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Abstract 
The evolutionary history of species is shaped by demographic and selective processes, the 

understanding of which requires complex modeling of genetic diversity in order to grasp insights 

into phenomena ranging from the local to the ecosystem-scale. Yet this is a challenging exercise 

in population genetics, as it requires both a good understanding of processes shaping genetic 

diversity and to investigating meaningful demographic scenarios using carefully designed 

frameworks tailored to the question and the biology of the organism(s) under study. In this context, 

the aim of my PhD thesis is twofold. Firstly, it aims to show how the extensive reconstruction of 

demographic processes provides valuable insights for developing evolutionary hypotheses and 

conservation strategies, and notably to characterize the interplay between neutral and selective 

processes. Secondly, it seeks to improve our understanding of how species- and community-level 

processes influence historical demography.  

To that end, I first investigated how population structure (and, more generally, any historical event) 

influences the distribution of coalescence times and therefore the demographic reconstruction 

inferred through coalescent-based models assuming random mating (unstructured models). To do 

this, I coupled theoretical insights to empirical test-cases based on widely distributed shark species. 

Ultimately, I showed how unstructured models are extremely useful in inferring the variation of 

the coalescence rate through time, which is directly linked to the true demography of a species, 

hence remaining a fundamental exploratory tool to gain insights into species’ history, if interpreted 

under the light of complex scenario rather than panmictic ones.  

Secondly, I report the discovery of a size-determining supergene in the Thorny Skate (Amblyraja 

radiata). I then provided insights into its origin and role in the steep decline trajectory of a 

vulnerable population by extensively reconstructing the demographic history of the species at the 

scale of its range distribution. This emphasized how crucial demographic modelling is to 

understand local selective processes, especially when coupled with conservation implications.  

Finally, I investigated ecological determinants of genetic diversity using a unique panel of genomic 

data from 43 species of coral reef fishes. This study allowed to demonstrate that trophic niche 

width is positively associated to demographic stability, revealing the direct effect of a community-

level process on the historical demography of species. While population genetics studies are 

usually species-centered, this work is one of the first to actively try to evaluate the influence of 

species interactions over their evolutionary history. Ultimately, it provides insights into how multi-
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species population genetics datasets will be key to elucidating the genomic signatures of large-

scale processes in the future.  

Overall, my thesis highlights the fundamental role of robust demographic reconstruction to answer 

questions related to both micro (such as adaptation) and macro (such as the ecosystem functioning) 

evolutionary processes, through case studies of marine species. Notably, it increases our 

understanding of the evolutionary and ecological underpinnings of genetic diversity and how they 

influence the coalescent history of a sample of lineages (and hence, the demographic inferences 

we made out of them). Finally, it highlights the significance and potential power of multi-species 

studies, that are quite novel in population genetics, and which in the future will make it possible 

to answer questions at different scales of study with evolutionary, ecological, and conservation 

implications. 

 

Keywords: Population Genetics, Coalescence, Demographic Modelling, Supergenes, Meta-

populations, Genomics. 
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Résumé 
L'histoire évolutive des espèces est façonnée par des processus démographiques et sélectifs, dont 

la compréhension nécessite la modélisation complexe de la diversité génétique afin de comprendre 

des phénomènes allant de l'échelle locale à l'échelle de l'écosystème. Il s’agit cependant d'un 

exercice difficile en génétique des populations, car il nécessite une bonne compréhension des 

processus façonnant la diversité génétique et l’étude de scénarios complexes et utiles au moyen de 

cadres inférentiels soigneusement conçus et adaptés à la question et à la biologie du modèle 

d’étude. Dans ce cadre, ma thèse vise à montrer comment la reconstruction détaillée des processus 

démographiques fournit des informations précieuses pour élaborer des hypothèses évolutives et 

des stratégies de conservation, et notamment pour mieux caractériser l'interaction entre processus 

neutres et sélectifs. Également, elle cherche à améliorer notre compréhension de la façon dont les 

processus, au niveau des espèces et des communautés, influencent la démographie historique.  

Pour cela, j’ai d'abord étudié comment la structuration génétique des populations (et plus 

généralement, tout événement historique) influence les patrons démographiques inférés par des 

modèles basés sur la théorie de la coalescence supposant un accouplement aléatoire (modèles non 

structurés). En couplant arguments théoriques à des cas empiriques basés sur des requins à large 

distribution, j’ai pu montrer comment les modèles non structurés sont utiles pour inférer la 

variation du taux de coalescence dans le temps, qui est directement liée à la vraie démographie de 

l’espèce. Ceci a permis de mettre en avant que ces modèles restent un outil exploratoire 

fondamental pour recueillir des éléments sur l’histoire évolutive des espèces, à condition qu'ils 

soient interprétés à la lumière de scénarios complexes plutôt que panmictiques.  

Ensuite, je rapporte la découverte d'un supergène déterminant la taille chez une espèce de raie. Je 

fournis alors des évidences sur son origine et son rôle dans le déclin abrupt d'une population 

vulnérable grâce à la reconstruction de l’histoire démographique de l’espèce à l'échelle de son aire 

de distribution. Cette étude souligne l'importance de la modélisation démographique pour 

comprendre des processus locaux de sélection, en particulier lorsqu'ils impliquent des enjeux de 

conservation.  

Enfin, j'ai examiné certains déterminants écologiques de la diversité génétique à travers un panel 

unique de données génomiques provenant de 43 espèces de poissons récifaux. Ceci a permis de 

montrer une relation positive entre largeur de niche trophique et stabilité démographique, révélant 

l'effet d'un processus à l’échelle de la communauté sur l’histoire démographique. Les études en 
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génétique des populations s’articulant en général sur une espèce, ce travail est l'un des premiers à 

tenter d'évaluer directement la relation entre la diversité des interactions des espèces et leur histoire 

démographique. Plus généralement, cette étude suggère que les jeux de données multi-espèces 

pourraient se révéler importants à l’avenir pour détecter les signatures génomiques laissées par des 

processus à grande échelle.  

Dans l’ensemble, ma thèse souligne le rôle fondamental d'une reconstruction démographique 

robuste pour comprendre des processus micro (tels que l'adaptation) et macro (tels que le 

fonctionnement des écosystèmes) évolutifs à travers l’étude d’espèces marines. Elle permet aussi 

de mieux comprendre certains déterminants évolutifs et écologiques de la diversité génétique et la 

manière dont ils influencent les processus de coalescence (et donc les inférences démographiques 

en découlant). Enfin, elle souligne l'importance et la puissance potentielle des études multi-

espèces, relativement nouvelles en génétique des populations, qui permettront à l'avenir de 

répondre à des questions à des échelles d'étude différentes avec des implications en évolution, en 

écologie et en conservation. 

 

Mots-Clés : Génétique des Populations, Coalescence, Modélisation Démographique, 

Supergènes, Meta-populations, Génomique.  
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1.1. The Complex Evolutionary Processes Shaping Populations and 

Species 

1.1.1. From gene to ecosystem processes 
The evolutionary history of species is shaped by different processes (demographic and selective) 

that can be tackled by modelling genetic diversity at various scales of study. At a local scale, 

a population is a collection of individuals that share a common genetic pool and have the ability 

to exchange genetic material during reproduction. Despite this shared genetic background, 

individuals can locally display strong phenotypic differences, whose maintenance is often driven 

by selective forces (Hedrick, 2007; Llaurens et al., 2017; Marchinko et al., 2014; Wittmann et al., 

2017) and whose determinism can be explained by genetic mechanisms such as single (Abbott & 

Fairbanks, 2016) or multi-locus polymorphisms (Bouwman et al., 2018; Boyle et al., 2017; Fisher, 

1918; Mather, 1941; Wood et al., 2014; Zimmerman et al., 2000), supergenes (Schwander et al., 

2014; Thompson & Jiggins, 2014; Wellenreuther & Bernatchez, 2018), or even complex gene-

environment interplays (Rutter et al., 2006). Uncovering the origin, determinism and consequences 

of these phenotypes is essential for grasping the evolutionary history of species. Yet their 

characterization first requires a good understanding of the (neutral) demographic processes 

occurring within and between populations. 

In the simplest case, any two individuals in a population are equally likely to mate (random mating 

or panmixia), and the effective size (Ne) of the panmictic population can vary through time as a 

consequence of changing environmental conditions. Nonetheless, in broadly distributed species, 

individuals can have a greater tendency to mate with nearby conspecifics, leading to geographical 

structuration. This phenomenon gives rise to a variety of genetic structure models, such as the 

totally continuous genetic differentiation of individuals across the entire range (i.e., continuous 

model), or the organization in set of subpopulations (or demes) spread across a geographic area 

exchanging migrants with each other (i.e., meta-population model). Such organization may vary 

in space and time (e.g., (Corrigan et al., in prep)) and can reach different levels of complexity 

going from meta-populations with multiple levels of connectivity in different geographic areas 

(Baeza & Fuentes, 2013; Maisano Delser et al., 2016, 2019; Pazmiño et al., 2017) to random 

mating species even at large geographic scale (Corrigan et al., 2018; Pirog et al., 2019). The ability 

to model genetic diversity across a species' range offers the potential to capture key elements of 
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its demographic history, such as variations in population sizes or connectivity, migration and 

colonization processes or population divergence, each of which is expected to leave specific 

signatures in the genome (Arenas et al., 2012; Excoffier, 2004; Excoffier et al., 2009; Hudson et 

al., 1992; Kimura & Weiss, 1964; Mona et al., 2014; Nielsen & Slatkin, 2013; Peter & Slatkin, 

2013, 2015; Slatkin, 1993; Slatkin & Excoffier, 2012). At a higher resolution scale, species are 

assembled in communities in a given habitat where their persistence is conditioned by inter-

specific interactions (Soule & Stewart, 1970; Vandermeer, 1972) as well as by biogeographic 

features (Gravel et al., 2011; MacArthur & Wilson, 1967). These community-level processes – 

that need to be studied using multi-species datasets – have traditionally been neglected in 

population genetics which rather tends to model one species at a time, although they should leave 

signatures in the genome of species (Overcast et al., 2023). Characterizing their role in shaping 

genetic diversity could thus expand our understanding of ecosystem functioning which is all the 

more important in the light of the biodiversity crisis (Ceballos et al., 2015). 

 

1.1.2.  A Need for Complex Models  
Understanding the evolutionary history of species is a challenging task whose complexity arises 

from the need to consider spatiotemporal demographic processes operating at various study scales, 

as well as their interaction with potential selective processes. This highlights a need both to 

characterize more how specific features, ranging from meta-population to community-level 

processes, influence genetic diversity, as well as the development of complex and realistic models 

tailored to the specific research question and organism(s) under study. These are pivotal not only 

in fundamental science (e.g., for gaining more insight on the direct interplay between demography 

and selection, or what drives species organization in space and time), but also in more applied 

research questions involving the design of coherent conservation plans. 

Devising a good set of demographic scenarios is therefore complicated and thus requires an 

accurate understanding of the processes outlined above. Moreover, a framework for building and 

analyzing complex demographic models is needed, as well as the right data on which to test them, 

the latter being eased by the wealth and increasing affordability of genomic datasets. In this 

context, the coalescent theory proposes a theoretical basis upon which to infer the complex history 

of populations (Hudson, 1991; Hudson et al., 1992; Kingman, 1982). However, coalescent-based 

modelling necessitates a careful design and investigation of scenarios to avoid strong mis-
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interpretations (Chikhi et al., 2010; Heller et al., 2013; Maisano Delser et al., 2019; Mazet et al., 

2015, 2016). At the same time, classical population genetics models (see below) are usually too 

simple to harness the complexity of the history of populations while inquiries often necessitate 

investigating complex scenarios (eventually only investigable using simulation-based methods). 

This makes the reconstruction of historical demography a challenging exercise in empirical studies 

as it requires an understanding of the biology of the species, how it is organized in space (and 

time), a basic understanding of coalescent theory, its assumptions and its related inferential 

frameworks, as well as the computational resources to handle genomic datasets.  

In the following sections of this introduction, I give a brief overview of coalescent theory and how 

it offers an insightful perspective for investigating the demographic history of species and its 

limits, including the need to be interpreted carefully to avoid misinterpretations when assumptions 

are not met. Next, I propose an intuitive inferential approach based on preliminary tests and 

coalescent-based modeling to be able to study complex but meaningful demographic scenarios and 

briefly introduce how NGS datasets integrate into this framework. I finally present the main 

objectives of my PhD in this context and how the different chapters of my PhD will illustrate this. 
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1.2. Coalescent theory 
The way in which the genetic variability of species is shaped by evolutionary processes can be 

understood (at least partially) by using population genetics theories. The genome of an individual 

encompasses the whole set of genetic material in the form of DNA sequences, and, in diploid 

species, each individual receives two sets of nuclear genetic material (i.e., chromosomes) inherited 

from each parent. In this context, a locus is any kind of genomic region, going from a single base 

pair to any sequence up to a full chromosome. At a given locus, an individual possesses an allele 

on each chromosome, and can thus have either a homozygote or heterozygote genotype. At the 

population scale, a locus can be monomorphic (only one allele) or polymorphic, the latter directly 

relating to the concept of genetic diversity. In populations, allele frequencies will be influenced in 

space and time by various evolutionary forces that can increase genetic diversity (mutation), 

decrease it (selection, genetic drift), or maintain it (gene flow, selection, recombination). Mutations 

are simply alterations of the DNA sequence that can spread in populations when occurring in germ-

cells. Most alterations result in a nucleotide change at a single base (Single Nucleotide 

Polymorphism, SNP) or in the insertion/deletion of a DNA sequence (i.e., indels). However, 

alterations can also result in chromosomal rearrangements, such as the rupture of a chromosome 

fragment that reattaches to the same chromosome but in the opposite direction (inversion) or to 

another chromosome (translocation). These alterations (or markers) lead to different kind of 

genetic polymorphism, and are thus used to investigate a huge load of evolutionary processes, 

including genetic diversity in population genetics. The recombination process happens during the 

meiosis: the copies of homologous chromosomes exchange material through crossing overs, thus 

potentially creating new combinations of DNA sequences independently from the mutational 

process. Mutation and recombination are crucial processes originating the variability in 

populations. The other evolutionary forces will act on such variants, affecting 

the trajectories of these polymorphisms.  

When a mutation happens in a coding region or in a region having a more or less direct effect in 

gene expression it can lead to a new phenotype (including lethal) in a population which can be 

under selection. Selection can be seen as the transmission bias associated to a (set of) genotypes: 

under a given environmental condition some genotypes may be fitter than others, determining an 

(almost) predictable variation in allele frequencies. As a result, individual bearing specific 

genotypes will have more chances to produce viable and successful offspring. Based on the type 
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of selection, the outcome can be very different. Generally speaking, selection can act against 

genetic diversity, by favoring the fixation of an allele (e.g., directional selection) or purging 

deleterious alleles (background/negative selection), or in favor of the maintenance of 

diversity (e.g., balancing selection, over-dominance, etc.). Some of these processes are more 

detailed in the introduction of Chapter 3. However, most novel alleles have no effect on fitness 

(Kimura, 1968), arising in a non-coding or coding region not under selection, and are thus 

considered neutral. The fate of a neutral marker will solely depend on the stochastic genetic drift 

and gene flow process, which I further jointly refer to as demographic processes. Contrary to 

selection, which is locus-specific, demographic processes affect the whole genome. In this thesis, 

I am therefore mostly interested in the study of neutral markers, as they represent the resource on 

which to reconstruct the demographic history of species, which in turn is necessary to better 

uncover non-neutral processes.   

 

1.2.1. The WF and the coalescent models   
In 1930-31, Wright and Fisher introduced a genetic drift model depicting how the random 

sampling of alleles at each generation can lead to a change of allele frequencies over time (Fisher, 

1930; Wright, 1931). In essence, the Wright-Fisher (WF) model describes changes in genetic 

variability over time within a population through a binomial sampling of ancestral alleles each 

generation. WF model depicts an idealized population with multiple assumptions, such as i) a 

constant size over time, (ii) random mating (i.e., panmixia); (iii) no selection; (iv) no 

recombination; and (v) no overlapping generations. However, many of these assumptions have 

been relaxed over the years, leading to elegant mathematical frameworks accounting for selection, 

gene flow, variation in effective size and non-random mating, making the WF model one of the 

most commonly used models. However, WF-frameworks are based on whole populations 

inferences and has some computational limits, in addition to being limited to very simple models. 

In this context, the coalescent is a probabilistic process that proposes a very efficient framework 

to understanding and inferring complex demographic processes directly from a sample of lineages 

rather than whole populations. 
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Figure 1.1. Conceptual figure representing a genealogical tree. Going backwards in time, each leaf is 
represented by a lineage (l1 to l6) that coalesce two-by-two at a rate depending on the effective size (N). 
Waiting times are scaled by the number of remaining active lineages (the expected times to coalesce 
indicated on the right) until the two last lineages merge into the most recent common ancestor of the 
sample. 

 
The coalescent was formally introduced in the seminal works of (Kingman, 1982) as an 

approximation of the ancestral process of an idealized WF population. Hereafter, the description 

follows the introductions of Hudson (1991), Kingman (1982) and Wakeley (2009). To coalesce 

means to merge, and to that respect, coalescent theory is about tracing back in time the fate of the 

sampled lineages, until only one remains. The time of the last coalescence is called the Most Recent 

Common Ancestor (MRCA) of the sample of lineages (individuals when haploid). A graphical 

representation of this process is a phylogenetic tree, which in this context is called a “gene 
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genealogy” of a sample of lineages (Figure 1.1). The leaves represent the sampled lineages (i.e., 

individuals if considering a haploid organism), and each node represent a coalescence event 

between two active lineages (those that have not yet coalesced). The coalescent has been shown 

to well approximate the ancestral process of many famous models, including WF model, provided 

that the number of samples (n) is (very much) smaller than the population size (N), i.e., n << N. 

The standard genealogical process thus strives on strong assumptions highly similar to those 

defining a WF population: (1) no fitness related to genetic variation (no selection), (2) No 

population subdivision (i.e., panmixia), which includes both geographical structures, as well as 

sex-ratio disequilibrium; (3) no changes in population size over time; and (4) non overlapping 

generations (Kingman, 1982; Wakeley, 2009). 

Briefly, the genealogical process describes the distribution of coalescence times – a series of times 

at which coalescence events happen – in an ideal WF population of size 𝑁 chromosomes or 

lineages (Kingman, 1982; Wakeley, 2009; Hudson, 1991), which corresponds to NHaploid or 

2*NDiploid individuals. In this configuration, the probability that a lineage coalesces with any other 

lineage at the previous generation is !
"

, and conversely, the probability that two lineages do not 

coalesce is 1 − !
"

. In a sample of size 𝑛 ≪ 𝑁 lineages, the probability that no coalescence event 

happened at the previous generation is therefore the product of probabilities that none of the 𝑛 

sampled lineages coalesce with any of the other 𝑛 − 1 lineages:  

𝑃(𝑛) =*+1 −
𝑖
𝑁
- ≈ 1 −

𝑛(𝑛 − 1)
2𝑁

#$!

%&!

		 (1) 

The probability that a coalescence event occurs at a time 𝑡 is therefore the probability that it did 

not occur during 𝑡 − 1 generations and that it occurred at time 𝑡:  

𝑃(𝑡) = 	𝑃(𝑛)'$![1 − 𝑃(𝑛)] = 	
𝑛(𝑛 − 1)
2𝑁

41 −
𝑛(𝑛 − 1)
2𝑁

5
'$!

(2) 

which, when 𝑁 is large, can be approximated in by an exponential distribution (making time 

continuous):  

𝑃(𝑡) ≈
𝑛(𝑛 − 1)
2𝑁 	𝑒$

#(#$!)
*" '$!	 (3) 

of parameter #(#$!)
*"

 and expectation *"
#(#$!)

.  
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Because only 𝑛 − 1 lineages will remain once the first coalescent event happened, the average 

time to the next event is *"
(#$!)(#$*)

, and so on. The waiting time 𝑇# at which 𝑛 lineages remain can 

then also be approximated by an exponential distribution with expectation:  

𝐸[𝑇#] =
2𝑁

𝑛(𝑛 − 1)
	 (4) 

This represents the distribution of coalescence times of a sample of size 𝑛 in a population of size 

𝑁 lineages (i.e., again, corresponding to 𝑁 haploid or "
*
 diploid individuals). Note that the variance 

associated is 𝑉𝑎𝑟[𝑇#] = > *"
#(#$!)

?
*
, which displays one important property of the genealogical 

process (on which I will come back later): the variance in coalescence times is very large, which 

means that different trials of the process can lead with different distribution of coalescent times. 

The fact that coalescence times are exponentially distributed makes the time between coalescence 

events longer as lineages coalesce together (which is visually evident in Figure 1.1). In fact, the 

time to the Most Recent Common Ancestor (𝑇+,-.) is a simple function of the distribution of 

coalescence times: 

𝑇+,-. =@𝑇% 	
#

%&*

	 (5) 

with expectation:  

𝐸[𝑇+,-.] = 2𝑁 +1 −
1
𝑛-		

(6) 

This shows two key properties of the coalescent:  

(1) lim
#→	1

𝐸[𝑇+,-.] = 2𝑁, i.e., the 𝑇+,-.	tend to	2𝑁 when sample size increases, although this 

can be reached with a fairly low sample size (e.g., n=10, (Wakeley, 2009)), meaning that 

we can get a satisfying estimate of the 𝑇+,-.without requiring a very large sample. 

(2) When n=2, 𝐸[𝑇+,-.] = 𝑁, clearly showing that the last coalescent event takes half the 

time of all coalescent events. In other words, half the gene genealogy in this model is 

represented by deep coalescence times, which is evident in Figure 1.1. 

Finally, the total length of the tree,  𝑇'2' = ∑ 𝑖𝑇% 	#
%&* with expectation 𝐸[𝑇'2'] = 2𝑁∑ !

%
	#$!

%&! , will 

always increase with increasing number of sampled lineages, unlike the expectation of the TMRCA.  

The genealogical process described above is only one of the two processes of the standard 

coalescent, the second being the mutational process. The two processes are independent, i.e., the 
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topology of the tree does not impact the mutational process (and vice-versa). The mutational 

process follows a Poisson distribution, i.e., a series of Bernoulli success with probability 𝜇, the 

mutation rate expressed per site and per generation. Under the infinite site and allele models 

(Kimura, 1969; Kimura & Crow, 1964), the number of sites and alleles are infinite so that a new 

mutation only occurs in a new site and always gives rise to a new allele. In this case, the expected 

number of mutations, or segregating sites (S), is simply the product between the mutation rate and 

the total length of the tree: 

𝐸[𝑆] = 	𝜇𝐸[𝑇'2'] = 𝜇2𝑁@
1
𝑖
	

#$!

%&!

= 	𝜃@
1
𝑖
	

#$!

%&!

	 (7) 

with 𝜃 = 2𝑁𝜇	representing the population mutation rate, or genetic diversity (Watterson, 1975). 

The mutational process makes the bridge between the genealogical process and real data such as 

DNA sequences as we can reach the genealogical process from a sample through estimates of 

genetic diversity from observed DNA sequences. Two famous estimators of genetic diversity are 

(i) Watterson’s estimate of genetic diversity 𝜃3 which standardizes the number of segregating 

sites by the total length of the tree (see formula (8); Watterson, 1975) and (ii) the mean pairwise 

difference 𝜃4 based on the expected number of differences in segregating sites between two 

individuals as 𝜃 = 𝐸[𝑆] (Tajima, 1983). Considering only bi-allelic loci, another famous 

description of genetic diversity is the Site Frequency Spectrum (SFS), which represents the 

distribution of the frequency of segregating sites in a sample (and from which 𝜃4 and 𝜃3 can 

directly be computed). The SFS can be assessed in two ways, depending on the available 

information on the ancestral state of alleles. If alleles are polarized, i.e., we know which one is the 

ancestral, the SFS represents the distribution of derived alleles frequency, and is referred to as the 

unfolded-SFS, or more intuitively, the derived allele frequency spectrum. Conversely, if the 

ancestral state is unknown, one can calculate the folded-SFS, which represents the distribution of 

the minor allele frequency (i.e., the occurrence of the least frequent of the two alleles) and can be 

referred to as the minor allele frequency spectrum. When the gene genealogy is that of the standard 

coalescent as described above, the two estimates of genetic diversity (𝜃4 and 𝜃3) have the same 

expectation, and the shape of the SFS can be transformed to a horizontal line (Lapierre et al., 2017) 

(e.g., dashed lines in any panels of Figure 1.2). However, these summary statistics will change 

accordingly to the shape of the gene genealogy, which is in turn impacted by the demographic 

history of the populations/species from which the lineages have been sampled. Any demographic 
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history different from a constant panmictic population represents a deviation from Kingman’s 

coalescent, affecting the gene genealogy and so the computed summary statistics, as we will see 

below. For this reason, several neutrality tests based on the SFS (but not exclusively) have been 

devised to capture the departure from the neutral model. One of the most famous is the Tajima’s 

D (Tajima, 1989) which is based on the scaled difference 𝑑 between  𝜃4 and 𝜃3 (i.e., 𝑑 = 	𝜃4 −

	𝜃3): 

𝑇𝐷 =
𝑑

M𝑉𝑎𝑟(𝑑)
	 (8) 

and its response to deviation from some assumptions will be illustrated below. 

 

1.2.2. Changes in effective size and Meta-population structure 
The ancestry of samples of most real populations is likely poorly represented by a constant-size, 

non-geographically structured model, and not accounting for these processes can be misleading 

when implementing the coalescent process. At this point, the most trivial assumption to relax is 

that of constant effective size, as a sense of how behaves the genealogical process when the 

effective size changes can be straightforward. The key point to understand it is that a larger 𝑁 will 

trivially result in greater waiting times between coalescence events (see equation (4)). In the 

history of our sample, if 𝑁 shifts to 𝑁5 at 𝑇5 generations ago, then, going backwards in time, if 

𝑁5 > 𝑁 (i.e., bottkeneck in forwards) coalescence times between 𝑇5 and 𝑇+,-. are scaled by a 

larger effective size, vice-versa for 𝑁5 < 𝑁 (expansion). In the bottleneck scenario, waiting times 

will be longer for the remaining coalescence events, largely increasing the length of branches close 

to the roots and decreasing the length of branches close to the leaves (Figure 1.2). The total length 

of the tree will be shorter than if 𝑁5 was the effective size during the whole history of the sample. 

On the contrary, waiting times in the expansion scenario will become comparatively shorter in the 

deep genealogy than close to the leaves. In the most extreme scenario this will result to what it is 

usually referred to as a “star-like” genealogy, and the total length of the tree will be longer that if 

𝑁5 was the effective size during the whole history of the sample. As mutations are randomly 

Poisson distributed along the genealogy, summary statistics will be impacted by the shape of the 

gene genealogy. In the bottleneck scenario, there will be a reduction in polymorphic sites 

belonging to low frequency classes (i.e., singletons, doubletons), due to the longer internal vs 

external branches when compared to the gene genealogy produced under the neutral model. This 
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will lead to a SFS with a deficit in low frequency variants (hence a shrinking curve in the 

normalized SFS in rare frequency classes), skewing the TD to positive values. This is because 𝜃3 

is directly impacted by the loss in polymorphic sites, but low frequency variants do not contribute 

much to 𝜃4. Conversely, the expansion scenario will lead to an increase of polymorphic sites in 

terminal branches of the genealogy, hence comparatively increasing low frequency variants, which 

can be visually displayed by the transformed SFS. For the same reason as above, 𝜃3 is much more 

impacted than 𝜃4, resulting in this case in a negative TD value (Figure 1.2).  

One of the strongest assumptions of the standard neutral model beside the constant population size 

is the lack of population structuration. However, many (if not all) species are structured: to be as 

much general as possible, they are not panmictic over their whole range (independently of its size). 

In other words, population structure means that if we take a random sample of lineages from our 

species, they are not equally likely to coalesce with one another. Intuitively, structuration can be 

geographic: samples located close geographically to one another (e.g., in the same sub-population, 

or deme) are more likely to have a recent ancestor in common, but not only (i.e., behavioral, 

cultural, etc.).  Classic structured demographic models go from the Isolation with Migration model 

(IM) where two (or a few) populations are either isolated or connected through migration after 

divergence (Nielsen & Wakeley, 2001) to equilibrium meta-population models. In the latter, meta-

populations are subdivided in arrays of demes exchanging migrants with any deme (e.g., finite 

island model (FIM)) or only with the closest neighbor’s (stepping-stone model, SST) (Kimura & 

Weiss, 1964) whose migration dynamics is illustrated in the panel D of Figure 1.2.  

How does geographic structure affect the gene genealogy, and thus coalescence times? One way 

to get an insight into this is to follow the elegant work of Wakeley (1999, 2000), which 

demonstrated that the history of a meta-population could be decomposed in two phases: the 

scattering and the collecting phase. Going backwards in time, the scattering phase starts at the 

sampling time (usually the present) of individuals and is very fast in the history of the meta-

population (almost instantaneous). Coalescence events happen in deme 𝑖 at a rate #!(#!$!)
*""

 and 

migrations at a rate 𝑁6𝑚, with 𝑖 being the 𝑖'7 deme of the matrix of sampled demes (1,2, … , 𝑑) 

with 𝑑 ≪ 𝐷 (the number of sampled demes is very much lower than the real number of demes). 

When each lineage has either coalesce or has been placed in a separate deme by migration, the 

scattering phase ends, marking the start of the collecting phase, which will last during most of the 

history of the sample. At this point, the coalescence events will only happen when a lineage has 
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managed to migrate into the right deme, i.e., a deme within which it can coalesce with another 

sampled lineage. The collecting phase behave as the standard coalescent process in which waiting 

times are rescaled according to #(#$!)

*""8!9
#

$%"&
:
 when 𝐷 is large. When sampling within a deme, the 

coalescence times in the two phases is very different: during the scattering phase, the coalescence 

rate will be faster as it is scaled by ND, with migration events placing sampled lineages in 

unsampled demes. The rate of coalescence in the collective phase will be slower, because 

additionally scaled by the number of migrants exchanged each generation, and because most 

migration events will place a lineage in an unsampled deme (because 𝑑 ≪ 𝐷) or in a sampled deme 

with no sampled lineage (because 𝑛 ≪ 𝑁). In consequence, coalescence times drastically shift 

downwards between the scattering and the collecting phase, from a very high to a very slow rate. 

This shift in coalescence rates is exactly similar to that observed under the bottleneck scenario 

introduced above, which means that the two processes, while highly different (i.e., the meta-

population is constant) will yield a comparable signature in the genome characterized as a deficit 

in low frequency variants leading to a shrinking SFS in low frequent classes and a positive 

Tajima’s D (Figure 1.2). This is a very important result because it means that if one does not 

account for population structure, and assumes that the population is panmictic, the interpretation 

will be that of a bottleneck. This is an artifact and it has been discussed widely, supported both by 

theoretical, simulations and empirical arguments (Chikhi et al., 2010; Heller et al., 2013; Mazet et 

al., 2015, 2016; Wakeley, 1998, 1999).  Note that as explained above, the scattering phase is very 

fast in the history of the sample, which means that the burst in coalescence rate will always be mis-

interpreted as a recent bottleneck of the sampled population. This has likely contributed to 

interpreting recent decrease in genetic diversity due to anthropogenic perturbation in different 

species (some endangered), thus drastically impeding our ability to design proper conservation 

plans and our understanding of the evolutionary history of the species. 
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Figure 1.2. Median Normalized Site Frequency Spectrum (SFS) and associated 95% confidence interval 
and boxplot of Tajima’s D (TD) values computed from a sampled of N=20 lineages. 10000 loci are 
simulated under different demographic scenarios and replicated 100 times: (A) a panmictic and constant 
population of modern effective size NMOD=100000 individuals; (B) an ancestral panmictic population of 
size NANC=100000 which undergoes a 10x expansion 50000 generations ago, (C) an ancestral panmictic 
population of size NANC =100000 which undergoes a 10x bottleneck 50000 generations ago and (D) an 
equilibrium constant stepping-stone meta-population model with 100 demes, each of size ND=5000 
individuals and exchanging with the four closest neighbors Nm = 1 migrant per generation following a 
two-dimensional stepping-stone migration matrix. Mutation rate used was 1.93e-8 per site per generation 
(generation time of 1 year) and each locus was 115 base pair long.  
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These examples of deviations from standard assumptions (i.e., non-constant size and population 

structure) displayed how demographic processes influence the gene genealogy, emphasizing the 

benefits of studying the coalescence rate trajectory of a sample. As it will be discussed further 

below, many methods infer with high accuracy changes in Ne under a panmictic population model 

(hereafter called unstructured models). The reason is, as explained above, that changes in Ne are 

just about rescaling branches length when a change occur, which makes the model efficient to 

implement. But more broadly, unstructured models actually reconstruct the variation of 

coalescence rate trajectory through time from a sample of lineages, which indeed directly relates 

to Ne if taken from a panmictic population. As developed with the population structure model 

example, the coalescence rate reconstructed from a sample of lineages varies accordingly to the 

specific model: this highlights the interest of investigating unstructured models as they convey 

resourceful information about the true demographic history of the species. 

 

1.2.3. Key Considerations in Coalescent Modeling 
The standard coalescent model (including the extensions for changes in Ne and population 

structure) extract coalescence times simply by tracing the coalescence history of a sample of N, 

which has been represented through a simple tree structure. However, the structure of the genome 

makes the relationship between alleles much more complex due to the recombination process, 

which exchanges homologous genomic regions between two different parental chromosomes by 

means of crossing overs during meiosis. Recombination has several evolutionary consequences 

and impact considerably demographic inferences. For example, recombination determines the 

independent inheritance of sites along the same chromosome copy when far enough. When 

recombination is considered, the coalescent process becomes much more complex as the process 

can break up ancestral lineages and lead to a more complicated genealogy (Hudson, 1983, 1991). 

In the coalescent with recombination, the model takes into account both the coalescent process and 

the effects of recombination on the genealogical tree (Hudson, 1983, 1991). One intuitive view to 

understand it is to allow, going backwards in time, the merging of two lineages due to a 

coalescence event or a recombination event resulting in the split of a lineage in two ancestral 

lineages. These two ancestral lineages thus represent two loci, each with a different genealogy 

(called marginal genealogies) whose ancestral lineages eventually coalesce together in the history 

of the sample. This process is referred to as Ancestral Recombination Graph (ARG), which simply 
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represents the sets of marginal genealogies occurring through the process of recombination across 

a chromosome (Griffiths & Marjoram, 1997). However, the state space of all possible ARG under 

different sets of genetic parameters is infinite, making the model complicated to explore in 

empirical studies. To that end, some approximations to the coalescent with recombination have 

been developed such as the Sequentially Markovian Coalescent (SMC) algorithms family 

(Marjoram & Wall, 2006; McVean & Cardin, 2005) which has been particularly implemented in 

a lot of software. In brief, The SMC implements coalescence and recombination events along a 

sequence of a chromosome and allows a floating lineage (i.e., a novel ancestral lineage born by 

recombination) to coalesce only with a lineage from the previous marginal genealogy (i.e., hence 

the Markovian nature) unlike the standard model where a floating lineage can coalesce with any 

lineage from the ARG of all the previous points on the sequence (Griffiths & Marjoram, 1997; 

McVean & Cardin, 2005; Wilton et al., 2015). SMC was extended to SMC’ by simply allowing 

two new lineages to coalesce back together (which thus results in the absence of changes in 

coalescence times) which have been shown to better approximate the ARG than SMC (Marjoram 

& Wall, 2006; Wilton et al., 2015).  

The coalescent provides an elegant framework to tracing the ancestry process of a sample of 

lineages, which bear the signature of the evolutionary forces acting on populations and species. 

This very simple introduction to the coalescent, from the standard model to the effect of relaxing 

some of its assumptions and the inclusion of recombination, displays different layers of 

complexity. Four key points have been emphasized in this brief introduction and are important in 

the following to understand demographic inferences:  

(1) Coalescence times are determined by demography processes: investigating variation in 

coalescence rates through time from a sample using unstructured models, whether it 

directly relates to effective size in a panmictic population or not, ultimately relates to the 

demographic history of the sample of lineages and is in that respect very resourceful. In 

addition, there exist many statistics summarizing the shape of the genealogy (i.e., SFS, θ, 

TD) that can allow to tract demographic processes from empirical datasets when we cannot 

directly infer or investigates coalescence times.   

(2) Different demographic processes can impact the gene genealogy in a similar way: 

different processes can leave the same signature on the gene genealogy. If not coupled with 

other evidence (e.g., other population genetics inferences or ecological insights), it can lead 
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to strong misinterpretations of coalescence times as illustrated in the case of population 

structure vs. bottleneck in a panmictic population.   

(3) The coalescent process is associated with great variance: accuracy in its investigation 

will therefore be scaled with the quantity and quality of data.  

(4) Complexifying models makes it hard to describe the distribution of coalescent times: 

Increasing the complexity of a model (i.e., increasing the number of parameters) can lead 

to intractable analytical formulas for the density distribution of coalescence times under 

the specific model, which means that complex scenarios will need to be investigated using 

alternative approaches than likelihood-based methods.  

 

These four key points are at the core of the development of inferential framework for investigating 

complex scenarios. They highlight how powerful coalescent-based approaches are, the difficulties 

they can yield as well as the necessity for extensive, high-quality datasets. In the following part I 

develop how all these points integrate into an inferential framework in order to investigate the 

complex evolutionary history of species.  
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1.3. Historical demography inferences 
The coalescent proposes an elegant framework to retrace the history of a sample of lineages taken 

from a population – or a species – from which we want to deduce demographic processes. 

However, given the four key points highlighted above, choosing the right tool for the right question 

(and even the right data) can be complex, but it is mandatory both to avoid highly misleading 

inferences and to have the ability to answer a specific problem. In this section, therefore, I present 

what I believe should always be a first step before building complex models, namely gathering 

information on genetic structure that will provide key elements for building a complex scenario. I 

then briefly present how coalescence simulators (and simulation-based tools in general) can enable 

complex model design, and finally highlight how Next-Generation Sequencing (NGS) datasets 

provide a necessary wealth to meet these challenges.   

 

1.3.1. Towards an “educated” choice of scenarios: the diagnosis step 

1.3.1.1. How to correctly investigate demographic history?  

Before starting a (more or less) extensive coalescent modelling, gathering enough knowledge of 

the biology and genetic structure of the species under investigation is warranted. In that respect, 

the primary step in population genetics inferences and demographic modelling should be to 

understand the extent of genetic structure underlying the studied sample (i.e., is it better described 

by a panmictic population or a deme organized in a population?). As outlined above, coalescence 

times depends on the demographic history of the species and a major dichotomy is between 

panmictic vs. structured models. Moreover, testing for population structure is also important to 

design meaningful models in regard to the biology of the species (as demonstrated in part 1.2). To 

that end, one solution is to realize a battery of analyses at both within and between sampling 

locations scale (hereafter referred to as descriptive methods), which, when interpreted altogether, 

should provide a fertile basis on which designing realistic demographic scenarios.  

 

1.3.1.2. Structured, or not structured? 

The extent and diversity of descriptive methods applicable obviously depend on the type of genetic 

dataset at hand (see part 1.3.3), but classical population structure analyses can be performed on 

any genomic dataset. The question is whether or not the species under investigation is panmictic 
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and at which scale. In this context, individual-based clustering algorithms such as Principal 

Components Analysis (PCA), Discriminant Analysis of Principal Components (DAPC) or 

structure-like methods (Alexander et al., 2009; Frichot et al., 2014; Frichot & François, 2015; 

Pritchard et al., 2000) coupled to estimation  of FST (Hudson et al., 1992; Reynolds et al., 1983; 

Weir & Cockerham, 1984) are a powerful diagnosis framework to characterize the extent of 

genetic disparities across the range distribution of a species. This will inform whether large scale 

panmixia, divergence model, meta-population(s), or a complex combination of them, are more 

pertinent to studying the species under investigation. In addition, population structure can be 

assessed by directly performing demographic modelling. This will be detailed in the 1.3.2 section, 

but the overall rationale of this strategy is to test whether the gene genealogy of a sample is best 

depicted by a panmictic population or a deme structured into a meta-population (Maisano Delser 

et al., 2019). The major advantage of this is that it can be performed on allele frequency data from 

a single sampling location. Thus, while demographic modeling at this stage can be challenging 

(e.g., lots of computational resources needed), it can prove useful when the sampling scheme do 

not cover the whole range of the species, or when it is reduced to a single location, in which case 

clustering or FST-based methods cannot assess geographical structure.  

 

1.3.1.3. Gathering additional evolutionary insights 

Depending on the questions or hypotheses to be tested and the degree of population structure 

detected in the first step, one can aim at grasping more information related to the evolutionary 

processes. Structure analyses may be coupled with spatial analyses: for example, genetic 

differences may increase between demes (i.e., sub-populations) along with their geographical 

distance, which is referred to as Isolation by Distance (IBD). IBD can be directly tested by using 

a Mantel test (Mantel, 1967), which computes a correlation between a physical distance matrix 

and a genetic distance matrix. The genetic distance is usually calculated using one of the estimators 

of pairwise FST, but individual-based genetic distances can also be used (Rousset, 2000). 

Additionally, the extent of genetic isolation/differentiation can be further characterized by 

accounting for environmental features in IBD, increasing our understanding in terms of 

connectivity and barriers to gene flow in widely distributed and structured species (Maisano Delser 

et al., 2019; Mcrae, 2006). Furthermore, most, if not all, species have undergone range contraction, 

shifts and range expansions (RE) in their history, all leaving specific genomic signatures that could 
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be detected when studying widely distributed species (Excoffier et al., 2009; Mona et al., 2014). 

The RE process is a particular case of stepping stone meta-population model where the array of 

demes is colonized from a starting point representing the origin of RE. The colonization process 

occurs by series of founding effects (i.e., bottlenecks), leading to a decrease in genetic diversity as 

well as the fixation of novel alleles (allele surfing) as the colonization goes by (Excoffier, 2004; 

Excoffier et al., 2009; Mona et al., 2014; Peter & Slatkin, 2013; Slatkin & Excoffier, 2012).These 

genomic signatures can then be investigated using tools allowing to detect RE occurrence and 

origin(s), based on the frequency of fixed derived alleles (Peter & Slatkin, 2013, 2015) or the decay 

of genetic diversity (Ramachandran et al., 2005). These additional steps can allow to identify 

important biogeographic features such as barriers or corridors to dispersal, as well as the ancestral 

range distribution or regions more recently colonized, which are all features that can be include in 

the downstream tested scenario, or that can ease its interpretations a posteriori.  

 

1.3.1.4. Unstructured coalescence-based models 

The final group of descriptive methods utilizes modeling based on coalescent theory. In section 

1.2, I highlighted that reconstructing the variation of effective size (Ne) using a panmictic – or 

unstructured – model is quite straightforward as it simply requires to rescale branches length when 

size changes. And indeed, there are plenty of software implementing unstructured models, the 

most famous being the PSMC (H. Li & Durbin, 2011), MSMC (Schiffels & Durbin, 2014), 

SMC++ (Terhorst et al., 2017), the skyline plot (Drummond et al., 2005; Pybus et al., 2000) or the 

stairwayplot (Liu & Fu, 2020, 2015). Yet in a broader sense, these methods reconstruct the 

variation of the coalescence rate through time, which only relates to Ne if the studied sample is 

that of a panmictic population. In structured populations, however, the coalescence rate does not 

relate directly to Ne (as explained in part 1.2), which has been widely discussed before (Heller et 

al., 2013; Maisano Delser et al., 2016, 2019; Mazet et al., 2015, 2016). This is the reason why 

(Mazet et al., 2016) proposed to interpret the output of unstructured models as the Inverse 

Instantaneous Coalescence Rate (IICR) instead of Ne. Beyond this, the coalescence rate, or the 

IICR, is expected to hold information about all the parameters of a meta-populations (i.e., effective 

size, migration, divergence, colonization) which are not necessarily constant over time. This is 

why unstructured models are worth investigated in the set of descriptive analyses: they allow to 

accurately reconstruct the IICR trajectory which depends on the underlying true demographic 
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model. As such, the IICR can be considered as a summary statistic of demographic history just as 

estimates of genetic diversity (among others). However, disentangling the effect of historical 

demography parameters on coalescence times remains a challenge to date as our comprehension 

of how specific parameter impact coalescence rates need to be refined with extensive investigation.  

A (beautiful) challenge in population genetics is thus understand what is the most likely 

combination of demographic parameters that can result in the trajectory of the coalescence rate 

through time, eventually requiring extensive demographic modelling, as I will outline in the next 

paragraph.  

 

1.3.2. Investigating complex scenarios using simulations 

1.3.2.1. The issue of complex models: how simulations can help 

Once the diagnostic step is done, one can investigate the demographic history of a population (or 

a set of populations) using various kind of coalescent-based (parametric) models (but not only, see 

for example δaδi, based on diffusion approximations). These models directly aim at interfering the 

demographic parameters of interests under specific demographic scenario. However, as 

highlighted above, a strong limitation of the coalescent is that analytical results (i.e., when the 

expected distribution of coalescent times is known) are limited to only a few simple demographic 

models (e.g., Isolation-Migration model (Nielsen & Wakeley, 2001), or the n-island model (Beerli 

& Felsenstein, 2001)) which drastically limits our inferential abilities. Yet, the history of species 

is very complex, and while simple models might sometimes be enough to answer some questions, 

investigating more complex scenarios might be mandatory to understand how genetic diversity has 

been shaped by historical events and spatial features. However, even though deriving the 

likelihood of the data is possible for few models only, coalescent theory also allows to simulate 

models of virtually any complexity. In result, a very commonly-used approach in population 

genetics is to use a coalescent simulator to perform simulation-based inferences to assess 

demographic parameters. Simulation-based inferences can be done in a variety of ways, such as 

through approximating likelihood distributions (Excoffier & Foll, 2011) or through Approximate 

Bayesian Computation (ABC) frameworks (Beaumont, 2019; Beaumont et al., 2002; Bertorelle et 

al., 2010; Csilléry et al., 2010) that are further explained in the next section.  

There are many different kinds of simulators (Hoban et al., 2012), some aiming at inferring with 

strong accuracy the full ARG despite strong computational burden (e.g., ms (Hudson, 2002) or 



Chapter 1. Introduction 

22 
 

msprime (Kelleher et al., 2016)), and other making approximations of the ARG notably through 

the SMC algorithm to much more efficiently simulate scenarios (e.g., MaCS (Marjoram & Wall, 

2006)). One simulator I have been mostly using during my PhD is fastsimcoal2 (Excoffier et al., 

2021; Excoffier & Foll, 2011) which falls into the second category. fastsimcoal2 is the continuous-

time version of simcoal2 and is based on an extension of the SMC’ algorithm. As such, it allows 

the very efficient investigation of any kind of demographic scenario by tracing, going backwards 

in time, lineages that can coalesce or migrate with possible changes given specific historical events 

(i.e., colonization times, divergence times, etc.). fastsimcoal2 has many advantages, encompassing 

the fact that any kind of scenario can in principle be designed, that any kind of data can be 

simulated under these scenarios, including complete chromosomes, and that it includes an 

algorithm to estimates parameters under any simulated scenarios, which I will explain below.  

 

1.3.2.2. Simulation-based inferences using faststimcoal2 

Approximating the likelihood distribution. To estimate demographic parameters, fastsimcoal2 

uses an approach based on the observed SFS. As it has been explained in part 1.2, the SFS is the 

distribution of the frequency of mutations, which varies accordingly to the demography. When 

sampling multiple populations, a multi-dimension SFS (most often, 2D-SFS) can also be 

computed, which will display the distribution of mutations co-jointly to these sampling locations, 

thus allowing to grasp insights into the relationship (e.g., migration and divergence) between them. 

The SFS can thus be modelled using fastsimcoal2 and demographic parameters are estimated using 

a conditional maximization procedure (i.e., parameters are maximized one at time, leaving the 

others to their last estimated value). The algorithm search for the combination of parameters 

producing an SFS (or pairwise 2D-SFS) most closely matching the observed one(s). SNPs used in 

the analyses are considered independent, producing a composite likelihood estimation. This 

procedure allows also to compare models, and uncertainty in parameter estimation can be 

performed by means of non-parametric or parametric bootstrap. It is worth noting that this method, 

solely based on the SFS in which SNPs are considered independents, does not model 

recombination, which has the advantage of being faster, but at the same time does not take into 

account any information related to Linkage Disequilibrium (LD), which is informative about 

demographic history (especially recent events, see Boitard et al. (2016)).   
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Approximate Bayesian Computation. Another commonly used strategy is to use Approximate 

Bayesian Computation (ABC) (Beaumont, 2019; Beaumont et al., 2002; Bertorelle et al., 2010; 

Csilléry et al., 2010). The ABC framework is roughly similar to the procedure above as it relies 

on simulating summary statistics related to a specific demographic scenario. The major advantage 

of the ABC framework is its flexibility: it presents the possibility to include any kind of summary 

statistics, such as SFS-based (i.e., SFS, θπ, θw, TD, FST), or Linkage Disequilibrium (LD)-based 

(i.e., LD, Runs of Homozygosity), provided that we can compute it on both the observed and 

simulated datasets. These set of expected summary statistics will then be compared to the observed 

summary statistics using various approaches (e.g., rejection algorithms (Csilléry et al., 2012), 

random forests (Pudlo et al., 2016; Pudlo & Robert, 2019; Raynal et al., 2019), or neural networks 

(Csilléry et al., 2012; Mondal et al., 2019)) allowing both to choose the most likely scenario and 

to have a posterior probability distribution of demographic parameters. One approach I have been 

using is ABC with random forests (ABC-rf), as it proposes many advantages compared to the 

classic rejection method of Beaumont et al. (2002). Indeed, computationally it requires much less 

simulations and any summary statistics can be used without having to choose, since the algorithm 

can account for correlated variables (Pudlo et al., 2016; Pudlo & Robert, 2019; Raynal et al., 2019).   

 
1.3.3. A word on genomic datasets  

Coalescent-based demographic inferences require as much loci as possible to avoid the 

reconstructed signal being impacted by markers under selection, but more importantly to account 

for the great variance associated to the coalescent process (i.e., as introduced in section 1.2.1, 

𝑉𝑎𝑟[𝑇#] = > *"
#(#$!)

?
*
 where Tn represents the coalescent time with n active lineages). Population 

genetics studies have then been looking for a trade-off between enough sampled individual to 

accurately calculate statistics (e.g., genetic diversity) and the number of loci to account for this 

stochastic variance. However, a good estimate of the TMRCA, and thus genetic diversity, can be 

made with very few samples (e.g., 5 diploids, (Wakeley, 2009)), which put the emphasis on 

collecting the most loci possible. This was directly stressed by (Felsenstein, 2006) who showed 

that a considerable number of independent markers rather than samples is mandatory for accurate 

inferences to help harnessing the high variability of the coalescent process. This became even more 

striking when Li & Durbin (2011) demonstrated that the coalescence rate through time could be 

reconstructed from the whole genome of a single diploid individual. In this context, the past 
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decades have seen the increase in the amount of production of genomic data, which is still getting 

cheaper and cheaper, allowing the study of demographic and selective processes in model and non-

model species through the application of next-generation sequencing (NGS) technologies. NGS 

datasets can allow to grasp thousands to hundreds of thousands to sometimes millions of Single 

Nucleotide Polymorphisms (SNPs) and are thus a prime choice for reconstructing historical 

demography of species. However, the choice of NGS technique is mainly driven by their cost and 

the nature of the species(s) under investigation (i.e., model vs. non-model species), therefore all 

are associated with different pros and cons.  

When investigating non-model species (i.e., species for which a reference genome has not been 

established), Reduced-Representation Libraries (RRL) techniques offer cost-effective NGS 

datasets. One of the most famous approaches is Restriction-associated DNA sequencing (RADseq) 

(and associated protocols such as doubled digested RAD-seq and Genotype-By-Sequencing), which 

makes use of restriction enzymes to reduce the complexity of the genome (Baird et al., 2008; Miller 

et al., 2007; Peterson et al., 2012). RADseq is a versatile approach allowing for the sequencing of 

numerous loci in any species and thus applicable to various research fields like population genetics 

(Kebaïli et al., 2022; Khimoun et al., 2020; Maier et al., 2022; Mastretta-Yanes et al., 2015), 

species delimitation (Aurelle et al., 2022; Pante et al., 2015), phylogenomics (Brandrud et al., 

2020), and even in aquaculture selective techniques (Robledo et al., 2018). However, challenges 

arise from limited knowledge of sequenced regions, the non-replicable nature of the protocol, the 

absence of knowledge of the genome size in non-model species. Despite these issues, when 

carefully analyzed, RADseq datasets comprising thousands of independent loci are valuable for 

modeling demographic history and population structure in non-model organisms. Another RRL 

approach, Target Gene Capture (Jones & Good, 2016), selectively captures and sequences regions 

of interest in the genome. This approach allows to investigate the same set of homologous regions 

specifically targeted in different organisms which has been beneficial in phylogenomics (Atta et 

al., 2022; Bragg et al., 2016) as well as in population genetics (Maisano Delser et al., 2016, 2019). 

The knowledge associated to the set of regions sequenced is a great advantage over RADseq 

studies, but it is costlier (except with very large sample size, e.g., > 500) and provides fewer 

markers. 

Whole Genome Sequencing (WGS) aims to sequence the entire genome of an organism, providing 

a comprehensive view of its genetic makeup. Short-reads WGS are particularly powerful for 
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identifying as extensively as possible SNPs, but can also help identifying and investigating 

insertions, deletions, and chromosomal rearrangements. Yet it is worth noting that, to that respect, 

the 3rd generation of NGS, i.e., long-read WGS sequencing is by far better to identify structural 

variants. Today, WGS is the tool accounting for genetic and genomic variability in the most 

extensive way, and is thus by far the ideal tool to studying evolution and biodiversity, including 

selective processes that are usually hardly investigable with RRL. However, it is more resource-

intensive, and while its affordability is always increasing, WGS (and particularly long reads) is 

extremely expensive compared to other NGS approaches. In addition, it requires a reference 

genome for the species under study or a closely relative species, which sometimes needs to be 

established and can be challenging (e.g., quality of the tissues available, abilities to build libraries 

for long read sequencing, the cost, etc.). To summarize, both WGS and RRL genomic techniques 

provide valuable information for reconstructing species history, with evidently WGS being by far 

the best choice in terms of information collected despite its cost. In any case, analyzing thousands 

of independent loci improves accuracy in coalescence-based inferences over non-genomic data 

(e.g., mtDNA or microsatellites), although processing such a large amount of information also 

requires careful bio-informatic processing and can be time and resource consuming, especially for 

large datasets.  
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1.4. Overview of the PhD 

1.4.1. Main objectives 
The ability to model genetic diversity within a species' geographical range presents an opportunity 

to uncover crucial aspects of its demographic history, whose understanding is in turn essential for 

gaining insights into localized selective mechanisms. When examined at the community scale, 

modeling genetic diversity should also facilitates an exploration of how inter-species interactions 

and biogeographic characteristics collaboratively influence a species' evolutionary trajectory. 

