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Upper-limb force feasible set:
theoretical foundations and musculoskeletal model reconstruction

Abstract. In physical Human-Robot Interaction, where robots and humans collaborate
on shared tasks through physical contact, such as between the robot’s end effector and the
human’s hand, human safety is a primary concern. This necessitates that the collaborative
system inherently consider human characteristics to provide appropriate and safe robotic
assistance. To achieve this, it is necessary to evaluate the capabilities of the human upper-
limb. In biomechanics, these capabilities are defined through force feasible sets at the
hand, which represent all the forces a human operator can exert in a given posture. These
three-dimensional sets are influenced by individual factors such as anthropometry and
muscle strength and the surface of these sets represents the maximum force capabilities of
the human upper-limb in all directions. Therefore, force feasible sets are an invaluable tool
for guiding robotic assistance, ensuring it respects biomechanical constraints by remaining
within the human’s exertable force limits.

Force feasible sets are challenging to measure directly but can be partially represented
in isometric conditions by measuring maximum exerted forces. Musculoskeletal models,
which mathematically represent the human skeleton, joints, and muscles, allow for in
silico representation of force feasible sets in various postures through geometric operations
(Minkowski sum, projection, intersection) on convex sets. However, these operations are
computationally expensive. This thesis first focuses on a novel approach to reduce the
computational time of one of the most demanding tasks within this framework.

Furthermore, existing in silico models often employ various geometric assumptions
about how muscle tensions contribute to joint torques, leading to different characteri-
zations of force feasible sets’ shapes, including 3D polytopes and ellipsoids. This thesis
proposes a unified framework to represent force feasible sets that explicitly incorporates
these geometric assumptions. This framework addresses the limitations of current nu-
merical simulations, which struggle to analyze complex scenarios involving more detailed
representation of musculoskeletal models and inherently higher computational costs.

In this regard, accurate representation of individual force capabilities requires precise
parameterization of musculoskeletal model components. Given the set-theoretic nature
of force feasible sets, this thesis introduces an adapted sensitivity analysis tailored to
assess the influence of parameters on the geometric properties of force feasible sets. This
analysis also highlights the challenges of personalizing musculoskeletal models due to
biomechanical inter-variability.

Finally, an experimental protocol was established to confront in silico personalization
processes with experimentally measured maximal isometric force exertions collected across
various postures. Through biomechanical assumptions leading to a computationally less
expensive representation of force feasible sets as ellipsoids, muscle parameters personal-
ization is achieved, validating in vivo the theoretically-driven results of this thesis.

Keywords: Force feasible set; Musculoskeletal model; Personalization; Force poly-
tope
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Capacités de force du membre supérieur :
fondements théoriques et reconstruction de modèles musculosquelettiques

Résumé. En interaction physique Homme-Robot, un robot et un individu effectuent une
tâche de collaboration par le biais d’un contact physique, par exemple entre l’effecteur
terminal du robot et la main de l’humain. Une attention nécessaire se porte alors sur la
sécurité de cette collaboration. Afin que le robot puisse fournir une assistance adaptée, il
est primordial de caractériser les limites d’un individu, notamment celles biomécaniques.
Les capacités de force du membre supérieur humain correspondent à l’ensemble des efforts
exerçables au niveau de la main, dans une posture spécifique. La forme de ces ensembles
reflète des propriétés individuelles, telles que l’anthropométrie et la force musculaire. De
plus, leur surface caractérise les efforts maximaux possibles. Par conséquent, la connais-
sance des capacités de force d’un individu permet d’aiguiller l’assistance du robot afin de
respecter les limites en force de l’humain.

Expérimentalement, les capacités de force sont difficiles à mesurer directement. Néan-
moins, en conditions isométriques, elles peuvent être décrites partiellement en mesurant
des efforts maximaux dans des directions spécifiées. In silico, les modèles musculosquelet-
tiques représentent mathématiquement le squelette, les articulations et les muscles. Ils
permettent de simuler les capacités de force dans diverses postures, construites par le
biais d’opérations géométriques (somme de Minkowski, projection, intersection) sur des
ensembles convexes. Cependant, ces opérations sont coûteuses en temps de calcul. Cette
thèse se concentre donc en premier lieu sur une nouvelle approche réduisant le temps de
calcul de l’une de ces opérations.

Par ailleurs, la modélisation des capacités de force nécessite de faire des hypothèses sur
la façon dont les tensions musculaires contribuent aux couples articulaires. Ces hypothèses
influencent la forme des capacités de force, notamment leur représentation sous forme de
polytope ou d’ellipsoïde. Cette thèse propose donc une unification de ces représentations
afin de considérer, de manière géométrique, diverses hypothèses biomécaniques sur les re-
lations entre tensions musculaires. Bien que l’utilisation de modèles musculosquelettiques
complexes et détaillés limite la simulation des capacités de force, ce cadre théorique met en
évidence une forme universelle pour la représentation des capacités de force d’un individu.

Également, une représentation précise des capacités de force d’un individu nécessite la
connaissance d’un modèle musculosquelettique personnalisé. Compte tenu de l’approche
ensembliste des capacités de force, cette thèse propose une analyse de sensibilité adaptée
évaluant l’influence des paramètres musculaires sur les propriétés géométriques des capac-
ités de force. Cette analyse met également en évidence les défis de la personnalisation en
regard de l’inter-variabilité entre individus.

Enfin, un protocole expérimental a été établi afin de confronter les méthodes de per-
sonnalisation in silico à des forces maximales isométriques mesurées dans différentes
postures du membre supérieur. La représentation des capacités de force sous forme
d’ellipsoïdes, moins coûteuse en temps de calcul, et l’ajout d’hypothèses biomécaniques
sur le comportement musculaire amènent à la personnalisation des muscles d’un modèle
musculosquelettique, validant in vivo les résultats théoriques proposés dans cette thèse.

Mots-clés: Capacités de force; Modèle musculosquelettique; Personnalisation; Poly-
tope de force
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Introduction

Industrial automation is witnessing a paradigm shift from isolated robotic systems to-
wards collaborative scenarios where humans and robots share a common workspace and
physically interact. This recent field, known as physical human-robot interaction (pHRI),
presents a vision for the future of manufacturing, promising enhanced efficiency, flexibil-
ity, and safety. pHRI has the potential to bring new perspectives to various fields: human
rehabilitation, sport training assistance, or medical and surgery assistance (Benoussaad
et al., 2022).

In today’s manufacturing industry, robots play an essential role. Traditional industrial
robots, operating within safety cages, are instrumental in automating repetitive, high-
precision tasks. The worldwide supply of industrial robots increases annually: in 2022,
almost 4 million industrial robot were operational, with more than 500,000 new units
installed per year since 2021 (International Federation of Robotics, 2023). Furthermore,
small and medium-sized companies are drawn to the more available, affordable, compact,
easy-to-use solutions which are collaborative robots, or cobot. These robots, specifically
designed for human collaboration, focus on creating a smooth virtual or haptic interaction
within a shared workspace (Peshkin et al., 2001; Villani et al., 2018).

However, human presence in a collaborative process introduces challenges such as
unpredictable behavior, fatigue, ergonomic considerations, and safety concerns. Conse-
quently, realizing an ideal pHRI vision requires a deep understanding of the complexities
inherent in human-robot collaboration, particularly the biomechanical and cognitive fac-
tors (Camblor, 2024) that influence human behavior during physical interaction.

To enhance efficiency, collaborative physical interaction must leverage the unique ca-
pabilities of both humans and robots (Colgate et al., 1996). Robots excel to achieve
great force capacities, precision, repeatability, endurance, and speed. Humans, on the
other hand, offer adaptability, the ability to handle uncertainty, and dexterity, partic-
ularly with their hands. To effectively leverage these complementary strengths, a clear
understanding of both human and robot capabilities is thus crucial. Specifically, identify-
ing the challenges faced by humans in collaborative tasks is essential for designing robots
that can effectively assist them. This necessitates incorporating such knowledge into the
robotic framework design. For example, control algorithms can enable cobots to adapt to
human actions, ensuring smooth and seamless collaboration.

This thesis focuses on considering the exertable forces of an individual to improve
robotic assistance and ensure greater safety in collaborative scenarios with physical in-
teraction at the hand. First, we will describe how such scenarios occur and the in vivo
and in silico challenges of integrating these forces into the robotic framework. Then, we
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will consider how this thesis’ chosen approach of representating maximal force exertions
should reveal more about the biomechanical muscle properties of a human. Finally, the
thesis outline will be presented with the main results found within this manuscript.

Shared force exertion in Human-Robot collaboration

As robotic technologies continue to advance, with more cobots capable of adapting to
increasingly dynamic scenarios where their behavior is optimized for collaborative perfor-
mance (Alberto, 2023), there is an emergence of personalized cobots, which are essentially
cobots customized to an individual workers’ physical needs, preference, and skill levels,
leading to more personalized and effective collaboration.

When considering robots in dynamic environments, the concept of force becomes
central. Cobots can be equipped with an array of sensors to detect external forces and
torques applied to their structure. This allows them to react instantly to unexpected
contact, adjusting their movements or stopping altogether to prevent collisions and ensure
human safety. Advanced force control algorithms enable cobots to perform tasks requiring
precise force regulation, such as assembly operations or collaborative manipulation (Bicchi
et al., 2008). However, in a more collaborative industrial framework where human safety
is a primal concern, it is essential to express the force limits exertable by the human so
the robot can account for them. Knowledge of these limits is thus required for safety,
preventing the robot from applying excessive force and potentially injuring the human.

The forces exerted by a robot at its end-effector can be understood via a mathematical
description of its (almost) rigid components linked by joints, and the forces applied to
the joints. While other modeling tools exist, such as incorporating machine learning
techniques to optimize robot motions (Peternel et al., 2016), rigid body modeling offers
a key advantage: it clarifies how forces are transmitted between components. Therefore,
applying this modeling approach to the human body is particularly relevant, for instance
to evaluate how a physical workload can generate musculoskeletal disorders (Hoozemans
et al., 2004). These models, known as musculoskeletal models when based on a human,
provide a suitable framework for studying forces in both humans and robots. They involve
the inclusion of muscles, which are physiological components responsible for the generation
of joint motion. Since muscle forces can be described as a mechanical system (Hill, 1938),
robotic modeling techniques can be applied to mathematically model muscles and analyze
their role in movement generation.

Given that physical Human-Robot interaction often involves contact between the
human hand and the robot’s end-effector, an upper-limb musculoskeletal model is partic-
ularly relevant (Holzbaur et al., 2005). However, an individual can exert force through
various combinations of different muscles. This muscle redundancy allows for different
force exertion strategies. These combinations are modeled through activation patterns,
which quantify how each muscle exerts force based on the specific movement and the
activation of other muscles (Zajac, 1989). Since there are a finite number of muscles in
the upper-limb, the combination of their tensions necessarily produces a maximal force
at the end-effector for a given posture and activation pattern.

The exerted force at the hand is therefore limited, with this limit depending on both
the upper-limb posture and the direction of force application (Oshima et al., 2000, Her-
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nandez et al., 2015). Measuring maximal forces during dynamic movements is challenging,
as it requires participants to exert maximum effort throughout the movement, potentially
leading to exhaustion and discomfort (Rose et al., 2014). Therefore, the focus is on mea-
suring maximal isometric forces, which are forces exerted in a fixed posture. In physical
Human-Robot interaction, near-static scenarios occur when tasks require hand dexterity
and precision, such as in manufacturing with small objects (Javaid et al., 2022). Focusing
on isometric forces in such scenarios allows for more controlled experimental procedures.
However, since maximal isometric force depends on the direction of exertion, measure-
ments must be taken in multiple directions. Due to the lack of standardized protocols for
selecting these directions, an arbitrary number are typically chosen, ensuring sufficient
coverage of the 3D force space. Since muscle rest must be taken into account during
experiments, this can result in rather long procedures for the participant. Therefore, this
thesis first addresses the following challenge:

Challenge 1:
How can the measurement of maximal isometric forces be performed efficiently

within a reasonably long experiment?

Furthermore, the complexity of human upper limb models for in silico computations
can vary significantly depending on the context. Given the computational demands of
musculoskeletal models, it is crucial to determine the appropriate level of model com-
plexity. This includes deciding which muscles to include, as well as the level of detail
in representing their paths around bones and joints. For instance in the force exertion
context, it might not be useful to consider a 3-dimensional robot arm if the studied forces
are only applied on a 2-dimensional plane (Sasaki et al., 2010). Furthermore, the inter-
individual variability in muscle physiology necessitates the development of personalized
musculoskeletal models. These models adapt a generic upper-limb model to reflect the
specific physiology of an individual. Indeed, maximal isometric forces are influenced by
various cognitive and physiological factors, including muscle geometry, bone structures,
training, muscle fatigue, etc. Therefore, it is essential to determine the level of detail
required to accurately characterize an individual’s maximal force capabilities in silico. As
such, this thesis addresses this second scientific challenge:

Challenge 2:
How detailed and personalized must a musculoskeletal model of the human

upper-limb be to accurately represent the exertable maximal isometric forces at the
hand of an individual?

While the two challenges outlined above focus on practical applications required to
either experimentally measure maximal isometric forces or represent them in silico, the
next section addresses a more fundamental question of how to represent these forces to
gain deeper biomechanical insights.
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Maximal isometric forces: is a set-theoretic approach
suitable?

Sets provide a valuable tool in robotics, offering a compact and versatile framework for
representing various robotic concepts, such as dynamic workspaces and 3D obstacles (Bar-
rette and Gosselin, 2005; Lau et al., 2011; Scott et al., 2016). Sets can be used to quantify
and assess physical abilities, such as the manipulability index for robots (Yoshikawa, 1985)
and the robot carrying capacity index (Skuric, 2023), in both humans and robots. Essen-
tially, sets offer a different perspective on a problem, enabling the use of a broader range
of methods to derive meaningful insights.

This thesis explores maximal isometric forces through a set-theoretic lens. Instead
of focusing on individual forces, we consider the a collection of maximal isometric forces
within a posture as a unified object of study. This approach presents both experimental
and mathematical hurdles. Tools for analyzing these forces, especially those implemented
numerically, are more efficient in regard to a locus approach: examining single elements
like points, vectors, or lines. However, modern mathematics, particularly since the mid-
20th century, have increasingly relied on a set-theoretic foundation (Bourbaki, 1939),
where everything is considered a set. Analyzing collections of objects unlocks a deeper
understanding of their interdependencies and how they behave in various contexts. In
essence, a set-theoretic approach allows us to describe elements through their structured
interactions. However, this structure is not always immediately apparent. Even seemingly
random sets possess structure, which can be revealed through concepts like probability
distributions.

Figure 1: The force feasible set of an individual in a specific posture denotes all maximally
exertable forces in this upper-limb posture.

Abstract mathematics emphasizes understanding how structures are preserved under
transformations of their underlying elements. More interestingly, it also seeks to extract
the original structure by analyzing the transformed elements. This approach is relevant
for the study of maximal isometric forces. These forces, viewed as individual elements,
are fundamentally derived from muscle activation patterns. A key goal of this thesis is
to analyze the structure within these produced forces to gain insights into the collective
behavior of muscle activations.

As such, the collection of all exertable maximal isometric forces at the hand constitutes
the definition of a force feasible set (Fig. 1). Since each element within this set depends
on both upper-limb posture and individual physiology, this knowledge translates directly
to its set-theoretic representation, as depicted in Figures 2 and 3.
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Figure 2: The force feasible sets of an individual vary according to a given posture.

Figure 3: The force feasible sets of an individual vary depending on an individual’s own
physiology.

Therefore, the set-theoretic perspective on force feasible sets offers significant poten-
tial, providing a concise way to convey to a robot biomechanical information about force
boundaries producible in a human upper limb. Moreover, it allows leveraging the rich the-
oretical framework of modern mathematics to analyze and understand these sets, through
various theoretical lenses (geometric, probabilistic, topological, etc.). Ultimately, a deeper
understanding of force feasible sets can enhance the design and control of collaborative
robots that interact effectively and safely with humans.

To explore this potential, this thesis will investigate the value of this set-theoretic
approach in the context of personalizing musculoskeletal models in order to bring an
answer to the following biomechanical challenge:

Challenge 3:
How can a set-theoretic approach to maximal isometric forces be used to

quantitatively characterize muscle tension interactions

Thesis overview
This thesis involves the simulation of force feasible sets produced at the hand in a hu-
man upper-limb and their in vivo counterparts. The different chapters contribute to a
single objective: personalizing force feasible sets to an individual from maximal isometric
force measurements in various postures. These chapters form a cohesive argument for
this personalization process, creating a bridge between force feasible set modeling and
biomechanical assumptions.

Chapter 1 details how to derive force feasible sets, both in silico and in vivo, and
examines the coherence between current modeling approaches and experimental mea-
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surements. Given the inherent set-theoretic nature of these representations, this chapter
also explores current sensitivity analyses in biomechanics and considers more appropriate
set-theoretic methods to assess how inter-individual muscle variability manifests in a set
form.

Chapter 2 delves into the computational challenges associated with the exact con-
struction of a force polytope, a force feasible set modeled under the assumption that
muscle tensions are independent from each other. This construction necessitates comput-
ing either the vertices or the faces of a torque zonotope representing all maximal joint
torques generated by muscle tensions. The chapter introduces a novel vertex enumeration
technique based on a specific selection of edges from a high-dimensional hypercube. This
algorithm exhibits theoretical efficiency, with a time complexity comparable to the state-
of-the-art. However, despite its efficiency, the inherent combinatorial complexity of vertex
enumeration limits the applicability of this exact algorithm when the number of muscles
exceeds a low amount (ą 8). Consequently, approximation alternatives are proposed for
subsequent analyses in the thesis.

Chapter 3 focuses on the theoretical implications of considering a high number of mus-
cles in in silico force feasible sets. This consideration is crucial because a force feasible set,
by definition, reflects the combined action of all considered muscles, and its characteristics
(volume, shape) are inherently dependent on the number of muscles included in the model.
Simpler musculoskeletal models of the human upper limb may therefore fail to accurately
capture experimentally observed force capacities. However, as demonstrated in the pre-
ceding chapter, increasing the complexity of the musculoskeletal model also increases the
difficulty of modeling force feasible sets. To address this, the chapter draws upon estab-
lished mathematical results from the Local Theory of Banach Spaces, which investigates
infinite-dimensional normed vector spaces through the lens of finite-dimensional ones, ef-
fectively bridging the gap between simplified models (seen as finite-dimensional spaces)
and the complexities of real biological systems (represented as high-dimensional spaces).
By applying these theoretical results to force feasible set modeling, the chapter argues
that when a large number of muscles is considered, the size (or scale) of a force feasible
set becomes the only property influenced by muscle interactions. It demonstrates that
any (convex) muscle interaction model induces force feasible sets which have the same
ellipsoidal shape but with a size depending on the choice of the model. This scaling co-
efficient, termed the projection constant, is explicitly computable for force polytopes and
approximable for other tension models, enabling the construction of an ellipsoid approxi-
mation of a force polytope without resorting to computationally expensive combinatorial
calculations. In other words, this chapter complexifies a musculoskeletal model in order
to retrieve a simpler force feasible set representation as an ellipsoid.

Chapter 4 focuses on quantifying the practical relevance of a set-theoretic approach
to represent maximal isometric forces. We employ an optimization process to retrieve
muscle parameterization in a 50-muscle musculoskeletal model (Holzbaur et al., 2005),
aiming to reproduce the default Holzbaur et al. force feasible sets in specific postures.
Our methodology involves a careful analysis of the optimization results, considering fac-
tors such as different solving methods, posture sets, search-space sizes, parameters to be
optimized, and force feasible set representations. Analyzing the solutions, the convergence
of the algorithms, and their results for both polytopic and ellipsoidal force feasible set
representations addresses the following questions:
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1. Are 50 muscles sufficient to represent force feasible sets as ellipsoids? The results
suggest this is the case, as the generated force polytopes and their ellipsoid approx-
imations yielded solutions with similar characteristics across almost all conditions
in the optimization processes. This finding provides a practical lower bound on
the number of muscles required for this approximation, supporting the theoretical
results of the previous chapter, which indicated that the approximation holds in
sufficiently high dimensions;

2. Is a set-theoretic approach relevant in musculoskeletal muscle personalization? This
analysis reveals that personalizing muscle parameters from force feasible sets in a
real-world context is inherently challenging. While feasible in simpler cases with
near-known solutions, the set-theoretic approach encounters significantly greater
challenges in more complex scenarios. This difficulty is quantified through a novel
index termed the enlargement ratio, which relates the computational limitations of
force polytope construction to the personalization process. By accounting for com-
putational demands, we can assess the effectiveness of the personalization process
and gain insights into the general difficulty of muscle personalization;

3. Which muscle parameters most influence the force feasible set characteristics? The
results indicate a greater sensitivity to force-generating parameters compared to
muscle geometry. Therefore, any such personalization process should prioritize the
optimization of force-generating parameters.

These three findings directly inform the personalization process with in vivo data in the
next chapter.

Chapter 5 integrates in silico and in vivo force feasible sets to generate personalized
force capacities. An experimental protocol was conducted to collect maximal isometric
force exertions at the hand in 26 directions and 4 postures from 10 participants. An upper-
limb musculoskeletal model was then scaled to each participant. Building on Chapters 3
and 4, which demonstrate the ellipsoidal nature of force polytopes, we utilize this approx-
imation. Furthermore, given the findings in Chapter 4 regarding the limited influence of
muscle geometry, we focus solely on adapting force-generating muscle properties. Also,
Chapter 2 highlighted that muscle tension interactions can be represented as a transfor-
mation of a sphere, providing a geometric interpretation for the ellipsoidal resemblance
of force polytopes. This implies that individual muscle tension limits do not exert inde-
pendent influence; rather, the average maximal tension across muscles primarily affects
the scaling of a force feasible set. Consequently, only one parameter per posture require
adjustment to align in silico force feasible sets with in vivo measurements. We apply
this personalization process to the experimental data and evaluate the consistency of the
theoretical results with empirical observations.

Finally, the Conclusion chapter will offer some closing remarks on this set-theoretic
approach of maximal isometric forces, and draw the newest perspectives opened by the
results found in this thesis.
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List of publications

During the thesis, two short publications were submitted and accepted. They are men-
tionned in Chapter 4, which focuses on muscle information extractable from force feasible
sets. However, the work in these papers was preliminary to the work presented in Chap-
ter 4 and offered the first perspectives on the formulation of a muscle personalization
process based on force feasible sets. The chapter serves as a more comprehensive explo-
ration of these concepts, with a greater emphasis on the challenges of personalizing a
musculoskeletal model, which neither paper addressed.

• G. Laisné, J-M. Salotti, and N. Rezzoug. “Genetic Algorithms for Force Polytopes
Prediction”. In: Computer Methods in Biomechanics and Biomedical Engineering
26.sup1 (Oct. 2023), pp. 218-220.

• G. Laisné, J-M. Salotti, and N. Rezzoug. “Derivative-Free Optimization Approaches
for Force Polytopes Prediction”. In: ESANN 2023 - European Symposium on Arti-
ficial Neural Networks, Computational Intelligence and Machine Learning. Bruges,
Belgium, Oct. 2023, pp. 339-344.

Notations

This thesis employs a variety of mathematical objects, including vectors, matrices, lines,
and sets, which are subject to manipulation and representation through diverse notational
conventions. An example is the representation of a linear transformation between vector
spaces by a matrix. While the notation may remain consistent, the context may neces-
sitate an emphasis on either the matrix itself or the underlying linear transformation it
encodes. This section serves to clarify the notational conventions for the objects employed
in this thesis.

• Common sets of numbers: in uppercase and blackboard font. Examples: natural
numbers N, real numbers R, strictly positive real number Rą0;

• Bounded convex sets: in uppercase, italic and caligraphic. Examples: cube C,
sphere S, ellipsoid E , polytope P , zonotope Z, orthotope O;

• Spaces: in uppercase, italic letters. Examples: line L, plane P , hyperplane H,
vector space V , Banach space X;

• Coefficients: in lowercase, italic and greek. Examples: λ, α, µ P R;

• Points, integers and real numbers: in lowercase, italic and latin. Examples:
the points p, q, r P E, the integers n, m P N and the real x P R;

• Vectors: in lowercase, bold and latin. Vectors can be indexed by non-bold charac-
ters when needed. Examples: x, y, q P Rn and x “ px1, . . . , xnq;

• Matrices: in uppercase, italic and block letters. Example: M P Rnˆm;

• Functions: in lowercase, italic and in latin or greek, with parentheses. Examples:
the function f : R Ñ R such that fpxq “ x3;
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• Affine maps: An affine map denotes a linear mapping followed by a translation.
The linear part can be represented by a matrix, and the translation by a vector.
For instance, the linear transformation of a vector x P R3 through A P R3ˆ3, then
translated by t P R3, is noted Ax ` t. This notation is particularly useful for sets,
where for instance the affine transformation of the 3D cube C “ r0, 1s3 under the
same conditions is simply noted AC ` t.
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Chapter 1

Force feasible set modeling

Introduction

For an individual, force exertion arises from complex interactions within the body, pri-
marily involving the skeletal structure and musculature. External factors, such as gravity,
also influence force production. A force feasible set of an individual is the representation
of all his exertable forces at a specific point of application. This thesis focuses exclusively
on linear forces, excluding the application of moments.

Due to their set-theoretic nature, force feasible sets provide a unique representation of
the underlying biomechanical properties of the human body. They appear to encapsulate
a greater amount of information compared to traditional biomechanical measures, as they
encompass all possible force vectors. Since the exertion of force in a specific direction
reflects the combined action of multiple muscles, analyzing the entire force feasible set
allows for a comprehensive understanding of muscle coordination and force generation.

This set-theoretic framework, originating from robotics (Yoshikawa, 1985; Chiacchio
et al., 1997), was initially used to characterize the force capabilities of robotic manipu-
lators, specifically at the end-effector of a serial kinematic chain. The primary objective
was to provide a compact representation of the limits of force exertion, enabling the deter-
mination, in silico, of whether a specific force magnitude and direction could be achieved.
Drawing inspiration from robotics, this thesis adopts a serial kinematic chain model to
represent certain human body segments, particularly the upper limb, with the end-effector
corresponding to a point on the hand. This approach offers a significant advantage by en-
abling numerical simulation of force capabilities, circumventing the challenges associated
with exhaustive experimental measurements of all exertable forces.

Section 1.1 details the formalism required for this robotic-oriented approach to mod-
eling the human upper limb, referred to as a musculoskeletal model. Various force feasible
set representations are presented, along with their respective applications. A major chal-
lenge in this set-theoretic approach lies in the computational complexity of set-based
operations. These difficulties and current strategies for addressing them are discussed. In
this regard, chapter 2 introduces a novel algorithmic approach to mitigate these compu-
tational challenges in simulations.
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Furthermore, the nature of the force feasible set inherently reflects how muscles com-
bine to generate force at the end-effector. Different representations of force feasible sets
employ specific assumptions regarding muscle coordination and tension combination. Sec-
tion 1.2 will analyze these assumptions and their underlying biomechanical implications
for several force feasible set representations found in the literature. As such, chapter 3 will
propose a more general framework for modeling muscle tension combinations. Chapters
4 and 5 will subsequently challenge the assumptions required to consider the validity of
the presented framework, using in silico and in vivo maximal isometric forces.

1.1 Musculoskeletal modeling and in silico force feasi-
ble sets

This section focuses on modeling the human upper limb based on serial kinematic chains.

1.1.1 Musculoskeletal models

A musculoskeletal model is a biomechanical simulation tool that provides a quantitative
representation of the human musculoskeletal system. It aims to replicate the anatomical
structures as well as the biological and neuronal processes involved in human movement.
Applications of musculoskeletal models are observed in various fields. In biomechan-
ics, they can be employed for estimating muscle forces and joint contact forces in order
to understand injury mechanisms (Ren et al., 2022), optimizing athletic performances
(Yeadon and Pain, 2023), or designing rehabilitation strategies (Weigel et al., 2005). In
ergonomics, these models aid in evaluating workplace design and identifying potential risk
factors for musculoskeletal disorders (David, 2005; Granata and Bennett, 2005). Further-
more, they find applications in robotics, enabling the development of bio-inspired robots
(anthropomorphic robots) and their control strategies (Aswini et al., 2023).

By means of rigid body mechanics, muscle physiology, and joint kinematics, these
models allow to investigate the internal dynamics of the musculoskeletal system.

A musculoskeletal model comprises a kinematic chain of rigid body segments, each
representing a bone, interconnected by joints with defined degrees of freedom. The degrees
of freedom of a joint define its possible motions. Representing bones by rigid segments is
a simplified skeletal representation, but its relevancy was proven through in various situa-
tions, such as accurately representing an individual bone to estimate articular mechanisms
(Suwarganda et al., 2019). These joints can be modeled as successive revolute joints (e.g.
the elbow flexion and forearm pronation-supination defined for the elbow, or the wrist
flexion and deviation at the wrist), spherical joints or as more complex articulations with
specific anatomical constraints. For example, De Groot and Brand modeled the shoulder
joint motion (termed shoulder rhythm) using linear regression equations to consider the
interplay between motions of the clavicle, scapula, and humerus (De Groot and Brand,
2001). Muscles are incorporated as force-generating elements that span between bone
segments. They exert forces that induce joint moments, leading to a movement. As high-
lighted in (Bassani and Galbusera, 2018), musculoskeletal modeling provides a powerful
tool for non-invasive investigation, from healthy to pathological conditions, making its use
highly relevant in various fields. The quality of these models can be enhanced by incor-
porating detailed muscle architecture and physiological properties. For instance, McNeill
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demonstrated the importance of tendon elasticity in jump analysis (McNeill, 2002). Fur-
thermore, advanced models may include more specific muscle structures such as ligaments
(Shelburne and Pandy, 1997).

Several softwares and libraries have been developped for simulations musculoskele-
tal model, including OpenSim (Delp et al., 1990), Biorbd (Michaud and Begon, 2021),
AnyBody (Damsgaard et al., 2006) and CusToM (Muller et al., 2019).

Serial kinematic chains

At the core of a musculoskeletal model is a kinematic chain: the representation of bones
and how they are linked. For the upper limb, a serial kinematic chain can be considered.
The following definition of such a chain is based on (Lau et al., 2013).

A serial kinematic chain consists of k rigid bodies B1, ¨ ¨ ¨ , Bk linked successively via
joints. For i “ 1, ¨ ¨ ¨ , k, the joint between rigid bodies Bi´1 and Bi describes the motion
of body Bi relative to Bi´1. We denote this joint Ji. In particular, if it is assumed that
the joint has a fixed center of rotation, we denote the center of joint Ji by Pi. Since
joint Ji can induce rotational as well as translational motions, body Bi has a relative
orientation and translation relative to Bi´1. To describe it, we define for each body Bi a
frame tFiu located at the body’s center of mass Gi. When a joint configuration is fixed,
it is thus possible to describe Bi’s frame and location according to the preceding Bi´1’s
own frame and location through a rotation and translation mapping. For the first body
B1, its orientation and location are described according to the ground notated B0, which
is assimilated to the origin of the space. The ground orientation and location are denoted
tF0u and O respectively. Figure 1.1 summarizes the serial kinematic chain formalism.

Figure 1.1: Notations for a serial kinematic chain. The ground B0 is described via frame tF0u

located at the origin O. A body Bi is represented by a frame tFiu located at its center of mass
Gi. Two bodies Bi´1 and Bi are linked through a joint Ji whose center is defined at point Pi.

A joint configuration describes the specific positions of all the joints in a kinematic
chain. It is defined by the values of the generalized coordinates, which are parameters
that quantify the different ways the joints can move.

Such serial kinematic chains assume that bodies are resistant to deformation, i.e.
they have infinite stiffness, and that joints’ centers of rotation (points P1, . . . , Pk) do
not change their position for different joint configurations. However, this is not entirely
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sufficient for upper-limb modeling, as the scapulohumeral rythm affects internal forces,
such as the glenohumeral joint force (Flores-Hernandez et al., 2019). Since we focus on
maximal forces produced at the hand of the upper limb, we need a more complex model to
accurately capture essential biomechanical components required for further experimental
validations.

Actuators and muscle geometry

While a serial kinematic chain can be actuated by controlling its joint torques or ve-
locity, to better mimic human behavior, we should consider actuators. An actuator is
a component that converts an energy source into motion. For instance, a cable-driven
parallel robot could be powered by hydraulic cables. In the human body, muscles serve
as actuators, converting chemical energy into mechanical force to produce movement.

The most commonly used muscle models are based on the Hill’s model (Hill, 1938).
A Hill-type muscle model represents a musculotendon unit, comprising muscle fibers and
a tendon, as a mechanical system with three interconnected elements. The contractile
element simulates the active force generation of the muscle fibers. A spring-like series
elastic element, representing the tendon’s elastic properties, is in series with the contractile
element. Finally, a parallel elastic element accounts for the passive elasticity of the muscle
tissue itself and acts in parallel with the other two elements.

In order to study how a muscle acts on a joint to produce motion, muscle modeling
requires consideration of two distinct aspects: the force amount and its line of action.
These two facets are intrinsically linked through the force-length and force-velocity re-
lationships, fundamental principles of biomechanics established in (Hill, 1938). These
relationships describe how muscle force varies depending on its length and velocity of
contraction. Zajac summarizes these muscle properties in (Zajac, 1989). However, while
explicit computations can be formulated for the generated muscle force, determining the
muscle line of action depends on factors such as muscle geometry, joint type, and sur-
rounding anatomical structures. If the muscle geometry is determined to be similar to a
single line segment (or straight cables), the action of the muscle onto a spherical joint of
rotation center P is quantifiable as a real vector τ P R3 termed the muscle joint torque and
noted τ . By considering u the normalized muscle line direction, f the produced muscle
force amount, and A the orthogonal projection of P onto the muscle line, then τ (in unit
Newton-meter N¨m) is computed as

τ “ fu ˆ pA ´ P q

where ˆ is the cross product in R3. To obtain the torque produced along a specific
joint rotation axis ω P R3, there suffices to compute ω ¨ τ , where ¨ denotes the usual dot
product. The distance }A ´ P } is usually refered as the lever arm, which represents the
perpendicular distance from the joint center to the muscle’s line of action.

While the line segment approximation for muscle geometry offers computational sim-
plicity in calculating muscle joint torque, it fails to capture the complexities of more
realistic muscle shapes. To address this, a generalized coordinate approach can be em-
ployed. By defining the muscle length as a function of generalized coordinates, lpqq,
the muscle joint torque, τ , about a joint axis ω can be determined through the partial
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derivative of the length function with respect to the generalized coordinates:

τ “
Blpqq

Bq

This formulation accommodates any continuous muscle path, provided the length
function is differentiable. However, differentiating this function can be challenging, often
necessitating numerical differentiation techniques or optimization algorithms, as employed
in OpenSim musculoskeletal modeling software (Delp et al., 2007).

The choice between simplified and complex muscle geometries depends on the specific
application and desired level of accuracy. For instance, (Livet et al., 2022) consider that
muscles are described as successive rigid segments connected by via points. In (Kedadria
et al., 2023), the authors highlights the benefits of refined muscle geometry modeling.
Their study demonstrated that detailed representations of muscle fiber paths, particularly
in the shoulder, yield muscle moment arms that more closely align with experimental
cadaveric data from (Ackland et al., 2008) than those obtained through simplified segment
approximations. This suggests that incorporating more realistic muscle geometries can
enhance the accuracy and fidelity of musculoskeletal models. In this regard, we will
therefore consider the general case of complex muscle geometry models.

Enhancing the efficiency of complex musculoskeletal computations, particularly those
involving moment arm calculations, has driven the exploration of alternative approaches
to muscle geometry modeling. However, recent research has investigated the use of poly-
nomial functions to represent muscle length and moment arms.

For instance in (Menegaldo et al., 2004), the authors employed polynomials to model
43 lower limb muscles in the lower extremity musculoskeletal model developed in (Delp et
al., 1990). Their analysis of the tibialis anterior muscle revealed a maximum error of 0.15
cm in the computed moment arm surface across a wide range of ankle and subtalar joint
angles, with the largest errors occurring near the joint limits. While this study focused on
predicting muscle moments, it did not explicitly evaluated the accuracy of muscle length
estimations. In (Sobinov et al., 2020), the authors utilized higher-order polynomials
(order 6) to represent upper limb muscles. Their findings indicated promising accuracy
for both muscle length and moment arms across various joint configurations, with errors
below 5% compared to geometric computations for both measures. However, despite
their computational advantages, the authors noted that the accuracy of these polynomial
models depended on the quality of the data used to generate them. Specifically, they
observed increased force and torque errors with increasing noise levels in the input muscle
length and moment arm data. For example, 10% noise in the input data resulted in a
7.36% error in produced force and a 61.2% error in torque compared to expected values.

To ensure the accurate representation of muscle action and align with experimental
findings reported in the literature, this thesis will employ complex muscle geometries that
reflect experimentally measured moment arm data. Furthermore, muscle force production
will be modeled using the Hill-type model, a widely adopted and experimentally validated
approach in the field of biomechanics.
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1.1.2 Force feasible sets formalism

We now examine how muscles generate forces across joints to produce forces at the hand.
This will lead to the characterization of the feasible force sets, which represent the range
of forces that can be generated by the combined action of the upper limb muscles.

Tension feasible set

In (Hill, 1938), the author described initially a mechanical model of two components, one
representing a muscle and the other a tendon. Combined into one system, these com-
posants form the musculotendon unit. Current Hill-based models comprise three compo-
nents: 1) the contractile element (CE), which corresponds to the contractile properties of
fibers inside the muscle part; 2) the passive elastice element (PEE), which encompasses
the elastic properties of these fibers and is in parallel with the contractile element; and 3)
the serial elastic element (SEE), which reflects the elastic properties of the tendon in the
musculotendon unit and is series with the first two components. Figure 1.2 summarizes
this model.

Figure 1.2: Hill’s muscle model (Hill, 1938). Forces exerted by a tendon are modeled via a
spring is series with the muscle forces modeled in two parts: a contractile element in parallel

with a spring.

Hill discovered a relationship between forces fM (in Newton) produced by a muscle
and its length lM (also termed fiber length) as well as its velocity 9plMq. Since this thesis
focuses on isometric condition, i.e. 9lM “ 0, we will describe the muscle force-length
relationship only. For this, we consider the activation of a muscle, i.e. how much it
should contract. The activation is controlled by a neural command, and is represented
as a positive real value a P r0, 1s. In isometric condition, where activation is at 1, the
contractile element of a muscle produces its peak force fiso, termed the maximal isometric
force, at a specific length lo, the optimal fibel length. When the contractile part has a
smaller or larger length than lo, the produced force decreases. For other activation states,
this force is proportional to the activation. These relationships specifically describe the
force produced by the contractile component of Hill’s muscle model, which is termed the
active force fA. The passive muscle element also exerts forces fP , as it is modeled as
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a non-linear spring: these depends on the muscle length and are termed passive forces.
Since both active and passive forces are modeled in parallel, the total muscle force is the
sum of their respective produced forces. Figure 1.3 describes these relations as curves.

Figure 1.3: Simplification of Hill’s force-length relationship in a muscle. When a muscle is
fully activated (a “ 1, left figure), the muscle maximal isometric force fiso is produced when
the muscle length is at its optimal fiber length lo. In general (right figure), when the muscle
activation varies, the active force-length curve is proportional to the activation, and so is the

maximal force.

However, the musculotendon unit is not a straight line, so to account for the non-linear
shape of the musculotendon unit, both tendon and muscle are assumed to be separate
segments with different lengths. The tendon is assumed to be bonded to the attaching
bone, so that its produced force fT is along the bone’s direction. In contrast, muscle
fibers are pennated, i.e. there is a non-negligible angle α P r0, πs between the tendon and
the muscle segments. To account for this pennation angle, the produced muscle force fM

is orthogonally projected onto the tendon’s direction.

Figure 1.4: Forces in Hill’s muscle model.

When isometric conditions are assumed, the tendon force fT and muscle force fM are
identical, and the muscle force-length relationship can be described as follows:

fM
“ fisopafAplMq ` fP plMqq cospαq
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where a P r0, 1s is the muscle activation, α P r0, πs the pennation angle, fA is the normal-
ized active force curve and fP is the normalized passive force curve, in which the given
muscle lengths lM are normalized by the optimal fiber length lo.

Another important muscle parameter is the tendon slack length ls. Tendons stretch
and recoil during movement, and and because its force behavior is modeled as a spring,
the tendon produces its own force fT depending on its own length lT . Similarly to the
passive elastic element of the muscle part, the tendon produces force when it is stretched
beyond a certain length, termed the tendon slack length and noted ls.

However, in isometric conditions the forces occurring within the musculotendon unit
balance each other, so that the muscle force equals the tendon force. Hill’s model also
incorporates muscle velocity and a force-velocity relationship, which describes how the
force a muscle can generate depends on its speed of contraction. Elastic elements could
also be considered to have visco-elastic properties, so that their velocities also influence
their forces. However, this thesis focuses only on isometric conditions, so we do not need
to consider any velocity-related properties for force-generation within the musculotendon
unit.

It is to be noted that the forces generated within the musculotendon unit are consid-
ered positive when acting in their direction of application. The term tension is therefore
used to emphasize that these forces are always considered positive, acting in the direction
that pulls on the tendon.

The feasible tensions of a muscle refer to the set of all tensions exertable by a muscle
for a specific length. Since its tension depends on its length, the feasible tensions of a
muscle reflect the possible tensions achievable solely through varying the activation level.
When considering a musculoskeletal model and one of its muscle M , its feasible tension
set is noted T M and is defined as follows:

T M
“

!

t P Rě0 | t “ fisopafAplMq ` fP plMqq cospαq, a P r0, 1s

)

“ rtM , tM s

where tM “ min T M and tM “ max T M .

Since a musculoskeletal model may consist of multiple muscles, the tension feasible
set (of the musculoskeletal model) denotes all muscle tension combinations producible
by all muscles. It is noted as T and is a subset of a m-dimensional real space, where
m is the number of considered muscles. This set depends on the specific posture of the
musculoskeletal system, as muscle lengths change with joint angles.

Different combinations of muscle tensions reflect different biomechanical assumptions.
For instance, if we define for a posture T as:

T “
␣

t “ pt1, . . . , tmq P Rm
| ti P rti, tis, @i “ 1, . . . ,m

(

then T is a m-dimensional hyperrectangle, also termed m-orthotope (c.f. Figure 1.5).
This implies that all muscles can be fully activated at the same time.

Having defined the tension feasible set, we will now formulate the force feasible set
formulation by showing how the equation of motion relates muscle tensions to the forces
produced at the hand.
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Figure 1.5: A muscle exerts a tension in a feasible range of values. The set of all tension
combinations T is shaped as an orthotope (or hyperrectangle): it assumes muscles act

independently from each other.

The equation of motion

In a dynamical context, the serial kinematic chain of a considered musculoskeletal model
is described by n generalized coordinates associated to n degrees of freedom. We shall con-
sider the parametrization of the degrees of freedom as a vector of generalized coordinates
q “ pq1, . . . , qnq P Rn, and also consider the generalized velocities 9q “ p 9q1, . . . , 9qnq P Rn

and the generalized accelerations :q “ p:q1, . . . , :qnq P Rn. These vectors describe the kine-
matic chain’s configuration and how it is changing over time. Each rigid body Bi, for
i “ 1, . . . , k has a positive mass mi (in kg). To describe how this mass is distributed
throughout the kinematic chain and how it affects the system’s resistance to acceleration,
we define the inertia matrix of the musculoskeletal model. Importantly, this matrix de-
pends on the joint configuration q. We denote by Cpq, 9qq the Coriolis and centrifugal
torques. These are velocity-dependent forces that arise due to motions in the kinematic
chain and the joints between its links. Gpqq P Rn denotes the vector of gravitational
torques. Finally, τ P Rn denotes the vector of joint torques and describes the forces
applied by the actuators at each joint to drive the motion.

The equation of motion (Lau et al., 2013; Skuric, 2023) is thus described as a differ-
ential equation of the generalized coordinates:

Mpqq:q ` Cp 9q,qq 9q ` Gpqq “ τ

The surrounding space for τ vectors is termed the torque space, and is of dimension
the number of generalized coordinates, which we will assume is equal to the number of
degrees of freedom. Joint torque vectors τ are produced by actuators and other forces in
the musculoskeletal model.

On one hand, a force f applied at an end-effector point X “ px1, x2, x3q P R3 is
projected linearly onto the torque space. Indeed, the Jacobian matrix at point X for joint
configuration q, JXpqq P R3ˆn, which relates the velocities of the generalized coordinates 9q
to the Cartesian velocities of the end-effector 9X, describes how a change in the generalized
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coordinates results in a change of a Cartesian position:

9X “ JXpqq 9q

where JXpqq “

´

Bxi

Bqj

¯

i,j
for i “ 1, 2, 3 and j “ 1, . . . , n. Due to kineto-static duality,

which relates forces and velocities in a mechanical system, the transpose of JXpqq, noted
JT
Xpqq relates a linear force f P R3 at X to the joint torques as follows:

τ “ JT
Xpqqf

On the other hand, the length li of muscle i, for i “ 1, . . . ,m, depends on the joint
configuration q. The muscle velocities 9l “ p 9l1, . . . , 9lmq P Rm are described through the
linear mapping L P Rmˆn, which relates the rates of change of muscle lengths to the
velocities of the generalized coordinates:

9l “ Lpqq 9q

where Lpqq “

´

Bli
Bqj

¯

i,j
for i “ 1, . . . ,m and j “ 1, . . . , n. L is termed the lever arm

matrix. Similarly to the Jacobian matrix, the transpose of L relates the muscle tensions
t P Rm to the joint torques via:

τ “ ´LT
pqqt

The negative sign in this equation reflects the sign convention used for muscle forces and
joint torques. For instance, when the biceps muscle contracts (positive tension), it creates
a flexion torque at the elbow, which is represented as a negative torque in the equation
since the positive direction for the elbow angle is extension

When no other actuators or forces are considered, the equation of motion is written
as:

Mpqq:q ` Cp 9q,qq 9q ` Gpqq ` JT
Xpqqf “ ´LT

pqqt

We will now formulate the force feasible set, for both dynamic and static cases.

General formulation of force feasible sets

As described in (Skuric, 2023), the force feasible set FT
X pq, 9q, :qq at joint configuration

pq, 9q, :qq is defined to be the set of all forces fpq, 9q, :qq such that there exist muscle tensions
satisfying the equation of motion:

FT
X pq, 9q, :qq “

!

f P R3
| Dt P T pq, 9qq, Mpqq:q ` Cp 9q,qq 9q ` Gpqq ` JT

Xpqqf “ ´LT
pqqt

)

Force feasible sets in isometric conditions

In isometric conditions, muscles are contracting but are not shortening or lengthening,
meaning the musculotendon forces are in a static equilibrium state where the generalized
velocities and accelerations of the kinematic chain are 9q “ 0 and :q “ 0. We use the term
posture to refer to a joint configuration q where the velocities and accelerations are null.
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Force feasible sets in isometric conditions are described for a given posture q as follows:

FT
X pqq “

!

f P R3
| Dt P T pqq, Gpqq ` JT

Xpqqf “ ´LT
pqqt

)

It corresponds to the set of forces applied at the end effector such that the gravity
and a combination of muscle forces can compensate for the applied force. Throughout
this thesis, the term force feasible set will be used exclusively to refer to the force feasible
set in isometric conditions.

Before delving into force feasible set computations, we introduce more compact no-
tations to improve readability. When possible, we will denote a force feasible set FT

X pqq

as Fpqq, and simply as F when the posture is clear from the context or not relevant.
Since the relevant tension feasible set will always be defined beforehand, the subscript
T can be omitted. Furthermore, forces will generally be applied at the right hand of an
upper-limb musculoskeletal model, since this thesis focuses exclusively on forces applied
at the right hand. The coordinates of X will be specified when relevant, such as during
in silico or in vivo experiments. However, even when the coordinates of X are specified,
the X subscript will be omitted from the force feasible set notation. Thereforce, Fpqq

will always denote a force feasible set with an underlying tension feasible set (defined
beforehand) and a point of application X. Consequently, it is also common to denote the
Jacobian transpose computed at point X as JT pqq, omitting the X subscript.

Since the force feasible set depends on the posture q, it is often expressed as a function
of q. This highlights the fact that the set of feasible forces changes as the posture changes.
For brevity, we will often omit the explicit dependence on q in the notation for force
feasible sets, where it is understood that all elements in the set’s definition implicitly
depend on q:

F “

!

f P R3
| Dt P T , JT f “ ´LT t ´ G

)

The force feasible set formulation is a geometric transformation of the tension feasible
set T . To highlight the underlying geometry, we can express this relationship in an
alternative form. Let F be the force feasible set at end-effector X for a given posture and
a tension feasible set T . Then, F can be expressed, up to linear transformation, as:

im JT
X

´

´LTT ´ G
¯

where ´LTT ´ G “
␣

τ P Rn | Dt P T , τ “ ´LT t ´ G
(

is the torque feasible set and
representing all torques achievable through muscle tensions and gravity. Also, im JT

denotes the image of the matrix JT , which is the vector space spanned by its columns.
We will assume that dim im JT is 3, or more generally, p, where p is the rank of JT .
Therefore, im JT is a subspace of the n-dimensional torque space. If JT is invertible, then
im JT spans the entire torque space. This implies that every exertable force at the end-
effector corresponds to a unique combination of joint torques, indicating no redundancy
in the system.

The sets F and im JT X
`

´LTT ´ G
˘

are considered equivalent up to linear trans-
formation. This means that they are not strictly identical, but they represent the same
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underlying set viewed from two different perspectives: the Cartesian force space, where
forces are expressed in Cartesian coordinates (f P R3), and the torque space, where they
are expressed as joint torques (JT f P Rn). When expressed in the torque space, the force
feasible set F becomes JTF :“

␣

τ P Rn | Df P F , τ “ JT f
(

. To map forces from the
torque space back to the Cartesian force space, we can use the Moore-Penrose pseudo-
inverse of JT , denoted pJT q`, and we have F “ pJT q`pJTFq, which recovers the original
force feasible set in Cartesian coordinates. The (left) Moore-Penrose pseudo-inverse pJT q`

is defined as:

pJT
q

`
“ pJJT

q
´1J

which satisfies the property pJT q`JT “ I3, where I3 is the 3 ˆ 3 identity matrix.

For conciseness, we can consider the force feasible set F in either the Cartesian force
space or the torque space. This is justified by the fact that an invertible linear trans-
formation, which can be computed for any given posture, allows us to seamlessly switch
between these two representations.

1.1.3 Force feasible sets computation

Given a tension feasible set T , the force feasible set F can be described as two successive
geometric operations: a projection of T onto the torque space, creating the torque feasible
set, which is then intersected by im JT , yielding the force feasible set F expressed in the
torque space (Skuric, 2023). This modeling of forces is based on a rigid-body framework,
which may not fully capture the complexities of deformable systems. Nevertheless, we
assume throughout this thesis that bones are non-deformable. The force feasible set
geometric construction can be summarized as follows:

T ´LTT ´ G JTF F
projection intersection

pJT q`

JT

Throughout this thesis, we use the term projection in a generalized sense to highlight
that the muscle tension space is related to the torque space through a surjective affine
mapping, which consists of a surjective linear mapping (´LT ) followed by a translation
(´G). Since this mapping is surjective, the dimension of the torque space is less than
that of the muscle tension space, implying that there are more muscles than degrees of
freedom. The use of the term projection here emphasizes the surjective nature of this
mapping and should not be confused with the typical notion of an orthogonal projection.

The projection-intersection process described above involves two main computations:
projecting the tension feasible set onto the torque space and intersecting the resulting set
with the image of the Jacobian transpose. Each of these computations requires distinct
techniques, largely determined by the geometry of the tension feasible set T .

If we assume that T is a cube or an orthotope, then F is a bounded convex polytope
(or simply polytope), which is a generalization of a 2D convex polygon to n dimensions
(Grünbaum, 1967). A set is convex if the line segment connecting any two points in the
set is also contained within the set. A set is bounded if it can be contained in a ball of
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finite radius. A polytope, by definition, includes all of its interior points as well as the
points on its surface.

Alternatively, the tension feasible set T could be a ball or an ellipsoid, which includes
all of its interior points. In this case, the boundary of the force feasible set is an ellipsoid.
Figure 1.6 summarizes these different constructions.

T is a cube, so F is a polytope. T is a ball, so F is an ellipsoid.

Figure 1.6: Force feasible set F (red) resulting from different tension feasible sets T (pink).
The blue shape represents the torque feasible set, and the green line represents im JT .

We will now detail how to explicitly compute force feasible sets for both polytopic
and ellipsoidal constructions.

Representing force polytopes

When the tension feasible set T is an orthotope (a generalization of a rectangle to higher
dimensions), the force feasible set F is a force polytope. Polytopes have two main distinct
representations: the V-representation, which describes the polytope by its vertices, and
the H-representation, which describes it by its supporting hyperplanes.

The V-representation of a polytope consists of its extremal points, commonly known
as vertices. Any point that can be expressed as a weighted average of these vertices is
necessarily included in the polytope, as stated by Caratheodory’s theorem (Carathéodory,
1911). The set of all possible weighted averages of two or more vertices is called the
convex hull of those vertices. In contrast, the H-representation describes a polytope as
the intersection of multiple half-spaces. Each half-space is defined by a linear inequality.
Therefore, the H-representation essentially consists of a set of linear inequalities that
define the polytope’s faces and determine which side of each face belongs to the polytope.
Specifically, each face of a polytope can be represented by a hyperplane (Grünbaum, 1967),
which is an pn ´ 1)-dimensional subspace of an n-dimensional space. Figure 1.7 presents
simple 2D examples of both representations.

The V- and H-representations are equivalent when a polytope is full-dimensional
(Grünbaum, 1967), meaning it has the same dimension as the ambient space. An ambient
space refers to the surrounding space in which the polytope is described. When a polytope
is full-dimensional, this is equivalent to saying that the polytope is not flat in the ambient
space. For instance, a polygon in a 3D space is not full-dimensional and is considered
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Figure 1.7: Polytope representations: A polytope can be described according to its vertices
(the V-representation) or by halfspaces determined from its bounding hyperplanes (the

H-representation).

degenerate. Force polytopes, when expressed in the torque space, are often degenerate,
specifically when the rank of im JT is strictly less than the dimension of the torque space,
as shown in figure 1.8.

Figure 1.8: Construction of a force polytope P from a tension orthotope T . T is projected
onto the 3D torque space (Z), then intersected with the 2D subspace im JT (A). The resulting

force polytope P is degenerate as it is 2-dimensional within the 3D ambient torque space.

The V- and H-representations are the most common, as they encapsulate crucial in-
formation that force polytope construction does not share at first sight: they characterize
a polytope’s surface. So, in order to visualize a 3D force polytope, a correspondence from
the projection-intersection description should be made to either its vertices or bounding
hyperplanes. Either representation would suffice, as algorithms already exist to convert
from the V- to the H-representation, as described in (Avis and Fukuda, 1992).

One approach is to explicitly compute the H-representation of the torque feasible set,
which is the projection of the tension feasible orthotope onto the torque space. Numerous
algorithms exist for this purpose, such as the Hyperplane-Shifting method (Gouttefarde
and Krut, 2010) for describing the bounding hyperplanes, or the algorithms proposed in
(Rada and Černý, 2018) and (Gu et al., 2022) for enumerating the vertices. Next, we need
to compute the polytope that results from intersecting this torque feasible set with im JT .
Once we have the bounding hyperplanes of the torque feasible set, we intersect each of
them with im JT . This creates a new set of half-spaces within im JT . The force polytope
is then defined as the smallest polytope enclosed by these new half-spaces. The Fourier-
Motzkin elimination method can be used to obtain this new set of half-spaces, as it is
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specifically designed to find the smallest polytope enclosed by a given set of hyperplanes
(Dahl, 2007).

Although this direct approach is theoretically feasible, it is often impractical due to
the high computational cost. Most algorithms for computing the V-representation or H-
representation of polytopes are combinatorially complex, meaning their time complexity
increases exponentially with the dimension of the muscle tension space. In Chapter 2,
we will further demonstrate this computational challenge by benchmarking various algo-
rithms for projecting the tension orthotope onto the torque space. We will also propose
a new edge-based algorithm for efficiently describing the surface of the torque feasible
set, leveraging its representation as a projection of an orthotope. Even with efficient algo-
rithms, any exact description of the torque feasible set’s surface will inevitably suffer from
combinatorial complexity. Therefore, to avoid this computational bottleneck, approxima-
tion algorithms are often preferred for computing points on the polytope’s surface. One
such example is the Iterative Convex Hull method proposed in (Skuric et al., 2022).

Beyond the V- and H-representations, there are many other possible polytope repre-
sentations that capture specific polytope properties, just as the V- and H-representations
encapsulate surface properties. For example, the Ehrhart quasi-polynomial of a polytope
P is a polynomial of a positive variable t that counts the number of integer points within
a dilation tP of the polytope. However, computing the coefficients of these polynomials
is computationally expensive, with the combinatorial complexity increasing significantly
as the number of vertices and the dimension of the polytope increase (Barvinok, 2005).
A more practical representation is the constrained zonotope representation, introduced in
(Scott et al., 2016). The authors showed that any polytope can be constructed by inter-
secting a hypercube with a linear subspace and then projecting the result onto another
subspace. Although this result was previously proven in (Naumann, 1956) and discussed
by Grünbaum in (Grünbaum, 1967), it remains largely theoretical, with no explicit con-
struction method provided. In Chapter 3, we leverage this result by demonstrating how
to transform the projection-intersection description of a polytope (as we have enunciated
for force polytopes) into an intersection-projection description. We provide an explicit
method for this transformation. Our result is quite general, as it applies to any convex
set constructed in this way, including arbitrary force feasible sets derived from convex
tension feasible sets. The primary goal of this geometric inversion is to re-express linear
constraints in the torque space as linear constraints in the muscle tension space. This is
useful for geometrically identifying the muscles that are primarily responsible for gener-
ating forces at the end-effector.

Representing force ellipsoids

A force ellipsoid is a force feasible set that results from assuming the tension feasible
set is an ellipsoid. This provides an alternative representation of force feasible sets, as
demonstrated in (Chiacchio et al., 1997), who used it to characterize the manipulability of
a serial robot. In the context of biomechanics, this representation implies that the tension
a muscle can exert depends on the tensions of all other muscles in the system. Specifically,
the vector of muscle tensions must lie within an ellipsoid in the muscle tension space.

Whereas characterizing the surface of force polytopes is computationally challenging,
force ellipsoids are much easier to compute and do not involve combinatorial complexity.
This simplicity stems from the fact that both projections and intersections of ellipsoids
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with vector spaces result in ellipsoids (Grünbaum, 1967).

Any ellipsoid can be represented as an affine transformation of a unit sphere. Let E
be an ellipsoid in Rm and let S denote the unit sphere in Rm. Then, there exists a matrix
T P Rmˆm and a vector t P Rm such that:

E “ TS ` t “
␣

x P Rm
| x “ Tu ` t, }u}2 “ 1

(

where } ¨ }2 denotes the usual Euclidean norm in Rm.

Any linear transformation T can be decomposed into three parts: 1) a rotation; 2)
an anisotropic dilation, which scales the sphere by different factors along its principal
axes; 3) another rotation. This is known as the singular value decomposition (SVD) of
a linear transformation. The SVD provides a geometric interpretation of how the linear
transformation T deforms a unit sphere. Recall that the torque feasible set is obtained
by projecting the tension ellipsoid onto the torque space. Since the projection is a linear
transformation, and the composition of linear transformations is another linear transfor-
mation, the resulting torque feasible set is also an ellipsoid. However, the intersection of
an ellipsoid with a vector space requires a more involved computation. In (Sasaki et al.,
2010), the authors offer a mathematical method to compute such an intersection.

Both the projection and intersection operations involve only matrix operations and
vector translations. Therefore, force ellipsoids offer a significant computational advantage
over force polytopes, which require addressing combinatorial problems.

