-ID systems while adhering to privacy constraints. We will start the literature review on
the Person Re-ID topic by discussing the difference between early traditional feature extrac-
tors pivotal in Person Re-ID and the latest Deep Learning approaches that become crucial
for overcoming the core obstacles inherent in Person Re-ID. Following this we present the
datasets and evaluation metrics. We then transition to the discussion on Unsupervised Do-
main Adaptation (UDA) to highlight the key methods and contributions in this area for gen-
eral computer vision applications and specifically for the Re-ID task. Finally, we introduce
Continual Learning and Federated Learning as innovative and promising methodologies.
These approaches are particularly pertinent since we integrate them with Person Re-ID to
forge systems that are not only effective but also prioritize privacy preservation.

2.1 Person Re-Identification

Historically, the Person Re-ID research began with its association with multi-camera track-
ing (Fig. 2.1). Initially, the Person Re-ID was not formally recognized as a separate field
and was mainly integrated with multi-camera tracking, which fuses appearance models with
geometry calibration across disjoint cameras [5]. The term "person re-identification" made
his first appearance in 2005, when researchers started focusing on re-identifying individuals
as they re-entered the camera’s field of view, using dynamic Bayesian network to model the
conditional probability of the labels given features like color and spatial-temporal cues [6].
One year later in 2006, Gheissari et al. [18] marked a significant shift in the field by estab-
lishing person Re-ID as an independent task, separated from multi-camera tracking. Their
work mainly focused on the visual cues of persons, using color and edge histograms for vi-
sual matching. The emergence of Convolutional Neural Networks (CNNs) [7] has made a
big impact on the computer vision community. The great success in tasks like image classifi-
cation [8] has affected almost all the research fields including Person Re-ID. This success has
spread to Person Re-ID in 2014 where Yi et al. [9] employs for the first time a more general
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way that can learn a similarity metric directly from image pixels using Siamese Networks.
The same year, Li et al. [19] proposed a filter pairing neural network that jointly handles
misalignment, photometric and geometric transforms, occlusions, and background clutter in
Person Re-ID. Moreover, they introduced the largest benchmark Re-ID dataset (CUHK03)
at that time to enable training end-to-end CNNs. These first works have laid a robust foun-
dation that has led to big improvements in the field, inspiring other researchers to come up
with new ideas and better understand how to adapt neural network architectures for the task
of Person Re-ID.

1997

Multi-camera tracking

2005

Appearance of Person Re-ID in 
multi-cam tracking

2006

Person Re-ID as an independent 
vision task

2010

Symmetry-Driven Accumulation
of Local Features (SDALF)

Deep metric learning for 
Person Re-ID

2014

Unsupervised Learning of Generative Topic
Saliency

 for Person Re-identification

2016

Joint Learning for Person Re-ID

2017

Dynamic label graph matching for 
unsupervised re-identification

HydraPlus-Net

2018

BraidNet
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2021 2023

TransReID
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Unsupervised Re-ID

Handcrafted methods
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Figure 2.1: Milestones in the person re-ID history.

2.1.1 Handcrafted Feature Extractors

Before the advent of deep learning, handcrafted feature extractors were the predominant
methods in computer vision tasks, including Person Re-ID. In this context, the person’s
appearance was mainly described by three principal visual characteristics: color, texture,
and shape which serve as the foundation components for identifying individuals.

In 2006, Gheissari et al. [18] laid the groundwork by proposing a method that generates
invariant signatures of persons by combining normalized color and salient edge histograms.
Building on top of this, Gray et al. [20] proposed a novel approach to learn a set of view-
point invariant features where each feature consists of a feature channel, a region, and a
histogram bin, further enhancing the model’s ability to recognize individuals from various
viewpoints. As the research progressed, in 2010 Farenza et al. [21] presented an appearance-
based method for Person Re-ID that consists of the extraction of features that model three
complementary aspects of the human appearance: the overall chromatic content, the spatial
arrangement of colors, and the presence of recurrent local motifs with high entropy. Fol-
lowing this, Bak et al. [22] developed a methodology that focuses on learning a model that
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selects the most descriptive features from color, intensity, gradients, and filter responses for
a specific class of objects, to optimize feature selection within a covariance metric space
guided by an entropy-driven criterion. Continuing the trend of innovation, in 2014 Das et
al. [23] improved consistency between camera pairs with appearance signatures constructed
using HSV color histogram on horizontal sub-regions specifically with the torso and leg ar-
eas. One year later, Liao et al. [24] introduced an effective feature representation called
Local Maximal Occurrence (LOMO). The LOMO feature extractor analyzes the horizontal
occurrence of local features and maximizes the occurrence to make a stable representation
against viewpoint changes.

The decline in the popularity of handcrafted feature extractors in favor of Deep Neural
Networks (DNNs) can be attributed to several key disadvantages. First, the engineering
process of handcrafted features needs considerable domain-specific knowledge which makes
them more challenging to develop. Second, handcrafted feature extractors are not well-
designed for large-scale datasets that exhibit a wide range of variability.

2.1.2 Deep Person Re-Identification

Recently, DNNs have emerged as the primary method for feature extraction in the Person
Re-ID task, marking a significant departure from traditional handcrafted feature extractors.
Unlike their handcrafted counterparts, DNNs have demonstrated remarkable performance on
large-scale datasets, showcasing their robustness and versatility. Many attempts were made
to improve the adaptability of DNNs in providing solutions tailored to the specific demands
of person ReID, further solidifying their position as the preferred choice in the field. Similar
to handcrafted feature extractors, deep learning architectures aim at learning discriminative
and robust spatial feature representations to describe human appearance.

Following the publication of the CUHK-03 dataset, Wang et al. [25] proposed a joint
Single-Image Representation (SIR) and Cross-Image Representation (CIR) learning frame-
work based on CNN, where the SIR and CIR feature representations are jointly optimized
to achieve better cross-camera person matching performance. Qian et al. [26] proposed
MuDeep which is a novel multi-scale deep learning model for Re-ID based on Siamese net-
work. MuDeep can learn features at different scales and evaluate their importance for cross-
camera matching. However, as the number of scales increases, the model needs to learn a
large number of parameters and thus has high computational burden. For this reason, Wang
et al. [27] designed Deep Anytime Re-ID model that combines effective feature embeddings
built on the four blocks of ResNet50 [28], hence resulting in the first Re-ID algorithm appli-
cable in the presence of resource constraints. In this context, the authors of OS-Net [29] also
designed a lightweight Re-ID specific network inspired by MobileNet [30].

To further enhance the ability of the feature representations to distinguish different per-
son identities, Wang et al. [31] designed a deep model called BraidNet that has a specially
designed cascaded WConv structure that learns to extract the comparison features of two
images, which are robust to misalignments and color differences across cameras. Hou et
al. [32] proposed a novel structure called Interaction and Aggregation (IA) to enhance the
feature representation capability of CNNs. Firstly, the Spatial IA (SIA) module models the
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inter-dependencies between spatial features and then aggregates the correlated features cor-
responding to the same body parts. Secondly, the Channel IA (CIA) module selectively
aggregates channel features to enhance the feature representation, especially for small-scale
visual cues.

Another research trend focused on discriminative local feature representation by parti-
tioning a human image into multiple cells. Motivated by the idea to alleviate the problems
of occlusion, boundary detection errors, view, and pose variations, local feature learning-
based methods aim at extracting discriminative local features of individuals. To this end,
researchers explored attention as a powerful module to find areas that have a greater impact
on the feature map and to focus the model on local parts of the body appearances to cor-
rect misalignment and eliminate background perturbance. Liu et al. [33] proposed a new
attention-based DNN, named as HydraPlus-Net (HPnet), that multi-directionally feeds the
multi-level attention maps to different feature layers. In this context, Li et al. [34] showed
the advantages of jointly learning attention selection and feature representation using a novel
Harmonious Attention CNN. To further obtain better local fine-grained features of a per-
son, Ning et al. [35] proposed a feature selection network that combines global and local
fine-grained features to realize Person Re-ID. Recently, Xu et al. [36] proposed a novel Re-
ID network named iReIDNet which can effectively extract local and global multi-granular
feature representations by a well-designed spatial feature transform and coordinate attention
mechanism together with improved global pooling.

Local feature learning can provide comprehensive information about specific pedestrian
regions, but pose and occlusion fluctuations may compromise the accuracy of local fea-
tures. To improve the final feature representation, several researchers frequently combine
fine-grained local features with coarse-grained global features. Wang et al. [37] designed
a multi-granularity feature learning strategy combining global and local feature representa-
tions. In order to reduce the negative effects of inaccurate bounding boxes on pedestrian
matching, Zheng et al. [38] introduced a pyramid model that transitions from coarse-grained
to fine-grained, incorporating both local and global pedestrian information along with pro-
gressive cues ranging from coarse to more detailed features.

However, these strategies often increase the learning difficulty and are not efficient or
robust to real-world scenarios. In this context, He et al. [39] proposed for the first time a
transformer-based Person Re-ID framework named TransReID. In addition to the architec-
ture of the transformer, they designed a novel module called Jigsaw Patch Module (JPM)
that rearranges the patch embeddings via shift and patch shuffle operations which generates
robust features with improved discrimination ability. To further enhance the effectiveness of
TransReID, Zhang et al. [40] proposed a Patch-wise High-frequency Augmentation (PHA)
method that splits patches with high-frequency components by the Discrete Haar Wavelet
Transform, then empowers the ViT to take the split patches as auxiliary input. Zhang et
al. [41] also proposed a novel end-to-end framework that combines global and local feature
representations and captures the body structural information by modeling the spatial relation
between patches using graph neural networks (GNN).

Although supervised Person Re-ID approaches perform well, the high labeling costs pre-
vent them from scaling to huge unlabeled datasets and new domains. Consequently, because
of its capacity to resolve the scalability problem in person Re-ID, unsupervised person Re-ID

– 14 –



has gained more and more attention. In the following section, we will explore recent devel-
opments in the field of unsupervised Person Re-ID, where the reliance on labels is limited.

2.1.3 Unsupervised Person Re-Identification

The approaches to unsupervised Person Re-ID fall into two main categories: fully unsu-
pervised learning (USL) and unsupervised domain adaptation (UDA) based methods. In
this section, our focus will be on USL methods, while UDA approaches will be covered in
subsequent sections.

Unsupervised Re-ID has been investigated around the same time as supervised Re-ID.
Similarly, before the deep learning era USL Re-ID focused on how to construct robust feature
representation manually. Traditional methods have mainly focused on feature engineering,
which designs appropriate handcrafted features using prior expert knowledge. Farenzena
et al. [42] presented an appearance-based method that consists of the extraction of features
that model three complementary aspects of the human appearance: the overall chromatic
content, the spatial arrangement of colors into stable regions, and the presence of recurrent
local motifs with high entropy. Motivated by the idea that human eyes can recognize person
identities based on some small salient regions, Zhao et al. [43] proposed a novel perspective
for Person Re-ID based on unsupervised salience learning.

With the emergence of deep learning architectures, several challenges were being ad-
dressed. Regarding the lack of ground-truth identity labels, pseudo-label estimation was
proposed. Early works proposed the use of graph models to represent samples and perform
dynamic graph matching for cross-camera labeling [44]. An alternative method that has
attracted increased attention for generating pseudo-labels is clustering-based. This method
utilizes clustering algorithms, such as K-means and DBSCAN [45], to progressively group
training samples into clusters. The cluster IDs are then used as pseudo-labels to train Re-
ID models. For instance, Fan et al. [46] proposed PUL, a progressive process that iterates
between clustering and fine-tuning.

However, a common problem in clustering-based pseudo-label estimation is the presence
of noisy labels that harm the guidance of the model training. To refine the pseudo-labels,
NRMT [47] employs a dual-network approach during training to select samples and conduct
collaborative clustering with those chosen samples. This method is akin to the ACT [48]
method, which also utilizes two networks to differentiate between pure and diverse samples.
Noisy labels can also result from inaccuracies in estimating the number of identities when
using the K-means clustering algorithm. To this end, Yutian et al. [49] used a hierarchical
bottom-up clustering which can visit all samples and determine the similarity of samples.
Despite its effectiveness, hierarchical clustering struggles to distinguish between hard sam-
ples—visually similar individuals with different identities—often merging these hard sam-
ples into the same cluster. To reduce the impact of hard samples, Zeng et al. [50] proposed
HCT, a hierarchical clustering-guided Re-ID that utilizes PK sampling in each iteration.
This involves randomly selecting K samples from P identities for training. Zhang et al. [51]
made the first attempt to leverage the spirit of temporal ensembling to tackle the problem of
pseudo-label noise. Cho et al. [52] proposed a Part-based pseudo-label Refinement (PPLR)
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framework that exploits both the global and local context of images to alleviate the label
noise. Recently, in the continuation of transformer-based Re-ID [39], Luo et al. [53] first
trained the TransReID model in a self-supervised way on the large-scale dataset LUPerson
[54] then adapted C-Contrast [55] for unsupervised fine-tuning.

Person Re-ID can also be viewed as a cross-camera retrieval task aimed at learning a
model to discriminate images of individuals from different camera views. In line with this,
another family of methods called Camera-Aware Feature Learning has been established,
which achieves comparable results to Clustering-based methods [56]. Cross-domain Mixup
[57] was applied by conducting interpolation on the data manifold, which is similar to GAN-
based image style transfer. Meta-learning was introduced for the task of Re-ID in [58],
where the authors proposed camera-aware meta-learning (MetaCam) aiming to learn cam-
era invariant representations by simulating the cross-camera Re-ID process during training.
Finally, the Side Information Embeddings module (SIE) was proposed for TransReID [39]
that plugs in learnable embeddings to mitigate feature bias toward camera variations. De-
spite the effectiveness of Camera-Aware approaches, this thesis places greater emphasis on
Pseudo-Labeling methods, as they have consistently demonstrated superior performance in
benchmarks, achieving state-of-the-art results across multiple datasets and settings. More-
over, Pseudo-Labeling methods are highly scalable as they do not require explicit annota-
tions from every camera perspective, which is often impractical in large-scale surveillance
systems.

2.1.4 Loss functions

Before the deep learning era, metric learning, which involves methods to learn distances
between pairs of images within the feature space, was the subject of many years of research.
Researchers focused on techniques such as the learning of the Mahalanobis distance function
[59], or the projection matrix [60]. With the advent of deep learning, the design of loss
functions has become central to metric learning in guiding feature representation learning.
In the context of the Person Re-ID task, three main loss functions and their modifications
have been studied: Identity Loss, Triplet Loss, and Contrastive loss.

Identity loss. The training process of the Person Re-ID task can be treated as a multi-class
classification problem [61]. Similar to image classification, the ID-discriminative embedding
network treats each individual as a separate class and uses the ID as a classification label.
Hence, the ID loss can be expressed as a cross-entropy loss as follows:

Lid = −
K∑
a=1

qa(x) log p(ya|x) (2.1)

Where K is the number of identities, qa(x) = 1 if the label of the sample image x is a,
otherwise qa(x) = 0. p(ya|x) is the probability that the picture x is predicted as ID ya
using the softmax activation function. Several studies suggested alterations to the ID loss
by exploring other softmax variations such as Deep Cosine Metric [62]. Although effective,
relying solely on ID loss is not enough to learn a model with sufficient generalization ability.
Therefore, ID loss often requires a combination with other losses to regularize the model.
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Triplet loss. Triplet loss is commonly used for Person Re-ID. Motivated by the idea to en-
sure that an image xa (anchor) of a specific person is closer to all other images xp

i (positive)
of the same person than it is to any images xn

i (negative) of any other person, the Triplet
Loss [63] can be formalized as follows:

Ltrip =
∑
i

[
||f(xa

i )− f(xp
i )||22 − ||f(xa

i )− f(xn
i )||22 + α

]
(2.2)

Where α is a non-negative margin enforced between positive and negative pairs. A major
drawback of this formulation is that the number of triplets grows cubically as the dataset
expands. To this end, Hermans et al. [64] proposed batch-hard triplet loss which consists of
first forming batches by randomly sampling P classes (identities), and randomly sampling
K images of each person, resulting in a batch of PK images. Then, for each sample a in
the batch, the hardest positive and the hardest negative samples are selected from the batch
to compute the following loss:

LBH−trip =
P∑
i=1

K∑
a=1

[
max

p
||f(xa

i )− f(xp
i )||22 −min

n
||f(xa

i )− f(xn
i )||22 + α

]
(2.3)

Combining both Triplet loss and ID loss has proven to be effective in several Re-ID methods
[65, 66, 67]. Moreover, there exist other variations of the Triplet loss, including soft triplet
loss for knowledge distillation [68].

Contrastive loss. Contrastive loss aims at pulling together images from the same identity
and pushing away the images from different identities in the feature space. It was tradition-
ally designed for Siamese Network-based Person Re-ID [31, 69]. Recently, Ge et al. [70]
proposed SpCL which is a contrastive-based learning approach that integrates a memory
bank to store centroids ck of the identity clusters. Given v a feature representation of a given
image, the unified contrastive loss can be expressed as:

Lcontrastive(v) = − log

(
exp(⟨v, z+⟩/τ)∑
k exp(⟨v, ck⟩/τ)

)
(2.4)

where z+ indicates the positive class prototype corresponding to v and τ is the temperature
parameter.

2.1.5 Datasets and Evaluation Metrics

In the literature, we have witnessed multiple Person Re-ID datasets that can be categorized
as follows:

Single-Shot datasets. Single-shot datasets provide just one query image and one true
match image in the gallery. These datasets were essential for training traditional models
that relied on hand-crafted feature extractors. Among the most widely used single-shot
datasets are GRID [71], ViPeR [72], and CUHK01 [73], containing thousands of images.
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Historically, person images were usually identified by manually annotating the images with
hand-drawn bounding boxes. This emphasizes the attention to detail needed in the early
stages of Person Re-ID.

Multi-Shot datasets. The shift towards the deep learning era has impacted the Person Re-
ID landscape, particularly with the introduction and use of Siamese networks [9]. These
networks, which often input a pair of images including an original and its augmented coun-
terpart, are adept at evaluating the similarity between two images of the same identity. Early
multi-shot datasets like CAVIAR [74] and PRID [75] were further expanded upon by sub-
sequent datasets such as CUHK03 [19], Market1501 [76], DukeMTMC [77], and MSMT17
[78]. These later datasets introduced a larger number of identities and images, which enriches
the diversity and complexity of data available for the Person Re-ID task. As the person de-
tection field advanced, automatic detection and tracking algorithms became integral to the
process. Deformable Parts Model (DPM) [79], Faster RCNN [80], and Yolo-v5 [81] have
been used to extract person bounding boxes more effectively. These advancements have not
only accelerated the data preparation process but also improved the accuracy and reliability
of Person Re-ID systems.

Large-Scale datasets: Unlabeled and Synthetic. Because of the privacy concerns associ-
ated with collecting real images of individuals, synthetic person datasets have been proposed.
These datasets such as PersonX [82] and RandPerson [83] mitigate privacy concerns while
also offering valuable resources for Re-ID studies as alternatives to real datasets. To further
enhance the generalization ability of Re-ID models, large-scale unlabeled datasets collected
from the internet like LUPerson [54] have been proposed. They are specifically designed
to replace the pre-trained models on ImageNet [84], enabling self-supervised learning that
improves the performance of the Re-ID models.

Table 2.1 presents a summary of the characteristics of the various aforementioned datasets
for the Re-ID task. It illustrates the shift from single-shot to multi-shot datasets, character-
ized by an increase in the number of images and cameras, as well as the emergence of
large-scale datasets that can be either real and unlabeled, collected from the internet [54], or
synthetic [82, 83].