However, as developed in this introduction, designing and investigating complex models is a 

challenging task but undeniably helps understanding all of these processes, provided that it is 

coherent with the question and the organism(s) under investigation. At the same time, it is also 

crucial to increase our comprehension of how specific processes influence the genome of 

species(s), which might necessitate to go further the traditional boundaries in population genetics 

and integrate modeling from multiple species to gain large-scale ecological information.  

In this context, the research objectives of my PhD can be distilled into two primary goals. First, it 

aims to demonstrate how a meticulous examination of the neutral processes impacting a species' 

genome, achieved through thoughtful model selection, not only yields crucial insights for 

formulating evolutionary hypotheses and conservation strategies, but can also be essential for 

uncovering selective processes. Second it aims to extend the conventional single-species approach 

in population genetics to a broader multi-species perspective, in order to increase our 

understanding of how large-scale processes might impact the gene genealogy of sampled 

populations. To answer these objectives, I studied different marine systems and investigated 

historical demography processes through genetic diversity modelling at different scales, from 

supergenes to ecosystems, and organized my PhD thesis in the following chapters:   

- Meta-populations, Models and Conservation: determinants of coalescence times in 

structured species and its importance in the investigation of widely distributed species. 

The global aim of this chapter is to investigate the influence of population structure on 

the demographic history reconstructed using unstructured models, with a particular 

interest in what these models reveal about the evolutionary history of structured 

species. At the same time, specific life-history traits can impact coalescent patterns. To 

understand this, I study the evolutionary history of two shark species with very different 

life history traits but with large distribution.  
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- Supergenes, Demography and Conservation: reconstructing the demographic 

history to understand the origin and consequences of a supergene determining the size 

in the vulnerable thorny skate (Amblyraja radiata). In this chapter, I present the 

discovery of an introgressed size-determining supergene using whole-genome 

sequencing data. I then explain how the careful reconstruction of demographic history 

is essential for understanding the strong conservation consequences of the supergene, 

as well as providing key insights into its origin. Finally, I stress that further 

characterization of the supergene's history will only be possible through a multi-species 

study. 

- Genetic Signatures of Ecosystem Functioning: Extending population genetics 

boundaries to multi-species inferences. The global aim of this chapter is to understand 

how interactions at the community scale as well as biogeographic features shape 

genetic diversity through joint modelling of genetic variability and trophic niche size 

of 43 reef fish species from Moorea. This study, relying on a unique dataset, provides 

new insights on how ecosystem scale processes influence the genome of species, 

leading to a discussion over major ecological and biogeographical theories.  
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Figure 2.1. Grey reef sharks (Carcharhinus amblyrhynchos) swimming with a school of yellowfin 
goatfish (Mulloidichthys vanicolensis) in Fakarava, French Polynesia.  
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2.1. Context 

2.1.1. Meta-populations and unstructured models 
Many species, if not all, have undergone contractions, expansions and shifts in their range 

distribution during their history (Arenas et al., 2012; Excoffier et al., 2009; Klopfstein et al., 2006; 

Slatkin & Excoffier, 2012). This is usually assumed to result from global changes such as glacial-

interglacial successions (Arenas et al., 2012; Excoffier et al., 2009; Lee-Yaw et al., 2008), where 

the range of species tend to contract in refugia during less favorable times after which they can 

(re)colonize new habitats. However, these can also be induced by more rapid perturbations such 

as habitat destruction, overfishing causing local extinctions of populations (Pacifici et al., 2020; 

Worm & Tittensor, 2011; Yan et al., 2021) or invasion of new habitat (Lopes et al., 2023). 

Genomic signatures of contractions and shifts can be hard to detect empirically, hence resulting in 

little attention despite an established complex influence on genetic diversity, strongly related to 

the biology of the species and the velocity of the process (Arenas et al., 2012). On the other hand, 

range expansions (RE) have been much more documented. REs occur by series of founder effects 

leaving specific signatures in the genome and for which we have solid theoretical expectations 

(Excoffier et al., 2009; Mona et al., 2014). In the case of a meta-population – a set of demes (or 

sub-populations) exchanging migrants with each other – REs leave specific signatures in the gene 

genealogy of lineages sampled from a deme belonging to a meta-population (Ray et al., 2003). 

Many species, especially when widely distributed, might be organized in meta-populations and 

could display signatures of REs. In the introduction, I highlighted how unstructured models were 

powerful tools to reconstruct the variation in coalescence rate through time, as they directly relate 

to the true demographic history of the species under investigation. In this chapter, I investigate 

practically the usefulness of unstructured models in the case of a RE.  

 

2.1.2. A test-case on sharks 
In this chapter, I aim at increasing our understanding of how meta-population structure impacts 

the coalescence rate through time from a conceptual point of view, but also to characterize better 

determinants of population structure in practice, by studying various species of sharks. Sharks 

represent a rich group of more than 500 species, and are found in all oceans and seas but also in 

rivers, displaying a vast spectrum of Life History Traits (LHT) and biological features (Compagno, 
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1984, 2001). Meta-population structure is probably frequent in sharks, whose dispersal ability can 

be conditioned by their movement range (Smith & Weissman, 2020; Trakhtenbrot et al., 2005), 

size (Parsons, 1990), or behavioural traits such as residency and philopatry (Chapman et al., 2014). 

However, while meta-population structure has often been suggested in reef sharks (Gledhill et al., 

2015; Maisano Delser et al., 2016, 2019; Momigliano et al., 2015, 2017; Whitney et al., 2012), 

vagile species can be panmictic at large geographic scale (Corrigan et al., 2018; Karl et al., 2010; 

Pirog et al., 2019; Vignaud, Maynard, et al., 2014). In result, they represent a great test-case for 

investigating how LHT and ecological features contribute to shape the genetic structure. At the 

same time, this group is highly vulnerable: more than 37% of shark species face a risk of extinction 

(Dulvy et al., 2021) and fewer than 30% of these are experiencing stable or increasing population 

trends according to the International Union for Conservation of Nature (IUCN) Red List of 

threatened species, mostly due to overfishing (Dulvy et al., 2014). This emphasizes the need for 

coherent shark conservation plans which would benefit from additional population genetic studies 

at the scale of their range. This is all the more important since as meso or apex predators in their 

communities, sharks play key roles in their ecosystems (Bornatowski et al., 2014), and their 

decline has already shown to have consequences on the ecosystems they live in (Friedlander & 

DeMartini, 2002; Myers et al., 2007).  
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2.2. Objectives 
This chapter aims first to increase our understanding of the effect of meta-population structure on 

the coalescence rate as reconstructed using unstructured models. In a second time, it aims to 

investigate the influence of life history traits (LHT) on the degree of population structure by 

studying multiple shark species. Finally, it aims to wrap up the former findings through two large 

scale studies of endangered shark species with contrasting LHT, specifically highlighting the 

importance of testing for population structure before making further inferences and/or interpreting 

demographic signals. This chapter is thus composed of three articles:  

(1) Coalescence times, Life history Traits and conservation concerns: an example from four 

coastal shark species from the Indo-Pacific 

(2) Ecological and biogeographic features shaped the complex evolutionary history of an 

iconic apex predator (Galeocerdo cuvier)  

(3) Like a rolling stone: Colonization and migration dynamics of the gray reef shark 

(Carcharhinus amblyrhynchos)  
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2.3. Coalescence times, Life history Traits and conservation 

concerns: an example from four coastal shark species from the 

Indo-Pacific 
 

This article has been published in Molecular Ecology Resources.  

 

Authors:   

Pierre Lesturgie, Serge Planes, Stefano Mona 
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2.3.1. Abstract 
Dispersal abilities play a crucial role in shaping the extent of population genetic structure, with 

more mobile species being panmictic over large geographic ranges and less mobile ones organized 

in meta-populations exchanging migrants to different degrees. In turn, population structure directly 

influences the coalescence pattern of the sampled lineages, but the consequences on the estimated 

variation of the effective population size (Ne) over time obtained by means of unstructured 

demographic models remain poorly understood. However, this knowledge is crucial for 

biologically interpreting the observed Ne trajectory and further devising conservation strategies in 

endangered species. Here we investigated the demographic history of four shark species 

(Carharhinus melanopterus, Carharhinus limbatus, Carharhinus amblyrhynchos, Galeocerdo 

cuvier) with different degrees of endangered status and life history traits related to dispersal 

distributed in the Indo-Pacific and sampled off New Caledonia. We compared several evolutionary 

scenarios representing both structured (meta-population) and unstructured models and then 

inferred the Ne variation through time. By performing extensive coalescent simulations, we 

provided a general framework relating the underlying population structure and the observed Ne 

dynamics. On this basis, we concluded that the recent decline observed in three out of the four 

considered species when assuming unstructured demographic models can be explained by the 

presence of population structure. Furthermore, we also demonstrated the limits of the inferences 

based on the sole site frequency spectrum and warn that statistics based on linkage disequilibrium 

will be needed to exclude recent demographic events affecting meta-populations. 

 

Keywords: coalescence, life history traits, meta-population, population genomics, sharks 
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2.3.2. Introduction  
Reconstructing the evolutionary history of a species is a challenging exercise only partially eased 

by the growing size of genetic data available. Indeed, larger amounts of data will provide more 

precision but not more accuracy if the model(s) chosen to infer demographic parameters is distant 

from the true one. Species are dynamic entities whose geographic range has often changed in time 

through range expansions, contractions and shifts (Arenas et al., 2012; Excoffier et al., 2009; Mona 

et al., 2014). As a consequence, many species are most likely organized in meta-populations (i.e. 

groups of demes or sub-populations exchanging migrants to some extent), even though the more 

vagile ones might be panmictic at a large scale (Corrigan et al., 2018; Karl et al., 2010). Neglecting 

the meta-population structure (i.e., performing demographic inferences under unstructured 

models) may lead to spurious inference of population size change (Chikhi et al., 2010; Maisano 

Delser et al., 2016, 2019; Mazet et al., 2015), which is particularly worrisome for species of 

conservation concern. Unfortunately, the link between the inferred temporal trajectory of the 

effective population size (Ne) and the real demographic history of the meta-population remains 

largely under explored. However, the role of connectivity, particularly the number of migrants Nm 

exchanged each generation and the migration matrix, has been put forward as a key actor in 

shaping the gene genealogy of lineages sampled from a deme belonging to a meta-population 

(Chikhi et al., 2010; Mona et al., 2014; Ray, Currat, & Excoffier, 2003; Städler, Haubold, Merino, 

Stephan, & Pfaffelhuber, 2009).  

Understanding the relations between meta-population structure, the inferred Ne variation under 

unstructured models, and species dispersal abilities, is crucial to correctly interpret the pattern of 

genetic variability and to establish conservation priorities. To search for general rules describing 

such relations, we followed an inductive approach investigating species: i) with large distribution 

(which in principle should guarantee an organization in meta-populations); ii) with different life 

history traits (LHT) related to dispersal; iii) of conservation concerns. In this spirit, we selected 

for our genomic study four shark species (Carcharhinus amblyrhynchos, Carcharhinus limbatus, 

Carcharhinus melanopterus, and Galeocerdo cuvier) from New Caledonia. These species have a 

large and overlapping distribution in the Indo-Pacific (https://sharksrays.org/) and they differ for 

LHT features such as size (which is positively correlated with the capacity for long distance 

swimming and oceanic migration (Parsons, 1990)), residency pattern, and long-distance dispersal 

ability as measured by tagging data (Supp. Table 2.3). Moreover, the IUCN red list reported that 
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the black-tip shark (C. limbatus) and the tiger shark (G. cuvier) are Near Threatened (with a 

decreasing trend in the tiger shark), the black-tip reef shark (C. melanopterus) is Vulnerable with 

decreasing trend, and the grey reef shark (C. amblyrhynchos) is Endangered with decreasing trend 

as well. We first compared several population genetics models by means of coalescent simulations 

coupled with an approximate Bayesian computation framework (Bertorelle et al., 2010) to detect 

whether panmixia or a meta-population model best describe the genomic variation of each species. 

Then, we inferred the demographic parameters under the most likely model and applied the 

stairwayplot, which assumes a panmictic unstructured population (Liu & Fu, 2015), to detect the 

Ne variation through time in each species. We finally run extensive coalescent simulations under 

the tested meta-population models with parameters compatible to those observed in real data. The 

simulated datasets were in turn analysed with the stairwayplot to: i) help interpreting the observed 

data in the four shark species; ii) providing general coalescence arguments relating the 

demographic history of a meta-population and the reconstructed variation in Ne through time by 

means of unstructured models.  

 

2.3.3. Material & Methods  

2.3.3.1. Sampling 

Eight specimens of tiger shark (G. cuvier), 13 black tip shark (C. limbatus), and 12 grey reef shark 

(C. amblyrhynchos) were collected off New Caledonia. Total genomic DNA was extracted from 

muscle tissue or fin clips, and preserved in 96% ethanol using QIAGEN DNeasy Blood and Tissue 

purification kit (Qiagen, Hilden, Germany) according to the manufacturer's protocols. Double-

digest restriction-associated DNA (ddRAD) libraries were prepared following (Peterson et al., 

2012) using EcoRI and MspI restriction enzymes and a 400-bp size selection. The genomic 

libraries obtained were sequenced with a HiSeq 2500 Illumina sequencer (single-end, 125 bp). 

Exon capture data of eight C. melanopterus) from New Caledonia (Maisano Delser et al., 2019) 

were included in this study for comparative purposes.  

2.3.3.2. De novo assembly and data filtering (dd-RADseq samples) 

Raw reads were first demultiplexed and quality filtered through the process_radtags.pl pipeline in 

Stacks v.2.5 (Rochette et al., 2019). In the absence of a reference genome for any of the three 

species, RAD-seq loci were de novo assembled independently in each species under the 

denovo_map.pl pipeline in Stacks. We used the following assembly parameters: m=3 (minimum 
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read depth to create a stack), M=4 (number of mismatches allowed between loci within 

individuals), and n=4 (number of mismatches allowed between loci within catalogue). We found 

an average coverage per species of ~10x (see results). A consensus on the threshold below which 

SNP calling may be considered unreliable is still lacking. However, genotype free estimation of 

allele frequency is generally recommended with low to medium coverage (Korneliussen et al., 

2014). This approach, implemented in the software Angsd v.0.923 (Korneliussen et al., 2014), has 

been rarely applied to Rad-seq data (however, see (Warmuth & Ellegren, 2019) for an exception) 

and, to our knowledge, never to Rad-seq data from non-model organisms, probably due to the need 

of a reference sequence for the software to work. Here, we followed the approach of (Heller et al., 

2021; Khimoun et al., 2020) by creating an artificial reference sequence. First, we used the 

population script in Stacks to assemble loci present in at least 80% of the individuals (using the 

flag r=0.8); then, we concatenated the consensus sequences of the retrieved loci spaced by a stretch 

of 120 N (unknown) characters (the same length of the Rad-loci) to facilitate the subsequent 

mapping. Raw reads were then mapped back to the novel reference sequence by means of the bwa-

mem algorithm with default parameters (H. Li & Durbin, 2009). Using custom bash scripts coupled 

with Angsd, we applied a number of filters to the aligned data and eliminated: i) sites with coverage 

<3 (-minIndDepth=3 flag), ii) bad quality bases and poorly aligning reads (-minQ and -minMapQ 

and -C flags with default values); iii) poor quality sites based on the per base alignment quality (-

baq=1 flag); iv) SNPs in the last 5 bp of each locus; v) SNPs heterozygote in at least 80% of 

individuals; vi) loci with more than 5 SNPs that could potentially be paralogous; vii) sites with 

missing data by setting the -minInd flag to the total number of individuals retained in each species. 

The filtered dataset was then used to generate a site allele frequency likelihood file, with the 

genotype likelihoods computed with the SAMtools method (-GL=1 flag), further optimised to 

compute a folded site frequency spectrum (SFS) with no missing data for downstream analyses. 

An alternative (and simpler) approach would have been to augment m to achieve an higher 

coverage (Paris et al., 2017). However, beside the considerable loss in the number of assembled 

loci (and hence of retrieved SNPs), we found by extensive simulation of in silico Rad experiments 

that selecting high coverage loci biases the SFS towards low frequency variants (Mona et al., 

2023). The SFS for C. melanopterus was estimated directly from the high coverage exon-capture 

dataset of Maisano Delser et al. (2019). 
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2.3.3.3. Genetic diversity and demographic inferences 

Nucleotide diversity (θπ), θw (Watterson’s theta, based on segregating sites (Watterson, 1975)) and 

Tajima’s D (TD, (Tajima, 1989)) were computed from the SFS for each species with custom 

scripts. Significance of TD was evaluated after 1,000 coalescent simulations of a constant 

population model with scaled size θπ. To test whether sampled demes are isolated or belong to a 

structured meta-population and to eventually estimate connectivity, we devised three alternative 

evolutionary models for each species (Figure 2.2) within an approximate bayesian computation 

(ABC) framework. Model NS (non-structured) defined an isolated population characterized by a 

modern effective population size (NMOD) switching instantaneously into an ancestral population 

size (NANC) at Tc generations before present. Model FIM specifies a non-equilibrium finite island 

model defined by d=100 demes exchanging Nm migrants each generation under a symmetric 

migration matrix. The array of demes is instantaneously colonized TCOL generations before present 

from a population with an ancestral size (NANC). Model SST is similar to FIM but demes exchange 

migrants only with their four neighbours (or less, if they are at the border of the array), in a 

steppingstone fashion. We performed 50,000 coalescent simulations from prior distributions using 

fastsimcoal v.2.6.0.3 (Excoffier et al., 2013), reproducing the exact number of individuals and loci 

for each species (Table 2.1). We first performed model selection through the random forest (RF) 

classification method implemented in the abcRF R package (Pudlo et al., 2016). We then 

performed 50,000 additional simulations under the most supported model in order to estimate 

demographic parameters with the abcRF regression method (Raynal et al., 2019). Both model 

selection and parameter estimation were computed with the following set of summary statistics: 

the SFS, θπ, θw and TD. The first two axes of a Linear Discriminate Analysis performed on the 

previous statistics were also included for model selection in order to increase the accuracy of the 

estimates (Pudlo et al., 2016). Even though θπ, θw and TD are function of the SFS, they convey 

additional information by the non-linear feature of the functions. Information redundancy among 

the considered summary statistics is accounted for by the RF algorithm. Model selection and 

parameter estimation were run twice on each set of simulations to check the consistency of the 

analyses, and cross validation (or confusion matrix for the model selection) was performed on the 

first of the two runs. The number of trees in each RF algorithm was chosen by monitoring the 

evolution of the out-of-bag error (Pudlo et al., 2016).  
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We investigated the variation in the effective population size (Ne) through time by running the 

composite likelihood approach implemented in the stairwayplot v.0.2 software (Liu & Fu, 2015). 

We set the generation time to seven years for C. melanopterus (Maisano Delser et al., 2016) and 

to 10 years for the other species (Cortés, 2002; Pirog et al., 2019) for all demographic inferences. 

We applied a mutation rate per generation per site of 8.4×10-9 to the exon capture data of C. 

melanopterus (Maisano Delser et al., 2016) and of 1.93×10-8 to the RADseq data for the remaining 

three species. This mutation rate was determined by scaling genetic diversity between ddRAD 

(obtained under the same protocol of this study) and Exon Capture data from 12 C. melanopterus 

individuals from Moorea, French Polynesia (Supplementary Material).  

 
Figure 2.2. Evolutionary scenarios considered in this study (to both infer parameters in real data under an 
ABC framework and to perform coalescent simulations). SST (FIM) model is a simplified version of 
SST-CH (FIM-CH) in which connectivity Nm is constant after TCOL. Details on each parameter are 
presented in the main text. 
 

2.3.3.4. Simulation study 

We ran coalescent simulations under FIM, SST and their modified version FIM-CH and SST-CH, 

where the Nm parameter is changed at TCH generations B.P. (Figure 2.2), to first inspect the shape 

of the SFS and to further uncover the variation of Ne over time assuming a panmictic population 

by means of the stairwayplot. We investigated in total 288 demographic scenarios under the four 

meta-population models (Table 2.2, Supp. Tables 2.4, 2.5, 2.6, 2.7 and 2.8). Similarly to the 

analyses performed on the real data, all scenarios were represented by d=100 demes exchanging 

migrants. We sampled 10 diploid individuals either from a randomly selected deme in the case of 

FIM/FIM-CH (since all demes have the same coalescence history) or from the central deme of the 
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array in the case of SST/SST-CH (to avoid border effects). Deme size was fixed to NDEME =5000 

with m varying accordingly to obtain a long-term Nm of 1, 5, 10, and 15 in order to encompass the 

range of the estimated values (see results). TCOL was fixed to 5,000, 15,000 and 50,000 generations 

B.P. or to ∞ (i.e., equilibrium model), and the ancestral effective size was fixed to NANC = 50,000.  

Change of connectivity occurred at TCH =10 or 50 generations B.P., to mimic human induced 

effects due to overfishing and/or habitat modifications (i.e., climate changes). Looking forward in 

time, we modelled the change in connectivity by instantaneously decreasing m or NDEME by a factor 

10 or 100 with respect to the long-term Nm (Supp. Tables 2.5, 2.6, 2.7 and 2.8). For each 

combination of parameters, we performed 100 coalescent simulations of 50,000 Rad-like loci of 

115 bp. Mutation rate per site per generations was set to 1.93×10-8 and the generation time to 10 

years. We computed for each scenario (averaged over the 100 replicates): a) summary statistics 

(θπ, θw, and TD); b) the normalised SFS as in (Lapierre et al., 2017); c) the stairwayplot, to 

reconstruct the apparent variation of Ne through time.  We note that the number of diploid 

individuals and simulated loci were chosen to be consistent with our data (preliminary analyses 

conducted on a subsample of 5,000 loci produced consistent results).  

 

2.3.4. Results 
Summary statistics (number of assembled loci, SNPs, genetic diversity and Tajima’s D) are 

presented in Table 2.1. Mean coverage (and standard deviation) per sample was 9.02 (± 2.62), 7.93 

(± 0.48), 8.39 (± 0.81) for G. cuvier, C. limbatus and C. amblyrhynchos respectively. 

We compared the models NS, FIM, and SST (Figure 2.2) in the four species by means of an ABC-

RF algorithm and estimated demographic parameters for the most supported model. After checking 

for the evolution of the out-of-bag error of the RF, model selection and parameter estimation were 

computed using respectively 500 and 1,000 trees in each species. We found that NS had the higher 

posterior probability (p=0.84) for G. cuvier (Table 2.1 and Supp. Table 2.9). In contrast, 

demographic histories of the three other species were best described by SST, with a posterior 

probability ranging from 0.53 to 0.88 (Table 2.1 and Supp. Table 2.9). The estimated median 

number of migrants per generation Nm was 1.8 (95% CI: 0.7-3.0) for C. melanopterus, 6.6 (95% 

CI: 1.5-15.4) for C. limbatus, and 11.5 (95% CI: 3.0-22.0) for C. amblyrhynchos (Figure 2.3 and 

Table 2.1). The posterior distribution of Nm strongly differed from the prior distribution and 

showed a clear unimodal peak with small credible intervals, and low mean square error (SME) and 



Chapter 2. Meta-populations, Models and Conservation 

41 
 

mean root square error (SMRE) in all three species (Figure 2.3 and Supp. Table 2.10), suggesting 

that these estimates are highly reliable. Conversely, both TCOL and NANC had larger SME and SMRE 

errors in all species (Table 2.10), but it was only in C. melanopterus where posterior and prior 

distribution could not be distinguished (Figure 2.3). TCOL has a clear unimodal distribution in C. 

amblyrhynchos but a more disperse one (and with wider credible intervals) in C. limbatus (Figure 

2.3, Table 2.1).  
 

Table 2.1. Summary statistics and ABC estimation. Number of loci and SNPs after filtering, mean 
pairwise difference (θπ), Watterson theta (θw), Tajima’s D (TD), posterior probability of the most 
supported model and its parameters (median value and 95% credible interval in parentheses). 

 N° Loci N° SNP θπ θw TD Model 
(probability)†  Nm TCOL ‡ NANC 

G. cuvier§ (N=8) 117976 25785 0.00057 0.00051 -0.03 NS (0.84) - - - 

C. amblyrhynchos 
(N=12) 69490 68355 0.00216 0.00229 -0.23* SST (0.85) 11.5  

(3.0-22.0) 
20456  

(12567-75649) 
40961  

(1315-49276) 

C. limbatus 
(N=13) 60812 43449 0.00180 0.00166 0.43* SST (0.55) 6.6 

(1.5-15.4) 
50198  

(475-245440) 
25521 

(1913-52820) 

C. melanopterus¶ 
(N=8) 926 784 0.00040 0.00030 0.691* SST (0.89) 1.8 

(0.7-3.0) 
91719  

(5000-291341) 
34607 

(2760-95380) 

  Priors a U: 0.001 - 
100 U: 1 - 300000 U: 100 – 

100000. 

* Tajima’s D values are significant (p<0.001). 
† Most supported model and its posterior probability.  
‡ TCOL is expressed in generations. 
§ G. cuvier is best represented by the NS model: its demography is depicted through the stairwayplot algorithm (see 
discussion).  
 ¶ Data from (Maisano Delser et al., 2019) 
a Uniform prior distribution. The prior distribution of Nm is the product of two uniforms (one for N and one for m). 
 
The stairwayplot showed a nearly similar dynamic for C. amblyrhynchos and C. limbatus, 

characterized by a strong ancestral expansion (Figure 2.4). When approaching T=0, both species 

underwent a bottleneck but of distinct strength. This is consistent with the shape of the normalized 

SFS, which clearly shows a stronger deficit in low frequency variants for C. limbatus compared to 

C. amblyrhynchos (Figure 2.4). Similarly to C. limbatus, C. melanopterus experienced a recent 
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10-fold population collapse around 20,000 years B.P. starting from a long term constant Ne. 

However, C. melanopterus showed no signature of ancestral expansion, consistent to the results 

obtained by (Maisano Delser et al., 2019) using abc-skyline method. Finally, G. cuvier displayed 

an ancestral expansion around 100,000 years B.P. with Ne reaching ~12,000 before dropping to 

~3000 at T ~1,600 years B.P. Remarkably, the ancestral expansion retrieved by the stairwayplot 

(Figure 2.4) for both C. amblyrhynchos and C. limbatus overlap with the posterior distribution of 

TCOL estimated by the SST model (Table 2.1). This analogy holds too for C. melanopterus, where 

TCOL could not be properly estimated under the structured model (we obtained a flat posterior 

distribution, Figure 2.3) and there was no signature of ancestral expansion in the stairwayplot 

(Figure 2.4).  
Table 2.2. Coalescent simulations of 50,000 Rad-loci under SST model, with mutation rate fixed to 
1.93*10-8 per site per generation and NANC fixed to 50,000. Mean pairwise difference (θπ), Watterson theta 
(θw), Tajima’s D (TD), and number of segregating sites (S) are averaged over 100 replicates. 

Nm TCOL θπ ‡ θs ‡ TD S 

1 5000 0.0013 0.0011 0.531 23599 
 15000 0.0013 0.0012 0.405 24094 

 50000 0.0017 0.0016 0.406 32201 

 ∞† 0.0161 0.0139 0.669 283564 

5 5000 0.0017 0.0016 0.361 32443 
 15000 0.0019 0.0018 0.191 37712 

 50000 0.0028 0.0028 0.035 56474 

 ∞ 0.0177 0.0150 0.749 306786 

10 5000 0.0019 0.0018 0.180 36561 

 15000 0.0021 0.0022 -0.087 44380 

 50000 0.0031 0.0034 -0.364 69436 

 ∞ 0.0180 0.0158 0.585 321619 

15 5000 0.0019 0.0019 0.048 38919 

 15000 0.0022 0.0024 -0.274 48479 

 50000 0.0032 0.0038 -0.608 77391 
 ∞ 0.0181 0.0163 0.465 331816 

† Equilibrium model obtained by simulating TCOL=∞. 
‡ Theta values are expressed per site per generation. 
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Figure 2.3. Posterior distribution of the number of migrants per generation Nm (panel A) and of the 
colonisation time of the array of deme TCOL (panel B) estimated under the stepping stone model (SST) for 
Carcharhinus amblyrhynchos (red), Carcharhinus limbatus (green) and Carcharhinus melanopterus 
(blue).  
 

 

Figure 2.4. Panel A: variation of the effective population size (Ne) through time and its 75% confidence 
interval estimated by the stairwayplot. Panel B: normalized SFS computed as in (Lapierre et al., 2017). 
Carcharhinus amblyrhynchos is represented in red, Carcharhinus limbatus in green, Carcharhinus 
melanopterus in blue, and Galeocerdo cuvier in purple.  
 

The first set of coalescent simulations was run under FIM and SST only (Table 2.2 and Supp. 

Table 2.4) to check if simulated data could reproduce the pattern of genetic variability (both θ 

estimators and TD) observed for C. melanopterus, C.limbatus, and C. amblyrynchos. The 

simulated θ values (excluding the equilibrium model) ranged between 0.001 and 0.003 per site, in 

line with the observed values (Tables 2.1 and 2.2). TD follows a U-shaped distribution for each 

Nm value as a function of TCOL, being more positive at recent TCOL and at equilibrium and less 
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positive (or negative for higher Nm) at intermediate values. Therefore, species demography with 

Nm ~10 (and higher) and TCOL within 15k and 50k generations B.P. will have negative TD values. 

In contrast, species with lower Nm and very recent or very ancient TCOL will have positive TD. 

This matches strikingly the TD observed for the three shark species and their estimated 

demographic parameters under SST (Table 2.1). We plot the normalized SFS and the stairwayplot 

for all scenarios presented in Table 2.2 (Figures 2.5, 2.6 & Supp. Figures 2.9, 2.10 and 2.11). First, 

we note that none of our scenarios, even those at equilibrium and with no variation in Nm through 

time, showed a normalized SFS compatible with a constant size population (Figures 2.5, 2.6 & 

Supp. Figures 2.9, 2.10 and 2.11). The normalized SFS and the reconstructed stairwayplot depend 

generally on the interaction between Nm and TCOL with a dynamic strikingly similar to TD (which 

is indeed a summary of the SFS). For Nm=1 we observed the signature of a recent decrease in Ne 

for all scenarios and independently of TCOL (Figure 2.5). The normalized SFS showed consistently 

a strong deficit of low frequency variants, typical of a demographic bottleneck and in agreement 

with the positive TD (Figure 2.5 and Table 2.1). Furthermore, the stairwayplot could never detect 

the ancestral expansion for any TCOL. For growing Nm, the interplay with TCOL becomes more 

complex. A general result is that, once again, all scenarios were characterized by a recent decrease 

of Ne when looking at the stairwayplot and a deficit of singletons compared to the other low 

frequency classes when looking at the normalized SFS (Figure 2.6 & Supp. Figures 2.9 and 2.10). 

However, a strong signature of ancestral expansion appeared for Nm >10 and TCOL between 15k 

and 50k generations B.P., mirroring the results of TD for which most of these scenarios displayed 

a negative value. Remarkably, the stairwayplot retrieved the ancestral expansion only slightly 

overestimating the simulated TCOL (Figure 2.6 & Supp. Figures 2.9 and 2.10). Similar results were 

obtained for FIM (Supp. Figure 2.12 and 2.13).  
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Figure 2.5. stairwayplot (maximum likelihood Ne and 75% confidence interval) (panel A) and 
normalized SFS (panel B) computed in simulated non-equilibrium SST scenarios with Nm=1, averaged 
over 100 replicates. Colonisation time of the array of deme TCOL occurred 5,000 (red), 15,000 (blue), and 
50,000 (green) generations B.P., visually represented by the vertical dashed lines in panel A. The 
normalized SFS expected under a constant size non-structured model (NS constant size) is also shown 
(grey dashed line in panel B).  
 

 
Figure 2.6. stairwayplot (maximum likelihood Ne and 75% confidence interval) (panel A) and 
normalized SFS (panel B) computed in simulated non-equilibrium SST scenarios with Nm=10, averaged 
over 100 replicates. Colonisation time of the array of deme TCOL occurred 5,000 (red), 15,000 (blue), and 
50,000 (green) generations B.P., visually represented by the vertical dashed lines in panel A.  The 
normalized SFS expected under a constant size non-structured model (NS constant size) is also shown 
(grey dashed line in panel B). 
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Figure 2.7. stairwayplot (maximum likelihood Ne) (panel A) and normalized SFS (panel B) computed in 
simulated non-equilibrium SST scenarios with TCOL =15,000 generations B.P. and an instantaneous 
decrease of the deme size (NDEME) forward in time at TCH =10 generations B.P. Colours represent the long-
term connectivity values: Nm=1 (blue), Nm=5 (green), Nm=10 (red), Nm=15 (black). Line style represents 
the 10-fold (small dashes) or 100-fold (dots) reduction of NDEME, or constant Nm (continuous line). The 
vertical grey dashed line in panel A represents the simulated colonisation time TCOL. 
 

We compared SST vs SST-CH model (Figure 2.2) by means of the same ABC-RF model selection 

framework previously adopted. The two models cannot be clearly distinguished in any of the three 

structured species since: i) they showed similar posterior probability (~0.50); ii) the prior error 

rates are large ~0.40 (Supp. Table 2.11); iii) posterior distributions of Nm before and after TCH are 
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effective population size of each deme). As expected, we found a signature of recent population 
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10 a decrease in Nm slightly affected the SFS and the reconstructed stairwayplot, the consequence 

of the change in connectivity are more substantial at TCH = 50, with a stronger deficit in singletons 

and a more pronounced recent decline in Ne particularly in scenarios with a 100-fold reduction of 

NDEME (Supp. Figures 2.19 and 2.21). 

 

2.3.5. Discussion  

2.3.5.1. Life history traits and demographic history of the four shark 

species 

Discriminating whether the most appropriate model to reconstruct the demographic history of a 

species is structured or unstructured should be the first step in empirical population genetics 

investigations, particularly when targeting species of conservation concerns. Even when an 

extensive spatial sampling is lacking, an ABC model selection approach can actually distinguish 

whether the sampled deme belongs or not to a meta-population (similarly to previous studies 

(Maisano Delser et al., 2019; Peter et al., 2010)). Among the four species considered here, the tiger 

shark is the only panmictic. The three other species conversely are best described by the SST 

model, i.e., the sampled populations belong to a meta-population exchanging migrants following 

a stepping stone matrix. Our results reflect the tight link between the level of meta-population 

structure (or its absence) and life history traits. The panmictic G. cuvier unsurprisingly can 

accomplish transoceanic movements and has the largest body size among the sharks here 

considered (Supp. Table 2.3). In the three other species, the estimated number of migrants (Nm) 

remarkably follows the increase of movement range (Table 2.1 and Supp. Table 2.3) and it is 

consistent with their behaviour and habitat use. Indeed, C. melanopterus, a strongly lagoon 

dependent species, displays the lowest level of connectivity among the studied species (Table 2.1 

and Supp. Table 2.3). These results bring meaningful hints about the influence of life history traits 

on population structure in sharks, but more studies addressing this topic will be needed to 

accurately detect which traits best predict its extent.  

2.3.5.2. Gene genealogies in the four shark species and simulated scenarios 

While it may seem counterintuitive to apply unstructured models to demes belonging to a meta-

population, we further investigated the demographic history of the four species by means of the 

stairwayplot. When enough data is available, non-parametric unstructured models (such as the 

PSMC (H. Li & Durbin, 2011), the extended Bayesian skyline plot (Heled & Drummond, 2008) 
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and the stairwayplot among others) provide a careful description of the distribution of coalescence 

times of the gene genealogy, which ultimately depends from the “true” demographic history 

(whether it is known or not) of the sampled lineages. If panmixia is the most likely scenario, the 

distribution of coalescence times is directly related to the variation of Ne through time and can 

therefore have a direct biological interpretation. This is the case for G. cuvier (Table 2.1), whose 

reconstructed stairwayplot suggests that this species experienced a mild ancestral expansion and a 

recent ~4-fold bottleneck around 2,000 years B.P. (consistent with the results of (Pirog et al., 

2019), Figure 2.4). Conversely, signals detected by the stairwayplot in the remaining three species, 

better described by the SST model (Table 2.1), cannot be directly interpreted as changes in Ne 

over time. In this light, we ran coalescence simulations to provide helpful and general insights into 

the understanding of the relation between the inferences performed under unstructured and 

structured models.  

We first focus on scenarios simulated under the SST, with parameters close to those estimated in 

real data. The first and most striking result is that we systematically observed a recent bottleneck 

under all simulated scenarios (Table 2.2, Figures 2.5, 2.6, Supp. Figures 2.9, 2.10 and 2.11). This 

result could seem at a first glance surprising and due to an artefact. However, this is not the case, 

as: i) the signal does not depend on the inferential algorithm chosen to analyse the data (i.e., the 

stairwayplot), since the normalized spectra showed a deficit in singletons compared to the other 

low frequency classes (Figures 2.5, 2.6, Supp. Figures 2.9 and 2.10), which is typical of a recent 

population decline; ii) it is consistent with the distribution of the Inverse Instantaneous 

Coalescence Rate (IICR) computed in one diploid individual, which shows a signature of decline 

under similar meta-population models (Chikhi et al., 2018; Mazet et al., 2016; Rodríguez et al., 

2018). The results of our simulations are consistent with the recent bottleneck observed in the three 

shark species (Figure 2.4), with its intensity inversely correlated to the estimated Nm (i.e., stronger 

for C. melanopterus and C. limbatus than for C. amblyrhynchos). In our SST model there is an 

instantaneous colonization of the array of demes at TCOL, which corresponds also to a demographic 

expansion (i.e., the total number of individuals in the array of deme is larger than those in the 

ancestral deme). However, this signature is detected only for Nm≥5 when TCOL is neither too recent 

nor too old (at equilibrium) (Figures 2.6, Supp. Figures 2.9, 2.10 and 2.11). In these scenarios, the 

beginning of the expansion retrieved by the stairwayplot broadly corresponds to the simulated 

TCOL. This again corroborates the results obtained for the three shark species, since the two species 
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with higher Nm displayed indeed an ancestral expansion in the stairwayplot with a timing 

consistent with the estimated TCOL (Table 2.1, Figures 2.3 and 2.4). Similarly, it explains why we 

could not retrieve the ancestral expansion for C. melanopterus nor estimate TCOL under the SST 

model: this appears to be a property of the coalescence pattern and it is not related to the amount 

of data available (see below).  

 
Figure 2.8. Schematic diagram representing the different coalescence phases in the history of lineages 
sampled from a deme belonging to a non-equilibrium meta-population. Each phase and related parameters 
are represented by a colour. Parameters influencing the coalescence rate in each phase are: the effective 
size of the deme (NDEME) and the migration rate (m) for the scattering phase; the number of migrants 
exchanged per generation (Nm) and the number of demes (d) for the collecting phase; and the ancestral 
effective size (NANC) for the ancestral phase.  
 

2.3.5.3. Coalescence phases in structured models 

It is now straightforward to frame all these findings under the coalescence perspective. The 

coalescence history of the lineages sampled from a single deme in an SST (or FIM) model can be 

separated for simplicity into three phases: the scattering, the collecting and the ancestral phase 

(Figure 2.8). Going backward in time, lineages will coalesce in the sampled deme with a rate 

according to both Nm and NDEME until all lineages either have coalesced or migrated to another 
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deme. This is the scattering phase described in the seminal works of Wakeley (1998, 1999). The 

scattering phase was considered instantaneous for mathematical tractability, with its outcome 

dependent on Nm only, but later works could disentangle the effect of NDEME and m on the shape 

of the gene genealogy (Mona, 2017). The collecting phase starts when the lineages which did not 

coalesce have migrated to other demes of the array: they will then coalesce according to a Kingman 

process with a rate scaled by Nm and the number of demes d of the array (Wakeley, 1999) (Figure 

2.8). Finally, all surviving lineages (in non-equilibrium model) will reach the ancestral deme at 

TCOL, where they will coalesce at a rate depending only on the NANC parameter (Figure 2.8). The 

interplay between the demographic parameters (NDEME, Nm, NANC, d) and the historical events (TCOL 

and TCH) determines the length of each coalescence phase and the resulting shape of the gene 

genealogy of the sampled lineages (Figure 2.8). 

In species with low Nm, the rate of coalescence during the scattering phase is very fast since 

lineages have low probability of emigrating from the sampled deme and high probability of 

coalescence due to the small N. Once all the lineages are dispersed in the array of demes, there 

will be two possible outcomes: i) in equilibrium model, we shift to the collecting phase, where the 

rate of coalescence drops since lineages will hardly fall in the same deme again; ii) in non-

equilibrium model, with the parameters we have simulated here, there will be very few (if any) 

coalescence events during the collecting phase and the transition will be directly from the 

scattering to the ancestral phase. Both the collecting and the ancestral phases have a rate of 

coalescence lower than the scattering phase, which determines the observed recent drop in Ne for 

all simulated scenarios. Remarkably, the decline in Ne is much stronger in equilibrium model, 

since the rate of coalescence is much lower in the collecting than in the ancestral phase (Figures 

2.5, 2.6, Supp. Figures 2.9, 2.10 and 2.11). Low Nm species will therefore have only two 

coalescence phases, the scattering and either the collecting (in equilibrium model) or the ancestral 

(in non-equilibrium model) which is why the signature of the ancestral expansion is lost.  

For growing Nm, in equilibrium model there will be again only two coalescence phases, namely 

the scattering and collecting, with the latter having a lower rate of coalescence than the former 

independently of the simulated parameters. This is why we observed always a strong bottleneck 

consistent with the distribution of the IICR statistics in any equilibrium model (Chikhi et al., 2018; 

Mazet et al., 2015; Rodríguez et al., 2018). In non-equilibrium model, there will be two different 

situations: a) TCOL (in generations) is of the same order of the deme size NDEME. In this setting, 
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going backward in time few lineages would have escaped the sampled demes before TCOL. This 

corresponds to a shift in the coalescence rate directly from the scattering to the ancestral phase, 

resulting in a bottleneck of lower intensity compared to an equilibrium model (Figures 2.5, 2.6, 

Supp. Figures 2.9 and 2.10), for the same reasons as above; b) TCOL (in generations) is larger than 

NDEME. In this setting, some coalescence events may occur during the collecting phase, at a rate 

much slower than the two other phases. This determines the hump observed in the stairwayplot 

(Figures 2.5, 2.6, Supp. Figure 2.9 and 2.10) and explains why in this window of parameters it is 

also possible to correctly estimate TCOL using our ABC framework. Further simulations under the 

FIM model confirmed those patterns even though the ancestral expansion could be detected for 

lower long-term Nm than the corresponding SST scenario (Supp. Figure 2.12). This is probably 

due to a higher apparent connectivity underlined the by FIM, where lineages can move more freely 

during the collecting phase in comparison to SST where migrants only come from the closest 

neighbours. If many coalescence events occur during the collecting phase, the change in 

coalescence rate will affect the resulting gene genealogy and it will be detected by the stairwayplot 

(or any other unstructured method based on coalescent theory). 

2.3.5.4. Changes in connectivity   

Using coalescence arguments, we clarified why simple meta-population models with constant 

connectivity generate a gene genealogy harbouring a signature of a recent decline for any 

parameters’ combination. The signature of bottleneck detected by the stairwayplot in the three 

shark species best described by SST can be therefore interpreted as a consequence of the 

underlying structure. However, connectivity likely changes through time. For instance, human 

activities have likely impacted the evolutionary history of a large number of species either by 

decreasing their effective population size and/or by fragmenting their habitat (i.e., reducing 

migration rates between demes). This intuitively should exacerbate the signature of population 

decline in the resulting gene genealogy. However, it remains to be shown whether this signature 

is qualitatively and quantitatively distinguishable from models with constant connectivity. This is 

a question of fundamental importance to understand whether it is possible to detect recent 

bottleneck in structured populations. To this end, we further investigated by coalescent simulations 

the expected gene genealogy in SST-CH (and FIM-CH) models with a change in connectivity 10 

or 50 generations B.P., which matches the beginning of extensive anthropogenic influence on 

biodiversity considering our species’ generation time (Ceballos et al., 2015). The resulting gene 
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genealogies were poorly affected by the recent drop in connectivity, with both the normalized SFS 

and the inferred Ne dynamic following the same trajectory of the corresponding scenario with the 

same long-term Nm and TCOL (Figure 2.7, Supp. Figures 2.15, 2.16, 2.17, 2.18, 2.19, 2.20 and 

2.21). We noticed the drop in NDEME (Figure 2.7, Supp. Figures 2.17, 2.20 and 2.21) had stronger 

influence than the drop in m (Supp. Figures 2.15, 2.16, 2.18 and 2.19), consistent with previous 

finding showing that the distribution of coalescence events depends not only by the Nm compound 

parameter but also by their individual values (Mona, 2017). This can be explained once again in 

the light of the length of the coalescence phases (Figure 2.8). Reducing NDEME will increase 

exponentially the number of coalescence events, drastically shortening the scattering phase and 

the number of surviving lineages. Reducing m will only linearly reduce the probability of 

migrations outside the deme, marginally affecting the length of the scattering phase and the 

number of surviving lineages compared to constant Nm scenarios. This is why a 100-fold reduction 

in NDEME significantly reduces the number of lineages entering in the collecting phase, almost 

hiding the ancestral expansion in high long-term Nm scenarios (Figure 2.7, Supp. Figures 2.17, 

2.20 and 2.21), while a 100-fold reduction in m is barely detectable (Supp. Figures 2.15, 2.16, 2.18 

and 2.19). Similarly, the recent reduction in either NDEME or m cannot be detected for lower long-

term Nm scenarios, where the collecting phase is already missing. This explains why the general 

pattern is strikingly similar between SST-CH and SST simulations, which implies that the 

simulated change in connectivity is too recent to significantly alter the pattern of coalescence 

events and that a recent drop can be hardly detected on the basis of the SFS only. Our empirical 

data are consistent with these findings: when we compared SST vs. SST-CH models in the three 

shark species using the ABC framework, we failed to clearly distinguish the two models (Supp. 

Tables 2.11 and 2.12, Supp. Figure 2.14). This seems to be a paradox: we observed a recent 

bottleneck in species of conservation concern using unstructured model, but we cannot exclude 

that this is just the consequence of population structure.  

2.3.5.5. Practical recommendations and conservation concerns  

This study highlights once more the importance to explicitly test for meta-population structure 

before interpreting the demographic signals detected by unstructured models, similarly to what 

advocated previously by (Maisano Delser et al., 2019; Rodríguez et al., 2018). If the meta-

population structure hypothesis is rejected, the variation of Ne through time can be directly 

interpreted as the demographic history of the population under investigation, such as the case of 
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tiger shark. Otherwise, this variation is still related to demographic events, but it has to be 

explained in the light of population structure and its consequence on the rate of coalescence events. 

We showed by coalescent simulations how to interpret such variation: the recent bottleneck 

detected by the stairwayplot in demes belonging to a meta-population is a consequence of the 

coalescence process. In other words, any inferential method implementing an unstructured model 

will detect such decline (if enough data is available) since it is a property of the gene genealogy. 

Importantly, the gene genealogy is only slightly affected by recent changes in connectivity if the 

time of this change in generations is of the same order of the size of the deme.  

Our study underscores a key issue in conservation genetics as a recent decline inferred by an 

unstructured model can be mis-interpreted as a consequence of recent anthropic pressures 

(Ceballos et al., 2015) when it actually results from meta-population structure. This is all the more 

alarming since the majority of species is likely organised in meta-populations across their range 

rather than panmictic at a large scale. We therefore stress the necessity for an educated choice of 

tools to correctly uncover the recent trend of a species and design proper conservation programs. 

For instance, detecting a recent bottleneck in meta-populations will require summary statistics 

measuring the linkage disequilibrium (Boitard et al., 2016; Kerdoncuff et al., 2020) and/or the 

inferential framework based on the IICR (Chikhi et al., 2018; Rodríguez et al., 2018) coupled with 

whole genome data. On a positive note, we showed that the colonization time of the array of demes 

can be estimated to some extent (and under some combinations of parameters) by unstructured 

models. We believe that this is particularly important because it has been shown that the simple 

instantaneous colonization process we used here behaves similarly to a spatial explicit range 

expansion (Hamilton et al., 2005; Mona, 2017), which is certainly a more realistic model but more 

difficult to investigate. We are aware that the meta-population models here tested are simple and 

the parameters chosen are specific of the three shark species we focused on. Nevertheless, the 

time-scale separation of the coalescence process is general, and it allows explaining intuitively any 

structured models. The four shark species here used as an example has the merit to cover a large 

spectrum of LHT and consequently a large spectrum of demographic scenarios, going from a 

highly structured to a panmictic population: this has strong implications on the distribution of 

coalescence times and therefore on the interpretation of the observed data. 
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2.3.5.6. Conclusion 

In this study we found that population structure, independently from the degree of connectivity 

between demes and the migration matrix relating them, intrinsically determines a variation in the 

rate of coalescence events through time. We showed that the intensity and the direction(s) of such 

variation related to the demographic parameters of the meta-population in a predictable way. Our 

results highlight the importance of detecting population structure (which depends on LHT among 

other factors) before performing any demographic inferences but, at the same time, they reveal the 

utility of unstructured models to describe the shape of the gene genealogy, which is the final 

product of the evolutionary history of a species. A combination of structured and unstructured 

models (better if non-parametric) is therefore the key to best characterize the evolutionary history 

of a species. We call for a change in perspective when investigating the demographic history of a 

species: the focus should be put in the reconstruction of the variation of both N and m through 

time, which requires certainly new methodological development and probably more data.  
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2.3.6.4. Supplementary Methods 

Calibrating the molecular clock of an orthologous genomic region is traditionally troublesome, 

requiring either fossil data, serial sampling, or available pedigree genealogy. Even when massive 

data are available, which is the case for some model species like humans, a consensus rarely 

emerge either because of different statistical methods used to infer the rate of evolution or because 

of the inherent time-dependency of the molecular clock, whose estimate depends on the time 

window selected for the calibration process ((Ho et al., 2015) and references therein). Calibrating 

genome wide data on non-model species is therefore by no means a simple task and it necessarily 

comes with some approximations. We previously estimated the molecular clock of an exon-capture 

dataset in C. melanopterus using fossil time calibration (Maisano Delser et al., 2016). However, 

exon-capture data may be biased towards conserved regions while Rad-seq should target the 

genome more randomly. To obtain a more reliable genome wide estimate of the molecular clock 

for the three new species under investigation (G. cuvier, C. limbatus and C. amblyrhynchos), we 

selected 12 individuals of C. melanopterus from Moo’rea (French Polynesia) for which exon-

capture data were available (Maisano Delser et al., 2019) and sequenced them under the same 

ddRADseq protocol used in this study. We followed the same bioinformatics pipeline, combining 
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STACKS 2.5 then ANGSD, and the same filters used for the other three species to compute the 

SFS and the genetic diversity of the Moo’rea population. As expected, θπ-CAPTURE was lower than 

θπ-RAD, but reassuringly, the SFSs computed from exon capture and Rad-seq were highly similar 

(once standardized) and gave the same signature of recent bottleneck using the stairwayplot. We 

finally compared θπ-RAD and θπ-CAPTURE to derive the mutation rate for the ddRad data: we found a 

value of 1.93e-8 per site per generation (the exon capture having a rate of 8.4e-9 per site per 

generation (Maisano Delser et al., 2016)). which we used in the demographic analyses for the Rad 

data of all other species.  

 

2.3.6.5. Supplementary Tables 

Table 2.3. Life history traits and FST values in the Indo-Pacific of the four species studied. 

 Size (cm) Behavioural traits Movement 
range Habitat FST Comments 

C. melanopterus 131-134 Philopatry, reef 
fidelity 

Low daily 
activity 

(~10km). 
Max dispersal 

of 50km 

Lagoon 0.64 

FST computed between the East 
Indian Ocean (Western Australia) 
and the western Pacific Ocean 
(New-Caledonia) with genomic 
data (Exon Capture) 

C. amblyrhynchos ~190 Philopatry, 
residency 

Large scale (Up 
to 700km) 

Fringing 
and barrier 

reef 
~0.4 

FST computed between the central 
Indian Ocean (Chagos) and the 
western Pacific Ocean (Eastern 
Australia) with genomic data 
(RADseq).  

C. limbatus 226-255 

Philopatry, 
massive seasonal 
aggregations (in 

the Atlantic 
Ocean) 

Large scale, 
>190km in 

Caribe  

Fringing 
and barrier 

reef 
NA No data available in the Indo-

Pacific region for structure.  

G. cuvier 370-430 Opportunistic  Transoceanic 
(1,000 km) 

Ocean and 
coast ~0.001  

FST computed between the east 
Indian Ocean (Western Australia) 
and central Pacific Ocean (Hawaii) 
with microsatellite data.  

References:  (Almojil et al., 2018; Barnett et al., 2012; Boissin et al., 2019; Bonnin et al., 2019; 
Compagno, 2001; Espinoza et al., 2014; Field et al., 2011; Holmes et al., 2017; Kajiura & 
Tellman, 2016; Keeney et al., 2003, 2005; Lea et al., 2015; Maisano Delser et al., 2019; Meyer 
et al., 2018; Momigliano et al., 2015, 2017; Mourier et al., 2012, 2013; Swinsburg et al., 
2012; Vignaud et al., 2014; Werry et al., 2014) 
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Table 2.4. Coalescent simulations of 50,000 Rad-loci under FIM model, with mutation rate fixed to 
1.93*10-8 per site per generation and NANC fixed to 50,000. Mean pairwise difference (θπ), Watterson 
theta (θw), Tajima’s D (TD), and number of segregating sites (S) are averaged over 100 replicates. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

†Equilibrium model 
obtained by simulating TCOL=∞ 
‡Theta values are expressed per site per generation. 
 
