
HAL Id: tel-04959292
https://theses.hal.science/tel-04959292v1

Submitted on 20 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strategic reasoning with dependencies : hyperteam
logics, realizable strategies, dependency matrices

Dylan Bellier

To cite this version:
Dylan Bellier. Strategic reasoning with dependencies : hyperteam logics, realizable strategies, depen-
dency matrices. Logic in Computer Science [cs.LO]. Université de Rennes, 2024. English. �NNT :
2024URENE006�. �tel-04959292�

https://theses.hal.science/tel-04959292v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’ÉCOLE NORMALE SUPÉRIEURE DE RENNES

ÉCOLE DOCTORALE NO 601
Mathématiques, Télécommunications, Informatique, Signal,
Systèmes, Électronique
Spécialité : Informatique

Par

Dylan BELLIER
« Strategic Reasoning with Dependencies :
Hyperteam Logics, Realizable Strategies, Dependency Matrices »

Thèse présentée et soutenue à Rennes, le 4 Novembre 2024
Unité de recherche : IRISA

Rapporteurs avant soutenance :

Fan YANG Assistant professor at Department of Philosophy and Religious Studies, Utrecht University
Martin ZIMMERMANN Associate Professor at Aalborg University, Denmark

Composition du Jury :
Président : Patricia Bouyer Dr. de recherche, LMF, Univ. Paris-Saclay, CNRS, ENS Paris-Saclay
Examinateurs : Erich GRÄDEL Professor, Mathematische Grundlagen der Informatik, RWTH Aachen

Patricia Bouyer Dr. de recherche, LMF, Univ. Paris-Saclay, CNRS, ENS Paris-Saclay
Natasha Alechina Associate Pr., Information and computing sciences, Utrecht University
Juha Kontinen Professor, University Helsinki

Dir. de thèse : Sophie PINCHINAT Professeur à l’Université de Rennes
Co-dir. de thèse : François SCHWARZENTRUBER Maitre de Conférences à l’ENS Rennes

ACKNOWLEDGEMENT

Je voudrais tout d’abord remercier mes superviseurs, Sophie Pinchinat et François
Schwarzentruber. Pendant toute la durée de ma thèse, Sophie a été présente pour me
prodiguer des conseils et pour pointer du doigt mes lacunes, ce qui m’a poussé à être
exigeant envers moi-même. Je lui suis extrêmement reconnaissant de tout ce qu’elle a fait
pour moi, qu’il s’agisse de m’accompagner dans mes première reviews, de m’aider dans
les différentes démarches administratives ou de s’intéresser au sujet des hyperteams, qui
n’était pas le sien originellement. C’est un plaisir de travailler avec quelqu’un d’aussi riche
intellectuellement et j’espère pouvoir continuer à collaborer avec elle aussi longtemps que
possible. François n’est pas en reste et a constamment été une présence agréable et rassur-
ante. Savoir qu’il serait toujours à l’écoute et compréhensif fut un garde-fou inestimable
dans les moments de doutes qui sont inévitables quand on entreprend une thèse. Cha-
cun de mes deux directeurs a complémenté l’autre afin de me fournir un environnement
stimulant et source de profondeur de réflexion.

Il me faut ensuite remercier Fabio Mogavero et Massimo Benerecetti, avec qui j’ai
collaboré tout au long de ma thèse. J’ai eu le privilège de passer en tout six mois à Naples
en leur agréable compagnie pour travailler sur l’idée des hyperteam. Ma thèse ne serait
pas ce qu’elle est aujourd’hui sans eux. Je tiens à mentionner que l’idée d’un ensemble
d’ensembles d’assignements vient de Dario Della Monica que je remercie également.

Mes pensées vont ensuite évidemment à ma mère, que j’aime plus que tout. Merci
d’avoir été là pour m’encourager lors des moments durs et pour me féliciter lors de mes
réussites. J’ai de la chance d’avoir une mère aussi géniale.

Je veux aussi remercier ma chérie, Gaëlle, d’avoir rendu ma dernière année de thèse si
paisible. Ta présence à mes côtés me donne toujours plus de force et de motivation pour
faire ce qui doit être fait et donner le meilleur de moi-même.

Merci aussi à tous mes amis, Rémy et Solveig pour ces moments passés à la Dordogne,
Quentin et Ariane pour ces sessions d’escalade et de fromage fondu, Paul pour les grandes
discussions de maths, Larouci et Gaëtan pour la pierre et le caillou et bien sûr, Léon, Juli-
ette, Pierre Jean, Manon, Charlotte, Lucie, Jean et Æddis pour tous les supers moments
passés ensemble.

3

TABLE OF CONTENTS

Introduction 9

1 Preliminaries 23
1.1 Recall on First-Order Logic . 23

1.1.1 Syntax . 24
1.1.2 First-Order Structure . 25
1.1.3 Semantics . 25
1.1.4 Limitations of Tarski’s-like quantification 27

1.2 Recall on Team Semantics . 27
1.2.1 Representing dependences with Teams 28
1.2.2 Dependence/Independence Logic 29
1.2.3 Examples . 31
1.2.4 Limitations of Team Semantics . 32

1.3 Conclusion . 32

2 A hyperteams semantics 37
2.1 A two-level framework: the Hyperteam . 37
2.2 A new semantical relation . 44
2.3 Fundamentals . 45
2.4 Adequacy . 49
2.5 Skolemisation with hyperteams . 51
2.6 Conclusion . 55
2.A Proofs of Section 2.1 . 56
2.B Proofs of Section 2.2 . 57
2.C Proofs of Section 2.4 . 62
2.D Proofs of Section 2.5 . 66

3 Alternating Dependence/Independence-Friendly Logic 81
3.1 A symmetrical extension of DIF . 81

3.1.1 Syntax. 82

5

TABLE OF CONTENTS

3.1.2 Semantics . 85
3.1.3 Examples . 85
3.1.4 Properties . 90
3.1.5 Meta semantics . 92

3.2 Comparisons to other logics . 96
3.2.1 First-order Adequacy . 96
3.2.2 Dependence/Independence-Friendly Logic Adequacy 96
3.2.3 Second-Order & Team Logics . 100

3.3 Game-Theoretic Semantics . 102
3.4 Conclusion . 109
3.A Proofs of Section 3.1 . 111
3.B Proofs of Section 3.2 . 113
3.C Proofs of Section 3.3 . 119

4 Good-For-Game Quantified Propositional Temporal Logic 125
4.1 Recalls on temporal logics . 126

4.1.1 Linear-time Temporal Logic . 127
4.1.2 Quantified Propositional Temporal Logic 128

4.2 Dynamic Reasoning . 129
4.2.1 Realizable responses . 129
4.2.2 Examples . 134

4.3 Game-Theoretic Semantics . 139
4.3.1 Quantification Game for Sentences 139
4.3.2 Quantification Game for Formulas 147
4.3.3 Complexity Results . 150

4.4 Conclusion . 151
4.A Proofs of Section 4.2 . 152
4.B Proofs of Section 4.3 . 153

5 Plan Logic 183
5.1 Strategy Logic . 183

5.1.1 Concurrent Game Structures. 184
5.1.2 Syntax. 184
5.1.3 Semantics. 185
5.1.4 Timeline semantics. 185

6

TABLE OF CONTENTS

5.2 Strategic Reasoning . 186
5.2.1 Syntax. 186
5.2.2 Examples. 187
5.2.3 Semantics. 189

5.3 Adequacy with Strategy Logic under Timeline Semantics 193
5.3.1 Strategy Logic under Timeline Semantics and Plan Logic 193
5.3.2 Game-theoretic Semantics of SL[C/DG] 195

5.4 Decision Problems . 197
5.4.1 Goal Fragments of PL. 198
5.4.2 One-goal Fragment . 198
5.4.3 Boolean-Goal Fragment . 199
5.4.4 Collusion-free Fragment . 201

5.5 Conclusion . 202
5.A Missing Proofs of Section 5.3 . 204

5.A.1 Meta-PL . 204
5.A.2 Skolem semantics for Meta-PL . 206
5.A.3 Proof of Theorem 5.4 . 207
5.A.4 Realizable meta map . 212
5.A.5 Proof of Theorem 5.3 . 215

5.B Missing Details of Section 5.4 . 222

6 Dependency Matrices 225
6.1 A Multiplayer Delay Game . 227

6.1.1 Definition . 227
6.1.2 Strategies for Dependency Matrices 229
6.1.3 Undecidability of Resolution . 236

6.2 Resolving Dependency Matrices . 237
6.2.1 Definition and Properties . 237
6.2.2 A Parity Game to solve EWS . 239
6.2.3 Reduction from the Church Synthesis problem 242
6.2.4 Perfect-Information Matrices with Possibly Infinite Values 243

6.3 Conclusion . 244
6.A Proofs of Section 6.1 . 245
6.B Proofs of Section 6.2 . 247

7

TABLE OF CONTENTS

6.C Reduction from Church matrices to Round Robin matrices 250
6.D Proof of Theorem 6.5 . 251

Conclusion 253

Bibliography 257

8

INTRODUCTION

Verfication and Synthesis

The usage of formal methods. The ubiquity of complex systems naturally raises
many challenges regarding their place in our modern world. Many critical systems rely on
computer science to achieve their tasks, such as planes, rockets, power plants, and many
more [Kni02; MK20]. Ensuring the proper behavior of these systems is one of the major
issues for today’s researchers. For instance, some systems have to deal with sensitive data
that should not be accessible to an external observer. In that case, the behavior of the
system should respect the property of opacity [Maz04]; that is, its behavior should be
indistinguishable from the observer. There are multiple options to verify that a system
is well-behaved. The first is to design unit tests to see how the system reacts to various
inputs. With this approach, one has to manually design and run each individual test to
check whether the system responds appropriately. This allows for fine control over the
cost of verification as the number of test is extensible making unit test relevant for simple
systems. However, this approach, by definition, cannot be exhaustive and might miss
some problematic corner cases in more complex systems. Another option is to use formal
methods [Bee+24] to try to prove or disprove the property in the system. This approach
requires creating a formal model of the system, namely a mathematical abstraction that
denotes the features of its behavior relevant to the property to be verified. This approach
also requires expressing the property formally: it can be a mathematical statement finely
tailored for the system model (for instance, opacity), or it can be expressed using a logical
language that allows for the systematic verification of a large class of similar properties.

With the formal methods approach naturally comes the synthesis of systems correct
by design: once a property is properly stated, one can compute a model of that property
ex nihilo that drafts a system automatically satisfying the property. For instance, given
a non-opaque system, one may want to synthesize a controller (i.e. a companion of the
system that restricts its behavior) for this system that ensures opacity while still allowing
the system to accomplish its task.

The main focuses in verification are three specific problems. The first is the model

9

Introduction

checking problem [BK08; DGL16b]: it takes as input a system model and a formal property,
usually expressed in logic, and outputs whether the model satisfies the property or not.
The second problem is the satisfiability problem [BHM09]: it takes as input a formal
property and outputs whether there is a model that satisfies this property or not. In this
case, because only the property is given as input, the answer might depend on assumptions
about the model: whether infinite models, infinitely branching models, cyclic models, or
more are eligible may change the output. Restricting such classes of models is an important
consideration when it comes to designing procedures to solve the satisfiability problem.
Finally, the last problem is the synthesis problem [KVBSV13; Fin16]: it also takes as
input a formal property and outputs a model that satisfies this property. Here, the model
that satisfies the property must be effectively computed, as opposed to the satisfiability
problem, which means that additional metrics are needed to evaluate the efficiency of
algorithms that solve the synthesis problem: for example, efficient algorithms may output
unnecessarily large models.

Which model to use? The choice of a model is always a trade-off between precision
and the cost of verification. On one hand, a coarser model leads to better complexity
results for each problem presented above. On the other hand, a richer model provides
a better approximation of the system, allowing the verification procedure’s outcomes to
be transferred to the system more reliably. Of course, the more complex the system, the
more intricate the properties we want to verify and then, the richer the model needs to
be. Thus, ultimately, the choice of model depends on the type of system to represent.

In this thesis, we are particularly interested in complex systems, whose behavior may
be non-deterministic and yield infinite computation. Such systems can be either closed or
open. In both cases, what mainly matters is the ability to formalize the system behavior
and its executions by providing it with an operational semantics. The most abstract model
that is classically used in formal methods is the one of transition system (see for instance
[BK08; DGL16a]): this model is a graph whose vertices are the states of the system and
whose edges are called (state-)transitions. Both states and transitions can be labeled to
represent respectively atomic facts (i.e. propositions) for state observations and relevant
events (i.e. actions). Transition systems are equipped with a semantics for their behavior
that can vary depending on the verification purpose. For instance, the behavior can the
set of all infinite traces — a trace is a single sequence of observations in the transition
system — or by the computation tree — the infinite unfolding of the transition system

10

Introduction

that correlates all traces as infinite branches.

What makes a system closed comes from its ability to execute on its own, indepen-
dently of the context, such as a program that computes the decimal of pi. Among closed
system one may find systems made of multiple interacting components. When focusing
on analyzing a single component, it seems natural to abstract the remaining components
as an unspecified environment. This yields the notion of open system, namely, a system
whose behavior consists in interacting with the environment (the others components).

Models for open systems are many. The transition systems can be used to describe the
behavior of the global system by composing its components (including the environment).
The resulting transition system is an abstraction of how the components actually interact.
Properties such as safety ones can be verified: one often prunes the computation tree as to
fix a particular environment scenario, and wants to know if the property holds whichever
pruning is considered; this is called module checking [KVW01]. However, it might be
necessary to refine the analysis if the property fails: indeed, the considered model may
under-specify for instance the parallel composition mechanism of the components, so
that one is rather interested in knowing whether or not the inherent non-determinism in
the model can be controlled to achieve the property; this answers the above-mentioned
synthesis problem. A pioneer work is [PR89]. The methodology can naturally be deployed
in a game setting, where the components and the environment become players, and where
control-like issues are rephrased in game-theoretic terms, namely the existence and even
the synthesis of strategies to ensure the property of interest. This approach is nowadays
widely adopted in formal methods, with the pioneer work of [AHK02].

To go even further and tackle multi-agent systems [Sin94], one uses multiplayer games:
players have their own objective and can be gathered into coalitions in order to state
various properties. For instance, consider a fleet of drones scanning for rescue during a
disaster. Multiple factors must be considered: each drone has its own input on the situation
and some autonomy, thus each is represented as a player; the victims can also be modeled
as other players with a different set of actions. In this situation, many properties must be
verified such as “each drone has to stay connected to the fleet” (individual objective), and
“the scan performed by the fleet should be exhaustive” (collective objective). We see that,
from the perspective of one drone, one cannot assume that the other drones will have
antagonistic behavior, but still have to account for some variability to cover unexpected
contingencies.

11

Introduction

Which logic to use? The First-Order Logic (FO for short) [HA28] is the logic of
reference. FO formulas are composed of variable quantifiers and predicates and relations
organized in Boolean combinations. The truth value of an FO formula is evaluated on a
given FO structure with an assignment of the free variables of the input formula, i.e.,
a function from variables to the domain of the FO structure. Closeness between FO
formulas and database queries are well studied. Even though the satisfiability problem for
full FO is undecidable, it is extensively studied to exhibit decidable fragments. On the
contrary, the model checking problem for FO is PSpace-complete. Meanwhile, when it
comes to dynamic systems, a new range of candidates arises.

On the one hand, Linear-time Temporal Logic (LTL for short) [Pnu77] is suited to
express trace properties of transition systems, such as liveness or safety properties, by
introducing temporal operators — X for "at the next time..." and U for "...holds until...".
On the other hand, Computation Tree Logic (CTL for short) [EC82] allows for more de-
tailed exploration of the unfolding of the model, with the ability to quantify over branches
within the formula. For instance, the formula ∀Xψ states that property ψ holds in ev-
ery successor of the computation tree root, and the formula ∃ψUϕ states that there is
a branch of the computation tree along which property ψ holds until ϕ becomes true.
The two logics LTL and CTL are incomparable but are subsumed by CTL? [EH86]. All
these logics are propositional, meaning that the first-class citizens are the propositional
variables (alternatively called atomic proposition): an assignment maps each propositional
variables to either true or false at each time point of the timeline. We can then add propo-
sitional quantifiers to LTL and get Quantified Propositional Temporal Logic (QPTL for
short) [SVW87], which is able to express any ω-regular language. Model checking tempo-
ral logics can be costly: the LTL model checking is PSpace-complete while for QPTL,
the model checking is Non Elem, which means it is k-Exptime-hard for every k ∈ N.
Temporal logics are suited to express properties of closed systems but when it comes to
open ones, strategic reasoning, i.e. the ability to manipulate strategies, is mandatory.

A foundational logic for strategic reasoning is Alternating-time Temporal Logic (ATL
for short) [AHK02], which is an extension of CTL where branch quantifiers are replaced
with strategic modalities: ∃ or ∀ become 〈〈Γ〉〉, where Γ is a coalition of players, meaning
"Players of Γ have a joint strategy to satisfy..." — recall that a player strategy is a function
that, given a history (a finite sequence of adjacent states), outputs the next decision for
the player. ATL has proven useful for expressing proof obligations in system verification,
as well as for expressing subroutines of verification algorithms. However, as remarked in

12

Introduction

[CHP10], this powerful language is unable to compare strategies, because strategies are
only involved in the modalities, an ability that seems necessary to express some properties
of interest, such as the existence of a Nash equilibrium in a game [ABM19].

For this reason, Chatterjee, Henzinger, and Piterman introduced Strategy Logic (SL for
short) [CHP10] that was later refined by Mogavero, Murano, Perelli and Vardi [MMPV14;
MMPV17] as a first-order-like logic where variables are meant to range over strategies.
In SL, a specific operator, called the binding, is responsible for assigning a strategy to
each player. Once every player is given a strategy, a unique play is defined in the game
model. The atoms of SL are LTL formulas that are to be evaluated on the play defined
by the players’ strategic assignment. Thanks to the new binding operator and because
strategies become first-class citizens, SL can state the existence of a Nash equilibrium, but
its model checking problem is Non Elem, and its satisfiability problem is undecidable.
Fragments of the logic have been studied to reduce the complexity of those problems: when
formulas are in prenex form — recall that a formula is in prenex form when it consists of
a sequence of quantifiers, that we call the quantifier prefix, followed by a quantifier-free
subformula — with no Boolean connectors before a binding operator, defining the so-
called one-goal fragment of SL (SL[1G] for short), the model checking and satisfiability
problems complexity drops to 2-Exptime-complete [MMPV14; MMPV17]. However, this
fragment lacks expressiveness to specify the existence of a Nash equilibrium.

Realizable Strategies in SL. Besides the high complexity of SL, the logic faces an
issue regarding quantifier alternation. When considering a quantifier string, say ∀x∃y, the
strategy quantified by y depends on the entire strategy quantified by x, including future
choices and counterfactual plays. Because of this dependence, it can be impossible to
automatically generate the strategies involved in the semantics of an SL formula. Thus,
the truth of a formula is not a satisfying answer to the verification problems. To alleviate
this problem, one might restrict the semantics of quantifier to only realizable strategies,
i.e. strategies that are chosen independently from the future or counterfactual decisions
of already quantified ones. Notice that realizability is then a dependence constraint as it
does not change the domain of quantification but only the way of choosing a value for a
quantified variable. Actually, the high complexity of SL and the dependency problem of
non-realizable strategies seem to go hand in hand: indeed, it has been shown that SL[1G]
can be artificially restricted to realizable strategies without affecting the truth values of
formulas [MMPV14].

13

Introduction

Building on this result, Gardy, Bouyer, and Markey proposed the timeline semantics
for SL [GBM20], that enforces realizability of quantified strategies by means of restricted
Skolem-like functions. The resulting logic has a 2-Exptime-complete model checking
procedure for a vast fragment of SL, that can express Nash equilibria. Even though
the result is valuable, the proposed semantics is not compositional [SH01] and is ad hoc
for realizability. In this thesis, we propose a new logical framework to express strategy
dependencies in strategic reasoning that is adapted to enforce realizability while providing
a compositional semantics. For this purpose, we turn to logics that take dependencies into
account.

Expressing Dependencies

The study of dependency in logic has come a long way. To provide better intuition on
the phenomenon, we will now resort to an alternative approach for the semantics of quan-
tifiers: the game-theoretic semantics of J. Hintikka and G. Sandu [HS97]. Quantification
can be understood as a game between two players — the existential player, that we call
Eloise, and the universal player, that we call Abelard. This game, called the evaluation
game, or sometime the model-checking game, proceeds on a formula (which we assume is
in prenex form for simplicity), following the order given by the quantifier prefix, by mak-
ing Eloise choose a value for each existentially quantified variable and Abelard choose a
value for the others. If the resulting assignment satisfies the quantifier-free subformula,
Eloise wins; otherwise, Abelard wins. Even if, the evaluation game is typically defined for
arbitrary input formulas, since quantification is the main focus of our discussion, we re-
strict ourselves to the simpler case of prenex form. Game-theoretic semantics is equivalent
to the original semantics of the logic because Eloise has a winning strategy if, and only
if, the formula is true, and Abelard has a winning strategy if, and only if, the formula is
false.

Dependencies in FO The first appearance of dependency traces back to the def-
inition of Skolem functions [Bus98a] for FO: given a closed formula in prenex form
ϕ := ∀x1 ∀x2 . . . ∀xn ∃y φ, a Skolem function f for y is an n-ary function that com-
putes the value of y depending on the values of the xi’s. A Skolem function can be
understood as a part of Eloise’s strategy for the game-theoretic semantics of the formula
ϕ. The Skolem function reveals the functional dependency of the variable y with respect

14

Introduction

to xi’s. Symmetrically to Skolem functions, one finds Herbrand functions for universally
quantified variables. With the Herbrand/Skolem functions, we see that, in FO, the de-
pendency between variables are completely defined by the order of variable occurrences
in the quantifier prefix; the dependence relation xRdepy, meaning "x depends functionally
on y", is a linear order on the variables.

The fact that Skolem functions formalize those dependencies was the reason for
Gardy’s approach to define a realizable SL, i.e., to define the semantics for SL in terms
of modified Skolem functions. Indeed, Gardy’s timeline semantics require the Skolem
function to output only realizable strategies. By definition, this approach cannot lead to
compositional semantics, as the whole quantifier prefix is required to define the appropri-
ate Skolem functions. We then turn to the different ways of expressing dependencies that
have been developed.

Henkin matrices. The first attempt at providing dependencies between variables that
do not form a linear order was introduced by Henkin with Henkin matrices [Hen61]. A
Henkin matrix is essentially a partial order of the quantified variables. For instance, the

matrix
∀x1 ∃y1

∀x2 ∃y2

 expresses that y1 depends on x1 but not on x2, and, at the same

time, that y2 depends on x2 but not on x1. Such a specification cannot be expressed
in FO. Unfortunately, this would be insufficient for restricting quantification in SL to
only realizable strategies, as such a matrix still forces monolithic dependencies between
variables.

Team semantics. Later, an pioneer idea was introduced by Hodges [Hod97a; Hod97b]
to define a compositional semantics for the expression of dependencies: instead of using
an assignment to store the value of already quantified variables, Hodges proposed a set
of assignments that he called trumps, though the terminology team later prevailed. Intu-
itively, a team represents all the possible scenarios for the universally quantified variables
and the corresponding choices made for the existentially quantified ones. Compositional
semantics for Dependence Friendly Logic and Independence Friendly Logic (DFL and
IFL, respectively) [HA28; MSS11], two logics for reasoning with imperfect information,
emerged from this idea. DFL and IFL are built as extensions of FO with the new quan-
tifiers ∃+Wy for DFL and ∃−Wy for IFL, where W is a set of variables. These quantifiers
convey information about the dependence (+W) or independence (−W) of the quantified
variable y. These constraints are enforced by the semantic rule for those quantifiers: for

15

Introduction

a team X to satisfy ∃+Wy ϕ (and respectively ∃−Wy ϕ), each assignment χ of X is ex-
tended with a value for y such that any two equivalent assignments χ1 and χ2 in X, that
is two assignments that are equal on W (respectively outside W), are extended with the
same value for y. In this work, we call the function that, given an assignment, chooses
the corresponding value for y, a response function, or, sometimes, simply response. The
semantic rule boils down to the existence of a uniform response, i.e., a response that
outputs the same value on two equivalent assignments. Notice that the definition scales
for any equivalence relation. Constraining the response functions is the cornerstone to
define a compositional semantics for SL with realizable strategies. Unfortunately, team
semantics cannot be used as-is due to some inherent limitations of the approach. First,
only existential quantifiers can be constrained: DFL or IFL can be dualized to allow for
constraints on universal quantifiers, but then, existential quantifiers are the ones uncon-
strained, so only one kind of quantifier can be restricted at a time. Second, related to the
first point, is that negation is not handled by team semantics. Indeed, the natural rule
for negation, which states that X satisfies ¬ϕ if X does not satisfy ϕ, is unsatisfactory
because it would lack the desirable properties of De Morgan’s laws (that SL has). For
instance, consider the formula ∀x ∃+∅y (x = y). As long as the domain of the model has
at least two elements, this formula does not hold since y has to be assigned the same
value for two distinct, yet equivalent, assignments of x. However, so does the syntactic
negation ∃x ∀+∅y (x 6= y). This is due to the imperfect information resulting from the
dependencies, and thus, the evaluation game of DFL and IFL can be undetermined.

Team semantics dependence atoms. To circumvent these limitations, Jouko Väänä-
nen [Vää07] proposed moving the dependence specification from quantifiers to the new
atomic proposition, called the independence atom [GV13]: = (~x, y), that means "y de-
pends (only) on variables ~x ." This idea led to the definition of Dependence Logic, which
can handle negation thanks to its two dual semantics. However, this change confine the
dependencies to monolithic ones which makes the logic does not help define a semantics
for SL with realizable strategies.

Team semantics for temporal logics. Because SL is built on top of LTL, the in-
teraction between team semantics is to by considered. Adapting LTL for team semantics
leads to the definition of TeamLTL [KMVZ17], which is suited to express hyperprop-
erties [CS10], meaning properties of subsets of traces of a transition system rather than

16

Introduction

properties of individual traces. For instance, opacity is a hyperproperty because stating
that a single trace is opaque does not make sense. Indeed, recall that opacity is achieved
when, for every sensitive trace, there is another non-sensitive trace indistinguishable from
the first one, which clearly requires a well-defined set of traces. Although there are no
quantifiers in LTL the U (until) operator of LTL carries implicit quantification, recall
that ψUϕ the existence of a time point t such that ψ holds at each point up to t−1, while
ϕ holds at t. In the context of a team, this quantification have various interpretation:
the question is, "Can t vary depending on the assignment (asynchronous) in the team,
or should all assignments choose the same t (synchronous)?" Such considerations must
be kept in mind when designing semantics for temporal logics, and thus, for strategic
reasoning.

Contribution

We can see that teams are a powerful tool for dealing with dependency constraints
and seem well-suited for managing realizability in a compositional SL semantics. However,
their intrinsic limitations prevent a symmetric treatment of quantifiers. Therefore, we need
to draw inspiration from the strengths of team semantics to design a new framework for
expressing dependencies that can overcome this treatment problem.

Hyperteams. If we aim at treating quantifiers in a symmetrical manner, we need to
design a framework that can express both viewpoints simultaneously. For this, we pro-
pose a two-level structure, the hyperteam, that is a team of teams, i.e., a set of sets of
assignments. In this way, we can keep track of the imperfect information one player of the
evaluation game has about the imperfect information of the other. A hyperteam can be
interpreted as a game between an existential player and a universal player, for whom we
keep the names of the evaluation game, namely Eloise and Abelard, respectively. Given a
hyperteam, there are two dual ways of playing: either Eloise first chooses a team within
the hyperteam and then Abelard selects an assignment from that team (that gives the in-
terpretation written ∃∀), or the reverse, where Abelard chooses the team and then Eloise
chooses the assignment (that gives the interpretation written ∀∃). Discarding any depen-
dency constraint, a hyperteam satisfies a formula if the assignment resulting from this
small game satisfies the formula, leading to the definition of two different semantics, one
for each interpretation (either ∃∀ or ∀∃).

17

Introduction

Among the many benefits of using a two-level structure is the ability to correlate the
two interpretations ∃∀ and ∀∃ by dualizing the hyperteam: a procedure similar to translat-
ing a formula from conjunctive normal form to disjunctive normal form, that transforms
a hyperteam X into its dual X such that, X satisfies a formula ϕ under one interpretation
implies X satisfies ϕ under the dual interpretation. Thus, the two semantics are closely
related. The semantics of quantifiers take inspiration from those for teams: to extend
a hyperteam, we extend each team within the hyperteam with every possible response
function. The distinction between existential and universal quantifiers lies in the interpre-
tation of the hyperteam. Since choosing the value for the quantified variable amounts to
choosing a response function for this variable, existential quantification is defined by ex-
tending a hyperteam under the ∃∀ interpretation, while universal quantification requires
the hyperteam to be under the ∀∃ interpretation.

Incorporating dependencies into the setting becomes “straightforward”: one can con-
strain response functions that are used to extend a hyperteam to be uniform. As a result,
one obtains two dual compositional semantics that, together, treat quantifiers in a sym-
metrical manner since both existential and universal quantifiers fall under this uniformity
constrain. This approach allows for many kind of constraints yielding a wide range of
dependencies. It is important to note that we do not introduce any specific language here;
the concept of hyperteam semantics can be applied to a variety of languages, thereby
defining many different logics. As we will see, this formalism is well-suited to define the
game-theoretic semantics of these logics. This type of semantics facilitates the design of
model-checking procedures for the considered logics.

Logics with hyperteam semantics. For a start, we exploit the hyperteam seman-
tics for a simple first-order language with monolithic dependencies, generalizing the
syntax of DFL and IFL by allowing for negation. The resulting logic, Alternating
Dependence/Independence-Friendly logic (ADIF for short), allows for expressing prop-
erties about imperfect information. First, we show that ADIF generalizes of FO, DFL,
and IFL in the sense that a closed formula in one of those logics is true if and only if it is
true in ADIF. Second, we prove that ADIF is equivalent to the powerful Second-Order
Logic [Chu56; Sha91], an extension of FO that allows for quantification over relations, by
interpreting a quantified relation as a first order variable with suited dependence: it uses
the idea of casting a n-ary relation into a n+ 1-ary function where the added dimension
is used to identify each tuple of the relation. Thus, a quantified n-ary relation can trans-

18

Introduction

lated into a quantified variable that takes the role of the added dimension, and a +W
dependence with |W| = n.

Next, since our goal is to address strategic reasoning, we define hyperteam semantics
for temporal logics. Keeping in mind the objective of enforcing realizability, we constrain
quantified variable to be independent from the future as it is the main issue in making
strategies realizable. We choose to apply this idea to QPTL whose quantification ranges
over infinite sequences of binary choices. To enforce independence from the future, we
propose a new kind of equivalence between assignments: we say that assignments χ1 and χ2

agree up to t is for each variable x, we have χx that is equal up to t to χ2(x). The response
functions should output the same choice at time t for two assignments that agree up to
time t, and yield the logic Good-for-game QPTL (GFG-QPTL for short). We show that
GFG-QPTL and QPTL are as expressive, although the semantics of formulas differs:
because of this independence from the future, a quantified variable intuitively correspond
to a strategy in the sense that it becomes a function from a sequence of moves to a choice
to make following this sequence. The logic GFG-QPTL is then already adapted for the
simple strategic question of the existence of a winning strategy for a player but is not
enough for more complex statements.

Finally, we turn to using hyperteam semantics for strategic reasoning. Building on the
results of GFG-QPTL, that, as we just saw, can already quantify over strategies, we only
miss the binding operator to tackle strategic reasoning. For this reason, we do not build
a hyperteam semantics for SL but rather propose a new logic, that we call Plan Logic
(PL for short), that has the same syntax as SL but for which the first-class citizen is a
plan rather than a strategy. A plan is a simple sequence of actions, hence, it is a linear
object, whereas a strategy is a branching object. Thanks to the same kinds of restrictions
to the response functions as we did for GFG-QPTL, we enforce realizability by design.
Furthermore, PL is capable of expressing the existence of a Nash equilibrium.

Game theoretic semantics for our logics. Besides the (compositional) hyperteam
semantics, we provide a game-theoretic semantics for closed formulas in prenex form for
each obtained logic. Even though the closeness of the formula is not a strong assumption
and is mainly for concise presentation, the prenex form is mandatory, and it is unclear
how to circumvent this restriction.

For ADIF, the game-theoretic semantics resembles a classic evaluation game in the
sense that, following the quantification prefix, Eloise and Abelard choose in turn the

19

Introduction

value of their respective quantified variables. However, and as opposed to a standard
evaluation game„ once each variable is assigned a value, instead of concluding the game by
checking whether the quantifier-free subformula holds, players can challenge each other’s
dependencies by changing the value of one of their variables. The way the other player
reacts will determine whether their decision respect the dependencies. The obtained game
is infinite-horizon, as players can keep on challenging each other indefinitely. Still, we
resort to the order of variables in the quantifier prefix and the dependency constraints to
elect the winner of an infinite play.

Next, for GFG-QPTL, we simply use an iterated evaluation game: at each time point,
players choose a value for each variable in the order of the quantifier prefix. Independence
from the future lead to perfect information because, when a player chooses the value of a
variable at time t, they can use all the values that have been chosen up to this point. For
this reason, the game doesn’t include the challenge mechanisms of ADIF. This game is
the basis of our proof that the model-checking problem for GFG-QPTL is 2-Exptime-
complete.

Finally, for PL, we design a game where Boolean operators are personified as operator
players to reveal their inherent game-theoretic nature. A formula in prenex form consists
of a quantifier prefix followed by a Boolean combination of goal formulas. For our con-
struction, we restrict to goal formulas in disjunctive or conjunctive forms. An operator
player’s strategy is existentially quantified if the operation is a disjunction and universally
quantified otherwise. The purpose of the operator player is to demonstrate that the choice
among the various disjunct (or conjunct) to be verified, in order to prove (or disprove) the
formula, is made on the fly, and thus, in a realizable manner. This result highlights the
intrinsic realizability nature of PL. Thanks to this game, we have shown how to translate
an SL formula into a PL formula that is equivalent for the timeline semantics of SL.

More dependence by considering delays. Now that realizability is achieved, we can
explore more exotic kinds of dependency. For instance, delays between decisions and the
observation of their effects have been studied in the context of Gale-Stewart games —
recall that a Gale-Stewart game is played between two players who alternately choose a
letter from a finite alphabet, with the winner of the play determined by the membership of
the resulting infinite word in a given language. The delayed version of Gale-Stewart games
is called delay games. To adapt strategic reasoning to account for delays, we first generalize
delay games to multiple players: we introduce dependency matrices, a new formalism to

20

Introduction

express delays, and even lookaheads, between multiple players. A dependency matrix
specifies the delays that each player’s strategy must respect. In this sense, they are well-
suited for developing a game-theoretic semantics for delayed strategic reasoning.

Organization of the manuscript

This manuscript is organized as follows. In Chapter 1, we recall the syntax and se-
mantics of FO, IFL and DFL and all associated relevant logics. Then, in Chapter 2,
we develop the hyperteam semantics for FO without dependencies and we state some
properties that are inherent to the approach. Once the concept of hyperteam is properly
presented, we come to the instantiation with first, the logic to reason about dependencies
ADIF in Chapter 3, then, the temporal logic with realizable quantifiers GFG-QPTL in
Chapter 4 and finally, the logic for realizable strategic reasoning PL in Chapter 5. At last,
in Chapter 6, we present the multiplayer generalization of delay games: the dependency
matrices.

The work on ADIF has been already published in the Annals of Pure and Applied
Logics [BBDM23b] journal and the one for GFG-QPTL has been published in ACM
Transaction of Computational Logics [BBDM23a]. The dependency matrices have been
presented in the conference Foundations of Software Technology and Theoretical Computer
Science [BPS22] in 2022. The work on PL is currently under submission.

Notations

In the document, we resort to very standard mathematical notations such as N for the
set natural numbers and Z for the set of integers.

Given two natural numbers k ≤ n, we denote by Jk, . . . , nK the set {k, k + 1, . . . n}.
Given a set S, we use as usual S? (resp., Sω) to denote the set of finite (resp. infinite)

sequences over the alphabet S, and S∞ = S? ∪ Sω. For π ∈ S? and i ∈ N, we use π[i],
π[: i], π[i :], fst(π), and lst(π), to denote, respectively, the i-th element of π, the prefix of
π up to index i included, the suffix of π from index i included, the first (0-th) element of
π, and, finally, the last element of π.

Grammars are displayed with a | symbol separating the different production rules.

21

Chapter 1

PRELIMINARIES

In this chapter, we recall the syntax and semantics of First-Order Logic in a first
section, and then Dependence/Independence-Friendly Logic in a second section.

1.1 Recall on First-Order Logic

In the domain of computer science and logical reasoning, First-Order Logic (FO for
short) [HA28] serves as a fundamental framework for formalizing statements about objects
and their properties. Also known as predicate logic, FO allows us to express relationships
between elements, quantify over variables, and define properties and functions.

At its core, FO consists of:

Terms: These represent objects and variables in a domain. They could denote specific
individuals, constants, or variables that stand for any element in the domain.

Predicates: These express relationships or properties of objects. They are statements
that can be true or false depending on the elements they are applied to.

Quantifiers: Including universal (∀) and existential (∃) quantifiers, which allow us
to make statements about all elements in a domain or to assert the existence of
elements with specific properties.

Logical Connectives: Such as conjunction (∧), disjunction (∨), implication (→),
and negation (¬), which enable the construction of complex statements from sim-
pler ones.

In FO, formulas are constructed using a combination of these elements. For instance:
∀x.P(x) asserts that a property P holds for all elements x in the domain. ∃x.Q(x) states
that there exists an element x in the domain for which property Q holds.

The expressiveness of FO allows us to formalize a wide range of statements and reason
about their truth or falsehood within a given structure.

23

Partie , Chapter 1 – Preliminaries

1.1.1 Syntax

The syntax of FO is defined with respect to a signature S = 〈F ,P〉, which is a
couple of set of symbols: F is the set of function symbols and P is the set of predicate
symbols. The arity of a symbol is given by ar : F ∪ P → N. For this work, we will
avoid specifying the signature when it is not mandatory. We also fix an infinite set of
variables Var = {x, y, . . .}.

A term is either a constant (a function symbol of arity 0), which is a specific element
of a domain, or a variable x, which is a placeholder for an element, or the application of
a function symbol f on a sequence terms of length ar(f). Intuitively, a term represents
an element of a structure.

Definition 1.1. A term τ is inductively defined as follows, where x is a variable, f is a
function symbol and ~τ is a sequence of terms of length ar(f).

τ := x | f(~τ)

A predicate P takes a sequence of ar(P) terms in input. It represents a property over
the elements of the domain (if ar(P) = 1) or relations between them (if ar(P) > 1). A
predicate is the smallest brick for building FO formulas.

Definition 1.2. A FO formula is defined inductively as follows, where x is a variable, P

is a predicate symbol and ~τ is a sequence of terms of length ar(P).

ϕ := P(~τ) | ¬ϕ |ϕ ∧ ϕ |ϕ ∨ ϕ | ∃xϕ | ∀xϕ

For convenience, we will also use the connectives→ (implies) and↔ (is equivalent to),
as syntactic sugar, defined as follows: ϕ → φ

def= ¬ϕ∨φ and ϕ ↔ φ
def= (ϕ → φ)∧(φ → ϕ).

The set of free variables of an FO formula ϕ (variables that appear in ϕ without being
quantified) is denoted free(ϕ). A sentence (or closed formula) is a formula with no free
variables.

Example 1.1. Consider Alice wants to express her taste in fruits: she likes apple and
bananas but dislikes cherries. A suited signature to formalize this sentence in FO could
be 〈{apple [0], banana [0], cherry [0]}, {Likes[1]}〉 where the arity of the different sym-
bols is between brackets. The FO sentence is: ϕ1 = Likes(apple) ∧ Likes(banana) ∧
¬Likes(cherry).

24

1.1. Recall on First-Order Logic

With the same signature, we can express more properties of Alice’s taste in fruit: ϕ2 =
∃x¬Likes(x) expresses that there is a fruit that Alice does not like and ϕ3 = ∀xLikes(x)
expresses that Alice likes all fruits.

1.1.2 First-Order Structure

Now that we have defined the syntax of FO for a given signature S = 〈F ,P〉, we
need a structure to evaluate FO formulas. Such a structure is called an FO structure and
is composed of a domain D, a F -algebra FM to give an interpretation of the function
symbols and a set of relations PM , one for each predicate symbol, to give an interpetation
of those predicates.

Formally, given a signature S = 〈F ,P〉, a FO structureM is a tuple 〈D,FM ,PM〉,
where

— D is the domain of the structure
— FM = {fM : Dar(f) → D | f ∈ F}
— PM = {PM ⊆ Dar(P) | P ∈ P}.
By convention, we assimilate D0 with > (true) and ∅ with ⊥ (false) in the case of a

predicate with arity 0.

Example 1.2. Continuing example 1.1, a FO structure would inform effectively about
the tastes of Alice. The domain Dfruits = {a, b, c}. The interpretation of the constants tells
us which value is to be interpreted as which fruit: appleM = a and bananaM = b and
cherryM = c. Note that other domains or interpretations of the constants are possible
but these are the ones that makes sense when it comes to talk about three different fruits.
The taste of Alice is modeled in the interpretation of the predicate Likes. Lets consider
two different interpretations: LikesM1 = {a, b} and LikesM2 = {a, b, c}. We then have
two different FO structures:

— M1 = 〈Dfruits, {appleM , bananaM , cherryM}, LikesM1〉 and
— M2 = 〈Dfruits, {appleM , bananaM , cherryM}, LikesM2〉.

InM1, Alice likes apples and bananas and inM2, she likes all the fruits.

1.1.3 Semantics

What is left to give a meaning to an FO formula ϕ is a value for each variable. This
is achieved by the notion of assignment, which is central in the work presented in this
thesis. An assignment χ is a mapping from variables to the domain: χ : Var ⇀ D. An

25

Partie , Chapter 1 – Preliminaries

assignment is only a partial mapping as only the variables appearing in the formula ϕ
outside the range of a quantifier need to be assigned a value. Those variables are called the
free variables of ϕ. The set of assignments is denoted by Asg and the set of assignments
defined over a finite subset V of variables is denoted by Asg(V).

Once each variable have a value, we can compute the values of terms. Given a FO
structureM and an assignment χ, we define [[τ]]M,χ , the value of term τ inM with χ by
induction on τ:

1. [[x]]M,χ = χ(x),

2. [[f(~τ)]]M,χ = fM([[~τ]]M,χ)

where [[~τ]]M,χ is the tuple obtained by the application of [[·]]M,χ on each term of ~τ.

Definition 1.3. Given a signature S, an FO structureM, an FO assignment χ and an
FO formula ϕ, the FO semantics relation M, χ |=FO ϕ is defined inductively on ϕ as
follows.

1. M, χ |=FO P(~τ) if [[~τ]]M,χ ∈ PM

2. M, χ |=FO ¬ϕ ifM, χ 6|=FO ϕ

3. M, χ |=FO ϕ1 ∨ ϕ2 ifM, χ |=FO ϕ1 orM, χ |=FO ϕ2

4. M, χ |=FO ϕ1 ∧ ϕ2 ifM, χ |=FO ϕ1 andM, χ |=FO ϕ2

5. M, χ |=FO ∃xϕ if there is a value v ∈ D such thatM, χ[x 7→ v] |=FO ϕ

6. M, χ |=FO ∀xϕ if for every value v ∈ D we haveM, χ[x 7→ v] |=FO ϕ

Example 1.3. We can apply the semantics to the formulas of example 1.1 with the FO
structures defined in example 1.2. Since ϕ1, ϕ2 and ϕ3 are sentences, no assignment of
variables is required. Considering the first formula ϕ1 = Likes(apple)∧Likes(banana)∧
¬Likes(cherry), it is straightforward to see thatM1, ∅ |=FO ϕ1 and thatM2 6|=FO ϕ2.

For ϕ2 = ∃x¬Likes(x), there is c ∈ D such that the assignment χ1 defined on x by
χ1(x) = c verifiesM1, χ1 |= ¬Likes(x). Thus we can deduce thatM1, χ1 |= ϕ2.

The semantics of quantifiers can be understood as choices in a game made by two play-
ers, Eloise and Abelard, that compete to make the formula respectively true or false. With
this philosophy, Eloise chooses values of existentially quantified variables and Abelard
chooses the values of universally quantified ones. Such a game is central in many results
presented in this thesis and will be discussed for the diverse languages introduces as the
game-theoretic semantics of the logic. We do not formalize this viewpoint on FO here.

26

1.2. Recall on Team Semantics

1.1.4 Limitations of Tarski’s-like quantification

FO expressiveness is constrained when it comes to capturing intricate dependencies
due to the Tarskian semantics of quantifiers[Tar36]. The foundational principles within
Tarski’s approach impose limitations on its ability to articulate nuanced relationships or
subtle dependencies within logical statements in the sense that it imposes a linear order
on the dependencies between the quantified variables. Indeed, if one wants to make some
existantially quantified variable x independent from some universally quantified variable
y, the only possibility is to place the quantifier for x before the one for y in the syntax of
the formula.

Example 1.4. For instance, consider the following formulas:

ϕ1
def= ∀y ∃x P(x, y)

ϕ2
def= ∃x ∀y P(x, y)

In ϕ1, the choice of the value of y comes before the choice of the value of x, then, x
depends on y. On the other hand, in ϕ2, it is the choice of the value of x that comes first,
then x is independent of y.

It is not possible in FO to quantify existentially over x1 and x2 and universally over y1

and y2 such that x1 depends only on y1 and x2 depends only on y2 when the four variables
are involved in common predicates.

Remark 1.1. We assume that formulas are in prenex form here, i.e. that all quantifiers
are in front of the formula. The formula ϕ

def= ∀y (∃x P(x, y)) ∨ (∃z P(z, y)) showcase
mutual independence between x and z. However, we cannot express a property on both x
and z at the same time. Ultimately, ϕ is equivalent to a formula in prenex form and then,
to a linear ordering of the dependencies between variables.

To enforce independence, we have to enrich our syntax and adapt our semantics. In
other words, we need a new logic.

1.2 Recall on Team Semantics

An approach to model dependencies in logic is to postpone the choice of a specific value
when quantifying and then, to consider all possibles values for the quantified variable.
With this approach, the assignment is replaced with a set of assignments, named a trump

27

Partie , Chapter 1 – Preliminaries

or a team, to keep track of all the possible values of variables. Intuitively, a team represents
the imperfect information on the actual value of variables from the viewpoint of one player
of the evaluation game (recall that Eloise aim at verifying the formula and Abelard aims
at falsifying it). We see in this section how is formalized this intuition. For the whole
subsection, we fix a signature S and a S-structureM.

1.2.1 Representing dependences with Teams

For this subsection, we assume the viewpoint of Eloise when discussing the intuitions
on the operators on teams. The dual explanation can be applied when considering the
viewpoint of Abelard.

Formally, a team X over a set of variables V is a set of assignments X ⊆ Asg(V). The
set of teams over V is denoted by Teams(V) and we define Teams def= ⋃

V⊆VarTeams(V) and,
given a set of variables W, we define Teams⊇(W) def= ⋃

W⊆VTeams(V). As a team replace
the assignment in the semantic rules, we provide new operations to use on the team. The
first operation we introduce is the partitioning of a team. Given a team X ∈ Teams, we
define Part(X) = {(X1, X2) ∈ Teams2 | X1 ∪X2 = X}. The partitionning operator is
used for the semantic of the disjunctive operator. Intuitively, when Eloise has to satisfy
ϕ1 ∨ ϕ2, she can choose to split the team X between worlds in which she knows how to
satisfy ϕ1 and those in which she knows how to satisfy ϕ2. This way, she can ensure that
either ϕ1 or ϕ2 is true for each possible world.

For universal quantifiers, we have to enlarge the team with every possible value for
the quantified variable. We introduce the cylindrification of a team X on a variable x,
denoted by cyl(X, x) and defined as follows.

cyl(X, x) = {χ[x 7→ v] | χ ∈ X, v ∈ D}

This definition is deterministic in the sense that there is no specific value that has to be
chosen for x.

For existential quantifiers, we extend each assignment of the team with a value. The
function that associates a value to each assignment is called the Response function. For-
mally, a response function is a function F : Asg → D. The set of response function is
denoted by Rsp. The extension of a team X over a variable x with the response F is

28

1.2. Recall on Team Semantics

denoted by ext and defined as follows.

ext(X,F , x) = {χ[x 7→ F (χ)] | χ ∈ X}

Remark that the extension does not increase the size of the team.
Of course, we want to allow some kind of dependence or independence constraints

between variables. Such a constraint is given in the form of a equivalence relation ∼
between assignments.

Definition 1.4. Given a dependence ∼, a response function F is uniform with respect to
a dependence ∼ if the following holds.

For every χ1, χ2 ∈ Asg, if χ1 ∼ χ2, then F (χ1) = F (χ2)

Various equivalence relations can be considered this way. For this work, we focus on a
special kind of dependence relation which is the dependence on (or independence from) a
set of variable. Given a set of variablesW, we denote by ∼+W (resp. ∼−W) the equivalence
relation defined as follows, where χ1, χ2 ∈ Asg(V) with V a set of variables.

χ1 ∼+W χ2 iff χ1�W = χ2�W

χ1 ∼−W χ2 iff χ1�(V\W) = χ2�(V\W)

Remark that these relations are defined only on assignments with the same domain. Given
a set of variable W, we denote by Rsp±W the set of ∼±W-uniform responses.

1.2.2 Dependence/Independence Logic

We now have the material to define a logic using teams as models. The language in itself
is an extension of FO by allowing to specify dependence (or independence) constraints
on quantifiers. However, we have to assume that formulas are in negation normal form.

ϕ := P(~τ) | ¬P(τ) |ϕ ∧ ϕ |ϕ ∨ ϕ | ∃±Wxϕ | ∀±Wxϕ

We use ∃ and ∀ as syntactic sugar for ∃−∅ and ∀−∅ respectively.
We call existential dependence-friendly logic (DFL∃ for short), resp. universal

dependence-friendly logic (DFL∀ for short), the fragment with only ∃+W and ∀ (resp.
∀+W and ∃) quantifiers and we call dependence-friendly logic (DFL for short), the union

29

Partie , Chapter 1 – Preliminaries

of DFL∃ and DFL∀. Similarly, we call existential independence-friendly logic (IFL∃ for
short), resp. universal independence-friendly logic (IFL∀ for short), the fragment with only
∃−W and ∀ (resp. ∀−W and ∃) quantifiers and we call independence-friendly logic (IFL for
short), the union of IFL∃ and IFL∀. The whole logic, dependence/independence-friendly
logic (DIF for short) is the union of DFL and IFL and we call DIF∃ the fragment DFL∃
∪ IFL∃ and DIF∀ the fragment DFL∀ ∪ IFL∀.

Definition 1.5 (DIF Semantics). The Hodges’ semantic relationM, X |=β
DIF ϕ for DIFβ

is inductively defined as follows, for all DIFβ formulas ϕ and teams X ⊆ Asg⊆(free(ϕ)),
with β ∈ {∃,∀} and β 6= β:

1. (a) M, X |=∀DIF P(~x) if, for all χ ∈ X, it holds that χ(~x) ∈ PM;

(b) M, X |=∀DIF ¬P(~x) if, for all χ ∈ X, it holds that χ(~x) /∈ PM;

(c) M, X |=∀DIF ϕ1 ∧ ϕ2 ifM, X |=∀DIF ϕ1 andM, X |=∀DIF ϕ2;

(d) M, X |=∀DIF ϕ1 ∨ ϕ2 ifM, X1 |=∀DIF ϕ1 andM, X2 |=∀DIF ϕ2, for some biparti-
tion (X1, X2) ∈ Part(X);

(e) M, X |=∀DIF ∃±Wxϕ ifM,ext(X,F , x) |=∀DIF ϕ, for some F ∈ Rsp±W;

(f) M, X |=∀DIF ∀xϕ ifM,cyl(X, x) |=∀DIF ϕ;

2. (a) M, X |=∃DIF P(~x) if there exists χ ∈ X such that χ(~x) ∈ PM;

(b) M, X |=∃DIF ¬P(~x) if there exists χ ∈ X such that χ(~x) /∈ PM;

(c) M, X |=∃DIF ϕ1 ∧ ϕ2 ifM, X1 |=∃DIF ϕ1 orM, X2 |=∃DIF ϕ2, for all bipartitions
(X1, X2) ∈ PartX;

(d) M, X |=∃DIF ϕ1 ∨ ϕ2 ifM, X |=∃DIF ϕ1 orM, X |=∃DIF ϕ2;

(e) M, X |=∃DIF ∃xϕ ifM,cyl(X, x) |=∃DIF ϕ;

(f) M, X |=∃DIF ∀±Wxϕ ifM,ext(X,F , x) |=∃DIF ϕ, for all F ∈ Rsp±W.

Remark that the conjunction is not the dual of the disjunction. Some references chose
to name the ∨ operator splitjunction when given such a semantic rule to differentiate it
from the usual disjunction. Also remark that, as expected, the existential and universal
quantifications are not dual of each other. These remarks are at the core of the necessity
to consider formulas in negation normal form.

30

1.2. Recall on Team Semantics

1.2.3 Examples

Example 1.5. Let us fix a structureM = 〈D, (∅,=M)〉 whith D = {0, 1} and =M being
the equality. Consider the following DFL∃ sentence.

ϕ
def= ∀x1∃y1∀x2∃+y1y2(x1 = y2 ∨ x2 = y1)

Let us show that this sentence is true by unraveling the semantics rules. We first start
with the empty team ∅. We apply first the cyl(X, x) operator.

M, ∅ |=∀DIF ϕ iffM, X1 |=∀DIF ∃y1∀x2∃+y1y2(x1 = y2 ∨ x2 = y1)

With X1
def= cyl(∅, x1) = {x1 : 0, x1 : 1}.

We choose the response function F defined by F (x1 : 0) = 0 and F (x1 : 1) = 1 and
then apply the ext operator on X1, F and y1.

M, X1 |=∀DIF ∃y1∀x2∃+y1y2(x1 = y2∨x2 = y1) ifM, X2 |=∀DIF ∀x2∃+y1y2(x1 = y2∨x2 = y1)

With X2
def= ext(X1, F , y1) =

 x1 : 0
y1 : 0

,
x1 : 1
y1 : 1

.
We then apply the cyl operator again.

M, X2 |=∀DIF ∀x2∃+y1y2(x1 = y2 ∨ x2 = y1) iffM, X3 |=∀DIF ∃+y1y2(x1 = y2 ∨ x2 = y1)

With X3
def= cyl(X2, x2) =


x1 : 0
y1 : 0
x2 : 0

,

x1 : 0
y1 : 0
x2 : 1

,

x1 : 1
y1 : 1
x2 : 0

,

x1 : 1
y1 : 1
x2 : 1

.
We now have to choose a response function for y2 depending only on y1. We define G

by G(y1 : 0) = 0 and G(y1 : 1) = 1.

M, X3 |=∀DIF ∃+y1y2(x1 = y2 ∨ x2 = y1) ifM, X4 |=∀DIF (x1 = y2 ∨ x2 = y1)

With X3
def= cyl(X2, x2) =



x1 : 0
y1 : 0
x2 : 0
y1 : 0

,

x1 : 0
y1 : 0
x2 : 1
y1 : 0

,

x1 : 1
y1 : 1
x2 : 0
y1 : 1

,

x1 : 1
y1 : 1
x2 : 1
y1 : 1


.

We can check that x1 = y2 is verified for every assignment in X4, proving that M

31

Partie , Chapter 1 – Preliminaries

satisfies ϕ.

Example 1.6. We can use the dependence constraints to compare the size of sets in a FO
structure. Consider the following signature: S = 〈∅, {P [1], Q [1],=[2]}〉 where we assume
that the = relation is to be interpreted as the equality. We can define a formula that states
"the set denoted by P is bigger than the set denoted by Q" as follows.

ϕinj
def= ∀x1∀x2∃+x1y1∃+x2y2(P(x1)→ Q(y1)) ∧ (P(x2)→ Q(y2)) ∧ (x1 = x2 ↔ y1 = y2)

Intuitively, ϕinj defines an injection from P to Q. The injection is computed by each yi,
on the respective inputs xi. The dependence constraint ensures that each yi is the result of
a single function fi and the subformula P(xi) → Q(yi) ensures that the function realized
by yi goes from P to Q. The last subformula x1 = x2 ↔ y1 = y2 ensures two things: first,
that f1 = f2 thanks to x1 = x2 → y1 = y2, and second, that fi is an injection thanks to
x1 = x2 ← y1 = y2.

1.2.4 Limitations of Team Semantics

The team semantics approach at expressing dependencies has two main downsides: it
does not allows for negations and it prevents from using dependencies on both kinds of
quantifiers in a meaningful manner.

The lack of negation underlines the presence of undetermined formulas. An undeter-
mined formula ϕ is such that both ϕ and the positive form of ¬ϕ are false. It is a con-
sequence of the intrinsic imperfect information nature of the semantics. Semantics have
been developed to try to add the negation and they lead to the consideration of the new
boolean operators that are the duals of the negation and the splitjunction. Unfortunately,
even by doing so, the obtained logic does not enjoy determinacy.

The inability to use dependencies on both kinds of quantifiers is the main limitation
for our purpose. A semantics using two teams, one for the information of Eloise and the
other for Abelard, have been proposed. The resulting logic is still undetermined cannot
be adapted for the strategic reasoning.

1.3 Conclusion

Independence-Friendly Logic was originally introduced by [HS89], and later exten-
sively studied, e.g., in [MSS11], as an extension of First-Order Logic with informational

32

1.3. Conclusion

independence as first-class notion, and with applications in semantics of natural language
in mind. Unlike in FO, where quantified variables always functionally depend on all the
previously quantified ones, one can force in IFL the values of certain quantified variables
to be chosen independently of the values of some specific variables quantified before in
the formula. This originally has been syntactically represented by means of the so called
slashed operator notation, where, for instance, (∃x/W)ϕ (written ∃−Wxϕ in this work) is
intended to mean that variable x must be chosen independently (i.e., without knowledge)
of the values of the variables contained in the set W. The logic has a nice game-theoretic
semantics [HS97], given in terms of games of imperfect information, where a sentence is
true if the verifier player, usually called Eloise, has a strategy to win the semantic game.
If the falsifier player, Abelard, has a winning strategy, then the sentence is declared false.
Since games with imperfect information are considered here, neither situation may occur,
as the specific game may be undetermined. In this case, the corresponding sentence is nei-
ther true nor false, therefore establishing a failure of the law of excluded middle. [Hod97b]
later developed a compositional semantics for IFL, by defining satisfaction w.r.t a set of
assignment, called trump (a.k.a. teams, in later iterations of the idea and in this work),
instead of a single assignment as in classic Tarskian semantics [Tar36; Tar44] of FO.

Dependence Logic [Vää07] (DL) takes a slightly different approach to the problem, by
separating quantifiers from dependence specification. This is achieved by adding to FO
the so called dependence atoms of the form =(x, y), with the intended meaning that the
value of variable y is completely determined by, hence functionally dependent on, the value
of variables in the vector ~x . The separation of dependence constraints and quantifiers can
express very naturally dependencies on both quantified and non quantified variables, and
allows for a quite flexible approach to reasoning about dependence and independence. DL
has also been extended with other types of atoms like, e.g., independence atoms [GV13]
and inclusion/exclusion atoms [Gal12]. The logic is expressively equivalent to both IFL
and the existential fragment of Second Order Logic (SO) [Chu56; Sha91]. As such, DL
still allows for undetermined sentences and is not closed under classical negation.

To recover closure under negation and, consequently, the law of excluded middle,
[Vää07] introduced Team Logic (TL), an extension of DL with the so called contradic-
tory negation ∼, an idea already investigated by [Hin96] in the context of IFL, where
it was allowed only in front of a sentence. TL is substantially more expressive than DL,
reaching the full descriptive power of SO, covering, thus, the entire polynomial hierar-
chy [Sto76]. However, in order to recover the nice properties of FO, such as the duality

33

Partie , Chapter 1 – Preliminaries

between Boolean connectives and quantifiers, TL requires two different versions of the
propositional connectives, ¬ and ∼ for negation, ∧ and ⊕ for conjunction, ∨ and ⊗ for
disjunction, as well as an additional pseudo quantifier !x called shriek. This approach
also bears significant consequences. In particular, TL lacks any meaningful direct game-
theoretic interpretation, as also pointed out by [Vää07], which DL still retains, mainly
thanks to its equivalence with existential SO.

There is a well-known connection between logics to reason with or about informa-
tional independence and the extension of first-order logic with the partially ordered (a.k.a.
branching or Henkin) quantifiers, originally proposed by [Hen61] to overcome the linear
dependence intrinsic in classic quantifier prefixes (see also [KM95] for a comprehensive

survey on the topic). For instance, the sentence
(
∀x1∃y1

∀x2∃y2

)
ϕ states that for all x1 and x2,

there exists a value for y1, that only depends on x1, and a value for y2, that only depends
on x2, such that ϕ is true. Sentences like this can easily be expressed in IFL by means of
suitable independence constraints. For the sentence in the example, ∀x1∀x2∃+x1y1∃+x2y2ϕ

is an equivalent IFL sentence. Similarly to IFL, the prenex fragment of the logic with
Henkin quantifiers, where a Henkin quantifier prefix is followed by a quantifier-free FO
formula [Wal70], is known to be expressively equivalent to Σ1

1, the existential fragment
of SO, while the full (non-prenex) logic was proved to be able to express ∆1

2-properties
by [End70].

As observed by [BG86], logics with Henkin quantifiers exhibit an asymmetric nature
from a game-theoretic viewpoint, in that they typically consider only whether the exis-
tential player, Eloise, has a winning strategy that proves a formula true. This is, instead,
solved in IFL, at the cost of indeterminacy of the logic, by introducing two satisfaction
relations, one for truth and one for falsity, and by defining them in terms of uniform
strategies for the players [MSS11]. More specifically, a strategy for a player, either Eloise
or Abelard, is said to be uniform if for every variable x, which is controlled by that player
and is required to be independent of a set of variables W, the strategy always chooses the
same value in all the states of the game that differ only for the values of the variables in
W. To win the game and prove the sentence true, Eloise is required to have a uniform
strategy that wins every play induced by her strategy. These compatible plays need not
be compatible with any uniform strategy of the adversary, meaning that when evaluat-
ing truth of a sentence, no restrictions to the universal quantifiers controlled by Abelard
actually apply. A similar situation happens when evaluating falsity of a sentence. In this
case, Abelard, needs to have a uniform strategy that wins all the compatible plays. Here,

34

1.3. Conclusion

the constraints on the existential variables are ignored. The imperfect information nature
of these games manifests itself in the uniformity requirements that leads to indeterminacy
of the logic. This, in turn, implies that some sentences are neither true nor false. For
instance, ∀x∃(y/{x})x = y is undetermined as Eloise cannot copy the value of x when
choosing for y and Abelard cannot guess the future value of y when choosing for x.

The situation described above is also reflected in Hodges’ separate use of trumps
and co-trumps in the compositional semantics he proposed for IFL. His idea of using
sets of assignments allows for mimicking the uniformity constraints on the strategies
in a compositional way. Essentially, a trump records all the states, represented here as
assignments, the game could be in, depending on the possible choices made by Abelard
and the corresponding responses by Eloise. These assignments correspond, intuitively, to
the (partial) plays compatible with the strategy followed by Eloise when evaluating the
formula. A trump can, then, encode the uncertainty that Eloise has about the actual
current state of the play, in that assignments that only differ for the variables in W

are indistinguishable to Eloise when she has to choose the value of a variable x that is
independent of the variables in W. This allows Eloise to make her choice in each such
state in a uniform way and adhere to the constraints on her variables when trying to
prove the truth of the formula. Analogously, a co-trump encodes the states induced by
the possible choices of Eloise and allows Abelard to behave uniformly when he wants to
falsify the formula.

35

Chapter 2

A HYPERTEAMS SEMANTICS

In this chapter, we propose a generalization of the team semantics approach that
allows us to incorporate negation into the framework in a natural way and obtain a
fully determined logic. Similarly to teams, the idea is that the interpretations of the free
variables correspond to the choices that the two players could make up to the current
stage of the game, i.e., the stage where the formula ϕ has to be evaluated. These possible
choices are organized in a two-level structure, i.e., a set of sets of assignments, each level
summarizing the information about the choices a player may have made in previous turns.
We call such a structure a hyperteam.

The chapter is organized as follows. In Section 2.1, we present hyperteams and the var-
ious operations that we can apply to them: we show how to dualize, extend and partition
hyperteams; and also, we define a relation to compare hyperteams. Then, in Section 2.2,
we present the hyperteam semantics rules for FO. Following, in Section 2.3, we state
the main results that come with hyperteam semantics. Thereafter, in Section 2.4, we
compare the hyperteam semantics with the classic Tarskian one and show that the hy-
perteam semantics follows the intuitive explanation below when there are no dependence
constraints. Finally, in Section 2.5, we give an alternative semantics that is a form of
Skolemization/Herbrandization of the semantics, that we call the Meta semantics.

2.1 A two-level framework: the Hyperteam

In order to evaluate the formula ϕ on a hyperteam, a player — Eloise or Abelard —
chooses a team, while its opponent chooses one assignment in that set where ϕ must hold.
We shall use a flag α ∈ {∃∀, ∀∃}, called alternation flag, to keep track of which player
is assigned to which level of choice. If α = ∃∀, Eloise chooses the teams, while Abelard
chooses one of those assignments; if α = ∀∃, the dual reasoning applies. In a sense, the
level associated with a given player, say Eloise, encodes the uncertainty that the opponent
Abelard has about her actual choices up to that stage.

37

Partie , Chapter 2 – A hyperteams semantics

Given a flag α ∈ {∃∀,∀∃}, we denote by α the dual flag, i.e., α ∈ {∃∀, ∀∃} with α 6= α.
The idea described above is, then, captured by the notion of hyperteam (of assign-

ments), namely a set of teams defined over some arbitrary set V ⊆ Var:

HypTeams def= {X ⊆ Teams(V) | V ⊆ Var}.

By HypTeams(V) def= {X ∈ HypTeams | X ⊆ Teams(V)} we denote the set of hyperteams
over V, while HypTeams⊇(V) def= {X ∈ HypTeams | X ⊆ Teams(W) with V ⊆ W ⊂ Var}
contains the hyperteams defined on supersets of V. All the assignments inside a team
X ∈ Teams or hyperteam X ∈ HypTeams are defined on the same variables, whose sets are
indicated by var(X) and var(X), respectively. We shall call the empty set of teams ∅ the
empty hyperteam, every set containing the empty team, for instance {∅}, a null hyperteam,
and the set {{∅}} containing a single team comprised only of the empty assignment the
trivial hyperteam. Essentially, the trivial hyperteam encodes the situation in which none
of the players has made any choice yet and, hence, contains the minimal “consistent” state
of a game. In this sense, then, null and empty hyperteams do not convey any meaningful
information about the possible state of a game and are included here mainly for technical
reasons, as they allow for a cleaner formal definition of the semantics. For this reason, we
shall refer to every hyperteam which is neither the empty hyperteam nor a null hyperteam
with the term proper hyperteam.

For any pair of hyperteams X1,X2 ∈ HypTeams, we write X1 v X2 to state that,
for all teams X1 ∈ X1, there exists a team X2 ∈ X2 such that X2 ⊆ X1 (observe that
the inclusion of the teams is the reversed of the square inclusion of the hyperteams).
We introduce X1 ≡ X2 to denote the fact that both X1 v X2 and X2 v X1 hold true.
Obviously, X1 ⊆ X2 implies X1 v X2, which, in turn, implies var(X1) = var(X2). It is
clear that the relation v is both reflexive and transitive, hence it is a preorder; as an
immediate consequence, ≡ is an equivalence relation. In particular, we shall show (see
Corollary 2.1 later in this section) that ≡ captures the intuitive notion of equivalence
between hyperteams, in the sense that two equivalent hyperteams w.r.t ≡ do satisfy
the same FO formulas. Figure 2.1 provides a graphical representation of the preorder
relation v.

Example 2.1. In Figure 2.1, the hyperteam X1 is v-included in the hyperteam X2, since,
for each team X in X1, there is a team in X2 that is set-included in X. For instance, the
team X1 of X1 contains the assignments χ1, χ2, χ3, χ4, and χ5, so, it includes the team

38

2.1. A two-level framework: the Hyperteam

X1
X1

X2

X3

χ1 χ3 χ5

χ6 χ7 χ8

χ7 χ10

χ2 χ4

χ2 χ4

χ6 χ9

v

X2
X1

X2

X3
′

χ2 χ4

χ6 χ9

χ6 χ9 χ11

Figure 2.1 – Two hyperteams with X1 v X2, but X2 6v X1.

X1 of X2 composed of χ2 and χ4. Note that not all teams in X2 are included in a team in
X1 and different teams of X1 can choose the same team of X2 to include.

Given a hyperteam X ∈ HypTeams and a set of variables W ⊆ Var, we define X�W
def=

{X�W | X ∈ X} and X�W
def= {χ�W | χ ∈ X} recall that χ�W is the restriction of the

assignment χ to the domain dom(χ) ∩W. We can, then, compare hyperteams relative
to W by writing X1 =W X2 for X1�W = X2�W , meaning that the two hyperteams are
indistinguishable when only variables in W are considered. Similarly, X1 ≡W X2 stands
for X1�W ≡ X2�W and means that they are equivalent on W, while X1 vW X2 abbreviates
X1�W v X2�W and relativises the ordering to a dependence constraint. Obviously, X1 =W

X2, X1 ≡W X2, and X1 vW X2 imply X1 =W′ X2, X1 ≡W′ X2, and X1 vW′ X2, respectively,
for all W′ ⊆ W.

Example 2.2. In Figure 2.1, X2 is not v-included in X1, as none of the teams of X2

includes a team of X1. Now, assume the existence of a set of variables W that makes
{χ1, χ3, χ4, χ5, χ6, χ7, χ10}�W collapse to {χ1}�W. Then, we have:

X2�W X1�W

X21�W = {χ1�W , χ2�W} X11�W = {χ1�W , χ2�W}
X22�W = {χ1�W , χ9�W} X12�W = {χ1�W , χ2�W , χ8�W}
X23�W = {χ1�W , χ9�W , χ11�W} X13�W = {χ1�W , χ9�W}

Now, team X11�W is included in X21�W and team X13�W is included in both X22�W and
X23�W. Therefore, X2 vW X1 and, so, X1 ≡W X2, since X1 v X2.

The alternating semantics is given by means of a satisfaction relation between a hy-
perteam X and a formula ϕ, w.r.t a given interpretation of the players in X, that is w.r.t

39

Partie , Chapter 2 – A hyperteams semantics

an alternation flag α ∈ {∃∀, ∀∃}. As a consequence, we shall introduce two satisfaction
relations, |=∃∀ and |=∀∃, one for each interpretation of players in the hyperteam. The in-
tuition is that, when the alternation flag α is ∃∀, then a team is chosen existentially by
Eloise and all its assignments, chosen universally by Abelard, must satisfy ϕ. Conversely,
when α is ∀∃, then all teams, chosen universally by Abelard, must contain at least one
assignments, chosen existentially by Eloise, that satisfies ϕ.

The definition of the semantics relies on three basic operations on hyperteams: the
dualisation swaps the role of the two players in a hyperteam, allowing for connecting
the two satisfaction relations and a symmetric treatment of quantifiers later on; the ex-
tension directly handles quantifications; finally, the partition deals with disjunction and
conjunction.

Let us consider the dualisation operator first. Given a hyperteam X, the dual hyper-
team X exchanges the role of the two players w.r.t X. This means that, if Eloise is the
player choosing the team in X and Abelard the one choosing the assignment in the team,
it will be Abelard who chooses the team in X and Eloise the one who chooses the assign-
ment. To ensure that the semantics of the underlying game is not altered when exchanging
the order of choice for the two players, we need to reshuffle the assignments in X so as to
simulate the original dependencies between the choices. To this end, for a hyperteam X,
we introduce the set

Chc(X) def= {Γ :→ Asg | ∀X ∈ X,Γ(X) ∈ X}

of choice functions, whose definition implicitly assumes the axiom of choice, whenever the
structure domain D is uncountable. Set Chc(X) contains all the functions Γ that, for every
team X in X, pick a specific assignment Γ(X) in that set. Each such function simulates a
possible choice of the second player of X depending on the choice of (the team chosen by)
the first player. The dual hyperteam X, then, collects the images of the choice functions
in Chc(X). We, thus, obtain a hyperteam in which the choice order of the two players is
inverted:

X
def= {img(Γ) | Γ ∈ Chc(X)}.

It is immediate to check that the only hyperteams equivalent to the empty or null
ones are themselves and they are also dual of one another. Therefore, the class of proper
hyperteams is closed under dualisation. In addition, the trivial hyperteam is self-dual.

Proposition 2.1. For every hyperteam X, we have the following.

40

2.1. A two-level framework: the Hyperteam

1. X ≡ ∅ iff X = ∅ iff X = {∅};

2. X ≡ {∅} iff ∅∈X iff X = ∅. Moreover,

3. {{∅}} = {{∅}}. Finally,

4. X is proper iff X is proper as well.

Example 2.3. Consider the following two dual hyperteams

X =


X = {χ11, χ12},
X = {χ21, χ22},
X = {χ3}

 and X =



img(Γ1) = {χ11, χ21, χ3},
img(Γ2) = {χ11, χ22, χ3},
img(Γ3) = {χ12, χ21, χ3},
img(Γ4) = {χ12, χ22, χ3}


,

where the teams of X are X = {χ11, χ12}, X = {χ21, χ22}, and X = {χ3}. Every team in
X is obtained as the image of one of the four choice functions Γi ∈ Chc(X), each choosing
exactly one assignment from X, one from X, and the unique one from X. Intuitively,
in X the strategy of the first player, say Eloise, can only choose the colour of the final
assignments (either red for X, blue for X, or green for X), while the one for Abelard
decides which assignment of each colour will be picked. After dualisation, the two players
exchange the order in which they choose. Therefore, Abelard, starting first in X, will se-
lect one of the four choice functions, which picks an assignment for each colour. Eloise,
choosing second, by using her strategy that selects the colour will give the final assign-
ment. In other words, the original strategies of the players encoded in the hyperteam, as
well as their dependencies, are preserved, regardless of the swap of their role in the dual
hyperteam. The example also shows that, as we shall prove shortly (see Theorem 2.2 later
in this section), if we dualise a hyperteam X and, at the same time, swap the original
interpretation α ∈ {∃∀, ∀∃} of the player to α, we obtain that the pair (X, α) gives an
equivalent representation of the information contained in the original pair (X, α).

Dualisation enjoys an involution property similar to the classic Boolean negation: by
applying the dualisation twice, we obtain a hyperteam equivalent to the original one. This
confirms that the operation preserves the entire information encoded in the hyperteams.

Lemma 2.1 (Dualisation I). For all hyperteams X ∈ HypTeams and set of variables W,
it holds that X ≡W X. In addition, X ⊆ X, if X is proper.

The proof of this lemma, together with those of all the non-trivial results, can be found
in appendix of this section.

41

Partie , Chapter 2 – A hyperteams semantics

Observe the clear analogy between the structure of hyperteams with alternation flag
∃∀ (resp., ∀∃) and the structure of DNF (resp., CNF) Boolean formulas, where the duali-
sation swaps between two equivalent forms. The following lemma formally states that this
operation swaps the role of the two players, while still preserving the original dependencies
among their choices.

Lemma 2.2 (Dualisation II). The following equivalences hold true, for all hyperteams
X ∈ HypTeams and properties Ψ ⊆ Asg.

1. Statements 1a and 1b are equivalent:

(a) there exists a team X ∈ X (resp., X ∈ X) such that X ⊆ Ψ;

(b) for all teams X′ ∈ X (resp., X′ ∈ X), it holds that X′ ∩Ψ 6= ∅.

2. Statements 2a and 2b are equivalent:

(a) there exists a team X ∈ X such that X ∩Ψ 6= ∅;

(b) there exists a team X′ ∈ X such that X′ ∩Ψ 6= ∅.

3. Statements 3a and 3b are equivalent:

(a) for all teams X ∈ X, it holds that X ⊆ Ψ;

(b) for all teams X′ ∈ X, it holds that X′ ⊆ Ψ.

Item 1 provides the semantic meaning of the operation, stating that if there exists
a team in X all of whose assignments satisfy some property Ψ, then each team in X

has an assignment satisfying the property, and vice versa. This directly connects the two
interpretations of hyperteams, ∀∃ and ∃∀. Item 2 establishes that no assignment is lost
from the original teams in X, while Item 3 asserts that no new assignments are added
to X. It could be proved that any two operators that satisfies the three conditions in the
lemma will produce equivalent hyperteams, in the sense of ≡, when applied to the same
hyperteam.

Quantifications are taken care of by the extension operator . The extension of a hyper-
team X ∈ HypTeams with x is simply the set of extensions with x of all its teams by all
possible response:

ext(X, x) def= {ext(X,F , x)X,F , x | X ∈ X, F ∈ Rsp}.

The extension operation essentially embeds into X all possible (W-uniform) strategies for
choosing the value of x, each one encoded by a function F in Rsp.

42

2.1. A two-level framework: the Hyperteam

Example 2.4. Let X = {X1 ={χ1, χ2}, X2 ={χ1, χ3}} be a hyperteam. To extend X with
variable x over the structure domain D = {0, 1}, one needs to extend each team in X with
the eight possible response functions: Fijk that maps χ1 to i and χ2 to j and χ3 to k for
i, j, k ∈ {0, 1}.

ext(X, x) =



ext(X1, F000, x) = {χ1[x 7→ 0], χ2[x 7→ 0]},
ext(X1, F000, x) = {χ1[x 7→ 0], χ3[x 7→ 0]},
ext(X1, F001, x) = {χ1[x 7→ 0], χ2[x 7→ 0]},
ext(X1, F001, x) = {χ1[x 7→ 0], χ3[x 7→ 1]},

...
ext(X1, Fijk, x) = {χ1[x 7→ i], χ2[x 7→ j]},
ext(X1, Fijk, x) = {χ1[x 7→ i], χ3[x 7→ k]},

...
ext(X1, F111, x) = {χ1[x 7→ 1], χ2[x 7→ 1]},
ext(X1, F111, x) = {χ1[x 7→ 1], χ3[x 7→ 1]}


Notice that multiple teams collapse, for instance ext(X1, F000, x) = ext(X1, F001, x).

Conjunctions and disjunctions are dealt with by means of the partition operator. We
provide here the intuition for disjunction, the dual reasoning applies to conjunction. As-
sume that the two players of X, defined over the variables {x, y}, are interpreted according
to the alternation flag ∀∃: Abelard chooses the team and Eloise chooses the assignment
in the team. In our setting, then, in order to satisfy, for instance, (x = 0)∨ (x = 1), Eloise
has to show that, for each team X ∈ X chosen by Abelard, she has a way to select one
of the disjuncts x = 0 or x = 1, so that the given team has an assignment satisfying the
disjunct. To capture Eloise’s choice of disjunct based on the team given by Abelard, we
define, for a hyperteam X, the set Part(X) that collects all the possible bipartitions of X.

Part(X) def= {(X1,X2) ∈ 2X × 2X | X1 ∩ X2 = ∅ ∧ X1 ∪ X2 = X},

Intuitively, the hyperteam X1 will be used to satisfy x = 0, while X2 will be used for
x = 1. Basically, Part(X) contains all the possible strategies by means of which Eloise
can try to satisfy the two disjuncts. Then, we say that Eloise satisfies the disjunction if
there is a pair (X1

′,X2
′) (hence, a hyperteam-partition strategy) in that set such that X1

′

satisfies the left disjunct and X2
′ satisfies the right one.

43

Partie , Chapter 2 – A hyperteams semantics

2.2 A new semantical relation

We assume a signature S without function symbols, so that we do not have to bother
with terms that are not tuples of variables. The compositional hyperteam semantics of an
FO formula can be, then, defined as follows.

Definition 2.1 (Hyperteam Semantics). The hyperteam semantic relation M,X |=α ϕ

for FO is inductively defined as follows, for all FO formulas ϕ, hyperteams X ∈
HypTeams⊇(free(ϕ)), tuples of variables ~x, FO predicates P and alternation flags α ∈
{∃∀,∀∃}:

1. (a) M,X |=∃∀ ⊥ if ∅ ∈ X;

(b) M,X |=∀∃ ⊥ if X = ∅;

2. (a) M,X |=∀∃ > if ∅ 6∈ X;

(b) M,X |=∃∀ > if X 6= ∅;

3. (a) M,X |=∃∀ P(~x) if there exists a team X ∈ X such that, for all assignments
χ ∈ X, it holds that χ(~x) ∈ PM;

(b) M,X |=∀∃ P(~x) if, for all teams X ∈ X, there exists an assignment χ ∈ X such
that χ(~x) ∈ PM;

4. M,X |=α ¬φ ifM,X 6|=α φ;

5. (a) M,X |=∃∀ φ1 ∧ φ2 if, for all bipartitions (X1,X2) ∈ Part(X), it holds that
M,X1 |=∃∀ φ1 orM,X2 |=∃∀ φ2;

(b) M,X |=∀∃ φ1 ∧ φ2 ifM,X |=∃∀ φ1 ∧ φ2;

6. (a) M,X |=∃∀ φ1 ∨ φ2 ifM,X |=∀∃ φ1 ∨ φ2;

(b) M,X |=∀∃ φ1 ∨ φ2 if there exists a bipartition (X1,X2) ∈ Part(X) such that
M,X1 |=∀∃ φ1 andM,X2 |=∀∃ φ2;

7. (a) M,X |=∃∀ ∃xφ ifM,ext(X, x) |=∃∀ φ;

(b) M,X |=∀∃ ∃xφ ifM,X |=∃∀ ∃xφ;

8. (a) M,X |=∃∀ ∀xφ ifM,X |=∀∃ ∀xφ;

(b) M,X |=∀∃ ∀xφ ifM,ext(X, x) |=∀∃ φ.

Items 1 and 2 take care of the Boolean constants, requiring, for instance, > to be
satisfied by all hyperteams, except for the empty one, under the ∃∀ interpretation, and
the null one, under ∀∃. A dual reasoning applies to ⊥. The other base case for atomic

44

2.3. Fundamentals

formulas, Item 3, is trivial and follows the interpretation of the alternation flag. Negation,
in accordance with the classic game-theoretic interpretation, is dealt with by Item 4
by exchanging the interpretation of the players of the hyperteam. The semantics of the
remaining Boolean connectives (Items 5 and 6) and quantifiers (Items 7 and 8) is a
direct application of the partition and extension operators previously defined. Observe
that swapping between |=∃∀ and |=∀∃ (Items 5b, 6a, 7b and 8a) is done according to
Lemma 2.2 and represents the fundamental point where our approach departs from team
semantics.

Remark 2.1. An alternative option for the semantics of Boolean connectives is to use
coverings instead of partitions, i.e., pairs of hyperteams (X1,X2) such that X1 ∪ X2 = X.
However, from a covering (X1,X2), one can extract the partition (X1,X2 \ X1), where
X2 \ X1 v X2. Then, an application of Theorem 2.1 below would allow to immediately
conclude on the equivalence of the two semantics.