Evaluation metrics. The commonly used evaluation metrics for Person Re-ID are the Cu-
mulative Matching Characteristics (CMC) and the mean Average Precision (mAP). In the
case of a single-shot setting, the CMC top-k accuracy can be formulated as follows:

Acck =

{
1 if top-k ranked gallery samples contain the query identity
0 otherwise

(2.5)

The final CMC score is then computed by averaging the top-k accuracies over all the queries.
For multi-shot datasets, where each identity has multiple images, we randomly sample one
instance for each gallery identity and compute a CMC curve like in a single-shot setting. The
random sampling is repeated for N times and the expected CMC score is reported.
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Table 2.1: Person Re-Identification Datasets

Dataset Release # Ids # Cams # Imgs Bounding Box Generation Crop Size Multi-shot

VIPeR [72] 2007 632 2 1264 Hand 128X48
GRID [71] 2009 1025 8 1275 Hand Vary
CAVIAR4ReID [74] 2011 72 2 1220 Hand Vary ✓
3DPeS [85] 2011 192 8 1011 Hand Vary ✓
PRID [75] 2011 934 2 24541 Hand 128X64 ✓
CUHK01 [73] 2012 971 2 3884 Hand 160X60
CUHK02 [86] 2013 1816 2 7264 Hand 160X60 ✓
CUHK03 [19] 2014 1467 2 13164 Hand/DPM Vary ✓
Market1501 [76] 2015 1501 6 32217 Hand/DPM 128X64 ✓
DukeMTMC-reID [77] 2017 1812 8 36441 Hand Vary ✓
MSMT17 [78] 2018 4101 15 126441 Faster RCNN Vary ✓
PersonX [82] 2019 1266 6 273456 Synthetic Vary ✓
RandPerson [83] 2020 8000 19 1.8M Synthetic Vary ✓
LUPerson [54] 2021 200000 - 4M YOLO-v5 Vary ✓

The mAP is also used to evaluate the overall performance of Re-ID models. For each
query, we first calculate the area under the Precision-Recall curve, also known as the average
precision (AP). In the context of Re-ID, the AP can be formulated as follows:

AP =
1

N

∑
k

Pkrelk (2.6)

where N is the number of ground-truth positives, Pk refers to the precision at rank k, which
can be also computed using the ratio between the number of correct matches and k. And
finally, the relk is an indicator function that is equal to 1 if we get a correct match at rank k,
and 0 otherwise. The mean value of APs of all queries is then calculated, which results in
the final mAP of the Re-ID model.

2.2 Unsupervised Domain Adaptation

Unsupervised Domain Adaptation (UDA) is one of the special settings of transfer learning,
which aims to leverage knowledge from an abundant labeled source domain to learn effec-
tive predictors for the target domain with limited or no labels. This process necessitates
addressing the challenge of domain shift, ensuring that the knowledge transferred is relevant
and effective despite the differences between the source and target domains. Before citing
the different UDA methods, the early works of Ben-David et al. [87] mainly focused on the
generalization bound for the problem of domain adaptation. It has been shown that the target
domain error can be minimized by bounding the source domain error and the discrepancy be-
tween them. To this end, UDA methods not only optimize the model with the source domain
but also ensure that the discrepancy between source and target is minimized.

The first category of UDA techniques is the discrepancy-based methods. They aim to
decrease the discrepancy between the two domains and align both data distributions. This is
done by usually adding different distance loss functions in the activation layers of networks.
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The Maximum Mean Discrepancy (MMD) is one of the most popular distances in minimiz-
ing the discrepancy between two distributions. It measures the squared distance between the
embeddings of the two distributions in a reproducing kernel Hilbert space. Based on this,
Tzeng et al. [88] proposed a Deep Domain Confusion (DDC) model that is trained with a
loss that combines both the cross-entropy and the MMD loss. The same authors extended
the DDC model by introducing soft label distribution matching loss [89]. Correlation Align-
ment (CORAL) loss [90] has been introduced as an alternative to MMD loss. CORAL aims
to align second-order statistics (co-variances) between the cross-domain distributions. Other
losses like Jensen-Shannon Divergence (JSD) [91, 92] and Wasserstein Distance [93, 94]
were also deployed to decrease the discrepancy between source and target domains.

With the advent of Generative Adversarial Nets (GANs) [95], adversarial learning models
have been found to be effective in identifying invariant representations in domain adaptation.
DANN [96] is one of the first adversarial methods for adversarial-based UDA. It consists
of integrating a gradient reversal layer to enhance the discrimination of source and target
domains. Similarly, ADDA [97] used an inverted label GAN loss to split the source and
target domains. Combining MMD with adversarial learning also showed promising results
in adaptation. For instance the Joint Adaptation Network (JAN) [98] combined MMD with
adversarial learning to align the joint distribution of multiple domain-specific layers across
domains. To further improve the results, several approaches incorporate image-level adapta-
tion to preserve image consistency throughout training, aiding in feature alignment. Progres-
sive domain adaptation, as described in [99], integrates feature alignment with image-level
adaptation. This method initially employs a model to transform images from the source to an
intermediate domain through image translation. The transformed images retain their original
labels from the source domain and serve as simulated training images for the target domain.
Subsequently, alignment is performed between the intermediate and target domains. Addi-
tionally, Zhang et al. [100] introduced a technique that adjusts the weights of target samples
that may potentially mislead the domain discriminator.

As an alternative to adversarial and discrepancy-based methods, pseudo-labeling tech-
niques have been proposed. These techniques leverage unlabeled data from the target domain
as a training mechanism to facilitate domain adaptation [101]. This category of methods,
originally designed for semi-supervised learning, follows a two-step process: (1) Generate
pseudo-labels in the target domain based on the model’s confidence scores and clustering,
and (2) fine-tune the model using the generated pseudo-labels with target domain data. Gen-
erally, the source model is treated as the initial pseudo labeler to generate the pseudo-labels.
Saito et al. [102] proposed a novel asymmetric tri-training method to generate pseudo-labels.
Two networks are used to assign pseudo-labels to unlabeled samples and the remaining net-
work is trained by the pseudo-labeled target samples. To include the semantic information
in the images, Xie et al. [103] proposed a moving semantic transfer network (MSTN) to
achieve semantic matching and domain adversary losses to obtain pseudo-labels. Rather
than exclusively relying on the predicted class probability of the generated pseudo-labels,
Zhang et al. [100] proposed a sample re-weighting strategy, such that a selected sample is
assigned a higher weight when it is not close to the source samples, and vice versa. Re-
cently, Litrico et al. [104] proposed a re-weighting of the classification loss based on the
reliability of the pseudo-labels that is measured by estimating their uncertainty, which brings
robustness against the noise that inevitably affects the pseudo-labels.
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Pseudo-labeling techniques have also been developed for Person Re-ID as a technique
to facilitate domain adaptation. Similar to broader practices in this field, these methods
typically generate pseudo-labels by clustering all cross-camera samples based on visual sim-
ilarity, and then a model is fine-tuned as a classification task. Wu et al. [105] proposed a
Clustering and Dynamic Sampling (CDS) method that iteratively clusters the target samples
into several centers and dynamically selects informative ones from each center to fine-tune
the source domain model. Since clustering may lead to data imbalance in clusters, Ding
et al. [106] proposed to use cluster validity as the guidance and derive a dispersion-based
criterion that promotes compact and well-separated clusters. AD-Cluster [107] is an aug-
mented discriminative clustering method that trains a generative model to generate images
of different identities in different camera styles and improve the discriminative capability
of the Re-ID model with the augmented clusters. Yang Fu et al. proposed a Self-Similarity
Grouping (SSG) [67] approach that assigns different pseudo-labels to both global and lo-
cal features. To mitigate the effects of noisy hard pseudo-labels, Mutual-Mean Teaching
(MMT) [68] (Fig. 2.2), introduced by Yaxiao et al., employs a teacher-student framework,
involving two networks. These networks are trained jointly, using hard pseudo-labels gen-
erated by both networks and soft pseudo-labels generated by their mean networks, to refine
the pseudo-labels in the target domain. SpCL [70] is another method based on contrastive
learning which employs a hybrid memory that stores and continually updates the centroids.
However, the clustering result suffers from the data distribution discrepancy. To address this
issue, Zhang et al. [108] proposed a heterogeneous graph to promote the domain adaptation
and the quality of pseudo-labels simultaneously. Meanwhile, Zheng et al. [109] introduced
a Group-aware Label Transfer (GLT) algorithm which enables the online interaction and
mutual promotion of pseudo-label prediction and representation learning.

Figure 2.2: Illustration of the MMT framework. Source: [68].

An alternative approach [110, 111, 112] to the methods previously discussed attempts
to narrow the gap between the source and target domains through the use of intermediate
domains. Traditional techniques [110, 111] embed the source and target domains into a
Grassmann manifold and learn a specific geodesic path between the two domains. In deep
learning methods [113, 114], they either use GANs to generate a domain flow by reconstruct-
ing input images on pixel level [113] or learn better domain-invariant features by bridging
the learning of the generator and the discriminator [114]. The same approach was explored
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for Person Re-ID. Dai et al. [115] proposed an Intermediate Domain Module (IDM) that
can learn intermediate domains’ representations on the fly by mixing the source and target
domains’ hidden representations. In this thesis, we will conduct a thorough examination of
these UDA techniques that are based on the pseudo-labeling approach. We will detail the
main challenges these methods face in the context of Person Re-ID and provide insights and
improvements to ensure compliance with the imposed privacy regulations.

2.3 Continual Learning

Continual Learning (CL) emerges as a foundational strategy to facilitate lifelong capabilities
in the context of developing robust and adaptive AI systems. It consists of training a model
to gradually acquire, retain, and refine knowledge over time across a variety of tasks and/or
domains. A major challenge, known as catastrophic forgetting [116], emerges when training
continuously a model on new data distributions, generally leading to a decline in perfor-
mance on previously learned tasks. This problem is symbolic of the fundamental trade-off
between plasticity and stability, where plasticity refers to the ability of the model to adapt to
new tasks by modifying its parameters, and stability refers to the capacity of the model to
retain previously acquired knowledge [117, 118]. In the field of CL, scenarios are generally
classified according to two factors: the division of incremental batches and the availability
of task identities. These factors specify how the data is presented to the model. For in-
stance, in the Task-Incremental Learning (TIL) the tasks have disjoint data label spaces, and
the model can access the task identities to switch between different specialized modes or
parameters [119, 120]. Domain-Incremental Learning (DIL) is another scenario where data
share the same label space but come from different input distributions [119]. Finally, Class-
Incremental Learning (CIL) is another scenario where the data are incrementally provided
in batches, with each batch introducing new classes. In CIL, no task identities are available,
requiring the model to continuously adapt to recognize new classes alongside old ones [121].

CL methods can broadly be categorized into three categories. The first category is the
regularization-based methods, where explicit regularization terms are added to balance the
old and new tasks. Early works focused on selectively regularizing the changes in network
parameters to minimize forgetting. For instance, EWC [116] introduced a quadratic penalty
in the loss function, which penalizes parameter variations based on their importance to pre-
vious tasks, where the importance is estimated using the Fisher Information Matrix (FIM)
[122]. Rather than computing offline the FIM, SI [123] proposed computing the per-synapse
consolidation strength in an online fashion and over the entire learning trajectory in parame-
ter space. Inspired by neuroplasticity, Aljundi et al.[124] introduced MAS which is a novel
approach to CL that computes the importance of the parameters in an unsupervised and on-
line manner. The importance of each parameter is computed based on how sensitive the
predicted output function is to a change in this parameter. finally, Chaudhry et al. [125] pre-
sented an improved EWC++ that combines the regularization terms of both EWC [116] and
SI [123] to integrate their advantages. Within the same direction of research, recent works
focused on the network itself. Instead of consolidating parameters, NPC [126] estimates the
importance of each neuron and reduces its learning rate accordingly. AGS-CL [127] freezes
the parameters connecting the important neurons, which is equivalent to a hard version of
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weight regularization. Moreover, the AGS-CL suggests re-initializing the weights associated
with unimportant nodes after learning each task to prevent the negative transfer. Regular-
ization can also target the intermediate or final output of the prediction function. This is
typically done by employing knowledge distillation [128] and a teacher-student framework
where the teacher is the previously learned model and the student is the currently trained
model. LwF [129], a pioneer work in this direction, proposed to learn new training samples
while using their predictions from the output head of old tasks to compute the distillation
loss. LwM [130] presented Attention Distillation Loss that preserves the acquired knowl-
edge without storing any data, by penalizing the changes in classifiers’ attention maps. As
we go through this thesis, we will discuss in more detail the teacher-student framework and
how it can be adapted to representation learning in the context of Person Re-ID.

The second category of CL methods is the replay-based methods, which typically store
a few old training samples within a small memory bank. The key challenges of this category
of methods are how to construct and how to exploit the memory bank. For the construction,
early works adopt fixed principles for sample selection such as reservoir sampling [131],
ring buffer [132] that ensures an equal number of old samples per class, and mean-of-feature
[133] which selects an equal number of old samples that are closest to the feature mean of
each class. To further improve storage efficiency, GMED [134] is a proposed framework
for editing stored examples in continuous input space via gradient updates, to create more
challenging samples for replay. As for the exploitation, replay-based methods require an
adequate use of the memory bank to recover past knowledge. Yiduo et al. [135] proposed
a novel approach based on mutual information maximization. Sun et al. [136] studied the
differential influence of training examples using a novel MetaSP algorithm. In the same
context, Zhicheng et al. [137] managed to identify a new class of second-order influences
that gradually amplify incidental bias in the replay buffer and compromise the selection
process. As discussed earlier, these methods necessitate retaining examples from previous
tasks, a practice that may be limited in many scenarios, like Person Re-ID, where privacy
concerns arise. In response, generative replay has been proposed as an alternative to storing
samples. However, it requires training an additional generative model to replay generated
data, which can sometimes demand significant computational resources [138, 139, 140].

The methods previously discussed utilize a common set of parameters across tasks, of-
ten leading to interference between tasks. In contrast, developing task-specific parameters
can directly address this issue, prompting researchers to concentrate on a different group
of methods known as architecture-based methods [141]. Based on whether the model pa-
rameters expand with the number of tasks, architecture-based methods can be categorized
into two types: fixed capacity or capacity-increasing. The first sub-category of fixed capac-
ity frameworks usually selects for each task a sub-network from the CL model to achieve
knowledge transfer [142, 143, 144]. Capacity-increasing frameworks prevent forgetting old
tasks and adapt to new ones by introducing new task-specific parameters for each additional
task while freezing parameters related to old tasks [145, 146, 147].

In this thesis, we will focus on the first category of CL methods that are regularization-
based. This choice is driven by the privacy concerns related to the task of Re-ID. As dis-
cussed in the previous chapter, recent privacy regulations prohibit the storage of previously
captured images that arrive as a one-pass data stream, making replay-based methods unsuit-
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able. Additionally, our specific scenario is online incremental learning, where the task of Re-
ID in the CL process remains consistent. This setting limits the applicability of architecture-
based methods, which often require distinct parameters for different tasks.

2.4 Federated Learning

Federated Learning (FL) is a machine learning paradigm proposed to meet the increasing
demand for collaborative learning across various decentralized devices or data holders while
preserving privacy [148]. Fundamentally, FL preserves by design data confidentiality and
privacy by allowing multiple clients (or edge devices)-each with their own local data- to par-
ticipate in the development of a global model without having to exchange data directly. This
is achieved by training locally in a distributed manner a model with each client’s local data
and then sending the updated versions to a central server. The central server then aggregates
these updates to improve the global model, using an aggregation rule, which is sent back to
all the clients for further training (Fig. 2.3). Let’s consider N models {Mi}Ni=1 that collab-
orate jointly on separated datasets {Di}Ni=1 to optimize the learning of a centralized server
model Mserver. A federated learning strategy is effective if the predictive accuracy Aserver of
Mserver respects the following conditions:

|Aserver − Acenter| < ϵ

Aserver > Ai, i = 1, ..., N
(2.7)

Where Acenter is the predictive accuracy of a model trained on the union of all the datasets,
Ai is the predictive accuracy of the model Mi if it was trained separately only on Di, and ϵ a
small non-negative constant. We say that the algorithm for FL has ϵ accuracy loss [149].

FL has been applied to various computer vision tasks like image segmentation [150],
classification [151], and person Re-ID [152]. Despite its growing adoption, optimizing fed-
erated learning frameworks encounters three primary challenges: 1) Non-IID data: the data
distributions vary across different clients. 2) Unbalanced data: there is inconsistency in the
volume of data available with each client. 3) Limited communication: practical applica-
tions favor methods that require fewer communication rounds and can operate under low
bandwidth, owing to network instability and security considerations.

FederatedAveraging (FedAvg), first introduced by McMahan [148], employs a strategy
where local models trained with local data are averaged on the server, and this averaged
model is then redistributed to the clients. The protocol stipulates that each client model starts
from the same random initialization. During each communication round, the server dissemi-
nates the aggregated model to the clients. The weighting of client models in FedAvg is based
on the quantity of data each client has, although this does not necessarily reflect the varia-
tions in domain distribution across the data. However, this approach can neglect data-poor
clients, since clients with larger amounts of data have a greater influence on the quality of the
global model, which results in a suboptimal solution. To address this issue, researchers have
proposed alternatives to adjust the weights of the clients. For instance, FedDisco, introduced
by [153], proposed using the difference between local and global parameter distributions as
a complementary metric for aggregation weights. Similarly, the authors of another work
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Figure 2.3: The basic framework of FL.

[154] suggested adaptively assigning different weights to clients based on their contribution
in each round, which can be measured by contrasting the local gradient vector with the global
gradient vector.

Building on the concepts of FedAvg, FedProx [155] introduces a proximal term to the lo-
cal objective functions to better handle data heterogeneity and enhance model stability. This
proximal term helps maintain local updates closer to the global model, improving consis-
tency and reducing the impact of statistical heterogeneity. This approach allows for variable
local workloads, addressing both statistical and systems heterogeneity:

min
w

Fk(w) +
µ

2
∥w −wt∥2 (2.8)

where wt represents the server model weights after round t.

Further expanding the landscape of federated learning solutions, other frameworks such
as FedAsync [156] implement asynchronous model updates using a weighted average ap-
proach. Similarly, FedShare [157] introduces a shared public dataset among clients to mit-
igate weight divergence issues. Additionally, FedMeta [158] integrates meta-learning tech-
niques into the federated learning framework, offering a novel approach to model training
across decentralized environments. Each of these developments represents a step toward
addressing the unique challenges posed by the federated learning paradigm, specifically re-
garding data heterogeneity, communication constraints, and model synchronization.

FL has recently been explored in the context of Person Re-ID, where privacy concerns
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are critical due to the personal nature of the images involved. This makes the application of
federated learning not just useful but essential. However, it raises an interesting question:
How effective is it to directly apply existing federated learning approaches to the specific
challenges of Person Re-ID? Research so far has tackled this by either tweaking federated
learning optimization techniques to better suit Person Re-ID models or by adapting cutting-
edge Person Re-ID methods to fit into the federated learning framework. The initial re-
search in the field of Supervised Person Re-ID within a federated learning framework was
introduced in FedReID [159]. This paper proposed a Federated Partial Averaging (FedPav)
optimization technique, applying FedAvg solely to the feature extractor (backbone) while
allowing the classifiers to be trained independently on each client’s dataset. Observing that
local models often outperformed the aggregated model, the authors enhanced their approach
by incorporating knowledge distillation. This method treats all client models as teachers and
the central server model as a student, aiming to minimize the L2 norm between the clients’
average outputs and the server’s output. A subsequent study, FedUnReID [160], adapted the
well-known unsupervised baseline for Person Re-ID, Bottom-Up Clustering (BUC) [49], to
the federated setting. This work included the development of a Controller to manage per-
sonalized epochs and a Profiler to aid in personalized clustering at the edge devices, while
also introducing a personalized update method to better tailor the aggregated models for each
client. Building further on these concepts, the study titled Federated Unsupervised Person
Re-identification via Camera-aware Clustering (FedUCA [161]) adapted another unsuper-
vised Person Re-ID method, CAP [162], to federated learning. According to the authors,
federated learning significantly enhances Person Re-ID performance across various datasets,
particularly in smaller-scale datasets. This indicates that the datasets from federated clients
can boost the performance of purely unsupervised methods, thanks to the diverse data contri-
butions. In chapter 5, we will explore how can a source domain further contribute to overall
performance and how the knowledge from the source can be leveraged across all clients in a
federated setting.
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Chapter 3

Online Unsupervised Domain Adaptation
for Person Re-identification

3.1 Introduction

In this chapter, we present our first contribution to the field of Person Re-ID. We had previ-
ously identified data storage as one of the critical constraints that impact the deployment of
Re-ID models in real-world scenarios, due to the sensitive nature of personal images related
to privacy concerns. In the subsequent sections, we will focus on data storage as the pri-
mary limitation of Re-ID models. We will thoroughly explore the main constraints related to
data storage and develop a novel setting that simulates the real-world scenarios where these
constraints are encountered.

In Chapter 2, we also detail the state-of-the-art methods in Person Re-ID and highlight
UDA techniques as promising approaches to address the distribution shifts between training
sets and images captured in test environments. Building on this insight, we propose to inves-
tigate the performance of UDA methods when adapted to environments with restricted data
access. This benchmark aims to understand their effectiveness and adaptability under such
constraints.

