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Introduction

Context

This thesis explores research topics within the realm of X-ray industrial non-destructive
testing (NDT). NDT is an invaluable technique as it enables the evaluation of a material or
system’s properties without causing any damage. Among the various NDT methodologies
(such as ultrasonic testing, thermography, eddy-current testing, radiography, ...), X-ray
computed tomography (CT) stands out as a powerful tool for characterising or locating
internal flaws and verifying the geometric conformity of an object. The application of CT
has broadened significantly and its utilisation has surged in numerous industrial sectors
for the inspection of components for flaw detection, geometric measurement, and reverse
engineering applications. CT can be employed for the inspection of components during
manufacturing, thereby ensuring product integrity.

Although its primary use is medical imaging, CT inspection is now well-established
in the industrial domain but must continually evolve due to the increasing demands and
constraints on inspection processes. Whether in terms of reconstruction quality or in-
spection time, CT technology is continuously advancing, particularly in what is known as
the sparse-view strategy. This strategy involves reconstructing an object using CT with
the minimum possible number of radiological projections while maintaining reasonable
reconstruction quality. This approach reduces acquisition times and associated costs.
Sparse-view reconstruction is a real challenge as the tomographic problem is ill-posed.
Numerous techniques have been developed to overcome this issue, many of which are
based on incorporating prior information during the reconstruction process. By utilising
data and knowledge available prior to the experiment, it is possible to enhance the re-
construction result despite the reduced number of projections and hence the information
acquired about the studied system.

Typically, the integration of a priori information is accomplished via a regularisa-
tion term that models knowledge about the object or functions learned through machine
learning from samples similar to the one under study. However, this approach can be ex-
tended to many other stages of the tomographic process beyond the reconstruction itself.
Whether it is the expertise of the experimenter selecting the optimal machine parameters,
the precise positioning of objects, the ideal trajectory, or even specific knowledge about
the type of inspected part: prior information can take various forms. All these insights
can be leveraged to improve sparse-view CT reconstruction.

In our industrial context, for example, the computer-aided design (CAD) model of
the object is often available, representing valuable information about the geometry of the
object under study. Nevertheless, it is important to note that CAD provides only an
approximate object representation. In NDT or metrology, it is precisely the differences
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between an object and its CAD model that are of interest. Consequently, instilling a priori
information is challenging because the information is often approximate and cannot be
used as-is. Therefore, in this thesis, we do not aim to incorporate a priori information
obtained from vast databases to create a regularisation a priori term. Instead, we propose
to judiciously utilise the geometric information available from the CAD model at each
stage of the process. We thus propose a methodology tailored integrating the geometric
a priori information into the tomographic reconstruction.

The CEA LIST at Paris-Saclay, where this thesis was conducted, is a laboratory
specialising in NDT, and it is equipped with an advanced robotic X-ray platform. This
robotic cell consists of two multi-axis robotic arms, shown in Figure 1. One arm holds an
X-ray source and is referred to as the sniper, while the second arm carries a detector and
is known as the target. This platform offers significant flexibility in both the experimental
process and the reconstruction, allowing us to address a wide range of topics throughout
this thesis.

Figure 1: Photograph of the robotic cell at CEA LIST. On the left is the target, and on the
right is the sniper.

In [11], we present a whole optimised methodology using a priori information to im-
prove reconstruction quality on an additive manufactured metallic part. The methodology
is summed up in Figure 2 below. This thesis revisits most elements of this methodology.
In each chapter, we will examine one component of this methodology.

Chapter 1 provides a general introduction to tomography, covering both the physical
components for X-ray generation and detection, as well as the mathematical components
for solving the tomographic problem.

Chapter 2 presents a state-of-the-art review of projection acquisition trajectory op-
timisation methods and the methods we have developed. Our algorithms, based on the
Empirical Interpolation Method, use CAD as a priori geometric information to define the
most relevant projections for reconstruction. As our research progressed, several variants
were proposed depending on the type of implementation and the incorporation of con-
straint terms. The methods have been tested on many objects and results have already
been published in [4, 9]. The presented methods will be evaluated on a new experimental
setup and a plastic additive manufactured part.
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Chapter 3 introduces 2D/3D registration techniques. Registration is a preliminary step
essential for incorporating a priori information, which needs to be positioned within a
reference frame. We introduce fundamental concepts for registering CAD models with real
objects. Two registration techniques were developed and are presented: Robust 3D/2D
hybrid registration and Convex Hull Inverse Iterative Perspective Matching. Each has
advantages depending on the required quality or speed. The first one uses visual servoing
and image moments, while the second uses an iterative scheme close to the ICP to register
a CAD on experimental projections. Simulated results from these methods have already
been published in [12, 13]. In this thesis, the presented methods will be tested and
evaluated on an experimental piece.

Chapter 4 proposes using our a priori geometric information to provide a mathemat-
ical description suited to the studied object. By using CAD, it is possible to adapt the
discretisation of the object to reduce the number of variables or improve resolution. We
will present results on so-called "masked" reconstructions as well as hierarchical struc-
tures. Our work on mask reconstruction was published in [11, 13] where the reconstruction
was coupled with an upstream CAD registration technique.

Chapter 5 does not use geometric a priori information but rather focuses on the texture
and appearance of the reconstructed objects. This chapter explains the fundamental
concepts of sparse coding and dictionary learning to denoise sparse-view reconstructions.
We compare existing algorithms and present an extension of these using convolution.
Results on denoising, regularisation, and even classification will be presented. Those
results have also been showed in [14].

Finally, Chapter 6 concludes our research and presents future perspectives.

Figure 2: Diagram of the tomographic process. A priori information are used at different
steps to optimise reconstruction quality in sparse-view.

Contributions

Throughout my research, I have had the opportunity to publish several contributions.

• In our first paper, we presented trajectory optimisation algorithms based on em-
pirical interpolation methods, exploiting CAD models to define the most relevant
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tration based on inverse perspective matching of convex hull points. In this paper,
we applied this registration to introduce the notion of a mask in reconstructions,
which reduces the number of variables and significantly decreases artefacts.
Victor Bussy, Caroline Vienne, Julie Escoda, and Valérie Kaftandjian. Sparse-View
X-Ray CT Reconstruction using CAD Model Registration. 49th Annual Review of
Progress in Quantitative Nondestructive Evaluation, 2022.

• The idea of reducing the number of variables was further pursued, where we explored
hierarchical tree structures combined with meshes for reconstruction, which resulted
in a patent submission.

• Our work on convolutional sparse coding and its applications in denoising recon-
structed volumes from sparse views has been validated on manufactured parts,
demonstrating promising results, paving the way for future improvements in non-
destructive testing and industrial metrology.
Chuan Huang, Paul Vaska, Yongfeng Gao, Shaojie Chang, Thomas Wesley Holmes,
Amir Pourmorteza, and Jerome Liang. Proceedings of the 17th International Meet-
ing on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine, 2023.
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Victor Bussy, Caroline Vienne, Julie Escoda & Valérie Kaftandjian. Convolutional
Sparse Coding et Dictionary Learning pour la reconstruction tomographique par
rayons X pour le contrôle de pièces de fabrication additive. LES JOURNÉES
COFREND/ COFREND DAYS, France, Marseille, 06 - 08 June 2023. e-Journal of
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• We applied our entire methodology to the reconstruction of a metallic object in
additive manufacturing. This approach significantly improved the precision of the
reconstructions while reducing acquisition times.
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Chapter 1

Introduction

1.1 Fundamentals of X-ray tomography

Given that we are proposing an optimised methodology at various stages, it is important
first of all to be familiar with the entire tomographic process. In this section, we endeavour
to delineate all the stages of tomographic reconstruction. We shall first address the
physical concepts necessary for understanding X-rays and the tomographic apparatus,
before progressing to the mathematical concepts essential for reconstruction and quality
metrics. The concepts discussed in this section are elaborated upon in the references [1,
3, 15].

1.1.1 X-Ray Generation

Wilhelm Conrad Röntgen is celebrated for his discovery of X-rays, an achievement that
earned him the Nobel Prize in 1901. The significance of X-rays lies in their ability to
penetrate organic matter, allowing for the clear differentiation of tissues and bones in
radiographic images. The wavelength of X-rays ranges from 0.01 nm (hard X-rays) to 10
nm (soft X-rays), but it is generally more practical to discuss them in terms of energy.
As X-rays are electromagnetic waves, their energy is given by:

E = hν = h
c

λ
, (1.1)

with h = 6.63× 10−34 J · s being Planck’s constant, and c = 3× 108 m · s−1, which spans
approximately from 100 eV to 1 MeV. Several devices can generate X-rays, including syn-
chrotrons [15], but the most common in medical and industrial fields are X-ray tubes [1].
Among these, the Coolidge tube is the most common. Figure 1.1 shows a schematic
diagram of how a Coolidge tube works.

A Coolidge tube comprises a cathode and an anode. Essentially, the cathode is heated,
liberating electrons from its outer layers, a process known as thermionic emission. The
density of emitted electrons is described by the Richardson-Dushman equation. The
voltage between the cathode and anode accelerates the liberated electrons towards the
anode. Upon collision with the anode, several interactions can occur:

27
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Figure 1.1: Coolidge X-Ray Tube. Image adapted from Oak Ridge Associated Universities.

• The electrons may be deflected, resulting in the Bremsstrahlung radiation. As the
electron approaches an atom in the anode, it is attracted to the positively charged
nucleus due to Coulomb’s law. This causes the electron to deviate from its path
and decelerate. The loss of kinetic energy results in the emission of radiation (see
Figure 1.2a). The greater the change in the electron’s kinetic energy, the higher the
energy of the emitted photon. Bremsstrahlung produces a continuous spectrum,
also known as white radiation or continuous braking radiation.

• The incident electron may collide with an electron in a deep shell of an atom, ejecting
it and ionizing the atom. An electron from a higher shell then fills the vacancy (see
Figure 1.2b). This transition releases energy in the form of characteristic radiation,
the energy of which depends on the specific electron shells involved. The energy
differences between the various shells of an atom are fixed and characteristic of that
atom, creating distinct lines in the emission spectrum.

• In a less common interaction, the electron can directly collide with the nucleus of
an atom. In this scenario, the electron’s entire energy is converted into a photon ac-
cording to the Bremsstrahlung effect. This interaction produces X-rays of maximum
energy, though the probability of such a collision is very low (see Figure 1.2c).

Figure 1.2: X-Ray generation principle. Image adapted from [1]. (a) Bremsstrahlung effect.
(b) Characteristic radiations. (c) Direct electron/nucleus interaction.
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Figure 1.3: Example of a filtered X-ray radiation spectrum with a tungsten anode. The an-
ode angle is 12◦, and the tube potential varies from 50 to 190 kV. Spectrum range increases
with voltage.

To better illustrate the effects of these interactions, Figures 1.3, 1.4 and 1.5 show
typical spectra from an X-ray tube with a tungsten anode and filtration1. They all
show the continuous spectrum of Bremsstrahlung radiation as well as some characteristic
emission lines. Among all the parameters that can influence the spectrum, some are more
significant. The tube current is one of the most important parameters for example, but it
is relatively simple to account for as it only affects the amplitude of the spectra. Another
important parameter is the acceleration voltage which typically increases the amplitude
and broadens the spectrum. Figure 1.3 shows different spectra for different voltages from
50kV to 190kV. As acceleration increases, the spectrum is shifted to higher energies, which
increases the penetration of the X-ray beam.

It is common to remove low-energy X-rays, and for this purpose, the beam is filtered.
Figure 1.4 shows the impact of filtration with 1mm Be and 2mm Al. The amplitudes of
the spectrum are attenuated at all energies, but primarily at lower energies.

The material of the anode will endure intense heat due to the electron flux, so to
prevent the target from melting, one must expand the focal spot by increasing the angle
between the flux and the anode. However, this leads to a blur, known as the penumbra
effect. In practice, one prioritises image quality over photon quantity. In high-resolution
industrial CT, spot sizes are about 0.1 mm. The anode angle non-linearly increases the
flux, especially at low energy. Figure 1.5 shows the impact of the anode angle on the
spectrum.

1.1.2 Absorption

Once the X-rays are generated, they will penetrate the object under study and undergo
one or several interactions with its material. Generally, four interactions are identified:

1Spectra are made with SpekPy https://bitbucket.org/spekpy/spekpy_release/wiki/Home
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Figure 1.4: Example of an X-ray radiation spectrum with a tungsten anode. The blue curve
represents the unfiltered spectrum, while the orange spectrum is filtered by 1 mm of Be and
2 mm of Al. The anode angle is 12◦, and the tube potential is 120 kV. Filtering removes low
energy.

Figure 1.5: Example of a filtered X-ray radiation spectrum with a tungsten anode. The
anode angle varies from 10 to 45◦. Increasing the angle slightly increases the amplitude of
the spectrum and shifts it towards low energies.
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Photoelectric effect, Incoherent Compton effect, Rayleigh / Thompson scattering and Pair
production.

The photoelectric effect, whose explanation is due to Albert Einstein, involves the
absorption of an incident photon and the release of an electron (called a photoelectron) if
its binding energy is lower than that of the incident photon. A vacancy is created in the
inner shell, and an electron from a higher shell replaces it, resulting in a characteristic line,
known as fluorescence. Occasionally, another electron may be ejected instead of X-ray
fluorescence; this is known as an Auger electron. The absorption coefficient depends on Z
(atomic number) and the energy of the photon, but various models with different choices
for the coefficients exist, sometimes scaling with Z4, sometimes with Z5. However, it is
understood that higher-Z materials absorb more, allowing differentiation of materials in
radiography. This is the key idea behind radiology and tomography.

During the incoherent Compton effect, a high-energy incident photon collides with
an electron of the atom but is not absorbed. The electron is ejected, and the incident
photon, having lost some of its energy, is scattered in a new direction, the angle of which
depends on the initial energy and the energy lost (the direction is given by the Klein-
Nishina formula, which allows for the estimation of the differential cross section in barns
per steradian). Compton scattering is also known as incoherent scattering and occurs in
the same energy range as the photoelectric effect. Its probability depends only on the
electron density of the material (the number of electrons in the valence shell) and not
the atomic number. The lack of correlation with the atomic number does not provide
good contrast between different materials of similar density, and the random angle of the
scattered photon creates noise. Therefore, tomography devices attempt to minimise the
impact of the Compton effect.

Rayleigh coherent scattering occurs at low energy when the incident photon does not
interact with the electron cloud but the atom emits another photon of equivalent energy
in a different direction. This is equivalent to a deviation of the incident photon. It is rare
in CT because it only occurs at low energy.

Pair production is very rare. For this phenomenon to occur, the energy of the photon
must be greater than twice the rest mass of the electron, which is 1.02 MeV, generally
beyond what X-ray tubes can provide for industrial tomography. In this case, an electron
and its antiparticle are created.

The nature of the interaction depends mainly on the energy of the incident ray and the
nature of the traversed material. For each material and each interaction, one can define
a linear attenuation coefficient µ in cm−1 (or in Hounsfield Units (HU) directly related
to the attenuation of water), which depends on the photon energy. Figure 1.6 shows
the contribution of each interaction for the iron at different energies. The photoelectric
interaction is predominant at low energies, while incoherent Compton scattering becomes
more significant at higher energies. The data used for the figure comes from XrayDB2.
Figure 1.7 shows the evolution of the total mass attenuation coefficient for aluminium,
copper, and iron between 1 and 100 keV. Since the various linear attenuation coefficients
are proportional to the mass density ρ, it is more common to use the mass attenuation
coefficient µ/ρ in cm2/g. Being independent of the mass density, it depends only on the
chemical composition of the material and not on its physical state.

2XrayDB is X-ray data SQLite library https://xraypy.github.io/XrayDB/index.html
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Figure 1.6: Attenuation values resulting from each interaction for iron (Fe). The photoelec-
tric effect predominates at low energies, while the Compton effect is more significant at high
energies.

Figure 1.7: Total X-ray mass attenuation for aluminium, copper and iron. In our industrial
applications, the energy will always be above 10 keV, right side of the figure.
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As the number of generated rays is too high to maintain a ray-by-ray approach and
focus on the nature of each interaction, one will instead consider the total attenuation due
to all interactions and adopt a beam vision. Ultimately, for radiological and tomographic
applications, what is interesting is not so much the interactions or the probability of
interaction of a ray, but rather the ratio of transmitted rays to emitted ones in the whole
beam. In other words, one will only consider the ratio between the transmitted I and
initial I0 X-ray beam intensity. By definition of the linear attenuation coefficient, the
evolution of the beam intensity can be described using Beer-Lambert’s law:

dI = −µIdL, (1.2)

where dL represents an infinitesimal distance travelled by the beam of rays. To obtain
the relationship between the initial beam and the one received after passing through the
object, this equation must be integrated along the entire path L of the beam. Since µ
depends on the location within the object and on the energy, we must also integrate over
energy, leading to the following equation:

I =

∫
I0(E)e

−
∫
x∈L µ(E,x)dLdE. (1.3)

Equation 1.3 takes into account what is called the polychromaticity of the spectrum.
As mentioned earlier, the attenuation coefficient varies not only depending on the path
(which part of the object we integrate over) but also on energy. Since attenuation is
stronger at lower energies, we notice that the first layers of material will filter the beam
and only let through the higher energies. The layers behind will therefore only see high
energies, resulting in less attenuation there. This phenomenon is called beam hardening. In
practice, this dependence is neglected, but it is a significant source of artefacts. Figure 1.8a
shows the ratio I/I0 along the penetrated length in air, water and iron. In air and even
water, beam hardening effects are negligible, but not in metals.

To evaluate the impact of beam hardening, we illustrated in Figure 1.8b the evolution
of effective attenuation through iron. The curves represent µL i.e. ln(I0/I), with L the
traversed length. In the monochromatic case, the value of µ is constant, and we indeed
find a line with slope µ. In the polychromatic case, the effective attenuation coefficient
decreases with the length traversed. The average path of an X-ray is on the order of 1/µ;
for iron at 120 keV, it is approximately 1 mm (values from NIST3). To reduce the impact
of beam hardening, it is essential to remove the low-energy photons from the spectrum, as
they are predominantly responsible for this effect. This explains why the incident beam
is often filtered initially.

Since it is difficult to compute Equation 1.3 rapidly, one must make the simplify-
ing assumption that attenuation is constant across energy. This is the monochromatic
assumption. Equation 1.3 becomes:

I = I0e
−

∫
x∈L µ(x)dL. (1.4)

Since CT deals with images (in pixels or voxels), the reconstruction space must be dis-
cretised. This step is necessitated by the nature of our numerical computation methods.
In its discrete form, Beer-Lambert’s law is often written as follows:

ln

(
I

I0

)
= −

∑
i

µiℓi, (1.5)

3https://physics.nist.gov/PhysRefData/XrayMassCoef/tab3.html
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(a) X-Ray transmission by 10.0mm of three dif-
ferent materials (water, iron and air). Energy de-
pendency is more pronounced for metals, and so
is beam hardening.

(b) Evolution of the effective attenuation coeffi-
cient of the iron times length given an unfiltered
polychromatic one of maximum energy 120keV
or an equivalent monochromatic X-ray beam.

Figure 1.8

where µi represents the attenuation of the ith pixel/voxel and ℓi represents the contribution
of this pixel/voxel. There are numerous methods for taking into account the contribution
of a particular zone. One can consider traversed length, surface area or even just a boolean
coefficient. More details on the implementation of ray tracing are given in Section 1.3.2.

1.1.3 Signal detection and pre-processing

Once the X-ray beam has interacted with the object, the attenuated radiation is detected
by the imaging system. Historically, X-ray detectors were based on film technology; how-
ever, these have increasingly been supplanted by digital detectors. X-ray detectors can be
classified into three principal categories: ionization gas detectors, semiconductor detec-
tors, and scintillator detectors [16]. Among these, scintillator detectors are predominant
in contemporary industrial computed tomography systems. These detectors comprise a
scintillation crystal coupled with a photon detector. When X-rays strike the scintillator
layer, they are converted into visible light photons. This light is then absorbed by the
photon detector, which generates an electric charge proportional to the X-ray radiation
energy. Common scintillating materials include sodium iodide doped with thallium, cae-
sium iodide, and cadmium tungstate (CdWO4) [1, 17]. For more detailed information on
the physics of detectors, their performance, and their characteristics, the reader is referred
to [18].

Detectors simply produce an image that represents the number of photons that have
struck them, so before proceeding with reconstruction, a pre-processing step is essential
to account for the detector’s response. Initially, images without the object are acquired
to determine the blank factor or flat-field F (which differs from I0). Additionally, images
of the detector’s response without irradiation, known as the dark frame D, are taken to
detect and correct issues such as dead pixels. This operation is crucial for ensuring the
accuracy of the detector. Subsequently, the object is positioned, and measurements are
taken at different angles to obtain the necessary projections I for reconstruction. The
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experimental projections are corrected according to:

Icorr =
I−D

F−D
. (1.6)

Afterwards, to define I0, the intensity without attenuation, one generally takes an
average over the edges of the image or any non-attenuated part of the image. The corrected
projections are then given by:

p = − ln

(
Icorr
I0

)
. (1.7)

At this point, projections p are ready for the reconstruction algorithm.

1.1.4 Practical aspect of tomographic reconstruction

The primary objective of CT tomography is to reconstruct the attenuation coefficient
function µ(x) for every point in a 3D volume from 2D projections that contain informa-
tion about the lines traversed by X-rays. Typically, we aim to reconstruct a parallelepiped
of voxels encompassing the studied object. Since a single projection only contains infor-
mation along lines rather than specific points in space, multiple projections from various
angles are necessary to solve the tomographic problem.

In the vast majority of cases, CT scans employ a "circular" trajectory. The detector
and the source are stationary while the object rotates on a turntable. Alternatively, this
trajectory can be achieved with a stationary object and the source-detector pair moving
along a circle centred on the object. Although numerous other trajectories exist, they are
less popular due to their implementation challenges. Tomographic inspection trajectories
will be discussed in greater detail in Section 2.1.

The field of view (FOV) of a projection is defined as the set of half-lines extending
from the source point to the detector screen (considered finite, see Figure 1.9). This def-
inition can be extended to parallel projections by considering the source point at infinity
(see Figure 1.10). When discussing the field of view of a reconstruction, we generally
refer to the intersection of the fields of view of each projection. For instance, in a circular
trajectory around the object in 2D, the FOV of each projection forms a triangle with the
detector and the source point. The resulting field of view for the reconstruction is a disc
whose diameter is called the Measurement Field Diameter (MFD). If a point belongs to
this disc, then for each projection, it belongs to a measured line, and it can be recon-
structed stably [19]. Therefore, even though 2D reconstruction is generally performed
on a square grid of pixels, efforts will always be made to ensure the object is included
within this disc and to focus on its reconstruction. The field of view is also related to
the magnification factor. The magnification factor is defined as the ratio between the
size of the object’s projection and the size of the object itself, i.e., the distance from the
source to the detector over the distance from the source to the object. These concepts are
crucial in the design of a CT scan and play a pivotal role in achieving high resolution. It
is essential to optimise these parameters to strike a balance between the FOV, resolution,
and the signal-to-noise ratio of the projections.
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Figure 1.9: Illustration of the FOV and MFD for a fan-beam geometry on a circular trajectory.
The intersection of the beams creates a circle with a diameter MFD, called the FOV.

1.2 Analytical reconstruction methods

Reconstruction methods are classified into two categories: analytical and iterative. His-
torically, analytical methods emerged first. They are known for their speed and high
quality when the number of projections is sufficient. We will illustrate the concepts in
two dimensions before extending them to three-dimensional spaces. First, we will detail
the modelling of ray casting in both parallel and fan-beam cases (see Figure 1.10), followed
by a description of the reconstruction process itself.

S

Detector

(a) Parallel Geometry.

S
•

Detector

(b) Fan-Beam Geometry.

Figure 1.10: Illustration of 2D parallel and fan-beam geometries. The image to be recon-
structed is a 4×4 pixel square. In the general case of circular acquisition, the source S and
detector move together along a circle around the object. In this illustration, the projections
are truncated, i.e. the image to be reconstructed is not in the FOV, which is not generally
the case.
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1.2.1 Parallel geometry

To model ray tracing in a parallel geometry, we will use the Radon transform. The Radon
transform is a fundamental concept in X-ray tomography. It represents the line integral
of the attenuation function. The Radon transform of a function µ for a line L in the plane
is defined as:

Rµ(L) =
∫
x∈L

µ(x) dL. (1.8)

This transform naturally corresponds to the monochromatic Beer-Lambert law explained
earlier (see Eq. 1.4) when rays are parallel. Typically, the data acquisition is performed
along a circular trajectory, allowing us to adopt a more suitable coordinate system. For a
line Lα,r with a normal unit vector α passing at a distance r from the origin, Equation 1.8
becomes:

Rµ(Lα,r) =

∫
y∈α⊥

µ(rα+ y)dy, (1.9)

where α⊥ = {y ∈ R2|y · α = 0}. In 2D, there is another common notation which uses
two orthogonal unit vectors set with φ ∈ [0, π[:

αφ = (cosφ, sinφ), (1.10)
βφ = (− sinφ, cosφ). (1.11)

Then, the 2D Radon Transform can be rewritten in this more convenient expression:

Rµ(φ, r) =
∫
R
µ(rαφ + sβφ)ds. (1.12)

This allows to simply define the projection pφ at the angle φ by all the Radon Transforms,
such that:

pφ(r) = Rµ(φ, r). (1.13)

Figure 1.11 shows the described coordinates. The entirety of these lines yields what is
termed the sinogram. It is called so because the Radon transform of a point will result in
a sinusoidal. The Radon transform can also be expressed for the 3D case. In this scenario,
we no longer consider a line integral but rather a plane integral with unit vector α and
a parameter r for the distance from the origin. To extend the Radon Transform, we will
define:

αφ,θ =(cosφ sin θ, sinφ sin θ, cos θ), (1.14)
βφ,θ =(− sinφ, cosφ, 0), (1.15)

γφ,θ =(− cosφ cos θ,− sinφ cos θ, sin θ), φ ∈ [0, 2π[, θ ∈ [0,
π

2
[. (1.16)

The 3D Radon Transform can then be expressed as:

Rµ(φ, θ, r) =
∫∫

R2

µ(αφ,θ + sβφ,θ + tγφ,θ)dsdt. (1.17)

Another fundamental concept that goes hand in hand with the Radon transform is
the backprojection. Backprojection is the dual operator of the projection. It involves
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Figure 1.11: 2D coordinates representation for the Radon transform. A point x is described
by its coordinates r and s. The angle of the projection is defined by φ.

projecting, along the lines, the Radon transforms’ result. In 2D, the backprojection Bpφ
of the projection at angle φ is:

Bpφ(x) = pφ(x ·αφ). (1.18)

Generally, the backprojection is defined by considering all projections around a circular
trajectory. Thus, the backprojection is often written as:

Bp(x) =
∫ π

0

pφ(r)

∣∣∣∣
r=αφ·x

dφ. (1.19)

This operation is essential because it is a core component in all reconstruction algorithms.

1.2.2 Fan-beam and Cone-beam geometry

The formalism of the previous section is adapted for parallel projections, where the emitted
rays are parallel to each other. These projections are defined by an angle φ and a distance
to the origin. However, in our industrial CT applications (unlike synchrotrons), the X-ray
source is considered a point source (see Figure 1.10b). Therefore, it is appropriate to use
different tools to model the projector. The Radon transform integrates over hyperplanes
rather than lines, meaning that it is not appropriate for 3D applications. The X-ray
transform X , on the other hand, continues to sum over lines for higher dimensions, making
it more suitable than Radon for fan-beam projections (this model is called fan-beam
in 2D and cone-beam in 3D). In practice, there are two possible designs for fan-beam
geometries: the equiangular fan-beam and the equal-spaced fan-beam. Here, we consider
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the equiangular fan-beam. In 2D, for a source position S ∈ R2, the X-ray transform for
a fan-beam geometry is defined as:

Xµ(S,β) =
∫ +∞

0

µ(S+ sβ) ds, β ∈ U (the unit circle). (1.20)

Thus, the fan-beam projection is defined as:

p(S,β) = Xµ(S,β). (1.21)

ex

ey

R

γ

ψ

φ

S•

β
x •

(a) 2D coordinates for the fan-beam geometry
and its rebinning.

ey

S•

β O•

A •

π
2
− φ ψ

γ

|O⃗A| = r

(b) Relation between parallel and fan-beam ge-
ometry.

Figure 1.12: Equivalence between the 2D fan-beam and parallel geometry. The angle φ
is the same as the one defined for the parallel beam. A relationship can be established
between φ, γ, and ψ, which enables rebinning.