For every FO formula ϕ and alternation flag α ∈ {∃∀,∀∃}, we say that ϕ is α-satisfiable
inM, in symbolsM |=α ϕ, if there exists a proper hyperteam X ∈ HypTeams⊇(free(ϕ))
such that M,X |=α ϕ. As already mentioned before, here we are not considering the
empty and null hyperteams as potential hyperteams, since these do not convey mean-
ingful information. We simply say that ϕ is α-satisfiable iff it is α-satisfiable in some
structure M. Also, ϕ α-implies (resp., is α-equivalent to) an FO formula φ in M, in
symbols ϕ ⇒α

M φ (resp., ϕ ≡αM φ), whenever M,X |=α ϕ implies M,X |=α φ (resp.,
M,X |=α ϕ iff M,X |=α φ), for all X ∈ HypTeams⊇(free(ϕ) ∪ free(φ)). If the im-
plication (resp., equivalence) holds for all structures M, we just state that ϕ α-implies
(resp., is α-equivalent to) φ, in symbols ϕ ⇒α φ (resp., ϕ ≡α φ). Finally, we say that ϕ
is satisfiable if it is both ∃∀- and ∀∃-satisfiable, and ϕ implies (resp., is equivalent to) φ,
in symbols ϕ ⇒ φ (resp., ϕ ≡ φ), if both ϕ ⇒∃∀ φ and ϕ ⇒∀∃ φ (resp., ϕ ≡∃∀ φ and
ϕ ≡∀∃ φ) hold true. These notions of satisfiable formulas and of implication are justified
by Theorem 2.2 that makes ∃∀- and ∀∃-satisfiable collapse to simply satisfiable and ∃∀-
and ∀∃-implication to just implication.

2.3 Fundamentals

We show that the hyperteam semantics enjoys several classic properties, such as
Boolean laws and the canonical representation for formulas in negation normal form (nnf,
for short), that are usually expected to hold for a logic closed under negation.

45

Partie , Chapter 2 – A hyperteams semantics

We start with the following very basic result, characterising the truth of formulas over
the null and empty hyperteams.

Lemma 2.3 (Empty & Null Hyperteams). The following hold true for every FO formula
ϕ and hyperteam X ∈ HypTeams⊇(free(ϕ)):

1. (a) M, ∅ 6|=∃∀ ϕ;

(b) M,X |=∃∀ ϕ, where ∅ ∈ X;

2. (a) M, ∅ |=∀∃ ϕ;

(b) M,X 6|=∀∃ ϕ, where ∅ ∈ X.

The preorder v on hyperteams introduced above captures the intuitive notion of
satisfaction strength w.r.t FO formulas. Basically, if X1 v X2, the hyperteam X1 satisfies,
w.r.t the ∃∀ (resp., ∀∃) semantic relation, less (resp., more) formulas than the hyperteam
X2. Actually, a stronger version of this property holds, when the v-preorder is restricted
to the set of free variables of the formula. This property is trivial for atomic formulas and
can easily be proved by structural induction for the non-atomic ones.

Theorem 2.1 (Hyperteam Refinement). Let ϕ be an FO formula and X,X′ ∈
HypTeams⊇(free(ϕ)) two hyperteams with X vfree(ϕ) X

′. Then:

1. ifM,X |=∃∀ ϕ thenM,X′ |=∃∀ ϕ;

2. ifM,X′ |=∀∃ ϕ thenM,X |=∀∃ ϕ.

As an immediate consequence, we obtain the following result.

Corollary 2.1 (Hyperteam Equivalence). Let ϕ be an FO formula and X,X′ ∈
HypTeams⊇(free(ϕ)) two hyperteams with X ≡free(ϕ) X

′. Then:

M,X |=α ϕ iff M,X′ |=α ϕ.

Since, by definition, an FO sentence ϕ satisfies free(ϕ) = ∅, we can test its truth
by just looking at its satisfaction w.r.t the trivial hyperteam {{∅}}, as every proper
hyperteam is equivalent to {{∅}} on the empty set of variables.

Corollary 2.2 (Sentence Satisfiability). Let ϕ be an FO sentence. Then, ϕ is α-satisfiable
iffM, {{∅}} |=α ϕ, for some S-structureM.

46

2.3. Fundamentals

As mentioned in Example 2.3, swapping the players of a hyperteam X, i.e., switching
the alternation flag, and swapping the choices of the players, i.e., dualising X, have the
same effect as far as satisfaction is concerned. Recall in addition that, by Lemma 2.1, the
dualisation enjoys the involution property. Consequently, dualising both the alternation
flag α and the hyperteam X preserves truth of formulas. These observations are formalised
by the following result.

Theorem 2.2 (Double Dualisation). For every FO formula ϕ, alternation flag α and
hyperteam X ∈ HypTeams⊇(free(ϕ)), it holds that M,X |=α ϕ iff M,X |=α ϕ iff
M,X |=α ϕ.

The above property also grants that formulas satisfiability, implication, and equiva-
lence do not depend on the specific interpretation α of hyperteams: a positive answer for
α implies the same for α. This invariance corresponds to the intuition that the truth of
a sentence, as well as the concept of logical consequence and equivalence, do not depend
on the point of view of the specific player. One can also see this as a consequence of the
symmetric treatment of Eloise and Abelard in the semantics.

Corollary 2.3 (Interpretation Invariance). Let ϕ and φ be FO formulas. Then, ϕ is
∃∀-satisfiable iff ϕ is ∀∃-satisfiable. Also, ϕ ⇒∃∀ φ iff ϕ ⇒∀∃ φ and ϕ ≡∃∀ φ iff ϕ ≡∀∃ φ.

Given the game-theoretic nature of hyperteams and negation, hyperteam semantics
does not naturally entail logical determinacy, i.e., the property stating that a model either
satisfies a formula or its negation, w.r.t the same semantic relation. However, it satisfies
the game-theoretic determinacy stated below, which corresponds to the following intuition:
if a player cannot prove the truth of a formula, then the other player can prove the truth
of its negation.

Corollary 2.4 (Game-Theoretic Determinacy). Let ϕ be an FO formula, α an alternation
flag and X ∈ HypTeams⊇(free(ϕ)) a hyperteam. Then:

1. eitherM,X |=α ϕ orM,X |=α ¬ϕ;

2. eitherM,X |=α ϕ orM,X |=α ¬ϕ.

Since, as observed above, the truth of sentences can be tested against the trivial
hyperteam {{∅}}, regardless of the specific alternation flag α, the classic law of excluded
middle does hold at least for all FO sentences. In the following, we denote withM |= ϕ

the fact that a sentence ϕ is both ∃∀-satisfied and ∀∃-satisfied by {{∅}} inM.

47

Partie , Chapter 2 – A hyperteams semantics

Corollary 2.5 (Law of Excluded Middle). Let ϕ be an FO sentence. Then, eitherM |= ϕ

orM |= ¬ϕ.

Thanks to the above properties, we can establish the following elementary Boolean
laws, which, in turn, allow for a canonical representation of formulas in nnf, as stated in
Corollary 2.6.

Theorem 2.3 (Boolean Laws). Let ϕ1, ϕ2 and ϕ be FO formulas. Then:

1. (a) ¬⊥ ≡ >;

(b) ¬> ≡ ⊥;

(c) ϕ ≡ ¬¬ϕ;

2. (a) ϕ ∧ ⊥ ≡ ⊥ ∧ ϕ ≡ ⊥;

(b) ϕ ∧ > ≡ > ∧ ϕ ≡ ϕ;

3. (a) ϕ ∨ > ≡ > ∨ ϕ ≡ >;

(b) ϕ ∨ ⊥ ≡ ⊥ ∨ ϕ ≡ ϕ;

4. (a) ϕ1 ∧ ϕ2 ≡ ϕ2 ∧ ϕ1;

(b) ϕ1 ∨ ϕ2 ≡ ϕ2 ∨ ϕ1;

5. (a) ϕ1 ∧ ϕ2 ⇒ ϕ1;

(b) ϕ1 ∧ (ϕ ∧ ϕ2) ≡ (ϕ1 ∧ ϕ) ∧ ϕ2;

6. (a) ϕ1 ⇒ ϕ1 ∨ ϕ2;

(b) ϕ1 ∨ (ϕ ∨ ϕ2) ≡ (ϕ1 ∨ ϕ) ∨ ϕ2;

7. (a) ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2);

(b) ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2);

8. (a) ∃xϕ ≡ ¬(∀x¬ϕ);

(b) ∀xϕ ≡ ¬(∃x¬ϕ).

Corollary 2.6 (Negation Normal Form). Every FO formula is equivalent to an FO
formula in nnf for the hyperteam semantics.

For technical convenience, we shall now generalise the extension operator to quantifier
prefixes ℘ (finite sequences of ∃x or ∀x), whose set is denoted by Q. Notice that, without
loss of generality, we only consider prefixes where each variable x is quantified at most
once. With var(℘), we denote the set of variables quantified in ℘. Given a hyperteam

48

2.4. Adequacy

X and an alternation flag α, the operator extα(X, ℘) corresponds to iteratively applying
the extension operator to X, for all quantifiers occurring in ℘, in that specific order. To
this end, we first introduce the notion of coherence of a quantifier symbol Q ∈ {∃,∀}
with an alternation flag α ∈ {∃∀, ∀∃} as follows: Q is α-coherent if either α = ∃∀ and
Q = ∃ or α = ∀∃ and Q = ∀. Now, the application of a quantifier Qx to X, denoted
by extα(X, Qx), follows the semantics of quantifiers, as defined in Items 7 and 8 of
Definition 2.1. More precisely, it just corresponds to the extension of X with x, when Q
is α-coherent. Conversely, when Q is α-coherent, we need to dualise the extension with x
of the dual of X. Formally:

extα(X, Qx) def=


ext(X, x), if Q is α-coherent;

ext(X, x), otherwise.

The operator naturally lifts to arbitrary quantification prefixes ℘:

1. extα(X, ε) def= X;

2. extα(X, Qx℘) def= extα(extα(X, Qx), ℘).

We also define extα(℘) def= extα({{∅}}, ℘). A simple structural induction on a quantifier
prefix ℘ ∈ Q, shows that a hyperteam X α-satisfies a formula ℘φ iff its α-extension w.r.t
℘ α-satisfies its subformula φ.

Theorem 2.4 (Prefix Extension). Let ℘φ be an FO formula, where ℘ ∈ Q is a quantifier
prefix and φ is an arbitrary FO formula. Then, M,X |=α ℘φ iff M,extα(X, ℘) |=α φ,
for all hyperteams X ∈ HypTeams⊇(free(℘φ)).

2.4 Adequacy

In this section, we show that the hyperteam semantics is adequate, i.e., it is a conser-
vative extension, precisely capturing Tarski’s satisfaction for FO.

Formally, we prove that Definition 2.1 corresponds to the classic Tarskian satisfaction
of Definition 1.3. This FO adequacy property holds trivially for atomic formulas and, in
order to extend it to the remaining FO components, we make use of the following three
lemmata, which take care of dualisation, quantifiers, and binary Boolean connectives,
respectively.

49

Partie , Chapter 2 – A hyperteams semantics

As extensively discussed before, the dualisation swaps the role of the two players, while
still preserving the original dependencies among their choices. Indeed, if a FO property
is satisfied by a hyperteam w.r.t a given alternation flag, it is satisfied by its dual version
w.r.t the dual flag, as formally stated in the lemma below (recall that |=FO denotes the
usual FO semantic relation).

Lemma 2.4 (FO Dualisation). The following equivalences hold, for all FO formulas ϕ
and hyperteams X ∈ HypTeams⊇(free(ϕ)).

1. Statements 1a and 1b are equivalent:

(a) there exists a team X ∈ X such thatM, χ |=FO ϕ, for all assignments χ ∈ X;

(b) for all teams X ∈ X, there exists an assignment χ ∈ X such thatM, χ |=FO ϕ.

2. Statements 2a and 2b are equivalent:

(a) for all teams X ∈ X, there exists an assignment χ ∈ X such thatM, χ |=FO ϕ;

(b) there exists a team X ∈ X such thatM, χ |=FO ϕ, for all assignments χ ∈ X.

The following lemma states that the extension operator provides an adequate se-
mantics for classic FO quantifications.Statement 1 considers Eloise’s choices, when the
interpretation of the hyperteam is ∃∀, while Statement 2 takes care of Abelard’s choices,
when the interpretation is the dual ∀∃.

Lemma 2.5 (FO Quantifiers). The following equivalences hold, for all FO formulas ϕ,
variables x ∈ Var, and hyperteams X ∈ HypTeams⊇(free(ϕ) \ {x}).

1. Statements 1a and 1b are equivalent:

(a) there exists a team X ∈ X such thatM, χ |=FO ∃x. ϕ, for all χ ∈ X;

(b) there exists a team X ∈ ext(X, x) such thatM, χ |=FO ϕ, for all χ ∈ X.

2. Statements 2a and 2b are equivalent:

(a) for all teams X ∈ X, there exists χ ∈ X such thatM, χ |=FO ∀x. ϕ;

(b) for all teams X ∈ ext(X, x), there exists χ ∈ X such thatM, χ |=FO ϕ.

Finally, the partition operator precisely mimics the semantics of the binary Boolean
connectives when the correct interpretation of the underlying hyperteam is considered.

Lemma 2.6 (FO Boolean Connectives). The following equivalences hold, for all FO
formulas ϕ1 and ϕ2 and hyperteams X ∈ HypTeams⊇(free(ϕ1) ∪ free(ϕ2)).

50

2.5. Skolemisation with hyperteams

1. Statements 1a and 1b are equivalent:
(a) there exists a team X ∈ X such thatM, χ |=FO ϕ1 ∧ ϕ2, for all χ ∈ X;
(b) for each bipartition (X1,X2) ∈ Part(X), there exist an index i ∈ {1, 2} and a

team X ∈ Xi such thatM, χ |=FO ϕi, for all χ ∈ X.
2. Statements 2a and 2b are equivalent:
(a) for all teams X ∈ X, there exists χ ∈ X such thatM, χ |=FO ϕ1 ∨ ϕ2;
(b) there exists a bipartition (X1,X2) ∈ Part(X) such that, for all indexes i ∈
{1, 2} and teams X ∈ Xi, it holds thatM, χ |=FO ϕi, for some χ ∈ X.

We can now state the FO adequacy property for hyperteam semantics.

Theorem 2.5 (FO Adequacy). For all FO formulas ϕ and hyperteams X ∈
HypTeams⊇(free(ϕ)), it holds that:

1. M,X |=∃∀ ϕ iff there exists a team X ∈ X such that, for all assignments χ ∈ X,
it holds thatM, χ |=FO ϕ;

2. M,X |=∀∃ ϕ iff, for all teams X ∈ X, there exists an assignment χ ∈ X such that
M, χ |=FO ϕ.

2.5 Skolemisation with hyperteams

We now introduce a meta-level interpretation of the quantifiers by means of a
Herbrand-Skolem semantics extending the compositional one based on hyperteams, which
results to be essential for many results in the next chapters.

The game-theoretic interpretation of the quantifiers ∃x and ∀x implicitly identifies
strategies for Eloise and Abelard. The meta extension we propose here makes these
strategies explicit, by augmenting the logic with the two quantifiers, Σ+Wx and Π+Wx

ranging over W-uniform response functions (that can be seen as Herbrand/Skolem func-
tion [Bus98a]). The setW collects the variables of the hyperteam and the variables quanti-
fied before x. Intuitively, Σ+Wx. ϕ ensures the existence of aW-uniform response function
(as a Skolem function) assigning to x values that satisfy ϕ, while Π+Wx. ϕ verifies ϕ, for
all values assigned to x by some W-uniform response function (as a Herbrand function).

Definition 2.2 (Meta Syntax). The Meta Extension (Meta, for short) is the set of for-
mulas built according to Definition 1.2 extended as follows, where x ∈ V:

ϕ
def= FO |Σ+Wx. ϕ |Π+Wx. ϕ.

51

Partie , Chapter 2 – A hyperteams semantics

To keep track of the Herbrand/Skolem functions already quantified, we use a function
assignment F ∈ FunAsg def= V ⇀ Rsp mapping each variable x ∈ V

def= dom(F) to a
function F(x) ∈ Rsp. To extend a hyperteam X ∈ HypTeams(U) with F , we make use of
the extension operator ext(X,F) def= {ext(X,F) | X ∈ X}, where

1. ext(X,F) def= {χ ∈ cyl(X,V) | ∀x ∈ V \ U, χ(x) = F(x)(χ)} is the extension of
the team X over the variables in V, so that the value χ(x) given by an assignment
χ to each (not yet assigned) variable x ∈ V \U is coherent with the one prescribed
by F(x) and

2. cyl(X,V) def= {χ ∈ Asg(U ∪ V) | χ�U ∈ X} is the cylindrification of a team
X ∈ Teams(U) w.r.t the set of variables V \ U.

Finally, a function assignment F ∈ FunAsg is acyclic if there is an acyclic dependency
context ι ∈ V ⇀ 2V , with dom(F) ⊆ dom(ι), such that F(x) ∈ Rsp+ι(x) for all variables
x ∈ dom(F), where by dependency context we mean any partial function ι ∈ Var ⇀ 2Var

(intuitively, a dependency context keep in memory the dependencies of each variables).

Definition 2.3 (Meta Semantics). The hyperteam semantic relation M,F ,X |=α
Meta ϕ

for Meta is inductively defined as follows, for all Meta formulas ϕ, function assignments
F ∈ FunAsg, hyperteams X ∈ HypTeams⊇(free(ϕ) \ dom(F)), and alternation flags
α ∈ {∃∀,∀∃}:

1,2,4-8) All FO cases, but those ones of the atomic relations, are defined by lifting, in the
obvious way, the corresponding items of Definition 2.1 to function assignments,
i.e., the latter play no role;

3. (a) M,F ,X |=∃∀Meta P(~x) if there exists a team X ∈ ext(X,F) such that, for all
assignments χ ∈ X, it holds that χ(~x) ∈ PM;

(b) M,F ,X |=∀∃Meta P(~x) if, for all teams X ∈ ext(X,F), there exists an assign-
ment χ ∈ X such that χ(~x) ∈ PM;

9. M,F ,X |=α
Meta Σ+Wx. φ ifM,F [x 7→ F],X |=α

Meta φ, for some F ∈ Rsp+W;
10. M,F ,X |=α

Meta Π+Wx. φ ifM,F [x 7→ F],X |=α
Meta φ, for all F ∈ Rsp+W.

Essentially, to evaluate an atomic formula P(~x), we extend X with the functions dic-
tated by F and then we check the assignments following the alternation given by the
flag α ∈ {∀∃,∃∀} as in plain FO. Indeed, Item 3 above can be re-stated in the following
equivalent form, which allows for a unified treatment of the alternation flags:

M,F ,X |=α
Meta P(~x), ifM,ext(X,F) |=α P(~x),

52

2.5. Skolemisation with hyperteams

where the second occurrence of the satisfaction relation |=α refers to the hyperteam seman-
tic relation for FO, as per Item 3 of Definition 2.1. The semantics of the meta quantifiers
Σ+Wx and Π+Wx is the classic second-order one, where the functions chosen at the meta
level are stored in the assignment F .

The notions of satisfaction, implication, and equivalence, given at the end of Section 2.2
immediately lift to Meta. In addition, all relevant results proved for FO in Section 2.3
clearly lift to the Meta semantics of FO formulas. These results are, indeed, proved in
this generalised form in 2.D. In particular, satisfaction in FO and in Meta coincide.

Proposition 2.2. M,X |=α ϕ iffM, ∅,X |=α
Meta ϕ, for every FO formula ϕ and hyper-

team X ∈ HypTeams⊇(free(ϕ)).

At first glance, the semantic rule for the meta quantifiers might seem to mimic the
corresponding quantifier rule of DIF (and TL), as in both cases a choice of a response
function is involved. However, unlike in DIF (and TL), the application of the functions
to the hyperteam is delayed until the evaluation of an atomic formula. This makes the
behaviour of quantifications in the two semantics diverge significantly.

The following lemma characterises the connection between the compositional seman-
tics of first-order quantifications ∃x and ∀x and the corresponding choice of a Skolem/Her-
brand function.

Lemma 2.7 (Extension Interpretation). The following four equivalences hold true, for
all hyperteams X ∈ HypTeams(V) over V ⊆ Var, properties Ψ ⊆ Asg(V∪{x}) over V∪{x}
with x ∈ Var \ V, flag α ∈ {∃∀,∀∃} and quantifier symbols Q ∈ {∃,∀}.

1. Statements 1a and 1b are equivalent, whenever Q is α-coherent:

(a) there exists X′ ∈ extα(X, Qx) such that X′ ⊆ Ψ;

(b) there exist F ∈ Rsp+var(X) and X ∈ X such that ext(X,F , x) ⊆ Ψ.

2. Statements 2a and 2b are equivalent, whenever Q is α-coherent:

(a) for all X′ ∈ extα(X, Qx), it holds that X′ ∩Ψ 6= ∅;

(b) for all F ∈ Rsp+var(X) and X ∈ X, it holds that ext(X,F , x) ∩Ψ 6= ∅.

3. Statements 3a and 3b are equivalent, whenever Q is α-coherent:

(a) there exists X′ ∈ extα(X, Qx) such that X′ ⊆ Ψ;

(b) for all F ∈ Rsp+var(X), it holds that ext(X,F , x) ⊆ Ψ, for some X ∈ X.

4. Statements 4a and 4b are equivalent, whenever Q is α-coherent:

53

Partie , Chapter 2 – A hyperteams semantics

(a) for all X′ ∈ extα(X, Qx), it holds that X′ ∩Ψ 6= ∅;

(b) there is F ∈ Rsp+var(X) such that ext(X,F , x) ∩Ψ 6= ∅, for all X ∈ X.

Equivalences 1 and 4, when Q = ∃, implicitly state that an existential quantification
can always be simulated by an existential choice of a suitable Skolem function, indepen-
dently of the alternation flag α for the hyperteam. Dually, Equivalences 2 and 3, when
Q = ∀, state that a universal quantification can be simulated by a universal choice of a
suitable Herbrand function, again regardless of α. These observations can be formulated
in Meta as follows.

Theorem 2.6 (Quantifier Interpretation). The following equivalences hold true, for all
FO formulas φ, variables x ∈ Var, acyclic function assignments F ∈ FunAsg, and hyper-
teams X ∈ HypTeams⊇((free(φ) \ {x}) \ dom(F)) with x /∈ var(X):

1. M,F ,X |=α
Meta ∃x. φ iffM,F ,X |=α

Meta Σ+var(X)x. φ;

2. M,F ,X |=α
Meta ∀x. φ iffM,F ,X |=α

Meta Π+var(X)x. φ.

Given an FO formula ℘φ with quantifier prefix ℘ ∈ Q and FO subformula φ, we can
convert each quantification in ℘, from inside out, into the corresponding meta quantifica-
tion, by suitably iterating the result reported above. The meta quantifiers in the obtained
prefix are in reverse order with respect to the order of corresponding standard quantifiers
in the original prefix. To formalise this idea, we introduce, given an FO formula ϕ the
Herbrand-Skolem prefix function hspϕ as follows:

1. hspϕ(ε) def= ε;

2. hspϕ(℘.∃x) def= Σ+free(ϕ)∪var(℘)x.hspϕ(℘);

3. hspϕ(℘.∀x) def= Π+free(ϕ)∪var(℘)x.hspϕ(℘).

We can show that ℘φ ≡ hspϕ(℘)φ, by exploiting Theorem 3.4. This conversion resem-
bles a merging of the standard Skolem/Herbrand-isation procedures [Hei67; Bus98a] that
convert a FO sentence either into an equi-satisfiable/equi-valid FO sentence without
existential/universal quantifiers, or into an equivalent SO formula.

Theorem 2.7 (Herbrand-Skolem Theorem). Let ℘1℘2φ be an FO formula in pnf with
quantifier prefix ℘1℘2 ∈ Q and FO subformula φ. Then, M,F ,X |=α

Meta ℘1℘2φ iff
M,F ,X |=α

Meta hspϕ(℘2)℘1φ, for all acyclic function assignments F ∈ FunAsg with
dom(F) ∩ dep(℘1℘2φ) = ∅ and hyperteams X ∈ HypTeams⊇(free(℘1℘2φ) \ dom(F))
with var(X) ∩ var(℘1℘2) = ∅ and dom(F) ∩ var(℘1℘2) = ∅.

54

2.6. Conclusion

2.6 Conclusion

In this chapter we have generalized teams in such a way that the choices of both
players are recorded in the semantic structure w.r.t which formulas are evaluated. This
approach leads to the notion of hyperteam, defined as a set of teams, which provides a
two-level structure, where each level is intuitively associated with one of the two players
and encodes the uncertainty that the opponent has about the actual choices up to that
stage of the play. From another perspective, the structure can be viewed as encoding
all the possible plays in the underlying evaluation game, comprising the choices of one
player as well as the possible responses of the opponent. With all this information at
hand, then, we can easily obtain the plays of the dual game, namely the one in which
the two players exchange their roles. The change of roles between the players, in turn,
precisely corresponds to the game-theoretic interpretation of negation. This allows us to
include negation to the logic in a very natural way and, at the same time, recover the law
of the excluded middle, which is lost in IFL, by avoiding undetermined sentences, and
have a fully symmetric treatment of the independence constraints on the universal and
existential quantifiers.

The symmetric treatment of quantifiers enables uniformity constraints on both exis-
tential and universal quantifiers. This form of logical symmetry allows for the definition
of a new logic, Alternating Dependence/Independence Friendly Logic, (ADIF for short)
that subsume DIF and that we will investigate in the next chapter.

55

Partie , Chapter 2 – A hyperteams semantics

2.A Proofs of Section 2.1

Before each proof of a theorem, we display its dependency graph: the vertices are the
results used to prove the theorem (they can be lemmas, propositions, other theorems,
etc). There is an edge from Result 1 to Result 2 iff Result 1 is explicitly used in Result 2’s
proof.

Let W ⊆ Var and X ∈ HypTeams. For a team X ∈ X�W , we denote by X�W one
(arbitrarily chosen) of the teams Y ∈ X such that Y�W = X.

Lemma 2.1 (Dualisation I). For all hyperteams X ∈ HypTeams and set of variables W,
it holds that X ≡W X. In addition, X ⊆ X, if X is proper.

Proof. First, observe that, by Proposition 2.1, X ≡ X holds for every non-proper hyper-
team X.

Next, we show that X ⊆ X, for a proper hyperteam X. Let X ∈ X. Observe that, since
X is proper, X′∩X 6= ∅ for all X′ ∈ X. For every χ ∈ X, fix a choice function Γχ ∈ Chc(X)
such that Γχ(X) = χ ∈ X. Now, consider Γ ∈ Chc(X) such that Γ(img(Γχ)) = χ for all
χ ∈ X, and Γ(X′) ∈ X ∩X′ for all the other teams X′ ∈ X \ {img(Γχ) | χ ∈ X}. Clearly,
X = img(Γ) ∈ X, hence X ⊆ X.

Since X ⊆ X implies X v X, it suffices to prove that X v X holds to obtain X ≡ X. To
this end, let X′ = img(Γ) ∈ X, for some Γ ∈ Chc(X). We show that there is X ∈ X such
that X ⊆ X′. Assume, towards a contradiction, that this is not the case, i.e., for all X ∈ X

there is χX ∈ X \ X
′. Then, define Γ ∈ Chc(X) as: Γ(X) = χX for all X ∈ X. Clearly,

Γ(img(Γ)) /∈ X′, thus raising a contradiction. Now, the thesis follows from the observation
that X ≡ X is equivalent to X ≡Var X, which implies X ≡W X, due to W ⊆ Var.

Lemma 2.2 (Dualisation II). The following equivalences hold true, for all hyperteams
X ∈ HypTeams and properties Ψ ⊆ Asg.

1. Statements 1a and 1b are equivalent:

(a) there exists a team X ∈ X (resp., X ∈ X) such that X ⊆ Ψ;

(b) for all teams X′ ∈ X (resp., X′ ∈ X), it holds that X′ ∩Ψ 6= ∅.

2. Statements 2a and 2b are equivalent:

(a) there exists a team X ∈ X such that X ∩Ψ 6= ∅;

(b) there exists a team X′ ∈ X such that X′ ∩Ψ 6= ∅.

3. Statements 3a and 3b are equivalent:

56

2.B. Proofs of Section 2.2

(a) for all teams X ∈ X, it holds that X ⊆ Ψ;

(b) for all teams X′ ∈ X, it holds that X′ ⊆ Ψ.

Proof. We consider the three equivalences separately.

1. First, we show that there exists a team X ∈ X such that X ⊆ Ψ if and only if for
all teams X′ ∈ X, it holds that X′ ∩Ψ 6= ∅.
(only-if) Let X′ be a generic element of X. Thus, X′ = img(Γ) for some Γ ∈

Chc(X). Thus, Γ(X) ∈ X ∩X′. The thesis follows from X ⊆ Ψ.
(if) By Proposition 2.1, if X = ∅, then ∅ ∈ X, and the thesis immediately follows

since ∅ ⊆ Ψ. If, instead X 6= ∅, then assume, towards a contradiction, that for
all X ∈ X, there is χX ∈ X \ Ψ. Define Γ ∈ Chc(X) as: Γ(X) = χX , for all
X ∈ X. Since img(Γ) ∈ X and img(Γ) ∩Ψ = ∅, we get a contradiction.

The rest of the claim, i.e., there exists a team X′ ∈ X such that X′ ⊆ Ψ if and
only if for all teams X ∈ X, it holds that X ∩ Ψ 6= ∅, follows from above and the
fact that X ≡ X (Lemma 2.1).

2. (only-if) Consider Γ ∈ Chc(X) such that Γ(X) ∈ X ∩ Ψ. The thesis follows from
Γ(X) ∈ img(Γ) ∈ X.

(if) Let X′ = img(Γ) ∈ X, for some Γ ∈ Chc(X), be such that X′ ∩Ψ 6= ∅ and let
χ ∈ X′ ∩Ψ. Thus, there is X ∈ X such that Γ(X) = χ ∈ X, which means that
X ∩Ψ 6= ∅, hence the thesis.

3. The claim follows by instantiating Ψ with Asg \ Ψ in the previous claim, and
observing that 3a and 3b correspond to the negations of 2a and 2b, respectively.

2.B Proofs of Section 2.2

Lemma 2.3 (Empty & Null Hyperteams). The following hold true for every FO formula
ϕ and hyperteam X ∈ HypTeams⊇(free(ϕ)):

1. (a) M, ∅ 6|=∃∀ ϕ;

(b) M,X |=∃∀ ϕ, where ∅ ∈ X;

2. (a) M, ∅ |=∀∃ ϕ;

(b) M,X 6|=∀∃ ϕ, where ∅ ∈ X.

Proof. The claim follows from the more general Lemma 2.8, reported in Section 2.D, by
instantiating F with the empty function ∅.

57

Partie , Chapter 2 – A hyperteams semantics

Theorem 2.1Theorem 2.8

Figure 2.2 – Dependency graph of Theorem 2.1.

Theorem 2.1 (Hyperteam Refinement). Let ϕ be an FO formula and X,X′ ∈
HypTeams⊇(free(ϕ)) two hyperteams with X vfree(ϕ) X

′. Then:

1. ifM,X |=∃∀ ϕ thenM,X′ |=∃∀ ϕ;

2. ifM,X′ |=∀∃ ϕ thenM,X |=∀∃ ϕ.

Proof. The claim follows from the more general Theorem 2.8, reported in Section 2.D, by
instantiating both F and ι with the empty function ∅.

Theorem 2.2Theorem 2.9

Figure 2.3 – Dependency graph of Theorem 2.2.

Theorem 2.2 (Double Dualisation). For every FO formula ϕ, alternation flag α and
hyperteam X ∈ HypTeams⊇(free(ϕ)), it holds that M,X |=α ϕ iff M,X |=α ϕ iff
M,X |=α ϕ.

Proof. The claim follows from the more general Theorem 2.9, reported in Section 2.D, by
instantiating F with the empty function ∅.

Theorem 2.3Lemma 2.3Lemma 2.8Proposition 2.1

Figure 2.4 – Dependency graph of Theorem 2.3.

Theorem 2.3 (Boolean Laws). Let ϕ1, ϕ2 and ϕ be FO formulas. Then:

1. (a) ¬⊥ ≡ >;

(b) ¬> ≡ ⊥;

(c) ϕ ≡ ¬¬ϕ;

2. (a) ϕ ∧ ⊥ ≡ ⊥ ∧ ϕ ≡ ⊥;

58

2.B. Proofs of Section 2.2

(b) ϕ ∧ > ≡ > ∧ ϕ ≡ ϕ;

3. (a) ϕ ∨ > ≡ > ∨ ϕ ≡ >;

(b) ϕ ∨ ⊥ ≡ ⊥ ∨ ϕ ≡ ϕ;

4. (a) ϕ1 ∧ ϕ2 ≡ ϕ2 ∧ ϕ1;

(b) ϕ1 ∨ ϕ2 ≡ ϕ2 ∨ ϕ1;

5. (a) ϕ1 ∧ ϕ2 ⇒ ϕ1;

(b) ϕ1 ∧ (ϕ ∧ ϕ2) ≡ (ϕ1 ∧ ϕ) ∧ ϕ2;

6. (a) ϕ1 ⇒ ϕ1 ∨ ϕ2;

(b) ϕ1 ∨ (ϕ ∨ ϕ2) ≡ (ϕ1 ∨ ϕ) ∨ ϕ2;

7. (a) ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2);

(b) ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2);

8. (a) ∃xϕ ≡ ¬(∀x¬ϕ);

(b) ∀xϕ ≡ ¬(∃x¬ϕ).

Proof. Proving that an equivalence (resp., implication) ϕ1 ≡ ϕ2 (resp., ϕ1 ⇒ ϕ2) holds
true amounts to showing that both ϕ1 ≡∃∀ ϕ2 and ϕ1 ≡∀∃ ϕ2 (resp., ϕ1 ⇒∃∀ ϕ2 and
ϕ1 ⇒∀∃ ϕ2) hold true. However, as a consequence of Theorem 2.2, we have that ϕ1 ≡α ϕ2

iff ϕ1 ≡α ϕ2 (resp., ϕ1 ⇒α ϕ2 iff ϕ1 ⇒α ϕ2) for all α ∈ {∃∀, ∀∃}. Therefore, for every claim
in the statement of the theorem, it is enough to focus on one of the two alternation flags
∃∀ and ∀∃ only. We could avoid the use of Theorem 2.2 by proving each claim for both
alternation flag. However, this would not be interesting as for all claims, the arguments for
both flags are the same. 1 In the following, when proving an equivalence ϕ1 ≡ ϕ2 (resp.,
implication ϕ1 ⇒ ϕ2), we assume X ∈ HypTeams⊇(free(ϕ1) ∪ free(ϕ2)).

1. (a) M,X |=∃∀ ¬⊥ sem.⇔ M,X 6|=∀∃ ⊥ sem.⇔ M,X 6= ∅ sem.⇔ M,X |=∃∀ >.

(b) M,X |=∀∃ ¬> sem.⇔ M,X 6|=∃∀ > sem.⇔ M,X = ∅ sem.⇔ M,X |=∀∃ ⊥.

(c) M,X |=α ¬¬ϕ sem.⇔ M,X 6|=α ¬ϕ sem.⇔ M,X |=α ϕ.

2. (a) First, we prove that ϕ ∧ ⊥ ≡ ⊥ holds. To this end, we show that ifM,X |=∃∀

ϕ∧⊥, thenM,X |=∃∀ ⊥, and vice versa. By semantics,M,X |=∃∀ ϕ∧⊥ implies
that for all (X1,X2) ∈ Part(X), it holds thatM,X1 |=∃∀ ϕ orM,X2 |=∃∀ ⊥. In
particular, since (∅,X) ∈ Part(X) and, by Item 1a of Lemma 2.3,M, ∅ 6|=∃∀ ϕ,

1. Nonetheless, this is why Theorem 2.2 does not occur in the dependency graph of Theorem 2.3.

59

Partie , Chapter 2 – A hyperteams semantics

we have thatM,X |=∃∀ ⊥. Conversely,M,X |=∃∀ ⊥ means that ∅ ∈ X. Thus,
for every (X1,X2) ∈ Part(X), it holds that ∅ ∈ X1 or ∅ ∈ X2. Thanks to Item 1b
of Lemma 2.3, we haveM,X1 |=∃∀ ϕ orM,X2 |=∃∀ ⊥, which, by semantics of
∧, impliesM,X |=∃∀ ϕ ∧ ⊥. To conclude, observe that ϕ ∧ ⊥ ≡ ⊥ ∧ ϕ holds,
due to commutativity of ∧, formally proved below (Item 4a).

(b) First, we prove that ϕ ∧ > ≡ ϕ holds. To this end, we show that ifM,X |=∃∀

ϕ∧>, thenM,X |=∃∀ ϕ, and vice versa. By semantics,M,X |=∃∀ ϕ∧> implies
that for all (X1,X2) ∈ Part(X), it holds thatM,X1 |=∃∀ ϕ orM,X2 |=∃∀ >. In
particular, since (X, ∅) ∈ Part(X) and, by Item 1a of Lemma 2.3,M, ∅ 6|=∃∀ >,
we have thatM,X |=∃∀ ϕ. Conversely, assumeM,X |=∃∀ ϕ and let (X1,X2) ∈
Part(X). If X1 = X, then M,X1 |=∃∀ ϕ; if X1 6= X, then X2 6= ∅, and
thus, by semantics of >, it holds that M,X2 |=∃∀ >. Therefore, for every
(X1,X2) ∈ Part(X), it holds that M,X1 |=∃∀ ϕ or M,X2 |=∃∀ >, which, by
semantics of ∧, impliesM,X |=∃∀ ϕ∧>. To conclude, observe that ϕ∧> ≡ >∧ϕ
holds, due to commutativity of ∧, formally proved below (Item 4a).

3. (a) First, we prove that ϕ ∨ > ≡ > holds. To this end, we show that ifM,X |=∀∃

ϕ∨⊥, thenM,X |=∀∃ >, and vice versa. By semantics,M,X |=∀∃ ϕ∨> implies
that there is (X1,X2) ∈ Part(X) such that M,X1 |=∀∃ ϕ and M,X2 |=∀∃ >.
By Item 2b of Lemma 2.3, it must be ∅ /∈ Xi, for each i ∈ {1, 2}, and thus
∅ /∈ X, which, by semantics of >, implies M,X |=∀∃ >. Conversely, assume
M,X |=∀∃ >. The claim follows from the fact that (∅,X) ∈ Part(X) is such
thatM, ∅ |=∀∃ ϕ (by Item 2a of Lemma 2.3) andM,X |=∀∃ > (by assumption),
which implies thatM,X |=∀∃ ϕ ∨>. To conclude, observe that ϕ ∨> ≡ >∨ϕ
holds, due to commutativity of ∨, formally proved below (Item 4b).

(b) First, we prove that ϕ ∨ ⊥ ≡ ϕ holds. To this end, we show that ifM,X |=∀∃

ϕ∨⊥, thenM,X |=∀∃ ϕ, and vice versa. By semantics,M,X |=∀∃ ϕ∨⊥ implies
that there is (X1,X2) ∈ Part(X) such that M,X1 |=∀∃ ϕ and M,X2 |=∀∃ ⊥.
From the latter, it follows X2 = ∅, meaning that X1 = X. Therefore, we have
M,X |=∀∃ ϕ. Conversely, assume M,X |=∀∃ ϕ. The claim follows from the
fact that (X, ∅) ∈ Part(X) is such that M,X |=∀∃ ϕ (by assumption) and
M, ∅ |=∀∃ ⊥ (by semantics of ⊥), which implies that M,X |=∀∃ ϕ ∨ ⊥. To
conclude, observe that ϕ ∨ ⊥ ≡ ⊥ ∨ ϕ holds, due to commutativity of ∨,
formally proved below (Item 4b).

4. Both Items 4a and 4b follow from the observation that (X1,X2) ∈ Part(X) iff

60

2.B. Proofs of Section 2.2

(X2,X1) ∈ Part(X).

5. (a) IfM,X |=∃∀ ϕ1∧ϕ2, then for all (X1,X2) ∈ Part(X), it holds thatM,X1 |=∃∀

ϕ1 or M,X2 |=∃∀ ϕ2. In particular, since (X, ∅) ∈ Part(X), we have that
M,X |=∃∀ ϕ1.

(b) The claim follows from the observation that partitioning is associative.

6. (a) AssumeM,X |=∀∃ ϕ1. The claim follows from the fact that (X, ∅) ∈ Part(X)
is such thatM,X |=∀∃ ϕ1 andM, ∅ |=∀∃ ϕ2 (by Item 2a of Lemma 2.3), which
implies thatM,X |=∀∃ ϕ1 ∨ ϕ2.

(b) The claim follows from the observation that partitioning is associative.

7. (a) M,X |=∃∀ ¬(¬ϕ1 ∨ ¬ϕ2) sem.⇔ M,X 6|=∀∃ ¬ϕ1 ∨ ¬ϕ2 ⇔ it does not hold
that M,X |=∀∃ ¬ϕ1 ∨ ¬ϕ2

sem.⇔ there is no (X1,X2) ∈ Part(X) such that
M,X1 |=∀∃ ¬ϕ1 and M,X2 |=∀∃ ¬ϕ2 ⇔ for all (X1,X2) ∈ Part(X) it holds
that M,X1 6|=∀∃ ¬ϕ1 or M,X2 6|=∀∃ ¬ϕ2

sem.⇔ for all (X1,X2) ∈ Part(X) it
holds thatM,X1 |=∃∀ ϕ1 orM,X2 |=∃∀ ϕ2

sem.⇔ M,X |=∃∀ ϕ1 ∧ ϕ2.

(b) M,X |=∀∃ ¬(¬ϕ1 ∧ ¬ϕ2) sem.⇔ M,X 6|=∃∀ ¬ϕ1 ∧ ¬ϕ2 ⇔ it does not hold
that M,X |=∃∀ ¬ϕ1 ∧ ¬ϕ2

sem.⇔ there is (X1,X2) ∈ Part(X) such that
M,X1 6|=∃∀ ¬ϕ1 and M,X2 6|=∃∀ ¬ϕ2

sem.⇔ there is (X1,X2) ∈ Part(X) such
thatM,X1 |=∀∃ ϕ1 andM,X2 |=∀∃ ϕ2

sem.⇔ M,X |=∀∃ ϕ1 ∨ ϕ2.

8. (a) M,X |=∃∀ ¬(∀x¬ϕ) sem.⇔ M,X 6|=∀∃ ∀x¬ϕ sem.⇔ M,ext(X, x) 6|=∀∃ ¬ϕ sem.⇔
M,ext(X, x) |=∃∀ ϕ sem.⇔ M,X |=∃∀ ∃xϕ.

(b) M,X |=∀∃ ¬(∃x¬ϕ) sem.⇔ M,X 6|=∃∀ ∃x¬ϕ sem.⇔ M,ext(X, x) 6|=∃∀ ¬ϕ sem.⇔
M,ext(X, x) |=∀∃ ϕ sem.⇔ M,X |=∀∃ ∀xϕ.

Theorem 3.4Theorem 2.10

Figure 2.5 – Dependency graph of Theorem 3.4.

Theorem 3.4 (Prefix Extension). Let ℘φ be an FO formula, where ℘ ∈ Q is a quantifier
prefix and φ is an arbitrary FO formula. Then, M,X |=α ℘φ iff M,extα(X, ℘) |=α φ,
for all hyperteams X ∈ HypTeams⊇(free(℘φ)).

Proof. The claim follows from the more general Theorem 2.10, reported in Section 2.D,
by instantiating F with the empty function ∅.

61

Partie , Chapter 2 – A hyperteams semantics

2.C Proofs of Section 2.4

Lemma 2.4 (FO Dualisation). The following equivalences hold, for all FO formulas ϕ
and hyperteams X ∈ HypTeams⊇(free(ϕ)).

1. Statements 1a and 1b are equivalent:

(a) there exists a team X ∈ X such thatM, χ |=FO ϕ, for all assignments χ ∈ X;

(b) for all teams X ∈ X, there exists an assignment χ ∈ X such thatM, χ |=FO ϕ.

2. Statements 2a and 2b are equivalent:

(a) for all teams X ∈ X, there exists an assignment χ ∈ X such thatM, χ |=FO ϕ;

(b) there exists a team X ∈ X such thatM, χ |=FO ϕ, for all assignments χ ∈ X.

Proof. The first equivalence follows from Lemma 2.2, Item 1, by letting Ψ = {χ ∈ Asg(V) |
M, χ |=FO ϕ and free(ϕ) ⊆ V}. The second equivalence follows from the first one and
from X ≡ X (Lemma 2.1).

Lemma 2.5 (FO Quantifiers). The following equivalences hold, for all FO formulas ϕ,
variables x ∈ Var, and hyperteams X ∈ HypTeams⊇(free(ϕ) \ {x}).

1. Statements 1a and 1b are equivalent:

(a) there exists a team X ∈ X such thatM, χ |=FO ∃x. ϕ, for all χ ∈ X;

(b) there exists a team X ∈ ext(X, x) such thatM, χ |=FO ϕ, for all χ ∈ X.

2. Statements 2a and 2b are equivalent:

(a) for all teams X ∈ X, there exists χ ∈ X such thatM, χ |=FO ∀x. ϕ;

(b) for all teams X ∈ ext(X, x), there exists χ ∈ X such thatM, χ |=FO ϕ.

Proof. (1a⇒ 1b) Let X ∈ X be such thatM, χ |=FO ∃xϕ holds for every χ ∈ X. By
the standard FO semantics, for every χ ∈ X, there is an element vχ ∈ D such that
M, χ[x 7→ vχ] |=FO ϕ. Let F ∈ Rsp be such that F (χ) = vχ for every χ ∈ X and
let XF = {χ[x 7→ F (χ)] : χ ∈ X}. Since XF ∈ ext(X, x) andM, χ |=FO ϕ holds
for every χ ∈ XF , the thesis holds.

(1b⇒ 1a) Let XF = {χ[x 7→ F (χ)] : χ ∈ X} ∈ ext(X, x), for some X ∈ X and
F ∈ Rsp, be such that M, χ |=FO ϕ holds for every χ ∈ XF . Clearly, by the
standard FO semantics, this implies thatM, χ |=FO ∃xϕ holds for every χ ∈ X,
hence the thesis.

62

2.C. Proofs of Section 2.4

(2a⇔ 2b) By statement 1 of this lemma, we have that 1a is false if and only if 1b is
false (not(1a) ⇔ not(1b), for short). By instantiating, in this last equivalence, ϕ
with ¬ϕ, we have 1a′ ⇔ 1b′, where 1a′ and 1b′ are abbreviations for, respectively:
— for all teams X ∈ X, there is χ ∈ X such thatM, χ 6|=FO ∃x¬ϕ;
— for all teams X ∈ ext(X, x), there is χ ∈ X such thatM, χ 6|=FO ¬ϕ.
By applying natural semantics for negation and the duality of ∃ and ∀, it is straight-
forward to see that 1a′ and 1b′ correspond to 2a and 2b, respectively, hence the
thesis.

Lemma 2.6 (FO Boolean Connectives). The following equivalences hold, for all FO
formulas ϕ1 and ϕ2 and hyperteams X ∈ HypTeams⊇(free(ϕ1) ∪ free(ϕ2)).

1. Statements 1a and 1b are equivalent:

(a) there exists a team X ∈ X such thatM, χ |=FO ϕ1 ∧ ϕ2, for all χ ∈ X;

(b) for each bipartition (X1,X2) ∈ Part(X), there exist an index i ∈ {1, 2} and a
team X ∈ Xi such thatM, χ |=FO ϕi, for all χ ∈ X.

2. Statements 2a and 2b are equivalent:

(a) for all teams X ∈ X, there exists χ ∈ X such thatM, χ |=FO ϕ1 ∨ ϕ2;

(b) there exists a bipartition (X1,X2) ∈ Part(X) such that, for all indexes i ∈
{1, 2} and teams X ∈ Xi, it holds thatM, χ |=FO ϕi, for some χ ∈ X.

Proof. (1a⇒ 1b) Let X ∈ X be such thatM, χ |=FO ϕ1 ∧ ϕ2 holds for every χ ∈ X
and consider an arbitrary pair (X1,X2) ∈ Part(X). Since (X1,X2) is a partition of
X, either X ∈ X1 or X ∈ X2: in the former case, let i = 1; in the latter, let i = 2.
Since X ∈ Xi andM, χ |=FO ϕi holds for every χ ∈ X, the thesis holds.

(1b⇒ 1a) Consider the hyperteam X1
′ = {X ∈ X : ∀χ ∈ X .M, χ |=FO ϕ1} and the

pair (X1
def= X \X1

′,X2
def= X1

′) ∈ Part(X). Observe that, by definition of X1, there
is no X ∈ X1 such that M, χ |=FO ϕ1 holds for every χ ∈ X. Thus, by 1b, there
must exist X ∈ X2 such thatM, χ |=FO ϕ2 holds for every χ ∈ X. By definition
of X2, it also holds thatM, χ |=FO ϕ1 for every χ ∈ X, hence the thesis.

(2a⇔ 2a) By statement 1 of this lemma, we have that 1a is false if and only if 1b is
false (not(1a) ⇔ not(1b), for short). By instantiating, in this last equivalence, ϕ1

with ¬ϕ1 and ϕ2 with ¬ϕ2, we have 1a′ ⇔ 1b′, where 1a′ and 1b′ are abbreviations
for, respectively:
— for all teams X ∈ X, there is χ ∈ X such thatM, χ 6|=FO ¬ϕ1 ∧ ¬ϕ2;

63

Partie , Chapter 2 – A hyperteams semantics

— there exists a pair of hyperteams (X1,X2) ∈ Part(X) such that, for all indexes
i ∈ {1, 2} and teams X ∈ Xi, there exists an assignment χ ∈ X for which it
holds thatM, χ 6|=FO ¬ϕi.

By applying natural semantics of negation and De Morgan’s laws, it is straight-
forward to see that 1a′ and 1b′ correspond to 2a and 2a, respectively, hence the
thesis.

Theorem 2.5

Lemma 2.1
Lemma 2.2 Lemma 2.4

Lemma 2.5
Lemma 2.6

. . .

Figure 2.6 – Dependency graph of Theorem 2.5.

Theorem 2.5 (FO Adequacy). For all FO formulas ϕ and hyperteams X ∈
HypTeams⊇(free(ϕ)), it holds that:

1. M,X |=∃∀ ϕ iff there exists a team X ∈ X such that, for all assignments χ ∈ X,
it holds thatM, χ |=FO ϕ;

2. M,X |=∀∃ ϕ iff, for all teams X ∈ X, there exists an assignment χ ∈ X such that
M, χ |=FO ϕ.

Proof. Both Items 1 and 2 are proved together, by induction on the structure of the
formula.

— If ϕ is an atomic formula, i.e., it is ⊥ or >, or it has the form P(~x), then the claims
immediately follow from the semantics (Definition 2.1, Items 1 to 3)

— If ϕ = ¬φ, then we have, by semantics, M,X |=α ϕ if and only if M,X 6|=α φ.
If α = ∃∀, then, by inductive hypothesis, it is not the case that for every X ∈ X

there is χ ∈ X such thatM, χ |=FO φ, which amounts to say that there is X ∈ X

such that for every χ ∈ X it holdsM, χ 6|=FO φ, from which the thesis follows. If,
instead, α = ∀∃, then, by inductive hypothesis, there is no X ∈ X such that for
every χ ∈ X it holds M, χ |=FO φ, which amounts to say that for every X ∈ X

there is χ ∈ X such thatM, χ 6|=FO φ, from which the thesis follows.
— If ϕ = ϕ1 ∧ ϕ2 and α = ∃∀, then we have, by semantics,M,X |=α ϕ if and only

if for every (X1,X2) ∈ Part(X) it holds thatM,X1 |=α ϕ1 orM,X2 |=α ϕ2. By

64

2.C. Proofs of Section 2.4

inductive hypothesis, this amounts to say that for every (X1,X2) ∈ Part(X) there
is i ∈ {1, 2} and X ∈ Xi such that for every χ ∈ X it holds M, χ |=FO ϕi. The
thesis follows from Lemma 2.6, Item 1.
If ϕ = ϕ1 ∧ ϕ2 and α = ∀∃, then we have, by semantics,M,X |=α ϕ if and only
if M,X |=α ϕ. By proceeding as before, i.e., by applying semantics, inductive
hypothesis, and Lemma 2.6, Item 1, we have that there is X′ ∈ X such that for
every χ′ ∈ X′ it holdsM, χ′ |=FO ϕ. The thesis follows from Lemma 2.4, Item 2.

— If ϕ = ϕ1 ∨ ϕ2 and α = ∀∃, then we have, by semantics, M,X |=α ϕ if and
only if there is (X1,X2) ∈ Part(X) such that M,X1 |=α ϕ1 and M,X2 |=α ϕ2.
By inductive hypothesis, this amounts to say that there is (X1,X2) ∈ Part(X)
such that for every i ∈ {1, 2} and X ∈ Xi there is χ ∈ X for which it holds
M, χ |=FO ϕi. The thesis follows from Lemma 2.6, Item 2.
If ϕ = ϕ1 ∨ ϕ2 and α = ∃∀, then we have, by semantics,M,X |=α ϕ if and only
if M,X |=α ϕ. By proceeding as before, i.e., by applying semantics, inductive
hypothesis, and Lemma 2.6, Item 2, we have that for every X′ ∈ X there is χ′ ∈ X′

such thatM, χ′ |=FO ϕ. The thesis follows from Lemma 2.4, Item 1.
— If ϕ = ∃xφ and α = ∃∀, then we have, by semantics, M,X |=α ϕ if and only if
M,ext(X, x) |=α φ. By inductive hypothesis, this amounts to say that there is
X ∈ extfree(φ)\{x}(X, x) such that for every χ ∈ X it holds M, χ |=FO φ. The
thesis follows from Lemma 2.5, Item 1.
If ϕ = ∃xφ and α = ∀∃, then we have, by semantics, M,X |=α ϕ if and only
if M,X |=α ϕ. By proceeding as before, i.e., by applying semantics, inductive
hypothesis, and Lemma 2.5, Item 1, we have that there is X′ ∈ X such that for
every χ′ ∈ X′ it holdsM, χ′ |=FO ϕ. The thesis follows from Lemma 2.4, Item 2.

— If ϕ = ∀xφ and α = ∀∃, then we have, by semantics, M,X |=α ϕ if and only if
M,ext(X, x) |=α φ. By inductive hypothesis, this amounts to say that for every
X ∈ ext(X, x) there is χ ∈ X such that M, χ |=FO φ. The thesis follows from
Lemma 2.5, Item 2.
If ϕ = ∀xφ and α = ∃∀, then we have, by semantics, M,X |=α ϕ if and only
if M,X |=α ϕ. By proceeding as before, i.e., by applying semantics, inductive
hypothesis, and Lemma 2.5, Item 2, we have that for every X′ ∈ X there is χ′ ∈ X′

such thatM, χ′ |=FO ϕ. The thesis follows from Lemma 2.4, Item 1.

65

Partie , Chapter 2 – A hyperteams semantics

2.D Proofs of Section 2.5

Lemma 2.8 (Generalised Empty & Null Hyperteams). The following hold true for
every Meta formula ϕ, function assignment F ∈ FunAsg, and hyperteam X ∈
HypTeams⊇(free(ϕ) \ dom(F)).

1. (a) M,F , ∅ 6|=∃∀ ϕ;

(b) M,F ,X |=∃∀ ϕ, where ∅ ∈ X;

2. (a) M,F , ∅ |=∀∃ ϕ;

(b) M,F ,X 6|=∀∃ ϕ, where ∅ ∈ X.

Proof. We proceed by structural induction on the size of ϕ. For the four inductive cases
concerning the two binary Boolean connectives and the two standard quantifiers, it is
useful to recall that, thanks to Proposition 2.1, ∅ = {∅} and X = ∅ iff ∅ ∈ X.

— [Base case ϕ = ⊥] Both subitems of Item 1 directly follow from the meta-variant –
M,F ,X |=∃∀ ⊥ iff ∅ ∈ X – of Item 1a of Definition 2.1. Similarly, Item 2 follows
from the variant –M,F ,X |=∀∃ ⊥ iff X = ∅ – of Item 1b of the same definition.

— [Base case ϕ = >] Both subitems of Item 2 directly follow from the meta-variant –
M,F ,X |=∀∃ > iff ∅ 6∈ X – of Item 2a of Definition 2.1. Similarly, Item 1 follows
from the variant –M,F ,X |=∃∀ > iff X 6= ∅ – of Item 2b of the same definition.

— [Base case ϕ = P(~x)] By observing that ext(∅,F) = ∅ and ∅ ∈ X iff ∅ ∈
ext(X,F), it is easy to see that Items 1 and 2 immediately follows from Items 3a
and 3b of Definition 2.3, respectively.

— [Inductive case ϕ = ¬φ] Item 1a (resp., Item 1b, Item 2a, and Item 2b) follows
from the meta-variant – M,F ,X |=α ¬φ iff M,F ,X 6|=α φ – of Item 4 of Def-
inition 2.1 and Item 2a (resp., Item 2b, Item 1a, and Item 1b) of the inductive
hypothesis applied to φ.

— [Inductive case ϕ = φ1∧φ2] Items 2a and 2b directly follow from Items 1a and 1b,
respectively, via the meta-variant –M,F ,X |=∀∃ φ1∧φ2 iffM,F ,X |=∃∀ φ1∧φ2 –
of Item 5b of Definition 2.1. We can therefore focus on the latter two.
— [Item 1a] By the meta-variant of Item 5a of Definition 2.1, it holds that
M,F , ∅ 6|=∃∀ ϕ iff there exists a partitioning (X1,X2) ∈ Part(∅) such that
M,F ,X1 6|=∃∀ φ1 and M,F ,X2 6|=∃∀ φ2. Now, from the inductive hypothesis
applied to φ1 and φ2, it follows thatM,F , ∅ 6|=∃∀ φ1 andM,F , ∅ 6|=∃∀ φ2. More-
over, (∅, ∅) ∈ Part(∅). Thus, the thesis clearly holds.

66

2.D. Proofs of Section 2.5

— [Item 1b] By the meta-variant of Item 5a of Definition 2.1, it holds that
M,F ,X |=∃∀ ϕ iff, for all partitioning (X1,X2) ∈ Part(X), it holds that
M,F ,X1 |=∃∀ φ1 or M,F ,X2 |=∃∀ φ2, where ∅ ∈ X. Now, from the induc-
tive hypothesis applied to φ1 and φ2, it follows that M,F ,X′ |=∃∀ φ1 and
M,F ,X′ |=∃∀ φ2, for every hyperteam X′ such that ∅ ∈ X′. Moreover, for every
partitioning (X1,X2) ∈ Part(X), one can observe that ∅ ∈ X1 or ∅ ∈ X2. Thus,
the thesis clearly holds.

— [Inductive case ϕ = φ1∨φ2] Items 1a and 1b directly follow from Items 2a and 2b,
respectively, via the meta-variant –M,F ,X |=∃∀ φ1∨φ2 iffM,F ,X |=∀∃ φ1∨φ2 –
of Item 6a of Definition 2.1. We can therefore focus on the latter two.
— [Item 2a] By the meta-variant of Item 6b of Definition 2.1, it holds that
M,F , ∅ |=∀∃ ϕ iff there exists a partitioning (X1,X2) ∈ Part(∅) such that
M,F ,X1 |=∀∃ φ1 and M,F ,X2 |=∀∃ φ2. Now, by the inductive hypothesis
applied to φ1 and φ2, it follows that M,F , ∅ |=∀∃ φ1 and M,F , ∅ |=∀∃ φ2.
Moreover, (∅, ∅) ∈ Part(∅). Thus, the thesis clearly holds.

— [Item 2b] By the meta-variant of Item 6b of Definition 2.1, it holds that
M,F ,X 6|=∀∃ ϕ iff, for all partitioning (X1,X2) ∈ Part(X), it holds that
M,F ,X1 6|=∀∃ φ1 or M,F ,X2 6|=∀∃ φ2, where ∅ ∈ X. Now, by the induc-
tive hypothesis applied to φ1 and φ2, it follows that M,F ,X′ 6|=∀∃ φ1 and
M,F ,X′ 6|=∀∃ φ2, for every hyperteam X′ such that ∅ ∈ X′. Moreover, for every
partitioning (X1,X2) ∈ Part(X), one can observe that ∅ ∈ X1 or ∅ ∈ X2. Thus,
the thesis clearly holds.

— [Inductive case ϕ = ∃xφ] Items 2a and 2b directly follow from Items 1a and 1b,
respectively, via the meta-variant – M,F ,X |=∀∃ ∃xφ iff M,F ,X |=∃∀ ∃xφ – of
Item 7b of Definition 2.1. We can therefore focus on the latter two.
— [Item 1a] By the meta-variant of Item 7a of Definition 2.1, it holds that
M,F , ∅ 6|=∃∀ ϕ iff M,F ,ext(∅, x) 6|=∃∀ φ. Now, by the inductive hypothesis
on φ, it follows thatM,F , ∅ 6|=∃∀ φ. Moreover, ext(∅, x) = ∅. Thus, the thesis
clearly holds.

— [Item 1b] By the meta-variant of Item 7a of Definition 2.1, it holds that
M,F ,X |=∃∀ ϕ iffM,F ,ext(X, x) |=∃∀ φ, where ∅ ∈ X. Now, by the inductive
hypothesis on φ, it follows that M,F ,X′ |=∃∀ φ, for each hyperteam X′ with
∅ ∈ X′. Moreover, ∅ ∈ ext(X, x). Thus, the thesis clearly holds.

— [Inductive case ϕ = ∀xφ] Items 1a and 1b directly follow from Items 2a and 2b,

67

Partie , Chapter 2 – A hyperteams semantics

respectively, via the meta-variant – M,F ,X |=∃∀ ∀xφ iff M,F ,X |=∀∃ ∀xφ – of
Item 8a of Definition 2.1. We can therefore focus on the latter two.
— [Item 2a] By the meta-variant of Item 8b of Definition 2.1, it holds that
M,F , ∅ |=∀∃ ϕ iff M,F ,ext(∅, x) |=∀∃ φ. Now, by the inductive hypothe-
sis on φ, it follows that M,F , ∅ |=∀∃ φ. Moreover, ext(∅, x) = ∅. Thus, the
thesis clearly holds.

— [Item 2b] By the meta-variant of Item 8b of Definition 2.1, it holds that
M,F ,X 6|=∀∃ ϕ iffM,F ,ext(X, x) 6|=∀∃ φ, where ∅ ∈ X. Now, by the induc-
tive hypothesis on φ, it follows that M,F ,X′ 6|=∀∃ φ, for each hyperteam X′

with ∅ ∈ X′. Moreover, ∅ ∈ ext(X, x). Thus, the thesis clearly holds.
— [Inductive case ϕ = Σ+Wxφ] Since the semantics of the existential meta quan-

tifier does not depend on the alternation flag α, we consider the two satisfaction
(resp., non-satisfaction) cases altogether.
— [Items 1a and 2b] By Item 9 of Definition 2.3, it holds that
M,F ,X 6|=α Σ+Wxφ iff, for all functions F ∈ Rsp+W , it holds that
M,F [x 7→ F],X 6|=α φ. Now, by the inductive hypothesis on φ, it follows that
M,F ′,X 6|=α φ, for every function assignment F ′, where either α = ∃∀ and
X = ∅ or α = ∀∃ and ∅ ∈ X. Thus, the thesis clearly holds.

— [Items 1b and 2a] By Item 9 of Definition 2.3, it holds that M,F ,X |=α

Σ+Wxφ iff there exists a function F ∈ Rsp+W such thatM,F [x 7→ F],X |=α φ.
Now, by the inductive hypothesis on φ, it follows thatM,F ′,X |=α φ, for every
function assignment F ′, where either α = ∀∃ and X = ∅ or α = ∃∀ and ∅ ∈ X.
Thus, the thesis clearly holds.

— [Inductive case ϕ = Π+Wxφ] Since the semantics of the universal meta quantifier
does not depend on the alternation flag α, we consider the two satisfaction (resp.,
non-satisfaction) cases altogether.
— [Items 1a and 2b] By Item 10 of Definition 2.3, it holds that
M,F ,X 6|=α Π+Wxφ iff there exists a function F ∈ Rsp+W such that
M,F [x 7→ F],X 6|=α φ. Now, by the inductive hypothesis on φ, it follows that
M,F ′,X 6|=α φ, for every function assignment F ′, where either α = ∃∀ and
X = ∅ or α = ∀∃ and ∅ ∈ X. Thus, the thesis clearly holds.

— [Items 1b and 2a] By Item 10 of Definition 2.3, it holds that M,F ,X |=α

Π+Wxφ iff, for all functions F ∈ Rsp+W , it holds thatM,F [x 7→ F],X |=α φ.
Now, by the inductive hypothesis on φ, it follows thatM,F ′,X |=α φ, for every

68

2.D. Proofs of Section 2.5

function assignment F ′, where either α = ∀∃ and X = ∅ or α = ∃∀ and ∅ ∈ X.
Thus, the thesis clearly holds.

The following result states monotonicity of the dualization, extension, and partition
operators w.r.t the preorder v.

Lemma 2.9 (Monotonicity I). Let X,X′ ∈ HypTeams be two hyperteams with X v X′.
Then, the following hold true:

1. X′ v X;

2. (a) X = ext(X, x)�var(X);

(b) ext(X, x) v ext(X′, x), with x ∈ Var;

3. for every (X1
′,X2

′) ∈ Part(X′), there is (X1,X2) ∈ Part(X) such that X1 v X1
′

and X2 v X2
′.

Proof. 1) By X v X′, there is a function f : X → X′ such that f(X) ⊆ X for all
X ∈ X. In order to prove the claim, consider a generic team X′ ∈ X′. We have to
show that there is X ∈ X such that X ⊆ X′. By the definition of X′, we have that
X′ = img(Γ′), for some Γ′ ∈ Chc(X′). We define Γ ∈ Chc(X) as: Γ(X) = Γ′(f(X))
for all X ∈ X. Clearly, img(Γ) ⊆ (img(Γ′)) = X′. Since img(Γ) ∈ X, the thesis
holds.

2a) The claim follows from the fact that for every F ∈ Rsp, χ ∈ Asg, and x ∈ Var,
it holds that χ = χ[x 7→ F (χ)]�var(χ), which implies X = ext(X,F , x)�var(X) for
every X ∈ X and F ∈ Rsp, and the claim follows.

2b) By X v X′, there is a function f : X → X′ such that f(X) ⊆ X for all X ∈ X.
In order to prove the claim, take a generic team X̂ ∈ ext(X, x). Thus, X̂ =
ext(X,F , x) = {χ[x 7→ F (χ)] | χ ∈ X}, for some X ∈ X and F ∈ Rsp. Let X′ =
f(X) ∈ X′. Clearly, X′ = f(X) ⊆ X. Moreover, ext(X′, F , x) ∈ ext(X′, x), since
F ∈ Rsp. And finally, it is immediate that ext(X′, F , x) ⊆ ext(X,F , x) = X̂.

3) By X v X′, there is a function f : X → X′ such that f(X) ⊆ X for all X ∈ X. Let
(X1

′,X2
′) ∈ Part(X′) and define Xi = {X ∈ X | f(X) ∈ Xi

′} for i ∈ {1, 2}. It is
immediate to see that Xi v Xi

′ (i ∈ {1, 2}).

Lemma 2.10 (Extension Monotonicity). For all function assignments F ∈ FunAsg, and
hyperteams X1,X2 ∈ HypTeams, where X1 v X2, it holds that ext(X1,F) v ext(X2,F).

69

Partie , Chapter 2 – A hyperteams semantics

Proof. Let X1 ∈ ext(X1,F). We show that there is X2 ∈ ext(X2,F) such that X2 ⊆ X1.
By X1 ∈ ext(X1,F), it holds that X1 = ext(X ′1,F) for some X ′1 ∈ X1. By X1 v X2,
there is X ′2 ∈ X2 such that X ′2 ⊆ X ′1. Thus, ext(X ′2,F) ∈ ext(X2,F). From X ′2 ⊆
X ′1, it follows that ext(X2

′,F) ⊆ ext(X1
′,F) = X1. Hence the thesis.

Theorem 2.8Lemma 2.9
Lemma 2.10

Figure 2.7 – Dependency graph of Theorem 2.8.

Theorem 2.8 (Generalised Hyperteam Refinement). The following hold true for every
Meta formula ϕ, function assignment F ∈ FunAsg, function ι : dom(ι) → 2Var, with
dom(F) ⊆ dom(ι), and hyperteams X,X′ ∈ HypTeams⊇(free(ϕ)\dom(F)), with F(x) ∈
Rsp+ι(x), for all x ∈ dom(F), and X v X′:

1. ifM,F ,X |=∃∀ ϕ thenM,F ,X′ |=∃∀ ϕ;

2. ifM,F ,X′ |=∀∃ ϕ thenM,F ,X |=∀∃ ϕ.

Proof. Due to X v X′, there is a function f : X → X′, such that f(X) ⊆ X for every X ∈
X. The claim is proved by induction on the structure of the formula and the alternation
flag α.

— If ϕ = ⊥, thenM,F ,X |=∃∀ ϕ implies ∅ ∈ X. By X v X′, we have ∅ ∈ X′. Thus,
M,F ,X′ |=∃∀ ϕ.
On the other hand, we also have thatM,F ,X′ |=∀∃ ϕ implies X′ = ∅. By X v X′,
we have X = ∅. Thus,M,F ,X |=∀∃ ϕ.

— If ϕ = >, thenM,F ,X |=∃∀ ϕ implies X 6= ∅. By X v X′, we have X′ 6= ∅. Thus,
M,F ,X′ |=∃∀ ϕ.
On the other hand, we also have thatM,F ,X′ |=∀∃ ϕ implies ∅ /∈ X′. By X v X′,
we have ∅ /∈ X. Thus,M,F ,X |=∀∃ ϕ.

— If ϕ = P(~x), thenM,F ,X |=∃∀ ϕ implies the existence of a team X ∈ ext(X,F)
such that, for all assignments χ ∈ X, it holds that χ(~x) ∈ PM . By X v X′ and
Lemma 2.10, for all x ∈ dom(F), we have that ext(X,F) v ext(X′,F), and thus
there is a team X′ ∈ ext(X′,F) such that X′ ⊆ X, which implies X′�~x ⊆ X�~x ,
since ~x ⊆ free(ϕ). The thesis follows from the fact that χ(~x) ∈ PM if and only if
χ�~x (~x) ∈ PM holds, for every χ ∈ Asg.

70

2.D. Proofs of Section 2.5

On the other hand, we also have that M,F ,X′ |=∀∃ ϕ implies that for all teams
X′ ∈ ext(X′,F), there exists an assignment χ′ ∈ X′ such that χ′(~x) ∈ PM . By
X v X′ and Lemma 2.10, we have that ext(X,F) v ext(X′,F), and thus for
every team X ∈ ext(X,F) there is a team X′ ∈ ext(X′,F) such that X′ ⊆ X�W .
The thesis follows from the same argument used above.

— If ϕ = ¬φ, thenM,F ,X |=∃∀ ϕ impliesM,F ,X 6|=∀∃ φ. By inductive hypothesis,
this impliesM,F ,X′ 6|=∀∃ φ, which amounts toM,F ,X′ |=∃∀ ϕ.
On the other hand, we also have that M,F ,X′ |=∀∃ ϕ implies M,F ,X′ 6|=∃∀ φ.
By inductive hypothesis,M,F ,X 6|=∃∀ φ, which amounts toM,F ,X |=∀∃ ϕ.

— Let ϕ = φ1∧φ2. We assumeM,F ,X |=∃∀ ϕ and we show thatM,F ,X1
′ |=∃∀ φ1 or

M,F ,X2
′ |=∃∀ φ2 holds for all (X1

′,X2
′) ∈ Part(X′). To this end, let (X1

′,X2
′) ∈

Part(X′). By Lemma 2.9, item 3, there is (X1,X2) ∈ Part(X) such that X1 v X1
′

and X2 v X2
′, and, by the semantics of ∧, we have that (X1,X2) ∈ Part(X) implies

that M,F ,X1 |=∃∀ φ1 or M,F ,X2 |=∃∀ φ2. Finally, by inductive hypothesis it
holds thatM,F ,X1

′ |=∃∀ φ1 orM,F ,X2
′ |=∃∀ φ2.

On the other hand, we also have thatM,F ,X′ |=∀∃ ϕ if and only ifM,F ,X′ |=∃∀

ϕ. By inductive hypothesis and Lemma 2.9, Item 1, this impliesM,F ,X |=∃∀ ϕ,
which amounts toM,F ,X |=∀∃ ϕ.

— Let ϕ = φ1 ∨ φ2. In this case, we first prove the second item of the claim. We
assumeM,F ,X′ |=∀∃ ϕ and we show that there is (X1,X2) ∈ Part(X) such that
M,F ,X1 |=∀∃ φ1 andM,F ,X2 |=∀∃ φ2. By the semantics of ∨, we have that there
is (X1

′,X2
′) ∈ Part(X′) such that M,F ,X1

′ |=∀∃ φ1 and M,F ,X2
′ |=∀∃ φ2. By

Lemma 2.9, item 3, there is (X1,X2) ∈ Part(X) such that X1 v X1
′ and X2 v X2

′.
Finally, by inductive hypothesis,M,F ,X1 |=∀∃ φ1 andM,F ,X2 |=∀∃ φ2.
On the other hand, we also have thatM,F ,X |=∃∀ ϕ if and only ifM,F ,X |=∀∃ ϕ.
By inductive hypothesis and Lemma 2.9, Item 1, this implies M,F ,X′ |=∀∃ ϕ,
which amounts toM,F ,X′ |=∃∀ ϕ.

— If ϕ = ∃xφ, thenM,F ,X |=∃∀ ϕ impliesM,F ,ext(X, x) |=∃∀ φ. By Lemma 2.9,
item 2b, we have ext(X, x) v ext(X′, x). From the inductive hypothesis, it follows
M,F ,ext(X′, x) |=∃∀ φ, which amounts toM,F ,X′ |=∃∀ ϕ.
On the other hand, we also have, by semantics, M,F ,X′ |=∀∃ ϕ if and only if
M,F ,X′ |=∃∀ ϕ. By inductive hypothesis and Lemma 2.9, Item 1, this implies
M,F ,X |=∃∀ ϕ, which amounts toM,F ,X |=∀∃ ϕ.

— If ϕ = ∀xφ, thenM,F ,X′ |=∀∃ ϕ impliesM,F ,ext(X′, x) |=∀∃ φ.

71

Partie , Chapter 2 – A hyperteams semantics

By Lemma 2.9, item 2b, we have ext(X, x) v ext(X′, x). From the inductive
hypothesis, it followsM,F ,ext(X, x) |=∀∃ φ, which amounts toM,F ,X |=∀∃ ϕ.
On the other hand, we also have, by semantics, M,F ,X |=∃∀ ϕ if and only if
M,F ,X |=∀∃ ϕ. By inductive hypothesis and Lemma 2.9, Item 1, this implies
M,F ,X′ |=∀∃ ϕ, which amounts toM,F ,X′ |=∃∀ ϕ.

— If ϕ = Σ+Wxφ, then M,F ,X |=∃∀ ϕ implies M,F [x 7→ F],X |=∃∀ φ, for some
function F ∈ Rsp+W . By inductive hypothesis, we haveM,F [x 7→ F],X′ |=∃∀ φ,
from whichM,F ,X′ |=∃∀ ϕ follows.
On the other hand, we also have that M,F ,X′ |=∀∃ ϕ implies M,F [x 7→
F],X′ |=∀∃ φ, for some function F ∈ Rsp+W . By inductive hypothesis, we have
M,F [x 7→ F],X |=∀∃ φ, from whichM,F ,X |=∀∃ ϕ follows.

— Finally, let ϕ = Π+Wxφ. Then, M,F ,X |=∃∀ ϕ implies M,F [x 7→ F],X |=∃∀ φ,
for all functions F ∈ Rsp+W . By inductive hypothesis, we have that M,F [x 7→
F],X′ |=∃∀ φ holds for all functions F ∈ Rsp+W , which amounts toM,F ,X′ |=∃∀ ϕ.
On the other hand, we also have that M,F ,X′ |=∀∃ ϕ which implies M,F [x 7→
F],X′ |=∀∃ φ, for all functions F ∈ Rsp+W . By inductive hypothesis, we have that
M,F [x 7→ F],X |=∀∃ φ holds for all functions F ∈ Rsp+W , which amounts to
M,F ,X |=∀∃ ϕ.

Theorem 2.9
Theorem 2.8

Proposition 2.1

Lemma 2.2
Lemma 2.1

. . .

Figure 2.8 – Dependency graph of Theorem 2.9.

Theorem 2.9 (Generalized Double Dualisation). For every FO formula ϕ, function
assignment F ∈ FunAsg, and hyperteam X ∈ HypTeams⊇(free(ϕ) \ dom(F)), it holds
that M,F ,X |=α ϕ iff M,F ,X |=α ϕ. Moreover, if F is acyclic, then it also holds that
M,F ,X |=α ϕ iffM,F ,X |=α ϕ.

Proof. The fact thatM,F ,X |=α ϕ iffM,F ,X |=α ϕ immediately follows from X ≡ X,
for every function ι ∈ Var ⇀ 2Var (Lemma 2.1), and Theorem 2.8.

72

2.D. Proofs of Section 2.5

We turn now to proving that M,F ,X |=α ϕ iff M,F ,X |=α ϕ. As a preliminary
result, notice that if F is acyclic, then for every X ⊆ Asg(U), for some U ⊆ Var, there
is a bijection τ between X and ext(X,F), with τ(χ)�U = χ. Consequently, it holds that
ext(X,F) = ext(X,F). The proof is done by case analysis of the syntax of the formula.

— If ϕ = ⊥, then we have:
— M,F ,X |=∃∀ ϕ sem.⇔ ∅ ∈ X

Prop. 2.1⇔ X = ∅ sem.⇔ M,F ,X |=∀∃ ϕ, and
— M,F ,X |=∀∃ ϕ sem.⇔ X = ∅ Prop. 2.1⇔ X ≡ ∅ Lemma 2.1⇔ X ≡ ∅ Prop. 2.1⇔ X =
∅ Prop. 2.1⇔ ∅ ∈ X

sem.⇔ M,F ,X |=∃∀ ϕ.
— If ϕ = >, then we have:

— M,F ,X |=∃∀ ϕ sem.⇔ X 6= ∅ Prop. 2.1⇔ X 6≡ ∅ Lemma 2.1⇔ X 6≡ ∅ Prop. 2.1⇔ X 6=
∅ Prop. 2.1⇔ ∅ 6∈ X

sem.⇔ M,F ,X |=∀∃ ϕ, and
— M,F ,X |=∀∃ ϕ sem.⇔ ∅ 6∈ X

Prop. 2.1⇔ X 6= ∅ sem.⇔ M,F ,X |=∃∀ ϕ.
— If ϕ = P(~x), then the claim follows from the semantics, Lemma 2.2, Item 1, and

the fact that ext(X,F) = ext(X,F).
— If ϕ = ¬ψ, then we have: M,F ,X |=α ϕ

sem.⇔ M,F ,X 6|=α ψ
ind.hp.⇔

M,F ,X 6|=α ψ
sem.⇔ M,F ,X |=α ϕ.

— If ϕ = ϕ1 ∧ ϕ2, then we have:
— M,F ,X |=∀∃ ϕ sem.⇔ M,F ,X |=∃∀ ϕ Thm. 2.9 (part 1)⇔ M,F ,X |=∃∀ ϕ, and
— M,F ,X |=∀∃ ϕ sem.⇔ M,F ,X |=∃∀ ϕ.

— If ϕ = ϕ1 ∨ ϕ2, then we have:
— M,F ,X |=∃∀ ϕ sem.⇔ M,F ,X |=∀∃ ϕ, and
— M,F ,X |=∃∀ ϕ sem.⇔ M,F ,X |=∀∃ ϕ Thm. 2.9 (part 1)⇔ M,F ,X |=∀∃ ϕ.

— If ϕ = ∃xφ, then we have:
— M,F ,X |=∀∃ ϕ sem.⇔ M,F ,X |=∃∀ ϕ Thm. 2.9 (part 1)⇔ M,F ,X |=∃∀ ϕ, and
— M,F ,X |=∀∃ ϕ sem.⇔ M,F ,X |=∃∀ ϕ.

— If ϕ = ∀xφ, then we have:
— M,F ,X |=∃∀ ϕ sem.⇔ M,F ,X |=∀∃ ϕ;
— M,F ,X |=∃∀ ϕ sem.⇔ M,F ,X |=∀∃ ϕ Thm. 2.9 (part 1)⇔ M,F ,X |=∀∃ ϕ.

Theorem 2.10Theorem 2.9. . .

Figure 2.9 – Dependency graph of Theorem 2.10.

73

Partie , Chapter 2 – A hyperteams semantics

Theorem 2.10 (Generalized Prefix Extension). Let ℘φ be an FO formula, where ℘ ∈
Q is a quantifier prefix and φ is an arbitrary FO formula. Then, M,F ,X |=α ℘φ iff
M,F ,extα(X, ℘) |=α φ, for all acyclic function assignments F ∈ FunAsg and hyperteams
X ∈ HypTeams⊇(free(℘φ) \ dom(F)).

Proof. We proceed by induction on the structure of the quantification prefix ℘ ∈ Q.
— [Base case ℘ = ε] Since extα(X, ℘) = X, there is really nothing to prove as the

statement is trivially true.
— [Inductive case ℘ = Qx℘′] We proceed by a case analysis on the coherence of

the quantifier Q with the alternation flag α.
— [Q is α-coherent] By the meta-variants of Items 7a and 8b of Defini-

tion 2.1, it holds that M,F ,X |=α ℘φ iff M,F ,ext(X, x) |=α ℘′φ iff
M,F ,extα(X, Qx) |=α ℘′φ. Now, by the inductive hypothesis, it follows
that M,F ,extα(X, Qx) |=α ℘′φ iff M,F ,extα(extα(X, Qx), ℘′) |=α φ iff
M,F ,extα(X, ℘) |=α φ, which concludes the proof of this case.

— [Q is α-coherent] By the meta-variants of Items 7b and 8a of Defini-
tion 2.1, it holds that M,F ,X |=α ℘φ iff M,F ,X |=α ℘φ. Now, by the
meta-variants of Items 7a and 8b of the same definition, M,F ,X |=α ℘φ

iff M,F ,ext(X, x) |=α ℘′φ. Thanks to Theorem 2.9, M,F ,ext(X, x) |=α

℘′φ iff M,F ,ext(X, x) |=α ℘′φ iff M,F ,extα(X, Qx) |=α ℘′φ. Sum-
ming up, M,F ,X |=α ℘φ iff M,F ,extα(X, Qx) |=α ℘′φ. At this point,
by the inductive hypothesis, it follows that M,F ,extα(X, Qx) |=α ℘′φ iff
M,F ,extα(extα(X, Qx), ℘′) |=α φ iff M,F ,extα(X, ℘) |=α φ, which con-
cludes the proof of this case as well.