Despite their relative efficiency, UDA methods are all based on the assumption that we
have access to a large set of samples from the target domain environment during the training
to perform adaptation in an offline fashion. In this chapter, we argue that this assumption
is violated in many real-world scenarios. First, when deploying a Person Re-ID system, we
gather images as long as they are recorded in the form of a stream that continuously provides
images from different cameras/places. The offline process implies that the Re-ID system
requires a possibly long data collection phase before deployment. Second, since the Re-
ID task evolves person identities, the system is confronted with confidentiality purposes in
many countries, forcing the technology provider of such models to discard previously seen
images. Therefore, we argue that to match practical scenarios, an unsupervised domain adap-
tation method for Person Re-ID should respect two main constraints: 1) Online adaptation:
the target domain data is not accessible all at once, but in a stream fashion where only small
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Figure 3.1: Illustration of the proposed OUDA for Re-ID setting: in Online Unsupervised
Domain Adaptation for Person Re-ID, the annotated source dataset is available at any time
while the target dataset is divided into multiple tasks. In between each task, the data from
the previous task is discarded.

batches of images are available at a given instant of time and 2) Privacy protection: Images
captured by the different cameras can be used to update the Re-ID model and stored for only
a limited period of time. To this end, in this chapter, we propose and study a practical sce-
nario for Unsupervised Person Re-ID which is the Online Unsupervised Domain Adaptation
setting for Person Re-ID (OUDA-Rid). Fig. 3.1 gives an illustration of the proposed online
setting, where we assume that the model has full access to the well-annotated source data
set, however, unlike all the previous methods, the target domain dataset is fed to the Re-ID
model in an online fashion. Practically, the target domain will be divided into several unla-
beled subsets of images, where each subset will be viewed by the Re-ID model only once,
hence respecting the two constraints: online adaptation and privacy protection. Regarding
evaluation, we consider an independent and fixed target dataset with identities that do not
overlap with any of the training tasks.

The contributions of this chapter can be summarized as twofold:

• We propose a new challenging yet practical scenario, the Online Unsupervised Domain
Adaptation (OUDA-Rid) setting for Person Re-ID to respect two main constraints:
Online Adaptation and Privacy Protection of identities.

• We adapt and evaluate three existing frameworks for offline UDA to the proposed
OUDA-Rid setting: the Strong Baseline [66], MMT [68] and SpCL [70]. These
methods are evaluated in four different adaptation settings based on three public and
widely-used datasets: Market 1501 [76], DukeMTMC-reID [77] and MSMT17 [78].
Our results provide some interesting experimental conclusions regarding the perfor-
mance and limitations of existing approaches. We hope that this work will stimulate
the community to address domain adaptive Re-ID in the OUDA-Rid setting.

– 28 –



3.2 Related Work

This section expands on the previous related work discussed in chapter 2 from two perspec-
tives. First, we give more details about UDA-based Re-ID methods with a particular focus on
Domain translation and Pseudo-labeling based methods. Secondly, we review the state-of-
the-art methods that have recently been proposed for addressing the lifelong learning setting
for Person Re-ID, while also identifying their major limitations.

Unsupervised domain adaptation (UDA) for person Re-identification has been recently
gaining a lot of attention for its practical applications. UDA methods can transfer learned
knowledge from an annotated source domain to an unlabeled target domain, thus reducing the
cost and discarding the need to have a well-annotated data set. Most of the existing methods
and approaches in this area can be divided into two main categories: domain translation-
based and pseudo-label-based methods.

Domain translation-based methods employ style transfer methods to modify the source
images to obtain images with the content of the source domain but the appearance of the
target. In this way, they obtain images similar to the target with the corresponding label
annotations from the source images. These generated images are then used to refine the
network parameters. Recent works in this category investigate the integration of generative
models [163] [164] [165], as an example, we have [78] which is based on CycleGAN [166]
to bridge the domain gap by transferring persons from the source domain to the target. [167]
also generates images while preserving the self-similarity of the images before and after the
translation and the domain-dissimilarity of the translated source images to the target images.
Finally, we can cite the work of Zhong et al. [168] where the proposed framework learns
camera-invariant features while enforcing domain connectedness, where two images, one
from the source domain and the other one from the target domain, are fed to the network as
a negative pair of images.

Pseudo-labeling methods, also called clustering-based methods, employ an iterative
process alternating between clustering and finetuning [169, 170, 49, 171, 172]. In its sim-
plest implementation, [66], the cluster indexes obtained in the clustering stage are used as
labels to fine-tune the Re-ID network. Despite its simplicity, this simple approach obtains
satisfactory results but suffers from limitations that have been addressed in recent works.
For instance, Yang Fu et al. proposed a Self-Similarity Grouping (SSG) [67] approach that
assigns different pseudo-labels to both global and local features. To mitigate the effects of
noisy hard pseudo-labels, Mutual-Mean Teaching (MMT) [68], proposed by Yaxiao et al.,
adopts a teacher-student framework with two networks that are trained jointly using hard
pseudo-labels generated by the two networks and soft pseudo labels generated by their Mean
Networks, to conduct pseudo-label refinement in the target domain. Moreover, we can men-
tion the work done by Ger et al. referred to as SpCL [70] that, unlike previous methods,
takes advantage of both labeled source domain images’ centroids and un-clustered target in-
stances, stored in a hybrid memory, in addition to the target domain clusters. The memory
gives more supervision to the feature extractor during training while minimizing the unified
contrastive loss over the three kinds of information available in the hybrid memory. Im-
portantly, pseudo-label-based methods achieve better results than translation approaches and
maintain up until now the state-of-the-art performances on almost all public datasets [68, 70].
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In addition, these approaches avoid the computation overhead of the transfer-based approach
that requires image generation. Consequently, our experimental benchmark will focus only
on pseudo-labeling approaches.

Even though all the aforementioned methods have shown promising results and great
capability to adapt to a new target domain data set, their training process always assumes
that they can have access to the entire target domain, which is difficult to hold in a real-world
application as previously discussed in Sec. 3.1.

Lifelong Learning for person Re-Identification. Lifelong Learning, also called Contin-
ual Learning or Incremental Learning[173, 174, 175], is a field that aims at mitigating the
catastrophic forgetting problem, which means that the model tends to forget previous knowl-
edge acquired during previous tasks when learning new ones. Recently, many approaches
have been developed to solve this problem for common vision tasks such as object detection
[176], segmentation [177], or even image generation [178]. We can categorize existing meth-
ods into three main categories. First, teacher-student frameworks [129, 179], use a teacher
module to remind the student network about the knowledge acquired in the past. The second
category of methods relies on the regularization of the parameters update when new tasks
arrive [180]. Finally, the third category is replay methods that consist of using stored images
or an image generation model to feed old-task images along with the current task images
into the learning network [181].

Recently, only a few works have tackled the problem of lifelong learning in the case
of Person Re-ID. [182] propose an Adaptive Knowledge Accumulation (AKA) framework,
however, the training process is fully supervised and treats only the domain-incremental sce-
nario. Zhipeng Huang et al. [183] address a scenario similar to ours except that storing
images from the previous task is permitted. In this thesis, we consider that in real-world ap-
plications, person images might be subject to confidentiality purposes, and therefore storing
images from previous tasks is not permitted.

3.3 Online Setting for UDA for Person Re-ID (OUDA-Rid)

3.3.1 Problem Definition

In this section, we describe the proposed online unsupervised domain adaptation setting
for person re-identification (OUDA-Rid). We consider that we have access to an annotated
source domain data set DS = {(xS

i ,y
S
i )|Ns

i=1}, where xS
i and yS

i denote the ith training
sample and its associated person identity label. We consider that we also have access to a
target domain data set DT where ground truth identity labels are not available. However,
differently from the standard UDA setting, we consider that the target data set is accessible
as an online stream of data. More precisely, we adopt the batch-based relaxation [184] of the
online learning scenario. The model will have access to the target domain DT as a stream
of T independent batches Tt, t ∈ 1..T . In analogy with the Continual Learning (CL) setting
and to avoid confusion with the mini-batch used in Stochastic Gradient Descent (SGD), each
target batch will be called a task. Each task Tt is composed of Nt images {xt

i, i = 1..Nt}
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that depict an unknown number of identities. We assume that there is no identity overlap
between tasks even if our approach does not strictly require it. This assumption corresponds
to the practical scenario where data are collected over several hours or days. Even if the
same person can appear again at different times, most detections will correspond to different
identities.

Importantly, we consider that at the end of the task, the images of the task Tt cannot
be used for the next tasks. This corresponds to a practical scenario where sensitive data can
only be stored for a short period of privacy concerns (e.g. camera images from a public area).
In addition to the source domain that is accessible at any time, only the parameters of the
networks can be kept in memory between two tasks. Finally, the goal is to deploy the trained
model on an unknown target dataset that follows the same distribution as the training target
tasks but does not share identities with the training tasks.

In this work, we adapt three frameworks for UDA to our OUDA-Rid setting. As de-
tailed in Sec. 3.2, the UDA methods based on pseudo-labeling dominate most Person Re-ID
benchmarks. Therefore, we focus our work on this paradigm. First, we employ a Strong
baseline that is a very simple, yet effective, baseline. Then, we consider MMT [68] and
SpCL [70], which are two methods that achieve state-of-the-art performance on publicly
available datasets. Apart from their performance, what motivates the choice of these two
frameworks is that, on the one hand, MMT has attracted a lot of attention lately and it is
now considered a reference baseline for the task of UDA for person re-identification. On
the other hand, SpCL is included in our benchmark since it illustrates the potential advan-
tage of employing a memory to combine source and target data. Once adapted, the three
frameworks will be evaluated and tested under four different configurations to: 1) decide
which of the three frameworks is most suited to the OUDA-Rid problem 2) measure the
drop in performance due to the online constraint 3) study the sensitivity of each model to its
hyper-parameters.

3.3.2 Strong Baseline

The Strong Baseline [66] is a simple pseudo labeling pipeline. A feature extractor network
F (backbone in Fig. 3.2) is pre-trained on the source labeled domain data set. After pre-
training, the model is then fine-tuned on the target unlabeled data set. The fine-tuning on
target consists of an iterative process where two major steps are alternated until convergence:

1. F is used to extract image features for every target domain image. Then, a standard
clustering algorithm (DBSCAN [45] in our experiments) is applied to the extracted
target domain features to obtain K clusters. In our case, K is automatically returned
by the DBSCAN algorithm. In this way, we assign a cluster label to every image.

2. F is then fine-tuned on the target samples using their cluster labels as pseudo-labels.
More precisely, a target domain classifier C with K classes is added to classify the
images’ features along with their assigned pseudo labels. The network is then trained
via the minimization of a combination of an identity loss LT

id(θ) and a triplet loss
LT

tri(θ). Assuming a sample xi with pseudo-label yi, the identity loss is given by:

Lid = Lce(C(F (xi)),yi), (3.1)
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where Lce denotes the cross-entropy loss. Assuming the hardest positive and hard-
est negative features in the current mini-batch for the sample xi, denoted f+

i and f−
i

respectively, the triplet can be written:

LT
tri(θ) = max[0,||F (xi)− f+

i )||
+m− ||F (xi)− f−

i )||] (3.2)

where ||.|| denotes the L2-norm and m = 0.5 denotes the triplet distance margin.

+

Figure 3.2: Scheme of Strong Baseline: training iterate between clustering and finetunning.
The network is trained using a combination of cross-entropy and triplet losses.

Adaptation to OUDA-Rid.

In our setting, this baseline approach is applied to each task. Instead of using the whole
target dataset in the clustering step, we use only the data of the current task. The two steps
are applied iteratively for several epochs.

3.3.3 MMT

MMT is a recent framework proposed by [68], that integrates the teacher-student framework
with two networks that train jointly. The main motivation is to design a framework that
uses both hard and soft pseudo labels to learn better features. As shown in Fig. 3.3, MMT
extends the Strong Baseline in several ways. First, MMT employs two networks F1 and F2

instead of a single feature extractor F . To enforce that the networks help each other, the
classifier C1 for the feature extractor F1 is trained to predict the clustering labels obtained
from F2 and vice-versa. Second, mean teacher networks M1 and M2 are introduced. These
networks are obtained by estimating the running average on the network parameters of F1

and F2. These networks predict more stable pseudo labels since they combine the knowledge
of the networks at previous training iterations. In addition to the identity and triplet losses
introduced in the Strong baseline, the two networks F1 and F2 are also optimized with respect
to a soft classification loss and a soft triplet loss. Those losses are calculated for each network
over the predictions of the other mean network. The losses between F1 and M2 are:

Lsid = −M2(xi). logC1(F1(xi)) (3.3)

Lstri = −Lbce(τ
F
1 (xi), τ

M
2 (xi)), (3.4)

where Lbce denotes the binary cross entropy and τF1 and τM2 are given by:

τF1 (xi) =
e||F1(xi)−F1(x

−
i )||

e||F1(xi)−F1(x
+
i )|| + e||F1(xi)−F1(x

−
i )||

(3.5)

– 32 –



τM2 (xi) =
e||M2(xi)−M2(x

−
i )||

e||M2(xi)−M2(x
+
i )|| + e||M2(xi)−M2(x

−
i )||

(3.6)

Note that to encourage the two networks to learn different image representations, different
random data transformation policies are used for each network pair (F1,M1) and (F2,M2).

Adaptation to OUDA-Rid.

We adapt MMT to the OUDA-Rid setting in the following way: at the end of each task,
the parameters of the four networks are kept and reused for the next task.

+

Figure 3.3: Scheme of MMT: two networks are trained thanks to two other momentum
encoder networks. The two networks are trained using a combination of cross-entropy and
triplet losses.

3.3.4 SpCL

Finally, we consider the SpCL method proposed in [70]. This framework (Fig. 3.4) employs
a hybrid memory that stores and continually updates three types of feature vectors: the class
centroids for every class of the source domain, cluster centroids for every cluster from the
target domain, and the image feature corresponding to the target-domain samples that are not
assigned to any cluster and that are considered outliers. This memory provides supervision
to the feature extractor via a contrastive loss over the three types of features in the memory.

Adaptation to OUDA-Rid.

We consider two adaptations of the SpCL framework. In the first version, referred to
SpCL-SF, we adopt a source-free SF strategy [185, 186] where we do not use any of the
source data when adapting to the target domain. This version is introduced because it allows
for a fair comparison with the MMT and the Strong Baseline that use the source dataset
only for pre-training. In our second version (simply referred to as SpCL), we use the source
dataset during the whole adaptation process in addition to the target data of the current task.
In both cases, the memory is emptied, and clustering is performed at the beginning of each
task.
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Figure 3.4: Scheme of SpCL: a feature memory is used to perform contrastive learning.

3.4 Experiments

3.4.1 Datasets

We evaluate the different frameworks on three widely-used real-world person benchmark
datasets in the Domain Adaptive Person Re-ID:

• Market 1501 [76]: is a large-scale public dataset that contains 1501 identities that are
captured by six different cameras. The total number of images is 32,668 for which
12,936 images of 751 identities are used for training and 19,732 images corresponding
to the remaining 750 identities are used as a test set. We follow the official testing pro-
tocol stating that 3,368 query images should be tested and matched to 19,732 gallery
images.

• DukeMTMC-reID [77]: The Duke Multi-Tracking Multi-Camera Re-Identification
consists of images extracted from videos captured by 8 different cameras. It contains
16,522 training images corresponding to 702 identities, 2,228 query images of another
702 identities along 17,661 gallery images for testing.

• MSMT17 [78]: The third benchmark is the most challenging dataset since it has a
greater diversity in terms of people’s appearances, viewpoints, and scales. It consists of
multiple hours of videos captured by 15 different cameras. This dataset is a large-scale
dataset consisting of 32,621 images of 1,042 identities as a training set, and 11,659
query images along with 82,161 gallery images corresponding to 3,060 identities as a
test set.

3.4.2 Evaluation Protocol

To evaluate the performance of the different frameworks on our proposed setting, we con-
sider four source-target configurations: Duke→Market, Market→Duke, Market→MSMT17,
and Duke→MSMT17. These configurations are widely used in the literature and illustrate
domain shifts of diverse difficulty. For each configuration, we randomly and uniformly split
the training identities into 5 subsets corresponding to 5 tasks. For the evaluation metrics,
we adopt the metrics commonly used in Re-ID [68, 70]: Mean Average Precision (mAP)
and Rank-1 [187] accuracies. These metrics are computed on the entire test set of the target
domain after each task during the online adaptation process. The proposed testing protocol
is chosen to have a global overview of the model’s adaptation capability to the domain shift
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between source and target, and also to see which framework is the most suited for online
adaptation.

In our preliminary experiments, we observed that the number of epochs per task is a
key hyperparameter. Even with a separate validation set, this hyper-parameter could not
be chosen by mAP maximization since it requires identity labels and it would break the
unsupervised adaptation assumption. On the contrary, using an inappropriate hyperparameter
value would jeopardize the validity of the conclusions of our experiments. Therefore, we use
the following procedure: we run the strong baseline with four different numbers of epochs
ranging from 10 to 40. Then, we observed that training for 20 epochs per task leads to the
best performance. Therefore, we use 20 epochs per task for all the methods. Note that we
report an ablation study in Sec.3.4.6 to measure the sensitivity to this hyper-parameter and
we validate that this choice remains satisfactory for the other methods.

3.4.3 Additional Baselines

To better assess the performance of the evaluated approaches, we consider two additional
baselines that are not trained following our OUDA-Rid setting. First, we report the perfor-
mance of the model pre-trained on the source and directly evaluated on the target. This base-
line is common to all the frameworks since all the methods use the same pre-trained model
and it is referred to as Direct inference. The second baseline is specific to each framework.
It corresponds to the original method trained in the standard UDA setting and is referred to
as Offline. It can be interpreted as an upper bound for the online methods.

3.4.4 Implementation details

We follow the common practices in the UDA Person Re-ID field by adopting ResNet50
[28] pre-trained on ImageNet [84] as a backbone. For clustering, we use DBSCAN [45]
which is frequently used in the pseudo-label-based methods as it requires no prior on the
number of clusters but only the maximum distance between two samples to consider one in
the neighborhood of the other. We employ the maximum distance hyper-parameter set in
the original papers of MMT and SpCL. Adam [188] optimizer is adopted with an initialized
learning rate equal to 3.5∗10−4 and a weight decay of 0.0005 [68, 70]. Finally, all the images
were resized to 256 x 128 before being fed into the backbone (backbones for MMT), and the
batch size was set to 64 corresponding to 16 different identities with 4 images per ID.

3.4.5 Results

We report in Figs. 3.5, 3.6, 3.7 and 3.8 the results of the Strong Baseline [66], MMT [68] and
SpCL [70] on respectively four OUDA-Rid configurations: Duke→Market, Market→Duke,
Market→MSMT17 and Duke→MSMT17. For every configuration, we report the final per-
formances of each framework at the end of the adaptation process and plot the evolution of
the test performance while the model is adapting to the target domain. Each experiment was
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repeated 3 times with different batch sampling initializations (i.e.seeds). The colored area
corresponds to the variance of the performance on the test set at the end of each task, where
the points correspond to the mean performances of the different initializations.

First of all, in the four configurations, the results show that the pre-trained ResNet50
on the source domain gives poor performances when directly deploying it into the target
domain without any finetuning (Direct inference) compared to when it is fine-tuned on the
target domain, either in the Offline or Online setting. This big gap in terms of performance
illustrates the problem of domain shift.

Then, when it comes to the 5-tasks Online setting, the conclusions differ between meth-
ods and datasets. In the case of the Duke→Market configuration (Fig. 3.5), we observe that
MMT (orange line) performs best among the online methods and reaches 63.7% of mAP.
This result is very satisfactory since MMT bridges most of the gap between Direct inference
and Offline. The strong baseline obtains lower performance since it plateaus after the second
task. However, it surprisingly outperforms the two SpCL variants. Indeed, the performance
has not improved significantly after completing the first task. We even observe a small drop
when processing the second task for the SpCL variant that uses the source domain images.
We also notice that the difference between the two variants of SpCL is minor illustrating that
with a straightforward adaptation of the SpCL method, initially proposed for offline UDA,
SpCL does not benefit much from the availability of the source data. On the right-hand side
of Fig. 3.5, we can see that the Strong Baseline shows the highest sensibility to random
seeds. Moreover, MMT keeps reaching the best performance independently of the random
seed.