  

Nm TCOL θπ ‡ θs ‡ TD S 

1 5000 0.0015 0.0013 0.4101 27109 
 15000 0.0017 0.0016 0.2367 31946 
 50000 0.0025 0.0024 0.0790 49142 
 ∞† 0.0182 0.0159 0.5887 325096 
5 5000 0.0019 0.0019 0.0572 38367 
 15000 0.0022 0.0024 -0.2953 48762 
 50000 0.0032 0.0039 -0.6713 78719 
 ∞ 0.0183 0.0166 0.4099 339181 

10 5000 0.0020 0.0021 -0.1345 41929 
 15000 0.0023 0.0027 -0.5653 54552 
 50000 0.0034 0.0044 -0.9542 89159 
 ∞ 0.0182 0.0171 0.2677 349655 

15 5000 0.0020 0.0021 -0.2405 43743 
 15000 0.0024 0.0028 -0.6828 57270 
 50000 0.0034 0.0046 -1.0720 94050 
 ∞ 0.0182 0.0174 0.2044 354988 
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Table 2.5. Coalescent simulations of 50,000 Rad-loci under SST-CH model with reduction in m at TCH, 
with mutation rate fixed to 1.93*10-8 per site per generation and NANC fixed to 50,000. Mean pairwise 
difference (θπ), Watterson theta (θw), Tajima’s D (TD), and number of segregating sites (S) are averaged 
over 100 replicates. 

Nm TCH§ m reduction TCOL§ θπ
‡ θs

‡ TD S 

1 10 10x 5000 0.00130 0.00115 0.53905 23507 
 10 10x 15000 0.00130 0.00118 0.41408 24139 
 10 10x 50000 0.00173 0.00157 0.42420 32028 
  10 10x ∞† 0.01606 0.01384 0.67526 282257 
5 10 10x 5000 0.00172 0.00159 0.36874 32346 
 10 10x 15000 0.00193 0.00184 0.20181 37597 
 10 10x 50000 0.00279 0.00276 0.04584 56260 
  10 10x ∞ 0.01767 0.01497 0.75639 305365 

10 10 10x 5000 0.00186 0.00178 0.18989 36356 
 10 10x 15000 0.00213 0.00217 -0.07747 44263 
 10 10x 50000 0.00310 0.00338 -0.35253 68998 
  10 10x ∞ 0.01797 0.01573 0.59693 320875 

15 10 10x 5000 0.00192 0.00189 0.05422 38640 
 10 10x 15000 0.00222 0.00237 -0.26258 48245 
 10 10x 50000 0.00324 0.00376 -0.58824 76783 
  10 10x ∞ 0.01803 0.01620 0.47420 330517 
1 10 100x 5000 0.00130 0.00115 0.53657 23536 
 10 100x 15000 0.00129 0.00117 0.42174 23916 
 10 100x 50000 0.00173 0.00157 0.42828 32102 
  10 100x ∞a 0.01608 0.01386 0.67397 282641 
5 10 100x 5000 0.00172 0.00158 0.37189 32277 
 10 100x 15000 0.00194 0.00184 0.20593 37635 
 10 100x 50000 0.00278 0.00275 0.04378 56196 
  10 100x ∞ 0.01769 0.01497 0.76118 305417 

10 10 100x 5000 0.00186 0.00178 0.19072 36225 
 10 100x 15000 0.00212 0.00216 -0.07871 44126 
 10 100x 50000 0.00310 0.00339 -0.35126 69067 
  10 100x ∞ 0.01797 0.01573 0.59577 320982 

15 10 100x 5000 0.00192 0.00189 0.06721 38606 
 10 100x 15000 0.00221 0.00235 -0.25984 48020 
 10 100x 50000 0.00323 0.00376 -0.59422 76691 
  10 100x ∞ 0.01805 0.01621 0.47736 330705 
1 50 10x 5000 0.00130 0.00115 0.55332 23450 
 50 10x 15000 0.00129 0.00118 0.42353 23984 
 50 10x 50000 0.00173 0.00157 0.42434 32120 
  50 10x ∞a 0.01607 0.01385 0.67164 282543 
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Nm TCH§ m reduction TCOL§ θπ
‡ θs

‡ TD S 

5 50 10x 5000 0.00172 0.00159 0.36487 32350 
 50 10x 15000 0.00193 0.00184 0.21241 37524 
 50 10x 50000 0.00278 0.00275 0.04190 56142 
  50 10x ∞ 0.01773 0.01501 0.76033 306174 

10 50 10x 5000 0.00186 0.00178 0.18804 36308 
 50 10x 15000 0.00213 0.00217 -0.07766 44288 
 50 10x 50000 0.00310 0.00338 -0.34965 68967 
  50 10x ∞ 0.01797 0.01574 0.59500 321111 

15 50 10x 5000 0.00192 0.00189 0.05718 38619 
 50 10x 15000 0.00221 0.00236 -0.26552 48214 
 50 10x 50000 0.00324 0.00377 -0.58699 76896 
  50 10x ∞ 0.01803 0.01619 0.47549 330357 
1 50 100x 5000 0.00130 0.00115 0.54173 23525 
 50 100x 15000 0.00130 0.00118 0.42190 24085 
 50 100x 50000 0.00173 0.00157 0.41987 32087 
  50 100x ∞a 0.01606 0.01386 0.66660 282769 
5 50 100x 5000 0.00173 0.00159 0.37725 32421 
 50 100x 15000 0.00194 0.00184 0.20788 37634 
 50 100x 50000 0.00278 0.00276 0.03982 56253 
  50 100x ∞ 0.01765 0.01496 0.75395 305150 

10 50 100x 5000 0.00186 0.00178 0.18310 36283 
 50 100x 15000 0.00212 0.00216 -0.07626 44098 
 50 100x 50000 0.00311 0.00339 -0.34704 69105 
  50 100x ∞ 0.01797 0.01575 0.59198 321266 

15 50 100x 5000 0.00192 0.00189 0.06383 38637 
 50 100x 15000 0.00221 0.00236 -0.26121 48105 
 50 100x 50000 0.00324 0.00376 -0.58707 76768 
  50 100x ∞ 0.01804 0.01622 0.47210 330871 

†Equilibrium model obtained by simulating TCOL=∞. 
‡Theta values are expressed per site per generation. 
§Time parameters are in generations. 
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Table 2.6. Coalescent simulations of 50,000 Rad-loci under SST-CH model with reduction in NDEME at 
TCH, with mutation rate fixed to 1.93*10-8 per site per generation and NANC fixed to 50,000. Mean 
pairwise difference (θπ), Watterson theta (θw), Tajima’s D (TD), and number of segregating sites (S) are 
averaged over 100 replicates. 

Nm TCH§ NDEME reduction TCOL§ θπ
‡ θs

‡ TD S 

1 10 10x 5000 0.00128 0.00111 0.61198 22721 
 10 10x 15000 0.00128 0.00114 0.50115 23258 
 10 10x 50000 0.00170 0.00152 0.49629 31045 
  10 10x ∞a 0.01582 0.01348 0.72556 275086 
5 10 10x 5000 0.00170 0.00153 0.44718 31276 
 10 10x 15000 0.00190 0.00178 0.29521 36260 
 10 10x 50000 0.00274 0.00265 0.15186 54018 
  10 10x ∞ 0.01743 0.01463 0.80213 298453 

10 10 10x 5000 0.00183 0.00172 0.28488 35053 
 10 10x 15000 0.00210 0.00208 0.03809 42418 
 10 10x 50000 0.00305 0.00323 -0.22768 65876 
  10 10x ∞ 0.01769 0.01531 0.65256 312263 

15 10 10x 5000 0.00189 0.00182 0.15950 37096 
 10 10x 15000 0.00218 0.00225 -0.14263 46000 
 10 10x 50000 0.00319 0.00358 -0.45708 72982 
  10 10x ∞ 0.01777 0.01573 0.54436 320951 
1 10 100x 5000 0.00108 0.00086 1.02670 17632 
 10 100x 15000 0.00107 0.00086 0.98420 17620 
 10 100x 50000 0.00143 0.00116 0.98726 23612 
  10 100x ∞a 0.01324 0.01056 1.06626 215457 
5 10 100x 5000 0.00142 0.00116 0.95740 23630 
 10 100x 15000 0.00159 0.00132 0.87800 26889 
 10 100x 50000 0.00230 0.00194 0.79873 39479 
  10 100x ∞ 0.01470 0.01166 1.09248 237887 

10 10 100x 5000 0.00153 0.00127 0.85589 25849 
 10 100x 15000 0.00176 0.00149 0.75054 30434 
 10 100x 50000 0.00257 0.00225 0.60559 45805 
  10 100x ∞ 0.01491 0.01199 1.02366 244582 

15 10 100x 5000 0.00159 0.00133 0.80794 27164 
 10 100x 15000 0.00183 0.00158 0.66845 32239 
 10 100x 50000 0.00268 0.00240 0.48462 49042 
  10 100x ∞ 0.01503 0.01221 0.97041 249060 
1 50 10x 5000 0.00119 0.00100 0.81029 20359 
 50 10x 15000 0.00118 0.00101 0.73048 20538 
 50 10x 50000 0.00159 0.00135 0.73448 27585 
  50 10x ∞a 0.01479 0.01220 0.89094 248820 
5 50 10x 5000 0.00159 0.00137 0.68787 27936 
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Nm TCH§ NDEME reduction TCOL§ θπ
‡ θs

‡ TD S 
 50 10x 15000 0.00178 0.00156 0.57630 31893 
 50 10x 50000 0.00256 0.00232 0.44223 47240 
  50 10x ∞ 0.01631 0.01334 0.93703 272031 

10 50 10x 5000 0.00172 0.00152 0.55186 30996 
 50 10x 15000 0.00196 0.00181 0.36396 36842 
 50 10x 50000 0.00287 0.00278 0.13690 56656 
  50 10x ∞ 0.01661 0.01392 0.81114 283886 

15 50 10x 5000 0.00178 0.00161 0.44742 32826 
 50 10x 15000 0.00205 0.00195 0.21416 39816 
 50 10x 50000 0.00300 0.00304 -0.05967 62031 
  50 10x ∞ 0.01673 0.01427 0.72334 291199 
1 50 100x 5000 0.00049 0.00038 1.21625 7783 
 50 100x 15000 0.00049 0.00038 1.20808 7819 
 50 100x 50000 0.00066 0.00051 1.22692 10383 
  50 100x ∞a 0.00613 0.00475 1.21477 96923 
5 50 100x 5000 0.00068 0.00054 1.11300 10924 
 50 100x 15000 0.00077 0.00061 1.12791 12383 
 50 100x 50000 0.00110 0.00087 1.11920 17706 
  50 100x ∞ 0.00711 0.00559 1.14274 113933 

10 50 100x 5000 0.00076 0.00061 1.04387 12465 
 50 100x 15000 0.00088 0.00070 1.05086 14317 
 50 100x 50000 0.00128 0.00103 1.02564 20994 
  50 100x ∞ 0.00749 0.00599 1.05312 122161 

15 50 100x 5000 0.00082 0.00067 0.97960 13622 
 50 100x 15000 0.00095 0.00078 0.96079 15818 
 50 100x 50000 0.00140 0.00114 0.95698 23217 
  50 100x ∞ 0.00786 0.00636 0.98999 129717 

†Equilibrium model obtained by simulating TCOL=∞. 
‡Theta values are expressed per site per generation. 
§Time parameters are in generations. 
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Table 2.7. Coalescent simulations of 50,000 Rad-loci under FIM-CH model with reduction in m at TCH, 
with mutation rate fixed to 1.93*10-8 per site per generation and NANC fixed to 50,000. Mean pairwise 
difference (θπ), Watterson theta (θw), Tajima’s D (TD), and number of segregating sites (S) are averaged 
over 100 replicates. 

Nm TCH§ m reduction TCOL§ θπ
‡ θs

‡ TD S 

1 10 10x 5000 0.00145 0.00132 0.41122 26929 
 10 10x 15000 0.00166 0.00156 0.25078 31871 
 10 10x 50000 0.00244 0.00239 0.08899 48841 
  10 10x ∞a 0.01817 0.01591 0.59801 324456 
5 10 10x 5000 0.00190 0.00187 0.06930 38087 
 10 10x 15000 0.00221 0.00238 -0.28671 48452 
 10 10x 50000 0.00324 0.00384 -0.65235 78360 
  10 10x ∞ 0.01823 0.01658 0.41710 338240 

10 10 10x 5000 0.00198 0.00205 -0.12507 41736 
 10 10x 15000 0.00231 0.00265 -0.54503 54149 
 10 10x 50000 0.00338 0.00434 -0.92946 88555 
  10 10x ∞ 0.01823 0.01707 0.28361 348274 

15 10 10x 5000 0.00202 0.00213 -0.22220 43454 
 10 10x 15000 0.00235 0.00278 -0.65669 56766 
 10 10x 50000 0.00342 0.00457 -1.05578 93317 
  10 10x ∞ 0.01822 0.01732 0.21787 353346 
1 10 100x 5000 0.00145 0.00132 0.41503 26965 
 10 100x 15000 0.00165 0.00156 0.24537 31812 
 10 100x 50000 0.00244 0.00239 0.08486 48785 
  10 100x ∞a 0.01816 0.01591 0.59565 324464 
5 10 100x 5000 0.00190 0.00187 0.06944 38068 
 10 100x 15000 0.00221 0.00237 -0.28743 48317 
 10 100x 50000 0.00325 0.00383 -0.64425 78220 
  10 100x ∞ 0.01822 0.01657 0.41858 337978 

10 10 100x 5000 0.00198 0.00204 -0.12793 41694 
 10 100x 15000 0.00231 0.00265 -0.54354 54150 
 10 100x 50000 0.00338 0.00434 -0.92977 88534 
  10 100x ∞ 0.01820 0.01706 0.27953 348109 

15 10 100x 5000 0.00201 0.00213 -0.21978 43368 
 10 100x 15000 0.00235 0.00279 -0.65661 56833 
 10 100x 50000 0.00342 0.00457 -1.05168 93215 
  10 100x ∞ 0.01820 0.01732 0.21491 353254 
1 50 10x 5000 0.00145 0.00131 0.44880 26633 
 50 10x 15000 0.00164 0.00154 0.28906 31341 
 50 10x 50000 0.00243 0.00236 0.13199 48136 
  50 10x ∞a 0.01805 0.01570 0.62619 320363 
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Nm TCH§ m reduction TCOL§ θπ
‡ θs

‡ TD S 

5 50 10x 5000 0.00189 0.00184 0.11281 37513 
 50 10x 15000 0.00220 0.00233 -0.22866 47452 
 50 10x 50000 0.00323 0.00375 -0.58620 76506 
  50 10x ∞ 0.01811 0.01635 0.45215 333456 

10 50 10x 5000 0.00198 0.00201 -0.07296 41023 
 50 10x 15000 0.00230 0.00259 -0.47505 52808 
 50 10x 50000 0.00335 0.00422 -0.86461 86112 
  50 10x ∞ 0.01813 0.01684 0.32349 343461 

15 50 10x 5000 0.00201 0.00209 -0.15797 42666 
 50 10x 15000 0.00233 0.00271 -0.59177 55361 
 50 10x 50000 0.00341 0.00445 -0.98262 90704 
  50 10x ∞ 0.01811 0.01705 0.26006 347796 
1 50 100x 5000 0.00144 0.00130 0.43650 26592 
 50 100x 15000 0.00164 0.00154 0.29003 31319 
 50 100x 50000 0.00243 0.00235 0.13260 48020 
  50 100x ∞a 0.01802 0.01567 0.62890 319726 
5 50 100x 5000 0.00190 0.00184 0.12343 37581 
 50 100x 15000 0.00219 0.00232 -0.22107 47233 
 50 100x 50000 0.00322 0.00373 -0.57931 76116 
  50 100x ∞ 0.01811 0.01633 0.45961 333022 

10 50 100x 5000 0.00197 0.00200 -0.06106 40854 
 50 100x 15000 0.00229 0.00258 -0.47116 52651 
 50 100x 50000 0.00336 0.00421 -0.85074 85880 
  50 100x ∞ 0.01808 0.01677 0.32752 342129 

15 50 100x 5000 0.00200 0.00208 -0.15069 42413 
 50 100x 15000 0.00233 0.00270 -0.57952 55113 
 50 100x 50000 0.00340 0.00442 -0.96552 90154 
  50 100x ∞ 0.01809 0.01703 0.26117 347426 

†Equilibrium model obtained by simulating TCOL=∞. 
‡Theta values are expressed per site per generation. 
§Time parameters are in generations. 
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Table 2.8. Coalescent simulations of 50,000 Rad-loci under FIM-CH model with reduction in NDEME at 
TCH, with mutation rate fixed to 1.93*10-8 per site per generation and NANC fixed to 50,000. Mean 
pairwise difference (θπ), Watterson theta (θw), Tajima’s D (TD), and number of segregating sites (S) are 
averaged over 100 replicates. 
 

Nm TCH§ NDEME reduction TCOL§ θπ
‡ θs

‡ TD S 

1 10 10x 5000 0.00143 0.00128 0.48788 26140 
 10 10x 15000 0.00163 0.00151 0.34517 30744 
 10 10x 50000 0.00241 0.00230 0.19613 46957 
  10 10x ∞a 0.01787 0.01544 0.65988 315055 
5 10 10x 5000 0.00187 0.00179 0.18543 36583 
 10 10x 15000 0.00217 0.00225 -0.16018 45973 
 10 10x 50000 0.00319 0.00363 -0.50787 74054 
  10 10x ∞ 0.01796 0.01607 0.49162 327893 

10 10 10x 5000 0.00195 0.00195 -0.00206 39880 
 10 10x 15000 0.00228 0.00252 -0.39809 51348 
 10 10x 50000 0.00333 0.00408 -0.77863 83301 
  10 10x ∞ 0.01796 0.01651 0.36849 336717 

15 10 10x 5000 0.00199 0.00204 -0.09059 41541 
 10 10x 15000 0.00231 0.00262 -0.50877 53521 
 10 10x 50000 0.00338 0.00429 -0.89274 87572 
  10 10x ∞ 0.01797 0.01675 0.30452 341733 
1 10 100x 5000 0.00119 0.00096 0.97814 19671 
 10 100x 15000 0.00136 0.00112 0.91054 22777 
 10 100x 50000 0.00202 0.00168 0.84075 34271 
  10 100x ∞a 0.01505 0.01206 1.04118 245965 
5 10 100x 5000 0.00157 0.00131 0.82823 26722 
 10 100x 15000 0.00183 0.00158 0.67710 32148 
 10 100x 50000 0.00268 0.00240 0.49106 49021 
  10 100x ∞ 0.01518 0.01234 0.96438 251826 

10 10 100x 5000 0.00164 0.00139 0.74837 28333 
 10 100x 15000 0.00191 0.00169 0.55675 34402 
 10 100x 50000 0.00280 0.00260 0.33385 52989 
  10 100x ∞ 0.01520 0.01252 0.90118 255333 

15 10 100x 5000 0.00168 0.00144 0.69787 29377 
 10 100x 15000 0.00194 0.00173 0.50432 35362 
 10 100x 50000 0.00285 0.00268 0.25734 54720 
  10 100x ∞ 0.01524 0.01265 0.86148 257979 
1 50 10x 5000 0.00132 0.00113 0.72479 23022 
 50 10x 15000 0.00152 0.00132 0.62679 26915 
 50 10x 50000 0.00225 0.00200 0.51158 40859 
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Nm TCH§ NDEME reduction TCOL§ θπ
‡ θs

‡ TD S 

  50 10x ∞a 0.01672 0.01392 0.84635 283891 
5 50 10x 5000 0.00175 0.00157 0.48096 32080 
 50 10x 15000 0.00203 0.00193 0.23401 39292 
 50 10x 50000 0.00299 0.00303 -0.06211 61867 
  50 10x ∞ 0.01683 0.01441 0.70484 293983 

10 50 10x 5000 0.00184 0.00171 0.33290 34848 
 50 10x 15000 0.00214 0.00212 0.02648 43298 
 50 10x 50000 0.00313 0.00338 -0.30279 68856 
  50 10x ∞ 0.01694 0.01482 0.60062 302349 

15 50 10x 5000 0.00187 0.00177 0.24425 36122 
 50 10x 15000 0.00217 0.00221 -0.08514 45184 
 50 10x 50000 0.00319 0.00355 -0.42044 72349 
  50 10x ∞ 0.01699 0.01506 0.53810 307130 
1 50 100x 5000 0.00055 0.00043 1.20585 8754 
 50 100x 15000 0.00063 0.00049 1.20710 10022 
 50 100x 50000 0.00093 0.00072 1.20537 14714 
  50 100x ∞a 0.00698 0.00543 1.20041 110718 
5 50 100x 5000 0.00076 0.00060 1.09153 12331 
 50 100x 15000 0.00089 0.00071 1.07177 14400 
 50 100x 50000 0.00130 0.00104 1.06655 21220 
  50 100x ∞ 0.00748 0.00593 1.09777 120969 

10 50 100x 5000 0.00084 0.00068 0.97258 13964 
 50 100x 15000 0.00099 0.00080 0.96360 16352 
 50 100x 50000 0.00144 0.00118 0.93072 24078 
  50 100x ∞ 0.00789 0.00640 0.98087 130542 

15 50 100x 5000 0.00090 0.00074 0.88569 15159 
 50 100x 15000 0.00105 0.00087 0.86287 17746 
 50 100x 50000 0.00154 0.00128 0.83388 26196 
  50 100x ∞ 0.00832 0.00684 0.90923 139481 

†Equilibrium model obtained by simulating TCOL=∞. 
‡Theta values are expressed per site per generation. 
§Time parameters are in generations. 
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Table 2.9. Confusion matrix of the model selection procedure: rows indicate the simulated models and 
columns the votes (in %) attributed by the ABC-RF algorithm to each of them. Classification error and 
prior error rate are based on the first of the two runs. 

 
 
Table 2.10. Cross Validation of parameter estimation based on the first run of random forests. Mean 
Squared Error (SME), Mean Root Squared Error (SRMSE) and 95% coverage of the median value of 
each parameter computed on 999 pseudo-observed datasets (pods) simulated under the SST model. 

    Nm TCOL NANC 

C. amblyrhynchos (N=12) 

SME 0.0042 0.0206 0.0698 
SRMSE 0.0445 0.2362 0.8394 

Coverage 0.994 0.993 0.994 

C. limbatus (N=13) 
SME 0.0014 0.0442 0.1042 

SRMSE 0.0235 0.7498 0.7655 
Coverage 0.996 0.994 0.993 

C. melanopterus (N=8) 

SME 0.0102 0.0713 0.0676 

SRMSE 0.0759 1.2819 0.4855 

Coverage 0.998 0.996 0.997 
 
 
 
 
 
 
 

 Attributed votes (%) 
Class. error Prior error 

rate Run N°1 Run N°2 
    FIM NS SST 

G. cuvier 
FIM 85.6 3.2 11.2 0.14 

0.1 
    

NS 1.1 97.8 1.1 0.02 NS : 0.84 NS : 0.85 
SST 12.5 2.3 85.2 0.15     

C. amblyrhynchos 
FIM 88.6 2.8 8.6 0.11 

0.08 
    

NS 1.1 98.0 0.9 0.02 SST : 0.85 SST : 0.85 
SST 10.2 1.7 88.1 0.12     

C. limbatus 
FIM 88.6 3.0 8.4 0.11 

0.08 
    

NS 1.0 97.9 1.0 0.02 SST : 0.55 SST : 0.59 
SST 9.8 1.7 88.5 0.12     

C. melanopterus 
FIM 68.6 6.3 25.0 0.31 

0.23 
    

NS 2.0 96.2 1.8 0.04 SST : 0.89 SST : 0.89 
SST 27.1 6.1 66.8 0.33     
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Table 2.11. Confusion matrix of the model selection procedure: rows indicate the simulated models and 
columns the votes (in %) attributed by the ABC-RF algorithm to each of them. Classification error and 
prior error rate are based on the first of the two runs. 

 

Attributed votes (%) 
Class Error Prior error 

rate Run N°1 Run N°2 
SST SST-CH 

C. amblyrhynchos 
SST 59.3 40.7 0.41 

0.40 SST: 0.60 SST: 0.57 
SST-CHGT 39.4 60.6 0.39 

C. limbatus 
SST 58.8 41.2 0.41 

0.40 SST: 0.52 SST: 0.52 
SST-CHGT 39.1 60.9 0.39 

C. melanopterus 
SST 55.0 45.0 0.45 

0.42 SST: 0.54 SST: 0.62 
SST-CHGT 38.8 61.2 0.39 

 
 
 
 
 
Table 2.12. Parameters estimation and cross validation under model SST-CH for C. amblyrhynchos, C. 
limbatus and C. melanopterus. Mean Squared Error (SME), Mean Root Squared Error (SRMSE) and 95% 
coverage of the median value of each parameter computed on 999 pseudo-observed datasets (pods) 
simulated under the SST model. 
    NmMOD NmANC TCH TCOL NANC 

C. amblyrhynchos 

Median 
(95% CI) 

10.9  
(3.1 - 28.2) 

12.9  
(0.3 - 70.7) 

11187  
(838 - 61407) 

40330  
(12300 - 172305) 

33454  
(2546 - 84491)  

SME 0.002 0.223 0.122 0.01 0.229 
SRMSE 0.032 1.754 1.501 0.196 3.874 

Coverage 0.999 0.992 0.995 0.99 0.989 

C. limbatus  

Median 
(95% CI) 

5.9  
(1.7 - 11.4) 

26.8  
(0.3- 87.3) 

31544  
(2890 - 136017) 

66639  
(10993 - 201122) 

19682  
(746 - 83032) 

SME 0.002 0.308 0.689 0.003 0.067 
SRMSE 0.029 3.749 14.477 0.096 0.471 

Coverage 0.999 0.993 0.99 0.981 0.993 

C. melanopterus  

Median 
(95% CI) 

1.8  
(0.5-2.4) 

15.8  
(0.6-59.2) 

105144  
(27412-148715) 

186658  
(57259-264140) 

52870  
(1612-96759) 

SME 0.007 0.406 0.651 0.013 0.139 
SRMSE 0.067 4.403 11.45 0.301 1.494 

Coverage 0.987 0.984 0.99 0.989 0.987 
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2.3.6.6. Supplementary Figures 

 
Figure 2.9. stairwayplot (maximum likelihood Ne and 75% confidence interval) (panel A) and 
normalized SFS (panel B) computed in simulated non-equilibrium SST scenarios with Nm=5, averaged 
over 100 replicates. Colonisation time of the array of deme TCOL occurred 5,000 (red), 15,000 (blue), and 
50,000 (green) generations B.P., visually represented by the vertical dashed lines in panel A.  The 
normalized SFS expected under a constant size non-structured model (NS constant size) is also shown 
(grey dashed line in panel B).  

 
Figure 2.10. stairwayplot (maximum likelihood Ne and 75% confidence interval) (panel A) and 
normalized SFS (panel B) computed in simulated non-equilibrium SST scenarios with Nm=15, averaged 
over 100 replicates. Colonisation time of the array of deme TCOL occurred 5,000 (red), 15,000 (blue), and 
50,000 (green) generations B.P., visually represented by the vertical dashed lines in panel A.  The 
normalized SFS expected under a constant size non-structured model (NS constant size) is also shown 
(grey dashed line in panel B). 
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Figure 2.11. stairwayplot (maximum likelihood Ne and 75% confidence interval) (panel A) and 
normalized SFS (panel B) computed in equilibrium SST scenarios, averaged over 100 replicates. Colours 
represent the long-term connectivity values: Nm=1 (blue), Nm=5 (green), Nm=10 (red), Nm=15 (black). 
The normalized SFS expected under a constant size non-structured model (NS constant size) is also 
shown (grey dashed line in panel B). 
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Figure 2.12. stairwayplot (maximum likelihood Ne and 75% confidence interval) (panel A) and 
normalized SFS (panel B) computed in simulated non-equilibrium FIM scenarios. Each row represents a 
different long-term connectivity: Nm=1 (1), Nm=5 (2), Nm=10 (3), Nm=15 (4). Colours represent the 
colonisation time of the array of deme TCOL 5,000 (red), 15,000 ky (blue), and 50,000 (green) generations 
B.P.. The dashed lines in panels A indicate the colonisation time Tcol and the grey dashed line in panels 
B represent the expected normalized SFS under a constant size non-structured model (NS constant size). 
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Figure 2.13. stairwayplot (maximum likelihood Ne and 75% confidence interval) (panel A) and 
normalized SFS (panel B) computed in equilibrium FIM scenarios, averaged over 100 replicates. Colours 
represent the long-term connectivity values: Nm=1 (blue), Nm=5 (green), Nm=10 (red), Nm=15 (black). 
The normalized SFS expected under a constant size non-structured model (NS constant size) is also 
shown (grey dashed line in panel B). 
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Figure 2.14. Distribution of the 1000 closest normalized SFS retained by the ABC random forest 
algorithm for models SST (red) and SST-CH (blue) in C. amblyrhynchos (panel A), C. limbatus (panel B) 
and C. melanopterus (panel C). The black line represents the observed normalized SFS for each species. 
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Figure 2.15. stairwayplot (maximum likelihood Ne) (panel A) and normalized SFS (panel B) computed 
in simulated non-equilibrium SST scenarios with TCOL =15,000 generations B.P. and an instantaneous 
decrease of the migration rate (m) forward in time at TCH =10 generations B.P.. Colours represent the 
long-term connectivity values: Nm=1 (blue), Nm=5 (green), Nm=10 (red), Nm=15 (black). Line style 
represents the 10-fold (small dashes) or 100-fold (dots) reduction of m, or constant Nm (continuous line). 
The vertical grey dashed line in panel A represents the simulated colonisation time TCOL. 

 
Figure 2.16. stairwayplot (maximum likelihood Ne) (panel A) and normalized SFS (panel B) computed 
in simulated non-equilibrium SST scenarios with TCOL=15,000 generations B.P. and an instantaneous 
decrease of the migration rate (m) forward in time at TCH=50 generations B.P.. Colours represent the 
long-term connectivity values: Nm=1 (blue), Nm=5 (green), Nm=10 (red), Nm=15 (black). Line style 
represents the 10-fold (small dashes) or 100-fold (dots) reduction of m, or constant Nm (continuous line). 
The vertical grey dashed line in panel A represents the simulated colonisation time TCOL. 
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Figure 2.17. stairwayplot (maximum likelihood Ne) (panel A) and normalized SFS (panel B) computed 
in simulated non-equilibrium SST scenarios with TCOL =15,000 generations B.P. and an instantaneous 
decrease of the deme size (NDEME) forward in time at TCH =50 generations B.P.. Colours represent the 
long-term connectivity values: Nm=1 (blue), Nm=5 (green), Nm=10 (red), Nm=15 (black). Line style 
represents the 10-fold (small dashes) or 100-fold (dots) reduction of NDEME, or constant Nm (continuous 
line). The vertical grey dashed line in panel A represents the simulated colonisation time TCOL. 

 
Figure 2.18. stairwayplot (maximum likelihood Ne) (panel A) and normalized SFS (panel B) computed 
in simulated non-equilibrium FIM scenarios with TCOL =15,000 generations B.P. and an instantaneous 
decrease of the migration rate (m) forward in time at TCH =10 generations B.P. Colours represent the long-
term connectivity values: Nm=1 (blue), Nm=5 (green), Nm=10 (red), Nm=15 (black). Line style represents 
the 10-fold (small dashes) or 100-fold (dots) reduction of m, or constant Nm (continuous line). The 
vertical grey dashed line in panel A represents the simulated colonisation time TCOL.  
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Figure 2.19. stairwayplot (maximum likelihood Ne) (panel A) and normalized SFS (panel B) computed 
in simulated non-equilibrium FIM scenarios with TCOL =15,000 generations B.P. and an instantaneous 
decrease of the migration rate (m) forward in time at TCH =50 generations B.P.. Colours represent the 
long-term connectivity values: Nm=1 (blue), Nm=5 (green), Nm=10 (red), Nm=15 (black). Line style 
represents the 10-fold (small dashes) or 100-fold (dots) reduction of m, or constant Nm (continuous line). 
The vertical grey dashed line in panel A represents the simulated colonisation time TCOL.  

 
Figure 2.20. stairwayplot (maximum likelihood Ne) (panel A) and normalized SFS (panel B) computed 
in simulated non-equilibrium FIM scenarios with TCOL =15,000 generations B.P. and an instantaneous 
decrease of the deme size (NDEME) forward in time at TCH =10 generations B.P.. Colours represent the 
long-term connectivity values: Nm=1 (blue), Nm=5 (green), Nm=10 (red), Nm=15 (black). Line style 
represents the 10-fold (small dashes) or 100-fold (dots) reduction of NDEME, or constant Nm (continuous 
line). The vertical grey dashed line in panel A represents the simulated colonisation time TCOL. 
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Figure 2.21. stairwayplot (maximum likelihood Ne) (panel A) and normalized SFS (panel B) computed 
in simulated non-equilibrium FIM scenarios with TCOL =15,000 generations B.P. and an instantaneous 
decrease of the deme size (NDEME) forward in time at TCH =50 generations B.P.. Colours represent the 
long-term connectivity values: Nm=1 (blue), Nm=5 (green), Nm=10 (red), Nm=15 (black). Line style 
represents the 10-fold (small dashes) or 100-fold (dots) reduction of NDEME, or constant Nm (continuous 
line). The vertical grey dashed line in panel A represents the simulated colonisation time TCOL. 
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2.4. Ecological and biogeographic features shaped the complex 

evolutionary history of an iconic apex predator (Galeocerdo 

cuvier)  
 

This article has been published in BMC Ecology and Evolution.  

 

Authors:  

Pierre Lesturgie, Hugo Lainé, Arnaud Suwalski, Pascaline Chifflet‐Belle, Pierpaolo Maisano 

Delser, Eric Clua, Sébastien Jaquemet, Hélène Magalon and Stefano Mona 
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2.4.1. Abstract  
Background: The tiger shark (Galeocerdo cuvier) is a large iconic marine predator inhabiting 

worldwide tropical and subtropical waters. So far, only mitochondrial markers and microsatellites 

studies have investigated its worldwide his‐ torical demography with inconclusive outcomes. Here, 

we assessed for the first time the genomic variability of tiger shark based on RAD‐seq data for 50 

individuals from five sampling sites in the Indo‐Pacific (IP) and one in the Atlantic Ocean (AO) 

to decipher the extent of the species’ global connectivity and its demographic history.  

Results: Clustering algorithms (PCA and NMF), FST and an approximate Bayesian computation 

framework revealed the presence of two clusters corresponding to the two oceanic basins. By 

modelling the two‐dimensional site frequency spectrum, we tested alternative isolation/migration 

scenarios between these two identified populations. We found the highest support for a divergence 

time between the two ocean basins of ~ 193,000 years before present (B.P) and an ongoing but 

limited asymmetric migration ~ 176 times larger from the IP to the AO (Nm ~ 3.9) than vice versa 

(Nm ~ 0.02).  

Conclusions: The two oceanic regions are isolated by a strong barrier to dispersal more permeable 

from the IP to the AO through the Agulhas leakage. We finally emphasized contrasting recent 

demographic histories for the two regions, with the IP characterized by a recent bottleneck around 

2000 years B.P. and the AO by an expansion starting 6000 years B.P. The large differentiation 

between the two oceanic regions and the absence of population structure within each ocean basin 

highlight the need for two large management units and call for future conservation pro‐ grams at 

the oceanic rather than local scale, particularly in the Indo‐Pacific where the population is 

declining.  

Keywords: Agulhas leakage, Coalescent modelling, Demographic history, Population genomics, 

RAD‐seq, Tiger shark  
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2.4.2. Background 
Predation plays a fundamental role in the top-down regulation of ecosystem dynamics, with apex 

predators being key actors in promoting species diversity (Terborgh, 2015). However, in marine 

ecosystems, many predatory species have declined across their ranges (Myers & Worm, 2003). 

Efforts to develop conservation programs need be tailored to the appropriately scaled units of 

managements for the species under investigation (Palsbøll et al., 2007). Recent advances in DNA 

sequencing technologies allow the characterization of thousands of independent loci giving the 

power to assess the genetic diversity of any target model or non-model species, which can inform 

management policies. However, genetic diversity assessment should be complemented by the 

reconstruction of species connectivity and historical demography to better establish conservation 

priorities. For instance, understanding how populations are spatially connected as well as the 

divergence time between lineages is essential to decipher at which geographic scale a species 

should be managed. Reconstructing the evolutionary history of a species is often a complex task 

that requires an educated choice of the most likely model of evolution, often selected among a 

reduced selection of biologically meaningful models. Unfortunately, selection of an inappropriate 

model can yield misleading estimates of critically important parameters as more data are collected. 

This has important implications for conservation genetic applications that rely on accurate 

estimates of genetic diversity and changes in effective population size through time (Chikhi et al., 

2010; Lesturgie, Planes, et al., 2022; Mazet et al., 2015; Mona et al., 2014).  

The tiger shark (Galeocerdo cuvier, Péron & Lesueur, 1822) is a large and iconic apex marine 

predator, that is considered “Near Threatened” by the International Union for Conservation of 

Nature (IUCN). Though the tiger shark is a predominantly coastal species, its distribution includes 

tropical and subtropical waters worldwide (Compagno, 1984). The species is heavily impacted by 

fisheries (Temple et al., 2018) and shark control programs in the Indo-Pacific (Sumpton et al., 

2011). Indirect estimates have suggested an annual number of tiger shark catches between 50,000 

and 300,000 individuals (S. C. Clarke et al., 2006), raising conservation concerns. Though not 

directly endangered by global climate change, the species is likely to extend its habitat range 

poleward as a consequence of the rising in annual sea surface temperatures (Payne et al., 2018), 

which may increase the potential for greater trans-oceanic movements (Holland et al., 2019). 

Despite being found predominantly along the coast, tiger sharks spend considerable time in pelagic 

waters and telemetry studies have shown that they can cross oceanic expanses (Lea et al., 2015; 
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Meyer et al., 2018; Werry et al., 2014), but no evidence of contemporary migration between the 

Indo-Pacific and the Atlantic Ocean has yet been found.  

Knowledge of these ecological traits is important to devise meaningful evolutionary models, but 

it is not sufficient. Large marine predators with continuous distributions can be intuitively 

considered as capable of high dispersal due to the absence of clear physical barriers (Palumbi, 

1994). Nevertheless, there are both examples of panmictic species, such as the blue shark Prionace 

glauca (18) or the mako shark Isurus oxyrinchus (Corrigan et al., 2018), and examples of species 

structured according to ocean basins such as the Galapagos shark Carcharhinus galapagensis and 

the dusky shark Carcharhinus obscurus (Corrigan et al., 2017). In the tiger shark, there has been 

contrasting evidences about the degree of population structure, the extent of genetic diversity and 

particularly about the historical demography (Andrade et al., 2021; Bernard et al., 2016, 2021; 

Carmo et al., 2019; Holmes et al., 2017; Naylor et al., 2012; Pirog et al., 2019). All studies 

recognize the existence of a clear separation between the Indo-Pacific (IP) and the Atlantic Ocean 

(AO), with genome-wide data supporting low to now population structure within each basin 

(Bernard et al., 2021). However, it remains unclear whether the two basins hold two allopatric 

species as originally proposed by Naylor et. al (2012) or two divergent lineages as proposed by 

Bernard et. al (2016). An accurate characterization of divergence and migration is additionally still 

lacking: Bernard et. al (2016) provided a divergence time computed on mtDNA using a non-

equilibrium model implemented in MDIV (Nielsen & Wakeley, 2001) but no confidence interval 

could be determined. At the same time, migration rates were estimated using the equilibrium model 

implemented in MIGRATE (Beerli & Felsenstein, 2001). Yet a global analysis estimating 

simultaneously all parameters is warranted. Furthermore, an in-depth analysis of the historical 

demography in both regions is still lacking, with only (Pirog et al., 2019) supporting a recent 

decrease in effective population size in two sampling sites from the IP. Using the wealth of data 

provided by RAD-seq, we sequenced a total of 50 sharks from six sites in the IP and one in the 

AO (Figure 2.22) in order to shed light on the complex evolutionary history of the tiger shark. We 

first investigate the extent of genetic diversity, the level of population structure and historical 

demography in all sampling sites, and finally tested alternative evolutionary scenarios to model 

the divergence and migration between IP and AO by fitting the observed two-dimensional site 

frequency spectrum (2D-SFS) with coalescent simulations. These analyses are necessary not only 
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to reconstruct the evolutionary history of the tiger shark but also to better inform conservation 

strategies. 

 
Figure 2.22. Map of the sampling sites. From west to east: Brazil (BRA:  n = 7), Reunion Island (RUN; n 
= 15), North Coast of Australia (AUSN; n = 8), Coral Sea (COR; n = 5), East Coast of Australia (AUSE; n 
= 7) and New Caledonia (NCA; n = 8). 

Table 2.13. Sample size (n), mean pairwise difference (θπ), Watterson theta (θw), Tajima’s D (TD), and 
total number of loci (monomorphic included) (nloci) and SNPs (nSNP) without missing data for all 
sampling sites (ranged from west to east). AUSE: East Coast of Australia; AUSN: North Coast of 
Australia; BRA: Brazil; COR: Coral Sea; NCA: New Caledonia; RUN: Reunion Island. 
 
  n θπ (10-3) θw (10-3) TDa nloci nSNP 

BRA 7 0.97 1.16 0.14 16,953 5,868 

RUN 15 0.59 0.73 -0.19 71,214 19,971 

AUSN  8 0.76 0.97 -0.19 38,420 11,627 

COR 5 0.58 0.72 0.04 97,736 18,407 

AUSE 7 0.63 0.77 0.02 49,380 11,385 

NCA 8 0.57 0.7 -0.03 118,591 26,075 
a Tajima’s D values in bold are significantly different from 0 (P < 0.001). 
 

2.4.3. Results 

2.4.3.1. RAD-seq sequencing  

The average number of reads retained per individual after the quality filtering and demultiplexing 

step was 4,011,430 (± 1,314,894 s.d.). After a first round of de novo assembly and filtering using 

STACKS v.2.5, the depth of coverage was low with a mean of 12.65 (± 6.36 s.d.), which motivated 
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the use of the genotype-free allele frequency estimation pipeline implemented in ANGSD (30) rather 

than the direct call. The final number of loci (variable and fixed) was highly variable between 

sampling locations (Table 2.13) ranging from 16,953 to 118,591 in Brazil (BRA) and New 

Caledonia (NCA) sampling sites respectively, with a number of SNPs with no missing data 

following a similar trend (from 5,868 to 26,075 for BRA and NCA, respectively).  

 
Figure 2.23. Heat map representing the pairwise Reynold’s FST values between sampling sites (A) and 
ancestry proportions retrieved using the nmf algorithm with K=2 ancestral populations (B). Both analyses 
were performed with PCANGSD. Values in the upper triangle of the heat map are the pairwise FST values 
and significance is displayed on the lower triangle: non-significant (NS) or p<0.001 (*). 

 
Figure 2.24. Principal Component Analysis (PCA) computed with: (A) all individuals (n = 50) and (B) 
Indo-Pacific individuals only (n = 43). 
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2.4.3.2. Population structure 

Population structure was investigated using datasets allowing up to 20% of missing data per SNP. 

Thus, after filtering, the remaining number of SNP was 24,454 for the Principal Component 

Analysis (PCA) and the non-negative matrix factorization (nmf) inference, and ranged from 8,785 

to 15,977 per population pair for the FST computation. Pairwise FST highlighted a moderate 

differentiation between Indo-Pacific (IP) and Atlantic Ocean (AO) sampling sites, with values 

ranging from 0.117 to 0.129 and systematically significant (P ≤ 0.001, Figure 2.23-A and Supp. 

Table 2.15). Conversely, the average FST between IP sites was 0.023 (ranging from 0.018 to 0.029) 

and not statistically significant for the majority of pairwise comparisons (Supp. Table 2.15). The 

Mantel test, computed between IP sampling sites only (given the evidence of a clear genetic 

discontinuity between AO and IP), showed no correlation between genetic and geographic 

distances (r = 0.005, P = 0.62, Supp. Figure 2.27). Clustering analyses were consistent with the 

observed pattern of differentiation. First, the nmf algorithm selected K=2 ancestral populations 

corresponding to IP and AO (Figure 2.23). Individuals from IP had a probability ancestry to cluster 

1 ranging from 92.6% to 100% whereas individuals from AO showed a probability ancestry to 

cluster 2 ranging from 84.6 to 100%. Average ancestry of cluster 2 in IP individuals was only 0.7% 

while average ancestry of cluster 1 in AO individuals was 4.4%. Second, the PCA clearly 

segregated AO from IP individuals, with 38.71% of the total variance explained by the first axis 

(Figure 2.24-A). Individuals from Reunion Island (RUN), the IP site closest to the AO, did not 

show more proximity to the AO in the PCA or a higher contribution from cluster 2 than other IP 

individuals, nor did they show a lower pairwise FST with the AO than the other IP sites. (Figure 

2.23, 2.24-A and Supp. Figure 2.28-A). When computed on IP individuals only, the PCA identified 

a single cluster (Figure 2.24-B and 2.28-B) and the nmf did not show any meaningful geographic 

clusters with K=2 (Supp. Figure 2.29). We further applied an Approximate Bayesian Computation 

(ABC) framework using a 500 trees random forest for all sampling sites after checking for the 

evolution of the out-of-bag error rate. This coalescent framework allows to detect genetic structure 

using a single sampling location by testing whether its gene genealogy yield signatures of a 

Stepping Stone (SS), Finite Island (FIM) or Non-Structured (NS) model (Supp. Figure 2.30). The 

model selection (Supp. Table 2.16) highlighted NS as the most supported model with a posterior 

probability ranging from 0.48 to 0.89 in the IP sampling sites and of 0.62 for BRA (Supp. Table 

2.17).  



Chapter 2. Meta-populations, Models and Conservation 

84 
 

2.4.3.3. Genetic diversity and variation of Ne 

 
Figure 2.25. Variation of the effective population size (Ne) through time and its 75% confidence interval 
estimated by the STAIRWAYPLOT for the AO (panel A) and IP (panel B) sampling sites. AUSE: East Coast 
of Australia; AUSN: North Coast of Australia; BRA: Brazil; COR: Coral Sea; NCA: New Caledonia; RUN: 
Reunion Island. 

Genetic diversity values were very similar among sampling sites, with BRA being slightly more 

variable than the IP counterpart (Table 2.13). Tajima’s D (TD) was significantly positive for BRA 

(TD = 0.137; P ≤ 0.001), while significantly negative (P ≤ 0.001) for Northern Australia (AUSN) 

and Reunion Island (RUN) and not significantly different from zero for the other populations 

(Table 2.13). Except for the AUSN population, the reconstructions of the effective size (Ne) through 

time by the STAIRWAYPLOT were very similar among IP locations: an ancestral expansion occurred 
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between ~100,000 and ~200,000 years before present (BP). bringing the median Ne to ~10,000 

followed by a very recent bottleneck ~2,000 to ~4,000 years BP (Figure 2.25). The STAIRWAYPLOT 

for AUSN displayed a different signal, with an ancestral Ne median value similar to the one 

retrieved in the other sampling sites (~10,000) followed by a strong and recent expansion that 

raised the modern Ne to ~35,000, contrasting with the recent decrease observed for the other IP 

sampling sites. The demographic history reconstructed for BRA was slightly more complex with 

the ancestral Ne of ~12,000 first decreasing to ~9,000 at ~40,000 years BP and then increasing 

(between ~4,000 and 6,000 years BP) to a modern Ne of ~20,000 (Figure 2.25).  

 
Figure 2.26. Model IM-full, the most parameter-rich model (13 parameters) representing two populations 
from each ocean basin with an effective size that changed 𝑇!!"and 𝑇!#$ years ago from a modern effective 
size (𝑁"#$!"and 𝑁"#$#$) to an ancestral effective size (𝑁%&'!" and 𝑁%&'#$). The two populations are 
connected by an asymmetrical migration rate allowed to change 𝑇"() years ago (respectively from 
𝑚*!"/#$and 𝑚*#$/!" to 𝑚+!"/#$and 𝑚+#$/!") and diverged 𝑇$(, years ago from an ancestral population of 
size 𝑁%&'. The remaining four models are nested within IM-full, having less migration rate parameters: 
IM-anc is similar to IM-full but only the ancestral migration occurs (i.e., between 𝑇"() and 𝑇$(,); IM-rec 
is similar to IM-full but only the recent migration occurs (i.e., between 0 and 𝑇"()); IM-bsc considers the 
migration constant from 0 to 𝑇$(,; and IM-div is a strict divergence model with no migration. 
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Table 2.14. Maximum Likelihood (ML), 90% confidence interval (5% lower bound and 95% upper 
bound) and search bounds for the parameters estimated by FASTSIMCOAL under the IM-bsc model. 

Parameter ML 5% lower bound 95% upper bound Parameter bounds 

𝑵𝒂𝒏𝒄 9,274 1,310 80,372 U¶:{100;100,000} 

𝑵𝒎𝒐𝒅𝑰𝑷 17,591 16,643 31,915 U:{100;100,000} 

𝑵𝒎𝒐𝒅𝑨𝑶 16,810 12885 40,036 U:{100;100,000} 

𝑻𝒔𝑰𝑷* 153,090 27,460 769,750 U:{100;1,000,000} 

𝑻𝒔𝑨𝑶* 45,980 14,030 53,090 U:{100;1,000,000} 

𝑵𝒂𝒏𝒄𝑰𝑷 48,823 3,103 107,816 U:{100;100,000} 

𝑵𝒂𝒏𝒄𝑨𝑶 1,406 1178 4,781 U:{100;100,000} 

𝑻𝒅𝒊𝒗* 193,850 77,110 355,910 U:{100;1,000,000} 

𝑵𝒎𝑨𝑶/𝑰𝑷
§ 0.022 0.008 0.124 U:{0;50} 

𝑵𝒎𝑰𝑷/𝑨𝑶
§ 3.873 3.171 8.919 U:{0;50} 

*Times are expressed in years using a mutation rate of 1.93 x 10-8 per generation per site and a generation time of 10 
years  
§ Number of migrants per generation are expressed in forward. 
¶ U: uniform distribution. 
 
 

2.4.3.4. Population divergence and migration rate estimation 

In the light of the absence of population structure signatures within the IP and the AO and the 

genetic distinctness between them, we tested five Isolation-Migration (IM) models to determine 

the divergence time and the migration pattern between the two oceanic regions (Figure 2.26). The 

likelihood distribution computed over 100 replicates was similar for models IM-bsc and IM-full, 

but the AIC values supported IM-bsc as the model with the highest probability (Supp. Figure 2.31). 

The distribution of the likelihood evaluated in each model under the Maximum Likelihood (ML) 

parameters proved that they can be distinguished based on the available data (Supp. Figure 2.31). 

The two oceanic regions appeared connected, though the migration rate is limited and strongly 

asymmetric, being ~176 times higher from IP to AO (Nm~3.9) than vice versa (Nm~0.02) (Table 

2.14 and Supp. Figure 2.32). Going backward in time the populations from the two regions merged 

~193,000 years BP (90% CI: [77,000; 355,000]). The ancestral population size was almost half of 

those estimated in both IP and AO derived populations (Table 2.14 and Supp. Figure 2.32), 

indicating an ancestral expansion, consistent with the observed STAIRWAYPLOT dynamics for IP 
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populations. An increase in effective size was estimated in the AO starting ~ 45,000 years BP 

(90% CI: [14,000; 53,000]), bringing the effective size from 1,406 (90% CI: [1,178; 4,781]) to 

16,810 (90% CI: [12,885; 40,036]) which is consistent with the observed expansion in the 

STAIRWAYPLOT of BRA. We observed a decrease in Ne in the IP from 49,000 to 17,000, but the 

timing was poorly estimated. Moreover, ancient and modern Ne in the IP showed largely 

overlapping confidence intervals (Table 2.14). 

 

2.4.4. Discussion 
To shed light on the evolutionary history of the tiger shark, we sequenced thousands of loci in 50 

individuals following a double digest RAD-seq protocol. We handled low coverage issues by 

applying an appropriate framework based on genotype free likelihood estimation of allele 

frequencies (Korneliussen et al., 2014). The first result is the unambiguous presence of two highly 

divergent genetic clusters, corresponding to the Indo-Pacific (IP) region and the Atlantic Ocean 

(AO), and the signature of very weak population structure within each of them. Despite the large 

panel of SNPs that could potentially detect fine spatial structure compared to previous work based 

on microsatellites, we did not find any barrier to gene flow within the IP, but rather a signature 

consistent with a large panmictic population or a meta-population characterized by very large 

amount of gene flow (Figures 2.23, 2.24, Supp. Figures 2.27, 2.28 and 2.29). This strongly 

confirms previous findings (Bernard et al., 2021; Holmes et al., 2017; Pirog et al., 2019) and 

contradicts the conclusions of (Bernard et al., 2016), who found significant evidence for population 

structure. Using a larger amount of genomic information, we provide evidence for the presence of 

a single mating population in the IP based on the following observations: (1) the PCA and nmf 

analyses display one single cluster in the IP; (2) the FST values computed between sampling sites 

did not exceed 0.029 (as a comparison, an average value of ~0.124 was found between IP and AO) 

with no signature of isolation by distance (Supp. Figure 2.27); (3) all IP sharks showed a similar 

amount of genetic contribution from the AO cluster in the nmf analysis (Figure 2.23). These results 

are consistent with one of two explanations: either (1) tiger sharks randomly mate within IP or (2) 

the number of migrants exchanged each generation between sampling sites is so large to erase any 

signature of genetic structure. The absence of multiple sampling sites in AO prevented us to 

perform similar analyses in AO. To test the presence of a single panmictic population, we therefore 

followed an ABC strategy based on coalescence simulations to reconstruct the evolutionary history 
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of BRA population and assess whether the patterns of genetic variation within the BRA samples 

are better described by unstructured or meta-population models. This approach has been 

successfully applied in both empirical and simulation-based works (Lesturgie, Planes, et al., 2022; 

Maisano Delser et al., 2019; Peter et al., 2010) and represents an alternative (or complementary, 

when possible) method to infer the presence of population structure. As found for the IP, the NS 

(No Structure) model had the most support within the AO (Supp. Table 2.17). Even though more 

sampling sites and SNPs would likely have provided tighter estimates, this result is most consistent 

with a single mating population in the AO, despite our single sampling site does not allow us to 

infer the geographic extent of that population. We note that population structure has previously 

been reported within the AO based on mitochondrial markers (Andrade et al., 2021; Carmo et al., 

2019). However, results in the current study are consistent with the genome wide study of (Bernard 

et al., 2021) which suggested low to no population structure in the AO. The differences between 

the inferred mitochondrial structure and genomic DNA signals could be due to sex-biased 

dispersal, as female philopatry has been proposed for some shark species (Keeney et al., 2005; 

Mourier & Planes, 2013; Pardini et al., 2001; Tillett et al., 2012). However, inconsistencies 

between mitochondrial and autosomal data are widespread in nature and it has been suggested to 

cautiously interpret the mitochondrial variation in the light of the demographic history of a species, 

as other evolutionary forces such selection may act as confounding factors (Ballard & Whitlock, 

2004). Furthermore, the result found herein (i.e., low to no population structure in each of the two 

oceanic regions) is consistent with the fact that tiger sharks have been documented to move large 

distances across oceanic basins. However, it does not explain why a large predator that is capable 

of covering distances of several thousands of kilometers (Holland et al., 2019; Lea et al., 2015; 

Werry et al., 2014) could not erase the genetic differentiation between the two regions. 