Lemma 2.7 (Extension Interpretation). The following four equivalences hold true, for
all hyperteams X ∈ HypTeams(V) over V ⊆ Var, properties Ψ ⊆ Asg(V∪{x}) over V∪{x}
with x ∈ Var \ V, flag α ∈ {∃∀,∀∃} and quantifier symbols Q ∈ {∃,∀}.

1. Statements 1a and 1b are equivalent, whenever Q is α-coherent:

(a) there exists X′ ∈ extα(X, Qx) such that X′ ⊆ Ψ;

(b) there exist F ∈ Rsp+var(X) and X ∈ X such that ext(X,F , x) ⊆ Ψ.

2. Statements 2a and 2b are equivalent, whenever Q is α-coherent:

(a) for all X′ ∈ extα(X, Qx), it holds that X′ ∩Ψ 6= ∅;

(b) for all F ∈ Rsp+var(X) and X ∈ X, it holds that ext(X,F , x) ∩Ψ 6= ∅.

74

2.D. Proofs of Section 2.5

3. Statements 3a and 3b are equivalent, whenever Q is α-coherent:

(a) there exists X′ ∈ extα(X, Qx) such that X′ ⊆ Ψ;

(b) for all F ∈ Rsp+var(X), it holds that ext(X,F , x) ⊆ Ψ, for some X ∈ X.

4. Statements 4a and 4b are equivalent, whenever Q is α-coherent:

(a) for all X′ ∈ extα(X, Qx), it holds that X′ ∩Ψ 6= ∅;

(b) there is F ∈ Rsp+var(X) such that ext(X,F , x) ∩Ψ 6= ∅, for all X ∈ X.

Proof. We first prove Items 1 and 2 altogether, where Q is α-coherent, and then we
proceed with the remaining ones separately. In particular, for these last two, we make
use, given an arbitrary function F ∈ Rsp+W , of the auxiliary notation prj(Ψ, F , x) def=
{χ ∈ Asg(V) | χ[x 7→ F (χ)] ∈ Ψ} satisfying the following two properties, for every team
X ∈ Teams(V):

1. ext(X,F , x) ⊆ Ψ iff X ⊆ prj(Ψ, F , x);

2. ext(X,F , x) ∩Ψ 6= ∅ iff X ∩ prj(Ψ, F , x) 6= ∅.

— [Items 1 and 2] By definition of the extension function, when Q is α-coherent,
we have that

extα(X, Qx) = ext(X, x) = {ext(X,F , x) | X ∈ X, F ∈ Rsp}.

Thus, for every possible teamX′ ∈ Teams(V∪{x}), it holds thatX′ ∈ extα(X, Qx)
iff there exists a function F ∈ Rsp+var(X) and a team X ∈ X such that X′ =
ext(X,F , x). Hence, both equivalences immediately follows.

— [Item 3] Since Q is α-coherent, extα(X, Qx) = ext(X, x), and thus Condition 3a
holds iff there is a teamX′ ∈ ext(X, x) such thatX′ ⊆ Ψ. By Item 1 of Lemma 2.2,
this holds iff for all teams X′ ∈ ext(X, x) = extα(X, Qx), it holds that X′ ∩ Ψ
6= ∅. Thanks to Item 2, the latter is true iff for all functions F ∈ Rsp+var(X) and
teams X ∈ X, it holds that ext(X,F , x) ∩ Ψ 6= ∅, and thus X ∩ prj(Ψ, F , x) 6=
∅. At this point, again by Item 1 of Lemma 2.2, for all X ∈ X, it holds that
X ∩ prj(Ψ, F , x) 6= ∅ iff there exists a team X ∈ X such that X ⊆ prj(Ψ, F , x),
and thus ext(X,F , x) ⊆ Ψ. Therefore, the following equivalence concludes the
proof: for all functions F ∈ Rsp+var(X) and teams X ∈ X, it holds that X ∩
prj(Ψ, F , x) 6= ∅ iff for all functions F ∈ Rsp+var(X) there exists a team X ∈ X

such that ext(X,F , x) ⊆ Ψ, which coincides with Condition 3b.

75

Partie , Chapter 2 – A hyperteams semantics

— [Item 4] Since Q is α-coherent, extα(X, Qx) = ext(X, x), and thus Condition 4a
holds iff for all teams X′ ∈ ext(X, x), it holds that X′ ∩ Ψ 6= ∅. By Item 1 of
Lemma 2.2, this holds iff there exists a team X ∈ ext(X, x) = extα(X, Qx)
such that X ⊆ Ψ. Thanks to Item 1, the latter is true iff there exist a func-
tion F ∈ Rsp+var(X) and a team X ∈ X such that ext(X,F , x) ⊆ Ψ, and thus
X ⊆ prj(Ψ, F , x). At this point, again by Item 1 of Lemma 2.2, there exists a
team X ∈ X such that X ⊆ prj(Ψ, F , x) iff for all teams X′ ∈ X, it holds that
X′ ∩ prj(Ψ, F , x) 6= ∅, and thus ext(X′, F , x) ∩ Ψ 6= ∅. Therefore, the following
equivalence concludes the proof: there exist a function F ∈ Rsp+var(X) and a team
X ∈ X such that X ⊆ prj(Ψ, F , x) iff there exists a function F ∈ Rsp+var(X) such
that for all teams X′ ∈ X, it holds that ext(X′, F , x) ∩ Ψ 6= ∅, which coincides
with Condition 4b.

Theorem 2.6
Theorem 2.5

Theorem 2.10
Lemma 3.6Lemma 2.2

. . .

. . .

. . .

Figure 2.10 – Dependency graph of Theorem 2.6.

Theorem 2.6 (Quantifier Interpretation). The following equivalences hold true, for all
FO formulas φ, variables x ∈ Var, acyclic function assignments F ∈ FunAsg, and hyper-
teams X ∈ HypTeams⊇((free(φ) \ {x}) \ dom(F)) with x /∈ var(X):

1. M,F ,X |=α
Meta ∃x. φ iffM,F ,X |=α

Meta Σ+var(X)x. φ;

2. M,F ,X |=α
Meta ∀x. φ iffM,F ,X |=α

Meta Π+var(X)x. φ.

Proof. First, observe that, by a generalisation of Theorem 2.5 to Meta, the following two
equivalences hold true, where we define JφK def= {χ ∈ Asg(V) | free(φ) ⊆ VandM, χ |=FO

φ} for every FO formula φ and acyclic function assignments F ∈ FunAsg:

1. M,F ,X |=∃∀ φ iff X ⊆ JφK, for some team X ∈ ext(X,F);

2. M,F ,X |=∀∃ φ iff X ∩ JφK 6= ∅, for all teams X ∈ ext(X,F).

which are equivalent to the following, respectively:
— M,F ,X |=∃∀ φ iff ext(X,F) ⊆ JφK, for some team X ∈ X;
— M,F ,X |=∀∃ φ iff ext(X,F) ∩ JφK 6= ∅, for all teams X ∈ X.

76

2.D. Proofs of Section 2.5

For technical convenience, given U ⊆ Var and Ψ ⊆ Asg(U ∪ dom(F)), let us introduce
the notation prj(Ψ, U,F) def= {χ ∈ Ψ | ∀x ∈ dom(F) \ U, χ(x) = F(x)(χ)}�U . Thanks to
the assumption of F being acyclic, the following two properties hold, for every team
X ∈ Teams(U):

1. ext(X,F) ⊆ Ψ iff X ⊆ prj(Ψ, U,F);
2. ext(X,F) ∩Ψ 6= ∅ iff X ∩ prj(Ψ, U,F) 6= ∅.

In the light of this notation, we can rewrite the last two equivalences above as follows:
— M,F ,X |=∃∀ φ iff X ⊆ prj(JφK,var(X),F), for some team X ∈ X;
— M,F ,X |=∀∃ φ iff X ∩ prj(JφK,var(X),F) 6= ∅, for all teams X ∈ X.

By applying to a formula Qxφ, where Q ∈ {∃,∀}, a combination of Theorem 2.10 and
what we have just derived, we obtain the two equivalences below:

1. M,F ,X |=∃∀ Qxφ iff there exists a team X ∈ ext∃∀(X, Qx) such that X ⊆
prj(JφK,var(X),F);

2. M,F ,X |=∀∃ Qxφ iff, for all teams X ∈ ext∀∃(X, Qx), it holds that X ∩
prj(JφK,var(X),F) 6= ∅.

At this point, we proceed by a case analysis on the type of quantifier Q and the alternation
flag α, where we exploit the fact that for every function F ∈ Rsp+var(X),

ext(ext(X,F , x),F) = ext(X,F [x 7→ F]).

Notice that, since F is acyclic, x 6∈ +var(X), and dom(F)∩+var(X) = ∅, it holds that
F [x 7→ F] is acyclic as well.

— [Q = ∃ & α = ∃∀] By Equivalence 1) and Item 1 of Lemma 2.7, M,F ,X |=∃∀

∃xφ iff there exist a function F ∈ Rsp+var(X) and a team X ∈ X such that
ext(X,F , x) ⊆ prj(JφK,var(X) ∪ {x},F), and thus ext(ext(X,F , x),F) ⊆
JφK. This means thatM,F ,X |=∃∀ ∃xφ iff there exist a function F ∈ Rsp+var(X)

and a team X ∈ X such that ext(X,F [x 7→ F]) ⊆ JφK iff there exists a function
F ∈ Rsp+var(X) such that X ′ ⊆ JφK, for some team X ′ ∈ ext(X,F [x 7→ F]). By
Equivalence 1), the latter statement can be rewritten as: there exists a function
F ∈ Rsp+var(X) such that M,F [x 7→ F],X |=∃∀ φ; this in turn is equivalent to
M,F ,X |=∃∀ Σ+var(X)xφ, due to Item 9 of Definition 2.3. This concludes the proof
of Item 1 for α = ∃∀.

— [Q = ∃ & α = ∀∃] By Equivalence 2) and Item 4 of Lemma 2.7,M,F ,X |=∀∃ ∃xφ
iff there exists a function F ∈ Rsp+var(X) such that, for all teams X ∈ X,

77

Partie , Chapter 2 – A hyperteams semantics

it holds true that ext(X,F , x) ∩ prj(JφK,var(X) ∪ {x},F) 6= ∅, and thus
ext(ext(X,F , x),F) ∩ JφK 6= ∅. This means that M,F ,X |=∀∃ ∃xφ iff there
exists a function F ∈ Rsp+var(X) such that, for all teams X ∈ X, it holds that
ext(X,F [x 7→ F]) ∩ JφK 6= ∅ iff there exists a function F ∈ Rsp+var(X) such that
X ′ ∩ JφK 6= ∅, for all teams X ′ ∈ ext(X,F [x 7→ F]). By Equivalence 2), the latter
statement can be rewritten as: there exists a function F ∈ Rsp+var(X) such that
M,F [x 7→ F],X |=∀∃ φ; this in turn is equivalent to M,F ,X |=∀∃ Σ+var(X)xφ,
due to Item 9 of Definition 2.3. This concludes the proof of Item 1 for α = ∀∃.

— [Q = ∀ & α = ∃∀] By Equivalence 1) and Item 3 of Lemma 2.7, M,F ,X |=∃∀

∀xφ iff, for all functions F ∈ Rsp+var(X), there exists a team X ∈ X such that
ext(X,F , x) ⊆ prj(JφK,var(X) ∪ {x},F), and thus ext(ext(X,F , x),F) ⊆
JφK. This means thatM,F ,X |=∃∀ ∀xφ iff, for all functions F ∈ Rsp+var(X), there
exists a team X ∈ X such that ext(X,F [x 7→ F]) ⊆ JφK iff, for all functions
F ∈ Rsp+var(X), it holds that X ′ ⊆ JφK, for some team X ′ ∈ ext(X,F [x 7→ F]).
By Equivalence 1), the latter statement can be rewritten as: for all functions F ∈
Rsp+var(X), it holds that M,F [x 7→ F],X |=∃∀ φ; this in turn is equivalent to
M,F ,X |=∃∀ Π+var(X)xφ, due to Item 10 of Definition 2.3. This concludes the
proof of Item 2 for α = ∃∀.

— [Q = ∀ & α = ∀∃] By Equivalence 2) and Item 2 of Lemma 2.7,M,F ,X |=∀∃ ∀xφ
iff, for all functions F ∈ Rsp+var(X) and teams X ∈ X, it holds that ext(X,F , x)∩
prj(JφK,var(X) ∪ {x},F) 6= ∅, and thus ext(ext(X,F , x),F) ∩ JφK 6= ∅. This
means that M,F ,X |=∀∃ ∀xφ iff, for all functions F ∈ Rsp+var(X) and teams
X ∈ X, it holds that ext(X,F [x 7→ F]) ∩ JφK 6= ∅ iff, for all functions F ∈
Rsp+var(X), it holds that X ′ ∩ JφK 6= ∅, for all teams X ′ ∈ ext(X,F [x 7→ F]).
By Equivalence 2), the latter statement can be rewritten as: for all functions F ∈
Rsp+var(X), it holds that M,F [x 7→ F],X |=∀∃ φ; this in turn is equivalent to
M,F ,X |=∀∃ Π+var(X)xφ, due to Item 10 of Definition 2.3. This concludes the
proof of Item 2 for α = ∀∃.

Theorem 2.7
Theorem 2.10
Theorem 2.6

. . .

. . .

Figure 2.11 – Dependency graph of Theorem 2.7.

78

2.D. Proofs of Section 2.5

Theorem 2.7 (Herbrand-Skolem Theorem). Let ℘1℘2φ be an FO formula in pnf with
quantifier prefix ℘1℘2 ∈ Q and FO subformula φ. Then, M,F ,X |=α

Meta ℘1℘2φ iff
M,F ,X |=α

Meta hspϕ(℘2)℘1φ, for all acyclic function assignments F ∈ FunAsg with
dom(F) ∩ dep(℘1℘2φ) = ∅ and hyperteams X ∈ HypTeams⊇(free(℘1℘2φ) \ dom(F))
with var(X) ∩ var(℘1℘2) = ∅ and dom(F) ∩ var(℘1℘2) = ∅.

Proof. First, thanks to Corollary 2.1, we can assume that var(X) = free(℘1℘2φ) \
dom(F). The proof proceeds by structural induction on the quantifier prefix ℘2 ∈ Q.

— [Base case ℘2 = ε] Since hspϕ(℘2) = ε, there is really nothing to prove as the
statement is trivially true.

— [Inductive case ℘2 = ℘′Qx] By Theorem 2.10, it holds thatM,F ,X |=α ℘1℘2φ

iffM,F ,extα(X, ℘1℘
′) |=α Qxφ. A case analysis on the type of quantifier is now

required.
— [Q = ∃] By Item 1 of Theorem 2.6, M,F ,extα(X, ℘1℘

′) |=α ∃xφ iff
M,F ,extα(X, ℘1℘

′) |=α Σ+var(extα(X,℘1℘
′))xφ, since φ is a quantifier-free

FO formula. Thus, by Item 9 of Definition 2.3, we have that M,F ,X |=α

℘1℘2φ iff there exists a function F ∈ Rsp+var(extα(X,℘1℘
′)) such that

M,F [x 7→ F],extα(X, ℘1℘
′) |=α φ. Again by Theorem 2.10, M,F [x 7→

F],extα(X, ℘1℘
′) |=α φ is equivalent to M,F [x 7→ F],X |=α ℘1℘

′φ,
which in turn, by the inductive hypothesis applied to ℘1℘

′φ, is equivalent to
M,F [x 7→ F],X |=α hspϕ(℘′)℘1φ. Summing up, we haveM,F ,X |=α ℘1℘2φ

iff there exists a function F ∈ Rsp+var(extα(X,℘1℘
′)) such that M,F [x 7→

F],X |=α hspϕ(℘′)℘1φ. At this point, again by Item 9 of Definition 2.3, we
obtain M,F ,X |=α ℘1℘2φ iff M,F ,X |=α Σ+var(extα(X,℘1℘

′))xhspϕ(℘′)℘1φ iff
M,F ,X |=α hspϕ(℘2)℘1φ, where the latter equivalence is due to the defini-
tion of the hspϕ function satisfying the equality hspϕ(℘2) = hspϕ(℘′∃x) =
Σ+var(extα(X,℘1℘

′))xhspϕ(℘′). This concludes the proof of the existential case.
— [Q = ∀] By Item 2 of Theorem 2.6, M,F ,extα(X, ℘1℘

′) |=α ∀xφ iff M,F ,
extα(X, ℘1℘

′) |=α Π+var(extα(X,℘1℘
′))xφ, since φ is a quantifier-free FO for-

mula. Thus, by Item 10 of Definition 2.3, we have that M,F ,X |=α ℘1℘2φ

iff, for all functions F ∈ Rsp+var(extα(X,℘1℘
′)), it holds that M,F [x 7→

F],extα(X, ℘1℘
′) |=α φ. By Theorem 2.10,M,F [x 7→ F],extα(X, ℘1℘

′) |=α φ

is equivalent to M,F [x 7→ F],X |=α ℘1℘
′φ, which in turn, by the in-

ductive hypothesis applied to ℘1℘
′φ, is equivalent to M,F [x 7→ F],X |=α

hspϕ(℘′)℘1φ. Summing up, we have M,F ,X |=α ℘1℘2φ iff, for all functions

79

Partie , Chapter 2 – A hyperteams semantics

F ∈ Rsp+var(extα(X,℘1℘
′)), it holds that M,F [x 7→ F],X |=α hspϕ(℘′)℘1φ. At

this point, again by Item 10 of Definition 2.3, we obtain M,F ,X |=α ℘1℘2φ

iffM,F ,X |=α Π+var(extα(X,℘1℘
′))xhspϕ(℘′)℘1φ iffM,F ,X |=α hspϕ(℘2)℘1φ,

where the latter equivalence is due to the definition of the hspϕ function satis-
fying the equality hspϕ(℘2) = hspϕ(℘′∀x) = Π+var(extα(X,℘1℘

′))xhspϕ(℘′). This
concludes the proof of the universal case.

Thm 2.8

Thm 2.1 Thm 2.9

Thm 2.2Thm 2.10

Thm 2.4

Thm 2.5

Thm 2.6

Thm 2.7

Figure 2.12 – Dependency graph of all Theorems.

80

Chapter 3

ALTERNATING

DEPENDENCE/INDEPENDENCE-
FRIENDLY

LOGIC

The hyperteam semantics is naturally suited to restrict quantifiers with uniformity
constraints. In a DIF fashion, we can focus on response functions that are uniform
with respect to a dependence constraints. For this chapter, we consider the same de-
pendences/independences as in DIF, i.e. the value of a quantified variables depends on
(or is independent from) the values of a set of variables W given at the quantification.
We then define Alternating Dependence/Independence-Friendly Logic (ADIF for short),
that generalizes DIF with negations. More involved dependencies will be considered in
Chapter 4 and Chapter 5.

The chapter is organized as follows. In Section 3.1, we present the syntax and semantics
of ADIF and also define Meta-ADIF , the Meta variant of ADIF. Then, in Section 3.2,
we compare ADIF with FO, DIF and SO. Finally, in Section 3.3, we define the game-
theoretic semantics of ADIF.

3.1 A symmetrical extension of DIF

Formally, given a dependence ±W, a variable x and a hyperteam X, we define the
±W-uniform extension of X by ext±W(X, x) = {ext(X,F , x) | F ∈ Rsp±W} (recall that
Rsp±W has been defined in Definition 1.4).

Example 3.1. Let X = {X1 = {χ1, χ2}, X2 = {χ1, χ3}} be a hyperteam. To extend ∅-
uniformly X with variable x over the structure domain D = {0, 1}, one needs to extend

81

Partie , Chapter 3 – Alternating Dependence/Independence-Friendly Logic

each team in X with the two ∅-uniform (i.e., constant) functions F0(χ) = 0 and F1(χ) = 1:

ext∅(X, x) =



ext(X1, F0, x) ={χ1[x 7→ 0], χ2[x 7→ 0]}
ext(X1, F1, x) ={χ1[x 7→ 1], χ2[x 7→ 1]}
ext(X2, F0, x) ={χ1[x 7→ 0], χ3[x 7→ 0]}
ext(X2, F1, x) ={χ1[x 7→ 1], χ3[x 7→ 1]}


.

This new operator allows us to define Alternating Dependence/Independence-Friendly
Logic (or ADIF for short) as follows.

3.1.1 Syntax.

The syntax of ADIF extends the one of FO by allowing dependence constraints
specification on quantifiers. It can be seen as the closure of the DIF syntax with negation.
For the whole chapter, we assume a relational signature S (i.e. a signature with no function
symbols). The following defines the syntax of ADIF .

Definition 3.1. An ADIF formula is defined inductively as follows, where P is a predicate
symbol, ~x is a vector of variables of size ar(P), x is a variable and W is a set of variables.

ϕ := ⊥ |> | P(~x) | ¬ϕ |ϕ ∧ ϕ |ϕ ∨ ϕ | ∃±Wxϕ | ∀±Wxϕ

Predicative logics usually rely on a notion of free placeholder to correctly define the
meaning of a formula and ADIF is no exception. In ADIF, however, we distinguish be-
tween support and free variables. Specifically, support variables are the ones occurring
in some atom P(~x) that needs to be assigned a value in order to evaluate the truth
of the formula. The free variables, instead, also include those occurring in some depen-
dence/independence constraint. By sup : ADIF→ 2Var we denote the function collecting
all support variables sup(ϕ) of a formula ϕ, defined as follows:

— sup(⊥), sup(>) def= ∅;
— sup(P(~x)) def= ~x ;
— sup(¬ϕ) def= sup(ϕ);
— sup(ϕ1� ϕ2) def= sup(ϕ1) ∪ sup(ϕ2), for all connective symbols � ∈ {∧,∨};
— sup(Q±Wxϕ) def= sup(ϕ) \ {x}, for all quantifier symbols Q ∈ {∃,∀}.

The free-variable function free : ADIF→ 2Var is defined similarly, except for the quan-
tifier case, which is reported in the following:

82

3.1. A symmetrical extension of DIF

— free(Q±Wxϕ) def= (free(ϕ) \ {x}) ∪ J±WK, if x ∈ free(ϕ), and
— free(Q±Wxϕ) def= free(ϕ), otherwise, for all quantifier symbols Q ∈ {∃, ∀},

with J±WK denoting the set W, for the symbol ‘+’, and its complement Var \W, for the
symbol ‘−’.

Obviously, it holds that sup(ϕ) ⊆ free(ϕ). A sentence φ is a formula such that
free(φ) = ∅. If sup(φ) = ∅, but free(φ) 6= ∅, then φ is just a pseudo sentence. As
an example, φ = ∀+∅x∃+∅y(x = y) is a sentence, while φ′ = ∀+∅x∃+zy(x = y) is a
pseudo sentence, since sup(φ′) = ∅, but free(φ′) = {z}. Another example of pseudo
sentence is φ′′ = ∀x∃−xy(x = y). In general, every formula with empty support and
containing a quantifier of the form Q−Wx is clearly a pseudo sentence. We also define
∃xϕ def= ∃+Wxϕ and ∀xϕ def= ∀+Wxϕ, where W def= sup(ϕ) \ {x}. Notice that, with the last
two quantifiers, FO is a syntactic fragment of ADIF and furthermore, for FO formulas,
it holds that sup(ϕ) = free(ϕ). As we shall show in Section 3.2.1 by resorting to the
result presented in Section 2.4, this fragment semantically corresponds to classic FO as
defined in Section 1.1. Similarly, we shall later identify a richer fragment of ADIF that
semantically corresponds to IFL as formalised in Section 1.2.

We define alternating dependence logic (ADF for short) as the fragment where only
∃+W and ∀+W quantifiers are considered and symmetrically, alternating independence-
friendly logic (AIF for short) is the fragment where only ∃−W and ∀−W quantifiers are
considered.

Before giving the formal definition of the compositional semantics, it is worth providing
just few examples of properties expressible in ADIF.

Let us picture a two-turn game where Player 1, who chooses first, controls the variable
x and Player 2, who chooses second, controls y. Let ψ(x, y) be the goal of Player 2 and
consider the following two ADF sentences:

φ1
def= ∀x∃+xyψ(x, y); φ2

def= ∃x∀+xy¬ψ(x, y).

Sentence φ1, whenever true, requires Player 2, in this case Eloise, to be able to respond to
every choice for x made by Player 1, in this case Abelard, so that goal ψ(x, y) is always
satisfied. This corresponds to the existence of a winning strategy for Eloise, namely a
strategy that wins every induced play in the game, for the objective ψ(x, y). On the
contrary, with inverted roles, the truth of φ2 ensures that there is a choice of Eloise
such that, no matter what Abelard chooses, ψ(x, y) cannot be achieved. This means that

83

Partie , Chapter 3 – Alternating Dependence/Independence-Friendly Logic

Abelard cannot have a winning strategy for ψ(x, y). If φ2 is false, instead, it is Abelard
who has a winning strategy for ψ(x, y), while the falsity of φ1 ensures the existence of a
choice of Abelard such that, no matter what Eloise chooses, ψ(x, y) cannot be achieved.
Note that both sentences belong to the FO fragment introduced above and their semantics
also corresponds to the Tarskian one. However, the ADF sentences

φ3
def= ∀x∃+∅yψ(x, y); φ4

def= ∃x∀+∅y¬ψ(x, y)

add imperfect information to the picture. Sentence φ3 still postulates the existence of a
winning strategy for Eloise, but this time also requires that, when making the choice for
y, the player has no access to any information and, in particular, to the value chosen for
x by the opponent. We call such a strategy ∅-uniform. Similarly, φ4, when true, witnesses
the non-existence of such a ∅-uniform winning strategy for Abelard. The ADIF pseudo
sentences

φ5
def= ∀x∃−xyψ(x, y); φ6

def= ∃x∀−xy¬ψ(x, y)

have a very similar meaning to φ3 and φ4, respectively, with the exception that y, while
still required to be independent of x, may now depend on any variable different from x.
Indeed, free(φ5) = free(φ6) = Var\x, hence, in principle, y can depend on any of these
free variables. As a general rule, a quantifier Q−Ww occurring inside a formula ϕ allows
w to depend on any free variable of ϕ that is not in the set W.

Consider now a three-turn game, extending the φ4 one, where, after the move of
Player 2, Player 1 chooses the value for another variable under its control, let us call this
z. In the following, we consider a goal subformula that is a conjunction of the two goals
ψ1(x, y) and ψ2(y, z). The interpretation of the ADF sentence

φ7
def= ∃x∀+∅y∃+xz (ψ1(x, y) ∧ ψ2(y, z))

is a bit more involved. First of all, it states that Player 2, i.e., Abelard, cannot see the
choice made for x. In addition, while Player 1, i.e., Eloise, is not aware of y, she has access
to the value previously chosen for x by herself. The sentence, whenever true, ensures the
existence of a choice by Eloise which ensures that Abelard cannot prevent ψ1(x, y) from
happening, no matter what he chooses. Moreover, Eloise can respond to any of these latter
choices for y and win objective ψ2(y, z) by only looking at the value of x. This means that

84

3.1. A symmetrical extension of DIF

Abelard is not able to prevent ψ1(x, y) and, at the same time, Eloise has an x-uniform
strategy to win ψ2(y, z).

3.1.2 Semantics

The semantics relation of ADIF is the same as the hyperteam semantics of Defini-
tion 2.1 except for the rules for quantifiers.

Definition 3.2 (Hyperteam Semantics). The ADIF semantic relationM,X |=α ϕ is the
same as Definition 2.1 except for Items 7 and 8 that are replaced with the following with
φ an ADIF formulas, X ∈ HypTeams⊇(free(ϕ)) a hyperteams and x a variable:

7’ (a) M,X |=∃∀ ∃±Wxφ ifM,ext±W(X, x) |=∃∀ φ;

(b) M,X |=∀∃ ∃±Wxφ ifM,X |=∃∀ ∃±Wxφ;

3.2’ (a) M,X |=∃∀ ∀±Wxφ ifM,X |=∀∃ ∀±Wxφ;

(b) M,X |=∀∃ ∀±Wxφ ifM,ext±W(X, x) |=∀∃ φ.

3.1.3 Examples

To familiarise with the proposed compositional semantics of ADIF, we now present
few examples of evaluation of formulas via a step by step unravelling of all the semantic
rules involved.

Example 3.2. Consider the sentence φ4 = ∃x∀+∅y¬ψ(x, y) from above, where we in-
stantiate ψ(x, y) as (x = y). We evaluate φ4 in the binary structureM = 〈{0, 1}, {=M}〉
against the trivial hyperteam {{∅}}. The alternation flag is of no consequence, since {{∅}}
is self-dual (see Proposition 2.1), hence, we can choose α = ∃∀, without loss of general-
ity. We want to check whether M, {{∅}} |=∃∀ φ4. The semantic rule for the existential
quantifier ∃x requires to compute the extension ext∅({{∅}}, x) of {{∅}}. This results in

M, {{∅}} |=∃∀ ∃x∀+∅y¬(x = y) iff M,X |=∃∀ ∀+∅y¬(x = y),

where X = {{x : 0}, {x : 1}}. The rule for the universal quantifier ∀+∅y requires to dualise
the hyperteam and switch the flag to ∀∃. Since every team of X is a singleton, there is
only one possible choice function, thus, the result is

M,X |=∃∀ ∀+∅y¬(x = y) iff M,X |=∀∃ ∀+∅y¬(x = y),

85

Partie , Chapter 3 – Alternating Dependence/Independence-Friendly Logic

where X = {{x :0, x :1}}. Now the quantifier ∀+∅y and the alternation flag ∀∃ are coherent,
and we extend the hyperteam to obtain ext∅(X, y), where only constant functions can be
used for the extensions, since y cannot depend on x. The result is, then,

M,X |=∀∃ ∀+∅y¬(x = y) iff M,ext∅(X, y) |=∀∃ ¬(x = y),

where ext∅(X, y) =


x :0
y :0

,
x :1
y :0

,
x :0
y :1

,
x :1
y :1


. The rule for the negation operation ¬

dualises the flag and, in addition, requires the hyperteam ext∅(X, y) not to satisfy the
atom (x = y) under ∃∀. This means that every team in ext∅(X, y) must contain an
assignment that falsifies the atom. But this is indeed the case, since every team has an
assignment χ such that χ(x) 6= χ(y). Hence, φ4 evaluates to true in M against {{∅}}.
Observe that, on the contrary, the sentence φ3 = ∀x∃+∅yψ(x, y) from above evaluates to
false in M against {{∅}}, being equivalent to the negation of φ4. Indeed, in this case,
following the semantic rules for the quantifiers, we would still end up with the same
hyperteam ext∅(X, y) against which we need to evaluate the subformula x = y. However,
this time the alternation flag would be ∃∀ and, as we already noted above, every team in
ext∅(X, y) contains one assignment falsifying x = y.

We anticipate here a game-theoretic intuition of truth and falsity in ADIF on the
simpler case of sentences in prenex normal form and with a single alternation of quantifiers
– Recall that a formula is in prenex normal form when it is of the form ℘φ with ℘

a quantifier prefix and φ a quantifier-free ADIF formula. The interpretation of such
sentences can be viewed as a challenge-response game, where the player associated with the
first type of quantifier in the prefix is the challenger and the other one the responder. The
idea is that for the responder to win the game, they must win the subformula (either satisfy
it if she is the existential player or falsify it if he is the universal one) while adhering to
some uniform strategy, i.e., a strategy compatible with the (in)dependence constraints on
their variables. If they cannot, the challenger wins. In a sense, this satisfaction game places
on the responder the burden of proof that they are able to successfully play according to
the constraints and win the subformula. When the challenger wins the challenge-response
game, then the formula is considered true if she is the existential player, and false if he
is the universal one. This is why, for instance, the two sentences φ4 and φ3, discussed in
Section 3.1.1, are true and false, respectively. Indeed, in φ4 the responder is the universal
player controlling variable y. Since y cannot depend on anything, it must be chosen

86

3.1. A symmetrical extension of DIF

uniformly regardless of the value of x. Clearly, that player does not have a uniform strategy
that falsifies the subformula ¬(x = y), which makes the sentence won by the existential
player and, therefore, true. By a similar reasoning, the responder in φ3 is the existential
player controlling y and cannot access the value of x. Hence, that player does not have a
uniform strategy to satisfy the subformula (x = y) either. Therefore, the universal player,
who is the challenger, wins the sentence, which makes it false.

For sentences in prenex normal form with more than one alternations, though, the
truth and falsity conditions in ADIF become more complicated, since the two players
may act both as a challenger and as a responder against different variables. In this case,
one needs to take into consideration the uniformity constraints of both players and who
is ultimately responsible for breaking the (in)dependence constraints to try and win the
subformula. Here is also where the symmetry requirement on the players comes into play
in a more significant way, as for both truth and falsity one needs to take into account the
restrictions of the two players at the same time. We refer the reader to Section 3.3 for
the full presentation of the game-theoretic semantics of ADIF, in which the intuitions
discussed above are made precise.

Example 3.3. Consider the pseudo sentence φ6 = ∃x∀−xy¬ψ(x, y) from above, where
again we instantiate ψ(x, y) as (x = y). The exact same reasoning followed in Example 3.2
shows that φ6 is true inM against the trivial hyperteam {{∅}}. Consequently, the pseudo
sentence φ5 = ∀x∃−xyψ(x, y) is false inM against {{∅}}, being equivalent to the negation
of φ6. These two pseudo sentences, however, are not equivalent to the sentences φ4 and φ3,
respectively. To see this, let us evaluate φ5 inM against the hyperteam X = {{z :0, z :1}}
w.r.t the alternation flag α = ∀∃. Note that z ∈ free(φ5) = J−xK = Var \ {x}. The
semantic rule for ∀x requires to compute the extension ext∅(X, x) of X. This results in

M,X |=∀∃ ∀x∃−xy(x = y) iff M,ext∅(X, x) |=∀∃ ∃−xy(x = y),

where ext∅(X, x) =


z :0
x :0

,
z :1
x :0

,
z :0
x :1

,
z :1
x :1


. The rule for ∃−xy requires to dualise the

hyperteam and switch the flag to ∃∀. Since both teams in ext∅(X, x) contain two assign-
ments, there are four choice functions in total, leading to

M,ext∅(X, x) |=∀∃ ∃−xy(x = y) iff M,ext∅(X, x) |=∃∀ ∃−xy(x = y),where

87

Partie , Chapter 3 – Alternating Dependence/Independence-Friendly Logic

ext∅(X, x) =


X1 =z :0

x :0
,
z :0
x :1

 ,
X2 =z :0

x :0
,
z :1
x :1

 ,
X3 =z :1

x :0
,
z :0
x :1

 ,
X4 =z :1

x :0
,
z :1
x :1


.

The extension X̂
def= extVar\x(ext∅(X, x), y) = ext{z}(ext∅(X, x), y) with the four func-

tions that can only depend on z, happens to contains 12 teams. Each response functions

is denoted by Fij with i, j ∈ {0, 1} and are defined by Fij(χ) =

 i if χ(z) = 0
j otherwise

ext−x(ext∅(X, x), y) =

ext(X1, F00, y) =
z :0
x :0
y :0

,

z :0
x :1
y :0


,

ext(X2, F00, y) =
z :0
x :0
y :0

,

z :1
x :1
y :0


,

ext(X3, F00, y) =
z :1
x :0
y :0

,

z :0
x :1
y :0


,

ext(X4, F00, y) =
z :1
x :0
y :0

,

z :1
x :1
y :0


ext(X1, F01, y) =

z :0
x :0
y :0

,

z :0
x :1
y :0


,

ext(X2, F01, y) =
z :0
x :0
y :0

,

z :1
x :1
y :1


,

ext(X3, F01, y) =
z :1
x :0
y :1

,

z :0
x :1
y :0


,

ext(X4, F01, y) =
z :1
x :0
y :1

,

z :1
x :1
y :1


ext(X1, F10, y) =

z :0
x :0
y :1

,

z :0
x :1
y :1


,

ext(X2, F10, y) =
z :0
x :0
y :1

,

z :1
x :1
y :0


,

ext(X3, F10, y) =
z :1
x :0
y :0

,

z :0
x :1
y :1


,

ext(X4, F10, y) =
z :1
x :0
y :0

,

z :1
x :1
y :0


ext(X1, F11, y) =

z :0
x :0
y :1

,

z :0
x :1
y :1


,

ext(X2, F00, y) =
z :0
x :0
y :1

,

z :1
x :1
y :1


,

ext(X3, F00, y) =
z :1
x :0
y :1

,

z :0
x :1
y :1


,

ext(X4, F11, y) =
z :1
x :0
y :1

,

z :1
x :1
y :1





.

Notice that even if 16 teams are displayed, some are redundant: we have ext(X1, F00, y) =
ext(X1, F01, y) and ext(X1, F11, y) = ext(X1, F10, y) and ext(X4, F00, y) =
ext(X4, F10, y) and ext(X4, F11, y) = ext(X4, F01, y), which makes only 12 different
teams.

We find X def= ext(X2, F01, y) = {χ1, χ2}, where χ1(z) = χ1(x) = χ1(y) = 0, χ2(z) =
χ2(x) = χ2(y) = 1, and F (χ) = χ(z). Now, the final step requires checking whether
M, X̂ |=∃∀ (x = y). Since every assignment in X satisfies (x = y), the pseudo sentence
is proved true inM against X w.r.t the alternation flag α = ∃∀. Intuitively, z allows for

88

3.1. A symmetrical extension of DIF

some leak of information and, by mimicking x, is able to pass the required information to
y in order to satisfy the subformula. This leak of information is only possible because x
is independent from z. As an immediate consequence, φ6 evaluates to false inM against
X. Instead, it is possible to show that the evaluations of φ3 and φ4 remain unchanged on
X, i.e., they are again false and true, respectively, due to the fact that they are sentences
(this is a direct consequence of Corollary 2.1).

The above example should clarify the reasoning behind the choice of the name pseudo
sentences, for those formulas ϕ with sup(ϕ) = ∅, but free(ϕ) 6= ∅. As for sentences,
a pseudo sentence can be verified against an arbitrary hyperteam; however, similarly to
formulas, its truth may depend on the specific hyperteam.

Example 3.4. Consider the sentence φ7 = ∃x∀+∅y∃+xz(ψ1(x, y) ∧ ψ2(y, z)) from above,
where we instantiate ψ1(x, y) as (x = y) and ψ2(y, z) as (y = z). We evaluate this sen-
tence in the same structureM of the previous examples and the trivial hyperteam {{∅}}.
Observe also that ϕ7 shares most of the quantifier prefix of sentence φ4 in Example 3.2.
As a consequence, by applying the same steps as before, we end up with the following
equivalence:

M, {{∅}} |=∃∀ φ7 iff M,ext∅(X, y) |=∀∃ ∃+xz(x = y) ∧ (y = z),

where ext∅(X, y) =


x :0
y :0

,
x :1
y :0

,
x :0
y :1

,
x :1
y :1


. Applying the rule for ∃+xz requires duali-

sation first, leading to

M, {{∅}} |=∃∀ φ7 iff M,ext∅(X, y) |=∃∀ ∃+xz(x = y) ∧ (y = z),where

ext∅(X, y) =


X1 =x :0

y :0
,
x :0
y :1

 ,
X2 =x :0

y :0
,
x :1
y :1

 ,
X3 =x :1

y :0
,
x :0
y :1

 ,
X4 =x :1

y :0
,
x :1
y :1


.

The extension X̂
def= ext{x}(ext∅(X, y), z) can only use functions that depend on x alone

and there are four of them. Similarly to the previous example, the hyperteam X̂ ends up
containing 16 teams. Among these teams one can find X

def= ext(X2, F , z) = {χ1, χ2},
where χ1(x) = χ1(y) = χ1(z) = 0, χ2(x) = χ2(y) = χ2(z) = 1, and F (χ) = χ(x). Now,
the final step requires checking whetherM, X̂ |=∃∀ (x = y) ∧ (y = z). By the rule for the
conjunction connective, this is true if M, X̂1 |=∃∀ (x = y) or M, X̂2 |=∃∀ (y = z), for all

89

Partie , Chapter 3 – Alternating Dependence/Independence-Friendly Logic

bipartitions (X̂1, X̂2) ∈ Part(X̂). Obviously, any such partition would contain X either in
X̂1 or in X̂2. Since every assignment in X satisfies both (x = y) and (y = z), the sentence
is proved true inM against {{∅}}.

3.1.4 Properties

By the similarity between Definition 2.1 of hyperteam semantics for FO and Def-
inition 3.2 of ADIF semantics, ADIF inherits all results stated in Section 2.3, such
as Lemma 2.3 that works for every ADIF formula ϕ and any hyperteam X ∈
HypTeams⊇(sup(ϕ)).

Lemma 3.1 (Empty & Null Hyperteams). The following hold true for every ADIF
formula ϕ and hyperteam X ∈ HypTeams⊇(sup(ϕ)):

1. (a) M, ∅ 6|=∃∀ ϕ;

(b) M,X |=∃∀ ϕ, where ∅ ∈ X;

2. (a) M, ∅ |=∀∃ ϕ;

(b) M,X 6|=∀∃ ϕ, where ∅ ∈ X.

The core theorem that is Theorem 2.1, stating that the v preorder on hyperteam
corresponds to a semantic implication, is adapted below. Notice how the hyperteams are
required only to be defined on the set of variables sup(ϕ) whereas the v regards all
variables in free(ϕ).

Theorem 3.1 (Hyperteam Refinement). Let ϕ be an ADIF formula and X,X′ ∈
HypTeams⊇(sup(ϕ)) two hyperteams with X vfree(ϕ) X

′. Then:

1. ifM,X |=∃∀ ϕ thenM,X′ |=∃∀ ϕ;

2. ifM,X′ |=∀∃ ϕ thenM,X |=∀∃ ϕ.

To prove this theorem, we require an extension of the monotonicity results for v on
the various operations on hyperteams to the new ext±W operation. The full proof is given
in Section 3.A. This is the only result for which the proof differ from the previous chapter.

With this result, we can adapt Theorem 2.2 and Theorem 2.4 as follows.

Theorem 3.2 (Double Dualisation). For every ADIF formula ϕ, alternation flag α

and hyperteam X ∈ HypTeams⊇(sup(ϕ)), it holds that M,X |=α ϕ iff M,X |=α ϕ iff
M,X |=α ϕ.

90

3.1. A symmetrical extension of DIF

Theorem 3.3 (Prefix Extension). Let ℘φ be an ADIF formula, where ℘ ∈ Q is a quan-
tifier prefix and φ is an arbitrary FO formula. Then,M,X |=α ℘φ iffM,extα(X, ℘) |=α

φ, for all hyperteams X ∈ HypTeams⊇(sup(℘φ)).

Currently, we do not know whether ADIF does enjoy a prenex normal form (pnf, for
short). For this reason, for the rest of this section and in Section 3.3, we shall mainly
consider formulas that are already in pnf.

Open problem 1 (ADIF Prenex Normal Form). Is every ADIF formula equivalent to
an ADIF formula in pnf?

As for the previous chapter, we now generalise the extension operator to quantifier
prefixes ℘, whose set is denoted by Q. Notice that, without loss of generality, we only
consider prefixes where each variable x

1. is quantified at most once,

2. does not occur in the dependence/independence constraint set J±WK of its quan-
tifier Q±Wx, and

3. cannot be quantified in the scope of a quantifier Q±Wy whose dependence/inde-
pendence constraint set J±WK includes x itself.

With var(℘) and dep℘ we denote the set of variables quantified in ℘ and the union of all
dependence/independence constraint sets occurring in ℘, respectively. Given a hyperteam
X and an alternation flag α, the operator extα(X, ℘) corresponds to iteratively applying
the extension operator to X, for all quantifiers occurring in ℘, in that specific order. To
this end, we first introduce the notion of coherence of a quantifier symbol Q ∈ {∃,∀}
with an alternation flag α ∈ {∃∀,∀∃} as follows: Q is α-coherent if either α = ∃∀ and
Q = ∃ or α = ∀∃ and Q = ∀. Now, the application of a quantifier Q±Wx to X, denoted
by extα(X, Q±Wx), follows the semantics of quantifiers, as defined in Definition 3.2.
More precisely, it just corresponds to the extension of X with x, when Q is α-coherent.
Conversely, when Q is α-coherent, we need to dualise the extension with x of the dual of
X. Formally:

extα(X, Q±Wx) def=


ext±W(X, x), if Q is α-coherent;

ext±W(X, x), otherwise.

The operator naturally lifts to arbitrary quantification prefixes ℘:

91

Partie , Chapter 3 – Alternating Dependence/Independence-Friendly Logic

1. extα(X, ε) def= X;

2. extα(X, Q±Wx℘) def= extα(extα(X, Q±Wx), ℘).

We also define extα(℘) def= extα({{∅}}, ℘). A simple structural induction on a quantifier
prefix ℘ ∈ Q, shows that a hyperteam X α-satisfies a formula ℘φ iff its α-extension w.r.t
℘ α-satisfies its subformula φ.

Theorem 3.4 (Prefix Extension). Let ℘φ be an ADIF formula, where ℘ ∈ Q is a quanti-
fier prefix and φ is an arbitrary ADIF formula. Then,M,X |=α ℘φ iffM,extα(X, ℘) |=α

φ, for all hyperteams X ∈ HypTeams⊇(free(℘φ)).

3.1.5 Meta semantics

The Meta logic of Section 2.5 can be adapted for ADIF in Meta-ADIF by adding
the meta quantifiers to the syntax of ADIF.

Definition 3.3 (Meta-ADIF Syntax). The Meta Extension of ADIF (Meta-ADIF , for
short) is the set of formulas built according to Definition 1.2 extended as follows, where
x ∈ V:

ϕ
def= ADIF |Σ+Wx. ϕ |Π+Wx. ϕ.

We need to redefine the support and the free variables to account for the meta quan-
tifiers. The support variables sup(ϕ) of a Meta-ADIF formula ϕ simply generalize the
definition for ADIF formulas as follows:

— sup(⊥), sup(>) def= ∅;
— sup(P(~x)) def= ~x ;
— sup(¬ϕ) def= sup(ϕ);
— sup(ϕ1�ϕ2) def= sup(ϕ1) ∪ sup(ϕ2), for all connective symbols � ∈ {∧,∨ →};
— sup(Q±Wxϕ) def= sup(ϕ) \ {x}, for all quantifier symbols Q ∈ {∃,∀,Σ,Π}.
The definition of free variables is, instead, quite more intricate and requires the intro-

duction of the following supplemental functions of free variables under meta dependency
context free : Meta-ADIF × (Var ⇀ 2Var) → 2Var and dependence variables under meta
dependency context dep : Meta-ADIF × (Var ⇀ 2Var)→ 2Var – recall that a dependency
context is a partial function ι ∈ Var ⇀ 2Var. The transitive closure of ι is a dependency
context ι∗ ∈ dom(ι)→ 2Var such that, for each variable x ∈ dom(ι) in its domain, ι∗(x)
is the smallest set of variables such that

1. ι(x) ⊆ ι∗(x) and

92

3.1. A symmetrical extension of DIF

2. ι(y) ⊆ ι∗(x), for all variables y ∈ ι∗(x) ∩ dom(ι).

Finally, ι is acyclic if x 6∈ ι∗(x), for all variables x ∈ dom(ι). The functions free and
dep can be defined in a mutual recursive fashion as follows.

— free(⊥, ι) def= free(>, ι) def= ∅;
— free(P(~x), ι) def= ~x ∪ ⋃{ι∗(x) | x ∈ ~x ∩ dom(ι)};
— free(¬ϕ, ι) def= free(ϕ, ι);
— free(ϕ1� ϕ2, ι) def= free(ϕ1, ι) ∪ free(ϕ2, ι), for � ∈ {∧,∨};

— free(Qxϕ, ι) def=

 free(ϕ, ι′) \ {x} if x ∈ free(ϕ, ι′),
free(ϕ, ι′) otherwise

where ι′ def= ι \ {x}, for Q ∈ {∃,∀};

— free(Q±Wxϕ, ι) def=

 free(ϕ, ι′) if x ∈ dep(ϕ, ι′),
free(ϕ, ι′) \ {x} otherwise

where ι′ def= ι[x 7→ J±WK], for Q ∈ {Σ,Π}.
Intuitively, a variable y can be free in a Meta-ADIF formula ϕ under a dependency
context ι only for one (or more) of the following two reasons:

1. it is explicitly used in some relational symbol;

2. it occurs in the (transitive) dependency set ι∗(x) of some meta quantified variable
x used in a relational symbol;

Notice that a meta quantifier of a variable x masks such a variable only if it does not
appear in the set of dependence variables of its subformula.

— dep(⊥, ι),dep(>, ι),dep(P(~x), ι) def= ∅;
— dep(¬ϕ, ι) def= dep(ϕ, ι);
— dep(ϕ1� ϕ2, ι) def= dep(ϕ1, ι) ∪ dep(ϕ2, ι), for � ∈ {∧,∨};

— dep(Q±Wxϕ, ι) def=

 (dep(ϕ, ι′) \ {x}) ∪ J±WK if x ∈ free(ϕ, ι′),
dep(ϕ, ι′) otherwise

where ι′ def= ι \ {x}, for Q ∈ {∃, ∀};
— dep(Q±Wxϕ, ι) def= dep(ϕ, ι′), where ι′ def= ι[x 7→ J±WK], for Q ∈ {Σ,Π}.

Intuitively, a variable y belongs to the set dep(ϕ, ι) if it appears in the dependence/in-
dependence constraint set J±WK of some first-order quantifier Q±Wx of a free variable x
and, at the same time, is not removed, i.e., is not under the scope of another first-order
quantifier for y itself. Notice that the dependencies of the variables quantified by a meta-
quantifier, which are maintained by the dependency context ι, are not taken into account
here, as they are only used to determine which variables are free. At this point, the sets of

93

Partie , Chapter 3 – Alternating Dependence/Independence-Friendly Logic

free variables free(ϕ) and dependence variables dep(ϕ) of a Meta formula ϕ are defined
as free(ϕ, ∅) and dep(ϕ, ∅), respectively.

The semantics of Meta-ADIF simply extends the semantics of ADIF in Definition 3.2
in the same way Meta semantics of Definition 2.3 extends the hyperteam semantics Defi-
nition 2.1.

Definition 3.4 (Meta-ADIF Semantics). The hyperteam semantic relation
M,F ,X |=α

Meta ϕ for Meta-ADIF is inductively defined as follows, for all Meta-ADIF
formulas ϕ, function assignments F ∈ FunAsg, hyperteams X ∈ HypTeams⊇(free(ϕ) \
dom(F)), and alternation flags α ∈ {∃∀,∀∃}:

1,2,4-8) All ADIF cases, but those ones of the atomic relations, are defined by lifting, in
the obvious way, the corresponding items of Definition 3.2 to function assignments,
i.e., the latter play no role;

3. (a) M,F ,X |=∃∀Meta P(~x) if there exists a team X ∈ ext(X,F) such that, for all
assignments χ ∈ X, it holds that χ(~x) ∈ PM;

(b) M,F ,X |=∀∃Meta P(~x) if, for all teams X ∈ ext(X,F), there exists an assign-
ment χ ∈ X such that χ(~x) ∈ PM;

9. M,F ,X |=α
Meta Σ+Wx. φ ifM,F [x 7→ F],X |=α

Meta φ, for some F ∈ Rsp+W;

10. M,F ,X |=α
Meta Π+Wx. φ ifM,F [x 7→ F],X |=α

Meta φ, for all F ∈ Rsp+W.

We can retreive the results of Section 2.5, starting with the quantifier translation
between ADIF quantifiers ∃±W and ∀±W to Σ±W and Π±W respectively. Remark that we
still require the sub formula φ to be an FO formula.

Theorem 3.5 (ADIF Quantifier Interpretation). The following equivalences hold true,
for all FO formulas φ, variables x ∈ V, sets of variables W ⊆ V with x 6∈ W,
acyclic function assignments F ∈ FunAsg with dom(F) ∩ W = ∅, and hyperteams
X ∈ HypTeams⊇((sup(φ) \ {x}) \ dom(F)) with x /∈ var(X):

1. M,F ,X |=α
Meta ∃±Wxφ iffM,F ,X |=α

Meta Σ+Wxφ;

2. M,F ,X |=α
Meta ∀±Wxφ iffM,F ,X |=α

Meta Π+Wxφ.

We then proceed to extend the function hsp to constrained quantifiers in the following
way, where ℘ is a quantifier prefix, x a variable and W a set of variables.

1. hsp(ε) def= ε;

2. hsp(℘.∃±Wx) def= Σ+Wx.hsp(℘);

94

3.1. A symmetrical extension of DIF

3. hsp(℘.∀±Wx) def= Π+Wx.hsp(℘).

Remark that we do not need to specify any index formula for hsp as the translation
keeps the constraints of the first-order quantifier. However, hsp is still a generalization
of hspϕ since the classic first-order quantifier ∃ is defined as ∃+sup(ϕ) with ϕ being the
subformula of the quantifier.

We can now state the Herbrand-Skolem Theorem for ADIF.

Theorem 3.6 (Herbrand-Skolem Theorem). Let ℘1℘2φ be an ADIF formula in pnf
with quantifier prefix ℘1℘2 ∈ Q and FO subformula φ. Then, M,F ,X |=α

Meta ℘1℘2φ

iff M,F ,X |=α
Meta hsp(℘2)℘1φ, for all acyclic function assignments F ∈ FunAsg with

dom(F)∩dep(℘1℘2φ) = ∅ and hyperteams X ∈ HypTeams⊇(sup(℘1℘2φ) \dom(F)) with
var(X) ∩ var(℘1℘2) = ∅ and dom(F) ∩ var(℘1℘2) = ∅.

Example 3.5. Let us consider again the sentence from Example 3.4, i.e., φ7 =
∃x∀+∅y∃+xz(x = y) ∧ (y = z). We already saw that the sentence is true in the origi-
nal binary structureM of the same example. If we convert φ7 into Meta-ADIF via the
function hsp, we obtain Σ+xzΠ+∅yΣ+∅x(x = y) ∧ (y = z). To show this sentence true
in M, it suffices to assign to z the identity function that copies the value assigned to
x. Then, whatever value is chosen for y, the same value can be assigned to x. By the
semantics of Meta-ADIF , the result immediately follows.

Thanks to this Herbrand/Skolem-isation procedure, we can transform an ADIF sen-
tence in pnf into a Meta-ADIF sentence in pnf, where only the meta-quantifiers Σ+Wx

and ∀x occur. Since one needs only polynomial space in the size of the underlying struc-
ture to represent the quantified functions, the same approach used for FO model checking
is also applicable here.

Theorem 3.7 (Model-Checking Problem). LetM be a finite structure and φ an ADIF
sentence in pnf. Then, the model-checking problem M |= φ can be decided in PSpace
w.r.t |M|.

As is the case of ADIF, we do not know whether Meta-ADIF enjoys a prenex normal
form, even when we only take into consideration the two meta quantifiers Σ+W and Π+W .

Open problem 2 (Meta-ADIF Prenex Normal Form). Is every Meta-ADIF formula
equivalent to a Meta-ADIF formula in pnf?

95

Partie , Chapter 3 – Alternating Dependence/Independence-Friendly Logic

3.2 Comparisons to other logics

In this section, we compare ADIF with other well known logics: first we retrieve the
adequacy theorem for FO from previous chapter; then we extend this adequacy for both
DFL∃ and DFL∀ (and the IFL variants too); finally, we show that ADIF is expressionally
equivalent to the Second-Order Logic (SO for short).

3.2.1 First-order Adequacy

The adequacy of ADIF with FO comes from Theorem 2.5 of previous chapter.

Theorem 3.8 (FO Adequacy (ADIF)). For all FO formulas ϕ and hyperteams X ∈
HypTeams⊇(free(ϕ)), it holds that:

1. M,X |=∃∀ ϕ iff there exists a team X ∈ X such that, for all assignments χ ∈ X,
it holds thatM, χ |=FO ϕ;

2. M,X |=∀∃ ϕ iff, for all teams X ∈ X, there exists an assignment χ ∈ X such that
M, χ |=FO ϕ.

To prove this theorem, we first restrict ourselves to hyperteams X ∈
HypTeams(free(ϕ)) thanks to Corollary 2.1. Then, we remark that for every hyperteam
X and variable x, we have ext(X, x) = extvar(X)(X, x) and the rest of the proof is the
same as the one for Theorem 2.5.

3.2.2 Dependence/Independence-Friendly Logic Adequacy

As already mentioned, DIF and its fragments can be seen as syntactic fragments
of ADIF. We show here that the semantics of those fragments coincide with the one
presented in Section 1.2.

In order to show that ADIF is indeed a conservative extension of DIF, we need to
be able to simulate the semantics on teams with hyperteams. As a first step, we lift
the cylindrification operator to hyperteams in the obvious way, by defining cyl(X, x) def=
{cyl(X, x) | X ∈ X}. While the semantics of ADIF does not provide a primitive operator
for cylindrification, this operation can easily be simulated by first dualising the hyperteam,
then by applying the extension for x uniformly over all the variables in the domain of X,
and, finally dualising the result again. The following lemma establishes the equivalence of
these two different operations.

96

3.2. Comparisons to other logics

Lemma 3.2 (Cylindrical Extension). Let X ∈ HypTeams be a hyperteam. Then,
cyl(X, x) ≡ ext±W(X, x), for all variables x ∈ Var and sets of variables W, with
var(X) ⊆ W ⊆ Var.

A similar problem arises with the team partitioning operator that is not present in the
semantics of ADIF. Once again, the dualisation operator, together with the hyperteam
partitioning operator, allows us to simulate it. More specifically, we first apply the du-
alisation of the hyperteam X, then the partitioning to obtain (X1,X2) ∈ Part(X), and,
finally, dualise the two resulting hyperteam and obtain X1 and X2, each of which happens
to contain teams that would result from the team partitioning operation applied to the
teams in X.

Lemma 3.3 (Team Partitioning). Let X ∈ HypTeams be a hyperteam. Then:

1. for all hyperteam bipartitions (X1,X2) ∈ Part(X) and teams X ′1 ∈ X1 and X ′2 ∈
X2, there exists a team X ∈ X such that X ⊆ X ′1 ∪X ′2;

2. for all teams X ∈ X and team bipartitions (X1, X2) ∈ Part(X), there exist a
hyperteam bipartition (X1,X2) ∈ Part(X) and two teams X ′1 ∈ X1 and X ′2 ∈ X2

such that X ′1 ⊆ X1 and X ′2 ⊆ X2.

Based on these two lemmas, we can prove the following theorem, which establishes
the required adequacy result.

Theorem 3.9 (DIF Adequacy). For all DIF formulas ϕ and hyperteams X ∈
HypTeams⊇(sup(ϕ)), it holds that:

1. if ϕ is DIF∃ thenM,X |=∃∀ϕ iff there is a team X ∈ X such thatM, X |=∀DIF ϕ;

2. if ϕ is DIF∀ thenM,X |=∀∃ϕ iff, for all teams X ∈ X, it holds thatM, X |=∃DIF ϕ.

From now on, for every DIF formula ϕ, we denote by ϕ∃ and ϕ∀ the DIF∃ and DIF∀
variants obtained from ϕ by removing the constraints on the universal and existential
quantifiers, respectively, i.e., by substituting −∅ for the variable restrictions of such quan-
tifiers. Recall that, [Hod97b] (see also [MSS11]) defines an IFL sentence ϕ to be true
in a structure M, in symbols M |=IFL ϕ, if M, {∅} |=∀DIF ϕ, and false in M, namely
M 6|=IFL ϕ, if M, {∅} |=∃DIF ϕ. As observed above, this means that ϕ is true in M, if
M, {∅} |=∀DIF ϕ∃, and false inM, ifM, {∅} 6|=∃DIF ϕ∀. Therefore, thanks to Theorem 3.9,
we can assert the following.

Remark 3.1. For every DIF-sentence ϕ, we have that:

97

Partie , Chapter 3 – Alternating Dependence/Independence-Friendly Logic

— M |=IFL ϕ iffM, {{∅}} |=∃∀ ϕ∃, i.e.,M |= ϕ∃, and
— M 6|=IFL ϕ iffM, {{∅}} 6|=∀∃ ϕ∀, i.e.,M 6|= ϕ∀.

The following example illustrates the connection between ADIF and DIF.

Example 3.6. In Example 3.2, it has been observed that the two ADIF sentences ϕ3 =
∀x∃+∅y(x = y) and ϕ4 = ∃x∀+∅y¬(x = y) evaluate to false and true, respectively, in
the binary structure M = 〈{0, 1}, {=M}〉 against the trivial hyperteam {{∅}}. We also
claimed that they are the semantic negation of each other, something that now can be easily
proved thanks to Corollary 2.5 and Theorem 2.3. Note that all these properties hold true for
the two DIF∃ and DIF∀ sentences ϕ3

′ = ∀−∅x∃+∅y(x = y) and ϕ4
′ = ∃−∅x∀+∅y¬(x = y)

as well. At this point, we can show that the truth and falsity of ϕ3
′ and ϕ4

′ convey different
meanings when evaluated in IFL (equivalently, DIF). Both ϕ3

′ and ϕ4
′ are IFL sentences.

Moreover, as previously stated, ϕ3
′ is an DIF∃ sentence, while ϕ4

′ is a DIF∀ sentence.
Thus, from Remark 3.1, we immediately obtain that, when evaluated in IFL, ϕ3

′ is not
true and ϕ4

′ is not false. However, again by Remark 3.1, ϕ3
′ is not false and ϕ4

′ is not
true either, since M, {{∅}} |= ϕ3∀

′ and M, {{∅}} 6|= ϕ4∃
′. Therefore, the two sentences

are undetermined.

The considerations discussed above allows us to characterise elegantly in ADIF some
meta-properties of IFL sentences, such as indeterminacy and sensitivity to signalling
phenomena. These results witness the expressive advantages of ADIF over IFL and
substantiate the intuition that ADIF can be thought of as a logic to reason about imperfect
information, as opposed to IFL, which can be viewed more as a language to reason with
imperfect information.

Let us start with indeterminacy of IFL sentences first. [Hod97b] defines an IFL
sentence ϕ to be undetermined in a structure M if it is neither true nor false in M.
Hence, an immediate application of Remark 3.1 gives us the following corollary.

Corollary 3.1 (Definability of IFL-Indeterminacy). For every IFL sentence ϕ, let ϕu
be the ADIF pseudo sentence ¬ϕ

∃
∧ ϕ

∀
. Then, it holds that

M |= ϕu iff ϕ is undetermined inM.

The second phenomenon is called signalling [Hod97b; MSS11]. In game-theoretic
terms, the phenomenon arises in situations where, for instance, one of the existential
(resp., universal) players can store inside one of his variables, say variable z, the value of

98

3.2. Comparisons to other logics

some variable x of the opponent that another existential (resp., universal) player is not
allowed to see. However, by merely being able to access the value of z, this last player can
infer the value of the forbidden variable x and choose a response accordingly.

The logical analogue of this phenomenon is captured in IFL by forms of information
leaks, where information about the value of a variable may leak toward another variable by
means of a third, possibly unused, one. The typical example of this phenomenon already
emerges in the simple IFL sentence ∀x∃−xy (x = y). Clearly, Eloise, who cannot see
the value of x when choosing the value for y, does not have a uniform winning strategy
to satisfy for equality. Since also Abelard does not have one to falsify it, the formula
is undetermined in IFL. However, the sentence ∀x∃z∃−xy (x = y), where the dummy
quantifier for z has been added, becomes determined, and specifically true. The reason
is that now Eloise, who intuitively represents the team of existential players, does have
a winning strategy. Indeed, when choosing z, she is allowed to see the value of x and
can just copy that value onto z. This time, however, when choosing the value of y, while
she still has no direct access to the value of x, she does have indirect access to its value
through z, which she is allowed to see. The winning move here is then to copy whatever
value is inside z onto y to satisfy the equality.

In general, then, we say that an IFL sentence ϕ is sensitive to signalling w.r.t some
variables not in sup(ϕ), if the introduction of vacuous quantifiers over them in ϕ changes
its truth value. For sentences in prenex normal form this means that, if we change the
quantifier prefix ℘ with one of its extensions ℘̂ , then the two sentences ℘ψ and ℘̂ψ have
different truth values. In IFL, this may only happen when ϕ is undetermined, while its
extension ϕ̂ is determined. In other words, either ϕ is not true, while ϕ̂ is true, or ϕ is
not false, while ϕ̂ is false. Once again, by applying Remark 3.1, we obtain the following.

Corollary 3.2 (Definability of IFL-Signalling). Let ϕ = ℘ψ be an IFL sentence in pnf
with quantifier prefix ℘ ∈ Q and quantifier-free subformula ψ. Moreover, let ℘̂ ∈ Q be a
quantifier prefix extending ℘ and ϕ℘̂s the ADIF pseudo sentence (¬ϕ

∃
∧ ϕ̂∃)∨ (ϕ

∀
∧¬ϕ̂∀),

with ϕ̂ def= ℘̂ψ. Then, it holds that

M |= ϕ℘̂s iff ϕ is sensitive to signalling inM w.r.t ℘̂.

It is important to observe here that the ability of ADIF to restrict both the universal
and existential quantifiers at the same time, that is to treat the two players in a completely
symmetric way, is essential to characterise the above definability properties. Both ϕu and

99

Partie , Chapter 3 – Alternating Dependence/Independence-Friendly Logic

ϕ
℘̂
s , on the other hand, are undetermined in IFL.
It is also worth remarking that the hyperteam semantics and pseudo sentences interact

in quite a peculiar way, giving rise to a new form of information leak, separate from the
one occurring in connection with signalling and dummy quantifiers. This is evidenced by
the pseudo sentences ϕ5 and ϕ6 of Example 3.3. We showed there thatM, {{∅}} 6|=∃∀ ϕ5

and M, {{∅}} |=∀∃ ϕ6, hence, M, {{∅}} 6|=∀∃ ϕ5 and M, {{∅}} |=∃∀ ϕ6. However, the
example also shows thatM,X |=∀∃ ϕ5 andM,X 6|=∃∀ ϕ6, where X = {{z :0, z :1}}. Here,
the information on z contained in X may leak into y through the hyperteam. Observe that
hyperteam X can be obtained by means of a suitable dummy quantification of variable z
and, therefore, we immediately obtain thatM, {{∅}} |=∃∀ ∃zϕ5 andM, {{∅}} 6|=∀∃ ∀zϕ6.
As a consequence, introducing a dummy quantifier for a variable that is free but not in the
support of a pseudo sentence can change the truth value, even if such a variable cannot
depend on any other variable. Note that this specific form of information leak does not
actually reflect any signalling phenomenon in the classic game-theoretic sense and does
not occur in IFL either.

3.2.3 Second-Order & Team Logics

We have previously shown that ADIF is a conservative extension of DIF. However,
its game-theoretic determinacy gives us a considerably more expressive logic than DIF,
with a full-fledged second-order flavour, even in the absence of a contradictory negation.
Indeed, the meta-theory interpretation allows us to show that every SO and TL formula
can be interpreted in the ADF fragment of ADIF. Vice versa, every ADF formula, over
a restricted class of hyperteams, can be interpreted by corresponding SO sentences and
TL formulas. This implies that, from a descriptive-complexity viewpoint, ADF formulas
cover at least the entire polynomial hierarchy.

Every non-null hyperteam X ∈ HypTeams(~x) defined over a sequence of variables
~x ∈ V∗, which is at most equipotent to the domain of the underlying structure M, i.e.,
|X| ≤ |M|, can be encoded by a k-ary relation symbol PX , with k

def= |~x | + 1, whose
interpretation PX

M ⊆ Dk is defined (up to isomorphism) as follows: for every team X ∈ X,
there is an element v ∈ D and, vice versa, for every element v ∈ D, there is a team X ∈ X

such that
χ ∈ X iff M] {PX

M }, χ[y 7→ v] |=FO PX(~xy),

for all assignments χ ∈ Asg(~x). Otherwise said, by |X| ≤ |M|, we can have a sur-

100

3.2. Comparisons to other logics

jection fsurj : D → X and thanks to this surjection, we define PX
M def= {(v1, . . . , vk) |

χv1,...,vk−1
∈ fsurj(vk)} where χv1,...,vk−1

maps xi to vi for i ∈ {1, . . . , k − 1}.
Such an interpretation PX

M is later on called Rel(X). It is not clear whether there
exist other relational encodings of hyperteams with greater (possibly infinite) cardinality
than the domain of the structure. Now, by Theorem 3.6, every ADF formula in pnf can be
translated into an equivalent Meta formula, where the semantics of the meta quantifiers
can be easily modelled via second-order quantifications. This leads to the result below,
which implies that every ADF-definable hyperteam (under the above restriction) is SO-
definable.

Theorem 3.10 (ADF-SO Interpretation). For every ADF formula ϕ in pnf with quan-
tifier prefix ℘ ∈ Q over a signature S, set of variables sup(ϕ) ⊆ V ⊆ Var with
V ∩ var(℘) = ∅, and relation symbol PX 6∈ S with ar(PX) = |V| + 1, there exist two
SO sentences ψ∃∀ and ψ∀∃ over signature S]{PX} such that, for all S-structuresM and
non-null hyperteams X ∈ HypTeams(V) with |X| ≤ |M|, the following equivalence holds
true:M,X |=α ϕ iffM] {Rel(X)} |=SO ψα.

Using a similar approach, every non-empty non-null hyperteam X ∈ HypTeams(V)
defined over a set of variables V ⊆ V, with |X| ≤ |M|, can be encoded in a team
Team(X, y) ∈ Teams(V ∪ y), with y 6∈ V, as follows: for every team X ∈ X, there is
an element v ∈ D and, vice versa, for every element v ∈ D, there is a team X ∈ X such
that

χ ∈ X iff χ[y 7→ v] ∈ Team(X, y),

for all assignments χ ∈ Asg(V). Since every SO-definable relation can be encoded in a
TL-definable team [KV09; KN09], the next result easily follows from the previous one.

Corollary 3.3 (ADF-TL Interpretation). For every ADF formula ϕ in pnf with quan-
tifier prefix ℘ ∈ Q, set of variables sup(ϕ) ⊆ V ⊆ V with V ∩ var(℘) = ∅, and
variable y /∈ V ∪ var(℘), there exist two TL formulas φ∃∀ and φ∀∃ with free(φ∃∀) =
free(φ∀∃) = V ∪ y such that, for all structures M and non-empty non-null hyperteams
X ∈ HypTeams(V) with |X| ≤ |M|, the following equivalence holds true: M,X |=α ϕ iff
M,Team(X, y) |=TLφα.

It is unknown whether the above two interpretation results still hold when the con-
straint |X| ≤ |M| on the size of the hyperteam and the domain of the structure is violated.

101

Partie , Chapter 3 – Alternating Dependence/Independence-Friendly Logic

Open problem 3 (ADF-SO/TL Interpretations). Is it possible to obtain interpretation
results in a similar vein to Theorem 3.10 and Corollary 3.3, when |X| > |M|?

In addition, it is not clear what the distinguishability power of ADF is w.r.t the
cardinality of the hyperteams, especially in the infinite case.

Open problem 4 (Hyperteam Cardinality). Is there an ADF satisfiable formula ϕ such
that, ifM,X |=α ϕ, then |X| > |M| ≥ ω, for some α ∈ {∃∀,∀∃}?

For the converse direction of the interpretation results, given an S-structure M,
a relation symbol PX ∈ S, and a sequence of variables ~x ∈ Var(PX), we denote by
Team(PX

M , ~x) ∈ Teams(~x) the standard encoding in a team (up to isomorphism) of
the interpretation PX

M of PX defined as follows:

χ ∈ Team(PX
M , ~x) iff M, χ |=FO PX(~x),

for all assignments χ ∈ Asg(~x). Every SO sentence can be put in a canonical form,
where every quantification over functions can be simulated by a meta quantifier that only
depends on the variables to which the function is applied. Thus, by exploiting Theorem 3.6,
the result below can be proved.

Theorem 3.11 (SO-ADF Interpretation). For every SO sentence ψ over a signature S,
relation symbol PX ∈ S, and sequence of variables ~x ∈ Var(PX), with var(ψ)∩ ~x = ∅, i.e.,
no variable in ~x occurs in ψ, there exists an ADF formula ϕ in pnf over signature S \PX

with sup(ϕ) = free(ϕ) = ~x such that, for all S-structuresM, the following equivalence
holds true:M |=SOψ iffM\PX ,

{
Team(PX

M , ~x)
}
|=∃∀ ϕ.

By using the translation from TL to SO (see [Vää07; Har79], for the sentences,
and [KV09; KN09], for the formulas), we can show the following.

Corollary 3.4 (TL-ADF Interpretation). For every TL formula φ, there exists an ADF
formula ϕ in pnf with sup(ϕ) = free(ϕ) = free(φ) such that, for all structures M
and teams X ∈ Teams⊇(free(φ)), the following equivalence holds true: M, X |=TL φ iff
M, {X} |=∃∀ ϕ.

3.3 Game-Theoretic Semantics

As discussed in Section 3.1.3, the alternating Hodges semantic relationM |= φ implies
the existence of a semantic game GMφ , played by Eloise and Abelard, with the property

102

3.3. Game-Theoretic Semantics

that Eloise wins the game iff the ADIF sentence φ is indeed satisfied in the structure
M. In that game, basically, the two players battle each other in challenge-response tri-
als, where each of them tries to win the quantifier-free subformula or force the other one
to break the (in)dependence constraints. In this section, we formalise such a game, thus
providing a game-theoretic semantics for ADIF and a proof of its adequacy w.r.t both
the compositional semantics of Definition 3.2 and the Herbrand-Skolem semantics of The-
orem 3.6. Thanks to Corollary 3.4, this result also provides an indirect game-theoretic
semantics for TL, a result that, as far as we know, was still missing [Vää07]. Note that,
unlike for DIF [HS97; MSS11], GMφ needs to be a zero-sum perfect-information game in
order to comply with the game-theoretic determinacy of the logic (see Corollary 2.4),
which for sentences is reflected in the law of excluded middle (see Corollary 2.5).

A two-player turn-based arena A = 〈P ∃, P ∀, pI ,M〉 is a tuple where
1. P ∃, P ∀ are the sets of positions owned by Eloise and Abelard respectively with
P ∃∩P ∀ = ∅; we denote by P the set of all positions in the game, i.e. P = P ∃] P ∀,

2. pI ∈ P is the initial position, and
3. M ⊆ P × P is the binary left-total relation describing all possible moves.
A path π ∈ Paths ⊆ P∞ is a finite or infinite sequence of positions compatible with

the move relation, i.e., (π[i], π[i + 1]) ∈ M , for all i ∈ J0, . . . , |π| − 1K; it is initial if
|π| > 0 and π[0] = pI . A history for player α ∈ {∃,∀} is a finite initial path h ∈
Histα ⊆ Paths ∩ (P ∗ · Pα) terminating in an α-position. A play ρ ∈ Plays ⊆ Paths is a
maximal (i.e., infinite since M is left-total) initial path. A strategy for player α∈ {∃,∀}
is a function σα ∈ Stratα ⊆ Histα → P mapping each α-history h ∈ Histα to a position
σα(h) ∈ P compatible with the move relation, i.e., (lst(h), σα(h)) ∈M . The induced play
of a pair of strategies (σ∃, σ∀) ∈ Strat∃ × Strat∀ is the unique play π ∈ Plays such that
π[i+1]=σ∃(π[: i]), if π[i] ∈ P ∃, and π[i+1]=σ∀(π[: i]), otherwise, for all i ∈ J0, . . . , |π|−1K.
A game G = 〈A,Win〉 is a tuple, where A is an arena and Win ⊆ Plays is the set of winning
plays for Eloise; the complement Plays\Win is winning for Abelard. Eloise (resp., Abelard)
wins the game if she (resp., he) has a strategy σ∃ ∈ Strat∃ (resp, σ∀ ∈ Strat∀) such that,
for all opponent strategies σ∀ ∈ Strat∀ (resp., σ∃ ∈ Strat∃), the corresponding induced
play does (resp., does not) belong to Win. A game is determined if one of the two players
wins.

With the notation put in place, we can now describe the semantic game, called in-
dependence game, where not only the players perform the choices corresponding to the
operators in the formula, but also check that the choices of the opponent conform to the

103

Partie , Chapter 3 – Alternating Dependence/Independence-Friendly Logic

associated independence constraints. Although a specific move for each ADIF syntactic
construct can be given, for the sake of a simpler presentation, we only define the moves for
the quantifiers. Any quantifier-free FO formula ψ, indeed, can be interpreted as a mono-
lithic atomic relation, whose truth can be immediately evaluated once an assignment on
all its free variables is given. For this reason, we assume φ = ℘ψ to be in pnf, for some
quantifier prefix ℘ ∈ Q, where no variable is quantified twice. Finally, as a standard as-
sumption from a descriptive-complexity viewpoint [Imm99; Grä+05], we restrict to finite
structures only. The general case, as well as the lift of the approach to formulas, will be
the focus of future work.

The game for φ = ℘ψ consists of two recurrent stages/phases, called decision and
challenge. The decision phase is almost identical to a classic Hintikka’s FO game [HS97],
where the player associated with the current subformula ϕ = Q±Wx. ϕ′ of φ chooses
a value for the bound variable x to be stored in the current assignment χ. Once all
quantifiers are eliminated, however, instead of declaring the winner by simply evaluating
the truth ofM, χ |=FO ψ, the game enters the challenge phase. Here the players, following
again the order of quantification, are asked to confirm or change their choices. Making a
change here is intended to allow for verifying that the independence constraints declared
in ℘ are satisfied; after all, if the opponent’s choice is indeed independent of the player’s
one, such a change should not make any difference in the values of opponent’s variables.
In more detail, the player associated with Q±Wx. ϕ′ can either

1. confirm her/his own choice for the value of x, maintaining both the assignment χ
and phase unchanged or

2. challenge the adversary, by modifying the value assigned to the variable x in χ,
deleting all values for the variables quantified in ℘ after x, and reverting to the
decision phase.

In both cases, the control is passed on to the player of the formula ϕ′ in the scope of the
quantifier Q±Wx, so as to allow her/him to reply to the challenge. As it should be evident
from the alternation of phases, unlike the semantic game for FO, GMφ is an infinite-
duration game that allows for both finite and infinite plays. The finite ones necessarily
terminate in a position of the challenge phase with current subformula ψ, where the winner
can be determined by evaluating the truth of M, χ |=FO ψ. The infinite plays, instead,
are won by the player able to force the adversary to change infinitely often the values
of one of her/his own variables x in a way that violates the independence constraints,
without being able, at the same time, to force the challenger to do the same on a variable

104

3.3. Game-Theoretic Semantics

subsequent to x in ℘. We clarify this point later on.
The formalisation of the arena AMφ underlying the independence game GMφ is reported

below, where psf(φ) denotes the smallest set of subformulas of φ, called prefix subformulas,
such that

1. φ ∈ psf(φ) and

2. if ϕ = Q±Wx. ϕ′ ∈ psf(φ) then ϕ′ ∈ psf(φ).

As an example, for the sentence φ4 = ∃x.∀+∅y.¬(x = y) reported in Example 3.2, we
have psf(φ4) = {φ4,∀+∅y.¬(x = y),¬(x = y)}.

Construction 3.1 (Independence Arena). For a finite structure M and a pnf ADIF
sentence φ = ℘ψ, with ψ∈FO, the independence arena AMφ = 〈P ∃, P ∀, pI ,M〉 is defined
as follows.

1. the set of positions P ⊆ psf(φ) × Asg × {I, II} contains those triples (ϕ, χ,�)
of a prefix subformula ϕ ∈ psf(φ) of φ, an assignment χ ∈ Asg, and a phase
flag � ∈ {I, II} such that χ ∈ Asg(free(ϕ)), if � = I, and χ ∈ Asg(free(ψ)),
otherwise;

2. the set P ∃ of Eloise’s (resp., P ∀ of Abelard’s) positions contains the triples of the
form (∃±Wx.ϕ′, χ,�) or (ψ, χ, I) (resp., (∀±Wx.ϕ′, χ,�));

3. the initial position pI
def= (φ, ∅, I) contains the original sentence φ associated with

the empty assignment ∅ and the phase flag I;

4. the move relation M ⊆ P × P contains exactly those pairs of positions (p1, p2) ∈
P × P satisfying one of the conditions below:

(a) p1 = (Q±Wx. ϕ′, χ,�) and p2 = (ϕ′, χ,�), with x 6∈ free(ϕ′);

(b) p1 = (Q±Wx. ϕ′, χ, I) and p2 = (ϕ′, χ[x 7→v], I), for some v∈D;

(c) p1 = (ψ, χ, I) and p2 = (φ, χ, II);

(d) p1 = (Q±Wx. ϕ′, χ, II) and p2 = (ϕ′, χ, II);

(e) p1 = (Q±Wx. ϕ′, χ, II) and p2 =(ϕ′, χ′[x 7→v], I), for some v∈D with v 6= χ(x),
where χ′ def= χ�free(Q±Wx.ϕ′).

Intuitively, a position (ϕ, χ,�) maintains the information about the formula ϕ that
still has to be played against, the assignment χ containing the variables whose values
have already been chosen, and a flag � identifying the phase, either I or II. Item 4a
forces the trivial move for the vacuous quantifications, Item 4b defines the moves for

105

Partie , Chapter 3 – Alternating Dependence/Independence-Friendly Logic

the decision phase, Item 4c switches from the decision to the challenge phase, Item 4d
defines the confirmation of the choice already made, and, finally, Item 4e describes the
challenge to the adversary, where the phase is reverted to the decision one, the value
for the variable involved in the challenge is changed, and all values for the subsequent
variables are deleted.

The winning condition for the game is defined as follows. Since the winner of finite
plays is easy to determine, as it only depends on whether the assignment in the last
position satisfies ψ, we shall focus on the infinite ones. Let us consider an arbitrary prefix
subformula ϕ = Q±Wx. ϕ′ ∈ psf(φ) with x ∈ V def= free(ϕ′). By Fϕ : Asg(V) → 2Rsp±W

we denote the map associating each assignment χ ∈ Asg(V) defined over the variables
in V with the set Fϕ(χ) def= {F ∈ Rsp±W | F (χ) = χ(x)} of all the ±W-functions
compatible with the value assigned to x in χ. In addition, by Rϕ : Hist → 2Rsp±W , with
Hist def= Hist∃ ∪Hist∀, we denote the map assigning to each history h ∈ Hist the set Rϕ(h)
of all the ±W-functions compatible with the most recent assignments along h. Rϕ is
referred to as a bucket of response functions. Formally:

— Rϕ(pI) def= Rsp±W ;

— Rϕ(h · (ϕ′, χ, I)) def=

Fϕ(χ), if Rϕ(h) ∩ Fϕ(χ) = ∅;

Rϕ(h) ∩ Fϕ(χ), otherwise;
— Rϕ(h · p) def= Rϕ(h), in all other cases, i.e., p 6= (ϕ′,_, I).

Essentially, the bucket Rϕ(h) maintains the most updated set of Herbrand/Skolem func-
tions for the variable x that the associated player can use to reply to all the variables
which x depends upon. When a play starts, no choice has been made yet, so Rϕ(pI) is
full. Once a position (ϕ′, χ, I) is reached after a history h, a fresh value χ(x) for x has
just been chosen to resolve the quantifier Q, so the bucket is updated by removing from
Rϕ(h) all the functions that are not compatible with this new value. If such resulting set
becomes empty, the player is caught cheating and the bucket is replenished taking into
account only the choice just made.