Offline Direct inference Online

mAP Rank-1 mAP Rank-1 mAP Rank-1
Strong Baseline 75.6 90.9 29.6 62.4 49.4 77.1
MMT 80.9 92.9 29.6 62.4 63.7 87.5
SpCL-SF 76.7 90.3 29.6 62.4 42.9 70.2
SpCL 78.2 90.5 29.6 62.4 47.9 72.9
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Figure 3.5: Experimental comparison of the performance of the four methods (Strong base-
line, MMT, SpCL, and SpCL-SF) in the 5-task OUDA-Rid Duke ->Market configuration.
We report mAP and Rank-1 accuracy for each method.

Regarding the Market→Duke configuration (see Fig. 3.6), MMT is again the best per-
forming method even though its gap with respect to the best offline method (purple dot) is
larger. This behavior change can be explained by the highest difficulty of this setting as
illustrated by the lower score obtained by the offline methods (e.g.70.4% of the map in Mar-
ket →Duke vs 80.9% of the map in Duke →Market). In this more difficult configuration,
the strong baseline does not perform well since it achieves the worst performance among
all the evaluated methods. The behavior of SpCL is very instructive. At the beginning of
training (until the second task), the source-free model performs better but shows degraded
performance later in training. This behavior can be explained by a probable divergence of
the model that forgets its initial source model and overfits the target task. On the contrary, the
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SpCL variant that uses the source data needs more time to handle the domain shift but keeps
slowly increasing. Concerning the variance of the performance, we can see that the four
frameworks are sensitive to their random seed, especially at the beginning of the adaptation
process. However, this variance decreases after a few tasks, showing that the training be-
comes more stable (after two tasks for most methods) except for the Strong baseline, where
the variance of the performances becomes even higher on late tasks.

Offline Direct inference Online

mAP Rank-1 mAP Rank-1 mAP Rank-1
Strong Baseling 60.4 75.9 28.2 50.1 26.8 59.3
MMT 67.7 80.3 28.2 50.1 51.7 72.3
SpCL-SF 68.8 82.9 28.2 50.1 38.7 61.8
SpCL 70.4 83.8 28.2 50.1 42.7 66.0
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Figure 3.6: Experimental comparison of the performance of the four methods (Strong base-
line, MMT, SpCL, and SpCL-SF) in the 5-task OUDA-Rid Market ->Duke configuration.
We report mAP and Rank-1 accuracy for each method.

Offline Direct inference Online

mAP Rank-1 mAP Rank-1 mAP Rank-1
Strong Baseling 9.7 25.8 8.9 28.9 6.1 18.0
MMT 22.9 49.2 8.9 28.9 15.1 31.5
SpCL-SF 26.3 53.4 8.9 28.9 13.1 36.5
SpCL 26.8 53.7 8.9 28.9 14.7 36.7
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Figure 3.7: Experimental comparison of the performance of the four methods (Strong base-
line, MMT, SpCL, and SpCL-SF) in the 5-task OUDA-Rid Market ->MSMT configuration.
We report mAP and Rank-1 accuracy for each method.

In the Market→MSMT configuration (Fig. 3.7), conclusions drastically change since
SpCL has almost the same results as MMT, hence, breaking the big gap between the two
methods in performance we observed in previous configurations. This change can be ex-
plained by the large training target dataset MSMT. Therefore, every target task contains
more images and more identities. This difference is beneficial to both SpCL variants that
perform similarly. Regarding, MMT, we see that the performance starts degrading from task
3. Again, it can be explained by the fact that in the case of a large target dataset, MMT can
forget the knowledge from the source domain that is not further used during adaptation. In-
terestingly, the best performance of MMT (end of task 3) is higher than the best performance
of SpCL. It illustrates the importance of handling the divergence problem and designing ef-
ficient consolidation mechanisms. Finally, we observe that the strong baseline worsens the
performance compared to the initial pre-trained model. Regarding the variance of the perfor-
mances, we can see that MMT, SpCL, and SpCL-SF finally get more or less similar results
at the end of the adaptation process. Finally, in the Duke→MSMT configuration (Fig. 3.8),
the conclusions remain similar to the previous setting. Nevertheless, we can mention that
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Offline Direct inference Online

mAP Rank-1 mAP Rank-1 mAP Rank-1
Strong Baseline 10.9 28.6 11.1 35.2 7.2 19.9
MMT 23.3 50.1 11.1 35.2 17.0 35.0
SpCL-SF 26.3 52.6 11.1 35.2 17.1 43.1
SpCL 26.5 53.1 11.1 35.2 17.8 40.8
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Figure 3.8: Experimental comparison of the performance of the four methods (Strong base-
line, MMT, SpCL, and SpCL-SF) in the 5-task OUDA-Rid Duke ->MSMT configuration.
We report mAP and Rank-1 accuracy for each method.

SpCL outperforms MMT in this specific configuration, and observe higher instability on the
SpCL-SF method that oscillates in the last tasks.

3.4.6 Analyses

Model sensitivity: number of training iterations.

In this section, we study the effect of the number of epochs on the performance of the four
frameworks (Strong baseline, MMT, SpCL, and SpCL-SF) in the following configuration: 5-
task OUDA-Rid Duke→Market. In Fig. 3.9 we report the performance on the target test set
(mAP) of the three frameworks while varying the number of training epochs between 0 and
40 epochs per task. Note that zero epoch corresponds to the Direct inference performance
of the pre-trained model without any training on the target domain. It can be observed that
with 20 epochs the strong baseline achieves the best performance on the test set. When we
increase the number of the training epochs, we see a decrease in the performance on the
test set of the three frameworks probably illustrating overfitting issues in the current training
task. SpCL, thanks to its memory-based system, that provides supervision from the labeled
source domain images to the Re-ID model, needs fewer training epochs per task to converge,
compared to the strong baseline and MMT. We see that the four aforementioned frameworks
are sensitive to the number of training epochs to some extent. These experiments illustrate
the difficulty of the OUDA-Rid setting where only a few samples are available in each task
and where overfitting can appear rapidly.

Impact of the number of tasks. We also conducted further experiments to show the effects
of varying the number of tasks on the adaptation performances. In Fig. 3.10 we report the
final performance (mAP) on the target test set of the four methods when considering 1, 3,
5, 8, and 10 tasks. Naturally, when augmenting the number of tasks during the adaptation
process, the number of images per task decreases. This affects the fine-tuning of the model,
where we can see in Fig. 3.10 that for all the considered frameworks, the performance drops
when considering more challenging online settings by adding more tasks.

We also performed experiments with a number of tasks larger than 10 (typically 15 or
20), however, training did not succeed due to the sampling limitation. More precisely, when
the number of tasks increases the number of samples becomes too small to be handled by
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Figure 3.9: Effect of the number of training epochs per task on the Re-ID performance. At
zero, we reported the results from the direct inference model.

DBSCAN. In such challenging configurations, only a few clusters are considered, where only
a few images per cluster are sampled, hence the sampling of the 16 identities with 4 images
per id, which is necessary for the optimization of the triplet loss, becomes impossible. This
clustering issue shows the limitation of UDA methods to address our OUDA-Rid setting and
demonstrates the need for new methods tailored for OUDA-Rid.
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Figure 3.10: Effect of the number of tasks on the performances of the four frameworks at
the end of the adaptation process. We varied the number of epochs from 1 to 10. Note that 1
epoch corresponds to the offline setting.
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3.5 Conclusions

In this chapter, we introduced the Online Domain Adaptation Re-ID problem and presented
an empirical benchmark where we adapt and evaluate three state-of-the-art methods previ-
ously introduced for the Offline UDA setting. Our experiments show that existing methods
can achieve satisfactory results in simple online adaptation scenarios but fail to reach the
performance achieved in the Offline setting. We also show that the best-performing meth-
ods depend on the setting. Finally, our experiments highlight the forgetting problem when
the source model is not used during adaptation. These conclusions pave the way toward
novel approaches for online domain adaptive Re-ID with the aim to inspire further research
in this setting that matches real-world constraints and better protects privacy. Building on
these findings, the next chapter will introduce a novel framework designed to effectively
adapt UDA methods and maintain their performance, despite the challenges imposed by the
OUDA-Rid setting.
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Chapter 4

Source-Guided Similarity Preservation

4.1 Introduction

Since deploying algorithms that conform with policies of data privacy protection has be-
come a legal obligation in a growing number of countries, the Online Unsupervised Domain
Adaptation for person Re-Identification (OUDA-Rid) setting was introduced in the previous
chapter (Chap 3) to address the limitations of traditional UDA techniques.

To recall, UDA methods combine a well-annotated dataset (source domain) and an unla-
beled dataset corresponding to the target domain, aiming to train a model that can perform
well in the new environment. Despite progress in recent years [68, 70], UDA for person
Re-ID suffers from three main issues that prevent its practical use. First, when collecting the
target data required to adapt the model, images are generally gathered as a stream that con-
tinually sends photos from various cameras/locations. Consequently, collecting a large target
dataset may take time and delay deployment. In addition, in UDA, the model is frozen after
deployment and does not benefit from the new data, which are continuously captured. Fi-
nally, numerous countries have adopted privacy regulations that forbid technology providers
to store images of individuals. Thus, collecting a large target dataset is not possible.

In the OUDA-Rid framework, we operate under the assumption that we have access to
annotated source data as well as unlabeled target data. However, in contrast to traditional
UDA settings, the target dataset is treated as an online stream of data, aligning with the
constraint that camera-captured images cannot be stored. In addition to complying with
privacy-protection regulations, this setting also enables the person Re-ID model to be con-
tinuously updated as new target data becomes available, thereby improving its adaptability
to changes in the target domain. Following this, we propose in this chapter an innovative
approach to adapt UDA methods to the setting of OUDA-Rid, thereby adhering to privacy
regulations related to the storage and retention of data.

In the previous chapter (Chap 3), we demonstrated that when existing UDA methods are
adapted to the OUDA-Rid setting, there is a significant drop in performance compared to
their deployment in the traditional offline setting. This drop can be explained by the two
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Figure 4.1: In OUDA for person Re-ID, the images of the target domain are available as a
stream of data, and past images cannot be stored. Two main challenges should be addressed:
1) catastrophic forgetting and 2) domain shift.

main difficulties of OUDA-Rid illustrated in Fig. 4.1: catastrophic forgetting and domain
shift. Catastrophic forgetting appears when the model only observes a few target identities,
and consequently, the model tends to forget previously learned identities. Domain shift is
a change in the data distribution between the source and target domains. Addressing the
domain shift is especially challenging in the online setting since, at every training step, we
observe only a small and possibly biased subset of the target domain.

In this chapter, we consider that these two difficulties must be addressed jointly since
mitigating catastrophic forgetting can lead to target representations that better capture the
full target distribution, and consequently facilitate source-target distribution alignment. We
introduce a unified Source-guided Similarity Preservation (S2P) framework for OUDA-Rid
that addresses these two challenges jointly. We take inspiration from replay-based strate-
gies [189, 190] to introduce a Knowledge Distillation (KD) mechanism. By transferring the
knowledge acquired with a teacher model to a student model, the KD [191] method enables
the learning of more robust and generalizable features. However, unlike existing replay-
based approaches, we do not store any target image to conform to the privacy protection
requirement. To this end, we extract a support set composed of source images that are sim-
ilar to the previously seen images of the target. This support is thus used to regularize the
learning process and alleviate catastrophic forgetting. Our framework combines both explicit
source-target distribution alignment and pseudo-labeling to address domain shift. S2P can
easily integrate almost any existing UDA approaches [68, 70] and readily outperforms all
state-of-the-art methods for OUDA-Rid in several challenging conditions in real-to-real and
synthetic-to-real tasks. The main contributions of this chapter can be summarized as follows:

• We introduce a novel S2P algorithm that uses source-guided similarity preservation to
jointly alleviate the catastrophic forgetting and domain shift while respecting the privacy
protection requirements.

• S2P can easily incorporate almost any existing UDA approach. In particular, we present
the integration of the MMT [68], SpCL [70] and IDM [115] methods into our framework,
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which achieve remarkable results in the UDA setting.
• We perform extensive experiments1 in real-to-real and synthetic-to-real OUDA tasks with

four datasets. S2P readily improves previous state-of-the-art UDA methods for OUDA-
Rid. A set of ablation studies validates each component of our algorithm.

4.2 Related Work

We extend the previous related work sections by including the recently published method
IDM [115] as a pseudo-labeling-based approach for UDA. Additionally, we clarify how our
support set selection method differentiates from previous approaches in the literature.

UDA for person Re-ID. Existing methods can be divided into domain translation-based
[163, 164, 165] and pseudo-labeling [169, 170, 49, 171, 172]. Pseudo-labeling methods em-
ploy an iterative process alternating between clustering and fine-tuning [169, 170, 49, 171,
172]. In addition to the previously mentioned methods, such as the strong baseline [66],
MMT [68], and SpCL [70], a recent work has introduced the use of an Intermediate Do-
main Module (IDM) [115] as means to bridge the gap between source and target domains.
We adopt the pseudo-labeling framework as it has outperformed previous techniques in al-
most all datasets [68, 70] and avoids the computational overhead of transfer-based methods.
Our S2P overall framework can incorporate existing pseudo-labeling methods toward better
performance in the OUDA-Rid setting.

Lifelong learning for Re-ID. While previous methods in continual learning for person Re-
ID, such as [182, 183], have adopted a less restrictive setting that allows keeping images
from previous tasks, we follow the more challenging and privacy-preserving OUDA-Rid
setting presented in Chapter 3. To address domain shift and catastrophic forgetting in OUDA-
Rid, we introduce two key technical contributions: a source-guided knowledge distillation
strategy and an explicit domain alignment. Gong et al. [192] introduced a technique based
on landmarks that is similar to our support set selection. However, these landmarks were
proposed to solve the domain gap in the context of UDA with classical machine learning
techniques, while we have to also consider the catastrophic forgetting problem in OUDA-
Rid using end-to-end deep learning models.

4.3 Source-Guided Similarity Preservation

OUDA-Rid problem definition. In OUDA-Rid, we assume having access to a well-annotated
source domain dataset S = {(xS

i ,y
S
i )}Ns

i=1, and an unlabeled target domain dataset T =
{xt

i}Nt
i=1. Here, both domain images are not necessarily drawn from the same distribution.

We consider that we have access to the target domain dataset in the form of an ongoing
stream of data. Similarly to the previous chapter, we consider that we observe a sequence of
NT tasks {T 1 ∪ T 2 ∪ ... ∪ T NT }. Each task T k, 1 ≤ k ≤ NT is a set of images captured
by several cameras and depicting an unknown number of identities. To align with practical

1Code available: https://github.com/ramiMMhamza/S2P
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scenarios, we consider that each identity can be observed by different cameras simultane-
ously. However, it is unlikely for an identity to appear at widely separated time intervals
(e.g. different days). Therefore we can assume that identities do not overlap across different
tasks, although this assumption is not strictly required in our approach.

In the rest of this section, we present our S2P framework to alleviate the two major chal-
lenges of the OUDA setting: catastrophic forgetting and domain shift. First, our framework
integrates a teacher model that distills previously acquired knowledge. The KD strategy
of S2P is based on feature space similarity preservation and only requires images from the
source domain, hence respecting the privacy protection norms. Second, we minimize the
discrepancy between the source domain and the target domain to reduce the domain shift
and further enhance the stability of the S2P.

4.3.1 Overview of the Approach
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(a) Overall Pipeline of S2P.
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Figure 4.2: The pipeline of S2P. a) S2P incorporates knowledge distillation LKD, discrep-
ancy LMMD loss functions, and a teacher model to mitigate the catastrophic forgetting and
domain-shift problems. b) Our algorithm employs a similarity-based selection to construct
the support set ξk from the source domain that maximizes the similarity with the target im-
ages.

Fig. 4.2 shows the pipeline of our S2P framework. In every task of the OUDA-Rid
problem, the target labels are not available and we assume that the identities are different
even if our S2P does not strictly require this assumption. Furthermore, we construct a support
set that plays the role of a memory bank for source-guided knowledge distillation. We could
keep a few samples from previous tasks if there were no privacy constraints. However, in
S2P the support set only includes images from the source domain. We choose those images
based on their similarities to previously seen images, ensuring a good approximation of the
previously learned feature spaces during continual learning.

In this chapter, we follow an overall training scheme that was adopted by multiple UDA
methods for Re-ID [68, 70]. More concretely, we use a student model that consists of a
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feature extractor F(·). First, the student model is pre-trained on source data S, and then
fine-tuned on the unlabeled target data T with three different loss functions:

• LKD: the knowledge distillation loss in the feature similarity space is proposed to preserve
the previously acquired knowledge. To this end, a similarity-based selection strategy is
applied to the source domain to construct the support set, and a teacher model F̄(·) is
added to the main pipeline (Sec. 4.3.2).

• LMMD: the Maximum Mean Discrepancy (MMD) loss is minimized to reduce explicitly
the domain shift. In other words, we want to construct a feature space that is domain
invariant and can regroup features from both the source and the target domains (Sec. 4.3.3).

• LReID: this loss corresponds to the loss of the UDA method that is integrated into our
framework. This loss is jointly minimized on the source domain S and the target domain
images T together with their pseudo-labels. The pseudo labels are estimated by a cluster-
ing algorithm assigning each image to a cluster label (Sec. 4.3.4).

4.3.2 Source-Guided Knowledge Distillation

When learning a new task T k, the model must be updated to better discriminate the ap-
pearance of the new individuals. However, the model should also preserve the knowledge
acquired on previous tasks T i ∀ 1 ≤ i ≤ k − 1. Therefore, we employ a teacher model that
progressively distills the knowledge to the student model. Distillation is performed in the fea-
ture space over a set of source-based support images. Since target images cannot be stored,
we propose to use images from the source domain as the support set. More precisely, we se-
lect images that are similar to the images from the target domain seen in previous tasks. This
solution encourages the student model to project the images into a common feature space,
resulting in more discriminant and task-invariant representations.

Support set collection. Fig. 4.2 (b) depicts the construction of the support set in S2P. We
construct the support set based on the cosine similarity in the feature space between the
current target images and the source domain images. For each image xt in the target task
T k, we identify the image ξx(xt) and its corresponding identity label ξy(xt) from the source
domain that maximizes the cosine similarity in the feature space:

(
ξx(x

t), ξy(x
t)
)
= argmax

(xs,y)∈S

F(xs) · F(xt)

∥F(xs)∥∥F(xt)∥ . (4.1)

Then, we add to the support set all the images from the source that correspond to the selected
identity ξy(xt):

ξk =
⋃

xt∈T k

{(xs,y) ∈ S,y = ξy(x
t)}. (4.2)

While learning a new task T k+1, ξk is used as a memory that best approximates previously
seen images.

Teacher-student framework. As a teacher, we need a model that has accumulated knowl-
edge from previous tasks and can effectively guide the student’s learning on a new task. We
use the Exponential Moving Average (EMA) parameters update [193, 194] of the current
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model. At every iteration i, the parameters θ̄i of the teacher model are given by:

θ̄i = αθ̄i−1 + (1− α)θ, (4.3)

where θ denotes the current parameters of the student model and α ∈ [0, 1) is the weighting
factor. At the first iteration of our framework, θ̄0 is initialized using a model pre-trained on
the source dataset. Once the adaptation process is performed on a specific task, only the
teacher is used for inference on the test set.

KD loss. Knowledge distillation commonly uses softened softmax labels from the teacher in
training the student network [191, 129]. However, we argue that this formulation is not suit-
able for Re-ID. In classification problems, the absolute position of the samples in the feature
space must be preserved to remain compatible with the learned classifiers. On the contrary,
in Re-ID, we are interested only in preserving the relative distance between samples. There-
fore, we employ a distillation loss that acts on similarity matrices to offer the model more
freedom to adjust the position of the features in the learned space.