It is notable that, for a circular trajectory of radius R, the same line can be param-
eterised in both parallel and fan-beam geometries, leading to the equivalences shown in
Figure 1.12. Since each straight line intersects the circle at two points, this change of
coordinates is described by the following two relations:{

φ = ψ + γ
r = −R sin γ

or φ = ψ + γ + π
r = R sin γ

(1.22)

If, in parallel geometry, a line is defined by its coordinates (φ, r), we can find its
equivalent in fan-beam geometry (ψ, γ). This process is known as rebinning. Figure 1.12b
illustrates these relations.

The principle of reconstruction algorithms by rearrangement into parallel data involves
calculating the equivalent parallel sinogram by applying these variable transformation
formulas and then reconstructing the associated image using the filtered back-projection
algorithm described in the following section. This geometric change necessitates perform-
ing interpolation for each pair of parallel coordinates between the measured fan-beam
coordinate pairs surrounding the desired values. In practice, this method is rarely used,
instead the reconstruction formula is modified directly.
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Fourier Transform F1DRadon Transform R

Fourier Transform F−1
2D

Figure 1.13: Fourier Slice Theorem. The emitted rays are parallel to the red arrow in the
image within the object space. The Radon transform at this angle forms a column of the
sinogram, shown here as a red dashed line. This transform also corresponds to a line
passing through the centre in Fourier space. The central slice theorem connects these
spaces and allows for the reconstruction of the object.

1.2.3 Analytical Reconstruction

We have described the projection and backprojection operators for parallel and fan-beam
geometries. We will now demonstrate how these operators are utilised in the reconstruc-
tion algorithm itself.

Fourier Slice Theorem

The most famous theorem in tomography is undoubtedly the Fourier slice theorem. This
theorem connects the Radon transform of an object to its Fourier transform. It states
that, ∀ρ ∈ R, ∀φ ∈ [0, 2π[:

F1D(Rµ(φ, ρ)) = F2D(µ(ραφ)), (1.23)

where F1D and F2D are respectively the 1D and 2D Fourier transform, and rho the Fourier
variable associated with r. In essence, this theorem provides a reconstruction method.
The data processing diagram is illustrated in Figure 1.13. However, this method is rarely
used because it suffers from numerous issues due to interpolations in the Fourier domain,
making it often ineffective. The projections are arranged radially in Fourier space, but the
inverse Fourier transform is generally implemented for a Cartesian grid. It will therefore
be necessary to interpolate, which is difficult as depicted in Figure 1.14.
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Figure 1.14: Polar to Cartesian interpolation in the Fourier Domain. During data acquisition,
low frequencies are sampled more frequently than high frequencies. Additionally, the polar
grid must be interpolated to convert it to a Cartesian grid, a step that introduces errors.

Filtered Back-Projection on Parallel Geometries

The Fourier Slice Theorem is a theoretical basis for reconstruction but, as we have pointed
out, is never used directly. A commonly used algorithm for tomography is the Filtered
Back-Projection (FBP). We will explain this method in the context of a circular trajectory
with 2D parallel geometry.

Firstly, we recall that an image, represented by a function µ(x, y), can be recovered
from its Fourier transform Fµ(u, v) by the inverse Fourier transform:

µ(x, y) =

∫ ∫ +∞

−∞
Fµ(u, v)e

2πj(ux+vy)dudv. (1.24)

To demonstrate how FBP works, we will switch from Cartesian coordinates (u, v) to
polar coordinates. The purpose of this switch is to express the quantity Fµ(u, v) in the
form in which the data are naturally collected (the Fourier transform of each parallel
projection falls on a polar grid). The coordinate transformation is given by:{

u = ω cos(θ),
v = ω sin(θ).

(1.25)

Which induces the following relation:

dudv = Jdωdθ =

∣∣∣∣ ∂u∂ω ∂u
∂θ

∂v
∂ω

∂v
∂θ

∣∣∣∣ dωdθ = ωdωdθ, (1.26)

where J is the jacobian determinant. Now Equation 1.24 can be rewritten in the new
coordinates system, which leads to:

µ(x, y) =

∫ 2π

θ=0

∫ +∞

ω=0

Fµ(ω cos θ, ω sin θ)e2πjω(x cos θ+y sin θ)dωdθ. (1.27)
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Then, using the Fourier slice theorem, we can write:

µ(x, y) =

∫ 2π

θ=0

∫ +∞

ω=0

P̃ (ω, θ)e2πjω(x cos θ+y sin θ)ωdωdθ (1.28)

=

∫ π

θ=0

∫ +∞

ω=0

P̃ (ω, θ)e2πjω(x cos θ+y sin θ)ωdωdθ

+

∫ π

θ=0

∫ +∞

ω=0

P̃ (ω, θ + π)e−2πjω(x cos θ+y sin θ)ωdωdθ.

(1.29)

Here, P̃ (ω, θ) is the Fourier transform of the projection at angle θ. For the last equality,
we used a convenient symmetry property among the projection samples for a parallel
sampling geometry:

p(ϵ, θ + π) = p(−ϵ, θ), (1.30)

P̃ (ω, θ + π) = P̃ (−ω, θ). (1.31)

The entire expression can be rewritten as:

µ(x, y) =

∫ π

θ=0

∫ +∞

ω=−∞
P̃ (ω, θ)e2πjω(x cos θ+y sin θ)|ω|dωdθ. (1.32)

The inner integral is the inverse Fourier transform of the quantity P̃ (ω, θ)|ω|. In the
spatial domain, this represents a projection filtered by a function whose frequency domain
response is |ω|, and is therefore called a filtered projection. If we denote the filtered
projection at angle θ by g(r, θ), represented by the inner integral of Equation 1.32, then:

g(r, θ) = g(x cos θ + y sin θ) =

∫ +∞

−∞
P̃ (ω, θ)e2πjω(x cos θ+y sin θ)|ω|dω, (1.33)

µ(x, y) =

∫ π

0

g(x cos θ + y sin θ)dθ. (1.34)

The variable x cos θ + y sin θ is simply the signed distance of the point (x, y) to a line
that goes through the origin of the coordinate system and forms an angle θ with respect to
the x axis. The previous equation states that the reconstructed image µ(x, y) at location
(x, y) is the summation of all filtered projection samples that pass through that point.
Alternatively, we can focus on a particular filtered projection sample and examine its
contribution to the reconstructed image. Since (θ, x cos θ + y sin θ) represents a straight
line that overlaps the ray path that produces the projection sample, the intensity of
g(x cos θ + y sin θ) is added uniformly to the reconstructed image along the straight line.
Consequently, the value of the filtered projection sample is painted or superimposed along
the entire straight-line path [17].

The ramp filter can also be considered as the compositin of the Hilbert transform and
the derivative (with a factor of π/2). This observation forms the basis of other recon-
struction methods, such as Differentiated Backprojection [20]. Implementing FBP involves
addressing several challenges. Since the backprojection implementation is a pixel-driven
algorithm, it necessitates interpolating the projections (More details on the pixel-driven
concept are given in Section 1.3.2). Moreover, transitioning into Fourier space to apply the
filter and subsequently reverting to the spatial domain is inefficient. Ideally, these steps
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would be avoided; however, there is no convolution kernel that spatially corresponds to
the ramp filter in the frequency domain, as the ramp filter diverges at infinity. Therefore,
bounds are introduced where the filter will be zero below and beyond certain limits (re-
sulting in an ’M’-shaped filter). Various filters can be utilised, created by adding what
is known as a window function (for the ’M’ shape, it is rectangular). The most well-
known filters include Hanning, cosine, and sinc filters. The choice of filter and the cut-off
frequency significantly impact the reconstruction [1, 17, 21].

Filtered Back-Projection on Fan-Beam Geometries

Filtered Back-Projection can also be effectively utilised in fan-beam geometries. This can
be achieved either by rebinning the data to apply parallel FBP (Eq. 1.34) or by employ-
ing the variable transformation previously described within the FBP formula (Eq. 1.22).
The direct algorithm processes each acquisition sequentially as soon as it is performed,
thus circumventing the need for interpolation and the intermediate storage of rearranged
data. Despite its advantages, the computational complexity increases due to the weight-
ing factors introduced by the fan-beam geometry, which samples the volume differently
from the parallel beam configuration. The numerical implementation of backprojection in
fan-beam geometry can also introduce artefacts, such as aliasing at the edges of objects,
resulting from undersampling [22].

FDK Algorithm

The FDK algorithm, named after its authors Feldkamp, Davis, and Kress, is specifi-
cally designed for three-dimensional cone-beam circular trajectories and utilises a filtered
backprojection method, making it straightforward to implement. The FDK algorithm is
a modified version of the fan-beam FBP algorithm and comprises three primary steps.
Initially, the projections are pre-scaled by the cosine of the angle between the cone-beam
ray and the central ray of the projection. Subsequently, a row-by-row ramp filter is ap-
plied to the data. Finally, a cone-beam backprojection of the filtered data is performed,
incorporating a weighting function based on the distance from the reconstruction point
to the focal point [3].

However, due to the circular trajectory’s non-compliance with Tuy’s condition (see
Section 1.2.3), the algorithm yields only approximate reconstructions, which may intro-
duce artefacts. These artefacts are particularly noticeable in regions distant from the orbit
plane. Despite these limitations, the FDK algorithm is renowned for its practicality and
robustness. The cone angle plays a crucial role in cone-beam imaging, with smaller angles
(less than 10◦) producing relatively accurate images. At the orbit plane, the algorithm
achieves exact reconstructions [22].

Grangeat Method

For the three-dimensional case, P. Grangeat established the exact relationship between
the 3D X-ray transform in cone-beam geometry and the first derivative of the 3D Radon
transform [15]. Consequently, it is possible to compute the derivative of the 3D Radon
transform and then apply filtered backprojection on the derivative. Grangeat’s algorithm
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differs from traditional filtered backprojection algorithms and necessitates data rebinning,
a process that can result in significant interpolation errors.

However, a more direct algorithm, as detailed in [23, 24], utilises Grangeat’s approach
without rebinning but with appropriate weighting. This algorithm offers a more stream-
lined procedure with reduced data storage requirements. Unlike the two-step method,
there is no need to calculate and store Radon transforms (in the form of a 3D matrix)
before performing the backprojection. The data processing becomes sequential, partly
due to the weighting function that manages redundancies in the cone-beam projections.

Data-sufficiency conditions

To achieve an exact reconstruction, it is necessary to obtain all the sufficient informa-
tion. There are sampling conditions for exact reconstruction in parallel geometry (Orlov)
and cone-beam geometry (Tuy) [15]. The Orlov condition is a criterion in parallel 3D
geometry that ensures an exact reconstruction. If we assume that parallel projections are
measured for a set of directions {αi}i, which is a subset of the unit sphere S2, and that
all lines parallel to αi are measured for each direction αi (meaning the 2D projection is
untruncated), then the Fourier slice theorem enables the calculation of the 3D Fourier
transform of µ(x) for a frequency ν ∈ R3 from a 2D projection in any direction αi that
satisfies αi · ν = 0. The sufficiency condition for stable reconstruction of a unique image
µ is met if and only if all great circles on the unit sphere have a non-empty intersection
with the set of measured directions {αi}i.

In fan-beam geometry, the sufficiency condition for data to fill the Fourier space is
that every line intersecting the object of interest must contain a fan-beam focal point
(i.e., the X-ray source). The Tuy condition is quite similar but applies to cone-beam
geometries: every plane intersecting the object of interest must contain a cone-beam focal
point. The Tuy condition is not satisfied for planar trajectories in 3D objects, such as
the circular trajectory (even though this trajectory is still widely used for approximate
reconstructions of satisfactory quality) [3, 15].

1.3 Iterative reconstruction methods

1.3.1 Discrete Projectors and Back-Projectors

In this section, we will adopt a different formalism to describe and solve the tomographic
problem. This approach will involve a discrete description, akin to the one used for the
Beer-Lambert equation (Eq.1.5). For each ray, if the contribution of each pixel/voxel to
be reconstructed in the attenuation can be defined, one can formulate the tomographic
problem as a linear system:

p = Aµ+ n, (1.35)

where p represents the experimental projections processed as explained in Section 1.1.3,
µ is the vector representing the flattened voxel grid to be reconstructed, n is the vector
accounting for noises, and A is the projection operator. Its adjoint, AT, represents
the backprojection operator. These operators model the interaction between rays and
matter, from a geometrical perspective. The projection operator is a discretised form of
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Figure 1.15: Illustration of three rays on a 2D image composed of 9 pixels. The system
matrix corresponding to the interactions of these rays on this image is given in Eq. 1.36.

the X-ray transform. Mathematically, the projection operator is described as a matrix
where the number of rows corresponds to the number of rays, and the number of columns
corresponds to the number of voxels to be reconstructed. Each row contains coefficients
indicating the contribution of each voxel to the value of the projection for a specific
ray, while each column can be analysed through backprojection and indicates how rays go
through a specific voxel. Figure 1.15 illustrates the passage of three rays through an image
composed of nine pixels. Each pixel represents an unknown in the linear system to be
solved. The system matrix depends solely on the acquisition geometry and the parameters
of the pixel/voxel grid to be reconstructed, but not on the object itself. Iterative methods
can therefore be used in parallel and cone-beam configurations, as well as on arbitrary
trajectories. The system matrix associated with these rays is given by Equation 1.36:

A =

0 0 0 ℓµ3 ℓµ4 ℓµ5 0 0 0
0 ℓµ1 0 ℓµ3 ℓµ4 0 ℓµ6 0 0
0 0 ℓµ2 ℓµ3 ℓµ4 ℓµ5 ℓµ6 0 0

 . (1.36)

The coefficients ℓµi
reflect the contribution of each pixel to the attenuation. In the

classical case, the matrix is highly sparse and ill-conditioned. The inversion of A is
generally non-trivial or even infeasible, given that it is nearly singular and of substantial
size. Additionally, Equation 1.35 can only be solved approximately due to the presence
of noise in the data, precluding an exact solution. Generally, the matrix A is designed
to be over-determined for a full dense trajectory acquisition. However, in the sparse-view
strategy, the number of projections is relatively low. In all cases, the optimisation problem
is:

µ∗ ∈ argmin
µ
∥Aµ− p∥22, (1.37)

that adheres to the least-squares criterion. This corresponds to the Moore-Penrose pseudo-
inverse, theoretically computable via singular value decomposition. Practically, however,
this method is only viable for very small dimensions of A. The reconstruction process can
also be formulated in a Bayesian framework of maximising the a posteriori probability:

µ∗ = argmax
µ

P (µ|p). (1.38)

Based on the Bayes rule, this probability can be expressed in the following form:

P (µ | p) = P (p | µ)P (µ)
P (p)

. (1.39)
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Usually, no a priori information on the projections is available, and the optimisation
problem is reformulated:

µ∗ = argmin
µ

(
− lnP (p | µ)− lnP (µ)

)
. (1.40)

The first term is called the log-likelihood or the data fidelity term. The second term
reflects our a priori knowledge about the reconstruction; it is the regularisation term. In
practice, due to miscounts by the detector cells and other uncertainties, the photon count
is modelled by a Poisson process with a mean given by the Beer-Lambert law:

Ii = P(I0e−[Aµ]i+ni), (1.41)

where ni represents a Gaussian noise. By incorporating this distribution into the log-
likelihood, we can reformulate the tomographic problem (Eq 1.35) in its classical least-
squares form. Ultimately, the formulation:

µ∗ = argmin
µ
∥Aµ− p∥2W + λR(µ) (1.42)

will be the most frequently employed. The factor λ manages the trade-off between data
fidelity and regularisation R. The norm ∥ · ∥W represents the Euclidean norm weighted
according to the variance in the measurements. Depending on the nature of R, the
complexity of solving the problem can vary significantly.

1.3.2 Operator Implementation Details

There are several methods to model and implement the projection and its adjoint. The
first family of methods is called pixel-driven or voxel-driven. Each pixel or voxel is simply
projected onto the detector, with values being summed and interpolated along the detector
(see Figure 1.16). This approach is straightforward to understand but can induce artefacts.
In the fan-beam geometry, some detector elements might be updated more frequently than
their neighbours because the pixel ray path is not always perpendicular to the detector,
leading to non-uniform interaction of ray paths with detector elements (see Figure 1.18b).
This can result in the fan-beam geometry being less accurate and more likely to introduce
artefacts compared to parallel-beam geometry [25, 26]. The pixel-driven method is more
appropriate for backprojection because it considers all voxels, but it can lead to artefacts
in projection if the voxels are too large compared to the detector elements.

Another approach is ray-driven, where each detector element determines a ray. The
length traversed in each pixel is calculated and contributions are summed (see Fig-
ure 1.17a). There are several variants of ray-driven methods, including grid sampling
methods that sample the voxel grid (see Figure 1.17b). In this version, the sampling step
is crucial. There are also area-integrated methods that consider areas or volumes traversed
(see Figure 1.17c). These methods are more "physical" but computationally intensive. In
general, ray-driven techniques have limited cache utilisation in parallel systems, impact-
ing computational efficiency. The ray-driven version is better suited for direct projection
but can induce artefacts in backprojection if the detector resolution is too fine compared
to the voxel grid (see Figure 1.18a) [27, 28, 29, 30].

There is also the distance-driven method, where ray-voxel and detector intersections
are projected onto a mid-plane and values are accumulated there. The distance-driven
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Figure 1.16: Pixel-driven strategy for projection

method provides a remedy for artefacts and retains simplicity in implementation, making
it highly suitable for hardware integration [31]. Another approach is the separable foot-
prints technique, which approximates the voxel footprint on the detector for speed-up.
According to the authors, it is more accurate than the distance-driven projection and
faster than both voxel-driven and distance-driven methods.

Following our discussion on the various aspects of implementations, it may be de-
sirable to use different implementations for the projection and backprojection. There
is no general rule regarding the results of reconstructions using an unmatched projec-
tor A/backprojector BT pair. Sometimes, it can even yield better results in terms of
artefact reduction. In an industrial context, the determining criterion for the choice of
operators is often the computational time. When an unmatched projector/backprojector
pair is employed in an iterative algorithm, the result depends on both the projector and
backprojector. The unmatched pair solves the system BTAµ = BTp. Note that BTA is
not necessarily symmetric. The extent to which these differences affect the reconstructed
image is problem-specific [22].

1.3.3 Reconstruction Algorithm

There are numerous algorithms available for solving the tomographic problem. The most
well-known are collectively referred to as Landweber algorithms. Conjugate gradient meth-
ods are also commonly employed. When the regularisation term is not smooth, proximal
algorithms can be utilised; these are becoming increasingly popular. The tomography
problem is a classical linear optimisation problem, but due to its large size, the system
matrix is never assembled. Optimisation methods must therefore be adapted to this
constraint.
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Figure 1.18: Illustration of limitations according to strategies. The size of voxels and detec-
tor pixels must be relevant. In the first case, the contribution of the red voxel is neglected.
In the second case, some detector pixels are not illuminated.
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Figure 1.19: Kacmarz’s method. The vector µ is projected onto the hyperplane generated
by each row of the system matrix (here two lines). This operation is repeated until con-
vergence. A complete iteration occurs when all the hyperplanes have been used. Several
iterations are required.

Landweber methods: ART, SART & SIRT

The Landweber algorithms are the most popular for iterative X-ray reconstruction. They
are based on the Landweber iteration, which consists of applying the adjoint operator AT

(or conjugate in complex numbers) to the residual (Aµ − p), which can be interpreted
as a gradient descent. The differences between the methods in this family arise from
variations in the definition of the operator and its implementation. The most popular
methods (ART, SART, SIRT) are described below.

The ART method (Algebraic Reconstruction Technique) was the first iterative ap-
proach proposed for X-ray tomographic reconstruction [21, 32]. Stemming from the work
of Gordon et al. [33], it is essentially an adaptation of Kaczmarz’s minimisation scheme
to the tomographic problem. As a starting point, an initial image, µ(0), is required to
initiate the iteration. This image could be derived from an analytical reconstruction, for
example. However, any random vector serves the purpose equally well. This vector is pro-
jected perpendicularly onto the hyperplane generated by the first equation in the system
matrix a1, representing the first X-ray, p1, to obtain a new and improved image, µ(1).
This image is then projected perpendicularly onto the second equation, yielding an image
that is improved with respect to µ(1) because µ(2) lies closer to the intersection point of
the straight lines than its two predecessors. A relaxation factor λ is used for controlling
the updates. The iteration formula for the projection on the ith hyperplane is given by:

µ(k+1) = µ(k) − λaiµ
(k) − pi

∥ai∥2
ai

T. (1.43)

In practice, for each complete iteration of the algorithm, the data must be projected
at least once onto all hyperplanes. Figure 1.19 shows the procedure on a 2D space with
two equations in the system matrix. In practical cases, due to noise, the intersection of
hyperplanes formed by each equation never occurs precisely at a single point. Unfortu-
nately, in each iteration of ART, only a single ray is considered, which updates very few
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elements of µ at each step, rendering the procedure extremely slow. To expedite conver-
gence, the SART (Simultaneous ART) method proposes using all rays of a projection in
each iteration. In this approach, most elements of µ are updated. SART is significantly
faster; however, like ART, the convergence speed depends on the order in which the data
are processed, as two adjacent views or rays typically provide similar information.

One can advance even further by updating the reconstruction with multiple projec-
tions. This approach, known as OS-SART (Ordered Subset - SART), uses a set of pro-
jections at each iteration. While convergence is indeed faster, it demands more memory
resources since the experimental projections need to fit into the RAM. If all projections
are used, the technique is referred to as SIRT (Simultaneous Iterative Reconstruction
Technique) [34].

We consider the system matrix A, which accounts for all projections. A single iteration
of SIRT can thus be expressed as:

µ(k+1) = µ(k) − λAµ
(k) − p

∥A∥2
AT. (1.44)

To align closer with practical implementation, the SIRT algorithm can also be formulated
as follows:

µ(k+1) = µ(k) − λNcA
TNr(p−Aµ(k)), (1.45)

which further illustrates the normalisation step implementation. Here, Nr and Nc are
diagonal matrices defined as follows:

Nrii =
1∑
j Aij

, (1.46)

Ncjj =
1∑
i Aij

. (1.47)

In practice, Nr and Nc matrices are not assembled. Unitary coefficients are used for
projection and backprojection to compute them.

Conjugate Gradient Least Squares

The conjugate gradient algorithm is one of the most commonly used gradient descent
methods. Using the steepest descent approach, it appears that successive descent direc-
tions follow more or less the same general orientation. Consequently, it would be more
advantageous to obtain, for each iteration, a more favourable direction to find a more
efficient path to the desired minimiser. The conjugate gradient has been created with
this idea, it makes a Krylov space with the searching directions at each iteration of the
procedure to fasten the convergence.

The conjugate gradient algorithm is often derived for a positive symmetric matrix. To
apply it to a CT system, we can simply apply the method to the normal equations:

ATAµ = ATp. (1.48)

The algorithm resulting from the application of conjugate gradient to normal equations
is called conjugate gradient least squares (CGLS).
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Algorithm 1: Conjugate Gradient Least Squares (CGLS)

Data: Initial guess µ(0)

Result: Reconstruction µ̃
k = 0

r(0) = p−Aµ(0)

d(0) = s(0) = ATr(0)

γ(0) = ∥s(0)∥2
while not convergence and not max iterations reached do

k = k + 1

q(k) = Ad(k)

α(k) = γ(k)/∥q(k)∥2
µ(k+1) = µ(k) + α(k)d(k)

r(k+1) = r(k) + α(k)q(k)

s(k+1) = ATr(k+1)

γ(k+1) = ∥s(k+1)∥2
β(k) = γ(k+1)/γ(k)

d(k+1) = s(k) + β(k)d(k)

end

Maximum Likelihood Expectation Maximization

The Maximum Likelihood Expectation Maximization algorithm (MLEM) [35] was orig-
inally developed for reconstruction in emission tomography but has also been adapted
for attenuation tomography. In our context, the likelihood L of obtaining p given µ is
defined as:

L(µ) = − lnP (p|µ) =
∑
i

(
pi[Aµ]i + I0e

−[Aµ]i
)
. (1.49)

Since µ is unknown, the EM algorithm introduces a latent variable Z representing
the contribution of voxel j in the volume to the value of pixel i in the detector. Thus,
pi =

∑
j zij. µ becomes a parameter of the random variable Z, and the goal is to

find the parameter value that maximises the probability of obtaining the data p. The EM
algorithm maximises the likelihood Q of a random variable depending on a parameter and
unobserved data in two steps. First, it estimates the log-likelihood for a given parameter
µ, known as the expectation step:

Q(µ|µ(k)) = EZ

[
L(µ)|µ(k)

]
, (1.50)

where µ(k) denotes the current reconstruction. This step compensates for the incomplete
knowledge of the variable Z by estimating the expectation of its likelihood with an arbi-
trary parameter µ initially. Once Q is estimated, the algorithm maximises its value with
respect to µ, known as the maximization step:

µ(k+1) = argmax
µ

Q(µ|µ(k)). (1.51)

The MLEM algorithm is not widely used in CT due to its sensitivity to noise. Artefacts
accumulate throughout the iterations, and determining the optimal number of iterations,
which is often high, is challenging. Moreover, convergence rates vary across different areas
of the image.
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Alternating Directions Methods of Multipliers

The Alternating Directions Methods of Multipliers (ADMM), also known as Douglas-
Rachford splitting, is a convenient algorithm for solving constrained optimisation prob-
lems. ADMM is a variant of the augmented Lagrangian scheme that uses partial updates
for the dual variables. ADMM is made to solve the typical problem:

min
µ
f(µ) + λg(µ). (1.52)

where f , g : Rn → R∪{+∞} are closed proper convex functions, λ is a positive scalar to
control the trade-off between data fidelity and regularisation. The functions f and g can
both not be smooth, but usually, f in tomography application represents the fidelity term
and g a non-smooth regularisation term. However, by choosing the following equivalent
formulation:

min
x,y

f(x) + λg(y), subject to x = y, (1.53)

the objective function is separable in x and y. This property is particularly interesting for
large dimensions problems and complex regularisation terms. The algorithm is summed
up in Algorithm 2.

Algorithm 2: ADMM
Data: Initial guess µ0, λ > 0
Result: Reconstruction µ̃
Initialize z0 = µ0,uk = 0
while the convergence criteria have not been met do
µk+1 = proxλf (z

k − uk)

zk+1 = proxλg(µ
k+1 − uk)

uk = uk + µk+1 − zk+1

end

The proximal operator is an operator associated with a proper, lower semi-continuous
convex function f from a Hilbert space X to [−∞,+∞], and is defined by:

proxf (v) = argmin
x∈X

(
f(x) +

1

2
∥x− v∥2X

)
. (1.54)

Primal-Dual Hybrid Gradient Algorithm

The Chambolle-Pock method, also known as the Primal-Dual Hybrid Gradient (PDHG)
method, stands out as a robust and efficient approach for solving a diverse range of con-
strained and non-differentiable optimisation problems. In contrast to methods like the
ADMM, PDHG typically avoids costly minimisation sub-steps. The essence of the PDHG
algorithm lies in its alternating strategy: it iteratively updates a dual variable y using a
gradient-like ascent, while concurrently updating a primal variable µ through a gradient-
like descent. This dual-primal interplay is further enhanced by an over-relaxation step
applied to the primal variable, which can accelerate convergence in practice. The method’s
versatility and computational efficiency make it particularly well-suited for problems in-
volving large-scale data, sparse solutions, and regularisation constraints across various
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fields of computational science and engineering [36, 37]. PDHG was formulated to solve
the minimisation problem:

min
µ
f(Kµ) + g(µ), (1.55)

where K is a linear operator, and the functions f and g are as defined previously. The
procedure is outlined in Algorithm 3. Here, K∗ denotes the adjoint of K, and f ∗ represents
the Fenchel conjugate of f .

Algorithm 3: Primal Dual Hybrid Gradient
Data: Initial guess µ0, τ > 0, σ > 0, θ ∈ [0, 1]
Result: Reconstruction µ̃
Initialize µ̄0 = y0 = µ0

while the convergence criteria have not been met do
yk+1 = proxσf∗(yk + σKµ̄k)

µk+1 = proxτg(µ
k − τK∗yk+1)

µ̄k+1 = µk + θ(µk+1 − µk)

end

1.4 Reconstruction quality

The assumptions made to enable the formulation of the tomographic problem and the
measurement noise lead to the presence of artefacts in the reconstructed image, of which
the most well-known are presented here. Additionally, this section introduces metrics for
evaluating the quality of the images. There are numerous sources of noise and artefacts.
We will list the most significant ones and illustrate them in Figure 1.21. Then, we will list
the most popular metrics and use them to evaluate different reconstruction algorithms.

1.4.1 Noises and artefacts

As stated before, beam hardening occurs because X-ray beams are polychromatic. When
X-rays pass through an object, the lower-energy photons are more likely to be absorbed by
the material, while the higher-energy photons tend to pass through with less attenuation.
As the X-rays traverse the object, they lose these low-energy photons, causing the X-
ray beam to become harder i.e. more penetrating. Beam hardening artefacts create
an overestimation of the attenuation at the edges and an underestimation at the centre
of the object. This phenomenon, referred to as the cupping artefact, is represented in
Figure 1.20. It can be negligible when the object’s absorption rate does not vary much
within the X-ray energy distribution or when monochromatic X-rays are used.