In general there are two reasons for a player to cheat. Either she/he is changing the
value of the variable to challenge the adversary to prove that he/she is complying with the
independence constraints (Item 4e), or she/he chooses a new value because is unable to
both satisfy her/his goal and comply with the constraints on her/his variables (Item 4b).
Obviously, the second type of cheating, called defensive cheat, can, in turn, induce one of
the first type, called challenge cheat. Hence, complex chains of different types of cheating
can occur. In order to identify which player is the last one who was forced to cheat,

106

3.3. Game-Theoretic Semantics

we consider an arbitrary map prt : psf(φ) → N assigning to each prefix subformula
ϕ = Q±Wx. ϕ′ ∈ psf(φ) a priority prt(ϕ) such that

1. prt(ϕ) is even iff Q = ∀ and

2. prt(ϕ) < prt(ϕ′).

To each history h ∈ Hist we can then assign the sequence of cheats cht(h) occurring in
it via the map cht : Hist → N∗ as follows:

— cht(pI) def= 0;
— cht(h ·(ϕ′, χ, I)) def= cht(h)·prt(ϕ), whenever Rϕ(h) ∩ Fϕ(χ)=∅;
— cht(h · p) def= cht(h) · 0, in all other cases.

This construction easily lifts to infinite plays π ∈ Playsω def= Plays ∩ P ω through the map
cht : Playsω → Nω such that cht(π)[i] = cht(π[: i]), for all i ∈ N. Finally, prt(π)
denotes the maximal priority seen infinitely often along cht(π). Note that every infi-
nite play necessarily contains at least infinitely many challenge cheats (Item 4e). Thus,
prt(π) uniquely identifies the right-most variable in ℘ over which the corresponding
player cheated, without being able, at the same time, to force the adversary to do the
same. If prt(π) is even, Abelard is cheating infinitely often, so he loses the play π, which
is, therefore, won by Eloise.

Construction 3.2 (Independence Game). For a finite structure M and a pnf ADIF
sentence φ = ℘ψ, with ψ ∈ FO, the independence game GMφ = 〈A,Win〉 is defined as
prescribed in the following:

1. A is the independence arena AMφ defined in Construction 3.1;

2. Win ⊆ Plays is the set of all the plays π satisfying the following conditions:

(a) if π is infinite then prt(π) is even;

(b) if π is finite then lst(π) = (ψ, χ, II) and M, χ |=FO ψ, for some assignment
χ ∈ Asg(free(ψ)).

Example 3.7. Let us consider φ7 = ∃x.∀+∅y.∃+xz. (ψ1(x, y) ∧ ψ2(y, z)), the sentence of
Example 3.4 from Section 3.1.1, which is true in the binary structureM of that example.
Therefore, Eloise, who controls the values of the variables x and z, must have a strategy
to win the independence game GMφ7 . One possibility is to choose, during the decision phase,
the constant function fx = 0 for x and the identity function fz(x) = x for z. Clearly,
she wins any finite play where Abelard chooses the constant function fy = 0 for y, since
the resulting assignment satisfies both (x = y) and (y = z). Let us assume, then, that he

107

Partie , Chapter 3 – Alternating Dependence/Independence-Friendly Logic

chooses fy = 1, instead, in the decision phase. Since at the end of this phase Eloise knows
she is losing, she will challenge Abelard by changing her function fx for x to the constant
1. This raises the priority of the current play fragment to 1. Now, if Abelard sticks to
function fy = 1 for y, he loses, since fz(x) = x would now give z value 1 as well, leading
to a finite play. So he needs to modify his choice to fy = 0, this time raising the priority
of the play fragment to 2 and generating a challenge for Eloise on z. Eloise, however, can
stick to the identity function and make way to a new challenge phase. Now, since Eloise
is losing with the current assignment, she will challenge once again, choosing fx = 0 and
raising priority 1. Abelard is then forced to change function and raise priority 2 and we
are back to where we started. This cyclic process ends up forming an infinite play whose
maximal priority is 2, since Eloise can force Abelard to defensively change bucket infinitely
often, thus satisfying her winning condition.

It is worth noting that the game devised above bears some similarities with the team-
building game proposed by [Bra13] for DL [Vää07]. Both ours and his are complete-
information games extending Hintikka’s game for FO. In addition, Bradfield’s game also
checks the uniformity of the choices made by Eloise by means of a challenge mechanism,
where the sentence is played over repeatedly by the players. The similarities, however,
end here as the two games differ significantly in nature. First, the repeated evaluations
of a sentence φ in Bradfield’s game allow him to build teams during a play, one for each
dependence atom occurring in φ. Each team is then used to check whether Eloise’s choices
have been made in accordance to the dependency constraint encoded by the correspond-
ing atom. All these teams are explicitly recorded in each state of his game, together with
the partial assignment recording the choices made by the players so far in the current
repetition. In this sense, then, Bradfield’s arena is intrinsically second order, as it records
sets of assignments in each state and contains moves that update such sets. Second, Brad-
field’s game on finite structures only admits finite plays and its winning condition, then,
boils down to a simple reachability. On the contrary, our game is played in a purely
first-order arena, whose states only keep track of players choices collected in the partial
assignment. Moreover, it always admits infinite plays, where players can repeatedly chal-
lenge each other forever. The second-order power of our game, then, resides entirely in
the winning condition, where the priority-based mechanism accounts for the alternation
of the quantifiers along the, possibly infinite, repeated evaluations of the sentence.

To conclude, by exploiting Theorem 3.6, it is possible to prove the adequacy of the
game-theoretic semantics w.r.t the model-theoretic one of Definition 3.4 and, in turn, w.r.t

108

3.4. Conclusion

the compositional one of Definition 3.2, where the Herbrand/Skolem functions obtained
by the evaluation of the existential (resp., universal) meta quantifiers of the Meta sentence
hspϕ℘ψ (resp, ¬hspϕ℘ψ) induce a winning strategy for Eloise (resp., Abelard) in GMφ .
This also implies the determinacy of the independence game, without the need to rely on
topological determinacy theorems, as those of [Mar75; Mar85].

Theorem 3.12 (Game-Theoretic Semantics). For a finite structure M and an ADIF
sentence φ in prenex form, the independence game GMφ defined in construction 3.2 is such
thatM |= φ (resp.,M 6|= φ) iff GMφ is won by Eloise (resp., Abelard).

3.4 Conclusion

We have introduced Alternating Dependence/Independence-Friendly Logic (ADIF), a
conservative extension of Independence-Friendly Logic (IFL), that incorporates negation
in a very natural way and avoids the indeterminacy of the logic. This is achieved by
means of a hyperteam semantics, which allows us to treat the two players symmetrically
and force both of them to make their choices according to the (in)dependence constraints
specified in the corresponding quantifiers. Thanks to the fully symmetric treatment of the
(in)dependence constraints, the new semantics allows for restoring the law of excluded
middle for sentences and enjoys the property of game-theoretic determinacy. Interestingly
enough, this also grants ADIF the full expressive power of Second Order Logic (SO)
and, as a consequence, also of Team Logic (TL), without the need of including additional
connectives in the language. The expressive power gained with respect to IFL can be
leveraged, for instance, to define directly in the logic notions such as indeterminacy and
sensitivity to signalling, whose expressions require the restrictions of both players, that
is the uniformity of their strategies, at the same time. This gives ADIF the flavour of a
logic suitable to reason “about” imperfect information in a general sense. For the prenex
fragment, a Herbrand-Skolem semantics is also provided that directly connects ADIF
with SO, as well as a game-theoretic semantics on finite structures, given in terms of a
determined turn-based infinite-duration perfect-information game played on a first-order
arena.

Interesting questions that remain open concern whether a prenex normal form theorem
holds for the language. Equally unsettled is the actual expressive power of ADIF. We do
show that it is at least as expressive as SO and, thus, covers the full polynomial hierarchy.
The proof for the other direction, however, relies upon the assumption of equipotency be-

109

Partie , Chapter 3 – Alternating Dependence/Independence-Friendly Logic

tween the hyperteam X and the domain D of the underlying structureM, which allows
us to encode hyperteams by means of a suitable relation Rel(X). There seems to be
no straightforward way to do the same for “big” hyperteams. Yet again, it is not clear
whether such “big” hyperteam actually matter, in the sense of there being a formula that
can distinguish between “big” and “small” hyperteams. Usually, similar questions have
been addressed by defining suitable Ehrenfeucht-Fraïssé games to precisely characterise
the expressive power of the logic. For this reason, one may think to do the same for ADIF
as well. The main difficulty we foresee here is, however, the treatment of quantifications,
for which no explicit commitment to a specific valued is made in the semantics (all choices
are evenly encoded in the hyperteam). In a classic Ehrenfeucht-Fraïssé games game, in-
stead, the moves corresponding to the choices of a value by a quantifier make explicit
commitments. Currently, it is not clear to us how to circumvent this discrepancy.

110

3.A. Proofs of Section 3.1

3.A Proofs of Section 3.1

Most results can be proven thanks to a straight forward adaptation of what is presented
in the Appendices of Chapter 2. However adapting the monotony results for the vW
relation with respect to the ext±U operator is a bit more intricate and is developped
here.

Recall that, for a team X ∈ X�W , we denote by X�W one (arbitrarily chosen) of the
teams Y ∈ X such that Y�W = X.

Lemma 3.4 (ADIF Monotonicity I). Let X,X′∈HypTeams be two hyperteams with X vW
X′, for some W ⊆ Var. Then, the following hold true:

1. X′ vW X;

2. (a) X =W ext+U(X, x), if x 6∈ W, with U ⊆ Var;

(b) ext+U(X, x) vW∪{x} ext+U′(X′, x), with x ∈ Var, U ⊆ U′ ⊆ Var, and U ⊆ W;

3. for every (X1
′,X2

′) ∈ Part(X′), there is (X1,X2) ∈ Part(X) such that X1 vW X1
′

and X2 vW X2
′.

Proof. 1) By X vW X′, there is a function f : X�W → X′�W such that f(X�W) ⊆ X�W

for all X ∈ X. Moreover, for all X ∈ X, since f(X�W) ⊆ X�W , there is a function
gX : ⋃{X′ ∈ X′ | X′�W = f(X�W)} → X such that χ�W = (gX(χ))�W for all χ
in ⋃{X′ ∈ X′ | X�W = f(X�W)}. In order to prove the claim, consider a generic
team X′ ∈ X′�W . We have to show that there is X ∈ X such that X�W ⊆ X′.
By the definition of X′�W , we have that X′ = (img(Γ′))�W , for some Γ′ ∈ Chc(X′).
We define Γ ∈ Chc(X) as: Γ(X) = gX(Γ′((f(X�W)) �W)) for all X ∈ X. Clearly,
(img(Γ))�W ⊆ (img(Γ′))�W = X′. Since (img(Γ)) ∈ X, the thesis holds.

2a) The claim follows from the fact that for every F ∈ Rsp, χ ∈ Asg, and x 6∈ W, it
holds that χ[x 7→ F (χ)]�W = χ�W , which implies ext(X,F , x)�W = X�W for every
X ∈ X and F ∈ Rsp+U , and the claim follows.

2b) By X vW X′, there is a function f : X�W → X′�W such that f(X�W) ⊆ X�W for
all X ∈ X. In order to prove the claim, take a generic team X̂ ∈ ext+U(X, x).
Thus, X̂ = ext(X,F , x) = {χ[x 7→ F (χ)] | χ ∈ X}, for some X ∈ X and
F ∈ Rsp+U . Let X′ = (f(X�W)) �W∈ X′. Clearly, X′�W = f(X�W) ⊆ X�W . More-
over, ext(X′, F , x) ∈ ext+U′(X′, x), since F ∈ Rsp+U ⊆ Rsp+U′ (as U ⊆ U′). To
complete the proof, it is enough to show that ext(X′, F , x)�W∪{x} ⊆ X̂�W∪{x}.
To this purpose, take χ′[x 7→ F (χ′)]�W∪{x} for some χ′ ∈ X′. Observe that

111

Partie , Chapter 3 – Alternating Dependence/Independence-Friendly Logic

χ′�W ∈ X′�W = f(X�W) ⊆ X�W , which means that there is χ ∈ X such that
χ�W = χ′�W . Since U ⊆ W, it holds that χ�U = χ′�U , which implies F (χ) = F (χ′),
as F ∈ Rsp+U . Therefore, χ′[x 7→ F (χ′)]�W∪{x} = χ[x 7→ F (χ)]�W∪{x} ∈ X̂�W∪{x}.

3) By X vW X′, there is a function f : X�W → X′�W such that f(X�W) ⊆ X�W for all
X ∈ X. Let (X1

′,X2
′) ∈ Part(X′) and define Xi = {X ∈ X | (f(X�W)) �W∈ Xi

′}
for i ∈ {1, 2}. We have to show that Xi vW Xi

′ (i ∈ {1, 2}). To this end, let X ∈ Xi

and consider team (f(X�W)) �W∈ Xi
′. Clearly, ((f(X�W)) �W)�W = f(X�W) ⊆ X�W .

The thesis follows as ((f(X�W)) �W)�W ∈ Xi
′
�W .

Lemma 3.5 (Uniform Extension Monotonicity). For all sets of variables W ⊆ Var, func-
tion assignments F ∈ FunAsg, and hyperteams X1,X2 ∈ HypTeams, where X1 vW X2 and
F(x) ∈ RspW, for all x ∈ dom(F) ∩W, it holds that ext(X1,F) vW ext(X2,F).

Proof. The proof is almost the same as for Lemma 2.9.

Thanks to previous lemmas, Theorem 2.8 and thus, Theorem 2.9 can be immediately
adapted to Meta-ADIF , which are the necessary results to prove Theorem 3.3.

Lemma 2.7 is generalised for ADIF as follows.

Lemma 3.6 (Extension Interpretation). The following four equivalences hold true, for
all hyperteams X ∈ HypTeams(V) over V ⊆ Var, properties Ψ ⊆ Asg(V∪{x}) over V∪{x}
with x ∈ Var \ V, sets of variables W ⊆ Var, and quantifier symbols Q ∈ {∃,∀}.

1. Statements 1a and 1b are equivalent, whenever Q is α-coherent:

(a) there exists X′ ∈ extα(X, Q±Wx) such that X′ ⊆ Ψ;

(b) there exist F ∈ Rsp±W and X ∈ X such that ext(X,F , x) ⊆ Ψ.

2. Statements 2a and 2b are equivalent, whenever Q is α-coherent:

(a) for all X′ ∈ extα(X, Q±Wx), it holds that X′ ∩Ψ 6= ∅;

(b) for all F ∈ Rsp±W and X ∈ X, it holds that ext(X,F , x) ∩Ψ 6= ∅.

3. Statements 3a and 3b are equivalent, whenever Q is α-coherent:

(a) there exists X′ ∈ extα(X, Q±Wx) such that X′ ⊆ Ψ;

(b) for all F ∈ Rsp±W, it holds that ext(X,F , x) ⊆ Ψ, for some X ∈ X.

4. Statements 4a and 4b are equivalent, whenever Q is α-coherent:

(a) for all X′ ∈ extα(X, Q±Wx), it holds that X′ ∩Ψ 6= ∅;

(b) there is F ∈ Rsp±W such that ext(X,F , x) ∩Ψ 6= ∅, for all X ∈ X.

112

3.B. Proofs of Section 3.2

The proof of this lemma is the same as the one for Lemma 2.7 modulo the addi-
tion of the dependencies. This lemma, with the adition of Theorem 3.8, allows to prove
Theorem 3.5 as we proved Theorem 2.6. In turn, Theorem 3.6 follows.

3.B Proofs of Section 3.2

Lemma 3.2 (Cylindrical Extension). Let X ∈ HypTeams be a hyperteam. Then,
cyl(X, x) ≡ ext±W(X, x), for all variables x ∈ Var and sets of variables W, with
var(X) ⊆ W ⊆ Var.

Proof. The proof is done by showing the two directions of the equivalence.
First, we prove the following:

cyl(X, x) v ext±W(X, x).

Let Xu ∈ cyl(X, x). There is X ∈ X such that Xu = cyl(X, x). Remark that for every
X ′ ∈ X there is χX′ ∈ X ′∩X. Then, for every F ∈ RspW , it holds that χX′ [x 7→ F (χX′)] ∈
Xu. Now, observe that for every X̂ ∈ ext±W(X, x), there is X ′ ∈ X and F ∈ RspW such
that X̂ = ext(X ′ , F , x). Consider Γ ∈ Chc(ext±W(X, x)) defined as follows. For every
X̂ ∈ ext±W(X, x), we define Γ(X̂) = χX′ [x 7→ F (χX′)]. We can deduce immediately that
img(Γ) ⊆ Xu.

We turn now to showing that

ext±W(X, x) v cyl(X, x).

Let X̊ ∈ ext±W(X, x). We have X̊ = img(Γ̊) for some choice function Γ̊ ∈
Chc(ext±W(X, x)). Then,

∀F ∈ RspW ,∀X ′ ∈ X, ∃χ′ ∈ X ′ s.t. χ′[x 7→ F (χ′)] ∈ X̊. (3.1)

Toward contradiction, assume that cyl(X, x) 6⊆ X̊ for all X ∈ X. Then for all X ∈ X,
there is χX ∈ X and vX ∈ D such that χX [x 7→ vX] /∈ X̊. We assume that vX1 = vX2 if
χX1 = χX2 so that each χ is associated with only one v ∈ D. Consider Γ ∈ Chc(X) such
that Γ(X) = χX for all X ∈ X, and F ∈ RspW such that F (χX) = vX for all X ∈ X. By
construction, for all χ′ ∈ img(Γ), it holds that χ′[x 7→ F (χ′)] /∈ X̊ and, since img(Γ) ∈ X,
we have a contradiction with (3.1).

113

Partie , Chapter 3 – Alternating Dependence/Independence-Friendly Logic

Lemma 3.3 (Team Partitioning). Let X ∈ HypTeams be a hyperteam. Then:

1. for all hyperteam bipartitions (X1,X2) ∈ Part(X) and teams X ′1 ∈ X1 and X ′2 ∈
X2, there exists a team X ∈ X such that X ⊆ X ′1 ∪X ′2;

2. for all teams X ∈ X and team bipartitions (X1, X2) ∈ Part(X), there exist a
hyperteam bipartition (X1,X2) ∈ Part(X) and two teams X ′1 ∈ X1 and X ′2 ∈ X2

such that X ′1 ⊆ X1 and X ′2 ⊆ X2.

Proof. In the following, we assume index i to range over {1, 2}.

1. Let (X1,X2) ∈ Part(X) and Yi ∈ Xi. Then, there are Γi ∈ Chc(Xi) such that
Yi = img(Γi). Let Γ ∈ Chc(X) be defined as: Γ(X) = Γi(X) if X ∈ Xi, for all
X ∈ X. It clearly holds that img(Γ) = img(Γ1)∪ img(Γ2) and img(Γ) ∈ X. Finally,
thanks to Lemma 2.1, there is X? ∈ X such that X? ⊆ img(Γ) = Y1 ∪ Y2.

2. Let X ∈ X and (X1, X2) ∈ PartX. Consider X1 and X2 defined as follows: X1 =
{img(Γ) | Γ ∈ Chc(X) and Γ(X) ∈ X1} and X2 = X \ X1. Clearly, it holds that
(X1,X2) ∈ Part(X). Moreover, for every X ′i ∈ Xi, it holds that X ′i ∩Xi 6= ∅. Let
Γi ∈ Chc(Xi) be such that Γi(X ′i) ∈ Yi ∩Xi, for every X ′i ∈ Xi. Then, img(Γi) ∈ Xi

is such that img(Γi) ⊆ Xi.

The proof of the DIF adequacy property for ADIF uses the following monotonicity
property known for IFL (and thus DIF).

Remark 3.2. For all DIF formulas ϕ and teams X,X ′ ⊆ Asg(V), with sup(ϕ) ⊆ V and
X ⊆ X ′, it holds that:

1. IfM, X ′ |=∀DIF ϕ, thenM, X |=∀DIF ϕ.

2. IfM, X |=∃DIF ϕ, thenM, X ′ |=∃DIF ϕ;

Theorem 3.9
Theorem 2.2. . .

Lemma 2.1 Lemma 3.3
Lemma 3.2

Figure 3.1 – Dependency graph of Theorem 3.9.

Theorem 3.9 (DIF Adequacy). For all DIF formulas ϕ and hyperteams X ∈
HypTeams⊇(sup(ϕ)), it holds that:

114

3.B. Proofs of Section 3.2

1. if ϕ is DIF∃ thenM,X |=∃∀ϕ iff there is a team X ∈ X such thatM, X |=∀DIF ϕ;

2. if ϕ is DIF∀ thenM,X |=∀∃ϕ iff, for all teams X ∈ X, it holds thatM, X |=∃DIF ϕ.

Proof. In the following, we assume index i to range over {1, 2}.
To begin with, we prove Item 1. The proof is done by structural induction on the

formula ϕ.
(base case) If ϕ = P(~x) or ϕ = ¬P(~x), then the property holds by the semantics rules.
(inductive cases) Suppose that the property holds for the subformulas of ϕ.

(ϕ = ϕ1 ∧ ϕ2) M,X |=∃∀ ϕ1 ∧ ϕ2
sem.⇔ for all (X1,X2) ∈ Part(X) it holds that

M,X1 |=∃∀ ϕ1 orM,X2 |=∃∀ ϕ2
ind.hp.⇔ for all (X1,X2) ∈ Part(X) it holds that

there is X1 ∈ X1 for which it holds M, X1 |=∀DIF ϕ1 or there is X2 ∈ X2 for
which it holdsM, X2 |=∀DIF ϕ2 ⇔ there is X ∈ X such thatM, X |=∀DIF ϕ1 and
M, X |=∀DIF ϕ2

DIF−sem.⇔ there is X ∈ X such thatM, X |=∀DIF ϕ1 ∧ ϕ2.
(ϕ = ϕ1 ∨ ϕ2) IfM,X |=∃∀ ϕ1 ∨ ϕ2, thenM,X |=∀∃ ϕ1 ∨ ϕ2. By semantics, there

is (X1,X2) ∈ Part(X) such that M,X1 |=∀∃ ϕ1 and M,X2 |=∀∃ ϕ2, which
amounts to say that there is (X1,X2) ∈ Part(X) such that M,X1 |=∃∀ ϕ1

andM,X2 |=∃∀ ϕ2. By inductive hypothesis, there are X1 ∈ X1 and X2 ∈ X2

such that M, X1 |=∀DIF ϕ1 and M, X2 |=∀DIF ϕ2. By Item 1 of Lemma 3.3,
there is X ∈ X such that X ⊆ X1∪X2. By Item 1 of Remark 3.2, we have
that X ′1

def= X1 ∩ X and X ′2
def= X \ X ′1 are such that M, X ′1 |=∀DIF ϕ1 and

M, X ′2 |=∀DIF ϕ2. Since, in addition, (X ′1, X ′2) ∈ Part(X) holds, we conclude
M, X |=∀DIF ϕ1 ∨ ϕ2.
Conversely, if there is X ∈ X such that M, X |=∀DIF ϕ1 ∨ ϕ2, then there is
(X1, X2) ∈ Part(X) such that M, Xi |=∀DIF ϕi. By Item 2 of Lemma 3.3,
there are (X1,X2) ∈ Part(X) and Yi ∈ Xi such that Yi ⊆ Xi. Then, by
Item 1 of Remark 3.2, it holds that M, Yi |=∀DIF ϕi. By inductive hypothesis,
we have M,Xi |=∃∀ ϕi, or, equivalently, M,Xi |=∀∃ ϕi. Therefore, there is
(X1,X2) ∈ Part(X) such thatM,Xi |=∀∃ ϕi, which impliesM,X |=∀∃ ϕ1∨ϕ2,
and we can concludeM,X |=∃∀ ϕ1 ∨ ϕ2.

(ϕ = ∃±Wx ϕ) M,X |=∃∀ ∃±Wxϕ sem.⇔ M,ext±W(X, x) |=∃∀ ϕ ind.hp.⇔ there is
X ∈ ext±W(X, x) such that M, X |=∀DIF ϕ

def.⇔ there are X ∈ X and F ∈
Rsp±W such thatM,ext(X,F , x) |=∀DIF ϕ

DIF−sem.⇔ there is X ∈ X such that
M, X |=∀DIF ∃±Wx ϕ.

(ϕ = ∀−∅x ϕ) M,X |=∃∀ ∀−∅xϕ sem.⇔ M,X |=∀∃ ∀−∅xϕ sem.⇔ M,ext−∅(X, x) |=∀∃

ϕ
Thm.2.2⇔ M,ext−∅(X, x) |=∃∀ ϕ Lemma 3.2⇔ M,cyl(X, x) |=∃∀ ϕ ind.hp.⇔ there

115

Partie , Chapter 3 – Alternating Dependence/Independence-Friendly Logic

is X ∈ cyl(X, x) such that M, X |=∀DIF ϕ
def.⇔ there is X ∈ X such that

M,cyl(X, x) |=∀DIF ϕ
DIF−sem.⇔ there is X ∈ X such thatM, X |=∀DIF ∀−∅x ϕ.

We turn now to proving Item 2. We proceed by structural induction on the formula ϕ.

(base case) If ϕ = P(~x) or ϕ = ¬P(~x), then the property holds by the semantics rules.
(inductive cases) Suppose that the property holds for the subformulas of ϕ.

(ϕ = ϕ1 ∧ ϕ2) We assume thatM,X |=∀∃ ϕ1 ∧ ϕ2 and we show that for all teams
X ∈ X, it holds that M, X |=∃DIF ϕ1 ∧ ϕ2, which amount to showing that for
all teams X ∈ X and (X1, X2) ∈ Part(X), it holds that M, X1 |=∃DIF ϕ1 or
M, X2 |=∃DIF ϕ2. To this end, we letX ∈ X and (X1, X2) ∈ Part(X). By Item 2
of Lemma 3.3, there are (X1,X2) ∈ Part(X), Y1 ∈ X1, and Y2 ∈ X2, such that
Y1 ⊆ X1 and Y2 ⊆ X2. From M,X |=∀∃ ϕ1 ∧ ϕ2, it follows that M,X |=∃∀

ϕ1 ∧ ϕ2. By semantics, for all (X1,X2) ∈ Part(X) it holds that M,X1 |=∃∀

ϕ1 or M,X2 |=∃∀ ϕ2, which, by Theorem 2.2, amounts to saying that for all
(X1,X2) ∈ Part(X) it holds thatM,X1 |=∀∃ ϕ1 orM,X2 |=∀∃ ϕ2. By inductive
hypothesis, for all (X1,X2) ∈ Part(X) it holds that M, X1 |=∃DIF ϕ1 for all
X1 ∈ X1 or it holds thatM, X2 |=∃DIF ϕ2 for all X2 ∈ X2. Equivalently, for all
(X1,X2) ∈ Part(X), X1 ∈ X1, and X2 ∈ X2, it holds thatM, X1 |=∃DIF ϕ1 or
M, X2 |=∃DIF ϕ2. Therefore, we have that M, Y1 |=∃DIF ϕ1 or M, Y2 |=∃DIF ϕ2,
and, due to Y1 ⊆ X1 and Y2 ⊆ X2, and thanks to Item 2 of Remark 3.2, we
concludeM, X1 |=∃DIF ϕ1 orM, X2 |=∃DIF ϕ2.
Conversely, assume that for all teams X ∈ X, it holds thatM, X |=∃DIF ϕ1∧ϕ2,
which amounts to saying that for all X ∈ X and (X1, X2) ∈ Part(X), it
holds that M, X1 |=∃DIF ϕ1 or M, X2 |=∃DIF ϕ2. First, we show that for all
(X1,X2) ∈ Part(X), X1 ∈ X1, and X2 ∈ X2, it holds thatM, X1 |=∃DIF ϕ1 or
M, X2 |=∃DIF ϕ2. To this end, let (X1,X2) ∈ Part(X), X1 ∈ X1, and X2 ∈ X2.
By Item 1 of Lemma 3.3, there exists a team X ∈ X such that X ⊆ X1 ∪X2.
Let X ′1 = X1 ∩X and X ′2 = X \X ′1. Clearly, (X ′1, X ′2) ∈ Part(X), X ′1 ⊆ X1,
and X ′2 ⊆ X2. By assumption, it holds thatM, X ′1 |=∃DIF ϕ1 orM, X ′2 |=∃DIF ϕ2.
From X ′1 ⊆ X1 and X ′2 ⊆ X2, and thanks to Item 2 of Remark 3.2, it follows
M, X1 |=∃DIF ϕ1 or M, X2 |=∃DIF ϕ2. Therefore, we have showed that for all
(X1,X2) ∈ Part(X), X1 ∈ X1, and X2 ∈ X2, it holds that M, X1 |=∃DIF ϕ1

orM, X2 |=∃DIF ϕ2. This amount to saying that for all (X1,X2) ∈ Part(X), it
holds thatM, X1 |=∃DIF ϕ1 for all X1 ∈ X1 or it holds thatM, X2 |=∃DIF ϕ2 for
all X2 ∈ X2. By inductive hypothesis, we have that for all (X1,X2) ∈ Part(X),

116

3.B. Proofs of Section 3.2

it holds that M,X1 |=∀∃ ϕ1 or M,X2 |=∀∃ ϕ2, which eventually amounts to
sayingM,X |=∀∃ ϕ1 ∧ ϕ2.

(ϕ = ϕ1 ∨ ϕ2) M,X |=∀∃ ϕ1 ∨ ϕ2
sem.⇔ there is (X1,X2) ∈ Part(X) such that

M,X1 |=∀∃ ϕ1 and M,X2 |=∀∃ ϕ2
ind.hp.⇔ there is (X1,X2) ∈ Part(X) such

that for all X1 ∈ X1 it holds M, X1 |=∃DIF ϕ1 and for all X2 ∈ X2 it holds
M, X2 |=∃DIF ϕ2 ⇔ for all X ∈ X it holds thatM, X |=∃DIF ϕ1 orM, X |=∃DIF

ϕ2
DIF−sem.⇔ for all X ∈ X it holds thatM, X |=∃DIF ϕ1 ∨ ϕ2.

(ϕ = ∃−∅x ϕ) M,X |=∀∃ ∃−∅xϕ sem.⇔ M,X |=∃∀ ∃−∅xϕ sem.⇔ M,ext−∅(X, x) |=∃∀

ϕ
Thm.2.2⇔ M,ext−∅(X, x) |=∀∃ ϕ Lemma 3.2⇔ M,cyl(X, x) |=∀∃ ϕ ind.hp.⇔ for all

X ∈ cyl(X, x) it holds that M, X |=∃DIF ϕ
def.⇔ for all X ∈ X it holds that

M,cyl(X, x) |=∃DIF ϕ
DIF−sem.⇔ for all X ∈ X it holds thatM, X |=∃DIF ∃−∅x ϕ.

(ϕ = ∀±Wx ϕ) M,X |=∀∃ ∀±Wxϕ sem.⇔ M,ext±W(X, x) |=∀∃ ϕ ind.hp.⇔ for all X ∈
ext±W(X, x) it holds that M, X |=∃DIF ϕ

def.⇔ for all X ∈ X and F ∈ Rsp±W
it holds that M,ext(X,F , x) |=∃DIF ϕ

DIF−sem.⇔ for all X ∈ X it holds that
M, X |=∃DIF ∀±Wx ϕ.

Theorem 3.10
Theorem 3.8
Theorem 3.6

. . .

. . .

Figure 3.2 – Dependency graph of Theorem 3.10.

Theorem 3.10 (ADF-SO Interpretation). For every ADF formula ϕ in pnf with quan-
tifier prefix ℘ ∈ Q over a signature S, set of variables sup(ϕ) ⊆ V ⊆ Var with
V ∩ var(℘) = ∅, and relation symbol PX 6∈ S with ar(PX) = |V| + 1, there exist two
SO sentences ψ∃∀ and ψ∀∃ over signature S]{PX} such that, for all S-structuresM and
non-null hyperteams X ∈ HypTeams(V) with |X| ≤ |M|, the following equivalence holds
true:M,X |=α ϕ iffM] {Rel(X)} |=SO ψα.

Proof. Let ~x be a vector of all the variables in V. As first step, consider a formula ϕ = ℘φ

in pnf, where ℘ is a quantifier prefix and φ a quantifier-free subformula Then, by The-
orem 3.6, we transform ϕ into the equivalent Meta-ADF formula hspϕ(℘)φ. Naturally,
hspϕ(℘) = (Q+Wi

i xi)ki=1, for some k ∈ N, where Wi ⊆ Var and Qi ∈ {Σ,Π}. Now, let
℘̂

def= (Q̂ifi)ki=1 be the second-order function-quantifier prefix, where
1. the arity of each function symbol fi equals the number of variables xi depend on,

i.e., ar(fi) = |Wi|, and

117

Partie , Chapter 3 – Alternating Dependence/Independence-Friendly Logic

2. each second-order quantifier symbol Q̂i ∈ {∃,∀} is existential iff the meta-quantifier
symbol Qi is existential.

At this point, the SO sentences ψ∃∀ and ψ∀∃ can be defined as follows, where y 6∈ V ∪
var(℘) and φ̂ is obtained from the subformula φ by replacing each occurrence of a variable
xi with the corresponding term fi(~wi), where ~wi is a vector of all the variables in Wi:

1. ψ∃∀ def= ℘̂.∃y. (∃~x. P(~xy)) ∧ (∀~x.¬P(~xy) ∨ φ̂);

2. ψ∀∃ def= ℘̂.∀y.¬(∃~x. P(~xy)) ∨ (∃~x. P(~xy) ∧ φ̂).

To conclude, the correctness of the translation can be proved by a simple induction on
the length of the quantifier prefix ℘, where, as base case, we exploit the extension of
Theorem 3.8 to Meta-ADIF .

Theorem 3.11Theorem 3.6. . .

Figure 3.3 – Dependency graph of Theorem 3.11.

Theorem 3.11 (SO-ADF Interpretation). For every SO sentence ψ over a signature S,
relation symbol PX ∈ S, and sequence of variables ~x ∈ Var(PX), with var(ψ)∩ ~x = ∅, i.e.,
no variable in ~x occurs in ψ, there exists an ADF formula ϕ in pnf over signature S \PX

with sup(ϕ) = free(ϕ) = ~x such that, for all S-structuresM, the following equivalence
holds true:M |=SOψ iffM\PX ,

{
Team(PX

M , ~x)
}
|=∃∀ ϕ.

Proof. To begin with, let us assume without loss of generality (see [KN09] for a proof)
that the SO sentence ψ is of the form

(Qifi)ki=1.∀~z. (P(~y)↔ τ1 = τ2) ∧ φ,

which in addition complies with the following constraints:

1. ~y ⊆ ~z, i.e., the vector of variables ~y used in the atom P(~y) is included in the vector
of universally-quantified variables ~z;

2. every function fi only appears in a single term τfi = fi(~wi);

3. every term τ (including τ1 and τ2) is of the form fi(~w), for some index i ∈ J0, . . . , kK
and vector of variables ~w ⊆ ~z;

4. the relation P does not occur in the FO formula φ.

118

3.C. Proofs of Section 3.3

Now, let ℘ def= (Q̂+Wi
i zi)1

i=k be the first-order quantifier prefix, where

1. the set of dependence variables Wi coincides with the vector of variables ~wi used
in the term τfi corresponding to the function fi, and

2. each first-order quantifier symbol Q̂i ∈ {∃,∀} is existential iff the second-order
quantifier symbol Qi is existential.

Notice that the order of quantification is reversed w.r.t the one in (Qifi)ki=1. At this point,
the ADF formula ϕ can be defined as follows, where

1. (~y = ~x) denotes a shortcut for a conjunction of equalities between corresponding
variables in ~y and ~x ,

2. z1
′ and z2

′ are the variables corresponding to the functions used in the terms τ1

and τ2, and

3. φ′ is the FO formula obtained from φ by replacing each occurrence of a term τfi
with the corresponding variable zi:

ϕ
def= ∀~z. ℘. ((~y = ~x)↔ z1

′ = z2
′) ∧ φ′.

To conclude, the correctness of the translation can be shown by first applying Theorem 3.6
to ϕ, obtaining the Meta-ADF formula

hspϕ(℘).∀~z. ((~y = ~x)↔ z1
′ = z2

′) ∧ φ′,

and then proceeding with a standard induction on the length of the quantifier prefix
(Qifi)ki=1.

3.C Proofs of Section 3.3

In order to prove Theorem 3.12, we shall first prove two additional lemmas. The first
one states a Skolemisation property for Meta-ADIF . A sentence of Meta-ADIF in prenex
form that only has meta quantifiers Σ or Π can be viewed as an SO formula. Therefore,
given a Meta-ADIF formula ϕ def= Π±~U~y Σ±Wxφ, we can use classic Skolem results to
define a function Skox for the first existentially quantified variable x such that if F is a
function assignment of variables (universally) quantified before x, then F [x 7→ Skox(F)]
satisfies the subformula φ that follows the quantification of x iff F satisfies Σ±Wxφ.
First, we introduce some notations. For a quantifier prefix ℘ = Q+W0

0 x0 . . . Q
+Wn
n xn and a

119

Partie , Chapter 3 – Alternating Dependence/Independence-Friendly Logic

quantifier Q ∈ {Σ,Π}, the set varQ(℘) = {xi|Qi = Q} collects all the variables quantified
in ℘ using the quantifier Q. A Skolemisation for ℘ is a sequence (Skoxi : (∏j<i RspWj

)→
RspWi

)xi∈varΣ (℘) of functions, one for each existentially quantifier variable xi of ℘ and each
one intuitively mapping the interpretations of the variables preceding xi in ℘ to some
interpretation for xi. A Skolem extension of F w.r.t a Skolemisation (Skoxi)xi∈varΣ (℘) for
℘ is a function assignment F ′ such that: (i) dom(F ′) = dom(F) ∪ var(℘); (ii) F ′(x) =
F(x), for x ∈ dom(F) \ var(℘); and (iii) F ′(xi) = Skoxi((F ′(xj))j<i), if xi ∈ varΣ(℘).
Observe that F assigns a function to each variable in ℘, using the Skolemisation for the
existentially quantified variables and arbitrary functions for the universally quantified
ones. We can now state the following lemma.

Lemma 3.7 (Meta-ADIF Skolemisation). Let X be a hyperteam, F a function assign-
ment and ϕ = ℘ψ a Meta-ADIF formula in prenex form, where ℘ = Q+W0

0 x0 . . . Q
+Wn
n xn

with Qi ∈ {Σ,Π} for i ≤ n. The following holds:M,F ,X |=α ϕ iff there exists a Skolemi-
sation (Skoxi)xi∈varΣ (℘) for ℘ such that M,F ′,X |=α ψ, for all Skolem extensions F ′ of
F w.r.t (Skoxi)xi∈varΣ (℘).

Proof. We prove the result by induction on the size of varΣ(℘).

Base case varΣ(℘) = ∅. The only Skolemisation for ℘ is the empty sequence of func-
tions. A simple application of the semantic rules for the universal quantifiers, ap-
plied to Πxi for each i ≤ n, gives the result.

Inductive case. Suppose the property holds for all formulas with |varΣ(℘)| < n.
We construct Skox for each x ∈ varΣ(℘) with the desired properties. Let i0
be the smallest integer such that xi0 ∈ varΣ(℘), so that we can set ϕ =
Π+W0x0 . . .Π+Wi0−1xi0−1Σ+Wi0xi0ϕ

′ and ϕ′ = Q
+Wi0+1
i0+1 xi0+1 . . . Q

+Wn
n xnψ = ℘′ψ.

By application of the semantic rules for the i0 − 1 universal quantifiers and
the last existential one, we obtain that M,F ,X |=α ϕ iff for every sequence
of functions (Fxj)j<i0 , with Fxj ∈ RspWj

, there is function Fxi0 ∈ RspWi0
such

that M,F ′,X |=α ϕ′, with F ′ = F [x0 7→ Fx0
, . . . , xi0 7→ Fxi0]. Now, since

varΣ(℘′) < n, by inductive hypothesis M,F ′,X |=α ϕ′ iff there is Skolemisa-
tion (Sko′xi)xi∈varΣ (℘′) for ℘′ such that M,F ′′,X |=α ψ, for every Skolem ex-
tension F ′′ of F ′ w.r.t Sko′. We then have that M,F ,X |=α ϕ iff for all se-
quences of functions (Fxj)j<i0 , there exist a function Fxi0 and a Skolemisation
(Sko′xi)xi∈varΣ (℘′) for ℘′ such thatM,F ′′,X |=α ψ, for every Skolem extension F ′′

of F [x0 7→ Fx0
, . . . , xi0 7→ Fxi0] w.r.t (Sko′xi)xi∈varΣ (℘′). Since the choices of Fxi0

120

3.C. Proofs of Section 3.3

and of the Skolemisation (Sko′xi)xi∈varΣ (℘′) depend on the sequence (Fxj)j<i0 , obvi-
ously there exists a Skolemisation (Skoxi)xi∈varΣ (℘) for ℘ such thatM,F ′′,X |=α

ψ, for all Skolem extension F ′′ of F w.r.t (Skoxi)xi∈varΣ (℘). Indeed, for all sequences
(Fxj)j<i0 , the function Fxi0 and the Skolemisation (Sko′xik)xi∈varΣ (℘′) defined as fol-
low satisfy the properties shown above:
— Fxi0 = Skoxi0 ((Fxj)j<i0);
— Sko′xik ((Fxj)i0<j<ik) = Skoxik ((Fxj)j<ik), for all xik ∈ varΣ(℘′) and sequence

of functions (Fxj)i0<j<ik .

The second lemma states a property of the independence game GMϕ defined in Con-
struction 3.2 for an ADIF sentence ϕ and a structure M: after a history h, no matter
how the functions in each bucket are chosen, the only assignment that is coherent with the
functions in the bucket is the one associated with the last position of h. In the following, we
consider an ADIF sentence ϕ = ℘ψ in prenex form, where ℘ = Q+W0

0 x0 . . . Q
+Wn
n xn with

Qi ∈ {∀,∃} for i ∈ J0, . . . , nK, and ψ quantifier free. For every subformula φ = Q+Wi
i xiφ

′,
we rename the buckets Rφ(h) by Rxi(h) and associate priorities with variables by set-
ting prt(xi) = prt(φ). Let Buck def= 2Rsp denote the set of all buckets. For convenience,
we set VX = {x0, . . . , xn} and VXi = {x0, . . . , xi}, VX∃ = {xi ∈ VX | Qi = ∃} and
VX∀ = VX \ VX∃. We also introduce choice functions over buckets. Basically, a choice
function over buckets chooses, for each variable x, a function F in the bucket of x. It
takes both Rx(h) and x in input because there might be multiple variables with the same
bucket (for instance, when they all depend exactly on the same variables and the same
value have been played for all of them during the play).

ChcBuck = {f : (Buck× VX)→ Rsp | ∀R ∈ Buck,∀x ∈ VX , f(R, x) ∈ R}

Given a function Fj ∈ Rsp+Wj
for each variable xj ∈ VXi with i ≤ n, we define

χ(Fj)j≤i
∈ Asg(VXi) as the unique assignment χ such that χ(xj) = Fj(χ�free(Q

+Wj
j xjφ

′)
)

for every j ≤ i. We say that χ is coherent with (F j)j≤i.

Lemma 3.8 (Buckets soundness). For every choice function f ∈ ChcBuck over buckets
and every history h = h′p with p = (φ, χ,♣) where ♣ ∈ {I, II}, the following holds:

— if φ = Q+Wi
i xiφ

′ and ♣ = I, it holds χ = χ(f(Rxj (h),xj))j≤i.
— if φ = ψ or ♣ = II it holds χ = χ(f(Rxj (h),xj))j≤n.

121

Partie , Chapter 3 – Alternating Dependence/Independence-Friendly Logic

Proof. We prove this lemma by induction on the history h.
For the base case history, the property is trivial.
For the induction case, suppose the lemma holds for a history h = h′p′ with p′ =

(φ′, χ′,♣). Consider a history of the form hp. There are two cases to consider: either
♣ = I, or ♣ = II.

(♣ = I) There are again two cases to look at:
1. if φ′ = ψ then the only possible successor position p in the game is (ϕ, χ′, II).

So, by definition of the bucket and direct application of the inductive hypothesis,
the property holds for hp.

2. if φ′ = Q+Wi
i xiφ, then p is of the form (φ, χ, I). The only bucket that might

change is Rxi . By definition, any function F ∈ Rxi(hp) satisfies F (χ′) = χ′(xi)
and the property holds for hp. Indeed, by inductive hypothesis, χ(xj) = χ′(xj),
for every xj with j < i.

(♣ = II) If φ′ = ψ, there is no reachable position. So, the only possibility is φ′ =
Q+Wi
i xiφ. There are again two possibilities:

1. p is of the form (φ, χ′, II). In this case, by the definition of bucket and a direct
application of the inductive hypothesis, the property immediately follows for
hp.

2. p is of the form (φ, χ̊[xi 7→ a], I), for some v ∈ D with v 6= χ′(xi), with
χ̊

def= χ′
�free(Q

+Wi
i xiφ

′)
. By inductive hypothesis, for every F ∈ Rxi(h), we have

F (χ̊) = χ′(xi). Then, Fφ(χ̊) ∩ Rxi(h) = ∅. Thus, Rxi(hp) = Fφ(χ̊) and, by
definition, we have F (χ̊�Wi

) = χ̊(xi), for every F ∈ Rxi(hp). Since the other
buckets have not changed, the property holds for hp.

Theorem 3.12
Lemma 3.7
Lemma 3.8
Theorem 3.6. . .

Figure 3.4 – Dependency graph of Theorem 3.12.

Theorem 3.12 (Game-Theoretic Semantics). For a finite structure M and an ADIF
sentence φ in prenex form, the independence game GMφ defined in construction 3.2 is such
thatM |= φ (resp.,M 6|= φ) iff GMφ is won by Eloise (resp., Abelard).

122

3.C. Proofs of Section 3.3

Proof. We prove that if the sentence is true inM, then Eloise wins the game and if the
sentence is false, then Abelard wins the game.

First, suppose that the sentence ϕ is true inM. By Theorem 3.6, ϕ is equivalent to
the Meta-ADIF sentence hspϕ(℘)ψ. So, by Lemma 3.7 and recalling that in hspϕ(℘) the
order of the quantifiers is reversed, we can conclude that there is a Skolemisation (Skoxi :∏
j>i RspWj

→ RspWi
)xi∈VX∃ such that M,F , {{∅}} |= ψ, for every Skolem extension F

of the empty functional assignment w.r.t (Skoxi)xi∈VX∃ . We now define a strategy for
Eloise and then prove that it is winning. Intuitively, the strategy consists in looking,
by means of the buckets, at one possible function assignment of the variables controlled
by Abelard and, then, applying what is prescribed by the Skolemisation (Skoxi)xi∈VX∃
to select the values for the variables controlled by Eloise. Formally, let us fix a choice
function f ∈ ChcBuck on the buckets. Given a history h, we define F h

i for i ∈ {0, . . . , n}
as follows. If xi ∈ VX∀ then F h

i = f(Rxi(h), xi), otherwise, F h
i = Skoxi((F h

j)j>i). When
Eloise has to make a move for the variable xi at the history h = h′p′, with p′ = (φ, χ,_),
she moves to the position p = (φ′, χ′,_) with χ′(xi) = F h

i (χ). Observe that this strategy
does not depend on the current phase of the game but might trigger a challenge if χ 6= χ′.

Consider now a finite play π = hp, with p = (ψ, χ, II), compatible with the strategy.
We define a choice function f? as follows: for all xi ∈ X

f?(Rxi(π), xi) = F π
i

The function f? is a choice function since, if xi ∈ VX∀, by definition, F π
i ∈ Rxi(π) and

if xi ∈ VX∃, then because Eloise played according to F π
i , this function is in the bucket of

xi. The Lemma 3.8 ensures that the assignment χ is coherent with (f?(Rx(π), x))x∈VX .
By definition of (Skoxi)xi∈VX∃ , it holds that χ |= ψ. Therefore, the play is won by Eloise.

Let us now consider an infinite play π ∈ Pathsω compatible with the strategy. Toward
a contradiction, suppose that the priority prt(π) of the play is odd. Then, there must be
a variable xi ∈ VX∃ such that (i) prt(xi) appears infinitely often in prtπ and (ii) for all
j > i the priority prt(xj) appears only a finite number of time. Recall that if a variable
x is not “caught cheating” after a finite prefix π′ = hp of π, then Rx(π′) ⊆ Rx(h). But
then, since we assumed the domain to be finite, starting from some index N along the
play π, the buckets for each xj, with j > i, remain constant forever. Let us denote the
constant bucket of xj by Rxj

′. Then, the strategy for xi is for Eloise to chose the values of
xi by means of the function Fi = Skoxi((f(Rxj

′(π), xj))j>i), which is constant since the

123

Partie , Chapter 3 – Alternating Dependence/Independence-Friendly Logic

buckets of variables xj do not change. By definition, for every prefix of π of size greater
than N , the bucket of xi contains Fi. Then the bucket of xi is never emptied and xi would
never get “caught cheating”. This is a contradiction. We proved that if the sentence is
true, then Eloise has a winning strategy in GMϕ .

The second part of the proof proceeds similarly, in that we can apply the same exact
reasoning, with only the roles of Eloise and Abelard exchanged, to obtain a winning
strategy for Abelard.

124

Chapter 4

GOOD-FOR-GAME QUANTIFIED

PROPOSITIONAL TEMPORAL LOGIC

ADIF works pretty well to reason about single-round games, a.k.a., normal-form
games [NM44], or finite-rounds games, a.k.a., extensive-form games [Neu28; Kuh50;
Kuh53]. Things, however, get much more complicated when infinite-rounds games come
into play [GS53; Wol55]. For such a class of extensive-form games, indeed, plays are
induced by infinite sequences of choices made by the players over time and a strategy
dictates how a player at a given stage of a play responds to the choices made by the ad-
versary up to that stage. Extending the quantification prefix to match the rounds would
immediately lead to infinitary logics, such as the one proposed by [Kol85] and further
studied by [HV94] (see also [HR76]). This technique has some interesting applications in
logic [Hel89], computer science [Kai11], and even philosophy [FG17]. Besides its infinitary
nature, however, this approach has also the drawback of heavily departing from the stan-
dard Tarskian viewpoint, as only non-compositional game-theoretic semantics have been
provided.

A more viable route, instead, is to make the quantified variables x and y range over
sequences of choices. For example, when the choices are simply Boolean values, iterated
Boolean games are to be considered [GHW13; GHW15]. This approach makes us consider
temporal logics such as Linear-time Temporal Logic (LTL for short) that are able to
express properties over sequences of Boolean values. By adding quantifiers, we obtain
Quantified Propositional Temporal Logic (QPTL for short): a quantified propositional
variable defines a sequence of truth values along the timeline. However, when alternating
quantifiers, say ∀x∃y, all the Boolean values of the sequence quantified by ∃y depends on
the entire sequence quantified by ∀x, which is not desirable if we are to reason strategically.
To retrieve strategies, we have to constrain this choice with temporal dependencies.

In this chapter we propose a novel semantics for QPTL, based on hyperteams. Sim-
ilarly to semantics for ADIF, the semantics we propose here provides a compositional

125

Partie , Chapter 4 – Good-For-Game Quantified Propositional Temporal Logic

formulation [SH01] and a game-theoretic interpretation of the quantifiers. The depen-
dence of response functions on assignments allows us to impose various forms of temporal
constraints among the variables. In particular, we investigate two specific forms, called
realizable and strongly-realizable, that require response functions to choose the value of
the variable at any given time instant based only upon the values dictated by the input
assignment to the other variables up to that instant (possibly excluded). These are forms
of independence constraints that make the choice of the value of a variable at a given
time totally independent of the values that other variables assume in the future. The
realizable restrictions are precisely what allows us to recover the correspondence between
response functions and strategies and to reconcile the satisfiability and game solution
problems, thus making the resulting version of QPTL, called Good-for-Games QPTL
(GFG-QPTL), well suited to express game-theoretic concepts and a logical analogue of
Good-for-Games Automata [HP06; BL19].

On the technical side, the hyperteam semantics under the realizable interpretation
of the quantifiers leads to 2-Exptime decision procedures for both the satisfiability and
model-checking problems. On the other hand, it does not give up expressiveness, as we
show that the vanilla and realizable semantics turn out to be expressively equivalent.
These results also show that the high complexity of the decision problems for vanilla
QPTL stems from the fact that unrestricted dependencies among the quantified vari-
ables are allowed. The properties expressible by exploiting such unrestricted dependencies
can, however, still be expressed under the realizable semantics via encoding of ω-regular
automata, though with a non-elementary blowup.

The chapter is organized as follows. We first recall the definitions of LTL and QPTL
in Section 4.1. Then we present the hyperteam semantics for GFG-QPTL in Section 4.2.
Finally, we define its game-theoretic semantics in Section 4.3 that allows us to state some
complexity results.

4.1 Recalls on temporal logics

For the whole chapter, as the considered logics are propositional, the first class citizen is
now a proposition instead of a variable. The definitions of previous chapters are implicitly
adapted accordingly.

126

4.1. Recalls on temporal logics

4.1.1 Linear-time Temporal Logic

Linear-Time Temporal Logic (LTL for short) is a propositional logic introduced by
Pnuelli [Pnu77] in order to formalize properties for system verification. The definitions of
this section are inspired by those found in [DGL16a].

Definition 4.1. An LTL formula is defined inductively as follows, where p ∈ AP is an
atomic propositions.

ψ := p |ψ ∧ ψ | ¬ψ |Xψ |ψUψ

The language relies on two modal operators, X and U, read respectively “next” and
“until”. Other Boolean connectives "∨" or "→" are defined as usual: ψ∨ψ′ := ¬(¬ψ∧¬ψ′)
and ψ → ψ′ := (¬ψ) ∨ ψ′ and > (true) can be defined as p ∨ ¬p with any proposition p.

Other temporal symbols may be expressed: ♦ (eventually) and � (globally) and can
be defined thanks to the U (until) and >, where > means true.

♦ψ = >Uψ

�ψ = ¬♦¬ψ

Example 4.1. Consider two atomic propositions {I_wear_my_coat, cold}, the for-
mula ψ = �(I_wear_my_coatU¬cold) expresses "it is always the case that,
I_wear_my_coat is true until cold is false". Remark that the formula allows
I_wear_my_coat to be true even if cold is not. Intuitively, if I_wear_my_coat
represent whether I wear a coat and cold whether the temperature is low, the formula
express the fact that I am safe from cold (which can be true or false depending on when I
wear the coat and when the temperature is low).

We denote by prop(ψ) the set of atomic propositions that occur in formula ψ. For
instance, consider the formula ψ = p ∧ (qU¬r) the atomic propositions of ψ is the set
prop(ψ) = {p, q, r}.

An LTL assignment (also called trace in the literature) specifies which atomic propo-
sitions are true at each time step. Formally, an LTL assignment χ ∈ Asg is an assignment
over the domain {>,⊥}ω.

For any natural number t ∈ N, we denote by χ+t the assignment corresponding
to χ without the t first letters of each proposition’s word. Formally, χ+t is defined by
χ+t(p)[n] = χ(p)[n+ t].

127

Partie , Chapter 4 – Good-For-Game Quantified Propositional Temporal Logic

Example 4.2. Here is the definition of an example χ over {I_wear_my_coat, cold}.

χ(I_wear_my_coat) = > ⊥ > > ⊥ . . .

χ(cold) = > ⊥ > > > . . .

Definition 4.2 (LTL Tarski Semantics). The statement saying that an LTL prop(ψ)-
assignment χ satisfies an LTL formula ψ is written χ |=LTL ψ. The definition of the
semantics is given inductively on the structure of the formula.

χ |=LTL p iff χ(p)[0] = >
χ |=LTL ¬ψ iff χ |=LTL ψ does not hold
χ |=LTL ψ1 ∧ ψ2 iff χ |=LTL ψ1 and χ |=LTL ψ2

χ |=LTL Xψ iff χ+1 |=LTL ψ

χ |=LTL ψ1Uψ2 iff there exist a natural number t such that χ+t |=LTL ψ2

and for every integer t′ < t, χ+t′ |=LTL ψ1.

Example 4.3. Consider the formula ψ = �(I_wear_my_coatU¬cold) from the Ex-
ample 4.1 and the assignment χ defined in Example 4.2. The assignment χ does not satisfy
the formula ψ because χI_wear_my_coat(4) = ⊥ and χcold(4) = >. Intuitively, at time 4,
the considered person does not wear a coat even if the temperature is low.

Remark that formula ψ would be satisfied in an assignment where I_wear_my_coat
always holds. Indeed, always wearing a coat protects from cold.

4.1.2 Quantified Propositional Temporal Logic

We can extend LTL with propositional quantifiers and obtain Quantified Propositional
Temporal Logic (QPTL for short).

For convenience, we provide a syntax for QPTL where quantifications do not occur
within temporal operators. This is equivalent to the original logic, thanks to the prenex
normal form (pnf, for short) property enjoyed by QPTL [Sis83], which allows to move
quantifiers outside temporal operators.

Definition 4.3 (QPTL Syntax). The Quantified Propositional Temporal Logic is the
set of formulas built accordingly to the following context-free grammar, where ψ ∈ LTL
and p ∈ AP:

ϕ := ψ | ¬ϕ |ϕ ∧ ϕ |ϕ ∨ ϕ | ∃p. ϕ | ∀p. ϕ.

128

4.2. Dynamic Reasoning

The classic semantics is also given in terms of LTL assignments.
The satisfaction relation |=QPTL between an assignment χ and a QPTL formula ϕ is

defined below. As usual, by free(ϕ) we denote the set of propositions free in ϕ.

Definition 4.4 (QPTL Tarski Semantics). The Tarski-semantics relation χ |=QPTL ϕ

is inductively defined as follows, for all QPTL formulas ϕ and assignments χ ∈ Asg(P)
with free(ϕ) ⊆ P.

1. χ |=QPTL ψ, if χ |=LTL ψ, whenever ψ is an LTL formula;

2. the semantics of Boolean connectives is defined as usual;

3. for all atomic propositions p ∈ AP:

(a) χ |=QPTL ∃p. φ if χ[p 7→ t] |=QPTL φ, for some t ∈ {>,⊥}ω;

(b) χ |=QPTL ∀p. φ if χ[p 7→ t] |=QPTL φ, for all t ∈ {>,⊥}ω.

4.2 Dynamic Reasoning

In QPTL, a Skolem function cannot be interpreted as a strategy in the game-theoretic
sense anymore, since its value at a given stage depends on the entire evaluation of its
argument p, namely the entire sequence of choices made by the adversary, including all
the future ones. By contrast, a strategy for a player can only dictate, step by step, what
its responses should be, depending on the choices made so far by its opponent. What
that means is that, in principle, the satisfiability and the game solution problems do not
coincide anymore.

4.2.1 Realizable responses

Given a set of assignments Asg(P) over some P ⊆ AP, a realizable quantification
w.r.t a proposition p ∈ P should choose, for each assignment χ ∈ Asg(P), a temporal
valuation t : N → {>,⊥} in such a way that, intuitively, at each instant of time k ∈ N,
the value t[k] of t at k only depends on the values χ(p)[t] of the temporal valuation χ(p)
at the instants of time t ≤ k; this means that t[k] is independent of the values χ(p)[t] at
any future instant t > k. To be more precise, consider two assignments χ1, χ2 ∈ Asg(P)
that may differ only on p strictly after k. Then, the response F ∈ Rsp interpreting a
quantification realizable w.r.t p must return the same value at k as a reply to both χ1

and χ2, i.e., F (χ1)[k] = F (χ2)[k]; in other words, F (χ)[k] cannot exploit the knowledge

129

Partie , Chapter 4 – Good-For-Game Quantified Propositional Temporal Logic

of the values χ(p)[t], for each p ∈ dom(χ) with t > k. An analogous concept has been
introduced in SL [MMPV14] and will be discussed in the next chapter. A stronger notion
of realizability, similar to one reported by [GBM18], requires the response F to satisfy
the above equality when χ1 and χ2 only (possibly) differ on p for t ≥ k and leads to the
concept of strongly realizable quantification. In game-theoretic terms, the interpretation
of a realizable quantifier w.r.t p requires the corresponding player to choose the value of
a proposition at each round only based on the choices for p made by the adversary up to
that round. For a strongly realizable quantifier, instead, the adversary keeps its choice for
p at the current round hidden and the player can only access the choices made for p at
previous rounds. Definitions 4.5 and 4.6 formalize these fundamental concepts.

Definition 4.5 (Assignment Distinguishability). Let χ1, χ2 ∈ Asg(P) be two assignments
over some set P ⊆ AP of propositions, p ∈ P one of these propositions, and k ∈ N a
number. Then, χ1 and χ2 are (p, k)-strict distinguishable (resp., (p, k)-distinguishable),
in symbols χ1 ≈>kp χ2 (resp., χ1 ≈≥kp χ2), if the following properties hold:

1. χ1(q) = χ2(q), for all atomic propositions q ∈ P with q 6= p;

2. χ1(p)[t] = χ2(p)[t], for all time instants t ≤ k (resp., t < k).

The notion of (p, k)-strict distinguishability (resp., (p, k)-distinguishability) allows us
to identify all the assignments that can only differ on the proposition p at some time
instant t > k (resp., t ≥ k). Indeed, ≈>kp (resp., ≈≥kp) is an equivalence relation on
Asg(P), whose equivalence classes identify those assignments precisely. A realizable (resp.,
strongly-realizable) response must reply at time k uniformly to all ≈>kp -equivalent (resp.,
≈≥kp -equivalent) assignments.

Definition 4.6 (Realizable Response). Let F ∈ Rsp be a response function and p ∈ P
a proposition. Then, F is realizable (resp., strongly realizable) w.r.t p if F (χ1)[k] =
F (χ2)[k], for all numbers k ∈ N and pairs of ≈>kp -equivalent (resp., ≈≥kp -equivalent)
assignments χ1, χ2 ∈ Asg.

Example 4.4. Let χ1 and χ2 be two assignments over the singleton {p} defined as reported
in Figure 4.1. It is clear that χ1 ≈>3

p χ2, but χ1 6≈>4
p χ2, and so χ1 ≈≥4

p χ2, but χ1 6≈≥5
p

χ2. Also, consider the three responses FA, FR, FS ∈ Rsp({p}) defined as follows, for all
hyperteams X ∈ Asg({p}) and time instants t ∈ N: FA(χ)[t] def= χ(p)[t + 1]; FR(χ)[t] def=
χ(p)[t]; FS(χ)[t] def= >, if t = 0, and FS(χ)[t] def= χ(p)[t − 1], otherwise. It is immediate

130

4.2. Dynamic Reasoning

0 1 2 3 4 5
χ1 = { p : > ⊥ ⊥ > ⊥ > · · · }
χ2 = { p : > ⊥ ⊥ > > ⊥ · · · }

FA(χ1) = ⊥ ⊥ > ⊥ > ⊥ · · ·
FA(χ2) = ⊥ ⊥ > > ⊥ > · · ·

FR(χ1) = ⊥ > > ⊥ > ⊥ · · ·
FR(χ2) = ⊥ > > ⊥ ⊥ > · · ·

FS(χ1) = > > ⊥ ⊥ > ⊥ · · ·
FS(χ2) = > > ⊥ ⊥ > > · · ·

Figure 4.1 – Two ≈>3
p (resp., ≈≥4

p) -equivalent assignments with one non-realizable (FA),
one realizable (FR) and one strongly-realizable (FS) response.

to see that FR is realizable, while FS is strongly realizable. However, FA does not enjoy
any realizable property, being defined as a future-dependent response. Indeed, FA(χ1)(3) 6=
FA(χ2)(3), even though χ1 ≈>3

p χ2.

To capture in the logic the realizable constraints on the responses, we extend QPTL
with additional decorations for the quantifiers that express realizable dependencies among
the propositions involved. The result is a new logic, called Good-for-Games QPTL, able
to express in a natural way game-theoretic concepts of Boolean games.

Definition 4.7 (GFG-QPTL Syntax). Good-for-Games QPTL (GFG-QPTL) is the
set of formulas built according to the following context-free grammar, where ψ ∈ LTL,
p ∈ AP, and PR,PS ⊆ AP:

ϕ:= ψ | ¬ϕ |ϕ ∧ ϕ |ϕ ∨ ϕ | ∃Θp ϕ | ∀Θp ϕ; Θ:= 〈PR,PS〉.

A propositional quantifier of the form Q〈PR,PS〉p, with Q ∈ {∃,∀}, explicitly expresses
a Q-quantification over p, i.e., a choice of a response to interpret p that is also realizable
w.r.t all the propositions in PR and strongly-realizable w.r.t those in PS.

To ease the notation, we may write R : PR and S : PS for 〈PR, ∅〉 and 〈∅,PS〉,
respectively, and R and S instead of R : AP and S : AP. We also omit the quantifier
specification 〈∅, ∅〉, using Qp ϕ to denote Q〈∅,∅〉p ϕ. Observe that the quantifier Qp, which
is not restricted, is equivalent to the corresponding QPTL quantifier. Finally, we may
drop the curly brackets for the sets PR and PS and write R : p, q instead of R : {p, q}.

We say that a GFG-QPTL formula is realizable (resp., strongly-realizable) if it is

131

Partie , Chapter 4 – Good-For-Game Quantified Propositional Temporal Logic

in prenex form, its quantifier prefix does not contain duplicated variables (i.e., every
variable is quantified over at most once), and all its quantifier specifications are equal to
R (resp., S). We call realizable GFG-QPTL the syntactic fragment of GFG-QPTL that
considers realizable GFG-QPTL formulas only. We denote by Q (resp., QR) the set of
(resp., realizable) quantifier prefixes and by O the set of quantifier specifications.

Given assignments χ1, χ2 ∈ Asg(P), we write χ1 ∼kΘ χ2, for some Θ = 〈PR,PS〉 ∈ O
and k ∈ N, if one of the following conditions holds:

1. χ1 = χ2;

2. χ1 ≈>kp χ2, for some p ∈ PR;

3. χ1 ≈≥kp χ2, for some p ∈ PS.

We use ≈kΘ to denote the transitive closure of the reflexive and symmetric relation ∼kΘ.

Proposition 4.1. Let P ⊆ AP be a set of atomic propositions, χ1, χ2 ∈ Asg(P) two
assignments, Θ ∈ O a quantifier specification, and k ∈ N a time instant. Then, χ1 ≈kΘ χ2

iff the following hold true:

1. χ1(q) = χ2(q), for all q ∈ P \ (PR ∪ PS);

2. χ1(p)[t] = χ2(p)[t], for all t ≤ k and p ∈ (PR ∩ P) \ PS;

3. χ1(p)[t] = χ2(p)[t], for all t < k and p ∈ PS ∩ P.

0 1 2 3 4 5

χ1 =
{

p : > ⊥ ⊥ > ⊥ > · · · }
q : ⊥ ⊥ > > ⊥ > · · ·

χ2 =
{

p : > ⊥ ⊥ > > ⊥ · · · }
q : ⊥ ⊥ > > ⊥ > · · ·

χ3 =
{

p : > ⊥ ⊥ > > ⊥ · · · }
q : ⊥ ⊥ > ⊥ > > · · ·

Figure 4.2 – Three ≈3
Θ-equivalent assignments, with Θ def= 〈p, q〉.

Example 4.5. Consider the three assignments χ1, χ2, and χ3 over the doubleton {p, q}
depicted in Figure 4.2. It is easy to see that χ1 ≈>3

p χ2, as χ1(q) = χ2(q) and the first
position at which the two assignments differ on p is 4; in addition, χ2 ≈≥3

q χ3, since
χ2(p) = χ3(p) and the first position at which the two assignments differ on q is 3. There-
fore, taking Θ def= 〈p, q〉, we have χ1 ∼3

Θ χ2 ∼3
Θ χ3, which implies χ1 ≈3

Θ χ3.

132

4.2. Dynamic Reasoning

Given a set of propositions P ⊆ AP and a quantifier specification Θ def= 〈PR,PS〉 ∈ O,
we introduce the set of Θ-responses RspΘ(P) ⊆ Rsp(P) containing exactly those F ∈
Rsp(P) that are realizable w.r.t all the propositions in PR ∩ P and strongly realizable
w.r.t those in PS ∩ P.

Example 4.6. Any 〈p, q〉-response F replies to all assignments of Figure 4.2 uniformly,
for all time instants between 0 and 3 included. Indeed, F (χ1)[3] = F (χ1)[3], since χ1 ≈>3

p

χ2, being F realizable w.r.t p. Similarly, F (χ2)[3] = F (χ3)[3], since χ2 ≈≥3
q χ3, being F

strongly-realizable w.r.t q. Hence, F (χ1)[3] = F (χ3)[3].

The following proposition ensures that the above example highlights a general phe-
nomenon.

Proposition 4.2. If χ1 ≈kΘ χ2 then F (χ1)[k] = F (χ2)[k], for all assignments χ1, χ2 ∈
Asg(P), quantifier specifications Θ ∈ O, time instants k ∈ N, and Θ-responses F ∈
RspΘ(P).

A compositional semantics for GFG-QPTL can be obtained by extending the hy-
perteam semantics of QPTL reported in Definition 4.8 to account for the possible de-
pendency constraints associated with the quantifiers. To this end, we simply need to
parameterise the extension operation for hyperteams with the corresponding specification
of the realizable dependencies:

extΘ(X, p) def= {ext(X,F , p) | X ∈ X, F ∈ RspΘ}.

Definition 4.8 (Hyperteam Semantics for GFG-QPTL). The hyperteam semantics re-
lation X |=α ϕ is inductively defined as in Definition 2.1, for all but Items 3, 7a and 8b
that are modified, respectively, as follows, for all propositions p ∈ AP and quantifier
specifications Θ ∈ O:

3a’) X |=∃∀ ψ if there is a team X ∈ X such that, for each assignment χ ∈ X, it holds
that χ |=LTL ψ;

3b’) X |=∀∃ ψ if, for all teams X ∈ X, there is an assignment χ ∈ X such that χ |=LTL ψ;

7a’) X |=∃∀ ∃Θp ϕ if extΘ(X, p) |=∃∀ ϕ;

8b’) X |=∀∃ ∀Θp ϕ if extΘ(X, p) |=∀∃ ϕ.

Note that one could easily extend both the syntax and semantics of the quantifier spec-
ification 〈PR,PS〉 of GFG-QPTL in order to accommodate other types of (in)dependence

133

Partie , Chapter 4 – Good-For-Game Quantified Propositional Temporal Logic

constraints, like the ones already studied in first-order logic of incomplete informa-
tion [HS89; Hod97a; Vää07; MSS11; GV13]. It would suffice to introduce suitable classes
of response functions and corresponding constructs, such as the dependence atoms of
dependence logic, whose semantics can be easily defined via hyperteams.

Of course, we can retrieve results from Chapter 2, such as with the adequacy theorem
that instantiates as follows.

Theorem 4.1 (Semantics Adequacy). For all QPTL formulas ϕ and hyperteams X ∈
HypTeams⊇(free(ϕ)):

1. X |=∃∀ ϕ iff there exists a set of assignments X ∈ X such that χ |= ϕ, for all
assignments χ ∈ X;

2. X |=∀∃ ϕ iff, for all sets of assignments X ∈ X, it holds that χ |= ϕ, for some
assignment χ ∈ X.

4.2.2 Examples

At this point, let us consider some examples to provide insights on the expressive
power of the new logic.

Example 4.7. Let us consider the QPTL sentence Φ def= ∀p(ψp → ∃q(ψq ∧ (q ↔ Xp))),
with ψp

def= ¬p ∧X(�p ∨�¬p) and ψq
def= �q ∨�¬q. The sentence Φ can be viewed as the

description of a very simple game with two players, Abelard and Eloise. Abelard can only
choose a truth value for p that will hold constant at any time instant except for time 0,
where it is false regardless of his choice, in accordance with ψp . Eloise, instead, chooses
a truth value for q that will hold constant from time 0 onward, as dictated by ψq . The
LTL formula q ↔ Xp encodes the game objective, requiring that the truth value of p at
time 1 matches that of q at time 0. Sentence Φ, then, asks whether Eloise can respond
with one of her legal moves to every legal move by Abelard so that the objective is always
met. If we apply the semantics rule for hyperteams without realizable constraints, so, as
in Definition 2.1, we may obtain the following chain of semantic conditions:

1. {{∅}} |=∀∃ Φ;

2. {{χp}, {χp}, . . .} |=∀∃ ψp → ∃q(ψq ∧ (q ↔ Xp));

3. {. . .} |=∀∃ ¬ψp and {{χp}, {χp}} |=∀∃ ∃q(ψq ∧ (q ↔ Xp));

4. {{χp , χp}} |=∃∀ ∃q(ψq ∧ (q ↔ Xp));

134

4.2. Dynamic Reasoning

5. {{χpq , χpq}, {χpq , χpq}, {χpq , χpq}, {χpq , χpq}, . . .} |=∃∀ ψq ∧ (q ↔ Xp).

where Step 3, according to the semantics of disjunction, derives from one of the possible,
existentially quantified, partitioning of the hyperteam in Step 2. The steps above go as
follows. Being Φ a sentence, it is satisfiable iff Step 1 holds true. By Rule 8b of Defi-
nition 2.1 on universal quantifications, we derive Step 2, where χp

def= {p 7→ ⊥>ω} and
χp

def= {p 7→ ⊥ω} are the only two assignments satisfying the precondition ψp . The first as-
signment is obtained by extending ∅ by means of the constant response function F⊥> which
returns false at time 0 and true at every future instant, i.e., χp = ext(∅, F⊥>, p). Simi-
larly, the second one is obtained by the constant response function F⊥ returning false at any
time. The assignments obtained by the uncountably many remaining response functions
are summarised by the ellipsis. Applying Rule 6b, one can choose to split the hyperteam
into the following two parts: {. . .} containing all the singleton sets of those assignments
violating ψp and its complement {{χp}, {χp}}. On the first hyperteam we need to check
¬ψp , while on the second one the remaining part of the formula, as stated in Step 3. Since
{. . .} |=∀∃ ¬ψp holds by construction, Rule 7b applied to the second part leads to Step 4,
where we use the equality {{χp , χp}} = {{χp}, {χp}}. Rule 7a on existential quantifica-
tions allows, then, to derive Step 5, where χ[q

def= χ[[q 7→ >ω] and χ[q
def= χ[[q 7→ ⊥ω], with

[∈ {p, p}. The relevant sets of assignments in the hyperteam at Step 5 are obtained as
follows:

1. {χpq , χpq} = ext({χp , χp}, F>, q), where F> is the constant response function
returning true at every time;

2. {χpq , χpq} = ext({χp , χp}, Fp , q), where Fp (χ) returns at time i the value of p in
χ at i+ 1;

3. {χpq , χpq} = ext({χp , χp}, Fp , q), where Fp (χ) returns at time i the dual value of
p in χ at i+ 1;

4. {χpq , χpq} = ext({χp , χp}, F⊥, q), where F⊥ is the constant response function
returning false at every time.

At this point, since ψq ∧ (q ↔ Xp) is an LTL formula, Rule 3 of Definition 2.1 can
be applied (by interpreting it as in Definition 4.8), thus asking for a set of assignments
containing only assignments that make ψq ∧ (q ↔ Xp) true. Both assignments in the
doubleton {χpq , χpq} satisfy the LTL formula ψq ∧ (q ↔ Xp), which implies that Φ is
satisfiable, witnessing Eloise’s win.

135

Partie , Chapter 4 – Good-For-Game Quantified Propositional Temporal Logic

Example 4.8. The simple game in the previous example can equivalently be expressed by
the following prenex-form sentence Φ′ def= ∀p∃q(ψp → (ψq ∧ (q ↔ Xp))), where an LTL
formula is preceded by a quantifier prefix. The semantic steps here are slightly different
and somewhat simpler, since we assume the classic semantics for temporal and Boolean
operators within a pure LTL formula. In this case, by applying the semantics, one would
obtain the following chain of conditions:

1. {{∅}} |=∀∃ Φ′;

2. {{χp}, {χp}, . . .} |=∀∃ ∃q(ψp → (ψq ∧ (q ↔ Xp)));

3. {{χp , χp , . . .}} |=∃∀ ∃q(ψp → (ψq ∧ (q ↔ Xp)));

4. {{χpq , χpq , . . .}, {χpq , χpq , . . .}, {χpq , χpq , . . .}, {χpq , χpq , . . .}, . . .} |=∃∀ ψp → (ψq∧
(q↔Xp)).

As in Example 4.7, Φ′ is satisfiable iff Step 1 holds true and Step 2 is obtained by applying
Rule 8b of Definition 2.1 on universal quantifications, where the ellipsis in the hyperteam
is in place of all those singletons of assignments not satisfying ψp . Steps 3 and 4 are due
to Rules 7b and 7a on existential quantifications. In particular, the innermost ellipses in
the hyperteam at Step 4 are again in place of assignments not satisfying ψp , while the
outermost ellipsis stands for all those sets of assignments not satisfying ψq . Finally, it
is clear that {χpq , χpq , . . .} is the only set of assignments universally satisfying the LTL
formula ψp → (ψq∧(q ↔ Xp)), as all the other sets have at least one assignment satisfying
ψp , but falsifying ψq or q ↔ Xp.

Example 4.9. Continuing with the QPTL pnf sentence Φ′ def= ∀p∃q (ψp → (ψq ∧ (q ↔
Xp))) of Example 4.8. Obviously, Eloise cannot win the game described by that sentence
following a realizable strategy, as she would need to know at round 0 the opponent’s choice
for p at round 1. This is clearly reflected in the compositional semantics. Indeed, the
response Fp required to obtain the two satisfying assignments χpq and χpq is clearly non-
realizable. Therefore, Φ′ is not realizable (in the sense of behavioral in [PR89]), since
the response Fp cannot be implemented by any concrete synchronous transducer. This is
confirmed by observing that if we replace the two quantifiers with their realizable coun-
terparts, the resulting GFG-QPTL formula ΦR

′ def= ∀Rp∃Rq (ψp → (ψq ∧ (q ↔ Xp)))),
is no longer satisfiable. Indeed, the only realizable responses allowing for the satisfac-
tion of ψq are F> and F⊥ (that answer always > and ⊥ respectively). Therefore, se-
mantic steps analogous to the ones shown in Example 4.8 applied to ΦR

′ would lead to

136

4.2. Dynamic Reasoning

{{χpq , χpq , . . .}, {χpq , χpq , . . .}, . . .} |=∃∀ ψp → (ψq ∧ (q ↔ Xp)), where the sets of assign-
ments are obtained as follows:

— {χpq , χpq , . . .} = ext({χp , χp , . . .}, F>, q);
— {χpq , χpq , . . .} = ext({χp , χp , . . .}, F⊥, q);
— the outer ellipsis . . . = {ext({χp , χp , . . .}, F , q) | F ∈ RspR \ {F>, F⊥}} contains

all the extensions of {χp , χp , . . .} w.r.t the remaining realizable responses.
Clearly, each set of assignments in the outer ellipsis contains no assignment satisfying
ψq. Each such set also contains at least one assignment that does not satisfy ψp. As a
consequence, no set in the outer ellipsis universally satisfies ψp → (ψq ∧ (q ↔ Xp)).
Moreover, in the first set of assignments {χpq , χpq , . . .}, the assignment χpq satisfies both
ψp and ψq, but not q ↔ Xp. In the second set {χpq , χpq , . . .}, instead, the unsatisfying
assignment is χpq, for the same reason. This shows that ΦR

′ is unsatisfiable.

The previous example shows a satisfiable QPTL sentence whose realizable counterpart
becomes unsatisfiable. The opposite may also occur, as the following example illustrates.

0 1
χ′1 =

{
q : a b · · ·

}
χ′2 =

{
q : a b · · ·

}
0 1

χ1 =
{

p : c ∗ · · · }
q : a b · · ·

χ2 =
{

p : c ∗ · · · }
q : a b · · ·

Figure 4.3 – Two schema assignments, with a, b, c ∈ {>,⊥}, where χ1
′, χ2

′ ∈ Y, χ1, χ2 ∈
X ∈ extR({Y}, p), b denotes the dual of b, and ∗ denotes a don’t-care value.

Example 4.10. Consider the QPTL sentence ∃q∀p ψ, with ψ
def= p ↔ Xq, which al-

lows for non-realizable responses/strategies. According to the classic Tarskian semantics
of QPTL, the sentence is unsatisfiable. In game-theoretic terms, indeed, Abelard can fal-
sify ψ by looking at the value of q one instant in the future and choosing the opposite value
as the present value for p. By Theorem 4.1, the sentence is unsatisfiable also under the
realizable hyperteam semantics. On the other hand, if we require that the two players only
use realizable strategies, things may change. In particular, the two GFG-QPTL sentences
∀Rp∃Sqψ and ∃Rq∀Rpψ are both satisfiable w.r.t the trivial hyperteam {{∅}} regardless
of the alternation flag, being self-dual. For the first one, it is enough to observe that the
strongly-realizable response FS of Example 4.4 allows to mimic any temporal valuation
assigned to the proposition p one instant in the past, as required by the LTL property

137

Partie , Chapter 4 – Good-For-Game Quantified Propositional Temporal Logic

ψ. For the second one, we need to show that, extR({Y}, p) |=∀∃ ψ, with Y = Asg({q}).
Now, let X ∈ extR({Y}, p) be an arbitrary team obtained by extending those in Y as
prescribed by the realizable restriction R associated with the universal quantifier. Also,
consider χ1, χ2 ∈ X as two of those assignments that differ on q at time 1, but are equal
at time 0, i.e., χ1(q)[0] = χ2(q)[0], but χ1(q)[1] 6= χ2(q)[1] (see Figure 4.3). Due to the
required realizability w.r.t q of the responses used in the extension of Y, we necessarily
have that χ1(p)[0] = χ2(p)[0]. As a consequence, either χ1 or χ2 satisfies ψ, and thus
extR({Y}, p) |=∀∃ ψ, as required by Item 3′) of the semantics. In other words, Abelard
cannot realizablely falsify the sentence, since he can no longer look at the value of q in the
future.

Example 4.11. Information leaks via quantification of unused variables is a well-known
phenomenon in IFL [Vää07]. The same occurs in GFG-QPTL. Consider a formula ϕ
where p, q ∈ free(ϕ), but s 6∈ free(ϕ). Then, both the equivalences ∀p∃s∃Rqϕ ≡ ∀p∃qϕ
and ∀p∃Rqϕ ≡ ∀p∃Rs∃Rqϕ do hold. However, the equivalence ∀p∃qϕ ≡ ∀p∃Rqϕ may fail
in general. Indeed, an arbitrary response Gq for q in ∀p∃qϕ can be simulated in ∀p∃s∃Rqϕ
by the responses Fs = Gq, for s, and Fq(χ) = χ(s), for q. Clearly, Fq, being the identity
on s, is realizable. Intuitively, the unused non-realizablely-quantified proposition s leaks
information about the future of p to q even if the latter is realizablely quantified, as it can
see the future of p through the value of s at the present time instant.

The following example expands on the connection between GFG-QPTL and GFG-
Automata briefly mentioned in the introduction and shows that GFG-QPTL can express
the property of being good-for-game for an automaton.