Assuming an input tensor X corresponding to a mini-batch of n images from the sup-
port set {xi}ni=1, we use the student network F to compute the feature representations
F = F(X) ∈ Rn×c, where c is the dimension of the feature space. Similarly, we compute
the features with the teacher network F̄ = F̄(X) ∈ Rn×c. Then, we calculate the similarity
matrices S ∈ Rn×n and S̄ ∈ Rn×n containing the pairwise scalar product between the current
features of all images in the current batch of the support set:

S = FFT, and S̄ = F̄F̄T
. (4.4)

Moreover, we minimize the Frobenius norm ∥ · ∥F between the similarity matrices of the
teacher and the student. The source-guided knowledge distillation loss can thus be formu-
lated as follows:

LKD(S̄,S) =
∥∥∥∥ S̄
∥S̄∥ − S

∥S∥

∥∥∥∥2
F

. (4.5)

4.3.3 Source-Target Distribution Alignment

To achieve successful knowledge distillation over the support set, it is crucial to ensure that
the selected images from the source domain are visually similar to the previously seen target
images. To this end, we introduce an additional training loss that explicitly aligns the source
and the target feature distribution. We use the Maximum Mean Discrepancy (MMD) loss
[195] to reduce the domain shift by minimizing the discrepancy between the source and
target domains. Formally, given an input batch of images {xs

i}ni=1, {xt
j}nj=1 coming from

both S and T k, we compute the feature representations from both the teacher and the student
models: B̄ = (b̄i)

n
i=1,B = (bj)

n
j=1 ∈ Rn×c, where:

b̄i = F̄(xs
i ), and bj = F(xt

j). (4.6)
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As shown in [195], assuming a positive semi-definite kernel K, the MMD loss can be em-
pirically estimated as follows:

LMMD(B̄,B) =
1

n2

n∑
i,j=1

[K(b̄i,b̄j) +K(bi,bj)

− 2K(b̄i,bj)]. (4.7)

We follow the common practice and employ the Gaussian kernel [196] with bandwidth pa-
rameter σ:

K(b̄i,bj) = exp

(
−
∥∥b̄i − bj

∥∥2
2σ2

)
, (4.8)

where we set the bandwidth σ to the estimated variance of each minibatch as in [196].

4.3.4 Incorporating Pseudo-Labeling into S2P.

We now detail how we integrate three state-of-the-art pseudo-labeling-based frameworks
into S2P: MMT [68], SpCL [70] and IDM [115].

MMT employs two networks F1 and F2 instead of a single feature extractor F as discussed
above. The classifier C1 for the feature extractor F1 is trained to predict the clustering
labels obtained from F2 and vice-versa. Mean teacher networks F̄1 and F̄2 are introduced.
In addition to the cross-entropy loss Lce, and the triplet loss Ltri introduced in the strong
baseline [66], the two networks F1 and F2 are also optimized using a soft classification
loss Lsce and a soft triplet loss Lstri with their mean networks [129]. Finally, LReID is
a weighted sum of the four aforementioned losses. To integrate MMT into S2P, the two
similarity matrices S1 and S2 are estimated using respectively F1 and F2 as student networks
from a support set mini-batch. Similarly, two teacher similarity matrices S̄1 and S̄2 are
estimated from the two mean teachers. The total knowledge-distillation loss is defined as the
sum of LKD(S̄1,S1) and LKD(S̄2,S2). In the same way, LMMD is jointly optimized on the
source and the target domains in the feature spaces of both student-teacher couples (F1, F̄1)
and (F2, F̄2).

SpCL adopts a contrastive training scheme in the feature space over a hybrid memory that is
continually updated by the estimated pseudo-labels. The hybrid memory stores three types of
feature representations: 1) the centroids for every class of the source domain, 2) the centroids
for every cluster from the target domain, and 3) the feature representations of the outliers.
Finally, LReID is a contrastive loss that jointly distinguishes classes, clusters, and unclustered
instances in the feature space of the hybrid memory. For more details, the readers are referred
to [70]. The integration of SpCL into our S2P is straightforward. We first add the teacher
model, which is the EMA of the fine-tuned model. Then, for each new task, the support set
is constructed to add LKD and LMMD to the S2P pipeline.

IDM is based on a module designed to generate intermediate domain representations by
mixing the hidden representations of the source and target domains. Network training is
regularized with additional losses, which promote diversity among the domain variables and
ensure that the intermediate domain lies between the source and target domains. To integrate
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IDM into our S2P framework, we first add a teacher model which is obtained through EMA
over the model’s weights, including the IDM module. Then, during the optimization, we
sum the two losses of S2P, LKD and LMMD, to the IDM losses.

4.4 Experiments and Results

This section introduces the datasets used in the current work, the evaluation protocol, the
implementation details, as well as the results and discussions of S2P. We compare our algo-
rithm against four state-of-the-art approaches for UDA for person Re-ID: the strong baseline
[66], MMT [68], SpCL [70], and IDM [115]. Finally, we perform a set of ablation studies
to analyze each component of S2P, including the construction of the support set, the choice
of the teacher, and the loss functions. In particular, we compare our KD loss LKD with
alternatives [197, 198] previously introduced in the literature for similar tasks.

Method
MS → M MS → C M → MS RP → M

mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

Strong Baseline [66] 51.4±1.8 72.3±0.5 5.3±1.2 4.3±1.9 6.1±0.1 18.1±0.3 43.1±1.3 67.6±1.6

MMT [68] 65.8±0.1 83.7±0.1 32.2±1.6 32.2±2.4 15.1±1.9 36.9±0.1 58.7±0.7 77.5±0.1

SpCL [70] 53.5±0.4 76.0±0.3 15.6±3.1 15.7±1.7 14.7±0.2 36.7±2.3 50.5±2.8 72.1±3.5

IDM [115] 57.5±0.2 78.6±0.2 8.3±0.2 7±0.3 7.9±0.5 21.5±0.1 60.8±0.2 80.4±0.1

S2P-MMT (ours) 70±0.4 87.1±0.4 40.4±0.8 42.4±0.9 19.5±0.1 43.3±0.7 61.4±0.1 81±0.2

S2P-SpCL (ours) 69.1±0.1 87.1±0.1 34.3±0.3 35.1±0.5 20.2±0.1 46.1±0.2 59±0.1 80.5±0.2

S2P-IDM (ours) 71.3±0.1 88.0±0.1 17.5±0.5 16.6±0.5 14.2±0.3 33.9±0.2 70.2±0.2 86.1±0.4

Table 4.1: Performance of S2P and four state-of-the-art methods in the last task in three
real-to-real and one synthetic-to-real OUDA-Rid tasks. The best and second-best methods
on each dataset are highlighted in bold and underlined, respectively.

Datasets. We evaluate S2P on four widely used person Re-ID datasets in domain adaptation:

• CUHK03 (C) [19] comprises 14, 097 photos of 1, 467 individual identities captured by
six cameras, with each identity recorded by two cameras. The dataset includes manually
annotated and automatically generated bounding boxes. We utilize manually annotated
bounding boxes for training and testing. The dataset provides a random train/test split in
which 100 identities are selected for testing and the rest for training.

• RandPerson (RP) [83] is a synthetic dataset containing 8, 000 identities and 1, 801, 816
images. We use a subset of 132, 145 images from the original 8, 000 identities.

• Market 1501 (M) [76] and MSMT17 (MS) [78] that were both introduced and used in the
previous chapter.

Evaluation protocol. We follow the experimental protocol introduced in Chapter 3. We
evaluate the performance of all methods using the standard training/testing splits proposed by
the original authors for Market 1501 and MSMT17. In CUHK03, we use a more challenging
testing protocol proposed in [199], which consists of splitting the dataset into 767 and 700
identities for training and testing, respectively. RP is always used as a source dataset in this
chapter.
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We evaluate S2P for OUDA-Rid in several real-to-real and synthetic-to-real configura-
tions: MS→M, MS→C, M→MS, and RP→M. These configurations are widely used in the
literature [68, 70, 83] and illustrate domain shifts of diverse difficulties. For each configura-
tion, we randomly and uniformly split the training identities into five subsets, corresponding
to five tasks for OUDA-Rid, each having a distinct set of identities. We also perform addi-
tional experiments where we increase the number of tasks in the target domain, which are
detailed in the supplementary material A.

We adopt the commonly used metrics for evaluation in Re-ID [68, 70]: mean Average
Precision (mAP) and CMC Rank-1 [76] accuracies. These metrics are computed on the
entire test set of the target domain after each task during the online adaptation process. We
report the average mAP and Rank-1 over three repetitions with different seeds.

Implementation details. We follow the common practices in the UDA person Re-ID field
by adopting ResNet50 [28] pre-trained on ImageNet [84] as a backbone. We employ the
features computed after the global average pooling layer. We use DBSCAN for clustering,
which is commonly employed in pseudo-labeling methods because it requires no prior as-
sumption on the number of clusters. For each new task, Adam [188] optimizer is adopted
with an initial learning rate (LR) equal to 3.5e−4, a linear LR scheduler, and weight decay
of 5e−4 [68, 70]. Same as the previous chapter (Chap 3), the number of epochs per task
is set to 20. For the EMA, we follow [68] and set α to 0.999 to update the teacher model
parameters. Finally, all the images are resized to 256 × 128 before being fed into the back-
bone (or backbones for MMT), and the batch size was set to 64 corresponding to 16 different
identities with 4 images per ID.

4.4.1 Quantitative Results

Comparison with the state of the art. Table 4.1 reports the mAP accuracy and CMC Rank-
1 score obtained at the end of training with all methods in three real-to-real configurations:
MS→M, MS→C, M→MS, and one synthetic-to-real configuration RP→M. The reported
metrics are computed at the end of the adaptation process in each case. The low scores of the
strong baseline are due to the presence of the domain shift, which cannot be appropriately
addressed with this method. The state-of-the-art UDA methods MMT, SpCL and IDM strug-
gle when deployed in the OUDA-Rid setting. The drop in performances of MMT, SpCL, and
IDM is partially explained by the presence of catastrophic forgetting. Furthermore, MMT
outperforms SpCL and IDM in almost all configurations, showing that their student-teacher
framework is well suited to OUDA-Rid.

Table 4.1 shows that S2P-MMT, S2P-SpCL, or S2P-IDM outperforms all previous state-
of-the-art UDA methods in OUDA-Rid over all configurations. For example, S2P improves
the mAP of SpCL from 15.6 to 34.3 and from 14.7 to 20.2 in MS→C and M→MS, respec-
tively.

As for IDM, our S2P significantly improves its performances, from 8.3 to 17.5 and from
7.9 to 14.2, in the same configurations: MS→C and M→MS. Finally, for MMT, S2P im-
proves the mAP, from 32.2 to 40.4 and from 15.1 to 19.5, in MS→C and M→MS, respec-
tively. The gain for SpCL and IDM is greater than for MMT because MMT already integrates
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Figure 4.3: Comparison of S2P with four state-of-the-art methods in terms of mAP vs. task
index in two different OUDA-Rid tasks, MSMT→CUHK and RandPerson→Market.

a teacher in its knowledge distillation loss function (soft cross entropy and soft triplet loss),
whereas SpCL and IDM are only optimized using hard pseudo labels without any refinement.

Similarly, we can see that in the synthetic-to-real scenario RP→M, S2P noticeably im-
proves the performance of the three state-of-the-art methods. S2P improves: from 58.7 to
61.4, from 50.5 to 59, and from 60.8 to 70.2 the performances of MMT, SpCL, and IDM,
respectively. These results demonstrate that S2P can be successfully deployed in OUDA-Rid
applications where we cannot have access to a real and well-annotated dataset for the source
domain2.

Continual behavior. To explore the analysis of the continual behavior of the different meth-
ods, we compare in Fig. 4.3 the mAP at the end of each task before and after incorporating
the three state-of-the-art methods MMT, SpCL, and IDM into our S2P framework. For this
analysis, we choose two different configurations: MS→C (Fig. 4.3-a, -b, and -c) and RP→M
(Fig. 4.3-d, -e and -f). In general, the low performances of the direct inference (i.e. the mAP
at task 0) and the strong baseline show that the chosen configurations are of varying degrees
of difficulty.

Fig. 4.3 also shows the effect of catastrophic forgetting as a drop in performance in new
tasks in several situations. For example, the strong baseline presents degradation of perfor-
mance in both configurations in new tasks. Similarly, SpCL and IDM both lose accuracy
when confronted with new incoming data due to catastrophic forgetting and domain shifts
in the later tasks. For MS→C configuration: in b) the mAP of SpCL goes from 20.5 in the
second task to 13.5 in the third task, while in c) the performance of IDM drops from 10.9
to 8.3 in the last task. Finally, for MMT we can notice in a) that the performance reaches
an undesirable plateau after the third task in the same configuration. This shows that the
knowledge acquired during the first stages of OUDA-Rid is lost during the adaptation pro-
cess. Furthermore, the fluctuations of the mAP of SpCL and IDM in b), c), e), and f) in Fig.
4.3 illustrate the inability of the models to maintain a general structure of the feature space

2Additional experiments in different configurations can be found in the supplementary material A.

– 50 –



that captures the whole target domain distribution.

On the contrary, S2P-MMT, S2P-SpCL and S2P-IDM show a steady improvement in
performance on the two configurations. Specifically, all three methods achieve better per-
formance when learning later tasks when incorporated into our S2P framework and deliver
consistent results across the different configurations.

Moreover, it is clear from the learning curves across all the different tasks that S2P suc-
cessfully adapts UDA methods to the continual setting OUDA-Rid, resulting in a superior
learning process evolution and a solid accumulation of prior knowledge.

4.4.2 Ablation Studies

We perform three ablation studies about: 1) the loss functions, 2) the knowledge distillation
design, and 3) the choice of the teacher model. We run those experiments with S2P-SpCL as
the pseudo-labeling method in OUDA-Rid configurations, namely, MS→C and RP→M.

The impact of the two main losses of S2P. The two main loss functions (KD and MMD)
of S2P were introduced in Sec. 4.3.2 and 4.3.3. In this ablation, we study the influence of
different configurations of the losses LMMD and LKD in the performance of S2P as shown
in Table 4.2. The performance of the baseline significantly improves in almost all the config-
urations by only integrating either the LMMD or LKD. For example, the configuration MS→
M shows a gain in performance. The mAP goes from 53.5 to 62.4 with LMMD and from 53.5
to 65.1 with LKD for S2P-SpCL. Furthermore, combining both losses leads to an additional
overall improvement in performance in all cases.

S2P-SpCL S2P-MMT

LMMD LKD
MS → M MS → C M → MS RP → M MS → M MS → C M → MS RP → M

mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

✗ ✗ 53.5 76.0 15.6 15.7 14.7 36.7 50.5 72.1 65.8 83.7 32.2 32.2 15.1 36.9 58.7 77.5

✓ ✗ 62.4 82.9 24.1 23.6 15.2 38.5 55.4 77.5 62.6 81.4 27.4 26.4 15.3 37 60.8 80.2

✗ ✓ 65.1 85.1 28.2 26.7 16 40 55.5 78.9 67 85.5 35.2 35.1 17.8 41.1 60.4 80.1

✓ ✓ 69.1 87.1 34.3 35.1 20.2 46.1 59 80.5 70 87.1 40.4 42.4 19.5 43.3 61.4 81

Table 4.2: Ablation study on the effectiveness of the LMMD and LKD loss functions using
S2P-SpCL and S2P-MMT.

Knowledge Distillation Design. We examine our knowledge distillation mechanism focus-
ing on two key factors: the loss function and the selection of the support set.

Regarding the support set construction, our similarity-based selection relies on a cosine
similarity function ξ given in Eq. (4.2). We explore two different approaches to compute the
support set as shown in Table 4.3. The first strategy employs all the images of the source
domain S to construct the support set. The second (Rank-1 NN) selects only the most similar
image from the source domain to each previously seen image, without considering its iden-
tity’s other images. The similarity-based selection strategy ξ shows the best results in almost
all cases as shown in Table 4.3. Furthermore, we compare our LKD with two different losses
that are widely used in the literature: LSP [197] which uses pairwise activation similarities
to supervise the training of the student model, and LAT [198] where only the activations
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are used to compute a mean squared error between the student and the teacher models. The
results of Table 4.3 allow us to draw the conclusion that our knowledge distillation design
better suits the setting of OUDA-Rid and outperforms both the other knowledge distillation
losses and support set selection strategies.

Dist.
Support Set

MS → C RP → M
Loss mAP Rank-1 mAP Rank-1

LKD Source Domain S 29.3 28.1 56.3 78.3

LKD Rank-1 NN 29.8 29.6 56.4 78.9

LKD Similarity-based ξ 34.3 35.1 59 80.5

LSP [197] Similarity-based ξ 26.5 25 55.4 78.8

LAT [198] Similarity-based ξ 26.4 25.6 55.5 78.8

Table 4.3: Ablation study on the design of our knowledge distillation mechanism using S2P-
SpCL. We assess the impact of two key factors: the loss function and the selection function
of the support set.

To qualitatively illustrate the construction of our support set, in Fig. 4.4, we show some
random samples of the support set for MS→C and RP→M, where xt is the image in the
target domain and ξx(x

t) is its most similar image in the source domain.

The choice of the teacher. As described in Sec. 4.3.2 for S2P, knowledge distillation is
performed with a teacher network obtained via EMA updates. In this ablation study, we
investigate alternative solutions for the choice of the teacher model as shown in Table 4.4.
We analyze three teacher models: 1) at the start of each task t, the teacher is frozen and
initialized by the weights of the fine-tuned model on the previous task Ft−1; 2) the teacher
is an EMA of the student model, being updated only at the end of the previously seen tasks
F̄t−1; and 3) the mean teacher F̄ obtained via EMA after each iteration (i.e., one mini-batch
pass) as in Sec 4.3.2. The results in Table 4.4 suggest that the choice of the teacher model
is highly critical to alleviating the problem of catastrophic forgetting and that the proposed
solution outperforms other alternatives.

Source (MS) → Target (C) Source (RP) → Target (M)

xt

ξx(x
t)

Figure 4.4: The support set construction based on the similarities between the source domain
MS (RP respectively) and the target domain C (M respectively).
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Teacher Model
MS → C RP → M

mAP Rank-1 mAP Rank-1

Task-specific Ft−1 14.3 14.9 28.7 57

EMA of task-specific F̄t−1 14.8 15.1 28.3 55.7

EMA of the student F̄ 34.3 35.1 59 80.5

Table 4.4: Ablation study on the choice of the teacher model for Knowledge Distillation
using S2P-SpCL.

4.5 Conclusions

In this chapter, we introduced a new Source-guided Similarity Preservation (S2P) algorithm
for the problem of Online Unsupervised Domain Adaptation for person Re-identification
(OUDA-Rid). S2P jointly addresses catastrophic forgetting and domain shift with a knowl-
edge distillation mechanism that respects data privacy regulations. This mechanism is based
on a support set composed of source images similar to previously seen identities in the target
dataset. We also introduced an explicit source-target distribution alignment and a pseudo-
labeling strategy to alleviate the domain shift. We performed extensive experiments where
S2P straightforwardly incorporates existing state-of-the-art UDA methods and consistently
outperformed them by significant margins. This chapter concludes our discussion and con-
tributions in integrating data storage regulation constraints into the deployment of Re-ID
models. In the following chapter, we will shift our focus to another form of privacy regula-
tions concerning data transfer, as outlined in Sec. 1.2.3.
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Chapter 5

Privacy-Preserving Adaptive
Re-Identification With no Image Transfer

5.1 Introduction

In the previous chapters (Chaps 3,4), we introduced the OUDA-Rid as a novel setting that
adequately simulates real-world Re-ID scenario by incorporating constraints related to data
storage. Alongside this, another crucial aspect involves dealing with another form of privacy
regulations related to data transfer. Despite remarkable advancements in recent years [68,
70], applying UDA to person Re-ID (UDA-Rid) encounters privacy concerns due to the need
to collect, store and transfer images of individuals in public areas. Rigorous privacy reg-
ulations in many countries restrict technology providers from retaining images of people.
For example, within the European Union, the General Data Protection Regulation (GDPR)
obligates technology providers to adhere to the principles of “Data Minimization” [200] and
“Purpose Limitation” [201], requiring that personal data be processed only when it is neces-
sary for a designated purpose. These general principles prompt the following question: What
minimal data usage is truly “necessary” for Re-ID systems?

An initial response to this question can be derived from the findings of the previous chap-
ter (Chap 4), where we presented the S2P framework designed to eliminate the necessity for
storing images when deploying Re-ID models. We have shown that S2P effectively adapts
UDA methods to align with privacy regulations, thereby clarifying GDPR’s practical im-
plications. However, these methods typically require transferring all captured images to a
central server, which also poses privacy challenges [202]. Our work explores an alterna-
tive perspective on the question of minimal data usage: Is transferring images outside the
cameras truly “necessary” for Re-ID? Our goal is to demonstrate that adaptation can be
performed exclusively within edge devices, ensuring no image data is transmitted beyond its
capture point as illustrated in Fig. 5.1b. This paradigm provides a privacy-compliant solution
while leveraging the benefits of advanced Re-ID models.