Compton scattering is a fundamental interaction between X-ray photons and electrons
within the atoms of an object being imaged. When high-energy X-ray photons interact
with electrons, they can transfer some of their energy to these electrons, causing them to
scatter in different directions. This phenomenon is called Compton scattering. Artefacts
occur because scattered X-ray photons do not follow the expected straight-line path from
the X-ray source to the detector. Instead, they deviate from this path due to the scattering
process. When these scattered photons are detected, they can be mistakenly interpreted
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Figure 1.20: Cupping artefact due to beam hardening. On the left, the centre of the object
is underestimated due to the artefact. On the right, the object’s value is well determined.

as originating from a different location in the object being imaged. This misinterpretation
can lead to inaccuracies in the reconstructed image and the appearance of artefacts.

Undersampling, i.e. acquiring an insufficient number of projections, is the primary
cause of artefacts in sparse-view strategies. This often results in pronounced streaks
radiating from the centre of the image. Acquiring additional projections helps to smooth
out these artefacts and enhances the overall reconstruction quality.

Cone beam artefacts occur when using a cone beam geometry, particularly in scenar-
ios where the object extends beyond the field of view of the cone beam. These artefacts
manifest as distortions at the extremities and streaks in the reconstructed images, often
due to incomplete or inconsistent data sampling. Cone beam artefacts can degrade image
quality and obscure important details. Accurate calibration and sophisticated reconstruc-
tion algorithms, such as iterative reconstruction techniques, are essential to mitigate cone
beam artefacts.

A motion artefact occurs when the structure of the object being inspected changes
during acquisition. If the attenuation coefficient varies over time, data measurements will
be inconsistent. This type of artefact can appear in medical imaging due to patient move-
ment, but correction techniques are available. In most industrial systems, the inspected
objects are typically immobile and stable on a suitable support. However, in robotic cells
where robotic arms are used to move the source and detector, errors can occur due to
incorrect positioning of the arms. Proper position calibration of the source orientation is
essential; otherwise, projection realignment will be necessary. This issue will be discussed
in detail in subsequent chapters.

Ring artefacts occur in CT when there are inconsistencies or defects in the detector
elements. These artefacts appear as concentric rings centred around the rotational axis of
the scanner. Ring artefacts are particularly problematic because they can obscure critical
details in the reconstructed images. Ring artefacts may result from faulty or miscalibrated
detector elements. Regular maintenance and calibration of the CT system are essential
to minimise these artefacts.

Noise can also occur on projections prior to reconstruction, with serious consequences
for the latter. The noise of an X-ray detector is a combination of several types of noises:
quantum noise from the counting of X-ray photons and electronic noise from photodiodes
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during the conversion of visible light intensity into electronic signal. Quantum noise is
often approximated by a Poisson law, electronic noise is often described with a Gaussian
distribution. The combination of a Poisson and a Gaussian distribution is not frequently
studied in the literature. This is because the discrete Gaussian distribution is already
a good approximation of the Poisson distribution when the number of detected X-ray
photons is sufficiently large. The random variable resulting from the two effects is thereby
directly modelled as a Gaussian, allowing to use of simpler models for X-ray detection.

Figure 1.21: Computed tomography slices illustrating common reconstruction artefacts. Im-
age from [2]. a) Ring artefacts. b) Beam hardening artefacts. c) Limited (here, 30 pro-
jections) projection artefacts for the reconstruction of a titanium additively manufactured
bracket. d) Streak artefacts in a section of the upper jaw due to silver amalgam crowns. e)
Titanium additively manufactured bracket with (left) and without (right) motion artefact. f)
Cone beam distortion.

1.4.2 Quality Metrics for Image Evaluation

To evaluate, or even train methods using machine learning algorithms, quality metrics are
indispensable. Defining quality objectively is inherently challenging, as it is a context-
sensitive concept. Most traditional metrics rely on a pixel-by-pixel comparison between
a test image Itest and a reference image Iref . The most well-known metrics are the Mean
Square Error (MSE or RMSE for Root Mean Square Error, RMSE =

√
MSE) and the

Peak Signal-to-Noise Ratio (PSNR).

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[Itest(i, j)− Iref(i, j)]2. (1.56)
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PSNR = 10 · log10
(
MAX2

I

MSE

)
= 20 · log10

(
MAXI√
MSE

)
= 20 · log10(MAXI)− 10 · log10(MSE).

(1.57)

Here, n and m represent the height and width of the images, and MAXI denotes the
maximum possible pixel value of the reference image. These metrics are particularly useful
for examining reconstruction quality or the theoretical differences between two images.
They are particularly well-suited for comparing images where noise is simulated [38].

However, these metrics have the limitation of being less suitable for comparing exper-
imental images. By comparing only pixel values, they do not adequately account for the
information present in the images and are highly sensitive to misalignment and distortion.
The Structural Similarity Index (SSIM) considers luminance l, contrast c, and structure
s, providing a metric between zero and one (with one indicating strong similarity be-
tween images) that better models human visual perception than previous error metrics.
Luminance measures the average value of an image, while contrast indicates the variabil-
ity within the image. Once two images are normalised to have the same luminance and
contrast levels, their structures can be compared. The SSIM is computed over multiple
sliding of an image. The index between two windows X and Y of common size is defined
as:

SSIM(X, Y ) = l(X, Y ) · c(X, Y ) · s(X, Y ) =
(2mXmY + c1)(2σXσY + c2)(covXY + c3)

(m2
X +m2

Y + c1)(σ2
X + σ2

Y + c2)(σXσY + c3)
.

(1.58)

In this formula, mX and mY represent the pixels means of X and Y , σX and σY denote
the pixels standard deviations, covXY is the covariance of X and Y , and c1, c2, and c3 are
constants to stabilise the division.

Metrics derived from information theory can also be employed. Images are treated as
random variables, allowing the use of metrics based on entropy, which is one of the most
popular concepts. The entropy H of a discrete random variable X with values in X and
probability p is defined as:

H(X) = −
∑
x∈X

p(x) log2 p(x). (1.59)

Entropy measures the expected amount of information conveyed by identifying the
outcome of a random trial; the term − log2 p(x) is known as surprisal or self-information.
To measure the dependence between two variables from an information-theoretic perspec-
tive, we compute how much information is obtained about one variable upon knowing the
value of another. This leads to concepts such as conditional entropy and mutual infor-
mation. The conditional entropy quantifies the amount of information needed to describe
the outcome of a random variable Y given that the value of another random variable X
is known. It is defined as:
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H(Y |X) = −
∑

x∈X ,y∈Y

p(x, y) log
p(x, y)

p(x)
. (1.60)

This notion is closely related to mutual information, which measures the dependence
between two variables:

MI(X, Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) (1.61)

MI(X, Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x) p(y)
. (1.62)

Moreover, mutual information can also be defined using the Kullback-Leibler diver-
gence DKL:

MI(X, Y ) = DKL(P(X,Y )∥PX ⊗ PY ), (1.63)

where P(X,Y ) is the joint distribution, and PX ⊗ PY is the outer product of the marginal
distributions.

Other metrics do not require a reference image but necessitate the ability to isolate
an image from a particular feature of interest. These metrics are particularly suited for
studying a defect or a region of interest. For example, the Signal-to-Noise Ratio (SNR) is
simply defined as the ratio of the signal amplitude to the standard deviation of the noise:

SNR =

∣∣∣∣µsignal

σnoise

∣∣∣∣ . (1.64)

The contrast-to-noise ratio (CNR) is also frequently utilised:

CNR =
µsignal − µnoise

σnoise
. (1.65)

CNR is not considered an optimal image quality metric because it does not account for
the size of the object and the pixel size of the image [38].

As many imaging systems are designed for very specific purposes, task-based metrics
can be created, which quantify the ability of the imaging system to perform a good diag-
nosis. For example, the method of Receiver Operating Characteristics (ROC) quantifies
the performance of radiological technology based on a statistical analysis. ROC curves
are common tools to evaluate the quality of an imaging system. The ROC curve displays
the fraction of true positives versus the fraction of false positives for a test. The area
under the curve (AUC) itself serves as a metric of the reliability of the statistical test.
Unfortunately, ROC analyses are time-consuming and complex, prone to bias if proper
precautions are not taken, and can only be conducted on available equipment [39]. Ideally,
an easier-to-measure merit factor, which could be estimated a priori, would be preferable.
This requires modelling the ROC curves. In a statistical test where we observe the vari-
able g and the possible outcomes are: H1 for the presence of a certain feature, and H0 for
its absence, we can define the detectability index analogously to the CNR as the ratio of
the expectation value of the signal (the difference between the expectation values of both
hypotheses) to the average of the variances of the conditional test statistics [10, 39]:
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d = SNRg =
⟨g|H1⟩ − ⟨g|H0⟩√

1
2
(σ2

H0
+ σ2

H1
)
. (1.66)

The detectability index is central to the concept of model observers. These notions are
particularly useful for optimising and modelling a human observer who wishes to quantify
the visibility of a certain feature in a signal [10, 40].

1.4.3 Summary of Reconstruction Methods and their Evaluation

To practically illustrate the previously discussed concepts, we propose to reconstruct
the 1024×1024 pixels Shepp-Logan phantom in sparse-view using several reconstruction
methods and evaluate them with different metrics. In this example, Gaussian noise is
added to the sinogram. The sinogram consists of 50 parallel-beam projections acquired
along a circular trajectory around the phantom. The detector consists of 1024 pixels.
All iterative algorithms performed 100 iterations. This choice of number of iterations is
arbitrary, not all methods converge at the same speed. Proximal methods, ADMM and
PDHG are regularised with a Total Variation term (i.e. a ℓ1 norm constraint on the image
gradient). Figure 1.22 shows the phantom as well as the reconstructions.

Figure 1.22: Comparison of different reconstruction algorithms on the Shepp-Logan phan-
tom in a sparse and noisy context.

In general, it is observed that the lack of projections induces streak artefacts in the
background of the image, which are particularly pronounced in FBP, SART, SIRT, and
CGLS. It is noteworthy that MLEM and the regularised methods do not exhibit as many
streak artefacts. The added Gaussian noise on the sinogram creates a blurring effect in
most reconstructions. This blurring is less pronounced in FBP, but it shows a stronger
granularity in the texture of the reconstruction. The reconstructions are evaluated ac-
cording to the MSE, PSNR, SSIM and Normalised Mutual Information (NMI) metrics.
The results are summarized in Table 1.1. We observe that depending on the metric used,
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the conclusion about the best method varies; however, overall, the more sophisticated
iterative methods provide better reconstructions.

Table 1.1: Evaluation metrics for different reconstruction methods.

Method MSE PSNR [dB] SSIM NMI
FBP 0.8294 13.92 0.0738 1.0583

SART 0.2572 24.09 0.4512 1.2408
SIRT 0.2797 23.36 0.4754 1.2428
CGLS 0.2581 24.06 0.4316 1.2386
MLEM 0.1286 30.12 0.8466 1.4097
ADMM 0.1215 30.61 0.6848 1.3227
PDHG 0.1235 30.47 0.8012 1.3974

1.5 Experimental setup

To test our algorithms, we used both simulated objects and a real object throughout all
parts of this thesis. For each method presented in this thesis, we validated our results on a
plastic additive manufacturing part. The object is a star-shaped trophy. The projections
are acquired following a circular trajectory centred around the object. In this setup, the
object is placed on a rotating stage, while the detector and source are fixed. The source-
to-object distance is 390 mm, and the source-to-detector distance is 668 mm. Figure 1.23
shows the experimental setup.

A total of 928 projections are acquired, spaced regularly every 0.388◦. This number
of projections was chosen based on the RX Solutions machine’s criteria, which aims to
acquire enough views to achieve the best quality without making the scan too long. The
projections have a resolution of 1880×1212 pixels, with a pixel size of 127 µm. The
exposure time is set to 100 ms. The X-ray source is set to a voltage of 100 kV, the current
is 500 mA and the beam is filtered by 0.6 mm of copper. Most of our reconstructions
are done at a resolution of 1204×1772×1204 voxels, with each voxel measuring 74.1 µm3.
We would like to thank RX Solutions, and especially Morgane Gelin, for the assistance
provided during this acquisition.
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Figure 1.23: Photo of the experimental set-up with the studied piece at the centre of the
turntable. The detector is on the left of the object, and the source is on the right.
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Chapter 2

Trajectory optimisation

Figure 2.1: Diagram of the tomographic process. In this section, we study trajectory optimi-
sation. The aim is to select the best projections so that an object can be reconstructed with
sufficient quality using the minimum number of projections possible.

As depicted in the Diagram 2.1, the first optimisation for sparse-view CT involves
selecting the most informative views. Projections often contain a substantial amount of
redundant information, making it feasible to reduce their number without compromising
the reconstruction quality. It is crucial, however, to avoid eliminating projections that
provide indispensable information. Therefore, the goal is to optimise the selection of
projections, which can also be referred to as optimising the acquisition trajectory. This
optimisation can be theoretically approached without any prior knowledge of the object.
However, if a CAD model is available, it provides valuable geometric information that can
be utilised. In this section, we introduce the Empirical Interpolation Method and show
how it can bring significant results in the choice of best projections and we demonstrate
the performance of our method on an experimental case.

2.1 Projections selection

2.1.1 Sampling conditions and standard trajectories

Most often, data acquisition is carried out along a circular trajectory around the object.
This trajectory is the easiest to implement since it involves placing the object on a rotating
platform while keeping the X-ray source and detector stationary. It offers a single degree
of freedom and does not require a difficult calibration. However, the circular trajectory
does not meet the Tuy criterion for data completeness, which states that each plane con-
taining a point within the Region Of Interest (ROI) must intersect the source trajectory

61
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Table 2.1: Overview of X-Ray CT trajectories, adapted from [10].

Trajectory Tuy-Smith criterion Reference

Inclined circles No [42]
Two orthogonal circles Yes [43]

Partial circle & Arcs Yes [44]
Ellipse-Line-Ellipse Yes [45]

Dual Ellipse Cross Vertex Yes [46]
Two Concentric Arcs Yes [47]

N-sin closed sinusoidal Yes [48]
Low discrepancy sphere Yes [49]

non-tangentially. As a result, a multitude of alternative trajectories have been proposed.
Helical trajectories, in particular, have gained significant prominence in medical imaging
and have also found applications in industrial settings [41]. However many other meth-
ods have been proposed and led to the development of numerous trajectory designs and
corresponding reconstruction methodologies. Table 2.1 presents a brief, non-exhaustive
summary of the trajectories proposed in the literature and their compliance with the Tuy
criterion.

Most of these novel trajectories have demonstrated the ability to satisfy the Tuy
criterion. However, it is worth noting that this criterion is typically derived for noise-free
untruncated projections on continuous trajectories and continuous perfect detectors. A
real practical imaging setup does not conform to these ideal conditions. Nevertheless,
there have been efforts to establish discrete equivalents of the Tuy criterion for cone-
beam imaging, as exemplified by [50]. This discrete criterion is exclusively founded upon
the properties of the Radon transform and Tuy conditions. However, there exist other
criteria, such as described in [51], which incorporate notions from the Nyquist-Shannon
sampling theorem. Coarsely, the Nyquist-Shannon theorem states that the maximum
available frequency in the data spectrum νmax, must be less than half the sampling rate
∆ξ:

νmax <
1

2∆ξ
. (2.1)

In our case, ∆ξ represents the detector pixel pitch. Each acquisition point is separated
by ∆γ. Figure 2.2 represents the acquisition parameters in red. In Radon space, the
projections are not placed in columns as for the sinogram, but in a polar manner according
to the angle of acquisition. In Fourier space, νmax corresponds to the radius of the circle
in which all information lies, hence:

2νmax = np∆ν, (2.2)

where np is the number of sampling elements in the detector, ∆ν is the size of each of
this np elements in Fourier. Moreover, the diameter of the Radon space is equal to the
MFD in the spatial domain, MFD = np∆ξ. Thereby, the previous equation can also be
written as:

νmax <
np

2MFD
, (2.3)
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Figure 2.2: Illustration of the sampling points in the object, Radon and Fourier space [3].
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which is really useful to estimate the minimum number of elements in the detector:
npmin = 2MFDνmax. The Fourier analysis can even be taken further to estimate the
number of necessary projections. Each acquisition samples a radial line in Fourier, whose
distance of neighbouring in the Radon domain is 1

2
MFD∆γ. For a better interpolation

grid, we want this distance close to ∆ξ. To sample all over a half-circle of radius νmax,
the number of projections must satisfy:

N >
π

∆γ
. (2.4)

Injecting the previous equations, the minimum number of projections Nmin can be ex-
pressed as:

Nmin =
π

2
npmin. (2.5)

This relation can also be expressed with the diameter of the object and the resolution
and is known as the Crowther criterion [52]. Most of the time, in sparse-view CT, this
criterion is not respected and too few projections are acquired. Fortunately, developments
in compressed sensing now make it possible to reconstruct a signal convincingly even
if the Nyquist-Shannon criterion is not respected. Figure 2.2 shows how information
about the inspected object is presented in the different spaces (Real, Radon and Fourier).
This shows that the information is not necessarily distributed homogeneously and that
intelligent sampling can avoid unnecessary projections [53].

2.1.2 Bibliography on the design of optimised trajectories

Several methods and criteria have been proposed through the years to optimise the re-
construction quality with limited projections. Obviously, each method depends on the
application and the experimental devices, but we will mainly focus on the concepts that
drive those methods rather than technical details. Because, while most methods rely on
similar concepts, they do not share the same criteria to select the best projections; it is
important to understand the big concepts. Moreover, some proposed methods are driven
by multiple concepts.

The most recurrent idea in selecting the best projections is that tangential rays are
imperative to reconstruct an edge properly. Those rays are more likely to capture the dis-
continuities and delimitations between two zones. To illustrate this idea, Figure 2.3 shows
the FBP reconstruction of a homogeneous square with two parallel beam projections. On
the left, the projections are salient, i.e. horizontal and vertical in this case, while on the
right, the projections are diagonal. The edges of the square are better reconstructed with
the salient views. This phenomenon is explained by the sampling conditions mentioned
above [54]. The edges of the image will create characteristic lines in Fourier space, which
must be sampled correctly in order to reconstruct them. In Figure 2.4, the edges of the
radioactive symbol create sharp lines at all 60 ◦in Fourier. Whereas the rounded edges
are responsible for the concentric circles that fill the Fourier image. So, to reconstruct
the edges of the radioactive symbol correctly, we just need to send tangential rays to
the edges, whereas to reconstruct the rounded edges we need to sample a wide range of
angles [54].

The importance of tangential views has been clearly understood and exploited. Zheng
and Mueller [55] use the Hough transform of the gradient image to detect salient object
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features and use an ant colony optimiser to solve the projection selection as a set-cover
problem. In a related vein, Venere et al. [56] employed a geometric criterion as a basis for
reconstructing cracks with elliptical shapes. They stipulate that better reconstructions
can be achieved by accumulating more views about the main axis of the ellipse and using
a genetic algorithm to select to next best view.

Figure 2.3: Reconstruction of a square phantom with only two projections. Left: projections
are horizontal and vertical. Right: Projections are diagonal. Salient views allow to recon-
struct the edges better

Figure 2.4: Fourier Transform of the radioactive symbol. The main streaks correspond to the
salient edges while the concentric circles forming the background are due to the rounded
parts of the object. Log scaling is applied for visualisation.

However, the idea of tangential rays can also be declined in other forms. Capturing
strong variations can mean many different things and many criteria can be created from
this ambition. For example, Haque et al. [57] use the variation of the spectral richness in
the projections as a criterion to adapt the angle step size during an acquisition. Strong
variations in the projections also imply strong variations in the object and therefore must
be sampled more. Placidi et al. [58] have formulated an algorithm wherein the optimal
views are selected based on an entropy measure. The acquisition process commences
with an initial set of uniformly distributed projections, followed by subsequent acquisi-
tions occurring between the two projections exhibiting the highest discrepancy in entropy.
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This approach finds application within the domain of nuclear magnetic resonance imag-
ing, demonstrating a reduction in the overall requisite number of projections when the
specimen exhibits certain regularities or symmetries. Matz et al. [59] use the wavelet
decomposition to detect edges in the projections. They select the best projections by
optimising a compromise between a high amount of edge information and diversity to
prevent redundancies.

The need for tangential rays to stably detect an edge can be mathematically explained
with properties of the X-ray transform. Besides, the global version of this result is the
Tuy condition [54], which is also one of the main criteria for selecting the best projec-
tions. Based on a local and quantitative description of the completeness of the projection
data [60], Herl et al. formulate a new algorithm to both optimise projections completeness
and avoid highly attenuated rays [61]. Similar ideas are found in medical applications to
avoid metal-artefacts [62]. Moreover, some studies also consider the stability of the part
orientation [63].

Many studies take noise and artefacts into account when choosing views [64]. This is an
important parameter with a strong influence on reconstruction quality [65, 66]. Although
absorption reduction can be a criterion for view selection, it is often combined with other
criteria as shown in the previous examples.

Other studies select projections by directly optimising reconstruction quality. Often
based on a greedy algorithm, projections are gradually added to the trajectory to maximise
reconstruction quality at each step [67]. Brierley et al. [68] go further by finding the best
projections set while including simulated defects in the studied part. This approach uses
a priori information on defects to create a dataset including them, in order to select
projections that maximise their visibility and detection.

A recent criterion for selecting the best trajectories has become increasingly popu-
lar. Introduced by Stayman et al. [69], the detectability index, described in Eq. 1.66, uses
model observers to quantify the performance of a set of projections for a given task. Mod-
ulation transfer function and noise power spectrum are used to quantify the information
brought by the projections. Other developments followed, including Fischer et al. [70]
who suggested a local non-pre-whitening observer model, and Bauer et al. [71] who in-
cluded this criterion in a complete optimisation framework with a geometrical weighting
and experimentally tested the results. Subsequently, several elements of machine learning
were incorporated into the initial methods. To avoid metal artefacts, Thies et al. [72]
propose an online trajectory adjustment pipeline based on a neural network for predict-
ing detectability. Further developments even include both index detectability and data
completeness in a machine learning framework [73].

2.2 Our methods

2.2.1 Empirical Interpolation Methods

Although many methods and criteria have been proposed, none prevails yet. Each method
has its own specificities of use which can be prohibitive in certain situations. Due to the
lack of training data, machine-learning methods are impossible in our case. Many of the
methods presented are less effective for the 3D case, and calculating the detectability
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index takes too long for our applications. In the industrial context in which we work,
the selection of projections must be carried out quickly. We will assume that the CAD
model is available and will be used as a priori information. However, we are assuming
some discrepancy between the 3D model and the experimental part. The method we
propose is inspired by Reduced Order Models (ROM). Since the aim is to reduce the
number of projections while maintaining good reconstruction quality, ROM and data
compression methods seem particularly relevant. The Empirical Interpolation Method
(EIM) and its discrete version (DEIM) belong precisely to this category [74]. Initially
developed for sparse sampling and approximating computationally expensive non-linear
operators in differential equations, it has been used in many other fields such as finite
elements. DEIM is particularly used for high-dimensional and complex systems because
the computational cost of evaluating the non-linearity is scaled with the rank of the
reduced Proper Orthogonal Decomposition (POD) basis [75].

The POD is certainly one of the most used techniques for dimensionality reduction,it
leverages the low-rank patterns of a complex system to model it accurately. Usually,
POD is used for spatial-temporal system, it decomposes a field b(x, t) into a set of spatial
vectors {ψi}mi=1 and time coefficients {ai}mi=1, such that:

b(x, t) =
m∑
i=1

ai(t)ψi(x). (2.6)

In order to find the POD basis, i.e the set of vectors {ψi}mi=1, the field b(x, t) is first
sampled at all locations and times to make the so-called snapshot matrix, where each row
corresponds to a measurement of the system at a different state:

B =

b(x1, t1) · · · b(xm, t1)
...

...
b(x1, tp) · · · b(xm, tp)

, (2.7)

where m is the number of spatial sampling locations and p is the number of time samples.
Next, the covariance BTB of the snapshot matrix is diagonalised. Its eigenvectors, sorted
by decreasing eigenvalues order, form the POD basis {ψi}. Obviously, for the purposes of
dimension reduction, the index m will have to be relatively low to reduce the calculation
costs, and then the sum of the approximation of b shall be truncated at a lower dimension.
POD is similar to the Principal Component Analysis (PCA) and the Karhunen–Loève
theorem, the difference is that POD is applied to a physical field.

To return to the DEIM algorithm, it precisely takes as an input argument the POD
basis {ψ}mi=1 of a non-linear snapshots matrix. The first step of the DEIM is to find
the maximum of |ψ1|, the first and most meaningful vector of the POD basis, and its
index ℘1. This index represents the first selected sampling location. The measurements
P matrix, which contains the information about the sampling locations, is initialised
with the canonical unitary vector e℘1 . Then, for each iteration, an approximation of the
projection of ψi over Ψ, the set of all considered eigenvectors during the algorithm, is
done. Unlike the initialisation, the next sampling location is calculated by taking the
index of the maximum of the residual r, i.e., the point where the approximation of ψi

is the worst. A new singular vector is added to Ψ, and a new vector to P. Thereby,
P contains the sampling locations in descending order of importance. During the whole
procedure, it is important to check that no indexes are selected twice. The fact that the
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Algorithm 4: Discrete Empirical Interpolation Method (DEIM) [75]
Data: {ψ}mi=1 ⊂ Rn linearly independent
Result: ℘ = [℘1, ℘2, . . . , ℘m]

T ∈ Rm

℘1 = argmax{|ψ1|}
Ψ = [ψ1],P = [e℘1 ],℘ = [℘1]
for i = 2 to m do

Solve (PTΨ)c = PTψi for c
r = ψi −Ψc
℘i = argmax{|r|}

Ψ←
[
Ψ ψi

]
,P←

[
P e℘i

]
,℘←

[
℘
℘i

]
end

basis Ψ originates from a POD ensures that the DEIM algorithm will always converge
and that the error growth will be limited. The procedure is detailed in Algorithm 4.

DEIM has proved to be effective and easy to implement in many areas, including inter-
polation. The EIM, sometimes even called magic points for interpolation, has been com-
pared with classical polynomial interpolation techniques such as Gauss-Lobatto-Legendre
or Chebyschev nodes [76]. Studies show that the nodes selected with EIM give good inter-
polation points with Lebesgue constants 1 close to the optimal values (see Table 2.2). In
Figure 2.5a, we have plotted different sampling strategies for interpolating a Vandermonde
basis. DEIM shares huge similarities with classical polynomial interpolation techniques.
Figure 2.5b shows the mean square error of the interpolation according to the sampling
strategy. DEIM shows better results than equidistant and Chebyshev nodes. Moreover,
EIM has been generalised in [77], where snapshots are replaced by more general linear
forms.

Table 2.2: Lebesgue constant of different nodes selection methods

Method Lebesgue Constant

Equidistant 5886
Random 1.061e+11

Chebyshev 2.869
Gauss-Lobatto 2.575
Gauss-Radau 9.626

DEIM 3.722

The Empirical Interpolation Methods have aroused a lot of interest and have been
extensively studied. Many variants came out including the Q-DEIM algorithm which
uses the pivoted QR decomposition to select iteratively the best sampling locations [74].

1Lebesgue constants Λ gives an estimator of how good the interpolant of a function is in comparison with
the best polynomial approximation of the function of degree n on the interval [a, b] with the given nodes xi :

Λn({xi}i≤n) = max
x∈[a,b]

n∑
j=0

|
n∏

i=0
j ̸=i

x− xi

xj − xi
|.
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(a) Comparison of different sampling strate-
gies on an ill-conditioned Vandermonde ba-
sis for 20 nodes.

(b) Mean square interpolation error on poly-
nomial interpolation according to the number
of interpolation nodes.

Figure 2.5: Comparison of different node selection techniques on a Vandermonde basis
and their interpolation error

The QR decomposition is a really simple mathematical tool to factorise a matrix in an
orthogonal matrix Q and an upper triangular matrix R. The QR decomposition was
introduced for the solution of least squares problems in 1965 by Businger and Golub [78].

QR decomposition is generally done with one of the three following methods: Gram-
Schmidt projections, Householder reflections and Givens rotations [79]. Gram-Schmidt
projections are easy to implement but numerically unstable, Householder reflections are
simple and stable but are bandwidth-heavy, Givens rotations are more difficult to im-
plement but are parallelisable and bandwidth efficient. To illustrate our algorithms and
simplify understanding, we will nevertheless use the Gram-Schmidt method. It is easy
to understand that at each iteration of the Algorithm 5, the columns which have not yet
been selected are orthogonally projected onto those which have been.