1.1.4 Conclusion

In this section, we first described how a human upper limb can be represented in silico
using a model of a serial kinematic chain and muscles. This model allowed us to analyze
the dynamics of the upper limb, which are captured by the equation of motion. This
equation relates the generalized coordinates, their velocities, and accelerations within the
torque space. We considered both internal and external forces acting on the system. The
internal forces are the muscle forces, and the external forces are those applied at the end-
effector (the hand). We then expressed these forces in the torque space to incorporate
them into the equation of motion. This led to the mathematical definition of the force
feasible set as the set of all external forces that can be applied at the end-effector while
satisfying the equation of motion.

To analyze the force capabilities of the upper limb in static postures, we focused on
force feasible sets in isometric conditions, where the generalized velocities and acceler-
ations are zero, and the musculotendon units are in equilibrium, meaning there is no
movement. This allows for a more succinct representation of the force feasible sets, as
the terms related to mass inertia and Coriolis accelerations in the equation of motion
can be eliminated. We also presented a geometric interpretation of force feasible sets,
highlighting their construction through a linear projection followed by an intersection
with a vector space. These two operations are fundamental in set theory and have been
extensively studied in the literature (Bourbaki, 1939; Dorst et al., 2007).

However, even when assuming that the geometric construction of the force feasible
sets depends only on convex sets - which is advantageous since a convex set is fully de-
termined by its surface - we observed that the process of projecting and then intersecting
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introduces significant complexity in characterizing the surface of the resulting set. As
examples, two common force feasible set representations were compared in terms of com-
puting difficulties: force polytopes and force ellipsoids. Both characterization as polytopes
and ellipsoids have been extensively studied in the literature (Grünbaum, 1967; Artstein-
Avidan et al., 2015), and the projection-intersection problem is well-understood for both
cases. However, the ellipsoid representation offers a significant computational advantage,
as it involves only linear algebra operations.

It is important to consider other geometric characterizations of force feasible sets be-
cause, as we will see in Section 1.2, the polytope and ellipsoid approaches have limitations
in capturing the complex interactions between muscle tensions. Modeling the interactions
between muscle tensions leads to a specific shape for the tension feasible set, which in
turn influences the shape of the force feasible set. Chapter 3 is dedicated to this problem,
specifically addressing the case of a complex upper-limb muscular structure with a high
number of muscles. In Chapter 3, we will show that for a complex musculoskeletal model,
force polytope and ellipsoid representations are likely to be equivalent up to dilation. This
means that the shape of any force feasible set is essentially the same ellipsoid but with a
different scale, provided the muscle tension feasible set is convex and of sufficiently high
dimension. While this theoretical result assumes a sufficiently large dimension for the
muscle tension space, one of the objectives in Chapter 4 will be to quantify how ellip-
soid representations can be equivalent to polytopes in a muscle personalization process,
even when only 50 muscles are considered, as the upper-limb musculoskeletal model in
(Holzbaur et al., 2005).

In the next section, we will explore the limitations of different force feasible set rep-
resentations in a biomechanical context, comparing them to measured maximal isometric
forces.

1.2 Modeling force feasible sets via maximal isometric
force measurements

As demonstrated by force polytopes and ellipsoids, the shape of a force feasible set is
influenced by the shape of the tension feasible set. This section examines the underly-
ing geometric assumptions about tension and torque feasible sets found in the literature
and explores how these assumptions translate into biomechanical considerations for the
muscles.

This section highlights how the limited diversity of tension interaction models hinders
the accurate modeling of force feasible sets in the human upper limb. This limitation
arises from the computational challenges involved in considering different tension feasible
set shapes. Cable-driven parallel robots, which form the basis of musculoskeletal models,
are not necessarily limited by modeling constraints, as their force feasible sets can be
arbitrarily defined. However, in a human upper-limb, experimental measurements of
maximal isometric force exertions reveal inconsistencies with current force feasible set
representations. Specifically, force ellipsoids tend to underestimate the measured forces,
while force polytopes tend to overestimate them (Rezzoug et al., 2021).

To examine these disagreements, subsection 1.2.1 details the experimental process
required for measuring maximal isometric force exertions, while subsection 1.2.2 discusses
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how in silico force capabilities are adapted to agree with in vivo force measurements.

1.2.1 In vivo measurements of force feasible sets in the human
upper-limb

Convex force feasible sets in isometric conditions can be characterized by the set of all
maximal forces on their surfaces. Since there are infinitely many such maximal forces,
experimental measurement presents inherent challenges. This subsection first focuses in
1.2.1 on measuring a maximal force in an individual, detailing the various factors that
must be considered to ensure accurate measurement. Then, subsection 1.2.1 discusses
how current in silico representations are limited in their ability to accurately capture
these measurements. This highlights the need for more sophisticated force feasible set
models that can better represent the complexities of human force capabilities.

Maximal voluntary isometric contraction (MVIC)

Measuring isometric force exertion requires a demanding experimental procedure, partic-
ularly because force exertions are linked to musculoskeletal disorders (Hoozemans et al.,
1998; Hoozemans et al., 2004). This protocol, known as maximal voluntary isometric con-
traction (MVIC), measures an individual’s maximal force exertion and provides a simple
method of assessing muscle strength (Meldrum et al., 2007). MVIC is typically measured
using a dynamometer (Roberts et al., 2011) or a force/torque sensor, which allows for
the evaluation of the produced force and/or torque. The peak force generated during an
isometric contraction against the sensor is recorded as the MVIC. The duration of the
MVIC recording can vary depending on the specific research question.

Several factors can influence MVIC measurements. These include the individual’s
posture (Watanabe et al., 2005; Roberts et al., 2011) and gender (Van Der Beek et al.,
2000; Roberts et al., 2011), as well as the direction of force exertion and their hand domi-
nance (Jansen et al., 2000). Other influencing factors include the individual’s respiration
conditions (Lee and Jo, 2016) and medical condition, the number of repeated MVIC mea-
surements (Watanabe et al., 2005; Roberts et al., 2011), the exertion time (Rose et al.,
2014), the shape of the handle used for force exertion, the muscle resting time (Watanabe
et al., 2005), and the perceived resting time required before another exertion (Rose et al.,
2014).

The following studies present experimental protocols for force measurements. While
measuring a maximal voluntary isometric force in a specific direction may not be the
primary objective of all the studies, they show how a force exertion can be influenced by
various factors. However, all of these studies involve the measurement of forces exerted
at the hand.

Hand dominance. Studies on hand dominance and grip strength have shown that
right-handed individuals have a grip that is approximately 10% stronger in their domi-
nant hand compared to their non-dominant hand (Jansen et al., 2000; Bohannon, 2003).
However, this trend is not observed in left-handed individuals, whose grip strength tends
to be equal in both hands (Crosby and Wehbé, 1994; Bohannon, 2003). Consequently,
hand dominance is an important factor to consider when measuring maximal isometric
forces at the right hand.
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Respiration. In (Lee and Jo, 2016), the authors showed that respiration conditions
can also influence MVIC measurements at the hand. The study involved 13 males and
9 females (age 22.6 ˘ 2.4 years old). The MVIC was measured in a standing posture
with the elbow flexed at 90°. The results showed that, on average, the MVIC was signifi-
cantly higher during expiration after a maximal inspiration compared to inspiration after
a maximal expiration. Based on these findings, the authors recommend keeping the same
respiration method for all MVIC measurements to ensure consistency.

Perceived fatigue. Furthermore, (Rose et al., 2014) demonstrated the influence of
perceived fatigue on force exertion. The study showed that the required resting time
between two trials of a task involving pushing a load (a static handle at shoulder height)
increases exponentially with both the amount of force produced and the duration of the
exertion. The specific exponential curve varies between individuals. For example, one
male participant who pushed the handle for 30 seconds at 50% of his MVC needed at
least 2 minutes of rest before the next trial. However, the study had limitations, including
a small number of trials per participant (only 2) and a focus on long exertions. Despite
these limitations, the study suggests a relationship between achieving a MVIC and the
individual’s resting time.

Body posture. The authors in (Watanabe et al., 2005) conducted a study to investi-
gate the short-term reliability of hand grip strength in different postures, with a focus
on shorter exertion times. The study involved 100 healthy subjects (50 male and 50 fe-
male, mean age 38.2 years old) who performed maximal grip exertions on a handle. The
exertions were performed with and without the use of the non-dominant hand, repeated
three times with and without 1-minute resting intervals, and conducted in three different
body positions: standing, sitting, and supine. The main finding of the study was that 1-
minute resting intervals were sufficient to maintain a consistent maximal grip force across
the three trials. However, the study did not specify the duration of the grip exertion,
stating only that it was short and varied between participants. The results also showed
no significant difference in grip strength between the standing and sitting postures, but a
significant difference was observed for the supine posture.

Circadian rythm. It is also important to note that the time of day can also influence
MVIC. (Jasper et al., 2009) showed that maximum hand grip strength exhibited a circa-
dian rhythm, with the lowest strength values observed at 06:00h and the highest at 18:00h.
This difference was significant regardless of whether the subjects were sleep-deprived.

Encouragements. Also, it was shown in (Jung and Hallbeck, 1999) that both visual
and verbal encouragement can influence MVIC measurements. Their study examined
these effects on the handgrip strength of 16 male subjects (age 27 ˘ 3.72). Providing
verbal encouragement by continuously shouting ‘Go’ resulted in a significantly higher
peak force. Similarly, providing visual feedback, where subjects could see their force
output in real time, also led to significantly better results. In another study (Johansson
et al., 1983), the authors investigated the effect of the volume of MVIC instructions on
the resulting MVIC at the hand for the triceps brachii muscle. The measurements were
taken in a supine position with the right shoulder at 90° of abduction and the elbow at
90°. Their findings showed that providing instructions at a loud conversation level (88
dBA) resulted in significantly greater muscle force compared to a soft conversation level
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(66 dBA). Furthermore, a set of standardized instructions was defined in (Mathiowetz
et al., 1984) to ensure consistency in maximal grip strength measurements over three
trials. This suggests that verbal encouragement can help improve the quality of MVIC
measurements.

While these studies highlight the various factors that can influence MVIC measure-
ments, accurately characterizing the surface of a force feasible set in a given posture the-
oretically requires measuring an infinite number of MVICs. Since this is not practically
feasible, the next paragraphs will examine current protocols used to collect a sufficient
number of MVIC measurements to approximate a force feasible set.

Reconstructing a force feasible set from MVIC measurements

The following studies involve the collection of multiple maximal voluntary isometric con-
tractions. These studies share some common features: all measurements involved forces
exerted at the hand with the right upper limb in one or more fixed postures. Since there is
no standard protocol for selecting force directions, the following studies employ different
methods for choosing them.

Posture stabilization. To ensure accurate measurement of multiple maximal volun-
tary isometric contractions in isometric conditions, the participant’s posture must be
fixed. Participants typically adopt a sitting posture, and only their upper-limb posture is
adjusted to achieve different configurations. One challenge is to stabilize the participant’s
trunk to isolate the upper-limb movements. Several studies have used two belts to secure
the trunk against a chair, thereby minimizing the influence of upper body movements
(Oshima et al., 2000; Sasaki et al., 2010; Hernandez et al., 2016; Rezzoug et al., 2021).

Isolation of upper-limb forces. A major challenge in measuring forces exerted by
the upper-limb muscles is ensuring that no other forces are exerted, both from within
the upper limb itself and from the rest of the body. Contact forces are inherent to a
sitting posture and therefore unavoidable. However, other forces, such as those arising
from ground contact with the feet, should be minimized. In (J. Lee and Y. Lee, 2023),
a significant correlation between ground contact forces and hand contact forces produced
simultaneously was noticed. Specifically, the authors found a relationship between the
minimum ground contact forces and the maximum hand forces produced. Although this
study focused on a standing posture, it suggests the importance of minimizing foot contact
forces to ensure accurate measurement of maximal hand force exertion.

Posture determination. To prevent external forces from being exerted on the upper
limb during MVIC measurements, contact forces over the upper limb itself should also
be minimized. This means that the upper limb should not be constrained by belts or
any other mechanical system used to maintain a specific posture. Consequently, since
the posture is not constrained, it must be determined directly from the subject. In
(Rezzoug et al., 2021) and (Hernandez et al., 2016), an optoelectronic system was used
with reflective markers placed on the upper limb according to the recommendations of
the International Society of Biomechanics (Wu et al., 2005; Senk and Chèze, 2006) (see
Figure 1.9). This system uses multiple cameras to track the 3D positions of the markers.
The marker placement allows us to scale a generic musculoskeletal model to the subject
by adjusting the bone lengths to match the marker positions. Inverse kinematics can then
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be applied to the scaled model to determine the individual’s posture, as described in (Lu
and O’Connor, 1999) and (Roux et al., 2002).

Figure 1.9: Reflective markers placed on the upper-limb (Hernandez et al., 2016).

Force directions. The choice of directions for exerting MVICs varies depending on the
posture and the desired range of force directions (a line, a plane, or the entire 3D space).

While predicting force amplitude in a specific direction is of strong interest for charac-
terizing individual force capabilities, this thesis focuses on understanding the underlying
muscle tension interactions that generate these forces. Previous studies have explored
various approaches for predicting maximal force exertion in regard to a specific direction,
such as using artificial neural networks to relate upper-limb posture and anthropometric
data (La Delfa and Potvin, 2017; La Delfa and Potvin, 2016) or employing parametric
equations to predict maximum hand force based on hand location relative to the shoulder
(La Delfa et al., 2014). However, these studies do not seek to characterize how muscle
tensions interact to produce these forces. As this thesis will focus this characterization,
we do not expand on the predicting aspect of maximal force exertion and focus on the
chosen directions within experimental procedures.

As experimentally observed in (Jan Nijhof and Gabriel, 2006), in which six partici-
pants were asked to exerted maximal forces at the hand in eight directions of the workspace
in five different hand locations on the transverse plane, the maximum produced forces sys-
tematically depended on the hand location and the direction of exertion.

In (Oshima et al., 2000), the authors investigated forces exerted at the hand in the
transverse plane. In this 2D condition, they measured maximal voluntary isometric con-
tractions from four subjects, with exertions performed in various directions within the
horizontal plane. Each exertion lasted 1 to 2 seconds, and measurements continued until
a sufficient number of directions were sampled. The subjects gripped a horizontal handle,
and two postures were considered. However, the authors did not specify whether a rest-
ing period was included between measurements or how many directions were considered
sufficient.
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In (Sasaki et al., 2010), 2D force exertions in the transverse plane at the hand were
also investigated, using 7 postures and a single participant. A handle was attached to a
mechanical mechanism to allow for different wrist postures. In this work, 8 force directions
were considered, as described in Figure 1.10.

Figure 1.10: Hand force exertion directions used in (Sasaki et al., 2010).

In contrast to the previous 2D studies, in (Rezzoug et al., 2021) the authors consid-
ered seven participants exerting maximal isometric forces in the whole 3D space, using a
single posture. This posture involved slight shoulder flexion, an elbow flexed at 70°, and
forearm pronation-supination at 80°. Participants exerted maximal isometric forces on a
vertical handle attached to a dynamometer in 26 specified directions. These directions
were defined as combinations of azimuth angles (ranging from 0° to 315° relative to the
horizontal forearm axis in 45° steps) and elevation angles (-45°, 0°, and 45° relative to
the horizontal plane). Two additional vertical directions, corresponding to 90° and -90°
elevation, were also included. Each maximal force exertion was held for 3 seconds, with
a 3-minute resting period between trials.

Similarly, (Hernandez et al., 2015) employed a similar protocol, using the same 26
force directions. In their study, participants exerted maximum force for 3 seconds with
verbal encouragement. Resting periods lasting 3 minutes were also included between
trials.

As this review has shown, the inherent challenges of measuring maximal voluntary
isometric contractions (MVICs) are reflected in the difficulty of estimating force feasible
sets, which require multiple successive MVICs in a given posture. The required resting
times between measurements result in lengthy experimental protocols, which become even
longer as the number of force directions increases. These challenges may explain why the
literature lacks studies with a sufficient number of MVICs measured in a single posture.
Furthermore, the number of force directions chosen is often arbitrary, aiming to capture
the three-dimensional nature of the Cartesian force space. Consequently, there is a need
to improve experimental conditions and to gather more force data in a given posture.
This would help in understanding how force capabilities vary across individuals.
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Figure 1.11: The 26 force directions used in (Rezzoug et al., 2021) and (Hernandez et al.,
2015), defined by combinations of azimuth (left figure) and elevation (right figure) angles.

Images from (Hernandez et al., 2015).

This thesis addresses these challenges by making two main contributions. Chapter 3
will demonstrate that in the human upper limb, the high number of muscles leads to a high
probability that force feasible sets resemble ellipsoids. This holds under the sole condition
that muscle tension interactions are modeled as convex. Since any 3D ellipsoid can be
uniquely determined by 9 arbitrary points on its surface (5 points for a 2D ellipsoid), this
result implies that measuring a force feasible set experimentally becomes less challenging.
Furthermore, to address the lack of maximal force exertion data in the literature, Chapter
5 will provide measurements of force feasible sets in four different postures for ten subjects.

1.2.2 Comparison between in silico and in vivo force feasible sets

In experimental protocols where MVICs are gathered in multiple directions, the mea-
sured force feasible set is constructed as the convex hull of all measured maximal forces
(Oshima et al., 2000; Rezzoug et al., 2021; Hernandez et al., 2015). However, there are ex-
amples where a set-theoretic approach is not preferred, and maximal forces are considered
individually for each direction (Sasaki et al., 2010).

Although there is a general framework for defining force feasible sets in static pos-
tures, in practice, this framework is often simplified or adapted based on biomechanical
assumptions. As highlighted in (Sutjipto et al., 2024), it is “unclear which methods best
suit modelling and representing limb strength”. We will now examine these assumptions
in the context of different force feasible set representations.

In (Chiacchio et al., 1997), the authors considered both the polytopic and ellipsoid
representations of force feasible sets for a redundant general manipulator, where the num-
ber of degrees of freedom exceeds the dimension of the Cartesian space. The key difference
from the general formulation presented in Section 1.1 is that their analysis focuses solely
on serial kinematic chains, which do not require the consideration of muscle and conse-
quently tension feasible sets. For example, they define the force polytope P in the torque
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space as:

P “ im JT
X Oτ

where Oτ is an orthotope (hyperrectangle) whose principal axes are aligned with the
canonical basis of the torque space. Furthermore, this orthotope is assumed to be centered
at the origin. If this specific force polytope construction were generalized to include
muscles, it would imply a one-to-one correspondence between muscles and joint torques,
with each muscle acting exclusively on a single joint.

Similarly, based on the work of (Yoshikawa, 1985), these authors define a force ellipsoid
E in the torque space as:

E “ im JT
X Eτ

where Eτ is a n-dimensional axis-aligned ellipsoid in the torque space. The same interpre-
tation as with P is possible, implying a one-to-one correspondence between muscles and
joint torques if this construction were generalized to include muscles.

Figure 1.12: In dashed lines, the force polytope (left) and force ellipsoid (right) construction
from (Chiacchio et al., 1997).

The key difference between these two representations lies in the underlying notion of
a norm. In the polytope case, the torque feasible set is an orthotope, obtained by a linear
transformation of the unit cube C “ r´1, 1sn. This unit cube can be defined as the unit
ball B “ tx P Rn | }x}8 ď 1u with respect to the infinity norm, where }x}8 “ maxi |xi|.
Similarly, in the ellipsoid case, the torque feasible set is an ellipsoid, obtained by a linear
transformation of the unit ball B “ tx P Rn | }x}2 ď 1u with respect to the Euclidean
norm (also termed 2-norm), where }x}2 “

a

x21 ` ¨ ¨ ¨ ` x2n. Therefore, the different shapes
of the force feasible sets in Chiacchio et al.’s work are determined by the choice of norm
on the torque space. These norms reflect the degree of independence between the torques.
The infinity norm implies complete independence, while the Euclidean norm allows for
some interdependence.

Although their representations are specific to pure serial kinematic chains, introducing
muscles should lead to different shapes for the torque feasible set. This is primarily because
the upper limb has more muscles than degrees of freedom. Therefore, the next example,
based on Chiacchio et al.’s construction, investigates the validity of assuming a simpler
muscle representation in the upper limb.
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(Rezzoug et al., 2021) aimed to demonstrate that the representations proposed by
Chiacchio et al., when adjusted based on experimental maximal force and joint torque
measurements, do not accurately capture the volume of force feasible sets in the upper
limb. They constructed the force feasible set as the convex hull of maximal force measure-
ments taken in 26 directions at the hand. The authors adjusted their in silico geometric
construction using data from two measurement sessions: one for maximal isometric force
exertions at the hand in 26 directions and another for maximal isometric joint torques.
Considering 7 degrees of freedom for the upper limb (3 for the shoulder, 1 for the elbow,
and 2 for the wrist), they defined the scaled force polytope SP as:

SP “ im JT
X Oτ

such that Oτ “
`

rτ´
1 , τ

`
1 s ˆ ¨ ¨ ¨ ˆ rτ´

7 , τ
`
7 s
˘

is a 7-dimensional orthotope (hyperrectangle)
in the torque space. For each joint i “ 1, . . . , 7, τ´

i ă 0 represents the maximal measured
joint torque in the negative diretion of the joint torque’s axis, and τ`

i ą 0 the maximal
joint torque in the positive direction.

They also defined the scaled force ellipsoid SE as:

SE “

´

im JT
X Eτ

¯

` f

where Eτ is the 7 dimensional axis-aligned ellipsoid centered at 0, with each semi-axis
having length p|τ´

i |`|τ`
i |q{2 for i “ 1, . . . , 7. Since there is no reason for Eτ to be centered

at 0 (because |τ´
i | is generally not equal to |τ`

i |), the authors compute the intersection
im JT X Eτ and then translate it by an offset f . This offset is determined experimentally
as the center of the ellipsoid obtained by applying singular value decomposition to the
measured force exertions.

One of the key findings of this study was that both force feasible set constructions can
either overestimate or underestimate the volume of the measured force feasible set. This
suggests that the choice of norm for the joint torques (the max norm for the orthotope and
the Euclidean norm for the ellipsoid) significantly influences the volume of the resulting
force feasible set models.

Figure 1.13: Representations of the simulated scaled force ellipsoid (wire-frame) and scaled
force polytope (black squares) with measured force feasible set described in the sagittal plane

in (Rezzoug et al., 2021).

This study also suggests the importance of considering a higher number of muscles
than degrees of freedom to achieve a more physiologically accurate model of the upper
limb.
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To address this, in (Hernandez et al., 2015) a scaled musculoskeletal model with 29
muscles and 7 degrees of freedom was used (adapted from the upper-limb model from
(Holzbaur et al., 2005)) for 9 subjects. Similar to (Rezzoug et al., 2021), they used 26
force directions at the hand to gather experimental MVICs, and the convex hull of these
measurements formed the measured force feasible set. For the in silico analysis, they used
a force polytope representation and incorporated muscle activations. They determined
whether each muscle should be fully activated or not based on the direction of the exerted
force. For a given posture and force direction v P R3, they computed the moment arm
matrix ´LT P R7ˆ29. Each column of this matrix corresponds to the moment vector of
a muscle. For each muscle, they orthogonally projected its moment vector onto im JT

and compared the angle between this projection and JTv. They assumed that a muscle
contributes to a force direction v if its moment vector is aligned with JTv. This alignment
is determined by the angle between the two vectors. If this angle is less than 90°, the
corresponding muscle is fully activated (activation = 1); otherwise, it is not activated
(activation = 0). They considered a large number of force directions v P V , with spherical
coordinates pθ, ϕq where θ P r0, 360°s and ϕ P r0, 180°s in 1° increments. This allowed them
to characterize each muscle tension based on the considered force direction v. Based on
this muscle activation model, they defined the force polytope MSFP as follows:

MSFP “

!

f P R3
| f “ pJT

q
`

p´LT tpvq ´ Gq, v P V
)

Figure 1.14 shows the difference between the computed force feasible set MSFP and
the measured one for one subject in a specific posture.

Figure 1.14: Measured (red) and computed (blue, MSFP) force feasible sets for one subject
in the sagittal plane, from (Hernandez et al., 2015).

Although the overall orientation of the computed force feasible set appears to be pre-
served, there are still significant differences in its proportions compared to the measured
set. A key assumption in this experiment is that a muscle produces active tension only
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when it contributes to the force direction. This assumption leads to a polytopic shape of
the resulting torque feasible set. The authors chose to orthogonally project (rather than
intersect) the torque feasible set onto im JT . This choice of projection over intersection is
important because it allows for a direct interpretation of the force direction with respect
to the muscle joint torques. This is reflected in the authors’ approach of considering spe-
cific muscle activations according to the force directions. If they had used the intersection
operation instead of projection, this direct analogy between force direction and muscle
activation would not be possible.

However, it is important to note that the overall orientation of the force polytopes
computed by Hernandez et al. appears to be consistent with the experimental data. As
shown by Hernandez et al., the angle between the principal axes of the computed and
measured force feasible sets varied between 2.4° and 9.5° (in absolute value) across the
subjects. This suggests that the orientation properties are largely determined by pJT q`,
which is a key component of all the force feasible set formulations presented here.

The presented studies have revealed several important properties of upper-limb force
feasible sets and their representations. First, accurately modeling these sets may require
considering a higher number of muscles than degrees of freedom. Second, muscle tension
interactions appear to significantly influence the quality of the force feasible set, affecting
its volume, elongation, and overall shape.

To further explore the shape of force feasible sets, we will now examine two studies
that specifically focus on this aspect. The first study, (Oshima et al., 2000), suggested
that the set of isometric maximal forces produced at the hand in the transverse plane has
a hexagonal shape. This hexagonal shape is a special case of a polytopic representation,
where the forces are restricted to a 2D plane and two degrees of freedom are considered.
Consequently, when the postures are not in singular joint configuration, the matrix JT

is invertible, and the force feasible set becomes a linear transformation of the torque
feasible set since pJT q´1 exists and is equal to pJT q`. However, the hexagonal shape,
with its 8 edges, implies a specific constraint: only 4 muscles are present in the upper
limb. The relationship between the edges of the torque feasible set and the number of
muscles will be explored in more detail in Chapter 2. Although this assumption may not
be physiologically accurate, it is worth noting that it could imply much simpler muscle
representations for 2D force feasible sets. Similarly, (Sasaki et al., 2010) conducted a
similar experiment to (Oshima et al., 2000), using different postures. They observed that
‘the feature of shape of the manipulating force polytope agrees with findings of Oshima et
al. that the distribution of the hand force vector in a two-dimensional plane is a hexagonal
shape’, which further supports the hypothesis of a 4-muscle system.

Experimental results show that the produced hand forces can indeed be approximated
by a hexagon, taking into account errors in the 8 force measurements (Figure 1.15). This
hexagonal shape was also observed in (Oshima et al., 2000) but required a larger number
of maximal force exertions to achieve it (Figure 1.16).

However, Oshima et al. acknowledged that an infinite number of hexagons could
fit their data. Both experiments were based on prior assumptions about the number of
muscles involved. It is also possible that other convex shapes with more edges, or even
an ellipsoid, could have fit the experimental data equally well.
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Figure 1.15: Hexagon (black line) assumed in
(Sasaki et al., 2010) for 8 hand maximal force

measurements (black arrows).

Figure 1.16: (Oshima et al., 2000):
maximal force measurements (black points)

in two postures.

This subsection highlighted how inconsistencies appear between in silico and in vivo
force feasible sets. Consequently, it is relevant to consider how accurately force feasible
sets can be modeled to reflect an individual’s muscles, especially given the uncertainty
regarding which in silico modeling choices best reflect in vivo measurements Sutjipto et
al., 2024.

1.2.3 Conclusion

This subsection focused on the process of measuring maximal isometric forces at the
hand in a specific posture, from the challenges of obtaining accurate maximal voluntary
isometric contractions (MVICs) to the construction of measured force feasible sets.

The challenges associated with measuring MVICs may explain the scarcity of data
on MVICs measured in different directions for a single posture. In this regard, Chapter
5 details an experimental protocol for collecting MVICs in 26 different directions for 4
distinct postures in 10 subjects.

Furthermore, there is no standardized procedure for determining the number and
directions of measured forces required to adequately represent a force feasible set. There-
fore, Chapter 2 draws theoretical conclusions about the natural shape of a force feasible
set when a large number of muscles are considered. This chapter will demonstrate that
an ellipsoidal shape is sufficient to represent force feasible sets. From an experimental
perspective, this reduces the number of maximal forces that need to be measured, as a
3D ellipsoid can be described by only 9 points on its surface, and a 2D ellipse by only 5.

Finally, although there is no consensus on which force feasible set description best
reflects the characteristics of maximal isometric forces, this thesis proposes a simpler
theoretical representation (Chapter 3). This representation is then adapted and compared
with experimental data (Chapter 5) to evaluate its relevance. Since the extent to which
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force feasible sets encapsulate information about muscle geometry and muscle tensions
remains unclear, the next section investigates how these sets are influenced by muscle
architecture and force-generating properties.

1.3 General conclusion

This chapter encompassed a review of the literature concerned with the required biome-
chanical tools for a complete study of maximal isometric forces in a set-theoretic frame-
work. First, we focused on how to model them in silico, via force feasible sets, and
showed how computational difficulties arise, necessitating the development of better com-
putational algorithms. Second, we examined how experimental measurement of maximal
isometric forces is not necessarily coherent with in silico force feasible set models, ne-
cessitating improved modeling of force feasible sets and more judicious selection of mea-
surement directions to mitigate experimental challenges. Finally, the chapter explored
sensitivity techniques used in biomechanics, as these methods could give insights on how
muscle tensions and their interactions are reflected in the set-theoretic approach of force
feasible sets. The following paragraphs summarize for each section the difficulties encoun-
tered in the literature and how this thesis addresses them.

In Section 1.1, the dynamics of the human upper-limb were represented in silico using
a serial kinematic chain. This allowed for the description of forces applied to the upper-
limb, and the force feasible set formulation was given in a very general case as well as in
isometric conditions with a fixed upper-limb posture. The construction of the force feasible
set is inherently geometric: it involves the projection of a higher-dimensional set, termed
the muscle tension feasible set, onto the torque space, which is then intersected by a vector
subspace of dimension 3. Different models, based on geometric assumptions about the
muscle tension feasible set, are used to describe the force feasible set: if each muscle acts
independently of other muscles, the resulting force feasible set is a 3D force polytope. When
muscle tensions are interdependent, the resulting shape is more rounded, as with force
ellipsoids (assuming an ellipsoidal tension feasible set). These representations are used
in different contexts, depending on whether muscle independence is assumed (polytope)
or inter-muscle dependencies are considered (typically modeled using ellipsoids). A force
polytope representation is challenging to visualize, as it involves combinatorial processes
to express its surface, whereas force ellipsoids are much simpler. This combinatorial
increase in time complexity necessitated strategies for reducing computation time, which
are explored in Chapter 2. This chapter presents a new vertex enumeration technique to
describe the torque feasible set surface.

Section 1.2 delved into the experimental process involved in collecting maximal iso-
metric forces, from the standardized protocol of maximal voluntary isometric contractions
(MVICs), to the creation of force feasible sets from these measurements within a fixed
posture. Inconsistencies in the proportions and shapes were observed between in silico
force feasible sets and experimental measurements. Since these characteristics depend
on how the upper-limb is modeled in silico (e.g., number of muscles, level of detail in
muscle geometrical paths), Chapter 3 of this thesis offers a new geometrico-probabilistic
perspective on how these in silico force feasible set characteristics behave as the theo-
retic complexity of a musculoskeletal model increases. As such, a unified representation
of force feasible sets as ellipsoids will be computable under specific theoretical assump-
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tions (namely, a high number of muscles). Furthermore, Chapter 4 will assess whether
the biomechanically validated musculoskeletal model of the upper-limb from (Holzbaur
et al., 2005) has sufficient muscle detail to apply these assumptions in the context of mus-
cle personalization. This section also highlighted a lack of experimental data concerning
multiple maximal isometric force exertions in a fixed posture; Chapter 5 addresses this
by providing new experimental measurements of maximal isometric force exertions in 4
different postures for 10 participants.
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Chapter 2

New efficient edge-based zonotope
vertex enumeration

Introduction

To understand how in silico isometric force feasible sets encompass both muscle tension
interactions and muscle biomechanical characteristics, notably their paths along bones
and their exertable tensions, this thesis delves into the geometric process of exerting
maximal isometric forces. A force feasible set F is described by two successive geometric
set-theoretic operations: 1) the projection of a tension feasible set T onto the joint torque
space, creating the torque feasible set, and 2) the intersection of the torque feasible set
with a vector space.

A main objective of this thesis is to understand the set-theoretic properties of force
feasible sets to guide the personalization of muscle parameters in musculoskeletal models,
which is addressed in Chapters 4 and 5. As a first step toward this understanding, this
chapter studies specifically the projection of the tension feasible sets — more precisely, it
examines how the torque feasible set encompasses muscle properties.

To assess how tension interactions are projected onto the torque space, different mod-
els of these interactions must be considered. Chapter 1 explained that varying the model
of the tension feasible set leads to distinct force feasible set characterizations, such as
force polytopes and force ellipsoids. This chapter and Chapter 3 are strongly linked, as
they focus on tension feasible set modeling and its impact on the resulting geometric con-
struction. While this chapter concentrates on polytopic representations, Chapter 3 will
study more rounded shapes. Both chapters require different mathematical frameworks to
better account for tension feasible set modeling; hence, they are presented separately.

With T modeled as an orthotope (a hyperrectangle), this chapter approaches the
understanding of the projection process through a combinatorial lens. This approach,
which encompasses mathematical results related to counting objects, is particularly well-
suited for polytope-related studies, as polytopes possess inherent combinatorial properties
that reflect their shape and volume (Grünbaum, 1967). However, such properties can be
challenging to discern, as they may not have an explicit form or simple interpretation.
Dedicated algorithms can provide a different perspective on these results by iteratively
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examining combinatorial solutions to a problem and selecting specific ones. This selection
process is inherently informative (Barvinok, 2005; López and Hernández, 2024).

Therefore, this chapter presents an algorithm that computes the vertices delimiting the
projection of a tension feasible set, modeled as a hyperrectangle, onto the torque space.
The resulting shape is termed a zonotope and is a specific type of polytope exhibiting
central symmetry. Because these vertices are unique to a zonotope, their enumeration
reflects how the bounds of muscle tensions are projected onto the torque set. The following
paragraphs focus on clearly introducing this concept in the context of in silico force feasible
sets.

In this thesis, T Ă Rm denotes the set of all exertable tensions by m muscles, also
termed the tension feasible set. The force feasible set F Ă R3 at the end effector of an n
degrees-of-freedom kinematic chain in a given posture is expressed as:

F “

!

f P R3
| Dt P T , JT f “ ´LT t ´ G

)

where JT P Rnˆ3 is the projection of the end-effector Cartesian forces onto the torque
space, LT P Rnˆm is the projection of muscle tensions onto the torque space, and G P Rn

is the gravity torque vector. As we will focus in this chapter on only the projection of T
onto the torque space, we define the torque feasible set as the following:

!

τ P Rn
| Dt P T , τ “ ´LT t ´ G

)

T is assumed to be shaped as a m-orthotope (a hyperrectangle in m dimensions)
(Fig. 2.2). This shape models how muscles can act together: it allows all muscles to
exert their maximal tension simultaneously, which will be necessarily reflected onto the
torque space (Fig. 2.1). More precisely, for each exertable tension ti of a muscle mi, there
exist positive lower and upper bounds, denoted ti and ti, defining the feasible tensions
exertable by muscle mi. The upper bound corresponds to the feasible muscle tension
when the muscle is fully activated, while the lower bound relates to its passive tension
when it is not activated.

Figure 2.1: Simplified arm with one
degree-of-freedom equipped with two
muscles described as segments.

Figure 2.2: A muscle exerts tension in a feasible range
of values. The set of all tension combinations T is shaped
as an orthotope.
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While the assumption of independent exertion of tensions is plausible for a cable robot,
human muscle activations are subject to neuromotor control, the laws of which are not
yet fully understood. In cable robotics, if the feasible tensions of the cables (modeled as
line segments) are assumed to be independent, the tension feasible set T takes the shape
of an orthotope.

Geometrically, the torque feasible set is thus a zonotope, i.e., a specific type of polytope
described as a projection of a higher-dimensional cube. To compute the vertices of a
zonotope, note that an m-orthotope is the image of an m-cube under an invertible affine
transformation. Without loss of generality, T can be equated to the m-dimensional cube
r0, 1sm, as shown in Figure 2.3. An m-orthotope and an m-cube are said to be affinely
equivalent.

Figure 2.3: To consider the torque feasible set as a projection of the unit cube C “ r0, 1s3,
consider the invertible affine transformation T : R3 Ñ R3 defined as:

T ptq “ Dt ` t, for D “

¨

˚

˝

t1 ´ t1 0 0
0 t2 ´ t2 0
0 0 t3 ´ t3

˛

‹

‚

and t “

¨

˚

˝

t1
t2
t3

˛

‹

‚

Thus, T “ T pCq and the torque feasible set is described as
␣

τ P R3 | ´LDt ´ Lt ´ G, t P C
(

,
which is clearly an affine projection of a cube, so it is a zonotope by definition.

Zonotopes have multiple possible representations, including a non-squared matrix, a
set of vertices, delimiting hyperplanes, or even cells, which characterize the cube vertices
whose projections are the zonotope vertices. Several algorithms exist to transition from
one representation to another, the goal of which is to be efficient in time and space. This
chapter offers a new perspective on representing zonotopes using their edges and describes
an algorithm to compute them directly from a matrix representation of a zonotope. To
achieve this goal, let’s first delve into zonotope formalism.

For two sets of vectors A and B in Rn, their Minkowski sum, denoted A
À

B, is
defined as A

À

B “
␣

a ` b P Rn | a P A, b P B
(

. Let Z Ă Rn be an n-zonotope, i.e.,
the Minkowski sum of n-dimensional segment vectors Z “ c `

Àm
i“1 αigi, where c P Rn,

gi P Rn for i “ 1, . . . ,m such that all the gi span Rn, and αi P r0, 1s. This corresponds to
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the following set:

Z “

#

z P Rn
| z “ c `

m
ÿ

i“1

αigi, αi P r0, 1s, c,g1, ¨ ¨ ¨ ,gm P Rn

+

The vectors gi are called generators and are usually concatenated into the columns of
a matrix G P Rnˆm. For conciseness, a zonotope is denoted directly using its translation
and its generators as Zpc, Gq, or ZpGq if there is no translation. The notation Zpn,mq is
also convenient to directly refer to the size of the matrix G. The generators are assumed
to be non-null, and any combination of n of them is assumed to span Rn. In this case,
the generators are said to be in general position.

Figure 2.4: Both constructions lead to the same 2D zonotope generated by 4 generators: the
differences lie in the bounds defined for αi, which are r´1, 1s for the left zonotope and r0, 1s for

the right, and the center c.

A zonotope is a specific type of convex polytope; therefore, it can be described via its
vertices (V-representation) or a set of inequalities (H-representation), as shown in Figure
2.5. Several zonotope applications include their use as bounding volumes in collision
detection (Guibas et al., 2003), as bounds for disturbances and measurement errors (J. K.
Scott et al., 2014), and in approximating the domain of a function of several variables
(Stinson et al., 2016). More recently in robotics, a neural network was used to predict
a path of reachable sets in an environment crowded with dynamic obstacles modeled as
zonotopes (Shamsah et al., 2024).

The process of retrieving zonotope vertices from its generator representation is a com-
binatorial problem known as the vertex enumeration problem. The explicit enumeration
of zonotope vertices is required in applications such as the fixed-rank integer quadratic
program (Ferrez et al., 2005), signal processing (Markopoulos et al., 2014), and linear
regression models with interval data (Černý et al., 2013).

Unfortunately, converting zonotope generators to vertices or bounding hyperplanes is
a combinatorial problem. As the dimension or the number of generators increases, the
number of vertices increases rapidly: Theorem 3.1 from (Ferrez et al., 2005) states that
the number of vertices of an n-zonotope Z with m generators is ď 2

řn´1
i“0

`

m´1
i

˘

, with
equality satisfied when the generators are in general position. For instance, a 3D zonotope
can have up to 92 vertices if it is defined by 10 generators; 2452 if it has 50 generators;
and 9902 vertices for 100 generators. Similarly, for an n-zonotope with 50 generators,
it has up to 39300 vertices for n “ 4, more than 5.6 ˆ 1014 for n “ 25, and more than
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Figure 2.5: A zonotope can be represented by its vertices or its bounding hyperplanes. The
vertex representation defines the zonotope as the convex hull of its vertices (including all
interior and surface points). The hyperplane representation defines the zonotope as the

intersection of half-spaces so that the direction of the half-space must be specified.

1.1 ˆ 1015 for n “ 50. In a biomechanical context, considering the Stanford upper limb
musculoskeletal model consisting of 50 muscles and 7 degrees-of-freedom (Holzbaur et al.,
2005), the torque feasible set has at most 32244452 « 3.2 ˆ 107 vertices. Consequently,
the required space to describe all the vertices becomes large very quickly, regardless of
the efficiency of the enumeration algorithm.

The following Section 2.1 presents a novel, efficient zonotope edge enumeration al-
gorithm, called EdgeEnum, which can be used to enumerate the vertices of a zonotope.
Section 2.2 shows that EdgeEnum is indeed theoretically efficient by proving the poly-
nomiality of both its time and space complexity when n is fixed. An asymptotic growth
comparison is also performed with various recent enumeration algorithms adapted to the
zonotope vertex enumeration problem. Section 2.3 compares the time benchmarks of mul-
tiple algorithms and demonstrates that, in practice, exact enumeration techniques may
not be suitable when rapid evaluations of zonotopes are required, as we need for Chap-
ters 3 and 4 for an optimization-based muscle personalization process. In this regard,
Section 2.4 offers some insights into the computation time of approximated vertex enu-
meration algorithms. Finally, Section 2.5 summarizes the results and advantages offered
by our approach, such as the ease of implementation and the potential for parallelism
compared to existing methods, while highlighting the effectiveness of using vertices to
describe zonotope characteristics of interest such as its global shape and orientation.

2.1 The edge enumeration algorithm

While the main goal is to enumerate zonotope vertices, this section presents first an
algorithm that enumerates the edges of a zonotope and then describes an edge-to-vertex
conversion algorithm with negligible additional computation time. The edge enumeration
algorithm takes as input the generator matrix of an n-zonotope Z with m generators in
general position and returns a set of m-cube edges that map to the edges of Z.

Vertices do not contain information about other vertices, whereas edges are linked to
at least two vertices. Therefore, knowledge of an edge allows for the description of its
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extremal vertices. This novel approach uses this information to make vertex enumeration
faster by enumerating zonotope edges. Since a zonotope is the projection of a higher-
dimensional cube, its edges are also the projection of some cube edges.

From cube edges to zonotope edges

The construction of the edges of an m-dimensional hypercube, also called an m-cube,
is an iterative process over dimensions 2 to m (Figure 2.6). Starting from a square (or
the 2-cube), each of its edges is embedded in 3D and then duplicated and translated by
1 along the newly created dimension. New edges arise from this duplication: for each
vertex v in the previous step, a segment is created between v and its newly duplicated
and translated version v1. This process is iterated until the mth dimension is reached, at
which point all of the m-cube edges are enumerated.

3D2D 4D

Embed the previous 3D cube in
4D and duplicate it along the 4th

dimension

Create new edges by linking
vertices of the 3D cube with their

respective duplicate

Figure 2.6: Constructing the edges of a zonotope with 4 generators requires constructing the
edges of a 4-dimensional hypercube. The process is iterative and starts from the square to
retrieve the cube, then the 4-cube. The creation of new edges arising at each new step is

indicated by the green double arrows.

Once all m-cube edges are enumerated, projecting them through the generator matrix
of the zonotope yields a result similar to Figure 2.7: a collection of line segments appear
to encapsulate the zonotope.

2D

Figure 2.7: Projecting the 4-cube edges through the generator matrix of a 2D zonotope with
4 generators.

This phenomenon is due to a parallelism property specific to zonotopes. Two segments
or lines are parallel if their direction vectors are collinear.
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Lemma 2.1.1: Parallelism of zonotope edges with the generators

For any n-dimensional zonotope Z Ă Rn with m generators, each of its edges is
parallel to one of its generators.
Moreover, each projected edge of them-cube is also parallel to one of the generators.

Proof. A linear or affine map preserves parallelism. Consider a zonotope Z described by
generators g1, . . . ,gm P Rn in general position. Let G denote the generator matrix. If
n ě 2, then the edges of the m-cube clearly surject onto the zonotope edges. The edges
of the m-cube can be grouped by parallelism with a representing vector ri “ ei P Rm,
where ei corresponds to the ith vector of the canonical basis of Rm. Thus, Gri “ gi. This
ensures that when a cube edge is projected through G, it will necessarily be parallel to
one of the generators.

Figure 2.8: Left: Each edge of a zonotope Z is parallel to one of its generators. Right:
Projecting a 4-cube edge through the generator matrix of Z produces a line segment parallel to

one of the generators.

To enumerate the edges of a zonotope Zpc, Gq, a naive approach would be to first
consider each edge e of an m-cube and project it through e ÞÑ c ` Ge. Then, after a
selection process, only a relevant subset of these projected edges would be considered.
However, this involves computing all edges of an m-cube, which is not feasible due to the
high combinatorics involved in the number of possible edges. Indeed, this would amount
to m2m´1 edges, which is greater than 2m, the number of its vertices (Grünbaum, 1967).

Our novel approach consists of using a straightforward elimination technique directly
from the cube space, to remove unnecessary cube edges that do not project onto zonotope
edges. The following paragraphs describe this process.

The convex hull of parallel lines

As established in Lemma 2.1.1, each edge of a zonotope is parallel to one of its generators.
Furthermore, each edge of the m-cube maps to a segment parallel to a generator. This
allows for grouping the projected cube edges by parallelism, with a generator serving as
the group representative. For each group, the extremal segments define the edges of the
zonotope parallel to the considered generator.

Given these grouped projected edges, the next question is: how can we select only
those on the zonotope surface? While this is a challenging question for an arbitrary set
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of segments, the fact that we are working with projected edges parallel to a generator
simplifies the problem.

This selection process is termed the convex hull of parallel lines. While convex hull
algorithms are typically implemented for sets of points, the parallelism in this case allows
for a modified approach that leverages the classic convex hull of points.

To illustrate this, consider a 2D example that generalizes to any dimension. In the
first iteration of the algorithm, the edges of a square are created, embedded in 3D, and
projected through the submatrix of G consisting of the first two columns. This results in
three groups of edges, as shown by the edge colors in Figure 2.9.

2D 2D

Figure 2.9: The edges on the right are created from embedding and duplicating the square
edges to create a cube and then projecting them onto the plane through the first two columns

of G.

Consider a group of parallel edges, such as the purple ones in Figure 2.9, and extend
them to lines. An arbitrary point is selected in the zonotope space and projected orthog-
onally onto each line. These projected points span a space of at most n ´ 1 dimensions,
where n is the dimension of the zonotope. The convex hull operation is then applied to
this set of projected points, and only the edges associated with points on the convex hull
are retained (cf. Figure 2.10).

2D

Figure 2.10: From left to right: A group of parallel edges is selected and extended to lines.
An arbitrary point is projected orthogonally onto these lines. The convex hull operation is

applied to these points to retrieve the associated extremal edges. This works in any dimension,
as long as a set of parallel lines is considered.

This process is repeated for all groups of edges, which corresponds to the number of
dimensions of the underlying hypercube, as shown in Figure 2.11.

Once all groups have been processed, the remaining edges are precisely those needed
to produce the edges of the zonotope generated by the first three columns of G. The
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2D

Figure 2.11: Selection of the extremal edges for each group of parallel edges by applying the
convex hull of parallel lines. First purple edges, then yellow, and finally red.

embedding, duplication, and translation process is then employed to create the new edges
in 4D, which are projected through the submatrix of G consisting of the first four columns.
The algorithm terminates when, after multiple iterations, the selected cube edges belong
to the m-cube (cf. Figure 2.12).

2D

Figure 2.12: After exactly m ´ 2 iterations, the returned edges are precisely the zonotope
edges.
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The EdgeEnum algorithm

In the following algorithms, an edge of the m-cube is represented by two m-dimensional
vectors: a direction vector and an initial position vector. Algorithm 1 details the creation
of a new set of edges in a higher dimension (d`1) from a given set of edges in Rd, based on
the construction of edges of a higher-dimensional cube. Algorithm 2, called EdgeEnum,
constructs zonotope edges following the reasoning described previously.

Algorithm 1: Duplication, translation, and linking of edges
Data: Ed, a set of edges in Rd

Result: Ed`1, a set of edges in Rd`1

Function duplicateAndLinkEdges(Ed):
Ed`1 Ð H

foreach e P Ed do
e0 Ð embedInOneHigherDimensionpeq

e1 Ð translateAlongNewDimensionBy1pe0q
v10, v

2
0 Ð verticesAtExtremitiespe0q

v11, v
2
1 Ð verticesAtExtremitiespe1q

e101 Ð createEdgepv10, v
1
1q

e201 Ð createEdgepv20, v
2
1q

Ed`1 Ð Ed`1 Y te0, e1, e
1
01, e

2
01u;

end
return Ed`1

End Function

Algorithm 2: EdgeEnum: zonotope edge enumeration algorithm
Data: A matrix N P Rnˆm, with n ě 2 and m ě 2
Result: Edges of the zonotope Zpc, Nq

d Ð 2
Nd Ð N r:, : ds

EdgespCdq Ð tedges of the 2D cubeu // where Cd is the cube r0, 1sd.
EdgespZpc, Ndqq Ð tc ` Nde | e P EdgespCdqu

d Ð 3
while d ď m do

Nd Ð N r:, : ds

EdgespCd´1q Ð EdgespCdq

EdgespCdq Ð duplicateAndLinkEdgespEdgespCd´1qq // cf. Algorithm 1
EdgespZpc, Ndqq Ð tc ` Nde | e P EdgespCdqu

foreach group of parallel edges G P EdgespZpc, Ndqq do
foreach c ` Nde R extpconvpGqq do

EdgespCdq Ð EdgespCdq{teu

end
end
d Ð d ` 1

end
EdgespZpc, Ndqq Ð tc ` Nde | e P EdgespCdqu

return EdgespCdq, EdgespZpc, Ndqq
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2.2 Theoretical complexity
This section presents various theoretical results about the new algorithm, using computa-
tional complexity as the primary tool for comparison. While a thorough analysis of time
and space complexity is provided, the primary focus is on the asymptotic time growth as
the number of generators increases, as this relates to a larger number of muscles consid-
ered when computing the torque feasible set. Therefore, n, the dimension of the ambient
space of the zonotope, is considered to be fixed, while the number of generators, m, is
assumed to be large.

Before delving into the analysis, let’s review some basic concepts related to algorithmic
complexity and asymptotic growth:

Asymptotic Growth and Big O Notation. Asymptotic growth describes the behav-
ior of a function as its input becomes very large. The Big O notation denotes the dominant
terms of a function. For instance, the function f : N Ñ N defined by fpnq “ 4n5`n5 logpnq

is dominated by the term n5 logpnq. This means that as n tends to `8, fpnq will have
approximately the same growth rate as the function n ÞÑ n5 logpnq. The Big O notation
expresses this comparison by stating that f is in Opn5 logpnqq or fpnq “ Opn5 logpnqq. To
compare the asymptotic growth of two functions, their respective growth rates are cal-
culated, and the ratio of these rates is evaluated to determine which function has slower
growth. If the ratio tends to a constant value, then both functions have asymptotically
the same growth. More generally, O represents a class of functions bounded by a given
formula. In the example above, f is in Opn5 logpnqq, but it is also in higher classes such
as Opn6q or Opn20q.

Algorithmic Complexity. Two types of complexity are commonly used to describe
algorithms: time complexity and space complexity. Time complexity theoretically evalu-
ates the time required for each operation, while space complexity evaluates the required
storage.

Efficient Algorithm. An algorithm is polynomial or efficient if its time complexity
is upper bounded by a polynomial expression of both the input size and the output
size (Fukuda, 2004). In other words, the running time of the algorithm does not grow
exponentially as the input size increases, making it generally efficient for solving problems.
For algorithms related to zonotope vertex enumeration, the input size corresponds to the
number of dimensions times the number of generators (essentially the number of elements
in the generator matrix), while the output size includes the number of vertices, faces, and
generator dimensions.

Compact Algorithm. An algorithm is compact if its space complexity is polynomial
in the input size. This means that a compact algorithm does not store all of the output
and can stream the results directly without storing the entire output. This is a valuable
property, especially when the output size is large. In the literature, two main approaches
can be found: reverse-search-based algorithms and iterative algorithms. Algorithms are
theoretically more valuable if they are compact, especially in high dimensions, so this
approach is preferred and commonly found (Avis and Fukuda, 1992; Gu et al., 2022; Rada
and Černý, 2018). However, non-compact algorithms should not be excluded, depending
on the application context.
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Optimal Algorithm. An algorithm is optimal (in time and/or in space) if its complex-
ity has been proven to be the lowest possible. For instance, Theorem 3.2 in (Ferrez et al.,
2005) states that a time-optimal algorithm exists that enumerates all zonotope vertices in
time Opmn´1q, which was implemented in (Edelsbrunner et al., 1983). However, such an
optimal algorithm may not be practical (Ferrez et al., 2005). First, it uses an incremen-
tal strategy that requires storing all extreme points of a subproblem based on a smaller
number of generators. Second, it is complex to implement and needs to store all faces
and their incidence (i.e., whether the intersection of two faces is another face). In other
words, Edelsbrunner et al.’s algorithm is time-optimal and efficient but space-inefficient.

This work focuses primarily on time efficiency. As the following theorems demonstrate,
the new algorithm is time-efficient, even when considering the edge-to-vertex transition.
It is also space-efficient but not compact.

Before analyzing the complexity, let us introduce a useful result concerning the number
of specific faces in a zonotope. A zonotope Z in dimension n has n´ 1 types of faces: the
0-faces are called vertices, the 1-faces edges, the pn´ 2q-faces ridges, and the pn´ 1q-faces
facets. In specific cases, such as in dimension 2, the edges correspond to the facets. In
3D, edges correspond to ridges.

Lemma 2.2.1: Upper bound on the number of k-faces of a zonotope

For G P Rnˆm, the number of k-faces of the zonotope ZpGq for k “ 1, . . . , n ´ 1 is
upper bounded by fkpZq, where

fkpZq “ 2

ˆ

m

k

˙ n´k´1
ÿ

i“0

ˆ

m ´ k ´ 1

i

˙

.

This bound is attained if Z is in general position.

Proof. This result, with proof, can be found in (Fukuda, 2004; Donoho and Tanner, 2010;
Grünbaum, 1967).

2.2.1 Time complexity

Theorem 2.2.2: Time complexity of EdgeEnum

For an n-zonotope Z with m generators in general position, the edge enumeration
algorithm has time complexity

O
`

nm2f1pZq
˘

,

where f1pZq denotes the number of edges of Z.

Proof. Each iteration of the algorithm (i.e., d “ 3, . . . ,m) considers a new zonotope Zd

generated by the first d columns of the generator matrix G P Rnˆm and constructs its
edges based on the set of edges of Zd´1. The following is a thorough analysis of the
computation time of each step in the algorithm:
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1. Embed, duplicate, and translate Edges: In the first inner loop, a new
dimension is added to the edges of Zd´1. This is achieved by concatenating a 0 to both
the direction and position vectors that describe each edge. These embedded edges are
then duplicated, and the copied versions have their direction and position last coordinates
mutated to 1. New edges are created by linking the corresponding extremity points from
the embedded edges to their translated counterparts. This entire step can be performed
in Op1q time complexity for each substep, within a loop over each of the previous edges,
resulting in Opf1pZd´1qq time complexity.

2. Group edges by parallelism: The newly created set of edges consists of exactly
4f1pZd´1q edges. Since collinearity between cube edges is preserved under linear trans-
formation, grouping edges of zonotope Zd by parallelism only requires grouping the cube
edges by their directions. Using a dictionary structure in Python, this grouping process
has a time complexity of Opf1pZd´1qq.

3. Apply the convex hull to each group of edges: Each group of edges con-
sists of 2f1pZd´1q{pd ´ 1q edges, and there are d groups. For each group, each edge
is projected onto Rn through the generator matrix of Zd. This corresponds to one
matrix-vector operation with a time complexity of Opndq per edge. After the projec-
tion, the orthogonal projection of the origin in Rn onto the line spanned by the pro-
jected edge is computed in Opnq time complexity (the dimension of the ambient space
where the line is defined). The convex hull of the projected edges is then computed as
the convex hull of the orthogonal projections of the origin onto the lines spanned by
the edges. Consider the time complexity of Chan’s convex hull algorithm in n dimen-
sions. It is an output-sensitive algorithm, meaning its complexity depends on the size
of the output. Its time complexity is Opnv log hq, with nv being the number of given
points and h the number of points on the convex hull. Since the zonotope Zd is in
general position, the number of edges in each group is f1pZdq{d. The total time com-
plexity of step 3 is then of order dp

2f1pZd´1q

d´1
nd`

2f1pZd´1q

d´1
n`

2f1pZd´1q

d´1
logp

f1pZdq

d
qq, which is

Opf1pZd´1qnd ` f1pZd´1q logpf1pZdq{dqq.

After d iterations, the complexity is of order
řm

d“3 f1pZd´1qnd`f1pZd´1q logpf1pZdq{dq

and since d ď m and f1pZdq ď f1pZq, we have the following upper bound:
m
ÿ

d“3

f1pZd´1qnd ` f1pZd´1q logpf1pZdq{dq ď f1pZq

«

n
m
ÿ

d“3

d `

m
ÿ

d“3

log

ˆ

f1pZq

d

˙

ff

ď f1pZq

»

–nm
m ` 1

2
` log

˜

m
ź

d“1

f1pZq

d

¸

fi

fl

ď f1pZq

«

n
m2 ` m

2
` log

ˆ

f1pZqm

m!

˙

ff

So the edge-based algorithm is upper bounded in O
ˆ

nm2f1pZq ` f1pZq log
´

f1pZqm

m!

¯

˙

.

The next step is to show that nm2f1pZq is the dominant term in this upper bound.
This is done by demonstrating that for any growth of n and m, the expression

f1pZq log

ˆ

f1pZqm

m!

˙

{pnm2f1pZqq
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is upper-bounded by a function whose growth tends to be constant (meaning it is Op1q).

f1pZq log
´

f1pZqm

m!

¯

nm2f1pZq
ď

1

nm2
log

`

f1pZq
m
˘

“
1

nm
log

`

f1pZq
˘

“
1

nm
log

˜

2

ˆ

m

1

˙ n´2
ÿ

i“0

ˆ

m ´ 2

i

˙

¸

, using theorem 2.2.1

ď
1

nm
log

`

m2m´1
˘

, using
n´2
ÿ

i“0

ˆ

m ´ 2

i

˙

ď

m´2
ÿ

i“0

ˆ

m ´ 2

i

˙

“ 2m´2

“
logpmq

nm
`

pm ´ 1q logp2q

nm

There are now three cases to study:

1. n Ñ `8 and m grows at a smaller rate than n (limm,nÑ`8
m
n

“ 0):

lim
m,nÑ`8

logpmq

nm
“ lim

m,nÑ`8

1

nm
“ 0 and lim

m,nÑ`8

pm ´ 1q logp2q

nm
“ lim

nÑ`8

1

n
“ 0

2. m Ñ `8 and n grows at a smaller rate than m (limm,nÑ`8
n
m

“ 0):

lim
m,nÑ`8

logpmq

nm
“ lim

m,nÑ`8

1

nm
“ 0 and lim

m,nÑ`8

pm ´ 1q logp2q

nm
“ lim

m,nÑ`8

1

n
“ 0

3. m Ñ `8 and n Ñ `8 at an equivalent rate (limm,nÑ`8
n
m

“ C, for C a positive
constant):

lim
m,nÑ`8

logpmq

nm
“ lim

m,nÑ`8

1

nm
“ 0 and lim

m,nÑ`8

pm ´ 1q logp2q

nm
“ lim

m,nÑ`8

1

n
“ 0

All cases confirm that the growth of f1pZq log
´

f1pZqm

m!