To avoid the need for transmitting images, we approach this privacy-preserving Dis-
tributed UDA for person Re-ID (DUDA-Rid) task as a federated learning problem which in-
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Figure 5.1: In traditional Unsupervised Domain Adaptation (UDA) as depicted in Fig. (a),
images are transmitted to a centralized server, which combines the unlabeled target images
with the annotated source samples to train a model. In contrast, Distributed UDA for person
re-identification (DUDA-Rid) shown in Fig. (b) keeps target images exclusively on edge
devices. The learning process is divided between the server and cameras, the latter being
equipped with local computational resources ( ). Only model parameters are exchanged
between the clients and the server.

herently entails two interconnected challenges: (i) training the model in a distributed setup,
and (ii) addressing the domain gap between the source and target datasets. Therefore, the
key challenge behind the proposed setting is to simultaneously tackle the domain gap while
working within a federated learning framework.

To jointly address the privacy and domain shift challenges in DUDA-Rid, we introduce
a novel Federated Prototype-based learning for person Re-ID (Fed-Protoid) algorithm that
enables domain adaptation without transmitting any image over the camera network. Fed-
Protoid integrates a pseudo-labeling framework within the federated learning setup, and we
propose a distributed version of the Maximum Mean Discrepancy (MMD) technique to en-
hance alignment between the source and target domains. Usually, MMD is calculated in a
reproducing kernel Hilbert space using the kernel trick, which involves comparing source
and target samples. Instead, we compute source prototypes and only share these proto-
types with clients to adhere to privacy constraints. This approach for domain adaptation
achieves high adaptation capabilities while keeping communication requirements to a min-
imum. Fed-Protoid readily outperforms all evaluated methods for DUDA-Rid in various
challenging conditions in real-to-real and synthetic-to-real tasks. Furthermore, we show that
using self-supervised pre-training [54] coupled with a Vision Transformer (ViT) significantly
enhances performance across most scenarios for DUDA-Rid. We refer to this architecture as
Fed-Protoid++.

The main contributions of this chapter can be summarized as follows:

• To our knowledge, we are the first to introduce and address the DUDA-Rid problem.
• We introduce a novel Fed-Protoid algorithm that uses prototypes to jointly address dis-

tributed learning and domain shift in DUDA-Rid. To this end, we propose a distributed
version of the MMD loss to solve the domain gap in the federated setting.

• We perform extensive experiments in real-to-real and synthetic-to-real tasks with four
datasets for DUDA-Rid. Fed-Protoid outperforms previous state-of-the-art person Re-
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ID methods in federated learning under similar conditions. A set of ablation studies
validates each component of our algorithm.

• We further propose a Fed-Protoid++, which uses ViT and recent self-supervised pre-
training techniques to achieve additional gains1.

5.2 Related Work

This section extends the previously discussed related work in three ways. first, we introduce
domain-invariant feature learning based methods as another form of UDA techniques, and we
discuss their limitations within our specific DUDA-Rid setting. Second, we recall briefly the
previously adapted methods from the field of federated learning to the Re-ID task, showing
their limitations. Finally, we present a literature review on Prototypical learning and detail
how our approach compares with these methods.

Domain adaptation for person Re-ID. The current methods for domain adaptation can
be broadly classified into three categories. The first is the domain translation-based meth-
ods [163, 164, 165], which use style transfer techniques such as CycleGAN [166] to modify
the source domain to match the appearance of the target set. Recent studies in this category
have focused on enhancing the translation process via self-similarity preservation [167] or
camera-specific translation [168]. These types of methods are not well-suited for the DUDA-
Rid problem since current federated learning methods with generative models are limited to
toy datasets such as MNIST or CIFAR-10 [203, 204].

The second category is based on domain-invariant feature learning. Shan et al. [205]
proposed a framework for Re-ID by minimizing the distribution variation of the source’s and
target’s mid-level features based on the MMD loss. Huang et al. [206] designed a novel
domain adaptive module to separate the feature map, while Liu et al. [207] introduced a
coupling optimization method for domain adaptive person Re-ID. Despite their effective-
ness, these methods assume unrestricted access to the target domain on the server, relying
on continuous image transmission and storage between cameras and the central server, an
assumption that conflicts with privacy constraints in real-world applications.

The third category is the pseudo-labeling methods that utilize an iterative process al-
ternating between clustering and fine-tuning [169, 170, 49, 171, 172], as described in the
previous chapters. We opt for the pseudo-labeling framework as it outperforms previous
techniques on most datasets and since it is compatible with our DUDA-Rid setting. Never-
theless, naively using a pseudo-labeling framework like MMT [68] in the federated scenario
incurs high communication costs. Therefore, we design our approach to reduce communi-
cation requirements between the clients and the server. Furthermore, our pseudo-labeling
approach is enhanced with an explicit feature alignment mechanism based on MMD mini-
mization.

Federated learning for person Re-ID. Federated Learning (FL) [148] aims at learning sep-
arately from multiple models trained on edges local data. FL restricts the sharing of data

1Code available: https://github.com/ramiMMhamza/Fed-Protoid
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between clients and the server, as well as between clients to protect data privacy. FL has
been applied to various computer vision tasks like image segmentation [150], classification
[151], and person Re-ID [152]. Federated Averaging (FedAvg) [148] was first proposed by
McMahan et al. based on averaging local models trained with local data and redistributing
the averaged server model to the edges. Since FedAvg requires all the models in the edges to
be identical to the server model, Federated Partial Averaging (FedPav) [152] was proposed
to leverage only the common part of the clients’ models (for example the backbones). In
this work, we adapt the FedPav to include also the weights of the model being trained on the
labeled source domain.

FL has also been investigated in the task of person Re-ID. FedReID [159] was first pro-
posed to solve the task of supervised person Re-ID, which incorporates the FedPav opti-
mization technique. A second work that also tackles the problem of FL in person Re-ID
is FedUnReID [160], where the authors proposed an adaptation of the well-known unsu-
pervised baseline for person Re-ID BUC [49]. In this spirit, FedUCA [161] was recently
introduced to address the challenge of FL for person Re-ID. The authors draw inspiration
from CAP [162], adopting both inter- and intra-camera losses to update a memory bank for
each client. These methods focus on the setting of federated by dataset. This setting rep-
resents client-edge architecture, where clients are defined as the edge servers. Each edge
server collects and processes images from a network of multiple cameras. In contrast, our
work focuses on a more restricted federated setting which does not allow the transmission of
images between the cameras and any edge server. Finally, adapting FedUCA to our context
is impractical. This is because, in our setting, each client possesses images from a single
camera device, rendering the optimization of the inter-camera loss unfeasible.

Prototypical learning. The concept of prototypes in modern machine learning was first in-
troduced in the field of few-shot learning to learn a metric space where classification can be
performed by computing distances to prototype representations of each class [208]. Follow-
ing this spirit, prototypical networks were applied to various computer vision tasks, such as
semantic segmentation [209, 210] and continual learning [133, 211]. Prototypical learning
has also made its way into federated learning, initially applied to diverse domains unre-
lated to person Re-ID. For instance, Federated Prototype learning (FedProto) [212] strives to
align features globally using prototypes. Classifier Calibration with Virtual Representations
(CCVR) [213] generates virtual features by leveraging an approximated Gaussian mixture
model. More recently, Federated Prototypes Learning (FPL) [214] incorporates cluster pro-
totypes and unbiased prototypes to mitigate the domain gap between the data in the server
and clients. Notably, these previous methods are tailored for scenarios where prior infor-
mation about the number of classes is available, such as in MNIST and CIFAR-10 datasets.
Fed-Protoid is the first attempt to leverage prototypes in DUDA-Rid, which brings new chal-
lenges due to the unsupervised nature of the problem.

5.3 Federated Prototype-based Re-ID

Problem definition. The objective of this chapter is to train a model Fθ with parameters
θ to identify individuals in a collection of n cameras deployed in a target environment. To
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Figure 5.2: The pipeline of Fed-Protoid. Our algorithm aggregates n edge-client models and
one pseudo-client model in the server. Therefore, prototypes are computed with the aggre-
gated model from the feature space of the source domain. The prototypes and aggregated
model are then distributed to all edge devices for local unsupervised training and adaptation.
This local training on each client involves cross-entropy, triplet, and Maximum Mean Dis-
crepancy (MMD) loss functions.

this end, we have at our disposal n unlabeled datasets {D1,D2, . . . ,Dn} associated to each
camera-client. Each dataset is composed of Ni training samples (images): Di = {x(i)

j }Ni
j=1.

Each target dataset Di is confined to its respective edge camera device and cannot be trans-
mitted, with each camera functioning as a client that interacts solely with a centralized server.
We also have an annotated source dataset S = {(xS

j ,y
S
j )}Ns

j=1 available on the server, where
Ns represents the number of instances in the source dataset. The main challenge in this
DUDA-Rid setting is to align the distributions of the different clients with the source domain
in a distributed and privacy-preserving manner, i.e., without sharing images at any point.

In classical UDA-Rid joint learning, the training objective commonly involves two main
loss terms: the source domain loss Ls, and the target domain loss Lt. In non-distributed
UDA-Rid, learning is commonly performed via the minimization of a linear combination of
both source and target domain datasets as follows:

L(θ) = E(x,y)∼SLs(θ,x,y) + Ex∼DLt(θ,x), (5.1)

where D =
⋃n

i=1Di. Typically, this loss is minimized using stochastic gradient descent.
However, in our DUDA-Rid setting, the gradient of this total loss cannot be estimated with-
out important communication costs. This is because the source term can be accessible only
on the server via the source model, which we designate as the pseudo-client. Meanwhile,
each device i is limited to compute only its local target loss term: Ex∼Di

Lt(θ,x). In the fol-
lowing, we outline our training strategy to minimize the total loss L in a distributed manner.
Additionally, we describe the specifications of each loss term to facilitate efficient commu-
nication and robust learning.

5.3.1 Overview of Fed-Protoid

Fig. 5.2 shows the pipeline of Fed-Protoid for the DUDA-Rid setting. Our algorithm ag-
gregates n client models along with the pseudo-client in a distributed setting. It adheres to
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standard practices in FL and functions in rounds. Each round is composed of three stages: (i)
transmission stage: the aggregated model is distributed to every client and pseudo-client;
(ii) local training stage: each client, as well as the pseudo-client, adapts their local model;
(iii) aggregation stage: the local models are transmitted back to the server for aggregation.

At the beginning of each new round, the transmission stage also includes the transfer
of source prototypes that are later used for source-target alignment. The aggregated model
Fθ computes the features of the source samples and the prototypes of each individual as
the centroid of its feature representations. The prototypes of S are then transmitted along
with the aggregated model Fθ to all clients. Note that we assume the server utilizes either
synthetic data or real data gathered in compliance with relevant legislation. Consequently,
the transmission of source prototypes does not breach the privacy-preserving constraints.

In the local training stage, we use a teacher-student architecture to adapt θ to the un-
labeled target dataset Di on each device i, and to the labeled source dataset S. The server
updates the pseudo-client via supervised training, while the local adaptation on each client
involves cross-entropy, triplet, and MMD loss functions. Considering the use of the cross-
entropy loss and the variation of the number of identities for each client, we add to each local
device i a personalized classifier head Ci. This classifier is designed to match the number of
classes to the respective number of identities in each client, including the pseudo-client.

Finally, in the aggregation stage, the server gathers and aggregates the n client models
{Fθ̂1

, Fθ̂2
, . . . , Fθ̂n

} obtained in the local training stage and the model Fθ̂s
trained on the

source dataset using a weighted average sum as follows:

θ = αθ̂s + (1− α)
n∑

i=1

wiθ̂i, (5.2)

where {θ̂s, θ̂1, θ̂2, . . . , θ̂n} are the parameters of the client models after adaptation, α is the
weight contribution of the pseudo-client model θ̂s, and wi is the weight assigned to the ith
client model given by wi =

Ni∑n
i=1 Ni

.

5.3.2 Teacher-student architecture

All clients, encompassing the pseudo-client, employ the same teacher-student architecture.
This framework is chosen for its effectiveness in enabling self-training techniques, which
have been shown to yield optimal performance in UDA-Rid scenarios. While self-training
is not required in the source domain due to its labeled nature, the use of the teacher-student
framework favors similar training dynamics across both clients and the pseudo-client, facili-
tating more efficient model aggregation.

For simplicity, we assume here that we are in the ith client. Firstly, we initialize at
each round the parameters of the teacher model θ̄i and student model θi with the parameters
of the aggregated model θ. During adaptation, the student model is updated through the
minimization of the target loss function Lt(·) which are later detailed in Sections 5.3.3 and
5.3.4. After back-propagation through the student, we use the Exponential Moving Average
(EMA) parameters update [193, 194] to compute the teacher model. At every iteration t, the
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parameters θ̄(t+1)
i of the teacher model are given by:

θ̄
(t+1)
i = τ θ̄

(t)
i + (1− τ)θi, (5.3)

where τ ∈ [0, 1) is a weighting factor. The model θ̂i, which is sent back to the server for
model aggregation, is assigned to the final teacher model θ̄(t)

i .

5.3.3 Prototype estimation and server training

Source prototypes. In the transmission stage, the server sends prototypes to all the target
clients. These prototypes are defined as the mean feature representation for each identity
from the source domain. Formally, the prototype pk of the kth identity is given by:

pk =
1

|Sk|
∑
l∈Sk

Fθ

(
xS
l

)
∀ 1 ≤ k ≤ K, (5.4)

where K is the number of identities in S , Sk ⊂ S is the set of images of the kth identity, and
Si ∩ Sj =∅ ∀i ̸= j. With enough diverse identities and images per identities from the source
domain, the set of all source prototypes can serve as an approximation of the source domain
distribution which can be transmitted with little cost. Subsequently, we use them to align the
source and target distributions in the edge devices in the local training stage.

Pseudo-client loss. The source domain is treated as a pseudo-client in the local-training
stage. Since the pseudo-client has access to the source domain dataset with labeled samples
S = {(xS

j ,y
S
j )}Ns

j=1, we can compute a supervised source loss Ls for the jth sample as:

Ls(x
S
j ,y

S
j ) = LCEs + LTris, (5.5)

with

LCEs =β1LCE

(
Cs ◦ Fθs(x

S
j ),y

S
j

)
+ β2LCE

(
Cs ◦ Fθs(x

S
j ), C̄s ◦ Fθ̄s(x

S
j )
)
,

LTris =γ1LTri

(
Fθs(x

S
j ),y

S
j

)
+ γ2LTri

(
Fθs(x

S
j ), Fθ̄s(x

S
j )
)
,

where LCE is the cross-entropy loss, C̄ is the teacher classifier head, LTri is the triplet loss,
β1 + β2 = 1, and γ1 + γ2 = 1.

5.3.4 Local training on edge devices

We now detail the local training stage for the clients. A key difficulty of the target domain
training is the estimation of the number of identities from an unlabeled set of images Di =

{x(i)
j }Ni

j=1. To this end, we apply the pseudo-labeling technique [169, 170, 49] consisting
of an iterative process between clustering with the DBSCAN [45] method and fine-tuning.
After this pseudo-labeling process we get an augmented dataset D̃i = {x(i)

j , ỹ
(i)
j }Ni

j=1, where
ỹ
(i)
j is the pseudo-label associated to the jth sample.
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Target client loss. In the edge devices, the teacher model generates soft labels that guide
the student model to be less confident about the hard pseudo-labels [66]. This results in a
refinement of the wrong predictions of the student model. Specifically, for a given target
client dataset Di, the local loss function Li in a mini-batch is given by:

Li =
1

m

∑
j∈Di,m

Lp(x
(i)
j ) + λLMMD (Di,m,Pm) , (5.6)

where Di,m ⊆ Di is the set of images in the mini-batch with |Di,m| = m, Lp(x
(i)
j ) is a

pseudo-label loss for the jth sample, λ is a weighting factor, and LMMD (Di,m,Pm) is the
MMD loss between Di,m and a subset of the prototypes Pm ⊆ {p1,p2, . . . ,pK} with |Pm| =
m. The pseudo-label loss Lp(x

(i)
j ) is the same as in (5.5), but since the true labels are not

available in the clients, we use the pseudo-labels ỹ(i)
j instead. The local loss is used to update

the student parameters θi.

Personalized pseudo-epoch. A significant challenge in federated learning scenarios is de-
termining the optimal number of training epochs for each client. This decision is crucial
to achieve the best balance between learning efficiency and transmission overhead. In our
task, this problem is also crucial to prevent over-fitting in clients with only a few identities
or images. To ensure equal usage of all identities within a client during a federated training
round, we introduce the Personalized Pseudo-Epoch (PPE).

For a specific client i, let Ki represent the count of identities in Di as identified by the
DBSCAN algorithm. In every iteration, mini-batches are constructed by randomly selecting
I identities. From each chosen identity, B images are sampled, as in previous works [68,
70]. Consequently, we define the number of iterations required for one PPE as Pi = Ki

I
.

By doing so, we ensure that, during a federated training round, each identity is presented
an equal number of times, irrespective of the varying number of identities present in each
client’s dataset.

5.4 Experiments and Results

In this section, we detail our experimental setup, covering datasets, implementation details,
and evaluation metrics. Subsequently, we compare Fed-Protoid against two categories of
approaches: (i) FL + UDA, wherein we adapt the UDA methods MMT [68] and SpCL [70]
to DUDA-Rid, and (ii) federated learning approaches for person Re-ID, namely FedReID
[159] and FedUnReID [160]. Finally, we conduct a series of ablation studies to (i) validate
the teacher-student architecture and aggregation choice, (ii) confirm the suitability of the
MMD loss, and (iii) demonstrate the efficacy of the transformer-based architecture coupled
with self-supervised pre-training (Fed-Protoid++).

– 62 –



5.4.1 Experimental setup

Datasets. We evaluate our method in real-to-real and synthetic-to-real scenarios. For the
source domain, we use two datasets: MSMT (MS) [78] and RandPerson (RP) [83]. For the
target domain, we use the Market (M) dataset [76], previously introduced, alongside the new
protocol CUHK03-np (C) [215] which consists of splitting the CUHK03 dataset into 767
identities for training and 700 identities for testing. In testing, each query identity is selected
by both cameras to ensure the evaluation of the cross-camera Re-ID.

Evaluation protocol. In the DUDA-Rid setting, we assume the cameras are equipped with
embedded devices that can train the teacher-student models of the clients. To mimic this
scenario, we split Market into six clients and CUHK03-np into two clients, where each client
contains images from a single camera viewpoint. We adopt the commonly used metrics for
evaluation in person Re-ID [68, 70]: mean Average Precision (mAP) and CMC Rank-1 [76]
accuracies. During each round of the federated learning, each client performs a number of
PPEs. Therefore, we compute the metrics on a separate test set related to the target domain
using the aggregated model from the server. We report for each method the highest average
mAP and Rank-1, with the number of rounds required to reach these top scores.

Implementation details. For a fair comparison with the state-of-the-art methods, we fol-
low the common practices in the UDA for person Re-ID field by adopting ResNet-50 [28]
pre-trained on ImageNet [84] as a backbone. We train every method for 800 rounds of fed-
erated learning. Except FedUnReID, where we follow its implementation details and set the
training number of rounds to 200. We stop the training process upon observing any signs of
divergence, specifically when there is a considerable decline in the test mAP over the train-
ing rounds. We present a sensibility analysis of the hyper-parameters of Fed-Protoid in the
supplementary material B.

To stress the practicality of the adopted setting, we also consider a variant of Fed-
Protoid called Fed-Protoid++, where we employ a stronger backbone architecture and lever-
age as initialization a model pre-trained on a large-scale Re-ID dataset. Concerning the
architecture, we transition from the traditional ResNet-50 to a ViT [39] backbone. We com-
plement the backbone improvement with the adoption of self-supervised pre-trained models
on the large-scale unlabeled dataset LUPerson [53].

5.4.2 Comparison with the state-of-the-art

Since Fed-Protoid is the first method that addresses DUDA-Rid, we adapt various methods
initially designed for alternative settings to facilitate a comparison with Fed-Protoid.