One possible explanation was proposed by (Naylor et al., 2012), who suggested the presence of 

two allopatric subspecies in IP and AO. This hypothesis was later refuted by (Bernard et al., 2016), 

who still agreed on a long-term genetic isolation between the two oceanic regions but proposed 

some genetic exchanges. By harnessing the power of RAD-seq genome wide data, our coalescent 

modelling could not only disentangle the two hypotheses, but also provide quantitative estimates 

of the tempo and mode of divergence between the two populations. Comparing five 

Isolation/Migration (IM) scenarios, we found that the most supported model included a divergence 

around ~193,000 years BP (90% CI: [77,000; 356,000]) between the two regions (Table 2.14), 



Chapter 2. Meta-populations, Models and Conservation 

89 
 

which nevertheless remained in contact since then through a very limited (3.9 individuals per 

generation; 90% CI: [3.2; 8.9]) and asymmetric gene flow ~176 times higher from IP to AO than 

the opposite direction. The low number of migrants Nm exchanged each generation (Table 2.14) 

and the asymmetric exchange are consistent with the clustering results and the FST values (Figure 

2.23), which differentiated the two regions and clearly highlighted a higher, but weak, genetic 

contribution from IP to AO than vice versa (Figure 2.23). These results support the idea that 

populations from the AO and from the IP represent two lineages (Bernard et al., 2016), rather than 

two allopatric species (Naylor et al., 2012). A permeable barrier to gene flow between the two 

oceanic regions is therefore responsible for the observed pattern of divergence and asymmetric 

migration. The presence of this barrier can be explained by the ecology of the tiger shark and by 

the environmental conditions governing the Indian-Atlantic water exchange, the so-called Agulhas 

leakage. As a tropical to sub-tropical species, tiger sharks prefer warm water and they show the 

peak of swimming activities at ~22°C (Payne et al., 2018) so that their movement from the Atlantic 

to the Indo-Pacific is hampered by the upwelling of cold water off South-Western Africa (the 

Benguela current). However, the AO receives warm water from the IP through the Agulhas leakage 

(Beal et al., 2011), which can account for the asymmetric migration reported, consistent with the 

pattern observed in other tropical sharks, bony fishes and turtles (Gaither et al., 2016; Maduna et 

al., 2017; Reid et al., 2019; van der Zee et al., 2021). The Agulhas leakage has not been constant 

through time, with an increasing intensity in the Holocene, preceded by a period of stasis and a 

strong peak in the late Pleistocene around 130,000 years BP (Caley et al., 2012, 2014). This 

variation in Agulhas leakage intensity could have influenced the relation between the two basins. 

However, we could not distinguish pulses of migrations in our data since the model IM-bsc was 

preferred to those accounting for variation in migration rate through time. Model selection 

procedure robustly selected the IM-bsc model (Supp. Figure 2.31), which is neither the most nor 

the least parameters rich, supporting the idea that our results are not an artefact of incorrect 

modelling (see also below). In the future there will still be space to improve our estimates: more 

data will help refining the confidence interval of each parameter and ameliorating the calibration 

of the molecular clock.  

We found divergent demographic histories in the two oceanic regions examined (Figure 2.25). 

First, we note that since both regions are most likely described by non-structured models and the 

migration rates between them are very low, it is possible to directly interpret the results of 
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unstructured model such as the STAIRWAYPLOT (Liu & Fu, 2020). It is important to stress this point, 

because population structure, if not accounted for, can generate signatures that erroneously look 

like changes in of population size (Chikhi et al., 2018; Maisano Delser et al., 2019; Mazet et al., 

2016). All the Indo-Pacific populations (except AUSN) underwent a recent bottleneck between 

~2,000 and 4,000 years BP, which was robust to the pooling of all IP sampling points but AUSN 

(but with larger incertitude in recent times due to the lower number of SNPs, see Supp. Figure 

2.33). Despite the caveat regarding the interpretation of Ne variation in recent times due to the 

inclusion of singletons, this is barely consistent with what was recently proposed by (Pirog et al., 

2019) based on 25 microsatellites combined with mitochondrial DNA. Here we refine their 

estimates and better characterized the intensity of the bottleneck with a non-parametric approach 

(the STAIRWAYPLOT) exploring a large parameter space to genome wide data. The inferred 

demographic history of the AO is strikingly different from that of the IP. The estimated Ne was 

~20,000 following a population expansion occurring between ~4,000 and 6,000 years BP (Figure 

2.25). These values are consistent with the estimates retrieved by the IM-bsc model (Table 2.14). 

The strong signature of population expansion recovered implies that the tiger shark is profiting 

from recent environmental changes in AO, in contrast to the IP population. Consistently, (Andrade 

et al., 2021; C. D. Peterson et al., 2017) found a recent demographic trend suggesting an expansion 

rather than a decrease in AO, while the recent demographic trends in the IP appear to have been 

the result of intense pressure from fisheries and shark-control programs (S. C. Clarke et al., 2006; 

Sumpton et al., 2011; Temple et al., 2018). More investigations are needed to determine the origin 

of the difference between the two oceans. The applications of methods based on linkage 

disequilibrium applied to whole genome data will help detect more recent events (Kerdoncuff et 

al., 2020), which will be important for planning conservation strategies. Given the very low genetic 

structure within IP, we would expect AUSN to have the same demographic history than the other 

sampling sites in the IP. We cannot exclude a scenario where AUSN represents an isolated 

population experiencing its own demographic history that separated from the rest of the IP too 

recently to accumulate divergence. If confirmed, this would highlight the presence of independent 

lineages in the IP, with important consequence for conservation programs. However, more data is 

needed to shed light on this topic, both in terms of individuals and in terms of genomic coverage: 

ultimately only whole genome sequencing will give the opportunity to confidently resolve this 

issue.  
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2.4.5. Conclusions 
Reconstructing the evolutionary history of a species relies on the application of a realistic 

demographic model, which is mostly unknown in empirical studies. Here, we investigated the 

evolutionary history of the tiger shark and found that it is characterized by an asymmetrical 

migration between the AO and the IP and a signature of random mating within each region. These 

findings let us model each oceanic region as a single unstructured population and evaluate 

competing demographic scenarios to investigate their divergence time and migration rates. The 

two regions are separated by the Benguela barrier, but our estimates strongly suggest that the 

Agulhas leakage allows an overwhelmingly asymmetric migration between them, by far stronger 

from IP to AO than in the opposite direction. While we confirmed that the tiger shark is likely 

undergoing a reduction in Ne in the Indo-Pacific, we show that it probably underwent a strong 

expansion in the Atlantic Ocean. Even if a better calibration of the molecular clock and full genome 

analyses would still be needed to confirm our results, our findings support the existence of two 

management units. This implies that local conservation or shark control programs will have very 

limited impact on the dynamics of the species, which needs to be managed at the ocean basin level, 

demanding considerable communication efforts among different countries and coordination as 

suggested for other megafaunal organisms (Barkley et al., 2019).  

 

2.4.6. Material and Methods 

2.4.6.1. Sampling, library preparation and sequencing  

A total of 50 tiger shark individuals (Galeocerdo cuvier) from both the Indo-Pacific (IP) and the 

Atlantic Ocean (AO) were sampled off (from west to east) Brazil (BRA), Reunion Island (RUN), 

North Coast of Australia (AUSN; North Territory), East Cost of Australia (AUSE; Sunshine Coast), 

Coral Sea (COR) and New Caledonia (NCA). Sharks were grouped into six populations based on 

their sampling site (Figure 2.22; Table 2.13). Total genomic DNA was extracted from muscle 

tissue or fin clips preserved in 96% ethanol using QIAGEN DNeasy Blood and Tissue kit (Qiagen, 

Hilden, Germany) according to the manufacturer's protocols. Double-digest restriction-associated 

DNA (ddRAD) libraries were prepared following (Peterson et al., 2012) using EcoRI and MspI 

restriction enzymes, a 400-bp size selection, and a combination of two indexes and 24 barcodes to 

pool 48 individuals per lane. The genomic libraries obtained were sequenced with a HiSeq 2500 

Illumina sequencer (single-end, 125 bp).  
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2.4.6.2. RAD-seq de novo assembly  

Raw reads were first demultiplexed and quality filtered through the process_radtags.pl pipeline in 

STACKS v.2.5 (Rochette et al., 2019). In the absence of a reference genome of G. cuvier or of 

closely related species, RAD-seq loci (125 bp sequences) were de novo assembled under the 

denovo_map.pl pipeline in STACKS. Preliminary results based on parameters m=3 (minimum read 

depth to create a stack), M=3 (number of mismatches allowed between loci within individuals), 

and n=3 (number of mismatches allowed between loci within catalogue) found an average depth 

of ~10x (see Results). Despite the absence of a clear cut-off indicating an acceptable coverage 

value above which genotype calling may be considered reliable, simulation results suggest that 

~10x may produce inconsistent calling under different algorithms (Fountain et al., 2016). To 

prevent this, we used a genotype free estimation of allele frequencies implemented in the software 

ANGSD v.0.923 (Analysis of Next Generation Sequencing Data; (Korneliussen et al., 2014)), which 

has been proven to be a more efficient method for low to medium coverage next-generation 

sequencing (NGS) data than SNPs calling algorithms (Korneliussen et al., 2014). We describe 

below the bioinformatics steps required to apply ANGSD to RAD-seq data from a non-model 

organism and the downstream population genetic analyses applied to the filtered datasets.   

2.4.6.3. Assembly pipeline and filtering 

ANGSD requires a reference sequence to work, which we were lacking. To circumvent this issue, 

we followed the approach described in (Khimoun et al., 2020) by creating an artificial reference 

sequence from loci previously assembled by STACKS under the parameter m=3, N=3, M=3 (based 

on the results of (Mona et al., 2023)). To this end, we concatenated the consensus sequences of 

each locus spaced by a stretch of Ns and then map reads back from individual fastq files using the 

bwa-mem algorithm with default parameters (H. Li & Durbin, 2009). Using custom bash scripts 

coupled with ANGSD, we then discarded: (i) sites with coverage <3x (-minIndDepth = 3, 

corresponding to m in the first assembly performed by STACKS) and/or of low quality (based on 

the per base alignment score, -baq =1 flag); (ii) low quality bases and poorly aligned reads (-minQ 

and -minMapQ and -C flags with default values); (iii) SNPs present in the last 5 bp of each locus 

and SNPs genotyped as heterozygous in 80% or more of the individuals; (iv) loci with more than 

5 SNPs that might be the result of paralog RAD loci alignment on the reference. Specific filters 

were further added according to the downstream analyses performed. 
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2.4.6.4. Population structure 

A single reference sequence was created for all populations and we retained sites shared by at least 

80% of the samples. The PCA was computed with PCANGSD v.0.97 based on genotype likelihood 

(Meisner & Albrechtsen, 2018). Admixture was then investigated by running the non-negative 

matrix factorization algorithm (nmf) implemented in PCANGSD which is based on the same 

covariance matrix inferred for the PCA. The number of ancestral populations (K) was 

automatically chosen by PCANGSD to be e + 1, where e is the optimal number of significant 

principal components depicting population structure, resulting from the Velicier’s minimum 

average partial test run on the covariance matrix. The sparseness regularization parameter α (used 

to reduce the noise in low depth NGS data) that best fitted the data was tested between 0 and 100 

and it was chosen by comparing the resulting likelihood following (Meisner & Albrechtsen, 2018). 

We generated pairwise site allele frequency likelihood files and then computed FST with the 

realSFS program in ANGSD (Nielsen et al., 2012) using SNPs with a minor allele frequency ≥ 0.05 

(-minMaf flag). The significance of each pairwise FST comparison was evaluated with 1,000 

permutations by randomly allocating individuals to one of the two populations. We finally tested 

isolation by distance (IBD) using a Mantel test (Mantel, 1967) and plotted the relationship between 

genetic vs. geographic distances.  

We applied an approximate Bayesian computation (ABC) approach similar to previous studies 

(Lesturgie, Planes, et al., 2022; Maisano Delser et al., 2019; Peter et al., 2010) in all sampling sites 

to further investigate the presence of population structure. This approach is particularly helpful in 

the Atlantic Ocean (AO) where only one locality was sampled (Brazil; BRA population). Briefly, 

we designed three demographic models (Supp. Figure 2.30): (1) NS (No Structure) which 

represents a panmictic population where 𝑁I2J, the modern effective size instantly changes to 

𝑁K#L, the ancestral effective size, at 𝑇M	(time shift) generations; (2) FIM (Finite Island Meta-

population) which represents a finite island meta-population model composed of 100 demes 

exchanging symmetrically 𝑁𝑚 migrants per generation with each other. All demes were 

instantaneously colonised, 𝑇L2N generations ago, from an ancestral population of size 𝑁K#L . (3) SS 

(Stepping-Stone) which represents a stepping-stone model where the 100 demes are arranged in a 

two-dimensional grid and where migration is only allowed symmetrically in both directions 

between the four nearest neighbouring demes. We performed 50,000 coalescent simulations under 

each model using FASTSIMCOAL v.2.6.0.3 (Excoffier et al., 2013) extracting parameters from the 
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prior distributions displayed in Supp. Table 2.15. Model selection was evaluated by the random 

forest classification method implemented in the abcRF package in R (Pudlo et al., 2016). We used 

the SFS, θπ and TD as summary statistics and further added the first two axes of the Linear 

Discriminant Analysis in the dataset as suggested by (Pudlo et al., 2016) to increase the 

classification method accuracy. The number of trees was chosen by checking the evolution of the 

out-of-bag error. 

2.4.6.5. Genetic diversity and effective population size variation 

We created one reference sequence per population in order to maximise the number of loci 

assembled. We filtered the sites with missing data by setting the -minInd flag in ANGSD to the total 

number of individuals in each population. The filtered dataset was then used to generate a site 

allele frequency likelihood (saf) file, where genotype likelihoods were computed using the 

SAMtools method (-GL=1 flag). The folded site frequency spectrum (SFS) was directly computed 

from the filtered saf datasets through the realSFS program (Nielsen et al., 2012). Nucleotide 

diversity (θπ), Watterson’s theta based on segregating sites (θw;(G. A. A. Watterson, 1975)) and 

Tajima’s D (TD; (Tajima, 1989)) were computed with custom script from the SFS. Significance 

of TD was evaluated after 1,000 coalescent simulations of a constant population model with size 

θw. We reconstructed the variation in the effective population size (Ne) through time by running 

the STAIRWAYPLOT v.0.2 software (Liu & Fu, 2020) with singletons, where the composite 

likelihood is evaluated as the difference between the observed (folded) SFS and its expectation 

under a specific demographic history. 

2.4.6.6. Population divergence and migration rate estimation 

Based on the results of the previous analyses, we devised five alternative Isolation/Migration (IM) 

models of divergence between IP and AO regions using the composite likelihood method 

implemented in FASTSIMCOAL (Excoffier et al., 2013). We presented in Figure 3 the model richest 

in parameters, the remaining four representing simplified versions nested within it. Hereafter, a 

brief description of the five models going from the most complex to the simplest: (a) IM-full: the 

two ocean regions with their respective modern effective population sizes, 𝑁I2J+,  and 𝑁I2J-., 

diverged at 𝑇J%O from an ancestral population of effective population size 𝑁K#L. Due to the 

STAIRWAYPLOT results, we allowed the two modern effective population sizes 𝑁I2J+, and 𝑁I2J-. 

to change to 𝑁K#L+, and 𝑁K#L-. following an exponential dynamic in 𝑇M+, and 𝑇M-. years 

respectively. Migration is defined by two time periods: 𝑚! representing the migration rate 
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occurring between time 0 until 𝑇I%P and 𝑚* between time 𝑇I%P  until 𝑇J%O. The migration matrix 

in each time period is asymmetric: for instance, 𝑚!-. +,⁄  represents the forward migration rate from 

AO to IP and 𝑚!+, -.⁄  from IP to AO. In summary, the model is defined by thirteen parameters: 

five effective population sizes, four migration rates and four historical events; (b) IM-anc: same 

as IM-full with ancestral migration only between 𝑇I%P  and 𝑇J%O. The model is defined by eleven 

parameters, the two 𝑚! migration rates being removed; (c) IM-rec: same as IM-anc, but with 

recent migration only occurring between time 0 until 𝑇I%P, keeping only the two 𝑚! migration 

rates; (d) IM-bsc: the classic model where migration is constant from time 0 until 𝑇J%O  (i.e. m! =

m* = m (28)). We modelled the variation in effective size of the two regions similarly to the other 

models, for a total of ten parameters; (e) IM-div: a pure divergence model with no migration. This 

is defined by eight parameters: the five effective population sizes and three historical events 

(𝑇J%O , 𝑇M+,, 𝑇M-. ). The analyses are based on the folded 2D-SFS computed by ANGSD between six 

individuals from Brazil (representing the AO) and six from the Indo-Pacific (IP). This sample size 

was chosen to obtain a balanced design and to maximise the number of SNPs shared among the 

two ocean basins. Similarly, in each basin, we selected the individuals presenting the smaller 

proportion of missing data to further increase the number of joint SNPs. To maximize the observed 

2D-SFS we applied the following options in FASTSIMCOAL: -N 300,000 (number of coalescent 

simulations), -L 40 (number of expectation-maximization (EM) cycles), and -C 10 (minimum 

observed SFS entry count considered for parameter estimation). For all model parameters we used 

wide search ranges with uniform distributions (Table 2.14). We ran each model 100 times in order 

to determine the maximum likelihood parameters and to perform model selection using the 

Akaike’s information criterion comparing the best run of each model (Excoffier et al., 2013). To 

check the robustness of the model selection procedure and to take into account the presence of 

linked sites in our dataset, we further examined the likelihood distribution obtained based on 100 

expected 2D-SFS simulated under the parameters estimated in the best run of each model, each 

approximated with 106 coalescent simulations. This procedure is needed to take into account the 

variance in the likelihood estimation given our dataset: if the distributions obtained by the various 

models do overlap, the difference in the estimated likelihoods of our models is not significant 

(Meier, Sousa, et al., 2017). Finally, we determined the confidence interval of the parameter 

estimated under the best run of our best model by parametric bootstrapping. The 2D-SFS was 
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bootstrapped 100 times using FASTSIMCOAL and each of these datasets was analysed under the 

same conditions as the original data (one hundred independent runs for each dataset). Calibrating 

the molecular clock is crucial to obtain accurate estimates of demographic parameters and 

historical events, but it is challenging when fossil records and/or orthologous loci from an outgroup 

are lacking. Here, all demographic inferences were performed using the RAD-seq mutation rate of 

μ = 1.93 x 10-8 per site and per generation previously used for the tiger shark (Lesturgie, Planes, 

et al., 2022), and the generation time was set to 10 years (Cortés, 2002; Pirog et al., 2019).  
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2.4.7.5. Supplementary tables 

 
Table 2.15. Matrix of pairwise FST values (lower triangle) and significancy (upper triangle). FST values in 
bold are significantly different from 0 (P ≤ 0.001). 

 BRA RUN AUSN COR AUSE NCA 

BRA  P ≤ 0.001 P ≤ 0.001 P ≤ 0.001 P ≤ 0.001 P ≤ 0.001 

RUN 0.12  NS1 NS NS P ≤ 0.001 

AUSN 0.12 0.02  NS NS NS 

COR 0.13 0.03 0.02  NS NS 

AUSE 0.12 0.02 0.02 0.02  P ≤ 0.001 

NCA 0.12 0.03 0.02 0.02 0.03  

 
1NS: Not Significant 

 
Table 2.16. Prior distribution of the parameters of the Finite Island (FIM), Stepping Stone model (SS) 
and Non-Structured (NS) models. Nm represents the number of migrants exchanged per generation either 
with the four closest neighbouring demes (SS) or with any deme in the matrix (FIM). Nmod represents the 
modern effective population size of the NS model. Nanc represents the ancestral effective population size 
either of the founding deme (in the structured models) or in the panmictic population (NS model). Tcol is 
the colonization time of the array of deme (FIM and SS only) and Tc is the time when a change in 
effective population size happened in the panmictic population (NS only). Time parameters are in 
generations. 

FIM 
Nm* Tcol§ Nanc 

P*: 0.001 - 100 U¶: 1 – 300,000 U: 100 – 100,000 

SS 
Nm* Tcol§ Nanc 

P: 0.001 - 100 U: 1 – 300,000 U: 100 – 100,000 

NS 
Nmod Ts§ Nanc 

U: 1 – 100,000 U: 1 – 300,000 U: 1 – 100,000 
 

*  P: the prior distribution of Nm is the product of two uniforms (one for N and one for m).  
¶ U: uniform distribution. 
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Table 2.17. Confusion matrix of the model selection procedure and posterior probability for the most 
likely model explaining the structuring: rows indicate the simulated models and columns the votes (in %) 
attributed by the ABC-RF algorithm to each of them. 

  Attributed votes (%) Class. 

error 

Posterior 

Probability   FIM NS SS 

BRA 

FIM 75.848 4.438 19.714 0.24152  

NS 1.466 97.158 1.376 0.02842 0.63 

SS 20.584 4.088 75.328 0.24672  

RUN 

FIM 44885 1376 3739 0.1023  

NS 466 49095 439 0.0181 0.79 

SS 4443 781 44776 0.10448  

AUSN 

FIM 40806 1867 7327 0.18388  

NS 598 48738 664 0.02524 0.48 

SS 7591 1466 40943 0.18114  

COR 

FIM 37878 2121 10001 0.24244  

NS 755 48450 795 0.031 0.69 

SS 10344 1917 37739 0.24522  

AUSE 

FIM 40162 1849 7989 0.19676  

NS 623 48720 657 0.0256 0.86 

SS 8334 1562 40104 0.19792  

NCA 

FIM 42620 1584 5796 0.1476  

NS 543 48872 585 0.02256 0.89 

SS 6123 1184 42693 0.14614  
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2.4.7.6. Supplementary figures 
 

 
Figure 2.27. Isolation by distance (IBD) plot within the Indo-Pacific. Pairwise genetic distances (FST/(1-
FST)) are plotted against geographic distances between Indo-Pacific sampling sites. 

 

 
Figure 2.28. Principal Component Analysis (PCA) computed with: (A) all individuals (n = 50) and (B) 
Indo-Pacific individuals only (n = 43). The axes represented in both panels are the first and the third 
component. 
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Figure 2.29. Ancestry proportions retrieved using the nmf algorithm with K=2 ancestral populations for 
Indo-Pacific samples performed with PCANGSD. 

 

 
Figure 2.30. Evolutionary scenarios used to investigate the population structure of the Atlantic Ocean 
based on data from Brazil population through an Approximate Bayesian Computation (ABC) framework. 
NS (No Structure) is an unstructured model where the modern effective size (𝑁"#$) instantaneously 
changes to 𝑁%&', at time shift 𝑇!  generations. FIM (Finite Island Meta-population) represents a finite 
island meta-population model with 100 demes that have been instantaneously colonised 𝑇'#- generations 
ago, from an ancestral population of size 𝑁%&'. Demes are allowed to exchange migrants with any other. 
SS (Stepping-Stone) is similar to FIM but the migrants are only exchanged between the four nearest 
neighbours in a two-dimensional grid. 
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Figure 2.31. Akaike Information Criterion (AIC) values for the five isolation/migration models and the 
associated ranking on the x-axis. Boxplots represent the likelihood distribution of the data evaluated 
under the best parameter estimates for each of the five models (presented in Figure 2) after 100 replicates. 
The models are presented from the richest in parameters (IM-full, 13 parameters) to the poorest (IM-div, 
8 parameters). 

 
Figure 2.32. Maximum likelihood for the parameter estimated by fastsimcoal under model IM-bsc, 
representing two populations from each ocean basin with an effective size that changed 𝑇!!"and 𝑇!#$ 
years ago from a modern effective size (𝑁"#$!"and 𝑁"#$#$) to an ancestral effective size (𝑁%&'!" and 
𝑁%&'#$). The two populations are connected by an asymmetrical number of migrants constant from 0 to 
𝑇$(, (𝑁𝑚./→12and 𝑁𝑚12→./) and diverged 𝑇$(, years ago from an ancestral population of size 𝑁%&'.  
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Figure 2.33. Variation of the effective population size (Ne) through time and its 75% confidence interval 
estimated by the STAIRWAYPLOT for all sampling sites. AUSE: East Coast of Australia; AUSN: North 
Coast of Australia; BRA: Brazil; COR: Coral Sea; NCA: New Caledonia; RUN: Reunion Island; IP: 
pooled individuals from AUSE, COR, NCA and RUN sampling locations.  
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2.5. Like a rolling stone: Colonization and migration dynamics of 

the gray reef shark (Carcharhinus amblyrhynchos)  
 

This article has been published in Ecology and Evolution.  
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Pierre Lesturgie, Camrin D. Braun, Eric Clua, Johann Mourier, Simon R. Thorrold, Thomas 

Vignaud, Serge Planes, Stefano Mona 
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2.5.1. Abstract 
Designing appropriate management plans requires knowledge of both the dispersal ability and 

what has shaped the current distribution of the species under consideration. Here we investigated 

the evolutionary history of the endangered grey reef shark (Carcharhinus amblyrhynchos) across 

its range by sequencing thousands of RAD-seq loci in 173 individuals in the Indo-Pacific (IP). We 

first bring evidence of the occurrence of a range expansion (RE) originating close to the Indo-

Australian Archipelago (IAA) where two stepping-stone waves (east and westward) colonized 

almost the entire IP. Coalescent modeling additionally highlighted a homogenous connectivity 

(Nm~10 per generation) throughout the range, and an isolation by distance model suggested the 

absence of barriers to dispersal despite the affinity of C. amblyrhynchos to coral reefs. This 

coincides with long-distance swims previously recorded, suggesting that the strong genetic 

structure at the IP scale (FST ~ 0.56 between its ends) is the consequence of its broad current 

distribution and organization in a large number of demes. Our results strongly suggest that 

management plans for the grey reef shark should be designed on a range-wide rather than a local 

scale due to its continuous genetic structure. We further contrasted these results with those 

obtained previously for the sympatric but strictly lagoon-associated Carcharhinus melanopterus, 

known for its restricted dispersal ability. C. melanopterus exhibits similar RE dynamic, but is 

characterized by stronger genetic structure and a non-homogeneous connectivity largely dependent 

on local coral reefs availability. This sheds new light on shark evolution, emphasizing the roles of 

IAA as source of biodiversity and of life history traits in shaping the extent of genetic structure 

and diversity. 

 

Keywords: Meta-population, Rad-seq, demographic history, range expansion, Carcharhinus 

amblyrhynchos, Carcharhinus melanopterus.  
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2.5.2. Introduction 
More than 37% of shark species are currently threatened with extinction (Dulvy et al., 2021) and 

less than 30% are on stable or increasing population trend according to the International Union for 

Conservation of Nature (IUCN) Red List of threatened species. As meso or apex predators, they 

hold important roles in their ecosystems (Bornatowski et al., 2014) and their decline has already 

shown negative cascading effects on food web structure (Friedlander & DeMartini, 2002; Myers 

et al., 2007). Although local-scale conservation programs have been established, their efficiency 

has been questioned for some species of sharks (Robbins et al., 2006; Speed et al., 2016). For 

instance, local-scale management might not always be consistent with the home range size and the 

dispersal ability of sharks (but see (Dwyer et al. 2020)). Genetics and ecological evidence have 

identified both species with very restricted home ranges (Whitney et al. 2012; Mourier et al. 2013) 

and species capable of crossing large expanses of ocean (Bailleul et al., 2018; Corrigan et al., 2018; 

Pirog et al., 2019). Designing appropriate management actions is therefore a difficult task requiring 

the knowledge of both the dispersal ability of the species under investigation and the existence of 

barriers to gene flow, which are often hard to identify in the marine realm.  

Population genomics is becoming increasingly important in this context, particularly because of 

the large amount of data provided by the emergence of next generation sequencing approaches 

(NGS). It is now possible to assess the genetic diversity of model or non-model species at an 

unprecedented level of accuracy (Benazzo et al., 2017; Steiner et al., 2013). However, genetic 

diversity alone does not provide clues on the evolutionary trajectory of a species and a careful 

modelling is required to fully understand its demographic history as well as the conservation 

challenges to be faced. Unfortunately, for computational reasons, many commonly used software 

implement, under different algorithms, unstructured models, i.e., models that consider the 

population under investigation as isolated or panmictic (Heled & Drummond, 2008; Heller et al., 

2013; H. Li & Durbin, 2011; Liu & Fu, 2015). Except for highly vagile species which are panmictic 

at a large scale (Corrigan et al., 2018; Lesturgie, Planes, et al., 2022; Pirog et al., 2019), broadly 

distributed shark species are more likely organized in meta-population(s) throughout their range 

(Maisano Delser et al., 2016, 2019; Momigliano et al., 2017; Pazmiño et al., 2018). The application 

of unstructured models to species organised in meta-populations yield spurious signatures of 

effective populations size (Ne) changes through time (Chikhi et al., 2010; Maisano Delser et al., 

2019; Mazet et al., 2015, 2016), with potentially dangerous consequences in terms of conservation 



Chapter 2. Meta-populations, Models and Conservation 

107 
 

policies. However, recent studies have highlighted the usefulness of such models to characterize 

the gene genealogy of the sampled lineages which in turn reveals important features of the meta-

population (Arredondo et al., 2021; Lesturgie, Planes, et al., 2022; Rodríguez et al., 2018) This 

emphasizes the necessity to couple complex meta-population models and unstructured models 

when uncovering the demographic history of a species.  

 
Figure 2.34. Map of the sampling sites. From west to east, Indian Ocean (IND): Juan (n = 13) and Zelee 
(n = 6); Chesterfield islands (CHE): Bampton (n = 10) and Avond (n = 5), New Caledonia (NCA): Belep 
(n = 7) and Poindimie (n = 5); Phoenix islands (PHO): Niku (n = 21), Mckean (n = 7), Orona (n = 11), 
Kanton (n = 10), Birnie (n = 2) and Enderbury (n = 13); Palmyra (PAL, n = 38); French Polynesia (POL): 
Moorea (n = 5), Fakarava (n = 17), Faaite (n = 1), Raraka (n = 1), and Nengo (n = 1). Colours represent 
the region of origin of the sampling sites: Indian Ocean (IND, yellow), Coral Sea (COR, red) and Central 
Pacific Ocean (CPA, blue). 
 

Here we investigated the evolutionary history of the grey reef shark Carcharhinus amblyrhynchos, 

a coral reef-associated shark inhabiting the tropical Indo-Pacific. While C. amblyrhynchos is 

considered one of the most abundant reef sharks in the Indo-Pacific, it is listed as Endangered on 

the IUCN red list of threatened species. With a mean size of ~190 cm (Compagno, 2001), C. 

amblyrhynchos inhabits either fringing or barrier reefs and displays patterns of reef fidelity 

(Barnett et al., 2012; Espinoza et al., 2014) as well as philopatry (Field et al., 2011). Tagging 

studies have indicated long range movement up to ~900 km (Barnett et al., 2012; Bonnin et al., 

2019), which raise questions about the extent of residency patterns for this species. Previous 

molecular studies using both microsatellites and Rad-sequencing did not find signatures of genetic 

structure at a low geographic scale such as the Great Barrier Reef (Momigliano et al., 2015, 2017), 

eastern Australia and Indonesia (Boussarie et al., 2022) and the Phoenix Islands archipelago 

(Boissin et al., 2019). Conversely, isolation by distance patterns have been found at larger scale 
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and some evidence suggests that coastal abundance of reef can fuel genetic exchanges, while 

oceanic expanses are barriers to gene flow (Boissin et al., 2019; Boussarie et al., 2022; Momigliano 

et al., 2017).  

To shed light on these contrasting findings, we sequenced DNA from 203 individuals of C. 

amblyrhynchos sampled at 18 sites from the eastern Indian Ocean to French Polynesia (Figure 

2.34) following a double digest restriction site associated DNA protocol (Peterson et al., 2012). 

The large panel of assembled loci was used to: (i) detect the occurrence and origin location of a 

range expansion (RE); (ii) investigate its demographic history by implementing both meta-

population and unstructured models; (iii) reassess the population structure of the grey reef shark 

in the Indo-Pacific. We finally compared the results here obtained with those previously found in 

the blacktip reef shark (Carcharhinus melanopterus (Maisano Delser et al., 2016, 2019)). The two 

species share a very similar distribution in the Indo-Pacific but are characterized by different 

habitat preferences and life-history traits, providing an excellent opportunity to improve our 

knowledge on the biology of sharks. 

 

2.5.3. Material and Methods 

2.5.3.1. Sampling and Rad sequencing 

We collected 203 samples of C. amblyrhynchos that covered most of its longitudinal distribution 

range (Figure 2.34), with two sampling sites in the Mozambique Channel in the western Indian 

Ocean (IND – Juan de Nova and Zélée bank) and 16 in the Pacific Ocean (PAC). Among the PAC 

sampling sites, four were chosen in the Coral Sea (COR): two in the Chesterfield Islands (Bampton 

and Avond) and two in New Caledonia (Belep and Poindimie). The remaining samples came from 

the Central and Easter Pacific (CPA): six in the Phoenix Islands (Enderbury, Kanton, McKean, 

Niku, Orona and Birnie) one in Palmyra Island and five in French Polynesia (Fakarava, Moorea, 

Faaite, Raraga and Nengo) (Figure 2.34, Table 2.18). Total genomic DNA has been extracted and 

conserved in 96% ethanol using QIAGEN DNeasy Blood and Tissue purification kit (Qiagen, 

Hilden, Germany) according to the manufacturer's protocols. We followed the double digest 

restriction site associated DNA (dd-RADseq) protocol of (Peterson et al., 2012) to create a 

genomic library, using EcoRI and MSFI as restriction enzymes. We selected fragments of ~400 

bp length and sequenced with Illumina HiSeq 2500 machine (single-end, 125 bp).  
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In the absence of a reference genome, we assembled loci de novo using Stacks v.2.5 (Rochette et 

al., 2019). Briefly, we demultiplexed the reads through the process_radtags.pl script and 

assembled the loci using the denovo_map.pl pipeline with the parameters m=3 (minimum read 

depth to create a stack), M=3 (number of mismatches allowed between loci within individuals) 

and n=3 (number of mismatches allowed between loci within catalogue). We found a mean depth 

of coverage (over individuals and loci) of ~10x (see Results). Previous work suggested that such 

low-coverage value may bias a correct genotype calling under the algorithm implemented in Stacks 

v.1, Stacks v.2 and PyRAD by skewing the site frequency spectrum (SFS) towards an excess of 

low frequency variants ((Mona et al., 2023); see supplementary materials for details). For this 

reason, we followed two different bioinformatics pipelines: the first to obtain a dataset to perform 

analyses based on the SFS (genetic diversity, range expansion and historical demographic 

inferences) and the second to investigate population structure, for which low frequency variants 

are not informative and are removed before the downstream analyses. 

2.5.3.2. Genetic diversity  

We followed the genotype free estimation of allele frequencies pipeline implemented in the 

software ANGSD v.0.923 (Korneliussen et al., 2014). This approach has been suggested to be more 

efficient for low to medium coverage NGS data than SNPs calling algorithms (Korneliussen et al., 

2014). ANGSD requires a reference sequence to work. To this end, we followed the framework 

proposed by (Heller et al., 2021; Khimoun et al., 2020) which we applied to each sampling site 

separately to maximise the number of loci: i) we assembled Rad loci present in at least 80% of the 

sampled individuals using Stacks with the same parameters as above (i.e., m=M=n=3); ii) we 

concatenated the consensus sequences for each locus, to which we added a stretch of 120 “N” in 

order to facilitate mapping, to create an artificial reference sequence; iii) we mapped raw reads 

from individual fastq files using the bwa-mem algorithm with default parameters (H. Li & Durbin, 

2009) against the artificial reference sequence. Using ANGSD filters, we discarded (1) sites with 

a coverage < 3 (using the flag -minIndDepth 3) (2) poor quality and mis-aligned reads (with default 

parameters and flags -minQ20 and -minMapQ 20), (3) poor quality bases (with default parameters 

and flags -baq 1 and -C 50). We further removed the last 5bp of each locus, SNPs heterozygous in 

at least 80% individuals, and loci with more than 5 SNPs. We finally filtered all missing data by 

applying the -minInd filter equal to the total number of individual present in each sampling site 

(Table 2.18). We then created a site allele frequency likelihood (saf) file by using the SAMtools 
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genotype likelihood computation method with the -GL=1 flag (H. Li & Durbin, 2009) and finally 

computed the folded site frequency spectrum (SFS) from the saf files using the RealSFS program 

implemented in ANGSD. We computed the mean pairwise difference (θπ), the number of 

segregating sites (Watterson’s Theta, θw) and Tajima’s D (TD) directly from the SFS. θπ and θw 

were standardized per site (i.e., by taking into account both monomorphic and polymorphic loci) 

and significance of TD was evaluated under 1,000 coalescent simulations of a constant population 

model with size θπ.  
Table 2.18. Summary Statistics. Sample size (n), total number of loci (monomorphic included) (nloci) and 
SNPs (nSNP), mean pairwise difference (θπ), Watterson theta (θw), Tajima’s D (TD) for all sampling sites 
(ranged from west to east). 

 † Mean pairwise difference and Watterson theta are expressed per site and are multiplied by a 103 factor.  
‡ Tajima’s D values in bold are significant (P <0.001). 
§ COR and CPA regions are from the Pacific Ocean (PAC).  
¶ Summary statistics were not computed in sampling sites with n < 5. 
 

2.5.3.3. Range Expansion 

Genetic diversity, here measured in each sampling site as θπ, is expected to decay as a function of 

the distance from the origin of the range expansion (Ramachandran et al., 2005). Geographic 

Region Group Sampling site n nloci nSNP θπ† θw† TD‡ 

IND  IND Juan 13 95027 45635 1.18 1.09 0.32 
Zelee 6 146858 62674 1.30 1.23 0.26 

COR§ 
CHE Bampton 10 89958 82869 2.14 2.26 -0.22 

Avond 5 125710 87817 2.10 2.15 -0.12 

NCA 
Belep 7 120038 103258 2.30 2.35 -0.11 
Poindimie 5 107464 72995 2.07 2.09 -0.05 

CPA§ 

PHO 

Niku 21 49922 53349 2.02 2.16 -0.25 
McKean 7 112711 88258 2.13 2.14 -0.01 
Orona 11 81725 75423 2.15 2.20 -0.09 
Kanton 10 99720 87202 2.12 2.14 -0.05 
Birnie¶ 2 - - - - - 
Enderbury 13 76314 72221 2.09 2.16 -0.12 

PAL Palmyra 38 35594 36982 1.66 1.84 -0.35 
 Moorea 5 104050 68380 2.03 2.02 0.02 
 Fakarava 17 71715 66559 2.01 1.97 0.08 

POL Faaite¶ 1 - - - - - 
Raraka¶ 1 - - - - - 
Nengo¶ 1 - - - - - 
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distances were computed in order to take into account ecological features as it may better represent 

the capacity of individuals to move between two points than linear distances. To that end, we 

constructed a raster of 67894 cells using the R package raster (Hijmans, 2020) where each cell 

corresponds either to land, open sea, seamount or reef habitat. Permeability coefficients were fixed 

respectively to 0 and 1 for land and open sea, whereas coefficients for coral reefs and seamounts 

were varied between 1 and 100. We applied two constraints: coral reefs should always have the 

maximum relative permeability value (since they represent the only habitat for C. amblyrhynchos) 

and seamounts have permeability bounded within 1 and coral reefs’ value. The most likely values 

were searched using a custom R script by maximising the correlation between the geographic and 

genetic distances between the sampled sites. Geographic distances were computed with the 

gdistance R package under the Least Cost (LC) criterion algorithm (van Etten, 2017) and genetic 

distances were measured by the FST (see below). After this step, we considered each marine cells 

of the raster to be a potential source of origin of the range expansion (RE) and computed its 

distance from the sampled sites under the LC criterion with the most likely permeability values 

previously estimated. We correlated these distances with the genetic diversity of each sampling 

site to identify areas with more negative values, which are likely associated with the origin of the 

RE (Ramachandran et al., 2005). We limited these analyses to the PAC sites to avoid possible bias 

due to the gap in our sampling distribution (i.e., the lack of samples between IND and the 

westernmost PAC site). Nevertheless, we verified the robustness of our results to the inclusion of 

IND sites.  

2.5.3.4. Historical demographic inferences 

To account and test for meta-population structure, we performed model selection as well as 

parameters estimation using an Approximate Bayesian Computation (ABC) framework (Bertorelle 

et al., 2010). We tested three demographic scenarios (Figure 2.35) for each sampling site, namely 

NS, FIM, and SST. Model NS (no structure): going backward in time, NS represents a panmictic 

population where the effective population size switches instantaneously at Tc generations from 

Nmod to Nanc. Model FIM (Finite Island Model): FIM represents a meta-population composed of a 

two-dimensional array of 10x10 demes (Di), each of the same size N that exchanges Nm migrants 

with any other deme each generation. Going backward in time all demes merge into a single 

population of size Nanc at Tcol generations. Model SST (Stepping STone): SST is similar to FIM but 

demes exchange migrants only with their four closest neighbours. We performed 50000 



Chapter 2. Meta-populations, Models and Conservation 

112 
 

simulations under each scenario and for each sampling site independently using fastsimcoal2 

(Excoffier & Foll, 2011). We run the model selection with the Random Forest classification 

method implemented in the package abcRF (Pudlo et al., 2016) using the SFS, θπ, θw and TD as 

summary statistics, to which we added the first two components of the Linear Discriminant 

Analysis performed on the previous summary statistics as suggested by (Pudlo et al., 2016) to 

increase accuracy. We performed 50000 additional simulations under the most supported scenario 

in order to estimate the demographic parameters using the abcRF regression method (Raynal et 

al., 2019) with the same summary statistics as for the model selection. For all analyses, we 

performed the estimation twice to check for the consistency of the inferences. The number of trees 

was chosen by checking the out-of-bag error rate (OOB), and cross validation was performed for 

both parameter inference and model selection (hereafter, the confusion matrix) procedures. We 

finally modelled the variation of effective population size (Ne) through time in each sampling site 

with the stairwayplot (Liu & Fu, 2015). The stairwayplot assumes that the sampled lineages come 

from an isolated (panmictic) population (i.e., unstructured), which is not true in our case (see 

results). However, this method allows a powerful investigation of the underlying gene genealogy 

which provides useful elements for interpreting the evolutionary history of a meta-population 

(Lesturgie, Planes, et al., 2022). All demographic inferences were performed using a generation 

time of 10 years and a mutation rate of 1.93e-8 per generation and per site following (Lesturgie, 

Planes, et al., 2022). 

2.5.3.5. Population structure 

Population structure inferences were performed on the dataset obtained following the assembly 

pipeline implemented in Stacks 2.5 as described above. After the de novo assembly step, the 

population script was called to keep loci present in at least 80% of the individuals per sampling 

site (r = 0.8) and with a minor allele frequency of 0.05, hence removing low frequency variants. 

We finally retained one random SNP per locus. Using a custom R script, we further filtered: (i) 

SNPs heterozygotes in more than 80% of the sample; (ii) loci with coverage higher than ~30x 

(which corresponds to the mean coverage plus twice the standard deviation); (iii) SNPs in the last 

5bp of the assembled locus; and (iv) loci containing more than five SNPs, after visual inspection 

of the distribution of segregating sites per locus. The resulting dataset was used for the following 

analyses. 1) sNMF implemented in the R package LEA (Frichot & François, 2015): we investigated 

the number of ancestral clusters K by running the algorithm 10 times, with values of K ranging 
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from 1 to 8. We chose the most likely K using the cross-entropy criterion and displayed the 

admixture coefficients under the best run. 2) DAPC implemented in the R package Adegenet 

(Jombart et al., 2010): we varied K from 1 to 8 and chose the best values based on the BIC criterion. 

Linear discriminant functions were used to test whether individuals were correctly reassigned to 

the inferred clusters. 3) FST: we computed overall and pairwise FST between sampling sites with 

more than 5 individuals using the PopGenome (flag nucleotide.F_ST) library in R (Pfeifer et al., 

2014) and tested its significance with 1000 permutations using a custom R script. Isolation by 

distance (IBD) was computed with a Mantel Test (Mantel, 1967) between the genetic (FST/(1-FST)) 

and the geographic or LC distance matrices and tested by 1000 permutations with the ade4 R 

package (Thioulouse & Dray, 2007). The Mantel test, similarly as before, was limited to PAC 

sites. To check for IBD in the Indian Ocean, we fit a linear model to the pairwise FST values 

computed between the PAC and IND sites and their respective geographic distances.  

 
Figure 2.35. Demographic scenarios investigated in all populations with Nind ≥ 7 through an 
Approximate Bayesian Computation (ABC) framework. Nanc: ancestral effective population size; Tc: time 
of effective population size change (NS only); Nmod: modern effective population size (NS only); Tcol: 
colonization time of the array of demes (FIM and SST); D1-100: demes (FIM and SST). Arrows represent 
the migrants exchanged (Nm) between demes. Details on each scenario are presented in the main text. 

 

2.5.4. Results 

2.5.4.1. Genetic diversity  

We discarded 30 individuals based on an excess of missing data after an initial de novo assembly. 

We found a mean depth of coverage of 10.77x (s.d. = 2.32) for the whole dataset. Summary 

statistics for all sampling sites are displayed in Table 2.18. The number of loci (monomorphic 
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included) and SNPs with no missing data ranged from 35594 to 146858 and from 36982 to 103258 

respectively across sampling sites (Table 2.18). Genetic diversity (θπ and θw) was lower in IND 

sampling sites than in PAC (Table 2.18). Tajima’s D values were positive in IND sampling sites 

and in Fakarava, suggesting an excess of high frequency variants when compared to the standard 

neutral model. Conversely, we found negative and significant Tajima’s D values in all other PAC 

locations (except for Moorea and Mckean), suggesting an excess of low frequency variants 

compared to the standard neutral model (Table 2.18).  

 
Table 2.19. ABC estimation. Posterior probability (PP) of the Stepping Stone model (SST) and its 
parameters (median value and 95% credible interval in parentheses).  
 

* The prior distribution of Nm is the product of two uniforms (one for N and one for m) 
§ COR and CPA regions are from the Pacific Ocean (PAC). 

Region Group Sampling site PP Nm Tcol Nanc 

IND IND Juan 0.67 
5.7 257800 21086 

(1.77 - 17.72) (8086 - 658471) (399 - 52652) 

COR§ 
CHE Bampton 0.73 

11.41 188782 45965 
(3.97 - 19.03) (127761 - 577503) (27556 - 49856) 

NCA Belep 0.51 
7.8 241218 49239 

(2.84 - 20.82) (112840 - 843171) (7346 - 56316) 

CPA§ 

PHO 

Enderbury 0.65 
8.36 197070 43602 

(2.9 - 20.9) (95260 - 678828) (14665 - 51030) 

Kanton 0.7 
8.16 257718 41236 

(2.84 - 16.55) (118094 - 789320) (2534 - 52613) 

McKean 0.6 
7.09 621535 18881 

(2.98 - 15.25) (158650 - 836223) (4968 - 51387) 

Niku 0.59 
14.1 152035 43495 

(3 - 30.55) (66928 - 598129) (9184 - 48625) 

Orona 0.48 
7.7 269621 41680 

(2.93 - 15.31) (137304 - 799518) (4575 - 51152) 

PAL Palmyra 0.73 
13.39 142756 32542 

(4.16 - 27.22) (62402 - 445380) (9502 - 37524) 

POL Fakarava 0.72 10.2 256744 40502 
(2.68 - 15.34) (110875 - 780150) (3091 - 49533) 

    Priors *U [0.0001 ; 100] U [100 ; 1500000] U [100 ; 100000] 
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Figure 2.36. Correlation map between genetic diversity (θπ) and Least Cost (LC) distances when 
considering Pacific Ocean sampling sites only. Each cell is coloured according to the correlation 
coefficient value computed between θπ and the LC distance from the putative origin of the range 
expansion (RE). Black dots represent the sampling sites considered. 

 
Figure 2.37. Variation of the effective population size (Ne) through time and its 75% confidence interval 
estimated by the stairwayplot for sampling sites of n ≥ 7 in IND (a), COR (b) and CPA (c) regions.   

●● ●
●

●●●
● ●

●
●

●

●
● ●

●

●●●
● ●

●
●

●

−50

−25

0

25

50 100 150 200
Longitude

La
tit

ud
e

Pool
●

●

Central Pacific

Coral Sea

−0.5

0.0

0.5
layer

Region
●● Pacific Ocean

●● ●
●

●●●
● ●

●
● ●

●

●●●
● ●

−50

−25

0

25

50 100 150 200
Longitude

La
tit

ud
e

Pool
●

●

Central Pacific

Coral Sea

−0.5

0.0

0.5
layer

Region
●● Pacific Ocean

0

20,000

40,000

60,000

80,000

0 200,000 400,000 600,000 800,000
Years Before Present

Ne

Juan (IND)

0

20,000

40,000

60,000

80,000

0 200,000 400,000 600,000 800,000
Years Before Present

Ne

Bampton (CHE)

Belep (NCA)

0

20,000

40,000

60,000

80,000

0 200,000 400,000 600,000 800,000
Years Before Present

Ne

Enderbury (PHO)

Kanton (PHO)

Mckean (PHO)

Niku (PHO)

Orona (PHO)

Palmyra (PAL)

Fakarava (POL)

(a)

(b)

(c)



Chapter 2. Meta-populations, Models and Conservation 

116 
 

2.5.4.2. Range Expansion 

The permeability coefficients maximising the correlation between genetic and the LC distances 

were very similar between the three habitat types. Indeed, we estimated the values of 1:1.02:1.02 

for open sea, coral reef habitat and seamounts respectively. These values were retained for the 

following RE and IBD analyses. We plotted the correlation map computed using PAC sites only 

in Figure 2.36. The most negative correlation coefficients are concentrated close to the COR 

sampling sites, suggesting that the most likely origin of the RE is slightly east to the IAA region 

(Figure 2.36). We found consistent results when adding IND sites to the analysis (Supp. Figure 

2.40), despite the geographic unbalanced distribution of our samples. 

2.5.4.3. Historical demographic inferences 

We investigated the demographic history for all sampling sites with n ≥ 7. We first used an ABC-

RF framework to compare demographic scenarios (Figure 2.35). SST was the most supported 

scenario in all locations, with posterior probabilities ranging from 0.48 to 0.78 and similar 

classification error rate among locations (Table 2.19 and Supp. Table 2.20). The median Nm 

ranged from ~6 to ~14 (Table 2.19). Posterior distributions of Nm were overlapping and clearly 

distinct from the prior distribution (Supp. Figure 2.41), and both the squared mean error (SME) 

and the mean root squared error (MRSE) were small among locations, suggesting reliable 

estimates (Supp. Table 2.21). Posterior distributions of Tcol overlapped among locations (Supp. 

Figure 2.41). Juan de Nova displayed a lower Nanc median value (~21k) than PAC sampling sites 

(ranging from ~34k to ~50k) although all credible intervals overlapped (Figure S2 and Table 2.19). 

Surprisingly, the ABC estimates of Tcol and Nanc for the Mckean sampling site were inconsistent 

with any other PHO sampling sites (Supp. Figure 2.41and Table 2.19). However, both SME and 

the MRSE for these two parameters were generally one order of magnitude larger than those 

estimated for Nm in all sampling sites (Supp. Table 2.21), suggesting less accurate estimates for 

Tcol and Nanc. 

We further investigated the variation of Ne through time using the stairwayplot algorithm (Figure 

2.37). We detected a broadly similar Ne dynamic across sampling sites that we summarized for 

simplicity in three time periods: looking forward in time we observed an ancestral expansion 

followed by a constant phase and a final systematic strong decrease in recent times (Figure 2.37). 

However, we found three main differences between IND and PAC sampling sites: i) the expansion 

time was around twice as recent in IND than in PAC (~180ky B.P. vs. ~400ky B.P); ii) the strength 
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of the expansion is much stronger in PAC sampling sites; iii) Ne during the constant period reached 

a value of ~40000 in PAC sampling sites and of only ~20000 in IND, consistent with the computed 

θ (Table 2.18). The PAC sampling sites showed a remarkably homogeneous stairwayplot, with 

only the peripheral sites (Fakarava and Palmyra) having a slightly more recent ancestral expansion 

(Figure 2.37).  

 

 
Figure 2.38. Individual-based population structure analyses. Ancestry proportions retrieved using the 
sNMF algorithm with K=2 and K=3 ancestral populations (a) and Principal Component Analysis (b). 
 

 
Figure 2.39. Population-based population structure analyses computed with populations of n ≥ 5. Heat 
map representing the pairwise FST values between sampling sites (a) and Isolation by distance (IBD) plot 
considering Pacific sampling sites only (b). 
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2.5.4.4. Population structure 

After filtering, 88276 variable loci were retained to perform individual based structure analyses. 