¯

is dominated by the growth of
nm2f1pZq for any growth of m and n. Therefore, the complexity of the edge enumeration
algorithm is Opnm2f1pZqq.

The following intermediate result will be used in the proof of Theorem 2.2.4.

Lemma 2.2.3: Asymptotic upper bound for the number of k-faces

For a zonotope Z in dimension n with m generators in general position, the number
of k-faces of Z, denoted by fkpZq, has an asymptotic growth upper-bounded by
Opmn´1q when k and n are fixed, and m is large.

While it is well-known that the number of vertices f0pZq is asymptotically bounded
by Opmn´1q (proven in (Zaslavsky, 1975)), this lemma extends this result to higher di-
mensions to provide an asymptotic upper bound for the number of k-faces when k and n
are constant. This implies that the number of vertices, edges, ridges, hyperplanes, and all
types of k-faces of a general zonotope are all upper bounded by the same type of growth
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as m increases. This lemma will be used later to compute the asymptotic growth of the
edge enumeration algorithm when n is fixed, which will facilitate comparison with existing
algorithms.

Proof. The proof proceeds by finding an upper bound for fkpZq that is Opmn´1q for fixed
n. First, note that for 0 ď n ď m, mn is an upper bound for

`

m
n

˘

:
ˆ

m

n

˙

“
m!

n!pm ´ nq!
“

1

n!
¨ mpm ´ 1qpm ´ 2q . . . pm ´ n ` 1q ď mn. (2.1)

Also, when m is large, and k, n are fixed, it is reasonable to assume that pn´k´1q ď

pm ´ k ´ 1q{2, so
ˆ

m ´ k ´ 1

i

˙

ď

ˆ

m ´ k ´ 1

n ´ k ´ 1

˙

, for any i “ 1, . . . , n ´ k ´ 1. (2.2)

Hence, the following holds:

fkpZq “ 2

ˆ

m

k

˙ n´k´1
ÿ

i“0

ˆ

m ´ k ´ 1

i

˙

ď 2

ˆ

m

k

˙ n´k´1
ÿ

i“0

ˆ

m ´ k ´ 1

n ´ k ´ 1

˙

, using inequality (2.2)

ď 2mk
pm ´ k ´ 1q

n´k´1
pn ´ kq, using inequality (2.1).

The last inequality is equivalent to stating that fkpZq is Opmn´1q for fixed k and n, and
large m.

Theorem 2.2.4: Time complexity of EdgeEnum when n is fixed

If n is fixed, and m is large, the time complexity of the edge enumeration algorithm
is Opmn`1q. Therefore, EdgeEnum is a polynomial-time algorithm for a fixed n.

Proof. This follows directly from Lemma 2.2.3, which states that the number of edges
f1pZq is Opmn´1q when n is fixed. Using the time complexity of EdgeEnum from Theorem
2.2.2, we have for fixed n: Opnm2f1pZqq “ Opm2mn´1q “ Opmn`1q.

From edges to vertices

Theorem 2.2.5: Time complexity of converting Edges to vertices

For an n-zonotope Z with m generators in general position, the time complexity of
an algorithm that enumerates vertices from its edges is Opnmf1pZqq.

Proof. Every edge of Z is linked to two vertices, which correspond to its extremities.
The transformation of all edges to vertices can be performed with a time complexity of
Opf1pZqnmq. Indeed, the two extremities of each cube edge must be projected through
the generator matrix, which accounts for 2f1pZqnm Op1q steps. An iteration over all these
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vertices can also be performed to ensure the uniqueness of each vertex, as two edges can
lead to a common vertex. This verification step can be done in Opf1pZqq time complexity
in Python using a hash structure.

Since nm2f1pZq dominates nmf1pZq, the conversion step from edges to vertices does
not have a theoretical impact on the time complexity in a worst-case scenario when added
after the edge enumeration algorithm.

2.2.2 Space complexity

Theorem 2.2.6: Space complexity of EdgeEnum

For an n-zonotope Z with m generators in general position, the edge enumeration
algorithm has space complexity

Opn2m2f1pZqq

where f1pZq denotes the number of edges of Z.

Proof. The algorithm starts with a matrix in Rnˆm, so it requires an input space of
Opnmq. In the first steps, the definition of the 2-cube edges and their projection clearly
require Opnq space.

1. Embed, duplicate, and translate edges: A cube edge can be described in two
parts: a direction and a position in Rm. A direction of a cube edge requires Op1q space
since it is equivalent to a vector e “ p0, . . . , 0, 1, 0, . . . , 0q P Rm (due to the parallelism of
edges to the canonical basis of Rm). However, the position can be more general, so let’s
consider a worst-case scenario of Opmq space.

Each edge at the beginning of the loop is copied, embedded, duplicated, and new
edges are created. There are at most f1pZd´1q edges at the beginning, so these steps
require a space of Oppd ´ 1q ¨ f1pZd´1q ` 3 ¨ d ¨ f1pZd´1qq “ Opd ¨ f1pZd´1qq.

2. Group edges by parallelism: First, all newly created edges need to be pro-
jected onto the space generated by Nd, resulting in a new set of projected edges requiring
Opndf1pZd´1qq space. Using a dictionary in Python to pair edges with a projected direc-
tion (in this case, corresponding to a generator of Nd) requires Opdq space, where d is the
number of generators in the current iteration. Thus, the total space required in this step
is Opndf1pZd´1qq.

3. Apply the convex hull to each group of edges: For each of the d groups
of edges (consisting of Opnf1pZd´1qq edges), Chan’s convex hull algorithm has a space
complexity of Opn ¨ nf1pZd´1qq “ Opn2f1pZd´1qq. This leads to a total space complexity
of Opdn2f1pZd´1qq.

In conclusion, since d ď m and f1pZdq ď f1pZmq, the space complexity for all the
loops is Opnm` n`

řm
d“3 df1pZd´1q ` ndf1pZd´1q ` dn2f1pZd´1qq. Since the terms in the

sum are dominated by dn2f1pZd´1q, which is itself dominated by mn2f1pZdq, the total
space complexity is Opn2m2f1pZdqq.
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This leads directly to the following result:

Theorem 2.2.7: Space complexity of converting edges to vertices

For an n-zonotope Z with m generators in general position, the space complexity
of an algorithm that enumerates vertices from its edges is Opnf1pZqq.

Proof. Consider f1pZq, the maximum number of edges of a zonotope Z. The input of the
conversion algorithm thus requires Opnf1pZqq space, which is represented as a dictionary
with a zonotope generator and a position vector in Rn. For each of these edges, the
extremal vertices are created, which include the position vector and the addition of the
position vector and the associated generator. Therefore, the space complexity remains
Opnf1pZqq.

This ensures that the total space complexity from edge enumeration to vertex enu-
meration is Opn2m2f1pZqq.

Theorem 2.2.8: Space complexity of EdgeEnum when n is fixed

If n is fixed, and m is large, the space complexity of the edge enumeration algorithm
is Opmn`1q. Therefore, EdgeEnum is a polynomial-space algorithm for fixed n.

Proof. The space complexity is Opn2m2f1pZqq, and f1pZq is Opmn´1q when n is fixed.
Thus, Opn2m2f1pZqq is Opmn`1q, which is a polynomial bound for both the input size
nm and the output size Opmn´1q.

2.2.3 Time-theoretic comparison with other algorithms

The proposed algorithm exhibits a time complexity of Opmn`1q, while the optimal lower
bound is Opmn´1q. Despite this discrepancy, the algorithm demonstrates several desir-
able properties, such as being easily implementable with standard scientific programming
languages and packages. Nevertheless, other significant algorithms focus on this problem,
which will be described succinctly below.

Avis and Fukuda’s pivoting algorithm (Avis and Fukuda, 1992). The pivoting
algorithm, a type of reverse-search algorithm created by the same authors, was initially de-
signed to enumerate the vertices of a polytope described by a set of inequalities. Broadly,
the algorithm starts with a vertex, and then a neighboring vertex is found using a pivot
rule, which decides which vertex to visit next based on the current vertex and the poly-
tope structure. The new vertex is then marked as visited, and through iteration over
each newly found vertex, all polytope vertices are enumerated. Numerous variants of this
algorithm are possible by adapting the pivot rule. This algorithm has also been extended
to compute vertices of a zonotope using only its generators and has been implemented in
C++ with a Python wrapper in libzonotope (Yngvason, 2014). Additionally, an effective
parallelized variant of the pivoting algorithm was developed (Weibel, 2010a) and can be
used through the C++ implementation Minksum (Weibel, 2010b).

The initial reverse-search algorithms were not described as zonotope vertex enumera-
tion algorithms. They were implemented to solve two kinds of problems: computing the
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convex hull of a set of points and computing the cell enumeration of a central hyperplane
arrangement problem. The latter corresponds to an alternative description of a zonotope.
There is a one-to-one correspondence between the combinatorial face structure of a zono-
tope and its central hyperplane arrangement. The idea is to consider the hyperplanes
normal to each generator of a zonotope: the cells of this arrangement correspond to the
regions created by the hyperplanes’ intersections. Describing and enumerating these cells
(via a sign vector as shown in (Ferrez et al., 2005; Rada and Černý, 2018)) is equivalent
to finding the vertices of a zonotope. Figures 2.13 and 2.14 summarize this correspon-
dence by providing some intuition on how to construct it from a zonotope and how to
compute vertices from the regions of such an arrangement. This construction generalizes
well for zonotope generators in any dimension. For a deeper understanding of this duality
and further details on this correspondence, the reader is invited to consult the Duality
section of (Ferrez et al., 2005), or more generally, the dedicated chapter Arrangement of
hyperplanes in (Grünbaum, 1967).

Figure 2.13: Left: A zonotope with four generators. Right: The hyperplanes normal to each
generator. This corresponds to its central hyperplane arrangement.

Figure 2.14: Let G be the matrix with the yellow, purple, red, and green generators. In its
central hyperplane arrangement, each region (or cell) is represented by a sign vector si. Any
n-dimensional space can be separated into exactly two half-spaces by a hyperplane. There are
exactly as many cells as vertices in the underlying zonotope. Moreover, they are in one-to-one

correspondence, as shown by the symbol „.

Due to the simplicity of working with sign vectors, there is a focus in computational
geometry on creating algorithms dedicated to enumerating the cells of central hyperplane
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arrangements. Recent algorithms include those detailed in (Rada and Černý, 2018), (Gu
and Koenker, 2020), and (Gu et al., 2022), whose practical performance surpasses the
previous two. The latter algorithm will be described next.

Gu et al.’s GRS algorithm (Gu et al., 2022). This algorithm finds the cells of
a central hyperplane arrangement iteratively over sub-dimensional arrangements. The
main idea is to consider witness points in each cell, whose signs correspond to a cell
description, then remove one hyperplane from the arrangement and project all other
hyperplanes onto the subspace it generates. The previous witness points are also projected
onto this subspace, and they correspond to witness points of this sub-arrangement, up
to duplication. Figure 2.15 summarizes this process in two dimensions, where instead of
projecting onto subspaces, the witness points are constructed iteratively.

Figure 2.15: Left: Two points are created on either side of the hyperplane. Middle: Another
hyperplane is added, and the previously created points are copied to the other side of the new
hyperplane. In (Gu et al., 2022), the authors found a distance computation to ensure that the
new points are in the closest region. Right: Repeat with another added hyperplane and remove

duplicates, i.e., points with the same sign vector.

The two previous cell enumeration methods are interesting, given the correspondence
between cells and vertices, but other algorithms exist to convert zonotope generators to a
different representation, such as its bounding hyperplanes. However, since the focus here
is on enumerating vertices, the conversion between bounding hyperplanes and vertices
must be considered. Avis and Fukuda offer such a conversion algorithm in (Avis and
Fukuda, 1992) with a time complexity of Opnhnnvq, where n is the dimension of nh

hyperplanes, and nv is the number of vertices created by intersecting them. A method
that uses bounding hyperplanes is detailed in the following paragraph.

Gouttefarde and Krut’s hyperplane shifting method (HS) (Gouttefarde and
Krut, 2010). The number of bounding hyperplanes of a zonotope Zpn,mq in general
position is fn´1pZq “ 2

`

m
n´1

˘

, i.e., the pn ´ 1q-dimensional faces of the m-cube project
directly onto the zonotope’s bounding hyperplanes. Since the position of each pn´1q-face
in them-cube is known, it remains to project the position and the pn´1q-space through the
generator matrix and then compute the normal vectors. Using symmetry, the algorithm
only needs to enumerate

`

m
n´1

˘

hyperplanes. Its time complexity is thus Op
`

m
n´1

˘

q since all
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linear operations in the algorithm (computing normals, projecting, etc.) are necessarily
bounded by

`

m
n´1

˘

. This work utilizes the Python implementation package Pycapacity
(Skuric et al., 2023).

Table 2.1 presents the time complexity of the three methods described above, com-
pared to EdgeEnum.

Algorithm Pivot HS GRS EdgeEnum
Initial enumeration type Cell Hyperplane Cell Edge

Time complexity mf0lppm,n)
`

m
n´1

˘

mf0matpmq nm2f1
Additional complexity
to convert to vertices nmf0

`

m
n´1

˘

nf0 nmf0 nmf1

Total complexity
for n fixed mn`2.38 m2n´1 mn`1 mn`1

Table 2.1: Time complexity comparison between combinatorially equivalent enumeration algo-
rithms when considering an n-dimensional zonotope with m generators in general position. f0
corresponds to its maximal number of vertices, and f1 to its number of edges. Pivot denotes
Avis and Fukuda’s pivoting algorithm (Avis and Fukuda, 1992), HS stands for Gouttefarde and
Krut’s hyperplane shifting method (Gouttefarde and Krut, 2010), and GRS is Gu et al.’s algo-
rithm (Gu et al., 2022). lppm,nq represents the time complexity to solve a linear program of m
equations with n variables, and matpmq denotes the time cost to determine whether two vectors
of length m are identical. In (Cohen et al., 2020), the authors created an algorithm that solves a
linear program of m equations and n variables with the time complexity of matrix multiplication,
approximately m2.38. Using a programming language such as R or Python, matpmq “ m. In
(Avis and Fukuda, 1992), the created algorithm converts a set of nh hyperplanes to f0 vertices
with a time complexity of Opnhnf0q. The total complexity of HS is computed using Stirling’s
approximation of

`

m
n

˘

when m gets large:
`

m
n´1

˘

« mn´1{pn ´ 1q! “ Opmn´1q if n is fixed.

The case of fixed m and large n is not of interest. If the number of generators
m is smaller than the dimension of the associated zonotope, enumerating the zonotope
vertices necessarily requires enumerating all of the m-cube vertices (which amounts to
2m). Therefore, no algorithm can be more optimal than a naive algorithm that lists all
the m-cube vertices.

However, a strong theoretical limitation arises when m and n grow at the same rate.
For a preliminary analysis, note that when n has approximately the same growth as m,
f0pZq is upper-bounded by Op2mq, and f1pZq is upper-bounded by Opm2m´1q in the
worst-case scenario (which occurs when m “ n). Thus, in this case, the algorithm with
the best time complexity is that of (Gu et al., 2022) (which grows as Opm22mq), while
EdgeEnum lags behind, even preceded by a naive algorithm (of time complexity Opm2mq),
with a theoretical time complexity bounded by Opm42m´2q.

These results indicate that EdgeEnum theoretically performs similarly to the best
state-of-the-art enumeration algorithm (Gu et al., 2022) when there are many more gen-
erators than the ambient dimension of the produced zonotope. This scenario is relevant
when considering a large number of muscles to produce the torque feasible set.
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2.3 Time benchmarks
Theoretical time complexity analysis is insufficient for a complete time study. A time
benchmark must be performed on the different algorithms to evaluate the practical rel-
evance of the edge-based vertex enumeration algorithm. For instance, cell enumeration
algorithms such as those in (Rada and Černý, 2018) and Gu and Koenker, 2020 have
the same asymptotic bounds as in (Avis and Fukuda, 1992) for hyperplane arrangements
in dimensions greater than or equal to 3, but they appear to exhibit faster computation
times in practice (Gu et al., 2022).

2.3.1 Benchmark results

A computational time benchmark was performed to evaluate the relevance of a zonotope
edge-based approach to vertex enumeration for faster computation. A Dell XPS15 laptop
computer with a WSL2 and Ubuntu 22.01 operating system was used. This computer
is equipped with 11th Gen Intel i9-11950H processors at 2.60GHz. Each core has two
threads. The benchmark is implemented in Python 3.10 with the library numpy 1.26.4
and default packages such as itertools for rapidly generating cube vertices. The HS, GRS,
and EdgeEnum algorithms are implemented in Python, whereas Pivot is implemented
directly in C++ and uses the package libzonotope for a Python interface. The edge-based
algorithm requires a convex hull computation, which uses QuickHull, available in Python
through the library scipy.

Table 2.2 summarizes the means and standard deviations (in seconds) for each consid-
ered algorithm over 10 generator matrices G P Rnˆm, with values sampled from a uniform
distribution between ´1 and 1.

pn,mq Pivot HS GRS EdgeEnum
p2, 25q 0.02 ˘ 0.00 ă 0.01 ă 0.01 0.02 ˘ 0.00
p2, 50q 0.08 ˘ 0.00 ă 0.01 ă 0.01 0.09 ˘ 0.00

p3, 25q 0.45 ˘ 0.01 0.03 ˘ 0.00 0.04 ˘ 0.00 0.14 ˘ 0.01
p3, 50q 4.25 ˘ 0.05 0.14 ˘ 0.00 0.37 ˘ 0.02 1.44 ˘ 0.03

p4, 15q 0.66 ˘ 0.01 0.08 ˘ 0.00 0.09 ˘ 0.00 0.14 ˘ 0.01
p4, 20q 2.41 ˘ 0.07 0.21 ˘ 0.00 0.29 ˘ 0.01 0.48 ˘ 0.02

p5, 15q 3.60 ˘ 0.08 0.80 ˘ 0.01 0.42 ˘ 0.01 0.97 ˘ 0.01
p5, 20q 17.99 ˘ 0.14 4.25 ˘ 0.06 2.80 ˘ 0.11 6.55 ˘ 0.29

p6, 10q 0.73 ˘ 0.02 0.58 ˘ 0.05 0.10 ˘ 0.00 0.43 ˘ 0.01
p6, 11q 1.48 ˘ 0.05 1.39 ˘ 0.12 0.19 ˘ 0.01 0.92 ˘ 0.01
p6, 12q 2.73 ˘ 0.07 2.86 ˘ 0.22 0.33 ˘ 0.02 1.80 ˘ 0.05

Table 2.2: Mean and standard deviation of computation time (in seconds) for 10 randomly
generated zonotopes using different zonotope enumeration algorithms. All generators are in
general position, and all algorithms returned the expected number of vertices, f0. The conversion
time from a specific representation to vertices is included for each algorithm.

The hyperplane shifting algorithm (HS) is the fastest in almost all cases for n ď 4,
even though it theoretically has the worst time complexity of the presented algorithms.
However, as the dimension n increases, its complexity grows combinatorially, which could
explain why GRS is the fastest from dimension 5 onward. While EdgeEnum exhibits
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equivalent time complexity than GRS, the difference observed probably result from the
asymptotic growth on the number of k-faces in Lemma 2.2.3: while it states that vertices
or edges number has an asymptotic growth in Opmn´1q, this does not mean that the
number of edges is similar to the number of vertices. It is much higher, and is reflected
in the time computation benchmark.

2.3.2 Parallelization of EdgeEnum

To improve the time performance of EdgeEnum, parallelization could be employed. This
refers to distributing parts of an algorithm across multiple processors. Not all algorithms
can be parallelized, but for those that can, computation times can be drastically improved.

In EdgeEnum, one part can be distributed: the inner loop in which the convex hull of
each group of edges is computed. The new edges gathered after an iteration of this loop
do not influence the gathering of other iterations, making it parallelizable. For instance,
using the same computational setup as described previously, Table 2.3 summarizes the
performance of EdgeEnum using either a single processor or two.

pn,mq EdgeEnum EdgeEnum Parallel
p6, 10q 0.43 ˘ 0.01 0.14 ˘ 0.01
p6, 11q 0.92 ˘ 0.01 0.28 ˘ 0.02
p6, 12q 1.80 ˘ 0.05 0.54 ˘ 0.03

Table 2.3: Mean and standard deviation of computation time (in seconds) for 10 randomly
generated generator matrices G P Rnˆm per tuple pn,mq. EdgeEnum is parallelized across two
processors using the Python package multiprocessing.

It is noteworthy that the parallelization only appears to have a non-negligible effect for
n ě 6. For lower values of n, parallelization results in worse computation times due to the
overhead required to copy and transfer data between processors. The parallelized version
is not compared with other algorithms here, as they are implemented in a non-parallelized
manner.

2.3.3 Conclusion on practical time computation

In conclusion, computing the vertices of a zonotope Zpn,mq requires significant compu-
tation time, even though the edge-based approach demonstrates time-theoretic efficiency.
This is due to the combinatorial explosion in the number of zonotope vertices as the
number of generators increases. When modeling force or torque feasible sets using a mus-
culoskeletal model, especially in an optimization context where the goal is to find a set
of parameters that reproduce in silico and in vivo force feasible sets (cf. Chapters 4 and
5), a large number of these sets must be computed. As the number of muscles considered
increases, the search space expands, necessitating the evaluation of more solutions. A
computation time of ď 0.2 seconds for zonotope vertices leads to hours of optimization
when considering a reasonably sufficient number of muscles (ě 20).

Because computation time is a major obstacle, approximations of the vertex set of a
zonotope will be explored. Their relevance will be assessed in terms of both computation
time and the shape they produce.



Chapter 2. New efficient edge-based zonotope vertex enumeration 63

2.4 Approximation of the vertex set
While the methods described previously provide the exact vertices of a zonotope, the
number of vertices to enumerate is a computational bottleneck for all previously cited
algorithm: there are too many to store. This often occurs when the number of generators
is large, regardless of the dimension n. Thus, it is desirable to reduce computation time
through approximations.

Approximating the surface of a zonotope can be done in multiple ways, including
bounding boxes or various ellipsoid approximations (Černý, 2012; Gasmann and Althoff,
2020; Kousik et al., 2021; Henk, 2012). However, their main drawback is that they do not
necessarily preserve the shape of the zonotope. Generally, the quality of the approximation
is related to the computation time.

This work focuses on preserving the shape of a zonotope by approximating its vertex
set. This can be achieved in two ways: either by computing a subset of vertices that
sufficiently expresses the zonotope shape or by finding points close to each zonotope
vertex, up to some tolerance. These two approaches are represented by the following
algorithms:

Stinson et al. randomized vertex enumeration (Stinson et al., 2016). For a
zonotope ZpGq with G P Rnˆm, this algorithm samples vectors in the zonotope space Rn

using a standard Gaussian distribution in Rm. These vectors are then projected onto Rm

via the map x ÞÑ signpGTxq, where sign assigns ´1 if its input is negative and 1 otherwise.
The resulting vector in Rm corresponds to a vertex of the m-cube. Stinson et al. showed
that a vertex created in this way maps to a zonotope vertex with probability 1. This
approach is inherently fast, as it only requires sampling a chosen number of vectors in
Rn. However, a significant caveat arises if the zonotope generators have mutually close
angles, as shown in Figure 2.16. In this case, many randomly chosen vectors may map to
the same zonotope vertex and rarely to others. To mitigate this, the sampling size must
be increased.

Figure 2.16: (Stinson et al., 2016)’s randomized vertex enumeration algorithm. This is an
example where the generators have mutually close angles. In this case, the chosen random
vectors have a high probability of corresponding to the same zonotope vertex (in red). The

sampling size must be increased to avoid this effect.

Skuric et al.’s iterative convex hull method (ICH) (Skuric et al., 2022). Re-
cently, a new approximation method for polytope surfaces was proposed in (Skuric et al.,
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2022). Figure 2.17 summarizes this method. For a zonotope Zpn,mq in Rn, the algo-
rithm begins by selecting n direction vectors in Rn and then identifies the closest vertices
to these directions using a linear program. Iteratively, by selecting new directions based
on the normals of the polytope constructed from the convex hull of the found vertices, this
algorithm enumerates vertices until a specified tolerance representing how close vertices
are from the created directions. A Python implementation is available and described in
(Skuric et al., 2023).

Figure 2.17: Illustration of the Iterative Convex Hull algorithm. Image from (Skuric, 2023).

To compare the quality of the vertices produced by each of these algorithms, a suitable
metric must be defined. While the Hausdorff distance, a computable distance between
sets of points involving the Euclidean distance from every point of one set to every point
of another, exists, it is not necessarily a relevant metric in this context. Skuric et al.’s
method returns a considerable number of points close to the surface of the zonotope, far
exceeding the expected number of vertices. Since the primary interest lies in the global
shape of the zonotope, comparing the relative distances of the returned points and the
exact vertices would not provide strong information on whether the zonotope’s surface
is well-approximated. Instead, this work uses the Jaccard index, also called the Jaccard
similarity coefficient. It is defined for any two sets A and B as

JpA,Bq “
VolpA X Bq

VolpA Y Bq

where Vol denotes the volume.

The Jaccard index, which measures the similarity between two sets, attains a value of
1 when the sets are identical, indicating perfect overlap. For both algorithms presented,
the returned points lie on the surface of the given zonotope, so the intersection and union
are easily computed.

Tables 2.4 and 2.5 summarize the computation times for both algorithms for 4-
dimensional zonotopes with m “ 15 or m “ 20 generators, respectively. Table 2.4 shows
the results for the randomized enumeration algorithm, and Table 2.5 shows the results for
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ICH algorithm. All computations were performed using the same setup as the previous
time benchmark in Subsection 2.3.1.

pn,mq
Number of
samples

Computation
time

Number found points
/ exact number of vertices

Jaccard
index

p4, 15q

10 ă 0.01 0.41 ˘ 0.03 0.98 ˘ 0.01
100 ă 0.01 0.67 ˘ 0.05 1.00 ˘ 0.00
1000 0.05 ˘ 0.00 0.83 ˘ 0.02 1.00 ˘ 0.00
10000 0.30 ˘ 0.01 0.93 ˘ 0.01 1.00 ˘ 0.00

p4, 20q

10 ă 0.01 0.28 ˘ 0.01 0.97 ˘ 0.00
100 0.02 ˘ 0.00 0.56 ˘ 0.03 1.00 ˘ 0.00
1000 0.08 ˘ 0.00 0.78 ˘ 0.03 1.00 ˘ 0.00
10000 0.39 ˘ 0.02 0.89 ˘ 0.01 1.00 ˘ 0.00

Table 2.4: Performance of (Stinson et al., 2016)’s randomized algorithm. For each row, 10
randomly generated 4-dimensional zonotopes with m generators are computed. The ‘Number of
Samples’ column indicates the number of vertices randomly drawn at each iteration. Computa-
tion times are in seconds.

pn,mq Tolerance Computation
time

Number found points
/ exact number of vertices

Jaccard
index

p4, 15q

1 0.03 ˘ 0.01 0.03 ˘ 0.01 0.56 ˘ 0.05
0.1 0.29 ˘ 0.02 0.72 ˘ 0.10 0.98 ˘ 0.00
0.01 0.39 ˘ 0.01 1.94 ˘ 0.6 1.00 ˘ 0.00
0.001 0.39 ˘ 0.02 2.12 ˘ 0.04 1.00 ˘ 0.00

p4, 20q

1 0.06 ˘ 0.01 0.03 ˘ 0.01 0.68 ˘ 0.05
0.1 0.54 ˘ 0.03 0.61 ˘ 0.05 0.99 ˘ 0.00
0.01 0.64 ˘ 0.04 1.36 ˘ 0.07 1.00 ˘ 0.00
0.001 0.62 ˘ 0.04 1.37 ˘ 0.07 1.00 ˘ 0.00

Table 2.5: Performance of (Skuric et al., 2022)’s ICH algorithm. For each row, 10 randomly
generated 4-dimensional zonotopes with m generators are computed. The tolerance indicates how
close a computed point should be to the zonotope surface. Computation times are in seconds.

These tables confirm that both algorithms can produce a set of points that yield a
shape similar to that of a given zonotope. Stinson et al.’s algorithm produces such a
set very quickly compared to exact algorithms, with a number of required points much
smaller than the exact amount. However, Škuric et al.’s method requires setting a low
tolerance to ensure that the points it produces are close to the zonotope surface, leading
to longer computation times associated with a larger number of generated points.

While the results concerning exact and approximation algorithms relate to the sur-
face description of a zonotope, the problems are fundamentally different. This section
demonstrated that in the context of describing the shape of the torque feasible set, an
exact enumeration algorithm should not be used when considering a large number of
muscles. However, working with exact algorithms provided insights into the geometric
processes that occur when describing the projection of a tension feasible set modeled as
an orthotope. This understanding is key to generalizing the projection process for any
convex shape of T , which is the focus of Chapter 3.
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2.5 Conclusion

This chapter focused on explicitly computing the torque feasible set
!

τ P Rn
| Dt P T , τ “ ´LT t ´ G

)

assuming that T is an orthotope, and without loss of generality, an m-dimensional cube.
The resulting set is a zonotope, which can be described through various representations,
including a set of vertices. However, in this case, the torque feasible set is associated
with the matrix ´LT , which does not directly reveal the global shape of its associated
zonotope.

This chapter proposed an efficient algorithm, called EdgeEnum, to compute the exact
vertices of a zonotope based on its edge enumeration. Its time and space complexity were
compared theoretically with those of several state-of-the-art zonotope vertex enumeration
algorithms, demonstrating that EdgeEnum is a theoretically performant algorithm for
worst-case scenarios, i.e., when the number of columns of ´LT is large compared to its
number of rows (n ! m).

However, in practice, the algorithm may not be performant due to the unavoidable
combinatorial number of edges to enumerate. A time benchmark was performed to high-
light this issue. The following paragraphs summarize the benefits and limitations of using
an edge-based algorithm.

Strengths of EdgeEnum

EdgeEnum has several advantages, from its creation process to its implementation.

Ease of implementation. EdgeEnum is straightforward to implement. While a recur-
sive version is possible (and implemented in its associated Python package), this chapter
presented an implementation based on an iterative construction of the edges of an m-cube
to emphasize readability and geometric intuition. The only requirement for implementa-
tion in any language is the availability of a convex hull operation, which is already natively
implemented or available through dedicated libraries in common scientific programming
languages such as R, MATLAB, Python, and Julia.

Parallelism. A significant advantage of EdgeEnum compared to recent developments is
its suitability for parallelization, unlike recent developments such as in (Gu et al., 2022).
This parallelization occurs during the grouping process, in which all current edges during
an iteration are separated into groups according to their directions. Applying the convex
hull to one group of edges does not require the resulting convex hull of another group.
The Python implementation offers both parallel and non-parallel versions of EdgeEnum.

Theoretical efficiency when n is fixed. Theorems 2.2.4 and 2.2.8 showed that the
time and space complexity of the algorithm are polynomially bounded in the input and
output sizes. This is fundamental, as it qualifies EdgeEnum as an efficient algorithm in
terms of both time and space.



Chapter 2. New efficient edge-based zonotope vertex enumeration 67

Handling degeneracy. Degeneracy of a zonotope describes whether its generators are
in general position. If they are, the zonotope is not degenerate. The only condition to
handle degeneracy is the ability of the convex hull operation to return multiple points
that are located at the same position. In this case, the convex hull time complexity is not
Opn log hq, where n is the number of points, and h is the number of points on the convex
hull. Instead, it is Opn log nq on average, using an algorithm like QuickHull (Barber et
al., 1996). When applying this new bound to the computed theoretical complexities, the
result does not change. However, the computed complexities become average bounds, not
worst-case bounds.

The following paragraphs describe several drawbacks of EdgeEnum.

Limits

This chapter identified three types of limitations related to theoretical algorithmic results,
extension of the method to polytopes, and the thesis’s goal of understanding the zonotope
surface.

Non-compactness. An algorithm is compact if its space complexity is polynomially
bounded by the input size alone (Fukuda, 2004). While the new approach has polynomial
time and space complexity for fixed n, it requires storing all edges found in each iteration.
Therefore, the algorithm does not have the property of compactness as its space complexity
is not polynomially bounded by the input size alone (Fukuda, 2004). The input size is
determined by the generator matrix, which has size nm. Even for fixed n, the space
complexity is Opmn`2q and is not bounded by any polynomial pnmqα, where α is a positive
real number. In other words, the algorithm cannot stream edges once they are found, since
an edge may be rejected in a subsequent iteration.

As explained in (Ferrez et al., 2005), the algorithm falls into the category of incre-
mental strategies. This means that the edge enumeration problem is solved inductively
by maintaining a list of edges at a certain state. The memory requirement is a criti-
cal disadvantage of this kind of approach. Thus, the time efficiency of the algorithm is
counteracted by its space requirements.

Approximation algorithms are better suited for fast zonotope surface descrip-
tion. Even though EdgeEnum remains relevant for some practical problems (Gu et al.,
2022; Fukuda, 2004; Guibas et al., 2003), it may not be the most suitable choice for
describing a zonotope surface. Approximation algorithms can achieve compelling results
with significantly faster computation times by identifying a limited number of points on
the surface. The convex hull of these points closely approximates the desired zonotope
(in terms of volume), as demonstrated in Section 2.4.

Consequently, for the remainder of this thesis, all vertex computations of force feasible
sets represented as polytopes will employ an approximation approach. Since Chapter 4
involves computing a large number of force polytopes to determine the parameters of a
musculoskeletal model from in silico force polytopes, the Iterative Convex Hull method
(Skuric et al., 2022) will be used for all polytope computations. The chosen tolerance will
vary depending on the context.
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EdgeEnum does not (always) extend to the vertex enumeration of zonotope
sections. While this chapter presented results concerning the torque feasible set, our
thesis focuses on force feasible sets, including those modeled as polytope, i.e., a section of
a zonotope. If p, the dimension of this section, equals n´1, then it is possible to construct
some vertices of the polytope resulting from this section (cf. Figure 2.18). If the affine
subspace sectioning the zonotope is in general position (i.e., it does not cross any vertices
of the zonotope), then it is even possible to enumerate all of its vertices. However, in
this context, the force feasible set is usually described in 3D, the torque space in 7D, and
the tension space in mD for m ě 7, so it is not possible to return all vertices. This is
mainly because the polytope vertices are produced by intersecting this affine space with
higher-dimensional faces of the zonotope, not necessarily only with edges.

Figure 2.18: An affine subspace L of dimension 1 that does not intersect any zonotope
vertices is shown in yellow. In this case, because 1 “ n ´ 1, where n “ 2 is the dimension of the
zonotope, it is possible to construct the vertices of this zonotope section by intersecting L with

the edges it crosses.

On the cubical representation of the tension feasible set

The novel algorithm presented in this chapter is theoretically relevant to the vertex enu-
meration subfield of computational geometry. It sheds new light on enumeration tech-
niques. To the best of our knowledge, most enumeration algorithms consider cube vertices,
hyperplanes, and sign vectors, but rarely edges. This may be because the number of cube
edges is much larger than the number of cube vertices.

In practice, the number of zonotope vertices grows combinatorially with its number
of generators, making any enumeration algorithm inefficient with regard to computation
time. Section 2.4 considered approximations of the zonotope surface to further decrease
computation time and reduce the number of points required to describe the zonotope
surface. These approximations are relevant in the context of this thesis.

To reconstruct a musculoskeletal model whose torque feasible sets fit given maximal
torque capacities in various postures, it must be possible to generate in silico a large
number of torque feasible sets and compare them.

However, whether approximations or exact algorithms are used, it was hypothesized
that the tension feasible set is shaped as a cube. Biomechanically, this means that all mus-
cles can produce their maximum tensions simultaneously. The next chapter will consider
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other shapes and their associated biomechanical assumptions to focus on their produced
force feasible set shape. The creation process of EdgeEnum is a first step in this direction.
This chapter described the global shape of the torque feasible set by navigating between
the tension feasible set and its projection onto the torque space. More generally, the
shape of the tension feasible set and its projection (followed or not by an intersection) are
strongly linked. They are even inextricable, and the main results of the next chapter argue
that the shape of the tension feasible set does not strictly matter when a large number
of muscles is considered. Surprisingly, these results will lead to a new characterization of
force feasible sets and a deeper understanding of muscle tension interactions.
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Chapter 3

A unified model of the tension feasible
set

Introduction
The force feasible set F can be modeled in various ways depending on the context. Some
common representations utilize either an ellipsoid or a polytope (Skuric et al., 2022;
Rezzoug et al., 2021; Hernandez et al., 2017; Bosscher et al., 2006). Of particular interest
is Chiacchio’s force manipulability ellipsoid (Chiacchio et al., 1997), which, for a serial
kinematic chain with n degrees-of-freedom, is defined as:

FChiacchio :“ tf P R3
| JT f “ τ, τT τ ď 1u

where JT is the transpose of the Jacobian matrix J P R3ˆn expressed at the end-effector,
and τ P Rn represents the feasible torques. Chiacchio’s model assumes that the torque
feasible set is bounded by a sphere of radius 1 (τT τ ď 1 ðñ }τ}2 ď 1). Geometrically,
this can be visualized as the intersection of a unit sphere in Rn with im JT , the vector
space spanned by the columns of JT , resulting in a force ellipsoid. To express this ellipsoid
in the Cartesian force space, the Moore-Penrose pseudo-inverse of JT , denoted by pJT q`,
is applied on it. This is valid because the pseudo-inverse acts as the classic inverse for
elements within im JT , effectively mapping points from the intersection in the torque
space back to their corresponding force vectors in R3.

While providing a useful framework, Chiacchio’s construction does not explicitly in-
corporate muscle considerations. However, such considerations can be integrated by ad-
justing the radius of the torque feasible sphere to align with experimental data, as done in
(Rezzoug et al., 2021). This raises the question of whether this scaling process adequately
captures the complex interplay between muscles and joint torques. To address this, we
adopt a more comprehensive approach by considering all possible models for the force
feasible set, aiming to derive general results applicable to any model choice.

In this broader context, the isometric force feasible set, F , for a p-dimensional kine-
matic chain with n degrees-of-freedom and m muscles (where p ď n ď m) at a specific
posture is defined as:

F “

!

f P Rp
| Dt P T , JT f “ ´LT t ´ G

)
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Figure 3.1: Chiacchio’s force ellipsoid expressed in the torque space (in red) (Chiacchio et al.,
1997). The feasible torques (in blue) are modeled as a ball of radius 1. The intersection with
im JT (green plane) produces a lower-dimensional ellipsoid (in red) defining Chiacchio’s force

ellipsoid expressed in the torque space.

where JT P Rnˆp is the transpose of the Jacobian matrix (mapping end-effector forces
to joint torques), L P Rmˆn is the lever-arm matrix (where ´LT maps muscle tensions
to joint torques), G P Rn is the gravitational torque vector, and T Ă Rm is the set of
possible muscle tension combinations.

It is easily seen that Chiacchio’s ellipsoid, in its raw form, corresponds to the case in
which: gravity is not considered; the tension feasible set T is a centered sphere in Rm

of radius 1; and ´LT is an orthogonal projection from the tension space to the torque
space. In other words, there are many simplifying assumptions regarding how muscles act
on joints. The general force feasible set formulation require the following assumptions: 1)
the muscle geometry must be known to compute the lever arms in ´LT ; 2) the minimal
and maximal tensions of each muscle must be known to estimate the possible values
taken by t; and 3) the neuromuscular behavior should be understood to properly model
the shape of T .

Indeed, in this framework, the tension feasible set can be viewed as a linear trans-
formation of the set of all possible muscle activations. Since muscles may be activated
according to the activation of neighbor muscles (a behavior termed muscular grouping), or
activated according to an agonistic-antagonistic relationship with another muscle, this is
equivalent to assuming a pairwise relationship between muscles. Consequently, the global
shape of the tension feasible set is determined by a linear transformation of the activation
set.

Figure 3.2 illustrates this construction geometrically.

A straightforward application of this general formula arises when all muscles are con-
sidered fully activable simultaneously. In this scenario, the tension feasible set T is a linear
transformation of a cube, resulting in an orthotope (or hyperrectangle). This orthotope
is then projected onto the torque space, producing a zonotope that represents all feasible
torques. Consequently, the force feasible set, formed by the intersection of this zonotope
with im JT , is a polytope. We refer to this model, with the orthotopic assumption on the
tension feasible set, as the T8 model. Alternatively, if T is a linear transformation of a
sphere (resulting in an ellipsoid), we call it a T2 model. In this chapter, we will consider
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F 1 Ă Rp F Ă Rn To Ă Rn T Ă Rm

pJT q` X im JT ´LT ´G

Figure 3.2: Description of the geometric operations to derive the force feasible set in isometric
conditions. The set of muscle tensions T is projected and translated onto the torque space to
create the torque feasible set To. It is then intersected with a vector space (im JT ) to produce
the force feasible set F described in the torque space, or conveniently in the Cartesian force
space using pJT q`. In practice, we prefer to express F in the torque space since pJT q` is a

bijection between F and F 1.

a broader class of possible models, denoted Tp, for 2 ď p ă `8. Figure 3.3 illustrates
these two first models.

Figure 3.3: Differences in the shape of the force feasible set F (in red) based on the modeling
choice for the tension feasible set T (in pink). A T8 model implies that T is a linear

transformation of a cube (an orthotope), while a T2 model is the linear transformation of a
sphere (an ellipsoid). The force feasible set F can be constructed in two steps: first, T (pink) is

projected onto the torque space (light blue plane), forming the torque feasible set To (dark
blue). Then, To is intersected with a subspace (green line). All elements in this intersection

constitute the force feasible set F described in the torque space.

However, experimental measurements of maximal force exertions at the hand suggest
that a scaled Chiacchio’s ellipsoid (T2 model) underestimates these measurements, while
the polytope (T8 model) overestimates them (Rezzoug et al., 2021). These estimations,
based on in silico force feasible sets, required scaling a generic upper limb musculoskeletal
model.

Consequently, neither an ellipsoid nor a polytope representation of the force feasible
set appears to fully capture the size of measured experimental force exertions. However,
they seem to approximate the global orientation of the measured data. Since Chiacchio’s
ellipsoid does not require knowledge of muscle lever arms, it can be inferred that the
Jacobian matrix, JT , plays a crucial role in determining this orientation.

In the aforementioned representations of F , the specific models share one common
characteristic: T is assumed to be convex and symmetric. Most results in this chapter
assume symmetry of the tension feasible set, T , which might not always be realistic in
a biomechanical context. They are valid for a broad class of nested symmetric shapes,
which allows us to consequently extend the results to non-symmetric convex models that
can be enclosed in between two arbitrarily chosen symmetric T shape models. This



Chapter 3. A unified model of the tension feasible set 74

Figure 3.4: Two modeled scaled force feasible set boundaries compared to experimental data,
expressed in the sagittal plane relative to the upper-limb posture of one participant. The solid
line represents the convex hull of experimentally measured maximal force exertions. The black

squares depict the in silico force feasible set modeled as a polytope (T8 model), while the
wire-frame represents the ellipsoid version (T2 model). The gray circle has a radius of 300N.

Image extracted from (Rezzoug et al., 2021).

ensures applicability to a wide range of muscle activation patterns, even those that exhibit
some degree of asymmetry. While a spherical shape offers computational advantages, it
underestimates the true size of the force feasible set. Conversely, a cubical shape leads
to combinatorial challenges, overestimates the size, and introduces unrealistically sharp
edges in the context of human biomechanics.

This chapter aims to address these limitations through a deeper understanding of the
mathematical formulation of force feasible sets. Our objectives are threefold:

1. Decouple size and shape: Separate the notions of size and shape in F to gain
finer control when fitting in silico models to experimental data (cf. Chapter 5). We
will demonstrate that F inherently possesses an ellipsoidal shape, regardless of the
chosen model, and that this approximation improves with the number of muscles
considered. Furthermore, we will show that the size of F depends on a coupling
between the mean value of maximal muscle tensions and muscle path geometry.

2. Quantify the impact of muscle path geometry: Analyze how muscle path
geometry influences F , and apply this analysis to determine whether personalization
of muscle geometry in a scaled generic musculoskeletal model is necessary.

3. Provide modeling guidelines: Offer insights into how force feasible sets should
be modeled depending on the specific context.

To achieve these goals, we seek the most suitable force feasible set model with size and
shape consistent with experimental maximal force measurements in isometric conditions.
Since these properties depend on the model chosen for the tension feasible set, we consider
the class of all convex, symmetric sets for T . This analysis utilizes the theory of Banach
spaces (Section 3.1), which provides a framework for treating symmetric convex sets as
vector spaces equipped with a notion of size.
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Section 3.2 delves into the Local Theory of Banach spaces to demonstrate that, irre-
spective of the choice of model for T , the force feasible set tends to resemble an ellipsoid
with high probability. This probability approaches 1 as the number of considered muscles
increases, highlighting the role of the geometric construction of F . This section concludes
with a computationally amenable reformulation of the general description of F directly in
the tension space, facilitating the analysis of how muscle tension combinations contribute
to the force feasible set. While the ellipsoidal approximation is theoretically sound, its
computation remains challenging and model-dependent. To overcome this, Section 3.3
explores the projection constant theory within the Banach space framework. We show
that the problem of fitting the size of F is directly linked to the choice of model for T
and we propose an explicit computation for an adapted ellipsoid.

Building on the theoretical tools developed in the preceding sections, Section 3.4
introduces a novel index quantifying the influence of muscle path geometry (locations of
path points and via points) on the force feasible set. This index, independent of the specific
model chosen for T , provides valuable insights into whether detailed personalization of
muscle geometries is required when scaling a generic musculoskeletal model.

This chapter concludes by summarizing the theoretical analysis of the force feasible
set, laying the foundation for the applications explored in the next two chapters, which
focus on musculoskeletal model muscle personalization based on the knowledge of in silico
and in vivoe force feasible sets in different postures.

3.1 The theory of Banach spaces

This thesis adopts a set-theoretic approach to model the forces exertable by an individual.
While intuitive for defining these sets, this approach may seem less practical when compar-
ing force feasible sets between individuals or analyzing the influence of muscle tensions
and geometry. To gain a more comprehensive understanding, we shift our perspective
while retaining the underlying set-based vision. This section introduces the fundamentals
of Banach spaces, providing a structured framework for studying the geometry of symmet-
ric convex sets and how unit metrics transform. This framework is based on the principle
that in vivo force feasible sets should reflect, in a structured manner, how muscle tensions
interact. The specific structural properties will thus be thoroughly studied in this chapter
to gain insights into muscle feasible tensions and their interactions directly from the force
feasible sets.

Banach space. A complete normed vector space is called a Banach space. Completeness
implies that every Cauchy sequence in the space converges to a limit within that space,
ensuring no “gaps” or “missing points”. A normed space is equipped with a notion of size
for each element x, called the norm of x, denoted by }x}X (the subscript may be omitted
when the context is clear). Formally, a Banach space is often denoted as pX, } ¨ }Xq. This
thesis focuses on finite-dimensional real-valued normed vector spaces, where vectors have
a finite number of real-valued components. Such spaces are inherently complete and thus
qualify as Banach spaces.

We present two complementary perspectives on Banach spaces:

1. Geometric perspective: Visualize a Banach space as a vector space contain-
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ing a centrally symmetric convex set centered at the origin. This set, often re-
ferred to as the unit ball, can be a sphere, ellipsoid, zonotope, cube, or any other
fully-dimensional, centrally symmetric convex set. Transformations between Banach
spaces not only map the underlying vector space but also “deform” the unit ball into
another convex set.

2. Metric perspective: Interpret a Banach space as a vector space with a well-defined
notion of a unit metric system. This allows us to study how a unit of measurement
transforms under different mappings.

These two perspectives allow us to draw a parallel between the geometric properties
of the force feasible set and its physical interpretation. The choice of perspective depends
on the context. For instance, we will demonstrate that force feasible sets tend to resemble
ellipsoids when a large number of muscles are involved. This result is established by
analyzing how the Newton unit, used to quantify muscle tension combinations, undergoes
a quadratic transformation to become the Newton-meter unit in the torque space.

While this thesis assumes a familiarity with linear algebra, the geometric and metric
perspectives on Banach spaces may be less familiar, particularly in higher dimensions.
For an intuitive understanding, we encourage the reader to primarily adopt the geometric
viewpoint for now. The following paragraphs introduce fundamental concepts that form
the basis of any study on Banach spaces.

The p-norms and ℓnp spaces. Norms provide tools for measuring the size of elements
in a vector space. In Rn, a common norm is the Euclidean norm (or 2-norm), defined as
}x}2 “

a

x21 ` ¨ ¨ ¨ ` x2n. When Rn is equipped with } ¨ }2, we refer to it as n-dimensional
Euclidean space. However, other norms can be defined on Rn. The p-norm, denoted by
} ¨ }p, is given by:

}x}p “

˜

n
ÿ

i“1

|xi|
p

¸1{p

The Euclidean norm is a special case of the p-norm with p “ 2. Another useful norm
is the 8-norm, defined as:

}x}8 “ lim
pÑ8

}x}p “ max
i“1,...,n

|xi|

Each p-norm provides an analytical description of the geometry of a specific type of
centrally symmetric convex set. The surface of such a set can be represented as tx P Rn |

}x}p “ 1u. This analytical representation is valuable for our purpose of analyzing and
fitting the shapes of force and torque feasible sets.

To clearly indicate which p-norm is being used, we adopt the notation ℓnp to represent
the n-dimensional real vector space Rn equipped with the p-norm } ¨ }p.

Unit balls. A norm quantifies the elongation of a vector relative to a reference value
that depends on its direction and the dimension of the ambient space. Similarly, the
amplitude of a maximal isometric force exerted at the hand depends on the direction
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of force application. Choosing a norm for a Banach space X effectively defines how
different directions in X influence the elongation of a vector. To capture all possible
influences (since there are infinitely many directions for n ě 2), we consider the set
BX “ tx P X | }x}X ď 1u, called the unit ball of X. For ℓnp spaces, we denote their unit
balls by Bn

p , as illustrated in Figure 3.5 for ℓ2p spaces with various values of p.

Figure 3.5: Unit balls associated with different p-norms in R2 (from Wikipedia).

Operators. Let X and Y be Banach spaces with norms } ¨ }X and } ¨ }Y respectively. An
operator T : X Ñ Y is a continuous linear map between X and Y . Operators transform
Banach spaces into Banach spaces. Linearity ensures that a vector space is mapped to
a vector space, while continuity preserves completeness, guaranteeing that the resulting
space after the transformation remains “whole” with no “gaps” or “missing points”.

In finite dimensions, any operator T : X Ñ Y can be represented by a matrix.
However, this matrix representation only captures how the vector space structure of X is
transformed under T . We need a more comprehensive tool to study how the norm of X
is affected by T . Since the norm structure of X is characterized by its unit ball, the key
question becomes: How is the unit ball of X transformed by T?

To answer this, we need to consider the properties of T . An operator T : X Ñ Y is
bounded if T pxq is bounded for all x P BX . Since a linear map between normed spaces is
continuous if and only if it is bounded, T must be bounded. This implies that the set of
operators from X to Y forms a Banach space, which can be equipped with a norm called
the operator norm, defined as:

}T }op “ sup
␣

}T pxq}Y | x P BX

(

The operator norm has a clear geometric interpretation: it represents the largest
distance between the transformed unit ball of X, tT pxq | x P BXu, and the unit ball of
Y , as depicted in Figure 3.6.

In essence, the operator norm quantifies the maximal deformation of the transformed
unit ball ofX relative to the unit ball of Y . With this understanding, we are now equipped
to delve into the comparison of centrally symmetric convex sets.
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with 

Figure 3.6: Geometric interpretation of the operator norm. T projects ℓ38 onto ℓ22. Its
operator norm, }T }op, is the maximal Euclidean norm of the vectors describing the surface of

the projected unit ball of ℓ38. In this case, this corresponds to the surface of a zonotope (blue).
This is equivalent to computing the maximal 2-norm of the zonotope vertices.

Banach-Mazur distance. Consider two isomorphic Banach spaces X and Y , meaning
there exists an invertible linear map between them. Recall that two finite-dimensional
real vector spaces are isomorphic if and only if they have the same dimension. In this
case, their Banach-Mazur distance is defined as:

dBMpX, Y q “ inft}T }op}T´1
}op | T : X Ñ Y is an isomorphismu

If X and Y are not isomorphic, we define dBMpX, Y q “ `8.

When the Banach-Mazur distance is 1, X and Y are said to be isometric, meaning
they have the same metric structure up to isomorphism. This implies that the set of
points at a distance of 1 from the origin in X corresponds exactly to the set of points at
a distance of 1 from the origin in Y . More generally, as noted in (V. Milman, 1992), for
two finite-dimensional real spaces X and Y of the same dimension with respective unit
balls BX and BY , if dBMpX, Y q ď d, then there exists an operator T : X Ñ Y such that:

BX Ă T pBY q Ă d ¨ BX

This means that a linear transformation of the unit ball of Y can be enclosed by the
unit ball of X and its dilation by a factor of d. Throughout this chapter, we will focus
on cases where the unit ball of X is an ellipsoid (so X “ ℓn2 ), and the unit ball of Y
(representing the muscle tension space or the Cartesian force space) is enclosed by an
ellipsoid, with d being as close to 1 as possible.

While the Banach-Mazur distance is a theoretical tool and often cannot be explicitly
computed, it will be instrumental in demonstrating strong approximation results in high
dimensions in the following sections.

This overview of Banach spaces has introduced mathematical tools for studying cen-
trally symmetric convex sets. This structural approach yields valuable insights, which we
will explore in the subsequent sections. With the sole assumption that the tension feasible
set is symmetric and convex, we will demonstrate that the shape of the force feasible set
is largely independent of the specific model chosen for the tension feasible set, while its
size is model-dependent.
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Figure 3.7: Building on Figure 3.6, we observe that the projected zonotope lies between a
transformation of the disk (an ellipsoid) and a dilation of this ellipsoid by a factor of 1.4. This

implies that dBM pY, T pXqq ď 1.4.

Leveraging the Local Theory of Banach spaces, Section 3.2 argues that the force fea-
sible set inherently tends to be ellipsoidal due to its geometric construction. However,
in practice, we need to compute this ellipsoidal shape. Section 3.3 utilizes the Projec-
tion Constant Theory to provide a computational tool for approximating the force and
torque feasible sets as ellipsoids, taking into account volume changes associated with norm
deformations.

3.2 The ellipsoidal shape of the force feasible set
The results in this section are foundational to the Local Theory of Banach spaces and
provide a valuable theoretical framework. They enable a concise geometric characteriza-
tion of the force feasible set without imposing specific assumptions on the shape of the
tension feasible set T , except for convexity and symmetry. We will leverage the symmetry
assumption in certain cases.

We consider various models for the tension feasible set, denoted by Tp, each associated
with a linear transformation of a unit p-ball. A T2 model corresponds to a spherical shape,
representing a scenario where all muscle activations are equally constrained. In contrast,
a T8 model assumes a cubic shape, allowing for independent activation of each muscle.
The remaining Tp models, with 2 ă p ă 8, represent intermediate cases with varying
degrees of “roundedness”:

T2 ă T3 ă ¨ ¨ ¨ ă T100 ă ¨ ¨ ¨ ă T8

The central result of this section establishes the inherent ellipsoidal nature of the
force feasible set. This means that Tp « T2 for any p ě 2, and more generally, T « T2 for
any convex, symmetric tension feasible set. The term “ellipsoidal” emphasizes that the
force feasible set resembles an ellipsoid globally but may not perfectly coincide with one.
However, it can be effectively approximated by an ellipsoid that captures the essential
features of its shape. Our goal is to compute this approximating ellipsoid (see Section
3.3), but first, we need to elucidate the underlying reasons for this phenomenon and the
conditions under which such an approximation is valid.

Before delving into the mathematical details, let’s highlight the advantages of an el-
lipsoidal representation. First, it offers a significantly more compact and computationally
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efficient description, requiring only the lengths of the principal axes, a center point, and
an orientation. This contrasts with, for example, a polytope representation, which may
involve numerous vertices and bounding hyperplanes. Second, if the force feasible set
resembles an ellipsoid in any posture, it follows from geometric considerations that the
torque feasible set and the tension feasible set also exhibit ellipsoidal shapes, given that
ellipsoids are preserved under affine transformations. Consequently, the tension feasible
set T can be effectively modeled as a T2 model, simplifying the analysis of muscle activa-
tion relationships. In this spherical representation, the size of the tension feasible set is
primarily characterized by the mean of the maximal tension values.

The results presented in this section, drawn from the Local Theory of Banach spaces,
are non-trivial and require a basic understanding of Banach space concepts. They may
initially seem counter-intuitive due to the high-dimensional spaces involved.

The Local Theory investigates infinite-dimensional normed spaces using tools from
finite-dimensional normed spaces. Over the past century, the name of this theory has
evolved from Local Banach Theory and Asymptotic Finite-Dimensional Analysis to Prob-
abilistic Geometry and, more recently, Asymptotic Geometric Analysis Artstein-Avidan
et al., 2015. Regardless of the nomenclature, this theory provides insights into how sym-
metric convex sets can be approximated by other symmetric convex sets. From a metric
perspective, it helps us understand how the physical unit of the tension feasible set (New-
tons) transforms into the physical unit of the torque space (Newton-meters) when a large
number of muscles are considered.

For a comprehensive overview of the Local Theory, we recommend exploring the
diverse perspectives presented in (Pietsch, 1999). A viewpoint relevant to our context is
articulated in page 5 of (Tomczak-Jaegermann, 1989):

“A property [...] is called local if it can be defined by a quantitative state-
ment or inequality concerning a finite number of vectors or finite-dimensional
subspaces.”

This section focuses on characterizing the shape of the force feasible set, which is
a global property. The overall shape can be described by its curvature, which involves
considering tangents at every point on the surface, an infinite set. In contrast, a local
property involves only finite quantities. For instance, the size of a vector is a local
property, computable in a finite number of steps. Since this applies to any vector, the
notion of size itself is a local property of the space. The Local Theory aims to bridge
the gap between local and global properties, enabling us to understand global geometric
features through local analysis. In our context, it will illuminate the shape of the force
feasible set by examining how different notions of size are deformed between spaces.

Dealing with infinity often introduces counter-intuitive concepts and challenges our
ability to visualize them geometrically. Similar challenges arise in sufficiently high-
dimensional spaces. To prepare for this exploration, we adopt the paradigm articulated
in (E. Milman and Yifrach, 2021):

“Existence implies abundance.”

In essence, this means that if at least one element of a class of objects in a sufficiently
high-dimensional space possesses a certain property, then all other elements in that class
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are likely to share that property. Of course, this does not hold for all properties. However,
the Local Theory is grounded in the observation that the more complex a normed space,
the more its structure resembles that of a Euclidean space. In other words, even if a
normed space is equipped with a highly complex norm, it still exhibits the structure of a
simpler space with an ellipsoidal norm. As we will demonstrate later in this section, the
force feasible set can be reformulated to reveal its inherent ellipsoidal shape. To guide
the reader through the following steps, let’s chronologically summarize the key results
presented in this section:

1. 1961 Dvoretzky’s Theorem (Dvoretzky, 1961): This foundational result in
the Local Theory of Banach spaces states that for a large m and an m-dimensional
centrally symmetric convex set, there exists at least one projection onto or inter-
section with an n-dimensional subspace such that the resulting object resembles an
ellipsoid. The dimension n depends on the desired accuracy of the approximation.

2. 1971 Milman’s abundance (V. Milman et al., 2001): Milman extended
Dvoretzky’s Theorem by demonstrating that the existence result holds not just
for one subspace but for almost all n-dimensional subspaces with high probability.
The term ‘high probability’ refers to a probability that increases towards 1 as m
grows large.

3. 1984 Milman’s Quotient of Subspace (QS) Theorem (V. Milman, 1985):
For a centrally symmetric convex set in m dimensions, there exists a subspace of
dimension p (constructed through a projection followed by an intersection) that
exhibits an ellipsoidal shape. The key contribution of this theorem is to show that
the ellipsoidal shape depends on p, not on m, highlighting the role of the geometric
construction (projection then intersection) in inducing the ellipsoidal shape.