Competitive methods. We assess the performance of Fed-Protoid against two federated
frameworks for person Re-ID: FedReID [159] and FedUnReID [160]. On one hand, Fe-
dReID is a Fully Supervised (FS) method that incorporates dynamic weight adjustment,
knowledge distillation, and FedPav as its aggregation rule. The original study of FedReID
also explores our dataset partition in the edge devices, i.e., each client contains images from
a single camera. However, a key distinction is that FedReID requires the target dataset Di

to be labeled, while we do not have such a constraint. On the other hand, FedUnReID
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Method Type
MS → M MS → C RP → M RP → C

mAP Rank-1 #R mAP Rank-1 #R mAP Rank-1 #R mAP Rank-1 #R

FedReID [159] FS 38.9 61.9 800 11.6 11.7 750 38.9 61.9 800 11.6 11.7 750

FedReID+S FS 39.5 63.8 790 12.0 12.3 800 40.0 64.4 800 11.4 11.6 780

FedUnReID [160] PU 19.5 43.6 190 6.8 7.0 170 19.5 43.6 190 6.8 7.0 170

FedUnReID+S PU 31.0 61.7 170 10.5 11.1 170 31.5 31.8 170 10.6 11.6 160

FedAvg+SpCL [70] UDA 39.1 67.3 8 19.7 18.9 1 36.1 62.9 9 21.2 21.6 3

FedPav+MMT∗ [68] UDA 45.8 73.6 70 22.4 21.9 9 30.2 58.9 9 19.0 19.7 9

Fed-Protoid (ours) UDA 51.0 76.8 288 23.8 23.1 22 39.2 66.4 22 25.1 24.7 253

Fed-Protoid++ (ours) UDA 61.7 82.6 170 43.8 42.4 24 45.2 71.8 186 25.7 24.9 212

Table 5.1: Comparison of mAP, Rank-1 accuracy, and number of rounds (#R) for four adap-
tation configurations. The different methods range from Fully Supervised (FS), Purely Un-
supervised (PU) to Unsupervised Domain Adaptation (UDA). ∗The communication cost for
a single round in MMT is four times greater than that in the other ResNet-based models.

is a framework that adapts the Purely Unsupervised (PU) baseline Bottum-Up-Clustering
(BUC) [49] for Federated person Re-ID. We also compare Fed-Protoid with FedReID+S
and FedUnReID+S. These variants are improved versions of the original frameworks where
we initialize the models with supervised source pre-training, offering a fairer comparison
with Fed-Protoid that leverages the source domain’s knowledge.

Since our DUDA-Rid setting combines both UDA and FL, we extend our comparison
to include Fed-Protoid against UDA methods for person Re-ID. For the UDA methods, we
adapt the state-of-the-art pseudo-labeling approaches SpCL and MMT to suit the DUDA-
Rid setting. In this process, during each federated learning round, we send copies of these
UDA frameworks to all the edge clients for local training. Additionally, for a fair comparison
with Fed-Protoid, we train in the server the pseudo-source client on the labeled source do-
main S. The aggregation rule for these adapted UDA methods, denoted FedAvg+SpCL and
FedPav+MMT is consistent with Eq. (5.2). The main objective of this comparison is to eval-
uate the effectiveness of traditional UDA methods when confronted to privacy constraints,
where the target domain is distributed over multiple edge devices (cameras).

Quantitative results and discussions. Table 5.1 reports the best mAP accuracy and CMC
Rank-1 score alongside the number of rounds (#R) required to achieve these top scores. We
include two real-to-real configurations MS → M, MS → C, and two syntetic-to-real RP →
M, RP → C.

Fed-Protoid demonstrates good results against the supervised and unsupervised federated
learning methods for person Re-ID, FedReID and FedUnReID as shown in Table 5.1. For
example, Fed-Protoid obtains 23.8 of mAP in MS → C, outperforming FedReID with 11.6
mAP and FedUnReID with 6.8 mAP. More interestingly, Fed-Protoid reaches this perfor-
mance after only 22 rounds, whereas FedReID and FedUnReID require 750 and 170 rounds,
respectively. Fed-Protoid also reaches superior performance in the RP → C configuration
with 25.1 mAP compared to the other federated learning methods. We also evaluate the im-
proved versions FedReID+S and FedUnReID+S where both models start with a pre-training
on the source domain. Even though starting from the source pre-trained models improves
slightly the original models’ performances, they are below the performances obtained by
Fed-Protoid in almost all configurations.
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Fed-Protoid also improves significantly the performance of the adapted UDA baselines
SpCL and MMT as shown in Table 5.1. In MS → M, SpCL and MMT achieve a mAP of 39.1
and 45.8, respectively, while Fed-Protoid achieves a mAP accuracy of 51. This observation
can also be generalized to the synthetic-to-real configurations like RP → M, where Fed-
Protoid reaches a performance of 39.2 mAP, while SpCL and MMT achieve 36.1 and 30.2
mAP, respectively. Even though Fed-Protoid requires more communication rounds to reach
its optimal performance compared to MMT, it is important to notice that Fed-Protoid trans-
mits approximately only a quarter of the data weights per round. This is because the MMT
architecture sends four backbones to the server, whereas Fed-Protoid needs to share only one
(the teacher model) and the transmission cost of the prototypes is almost negligible compared
to the weights of the models. Overall, Fed-Protoid is more effective in the DUDA-Rid sce-
nario than the adapted UDA baselines SpCL and MMT as shown in Table 5.1.

Fed-Protoid++ Recent work [53] has shown the suitability and effectiveness of self-supervised
pre-training methods for transformer-based methods [39] in person Re-ID, yielding substan-
tial enhancements across a variety of Re-ID benchmarks. In the context of our DUDA-
Rid setting, the performance of Fed-Protoid++ is consistent with the aforementioned find-
ings as shown in Table 5.1. Particularly, transitioning from the ResNet-50 to a ViT backbone
pre-trained in a self-supervised way leads to remarkable performance enhancements in all
the configurations. For instance, we observe an increase in the mAP from 51 to 61.7 in
MS → M. Similarly, we have an improvement from 39.2 to 45.2 in RP → M in the mAP,
showing Fed-Protoid++ enhanced effectiveness. The improvement in the performance of us-
ing transformer-based models in person Re-ID comes from three main reasons [39]: (i) the
multi-head self-attention effectively captures long-range dependencies and drives the model
to focus on diverse human-body parts, (ii) transformer-based models have the ability to ex-
tract fine-grained features which is essential in person Re-ID, and (iii) the rich variety and
volume of the LUPerson dataset provide the model with the capability of extracting more
robust features that are generalizable across small downstream datasets. We perform an ab-
lation study in Section 5.4.3 to empirically validate these points.

Training dynamics In Fig. 5.3, we illustrate the progression of the mAP of the different
methods in the MS → M configuration. Notably, there is a difference in the evolution of
the mAP between the methods designed for the FL FedReID+S and FedUnReID+S, and
the UDA-based methods FedAvg+SpCL and FedPav+MMT. Specifically, while FedReID+S
and FedUnReID+S exhibit a consistent improvement during the training, this trend is not
mirrored in the performance of FedAvg+SpCL and FedPav+MMT. In fact, both UDA-based
methods tend to converge rapidly at the early stage of FL training. This is because initially,
the local models are relatively close to the source model, allowing for easier leveraging of
the source domain knowledge in the first rounds of FL. However, as training progresses, the
local models start diverging from the source model, leading to a decrease in performance.
Conversely, our methods demonstrate a stable progression, effectively managing to mitigate
domain shift during training. This highlights the effectiveness of our approach in maintaining
consistent performance in the DUDA-Rid setting.
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denotes the maximum mAP achieved by each method.
denotes the end of the federated training.

Figure 5.3: Test mAP vs Round of the different methods in the real-to-real configuration MS
→ M.

5.4.3 Ablation studies

This section presents ablation study results to assess the contribution of Fed-Protoid’s main
components.

On the effectiveness of the teacher-student framework. The integration of the teacher-
student architecture gives multiple possibilities to the design of Fed-Protoid. Table 5.2 shows
the results of the ablation study where (i) we do not have the teacher-student framework in
the pseudo-client, (ii) we have the teacher-student framework in the pseudo-client and we
transmit the students for aggregation, and (iii) we have the teacher-student framework in the
pseudo-client and we transmit the teachers for aggregation. Table 5.2 shows a considerable
drop in performance when the teacher model is omitted from the pseudo-client in both MS
→ M and MS → C. Specifically, the mAP decreases from 51 to 37.4 in MS → M, and from
23.8 to 22.5 in MS → C, underscoring the crucial role of the teacher model in the pseudo-
client. These findings align with our claim in Section 5.3.2 regarding the use of the teacher-
student architecture in the pseudo-client to keep similar training dynamics with the other
clients. The teacher-student architecture gives another alternative of transmitting the student
instead of the teacher models for aggregation. Table 5.2 illustrates that this alternative yields
reasonable performance. However, using students for aggregation falls marginally short of
the performance achieved by aggregating the teacher models.

On the effectiveness of the MMD loss. The MMD loss, serving as a measure of domain
discrepancy, offers a variety of options for the reproducing kernel Hilbert space where we
minimize the distance between source prototypes and target feature representations. Table
5.3 shows a comparison between different kernel functions including linear, order 2, and
Gaussian kernels. The linear kernel minimizes the mean average of prototypes and target
features distributions, while the order 2 kernel minimizes the mean average and the standard
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Teach.-Stud.
Transmission MS → M MS → C

on S
✗ Teacher 37.4 22.5

✓ Student 49.3 23.8
✓ Teacher 51.0 23.8

Table 5.2: Ablation study of the teacher-student framework: comparing teacher vs. student
model aggregation from edge devices.

MMD Kernel MS → M MS → C

✗ – 42.6 22.4
✓ Linear 38.1 22.1
✓ Order 2 27.8 13.1
✓ Gaussian 51.0 23.8

Table 5.3: Impact of the kernel function choice on the effectiveness of the Maximum Mean
Discrepancy (MMD) loss.

deviation of these distributions. Table 5.3 suggests that the linear and order 2 kernels are not
effective in the DUDA-Rid setting. This can be attributed to potentially biased estimations
of the true mean (linear) and variance (2nd order) within relatively small and diverse batches
of images. Furthermore, using the MMD loss with a Gaussian kernel achieves superior per-
formance in all cases, including when MMD loss is not used at all. We further evaluate
the MMD’s effectiveness by examining its performance with limited prototypes and com-
paring the proposed distributed MMD with the original MMD in the supplementary material
B, demonstrating its robustness against device storage and communication limitations and
proving it to be effective and suitable for our setting.

On the effectiveness of the backbones and pre-training datasets. The final ablation study
focuses on the impact of the different modifications done to design Fed-Protoid++. Table
5.4 shows the ablation study for different backbones, pre-training strategies, and warm-up.
For the backbones, we have the option to use either the classical ResNet-50 or ViT Small
(S). For the pre-training dataset and strategy, we can either use fully supervised on ImageNet
or self-supervised in LUPerson. The warm-up consists of adding an additional supervised
pre-training on the source domain S . We observe in Table 5.4 that adopting the ViT back-
bone combined with an appropriate pre-training dataset significantly enhances the perfor-
mance. Fed-Protoid corresponds to a ResNet-50 backbone pre-trained on ImageNet, while
Fed-Protoid++ corresponds to a ViT model pre-trained on the large-scale LUPerson dataset
in a self-supervised way.

A key finding in Table 5.4 is that using ViT (S) instead of ResNet-50 with the same
pre-training strategy consistently results in performance improvements. For instance, when
comparing ResNet-50 and ViT (S) pre-trained on ImageNet, the mAP slightly improves from
51 to 52.4 in MS → M, and from 23.8 to 27.5 in MS → C. This suggests that the ViT-based
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Backbone Pre-tr. Warm-up MS → M MS → C

ResNet-50 ImageNet ✗ 41.5 23.7

ResNet-50 ImageNet ✓ 51.0 23.8
ResNet-50 LUPerson ✗ 44.0 13.6

ResNet-50 LUPerson ✓ 46.0 16.0

ViT (S) ImageNet ✓ 52.4 27.5

ViT (S) LUPerson ✗ 59.7 23.9

ViT (S) LUPerson ✓ 61.7 43.8

Table 5.4: Impact of the backbone architecture and pre-training datasets on the performance
of Fed-Protoid.

backbone learns more robust features in the target domain. Additionally, ViT (S) captures
more generalizable features when pre-trained in a self-supervised way thanks to the large
and diverse set of unlabeled images in LUPerson. As a final remark, the warm-up generally
enhances the performances across all the scenarios and configurations.

5.5 Conclusion

In this chapter, we presented a novel approach for the task of UDA for person Re-ID that
addresses both problems of domain shift and privacy preservation. To comply with privacy
standards, our method Fed-Protoid learns a person Re-ID model across multiple edge de-
vices without transmitting target images from the cameras where they were captured. By
integrating a teacher-student architecture and a source-client model, trained in the server
side on labeled source domain, and introducing a distributed version of the Maximum Mean
Discrepancy (MMD) loss, Fed-Protoid ensures effective domain adaptation with the target
clients while keeping communication requirements minimal. Our experiments show the su-
periority of Fed-Protoid compared to existing methods under various challenging configura-
tions, including real-to-real and synthetic-to-real DUDA-Rid tasks.
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Chapter 6

Conclusion and Future Work

Throughout this thesis, our focus was mainly on tackling the major challenges of Person Re-
ID, with a specific emphasis on the domain gap and privacy concerns that arise in modern
surveillance systems. The primary contribution of this research work has been the develop-
ment of robust methods that adapt Re-ID models to changing environments while adhering
to strict data privacy regulations, such as RGPD and the AI Act. In what follows, we will
summarize our main contributions and their limitations before discussing future perspectives
of this thesis.

6.1 Summary and Discussion

In Chapter 1, we introduce the context of video surveillance systems with a highlight on the
transformative role of AI and machine learning in improving the functionality and integration
of these systems across different sectors. We also describe the task of Person Re-ID and
its crucial role in modern surveillance. A historical overview shows how Person Re-ID
has changed over time, starting with its original integration with multi-camera tracking to
its adaptation and integration with deep learning techniques. Additionally, we discuss the
significant challenges that Person Re-ID faces in the new era of AI, particularly focusing
on domain gap and privacy constraints, which are pivotal in shaping the development and
deployment of Re-ID systems in real-world scenarios.

Chapter 2 consists of a literature review that extensively covers the evolution and the
current state of research in the Person Re-ID field. It highlights also the significant advance-
ments in related fields to this thesis which are Unsupervised Domain Adaptation (UDA),
Continual Learning, and Federated Learning. One of the most significant advances in the
field of Person Re-ID is the transition from handcrafted feature extractors to sophisticated
neural network architectures that improve the robustness and discrimination capabilities of
Re-ID systems. The literature review also explores the UDA techniques, which have been
proven effective in adapting Person Re-ID models to new unlabeled environments, minimiz-
ing the need for extensive labeling. Other than pseudo-labeling methods, that rely solely
on the iterative process of clustering and fine-tuning, in this thesis, we have also developed
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statistical techniques based on the Maximum Mean Discrepancy (MMD) to further reduce
explicitly the domain gap under privacy constraints. Finally, we detail the recent advances
in Continual Learning and Federated Learning, since both fields present innovative solutions
that combine well with UDA techniques to respect the privacy of data. On one side, Con-
tinual Learning is explored as a promising approach to deal with catastrophic forgetting in
the OUDA setting (Chap 3) where images are collected as a stream of data and where no
images are allowed to be stored for an unlimited amount of time. On the other side, Fed-
erated Learning is evaluated for its relevance in privacy-preserving collaborative learning,
where data remains decentralized. In the following chapters, we attempt to integrate these
areas to propose a unified approach that leverages the adaptive ability of UDA methods and
privacy-preserving characteristics of Continual Learning and Federated Learning to address
the challenges related to both the domain gap and the privacy constraints in deploying effec-
tive Person Re-ID systems.

Chapter 3 introduces our first contribution to the field of Person Re-ID. We propose a new
setting called the OUDA-Rid, which involves adapting a Re-ID model trained on a labeled
source dataset to an unlabeled target dataset collected in a sequential and online fashion. We
outline the limitations of existing UDA methods that typically assume having access to a
large set of target domain data for offline training. This is an assumption that is often vio-
lated since it relies on storing potentially large amounts of person images, whereas Re-ID
systems are confronted with confidentiality purposes forcing them to discard previously col-
lected and seen images. Furthermore, we present adaptations of different UDA frameworks
to the OUDA setting covering different techniques: the strong baseline [66], teacher-student
frameworks [68], and contrastive-based UDA methods [70]. These methods are evaluated in
an experimental setup that simulates real-world conditions where data is provided in batches
without identity overlap between them. The results show that when adapting UDA methods
to the OUDA-Rid setting, the performance results in a significant drop compared to offline
training, which underscores the need to design new frameworks that can effectively handle
the stream of data and continuously adapt to new environments while preserving the previ-
ously acquired knowledge.

The next contribution, which is detailed in Chapter 4, explores the challenges of the
OUDA-Rid setting which are domain gap and catastrophic forgetting. To this end, we pro-
pose the S2P framework which incorporates Knowledge Distillation to address the dual chal-
lenges present in the OUDA-Rid setting. S2P employs a teacher-student model and utilizes
a support set that is constructed by images derived from the source domain that are similar
to the target domain to preserve the previously acquired knowledge. Furthermore, it mini-
mizes the MMD loss in the feature space between the source and target domains to facilitate
the continual adaptation to the new target domain data streams. Our extensive experiments
demonstrate that S2P adapts effectively existing UDA methods to the relatively complex yet
practical setting of OUDA-Rid. This adaptation results in a significant performance boost
compared to the results obtained by straightforwardly applying these UDA methods to the
OUDA-Rid setting. Moreover, we believe that the privacy-preserving aspect of the S2P
framework could serve as a model for developing similar frameworks in other fields where
data is confronted with privacy concerns.

Chapter 5 explores an orthogonal yet complementary direction to the previous work while
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maintaining adherence to privacy regulations. This chapter shifts our focus toward different
constraints associated this time with data transfer. We challenge the need for transferring
captured images to a central server for training and adapting Re-ID models, as this approach
raises significant privacy concerns and increases the risks of data breaches. We started by
introducing the DUDA-Rid setting which is a task that is based on performing adaptation
directly within the edge devices, ensuring no image is transmitted beyond its capture point.
Next, we propose a novel Federated Prototype-based learning method, named Fed-Protoid,
that leverages federated learning to train the Re-ID model in a distributed manner while tack-
ling the domain shift problem. The proposed Fed-Protoid framework integrates a pseudo-
labeling framework with a distributed MMD technique for aligning the source and target
domains without transmitting any image data. To adhere to the primary constraint of data
transfer, Fed-Protoid computes and shares only source prototypes with target clients, thereby
achieving high adaptation capabilities while ensuring data safety and minimizing communi-
cation requirements. Additionally, the source domain typically consists of an academic or
synthetic publicly available dataset that is collected in a way that does not compromise pri-
vacy.

This thesis tackles the critical challenges related to privacy with the deployment of Re-ID
systems. It proposes novel solutions and improvements to existing Re-ID systems to comply
with privacy regulations while maintaining robust performance. In a world increasingly
focused on ethical principles, particularly regarding data privacy, the findings of this thesis
are timely.

Consequently, this thesis has great potential to attract industry players looking to com-
mercialize advanced Re-ID technologies and government structures interested in deploying
these technologies for public security purposes. This interest could open possible collab-
orative efforts that would strengthen the interactions between industrial and governmental
sectors, enhance compliance with privacy requirements, and facilitate the real-world testing
and refinement of Re-ID technologies. On one side, industry entities, that are continually in
search of cutting-edge technologies, can build upon our findings to further develop, scale,
and finally commercialize the innovations presented in this thesis. On the other side, gov-
ernment bodies may initiate pilot projects, grants, or partnerships that would allow for field
testing and eventual deployment. This cooperative effort is essential for ensuring the devel-
opment and deployment of the next generation of Re-ID systems, ensuring they are not only
effective but also ethically and socially responsible.

6.2 Future Directions

Unified Framework for Federated Continual Learning: A natural direction for future
work is to combine the two settings, OUDA-Rid and DUDA-Rid, to create a unified frame-
work for Federated Continual Learning. In this context, recent work from Shenaj et al. [216]
proposes an Asynchronous Federated Continual Learning, where the continual learning of
multiple tasks occurs at each client with different orderings. This approach, which has yet
to be applied to the Re-ID task, would address both data storage and data transfer regu-
lations simultaneously, offering an environment to develop even more privacy-preserving
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solutions for Re-ID. However, when considering a complete solution, a significant challenge
may arise. It concerns mainly the deployment of the models on edge devices with limited
storage capacity to host the Re-ID models. Techniques for efficient learning like pruning
[217] and quantization [218] have shown remarkable effectiveness in decreasing the number
of parameters in deep learning models, which in turn could reduce the size of the Re-ID
models deployed on these devices.