Example 4.12. It is well known that QPTL is able to express any ω-regular lan-
guage [Sis83]. This can be proved by encoding the existence of an accepting run of an
arbitrary nondeterministic Büchi word automaton A into a formula ϕ def= ∃pq1 . . . ∃qkψ,
where free(ϕ) = {p1, . . . , pn} is the set of propositions needed to encode the alphabet
Σ of the recognised language L(A), the k mutually exclusive fresh atomic propositions
q1, . . . , qk encode the set of states Q = {q1, . . . , qk} of the automaton, and ψ is the LTL
formula encoding the transition function and the Büchi acceptance condition. Formally,
{X} |=∃∀ ϕ iff LX ⊆ L(A), where LX is the set of ω-words whose encodings over p1, . . . , pn

are the assignments in X. The realizable GFG-QPTL formula ϕR
def= ∃Rq1 . . . ∃Rqkψ iden-

tifies precisely the sublanguages recognised by A when the nondeterminism is resolved in
a good-for-game manner [HP06], i.e., {X} |=∃∀ ϕ iff

138

4.3. Game-Theoretic Semantics

1. LX ⊆ L(A),

2. there exists a function σ : Σ∗×Q→ Q, choosing a successor state σ(u, q) of a state
q ∈ Q based on the prefix u ∈ Σ∗ of the input words read up to that moment, and

3. for every ω-word u ∈ LX, there exists an accepting run r ∈ Qω of A such that
r[i+ 1] = σ(u[: i], r[i]), for every time instant i ∈ N.

Intuitively, the function σ is a uniform strategy to resolve the nondeterminism of the
automaton and can be clearly modelled by means of realizable responses. As a consequence,
the GFG-QPTL sentence ∀p1 . . . ∀pn(ϕ ↔ ϕR) is satisfiable iff A is a good-for-game
automaton.

4.3 Game-Theoretic Semantics

The satisfiability problem for the realizable fragment of GFG-QPTL can be solved
by showing the existence of a game, played by Eloise and Abelard, with the property that
Eloise wins the game iff the corresponding formula is indeed satisfiable. We provide here
a general result, showing that, for any realizable quantifier prefix ℘ and Borelian property
Ψ 1, there exists a game, called quantification game, such that Eloise wins the game iff
the hyperteam obtained by evaluating the prefix, namely ext∃∀(∅, ℘), contains a team
completely included in Ψ. The correctness of this result depends, in turn, on the existence
of canonical forms for the quantifier prefixes that allow one to reduce the alternations to
at most one.

4.3.1 Quantification Game for Sentences

To define the quantification game, we first recall few preliminary notions.
A two-player turn-based arena A = 〈P ∃ , P ∀ , p,M 〉 is a tuple where

1. P ∃ , P ∀ are the sets of positions owned by Eloise and Abelard respectively with
P ∃∩P ∀ = ∅; we denote by P the set of all positions in the game, i.e. P = P ∃]P ∀ ,

2. pI ∈ P is the initial position, and

1. By Borelian property we mean an arbitrary team (possibly, but non-necessarily, induced by an
LTL formula ψ) corresponding to a set in the Borel hierarchy built upon a suitable Cantor topological
space [PP04]; we recall that, starting from the open sets in the space (e.g., eventuality properties, such
as, those induced by LTL formulas of the form ♦p), the hierarchy is uniquely built by applying the
operations of countable union, countable intersection, and complementation.

139

Partie , Chapter 4 – Good-For-Game Quantified Propositional Temporal Logic

3. M ⊆ P × P is the binary left-total relation describing all possible moves.

A path π ∈ Paths ⊆ P∞ is a finite or infinite sequence of positions compatible with
the move relation, i.e., (π[i], π[i + 1]) ∈ M , for all i ∈ J0, . . . , |π| − 1K; it is initial if
|π| > 0 and π[0] = pI . A history for player α ∈ {∃, ∀} is a finite initial path h ∈
Histα ⊆ Paths ∩ (P ∗ · Pα) terminating in an α-position. A play ρ ∈ Plays ⊆ Paths is a
maximal (i.e., infinite since M is left-total) initial path. A strategy for player α∈{∃,∀}
is a function σα ∈ Stratα ⊆ Histα → P mapping each α-history h ∈ Histα to a position
σα(h) ∈ P compatible with the move relation, i.e., (lst(h), σα(h)) ∈M . A path π ∈ Paths
is compatible with a pair of strategies (σ∃, σ∀) ∈ Strat∃×Strat∀ if, for all i ∈ J0, . . . , |π|−1K,
it holds that π[i+ 1] = σ∃(π[: i]), if π[i] ∈ P ∃ , and π[i+ 1] = σ∀(π[: i]), otherwise. As one
may expect, we say that a path is compatible with a strategy σ∃ ∈ Strat∃ if it is compatible
with the pair of strategies (σ∃, σ∀) ∈ Strat∃ × Strat∀, for some strategy σ∀ ∈ Strat∀. The
induced play of a pair of strategies (σ∃, σ∀) ∈ Strat∃ × Strat∀ is the unique play π ∈ Plays
compatible with both σ∃ and σ∀. The play function play : Strat∃×Strat∀ → Plays returns,
for each pair of strategies (σ∃, σ∀) ∈ Strat∃× Strat∀, the unique play play(σ∃, σ∀) ∈ Plays
compatible with them.

A game G = 〈A,Win〉 is a tuple, where A is an arena and Win ⊆ Plays is the set
of winning plays for Eloise; the complement Plays \ Win is winning for Abelard. The
observation function obs : Paths → O∞, with O ⊆ P , associates with each path π ∈ Paths
the ordered sequence w def= obs(π) ∈ O∞ of all observable positions occurring in it. In other
words, w is the maximal subsequence of π that contains only positions in O. Formally,
there exists a monotone bijection f : J0, . . . , |w|K→ {j ∈ J0, . . . , |π|K | π[j] ∈ O} satisfying
the equality w[i] = π[f(i)], for all i ∈ J0, . . . , |w|K. Eloise (resp., Abelard) wins the game
if she (resp., he) has a strategy σ∃ ∈ Strat∃ (resp, σ∀ ∈ Strat∀) such that, for all adversary
strategies σ∀ ∈ Strat∀ (resp., σ∃ ∈ Strat∃), the corresponding play play(σ∃, σ∀) induces an
observation sequence obs(play(σ∃, σ∀)) belonging (resp., not belonging) to Win. Notice
that, even if the winning conditions are defined on a subset of observable positions, here
we only consider perfect-information games, since strategies have, instead, full knowledge
of the entire set of histories.

Martin’s determinacy theorem [Mar75; Mar85] states that all games whose winning
condition is a Borel set in the Cantor topological space of infinite words [PP04] are
determined, i.e., one of the two players necessarily wins the game. To ensure that the
quantification game we are about to define is indeed determined, we require a form of
Borelian condition that can be applied to sets of assignments. This determinacy require-

140

4.3. Game-Theoretic Semantics

ment is crucial here, since it is tightly connected with the fact that GFG-QPTL does not
allow for undetermined formulas. To this end, let Val def= AP ⇀ {>,⊥} denote the set of
Boolean valuations for sets of propositions and Val(P) def= {ν ∈ Val | dom(ν) = P} the set
of valuations for propositions in P ⊆ AP. Also, #(ν) def= |dom(ν)|. We can now define a
bijection between teams over P and languages of infinite words over the alphabet Val(P).
Let wrd : Asg(P)→ Val(P)ω be the word function mapping each assignment χ ∈ Asg(P)
to the word u def= wrd(χ) ∈ Val(P)ω defined by u[t](p) := χ(p)[t], for all p ∈ P and t ∈ N.
Clearly wrd is a bijection. Now, every property Ψ ⊆ Asg(P), i.e., every set of assignments,
uniquely induces the language of infinite words wrd(Ψ) def= {wrd(χ) | χ ∈ Ψ} ⊆ Val(P)ω

over the alphabet Val(P). Thus, Ψ is said to be Borelian (resp., regular) if the language
wrd(Ψ) is a Borel (resp., regular) set.

∅

⊥
p1

⊥
p1

⊥
p2

· · · ν1

· · ·
...

⊥

⊥
p1

>
p2

· · ·

· · ·
νj

>⊥

>
p1

>
p1

⊥
p2

· · ·

· · ·
...

⊥

>
p1

>
p2

· · ·

· · · νn

>

>

Figure 4.4 – Quantification game for the sentence ℘ = ∃Rp1 ∀Rp2 ∃Rp3 · · · . Eloise owns
the circled positions, while Abelard the squared ones. From the total-valuation positions
ν1, . . . , νn, with n = 2|ap(℘)|, Abelard moves to the initial position with empty evaluation.

Given a realizable sentence ℘ψ, let mod(ψ) ⊆ Asg(ap(℘)) denote the team satisfying
the LTL formula ψ. The quantification game Gψ℘

def= Gmod(ψ)
℘ is defined in Construction 4.1

and exemplified in Figure 4.4. Recall that we assume that the prefix ℘ does not contain
duplicates, namely every variable is quantified over at most once in the prefix. The po-
sitions of the game are (partial) valuations of the propositions in ℘ and each position
belongs to the player corresponding to the first quantifier in the prefix whose proposition
is not defined at that position. The initial position of the game contains the empty val-

141

Partie , Chapter 4 – Good-For-Game Quantified Propositional Temporal Logic

uation and in the example of Figure 4.4 belongs to Eloise, since she is the first to play
in ℘. Obviously, the game features an infinite number of rounds. Each round begins with
the empty valuation and ends in a total valuation, after the players have chosen (jointly)
a value for all the propositions. A move in the round corresponds to a player choosing a
value for the next proposition in the prefix ℘. Take, for instance, position ν def= {p1 7→ ⊥}
in the figure, where the first proposition p1 has been already assigned value ⊥ by Eloise.
From that position, Abelard first chooses a Boolean value, say >, for the next proposition
p2 in the prefix. Then he moves to the position ν′ def= {p1 7→ ⊥, p2 7→ >}, corresponding
to the valuation ν[p2 7→ >], obtained by extending ν with the value chosen for p2. Po-
sition ν′ belongs to Eloise, since the next quantifier ∃p3 in the prefix is existential. The
last positions belong to Abelard and, from there, he can only move back to the starting
position for the next turn. By sampling any infinite sequence of rounds of the games at
the positions with total valuations, namely the observable positions, we obtain an infinite
word u corresponding to some assignment χ def= wrd−1(u). Then, u is winning for Eloise
iff χ belongs to Ψ def= mod(ψ) (i.e., χ |= ψ), while it is winning for Abelard otherwise.
This intuition is formalised by the following construction.

Construction 4.1 (Quantification Game I). For every realizable quantifier prefix ℘ ∈
QR and property Ψ ⊆ Asg(ap(℘)), the game GΨ

℘

def= 〈A℘ , O,Win〉 with arena A℘
def=

〈P ∃ , P ∀ , pI ,M 〉 is defined as prescribed in the following:
— the set of positions P ⊂ Val contains exactly those valuations ν ∈ Val of the

propositions in ap(℘) that are quantified in the prefix (℘)<#(ν) of ℘ having length
#(ν) i.e., dom(ν) = ap((℘)<#(ν));

— the set of Eloise’s positions P ∃ ⊆ P only contains the valuations ν ∈ P for
which the proposition quantified in ℘ at index #(ν) is existentially quantified, i.e.,
(℘)#(ν) = ∃Rp, for some p ∈ ap(℘);

— the initial position pI
def= ∅ is just the empty valuation;

— the move relation M ⊆ P × P contains exactly those pairs of valuations (ν1, ν2) ∈
P × P such that:
— ν1 ⊆ ν2

2 and #(ν2) = #(ν1) + 1, or
— ν1 ∈ Val(ap(℘)) and ν2 = ∅;

— the set of observable positions O def= Val(ap(℘)) precisely contains the valuations of
all the propositions in ℘;

2. As usual, ν1 ⊆ ν2 denotes the inclusion between functions, i.e., dom(ν1)⊆ dom(ν2) and ν1(p) =
ν2(p), for all p ∈dom(ν1).

142

4.3. Game-Theoretic Semantics

— the winning condition induced by the property Ψ is the language of infinite words
Win def= wrd(Ψ) over Val(ap(℘)).

The game Gψ℘ above essentially provides a game-theoretic version of the semantics
of realizable quantifications. The correctness of the game is established by the following
theorem.

Theorem 4.2 (Game-Theoretic Semantics (GFG-QPTL) I). A realizable GFG-QPTL
sentence ℘ψ, with ψ ∈ LTL, is satisfiable (resp., unsatisfiable) iff Eloise (resp., Abelard)
wins Gψ℘ .

The proof of this result is split into the following three steps. First, for an arbitrary re-
alizable quantifier prefix ℘, we provide two syntactic transformations, −→∃∀(℘) and −→∀∃(℘),
called canonicalisations, which allow one to reduce a realizable GFG-QPTL sentence
Φ = ℘ψ to the sentences −→∃∀(℘)ψ and −→∀∃(℘)ψ featuring at most a single alternation of
quantifiers. Second, in Theorem 4.3, we connect the winner of the game Gψ℘ with the satis-
fiability of one of the normal forms −→∃∀(℘)ψ and −→∀∃(℘)ψ, showing also that −→∃∀(℘)ψ implies
−→
∀∃(℘)ψ. Finally, in Theorem 4.4, we prove that the original sentence Φ is equisatisfiable
with the two normal forms.

Let us start with the definition of the two prefix canonicalisations based on the follow-
ing syntactic quantifier-swap operations. Consider, e.g., the formula ∀Rp ∃Rq ψ. A naive
quantifier-swap operator would simply swap the two quantifiers that, in game-theoretic
terms, corresponds to swapping the choices of the two players, which allows Abelard to
see Eloise’s move at the current round. To balance this additional power, we restrict
the universal quantifier to be strictly realizable, thus preventing Abelard from reading
Eloise’s choice. This leads to the formula ∃Rq ∀〈AP,q 〉p ψ. A symmetric swap operation
would transform the formula ∃Rq ∀Rp ψ into ∀Rp ∃〈AP,p 〉q ψ. Essentially, the swap oper-
ation exchanges the positions of two adjacent dual realizable quantifiers and restricts the
inner one to be strongly realizable w.r.t the proposition of the outer one. By iteratively
swapping adjacent quantifiers and adjusting the quantifier specification accordingly, we
can reduce the quantifier alternation to at most one, still preserving the dependencies in
the quantifications at each instant of time.

For technical convenience we use a vector notation for the quantifier prefixes:

Q(~θ)(~p) ψ def= Qθ0p0 · · ·Q
θkpk ψ,

143

Partie , Chapter 4 – Good-For-Game Quantified Propositional Temporal Logic

where |(~p)| = |(~θ)| = k + 1. We omit the vector symbol in (~θ) if this is just a sequence of
R or S specifications and consider (~p) as sets of propositions when convenient. We also
define in a natural way the union of two quantifier specifications as follows:

〈PR1,PS1〉 ∪ 〈PR2,PS2〉
def= 〈PR1 ∪ PR2,PS1 ∪ PS2〉.

Given a realizable quantifier prefix ℘ ∈ QR, the two syntactic transformations −→∃∀(·)
and −→∀∃(·) yield the single-alternation prefixes −→∃∀(℘) and −→∀∃(℘), by applying all the quan-
tifier swap operations at once. More specifically, the function −→∃∀(·) provides an ∃∀-prefix,
where all existential quantifiers precede the universal ones, while −→∀∃(·) gives us the the
dual ∀∃-prefix.

For the definition of −→∃∀(·), we observe that every realizable quantifier prefix ℘ can be
written in the following form:

℘ = ∃R(~q)0 (∀R(~p)i ∃R(~q)i)ki=1 ∀R(~p)k+1,

for some k ∈ N and vectors (~q)i, with i ∈ J0, . . . , kK, and (~p)i, with i ∈ J1, . . . , k + 1K,
where |(~q)i|, |(~p)i| ≥ 1, for all i ∈ J1, . . . , kK. For a quantifier prefix ℘ we then define

−→
∃∀(℘) def= (∃R(~q)i)ki=0 (∀(~θ)i(~p)i)k+1

i=1 ,

where (~θ)i is a vector, for every i ∈ [1, k + 1], whose components are defined as ((~θ)i)j def=
〈AP, {(~q)i ∪ · · · ∪ (~q)k}〉, for all j ∈ J0, . . . , |(~p)i|K.

The definition of −→∀∃(·) is analogous. First, we write a prefix ℘ in the form:

℘ = ∀R(~p)0 (∃R(~q)i ∀R(~p)i)ki=1 ∃R(~q)k+1,

for some k ∈ N and vectors (~p)i, with i ∈ J0, . . . , kK, and (~q)i, with i ∈ J1, . . . , k + 1K,
where |(~p)i|, |(~q)i| ≥ 1, for all i ∈ J1, . . . , kK. Then, we define

−→
∀∃(℘) def= (∀R(~p)i)ki=0 (∃(~θ)i(~q)i)k+1

i=1 ,

where (~θ)i is a vector, for every i ∈ [1, k + 1], whose components are defined as ((~θ)i)j def=
〈AP, {(~p)i ∪ · · · ∪ (~p)k}〉, for all j ∈ J0, . . . , |(~q)i|K.

Example 4.13. Consider the realizable quantifier prefix ℘ = ∀Rp ∃Rq∃Rr ∀Rs ∃Rt.
The corresponding ∃∀ canonical-form is −→∃∀(℘) = ∃Rq∃Rr∃Rt ∀θp p ∀θss, where θp

def=

144

4.3. Game-Theoretic Semantics

〈AP, {q r t}〉 and θs
def= 〈AP, t〉. The ∀∃ canonical-form prefix is, instead, −→∀∃(℘) =

∀Rp∀Rs ∃θq∃θr ∃Rt, where θ def= 〈AP, s〉.

For the second part of the proof of Theorem 4.2, we need to connect the winner of
Gψ℘ with the satisfiability of (one among) −→∃∀(℘)ψ and −→∀∃(℘)ψ. This also corresponds to
showing that −→∃∀(℘)ψ =⇒ −→

∀∃(℘)ψ. To this end, we exploit the ω-regularity of LTL
languages, which ensures that the game is Borelian.

Theorem 4.3 (Quantification Game I). For each realizable quantification prefix ℘ ∈ QR

and Borelian property Ψ ⊆ Asg(ap(℘)), the game GΨ
℘ satisfies the following two properties:

1. if Eloise wins then E ⊆ Ψ, for some E ∈ ext∃∀(
−→
∀∃(℘));

2. if Abelard wins then E 6⊆ Ψ, for all E ∈ ext∃∀(
−→
∃∀(℘)).

The idea of the proof is to extract from a winning strategy of Eloise (resp., Abelard)
a vector ~f of response functions, one for each proposition associated with that player,
witnessing the existence (resp., non-existence) of a set E of assignments that satisfies
the property Ψ. More precisely, assume Eloise has a strategy σ to win the game and
let ∀R(~p) ∃(~θ)(~q) = −→∀∃(℘) be the ∀∃ canonical-form of ℘. Then, thanks to the bijection
between plays ρ and assignments χ, we can operate as follows, for every round k and
existential proposition qi in (~q): given Abelard’s choices up to round k in ρ, we can extract,
from Eloise’s response for qi in σ, the response to χ at time k of the response function
fi in ~f. As a consequence, for all χ ∈ Asg((~p)) chosen by Abelard, Eloise’s response
corresponding to the extension of χ with ~f on (~q) satisfies, i.e., belongs to, the property
Ψ. The witness E is precisely the set of all those extensions. An analogous argument
applies to Abelard for the ∃∀ canonical-form. Notice that ~f meets the specification (~θ)
thanks to the alternation of the players prescribed by ℘ in each round of GΨ

℘ . A detailed
proof is provided in Section 4.B. The following result is now immediate.

Corollary 4.1 (Quantification Game I). For every realizable GFG-QPTL sentence ℘ψ,
with ψ ∈ LTL, the game Gψ℘ satisfies the following two properties:

1. if Eloise (resp., Abelard) wins then −→∀∃(℘)ψ is satisfiable (resp., −→∃∀(℘)ψ is unsat-
isfiable);

2. if −→∃∀(℘)ψ is satisfiable (resp., −→∀∃(℘)ψ is unsatisfiable) then Eloise (resp., Abelard)
wins.

145

Partie , Chapter 4 – Good-For-Game Quantified Propositional Temporal Logic

Proof. Item 1 immediately follows from Item 3′) of Definition 4.8, Theorem 2.4 and the two
items of Theorem 4.3. For Item 2, instead, let us assume that −→∃∀(℘)ψ is satisfiable (resp.,
−→
∀∃(℘)ψ is unsatisfiable). Thanks to Item 3′) of Definition 4.8 and Theorem 2.4, if ∅ |=∃∀
−→
∃∀(℘)ψ (resp., ∅ 6|=∃∀ −→∀∃(℘)ψ), then E ⊆ Ψ def= mod(ψ), for some E ∈ ext∃∀(

−→
∃∀(℘)) =

ext∃∀(∅,
−→
∃∀(℘)) (resp., E 6⊆ Ψ, for all E ∈ ext∃∀(

−→
∀∃(℘)) = ext∃∀(∅,

−→
∀∃(℘))). Thus, by

Item 2 (resp., Item 1) of Theorem 4.3, it follows that Abelard (resp., Eloise) loses the
game Gψ℘ , which means, by determinacy, that Eloise (resp., Abelard) wins. Recall that Gψ℘
is determined, since its winning condition is Borelian [Mar75].

The final step establishes the equisatisfiability of a realizable GFG-QPTL sentence
℘ψ with its two canonical forms −→∃∀(℘)ψ and −→∀∃(℘)ψ.

Theorem 4.4 (Sentence Canonical Forms). For every realizable GFG-QPTL sentence
℘ψ, with ψ ∈ LTL, it holds that ℘ψ, −→∃∀(℘)ψ, and −→∀∃(℘)ψ are equisatisfiable.

Towards the proof, we can derive the chain of implications −→∀∃(℘)ψ =⇒ ℘ψ =⇒
−→
∃∀(℘)ψ by exploiting the following property of the generalized extension function. Specif-
ically, this asserts a total ordering w.r.t the preorder v between a realizable quantifier
prefix ℘ and its two canonical forms −→∃∀(℘) and −→∀∃(℘), which can be proved by induction
on the structure of ℘.

Proposition 4.3. extα(X,−→α (℘)) v extα(X, ℘) v extα(X,−→α (℘)), for all hyperteams
X ∈ HypTeams and realizable quantifier prefixes ℘ ∈ QR, with ap(℘) ∩ ap(X) = ∅.

Proof of Theorem 4.4. From Proposition 4.3, Theorem 3.4, and Theorem 2.1, the chain
of implications −→∀∃(℘)ψ =⇒ ℘ψ =⇒ −→

∃∀(℘)ψ easily follows. Indeed, by Theorem 3.4, we
have that

1. ℘ψ is satisfiable iff ext∃∀(℘) |=∃∀ ψ,

2. −→∃∀(℘)ψ is satisfiable iff ext∃∀(
−→
∃∀(℘)) |=∃∀ ψ, and

3. −→∀∃(℘)ψ is satisfiable iff ext∃∀(
−→
∀∃(℘)) |=∃∀ ψ.

Now, by Proposition 4.3, it holds that ext∃∀(
−→
∀∃(℘)) v ext∃∀(℘) v ext∃∀(

−→
∃∀(℘)). There-

fore, by Theorem 2.1, we have that if−→∀∃(℘)ψ is satisfiable then ℘ψ is satisfiable too, which,
in turn, implies that −→∃∀(℘)ψ is satisfiable as well. To complete the proof, we need to show
that, if −→∃∀(℘)ψ is satisfiable, then also −→∀∃(℘)ψ is satisfiable. This fact is, however, a direct
consequence of Corollary 4.1.

We can finally prove of the main result of this subsection, namely Theorem 4.2.

146

4.3. Game-Theoretic Semantics

Proof of Theorem 4.2. We want to prove that ℘ψ is satisfiable (resp., unsatisfiable) iff
Eloise (resp., Abelard) wins Gψ℘ . For the if-direction, by Item 1 of Corollary 4.1, if Eloise
(resp, Abelard) wins the game then −→∀∃(℘)ψ is satisfiable (resp., −→∃∀(℘)ψ is unsatisfiable).
However, this implies that ℘ψ is satisfiable (resp., unsatisfiable), thanks to Theorem 4.4.
For the only-if-direction, if ℘ψ is satisfiable (resp., unsatisfiable) then −→∃∀(℘)ψ is satisfiable
(resp., −→∀∃(℘)ψ is unsatisfiable), again due to Theorem 4.4. However, this implies, in turn,
that Eloise (resp., Abelard) wins the game, thanks to Item 2 of Corollary 4.1.

4.3.2 Quantification Game for Formulas

The game defined in the previous section can easily be adapted to deal with the
satisfiability problem for realizable GFG-QPTL as shown in the next section. Solving the
model-checking problem requires, however, a generalization of Theorem 4.2, connecting a
suitable game with the satisfaction of an arbitrary realizable formula w.r.t a hyperteam
X. We can prove such a property under the assumption that X is well-behaved, i.e.,
X is the generalized extension of a singleton, composed of a Borelian team X, w.r.t
some realizable prefix ℘̃. The Borelian requirement is again connected to determinacy
of the underlying game. The realizable requirement, instead, allows for a simple proof
that leverages the quantification game for sentences directly. At this stage, it is not clear
whether the property actually holds for arbitrary Borelian hyperteams. In the model-
checking procedure provided later on, however, both properties are satisfied.

To formalize the two assumptions above, we introduce the notion of generator for a
hyperteam X ∈ HypTeams as a pair 〈℘̃, X〉 consisting of

1. a realizable quantification prefix ℘̃ ∈ QR and

2. a Borelian team ∅ 6= X ⊆ Asg(ap(X) \ ap(℘̃))

such that X = ext∃∀({X}, ℘̃). A hyperteam X ∈ HypTeams is Borelian realizable if there
is a generator for it.

The new quantification game is defined w.r.t a quantification-game schema that com-
prises the input hyperteam X, the quantification prefix ℘ describing how the players
alternate in the game, and the Borelian property Ψ corresponding to the desired goal.

Definition 4.9 (Quantification-Game Schema). A quantification-game schema is a tuple
S def= 〈X, ℘,Ψ〉, where

1. X ∈ HypTeams is Borelian realizable,

147

Partie , Chapter 4 – Good-For-Game Quantified Propositional Temporal Logic

2. ℘ ∈ QR is a realizable quantification prefix,

3. Ψ ⊆ Asg(ap(℘) ∪ ap(X)) is Borelian, and

4. ap(℘) ∩ ap(X) = ∅.

The idea behind the game-theoretic construction reported below is quite simple. Given
a generator 〈℘̃, X〉 for a well-behaved hyperteam X, we force the two players to sim-
ulate the given X by playing according to the prefix ℘̃, once Abelard has arbitrarily
chosen the values of the atomic propositions (~p) over which the team X is defined. Since
ext∃∀(∀(~p)) = {Asg((~p))} and X ⊆ Asg((~p)), it is clear that ext∃∀(∀(~p)) v {X} and, by
the monotonicity property stated in Lemma 3.4, that extends naturally to GFG-QPTL,
we have that ext∃∀(∀(~p) ℘̃) v X = ext∃∀({X}, ℘̃) . Thus, if Eloise wins the game, she
can ensure a given temporal property, i.e., X |=∃∀ ℘ψ. Notice, however, that we gave
Abelard the freedom to cheat and choose arbitrary values for (~p). Thus, in principle,
Eloise could be able to satisfy the property while losing the game, since Abelard can
choose assignments over (~p) that do not belong to X. To remedy this, we add all those
assignments to Eloise’s winning set, thus deterring Abelard from cheating.

Construction 4.2 (Quantification Game II). For a quantification-game schema S def=
〈X, ℘,Ψ〉, we say that G is a S -game if there is a generator 〈℘̃, X〉 for X such that
G def= GΨ̂

℘̂ , where
— ℘̂

def= ∀(~p) ℘̃ ℘ and
— Ψ̂ def= Ψ ∪ {χ ∈ Asg(P) | χ�(~p) 6∈ X},

with (~p) def= ap(X) \ ap(℘̃) and P def= ap(℘) ∪ ap(X).

The quantification-game schema for a formula ℘ψ, with ψ ∈ LTL, and a hyperteam
X is the tuple SX

℘ψ
def= 〈X, ℘,mod(ψ)〉. We can now generalize Theorem 4.2 to formulas.

Theorem 4.5 (Game-Theoretic Semantics II). X |=∃∀ ℘ψ (resp., X 6|=∃∀ ℘ψ) iff Eloise
(resp., Abelard) wins every SX

℘ψ-game, for all realizable GFG-QPTL formulas ℘ψ, with
ψ ∈ LTL, and Borelian realizable hyperteams X ∈ HypTeams(free(℘ψ)).

The proof of the above result follows an approach similar to the one described in the
previous subsection for Theorem 4.2 and uses the following result, proven in Section 4.B,
which generalizes Theorem 4.3 to formulas.

Theorem 4.6 (Quantification Game II). Every S -game G , for some quantification-game
schema S def= 〈X, ℘,Ψ〉, satisfies the following two properties:

148

4.3. Game-Theoretic Semantics

1. if Eloise wins then E ⊆ Ψ, for some E ∈ ext∃∀(X,
−→
∀∃(℘));

2. if Abelard wins then E 6⊆ Ψ, for all E ∈ ext∃∀(X,
−→
∃∀(℘)).

The connection between the quantification game and the satisfaction problem w.r.t a
hyperteam is stated by the following result.

Corollary 4.2 (Quantification Game II). For every realizable GFG-QPTL formula ℘ψ,
with ψ ∈ LTL, and Borelian realizable hyperteams X ∈ HypTeams(free(℘ψ)), every
SX
℘ψ-game satisfies the following two properties:

1. if Eloise (resp., Abelard) wins then X |=∃∀ −→∀∃(℘)ψ (resp., X 6|=∃∀ −→∃∀(℘)ψ);

2. if X |=∃∀ −→∃∀(℘)ψ (resp., X 6|=∃∀ −→∀∃(℘)ψ) then Eloise (resp., Abelard) wins.

Proof. Let G be an arbitrary SX
℘ψ-game. Item 1 immediately follows from Item 3′) of

Definition 4.8, Theorem 3.4 and the two items of Theorem 4.6. For Item 2, instead, let us
assume that X |=∃∀ −→∃∀(℘)ψ (resp., X 6|=∃∀ −→∀∃(℘)ψ). Thanks to Item 3′) of Definition 4.8
and Theorem 3.4, it holds that E ⊆ Ψ def= mod(ψ), for some E ∈ ext∃∀(X,

−→
∃∀(℘)) (resp.,

E 6⊆ Ψ, for all E ∈ ext∃∀(X,
−→
∀∃(℘))). Thus, by Item 2 (resp., Item 1) of Theorem 4.6, it

follows that Abelard (resp., Eloise) loses the game G , which means, by determinacy, that
Eloise (resp., Abelard) wins.

Corollary 4.2, together with Proposition 4.3, lifts Theorem 4.4 to formulas as follows.

Theorem 4.7 (Formula Canonical Forms). For every realizable GFG-QPTL formula
℘ψ, with ψ ∈ LTL, it holds that X |=α ℘ψ iff X |=α −→∃∀(℘)ψ iff X |=α −→∀∃(℘)ψ, for all
Borelian realizable hyperteams X ∈ HypTeams(free(℘ψ)).

Proof. We focus on the statement for α = ∃∀, as the case α = ∀∃ can be easily derived
from the previous one by observing that, thanks to the Boolean laws of Theorem 2.3,

1. X |=∀∃ ℘ψ iff X 6|=∃∀ ℘¬ψ,

2. X |=∃∀ −→∃∀(℘)ψ iff X 6|=∀∃ −→∀∃(℘)¬ψ, and

3. X |=∀∃ −→∃∀(℘)ψ iff X 6|=∃∀ −→∀∃(℘)¬ψ.

As done in the proof of Theorem 4.4, one chain of implication – if X |=∃∀ −→∀∃(℘)ψ then
X |=∃∀ ℘ψ and if X |=∃∀ ℘ψ then X |=∃∀ −→∃∀(℘)ψ – is an immediate consequence of
Proposition 4.3, Theorem 3.4, and Theorem 2.1. Indeed, by Theorem 3.4, we have that

1. X |=∃∀ ℘ψ iff ext∃∀(X, ℘) |=∃∀ ψ,

149

Partie , Chapter 4 – Good-For-Game Quantified Propositional Temporal Logic

2. X |=∃∀ −→∃∀(℘)ψ iff ext∃∀(X,
−→
∃∀(℘)) |=∃∀ ψ, and

3. X |=∃∀ −→∀∃(℘)ψ iff ext∃∀(X,
−→
∀∃(℘)) |=∃∀ ψ.

Now, by Proposition 4.3, it holds that ext∃∀(X,
−→
∀∃(℘)) v ext∃∀(X, ℘) v

ext∃∀(X,
−→
∃∀(℘)). Therefore, by Theorem 2.1, we have that X |=∃∀ −→∀∃(℘)ψ implies

X |=∃∀ ℘ψ, which, in turn, implies X |=∃∀ −→∃∀(℘)ψ. The converse implication – if
X |=∃∀ −→∃∀(℘)ψ then X |=∃∀ −→∀∃(℘)ψ – is a direct consequence of Corollary 4.2.

The previous theorem allows us to obtain a proof for Theorem 4.5.

Proof of Theorem 4.5. Given an arbitrary SX
℘ψ-game G , we want to prove that X |=∃∀ ℘ψ

(resp., X 6|=∃∀ ℘ψ) holds true iff Eloise (resp., Abelard) wins G . For the if-direction, by
Item 1 of Corollary 4.2, if Eloise (resp, Abelard) wins G then X |=∃∀ −→∀∃(℘)ψ (resp.,
X 6|=∃∀ −→∃∀(℘)ψ). However, this implies that X |=∃∀ ℘ψ (resp., X 6|=∃∀ ℘ψ), thanks to
Theorem 4.7. For the only-if-direction, if X |=∃∀ ℘ψ (resp., X 6|=∃∀ ℘ψ) then X |=∃∀ −→∃∀(℘)ψ
(resp., X 6|=∃∀ −→∀∃(℘)ψ) holds true, again due to Theorem 4.7. This implies, in turn, that
Eloise (resp., Abelard) wins G , thanks to Item 2 of Corollary 4.2.

4.3.3 Complexity Results

The first step in deciding the satisfiability problem is to derive from a realizable sen-
tence Φ = Qψ a parity game [Mos91; EJ91] that is won by Eloise iff Φ is satisfiable.
To do that, we first construct a deterministic parity automaton Aψ for the LTL formula
ψ, by combining the Vardi-Wolper theorem [VW86a] with the Safra-like translation from
Büchi to parity acceptance condition [Pit06]. We then compute the synchronous product
of the arena AQ of Construction 4.1 with Aψ , where the automaton component changes
state only when Abelard takes a move starting from an observable position containing full
valuation of the propositions. Such valuation is read by the transition function of Aψ to
determine its successor state. The resulting game simulates both the quantification game
and the automaton, so that Eloise wins iff the play satisfies ψ. This result, formally stated
below, is proven in Section 4.B.

Theorem 4.8 (Satisfiability Game). For every realizable GFG-QPTL sentence Φ there
is a parity game, with 22O|Φ| positions and 2O|Φ| priorities, won by Eloise iff Φ is satisfiable.

We can then obtain an upper bound on the complexity of the problem from the
fact that parity games can be solved in time polynomial in the number of positions and

150

4.4. Conclusion

exponential in that of the priorities [EJ88; EJS93; Zie98]. For the lower bound, instead, we
observe that the reactive synthesis problem [PR89] of an LTL formula ψ can be reduced
to the satisfiability of a sentence of the form ∀R(~p) ∃R(~q) ψ, where (~p) and (~q) denote,
respectively, the input and output signals of the desired system.

Theorem 4.9 (Satisfiability Complexity). The satisfiability problem for realizable GFG-
QPTL sentences is 2-Exptime-complete.

As to the (universal) model-checking problem, given a Kripke structure K, we ask
whether K |= Φ, in the sense that XK |=∃∀ Φ holds, where XK

def= {{χ ∈ Asg(ap(K)) |
wrd(χ) ∈ mod(K)}} is the hyperteam obtained by collecting all the assignments χ ∈
Asg(ap(K)) over the propositions of K for which the infinite word wrd(χ) belongs to the
ω-language L(K) generated by K. Since L(K) is an ω-regular language, XK is clearly a
Borelian realizable hyperteam. As a consequence, Construction 4.2 applies. Thus, we can
adopt the same synchronous product described above between the arena of the game and
the union of the two automata Aψ and AK, where Aψ is obtained from the formula ψ,
while AK is a co-safety automaton of size linear in |K|, recognising the complement of
L(K). Observe that one may also consider the dual notion of existential model-checking,
which asks whether K |= Φ in the sense of XK |=∀∃ Φ, which can be solved analogously.

Theorem 4.10 (Model-Checking Game). For every Kripke structure K and realizable
GFG-QPTL formula Φ, with free(Φ) ⊆ ap(K), there is a parity game, with 22O|Φ| · |K|
positions and 2O|Φ| priorities, won by Eloise iff K |= Φ.

Upper bounds w.r.t both formula and model complexity, and the lower bound w.r.t
formula complexity, are proved as in the case of the satisfiability problem. As far as the
model complexity is concerned, the lower bound can be naturally derived by reducing
from reachability games [Imm81].

Theorem 4.11 (Model-Checking Complexity). The model-checking problem for realiz-
able GFG-QPTL has a 2-Exptime-complete formula complexity and a Ptime-complete
model complexity.

4.4 Conclusion

We have introduced a novel semantics for QPTL extending in a non-trivial way
Hodges’ team semantics for Hintikka and Sandu’s logic of imperfect information IFL.

151

Partie , Chapter 4 – Good-For-Game Quantified Propositional Temporal Logic

On the one hand, the new semantic setting can express games with both symmetric and
asymmetric restrictions on the players. On the other hand, it allows for encoding real-
izable constraints on the quantified propositions, connecting the underlying logic with
the game-theoretic notion of realizable strategies. Based on this semantics, the extension
of QPTL with constraints on the functional dependencies among propositions, called
GFG-QPTL, has surprisingly interesting properties. For one, its realizable fragment en-
ables reducing the solution of two-player zero-sum games to the decision problems for
the logic. Indeed, the deep connection with realizable strategies ensures that satisfiable
formulae of the logic express linear time properties that can always be realised by means
of actual strategies. This fragment also enjoys good computational properties, being 2-
Exptime-complete for both satisfiability and model-checking. It is also very expressive,
being equivalent to, though less succinct than, QPTL, hence able to describe all ω-regular
properties. Second, the realizable semantics also bears a connection to good-for-game au-
tomata, allowing to naturally express the property of being a GFG-QPTL automata,
the significance of which is probably worth investigating further.

To the best of our knowledge, this is the first attempt to provide a compositional
account of realizable constraints. We believe the generality and flexibility of the seman-
tic settings opens up the possibility of a systematic investigation of the impact of this
type of constraints in quantified temporal logics, such as QCTL [Fre01; LM14], Substruc-
ture Temporal Logic [BMM13; BMM15], HyperLTL/CTL? [CFKMRS14; FRS15; FH16;
FZ16; CFHH19], Coordination Logic [FS10].

In the next chapter, we investigate how to adapt hyperteam semantics for strategic
reasoning in a fashion comparable to Strategy Logic [CHP10; MMPV14; MMPV17].

4.A Proofs of Section 4.2

Proposition 4.1. Let P ⊆ AP be a set of atomic propositions, χ1, χ2 ∈ Asg(P) two
assignments, Θ ∈ O a quantifier specification, and k ∈ N a time instant. Then, χ1 ≈kΘ χ2

iff the following hold true:

1. χ1(q) = χ2(q), for all q ∈ P \ (PR ∪ PS);

2. χ1(p)[t] = χ2(p)[t], for all t ≤ k and p ∈ (PR ∩ P) \ PS;

3. χ1(p)[t] = χ2(p)[t], for all t < k and p ∈ PS ∩ P.

Proof. Assume χ1 ≈kΘ χ2. Because ≈kΘ is the transitive closure of ∼kΘ, we have χ1 =

152

4.B. Proofs of Section 4.3

χ(1) ∼kΘ χ(2) ∼kΘ . . . ∼kΘ χ(r) = χ2, for some χ(1), . . . , χ(r), with r ∈ N \ {0} (observe that
χ1 = χ2 if r = 1).

We prove, by induction on r, that items 1–3 hold. If r = 1, then the claim follows
trivially. Let r > 1. Since χ(1) ∼kΘ χ(2), we have that 1–3 hold when instantiated with χ(1)

and χ(2), by Definition 4.5. Moreover, by inductive hypothesis, 1–3 hold when instantiated
with χ(2) and χ(r). The claim follows by transitivity of 1–3.

Now, in order to prove the converse direction, assume that items 1–3 hold. Let
{p1, . . . , pr} be an enumeration of PR ∪ PS and define χ(1) def= χ1 and χ(i+1) def= χ(i)[pi 7→
χ2(pi)] for i ∈ [1, . . . , r]. It is not difficult to convince oneself that χ1 = χ(1) ∼kΘ χ(2) ∼kΘ
. . . ∼kΘ χ(r+1) = χ2 holds, hence χ1 ≈kΘ χ2.

Proposition 4.2. If χ1 ≈kΘ χ2 then F (χ1)[k] = F (χ2)[k], for all assignments χ1, χ2 ∈
Asg(P), quantifier specifications Θ ∈ O, time instants k ∈ N, and Θ-responses F ∈
RspΘ(P).

Proof. Assume χ1 ≈kΘ χ2, i.e., χ1 = χ(1) ∼kΘ χ(2) ∼kΘ . . . ∼kΘ χ(r) = χ2, for some
χ(1), . . . , χ(r), with r ∈ N \ {0} (observe that χ1 = χ2 if r = 1).

We prove, by induction on r, that F (χ1)(k) = F (χ2)(k). If r = 1, then the claim
follows trivially. Let r > 1. Since χ(1) ∼kΘ χ(2) and F ∈ RspΘ(P), we have that F (χ(1))(k) =
F (χ(2))(k). Moreover, by inductive hypothesis, F (χ(2))(k) = F (χ(r))(k). The claim follows
by transitivity.

4.B Proofs of Section 4.3

Now, we showcase the graph of dependency for Theorem 4.2, presenting the lemma,
corollary and theorem used for the proof in the main paper.

Theorem 4.2Theorem 2.2 Theorem 3.4 Corollary 4.1. . .

In order to provide the missing proofs of Theorems 4.3 and 4.6 and Proposition 4.3, in
this appendix we shall also need to prove the auxiliary Propositions 4.4 to 4.9 and 4.12,
and 4.13 and to introduce, later on, the notion of normal evolution function and a refine-
ment of the order between hyperteams.

Proposition 4.4. Let X ∈ HypTeams(P) be a hyperteam over P ⊆ s, Θ ∈ O a quantifier
specification, p ∈ s\P an atomic proposition, and Ψ ⊆ Asg(P∪{p}) a set of assignments.

153

Partie , Chapter 4 – Good-For-Game Quantified Propositional Temporal Logic

There exists a set of assignments W ∈ extα(X, QΘp) such that W ⊆ Ψ iff the following
conditions hold true:

1. there exist F ∈ RspΘ(P) and X ∈ X such that ext(X,F , p) ⊆ Ψ, whenever α and
Q are coherent;

2. for all F ∈ RspΘ(P), there is X ∈ X such that ext(X,F , p) ⊆ Ψ, whenever α and
Q are not coherent.

Proof. We consider the two conditions separately.
— [1] If α and Q are coherent, by definition of evolution function, we have

extα(X, QΘp) = extΘ(X, p) = {ext(X,F , p) | X ∈ X, F ∈ RspΘ(ap(X))}.

Thus, for every set of assignments W ⊆ Asg(P ∪ {p}), it holds that W ∈
extα(X, QΘp) iff there exists a Θ-response F ∈ RspΘ(P) and a set of assignments
X ∈ X such that W = ext(X,F , p). Hence, Condition 1 immediately follows.

— [2] If α and Q are not coherent, by definition of evolution function, we have

extα(X, QΘp) = extΘ(X, p) = {img(Γ) | Γ ∈ Chc(extΘ(X, p))}.

Thus, for every set of assignments W ⊆ Asg(P ∪ {p}), it holds that W ∈
extα(X, QΘp) iff there exists a choice function Γ ∈ Chc(extΘ(X, p)) such that
W = img(Γ) = {Γ(Z) | Z ∈ extΘ(X, p)}. This means that W ⊆ Ψ iff Γ(Z) ∈ Ψ,
for all Z ∈ extΘ(X, p). Now, it is clear that there exists a choice function
Γ ∈ Chc(extΘ(X, p)) such that Γ(Z) ∈ Ψ, for all Z ∈ extΘ(X, p) iff, for every
Z ∈ extΘ(X, p) = {ext(Y, F , p) | Y ∈ X, F ∈ RspΘ(P)}, there exists χZ ∈ Z such
that χZ ∈ Ψ. The latter property, however, means that, for every F ∈ RspΘ(P)
and Y ∈ X = {img(Λ) | Λ ∈ Chc(X)}, there exists χF ,Y ∈ ext(Y, F , p) such that
χF ,Y ∈ Ψ, which in turn can be written as, for every F ∈ RspΘ(P) and Λ ∈ Chc(X),
there exists χF ,Λ ∈ ext(img(Λ), F , p) = ext({Λ(X) | X ∈ X}, F , p) such that
χF ,Λ ∈ Ψ. Now, notice that χF ,Λ ∈ ext({Λ(X) | X ∈ X}, F , p) iff there exists
X ∈ X such that χF ,Λ = ext(Λ(X), F , p).
Thus, up to this point, we have shown that the following two properties are equiv-
alent:
— there exists W ∈ extα(X, QΘp) such that W ⊆ Ψ;
— for all F ∈ RspΘ(P) and Λ ∈ Chc(X), there exists X ∈ X such that

154

4.B. Proofs of Section 4.3

ext(Λ(X), F , p) ∈ Ψ.
Now, by deHerbrandizing 3 the universal quantification of Λ w.r.t the existential
quantification of X in the last item and recalling that Λ(X) ∈ X, we obtain that,
for all F ∈ RspΘ(P), there exists X ∈ X such that ext(χ, F , p) ∈ Ψ, for all
χ ∈ X. But this means that, for all F ∈ RspΘ(P), there exists X ∈ X such that
ext(X,F , p) ⊆ Ψ, as required by Condition 2.

Next, we prove Theorem 4.3. Here is the graph of dependency presenting the propo-
sition used for the proof in the main paper.

Theorem 4.3Proposition 4.4

Theorem 4.3 (Quantification Game I). For each realizable quantification prefix ℘ ∈ QR

and Borelian property Ψ ⊆ Asg(ap(℘)), the game GΨ
℘ satisfies the following two properties:

1. if Eloise wins then E ⊆ Ψ, for some E ∈ ext∃∀(
−→
∀∃(℘));

2. if Abelard wins then E 6⊆ Ψ, for all E ∈ ext∃∀(
−→
∃∀(℘)).

Proof. Let GΨ
℘ be the game defined as prescribed in Construction 4.1. Obviously, this is a

Borelian game, due to the hypothesis on the property Ψ.
Before continuing, first observe that, thanks to the specific structure of the game, every

history h ·p ∈ Histα is bijectively correlated with the sequence of positions obs(h)·p ∈ O∗ ·
Pα, for any player α ∈ {∃,∀}. In other words, the functions shrα : Histα → O∗ ·Pα defined
as shrα(h · p) def= obs(h) · p are bijective. Thanks to this observation, it is thus immediate
to show that, for each strategy σ∃ ∈ Strat∃, there is a unique function σ̂∃ : O∗ · P ∃ → P

and, vice versa, for each function σ̂∃ : O∗ ·P ∃ → P , there is a unique strategy σ∃ ∈ Strat∃
such that

σ̂∃(shr∃(h)) = σ∃(h), for all histories h ∈ Hist∃.

Similarly, for each strategy σ∀ ∈ Strat∀, there is a unique function σ̂∀ : O∗ · P ∀ → P and,
vice versa, for each function σ̂∀ : O∗ · P ∀ → P , there is a unique strategy σ∀ ∈ Strat∀
satisfying the equality

σ̂∀(shr∀(h)) = σ∀(h), for all histories h ∈ Hist∀.

3. The Herbrandization process [Bus98b; Hei67] is the dual of the well known Skolemization pro-
cess and transforms a logic formula of the form ∃x∀y. ψ(x, y) into the equivalent (higher-order) formula
∀F ∃x. ψ(x, F (x)), where F is the Herbrand function for the universally-quantified variable y. The de-
Herbrandizing process is the inverse transformation from ∀F ∃x. ψ(x, F (x)) to ∃x∀y. ψ(x, y). Note that
here the process is applied at the meta level of the proof.

155

Partie , Chapter 4 – Good-For-Game Quantified Propositional Temporal Logic

We can now proceed with the proof of the two properties.
Recall that extα(℘) def= extα({{∅}}, ℘).
— [1] Since Eloise wins the game, she has a winning strategy, i.e., there is σ∃ ∈ Strat∃

such that obs(play((σ∃, σ∀))) ∈ Win, for all σ∀ ∈ Strat∀. We want to prove that
there exists E ∈ ext∃∀(

−→
∀∃(℘)) such that E ⊆ Ψ.

First, recall that −→∀∃(℘) = ∀R(~p).∃~Θ(~q), for some vectors of atomic propositions
(~p), (~q) ∈ s∗ and quantifier specifications ~Θ ∈ O|(~q)|. Moreover, thanks to Proposi-
tion 4.4, the following claim can be proved by induction on the number of existential
variables.
Claim 4.1. E ⊆ Ψ, for some E ∈ ext∃∀(

−→
∀∃(℘)), iff there exists a vector of

responses ~F ∈ Rsp~Θ((~p)) such that ext(χ, ~F , (~q)) ∈ Ψ, for all assignments χ ∈
Asg((~p)).

Proof. As previously observed, −→∀∃(℘) = ∀R(~p). ∃~Θ(~q), for some vectors
(~p), (~q) ∈ s∗ and ~Θ ∈ O|(~q)|. Thus, ext∃∀(

−→
∀∃(℘)) = ext∃∀(∀R(~p).∃~Θ(~q)) =

ext∃∀(ext∃∀(∀R(~p)),∃~Θ(~q)) = ext∃∀({Asg((~p))},∃~Θ(~q)). At this point, the proof
proceeds by induction on the length of the vector (~q). If |(~q)| = 0, there is
nothing really to prove, as the thesis follows immediately from the fact that
ext∃∀(

−→
∀∃(℘)) = {Asg((~p))}. Let us now consider the case |(~q)| > 0 and split both

(~q) and ~Θ as follows: (~q) = (~q)′ · q and ~Θ = ~Θ′ · Θ. Obviously, ext∃∀(
−→
∀∃(℘)) =

ext∃∀(ext∃∀({Asg((~p))},∃~Θ′(~q)′),∃Θq). Now, by Item 1 of Proposition 4.4, E ⊆ Ψ,
for some E ∈ ext∃∀(

−→
∀∃(℘)), iff there exist a response F ∈ RspΘ((~p) · (~q)′) and

a set X ∈ ext∃∀({Asg((~p))},∃~Θ′(~q)′) such that ext(X,F , p) ⊆ Ψ. The latter
inclusion can be rewritten as X ⊆ prj(Ψ, F , q), where prj(Ψ, F , q) def= {χ ∈
Asg((~p) · (~q)′) | ext(χ, F , q) ∈ Ψ}. At this point, by the inductive hypothesis ap-
plied to the inclusion X ⊆ prj(Ψ, F , q), for some X ∈ ext∃∀({Asg((~p))},∃~Θ′(~q)′),
we obtain that E ⊆ Ψ, for some E ∈ ext∃∀(

−→
∀∃(℘)), iff there exist a response

F ∈ RspΘ((~p) · (~q)′) and a vector of responses ~F
′
∈ Rsp~Θ′((~p)) such that

ext(Asg((~p)), ~F
′
, (~q)′) ⊆ prj(Ψ, F , q). The latter inclusion can now be rewrit-

ten as ext(ext(Asg((~p)), ~F
′
, (~q)′), F , q) ⊆ Ψ. To conclude the proof, the vec-

tor of responses ~F ∈ Rsp~Θ((~p)) is obtained by juxtaposing the vector ~F
′
with

the response F ∗ ∈ RspΘ((~p)) obtained by composing F with ~F
′
as follows:

F ∗(χ) def= F (ext(χ, ~F
′
, (~q)′)).

Due to the above characterisation of the existence of a set E ∈ ext∃∀(
−→
∀∃(℘)) such

156

4.B. Proofs of Section 4.3

that E ⊆ Ψ, the thesis can be proved by defining a suitable vector of responses
~F ∈ Rsp~Θ((~p)).
Consider an arbitrary assignment χ ∈ Asg((~p)) and define the function σ̂

χ
∀ : O∗ ·

P ∀ → P as follows, for all finite sequences of observable positions u ∈ O∗ and
Abelard’s positions ν ∈ P ∀:

σ̂
χ
∀ (u · ν) def=

∅, f if ν ∈ O;

ν[x 7→ χ(x)(|u|)], otherwise;

where x ∈ (~p) is the atomic proposition at position #(ν) in the prefix ℘, i.e.,
(℘)#(ν) = ∀Rx. Due to the bijective correspondence previously described, there is
a unique strategy σ

χ
∀ ∈ Strat∀ such that σχ∀ (h) = σ̂

χ
∀ (shr∀(h)), for all histories

h ∈ Hist∀. Obviously, the induced play ρχ def= play((σ∃, σ
χ
∀)) is won by Eloise, i.e.,

uχ
def= obs(ρχ) ∈ Win.

Thanks to all the infinite sequences uχ , one for each assignment χ ∈ Asg((~p)), we
can now define every component (~F)i of the vector of responses ~F ∈ (Rsp((~p)))|(~q)|

as follows, for all instants of time t ∈ N, where i ∈ J0, . . . , |(~q)|K:

(~F)i(χ)(t) def= (uχ)t(((~q))i).

It is not too hard to show that, by construction, this response complies with the
vector ~Θ of quantifier specifications.
Claim 4.2. ~F ∈ Rsp~Θ((~p)).
At this point, for all assignments χ ∈ Asg((~p)), let χ~F

def= ext(χ, ~F , (~q)). We can
argue that χ~F ∈ Ψ. Indeed, by construction of the strategy σχ∀ and the vector of
responses ~F , it holds that χ~F (x)(t) = (uχ)t(x), for all instants of time t ∈ N and
atomic propositions x ∈ (~p) · (~q). Hence, wrd(χ~F) = uχ , which implies χ~F ∈ Ψ,
since uχ ∈ Win.

— [2] Since Abelard wins the game, he has a winning strategy, i.e., there is σ∀ ∈ Strat∀
such that obs(play((σ∃, σ∀))) 6∈ Win, for all σ∃ ∈ Strat∃. We want to prove that,
for all E ∈ ext∃∀(

−→
∃∀(℘)), it holds that E 6⊆ Ψ.

First, recall that −→∃∀(℘) = ∃R(~q).∀~Θ(~p), for some vectors of atomic propositions
(~p), (~q) ∈ s∗ and quantifier specifications ~Θ ∈ O|(~p)|. Moreover, thanks to Proposi-
tion 4.4, the following claim can be proved by induction on the number of universal
variables.

157

Partie , Chapter 4 – Good-For-Game Quantified Propositional Temporal Logic

Claim 4.3. E 6⊆ Ψ, for all E ∈ ext∃∀(
−→
∃∀(℘)), iff there exists a vector of responses

~G ∈ Rsp~Θ((~q)) such that ext(χ, ~G, (~p)) 6∈ Ψ, for all assignments χ ∈ Asg((~q)).

Proof. For technical convenience, we prove the counter-positive version of the
statement: E ⊆ Ψ, for some E ∈ ext∃∀(

−→
∃∀(℘)), iff, for all vectors of responses

~G ∈ Rsp~Θ((~q)), it holds that ext(Asg((~q)), ~G, (~p)) ∩ Ψ 6= ∅. As previously ob-
served, −→∃∀(℘) = ∃R(~q).∀~Θ(~p), for some vectors (~p), (~q) ∈ s∗ and ~Θ ∈ O|(~p)|.
Thus, ext∃∀(

−→
∃∀(℘)) = ext∃∀(∃R(~q).∀~Θ(~p)) = ext∃∀(ext∃∀(∃R(~q)),∀~Θ(~p)) =

ext∃∀({{χ} | χ∈Asg((~q))},∀~Θ(~p)). At this point, the proof proceeds by induction
on the length of the vector (~p). If |(~p)| = 0, there is nothing really to prove, as
the thesis follows immediately from the fact that ext∃∀(

−→
∃∀(℘)) = {{χ} | χ ∈

Asg((~q))}. Let us now consider the case |(~p)| > 0 and split both (~p) and ~Θ as fol-
lows: (~p) = (~p)′ ·p and ~Θ = ~Θ′ ·Θ. Obviously, ext∃∀(

−→
∃∀(℘)) = ext∃∀(ext∃∀({{χ} |

χ ∈ Asg((~q))},∀~Θ′(~p)′),∀Θp). Now, by Item 2 of Proposition 4.4, E ⊆ Ψ, for some
E ∈ ext∃∀(

−→
∃∀(℘)), iff, for all responses G ∈ RspΘ((~q) · (~p)′), there exists a set

X ∈ ext∃∀({{χ} | χ ∈ Asg((~q))},∀~Θ′(~p)′) such that ext(X,G, p) ⊆ Ψ. The lat-
ter inclusion can be rewritten as X ⊆ prj(Ψ, G, p), where prj(Ψ, G, p) def= {χ ∈
Asg((~q) · (~p)′) | ext(χ,G, p) ∈ Ψ}. At this point, by the inductive hypothesis
applied to the inclusion X ⊆ prj(Ψ, G, p), for some X ∈ ext∃∀({{χ} | χ ∈
Asg((~q))}, ∀~Θ′(~p)′), we obtain that E ⊆ Ψ, for some E ∈ ext∃∀(

−→
∃∀(℘)), iff for all

responses G ∈ RspΘ((~q) · (~p)′) and vectors of responses ~G
′
∈ Rsp~Θ′((~q)), it holds

that ext(Asg((~q)), ~G
′
, (~p)′) ∩ prj(Ψ, G, p) 6= ∅. The latter inequality can now be

rewritten as ext(ext(Asg((~q)), ~G
′
, (~p)′), G, p) ∩Ψ 6= ∅. To conclude the proof, it

is enough to observe that the vectors of responses ~G ∈ Rsp~Θ((~q)) can always be ob-
tained by juxtaposing the vectors ~G

′
with the responses G∗ ∈ RspΘ((~q)) obtained

by composing G with ~G
′
as follows: G∗(χ) def= G(ext(χ, ~G

′
, (~p)′)).

Due to the above characterisation of non-existence of a set E ∈ ext∃∀(
−→
∃∀(℘)) such

that E ⊆ Ψ, the thesis can be proved by defining a suitable vector of responses
~G ∈ Rsp~Θ((~q)).
Consider an arbitrary assignment χ ∈ Asg((~q)) and define the function σ̂

χ
∃ : O∗ ·

P ∃ → P as follows, for all finite sequences of observable positions u ∈ O∗ and
Eloise’s positions ν ∈ P ∃:

σ̂
χ
∃ (u · ν) def= ν[x 7→ χ(x)(|u|)],

158

4.B. Proofs of Section 4.3

where x ∈ (~q) is the atomic proposition at position #(ν) in the prefix ℘, i.e.,
(℘)#(ν) = ∃Rx. Due to the bijective correspondence previously described, there is
a unique strategy σ

χ
∃ ∈ Strat∃ such that σχ∃ (h) = σ̂

χ
∃ (shr∃(h)), for all histories

h ∈ Hist∃. Obviously, the induced play ρχ def= play((σχ∃ , σ∀)) is won by Abelard,
i.e., uχ def= obs(ρχ) 6∈ Win.
Thanks to all the infinite sequences uχ , one for each assignment χ ∈ Asg((~q)), we
can now define every component (~G)i of the vector of responses ~G ∈ (Rsp((~q)))|(~p)|

as follows, for all instants of time t ∈ N, where i ∈ J0, . . . , |(~p)|K:

(~G)i(χ)(t) def= (uχ)t(((~p))i).

It is not too hard to show that, by construction, this response complies with the
vector ~Θ of quantifier specifications.
Claim 4.4. ~G ∈ Rsp~Θ((~q)).
At this point, for all assignments χ ∈ Asg((~q)), let χ~G

def= ext(χ, ~G, (~p)). We can
argue that χ~G 6∈ Ψ. Indeed, by construction of the strategy σχ∃ and the vector of
responses ~G, it holds that χ~G(x)(t) = (uχ)t(x), for all instants of time t ∈ N and
atomic propositions x ∈ (~q) · (~p). Hence, wrd(χ~G) = uχ , which implies χ~G 6∈ Ψ,
since uχ 6∈ Win.

The two conditions stated in Proposition 4.4 allow us to introduce a different, but
equivalent (in terms of the equivalence relation ≡ between hyperteams), definition of
evolution function that we call normal, in symbols nevlα. This new notion will be useful
to show important properties that would be, otherwise, much more cumbersome to prove
by appealing directly to the original definition of the evolution function extα().

nevlα(X, QΘp) def=

extΘ(X, p), if Q is α-coherent;

{ext(ð, p) | ð ∈ RspΘ(ap(X))→ X}, otherwise;

where ext(ð, p) def= ⋃{ext(ð(F), F , p) | F ∈ dom(ð)}. Intuitively, w.r.t extα(·), we just
modified the non α-coherent case, in order to avoid the double application of the dualiza-
tion function, by replacing this with a choice of a selection map ð ∈ RspΘ(ap(X)) → X

selecting, in fact, for each Θ-response F ∈ RspΘ(ap(X)), a set of assignments ð(F) ∈ X.
The new evolution operator lifts naturally to an arbitrary quantification prefix ℘ ∈ Q

as follows:

159

Partie , Chapter 4 – Good-For-Game Quantified Propositional Temporal Logic

1. nevlα(X, ε) def= X;

2. nevlα(X, QΘp. ℘) def= nevlα(nevlα(X, QΘp), ℘).

As we have done for extα(·), we also set nevlα(℘) def= nevlα({{∅}}, ℘).

Example 4.14. Consider the quantifier ∃q and the hyperteam X = {X1, X2} with Xi =
{χi}, where i ∈ {1, 2} and χ1

def= {p 7→ >ω} and χ2
def= {p 7→ ⊥ω}. Since ∃q is ∃∀-coherent,

we have
nevl∃∀(X,∃q) = ext(X, q).

On the other hand, ∃q is not ∀∃-coherent, thus

nevl∀∃(X, ∃q) = {ext(ð, q) | ð ∈ Rsp(ap(X))→ X}.

For instance, consider ð0 : RspΘ(ap(X))→ X defined as follows:

ð0(F) def=

X1, if F (χ1)(0) = >

X2, otherwise.

Intuitively, the selection function ð0 bipartitions the responses according to the value that
they assign to χ1 at time 0, by associating each response with one of the two sets of
assignments, X1 or X2. We thus have

ext(ð0, q) =
⋃
{ext(ð0(F), F , q) | F ∈ RspΘ(ap(X))}

=
⋃
{ext(X1, F , q) | F ∈ RspΘ(ap(X)), F (χ1)(0) = >}∪⋃
{ext(X2, F , q) | F ∈ RspΘ(ap(X)), F (χ1)(0) = ⊥}.

Proposition 4.5. If X1 ≡ X2 then nevlα(X1, Q
Θp) ≡ extα(X2, Q

Θp), for all hyperteams
X1,X2 ∈ HypTeams, quantifier symbols Q ∈ {∃,∀}, quantifier specifications Θ ∈ O, and
atomic propositions p ∈ s \ ap(X).

Proof. The proof proceeds by a case analysis on the coherence of α and Q.
— [Q is α-coherent] By definition, nevlα(X1, Q

Θp) = extΘ(X1, p) and
extα(X2, Q

Θp) = extΘ(X2, p). Since X1 ≡ X2, by Lemma 2.9, it holds that
extΘ(X1, p) ≡ extΘ(X2, p), which conclude this case of the proof.

— [Q is not α-coherent] By definition, nevlα(X1, Q
Θp) = {ext(ð, p) | ð ∈

RspΘ(ap(X1)) → X1} and extα(X2, Q
Θp) = extΘ(X2, p). We now prove the two

160

4.B. Proofs of Section 4.3

inclusions nevlα(X1, Q
Θp) v extα(X2, Q

Θp) and nevlα(X1, Q
Θp) w extα(X2, Q

Θp)
separately.
— [v] To prove nevlα(X1, Q

Θp) v extα(X2, Q
Θp), we need to show that,

for any Ψ ∈ nevlα(X1, Q
Θp) there is WΨ ∈ extα(X2, Q

Θp) such that
WΨ ⊆ Ψ. Obviously, for any Ψ ∈ nevlα(X1, Q

Θp), it holds that Ψ =
ext(ð, p) = ⋃{ext(ð(F), F , p) | F ∈ dom(ð)}, for some selection function
ð ∈ RspΘ(ap(X1))→ X1. This means that, for every F ∈ RspΘ(ap(X1)), there
is XF

def= ð(F) ∈ X1 such that ext(XF , F , p) ⊆ Ψ. Now, by Item 2 of Propo-
sition 4.4, there exists W1 ∈ extα(X1, Q

Θp) such that W1 ⊆ Ψ. Since, thanks
to Lemma 2.9, X1 ≡ X2 implies extα(X1, Q

Θp) ≡ extα(X2, Q
Θp), we have

that there is W2 ∈ extα(X2, Q
Θp) such that W2 ⊆ W1 ⊆ Ψ. Finally, by setting

WΨ
def= W2, we obtain what is required.

— [w] To prove nevlα(X1, Q
Θp) w extα(X2, Q

Θp), we need to show that, for any
Ψ ∈ extα(X2, Q

Θp) there is WΨ ∈ nevlα(X1, Q
Θp) such that WΨ ⊆ Ψ. By

instantiating W with Ψ in Proposition 4.4, since W = Ψ ∈ extα(X2, Q
Θp),

from Item 2 we derive that, for all F ∈ RspΘ(ap(X2)), there is XF 2 ∈ X2 such
that ext(XF 2, F , p) ⊆ Ψ. Now, since X1 ≡ X2, there is XF 1 ∈ X1 such that
XF 1 ⊆ XF 2, which in turn implies ext(XF 1, F , p) ⊆ ext(XF 2, F , p) ⊆ Ψ.
At this point, define the selection map ð ∈ RspΘ(ap(X1)) → X1 as follows:
ð(F) def= XF 1, for every F ∈ RspΘ(ap(X1)) = RspΘ(ap(X2)). Clearly, by setting
WΨ

def= ext(ð, p), both WΨ = ⋃{ext(ð(F), F , p) | F ∈ dom(ð)} ⊆ Ψ and
WΨ ∈ nevlα(X1, Q

Θp) holds true, as required.
This concludes the proof of the second and last case.

The following examples is meant to show how the normal α-evolution function for
non-coherent quantifier simulates the α-evolution function for the same quantifier.

Example 4.15. The function ð0 of Example 4.14 can be viewed as a choice function on
ext(X, q). First, recall that X = {X12} with X12 = {χ1, χ2} and let X̊ ∈ ext(X, q).
Then, there is F ∈ Rsp(ap(X)) such that X̊ = ext(X12, F , q). If we define a choice
function Γ ∈ Chc(ext(X, q)) so that

Γ(X̊) = Γ(ext(X12, F , q)) =

χ1[q 7→ F (χ1)], if F (χ1)(0) = >,

χ2[q 7→ F (χ2)], otherwise,

it is straightforward to see that ext(ð0, q) = img(Γ) ∈ ext∀∃(X,∃q).

161

Partie , Chapter 4 – Good-For-Game Quantified Propositional Temporal Logic

Proposition 4.6. If X1 ≡ X2 then nevlα(X1, ℘) ≡ extα(X2, ℘), for all hyperteams
X1,X2 ∈ HypTeams and quantifier prefixes ℘ ∈ Q, with ap(X) ∩ ap(℘) = ∅.

Proof. The proof proceeds by simple induction on the length of the quantification prefix
℘.

— [Base case ℘ = ε] nevlα(X1, ε) = X1 ≡ X2 = extα(X2, ε).
— [Inductive case ℘ = QΘp. ℘′] By definition, we have nevlα(X1, Q

Θp. ℘′) =
nevlα(nevlα(X1, Q

Θp), ℘′) and extα(X2, Q
Θp. ℘′) = extα(extα(X2, Q

Θp), ℘′).
Now, by Proposition 4.5, nevlα(X1, Q

Θp) ≡ extα(X2, Q
Θp), since X1 ≡ X2. Thus,

the thesis follows by a straightforward application of the inductive hypothesis.

In the following, by OR we denote the set of realizable quantifier specifications, i.e.,
quantifier specifications of the form 〈AP,PS〉 for some set of atomic propositions PS ⊆ s.

Proposition 4.7. extα(X, QR
p.QΘ∪〈∅,p 〉q) v extα(X, QΘq.Q

R
p), for all hyperteams

X ∈ HypTeams, α-coherent quantifier symbols Q ∈ {∃,∀}, quantifier specifications Θ ∈
OR, and atomic propositions p, q ∈ s \ ap(X).

Proof. Due to the specific definition of the normal evolution function nevlα(X, ℘), and by
exploiting Proposition 4.6, the following claim can be shown.

Claim 4.5. The following two properties are equivalent:
— extα(X, QR

p.QΘ∪〈∅,p 〉q) v extα(X, QΘq.Q
R
p);

— for all (Θ ∪ 〈∅, p〉)-responses J ∈ RspΘ∪〈∅,p 〉(ap(X) ∪ {p}), functions ð ∈
RspR(ap(X)) → X, and realizable responses G ∈ RspR(ap(X) ∪ {q}), there ex-
ists a Θ-response F ∈ RspΘ(ap(X)) and a set of assignments X ∈ X such that
ext(ext(X,F , q), G, p) ⊆ ext(ext(ð, p), J , q).

Proof. By Proposition 4.6, the inclusion extα(X, QR
p.QΘ∪〈∅,p 〉q) v extα(X, QΘq.Q

R
p)

is equivalent to the inclusion nevlα(X, QR
p.QΘ∪〈∅,p 〉q) v nevlα(X, QΘq.Q

R
p), which in

turn means that, for all sets W1 ∈ nevlα(X, QR
p.QΘ∪〈∅,p 〉q), there exists a set W2 ∈

nevlα(X, QΘq.Q
R
p) such that W2 ⊆ W1. Now, by definition of normal evolution function,

we have that

nevlα(X, QR
p.QΘ∪〈∅,p 〉q) = extΘ∪〈∅,p 〉({ext(ð, p) | ð ∈ RspR(ap(X))→ X}, q)

and

nevlα(X, QΘq.Q
R
p) = {ext(ð, p) | ð ∈ RspR(ap(X) ∪ {q})→ extΘ(X, q)}.

162

4.B. Proofs of Section 4.3

Thus, every set W1 is equal to ext(ext(ð, p), J , q), for some (Θ ∪ 〈∅, p〉)-response J ∈
RspΘ∪〈∅,p 〉(ap(X)∪{p}) and selection function ð ∈ RspR(ap(X))→ X, while every set W2

is equal to ext(ð′, p), for some selection function ð′ ∈ RspR(ap(X)∪{q})→ extΘ(X, q).
As a consequence, the previous property concerning the inclusion W2 ⊆ W1 can be equiv-
alently rewritten as follows: for all (Θ ∪ 〈∅, p〉)-responses J ∈ RspΘ∪〈∅,p 〉(ap(X) ∪ {p})
and selection functions ð ∈ RspR(ap(X)) → X, there exists a selection function ð′ ∈
RspR(ap(X) ∪ {q}) → extΘ(X, q) such that ext(ð′, p) ⊆ ext(ext(ð, p), J , q). Since,
ext(ð′, p) = ⋃{ext(ð′(G), G, p) | G ∈ RspR(ap(X) ∪ {q})}, the inclusion ext(ð′, p) ⊆
ext(ext(ð, p), J , q) is equivalent to ext(ð′(G), G, p) ⊆ ext(ext(ð, p), J , q), for all re-
alizable responses G ∈ RspR(ap(X) ∪ {q}). Hence, up to this point, we have proved that
the following two properties are equivalent:

— extα(X, QR
p.QΘ∪〈∅,p 〉q) v extα(X, QΘq.Q

R
p);

— for all (Θ ∪ 〈∅, p〉)-responses J ∈ RspΘ∪〈∅,p 〉(ap(X) ∪ {p}) and functions ð ∈
RspR(ap(X))→ X, there exists a function ð′ ∈ RspR(ap(X) ∪ {q})→ extΘ(X, q)
such that, for all realizable responses G ∈ RspR(ap(X) ∪ {q}), it holds that
ext(ð′(G), G, p) ⊆ ext(ext(ð, p), J , q).

Now, by deSkolemizing the existential quantification of ð′ w.r.t the universal quan-
tification of G, the second point is equivalent to the following: for all (Θ ∪ 〈∅, p〉)-
responses J ∈ RspΘ∪〈∅,p 〉(ap(X) ∪ {p}), functions ð ∈ RspR(ap(X)) → X, and realiz-
able responses G ∈ RspR(ap(X) ∪ {q}), there exists a set Y ∈ extΘ(X, q) such that
ext(Y,G, p) ⊆ ext(ext(ð, p), J , q). Finally, to obtain what is required by the statement
of the claim, it is enough to observe that every set Y is equal to ext(X,F , q), for some
Θ-response F ∈ RspΘ(ap(X)) and set X ∈ X.

Thanks to the given characterisation, we can now show that the inclusion
extα(X, QR

p.QΘ∪〈∅,p 〉q) v extα(X, QΘq.Q
R
p) actually holds true by proving the ex-

istence of a suitable response F and set of assignments X, in dependence of the responses
J and G and the selection map ð, that satisfy the inclusion ext(ext(X,F , q), G, p) ⊆
ext(ext(ð, p), J , q). In order to define such a response F , let us inductively construct,
for every given assignment χ ∈ Asg(ap(X)), the following infinite families of assign-
ments {aχt ∈ Asg(ap(X) ∪ {p})}t∈N, Boolean values {vχt ∈ {>,⊥}}t∈N, and assignments
{bχt ∈ Asg(ap(X) ∪ {q})}t∈N, indexed by the time instants:

— [Base step t = 0] as base step, we choose aχ0 ∈ Asg(ap(X) ∪ {p}) as an arbitrary
assignment for which the equality a

χ
0 �ap(X) = χ holds true, the Boolean value

v
χ
0 ∈ {>,⊥} as J (aχ0)(0), i.e., vχ0

def= J (aχ0)(0), and b
χ
0 ∈ Asg(ap(X) ∪ {q}) as an

163

Partie , Chapter 4 – Good-For-Game Quantified Propositional Temporal Logic

arbitrary assignment with b
χ
0 �ap(X) = χ such that, at time 0 on the variable q ,

assumes vχ0 as value, i.e., bχ0 (q)(0) = v
χ
0 ;

— [Inductive step t > 0] as inductive step, we derive the assignment a
χ
t ∈

Asg(ap(X) ∪ {p}) from G(bχt−1), i.e., aχt
def= χ[p 7→ G(bχt−1)], and the Boolean

value v
χ
t ∈ {>,⊥} from J (aχt)(t), i.e., vχt

def= J (aχt)(t); moreover, we choose
b
χ
t ∈ Asg(ap(X)∪ {q}) as an arbitrary assignment with bχt �ap(X) = χ such that, on
the variable q , is equal to bχt−1 up to time t excluded and assumes vχt as value at
time t, i.e., bχt (q)(h) = b

χ
t−1(q)(h), for all h ∈ J0, . . . , tK, and bχt (q)(t) = v

χ
t .

The above inductive construction can be schematically summarised as follows, where,
for every t ∈ N, both gt and jt are temporal assignments, i.e., functions of the form
gt, jt ∈ N→ {>,⊥}:

a
χ
0

def= χ[p 7→ g0], for some g0; v
χ
0

def= J (aχ0)(0); b
χ
0

def= χ[q 7→ j0], for some j0 with j0(0) = v
χ
0 ;

a
χ
t

def= χ[p 7→ G(bχt−1)]; v
χ
t

def= J (aχt)(t); b
χ
t

def= χ[q 7→ jt], for some jt such that,
for all h ∈ J0, . . . , tK,

jt(h) =

jt−1(h), if h < t;

v
χ
t , if h = t.

Thanks to the infinite family of Boolean values {vχt ∈ {>,⊥}}t∈N, one for each assign-
ment χ ∈ Asg(ap(X)), we can define the response F ∈ Rsp(ap(X)) as follows, for every
instant of time t ∈ N:

F (χ)(t) def= v
χ
t .

It is easy to show that this response complies with the quantifier specification Θ, since
the response J , from which F is derived, is compliant with the quantifier specification
Θ ∪ 〈∅, p〉.

Claim 4.6. F ∈ RspΘ(ap(X)).

Before continuing, let us first introduce the response H ∈ Rsp(ap(X)) as follows, for
every assignment χ ∈ Asg(ap(X)):

H (χ) def= ext(ext(χ, F , q), G, p)(p).

It is not hard to verify that such a response is realizable, since F is Θ-compliant and G
is realizable.

164

4.B. Proofs of Section 4.3

Claim 4.7. H ∈ RspR(ap(X)).

At this point, consider the set of assignments X def= ð(H). Thanks to the specific
definitions of the two responses F and H , the following claim can be proved.

Claim 4.8. ext(ext(X,F , q), G, p) ⊆ ext(ext(X,H, p), J , q).

Now, it is obvious that ext(X,H, p) ⊆ ext(ð, p), due to the definition of the lat-
ter and the choice of the team X, which immediately implies ext(ext(X,H, p), J , q) ⊆
ext(ext(ð, p), J , q). Therefore, extext(X,F ,q)([)G] ⊆ ext(ext(ð, p), J , q), which con-
cludes the proof.

Proposition 4.8. extα(X, QR(~p). Q~Θ∪〈∅,(~〉)(~q)) v extα(X, Q~Θ(~q). QR(~p)), for all hyper-
teams X ∈ HypTeams, α-coherent quantifier symbols Q ∈ {∃, ∀}, vectors of quantifier
specifications ~Θ ∈ O∗R , and vectors of atomic propositions (~p), (~q) ∈ (s \ ap(X))∗, with
|(~q)| = |~Θ|.

Proof. The proof of the statements proceeds by combining two independent induc-
tions. In particular, we first show, by exploiting Proposition 4.7 via an induction on
the length of the vector of atomic propositions (~p), that extα(X, QR(~p). QΘ∪〈∅,(~〉)q) v
extα(X, QΘq.Q

R(~p)). Indeed, one can easily verify the correctness of the following chain
of equalities/inequalities:

extα(X, QR(~p). QR
p.QΘ∪〈∅,(~p)〉q) = extα(extα(X, QR(~p)), QR

p.Q(Θ∪〈∅,(~〉))∪〈∅,p 〉q)
(4.1a)

v extα(extα(X, QR(~p)), QΘ∪〈∅,(~〉)q.Q
R
p) (4.1b)

= extα(extα(X, QR(~p). QΘ∪〈∅,(~〉)q), QR
p) (4.1c)

v extα(extα(X, QΘq.Q
R(~p)), QR

p) (4.1d)

= extα(X, QΘq.Q
R(~p). QR

p). (4.1e)

Steps 4.1a, 4.1c, and 4.1e are due to the definition of evolution function of a quantifier
prefix, Step 4.1b is due to Proposition 4.7 applied to the outer evolution function, and,
finally, Step 4.1d is just an application of the inductive hypothesis to the inner evolution
function combined with the monotonicity property of Lemma 2.9.

At this point, by exploiting what we have just derived via an induction on the length
of the vector of atomic propositions (~q), we can prove the correctness of the statement by

165

Partie , Chapter 4 – Good-For-Game Quantified Propositional Temporal Logic

means of the following chain of equalities/inequalities:

extα(X, QR(~p). Q~Θ∪〈∅,(~〉)(~q). QΘ∪〈∅,(~〉)q) = extα(extα(X, QR(~p). Q~Θ∪〈∅,(~〉)(~q)), QΘ∪〈∅,(~〉)q)
(4.2a)

v extα(extα(X, Q~Θ(~q). QR(~p)), QΘ∪〈∅,(~〉)q)
(4.2b)

= extα(extα(X, Q~Θ(~q)), QR(~p). QΘ∪〈∅,(~〉)q)
(4.2c)

v extα(extα(X, Q~Θ(~q)), QΘq.Q
R(~p)) (4.2d)

= extα(X, Q~Θ(~q). QΘq.Q
R(~p)). (4.2e)

Steps 4.2a, 4.2c, and 4.2e are due to the definition of evolution function of a quantifier pre-
fix, Step 4.2b is just an application of the inductive hypothesis to the inner evolution func-
tion combined with the monotonicity property of Lemma 2.9, and, finally, Step 4.2d is due
to the previously proved inequality extα(X, QR(~p). QΘ∪〈∅,(~〉)q) v extα(X, QΘq.Q

R(~p))
applied to the outer evolution function.

Towards the proof of Proposition 4.3, we show the following more general result.

Proposition 4.9. Let X ∈ HypTeams be an hyperteam and ℘, ℘1, ℘2, ℘3 ∈ QR realizable
quantifier prefixes, such that ℘ = ℘1. ℘2. ℘3 and ap(℘) ∩ ap(X) = ∅. Then, it holds that
extα(X,−→α (℘)) v extα(X, ℘1.

−→
α (℘2). ℘3) v extα(X, ℘) v extα(X, ℘1.

−→α (℘2). ℘3) v
extα(X,−→α (℘)).

Proof. We separately prove the two chains of inequalities forming the statement,
namely extα(X,−→α (℘)) v extα(X, ℘1.

−→
α (℘2). ℘3) v extα(X, ℘) and extα(X, ℘) v

extα(X, ℘1.
−→α (℘2). ℘3) v extα(X,−→α (℘)), by using different technical expedients.

— [extα(X,−→α (℘)) v extα(X, ℘1.
−→
α (℘2). ℘3) v extα(X, ℘)] To prove that the first

chain of inequalities holds, let us fix a well-founded preorder � over the set of triples
of quantifier prefixes T = {〈℘1, ℘2, ℘3〉 ∈ QR×QR×QR | ℘ = ℘1. ℘2. ℘3} defined as
follows: 〈℘1, ℘2, ℘3〉 � 〈℘1

′, ℘2
′, ℘3

′〉 iff ℘2
′ = ℘l ·℘2 ·℘r, for some ℘l, ℘r ∈ QR, i.e., ℘2

is a (not necessarily proper) infix of ℘2
′. Notice that, given the definition of the set

T, the relation 〈℘1, ℘2, ℘3〉 � 〈℘1
′, ℘2

′, ℘3
′〉 also implies ℘1 = ℘1

′·℘l and ℘3 = ℘r·℘3
′.