4. 2021 Milman and Yifrach’s Quotient of Subspace abundance (E. Milman
and Yifrach, 2021): This work generalizes the original QS Theorem, which was
an existence result, to show that it applies to almost all p-dimensional subspaces
with high probability.

In the context of this thesis, the first two theorems indicate that as the number of
considered muscles increases, the force feasible set tends to become more ellipsoidal, with
high probability. This also applies to the torque feasible set. The latter two theorems
are even more relevant, as they demonstrate that the ellipsoidal shape is not merely a
consequence of the number of muscles but rather an inherent result of the geometric
construction itself. However, these theorems alone do not provide a concrete method for
constructing an ellipsoidal approximation. This will be the focus of Section 3.3.

It is crucial to note that all the theorems mentioned are independent of the specific
norm chosen. We do not impose any particular shape on the tension feasible set, only
that it is centrally symmetric and convex.

The following paragraphs elaborate on these results and demonstrate how the geo-
metric construction of the force feasible set can be adapted to align with the Quotient
of Subspace Theorem. While the proofs of these theorems are beyond the scope of this
thesis, we will provide detailed interpretations to highlight their significance.



Chapter 3. A unified model of the tension feasible set 82

3.2.1 The Local Theory of Banach spaces

Theorem 3.2.1: Dvoretzky’s Theorem (Dvoretzky, 1961)

For each ε ą 0, there exists a number ηpεq ą 0 with the following property: Let E
be a finite-dimensional Banach space of dimension m. Then E contains a subspace
F Ă E of dimension n “ ηpεq logm such that

dBMpF, ℓn2 q ď 1 ` ε

Proof. The initial proof was developed by Dvoretzky himself and is restated in (V. Mil-
man, 1992). An alternative approach can be found in Chapter 4 of Pisier’s book on the
geometry of Banach spaces (Pisier, 1989).

Dvoretzky’s Theorem has a straightforward geometric interpretation: for a high-
dimensional normed space E with dimension m, there always exists a subspace F of
dimension n such that the intersection or projection of the unit ball of E onto F can be
made arbitrarily close to an ellipsoid.

In (V. Milman, 1992), the author conjectured that for a fixed n, we have m „
`

1
ε

˘n{c

with c „ 2. Under this conjecture, the number of musclesm required for the 7-dimensional
torque feasible set to have a reasonable ellipsoidal shape (say, with a Banach-Mazur
distance from ℓ72 of 1.3) would be m „ p1{0.3q7{2 „ 68. For a better approximation with
ε “ 0.2, we would need m „ 280 muscles; for ε “ 0.1, m „ 3163 muscles; and for a
very accurate ellipsoidal shape with ε “ 0.001, we would need approximately 31.6 billion
muscles. However, these estimates do not account for the specific geometric construction
of the force feasible set. The actual number of muscles required could be significantly
lower than these computed bounds.

Dvoretzky’s Theorem is an existence result; it does not provide guidance on con-
structing such a subspace F . A more powerful result, due to Milman, addresses this
limitation.

Theorem 3.2.2: Milman’s Abundance Theorem (V. Milman et al., 2001)

Let E be a finite-dimensional Banach space of dimension m. Then, any n-
dimensional subspace F of E has a probability of 1 ´ cpε, k,mq of satisfying
dBMpF, ℓn2 q ď 1 ` ε, with limmÑ8 cpε, k,mq “ 0 for fixed ε and k.

Proof. This theorem is implicitely stated in Milman’s alternative proof of Dvoretzky’s
Theorem, as described in Milman’s book on the Local Theory of Banach spaces (V.
Milman et al., 2001). For a more intuitive approach, Pisier provides extensive explanations
and geometric reasoning in Chapters 2, 7, and 8 of his book, The Volume of Convex
Bodies and Banach Space Geometry (Pisier, 1989). Further insights can be found in
the recent survey book, Asymptotic Geometric Analysis, Part I (Artstein-Avidan et al.,
2015), particularly in Chapter 5, which focuses on Dvoretzky’s Theorem and its modern
interpretations.
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The next theorem is fundamental to this chapter but also one of the most challenging
to grasp. It asserts that a centrally symmetric convex set, when intersected with a sub-
space and then orthogonally projected onto a lower-dimensional subspace, results in an
ellipsoidal shape. The key insight here is that the accuracy of this approximation depends
on the specific geometric construction (intersection followed by projection) rather than
solely on the dimensionality of the initial space. However, the theorem is not formulated
in these terms and requires an understanding of the concept of a quotient space.

Quotient spaces. Quotient spaces are fundamental mathematical objects that appear
in various areas of mathematics. While often introduced in the context of modular arith-
metic, as in the study of rings Z{nZ, we will adopt a geometric perspective here. Modern
mathematics relies heavily on set theory, which provides a framework for defining and
manipulating sets. Different branches of mathematics adapt set operations like union and
intersection to suit their specific needs. For example, in linear algebra, the direct sum
V ` W of vector spaces V and W is used instead of the set union V Y W to ensure that
the result remains a vector space: there is a need to preserve a mathematical structure
through operations.

Similarly, the concept of a quotient space can be viewed as an adaptation of the set
complement operation. The quotient space V {W can be intuitively understood as the set
of vectors in V that are orthogonal toW , while maintaining a vector space structure. More
precisely, V {W can be identified with V XWK, where WK is the orthogonal complement
of W in V . It is important to note that this is an identification, not an equality, as V {W
is an abstract object that is not directly representable. This identification is denoted in
this chapter as V X WK ÐÑ V {W .

Consider Banach spaces E, Y , and X such that X Ă Y Ă E. Let’s examine the
unit balls of Y , X, and Y {X. The unit ball of Y can be derived directly from the unit
ball of E through intersection: BY :“ BE X Y . Similarly, for the unit ball of X, we have
BX “ BY X X “ BE X X, since X Ă Y Ă E.

To determine the unit ball of the quotient space Y {X, we utilize Pisier’s identification
detailed in (Pisier, 1989, Chapter 1), which suggests considering orthogonal projections
rather than intersections. Let PX be the orthogonal projection from E onto X. Then,
the unit ball of Y {X can be identified with PXpBY q. Therefore, we have:

BY {X ÐÑ PXpBE X Y q

The key observation here is the geometric construction of the unit ball of Y {X: it
involves the intersection of a centrally symmetric convex set with a subspace followed by
an orthogonal projection onto another subspace. While previous theorems established
that such a construction can yield a unit ball arbitrarily close to an ellipsoid when dimE
is sufficiently large, the following theorems go further. The following result asserts the ex-
istence of a quotient space Y {X, constructed through intersection and projection, whose
unit ball is close to an ellipsoid regardless of the dimension of E. In other words, the
ellipsoidal shape arises from the specific geometric construction itself, not just from high
dimensionality. The precise formulation of this result is presented in the next two theo-
rems.
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Theorem 3.2.3: Milman’s Quotient of Subspace Theorem (Artstein-
Avidan et al., 2015)

For every 0 ă δ ă 1, there exists a constant C “ Cpδq such that every n-dimensional
normed space E admits a quotient of a subspace Y {X (with X Ă Y Ă E) with
dimpY {Xq ě δn and

dBMpY {X, ℓ
dimpY {Xq

2 q ď C.

Similar to Theorem 3.2.2, the existence of such a quotient space implies that the
theorem holds for almost all quotient spaces.

Theorem 3.2.4: Milman and Yifrach’s Abundance Theorem (E. Milman
and Yifrach, 2021)

Theorem 3.2.3 applies to any random quotient space with high probability, with
the same deterministic bounds.

In practice. Currently an in silico force feasible set is formulated as a projection fol-
lowed by an intersection, but if it can be expressed as an intersection followed by a pro-
jection, it is likely to exhibit an ellipsoidal shape regardless of the specific model chosen
for the tension feasible set or the number of muscles involved. Naturally, the approxima-
tion improves as the number of muscles increases, but the core principle underlying these
theorems is that the geometric construction of an in silico force feasible set is a primary
determinant of its shape.

A more insightful perspective, articulated in (Pisier, 1989), is the following:

“This surprising result gives the impression that in a number of questions, an
arbitrary ball in Rn should behave essentially like an ellipsoid.”

From a physical metric standpoint, this suggests that the geometric construction of
force feasible sets can be studied as the deformation of the unit metric of the tension
feasible set (Newtons) which undergoes a quadratic deformation resulting in the unit of
the torque space (Newton-meters). Quadratic deformation means that the tension feasible
set, whatever its shape, is transformed as an ellipsoid.

This leads to two fundamental questions:

1. Non-central intersections/projections: Dvoretzky’s Theorem focuses on sub-
spaces passing through the origin. Larman and Mani extended this result to n-
dimensional subspaces passing through any interior point of an m-dimensional sym-
metric convex set (Larman and Mani, 1975). More refined results on the ellipsoidal
approximation and generalizations to abundance were established in (Gordon, 1988).
While the Quotient of Subspace Theorem has not yet been generalized to affine
maps, empirical observations suggest that similar phenomena occur in affine cases.

2. Applicability to the force feasible set: To what extent does the force feasi-
ble set satisfy the conditions of the Quotient of Subspace Theorem? The following
paragraphs will demonstrate that the formulation of the force feasible set, initially
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viewed as a projection followed by intersection, can be reformulated as an intersec-
tion followed by a projection.

3.2.2 Rewritting the force feasible set geometric construction

The following result reformulates the geometric construction of the force feasible set F ,
changing the order of operations from projection then intersection to an equivalent inter-
section then projection. The key idea is to identify the largest dimensional affine subspace
K of Rm such that K X T maps directly onto F . In essence, this demonstrates that
the force feasible set arises from linearly constrained muscle tensions, and we explicitly
identify these constraints. This can be considered an extension of Scott et al.’s work on
polytopes represented as sections of zonotopes (sections of projections of cubes) (Scott
et al., 2016).

Theorem 3.2.5: Reformulation of the force feasible set

Let p ď n ď m be integers, and let ϕ : Rp Ñ Rn be an injective linear map of rank
p and ψ : Rm Ñ Rn be a surjective affine map of rank n. Let T be a convex set in
Rm. Then, for any non-empty convex set F Ă Rn such that F “ imϕ X ψpT q, we
have:

F “ ψpK X T q

where K “ ψT pimϕqK Ă Rm is an affine subspace of dimension m ´ pn ´ pq,
ψT : Rn Ñ Rm defined as ψT pτq “ ´Lτ ` pLT q`G is the transpose mapping of ψ,
and AK denotes the orthogonal complement of any subspace A.

Proof. This proof is divided into two parts. First, we show that ψpKq “ imϕ. Second,
we use this result to prove that ψpK X T q “ ψpKq X ψpT q “ imϕ X ψpT q.

1) ψpKq “ imϕ: This part relies on the construction ofK. The goal is to find the largest
possible affine subspace K Ă Rm (in terms of dimension) such that K ` KK “ Rm. In
Euclidean space, we have KXKK “ t0Rmu, implying dimK`dimKK “ m. Consequently,
ψpK ` KKq “ ψpKq ` ψpKKq, as the linear part of ψ distributes over the direct sum.

To achieve this, we will ensure that KK is in one-to-one correspondence with pimϕqK.
This minimizes the dimension of KK, which maximizes the dimension of K and ensures
that K surjects onto imϕ.

A convenient bijective mapping between these complements is given by the transpose
map ψT of ψ. Since ψ is surjective, ψT is injective. Furthermore, restricting ψT to pimϕqK

yields a surjection onto ψT ppimϕqKq. Combined with the injectivity of ψT , this restriction
establishes the desired one-to-one correspondence.

Therefore, let KK “ ψT ppimϕqKq. By taking orthogonal complements, we define
K “ ψT ppimϕqKqK, which satisfies:

ψpKq “ imϕ and ψpKK
q “ pimϕq

K
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2) ψpK X T q “ ψpKq X ψpT q: We utilize results from (Kushnir and S. Liu, 2017) on
linear transformations of unions and intersections of convex sets. Recall that a set C Ă Rm

is convex in direction d P Rm if for all a, b P C with a ´ b “ αd for some α P R, the line
segment ra, bs is contained in C.

Lemma 3.2.6: Theorem 2 from (Kushnir and S. Liu, 2017)

For a linear transformation T : Rm Ñ Rn and closed convex sets A and B in Rm, if
A Y B is convex in every direction d P kerT , then T pA X Bq “ T pAq X T pBq.

We will apply this with T as the linear part of ψ, A “ K, and B “ T . Note that K
is a closed convex set, as is T . While ψ is affine, not linear, we can apply the lemma to
its linear part and then translate the resulting sets.

Crucially, kerψ Ă K. Recall that kerψ “ pimψT qK. From the definition of K, we
have KK “ ψT ppimϕqKq Ă imψT . Taking orthogonal complements and reversing the
inclusion, we get:

pimψT
q

K
Ă pKK

q
K

“ K ùñ kerψ Ă K

To apply Lemma 3.2.6, we must show that KYT is convex in every direction in kerψ.
Consider a, b P K Y T such that a ´ b belongs to a one-dimensional subspace of kerψ.
Since kerψ Ă K, we have a ´ b P K. By the convexity of K, ra, bs Ă K Ă K Y T . Thus,
Lemma 3.2.6 applies, and ψpK X T q “ ψpKq X ψpT q “ imϕ X ψpT q.

Finally, we compute the dimension of K:

dimpimϕq
K

“ n ´ p

ùñ dimψT
ppimϕq

K
q “ n ´ p

ùñ dimψT
ppimϕq

K
q

K
“ m ´ pn ´ pq

ùñ dimK “ m ´ pn ´ pq

Our theoretical result, Theorem 3.2.5, demonstrates that force feasible sets are indeed
constructed through an intersection followed by a projection. Consequently, by applying
Milman’s Quotient of Subspace Theorem, we can confirm the ellipsoidal shape of the force
feasible set with high probability.

As a corollary of this reformulation, we obtain a noteworthy biomechanical interpre-
tation of the extremal points of the force feasible set when using a T8 model:

Lemma 3.2.7: Maximal number of fully or non-activated muscles

Consider the T8 model of the tension feasible set T , representing m muscles act-
ing on n joint torques. The force feasible set F is a polytope whose vertices are
generated by combinations of muscle tensions. To produce such a combination
corresponding to a vertex, at most n ´ p muscles are not fully activated or fully
deactivated.
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Proof. Each vertex of F arises from the intersection of the affine subspace K with a face
of the tension feasible set of dimension greater than or equal to m´ n` p. Let F denote
such a face. We seek to determine its maximal dimension. Assuming that K is not parallel
to any face of the cube T , and noting that 0-dimensional intersections (points) map to
vertices of F , we search for dimF such that dimpFXKq “ 0, as vertices are 0-dimensional
spaces:

dimpF X Kq “ dimF ` dimK ´ dimpF Y Kq

ùñ 0 ě dimF ` dimK ´ m

ùñ 0 ě dimF ` m ´ pn ´ pq ´ m

ùñ n ´ p ě dimF

This implies that the tension combinations producing a vertex of the force polytope lie
on a face of the cube T with dimension at most n´ p. Therefore, in such a combination,
m ´ pn ´ pq coordinates are not free; they are either at their minimal or maximal value,
which is characteristic of the faces of a cube.

When considering a large number of muscles, with p “ 3 and n “ 7, this implies
that to produce a maximal force, almost all muscles are either fully activated or fully
deactivated, with at most a small number (n´ p “ 4 in this case) exhibiting intermediate
activation levels.

More generally, if m " n, then m´ pn´pq « m. This suggests that, in such cases, we
could approximate muscle activations as being either fully activated or fully deactivated.
However, this approximation is not practically useful for direct computations due to the
combinatorial challenges associated with cubes, zonotopes, and polytopes (cf. Chapter
1). Nevertheless, this result highlights how the choice of a tension feasible set model can
implicitly impose strong biomechanical assumptions.

This result also reveals a noteworthy insight into muscle activation patterns for gen-
erating maximal isometric forces. When a large number of muscles are involved, the
force’s amplitude and direction are primarily determined by a specific subset of fully ac-
tivated muscles, with the remaining muscles having minimal influence. While this thesis
does not delve into the analysis of maximal forces in specific directions (as we consider
all directions in a set-theoretic approac), preliminary investigations using an upper-limb
musculoskeletal model with 50 muscles suggest that, for a considerable range of force
directions, approximately 50% of the muscles are fully activated while the others remain
inactive. Importantly, the specific set of activated muscles varies with the direction of
force. However, this activation behavior has been observed primarily in the context of
force polytope computations, where the tension feasible set is modeled as an orthotope
(T8 model). Interpreting minimal and maximal tension combinations becomes more chal-
lenging when considering more rounded tension feasible sets (Tp models with 2 ă p ă 8),
hindering the analysis of such activation patterns in those cases.

3.2.3 Construction of the ellipsoidal approximation of force fea-
sible sets

While the previous theorems provide a theoretical foundation for understanding the el-
lipsoidal shape of the force feasible set, let’s examine some concrete examples using a T8



Chapter 3. A unified model of the tension feasible set 88

model to gain a more intuitive understanding. Recall that all unit balls Bm
p for 2 ď p ă 8

are inscribed within the unit cube Bm
8 and are more rounded than the cube. Therefore,

if the force feasible set derived from a T8 model exhibits an ellipsoidal shape, then all Tp

models would naturally yield even more accurate ellipsoidal approximations, with a T2

model resulting in a perfect ellipsoid.

To illustrate this, consider a musculoskeletal model with 7 degrees of freedom and
varying numbers of muscles (m “ 11, 20, or 50) crossing all joints. This implies that the
transpose of the lever arm matrix, ´LT , has predominantly non-zero entries. We generate
a random vector G P R7 with values uniformly distributed in r´100, 100s to represent the
gravitational torque vector. Similarly, we generate random matrices ´LT P R7ˆm with
values in r´1, 1s and JT P R7ˆ3 with values in r´5, 5s. For each muscle, we randomly
assign a minimal tension value in r0, 100s and a maximal tension value in r200, 1200s

to encompass a diverse range of muscle types with varying maximal forces. Figure 3.8
displays the resulting force feasible sets computed using the Iterative Convex Hull (ICH)
method (Skuric et al., 2022) with a tolerance of 0.2 Nm, as described in Chapter 2.
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Figure 3.8: Each column represents a different number of muscles (m “ 11, 20, and 50), while
each row shows a different orientation of the corresponding force feasible set to provide a better

visualization in 3D. As the focus of this section is on the shape of the force feasible sets, the
axes scales are not uniform across the columns. The lever arm matrix used here is dense (all

entries are non-zero), implying that each randomly generated muscle acts on all 7 joint torques.

This figure illustrates how the force feasible set can exhibit an ellipsoidal shape. In this
example (and indeed in most cases when ´LT is generated as described), the ellipsoidal
approximation is qualitatively accurate even with m “ 50 muscles, which is fewer than
the estimated lower bound of m ě 68. This observation can be attributed to the geomet-



Chapter 3. A unified model of the tension feasible set 89

7550250255075
x

50

100

150

200

z

m = 11

0200400600800
x

100
200
300
400
500

z

m = 20

5000500100015002000
x

250
0

250
500
750
1000

z

m = 50

40 30 20 10 0
y

50

100

150

200

z

400 300 200 100 0 100
y

100

200

300

400

500

z

1500 1000 500 0 500
y

250
0

250
500
750
1000

z

75 50 25 0 25 50 75x 40
30

20
10

0

y

50
100

150

200

z

0 200 400 600
800x 400

300
200

100
0
100

y

100
200
300
400
500

z

500 0 500100015002000x 1500
1000

500
0
500

y

250
0

250
500
750
1000

z

7550250255075
x

50

100

150

200

z

m = 11

0200400600800
x

100
200
300
400
500

z

m = 20

5000500100015002000
x

250
0

250
500
750
1000

z

m = 50

40 30 20 10 0
y

50

100

150

200

z

400 300 200 100 0 100
y

100

200

300

400

500

z

1500 1000 500 0 500
y

250
0

250
500
750
1000

z

75 50 25 0 25 50 75x 40
30

20
10

0

y

50
100

150

200

z

0 200 400 600
800x 400

300
200

100
0
100

y

100
200
300
400
500

z

500 0 500100015002000x 1500
1000

500
0
500

y

250
0

250
500
750
1000

z

7550250255075
x

50

100

150

200

z

m = 11

0200400600800
x

100
200
300
400
500

z

m = 20

5000500100015002000
x

250
0

250
500
750
1000

z

m = 50

40 30 20 10 0
y

50

100

150

200

z

400 300 200 100 0 100
y

100

200

300

400

500

z

1500 1000 500 0 500
y

250
0

250
500
750
1000

z

75 50 25 0 25 50 75x 40
30

20
10

0

y

50
100

150

200

z

0 200 400 600
800x 400

300
200

100
0
100

y

100
200
300
400
500

z

500 0 500100015002000x 1500
1000

500
0
500

y

250
0

250
500
750
1000

z

7550250255075
x

50

100

150

200

z

m = 11

0200400600800
x

100
200
300
400
500

z

m = 20

5000500100015002000
x

250
0

250
500
750
1000

z

m = 50

40 30 20 10 0
y

50

100

150

200

z

400 300 200 100 0 100
y

100

200

300

400

500

z

1500 1000 500 0 500
y

250
0

250
500
750
1000

z

75 50 25 0 25 50 75x 40
30

20
10

0

y

50
100

150

200

z

0 200 400 600
800x 400

300
200

100
0
100

y

100
200
300
400
500

z

500 0 500100015002000x 1500
1000

500
0
500

y

250
0

250
500
750
1000

z

Figure 3.9: Each column represents a different number of muscles (m “ 11, 20, and 50), while
each row shows a different orientation of the corresponding force feasible set to aid visualization
in 3D. The lever arm matrix used here describes 7 degrees of freedom distributed across two 3D

joints and one pin joint, with each muscle acting on at most two joints.

ric construction underlying Milman’s Quotient of Subspace Theorem (Theorem 3.2.3).
Notably, this ellipsoidal shape emerges even when considering a non-zero gravitational
vector and a non-centered tension cube, conditions that were not explicitly addressed in
Milman’s theorem, though they were hypothesized.

However, in a realistic biomechanical context, muscles typically do not act on all
joints. Muscles can be mono-articular (acting on a single joint) or bi-articular (acting
on two joints). In Figure 3.9, we resampled ´LT to reflect this: the 7 rows of ´LT are
divided into 3 groups, representing three joints. The first group corresponds to the first
3 rows, the second to rows 4 to 6, and the third to the last row (which could represent a
pin joint). A muscle is said to act on a joint if the corresponding entries in its column in
´LT are non-zero.

In this resampled model, the first 15 muscles act on the first joint only, the next 5 on
the first and second joints, the next 15 on the second joint only, the next 10 on the second
and third joints, and the final 5 on the third joint. While these choices are arbitrary, they
reflect the prevalence of mono- and bi-articular muscles in biological systems. The results
are depicted in Figure 3.9, where an ellipsoidal shape emerges even with just 20 muscles.
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Conclusion

One of the goals of this thesis is to understand the shape of the force feasible set and how
it reflects muscle properties. In the literature, such a set can be represented as either a
polytope or an ellipsoid, implying that the underlying tension feasible set is modeled as
a cube or a sphere, respectively. However, we have argued that, regardless of how the
tension feasible set is modeled (it shall however be convex), the force and torque feasible
sets tend to resemble ellipsoids when a sufficiently large number of muscles are considered.
This property stems from their inherent geometric construction.

Despite this tendency towards an ellipsoidal shape, there are significant differences
in size between different tension feasible set models. One way to account for these size
variations is to directly compute an ellipsoidal approximation of the force feasible set
derived from a T8 model.

Let us explore some common ellipsoidal approximations and discuss their computa-
tional limitations. The inner and outer Löwner-John ellipsoids are often used to approx-
imate convex bodies. For an n-dimensional convex set C, its inner ellipsoid (or John
ellipsoid) is the n-dimensional ellipsoid of maximal volume inscribed in C, while its outer
ellipsoid (or Löwner ellipsoid) is the circumscribed ellipsoid of minimal volume. A key
result establishes the uniqueness of both the inner and outer ellipsoids for a given convex
set (Henk, 2012). However, as noted in (Černý, 2012), Löwner-John ellipsoids cannot be
computed algorithmically in general, necessitating approximation methods.

In our context, we collect measurements of maximal exerted forces, represented as
points in Cartesian space. The inner ellipsoid can be constructed from a set of bounding
hyperplanes, while the outer ellipsoid can be constructed from a set of points. While
constructing these ellipsoids for a set of experimental forces is feasible, attempting to
fit a musculoskeletal model that reproduces the experimental ellipsoid is computationally
intractable. This would require computing the vertices of the torque zonotope (and trans-
forming them into hyperplane inequalities) before computing the inner or outer ellipsoid.
Due to the combinatorial complexity of enumerating these vertices (see Chapter 2), this
approach is not viable.

Another challenge arises when the tension feasible set T is derived from a p-ball.
When projected onto the torque space, except for the cases p “ 1, 2, or 8, there is no
explicit description of the surface of the resulting convex set. While sampling methods
could be employed, for a large number of muscles, the sampling of the unit p-ball would
require a vast number of points, and the probability of sampling an extremal point of T
that projects onto an extremal point of the torque feasible set is effectively zero.

Instead of directly computing ellipsoidal approximations from a set of points, we aim
to gain a deeper understanding of how the shape and dimension of the tension feasi-
ble set influence the size of the torque and force feasible sets. The next section, while
initially theoretical, introduces a computational tool that provides a simple formula for
approximating the force feasible set with an ellipsoid when a large number of muscles
are involved. This formula does not require computing any points, thus circumventing
the combinatorial challenges associated with enumerating zonotope vertices. Moreover, it
extends to all Tp models.
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3.3 Accounting for the projected volume problem

Our primary objective in this section is to demonstrate that when a large number of
muscles are considered, the choice of a tension feasible set Tp modeled as a unit p-ball
primarily affects the volume of the resulting force feasible set, with minimal impact on
its shape. We focus on the inherent volume changes that occur when projecting convex
sets onto lower-dimensional spaces. Subsection 3.3.1 illustrates this phenomenon through
examples, while Subsection 3.3.2 delves into the underlying mechanisms. Leveraging
the concept of projection constants from Banach space theory, we introduce a powerful
computational tool to address these volume changes and provide guidance on the choice
of a suitable p-norm.

3.3.1 Projection of unit p-balls

As an introductory example, consider the force polytopes depicted in Figure 3.9. In that
figure, different scales were used to emphasize the shapes of the polytopes rather than
their sizes. Figure 3.10 displays the same polytopes using a uniform scale to highlight the
differences in their volumes.
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Figure 3.10: Force feasible sets computed with the same parameters as in Figure 3.9, but
displayed using a uniform scale to highlight the differences in their volumes.

A key observation from the previous figures is that the volume of the force feasible
set appears to increase with the number of muscles. Since we used a cube for the tension
feasible set, this can be attributed to the Minkowski sum operations involved in projecting
the cube to create the torque feasible set - which is a zonotope. If a sphere were used
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instead of a cube, the resulting force ellipsoids would exhibit a less pronounced increase
in volume. This is illustrated in Figure 3.11.
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Figure 3.11: Randomly generated force feasible sets using a hyperspherical (red ellipsoids) or
hypercubic (blue polytopes) tension feasible set in m dimensions. The volume of the force

feasible set appears to depend on both the dimension and the shape of the tension feasible set.

To explain this phenomenon, consider that we aim to approximate force polytopes
with ellipsoids. This necessitates scaling the ellipsoid by a factor that appears to depend
on the dimension of the tension feasible set. Since the size of a vector relates to the
concept of volume, there is an inherent connection between the size of the tension feasible
set and the volume of the resulting force feasible set.

To formalize this, consider the unit 2-ball Bm
2 (a Euclidean ball of radius 1) and the

unit 8-ball Bm
8 (a cube with edge length 2) in Rm. For n ă m, let ψ : Rm Ñ Rn be a

surjective linear map of rank n representing the projection from the tension space to the
torque space.

For real Banach spaces, John’s theorem (John, 1948) states that m´1{2Bm
8 Ă Bm

2 Ă

Bm
8, where m´1{2Bm

8 denotes the 8-ball (cube) scaled by a factor of m´1{2. Since linear
(and affine) maps preserve set inclusions, we also have m´1{2ψpBm

8q Ă ψpBm
2 q Ă ψpBm

8q.
In essence, this means that the unit sphere in Rm can be enclosed within a scaled cube,
and vice versa.

To ensure that the force ellipsoids and force polytopes have roughly the same volume,
one might consider scaling the radius of the tension feasible set sphere to match the
volume of the cube. In this case, the ratio between the volumes of the two tension feasible
sets would be 1. To compute the required radius, let V m

2 pRq denote the volume of the
m-dimensional Euclidean ball of radius R:

V m
2 pRq “

πm{2

Γ
`

m
2

` 1
˘Rm (3.1)

where Γ is the Euler gamma function, which extends the factorial function to positive real
numbers, with Γpnq “ pn ´ 1q! for positive integers n.

The volume V m
8 pRq of an m-dimensional cube with edge length 2R is given by

V m
8 pRq “ p2Rqm. To find the radius R1 of a sphere with the same volume as the unit
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cube, we solve V m
2 pR1q “ V m

8 p1q, which yields:

R1
“

˜

Γ
`

m
2

` 1
˘

πm{2
V m

8 p1q

¸1{m

“
2

?
π
Γ

ˆ

m

2
` 1

˙1{m

(3.2)

However, as illustrated in Figure 3.12, the ratio between volumes is not necessarily
preserved under a linear map.
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Figure 3.12: The force polytope (blue) is generated by randomly projecting a 20-dimensional
unit cube with edge length 2 (volume 1048576 N20) onto a 7-dimensional space and intersecting

with a random plane. The force ellipsoid (red) is generated by applying the same

projection-intersection operation to a sphere in R20 with radius 2?
π
Γ
´

20
2 ` 1

¯1{20
„ 2.4012,

ensuring that its volume matches that of the cube. This figure clearly demonstrates that
volumes are not preserved under the projection-intersection operation.

This example illustrates that the shape of the tension feasible set influences the volume
of the force feasible set. It is important to recognize that volume is not a linear concept;
it is not uniformly distributed within a space. Indeed, Formula 3.2 suggests that the
volume of a cube is concentrated near its corners as its dimension increases, and this is
a phenomenon emphasized in (V. Milman et al., 2001). If it lacked these corners (like
a sphere), its volume would decrease with increasing dimensionality. This repartition
of volume can be assimilated to the more physical concept of mass. Essentially, this
phenomenon states that the mass of objects in high dimensions is not reparted in a
uniform manner, and this repartition is strongly linked to the shape of the considered
object.

However, we must be cautious: the volume of a measurable set (a set for which the
notion of volume is well-defined) depends not only on its shape but also on the chosen
unit of measurement. Conventionally, the unit of measurement is the m-dimensional cube
with edge length 1. This allows us to compare the volume of any measurable set to that
of the unit cube. More formally, this precise notion of volume is known as the Lebesgue
measure (Lebesgue, 1902).
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While convenient, this definition poses a challenge when considering transformations
between spaces. The domain and codomain spaces may have different units of measure-
ment, making direct comparisons of volumes problematic. As such, the determinant of
a linear transformation can be interpreted as a measure of how the unit of measurement
changes under the transformation.

A practical approach to address this issue is to embed both the domain (Rm) and
codomain (Rn) within a larger ambient space with a unified notion of volume. However,
these spaces can be equipped with different metrics (such as those induced by p-norms),
which must be taken into account to understand how volume transforms between them.
The following paragraphs elaborate on this approach and demonstrate how it can be used
to develop a computationally efficient method for approximating the projection of a unit
p-ball with an ellipsoid.

3.3.2 Leveraging the projected volume via the projection con-
stant

Projection constants are a relatively recent concept in Banach space theory, first intro-
duced in (Murray, 1937). They remain an active area of research (Donoho and Tanner,
2010;Foucart and Skrzypek, 2017; Basso, 2019; Defant et al., 2022) and aim to quantify
the worst-case deformation of a unit ball under projection.

More precisely, projection constants provide a way to determine the radius of a sphere
that, when projected, yields a set with a volume comparable to that of a projected p-ball.
This allows us to model the tension feasible set T as an ellipsoid or sphere that, when
projected and/or intersected, produces a force feasible set with a volume similar to that
obtained using the true shape of T under a Tp model. The key result regarding projection
constants is that achieving this volume equivalence simply requires scaling the ellipsoid
by a factor—the projection constant—which depends on the choice of p.

If one wishes to model muscle independent tension interactions (represented by a cube-
shaped tension feasible set), one can compute the force feasible set as an ellipsoid (using
a sphere for the tension feasible set) and scale its radius by the appropriate projection
constant. Different levels of interaction can be captured by varying the value of p between
2 and 8, corresponding to different shapes for the tension feasible set.

To compute these projection constants, we first need to introduce a few key concepts.

Isometric embedding. Let X and Y be Banach spaces. An operator I : X Ñ Y is
an isometric embedding of X into Y if I is injective, IpXq is a subspace of Y , and IpXq

is isometric to X. Essentially, an isometric embedding represents X within a higher-
dimensional space while preserving its metric structure, as we would simply represent a
disc in a 3D space (i.e. a 2-dimensional Euclidean space in a 3-dimensional Banach space
equipped with its own unit ball).

Projection. For a subspace X of Y , a projection P : Y Ñ X is an operator such that
P pxq “ x for all x P X.
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Projection constant. For a subspace X Ă Y , the relative projection constant of X in
Y , denoted by λpX, Y q, is defined as:

λpX, Y q “ inft}P }op | P : Y Ñ X is a projectionu

Projection constants play a role in approximation theory. As noted in (Defant et al.,
2022), for a projection P : Y Ñ X and any y P Y , the approximation error }y ´ P pyq}Y

satisfies:

}y ´ P pyq}Y ď p1 ` }P }opqdpy,Xq

where dpy,Xq “ infxPX }y´x}Y is the distance from y to X. To approximate X by Y , or
equivalently, to approximate the unit ball of X by the unit ball of Y , the operator norm
}P }op should be minimized. This minimum is achieved when }P }op “ λpX, Y q.

Therefore, we focus on the worst-case scenario, represented by the largest possible
value of }P }op. This value quantifies the maximal dilation of vectors in the unit ball of
Y when projected onto X. This is known as the (absolute) projection constant of X,
denoted by λpXq, and is defined as:

λpXq “ supλpIpXq, Y q

where the supremum is taken over all Banach spaces Y containing an isometric copy of
X and over all isometric embeddings I : X Ñ Y . In essence, we embed the unit ball of X
into higher-dimensional spaces and assess the worst-case deformation of these embeddings
under projection onto X.

A key result in Banach space theory states that any finite-dimensional Banach space
X can be isometrically embedded into a finite-dimensional space equipped with the 8-
norm (Defant et al., 2022). In other words, we can always find a higher-dimensional cube
with a section or projection that is a linear transformation of a unit p-ball. This implies
that finding the absolute projection constant λpXq is equivalent to finding the minimal
projection constant from a finite-dimensional space with the 8-norm onto X.

Intuitively, the projection constant λpXq can be interpreted as a measure of the max-
imal distortion (in terms of volume) when projecting a p-ball onto X.

Since there are infinitely many projections, isometric embeddings, and also higher-
dimensional Banach spaces, a central focus of projection constant theory is to compute
bounds or exact values for specific cases. Even today, determining projection constants
remains an active area of research (Deregowska and Lewandowska, 2023; Defant et al.,
2022; Deregowska et al., 2022; Chalmers and Shekhtman, 1985; Basso, 2019; Foucart and
Skrzypek, 2017).

We are particularly interested in the projection constants of ℓnp spaces, which represent
Rn equipped with the p-norm } ¨ }p. These spaces correspond to different shapes for the
tension feasible set. The following theorem summarizes several decades of results on the
projection constants of ℓnp spaces:
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Theorem 3.3.1: Projection Constants of ℓnp Spaces

Let ℓnp be the finite-dimensional normed space Rn equipped with the p-norm } ¨ }p,
defined for all x P ℓpn as }x}p “

`
řn

i“1 |xi|
p
˘1{p. Let λpℓnp q denote the projection

constant of ℓnp . Then:

• For p “ 2:

λpℓn2 q “
2

?
π

Γpn
2

` 1q

Γpn
2

` 1
2
q

where Γ is the Euler gamma function, defined for all z P C with a strictly
positive real part as Γpzq “

ş`8

0
tz´1e´t dt.

• For p “ 1:

λpℓn1 q “

#

λpℓn´1
2 q, if n is even

λpℓn2 q, if n is odd

• For 2 ă p ă 8:

λpℓnp q “ Opn
1
p q

where O is the Big O notation describing asymptotic growth.

• For 1 ă p ă 2:

λpℓnp q «

c

2n

π
as n Ñ `8

Proof. The cases p “ 1 and p “ 2 were proven in (Grünbaum, 1960). The asymptotic
bound for 2 ă p ă 8 was proven in (Gordon, 1968 and Garling and Gordon, 1971). The
approximation for 1 ă p ă 2 was derived in (H. König et al., 1999).

Note that the values provided in this theorem apply only to real normed spaces. For
complex normed spaces, the corresponding projection constants can be found in (Defant
et al., 2022).

To conclude this subsection, let’s consider Figure 3.13, which illustrates an approxi-
mation of a zonotope generated with a large number of generators by an ellipsoid. This
ellipsoid is computed using the projection constant λpℓm2 q for m “ 11, 20, and 50. This is
equivalent to approximating a T8 model with a T2 model by simply scaling the ellipsoid
with the factor λpℓm2 q.
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Figure 3.13: Each column represents a different number of muscles (m “ 11, 20, and 50). The
force polytopes (blue) are generated by randomly projecting an m-dimensional cube with edge
length 1000 onto a 7-dimensional torque space and intersecting with a random 3D subspace. As

the number of muscles increases, the ellipsoidal approximation (red), computed using the
projection constant λpℓm2 q, becomes more accurate and accounts for the increasing volume of

the tension feasible set. This improvement with increasing m is consistent with the asymptotic
nature of projection constants.

3.4 Quantifying the impact of muscle geometry on max-
imum joint torque generation

This section presents a novel application of the theoretical framework developed in this
chapter to quantify the influence of muscle geometry (or muscle path descriptions) on the
force feasible set. As demonstrated in the preceding sections, a large number of muscles
leads to an ellipsoidal force feasible set, and we have established computationally tractable
methods for approximating this ellipsoid.

Muscle geometry is subject-specific. When scaling a generic musculoskeletal model, a
common approach is to adjust bone lengths and reposition muscle path points accordingly.
However, in our non-in vivo context, we question the necessity of adapting these path
points. Our goal is to quantify the impact of muscle geometry on the force feasible set.

To address this, we adopt a practical approach using Holzbaur’s upper limb muscu-
loskeletal model (Holzbaur et al., 2005), which has 7 degrees of freedom describing the
shoulder, elbow, and wrist joints. This model comprises 50 muscles, each with 2 to 12
path points defined in OpenSim. Each point has a default position relative to a reference
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frame.

Our methodology is straightforward. For a set of joint configurations, we perturb
the location of each muscle path point by sampling from a uniform distribution within a
0.005-meter radius of its default location. This is equivalent to uniformly sampling points
within a cube with edge length 0.01 centered at the default location.

Given the large number of muscles, we can model the tension feasible set as a trans-
formation of a unit sphere (an ellipsoid). For each joint configuration, we assume a unit
sphere in R50 for the tension feasible set. The radius is normalized because we are inter-
ested in how the metric of the tension feasible set is maximally deformed by variations
in muscle geometry. To analyze the metric of the force feasible set, we utilize its refor-
mulation as an intersection followed by projection, as described in Section 3.2. In this
framework, the unit ball of the force feasible set is obtained by intersecting the tension
feasible set sphere with the subspace K, resulting in an ellipsoid, which is then projected
onto im JT via the lever arm matrix. The operator norm quantifies this metric deforma-
tion in the worst-case scenario. Since we are considering a deformation from a sphere
to an ellipsoid, the computation involves the 2-norm of the generators of the resulting
ellipsoid.

The following table presents the 2-norm computations for 100 random variations of
each muscle path point in Holzbaur’s model, across four different postures. These postures
are defined in degrees for the 7 generalized coordinates parameterizing the upper-limb joint
rotation axes as follows:

• q1 “ p13, 12.5,´41, 30.5,´5.3, 0.19,´0.76q

• q2 “ p13, 90,´41, 30.5,´5.3, 0.19,´0.76q

• q3 “ p37, 90, 21, 30.5,´5, 0.19,´0.76q

• q4 “ p37, 31, 21, 30.5,´1.3, 0.19,´0.76q

• q5 “ p37, 31, 21, 76, 42, 0.19,´0.76q

• q6 “ p110, 31, 21, 76, 42, 0.19,´0.76q

• q7 “ p110, 10, 21, 76, 74, 0.19,´0.76q

• q8 “ p96, 79, 120, 76, 74, 0.19,´0.76q

Posture Mean of 2-norm Standard deviation of 2-norm
q1 0.1140 0.0021
q2 0.0822 0.0055
q3 0.0953 0.0012
q4 0.0843 0.0017
q5 0.0929 0.0012
q6 0.0749 0.0028
q7 0.0859 0.0019
q8 0.0980 0.0018

Table 3.1: Mean and standard deviation of the 2-norm of the force feasible set, computed as
an intersection followed by a projection of the tension ellipsoid. Each data point represents 100
random variations of the initial coordinates of each muscle path point in Holzbaur’s upper limb
musculoskeletal model.

The key result here is the standard deviation: the closer it is to 0, the less impact
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muscle geometry has on the deformation of the tension feasible set. This is a set-theoretic
interpretation, focusing on the overall deformation of the entire set rather than individual
muscle tension combinations.

While almost all standard deviations are close to zero, we recall that we are working
with a normalized tension feasible set (a unit sphere). Therefore, the magnitudes of
the values are inherently less than 1. These low means reflect the projected volume
phenomenon: a sphere in 50 dimensions has a small volume even if its vectors have a
norm of 1. Consequently, the force feasible ellipsoid inherits this low volume, resulting
in small vector magnitudes. This highlights the importance of carefully considering the
order of magnitude when interpreting the values in this table.

For instance, consider the first posture, q1. The mean indicates that, on average,
across all muscle path point variations, a combination of muscle tensions totaling 1 N
corresponds to a maximum torque of approximately 0.1140 Nm in the worst-case scenario.
In simpler terms, the tension exerted by the muscles can account for, at most, about 11%
of 1 Nm on average.

Now, assume that each muscle can exert a maximum tension of 1000 N, and con-
sider arbitrary combinations of muscle activations. The standard deviation represents the
worst-case variation in the size (2-norm) of a tension vector when transformed into the
torque space. This means that muscles collectively exerting 1000 N produce a torque with
a magnitude between 1000ˆp0.1140´0.0021q “ 111.9 Nm and 1000ˆp0.1140`0.0021q “

116.1 Nm. Therefore, even with precise personalization of muscle geometry, the result-
ing force feasible set in the torque space would exhibit a maximal size difference of only
116.1 ´ 111.9 “ 4.2 Nm in posture q1.

Let’s summarize these worst-case scenarios in the following table:

Posture Worst size difference
using max-min

Maximal torque contribution difference
between two geometries if

all muscles have a tension of 1000N
q1 0.0099 9.9 Nm
q2 0.0554 55.4 Nm
q3 0.0066 6.6 Nm
q4 0.0091 9.1 Nm
q5 0.0055 5.5 Nm
q6 0.0131 13.1 Nm
q7 0.0084 8.4 Nm
q8 0.0098 9.8 Nm

Table 3.2: Worst-case difference in the 2-norm of a muscle tension vector projected onto the
force feasible set (expressed in the torque space) due to variations in muscle geometry. Each
value is computed using the range of observed 2-norms across 100 random variations of muscle
path points.

These results provide valuable insights into how variations in muscle geometry affect
the range of achievable joint torques, particularly when considering different postures.

In our context, with a spherical tension feasible set, these findings allow us to utilize
Holzbaur’s default muscle path points for specific postures while understanding the po-
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tential deviations from a more personalized musculoskeletal model. This assumption will
be studied in more details in Chapter 4.

Quantifying the error introduced by our assumptions on the modeling of tension
feasible sets. As such, we propose an index that specifically measures the contribution of
muscle geometry to the force feasible set (expressed in the torque space) deriving from a
chosen T model.

Furthermore, we hypothesize that increasing the number of muscles should reduce
the sensitivity of the force feasible set to variations in muscle geometry. Intuitively, as
the number of muscles increases, both the force and torque feasible sets tend towards an
ellipsoidal shape. From a metric perspective, this implies that the influence of individual
muscles on the torque space diminishes, leading to a reduced overall impact of muscle
geometry variations. We also conjecture that with an infinite number of muscles, the
projection from the tension space to the torque space becomes increasingly independent of
muscle geometry. This does not imply that muscle geometry is irrelevant, but rather that
there exists a global projection (depending on muscle geometry) that maps the tension
feasible set directly to the force feasible set without explicitly considering the intermediate
torque space, and bypassing any intersection step.

Our reformulation of the force feasible set as an intersection followed by a projection
provides some clues about this hypothetical projection. Recall that the tension feasible
set (in Rm) is first intersected with a subspace K of dimension m ´ pn ´ pq. When
the number of muscles is large, this intersection has minimal impact. The subsequent
projection, however, depends on muscle geometry (since it requires the lever arm matrix).
If we assume that all muscle geometries project similarly through a matrix P P Rnˆm (i.e.,
all muscles have a similar degree of influence on the force feasible set metric), then the
direct link between the tension and force spaces would be pJT q`P pT q. In this scenario,
only the mean muscle tension, arm geometry, and posture would be the determining
factors. Chapter 5 will explore this assumption further in the context of predicting force
feasible sets for individuals, to argue that these theoretical hypotheses may not hold in
regard to experimental measurements of maximal isometric forces.

3.5 Conclusion
The objective of this chapter was to gain a deeper set-theoretic understanding of the
relationships between the elements in the formulation of the force feasible set, F , initially
described as:

F “

!

f P Rp
| Dt P T , JT f “ ´LT t ´ G

)

More abstractly, this can be expressed in terms of a surjective affine map ψ : Rm Ñ Rn

and an injective linear map ϕ : Rp Ñ Rn:

F “ imϕ X ψpT q

While this geometric perspective clarifies the operations involved, it is essential to
consider the underlying physics. The unit of measurement used to describe elements of



Chapter 3. A unified model of the tension feasible set 101

F is derived from a transformation of the unit of measurement of the tension feasible set,
T . This connection between geometry and metric is the subject of Banach space theory.
By exploring the Local Theory of Banach spaces and reformulating F , we argued that,
regardless of the choice of T , there is a strong probability that the shape of F should to be
ellipsoidal if a large number of muscles is considered in the modeling of an in silico upper-
limb using a musculoskeletal model. Generally, ellipsoids offer computational advantages
for set representation and analysis, as we will see in Chapter 4, it is easier to compare
two ellipsoids than two polytopes.

However, explicitly computing this approximating ellipsoid is not straightforward. We
observed a relationship between the volumes of projected spheres and projected cubes,
mediated by the dimension of the tension feasible set (i.e., the number of muscles). This
relationship is quantified by the projection constant, λ, which indicates the scaling factor
required for a sphere to have a volume comparable to that of a cube of the same dimension.
From a metric perspective, it expresses how the unit of force in the tension feasible set
(Newtons) relates to the unit of torque (Newton-meters).

This metric perspective enables us to directly quantify the influence of muscle geome-
try on the force feasible set using the operator norm of ´LT , particularly when the number
of muscles is large compared to the dimension of the torque space. As an application,
we can analyze how small variations in muscle paths affect this norm for a given posture.
If the range of these norms is below a context-dependent threshold, we can assess the
necessity of personalizing muscle geometry when studying force and torque feasible sets
in isometric conditions.

In summary, Section 3.2 established that the force and torque feasible sets tend to
have an ellipsoidal shape when a large number of muscles are involved. Section 3.3 demon-
strated how to compute an ellipsoidal approximation based on the number of muscles and
the degree of tension interaction. Finally, Section 3.4 analyzed the influence of various
factors on the force feasible set, including posture, muscle geometry, muscle tensions, and
their interactions. It was shown that interactions primarily affect the global shape, pos-
ture determines the global orientation, and muscle tensions, muscle geometry, and muscle
number collectively influence the global size. To isolate the impact of muscle geometry,
an index related to the operator 2-norm of ´LT can be utilized, particularly when the
number of muscles is large enough to warrant an ellipsoidal approximation.

The theoretical framework developed in this chapter enhances our understanding of
the underlying structure of muscle tension capabilities inscribed in our approach of in
silico force feasible sets. Chapter 4 will explore these results in silico, demonstrating
how ellipsoidal approximations can be used to personalize muscle parameters in a muscu-
loskeletal model based on force production capabilities. Building on these investigations,
Chapter 5 will then incorporate experimentally measured maximal isometric forces to
evaluate the validity of the ellipsoidal representation and its implications for the shape of
the muscle tension feasible set.
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Chapter 4

In silico musculoskeletal model muscle
personalization

Introduction

In human-robot interaction scenarios involving physical contact, knowledge of human
force exertion limits is crucial for safe and effective collaboration. These limits can be
represented by force feasible sets, which encapsulate all achievable hand forces given
a specific posture and individual musculoskeletal properties. Numerical simulation via
musculoskeletal models enables the characterization of these sets, accounting for muscle
architecture and neural control (Skuric et al., 2022; Rezzoug et al., 2021).

The shape of force feasible sets is primarily influenced by muscular neural control,
which dictates the relative activation levels of different muscles. Chapter 3 established an
ellipsoidal approximation for these sets due to the high number of upper limb muscles, but
did not provide information on their size or elongation for different muscle architectures.
To address this gap, this chapter examines how muscle force-generating and geometric
properties influence the size and elongation characteristics of force feasible sets across
different postures.

Employing an in silico approach, we utilize the Stanford upper limb musculoskeletal
model (Holzbaur et al., 2005) to simulate an individual’s upper limb. This model incorpo-
rates a kinematic chain for the skeletal structure (bones and joints), with muscles defined
as segments and curves attached to the skeleton. Muscle force generation is determined
by a Hill-type model. With this model as a foundation, the chapter aims to extract the
muscle geometry and their feasible forces from force feasible sets generated at the hand.
Formulated as an optimization problem over multiple postures, this involves identifying
Hill-type muscle functions and the muscle geometry in order to yield given force feasible
sets.

Due to the geometric complexity of analyzing maximal force exertion sets, this chap-
ter is structured as follows: section 4.1 introduces Stanford’s upper limb musculoskele-
tal model and details the optimization problem formulation, including the challenge of
comparing force feasible sets based on their shapes. It also discusses the computational
difficulties and introduces suitable solvers. Section 4.2 utilizes these tools to investigate in
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an independent manner the retrieval of muscle geometric parameters and force-generating
parameters under a T8 muscle activation model, resulting in polytopic force feasible sets.
While insightful, this approach reveals computational limitations. Section 4.3 addresses
these limitations by incorporating the force feasible set ellipsoidal approximation from
chapter 3 into the optimization process. This section takes advantage of the biomechani-
cal interpretation of force feasible sets as ellipsoids, significantly improving the feasibility
of the personalization.

The chapter concludes in 4.4 with a discussion on the in silico approach and personal-
ization quality, leading into chapter 5, which focuses on personalizing the Stanford model
using experimentally measured maximal force exertions in three postures.

4.1 Musculoskeletal model muscle personalization based
on force feasible sets

As one of our goals is to extend muscle personalization from in silico force feasible sets
to experimentally measured force exertion, a numerical human representation, namely
a musculoskeletal model, is required. Building upon its skeletal and muscle description
in 4.1.1, the personalization process as an optimization problem is formulated in 4.1.2.
While the problem is posed theoretically for convenience, subsection 4.1.3 delves into the
practical issues of defining a notion of similarity between 3D shapes, which is necessarily
required in our optimization framework. Additionally, specific solvers are thoroughly
described in 4.1.4 to handle the high-dimensionality of the muscle parameters search space
and the non-differentiability of our cost function. This section ends in 4.1.5 on the quality
of a found solution, in terms of reproduced force feasible sets in specific postures but also in
other postures. The methods outlined in this section provide a framework for developing
and implementing the optimization process across a range of scenarios (involving different
force feasible set representations, distances between sets, specific search spaces, postures
to optimize on, etc.) in the subsequent sections.

4.1.1 Generic upper limb musculoskeletal model

Figure 4.1: Stanford’s upper limb musculoskeletal model developped in (Holzbaur et al.,
2005). Visualization using OpenSim open-source software (Delp et al., 2007).

Stanford’s upper limb model. Stanford’s right upper limb musculoskeletal model has
been developped in (Holzbaur et al., 2005). This model provides a detailed representation
of the human upper extremity by including a thorough modelization of upper limb major
muscles and joints. The model is available online1 as an XML file to import through the

1https://simtk.org/projects/up-ext-model

https://simtk.org/projects/up-ext-model
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open-source musculoskeletal model software OpenSim2 (Delp et al., 2007).

The model joint kinematics incorporates 15 degrees of freedom, allowing the simu-
lation of a wide range of upper limb movements. The model encompasses the shoulder,
elbow, forearm, wrist, but also the thumb and index finger motion. The motion between
the scapula and humerus is defined through a ball-and-socket joint. The shoulder mo-
tion is defined as a combination of the clavicle, scapula and humerus motion depending
on regression equations described in (De Groot and Brand, 2001), in which the axes of
rotations, degrees of freedom and order of rotations are defined and conform to the rec-
ommendations of the Internal Society of Biomechanics (Wu et al., 2005). The shoulder
motion is adapted to depend only on the shoulder elevation angle. Concerning the el-
bow motion, it is modelized as two successive pivot rotations corresponding to the elbow
flexion-extension motion and the forearm pronation-supination respectively. The first
one corresponds to a rotation in the sagittal plane when the upper limb is in neutral
position and its rotation angle varies from 0° (full extension) to 130° (flexion). The el-
bow pronation-supination rotation axis was determined numerically to ensure it passing
through the center of the distal ulna, with angles varying between 90° (pronation) to ´90°
(supination). The wrist motion is also described as two successive rotations whose axes
are described in (Ruby et al., 1988). The first motion corresponds to the wrist devia-
tion ranging from ´10° (radial) to 25° (ulnar), then followed by the wrist flexion motion
parametrized between ´70° (extension) to 70° (flexion). While we do not focus on the
thumb and index finger motion, they have been modelized as rotations whose axis and
center of rotations have also been defined in the literature.

Stanford’s model includes also 50 individual muscles based on anatomical studies and
physiological data. Each muscle is modeled with detailed origin and insertion attach-
ment points with wrapping surfaces to account for their paths around bones and joints
but also specificities of some muscles such as having multiple tendons, distinct heads or
wide attachments. These attachment points are denoted as the geometric parameters of
a muscle. Force-generating properties of a muscle are modelized and based on a Hill-
type muscle model. Namely, they corresponds to four parameters (optimal fiber length,
maximal isometric force, tendon slack length and pennation angles), which have been
gathered through anatomical studies. Both geometric and force-generating parameters
allow for accurate simulation of muscle forces, moment arms, and their contribution to
joint movements.

In order to validate the relevancy of this upper limb model as a simulation tool,
Holzbaur et al. compared the biomechanical properties of their model to experimental
data. Mainly, the model ensures an adequacy between in silico and in vivo maximum iso-
metric joint moments. Muscle moment arms were also compared with experimental data,
and while there are differences between measured and computed moment arm magnitude
(mainly for shoulder muscles), the model does still agree with experimentally-measured
isometric joint moments.

As such, Stanford’s model is particularly well-suited to be used as a generic muscu-
loskeletal upper limb model for force feasible set estimation. To numerically estimate the
feasible tension range of each muscle, a muscle force model must be defined. Numerous
models have been developed to describe muscle tension based on the dynamic interac-

2https://simtk.org/projects/opensim

https://simtk.org/projects/opensim
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tions between muscle fibers (Zajac, 1989; Thelen, 2003; Cadova et al., 2014; Millard et
al., 2013). This chapter focuses on a widely used Hill-type muscle model, namely the
Hill-Thelen muscle model. While the Hill-Thelen model offers a comprehensive represen-
tation of muscle dynamics, the functional complexity of the model presents challenges in
the context of muscle personalization. To balance accuracy and complexity, we employ
a simplified variant of this model, which will be described in the following paragraphs.
This simplification allows for efficient representation of force generation under isometric
conditions, while still capturing the essential complexities of muscle behavior and utilizing
most of the model’s muscle properties.

The Hill-Thelen muscle model. The Hill muscle model originates from Hill’s work
on muscle thermodynamical properties (Hill, 1938; Zajac, 1989). By considering the
whole musculotendon structure as a mechanical actuator, 3 components are described:
an active contractile element (CE) representing the force generated by the interaction of
actin and myosin filaments; a passive elastic element (PE), represented as a spring in
parallel with the CE, which accounts for the passive resistance of the muscle to stretch;
and a serial elastic tendon (SE) modeled as a spring in series with the contractile element
and accounting for the elastic properties of the tendon.

Forces are produced by each of these three components. For a specific muscle M , the
force in the contractile element has a non-linear relationship with muscle length, called
the active-force-length relationship fLpl̃Mq, where l̃M “ lM{lMo is the muscle length lM

(in meters) normalized by the optimal fiber length lMo (in meters) at which fL peaks at
fM
o , the maximal isometric force (in Newton). For non-isometric muscle contractions, the

velocity of contraction vM (in m/s) also influences the force produced by the contractile
element. This is the force-velocity relationship, denoted as fV pṽMq, where ṽM is the
current velocity vM normalized by the velocity vMmax where fV reaches its peak. Under
isometric conditions, where there is no contraction velocity, it is assumed that fV pṽMq “ 1.
The CE also depends on a neural motor control, which dictates how much a muscle should
be activated. This is described by a scalar a ranging from 0 to 1. As such, the CE produces
tensions following the curve afM

o fLpl̃MqfV pṽMq.

Both the passive elastic element (PE) and the serial elastic tendon (SE) are modeled
as springs, with forces dependent on their respective stretches. The PE force depends on
the muscle fiber length while the SE force on the tendon length. The PE force-length
relationship, termed the passive force, is a function of the normalized muscle fiber length
l̃M and denoted by fPEpl̃Mq. Conversely, the SE force-length relationship, termed the
strain force, is a function of l̃T , the tendon length lT normalized by the tendon slack
length lTs (the length at which the tendon begins to generate force), and is denoted by
fT pl̃T q.

Muscle fibers typically attach to tendons at an angle, termed the pennation angle
and denoted α (in radians). Accurate force representation necessitates accounting for this
angle by multiplying the contractile and passive forces by cospαq. However, in (Holzbaur
et al., 2005), a summary of pennation angles shows that most upper limb muscles exhibit
small pennation, with the largest angle observed in the coracobrachialis muscle (27°),
where cosp27°q « 0.89. Given this minimal impact, pennation angle is not incorporated
into the current model.

Thelen’s muscle model yields explicit mathematical equations that describe the in-



Chapter 4. In silico musculoskeletal model muscle personalization 107

Figure 4.2: The Hill mechanical muscle model (figure extracted from (Millard et al., 2013)).

terplay between its constituent components. The following equations, as presented by
Thelen in (Thelen, 2003), characterize these relationships. The force-length relationship
of the contractile element fLpl̃Mq and the passive force fPEpl̃Mq are described as:

fL
pl̃Mq “ e´pl̃M´1q2{0.45

fPE
pl̃Mq “

e5pl̃M´1q{ε ´ 1

e5 ´ 1

where ε is a parameter on an individual age. Thelen showed that age influences muscle
mechanics, particularly tendon stiffness. This age-related effect is modeled using param-
eter ε ą 0, where ε “ 0.6 represents young adults and ε “ 0.5 represents older adults. As
this chapter does not specifically investigate age-related effects, we set ε “ 0.5, focusing
on the young adult population.