Advancements in Generative AI: The recent rise of diffusion models in Generative AI
highlights an exciting opportunity to generate large-scale high-quality images conditioned
on text or other modalities [219, 220]. In chapter 5, our experiments indicate decent adap-
tation performance when the source domain is fully synthetic, which supports the potential
of this approach. Moreover, combining those datasets with appropriate unsupervised and
self-supervised pre-training techniques [54, 53, 221] could lead to the development of more
robust and effective pre-trained models, thereby improving the initialization and the gen-
eralization of Re-ID models. This approach can be a promising alternative to pre-trained
models on ImageNet [84], which contains images manually assigned one-hot labels from a
pre-defined set, thereby completely ignoring the rich semantic content beyond these cate-
gories.

Integration of Foundation Models: Foundation models (e.g. DALL-E [222], GPT-4, and
Llama-3 [223]) are models trained on extensive datasets using generally self-supervision at
scale. These models are versatile and capable of being adapted to a wide range of down-
stream tasks. Incorporating Large Language Models (LLMs) and Vision Language Models
(VLMs) into Re-ID systems will offer a new avenue for enhancing model training with the
two modalities, images and text. The simplistic idea is to fine-tune the visual model of
VLMs, like CLIP [224] or Llava [225] on Re-ID datasets, which already obtained compet-
itive performances in various Re-ID tasks [226]. To go beyond this basic idea, exploring
techniques for efficient learning such as text prompt learning [227] and multi-modal prompt
learning [228] could be investigated to minimize further the computation cost of deploying
Re-ID models on edge devices.

6.3 Limitations

A significant limitation of the research presented in this thesis is the possible violation of
privacy when the Re-ID model is being tested. This problem is outside the main scope of
this thesis, yet it is still significant to talk about it and its potential fixes and solutions.

Technically speaking, sending the person of interest’s anchor image to every camera
in a distributed network of cameras (DUDA-Rid) could be one way to protect privacy when
testing the Re-ID system. Next, every camera ranks all of its previously stored gallery photos
based on a similarity metric. Finally, only the closest matches from each camera are sent back
to the server for approval, in order to protect the privacy of those who are not involved.

Furthermore, to use Re-ID systems, governments, and organizations must balance safety
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needs against ethical concerns like equality, transparency, and access (Section 1.1.3). With-
out clear communication and strict management of data access and usage, there will always
be a significant chance of misuse and privacy violations. Using specialized government
teams to establish stringent access controls that guarantee only authorized personnel can
access raw images or model updates, as well as implementing anomaly detection systems
to identify unusual spikes in data transmission, are possible solutions to detect and prevent
privacy violations during Re-ID inference.
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Appendix A

Source-Guided Similarity Preservation
for Online Person Re-Identification
Supplementary Materials

This supplementary material contains additional results, analysis, and details about the S2P
framework. The following items are included:

• We provide more details about the implementation of MMT, SpCL and IDM in the
OUDA setting (Sec. A.1).

• We present the results of two dataset configurations that are not discussed in Chapter
4, namely, Market→CUHK and RandPerson→CUHK (Sec. A.2).

• We conduct additional ablation studies. First, we show the impact of increasing the
number of tasks in the OUDA setting on the performance of S2P. Second, we val-
idate the choice of hyperparameters and the model used for inference. And finally,
we compare the performance of S2P and other UDA methods in the source domain
while adapting to the target domain (Sec. A.3). Note that, considering the consistent
performances of MMT and SpCL across datasets (refer to Tab. 4.1), we conduct our
additional ablation studies with those two methods to derive conclusions that more
likely hold true across multiple use cases.

A.1 Additional Implementation Details

In this section, we provide additional details about the implementation of the different frame-
works. In Tab. 4.1, we compare the performance of S2P with three state-of-the-art UDA
methods, namely MMT, SpCL and IDM. We follow [229] to implement and adapt those
methods to the OUDA setting. In [229], the authors run experiments of the strong base-
line in the OUDA setting while varying the number of epochs. They observed that the best
performance is achieved using 20 epochs. We keep the same hyper-parameters for MMT,
S2P-MMT, SpCL, S2P-SpCL, IDM and S2P-IDM in Tab. 4.1.
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In contrast to [229, 68], we do not consider the DukeMTMC-ReID dataset, because it
has been retracted by its original authors in response to a report1 that shows that the Duke
dataset was used by a few companies for some research projects that violate Human Rights.

A.2 Additional Comparison with the State-of-the-art

In this section, we provide results of complementary configurations that are not reported in
Chapter 4: RP → C, and M→C. In Tab. A.1, we report the mAP and the Rank-1 of the strong
baseline, SpCL, MMT, and our framework S2P-MMT and S2P-SpCL. We can see that S2P
has the best performances on both configurations. For example, the mAP of SpCL goes from
13.2 to 27.8, and from 12.4 to 31.2, in both configurations, respectively, when integrated into
our S2P framework.

Method
RP → C M → C

mAP Rank-1 mAP Rank-1

Strong Baseline [66] 2.5±0.1 1.6±0.1 6.9±1.4 6.1±1.2

MMT [68] 21.0±0.4 21.5±0.4 32.9±0.3 32.9±0.4

SpCL [70] 13.2±2.2 12.3±2.4 12.4±0.5 11.9±1.1

S2P-MMT (ours) 23.8±1.9 23.8±2.1 34.8±2.1 35.9±0.3

S2P-SpCL (ours) 27.8±0.3 28.1±0.4 31.2±0.2 31.5±0.1

Table A.1: Performance of S2P and three state-of-the-art methods in two additional OUDA-
Rid tasks.

A.3 Additional Ablation Studies

Increasing the number of tasks. We conduct an additional experiment using MSMT as
the target dataset to evaluate the impact of increasing the number of tasks. Since MSMT is
a much larger dataset than Market and CUHK, increasing the number of tasks to ten results
in smaller data partitions, but the task partitions remain comparable to those of Market or
CUHK in a five-task OUDA setting in terms of the number of images. This experiment
extends the results of Chapter 4 by augmenting the number of tasks while keeping the same
number of images per task. S2P outperforms the UDA state-of-the-art in terms of mAP
for MMT and SpCL as shown in Fig. A.1. These results demonstrate the effectiveness of
S2P even when additional tasks are introduced, highlighting the efficacy of our technique in
increasingly complex scenarios.

Weights of the losses. Here, we validate the weights of the different losses in S2P. When
implementing LReID, we employ the weighting parameters provided in the respective origi-

1https://exposing.ai/duke_mtmc
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Figure A.1: Comparison of S2P with other state-of-the-art methods in terms of mAP vs. task
index in a 10-tasks OUDA Market→MSMT configuration

nal papers [70, 68, 115] in S2P-SpCL, S2P-MMT and S2P-IDM. For the sake of simplicity,
the weight of LReID is then set to 1 in all our experiments regardless of the chosen pseudo-
labeling method. For LKD and LMMD, we show in Tab. A.2 a comparison in mAP of
S2P-SpCL when varying the corresponding weights λKD and λMMD. We observe that the
best performances are obtained with λKD = 1 and λMMD = 0.03. We also notice that
S2P is not very sensitive to the weights of the losses and remains, in all cases, above the
performance of the original SpCL (15.6 in Tab. 4.1).

λMMD

λKD 0.1 1 10

0.003 31.7 33.3 31

0.03 31.1 34.3 31.4

0.3 28.4 32.2 29.7

Table A.2: Ablation study on the weights of the two main losses of S2P λKD and λMMD.
The table shows the mAP of S2P-SpCL in the MSMT→CUHK configuration. The best
performing configuration is shown in bold.

Performance of the teacher. In what follows, we justify the choice of the teacher model
for inference. Tab. A.3 shows the performance of S2P-MMT and S2P-SpCL using the stu-
dent and teacher networks in inference. In the OUDA setting, we show that the teacher model
in S2P guides the training of the student model. Furthermore, the teacher in turn benefits
from the accuracy of the student models by leveraging the previously acquired knowledge,
hence giving more accurate predictions. Tab. A.3 shows that in all the aforementioned con-
figurations, we get better results when deploying the teacher model for inference, rather than
the student model.

Performance on the source domain. In Fig. A.2, we show the evolution of the mAP of
both MMT and S2P-MMT on the source domain when considering two different configura-
tions: a) Market→MSMT and b) Market→CUHK. We observe that the performance on the
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Method
MS → M MS → C M → MS M → C

mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

S2P-MMT (student) 63.1 82 28.3 28.5 14.1 35.2 26.2 26.3

S2P-MMT (teacher) 70 87.1 40.4 42.4 19.5 43.3 34.8 35.9

S2P-SpCL (student) 61.9 81.9 30.7 31.9 17.5 41.5 21.4 21.6

S2P-SpCL (teacher) 69.1 87.1 34.3 35.1 20.2 46.1 31.2 31.5

Table A.3: Ablation study on the choice of the inference model in the S2P framework. We
compare the performance of S2P in the last task in four real-to-real OUDA-Rid tasks when
using the student and the teacher models at inference time. The best performing method on
each dataset is shown in bold.

source domain is improved during the first task of OUDA. After the first task, the perfor-
mance of MMT on the source domain drops in both configurations, showing that the model
focuses more on capturing the distribution of the target domain, hence overfitting the upcom-
ing tasks and forgetting the previously acquired knowledge on the source domain. On the
contrary, the performance of S2P-MMT on the source domain remains relatively high and
stable after the first task, showing that our S2P framework effectively maintains a common
feature space for the source and target domains.

Figure A.2: Performance of MMT and S2P-MMT on the source domain in two OUDA tasks:
a) Market→MSMT and b) Market→CUHK.
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Appendix B

Privacy-Preserving Adaptive
Re-Identification without Image Transfer
Supplementary Materials

In this supplementary material, we provide results and analysis of additional experiments
and present additional details about the Fed-Protoid.

• We provide the pseudo-code of Fed-Protoid to give more details about its algorithmic
structure.

• We present a set of experiments focused on the source prototypes, initially showing the
significance of utilizing the global model for their computation instead of the pseudo
client. Subsequently, we highlight the impact of reducing the number of source proto-
types in the performance of Fed-Protoid.

• We include a detailed analysis regarding the sensibility of the hyper-parameters of
Fed-Protoid.

• We compare the distributed MMD with the original MMD and some Domain Gener-
alization (DG) Re-ID methods.

B.1 Fed-Protoid: Algorithm

For completeness, we detail the Fed-Protoid algorithm as follows:
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Algorithm 1 Fed-Protoid algorithm

1: Input: n unlabeled datasets {D1,D2, . . . ,Dn}, an annotated dataset S, and the source
pre-trained weights θs

2: Initialize model Fθ with parameters θs

3: for each training round do
4: Transmission Stage:
5: Transmit Fθ and source prototypes to all clients
6: Local Training Stage:
7: Update pseudo-client model Fθ̂s

using S and Ls

8: for each client i do
9: Update client model Fθ̂i

using local dataset Di and Li

10: end for
11: Aggregation Stage:
12: Aggregate models using equation θ = αθ̂s + (1− α)

∑n
i=1 wiθ̂i

13: end for
14: Output: Trained federated model Fθ

B.2 Additional experiments on the source prototypes: com-
putation and communication

B.2.1 Impact of Global model in source prototype computation

In this section, we present experimental results for both Fed-Protoid and Fed-Protoid++,
showing the advantages of utilizing the global model for computing source prototypes. The
results shown in Tab. B.1 indicate that across the two configurations MS → M and MS →
C, we obtain superior performance when the prototypes are derived from the global model
instead of the pseudo-client model. The effectiveness of using the global model in prototype
computation can be attributed to its ability to bridge the gap between the source and target
domain distributions. Essentially, the prototypes generated by the global model represent a
median distribution that lies between those of the source and target domains. This interme-
diary positioning facilitates more efficient optimization of the Maximum Mean Discrepancy
(MMD). Instead of directly aligning the target domain with the source domain, the global
model provides features that are equidistant to both domains. Consequently, this approach
converges all distributions towards a central, unified distribution, rather than skewing them
towards the source domain distribution alone.

B.2.2 The impact of the number of source prototypes

The following experiments aim to assess the effectiveness of Fed-Protoid in scenarios with
stronger memory and communication limitations. Such situations occur when a large source
domain with many identities is deployed in the server, resulting in an increased number
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Method
Source Prototypes

MS → M MS → C
computed with

Fed-Protoid
Pseudo-client 43.1 23.6

Global model 51.0 23.8

Fed-Protoid++
Pseudo-client 60.5 43.7

Global model 61.7 43.8

Table B.1: Ablation study of the choice of the model that computes the source prototypes.

of prototypes, thus requiring higher communication bandwidth. For instance, the synthetic
RP dataset contains 8, 000 identities which is 8 times the number of identities in the MS
dataset. To address this challenging scenario, we propose investigating whether a simple
uniform sub-sampling of prototypes reduces the transmission cost without impacting the
ReID performance. We evaluate Fed-Protoid with a reduced number of source prototypes in
both configurations: RP→M and RP→C. Fig. B.1 shows that Fed-Protoid remains effective
despite a significant decrease in the number of source prototypes for the MMD optimiza-
tion on edge devices. Fed-Protoid shows a stable performance when the number of source
prototypes varies between 2% and 100% in RP→M and between 20% and 10% in RP→C
configuration. Therefore, we argue that Fed-Protoid is robust against device storage and
communication limitations.
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Figure B.1: The impact of the number of source prototypes in the Fed-Protoid performance
in two configurations: RP→M and RP→C
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B.3 Variability of Fed-Protoid and hyper-parameters

B.3.1 Variability of the performance of Fed-Protoid across different
initialization

We conduct multiple experiments of our Fed-Protoid and Fed-Protoid++ with three different
seeds in all the configurations presented in Tab. 5.1. We report in Tab. B.2 the mean of the
mAP and Rank-1 across those runs. Alongside these metrics, we also report the standard
deviation to illustrate the variability in the results. We can state that we have consistency and
minimal variance across all the different configurations, demonstrating the robustness and
reliability of our method under different initializations.

Configuration
Fed-Protoid Fed-Protoid++

mAP Rank-1 mAP Rank-1

MS → M 51.0±0.3 76.8±0.2 61.7±0.2 82.6±0.1

MS → C 23.8±0.2 23.1±0.1 43.8±0.2 42.4±0.4

RP → M 39.2±0.1 66.4±0.0 45.2±0.1 71.8±0.1

RP → C 25.1±0.4 24.7±0.3 25.7±0.2 24.9±0.1

Table B.2: Standard deviation of both Fed-Protoid and Fed-Protoid++ with varying seeds.

B.3.2 Hyper-parameters ablation study

Fig. B.2 illustrates the results of the sensitivity analysis conducted on the hyper-parameters
of Fed-Protoid. In this analysis, all hyper-parameters except the specific one under investi-
gation are maintained at their default values. We observe that changing the hyper-parameters
β1 and γ1 results in a slight impact on the accuracy with only minimal variances, showing
that our method is stable and robust. As for λ, which is the hyper-parameter controlling the
importance of the MMD loss in the final objective, we determined that a value of 0.1 yields
optimal results and have therefore set it to this fixed value for subsequent experiments.
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Figure B.2: Ablation study on the sensibility of the different hyper-parameters of Fed-
Protoid.
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B.4 Distributed MMD vs. Original MMD

Tab. B.3 compares the distributed MMD with the original MMD. For the original MMD,
we use the same DUDA-Rid setting, but the MMD loss is computed over the entire target
dataset. The results show that the distributed MMD outperforms the original MMD in both
configurations. Note that the original MMD violates DUDA-Rid privacy constraints, making
it unsuitable for our problem.

Table B.3: Comparison between original and distributed MMD.

Method
MS → M RP → M

mAP Rank-1 mAP Rank-1

Fed-Protoid + orig. MMD 47.1 75.3 30.2 59.2

Fed-Protoid + dist. MMD (ours) 51.0 76.8 39.2 66.4

B.5 Comparison with DG and additional experiments.

Tab. B.4 includes additional results from two SOTA methods in DG Re-ID: TransMatcher
[230] and PAT [231]. We compare these methods with Fed-Protoid (ViT) presented in Tab.
5.4. In all configurations, Fed-Protoid (ViT) outperforms the other methods. These results
are further improved using Fed-Protoid++, which incorporates the LUP large-scale dataset
during pre-training instead of being initialized by ImageNet.

Table B.4: Comparison between Fed-Protoid and DG methods.

Method Type
MS → M MS → C

mAP Rank-1 mAP Rank-1

TransMatcher [230] DG 52.0 80.1 22.5 23.7

PAT [231] DG 47.3 72.2 25.1 24.2

Fed-Protoid (ViT) (ours) UDA 52.4 80.6 27.5 26.6

Fed-Protoid++ (ours) UDA 61.7 82.6 43.8 42.4
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Titre : Ecart de domaine et confidentialité pour la réidentification de personnes.

Mots clés : Ré-identification de personnes, Adaptation de Domaine Non Supervisé, Apprentissage Continu,
Apprentissage Fédéré.

Résumé : La ré-identification de personnes (Re-ID)
vise à identifier des individus à travers des caméras
de surveillance non superposées. Malgré leur poten-
tiel de sécurité, les modèles de Re-ID restent limités
par l’écart de domaine, c’est-à-dire une divergence
entre les données d’entraı̂nement (domaine source)
et de déploiement (domaine cible). L’adaptation de
domaine non supervisée (UDA) permet d’atténuer ce
problème sans nécessiter de labels dans le domaine
cible.
Cependant, les réglementations sur la confidentialité,
comme le RGPD et l’AI Act, imposent des restrictions
strictes sur le stockage et le transfert des données,
rendant les approches UDA classiques, qui reposent
sur la centralisation des données, inapplicables.
Pour répondre à ces contraintes, nous introduisons
l’UDA continue (OUDA-Rid), qui adapte les modèles
sur un flux continu de données sans stockage, et
l’UDA distribuée (DUDA-Rid), qui décentralise l’adap-

tation sur plusieurs caméras pour éviter le transfert de
données. Nous proposons Source-Guided Similarity
Preservation (S2P) et Fed-Protoid. S2P atténue l’oubli
catastrophique dans l’OUDA-Rid en préservant les si-
milarités essentielles entre domaines source et cible,
assurant ainsi une adaptation continue conforme à
la confidentialité. Fed-Protoid utilise l’apprentissage
fédéré pour répondre aux restrictions de transfert
dans le DUDA-Rid, permettant une adaptation dis-
tribuée sans partage d’images sensibles.
Nos frameworks offrent une solution de Re-ID respec-
tueuse de la vie privée tout en réduisant l’écart de
domaine. Nous les validons sur plusieurs scénarios,
incluant l’adaptation réel à réel et synthétique à réel,
avec des jeux de données tels que Market-1501,
MSMT17, CUHK03 et RandPerson. Les résultats
montrent que S2P et Fed-Protoid assurent des per-
formances robustes dans des conditions réelles.

Title : Domain Gap and Privacy in Person Re-Identification.

Keywords : Person Re-ID ; UDA ; Continual Learning ; Federated Learning.

Abstract : Person Re-Identification (Re-ID) aims
to recognize individuals across non-overlapping sur-
veillance cameras. Despite its potential for security,
Re-ID models suffer from the domain gap—the dis-
crepancy between training (source domain) and real-
world deployment (target domain). Unsupervised Do-
main Adaptation (UDA) mitigates this issue, enabling
adaptation without labeled target data.
However, privacy regulations like GDPR and the AI
Act impose strict limits on data storage and transfer,
making traditional UDA methods, reliant on centrali-
zed data, legally and ethically problematic.
To address this, we introduce Online UDA (OUDA-
Rid), which adapts models from continuous data
streams without storing past data, and Distributed
UDA (DUDA-Rid), which decentralizes adaptation
across multiple cameras to prevent data transfer. We

propose Source-Guided Similarity Preservation (S2P)
and Fed-Protoid to meet these constraints. S2P miti-
gates catastrophic forgetting in OUDA-Rid by preser-
ving critical feature similarities from the source do-
main, ensuring privacy-preserving continual adapta-
tion. Fed-Protoid leverages federated learning to ad-
dress data transfer restrictions in DUDA-Rid, allo-
wing distributed adaptation without sharing sensitive
images.
Our frameworks offer a privacy-preserving solution
for Person Re-ID while bridging the domain gap. We
validate them across multiple scenarios, including
real-to-real and synthetic-to-real adaptation, on data-
sets such as Market-1501, MSMT17, CUHK03, and
RandPerson. The results confirm that S2P and Fed-
Protoid achieve strong performance under real-world
constraints.

Institut Polytechnique de Paris
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