In addition, let us introduce −→α (T) as an abbreviation for ℘1.
−→
α (℘2). ℘3, given an

arbitrary triple T = 〈℘1, ℘2, ℘3〉 ∈ T. Now, to show that the chain of inequalities

166

4.B. Proofs of Section 4.3

holds true, it is enough to prove that extα(X,−→α (T′)) v extα(X,−→α (T)), for all
T, T′ ∈ T with T � T′. The proof shall proceed by structural induction on the
preorder �.
— [Base case T = T′] Obviously −→α (T) = −→α (T′). Thus, the property trivially

holds, as extα(X,−→α (T′)) = extα(X,−→α (T)).
— [Inductive case T ≺ T′] Since T ≺ T′, there necessarily exists a triple T′′ =
〈℘1
′′, ℘2

′′, ℘3
′′〉 ∈ T such that T ≺ T′′ � T′ and either

1. ℘1 = ℘1
′′. QRp , ℘2

′′ = QRp. ℘2, and ℘3 = ℘3
′′, or

2. ℘1 = ℘1
′′, ℘2

′′ = ℘2. Q
Rp , and ℘3 = QRp. ℘3

′′,

for some quantifier symbol Q ∈ {∃,∀} and atomic proposition p ∈ s. By in-
ductive hypothesis, it holds that extα(X,−→α (T′)) v extα(X,−→α (T′′)). Thus, to
conclude, we need to show that extα(X,−→α (T′′)) v extα(X,−→α (T)). If −→α (T) =
−→
α (T′′), there is nothing really to prove, as extα(X,−→α (T′′)) = extα(X,−→α (T)).
Hence, let us assume −→α (T) 6= −→α (T′′). The proof now proceeds with the follow-
ing case analysis.

1. [℘1 = ℘1
′′. QRp, ℘2

′′ = QRp. ℘2, and ℘3 = ℘3
′′] First observe that Q is

α-coherent. If this were not the case, indeed, we would have had −→α (℘2
′′) =

−→
α (QRp. ℘2) = QRp.

−→
α (℘2), which in turn would have implied −→α (T′′) =

℘1
′′.
−→
α (℘2

′′). ℘3
′′ = ℘1

′′.
−→
α (QRp. ℘2). ℘3

′′ = ℘1
′′. QRp.

−→
α (℘2). ℘3

′′ =
℘1.
−→
α (℘2). ℘3,=

−→
α (T), contradicting the previous assumption −→α (T) 6=

−→
α (T′′). Both −→α (℘2) and −→α (℘2

′′) are prefix canonicalisation, featuring at
most one quantifier alternation starting with a α-coherent quantifier Q.
Specifically, these can be written as −→α (℘2) = Q

R(~q). Q~Θ~r and −→α (℘2
′′) =

−→
α (QRp. ℘2) = Q

R(~q). QR∪〈∅,(~q)〉p.Q
~Θ~r, for some vectors of atomic propo-

sitions (~q) and ~r, and a vector of quantifiers specifications ~Θ ∈ O∗R with
|~Θ| = |~r|. At this point, the induction proof terminates by checking the

167

Partie , Chapter 4 – Good-For-Game Quantified Propositional Temporal Logic

following chain of equalities/inequalities:

extα(X,−→α (T′′)) = extα(X, ℘1
′′.
−→
α (℘2

′′). ℘3
′′) (4.3a)

= extα(extα(extα(X, ℘1
′′),−→α (℘2

′′)), ℘3
′′) (4.3b)

= extα(extα(extα(X, ℘1
′′), QR(~q). QR∪〈∅,(~q)〉p.Q

~Θ~r), ℘3
′′)

(4.3c)

= extα(extα(extα(X, ℘1
′′), QR(~q). QR∪〈∅,(~q)〉p), Q~Θ~r. ℘3

′′)
(4.3d)

v extα(extα(extα(X, ℘1
′′), QRp.Q

R(~q)), Q~Θ~r. ℘3
′′)
(4.3e)

= extα(extα(extα(X, ℘1
′′), QRp.Q

R(~q). Q~Θ~r), ℘3
′′)
(4.3f)

= extα(extα(extα(X, ℘1
′′. QRp), QR(~q). Q~Θ~r), ℘3

′′)
(4.3g)

= extα(extα(extα(X, ℘1),−→α (℘2)), ℘3) (4.3h)

= extα(X, ℘1.
−→
α (℘2). ℘3) (4.3i)

= extα(X,−→α (T)). (4.3j)

Step 4.3e is due to Proposition 4.8 applied to
extα(extα(X, ℘1

′′), QR(~q). QR∪〈∅,(~q)〉p) combined with Lemma 2.9.
All the other steps are just immediate consequences of the definition of
evolution function and the structure of both the quantifier prefixes ℘1

′′,
℘2
′′, and ℘3

′′, and the canonical forms −→α (T) and −→α (T′′).

2. [℘1 = ℘1
′′, ℘2

′′ = ℘2. Q
Rp, and ℘3 = QRp. ℘3

′′] Similarly to the previous
case, from −→α (T) 6= −→α (T′′), one can derive that Q is α-coherent. Conse-
quently, −→α (℘2) and −→α (℘2

′′) can be written as −→α (℘2) = QR(~q). Q
~Θ
~r and

−→
α (℘2

′′) = −→α (℘2. Q
Rp) = QR(~q). QRp.Q

~Θ′
~r, for some vectors of atomic

propositions (~q) and ~r, and vectors of quantifiers specifications ~Θ, ~Θ′ ∈ O∗R
with |~Θ| = |~Θ′| = |~r| and ~Θ′ = ~Θ ∪ 〈∅, (~q)〉. At this point, the induction

168

4.B. Proofs of Section 4.3

proof terminates by checking the following chain of equalities/inequalities:

extα(X,−→α (T′′)) = extα(X, ℘1
′′.
−→
α (℘2

′′). ℘3
′′) (4.4a)

= extα(extα(extα(X, ℘1
′′),−→α (℘2

′′)), ℘3
′′) (4.4b)

= extα(extα(extα(X, ℘1
′′), QR(~q). QRp.Q

~Θ′
~r), ℘3

′′)
(4.4c)

= extα(extα(extα(X, ℘1
′′. QR(~q)), QRp.Q

~Θ′
~r), ℘3

′′)
(4.4d)

v extα(extα(extα(X, ℘1
′′. QR(~q)), Q

~Θ
~r.QRp), ℘3

′′)
(4.4e)

= extα(extα(extα(X, ℘1
′′), QR(~q). Q

~Θ
~r.QRp), ℘3

′′)
(4.4f)

= extα(extα(extα(X, ℘1
′′), QR(~q). Q

~Θ
~r), QRp. ℘3

′′)
(4.4g)

= extα(extα(extα(X, ℘1),−→α (℘2)), ℘3) (4.4h)

= extα(X, ℘1.
−→
α (℘2). ℘3) (4.4i)

= extα(X,−→α (T)). (4.4j)

Step 4.4e is due to Proposition 4.8 applied to
extα(extα(X, ℘1

′′. QR(~q)), QRp.Q
~Θ′
~r) combined with Lemma 2.9.

All the other steps are just immediate consequences of the definition of
evolution function and the structure of both the quantifier prefixes ℘1

′′,
℘2
′′, and ℘3

′′, and the canonical forms −→α (T) and −→α (T′′).

— [extα(X, ℘) v extα(X, ℘1.
−→α (℘2). ℘3) v extα(X,−→α (℘))] In order to show that

the second chain of inequalities holds as well, we first state the following two
simple auxiliary results, one regarding a duality property between the two syntactic
canonicalisations of a quantifier prefix and the other concerning the dualization of
the evolution function.
Claim 4.9. −→α (℘) = −→α (℘), for all quantifier prefixes ℘ ∈ Q.
Claim 4.10. extα(X, ℘) ≡ extα(X, ℘), for all hyperteams X ∈ HypTeams and
quantifier prefixes ℘ ∈ Q.

Proof. The proof proceeds by induction on the length of ℘.

169

Partie , Chapter 4 – Good-For-Game Quantified Propositional Temporal Logic

— [Base step ℘ = ε] extα(X, ε) = X = extα(X, ε).
— [Inductive step ℘ = QΘp. ℘′] First notice that ℘ = Q

Θ
p. ℘′ and observe that,

thanks to the definition of evolution function and the inductive hypothesis, the
following holds true:

extα(X, ℘) = extα(extα(X, QΘp), ℘′) ≡ extα(extα(X, QΘp), ℘′).

Let us now distinguish two cases based on the coherence of α and Q.
— [Q is α-coherent]

extα(X, ℘) ≡ extα(extα(X, QΘp), ℘′) (4.5a)

= extα(extΘ(X, p), ℘′) (4.5b)

≡ extα(extΘ(X, p), ℘′) (4.5c)

= extα(extα(X, QΘ
p), ℘′) (4.5d)

= extα(X, QΘ
p. ℘′) (4.5e)

= extα(X, ℘) (4.5f)

Step 4.5b and 4.5d are due to the definition of evolution function over a sin-
gle quantifier, for the cases when α and Q are coherent and non-coherent, re-
spectively. Step 4.5c is just a simple consequence of Lemma 2.1, 2.9, and 2.9.
Finally, Step 4.5e is given by the definition of evolution function for quan-
tifier prefixes.

— [Q is not α-coherent]

extα(X, ℘) ≡ extα(extα(X, QΘp), ℘′) (4.6a)

= extα(extΘ(X, p), ℘′) (4.6b)

≡ extα(extΘ(X, p), ℘′) (4.6c)

= extα(extα(X, QΘ
p), ℘′) (4.6d)

= extα(X, QΘ
p. ℘′) (4.6e)

= extα(X, ℘) (4.6f)

Step 4.6b and 4.6d are due to the definition of evolution function over a sin-
gle quantifier, for the cases when α and Q are non-coherent and coherent,

170

4.B. Proofs of Section 4.3

respectively. Step 4.6c is just a simple consequence of Lemmas 2.1 and 2.9.
Finally, Step 4.6e is given by the definition of evolution function for quan-
tifier prefixes.

In the first item of this proof, we have proved that extα(X,−→α (℘)) v
extα(X, ℘1.

−→
α (℘2). ℘3) v extα(X, ℘) holds true for every X ∈ HypTeams

and ℘, ℘1, ℘2, ℘3 ∈ QR, with ℘ = ℘1. ℘2. ℘3. By instantiating X and ℘ with
X and ℘, and observing that ℘ = ℘1. ℘2. ℘3, we obtain extα(X,−→α (℘)) v
extα(X, ℘1.

−→
α (℘2). ℘3) v extα(X, ℘). Now, thanks to Claims 4.9 and 4.10 above,

we obtain extα(X,−→α (℘)) v extα(X, ℘1.
−→α (℘2). ℘3) v extα(X, ℘), as shown in

the following two chains of equivalences/inequalities:

extα(X,−→α (℘)) ≡ extα(X,−→α (℘)) (4.7a)

= extα(X,−→α (℘)) (4.7b)

v extα(X, ℘1.
−→
α (℘2). ℘3) (4.7c)

= extα(X, ℘1.
−→α (℘2). ℘3) (4.7d)

= extα(X, ℘1.
−→α (℘2). ℘3) (4.7e)

≡ extα(X, ℘1.
−→α (℘2). ℘3). (4.7f)

extα(X, ℘1.
−→α (℘2). ℘3) ≡ extα(X, ℘1.

−→α (℘2). ℘3) (4.7g)

= extα(X, ℘1.
−→α (℘2). ℘3) (4.7h)

= extα(X, ℘1.
−→
α (℘2). ℘3) (4.7i)

v extα(X, ℘) (4.7j)

≡ extα(X, ℘). (4.7k)

At this point, thanks to Lemmas 2.1 and 2.9, we derive extα(X, ℘) v
extα(X, ℘1.

−→α (℘2). ℘3) v extα(X,−→α (℘)) from extα(X,−→α (℘)) v
extα(X, ℘1.

−→α (℘2). ℘3) v extα(X, ℘).

The following proposition is now an immediate consequence of the above result.

Proposition 4.3. extα(X,−→α (℘)) v extα(X, ℘) v extα(X,−→α (℘)), for all hyperteams
X ∈ HypTeams and realizable quantifier prefixes ℘ ∈ QR, with ap(℘) ∩ ap(X) = ∅.

At this point, we have proven everything used in the proof of Theorem 4.4 from the
main paper. Here is the graph of dependency presenting the propositions used for this

171

Partie , Chapter 4 – Good-For-Game Quantified Propositional Temporal Logic

proof.

Theorem 4.4
Lemma 2.1

Lemma 2.9
Lemma 2.9

Proposition 4.9

Proposition 4.3

Proposition 4.4
Proposition 4.5

Proposition 4.6
Proposition 4.7

Proposition 4.8

Proposition 4.10. extα(X,−→α (℘1. ℘2)) v Y v extα(X, ℘1. ℘2), for all hyperteams X ∈
HypTeams and Y ∈ {extα(X, ℘1.

−→
α (℘2)),extα(X,−→α (℘1). ℘2)} and quantifier prefixes

℘1, ℘2 ∈ QR, with ap(X) ∩ ap(℘1. ℘2) = ∅.

Proof. Before continuing, we need to state the following property of the syntactic canon-
icalisations.

Claim 4.11. −→α (−→α (℘1). ℘2) = −→α (℘1. ℘2) = −→α (℘1.
−→α (℘2)), for all ℘1, ℘2 ∈ QR.

Remark 4.1. Strictly speaking, since −→α (℘1) and −→α (℘2) might not be in QR, the two
expressions −→α (−→α (℘1). ℘2) and −→α (℘1.

−→α (℘2)) are not well-defined, if one consider the
original definition of −→α . However, one can easily generalise the canonicalisations to pre-
fixes where the existential (resp., universal) variables are not just realizable, but possibly
strongly realizable w.r.t to some set of universal variables.

At this point, we can prove the four inequalities separately; all the inclusion in the
following chains of equalities/inequalities are consequences of Proposition 4.3 and, if re-
quired, Lemma 2.9.

— [extα(X, ℘1.
−→
α (℘2)) v extα(X, ℘1. ℘2)]

extα(X, ℘1.
−→
α (℘2)) = extα(extα(X, ℘1),−→α (℘2)) v

extα(extα(X, ℘1), ℘2) = extα(X, ℘1. ℘2).

— [extα(X,−→α (℘1). ℘2) v extα(X, ℘1. ℘2)]

extα(X,−→α (℘1). ℘2) = extα(extα(X,−→α (℘1)), ℘2) v
extα(extα(X, ℘1), ℘2) = extα(X, ℘1. ℘2).

172

4.B. Proofs of Section 4.3

— [extα(X,−→α (℘1. ℘2)) v extα(X, ℘1.
−→
α (℘2))]

extα(X,−→α (℘1. ℘2)) = extα(X,−→α (℘1.
−→
α (℘2))) v extα(X, ℘1.

−→
α (℘2))

— [extα(X,−→α (℘1. ℘2)) v extα(X,−→α (℘1). ℘2)]

extα(X,−→α (℘1. ℘2)) = extα(X,−→α (−→α (℘1). ℘2)) v extα(X,−→α (℘1). ℘2)

Proposition 4.11. extα(X,−→α (℘1. ℘2)) v Y v extα(X, ℘1. ℘2), for all hyperteams X ∈
HypTeams and Y ∈ {extα(X, ℘1.

−→
α (℘2)),extα(X,−→α (℘1). ℘2)} and quantifier prefixes

℘1, ℘2 ∈ QR, with ap(X) ∩ ap(℘1. ℘2) = ∅.

Proof. As we have done for the previous proposition, we prove the four inequalities sepa-
rately; all the inclusion in the following chains of equalities/inequalities are consequences
of Proposition 4.3 and, if required, Lemma 2.9.

— [extα(X, ℘1. ℘2) v extα(X, ℘1.
−→α (℘2))]

nevlα(X, ℘1. ℘2) = nevlα(nevlα(X, ℘1), ℘2) v
nevlα(nevlα(X, ℘1),−→α (℘2)) = nevlα(X, ℘1.

−→α (℘2)).

— [extα(X, ℘1. ℘2) v extα(X,−→α (℘1). ℘2)]

nevlα(X, ℘1. ℘2) = nevlα(nevlα(X, ℘1), ℘2) v
nevlα(nevlα(X,−→α (℘1)), ℘2) = nevlα(X,−→α (℘1). ℘2).

— [extα(X, ℘1.
−→α (℘2)) v extα(X,−→α (℘1. ℘2))]

nevlα(X, ℘1.
−→α (℘2)) v nevlα(X,−→α (℘1.

−→α (℘2))) = nevlα(X,−→α (℘1. ℘2)).

— [extα(X,−→α (℘1). ℘2) v extα(X,−→α (℘1. ℘2))]

nevlα(X,−→α (℘1). ℘2) v nevlα(X,−→α (−→α (℘1). ℘2)) = nevlα(X,−→α (℘1. ℘2)).

For the next proposition, given a set of assignments Y and a set of atomic propositions
P ⊆ s, we introduce the notation Y\P

def= {χ ∈ Asg(ap(Y) \ P) | ∃χ′ ∈ Y. χ ⊆ χ′}. We
also use the notation Y\p , with p ∈ ap(Y), as a shortcut for Y\{p}.

Proposition 4.12. Let X ∈ HypTeams(P) be a hyperteam over P ⊆ s and ℘ ∈ Q a

173

Partie , Chapter 4 – Good-For-Game Quantified Propositional Temporal Logic

quantifier prefix, with ap(℘) ∩ P = ∅. Then, for all sets of assignments Y ∈ extα(X, ℘),
it holds that Y\ap(℘) ⊆

⋃
X.

Proof. The proof proceeds by induction on the length of the quantification prefix ℘.
— [Base case ℘ = ε] extα(X, ε) = X, thus, the property follows trivially.
— [Base case ℘ = QΘp with Q α-coherent] Since extα(X, ℘) = extΘ(X, p),

there exist X ∈ X and F ∈ RspΘ(ap(X)) such that Y = ext(X,F , p). Thus,
Y\p = X ⊆ ⋃X, hence the thesis.

— [Base case ℘ = QΘp with Q not α-coherent] In this case, we have
extα()α(X, QΘp) = extΘ(X, p). Let Y ∈ extΘ(X, p). By definition of dual-
ization, there is Γ ∈ Chc(extΘ(X, p)) such that img(Γ) = Y. Then, for every
F ∈ RspΘ(ap(X)) and every X ∈ X, there is χX,F ∈ ext(X,F , p) such that
Y = {χX,F | X ∈ X ∧F ∈ RspΘ(ap(X))}. Then for every χX,F , there is χ′X,F ∈ X
such that χX,F = χ′X,F [p 7→ F (χ′X,F)]. Naturally, Y\ap(℘) = {χ′X,F | X ∈ X ∧F ∈
RspΘ(ap(X))}. However, X ∈ X and then χ′X,F ∈

⋃
X. Hence Y\ap(℘) ⊆

⋃
X.

— [Inductive case ℘ = ℘′. QΘp] By the inductive hypothesis, we have that
Z\ap(℘′) ⊆

⋃
X, for all Z ∈ extα(X, ℘′). Consequently, (⋃extα(X, ℘′))\ap(℘′) =⋃(extα(X, ℘′)\ap(℘′)) ⊆

⋃
X. Now, by definition of evolution function, we have

that extα(X, ℘) = extα(extα(X, ℘′), QΘp). Again by the inductive hypothe-
sis, Y\p ⊆

⋃extα(X, ℘′), since Y ∈ extα(extα(X, ℘′), QΘp). Hence, Y\ap(℘) =
(Y\p)\ap(℘′) ⊆ (⋃extα(X, ℘′))\ap(℘′) ⊆

⋃
X, as expected.

We now define a refinement of the order v between two hyperteams X1,X2 ∈
HypTeams, with ap(X1) = ap(X2), w.r.t a set of assignments X ⊆ Asg(P) over some
P ⊆ s as follows: X1 vX X2 if, for every X1 ∈ X1, there is X2 ∈ X2 such that
X2 \ {χ ∈ Asg | χ�P ∈ X} ⊆ X1.

Proposition 4.13. Let X1,X2 ∈ HypTeams be two hyperteams with X1 vX X2, for some
set of assignments X ⊆ Asg(P) over a set of atomic propositions P ⊆ s. Then, the
following hold true: extα(X1, ℘) vX extα(X2, ℘), for all ℘ ∈ Q with ap(X1) ∩ ap(℘) =
ap(X2) ∩ ap(℘) = ∅.

Proof. The proof proceeds by induction on the length of ℘.
— [Base step ℘ = ε] extα(X1, ε) = X1 vX X2 = extα(X2, ε).
— [Inductive step ℘ = QΘp. ℘′] Let us distinguish two cases based on whether Q

is or not α-coherent.

174

4.B. Proofs of Section 4.3

— [Q is α-coherent] Since α and Q are coherent, extα(Xi, ℘) =
extα(extΘ(Xi, p), ℘′), for all i ∈ {1, 2}. We can now focus on showing that
extΘ(X1, p) vX extΘ(X2, p) holds true, as the thesis follows by apply-
ing the inductive hypothesis. Since extΘ(Xi, p) = {ext(Xi, Fi, p) | Xi ∈
Xi, Fi ∈ RspΘ(ap(Xi))}, we have to prove that, for every X1 ∈ X1 and
F1 ∈ RspΘ(ap(X1)), there exist X2 ∈ X2 and F2 ∈ RspΘ(ap(X2)) such that
ext(X2, F2, p) \ {χ ∈ Asg | χ�P ∈ X} ⊆ ext(X1, F1, p). Now, it is easy
to see that such a property can be satisfied by choosing F2

def= F1, since
RspΘ(ap(X1)) = RspΘ(ap(X2)), and X2

def= F (X1), where F : X1 → X2 is a
witness for the inclusion X1 vX X2.

— [Q is not α-coherent] Since α and Q are not coherent, by Lemma 2.9
and 4.6, it holds that extα(Xi, ℘) = extα(extα(Xi, Q

Θp), ℘′) ≡
extα(nevlα(Xi, Q

Θp), ℘′), for all i ∈ {1, 2}. As done in the previous case, we can
now focus on showing that nevlα(X1, Q

Θp) vX nevlα(X2, Q
Θp) holds true, as

the thesis follows by applying the inductive hypothesis. Since nevlα(Xi, Q
Θp) =

{ext(ði, p) | ði ∈ RspΘ(ap(Xi)) → Xi}, we have to prove that, for every
ð1 ∈ RspΘ(ap(X1)) → X1, there exists ð2 ∈ RspΘ(ap(X2)) → X2 such that
ext(ð2, p) \ {χ ∈ Asg | χ�P ∈ X} ⊆ ext(ð1, p). To this end, let us de-
fine a function g : (RspΘ(ap(X1)) → X1) → (RspΘ(ap(X2)) → X2) as fol-
lows: g(ð1)(F) def= F (ð1(F)), for every ð1 ∈ RspΘ(ap(X1)) → X1 and F ∈
RspΘ(ap(X1)) = RspΘ(ap(X2)), where F : X1 → X2 is a witness for the inclu-
sion X1 vX X2. Clearly, it holds that g(ð1)(F) \ {χ ∈ Asg | χ�P ∈ X} ⊆ ð1(F).
Thus, the required property can be satisfied by choosing ð2

def= g(ð1), since
ext(g(ð1), p) \ {χ ∈ Asg | χ�P ∈ X} ⊆ ext(ð1, p) holds true.

Next, we prove Theorem 4.6. Here is the graph of dependency presenting the theorem
and the propositions used for this proof.

Theorem 4.6

Theorem 4.3

Lemma 2.9
Proposition 4.6

Proposition 4.9

Proposition 4.12
Proposition 4.13

. . .

. . .

. . .

. . .

Theorem 4.6 (Quantification Game II). Every S -game G , for some quantification-game
schema S def= 〈X, ℘,Ψ〉, satisfies the following two properties:

175

Partie , Chapter 4 – Good-For-Game Quantified Propositional Temporal Logic

1. if Eloise wins then E ⊆ Ψ, for some E ∈ ext∃∀(X,
−→
∀∃(℘));

2. if Abelard wins then E 6⊆ Ψ, for all E ∈ ext∃∀(X,
−→
∃∀(℘)).

Proof. First of all, recall that the game GS of Construction 4.2 is obtained directly from
the game GΨ̂

℘̂ of Construction 4.1, by defining the set of assignments ℘̂ and the quantifier
prefix Ψ̂ as follows:

— ℘̂
def= ∀(~p). ℘̃. ℘ and

— Ψ̂ def= Ψ ∪ {χ ∈ Asg(P) | χ�(~p) 6∈ X},
with (~p) def= ap(X) \ ap(℘̃) and P def= ap(℘) ∪ ap(X).

We can now proceed with the proof of the two properties.
— [1] If Eloise wins the game, by Item 1 of Theorem 4.3, there exists a set of assign-

ments Ê ∈ ext∃∀(
−→
∀∃(℘̂)) such that Ê ⊆ Ψ̂. Thanks to Lemma 2.9 and 4.9, we can

show that ext∃∀(
−→
∀∃(℘̂)) v ext∃∀(X,

−→
∀∃(℘)). Indeed,

ext∃∀(
−→
∀∃(℘̂)) = ext∃∀(

−→
∀∃(∀(~p). ℘̃. ℘)) (4.8a)

v ext∃∀(∀(~p). ℘̃.−→∀∃(℘)) (4.8b)

= ext∃∀(ext∃∀(ext∃∀(∀(~p)), ℘̃),−→∀∃(℘)) (4.8c)

= ext∃∀(ext∃∀({Asg((~p))}, ℘̃),−→∀∃(℘)) (4.8d)

v ext∃∀(ext∃∀({X}, ℘̃),−→∀∃(℘)) (4.8e)

= ext∃∀(X,
−→
∀∃(℘)), (4.8f)

where Step 4.8b is due to Proposition 4.9, Step 4.8d to the equality ext∃∀(∀(~p)) =
{Asg((~p))}, and Step 4.8e is derived from Lemma 2.9, thanks to the fact that
{Asg((~p))} v {X}. Now, due to the definition of the ordering v between hyper-
teams, it follows that ext∃∀(

−→
∀∃(℘̂)) v ext∃∀(X,

−→
∀∃(℘)) necessarily implies the

existence of a set of assignments E ∈ ext∃∀(X,
−→
∀∃(℘)) such that E ⊆ Ê. There-

fore, E ⊆ Ψ̂. At this point, we can prove that E ⊆ Ψ, since Ψ̂ = Ψ ∪ {χ ∈
Asg(P) | χ�(~p) 6∈ X} and E ∩ {χ ∈ Asg(P) | χ�(~p) 6∈ X} = ∅. Indeed,
E ∈ ext∃∀(X,

−→
∀∃(℘)) = ext∃∀({X}, ℘̃.

−→
∀∃(℘)) and, by Proposition 4.12, it fol-

lows that E\(~p) ⊆ X.
— [2] If Abelard wins the game, by Item 2 of Theorem 4.3, it holds that Ê 6⊆ Ψ̂,

for all sets of assignments Ê ∈ ext∃∀(
−→
∃∀(℘̂)). It is easy to observe that {X} vX

{Asg((~p))}, since Asg((~p)) \ {χ ∈ Asg | χ�(~p) ∈ X} = Asg((~p)) \ {χ ∈ Asg |
χ�(~p) 6∈ X} = X. Thus, thanks to Proposition 4.9 and 4.13, we can show that

176

4.B. Proofs of Section 4.3

ext∃∀(X,
−→
∃∀(℘)) vX ext∃∀(

−→
∃∀(℘̂)). Indeed,

ext∃∀(X,
−→
∃∀(℘)) = ext∃∀(ext∃∀({X}, ℘̃),−→∃∀(℘)) (4.9a)

vX ext∃∀(ext∃∀({Asg((~p))}, ℘̃),−→∃∀(℘)) (4.9b)

= ext∃∀(ext∃∀(ext∃∀(∀(~p)), ℘̃),−→∃∀(℘)) (4.9c)

= ext∃∀(∀(~p). ℘̃.−→∃∀(℘)) (4.9d)

v ext∃∀(
−→
∃∀(∀(~p). ℘̃. ℘)) (4.9e)

= ext∃∀(
−→
∃∀(℘̂)), (4.9f)

where Step 4.9b is due to Proposition 4.13, thanks to the fact that {X} vX
{Asg((~p))}, Step 4.9c to the equality ext∃∀(∀(~p)) = {Asg((~p))}, and Step 4.9e
is derived from Proposition 4.9. Now, due to the definition of the ordering vX be-
tween hyperteams, it follows that ext∃∀(X,

−→
∃∀(℘)) vX ext∃∀(

−→
∃∀(℘̂)) necessarily

implies the non existence of a set of assignments E ∈ ext∃∀(X,
−→
∃∀(℘)) such that

E ⊆ Ψ̂. Indeed, assume towards a contradiction that there is E ∈ ext∃∀(X,
−→
∃∀(℘))

such that E ⊆ Ψ̂. By the above inclusion, there is Ê ∈ ext∃∀(
−→
∃∀(℘̂)) such that

Ê \ {χ ∈ Asg | χ�(~p) ∈ X} ⊆ E ⊆ Ψ̂. Since Ê ∩ {χ ∈ Asg | χ�(~p) ∈ X} ⊆ {χ ∈
Asg(P) | χ�(~p) 6∈ X} ⊆ Ψ̂, we have that Ê ⊆ Ψ̂, which contradicts the fact that
Abelard wins the game. Hence, E 6⊆ Ψ̂ holds, for all E ∈ ext∃∀(X,

−→
∃∀(℘)), which

implies that E 6⊆ Ψ, being Ψ ⊆ Ψ̂.

Now, we have proven everything that is used for the proof of Theorem 4.7 from the
main paper. Here is the graph of dependency presenting the lemma, the propositions, the
corollaries and theorems used for this proof.

Theorem 4.7

Theorem 2.1

Theorem 2.2
Theorem 4.6

Proposition 4.3
Corollary 2.3

Corollary 4.2

Theorem 2.3

. . .

. . .

. . .

. . .

And finally, we have proven everything that is used for the proof of Theorem 4.5 from
the main paper. Here is the graph of dependency presenting the corollary and the theorem
used for this proof.

177

Partie , Chapter 4 – Good-For-Game Quantified Propositional Temporal Logic

Theorem 4.5
Theorem 4.7

Corollary 4.2

. . .

. . .

The following theorem relies on both the notions of parity game and parity au-
tomaton [Mos84; EJ91; Mos91] (see also [KN01; GTW02]). Parity games are perfect-
information two-player turn-based games of infinite duration, usually played on finite
directed graphs. Their vertices, called positions, are labelled by natural numbers, called
priorities, and are assigned to one of two players, namely 0 and 1. The game starts at a
given position and, during its evolution, players can take a move (an outgoing edge) only
at their own positions. The moves selected by the players induce an infinite sequence of
vertices, called play. If the maximal priority of the vertices occurring infinitely often in
the play is even, then the play is winning for player 0, otherwise, player 1 takes it all.
Similarly, the states of a (non-deterministic) parity automaton are labelled with natural
numbers (priorities) and an infinite word given in input is accepted by the automaton iff
there exists a run induced by such a word, for which the maximal priority seen infinitely
often along it has even parity.

Theorem 4.8 (Satisfiability Game). For every realizable GFG-QPTL sentence Φ there
is a parity game, with 22O|Φ| positions and 2O|Φ| priorities, won by Eloise iff Φ is satisfiable.

Proof. Let ϕ = ℘ψ be a realizable GFG-QPTL sentence with ℘ a quantification prefix
and ψ an LTL formula. Additionally, let Ψ def= {χ ∈ Asg(ap(℘)) | χ |= ψ}. The idea of
the proof is to construct a parity game Gϕ that is equivalent to the game Gψ℘

def= GΨ
℘

def=
〈Aψ℘ , Oψ

℘ ,Winψ℘ 〉 defined in Construction 4.1, where Aψ℘
def= 〈P ∃,℘,ψ, P ∀,℘,ψ, p℘,ψ,M℘,ψ〉.

Intuitively, Gϕ simulates the synchronous product of arena Aψ℘ with the deterministic
automaton Aψ recognizing models of ψ, where Aψ changes state only when Abelard takes
a move starting from an observable position containing full valuation of the propositions.
Such valuation determines the successor state.

The deterministic automatonAψ recognising models of ψ can be obtained in a standard
way, by first constructing a non-deterministic Büchi automaton Aψ that recognises models
of ψ, using the Vardi-Wolper construction [VW86a], and then by determinising Aψ (via
a Safra-like determinisation procedure [Pit06]) into an equivalent deterministic parity
automaton A = 〈Q, q0,Σ, δ, par〉, where

— Q is the finite set of states,

178

4.B. Proofs of Section 4.3

— q0 ∈ Q is the initial state,
— Σ = Val(ap(℘)) is the alphabet,
— δ : Q× Σ→ Q is the transition function,
— par : Q→ N is the parity condition.
Now, the parity game Gϕ associated with ϕ is a pair Gϕ

def= 〈Aϕ,Winϕ〉, where:
— Aϕ

def= 〈P ∃,ϕ, P ∀,ϕ, pϕ,Mϕ〉 is the arena;
— the set of positions PϕS

def= P ∃,ϕ] P ∀,ϕ = Q× (P ∃,℘,ψ ∪ P ∀,℘,ψ) contains exactly the
pairs consisting of a state of the automaton A and a valuation ν ∈ Val which is a
position of Gψ℘ ;

— the set of Eloise’s positions P ∃,ϕ ⊆ PϕS only contains the positions (q, ν) ∈ PϕS
where ν is an Eloise’s position in Gψ℘ ;

— the initial position pϕ def= (q0, ∅) is just the initial state of A paired with the initial
state of Gψ℘ ;

— the move relation Mϕ ⊆ PϕS × PϕS contains exactly those pairs of positions
((q1, ν1), (q2, ν2)) ∈ PϕS × PϕS such that:
— (ν1, ν2) is a move in Gψ℘ ;
— if ν2 = ∅ then q2 = δ(q1, ν1), otherwise, q1 = q2;

— the winning condition Winϕ is deduced from the accepting condition of the au-
tomaton A. More precisely, the priority of a position (q, ν) ∈ PϕS is defined as the
priority par(q) of q, i.e., Winϕ((q, ν)) = par(q) for all (q, ν) ∈ PϕS.

We want to show that there is a strategy for Eloise to win Gϕ if and only if there is a
strategy for her to win Gψ℘ .

Towards the definition of a correspondence between Eloise’s strategies in Gϕ and
Eloise’s strategies in Gψ℘ , we define now a bijection Path2Path between initial paths
on Gϕ (denoted Pathsinit

ϕ) and initial paths on Gψ℘ (denoted Pathsinit
℘). Given two sets S, S ′

and a pair (x, y) ∈ S × S ′, we let π1(x, y) = x and π2(x, y) = y, that is, functions π1 and
π2 return the first and the second element of their argument, respectively. Furthermore,
we denote by τ �π def= ((τ)0, (π)0)((τ)1, (π)1) . . . the pairing product of two sequences. Let
π ∈ Pathsinit

ϕ , with π, be an initial path on Gϕ. Function f maps π into the initial path
on Gψ℘ obtained by projecting on the second component of each position of π, that is,
f(π) = 〈π2((π)i)〉i∈J0,...,|π|K. The fact that f is a bijection, as stated in Corollary 4.3, is an
immediate consequence of the following claim.

Claim 4.12. For every initial path π ∈ Pathsinit
℘ there is exactly one sequence of automaton

states τ ∈ Q∞ such that |π| = |τ | and τ � π ∈ Pathsinit
ϕ .

179

Partie , Chapter 4 – Good-For-Game Quantified Propositional Temporal Logic

Proof. The claim follows from the fact that, according to the definition of Mϕ, the first
component of each position of a path on Gϕ is univocally determined by the second
component of that position and by the previous position in the path (the fact that A is
deterministic plays an important role in this). More formally, τ is constructed inductively
as: (τ)0 = q0 is the initial state of A and, for i ∈ N, with i > 0:

(τ)i =

 (τ)i−1 if (π)i 6= ∅
δ((τ)i−1, (π)i−1) if (π)i = ∅

Clearly, τ �π ∈ Pathsinit
ϕ since π is a path on Gψ℘ and τ closely follow the move relation

Mϕ. It is also easy to see that for any other τ ′ ∈ Q∞, with τ ′ 6= τ , it holds that τ ′ � π /∈
Pathsinit

ϕ . Indeed, assume, towards a contradiction, that τ ′� π ∈ Pathsinit
ϕ , and let i be the

smallest index such that (τ)i 6= (τ ′)i. If i = 0, then ((τ ′)i, (π)i) is not the initial position
of Gψ℘ , thus contradicting the assumption; if i > 0 and (π)i 6= ∅, we have: (τ)i = (τ)i−1 =
(τ ′)i−1, which implies (τ ′)i−1 6= (τ ′)i, and thus (((τ ′)i−1, (π)i−1), ((τ ′)i, (π)i)) is not a move
of Gϕ, accordingMϕ, and the assumption is contradicted; finally, if i > 0 and (π)i = ∅, we
have (τ)i = δ((τ)i−1, (π)i−1) = δ((τ ′)i−1, (π)i−1), which implies (τ ′)i 6= δ((τ ′)i−1, (π)i−1),
and the assumption is contradicted once again, since (((τ ′)i−1, (π)i−1), ((τ ′)i, (π)i)) is not
a move of Gϕ for any (τ ′)i 6= δ((τ ′)i−1, (π)i−1), according Mϕ.

Corollary 4.3. Function Path2Path : Pathsinit
ϕ → Pathsinit

℘ is a bijection.

We define now a bijection κ from strategies (for both Eloise (∃) and Abelard (∀)) in
Gϕ to strategies in Gψ℘ . For α ∈ {∃, ∀}, let Histα(Gϕ) and Histα(Gψ℘) be the sets of histories
for α (i.e., the sets of finite initial paths terminating in an α-position) in Gϕ and Gψ℘ ,
respectively, and let Stratα(Gϕ) and Stratα(Gψ℘) be the sets of strategies for player α in Gϕ
and Gψ℘ , respectively. Observe that Histα(Gϕ) ⊆ Pathsinit

ϕ and Histα(Gψ℘) ⊆ Pathsinit
℘ . We

define κ : Stratα(Gϕ)→ Stratα(Gψ℘) as follows: for every σ ∈ Stratα(Gϕ) and every history
h ∈ Histα(Gψ℘), we set κ(σ)(h) = π2(σ(f−1(h))). Intuitively, κ(σ) acts like σ restricted to
the second component of positions.

Claim 4.13. Function κ : Stratα(Gϕ)→ Stratα(Gψ℘) is a bijection.

Proof. In order to see that κ is injective, we show that σ 6= σ ′ implies κ(σ) 6= κ(σ ′), for
every σ, σ ′ ∈ Stratα(Gϕ). Let σ, σ ′ ∈ Stratα(Gϕ) and let h ∈ Histα(Gϕ) be such that σ(h) 6=
σ ′(h). We first prove that π2(σ(h)) 6= π2(σ ′(h)). Let h = h(q, ν) with h potentially empty.
Let σ(h) = (q?, ν?) with q? = q if ν? 6= ∅ and q? = δ(q, ν) otherwise. Toward contradiction,
suppose that π2(σ(h)) = π2(σ ′(h)) = ν?. Then, by definition, π1(σ(h)) = π1(σ ′(h)) = q?

180

4.B. Proofs of Section 4.3

and then σ(h) = σ(h′) which is a contradiction. Then, we have κ(σ)(f(h)) = π2(σ(h)) 6=
π2(σ ′(h)) = κ(σ ′)(f(h)), and therefore κ(σ) 6= κ(σ ′).

In order to show that κ is surjective as well, let σ ∈ Stratα(Gψ℘). We build a strategy
σ ′ ∈ Stratα(Gϕ) such that κ(σ ′) = σ. Intuitively, σ ′ returns a pair (a position in Gϕ) whose
second component is chosen according to the output of strategy σ in Gψ℘ , and whose first
component is univocally determined (thanks to Claim 4.12) by the choice of the second
component and the argument history. Formally, for every h ∈ Histα(Gψ℘) we denote by
ext(h) the initial path of Gψ℘ obtained by appending to h the output the strategy σ on
h itself, i.e., ext(h) = h · σ(h); notice that f−1(ext(h)) ∈ Pathsinit

ϕ . Thus, we define σ ′

as: σ ′(h) def= lst(f−1(ext(f(h)))), for every history h ∈ Histα(Gϕ). It is not difficult to see
that κ(σ ′) = σ: indeed, it holds that κ(σ ′)(h) = π2(σ ′(f−1(h))) = π2(lst(f−1(ext(h)))) =
π2(lst(f−1(h · σ(h)))) = σ(h), for every h ∈ Histα(Gψ℘). This concludes the proof.

The next claim states that the bijection κ preserves the possible plays resulting from
the application of a strategy by Eloise in Gϕ and its image in Gψ℘ , modulo the correspon-
dence between plays of Gϕ and Gψ℘ established by the bijection f . Let Playsϕ be the set of
plays of Gϕ.

Claim 4.14. π is compatible with σ iff f(π) is compatible with κ(σ), for every σ ∈
Strat∃(Gϕ) and π ∈ Playsϕ.

Proof. It is easy to verify that a play π ∈ Playsϕ is compatible with a pair of strategies
(σ∃, σ∀) ∈ Strat∃(Gϕ) × Strat∀(Gϕ) if and only if f(π) is compatible with (κ(σ∃), κ(σ∀)).
The thesis immediately follows.

As a final ingredient in our proof, we establish a correspondence Play2Asg between
plays of Gϕ that are won by Eloise and models of ψ, recognised byA. Function Play2Asg :
Playsϕ → Val(ap(℘))ω is defined as: Play2Asg(π) def= obs(Path2Path(ρ)) for every
π ∈ Playsϕ. The correctness of such a correspondence is stated in the next claim.

Claim 4.15. ρ is won by Eloise in Gϕ iff Play2Asg(ρ) is recognised by A, for every
ρ ∈ Playsϕ.

Proof. By the definition of Gϕ, if we restrict a play π ∈ Playsϕ to those position (q, ν) ∈ PϕS
where ν ∈ Val(ap(℘)) (thus discharging partial valuations, which do not assign a truth
value to all propositions occurring in ψ), we obtain a sequence π′ that encodes to the
unique run of A on f(π), where the sequence (π′)|1 of first components of each position
(i.e., (π′)|1 def= 〈π1((π′)i)〉i∈N) corresponds to the states visited by the automaton while

181

Partie , Chapter 4 – Good-For-Game Quantified Propositional Temporal Logic

reading the word (π′)|2 corresponding to the sequence of second components of the po-
sitions in π′ (i.e., (π′)|2

def= 〈π2((π′)i)〉i∈N – recall that A is deterministic). Importantly,
notice that such word (π′)|2 is exactly Play2Asg(ρ). Additionally, observe that the pro-
jections of π and π′ on the first component of each position, i.e., (π)|1

def= 〈π1((π)i)〉i∈N
and (π′)|1 respectively, are equal if we ideally merge together consecutive occurrences of
the same state. This means that, since the winning condition Winϕ of Gϕ mimics the ac-
ceptance condition par of A, the sequence of priorities corresponding to π is the same as
the one corresponding to the run π′ of A on Play2Asg(ρ). Therefore, Play2Asg(ρ) is
recognised by A if and only if run π′ is accepting if and only if play π is won by Eloise.

Finally, from Claim 4.14 and the following one, whose proof makes use of Claim 4.15,
it follows that there is a strategy for Eloise to win Gϕ if and only if there is a strategy for
her to win Gψ℘ . Thanks to this last equivalence and to Theorem 4.2 we conclude that for
every realizable GFG-QPTL sentence ϕ there is a parity game won by Eloise if and only
if ϕ is satisfiable.

Claim 4.16. ρ is won by Eloise in Gϕ iff Path2Path(ρ) is won by Eloise in Gψ℘ , for
every ρ ∈ Playsϕ.

Proof. Consider a play ρ ∈ Playsϕ. Thanks to Claim 4.15, we know that ρ is won by
Eloise iff Play2Asg(ρ) is accepted by A which means that wrd−1(Play2Asg(ρ)) |= ψ,
which, in turn, is equivalent to say that Play2Asg(ρ) ∈ Winψ℘ = wrd(Ψ), that is,
Path2Path(ρ) is won by Eloise in Gψ℘ , since Play2Asg(π) = obs(Path2Path(ρ)).

The automaton Aψ has a size exponential in the size of ψ [VW86b]. The procedure
to transform it into a deterministic parity automaton adds one exponential [Pit06]; thus
|A| = 22O|ψ| . It is easy to see the number of positions of the quantification game is O2|℘|.
Thus, we conclude that game Gϕ we have just defined has size in O2|℘| · 22O|ψ| = 22O|ϕ| .
The game has the same number of priorities as the automaton A which is in 2O|ψ|.

182

Chapter 5

PLAN LOGIC

As opposed to existing logics for strategic reasoning, such as ATL? [AHK97] and
SL [CHP10; MMPV14; MMPV17], where the (implicit or explicit) domain of quantifi-
cation is composed of strategies, which are quite complex objects, we introduce Plan
Logic, which relies on the much simpler notion of a plan. Plans are infinite sequences
ρ ∈ Plans def= Acω that describe the course of actions an agent chooses to execute in
response to what the other agents have already decided to do.

From a syntactic standpoint, Plan Logic bears a strong similarity with SL. In partic-
ular, PL extends LTL by allowing

1. to quantify explicitly over plans,

2. to assign plans to agents by means of a binding mechanism similar to the one of
SL that connects agents and plan variables, and

3. to form bundles of plan variables via tying operations that are crucial to correlate
different plans as parts of essentially the same strategy in the game model.

The chapter is organized as follows. In Section 5.1, we recall the definition of SL with
Tarskian semantics and the timeline semantics of Gardy [GBM18; GBM20]. Following,
in Section 5.2, we present the core concepts for reasoning with plans and the syntax
and semantics of PL. Then, in Section 5.3, we compare PL and SL under the timeline
semantics. Finally, in Section 5.4, we state that the model checking of PL is 2-Exptime-
complete.

Throughout this chapter, we implicitly assume an a priori fixed countably-infinite set
of variables Var.

5.1 Strategy Logic

In this section, we present the model of concurrent game structures, which are the
usual models for SL. Then, we describe the typical syntax and semantics of SL, and

183

Partie , Chapter 5 – Plan Logic

finally, we introduce the so-called timeline semantics for SL.

5.1.1 Concurrent Game Structures.

As said, SL formulas are usually interpreted over concurrent game structure (CGS ,
for short).

Definition 5.1 (Concurrent game structure). A CGS w.r.t an a priori fixed countably-
infinite set of atomic propositions AP is a structure G def= 〈Ag,Ac,Pos, pi, δ, λ〉, where

— Ag is a finite non-empty set of agents,
— Ac and Pos are countable non-empty sets of actions and positions,
— pi ∈ Pos is an initial position,
— δ : Pos × AcAg → Pos is a transition function mapping every position p ∈ Pos and

action profile ~d ∈ AcAg to a position δ(p, ~d) ∈ Pos,
— λ : Pos → 2P is a labeling function mapping every position p ∈ Pos to the finite

set of atomic propositions λ(p) ⊂fin P true at that position.
The size of G is the number of its positions, i.e., |G| def= |Pos|.

By abuse of notation, δ ⊆ Pos × Pos also denotes the transition relation between
positions such that (p, q) ∈ δ iff δ(p, ~d) = q, for some ~d ∈ AcAg. A path π ∈ Paths ⊆
Pos∞\{ε} is a sequence of positions compatible with the transition function and beginning
with the initial position, i.e., π[0] = pi and π[i], π[i + 1]) ∈ δ, for each 0 ≤ i < |π| − 1.
The labeling function lifts from positions to paths in the usual way: λ : Paths → (2AP)+.
A history is a finite path h ∈ Hist def= Paths∩Pos+, while a play π ∈ Plays def= Paths∩Posω

is an infinite one. A strategy is a function σ ∈ Strat def= Hist → Ac mapping every history
h ∈ Hist to an action σ(h) ∈ Ac. A play π ∈ Plays is compatible with a strategy profile
~σ ∈ StratAg if, for all i ∈ N, it holds that π[i + 1] = δ(π[i], ~d[i]), where ~d[i] ∈ AcAg

is the action profile with ~d[i](a) = ~σ(a)(π[: i]), for all agents a ∈ Ag. The function
plays : StratAg → Plays assigns to each profile ~σ ∈ StratAg the unique play plays(~σ) ∈
Plays compatible with ~σ; we also say that ~σ induces plays(~σ).

From now on, we implicitly assume that we have a CGS that is defined.

5.1.2 Syntax.

A binding [∈ Binds def= Ag→ Var is a function mapping every agent a ∈ Ag
to a variable [(a) ∈ Var, commonly represented as a finite sequence of binding pairs

184

5.1. Strategy Logic

(a1, x1), . . . , (ak, xk), where each agent occurs exactly once. By var([) ⊂ Var we denote
the set of variables occurring in [and lift the notation to sets of bindings as the union of
the corresponding sets element-wise.

Definition 5.2. An SL formula is defined inductively as follows, where ψ is an LTL
formula, x is a strategic variable and [is a binding.

Φ := [ψ |Φ ∧ Φ | ¬Φ | ∃x Φ | ∀x Φ

The atom [ψ is called a goal formula.
The free variables of an SL formula are defined as follows:

free([ψ) = var([) for ψ an LTL formula and [a binding
free(Φ1 ∧ Φ2) = free(Φ1) ∪ free(Φ2)

free(¬Φ) = free(Φ)
free(Qx Φ) = free(Φ) \ {x} for Q ∈ {∃,∀}

5.1.3 Semantics.

We display the semantics of SL as defined in [MMPV14; MMPV17].

Definition 5.3 (SL Tarski Semantics). Tarski’s semantic relation χ |=SL Φ for SL is
inductively defined as follows, for all SL formulas Φ and assignments χ ∈ Asg(V) with
free(Φ) ⊆ V.

1. χ |= [ψ, if λ(play([◦ χ)) |=LTL ψ;

2. the semantics of Boolean connectives is defined as usual;

3. χ |= ∃x Φ, if χ[x 7→ σ] |= Φ, for some strategy σ ∈ Strat;

4. χ |= ∀x Φ, if χ[x 7→ σ] |= Φ, for all strategies σ ∈ Strat.

5.1.4 Timeline semantics.

The timeline semantics has been proposed by Gardy [GBM18; GBM20] and is defined
for prenex formulas, i.e., formulas of the form ℘f(~[~ψ), where ℘ is a quantifier prefix,
f(~[~ψ) is a Boolean combination f, i.e. a function from {>,⊥}|~[~ψ| to {>,⊥}, of the goal
formulas ~[~ψ. The fragment of SL composed of only prenex formula is called SL Boolean
goal denoted by SL[BG]. The fragment of SL[BG] where the Boolean combination is a

185

Partie , Chapter 5 – Plan Logic

conjunction, resp. a disjunction, is called SL conjunctive goal, resp. SL disjunctive goal
and is denoted by SL[CG], resp. SL[DG]. The one-goal fragment of SL , denoted by
SL[1G], is the fragment where there is only one goal formula, with the Boolean function
being the identity function. Observe that the one-goal fragment SL[1G] of SL is contained
in the intersection of SL[CG] and SL[DG], which amounts to requiring B to be a singleton
set.

Timeline Dependence A map θ is a function θ : StratV∀ → StratV such that for every
m ∈ StratV∀ and every variable x in V∀, we have θ(m)(x) = m(x). Given a quantifier
prefix ℘ = Q1x1, . . . , Qnxn, a map is a timeline map if it respects the following.

∀m1,m2 ∈ StratV∀ .∀ xi ∈ V \ V∀.∀h ∈ Hist, ∀xj ∈ V∀ ∩ {xk | k < i},m1(xj)(h) = m2(xj)(h)
∧∀xj ∈ V∀,∀h′ ∈ Pref(h),m1(xj)(h′) = m2(xj)(h′)

→ θ(m1)(x)(h′) = θ(m2)(x)(h′)

Remark that, even if the type of a map is close to the one of a Skolem function, the
strategy of an existentially quantified variable may depend on the strategy of a variable
universally quantified afterward.

Given a vector of goal formulas ~[ψ and an assignment χ, we define the Boolean vector
~v
~[ψ,χ by ~v

~[ψ,χ
i := > iff χ |=SL

~[i
~ψi.

Semantics G |=SL[T] ℘f(~[~ψ) iff there is a timeline map θ such that f(~v ~[ψ,θ(m)) = >.

5.2 Strategic Reasoning

5.2.1 Syntax.

For simplicity, the syntax of the full logic imposes flat formulas to be flat, as in the flat
fragments of CTL? [Dam99] and ATL? [GV14], where sentences can be combined in a
Boolean way, but cannot be nested. Notice that this flatness constraint comes without loss
of generality, when the model-checking problem is considered, as the latter can always be
reduced to reasoning about flat formulas via a relabelling of the underlying structure (see
[KVW00; AHK02], for details).

186

5.2. Strategic Reasoning

Definition 5.4. Plan Logic (PL, for short) is the set of formulas built according to the
following context-free grammar, where [∈ Binds, ψ ∈ LTL, V ⊂fin Var, and x ∈ Var:

ϕ
def= [ψ | ¬ϕ |ϕ ∧ ϕ |ϕ ∨ ϕ | 〈V〉ϕ | [V]ϕ | ∃x ϕ | ∀x ϕ.

We shall denote by free(ϕ) ⊆ var(ϕ) ⊂ Var the sets of free variables and variables
occurring in ϕ. Specifically, free([ψ) def= var([) and free(〈V〉ϕ) = free([V]ϕ) def= V ∪
free(ϕ); all others cases are as usual. A sentence φ is a formula without free variables,
i.e., free(φ) = ∅. Similarly, bnd(ϕ) ⊂ Binds denotes the set of bindings occurring in ϕ.

The binding [in a PL goal [ψ have basically the same interpretation as in SL,
namely as the mechanism that associates agents with the content of variables, plans in
our case, against which LTL formulas can be evaluated, once the corresponding play is
determined. Quantifiers and tying operators, on the other hand, need some explaining in
game-theoretic terms. Since we are interested in realizability, we require that the plans
we quantify over must be effectively computable, namely that each action chosen at some
instant can only depend on the past choices of all the quantified plans. This allows us to
view plans as branches of the tree representations of strategies. With this view in mind, the
quantifier ∃x (resp., ∀x) can be read as “there exists a realizable plan ...” (resp., “for all
realizable plans ...”). Tying operators, instead, are precisely the mechanism that connects
plans to strategies in the following sense. Different plan variables denote branches of the
same strategy, as long as they provide the same choices for any two bindings that share
the same history. The operator 〈V〉 (resp., [V]) can then be read as “the plans in V are
part of a strategy and ...” (resp., “if the plans associated with V are part of a strategy
then ...”). Essentially, the two operators filter out sets of plans that cannot be part of the
same strategy, because they prescribe different actions for the same history. In a sense,
these operators play the role of strategic constructs, implicitly quantifying existentially
and universally over strategies via their component plans.

5.2.2 Examples.

To better understand these intuitions, let us discuss some examples of SL formulas and
their corresponding PL equivalents. The simple SL sentence ΨW = ∃x ∀y (a, x)(b, y)ψ
states that an agent a can win a two-player game with LTL objective ψ. Specifically,
it requires the existence of a strategy x whose induced plays, each one induced by some
strategy y of the adversary b, satisfy ψ. This same property would be expressed in PL by

187

Partie , Chapter 5 – Plan Logic

the sentence φW = ∃x ∀y 〈x〉[y](a, x)(b, y)ψ, which states that there exists a realizable
plan followed by a that is part of some strategy, e.g., the witness strategy for x of the
SL sentence, and ensures the objective, regardless of the realizable plans y that are part
of possible strategies y followed by the adversary. Note that the realizability requirement
for plans is crucial here, since it means that their actions must be chosen on-the-fly only
with knowledge of the past history, in order to mimic the behavior of strategies.

For a second example, let us consider the property claiming the existence of a strategy
for some objective ψ that is not strictly dominated by any other strategy. This is expressed
by the SL sentence ΨNSD = ∃x ∀x′ ∃y ((a, x′)(b, y)ψ → (a, x)(b, y)ψ) . The formula
asserts that, for some strategy x and any other strategy x′, both for the same agent a,
there is at least one strategy y for the opponent such that following x′ instead of x would
not give a a better outcome. In PL terms, that property is captured by the sentence
φNSD = ∃x ∀x′ ∃y1, y2 〈x〉[x′]〈y1, y2〉 ((a, x′)(b, y1)ψ → (a, x)(b, y2)ψ), where we ensure
that the two plans y1 and y2 are part of the same existentially quantified strategy y for b.

As a final example, consider the existence of a Nash equilibrium for the two agents,
a and b, whose objectives are ψa and ψb , respectively. An SL sentence for this property
is ΨNE = ∃x ∃y ∀z (((a, z)(b, y)ψa → (a, x)(b, y)ψa) ∧ ((a, x)(b, z)ψb → (a, x)(b, y)ψb)) ,
where x and y represent the equilibrium strategies. The sentence asserts that neither agent
can improve by unilaterally deviating from the profile, i.e., by deciding to follow any other
strategy z instead of x and y. The corresponding PL sentence is

φNE = ∃x1, x2 ∃y1, y2 ∀z1, z2 〈x1, x2〉〈y1, y2〉[z1, z2]


((a, z1)(b, y1)ψa → (a, x2)(b, y2)ψa)

∧
((a, x1)(b, z2)ψb → (a, x2)(b, y2)ψb)

,

where the existential strategies x and y are simulated via the operators 〈x1, x2〉 and 〈y1, y2〉
on the pairs of plans x1, x2 and y1, y2, while the universal strategy z via [z1, z2] on z1, z2.

The overall intuition underlying the correspondence between SL and PL is that, in
order to express a strategic property comprising a given set of different bindings, one really
only needs to be able to predicate on a small portion of the strategies involved, namely
on a single plan for each binding occurring in the property. This intuition is formally
substantiated in Section 5.3, where a formal translation of some realizable fragments of
SL is provided.

188

5.2. Strategic Reasoning

5.2.3 Semantics.

To interpret a goal [ψ w.r.t an assignment χ ∈ Asg(V) with var([) ⊆ V, one needs
to consider the play play[(χ) that is induced by the plan profile ~ρ def= χ ◦ [∈ PlansAg

obtained as the functional composition of χ and [and associating a plan in χ with every
agent, in accordance with the binding [. Formally, play[(χ) is the unique play π ∈ Plays
such that π[i + 1] = δ(π[i], ~d[i]), for all i ∈ N, where ~d[i] ∈ AcAg is the action profile
associating with each agent a ∈ Ag the action stipulated at time i by the plan assigned
to a in the plan profile ~ρ, i.e., ~d[i](a) = ~ρ(a)[i].

The semantics of the tying operators 〈V〉 and [V] requires some intermediate notions.
Two bindings [1, [2 ∈ Binds agree up to n ∈ N on an assignment χ ∈ Asg if play[1(χ̂) =≤n
play[2(χ̂), for some extension χ̂ ∈ Asg(W) of χ with var({[1, [2}) ⊆ W. Intuitively, [1
and [2 agree up to n on χ if two corresponding plan profiles induce the same history h
of length n + 1, where n evolution steps have occurred since the initial position. Note
that [1 and [2 agree up to 0 on every assignment, since the initial position is always a
common history of length 1. For an assignment χ ∈ Asg, two variables x1, x2 ∈ dom(χ),
and two bindings [1, [2 ∈ Binds, with x1 ∈ var([1) and x2 ∈ var([2), we say that the
pair (x1, x2) is ([1, [2)-tied in χ when, for every n ∈ N, if [1, [2 agree up to n on χ then
χ(x1) =≤n χ(x2). This condition ensures the existence of a strategy σ such that the
actions χ(x1)[n] and χ(x2)[n], at every instant of time n, coincide with the action σ(h),
for some n-evolution-step history h. We lift the notion to sets of variables V ⊆ dom(χ)
and bindings B ⊆ Binds as follows: V is B-tied in χ if (x1, x2) is ([1, [2)-tied in χ, for all
x1, x2 ∈ V and [1, [2 ∈ B, with x1 ∈ var([1) and x2 ∈ var([2).

A Tarskian semantics for PL, as for SL, would be formalised as follows.

Definition 5.5. For an implicitly given CGS G, Tarski’s semantic relation χ |= ϕ for PL
is inductively defined as follows, for all PL formulas ϕ and assignments χ ∈ Asg(W) with
free(ϕ) ⊆ W.

1. χ |= [ψ, if λ(play[(χ)) |=LTL ψ;

2. the semantics of Boolean connectives is defined as usual;

3. χ |= 〈V〉ϕ, if χ |= ϕ and V is bnd(ϕ)-tied in χ;

4. χ |= [V]ϕ, if χ |= ϕ when V is bnd(ϕ)-tied in χ;

5. χ |= ∃x ϕ, if χ[x 7→ ρ] |= ϕ, for some plan ρ ∈ Plans;

6. χ |= ∀x ϕ, if χ[x 7→ ρ] |= ϕ, for all plans ρ ∈ Plans.

189

Partie , Chapter 5 – Plan Logic

The meaning of all conditions above should be self-evident. In particular, Item 3
requires, besides the satisfaction of the formula ϕ, that the set of variables V be tied in
the assignment w.r.t the entire set of bindings bnd(ϕ) occurring in ϕ, thus ensuring the
existence of a strategy containing the plans associated with V. Item 4 just expresses the
dual condition, witnessing the equivalence between ¬〈V〉ϕ and [V]¬ϕ.

Despite its simplicity, the treatment of plan quantifiers in this semantics does not
correctly capture the effective computability requirement for the plans discussed above.
To see why, consider the following non-realizably satisfiable SL sentence: φNR def=
∀y ∃z ((a, y)XXp ↔ (a, z)Xp). The corresponding PL translation, obtained similarly
to the previous examples, can be, indeed, shown satisfiable under the Tarskian semantics
as follows.

Example 5.1. Consider the sentence φNR=∀y ∃z [y]〈z〉((a, y)XXp ↔ (a, z)Xp) and the
single-agent two-action two-position CGS G = 〈{a}, {0, 1}, {p0, p1}, p0, δ, λ〉, where

1. action 0 always leads to p0 and action 1 always to p1, regardless of the current
position, i.e., δ(pi, {a 7→ j}) = pj, and

2. position p1 is the only one labelled by p, i.e., λ = {p0 7→ ∅, p1 7→ {p}}.

Being a sentence, we evaluate φNR against the empty assignment ∅. By applying Items 6
and 5 of Definition 5.5, we obtain G, ∅ |= φNR iff, for every plan ρy, there exists a
plan ρz such that G, {y 7→ ρy , z 7→ ρz} |= [y]〈z〉 ((a, y)XXp ↔ (a, z)Xp). Now, by
Items 4 and 3, it is immediate to see that the two tying operators [y] and 〈z〉 do not
affect the reasoning, since a singleton set of variables is always trivially tied, no matter
which assignment or set of bindings is taken into account. Thus, G, {y 7→ ρy , z 7→ ρz} |=
[y]〈z〉 ((a, y)XXp ↔ (a, z)Xp) iff G, {y 7→ ρy , z 7→ ρz} |= (a, y)XXp ↔ (a, z)Xp. At this
point, one can simply choose ρz

def= ρy [1] · 0ω to satisfy the formula. Hence, following the
naive interpretation of φNR via Tarski’s semantics, it holds that G satisfies φNR in a
non-realizable way, since ρz requires knowledge of ρy one step ahead.

This example clearly shows that a precise formalization of game-theoretic plan quantifi-
cations cannot be achieved by following a first-order Tarskian approach, due to treatment
of plans as monolithic entities. To adequately model plans both as realizable objects and
linear components of strategies, we are, indeed, faced with a challenge. We need to ensure
that, when a plan is chosen by a quantifier, the selection of the action provided by that
plan at each time instant can only depend on the choices made by the other plans so far
during the play. This means that the choice must be made with knowledge of the past,

190

5.2. Strategic Reasoning

but no knowledge of the future. Not only does this requirement guarantee the realizability
of the plans, which is one of the main concerns of this work, but it also makes plans com-
patible with strategies, where the choices of actions are functionally dependent only on
the histories. To overcome this challenge, we resort to a hyperteam semantic framework
as it is precisely adequate to handle realizable functional dependencies among quantified
variables, as we shown in Chapter 4.

We now turn to adapting the hyperteam semantics for PL. We restrict response func-
tions to be realizable, as presented in Section 4.2. Then, we only provide the lift of the
concept of tied bindings to the level of hyperteams. First, at the level of a team X, we say
that a set of variables V ⊆ var(X) is B-tied in X, for a set of bindings B ⊆ Binds, if V
is B-tied in every assignment χ ∈ X. Second, for a hyperteam X, we define the filtering
operator flt(X, V, B) def= {X ∈ X | V is B-tied in X}, by filtering out of X all teams X in
which V is not B-tied.

The compositional semantics of PL based on hyperteams is defined as follows.

Definition 5.6. The hyperteam semantics relation X |=α ϕ is inductively defined as in
Definition 2.1, for all but Items 3, 7a and 8b that are modified, respectively, as follows,
with the addition of Items 9 and 10, for all PL formulas ϕ, alternation flags α ∈ {∃∀,∀∃},
and hyperteams X ∈ HypTeams⊇(free(ϕ)):

3”. X |=∃∀ [ψ, if there exists X ∈ X such that λ(play[(χ)) |=LTL ψ, for all χ ∈ X;

7a”) X |=∃∀ ∃x ϕ, if extR(X, x) |=∃∀ ϕ;

8b”) X |=∀∃ ∀x ϕ, if extR(X, x) |=∀∃ ϕ;

9. (a) X |=∃∀ 〈V〉ϕ, if flt(X, V,bnd(ϕ)) |=∃∀ ϕ;

(b) X |=∀∃ 〈V〉ϕ, if X |=∃∀ 〈V〉ϕ;

10. (a) X |=∃∀ [V]ϕ, if X |=∀∃ [V]ϕ;

(b) X |=∀∃ [V]ϕ, if flt(X, V,bnd(ϕ)) |=∀∃ ϕ;

For the rest of the chapter, as only realizable functions are considered, we might use
ext(X, x) instead of extR(X, x). The semantics of the tying operators (Items 9 and 10)
relies on the filtering operations discussed above. It is immediate to observe that, for
a fixed CGS G, the truth value of a PL sentence φ, when evaluated w.r.t the trivial
hyperteam, does not depend on the specific flag, i.e., {{∅}} |=∃∀ φ iff {{∅}} |=∀∃ φ, due
to the self duality of {{∅}}. We shall thus write G |=PL φ to assert both {{∅}} |=∃∀ φ and
{{∅}} |=∀∃ φ.

191

Partie , Chapter 5 – Plan Logic

As expected at this point, the hyperteam semantics of PL has the adequacy theorem
with respect the the Tarskian semantics of Definition 5.5.

Theorem 5.1. For all PL quantifier-free formulas ϕ and hyperteams X ∈
HypTeams⊇(free(ϕ)):

1. X |=∃∀ ϕ iff there exists X ∈ X such that χ |= ϕ, for all χ ∈ X;

2. X |=∀∃ ϕ iff, for all X ∈ X, it holds that χ |= ϕ, for some χ ∈ X.

We can now show that, under the hyperteam semantics, the non-realizable property
reported in the introduction is, as expected, no more satisfiable.

Example 5.2. Consider again the sentence φNR = ∀y ∃z [y]〈z〉 ((a, y)XXp ↔ (a, z)Xp)
and the CGS G of Example 5.1. We want to show that G 6|=PL φNR, meaning that φNR is
not realizably satisfiable on G, i.e., there is no realizable plan for z ensuring a match of
the truth values of p at time instants 1 and 2. Since free(φNR) = ∅, we evaluate φNR
against the trivial hyperteam {{∅}}, which, as observed before, implies that the alternation
flag is of no consequence. Without loss of generality, we choose α = ∀∃, thus focusing on
proving {{∅}} 6|=∀∃ φNR.

The rule for the universal quantifier ∀y (Item 8”.) requires to compute the extension
X

def= ext({{∅}}, y) = {{y : 000ω}, {y : 010ω}, {y : 100ω}, {y : 110ω}, . . .} of {{∅}}, con-
taining a singleton team for each one of the uncountably many plans to assign to y. This
results in

{{∅}} |=∀∃ ∀y ∃z [y]〈z〉 ((a, y)XXp ↔ (a, z)Xp) iff X |=∀∃ ∃z [y]〈z〉 ((a, y)XXp ↔ (a, z)Xp).

To apply the rule for the existential quantifier ∃z (Item 7”.), we first need to dualise
the hyperteam and switch to the ∃∀ flag. Since every team of X is a singleton set, there
is only one possible choice function for it, thus, the result is

X |=∀∃ ∃z [y]〈z〉 ((a, y)XXp ↔ (a, z)Xp) iff X |=∃∀ ∃z [y]〈z〉 ((a, y)XXp ↔ (a, z)Xp),

where X = {{y : 000ω, y : 010ω, y : 100ω, y : 110ω, . . .}} is the singleton hyperteam composed
of the unique team containing all plans for y. The quantifier ∃z and the alternation flag
∃∀ are coherent, so we can proceed extending the hyperteam to obtain X′

def= ext(X, z).
The result is

X |=∃∀ ∃z [y]〈z〉 ((a, y)XXp ↔ (a, z)Xp) iff X′ |=∃∀ [y]〈z〉 ((a, y)XXp ↔ (a, z)Xp),

192

5.3. Adequacy with Strategy Logic under Timeline Semantics

where


y :000ω

z :00ω
,
y :010ω

z :00ω
,
y :100ω

z :00ω
,
y :110ω

z :00ω
, . . .

,
y :000ω

z :10ω
,
y :010ω

z :10ω
,
y :100ω

z :00ω
,
y :110ω

z :00ω
, . . .

, . . .


is the hyperteam X′ containing one team ext(X,F , z) for every response function
F ∈ RspR, where X = {y :000ω, y :010ω, y :100ω, y :110ω, . . .} is the unique team in X. For
instance, the first team in X′ is obtained by applying the constant function F (χ) = 0ω,
while, for the second one, we use the time-0-flip function F (χ) = (1 − χ(y)[0]) · 0ω.
In general, by the realizable restriction, the action F (χ)[0] may only depend on the
action χ(y)[0]. Hence, every team X′ of X′ contains at least one assignment χ such that
χ(y)[1] 6= χ(z)[0], which implies that play(a,y)(χ)[2] 6= play(a,z)(χ)[1]. Therefore, for
all X′ ∈ X′, it holds that χ 6|= [y]〈z〉 ((a, y)XXp ↔ (a, z)Xp), for some χ ∈ X′. As a
consequence of Item 1 of Theorem 5.1, it holds that X′ 6|=∃∀ [y]〈z〉 ((a, y)XXp ↔ (a, z)Xp),
which, in turn, means that {{∅}} 6|=∀∃ φNR and, so, G 6|=PL φNR, as expected.

5.3 Adequacy with Strategy Logic under Timeline
Semantics

While the PL semantics – thanks to the tying operators – ensures that the strate-
gies involved are also realizable, we have shown for instance that the SL formula
∀y.∃z. ((a, y)XXp ◦ (a, z)Xp) involves strategies that are not. As an immediate conse-
quence, the two logics are not directly comparable. Still, as shown in [MMPV14], for the
one-goal fragment of SL, a formula is satisfiable iff it is satisfiable when quantifying only
over realizable strategies [MMPV14].

We relate SL with timeline semantics (Section 5.1.4) and PL, by showing that the
SL conjunctive goal and the disjunctive goal fragments, can be translated into PL. We
introduce a game-theoretic semantics of SL with timeline semantics (whose correctness
is established in Theorem 5.3), that we use to prove the soundness of this translation. It
is worth noting that the SL[CG] fragment encompasses the ATL? extension studied in
[EG22].

5.3.1 Strategy Logic under Timeline Semantics and Plan Logic

Syntax. The timeline semantics of SL is given for the prenex fragment of the lan-
guage, in which each formula starts with a quantifier prefix, namely a finite sequence Q of
existential ∃x and universal ∀x quantifiers, where each variable occurs at most once. The

193

Partie , Chapter 5 – Plan Logic

set of variables occurring in a quantifier prefix Q is var(Q), and we let var∃(℘) (resp.
var∀(℘)) be the set of existentially (resp. universally) quantified variables. In the rest of
this section, we implicitly consider SL under the timeline semantics, and thus every SL
formula is in prenex form.

Translation from SL to PL. The translation for the full SL[BG] fragment involves
three steps. First we encode each strategy variable with as many plan variables as there are
goals in the formula that use the considered strategy variable. These plan variables inherit
the same quantifier as the original SL variable in the resulting quantifier prefix. Second,
to account for the fact that the corresponding plans must be part of the same strategy,
we tie such plan variables together by means of a tying prefix of suitable tying operators.
Third, we replace the strategy variables occurring in the goals of the subformula with
the corresponding plan variable for that goal. More in detail, let Φ = ℘φ be a SL[BG]
formula. Each quantifier Qx in ℘ is transformed into a sequence of quantifiers of the form
Qx[, one for every [∈ bnd(ϕ) with x ∈ var([). Formally, the quantifier prefix of the
translation is ℘GTS(Φ) def= ((Qxx[)[∈Bx)x∈var(℘) with Bx = {[∈ bnd(ϕ) | x ∈ var([)}
and Qx = ∃ if x ∈ var∃(℘) and Qx = ∀ if x ∈ var∀(℘).

We now keep track of the fact that the various obtained variables x[stem from a single
variable x by tying them in a coherent manner via a tying prefix TGTS(Φ): when variable
x was existentially (resp. universally) quantified, the tying of the x[’s is existential (resp.
universal) as follows. Writting Vx def= {x[| [∈ Bx} for the set of plan variables associated
with the strategy variable x, we let TGTS(Φ) def= (〈Vx〉)x∈var∃(℘)([Vx])x∈var∀(℘). Finally, in
each original goal subformula [ψ, we replace every occurrence of variable x with the new
variable x[. The complete translation of the subformula φ (a Boolean combination of
goals) is denoted by φGTS(Φ). Gathering all the translation components we have defined,
we obtain GTSSL(Φ) def= ℘GTS(Φ)TGTS(Φ)φGTS(Φ), whose size is polynomial in that of
Φ. In the next subsection we show that this translation is sound for both the conjunctive
and disjunctive goal fragments of SL.

Theorem 5.2. G |=SL Φ iff G |= GTSSL(Φ), for all SL[C/DG] sentence Φ and CGS G.

The proof of Theorem 5.2 is reported in Section 5.A. In a nutshell, we first introduce a
game-theoretic semantics for SL by reducing the evaluation of an SL[C/DG] sentence Φ
in a given CGS G to the evaluation of a corresponding PL formula GTSSL(Φ) in a modified
CGS GTSSL(G,Φ). This construction turns out to be a game-theoretic semantics for the
conjunctive and disjunctive goal fragments of SL.

194

5.3. Adequacy with Strategy Logic under Timeline Semantics

5.3.2 Game-theoretic Semantics of SL[C/DG]

The game-theoretic semantics of SL[C/DG] employs an additional operator agent,
who plays the role of the single Boolean operator involved in the quantifier-free sub-
formula of the sentence (either ∧ or ∨) and can choose the specific goal formula to be
falsified/verified. Essentially, the key idea behind the proposed semantics is that, as long
as two bindings follow the same play, the operator agent can postpone the decision of
which of the corresponding goal formula to falsify/verify.

Given a CGS G = 〈Ag,Ac,Pos, pi, δ, λ〉 and an SL[C/DG] sentence Φ = ℘φ, we build
the new CGS GTSSL(G,Φ) and the new formula GTSSL(Φ) as follows, where BΦ =
bnd(Φ).

Construction 5.1. In CGS GTSSL(G,Φ), a position p̂ = (p,B) stems from a position
p in G and is decorated with a set B of bindings, precisely those that agree so far along
the history that led to p̂. We set P̂os def= {p̂∃, p̂∀, p̂�} ∪ Pos × 2BΦ , where three special
sink positions p̂∃, p̂∀ and p̂� are explained later. The initial position of GTSSL(G,Φ) is
p̂i = (pi, BΦ), since at the beginning all the bindings agree on the empty history. The set
of agents in GTSSL(G,Φ) gathers the variable agents, one for each variable quantified
in ℘, and the extra operator agent, written x�, i.e. Âg def= var(Φ) ∪ {x�}. The actions
of GTSSL(G,Φ) include all the actions of the original CGS G and a new binding action
for each binding occurring in the original formula Φ, i.e. Âc def= Ac ∪ BΦ. The variable
agents are only allowed to choose an action from the original CGS, while binding actions
are reserved to agent x�, who can only choose a binding belonging to the decoration of
the current position. To force each agent to always pick the right type of action, we use
the three sink positions p̂∃, p̂∀ and p̂�. Specifically, position p̂∃ (resp. p̂∀) is reached
every time the agent for a universally (resp. existentially) quantified variable mischooses
a binding action instead of a proper one. Conversely, p̂� is reached any time agent x�
either mischooses a proper action or takes a binding action outside of the decoration of the
current position. Formally, we say that an action profile ~d ∈ (Ac ∪ bnd(ϕ))var(℘)∪{x�} is
Q-ill-typed, for Q ∈ {∀,∃}, if the leftmost variable x in the quantifier prefix ℘ such that
~d(x) /∈ Ac is Q-quantified, and that ~d is �-ill-typed in position p̂ = (p,B) if ~d(x) /∈ B.
An action profile is well-typed in position p̂ if it is neither Q-ill-typed nor �-ill-typed
in position p̂. The notion of bindings that agree with the choice of x� is formalized as
follows. We say that two bindings [1, [2 ∈ Binds (whose variables are in var(℘)) are
indistinguishable at position p ∈ Pos w.r.t action assignment ~d ∈ Acvar(℘) of variable

195

Partie , Chapter 5 – Plan Logic

agents, in symbols [1 ≡
~d
p [2, whenever δ(p, ~d ◦ [1) = δ(p, ~d ◦ [2), i.e., the same position is

reached by playing either ~d ◦ [1 or ~d ◦ [2. A move at position p̂ = (p,B) with well-typed
action profile ~d in p̂ leads to position q̂ = (q, C) where q = δ(p, ~d ◦ [) for the choice
[= ~d(x�) of agent x�, and C ⊆ B retains only the bindings that are indistinguishable
from [(at p w.r.t ~d). Formally,

δ̂(p̂ , ~d) def=


p̂Q if p̂ = p̂Q, or p̂ 6= p̂� and ~d is Q-ill-typed, with Q ∈ {∃,∀};
p̂� if p̂ = p̂� or ~d is �-ill-typed in p̂ ;
(δ(p, ~d ◦ [), {[′ ∈ B | [′ ≡~d

p [}) with (p,B) = p̂ and [= ~d(x�), otherwise.
Finally, the label of p̂ = (p,B) inherits from the label of p in G with the extra proposi-

tions q[, one for each binding [∈ B. Formally, λ̂(p̂∃)
def= {p∃}, λ̂(p̂∀)

def= {p∀}, λ̂(p̂�) def= ∅,
and λ̂((p,B)) def= λ(p) ∪ {q[∈ AP | [∈ B}.

We now turn to the definition of GTSSL(Φ) that is to be evaluated on GTSSL(G,Φ).
Since in the construction above variables turned into agents, the involved bindings all
collapse to the single identity binding [id, i.e. [id(x) = x for every x ∈ var(℘) ∪ {x�}.
As a consequence, formula GTSSL(Φ) contains only one goal of the form [idψ, where the
definition of ψ depends on whether Φ belongs to SL[CG] or to SL[DG]. Here we illustrate
the case Φ = ℘

∧
[∈B[ψ[∈ SL[CG], for which we set:

GTSSL(℘
∧
[∈B

[ψ[) def= Q∀x�[id((♦p∃) ∨ ((�¬p∀) ∧
∧
[∈B

((�q[)→ ψ[))).

Intuitively, formula (♦p∃) ∨ ((�¬p∀) ∧
∧
[∈B((�q[) → ψ[)) gives the win to the ex-

istential agents as soon as a universal variable agent makes an ill-typed decision (this
is the disjunct ♦p∃). Otherwise, for the existential variable agents to win, they should
never make an ill-typed decision (see the �¬p∀ subformula) and should guarantee each
[-objective ψ[if the obtained play coincides with the original play, namely the one induced
by [in the original arena; note that in case operator agent chooses an ill-typed action, no
such original play exits.

A dual approach holds for the disjunctive case, that results in setting:

GTSSL(℘
∨
[∈B

[ψ[)def=Q∃x�[id((�¬p∀) ∧ ((♦p∃) ∨
∨
[∈B

((�q[) ∧ ψ[))).

The following theorem states that the above constructions provide a proper game-
theoretic semantics for SL[C/DG].

Theorem 5.3. G |=SL Φ iff GTSSL(G,Φ) |= GTSSL(Φ), for all SL[C/DG] sentences Φ.

196

5.4. Decision Problems

We sketch the proof road-map of Theorem 5.3 that consists in showing both

1. that the truth of an SL[CG] formula entails the truth of its GTSSL translation,
and

2. that the truth of an SL[DG] formula entails the truth of its GTSSL translation.

Observe that the if direction of Theorem 5.3 follows from (the contrapositions of) Items 1
and 2, the determinacy of SL, and the duality of the GTSSL constructions for SL[CG]
and SL[DG]. Recall that one quantifies over strategies in SL and over plans in PL, the
target setting of the game-theoretic semantics. According to the hyperteam semantics of
PL, quantifications of plan variables is dealt with by means of responses to variable as-
signments. What one needs to do, then, is design a correspondence between the strategies
of the SL sentence and those responses.

Theorem 5.4. G |= GTS(Φ) iff GTSSL(G,Φ) |= GTSSL(Φ), for all SL[C/DG] sen-
tences Φ.

Similarly to the preceding proof approach, we show that

1. the truth of GTSSL(Φ), where Φ ∈ SL[CG], entails the truth of its GTSSL trans-
lation, and

2. the truth of GTS(Φ), where Φ ∈ SL[DG], entails the truth of its GTSSL transla-
tion.

Notice that both formulas are in PL, but that formula GTSSL(Φ) is based on dupli-
cates x[’s of the original variables x in Φ, while in GTSSL(Φ) the original variables of
Φ are kept as is, with an extra operator agent variable. Reconstructing a response for x
from those of the x[’s is made possible thanks to the tying operators introduced in the
formula GTSSL(Φ).

Theorems 5.3 and 5.4 entail Theorem 5.2.

5.4 Decision Problems

We finally consider the model-checking problem of four fragments of PL, namely
PL[BG], PL[CG], PL[DG], and PL[1G], similar to the ones exhibited for SL.
In [BGM15], it has been shown that, due to the non-behaviouralness, i.e., unrealisability,
of the Tarskian semantics of the Boolean-Goal fragment of SL (SL[BG]) [MMPV14],
its model-checking problem is tower complete in the alternation of quantifiers. We prove

197

Partie , Chapter 5 – Plan Logic

instead that, despite its high expressive power, PL[BG] enjoys a problem with a 2-
Exptime-complete formula complexity, which is not harder than the one for the much
simpler logic ATL?. This result is obtained by reducing the evaluation of a PL[BG] sen-
tence φ in a given CGS G to the evaluation of a PL[1G] sentence φ̂ in a modified structure
Ĝ. Also, by tuning the reduction for PL[CG] and PL[DG], we obtain a model-checking
procedure with an optimal Ptime-complete model complexity.