Under isometric conditions, muscles are assumed to be in equilibrium, implying that
the force exerted by the muscle fibers compensates the force exerted by the tendon.
The force-generating properties of a muscle in Stanford’s model are characterized by the
maximal isometric force fM

o (N), the optimal fiber length lMo (m) at which the muscle
exerts its peak force, and the tendon slack length lTs , which in our case corresponds to
the length of the tendon (used to compute the muscle fiber length lM via the geometric
relationship lM “ lMT ´ lTs , where lMT is the musculotendon length derived from muscle
path points).

The total muscle force fM is thus defined, in isometric condition, as

fM
pa, lMT , lTs , l

M
o , f

M
o q “ fM

o ¨

´

afL
pl̃Mq ` fPE

pl̃Mq

¯

where l̃M “ plMT ´ lTs q{lMo . Thus, muscle force is a function of: (1) geometric parameters,
represented by the muscle path length lMT ; (2) neural motor control (via muscle activation
a); and (3) biomechanical muscle parameters, including maximal isometric force fM

o ,
optimal fiber length lMo , and tendon slack length lTs .

Muscle length varies depending on the definition of its path points and a joint con-
figuration of Stanford’s model. As described, muscle force is a function of muscle length,
implying that joint configuration influences the force-feasible sets. The following para-
graphs focus on a specific joint configuration relevant to isometric conditions, namely, a
static posture, or simply posture.

Posture parametrization In Stanford’s model, let us consider only the shoulder, elbow
and wrist motions. These motions are parametrized by 7 generalized coordinates: 3 for
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the shoulder joint, 2 for the elbow and 2 for the wrist. We denote by q “ pq1, . . . , q7q P R7

the parametrization of these motions in their order of definition. q is called a posture if
:q “ 0, 9q “ 0 and all muscles are in equilibrium.

For a posture q P R7, since each generalized coordinate qi for i “ 1, . . . , 7 is limited
in range, we denote by Q the set of all possible postures such that q P Q.

Figure 4.3: Visualization of Stanford’s model in (neutral) posture q “ p0, 0, 0, 0, 0, 0, 0q.

Figure 4.4: Visualization of Stanford’s model in posture q “ p70, 50, 40, 20,´70, 0, 0q.

Any posture influences the length of at least one muscle in Stanford’s model.

4.1.2 Muscle personalization through an optimization approach

One of this chapter’s objective is to gauge, in silico, to which extent some of Stanford’s
muscles parameters (origin and insertion points, maximal isometric force, optimal fiber
length and tendon slack length) can be retrieved from force feasible sets computed at
the hand for various postures. Our approach is to consider an optimization problem,
which in our case is assimilated to finding at a vector x encapsulating how Stanford’s
muscles are parametrized and minimizing a real-valued function f terms the cost function
or objective function. This function should evaluate to 0 whenever the produced force
feasible sets by a parametrization of Stanford’s model coincide with the ones to obtain.
If such a parametrization x is found, we can then assess how it generalizes i.e. how this
parametrization produces force feasible sets in other postures sufficiently similar to ex-
pected force feasible sets. One of the main difficulty is to first find such a parametrization.

This subsection thoroughly describes the optimization problem, from the considered
Stanford’s model parameters involved to the explicit formulation of the function to min-
imize, considering all tension set models. First, we shall recall the force feasible set
formulation.
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Consider a posture q P Q and the feasible tension set T pqq whose shape describes
how muscles are activated in regard to other muscle activations (cf. chapter 3) at posture
q. The force feasible set FT

X pqq at a point X of the Stanford’s model is expressed as

FT
X pqq “

!

f P R3
| JT

Xpqqf “ ´LT
pqqtpqq ´ Gpqq, tpqq P T pqq

)

where LT pqq P R7ˆ50 denotes the transpose of the lever arm matrix, which maps muscle
tensions tpqq to the torque space; JT

Xpqq P R7ˆ3 is the transpose of the jacobian matrix
of Stanford’s kinematic chain at point X expressed in the ground, which maps the forces
at point X to the torque space and Gpqq P R7 is the gravitational torque vector.

We assume a constant muscle activation pattern across all postures, i.e. T pqq “ T
for any posture q. We employ a T8 model, implying that muscles act on joints indepen-
dently from the others and resulting in force feasible sets shaped as convex polytopes.
Based on the prior findings of chapter 3, these sets are approximable by ellipsoids when
considering a large number of muscles. Section 4.3 will adapt the optimization process
accordingly. While it could be interesting to focus also on other Tp models, for p ą 2, in
these cases we did not find a computational way to express the surface of force feasible
sets. Sampling methods can be used but in our case (with 50 muscles) they require a large
set of samples which do not necessarily project onto the force feasible set surface. Also,
since the objective is to gauge if a solution can be found, we focus on only computable
force feasible sets i.e. using a T8 (force polytopes) or T2 (force ellipsoids) model.

The next paragraph expresses the muscular parameters of interest in Stanford’s model
i.e. those impacting directly the lever arm matrix Lpqq and the produced tensions tpqq.

The parameter set and the search space. Focusing solely on the Stanford model’s
geometric and force-generating parameters, we assume known bone positions, orientations,
lengths, joint centers, and rotation axes. Besides, while two individuals have different mus-
cle path locations, it is assumed that the attachment points of a muscle can be described
similarly over individuals. As an example, the supraspinatus muscle in Holzbaur et al.
consists of path of points defined from the scapula (where is located its origin attach-
ment point) to the humerus (for its insertion point), so that this path definition will be
preserved throughout the optimization process.

The parameter set comprises two families: the force-generating and the geometric
parameters. The first includes the maximum isometric force fM

o , optimal fiber length lMo
and tendon slack length lTs for each of the 50 muscles, totaling 150 parameters. Geometric
parameters include origin and insertion points for each muscle (6 parameters per muscle),
yielding 300 geometric parameters. The optimization problem thus involves at least 450
parameters.

Each parameter is defined on a specific interval. This set of all values parameters
can take is called the search space and noted X . As previous, the search space is defined
for geometric and force-generating parameters separately. Geometric parameter ranges
are confined to ˘0.5 cm intervals around default values from Holzbaur et al. so that the
search space corresponds geometrically to a cube of edge length 1 centered at the origin
and insertion points. Force-generating parameters have wider ranges depending on their
type: fM

o ˘ 400 N, lMo ˘ 0.1 m and lTs ˘ 0.1 m. These ranges ensure a very wide variety
of possible parameters.
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To explicitely express the search space X , it is defined following the order of definition
of the muscles defined in Stanford’s model. For geometric parameters, let Oi P R3 and
Ii P R3 be the vector representation in their frame of definition of the origin and insertion
point of muscle i for i “ 1, . . . , 50. Then, the geometric search space for muscle i, X i

G Ă R6,
is defined as

X i
G “ rOi

´ 0.5 ¨ 1, Oi
` 0.5 ¨ 1s ˆ rIi ´ 0.5 ¨ 1, Ii ` 0.5 ¨ 1s

where 1 “ p1, 1, 1qT .

By denoting f i
o, lio and lis the maximal isometric force, optimal fiber length and tendon

slack length default values of muscle i, then the force-generating search space for muscle
i, X i

F Ă R3, is defined as

X i
F “ rf i

o ´ 400, f i
o ` 400s ˆ rlio ´ 0.1, lio ` 0.1s ˆ rlis ´ 0.1, lis ` 0.1s

The search space of muscle i, X i Ă R9, corresponds to the concatenation of the force-
generating and the geometric parameters and is denoted X i “ X i

F ˆX i
G. The total search

space of the parameters X P R450 is thus defined as

X “ X 1
ˆ ¨ ¨ ¨ ˆ X 50

The optimization problem. A solution is defined to be an element θ P X . Our opti-
mization formulation consists on finding a solution minimizing the dissimilarity between
force feasible sets of reference in given postures and the force feasible sets produced by
the solution in the same postures.

Consider a specific solution θ̂ P X and a set of postures Q. Let F̂T
X pqq be the force

feasible set at point X produced by Standord’s model parametrized by solution θ̂ at
posture q P Q considering a T -model of the muscles feasible tensions.

The optimization problem is described as finding a solution θ˚ P X such that

θ˚
“ argmin

θPX
max
qPQ

dpF̂T
X pqq, FT

X pq, θqq (4.1)

where Q is a predefined set of selected postures; FT
X pq, θq is the force feasible set produced

by Stanford’s model parametrized by solution θ at posture q P Q considering a T -model
of the tension set; and d is a function defined as follows: let K3 be the set of closed
bounded convex sets of R3, then d : K3 Ñ Rą0 is a function assessing the dissimilarity
between two closed 3D convex shapes. d is thus called the dissimilarity function. It has
the property that for all A, B P K3, then dpA, Bq “ 0 ðñ A “ B.

The posture set Q, the dissimilarity function d and the model of the tension set T are
called hyperparameters. Each of them parametrize the cost function, which corresponds to
the function to be minimized in the optimization 4.1. The major interest of this chapter
lies in finding a set of hyperparameters that ensures the convergence towards a solution.
Section 4.2 considers a T8 model while section 4.3 considers the ellipsoidal approximation
of a T8 model (using the projection constant λ2pℓ50q defined in chapter 3). This second
case also encapsulates the T2 tension models as well. In each of the sections, multiple
dissimilarity functions are considered to account for the various representations of force
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feasible sets (as polytopes or ellipsoids) but also for the inherent difficulties related to
the combinatorial vertex enumeration problem for polytopes (as described in chapter 2).
While there are already existing dissimilarity functions between shapes, most of them are
exact and strongly fail to be relevant when using approximations of polytopes surfaces
(for instance using Skuric et al’s Iterative Convex Hull algorithm (Skuric et al., 2022)).
However, not using approximations in infeasible due to the high combinatorics inherent
to polytopes. The next subsection dives in the required computational trade-offs in much
depth.

Concerning the optimization formulation as a single-objective optimization (only one
function is to be minimized), it could have been described as a multi-objective optimiza-
tion (MOO) in which force feasible sets are compared in one posture only and indepen-
dently from another posture. We chose to encapsulate the formulation into one cost
function due to the computational challenges introduced by MOO as the required higher
dimensionality of the search space, the higher number of solutions to evaluate and the
higher number of iterations to ensure convergence (Hua et al., 2021; Okabe et al., 2003).

Major issues arise in formulating the optimization problem. For instance, how many
postures are required? Which dissimilarity function leads to the most relevant solution?
Also, in a more fundamental way, which Q and d allows us to converge to a solution? We
will see in section 4.3 that it is possible to find a solution using the ellipsoidal approxi-
mation of a T8 model of the tension set.

Before diving into comparing force feasible sets, it must be noted that in the formu-
lation 4.1, it is still an open question to assess if θ̂ “ θ˚ for some postures Q. In other
words, we do not know if two parametrizations of Stanford’s model lead to the same
force feasible sets. This could be proven (or not) by studying the injectivity of the cost
function for the given postures Q: due to the geometric nature of the force feasible sets
(projection-intersection of sets), we did not suceed in achieving such a proof. However,
we did find some answer in a more specific case: in cable-driven parallel robots such that
any motion is either spherical or a 3 DOFs prismatic joint and cables are modelled as line
segments, the produced torque feasible sets under a T8 model in only 3 postures uniquely
define the line of action of each cable. These results are too specific to torque feasible sets
and not force feasible sets, so we do not include them in this thesis.

4.1.3 Comparing force feasible sets

A major inconvenience in the optimization problem 4.1 is the nature of force feasible
sets: they are convex sets. While there are multiple ways to compare how two points
(via euclidean distance), two vectors (via euclidean distance as well), two rotations (via
geodesic), two n-dimensional spaces (via principal angles), or even two spatial vectors (via
euclidean distance on both direction and moment part) are resembling each other, the force
feasible sets nature implies a stronger difficulty in the comparison. The main difference
from the above-mentionned objects is the existence of a non-null full-dimensional volume
measure: essentially, a 3-dimensional convex set takes some space in R3 (whereas a line or
a plane do not - and in a less tangible manner, rotations and translations do not either3).

3A more tangible representation would be to consider rotations and translations as planes of a 5-
dimensional Minkowski algebra, which is a specific structure based on a 5-dimensional real vector space
(Dorst et al., 2007).



Chapter 4. In silico musculoskeletal model muscle personalization 112

Volume-related notions add another layer of computational complexity, whether or not
the volume is explicitely computed. For instance, computing the volume of a polytope
knowing its vertices and/or its bounding hyperplanes is a #P-hard problem (Dyer and
Frieze, 1988): this class of problems involve counting the number of solutions to an NP-
problem. In other terms, using the explicit notion of volume adds computational time
to the already time-consuming step of computing the vertices (approximated or not) of a
polytope.

The next paragraphs enunciate different methods to compare two convex sets, with
a focus on leveraging expensive computational volume problems while retaining most of
the required characteristics of force feasible sets to ensure an effective comparison.

The Hausdorff distance between compact sets. The Hausdorff distance (Haus-
dorff, 1914) is a measure of dissimilarity between two sets of points. It quantifies how
far apart two shapes are from each other. In Rn, for n ě 1, its definition is restricted to
compact sets, which are the closed and bounded sets (as are assumed the force feasible
sets). We assume Rn to be a metric space i.e. it is equipped with a distance function,
denoted δ.

The directed Hausdorff distance between two compact sets A and B, noted ÝÑ
dHpA,Bq,

is defined as follows:
ÝÑ
dHpA,Bq “ sup

aPA
δpa,Bq “ sup

aPA
inf
bPB

δpa, bq

This directed distance captures the largest extent to which the set B lies outside A.
It is not a distance in the mathematical sense as it is not symmetric, but it is usually
called as such. The Hausdorff distance introduces this symmetry and is noted dH . It
generalizes the directed distance concept by considering how much A lies outside B but
also how much B lies outside of A. In essence, it highlights the most significant mismatch
between the two sets.

dHpA,Bq “ max
!

ÝÑ
dHpA,Bq,

ÝÑ
dHpB,Aq

)

The Hausdorff distance is a properly defined distance. Figure 4.5 shows how the Hausdorff
distance is computed using generic shapes in 2D.

Having a notion of distance on compact sets implies that a topology can be defined
onto compact sets i.e. notions of convergence and limits are definable and consequently
notions of approximations are as well. Hausdorff distance is explicitely computable for
two polytopes, as are two force feasible sets modelled from a T8 tension set model. In
this case, it is required to enumerate all polytopes vertices to compute it.

Leveraging vertex count in force polytopes. When comparing two force feasible
sets F1 and F2 using a T8 tension model, the Hausdorff distance is relevant as long as
F1 and F2’s vertices are computed using an exact vertex enumeration algorithm. While
the Hausdorff distance computation is of polynomial time when polytopes are in vertex
representation (cf. (S. König, 2014) theorem 3.3), there remains to consider to compu-
tational aspect of gathering these vertices. Using Stanford’s model, this implies to: (1)
compute for some posture the H-representation (bounding hyperplanes) of the projection



Chapter 4. In silico musculoskeletal model muscle personalization 113

Figure 4.5: The Hausdorff distance between sets A (in blue) and B (in orange) is computed
as the maximum of the directed Hausdorff distances ÝÑ

dHpA,Bq and ÝÑ
dHpB,Aq. The middle

figure shows roughly how ÝÑ
dHpA,Bq is computed: consider points on the surface of A and find

their closest points located on the surface of B. Compute all distances between these pairs of
points and consider the greatest distance to be ÝÑ

dHpA,Bq (in black). To compute ÝÑ
dHpB,Aq, the

same process is applied starting from B’s surface (right figure).

of a 50-dimensional orthotope onto the 7-dimensional torque space; (2) find the smallest
convex set encapsulated by these hyperplanes intersected with the image of the jacobian
transpose; (3) then extract the vertices from the newly found set of bounding hyperplanes.
Chapter 2 recalls that step (1) is combinatorially very expensive; step (2) can be computed
using the Fourier-Motzkin elimination method which has an exponential time complexity
depending on the considered dimension (Dahl, 2007) and step (3) is also combinatorially
expensive as found by Avis in Fukuda in (Avis and Fukuda, 1992).

As such, an approximation of F1 and F2’s surface is required to ensure the evaluation
of one solution in the optimization problem in reasonnable time (ă 1 minute). We shall
consider Skuric et al’s Iterative Convex Hull (ICH) method (Skuric et al., 2022), which
returns a set of points located on the surface of a polytope formulated as a projection-
then-intersection. ICH’s implementation is available in Python 3 and MatLab (Skuric
et al., 2023).

However, Hausdorff distance is sentitive to the vertices locations, even when the global
shapes are roughly similar. Figure 4.6 shows and describes the problem.

For our optimization problem, Hausdorff distance’s sensitivity is an issue because
of the force feasible sets as polytopes are approximated. To counteract this effect4, we
discretize polytopes according to a family of vectors. The discretization process consists
on intersecting a given polytope with a line and consider the intersection points. Using
Stanford’s model, a force feasible set computed at point X at posture q has the point X
in its interior, so that a set of directions located at X can be defined. Each of these lines
intersect the force feasible set surface in 2 points. The selection of these lines is drawn
from the cube face lattice (i.e. the structure of all it k-dimensional faces, k “ 0, . . . , 2,
so its vertices, edges and faces). The cube, centered at the origin, has 8 vertices. The
first lines to construct are made from pairs of two symmetric vertices (the symmetry is
central). This leads to 4 lines. Then, edges are considered: there are 12 in the cube and

4There exists also the modified Hausdorff distance (MHD), which is performant in the presence of
noise (Dubuisson and Jain, 1994). However, MHD is more effective when only the shapes are similar:
two similar shapes with different scales have a low MHD value, which is not our objective as both shape
and size matter in force feasible sets.
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Figure 4.6: Computation of a 2D polytope (polygon) considering a random projection onto a
7-dimensional space of a random 50-dimensional orthotope (edge lengths up to 800) intersected
with a random 2-dimensional vector space. The left polytope is computed with Skuric et al’s

ICH algorithm using a tolerance of 5 while the right polytope uses a tolerance of 1. This
implies that the right polytope have much more vertices on its surface returned by ICH. The
Hausdorff distance between these two shapes considers the euclidean distance between the
polytopes vertices and is of value 97.17. While the shapes are similar, this distance value is

very far from 0 and results from the high sensitivity of Hausdorff distance to vertices locations.

each edge is centrally symmetric to another so that a line is defined to pass through an
edge center and the symmetric edge center. This adds 6 new lines. Finally, the 6 cube
faces, seen as squares, we consider for each of them the barycenter point constructed from
their delimiting vertices (i.e. the square center). Since central symmetry applies as well,
3 new lines are defined and each of them pass through a face center and the corresponding
other symmetric face center. In total, this leads to 13 lines. Figure 4.8 summarizes these
13 line constructions.
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Figure 4.7: Three different views of the discretization lines constructed from the cube face
lattice. There are 13 lines in total.

All these lines intersect at the cube’s origin. We shall use them for polytopes to
construct 26 points on a polytope’s surface. To ensure that 26 points are indeed con-
structable, the lines should intersect at a point located within the polytope. This point
is defined to be the barycenter of the polytope’s vertices (since it is a convex shape, the
barycenter point is located within). However, these constructed lines do not capture how
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elongated a polytope can be. In this case, most of the formed intersection points are
located near the plane generated by the two smaller principal axes of the polytope. These
principal axes are constructed from a single value decomposition of the polytope’s ver-
tices. Consequently, we shall compute the single value decomposition to retrieve the main
polytope’s orientation and elongation, and adapt the lines accordingly before starting the
intersection process.

The resulting set of 26 points is termed discretized polytope and its construction is
shown in figure 4.8.
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Figure 4.8: Three different views of a force polytope (in blue) and its discretized points (in
red), generated by the musculoskeletal model parametrized by Stanford’s default muscle values.

Units are in Newton. These points are constructed from intersecting lines located at the
polytope’s barycenter (green point) with the polytope surface.

This has the advantage to prepare for the experimental conditions of gathering maxi-
mal isometric force exertions in chapter 5, which implies a limited number of force direc-
tions to exert.

Comparing ellipsoidal approximations of force feasible sets. While the Hausdorff
distance is computationally relevant (to some extent) for polytopal representations of force
feasible sets, they are not for ellipsoidal representations: there is no closed-form formula
in this case and thus an optimization problem is involved to find the maximum distance
between points on two ellipsoids.

If we do not use the Hausdorff distance with ellipsoids, we are left without a distance
notion, which is problematic since our optimization problem seeks to find a musculoskeletal
model parametrization whose force feasible sets converge to the reference force feasible
sets. No distance implies no notion of convergence. However, in the eighties, it was shown
in (Goffin and Hoffman, 1983) that there are at least two ways to metrize the space of
ellipsoids i.e. to equip it with a distance. The first manner is to use the Hausdorff distance
through an optimization. The second manner is to sum the distance between the ellipsoids
centers and the distance between their corresponding matrices.

However, it should be noted that an ellipsoid in 3D is uniquely defined through 9 non-
coplanar points on its surface, and even as low as 6 points if those are located according
to the ellipsoid’s axes. As such, we consider these 6 points, constructed from the principal
axes of an ellipsoid, as shown in figure 4.9 and the set of these points is termed discretized
ellipsoid. The Hausdorff distance can thus be applied on two discretized ellipsoids.
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Figure 4.9: Force ellipsoidal approximation (in blue) and its discretized points (in red) of the
musculoskeletal model parametrized by Stanford’s default muscle values. Units are in Newton.
These points are constructed from intersecting the lines of direction this ellipsoid’s principal

axes and located at the ellipsoid’s center (green point).

Unified comparison function. We defined a discretized version of polytopes and el-
lipsoids, so that the Hausdorff distance can be applied on either two polytopes and two
ellipsoids.

In the optimization process, this distance is used to compare if two of these shapes
are similar. If the distance is 0 for discretized polytopes, then this indicates that at least
26 points on both polytope surfaces are located exactly at the same place. Due to the
orientation of the lines used to construct them, this means that the barycenters as well
as the orientation and elongation of both polytopes are identical. However, nothing could
be say about the precise vertices positions, that is why a rather large number of vertices
was considered to account for the global shape of polytopes in a reasonnable manner.

For two ellipsoids, since the 6 points present in their discretized version uniquely
determine them, then a Hausdorff distance of 0 implies that both ellipsoids are the same
in location, elongation and orientation, which is sufficient to say that both ellipsoids’
surfaces coincide.

Finally, we define precisely the comparison function used in the objective function of
the previously described optimization problem in 4.1. The distance d is termed discretized
distance and is defined as follows: for two 3D polytopes or two 3D ellipsoids F1 and F2,
denote FD

1 the discretization points set of F1 and FD
2 for F2. Then,

dpF1, F2q “ dHpFD
1 , FD

2 q

where dH is the Hausdorff distance between two point sets.

4.1.4 Handling high-dimensionality, non-differentiability and non-
convexity in optimization problems

Prior to examining optimization solvers, an analysis on the objective function’s nature is
necessary. Knowledge of its characteristics facilitates the selection of solvers specifically
tailored to the its properties. The objective function, while possessing the advantage of
explicit computability, exhibits several challenging attributes. These challenges arise pri-
marily from the general force feasible set formulation (independently of a specific tension



Chapter 4. In silico musculoskeletal model muscle personalization 117

model T ) but also from the set comparison methodology. More precisely, the objec-
tive function is non-differentiable, non-convex, and computationally and combinatorially
expensive, resulting in a high-dimensional optimization problem. Nevertheless, efficient
solvers have been developed to address such complex optimization problems.

As the force feasible set formulation involves a convex set intersection, the cost func-
tion in 4.1 is not differentiable. The non-convexity is related to the Hausdorff distance,
since it is defined using a max value, which is not a convex function5.

Determining the dimensionality of this optimization problem is usually dependent on
the search-space dimension but also on its complexity and the computational expense of
evaluating the cost function for a particular solution. Given the heterogeneous param-
eters encompassing locations (points), lengths (m), and tensions (N), and the relatively
high computational cost of objective function evaluation (approximately 250 ms per force
polytope computation using an approximation algorithm as Skuric et al.’s ICH (Skuric
et al., 2022)), we classify this as a high-dimensional optimization problem. While a
simpler musculoskeletal model with fewer parameters could be considered, this would
not sufficiently reduce the problem’s complexity. Force feasible set comparison remains
non-differentiable and non-convex, and computing points on their surfaces remains a com-
binatorial problem. Furthermore, as demonstrated in chapter 3, increasing the number of
muscles (and thus parameters) simplifies, rather than complicates, force feasible set rep-
resentation. Ultimately, the objective of this thesis — applying in silico personalization
methods to experimentally measured maximal force exertions — necessitates a complex
musculoskeletal model to ensure a generic representation of force feasible sets.

As such, finding a solution requires adapted solving methods. Primarly, they should
focus on exploring a large space of solutions but not spend to much computational re-
sources where solutions are not relevant. Two approaches are thus considered and consists
of two classes of solving algorithms: the Genetic Algorithms (GAs) and Random Coordi-
nate Shrinking (RACOS). Both GAs and RACOS belong to the family of derivative-free
optimization methods, meaning they can effectively tackle problems where the objective
function’s derivatives are unavailable or computationally expensive to obtain. Further-
more, both algorithms incorporate elements of randomness in their search strategies,
allowing them to escape local optima and explore a wider range of potential solutions.

While they share fundamental characteristics, GAs and RACOS differ in their core
mechanisms. GAs maintain a population of solutions and use genetic operators like
crossover and mutation to generate new candidate solutions, mimicking natural selec-
tion. RACOS, on the other hand, focuses on refining a single solution by iteratively
shrinking the search space and leveraging a probabilistic or classification model to guide
the search.

This difference in approach makes them complementary in tackling diverse optimiza-
tion challenges. GAs excel in exploring a vast and complex search space, while RACOS
efficiently refines a solution when a promising region has been identified or when evalua-
tions are computationally expensive. The following paragraphs detail in much depth both
algorithms.

5Arguably, in a case where a convex distance or comparison function between two sets is defined,
writing the optimization as a convex problem is an added difficult layer due to the geometric formulation
of the force feasible sets.
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Genetic algorithms (GAs). Genetic algorithms (GAs) are optimization algorithms
inspired by natural selection and first appearance date to 1950, in Turing’s paper about
machine learning (Turing, 1950). They effectively address complex problems, particularly
those with non-differentiable objective functions or high-dimensional search spaces where
gradient-based methods fail.

GAs iteratively refine a population of candidate solutions (termed chromosomes) by
evaluating their fitness and applying genetic operators like crossover and mutation. This
process guides the population towards optimal solutions, exploiting promising regions of
the search space without relying on derivative information. This versatility makes GAs
valuable for problems with discrete variables or noisy data where the objective function
may be non-differentiable, discontinuous, or computationally expensive to evaluate.

The genetic algorithm begins with a set (population) of nP individuals (also termed
chromosomes), each representing a randomly selected solution θ1, . . . , θnP

P X from the
search space X of optimization problem 4.1. Each chromosome, composed of genes (rep-
resenting the coordinate values of a solution θ), is evaluated using the cost function. This
involves parameterizing Stanford’s model and computing force feasible sets for the prede-
fined postures in Q. We recall that the cost function quantifies the dissimilarity between
the computed and target force feasible sets across all postures in Q.

The algorithm proceeds through nG generations, iteratively creating new populations.
In each generation, a selection process, such as selecting the 5 best-performing chromo-
somes, identifies parent individuals. With probability cr, two parents undergo crossover,
combining their genes to produce offspring. An arithmetic crossover strategy, employ-
ing a weighted average of parent genes, can be of interest for real-valued chromosomes.
Subsequently, each offspring undergoes mutation with probability mr, introducing small
perturbations to their genes, potentially adapted to the physical meaning of the param-
eters (e.g., perturbing origin/insertion points uniformly, and optimal fiber length with
a Gaussian distribution). Adaptive mutation may be employed, reducing perturbation
magnitudes as the algorithm progresses.

The fitness of the offspring is then evaluated, and a new population is formed, option-
ally including a subset of the parents. This process iterates until a termination criterion
(e.g., achieving a cost function value below 10´3) is met or all generations are completed.
The best solution from the final population is then returned (see Algorithm 3 for a pseudo-
code summary).

Although genetic algorithms offer flexibility in strategy selection, effective implemen-
tation relies on an understanding of the search space structure (specifically its topology).
Given our limited knowledge of the specific influence of individual muscle parameters on
force feasible set generation (we can only characterize how the complete parameter set
collectively determines the force feasible sets), we aim to explore the search space topol-
ogy concurrently with solution sampling. To address the limitations of genetic algorithms
in navigating complex search spaces with poorly understood parameter influences, we
employ the Random Coordinate Shrinking algorithm (Yu et al., 2016). This algorithm
constructs a probabilistic model during search space exploration to assess the quality of
a solution based on its location in the search space Q. This model-guided approach fa-
cilitates efficient exploration and exploitation of the search space, particularly when the
relationship between individual parameters and the objective function is unclear.
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Algorithm 3: Genetic Algorithm
Data: Population size nP , Crossover rate cr, Mutation rate mr, Maximum

generations nG

Result: Best solution found

Initialize population randomly with P individuals
for each individual do

Evaluate fitness of the individual
end
for generation = 1 to nG do

Select parents from the population based on fitness
while new population size ă nP do

Crossover: with probability cr, crossover two parents to produce two
offspring

Mutate: with probability mr, mutate offspring
Evaluate fitness of offspring
Add offspring to the new population

end
Replace old population with the new population
if termination condition is met then

break
end

end
return Best solution from the population

Random Coordinate Shrinking (RACOS). In contrast to GAs’ approach, RACOS
methods utilize an iterative framework that involves learning a model to identify promis-
ing search areas and subsequently sampling new solutions from this model. The Random
Coordinate Shrinking algorithm (RACOS) (Yu et al., 2016) adheres to this framework, em-
ploying a classification model to distinguish between high-performing and low-performing
solutions.

RACOS leverages this probabilistic model by iteratively refining a solution by shrink-
ing the search space around it. It operates by randomly selecting a coordinate within the
current search space and optimizing the solution along that coordinate. This process is
repeated until the search space converges to a small region, indicating the location of a
near-optimal solution. The algorithm is presented in details in algorithm 4.

The probabilistic model in SRACOS serves two primary purposes. First, it guides
the search by prioritizing coordinates with high uncertainty or potential for improvement.
Second, it facilitates informed decision-making by providing estimates of the objective
function value at unsampled locations. This capability allows RACOS to efficiently explore
the search space and exploit promising regions.

Unlike GAs, which rely on population-based genetic operators, RACOS’s probabilistic
model enables a more focused and informed search strategy. This approach is particularly
advantageous in high-dimensional or complex optimization landscapes, where efficiently
exploring the search space is crucial.
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Algorithm 4: RACOS algorithm (Randomized Coordinate Sampling)
Data: Search space X of dimension d, number of iterations n, sample size N ,

positive sample size k, budget B
Result: Best solution found

Initialize sample set P with N random samples from X
Evaluate the fitness of each sample in P
Sort P based on fitness
Select top k samples as the positive set P`

Let θbest be the best solution from P`

for t “ 1 to n do
for i “ 1 to N do

Randomly generate a new sample θnew by randomized sampling
for each dimension j “ 1 to d do

Randomly decide whether to sample within the region defined by
the positive set P`

if within region then
Generate value for θnewrjs based on the distribution defined by P`

end
else

Generate value for θnewrjs uniformly from the search space
end

end
Evaluate the fitness of θnew
if θnew is better than the worst in P` then

Replace the worst sample in P` with θnew
if θnew is better than θbest then

Update θbest with θnew
end

end
end

end
return θbest as the best solution found

Implementation of solvers and force feasible sets computation in Python. All
scripts, written in Python 3.10, were executed on the PlaFRIM experimental testbed6.
This platform enabled parallelized computation of polytopes across multiple postures, as
well as repetition of a test over different machines. The utilized machines feature 2x32-core
AMD Zen2 EPYC 7452 CPUs (at 2.35 GHz).

Both solvers, the genetic algorithm and SRACOS, are implemented in Python 3 using
the PyGAD7 (Gad, 2021) and ZOOpt8 (Y.-R. Liu et al., 2022) packages, respectively.

Force feasible sets, modeled as polytopes, are computed using the Iterative Convex

6PlaFRIM (Inria, CNRS, LABRI, IMB, Université de Bordeaux, Bordeaux INP and Conseil Régional
d’Aquitaine). See https://www.plafrim.fr.

7https://pygad.readthedocs.io/en/latest/
8https://zoopt.readthedocs.io/en/latest/

https://www.plafrim.fr
https://pygad.readthedocs.io/en/latest/
https://zoopt.readthedocs.io/en/latest/
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Hull method presented in (Skuric et al., 2022) implemented in the pycapacity9 package
(Skuric et al., 2023). A tolerance of 1 or 5 Newtons is employed depending on the specific
case.

Ellipsoidal approximations of the force polytopes are generated using our custom
hyperobjects10 package, which computes the resulting ellipsoid from the projection or
intersection of any m-dimensional ellipsoid with a lower n-dimensional affine subspace.

4.1.5 Assessing the accuracy of fitted personalized musculoskele-
tal models

After the determination of a solution, it is essential to evaluate its capacity to reproduce
expected force feasible sets in postures not included in the objective function. While
considering all possible postures would be ideal, experimental limitations restrict the
acquisition of maximal isometric force exertions to one posture at a time. Consequently,
both the reference posture set Q and the validation posture set Qval contain a limited
number of postures.

Determining the precise number of postures required for accurate muscle parameter
identification from force feasible sets remains an open question. Therefore, guided by
experimental constraints, we restrict our analysis to approximately 4 postures or fewer.
Chapter 5 elaborates on the experimental challenges that preclude the consideration of a
larger number of postures.

To assess the impact of this limitation, sections 4.2 and 4.3 investigate the feasibility
of solving the optimization problem with 3, 4, and 6 reference postures. In silico analysis
will demonstrate that increasing the number of postures directly enhances the quality of
the obtained solution. However, in the case of ellipsoidal force feasible set approximations,
it will be shown that only 3 postures are necessary to achieve a satisfactory solution.

Quantitative assessment. The accuracy of a solution depends on two parts: on one
hand the fitting process is evaluated so that for each considered fitting posture q P Q,
the produced force feasible sets produced by the found solution are compared respectively
with the force feasible set to fit. Various metrics are used for this comparison, involving
all those described in the subsection about force feasible set comparison in 4.1.3.

Similarly, this method is applied for other postures defined in Qval. We are in a
simulation context, so it can be assumed that we also know the force feasible sets of
Stanford’s model for postures in Qval.

Comparing the produced force feasible sets to the expected ones in the fitting postures
as well as the validation postures allows us to evaluate if a solution is overfitting or
underfitting, and allows us to gauge how many postures are required until a solution
recreate the force feasible sets in any posture.

Qualitative assessment. While it is, comparing 3D convex shape is also straight-
forward qualitatively and is an important part of measuring the correspondance between

9https://auctus-team.github.io/pycapacity/
10https://gitlab.inria.fr/auctus-team/people/gautierlaisne/public/hyperobjects

https://auctus-team.github.io/pycapacity/
https://gitlab.inria.fr/auctus-team/people/gautierlaisne/public/hyperobjects
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two sets. So, while sometimes quantitative values can describe a large difference between
two sets, the sets can still be very close (in shape, elongation, orientation, and size) as
it was shown in figure 4.6, where noise has a negative impact on the interpretation of
quantitative results.

4.2 Muscle parameters sensitivity via force polytopes

Having formally defined the optimization problem, we focus on its implementation. The
problem definition in section 4.1 raises several key questions:

• How does the number of postures affect the quality of the obtained solution?
• What is the maximum size of the search space that guarantees convergence to a

solution?
• How does the force feasible set representation influence convergence towards an

optimal solution?

Furthermore, we aim to evaluate multiple solving methods and identify the most
effective approach with respect to the aforementioned questions. Besides, we seek to
determine whether polytopic and ellipsoidal representations are interchangeable within
the optimization process.

To address these questions, we define a set of hyperparameters that configure the
optimization problem into sub-problems. Each sub-problem addresses specific question,
namely: the influence of the number of postures on the results, the maximum feasible
search space size, the relative performance of different solvers and the impact of the force
feasible set representation on solution discovery.

4.2.1 Hyperparameters optimization

A hyperparameter is a parameter that influences the optimization process itself, but is not
directly optimized by the process. It is established prior to optimization and significantly
influences the process’s efficiency and effectiveness, affecting aspects such as search space
exploration, convergence speed, and the quality of the final solution.

Based on empirical intuition and prior analyses (Laisné et al., 2023b; Laisné et al.,
2023a), we consider five hyperparameters:

1. Force feasible set representation: this hyperparameter dictates the represen-
tation of the force feasible sets, utilizing either force polytopes or their ellipsoidal
approximations;

2. Optimization solver: two distinct optimization solvers are employed (a genetic
algorithm and RACOS);

3. Number of fitting postures: the force feasible sets are computed for each posture
using either 3 postures (posture set Qfit

3 ) or 6 postures (posture set Qfit
6 ). These

posture sets are termed fitting postures as they are used to fit the produced force
feasible set of a solution;

4. Muscle parameter type perturbation: this hyperparameter defines the type of
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muscle parameter concerned by the optimization, i.e. the solution consists of only
values of a certain type. Each muscle parameter belongs to a specific type: maximal
isometric force (fiso), optimal fiber length (lo), tendon slack length (ls), pennation
angle (α), and points defining the muscle path. To analyze the influence of each
parameter type on the force feasible sets, we perturb all muscles’ parameters of a
single type. For instance, all muscles’ maximal isometric forces are perturbed, or
all optimal fiber lengths, and so on. Additionally, we consider two combinations of
parameters: perturbations of 1) fiso, lo, and ls parameters and 2) fiso, lo, ls, and
muscle geometry parameters;

5. Search space size: for each selected parameter type, three search spaces of varying
sizes are considered and termed large, medium, and small. These search spaces are
centered around each muscle parameter and their specific values are detailed in the
preceding section.

All possible hyperparameter combinations result in 168 distinct cases. Due to the
stochastic nature of the solvers’ solution selection, each optimization case is repeated 5
times to ensure solution discovery and assess process repeatability. This leads to a total
of 840 optimization runs.

A detailed explanation of each hyperparameter follows.

Force feasible sets representation. This section presents the first feasible set repre-
sentation: the force polytope, which corresponds to force feasible sets modeled using a T8

tension set model. Next section will subsequently examine the ellipsoidal approximation
of these force polytopes. Separate sections are dedicated to each representation due to
differences in the interpretation of the distance function used for comparing force feasible
sets. These differences stem from the varying number of points sampled on the force
feasible set surface during the discretization process.

Optimization solver. We shall consider either a genetic algorithm or a more recent
approach, RACOS, which tries to learn how the search space is structured.

The genetic algorithm is initialized with a population of 1000 solutions. In each
generation, 5 parents are selected for crossover using a single-point strategy. This strategy
involves dividing the chromosomes of two parent solutions into two parts (with a 0.5
probability of a cut at any specific gene) and creating a new solution by combining the first
part of the first parent with the second part of the second parent. This mechanism induces
greater variability within the population. An adaptive mutation process is employed,
with a probability of 0.8 for low-quality solutions and 0.2 for high-quality solutions. The
subsequent generation comprises 10 solutions: the 2 best parents, 3 crossovers generated
from the 5 selected parents, and 5 mutations derived from these crossovers.

When using RACOS, the solver process is initiated by running RACOS 5 times,
each with a random initial population of 10 solutions, for a duration of 5 or 10 minutes,
depending on the parameters being considered (see the following paragraph for details).
These initial runs generate solutions that are widely distributed within the search space,
which is crucial for addressing the high dimensionality of the problem, similarly to the
goal of the single-point crossover in the genetic algorithm. Thereafter, a sixth RACOS
solver is executed, with its initial population consisting of the 5 solutions obtained in
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the previous runs. All RACOS implementations utilize the default parameters defined in
the Python package Zoopt (Yu et al., 2016), as this configuration has been empirically
determined to be most effective.

Both solvers terminate based on a time-based criterion that depends on the muscle
parameters under consideration. For fiso, lo, ls or α, the total solving process is halted
after 30 minutes. For the muscle geometry case and the combination of fiso, lo and ls,
optimization ceases after 2 hours. In the most challenging scenario (dimensionality-wise),
where fiso, lo, ls and all muscle parameters are considered together, the termination time
is extended to 4 hours.

Number of fitting postures. In order to gauge how the number of postures influences
the quality of a found solution, two sets of postures are considered.

The first includes 3 postures qfit
1 , qfit

2 and qfit
3 , which have been arbitrarily chosen

but produce qualitatively different force feasible sets (in orientation mainly) and ensures
that the upper limb postures are diverse in the workspace. The set of these 3 postures
is denoted Qfit

3 “
␣

qfit
1 ,q

fit
2 ,q

fit
3

(

. Choosing only 3 postures accounts for the experimental
difficulties of gathering maximal force exertions in a given postures, as it will be more
detailed in chapter 5.

Nevertheless, only 3 postures may not sufficiently capture muscle relations to ob-
tain a good solution. It is thus relevant to asses if, outside of the future experimental
considerations, a higher number of postures could have a significant advantage over the
prediction quality of a solution. However, the higher the number of postures, the more
time-expensive the solving is. Consequently, we limit ourselves to a second set of postures,
denoted Qfit

6 , which corresponds to 6 postures including the set postures in Qfit
3 .

3 fitting postures Qfit
3 : The following table 4.1 and figures 4.10, 4.11 and 4.12 describe

the posture parametrizations of qfit
1 , qfit

2 and qfit
3 respectively.

Posture Elevation
angle

Shoulder
elevation

Shoulder
rotation

Elbow
flexion

Pronation
supination

Wrist
deviation

Wrist
flexion

qfit
1 62° 35° 19° 80° ´1° ´0.126 ´0.632

qfit
2 16° 92° 22° 72° 2° 0.014 ´0.408

qfit
3 86° 74° 95° 58° ´25° 0.007 ´0.127

Table 4.1: Fitting postures parametrization in Qfit
3 . All values in degrees are expressed in

radians in OpenSim. The wrist deviation and flexion values are defined to be in a small subset
of r´1, 1s. They serve as an underlying parametrization of the wrist deviation and flexion angles
in the considered musculoskeletal model.

Figures 4.10, 4.11 and 4.12 show the 3 fitting postures in the above-mentionned order,
in three different views in order to grasp the 3D representation.

For each of these postures, their respective force polytope is computed using Skuric
et al. Iterative Convex Hull algorithm with a tolerance of 5 Newton (Skuric et al., 2022).
We shall show their shape in figures 4.13, 4.14 and 4.15, using multiple views to emphasize
its dimensionality. The frame used corresponds to the global frame in OpenSim, where
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Figure 4.10: Fitting posture qfit
1 .

Figure 4.11: Fitting posture qfit
2 .

Figure 4.12: Fitting posture qfit
3 .

the y-axis is normal to the transversal plane, the x-axis normal to the coronal plane and
the z-axis normal to the sagittal plane.
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Figure 4.13: Force polytope of the musculoskeletal model parametrized by Stanford’s default
muscle values in fitting posture qfit

1 . Units are in Newton.
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Figure 4.14: Force polytope of the musculoskeletal model parametrized by Stanford’s default
muscle values in fitting posture qfit

2 . Units are in Newton.
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Figure 4.15: Force polytope of the musculoskeletal model parametrized by Stanford’s default
muscle values in fitting posture qfit

3 . Units are in Newton.
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6 fitting postures Qfit
6 : In a similar manner as the previous description, table 4.2

and figures 4.16, 4.17 and 4.18 show how the 3 additionnal postures in Qfit
6 “ Qfit

3 Y
␣

qfit
4 ,q

fit
5 ,q

fit
6

(

are represented. Figures 4.16, 4.17 and 4.18 show the 3 additionnal fitting
postures and figures 4.19, 4.20 and 4.21 their associated computed force polytopes.

Posture Elevation
angle

Shoulder
elevation

Shoulder
rotation

Elbow
flexion

Pronation
supination

Wrist
deviation

Wrist
flexion

qfit
1 62° 35° 19° 80° ´1° ´0.126 ´0.632

qfit
2 16° 92° 22° 72° 2° 0.014 ´0.408

qfit
3 86° 74° 95° 58° ´25° 0.007 ´0.127

qfit
4 40° 38° 39° 61° ´58° 0.000 0.000

qfit
5 75° 91° 50° 101° ´50° 0.000 0.000

qfit
6 75° 76° 50° 50° ´3° 0.028 0.000

Table 4.2: Fitting postures parametrization for the second posture set Qfit
6 . The three first

postures are identical to those in Qfit
3 .

Figure 4.16: Fitting posture qfit
4 .

Figure 4.17: Fitting posture qfit
5 .

Figure 4.18: Fitting posture qfit
6 .
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Figure 4.19: Force polytope of the musculoskeletal model parametrized by Stanford’s default
muscle values in fitting posture qfit

4 . Units are in Newton.
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Figure 4.20: Force polytope of the musculoskeletal model parametrized by Stanford’s default
muscle values in fitting posture qfit

5 . Units are in Newton.
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Figure 4.21: Force polytope of the musculoskeletal model parametrized by Stanford’s default
muscle values in fitting posture qfit

6 . Units are in Newton.
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Search space size. For a set of considered muscle parameters, three search spaces
are defined and respectively termed large, medium and small. We shall describe them
explicitly as intervals for each muscle parameter type considered.

In Stanford’s musculoskeletal model, each muscle M force-generating parameter is
described by default values noted fM

iso for the maximal isometric force of muscle M , lMo for
the optimal fiber length, lMs for the tendon slack length and αM for the pennation angle.
For the muscle geometry, we consider k ą 2 points in the muscle path (with max k varying
from 2 to 9 depending on the muscle geometric complexity). The k-th point in muscle M
is denoted pMk P R3. The notation pMk `c, for c a positive real value, correspond to adding
c to each coordinates of the point pMk . Based on this notation, we define the three search
spaces - depending on the muscle parameter type considered in the optimization process
- as follows:

Large search space:

• Maximal isometric force: (in N): rfM
iso ´ 300, fM

iso ` 300s;
• Optimal fiber length (in mm): rlMo ´ 30, lMo ` 30s;
• Tendon slack length (in mm): rlMo ´ 30, lMs ` 30s;
• Pennation angle (in degrees): rαM ´ 20, αM ` 20s;
• Muscle path point (in mm): rpMk ´ 10, pMk ` 10s;

Medium search space:

• Maximal isometric force: (in N): rfM
iso ´ 200, fM

iso ` 200s;
• Optimal fiber length (in mm): rlMo ´ 20, lMo ` 20s;
• Tendon slack length (in mm): rlMo ´ 20, lMs ` 20s;
• Pennation angle (in degrees): rαM ´ 10, αM ` 10s;
• Muscle path point (in mm): rpMk ´ 5, pMk ` 5s;

Small search space:

• Maximal isometric force: (in N): rfM
iso ´ 100, fM

iso ` 100s;
• Optimal fiber length (in mm): rlMo ´ 10, lMo ` 10s;
• Tendon slack length (in mm): rlMo ´ 10, lMs ` 10s;
• Pennation angle (in degrees): rαM ´ 5, αM ` 5s;
• Muscle path point (in mm): rpMk ´ 1, pMk ` 1s;

The search spaces defined above are centered around the expected parameter values
to find. This is crucial for interpreting the convergence behavior of the optimization
algorithms, as both solvers initialize with populations of solutions drawn uniformly within
the search space, and do not explicitly evaluates the search space center. This allows us
to assess differences in convergence between the genetic algorithm and RACOS. As the
results will demonstrate, the genetic algorithm tends to find solutions with parameters
located near the search space boundaries, while RACOS generally converges closer to the
expected solution, albeit with a lower average objective function value.

This hyperparameter study, conducted within an in silico muscle personalization ex-
periment, aims to determine the feasibility of a set-theoretic approach to maximal force
exertion within an optimization framework for muscle personalization. By analyzing the
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results, we can quantify the irregularity of the objective function’s null space, a charac-
teristic hinted at by the complex geometric processes (projection-intersection) involved in
generating force feasible sets.

It is relevant to argue on why an hyperparameters study is of interest instead of
a traditional sensitivity analysis, which perturbs individual parameters to assess their
impact on the output. Our objective necessitates a set-theoretic approach, considering
the combined influence of all muscle parameters on force production. While the objective
function takes a vector of parameters as input (due to the inherent challenges in handling
set-valued inputs), this work fundamentally explores how the combined action of muscles,
represented as a set of parameters, determines force feasible sets. As a consequence, it is
not suitable to consider the impact of the variations of only one muscle parameter over a
produced force feasible set. At least a specific type of parameter for all muscles should be
considered, and this is what is studied in when considering all maximal isometric force,
all optimal fiber length, etc. This approach contrasts with traditional sensitivity analysis,
which focuses on individual parameter perturbations, but is more suited to our specific
set-theoretic case of force feasible production.

In this regard, this hyperparameters study, included in an in silico muscle personal-
ization experiment, seeks to quantity how optimization techniques are suitable for muscle
personalization when considering force feasible sets.

4.2.2 Validation postures

To evaluate how a found solution can generalizes i.e. produce expected force feasible sets
in other postures, we define 4 validation postures denoted qval

1 , qval
2 , qval

3 and qval
4 . We

denote Qval “
␣

qval
1 ,qval

2 ,qval
3 ,qval

4

(

the set of validation postures.

Those postures were chosen qualitatively in regard to how different they are from the
previously defined fitting postures.

Table 4.3 summarizes the chosen joint configurations for each of these postures:

Posture Elev
angle

Shoulder
elevation

Shoulder
rotation

Elbow
flexion

Pro
sup

Wrist
deviation

Wrist
flexion

qval
1 86° 42° 98° 81° ´35° ´0.042 ´0.200

qval
2 31° 76° 28° 52° 1° 0.042 ´0.632

qval
3 63° 40° 2° 53° ´1° 0.076 0.431

qval
4 96° 74° 76° 50° 0° ´0.074 0.216

Table 4.3: Validation postures parametrization for the validation posture set Qval
6 “

!

qval
1 ,qval

2 ,qval
3 ,qval

4

)

.

The following figures show the validation postures in the above-mentionned order.

Similarly to the fitting postures, the following figures show the force polytopes com-
puted in their respective validation postures.
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Figure 4.22: Validation posture qval
1 .

Figure 4.23: Validation posture qval
2 .

Figure 4.24: Validation posture qval
3 .

Figure 4.25: Validation posture qval
4 .

4.2.3 Experimental testbed

The following paragraphs details how the quality of a solution (fitting and validation
accuracy of its produced force feasible sets) can be evaluated in regard to the hyper-
parameters. Then, details are mentionned about implemented strategies concerning the
time-consuming problematics of computing force polytopes and the repetability of the
experiment.

Computing accuracy

For given hyperparameters, the quality of the found solution has to be evaluated. We
shall concentrate on studying how close the produced force feasible set FT

X pq, θq of a
solution θ in a posture q is to the expected one F̂T

X pqq. This computation is done via the
comparison function evaluation dpF̂T

X pqq, FT
X pq, θqq, where d is the comparison function
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Force polytope in validation posture 1
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Figure 4.26: Force polytope of the musculoskeletal model parametrized by Stanford’s default
muscle values in validation posture qval

1 . Units are in Newton.
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Force polytope in validation posture 2
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Figure 4.27: Force polytope of the musculoskeletal model parametrized by Stanford’s default
muscle values in validation posture qval

2 . Units are in Newton.
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Force polytope in validation posture 3
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Figure 4.28: Force polytope of the musculoskeletal model parametrized by Stanford’s default
muscle values in validation posture qval

3 . Units are in Newton.

on the discretized version of the force feasible sets defined in 4.1 and its definition varies
according to T .

Two cases are considered: first, we compute the fitting accuracy, which describes how
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Force polytope in validation posture 4
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Figure 4.29: Force polytope of the musculoskeletal model parametrized by Stanford’s default
muscle values in validation posture qval

4 . Units are in Newton.

close the solution force feasible sets are to the expected ones for the postures used in the
objective function. This tells us if the found solution can at least reproduce them. In a
second time, the validation accuracy describes how the solution can produce force feasible
sets in other postures. This helps us to gauge the predictability of the solution.

In complement, another type of accuracy is also considered and directly references
the parameter values of the found solution. This allows to gauge the convergence of the
used solving algorithms and also to gauge the complexity of the search space.

Implementation

When considering force polytopes as the computed in silico force feasible sets, a total of
420 optimization processes have been launched using Python. The following paragraphs
describe how the implementation was done.

Force polytope computation. When the force feasible set are computed in silico
using a tension set model T8 (a hyperrectangle of dimension 50), the produced force
feasible set is a 3-dimensional polytope. As described in chapter 2, a set of points on
their surface can be computed using Skuric et al. Iterative Convex Hull (ICH) algorithm
(Skuric et al., 2022). The quality of this approximation depends on a tolerance parameter,
which describe the maximal distance between a bounding hyperplane of the approximated
polytope and an expected vertex. In this experimental testbed, a tolerance value of 5
Newton is chosen. While it could have been chosen to be lower, 5 N allows a tradeoff
between the quality of the approximation and the computation time.

It should be noted that a solution may produce non-computable force feasible sets,
meaning that the torque feasible set does not intersect with the image of the Jacobian
transpose. It was observed empirically that this phenomenom arises most of the time with
a random solution in a large search space. Also, the more parameters are to be optimized
on, the more infeasible solutions there seem to be. It will be shown that genetic algorithms
suffer from this but RACOS does not, as its underlying probabilistic model learns where
to not search as well. In these cases, any used objective function with a non-computable
force feasible sets is set to evaluate at `8.
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Repetability. To evaluate if a solving method is repetable, i.e. the found solution
quality or the convergence of the algorithm are not fortunate coincidences of the randomly
generated set of initial solutions, the optimization process must be solved using different
initial solutions. As such, all scripts have been relaunched 5 times.

Leveraging the optimization time process. As the evaluation of the objective func-
tion is expensive in time and the optimization is done a high-dimensional search-space,
only one script could take about 4 hours to complete. To account for the large amount of
hyperparameters as well as the 5 repetitions for each of them, all optimizations have been
launched in parallel (one script per core) on several machines. Each of these machines
features 2x32-core AMD Zen2 EPYC 7452 CPUs cadenced at 2.35 GHz.

For further contributions to this in silico tests, we ensured that most machines could
run the scripts. Indeed, the processor type (Intel, AMD, ARM, etc.) influences the
time computation of force polytopes with ICH algorithm, as it requires linear algebra
tasks for computing approximated vertices. This is mainly due to the underlying matrix
computations implementation available on a machine. We used OpenBLAS (Wang et al.,
2013) as it is open-source and available for a significant amount of processor architectures.

4.2.4 Results

This section analyzes the optimization results across all trials with specified hyperparam-
eters. To assess the quality of the resulting polytopic sets, the discretized distance metric
(defined in Section 4.1) is employed. Interpretation of this metric requires considering the
following empirically derived distance values d with associated qualitative bounds defined
as:

• d ă 10: the polytopes’ surfaces almost coincide, sharing a similar face structure and
the same number of vertices. (Fig. 4.30);

• 10 ă d ă 50: the polytopes consistently exhibit similar shapes, elongation, and
orientation. They may slightly overlap or be nested (one polytope is contained
within another) (Fig. 4.31);

• 50 ă d ă 100: the polytopes exhibit four types of spatial differences: in translation,
scaling and slight rotations as in figure 4.32, but also nesting. Nesting is particularly
difficult to identify visually, as shown in figure 4.34;

• d ą 100: the polytopes’ elongation, orientation, scaling, shape and offset vary
considerably (Fig. 4.33)

These bounds, derived from force polytopes generated in specific postures, provide a
framework for evaluating the relative similarity of the optimized polytopes. They have
been concluded from qualitative appreciation of force polytopes produced by all the solu-
tions found after an optimization processes. The reader is invited to also appreciate these
distances11, in the folder dedicated to each force polytopes images of the solutions.

Although not a formally derived result, the qualitative observation that the discretized
distance reflects global polytope shape is noteworthy. This correlation, however, arises
from the specific geometric construction of force polytopes and the relatively narrow

11https://gitlab.inria.fr/auctus-team/people/gautierlaisne/public/reconstruction_
stanford

https://gitlab.inria.fr/auctus-team/people/gautierlaisne/public/reconstruction_stanford
https://gitlab.inria.fr/auctus-team/people/gautierlaisne/public/reconstruction_stanford
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considered search spaces (in the sense that all search spaces do not have a range in a
higher order of magnitude than its center). This anaysis should not be generalized to
arbitrary polytopes.
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Figure 4.30: Comparison in fitting posture 5 of reference force polytope (second row, in blue)
and the force polytope produced the best solution (in cost) found from the third run of

pennation angle parameter type optimizations, configured with hyperparameters: RACOS
solver, small search space, posture set Qfit

6 . Its cost is of 5 Newton in this posture.
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Force polytope in fitting posture 1. Cost = 38.0
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Figure 4.31: Comparison in fitting posture 1 of reference force polytope (second row, in blue)
and the force polytope produced the best solution (in cost) found from the first run of optimal
fiber length parameter type optimizations, configured with hyperparameters: RACOS solver,

medium search space, posture set Qfit
3 . Its cost is of 38 Newton in this posture.
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Force polytope in fitting posture 1. Cost = 94.0
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Force polytope in fitting posture 1. Cost = 94.0
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Figure 4.32: Comparison in fitting posture 1 of reference force polytope (second row, in blue)
and the force polytope produced the best solution (in cost) found from the first run of tendon
slack length parameter type optimizations, configured with hyperparameters: RACOS solver,

medium search space, posture set Qfit
6 . Its cost is of 94 Newton in this posture.
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Force polytope in fitting posture 3. Cost = 119.0
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Force polytope in fitting posture 3. Cost = 119.0
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Figure 4.33: Comparison in fitting posture 3 of reference force polytope (second row, in blue)
and the force polytope produced the best solution (in cost) found from the fifth run of muscle

geometry parameter type optimizations, configured with hyperparameters: RACOS solver,
medium search space, posture set Qfit

6 . Its cost is of 119 Newton in this posture.
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Accuracy of computed polytopes in the fitting postures

Three tables summarize the discretized distance of the force polytopes generated by the
best solutions for each set of hyperparameters. Table 4.4 contains the average (and
standard deviation) of the cost function evaluated for each of the best solution found
of the 5 trials per given hyperparameters. Since the cost function corresponds to the
maximum distance between a predicted polytope in a certain posture and the polytope
to attaign, averaging over the 5 trials is interpretable as the mean worst case discretized
distance over all considered postures.

Fitting
posture

set
Solver

Search
space
size

Parameter type

fiso lo ls α fiso, lo, ls
Muscle

geometry

fiso, lo, ls
+ muscle
geometry

Posture set
Qfit

3

RACOS
Large 61 ˘ 11 93 ˘ 15 63 ˘ 18 16 ˘ 2 101 ˘ 19 101 ˘ 20 113 ˘ 25

Medium 49 ˘ 7 56 ˘ 17 60 ˘ 12 11 ˘ 1 74 ˘ 7 50 ˘ 12 86 ˘ 8

Small 42 ˘ 6 39 ˘ 7 34 ˘ 6 5 ˘ 2 57 ˘ 6 19 ˘ 5 55 ˘ 15

GA
Large 137 ˘ 19 341 ˘ 181 139 ˘ 5 67 ˘ 4 181 ˘ 13 365 ˘ 83 ˚

Medium 116 ˘ 10 122 ˘ 12 126 ˘ 11 42 ˘ 4 157 ˘ 14 119 ˘ 12 ˚

Small 96 ˘ 6 118 ˘ 5 108 ˘ 9 35 ˘ 2 103 ˘ 5 61 ˘ 2 ˚

Posture set
Qfit

6

RACOS
Large 117 ˘ 12 143 ˘ 17 115 ˘ 13 33 ˘ 7 135 ˘ 32 138 ˘ 17 149 ˘ 12

Medium 92 ˘ 18 100 ˘ 24 86 ˘ 13 22 ˘ 1 109 ˘ 14 113 ˘ 7 131 ˘ 5

Small 63 ˘ 6 59 ˘ 10 59 ˘ 7 16 ˘ 1 17 ˘ 12 37 ˘ 7 90 ˘ 15

GA
Large 181 ˘ 9 276 ˘ 48 204 ˘ 13 84 ˘ 6 217 ˘ 13 619 ˘ 125 ˚

Medium 163 ˘ 8 174 ˘ 10 151 ˘ 8 75 ˘ 6 178 ˘ 11 143 ˘ 9 ˚

Small 135 ˘ 5 129 ˘ 4 125 ˘ 6 57 ˘ 1 137 ˘ 6 117 ˘ 4 ˚

Table 4.4: For a set of hyperparameters (both expressed as columns and rows), mean and
standard deviation (in N) of the cost function evaluated for the best solution for each of the 5
trials. A ˚ symbol denotes that no solution found over the 5 trials could produce computable
force feasible sets. GA stands for Genetic Algorithm.