Both sNMF and the DAPC clustering algorithms found K=2 as the most likely number of ancestral 

populations or clusters (Supp. Figures 2.42 and 2.43-a). The ancestral populations inferred by 

sNMF perfectly matched the two oceanic regions, namely the Indian and the Pacific Ocean: the 

ancestry proportion of cluster 1 in IND samples ranged from 70% to 100% while the ancestry 

proportion of cluster 2 in PAC samples ranged from 87% to 100% (Figure 2.38-a). This highlights 

slightly more admixture in IND than in PAC samples. We retained one LD function in the DAPC 

which correctly re-assigned all individuals from IND and PAC to cluster 1 and cluster 2 

respectively (Supp. Figure 2.43-b). We further investigated K=3 under both algorithms and found 

three main results: i) the ancestral populations or clusters clearly identify three geographic areas 

corresponding to IND, COR, and CPA regions (Figure 2.38-a and Supp. Figure 2.44); ii) the 

ancestry proportion of cluster 3 follows a clinal distribution, steadily increasing in frequency from 

West (Indian Ocean) to East (French Polynesia) (Figure 2.38-a); iii) all individuals belonging to 

the three areas are correctly re-assigned to the three clusters by the DAPC computed with two LD 

functions (Supp. Figure 2.43-b). We then computed a PCA which showed similar results, with the 

first principal component explaining ~14.5% of the total variance and clearly separating 

individuals coming from the two oceans (Figure 5b). The second axis segregated CPA from COR 

samples. In agreement with the cluster analyses, CPA and COR are only slightly differentiated as 

the second principal component explains only ~1% of the total variance. The second axis also 

suggested a clinal differentiation between the two clusters (Figure 2.38-b).  

Population based analyses were performed on a reduced dataset excluding sampling sites with less 

than n=5 individuals. We therefore retained 14 sampling sites, n=168 individuals, and 88824 

variable loci and obtained an overall FST = 0.25 (p-value< 0.001). The pairwise FST highlighted a 

strong differentiation between Indian and Pacific sampling sites with values ranging from 0.53 to 

0.56 (and always significant, p-value ≤ 0.001, Supp. Table 2.22). In contrast, comparisons within 

oceanic regions never exceed 0.03 (Figure 2.39-a) with values not always statistically significant. 

Consistently with clustering results, a heatmap displaying pairwise FST values visually suggest the 

existence of the three clusters previously identified (Figure 6a). However, the average 

differentiation between COR and CPA is only slightly higher than within group comparisons 

(Figure 2.39-a). Moreover, we found a strong signature of isolation by distance (IBD) within the 
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Pacific Ocean (using PAC sites only), since the correlation between the FST and geographic or LC 

distance matrices was high and significant (Mantel test: r = 0.93; p-value < 0.001 in both cases, 

Figure 2.39-b). The correlation between genetic and geographic distances by considering only IND 

vs. PAC pairwise distances was also considerable although lower than in PAC region only (r = 

0.77, Supp. Figure 2.44).  

 

2.5.5. Discussion 

2.5.5.1. Range expansion 

Range expansions (RE) occur by a series of founder effects leading to the fixation of novel alleles 

and the decay in genetic diversity as colonization progresses (Excoffier et al., 2009). They also 

leave specific signatures in the gene genealogy of lineages sampled from a deme of the meta-

population (Maisano Delser et al., 2016; Ray et al., 2003) and in the extent of population structure 

(Mona, 2017; Mona et al., 2014). Testing for the occurrence of a RE is therefore fundamental to 

understanding the evolutionary history of a species. Here, the spatial distribution of genetic 

diversity suggested the occurrence of a RE most likely starting east of the Indo-Australian 

Archipelago (IAA). The inferred origin area was large (Figure 2.36), likely due to low differences 

in θπ between Pacific sampling sites (Table 2.18), but robust to the inclusion of samples from the 

Indian Ocean (Supp. Figure 2.40). The scenario of a RE was corroborated by other evidence. First, 

the strong and significant correlation coefficient between genetic and geographic distances in the 

Pacific Ocean (r=0.93; Mantel p-value < 0.001, Figure 2.39-b and Supp. Figure 2.44). This result 

alone would not be conclusive, since a similar pattern is also expected under an equilibrium 

isolation by distance, but it strengthens our previous findings. Second, the historical demography 

inferences performed in each sampled deme showed that the pattern of genetic variability was most 

likely the outcome of a non-equilibrium meta-population structured according to a stepping stone 

migration matrix (Table 2.19). In this context, both the colonization times of the meta-population 

estimated by the ABC (Supp. Figure 2.41) and the expansion times retrieved by the stairwayplot 

(Figure 2.37) harbour the signature of the RE process (Lesturgie, Planes, et al., 2022): the oldest 

times are expected to be close to the centre of origin of the RE, while the more recent ones are 

likely associated to the edge of the colonization wave(s). While the large variance in Tcol estimated 

by ABC does not allow for an accurate interpretation of the temporal dynamics of colonisation 

through the Indo-Pacific, the expansion times highlighted by the stairwayplot are consistent with 
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the RE scenario. Indeed, all sampling sites display a simultaneous expansion time around ~400 ky 

B.P. (Figure 2.37) except for Palmyra, Fakarava and Juan de Nova, which are the sites respectively 

further east (Palmyra and Fakarava) and west (Juan de Nova) to the inferred origin of the RE. In 

summary, all the evidence presented thus far point to an origin of C. amblyrhynchos east of IAA 

(particularly, east of New Caledonia), from which two migration waves took place, one to the East 

Pacific and the other to the Indian Ocean, with the Mozambique Channel being probably one of 

the last areas to have been colonized. 

Our hypothesis is in line with the recent results of (Walsh et al. 2022), but they detected the origin 

of the RE within rather than eastward the IAA, using a similar genetic diversity decay approach. 

This discrepancy may be mostly due to the sensibility of this algorithm to the spatial distribution 

of the sampled populations (Peter & Slatkin, 2013), which differs considerably between the two 

studies. Another source of discrepancy may lie in the different bioinformatics pipelines. (Walsh et 

al. 2022) assembled loci with PyRAD (Eaton, 2014), whose calling algorithm requires high 

coverage data to correctly identify genotypes (Rochette et al., 2019). Here, we used the genotype-

free approaches implemented in ANGSD to avoid possible skew towards low frequency variants 

in Rad-seq experiment with low to medium coverage (Heller et al., 2021; Mona et al., 2023) To 

shed more light on this issue, we carefully compared our results (obtained with ANGSD) to those 

obtained by three assembly and calling pipelines (namely, PyRAD (Eaton, 2014), Stacks v.1.48 

(Catchen et al., 2013) and Stacks v.2.5 (Rochette et al., 2019), see Supplementary Methods) using 

the Bampton sampling site as a test case. All three SFS displayed an excess of singletons in 

comparison to the one inferred by ANGSD (Figure S6b), clearly determining not only a stronger 

ancestral expansion but also the absence of the recent bottleneck when fed to the stairwayplot 

algorithm (Supp. Figure 2.45-a). These results are consistent with (Heller et al., 2021), as we found 

an excess of low frequency variants when using the Stacks pipeline compared to the genotype 

likelihood approach implemented in ANGSD. Consequently, we highlight that the SFS reported by 

(Walsh et al., 2022) could be slightly biased toward an excess of low frequency variants.  

The RE scenario, characterized by a centre of origin and two independent colonization waves, is 

similar to the one inferred for C. melanopterus by (Maisano Delser et al., 2019), a species whose 

range distribution overlaps with that of the grey reef shark. However, the most likely origin of the 

RE was located within the IAA for C. melanopterus, a well-known centre of origin for many teleost 

fishes (Cowman & Bellwood, 2013), and a biodiversity hotspot (Allen, 2008). The difference 
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observed between C. amblyrhynchos and C. melanopterus could result from the more balanced 

sampling scheme of (Maisano Delser et al., 2019), who could cover more homogeneously the 

Indo-Pacific. More samples from the IAA will be needed to refine our estimates. More generally, 

it will be interesting in the next future to explicitly investigate the role of the IAA for coral reef 

biodiversity fauna and to reconstruct the colonisations routes in the Indo-Pacific, using population 

genetics modelling applied to genomics data on multiple marine species to extract more general 

patterns (see for example (Delrieu-Trottin et al., 2020)). 

2.5.5.2. Historical demography 

The ABC framework not only provided another evidence in favour of a non-equilibrium meta-

population scenario through the model selection analysis, but also allowed us to further refine our 

understanding of the evolutionary history of the grey reef shark. By analysing each deme 

separately, we found an overlapping posterior distribution of Nm with an average mode of ~10 

(Table 2.19 and Supp. Figure 2.41). C. amblyrhynchos, similarly to C. melanopterus, is strongly 

dependent on reefs, whose distribution is not homogenous in the Indo-Pacific (Supp. Figure 2.46). 

We would have expected the connectivity in each sampled deme to be highly correlated to the 

distribution of coral reef in its neighbourhood, as it was previously observed in C. melanopterus 

(Maisano Delser et al., 2019). However, the two species differ in their dispersal behaviours: while 

grey reef sharks perform long-distance movements of at least ~900 km (Barnett et al., 2012; 

Bonnin et al., 2019; T. D. White et al., 2017), the blacktip reef shark exhibits a range of movement 

not exceeding ~50 km (Mourier & Planes, 2013). Our results reinforce the idea that the 

neighbourhood size in the two species is very different, with C. amblyrhynchos being able to cross 

expanses of open ocean and therefore being less sensitive to coral reef concentration than C. 

melanopterus.  

The homogeneity in the signature of genetic variation in each deme was confirmed by the 

stairwayplot analyses (Figure 2.37), contrasting with the heterogeneity previously described for 

C. melanopterus (Maisano Delser et al., 2019). All demes showed an ancestral expansion followed 

by a period of stasis and a strong bottleneck in recent times. We recently showed that these three 

time periods are the typical signature of the variation in the coalescence rate through time due to 

the meta-population structure, with the slight differences observed between sites being only due 

to their specific colonization time (Lesturgie, Planes, et al., 2022). This result confirms the 

similarity of dispersal pattern throughout the Indo-Pacific. Similarly, the signature of bottleneck 
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observed in recent times for all demes (Figure 2.37) is also the expected consequence of population 

structure (Chikhi et al., 2018; Lesturgie, Planes, et al., 2022; Mazet et al., 2015; Rodríguez et al., 

2018). This is true even when explicitly modelling spatial expansion with low Nm and colonization 

time of the same order as the one estimated in the grey reef sharks (as shown by the TD distribution, 

(Mona, 2017)).  Unfortunately, population structure and demographic decline affect the SFS in a 

similar fashion making impossible to quantitatively disentangle the contribution of both to the 

observed bottleneck estimated using RAD-seq data (Lesturgie, Planes, et al., 2022). We stress that 

investigating local recent changes in connectivity or demographic events will clearly requires 

whole genome sequencing coupled with inferential methods based on the IICR (Arredondo et al., 

2021) and/or linkage disequilibrium (Boitard et al., 2016). More generally, the next challenge will 

be to perform a full modelling of species structured in many demes as the grey reef shark. Here 

we took a simplified approach by considering each sampling site separately and by modelling the 

unsampled demes to estimate local migration rates. We are aware that in the future more data will 

be needed to explore complex demographic scenarios integrating RE that include both all sampled 

demes and the unsampled ones.  

2.5.5.3. Population structure 

The results presented so far suggest that dispersal abilities of C. amblyrhynchos are similar 

throughout the Indo-Pacific and independent of the availability of coral reefs. However, this cannot 

exclude the presence of barriers to gene flow which may have shaped the connectivity between 

demes. For widely distributed marine species, detecting such barriers may help to delineate 

management units and to take proper conservation measures in relation to fisheries (Dudgeon et 

al., 2012). Several evidence point to an absence of barriers to gene flow in the grey reef shark. 

First of all, we found a strong IBD pattern with a significant correlation between genetic and 

geographic distances of > 0.9 when considering only PAC samples (Figure 2.39-b) and a linear 

relation of smaller intensity between IND and PAC samples (Supp. Figure 2.44). Remarkably, 

these values are not affected by computing geographic distances between sampling sites under an 

LC approach. Indeed, the permeability values maximizing the correlation are (almost) the same 

for the different type of habitats. This suggest that different geographic features do not affect the 

direction of grey reef shark migrations, indicating, albeit indirectly, the absence of barriers to 

dispersal, consistently with the occasional long-distance swims detected across the open ocean 

(Barnett et al., 2012; Bonnin et al., 2019; T. D. White et al., 2017). When strong IBD is present, it 
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is difficult to attribute a biological meaning to groups identified by clustering algorithms 

(Meirmans, 2012). Both the sNMF and PCA analyses suggested a strong separation between IND 

and PAC samples (Figure 2.38), with the latter subdivided into two weakly divergent clusters 

(Figure 2.38 and Supp. Figure 2.47). The IND ancestral components diminished remarkably 

continuously eastward, once again supporting an IBD structure (Figure 2.38-a) rather than the 

presence of barriers to gene flow. This is consistent with the pairwise FST matrix, where intra 

Pacific comparisons did not exceed ~0.03 while the inter-oceanic comparisons have an average 

FST of ~0.54 (Figure 2.39-a). Defining management units within the PAC seems therefore 

inappropriate in the case of the grey reef shark, as genetic variations are rather continuous. This 

contrasts with what was previously suggested by (Boissin et al. 2019) at the Pacific scale: however, 

their results were based on a small number of microsatellites and they did not model IBD between 

the sampling points.  

The pitfall of our study is to extrapolate the dynamic of the grey reef shark at the scale of its whole 

range by focusing mostly on the Pacific Ocean. Indeed, even if the species seems to follow an IBD 

pattern also from Chagos to Eastern Australia (Boussarie et al., 2022; Momigliano et al., 2017), 

the level of population differentiation appears to be higher than what we found in the Pacific for 

similar geographic distances. However, while the distribution of coral reef in the Pacific Ocean is 

scattered due to the presence of many archipelagos, coral reefs in the Indian Ocean are more 

concentrated on the coastal edge of the Asian and African continents (Supp. Figure 2.46). The 

effective distance between sampling sites within the Indian Ocean would therefore be larger than 

in the Pacific Ocean, where coral reefs would act as stepping stones to facilitate the colonization 

process and further migrations. This could also account for the different linear relationship 

estimated in the Pacific vs. the one estimated between Pacific and Indian sampling sites (Supp. 

Figure 2.44).  

2.5.5.4. Conclusion 

We explored the evolutionary history of the grey reef shark throughout most of its range in the 

Indo-Pacific and contrasted the results with those previously obtained for the blacktip reef shark 

(Maisano Delser et al., 2019). The two species are among the most abundant reef sharks (MacNeil 

et al., 2020), share an almost overlapping distribution in the Indo-Pacific and are both strictly coral 

reef-dependent species. Despite similarities in the RE dynamic, patterns of genetic diversity and 

population structure are very different between the two species. First, C. melanopterus is 
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significantly more structured than C. amblyrhynchos at similar spatial distances (for comparison, 

FST values are ~30 times higher when comparing French Polynesia vs New Caledonia, see Table 

S5 of (Maisano Delser et al., 2019) and our Supp. Table 2.22). Second, C. amblyrhynchos shows 

homogeneous migration rates and demographic signals throughout its whole distribution whereas 

C. melanopterus is more sensitive to the spatial distribution of coral reef with a connectivity largely 

dependent on the short scale reef-availability (Maisano Delser et al., 2019). Indeed, migration rates 

estimated in areas with extensive coral reefs coverage (e.g., the Great Barrier Reef) are much 

higher compared to those estimated in isolated islands/atolls in the Indo-Pacific (Maisano Delser 

et al., 2019), something that we did not observe for C. amblyrhynchos. All these differences can 

be explained by the life history traits related to dispersal abilities of the two species, with C. 

amblyrhynchos moving more freely in open sea expanses compared to C. melanopterus, lowering 

the impact of coral density on the observed genetic diversity. However, it will be important in the 

next future to precisely characterize the extent of the neighbourhood size for both species. To this 

end, ecological and genomic data need to be coupled: this will help to carefully decipher how many 

management units are necessary for species conservation and at which scale they should be 

established. 

2.5.5.5. Comparison to Walsh et al. 2022 results 

A reviewer raised some concerns about our claims related to the discrepancies between (Walsh et 

al. 2022) results and ours. The reviewer first strongly stated that (Walsh et al. 2022) results are not 

biased because of the coverage. Mean and median values reported for each individual (obtained 

setting the minimum read depth assembly parameter to 6) are between 15x and 20x: we argue that 

this value may not be high enough to obtain unbiased results given the variant calling algorithm 

they use (the one implemented in Pyrad, which is the same as Stacks v.1: see (Rochette et al. 2019) 

for a discussion on this topic). More generally, it has been shown that genotype-free pipelines 

(such ANGSD, which we applied here) perform better than the direct calling approaches in Rad 

experiments (Warmuth & Ellegren, 2019) and that the direct calling could skew the SFS towards 

an increase of singletons (Heller et al., 2021). Here, we do not claim that (Walsh et al. 2022) results 

are all biased – we simply stress that i) theirs SFSs show an increase of singletons when compared 

to our data (this is particular striking when comparing the Bampton sites, present in both studies); 

ii) when applying their pipeline to our data (which are low coverage) we found an excess of low 

frequency variants compared to the results obtained by ANGSD (Supp. Figure 2.45-b). These 
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considerations suggest that Walsh et al. 2022 data could suffer from a slight skew to an excess of 

low frequency variants, which, in turn, would explain the detection of an ancestral expansion signal 

and the lack of a recent decrease of effective population size in their stairwayplot results (which 

we observed in our data, compare their Figure 3 with our Figure 2.37).  

The Reviewer raised a second point concerning our results: if a RE occurred (as both studies 

suggest more or less explicitly) then we should not observe a recent bottleneck in the sampled 

demes. This, according to the Reviewer, would suggest that our results are biased (while Walsh et 

al. 2022 are correct). This claim is unjustified for two main reasons: i) a recent bottleneck at local 

or global scale and/or a decrease in connectivity would inflate SNPs with average frequency 

variants affecting the reconstructed Ne trajectory particularly in recent times in any meta-

population model (i.e., also in RE); ii) in line with this, and more generally, the behaviour of a 

sample of lineages from a deme depends specifically from the parameters of the RE: in other 

words, any possible SFS (and so the coalescence rate or Ne trajectory through time estimated out 

of it) can be obtained by varying these parameters. Similarly, an unstructured model can mimic 

the SFS produced under any meta-population model simply varying the function of Ne variation 

through time (Chikhi et al., 2018; Mazet et al., 2016). Observing a deficit of low frequency variants 

in a deme is therefore not at all inconsistent with a species experiencing a RE (see (Mona et al., 

2014; Mona, 2017; Ray et al., 2003; Wegmann et al., 2006), among others). Moreover, the 

estimated time of the ancestral expansion in the grey reef shark is of the order of tens of thousands 

of generations and the exchanged migrants Nm ~10 per generation. Spatial explicit RE simulations 

already proved that under these parameters’ combination TD can be positive (Mona, 2017) and 

instantaneous colonization models (lacking the spatial components) SST show signature of recent 

declines (Lesturgie, Planes, et al., 2022) in agreement with theoretical predictions (Chikhi et al., 

2010, 2018; Mazet et al., 2016; Rodríguez et al., 2018). 
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2.5.6.4. Supplementary Methods 

Comparison of site frequency spectrum using different assembly and variant calling pipelines 

To empirically investigate the influence of low coverage on variant calling, we investigated the 

site frequency spectrum (SFS) reconstructed in the Bampton sampling site (N=10) using four 

assembly and variant calling pipelines:  

(1) S1: This pipeline is based on Stacks v.1.48  (Catchen et al., 2013). We implemented the 

same assembly parameters as those applied with Stacks v.2.5 and detailed in the main text 

(namely, m=3, n=3, and N=3). Stacks v.1.48 uses the calling algorithm of (Lynch, 2009) 

which requires high coverage data for accurate genotype inference (Rochette et al., 2019). 

Using a custom R script, we filtered: (i) SNPs heterozygotes in more than 80% of the 

sample; (ii) loci with coverage higher than the mean coverage plus twice the standard 

deviation; (iii) SNPs in the last 5bp of the assembled locus; and (iv) loci containing more 

than five SNPs, after visual inspection of the distribution of segregating sites per locus.  

(2) PY: This pipeline uses the assembly algorithm implemented in PyRAD  (Eaton, 2014). We 

applied the same parameters of (Walsh et al., 2022), in order to compare their results to 

ours. The clustering threshold (level of similarity between sequences to be considered 

homologous) was set to 0.9, reads with more than 5 low quality bases were discarded, the 

minimum read depth for base calling was set to 6 and the maximum to 1000. The calling 

algorithm of PyRAD is the same as Stacks v.1.48. Loci with more than 5 SNP and sites with 

higher heterozygosity than 0.5 were also discarded using PyRAD pipeline. Using a custom 

R script, we additionally filtered depth by retaining only sites in the 90% core of the 

distribution of depth following (Walsh et al., 2022).  

(3) S2: This pipeline is based on Stacks v.2.5  (Rochette et al., 2019) and mainly differs from 

S1 and PY in the calling algorithm. Stacks v.2.5 implements the population-based bayesian 

framework of (Maruki and Lynch, 2017) for variant calling, which is supposed to be more 

accurate for low coverage data (Rochette et al., 2019). The assembly step and filters were 

performed similarly to S1 above. 

(4) AN: This pipeline is the one we used in the main text for all sampling sites. It is based on 

a first assembly of a pseudo-reference sequence (as in (Heller et al., 2021; Khimoun et al., 

2020)) against which raw reads are mapped back, before using ANGSD (Korneliussen et 

al., 2014) for the genotype free allele frequency estimation. This pipeline has been 
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previously described and successfully applied to low-coverage RAD-seq data (Heller et al., 

2021; Khimoun et al., 2020; Lesturgie, Planes, et al., 2022) and it is detailed in the main 

text.  

We retained only loci with no missing data (monomorphic loci were used to properly scale the 

genetic diversity). The folded SFS was then computed by using a custom R script except for the 

folded SFS produced through the AN pipeline which was directly inferred using the RealSFS 

program implemented within the ANGSD framework. We computed the normalized SFS as in 

(Lapierre et al., 2017) to compare the distribution of alleles frequency between the four pipelines. 

The expectation of the normalized SFS is a horizontal line in a panmictic population of constant 

Ne (the standard coalescent model). The normalized SFS allows an immediate and qualitative 

description of the excess or deficit of low frequency variants compared to the standard coalescent 

model. We then inferred the variation of effective size (Ne) through time by modelling the SFS 

with the stairwayplot software (Liu & Fu, 2020). To be correctly scaled, the stairwayplot needs 

the total number of sites without missing data (monomorphic sites included) which were either 

directly extracted from the variant calling output (AN, S1 and S2) or estimated from the missing 

data rate detected in variant sites and the total number of sites assembled (PY). To compare the 

inferred stairwayplot with (Walsh et al., 2022), we used their same generation time of 16.4 years 

and mutation rate μ=1.9434e-08 per site per generation. This mutation rate was taken from 

(Maisano Delser et al., 2016), who estimated it based on the exon capture data of the black tip reef 

shark C. melanopterus. This value was later adjusted to represent a true genomic average, since 

exon capture represent a genomic sample enriched in conserved regions (Lesturgie, Lainé, et al., 

2022; Lesturgie, Planes, et al., 2022). Therefore, in the main text we used the corrected mutation 

rate of 1.93e-8 per site per generation and a generation time of 10 years as in (Lesturgie, Planes, 

et al., 2022). 
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2.5.6.5. Supplementary Tables 
Table 2.20. Confusion matrix of the model selection procedure: rows indicate the simulated models and 
columns the votes (in %) attributed by the ABC-RF algorithm to each of them. 

  Attributed votes (%) 
Class. error   FIM NS SST 

Juan 
FIM 41396 2027 6577 0.17 
NS 663 48706 631 0.03 
SST 5813 1059 43128 0.14 

Bampton 
FIM 40105 2251 7644 0.2 
NS 719 48590 691 0.03 
SST 6949 1432 41619 0.17 

Belep 
FIM 38085 2537 9378 0.24 
NS 822 48275 903 0.03 
SST 8790 1745 39465 0.21 

Enderbury 
FIM 41148 2141 6711 0.18 
NS 662 48637 701 0.03 
SST 5939 1091 42970 0.14 

Kanton 
FIM 40262 2269 7469 0.19 
NS 758 48507 735 0.03 
SST 6821 1366 41813 0.16 

McKean 
FIM 37984 2613 9403 0.24 
NS 837 48299 864 0.03 
SST 8825 1752 39423 0.21 

Niku 
FIM 42260 1851 5889 0.15 
NS 566 48925 509 0.02 
SST 4988 795 44217 0.12 

Orona 
FIM 40395 2203 7402 0.19 
NS 705 48595 700 0.03 
SST 6538 1284 42178 0.16 

Palmyra 
FIM 43083 1611 5306 0.14 
NS 483 49113 404 0.02 
SST 4344 561 45095 0.1 

Fakarava 
FIM 42156 1887 5957 0.16 
NS 607 48829 564 0.02 
SST 5140 870 43990 0.12 
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Table 2.21. Cross-validation of the ABC-RF procedure of the SST model: Mean Squared Error (SME), 
Mean Root Squared Error (RMSE) and 95% coverage of the median value for each parameter computed 
on 999 pseudo-observed datasets (pods). 

  Nm Tcol Nanc 

Juan 
Coverage 0.997 1 0.996 
SME 0.00448424 0.01473625 0.01679217 
MRSE 0.06559084 0.15917352 0.20927024 

Bampton 
Coverage 0.996 0.993 0.996 
SME 0.00418188 0.14437886 0.03688622 
MRSE 0.03547396 2.89427943 0.37985902 

Belep 
Coverage 0.997 0.994 0.998 
SME 0.00607304 0.06137466 0.0207203 
MRSE 0.08473424 0.78386441 0.17434075 

Enderbury 
Coverage 0.996 0.996 0.997 
SME 0.00179036 0.13584242 0.04827846 
MRSE 0.02448663 2.86874802 0.73693169 

Kanton 
Coverage 0.99 0.993 0.997 
SME 0.00153847 0.06132533 0.08600365 
MRSE 0.03178348 0.63525529 1.30039719 

Mckean 
Coverage 0.992 0.994 0.99 
SME 0.00563147 0.11468267 0.06404819 
MRSE 0.06642286 1.13569438 0.92112944 

Niku 
Coverage 0.999 0.999 0.999 
SME 0.00220155 0.03579402 0.01821552 
MRSE 0.03032898 0.47453067 0.25503461 

Orona 
Coverage 0.998 0.997 0.996 
SME 0.00489788 0.02427145 0.04237548 
MRSE 0.04727987 0.27677012 0.38470955 

Palmyra 
Coverage 0.999 0.998 0.998 
SME 0.00012809 0.01689414 0.02611148 
MRSE 0.01099299 0.27849299 0.45547058 

Fakarava 
Coverage 0.999 0.997 0.997 
SME 0.00304558 0.10564623 0.0475489 
MRSE 0.02769755 2.11211995 0.55497854 

 
 
Table 2.22. Matrix of pairwise FST values (lower triangle) and associated p-value (upper triangle). Color 
represents the region of origin: Indian ocean (yellow), Chesterfield islands (red), New Caledonia (green), 
Phoenix islands (blue), Palmyra (cyan) and French Polynesia (pink). 
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2.5.6.6. Supplementary Figures 

 
Figure 2.40. Correlation map between genetic diversity (θπ) and Least Cost (LC) distances when 
considering all sampling sites. Each cell is coloured according to the correlation coefficient value 
computed between θπ and the LC distance from the putative origin of the range expansion (RE). Black 
dots represent the sampling sites considered. 

 

 
Figure 2.41. Posterior distribution of the number of migrants per generation Nm (a), the colonisation time 
of the array of deme Tcol (b) and of the ancestral effective size Nanc (c) estimated under the stepping stone 

●

●

●● ●
●

●●●
● ●

●

●

●

●

●
● ●

●

●●●
● ●

●

●

−50

−25

0

25

50 100 150 200
Longitude

La
tit

ud
e

Pool
●

●

●

Central Pacific

Coral Sea

Indian Ocean

−0.5

0.0

0.5

layer

Region
●●

●●

Indian Ocean

Pacific Ocean

●

●

●● ●
●

●●●
● ●

●

●

●
● ●

●

●●●
● ●

−50

−25

0

25

50 100 150 200
Longitude

La
tit

ud
e

Pool
●

●

●

Central Pacific

Coral Sea

Indian Ocean

−0.5

0.0

0.5

layer

Region
●●

●●

Indian Ocean

Pacific Ocean

0.00

0.05

0.10

0.15

0.20

0 10 20 30 40
Nm

Density

0e+00

2e−05

4e−05

6e−05

8e−05

−250000 0 250000 500000 750000 1000000
Tc

Density

Juan (IND)

Bampton (CHE)

Belep (NCA)

Enderbury (PHO)

Kanton (PHO)

Mckean (PHO)

Niku (PHO)

Orona (PHO)

Palmyra (PAL)

Fakarava (POL)

prior

0e+00

3e−05

6e−05

9e−05

−20000 0 20000 40000 60000 80000
Nm

Density

0.00

0.05

0.10

0.15

0.20

0 10 20 30 40
Nm

Density

0e+00

2e−05

4e−05

6e−05

8e−05

−250000 0 250000 500000 750000 1000000
Tc

Density

Juan (IND)

Bampton (CHE)

Belep (NCA)

Enderbury (PHO)

Kanton (PHO)

Mckean (PHO)

Niku (PHO)

Orona (PHO)

Palmyra (PAL)

Fakarava (POL)

prior

0e+00

3e−05

6e−05

9e−05

−20000 0 20000 40000 60000 80000
Nm

Density

0.00

0.05

0.10

0.15

0.20

0 10 20 30 40
Nm

Density

0e+00

2e−05

4e−05

6e−05

8e−05

−250000 0 250000 500000 750000 1000000
Tc

Density

Juan (IND)

Bampton (CHE)

Belep (NCA)

Enderbury (PHO)

Kanton (PHO)

Mckean (PHO)

Niku (PHO)

Orona (PHO)

Palmyra (PAL)

Fakarava (POL)

prior

0e+00

3e−05

6e−05

9e−05

−20000 0 20000 40000 60000 80000
Nm

Density

(a) (b)

Number of migrants Years before present

Effective Size

0.00

0.05

0.10

0.15

0.20

−10 0 10 20 30 40
Nm

Density

0e+00

2e−05

4e−05

6e−05

8e−05

−250000 0 250000 500000 750000 1000000
Tc

Density

Juan (IND)

Bampton (CHE)

Belep (NCA)

Enderbury (PHO)

Kanton (PHO)

Mckean (PHO)

Niku (PHO)

Orona (PHO)

Palmyra (PAL)

Fakarava (POL)

prior

(c)



Chapter 2. Meta-populations, Models and Conservation 

133 
 

model (SST) for all sampling sites with Nind ≥ 7.  Colours represent the origin of the populations: Indian 
Ocean (yellow), Chesterfield islands (red), New Caledonia (green), Phoenix islands (blue), Palmyra 
(cyan) and Polynesia (purple). Line types represent the different populations from the Phoenix islands: 
Enderbury (solid), Kanton (dashes), Mckean (dots), Niku (dot-dashes) and Orona (long-dashes). The prior 
distribution is coloured in grey. 

 
Figure 2.42. Cross entropy criterion of the sNMF algorithm computed for K=1 to K=8 ancestral 
populations.  

 
Figure 2.43. Results of the Discriminant Analysis of Principal Components. Bayesian Information 
Criterion (BIC) computed from K=1 to K=8 clusters (a) and membership probability of each individual to 
the clusters when considering K = 2 or K = 3 (b). 
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Figure 2.44. Isolation by distance (IBD) plot with all sampling sites. Correlation value and regression 
line computed between genetic and geographic distances when considering only Indian vs. Pacific 
sampling sites (red) or when considering only Pacific sampling sites (blue). 

 
Figure 2.45. Variation of the effective population size (Ne) through time and its 75% confidence interval 
estimated by the stairwayplot (a) and Normalized Site Frequency Spectrum (b) of Bampton site (N=10) 
computed from data assembled using the different variant calling pipelines: ANGSD (AN, purple), 
STACKS v.2.5 (S2, green), STACKS v.1.48 (S1, red) and Pyrad (PY, blue). The stairwayplot was 
computed using the mutation rate μ=1.9434e-08 per site per generation and a generation time of 16.4 
years as in (Walsh et al., 2022). 
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Figure 2.46. Distribution of corals and seamounts in the Indo-Pacific oceans. Cells are coloured 
according to their habitat type: coral reefs (yellow), seamounts (red), open sea (blue) and land (black). 

 

 
Figure 2.47. sNMF algorithm computed on Pacific samples only. Cross entropy criterion of the sNMF 
algorithm computed for K=1 to K=8 ancestral populations (a) and ancestry proportions retrieved with 
K=2 and K=3 ancestral populations (b). 
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2.6. Conclusion and perspectives  

2.6.1. Coalescence Times and Unstructured Models in Meta-populations 
In this chapter I investigated the relations between life history traits (LHT), population structure 

and unstructured models, and their implications in the reconstruction of the evolutionary history 

of species. In section 2.3, I first explored through simulations of RADseq loci the reconstructed 

Inverse Instantaneous Coalescence Rate (IICR) from a sample of lineages from a deme belonging 

to a meta-population. To that end, I used the stairwayplot, an SFS-based unstructured method, but 

the IICR could have been similarly reconstructed using methods such as the PSMC (Li & Durbin, 

2011) if the whole genome was simulated. For mathematical tractability reasons, such 

investigations have traditionally been restricted to equilibrium models, i.e., where the meta-

population has always (i.e., for a very long time) been established in the range of the species (e.g., 

(Arredondo et al., 2021; Chikhi et al., 2018; Mazet et al., 2015, 2016; Rodríguez et al., 2018)). In 

result, non-equilibrium models investigations, where the array of demes gets colonized from an 

ancestral deme in history, remain scarce, despite it is expected to be more realistic as most 

widespread species have likely undergone range expansions (Excoffier et al., 2009). To this end, 

I investigated by simulating thousands of RAD-seq loci the effect of genetic structure on the gene 

genealogy in a non-equilibrium meta-population model when connectivity changes or not. 

Simulations were performed under two meta-populations scenarios: the Finite Island Meta-

population (FIM) and the Stepping Stone (SST) models (Figure 2.48, panels B and C). Both 

scenarios depict an ancestral deme that instantly colonized an array of 100 demes TCOL generations 

ago (hence the non-equilibrium nature). Since then, each deme exchanged a number of migrants 

(Nm) either with any other deme of the array (FIM) or only with the closest neighbours in a 2D-

grid (SST). Modified scenarios of SST and FIM included a possible instantaneous decrease in 

connectivity TCH generations ago (called FIM-CH and SST-CH). Various values of Nm, TCOL, TCH 

and of the strength of decrease in connectivity were investigated, and the stairwayplot was run to 

characterize their effect on the shape of the gene genealogy.  

This general framework provided three general findings. First, it confirmed the artificial signature 

of bottleneck typical of lineages sampled from a deme belonging to a meta-population (Chikhi et 

al., 2018; Maisano Delser et al., 2016, 2019; Mazet et al., 2015), as predicted by theoretical 

arguments (Wakeley, 1998, 1999), no matter the scenario simulated. Second, it demonstrated that 

a decrease in connectivity (i.e., a true bottleneck in a deme), produces the same gene genealogy 
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than the population structure artificial bottleneck. In consequence, it does not change the trajectory 

reconstructed though unstructured models. Third, the detection of an ancestral expansion by the 

stairwayplot happening at a time roughly consistent with the simulated TCOL, but only in scenarios 

with high enough Nm and/or TCOL. This suggests the ability of unstructured models to recover the 

time at which the species colonized the habitat, an important event of the history of a meta-

population, although its detection depends on the interplay between the level of connectivity and 

the colonization time of the deme.  

 
Figure 2.48. Simulated demographic scenarios in the different sections of this chapter. Panel A: NS (No 
Structure) is a non-structured model where the modern effective size (𝑁"#$) instantaneously changes to 
𝑁%&', at time shift 𝑇'3  generations ago. Panel B represents a FIM (Finite Island Meta-population) model 
with 100 demes that have been instantaneously colonised 𝑇'#- generations ago, from an ancestral 
population of size 𝑁%&'. Demes are allowed to exchange migrants with any other. Panel C represents a 
SST (Stepping-Stone) model. It is similar to FIM but the migrants are only exchanged between the four 
nearest neighbours in a two-dimensional grid (displayed below the scenario). 
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Figure 2.49. Coalescence phases in different meta-population scenarios with associated examples of 
reconstructed dynamics through unstructured models. Row a. General insight on the three different 
coalescence phases in the history of lineages sampled from a deme belonging to a stepping-stone non-
equilibrium meta-population described in this chapter. On the left, description of the interpretation of the 
shifts in coalescence rate under the panmictic assumption. In the middle, schematic diagram representing 
the coalescence rate in each phase. Each phase and related parameters are represented by a color. 
Parameters influencing the coalescence rate in each phase are the effective size of the deme (NDEME) and 
the migration rate (m) for the scattering phase (green); the number of migrants exchanged per generation 
(Nm) and the number of demes (d) for the collecting phase (blue); and the ancestral effective size (NANC) 
for the ancestral phase (red). In the right panel, the different phases are illustrated in practice by the 
reconstruction of the coalescence rate with the stairwayplot. Row b. Similar to row a. but in the specific 
case of a low Nm where the collecting phase cannot be reconstructed due to the absence of coalescence 
events in this time frame as schematized in the middle panel and illustrated by the stairwayplot in the 
right panel. Row c. Similar to A but in the specific scenario of a too recent TCOL (i.e., roughly similar to 
the value of NDEME) where the collecting phase do not happen in the history of the sample as schematized 
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in the middle panel and illustrated by the stairwayplot in the right panel. Both scenarios displayed in rows 
b. and c. will lead to a similar signature on the gene genealogy, but with a different underlying process 
(i.e., no signature of collecting phase despite it is present in row b., and total absence of the collecting 
phase in the history in row c.).  
 

These findings can be explained using coalescence arguments. In summary, Wakeley (1998, 1999) 

described the history of a meta-population in two phases (going backwards in time): the scattering 

phase, where lineages can freely merge or migrate to other demes, and the collecting phase 

happening at the end of the scattering phase, where each lineage has reached a separate deme. The 

different dynamic of these phases will impact the coalescence rates with the scattering phase 

having a much higher coalescence rate than in the collecting phase. During the transition from the 

scattering to the collecting phase, the coalescence rate will then decrease, resulting in an apparent 

increase of IICR (or Ne) in the unstructured model, or, going forward in time, a bottleneck such 

as detected in all our scenarios (e.g., Figure 2.49-a). So far, the two phases described by Wakeley 

do not explain why an ancestral expansion was detected: this is because the meta-population model 

described is at the equilibrium, i.e., demes have always been established in the range of a species 

or for a very long time. Here, we modelled the colonization of the array of deme: this means that 

at some point during the collecting phase, lineages will instantly merge into the ancestral deme. In 

this ancestral phase, coalescence events happen at a rate NANC which will be higher than in the 

collecting phase, resulting in the detection of a decrease in Ne during the transition between the 

two phases, or, going forward in time, an ancestral expansion (Figure 2.49-a). Finally, this general 

insight in three clear ancestral phases can be hampered by the demographic parameters of the meta-

population. For instance, only two phases were detected in scenarios with low Nm or too recent 

TCOL. While the scattering phase was detected in all scenarios, the detection and/or presence of the 

ancestral or collecting phase depends on the parameters of the model. The ancestral phase can be 

undetected in two cases: (1) TCOL could be too old (i.e., tending to an equilibrium model), putting 

the ancestral phase older to the TMRCA of the sample and therefore removing its signature from the 

gene genealogy, and (2) the ancestral phase is not detectable if the coalescence rate is roughly 

similar between the collecting and the ancestral phases, although it is realistic to assume it is 

different as the number of demes is likely very large in species organized in meta-populations. In 

addition, the collecting phase might not leave a signature in the gene genealogy depending on an 

interplay between parameters of the meta-population model: (1) when the number of migrants is 

too low the collecting phase is not detectable because too few coalescent events occurred during 
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the phase to leave a signature in the gene genealogy (low Nm, Figure 2.49-b), and (2), when TCOL 

is too recent, i.e., close to NDEME generations, the collective phase is simply absent from the history 

of the sample as the scattering phase roughly lasts NDEME generations (recent TCOL 2.49-c).   

This paper considerably increased our understanding of how population structure influences the 

gene genealogy, and how unstructured models can be helpful in inferring the demographic history 

of a deme belonging to a meta-population. Specifically, it shows how some processes can impact 

coalescence rate and can thus be detected using unstructured methods. However, it also confirms 

that an un-educated use of these models will lead to a mis-interpretation of recent trends, which 

can pose strong issues when investigating widespread endangered species. This highlights the 

importance of investigating meta-population structure before performing any inferences using 

unstructured models, as they will allow to recover the colonization time of the habitat, an important 

feature of the evolutionary history of most widely distributed species (which is exemplified in 

section 1.6.3).  

 

2.6.2. Life History Traits and Population Structure  
Different parameters of a meta-population model will influence the reconstructed coalescent rate 

through time as demonstrated in section 2.3. But how does it integrate with empirical inquiries? 

Are all widespread species genetically structured, and if so, how do Life History Traits (LHT) 

influence the degree of structure? To understand this, we investigated the correlation between LHT 

and demography in sharks by sampling four species in New-Caledonia that displayed a dispersal 

capacity gradient related to their LHT. The blacktip reef shark (Carcharhinus melanopterus) is the 

least mobile species as it is highly infeudated to lagoons. The blacktip shark (C. limbatus) and the 

grey reef shark (C. amblyrhynchos) are both fringing reefs associated species and display higher 

mobility than the blacktip reef shark, with movements reaching respectively ~150km and ~900km. 

Finally, the tiger shark (Galeocerdo cuvier) differs a lot from the three other species as it is 

significantly bigger, is capable of transoceanic movements and has a semi-oceanic habitat. By 

using an Approximate Bayesian Computation coupled to Random Forests (ABC-rf; Pudlo, 2018; 

Raynal et al., 2019) framework, I tested for meta-population structure in the four species. To that 

end I investigated the previously described SST and FIM models but also a non-structured model 

(NS) to account for the absence of structure (Figure 2.48), corresponding to the scenario of a 

panmictic population undergoing a change in its effective size.  
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Among the four species, only the tiger shark was best depicted by the NS model, the remaining 

three species being best explained by the SST scenario, where the estimated Nm increased 

consistently as the known movement range ability increased. The influence of LHT on population 

structure could then be summarize as follow: when movement abilities increase, the connectivity 

between demes increases until population structure fades into panmixia such as in the tiger shark. 

I then reconstructed the variation in coalescence rate through time using the stairwayplot in the 

three species organized in meta-populations. The expected recent bottleneck signal was detected, 

but also an ancestral expansion signal in C. limbatus and C. amblyrhynchos which was not present 

in C. melanopterus, associated with the lowest value of Nm. This corroborated the previously 

developed theoretical findings: Nm might be too small in C. melanopterus to detect the collecting 

coalescence phase. Conversely, the higher connectivity in both C. amblyrhynchos and limbatus 

determines a substantial amount of coalescence events in the collecting phase, allowing to the 

detection of the shift between the collecting and ancestral phases through an expansion in the 

IICR. Finally, this expansion signal is likely a signature of the colonization of the habitat, but 

extensive studies of these species at their range scale is further needed to confirm such intuition.  

The investigation of the relationship between LHT and historical demography has allowed to 

characterize some determinants of genetic structure in sharks, which is important both for multi-

species conservation planning and for understanding general drivers of population structure. In the 

future, more species should be included to precisely account for determinants of genetic diversity 

and structuration.  

 

2.6.3. Descriptive Methods: A Baseline for Demographic Inferences   
Testing for meta-population structure should be the first step in studying the evolutionary history 

of a species through its range distribution (as introduced in section 1.3). Above, I emphasized two 

reasons why this is crucial: (1) not accounting for population structure can strongly bias our 

interpretations of the observed variation in coalescence rate inferred under unstructured models; 

and (2) species can display various degrees of genetic structure depending on their LHT as 

exemplified in sharks (section 2.3). At the same time, this work highlights how useful unstructured 

models can be to detect signature of the colonization process in structured species, if interpreted 

correctly. In this chapter, I exemplify the necessity and benefits of the descriptive methods step 

(see Chapter 1) to assess the degree of population structure through the investigation of the 
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evolutionary history of two species of contrasted genetic structure: the tiger shark (G. cuvier), and 

the grey reef shark (C. amblyrhynchos). The two species were introduced earlier (in 1.6.2): ABC-

rf investigations in a single location suggested either panmixia (G. cuvier) or meta-population 

structure (C. amblyrhynchos). In both cases, I run a similar set of descriptive analyses composed 

of: clustering and FST-based analyses; model selection between NS, FIM and SST models in each 

sampling locations following the ABC-RF framework detailed above (Figure 2.48); and 

stairwayplot inference of the variation in coalescence rate in each sampling location.  

The case of the tiger shark. 50 individuals were sampled from five Indo-Pacific (IP) sampling 

sites and one Atlantic Ocean (AO) sampling location and sequenced following a dd-RADseq 

protocol. By coupling clustering algorithms, FST and the ABC-RF framework, I highlighted high 

genetic differentiation between the AO and the IP but also provided robust evidences of panmixia 

at the oceanic scale (i.e., in AO and IP). When panmixia is confirmed, unstructured models have 

a direct biological meaning as signals inferred can be interpreted as Ne variation through time. 

Moreover, having two panmictic populations provide the opportunity to design relatively simple 

models (in comparison to meta-population models) to better understand the evolutionary history 

of the species. To illustrate that, I investigated patterns of migration and divergence between the 

two panmictic populations. Multiple Isolation-Migration (IM) nested models were investigated 

using fastsimcoal approximating likelihood framework, which models the two-dimensional SFS 

to estimate the most likely set of parameters under a user-defined model and is also able to compare 

the likelihood of different models. The most likely scenario displayed an ancestral divergence 

~193,000 years ago and an ongoing but limited asymmetric migration ~176 times larger from the 

Indo-Pacific to the Atlantic Ocean than vice versa. Given the preference of the tiger shark for warm 

waters (Payne et al., 2018), I explained the limited migration by the occurrence of the cold 

Benguela current off south Africa, acting as a barrier to gene flow between the two basins. 

Nevertheless, the barrier is made permeable by the Agulhas leakage flowing warm water from the 

IP to the AO (Beal et al., 2011), which can account for the asymmetric migration consistently with 

observations in other sharks and bony fishes (Gaither et al., 2016; Maduna et al., 2017). The two 

populations thus likely remain connected, although they separated a long time ago and effective 

migrants are rare. I furthermore highlight contrasted demographic trends in the two basins using 

the stairwayplot, with a recent bottleneck in the IP and a recent expansion in the AO. Overall, 

given the absence of population structure at a large scale, we were able to precisely investigate the 
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divergence between populations and their respective demographic trends, which allowed to 

disentangle previous hypothesis about the tiger shark evolutionary history.   

The case of the grey reef shark. I investigated the demographic history of the grey reef shark 

with the ultimate goal of comparing it to the sympatric and congeneric species C. melanopterus 

whose history was investigated in (Maisano Delser et al., 2019). To that end, 175 individuals were 

sampled within its range (the Indo-Pacific), and sequenced following a dd-RADseq protocol. 

Clustering algorithms and pairwise-FST first highlighted strong genetic differentiation between the 

Indian and the Pacific Ocean (FST~0.56). The ABC-rf framework further demonstrated that the 

species is structured in an SST meta-population with a homogeneous level of connectivity through 

its range. Consistently with meta-population structure, the species displayed strong isolation by 

distance (IBD) but low genetic differentiation at the oceanic scale, and further landscape genetics 

analyses suggested the absence of clear barrier to dispersal in the Pacific. This confirmed the ability 

of C. amblyrhynchos to perform long distance dispersal (LDD), consistently with long range 

movements monitored up to 926km (Barnett et al., 2012; Bonnin et al., 2019). In addition, the 

species displayed a range expansion signature, which was shown by coupling the investigation of 

the frequency of derived alleles and the decay of genetic diversity with distance to a putative origin 

(Peter & Slatkin, 2013; Ramachandran et al., 2005). This indicated a likely origin of RE east of 

the Indo-Australian Archipelago (IAA), also known as the Coral Triangle. Unlike the tiger shark, 

panmictic at a large scale, the stairwayplot does not convey (directly) variations of effective sizes 

in demes for the grey reef shark. To understand better the history of the species, one strategy would 

be to device more complex SST scenarios, for example introducing a change in connectivity 

through time. Detecting changes in connectivity might only be possible in the future larger amount 

of data coupled to additional statistics (notably LD-based). However, the stairwayplot is expected 

to provide additional details about the colonization dynamics as demonstrated in section 2.3, 

notably about the tempo of the process. In fact, we detected the most recent ancestral expansions 

for the two populations located close to the ends of the range distribution, with the most recent 

expansion being detected the Indian Ocean. Coupled to RE results, it provides strong evidences of 

two colonization waves taking place from the IAA to the Pacific and likely more recently to the 

Indian Ocean. This RE dynamics is highly congruent with the one inferred in the sympatric C. 

melanopterus (Maisano Delser et al., 2019), reinforcing the hypothesis around the role of the IAA, 

a current biodiversity hotspot (Allen, 2008), as a centre of origin for many teleost fishes (Cowman 
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& Bellwood, 2013). The two species share the same coral habitat and showed similar amount of 

genetic structure between the edge of their range distribution and an organization in meta-

population, however, they display several contrasting demographic features. Notably, the LDD 

suggested in C. amblyrhynchos contrasts with C. melanopterus which is strongly structured at a 

low scale (Maisano Delser et al., 2016, 2019; Mourier & Planes, 2013). However, this is not 

surprising given their respective LHT, with C. amblyrhynchos being less dependent on coral reef 

distribution, bigger, and capable of wider movements. This is suggestive of differences in the 

ecology of the species, and possibly in their genetic resilience. For instance, the heterogeneous 

estimated Nm across the range of C. melanopterus (Maisano Delser et al., 2019) likely emphasizes 

the strong dependence of C. melanopterus to the coral habitat whose cover is heterogeneous the 

Indo-Pacific. This contrasts with the homogeneous estimate of Nm through the range of C. 

amblyrhynchos, suggesting that it is capable of large migrations and less dependent on coral cover.  

 

2.6.4. General conclusions  
In this chapter, I first highlighted the utility of unstructured models to uncover important elements 

of the history of a meta-population by underlining the influence of meta-population organization 

and its history on the shape of the gene genealogy. I then provide evidences of the influence of 

LHT on the degree of population structure. Overall, I stress the importance to always test for 

population structure using descriptive approaches, and then to perform and interpret demographic 

inferences accordingly to the underlying genetic structure. This was illustrated by studying the 

evolutionary history of species with contrasting genetic structure. In G. cuvier, panmictic at the 

oceanic scale I was able to characterize migration and divergence between two oceanic basins, 

ultimately allowing to disentangle previous hypothesis about the evolutionary history of the 

species. Conversely, descriptive analyses in C. amblyrhynchos displayed meta-population 

structure within its range, and more specifically, I could detect range expansions (RE) signatures. 

This context allowed me to show empirically the utility of unstructured models to describe the 

shape of the gene genealogy, in agreement to what proposed in section 2.3. Indeed, the 

combination of structured and unstructured models allowed to characterized its evolutionary 

history and to compared it to C. melanopterus. In the end, we highlighted the strong genetic 

differences between the two reef species, likely driven by their biology, which emphasizes once 

more the influence of LHT in shaping the evolutionary history of species. 
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Figure 3.1. Thorny Skate (Amblyraja radiata).  
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3.1. Context 

3.1.1. The thorny skate: an endangered species with a striking size 

polymorphism 
The evolutionary history of species is shaped by demographic and selective processes. Today, 

studies have not always extensively set out to understand their interplay, which should be eased 

by demographic modelling. In this chapter, I investigate the case of the Thorny Skate, a Vulnerable 

species (Kulka et al., 2020; Sosebee et al., 2016) that displays a size polymorphism in part of its 

range (Mcphie & Campana, 2009; Sosebee, 2004; Sulikowski et al., 2005; E. G. Templeman, 1984; 

W. Templeman, 1987), which is believed to be associated to decreasing demographic trends 

(Kulka et al., 2020; Sosebee et al., 2016). Yet do date, this association is not clear, and the 

determinism behind the discrete size polymorphism remains unknown despite some population 

genetics attempts to characterize it (Denton et al., in prep; Lynghammar et al., 2016). One of the 

main objectives of this chapter was to understand the origin of the polymorphism. This was 

revealed to be determined by a supergene, a complex system that I introduce below. Thus, the 

main focus of this chapter is to show how the extensive reconstruction of demographic history is 

crucial to elaborate conservation hypotheses as well as to understand the origin of such peculiar 

system.  

 

3.1.2. A word on Supergenes  
Supergenes are genomic regions that encompass genes all inherited together as a single gene in a 

Mendelian fashion (Schwander et al., 2014; Thompson & Jiggins, 2014; Wellenreuther & 

Bernatchez, 2018), hence the term “supergene”. Supergenes are generally considered to arise from 

chromosomal inversions (Gutiérrez-Valencia et al., 2021; Schwander et al., 2014), which are 

chromosome fragments that, during DNA replication in meiosis, separate from the replicating 

DNA segment and reattach to the chromosome in the opposite direction. The recombination 

process is then suppressed between chromosomes whose set of genes is in the opposite direction 

because a crossing over would lead to gametes with non-even genetic material (i.e., non-even 

chromosome sizes), except in the case of occasional double crossing-over. However, 

recombination remains active between chromosomes keeping the same genetic order. As direct 

consequence of their nature, chromosomal inversions can lead to structural issues for 
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heterokaryotype individuals (i.e., individuals having one inverted and one non-inverted chromatid) 

during meiosis (especially when the inversion encompass the centromere), or the disruption of a 

coding sequence with consequences for gene expression. In this context, supergenes are series of 

co-adapted alleles remain stacked together in one haplotype by (large) inversions. The co-

adaptation of such alleles is deemed to be the major force leading to the maintenance of 

polymorphic inversions in populations (Wellenreuther & Bernatchez, 2018).  