In the classic method, the columns are selected one by one, but in the pivoted ver-
sion, the column with the greatest norm is greedily chosen. This trick was specially
made for rank-deficient matrices, it greatly improves the numerical stability of the fac-
torization. With the column pivoting, the QR decomposition becomes XP = QR,
where P is a permutation matrix so that the diagonal elements of R are decreasing:
|R11| ≥ |R22| ≥ · · · ≥ |Rnn|. This property can slightly recall the structure of the diago-
nal matrix of the SVD, because there is a very close link between the QR decomposition
and the PCA. QR decomposition is even often used for computing the PCA [80]. This
is also why even if Q-DEIM does not use a POD base properly speaking, the method
remains similar to DEIM.

Moreover, a variant of Q-DEIM uses the POD basis of the snapshot matrix, then
does a QR decomposition and selects the sampling points using the pivot [81]. In this
particular work, Manohar et al. first calculate the POD modes of a snapshot matrix with
a SVD decomposition: X = ΨΣVT. The POD basis is truncated to a lower rank r, then
the κ most important sensor locations are determined by the permutation matrix P:

if κ=r, ΨrP = QR, (2.8)

if κ>r, (ΨrΨr)
TP = QR. (2.9)
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This technique has shown good results and is quite interesting, because, by using another
basis than that of snapshots, we find concepts similar to the generalised EIM mentioned
above. In the remainder of this manuscript, this method will be referred to as POD-
QDEIM.

Algorithm 5: Pivoted QR algorithm
Data: X = [ X1 . . . Xm ] ∈ Rn×m

Result: P Permutation matrix such that XP = QR
P = [ ]
for k = 1 to m do

i = argmax
j

||Xj||2

X← X(I−XT
i Xi/||Xi||2) #Gram-Schmidt projection

P← [P ei]

end

2.2.2 Connections between EIM and other methods

The field of application of the Empirical Interpolation Methods might seem quite far from
the X-ray tomography but many connections can be established between them and the
other works for choosing the best projections. The EIMs are used to optimise sensor
locations and wisely sample a physical field. The sinogram - or the set of projections for
non-circular trajectory - can be seen as such a field. The spatiotemporal evolution in a
physical field can be compared to the spatio-angular coordinates of the sinogram, which is
interpreted as a dynamical system. From this standpoint, EIMs can be directly applied to
the sinogram to determine the best angles to acquire. It could be argued that the method
does not take into account the reconstruction stage and only considers the projections,
which could be a limitation. However, it is also an advantage because the methods we
propose are independent of the reconstruction algorithm, they apply to all types of non-
standard trajectories, parallel and cone-beam, and as they only consider projections and
not volumes, operators are generally of small size which makes the methods fast.

To clearly understand the choice of EIMs approaches for sparse view CT, we will link
their behaviour to other works. To illustrate our points, we will use the 2D phantom in
Fig. 2.6. The first criterion to select the best projections was to favour rays tangential
to edges. Even if EIMs do not directly optimise that, it can be empirically verified.
For example, in DEIM each sampling location is selected as the worst interpolated point
for each mode. Strong variations and discontinuities are often difficult to predict if the
interpolation nodes are too far apart. For the phantom, the first selected projections
are at angles 0◦and 90◦(horizontal and vertical directions, respectively). These directions
offer rays particularly tangent to the protruding edges of the object. Figure 2.6 shows the
coordinates and the first selected angles.

As previously outlined, extant research endeavours have employed a spectral richness
metric as a mean to modulate the step size applied in circular trajectories, thereby effecting
a reduction in step size specifically proximate to image edges. Employing the same spectral
richness metric employed in [57], it is discernible that the phantom spectral richness in
Figure 2.7a exhibits two localised maxima characterised by markedly elevated spectral
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0◦

90◦
55◦

111◦

176◦ •

Figure 2.6: Phantom 2D. We will use this phantom to test the various state-of-the-art meth-
ods in this section. The five first angles selected by DEIM are 0,90,55,111 and 176 ◦.

richness values at orientations of 1◦and 87◦, a phenomenon that aligns with the initial
angles chosen by the DEIM.

(a) Spectral richness of the phantom. Two max-
ima at orientations of 1◦and 87◦are visible. They
correspond to the two most important views in
terms of information.

(b) Normalised wavelets coefficients. Two max-
ima are seen at 0◦and 89◦. The third projection
selected by DEIM is 55◦which corresponds to an-
other local maxima.

Figure 2.7: Spectral richness and normalised wavelets coefficients of the phantom

In another study by Matz et al. [59], rather than relying on spectral richness, the
selection of projections is predicated upon the identification of angles associated with the
highest absolute wavelet coefficients. Employing Ricker wavelets, it is observed that the
maximum coefficients manifest at angular orientations of 0◦and 89◦, see Figure 2.7b. It is
noteworthy that the concept of salient edges emerges as a recurring motif across various
methodologies employed for projection selection. DEIM, in a more abstract sense, also
manifests an inherent inclination toward projections with salient edges.

An alternative perspective on the selection of views can be linked to the principles of
a Design of Experiments (DOE). In this analogy, the sinogram is regarded as a compre-
hensive DOE, while the optimised strategies aim to choose a specific set of projections
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(a) Relative entropy between all projections (b) Relative entropy with the 0◦projection

Figure 2.8: Illustration of the relative entropy between projections for the phantom sinogram.
The maximum relative entropy is between 0 and 90◦.

for reconstructing an object using minimal data. Within the field of optimal design, the
D-optimal design criterion seeks to maximise the determinant of the matrix XTX, where
X represents the DOE matrix. Such optimisation leads to the maximisation of the differ-
ential entropy associated with parameter estimates [82]. Q-DEIM is directly linked to the
D-optimal criterion as the pivoted QR factorisation selects at each iteration the column
that maximises the determinant of the XTX [83]. In fact, at each iteration the algorithm
imposes a diagonal dominance structure in R, leading to:

|R11| ≥ |R22| ≥ . . . ≥ |Rnn|, (2.10)

which maximises the determinant of the left-hand submatrix. This finding can also be
associated with numerous methodologies employing entropy as a criterion for the selection
of measurements [58, 84]. In various domains, such as Image-Based Modeling/Rendering
and Virtual Reality, entropy-based metrics have been introduced [85], and they continue
to be utilised in modern viewpoint selection algorithms [86, 87]. The underlying concept
behind employing entropy as a criterion is to prioritise measurements that exhibit the
greatest dissimilarity from one another, with the aim of imparting fresh information to
the computed tomography system. For the sinogram of the phantom, it is noteworthy
that the maximum relative entropy between two columns is observed at 0◦and 90◦(see Fig-
ure 2.8a), corresponding to the initial two measurements selected by the Discrete Empiri-
cal Interpolation Method. Figure 2.8b shows the relative entropy between all projections
and the horizontal projection.

Furthermore, QR decomposition is sometimes used in the process of selecting columns
within subsets to create smaller subsets with advantageous algebraic properties [88]. No-
tably, certain studies have employed the Gram determinant for quantifying the quality of
a projection set [58, 89]. This approach proves to be valuable as it facilitates the quan-
tification of the information contributed by a new projection, irrespective of the chosen
reconstruction methodology. An intriguing observation pertains to the fact that the Gram
determinant serves as a measure of orthogonality between a vector and a subspace—a con-
cept central to the pivot selection in Q-DEIM and POD-QDEIM. By iteratively selecting
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the view that exhibits the highest degree of orthogonality in relation to the previously
selected views, Q-DEIM effectively maximises the Gram determinant.

2.2.3 Constrained Q-DEIM

EIMs are connected to many other methods and appear promising for projection selection.
However, these techniques come from purely algebraic reasoning. EIMs are only based
on the approximate geometric information of the studied part. Space coverage, noise,
absorption and artefacts of all kinds are not considered. For certain objects, this can be
a real obstacle, because the view providing the most information can also be the most
noisy, for example, the most salient view is also that of maximum traversed thickness. To
improve the results of the Q-DEIM, we propose to consider the physical aspects of the
X-rays. A constraint is imposed on the QR decomposition pivot to integrate information
on the physics of the acquisition. Each potential projection of the complete trajectory is
assigned a weight. These weights are completely task-dependent. They can correspond
to noises, stability of the robotic arm, etc. In their studies, Clark et al. [90] use the cost
of the sensors as a constraint. The QR decomposition algorithm including the cost vector
η, called Constrained Q-DEIM (CQDEIM) is summarised in the Algorithm 6. As before,
the Gram-Schmidt projection is used here to illustrate, but in practice, the Householder
method is used in the implementation for greater robustness.

Algorithm 6: Constrained Q-DEIM algorithm (CQDEIM)
Data: γ ∈ R, cost vector η ∈ Rm, X = [ x1 . . . xn ] ∈ Rn×m

Result: P Permutation matrix such that XP = QR
P = [ ]
for k = 1 to m do

i = argmax
j,j ̸∈P

(||xj||2 − γηj)

X← X(I− xT
i xi/||xi||2) #Gram-Schmidt projection

P← [P ei]

end

This method can prove particularly advantageous for certain applications, as it gen-
uinely enables the integration of any constraint expressible within the cost vector. The
additional computation time is contingent solely upon the complexity of computing the
vector. An illustrative application of this method in the field of X-ray 3D imaging is
provided in [9], where the absorption is used as a constraint on a dense object.

2.3 Results

Simulated results concerning these methodologies have been previously published in [4].
In this previous work, we have applied our methods on the CAD of a metallic additive
manufactured grate. The outcomes showed tangible contributions to the method. The
details of the parts were better reconstructed by optimising the views. The structure of
the object is better defined, especially when subsampling a spherical trajectory. Results
are shown in Figure 2.9. Direct comparison among DEIM, Q-DEIM and POD-QDEIM
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methodologies presents challenges due to their tendency to yield comparable results. Ef-
forts were made to substitute the POD-QDEIM method, which relies on POD bases,
with alternative bases such as Independent Component Analysis (ICA) or tailored sparse
dictionaries, yet the resultant outcomes remained commensurate. The constrained vari-
ant was also implemented and results were shown in [9]. In this context, attenuation,
noise and beam hardening were considered in the projections and leveraged as a regu-
larisation technique. The addition of a physical constraint brings very interesting results
by seeking to find the best compromise between the geometric aspect described above,
which includes protruding edges, and the notion of SNR with angles that reduce scat-
tering. For both publications, circular and spherical trajectories were utilised. However,
the improvements and potential of the methods are more pronounced with spherical tra-
jectories. Throughout our studies, we confined ourselves to trajectories with constant
magnification, which makes it easier to compare the projections. This limitation stems
from the method’s algebraic comparison of projections, and it appears more logical to
compare vectors representing similar images.

Reference Random Equidistant

DEIM QDEIM POD-QDEIM

Figure 2.9: Cross-section of the reconstructed grate with 10 projections for the spherical
trajectory using different acquisition strategies. Image from [4]. Trajectory optimisation sig-
nificantly improves reconstruction quality, especially in the case of non-planar trajectories.
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In this section, we have tested our methods on experimental projections obtained along
a circular trajectory. The used object is the star-shaped trophy described in Section 1.5.
The CAD model of the object is shown in Figure 2.10. Unlike our previous studies,
which were simulated, here we have the experimental projections, there was no need to
simulate the projections from CAD. The methods were directly applied to experimental
projections.

Figure 2.10: CAD model of the studied experimental part

The trajectory consists of 928 views evenly distributed on a circle. The projections
are cropped to consider only the region of interest at the centre (1880×1212 pixels) and
then resized to 235×151 pixels for view selection. This step is necessary to increase
robustness to small details and irregularities of the object and to accelerate the procedure.
Projections should be selected according to the overall geometry of the object, details that
may vary between the model and the real object should not be considered. We tested the
DEIM, Q-DEIM, CQDEIM with an absorption constraint and CQDEIM with a coverage
constraint. In the latter, whenever an angle is selected, adjacent positions receive an
additional cost, proportionally to the distance with the selected position, to promote
spatial spacing between projections. In this example, the implementation slightly deviates
from that outlined in Algorithm 6, as the cost vector updates throughout the iterations.
This capability also paves the way for adaptive sampling, where the next view depends
on the preceding ones. Figure 2.11 shows the first four projections selected by the DEIM
algorithm. The selected projections are well in line with the predictions. Projections
show strong edges. The first three views are about 90◦apart. The fourth is diagonal to
the previous ones.

Figure 2.12 shows the reconstruction results for various numbers of projections on a
circular trajectory. The PSNR is computed over the entire volume, while the SSIM results
are provided for the central horizontal slice of the reconstructions. In terms of PSNR, our

Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0116/these.pdf © [V. Bussy], [2024], INSA Lyon, tous droits réservés



(a) Trophy front projec-
tion 0◦

(b) Left side projection
88.4◦

(c) Right side projection
257.6◦

(d) Projection at an an-
gle 305.7◦

Figure 2.11: First four projections selected by the DEIM algorithm

methods offer an advantage compared to equiangular sampling. The PSNR of optimised
methods is generally one to two dB higher. Comparable quality can be achieved with
fewer projections. The SSIM results are less conclusive. Reconstruction qualities appear
similar regardless of the sampling method chosen, except for random sampling. To delve
deeper, we present the FDK reconstruction of another slice using the studied trajectories.
Figure 2.13 illustrates the reconstructions for 300 projections, and Table 2.3 presents the
reconstruction quality in terms of SSIM. The table demonstrates a slight improvement in
quality due to our methods. However, visually, the quantity of artefacts is reduced. The
streak artefact appears diminished, and values outside the object are lower. In this study,
we did not impose a noise constraint as in [9], but rather applied a regularisation term on
the spread of source points. The object we examined had low attenuation, and the noise
in the acquired projections was minimal, so a noise constraint would have had little effect.
It is observed that the CQDEIM method only shows improvement when the number of
projections is high, as the acquired views are already naturally well-distributed along the
trajectory.

Table 2.3: Comparison of the sampling strategies for the shown slice

Method SSIM

Equidistant 0.902
Random 0.795
QDEIM 0.923
DEIM 0.913

CQDEIM 0.923

In this section, we have presented trajectory selection algorithms and show results from
our own algorithms. The methods we have proposed are quick and easy to implement,
as they do not require any parameters to be set or in-depth knowledge of the object
under study. They enable us to improve the quality of reconstruction using a sparse-view
strategy. There is no great difference in quality between DEIM and Q-DEIM, the two
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(a) PSNR

(b) SSIM

Figure 2.12: Reconstruction quality according to the number of projections used during
reconstruction
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(a) Dense reconstruction (b) Equidistant sampling

(c) QDEIM (d) DEIM

(e) CQDEIM (f) Random sampling

Figure 2.13: Cross-sections of the reconstructions performed with 300 views according to
the various trajectories.

methods can be used interchangeably except when one wants to include a specific task.
In this case, CQDEIM should be used. By comparing our previous articles and this study,
we can see that the gains made by trajectory optimisation methods can be achieved for
different numbers of projections. Parts with very prominent faces, little symmetry and few
curves are more amenable to trajectory optimisation, and from the first few tens of views,
our methods show a clear difference in reconstruction quality. In the case of symmetrical
parts, such as the trophy, with few preferred directions, the trajectory has less of an impact
on the reconstruction and the improvement can be seen from a higher number of views.
In order to apply the methods presented correctly, it is necessary to know the context in
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which the experimenter is carrying out its study, particularly in order to determine the
most appropriate type of constraint to add. For future developments, we aim to develop
new functionalities in trajectory optimisation. Incorporating the notion of ROI in view
selection would be particularly beneficial. If a specific area is prone to defects or features
requiring diagnosis, enhancing the reconstruction quality in that region becomes crucial.
Additional developments are planned to explore trajectories beyond those with constant
magnification. Moreover, it would be intriguing to optimise the detector orientation.
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Chapter 3

The preliminary step of Registration

Figure 3.1: Diagram of the tomographic process. In this section, we study the Registration.
As we go along in this thesis, we will use a priori information in all stages of the process.

As this thesis aims to inject a priori information, it is necessary that our prior knowl-
edge corresponds as much as possible to the real object. Having a CAD model aligned
with the real object allows not only to compare the object to its model but also to be
able to simulate the experimental environment, simulate projections, correct the position
of the X-ray source and directly use a priori knowledge during the reconstruction, as
depicted in Diagram 3.1. For the purpose of aligning the CAD model and the real object,
many strategies are possible. The most commonly used option is the 3D/3D registration:
the object is reconstructed, and then the volume is registered to the CAD model. This
procedure is the most encountered in non-destructive testing as it is expected to directly
compare the reconstruction and the CAD model to estimate the surface condition. A
second option, called 3D/2D registration, is to register the CAD model from a few ex-
perimental projections. 3D/2D registration can be defined as establishing a projection
mapping, from a 3D to a 2D coordinate system such that points in each space which corre-
spond to the same physical point are mapped to each other [91, 92]. This strategy can be
done without a reconstruction step and can be used to correct experimental projections
and the trajectory. For these reasons, our study will focus more on 3D/2D methods1.

1The term 3D/2D is sometimes also used for volume-slice registration, we will not talk about these methods,
which can be considered an extreme case of 3D/3D registration [92].
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3.1 3D/2D Registration with the CAD model

The objective of registration is to align the CAD model with the physical object within
a common coordinate system. This necessitates determining a transformation between
the CAD coordinate system and the world coordinate system. Given that most parts
examined in this study are non-deformable, we will focus on rigid transformations. Rigid
transformations involve only six parameters, representing a 3D translation and rotations
around each axis. Conversely, non-rigid transformations are more complex, requiring
many additional parameters to account for deformations. Such deformations are crucial
in applications like medical procedures, where pre-interventional data can guide opera-
tions. However, in industrial contexts, most samples are non-deformable, making rigid
transformations sufficient for part registration. It is initially assumed that the physical
part and the CAD model have congruent shapes. Any discrepancies between the two will
be addressed subsequently.

The 3D/2D registration can be done in many ways, but we propose classifying them
according to their metric [92]. All methods share approximately the same procedure, there
is always an iterative optimisation scheme whose metric is updated at each step. The main
differences are due to the nature of the strategy to achieve spatial correspondences. There
are three main categories:

• If the strategy relies on a coarse reconstruction at each iteration and the matching
between this reconstruction and the 3D model, the procedure is reconstruction-
based and is very similar to the 3D/3D registration. A fidelity criterion compares
the selected features on the two 3D images (reconstruction and CAD) and updates
the transformation [93].

• The registration may rely on backprojections, usually, these methods seek to min-
imise the distance between virtual rays and occluding contours [94].

• The strategy can also rely on projections, in this case, the CAD model is used to
simulate projections. Then, features on simulated and experimental projections
are compared to update the CAD position [95]. Figure 3.2 illustrates a 3D/2D
registration based on projections.

For each case, the registration can rely on some fiducial markers or stereotactic frames.
Sometimes called extrinsic registration, marker-based registrations are easier. Indeed,
some correspondences have already been made between CAD 3D points and their 2D
experimental projections. In that case, it becomes a Pose Estimation Problem whose
resolution is relatively easy thanks to the numerous existing methods.

A contrario, for intrinsic registration, natural features are used. They can be of any
sort, and the simplest are pixels [96] and points. Points-to-points registration methods
often serve as a rough initial registration. They require finding particular landmarks
in both projections and the 3D object and matching them together. Curve-to-curve
equivalents also exist and often offer more robust matching. Some methods use non-local
features that allow for getting rid of a matching step. Image moments, for example, use
the information on the whole image. The features are not only based on the intensity of
the image, they can be of any nature. In this thesis, we opted not to add markers to our
images. All techniques employed will utilise natural features exclusively.
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Figure 3.2: Geometric setup of the registration of the 3D CAD model to the experimental
projections. In this example, the CAD model of the cube will be registered to the real
object by comparing experimental projections to those simulated via the CAD. Here, the
registration relies on a point-to-point comparison between the projections. The blue arrows
denote correspondences between points in the real and simulated projections. The red
arrows symbolise the translation and rotation to be determined in order to establish the
mapping ’T ’ between the CAD and real-world coordinates.

3.1.1 Pose Estimation Problem

The Pose Estimation problem is one of the most crucial challenges in registration and
serves as the foundation for numerous other techniques. It involves determining the pose
of a camera relative to a known 3D object based on correspondences between 2D image
points and their corresponding 3D points in a scene. In our context, the problem is
analogous but with a slight variation. In tomography, the source functions as the camera
pinhole and the detector as the focal plane. Figure 3.3 illustrates the similarity between
the pinhole camera model and the X-ray imaging setup. Unlike optical imaging problems,
where the camera position is unknown, in tomography, the position of the camera, i.e., the
X-ray source, is known, while the position of the physical object is unknown. However,
it is sufficient to apply the inverse transformation found in the Pose Estimation Problem
to the object rather than to the camera.

The Pose Estimation Problem, particularly the Perspective-n-Points (PnP) [97], is
inherently nonlinear. The PnP problem consists of determining the six degrees of freedom
of the camera pose by minimising an objective function that finds the best match between
the 3D points and their corresponding 2D projections. PnP is nonlinear due to the
relationship involved in the perspective projection of 3D points onto a 2D image plane.
While the problem itself is nonlinear, specific methods and approximations may aim to
linearise or simplify aspects of the problem for efficient computation. For instance, the
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Figure 3.3: Comparison between the pinhole camera model for optical and X-ray imaging.
In X-ray tomography, the detector acts as the focal plane, as if the image was formed
behind the object. Xi represents a 3D point of the object and xi its projection onto the

detector.

Direct Linear Transform (DLT), one of the oldest methods for pose estimation [98, 99],
cast the problem as a system and assumes the sought transformation has twelve degrees
of freedom. DLT considers the following linear system to find the homography between
two coordinates systems:

xi = ΠcTw
wXi, (3.1)

where xi represents a point onto the detector in homogeneous coordinates, Π is the per-
spective projection matrix, cTw the transformation between the world and the camera
coordinates and wXi is an object point in the world coordinates in homogeneous coordi-
nates. Generally, with the camera model, the third dimension of xi is set to one and there
are camera intrinsic parameters in the perspective matrix which normalise the vectors.
The camera intrinsic parameters also take into account the focal lengths and an even-
tual skew parameter but, in an X-ray framework, those parameters do not appear. So in
our case, instead of normalising the vectors, we will fill the third dimension of xi with
the source-detector distance d. The formulation of the points on the detector becomes:
xi = (xi, yi, d). The operators in Equation 3.1 can be rewritten as:

xi =

1 0 0 0
0 1 0 0
0 0 1 0

(cRw
ctw

01×3 1

)
wXi, (3.2)

where the transformation cTw is represented by the rotation matrix cRw and the transla-
tion ctw. To show the homography cHw associated with the sought mapping, the equation
can also be rewritten as:

xi =
cHw

wXi. (3.3)

The system is then transformed using the cross-product:

xi × (cHw
wXi) = 0. (3.4)
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This equation is linear with the unknown cHw. To facilitate analysis and understanding,
we will rewrite this equation as the following linear system:

Ah = 0, (3.5) 0T −dXT
i yiX

T
i

dXT
i 0T −xiXT

i

−yiXT
i xiX

T
i 0T

 h1

h2

h3

 = 0, (3.6)

where hj is the jth row of cHw. It is important to acknowledge that although every set
of coordinate matches results in a set of three equations, only two of these equations are
linearly independent. Usually, the third one is disregarded.

Theoretically, since six independent parameters can represent the pose, three points
should be sufficient to solve this problem. Many methods, called P3P, use only three
points to deduce the pose. In practice, they are not robust because of the orthogonal
constraint on the rotation matrix. Therefore, as we explained above, twelve unknowns
are used instead of six for the homography. By consequence, as A has rank 8 [98], four
points correspondences are needed for determining a unique solution. PnP can use as
many points as available, but the system is over-determined. To determine the best
homography, SVD is used along with the Kabsch-Umeyama algorithm [100] (more details
in Section 3.2.1). Although there are many well-known solutions for the pose estimation
problem, PnP algorithms are the most common as the pose accuracy increases with the
number of points. Still, for more accuracy, PnP often needs to be combined with an
outlier rejection process like the Random Sample Consensus (RANSAC) [101]. We will
note, however, that P3P is sometimes preferred over the other methods for its rapid
computational speed and requirement of only three correspondences [97, 102].

The POSIT algorithm, introduced by Dementhon [103], is another method to address
the PnP problem. As with other methods, it assumes known 3D-2D point correspon-
dences. POSIT combines two algorithms. The first one, POS (Pose from Orthography
and Scaling), fastens the procedure and makes the problem linear by approximating the
perspective projection with a scaled orthogonal projection. The second POSIT (POS
with ITerations), an iterative technique, employs the previously approximated pose to
compute improved scaled orthographic projections of the feature points. The algorithm’s
advantages lie in its computational efficiency and iterative refinement approach, obviating
the necessity for an initial guess. However, POSIT assumes a perspective camera model,
which may not be universally applicable, particularly in coplanar points scenarios. Ad-
ditionally, it might converge to local minima if the initial estimate significantly deviates
from the correct pose. A notable improvement of POSIT is SoftPOSIT, which simulta-
neously determines the pose and the correspondences between points [104]. SoftPOSIT
merges the iterative softassign algorithm for computing correspondences [105] and the
POSIT algorithm.

In the previous examples, homography was defined as the solution of a system. How-
ever, it is also possible to define pose estimation as a minimisation problem with regard
to translation and rotation parameters. These so-called iterative methods are generally
more complex, require a good initialisation to avoid local minima and require a stopping
criterion. However, they allow much greater flexibility in terms of minimising errors.
Iterative algorithms have the advantage that they can be used as long as the function
to be minimised is well-defined. For example, in visual servoing, the distance between
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the real and simulated projected points is often chosen, but any other feature can also
be used [106, 107]. Denoting s = (c

∗
tw, θu), the representation of the translations and

rotations parameters defining the rigid transformation cTw, the pose estimation problem
solves for:

s∗ = argmin
s

∑
i

∥xi −ΠcTw(s)
wXi∥22. (3.7)

A major advantage of iterative methods is that the Jacobian of the function to be min-
imised can be approximated, which greatly improves the algorithms’ convergence speed
(more details in Section 3.1.2).

So far, we have assumed that correspondences between the image points and the 3D
object are already known, but the pose estimation can also be solved with natural feature-
based methods. Those techniques involve the following steps: key points extraction, fea-
ture description, matching and solving for the transformation. Considered a breakthrough
in key points extraction, the scale-invariant feature transform (SIFT), proposed by David
Lowe [108], allows to detect, describe, and match local features in images. First, SIFT
uses the Difference of Gaussians (DoG) technique to identify potential key points across
different levels of image blurring. The algorithm convolves the image with Gaussian fil-
ters at different scales and subtracts adjacent blurred images to generate a DoG pyramid.
Local extrema in the DoG pyramid (points where a pixel is higher or lower than its neigh-
bours across scale and space) are considered potential key points. Once potential key
points are detected, SIFT applies a detailed localisation step to refine them. It examines
the DoG pyramid to eliminate low-contrast key points and points on edges and discard
points that are not sufficiently defined or stable across scales. Key points are further
refined by fitting a 3D quadratic function to nearby sample points, determining sub-pixel
accuracy in localisation. Then, SIFT assigns an orientation feature to each key point,
which consists of assigning one or more orientations determined locally on the image from
the direction of the gradients in a neighbourhood around the point. At this stage, SIFT
constructs a descriptor for each key point, representing its local image region. A window
around the key point is divided into subregions, and gradient histograms for each subre-
gion are generated. These histograms are concatenated to form a high-dimensional vector
that serves as the descriptor for the key point. Once descriptors are computed for key
points in multiple images, SIFT enables the matching of corresponding key points across
images. Figure 3.4 shows the results of the key points matching between two pictures
taken at different angles [5]. Despite a few exceptions, most matches are correct. Finally,
a PnP method is used to compute the transformation between the images. Given that
the method generates many correspondences, the homography calculation must be robust
and requires RANSAC.

The methods cited here are merely examples, yet they illustrate the general framework
of registration techniques. Typically, correspondences between features are established,
followed by a resolution method that provides the desired transformation. Visual servoing
is no exception to this approach but also introduces numerous other aspects that we will
utilise in our methods.

3.1.2 Visual servoing

Visual servoing is initially a technique for controlling the motion of a robot using visual
information feedback from cameras. This technique can be applied in various fields such
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Figure 3.4: Results of the correspondences found by the SIFT algorithm between two
images [5].

as industrial automation, robotics, object tracking, and navigation. Thanks to the sim-
ilarities between camera systems and X-ray setup, this technique can be used for X-ray
pose estimation too. Its formulation is general and encompasses many situations, the
visual control scheme aims to minimise the error e defined as:

e = (s(x)− s∗), (3.8)

where x = (x, y, z, ωx, ωy, ωz) represents the pose of the camera (i.e. X-ray source),
the target s∗ and s are either a set of features in the images or a pose, which must
be estimated from image measurements. In the first case, the approach is called Image
Based Visual Servoing (IBVS) and in the latter, it is called Pose Based Visual Servoing
(sometimes Position) (PBVS) [106]. Within the framework of visual servoing, our focus
shifts towards the position and orientation of the camera/source. Consequently, in this
section, x denotes the source’s position rather than the points of projection, as previously
discussed.