Tables 4.5 and 4.14 provide further comparison between the obtained and expected
force polytopes. These tables show the mean and standard deviation (in Newtons, rounded
to the nearest unit) of the discretized distance between the expected and obtained poly-
topes for each posture in Qfit

3 and Qfit
6 , respectively. These values are calculated across all

5 trials for each combination of hyperparameters, including the solver, search space size,
and parameter type (presented in rows and columns). For better readability, separate
tables are used for the different posture sets.
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Solver
Search
space
size

Fitting
posture

Parameter type

fiso lo ls α fiso, lo, ls
Muscle

geometry

fiso, lo, ls
+ muscle
geometry

R
A

C
O

S

L
ar

ge qfit
1 60 ˘ 1 91 ˘ 16 58 ˘ 18 16 ˘ 2 96 ˘ 24 100 ˘ 20 112 ˘ 26

qfit
2 59 ˘ 13 84 ˘ 24 58 ˘ 17 15 ˘ 2 90 ˘ 2 98 ˘ 20 112 ˘ 26

qfit
3 60 ˘ 13 81 ˘ 17 61 ˘ 18 14 ˘ 5 100 ˘ 19 100 ˘ 20 107 ˘ 29

M
ed

iu
m qfit

1 47 ˘ 6 51 ˘ 117 52 ˘ 15 11 ˘ 1 71 ˘ 8 49 ˘ 13 85 ˘ 9

qfit
2 46 ˘ 5 52 ˘ 16 55 ˘ 16 9 ˘ 2 71 ˘ 9 50 ˘ 13 84 ˘ 10

qfit
3 47 ˘ 7 55 ˘ 19 59 ˘ 12 7 ˘ 3 71 ˘ 8 50 ˘ 12 84 ˘ 1

S
m

al
l qfit

1 41 ˘ 5 36 ˘ 6 32 ˘ 5 5 ˘ 2 50 ˘ 6 18 ˘ 5 53 ˘ 16

qfit
2 38 ˘ 4 30 ˘ 6 33 ˘ 6 5 ˘ 2 51 ˘ 1 18 ˘ 5 50 ˘ 13

qfit
3 42 ˘ 7 39 ˘ 7 32 ˘ 8 4 ˘ 2 55 ˘ 7 19 ˘ 5 55 ˘ 15

G
E
N

E
T

IC
A

L
G

O
R

IT
H

M L
ar

ge qfit
1 134 ˘ 49 283 ˘ 201 132 ˘ 13 38 ˘ 9 146 ˘ 47 246 ˘ 38 ˚

qfit
2 117 ˘ 33 238 ˘ 104 140 ˘ 5 42 ˘ 10 166 ˘ 26 226 ˘ 55 ˚

qfit
3 114 ˘ 23 284 ˘ 239 107 ˘ 15 58 ˘ 14 160 ˘ 52 307 ˘ 117 ˚

M
ed

iu
m qfit

1 110 ˘ 31 127 ˘ 19 109 ˘ 14 26 ˘ 10 127 ˘ 18 104 ˘ 36 ˚

qfit
2 95 ˘ 45 140 ˘ 33 111 ˘ 16 30 ˘ 9 145 ˘ 69 106 ˘ 31 ˚

qfit
3 106 ˘ 29 116 ˘ 38 116 ˘ 3 52 ˘ 6 116 ˘ 49 99 ˘ 22 ˚

S
m

al
l qfit

1 93 ˘ 22 90 ˘ 26 82 ˘ 26 19 ˘ 9 105 ˘ 22 20 ˘ 4 ˚

qfit
2 67 ˘ 9 81 ˘ 55 122 ˘ 27 29 ˘ 9 114 ˘ 24 43 ˘ 24 ˚

qfit
3 104 ˘ 22 140 ˘ 5 127 ˘ 8 36 ˘ 16 100 ˘ 19 59 ˘ 14 ˚

Table 4.5: Rounded mean and standard deviation (in N) of the discretized distance between
the produced and expected force polytope in every posture defined in Qfit

3 , for each best solution
over the 5 trials.

Solver
Search
space
size

Fitting
posture

Parameter type

fiso lo ls α fiso, lo, ls
Muscle

geometry

fiso, lo, ls
+ muscle
geometry

R
A

C
O

S

L
ar

ge

qfit
1 105 ˘ 24 104 ˘ 19 92 ˘ 17 28 ˘ 9 116 ˘ 48 127 ˘ 18 130 ˘ 17

qfit
2 100 ˘ 21 116 ˘ 19 107 ˘ 13 21 ˘ 6 161 ˘ 71 124 ˘ 24 149 ˘ 12

qfit
3 84 ˘ 21 111 ˘ 35 102 ˘ 24 29 ˘ 9 134 ˘ 32 126 ˘ 28 143 ˘ 24

qfit
4 104 ˘ 12 137 ˘ 11 106 ˘ 9 24 ˘ 10 126 ˘ 35 136 ˘ 20 142 ˘ 26

qfit
5 94 ˘ 25 135 ˘ 22 107 ˘ 16 26 ˘ 8 131 ˘ 31 134 ˘ 17 149 ˘ 12

qfit
6 110 ˘ 15 116 ˘ 17 94 ˘ 15 26 ˘ 3 154 ˘ 75 124 ˘ 22 137 ˘ 15

M
ed

iu
m

qfit
1 74 ˘ 21 78 ˘ 22 75 ˘ 27 18 ˘ 3 102 ˘ 15 110 ˘ 5 109 ˘ 24

qfit
2 89 ˘ 18 87 ˘ 22 70 ˘ 20 16 ˘ 6 91 ˘ 24 98 ˘ 24 119 ˘ 9

qfit
3 82 ˘ 26 95 ˘ 29 75 ˘ 20 19 ˘ 4 106 ˘ 17 102 ˘ 25 126 ˘ 13

qfit
4 86 ˘ 15 87 ˘ 17 78 ˘ 22 19 ˘ 6 100 ˘ 16 106 ˘ 6 130 ˘ 4

qfit
5 85 ˘ 22 88 ˘ 21 83 ˘ 11 17 ˘ 2 108 ˘ 14 107 ˘ 6 122 ˘ 13

qfit
6 75 ˘ 18 89 ˘ 22 75 ˘ 28 16 ˘ 4 96 ˘ 15 88 ˘ 10 103 ˘ 25

S
m

al
l

qfit
1 61 ˘ 8 44 ˘ 14 43 ˘ 8 9 ˘ 4 62 ˘ 6 22 ˘ 6 86 ˘ 13

qfit
2 49 ˘ 10 45 ˘ 17 54 ˘ 7 6 ˘ 2 61 ˘ 16 30 ˘ 4 87 ˘ 17

qfit
3 53 ˘ 5 53 ˘ 14 54 ˘ 6 15 ˘ 1 68 ˘ 12 35 ˘ 9 74 ˘ 28

qfit
4 56 ˘ 6 54 ˘ 9 45 ˘ 11 12 ˘ 2 64 ˘ 12 31 ˘ 11 87 ˘ 19

qfit
5 46 ˘ 10 48 ˘ 15 52 ˘ 10 4 ˘ 2 63 ˘ 17 35 ˘ 7 82 ˘ 15

qfit
6 55 ˘ 9 50 ˘ 10 55 ˘ 16 12 ˘ 3 67 ˘ 18 34 ˘ 7 79 ˘ 14

G
E
N

E
T

IC
A

L
G

O
R

IT
H

M

L
ar

ge

qfit
1 106 ˘ 28 221 ˘ 15 159 ˘ 28 33 ˘ 7 141 ˘ 27 357 ˘ 137 ˚

qfit
2 132 ˘ 66 173 ˘ 104 146 ˘ 32 54 ˘ 7 194 ˘ 72 482 ˘ 240 ˚

qfit
3 118 ˘ 22 253 ˘ 47 147 ˘ 44 81 ˘ 15 150 ˘ 41 432 ˘ 299 ˚

qfit
4 138 ˘ 38 180 ˘ 95 210 ˘ 20 56 ˘ 12 189 ˘ 57 384 ˘ 119 ˚

qfit
5 180 ˘ 48 195 ˘ 71 164 ˘ 16 73 ˘ 29 179 ˘ 16 343 ˘ 191 ˚

qfit
6 120 ˘ 14 175 ˘ 83 173 ˘ 33 78 ˘ 24 167 ˘ 22 422 ˘ 280 ˚

M
ed

iu
m

qfit
1 119 ˘ 15 138 ˘ 9 129 ˘ 11 30 ˘ 2 138 ˘ 33 113 ˘ 19 ˚

qfit
2 110 ˘ 32 123 ˘ 16 99 ˘ 5 33 ˘ 19 173 ˘ 46 130 ˘ 22 ˚

qfit
3 99 ˘ 16 146 ˘ 19 120 ˘ 19 70 ˘ 8 148 ˘ 18 91 ˘ 30 ˚

qfit
4 154 ˘ 51 219 ˘ 54 225 ˘ 27 34 ˘ 15 163 ˘ 46 179 ˘ 46 ˚

qfit
5 174 ˘ 39 169 ˘ 42 148 ˘ 22 68 ˘ 16 193 ˘ 53 128 ˘ 37 ˚

qfit
6 96 ˘ 20 229 ˘ 47 119 ˘ 23 53 ˘ 12 155 ˘ 34 114 ˘ 21 ˚

S
m

al
l

qfit
1 95 ˘ 23 103 ˘ 14 99 ˘ 17 18 ˘ 5 101 ˘ 35 43 ˘ 5 ˚

qfit
2 130 ˘ 47 101 ˘ 24 84 ˘ 16 31 ˘ 6 135 ˘ 34 57 ˘ 18 ˚

qfit
3 93 ˘ 11 136 ˘ 7 127 ˘ 7 42 ˘ 16 113 ˘ 23 73 ˘ 20 ˚

qfit
4 112 ˘ 14 169 ˘ 40 198 ˘ 64 17 ˘ 1 124 ˘ 24 60 ˘ 29 ˚

qfit
5 143 ˘ 38 84 ˘ 16 96 ˘ 16 68 ˘ 16 122 ˘ 31 58 ˘ 30 ˚

qfit
6 88 ˘ 25 111 ˘ 30 84 ˘ 24 39 ˘ 12 99 ˘ 34 105 ˘ 32 ˚

Table 4.6: Rounded mean and standard deviation (in N) of the discretized distance between
the produced and expected force polytope in every posture defined in Qfit

6 , for each best solution
over the 5 trials.

The three tables are analyzed at the same time, as they show common trends and
allow direct comparisons. The analysis presented in the following is to be understood
from a fitting perspective, consequently allowing us to understand the extent to which
the optimization process achieves convergence.
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Solvers comparison: In all conditions, the RACOS solver consistently outperforms
the genetic algorithm (GA). Notably, RACOS successfully finds solutions even in the
challenging case where nearly all muscle parameters (except pennation angles) are con-
sidered. In contrast, the GA fails to find any feasible solutions that produce computable
force polytopes. This difference in performance is consistent with the nature of each al-
gorithm’s search process: RACOS learns the structure of the search space as it evaluates
solutions, so that it avoids non-computable regions. Conversely, the genetic algorithm
relies on uniform sampling of the search space for its initial solutions.

Search spaces and their enlargement complexities: When considering both pos-
ture sets and both solvers, the search space size has a noticeable impact on fitting accuracy.
Smaller search spaces generally lead to better overall force polytope fitting in all postures,
while larger spaces, which may require longer search times to ensure better convergence,
lead to solutions with lower quality. The same behavior is also observed for medium search
spaces, whose fiting force feasible sets are generally better than in the largest search space.

Based on thes observations, we shall dive further into the analysis and introduce a
novel index, termed enlargement complexity. Its goal is to evaluate how a solver has
difficulties in finding a solution fitting the reference force feasible sets according to how
large the search space is. It is computed as follows: 1) consider a solver noted Solver
and two search spaces A and B such that B Ă A; 2) for a specific parameter type,
the optimization process is run 5 times using the search space A and 5 times using the
search space B; 3) for a fixed search space and for the associated found solutions θk,
k “ 1, . . . , 5, compute the produced force feasible sets in each considered posture and
average all these results; 4) the enlargement complexity of the solver for search space A
and B, noted ECpSolver, A{Bq, is the ratio of the mean distance value computed in 3) for
search space A over the mean distance value for search space B. This computation can
also be computed over the standard deviations instance of the mean.

To interpret this ratio, consider the following cases:

• ECpSolver, A{Bq “ 1 then this means that the solver did not have more difficulties
in searching through the space A than the B. We can say that A and B induced
equivalent difficulties for the chosen solver. Notice that necessarily, we should have
ECpSolver, A{Aq « 1 as the number of trials gets large;

• ECpSolver, A{Bq “ k ą 1, then it was globally more difficult for the solver to search
through the larger space A than B. We say that, for the solver, “A is k times more
complex than B for the chosen solver”;

• ECpSolver, A{Bq “ k ă 1, then it was globally easier for the solver to search through
the larger space A than B (which may be a rare case, since B is assumed to be
included in A).

This ratio has the previously defined meanings only if standard deviations found in
tables 4.5 and 4.6 are similar over force feasible set distances computed on all postures for
all trials for the considered search space and solver. In other words, found solutions over
all trials should produce force polytopes distance variations similar between postures. For
instance, this can be observed using posture set Qfit

3 in table 4.5, where for a considered
solver and a search space, standard deviations are roughly in the same order of magnitude.



Chapter 4. In silico musculoskeletal model muscle personalization 140

Consequently, as we are observing errors with the notion of order of magnitude, this index
can be thought as a quantitative assessment of qualitative observations on solutions’
produced force polytopes error. This index also allows us to bypass the fact that found
solutions produce force polytopes may or may not be close to the expected ones: it can
thus be seen as a rough normalization of solution’s quality over the size of search spaces.

Tables 4.7 and 4.8 present these enlargement complexities for both solvers in the
different fitting posture sets respectively.

Solver
Ratio
search
space

Parameter type

fiso lo ls α fiso, lo, ls
Muscle

geometry

fiso, lo, ls
+ muscle
geometry

RACOS
Large

Medium 1.3 p1.9q 1.6 p1.2q 1.1 p1.2q 1.7 p1.3q 1.4 p2.6q 2.0 p1.6q 1.3 p2.7q

Large
Small 1.5 p2.1q 2.5 p2.7q 1.8 p2.8q 3.2 p1.7q 1.8 p2.5q 5.4 p3.9q 2.1 p1.8q

GA
Large

Medium 1.2 p1.0q 2.1 p5.9q 1.1 p1.5q 1.3 p1.0q 1.2 p0.8q 2.5 p2.8q ˚

Large
Medium 1.4 p1.5q 2.6 p4.2q 1.1 p0.6q 1.6 p1.1q 1.5 p1.9q 6.4 p3.6q ˚

Table 4.7: Solver enlargement complexities computed for both solvers and a fixed muscle
parameter type, considering fitting postures in Qfit

3 .

Solver
Ratio
search
space

Parameter type

fiso lo ls α fiso, lo, ls
Muscle

geometry

fiso, lo, ls
+ muscle
geometry

RACOS
Large
Small 1.1 p1.1q 1.4 p1.1q 1.3 p0.8q 1.5 p1.8q 1.4 p3.1q 1.3 p1.3q 1.2 p1.0q

Large
Small 1.9 p2.3q 2.5 p1.8q 2.0 p1.5q 2.6 p1.6q 2.2 p4.0q 4.1 p2.4q 1.7 p1.0q

GA
Large
Small 1.0 p1.1q 1.2 p1.3q 1.2 p0.8q 1.3 p1.1q 1.1 p1.1q 3.2 p4.9q ˚

Large
Small 1.2 p1.3q 1.7 p1.8q 1.5 p0.7q 1.7 p1.2q 1.5 p1.4q 6.1 p6.5q ˚

Table 4.8: Solver enlargement complexities computed for both solvers and a fixed muscle
parameter type, considering fitting postures in Qfit

6 .

The first observation is that for all parameter types (except muscle geometry), the
solver enlargement complexities are similar (in between 1.5 and 3.2 for those computed
with the RACOS solver for the Large/Small ratio search space, for instance). The second
is that for the Large/Small ratio search space, and for both solvers, the enlargement
complexity computed for optimizations on muscle geometry parameters show a larger
number than the others parameters. This suggests that as the search space increases, the
optimization process becomes much more chalenging for muscle geometry parameters.
It should be noted that this does not mean that muscle geometry parameters are more
complicated to optimize, but that a larger search space size increases the optimization
difficulties for this parameter type. The third observation is that this phenomenom,
while qualitatively enunciated, seems to occur using both solvers. Consequently, while
both solvers have different optimization strategies, they both encounter this enlargement
complexity. The fourth and final observation requires to consider these computed indices
for RACOS only and both posture sets (both tables), and the columns associated to the
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combination of parameters, namely the column fiso, lo, ls for force-generating parameters,
the column muscle geometry and the both of them in the last column. The enlargement
complity for the Large/Small ratio search space in the last column (2.1 for posture set Qfit

3

and 1.7 for posture set Qfit
6 ) is quite close to the one computed for the force-generating

parameters. This suggests, to some extent, that the enlargement complexity induced
from a larger search space for muscle geometry parameters is not a strong factor in
the enlargement complexity for all parameters optimizations (using RACOS). We recall
that this does not mean that the optimization for all parameters is not more complex
(it has more parameters to consider for instance), but instead that finding a solution
for a larger search space will be more difficult than with a smaller search space. An
important interpretation is that essentially, muscle geometry parameters do not seem
to be at the center of what makes more difficult the optimization process with RACOS
when considering all parameters. To some extend, this implies that RACOS have more
difficulties in finding a solution in a larger space when considering all parameters due to
the force-generating parameters, i.e. the objective function seems to be more sensitive to
force-generating parameters than muscle geometry. This is important in regard to what
the focus should be on when personalizing Stanford’s uppr limb musculoskeletal model
when considering almost all muscle parameters. However, we could not observe this for
the genetic algorithm since it did not find any computable solution.

Overall, the genetic algorithm solver seems to be better than the RACOS solver,
as it maintains its exploration capabilities in larger search spaces better than RACOS,
except for muscle geometry parameters. Thus, the infeasibility of found solutions for
the combination of force-generating and muscle geometry parameters using the genetic
algorithm might reflect the difficulties of GA’s to handle high-dimensionality.

Pennation angles: Pennation angle parameters consistently produce the smallest mean
and standard deviation error of the distance between computed and reference force poly-
topes. This observation aligns with the muscle force generation model, where the cosine
of the pennation angle acts as a multiplicative factor of the muscle fiber force-length rela-
tionship. Because pennation angles are generally small in upper limb muscles (Holzbaur
et al., 2005), even within the largest search space (e.g., the maximum value for the sternal
pectoralis major is 30°, with cosp30°q « 0.87), they have a limited impact on muscle force
generation. Consequently, initial force polytopes generated from random solutions are
already relatively close to the reference polytopes, as shown in figure 4.34, which depicts
the force polytope produced in posture qfit

5 by one of the worst solutions identified. This
solution, found by the genetic algorithm in the fifth trial using a large search space and 6
postures, exhibited the highest cost among all cases involving pennation angle parameters.

Fitting posture sets: Posture set Qfit
3 show better results for all cases than posture

set Qfit
6 . Since using 3 or 6 postures lead to the same convergence behavior for both

algorithms and the different search spaces, we shall not interpret this to lightly. Indeed,
the time computation limit of a run in both posture sets were identical, so we might have
observed better results using 6 postures by increasing the time computation. However,
runtime was not considered to be a hyperparameter, as the goal of this study is to gauge
the sensibility of muscle parameters for force feasible set production. Furthermore, while
the use of posture set Qfit

6 hints at the difficulty of converging with added postures, it may
be assumed that an overfitting situation occurs when using 3 postures. However, this can



Chapter 4. In silico musculoskeletal model muscle personalization 142

400
200

0
200

400

x

400
200
0

200
400

y

400 200 0 200 400z 400 200 0 200 400
x

400
200
0

200
400

y

400
200
0

200
400

z

Force polytope in fitting posture 5. Cost = 97.0

400
200
0

200
400

x

400
200
0

200
400

y

4002000200400 z

400
200

0
200

400

x

400
200
0

200
400

y

400 200 0 200 400z 400 200 0 200 400
x

400
200
0

200
400

y

400
200
0

200
400

z

Force polytope in fitting posture 5. Cost = 97.0

400
200
0

200
400

x

400
200
0

200
400

y

4002000200400 z

Figure 4.34: Comparison in fitting posture 5 of reference force polytope (second row, in blue)
and the force polytope produced (first and second rows, in red) by the worst solution (in cost)

found from all pennation angle parameter type optimizations. The solution associated
hyperparameters are: genetic algorithm solver, large search space, posture set Qfit

6 . Its cost is of
97 Newton in this posture. The expected force polytope shape is preserved.

be only confirmed (or not) by studying the distance between solution force polytopes and
the reference ones in validation postures.

Accuracy of muscle parameters

For each parameters set considered, their 3 different search spaces and either genetic
algorithm (yellow cells) or RACOS (blue cells) solver used, a best solution has been
computed 5 times. The table 4.9 shows how, in the first and fourth trial, the found
solution compares to the initial set of parameters in Stanford. For other trials, results are
similar. Combination of parameters are not shown as it becomes challenging to interpret
different measurement units at the same time.

Three comparison methods are used: Minimum computes over all 50 muscles the
smallest range between the parameter found and the initial parameter in Stanford’s model;
Maximal the largest range; and Mean ˘ std computes the mean and standard deviation of
all ranges. For the muscle geometry, a similar computing method is applied by considering
also all path points parametrization describing a muscle. All errors are rounded to their
respective unit of measure. This procedure allows to gauge how the found solutions consist
of parameters very close to the expected Stanford’s parameters (if the minimal error is
close to 0), or close to the search space bounds (when the maximal error is near the
interval range defined in 4.1). The mean and std of ranges allows to see if the algorithm
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Parameter
type

Search space
size

Error
measure

Best solution - Trial 4
(using 3 postures)

Best solution - Trial 4
(using 6 postures)

RACOS GA RACOS GA

Maximal
isometric

force
fiso (in N)

Large
fM
iso ˘ 300 N

Minimum 3 18 4 13

Maximum 284 300 300 300

Mean ˘ std 139 ˘ 88 224 ˘ 11 136 ˘ 87 225 ˘ 112

Medium
fM
iso ˘ 200 N

Minimum 5 14 3 22

Maximum 200 200 200 200

Mean ˘ std 90 ˘ 64 165 ˘ 64 97 ˘ 54 161 ˘ 65

Small
fM
iso ˘ 100 N

Minimum 0 14 1 14

Maximum 99 100 95 100

Mean ˘ std 43 ˘ 31 89 ˘ 24 48 ˘ 27 89 ˘ 23

Optimal
fiber length
lo (in mm)

Large
lMo ˘ 30 mm

Minimum 0 8 0 8

Maximum 30 30 30 30

Mean ˘ std 14 ˘ 10 29 ˘ 4 15 ˘ 9 30 ˘ 3

Medium
lMo ˘ 20 mm

Minimum 0 7 0 8

Maximum 19 20 20 20

Mean ˘ std 10 ˘ 6 20 ˘ 2 9 ˘ 6 20 ˘ 2

Small
lMo ˘ 10 mm

Minimum 0 8 0 8

Maximum 10 10 10 10

Mean ˘ std 5 ˘ 3 10 ˘ 0 5 ˘ 3 10 ˘ 0

Tendon
slack length
ls (in mm)

Large
lMs ˘ 30 mm

Minimum 0 2 0 0

Maximum 29 30 30 30

Mean ˘ std 12 ˘ 9 28 ˘ 6 15 ˘ 8 28 ˘ 6

Medium
lMs ˘ 20 mm

Minimum 0 2 0 0

Maximum 19 20 20 20

Mean ˘ std 10 ˘ 6 19 ˘ 3 8 ˘ 6 19 ˘ 4

Small
lMs ˘ 10 mm

Minimum 0 2 0 0

Maximum 13 15 17 15

Mean ˘ std 5 ˘ 3 10 ˘ 1 5 ˘ 3 10 ˘ 2

Pennation
angle

α (in degrees)

Large
αM ˘ 20°

Minimum 0 0 0 0

Maximum 20 20 18 20

Mean ˘ std 7 ˘ 5 12 ˘ 7 8 ˘ 5 14 ˘ 7

Medium
αM ˘ 10°

Minimum 0 0 0 0

Maximum 10 10 10 10

Mean ˘ std 5 ˘ 3 7 ˘ 4 4 ˘ 3 7 ˘ 3

Small
αM ˘ 5°

Minimum 0 0 0 0

Maximum 5 5 5 5

Mean ˘ std 2 ˘ 1 4 ˘ 2 3 ˘ 1 4 ˘ 1

Muscle
geometry
(in mm)

Large
pMi ˘ 10 mm

Minimum 0 10 0 10

Maximum 10 10 10 10

Mean ˘ std 5 ˘ 3 10 ˘ 0 5 ˘ 3 10 ˘ 0

Medium
pMi ˘ 5 mm

Minimum 0 5 0 5

Maximum 5 5 5 5

Mean ˘ std 3 ˘ 1 5 ˘ 0 3 ˘ 1 5 ˘ 0

Small
pMi ˘ 1 mm

Minimum 0 1 0 1

Maximum 1 1 1 1

Mean ˘ std 0 ˘ 0 1 ˘ 0 1 ˘ 0 1 ˘ 0

Table 4.9: fM
iso, l

M
o , lMs and αM refer respectively to the maximal isometric force, optimal fiber

length, tendon slack length and pennation angle of muscle M in Stanford’s model (Holzbaur
et al., 2005).

was converging towards (close to 0) the expected solution or in the contrary, in the opposite
direction (close to the search space bounds). Combining the three measures, it can be seen
that RACOS produced solutions which tend to gravitate in between Stanford’s solution
and the search space bound (the mean being half of the distance between Stanford’s
parameters and the search space bound). It indicates that there are roughly half of the
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found parameters which are close to Stanford’s parameters.

When using a genetic algorithm as a solver, in the contrary it can be observed than
the solution is closer to the search space bound (the mean is closer to the maximum),
indicating that either it must take a longer time for the GA to go towards the solution, or
it is stuck in a local minimum. The first case can be refuted, as this phenomenom can be
observed for every found solution. Since it happens for all trials, this indicates that GA
does not converges towards Stanford’s solution. This is a particularly interesting situation:
this indicates that potential solutions might lie almost everywhere in a considered search
space. Since multiple types of search spaces are considered, it is relevant to insist that
the phenomenom occurs for each of the smallest search spaces: this is what allows us to
infer on the highly irregularity of the search space - it contains a lot of local minima.

Accuracy of computed polytopes in the validation postures

All optimization processes found solutions, which do not necessarily produce force poly-
topes very close to the expected ones - except when using the RACOS solver in small
search space. Nevertheless, it is of interest to evaluate how these solutions generalize i.e.
how close they produce force polytopes in other postures to the expected ones. The two
tables 4.10 and 4.11 describe these polytope distances averaged over the 5 trials.

Solver
Search
space
size

Validation
posture

Parameter type

fiso lo ls α fiso, lo, ls
Muscle

geometry

fiso, lo, ls
+ muscle
geometry

R
A

C
O

S

L
ar

ge

qval
1 133 ˘ 37 175 ˘ 75 107 ˘ 27 18 ˘ 5 207 ˘ 59 ˚ ˚

qval
2 220 ˘ 36 119 ˘ 23 96 ˘ 15 29 ˘ 11 217 ˘ 38 132 ˘ 16 251˚

qval
3 378 ˘ 295 261 ˘ 97 201 ˘ 149 75 ˘ 26 158 ˘ 45 336˚ 629 ˘ 118

qval
4 160 ˘ 91 195 ˘ 62 185 ˘ 60 50 ˘ 19 260 ˘ 72 177 ˘ 63 458 ˘ 290

M
ed

iu
m

qval
1 95 ˘ 8 108 ˘ 75 85 ˘ 22 11 ˘ 3 152 ˘ 67 ˚ 180˚

qval
2 207 ˘ 12 86 ˘ 24 86 ˘ 22 34 ˘ 14 215 ˘ 52 84 ˘ 27 152 ˘ 48

qval
3 306 ˘ 128 192 ˘ 107 116 ˘ 11 46 ˘ 26 154 ˘ 49 204 ˘ 100 132 ˘ 22

qval
4 202 ˘ 87 102 ˘ 48 100 ˘ 35 25 ˘ 10 137 ˘ 26 84 ˘ 21 220 ˘ 73

Sm
al

l

qval
1 71 ˘ 22 52 ˘ 10 44 ˘ 12 7 ˘ 5 91 ˘ 26 ˚ ˚

qval
2 150 ˘ 23 52 ˘ 24 53 ˘ 14 18 ˘ 9 150 ˘ 38 65 ˘ 16 97 ˘ 16

qval
3 127 ˘ 10 114 ˘ 35 79 ˘ 49 25 ˘ 15 179 ˘ 97 74 ˘ 62 116 ˘ 34

qval
4 83 ˘ 21 74 ˘ 6 59 ˘ 26 26 ˘ 7 117 ˘ 69 46 ˘ 31 96 ˘ 29

G
E

N
E

T
IC

A
L
G

O
R

IT
H

M

L
ar

ge

qval
1 245 ˘ 110 269 ˘ 78 179 ˘ 40 41 ˘ 12 219 ˘ 75 441˚ ˚

qval
2 161 ˘ 59 201 ˘ 91 158 ˘ 45 32 ˘ 7 168 ˘ 77 455˚ ˚

qval
3 226 ˘ 98 ˚ 297 ˘ 53 89 ˘ 18 198 ˘ 89 ˚ ˚

qval
4 312 ˘ 111 403 ˘ 121 256 ˘ 36 59 ˘ 18 257 ˘ 65 399 ˘ 277 ˚

M
ed

iu
m

qval
1 184 ˘ 77 363 ˘ 35 111 ˘ 23 30 ˘ 6 432 ˘ 128 ˚ ˚

qval
2 214 ˘ 55 135 ˘ 20 126 ˘ 15 30 ˘ 17 196 ˘ 71 118 ˘ 31 ˚

qval
3 232 ˘ 95 311 ˘ 156 156 ˘ 86 46 ˘ 13 259 ˘ 117 250 ˘ 101 ˚

qval
4 238 ˘ 111 213 ˘ 93 142 ˘ 41 25 ˘ 9 259 ˘ 63 169 ˘ 83 ˚

Sm
al

l

qval
1 105 ˘ 17 96 ˘ 11 69 ˘ 11 17 ˘ 7 177 ˘ 53 ˚ ˚

qval
2 177 ˘ 55 115 ˘ 41 86 ˘ 15 36 ˘ 17 155 ˘ 31 55 ˘ 21 ˚

qval
3 186 ˘ 70 137 ˘ 64 99 ˘ 10 18 ˘ 8 228 ˘ 132 80 ˘ 32 ˚

qval
4 107 ˘ 24 124 ˘ 11 122 ˘ 33 29 ˘ 13 138 ˘ 37 98 ˘ 53 ˚

Table 4.10: Mean and standard deviation (in Newton and rounded to the closest unit) over the
discretized distance between the produced and expected force polytopes over 5 trials in every
validation posture defined in Qval when the fitting process used posture set Qfit

3 .

Overall, we can not say which of the RACOS solver or the genetic algorithm is better,
since they produce average values found for RACOS are not necessarily below those of



Chapter 4. In silico musculoskeletal model muscle personalization 145

Solver
Search
space
size

Validation
posture

Parameter type

fiso lo ls α fiso, lo, ls
Muscle

geometry

fiso, lo, ls
+ muscle
geometry

R
A

C
O

S

L
ar

ge

qval
1 103 ˘ 29 182 ˘ 84 113 ˘ 34 27 ˘ 13 163 ˘ 66 ˚ 399 ˘ 184

qval
2 225 ˘ 17 139 ˘ 18 112 ˘ 19 48 ˘ 8 299 ˘ 131 204 ˘ 45 281 ˘ 211

qval
3 168 ˘ 91 165 ˘ 104 149 ˘ 47 86 ˘ 30 233 ˘ 152 489 ˘ 84 272 ˘ 210

qval
4 197 ˘ 109 167 ˘ 35 135 ˘ 67 44 ˘ 20 198 ˘ 110 157 ˘ 54 223 ˘ 95

M
ed

iu
m

qval
1 93 ˘ 16 65 ˘ 8 72 ˘ 28 16 ˘ 6 207 ˘ 98 ˚ ˚

qval
2 210 ˘ 23 83 ˘ 19 94 ˘ 33 35 ˘ 13 170 ˘ 37 142˚ 168 ˘ 31

qval
3 214 ˘ 84 179 ˘ 100 109 ˘ 17 47 ˘ 29 210 ˘ 104 100 ˘ 29 200 ˘ 170

qval
4 125 ˘ 77 139 ˘ 49 76 ˘ 33 33 ˘ 17 151 ˘ 60 119 ˘ 34 214 ˘ 144

Sm
al

l

qval
1 86 ˘ 18 46 ˘ 15 54 ˘ 13 9 ˘ 1 67˚ ˚ 295˚

qval
2 119 ˘ 50 56 ˘ 24 59 ˘ 13 15 ˘ 15 116 ˘ 37 48 ˘ 18 157 ˘ 35

qval
3 121 ˘ 45 105 ˘ 42 104 ˘ 15 32 ˘ 21 125 ˘ 56 100 ˘ 55 227 ˘ 130

qval
4 62 ˘ 34 65 ˘ 18 61 ˘ 21 28 ˘ 8 105 ˘ 65 43 ˘ 11 194 ˘ 57

G
E

N
E

T
IC

A
L
G

O
R

IT
H

M

L
ar

ge

qval
1 165 ˘ 25 238 ˘ 121 211 ˘ 122 43 ˘ 9 231 ˘ 63 ˚ ˚

qval
2 168 ˘ 64 288 ˘ 65 160 ˘ 81 40 ˘ 16 196 ˘ 81 342 ˘ 215 ˚

qval
3 124 ˘ 11 188 ˘ 57 316 ˘ 164 99 ˘ 42 210 ˘ 125 521˚ ˚

qval
4 151 ˘ 36 394 ˘ 362 202 ˘ 42 64 ˘ 7 217 ˘ 62 430 ˘ 258 ˚

M
ed

iu
m

qval
1 148 ˘ 28 507 ˘ 148 100 ˘ 19 28 ˘ 5 168 ˘ 50 ˚ ˚

qval
2 170 ˘ 71 114 ˘ 13 101 ˘ 8 46 ˘ 7 214 ˘ 128 129 ˘ 24 ˚

qval
3 228 ˘ 145 724 ˘ 31 132 ˘ 22 53 ˘ 34 117 ˘ 19 191 ˘ 14 ˚

qval
4 127 ˘ 39 270 ˘ 60 155 ˘ 15 39 ˘ 23 198 ˘ 24 144 ˘ 23 ˚

Sm
al

l

qval
1 128 ˘ 23 92 ˘ 16 86 ˘ 10 16 ˘ 8 158 ˘ 100 ˚ ˚

qval
2 141 ˘ 53 92 ˘ 32 78 ˘ 31 38 ˘ 15 114 ˘ 19 80 ˘ 2 ˚

qval
3 137 ˘ 32 143 ˘ 64 110 ˘ 20 54 ˘ 11 168 ˘ 53 90 ˘ 34 ˚

qval
4 101 ˘ 9 145 ˘ 48 97 ˘ 34 34 ˘ 3 131 ˘ 48 71 ˘ 32 ˚

Table 4.11: Mean and standard deviation (in Newton and rounded to the closest unit) over the
discretized distance between the produced and expected force polytopes over 5 trials in every
validation posture defined in Qval when the fitting process used posture set Qfit

6 .

GA in specific cases (for instance, consider the small search space, the third validation
posture qval

3 and the pennation angle parameter column in table 4.10).

The number of postures seems to slightly influences solution’s outcomes in validation
postures, but this depends on the used solver and the parameter type considered. For
instance, the optimal fiber length and pennation angle parameters, but also the combi-
nation of force-generating parameters, produce better average outcomes using 6 fitting
postures. However, the reverse occurs for force-generating parameters combined with
muscle geometry, in which the use of 3 fitting postures instead of 6 leads to better average
results for each validation postures. Due to the slight differences between the compared
average values, we can not assume that using 6 fitting postures increases the validation
quality of the solutions.

In general, pennation angle results seem to present greater predictability than other
parameters for both solvers. In particular, in medium and small search spaces, the average
cost of its produced force polytopes are below 50.

Concerning overfitting and underfitting, prediction results show us that using large
search spaces involves both non-adequate fitted and predicted polytopes, as figure 4.35
shows. The cost of a predicted polytope is less than a fitted polytope. Since also the
reverse is found in the results (better fitting over prediction), it cannot be concluded in
general that the solvers are overfitting or underfitting.
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Force polytope in fitting posture 5. Cost = 253.0
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Force polytope in validation posture 4. Cost = 187.0
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Figure 4.35: Comparison in fitting posture 5 and validation posture 4 of reference force
polytope (in blue) and the force polytope produced the best solution (in cost) found from the

fourth run of muscle geometry parameter type optimizations, configured with hyperparameters:
RACOS solver, large search space, posture set Qfit

3 .

It it also worthy to note that optimizations based on muscle geometry parameters
in small search spaces have a better prediction quality, on average, the optimizations on
force-generating parameters. However, this is at the cost of not being able to compute
force polytopes in the first validation posture. Figure 4.36 shows an example of a polytope
of a solution found using optimization on muscle parameters (with GA, 6 fitting postures),
while figure 4.37 is produced from optimization on force-generating parameters in the same
conditions.



Chapter 4. In silico musculoskeletal model muscle personalization 147

400
200

0
200

400

x

400
200
0

200
400

y

400 200 0 200 400z 400 200 0 200 400
x

400
200
0

200
400

y

400
200
0

200
400

z

Force polytope in fitting posture 4. Cost = 69.0

400
200
0

200
400

x

400
200
0

200
400

y

4002000200400 z

400
200

0
200

400

x

400
200
0

200
400

y

400 200 0 200 400z 400 200 0 200 400
x

400
200
0

200
400

y

400
200
0

200
400

z

Force polytope in validation posture 2. Cost = 81.0
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Figure 4.36: Comparison in fitting posture 4 and validation posture 2 of reference force
polytope (in blue) and the force polytope produced the best solution (in cost) found from the

fourth run of muscle geometry parameter type optimizations, configured with hyperparameters:
GA solver, large search space, posture set Qfit

6 .
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400
200
0

200
400

x

400
200
0

200
400

y

4002000200400 z

Figure 4.37: Comparison in fitting posture 4 and validation posture 2 of reference force
polytope (in blue) and the force polytope produced the best solution (in cost) found from the
fourth run of forge-generating parameter type optimizations, configured with hyperparameters:

GA solver, large search space, posture set Qfit
6 .
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4.2.5 Summary

In this part, derivative-free optimization processes were run to identify various muscle
parameters of Stanford’s musculoskeletal model directly from force feasible sets modeled
as force polytopes and computed in multiple postures.

Force feasible sets are generated by considering all muscle maximal exertable forces as
well as their geometry which allows to characterize their muscle path so that maximal fea-
sible torques can be computed and the force feasible set is retrieved from the intersection
of the torque feasible set with the image of the Jacobian transpose.

In order to do so, our approach was to search through all parameters included in Stan-
ford’s upper limb musculoskeletal model and to search for the solution producing force
polytopes sufficiently close to the expected ones i.e. those computed directly from Stan-
ford’s model initialized with its default muscle parameters. A drawback to this approach
is that it requires to compare 3D polytopes. We thus intersected each polytope by 13 lines
located at the center of the ellipsoid generated by the singular value decomposition of the
polytope vertices. These directions were selected to, when intersected with a polytope,
produce points approximately regularly spaced over the polytope surface. We called this
set of newly created points the discretized polytope (in 26 points). Consequently, two
polytopes are compared by computing the Hausdorff distance between their discretized
version.

Our approach was thus to explore muscle parameters in a specific search space around
the default values presented in Stanford’s upper limb model (Holzbaur et al., 2005), and
gauge the convergence towards these default values. Three search spaces, termed large,
medium and small, have been considered and account for observed biomechanical diversity
in muscle parameters between individuals. Essentially, the large search space has a range
of six times the order of magnitude of a considered parameter, the medium four times
and the small two times.

Two solvers were considered, either a genetic algorithm or RACOS (Yu et al., 2016), a
recent solver capable of handling high-dimensionality, non-convexity and non-differentiability
in an objective function to minimize. Considering two solver was crucial, in an attempt
to evaluate if the optimization difficulties do not depend on a specific solver stragy.

Also, it was of interest to consider various muscle parameters to vary, namely the
muscle maximal isometric forces, optimal fiber lengths, tendon slack lengths, pennation
angles and the muscles geometry described by path points. Two combinations were also
considered: the force-generating parameters containing maximal isometric forces, optimal
fiber lengths and tendon slack lengths parameters; and all force-generating with the muscle
geometry parameters. This variety of parameters to optimize allowed us to quantify
how a certain parameter type may increase the optimization difficulty of the combined
parameters when considering larger search spaces.

Besides, it is required to evaluate force polytopes on at least one posture, since their
shapes depend also on a posture. Also, considering multiple posture involve different
muscle maximal and minimal tensions so multiple postures should be considered when
optimizing on force-generating parameters. The further experimental conditions of chap-
ter 5 requires at 3 postures, so a first set of 3 postures, denoted Qfit

3 was considered. To
evaluate how this number of posture influences the optimization process, a second set of
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6 postures, Qfit
6 , was also considered. Those are denoted with a supscript fit to denote

their purpose: a solution should produce force polytopes on these postures, and each of
them are compared to the force polytopes of our reference solution to retrieve.

In the cases where a solution produces polytopes sufficiently close to the expected
ones, further investigation should be realized. A new set of 4 postures was thus defined
and named Qval. Force polytopes produced in these new postures were thus compared to
the ones to obtain, and it allowed us to quantify the predictability of a solution.

All optimization processes were run 5 times.

Results on fitted polytopes showed that, in average, the RACOS solver is always better
than the genetic algorithm at finding solutions fitting its polytopes. However, no perfect
solution was found. Their produced polytopes in the fitting postures varied considerably
depending on the parameters and search space sizes considered. As expected, the smaller
the search spaces, the better the results. Further investigations showed that from all the
fitting results in the various search space sizes considered, it was possible to quantify the
complexity of an optimization process according to the size of a search space, using a novel
index termed enlargement complexity. This index indicated us that when optimizing on
all parameters combined, the included muscle geometry parameters do not seem to be the
main responsible for the inherent difficulty of this optimization.

Results on the parameters of found solutions were also analyzed and allowed us to
describe where local minima are located. This assumed that all optimization processes
were stuck in a local minima - which was empirically assumed beforehand by analyzing
objective function values and the found solution parameters during each optimization
processes. The RACOS solver did seem to converge more towards the expected solution
than the genetic algorithm. This latest showed that it draw potential solutions near each
of the search spaces borders. All these results show that local minima may be present
almost everywhere, for each parameters.

Finally, results about predictability of the solutions were analyzed. It was observed
that optimizations on pennation angle parameters seem to produce satisfying force poly-
topes in other postures. However, all other parameter type seemed to failed to reach
a satisfying predictability quality - using either 3 or 6 postures. Further studies should
be effected over a much larger number of postures, but the posture choice matters as
well. While selected arbitrarily and for experimental conditions considerations, it is still
unknown if a selected posture could be more interesting for the optimization processes.

All of this section was about force feasible sets modeled using a T8 tension model, so
that they have a polytopic shape. The next section will dive into another representation,
namely the ellipsoidal approximation defined in chapter 4.
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4.3 Muscle parameters sensitivity via ellipsoidal ap-
proximation of force feasible sets

This section focuses on a different force feasible set model, namely the ellipsoidal approx-
imation of a force polytope. Essentially, as described in chapter 4, this representation
corresponds to the geometric construction of a force polytope by substituting the ortho-
topic representation of the tension set by an ellipsoid equivalent. This ellipsoid must how-
ever accounts for the geometric processes involved in the force feasible set construction:
the projection then intersection. When substituting an hyperrectangle by an ellipsoid,
the shape is modified, so are its characteristics: precisely, the volume. However, when
projected onto a much lower-dimensional subspace, an hyperrectangle does not have its
characteristics projected in the same way that an ellipsoid, so that their sizes are differ-
ent (with a difference increasing as the considered hyperrectangle dimensions increases).
Chapter 4 described a constant value depending on this dimension, which allows us to
compensate for this much lower volume inherent to the projection of an ellipsoidal shape.
In other words, the ellipsoid is dilated such that, after the projection, it behaves in vol-
ume like the hyperrectangle: their size are approximately the same. This dilation factor
is called the projection constant and is computable numerically. As such, force polytopes
can be represented by an ellipsoidal approximation, as the only thing varying between
these representation is the initial tension set shape and size.

In this section, we shall thus consider all the optimization processes effected in section
4.2 with force polytopes, but this time with their ellipsoidal approximations. The same
methodology is applied, but the results varies. First, the force ellipsoidal approximations
are explicitely computed for the initial Stanford’s musculoskeletal model for each postures
of the two fitting posture sets and the validation posture set. Then, results are presented
and analyzed and this section concludes with a summary of ellipsoid-related insights on
muscle parameters.

All considered hyperparameters of the previous section are identical (solvers, search
space sizes, muscle parameter types). The main difference lies in the force feasible set
representation and consequently the discretized distance function will not be interpreted
in the same manner as with force polytopes.

4.3.1 Fitting postures

As the considered postures are the same as in the optimization process with force polytope,
figures 4.38, 4.39, 4.40, 4.41, 4.42 and 4.43 show their associated force ellipsoidal approx-
imations produced with the reference musculoskeletal model parametrized by Stanford’s
muscles parameters.
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Force feasible set ellipsoidal approximation in fitting posture 1
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Figure 4.38: Force ellipsoidal approximation of the musculoskeletal model parametrized by
Stanford’s default muscle values in fitting posture qfit

1 . Units are in Newton.
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Force feasible set ellipsoidal approximation in fitting posture 2
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Figure 4.39: Force ellipsoidal approximation of the musculoskeletal model parametrized by
Stanford’s default muscle values in fitting posture qfit

2 . Units are in Newton.
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Force feasible set ellipsoidal approximation in fitting posture 3
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Figure 4.40: Force ellipsoidal approximation of the musculoskeletal model parametrized by
Stanford’s default muscle values in fitting posture qfit

3 . Units are in Newton.
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Force feasible set ellipsoidal approximation in fitting posture 4
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Figure 4.41: Force ellipsoidal approximation of the musculoskeletal model parametrized by
Stanford’s default muscle values in fitting posture qfit

3 . Units are in Newton.
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Force feasible set ellipsoidal approximation in fitting posture 5
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Figure 4.42: Force ellipsoidal approximation of the musculoskeletal model parametrized by
Stanford’s default muscle values in fitting posture qfit

4 . Units are in Newton.

−400

−200

0

200
400

x

−400

−200

0

200

400

y

−400−200
0

200
400

z −400 −200 0 200 400
x

−400

−200

0

200

400

y

−400

−200

0

200

400

z

Force feasible set ellipsoidal approximation in fitting posture 6
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Figure 4.43: Force ellipsoidal approximation of the musculoskeletal model parametrized by
Stanford’s default muscle values in fitting posture qfit

6 . Units are in Newton.

4.3.2 Validation postures

Similarly to the fitting postures, the following figures show the force polytopes computed
in their respective validation postures.
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Force feasible set ellipsoidal approximation in validation posture 1
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Figure 4.44: Ellipsoidal approximation of the force polytope of the musculoskeletal model
parametrized by Stanford’s default muscle values in validation posture qval

1 . Units are in
Newton.
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Force feasible set ellipsoidal approximation in validation posture 2

−400
−200

0
200
400

x

−400

−200

0

200

400

y

−400−2000200400
z

Figure 4.45: Ellipsoidal approximation of the force polytope of the musculoskeletal model
parametrized by Stanford’s default muscle values in validation posture qval

2 . Units are in
Newton.
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Figure 4.46: Ellipsoidal approximation of the force polytope of the musculoskeletal model
parametrized by Stanford’s default muscle values in validation posture qval

3 . Units are in
Newton.
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Force feasible set ellipsoidal approximation in validation posture 4
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Figure 4.47: Ellipsoidal approximation of the force polytope of the musculoskeletal model
parametrized by Stanford’s default muscle values in validation posture qval

4 . Units are in
Newton.

4.3.3 Experimental testbed

As the whole experimental testbed methodology is identifical to the one with force poly-
topes, we shall present the only major difference, which is the computation of this ellip-
soidal approximation.

Constructing the ellipsoidal approximation of the tension set. In this frame-
work, the feasible tension set in posture q computed for muscles M1, . . . ,M50 in Stanford’s
model.

As recalled in 3, the ellipsoidal approximation requires the use of the projection con-
stant defined for an integer n as λpℓn2 q ą 0, and is computed as follows:

λpℓn2 q “
2

?
π

Γpn
2

` 1q

Γpn
2

` 1
2
q

where Γ is the Euler gamma function defined for all z P C with strictly positive real part
as Γpzq “

ş`8

0
tz´1e´t dt.

In our case (50 muscles), we want to approximate a 50-dimensional hyperrectangle by
an ellipsoid, so that we shall compute:

λpℓ502 q “
2

?
π

Γp50
2

` 1q

Γp50
2

` 1
2
q

« 5.67

The ellipsoidal approximation of the feasible set T pqq in posture q is thus defined as:

T pqq “
␣

tpqq P R50
| tpqq “ 0.5 ¨ λpℓ502 q ¨ Dpqqu ` tminpqq, u P R50 and }u}2 ď 1

(

where tminpqq “ pt1minpqq, . . . , t50minpqqqT P R50 is the column vector containing the mini-
mal feasible tensions exertable by muscle Mi for i “ 1, . . . , 50, Dpqq “ diagpttimaxpqq ´

timinpqqui“1,...,50q P R50ˆ50, rtiminpqq, timaxpqqs is the feasible range of tensions produced by
muscle i at posture q.
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Ellipsoidal approximation construction algorithm. Explicit construction of the
projection of the tension ellipsoid T pqq onto the torque space (via ´LT pqq), then trans-
lated by ´Gpqq then intersected by im JT pqq is done using the hyperobjects Python pack-
age. This is a custom-made library which implements polytopes and ellipsoids force
feasible sets construction.

4.3.4 Results

As in the previous section, results are dividing into three parts: first, a thorough analysis
of the produced force feasible sets by the best solutions found over all optimizations is
regarded; then we look in more details over the parameters found in the best solutions, in
order to gauge where the solvers found a potential solutions. This allows us to gauge the
amount of potential local minima as well; and third, force ellipsoidal approximations are
computed in validation postures, in order to estimate the prediction quality of the found
solutions.

Each found solution after an optimization run have their force feasible ellipsoidal
approximation in each fitting posture compared to the one produced by Stanford’s. How-
ever, minimizing the discretized distance between ellipsoids (or other force feasible sets)
is not understandable in a usual manner. As a first result for this section, we observed
the produced ellipsoids in the fitting postures in order to derive an empiric rule to inter-
pret this discretized distance. Let’s denote by d the distance between a force ellipsoidal
approximation and a reference one in a same posture. These empiric values are defined
as follows:

• d ă 20: both ellipsoid surfaces overlap closely. Orientation is always preserved,
as well as the global proportions. When d is lower than 10, surfaces are almost
confounded (Fig 4.48);

• 20 ă d ă 30: ellipsoids exhibit similar orientation and relatively close centers, but
one is slightly included in the other (Fig. 4.49). The elongation seems to be more
preserved when d ă 30;

• 30 ă d ă 60: the orientations of both ellipsoid may be slightly different, and different
offsets start to be noticeable (Fig. 4.50). Also, elongation over the 3 ellipsoid axes
seem to be necessarily of the same proportion;

• 60 ă d to and both orientation, offsets and elongations vary considerably as d gets
large. It could be either one of these three ellipsoid attribute which vary, or all of
them at the same time (Fig. 4.51).

As we can see, the interpretation of the discretized distance is not identical to the
polytopic cases. This is mainly due to the difference in the discretization process between
polytopes and ellipsoids, in which ellipsoids are represented by 6 points on their surfaces
and polytopes with 26. The reader is also invited to have a look at all computed ellipsoids
to grasp the intuition on the meaning of the discretized distance when using ellipsoids12.

12https://gitlab.inria.fr/auctus-team/people/gautierlaisne/public/reconstruction_
stanford

https://gitlab.inria.fr/auctus-team/people/gautierlaisne/public/reconstruction_stanford
https://gitlab.inria.fr/auctus-team/people/gautierlaisne/public/reconstruction_stanford


Chapter 4. In silico musculoskeletal model muscle personalization 156

400
200

0
200

400

x

400
200
0

200
400

y

400 200 0 200 400z 400 200 0 200 400
x

400
200
0

200
400

y

400
200
0

200
400

z
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Figure 4.48: Comparison in fitting posture 4 of reference force ellipsoid (second row, in blue)
and the force ellipsoid produced the best solution (in cost) found from the third run of

pennation angle parameter type optimizations, configured with hyperparameters: GA solver,
small search space, posture set Qfit

3 . Its cost is of 10 Newton in this posture.
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Force feasible set ellipsoidal approximation in fitting posture 3. Cost = 38.0
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Figure 4.49: Comparison in fitting posture 3 of reference force ellipsoid (second row, in blue)
and the force ellipsoid produced the best solution (in cost) found from the fourth run of

maximal isometric force parameter type optimizations, configured with hyperparameters: GA
solver, small search space, posture set Qfit

3 . Its cost is of 38 Newton in this posture.
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Force feasible set ellipsoidal approximation in fitting posture 1. Cost = 49.0
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Figure 4.50: Comparison in fitting posture 1 of reference force ellipsoid (second row, in blue)
and the force ellipsoi produced the best solution (in cost) found from the third run of

force-generating parameter type optimizations, configured with hyperparameters: GA solver,
medium search space, posture set Qfit

3 . Its cost is of 49 Newton in this posture.
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Figure 4.51: Comparison in validation posture 1 of reference force ellipsoid (second row, in
blue) and the force ellipsoid produced the best solution (in cost) found from the third run of

optimal fiber length parameter type optimizations, configured with hyperparameters: GA
solver, large search space, posture set Qfit

3 . Its cost is of 121 Newton in this posture.
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Accuracy of computed ellipsoidal approximations in the fitting postures

Using the same presentation as with polytopes, three tables describe the distance values
for force ellipsoidal approximations computed in the fitting postures. The first table 4.12
ensures a condensed representation of the cost of each solution averaged over all trials,
whereas tables 4.13 (for fitting postures Qfit

3 ) and 4.14 (for fitting postures Qfit
6 ) dive into

more details regarding the produced force ellipsoids for each postures of a considered
fitting posture set.

Fitting
posture

set
Solver

Search
space
size

Parameter type

fiso lo ls α fiso, lo, ls
Muscle

geometry

fiso, lo, ls
+ muscle
geometry

Posture set
Qfit

3

RACOS
Large 44 ˘ 24 18 ˘ 4 12 ˘ 3 2 ˘ 1 31 ˘ 3 15 ˘ 8 36 ˘ 11

Medium 24 ˘ 21 11 ˘ 4 9 ˘ 2 1 ˘ 0 10 ˘ 3 11 ˘ 4 22 ˘ 9

Small 8 ˘ 3 5 ˘ 1 5 ˘ 1 1 ˘ 0 5 ˘ 3 1 ˘ 0 8 ˘ 3

GA
Large 103 ˘ 6 100 ˘ 25 55 ˘ 4 4 ˘ 0 125 ˘ 11 215 ˘ 40 ˚

Medium 64 ˘ 14 51 ˘ 4 29 ˘ 3 8 ˘ 0 80 ˘ 12 44 ˘ 4 ˚

Small 45 ˘ 18 26 ˘ 1 20 ˘ 1 5 ˘ 0 42 ˘ 6 6 ˘ 0 ˚

Posture set
Qfit

6

RACOS
Large 95 ˘ 7 36 ˘ 4 25 ˘ 6 3 ˘ 1 50 ˘ 15 50 ˘ 13 80 ˘ 20

Medium 48 ˘ 17 19 ˘ 7 19 ˘ 4 2 ˘ 1 43 ˘ 11 38 ˘ 5 50 ˘ 4

Small 14 ˘ 3 10 ˘ 2 9 ˘ 2 1 ˘ 0 18 ˘ 6 3 ˘ 2 30 ˘ 9

GA
Large 124 ˘ 13 151 ˘ 81 109 ˘ 9 6˘ 153 ˘ 11 432 ˘ 251 ˚

Medium 96 ˘ 12 75 ˘ 5 64 ˘ 3 9 ˘ 0 117 ˘ 14 84 ˘ 5 ˚

Small 59 ˘ 3 33 ˘ 2 28 ˘ 1 6 ˘ 0 68 ˘ 5 51 ˘ 1 ˚

Table 4.12: For a set of hyperparameters (both expressed as columns and rows), mean and
standard deviation (in N) of the cost function evaluated for the best solution for each of the 5
trials. A ˚ symbol denotes that no solution found over the 5 trials could produce computable
force feasible sets.