The nature of the many different genes inherited in a single block associates supergenes with 

complex phenotypes (and sometimes pleiotropy). One of the most famous examples of supergene 

are sex chromosomes (Branco et al., 2018; B. Charlesworth, 1996; B. Charlesworth & 

Charlesworth, 1978; D. Charlesworth, 2016), as they enable the efficient inheritance of genes 

involved in the determinism of sex. However, supergenes are also involved in the determinism of 

very unique, non-sex related, traits in different organisms (Schwander et al., 2014; Thompson & 

Jiggins, 2014). In animals, the most documented examples are supergenes determining mimicry 

and wing morph in butterflies (Clarke & Sheppard, 1960; Ford, 1966; Joron et al., 2006, 2011), 

and social behavior polymorphism in ants (Avril et al., 2019; Brelsford et al., 2020; Chapuisat, 

2023; Kay et al., 2022; Stolle et al., 2022). While supergene regions have been well characterized 

and strongly associated with one (or more) phenotypes in few model system, this is not the case in 

less documented species where associations with phenotypes remain less robust to date. For 

instance, several supergenes have been found in Cod species (Barney et al., 2017; Matschiner et 

al., 2022), Atlantic salmon (Stenløkk et al., 2022), or Rainbow trout (Pearse et al., 2019), but their 

role remains debated. Many supergene-related determinisms have yet to be characterized, which 

will eventually be increasingly possible thanks to the possibilities offered by whole-genome 

sequencing data and their growing affordability. 

The peculiar nature of supergenes and associated complex phenotypes poses many questions as to 

how they can spread in space and be maintained in (Schwander et al., 2014; Thompson & Jiggins, 

2014). How is it possible that supergenes, sometimes very large and millions of generations old 

(Wellenreuther & Bernatchez, 2018), persist through time in the face of the lack of recombination? 

The recombination process is complex in that respect, as it can prevent the fixation of maladapted 

alleles and favors the spread of advantageous alleles (Felsenstein, 1974) but its absence can also 

favor the maintenance of co-adapted alleles which has been shown to be extremely useful in the 

case of sex chromosomes (Branco et al., 2018). This complex interplay between the advantage or 



Chapter 3. Supergenes, Demography and Conservation 

148 
 

disadvantage of alleles trapped in supergenes, and the benefit of co-adapted alleles result in 

complex selective processes of different kind (Wellenreuther & Bernatchez, 2018).  

A huge diversity of selective processes has been described across the years, with definitions 

varying depending on the context. One of the most important features is that selection can either 

act against polymorphism (or genetic diversity), or in favor of it, therefore leading to the 

maintenance of alleles. In the first case, supergenes can be under directional selection (i.e., one 

haplotype/allele is associated with better fit), which can lead to the fixation of one allele of a 

supergene (Lee et al., 2017; Schaeffer, 2008). Additionally, a deficit of heterozygotes can be 

observed when associated with less fitted phenotype in the case of divergent selection (Barth et 

al., 2017; Jones et al., 2012; Kozak et al., 2017) or in the case of positive assortative mating (Ayala 

et al., 2013). These two processes (i.e., divergent selection and positive assortative mating) are 

known to lead to sympatric speciation and therefore do not act in favor of the maintenance of 

polymorphic supergenes in populations. Supergene maintenance is usually believed to happen 

through balancing selection (Wellenreuther & Bernatchez, 2018) which has been documented 

through three main processes: (1) Overdominance, which occurs when the heterozygote genotype 

is advantageous (Lindtke et al., 2017), and can happen rapidly when dominant beneficial alleles 

arise in the two haplotypes of an inversion (Kim et al., 2017); (2) Varying selection in time and 

space, which occurs when fitness of supergene alleles changes with environment conditions, the 

latter can also change across the range distribution (e.g., a gradient) and/or over time (Cheng et 

al., 2012; Wallberg et al., 2017; White et al., 2007); or (3) negative frequency-dependent selection, 

which is close to varying selection, but occurs when the fittest phenotype is the least frequent and 

can be mediated by sexual selection (Chouteau et al., 2017).   

The long-term persistence of supergenes is therefore often explained by balancing selection 

mechanisms. However, short-term consequences of supergenes have been poorly (if ever) 

documented, despite the established accumulation of deleterious alleles (Berdan, Blanckaert, et 

al., 2022; Berdan et al., 2021) that could have rapid consequences, especially in a context of 

intensifying global change (Roesti et al., 2022) with possible worrisome effects for endangered 

species. At the same time, while both long and short-term selective processes remain key to 

understanding the trajectories of populations, comprehending the origin and maintenance of 

supergenes is also dependent on demographic processes occurring through the range of the species 

(Jay et al., 2020; Schaal et al., 2022; Thompson & Jiggins, 2014). Overall, a robust and thorough 



Chapter 3. Supergenes, Demography and Conservation 

149 
 

characterization of the origin and maintenance of supergenes thus requires a deep understanding 

of demographic processes which can be tackled by modelling genetic diversity at the scale of 

whole distribution of a species.  

 
 

3.2. Objectives 
This chapter has two main objectives. First, I aim to characterize the determinism behind the size 

polymorphism in the Thorny Skate and its possible relation with conservation. Second, as I report 

the discovery of a size-determining supergene to answer part of the first objective, and given the 

conservation implications, I demonstrate how the thorough reconstruction of demographic history 

provides key elements to understand both the origin of the supergene and increase our 

understanding of the conservation implications. 
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3.3. A Size-determining Supergene Hampers a Vulnerable 

Population Recovery 
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3.3.1. Abstract  
The Thorny skate (Amblyraja radiata) population of the NW Atlantic is endangered (Kulka et al., 

2020). It also exhibits a unique discrete size polymorphism not seen in other parts of its range. In 

2003 US federal protections were put in place to limit harvesting of all 7 skate species in the region. 

All but the Thorny skate have shown signs of successful population recovery (Kulka et al., 2020). 

We conducted a genomic screen of the Thorny skate and discovered a 31 megabase “supergene” 

contained in an inversion, suppressing recombination, that is associated with the size 

polymorphism. This “supergene” is inherited in a mendelian fashion (Schwander et al., 2014; 

Thompson & Jiggins, 2014). In Canadian waters, where there are signs of population recovery 

(Kulka et al., 2020), the supergene genotypes are in Hardy Weinberg equilibrium. However, in the 

Gulf of Maine, where population non-recovery is most acute, there was a deficit of heterozygotes, 

consistent either with assortative mating or selection against heterozygotes. Demographic 

modelling indicates that the large allele (HB) originally introgressed into the ancestral Thorny 

skate population in the last 160k years from a congeneric species. The HB allele subsequently 

spread through much of the NW part of the range where it now appears to have context dependent 

sub-regional effects on fitness, despite high regional gene flow in the recombining genome 

prevents speciation and replenish genetic diversity in the Gulf of Maine. The study highlights a 

rarely considered role for context dependent genetic compatibilities in the conservation and 

management of endangered populations.  
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3.3.2. Background 
Chromosomal inversions prevent recombination, preserving the integrity and coherence of the 

linked genes they contain (Dobzhansky & Sturtevant, 1938; Faria et al., 2019; Hoffmann & 

Rieseberg, 2008; Kirkpatrick, 2010; Wellenreuther & Bernatchez, 2018). Suites of genes in 

inversions are often referred to as supergenes, which can lead to the Mendelian inheritance of 

complex phenotypes (Schwander et al., 2014; Thompson & Jiggins, 2014). While the existence of 

supergene systems has long been acknowledged (C. A. Clarke & Sheppard, 1960), the accessibility 

of whole genome sequencing (WGS) data has significantly amplified their detection. The presence 

of supergene-associated traits has been shown in several systems i.e: sociality in ants (Avril et al., 

2019; Brelsford et al., 2020; Chapuisat, 2023; Kay et al., 2022; Lagunas-Robles et al., 2021); 

migratory behavior and adaptation to salinity and temperature in cod (Barney et al., 2017; Berg et 

al., 2015, 2016), and wing morphology and pattern coloration in butterflies (Joron et al., 1999, 

2011). Supergenes are maintained in populations by an interplay between demographic and 

selective processes (Thompson & Jiggins, 2014) the relative contributions of which can be difficult 

to disentangle without careful reconstruction of the demographic history of populations based on 

neutral markers. While varying selection in space and time is often invoked to explain long-term 

persistence of supergenes (Wellenreuther & Bernatchez, 2018), the absence of variability resulting 

from limited recombination alongside intricate phenotypes impede swift adaptation responses to 

rapid environmental shifts. This could critically impact endangered species, underscoring the 

importance of comprehending the potential effect of supergenes on the short-term evolutionary 

dynamics of species. 

The Thorny skate (Amblyraja radiata) is a vulnerable species inhabiting the coastal shelves from 

South Carolina in the Northwest Atlantic (NWA) to the Barent Sea and the British islands in the 

Northeast Atlantic (NEA, Figure 3.2) (Kulka et al., 2020). The species used to be intensively fished 

in NWA which leads to a steep decline in US stocks from which they have not yet recovered, in 

spite of stringent conservation measures designed to protect them (Kulka et al., 2020; Sosebee et 

al., 2016).  The NWA is home to two morphs of different size each displaying characteristic growth 

curves (Mcphie & Campana, 2009; Sosebee, 2004; Sulikowski et al., 2005; E. G. Templeman, 

1984; W. Templeman, 1987), hereafter referred to as large and small morphs. The large morph, 

which is restricted to NWA, reaches a maximum size of 104 cm Total Length (TL) while the small 

morph, occurring over the whole range of the species, reaches a maximum size 72 cm TL (W. 
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Templeman, 1987). To date the genetic underpinnings of this morphological polymorphism have 

eluded detection, as neither microsatellite nor mitochondrial data show genetic differentiation 

between large and small forms (Denton et al., n.d.; Lynghammar et al., 2016). At the same time, 

genetic diversity patterns across the species range remain poorly understood. Mitochondrial data 

suggest weak population genetic structure and isolation by distance across the entire range 

(Chevolot et al., 2007) while microsatellite data show genetic differentiation between the NWA 

and NEA regions (Lynghammar et al., 2016).  

 
Figure 3.2. Whole Genome sample scheme of thorny skates. The range distribution of the Thorny 
skate is filled in blue. Map is displayed using a central conic projection at latitude 60ºN. Shape of the 
sampling location point represents the geographical region: circle = Northeast Atlantic (NEA); triangle = 
Northwest Atlantic (NWA). The sequential colored areas represent the scaled density of the range 
expansion origin inferred using the TDOA algorithm computed 100 times (see results).  
 
Here we set out to understand the genomic and/or environmental origins of the size polymorphism 

in the northwest Atlantic and its implications for the conservation of the species. We first 

established a high-quality reference genome for the Thorny skate based on a combination of long 

read (PacBio), Hi-C and Bionano and Illumina short read sequencing in collaboration with the 

Vertebrate Genomes Project. We subsequently collected whole-genome ~17x Illumina sequence 

data for a sample of 49 individuals spanning the species' distribution range (Figure 3.2). This 
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approach allowed us to discover a size-determining ~31 Mb supergene contained in a chromosome 

inversion on chromosome 2, that was polymorphic in the NW Atlantic region. We further screened 

470 individuals across the range of the species to characterize the distribution of the supergene’s 

alleles and confirmed its association with size. To better understand the origin, maintenance and 

allelic distribution of the supergene, we reconstructed the demographic history of the species based 

on analysis of millions of neutral genome-wide SNPs. PacBio sequencing of an individual of the 

sister species A. hyperborea revealed the supergene to be present in at least one of the congeners. 

When this information was combined with the extant geographic distribution of both alleles and 

the historical reconstruction of demography, we were able to infer that the supergene was most 

likely transmitted to A. radiata through introgression from a congener. Our findings further show 

that the supergene is hampering the recovery of the highly vulnerable US stocks, presenting a 

particular challenge for Thorny skate conservation and management in the NW Atlantic. 

 

3.3.3. Results 

3.3.3.1. Population structure 

We used Principal Component Analysis (PCA) of SNP variation to explore population structure. 

The first axis (~14% of total variance) revealed two clusters, corresponding to the North Eastern 

(NEA) and the North Western Atlantic (NWA) regions respectively (Figure 3.3-A). The second 

axis (~2% of total variance) separated individuals sampled from the Gulf of Maine (GoM) with 

those from Newfoundland (CAN), the two NWA sampling sites (Figure 3.3-A). We estimated the 

individual ancestry coefficients and the most likely number of ancestral populations using the 

sNMF algorithm (Frichot & François, 2015). The cross-entropy criterion identified K=2 as the 

most likely number of clusters (Supp. Figure 3.7-A-B), perfectly matching those detected by the 

PCA (Figure 3.3-A). We further run both the PCA and sNMF within each cluster separately. The 

first two PC axes explained as low as ~5% and ~4% of the total variance in NWA and NEA 

respectively, and in both datasets K=1 was the most likely number ancestral populations. However, 

both algorithms harbored signatures of fine scale population structure as suggested by clinal 

distribution of genetic variation within both regions (Figure 3.3-B-C and Supp. Figure 3.7-C-F). 

All pairwise FST comparisons were statistically significant (p ≤ 0.001) and generally consistent 

with the results provided by the clustering algorithms. Values ranged from 0.002 to 0.004 in intra-
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cluster comparisons (i.e., within NEA and within NWA) and from 0.173 to 0.189 when comparing 

NEA vs NWA sampling sites (Figure 3.3-D).  

 

Table 3.1. Summary statistics for each sampling location. Number of individuals sampled for the 
whole genome study (NWG) and the screening study (NSC). For each sampling location with NWG ≥ 5: total 
number of SNPs (NSNPs), total number of sites (Nsites), mean pairwise difference (θπ) and Watterson’s 
estimator of genetic diversity (θw) both scaled Nsites and Tajima’s D (TD). For sampling sites included in 
the screening study (NSC>0), total number of individuals carrying each genotype (NHBHB, NHBHS, NHSHS) 
and HB allele frequency (fHB). Number of individuals carrying each genotype in bold are not in Hardy-
Weinberg equilibrium (HW exact-test: p<0.001).  

 

 

  NWG NSC NSNPs Nsites θπ θw TD NHB/HB NHB/HS NHS/HS fHB 

NWA 
GoM 16 284 13,926,040 439,435,032 0.0063 0.0079 -0.7903 78 

(f=0.27) 
10  

(f=0.04) 
196  

(f=0.69) 0.29 

CAN 5 40 11,872,562 604,725,402 0.0063 0.0069 -0.4877 4 
(f=0.09) 

23 
(f=0.58) 

13 
(f=0.33) 0.39 

             

NEA 

SWG 2 7 - - - - - 0 
(f=0) 

0 
(f=0) 

7 
(f=1) 0 

SEG 3 0 - - - - - - - - - 

E-GR 2 2 - - - - - 0 
(f=0) 

0 
(f=0) 

2 
(f=1) 0 

W-IC 5 50 10,275,797 558,262,795 0.0058 0.0065 -0.5318 0 
(f=0) 

0 
(f=0) 

50 
(f=1) 0 

E-IC 5 34 9,982,473 535,940,022 0.0059 0.0066 -0.5212 0 
(f=0) 

0 
(f=0) 

34 
(f=1) 0 

W-NW 1 0 - - - - - - - - - 

S-NW 1 5 - - - - - 0 
(f=0) 

0 
(f=0) 

5 
(f=1) 0 

N-NW 9 47 12,708,852 538,100,423 0.0057 0.0069 -0.6983 0 
(f=0) 

0 
(f=0) 

47 
(f=1) 0 
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Figure 3.3. Population structure of the thorny skate. Panels A-C: Principal Component Analyses 
(PCA) using all individuals (panel A), only GoM and CAN individuals (cluster NWA, panel B) and only 
individuals from SWG, SEG, W-IC, E-GR, E-IC, W-NW, S-NW and N-NW (cluster NEA, panel C). 
Panel D: Heatmap of pairwise FST values between sampling locations with N ≥ 5 (upper left) and 
associated significancy evaluated using 1000 permutations for each pairwise comparison (lower right). 
 

3.3.3.2. Detection of a supergene 

The two size morphs only occur in the Northwestern part of the species range. Genome wide SNP 

analyses of individuals from this region suggest weak geographic population structure but no 

genetic association related to size (Supp. Figure 3.7-G-H). However, when we used a genomic 

sliding windows analyses of PCA (to compute the % of total variance explained by the first axis 

within each window) over the pooled NWA sample, we identified a ~31Mb region in chromosome 

2 (from ~17Mb to 12 48Mb; Figure 3.4-A) that was strikingly different from the surrounding parts 
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of the genome and the genome-wide average. A comparable sliding window analysis using 

Tajima’s D (TD) showed a similar pattern in which TD values were 3-times more positive than it 

was outside the 31MB region, suggesting stronger population structure and an excess of high 

frequency variants (Figure 3.4-B). Local PCA computed within this region displayed three clusters 

segregated by the first axis (Figure 3.4-C). The two most distant clusters on the first axis are 

characterized by an excess of the two alternative homozygous genotypes, while individuals in the 

middle of the first axis displayed an excess of heterozygous genotypes (Figure 3.4-D). This result 

was corroborated by the sNMF which found K=2 as the most likely number of ancestral 

populations, corresponding to those found by the local PCA, with individuals showing an excess 

of heterozygotes being almost exactly half admixed between them (Supp. Figure 3.8-A-B). Finally, 

we investigated Linkage Disequilibrium (LD) in both the pooled sample and in the two clusters 

separately (Figure 3.4-E and Supp. Figure 3.8-E-F): the region is characterized by strong LD in 

the pooled sample when compared to the rest of chromosome 2. Conversely, LD values are similar 

to the rest of the genome (or lower) when computed within each previously identified cluster. 

Additionally, FST values between the two clusters characterized by an excess of homozygosity 

reached up to ~1 in the region (suggestive of total divergence) while remaining distributed around 

~0 outside (Figure 3.4-F). All these results suggest that recombination in this region has been 

suppressed. Given the occurrence of 226 annotated genes in the 17-48Mb region 

(NCBI:txid386614), we refer hereafter to this region as a supergene, characterized by two 

haplotypes (HB and HS) inherited in a Mendelian fashion (Thompson & Jiggins, 2014). 

Individuals enriched for alternative homozygous genotypes are HB/HB, individuals enriched for 

reference homozygous genotypes are HS/HS, and individuals enriched for heterozygotes are 

HB/HS. Preliminary results suggested that the size of individuals was different between the two 

homozygous genotypes: HB/HB had an average size of ~71.7cm and HS/HS of ~53.9cm. 

However, sample sizes are too low (N=9 and N=10 for HB/HB and HS/HS respectively) to model 

confounding factors such as sex and maturity. When a local PCA was run including the NEA 

samples, the first axis segregated NEA and HS individuals from HB before the NEA-NWA 

geographical divergence detected by the genome-wide structure analyses (Figure 3.4-G). The same 

pattern was observed when computing the individual ancestry with the sNMF (Supp. Figure 3.8-

C-D), which implies that NEA individuals are all HS/HS and the divergence between HB and HS 

alleles predates the split between NEA and NWA regions. 
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3.3.3.3. Genotype screening and size association 

To further investigate the association between the supergene genotypes and size, we first selected 

two regions each with > 4 SNPs discriminating HB and HS alleles within the supergene and further 

screened by PCR and Sanger sequencing 501 individuals (470 after filtering, see supplementary 

results) throughout the range of the species (Table 3.1). HB was absent in NEA, consistent with 

the lack of size polymorphism in this part of the range. Conversely, HB reached a frequency of 

0.29 and 0.39 in GoM and CAN respectively (Table 3.1). However, the distribution of genotypes 

in the two sampling sites was strikingly different: GoM displayed a strong deficit in heterozygotes 

(only 10 out of 284 individuals, Hardy-Weinberg exact-test: p < 0.001), while CAN was in Hardy-

Weinberg equilibrium. We then investigated the relationship between Size and Haplotype 

controlling for Maturity and/or Sex using linear models in a bayesian framework (Supp. Table 3.2) 

in the 243 GoM individuals with no missing information on any trait. The Leave-One-Out cross 

validation indicated the model including Size and Maturity only as the most accurate (see 

supplementary results). Posterior distribution of size for HB/HB and HB/HS individuals largely 

overlapped, with median values and 95% credibility intervals (averaged over the levels of 

Maturity) of 66.95 cm (95% CI [64.73, 69.17] cm) for the former and 65.61 cm (95% CI [60.81, 

70.50] cm) for the latter. Conversely, size for HS/HS individuals was strikingly lower (median 

value of 50.68 cm, 95% CI [49.28, 52.07] cm) and associated with disjunct posterior distribution 

from HB carriers (Figure 3.4-H).  

3.3.3.4. Historical demography 

The restricted distribution of HB might be the consequence of neutral and/or selective forces. To 

better understand the origin, maintenance and historical demography of the size polymorphism we 

ran the Pairwise-Sequentially Markovian Coalescent (PSMC) algorithm on each individual. PSMC 

curves were (almost) identical for every individual at the regional scale but the dynamics differed 

between NEA and NWA, whose trajectory started to diverge ~1My ago (Figure 3.5-A and Supp. 

Figure 3.9-A). While the exact date of divergence between the two trajectories may be inaccurate 

(Lesturgie, Planes, et al., 2022), there is a clear separation of the evolutionary trajectories between 

NEA and NWA in ancient times, consistent with population structure (Figure 3.3). We further 

examined the genome for signatures of range expansion (RE) to understand the colonization 

history. PacBio sequencing data of one A. hyperborea individual was used to polarize SNPs found 

in the 49 A. radiata individuals. We further computed the directionality index (ψ) between each 
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pair of individuals and fit the time difference of arrival (TDOA)(Peter & Slatkin, 2013) location 

algorithm to test for the occurrence of a range expansion and find its geographic origin. To have a 

balanced sampling design, we randomly extracted one individual per sampling location and 

repeated the process 100 times to obtain the density distribution of the center of origin of the range 

expansion, which was always found in NEA region, off the coast of Greenland, with more than 

80% runs located on the eastern coast of Greenland (Figure 3.2). We additionally investigated 

Runs of Homozygosity (ROH) in sampling locations with N≥5 individuals. ROH were arbitrarily 

classified in different length categories (Supp. Figure 3.10). The number (NROH) and genomic 

coverage (SUMROH) were always the lowest in the two Iceland sampling sites (W-IC and E-IC) 

and strikingly higher in GoM followed by CAN and N-NW (Supp. Figure 3.10). This further 

supports the idea that Iceland/Greenland lies in the center of the ancestral distribution of the species 

while GoM, CAN and N-NW are the more derived populations. 

Based on all these findings (Population structure, PSMC, RE, and ROH distribution), we 

investigated five demographic scenarios describing patterns of migration and divergence between 

and within the two meta-populations (NEA and NWA; Figure 3.5-C and Supp. Figure 3.11-A-E). 

To this end, we applied the maximum likelihood approximation approach of fastsimcoal (Excoffier 

et al., 2021) by modeling the set of two-dimensional Site Frequency Spectrum (2D-SFS) calculated 

between locations of N ≥ 5 (Table 3.1). The AIC criterion computed after choosing the best out of 

10 replicates of each model indicated IMM-5-NM-STOP as the most likely (Fig. S5F). IMM-5-

NM-STOP depicts two meta-populations composed (in this order) of GoM and CAN sampling 

locations (NWA meta-population) and W-IC, E-IC and N-NW sampling locations (NEA meta-

population). Deme effective sizes were highly similar between NEA and NWA demes (NE ~ 

80000, 95% CI [74595, 81106] and NW ~ 82000, 95% CI [78482, 90962], Supp. Table 3.3). 

However, demes were twice as connected in NEA than in NWA despite largely overlapping 

confidence intervals (NmE~118 95% CI [76.74, 144.91] and NmW~61 95% CI [49.67, 124.05], 

respectively, Figure 3.3) suggestive of high local connectivity within both meta-populations. 

Going backward in time, the two meta-populations were isolated until TCH~160000 years (95% CI 

[47000, 163000]) when started an asymmetrical exchange of migrants three times greater from 

NEA to NWA than otherwise (NmEàW~5.1, 95% CI [4.88, 13.73] and NmWàE~1.5, 95% CI [1.69, 

5.56] per generation). All lineages finally merged into an ancestral population of NANC~101000 
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(95% CI [99116, 106634]) at TDIV~891000 (95% CI [800000, 920000]) years ago (i.e., the NEA-

NWA divergence time).  

 
Figure 3.4. Size-determining supergene in chromosome 2. Panels A-B: Sliding windows analyses of 
the proportion of variance explained by the first axis of a PCA (panel A) and of Tajima’s D (panel B) 
computed in NWA on chromosome 2. Panel C: Local PCA within the 17000000-48000000 region of 
chromosome 2 (supergene region) including only NWA individuals. Dot shape represents the sampling 
location and color the genotype at the supergene: HS/HS (purple), HB/HS (red) and HB/HB (yellow). 
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Panel D: Proportion of heterozygotes within the supergene region for each genotype. Panel E: Heatmap of 
the pairwise linkage disequilibrium between SNPs. Color gradient represent the value of the R2 
correlation between SNPs. Panel F: Sliding window FST between HB/HB and HS/HS NEA individuals. 
Panel G: Local PCA within the supergene region including both NWA and NEA individuals. Panel H: 
Posterior distribution of the size as estimated by model HaploMat for each genotype: HS/HS (purple), 
HB/HS (Red) and HB/HB (yellow). 2.5% and 97.5% quantiles are represented in each distribution by 
vertical bars. 

 
Figure 3.5. Global and within supergene historical demography. Panel A-B: PSMC computed using 
the whole genome data in two individuals representative of NEA (turquoise) and NWA (brown) (A) and 
within the chromosome 2 supergene in four individuals: HB/HB (Yellow), HB/HS (Red), HS/HS for 
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NWA (Blue), HS/HS for NEA (Green) (B). Shaded areas are computed after 100 bootstraps. The vertical 
dotted line in panel A represents TDIV (divergence between NEA and NWA) as estimated by fastsimcoal 
under IMM-5-NM-STOP model. Panel C: Demographic model IMM-5-NM-STOP with maximum 
likelihood estimates for each parameter. 

 
Figure 3.6. Characterization of the supergene’s introgression. Panel A-B: UPGMA trees based on 
genetic distance computed in chromosome 1 (A) or in the supergene region (B) using all individuals but 
the two heterozygotes (HB/HS). Dot shape represent the geographic cluster of origin (circle: NEA; 
triangle: NWA, square: outgroup) and color the genotype at the inversion (purple: HS/HS, yellow: 
HB/HB, black: outgroup). Panel C-D: Sliding windows of the average derived allele frequency in 
chromosome 1 and 2 for HB/HB (yellow) and HS/HS (blue) groups in GoM. 
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3.3.3.5. Origin of the supergene 

We computed Nei’s pairwise genetic distance both in the supergene and in the first chromosome 

between all sampled individuals (all A. radiata and one A. hyperborea). The UPGMA tree 

computed on chromosome 1 confirmed the genetic structure previously observed with clustering 

algorithms in A. radiata (i.e., the separation between NEA and NWA) and A. hyperborea as an 

outgroup. Conversely, the UPGMA tree computed in the supergene clearly suggested that the HB 

allele is more closely related to A. hyperborea than to the HS allele (Figure 3.6-A-B). This result 

was corroborated by contrasting the frequency of derived alleles (fDER) computed within and 

outside the supergene: fDER was much higher in HB/HB individuals than in HS/HS individuals 

within the supergene, while no difference was observed in the rest of the genome (Figure 3.6-C-

D). Following (Cahill et al., 2016) we further estimated the divergence time between alleles HB 

and HS at ~1.5M by computing the PSMC in heterozygote individuals in the supergene region 

(Figure 3.5-B and Supp. Figure 3.12-B). The PSMC computed in both HS/HS and HB/HB 

individuals within the supergene was strikingly different to the trajectory estimated over the whole 

genome (Figure 3.5-A). Similarly, the one hundred PSMC curves obtained by randomly sampling 

each time a 31Mb region in the genome from both HB/HB and HS/HS individuals were 

incongruent with the supergene’s PSMC curves but consistent with the genome-wide estimates 

(Supp. Figure 3.12-A).  
 

3.3.4. Discussion 
The striking size polymorphism in the vulnerable Thorny skate A. radiata (Kulka et al., 2020; 

Mcphie & Campana, 2009; Sosebee, 2004; Sulikowski et al., 2005; E. G. Templeman, 1984; W. 

Templeman, 1984) offers a rare opportunity to dissect the genetic basis of size variation and to 

improve our understanding of how it affects the trajectory of endangered populations. Using 

Whole Genome Sequencing data, we identified a ~31 Mb size-determining supergene 

characterized by two alleles HB and HS between which recombination is hampered (Figure 3.4). 

HB was only found in NWA (Table 3.1) where genotype distribution was strikingly different with 

a significant deficit of heterozygotes detected in GoM but not in CAN (Table 3.1). Association 

with size was subsequently investigated through a Bayesian linear model in GoM (the site with 

the largest sample size) accounting for maturity stage only as Sex did not explain substantial 

variability in size (Supp. Table 3.2). Individuals carrying at least one copy of HB had a size of ~67 
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cm while homozygotes for HS had a size of ~51 cm (Figure 3.4), suggesting the dominance of HB. 

Supergenes are known to determine a wide variety of traits (Avril et al., 2019; Barney et al., 2017; 

Berg et al., 2015, 2016; Brelsford et al., 2020; Chapuisat, 2023; Kay et al., 2022; Lagunas-Robles 

et al., 2021), but, to our knowledge, this is the first study to directly highlight a clear association 

with a continuous quantitative phenotype in a group of individuals living in sympatry. Notably, 

size is a continuous trait with polygenic determinism across various species (Bouwman et al., 

2018; Boyle et al., 2017; Wood et al., 2014). It is likely that the near-discrete size-determinism 

revealed in our study involves several genes spanning the supergene region but we cannot exclude 

the interplay between them and other genes across the genome, similarly to what has been 

described in others supergene systems (Errbii et al., 2023; Jones et al., 2012). Given the substantial 

length of the supergene (~31Mb) and the presence of numerous genes (~226), it is also likely that 

this region controls multiple phenotypes, as exemplified in ants, cods or butterflies (Avril et al., 

2019; Barney et al., 2017; Berg et al., 2015, 2016; Brelsford et al., 2020; Chapuisat, 2023; Joron 

et al., 2011; Kay et al., 2022; Lagunas-Robles et al., 2021). More data will be required to better 

characterize the phenotypic consequences of this supergene.  

Supergenes are maintained in space and time through a combination of demographic (neutral) and 

selective processes (Thompson & Jiggins, 2014). To shed light on the distribution of the two 

supergene alleles and of the genotypes in NWA, we investigated the historical demography of A. 

radiata through its whole range. Previous studies using mitochondrial and microsatellite markers 

were inconclusive, suggesting respectively low (Chevolot et al., 2007) to high levels of genetic 

differentiation across the whole range (Lynghammar et al., 2016). Defining a comprehensive 

demographic scenario explaining the whole history of a species is a challenging task, but whole 

genome data provide an informed basis upon which to test competing models of demographic 

history. First, clustering algorithms, FST and PSMC analyses supported the unambiguous signature 

of long-term divergence between NEA and NWA and of a weak but spatially continuous genetic 

differentiation within each region (Figures 3.3, 3.5, Supp. Figures 3.7 and 3.9), consistent with 

recent mitogenomic findings (Denton et al., n.d.). We further detected signatures of range 

expansion (RE) by investigating the distribution of shared derived allele frequencies (Excoffier et 

al., 2009; Peter & Slatkin, 2013): NEA region represents the ancestral range of the species, which 

most likely expanded from Greenland or Iceland first eastward to the European coasts, and then 

westward, colonizing NEA (Figure 3.2). This is consistent with the distribution of ROH, which 
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were never larger than ~1.41Mb and were more numerous and longer in peripheral populations 

than in Greenland (Supp. Figure 3.10). REs are indeed characterized by a series of founding events 

determining more genetic drift in populations far away from the origin of the expansion (Slatkin 

& Excoffier, 2012), supporting the finding of GoM, CAN and N-NW as the more derived and E-

IC and W-IC as the more ancestral populations. Based on these results, we compared a set of five 

demographic scenarios under the inferential framework of fastsimcoal (Excoffier et al., 2013). The 

most likely scenario highlights a divergence between NWA-NEA occurring ~900ky ago 

(consistently with the time at which PSMC individual curves of NWA and NEA start to differ, 

Figure 3.5 and Supp. Figure 3.9). The separation between the two clusters corresponds to the 

colonization time of the NWA regions (Figure 3.5 and Supp. Table 3.3). After colonization, the 

NWA and NEA metapopulations remained first connected by an asymmetrical exchange of 

migrants ~3 times higher from NEA to NWA than otherwise, becoming isolated ~160ky, possibly 

in consequence of the spread ice sheets during the last ice age. The modelling of the genome wide 

diversity would therefore suggest that HB either originated or introgressed in the NWA regions 

more recently than ~160 ky, as this allele is absent in NEA. To disentangle the two hypotheses, 

we further investigated the supergene regions in Amblyraja hyperborea (Figure 3.6), which 

provided strong evidence that HB did not originate in A. radiata, but rather introgressed from a 

donor species. Indeed, i) A. hyperborea variants were more frequent in HB than in HS (Figure 

3.6), which was confirmed by a phylogenetic tree clustering HB/HB individuals with A. 

hyperborea in the supergene region (Figure 3.6); and ii) clustering algorithms indicate that HB/HB 

individuals are separated by all HS/HS independently of their geographic origin (NWA or NEA), 

in stark contrast with the genome wide results, suggesting that the HB-HS divergence predates the 

NEA-NWA divergence (Figure 3.4). Indeed, the PSMC estimated the divergence between HB and 

HS at ~1.5 My (Figure 3.5), likely corresponding to the separation between A. radiata and the 

donor species (which is not necessarily A. hyperborea, though A. hyperborea contains the HB 

allele). Given the demographic scenario, the time separation between HB and HS as well as their 

present-day spatial distribution, and the divergence between A. radiata and A. hyberborea, we 

believe that the time when migration stopped between NEA and NWA provides a reasonable upper 

limit to the HB introgression into NEA individuals from a donor species yet to be identified. We 

notice that none of the congeneric species of A. radiata show size polymorphism and their size 

distribution seem more similar to HB carriers except for A. doellojuradoi, seemingly reaching a 
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maximum size closer to that of HS/HS (Last et al., 2016). This suggests that the dynamics of the 

evolution of this supergene will need multi-species investigations to be elucidated, similarly to 

what has been done to uncover the history of the social supergene in fire ants and timing the 

introgression events (Helleu et al., 2022; Stolle et al., 2022; Z. Yan et al., 2020). 

Demographic modelling of genome wide data highlighted high connectivity between GoM and 

CAN (Nm~61, Figure 3.5 and Supp. Table 3.3). This suggests that the strongly different 

distribution of supergene genotypes between GoM and CAN cannot (at least totally) be explained 

by demographic processes. This is further highlighted by the PSMC curves within the supergene: 

neither HB/HB nor HS/HS individuals in NWA show a coalescence rate dynamic over time 

consistent with the genome-wide pattern (Figure 3.5 and Supp. Figure 3.9). Supergenes can 

promote local adaptation even when gene flow is high (Schaal et al., 2022), and, more generally, 

are usually maintained by various selective pressures (Berdan, Flatt, et al., 2022; Thompson & 

Jiggins, 2014; Wellenreuther & Bernatchez, 2018). Here, we argue that positive assortative mating 

could explain the observed deficit in heterozygotes in GoM. This hypothesis is driven by the 

previously discussed physical incompatibility in mating between larger and smaller skates in the 

Gulf of Maine (Denton et al., in prep; Lynghammar et al., 2016) due to evident differences in 

maximum size and size-at-maturity (Sosebee, 2004; Sulikowski et al., 2005; W. Templeman, 

1987). These differences tend to disappear northwards: skates sampled off the coast of 

Newfoundland (i.e., CAN sampling site) do not show a bi-modal distribution of size at first 

maturity as in GoM, but rather a unimodal distribution associated with larger variance (W. 

Templeman, 1987). Maturity can covary with the environment (Martin & Leberg, 2011) and could 

be a key factor in explaining possible mating in CAN but not in GoM. This would have 

considerable implications for the conservation of the NWA population as a whole in the context 

of global warming as increasing sea temperature can alter age and size-at-maturity (Niu et al., 

2023). We further note that whilst assortative mating itself is a process leading to sympatric 

speciation (Straw, 1955), recombination between HB and HS carriers in GoM could be maintained 

through the very high connectivity with CAN (Figures 3.3, 3.5 and Supp. Table 3.3), thus 

explaining the absence of neutral divergence between small and large individuals in GoM (Figure 

3.3 and Supp. Figure 3.7). Finally, we note that it is possible that the supergene controls other traits 

than size, which may be under negative selection against heterozygotes in GoM. 
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We discovered a size-determining supergene, and highlight, for the first time, the major short-term 

implications such a system may have in the trajectory of vulnerable and non-vulnerable 

populations. Our study first demonstrates (once more) the importance of reconstructing the neutral 

evolutionary history of a species, an essential background needed to uncover complex non-neutral 

processes. The inferred demographic scenario was of paramount importance not only to interpret 

the spatial distribution of the two alleles of the supergene but also to issuing a hypothesis over the 

genotype distribution in NWA, which in turn carry profound implications for the conservation of 

the vulnerable Thorny skate (Kulka et al., 2020). This is striking in light of the different population 

trends across NWA, with the Gulf of Maine still showing significant declines long after the end of 

fishing in the region while CAN is recovering (Kulka et al., 2020). It is likely that the observed 

deficit of heterozygotes at the supergene region in GoM, likely linked to positive assortative 

mating, is hindering population recovery with large and small skates probably competing for the 

same resources while failing to mate. This is not happening in CAN where heterozygotes are 

common and no barriers to reproduction seem to exist between the two morphs, which is consistent 

with the recovering population trends. The high gene flow across the region suggests that northern 

demes could play a fundamental role in preventing the speciation of two distinctly sized species in 

the GoM and contribute to replenish the genetic variability of the region, despite the lack of census 

size recovery. This complex pattern suggests for the first time the responsibility of a supergene on 

the fate of an endangered population, and strongly emphasizes the necessity for comprehensive 

region-wide conservation plans and highlight the crucial contribution of evolutionary biology to 

more applied research fields. Our study also demonstrates that this supergene has been introgressed 

in A. radiata in the last ~160000 years from a donor species which will have to be characterized 

in the future to better understand the supergene’s implications at higher taxonomic level. We 

emphasize two additional implications in evolutionary biology: i) supergene system evolved 

independently in Chondrichthyes, a clade of vertebrates which remains understudied at the 

genomic level; ii) this is, to our knowledge, the first direct example of a continuous quantitative 

trait whose distribution is largely explained by a simple Mendelian inheritance, hence providing 

the opportunity to dissect the genetic determinism of size. This will a have tremendous impact in 

fields such as population genetics, quantitative genetics, macro-evolution and ecology by 

providing an opportunity to understand better a complex determinism and both the short and long-

term dynamics of a supergene associated with conservation issues.  
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3.3.5. Material & Methods 

3.3.5.1. Whole Genome Sequencing 

49 Amblyraja radiata individuals were sampled from west to east off the Gulf of Maine in US 

(GoM, N=16), Newfoundland in Canada (CAN, N = 5), South West Greenland (SWG, N=2), 

South East Greenland (SEG, N=3), East Greenland (EAG, N=2), West Iceland (W-ICE, N=5), 

East Iceland (E-ICE, N=5), West Norway (W-NOR, N=1), South Norway (S-NOR, N=1) and 

North Norway (N-NOR, N=9). Genomic DNA was extracted using the E.Z.N.A. Tissue DNA Kit 

(Omega Bio-Tek, Inc., Norcross, GA, USA) following the manufacturer’s instructions. The 

extracted DNAs were then sent to the Next-Generation Sequencing (NGS) Core of the University 

of Florida’s Interdisciplinary Center for Biotechnology Research (UF ICBR) for QC. After that, 

libraries were prepared, pooled, and loaded on the Illumina NovaSeq 6000 platform for whole 

genome sequencing with S4 flow cell and 2x151 setup. 

3.3.5.2. Repeat annotation and masking 

We downloaded the reference genome of the Thorny Skate from the NCBI website (BioProject 

number: PRJNA591369). The genome was first masked using the Chondrichthyes database in a 

first run of RepeatMasker v.4.1.0 (Smit et al., 2015). We then created a de novo database for the 

A. radiata by using RepeatModeler v.2.0.3 (Smit & Hubley, 2015) on the genome masked at the 

first step. Finally, we masked the repeated elements annotated in the de novo database by running 

RepeatMasker a second time on the initially masked genome. We finally extracted a bed-file of 

the masked regions further used in downstream bio-informatic analyses.   

3.3.5.3. Main bioinformatics pipeline 

Reads were trimmed for adapter and quality using bbduk from bbmap v.38.44 suite 

(sourceforge.net/projects/bbmap/). After checking for quality using FastQC v0.11.7 (Andrews, 

2010), reads were mapped against the reference genome using bwa mem algorithm v.0.7.17 (H. 

Li, 2013) with -M option. Mapped reads were sorted and indexed using samtools v.1.10 (Danecek 

et al., 2021) and then marked for duplicates using Picard v.2.21.2 MarkDuplicates (Broad Institute, 

2019). Except for the PSMC analysis (see below), indexed reads were fed to GATK v.4.1.9.0 

(McKenna et al., 2010) haplotypecaller algorithm for variant discovery using the -gvcf option to 

obtain individual variant calling fil e (VCF). Individual VCFs were then combined together using 

CombineGVCF to build datasets with different number of individuals according to the downstream 

analysis (see below). Joint calling was then performed for each dataset using GenotypeGVCF by 
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including both monomorphic and polymorphic sites (all-sites argument) which are necessary for 

scaling correctly genetic diversity. We then selected the 49 identified autosomes and removed the 

regions annotated as repeats using the bed-file produced by the repeat masking step. By combining 

VariantFiltration and SelectVariant GATK’s scripts, we then filtered out sites with Mapping 

Quality < 40 and marked genotypes as missing if genotypic depth (i.e., depth per individual and 

per site) was below 6 or over 50. We further removed chromosome 2 and 8 for all genome-wide 

historical demographic analyses after genomic scans identified two potential large chromosomal 

inversions. Additional filters were applied on the resulting VCF depending on the analysis. 

3.3.5.4. Population structure 

Population structure datasets were filtered using a combination of vcftools v.0.1.16 (Danecek et 

al., 2011), bcftools v.1.15 and custom python scripts, keeping only bi-allelic SNPs with a missing 

data rate of less than 20% and discarding SNPs heterozygous in more than 80% individuals and 

with a minor allele frequency < 0.05. VCFs were binned by only selecting SNPs that were at least 

1kb apart to each other to account for linkage disequilibrium. Depending on the analysis and on 

the scale of investigation, we built different datasets. We first built a dataset including all 

individuals: ALL (N=49). Based on global population structure (see results), two additional 

datasets were created to investigate fine scale structuration: NWA dataset (N=21), which only 

included individuals from CAN and GoM sampling locations, and NEA dataset (N=28) including 

all the remaining individuals (Figure 3.2 and Table 3.1). The three datasets were used to investigate 

individual-based population structure. We first performed a PCA and then ran the sNMF 

algorithm, both implemented in the R package LEA (Frichot & François, 2015) on each dataset 

separately. The sNMF algorithm is a clustering algorithm allowing to find the most likely number 

of K ancestral populations best describing the genomic variability and to infer the individual 

admixture proportions under the selected model. The algorithm was run 10 times with values of K 

ranging from 1 to 6, and we chose the most likely model as the one associated with the lowest 

cross-entropy value. We finally built a final dataset to quantify genetic differentiation between 

sampling locations (FST, N=40) including only individuals from sampling locations with N≥5 

(Figure 3.2, Table 3.1).  We computed Hudson’s estimator of pairwise-FST (Hudson, 1983) between 

each location using a custom R script and evaluated significancy by randomly permuting 

individuals 1000 times for each comparison.  
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3.3.5.5. Genetic diversity 

Genetic diversity datasets were filtered using custom bash and python scripts, keeping only 

biallelic sites with no missing data and removing indels and SNPs heterozygous in more than 80% 

individuals. We built one dataset per each sampling location of N ≥ 5 from which we computed 

the folded site frequency spectrum (SFS) using a custom python script. Using custom R scripts, 

we then computed Tajima’s D (Tajima, 1989), and two estimators of θ, namely the mean pairwise 

difference θp and Watterson’s θs, both standardized by the total number of called sites (i.e., 

monomorphic sites included). We investigated the influence of binning the dataset on the 

reconstructed Site Frequency Spectrum and genetic diversity estimates by sampling regions of 100 

bp (to account for monomorphic sites) apart from 1kb, 10kb, 50kb or 100kb in GoM (the site with 

the more samples). All statistics remained similar (see supplementary results, Supp. Figure 3.12) 

and since accuracy in demographic inferences is improved by having mode data (Felsenstein, 

2006), we decided not to bin datasets for historical demographic reconstructions (see below).   

3.3.5.6. Detection of a supergene 

In the light of the high degree of genetic differentiation between NEA and NWA but low within 

NWA region (see results), we performed genomic scans at the NWA scale (including GoM and 

CAN sampling locations) in order to find regions putatively related to the size polymorphism. We 

first scanned the genome by using an approach coupling PCA and Tajima’s D which do not require 

any prior information on phenotypes. PCA can detect genomic regions of more than average 

population structure without any a priori individuals’ grouping, being particularly useful when 

looking for the association with a complex trait which would need a large sample size for a robust 

characterization. For the PCA scan, we run the algorithm implemented by Hierfstat package 

(Goudet, 2005) on each chromosome in sliding windows of 100kb with a jump of 10kb on the 

NWA dataset. The proportion of variance explained by PC1 was extracted for windows with more 

than 50 SNPs and plotted against the location on the chromosomes. For TD scan, we built a dataset 

including both GoM and CAN individuals that was processed using the same filters applied for 

genetic diversity analyses (see above). We computed the folded SFS in sliding windows of 100kb 

with a jump of 50kb and computed Tajima’s D from each window using a custom R script. These 

analyses revealed a region of high divergence on chromosome 2 (see results) in which we further 

computed linkage disequilibrium as r2 correlation values between SNPs 50kb apart (to avoid 

computational burden) using LDheatmap R package (Shin et al., 2006). Local PCA, sNMF, and 
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the analysis of genotype distribution highlighted the occurrence of a bi-allelic supergene (HB and 

HS) in which all the three possible genotypes (HB/HB, HB/HS, HS/HS) were present (Fig 3). 

Additionally, we computed sliding windows FST between the two clusters of homozygous at the 

supergene in the NWA dataset (see Fig 3) using windows of 10kb with a jump of 5kb. Finally, we 

ran the local PCA and sNMF in the supergene region using the ALL dataset.  

3.3.5.7. Genotype screening and linear modeling 

Preliminary assessment of the relationship between size and haplotypes suggested an effect of the 

supergene genotypes on size (see results). To directly test the relation between size and the 

supergene, we identified two regions: from 25075452 to 25075619 (167 bp) and from 41404405 

to 41404539 (134 bp) with respectively five and four SNPs discriminating the two supergene 

alleles. Primers were designed on 500bp flanking our target regions on each side and used to 

amplify 501 individuals sampled from the whole range (Table 3.1). The regions with five and four 

discriminating SNPs were hereafter referred to as “Region 051” and “Region 034”, respectively. 

The primers designed for “Region 051” (051F: 5'- CGG CAG TTS ACC ATC TTA GA -3'; 051R: 

5'- GCT TGT AAC CAC ACT GCT -3') are targeting a fragment of ~280bp in length. The primers 

designed for “Region 034” (034F: 5'- GTA TGG AGT ACC ACC TTG AAT G -3'; 034R: 5'- GGT 

TGA TGT ATC TGC TGT AAG -3') are targeting a fragment of ~760bp in length. PCR reactions 

were carried out in 25 µL tubes by adding 14.775 µL of PCR grade water, 2.5 µL of PCR buffer, 

2.0 µL of MgCL2 (25 mM), 2.0 µL of dNTP mix (2.5 mM each), 0.8 µL of each primer (10 µM), 

0.125 µL of GoTaq® Hot Start Polymerase (Promega, Madison, WI, USA; 5 U/µL) and 2 µL of 

DNA template. The reaction mix was denatured at 94 °C for 2 min, followed by 35 cycles of 

denaturation at 94°C for 30 sec, annealing at 52°C (Region 051) or 52°C (Region 034) for 30 sec 

and extension at 72°C for 60 sec. PCR products were sent off to Retrogen Inc. (San Diego, CA, 

USA) for purification and sequencing. Genotypes for the 9 discriminating SNPs were attributed 

by visually assessment of base sequencing peaks. Genotypes were attributed a NA value when the 

peak was ambiguous. Individuals with missing genotype or for which the supergene genotype 

could not be determined throughout the 9 SNPs were discarded. We then tested whether the 

genotypes at the supergene were at the Hardy Weinberg equilibrium using a Chi2 test using 

HardyWeinberg R package (Graffelman, 2015) in sampling locations where the supergene was 

polymorphic.  
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We tested for the association between size and haplotype by accounting for maturity stage and sex. 

We filtered out individuals with missing information for any of these traits, resulting in individuals 

from GoM only (N=243). We designed three linear models using the bayesian framework 

implemented in the R package brms (Bürkner, 2021). The richest model in parameters, model 

HaploMatSex, included Haplotype, Maturity and Sex traits as determining variables (“Size ~ 

Haplotype + Maturity + Sex”). The two other models were nested within HaploMatSex, removing 

the variable “Sex” for model HaploMat and both “Sex” and “Maturity” variables for model Haplo. 

Four MCMC runs, each of 10000 iterations with 1000 warmup samples and a thinning of 4 were 

performed for each model, using flat (non-informative) priors. We assessed which model was the 

most accurate by performing the approximate leave-one-out (LOO) cross validation implemented 

in brms. Median values and posterior distributions of size under the best model were averaged on 

the levels of the other variables by using the package emmeans and summarized by 95% quantiles.  

3.3.5.8. Ancestral range distribution 

Range expansions (RE) occur by series of founding events leading to the fixation of derived alleles 

along the colonization process (Peter & Slatkin, 2013). Areas located further away from the origin 

of RE are therefore expected to display stronger linkage disequilibrium and higher frequency of 

fixed derived alleles, which are patterns that can afterwards be used to infer the colonization 

dynamics of a species. To investigate this, we followed two approaches. First, we investigated 

Runs of Homozygosity (ROH) signatures using the HMM model implemented in bcftools-ROH 

(Narasimhan et al., 2016). The analysis was run for each sampling locations with N≥5 separately 

by specifying to bcftools-ROH to estimate allele frequencies from genotypes. ROH were classified 

into three arbitrarily chosen length categories of 10kb to investigate changes in signals related to 

the length of ROH: ROH shorter than 10kb, ROH of length between 10kb and 20kb, and ROH 

larger than 20kb. We then plotted both the number (NROH) and the sum of ROH (SUMROH) for 

each class and for each sampling location. In a second time, we investigated the signatures of 

shared derived alleles across the whole range. However, such analysis requires polarizing the 

allelic state. To that end, we sequenced one individual of a closely related species Amblyraja 

hyperborea using the PacBio Sequel IIe System at the NGS Core of UF ICBR. A total of two 

SMRT cell runs (each generates 3-5 million reads) have been performed. Hifi long reads were then 

mapped using pbmm2 v.1.3.0 align subcommand (https://github.com/PacificBiosciences/pbmm2) 

with the HIFI preset. Mapped reads were then sorted and indexed using samtools. Variants were 
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called using deepvariant v.1.4.0 (Poplin et al., 2018) by applying PacBio model and by specifying 

to output both polymorphic and monomorphic sites. Using bcftools, we then merged the long-read 

VCF to a dataset including all the short-read A. radiata individuals previously processed for 

genetic diversity analyses. We then filtered out non-bi-allelic sites and polarized the remaining 

variable sites based on A. hyperborea individual state (i.e., the outgroup individual, hereafter 

referred to as OG) by: (1) discarding sites heterozygous in OG; (2) recoding all allele(s) as ANC 

(ancestral, coded as “0”) when corresponding to the allele for which OG is homozygote and as 

DER (derived, coded as “1”) otherwise. The derived allele frequency was calculated per individual 

and the average value for each sampling location was reported. Based on the number of derived 

alleles per individual and per site, we calculated the directionality index (ψ) (Peter & Slatkin, 2013, 

2015), which is the pairwise difference between shared derived alleles and is expected to be 

different from 0 if there is a signature of range expansion. The TDOA location algorithm of (Peter 

& Slatkin, 2013, 2015) was run on the pairwise ψ matrix to identify the RE origin. We ran the 

algorithm 100 times using one random individual from each location and displayed results as a 

density of the location of RE.  

3.3.5.9. Historical demography 

We first investigated the variation of the coalescence rate through time by using the Pairwise 

Sequentially Markovian Coalescent (PSMC) model on each individual. We followed the 

recommended bioinformatic pipeline: we called SNPs from each bam file using bcftools to obtain 

one VCF per individual. Each VCF was masked for the repeats using bedtools (Quinlan & Hall, 2010). 

Using scripts provided with the PSMC (H. Li & Durbin, 2011), we filtered for the depth of coverage 

using the parameters -d 6 and -D 50 and extracted the consensus sequence that was fed to the 

PSMC algorithm using the following parameters: -t15 -N25 -r5 -p "6+30*2+4+6". Because PSMC 

curves were highly similar in each cluster (see results), we computed 100 bootstraps for one 

individual in each cluster (i.e., one for NEA and one for NWA).  