Once the features on the projections have been selected, the control scheme can be
straightforwardly deduced. Initially, the goal is to define Ls = ∂s

∂x
, which represents

the interaction matrix, also referred to as the feature Jacobian. This matrix delineates
the alterations in the features s corresponding to the camera/source movement and, in
conjunction with the chosen features, plays a crucial role in effectively guiding the system.
It facilitates the determination of the camera’s kinematic screw v required to minimise
the visual error. The features time derivative is:
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ds

dt
=
∂s

∂x

dx

dt
+
∂s

∂t
(3.9)

ds

dt
= Lsv +

∂s

∂t
.

As the object is motionless, the last term is zero. Using Eq. 3.8, the relationship between
the error and the displacement v = (vc,ωc) appears:

de

dt
=
∂e

∂s

∂s

∂x

dx

dt
= Lev, (3.10)

where Le = Ls
2. If an exponential decrease in error is forced on the system, it gives the

equation:
de

dt
= −λe, (3.11)

where λ is a positive constant. Combining Equations 3.10 and 3.11, we obtain a formu-
lation of the displacement to be applied to the system:

v = −λLe
+(s− s∗), (3.12)

de

dt
= −λLeLe

+(s− s∗). (3.13)

In practical implementations of visual servoing control laws, achieving perfect knowledge
of either Le or its pseudoinverse L+

e is unattainable. Consequently, an approximation
or estimation of one of these matrices becomes necessary. Henceforth, we denote both
the pseudoinverse of the estimated interaction matrix and the estimated pseudoinverse of
the interaction matrix using the symbol L̂e. Employing this notation, the control law is
effectively represented as:

v = −λL̂e

+
e. (3.14)

This formulation encapsulates the utilisation of an estimated or approximated pseu-
doinverse of the interaction matrix Le within the control law. When LeL̂e

+
is positive,

it indicates a decrease in the error. Conversely, if the result is negative, it suggests an
increase in the error. Further explanation of this concept is provided in [106]. Figure 3.5
illustrates the visual servoing loop.

Image-Based Visual Servoing (IBVS)

To illustrate how visual servoing works and how the interaction matrix is derived, we
will explain the example of servoing where the features are points. This is an example
of IBVS. As before, we will call d the source-detector distance, x the coordinates of a
point on the detector and X the corresponding point on the 3D object. For conventional
cameras, the source-detector distance must be replaced by the lens’s focal length. The
perspective projection gives the equation:

x =
d

Z
X. (3.15)

2Although this point is not elaborated in detail here, it is crucial for comprehending the method. For further
information, the reader is encouraged to consult the following reviews. [106, 107].
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Figure 3.5: Visual Servoing Loop. From the image I, a set of features s is extracted. The
error e = (s∗ − s) is minimised thanks to the interaction matrix L̂e which allows to compute
v to move the camera position.

Note that the value of Z is approximate; it is not assumed to be known at the beginning
of the algorithm. Furthermore, the velocity of the 3D point can be expressed as a function
of the camera spatial velocity as follows:

Ẋ = −vc − ωc ×X. (3.16)

Using both Equations 3.15 and 3.16, we obtain:

ẋ = − d
Z
vx +

x

Z
vz +

xy

d
ωx − d(1 +

x2

d2
)ωy + yωz, (3.17)

ẏ = − d
Z
vy +

y

Z
vz + d(1 +

y2

d2
)ωx −

xy

d
ωy − xωz. (3.18)

Rearranging the terms gives the desired result ẋ = Lev, with:

Le =

(
− d

Z
0 x

Z
xy
d

−(1 + x2

d2
)d y

0 − d
Z

y
Z

(1 + y2

d2
)d −xy

d
−x

)
. (3.19)

The interaction matrix is contingent upon the object’s position, a factor that remains
unknown. Hence, an approximation, denoted as L̂e, addresses this limitation as explained
before. The interaction matrix can also be approximated by Le∗ , but this choice impacts
the trajectory. To comprehend how to derive the interaction matrix for any generic
feature, more details are provided in Appendix A.1.

The primary principle underlying this control methodology aims to minimise the error
norm, enhancing the precision of both tracking and control:

L =
1

2
∥e∥22. (3.20)

When dealing with six features, assuming both Le and L̂+
e possess full rank, global asymp-

totic stability is achieved, indicated by:

L̇ = eTė = −λeTLeL̂+
e e. (3.21)

However, if the number of features exceeds six, the same criterion provides local asymp-
totic stability around e∗. The global asymptotic stability of the system is guaranteed if
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Figure 3.6: Stereovision system. By leveraging multiple views, the visual servoing approach
mitigates ambiguities and avoids local minima. The goal is to converge the current features
(from simulated views) with the desired ones (from experimental views) across both per-
spectives.

LeL̂+
e > 0 in the sense that a matrix A is considered positive if xTAx > 0 ∀ x. This

condition aligns with Lyapunov stability principles.

If multiple projections are available for registration, we can concurrently utilise the
features. This scenario closely resembles stereovision or multi-camera setups in visual
servoing. Figure 3.6 shows an experimental setup with two perpendicular projections
available for registration. The interaction matrix of the second view is expressed in the
frame of the first view with:

1Le2 = 2Le2 · 2W1, (3.22)

2W1 =

(
2R1 [2t1]×

2R1

0 2R1

)
. (3.23)

Where [t]× is the skew-symmetric matrix associated with the vector t and (2R1,
2 t1) is

the rigid-body transformation between the coordinates frames, 1Le2 and 2Le2 are the
interaction matrices of the second view in the first and second frame respectively [109].

ės =

(
ė1
ė2

)
=

(
Le1

Le2
2W1

)
v = Lesv. (3.24)

Note that the epipolar constraints might link some equations.

Pose Based Visual Servoing

In image-based methods, the geometric model of the studied object is not explicitly used,
only its projection and associated features. In X-rays, the positions of the source and the
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detector are well-known, equivalent to knowing the intrinsic camera parameters, allowing
the use of the geometric model. PBVS involves a 3D reconstruction step.3

PBVS aims to directly estimate the source’s (or camera’s in conventional servo control)
position and orientation. Essentially, PBVS mirrors the problem of repositioning the
camera based on visual data at hand. Accurate estimation of the camera’s pose demands
a 3D model of the object and the camera’s intrinsic parameters. This 3D model serves
as a reference, facilitating the estimation of spatial relations between the camera and the
object. Additionally, formulating the servoing error and computing the interaction matrix
is crucial for effective servoing based on the estimated camera pose.

With c∗tc the translation between the target and current frames of reference, and
c∗Rc the rotation matrix between these frames, we define s = (c

∗
tc, θu) is feasible. In

this formulation, s∗ = 0 and s = e. The servoing can be modelled with:

Le =

(
R 0
0 Lθu

)
, (3.25)

Lθu = I3 +
θ

2
[u]× + (1− sinc θ

sinc2 θ
2

)[u]2×. (3.26)

Thereby, the formula for the displacement gives:

v = −λL̂+
e e. (3.27){

vc = −λRTc∗tc
ωc = −λθu . (3.28)

Note the decoupling between translational and rotational motions. Pose-based visual
servoing is particularly intriguing since, under perfect parameter estimation and given
θ ̸= 2nπ with n ∈ N, then LeL̂+

e = I6, ensuring global asymptotic stability [106, 107].

3.2 Our methods

To address the registration, we propose two distinct methods. The first, termed Convex
Hulls Iterative Inverse Perspective Matching, constitutes a PBVS approach. We prioritise
this method because it is very well suited to components typical of the industry with
polygonal parts. Given that PBVS methods do not necessitate projections computation,
we have opted for this rapid method that circumvents this requirement. Notably, CAD
models can be cumbersome, often necessitating preliminary steps such as decimation [112]
or voxelization [6].

Subsequently, we present our IBVS method known as Robust 3D/2D hybrid regis-
tration. This method amalgamates point-based and image moment-based servoing tech-
niques to yield improved convergence precision. The outcomes and evaluations of these
two methods are already documented in our previous publications [12, 13] and we present
here new results on the experimental data already considered in the previous chapters.

3Note that combining PVBS and IBVS is possible [107], such as in the 21/2D visual servoing [110], or
Degrees Of Freedom partitioned [111]. A distinction exists between visual servo methods (image and pose)
and look-and-move methods. Look-and-move methods incorporate joint feedback. That is, a position is given
to the robot to reach autonomously following the governing control laws, without visual feedback, and then
the robot looks again and moves again. In contrast, visual servoing lacks joint feedback. The control is purely
visual.
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Figure 3.7: Illustration of the Registration setup. M = {Xi}i,F = {xj}j.

3.2.1 Convex Hulls Iterative Inverse Perspective Matching

Inverse perspective matching is initially introduced by Wunsch et al. [113]. This method
resembles the Iterative Closest Point (ICP) algorithm, albeit with a distinct approach
involving the establishment of correspondences between lines and points. Inverse per-
spective matching fundamental concept is to establish correspondences between 2D image
features, denoted as F on the imaging detector and the 3D points representing the CAD
model, denoted as M. However, these correspondences are established within the 3D
spatial domain, rather than in the 2D image space, as was the case with IBVS or PnP.

For each image feature point, x = (xu, xv) ∈ F, identified in the experimental pro-
jection, a ray P−1(x) is back-projected from the X-ray source point using the following
equation:

P−1(x) = {y | y = λ(xu, xv, d)
T, λ ∈ R}. (3.29)

Here, d denotes the source-detector distance, xu and xv represent the image coordi-
nates of the point x. It is assumed that the X-ray source is situated at the origin, and
the detector is oriented perpendicularly to the source-detector axis.

Figure 3.7 illustrates the procedure. In this figure, the blue points on the detector panel
represent image features F, each associated with a ray. Simultaneously, in Figure 3.7,
yellow dots symbolise 3D points from the CAD model. The matching process involves
associating each 3D CAD point with its closest ray and, consequently, with an image
feature. For each correspondence established, the 3D CAD point is orthogonally projected
onto its corresponding ray, resulting in the formation of the points cloud denoted as Y
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(depicted as green dots). This process ensures that for every Xi within the set M, a 3D
counterpart Yi ∈ P−1(x) is defined with:

||Xi −Yi|| = min
x∈F
||Xi − P−1(x)|| . (3.30)

The point clouds M and Y are represented in the same coordinate system and have
an identical number of points. Consequently, the problem has transitioned into a 3D/3D
registration, generally more straightforward than the initial 3D/2D registration task. The
primary objective function to be minimised, denoted as L, can now be expressed as follows:

L(R, t) =
∑
i

dist(Yi − (RXi + t)) . (3.31)

Here, R represents a rotation matrix, and t denotes a translation vector. Further-
more, in order to enhance the method’s robustness, reduce the impact of outliers, and
ensure numerical stability, the employed distance dist(·,0) is the Huber M-estimator func-
tion, whose parameter k depends on the experimental setup and the 3D model to be
aligned [114]:

distk(x) =

{
x2

2
if |x| < k, k ∈ R+

k(|x| − k
2
) if |x| ⩾ k

. (3.32)

Equation 3.31 can be reformulated as a weighted least squares problem [115] and
solved using the Kabsch-Umeyama algorithm [100], described below. This method yields
the rotation matrix R and translation vector t that minimises the loss function L. The
optimisation scheme divides the resolution into two stages: first, a translation is performed
on the set of points M by t, aligning its centroid with that of Y. Subsequently, the
covariance matrix G is computed using the equation:

G = YT(M− t). (3.33)

The optimal rotation between the two sets is theoretically given by:

R =
(
GTG

) 1
2 G−1. (3.34)

However, this computation is challenging. Instead, an SVD decomposition is applied to
the covariance matrix:

G = UΣVT. (3.35)

U and V are unitary matrices and Σ is diagonal. The desired rotation matrix is obtained
as:

R = V

1 0 0
0 1 0
0 0 ±1

UT. (3.36)

The sign of the last coefficient is determined by sign
(
det
(
VUT

))
. Each point Xi ∈M,

the CAD model, is updated using the transformation equation:

X′
i = RXi + t. (3.37)

The control scheme and position update process are relatively straightforward and
computationally efficient. However, practical convergence becomes uncertain when the
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Iterative Perspective Matching is applied as is. The crucial step of establishing point
correspondences greatly influences the accuracy of displacement calculations. Incorrect
associations can lead to erroneous movements. We decided to employ two projections to
enhance the method’s robustness, a strategy noted for its efficacy in improving conver-
gence [113].

Moreover, the great particularity of our implementation is that we limit our focus
solely to the convex hull of the 3D CAD model and the convex hull of the experimen-
tal projection. These points hold particular significance in our context. Firstly, they
are relatively sparse for industrial parts. Challenges may arise with curves, as in CAD
models defined by meshes such as STL files, where all points along a curve can poten-
tially contribute to the convex hull. Furthermore, it can be demonstrated that the points
constituting the convex hull in the CAD model will also form the convex hull in the 2D
projection (see Appendix A.2).

To further reduce the number of points, the 3D hull points are themselves clipped.
Typically, numerous points in the 3D hull are not responsible for the convex hull of the
projection. Hence, the 3D convex hull is projected onto the detector in each iteration.
Only the points contributing to the projections convex hulls are retained. This process
eliminates points incapable of generating matches, enhancing method stability by cur-
tailing erroneous matches, which can prolong the minimisation step due to significant
errors. A proof of convergence is provided in Appendix A.3. Algorithm 7 recaps the
whole procedure.

A crucial detail that has not been addressed is the initialisation of the object’s position.
Effective initialisation is essential for facilitating convergence and ensuring the success
of the method. In this approach, poor initialisation can be particularly problematic,
potentially causing the CAD object to move out of the X-ray beam’s field of view. In
our method, the initial orientation of the object is set randomly, and the CAD object is
translated so that its bounding box fits within the field of view of each detector position.
Given the method’s speed, if the object moves out of the field of view, the process can be
restarted with a different random orientation.

Algorithm 7: Convex Hulls Iterative Inverse Perspective Matching
Data: Image features F, model shape M, experimental setup parameters
Result: Registered CAD model M′

Compute CAD 3D convex hull
Compute target projections convex hulls
while the convergence criteria have not been met do

Curtail the 3D convex hull to keep only points of interest
Compute Y by establishing matches between M and F

Solve argmin
R,t

∑
Xi∈M

∥Yi −RXi − t∥2 for R and t

Update M← RM+ t

end
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Results on an experimental part

The method has been firstly validated on simulated data and the corresponding results
have been presented in [13] and are reported in Fig. 3.8. We show the registration of a
connecting rod, the special feature of this object is that the two rings at the ends are
perpendicular to each other. This means that at least one ring is visible on each front
and transverse projections at the same time, which is convenient for assessing the quality
of the reconstruction. The results were extremely encouraging. Using two perpendicular
projections, we were able to align the connecting rod with an error of less than two pixels.
This alignment was even used to apply a mask during reconstruction (see Chapter 4) [13].

(a) Initial Front view (b) Initial Transverse view

(c) Final Front view (zoom) (d) Final Transverse view (zoom)

Figure 3.8: Registration of a connecting rod. Well-registered zones are grey, target projec-
tions are black and CAD projections are white.
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(a) CAD Model. (b) CAD Convex Hull.

Figure 3.9: Convex hull of the 3D CAD Model.

The method has also been tested on a real part with experimental projections in [11],
where the part studied had the particularity of being very different from its 3D model.
Here, we will test the method on the experimental projections of the star-shaped trophy.
In this scenario, there are variations between the 3D model and the real object, as well
as potential noise in the projections, and the base of the object needs to be considered.
We will therefore assess whether these additional challenges affect performance.

The first step is to compute the 3D convex hull. This step simplifies a lot the STL
model. Allowing to consider 406 points for the convex hull instead of 1.767.648, that is
to say, 0.023% of the original number of points (see Fig. 3.9). The number of points can
even decrease further for pieces that do not have curves, here the circular base generates
many points. The trophy remains quite interesting for this method because the points at
the end of the star’s branches are quite protruding and make registration easier.

The next step is to find the 2D convex hulls of the projections. For this example,
we consider two projections perpendicular to each other. The projections are processed
to binarise the image and outline the object. On the experimental projections, we can
see the polystyrene trophy base. Fortunately, it does not pose a significant issue; a
simple threshold segmentation enables a satisfactory identification of the piece’s contours.
Figure 3.10 shows, for the front and transverse views, the results of the binarisation and
the detected contours.

Afterwards, finding the projections’ convex hulls is straightforward. Figure 3.11 shows
the result. The front view convex hull is made of 37 points and the transverse of 53 points.
The rationale behind binarisation and focusing solely on the convex hull becomes evident.
Projections contain a vast amount of information, yet not all are essential for registration
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(a) Front view (b) Transverse view

(c) Front view’s contours (d) Transverse view’s contours

Figure 3.10: Two orthogonal views of the object before processing (top), after binarisation
and contour extraction (bottom).
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purposes. Restricting to a few points does not compromise the registration capabilities;
instead, it streamlines and accelerates the algorithm.

(a) Front View Convex Hull (b) Transverse View Convex Hull

Figure 3.11: Construction of the convex envelope of the experimental front and transverse
projections.

The preliminary steps are done, and the iterations start now. To enhance the algo-
rithm’s robustness and speed, the points from the convex hull undergo further sorting.
Only the points projecting onto the detector, forming the convex hull of the new tempo-
rary simulated projection, are taken into account. For the first iteration and the front
view, only 24 points are kept. It now involves matching 37 keypoints ∈ F from the 2D
convex hull to 24 points from the 3D convex hull ∈ M for the first view. In the second
view, the 31 points of the 3D model that project onto the convex hull of the object are
considered and matched to the 24 2D keypoints. The matching step becomes even easier.
The orthogonal projections on the backprojected key points can be computed rapidly and
each Xi can be associated to a P−1(xj), solving for Eq. 3.30. Figure 3.12 illustrates the
correspondences step as in Figure 3.7. Green points are the orthogonal projections of M
on P−1(x).

From the two sets M and Y, the Kabsch-Umeyama algorithm is applied, and the
parameter k is set to 2 in the Huber M-estimator in Equation 3.32. The iterations are
repeated until convergence. Figure 3.13 shows the initial and final overlaps after 50
iterations.The whole procedure takes approximately 3 seconds. The target is represented
in black, while the projection of the CAD model is in white. The overlap of the two
is shown in grey. The goal is to maximise the grey area. The first row represents the
initial overlap, and the second row shows the overlap after registration. The transverse
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Figure 3.12: Visualisation of the registration setup. The matching is illustrated for three
points on the CAD model M, located at the tips of the star’s branches. Each point on the
3D model (in yellow) is associated with a point on the 2D envelope (in blue). Subsequently,
a point cloud (in green) is constructed.

Table 3.1: Quantitative registration results for the star trophy.

Metric Front View Transversal View
Hausdorff distance [pixel]

Before registration 181.1 218.8
After registration 13.15 4.000

Accuracy [%]
Before registration 63.32 69.55
After registration 97.77 99.29

view demonstrates a very good alignment, with only a thin portion of the contours not
overlapping. Table 3.1 shows the Haussdorff distance in pixels and the accuracy for the
registration. The pixels on the detector are 127µm2. The Haussdorff distance dH between
two non-empty bounded closed sets X and Y in a metric space (E, δ) is defined as:

dH(X, Y ) = max {sup
y∈Y

δ(X, y), sup
x∈X

δ(x, Y )} = max {sup
y∈Y

inf
x∈X

δ(x, y), sup
x∈X

inf
y∈Y

δ(x, y)}

(3.38)
In a few words, it is the maximum distance in pixels between the contours of the ex-
perimental and registered simulated image. This distance is useful because when we will
apply the mask in the next section, it will be dilated to compensate for registration errors.
This expansion will be a factor of dH divided by the magnification factor. The accuracy is
defined as the number of pixels where the image overlay is correct (grey area) divided by
the total number of pixels. Figure 3.14 illustrates the convergence of the six registration
parameters (tx, ty, tz, ωx, ωy, ωz) over the iterations. The top row shows the rotation
parameters while the bottom row shows the translations. The parameters are defined in
relation to the point of convergence, i.e. the point obtained when the algorithm is run
until the result is stationary. It can be observed that ωy exhibits a slower convergence
compared to the others. This outcome was anticipated as it represents the vertical Oy

axis that is not directly observed. Translations compensate for errors in rotations and are
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(a) Front view initial overlap (b) Transverse view initial overlap

(c) Front view final overlap (d) Transverse view final overlap

Figure 3.13: Initial and final overlaps

relatively easy to stabilise. Slight oscillations around the final value can be noticed. The
graph is centred around the final value to ease interpretation. The ordinate represents
rotations in degrees and translations in millimetres.
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Figure 3.14: Parameters convergence over iterations. First row represents the angles (ωx,
ωy, ωz) [◦], second row represents the translations(tx, ty, tz) [mm].

3.2.2 Robust 3D/2D hybrid registration

The second method we propose relies on Image-Based Visual Servoing. It directly relies on
the equations from the above Section 3.1.2. The critical aspect of IBVS lies in selecting the
right features for registration. Similarly to Iterative Inverse Perspective Matching, we do
not consider the entire projection, but rather focus solely on its contours. As observed in
the previous method, a few well-chosen points provide sufficient information for accurate
registration. While the entire image contains vast information, we limit ourselves again
to a few points for algorithm robustness.

To binarise projections proves advantageous by allowing us to operate out of the
greyscale framework. Consequently, precise knowledge of the source’s energy or the expo-
sure duration becomes unnecessary. This simplifies our ray casting simulation of projec-
tions significantly, focusing solely on detecting intersections between rays and the CAD
mesh. Moreover, the CAD file is first decimated to minimise the number of elements [112].
This deliberate simplification effectively streamlines the entire process. The segmentation
process of experimental projections exhibits resilience against potential edge blurring and
scattering, ensuring a distinct delineation of the object’s contours. In an industrial set-
ting, the exterior shape is usually highly contrasted and typically suffices for the majority
of objects’ registration. However, in instances where object features are carved inside
(such as a cylinder with internal grooves), this method must be adapted to greyscale.

Having opted to work with binary images, the next step involves selecting features
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for the registration process. Several types of points were considered initially. The Harris
detector was one of the first attempts, yet the outcomes proved unsatisfactory [116]. The
number of points detected was often insufficient, as this detector is not universally suitable
for all geometries and types of objects, despite the method requiring robustness across
various geometries. SIFT keypoints were also under consideration, yet their relevance
was limited in the context of binary images; this detector will be given precedence in the
greyscale version of visual servoing. Eventually, the decision was made to use the points
forming the contours exclusively. They consistently exist, are easy to detect, and occur
in sufficient numbers.

The contour points of the experimental images will be denoted as s∗, while those of
the simulated projections will be represented as s. The matching step will be performed
using the ICP algorithm. Each s∗ will be assigned a counterpart in the simulated image,
allowing to use visual servoing with the previously defined interaction matrix for points.
If multiple views are employed, the multicamera equation 3.22 must be applied.

In practice, we have observed a significant dependency of the method on the quality
of the ICP matching step. The rotation around the vertical axis Oy presents a partic-
ular challenge due to its unobservable nature in a direct frontal view during a circular
trajectory, and it is the position of this axis that dictates whether the simulated pro-
jection shape aligns with the experimental one (Translations are generally manageable,
merely requiring the repositioning of centroids). To address this challenge, a solution
was proposed involving simulated annealing for the rotation around the vertical axis Oy.
Simulated annealing is generally used for circumventing local minima. In our method,
there is the double effect of avoiding local minima but also of improving the robustness
of the method. Periodically, every ten iterations, two extra positions around the current
orientation are evaluated. The algorithm selects the angle that minimises the discrepancy
between matched points using ICP. It is important to note that while this metric does
not precisely gauge the overall registration quality, it primarily assesses the alignment of
the vertical axis Oy. Although this metric may lead to an increase in loss functions (i.e.
the global overlap), it significantly enhances the method’s robustness.

With the introduction of the simulated annealing strategy, the method exhibits greater
robustness and improved results, yet the matching process may still present errors [12].
To demonstrate and quantify the benefits of simulated annealing, an additional study
is provided in Appendix A.4. Another solution to this issue has been proposed: im-
age moment-based servoing. Servoing the system with moments involves utilising global
(rather than local) features of the image, thereby eliminating the matching step directly.
Furthermore, moment-based servoing is particularly well-suited for binary images [117].

Image moments serve as mathematical descriptors in image analysis and computer
vision, providing a comprehensive understanding of an image’s intrinsic properties. They
play a fundamental role in characterising crucial aspects such as shape, orientation, size,
and intensity distribution. In a 2D image, the moment of order (i+ j) is defined as:

Mij =
∑
x

∑
y

xiyjI(x, y), (3.39)

where I(·, ·) signifies the intensity of the pixel located at coordinates (x, y).

Zeroth-order moments represent the aggregate pixel values within an image, akin to the
total intensity or coverage area. These moments offer a measure of the overall brightness
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present in the image.
First-order moments denote the centroid or centre of mass of an image, indicating its
position concerning both horizontal and vertical axes. For instance, the centroid (xg, yg)
can be computed using xg = M10

M00
and yg = M01

M00
. Central moments µ determine an

image’s orientation and scale concerning its centroid. They remain consistent irrespective
of translations and are instrumental in computing variance, skewness, and other statistical
properties:

µij =
∑
x

∑
y

(x− xg)i(y − yg)jI(x, y). (3.40)

Normalised moments ν, derived from central moments, offer scale-invariant and rotation-
invariant features. They hold substantial significance in pattern recognition, object de-
tection, and applications that demand robustness against scale and rotation effects:

νij =
µij

µ
(1+ i+j

2 )
00

. (3.41)

Computed across various orders, image moments capture diverse facets of an image’s
features and traits. Their widespread application spans across computer vision and image
analysis tasks, facilitating critical functionalities like feature extraction, object segmenta-
tion, shape recognition, and feature-based matching.

The computation of moments is straightforward and resilient to noise since it relies
on the entire image. However, the primary challenge in moment-based control lies in
selecting the most appropriate features. While the positivity condition for the interac-
tion matrix exists, its practical implementation poses difficulties. Most studies aim to
decouple the interaction matrix concerning primitives. For instance, the image’s centre
of gravity is pertinent for translations along the vertical Oy and horizontal Ox axes, while
the zeroth-order moment is relevant for depth control. The image orientation parameter
α is particularly adapted to govern rotations around the source-detector axis Oz:

α =
1

2
arctan

(
2µ11

µ20 − µ02

)
(3.42)

To have an interaction matrix of rank six, one needs to use moments of order higher
than three since symmetries cannot be properly handled by moments of order two. Fea-
tures invariant to scale, translation or rotation, can be used to decouple Le.

To enhance performance and adaptability, we have devised a feature selection strategy.
The algorithm initiates with point-based servoing using contours, bringing the object close
to its actual position. But at each iteration, moments are computed. After the point-
based servoing phase, we identify converged and unconverged moments. The latter are
particularly crucial for our system, being more discriminative. Thus, we define a broad
set of moments but restrict our consideration during the process to those deemed most
relevant, adhering to the earlier stated criteria. We ensure the inclusion of both symmetric
and anti-symmetric moments, spanning low and high orders, such as Hu moments. More-
over, for translations the mass and centroids are always used. The algorithm is summed
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up in Appendix A.4. Our complete set of image moments comprises:

m00, xg, yg

µ02, µ20, µ11

ν02, ν20, ν11

α = 1
2
arctan

(
2µ11

µ20−µ02

)
hu0 = ν20 + ν02

hu1 = (ν20 − ν02)2 + 4ν211

ϕ1 =
µ2
11−µ20µ02

(ν20−µ02)2+4µ2
11

ϕ2 =
(µ03−3µ12)2+(3µ21−µ03)2

(µ03+µ12)2+(µ21+µ03)2

(3.43)

Results on an experimental part

The method was tested on simulated data in [12]. We tested the method on a variety of
objects. The results are satisfactory in terms of quality, clearly demonstrating the benefits
of simulated annealing. Again, this time we will test it on experimental projections of the
star-shaped trophy. Similar to the previous tests, we selected the same two perpendicular
projections as used in the registration via inverse perspective matching. The steps of
binarisation and contour detection are the same. The results were already illustrated
in Figure 3.10. The algorithm initiates with a simulated annealing step resulting in a
change in orientation. This facilitates the matching stage. Figure 3.15 shows the ICP
results for both views, displaying consistent correspondences. The algorithm executed 70
iterations in point-based servoing and 70 iterations using moment-based servoing. The
whole procedure takes about 1 minute, but the speed depends greatly on the projection
operator, which in our case can be greatly improved. The selected moments where (m00,
xg, yg, hu0, ν11, hu1). The final overlay result is presented in Figure 3.16. As before, the
target is represented in black, CAD model is in white and the overlap of the two is shown
in grey. The registration is almost perfect. The imperfections observed can be attributed
to the discrepancies between the 3D model and the actual object, as well as to positional
errors of the source between the two projections.