5.4.1 Goal Fragments of PL.

The Boolean-Goal fragment of PL (PL[BG]) comprises all positive Boolean combina-
tions of formulas (in prenex form) ℘Tφ, where ℘ is a quantifier prefix, T a tying prefix,
and φ a positive Boolean combination of goals [ψ. The Conjunctive-Goal fragment of PL
(PL[CG]) (resp., Disjunctive-Goal fragment of PL (PL[DG])) further restricts PL[BG]
by requiring φ to be a conjunction (resp, disjunction) of goals. Finally, in the One-Goal
fragment of PL (PL[1G]), φ is assumed to be a single goal [ψ.

The encoding φNE of the existence of a Nash equilibrium discussed in Section 5.2 is an
example of PL[BG] formula, as well as the sentence φNB of Example 5.1. The sentence
φW stating the existence of a winning strategy in a two-player game clearly belongs to
PL[1G], while the existence of a non strictly-dominated strategy can be expressed in
PL[DG], as witnessed by the encoding φNSD. By turning ¬φNSD into positive normal
form, we obtain the following PL[CG] sentence:

∀x.∃x′.∀y1, y2. [x]〈x′〉[y1, y2] ((a, x′)(b, y1)¬ψ ∧ (a, x)(b, y2)¬ψ) .

In [ABM19], it has been shown that Nash equilibria can actually be expressed in
SL[CG]. Thus, the corresponding translations into PL would result in sentences of the
PL[CG] fragment. Indeed, the conversion function GTS : SL→ PL, when applied to an
SL[C/DG] sentence, necessarily returns a PL[C/DG] one. Finally, GTSSL : SL → PL
always produces a PL[1G] sentence.

5.4.2 One-goal Fragment

A simple inspection of the syntactic translation GTS : SL → PL of the previous
section shows that its application to an SL[1G] sentence results in a PL[1G] one with
the same quantifier prefix, the same goal, and an eliminable prefix of tying operators on a

198

5.4. Decision Problems

single variable. Actually, a more general elimination property can be proven for arbitrary
tying operators in a PL[1G] formula ℘T[ψ:

1. if T contains 〈V〉, with two variables x, y ∈ V, where y is universally quantified
after x in ℘, then the subformula originating in 〈V〉 is equivalent to ⊥;

2. dually, if T contains [V], with two variables x, y ∈ V, where y is existentially
quantified after x in ℘, then the subformula originating in [V] is equivalent to >;

3. in all other cases, the tying operator can be eliminated, by replacing all the variables
in V with the first one of V quantified in ℘.

E.g., assuming ℘ = ∀x∃y∀z and [= (a, x)(b, y)(c, y), we have that

1. ℘[x, y]〈y, z〉[ψ ≡ >,

2. ℘〈y, z〉[x, y][ψ ≡ ⊥, and

3. ℘〈x, y〉[y, z][ψ ≡ ∀x. (a, x)(b, x)(c, x)ψ.

Thus, the following tying-elimination property holds true.

Proposition 5.1. For each sentence of the form ℘T[ψ, there is an equivalent one ℘′[′ψ.

By combining this proposition with Theorem 5.2, we obtain that the One-Goal frag-
ments of SL and PL semantically coincide.

Theorem 5.5. For every SL[1G] sentence Ψ, there is a PL[1G] sentence φ and, vice
versa, for every PL[1G] sentence φ, there is an SL[1G] sentence Ψ such that: |Ψ| = Θ|φ|
and G |=SL Ψ iff G |=PL φ.

Due to the known 22O|φ| · |G|O1 complexity of the model-checking problem of
SL[1G] [MMPV14], we can immediately derive the following theorem.

Theorem 5.6. PL[1G] model-checking problem is 2-Exptime-complete in the length of
the specification φ and Ptime-complete in the size of the model G.

5.4.3 Boolean-Goal Fragment

The encoding underlying Theorem 5.3 of the game-theoretic semantics for SL[C/DG]
into PL[1G] allowed us to prove the equivalence between these logics and the corre-
sponding fragments of PL. We shall leverage the same idea here to solve the model-
checking problem of PL[BG]. Given a CGS G and a sentence φ = ℘Tφ, with binding

199

Partie , Chapter 5 – Plan Logic

set Bϕ
def= bnd(ϕ), we build a new CGS GTSBG(G, φ), whose plays are bundles of plays

from G, one per binding in φ. This is done, intuitively, by composing in parallel as many
copies of G as there are bindings in φ, resulting in positions that correspond to vectors
p̂ ∈ PosBϕ of original positions of G. Agents of the new game coincide with the variables
quantified in ℘, while actions carries over unchanged. A move from a position p̂ to a
position q̂ is then a vector of parallel moves in G, one per original position contained in p̂,
while forbidding incoherent concurrent choices w.r.t the tying operators occurring in T.
Formally, an action assignment ~d ∈Acvar(℘) is V-incoherent at p̂ w.r.t φ, where V ⊂ Var,
if there are two variables x1, x2 ∈ V and two bindings [1, [2 ∈ Bϕ , with x1 ∈ var([1) and
x2 ∈ var([2), such that p̂([1) = p̂([2), but ~d(x1) 6= ~d(x2). In other words, a concurrent
move ~d is V-incoherent at p̂ w.r.t φ, if there are variables in V whose different associated
actions in ~d should have been equal, being part of bindings that are indistinguishable
at p̂. We say that ~d is ∃-incoherent (resp., ∀-incoherent) at p̂ w.r.t φ if the leftmost set
of variables V in T, such that ~d is V-incoherent at p̂ w.r.t φ, occurs in a tying operator
of type 〈V〉 (resp., [V]). Intuitively, ~d is ∃/∀-incoherent at p̂ w.r.t φ if the first violated
tying constraint specified in T is existential/universal. If ~d is neither ∃-incoherent nor
∀-incoherent at p̂ w.r.t φ, we say that ~d is coherent at p̂ w.r.t φ.

Construction 5.2. Given a CGS G = 〈Ag,Ac,Pos, pi, δ, λ〉 and a PL[BG] sentence φ,
with binding set Bϕ

def= bnd(ϕ), let GTSBG(G, φ) def= 〈Âg, Âc, P̂os, p̂i, δ̂, δ̂〉 be the CGS
obtained as follows:

1. agents are the variables quantified in φ, i.e., Âg def= var(φ);

2. Âc def= Ac;

3. positions are Bϕ-indexed vectors of original positions from G, plus two distinguished
sink positions p̂∃ and p̂∀, i.e., P̂os def= {p̂∃, p̂∀} ∪ PosBϕ ;

4. the initial position is the pi-constant vector, i.e., p̂i
def= {[∈ Bϕ 7→ pi};

5. every position, but the distinguished ones, are labelled with a set of fresh atomic
propositions, one per binding and original labelling, i.e., δ̂(p̂∃)

def= {p∃}, δ̂(p̂∀)
def=

{p∀}, and δ̂(p̂) def= {p[∈ AP | [∈ Bϕ , p ∈ δ(p̂([))};

6. the transition function δ̂ maps every position p̂ ∈ P̂os \ {p̂∃, p̂∀} and action profile
~d ∈ Acvar(φ) coherent at p̂ w.r.t φ to position q̂ ∈ P̂os \ {p̂∃, p̂∀}, where, for each
binding [∈ Bϕ, the position q̂([) is the successor of p̂([) in G following the action
profile ~d ◦ [, which associates with each agent a ∈ Ag the action stipulated by ~d for

200

5.4. Decision Problems

the variable [(a); formally,

δ̂(p̂, ~d) def=

p̂℘ , if p̂ = p̂℘ or ~d is ℘-incoherent at p̂ w.r.t φ, with ℘ ∈ {∃,∀};

q̂, otherwise, where q̂([) def= δ(p̂([), ~d ◦ [), for all [∈ Bϕ .

The PL[1G] encoding of the game-theoretic semantics for the PL[BG] sentence φ =
℘Tφ is relatively easy to formalize at this point: besides verifying the coherence constraints
dictated by the tying prefix T, we only need to check that the bundles of plays induced
by plans in the CGS GTSBG(G, φ) satisfy the subformula φ. Checking the constraints
amounts to requiring avoidance of the two distinguished sink positions p̂∃ and p̂∀. The
verification of the subformula is obtained by transforming φ into the LTL formula φ̂,
where each goal [ψ is replaced by the LTL formula ψ̂, in turn obtained by replacing in ψ
every atomic proposition p with p[, i.e., φ̂

def= φ
[
[ψ/ψ̂

]
, with ψ̂ def= ψ

[
p/p[

]
. Altogether,

we get the following:

GTSBG(℘Tφ) def= ℘[id
(
(♦p∃) ∨

(
(�¬p∀) ∧ φ̂

))
.

Since the original PL[BG] sentence φ and its PL[1G] translation GTSBG(φ) share
the same quantifier prefix ℘, thanks to Theorem 5.1, we can prove the correctness of the
encoding, on the basis that χ |= Tφ iff χ |= [id((♦p∃)∨ ((�¬p∀)→ φ̂)), for all χ ∈ Asg(V)
with var(℘) ⊆ V, which can be done by structural induction on Tφ (using the simple
semantic rules of Definition 5.5).

Theorem 5.7. G |= φ iff GTSBG(G, φ) |= GTSBG(φ), for every PL[BG] sentence φ.

Once we observe that |GTSBG(G, φ)| = 2+ |G||bnd(φ)| and |GTSBG(φ)| = O|φ|, thanks
to Theorem 5.6, we can derive the following result, where FPT means fixed-parameter
tractable.

Theorem 5.8. The model-checking problem for PL[BG] is 2-Exptime-complete [|φ|]
in the length of the specification φ and FPT |φ|(|G|) in the size of the model G, with the
length of the specification φ as parameter, once the maximum number of bindings is fixed.

5.4.4 Collusion-free Fragment

The simpler conjunctive/disjunctive nature of goal combinations in PL[C/DG] allows
us to considerably improve on the model complexity of the model-checking problem of

201

Partie , Chapter 5 – Plan Logic

PL[BG], by removing redundant information from the position space, which is necessary
only to handle arbitrary Boolean combinations. This is done by suitably merging ideas
from Construction 5.1 and Construction 5.2: from the former we inherit the topology of
the structure, while of the latter we use the criteria for determining the compliance of
the choices w.r.t the tying operators (compliance issues are irrelevant in Construction 5.1,
since strategies are considered). We end-up with an ad hoc game-theoretic semantics
for PL[C/DG], whose resulting CGS encoding GTSC/DG(G, φ) is virtually identical to
Construction 5.1, where the notion of well-typed action assignment is generalized to take
into account the coherence constraints introduced for Construction 5.2. The sentence
encoding GTSC/DG(φ) is also identical to the one used for SL[C/DG] in association with
Construction 5.1.

The following theorem can be obtained as a slight adaptation of the proof of Theo-
rem 5.4.

Theorem 5.9. G |= φ iff GTSC/DG(G, φ) |= GTSC/DG(φ), for every PL[C/DG] sen-
tence φ.

Once we observe that |GTSC/DG(G, φ)| = 2+2|bnd(φ)| · |G| and |GTSC/DG(φ)| = O|φ|,
we can derive the following result, again thanks to Theorem 5.6.

Theorem 5.10. The model-checking problem for PL[C/DG] is 2-Exptime-complete in
the length of the specification φ and Ptime-complete in the size of the model G.

5.5 Conclusion

In this chapter, we have introduced Plan Logic as a language for strategic reasoning,
alternative to Strategy Logic, based on the notion of plans instead of strategies. We show
that this conceptual shift is quite beneficial, as the intrinsic linear nature of plans allows for
a semantics that guarantees realizability of the satisfiable sentences via realizability func-
tional constraints. To this end, we propose hyperteams as a novel semantic framework for
strategic reasoning, which enjoys several important model-theoretic properties, e.g., com-
positionality and determinacy. Observe that, for instance, the only semantics for SL that
tackle the problem is the timeline semantics proposed in [GBM18; GBM20], which, how-
ever, exhibits neither compositionality nor determinacy. The authors of [GBM20] show,
indeed, that such a semantics is not adequate already when applied to SL[BG], as it is
undetermined on sentences of that fragment.

202

5.5. Conclusion

We showed that, thanks to the realizable nature of the semantics, the model-
checking problem of PL[BG] is still 2-Exptime-complete, in stark contrast with the
non-elementarity of the same problem for SL[BG] [BGM15]. This further highlights the
importance of enforcing realizability constraints. In addition, we study the conjunctive and
disjunctive goal fragments of PL in direct comparison with the respective fragments of
SL. We show their expressive equivalence, by introducing a novel game-theoretic seman-
tics that allows for a direct comparison between the two logics. Thanks to the connection
between the game-theoretic semantics of the PL and SL[CG], on the one hand, and of
PL[DG] and SL[DG], on the other, we can improve the model-checking complexity of
those fragments to Ptime-complete in the size of the model (Theorem 5.10). Note that
these fragments strictly include ATL?, a prominent logic in strategic reasoning, which,
in turn, is subsumed by the one-goal fragment of both SL and PL. These fragments are
quite interesting, as they enable several forms of complex strategic reasoning, such as
strategy domination and various forms of equilibria (e.g., Nash equilibria).

To improve the presented results, one can generalize the construction of the game-
theoretic semantics to bigger fragments of the logic. We conjecture that the equivalence
between PL and SL with timeline semantics can be extended up to the SL[EG] fragment,
introduced by Gardy and al. [GBM20] as the largest fragment for which the model checking
for SL (with timeline semantics) is 2-Exptime-complete.

203

Partie , Chapter 5 – Plan Logic

5.A Missing Proofs of Section 5.3

In order to prove Theorem 5.3 and Theorem 5.4, we resort to the Meta semantics of
PL, as introduced in Section 2.5.

5.A.1 Meta-PL

RspR(W) is the set of response functions F ∈ RspR such that for every n ∈ N, for
every χ1, χ2 ∈ Asg, if χ1�W=≤nχ2�W , then F (χ1)=≤nF (χ2).

Because of the semantics uses functional assignments, all values of quantified vari-
ables are not necessarily stored in the hyperteam. Thus, we have to adapt the se-
mantics of the tying operators. The filtering under functional assignment F is defined
by fltF(X, V, B) def= {X ∈ X | V is B-tied in ext(X,F)} w.r.t the sets of variables
V ⊆ var(X) and bindings B ⊆ Binds.

The semantics rules for second-order PL are the following.

Definition 5.7. The Meta semantic relation G,X,F |=α
Meta ϕ for PL is inductively defined

as in Definition 2.3 except for the rule Item 3 which is replaced by the rule Item 1’. and the
rules for the Meta quantifiers, which are replaced by the rules Items 9’. and 10’. with the
addition of the two rules and Items 11. and 12., where ϕ is a second-order PL formula,
X ∈ HypTeams(freeϕ) a hyperteam, F a functional assignment, ψ an LTL formula, [a
binding and W ⊆ Var a finite subset of variables:

1′. G,X,F |=α
Meta [ψ if G,ext(X,F) |=α [ψ;

9′. G,X,F |=α
Meta ΣWx. ϕ if there is F ∈ RspR(W) such that G,X,F [x 7→ F] |=α

Meta ϕ;

10′. G,X,F |=α
Meta ΠWx. ϕ if for all F ∈ RspR(W) we have G,X,F [x 7→ F] |=α

Meta ϕ;

11. G,X,F |=∃∀Meta 〈V〉ϕ, if G, fltF(X, V, B),F |=∃∀Meta ϕ;

12. G,X,F |=∀∃Meta [V]ϕ, if G, fltF(X, V, B),F |=∀∃Meta ϕ;

The following theorems are directly extracted from Section 2.5. The first one assert
the adequacy of the second-order semantics with respect to the original PL semantics on
PL formulas.

Theorem 5.11. For every CGS G, hyperteam X and every PL formula ϕ, we have the
following.

G,X, ∅ |=α
Meta ϕ iff G,X |=α ϕ

204

5.A. Missing Proofs of Section 5.3

The following theorem relates second-order quantifiers with PL quantifiers when the
sub-formula is quantifier-free. Its proof uses a generalization of Theorem 5.1 for Meta-PL
by replacing the hyperteam X in the left part of each equivalence with ext(X,F). The
proof of this generalized Theorem 5.1 is a simple induction on the quantifier-free PL
formula, since F is unused for all cases but the base case and the tyings. The base case is
immediate, thus only the case of tyings is to be developed.

Lemma 5.1. For all PL quantifier-free formulas ϕ, hyperteam X, functional assignment
F and set of variables V ⊆ var(X) ∪ dom(F), if we have

1’. X′,F |=∃∀ ϕ iff there exists X′ ∈ ext(X′,F) such that χ′ |= ϕ, for all χ′ ∈ X′;

2’. X′,F |=∀∃ ϕ iff, for all X′ ∈ ext(X′,F), it holds that χ′ |= ϕ, for some χ′ ∈ X′.

then,

1. X,F |=∃∀ 〈V〉ϕ iff there exists X ∈ ext(X,F) such that χ |= 〈V〉ϕ, for all χ ∈ X;

2. X,F |=∀∃ [V]ϕ iff, for all X ∈ ext(X,F), it holds that χ |= [V]ϕ, for some χ ∈ X.

Proof. Remark first that ext(fltF(X, V, B),F) = flt(ext(X,F), V, B). Then, we have
that

1. By Definition 5.7, X,F |=∃∀ 〈V〉ϕ iff G, fltF(X, V, B),F |=∃∀Meta ϕ. By Hypothe-
sis 1’., we have that there exists X′ ∈ ext(fltF(X, V, B),F) such that χ′ |= ϕ, for
all χ′ ∈ X′. Which in turn, amounts to the existence of X′ ∈ flt(ext(X,F), V, B)
such that χ′ |= ϕ, for all χ′ ∈ X′. And by definition of flt(), there is X ∈
ext(X,F) such that χ |= 〈V〉ϕ, for all χ ∈ X.

2. The proof of this item follows the same reasoning as the previous one.

We now have the following theorem.

Theorem 5.12. The following equivalences hold true, for all quantifier-free PL formulas
φ, variables x ∈ Var, hyperteams X ∈ HypTeams⊇(V) with V def= freeφ \ {x}.

1. X,F |=Meta ∃x. φ iff X,F |=Meta Σvar(X)x. φ.

2. X,F |=Meta ∀x. φ iff X,F |=Meta Πvar(X)x. φ.

With these two theorems, we can translate a prenex PL formula ℘φ in second-order
by reversing the order of ℘.

205

Partie , Chapter 5 – Plan Logic

5.A.2 Skolem semantics for Meta-PL

As the Second-order semantics for PL resemble a Tarski-like semantics, we can develop
a Skolem semantics on it. A Skolem function is an object closer to a map used in the
timeline semantics for SL, then establishing the Skolem semantics of second-order PL
makes the first step toward the proof of the game-theoretic semantics of SL.

Given a quantifier prefix ℘ = Q1x1, . . . , Qnxn, and a variable xi ∈ var(℘), we define
var>xi(℘) = {xj ∈ var(℘) | j > i} and var<xi(℘) = {xj ∈ var(℘) | j < i} and
var>xi∀ (℘) = var>xi(℘) ∩ var∀(℘) and var<xi∀ (℘) = var<xi(℘) ∩ var∀(℘).

Given a quantifier prefix ℘, the domain of a Skolem function for ℘ is defined bellow.

RspMeta(℘, V) = {R ∈ RspRV | for all x ∈ V,R(x) ∈ RspR(var<x(℘))}

When V = var∀(℘), we simply write RspMeta(℘).

Definition 5.8 (Skolem map). Given a quantifier prefix ℘ = Q1x1, . . . , Qnxn, a
Skolem map Λ for this prefix is a function Λ : var∃(℘) → RspRvar(℘) ⇀ RspR such
that for every x ∈ var∃(℘), we have Λ(x) is defined on RspMeta(var>x∀ (℘)) and
Λ(x)(R) ∈ RspR(var<x∀ (℘)).

Remark that the input of Λ(x) is the set of responses of variables universally quantified
after x. This is because, when translating the quantifier prefix in second-order PL, the
order of quantification is reversed.

Given, R ∈ RspMeta(℘), we write Λ(R) the function defined by

Λ(R)(xi) =

 R(xi) if xi ∈ var∀(℘)
Λ(xi)(R�var>xi∀ (℘)) otherwise

Now we state the equivalence of the Skolem semantics.

Lemma 5.2. For every PL sentence in prenex form ϕ = ℘φ and functional assignment
F , we have that

{{∅}},F|=Metaϕ iff there is a Skolem map Λ for ℘ such that

for every R ∈ RspMeta(℘), we have {{∅}},F] Λ(R)|=Metaφ (5.1)

The proof is a simple induction on the quantifier prefix.

206

5.A. Missing Proofs of Section 5.3

5.A.3 Proof of Theorem 5.4

Skolem maps are already enough to prove Theorem 5.4. We first prove that, given
an SL[C/DG] formula Φ if the sentence SL2PL(Φ) holds true for some CGS G, then
GTSSL(Φ) holds true in GTSSL(G,Φ). The following theorem states this result for
SL[CG].

Theorem 5.13. For a CGS G and an SL[CG] formula Φ, the following holds true:
— G |=α SL2PL(Φ) ⇒ GTSSL(G,Φ) |=α GTSSL(Φ);

Proof. Let Φ = ℘
∧
[∈B [ψ[with ℘ = Q1X1, . . . , QmXm. By Theorem 5.11, G |=α

SL2PL(Φ) iff G |=Meta SL2PL(Φ). By application of Lemma 5.2, there is a Skolem
map ΛCG for ℘̂ = ℘GTS(Φ) such that for every RCG ∈ RspMeta(℘̂), we have
G, {{∅}},ΛCG(RCG)|=MetaTGTS(Φ)φGTS(Φ).

We define a Skolem map Λ1G for ℘∀x� such that GTSSL(G,Φ), {{∅}},Λ1G(R1G) |=Meta

[id(♦p∃) ∨ ((�¬p∀) ∧
∧
[∈B((�q[)→ ψ[)) for every R1G ∈ RspMeta(℘∀x�). Given R1G ∈

RspMeta(℘∀x�), for every assignment χ, we have R1G(χ) ∈ (Ac ∪ bnd(ϕ))ω. To use ΛCG,
we need to enforce that the plans in output are only in Acω. Thus, we define R̂1G ∈
RspMeta(℘∀x�) by replacing every occurrence of a binding in the plans output by Λ1G

with some fixed action in Ac. We have R̂1G(x)(χ) ∈ Acω, we define RCG ∈ RspMeta(∅, ℘̂)
as follows. For every y ∈ var(℘), we fix a binding [y such that y ∈ img([y). For every
x[, given an assignment χCG in Asg(var<x[(℘̂)), we define χ1G ∈ Asg(var<x(℘)) as
χ1G(y) = χCG(y[) if y ∈ var([) and χ1G(y) = χCG(y[y) otherwise. Then, we define
RCG(x[)(χCG) = R̂1G(x)(χ1G). We can check easily that the resulting function RCG(x[)
is a response function.

Now we can define Λ1G(R1G) with a step by step construction. Let d ∈ Ac be a
fixed action. We define a sequence of bindings ([n)n∈ N and for every i ∈ J0, . . . , 1,mK
(recall that m = |℘|), we define a sequence of actions (ain)n∈N ∈ AcN, a sequence of
plans (ρin)n∈N ∈ (Acω)N and a sequence of assignment (χi,R1G

n)n∈N ∈ Asg(var<xi(℘))N as
follows. We start with defining χ0,R1G

n = ∅ for every n ∈ N the empty assignment. Then,
for i ∈ J0, . . . ,m− 1K,

— [0 = [0

— [n+1 = R1G(x�)(χm,R1G
n)[n]

— if Qi+1 = ∀, then
— ai+1

n = R1G(xi+1)(χi,R1G
n)[n]

— if Qi+1 = ∃, then

207

Partie , Chapter 5 – Plan Logic

— ai+1
n = ΛCG(RCG)(xi+1)(χi,R1G

n)[n]
— ρi+1

n = ai+1
0 · · · ai+1

n dω

— χ
i+1,R1G
n = χ

i,R1G
n [xi+1 7→ ρi+1

n]
We define ρi ∈ Acω as ρi[n] = ain and then Λ1G(R1G)(xi) = ρi.

Now we prove that if

1. for every RCG ∈ RspMeta(℘̂), we have G, {{∅}},ΛCG(RCG)|=Meta

(〈{x[| [∈ Bx}〉)x∈var∃(℘)([{x[| [∈ Bx}])x∈var∀(℘)
∧
[∈B [[x/x[]x∈img([)ψ[, then

2. for every R1G ∈ RspMeta(℘∀x�), we have GTSSL(G,Φ), {{∅}},Λ1G(R1G)|=Meta

[id(♦p∃) ∨ ((�¬p∀) ∧
∧
[∈B((�q[)→ ψ[)).

Let χ0 = ∅ and for every i ∈ J0, . . . , 1,mK, we define χi = χi−1[xi 7→ Λ1G(R1G)(χi−1)].
Then, let χ = χm[x� 7→ Λ1G(R1G)(χm)] and let π = playGTSSL(G,Φ),[id(χ). We have to
prove that λ̂(π) |=LTL (♦p∃)∨ ((�¬p∀)∧

∧
[∈B((�q[)→ ψ[)) where λ̂ is the label function

of GTSSL(G,Φ). Remark that, by definition, for every x ∈ var∃(℘), we have χ(x) ∈ Acω,
so for every n ∈ N, we have (π)n 6= p̂∀. If there is xi ∈ var∀(℘) such that χ(xi) /∈ Acω,
then there is n ∈ N such that (π)n = p̂∃. If χ(x�) /∈ Bω, then there is n ∈ N such
that (π)n = p̂� and then every �q[is false and thus, every implication is trivially true.
Otherwise, let B∞ = {[∈ BΦ | ∃∞n ∈ N, (χ(x�))n = [}. If there is n ∈ N such that
(χ(x�))n and [do not agree up to n for some binding [∈ B∞, then (π)N = p̂� for some
N > n. Then, we can assume that every two bindings in B∞ agree up to every natural
number. Consider RCG ∈ RspMeta(℘̂) defined as before (RCG(x[)(χCG) = R̂1G(x)(χ1G)).
Let χ̇ coherent with ΛCG(RCG) and let π̇([) = pathG(χ̇, [). For every two bindings [1, [2 ∈
B∞, thanks to the tyings in SL2PL(Φ), we have that χ̇(x[1) = χ̇(x[2). By immediate
induction, we have that λ(π̇([)) = λ̂(π) \ BΦ for every binding [∈ B∞. Then, for
every [∈ BΦ , if λ̂(π) |= �[then, [∈ B∞. Then, λ̂(π) \ BΦ = λ(π̇([)). However,
λ(π̇([)) |=LTL ψ[, and so, λ̂(π) |=LTL ψ[. Hence, for every R1G ∈ RspMeta(℘∀x�), we have
GTSSL(G,Φ), {{∅}},Λ1G(R1G)|=Meta[id(♦p∃) ∨ ((�¬p∀) ∧

∧
[∈B((�q[)→ ψ[)).

Given a set of variables V and R : V → RspR, we say that an assignment χ ∈ Asg⊇(V)
is coherent with R if for every x ∈ V, we have χ(x) = R(x)(χ).

Given a quantifier prefix ℘, let ℘̂ = ((Qxx[)[∈Bx)x∈var(℘). Given a set of variables
V ⊆ var(℘), a sequence of action profiles u ∈ (Acvar(℘))? and a set of bindings B, we
define RspMetaB,u(℘̂, V) as follows.

RspMetaB,u(℘̂, V) is the set of R ∈ RspMeta(℘, V) such that, for every
χ ∈ Asg(var(℘̂)) coherent with R, for every y ∈ V, for every [∈ B, if for every

208

5.A. Missing Proofs of Section 5.3

x ∈ var([) ∩ var<y(℘), we have (χ(x[))<|u| = u(x), then (χ(y[))<|u| = u(y).
Given an SL formula Φ, we define B̂Φ = {[[x/x[]x∈img([) | [∈ bnd(Φ)} and b̂i =

[[x/x[]x∈img([) and B̂x = {b̂ ∈ B̂Φ | x ∈ var([)}. For the following proof, we consider
that having b̂ ∈ B̂Φ implicitly gives the binding [∈ BΦ such that b̂ = [[x/x[]x∈img([).

Given a quantifier prefix ℘ and an SL formula Φ and ΛDG, a Skolem map for ℘̂ =
((Qxx[)[∈Bx)x∈var(℘), we say that u = u1 · · ·un ∈ (Acvar(℘))? is coherent with ΛDG for a
set of bindings B if for every RDG ∈ RspMeta(℘̂) such that u is coherent with RDG, we
have that for every binding [∈ B, we have pathG,[(u) = pathG,b̂(χ)[: |u| − 1] where χ is
an assignment coherent with ΛDG(RDG).

For the simplicity of the following lemma, we define ΦDG := T∃T∀ΨDG with
T∃ = (〈{x[| [∈ Bx}〉)x∈var∃(℘) and T∀ = ([{x[| [∈ Bx}])x∈var∀(℘) and ΨDG =∨
[∈B [[x/x[]x∈img([)ψ[

Lemma 5.3. For every disjunctive formula in prenex form Φ = ℘
∨
[∈B [ψ[, given ΛDG,

a Skolem map for ℘̂ = ((Qxx[)[∈Bx)x∈var(℘) such that for every RDG ∈ RspMeta(℘̂), we
have G, {{∅}},ΛDG(RDG)|=MetaΦDG, there is a function fPL

bind : (Acvar(℘))? → (2B̂Φ \ ∅)
such that for every u = u1 · · ·un ∈ (Acvar(℘))? that is coherent with ΛDG for fPL

bind(u), and
every action profile ~d ∈ Acvar(℘), we have

1. fPL
bind(u~d) ⊆ fPL

bind(u).

2. for every b̂, b̂′ ∈ fPL
bind(u) we have pathG,[(u) = pathG,[′ (u). We denote by πfbind(u)

such path.

3. For every RDG ∈ RspMetafPL
bind(u),u(℘̂) and for every χ coherent with Λ(RDG), there

is b̂i0 ∈ fPL
bind(u) such that if {x[| [∈ Bx} are tied in χ for bnd(ϕ) for every

x ∈ var∀(℘), then {x[| [∈ Bx} are tied in χ for bnd(ϕ) for every x ∈ var∃(℘)
and G, χ|=b̂i0ψ[.

Proof. We define fPL
bind by induction on sequence of action profiles u and verify that fPL

bind

satisfies the properties.

(ε) fPL
bind(ε) = B̂Φ .

2) For every binding b̂ ∈ B̂Φ , we have path[(u) = pi.

3) By assumption, for every RDG ∈ RspMeta(℘̂), we have
G, {{∅}},ΛDG(RDG)|=MetaT∃T∀ΨDG. By application Theorem 5.1, we im-
mediately obtain the result.

209

Partie , Chapter 5 – Plan Logic

(u~d) Suppose the following.

for every RDG ∈ RspMetafPL
bind(u),πfbind (u)(℘̂) and for every χ coherent

with ΛDG(RDG), there is [i ∈ fPL
bind(u) such that if {x[| [∈ Bx}

are tied in χ for B̂Φ for every x ∈ var∀(℘), then {x[| [∈ Bx}
are tied in χ for every x ∈ var∃(℘) and G, χ|=b̂iψ[

(5.2)

Let p = πfbind(u)[|u| − 1]. Consider the equivalence relation ∼ on fPL
bind(u) defined

by b̂ ∼ b̂′ if δ(p, {a 7→ ~d(b̂(a))}) = δ(p, {a 7→ ~d(b̂′(a))}). We denote by bb̂c the
equivalence class of b̂.

Claim 5.1. There is b̂i0 ∈ f
PL
bind(u) such that for every RDG ∈ RspMetabb̂i0c,u ~d

(℘̂),
for every χ coherent with ΛDG(RDG), there is b̂ ∈ bb̂i0c such that, if {x[|
b̂ ∈ bb̂i0c} are tied in χ for bb̂i0c for every x ∈ var∀(℘), then {x[| b̂ ∈ bb̂i0c}
are tied in χ for bb̂i0c for every x ∈ var∃(℘) and playG(χ, b̂) |=LTL ψ[

Proof. We do a proof by contradiction. Suppose that for every binding b̂i0 ∈ f
PL
bind(u)

there is R
b̂i0
DG ∈ RspMetabb̂i0c,u ~d

(℘̂) such that, for every χ coherent with ΛDG(R
b̂i0
DG),

we have

1. {x[| b̂ ∈ bb̂i0c} are tied in χ for bb̂i0c for every x ∈ var∀(℘) and

2. One of the following holds

(a) {x[| b̂ ∈ bb̂i0c} are not tied in χ for bb̂i0c for some x ∈ var∃(℘), or

(b) playG(χ, b̂) 6|=LTL ψ[

Consider RDG ∈ RspMetafPL
bind(u),u(℘̂) defined by RDG(x[) = R

b̂
DG(x[) for every

x ∈ var∀(℘) and b̂ ∈ fPL
bind(u) ∩Bx .

Let χ ∈ Asg(var(℘̂)) be coherent with ΛDG(RDG). We need to show that, for
every b̂ ∈ B̂Φ ,

1. {x[| b̂ ∈ fPL
bind(u)} are tied in χ for fPL

bind(u) for every x ∈ var∀(℘)

2. playG(χ, b̂) 6|=LTL ψ[

Remark that, by assumption on ΛDG, we have that if {x[| b̂ ∈ fPL
bind(u)} are tied in

χ for fPL
bind(u) for every x ∈ var∀(℘), then the same holds for every x ∈ var∃(℘).

1. Let x ∈ var∀(℘).
— Let b̂ and b̂′ ∈ B̂x that agree up to n ≤ |u| − 1 on χ and let a ∈

Ag. Then, by definition, we have that χ(b̂(a)) = ΛDG(RDG)(b̂(a))(χ) =

210

5.A. Missing Proofs of Section 5.3

ΛDG(R b̂
DG)(b̂(a))(χ). Recall that by assumption, u~d is coherent with ΛDG

and R
b̂
DG ∈ RspMetabb̂c,u ~d(℘̂). Then, ΛDG(R b̂

DG)(b̂(a))(χ)[n] = u(x)[: n].
The same holds for b̂′ , hence χ(x[)=≤nχ(x[′).

— Let b̂ and b̂′ ∈ B̂x that agree up to n > |u|−1, then b̂ ∼ b̂′ . Then by Item 1,
we have x[and x[′ tied.

2. We have that there is χ̇ coherent with R b̂
DG such that for every x ∈ var(b̂),

we have χ̇(x[) = χ(x[). Then playG(χ, b̂) = playG(χ̇, b̂) and by Item 2b, we
have playG(χ, b̂) 6|=LTL ψ[

This is in contradiction with Equation (5.2).

Let [i0 given by Claim 5.1. We define fPL
bind(u~d) = bb̂i0c.

1. As bb̂i0c ⊆ fPL
bind(u), we have fPL

bind(u~d) ⊆ fPL
bind(u)

2. By definition of ∼, we have path(u~d, [) = path(u~d, [′) for evey [, [′ ∈ bb̂i0c

3. Claim 5.1 proves immediately this point.

Theorem 5.14. For a CGS G and an SL formula in disjunctive prenex form Φ, the
following hold true:

— G |=α φGTS(Φ) ⇒ GTSSL(G,Φ) |=α GTSSL(Φ);

Proof. Let Φ = ℘
∨
[∈B [ψ[with ℘ = Q1X1, . . . , QmXm. By Theorem 5.11, G |=α

φGTS(Φ) iff G |=Meta φGTS(Φ). By application of Lemma 5.2, there is a Skolem map
ΛDG for ℘̂ = ((Qxx[)[∈Bx)x∈var(℘) such that for every RDG ∈ RspMeta(℘̂), we have
G, {{∅}},ΛDG(RDG)|=MetaT∃T∀ΨDG.

We define a Skolem map Λ1G for ℘∃x� as follows. Given R1G ∈ RspMeta(℘∃x�), for
every assignment χ and variable xi ∈ var∀(℘), we have R1G(xi)(χ) ∈ (Ac ∪ bnd(ϕ))ω.
To use ΛDG, we need to enforce that the plans in output are only in Acω. Thus, we
define R̂1G ∈ RspMeta(∅, ℘∃x�) by replacing every occurrence of a binding in the plans
output by Λ1G with some fixed action in Ac. We have R̂1G(xi)(χ) ∈ Acω, we define
RDG ∈ RspMeta(℘̂) as follows. For every y ∈ var<x(℘), we fix a binding [y such that
y ∈ var([y). For every x[, given an assignment χDG in Asg(var<x[(℘̂)), we define χ1G ∈
Asg(var<x(℘)) as χ1G(y) = χDG(y[) if y ∈ var([) and, otherwise, χ1G(y) = χDG(y[y).
We then can complete χ1G with the values of x[′ for binding [

′ such that x[′ ∈ var<x[(℘̂).
Then, we define RDG(x[)(χDG) = R̂1G(x)(χ1G). We can check easily that the resulting
function RDG(x[) is a response function.

211

Partie , Chapter 5 – Plan Logic

Now we can define Λ1G(x�) thanks to Lemma 5.3. The proof is basically the same
as the one for Theorem 5.13 with the summarized step by step construction leading
to: Λ1G(x)(R1G)(χ)[n] = ΛDG(x[n)(RDG)(χ̇)[n] with χ̇ defined by χ̇(x[) = χ(x) and
[n = Λ1G(x�)(χ)[n].

We need a last preliminary result to prove Theorem 5.4.

Proposition 5.2. For every Φ in SL[C/DG], we have that GTSSL(G,Φ) |=α GTSSL(Φ)
iff GTSSL(G, Φ̂) 6|=PL GTSSL(Φ̂) where Φ̂ is the negation of Φ in positive normal form.

Proof. Remark that the difference between GTSSL(G,Φ) and GTSSL(G,¬Φ) is that
the sink states p̂∃ and p̂∀ are swapped. Also, the difference between GTSSL(¬Φ) and
¬GTSSL(Φ), after simplification through De Morgan’s laws, is that p∃ and p∀ are swapped.
From this remark, the proof of the theorem is straightforward.

We inherit proofs from [BBDM23a] for the De Morgan’s laws in PL.

Theorem 5.4. G |= GTS(Φ) iff GTSSL(G,Φ) |= GTSSL(Φ), for all SL[C/DG] sen-
tences Φ.

Proof. We prove each implication independently.

(⇒) This first implication is an immediate application of Theorems 5.13 and 5.14.

(⇐) We prove the contraposition. Suppose that G 6|=PL SL2PL(Φ). We do a case
study on the fragment hosting Φ. Suppose first that Φ ∈ SL[CG]. Thanks to
PL determinacy, we obtain G |=α ¬SL2PL(Φ). By immediate induction on Φ, we
have that G |=α SL2PL(¬Φ). Using De Morgan’s law in SL, we have that ¬Φ
is equivalent to a disjunctive formula Φ̂ in positive normal form. Then, by Theo-
rem 5.14, we obtain GTSSL(G, Φ̂) |=α GTSSL(Φ̂). By Proposition 5.2, it amounts
to GTSSL(G,Φ) 6|=PL GTSSL(Φ). The case Φ ∈ SL[CG] is proven symmetrically.

5.A.4 Realizable meta map

We now focus on the material for proving Theorem 5.3. The approach is similar to
the one for Theorem 5.4: we prove that the truth of an SL[C/DG] formula Φ in a CGS
G under timeline semantics entails the truth of the corresponding formula GTSSL(Φ) in
the CGS GTSSL(G,Φ). The reciprocal is obtained through determinacy of SL and the

212

5.A. Missing Proofs of Section 5.3

duality result of Proposition 5.2. In this subsection, we propose an interpretation of the
SL timeline semantics in the setting of PL.

First, we introduce a new relation on assignments. Given two assignments χ1 and
χ2 ∈ Asg(V), we define χ1

n∼W χ2 by χ1=<nχ2 and χ1�(V\W)=≤nχ2�(V\W). This relation
defines the concept of strict dependency for response functions. A response function F

has a strict dependency toward a set of variable W ⊆ V if, for every assignments χ1 and
χ2 ∈ Asg⊇(V), for every n ∈ N, if χ1

n∼W χ2, then F (χ1)=≤nF (χ2). The set of responses
strictly dependent on W is denoted by RspS(W)

Given a quantifier prefix ℘ and set of variables V ⊆ var(℘), we define Maps℘(V) =
{R ∈ RspRV | ∀x ∈ V we have R(x) ∈ RspS(var>x(℘))}. Remark that we have the
following inclusion: RspMeta(℘) ⊆ Maps℘(var∀(℘)).

Definition 5.9 (Realizable meta map). Given a quantifier prefix ℘, a meta map ∆
for this prefix is a function ∆ : Maps℘(var∀(℘)) → Maps℘(var(℘)) such that for every
x ∈ var∀(℘), we have ∆(R)(x) = R(x) for every R ∈ MapsV.

Such a map is said realizable when for any R ∈ Maps℘(var∀(℘)) and R′ ∈
Maps℘(var∀(℘)), for every x ∈ var∃(℘), for every k ∈ N, for every χ1, χ2 ∈ Asg such
that χ1�var(X)=≤kχ2�var(X), if

1. for every y ∈ var<xi∀ (℘), we have R(y)(χ1)=≤kR′(y)(χ2) and

2. for every y ∈ var>xi∀ (℘), we have R(y)(χ1)=≤k−1R′(y)(χ2),

then, ∆(R)(xi)(χ1)=≤k∆(R′)(xi)(χ2).

The difference between a realizable meta map and a Skolem map is that the response
function ∆(x)(R) formally depends on the value of variables quantified after x but only
on their strict past. This added information is mitigated by the realizable condition.

Proposition 5.3. Given a team X ⊆ Asg(V), a vector of responses R ∈ RspMeta(℘) and
a Skolem map Λ, there is a bijection between X and ext(X,Λ(R)).

Proof. Let f : ext(X,Λ(R))→ X defined as f(χ) = χ�V . We prove that f is a bijection.

1) f is injective. Let χ1 and χ2 ∈ ext(X,Λ(R)). Suppose that χ1�V = χ2�V . To-
ward contradiction, suppose that there is x ∈ var(℘) such that χ1(x) 6= χ2(x).
Let i0 = min{i ∈ J0, . . . , 1, nK | χ1(xi) 6= χ2(xi)}. Then, we have that
χ1�V∪var<xi0 (℘) = χ2�V∪var<xi0 (℘). However, by Definition 5.8, we have Λ(R)(xi0) ∈
RspR(V ∪ var<xi0 (℘)). Then, we have χ1(xi0) = Λ(R)(xi0)(χ1) = Λ(R)(xi0)(χ2) =
χ2(xi0) which is a contradiction.

213

Partie , Chapter 5 – Plan Logic

2) f is surjective. Let χ ∈ X. For i ∈ J0, . . . , 0, nK, define χ̇i ∈ Asg(V ∪ var<xi(℘))
as follows.
— χ̇0 = χ,
— for i ∈ J0, . . . , 0, n− 1K, we set χ̇i+1 = χ̇i[xi+1 7→ Λ(R)(xi)(χ̇i)]
It is straightforward to see that χ̇n ∈ ext(X,Λ(R)) and that f(χ̇n) = χ.

Proposition 5.4. Given a team X ⊆ Asg(V), a PL map R ∈ Maps℘(var∀(℘)) and a
Realizable meta map ∆, there is a bijection between X and ext(X,∆(R)).

Proof. Let f : ext(X,∆(R))→ X defined as f(χ) = χ�V . We prove that f is a bijection.
1) f is injective. Let χ1 and χ2 ∈ ext(X,∆(R)). Suppose that χ1�V = χ2�V .

Toward contradiction, suppose that there is x ∈ var(℘) such that χ1(x) 6=
χ2(x). Let t0 = min{t ∈ N | χ1(x)[t] 6= χ2(x)[t] for some x ∈ var(℘)}.
Let i0 = min{i ∈ J0, . . . , 1, nK | χ1(xi)[t0] 6= χ2(xi)[t0]}. So, we have
that χ1

t0∼var<xi0 (℘) χ2. However, ∆(R)(xi0) ∈ RspS(var<xi0 (℘)).Then, we have
χ1(xi0)[t0] = ∆(R)(xi0)(χ1)[t0] = ∆(R)(xi0)(χ2)[t0] = χ2(xi0)[t0] which is a contra-
diction.

2) f is surjective. Let χ ∈ X and let d ∈ Ac. For t ∈ N and i ∈ J0, . . . , 1, nK, define
χ̇ti ∈ Asg(V ∪ var(℘)) and the initial χ̇0

0 ∈ Asg(V ∪ var(℘)) as follows.
— Let χ̇0

0 = χ[x 7→ dω],
— for i ≥ 1, we set χ̇ti+1 = χ̇ti[xi+1 7→ ∆(R)(xi)(χ̇ti)]
— for t ≥ 0, we set χ̇t+1

1 = χ̇tn[x1 7→ ∆(R)(x1)(χ̇tn)]
We now define χ̇(xi)[t] = χ̇ti[xi][t]. It is straightforward to see that χ̇ ∈
ext(X,∆(R)) and that f(χ̇n) = χ.

Remark that these two propositions imply that on the trivial team containing only
the trivial empty assignment, there is only one assignment obtained by the application of
a Skolem map or of a realizable meta map.

The existence of a realizable meta map that satisfies a formula entails the existence of
a Skolem map that satisfies the formula.

Lemma 5.4. Given a quantifier prefix ℘, for every realizable meta map ∆ for this pre-
fix, there is a Skolem map Λ such that for every quantifier-free formula φ, if for every
R′ ∈ Mapsvar∀(℘), we have G,ext({{∅}},∆(R′)) |=α φ, then for every R ∈ RspMeta(℘),
we have G,ext({{∅}},Λ(R)) |=α φ.

214

5.A. Missing Proofs of Section 5.3

Proof. Let x ∈ var∃(℘) and R ∈ RspMeta(var>x(℘)). Given χ̇ ∈ Asg(V) with
var<x∀ (℘) ⊆ V, we define Λ(x)(R)(χ̇). For every y ∈ var<x∀ (℘) we introduce F χ̇

y ∈ RspR
defined by F χ̇

y (χ) = χ̇(y) for every χ ∈ Asg. Then, let Rχ̇ = R[y 7→ F χ̇
y]y∈ var<x∀ (℘). We

can now define the following.

Λ(x)(R)(χ̇) = ∆(Rχ̇)(x)(χ̇�var<x (℘))

Claim 5.2. Λ(x)(R) ∈ RspS(var<x(℘)).

Proof. Λ(x)(R) depends only on var<xi(℘) thanks to the restriction when applying
∆(Rχ̇)(x). We can remark also that two assignment that agree on var<xi∀ (℘) lead to
the definition of the same Rχ̇ .

Now, let χ̇1, χ̇2 ∈ Asg(V) such that χ̇1=≤nχ̇2 for some n ∈ N. Then, for every
y ∈ var<x∀ (℘), we have Rχ̇1(y)(χ̇1) = χ̇1(y)=≤nχ̇2(y) = Rχ̇2(y)(χ̇2). Furthermore, since
Rχ̇1

�var>xi∀ (℘) = R = Rχ̇2
�var>xi∀ (℘), we have that, for every y ∈ var>xi∀ (℘), it holds

that Rχ̇1(y)(χ̇1)=≤n−1Rχ̇2(y)(χ̇2). Then, since ∆ is a realizable meta map, we have that
∆(Rχ̇1)(x)(χ̇1�var(X)∪var<xi (℘))=≤n∆(Rχ̇2)(x)(χ̇2�var(X)∪var<xi (℘)).

Claim 5.3. For every R ∈ RspMeta(℘), variable x ∈ var(℘), and assignment χ ∈
ext(∅,∆(R)) with ∅ the empty assignment, we have Λ(R)(x)(χ) = ∆(R)(x)(χ).

Proof. The property is immediate fot x ∈ var∀(℘). For x ∈ var∃(℘), we have
Λ(R)(x)(χ) = ∆(Rχ)(x)(χ�var<x (℘)). We have that,

— for every y ∈ var<xi∀ (℘), we have Rχ(y)(χ�var<x (℘)) = χ(y) and by definition of
ext(X,∆(R)), we have χ(y) = R(y)(χ) and

— for every y ∈ var>xi∀ (℘), we have Rχ(y) = R(y),
Then, by Definition 5.9, we have ∆(Rχ)(x)(χ�var<x (℘)) = ∆(R)(x)(χ).

Thanks to Claim 5.2, the Λ defined is indeed a Skolem map. Thanks to Claim 5.3, we
have ext(∅,∆(R)) ⊆ ext(∅,Λ(R)). Thanks to Proposition 5.4 and Proposition 5.3, we
have equality of size. Hence ext({{∅}},∆(R)) = ext({{∅}},Λ(R)).

5.A.5 Proof of Theorem 5.3

We now link timeline maps and realizable meta map in the same way we linked real-
izable meta map to Skolem maps. We start by the conjunctive fragment of SL.

215

Partie , Chapter 5 – Plan Logic

Lemma 5.5. Given a quantifier prefix ℘ = Q1X1, . . . , QmXm, for every timeline map θ
for this prefix, there is a Realizable meta map ∆ for ℘∀x� such that for every quantifier-
free conjunctive formula φ = ∧

[∈B [ψ[, if for every m ∈ StratV∀, we have G, θ(m) |=SL φ,
then for every R ∈ Maps℘(var∀(℘) ∪ x�), we have GTSSL(G,Φ),ext({{∅}},∆(R)) |=α

[id(♦p∃) ∨ ((�¬p∀) ∧
∧
[∈B((�q[)→ ψ[)).

Proof. We define ∆ step by step. Given a PL map R ∈ Maps℘∀x� (var∀(℘) ∪ {x�}),
we fix an action d ∈ Ac and we consider an assignment χ̇ ∈ Asg(var(℘)), a sequence
of paths (pχ̇,Rn)n∈N in G and of bindings ([n)n∈N ∈ bnd(φ)N and, for every variable in-
dex i ∈ J0, . . . , 1,mK, sequences of strategic maps (ωi,Rn)n∈N ∈ ((StratV∀)var(℘))N, of as-
signments (χi,Rn)n∈N ∈ Asg(var(℘)), of actions (ain)n∈N ∈ (Acvar<xi (℘))N and of plans
(ρyn)n∈N ∈ (Plansvar<xi (℘))N defined co-inductively as follows, where π is a path in G and
X ∈ var(℘).

— ω
0,R
0 (X) : π 7→ d

— — if Q1 = ∃, then ω1,R
n+1 = ωm,Rn

— ifQ1 = ∀, then ω1,R
n+1 :


X1 7→

 pχ̇,Rn 7→ R(X1)(χi,Rn+1)[n+ 1]
π 6= pχ̇,Rn 7→ ωm,Rn (X1)(π)

X 6= X1 7→ ωm,Rn (X)
— for i+ 1 ∈ I∃, we set ωi+1,R

n = ωi,Rn

— for i+1 ∈ I∀, we set ωi+1,R
n :


Xi+1 7→

 pχ̇n 7→ R(Xi+1)(χi,Rn)[n]
π 6= pχ̇n 7→ ωi,Rn (Xi+1)(π)

X 6= Xi+1 7→ ωi,Rn (X)
— For i ∈ I∃, we set ain = θ(ωi,Rn)(Xi)(pχ̇,Rn)
— For i ∈ I∀, we set ain = R(xi)(χi,Rn)[n]
— ρi0 = ai0d

ω

— ρin+1 = ρin+1[n+ 1 7→ ain+1]
— χ

0,R
0 = xi 7→ ρi0

— χ
1,R
n+1 = χm,Rn [x1 7→ ρ1

n]
— χi+1,R

n = χi,Rn [xi 7→ ρin]
— pχ̇,R0 = pi

— pχ̇,Rn+1 = pχ̇,Rn · pn+1

— [n = R(x�)(χm,Rn)
— p0 = pi

— pn+1 = δ(p, {a ∈ Ag 7→ a[
n(a)
n })

We then define for i ∈ I∃, we set ρχ̇i [n] = ain and then, we define ∆(R)(xi)(χ̇) = ρχ̇i .

216

5.A. Missing Proofs of Section 5.3

ωi,Rnχ ρχ̇i [π

ω
m,R
−1χ

m,R
−1 a1

0 · pi

ω
1,R
0χ

1,R
0 a2

0 · ·

......

ω
m,R
0χ

m,R
0 a1

1 [0 p1

Claim 5.4. For every n ∈ N and for every i ∈ J0, . . . ,mK, if χ̇ is coherent with ∆(R),
then χi,Rn =<nχ̇.

Proof. The proof is done by induction on n ∈ N.

(n = 0) The relation =<0 is universal.

(n+ 1) Suppose that the property holds for some n ∈ N. Toward contradiction,
assume that χi,Rn+1 6=<n+1χ̇ for some i ∈ J0, . . . , 1,mK. Then, let j0 = min{i ∈
J0, . . . , 1,mK | χi,Rn+1(xi)[n] 6= χ̇(xi)[n]}. We do a case study.
— If xj0 ∈ var∀(℘), then χi,Rn+1(xj0)[n] = R(xj0)(χi,Rn)[n]. However, by definition of

j0 and by inductive hypothesis, we have χi,Rn+1�var<xj0 (℘)=≤n+1χ̇�var<xj0 (℘). Then,
since R(xj0) ∈ RspS(var<xj0 (℘)), we have R(xj0)(χi,Rn)[n] = R(xj0)(χ̇)[n]. And
since χ̇ is coherent with ∆(R), we have R(xj0)(χ̇)[n] = χ̇(xj0)[n], which is a
contradiction.

— If xj0 ∈ var∃(℘), then, by definition, χi,Rn+1(xj0)[n] = aj0n = ∆(R)(xj0)(χ̇)[n].
But we have that χ̇ is coherent with ∆(R) so [∆](R)(xj0)(χ̇)n = χ̇(xj0)[n].
Thus, we have [χi,Rn][n+ 1](xj0)n = χ̇(xj0)[n] which is a contradiction with the
definition of j0.

We proved the property by induction.

Claim 5.5. ∆ is a Realizable meta map.

217

Partie , Chapter 5 – Plan Logic

Proof. Let R,R′ ∈ Mapsvar∀(℘)∪x� and xi ∈ var∃(℘) and χ1, χ2 ∈ Asg such that χ1 is
coherent with ∆(R) and χ2 is coherent with ∆(R′). We prove by induction over n ∈ N
that if

1. χ1�var(X)=≤nχ2�var(X)

2. for every y ∈ var<xi∀ (℘), we have R(y)(χ1)=≤nR′(y)(χ2) and

3. for every y ∈ var>xi∀ (℘), we have R(y)(χ1)=≤n−1R′(y)(χ2),

then ∆(R)(xi)(χ1)=≤n∆(R′)(xi)(χ2).

(n = 0) Assume that Items 1 and 2 hold for n = 0 (Item 3 is trivial for
n = 0). By definition of ∆, we have (∆(R)(xi)(χ1))[0] = θ(ωi,R0)(Xi)(pi)
and (∆(R′)(xi)(χ1))[0] = θ(ωi,R

′

0)(Xi)(pi). Toward contradiction, suppose that
ω
i,R
0 6= ω

i,R′

0 . Let j0 = min{j ≤ i | ωj,R0 6= ω
j,R′

0 }. By definition, j0 = 0
is an immediate contradiction as ω0,R

0 = ω
0,R′
0 = X 7→ (π 7→ d). Then, we

can assume that j0 > 0. If Xj0 ∈ var∃(℘), we have ω
j0,R
0 = ω

j0−1,R
0 and

ω
j0,R′

0 = ω
j0−1,R′
0 by definition. Then, ωj0−1,R

0 6= ω
j0−1,R′
0 wich is in contra-

diction with the minimality of j0. Finally, if j0 ∈ var∀(℘), then, by defini-
tion of ωj0,R0 and ω

j0,R′

0 and by minimality of j0, for every X 6= Xj0 , we have
ω
j0,R
0 (X) = ω

j0−1,R
0 (X) = ω

j0−1,R′
0 (X) = ω

j0,R′

0 (X). Furthermore, for every path
π 6= pi (remark that pχ̇,R0 = pχ̇,R

′

0 = pi), we have ωj0,R0 (Xj0)(π) = ω
j0−1,R
0 (Xj0)(π) =

ω
j0−1,R′
0 (Xj0)(π) = ω

j0,R′

0 (Xj0)(π). Then, ωj0,R0 (Xj0)(pi) 6= ω
j0,R′

0 (Xj0)(pi). How-
ever, by definition, we have χj0,R0 �var<xj0 (℘)=≤0χ

j0,R
1 �var<xj0 (℘) and by Claim 5.4,

we have χ
j0,R
1 �var<xj0 (℘)=≤0χ1 and then ω

j0,R
0 (Xj0)(pi) = (R(xj0)(χj0,R0))[0] =

(R(xj0)(χ1))[0]. Symmetrically, ωj0,R
′

0 (Xj0)(pi) = (R′(xj0)(χ2))[0]. By Item 2, we
have (R(xj0)(χ1))[0] = (R′(xj0)(χ2))[0], thus, ωj0,R0 (Xj0)(pi) = ω

j0,R′

0 (Xj0)(pi),
which is a contradiction with the definition of j0. Hence (∆(R)(xi)(χ1))[0] =
(∆(R′)(xi)(χ1))[0].

(n+ 1) Assume that the property holds for some natural n. Also assume that Items 1
to 3 hold for n + 1. Then, we can deduce that pχ̇,Rn = pχ̇,R′n and apply the same
reasoning as the base case.

Without loss of generality, we can assume that k is such that
∆(R)(xi)(χ1)=≤n−1∆(R′)(xi)(χ2). Then, we have (∆(R)(xi)(χ1))[n] 6=
(∆(R′)(xi)(χ2))[n], which amounts to θ(ωi,Rn)(Xi)(pχ̇,Rn) 6= θ(ωi,R′n)(Xi)(pχ̇,R

′

n). How-
ever, by assumption, we have that ωi,Rn = ωi,R

′

n and that pχ̇,Rn = pχ̇,R′n . Hence the
contradiction.

218

5.A. Missing Proofs of Section 5.3

Claim 5.6. For every quantifier-free conjunctive formula φ = ∧
[∈B [ψ[, if for every

m ∈ StratV∀, we have G, θ(m) |=SL φ, then for every R ∈ Mapsvar∀(℘)∪x� , we have
GTSSL(G,Φ),ext({{∅}},∆(R)) |=α [id(♦p∃) ∨ ((�¬p∀) ∧

∧
[∈B((�q[)→ ψ[)).

Proof. Let R ∈ Mapsvar∀(℘)∪x� We define m ∈ StratV∀ as follow, where d is a fixed action
and xi ∈ var∀(℘):

m(xi)(π) =

 ain if π = pχ̇,Rn
d otherwise

Let χ ∈ ext({{∅}},∆(R)). Furthermore, let π̇ = pathGTSSL(G,Φ)(χ, [id) and π[=
pathGTSSL(G,Φ)(θ(m), [). We prove by induction that for every n ∈ N, we have π̇[n] =
(pn, Bn) with and pn = πχ(x�)[n][n] and Bn = {[∈ BΦ | [and χ(x�)[n] agree up to n}.

(n = 0) The initial position in GTSSL(G,Φ) is (pi, BΦ). We can see that, by definition,
every bindings agree up to 0.

(n+ 1) Assume that for some n ∈ N, we have π̇[n] = (pn, Bn) with and pn =
πχ(x�)[n][n] and Bn = {[∈ BΦ | [and χ(x�)[n] agree up to n}. By definition,
π̇[n+ 1] = δ̂(π̇[n], x 7→ χ(x)[n+ 1]) = (pn+1, Bn+1) with the following.
— pn+1 = δ(pn, {a ∈ Ag 7→ χ(χ(x�)[n+ 1](a))[n + 1]}). However, given a ∈ Ag,

let xi = χ(x�)[n + 1](a). We have χ(χ(x�)[n+ 1](a))[n + 1] = ain+1 =
θ(ωi,Rn+1)(Xi)(π[: n + 1]). By definition of θ, we have θ(ωi,Rn+1)(Xi)(π[: n + 1]) =
θ(m)(Xi)(π[: n+ 1]). So we have pn+1 = δ(pn, θ(m)(π[: n+ 1])) = π[: n+ 1].

— Bn+1 = {[∈ Bn | δ(pn, {a ∈ Ag 7→ χ([(a))[n + 1]}) = pn+1}. It is straight
forward to see that χ(x�)[n+ 1] ∈ Bn+1. From there, by construction, Bn+1 =
{[∈ BΦ | [and χ(x�)[n+ 1] agree up to n+ 1}.

Then, because of the definition of the label of GTSSL(G,Φ), we have easily that for every
goal [ψ[such that π̇ |=LTL �q[, we have λ̂(π̇) = π[. By hypothesis on θ, we have that
π[|= ψ[. Hence, the result.

Which concludes the proof.

Given m ∈ StratV , for V ⊆ Var, and a binding [∈ Binds, we define

outB(m) = {π ∈ Paths | ∃w ∈ Stratimg([)\V s.t. ∀[∈ B, we have π = path(m]w, [)[: |π|−1]}.

When B = {[}, we simply write out[(π).
StratB(π)var∀(℘) ⊆ Stratvar∀(℘) is the set of strategy map m for var∀(℘) such that

π ∈ outB(m).

219

Partie , Chapter 5 – Plan Logic

Given a quantifier prefix ℘, a set of bindings B and a timeline map θ for ℘, a (finite)
sequence of actions u = u1 · · ·uk ∈ (Acvar(℘))? is coherent with θ for B when for every
[∈ B, we have play[(u) ∈ out[(θ).

Lemma 5.6. For every disjunctive formula in prenex form φ = ℘
∨
[∈B [ψ[, given

θ, a timeline map for ℘ such that for every m ∈ StratV∀ there is [∈ B such that
playG(θ(m), [) |=LTL ψ[, there is a function fbind : (Acvar(℘))? → 2bnd(φ) such that for
every u = u1 · · ·uk ∈ (Acvar(℘))? that is coherent with θ for bnd(φ), and every action
profile ~d ∈ Acvar(℘), we have

1. fbind(u~d) ⊆ fbind(u).
2. for every [, [′ ∈ fbind(u) we have path(u, [) = path(u, [′). We denote by πfbind(u)

such path.
3. For every m ∈ Stratfbind(u)(πfbind(u))var∀(℘), there is [i ∈ fbind(u) such that

θ(m) |=SL [iψi.

Proof. We define fbind by induction on sequence of action profiles u and verify that fbind

satisfies the properties.
(ε) fbind(ε) = bnd(φ).

2) For every binding [∈ bnd(φ), we have path(u, [) = pi.
3) By assumption, for every m ∈ StratV∀ there is i ∈ J0, . . . , kK such that

playG(θ(m), [) |=LTL ψi.
(u~d) Suppose the following.

for all m ∈ Stratfbind(u)(πfbind(u))var∀(℘) there is [i ∈ fbind(u) such that θ(m) |=SL [iψi

(5.3)
Let p = πfbind(u)[|u| − 1]. Consider the equivalence relation ∼ on fbind(u) defined
by [∼ [′ if δ(p, {a 7→ ~d([(a))}) = δ(p, {a 7→ ~d([′(a))}). We denote by b[c the
equivalence class of [.
Claim 5.7. There is [i0 ∈ fbind(u) such that for every m ∈
Stratb[i0c(path(u~d, [i0))var∀(℘), there is [i ∈ b[i0c such that playG(θ(m), [) |=LTL ψi

Proof. We do a proof by contradiction. Suppose that

for every binding [i0 ∈ fbind(u) there is mi0 ∈ Stratb[i0c(path(u~d, [i))var∀(℘)

such that for every [i ∈ b[i0c, we have playG(θ(mi0), [i) 6|=LTL ψi
(5.4)

220

5.A. Missing Proofs of Section 5.3

Fix some i such that [i ∈ fbind(u). Then, consider
m ∈ Stratfbind(u)(πfbind(u))var∀(℘) defined by the following where X ∈ var∀(℘).
— when π ∈ Pref(πfbind(u)) or πfbind(u) /∈ Pref(π), we set m(X)(π) = mi(X)(π).
— when πfbind(u) = π, then we set m(X)(π) = ~d(X).
— when πfbind(u) ∈ Pref(π) and πfbind(u) 6= π, we have π = πfbind(u) · q · π′. Let [i0

such that δ(p, {a 7→ ~d([i0(a))}) = q. Then, we set m(X)(π) = mi0(X)(π).
For every binding [i ∈ fbind(u), we have playG(θ(m), [i) = playG(θ(mi), [i).
So, by Equation (5.4) playG(θ(m), [i) 6|=LTL ψi, which is in contradiction with
Equation (5.3).

Let [i0 given by Claim 5.7. We define fbind(u~d) = b[i0c.

1. As b[i0c ⊆ fbind(u), we have fbind(u~d) ⊆ fbind(u)

2. By definition of ∼, we have path(u~d, [) = path(u~d, [′) for evey [, [′ ∈ b[i0c

3. Claim 5.7 proves immediately this point.

Lemma 5.7. Given a quantifier prefix ℘, for every timeline map θ for this prefix, there is
a Realizable meta map ∆ for ℘∃x� such that for every quantifier-free disjunctive formula
φ = ℘

∨
[∈B [ψ[, if for every m ∈ StratV∀, we have G, θ(m) |=SL φ, then for every

R ∈ Mapsvar∀(℘), we have Ĝ,ext({{∅}},∆(R)) |=α [id
∨
[∈B((�[) ∧ ψB).

Proof. We define ∆ step by step. Given a PL map R ∈ Maps℘∀x� (var∀(℘)), we fix
an action d ∈ Ac and we consider an assignment χ̇ ∈ Asg(var(℘)), a sequence of
paths (pχ̇,Rn)n∈N in G and of bindings ([n)n∈N ∈ bnd(φ)N and, for every variable in-
dex i ∈ J0, . . . , 1,mK, sequences of strategic maps (ωi,Rn)n∈N ∈ (StratV∀)N, of assign-
ments (χi,Rn)n∈N ∈ Asg(var(℘)), of actions (ain)n∈N ∈ (Acvar<xi (℘))N and of plans
(ρyn)n∈N ∈ (Plansvar<xi (℘))N defined co-inductively as follows, where π is a path in G
and X ∈ var(℘). All definitions are the same as for the proof of Lemma 5.5 but for [n

which is obtain thanks to Lemma 5.6.
— [n ∈ fbind(χm,Rn [: n− 1])

We then define for i ∈ I∃, we set ρχ̇i [n] = ain and then, we define ∆(R)(xi)(χ̇) = ρχ̇i .
Furthermore, we define ∆(R)(xi)(χ̇)[n] = [n.

The next claim can be proven in a similar fashion as for Lemma 5.5.

Claim 5.8. ∆ is a Realizable meta map.

221

Partie , Chapter 5 – Plan Logic

The next claim follows from Lemma 5.6.

Claim 5.9. For every quantifier-free conjunctive formula φ = ℘
∨
[∈B [ψ[, if for ev-

ery m ∈ StratV∀, we have G, θ(m) |=SL φ, then for every R ∈ Mapsvar∀(℘), we have
Ĝ,ext({{∅}},∆(R)) |=α [id

∨
i∈J0,...,kK((�[i) ∧ ψi).

Theorem 5.3. G |=SL Φ iff GTSSL(G,Φ) |= GTSSL(Φ), for all SL[C/DG] sentences Φ.

The proof of Theorem 5.3 is very similar to the one for Theorem 5.4.

5.B Missing Details of Section 5.4

Given a CGS G and a PL[C/DG] sentence φ = ℘Tφ, with binding set Bϕ
def= bnd(ϕ),

an action assignment ~d ∈Acvar(℘)∪{x~} is V-incoherent at an extended position (p,B) ∈
Pos × 2Bϕ w.r.t φ, where V ⊂ Var, if there are two variables x1, x2 ∈ V and two bindings
[1, [2 ∈ B, with x1 ∈ var([1) and x2 ∈ var([2), such that ~d(x1) 6= ~d(x2). We say that ~d
is ∃-incoherent (resp., ∀-incoherent) at (p,B) w.r.t φ if either

1. ~d is ∃-ill-typed (resp., ∀-ill-typed) or

2. ~d is well-typed and the leftmost set of variables V in T, such that ~d is V-incoherent
at p̂ w.r.t φ, occurs in a tying operator of type 〈V〉 (resp., [V]).

If ~d is neither ∃-incoherent nor ∀-incoherent at (p,B) w.r.t φ, we say that ~d is coherent
at (p,B) w.r.t φ.

Construction 5.3. Given a CGS G = 〈Ag,Ac,Pos, pi, δ, λ〉 and a PL[C/DG] sentence
φ, with binding set Bϕ

def= bnd(φ), let GTSC/DG(G, φ) be the CGS 〈P̂, p̂init, Âg, Âc, δ̂, λ̂〉
obtained as follows:

1. agents are the variables quantified in φ plus a distinguished agent for the Boolean
connective, i.e., Âg def= var(φ) ∪ {x~};

2. actions are extended with bindings, i.e., Âc def= Ac ∪Bϕ;

3. positions are pairs composed of original positions from G and subsets of bindings of
Bϕ, plus three distinguished sink positions p̂∃, p̂∀, and p̂~, i.e., P̂

def= {p̂∃, p̂∀, p̂~} ∪
Pos × 2Bϕ ;

4. the initial position is the pair containing pi and the full set Bϕ, i.e., p̂init
def= (pi, Bϕ);

222

5.B. Missing Details of Section 5.4

5. every position, but the distinguished ones, are labelled with the original labelling
plus a set of fresh atomic propositions, one per active binding, i.e., λ̂(p̂∃)

def= {p∃},
λ̂(p̂∀)

def= {p∀}, λ̂(p̂~) def= ∅, and λ̂((p,B)) def= λ(p) ∪ {q[∈ AP | [∈ B};

6. the transition function δ̂ maps every position (p,B) ∈ P̂ and action profile ~d ∈
Acvar(φ)∪{x~} coherent at (p,B) w.r.t ϕ to position (u,B)∈ P̂, where

(a) u is the successor of p in G according to the action profile ~d ◦ [mapping each
agent a ∈ Ag to the action stipulated by ~d for the variable [(a), where [= ~d(x~)
is the binding chosen by agent x~, and

(b) B⊆B is the set of bindings indistinguishable from [at p w.r.t ~d:

δ̂(p̂, ~d) def=



p̂Q , if p̂ = p̂Q or, p̂ 6= p̂~ and ~d is Q-incoherent at p̂ w.r.t ϕ;

p̂~, if p̂ = p̂~ or ~d is ~-ill-typed;

(u,B), otherwise, where u = δ(p, ~d ◦ [) and B = {[′ ∈ B | [′≡~d
p[},

with (p,B) = p̂ and [= ~d(x~).

with Q ∈ {∃,∀}

And regarding the formula, we set the following.

GTSC/DG(℘T
∧
[∈Bϕ

[ψ[) def= ℘ ∀x~ [id

(♦p∃) ∨
(�¬p∀) ∧

∧
[∈Bϕ

((
�q[

)
→ ψ[

)
GTSC/DG(℘T

∨
[∈Bϕ

[ψ[) def= ℘ ∃x~ [id

(�¬p∀) ∧
(♦p∃) ∨

∨
[∈Bϕ

((
�q[

)
∧ ψ[

)

223

Chapter 6

DEPENDENCY MATRICES

In the previous chapter, we have developed a framework that is suited for strategic
reasoning that can generalize to many kind of dependencies. In this chapter, we propose to
study the specific temporal dependencies that are delays, commitments and lookaheads.
Games with delayed control [CFLMZ21] or delay games [KZ15; KZ17; TKH12] are two-
player games where one player, that we will call the proponent, has to play with a given
delay δ, i.e. has to choose its actions at time t only depending to the actions of their
opponent up to t− δ. In other word, the proponent has to commit δ actions. Games with
delayed control and delay games differ in the information available for the other player:
in a game with delayed control, the opponent cannot see the committed actions of the
proponent while in a delay game, they can, granting them a lookahead on the proponent.
Because of the different treatment of the opponent’s view on the game, games under
delayed control are imperfect information games, and thus undetermined, when delay
games are perfect information games and so, determined. See [FWZ23] for more in depth
analysis of the differences between the two formalisms.

In this chapter, we propose a unifying theoretical framework to specify delay depen-
dencies. To this aim, we define the notion of a dependency matrix D. The entry D[a, b] is
a generalized integer (i.e. in Z ∪ {−∞,+∞}) so that

“Player a’s decision at time-step tcurrent depends on
Player b’s decisions up to time-step tcurrent +D[a, b]”.

The semantics of a dependency matrix relies on an involved machinery based on an
imperfect-information multi-player game, called the dependency game. The positions of
the game, called configurations, are all the possible partial labelings of the timeline by
the players – and are thus in infinite number. The dynamics of the dependency game is
involved because the dependencies may desynchronize players in their choices for labeling
a time point.

Moreover, some matrices encode circular dependencies between players, leading to
deadlocked situations where none of the players can progress anymore in the dependency

225

Partie , Chapter 6 – Dependency Matrices

game, preventing them from completing their labeling of the timeline. Upon the study of
this phenomenon, we introduce the class of progressing matrices, that guarantee that any
play in the dependency game provides a full labeling of the timeline for each propositional
variable. We establish an effective property that characterizes these matrices. Thus, we
can ensure that plays are infinite and then can be qualified as winning or losing according
to some linear-time formula, here an LTL formula.

We then study the problem called EWS (Existence of Winning Strategies) of deciding,
given a dependency matrix, a coalition (subset of players) and an LTL formula, the
existence of a joint strategy for the coalition such that any play brought about by this
strategy satisfies the LTL formula. Importantly, the imperfect-information feature of the
dependency game addresses two issues: first, this game is not determined in general, and
second, winning strategies for the coalition need being uniform, a non-trivial notion in
our rich setting since players may be desynchronized.

Although we prove that EWS is unsurprisingly undecidable, we exhibit the subclass
of so-called perfect information dependency matrices for which EWS turns to a decid-
able problem. We first consider the perfect information property for matrices whose val-
ues range over Z and show how EWS can be reduced to solving a two-player perfect-
information parity game, yielding a 2-Exptime-complete complexity. We then extend
the perfect-information property to arbitrary matrices and provide a decision procedure
for EWS that generalizes the one for QPTL [SVW87], thus a non-elementary complexity.

To our knowledge, our proposal offers the first framework amenable for merging many,
and yet remote, game settings such as concurrent or turn-based games [AHK02] , (two-
player) delay games [KZ15; KZ17; TKH12] and games with delayed control [CFLMZ21],
logic QPTL [SVW87], and Church Synthesis Problem (see the survey [Fin16]) – it can
be shown that our framework also subsumes DQBF (Dependency Quantified Boolean
Formulas) [PRA01].

The chapter is organized as follows. In Section 6.1, we define dependency matrices, and
show that they embed several settings of games, we also present the formal machinery to
define the dependency arena specified by a dependency matrix and address the problem
EWS of the existence of winning strategies and show its undecidability in the general
case. Then, in section 6.2, we design the decision procedure for EWS when restricted to
a perfect-information matrix input.

226

6.1. A Multiplayer Delay Game

6.1 A Multiplayer Delay Game

In this section, we propose the generic notion of dependency matrix and show that it
subsumes several classic settings in games. We denote players by lowercase letters such as
a, b, c, etc.

6.1.1 Definition

A dependency matrix specifies the mutual dependencies between players’ decisions
in a game where each player owns an atomic proposition and aims at filling the whole
timeline with a valuation for it at each time point.

Definition 6.1. A dependency matrix (or simply a matrix) over a finite set P of at least
two players is a matrix D = (D[a, b])a6=b∈P whose values range over Z ∪ {−∞,+∞}.

In a dependency matrix (D[a, b])a6=b∈P over P , the value D[a, b] describes how
Player a’s decisions depends on Player b’s: Player a’s decision for choosing the valua-
tion at time point t depends on the ones chosen by Player b at all time points in the
interval [0, t + D[a, b]]. As such, whenever D[a, b] < 0, Player a’s decision at time point
t is independent of the decisions made by Player b up to some time point before t. In
particular, if D[a, b] = −∞, Player a’s decisions is independent of any of Player b’s.

On the contrary, when D[a, b] ≥ 0, Player a’s decision at t depends on some Player b’s
decisions up to some time point after t, so that Player a is not able to make their decision
without this required information. In particular, if D[a, b] = +∞, Player a’s decisions do
depend on the decisions of Player b’s over all the timeline.

Because it is natural to consider that a player is aware of their own decisions so far,
values on the diagonal D[a, a] are irrelevant and are left undefined. As such, the matrix
line D[a, .] specifies the dependencies of Player a with respect to all other players, and
their ability to make a decision is constrained by all these dependencies. Unsurprisingly,
some matrices may yield blocking situations for some players, an issue that we address
later.

Beforehand, we illustrate how several settings in games can be captured with matrices.

227

Partie , Chapter 6 – Dependency Matrices

Example 6.1 (Concurrent Game).
In a standard concurrent game (as in logics ATL,
ATL*), players have to concurrently choose a
move. Thus the move of one player can only de-
pend on the strict past of the history of moves. The
corresponding matrix for 3 players is D1, where
strict past is reflected by the value −1.

D1 =


a b c

a · −1 −1
b −1 · −1
c −1 −1 ·



Example 6.2 (Round Robin Game).
In a Round Robin game, players play in turn: first
Player a, then b, then c. The matrix is D2: deci-
sions of Player a depend on the strict past, hence
the values −1 in the a-row; decisions of b depend
on the non-strict past of a (hence the value 0), and
the strict past of c (hence the value −1); decisions
of c depend on the non-strict past of the other play-
ers.

D2 =


a b c

a · −1 −1
b 0 · −1
c 0 0 ·



Example 6.3 (QPTL).
In QPTL, dependencies stem from the order of
the quantifiers: in the formula ∃a∀b∃cψ where
ψ is an LTL-formula, Player a plays first on
the full timeline and independently of the oth-
ers. Then b only depends on what Player a did.
Finally, c depends on what both Players a and b
did. All this is reflected by matrix D3.

D3 =


a b c

a · −∞ −∞
b +∞ · −∞
c +∞ +∞ ·



Example 6.4 (Fixed Delay games).
A delay game is a two-player game, say between
Player a and Player b. Player a must make a given
finite number k of moves beforehand and then,
Players a and b play in a turn based manner, hence
maintaining the delay between them (see Klein et
al. [KZ15]). 1 This setting is represented by the
matrix D5.

D5 =


a b

a · −k
b k − 1 ·



Example 6.5 (Church Synthesis).

228

6.1. A Multiplayer Delay Game

The Church Synthesis problem (see the sur-
vey [Fin16]) consists in responding to a
stream of inputs by a stream of outputs, so
that a given property holds. If Player a and
Player b are in charge of the output, Player c
and Player d are in charge of the input, the
players dependencies are captured by matrix
D4: output Players a and b only depend on
the past values of the input players, and that
input Players c and d see all values and have
to respond on the spot.

D4 =



a b c d

a · −1 −1 −1
b −1 · −1 −1
c 0 0 · −1
d 0 0 −1 ·



6.1.2 Strategies for Dependency Matrices

The Arena of a Matrix

For now, we restrict ourselves to only finite delays. We fix D with values in Z and
we describe the dependency arena of D. A position in the dependency arena is called a
configuration, that is a word vector C that reflects the labeling over {>,⊥} chosen so far
by each player of P . The set of configurations is denoted by C := ({>,⊥}?)P and the
initial configuration C0 is the empty vector, namely εP .

Example 6.6. Figure 6.1 shows the configuration C in which Player a played the word
C(a) = >>⊥>⊥, Player b played C(b) = ⊥⊥>, and Player c played C(c) = ⊥⊥>>.

0 1 2 3 4 5
a
b
c

> > ⊥ > ⊥
⊥ ⊥ >
⊥ ⊥ > >

Figure 6.1 – A configuration C where Player a has chosen their labeling up to time point
4, Player b up to time point 2 and Player c up to 3.

1. In their setting, the delay is defined with a delay function that gives at each round the number of
moves the input Player has to make. However, Klein et al. mainly studied the fixed delay setting where
the function is set to 1 after the first round.

229

Partie , Chapter 6 – Dependency Matrices

We define the dynamics of the game, namely which player can play/progress, in a
given configuration and which moves are available to them. Here is an intuitive example
of those dynamics with a Round Robin matrix.

Example 6.7. For the matrix D2 of Example 6.2 and for the first round, only Player a
can make a move, and the length of that moves is 1. Then, assuming Player a chooses >,
the dependencies for each player are depicted separately below: in each picture, the squares
identify expected information for the considered player to make their decision about the
question mark (?).

Dependencies of Player a Dependencies of Player b Dependencies of Player c
0 1 2

a
b
c

> ?
0 1 2

a
b
c

>
?

0 1 2
a
b
c

>

?

Observe that, here, neither Player a, nor Player c can make a move as the labeling of
Player b at time point 0 is not set. On the contrary, Player b is able to progress.

A move of a Player a is a word ua ∈ {>,⊥}? that is to extend their labeling along
the timeline. For Player a to progress in configuration C , all their dependencies must
be fulfilled. This is formalized as follows: in order to make a move (necessarily starting
at the time point t = |C(a)|), Player a needs to access the labeling of Player b up to
time point t + D[a, b], included. Therefore, the value αCa,b := |C(b)| − (D[a, b] + |C(a)|)
characterizes the length of a move available to Player a with regard to their dependency
on Player b only. Thus, the overall progress value of Player a, written αCa , takes into
account all quantities αCa,b for b 6= a in a conjunctive manner, leading to consider the most
restrictive one. Formally:

αCa
def= max(0,min

b 6=a
(αCa,b)) (6.1)

As such, αCa is the maximum number of steps that Player a can perform in configuration C .
Note that, if some αCa,b is non positive, then Player a is stuck in C because Player b has
not yet provided the expected information.

Based on the progress value, a legitimate move for Player a in a configuration C is a
word in {>,⊥}αCa . Then, a legitimate joint move in C is a vector of words ~u ∈ ({>,⊥}?)P

such that, for every Player a, ~ua is a legitimate move for a. We can now define the move

230

6.1. A Multiplayer Delay Game

function between configurations:

∆ : C × ({>,⊥}?)P ⇀ C

(C, ~u) 7→

 C · ~u when ~u is a legitimate joint move in C
undefined otherwise

with ~u a legitimate joint move. Remark that all players that can move have to play
concurrently and greedily (i.e. their maximum number αCa of actions). A configuration C
is said reachable if there is a finite sequence of legitimate joint moves that leads to C from
the initial configuration C0.

Proposition 6.1. Every reachable configuration, has a unique predecessor by ∆.