Devising a set of meaningful historical demographic scenarios to be quantitatively tested is 

traditionally challenging and sometimes arbitrary. Here we investigated demographic scenarios 

(Figure 3.3 and Supp. Figure 3.11) by using the composite likelihood approach of fastsimcoal 2.7 

(Excoffier et al., 2021) to further investigate migration and divergence patterns at the scale of the 

range distribution. Model IMM-5 depicts an Isolation-Migration Metapopulation scenario with 5 

demes connected in a one-dimensional stepping-stone fashion (i.e., migrants are only exchanged 
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with direct neighbors). The five demes refer to the sampling locations with N ≥ 5 (Table 3.1) and 

are spread into two meta-populations corresponding to NWA (GoM and CAN) and NEA (W-ICE, 

E-ICE and NOR) genetic clusters (see results). In NWA, the two demes have a size of NW and 

exchange NmW migrants per generation with each other. Similarly, demes have a size of NE in 

NEA and exchange NmE migrants per generation with the closest neighbor. The two regions are 

connected by an asymmetrical exchange of migrant of NmWàE from CAN to W-ICE and NmEàW 

from W-ICE to CAN (Supp. Figure 3.11). Going backwards in time, all demes merge into an 

ancestral population of size NANC at TDIV generations ago. Two scenarios based on IMM-5 

topology were additionally tested. Going back in time, the IMM-5-NM-CH model describes a 

change in connectivity between NWA and NEA happening TCH generations ago, going from 

NmWàE-MOD and NmEàW-MOD from the present to TCH to NmWàE-ANC to NmEàW-ANC from TCH to 

TDIV. IMM-5-NM-STOP is similar to IMM-5-NM-CH but NWA and NEA are isolated from the 

present to TCH, with the two regions being then connected by NmWàE and NmEàW from TCH to 

TDIV. Additional scenarios were tested to investigate whether adding unsampled demes better 

depicted the genetic variability due to meta-population structure because the five sampled demes 

do not cover the whole range distribution of the species. IMM-20 is similar to IMM-5 but includes 

unsampled demes so that each of the two regions are composed of D=10 demes, resulting in a 20-

demes 1D-stepping-stone matrix. From west to east, GoM and CAN are respectively sampled at 

demes 2 and 8 in NWA and W-ICE, E-ICE and NOR at demes 4, 5 and 8 in NEA, and the 

asymmetrical gene flow from NWA to NEA occurs from demes 10 and 11 and vice-versa. IMM-

30 is similar to IMM-20, but NEA is composed of D=20 demes, with W-ICE, E-ICE and N-NW 

respectively sampled at deme 8, 10 and 17. This model was investigated to account for the likely 

different number of demes in each meta-population given the larger geographical area covered by 

cluster NEA (i.e., from Greenland to Norway, see results). fastsimcoal algorithm is based on the 

modelling of a set of two-dimensional SFS (2D-SFS) between sampled locations. To that end, we 

built a dataset with all individuals from CAN, E-ICE and W-ICE and a random subset of 5 

individuals from N-NW and GoM to get a balanced sampling scheme. Using a custom R script, 

we processed the dataset using the same filters than for genetic diversity datasets and computed 

the set of 2D-SFS between each sampling location. The set of observed SFS were maximized using 

100000 coalescent simulations (-n 100000), 40 expectation-maximization cycles (-L 40) and by 

considering at least 10 entry counts in the SFS to perform parameter estimation (-C 10). We 
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performed 10 independent runs for each scenario and used the best run (i.e., with the highest 

likelihood) to compute the AIC in order to perform model selection. Moreover, we computed the 

likelihood distribution for each scenario by simulating 100 replicates under the previously 

estimated best set of parameters: this procedure is necessary to determine whether the different 

scenarios are distinguishable or not. We then computed a confidence interval for parameter values 

for the model with the lowest AIC. To that end, we calculated 100 non-parametric bootstrapped 

2D-SFS by randomly sampling blocks of 10,000 bp with replacement using a custom R script. 

Each set of bootstrapped 2D-SFS were maximized following the same procedure applied to the 

observed set of 2D-SFS. The 95% confidence intervals were calculated from the distribution of 

the best ML estimates for each bootstrap set. All historical demography inferences were performed 

using a mutation rate μ=2.01e-8 per site and per generation following a generation time of 11 years 

(average time at maturity, COSEPAC, 2012) and the genomic mutation rate estimated for the 

chondrichthyan species Carcharhinus melanopterus (Lesturgie, Planes, et al., 2022). 

3.3.5.10. Origin of the supergene 

We ran the PSMC algorithm within the supergene region for one HB/HB, one HS/HS and one 

HS/HB individuals that were randomly selected to detect when the divergence between the two 

haplotypes occurred. The PSMC estimates the distribution of coalescence times along the genome 

between two chromosomes: in a non-recombining block such as our supergene, this amounts to 

compute the divergence between the two alleles, which graphically corresponds to the time when 

the Ne suddenly increase to infinite in heterozygotes individuals (Cahill et al., 2016). To 

investigate whether the PSMC run in the supergene region reproduced the signal in the whole 

genome datasets, we randomly sampled 100 regions of 31Mb (the size of the supergene) spread in 

the genome on which we run the PSMC. We used the dataset polarized with A. hyperborea to 

perform sliding windows analyses of the ancestral allele frequency for HB/HB and HS/HS NWA 

individuals in chromosome 2. We then computed an UPGMA tree with Nei’s distance using poppr 

R package (Kamvar et al., 2015) within the chromosome 2 supergene region and in chromosome 

1 to investigate discrepancies between the supergene and the genome-wide trees. This was 

performed on the merging the ALL dataset with A. hyperborea individual.  
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3.3.6. Supplementary information 

3.3.6.1. Acknowledgements 

We are grateful to the genotoul bioinformatics platform Toulouse Occitanie (Bioinfo Genotoul, 
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platform at Sorbonne Université (https://sacado.sorbonne-universite.fr/mesu/), the University of 

Florida Research Computing (http://www.rc.ufl.edu) and the Plateforme de Calcul Intensif et 

Algorithmique (PCIA), Muséum national d’histoire naturelle, Centre national de la recherche 

scientifique (http://uar2700.mnhn.fr/fr/pcia-9024) for providing computational and storage 

resources that have contributed to the research results reported in this publication.  

3.3.6.2. Supplementary results  

Summary statistics 

Depth of coverage was on average ~17x. After filtering and binning, we performed population 

structure analyses using ~1.15 to ~1.19 millions of SNPs. Genetic diversity estimates were 

computed from the Site Frequency Spectrum (SFS) in sampling locations with N ≥ 5, based on 

~9.98 to ~13.93 millions of SNPs after filtering (Table 3.1). We investigated the effect of binning 

on genetic diversity estimates and the shape of the SFS by computing the normalized SFS as in 1. 

To that end, we sampled genomic regions of 100 bp (to account for monomorphic sites) apart from 

1kb, 10kb, 50kb or 100kb in GoM (the site with the largest sample size). Genetic diversity 

estimates as well as the shape of the SFS were similar at different levels of binning (Supp. Figure 

3.13), thus we decided not to bin data to keep as much information as possible, as accuracy in 

demographic inferences is influenced by the number of SNPs. Genetic diversity estimates (θπ, θw) 

were highly similar in the whole range of the Thorny skate, with θπ ranging from 0.0057 to 0. 0063 

and θw from 0.0065 to 0.0079. Tajima’s D ranged from -0.49 to -0.79 (Table 3.1).  

Haplotype screening and linear modeling 

501 individuals were screened by PCR and Sanger sequencing in two regions with ≥ 4 SNPs 

discriminating the two alleles (HB and HS) of the supergene. 31 individuals for which genotypes 

were ambiguous (i.e., not possible to determine genotypes at all discriminating SNPs) were 

discarded. Linear modelling was performed using a Bayesian framework implemented in the R 

library brms 2. We tested three models. GenoMatSex, the richest model in terms of variables 

included Maturity and Sex along Genotype as dependent variables: “Size ~ Genotype + Maturity 

+ Sex”. Two nested models were investigated: GenoMat (“Size ~ Genotype + Maturity”) and Geno 



Chapter 3. Supergenes, Demography and Conservation 

177 
 

(“Size ~ Genotype”). Modeling was performed on a subset of individuals for which Maturity and 

Sex were available. To avoid bias due to population structure and maximize the sample size, we 

only retained N=243 individuals from GoM. After 10000 MCMC iterations with 10% burn-in and 

a thinning of 4, all models converged for all parameters in all four runs (Rhat=1) with effective 

sample sizes (ESS) ≥ 8000 for any estimate (with all four runs pooled). The Leave-One-Out cross 

validation displayed model GenoMat as the most accurate, even though the expected log pointwise 

predictive density (ELPD) for GenoMatSex, the richest model, was highly similar (difference of -

0.3). The posterior predictive check was assessed by using 100 posterior draws from HaploMat 

model and suggested high adequacy between observed and predicted data.  

Historical demographic modelling 

Five demographic scenarios were investigated (Supp. Figure 3.11). A first set of three models was 

tested, investigating specifically patterns of migration and divergence between the two meta-

populations: IMM-5, IMM-5-NM-STOP and IMM-5-NM-CH, the last being the richest in terms 

of number of parameters (Supp. Figure 3.11). We note that while IMM-5-NM-STOP is the model 

with the lowest AIC, its likelihood distribution computed for the set of ML parameters’ value 

slightly overlaps with that of IMM-5-NM-CH (Supp. Figure 3.11). This would suggest that the 

two models cannot be statistically distinguished (Meier, Marques, et al., 2017). However, the ML 

values estimated under the two models support the same biological scenario. Going backward in 

time, the migration rate between the two meta-populations estimated under IMM-5-NM-CH is 

very close to 0 until TCH (~141ky), suggesting non-significant exchange of migrants in this time 

frame which overlaps that of IMM-5-NM-STOP (where TCH ~160ky). Similarly, migration rates 

sharply increase between TCH and TDV to values similar to those estimated under IMM-5-NM-

STOP in a similar time range (Supp. Table 3.3). Finally, we note that the AIC values for IMM-5 

was larger, suggesting that modelling a change in connectivity significantly improves our 

understanding of the demographic dynamics of the Thorny skate. Remarkably, all three scenarios 

were highly consistent in the estimates of the divergence time between the two metapopulations 

NEA and NWA and in the intra-region estimates of connectivity (Supp. Table 3.3). We further run 

a second set of scenarios including ghost demes in order to account for the unsampled demes in 

both metapopulations. Two scenarios were investigated based on IMM-5 topology: IMM-20, with 

two one-dimensional-matrices of 10 demes exchanging migrants in a Stepping-Stone fashion (one 

matrix per region) and IMM-30 in which NEA region was represented by D=20 demes and NWA 
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by D=10 demes. The two scenarios were strikingly least likely than the IMM-5-like models (Supp. 

Figure 3.11) suggesting that introducing ghost demes do not improve our understanding of A. 

radiata historical demography.  

 

3.3.6.3. Supplementary figures 

 
Figure 3.7. Panels A-F: Cross entropy criterion with an arrow indicating the most likely number of 
ancestral populations K when using all individuals (A), only GoM and CAN individuals (Cluster WEST, 
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C) or only SWG, SEG, W-IC, E-GR, E-IC, W-NW, S-NW and N-NW individuals (Cluster EAST, E) and 
corresponding admixture proportions for each individual estimated for K=2 and K=3 ancestral 
populations when using all individuals (B), WEST Cluster individuals (D) or EAST Cluster individuals 
(F). Panels G-H: distribution of Size (in cm) along the PC1 axis (G) and PC2 axis (H) within NWA. 

 
Figure 3.8. Genetic structure within the S2 inversion. Panel A:  Local PCA including all individuals 
(both EAST and WEST) within the 17000000-48000000 region of SUPER 2 contig (S2 region). Dot 
shape represents the sampling location and color the attributed genotype for the inversion: HS/HS (blue), 
HB/HS (Red) and HB/HB (yellow). Panel F: Sliding windows of the average ancestral allele frequency in 
SUPER 2 for HB/HB (yellow) and HS/HS (blue) groups in GoM sampling location. Panels B & D: Cross 
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entropy criterion with an arrow indicating the most likely number of ancestral populations K when using 
only GoM and CAN individuals (panel B) or all individuals (panel D). Panels C & D: admixture 
proportions for each individual estimated for K=2 and K=3 ancestral populations when using only GoM 
and CAN (C) or all individuals. Panels E-F: Heatmaps of the pairwise linkage disequilibrium between 
SNPs for HS/HS individuals (E) or HB/HB individuals (F). Color gradient represent the value of the R2 
correlation between SNPs. 
 

 
Figure 3.9. Variation of the coalescence rate through time as estimated by the PSMC algorithm. 
Panels A and B: inference on the whole genome with NWA (Brown) and NEA (Turquoise) individuals 
(A) and within the chromosome 2 supergene region (B) for HB/HB (Yellow), HS/HS for NEA (Green), 
HS/HS for NWA (Blue) and HB/HS (Yellow). The shaded areas represent the distribution of effective 
sizes (Ne) covered by the 49 individuals at each interval and the curve the median value of the distribution 
of Ne. 
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Figure 3.10. Distribution of Runs of Homozygosity (ROH) in sampling locations with N≥5. Number 
of ROH (panels A1-A3) and sum of the ROH (panels B1-B3) for different ROH size classes: below 10kb 
(A1 & B1), between 10kb and 20kb (A2 & B2) and over 20kb (A3 & B3). 
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Figure 3.11. Demographic scenarios tested (panels A-E) and associated AIC values (Panel F). 
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Figure 3.12. Variation of the coalescence rate through time in random resampled regions of 31Mb. 
Panels A and B: Median of the distributions of inferences (see Fig. S3) on the whole genome with NWA 
(Brown) and NEA (Turquoise) individuals (A) and within the chromosome 2 supergene region (B) for 
HB/HB (Yellow), HS/HS for NEA (Green), HS/HS for NWA (Blue) and HB/HS (Yellow). The shaded 
areas represent the 95% quantiles of the distribution of random resampling of 31Mb regions across the 
genome in an NEA (Turquoise) and NWA (Brown) individual. 
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Figure 3.13. Influence of binning on summary statistics computed in GoM (N=16). Panel A: 
normalized SFS. Panel B: mean pairwise difference. Panels C and D: barplots of percentage of Sites (C) 
and SNPs (D) relative to the reference dataset (no binning) with the observed number of Sites and SNPs 
indicated above each bar. Each color represents a different level of binning: regions separated by 100kb 
(green), 50kb (orange), 10kb (red), 1kb (purple). Reference dataset (no binning) is presented in black. 
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3.3.6.4. Supplementary tables 
Table 3.2. Median values and associated 95% credibility intervals averaged over the levels of other 
factors of size estimates (in cm) for the three linear models tested: Haplo (“Size ~ Genotype”), HaploMat 
(“Size ~ Genotype + Maturity”) and HaploMatSex (“Size ~ Genotype + Maturity + Sex”). The Expected 
Log Pointwise Predictive Density resulting from the Leave-One-Out cross-validation step is indicated for 
each model.  
 

Parameter Level Haplo HaploMat HaploMatSex 

Genotype 

HB/HB 
60.31 66.95 67.15 

[57.93; 62.73] [64.81; 69.28] [64.99; 69.49] 

HB/HS 
57.23 65.64 65.43 

[51.34; 63.04] [60.70; 70.55] [60.74; 70.47] 

HS/HS 
47.59 50.69 50.81 

[46.10; 49.98] [49.28; 52.10] [49.35; 52.18] 

Maturity 

1 - 
51.54 51.49 

[49.78; 53.40] [49.56; 53.25] 

2 - 
58.9 58.75 

[55.67; 62.16] [55.47; 61.95] 

3 - 
62.76 62.61 

[60.34; 65.31] [60.15; 65.15] 

4 - 
71.19 71.67 

[67.00; 75.36] [67.41; 75.83] 

Sex 
Female - - 

61.69 
[59.33; 63.89] 

Male - - 
60.56 

[58.26; 62.75] 
ELPD1  -1454.96 -1397.70 -1397.95 

 

1Expected Log Pointwise predictive Density (ELPD) by the Leave-One-Out (LOO) cross-validation step.  
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Table 3.3. Maximum Likelihood (ML) value of parameters estimated for the five demographic models 
and 95% confidence interval associated for the IMM-5-CH-STOP.  AIC value of the best run under each 
model is reported.   
 

 IMM-20 IMM-30 IMM-5 IMM-5-NM-CH IMM-5-NM-STOP 

NANC 103270 104630 99492 100752 
101095 

(99116-106634) 

NEAST 16316 16587 79910 77862 79941 
(74595-81106) 

NWEST 24996 12459 82112 78452 81621 
(78482-90962) 

NmE-W 2.77 2.65 2.35 4.69 
5.09 

(4.88-13.73) 

NmW-E 0.78 0.88 0.86 1.97 1.54 
(1.69-5.56) 

NmE-W-MOD - - - 0.5 - 
 

NmW-E-MOD - - - 0.005 - 
 

 

NmW 121.92 161.05 44.86 65.31 
60.64  

(49.67-124.05)  

NmE 165.29 251.83 101.49 120.07 117.69  

(76.74-144.91)  

TCH1 - - - 141174 160677  

(46871-163108)  

TDIV1 872344 861399 928092 931645 
890714  

(799964-919941)  

AIC 1511534769 1511569382 1511382039 1510516765 1510483219  
 
1Times are expressed in year (converted using a generation time of 11 years).  
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3.4. Conclusions and perspectives 
In this chapter, I bring light to the presence of a supergene in the genome of the Thorny Skate and 

I show its statistical association with size. Furthermore, by using extensive coalescent modelling, 

I show that i) this supergene was introgressed from a yet unidentified skate species; ii) it drives 

the recent demography of the Thorny Skate, being also responsible of the non-recovery of a 

population in the Gulf of Maine. This is the first time a supergene is found in a chondrichthyan 

species, probably due to the fact that these taxa are unrepresented in genomic studies. Beyond this, 

the chapter brings multiple perspectives for the study of supergenes and the related selective 

processes, notably because: 

(1)  A single (though) very large genomic region is significantly involved in the determinism 

of a known polygenic and environmentally modulated trait;  

(2) Historical demography modelling was shown to be mandatory for extracting information 

about the supergene’s maintenance and origin; 

(3) The chapter emphasizes how using multi-species population genetics inferences will be of 

paramount importance to better characterize its origin in the future.  

 

3.4.1. Size: A Polygenic Trait “Discretized” by a Supergene 
I this chapter, I provided evidences that the size polymorphism observed in the Northwest Atlantic 

part of the range distribution (Mcphie & Campana, 2009; Sosebee, 2004; Sulikowski et al., 2005; 

E. G. Templeman, 1984; W. Templeman, 1987) was be determined by a large supergene. For the 

first time (to my knowledge) I directly bring to light a supergene system involved in the 

determinism of a known continuous trait with polygenic determinism (Bouwman et al., 2018; 

Boyle et al., 2017; Wood et al., 2014) as well as likely affected by environmental conditions. 

Polymorphism at the supergene results in two distributions of size, with individuals having at least 

on HB allele being significantly larger than individuals homozygous for HS. It is likely that the 

supergene determines other phenotype(s) than size as they have been shown to determine multiple 

phenotypes before (Errbii et al., 2023; Jones et al., 2012). The “two distributions” of size fashion 

strongly suggest that several genes involved in such determinism might span the region. Therefore, 

this supergene, with its considerable length (~31Mb) and number of genes (~226), offers an 

unprecedented opportunity to dissect the genetic basis of size variation. Beyond the Thorny Skate 
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and its conservation, this will therefore have broader implications in quantitative and population 

genetics as well as in fields related to functional genetics. 

 

3.4.2. Historical Demography Inferences to Understand a Supergene’s 

Evolution 
In this chapter, I detected that the supergene was only polymorphic in northwest Atlantic (NWA). 

Moreover, the Gulf of Maine (GoM) sampling location displayed a significant deficit in 

heterozygotes that was not observed in Canada (CAN). This finding is likely explained by positive 

assortative mating occurring in GoM, which follows previous suggestions of mating 

incompatibility between large and small skates in GoM (Denton et al., in prep; Lynghammar et 

al., 2016). The difference with CAN could result from different maturity properties (Sosebee, 

2004; Sulikowski et al., 2005; W. Templeman, 1987), which is known to covary with environment 

(Martin & Leberg, 2011). This positive assortative mating situation could be at the origin of the 

non-recovery of the GoM population, where two groups of individuals would still compete for the 

same resources but would not be able to form a single gene pool. At the same time, as described 

in the introduction of this chapter, positive assortative mating is known to lead to sympatric 

speciation (Straw, 1955). Yet, there is no genomic divergence – except within the supergene region 

– between large and small individuals in GoM, thus raising the question of why sympatric 

speciation is not happening. Here, I demonstrate how reconstructing the history of the species 

using an unprecedent amount of marker has increased our understanding on both how to maintain 

this polymorphism despite positive assortative mating system in a population and why one allele 

of the supergene is totally absent from one part of the range distribution (i.e., the northeast Atlantic, 

NEA). As introduced in Chapter 1, and further emphasized in Chapter 2, I first followed the 

crucial diagnosis step based on descriptive methods, required to device a meaningful set of 

demographic scenarios. For instance, I investigated population structure descriptive analyses and 

range expansion inferences prior to design a set of scenarios depicting the colonization history of 

the species and connectivity patterns within and between the NEA and NWA regions (hereafter 

referred to as meta-populations). In result, I was able to estimate a very high connectivity within 

each meta-population which could explain why the process of sympatric speciation is impeded in 

the GoM: while mating is impossible between large and small GoM individuals, it is possible in 

CAN where genomes of small skates homogenize with large ones. In result, a high gene flow from 
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CAN (or other northern demes) provides a mean for small and large individuals to maintain a 

common gene pool in GoM (except in the supergene region) despite being unable to mate. This 

has considerable implications, as this means that it is only for the high migration rate that a 

speciation process might be hampered. Additionally, I was able to infer that the NWA was 

colonized a long time ago (~900,000 years ago) and has remained isolated from the NEA for the 

past ~160,000 years: this allowed me to make the parsimonious hypothesis that the supergene is 

absent from the NEA because it introgressed the Thorny Skate after the migration between the two 

regions stopped. These two interpretations, on the origin and maintenance of the supergene, are 

key to understand better the evolutionary history of the Thorny Skate and of the supergene, and 

would not have been possible without extensive demographic modelling, further emphasizing its 

importance for comprehending evolutionary processes.  

 

3.4.3. Towards a Multi-Species Framework to Date Supergenes Origins 
The two results developed above (i.e., migration hampers sympatric speciation and the origin of 

supergene ≤ 160,000 years ago) are key to understanding the peculiar nature of this supergene. 

However, the time window during which the supergene originated remains very large (≤160,000 

years!), which raises the question: can we date the time when the supergene either formed or 

introgressed in this species? Additional sequencing of a closely related species (Amblyraja 

hyperborea) provided evidence that one allele, HB, has resulted from an introgression of a donor 

species – not necessarily A. hyperborea. Dating intogressed regions is unfortunately troublesome 

as it would require first to identify the donor species, possibly by comparing the supergene-tree 

with a species-tree as it has been done before (Helleu et al., 2022; Stolle et al., 2022; Yan et al., 

2020), thus requiring extensive sequencing of multi-species population samples. Not only this 

would allow to determine the donor, but also to gain more knowledge on how the supergene is 

distributed in multiple species, as supergenes have been shown to promote adaptation and selection 

across groups of taxa (Chouteau et al., 2017; Joron et al., 2006; Purcell et al., 2014; Stolle et al., 

2022; Z. Yan et al., 2020). Once the donor species is identified, time of origin could possibly be 

obtained by dating the divergence between HBDONOR and HBRADIATA. However, it is notable that 

the dating process of supergenes has not been thoroughly investigated so far. Dating methods 

usually assume neutrality while supergenes are subject to different selective pressures, hence 

complicating enormously historical demographic inferences. For instance, in the case of the thorny 
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skate, the IICR curves reconstructed by the PSMC within the supergene region clearly differed 

from those on the whole genome, strongly suggesting that the supergene is under selection, which 

likely changed in time. Dating the apparition of supergenes – introgressed or not – will be in the 

future a key question to understand precisely the origin of such systems, which might require 

theoretical developments. It is interesting to note that investigating these perspectives will be only 

be made possible in the future by building multi-species datasets eventually studied using 

population genetics tools. This highlights how multi-species frameworks will be key in the future 

to study highly specific and niche evolutionary processes, such as the origin of introgressed 

supergenes, but also large-scale processes as it will be highlighted in the following chapter.  
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Figure 4.1. Reef from Fakarava, French Polynesia. 
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4.1. General context  

4.1.1. Beyond the Species-centered Population Genetics Paradigm 
Chapters 2 and 3 both treated a population genetics question from a species-centered point of 

view, yet they both conveyed a multi-species inferences perspective. In Chapter 2, I investigated 

how the ecology of a small group of species influences their genetic diversity and degree of 

population structure, further suggesting larger-scale studies to find ecological determinant of 

historical demography. In Chapter 3, I showed that species interaction, specifically an 

introgression, shaped the evolution of a supergene, and emphasized that further comprehension of 

this system will thus require multiple species investigations. This shows how multi-species 

inferences are clearly crucial to getting a further understanding of traditional population genetics 

issues. Beyond that, multi-species inferences can elucidate the impact of large-scale phenomena 

on the genome, from the determinism of genetic diversity by certain LHTs (Ellegren & Galtier, 

2016), to the study of biogeographical processes (Overcast et al., 2023). In addition, transcending 

the traditional focus of empirical population genetics studies to the community level would 

facilitate the development of conservation strategies at the ecosystem level.  

To date, few studies have considered, directly or indirectly, multi-species population genetics 

inferences (but see (Chan et al., 2014; Delrieu-Trottin et al., 2020; Hickerson & Meyer, 2008; Xue 

& Hickerson, 2015)). Building multi-species datasets for population genetics inference is a 

complex task. Genetic diversity needs to be directly compared between species, i.e., one has to 

target similar or comparable regions in the genome of a set of species. This means that RAD-

sequencing is hardly usable in this respect. As detailed in the introductive chapter, Whole Genome 

Sequencing (WGS) is usually the most ideal tool for any genomic investigation. Yet it is likely to 

be extremely expensive if needed in several species for which reference genomes are also required. 

Reference genomes, despite the growing number of international consortium (such as the 

Vertebrate Genome Project and the European Reference Genome Atlas), are still available for a 

limited number of species. The lack of reference genomes is therefore an issue when investigating 

a community rather than a group of congeneric species. An interesting approach in this context is 

Target Gene Capture (C. Li et al., 2013), which specifically targets a set of homologous genes in 

all species investigated thus allowing unbiased comparison of genetic diversity. Such protocol 

however necessitates designing baits to capture previously established homologous regions for the 

set of species. In this chapter, I used such an approach to study coral reef fishes sampled off 



Chapter 4. Genetic Signatures of Ecosystem Functioning 

193 
 

Moorea, French Polynesia. This project aimed at increasing our understanding of how community-

scale level impacted demographic history, which I introduce below.  

 

4.1.2. Linking ecological theories to population genetics modelling 
Species are organized in communities (i.e., sympatric populations of different species) and their 

evolutionary history should harbor signatures of inter-specific interactions as well as 

biogeographic features inherent to the community (Overcast et al., 2023). Species living in the 

same communities interact with each other and their environment, and the diversity of species 

composing it is a key factor as it increases the whole functioning (i.e., the overall energy fluxes) 

of the ecosystem (Tilman et al., 2014). Species occupy different ecological niche in the ecosystem, 

which can represent both the requirements for them to live in the habitat (i.e., environmental 

conditions, such as temperature or salinity), and their role in the community (i.e., the resources 

they consume and represent in a trophic network; Polechová & Storch, 2008; Sexton et al., 2017). 

Consequently, species interact with one another based on the ecological niche they occupy, 

engaging in either competition for similar resources or direct interactions, such as predator-prey 

relationships. However, species are not equal in terms of the width or breadth of the ecological 

niche they occupy, which refers to the diversity of conditions under which a species can strive or 

of resources that a species can consume (Sexton et al., 2017; Vandermeer, 1972). Typically, this 

niche breadth spectrum is best depicted by defining species in its two extremes: generalist species, 

which are capable of using a great variety of resources and have thence a wide ecological niche 

and specialist species which exploiting a single (or few) resource are thus associated with a narrow 

niche (Vandermeer, 1972). The concept of niche breadth was related to genetic variability early in 

history, as generalists were expected to display more morphological and thus genetic 

polymorphism than specialists following the Niche Variation Hypothesis (NVH) (Levene et al., 

1966; Soule & Stewart, 1970; Van Valen, 1965). Consequently, it has been hypothesized that 

generalist species are more prone to adaptation in response to changing environments and thus less 

vulnerable compared to their specialist counterparts.  

As a direct consequence of the NVH, interactions should leave signature in the genome of the 

species conditioned to the niche width: generalist species are expected to be more resilient in time 

than specialists as less prone to (local) extinction due to their ability to use a large number of 

resources and conditions and thus to acclimate (Carscadden et al., 2020; Colles et al., 2009). Direct 



Chapter 4. Genetic Signatures of Ecosystem Functioning 

194 
 

population genetics expectations have been conceptualized in the Specialist-Generalist Variation 

Hypothesis (SGVH) (S. Li et al., 2014): (1) specialists should display lower levels of genetic 

diversity because of higher stochastic fluctuation events in their history (following expectations of 

(Kimura & Crow, 1963)); and (2) population structure should be stronger for specialists because 

of a reduced gene flow due to the necessity to colonize habitats with the required (scarce) resource. 

To date, empirical evidence has both confirmed (S. Li et al., 2014; Matthee, 2020; Pasinelli, 2022) 

and discarded the SGVH, particularly in the marine realm (S. Li et al., 2014; Matthee et al., 2018; 

Titus & Daly, 2017). The latter might be explained by the fact that specialists could counter the 

expected vulnerability risk and thus demographic instability by targeting abundant species (Colles 

et al., 2009; Strona et al., 2013) and/or by being better adapted to their resources than generalists, 

hence leading to better resource assimilation (Colles et al., 2009). However, the debate remains 

open, since no study has (to my knowledge) directly and formally tested the relationship niche 

width – historical demography: studies always attempted to explain patterns of genetic diversity 

in light of "known" or hypothetical niche width, or direct diet observation and always using a small 

sample of species and genetic markers (most often, limited to mitochondrial DNA). Additionally, 

the relationship between demographic stability and genetic diversity might be complex and might 

benefit from the direct demographic modelling using the amount of data provided by genomic 

data. Indeed, formally testing this hypothesis would therefore require both high quality data from 

multiple species to model genetic diversity and an accurate characterization of the niche width for 

a set of species, which remains a technical and expensive challenge.   
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4.2. Objectives 
In this chapter, I aim at directly investigating the relationship between historical demography and 

niche width, in the specific case of trophic interactions (i.e., trophic niche width). To that end, I 

coupled meta-barcoding of gut content data to Target Gene Capture data in ~40 species of coral 

reef fishes from Moorea, French Polynesia. I compute indices of genetic diversity as well as design 

and implement demographic stability indices notably computed from the reconstructed 

coalescence rate (or IICR) through time. I use reef fishes as test group as they display a large 

diversity of interactions and trophic guilds in coral reefs making this ecosystem a great model to 

test the SGVH hypothesis. Additionally, coral reefs possess the most important marine biodiversity 

(Tittensor et al., 2010): although covering less than 0.1% of the ocean surface (Spalding & 

Grenfell, 1997), they host nearly 25% of its global biodiversity (Allsopp et al., 2008). However, 

the coral cover decreased of 1 to 2% per year in the Indo-Pacific since 1970 (Bruno & Selig, 2007). 

This resulted in a decrease of species, functional and phylogenetic diversity (D’Agata et al., 2014), 

as well as genetic (Pini et al., 2011; Pinsky & Palumbi, 2014). Maintaining great diversity drive 

the resilience of these ecosystems: knowing the evolution of their state is therefore essential in 

conservation biology. This means that this chapter, additionally to conceptually testing for the first 

time a relation between niche width and genetic diversity, brings more knowledge about 

biodiversity and its resilience in the endangered coral reef ecosystems.  
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4.3. Larger trophic niche increases stability along evolutionary 

times 
 
Article in preparation for Nature Ecology & Evolution (Brief Communication) 
 
Authors:  

Pierre Lesturgie, Maël Le Gouellec, Simon J. Brandl, Jordan M. Casey, Valeriano Parravicini & 

Stefano Mona 
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4.3.1. Abstract  
Understanding the underpinnings of species vulnerability is key in the context of intensifying 

global changes. According to the Specialist-Generalist Variation Hypothesis, trophic niche width 

determines species success, with generalist species being more stable through time. We followed 

for the first time a population genetics perspective to test this hypothesis, estimating demographic 

stability by genomic sequencing 38 fish species and assessed their trophic niche width by gut-

content meta-barcoding. Demographic stability was significantly positively associated with niche 

width, underscoring that generalists are less prone to local extinction, participating to the stability 

of the community. Our innovative framework will contribute deciphering ecosystem functioning.  
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4.3.2. Main 
Understanding the underpinnings of species vulnerability is essential to grasping their response to 

rapid perturbations and, ultimately, to predicting the future resilience of biodiversity in a context 

of global crisis (Ceballos et al., 2015). Niche width, i.e., the extent of resources used and viable 

conditions for a species (Sexton et al., 2017; Vandermeer, 1972), has been questioned as a major 

determinant of vulnerability (Colles et al., 2009). Specialist species (i.e., with narrow niche width) 

should exhibit pronounced population fluctuations due to their exclusive dependence on the 

availability of a few resources or because of limited viable environmental conditions (Gravel et 

al., 2011). Generalists, on the other hand, are expected to exhibit greater morphological and genetic 

variation (Levene et al., 1966; Soule & Stewart, 1970; Van Valen, 1965) and should therefore be 

more prone to adaptation in response to changing environments (Carscadden et al., 2020; Colles 

et al., 2009). Accordingly, the Specialist-Generalist Variation Hypothesis (SGVH) predicts that 

specialists should display i) lower genetic diversity due to greater stochastic fluctuation in 

population size (Kimura & Crow, 1963); and ii) reduced gene flow due to more scattered 

distribution (Gravel et al., 2011; S. Li et al., 2014; Pasinelli, 2022) than generalist species. This 

conjecture was either corroborated (S. Li et al., 2014; Matthee, 2020; Pasinelli, 2022) and rejected 

(S. Li et al., 2014; Matthee et al., 2018; Titus & Daly, 2017). Empirical arguments suggest that 

rejection could be due to the ability of specialists to counterbalance challenges posed by narrow 

niche width by interacting with abundant species and by better assimilating resources than 

generalists (Colles et al., 2009; Strona et al., 2013). However, the SGVH has never been tested 

extensively to date. Notably, the relationship between niche width and historical demography as 

inferred by genetic data has never been quantitatively evaluated (i.e., with a large sample of 

species). 

Here, we coupled a large nuclear genomic dataset to trophic niche width data assessed by meta-

barcoding of gut contents in a coral reef fish fauna. Specifically, we selected 43 species of coral 

reef fish (540 individuals) sampled off Moorea, French Polynesia (Table S1). Nuclear genomic 

DNA was sequenced using a Target Gene Capture protocol (C. Li et al., 2013) that amplifies and 

sequence homologous loci across species. Based on hundreds to thousands of Single Nucleotide 

Polymorphisms (SNPs, Table S1) in each species, we computed genetic diversity and historical 

demographic indices. We assessed trophic niche width by calculating the number of Exact 
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Sequence Variants (ESV), species, genus and families detected in the gut content of the sampled 

species with COI and 18S markers from the meta-barcoding data of (Casey et al., in prep).  

We performed Bayesian linear modelling to relate genetic indices and the number of resources 

consumed as estimated with COI or 18S marker. At the species level (Figure 1), both genetic 

diversity estimates (θπ and θw) decreased with the number of consumed resources, although support 

ranged from weak (posterior probability of the slope P = 0.75 for θπ for COI marker) to very strong 

(P = 0.96 for θw for 18S marker). Conversely, we found a robust and positive correlation between 

the N° of consumed resources and Tajima’s D (TD, P=0.97 and P=0.99 for 18S and COI 

respectively): generalists tend to have TD closer to 0, which is suggestive of a constant historical 

demography (Tajima, 1989). To investigate more precisely this relationship, we devised four 

demographic stability indices based on (1) the distance of the observed Site Frequency Spectrum 

(SFS) to the expected one under a constant population scenario (dSFS); (2) the distance of the 

genetic diversity trajectory inferred by the stairwayplot to the observed θπ (dSTAIR); (3) the ratio of 

modern to ancestral θ reconstructed by the stairwayplot (RSTAIR); and (4) the absolute sum of slopes 

between time intervals of the trajectory inferred by the stairwayplot (fSTAIR). Strikingly, all 

demographic stability indices were robustly and positively correlated with the number of 

consumed resources (P ranging from 0.89 to 1) strongly suggesting that generalist species are more 

stable along historical times. To account for phylogenetic proximity, which may potentially bias 

our results, we inferred a phylogenetic tree (Figure S1) (see supplementary material for additional 

results) which was added as random effect in the Bayesian linear modelling. Results remained very 

similar, confirming the robustness of our analyses (Table S2, Figure S2). Finally, we considered 

the number of consumed resources at the ESV, genus and family levels: all the models confirmed 

the trend previously observed (despite lower support for dSTAIR and fSTAIR at the ESV scale), either 

including or not the phylogenetic tree (Table S2, Figures S3-S8). This, coupled to the similar 

signals obtained when considering COI or 18S at any scale of study, further suggest the robustness 

of our results both to the marker used and to the chosen taxonomic resolution.  
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Figure 4.2. Bayesian 
Linear models relating 
genetic indices and the 
number of consumed 
species. Each row 
represents a genetic index. 
For each genetic index, the 
three panels represent: i) the 
posterior distribution of the 
slope when the N° of 
consumed species is 
estimated by the COI 
(purple) or 18S (red); ii) the 
regression line relating 
genetic indices and N° of 
consumed species estimated 
by the COI and iii) 18S 
marker. The posterior 
distributions of the slopes 
are scaled by their 
maximum absolute value for 
comparative purposes.  



Chapter 4. Genetic Signatures of Ecosystem Functioning 

201 
 

Our study unambiguously highlights a positive relationship between historical demography 

stability and trophic niche width, corroborating theoretical expectations of (Carscadden et al., 

2020; Colles et al., 2009; Gravel et al., 2011; S. Li et al., 2014). Under the SGVH, genetic diversity 

is expected to be greater for generalists (S. Li et al., 2014) as a direct consequence of their lower 

demographic fluctuations (Kimura & Crow, 1963) than expected in specialists (Gravel et al., 

2011). However, here, θπ and θw hardly correlated with niche width (Figure 1). We argue that the 

relationship between genetic diversity and demographic fluctuations can be tricky to evaluate, as 

a burst in genetic diversity can be observed when two populations are reconnected after isolation 

(Alcala et al., 2013). This could be common in specialist species: rather than undergoing the 

expected extinction-recolonization cycle (Gravel et al., 2011; S. Li et al., 2014), specialists could 

undergo frequent strong local bottlenecks followed by re-connection, which should be further 

investigated in the future. All in all, dSFS and stairwayplot-based indices are more directly related 

to demographic trends than θ estimates, and the fact that they correlate with niche width gives us 

confidence in our interpretation. More importantly, it prompts (1) caution when directly 

interpreting genetic diversity estimates in relation to ecological traits; and (2) the necessity of 

coupling diversity estimators with more detailed indicators of population demographic history, 

such as the SFS and SFS-based models (e.g., stairwayplot).  

Our approach is novel regarding previous investigations – which conveyed or not similar 

conclusions (S. Li et al., 2014; Matthee, 2020; Matthee et al., 2018; Pasinelli, 2022; Titus & Daly, 

2017) – as it is the first to our knowledge, to i) quantitatively test the relationship between historical 

demography and niche width; ii) integrate indices of demographic stability to classical estimates 

of genetic diversity; and to iii) use the strong accuracy provided by a multi-species genomic dataset 

coupled with precise meta-barcoding assessment of trophic niche width, thus going beyond 

previous qualitative assessment of niche width in the context of the SGVH (S. Li et al., 2014; 

Matthee, 2020; Matthee et al., 2018; Pasinelli, 2022; Titus & Daly, 2017). This dataset is a first 

example of the power of combining population genetics and functional ecology approaches to the 

study of a fish reef fauna. Such approach can be clearly extended to any ecosystem, providing a 

powerful tool to interpret and eventually forecast its stability. Our study might also be extended to 

additional sampling location in the Pacific to test whether the migration and colonization dynamics 

is related to the niche width (S. Li et al., 2014). In addition, it could be used to test the expectations 

of the Trophic Theory of Island Biogeography (Gravel et al., 2011) which predicts the variation of 
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spatial demographic stability, due to the extent of niche width, along a gradient of biodiversity. 

Coral reef fish fauna from the Pacific Ocean represent a perfect setting to test this hypothesis, as 

biodiversity decreases moving away from the Coral Triangle (Roberts et al., 2002). 

Our study provides strong evidence of greater demographic stability related to the larger trophic 

niche width in a coral reef fish fauna, which directly shows for the first time that generalist species 

might be undergo fewer demographic fluctuations along evolutionary times. This suggests that 

generalists might be less prone to local extinctions and thus less vulnerable than specialists, 

providing a quantitative approach to define the stability of an ecosystem. We emphasize the power 

of coupling population genomics to ecological datasets to unravel the determinants of ecosystem 

functioning and of the vulnerability of species, which is crucial to better understand the challenges 

for biodiversity in the current global crisis (Ceballos et al., 2015). 
 

4.3.3. Material and Methods 

4.3.3.1. Sampling, Sequencing and De novo assembly 

540 individuals belonging to 43 species were sampled off Moorea, French Polynesia. DNA was 

extracted from fin clips using QIAGEN Dneasy blood and tissue kit (QIAGEN, Germany) 

following the manufacturer’s indications. We then followed a Target Gene Capture protocol (C. 

Li et al., 2013; H. Li et al., 2018). DNA was first PCR-amplified and libraries were prepared 

following a capture protocol realized using myBaits hybridization capture kit (Arbor Bioscience, 

USA), targeting a set of 4434 autosomal regions homologous in ray finned fishes (Jiang et al., 

2019). Libraries were then re-amplified and sequenced using a paired end approach (150bp reads) 

on an Illumina NovaSeq 6000 sequencer.  

The Target Gene Capture protocol not only allows to sequence the targeted regions (i.e., the exons) 

but also the flanking regions (i.e., introns). Therefore, to increase the number of Single Nucleotide 

Polymorphisms (SNPs) for downstream analyses, we developed a pipeline to perform a species-

specific de novo reference assembly from the sequenced reads. After quality checking fastq files, 

reads were trimmed using TrimGalore-0.6.5 (M. Martin, 2011). We randomly selected two 

individuals per species to assemble reference contigs and to check for consistency a posteriori. 

Each assembly was realized using SPAdes-3.15.4 algorithm (Bankevich et al., 2012), using the 

reference baits as guide for the assembly (--trusted-contigs argument). The following parameters 

were used: --careful (limit the number of mismatches and short indels in the assemblies); --cov-
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cutoff 10 (coverage > 10 for the assembled sites to ensure sufficient coverage for the assembled 

sites and thus increase the robustness of the assemblies). Each assembly was then aligned to the 

reference set of baits used for the capture experiment using nucmer function in the mummer-

4.0.0beta2 package (Marçais et al., 2018) in order to keep only known targeted loci. The minimum 

size threshold for considering two sequences identical was set to –mincluster=40 in order to match 

homologous loci even in divergent species to the one used for baits design (Oreochromis niloticus).  

Reads were mapped against the reference contigs obtained for each species22 using bwa-mem 

algorithm (H. Li, 2013). Duplicates were removed using MarkDuplicates in Picard (Broad 

Institute, 2019). Variant calling was performed for each species separately using GATK (McKenna 

et al., 2010) by keeping all sites (using the –all-sites flag in GenotypeGVCFs). We applied filters 

following GATK’s hard filtering best practices (https://gatk.broadinstitute.org/) and discarded 

indels. Depth was additionally filtered at the genotype level using custom R scripts, with a lower 

bound of always dp=10 and a higher bound depending on the per genotype distribution of coverage 

extracted using VCFtools (--geno-depth flag). Genotypes that were outside the boundaries of the 

filter value were attributed a missing value.  

4.3.3.2. Genetic diversity and demographic indices 

One species was removed from the dataset because of a too low sample size (Epibulus insidiator, 

N=4). For the remaining 42 species, all sites with missing data were removed, resulting in per-

species variant calling files (VCFs) including monomorphic sites and Single Nucleotide 

Polymorphism (SNPs). We computed genetic summary statistics using custom R scripts from the 

resulting filtered datasets. We first calculated the folded site frequency spectrum (SFS). The mean 

pairwise difference (θπ), Watterson’s estimator of genetic diversity (θw) (Watterson, 1975) and the 

Tajima’s D (TD) (Tajima, 1989) were directly computed from the SFS, and θπ and θw were both 

standardized by the total number of sites (i.e., monomorphic sites included). We then used the SFS 

as input into the stairwayplot software (Liu & Fu, 2020), a non-parametric model inferring 

variations in the coalescence rate through time. We used a mutation rate of μ = 2e-9 mutations per 

site per generation for all species (in the range of 30,31). Generation time was not available in the 

literature for all species, so when missing it was inferred by building a regression model using the 

maximum size as predictor (see Supplementary material).  

Under the standard coalescent model (a panmictic population of constant size), the SFS is expected 

to be flat when normalized as in (Lapierre et al., 2017) (hereafter referred to as norm-SFS). 
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Similarly, the stairwayplot reconstructed from such SFS is expected to display no variation of 

coalescence rate through time. In consequence, and in addition to classical summary statistics, we 

computed four indices expected to reflect deviations from the constant expectations of the norm-

SFS and the stairwayplot:  

(1) The standardized Euclidian distance between the observed norm-SFS and the expected 

norm-SFS under the constant demographic model: 𝑑QRQ =
	S∑ UV.01!$V23,!W

45
!6#

#
, where 𝜁XYQ! 

and 𝜁Z[\! respectively represent the observed and expected normalized values in class 𝑖 of 

a sample of size 𝑛;  

(2) The standardized Euclidian distance between the value of θ through time reconstructed by 

the stairwayplot and the observed θπ: 𝑑Q].^, =
	S∑ U_.01!$_7W

48
!

N
where 𝜃XYQ! represents the 

value of θ in each time interval (𝑙);  

(3) Ratio between the ancestral (i.e., at the time to the most recent common ancestor of the 

sample, tMRCA) and modern θ estimated by the stairwayplot: 𝑅Q].^, =
	_9:;<-
_:."

;  

(4) Fluctuations in the stairwayplot, as assessed by computing the sum of absolute slopes 

between each time interval: 𝑆Q].^, =
	 ∑ `=!	–	=!@#A!	–	A!@#

`8
!64

N
, where time was discretized in 𝑙 intervals 

of 10 generations (a trade-off between computational time and resolution) and 𝜃 values 

were averaged within each of them.  

Because of the reduced accuracy of the stairwayplot in reconstructing coalescent rate in recent 

or very old times (Liu & Fu, 2015; Reid & Pinsky, 2022) the most recent 100 generations as 

well as those older than 85% of the estimated tMRCA were removed from the analyses.  

4.3.3.3. Phylogeny 

For each of the 43 species, we sampled one individual with lower rate of missing data. To obtain 

a joint variant calling, trimmed reads were mapped against the baits used in the capture protocol. 

The joint variant calling was performed following the same workflow used on the individual 

species in which the reference was built with the SPAdes-3.15.4 algorithm. We removed i) sites 

with a depth of coverage below 10 or above 200; ii) sites with more than 20% of missing data; iii) 

loci with less than 10 SNPs. Finally, we wrote a Phylip file for each locus (i.e., partition) using 

vcf2phylip.py software (Ortiz, 2019).  To infer the phylogeny, we used the IQ-TREE v.2 (Minh et 
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al., 2020) pipeline. We allowed each locus to have its own phylogenetic tree, but restrained the 

number of independent substitution rate parameters by applying the same values to loci selected 

for the identical most likely substitution model.  (using -p and -model TESTMERGE options, 

resulting in 41 different partitions). A consensus tree was then estimated and branch support 

evaluated using 10,000 ultra-fast bootstraps.  

4.3.3.4. Metabarcoding curation and Niche Breadth 

COI and 18S metabarcoding data of gut content was subsetted for all available species from the 

dataset of (Casey et al., in prep). Four species did not have gut content data (Cantherines 

sandwichiensis, Cephalopholis argus, Cephalopholis urodeta and Chlorus spirulus). Analyses for 

the remaining 38 species were performed at different resource levels: ESV, species, genus and 

family. For each dataset, we used the following general workflow in three steps: (1) data was 

pooled over similar resource taxa (i.e., ESV, species, genus family); (2) for each consumer species, 

the number of sequenced reads per resource taxa was summed over all sampled individuals; and 

(3) the number of taxa consumed was computed by counting the number of resources taxa for 

which there was at least one sequence. Different sample size in consumer species can however 

influence the total number of resource taxa retrieved. To overcome this, we either subsampled to 

N=10 individuals (in consumer species with N>10) or projected the expected number of consumed 

taxa for N=10 individuals (in consumer species with N<10 and N>1). For the subsampling process, 

the final number of consumed resources was the average value over 100 random resampling runs. 

For the projection (i.e., N<10), we performed 100 rarefaction curves between the number of 

consumed resources and the sample size, and extracted the average number of interactions for each 

sample size. We then performed a linear model and used as number of consumed resources the 

value predicted for N=10.  

4.3.3.5. Linear modelling 

We performed a set of Bayesian linear models using the R library brms (Bürkner, 2021) to test for 

the direct effect of the number of consumed resources on genetic indices, i.e., θπ, θw, TD, dSFS, 

dSTAIR, Rθ, SSTAIR. To test whether the signals were biased by shared ancestry, we also tested the 

same set of models including a phylogenetic variance-covariance matrix as random effect on the 

intercept. This matrix was estimated by means of the ape R package to which we fed the previously 

computed phylogeny. All these models were performed considering consumed resources at the 

ESV, species, genus and family levels for all three (COI, 18S, 23S) markers. For each model, we 
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performed 10,000 MCMC total iterations, with a burn-in of 2,000 and a thinning of 4. The analysis 

was repeated four times to check for convergence leading to an effective sample size of almost 

8,000. Variables θw, dSFS, dSTAIR, Rθ and SSTAIR were log-transformed prior to modeling to fit a 

gaussian distribution. We note that the results of demographic indices were multiplied by (-1) to 

correspond to a stability index instead of an instability index.  
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4.3.4. Supplementary Material  

4.3.4.1. Supplementary Results 

Estimation of generation times 

As the generation time was not available in all species (i.e., only N=17), we estimated missing 

values by projection on the regression curve obtained through a linear model between the 

generation time (predictive variable) and the maximum age of the species (p<0.05, Adj. R2=0.29). 

Note that five individuals had missing maximum age values: those were estimated by a projection 

on the regression curve obtained through a linear model between maximum age (predictive 

variable) and the maximum size (p<0.001, Adj. R2=0.43). 

Phylogeny  

The phylogeny (here displayed with 20% of missing data) was performed on 1239 loci that were 

merged into 41 partitions after model selection and merging step performed using IQTREE v2. All 

branches were supported by more than 78% bootstrapped values and, interestingly, Eviota species 

formed a paraphyletic group with Eviota infulata estimated as an outgroup to Paragobiodon 

modestus, Pleurosicya labiata and the three remained sampled Eviota species (Figure S1).  

4.3.4.2. Supplementary Tables 

 
Table 4.1. Genetic Summary Statistics per species: number of sampled individuals (N), number of SNPs, 
Mean Pairwise Difference (θπ), Watterson’s estimator of genetic diversity (θw) and Tajima’s D (TD). 
 
Species N SNPs θπ θw TD 

Abudefduf sexfasciatus 7 3667 0.00145324 0.00127321 0.6417675 

Acanthurus triostegus 9 8546 0.00295615 0.00317118 -0.29061 

Caracanthus maculatus 15 26188 0.00685149 0.00867827 -0.8253215 

Centropyge bispinosa 12 25722 0.0053974 0.0084041 -1.453252 

Chaetodon auriga 6 10215 0.00325639 0.00330588 -0.0708874 

Chaetodon citrinellus 8 6989 0.00289369 0.00308267 -0.2695122 

Chromis iomelas 18 1976 0.00193298 0.00557242 -2.4921097 

Cirripectes variolosus 13 817 0.00140029 0.00288904 -2.0595693 

Ctenochaetus striatus 9 18896 0.00699565 0.00738178 -0.2242177 

Dascyllus flavicaudus 8 9469 0.00416333 0.00407928 0.0905871 

Dascyllus trimaculatus 6 6956 0.00305922 0.00310359 -0.0677079 

Enneapterygius pyramis 20 15162 0.00438627 0.00775826 -1.6376676 
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Species N SNPs θπ θw TD 

Eviota afelei 18 1604 0.00378158 0.00386783 -0.0850551 

Eviota albolineata 18 498 0.00444007 0.00670237 -1.2824561 

Eviota distigma 16 1512 0.00543099 0.00435766 0.95502828 

Eviota infulata 21 2410 0.00640856 0.00650005 -0.0526517 

Fusigobius neophytus 14 1713 0.00384503 0.00393777 -0.0931764 

Glyptoparus delicatulus 20 1212 0.00048788 0.00105869 -2.0269845 

Gnatholepis cauerensis 19 2136 0.00434018 0.00668806 -1.3300267 

Myripristis berndti 7 10085 0.00516948 0.00624918 -0.7844138 

Myripristis kuntee 5 13935 0.00726968 0.00908755 -1.0050481 

Myripristis violacea 6 6468 0.00355744 0.00398411 -0.5071049 

Naso lituratus 5 6812 0.00311676 0.0033817 -0.3935952 

Neocirrhites armatus 15 6097 0.00493581 0.00591438 -0.6484911 

Neoniphon sammara 5 3440 0.00190846 0.00207726 -0.4081514 

Ostorhinchus angustatus 10 2898 0.00181787 0.00199197 -0.3666312 

Paracirrhites arcatus 14 12038 0.00303369 0.00484143 -1.4791819 

Paragobiodon modestus 13 1594 0.0032709 0.00374009 -0.5021346 

Plectranthias nanus 18 25901 0.00942652 0.01582091 -1.5442789 

Pleurosicya labiata 16 1542 0.00610982 0.00637898 -0.1636114 

Priolepis semidoliata 14 1130 0.00296025 0.00297264 -0.0164784 

Pseudocheilinus hexataenia 18 16871 0.00712995 0.01054111 -1.236369 

Pseudogramma polyacanthum 20 27625 0.00424859 0.01062537 -2.2615175 

Rhinecanthus aculeatus 11 3339 0.00170866 0.00178212 -0.1698934 

Sebastapistes fowleri 19 18707 0.0060021 0.01279912 -2.0144227 

Stegastes nigricans 23 12917 0.00389195 0.00347187 0.44804371 

Sufflamen bursa 5 6484 0.00327873 0.00371479 -0.5897021 

Zebrasoma scopas 10 16892 0.00538594 0.0063735 -0.6503832 
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Table 4.2. Posterior summary of linear models: Median, 95% Confidence Interval, hypothesis tested and 
associated posterior probability for the slope of the different Genetic Indices when modelled with the 
number of interactions calculated at different phylogenetic scales using COI or 18S marker and with or 
without the phylogenetic variance covariance matrix as random effect on the intercept (Phylo column). 
  