The results are better than those obtained with the previous method, albeit at the
expense of a slower registration. A combination of the inverse perspective matching with
the moment-based registration appears to be a promising approach to balance speed and
accuracy. Table 3.2 presents the quantitative results on the Hausdorff distance and the
accuracy.

Table 3.2: Quantitative registration results for the star trophy

Metric Front View Transversal View
Hausdorff distance [pixel]

Before registration 181.1 218.8
After registration 2.000 2.236

Accuracy [%]
Before registration 63.32 69.55
After registration 99.64 99.67
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(a) Front view (b) Transverse view

Figure 3.15: Illustration of the ICP matching results between binarised experimental images
(left) and simulations (right) for the front and transverse views.

(a) Front view final overlap (b) Transverse view final overlap

Figure 3.16: Final overlaps after 70 point-based iterations and 70 moments-based itera-
tions.

We will now focus on the convergence during the second phase of the algorithm with
image moments. We categorise moments into four groups: low-order moments (centroid
and center of mass), symmetric moments (µ02, µ20, ν02, ν20, and hu0), antisymmetric
moments (µ11, ν11, α), and high-order moments (hu1 and ϕ1). The low-order moments
handle translations, and they converge easily and quickly (see Fig. 3.17a). After 70
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iterations, they had already reached their final values. Symmetric moments exhibit higher
sensitivity but still converge reasonably rapidly (see Fig. 3.17b). Centred image moments
µ show less convergence. This could be assumed to result from higher sensitivity and
thus render them valuable as features, but this is mainly due to their lack of invariance
regarding translation and scale, which are already governed by the 0th and 1th order
moments. We prefer to analyse normalised moments, especially the 0th Hu moment, as
they are invariant to translation, scale, and even rotation for Hu. Rotation in the focal
plane is accounted for by the parameter α. Besides, the antisymmetric moments display
very similar curves and are nearly interchangeable (see Fig. 3.17c). However, we prefer
the normalised moment ν11 due to its invariances and because, unlike α, it is defined
when µ02 = µ20. As for high-order features, their behaviours are identical except in sign.
They exhibit higher sensitivity than low-order moments, thus being crucial for precise
convergence (see Fig. 3.17d).

(a) Low order moments (b) Symmetric moments

(c) Antisymmetric moments (d) High order moments

Figure 3.17: Image moments convergence for the transverse view

Figure 3.18 depicts the error, defined here as (100 − accuracy) [%], over iterations.
Point servoing is notably robust, but it is the moment-based servoing that truly ensures
quality registration. As depicted in Figure 3.18b, the simulated annealing steps, repre-
sented by red bars, induced orientation changes. Notably, these alterations often initially
increase the metric, but it generally rapidly descends to lower values than before. Fig-
ure 3.19 shows the orientation parameters convergence. Top row represents the orientation
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(a) (b)

Figure 3.18: Convergence of the error rate over iterations for the front (blue) and transverse
(orange) views. Red vertical bars show the simulated annealing.

(ωx,ωy,ωz), bottow row represents the translations (tx,ty,tz). The interest and strength of
the simulated annealing are evident at iteration 20, where the rotation along the vertical
axis, notoriously difficult to converge, significantly benefits from the annealing process.
At each ωy discontinuity, we observe that the simulated annealing process has helped
converge its value, even if the ICP selection criterion might not be immediately evident.

To support our study on simulated annealing, we performed the same registration
(initially using points and subsequently moments) but without the intermediate steps of
simulated annealing. The results are presented in Appendix A.4. The final outcomes are
considerably inferior. The overlap between the final and target images is markedly less
satisfactory, achieving only 96% accuracy in both views. More critically, the Hausdorff
distance reaches up to 42 for the front view. In the point-based servoing phase, the error
convergence curve declines similarly to the version with annealing but becomes trapped
in a local minimum. Conversely, the moment-based servoing is significantly less effective
without annealing; the relative differences are excessively large, resulting in incorrect
movements that sometimes diverge from the target.

We proposed and evaluated two registration methods: Convex Hull Iterative Inverse
Perspective Matching and Robust 3D/2D Hybrid Registration. Both methods demon-
strate excellent results, even when there is a significant discrepancy between the model
and the object. The Inverse Perspective Matching method has the advantage of not re-
quiring any projections or special parameters. It is very simple to apply and fast. Due to
its speed, it can be used with various initialisations to improve robustness and accuracy.
Additionally, it can serve as an initialisation for the Robust 3D/2D Hybrid Registration
method, which is more precise thanks to moment-based control that eliminates the need
for a matching step, thereby reducing potential sources of error. Although satisfactory,
these methods still need to be developed further to accommodate greyscale projections
for registering objects without external physical features. Future work will also aim to
adapt these methods to handle truncated projections.
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Figure 3.19: Parameters convergence. First row represents the angle (ωx, ωy, ωz) [◦],
second row represents the translations(tx, ty, tz) [mm].
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Chapter 4

Discretisation of the reconstruction
model

Figure 4.1: Diagram of the tomographic process. In this section, we study different methods
to represent the object.

In the previous steps, we selected an optimised data acquisition trajectory, and we
registered our CAD model. Now, we have the experimental projections as well as a
coordinate system that aligns with our a priori information. We can therefore proceed
to the reconstruction phase. Traditionally, reconstruction is performed on a voxel grid,
but there are other methods to discretise the space and mathematically describe the
reconstruction process.

For both analytical and iterative approaches, each volume µ must be approximated
and represented using a finite number N of discretising elements or basis functions Φi,
weighted by their respective attenuation values µi:

µ =
N∑
i

µiΦi. (4.1)

Despite, the existence of many basis functions of varying sizes, dimensions, and complex-
ities -implying discretisation on an irregular or adaptive grid- the most common basis
function, Φi, is the indicator function of a cell. This choice leads to the classical discreti-
sation on a regular cartesian grid of pixels/voxels:
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Φi(x) =

{
1 if x ∈ ith voxel,
0 otherwise. (4.2)

This representation is favoured due to its ease of use concerning both data encoding
employing classical pointer manipulation for data storage and display capabilities, allow-
ing visualisation of reconstructed images or volume sections using common software tools.
However, these basis functions necessitate the use of a cartesian regular grid for repre-
sentation. Consequently, to achieve high spatial resolution in reconstruction, very small
cell sizes are required. As a result, large homogeneous areas in the volume are described
by an excessive number of cells. These areas lead to increased memory consumption
for storing reconstructed volumes, for only marginal improvement in overall reconstruc-
tion quality. Furthermore, these basis functions do not adequately represent curvilinear
objects, resulting in aliasing artefacts at the boundaries of such domains.

A second possible set of basis functions are splines. They offer an alternative repre-
sentation scheme that addresses some of the limitations associated with voxels. Splines
provide a more adaptable and precise representation of the attenuation coefficients within
the reconstruction volume [118]. Unlike voxels, beta splines allow for the flexible adjust-
ment of the representation grid, enabling a finer and more accurate portrayal of com-
plex geometries without requiring uniformly sized elements throughout the entire volume.
Splines excel in handling data with variable resolution and can conform to the intricate
boundaries and shapes of objects present in the reconstructed volume. This adaptability
ensures a more efficient use of memory and computational resources while maintaining
high reconstruction accuracy. However, their use may involve more complex computa-
tional methods compared to voxels, which might impact processing time and resource
requirements.

Radial bases, belonging to the Gaussian family, named blobs are also utilised for image
representation and reconstruction. They possess superior space-frequency localisation
properties compared to pixels, and various operations, including the X-ray transform,
gradient calculations, or interpolation, and can be analytically evaluated. Therefore,
there is no necessity for discretisation or approximation of the X-ray projector [119].

The consideration of utilising mesh for tomographic applications presents an alter-
native approach. The employed mesh can either be regular or adaptive, necessitating a
delicate balance between precision and computational cost. A regular mesh resembles a
grid-like structure where elements (such as pixels in a 2D image or voxels in a 3D image)
are uniformly arranged. While effective in various applications, this method might fall
short in capturing intricate details or the complexity inherent in an image or object’s
structure. Conversely, an adaptive mesh adjusts its structure based on the discretised
signal content [120]. This adaptation better represents significant features of the image
or object [121]. For instance, in image compression, this adaptive approach concentrates
representation on crucial image areas, thereby reducing redundancy and file size. The
sole structure of the mesh already aids in interpreting the image content. In the realm
of finite element simulations, mesh adaptation to each spatial domain stands pivotal in
yielding precise and high-quality outcomes. By adjusting mesh density where necessary,
simulations can aptly capture local variations in geometry or physical properties.

Moreover, hierarchical structures such as trees, notably quadtrees and octrees, offer
many perspectives. In the realm of 2D images, a quadtree represents an arboreal structure
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where each node denotes an image area. The root encapsulates the entire image, and sub-
sequent subdivisions divide this area into four equal parts. This recursive division persists
until specific conditions are met, like achieving sufficiently low variance in pixel values.
Octrees extend the concept of quadtrees to three-dimensional representations (volumetric
images or 3D renderings) [122]. Each node within an octree represents a region in 3D
space. The root symbolises the entirety of space, and subsequent subdivisions partition
this region into eight equal parts. This recursive subdivision continues. A hierarchical
representation mitigates oversampling issues prevalent in regular representations. How-
ever, this structure relies on square or cubic cells, posing challenges in representing objects
with curved or non-regular interfaces. While beneficial in concentrating representation on
pivotal zones and reducing details in homogenous areas, these methods also prove useful
in lossless compression for simplification of image representation. In specific applications,
like visualising large objects, they enable variable precision in representing volumetric
structures across different zones [123]. Nevertheless, their limitation lies in inadequately
representing objects with curved or non-regular shapes due to their use of square or cubic
cells. Efforts to address these limitations using a Deep Learning framework have been
proposed. Particularly noteworthy are the works of Rückert et al. [124], which combine
octrees and machine learning to propose a hierarchical neural representation.

4.1 Reconstruction on a Mask

4.1.1 Benefits of masking the reconstruction

The question of the optimal representation for X-ray tomography has thus arisen, prompt-
ing numerous studies. In this thesis, we have first opted to persist with the conventional
voxel-based approach. Before looking for another representation base, we wanted to opti-
mise this one. Our contribution lies not in altering the basis of representation but rather
in constraining it. We add to Equation 4.1 the condition that only the voxels belonging
to a so-called ’mask’ will be considered in the reconstruction:

µ =
N∑
i

i∈mask

µiΦi. (4.3)

Mathematically speaking, a mask represents a constraint on the basis of the function
representing the volume to be reconstructed, but in practice, it is a boolean array whose
True/1 values represent the voxels on which the reconstruction will be performed. Voxels
with the False/0 label will simply be ignored. This process allows us to reconstruct only
those voxels that could potentially contain matter, and to eliminate those that we are
sure only contain air. Thus, the number of basis functions is reduced. In tomographic
reconstruction, the use of a mask offers multifaceted benefits to the reconstruction process
and subsequent analysis.

One of the primary advantages lies in the reduction of variables number to solve. By
removing empty areas and concavities from the object under study, many voxels are set
to zero. The number of variables to be resolved in the tomographic system is reduced,
which improves conditioning. Reconstructing the object becomes possible with fewer
projections. Instead of increasing the number of projections for a constant number of
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voxels, we decrease the number of voxels for a constant number of projections. In both
cases, the quality of the tomographic reconstruction is improved, but in the latter case, we
find ourselves in a sparse-view strategy. Figure 4.2 shows a circular object in blue, enclosed
by its pixel mask in grey. The reconstruction is performed only on the greyed pixels. This
immediately reduces the number of unknowns. For the same ray, the backprojection will
involve fewer pixels, ensuring a higher-quality backprojection operator for solving the
tomographic problem.

Figure 4.2: Illustration of a 2D mask on a circular object. The blue object is contained
within a mask of voxels in grey. When a ray passes through, the red voxels are taken
into account. With the conventional method, all red voxels are considered for projection
and backprojection. However, with the mask, only the red voxels included in the mask are
considered.

A direct benefit of employing masks is the minimisation of artefacts. By excluding ir-
relevant or problematic areas during the reconstruction process, masks effectively mitigate
these artefacts, enhancing the overall reliability and accuracy of the reconstructed output.
Moreover, the integration of masks allows focusing reconstruction efforts exclusively on
specific areas and yields heightened clarity and precision within these regions. By allo-
cating more computational resources to the specified areas and disregarding non-essential
or less critical data, the reconstructed output achieves sharper and more refined details.
Furthermore, it contributes to accelerated processing and computational efficiency dur-
ing reconstruction. By confining the denoising processes to selected regions of interest,
computational resources are optimally utilised, reducing the computational load and pro-
cessing time compared to comprehensive volume reconstructions. Additionally, masks
enable tailored analysis by facilitating the extraction and analysis of specific features or
structures within the volume. This capability empowers detailed investigations.
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4.1.2 Voxelisation of the 3D Model

To construct the mask, the CAD can be voxelised directly. There are several techniques [6],
most of which assume that the surface of the model is closed. To ensure that all the
material is included in the mask, it is important to expand it. Indeed, without doing
so, incorrect alignment, roughness or deviation between the target and the final shape
can cause the reconstructed part to come out of the mask. The mask must therefore be
expanded to ensure that the entire part is included. A good practice is to expand by
at least as much as the Hausdorff distance of the error on the registration step over the
magnification factor. It prevents problems in case of mistakes during the registration.

Voxelisation is a frequently discussed topic within the realm of graphic rendering, pri-
marily due to its potential to enhance performance in various applications such as fast
ray tracing [125], shadow representation [126], and visibility analysis. However, in many
algorithms, voxelisation can act as a performance bottleneck, leading to the development
of numerous techniques aimed at leveraging the full potential of GPUs. Unfortunately,
most of these methods focus solely on voxelising the surface of a mesh [127]. In typical
computer graphics, the interior of objects is not depicted, as representing the surface
suffices for applications like collision detection and is more computationally efficient. For
our purposes, however, we require a type of solid voxelisation where the interior is entirely
filled with voxels. While less common, solid voxelisation still has applications, such as
in ambient occlusion [128]. Figure 4.3 illustrates different types of voxelisations. Con-
servative and 6-separating methods voxelise only the surface of the model. In contrast,
solid voxelisation fills the interior of the volume, making it more suitable for tomographic
applications.

Figure 4.3: Different types of voxelisations. Image from [6].

Voxelised objects can have diverse configurations like holes, cavities and overlap, ne-
cessitating careful handling during the voxelisation process. Preserving object connec-
tivity is crucial to maintaining discrete units that faithfully represent the original vector
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object. Voxelisation algorithms must enforce various topological constraints, including
connectivity, separation and coverage. Connectivity, for instance, involves delineating
N-paths between voxel pairs within an object, ensuring the resulting component remains
N-connected and prevents disconnection. It offers insight into the interlinking of voxels,
providing a measure of the voxelisation’s "thin" or "thick" representation [7, 8]. Recip-
rocally, the concept of separation refers to a set of N-path voxels that divide two distinct
sets of voxels. In 2D, this concept is articulated through 4- and 8-separations, while in 3D,
one may encounter 6-, 18-, or 26-separations. These terms elucidate whether two voxels
sharing a face, an edge, or a corner are connected. They delineate the relative thickness
of the voxelised object and hold significant topological implications. Figure 4.4 illustrates
the principles of 4- and 8- connectivity/separation in 2D and 6-, 18- and 26- connectivity
in 3D. Figure 4.5 illustrates the concept of separation. The separation of the two sets of
white pixels requires different line shapes.

Figure 4.4: Illustration of the connectivity notion. On the top line: 4-connectivity and 8-
connectivity. On the bottom line from left to right: 6-connectivity, 18-connectivity and 26-
connectivity.

Figure 4.5: Illustration of the separation notion. On the left, the black pixels 8-separates the
white set. On the right, the black set 4-separates the white set [7].
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Coverage in voxelisation refers to quantifying the representation thickness for voxelised
lines or surfaces. Within this concept, three primary variations exist: cover, supercover,
and partial cover. A cover is a set of voxels that encompasses every point belonging
to an object within the voxels. In 2D, an 8-connectivity pattern results in a cover set.
On the other hand, a supercover set includes all voxels that either contain or touch the
object points. In 2D, 4-connectivity generates a supercover, also known as conservative
voxelisation. A partial cover represents the finer voxelisation. This approach preserves
the object’s shape but might not voxelise all points of the object. Figure 4.6 illustrates
coverage in 2D.

Figure 4.6: Representation of a cover and a supercover [8].

In our case, where we aim to create a mask for tomography, we are not striving to
generate an optimal mask. We are not attempting to create a mask that would perfectly
match geometrically with the object under study. We aim to exercise caution and encom-
pass all the material without error. Furthermore, the mask will be dilated. Therefore,
we allow ourselves to use any solid voxelisation method. Regardless of its behaviour on
connectivity and separation, it will be erased by the dilation step. All these intricacies1,
in our specific scenario, are negligible.

Since most CAD models can be converted into a stereolithography file (.stl), which
remains the most common format, our focus will be solely on voxelising a surface made
of triangles. Moreover, we focus on solid voxelisation which fills the interior too. There
are two main algorithms to perform a solid voxelisation: ray casting and rasterisation.

Ray casting involves projecting rays onto a voxel grid and computing ray/triangle
intersections. The rays are typically cast not from a fixed point, as in the perspective
camera model, but from a plane, akin to the orthogonal camera model (see Figure 4.7a).
The approach aims to simultaneously cast a ray along each row of the voxel grid. At
each intersection, the voxel values on the line behind the intersection are updated (0
becomes 1 and vice versa). If the model is watertight, this process ensures voxelisation.
To accommodate finer details, the method can be iterated by casting rays from different
planes. Ray casting encounters implementation challenges when the model lacks proper
definition or sealing. An odd number of intersections along a ray results in streaks during
voxelisation. These artefacts can be addressed using a morphological opening operation.

Rasterisation, another common technique for voxelisation, involves parallelisation where
each thread handles a triangle. Triangles are generally sorted according to their depth

1yet very interesting
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(a) Uniform ray casting. A ray is sent on each
row of the voxel grid. Only two rays will detect an
intersection (symbolised by black bullets).

(b) Rasterisation. For each voxel in the bold
bounding box, we can determine which voxels
contain the triangle.

Figure 4.7: Triangle voxelisation

direction and processed sequentially. For every triangle, the first step involves establishing
the bounding box in a predefined plane and deriving the range of the encompassed voxel
centres or just a part of the voxel in this plane (see Figure 4.7b where grey pixels intersect
the triangle). When this range is not empty, a loop iterates over the columns of contained
voxels. Each column’s centre undergoes a test against the projection of the triangle on the
plane. If the test is successful and an intersection occurs, similar to previous methods, the
voxels behind it need to be flipped [6]. Implementing rasterisation remains challenging.
It may result in cracks or holes, depending on the depth gradient of the rendered triangle.
When the depth gradient is too high, a voxelised plane may exhibit "fissures" oriented
perpendicular to the depth direction. Figure 4.8 displays the result of rasterisation-based
voxelisation of our star trophy at various resolutions.

(a) 32x46x23 (b) 75x110x54 (c) 167x245x119 (d) 748x1102x534

Figure 4.8: Voxelisation of the star-shaped trophy at different resolutions.

Nonetheless, a small remark if the 3D model is not available, the binary mask can still
be computed from a coarse reconstruction. Even if the reconstruction is not precise, the
hull is generally visible and a simple thresholding can generate an approximation of the
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mask. The mask can even be generated gradually throughout the iterations. Interesting
methods have also been developed to create the mask in parallel with the acquisition. In
their work, Liu et al. [129] propose to use an optical scan to determine a mesh of the
object’s surface and then use it as a mask.

4.1.3 Masked reconstruction

To incorporate the mask, a revision of the reconstruction algorithm becomes necessary.
To account for the mask, we need to alter our operators: the projection and the backpro-
jection. Incorporating the mask during projection is relatively straightforward. Applying
the binary mask to the volume and using the conventional tools already implemented
suffices for projection. However, backprojection poses more challenges as the length over
which each ray is backprojected depends on the mask.

There exist two strategies for implementing the mask, we denote them as the negative
and positive approaches. The "negative" approach involves excluding volume’s voxels
outside the mask. For the projection, as explained above, except for the application of the
mask on the volume, nothing changes. For backprojection, determining the intersecting
voxels of a ray involves finding their intersection with the mask and backprojecting only
these voxels. For each ray, the crossed voxels of the mask and their cumulative total
length are calculated to make the backprojection. This strategy aligns closely with the
mathematical formulation, requiring additional steps and thereby consuming more time
than conventional unmasked operators.

Conversely, the "positive" approach aims for greater simplicity. Projections follow
the same methodology as the negative approach. The binary mask is applied to the
volume, which is then projected. However, during backprojection, instead of altering the
volume, the backprojected value is modified. Backprojecting a value onto a smaller length
(negative approach) is equated to backprojecting a larger value over the entire volume
(positive approach) and only after applying the mask. Corrective values are determined
by the ratio of the projections of a volume consisting of ones and the mask. Portions
of the projection where the division is undefined are disregarded. Both strategies are
illustrated by the equation:

ri

∥Ãi∥2
=

r̃i
∥Ai∥2

, (4.4)

where ri is the ith element of the residual (p − Aµ) to backproject, and ∥Ai∥ is the
norm of the ith column of the projection matrix. Masked operators are symbolised with a
tilde. The left side corresponds to the negative approach and the right side to the positive
one. However, we notice the emergence of a few inconsistent values, and overestimated
points due to edge effects of the mask. If a point on the screen is not illuminated during
the mask projection, the aforementioned ratio tends towards infinity. We will ensure to
remove non-physical values before backprojection.

An adaptation of the SART algorithm that incorporates masking has been previously
proposed in [130] for laminography. In our paper [13], we go into further details and
present results with SIRT algorithm. We will outline the methodology of the article using
SIRT too, but by redefining projection and backprojection operators, we can employ any
reconstruction method.
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As a reminder, the original SIRT algorithm operates iteratively to reconstruct the
object µ according to Equation 1.45. The equation is rewritten here:

µ(k+1) = µ(k) − λNcA
TNr(p−Aµ(k)). (4.5)

Here, Nr and Nc are diagonal matrices that normalise the data. Their diagonal
elements were defined as the sums of the lines and columns of the system matrix. In-
corporating the mask results in a reduction in the dimensions of µ and A. Eliminating
the inactive voxels from µ, along with the corresponding columns in A, ensures that
inactive voxels are not taken into account. Consequently, we define lower-dimensional
operators, denoted as µ̃ and Ã. Similarly, Ñr and Ñc are redefined using Ã in Eq. 1.46
and Eq. 1.47. Adjustments are also made to the vector p. To avoid division by zero, rays
such that

∑
j Ãij = 0 are removed from the projection matrix. Correspondingly, these

same rays are eliminated from p to make p̃.

The update step for the masked-SIRT remains similar to the original SIRT but employs
the modified low-dimensional operators and vectors:

µ̃(k+1) = µ̃(k) − ÑcÃ
TÑr(p̃− Ãµ̃(k)) (4.6)

This modification ensures compatibility with the mask, allowing for the reconstruction
algorithm to effectively handle reduced dimensions in both the object and projection
operator, thereby enabling accurate reconstructions despite the masked elements.

4.1.4 Experimental results

Simulated results have already been presented in our paper [13]. In this article, registra-
tion and masks were tested on simulated projections. A defect was inserted in the object
and thanks to the mask, the probability of detection went from 3.576% to 16.66%. The
use of the mask considerably improves the quality of the reconstruction. Here, we have
tested masked reconstruction on the same experimental object as before: the star-shaped
trophy. The reconstruction was performed using the masked version of SIRT over 150
iterations. The volume size was 1772 × 1204 × 1204 voxels. After the robust 3D/2D
hybrid visual servoing registration, the Hausdorff distances for registration errors were
measured at 2.000 and 2.236 pixels for the frontal and transverse views, equivalent to
0.254 and 0.284 mm, respectively, considering a magnification factor of 1.71 (detector
pixels are 127µm2). Geometrically, the mask should be dilated by 0.167 mm. Our cubic
voxels measure 0.074 mm3, suggesting a precautionary dilation of at least three voxels in
each direction. To ensure safety margins, we chose to dilate it by 12 voxels.

Figure 4.9 shows the same cross-section for the unmasked and masked 3D reconstruc-
tions with 100 and 928 projections. Whether it involves a sparse or dense trajectory, the
mask significantly enhances image clarity. The reconstructed image exhibits significantly
reduced blurring, enabling the perception of finer details within the object’s walls. Addi-
tive manufacturing imperfections become evident, revealing uneven filling of the object’s
walls, manifesting as plastic streaks. While the masked reconstruction presents some
artefacts—such as faint lines in the continuity of the star’s branches—these artefacts are
considerably less pronounced than those observed in the conventional reconstruction.

Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0116/these.pdf © [V. Bussy], [2024], INSA Lyon, tous droits réservés



(a) Without mask, 928 projections (b) Masked, 928 projections

(c) Without mask, 100 projections (d) Masked, 100 projections

Figure 4.9: Comparison of SIRT reconstructions with and without a mask for 928 and 100
projections.

In Figure 4.10, we have displayed the profiles of the horizontal lines passing through
the centre of the star cross-section for the classical and masked reconstruction. The
profile is much sharper thanks to the mask. The contrast between the empty areas and
the material is better defined. The outer layer of varnish, which might be responsible for
the brightness at the edge of the star in Figure 4.9, is clearly visible here.

We also analysed the convergence of the algorithm with the mask. We have generated
a plot showing the residual norm across the iterations. Figure 4.11a depicts the results for
reconstructions with 100 projections. It shows the residual norm of the traditional SIRT,
masked SIRT, and a variant which we will refer to here as POCS (Projection Onto Convex
Sets), in which we simply apply the mask to the ongoing reconstruction at the end of each
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Figure 4.10: Comparison of the profiles of the horizontal lines passing through the centre of
the star cross-section for the classical and masked reconstruction for 928 projections with
SIRT

SIRT iteration [131]. The objective of the latter is to evaluate the usefulness of creating the
new masked operators defined earlier. It appears that convergence requires less iterations
compared to the conventional SIRT approach. As depicted in Figure 4.11a, the unmasked
SIRT required around 150 iterations to converge while the masked version requires only 40.
We think that is mainly due to the dimension reduction of the tomographic problem. The
masked version converges more rapidly than POCS too. Fewer iterations are needed for
convergence. The same residual norm is achieved with fewer computations. Figure 4.11b
shows mean square root errors between the ongoing reconstruction and a reference made
with all projections. The masked version achieved again better reconstruction quality
with fewer iterations.

(a) Residual norm over iterations (b) Error norm over iterations

Figure 4.11: Comparison of the convergence of algorithms with and without masks
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Continuing with the same setup, we demonstrate here the impact of the mask on the
reconstruction quality for various numbers of projections when combined with a SIRT
reconstruction algorithm. Figure 4.12 depicts the reconstruction quality of the studied
cross-section in terms of PSNR and SSIM for 60 iterations. The masked reconstruction
exhibits significantly better reconstruction quality regardless of the number of projections
used. The number of required projections stabilises quickly when the mask is utilised,
plateauing at around 150 projections. The corresponding curves exhibit an almost hori-
zontal trend. The mask effectively reduces the number of projections required for tomo-
graphic reconstruction.

(a) PSNR (b) SSIM

Figure 4.12: Reconstruction quality of the studied slice for different projections numbers

Following this result, we wanted to go further in reducing the number of variables and
use a data structure that would allow us to incorporate the mask, but also to be able to
describe homogeneous zones with a single variable.

4.2 Hierarchical structures

4.2.1 Octrees

The first structure we examined to reduce the number of variables was the octree [122].
Widely regarded in the literature as an optimal method for representing a voxel grid,
the octree allows for efficient storage of empty grid regions as null pointers, resulting
in a Sparse Voxel Octree. Due to its simplicity and extensive use, this was our logical
starting point. The process began by constructing an octree from a CAD model, which
required a methodology akin to solid voxelisation for accurately filling the internal volume.
Figure 4.13 demonstrates the octree structure at different depths for the star trophy,
showing that while greater depth improves representation fidelity, it also significantly
increases the number of tree leaves.