Solver
Search
space
size

Fitting
posture

Parameter type

fiso lo ls α fiso, lo, ls
Muscle

geometry

fiso, lo, ls
+ muscle
geometry

R
A

C
O

S

L
ar

ge

qfit
1 44 ˘ 24 16 ˘ 3 11 ˘ 3 2 ˘ 1 29 ˘ 14 15 ˘ 8 36 ˘ 11

qfit
2 44 ˘ 24 17 ˘ 4 11 ˘ 2 2 ˘ 1 30 ˘ 12 15 ˘ 8 36 ˘ 11

qfit
3 44 ˘ 25 17 ˘ 5 11 ˘ 2 2 ˘ 1 28 ˘ 16 15 ˘ 8 36 ˘ 11

M
ed

iu
m qfit

1 23 ˘ 20 11 ˘ 4 8 ˘ 2 1 ˘ 0 10 ˘ 3 11 ˘ 4 22 ˘ 9

qfit
2 23 ˘ 22 11 ˘ 4 7 ˘ 3 1 ˘ 0 10 ˘ 3 11 ˘ 4 22 ˘ 9

qfit
3 24 ˘ 22 11 ˘ 4 9 ˘ 2 1 ˘ 0 10 ˘ 3 11 ˘ 4 22 ˘ 9

Sm
al

l qfit
1 7 ˘ 4 5 ˘ 1 5 ˘ 1 1 ˘ 0 5 ˘ 3 1 ˘ 0 8 ˘ 3

qfit
2 8 ˘ 3 5 ˘ 1 5 ˘ 1 1 ˘ 0 5 ˘ 3 1 ˘ 0 8 ˘ 3

qfit
3 8 ˘ 3 5 ˘ 1 5 ˘ 1 1 ˘ 0 5 ˘ 3 1 ˘ 0 8 ˘ 3

G
E

N
E

T
IC

A
L
G

O
R

IT
H

M L
ar

ge

qfit
1 96 ˘ 8 96 ˘ 19 50 ˘ 4 3 ˘ 1 105 ˘ 17 153 ˘ 60 ˚

qfit
2 95 ˘ 10 98 ˘ 28 53 ˘ 5 4 ˘ 0 112 ˘ 26 173 ˘ 78 ˚

qfit
3 84 ˘ 27 95 ˘ 18 47 ˘ 5 4 ˘ 0 103 ˘ 18 194 ˘ 34 ˚

M
ed

iu
m qfit

1 56 ˘ 16 47 ˘ 4 23 ˘ 5 6 ˘ 1 65 ˘ 23 32 ˘ 12 ˚

qfit
2 58 ˘ 16 44 ˘ 8 27 ˘ 5 6 ˘ 1 72 ˘ 15 24 ˘ 6 ˚

qfit
3 55 ˘ 10 47 ˘ 11 27 ˘ 5 8 ˘ 0 74 ˘ 12 43 ˘ 4 ˚

Sm
al

l qfit
1 35 ˘ 4 19 ˘ 8 15 ˘ 3 4 ˘ 1 41 ˘ 10 5 ˘ 2 ˚

qfit
2 34 ˘ 4 23 ˘ 2 19 ˘ 2 4 ˘ 0 32 ˘ 3 6 ˘ 1 ˚

qfit
3 36 ˘ 3 25 ˘ 1 20 ˘ 1 5 ˘ 0 40 ˘ 4 6 ˘ 1 ˚

Table 4.13: Rounded mean and standard deviation (in N) of the discretized distance between
the produced and expected force ellipsoidal approximation in every posture defined in Qfit

3 , for
each best solution over the 5 trials.
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Solver
Search
space
size

Fitting
posture

Parameter type

fiso lo ls α fiso, lo, ls
Muscle

geometry

fiso, lo, ls
+ muscle
geometry

R
A

C
O

S

L
ar

ge

qfit
1 95 ˘ 7 27 ˘ 9 18 ˘ 10 2 ˘ 1 49 ˘ 15 48 ˘ 19 80 ˘ 20

qfit
2 91 ˘ 7 25 ˘ 8 23 ˘ 8 2 ˘ 1 49 ˘ 15 50 ˘ 17 74 ˘ 19

qfit
3 92 ˘ 8 36 ˘ 4 22 ˘ 8 2 ˘ 1 47 ˘ 13 50 ˘ 17 80 ˘ 20

qfit
4 73 ˘ 26 32 ˘ 7 22 ˘ 7 2 ˘ 1 49 ˘ 15 48 ˘ 16 75 ˘ 17

qfit
5 80 ˘ 19 35 ˘ 9 24 ˘ 6 2 ˘ 1 44 ˘ 7 49 ˘ 16 80 ˘ 20

qfit
6 60 ˘ 7 35 ˘ 4 23 ˘ 7 2 ˘ 1 42 ˘ 16 43 ˘ 8 80 ˘ 20

M
ed

iu
m

qfit
1 48 ˘ 17 17 ˘ 6 18 ˘ 4 1 ˘ 1 42 ˘ 10 34 ˘ 4 49 ˘ 6

qfit
2 48 ˘ 17 15 ˘ 6 19 ˘ 3 1 ˘ 1 43 ˘ 10 36 ˘ 8 50 ˘ 4

qfit
3 48 ˘ 17 18 ˘ 7 17 ˘ 3 1 ˘ 1 41 ˘ 12 38 ˘ 5 50 ˘ 4

qfit
4 36 ˘ 17 18 ˘ 6 18 ˘ 4 1 ˘ 1 41 ˘ 12 35 ˘ 10 50 ˘ 4

qfit
5 47 ˘ 17 18 ˘ 6 16 ˘ 4 1 ˘ 0 41 ˘ 9 37 ˘ 4 46 ˘ 4

qfit
6 42 ˘ 14 15 ˘ 6 17 ˘ 4 1 ˘ 1 40 ˘ 9 36 ˘ 5 50 ˘ 4

Sm
al

l

qfit
1 12 ˘ 5 8 ˘ 2 8 ˘ 2 1 ˘ 0 17 ˘ 5 3 ˘ 2 30 ˘ 9

qfit
2 13 ˘ 4 9 ˘ 3 7 ˘ 3 1 ˘ 0 16 ˘ 7 3 ˘ 2 30 ˘ 10

qfit
3 13 ˘ 3 7 ˘ 3 9 ˘ 2 1 ˘ 0 18 ˘ 6 3 ˘ 2 30 ˘ 9

qfit
4 14 ˘ 3 9 ˘ 2 9 ˘ 2 1 ˘ 0 18 ˘ 6 3 ˘ 2 26 ˘ 11

qfit
5 13 ˘ 4 9 ˘ 3 9 ˘ 2 1 ˘ 0 18 ˘ 6 3 ˘ 2 29 ˘ 9

qfit
6 13 ˘ 2 9 ˘ 3 6 ˘ 2 1 ˘ 0 18 ˘ 6 3 ˘ 2 29 ˘ 9

G
E

N
E

T
IC

A
L
G

O
R

IT
H

M

L
ar

ge

qfit
1 101 ˘ 18 142 ˘ 2 93 ˘ 17 4 ˘ 1 121 ˘ 39 198 ˘ 132 ˚

qfit
2 117 ˘ 26 190 ˘ 22 95 ˘ 7 5 ˘ 1 128 ˘ 31 176 ˘ 55 ˚

qfit
3 120 ˘ 13 186 ˘ 30 68 ˘ 14 5 ˘ 1 131 ˘ 24 305 ˘ 344 ˚

qfit
4 71 ˘ 33 179 ˘ 11 99 ˘ 17 6 ˘ 1 105 ˘ 24 59 ˘ 27 ˚

qfit
5 93 ˘ 30 67 ˘ 18 100 ˘ 11 5 ˘ 1 118 ˘ 21 432 ˘ 251 ˚

qfit
6 77 ˘ 33 138 ˘ 18 98 ˘ 19 5 ˘ 1 122 ˘ 24 245 ˘ 25 ˚

M
ed

iu
m

qfit
1 80 ˘ 27 60 ˘ 11 43 ˘ 16 7 ˘ 1 110 ˘ 24 75 ˘ 11 ˚

qfit
2 85 ˘ 23 66 ˘ 14 56 ˘ 6 7 ˘ 2 102 ˘ 16 70 ˘ 16 ˚

qfit
3 70 ˘ 20 64 ˘ 5 53 ˘ 10 9 ˘ 0 84 ˘ 17 69 ˘ 13 ˚

qfit
4 54 ˘ 26 58 ˘ 15 60 ˘ 4 8 ˘ 1 86 ˘ 30 74 ˘ 14 ˚

qfit
5 75 ˘ 23 49 ˘ 16 52 ˘ 8 9 ˘ 0 94 ˘ 25 73 ˘ 24 ˚

qfit
6 73 ˘ 22 62 ˘ 7 63 ˘ 3 8 ˘ 1 78 ˘ 19 49 ˘ 5 ˚

Sm
al

l

qfit
1 53 ˘ 4 24 ˘ 6 23 ˘ 6 4 ˘ 1 60 ˘ 18 35 ˘ 8 ˚

qfit
2 42 ˘ 10 20 ˘ 7 18 ˘ 5 5 ˘ 0 58 ˘ 10 32 ˘ 7 ˚

qfit
3 53 ˘ 9 33 ˘ 1 27 ˘ 1 5 ˘ 0 53 ˘ 4 16 ˘ 3 ˚

qfit
4 51 ˘ 7 27 ˘ 3 23 ˘ 4 5 ˘ 0 52 ˘ 16 50 ˘ 2 ˚

qfit
5 52 ˘ 10 27 ˘ 6 26 ˘ 1 5 ˘ 0 56 ˘ 9 51 ˘ 2 ˚

qfit
6 42 ˘ 16 19 ˘ 3 22 ˘ 2 5 ˘ 0 55 ˘ 15 21 ˘ 7 ˚

Table 4.14: Rounded mean and standard deviation (in N) of the discretized distance between
the produced and expected force ellipsoidal approximation in every posture defined in Qfit

6 , for
each best solution over the 5 trials.
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In the following, we shall enunciate several results directly drawn from the observation
of these tables. We shall also make some comparison observations based on previous
polytopic results, in order to emphasize the relevance of the ellipsoidal approach.

Solvers comparison: using ellipsoidal approximations, the RACOS solver outperforms
the genetic algorithm in all conditions. Based on the empiric interpretation of the dis-
cretized distance for ellipsoids (ă 20 seemed to be rather satisfying, and ă 10 much more),
it shall be noted that the RACOS solver produced very satisfying solutions for all param-
eters type in small search space, especially using 3 postures. However, we shall not draw
any conclusion on the found solution since this may be a strong overfitting. Nevertheless,
this result is a great improvement of force polytopes, which did not allow us to observe
solutions producing force polytopes very close to the expected one in difficult cases (with
parameters combined). So essentially, ellipsoidal representations seem to be a first step
to start an optimization process with relevant solutions.

Search spaces and their ratio enlargements: Similarly to force polytopes, the search
space size seems to influence the fitting accuracy, with smaller search sizes more favorable.

As such, tables 4.15 and 4.16 present enlargement complexity indices (c.f. dedicated
definition 4.2.4 in previous section) for fixed hyperparameters when using respectively 3
or 6 fitting postures.

Solver
Ratio
search
space

Parameter type

fiso lo ls α fiso, lo, ls
Muscle

geometry

fiso, lo, ls
+ muscle
geometry

RACOS
Large

Medium 1.9 p1.1q 1.6 p1.0q 1.3 p0.9q 2.2 p2.2q 2.9 p4.3q 1.3 p2.0q 1.6 p1.2q

Large
Small 5.8 p7.0q 3.1 p3.0q 2.5 p1.6q 4.1 p6.3q 5.6 p5.0q 16.6 (18.8) 4.6 p3.7q

GA
Large

Medium 1.8 p1.3q 2.1 p2.3q 1.9 p1.0q 0.5 p0.4q 1.5 p1.2q 4.9 p5.2q ˚

Large
Small 2.7 p5.1q 4.5 p3.5q 2.8 p1.6q 0.8 p1.4q 2.8 p2.6q 29.4 p52.2q ˚

Table 4.15: Solver enlargement complexities computed for both solvers and a fixed muscle
parameter type, considering fitting postures in Qfit

3 .

Solver
Ratio
search
space

Parameter type

fiso lo ls α fiso, lo, ls
Muscle

geometry

fiso, lo, ls
+ muscle
geometry

RACOS
Large

Medium 1.8 p1.1q 1.9 p1.3q 1.3 p2.1q 1.6 p1.5q 1.1 p1.4q 1.3 p2.4q 1.6 p4.1q

Large
Small 6.3 p5.7q 3.7 p2.7q 2.7 p3.2q 2.6 p4.3q 2.7 p2.5q 2.1 p0.4q 2.7 p2.0q

GA
Large

Medium 1.3 p1.3q 2.5 p3.8q 1.7 p1.7q 0.6 p1.0q 1.3 p1.1q 3.4 p11.2q ˚

Large
Small 2.0 p2.9q 6.0 p7.1q 4.0 p3.8q 1.0 p1.9q 2.2 p2.2q 6.9 p12.7q ˚

Table 4.16: Solver enlargement complexities computed for both solvers and a fixed muscle
parameter type, considering fitting postures in Qfit

6 .

When using 3 fitting postures, similar observations on enlargement complexities can
be made as with force polytopes, i.e. optimization on muscle geometry parameters seems
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to be more complex as the search space increases. Also, when optimizing on combined
force-generating and muscle geometry parameters (in the RACOS solver rows), since the
enlargement complexities for these parameters is not of the same amount of the one for
muscle geometry (4.6 vs. 16.6), it can be hypothesized that muscle geometry parameters
are not necessarily the major obstacle when optimizing on all combined parameters.

What is more interesting, though, is that this phenomenon does not occur when
optimizing on the fitting posture set Qfit

6 . A strict interpretation is that, when considering
ellipsoidal approximations instead of polytopes, the RACOS solver has less difficulties in
exploring a larger search space for the muscle geometry parameters when using 6 fitting
postures. This makes the ellipsoidal representation much more interesting in practice.

Also, since there is a noticeable difference between enlargement complexities for mus-
cle geometry parameter type between posture sets Qfit

3 and Qfit
6 , this implies that when

using ellipsoidal approximations, a number of 6 fitting postures seem to be sufficient to
reduce the difficulty of both genetic and RACOS algorithms to optimize on larger muscle
geometry search spaces.

Fitting posture sets: Posture set Qfit
3 show better results for all cases than posture

set Qfit
6 . As previous, since the runtime was the same for all optimizations for both

posture sets, the fitting on 6 postures took naturally more time as the force feasible set
computations required more run time, so the observed difference may arise from this time
limit.

Accuracy of muscle parameters

After gathering the best solution for each hyperparameters, we shall consider the absolute
difference between its values and Stanford’s parameters in order to describe how far is one
of the found muscle parameter from the expected one. The ranges minimum, maximum
and mean (and standard deviations) are computed and summarized in table 4.17.

Similar interpretations than with polytopes can be effected: the RACOS solver finds
solutions with parameters reparted all over a considered search space (as do the genetic
algorithm), but seems to find solutions whose average parameter errors are closer to the
expected solution than those from the genetic algorithm. This reflects the two different
strategies of the solvers, where RACOS tends towards giving solution in between the
search space center (the true solution) and the bounds, while the genetic algorithm seems
to return solutions mainly located towards the search bounds.

Since these observations occur for all considered search spaces, we interpret it as a
hint of a highly irregular space of solutions.
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Parameter
type

Search space
size

Error
measure

Best solution - Trial 1
(using 3 postures)

Best solution - Trial 4
(using 6 postures)

RACOS GA RACOS GA

Maximal
isometric

force
fiso (in N)

Large
fM
iso ˘ 300 N

Minimum 1 14 7 13
Maximum 296 300 300 300

Mean ˘ std 89 ˘ 81 244 ˘ 102 142 ˘ 89 239 ˘ 106

Medium
fM
iso ˘ 200 N

Minimum 0 13 0 14
Maximum 200 200 197 200

Mean ˘ std 74 ˘ 56 144 ˘ 73 73 ˘ 52 168 ˘ 63

Small
fM
iso ˘ 100 N

Minimum 1 13 0 13
Maximum 97 100 96 100

Mean ˘ std 40 ˘ 25 85 ˘ 28 37 ˘ 29 83 ˘ 28

Optimal
fiber length
lo (in mm)

Large
lMo ˘ 30 mm

Minimum 1 7 1 8
Maximum 29 30 29 30

Mean ˘ std 15 ˘ 9 29 ˘ 4 13 ˘ 9 30 ˘ 3

Medium
lMo ˘ 20 mm

Minimum 1 20 0 7
Maximum 20 20 19 20

Mean ˘ std 10 ˘ 6 20 ˘ 0 9 ˘ 6 20 ˘ 2

Small
lMo ˘ 10 mm

Minimum 1 8 0 7
Maximum 10 10 10 10

Mean ˘ std 5 ˘ 3 10 ˘ 0 5 ˘ 3 10 ˘ 0

Tendon
slack length
ls (in mm)

Large
lMs ˘ 30 mm

Minimum 0 8 0 2
Maximum 28 30 29 30

Mean ˘ std 12 ˘ 8 30 ˘ 3 13 ˘ 8 28 ˘ 6

Medium
lMs ˘ 20 mm

Minimum 0 0 0 0
Maximum 20 20 20 30

Mean ˘ std 10 ˘ 7 19 ˘ 4 8 ˘ 5 19 ˘ 3

Small
lMs ˘ 10 mm

Minimum 0 0 0 8
Maximum 17 17 12 15

Mean ˘ std 5 ˘ 4 10 ˘ 2 5 ˘ 3 10 ˘ 2

Pennation
angle

α (in degrees)

Large
αM ˘ 20°

Minimum 0 0 1 0
Maximum 20 20 20 20

Mean ˘ std 8 ˘ 6 12 ˘ 7 7 ˘ 5 14 ˘ 7

Medium
αM ˘ 10°

Minimum 0 0 0 0
Maximum 10 10 9 10

Mean ˘ std 5 ˘ 3 8 ˘ 3 4 ˘ 3 8 ˘ 3

Small
αM ˘ 5°

Minimum 0 0 0 0
Maximum 5 5 5 5

Mean ˘ std 2 ˘ 2 4 ˘ 1 2 ˘ 1 4 ˘ 2

Muscle
geometry
(in mm)

Large
pMi ˘ 10 mm

Minimum 0 0 0 10
Maximum 10 10 10 10

Mean ˘ std 5 ˘ 3 5 ˘ 3 5 ˘ 3 10 ˘ 0

Medium
pMi ˘ 5 mm

Minimum 0 0 0 5
Maximum 5 5 5 5

Mean ˘ std 3 ˘ 1 3 ˘ 1 3 ˘ 1 5 ˘ 0

Small
pMi ˘ 1 mm

Minimum 0 0 0 1
Maximum 1 1 1 1

Mean ˘ std 1 ˘ 0 1 ˘ 0 0 ˘ 0 1 ˘ 0

Table 4.17: fM
iso, l

M
o , lMs and αM refer respectively to the maximal isometric force, optimal fiber

length, tendon slack length and pennation angle of muscle M in Stanford’s model (Holzbaur et
al., 2005).
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Accuracy of computed ellipsoidal approximations in the validation postures

Contrary to the polytope experiment, where found solutions did not necessarily produced
force polytopes close to the expected ones in the fitting postures, in the ellipsoidal case
they do. By evaluating the discretized distances of produced ellipsoids across the valida-
tion postures, it is thus possible to assume if overfitting occurred. Tables 4.18 and 4.19
describe these ellipsoidal distances averaged over the 5 trials.

Solver
Search
space
size

Validation
posture

Parameter type

fiso lo ls α fiso, lo, ls
Muscle

geometry

fiso, lo, ls
+ muscle
geometry

R
A

C
O

S

L
ar

ge

qval
1 51 ˘ 11 30 ˘ 6 44 ˘ 13 4 ˘ 2 169 ˘ 82 ˚ ˚

qval
2 73 ˘ 66 33 ˘ 8 48 ˘ 17 2 ˘ 1 255˚ 79 ˘ 27 195 ˘ 60

qval
3 70 ˘ 37 54 ˘ 20 69 ˘ 64 4 ˘ 3 142 ˘ 56 81 ˘ 7 118 ˘ 15

qval
4 48 ˘ 15 51 ˘ 18 50 ˘ 20 3 ˘ 1 219 ˘ 245 111 ˘ 71 175 ˘ 32

M
ed

iu
m

qval
1 52 ˘ 3 38 ˘ 21 30 ˘ 12 2 ˘ 1 80 ˘ 14 ˚ ˚

qval
2 38 ˘ 25 26 ˘ 17 28 ˘ 9 1 ˘ 0 26 ˘ 7 30 ˘ 19 127˚

qval
3 32 ˘ 15 47 ˘ 21 29 ˘ 17 2 ˘ 2 51 ˘ 33 62 ˘ 29 65 ˘ 26

qval
4 33 ˘ 26 22 ˘ 10 27 ˘ 6 3 ˘ 1 61 ˘ 11 55 ˘ 46 154 ˘ 87

Sm
al

l

qval
1 23 ˘ 7 12 ˘ 4 17 ˘ 4 2 ˘ 1 34 ˘ 20 ˚ ˚

qval
2 15 ˘ 7 11 ˘ 3 10 ˘ 7 1 ˘ 0 14 ˘ 4 2 ˘ 0 26˚

qval
3 27 ˘ 13 23 ˘ 16 16 ˘ 7 1 ˘ 1 67 ˘ 70 10 ˘ 5 50 ˘ 37

qval
4 11 ˘ 3 10 ˘ 5 16 ˘ 6 4 ˘ 1 24 ˘ 12 7 ˘ 3 28 ˘ 11

G
E

N
E

T
IC

A
L
G

O
R

IT
H

M

L
ar

ge

qval
1 216 ˘ 65 167 ˘ 65 71 ˘ 9 8 ˘ 1 162 ˘ 69 ˚ ˚

qval
2 171 ˘ 59 124 ˘ 44 88 ˘ 23 4 ˘ 1 193 ˘ 81 178 ˘ 81 ˚

qval
3 153 ˘ 26 172 ˘ 52 75 ˘ 13 7 ˘ 3 139 ˘ 54 ˚ ˚

qval
4 85 ˘ 52 146 ˘ 70 135 ˘ 41 5 ˘ 2 99 ˘ 43 204 ˘ 12 ˚

M
ed

iu
m

qval
1 92 ˘ 23 215 ˘ 31 65 ˘ 21 9 ˘ 2 111 ˘ 40 ˚ ˚

qval
2 106 ˘ 26 95 ˘ 44 54 ˘ 7 6 ˘ 1 94 ˘ 27 56 ˘ 9 ˚

qval
3 111 ˘ 36 ˚ 57 ˘ 21 11 ˘ 1 182 ˘ 146 64 ˘ 23 ˚

qval
4 53 ˘ 19 63 ˘ 11 65 ˘ 28 9 ˘ 1 127 ˘ 66 45 ˘ 10 ˚

Sm
al

l

qval
1 54 ˘ 19 55 ˘ 14 36 ˘ 7 5 ˘ 1 85 ˘ 48 ˚ ˚

qval
2 43 ˘ 15 23 ˘ 4 25 ˘ 4 5 ˘ 0 56 ˘ 21 6˚ ˚

qval
3 55 ˘ 13 27 ˘ 10 25 ˘ 16 6 ˘ 1 76 ˘ 7 17 ˘ 14 ˚

qval
4 36 ˘ 7 30 ˘ 17 32 ˘ 11 5 ˘ 1 84 ˘ 37 8 ˘ 3 ˚

Table 4.18: Mean and standard deviation (in Newton and rounded to the closest unit) over the
discretized distance between the produced and expected force ellipsoidal approximations over 5
trials in every validation posture defined in Qval when the fitting process used posture set Qfit

3 .

In general, there is overfitting for both solvers and all search spaces. However, it is
noticeable that for muscle geometry parameters, the RACOS solver did produced very
good solutions using the small search space, and again at the cost of not being able to
compute the ellipsoid in the validation posture 1. The pennation angle parameter is as
well the only parameter type where any search space size do not seem to influence greatly
the solution’s produced force feasible sets.
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Solver
Search
space
size

Validation
posture

Parameter type

fiso lo ls α fiso, lo, ls
Muscle

geometry

fiso, lo, ls
+ muscle
geometry

R
A

C
O

S

L
ar

ge

qval
1 67 ˘ 17 78 ˘ 78 57 ˘ 11 5 ˘ 2 87 ˘ 33 ˚ ˚

qval
2 207 ˘ 20 36 ˘ 17 35 ˘ 10 2 ˘ 1 73 ˘ 25 73 ˘ 40 150 ˘ 55

qval
3 71 ˘ 24 55 ˘ 36 41 ˘ 25 2 ˘ 1 94 ˘ 61 120 ˘ 64 233 ˘ 36

qval
4 94 ˘ 27 32 ˘ 7 24 ˘ 7 3 ˘ 2 43 ˘ 22 47 ˘ 19 99 ˘ 33

M
ed

iu
m

qval
1 48 ˘ 20 27 ˘ 17 34 ˘ 10 2 ˘ 1 75 ˘ 36 ˚ 160 ˘ 105

qval
2 71 ˘ 29 16 ˘ 7 23 ˘ 5 2 ˘ 0 64 ˘ 19 32 ˘ 6 65 ˘ 26

qval
3 42 ˘ 20 36 ˘ 10 27 ˘ 19 2 ˘ 1 53 ˘ 36 37 ˘ 19 123 ˘ 27

qval
4 44 ˘ 27 18 ˘ 6 18 ˘ 7 3 ˘ 1 46 ˘ 19 35 ˘ 12 63 ˘ 8

Sm
al

l

qval
1 20 ˘ 1 10 ˘ 3 20 ˘ 12 1 ˘ 1 40 ˘ 18 ˚ ˚

qval
2 19 ˘ 7 11 ˘ 3 14 ˘ 6 1 ˘ 0 26 ˘ 11 5 ˘ 3 ˚

qval
3 17 ˘ 5 18 ˘ 13 15 ˘ 10 1 ˘ 1 28 ˘ 14 6 ˘ 7 28 ˘ 22

qval
4 12 ˘ 5 12 ˘ 4 10 ˘ 2 4 ˘ 0 18 ˘ 8 4 ˘ 1 40 ˘ 20

G
E

N
E

T
IC

A
L
G

O
R

IT
H

M

L
ar

ge

qval
1 236 ˘ 95 135 ˘ 10 98 ˘ 30 8 ˘ 2 197 ˘ 131 ˚ ˚

qval
2 237 ˘ 48 110 ˘ 6 107 ˘ 20 5 ˘ 1 200 ˘ 90 ˚ ˚

qval
3 129 ˘ 44 448 ˘ 236 112 ˘ 25 7 ˘ 2 117 ˘ 73 ˚ ˚

qval
4 107 ˘ 30 153 ˘ 4 91 ˘ 27 3 ˘ 1 131 ˘ 53 181 ˘ 117 ˚

M
ed

iu
m

qval
1 112 ˘ 48 185 ˘ 20 64 ˘ 19 10 ˘ 2 210 ˘ 127 180˚ ˚

qval
2 147 ˘ 71 90 ˘ 22 74 ˘ 8 8 ˘ 1 132 ˘ 27 82 ˘ 18 ˚

qval
3 97 ˘ 23 205 ˘ 10 61 ˘ 27 12 ˘ 0 143 ˘ 65 88 ˘ 45 ˚

qval
4 93 ˘ 31 64 ˘ 21 53 ˘ 14 9 ˘ 1 81 ˘ 16 52 ˘ 20 ˚

Sm
al

l

qval
1 51 ˘ 9 55 ˘ 16 33 ˘ 8 5 ˘ 1 49 ˘ 16 ˚ ˚

qval
2 47 ˘ 14 26 ˘ 11 30 ˘ 11 5 ˘ 1 70 ˘ 17 34 ˘ 3 ˚

qval
3 90 ˘ 31 20 ˘ 6 16 ˘ 4 7 ˘ 0 93 ˘ 22 27 ˘ 11 ˚

qval
4 45 ˘ 9 18 ˘ 3 16 ˘ 2 4 ˘ 1 55 ˘ 17 27 ˘ 7 ˚

Table 4.19: Mean and standard deviation (in Newton and rounded to the closest unit) over the
discretized distance between the produced and expected force ellipsoidal approximations over 5
trials in every validation posture defined in Qval when the fitting process used posture set Qfit

6 .
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4.3.5 Summary

This section summarizes the key findings derived from optimizing force feasible sets using
an ellipsoidal representation, mirroring the previous analysis conducted with polytopic
representations.

Ellipsoids offer a significant computational advantage over polytopes. Their implicit
surface representation, defined by a smooth function f : R3 Ñ R3 where fpx, y, zq “ 0 for
all points px, y, zq on the surface, eliminates the need to solve combinatorial subproblems
associated with vertex enumeration or approximation inherent in polytopic models. De-
spite their computational efficiency, comparing ellipsoids and polytopes presents similar
challenges. Our approach necessitates to calculate specific surface points to compute the
Hausdorff distance between two sets of corresponding points. However, this approach
is complicated by the inherent difference in their structure: polytopes possess a finite
number of vertices, while ellipsoids have none. To address this challenge and maintain
experimental relevance, we employed a discretization strategy. Each ellipsoid was repre-
sented by six unique points corresponding to the intersections of the ellipsoid’s principal
axes with its surface (and passing through the ellipsoid’s center). This approach requires
a minimum of six maximal force exertion measurements in specific directions to recon-
struct the force ellipsoid, assuming an force feasible set are ellipsoids. More generally, any
nine non-coplanar points on the ellipsoid’s surface suffice for its reconstruction, regard-
less of their directional vectors from the ellipsoid center. This significantly reduces the
experimental burden compared to the 26 directional measurements required for polytopic
representations, enhancing the feasibility and efficiency of experimental analysis. Thus,
it is, in practice, relevant to consider ellipsoids as representations of force feasible sets.

The experimental testbed described for force polytopes was reused in almost the same
exact conditions as described in the previous section. The key difference being the com-
putation of the distance between two discretized ellipsoids, and consequently the distance
values interpretation. Nevertheless, quite similar results as with polytopic representation
were observed: the RACOS solver performs better than the genetic algorithm, penna-
tion angle parameters are the easiest to fit, the presence of a non-negligeable amount of
local minima is indicated by the solution’s parameter values, and the predictions of the
found solutions are not satisfactory - there is confirmed overfitting for optimizations using
ellipsoidal force feasible sets.

A major difference with the polytopic representation is that ellipsoids allowed to
compute fitting solutions, whereas polytopes did not. However, these fitting solutions
seem to share the same distribution properties of their parameters, regarding a solver,
using both representations. This implies that polytopic and ellipsoidal representations
may be treated identically by the solvers, i.e. the ellipsoids maintain most of the polytopes
difficulties. This, if true, is a fundamental result. This states that essentially, ellipsoidal
approximations and polytopes could be interchanged in representing force feasible sets.
While chapter 3 already argued on the theoretical aspects on describing polytopes as
ellipsoids, the theory fails as the number of muscles is low. While we did not know if 50
muscles had to be considered as a sufficiently high number, this chapter result tells us
that it might be enough as both representations are treated almost in the same manner
in the optimization processes, for multiple observations on convergence difficulties and,
more importantly, for different solving strategies.
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4.4 Conclusion and discussion

This chapter investigated the feasibility of identifying muscle parameters in Stanford’s
musculoskeletal model directly from force feasible sets represented as polytopes or ellipsoid
equivalent. These sets were generated by considering both the minimal and maximal
exertable forces of muscles and their geometric paths, allowing for the computation of the
feasible torque set intersected with the image of the Jacobian transpose. Our approach
involved a search through the parameter space of the musculoskeletal model, aiming to
find solutions that produced force feasible sets closely resembling those generated using
the model’s default parameters. This comparison of 3D force feasible sets was facilitated
by a discretization strategy, where each set was intersected with strategically positioned
lines to create a set of representative surface points. The Hausdorff distance between these
discretized representations then served as a metric for polytope similarity and ellipsoid
similarity. However, due to the different discretization used for these two shapes, the
Hausdorff distance is not qualitatively interpreted in the same way.

To explore the impact of parameter variability on the optimization process, three
search spaces of varying magnitudes were defined around the default parameter values.
Two distinct derivative-free optimization solvers, a genetic algorithm and RACOS, were
employed to assess the optimization challenges independently of the solver strategy. The
investigation considered various muscle parameters, including maximal isometric forces,
optimal fiber lengths, tendon slack lengths, pennation angles, and muscle geometry, al-
lowing for an evaluation of the influence of different parameter types on optimization
complexity.

Furthermore, the impact of posture on the optimization process was examined by
considering force feasible sets computed in multiple postures. Two sets of postures, com-
prising 3 and 6 postures respectively, were used to assess the influence of the number of
postures on optimization outcomes. Additionally, a separate set of 4 postures was used
to evaluate the prediction quality of the identified solutions, i.e. their ability to generate
accurate force feasible sets in postures not included in the optimization process.

Analysis of the optimization results revealed that, on average, the RACOS solver
outperformed the genetic algorithm in finding solutions that produced force feasible sets
matching more closely the reference force feasible sets. However, no relevant solution was
identified when using a polytopic representation, and the accuracy of the generated poly-
topes varied considerably depending on the parameters and search space sizes considered.
Better fitting was observable using the ellipsoidal approximation representation.

Further investigation revealed that, when optimizing on force-generating muscle pa-
rameters as well as muscle geometry parameters, these latest did not appear to be the
primary source of the optimization difficulty. This was computed using a novel index,
termed enlargement complexity, which describe how the largeness of a search space in-
duces optimization difficulties in the fitting process. It was observed that for ellipsoidal
representations, these difficulties for muscle parameters disappear when considering 6
postures instead of 3. This suggests that the ellipsoidal representation may sufficiently
capture the muscle geometry complexities so that both solvers can converge towards a
local minima more easily.

Besides, for both representations, an analysis of the identified solutions provided in-
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sights into the location of local minima in parameter spaces, suggesting their widespread
presence.

Finally, an evaluation of the predictability of the solutions indicated that only opti-
mizations focusing on pennation angle parameters yielded the most satisfactory results
across different postures, for both representations. It has been noticed, for the ellipsoidal
representation, that overfitting occured i.e. fitting ellipsoids were sufficiently close to the
expected one in the fitting postures, but predicted ellipsoids did not share this same close-
ness. This could be due to the choice of considered fitting postures, whose force feasible
sets may not capture enough information about muscle parameters. Alternatively, this
could also be a consequence of the low number of considered postures, which is dictated
by experimental condition constraints as well as the time computation of either force
polytopes and ellipsoids (ellipsoids were reasonnably fast to compute, but the lever arm
matrix is not).

Publications. This study builds upon our previous work presented in (Laisné et al.,
2023b) and (Laisné et al., 2023a), which focused also on predicting muscle parameters
from force polytopes using a similar optimization process. Their goal were to gauge
the resulting quality of force polytope discretization techniques and compare different
distance function. Most of the optimization processes and comparison function are based
on these papers. However, this newer investigation expands their scope by incorporating
more realistic muscle models that include non-rigid tendons and complex muscle paths
beyond simple origin-insertion representations. Furthermore, while the previous studies
independently addressed either muscle geometry or force-generating properties, this work
explores the combined influence of all muscle parameters.

It is important to acknowledge that the previous studies employed smaller search
spaces, leading to more favorable computational outcomes. As demonstrated in this
chapter, further details were revealed about the generalization of this optimization process
over larger search spaces, which would be required for personalization. A key objective of
this work was to quantify this complexity, in order to provide insights into its implications
for musculoskeletal modeling and personalization.
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Chapter 5

Towards an ellipsoidal characterization
of in vivo upper-limb force feasible sets

Introduction

In vivo isometric force feasible sets represent all possible isometric forces exertable at a
point of application in a given posture. Assuming these sets are convex, their surface is
defined by the maximal exertable forces. This thesis focuses specifically on such forces
at the hand of the right upper limb: it allows to define the biomechanical force limits
of an individual in order to improve a robot assistance within a physical Human-Robot
interaction.

Characterizing these sets in vivo involves gathering multiple maximal voluntary con-
tractions (MVICs) in a specific posture, as detailed in Chapter 1. However, generalizing
from a limited number of force measurements to a complete set representation presents
a challenge. One approach is to collect enough measurements to describe these sets as
polytopes. Yet, this characterization, when considering in silico force polytopes by means
of a musculoskeletal model, requires the assumption that muscles can produce maximal
joint torques independently, neglecting muscle tension dependencies. Chapter 2 also em-
phasized the computationally complex process required to force polytope manipulation.

Alternative representations may be more suitable. Chapter 3 suggested that with a
sufficiently large number of muscles, force feasible sets resemble ellipsoids, regardless of
specific muscle activation patterns - as long as they are assumed to produce a convex mus-
cle tension set. Muscle tension relations then only affects the ellipsoid’s scaling. While this
large number ideally approaches infinity for a perfect ellipsoidal approximation, Chapter 4
provides numerical evidence that 50 muscles in a musculoskeletal model yield similar vari-
ability patterns for both polytopic and ellipsoidal representations. Thus, we consider 50
muscles sufficient for applying an ellipsoidal representation, assuming equivalence between
the two.

Building on these theoretical foundations, this chapter focuses on the in vivo ellip-
soidal characterization of force feasible sets using the general isometric formulation of in
silico force feasible sets established in Chapter 1. We collect MVICs in four upper-limb
postures from ten participants and evaluate the extent to which these measurements sup-
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port an ellipsoidal representation. Since Chapter 4 hinted that the muscle geometry may
not be the most influencial type of parameters in a personalized musculoskeletal model
derived from a generic one, we assume that only a scaled musculoskeletal model and per-
sonalized force-generating parameters are required to represent in vivo force feasible sets.
Consequently, this chapter seeks to validate this assumption. We shall thus first measure
multiple maximal isometric force of an individual in various postures and then compute
in silico force ellipsoids with personalized force-generating parameters in a scaled muscu-
loskeletal model. Then, if the personalized in silico force ellipsoids closely approximate
the minimal volume ellipsoid encompassing the measured forces (which captures the ge-
ometric properties - size, orientation, translation - of the measured forces in a unique
manner), it indicates that in silico force ellipsoids are a valid representation of in vivo
force feasible sets.

A successful validation would indicate that while measured force feasible sets may
not be perfectly ellipsoidal, their behavior (orientation, elongation) can be effectively
described by ellipsoids constructed from a projection-then-intersection force feasible set
paradigm. This simplification reduces computational complexity for set-based optimiza-
tion and, importantly, reduces the experimental burden to nine MVICs, as nine points
sufficiently define an ellipsoid. Besides, Chapter 4 also indicated that the muscle geometry
may not be of strong interest when personalizing a musculoskeletal model to predict in
vivo force feasible sets, which was already hinted in Chapter 4 - but only in silico.

Section 5.1 details the experimental process for gathering MVICs, with an adaptable
setup accommodating anthropometric variations and different postures. Section 5.2 as-
sesses posture stability during these unconstrained exertions. Finally, Section 5.3 explores
in vivo force feasible set reconstruction from the measured forces and, by incorporating
biomechanical assumptions about force production at the hand, evaluates the suitability
of ellipsoidal in silico force feasible set models (Chapter 3). The chapter concludes with a
discussion on the validity of the ellipsoidal representation and the associated biomechan-
ical assumptions for in silico modeling.

5.1 Design of an adaptable experimental platform for
MVIC

As recalled in Chapter 1, describing the force feasible set of an individual upper limb at the
hand requires measuring maximal voluntary isometric contractions (MVIC) in multiple
directions. We therefore employed an experimental protocol similar to those described in
(Rezzoug et al., 2021) and (Hernandez et al., 2015), where the individual is in a sitting
position on a comfortable chair.

We designed a setup whose main goal was to adapt the MVIC protocol to the anthro-
pometric variability of the participants. The following subsections describe its design.

5.1.1 Isolation of forces exerted by upper-limb muscles

During the experiment, a participant must exert MVIC using his right upper-limb muscles
only. While challenging, as abdominal muscles and inherent back motion may be involved
during such an exertion, the setup was designed to minimize the influence of other body
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parts. The participant was seated in a sturdy car seat sufficiently elevated from the
ground to ensure his feet did not touch the ground. The seat was mounted on a wood
stand made of 5 wooden pallets (144 mm height) using large screws.

Furthermore, when exerting maximal force with only the upper limb, participants
naturally tend to engage their back muscles and abdominals, leading to back deformation.
To reduce possible movements occurring in the back and the right shoulder, shoulder and
abdomen strips were tightened over the participant and served to stabilize both the back
and the shoulders, as shown in Figures 5.1 and 5.2.

Figure 5.1: The participant feet do not
touch the ground. The left arm was left loose
in between the legs to avoid possible contact

forces.

Figure 5.2: The shoulder and abdomen
strips ensure a straight back. The shoulders

translations are also strongly limited in range,
in order to allow only rotations.

5.1.2 Anthropometric variability and hand location

Adapting the setup also required addressing the challenge of positioning the force/torque
sensor at the participant’s hand for a given upper-limb posture. Based on previous MVIC
protocols that involved grasping (Crosby and Wehbé, 1994; Watanabe et al., 2005), we
designed a horizontal handle to be grasped by the hand and attached it to a 6-axes ATI
Delta Force/Torque sensor with an acquisition frequency of 1000 Hz (Figure 5.3). Anti-
slip strips were wrapped around the handle to prevent slippage due to sweat. To account
for the rotational position of the hand, the sensor was mounted on a metal ball with
restricted rotational movement (Figure 5.4).

To achieve accurate placement, the force/torque sensor needed to be adjustable along
all three axes. A height-adjustable table with electric controls addressed vertical posi-
tioning. For depth and horizontal positioning, a custom-made aluminum profile support
system was mounted on the table. To counteract potential deformation of the table at
higher heights, two aluminum profiles were fixed to its sides and attached directly to the
base of the wooden stand.
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Figure 5.3: ATI Delta 6-axes force/torque
sensor.

Figure 5.4: The handle fixed on top of the
force/torque sensor ensures a comfortable and

anti-slip grasp.

Figure 5.5: This adjustable custom-made aluminum profile support allows for precise
positioning of the force/torque sensor to accommodate participants of different sizes and

varying upper limb postures.

5.1.3 Force directions and real-time visual force feedback

In the Cartesian force space, 26 directions have been defined as combinations of azimuth
angles (ranging from 0° to 315° relative to the horizontal forearm axis in 45° steps) and
elevation angles (-45°, 0°, and 45° relative to the horizontal plane), and two additional
vertical directions corresponding to 90° and -90° elevation (Fig. 5.6).

From the 26 defined directions of force, pairs of opposing directions (pushing-pulling)
were randomly selected. This ensured participants focused on a single line of action for
two successive measurements, exerting force in opposite directions. The workspace axes
were aligned with the Cartesian force space, with the origin at the force/torque sensor.
The force x-axis corresponded to the normal of the coronal plane, the y-axis to the normal
of the transverse plane, and the z-axis to the normal of the sagittal plane.

A white arrow on the screen indicated the target direction for force exertion, while
a red arrow of fixed length represented the real-time direction of the exerted force. A
gauge on the left side of the screen displayed the current force amplitude with a red fill.
Its maximum value was set to 1000 Newtons, a limit that, although unattainable for
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Figure 5.6: This figure illustrates the 26 force directions employed in (Rezzoug et al., 2021)
and (Hernandez et al., 2015), defined by combinations of azimuth and elevation angles. The

left panel depicts the azimuth angles, while the right panel shows the elevation angles. (Images
adapted from (Hernandez et al., 2015)).

participants, encouraged them to exert maximal forces.

Figure 5.7: Visual interface displaying the target force direction (white arrow), exerted force
direction (red arrow), and force amplitude (gauge and as well as current and maximal value

below).

5.1.4 Accounting for factors influencing a MVIC

As described in Chapter 1, multiple factors influence the quality of a MVIC, such as respi-
ration (Lee and Jo, 2016), perceived fatigue (Rose et al., 2014), body posture (Watanabe
et al., 2005), and circadian rhythm (Jasper et al., 2009).

Accordingly, we followed the recommendations and results from the above-mentioned
articles. For instance, participants were asked to choose two 3-hour timeslots for the ex-
periment within the same timeframe (morning or afternoon). To standardize respiration,
individuals were instructed to inhale deeply before each MVIC and exert maximal force
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during exhalation. Although a standing posture might be more relevant for industrial col-
laborative tasks with a cobot, a sitting position was used in this study, as previous research
(Watanabe et al., 2005) found no significant differences between sitting and standing for
hand maximal forces.

As the experiment occurred in two sessions with more than 52 MVICs within each,
physical as well as perceived fatigue may have occurred. To account for general muscle
fatigue and ensure adequate recuperation between sessions, they were separated by at
least three days. While physical fatigue was mitigated through 2-minute (minimum) rest
periods between measurements (Perdeaux et al., 2010), mental fatigue was addressed
subjectively. Motivational verbal encouragement was provided during each measurement
and also within rest periods. Additionally, when the experimenter noticed general fatigue,
verbal exchanges to promote social interaction were favored to make the experiment less
demanding and offer the participant less repetitive resting moments.

5.1.5 Upper-limb postures of reference

Four upper-limb postures were considered and are noted P1, P2, P3 and P4. This number
accounts for the experimental difficulties of collecting 26 maximal isometric force exertions
in a single posture. Based on Stanford’s upper-limb musculoskeletal model (Holzbaur et
al., 2005), these postures are defined in Table 5.1 and presented in Figures 5.8, 5.9, 5.10
and 5.11.

Posture Elevation
angle

Shoulder
elevation

Shoulder
rotation

Elbow
flexion

Pronation
supination

Wrist
deviation

Wrist
flexion

P1 70° 20° 0° 90° 90° 0° 0°
P2 50° 65° 50° 70° 50° 0° 0°
P3 40° 68° 30° 30° 29° 0° 0°
P4 96° 65° 100° 33° 29° 0° 0°

Table 5.1: Joint configuration values (in degrees) for each considered posture in right
upper-limb musculoskeletal model (Holzbaur et al., 2005).

Figure 5.8: Visualization of posture P1 using Stanford’s upper-limb model.

Figure 5.9: Visualization of posture P2 using Stanford’s upper-limb model.
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Figure 5.10: Visualization of posture P3 using Stanford’s upper-limb model.

Figure 5.11: Visualization of posture P4 using Stanford’s upper-limb model.

5.1.6 Proprioceptive placement of the upper limb

Each of the four upper-limb postures, while defined for the joint coordinates of a muscu-
loskeletal model, must be replicated by a participant, since no physical constraints on the
right upper limb were used in this experiment. Also, since we want to compute in silico
force feasible sets at the hand of the individual, we needed to determine the participant’s
joint configuration during each MVIC. To achieve this, we used a proprioceptive approach
based on real-time visual feedback of 14 reflective markers placed on the participant’s right
upper limb, trunk, and back of the head, as described below.

An optoelectronic system (OptiTrack) with 14 reflective markers (9mm diameter) was
used to measure the individual’s posture. The markers were placed on the skin of the
right arm and torso using hypoallergenic double-sided adhesive. Marker positions were
recorded at 100 Hz and filtered to reduce noise.

Because the upper limb was not physically constrained, a real-time visual interface was
developed to help the participant maintain a constant posture throughout the experiment.
This 3D interface displayed the participant’s upper-limb marker positions (red) and the
target marker positions (pink) on a scaled musculoskeletal model (Fig. 5.13). This allowed
the participant to assess in real-time whether their current posture matched the target.
However, maintaining a fixed posture while exerting maximal force could be challenging.
Therefore, the experimenter visually monitored the participant’s posture throughout the
experiment.

5.1.7 Experimental Protocol

The experiment occurred at INRIA of University of Bordeaux. For each participant,
two 3-hour timeslots were planned. Each session consisted of measuring maximal force
exertions in 26 different directions for two different right upper limb postures. The order
of the postures was randomized for each participant, as shown in Table 5.2. Only one
participant had to return for another session due to technical difficulties that occurred
during the first session, making it too long.



Chapter 5. Ellipsoidal characterization of force feasible sets 176

Figure 5.12: On the left: the placement of motion-capture cameras ensured the visibility of
reflective markers in most directions. On the right: placement of the markers on the upper limb

skin.

Figure 5.13: 3D interface providing visual feedback of the participant’s marker positions (red)
relative to the target posture (pink) on a scaled musculoskeletal model.

Subject Postures in
session 1

Postures in
session 2

Postures in
session 3

S1 P4, P3 P2, P1 /
S2 P4, P1 P3, P2 /
S3 P2, P3 P1, P4 /
S4 P3, P1 P4, P2 /
S5 P3, P2 P4, P1 /
S6 P2, P3 P1, P4 /
S7 P2, P1 P4, P3 /
S8 P2, P3 P1, P4 /
S9 P2, P1 P3, P4 /
S10 P1 P4, P3 P2

Table 5.2: Posture order within each required session for each participant.
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The first session included the collection of anthropometric data, such as mass, height,
sports activities, age, and dominant hand. Any volunteer who had an upper limb, back,
or torso muscular pathology or injury (sprain, tendinitis, strain, tear, etc.) in the pre-
vious 6 months was not considered for the experiment. This also applied to orthopedic
pathologies, musculoskeletal and neuromuscular disorders.

Both sessions started with the placement of reflective markers on the upper limb,
torso, and back. The participant was then asked to assume a T-pose to scale a generic
musculoskeletal model to their body geometry. This was followed by a 10-minute exercise
routine, including stretching and rotations of each upper limb joint up to their maximal
range at various speeds. The participant was then positioned in the seat and secured with
shoulder straps to prevent shoulder movement.

A computer screen in front of the participant displayed their current marker positions
(red) and the target marker positions (pink) corresponding to the first posture of the ses-
sion. The participant could then adjust their upper limb posture to align the red markers
with the pink ones. The force/torque sensor was then positioned at the participant’s hand
by adjusting the table height and the handle position and orientation. After this process,
all physical components of the setup were fixed and secured. The participant performed
a few submaximal force exertions to become familiar with the posture and practice ex-
erting force in the required directions. Five maximal force exertions were then performed
in randomly chosen directions from the defined set of force directions, with a 2-minute
rest between each. Measurements were collected when the participant felt sufficiently
confident to start the experiment.

Every force exertion was codified and lasted at least 5 seconds, as described in
(Perdeaux et al., 2010; Chopp et al., 2010): 2 seconds to attain the maximal force in
the required direction; 3 seconds to maintain the force; and 1 second to decrease the
exerted force. Between exertions, the participant rested for a minimum of two minutes
to avoid muscle fatigue (Chaffin et al., 2006; Perdeaux et al., 2010; Chopp et al., 2010).
As loud verbal encouragements have been shown to significantly influence the maximal
force produced (Jung and Hallbeck, 1999; Johansson et al., 1983), the experimenter ac-
tively encouraged each MVIC by loudly providing motivational words and phrases, such
as ‘Allez !’ (‘Go!’), ‘Pousse !’ (‘Push!’), ‘Tu peux le faire !’ (‘You can do it!’), etc. These
were inspired by the English standardized instruction set defined in (Mathiowetz et al.,
1984). During the 2-minute rest period after each MVIC, the participant was asked to
stretch their wrist and hydrate if needed. Brief feedback and encouragement were pro-
vided after each MVIC. All participants were allowed to repeat a MVIC if they felt they
could perform it better.

When all force direction measurements for the first posture were completed, the partic-
ipant was given a 15-minute rest period, during which their shoulder straps were removed
so they could walk and stretch. During this time, the experimenter adjusted the setup
for the next posture. Once the participant was ready, the same procedure was followed,
starting with the participant being positioned in the chair, the straps secured, and the
setup adjusted for the second posture.

Each session concluded with a stretching session (up to 20 minutes) and the provision
of nutritious snacks.
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5.1.8 Ethical validation

The target population mainly consists of asymptomatic young adults between the ages of
18 and 35. To be eligible for participation, individuals must meet the following inclusion
criteria:

• Adult participants (aged 18-35 years) enrolled in a social security system;
• A Body Mass Index (BMI) within the normal range (20-30 kg/m²) as calculated

using anthropometric data (height and weight) collected prior to engaging in the
study;

• Participants must report engaging in a minimum of two hours of physical activity
per week.

An individual was barred from the experiment if he was ineligible to participate ac-
cording to articles L. 1121-5 to L. 1121-8 of the French public health code (which pertains
to minors, protected adults, etc.)1, or if he had any of the following: no social security
coverage; a musculoskeletal, cardiovascular, pulmonary, and/or metabolic disorder; a his-
tory of trauma or joint surgery reported in the last six months (at the shoulder, elbow, or
wrist); or had not signed the informed consent form. The consent form includes a survey
to assess eligibility criteria.

Three female and seven male participants between 21 and 32 years old were recruited
for the experiment on a voluntary basis. Female participants’ heights ranged from 1.65m
to 1.68m, whereas male participants’ heights ranged from 1.73m to 1.92m. All participants
had a BMI between 20 and 28.

The experiment did not present safety hazards and was validated by INRIA’s opera-
tional committee for the assessment of legal and ethical risks (COERLE2). An informed
consent form was signed and acknowledged by each participant

5.2 Posture stability

For each maximal isometric force exertion trial in a specific posture, the participant had
to maintain the required posture using visual feedback. This section assesses the extent
to which participants achieved this.

For each direction of force exertion, marker positions and force/torque data were gath-
ered simultaneously at 100 Hz and 230 Hz respectively. Force amplitude measurements
showed that in general a participant reached their peak isometric force about 2 seconds
after the trial starts and maintains it for about seconds, as a plateau can be observed
within this timeframe for force amplitudes data. Therefore, only marker positions within
this timeframe are considered for each measurement.

To determine the participant’s posture, a scaling process was performed. Since the
experiment involved two sessions, a musculoskeletal model based on Stanford’s model
(Holzbaur et al., 2005) was scaled within OpenSim software (Delp et al., 2007) using a
static measurement recorded at the beginning of each session. Because there were two

1The French public health code (Code de la santé publique) is available at https://www.legifrance.
gouv.fr/codes/texte_lc/LEGITEXT000006072665/.

2COERLE stands for Comité opérationnel d’évaluation des risques légaux et éthiques.

https://www.legifrance.gouv.fr/codes/texte_lc/LEGITEXT000006072665/
https://www.legifrance.gouv.fr/codes/texte_lc/LEGITEXT000006072665/
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sessions, and marker placement might differ slightly between sessions, the scaled model
markers were adjusted accordingly. Therefore, each participant had one scaled model,
but two sets of corresponding marker positions (one for each session).

For each force measurement trial, the inverse kinematics tool in OpenSim was used
to determine the posture. This process adjusts the joint configuration of the model to
fit the model markers to the measured markers. As recommended by OpenSim software
developers, the root mean square error (RMSE) between the marker placements of the
scaled model and the measured marker positions should be less than 2 cm. All inverse
kinematic processes respected this constraint.

To assess posture maintenance, we calculated the mean, minimum, and maximum
values for each joint coordinate retrieved from inverse kinematics of each maximal force
exertion trial. Posture variability was then assessed by analyzing the joint coordinate data
across all trials within a given posture. This included calculating the mean and standard
deviation of the mean joint coordinate values for each trial (Table 5.4; Fig. 5.14), as well
as the overall minimum and maximum values across all trials (Table 5.3).

Subject Posture Trunk
rotation x

Trunk
rotation y

Trunk
rotation z

Elevation
angle

Shoulder
elevation

Shoulder
rotation

Elbow
flexion

Pronation
supination

Wrist
deviation

Wrist
flexion

S1

P1 r´5, 5s r´9, 2s r´9, 0s r42, 68s r29, 55s r3, 32s r52, 96s r61, 86s r´15, 19s r´35, 5s

P2 r´9,´2s r´6, 5s r´9,´2s r43, 69s r57, 74s r25, 48s r54, 82s r49, 69s r´4, 12s r´27, 14s

P3 r´7, 0s r´8, 2s r´9,´2s r28, 50s r58, 76s r´6, 25s r29, 66s r68, 87s r´4, 17s r´23, 17s

P4 r´9,´5s r4, 9s r´9,´6s r74, 97s r57, 75s r43, 74s r34, 67s r62, 88s r´5, 16s r´26, 21s

S2

P1 r´2, 7s r´2, 6s r´7, 2s r37, 68s r28, 62s r´8, 23s r80, 113s r59, 89s r´14, 16s r´34, 22s

P2 r´9,´1s r´5, 8s r´7, 4s r32, 53s r52, 76s r27, 59s r70, 90s r57, 84s r2, 19s r´30, 15s

P3 r´9,´1s r´3, 6s r´8, 1s r24, 38s r53, 73s r7, 39s r61, 78s r57, 88s r0, 20s r´30, 9s

P4 r´9, 1s r2, 9s r´8,´1s r58, 75s r59, 79s r44, 71s r55, 75s r35, 81s r11, 21s r´26, 10s

S3

P1 r2, 8s r´8,´1s r´9,´4s r50, 75s r40, 54s r´3, 12s r65, 84s r51, 85s r´8, 16s r´30, 0s

P2 r´2, 8s r´7, 7s r´9,´7s r43, 65s r66, 84s r31, 56s r52, 72s r2, 36s r´5, 17s r´23, 13s

P3 r´1, 8s r´5, 6s r´9,´7s r23, 50s r67, 83s r´7, 29s r18, 48s r10, 61s r´8, 15s r´31, 2s

P4 r´5, 8s r2, 9s r´9,´1s r60, 100s r55, 75s r41, 67s r25, 72s r45, 77s r´4, 20s r´29, 1s

S4

P1 r´4, 8s r´8, 0s r´7, 8s r28, 59s r27, 50s r7, 46s r62, 112s r10, 89s r´12, 18s r´32, 22s

P2 r´7, 8s r´9, 4s r´8, 7s r41, 71s r55, 83s r28, 61s r33, 81s r49, 75s r´9, 7s r´28, 20s

P3 r´9, 7s r´3, 6s r´7, 2s r28, 55s r53, 81s r´1, 39s r19, 74s r59, 88s r´5, 19s r´29, 20s

P4 r´9, 9s r´9, 8s r´8, 9s r60, 94s r58, 78s r52, 83s r19, 73s r41, 77s r´7, 20s r´22, 18s

S5

P1 r´2, 8s r´4, 3s r´8, 4s r26, 70s r19, 38s r´3, 15s r85, 114s r84, 89s r´4, 18s r´30, 16s

P2 r´9, 6s r´2, 6s r´8, 4s r34, 59s r55, 87s r23, 51s r56, 88s r38, 70s r´6, 13s r´32, 10s

P3 r´8, 6s r´4, 7s r´6, 6s r15, 42s r49, 78s r´3, 28s r45, 77s r45, 77s r´11, 14s r´33, 17s

P4 r´9, 1s r3, 9s r´9,´1s r60, 85s r61, 82s r48, 71s r46, 72s r47, 88s r2, 20s r´29, 13s

S6

P1 r´9, 6s r´9, 9s r´9,´1s r29, 77s r26, 57s r´5, 32s r73, 106s r67, 90s r´9, 22s r´29, 32s

P2 r´9, 5s r´6, 6s r´4, 5s r34, 61s r58, 80s r33, 63s r63, 83s r34, 71s r0, 19s r´28, 27s

P3 r´9, 4s r´9, 9s r´6, 8s r8, 55s r44, 77s r5, 50s r25, 71s r39, 87s r´12, 22s r´33, 32s

P4 r´9, 1s r3, 9s r´9, 7s r60, 84s r47, 80s r39, 77s r46, 74s r46, 83s r´8, 20s r´29, 28s

S7

P1 r2, 9s r´8, 1s r´1, 8s r´10, 44s r19, 40s r2, 20s r84, 120s r72, 88s r´11, 16s r´33,´3s

P2 r´9, 8s r´4, 9s r´4, 7s r33, 65s r56, 83s r22, 58s r46, 76s r41, 84s r5, 21s r´31,´6s

P3 r´4, 8s r´3, 9s r´3, 8s r9, 44s r61, 79s r8, 43s r33, 72s r57, 87s r0, 19s r´32,´2s

P4 r´9, 8s r3, 9s r´3, 8s r59, 82s r55, 80s r54, 82s r37, 72s r37, 86s r´2, 20s r´32, 1s

S8

P1 r4, 9s r´3, 6s r0, 7s r20, 58s r20, 48s r´6, 11s r94, 116s r42, 83s r´13, 20s r´16, 32s

P2 r´5, 5s r´2, 9s r´4, 3s r23, 51s r51, 81s r19, 56s r76, 101s r´88, 81s r´14, 23s r´35, 30s

P3 r´4, 6s r0, 8s r´3, 5s r17, 42s r59, 75s r´11, 32s r19, 65s r51, 79s r´10, 16s r´15, 30s

P4 r´8, 6s r3, 9s r´5, 5s r56, 75s r51, 89s r45, 93s r55, 86s r13, 66s r´12, 20s r´30, 22s

S9

P1 r´1, 7s r´6, 7s r´5, 4s r22, 68s r29, 53s r´2, 29s r70, 100s r61, 87s r´8, 14s r´29, 25s

P2 r´9, 3s r´4, 9s r´9, 3s r36, 64s r47, 73s r21, 56s r51, 82s r57, 82s r´4, 13s r´28, 12s

P3 r´7, 5s r2, 9s r´6,´2s r25, 42s r61, 76s r5, 28s r39, 66s r64, 88s r´13, 10s r´33,´10s

P4 r´9, 1s r3, 9s r´8, 4s r60, 88s r52, 78s r45, 69s r33, 72s r5, 88s r´13, 20s r´34, 18s

S10

P1 r´6, 3s r´4, 6s r´8, 0s r36, 71s r29, 50s r´3, 16s r76, 98s r60, 82s r´10, 15s r´30, 18s

P2 r´9, 4s r´4, 4s r´9, 5s r41, 63s r55, 76s r35, 53s r56, 79s r48, 65s r´10, 13s r´31, 14s

P3 r´9, 3s r´8, 9s r´9, 2s r18, 48s r49, 76s r2, 29s r35, 63s r49, 84s r´12, 10s r´33,´17s

P4 r´9, 1s r´5, 8s r´9,´1s r60, 94s r60, 80s r46, 72s r40, 72s r47, 84s r´11, 20s r´32, 3s

Table 5.3: For each participant and each posture, this table presents the minimum and maxi-
mum rotation angles computed by inverse kinematic over all 27 force exertion trials and for each
upper-limb joint coordinate in Stanford’s model (Holzbaur et al., 2005).