Scale Phylo Gen. Index Marker Median CI (Lw) CI (Up) Hypothesis Post.Prob 

Species 

No 

dSFS 
18S 0.11866 0.17294 0.06246 dSFS > 0 0.999625 
COI 0.00318 0.00734 -0.00107 0.89275 

dSTAIR 
18S 0.20902 0.37783 0.03937 dSTAIR > 0 0.977 
COI 0.00819 0.02005 -0.00363 0.877625 

fSTAIR 
18S 0.15068 0.31581 -0.01710 fSTAIR > 0 0.929875 
COI 0.00987 0.02084 -0.00083 0.934 

RSTAIR 
18S 0.19597 0.35367 0.03558 RSTAIR > 0 0.976625 
COI 0.01633 0.02598 0.00675 0.99575 

TD 
18S 0.10022 0.01459 0.18869 TD > 0 0.97375 
COI 0.00768 0.00197 0.01316 0.987125 

θπ 
18S -0.00014 -0.00035 0.00008 θπ < 0 0.861375 
COI -0.00001 -0.00002 0.00001 0.7545 

θw 
18S -0.06989 -0.13656 -0.00571 

θw < 0 
0.96225 

COI -0.00359 -0.00790 0.00085 0.91225 

Yes 

dSFS 
18S 0.14374 0.20017 0.08584 dSFS > 0 1 
COI 0.00384 0.00839 -0.00072 0.918875 

dSTAIR 
18S 0.27132 0.43311 0.11136 dSTAIR > 0 0.995375 
COI 0.01237 0.02449 0.00026 0.953 

fSTAIR 
18S 0.19109 0.34993 0.03100 fSTAIR > 0 0.974125 
COI 0.01259 0.02432 0.00117 0.963125 

RSTAIR 
18S 0.22560 0.38536 0.06355 RSTAIR > 0 0.987875 
COI 0.01911 0.02969 0.00870 0.9985 

TD 
18S 0.13042 0.04425 0.21870 TD > 0 0.992125 
COI 0.01039 0.00465 0.01638 0.9975 

θπ 
18S -0.00004 -0.00027 0.00017 θπ < 0 0.62425 
COI 0.00000 -0.00002 0.00001 0.55075 

θw 
18S -0.04785 -0.11433 0.01265 

θw < 0 
0.909125 

COI -0.00300 -0.00769 0.00140 0.8685 

Genus No 
dSFS 

18S 0.02074 0.03578 0.00542 dSFS > 0 0.9855 
COI 0.00476 0.00997 -0.00038 0.9365 

dSTAIR 
18S 0.04078 0.08277 -0.00256 dSTAIR > 0 0.9395 
COI 0.01292 0.02725 -0.00190 0.926 
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Scale Phylo Gen. Index Marker Median CI (Lw) CI (Up) Hypothesis Post.Prob 

fSTAIR 
18S 0.02987 0.07128 -0.01262 fSTAIR > 0 0.8765 
COI 0.01402 0.02773 0.00039 0.954625 

RSTAIR 
18S 0.03685 0.07707 -0.00365 RSTAIR > 0 0.93425 
COI 0.02140 0.03344 0.01014 0.99825 

TD 
18S 0.02517 0.00263 0.04706 TD > 0 0.9665 
COI 0.01020 0.00338 0.01703 0.993 

θπ 
18S -0.00004 -0.00009 0.00002 θπ < 0 0.880875 
COI -0.00001 -0.00002 0.00001 0.772625 

θw 
18S -0.01786 -0.03460 -0.00161 

θw < 0 
0.965 

COI -0.00476 -0.01007 0.00063 0.931875 

Yes 

dSFS 
18S 0.02550 0.04354 0.00901 dSFS > 0 0.992625 
COI 0.00605 0.01186 0.00043 0.961375 

dSTAIR 
18S 0.05627 0.10202 0.00994 dSTAIR > 0 0.9785 
COI 0.01970 0.03463 0.00456 0.981 

fSTAIR 
18S 0.03685 0.08097 -0.00869 fSTAIR > 0 0.91075 
COI 0.01937 0.03372 0.00476 0.9845 

RSTAIR 
18S 0.04395 0.08911 0.00096 RSTAIR > 0 0.954375 
COI 0.02625 0.03980 0.01322 0.999375 

TD 
18S 0.03627 0.01204 0.06022 TD > 0 0.992625 
COI 0.01466 0.00726 0.02188 0.99925 

θπ 
18S -0.00002 -0.00008 0.00004 θπ < 0 0.741625 
COI 0.00000 -0.00002 0.00002 0.522375 

θw 
18S -0.01715 -0.03442 0.00039 

θw < 0 
0.9455 

COI -0.00433 -0.01027 0.00163 0.88625 

Family No 

dSFS 
18S 0.02679 0.04539 0.00827 dSFS > 0 0.990125 
COI 0.00569 0.01193 -0.00060 0.931875 

dSTAIR 
18S 0.05447 0.10714 0.00318 dSTAIR > 0 0.95975 
COI 0.01629 0.03352 -0.00068 0.942 

fSTAIR 
18S 0.04109 0.09195 -0.00771 fSTAIR > 0 0.916 
COI 0.01588 0.03233 -0.00039 0.945375 

RSTAIR 
18S 0.05005 0.09953 0.00124 RSTAIR > 0 0.95425 
COI 0.02635 0.04065 0.01247 0.99875 

TD 
18S 0.03119 0.00480 0.05786 TD > 0 0.973375 
COI 0.01270 0.00477 0.02081 0.993625 

θπ 
18S -0.00005 -0.00011 0.00002 θπ < 0 0.895125 
COI -0.00001 -0.00003 0.00001 0.795125 
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Scale Phylo Gen. Index Marker Median CI (Lw) CI (Up) Hypothesis Post.Prob 

θw 
18S -0.02286 -0.04253 -0.00302 

θw < 0 
0.967875 

COI -0.00617 -0.01252 0.00011 0.9465 

Yes 

dSFS 
18S 0.03565 0.05672 0.01451 dSFS > 0 0.997125 
COI 0.00767 0.01470 0.00081 0.96475 

dSTAIR 
18S 0.07860 0.14464 0.02287 dSTAIR > 0 0.98625 
COI 0.02606 0.04462 0.00773 0.990125 

fSTAIR 
18S 0.05134 0.10696 -0.00148 fSTAIR > 0 0.944375 
COI 0.02311 0.04100 0.00517 0.983625 

RSTAIR 
18S 0.05926 0.11314 0.00726 RSTAIR > 0 0.966875 
COI 0.03436 0.05123 0.01786 0.999375 

TD 
18S 0.04646 0.01790 0.07556 TD > 0 0.994875 
COI 0.01943 0.01063 0.02840 0.999875 

θπ 
18S -0.00003 -0.00010 0.00005 θπ < 0 0.708 
COI 0.00000 -0.00003 0.00003 0.463875 

θw 
18S -0.02062 -0.04243 0.00041 

θw < 0 
0.946625 

COI -0.00519 -0.01278 0.00235 0.871875 

ESV 

No 

dSFS 
18S 0.00174 0.00359 -0.00002 dSFS > 0 0.948 
COI 0.00113 0.00254 -0.00033 0.902875 

dSTAIR 
18S 0.00176 0.00682 -0.00335 dSTAIR > 0 0.71475 
COI 0.00259 0.00659 -0.00143 0.86 

fSTAIR 
18S 0.00167 0.00635 -0.00317 fSTAIR > 0 0.719375 
COI 0.00308 0.00668 -0.00052 0.91675 

RSTAIR 
18S 0.00358 0.00815 -0.00079 RSTAIR > 0 0.91 
COI 0.00463 0.00809 0.00138 0.988 

TD 
18S 0.00194 -0.00061 0.00436 TD > 0 0.895 
COI 0.00231 0.00043 0.00418 0.975375 

θπ 
18S 0.00000 -0.00001 0.00000 θπ < 0 0.79425 
COI 0.00000 -0.00001 0.00000 0.738375 

θw 
18S -0.00117 -0.00305 0.00066 

θw < 0 
0.852375 

COI -0.00109 -0.00254 0.00034 0.895375 

Yes 

dSFS 
18S 0.00214 0.00403 0.00024 dSFS > 0 0.96725 
COI 0.00125 0.00276 -0.00027 0.9165 

dSTAIR 
18S 0.00335 0.00867 -0.00203 dSTAIR > 0 0.851125 
COI 0.00363 0.00777 -0.00043 0.928375 

fSTAIR 
18S 0.00268 0.00779 -0.00229 fSTAIR > 0 0.809375 
COI 0.00377 0.00765 -0.00010 0.945 

RSTAIR 18S 0.00443 0.00923 -0.00042 RSTAIR > 0 0.937 
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Scale Phylo Gen. Index Marker Median CI (Lw) CI (Up) Hypothesis Post.Prob 
COI 0.00531 0.00898 0.00169 0.9895 

TD 
18S 0.00295 0.00028 0.00556 TD > 0 0.964625 
COI 0.00299 0.00109 0.00498 0.994125 

θπ 
18S 0.00000 -0.00001 0.00001 θπ < 0 0.641875 
COI 0.00000 -0.00001 0.00000 0.6425 

θw 
18S -0.00089 -0.00292 0.00107 θw < 0 0.77025 
COI -0.00104 -0.00254 0.00042 0.88375 
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4.3.4.3. Supplementary Figures 

 
Figure 4.3. Phylogenetic tree of the 43 species. Values in red represent the percentage of branch support 
calculated from 10,000 ultra-fast bootstrap iterations. 
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Figure 4.4. Bayesian Linear models relating genetic indices and the number of consumed species 
with the phylogeny as random effect around the intercept. Each row represents a genetic index. For 
each genetic index, the three panels represent: i) the posterior distribution of the slope when the N° of 
consumed species is estimated by the COI (purple) or 18S (red); ii) the regression line relating genetic 
indices and N° of consumed species estimated by the COI and iii) 18S marker. The posterior distributions 
of the slopes are scaled by their maximum absolute value for comparison purposes. 
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Figure 4.5. Bayesian Linear models relating genetic indices and the number of consumed ESV. Each 
row represents a genetic index. For each genetic index, the three panels represent: i) the posterior 
distribution of the slope when the N° of consumed ESV is estimated by the COI (purple) or 18S (red); ii) 
the regression line relating genetic indices and N° of consumed ESV estimated by the COI and iii) 18S 
marker. The posterior distributions of the slopes are scaled by their maximum absolute value for 
comparison purposes. 
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Figure 4.6. Bayesian Linear models relating genetic indices and the number of consumed genera. 
Each row represents a genetic index. For each genetic index, the three panels represent: i) the posterior 
distribution of the slope when the N° of consumed genera is estimated by the COI (purple) or 18S (red); 
ii) the regression line relating genetic indices and N° of consumed genera estimated by the COI and iii) 
18S marker. The posterior distributions of the slopes are scaled by their maximum absolute value for 
comparison purposes. 
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Figure 4.7. Bayesian Linear models relating genetic indices and the number of consumed families. 
Each row represents a genetic index. For each genetic index, the three panels represent: i) the posterior 
distribution of the slope when the N° of consumed families is estimated by the COI (purple) or 18S (red); 
ii) the regression line relating genetic indices and N° of consumed families estimated by the COI and iii) 
18S marker. The posterior distributions of the slopes are scaled by their maximum absolute value for 
comparison purposes. 

0.0000

0.0005

0.0010

0.0015

0.0020

−1000 −500 0 500
posterior

de
ns

ity

Theta_pi

2.5

5.0

7.5

0 25 50 75
Number of family

Th
et

a_
pi

(x
 1

00
0)

2.5

5.0

7.5

0 10 20
Number of family

Th
et

a_
pi

(x
 1

00
0)

0.0

0.5

1.0

1.5

2.0

−1.0 −0.5 0.0 0.5
posterior

de
ns

ity

Theta_w

−6

−5

0 25 50 75
Number of family

lo
g(

Th
et

a_
w

)

−6

−5

0 10 20
Number of family

lo
g(

Th
et

a_
w

)
0

1

2

3

0.0 0.5 1.0
posterior

de
ns

ity

TD

−2

−1

0

1

0 25 50 75
Number of family

TD

−2

−1

0

1

0 10 20
Number of family

TD

0

1

2

0.0 0.5 1.0
posterior

de
ns

ity

distance_sfs

3.0

3.5

4.0

4.5

5.0

0 25 50 75
Number of family

lo
g(

di
st

an
ce

_s
fs

)
(x

 −
1)

3.0

3.5

4.0

4.5

5.0

0 10 20
Number of family

lo
g(

di
st

an
ce

_s
fs

)
(x

 −
1)

0

1

2

0.0 0.5 1.0
posterior

de
ns

ity

distance_stairway

8

10

12

0 25 50 75
Number of family

lo
g(

di
st

an
ce

_s
ta

irw
ay

)
(x

 −
1)

8

10

12

0 10 20
Number of family

lo
g(

di
st

an
ce

_s
ta

irw
ay

)
(x

 −
1)

0

1

2

0.0 0.5 1.0
posterior

de
ns

ity

Ratio

−4

−2

0

2

0 25 50 75
Number of family

lo
g(

R
at

io
)

(x
 −

1)

−4

−2

0

2

0 10 20
Number of family

lo
g(

R
at

io
)

(x
 −

1)

0

1

2

−0.5 0.0 0.5 1.0
posterior

de
ns

ity

fluctuations_scales

−4

−2

0

2

0 25 50 75
Number of family

lo
g(

flu
ct

ua
tio

ns
_s

ca
le

s)
(x

 −
1)

−4

−2

0

2

0 10 20
Number of family

lo
g(

flu
ct

ua
tio

ns
_s

ca
le

s)
(x

 −
1)

a. Mean Pairwise Difference (θπ)

b. Watterson’s estimator (θw)

c. Tajima’s D (TD)

d. Distance to SFS (dSFS)

e. Distance to stairwayplot (dSTAIR)

f. Ratio modern/ancestral diversity (rSTAIR)

c. Fluctuations in stairwayplot (fSTAIR)

COI

18S

Marker

COI

18S

Marker

COI

18S

Marker

COI

18S

Marker

COI

18S

Marker

COI

18S

Marker

COI

18S

Marker



Chapter 4. Genetic Signatures of Ecosystem Functioning 

218 
 

 
Figure 4.8. Bayesian Linear models relating genetic indices and the number of consumed ESV with 
the phylogeny as random effect around the intercept. Each row represents a genetic index. For each 
genetic index, the three panels represent: i) the posterior distribution of the slope when the N° of 
consumed ESV is estimated by the COI (purple) or 18S (red); ii) the regression line relating genetic 
indices and N° of consumed ESV estimated by the COI and iii) 18S marker. The posterior distributions of 
the slopes are scaled by their maximum absolute value for comparison purposes. 
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Figure 4.9. Bayesian Linear models relating genetic indices and the number of consumed genera 
with the phylogeny as random effect around the intercept. Each row represents a genetic index. For 
each genetic index, the three panels represent: i) the posterior distribution of the slope when the N° of 
consumed genera is estimated by the COI (purple) or 18S (red); ii) the regression line relating genetic 
indices and N° of consumed genera estimated by the COI and iii) 18S marker. The posterior distributions 
of the slopes are scaled by their maximum absolute value for comparison purposes. 
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Figure 4.10. Bayesian Linear models relating genetic indices and the number of consumed families 
with the phylogeny as random effect around the intercept. Each row represents a genetic index. For 
each genetic index, the three panels represent: i) the posterior distribution of the slope when the N° of 
consumed families is estimated by the COI (purple) or 18S (red); ii) the regression line relating genetic 
indices and N° of consumed families estimated by the COI and iii) 18S marker. The posterior 
distributions of the slopes are scaled by their maximum absolute value for comparison purposes. 
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4.4. Conclusions and perspectives 

4.4.1. A multi-species population genetics dataset to understand 

ecosystem functioning 
In this chapter I set up a unique interdisciplinary approach allowing to establish a relation between 

ecological (e.g., ecosystem functioning) and population genetics concepts (e.g., historical 

demographic inferences). Population genetics traditionally focuses on single-species inferences 

because of a lack of both theoretical developments on the influence of species interactions on 

genetic diversity and of multi-species population genetics dataset, which have been unaffordable 

for long time. To accomplish this challenging task, I followed a Target Gene Capture protocol (C. 

Li et al., 2013) which targets a set of specific loci homologous across species. This provides two 

major advantages: (1) the ability to compare genetic estimates between species and (2) the ability 

to, if desired, extend the dataset to other species and/or other locations, directly profiting from the 

homologous nature of the targeted genes. The overall framework proved powerful, as it enabled 

us to demonstrate a remarkable positive correlation between trophic niche width and stability in 

demographic history, consistently with previous hypotheses (Carscadden et al., 2020; Colles et al., 

2009; Gravel et al., 2011; S. Li et al., 2014; Pasinelli, 2022), suggesting that generalist species 

might be less prone to extinction than specialist ones. This framework led to strong conservation 

implications driven by the conclusion that generalist species should be less vulnerable than 

specialists. In addition, the framework opens a door to many perspectives and generalizations – 

some of which I explain below. Ultimately, they will help grasping more knowledge on ecosystem 

functioning and on the genomic signatures left by large-scale processes, both of which being key 

to understand the future resilience of biodiversity in the context of a huge biodiversity crisis 

(Ceballos et al., 2015).  

 

4.4.2. Predictors of historical demography, coalescence rate and beyond 
In this chapter, I devised several demographic stability indices, based on both the Site Frequency 

Spectrum (SFS) and the reconstructed coalescence rates through time by the stairwayplot, an SFS-

based unstructured model. I performed linear models using trophic niche width data estimated 

from meta-barcoding of gut contents of the same species (extracted from Casey et al., in prep) as 

predictor variables of the genetic indices. Trophic niche was thus found to be a predictor of 
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demographic history as larger niche width was positively associated with all stability indices. 

However, it is important to note that species can be generalists in some niche and specialists in 

another (Poisot et al., 2011). Despite the strength of our result suggests that trophic niche width 

plays an important role in shaping demographic history, it might be resourceful in the future to 

understand how other niche components drive historical demography, such as the climatic niche 

(i.e., the extent of climatic conditions under which species can strive). This would allow to 

disentangle the relative contribution of each niche component to demographic stability, which 

might be proven useful to refine predictors of genetic diversity and vulnerability, eventually crucial 

in order to predict the future of biodiversity.  

Interestingly, I noted that trophic niche width hardly correlated with direct estimates of genetic 

diversity (i.e., the mean pairwise difference, θπ, (Tajima, 1983), and Watterson’s estimate θw), 

which summaries the SFS, already a summary the gene genealogy. This could be due to a more 

intricate relation between genetic diversity and fluctuations than initially expected by Kimura & 

Crow (1963). More importantly it suggests that interpretations of genetic diversity estimates must 

be made carefully and prompts to couple investigation with more detailed indices of genetic 

diversity, such as the SFS. Additionally, once again, this chapter displays the benefits of studying 

the reconstruction of the IICR through time using unstructured models. For instance, it shows that 

ecological features such as niche width impact the gene genealogy (as shown by the strong 

correlations with the SFS) and thus as expected the coalescence rate (as shown by the correlations 

with the IICR reconstructed by the stairwayplot). This increases our understanding of the 

determinants of coalescence times and shows how powerful such statistics can be to investigate 

processes up to the scale of the ecosystem.  

However, the current modelling (limited to unstructured models) is unlikely to be enough to 

understand the full evolutionary picture of each species studied here, just as it has been developed 

in Chapters 2 and 3. In fact, here I inferred stability as less changes in coalescence rate, but 

Chapter 2 (and the introduction, Chapter 1) clearly showed how population structure drives 

variation in the coalescence rate even with no changes in effective size. The model behind should 

thus be complexified in the future to account for the degree of structure in each species. In addition, 

as developed in the introduction to this chapter, under the SGVH specialist species should also 

display lower amounts of connectivity between populations (Gravel et al., 2011; S. Li et al., 2014). 

As already suggested, one strategy to formally test it would be to extend the current dataset to 
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other sampling sites (which will be more detailed in the following section). I note however that 

more complex modelling can be complicated in this context for two reasons: (1) the sometimes 

low and unequal number of SNPs in the set of species, which will condition accuracy in estimates 

of complex models and (2) the likely non-adequacy of the standard coalescent models to fishes. 

For instance, fishes display sweepstake reproduction strategies (Hedgecock & Pudovkin, 2011), 

and their ancestral process might be better described by a multiple-merger coalescent framework 

(Pitman, 1999; Sagitov, 1999; Tellier & Lemaire, 2014). In this chapter, I assumed that the bias 

generated by applying Kingman’s coalescence should be the same in all species. This is not 

necessarily true, since the variance in reproductive process is likely to vary between species 

(therefore, the multiple merger process may not be the same in all sampled species). Moreover, 

more complex modelling under the standard (Kingman) coalescent could be highly misleading and 

the originated bias heterogeneous in the set of species here considered (Vendrami et al., 2021). 

While our result remains robust, it will be pertinent in the future to investigate demographic 

modelling using a multiple-merger coalescent simulator.  

 

4.4.3. Extending the dataset to test biogeographic hypotheses 
As suggested above, the genetic dataset could be extended to test whether connectivity is 

conditioned by trophic niche width, i.e., to test the second part of the SGVH. In fact, the SGVH is 

intricately related to the Trophic Theory of Island Biogeography (T-TIB) (Gravel et al., 2011). In 

essence, the T-TIB extends the Theory of Island Biogeography (TIB) (MacArthur & Wilson, 1967) 

to account for trophic interactions. The TIB is a predictive theory of biodiversity at the species 

scale: the distribution of species in a given habitat depends on the interplay between colonization 

and extinction rates. Each rate varies in function of the size of the habitat and in function of the 

distance from a propagule source (i.e., a source of biodiversity), and notably, colonization rate 

decreases and extinction rate increases with the distance from the source (MacArthur & Wilson, 

1967). The T-TIB integrates the influence of trophic niche width onto the colonization/extinction 

dynamics, as a species must have colonised a habitat for its predator to colonise it, which impedes 

colonization and increases extinction risk for specialist species in comparison to generalists’ ones 

(Gravel et al., 2011). The T-TIB thus provides a theoretical framework to the expectations of the 

SGVH related to the higher demographic fluctuations due to higher frequency of extinction rates, 

but also to the decrease of connectivity in specialists due to the need for the right resources along 
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the colonization pathway. More interestingly the T-TIB adds another layer of complexity as the 

demographic stability when distance from source increases is not expected to be consistently 

conditioned by niche width (Gravel et al., 2011): while generalist species should guarantee greater 

demographic stability along the biodiversity gradient, and therefore stable genetic diversity 

between sampled sites along the gradient, specialist species should display a decrease in genetic 

diversity with the distance from the source, sensitive to the colonisation-extinction cycles of the 

few prey species consumed and to the absence of specific resources in habitats on the colonization 

pathway.  

The dataset elaborated in this chapter is unfortunately not enough to test the expectations of the 

TIB and the T-TIB. However, extending it to other sites along a gradient of biodiversity will be a 

golden opportunity in the future to test whether stability in historical demography remains the 

same conditioned on niche width. Additionally, the source of biodiversity could represent a refugia 

for multiple species and thus an origin of Range Expansion (RE). This means that species should 

display more recent colonization times with increasing distance to the source. Extending the 

dataset could therefore allow testing whether we can find such signatures of colonisations along 

the gradient but also to test whether the ability to detect colonization changes between generalist 

and specialist species due to different rates of fluctuations. In this context, extending our dataset 

which includes a sampling location in French Polynesia is pertinent, as in the Pacific, coral reefs 

are characterized by a decrease in species richness away from the Coral Triangle a biodiversity 

hotspot (Roberts et al., 2002) and past refugia for reef fishes (Cowman & Bellwood, 2013) that 

would correspond to the source of propagule under in the TIB (MacArthur & Wilson, 1967). 

Pacific reefs thus represent a perfect region for testing this hypothesis, which will be key in the 

context of global changes. For instance, studying communities along a biodiversity gradient 

represents a proxy of the shift away from highly diverse to less rich habitats expected to happen 

over time due to biodiversity erosion.  
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5.1. Main findings 
In my PhD, I sought to demonstrate the value of complex demographic inferences to formulate 

evolutionary and conservation hypotheses, and to enhance our comprehension of how species- and 

community-level features drive historical demography and the reconstruction we may (and should) 

make of it. To that end, I studied how processes ranging from local structural variations in the 

genome to trophic interactions have shaped the evolutionary history of marine organisms using 

population genetics applied to genomic data. In Chapter 1, I introduced the coalescent theory and 

how it provided a resourceful basis upon which to investigate complex demographic scenarios, 

notably through simulations. I then introduced a demographic framework aiming to correctly infer 

and interpret the history of species in two steps: (1) investigation of descriptive analyses of the 

genetic variability in space and time, and (2) design of complex demographic scenarios based on 

the information obtained in the first step. This general framework rooted the investigations of the 

following chapters.  

In Chapter 2, I investigated the relationship between life history traits, population structure, and 

coalescence rate trajectory through time as reconstructed by unstructured models (i.e., models 

assuming panmixia). Through simulations and empirical investigations, I first highlighted the 

signatures of the degree of population structure and specific historical events on the reconstructed 

coalescence rate obtained by means of unstructured models. This emphasized (i) how specific 

parameters of the true demographic history of species influences the distribution of coalescence 

times, (ii) how unstructured models are thus powerful tools to detect their signature; but also (iii) 

how blindly assuming that variation in coalescent rate is only due to variation in effective 

population size through time lead to strong mis-interpretations and it is necessary to couple this 

analysis with additional ecological and genetics evidences. This stressed the necessity of testing 

for structure co-jointly to applying unstructured models, as the two sets of analysis can uncover 

different features of a species' evolutionary history and need to be interpreted in concert. This was 

further supported in two examples of widespread shark species having a very different set of life 

history traits, underlining the importance of species-specific thoughtful model setting, to which 

rigorous investigation of population structure is of paramount importance.  

In chapter 3, I present the discovery of a supergene responsible for a size polymorphism in the 

vulnerable Thorny Skate. This is a remarkable discovery which highlights, for the first time 

unambiguously, how a supergene interacts with the determinism of a known polygenic trait, 
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suggesting that several genes involved in size determinism are located within the supergene region. 

The system thus offers perspectives beyond the field of population genetics, notably in quantitative 

or functional genetics. Furthermore, this chapter focused on the supergene's origin and putative 

role in the conservation of this species. By thoroughly reconstructing the species' demographic 

history at the scale of its whole range, I was able to show that this supergene originated through 

introgression from a sister species, though accurate dating would require genetic data from con-

generic species in the future. In addition, I was able to explain why this supergene is limited to a 

specific area of the Thorny Skate’s range. Finally, and more importantly, I uncovered the role of 

the supergene in the non-recovery of one Thorny Skate population. This chapter thus provided 

critical insights into the conservation consequences of a size-determining supergene and its origins. 

In addition, it also shed light on the value of demographic investigation to understand local 

selective processes, as well as on the need for multi-species investigations to better characterize 

supergene’s origin and evolution.  

Finally, in Chapter 4 I took an interdisciplinary approach coupling genomic to ecological data in 

order to investigate ecosystem-scale determinants of genetic diversity. To that end, I set up a 

unique multi-species genomic dataset that targeted homologous regions across 43 reef-associated 

fish species, eventually allowing for comparisons of genetic diversity between them. Genetic 

indices of demographic stability were studied in the light of trophic niche width reconstructed by 

meta-barcoding of gut contents (the latter kindly provided by Valeriano Parravicini research 

group). This allowed to show a positive relationship between trophic niche width and demographic 

history stability. This indicated that generalist species may be less vulnerable to extinction than 

specialists, linking directly for the first time a community-scale process to historical demography. 

This chapter brought support to the Specialist-Generalist Variation Hypothesis (SGVH), allowing 

to answer a long-standing question in community ecology, and at the same time provided a glance 

of the power of multi-species population genetics dataset for inter-disciplinary investigations.  
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5.2. A Framework for robust demographic inferences 
Devising meaningful demographic models is challenging. In the introduction (Chapter 1), I 

developed briefly how the coalescent theory allowed to investigate intricate scenarios through 

simulations. In addition, I stress the need to establish a robust framework in order to study a (set 

of) coherent scenario(s) and thus avoid misinterpretations based on inappropriate models (e.g., as 

in the case of neglecting population structure). Notably, I highlighted an intuitive and meaningful 

demographic set-up consisting of:  

(1) Collecting as much evidence on the nature and degree of population structure through 

descriptive analyses notably composed of FST-based statistics, clustering algorithms, ABC-

RF and unstructured models, needed to estimate the variation in coalescence rate through 

time;  

(2) Device the best (set of) scenario(s) in relation to the question and the species investigated, 

bolstered by the information provided by step (1) 

(3) Find a computational way to model the chosen scenario(s). This can be done using 

coalescent-based frameworks, by means of simulations or full likelihood-based models 

when an analytical solution exists (but other frameworks are available, e.g., such as the 

diffusion approximations in δaδi).  

I note that while non-implemented in my thesis (except to some extent in Chapter 2), an additional 

step should be to simulate data under the most likely scenario investigated in (3) to reproduce the 

descriptive results of step (1), when possible. This would thus allow to perform a sort of cross-

validation of the demographic framework as a whole, as some studies have started to implement 

(e.g., (Corrigan et al., in prep)). Designing such framework is ultimately required to properly 

reconstruct the history of species, which is necessary to formulate proper evolutionary and 

conservation hypotheses.  
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5.3. The coalescence rate: species-to-community insights 

5.3.1. Drivers of the (reconstructed) coalescence rate 
The gene genealogy of a sample of lineages is determined by the demographic history of the 

species under investigation, therefore impacting the reconstruction of the coalescence rate 

achieved under panmictic (or unstructured) models. When the sampled lineages are not part of a 

panmictic species, the reconstructed coalescence rate does not relate directly to the effective size 

trajectory of the population from which lineages have been sampled and should in turn be referred 

to as the Inverse Instantaneous Coalescence Rate (IICR) (Mazet et al., 2016). In the end, models 

assuming panmixia are (generally) well performing (with several limits for recent or too old times, 

not detailed here) in reconstructing the vector of coalescence times underlying the gene genealogy, 

i.e., the IICR, which in turn yields information about the true demographic history of the sampled 

lineages. This makes unstructured models an incredibly resourceful descriptive statistic of a 

species history, as providing useful hints on the evolutionary processes shaping the history of the 

sampled lineages.  

As such, it is important to uncover the determinants of the coalescence rate (and therefore the 

shape of the IICR) beyond the panmictic case, where the IICR is expected to vary co-jointly with 

changes in effective size through the history of the sampled population. However, this necessitates 

to couple its inspection to a thorough examination of complex demographic models. In the case of 

population structure, the trajectory of the IICR has traditionally been investigated in simple 

demographic scenarios, such as equilibrium island or stepping-stone models (e.g., (Mazet et al., 

2015, 2016; Rodríguez et al., 2018)), notably for computational reasons. Yet, as highlighted in 

Chapter 1, the use of coalescent simulations and the current computational abilities allow 

nowadays to investigate more complex scenarios and therefore to better characterize the 

determinants of the coalescence rate trajectory.  

In this context I investigated in Chapter 2 the signatures of different set of demographic 

parameters within non-equilibrium meta-population models (i.e., explicitly including the 

colonization time of the array of the demes) on the IICR reconstructed by an unstructured model. 

Using simulations, I confirmed the presence of a spurious bottleneck signal on the IICR, typical of 

population structure and already identified in equilibrium meta-population models (Heller et al., 

2013; Mazet et al., 2016; Rodríguez et al., 2018). In addition, I demonstrated that it was possible 

to detect the colonization time of the habitat directly from the IICR, even though its detection 
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remains conditioned by an intricate interplay between demographic parameters, notably the degree 

of connectivity and the colonization time. This result is important as most structured species are 

more likely to be better described by a non-equilibrium rather than equilibrium meta-population 

model, as the latter depicts an established meta-population, i.e., it has always, or for a very long 

time, been in its current range. Consequently, the ability to detect the colonization directly from 

the IICR conveys two major insights for the study of structured species:  

(1) An ancestral increase in IICR is not (necessarily) an ancestral increase in effective size: in 

fact, it will be important in the future to check whether a colonization due to an expanding 

population leaves the same signature as a fragmentation (e.g., from a panmictic population 

to a meta-population);  

(2) The colonization timing inferred over large geographical extent (i.e., investigating the IICR 

in more demes) can allow to make interpretation about the colonization process of the 

whole range (e.g., ultimately characterizing the dynamics of a range expansion).  

 

This study slightly increased our understanding of how the IICR holds specific signatures of the 

history of the meta-population. Nonetheless, whilst the non-equilibrium meta-population model is 

likely more realistic than equilibrium ones in most cases, this chapter investigated a tiny window 

of all the processes that could influence the IICR. It will be important in the future to test in similar 

framework other (more) complex models to increase our understanding of how specific parameters 

influence the gene genealogy of a sample of lineages, and thus the trajectory of coalescence times 

reconstructed by unstructured models.  

Finally, it is worth stressing that the IICR interpreted in real species (as those analyzed within my 

PhD) is always generated by unstructured models and remains associated with its load of 

uncertainties. It is therefore important to note that in the future, the performance of unstructured 

models for inferring IIRC in complex scenarios will need to be investigated. Typically, once source 

of variation arises from the (numerous) different methods to reconstruct the IICR (e.g., PSMC (H. 

Li & Durbin, 2011), MSMC (Schiffels & Durbin, 2014), SMC++ (Terhorst et al., 2017), Skyline 

Plot (Ho & Shapiro, 2011) or stairwayplot (Liu & Fu, 2020, 2015)). These methods do not infer 

the IICR with the same accuracy and perform differently depending on the time frame under 

examination. For instance, PSMC and MSMC uses linkage disequilibrium (LD) to reconstruct the 

ARG, Skyline and stairwayplot are full likelihood or SFS-based that consider loci as independent. 
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Finally, the SMC++ combines both the SFS and LD to better approximate the ARG. It is therefore 

important to keep in mind the source of uncertainty related to these computationally intensive 

approaches, which has to be accounted for when interpreting the IICR or when using it as a 

summary statistic. 

 

5.3.2. The IICR as a summary statistic in practice 
The reconstructed IICR provides information about the true demographic model of the sampled 

lineages. In practice it can be used in various ways as a summary statistic of the true gene 

genealogy, from the inference of effective size trajectory (when assumptions of panmixia are met), 

to, more broadly, a descriptive tool of the overall genetic variability, which, when analyzed at the 

multi-species scale, can provide information about the functioning of a community.  

Chapter 2 illustrated two ways of using the IICR through the study of two widely shark species. 

In the tiger shark, panmictic at large scale, the IICR was used to directly interpret trends of 

effective population size through time. This likely represents a rare case where a species strongly 

tends to panmixia. In contrast, the grey reef shark is genetically structured in its whole range (the 

Indo-Pacific) with an organization close to bi-dimensional stepping-stone meta-population. 

Interestingly, this species displayed signatures of a range expansion originating close to the Coral 

Triangle. Investigations of the IICR at different sampling locations across its range corroborated 

the RE process, as colonization time was the youngest at the borders of the range distribution, and 

followed an incrementation when going towards the center of origin. This showed how the sole 

use of unstructured models allowed to detect an important event of the history of the species, and 

thus nicely illustrated the previous theoretical findings of a relationship between an ancestral 

increase in IICR and the colonization of the habitat. Interestingly, the Thorny Skate (Chapter 3) 

displayed an organization in two isolated meta-populations with a very high connectivity. In this 

case, the IICR conveyed clear signatures of the divergence between the two meta-populations, 

which was further confirmed by explicit demographic modelling, but demes within each meta-

population displayed similar IICR, according to the extremely high migration rate inferred. 

Further, I used the IICR to shed more light on the supergene evolution. Indeed, the IICR trajectory 

is different in the supergene region compared to the genome-wide one, which suggests for the 

presence of selection – though its nature remains to be characterized – acting on the supergene. 
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This example highlights another use of the IICR as a descriptive statistic to investigate (and detect) 

local genomic signatures.   

In Chapter 4, I extended the use of the IICR to a multi-species setting. I investigated 43 coral reef 

fish species to test whether species with large niche width are indeed less vulnerable than narrower 

niche width species, following the Specialist-Generalist Variation Hypothesis (SGVH; S. Li et al., 

2014). The SGVH is based on the idea that specialists are more subject to demographic fluctuations 

over time due to the low availability of specific resources than generalists, who should in turn have 

greater demographic stability and greater overall genetic diversity (Gravel et al., 2011). To 

understand this, I investigated demographic stability indices as fluctuations in the IICR trajectory 

(among other indices) for each species and performed linear models to find whether it was related 

to the extent of their trophic interactions. I showed that flatness in the IICR significantly increased 

with the number of resources consumed and interpreted this signal as an increase in demographic 

stability with larger trophic niche, corroborating the expected lower vulnerability of generalists. 

This original approach presents another example of the usefulness of the signatures retrieved by 

the IICR reconstructed by unstructured models. It showed that even when we do not have a clue 

of the true demographic scenario behind the IICR trajectory, its computation is still very useful, in 

this case to answer an ecological inquiry. Yet this is also the principal limit to the framework used 

in this chapter, which thus differs from Chapter 2 investigations where signatures in the IICR 

were examined using an explicit demographic scenario. Stability in the IICR could be due to a true 

stability in the deme or population considered, but as highlighted many times across this thesis, 

the IICR can be influenced similarly by many different scenarios and/or parameters. In this light, 

Chapter 4 sets up a novel approach (as detailed more below) which represents a necessary stone 

to start understanding from a population genetics point of view ecological processes. In 

consequence, an important perspective of the chapter will be to refine the investigations notably 

by explicitly modelling demographic scenarios of the whole reef fish fauna (such as extinction/re-

colonization processes or, bottleneck-reconnection processes to be coherent with the 

biogeographic and ecological hypotheses).  

The different examples of use of IICR in this thesis provide two general perspectives. First, the 

usefulness of unstructured models in the descriptive step process, and how they can refine the 

interpretation of the evolutionary history of a species before explicit demographic modelling. 

Second, the need to implement the IICR as a summary statistic of the true demographic history of 
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the species under investigation. For instance, the ABC-RF framework allows the inclusion of many 

summary statistics expected to vary accordingly to the demographic scenario, exactly as the IICR. 

In addition, finding more determinants of the coalescence rate inferred from a sample of lineages 

(i.e., evolutionary but also ecological drivers) will be important also for understanding large-scale 

(i.e., ecosystem) processes. This could be key for conservation plannings, helping to better 

understand the determinants of vulnerability.  
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5.4. Multi-species population genetics: a step into the future  

5.4.1. Current perspectives are multi-species perspectives 
Traditionally, population genetics studies have focused on species-centered inferences. Typically, 

this is the case for (most of) Chapter 2 and Chapter 3, which roughly aimed at reconstructing the 

demographic history of species at the scale of their range distribution. Yet, both of these chapters 

led to multi-species perspectives.  

In Chapter 2, I investigated how life history traits in species could determine population structure, 

and how the latter influenced the reconstructed IICR trajectory by using unstructured models. 

Partly through a multi-species investigation, it highlighted that indeed, specific traits were related 

to the degree of connectivity. However, the dataset was small (i.e., four species), which clearly 

suggested in the future, the necessity to build extensive multi-species datasets, to uncover 

determinants of connectivity and genetic diversity. In the case of the Thorny Skate (Chapter 3), 

the perspective was all the more striking as it directly suggested the requirement of multi-species 

datasets to better characterize a local polymorphic supergene. For instance, I showed that one allele 

at the supergene had introgressed, but I was not able to date the time of its introgression, which 

would require knowledge of the donor species of the introgressed allele. This could be done in the 

future by investigating all congeneric species to identify the donor species. This shows that even 

micro-evolutionary processes (such as the functioning of a supergene system) might require multi-

species population genetics modelling to be fully depicted. All in all, it emphasizes how multi-

species investigations will become more common in the future even to investigate processes that 

seem species-centered at first.  

 

5.4.2. A test-case on reef fishes from the Indo-Pacific 
Multi-species datasets can be a tool to investigate large-scale processes and to investigate 

ecological and biogeographic hypotheses. In Chapter 4, I set up a 43-species genomic dataset and 

reconstructed for each of them the coalescence rate trajectory using an unstructured model. I then 

devised genetic indices related to demographic stability (or IICR stability) and modelled them by 

the number of trophic interactions as measured by meta-barcoding of gut contents. The results 

suggested a clear correlation between demographic fluctuations and trophic niche width, 

highlighting for the first time a relationship between demographic stability (especially as 
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reconstructed using a coalescence-based model) and a community-level process. This helped 

understanding the resilience of biodiversity, and thus ultimately emphasized the importance of this 

study for conservation.  

This chapter highlighted the power of multi-species investigation to unravel important hypotheses, 

especially coming from another field such as community ecology. It will be possible in the future 

to broaden the range of ecological factors studied (i.e., investigating other determinants of the 

coalescence rates for example). In addition, coupling this dataset with additional sampling 

locations will allow for the investigation of large-scale biogeographic hypotheses. This shows how 

multi-species investigation in the context of population genetics will become greatly valuable to 

answer novel questions related to genetic diversity but also integrating a population genetics 

perspective to other fields of investigation.  

 

5.4.3. Challenges in multi-species population genetics inference 
While multi-species investigations in the context of population genetics is very promising, it can 

remain, to date, challenging. One reason is that building a dataset can be complex if it is required 

to compare genetic diversity between the species of interests. Here we built a unique dataset of 43 

species by sequencing a set of homologous regions following a Target Gene Capture protocol, but 

this might not always be possible if no pre-designed baits are available. However, not all multi-

species investigations do necessarily need homologous loci (such as, for example, the LHT 

investigation in Chapter 2), and the increasing affordability in Whole Genome Sequencing will 

allow in the future to have more and more model-species, enhancing the multi-species 

investigation possibilities. However, the main challenge of multi-species investigations resides in 

the fact that there are no real theoretical expectations of multi-species population genetics models, 

i.e., considering the effect of species interactions. Clearly, theoretical work will be needed in the 

next future to extend our species centered vision of population genetics. In addition, when 

investigating multi-species demographic signatures, the whole set of descriptive analyses 

discussed several times in this thesis should be perform at a species-scale. This means that the 

resources required for such studies will scale-up to the number of species investigated, although 

this could likely be eased in the future by automation methods such as deep-learning-based 

frameworks.  
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5.5. General conclusion 
My PhD thesis underscores the importance of robust demographic modeling, of multi-species 

investigations, and stress the potential for coalescence-based statistics to provide valuable insights 

into species' histories and to test ecological hypothesis. I used marine organisms as test-cases, but 

my findings go beyond aquatic ecosystems. I emphasize the importance of establishing a 

meaningful demographic framework involving descriptive analyses and explicit complex 

demographic modelling. These are necessary for making accurate evolutionary and conservation 

hypotheses as highlighted by the study of widely distributed and vulnerable shark species. In 

addition, this was further underlined by the study of a supergene system in a skate species, where 

detailed demographic reconstructions were mandatory to understand the interplay of a local 

selective process with demography and how it related to conservation issues. Furthermore, my 

thesis highlights the value of multi-species population genetics investigations, revealing their 

potential for answering large-scale problematics: multi-species studies hold the potential to 

uncover ecological and biogeographic processes, providing a holistic perspective to interpret 

genetic diversity and its role in the resilience of biodiversity. Ultimately this thesis contributes to 

a deeper comprehension of how species- and community-level features drive historical 

demography. It underscores the intricate nature of demographic inferences in population genetics, 

with a focus on their broader relevance to evolutionary biology, conservation and ecology.  
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Appendix 
Appendix 1. List of Abbreviations 

ABC: Approximate Bayesian Computation  
AIC: Akaike Information Criterion 
ARG: Ancestral Recombination Graph 
BIC: Bayesian Information Criterion 
CR: Coalescence rate 
DAPC: Discriminant Analysis of Principal Components 
dd-RADseq: double-digested Restriction Associated DNA sequencing 
DNA: Deoxyribonucleic acid 
ESV: Exact Sequence Variants 
IAA: Indo-Australian Archipelago 
IBD: Isolation By Distance 
IICR: Inverse Instantaneous Coalescence Rate 
LC: Least-Cost 
LD: Linkage Disequilibrium 
LHT: Life History Traits 
ML: Maximum Likelihood 
MSMC: Multiple Sequentially Markovian Coalescent 
MRCA: Most Recent Common Ancestor 
NGS: Next-Generation Sequencing 
NVH: Niche Variation Hypothesis 
PCA: Principal Component Analysis 
PSMC: Pairwise Sequentially Markovian Coalescent 
RADseq: Restriction Associated DNA sequencing 
RE: Range Expansion 
RF: Random Forest 
RFLP: Restriction fragment length polymorphism 
ROH: Runs of Homozygosity 
RRL: Reduced-Representation Libraries  
SFS: Site Frequency Spectrum 
SGVH: Specialist-Generalist Variation Hypothesis 
SMC: Sequentially Markovian Coalescent 
SMC++: Sequentially Markovian Coalescent Plus Plus 
SME: Squared Mean Error 
sNMF: sparse non-Negative Matrix Factorization 
SNP: Single Nucleotide Polymorphism  
SRMSE: Square Root Mean Square Error 
TIB: Theory of Island Biogeography 
TL: Total Length 
T-TIB: Trophic Theory of Island Biogeography 
VCF: Variant Call Format 
WF: Wright-Fisher 
WGS: Whole Genome Sequencing 
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Appendix 4. Résumé détaillé 
L'histoire évolutive des espèces est façonnée par des processus démographiques et sélectifs, 

nécessitant une modélisation complexe de la diversité génétique pour comprendre des phénomènes 

allant de l'échelle locale à l'échelle de l'écosystème. Cependant, il s’agit d'un exercice difficile en 

génétique des populations, car il nécessite une bonne compréhension des processus façonnant la 

diversité génétique, ainsi que l’exploration de scénarios complexes adaptés à la question et à la 

biologie de l'espèce étudiée. Dans ce contexte, la théorie du coalescent offre un puissant cadre 

inférentiel pour explorer des modèles très complexes, en particulier à travers des simulations. 

Toutefois, il est à coupler avec une méthodologie rigoureuse, notamment en incluant des analyses 

descriptives, afin de concevoir et interpréter de manière optimale des scénarios démographiques. 

Dans ce cadre, ma thèse vise à montrer comment la reconstruction détaillée des processus 

démographiques peut fournir des informations précieuses pour élaborer des hypothèses évolutives 

et des stratégies de conservation, tout en contribuant à une meilleure caractérisation de l'interaction 

entre les processus neutres et sélectifs. Également, elle cherche à améliorer notre compréhension 

de la façon dont les processus, de l’échelle de l’espèce aux communautés, influencent la 

démographie historique. Pour cela, j’ai étudié différentes questions et processus différents chez 

des organismes marins, à travers des données génomiques.  

Dans un premier temps, j’ai étudié comment la structuration génétique des populations (et plus 

généralement, tout événement historique) influence les patrons démographiques inférés par des 

modèles basés sur la théorie de la coalescence supposant un accouplement aléatoire (modèles non 

structurés). En utilisant des arguments théoriques, j’ai d’abord pu montrer comment les modèles 

non structurés sont utiles pour inférer la variation du taux de coalescence dans le temps, qui est 

directement liée à la vraie démographie de l’espèce. Notamment, dans le cas des espèces 

structurées, j’ai révélé la signature de la colonisation de l'habitat directement sur la variation du 

taux de coalescence reconstruite par des modèles non structurés. Par la suite, j’ai confirmé 

empiriquement ce résultat, mais ai également montré la nécessité des analyses descriptives avant 

d’effectuer des inférences démographiques. Pour cela, j’ai étudié deux espèces de requins à large 

distribution et aux traits d’histoire de vie très différents : le requin tigre, panmictique à large 

échelle, et le requin gris, structuré en méta-population avec des signatures de colonisation de son 

aire de distribution dans la généalogie génique. Ceci a permis de mettre en avant que le modèles 

non-structurés sont un outil exploratoire fondamental pour recueillir des éléments sur l’histoire 



Appendix 

267 
 

évolutive des espèces, à condition qu'ils soient interprétés à la lumière de scénarios complexes 

plutôt que panmictiques. Plus généralement, ce chapitre démontre aussi l’utilité d’améliorer notre 

compréhension des signatures laissées par des paramètres démographiques dans la généalogie 

génique, ce qui nécessitera d’investiguer à l’avenir des modèles plus complexes.  

Ensuite, je rapporte la découverte d'un supergène déterminant la taille chez une espèce de raie. 

C’est la première documentation directe d’un supergène impliqué dans le déterminisme d’un trait 

pourtant connu pour avoir un déterminisme polygénique, et potentiellement affecté par 

l’environnement, ce qui pourrait avoir des implications dépassant la génétique des populations. 

Au-delà de cela, le supergène n’est polymorphique que dans une partie de l’aire de distribution, et 

implique un accouplement assortatif positif dans le Golfe du Maine, une sous-population 

vulnérable connaissant un déclin continu depuis plusieurs décennies. Grâce à la reconstruction de 

l’histoire démographique de l’espèce à l'échelle de son aire de distribution, j’ai pu montrer qu’une 

forte connectivité à l’échelle régionale empêche une spéciation sympatrique dans le Golfe du 

Maine. Également, je montre que le supergène est polymorphique dans une région isolée depuis 

~160,000 ans, proposant alors un intervalle de temps pour son origine. Finalement, je montre que 

l’un des allèles du supergène est introgressé, probablement entre aujourd’hui et 160,000 ans. Ce 

chapitre souligne à quel point la compréhension de l’origine du supergène nécessitera à l’avenir 

son investigation à l’aide de jeux de données multi-espèce, et potentiellement des développements 

théoriques. Surtout, il souligne l'importance de la modélisation démographique pour comprendre 

des processus locaux de sélection, en particulier lorsqu'ils impliquent des enjeux de conservation.  

Enfin, dans un dernier chapitre, j'examine certains déterminants écologiques de la diversité 

génétique. Pour cela, j’ai mis en place un panel unique de données génomiques provenant de 40 

espèces de poissons récifaux, que j’ai couplé à la reconstruction de leur niche trophique par des 

données de méta-barcoding de contenus stomachaux. Ceci a permis d’investiguer une hypothèse 

selon laquelle les espèces ne consommant peu de ressources, ou spécialistes (i.e., à faible largeur 

de niche trophique) devraient avoir une diversité génétique plus faible dû à des fluctuations 

démographiques plus fréquentes. L’analyse de modèles linéaires entre largeur de niche trophique 

et des indices de stabilité démographique (notamment construits par des analyses basées sur la 

théorie de la coalescence) a permis de montrer une relation positive entre largeur de niche 

trophique et stabilité démographique. Ceci a révélé pour la première fois de manière quantitative 

l'effet d'un processus à l’échelle de la communauté sur l’histoire démographique, avec des 
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implications de conservation importantes. Spécifiquement, le chapitre montre que les généralistes 

sont plus stables, et donc probablement moins vulnérables aux changements rapides, participant 

donc à la stabilité des écosystèmes. Les études en génétique des populations s’articulant en général 

sur une espèce, et ce travail est l'un des premiers à tenter d'évaluer directement la relation entre la 

diversité des interactions des espèces et leur histoire démographique. Plus généralement, cette 

étude suggère que les jeux de données multi-espèces pourraient se révéler importants à l’avenir 

pour détecter les signatures génomiques laissées par des processus à grande échelle.  

Durant ma thèse, je me suis donc focalisé sur des organismes marins, en utilisant des techniques 

de génétique des populations et des données génomiques pour étudier comment différents 

processus, des variations génétiques locales aux interactions trophiques, influencent leur histoire 

évolutive. Dans l’ensemble, ma thèse souligne le rôle fondamental d'une reconstruction 

démographique robuste pour comprendre des processus micro (tels que l'adaptation) et macro (tels 

que le fonctionnement des écosystèmes) évolutifs. Notamment, je mets en avant un cadre 

inférentiel impliquant des analyses descriptives de la variabilité génétique permettant alors une 

conception de scénarios démographiques cohérents, et l'utilisation de méthodes computationnelles 

appropriées pour modéliser les scénarios choisis. De plus, ma thèse permet de mieux comprendre 

certains déterminants évolutifs et écologiques de la diversité génétique et la manière dont ils 

influencent la généalogie génique (et donc les inférences démographiques basées sur la 

coalescence). En particulier, je discute de l'importance du taux de coalescence reconstruit qui 

dépend de la véritable histoire démographique des lignées échantillonnées, et donc de son utilité 

comme statistique résumée pour comprendre l'histoire évolutive des espèces. Enfin, elle souligne 

l'importance et la puissance potentielle des études multi-espèces, relativement nouvelles en 

génétique des populations, qui peuvent fournir des informations précieuses sur des processus 

évolutifs. Les jeux de données multi-espèce permettront probablement à l'avenir de répondre à des 

questions à des échelles d'étude différentes, potentiellement pluridisciplinaires, avec alors des 

implications en évolution, en écologie et en conservation. 

 



 

  

 
 