Proof. Suppose that there are two reachable configurations C1 and C2 and two legitimate
joint moves ~u1 and ~u2 such that C1 ·~u1 = C2 ·~u2. Then, consider a reachable configuration
C ′ that is a prefix of both C1 and C2. Suppose toward contradiction that there are
legitimate joint moves ~u1′ 6= ~u2′ with C1′ = C ′ ·~u1′ prefix of C1 and C2′ = C ′ ·~u2′ prefix of
C2. Since ~u1′ 6= ~u2′ , there is t ∈ N and a ∈ P such that C1′(a)[t] 6= C2′(a)[t]. By definition,
Ci′ is a prefix of Ci for i ∈ {1, 2}. Hence C1(a)[t] 6= C2(a)[t] which is in contradiction
with C1 · ~u1 = C2 · ~u2. In conclusion, if C1 · ~u1 = C2 · ~u2, then C1 = C2 and ~u1 = ~u2.

By Proposition 6.1, the dependency arena of reachable configurations is a tree and
every reachable configuration contains all moves since the start of the game.

Progressing Matrix

Observe that some dependency arenas have reachable configurations C where for every
Player a, we have αCa = 0. This happens because of cyclic dependencies. Here is an
example.

Example 6.8.
Consider the matrix D6 on the right. Observe
that Player b cannot make any move because
they needs Player a’s labeling at time point 1,
but for Player a to label time point 1, they needs
the label of Player b at time point 0. This dead-
locked situation is depicted in Figure 6.2. How-
ever, observe that Player c can progress inde-
pendently up to time point 3.

D6 =


a b c

a · −1 −1
b +1 · −1
c −4 −4 ·



231

Partie , Chapter 6 – Dependency Matrices

0 1 2 3 4 5
a
b
c

> ?
?
⊥ ⊥ > >

Figure 6.2 – Player a wants to know the moves of Player b and reciprocally.

Situations where some players eventually get stuck can be characterized by analyzing some
graph: for the case of Example 6.8, the graph is depicted below, and interestingly, it con-
tains the cycle (a, b, a) whose weight is 0, a non negative value. We will see in the next
section, where the graph is formally defined, that such a cycle provides evidence that Play-
ers a and b eventually get stuck.

a b

c

GD6 :

1−

−1

1

−1−5
−5

We aim at characterizing matrices where no player gets stuck because of cyclic de-
pendencies, so that each play yields an LTL assignment in order to interpret the LTL
winning condition. Such matrices are called progressing and can be identified by means
of their adjacency weighted graph, here called the dependency graph.

Definition 6.2. Given a matrix D = (D[a, b])a6=b∈P , the dependency graph of D is the
weighted directed graph GD = (V,E, r) where:

— V = P is the set of vertices,
— E = {(a, b)|a 6= b} is the set of edges,
— r(a, b) = D[a, b] is the weight of the edge (a, b).

The following proposition gives a characterization of progressing matrices.

Proposition 6.2. A matrix D is progressing if, and only if, its dependency graph GD has
no non-negative-weighted cycle.

232

6.1. A Multiplayer Delay Game

The graph GD6 of Example 6.8 has a non-negative 0-weight cycle (a, b, a), so, matrix
D6 is not progressing. As a corollary, we have the following:

Theorem 6.1. Deciding if a matrix is progressing is in PTIME.

Proof. The size of the dependency graph is linear in the size of the matrix and finding a
non-negative cycle is polynomial in the size of the graph.

From now on, unless stated otherwise, we only consider progressing matrices, that we
keep calling “matrices” for simplicity. On the basis of such matrices, only infinite-horizon
plays take place that consist in consecutive applications of the move function ∆ in the
dependency arena (see page 231):

Definition 6.3. A play in the dependency arena associated to a matrix is an infinite
sequence of configurations (Cn)n∈N where C 0 is the empty configuration, and for every
n ∈ N, Cn+1 is the successor of Cn.

The interested reader can explore the dynamics of plays at:

https://francoisschwarzentruber.github.io/fsttcs2022

Notice that along a play (Cn)n∈N, Cn+1 extends Cn, so that to the limit, the play naturally
yields a temporal assignment χ of the timeline: for every t ∈ N, and every Player a, we
let χ(t)(a) def= Cn(a)[t], for a sufficiently large integer n so that Cn(a)[t] is defined.

Next, we focus on strategies and winning strategies in the meta arena, and we discuss
how a strategy complies with a matrix.

Strategies with a Matrix

In this section, we fix a matrix D over P , a coalition Γ ⊆ P and an LTL formula ψ.
Classically, a strategy maps histories to moves. However, since in our setting, a configura-
tion fully characterizes a history (Proposition 6.1), we can equivalently define strategies
as mappings from configurations to moves. A strategy for Player a ∈ Γ is a function
σ : C → {>,⊥}? where σ(C) prescribes a legitimate move for Player a.

Furthermore, we define a joint strategy for the Γ as a function J : C → ({>,⊥}?)Γ

such that J(C)(a) is a legitimate move for Player a ∈ Γ. A joint strategy J provides a
strategy Ja for each Player a ∈ Γ defined by: Ja(C) def= J(C)(a).

Given a joint strategy J for a coalition Γ, a play (Cn)n∈N is an outcome of J if for
any n ∈ N and any Player a ∈ Γ, we have Cn+1(a) = Cn(a) · Ja(Cn). We denote

233

https://francoisschwarzentruber.github.io/fsttcs2022

Partie , Chapter 6 – Dependency Matrices

by outB(()J) the set of outcomes of J. A joint strategy J is winning ψ whenever all
assignments associated to the plays in outB(()J) satisfy ψ.

However, in our dependency-based setting, a strategy is relevant only if it is uniform,
in the sense that they only rely on the information available to the player. We illustrate
this important feature in Example 6.9.

Example 6.9. Consider matrix D7 and configurations C1 and C2 below.

0 1

D7 =


a b

a · −2
b −2 ·


C1 =

a
b

> >
⊥ ⊥

0 1

C2 =
a
b

> >
⊥ >

When Player a in C1 comes to label time point 2, and since at time point 2, they
can only access Player b’s labeling up to time point 0, they cannot distinguish it from C2.
However, once they labels time point 2, they are able to access Player b’s label at time
point 1, and are allowed to take this information into account before choosing their label
at time point 3. Now, according to the matrix D7, we have αC1

a = αC
2

a = 2. Although
Player a cannot distinguish between C1 and C2, they are allowed to choose different 2-
length moves that only differ in their second letters. Indeed, their choice at time point 2 has
to be uniform (and therefore the same in both configurations C1 and C2). On the contrary,
they may play differently for their choice at time point 3. For instance, the overall move
in C1 can be >⊥ while it is >> in C2.

We formalize the phenomenon described in Example 6.9 with equivalence relations
between configurations, in a same vein as in Chapter 4. In the example, Player a has
to choose a move u0u1 but C1 and C2 are indistinguishable for their when it comes to
choosing the first letter u0. However, they can be distinguished for the choice of the second
letter u1. Then, we need multiple relations, one for each letter of a move.

Formally, we introduce an equivalence relation between configurations parameterized
by a scope k: two configurations C1 and C2 are k-indistinguishable for Player a, denoted
C1 a∼kD C2, whenever |C1(a)| = |C2(a)|, and for every Player b 6= a and every t ≤
|C1(a)|+D[a, b] + k, we have:

— either both C1(b)[t] and C2(b)[t] are undefined (meaning k is greater than the
progress of b in both configurations), or

— C1(b)[t] = C2(b)[t].

234

6.1. A Multiplayer Delay Game

We resort to relations a∼kD to formalize the notion of uniform strategies in our frame-
work, where the parameter k is meant to range over [0,min(αC1

a , αC
2

a)[.

Definition 6.4. A strategy σ for Player a is D-uniform whenever for any two configu-
rations C1 and C2, and any natural number k ≤ min(αC1

a , αC
2

a),

C1 a∼kD C2 implies σ(C1)[: k] = σ(C2)[: k].

Observe that C1 a∼k+1
D C2 implies C1 a∼kD C2. We generalize Definition 6.4 to joint

strategies in a natural way by requiring the uniform property for every individual strategy
of the joint strategy. For the rest of the paper, all strategies are implicitly D-uniform.

Before addressing the central decision problem of the existence of a winning joint
strategy, we extend our setting to allow matrices with infinite values.

Infinite-valued Matrix

Recall, by Definition 6.1, that a value D[a, b] = −∞ indicates that Player a’s decision
are independent from Player b’s. In particular, if the matrix line D[a, .] is all filled with
value −∞, Player a fills the whole timeline in the first round. On the contrary, D[a, b] =
+∞ forces Player a to wait until Player b has entirely filled the timeline.

A typical example of a matrix with infinite values is provided by the matrix D3 of
Example 6.3, and is reminiscent of what is expressed in the setting of the logic QPTL:
in this example, a play takes place as follows. First, Player a chooses an a-assignment of
the timeline. Second, since Player a is done and Player b is independent from Player c,
Player b has all the required information for choosing the b-assignment over the timeline.
Third and finally, Player c can proceed for the c-assignment, and the play ends.

For the cases that mix finite and infinite value, we consider first Example 6.10

Example 6.10. Consider matrix D8 below. In a play, Player b and Player c’s mutual
dependencies enforce them to proceed in turn for choosing their respective labeling, while
Player a cannot play until the other two have labeled the whole timeline.

D8 =


a b c

a · +∞ +∞
b −∞ · −1
c −∞ 0 ·


235

Partie , Chapter 6 – Dependency Matrices

As observed in Example 6.10, (Z∪{−∞,+∞})-valued matrices may yield to “infinite”
configurations (i.e. with possibly components in {>,⊥}ω instead of {>,⊥}?). As a result,
a play may now be a finite sequence of (possibly infinite) sequences of (possibly infinite)
configurations. We can adapt the notion of reachable configuration accordingly – since
this is routine, we omit the precise definition here.

From now on, unless stated otherwise, we consider arbitrary matrices. Next, we address
the decision problem EWS of the existence of a winning strategy.

6.1.3 Undecidability of Resolution

We consider the following central decision problem EWS of deciding the Existence of
a Winning (uniform) Strategy for a coalition of players (EWS for short):

Theorem 6.2. Let EWS be the following problem:

Input: A matrix D, a coalition Γ and an LTL-formula ψ.

Output: “Yes” if and only if there is a D-uniform joint strategy for Γ that wins ψ.

EWS is undecidable.

This result is unsurprising, given the imperfect-information nature of our multi-player
game.

Theorem 6.2 is proved by reducing the Tiling problem [Ber66] to EWS. Recall that
the Tiling problem takes in input a finite set of square tiles and two binary connectivity
relations over the tiles, that specify which pairs of tiles may be adjacent (resp. horizontally
and vertically). The output is the answer to the question whether there exists a tiling of
the plane, that is a mapping from N2 to the set of tiles such that any two of adjacent tiles
respect the connectivity constraints. In a nutshell, our reduction involves four players τ1, τ2

(tilers) and c1, c2 (challengers): in a round, Challenger c1 chooses a place (x, y) in N2 and
privately communicates it to their tiler companion τ1 by playing >x⊥>y⊥ω. Tiler τ1 then
responds by choosing a tile t independently of the choice of Challenger c2 and plays >t⊥ω,
and symmetrically for Players τ2 and c2. This way, the two tilers play independently. The
two different Challengers are used to test the binary relations by choosing adjacent places.

236

6.2. Resolving Dependency Matrices

The following matrix encodes this situation.

DTiling :=



c1 c2 τ1 τ2

c1 · −∞ −∞ −∞
c2 −∞ · −∞ −∞
τ1 +∞ −∞ · −∞
τ2 −∞ +∞ −∞ ·

.

In the next section, we present a decidable sub-case.

6.2 Resolving Dependency Matrices

A close inspection of the proof of Theorem 6.2 reveals that not being able to circumvent
the amount of information hidden to players is a matter. We introduce the subclass of
perfect-information matrices where every player always has full information about the
current configuration before proceeding, yielding a dependency game that is turn-based
with perfect information.

6.2.1 Definition and Properties

A dependency game is perfect-information as long as any two reachable configura-
tions are not k-indistinguishable, for every k. Actually, not being 0-indistinguishable is
sufficient, since k-indistinguishability are nested (see Section 6.1.2). Furthermore, for the
dependency arena to be turn-based, we must guarantee that in each round, only one player
can progress. This yields the following definition.

Definition 6.5. A matrix D is perfect-information if for every reachable configuration
C :

— for every player a and reachable configuration C ′ 6= C , we have C 6 a∼0
D C ′ and

— there is exactely one player a such that αCa ≥ 1.

Remark that, by Definition 6.5, every move of a single player, from a reachable config-
uration that is not the initial one, is necessarily of length 1. Indeed, if a player could make
a move of length strictly greater than 1, we could create another reachable configuration
that would be 0-indistinguishable from the first one, a contradiction.

237

Partie , Chapter 6 – Dependency Matrices

Lemma 6.1. Let D be a perfect-information matrix, then αCa ≤ 1 for any non-initial
reachable configuration C and every Player a.

Proof. By contradiction, suppose that there is a non-initial reachable configuration C1

with αC1
a ≥ 2 for some Player a. Because D is progressing and perfect-information, there

is a unique Player b that can progress in ∆−1(C1). If b = a, we would not have αC1
a ≥ 2

because players play greedily. Then, we have a 6= b.
We now exhibit a reachable configuration C2 6= C1 such that C1 a∼0

D C2. Let u1 be
the joint move leading to C1, that is ∆(∆−1(C1), u1) = C1. As exactly one player moves,
u1(c) = ε for every Player c 6= b. We define the joint move u2 as follows: for every
Player c 6= b, let u2(c) = ε and u2(b) = fliplast(u1(b)) where fliplast flips the last
letter of the word (mapping > to ⊥, and ⊥ to >). For C2 = ∆(∆−1(C1), u2), we have
|C1(a)| = |C2(a)|, and C1(c) = C2(c) for Player c 6= b. We have αCia,b ≥ 2 for i ∈ {1, 2}.
Then, by definition, |Ci(b)|−(D[a, b]+|Ci(a)|) ≥ 2, whence (D[a, b]+|Ci(a)|) ≤ |Ci(b)|−2.
Now, let t ≤ |C1|+D[a, b]. By transitivity, t ≤ |Ci(b)|−2. However, C1(b)[t] = C2(b)[t] for
t ≤ |C1(b)|−2 since only the last letter of C1(b) differs from C2(b). Therefore, C1 a∼0

D C2

which is a contradiction.

Corollary 6.1. Let D be a perfect-information matrix, and C a non-initial reachable
configuration, there is Player a with αCa = 1 and for every other Player b, we have
αCb = 0.

We can use this result to establish a characterization of perfect-information matrices.
Let C be a reachable non-initial configuration and let Player a be the player that can
progress in C . By Corollary 6.1, we have αCa = 1 and αCb = 0 for every Player b 6= a. We
first make a claim:

Claim 6.1. αCa,b = 1 and αCb,a ≤ 0

Using this claim, we obtain |C(b)| − (D[a, b] + |C(a)|) = 1 and |C(a)| − (D[b, a] +
|C(b)|) ≤ 0. Then, D[a, b] + D[b, a] ≥ −1. Since the matrix is progressing, we have
D[a, b]+D[b, a] ≤ −1 and then D[a, b]+D[b, a] = −1. In fact, we show that this necessary
condition is a precise characterization of the perfect-information matrices.

Theorem 6.3. A matrix D is perfect-information if and only if for all players a and b,
with a 6= b we have D[a, b] +D[b, a] = −1.

238

6.2. Resolving Dependency Matrices

We now show the reciprocal, namely, if D satisfies D[a, b] + D[b, a] = −1, then D is
perfect-information. The first step is to prove that, the associated dependency arena is
turn based.

Lemma 6.2. For D with D[a, b] + D[b, a] = −1 whenever a 6= b, there is at most one
Player a with αCa ≥ 1 in every configuration C .

Proof. By contradiction, suppose αCa,b ≥ 1 and αCb,a ≥ 1. Then, αCa,b + αCb,a ≥ 2. Since
αCa,b = |C(b)|− (D[a, b]+ |C(a)|) and αCb,a = |C(a)|− (D[b, a]+ |C(b)|), we obtain D[a, b]+
D[b, a] ≤ −2 which contradicts the assumption on D.

It is left to prove that any two different reachable configurations are not a∼0
D-equivalent

for any a. We here just give an intuition of the proof by contradiction. Suppose that
there are two different reachable configurations C1 and C2 such that C1 a∼0

D C2. We
can assume without loss of generality that they are immediate successors of the same
reachable configuration C . We compare the progress values of Player a with the one of
the only player that can progress in C , and prove that the configurations C1 and C2 are
equal.

6.2.2 A Parity Game to solve EWS

For perfect-information matrices, we establish a reduction from EWS to solving a
parity game, thus attaining decidability (Theorem 6.4). Consider a perfect-information
matrix D, a coalition Γ and a formula ψ. We define the parity game G(D,Γ, ψ) where
the coalition Γ has a winning D-uniform strategy if, and only if, Player 0 has a winning
strategy in G(D,Γ, ψ) against Player 1.

The parity game G(D,Γ, ψ) is built up from the deterministic parity automaton Aψ
for ψ [VW86a; Pit07]. Its plays simulate runs of automaton Aψ on the sequence of growing
configurations along a play in the dependency arena. Positions in the parity games are
pairs composed of states of Aψ and buffers: a buffer β is a word vector (βa)a∈P with at
least one empty component. Formally, the set of buffers is:

{(βa)a∈P ∈ ({>,⊥}?)P | β b = ε for some b ∈ P}.

The buffer of a configuration is the “pending part” of the configuration, namely its greatest
suffix that is a buffer.

239

Partie , Chapter 6 – Dependency Matrices

Example 6.11. Consider the perfect-information matrix D9 below where a reachable con-
figuration C and its buffer are depicted.

0 1 2 3 4

D9 =


a b c

a · 2 3
b −3 · −1
c −4 0 ·

 C =
a
b
c

> >
> ⊥ ⊥ >
⊥ ⊥ > >

buffer

We say that a buffer is reachable if it is the buffer of some reachable configuration.
We can show that in a reachable configuration, the single player that can progress only
depends on the buffer β of this configuration, and we write aβ this player.

We denote by B the set of reachable buffers, by B∃ the set of buffers β in B where aβ ∈
Γ, and we let B def= B\B∃. Although our matrix is perfect-information, we remark that,
by Lemma 6.1, for the particular case of the empty buffer β0 (of the initial configuration),
Player aβ0 might be playing a long move. Moreover, it can be shown that the reachable
buffers are finitely many 1 and that their number is exponential in the values of the matrix
(this is because the longest component of a reachable buffer is given by the biggest absolute
value in the matrix).

We now informally describe the parity game with its two players Player 0 and Player 1.
As said, a position in the parity arena is pair (q, β) composed of a state q of the automaton
and a buffer β . Position (q, β) belongs to Player 0 whenever β ∈ B∃, otherwise β ∈ B∀
and it belongs to Player 1.

In a given position (q, β), only aβ progresses by choosing a move u ∈ {>,⊥}. We
consider the word vector obtained by concatenating u to aβ ’s component in buffer β , that
we write β+aβu in the following.

If β+aβu is still a buffer we update the position to (q, β+aβu). Note that this is always
the case for the initial buffer β0. Otherwise, the first letter of word vector β+aβu is all
filled with labels on every component, and thus can be read by automaton Aψ . We then
update the position to the new current state of Aψ and to the buffer obtained by removing
the first letter of β+aβu (which is a buffer as β is not initial).

Formally, the parity game is the following.

1. Actually the set of reachable configurations is a regular language that can be recognized by a word
automaton with buffers as states.

240

6.2. Resolving Dependency Matrices

Definition 6.6. Given a perfect-information matrix D, a coalition of players Γ and a
deterministic parity automaton Aψ = (Q, q0,Σ, δ, par) with Σ = {>,⊥}P , we define the
parity game G(D,Γ, ψ) = 〈P0, P1, p0,→, parG〉 where:

— P0 = Q×B∃ is the set of positions for Player 0,
— P1 = Q×B∀ is the set of positions for Player 1,
— p0 = (q0, β

0) is the initial position,
— (q, β)→ (q′, β ′) when there is a legitimate move u for aβ in the dependency arena

such that:

1. either β+aβu is a buffer and q = q′ and β ′ = β+aβu.

2. or q′ = δ(q, β+aβu[0]) and β ′ = β+aβu[1 :] and aβ is the only player such that
βaβ = ε;

— parG(q, β) = par(q), that is the priority of a position (q, β) is the priority of the
state q in the automaton Aψ.

Note that the number of positions in the parity game is the product of the number
of states in the automaton and the number of buffers, and that the game has the same
priorities as the automaton.

Proposition 6.3. (For a perfect-information matrix D) 〈D,Γ, ψ〉 is a positive instance
of EWS if, and only if, Player 0 has a winning strategy in G(D,Γ, ψ).

Proposition 6.3 gives us an upper bound complexity of EWS by the following algo-
rithm.

1. Compute the deterministic parity automaton Aψ (accepting the models of ψ);

2. Compute the parity game G(D,Γ, ψ);

3. Solve G(D,Γ, ψ).

In the following, the size of the matrix D is the quantity |D| = ∑
a6=b |D[a, b]|. Observe

that we can build Aψ by using the Vardi-Wolper construction [VW86a] with the Safra-
like translation from Büchi to parity acceptance condition [Pit07], so that parity game of
Step 2 has O(22|ψ| × 22|D|) positions and O(2|ψ|) priorities, hence a 2-Exptime decision
procedure for EWS.

The next subsection, we show that this algorithm is essentially optimal by a reduction
of the Church Synthesis problem.

241

Partie , Chapter 6 – Dependency Matrices

6.2.3 Reduction from the Church Synthesis problem

For the lower bound, we reduce the Church Synthesis for LTL properties [PR89;
Fin16]. Our Example 6.5 illustrates the reduction.

Definition 6.7. Given a coalition Γ, a Church matrix is a matrix D where for any two
players a 6= b, we have:

D[a, b] =

 0 if a /∈ Γ and b ∈ Γ
−1 otherwise

In essence, for Church matrices, players have the same knowledge about the current
configuration, allowing them to foresee their allies moves.

Observe that Church matrices may not be perfect-information, since the moves of every
player in a team (coalition or opponents) are concurrent. Nonetheless, we can “transform”
any Church matrix D into a linear sized perfect-information Round Robin matrix D′ (see
Example 6.2 and Definition 6.8) such that 〈D,Γ, ψ〉 is a positive instance of EWS if, and
only if, 〈D′,Γ, ψ〉 is a positive instance of EWS.

Definition 6.8. A Round Robin matrix is a matrix D such that there exists a total order
� over P, where

D[a, b] =

 −1 if a � b

0 otherwise

The total order � describes the order in which players will play (the player that is
minimal for � plays first). Remark that D[a, b] + D[b, a] = −1 for any two players a 6= b

then every Round Robin matrix is perfect-information (by Theorem 6.3). Given a Church
matrix, we can choose order � so that all players in the coalition play before their oppo-
nents.

By summing up, we polynomially reduce 2 a Church synthesis problem to a EWS
problem for a Church matrix and that is in turn linearly reduced to a EWS problem for
a Round Robin matrix. From this latter reductions, we can state the following.

Theorem 6.4. EWS for perfect-information matrices is 2-Exptime-complete in the size
of the LTL formula.

2. The size of the Church matrix is quadratic in the number of propositions of the Church synthesis
problem

242

6.2. Resolving Dependency Matrices

In the next subsection, we extend the class of perfect-information matrices to allow
some matrices with infinite values, while keeping the decidability of EWS for the resulting
superclass. In particular, QPTL matrices (see Example 6.3 on page 228) falls into this
class.

6.2.4 Perfect-Information Matrices with Possibly Infinite Val-
ues

The proof of Proposition 6.3 can be extended to QPTL formulas instead of LTL
formulas. The following example illustrates a procedure for matrices with infinite values
that yields a generalization of the perfect-information property (see Definition 6.9).

Example 6.12. Consider the following matrices where the latter is perfect-information:

D8 =


a b c

a · +∞ +∞
b −∞ · −1
c −∞ 0 ·

 and D′8 =


b c

b · −1
c 0 ·



According to D8, Player a depends on the whole labeling of Player b and Player c.
Given an LTL formula ψ and say coalition {a, b}, we can answer the EWS on instance
〈D8, {a, b}, ψ〉 as follows: we can first answer EWS for 〈D′8, {b},∃a ψ〉 (since D′8 is perfect-
information). If no, then return no for 〈D8, {a, b}, ψ〉. Otherwise, each outcome of the win-
ning strategy for Player 0 in 〈D′8, {b}, ∃a ψ〉 reflects a play ρ in 〈D′8, {b},∃a ψ〉. From play
ρ, exhibit a unique accepting run in A∃aψ. By tracing back this run inside Aψ, reconstruct
Player a’s response to the play ρ.

The procedure employed in Example 6.12 applies to arbitrary matrices as long as they
fulfill the Definition 6.9.

Definition 6.9. An arbitrary matrix D is perfect-information if for any a 6= b:
1. D[a, b] ∈ Z implies D[a, b] +D[b, a] = −1;
2. D[a, b] ∈ {−∞,+∞} implies D[a, b] = −D[b, a];
3. D[a, b] = +∞ implies D[a, c] ∈ {−∞,+∞}, for all c 6= a.

Observe that the procedure is in fact tower-exponential in the number of players with
+∞ dependencies. Moreover, since the validity problem for QPTL [SVW87] reduces to
EWS for arbitrary perfect-information matrices, we have the following.

243

Partie , Chapter 6 – Dependency Matrices

Theorem 6.5. EWS is non-elementary for arbitrary perfect-information matrices.

6.3 Conclusion

We presented the expressive framework of dependency matrices that can capture sev-
eral game settings such as concurrent and turn-based games [AHK02], (two-player) delay
games [KZ15; KZ17; TKH12], logic QPTL [SVW87], and Church Synthesis Problem
[Fin16].

We proved that the existence of a winning strategy for a coalition to achieve an LTL
formula (EWS) is undecidable for arbitrary matrices.

We then exhibited the subclass of perfect-information bounded-value matrices for
which the problem EWS is 2-Exptime-complete in the size of the formula.

Finally, we extended the class of perfect-information matrices with a narrow use of
infinite dependencies allowing to re-use known techniques of automata projection for
QPTL. For these matrices, EWS becomes non-elementary. Still our complexity analysis
of EWS needs beeing refine regarding the matrix parameter: we do not know yet the lower
bound complexity when the LTL formula is fixed.

A first track to continue this work concerns EWS for the whole class of bounded-
value matrices. We conjecture it is decidable, since, for a bounded-value matrix, each
k-indistinguishable equivalence class of a reachable configurations has a bounded size.

A second track regards our transformation of Church matrices into perfect-information
Round Robin ones. We believe that our approach can generalize to a class of bounded-
values matrices enlarging the one of Church matrices.

244

6.A. Proofs of Section 6.1

6.A Proofs of Section 6.1

Given a matrix D, we say that a player a is eventually blocked if there is a natural
k ∈ N such that for all reachable configurations C , we have |C(a)| ≤ k. First we prove
a lemma on non-negative cycles. Intuitively, this lemma helps to find a player that can
never progress in a non-negative cycle.

Given two vertices ci and cj of a non-negative cycle c = (c0, . . . , c|c|) (with c0 = c|c|),
we denote by wi the label r(ci, ci+1) and Wi,j the circular sum of the labels between ci

and cj:
— If i < j, then Wi,j = wi + · · ·+ wj−1;
— else, Wi,j = Wi,|c| +W0,j.

Remark that for every index i, Wi,i is the sum of all labels of the cycle. So, for a
non-negative cycle, Wi,i ≥ 0. Furthermore, we denote by W ?

i the minimal sum W ?
i =

minj(Wi,j).

Lemma 6.6. Given a matrix D with a non-negative cycle c = (c0, . . . , c|c|), for all player
ci in the cycle, for all reachable configuration C , we have the following.

|C(ci)| ≤ max(0,−W ?
i)

Proof. We do the proof by induction on reachable configuration.

(base case) In the initial configuration C0, the property is obvious.

(inductive case) Consider a configuration C ′ = ∆(C, ~u) for some joint move ~u and
a reachable configuration C such that |C(ci)| ≤ max(0,W ?

i) for every ci ∈ c.
Consider i ∈ J0, . . . , |c|K.

|C ′(ci)| = |C(ci)|+ αCci
= |C(ci)|+ max(0,mina6=ci(αCci,a))
≤ |C(ci)|+ max(0, αCci,ci+1

)
≤ |C(ci)|+ max(0, |C(ci+1)| −D[ci, ci+1]− |C(ci)|)
≤ max(|C(ci)|, |C(ci+1)| − wi)
≤ max(max(0,−W ?

i),max(−wi,−W ?
i+1 − wi))

The last inequality is obtained thanks to the inductive hypothesis. We now prove
that −W ?

i ≥ max(−wi,−W ?
i+1−wi). Since wi = Wi,i+1, we have −W ?

i ≥ −wi. Let
j0 ∈ J0, . . . , |c|K suh that W ?

i+1 = Wi+1,j0 . We now do a case study on j0.

245

Partie , Chapter 6 – Dependency Matrices

— if j0 = i+ 1, then, because c is non-negative, −W ?
i+1 − wi ≤ −wi.

— if j0 6= i+ 1, then, −W ?
i+1 − wi = −Wi,j0 ≤ −W ?

i

Then we have |C ′(ci)| ≤ max(0,−W ?
i).

We have proven the property by induction.

We now state a lemma to prove the other way around: that non-negative cycles are
necessary for a matrix not to be progressing.

Lemma 6.7. Given a bounded matrix D, if there is a player that is eventually blocked,
then every player is eventually blocked.

Proof. Consider a bounded matrixD where there is a player a and a natural number k ∈ Z
such that for every reachable configuration C , we have |C(a)| ≤ k. We prove by induction
on reachable configurations that for each Player b, we have |C(a)| ≤ max(0, k −D[b, a]).

(base case) In the initial configuration C0, the property is obvious.

(inductive case) Consider a configuration C ′ = ∆(C, ~u) for some joint move ~u and a
configuration C such that |C(a)| ≤ k−D[b, a] for every b. Then, for every Player b
we have the following.

|C ′(b)| = |C(b)|+ αCb

= |C(b)|+ max(0,minc6=b(αCb,c))
≤ |C(b)|+ max(0, αCb,a)
≤ |C(b)|+ max(0, |C(a)| −D[b, a]− |C(b)|)
≤ max(|C(b)|, |C(a)| −D[b, a])
≤ max(max(0, k −D[b, a]), k −D[b, a])
≤ max(0, k −D[b, a])

We have proven the property by induction.

Now, when all players are blocked, we use the next well known result of graph theory
to find our non-negative cycle.

Lemma 6.8. Given a directed graph G with no self loop, if every vertex is the source of
an edge, then, there is a cycle in the graph.

Now, we can give a proof for Proposition 6.2.

246

6.B. Proofs of Section 6.2

Proposition 6.2. A matrix D is progressing if, and only if, its dependency graph GD has
no non-negative-weighted cycle.

Proof. Given a matrix D with a non-negative cycle, then, by Lemma 6.6, we immediately
have that every player in the cycle is eventually blocked.

In a second time, consider a matrix D that is not progressing. Then, by Lemma 6.7,
for every player a, there is an integer ka such that for every reachable configuration
C , we have |C(a)| ≤ ka. Consider a configuration C such that every player is blocked.
Then, by immediate contradiction, for every player a, there is a player qa 6= a such that
αCa,qa ≤ 0 (otherwise, there would be a player that can progress). The graph G = 〈V,E〉
with the vertices V = P are the players of the matrix and the edges are defined as
E = {(a, qa) | a ∈ P}. Since, G is a directed graph with no self loop, by Lemma 6.8,
there is a cycle c = (c0, . . . , c|c|) in the graph thus, for every i ∈ J0, . . . , |c| − 1K, we have
ci+1 = qci and c|c| = c0. We have the following.

∑|c|−1
i=0 αCci,ci+1

= ∑|c|−1
i=0 |C(ci+1)| −D[ci; ci+1]− |C(ci)|

= −∑|c|−1
i=0 D[ci; ci+1]

Since αCci,ci+1
≤ 0 for every i ∈ J0, . . . , |c|K, we have proven that c is a non-negative

cycle.

6.B Proofs of Section 6.2

We now address the proof of Theorem 6.3. The first direction states that a perfect-
information matrix D satisfies that for every different Players a and b, we have D[a, b] +
D[b, a] = −1 and is presented in Section 6.2. We just need to prove Claim 6.1. Recall that
C is a reachable non-initial configuration and Player a is the player that can progress in
C . By Corollary 6.1, we have αCa = 1 and αCb = 0 for every player b 6= a. We consider a
player b 6= a.

Claim 6.1. αCa,b = 1 and αCb,a ≤ 0

Proof. First we prove that αCb,a ≤ 0. Remark that, in C , Player a has two legitimate moves:
> and⊥. Let C1 = ∆(C, (>)a) and C2 = ∆(C, (⊥)a). Note that C1 and C2 are reachable.
Toward contradiction, assume that αCb,a > 0. We prove the contradiction C1 b∼

0
D C2. We

have αCb,a = |C(a)| − (D[b, a] + |C(b)|) > 0. Then |C(a)| > D[b, a] + |C(b)|. Therefore, for

247

Partie , Chapter 6 – Dependency Matrices

all t ≤ D[b, a] + |C(b)|, we have t < |C(a)|. And because C1(a)[t] = C(a)[t] = C2(a)[t],
we conclude that C1 b∼

0
D C2.

Then we prove that αCa,b = 1. By definition, αCa,b ≥ 1. Toward contradiction, suppose
αCa,b > 1. Let C ′ be the configuration defined by C ′(c) = C(c) for all c 6= b and C ′(b) =
fliplast(C(b)). We have that C ′ is reachable and, by the same kind of reasoning than
previous point, we have C a∼0

D C ′, which is in contradiction with the assumption onD.

Let us prove the other direction, namely that a matrix D is perfect-information if
D[a, b] + D[b, a] = −1 for every pair of different Players a and b. Lemma 6.2 states that
the meta game of such a matrix is turn based. Now, we need to prove that two different
reachable configurations are not 0-indistinguishable. To do so, we first show two results on
0-indistinguishable relations. These results allow us to consider the "first time" at which
two configurations diverge while being 0-indistinguishable.

Lemma 6.9. Given a matrix D and two reachable configurations C and C ′, with (C k)k≤n
and (C ′k)k≤m such that Cn = C and C ′m = C ′. If n ≥ m then, for every Player a we
have |C(a)| ≥ |C ′(a)|.

Proof. The proof is done by induction on n−m.

(base case) If n = m, we do an induction on n.

(base case) If n = m = 0, then C = C ′ = C0, the property is immediate.

(induction) Suppose the property holds for some n,m ∈ N with n = m. Consider
C and C ′ reachable. There are (C k)k≤n+1 and (C ′k)k≤m+1 with Cn+1 = C and
C ′m+1 = C ′. By inductive hypothesis, we have |Cn(a)| = |C ′m(a)| for every
Player a. Then, αCna = αC

′n

a and so, |C(a)| = |C ′(a)|.

(induction) Suppose the property holds for some n,m ∈ N with n ≥ m. Consider C
and C ′ reachable: there are (C k)k≤n+1 and (C ′k)k≤m with Cn+1 = C and C ′m =
C ′. By inductive hypothesis, for every Player a |Cn(a)| ≥ |C ′m(a)| and because
|Cn+1(a)| ≥ |Cn(a)|, we have |Cn+1(a)| ≥ |C ′m(a)|.

We have proved the property by induction.

Lemma 6.10. Given a dependency matrix D, and two reachable configurations C and
C ′ that are non-initial, if C a∼0

D C ′, then, one of the following holds.

1. ∆−1(C) a∼0
D C ′

248

6.B. Proofs of Section 6.2

2. C a∼0
D ∆−1(C ′)

3. ∆−1(C) a∼0
D ∆−1(C ′)

Proof. Consider two reachable configurations C and C ′ such that C a∼0
D C ′. By definition,

|C(a)| = |C ′(a)|, and for every Player b 6= a, every t ≤ |C(a)|+D[a, b], we have C(b)[t] =
C ′(b)[t]. Since C and C ′ are reachable, there are two sequences of successive configurations
(C k)k≤n and (C ′k)k≤m such that Cn = C and C ′m = C ′. By symmetry we can assume
n ≥ m. We do a case study.

If n = m, then ∆−1(C) and ∆−1(C ′) are also reachable and their sequences have
the same length. By Lemma 6.9 for every player b, we have that |∆−1(C)(b)| =
|∆−1(C ′)(b)|. Immediately, |∆−1(C)(a)| = |∆−1(C ′)(a)| and because C a∼0

D C ′,
for every t ≤ |∆−1(C)(a)| + D[a, b] ≤ |C(a)| + D[a, b], we have ∆−1(C)(b)[t] =
C(b)[t] = C ′(b)[t] = ∆−1(C ′)(b)[t]. Hence, ∆−1(C) a∼0

D ∆−1(C ′)

If n > m then ∆−1(C) is reachable with a sequence of length n−1 ≥ m as ∆−1(C) =
Cn−1 then, by Lemma 6.9, for every player b, we have |∆−1(C)(b)| ≥ |C ′m(b)|.
And, because C a∼0

D C ′, we have |C(a)| = |C ′(a)|, then |∆−1(C)(a)| = |C ′(a)|.
Furthermore, for every t ≤ |∆−1(C)(a)|+D[a, b], if both ∆−1(C)(b)[t] and C ′(b)[t]
are defined, we have ∆−1(C)(b)[t] = C(b)[t] = C ′(b)[t]. Finally, we prove that
C(b)[t] is defined if and only if C ′(b)[t] is defined. By Lemma 6.9, we already have
that |∆−1(C)(b)| ≥ |C ′m(b)|, and if ∆−1(C)(b)[t] is defined, so is C(b)[t]C(b)[t],
and by hypothesis, so is C ′m(b)[t].

We have proved the property.

We now prove the theorem.

Theorem 6.3. A matrix D is perfect-information if and only if for all players a and b,
with a 6= b we have D[a, b] +D[b, a] = −1.

Proof. The first direction is presented in Section 6.2. For the other direction, consider D
such that D[a, b]+D[b, a] = −1. By Lemma 6.2, there is only one player that can progress
in any reachable configuration. Is left to prove that for any two reachable configurations C
and C ′ with C 6= C ′, for every player a, we have C 6 a∼0

D. The proof is done by contradiction.
Suppose that there are two different reachable configurations C1 and C2 with

C1 a∼0
D C2. Then, by Lemma 6.10, we can assume that ∆−1(C1) = ∆−1(C2) = C . Let

b the player that can progress in C . Then, for all c 6= b, we have C(c) = C1(c) = C2(c)

249

Partie , Chapter 6 – Dependency Matrices

and, for all t < |C(b)|, we have C(b)[t] = C1(b)[t] = C2(b)[t]. Because C1 6= C2, then we
necessarily have the following.

C1(b)[t0] 6= C2(b)[t0] for some t0 ∈ {|C(b)| − αCb , |C(b)| − 1} (6.2)

Since αCb,a ≥ αCb , we have |C(a)|−(D[b, a]+|C(b)|) ≥ αCb . As Player a does not progress
in C , we obtain |C1(a)| − (D[b, a] + |C(b)|) ≥ αCb . By hypothesis D[b, a] = −1−D[a, b],
we have |C1(a)|+ 1 +D[a, b]− |C(b)| ≥ αCb and because |∆−1(C1)(b)|+αCb = |C1(b)|, we
have:

|C1(a)|+D[a, b] ≥ |C1(b)| − 1 (6.3)

Finally, since C1 a∼0
D C2, we have that C1(b)[t] = C2(b)[t] for every t ≤ |C1(a)|+D[a, b].

In particular, thanks to Equation (6.3), we can take t = t0, and we have C1(b)[t0] =
C2(b)[t0], in contradiction with Equation (6.2).

6.C Reduction from Church matrices to Round
Robin matrices

We now prove the claim that Church matrices can be reduced to Round Robin matri-
ces.

From a Church matrix D for a coalition Γ, we define a Round Robin matrix Rob(D)
as follows. We take an arbitrary order � on the players such that for every Player a ∈ Γ
and every Player b /∈ Γ, it holds a � b. Rob(D) is the Round Robin matrix for this order.

Lemma 6.11. Given an LTL formula ψ and a Church matrix D, there is a winning joint
D-uniform strategy iff there is a winning joint strategy Rob(D).

Proof. Suppose that there is a winning joint strategy J for Γ that is Rob(D)-uniform.
Only the moves of players of the coalition can make J non-D-uniform. But, given the
joint strategy for the whole coalition, we cannot reach two configurations that are equal
on everything except a labeling of a player of the coalition because our strategies are
deterministic. Thus, in practice, J is D-uniform.

Conversely, consider two configurations C1 and C2 such that C1 a∼Rob(D) C
2 for some

a ∈ Γ. We denote by k the length of C1(a). Then for every b ∈ P , if a � b, we have
C1(b)[: k − 1] = C2(b)[: k − 1] and otherwise, C1(b)[: k] = C2(b)[: k]. Because we chose

250

6.D. Proof of Theorem 6.5

the order so that a � b for every a ∈ Γ and b /∈ Γ, we have that C1 a∼D C2. Thus every
strategy D-uniform is Rob(D)-uniform.

6.D Proof of Theorem 6.5

Theorem 6.5. EWS is non-elementary for arbitrary perfect-information matrices.

Proof. Given a dependency matrix D, we decompose the set of Players P as follows.

P∞ := {a ∈ P | There is b ∈ P such that D[a, b] = +∞}
PZ := {a ∈ P | For all b ∈ P it holds D[a, b] < +∞}

We reason by induction on the size of P∞. The base case is |P∞| = 0. In this case, we
can apply Theorem 6.4.

Suppose that we can decide the EWS problem for matrices with |P∞| = n for some
n ∈ N. We now prove that we can decide the problem for matrices with |P∞| = n + 1.
Consider a matrix D such that |P∞| = n+ 1, a coalition Γ and a QPTL formula ϕ. We
define an order � on P∞ that is given as follows. a � b iff for all c ∈ P , if D[b, c] = +∞,
then D[a, c] = +∞. Intuitively, a � b means that Player a is to play after Player b.
Consider Player a, the smallest player for this order. For all players b different than a we
have D[a, b] = +∞. We now construct a new instance of the problem by projecting out
Player a.

If (a ∈ Γ) we state Γ′ = Γ\{a} and ϕ′ = ∃a. ϕ. By inductive hypothesis, we can
decide whether there is a joint strategy winning for the entry 〈D′,Γ′, ϕ′〉. Let us
prove that 〈D′,Γ′, ϕ′〉 is a positive instance iff 〈D,Γ, ϕ〉 is a positive instance. If
there is a joint strategy J′ for the coalition winning for the entry 〈D′,Γ′, ϕ′〉, then,
for every play (Cn

1)n, . . . , (Cn
k)n in the meta game of D′, the assignment χ which

is the limit of that play satisfy 〈D′,Γ′, ϕ′〉. Therefore, there is an infinite word uχ
such that χ[a 7→ uχ] satisfies ϕ′. Then we define the joint strategy J as follows. For
every Player b 6= a, we set Jb = J′b. For Player a, consider a configuration C such
that αCa > 0. Because of the dependencies of Player a, it holds that |C(b)| = +∞
for every Player b 6= a. Let χ be the temporal assignment on P\{a} defined by
C . We set Ja(C) = uχ . This joint strategy is winning. The converse follows the
same idea: if there is J winning for the entry (D,Γ, ϕ) then, the joint strategy
J′ = J�P\{a} is winning for the entry (D′,Γ′, ϕ′).

251

Partie , Chapter 6 – Dependency Matrices

If (a /∈ Γ) we state ϕ′ = ∀a. ϕ. We then decide the instance 〈D′,Γ, ϕ′〉. Joint strategies
for the coalition translate naturally between the two instances. If J′ is winning for
〈D′,Γ, ϕ′〉, then every play in the outcome of J′ satisfies ∀aϕ. Then, by defining
J(C) = J′(C �P\a) we define a wining strategy for 〈D,Γ, ϕ〉. The converse is similar.

252

CONCLUSION AND FUTURE WORK

In this very last section, we take an opportunity to recap our contribution and ad-
dress what we believe are relevant research directions to be undertaken to strengthen the
metatheory of Hyperteam semantics.

We recall that the original target of our work was to fix the realizability problem in
strategy logic (SL). In the original semantics of SL, alternating quantifiers are treated in
a classical way: the newly quantified strategy depends on the entirety of the previously
quantified ones. This dependency is far to coarse to guarantee the finer dependency un-
derlying realizability. The overall challenge is to master dependency specifications, and
we ended up with hyperteams, a new mathematical structure that yields subtle ways of
handling many sorts of dependencies.

Hyperteam semantics We recall that a hyperteam is a set of sets of assignments:
this two-level structure inherits the concept of team introduced by [Hod97b] and widely
considered in classical logic (see for instance [MSS11; Vää07]).

What a hyperteam provides, as opposed to a team, is the ability to represent the
viewpoints of both existential and universal players. Indeed, hyperteams can be dualized,
a crucial operation to obtain compositional semantics of logical statements, and that opens
the door to inductive reasoning. Tightly coupled with the dualization, we defined cross-
referenced hyperteam semantics to handle quantifiers and Boolean connectives, for many
logical languages: first-order logic (Chapter 3), quantified temporal logic (Chapter 4), and
plan logic (Chapter 5).

Along with hyperteam semantics, we associated a more traditional semantics that re-
sembles second-order logic-like semantics, where quantifiers range over response functions.
Note that this association is somehow agnostic of a particular underlying logical language.

Hyperteam semantics should not be confused with multiteam semantics [DHKMV18],
which uses multisets of assignments instead of mere sets of assignments. This shift is
useful for generalizing the application of team semantics to quantitative considerations.
Another closely related framework is the one of polyteam semantics [HKV20], where a
set of teams is used instead of a single team. Although a polyteam formally resembles

253

a hyperteam, the usage is entirely different, as no dualization operation is defined for
polyteams. In fact, their goal is to extend the applicability of team semantics to address
embedded dependencies.

Open problem on hyperteam semantics. Independently of any logical language,
one may legitimately wonder whether or not operations on hyperteams can be defined to
avoid the use of the dual semantics. Without any dependency, a cylindrification operation
(see Section 1.2.1) should be sufficient. We envision a way to extend this operation to
handle dependencies leading to what we call a constrained cylindrification, and show it
is equivalent to the sequence of operations dualization-extension-dualization used in our
hyperteam semantics (Section 2.3).

We now keep on with the logical languages hyperteam semantics has been applied to.

ADIF. We considered simple dependencies in the same vein as
dependence/independence-friendly logic, where teams have already proven useful
for defining compositional semantics to reason with imperfect information. With hy-
perteam semantics, we introduced alternating dependence/independence-friendly logic
(ADIF), which allows for meaningful constraints on both existential and universal
quantifiers. We proved that ADIF is equipotent with SO and Team Logic and defined a
game-theoretic semantics for ADIF sentences in prenex form.

Open problem for ADIF. The prenex assumption on ADIF formulas seems hard
to alleviate, and we do not know yet if every formula enjoys a prenex normal form (i.e.
whether it is equivalent to one in prenex form). We conjecture it is not the case, as our
attempt to conduct an inductive approach fails because of a weird interplay between the
semantics of Boolean operators and the dependency specifications. To fix this, we de-
fined restrained operators, in essence Boolean operators subject to the same dependency
constraints as quantified variables. It appeared that the constrained cylindrification op-
eration, mentioned earlier, could be the missing piece to conclude, further motivating
the need to prove the constrained cylindrification adequacy with respect to our original
hyperteam semantics.

GFG-QPTL For the quantified propositional temporal logic (QPTL), we enforced
quantified (propositional) variables to remain independent of the future of the computa-
tion. The resulting logic, good-for-game QPTL (GFG-QPTL), already displays a flavor

254

of strategic reasoning since quantifications over a proposition amounts to quantifying
over a strategy. We proved that, in GFG-QPTL, quantifiers can commute by adapting
their dependency constraints, making every formula equivalent to one with only a single
alternation of quantifiers.

Future work on temporal logic. Other temporal logics can be considered and may
lead to interesting results. For example, one could explore branching-time logics, such
as quantified computation tree logic [LM14], or those with fix-point operators, such as
quantified µ-calculus [Pin07].

Realizable strategic reasoning in PL Instead of directly applying the hyperteam
semantics approach to strategy logic (SL) that quantifies over strategies, we leveraged
the insights gained from GFG-QPTL and chose to focus on plans. While a strategy
is a branching-time object (namely, a function that maps a history in the game to an
action), a plan is a linear-time object (namely, a sequence of actions). The branching-time
nature of strategies is recovered over plans through hyperteam semantics together with
the tying operator we introduced. Recall that this operator filters out plans that cannot
form part of a common strategy. This approach led us to defining plan logic (PL). We
developed an associated game-theoretic semantics for PL, which turns out to be central
for translating the conjunctive and disjunctive fragments of SL with timeline semantics
(an ad hoc semantics for enforcing realizability [GBM20]) into PL. This game semantics
is precious to solving the model-checking problem for PL with an 2-Exptime procedure.

Future work on PL. The translation of SL into PL applies only to the conjunctive
and disjunctive fragments of SL. However, Gardy et al. [GBM20] managed to enforce
realizability with a 2-Exptime model checking procedure for a slightly larger fragment
of SL, named SL[EG]. Also they established that SL[EG] is the largest fragment one
can expect. We conjecture that we have a way to translate the full SL[EG] fragment into
PL.

Dependency matrices. We addressed a multiplayer extension of delay games by means
of a dependency matrix that contains all the (possibly infinite) delay specifications be-
tween any two players. We introduced the dependency arena, where players must play
when their dependencies are fulfilled, and we captured the uniformity property that a
matrix imposes on the players’ strategies. Even when considering only LTL formulas to

255

specify winning plays, solving the game defined by a matrix is undecidable. We exhibited
a restriction on matrices that ensures a perfect-information game, sufficient to recover
decidability.

Future work on dependency matrices. First, we conjecture that the game can be
solved when all the considered delays are finite, even for imperfect information matrices.
Second, one could design a logic with hyperteam semantics where strategy quantifiers are
parameterized by a row of the dependency matrix. A full study of the obtained formalism
seems worthwhile as the first logic to reason about “quantitative” dependencies.

About the idea of dependency. Since many more settings can benefit from using
dependency that underlies complex system behavior in practice. We believe Hyperteam
semantics to be a promising tool that can adapt to reasoning about more general modal
logic domains like knowledge, belief, etc.

256

BIBLIOGRAPHY

[ABM19] E. Acar, M. Benerecetti, and F. Mogavero, « Satisfiability in Strategy
Logic Can Be Easier than Model Checking », in: AAAI’19, AAAI Press,
2019, pp. 2638–2645.

[AHK02] R. Alur, T.A. Henzinger, and O. Kupferman, « Alternating-Time Tempo-
ral Logic », in: JACM 49.5 (2002), pp. 672–713.

[AHK97] R. Alur, T.A. Henzinger, and O. Kupferman, « Alternating-Time Tempo-
ral Logic », in: FOCS’97, IEEECS, 1997, pp. 100–109.

[BBDM23a] D. Bellier et al., « Alternating (In)Dependence-Friendly Logic », in: APAL
174.10 (2023), 103315:1–58.

[BBDM23b] D. Bellier et al., « Good-for-Game QPTL: An Alternating Hodges Seman-
tics », in: TOCL 24.1 (2023), 4:1–57.

[Bee+24] Maurice H. ter Beek et al., « Formal Methods in Industry », in: Form. Asp.
Comput. (2024), Just Accepted, issn: 0934-5043, doi: 10.1145/3689374,
url: https://doi.org/10.1145/3689374.

[Ber66] Robert Berger, The undecidability of the domino problem, 66, American
Mathematical Soc., 1966.

[BG86] A. Blass and Y. Gurevich, « Henkin Quantifiers and Complete Problems »,
in: APAL 32.1 (1986), pp. 1–16.

[BGM15] P. Bouyer, P. Gardy, and N. Markey, « Weighted Strategy Logic with
Boolean Goals Over One-Counter Games », in: FSTTCS’15, LIPIcs 45,
Leibniz-Zentrum fuer Informatik, 2015, pp. 69–83.

[BHM09] Armin Biere, Marijn Heule, and Hans van Maaren, Handbook of satisfia-
bility, vol. 185, IOS press, 2009.

[BK08] Christel Baier and Joost-Pieter Katoen, Principles of model checking, MIT
press, 2008.

257

https://doi.org/10.1145/3689374
https://doi.org/10.1145/3689374

[BL19] U. Boker and K. Lehtinen, « Good for Games Automata: From Nondeter-
minism to Alternation », in: CONCUR’19, vol. 140, LIPIcs 140, Leibniz-
Zentrum fuer Informatik, 2019, 19:1–19.

[BMM13] M. Benerecetti, F. Mogavero, and A. Murano, « Substructure Temporal
Logic », in: LICS’13, IEEECS, 2013, pp. 368–377.

[BMM15] M. Benerecetti, F. Mogavero, and A. Murano, « Reasoning About Sub-
structures and Games », in: TOCL 16.3 (2015), 25:1–46.

[BPS22] Dylan Bellier, Sophie Pinchinat, and François Schwarzentruber, « Depen-
dency Matrices for Multiplayer Strategic Dependencies », in: 42nd IARCS
Annual Conference on Foundations of Software Technology and Theoret-
ical Computer Science (FSTTCS 2022), Schloss-Dagstuhl-Leibniz Zen-
trum für Informatik, 2022.

[Bra13] J. Bradfield, « Team Building in Dependence », in: CSL’13, LIPIcs 23,
Leibniz-Zentrum fuer Informatik, 2013, pp. 116–128.

[Bus98a] S.R. Buss, « An Introduction to Proof Theory », in: Handbook of Proof
Theory, Elsevier, 1998, pp. 1–78.

[Bus98b] S.R. Buss, Handbook of Proof Theory, Studies in Logic and the Founda-
tions of Mathematics 137, Elsevier, 1998.

[CFHH19] N. Coenen et al., « The Hierarchy of Hyperlogics », in: LICS’19, IEEECS,
2019, pp. 1–13.

[CFKMRS14] M.R. Clarkson et al., « Temporal Logics for Hyperproperties », in:
POST’14, LNCS 8414, Springer, 2014, pp. 265–284.

[CFLMZ21] Mingshuai Chen et al., « Indecision and delays are the parents of fail-
ure—taming them algorithmically by synthesizing delay-resilient con-
trol », in: Acta Informatica 58.5 (2021), pp. 497–528.

[CHP10] K. Chatterjee, T.A. Henzinger, and N. Piterman, « Strategy Logic », in:
IC 208.6 (2010), pp. 677–693.

[Chu56] A. Church, Introduction to Mathematical Logic, Princeton Mathematical
Series 17, Princeton University Press, 1956.

[CS10] Michael R Clarkson and Fred B Schneider, « Hyperproperties », in: Jour-
nal of Computer Security 18.6 (2010), pp. 1157–1210.

258

[Dam99] D. Dams, « Flat Fragments of CTL and CTL*: Separating the Expressive
and Distinguishing Powers », in: LJIGPL 7.1 (1999), pp. 55–78.

[DGL16a] Stéphane Demri, Valentin Goranko, and Martin Lange, Temporal logics
in computer science: finite-state systems, vol. 58, Cambridge University
Press, 2016.

[DGL16b] Stéphane Demri, Valentin Goranko, and Martin Lange, Temporal Logics in
Computer Science: Finite-State Systems, Cambridge Tracts in Theoretical
Computer Science, Cambridge University Press, 2016.

[DHKMV18] Arnaud Durand et al., « Approximation and dependence via multiteam se-
mantics », in: Annals of Mathematics and Artificial Intelligence 83 (2018),
pp. 297–320.

[EC82] E Allen Emerson and Edmund M Clarke, « Using branching time temporal
logic to synthesize synchronization skeletons », in: Science of Computer
programming 2.3 (1982), pp. 241–266.

[EG22] S. Enqvist and V. Goranko, « The Temporal Logic of Coalitional Goal
Assignments in Concurrent Multiplayer Games », in: TOCL 23.4 (2022),
21:1–58.

[EH86] E Allen Emerson and Joseph Y Halpern, « “Sometimes” and “not never”
revisited: on branching versus linear time temporal logic », in: Journal of
the ACM (JACM) 33.1 (1986), pp. 151–178.

[EJ88] E.A. Emerson and C.S. Jutla, « The Complexity of Tree Automata and
Logics of Programs (Extended Abstract) », in: FOCS’88, IEEECS, 1988,
pp. 328–337.

[EJ91] E.A. Emerson and C.S. Jutla, « Tree Automata, muCalculus, and Deter-
minacy », in: FOCS’91, IEEECS, 1991, pp. 368–377.

[EJS93] E.A. Emerson, C.S. Jutla, and A.P. Sistla, « On Model-Checking for Frag-
ments of muCalculus », in: CAV’93, LNCS 697, Springer, 1993, pp. 385–
396.

[End70] H.B. Enderton, « Finite Partially-Ordered Quantifiers », in: MLQ 16.8
(1970), pp. 393–397.

[FG17] P. Fritz and J. Goodman, « Counting Incompossibles », in: Mind 126.504
(2017), pp. 1063–1108.

259

[FH16] B. Finkbeiner and C. Hahn, « Deciding Hyperproperties », in: CON-
CUR’16, LIPIcs 59, Leibniz-Zentrum fuer Informatik, 2016, 13:1–14.

[Fin16] Bernd Finkbeiner, « Synthesis of Reactive Systems. », in: Dependable
Software Systems Engineering 45 (2016), pp. 72–98.

[Fre01] T. French, « Decidability of Quantified Propositional Branching Time
Logics », in: AAI’01, LNCS 2256, Springer, 2001, pp. 165–176.

[FRS15] B. Finkbeiner, M.N. Rabe, and C. Sánchez, « Algorithms for Model
Checking HyperLTL and HyperCTL* », in: CAV’15, LNCS 9206,
Springer, 2015, pp. 30–48.

[FS10] B. Finkbeiner and S. Schewe, « Coordination Logic », in: CSL’10, LNCS
6247, Springer, 2010, pp. 305–319.

[FWZ23] M. Fränzle, S. Winter, and M. Zimmermann, « Strategies Resilient to
Delay: Games under Delayed Control vs. Delay Games. », in: GandALF
390 (2023), pp. 220–235.

[FZ16] B. Finkbeiner and M. Zimmermann, « The First-Order Logic of Hyper-
properties », in: STACS’17, LIPIcs 66, Leibniz-Zentrum fuer Informatik,
2016, 30:1–14.

[Gal12] P. Galliani, « Inclusion and Exclusion Dependencies in Team Semantics
- On Some Logics of Imperfect Information », in: APAL 163.1 (2012),
pp. 68–84.

[GBM18] P. Gardy, P. Bouyer, and N. Markey, « Dependences in Strategy Logic »,
in: STACS’18, LIPIcs 96, Leibniz-Zentrum fuer Informatik, 2018, 34:1–15.

[GBM20] P. Gardy, P. Bouyer, and N. Markey, « Dependences in Strategy Logic »,
in: TCS 64.3 (2020), pp. 467–507.

[GHW13] J. Gutierrez, P. Harrenstein, and M. Wooldridge, « Iterated Boolean
Games », in: IJCAI’13, IJCAI’ & AAAI’, 2013, pp. 932–938.

[GHW15] J. Gutierrez, P. Harrenstein, and M. Wooldridge, « Iterated Boolean
Games », in: IC 242 (2015), pp. 53–79.

[Grä+05] E. Grädel et al., Finite Model Theory and Its Applications, Texts in The-
oretical Computer Science, Springer, 2005.

260

[GS53] D. Gale and F.M. Stewart, « Infinite Games with Perfect Information »,
in: Contributions to the Theory of Games (vol. II). Vol. 28, Princeton
University Press, 1953, pp. 245–266.

[GTW02] E. Grädel, W. Thomas, and T. Wilke, Automata, Logics, and Infinite
Games: A Guide to Current Research, LNCS 2500, Springer, 2002.

[GV13] E. Grädel and J.A. Väänänen, « Dependence and Independence », in: SL
101.2 (2013), pp. 399–410.

[GV14] V. Goranko and S. Vester, « Optimal Decision Procedures for Satisfia-
bility in Fragments of Alternating-time Temporal Logics », in: AIML’14,
College Publications, 2014, pp. 234–253.

[HA28] D. Hilbert and W. Ackermann, Grundzüge der Theoretischen Logik, Die
Grundlehren der Mathematischen Wissenschaften, Springer, 1928.

[Har79] D. Harel, « Characterizing Second Order Logic with First Order Quanti-
fiers », in: MLQ 25.25-29 (1979), pp. 419–422.

[Hei67] J. van Heijenoort, From Frege to Gödel: A Source Book in Mathematical
Logic, 1879-1931, Harvard University Press, 1967.

[Hel89] L. Hella, « Definability Hierarchies of Generalized Quantifiers », in: APAL
43.3 (1989), pp. 235–271.

[Hen61] L. Henkin, « Some Remarks on Infinitely Long Formulas », in: IM’61,
Pergamon Press, 1961, pp. 167–183.

[Hin96] J. Hintikka, The Principles of Mathematics Revisited, CUP, 1996.

[HKV20] Miika Hannula, Juha Kontinen, and Jonni Virtema, « Polyteam seman-
tics », in: Journal of Logic and Computation 30.8 (2020), pp. 1541–1566.

[Hod97a] Wilfrid Hodges, « Compositional semantics for a language of imperfect
information », in: Logic Journal of the IGPL 5.4 (1997), pp. 539–563.

[Hod97b] Wilfrid Hodges, « Some strange quantifiers », in: Structures in logic and
computer science (1997), pp. 51–65.

[HP06] T.A. Henzinger and N. Piterman, « Solving Games Without Determiniza-
tion », in: CSL’06, LNCS 4207, Springer, 2006, pp. 395–410.

[HR76] J. Hintikka and V. Rantala, « A New Approach to Infinitary Languages »,
in: AML 10.1 (1976), pp. 95–115.

261

[HS89] J. Hintikka and G. Sandu, « Informational Independence as a Semantical
Phenomenon », in: ICLMPS’89, Elsevier, 1989, pp. 571–589.

[HS97] J. Hintikka and G. Sandu, « Game-Theoretical Semantics », in: Handbook
of Logic and Language, North-Holland & Elsevier, 1997, pp. 361–410.

[HV94] H. Heikkilä and J.A. Väänänen, « Reflection of Long Game Formulas »,
in: MLQ 40.3 (1994), pp. 381–392.

[Imm81] N. Immerman, « Number of Quantifiers is Better Than Number of Tape
Cells », in: JCSS 22.3 (1981), pp. 384–406.

[Imm99] N. Immerman, Descriptive Complexity, Graduate Texts in Computer Sci-
ence, Springer, 1999.

[Kai11] L. Kaiser, Logic and Games on Automatic Structures - Playing with Quan-
tifiers and Decompositions, LNCS 6810, Springer, 2011.

[KM95] M. Krynicki and M. Mostowski, « Henkin Quantifiers », in: Quantifiers:
Logics, Models and Computation, Volume I, Springer, 1995, pp. 193–262.

[KMVZ17] Andreas Krebs et al., « Team semantics for the specification and verifica-
tion of hyperproperties », in: arXiv preprint arXiv:1709.08510 (2017).

[KN01] B. Khoussainov and A. Nerode, Automata Theory and Its Applications,
Birkhauser, 2001.

[KN09] J. Kontinen and V. Nurmi, « Team Logic and Second-Order Logic », in:
WOLLIC’09, LNCS 5514, Springer, 2009, pp. 230–241.

[Kni02] John C Knight, « Safety critical systems: challenges and directions », in:
Proceedings of the 24th international conference on software engineering,
2002, pp. 547–550.

[Kol85] P.G. Kolaitis, « Game Quantification », in: Handbook of Model-Theoretic
Logics, Springer, 1985, pp. 365–421.

[Kuh50] H.W. Kuhn, « Extensive Games », in: PNAS 36.1 (1950), pp. 570–576.

[Kuh53] H.W. Kuhn, « Extensive Games and the Problem of Information », in:
Contributions to the Theory of Games (vol. II). Vol. 28, Princeton Uni-
versity Press, 1953, pp. 193–216.

[KV09] J. Kontinen and J.A. Väänänen, « On Definability in Dependence Logic »,
in: JLLI 18.3 (2009), pp. 317–332.

262

[KVBSV13] Timothy Kam et al., Synthesis of finite state machines: functional opti-
mization, Springer Science & Business Media, 2013.

[KVW00] O. Kupferman, M.Y. Vardi, and P. Wolper, « An Automata Theoretic
Approach to Branching-Time Model Checking », in: JACM 47.2 (2000),
pp. 312–360.

[KVW01] Orna Kupferman, Moshe Y Vardi, and Pierre Wolper, « Module check-
ing », in: Information and Computation 164.2 (2001), pp. 322–344.

[KZ15] F. Klein and M. Zimmermann, « What are strategies in delay games?
Borel determinacy for games with lookahead », in: arXiv preprint
arXiv:1504.02627 (2015).

[KZ17] F. Klein and M. Zimmermann, « How Much Lookahead is Needed to Win
Infinite Games? », in: Logical Methods in Computer Science 12 (2017).

[LM14] F. Laroussinie and N. Markey, « Quantified CTL: Expressiveness and
Complexity », in: LMCS 10.4 (2014), pp. 1–45.

[Mar75] A.D. Martin, « Borel Determinacy », in: AM 102.2 (1975), pp. 363–371.

[Mar85] A.D. Martin, « A Purely Inductive Proof of Borel Determinacy », in:
RT’82, SPM’42, AMS and ASL, 1985, pp. 303–308.

[Maz04] Laurent Mazaré, « Using unification for opacity properties », in: Proceed-
ings of the 4th IFIP WG1 7 (2004), pp. 165–176.

[MK20] Ankur Maurya and Divya Kumar, « Reliability of safety-critical systems:
A state-of-the-art review », in: Quality and Reliability Engineering Inter-
national 36.7 (2020), pp. 2547–2568.

[MMPV14] Fabio Mogavero et al., « Reasoning about strategies: On the model-
checking problem », in: ACM Transactions on Computational Logic
(TOCL) 15.4 (2014), p. 34.

[MMPV17] F. Mogavero et al., « Reasoning About Strategies: On the Satisfiability
Problem », in: LMCS 13.1:9 (2017), pp. 1–37.

[Mos84] A.W. Mostowski, « Regular Expressions for Infinite Trees and a Standard
Form of Automata », in: SCT’84, LNCS 208, Springer, 1984, pp. 157–168.

[Mos91] A.W. Mostowski, Games with Forbidden Positions, tech. rep., University
of Gdańsk, Gdańsk, Poland, 1991.

263

[MSS11] A.L. Mann, G. Sandu, and M. Sevenster, Independence-Friendly Logic -
A Game-Theoretic Approach, CUP, 2011.

[Neu28] J. von Neumann, « Zur Theorie der Gesellschaftsspiele », in: MA 100.1
(1928), pp. 295–320.

[NM44] J. von Neumann and O. Morgenstern, Theory of Games and Economic
Behavior, Princeton University Press, 1944.

[Pin07] Sophie Pinchinat, « A Generic Constructive Solution for Concurrent
Games with Expressive Constraints on Strategies », in: Automated Tech-
nology for Verification and Analysis, 5th International Symposium, ATVA
2007, Tokyo, Japan, October 22-25, 2007, Proceedings, ed. by Kedar S.
Namjoshi et al., vol. 4762, Lecture Notes in Computer Science, Springer,
2007, pp. 253–267, doi: 10 . 1007 / 978 - 3 - 540 - 75596 - 8 \ _19, url:
https://doi.org/10.1007/978-3-540-75596-8_19.

[Pit06] N. Piterman, « From Nondeterministic Buchi and Streett Automata to
Deterministic Parity Automata », in: LICS’06, IEEECS, 2006, pp. 255–
264.

[Pit07] Nir Piterman, « From nondeterministic Büchi and Streett automata to
deterministic parity automata », in: Logical Methods in Computer Science
3 (2007).

[Pnu77] Amir Pnueli, « The temporal logic of programs », in: 18th Annual Sym-
posium on Foundations of Computer Science (sfcs 1977), IEEE, 1977,
pp. 46–57.

[PP04] D. Perrin and J. Pin, Infinite Words, Pure and Applied Mathematics,
Elsevier, 2004.

[PR89] A. Pnueli and R. Rosner, « On the Synthesis of a Reactive Module », in:
POPL’89, ACM, 1989, pp. 179–190.

[PRA01] Gary Peterson, John Reif, and Salman Azhar, « Lower bounds for multi-
player noncooperative games of incomplete information », in: Computers
& Mathematics with Applications 41.7-8 (2001), pp. 957–992.

[SH01] G. Sandu and J. Hintikka, « Aspects of Compositionality », in: JLLI 10.1
(2001), pp. 49–61.

264

https://doi.org/10.1007/978-3-540-75596-8_19
https://doi.org/10.1007/978-3-540-75596-8_19

[Sha91] S. Shapiro, Foundations Without Foundationalism: A Case for Second-
Order Logic, Oxford University Press, 1991.

[Sin94] Munindar P Singh, Multiagent systems, Springer, 1994.

[Sis83] A.P. Sistla, « Theoretical Issues in the Design and Verification of Dis-
tributed Systems », PhD thesis, Harvard University, Cambridge, MA
USA, 1983.

[Sto76] L.J. Stockmeyer, « The Polynomial-Time Hierarchy », in: TCS 3.1
(1976), pp. 1–22.

[SVW87] A Prasad Sistla, Moshe Y Vardi, and Pierre Wolper, « The complemen-
tation problem for Büchi automata with applications to temporal logic »,
in: Theoretical Computer Science 49.2-3 (1987), pp. 217–237.

[Tar36] A. Tarski, « The Concept of Truth in Formalized Languages », in: Logic,
Semantics, Metamathematics, Oxford University Press, 1936, pp. 152–
278.

[Tar44] A. Tarski, « The Semantic Conception of Truth: and the Foundations of
Semantics », in: PPR 4.3 (1944), pp. 341–376.

[TKH12] Wolfgang Thomas, Lukasz Kaiser, and Michael Holtmann, « Degrees of
Lookahead in Regular Infinite Games », in: Logical Methods in Computer
Science 8 (2012).

[Vää07] J.A. Väänänen, Dependence Logic: A New Approach to Independence
Friendly Logic, vol. 70, London Mathematical Society Student Texts,
CUP, 2007.

[VW86a] M.Y. Vardi and P. Wolper, « An Automata-Theoretic Approach to Auto-
matic Program Verification », in: LICS’86, IEEECS, 1986, pp. 332–344.

[VW86b] M.Y. Vardi and P. Wolper, « Automata-Theoretic Techniques for Modal
Logics of Programs », in: JCSS 32.2 (1986), pp. 183–221.

[Wal70] W.J. Walkoe, « Finite Partially-Ordered Quantification », in: JSL 35.4
(1970), pp. 535–555.

[Wol55] P. Wolfe, « The Strict Determinateness of Certain Infinite Games », in:
PJM 5 (1955), pp. 841–847.

265

[Zie98] W. Zielonka, « Infinite Games on Finitely Coloured Graphs with Applica-
tions to Automata on Infinite Trees », in: TCS 200.1-2 (1998), pp. 135–
183.

266

INDEX

ADF, 83
ADIF, 81, 82

Semantic relation, 85
Syntax, 82

AIF, 83
CGS, 184

Action, 184
Action profile, 184
Agent, 184
Initial position, 184
Label function, 184
Position, 184
Transition, 184

DIF, 30
DFL, 29
IFL, 30

FO Structure, 25
LTL, 127

LTL assignment, 127
QPTL, 128
SL

Boolean goal, 185
Conjunctive goal, 186
Disjuncitve goal, 186
One goal, 186
Semantics, 185
Timeline semantics, 185

SO, 96

Adequacy, 49
Alternating dependence-friendly logic, 83
Alternating Dependence/Independence-

Friendly Logic, 81,
82

Alternating independence logic, 83
Alternation flag, 37
Arity, 24
Assignment, 25

Bucket of Response Functions, 106

Commitment, 225
Concurrent game structure, 184
Conjunction, 23

Delay, 225
Dependence/Independence-friendly

logic, see DIF
Dependency, 29
Dependency context, 52

Acyclic, 52
Dependency game, 225

Arena, 229
Configuration, 225

Dependency matric
Graph, 232
Progressing, 232

Dependency matrix, 225
Perfect information, 237

267

Progress, 230
Progressing, 226

Disjunction, 23
Splitjunction, 30

Filtering, 191
First-Order Logic, 23
FO Structure

Domain, 25
Formula

FO formula, 24
Flat, 186
Pseudo sentence, 83
Sentence, 24

Free variable, 82

Generalized extension, 48
Goal formula, 185

Hyperteam, 38
Choice function, 40
Dualisation, 40
Empty hyperteam, 38
Extension, 40, 42
Null hyperteam, 38
partition, 40
Proper hyperteam, 38
Semantic relation, 44
Trivial hyperteam, 38

Implication, 23

Leak of information, 89
Linear-Time Temporal Logic, 127
Lookahead, 225

Meta semantics, 51

Negation, 23

Negation normal form, 45

Operator agent, 195

Plan, 183
Predicate, 23, 24
Prenex normal form, 91
Proposition, 126

Quantified Propositional Temporal
Logic, 128

Quantifier, 23
Existential, 23
Quantifier prefix, 48
Universal, 23

Realizable
Realizable quantification, 129

Response function, 28, 42
Uniform, 29

Second-order logic, 96
Signature, 24
Support variable, 82
Symbols

Function symbols, 24
Predicate symbols, 24

Team, 28
Cylindrification, 28
Extension, 28
Partitionning, 28

Term, 23, 24
Tying, 187

Bindings tied in, 189

Variable, 23
Free variables, 26

268

Titre : Raisonnement Stratégique avec Dépendances : Logique d’Hyperteam, Stratégies Réa-
lisables, Matrices de Dépendance

Mot clés : Raisonnement Stratégique, Logique pour Dépendance, Logique Temporelle

Résumé : Strategy Logique (SL, en abrégé)
a été introduite par Chatterjee, Henzinger et
Piterman comme un outil pour raisonner sur
les stratégies. Ce formalisme puissant peut
exprimer des notions stratégiques complexes
telles que l’existence d’équilibre de Nash dans
un jeu ou l’existence d’une stratégie défen-
sive, etc. Cependant, cette expressivité vient
à un prix, car le problème de vérification as-
socié a une complexité non élémentaire et
le problème de satisfaisabilité est indécidable.
Une analyse soignée montre que cette haute
complexité est liée à la nature monolithique
des quantificateurs stratégiques dans SL, où
les stratégies sont des citoyens de premier
rang de la logique. En conséquence, dans
une formule, une stratégie quantifiée dépend
de toutes les stratégies quantifiées avant elle,
dans leur intégralité, ce qui inclut leurs dé-
cisions futures. Cette caractéristique mono-
lithique des quantificateurs SL empèche les
stratégies considérée de ne dépendre que de
l’histoire du jeu en cours et peut mener à
des solutions avec des stratégies irréalisables,
c’est-à-dire qui ne peuvent pas être mises en
œuvre. Il est donc raisonnable d’investiguer
de nouvelles sémantiques ou logiques qui ga-
rantissent la réalisabilité des stratégies et ré-
duisent les complexités de problèmes de dé-
cision.

Dans notre travail, nous nous sommes
inspiré des logiques dotées de sémantiques
d’équipe, qui se basent sur un équipe (un en-
semble d’assignation) au lieu d’une seule as-
signation. De manière formelle, une équipe
satisfait une formule atomique si chaque assi-
gnation dans l’équipe satisfait la dite formule.
Les équipes sont des objets pratiques pour
représenter toutes les situations possibles –

de sorte que les sémnatiques d’équipe cap-
turent l’imperfection de l’information. Elles per-
mettent également d’exprimer des contraintes
sur les valeurs des variables quantifiées. Par
exemple, la propriété "la valeur d’une variable
x dépend uniquement de la valeur d’une autre
variable y" est caractérisée par les équipes
dans lesquelles chaque deux assignations qui
donnent la même valeur à y, donnent égale-
ment la même valeur à x. Cependant, les lo-
giques avec sémantiques d’équipe sont sou-
vent indéterminées (il existe des formules ni
vraies ni fausses) car les contraintes de dé-
pendance s’appliquent uniquement aux va-
riables qui ont le même type de quantificateur
(soit existentiel ou universel).

L’idée centrale de notre travail est de rem-
placer les sémantiques d’équipe par des sé-
mantiques hyperteam, où une hyperteam est
un ensemble d’équipes. Cette approche per-
met d’exprimer la dépendance de manière
compositionnelle avec un traitement symé-
trique des quantificateurs existentiels et uni-
versels. Pour commencer, nous avons appli-
qué cet approche à plusieurs logiques : tout
d’abord, aux langages du premier ordre en
concevant une logique Alternating Dependen-
ce/Independence Friendly (ADIF), puis à la
Logique Temporelle Propositionnelle Quanti-
fiée (QPTL). Ensuite, nous avons adapté les
sémantiques hyperteam pour le raisonnement
stratégique en considérant des plans (sé-
quences d’actions), des objets qui sont beau-
coup plus simples que les stratégies, comme
citoyens de premier rang de la logique.

Enfin, à part nos contributions sur les sé-
mantiques hyperteam pour diverses logiques,
nous développons un nouveau genre de jeux
avec des retards entre les actions des joueurs,

qui généralise les Jeux de Retard et qui offre
une autre façon d’exprimer les dépendances

entre les stratégies dans les jeux à plusieurs
joueurs.

Title: Strategic Reasoning with Dependencies: Hyperteam Logics, Realizable Strategies, De-
pendency Matrices

Keywords: Strategic reasoning, Logic for Dependencies, Temporal logic

Abstract: Strategy Logic (SL for short) has
been introduced by Chatterjee, Henzinger and
Piterman as a logic to reason about strate-
gies. This powerful setting can express com-
plex strategic notions like the existence of a
Nash equilibrium in a game or the existence
of a defensive strategy, etc. However, this ex-
pressiveness comes with a price as the as-
sociated model-checking problem has a non-
elementary complexity and the satisfiability
problem is undecidable. A careful analysis re-
lates this high complexity with the monolithic
nature of strategy quantifiers in SL, where
strategies are the first lass citizen of the logic.
Consequently, in a formula, a quantified strat-
egy not surprisingly depends on all strategy
quantified before, but on their entirety which
include counter-factuals and future decisions.
This monolithic feature of SL-quantifiers pre-
vents from enforcing strategies to depend only
.g. on the history of the current play and may
lead to solutions with unrealizable strategies,
i.e. hat cannot be implemented. It is therefore
reasonable to investigate new semantics/new
logics that uarantee the realizability of strate-
gies and ideally that reduce decision problem
complexities.

In our work, we took inspiration from log-
ics with so-called team semantics, that rely
on a team (a set of assignments) instead of
a single assignment. Formally, a team satis-
fies an atomic formula if every assignment in
the team satisfies the said formula. Teams are
convenient objects to represent all possible
situations – so that the team semantics cap-
tures imperfect information. They also enable

to express constraints on the quantified vari-
able values. For instance, property "the value
of a variable x depends only on the value of
another variable y" is characterized by teams
in which every two assignments giving the
same value to y, also give the same value to
x. However, logics with team semantics gen-
erally lead to undeterminacy (there are for-
mulas neither true nor false) because depen-
dency constraints apply only to variables with
the same quantifier-type (either existential or
universal).

The core idea of our work is to re-
place team semantics by hyperteam seman-
tics, where a hyperteam is a set of teams. This
approach enables to express dependence in
a compositional manner with symmetric treat-
ment of existential and universal quantifiers.
For a start, We successfully apply the ap-
proach to several logical setting: first, to first-
order-like languages by designing Alternat-
ing Dependence/Independence Friendly Logic
(ADIF), and second to Quantified Proposi-
tional Temporal Logic (QPTL). Next, we adapt
hyperteam semantics to strategic reasoning
by considering plans (sequences of actions),
objects that are much simpler than strategies,
as first-class citizens of the logic.

Aside our contributions on hyperteam se-
mantics for various logics, we develop a set-
ting with a new kind of games with delays
between player actions, that generalizes De-
lay Games, and that offers another way to
express dependencies between strategies in
multi-player games.

271

	Introduction
	Preliminaries
	Recall on First-Order Logic
	Syntax
	First-Order Structure
	Semantics
	Limitations of Tarski's-like quantification

	Recall on Team Semantics
	Representing dependences with Teams
	Dependence/Independence Logic
	Examples
	Limitations of Team Semantics

	Conclusion

	A hyperteams semantics
	A two-level framework: the Hyperteam
	A new semantical relation
	Fundamentals
	Adequacy
	Skolemisation with hyperteams
	Conclusion
	Proofs of ch:hpt;section:hypteam
	Proofs of ch:hpt;section:semantics
	Proofs of ch:hpt;section:adq
	Proofs of ch:hpt;section:SO

	Alternating Dependence/Independence-Friendly Logic
	A symmetrical extension of
	Syntax.
	Semantics
	Examples
	Properties
	Meta semantics

	Comparisons to other logics
	First-order Adequacy
	Dependence/Independence-Friendly Logic Adequacy
	Second-Order & Team Logics

	Game-Theoretic Semantics
	Conclusion
	Proofs of ch:adif;section:logic
	Proofs of ch:adif;section:properties
	Proofs of ch:adif;section:gametheoreticsemantics

	Good-For-Game Quantified Propositional Temporal Logic
	Recalls on temporal logics
	Linear-time Temporal Logic
	Quantified Propositional Temporal Logic

	Dynamic Reasoning
	Realizable responses
	Examples

	Game-Theoretic Semantics
	Quantification Game for Sentences
	Quantification Game for Formulas
	Complexity Results

	Conclusion
	Proofs of ch:gfgqptl;section:logic
	Proofs of ch:gfgqptl;section:gametheoreticsemantics

	Plan Logic
	Strategy Logic
	Concurrent Game Structures.
	Syntax.
	Semantics.
	Timeline semantics.

	Strategic Reasoning
	Syntax.
	Examples.
	Semantics.

	Adequacy with Strategy Logic under Timeline Semantics
	Strategy Logic under Timeline Semantics and Plan Logic
	Game-theoretic Semantics of [C/DG]

	Decision Problems
	Goal Fragments of PL.
	One-goal Fragment
	Boolean-Goal Fragment
	Collusion-free Fragment

	Conclusion
	Missing Proofs of ch:pl;section:AdequacySLTL
	Meta-
	Skolem semantics for Meta-
	Proof of thm:cdgpltoogpl
	Realizable meta map
	Proof of thm:cdgslgts

	Missing Details of ch:pl;section:decisionproblems

	Dependency Matrices
	A Multiplayer Delay Game
	Definition
	Strategies for Dependency Matrices
	Undecidability of Resolution

	Resolving Dependency Matrices
	Definition and Properties
	A Parity Game to solve EWS
	Reduction from the Church Synthesis problem
	Perfect-Information Matrices with Possibly Infinite Values

	Conclusion
	Proofs of ch:depmat;section:game
	Proofs of ch:depmat;section:resolution
	Reduction from Church matrices to Round Robin matrices
	Proof of thm:decidabilityPerfectInfoUnbounded

	Conclusion
	Bibliography