We initially experimented with the voxelisation technique proposed by [6]. This ap-
proach facilitates the creation of a sparse voxel octree without necessitating a complete in-
termediate solid voxelisation, thereby enabling GPU-based voxelisations of unprecedented
scale. However, the complexity of its implementation led us to adopt the implementation
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(a) Depth 3 (b) Depth 4 (c) Depth 5 (d) Depth 6

Figure 4.13: Octree’s depths

(a) (b)

Figure 4.14: Examples of two quadtrees generated from the CAD mask of the star trophy.
The difference between the two quadtrees arises from a slight translation of the image.

provided by Jeroen Baert [132], which allows us to voxelise complex meshes. We suc-
cessfully voxelised the part and converted it into an octree [133]. This process, however,
was not straightforward and resulted in several artefacts. For instance, Figure 4.14 shows
two quadtrees generated from the cross-section of the mask used in the previous section.
While the first example (Fig 4.14a) accurately represents the star, the second example
(Fig 4.14b) illustrates a significantly different quadtree, with deeper leaves near the edges
and coarser regions elsewhere. The only difference between the two was a translational
adjustment of the mask. This issue indicates that translations or misalignments pose a
substantial challenge, requiring additional nodes and increased complexity to maintain
optimal mask contour descriptions. Thus, continuous tree structure adjustments during
reconstruction became necessary.

Initialising the tree with a CAD model, while a feasible starting point, proved subop-
timal due to the extensive structural modifications caused by real object misalignment.
Alternatively, one could consider initialising the tree with a quick FDK reconstruction to
align it correctly. However, this strategy diverges from our primary objectives.

We have implemented a ray tracing algorithm on an octree as described by Revelles
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et al. [134]2. This octree traversal method is termed ’top-down,’ where intersections
between a ray and each node of the octree are computed parametrically while descending
through the tree. The algorithm leverages the properties of the octree, such as dividing
the space into two equal zones along each axis at each node, to accelerate the calculation
of intersections. For each leaf node, the traversed length can be computed. Although
this algorithm is reputed for its speed and parallelisability, our implementation did not
achieve satisfactory performance for reconstructions of the desired size. Our code, written
in Python, was hindered by the lack of pointers, which impeded efficient tree management.
Furthermore, the use of GPU parallelisation and just-in-time compilation tools proved
difficult to apply to octrees within Python. Due to these challenges, we opted to change
our strategy and explored an alternative structure.

4.2.2 Meshes & Bounding Volume Hierarchies

In our research, we aimed to explore a more versatile and adaptable framework beyond
voxels. Meshes emerged as an appealing option due to their inherent flexibility. However,
previous investigations have indicated constrained outcomes with meshes, primarily due to
slow convergence caused by the computational intensity of projection and backprojection
operators. Conversely, tree structures have been fine-tuned for efficient ray-tracing. Trees
boast rapid algorithms developed for graphics rendering and computer vision. Our goal
is to harness the strengths of both structures to optimise our reconstruction process.
Utilising a mesh that we will integrate into a hierarchical structure, we can expect the
speed advantages of trees with the adaptable nature of meshes. This hybrid approach has
the potential to significantly improve reconstruction efficiency and quality.

However, the octree has the drawback of consistently dividing space into two equal
parts. The space partitioning, therefore, relies on the object’s position. As an alter-
native, we suggest using a more general tree structure known as the Bounding Volume
Hierarchy (BVH). A BVH is a data structure used primarily in computer graphics and
computational geometry to accelerate ray tracing and collision detection algorithms. It
organises objects in a scene or a set of geometric shapes into a hierarchical tree structure.
The fundamental idea behind a BVH is to group objects together within hierarchical
bounding volumes to facilitate efficient spatial queries, such as ray intersection tests, then
the time complexity can be lowered to logarithmic in the number of objects. Each node
in a BVH tree represents a bounding volume that encapsulates a set of objects or other
bounding volumes. Bounding volumes can be represented by any shape but the most com-
mon are Axis-Aligned-Bounding-Boxes (AABB). Figure 4.15 illustrates a scene containing
six objects. These objects are grouped into bounding boxes, which are then recursively
grouped into larger bounding boxes. The hierarchical structure of these bounding boxes
is represented by nodes in the BVH tree.

Regarding meshes, choices had to be made for our study as well. Since most CAD
models are in the STL format, which represents triangles forming a surface, we first
needed a method to convert a CAD model into a volumetric mesh. For this purpose,

2In their paper, Revelles et al. [134] discussed extending the quadtree algorithm to octrees. Their Table 1
gives indications to select the first node. This selection is implemented using bitwise operators. There is an
error in the operations concerning the Z-axis: the rightmost bit must be altered (0) rather than the leftmost bit
(2), as the leftmost bit pertains to x-axis operations. Correcting this by switching the 0’s and 2’s results in the
accurate table.
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Figure 4.15: Representation of a BVH. On the left, the scene consists of six objects hi-
erarchically distributed within bounding boxes (A, B, C, D). On the right, the BVH tree of
the same scene is depicted. Each bounding box contains either other bounding boxes, the
objects in the scene, or both.

we employed the method described in [135], which generates tetrahedra from an STL
model. The advantage of using tetrahedra lies in their simplicity and compatibility with
existing and efficient tools for our algorithms. For example, we were able to utilise the
Intel® Embree library on the CPU. Intel® Embree is an open-source high-performance
ray tracing library widely used in the field of computer graphics [136]. However, this
library originally provides intersections between surface intersectables (i.e. surfaces) and
rays. Consequently, the library was slightly modified to calculate intersections involving
tetrahedra, by decomposing tetrahedra into triangles. Note that, for radiology, it is
possible to make a projection directly from a surface description of the part, as is the case
with CAD. Embree can be used directly without mesh processing. Triangles from an STL
file can be directly integrated into a BVH for ray tracing. Absorption will depend only on
the penetration length (monomaterial hypothesis). While Embree can offer barycentric
information and ray tracing with nodal encoding is feasible, for simplicity, we opted for a
Siddon-type ray tracing on cellular encoding.

When reconstructing using meshes, there are two methods to store the data: cellu-
lar and nodal [121]. Similar to voxels, cellular encoding saves a density value for each
mesh cell, resulting in a piecewise constant representation of the reconstructed object
(see Figure 4.16a). However, even with adapted discretisations, some cells might intersect
object interfaces while others encompass heterogeneous regions within the object. Con-
sequently, the cellular encoding might not remain optimal due to these intersecting cells
and heterogeneous regions.

On the other hand, nodal encoding stores values for each vertex of the mesh. The
density value is computed by interpolating between the vertices of the cell. This approach
permits a smoother density gradient in the image (see Figure 4.16b). However, it tends to
reduce the visibility of discontinuities, replacing sharp attenuation values on either side
of an interface with a gradual transition between these two values.

Ray tracing also adapts according to the chosen encoding. With cellular encoding,
a constant value is assigned to a cell. Thus, to determine a cell’s absorption, only the

Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0116/these.pdf © [V. Bussy], [2024], INSA Lyon, tous droits réservés



(a) Cellular encoding: each cell has a constant
value

(b) Nodal encoding: the values in a cell are inter-
polated from the values at the vertices

Figure 4.16: Nodal and cellular encoding

traversed length is necessary. The classical ray tracing approaches (see Fig. 4.17a) can be
employed for the reconstruction in this scenario. The value of the ith ray is given by:

pi =
∑
j

µjℓij. (4.7)

The nodal encoding does not possess the same piecewise constancy property. There-
fore, the density value must either be integrated along the ray or averaged (see Fig. 4.17b).
The latter is of course simpler and will be used most of the time for nodal encoding. For
a tetrahedral mesh, if we note cb the centre of the intersection between a tetrahedron and
the ray (cb is often expressed in the barycentric coordinates of the tetrahedron) and by
denoting µj = (µ0, µ1, µ2, µ3) as the vector representing nodal attenuations of the jth cell,
the projected value for the ith ray is then expressed as:

pi =
∑
j

⟨cb|µj⟩ × ℓij. (4.8)

Nonetheless, it is worth noting that the dual graph of our mesh can also be considered
during reconstruction. Reconstructing the object on its dual grid provides supplementary
information and potentially enables the interpolation of reconstructed values onto the
final result.

4.2.3 Results

Initially, we assessed the projection and backprojection capabilities with BVH. For this
purpose, we implemented two ray casting approaches. The first one, "handmade", hier-
archically seeks the intersection of a ray with each bounding box of the BVH. The second
approach relies on Embree. The Embree version is faster, taking 5.44 seconds for one
projection while our implementation took 294 seconds (54 times slower). This highlights
the relevance of this optimised library, even though it does not leverage GPU acceleration.
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(a) Cellular coding. The contribution of this cell to
the attenuation of the ray corresponds to µ times
the travelled length ℓ. The absorption is constant
within the tetrahedron.
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(b) Nodal coding. The contribution of this cell
to the attenuation of the ray corresponds to the
travelled length ℓ times the attenuation value ob-
tained by interpolation.

Figure 4.17: Cellular and Nodal Ray Tracing

All projections and backprojections will be made using the Embree kernel. Figure 4.18
shows our first 1880×1212 pixels projection of the meshed trophy CAD model. In this
example, all tetrahedra are filled with the same constant value.

Although the initial projection appears satisfactory, a closer examination reveals a
few anomalies within the projection values. The zoomed-in section at the bottom right
of the image highlights these issues, showing black dots aligned along the edges of the
inner cells. These anomalies are attributable to small tetrahedra. Embree’s ray casting
is primarily designed for graphic rendering, where only the first intersection of a ray with
an object is significant, typically for opaque objects. To address this, we relaunch a ray
in the same direction after each ray/triangle intersection, originating slightly behind the
detected intersection. However, when multiple tetrahedra share a point, they tend to be
thin, making the slight offset from the first intersection potentially too large, causing the
ray to miss subsequent cell interactions. This reliance on cell continuity for calculating
traversed thickness leads to errors.

A straightforward correction for this artefact involves launching the same ray but in
the opposite direction. In this approach, the first detected intersection in the reverse pass
will be the one missed in the initial pass. Figure 4.19 illustrates this method. After the
first intersection ’1/2’, the red ray, relaunched from the third zone, misses the second
zone. Conversely, the orange ray, travelling backwards, detects the ’2/3’ intersection
but misses the ’1/2’. By using both rays, all intersections are detected. While ideally,
minimising the offset would resolve this issue, in practice it did not due to the floating-
point precision. This bidirectional approach ensures that any missed intersections are
accounted for, thereby enhancing projection accuracy and eliminating black dots.

Although our projection and back-projection operations are now correctly imple-
mented, they remain quite computationally intensive. Consequently, we have only tested
the reconstruction on meshes for a subset of our data. In this example, we have only
considered the central four rows of the experimental projections. However, we first had
to create a complete tetrahedral mesh from the registered CAD model and then trim this
mesh to include only the part to be reconstructed. Similar to the mask, the CAD model
of the part was slightly dilated to ensure all the material was encompassed. We tested
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Figure 4.18: Simulated projection on tetrahedra using the meshed trophy model and a zoom
showing black dots along the mesh’s edges.

1 2 3
Ideal× ×

× Miss 2/3
Miss 1/2 ×

Ideal

Figure 4.19: Explanation and proposed solution for black dots in projections. The offset
between each relaunch of the ray can lead to intersections being missed. By casting a ray
in the reverse direction, we aim to detect any missing intersections.
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two sets of parameters for the tetrahedral size.

In our initial attempt, the cell sizes were too large. The mesh contained 1257 tetrahe-
dra for a volume that previously corresponded to 4x1204x1204 voxels, of which 643.926
were included in the mask (representing only 0.2% of the variables compared to the voxel-
based description). Figure 4.20a shows the cross-section of the reconstruction with this
mesh. The reconstruction was performed using SART with 10 iterations on 300 projec-
tions.

The mesh was too coarse. The shape of the object is barely recognisable. The tetra-
hedra are too large and irregular, giving the representation a very polygonal appearance,
which is both unpleasant and inaccurate. Consequently, we conducted another reconstruc-
tion, significantly increasing the number of tetrahedra to 2.172.096 (37% of the variables
compared to the voxel-based description). Each tetrahedron is divided into four smaller
tetrahedra and one octahedron, which is then further divided into eight tetrahedra. This
operation was repeated several times to achieve the new mesh. In this implementation,
an upper limit on cell size was imposed to ensure small cells even in empty regions,
meaning the number of cells can still be significantly reduced. Figure 4.20b shows the
reconstruction, which looks better but is still not satisfactory. The shape of the figurine
is more discernible, with better-defined material and void areas. There seem to be fewer
streak artefacts compared to the voxel-based reconstruction, and a better-defined back-
ground, but the display with triangles creates a visual effect that makes comparison by
eye difficult.

(a) Reconstruction on a coarse mesh. The cen-
tral slices of the volume were reconstructed on
an unsuited mesh. The size of the tetrahedra
needs to be reduced.

(b) Reconstruction on a refined mesh. The size
of the tetrahedra seems visually correct, but the
orientation of the triangles creates an undesir-
able visual effect.

Figure 4.20: Comparative reconstructions on different meshes.
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4.2.4 Perspectives

An unfinished development of this method pertains to mesh updating. To achieve an
optimally fitting mesh for the reconstructed object, it is necessary to introduce a strategy
for mesh evolution throughout the reconstruction iterations.

The first strategy we aimed to experiment with was simply calculating the gradient
across the volume. If the gradient is too steep, the cell needs to be subdivided. This
operation can be achieved using topological operations. Any mesh modification can be
decomposed into a series of elementary moves, called bistellar flips or Pachner moves [135].
For example, Figure 4.21 illustrates the ’1-4’ flip and the ’2-3’ flip for tetrahedra. There
are also operations such as splits and edge removals, among others [137].

1-4 flip

4-1 flip

(a) ’1-4’ and ’4-1’ flips

2-3 flip

3-2 flip

(b) ’2-3’ and ’3-2’ flips

Figure 4.21: Pachner moves. The tetrahedra are subdivided and merged to realign them
according to the gradient of the reconstructed volume.

The advantage is that we can increase the number of cells if the gradient is too strong
and conversely, reduce the number of cells if the gradient is weak. Additionally, ’2-2’
flips can be used to align the face normals with the gradient. Subsequently, vertices can
also be moved to improve mesh quality. Following each iteration of vertex adjustments,
attenuation values within each tetrahedron can be revised or updated (Merckx et al. [14]).
We began developing these methods between the iterations of SART, but unfortunately,
we were unable to complete our experiments.

Figure 4.22 shows the ongoing developments. The plotted cross-section is obtained for
a reconstruction with mesh modification between each iteration. The final mesh contains
84.212 tetrahedra, i.e. 13% of the variables compared to the voxel-based description. The
results visually demonstrate a better representation of the object with fewer tetrahedra
than before. Tetrahedra appear more regular, creating the impression of a pleasant,
uniform tiling. The non-optimised mesh version exhibits spikes and vertices shared by
numerous tetrahedra, resulting in a less aesthetic representation. Each iteration took
approximately 5 minutes. Figure 4.23 also includes a zoomed view of the cross-section
with and without mesh optimisation. The optimisation clearly enhances the quality of
the reconstruction. The jagged appearance of some tetrahedra is eliminated in favour of
a representation with more balanced tetrahedra. The faces of the tetrahedra are better
aligned with the contours, allowing for a clearer delineation. The improvement in meshing
enhances the study of connectivity. With the optimised mesh, the horizontal branch on
the right is not connected to the vertical one.

Currently, the mesh appears satisfactory, and the reconstruction seems to be of good
quality. However, compared to the voxel-based description, the image contains fewer
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Figure 4.22: Reconstruction on an optimised mesh

shades of grey and exhibits a more binary aspect: material/void. This result is encourag-
ing as it enables better segmentation of the object and a clearer definition of its contours
despite the reduced number of tetrahedra. The goal is to further optimise the mesh and
to use a differentiation tool, such as the one from [138], to more optimally reposition the
vertices. Additionally, we are not fully leveraging the potential of BVH. In this thesis, we
have limited ourselves to the use of tetrahedra, but it is essential to consider advancing
the representation with more complex meshes. The CAD model provides an excellent
starting point for meshed reconstruction, and if it contains an analytical representation
(not just triangles, for instance), it could be feasible to optimise curved elements. This
would also change the manner in which the real object is compared to the CAD model.

The issue of representing the reconstructed volume is inherently complex. Through
our results, we observed that using masks, octrees, and meshes indeed helps reduce the
number of variables, thereby enhancing the reconstruction process. Mask-based repre-
sentations offer significant improvements without requiring complete modification of our
existing codes. However, moving away from the traditional voxel-based representation
necessitates the reimplementation of numerous components. Hierarchical structures and
mesh representations demand considerable effort, as we need to rewrite our computation
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(a) Unoptimised but refined mesh

(b) Optimised mesh

Figure 4.23: Aspects of the different meshes. Optimising the mesh throughout the iterations
results in a structure that is better suited to representing the image and avoids the jagged
visual effect.
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kernels, visualisation functions, and post-processing routines. Nonetheless, the promising
outcomes of our studies lead us to believe that overcoming these challenges is worthwhile,
as it could greatly expand the possibilities for the future of X-ray tomography.
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Chapter 5

Dictionary Learning and Sparse Coding

Figure 5.1: Diagram of the tomographic process using a priori information. In this section,
we will study specific denoising and regularisation methods for sparse-view CT.

Within the framework of the sparse-view strategy, the lack of information inevitably
leads to artefacts and diminishes reconstruction quality. While all the methods presented
earlier help enhance reconstruction quality, the most effective approach is to directly act
on the volume to be reconstructed through denoising or regularisation functions. To incor-
porate a priori knowledge during the reconstruction, one must use a Statistical Iterative
Reconstruction (SIR). In sparse-view CT imaging, where data statistics significantly influ-
ence image reconstruction, SIR methods prove advantageous. Unlike analytical methods
such as FBP, these methods employ iterative strategies to derive the most probable im-
age based on projection measurements. Due to significant improvements in balancing the
number of views (or radiation dose) against image quality, SIR methods are pivotal in low-
dose and sparse-view CT imaging. Various approaches fall under the SIR category [139].

The mathematics underlying SIR methods are based on maximum a posteriori estima-
tion. In addition to a data fidelity term to be minimised, these methods include a prior
term, also known as the regularisation or penalty term. This term encapsulates prior
knowledge about the object being studied and additional physical effects not included in
the model [140].

Regularisation terms can vary widely in their formulation. They range from spatially
independent priors, which, while preventing value divergence, are often deemed ineffec-

133
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tive, to more sophisticated models like Markov random fields that enforce local properties
such as smoothness by considering pixel neighbourhoods. Other techniques include com-
pressed sensing approaches like Total Variation, anisotropic TV, and wavelets, as well as
more recent methods leveraging deep learning [141, 142]. The literature on regularisation
through priors is extensive and well-documented [139].

Additionally, the diversity of regularisation terms has fostered the development of
Plug-and-Play methods. Plug-and-Play methods are reconstruction techniques that al-
low the incorporation of any denoising/priors term. Generally, two classes of algorithms
are distinguished: the classical P3 where the denoiser D replaces the proximal operator
(D = proxτg), and the RED (Regularisation by Denoising) algorithms where the denoiser
replaces the gradient descent operator (D = I −∇g) [143, 144].

Among all these techniques, we focused our interest on one particular family: patch-
based techniques that consider patches (or blocks in 3D) instead of individual pixels. It is
increasingly observed that methods utilising patches and signal redundancy are effective
for denoising. The concept behind patch-based methods is to process only small portions
of the images to be reconstructed. Each patch is treated independently or in conjunction
with other similar patches. The patches are then re-aggregated to form the complete
image. Techniques based on patches are becoming increasingly prevalent due to their
ability to partition images into manageable segments, thereby overcoming limitations
imposed by digital resources. They successfully mitigate the curse of dimensionality, as
learning a model to solve a problem is always simpler on smaller signals. Additionally,
processes are generally faster and more efficient. However, patches often overlap, which
increases computational time. Thus, patch-based strategies require careful consideration
regarding implementation and parallelisation of computations. But at the same time,
overlapping patches ensure a sufficient number of samples to identify patterns and leverage
the redundancy in the signal, significantly enhancing denoising efficacy. In imaging, the
redundancy and patterns that we are looking for are typically the texture of the images,
and finding them allows us to perform a tailored denoising [145].

One of the most famous patch-based denoising techniques is the Non-Local Means
(NLM), due to its ability to leverage the inherent redundancy present in natural images.
Unlike traditional denoising methods that primarily rely on local information, NLM ex-
ploits the self-similarity within an image by comparing and averaging non-local patches.
In the NLM algorithm, the denoised value of a pixel is computed as a weighted aver-
age of all pixels in the image, where the weights are determined based on the similarity
between the patches centred around the pixels. This approach allows NLM to preserve
fine details and textures effectively while reducing noise. By operating on patches rather
than individual pixels, NLM can capture more contextual information, leading to supe-
rior denoising performance, especially in images with repetitive structures or textures.
We also utilised a variant of this technique that employs priors as a regularisation term.
In [11], we used a simulated reconstruction for measuring patch similarity. This tech-
nique allowed us to eliminate numerous artefacts in sparse-view reconstruction. Thanks
to rapid implementation, the patches of the ongoing reconstruction were compared to
those in the vicinity in the reference simulated reconstruction, allowing the registration
between the two reconstructions to be approximate. Another famous technique is the
Block-Matching and 3D Filtering (BM3D) [146]. By dividing the image into overlapping
patches, BM3D searches for similar patches within a predefined search window. Once
similar patches are identified, a collaborative filtering approach is employed to estimate
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the clean patch based on the information from similar patches. This collaborative filtering
strategy ensures that noise is effectively removed while preserving image details. BM3D
has been particularly successful in denoising tasks due to its ability to exploit both local
and non-local similarities in the image. It has been widely adopted in various imaging
applications, demonstrating its effectiveness as a patch-based denoising technique. NLM
and BM3D will be used as references to compare our results.

In our case, we operate within a context where we have one or two samples already
scanned and analysed on a sparse or dense trajectory. We assume that some a priori
knowledge about the image texture is available, but we lack sufficient samples to employ
advanced learning methods such as Deep Learning. We aim to propose a method capable
of learning and denoising a specific texture with minimal information. Following our
literature review, we focused on sparse coding and dictionary learning based methods.
The versatility and flexibility of these methods appeared well-suited to our use case.

5.1 Sparse Coding concepts

5.1.1 Sparse coding

The concept of sparse coding is handy in industrial tomography because the a priori
information necessary for developing methods by sparse coding is relatively undemanding.
The number of samples for training is low. The methods generalise well on different data
types and remain robust even when faced with images different from those on which
the learning was done. The concept of sparsity is already well-established in the X-ray
community thanks to the compressed sensing framework. However, in its formulation,
the signal is usually taken as a whole [147, 148].

Conversely, the idea behind sparse coding is that each small image patch from the
signal is sparse on a tailored basis. Working with patches instead of the whole image can
have numerical advantages in handling large reconstructions. Furthermore, sparse coding
is closely linked to dictionary learning. The first concept consists of writing each patch
of our complete image as a linear sparse sum of elements, called atoms, and the second
consists of building those elements. Dictionary Learning is the preliminary step in which
a redundant over-complete basis, called a dictionary, is built to favour the sparsity of
a specific kind of signal. Figure 5.2 illustrates the principles of sparse coding. On the
left-hand side, we observe a cross-section of the 3D reconstructed star trophy, which in
this example is the signal we are aiming to approximate. The right-hand side exhibits
the atoms of our dictionary, comprising individual 8×8×8 patches. Notably, each patch
within our signal is approximated through a sparse sum of these dictionary atoms, this is
the sparse coding.

Let’s note x ∈ RN an image, D ∈ Rm×n a dictionary, i.e. an over-complete basis.
We aim to find how to encode each patch xs ∈ Rm extracted from the signal x. The
code zs ∈ Rn should be sparse if possible. Usually, n > 10m, and patches are squares
or cubes of side 8 or 10 pixels/voxels. The primary challenge of sparse coding lies in the
computation of sparse representations, which entails identifying the optimal solution from
the infinite set of solutions within an under-determined linear system. For every patch,
one has to solve:

min
zs∈Rp

∥zs∥0 subject to ∥xs −Dzs∥22 ≤ ϵ2, (5.1)
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Figure 5.2: Principle of Sparse Coding. On the left, the image, denoted as x, represents
our signal to be locally approximated by patches. On the right, the dictionary atoms serve

as the fundamental building blocks for our sparse approximation. The patch xs of the
complete signal x is approximated by a sparse sum of three atoms (di, dj , dk) weighted

by the code (zsi , zsj , zsk).

where ϵ is a small positive constant. The equality xs = Dzs is difficult to achieve because
of noise in the signal. Therefore, this notation, which ensures a small gap between the
signal and its approximation, is preferred. Due to the over-completeness of the dictio-
nary, the solution is not unique, but the additional criterion of sparsity helps resolve the
degeneracy introduced. This problem possesses a combinatorial nature. There are two
classes of algorithms to solve the problem: greedy methods and convex relaxation tech-
niques. The formers are usually formulated with a ℓ0 pseudo-norm on the code, while
the latter use a ℓ1 approximation. In the literature, the expressions matching pursuit and
basis pursuit (BP) are used to describe respectively those two formulations, which can be
mathematically written:

ẑs = argmin
zs

∥Dzs − Esx∥22 + λ∥zs∥0/1, (5.2)

where λ is a parameter that balances the data fidelity and sparsity terms, Es represents
an operator to extract the block xs from the whole signal x. Es represents a diagonal
matrix comprising solely zeros, except at the indices corresponding to the voxels of patch
s, where ones are situated. Consequently, when multiplied by x, the resulting product
yields Esx = xs. The used norm can be either ℓ0 or ℓ1 according to the chosen formulation.
Unlike equation 5.1, the Lagrangian formulation is used here. The choice of norm is crucial
in general. It depends not only on what we aim to model but also on the associated solving
techniques. The pseudo-norm ℓ0 enables the discovery of sparser representations compared
to norm ℓ2 when solving systems. However, solving with the pseudo-norm ℓ0 poses a non-
convex problem, which is particularly challenging in optimisation (see Figure 5.3). The
compromise lies in utilising norm ℓ1, which is convex and yields sparse results [147, 148].
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Figure 5.3: Representation of isonorms for the ℓ0 pseudo-norm, ℓ1 and ℓ2 norms. If we
consider that the solutions of the linear system belong to the blue line, the position of the
solution with the smallest norm is sparse with the norms ℓ0 and ℓ1.

5.1.2 Matching Pursuit

The matching pursuit problem involves finding a sparse linear signal approximation. The
simplest algorithm to do so is the Iterative Hard Thresholding. A hard threshold Hτ ,
which keeps only the τ largest entries in modulus, is applied at each iteration of a classic
optimisation scheme to ensure sparsity. The hard threshold function of parameter one is
shown in Figure 5.4. The algorithm produces the sequence:

z(k+1) = Hτ (z
(k) −DT(Dz(k) − x)). (5.3)

Figure 5.4: Soft and Hard Threshold

There are theoretical guarantees that this procedure succeeds [149, 150], but they are
weaker than other common procedures. This is why despite its simplicity and speed of ex-
ecution, the most famous matching pursuit algorithm is, without a doubt, the Orthogonal
Matching Pursuit (OMP), which iteratively adds elements to the representation. Algo-
rithm 8 shows how OMP builds the signal representation’s support S. At each iteration,
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OMP selects the atom most correlated to the residual, adds it to the support, and up-
dates the code by solving a least squares problem. Note that all previous coefficients are
updated too. The name "Orthogonal" Matching Pursuit comes from the orthogonality
between the residual and the span of the atoms already selected, which comes from the
least squares solution. This property also guarantees that the selected atom dk belongs
to the dictionary D restricted to the elements not in S. The algorithmic complexity of
OMP is reasonable, especially when the sparsity criterion is strong. The calculation of
the index k is O(nm), the least squares problem step is the most consequent in O(mτ 2)
and the calculation of the residual O(mτ). Overall complexity is about O(τm(τ 2 + n)).

Algorithm 8: Orthogonal Matching Pursuit.
Data: Dictionary D ∈ Rm×n

Signal x ∈ Rm

Sparsity level τ
Convergence criteria ϵ

Result: Representation support S
Sparse reconstruction z ∈ Rn

Initialise S = ∅, r = x
while ∥r∥2 > ϵ and ∥z∥0 < τ do

Find dk ∈ D with maximum inner product |⟨r,dk⟩|
Update support S ← S ∪ {k}
Update code z← (DT

SDS)
−1DT

Sx
Compute new residual r← x - DSz

end

Note that there are other, more clever OMP implementations including Batch-OMP
which allow the calculation time to be accelerated when the number of signals to be
processed is large [151]. Another famous variation is Orthogonal Least Squares, which
selects the index k by solving another least-squares problem, adding more complexity.
Subspace Pursuit allows the removal of some elements during the process [152]. Stage-
wise OMP (StOMP) adds several columns to the support S at each iteration instead of
considering a single column. StOMP is faster but often less accurate [153]. In order to
understand the variations in these algorithms and the common basis of these methods, a
‘classic’ Matching Pursuit algorithm is given in Appendix 13.