From the minimum and maximum values in Table 5.3, most joint angles exhibit a wide
range of values across all trials. Comparing these ranges with the standard deviations
in Table 5.4 reveals substantial variability within individual force exertion trials. For
instance, this is observed in Figure 5.14, where some trials (for instances the blue and
orange lines at the bottom) show more than 10° of variability for the elbow flexion angle.
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Subject Posture Trunk
rotation x

Trunk
rotation y

Trunk
rotation z

Elevation
angle

Shoulder
elevation

Shoulder
rotation

Elbow
flexion

Pronation
supination

Wrist
deviation

Wrist
flexion

S1

P1 0 ˘ 2 ´2 ˘ 2 ´6 ˘ 2 53 ˘ 5 37 ˘ 4 13 ˘ 5 81 ˘ 5 80 ˘ 2 8 ˘ 2 ´12 ˘ 6
P2 ´6 ˘ 1 1 ˘ 2 ´7 ˘ 1 52 ˘ 4 66 ˘ 3 33 ˘ 4 72 ˘ 5 62 ˘ 3 5 ˘ 2 ´10 ˘ 6
P3 ´3 ˘ 1 ´2 ˘ 2 ´7 ˘ 2 38 ˘ 4 66 ˘ 4 9 ˘ 6 49 ˘ 8 79 ˘ 4 6 ˘ 3 ´1 ˘ 8
P4 ´8 ˘ 1 8 ˘ 1 ´9 ˘ 1 84 ˘ 5 64 ˘ 4 56 ˘ 6 53 ˘ 7 80 ˘ 5 5 ˘ 3 ´4 ˘ 7

S2

P1 3 ˘ 2 3 ˘ 1 ´3 ˘ 1 49 ˘ 5 41 ˘ 3 5 ˘ 3 90 ˘ 2 86 ˘ 3 5 ˘ 2 ´2 ˘ 6
P2 ´6 ˘ 2 3 ˘ 3 ´1 ˘ 2 40 ˘ 4 67 ˘ 4 41 ˘ 7 82 ˘ 3 68 ˘ 3 10 ˘ 3 ´11 ˘ 4
P3 ´6 ˘ 2 2 ˘ 2 ´4 ˘ 1 30 ˘ 3 65 ˘ 3 21 ˘ 6 70 ˘ 2 75 ˘ 6 11 ˘ 3 ´14 ˘ 4
P4 ´6 ˘ 2 7 ˘ 1 ´5 ˘ 2 63 ˘ 3 73 ˘ 3 60 ˘ 4 66 ˘ 2 50 ˘ 6 18 ˘ 2 ´12 ˘ 6

S3

P1 6 ˘ 1 ´5 ˘ 1 ´7 ˘ 1 64 ˘ 5 46 ˘ 3 6 ˘ 3 75 ˘ 2 74 ˘ 6 7 ˘ 3 ´15 ˘ 6
P2 5 ˘ 1 1 ˘ 2 ´9 ˘ 0 52 ˘ 4 77 ˘ 3 43 ˘ 4 62 ˘ 3 16 ˘ 5 3 ˘ 4 ´5 ˘ 6
P3 4 ˘ 2 0 ˘ 2 ´8 ˘ 1 37 ˘ 5 77 ˘ 3 15 ˘ 7 36 ˘ 4 31 ˘ 9 3 ˘ 3 ´18 ˘ 6
P4 4 ˘ 3 6 ˘ 1 ´6 ˘ 1 87 ˘ 8 63 ˘ 4 57 ˘ 5 41 ˘ 8 60 ˘ 5 6 ˘ 4 ´19 ˘ 4

S4

P1 4 ˘ 2 ´5 ˘ 1 ´2 ˘ 2 43 ˘ 5 40 ˘ 4 17 ˘ 4 87 ˘ 5 85 ˘ 6 0 ˘ 5 ´15 ˘ 10
P2 2 ˘ 3 ´2 ˘ 2 ´1 ˘ 3 52 ˘ 4 68 ˘ 5 46 ˘ 6 61 ˘ 5 62 ˘ 4 ´4 ˘ 2 ´7 ˘ 7
P3 2 ˘ 4 1 ˘ 2 ´3 ˘ 2 41 ˘ 5 71 ˘ 5 16 ˘ 8 44 ˘ 12 80 ˘ 6 4 ˘ 4 ´6 ˘ 7
P4 0 ˘ 4 3 ˘ 3 ´3 ˘ 3 76 ˘ 7 70 ˘ 4 67 ˘ 7 45 ˘ 10 62 ˘ 7 1 ˘ 6 1 ˘ 8

S5

P1 3 ˘ 2 1 ˘ 1 ´3 ˘ 1 51 ˘ 9 28 ˘ 3 5 ˘ 3 104 ˘ 3 89 ˘ 0 9 ˘ 3 ´2 ˘ 10
P2 ´3 ˘ 2 2 ˘ 2 ´2 ˘ 2 43 ˘ 5 69 ˘ 6 39 ˘ 6 76 ˘ 5 54 ˘ 7 6 ˘ 2 ´12 ˘ 8
P3 ´1 ˘ 2 1 ˘ 2 1 ˘ 1 26 ˘ 4 65 ˘ 5 11 ˘ 5 64 ˘ 6 63 ˘ 5 2 ˘ 4 ´14 ˘ 11
P4 ´7 ˘ 1 9 ˘ 1 ´6 ˘ 2 76 ˘ 4 71 ˘ 4 60 ˘ 4 62 ˘ 4 70 ˘ 8 14 ˘ 3 ´5 ˘ 9

S6

P1 2 ˘ 2 ´5 ˘ 2 ´5 ˘ 2 51 ˘ 8 39 ˘ 5 13 ˘ 6 94 ˘ 6 84 ˘ 4 2 ˘ 5 9 ˘ 11
P2 ´1 ˘ 2 ´1 ˘ 2 1 ˘ 2 47 ˘ 4 70 ˘ 4 52 ˘ 5 72 ˘ 3 53 ˘ 6 12 ˘ 3 ´2 ˘ 11
P3 ´3 ˘ 3 ´1 ˘ 3 2 ˘ 2 34 ˘ 6 66 ˘ 5 31 ˘ 8 57 ˘ 9 65 ˘ 9 9 ˘ 7 ´6 ˘ 15
P4 ´6 ˘ 2 8 ˘ 1 ´5 ˘ 2 72 ˘ 4 70 ˘ 5 62 ˘ 5 63 ˘ 5 69 ˘ 8 5 ˘ 6 ´3 ˘ 11

S7

P1 8 ˘ 1 ´4 ˘ 2 4 ˘ 2 20 ˘ 9 29 ˘ 4 10 ˘ 3 101 ˘ 4 83 ˘ 3 4 ˘ 5 ´27 ˘ 4
P2 2 ˘ 3 4 ˘ 2 4 ˘ 1 43 ˘ 5 71 ˘ 4 44 ˘ 5 63 ˘ 5 58 ˘ 7 12 ˘ 3 ´22 ˘ 4
P3 4 ˘ 2 5 ˘ 2 4 ˘ 2 26 ˘ 5 71 ˘ 2 25 ˘ 6 54 ˘ 7 73 ˘ 5 10 ˘ 3 ´25 ˘ 4
P4 1 ˘ 4 9 ˘ 1 2 ˘ 2 69 ˘ 4 69 ˘ 4 69 ˘ 5 54 ˘ 6 68 ˘ 9 12 ˘ 3 ´23 ˘ 5

S8

P1 7 ˘ 1 1 ˘ 2 3 ˘ 1 35 ˘ 7 31 ˘ 5 1 ˘ 3 101 ˘ 2 63 ˘ 7 ´4 ˘ 5 7 ˘ 10
P2 1 ˘ 2 5 ˘ 2 0 ˘ 1 33 ˘ 4 64 ˘ 5 34 ˘ 6 93 ˘ 4 63 ˘ 7 ´1 ˘ 5 5 ˘ 11
P3 0 ˘ 2 4 ˘ 2 1 ˘ 1 26 ˘ 4 67 ˘ 2 7 ˘ 6 47 ˘ 6 66 ˘ 5 ´2 ˘ 4 11 ˘ 8
P4 1 ˘ 3 8 ˘ 1 0 ˘ 2 63 ˘ 2 71 ˘ 6 69 ˘ 8 75 ˘ 5 33 ˘ 10 ´5 ˘ 6 ´13 ˘ 7

S9

P1 4 ˘ 1 ´1 ˘ 2 0 ˘ 1 46 ˘ 8 40 ˘ 4 11 ˘ 5 87 ˘ 5 76 ˘ 4 2 ˘ 3 2 ˘ 11
P2 ´2 ˘ 2 3 ˘ 2 0 ˘ 1 49 ˘ 5 65 ˘ 4 43 ˘ 6 69 ˘ 5 69 ˘ 5 7 ˘ 2 ´8 ˘ 8
P3 ´2 ˘ 2 7 ˘ 2 ´4 ˘ 0 31 ˘ 4 69 ˘ 2 17 ˘ 4 54 ˘ 5 79 ˘ 4 ´2 ˘ 4 ´25 ˘ 4
P4 ´5 ˘ 2 9 ˘ 1 ´3 ˘ 2 74 ˘ 5 69 ˘ 4 60 ˘ 4 50 ˘ 6 78 ˘ 8 ´5 ˘ 7 ´25 ˘ 6

S10

P1 1 ˘ 1 0 ˘ 2 ´4 ˘ 2 53 ˘ 5 41 ˘ 3 7 ˘ 3 85 ˘ 4 72 ˘ 3 1 ˘ 5 ´11 ˘ 11
P2 ´1 ˘ 3 ´1 ˘ 1 ´3 ˘ 3 52 ˘ 3 68 ˘ 3 45 ˘ 3 68 ˘ 4 57 ˘ 3 ´1 ˘ 4 ´19 ˘ 6
P3 ´7 ˘ 1 ´4 ˘ 2 ´6 ˘ 2 36 ˘ 4 66 ˘ 3 19 ˘ 3 48 ˘ 5 67 ˘ 5 ´6 ˘ 3 ´30 ˘ 2
P4 ´8 ˘ 1 2 ˘ 3 ´7 ˘ 2 82 ˘ 7 69 ˘ 3 61 ˘ 4 55 ˘ 6 68 ˘ 5 0 ˘ 7 ´23 ˘ 7

Table 5.4: For each participant and each posture, this table presents the mean and standard
deviations (in degrees) of the mean rotation angles computed by inverse kinematic on the 27
force exertion trials and for each upper-limb joint coordinate in Stanford’s model (Holzbaur

et al., 2005). A standard deviation closer to 0 indicates stability of a joint angle throughout the
experiment in a specific posture.

0 1 2 3 4 5 6 7 8

Time (s)

60

70

80

90

100

110

120

130

C
o
o
rd

in
at

e
va

lu
es

fo
r

el
b

ow
fl

ex
io

n

Joint coordinate values of elbow flexion for posture 1. Mean = 81.4, std = 5.27

Figure 5.14: For participant 1, this graph shows their elbow flexion angle (in degrees) during
all 27 force measurements in posture 1. The zone between the black dotted lines represents the
timeframe where the participant exerted their maximal isometric force. The red horizontal line

corresponds to the average angle value (81.40 ˘ 5.27) of all trials’ mean angle values.
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However, since there are multiple trials to consider, Table 5.4 suggests that trials with
high variability in upper-limb posture do not constitute the majority.

Overall, the trunk rotations’ standard deviations are relatively small (all less than
4°) compared to other deviations. This was expected, as the trunk was strapped at the
abdomen and shoulders.

Except for participants S2 and S7, the highest standard deviations in postures P1 and
P2 are observed for wrist flexion angles. For participant S2, this is only the case in posture
P1 (their shoulder elevation standard deviation is higher). During the experiments, it was
noticed that participants tended to flex their wrists to maintain a firm grip on the handle,
particularly when exerting force in the vertical direction.

Analysing all measurements within each posture (Table 5.3) reveals that elbow flexion
angles vary by up to 50° (for participant S2 in posture P1). This substantial range may
be attributed to insufficient back support rigidity and the challenge of simultaneously
maintaining the required posture while focusing on the direction and amplitude of force
exertion. Regarding wrist flexion, which also exhibited a wide range of values (up to
approximately 65° for participant S8 in posture P2), the difficulty of maintaining wrist
position during vertical force exertions was a significant factor, as acknowledged by all
participants. Additionally, while other directions allowed participants to use the palm
and handle contact surface for pushing, all pulling forces required finger muscle engage-
ment. This may have resulted in a less stable grip, potentially leading to wrist motion.
Participants also reported occasional discomfort from the handle after extended use. Fur-
thermore, the handle design, while intended to accommodate a range of hand sizes, may
have inadvertently contributed to variability in wrist flexion and deviation angles.

Although we will assume a single set of joint angles per posture and participant for the
remainder of this chapter, Table 5.4 shows that, except for wrist flexion, all joint angles
are generally within 20° of their mean value. This variability is mainly due to inter- and
intra-trial variations in exertion. Inter-trial variability can also be attributed to the slight
flexibility of the seat. Although it remained stable during the experiments, participants
reported that they could settle into it. This slight movement could cause small shifts
in shoulder position, contributing to variability in the overall upper-limb posture. These
results suggest that while proprioceptive upper-limb placement using visual feedback may
not be adequate for precise upper-limb positioning, it can be sufficient for approximate
positioning.

This experimental protocol required participants to focus on their posture, the direc-
tion of force exertion, and the force amplitude simultaneously for repeated short periods.
However, feedback from participants indicated that they did not find maintaining a spe-
cific posture particularly challenging. They generally found it more difficult to maintain
both maximal force exertion and the correct force direction. This suggests that partic-
ipants may have prioritized maximal force exertion over precise posture maintenance,
leading to the observed variability in joint angles.

For the remainder of this chapter, we will use the average joint coordinate values from
Table 5.4 to represent each participant’s posture.
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5.3 Assessing the ellipsoidal characterization of in vivo
force feasible set

To construct an in vivo force feasible set at the hand for an upper-limb posture, we
considered each force exertion measurement and defined the set as the convex hull of
the corresponding force vectors. This in vivo force feasible set, consequently a polytope,
accounts for variations in force direction, which proved challenging for participants to
maintain consistently. Figure 5.15 illustrates how maximal force production, reflected in
polytope size, differs between two participants in posture P3.
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Figure 5.15: Comparison of in vivo force feasible sets (polytopes) for participants S10 and S5
in posture P3. Axes x, y and z are in Newtons and their direction correspond to the workspace

axes (x-axis normal to the frontal plane; y-axis normal to the transverse plane and z-axis
normal to the sagittal plane).

5.3.1 Representing the underlying structure of in vivo force fea-
sible sets

To compare the in vivo sets (polytopes) with the in silico ellipsoids, we need a common
representation. One approach to describe the polytopes as ellipsoids is through singular
value decomposition (SVD) of the data matrix, where each column represents a maximal
force exertion. SVD decomposes this matrix into three matrices: an orthonormal matrix
U , a diagonal matrix S, and an orthonormal matrix V T , such that the original matrix
equals USV T . Geometrically, this describes the measured forces as an ellipsoid formed
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by transforming a unit sphere: first rotating it (V T ), then applying anisotropic dilation
(scaling along different axes) via S, and finally rotating again (U).

However, we shall argue that a SVD approach is not relevant. It inherently averages
the information between points, while we assume that unmeasured forces are geometri-
cally linked to the measured maximal forces, not simply averaged. Therefore, we utilize
an alternative ellipsoid whose definition emphasizes the importance of each measured
maximal force in defining the overall set.

This ellipsoid is termed the outer Löwner-John ellipsoid (Fig. 5.16). It is unique to a
convex point set (Henk, 2012) and corresponds to the ellipsoid enclosing the points with
minimal volume (V. Milman et al., 2001).

Figure 5.16: The red ellipsoid is the outer Löwner-John ellipsoid of the blue polygon. It
corresponds to the ellipsoid enclosing the points with minimal volume, and is unique to the

polygon.

While outer ellipsoids can characterize a set and reflect its structural properties due
to their uniqueness, they are not necessarily used solely for approximations. However,
the outer Löwner-John ellipsoid can effectively approximate sets that already exhibit an
ellipsoidal shape. As discussed in Chapter 3, force feasible sets in a human upper-limb
might have an ellipsoidal shape due to a high number of muscles, assuming convexity of
the muscle feasible tension set. Therefore, using the outer ellipsoid to approximate the
measured force exertion data could be appropriate if the data suggests an ellipsoidal shape.
However, this approximation is not suitable for the data gathered in this experiment. It
has not been determined whether the 26 chosen force directions adequately capture the
complete in vivo force feasible sets. For instance, to accurately capture the elongation
of these sets, the chosen directions should have included their principal axes, which were
unknown in this experiment.

With our data, the outer Löwner-John ellipsoid becomes relevant because it reflects
the structural properties of a set. This approach relies on the assumptions that maximal
muscle tensions are mathematically structured (via a norm) and that force feasible sets
are produced as a transformation of this normed structure. While this can be readily
described in silico as such using Banach space theory (c.f., in vivo measurements may be
much more complex. Therefore, the outer ellipsoid —through its orientation, elongation,
and scaling— should reveal key structural features of the unknown in vivo force feasible
sets, for which we only have a limited number of surface points. In particular, our goal is
to assess whether an ellipsoidal construction, as described in Chapter 3, aligns with the
experimental data.

To compute an approximation of the outer Löwner-John ellipsoid, we describe the
following optimization problem. Consider a set P “ tx1, . . . ,xmu of m points in Rn. The
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outer Löwner-John ellipsoid is defined as:

EP “
␣

x P Rn
| }Qx ´ c}2 ď 1

(

where Q P Rnˆn is a symmetric, positive definite matrix, c P Rn a translation vector
and } ¨ }2 the Euclidean norm. A result from (John, 1948) shows that the volume of
EP is proportional to pdetQq´1{n. Therefore, computing the outer Löwner-John ellipsoid
consists of solving the following optimization problem:

maximize t

subject to t ď pdetQq
1{n,

}Qxi ´ c}2 ď 1, i “ 1, . . . ,m,

Q is symmetric, positive definite

We provide a geometric package in Python, called hyperobjects3, which implements
this optimization problem.

In summary, outer Löwner-John ellipsoids are specific ellipsoids uniquely associated
with a set of points. While they can be used to approximate a set, their computational
cost for large datasets often limits this application. However, they hold a prominent
place in theoretical mathematics due to their ability to capture the geometry of a set
(John, 1948; Dvoretzky, 1961; Grünbaum, 1960; Goffin and Hoffman, 1983; V. Milman,
1992; Henk, 2012). Much of the local theory of Banach spaces, as described in Chapter
3, is based on Löwner and John’s results concerning inner (maximum volume inscribed
ellipsoid) and outer ellipsoids. These results help describe how the geometry of high-
dimensional convex sets transforms under intersection and projection. More generally,
these ellipsoids reveal the underlying mathematical structure of a set, assuming such
structure exists. Consequently, Löwner-John ellipsoids may not be relevant for sets lacking
inherent structure.

One of our objectives in this chapter is to assess whether a limited number of maximal
isometric force measurements, which correspond to points on the surface of in vivo force
feasible sets, exhibit an ellipsoidal structure. This ellipsoidal approximation, initially
proposed in Chapter 3 for models with many muscles, also appeared relevant for the 50-
muscle model explored in Chapter 4. To ensure consistency, we now validate whether
these constructed ellipsoidal approximations align with in vivo data.

For each participant and posture, the outer Löwner-John ellipsoid encompassing all
maximal isometric force exertions is computed, as illustrated in Figure 5.17.

3https://gitlab.inria.fr/auctus-team/people/gautierlaisne/public/hyperobjects

https://gitlab.inria.fr/auctus-team/people/gautierlaisne/public/hyperobjects
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Figure 5.17: Computation of the outer Löwner-John ellipsoid (in green) from the convex hull
of all maximal force measurements (blue polytope) for participants S1, S5 and S8 in posture P1.
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5.3.2 Quantifying the relevance of in silico ellipsoidal force feasi-
ble sets

The upper-limb musculoskeletal model from (Holzbaur et al., 2005) was scaled to each
participant, using OpenSim software and its integrated scaling tools. Each muscle path
points coordinates description in their respective body of definition was kept untouched
during this scaling. The personalization of each muscle force-generating parameters was
not effected due to the Chapter 3 theoretical results, which induced a strong biomechanical
assumption explained in the following paragraphs.

The ellipsoidal approximation of force feasible sets results from an approximation of
the muscle feasible tension set, as long as it is convex, as an ellipsoid. The projection-
then-intersection of this tension ellipsoid leads consequently to force feasible sets shaped
as ellipsoids. When the feasible tension set T is assumed to be an orthotope (hyper-
rectangle), assuming that it can be regarded as an ellipsoid (scaled by a factor termed
the projection constant) implies that the sharpness of T can be regarded as a quadratic
surface (an ellipsoid) when studying the produced force feasible set. If the edges of T are
all of the same length, then T is a hypercube and therefore its shape can be regarded
as a sphere. Essentially, when T is a cube, then considering that force feasible sets are
ellipsoids consists on assuming that the sharpness induced by a cube shape can be aver-
aged to a spherical surface. Consequently, the Local Theory of Banach spaces provides
a mathematical toolkit to generalize the notion of average, commonly used for scalars
(through the notion of mean) and for points (through the notion of barycenter). To some
extent, this theory generalizes this notion to convex surfaces.

If the lengths of T ’s edges are considered to be within a similar range of values,
we can approximate it with the hypercube rt, tsm, where m is the number of muscles
considered, t is the mean of minimal muscle tensions, and t is the mean of maximal
muscle tensions. This representation treats the muscle feasible tension set as a sphere of
radius t´t

2
centered at

´

t´t
2

` t
¯

1m, where 1m “ p1, . . . , 1q P Rm. To ensure consistency
with the cubical representation, this sphere is then scaled by the projection factor λpℓn2 q

defined in Chapter 3. This scaling ensures that the resulting ellipsoidal force feasible set
has a similar scale to the polytopic force feasible set.

Biomechanically, these assumptions imply that the individual minimal and maximal
tension values of each muscle do not strongly influence the resulting force feasible set. In-
stead, as emphasized throughout this thesis, the combination of these tensions, regardless
of the specific interaction model, primarily determines the force feasible set’s character-
istics. Essentially, only an average maximal tension value is necessary for approximating
force feasible sets, eliminating the need for personalized force-generating muscle proper-
ties. This raises a critical question: under what conditions can maximal tension values be
considered similar? For example, if the maximal tensions of m muscles range from 500 to
1200 Newtons, averaging these values might initially seem inappropriate. However, the
consideration of muscle tension interactions, particularly as m increases greatly, signifi-
cantly mitigates this concern. Since the volume of any sphere in Rm with a fixed radius
approaches 0 as m tends to 8, there exists a threshold for the number of muscles beyond
which averaging values between 500 and 1200 becomes reasonable.

Therefore, if the number of muscles is sufficiently large, our projection-then-intersection
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description suggests that the global scales and shapes of force feasible sets are primarily
determined by: 1) mean minimal (t) and maximal (t) tensions (which depend on the
posture), 2) a projection constant λpℓmp q for a chosen p representing the degree of tension
interactions, and 3) the Jacobian transpose JT . While it may be interesting, we do not
consider that all muscle tensions should be averaged, even in strong theoretical assump-
tion of a high number of muscles. Besides, a large variability between peak forces in
upper-limb muscles has been observed, for instance as recalled in (Holzbaur et al., 2005),
peak forces ranges from 13.1 (for the extensor digitorum communis of the fifth digit) to
1377.8 Newtons (for the subscapularis muscle). However, in order to use an ellipsoidal
representation to its full extent, we shall assume that there are less variability of peak
force for a given muscle in different postures.

To investigate this assumption, we performed an optimization process 10 times for
each participant to find a parametrization of their scaled upper-limb musculoskeletal
model (based on (Holzbaur et al., 2005)). The in vivo force feasible sets are represented
as centered outer Löwner-John ellipsoids in selected postures, denoted Êpqq, where q rep-
resents a posture as described in Section 5.2. These ellipsoids are centered at the origin
to focus on evaluating the similarity between in silico and in vivo force ellipsoids with
respect to their orientation and elongation. The parameter vector of a solution consists
of 50 values t “ pt1, . . . , t50q, representing the average maximal tension for each muscle in
the scaled musculoskeletal model.

The force ellipsoids produced by a solution t are denoted Epq, tq and are constructed
as follows:

Epq, tq “

!

f P R3
| JT

pqqf “ ´LT
pqqt, t P r0, λpℓ502 qts and }t}2 ď 1

)

,

where λpℓ502 q « 5.67 is the projection constant that scales the resulting force feasible
set to appropriately account for muscle tension interactions modeled as an ellipsoid;
JT pqq P R7ˆ3 is the transpose of the Jacobian matrix evaluated at the hand point
X “ r0.0028,´0.0339,´0.0051s (in meters), which approximates the center of the palm
in contact with the handle; and ´LT pqq P R7ˆ50 is the transpose of the moment arm
matrix at posture q.

Geometrically, this corresponds to first considering an axis-aligned 50-dimensional
ellipsoid inscribed in the hyperrectangle r0, t1s ˆ ¨ ¨ ¨ ˆ r0, λpℓ502 qt50s, then projecting it
onto the torque space and intersecting it with im JT pqq. Finally, this intersection set is
expressed in the Cartesian force space by applying pJT pqqq` to it.

The optimization problem is thus formulated as:

θ˚
“ argmin

θPr0,1500s50
max
qPQ

dpÊpqq, Epq, θqq,

where Q “ tP1, P2, P3u is the set of the first three postures, and d is the Hausdorff
distance between the discretized representations (using 6 points) of the two ellipsoids.

This optimization process searches for suitable muscle maximal tensions that repro-
duce the in vivo force feasible sets in the three postures. The fourth posture, P4, will be
used to validate the generalizability of the solution.
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5.3.3 Results

The optimization process was run 10 times per participant using the RACOS solver,
for a duration of 1 minute per trial. The optimization processes were implemented in
Python 3 using our custom geometric package hyperobjects4 and the Zoopt library for the
implementation of RACOS5. All experimental data and computed solutions are available
online6.

For each solution and posture, the orientation of the in silico force ellipsoid relative
to the in vivo outer Löwner-John ellipsoid is studied by comparing the relative angles
between their principal axes. These axes are denoted D1, D2, and D3, in decreasing order
of the corresponding singular values obtained through singular value decomposition of
the matrix describing the ellipsoid as a linear transformation of the sphere. Thus, D1 is
associated with the axis of greatest elongation, and D3 with the axis of least elongation.
For two axes, D P R3 and D̂ P R3 (one for each ellipsoid), the relative angle (in degrees)
is computed as αD “ arccos

´

D¨D̂

}D}}D̂}

¯

and is expressed in the range r0˝, 90˝s.

To compare the elongation differences between two ellipsoids, we collect the semi-axis
lengths (termed “radii”) and compute their absolute differences. Table 5.5 presents these
comparison indices after the 10 optimization runs.

Validation posture

Similarly to Table 5.5, Table 5.6 presents the orientation and elongation differences be-
tween the reconstructed ellipsoid from maximal isometric force measurements in posture
P4 and the force ellipsoid constructed by the solutions found in the optimization processes.

4https://gitlab.inria.fr/auctus-team/people/gautierlaisne/public/hyperobjects
5https://zoopt.readthedocs.io/en/latest/
6https://gitlab.inria.fr/auctus-team/people/gautierlaisne/public/

force-experimentation-data

https://gitlab.inria.fr/auctus-team/people/gautierlaisne/public/hyperobjects
https://zoopt.readthedocs.io/en/latest/
https://gitlab.inria.fr/auctus-team/people/gautierlaisne/public/force-experimentation-data
https://gitlab.inria.fr/auctus-team/people/gautierlaisne/public/force-experimentation-data
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Subject Posture Cost Angle
D1

Angle
D2

Angle
D3

Absolute radius
difference D1

Absolute radius
difference D2

Absolute radius
difference D3

S1
P1 49 ˘ 21 11 ˘ 5 58 ˘ 25 58 ˘ 25 85 ˘ 36 31 ˘ 17 52 ˘ 22
P2 37 ˘ 16 8 ˘ 4 68 ˘ 29 67 ˘ 29 82 ˘ 35 35 ˘ 16 26 ˘ 15
P3 48 ˘ 20 8 ˘ 4 12 ˘ 13 14 ˘ 13 74 ˘ 38 16 ˘ 12 40 ˘ 17

S2
P1 123 ˘ 29 21 ˘ 2 61 ˘ 4 58 ˘ 4 86 ˘ 59 23 ˘ 19 34 ˘ 18
P2 109 ˘ 18 11 ˘ 2 55 ˘ 6 56 ˘ 5 69 ˘ 37 22 ˘ 14 32 ˘ 19
P3 121 ˘ 29 18 ˘ 1 21 ˘ 4 17 ˘ 4 66 ˘ 36 18 ˘ 10 31 ˘ 15

S3
P1 90 ˘ 34 16 ˘ 2 42 ˘ 9 44 ˘ 9 73 ˘ 43 36 ˘ 24 30 ˘ 18
P2 63 ˘ 23 13 ˘ 4 52 ˘ 30 54 ˘ 30 97 ˘ 60 25 ˘ 16 22 ˘ 15
P3 90 ˘ 34 10 ˘ 1 33 ˘ 14 32 ˘ 14 189 ˘ 109 38 ˘ 30 20 ˘ 11

S4
P1 99 ˘ 25 18 ˘ 4 44 ˘ 32 48 ˘ 27 92 ˘ 59 66 ˘ 29 56 ˘ 30
P2 95 ˘ 19 8 ˘ 2 47 ˘ 11 47 ˘ 11 113 ˘ 75 67 ˘ 26 80 ˘ 29
P3 104 ˘ 21 10 ˘ 1 29 ˘ 8 30 ˘ 8 126 ˘ 75 44 ˘ 30 67 ˘ 25

S5
P1 96 ˘ 32 12 ˘ 3 54 ˘ 14 55 ˘ 14 72 ˘ 58 57 ˘ 45 24 ˘ 16
P2 81 ˘ 23 10 ˘ 2 19 ˘ 11 20 ˘ 11 57 ˘ 47 44 ˘ 36 29 ˘ 14
P3 96 ˘ 32 14 ˘ 2 59 ˘ 25 60 ˘ 24 69 ˘ 62 40 ˘ 35 23 ˘ 24

S6
P1 124 ˘ 30 15 ˘ 2 13 ˘ 6 20 ˘ 4 68 ˘ 59 97 ˘ 47 22 ˘ 16
P2 75 ˘ 27 9 ˘ 2 19 ˘ 17 21 ˘ 16 66 ˘ 62 62 ˘ 41 22 ˘ 19
P3 124 ˘ 30 14 ˘ 2 27 ˘ 17 31 ˘ 16 69 ˘ 36 46 ˘ 34 25 ˘ 19

S7
P1 98 ˘ 39 16 ˘ 2 49 ˘ 11 50 ˘ 10 95 ˘ 63 48 ˘ 30 50 ˘ 37
P2 69 ˘ 32 6 ˘ 3 28 ˘ 8 28 ˘ 8 137 ˘ 94 47 ˘ 32 42 ˘ 32
P3 100 ˘ 39 15 ˘ 2 39 ˘ 6 37 ˘ 6 87 ˘ 74 49 ˘ 37 43 ˘ 31

S8
P1 79 ˘ 39 13 ˘ 6 84 ˘ 4 85 ˘ 4 88 ˘ 59 81 ˘ 52 13 ˘ 10
P2 90 ˘ 24 17 ˘ 4 23 ˘ 14 15 ˘ 16 38 ˘ 31 39 ˘ 22 39 ˘ 24
P3 91 ˘ 24 14 ˘ 2 63 ˘ 13 64 ˘ 13 86 ˘ 61 85 ˘ 26 24 ˘ 18

S9
P1 44 ˘ 26 6 ˘ 3 74 ˘ 16 74 ˘ 16 77 ˘ 79 35 ˘ 30 42 ˘ 27
P2 43 ˘ 25 6 ˘ 3 80 ˘ 14 80 ˘ 14 77 ˘ 51 31 ˘ 19 48 ˘ 24
P3 41 ˘ 19 6 ˘ 3 72 ˘ 14 72 ˘ 14 73 ˘ 48 28 ˘ 20 48 ˘ 28

S10
P1 68 ˘ 20 10 ˘ 4 66 ˘ 4 65 ˘ 5 59 ˘ 53 41 ˘ 26 17 ˘ 10
P2 66 ˘ 20 12 ˘ 2 45 ˘ 21 43 ˘ 23 122 ˘ 65 29 ˘ 22 22 ˘ 18
P3 65 ˘ 19 10 ˘ 2 23 ˘ 6 23 ˘ 6 175 ˘ 61 51 ˘ 29 38 ˘ 20

Table 5.5: Comparison of the produced ellipsoids and the in vivo outer Löwner-John
ellipsoids for each participant across 10 optimization trials. The table presents the mean and

standard deviation (rounded to the nearest integer) of: (1) the angle (in degrees, within
r0˝, 90˝s) between corresponding principal axes (D1, D2, D3, sorted in decreasing order of axis
length), and (2) the absolute difference in semi-axis length (in Newtons) for each principal axis.

Subject Posture Cost Angle
D1

Angle
D2

Angle
D3

Absolute radius
difference D1

Absolute radius
difference D2

Absolute radius
difference D3

S1 P4 117 ˘ 52 16 ˘ 7 67 ˘ 30 66 ˘ 30 38 ˘ 20 23 ˘ 18 55 ˘ 24
S2 P4 88 ˘ 25 8 ˘ 3 60 ˘ 13 60 ˘ 13 81 ˘ 29 18 ˘ 11 26 ˘ 18
S3 P4 202 ˘ 74 14 ˘ 2 82 ˘ 4 81 ˘ 5 168 ˘ 114 36 ˘ 29 25 ˘ 13
S4 P4 42 ˘ 26 3 ˘ 2 77 ˘ 10 77 ˘ 10 76 ˘ 60 74 ˘ 23 67 ˘ 25
S5 P4 91 ˘ 45 12 ˘ 5 80 ˘ 6 80 ˘ 6 117 ˘ 90 38 ˘ 34 20 ˘ 19
S6 P4 109 ˘ 21 11 ˘ 3 53 ˘ 10 54 ˘ 11 83 ˘ 74 68 ˘ 34 24 ˘ 25
S7 P4 108 ˘ 32 15 ˘ 5 37 ˘ 9 37 ˘ 9 79 ˘ 61 39 ˘ 31 60 ˘ 23
S8 P4 96 ˘ 22 13 ˘ 3 48 ˘ 17 46 ˘ 19 73 ˘ 57 15 ˘ 10 18 ˘ 7
S9 P4 80 ˘ 23 7 ˘ 4 47 ˘ 20 47 ˘ 20 126 ˘ 79 23 ˘ 21 32 ˘ 25
S10 P4 88 ˘ 23 7 ˘ 3 49 ˘ 6 49 ˘ 7 153 ˘ 90 48 ˘ 26 15 ˘ 13

Table 5.6: Similar as Table 5.5 but for validation posture P4.



Chapter 5. Ellipsoidal characterization of force feasible sets 190

Qualitative assessment of reproduced force feasible sets

To qualitatively assess the differences between the 3D shapes, Figures 5.18, 5.19, and 5.20
show the ellipsoid produced by one of the 10 solutions (in red) superimposed on the outer
Löwner-John ellipsoids (in green) computed from the measurements (blue polytope).
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Outer Löwner-John ellipsoid

Ellipsoid solution after optimization

Figure 5.18: Force feasible sets for participant S8 in all postures. The in vivo force polytope
is shown in blue, the associated outer Löwner-John ellipsoid in green, and the in silico force
ellipsoid computed in the 7th optimization run in red. All shapes are centered at the origin.
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Figure 5.19: Force feasible sets for participant S6 in all postures. The in vivo force polytope
is shown in blue, the associated outer Löwner-John ellipsoid in green, and the in silico force
ellipsoid computed in the 4th optimization run in red. All shapes are centered at the origin.
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Outer Löwner-John ellipsoid

Ellipsoid solution after optimization

−200

−100

0

100
200

x
(N

)

−200

−100

0

100

200

y
(N

)

−200−100
0

100
200

z (N)
−200 −100 0 100 200

x (N)

−200

−100

0

100

200

y
(N

)

−200

−100

0

100

200

z
(N

)

Comparison between in vivo and in silico force feasible sets of subject 9 in posture 4

−200
−100

0
100
200

x
(N

)

−200

−100

0

100

200

y
(N

)

−200−1000100200
z (N)
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Figure 5.20: Force feasible sets for participant S9 in all postures. The in vivo force polytope
is shown in blue, the associated outer Löwner-John ellipsoid in green, and the in silico force
ellipsoid computed in the 7th optimization run in red. All shapes are centered at the origin.

5.3.4 Conclusion and discussion

The computed in silico force ellipsoids generated by the optimization solutions were com-
pared to the orientations and elongations of the outer Löwner-John ellipsoids derived
from experimentally measured maximal isometric force exertions in 26 directions across
4 postures. The optimization process aimed to determine mean maximal tension values
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for 50 upper-limb muscles, under the assumption that these values do not vary signifi-
cantly between postures. This assumption, while seemingly contradicting the established
force-length relationship of muscles, reflects the hypothesis that muscle tension interac-
tions have a far greater influence that the individual muscle tensions on the generation
of maximal hand forces in the right upper-limb. This hypothesis is supported by the
theoretical framework presented in Chapter 3, which indicates that a large number of
muscles necessarily leads to this behavior when considering an ellipsoidal representation
of the muscle tension feasible set. However, the required number of muscles to achieve
this behavior is a theoretical value, expressed as an asymptotic function that tends to `8

as the accuracy of the ellipsoidal approximation increases. Therefore, this study aimed to
evaluate the validity of this hypothesis for a musculoskeletal model with 50 muscles, as it
is unclear whether this constitutes a sufficiently large number.

Furthermore, this work investigated whether representing in vivo force feasible sets us-
ing outer Löwner-John ellipsoids, derived from measured maximal force exertions, could be
more suitable than a polytopic representation. Since these ellipsoids reflect the structural
information of a geometric construction process, this study compared in silico force ellip-
soids (constructed by projecting an ellipsoidal muscle tension feasible set onto the torque
space and intersecting it with the image of the Jacobian transpose) with the correspond-
ing outer Löwner-John ellipsoids across various postures. Similarities in characteristics,
such as orientation and elongation, between these two representations would suggest that
the construction of in silico force ellipsoids and their underlying hypotheses are indeed
inscribed in in vivo force feasible sets and thus captured by their outer Löwner-John el-
lipsoid. In other words, while in vivo force feasible sets may indeed exhibit an ellipsoidal
shape, this does not necessarily validate the adequacy of their in silico counterparts as
described in this study.

Overall, the discretized Hausdorff distances (Cost column in Tables 5.5 and 5.6) be-
tween the computed force ellipsoids and the experimental outer Löwner-John ellipsoids
exhibit similar values and variability across postures P1, P2, and P3. However, these
similarities do not extend to posture P4. For participants S2 and S4, the costs associated
with posture P4 are even lower than those observed in the fitting conditions (P1, P2,
P3), suggesting that the solutions can predict force ellipsoids with greater accuracy than
achieved through fitting. For the remaining participants, overfitting is observed. This
discrepancy between underfitting and overfitting behaviors may indicate that the number
of postures used for fitting is insufficient.

An analysis of the angles presented in both tables reveals that, for all participants and
postures, the in silico major axis (D1) exhibits the least variability and the lowest average
angular deviation compared to the outer Löwner-John ellipsoid. This indicates that this
direction is well-captured by our force ellipsoid model. However, large angular deviations
are observed for D2 and D3 in both fitting and validation postures, with differences
reaching almost 90° for participant S9 in posture P2. Notably, for all participants and
postures, the angular errors for D2 are similar to those of D3. This similarity could be
attributed to the high variability in participant postures, suggesting that such variability
does not significantly impact the primary force direction only. Alternatively, since the
angular errors for D2 and D3 are relatively similar, this could indicate a relationship
between the orientations of the in silico force ellipsoids and the outer ellipsoids, but
with a need for adjusting the modeling choices in the computed force ellipsoids. This
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interpretation is supported by the observation that all participants and postures exhibit
similar mean angular errors and standard deviations for D2 and D3, in both fitting and
validation postures.

Regarding the elongation characteristics of both ellipsoids, a striking observation is the
lack of consistent patterns across participants. This is evidenced by standard deviations
often approaching the corresponding mean values, as seen, for instance, in direction D1,
posture P2, for participants S5, S6, S8, and S9. This finding is crucial because the
absence of a structured pattern in elongation contradicts our initial assumption that
muscle maximal tension can be averaged across postures. Consequently, it appears that
the variability of muscle maximal tensions does indeed influence the force feasible set when
employing a projection-then-intersection formulation, where the theoretical consideration
of simply using an ellipsoid representation suggested that it would not.

These results highlight two seemingly contradictory mathematical considerations. On
one hand, the findings suggest that the outer Löwner-John ellipsoids share structural
information with our in silico force ellipsoid model. On the other hand, the outer ellipsoids
do not capture the same structural information concerning elongation when assuming an
averaged maximal muscle tension across postures.

In other words, while an ellipsoidal representation of in silico force feasible sets may
be appropriate regarding shape and orientation (suggesting that 50 muscles are sufficient
for this purpose), the associated tension set modeling requires further refinement. The
assumption that 50 muscles is large enough for an ellipsoid modeling, as suggested by
Chapter 3 in a pure theoretical point of view and Chapter 4 from a numerical point of
view, appears to hold only for modeling shape and primary force direction, but not for
accurately capturing elongation. This could potentially be extended to encompass the
overall orientation with further model refinements. If 50 muscles were indeed considered
sufficiently large in general, the range of maximal tension values within a muscle could
be represented by an average value, leading to more structured results in the observed
radius differences.

5.4 Conclusion

The goal of this chapter was to confront the theoretical assumptions regarding the rele-
vance of modeling force feasible sets as ellipsoids with experimental data. Assuming that
in vivo force feasible sets are ellipsoidal, based on their in silico definition (c.f. Chap-
ter 1), leads to significant implications for the overall modeling framework. Namely, it
implies that the muscle tension feasible set can also be regarded as an ellipsoid. This
geometric assumption can be understood as the geometric notion of averaging, which, in
this case, is valid as long as we are studying a high-dimensional convex object from a
lower-dimensional perspective. In our context, this implies that, for a specific upper-limb
posture, the convex muscle tension feasible set can be considered as an ellipsoid if its
corresponding force feasible set exhibits an ellipsoidal shape. The primary requirement is
that the number of muscles be sufficiently large. While this notion of large is well-defined
mathematically, it is less clear in practice, as we are using a musculoskeletal model of the
upper-limb to describe in silico force feasible sets that represent in vivo sets.

Therefore, this chapter focused on assessing the extent to which an in silico ellipsoidal
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representation of force feasible sets is appropriate when using a musculoskeletal model
with 50 muscles. Our findings reveal a more nuanced answer than initially anticipated:
while the shape and primary direction of force can be effectively captured by ellipsoids,
the elongation of the in vivo force feasible set is not solely determined by its ellipsoidal
characterization. We argue this point by contradicting the following: if the elongation
of a force feasible set were solely a consequence of the ellipsoidal nature of the muscle
tension feasible set T , then T would essentially be an average shape of an orthotope
(up to scale), a theoretical behavior that emerges in very high dimensions. However, in
high-dimensional spaces, T would not vary significantly between different postures, as
the variability in minimal and maximal muscle tension values across postures becomes
less significant with increasing dimensionality. Under this assumption, the elongation of
any produced force feasible set would depend solely on average muscle maximal tension
values.

To test this hypothesis, we first collected maximal isometric force measurements. Ten
participants volunteered to exert 26 maximal forces at the hand of their right upper-limb
in various directions, across four different postures. The experiment was conducted in
a minimum of two 3-hour sessions. Participants were seated with their abdominals and
shoulders uncovered to minimize trunk motion. Contact forces were limited to reduce
external constraints: participants’ feet did not touch the ground, and no physical restraints
were imposed on their upper-limb posture. The experimental setup was designed to
accommodate individual anthropometric variability. Participants were simply asked to
sit and position their hand on a handle attached to a force sensor, which was adjusted to
fit their hand comfortably.

Four predefined upper-limb postures were presented to the participants through visual
feedback. Reflective markers attached to the participant’s upper limb were tracked in
real-time by an optoelectronic system, allowing them to visually monitor their upper-
limb movements on a screen. A scaled upper-limb skeleton, configured in the expected
posture, was displayed in the interface. Participants were instructed to visually align
their own markers with the skeleton’s posture. Post-experiment analysis using inverse
kinematics revealed substantial variability in maintained postures, particularly in elbow
and wrist flexion angles. This suggests that physical constraints on the upper-limb might
be necessary to ensure consistent posture maintenance. Furthermore, the handle design
proved to be insufficiently comfortable for the extended experimental protocol.

Despite precautions such as 2-minute rest periods between exertions, participants were
required to repeatedly exert maximal isometric forces in different directions, potentially
leading to cognitive fatigue, which was not explicitly studied. This fatigue could stem from
the simultaneous demands of maintaining a specific posture, exerting maximal force, and
controlling the direction of force. To mitigate these challenges, participants were provided
with initial test trials and training at the beginning of each session, as well as longer rest
periods when necessary until participants felt physically and cognitively prepared for the
next measurements.

Using the experimental maximal force data and the participants’ upper-limb postures,
a 50-muscle upper-limb musculoskeletal model was scaled to each participant. As Chap-
ter 4 suggested that the challenges of personalization based on force ellipsoids may not
be primarily related to muscle geometry, the points describing muscle paths were not
individually adapted. An optimization process was then employed to determine a vector
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of average maximal muscle tensions across postures. This process compared the in silico
force ellipsoids generated using the scaled model with the minimum volume enclosing
ellipsoid of all measured maximal isometric forces.

The results were analyzed with respect to two distinct ellipsoid properties: orientation
and semi-axis lengths (representing elongation). While the primary axes of the in vivo
and in silico ellipsoids exhibited similarity, this was not observed for the other two axes.
However, even in the observed discrepancies, there appeared to be a consistent pattern in
the computed errors, suggesting that both ellipsoids share similar structural information
regarding orientation. Conversely, the comparison of elongations revealed no apparent
structure, indicating the importance of considering individual muscle maximal tensions
in the model, rather than relying on averaged values.

These findings challenge the initial assumption that muscle maximal tensions can be
averaged across postures. This implies that while using 50 muscles in the musculoskeletal
model was theoretically sufficient to justify an ellipsoidal representation with its primary
axis aligned with the main force direction, it is insufficient to fully characterize the rela-
tionship between muscle tensions and the force feasible set using the theoretical knowledge
from Chapter 3. Consequently, this suggests that the chosen ellipsoidal model for force
feasible sets, within the projection-then-intersection of ellipsoid framework, may be too
simplistic or require further refinements in its representation of muscle tensions.

However, these limitations do not invalidate the use of ellipsoids to represent force
feasible sets, as demonstrated by the consistent orientation of the ellipsoids produced
by the optimization solutions. This has practical implications, particularly given the
challenges of obtaining successive maximal isometric force measurements, even with rest
periods, as highlighted in this chapter. Employing an ellipsoid significantly reduces the
number of required maximal force measurements, potentially to as few as nine. While
additional measurements may be necessary to account for experimental variability, this
approach would still be more efficient than the protocol used in this thesis.
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Conclusion

This thesis explores the potential of physical Human-Robot Interaction (pHRI) in the
modern industry. In collaborative settings involving humans and robots, robots are in-
creasingly capable of adapting to dynamic scenarios and offer a unique opportunity to
assist human operators by accommodating their physical needs, preferences, and skill lev-
els. However, this flexibility in collaborative workspaces raises safety concerns. To ensure
that robotic assistance is not a burden on the human operator, the robot must possess
a clear and precise understanding of human capabilities. In particular, knowledge of an
operator’s physical abilities, such as their force capacities, is crucial.

This thesis focuses on a robotic-based formulation of these force capacities at the
hand, employing a set-theoretic framework. Accurately capturing human force capabilities
requires experimental measurement. For a fixed upper-limb posture, this involves repeated
exertion of maximal isometric forces in various directions. This leads to a first challenge
addressed in this thesis:

Challenge 1:
How can the measurement of maximal isometric forces be performed efficiently

within a reasonably long experiment?

Collaborative tasks demand varying levels of human physical involvement, necessitat-
ing adaptable robot assistance. Given that an individual’s force capabilities are influenced
by posture, physiology, and anthropometry, the robot should account for these factors. To
address this inter- and intra-individual variability, this thesis employs a numerical repre-
sentation of the human, known as a musculoskeletal model. However, the computational
cost of such models increases with their complexity and level of detail. Thus, this thesis
addresses this second challenge:

Challenge 2:
How detailed and personalized must a musculoskeletal model of the human

upper-limb be to accurately represent the exertable maximal isometric forces at the
hand of an individual?

Musculoskeletal modeling offers valuable insights into human biomechanics. A deeper
understanding of exerted forces can enhance the design and control of collaborative robots,
enabling safer and more effective human-robot interaction. This thesis explores the poten-
tial of a set-theoretic formulation of exertable forces to understand how muscle interactions
contribute to maximal force production. This leads to the third challenge addressed in
this thesis:
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Challenge 3:
How can a set-theoretic approach to maximal isometric forces be used to

quantitatively characterize muscle tension interactions?

Thesis contributions

In Chapter 1, we described how maximal isometric forces could be formulated within a
set-theoretic approach using musculoskeletal models. These sets, termed force feasible
sets, are studied in the literature within both robotic and biomechanical contexts. We
first described the experimental protocol for collecting maximal isometric forces at the
hand and reviewed the factors that influenced the quality of an exerted maximal force. By
comparing experimental measurements from robotics and biomechanics, we highlighted a
discrepancy between musculoskeletal-based force feasible sets and experimental data. This
discrepancy arise from differing biomechanical assumptions regarding muscle interactions,
leading to distinct characterizations of force feasible sets, notably as (convex) polytopes
or ellipsoids.

Chapter 2 focused on improving the computational aspects of force polytopes to bet-
ter understand the combinatorial geometric processes involved in their formulation. We
presented a new, efficient algorithm for computing the vertices of a zonotope — the pro-
jection of a hyperrectangle — which could represent feasible torques. The efficiency of
this algorithm was theoretically proven using algorithmic complexity analysis, positioning
our approach within the context of recent advances in the field. This chapter elucidated
the computational challenges associated with describing torque feasible sets, which are
inherently linked to polytopic representations of force feasible sets.

While force feasible sets modeled as polytopes assume independent muscle tensions,
Chapter 3 explored alternative representations of muscle tension interactions. Adopting
a more theoretical perspective, this chapter integrated mathematical results and their
biomechanical implications into the framework of in silico force feasible sets. We argued
that a large number of muscles in a musculoskeletal model permitted the representation
of a broad class of force feasible sets as ellipsoids, with a scaling factor indicative of the
level of muscle tension interaction. While these shape-related results partially address
Challenges 1 and 2, we further investigated this interaction by explicitly computing the
scaling factor, termed the projection constant. This computation enables a numerical
transition from a polytopic to an ellipsoidal representation, potentially mitigating the
computational complexity associated with polytopes.

Furthermore, this chapter presented two additional results derived from this new class
of representations. The first result provides a deeper understanding of how geometric
assumptions about force feasible sets were reflected in muscle tension interaction models.
It involves an explicit computation of force feasible sets in the muscle tension space,
revealing how muscle tensions were linearly constrained when producing a maximal force.
This analysis also demonstrated that, in polytopic representations of force feasible sets,
most muscle tensions are either fully activated or inactive, and we specified the maximum
number of muscles that deviate from this pattern. The second result introduced a novel
index to characterize in silico torque and force feasible sets, incorporating the geometric
processes involved in our set formulation into its calculation.

Chapter 4 delved into the practical implications of the results established in Chapter
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3, quantifying the challenges associated with personalizing a musculoskeletal model us-
ing force feasible sets represented as ellipsoids or polytopes. Through an in silico study,
we attempted to personalize various parameters of a musculoskeletal model, assuming a
limited number of upper-limb postures and known in silico force feasible sets modeled
as polytopes or ellipsoids. We introduced a new index, termed the enlargement complex-
ity, to evaluate the difficulty of this personalization process. This index was computed
through an analysis of the solutions found during an optimization-based personalization
process, considering different search spaces. The computed index values suggested that
the challenges associated with personalization were not primarily related to the geometric
definition of muscle paths, for both force feasible set representations. Thus, this chapter
addressed Challenges 2 and 3.

Chapter 5 directly addressed Challenge 3 by introducing an experimental protocol to
gather maximal isometric forces in four different upper-limb postures. The experimental
setup was designed to accommodate the anthropometric variability of individuals. This
chapter confronted the theoretical ellipsoid representation assumption from Chapter 3
with in vivo data. The central objective was to evaluate whether a 50-muscle upper-
limb musculoskeletal model was sufficient to apply theoretical muscle tension interaction
assumptions induced by an ellipsoid representation of force feasible sets, which necessi-
tate a large number of muscles to be assumed. Thus, we formulated a hypothesis about
the behavior of muscle tension interactions across different postures and conducted an
optimization-based personalization process using the participants’ experimental measure-
ments. The results indicated that while an ellipsoidal representation of force feasible sets
might capture the shape and orientation of in vivo maximal isometric force measure-
ments, the theoretical results of Chapter 3 did not necessarily lead to improved modeling
of muscle tension interactions.

In conclusion, this thesis evaluated the potential of a set-theoretic approach to rep-
resent maximal isometric forces at the hand. It examined how this approach addresses
experimental challenges and assesses the extent to which it can reveal the biomechanical
properties of human upper-limb muscles and their interactions.

Perspectives

This section outlines potential avenues for future research that could enhance and ex-
tend the findings of this thesis. We first discuss potential improvements to the current
framework, followed by a broader discussion of future perspectives and applications.

Improving the force feasible set framework

Extending the scope of biomechanical considerations. While this thesis explored
the knowledge offered by in silico and in vivo force feasible sets, it was challenged by the
set-theoretic nature of these representations. Although primarily theoretical hypotheses
were employed, incorporating more specific knowledge of individual biomechanics could
improve the adequacy of in silico force feasible sets in regard to experimental maximal
force measurements. For instance, future work could consider integrating maximal isomet-
ric torques alongside maximal isometric forces, as explored in (Rezzoug et al., 2021). Also,
knowledge of specific muscle activations related to a force direction could lead to better
modeling of tension feasible sets, as their shape across different postures was assumed to
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be identical in this thesis.

Furthermore, to enhance the realism of force feasible set models, it is essential to
consider a broader scope. This thesis focused on characterizing force feasible sets at the
hand using an upper-limb musculoskeletal model, but future research could expand this
to encompass a wider range of muscle groups within a whole-body model. This would
enable the investigation of how different muscle groups contribute to force production
and how their interactions influence overall force capabilities. For instance, incorporating
trunk and lower limb muscles could provide insights into the role of core stability and
lower limb support in generating hand forces.

From isometric to dynamic force feasible sets. This thesis focused on isomet-
ric maximal force exertions due to their possible experimental measurements. However,
human-robot collaboration often involves dynamic movements and postures. While a
dynamical description of force feasible sets exists (as discussed in Chapter 1), its for-
mulation is more complex, requiring detailed knowledge of muscle properties (such as
force-velocity relationships) and individual mass and inertial parameters. Future research
should investigate the relationship between isometric force feasible sets (and their ellip-
soidal representation) and their dynamic counterparts, assessing the extent to which our
theoretical assumptions in a static context generalize to dynamic contexts.

Exploring moment feasible sets. This thesis primarily focused on maximal isometric
forces, assuming negligible isometric moments. However, moments are inherent to any
exertion, even if small. Therefore, generalizing findings such as the ellipsoidal approxima-
tion of force feasible sets requires careful consideration. While the theoretical framework
developed for maximal isometric forces assumed no moment exertion in theory, this does
not relate to experimental measurements. Thus, a geometric analysis is needed to charac-
terize the set formed by the combination of both maximal isometric forces and moments.
As distinct mathematical entities, they cannot be simply represented as two ellipsoids
within the same space. However, given the geometric relationship between forces and
moments (as Plücker coordinates of a screw line (Dorst et al., 2007)), a unified geometric
3D characterization of maximal isometric force and moment may be possible.

Integrating contact forces and stability constraints. Explicitly modeling contact
forces and stability constraints is crucial for accurately representing the biomechanical
constraints on force production, as these factors significantly influence the range and di-
rection of feasible forces while ensuring postural stability during exertion. Maximal force
exertions are inherently dependent on interactions with the environment, including con-
tact with the ground and supporting surfaces. As demonstrated in (J. Lee and Y. Lee,
2023), ground contact forces at the feet can substantially influence hand force produc-
tion. In our presented experimental setup, where participants were seated to minimize
ground contact, they could potentially have utilized their fixing belt to generate greater
hand forces. Therefore, future models should explicitly incorporate contact forces, in-
cluding those involved in the use of a fixing belt, to accurately predict maximal force
exertions. This would also allow for the integration of physical constraints related to pos-
tural stability, ensuring that the model accurately reflects the biomechanical limitations
and compensatory mechanisms involved in maintaining balance during force production.
For example, depending on the task and the individual’s biomechanics, specific muscle
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activation patterns might be necessary to maintain stability while exerting maximal force.
By considering these additional factors, future force feasible set models can achieve greater
realism in characterizing the biomechanical force limits of an individual.

Broader perspectives and applications

Standardizing the measurement of multiple isometric force exertions in a pos-
ture. Reconstructing an isometric force feasible set relies heavily on the maximal vol-
untary isometric contraction (MVIC) protocol. We proposed an adaptive setup to accom-
modate anthropometric variability, but further refinements may be necessary to ensure
precise maintenance of upper-limb postures. Our experiments suggest that the cognitive
demands of simultaneously maintaining a posture, exerting maximal force, and controlling
direction may compromise posture stability. Future studies should investigate how this
cognitive overload affects posture stability, force amplitude, and directional accuracy.

Towards more realistic muscle activation models This thesis has explored the
geometry and approximation of force feasible sets, providing valuable insights into human
force production capabilities. However, our models have relied on simplified represen-
tations of muscle activation, neglecting the intricate interplay between muscles and the
nervous system. To further enhance the realism and predictive accuracy of force feasible
set models, future research could incorporate more nuanced approaches to muscle acti-
vation. While this thesis explored idealized models like T8 and T2 tension set models,
representing independent and a specific case of coordinated activations respectively, these
fail to capture the full complexity of muscle coordination during force production. Future
models could leverage electromyography data to capture the precise timing and intensity
of muscle activations in various tasks, potentially using techniques like muscle synergy
analysis to identify patterns of muscle co-activation. Additionally, incorporating models
of neuromuscular control mechanisms, such as muscle reflexes, proprioceptive feedback,
and motor unit recruitment, could provide a more comprehensive representation of hu-
man motor control. By integrating these refinements, future models can move beyond
simplified representations and capture the intricate dynamics of muscle activation and
neuromuscular control, leading to a deeper characterization of human force capacities.

Applications of force feasible sets in computer-aided design for ergonomics.
Force feasible sets offer a promising avenue for enhancing computer-aided design (CAD) in
ergonomics. By representing the range of forces exertable by a human in various postures,
these sets could be integrated into CAD software to provide ergonomic assessments of
designs. For instance, when designing a workspace, the software could utilize force feasible
sets to evaluate whether the forces required to interact with objects in a workspace are
within the user’s capacities. This could highlight potential sources of discomfort or strain,
enabling designers to modify designs and mitigate the risk of musculoskeletal injuries.

Furthermore, incorporating anthropometric data and task-specific constraints into the
generation of customized force feasible sets could lead to more ergonomic and personalized
designs. This approach could be particularly valuable in the design of assistive devices
or rehabilitation equipment, ensuring that such devices effectively complement the user’s
capabilities without exceeding their physical limitations. Ultimately, integrating force
feasible sets into CAD software could facilitate the development of user-centered designs
that promote comfort, efficiency, and safety.
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