5.1.3 Basis pursuit

Basis pursuit uses another family of methods, generally closer to those used in convex op-
timisation. The Fast Iterative Shrinkage Thresholding Algorithm (FISTA) is undoubtedly
the most popular. FISTA is a powerful optimisation technique widely used for solving
convex optimization problems with a ℓ1 norm penalty. FISTA can be intuitively explained
as an evolution of the ISTA algorithm, which is itself a generalisation of other optimisa-
tion methods. For example, the simplest method to minimise a continuous differentiable
function f(z) is the gradient descent, which solves the problem with the sequence:

z(k+1) = z(k) − tk∇f(z(k)), (5.4)
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where tk is a positive stepsize. But the gradient descent can also be interpreted as a
proximal regularisation of the first-order approximation of f at z(k)[154], which can be
written :

z(k+1) = argmin
z

{
f(z(k)) + ⟨z− z(k)|∇f(z(k))⟩+ 1

2tk
∥z− z(k)∥2

}
. (5.5)

The advantage of this interpretation over the previous one is that proximal descents
generalise to non-differentiable functions, which means that the ℓ1 norm penalty term can
be included here [152]:

z(k+1) = argmin
z

{
f(z(k)) + ⟨z− z(k)|∇f(z(k))⟩+ 1

2tk
∥z− z(k)∥2 + λ∥z∥1

}
. (5.6)

Using the separability of the ℓ1 norm, computing z(k) reduces to solving a 1-dimension
problem for each of its coordinates, whose solution is given by:

z(k+1) = Tλtk(z(k) − tk∇f(z(k)), (5.7)

where Tα : R −→ R is the shrinkage operator / soft threshold, defined as:

Tα(z)i = max(|zi| − α, 0)sign(zi). (5.8)

Figure 5.4 shows the soft threshold function with α = 1. Just by iteratively applying the
sequence, it is possible to solve the basis pursuit, this method is called ISTA. For our
problem, we have a ℓ1 penalty constraint and f(z) = ∥Dz−x∥22. So ISTA, can be written
as:

z(k+1) = Tλtk(z(k) − 2tkD
T(Dz(k) − x)). (5.9)

FISTA enhances the efficiency of ISTA by introducing acceleration through Nesterov’s
extrapolation scheme. Nesterov acceleration speeds up convergence by introducing a
momentum term derived from extrapolating previous iterations’ variables (see the last
operations in the Algorithm 9). This combination of gradient-based updates, proximal
operator steps, and acceleration makes FISTA particularly effective in tackling optimisa-
tion problems in large dimensions. FISTA successfully keeps the simplicity of ISTA while
improving the asymptotic convergence from O(1/k) to O(1/k2). FISTA’s algorithmic
complexity is low, mainly due to matrix-vector multiplication in O(mn). This complexity
must be multiplied by the number of iterations.

Although FISTA is a reference, we have used ADMM extensively in this thesis. We
therefore give the ADMM algorithms for basis pursuit in Appendix A.6.

5.1.4 Dictionary Learning

Dictionary Learning is an optimisation problem close to sparse coding. There are many
methods for building a dictionary tailored to a signal, but it is also important to note
that a dictionary can be learned or fixed. Fixed dictionaries have the advantage of an
analytical formulation, so it must not be stored, and there can be computational savings
for some operations. The Discrete Cosine Transform (DCT) is often used because it offers
those advantages. On the other hand, Learned dictionaries do not have a structure but
are more efficient for a specific application [152].
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Algorithm 9: FISTA
Data: Dictionary D ∈ Rm×n

Signal x ∈ Rm

Sparsity trade-off constant λ ∈ R+

Initial guess z(0) ∈ Rn

Convergence criteria ϵ
Result: Sparse reconstruction z ∈ Rn

Initialise t0 = 1
for k=0,1,2,... do

Compute an ISTA step z(k+1/2) = Tλtk(z(k) − 2tkD
T(Dz(k) − x))

Update stepsize tk+1 =
1+
√

1+4t2k
2

Compute new approximation z(k+1) = z(k+1/2) + tk−1
tk+1

(z(k+1/2) − z(k))

end

Figure 5.5: DCT dictionary (left) and a learned dictionary (right)

Figure 5.5 presents two dictionaries. The first is analytical, specifically the 2D Discrete
Cosine Transform. The second is a dictionary learned using the Alternating Direction
Method of Multipliers on standard photographs1. Dictionaries learned from photographs
often exhibit this recognisable appearance: the patches seem to capture edges, contours,
and patterns that are commonly observed in natural images. Certain atoms exhibit some-
what random structures; these are often less frequently utilised during sparse coding.

The Dictionary Learning problem can be written as:

ẑ, D̂ = argmin
z,D

1

2

∑
s

∥Dzs − Esx∥22, (5.10)

∥zs∥0 ≤ τ, (5.11)
∥di∥2 = 1, ∀i ∈ {1, . . . , n}. (5.12)

1The used pictures are taken from the Signal and Image Processing Institute https://sipi.usc.edu/
database/database.php?volume=misc&image=13#top
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Here x represents all the training data. We note τ the sparsity level. Usually, we have
several images sharing the same properties, but we can also imagine learning a dictionary
from a single image as long as there are enough patches. In addition, it is generally ad-
visable to add a normalisation constraint to the dictionary. This improves the robustness
of the algorithms, makes errors less dependent on the atoms used and, above all, en-
ables a signal to be characterised and analysed directly by its code (which is particularly
recommended for classification tasks) [152].

The most successful algorithms to solve the Dictionary Learning problem are the
Method of Optimal Directions (MOD) and K-SVD [155]. The latter is prevalent and
often described as the generalisation of the K-means algorithm. The procedure is mainly
separated into two steps: sparse coding and dictionary update. For the sparse coding, any
matching pursuit technique can be used. For the dictionary update, K-SVD relies on an
interesting observation. The approximation error R = X−DZ can be rewritten by sep-

arating a term k:
∥∥∥X−∑n

j=1 djz
T
j

∥∥∥2 = ∥∥∥(X−∑j ̸=k djz
T
j

)
− dkz

T
k

∥∥∥2 = ∥Rk − dkz
T
k ∥2.

If we consider that we fix all the atoms of the dictionary except the kth, we obtain an
equation consisting of finding the matrix of rank 1, which best approximates Rk. The
SVD decomposition gives the solution of this equation. By reiterating this step for each
column of D, we can create a dictionary tailored to the training base. Algorithm 10
shows the procedure for K-SVD. In the implementation, a size reduction step with ωk

guarantees the decomposition sparsity and speeds up the algorithm execution. K-SVD
overall complexity is O(K(nτ 2 + 2mn)) [151].

Algorithm 10: K-SVD [155]

Data: Initial normalised dictionary D(0) ∈ Rm×n

Signals X ∈ Rm×K

Sparsity level τ
Result: Learned dictionary D ∈ Rm×n

while the convergence criteria have not been met do
Solve min

Z
∥DZ−X∥2 with ∥Zi∥0 ≤ τ , ∀i, using any matching pursuit algorithm

for each column k ∈ {1, . . . , n} in do
Define the group of samples that use this atom,
ωk = {i | 1 ≤ i ≤ N,Zk

T (i) ̸= 0}
Compute the error matrix Rk = X−

∑
j ̸=k

djz
T
j

Restrict Rk by choosing only the columns in ωk to obtain R
′

k

Apply SVD factorization, R
′

k = UΣVT

Update dk = u1, Zk,ωk
= σ1v1

end
end

In the same way that sparse coding has a formulation with a convex relaxation, here
too, we can find the same formulation with a ℓ1 norm on the sparsity term:

ẑ, D̂ = argmin
z,D

1

2

∑
s

∥Dzs − Esx∥22 + λ
∑
s

∥zs∥1. (5.13)

To solve the relaxed problem, the most used algorithms are Least Angle Regression
(LARS) and Alternating Directions Method of Multipliers (ADMM). Current approaches
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give satisfying results in most situations, yet there are inherent issues with these dic-
tionary learning methods. The algorithmic complexity of these methods can become an
obstacle when the size of the operators increases.

An alternative probabilistic interpretation opens when we adopt a Bayesian standpoint
and conceptualise sparse coding as a generative model. The objective lies in identifying
a set of basis feature vectors, (di)0≤i≤n, that align the distribution of images, P (x|d), as
closely as possible with the empirical distribution of our input data, P ∗(x). To achieve
this, one approach involves minimising the Kullback-Leibler (KL) divergence between
P ∗(x) and P (x|d), which can be written:

DKL(P
∗(x∥P (x|d)) =

∫
P ∗(x) log(

P ∗(x)

P (x|d)
dx. (5.14)

As the empirical distribution P ∗(x) is constant, minimising KL divergence is equivalent
to maximising the log-likelihood of P (x|d). The dictionary learning problem becomes:

d∗ = argmin
d
−
∑
i

log(P (xi|d)). (5.15)

To calculate this term, the conditional density function of x knowing D can be further
decomposed by assuming Gaussian white noise ν with standard deviation σ. The condi-

tional distribution P (x|z,d) takes the form P (x|z,d) ∝ exp

(
− (x−

∑
i dizi)

2

2σ2

)
. Then, the

prior P (z) must also be specified. Usually, Laplace distribution is chosen as it promotes
sparsity [156], with the parameter λ it can be written as: P (z) = exp(−λ∥z∥1). Having
established P (x|z,d) and P (z), the probability of the image knowing the dictionary can
be expressed as:

P (x|d) =
∫
P (x|z,d)P (z)dz, (5.16)

≈ max
z
P (x|z,d)P (z). (5.17)

This last approximation is possible thanks to the high peak of the Laplace distribution
and allows us to get rid of the intractable integration over the code space. This probability
can now be plugged in Equation 5.15, giving the final objective function:

d∗ = argmin
d
∥x−

∑
i

dizi∥22 + 2σλ∥z∥1. (5.18)

5.1.5 Convolutional Sparse Coding

One of the fundamental flaws of dictionary learning as presented here is the non-continuity
of the signal. Each patch is processed independently of the others. The continuity prop-
erty is disregarded, and the information it provides is therefore lost. This has several
consequences for the final result and the execution of the methods. Firstly, artefacts may
appear when the patches are aggregated after the basis pursuit. This effect can easily be
reduced by considering overlapping patches and then averaging the results. However, this
will significantly increase the number of patches. For example, if in 3D the image is a
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cube of N voxels length and blocks are length m, the number of blocks is (N −m + 1)3

instead of (N
m
)3, so there are approximately m3 more operations (N ≫ m).

To overcome these limitations, Convolutional Sparse Coding (CSC), alternatively re-
ferred to as shift-invariant sparse coding, introduces a novel formalism that effectively
incorporates the inherent continuity of the image [157]. In this new formalism, the de-
composition of the signal x becomes:

x ≈
∑
j

dj ∗ zj, (5.19)

where dj represent the filters of a local dictionary, x represent the image, and zj are the
coefficient maps. In CSC there is no longer any question of reconstructing patches. The
map coefficients have the same dimension as the signal to be reconstructed. Considering
that the coefficient maps are sparse by definition, they can be stored easily. Yet, the patch
notion remains present in the filters. The filters dj are the size of the patches and slide
along the coefficient maps zj to approximate x.

CSC can also be interpreted as a traditional sparse coding method where a banded
circulant matrix of a small dictionary replaces the global dictionary. This structure im-
poses that the blocks are a superposition of the small local dictionaries DL. This is useful
for deducing algebraic properties about CSC.

Figure 5.6: Structure of the Convolutional Sparse Coding Paradigm. Image adapted from
Wikipedia. The global dictionary is constructed from shifted versions of a local dictionary.

What is particularly interesting about this interpretation is that it reveals that only a
few coefficients are needed to represent a patch. If we consider only the rows of the global
dictionary D which express the elements of the patch xs, this is equivalent to applying
the patch extractor operator Es. We then notice that there are only (2m− 1)n columns
of the dictionary which are involved in the representation of this same patch. So we can
also reduce the number of dictionary columns and the number of code elements with the
columns selection operator ST

s . The resulting dictionary is called the stripe dictionary
Ω ∈ Rm×(2m−1)n, which is independent of the patch. The stripe dictionary can be seen in:

xs = EsDz (5.20)

= EsDST
s · Ssz (5.21)

= Ω · zs. (5.22)

While all the ideas that drive the concept of convolutional sparse coding are identical
to the traditional sparse coding, there are some major consequences to this new formalism.
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First, CSC allows the use of smaller operators, which is the first limitation of dictionary
learning. All the filter translations can be used to describe the signal, thus considerably
reducing the number of required atoms. Moreover, image continuity is finally considered,
and there is no aggregation step. The sparse representation is now obtained by solving
the following equation:

argmin
z

1

2

∣∣∣∣∣∣∣∣ n∑
j=1

dj ∗ zj − x

∣∣∣∣∣∣∣∣2
2

+ λ

n∑
j=1

∥zj∥1. (5.23)

In the CSC framework, dictionary learning and basis pursuit are generally done using
ADMM in the Fourier domain [158, 157]. More details about the algorithm are given in
Algorithm 16. Considering CSC as sparse coding whose dictionary is a banded circulant
matrix, we can use the theoretical results of compressed sensing in this new framework.
New theoretical guarantees for stability and uniqueness can be derived for the stripe
dictionary. In [159], the authors show that recovering signals can be done with weaker
assumptions. They show that the same number of non-zeros coefficients is permitted for
each stripe instead of the whole signal. Moreover, they propose an analysis based on
shifted stripe dictionaries, giving more interesting theoretical results.

This notion of sparsity can be extended to the very representations themselves, leading
to a cascading sequence of sparse representations. In this framework, each sparse code
is defined through a small subset of atoms derived from a pre-defined set of dictionaries.
Building upon this premise, an additional extension called multi-layer convolutional sparse
coding (ML-CSC) is possible [160]. If we note a set of dictionaries {Di}i so that the
product (

∏
iDi) is defined, we can also define:

x = D1z1 = D1D2z2 = (
k∏

i=1

Di)zk, (5.24)

where one would expect (
∏k

i=j Di)zk to be sparse as well ∀j. In addition to all the signal
recovery and stability properties of the algorithms. ML-CSC makes it possible to make an
interesting link between dictionary learning and convolutional neural networks. In [160],
they notice that the hard threshold (with a non-negative constraint) Hs used in matching
pursuits is similar to the famous ReLU function, often used in Deep Learning to bring
non-linearity to the network. The formulations are similar:

z2 = ReLU
(
WT

2 ReLU(WT
1 x)
)

(5.25)

z2 = Hs

(
DT

2Hs(D
T
1x)
)

(5.26)

where W1 and W2 represents the weights of the network layers. The first equation
represents the Deep Learning network, the second the ML-CSC. The similarity makes it
easier to analyse convolutional neural networks from the point of view of sparse coding
and to deduce stability and noise conditions for signal recovery.
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5.2 Applications and Results

5.2.1 Denoising

The simplest application of sparse coding is image denoising, which is straightforward
thanks to the optimisation methods mentioned above. If training data are available,
first, a dictionary is learnt from them. For traditional dictionary learning, the dictionary
is usually learned on another tomographic image, obtained with the same acquisition
parameters and reconstructed with the complete set of projections. Otherwise, if there
is no available data, we will choose a fixed dictionary adapted to the type of image
to be studied. Then, to use it on a test image, we simply perform a basis pursuit.
The sparse approximation found will include the essential elements of the image while
omitting potential noises. Denoising techniques based on the truncation of a description
on another basis (dictionaries, wavelets, PCA) generally remove high frequencies, which
makes it possible to get rid of the roughness of an image. A common practice is to
separate high and low frequencies using a Tikhonov filter. As the size of the patterns to
be reconstructed can not be adapted to the size of the filters, it may be more efficient to
split high and low frequencies of the volume separately. In [161], only the high frequencies
are denoised by CSC and then added to the low frequencies.

When comparing denoising methods using classical and convolutional dictionaries for a
sparse reconstruction slice of the additive manufacturing star, distinct performance char-
acteristics were observed. Various denoising algorithms were applied to a sparse recon-
struction with 200 projections, and their results were compared to a dense reconstruction
with 928 projections of the same object. For each algorithm, PSNR and SSIM were com-
puted between the denoised sparse reconstruction and the dense reconstruction. The basis
pursuits stop when the loss function reaches a plateau. Both classical and convolutional
dictionaries were assessed, with different types and sizes of dictionaries tested. All meth-
ods employed patches of size 8x8. The ’learned ’ dictionary was calculated using classical
pictures (4 images), and the ’tailored ’ dictionary was trained on a CT reconstruction of
another plastic additive manufacturing part (4 slices).

Table 5.1 compares classical and convolutional sparse coding for different numbers of
atoms, famous denoising methods are also given for a comparison baseline. The findings
indicate that in CSC, the number of atoms has minimal impact on denoising performance.
Reducing the number of atoms does not significantly degrade performance, thereby en-
hancing computational efficiency. Conversely, in classical sparse coding, the number of
atoms critically affects the outcome. A redundant dictionary is necessary to ensure a
robust sparse representation and effective denoising. Moreover, Table 5.2 shows the com-
parison in denoising for 128 atoms dictionaries. The dictionary’s importance in represen-
tation is further highlighted. The analytical dictionary (DCT) produces inferior results
compared to others. The dictionary learned from pictures shows satisfactory results, es-
pecially considering that no CT data was utilised. The tailored dictionary demonstrates
superior results, achieving convergence more swiftly and effectively.

Additional results on denoising using both classical and convolutional dictionary learn-
ing have been previously published in [14] (Bussy et al.). In this study, we employed addi-
tively manufactured aluminium cubes to denoise reconstructions obtained from a limited
number of projections. All results were conducted in three dimensions. The particularity
of these parts was that small changes in the manufacturing process induced significant
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differences in the final texture of the cube. In addition to evaluating and comparing the
sparse coding methods, we also observed the capacity of these methods to generalise to
textures not observed during the dictionary learning phase.

Table 5.1: Comparison of Classical and Convolutional Dictionary-Based Denoising
Methods for a 200 projections sparse reconstruction slice of the Additive Manufacturing

Star

- PSNR [dB] SSIM Time [s]
Before image denoising 37.16 0.8261 -

Wavelet denoising 38.44 0.8614 0.290
TV denoising 40.19 0.8927 0.204

NLM 38.95 0.8672 0.028
BM3D 39.37 0.9086 6.65

BP (8 atoms) 38.94 0.9039 1.37 (11it)
CSC BP (8 atoms) 41.41 0.9439 3.76 (34it)

BP (16 atoms) 39.65 0.9087 1.86 (16it)
CSC BP (16 atoms) 41.49 0.9440 10.51 (48it)

BP (32 atoms) 39.89 0.9096 3.11 (18it)
CSC BP (32 atoms) 41.42 0.9440 24.17 (56it)

BP (64 atoms) 40.31 0.9115 8.59 (23it)
CSC BP (64 atoms) 41.25 0.9436 210.87 (250it)

BP (128 atoms) 40.47 0.9121 8.37 (26it)
CSC BP (128 atoms) 41.44 0.9440 245.92 (143it)

BP (640 atoms) 41.25 0.9430 234.90 (153it)

Table 5.2: Comparison of denoising methods for different classical and convolutional
dictionaries on a 200 projections sparse reconstruction slice of the additive manufacturing

star

(128 atoms) PSNR [dB] SSIM Time [s]
Before image denoising 37.16 0.8261 -
BP on DCT dictionary 37.19 0.8895 81.07 (250it)

BP with a learned dictionary 40.20 0.9097 8.16 (25it)
BP with a tailored dictionary 40.47 0.9121 8.37 (26it)

CSC BP 41.44 0.9440 245.92 (143it)
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5.2.2 Joint dictionaries

An alternative methodology for signal denoising involves joint dictionaries, as expounded
upon by [162]. In this approach, two dictionaries are jointly learned, based on the sparse
and dense reconstructions extracted from a single sample. The constraint imposed in this
process is that the two reconstructions should share identical code or mapping coefficients,
albeit on distinct bases. This results in the alignment of each filter within the formed
’sparse’ dictionary denoted as Ds, and the ’dense’ dictionary denoted as Dd.

To expound further, the outcomes of a basis pursuit within the ’sparse’ basis can be
used within the ’dense’ basis. A notable extension of this concept is the work by [163],
where a super-resolution scheme is proposed through reconstructions of varying dimen-
sions. There are no restrictions on the size of patches in dictionaries. A small patch
in the ’sparse’ dictionary can therefore be associated with a larger patch in the ’dense’
dictionary. In this case, the terms ’low’ and ’high’ resolutions are used instead of sparse
and dense to describe the reconstructions.

There are several methods for learning coupled dictionaries. Some are straightforward,
such as [162], which build the two dictionaries by extracting patches at the same positions
in the sparse and dense reconstructions. This method is quick but lacks robustness and
effectiveness. The results depend significantly on the selected patches. Some areas have
more noise than others, and there is no guarantee that the built dictionaries are well-
adapted to the signals and assure coefficient maps sparsity. Furthermore, even when
applying a mask to the image to select only regions of interest, it is possible, as shown
in Figure 5.7, to obtain completely homogeneous atoms. This is generally not an issue
as long as the number of atoms remains high. Figure 5.7 displays the first 30 atoms
of the joint dictionaries. Correspondences between atoms are visible. It is particularly
noticeable that the atoms representing an interface are sharper in the dense version.

Figure 5.7: Joint dictionaries made by directly extracting blocks (8×8×8) from a sparse and
dense reconstruction of the star-shaped trophy. Blocks are normalised after extraction.

In other works, the high-resolution dictionary is learned beforehand on a high-quality
reconstruction. Then, this dictionary is downsampled and smoothed to create the low-
resolution dictionary [164]. This method is fast, and the dictionary usually has good
properties. This technique is suitable for super-resolution but less for denoising sparse
reconstructions. Indeed, with this last technique, the mapping between the two dictio-
naries does not consider the granularity and the artefacts due to the lack of projections.
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A mapping that has been trained on both low and high-quality data is preferable. To do
this, one can rewrite the dictionary learning problem by concatenating the low-quality
images Xs and high-quality training images Xd. The coupled dictionary learning problem
can then be formulated as:

argmin
D,Z

∥X−DZ∥+ λ(
1

md

+
1

ms

)∥Z∥1, (5.27)

X =

(
1√
ms

Xd

1√
md

Xs

)
,D =

(
1√
ms

Dd

1√
md

Ds

)
, (5.28)

where md and ms are, respectively, the size of the ’dense’ and ’sparse’ patches. With
this formulation, one can use the previous dictionary learning algorithms without any
change. However, the large size of the operators can be a significant limitation. An
’online’ dictionary learning resolution can circumvent this problem but does not solve the
problem of calculation times.

This last remark on the size of the matrices is all the more critical since, to increase
the discrimination of the dictionaries, it is common to add other image features. For
example, in [162], the first and second derivatives of the filters are added to Xs and Ds.
Thus, the gradient of the image and its Laplacian must also be approximated, increasing
discrimination between the different dictionary atoms. On the other hand, there is no
need to increase the size of Dd. To denoise with coupled dictionaries, basis pursuit is
only done on low-quality signals. Figure 5.8 illustrates the results for the construction of
joint dictionaries for classical and convolutional sparse coding. The vectors of X included
’dense’ and ’sparse’ blocks, as well as the gradient and Laplacian of the ’sparse’ blocks.
The atoms of the ’dense’ dictionary appear more refined, displaying interfaces as well
as streaks and patterns with different frequencies. The correspondence with the ’sparse’
dictionary is less obvious than before for the classical version (Figure 5.8a), but it is
important to note that the correspondence is also established through the gradient and
Laplacian. Correspondences are clearer for the convolutional version in Figure 5.8b.

For our study on additive manufacturing of plastic and metal, involving both sparse
and dense reconstructions, we proposed a method for CSC, called hybrid, that bridges the
gap between analytical and direct methods. Thanks to an ADMM optimiser, a dictionary
Ds is learned on the sparse data. Then, each filter is expressed as a linear combination
of blocks extracted from the sparse volume. We create a ’dense’ version of our initial dic-
tionary using the same linear combination and blocks extracted at the exact locations in
the dense reconstruction. This technique takes advantage of the benefits of the analytical
method, which finds the underlying signal structures, but also of the simplicity and com-
putational speed of the direct method. The proposed method can also use image features
other than voxels. It also requires few numerical resources, unlike the analytical method,
which requires solving a high-dimensional problem. The method is recapped in Algorithm
11, and Figure 5.9 shows matched filters in Ds and Dd. In the ’dense’ dictionary, atoms
corresponding to interfaces and other common patterns in the image are clearly visible.

To illustrate the results, Figure 5.10 shows two denoising performed on the star-shaped
trophy reconstructed with 200 projections. Figure 5.10a shows the results of a basis
pursuit on the ’sparse’ dictionary while Figure 5.10b shows its equivalent in the ’dense’
basis, each is 1920 atoms. Even if the difference isn’t obvious visually, the values are
more accurate and it’s especially in the empty areas between the materials that the dense
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(a) Joint dictionaries

(b) Joint convolutional dictionaries

Figure 5.8: Joint dictionaries made analytically by solving Eq.5.27 and its convolutional
equivalent (8×8×8)

Figure 5.9: Joint dictionaries made with the proposed hybrid method (8×8×8)
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Algorithm 11: Proposed coupled dictionaries learning algorithm.
Data: Sparse reconstruction Xs, Dense reconstruction Xd

Result: Coupled dictionaries Ds and Dd

Compute Ds by solving eq.5.12 with Xs

Extract blocks Bs and Bd at the same positions in Xs and Xd

Concatenate its 1st and 2nd order derivatives to Bs

Solve BsY = Ds

Dd ← BdY

version brings more homogeneity. The same study was carried out, in Figure 5.11, on
convolutional dictionaries of 32 filters constructed using the analytical method. This time
we can see directly that the streak artefacts are reduced and the clarity of the image
improved. Finally, we also show the result of the same approach, but with convolutional
dictionaries made using our ‘hybrid’ method in Figure 5.12. Here too, the difference is
clear. The reconstruction seems less blurred.

Table 5.3 summarises the results in terms of PSNR and SSIM of the comparison
between classical and convolutional sparse coding for the analytical, hybrid and direct
joint dictionaries. Results also show the comparison between a basis pursuit denoising
and joint dictionaries. Unsurprisingly, the method with joint dictionaries offers better
performance.

(a) Denoising with the ’sparse’ dictionary (b) Equivalent with the ’dense’ dictionary

Figure 5.10: Results of denoising by sparse coding without and with joint dictionaries made
by the direct method
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(a) CSC Denoising (b) Joint Dictionary CSC Denoising

Figure 5.11: Results of denoising by convolutional sparse coding without and with joint
dictionaries made by the analytical method

(a) CSC Denoising (b) Joint Dictionary CSC Denoising

Figure 5.12: Results of denoising by convolutional sparse coding without and with joint
dictionaries made by the hybrid method

5.2.3 Regularisation

The sparsity term on patches can be extended for regularisation. In [165], Xu et al.
were the first to propose incorporating a dictionary-learning approach into a statistical
X-ray tomographic reconstruction. In their work, they propose two strategies, GDSIR and
ADSIR (Global/Adaptive Dictionary Statistical Iterative Reconstruction), depending on
whether the dictionary is updated during the reconstruction. The objective function is:

min
x,z,(D)

∑
i

ωi

2
([Ax]i − pi)

2 + λ(
∑
s

∥Esx−Dzs∥22 +
∑
s

νs∥zs∥0) (5.29)

Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0116/these.pdf © [V. Bussy], [2024], INSA Lyon, tous droits réservés



Table 5.3: Comparison of denoising methods in terms of PSNR and SSIM for different
classical and convolutional dictionaries on a 200 projections sparse reconstruction slice of

the additive manufacturing star

PSNR[dB]/SSIM BP denoising Joint dictionaries denoising
CSC Analytical (32 atoms) 41.42/0.9440 42.62/0.9620
SC Analytical (1920 atoms) 39.89/0.9096 40.12/0.9600

CSC Hybrid (64 atoms) 41.25/0.9436 42.05/0.9662
SC Hybrid (1920 atoms) 40.11/0.9164 41.32/0.9580
CSC Direct (64 atoms) 40.95/0.9422 41.84/0.9609
SC Direct (1920 atoms) 40.09/0.9122 41.15/0.9570

where A is the projection operator, ω weights the contribution of each ray to the tomo-
graphic problem, p are the experimental projections, Es is still the operator to extract
patch ’s’ and ν trades off patches approximation and sparsity. Here x represents the
volume to be reconstructed, such as µ before, but we will keep for consistency. D is a
variable to optimise in ADSIR. For GDSIR, the dictionary is learned beforehand on simi-
lar images. To minimise the objective function, we have used a common solution strategy
which consists of alternating the optimisations on the different variables while fixing the
others. Then, reconstruction is made by alternating minimisation on x, then D and z,
knowing that the latter is a dictionary learning / matching pursuit step. To update x,
Xu et al. use the separable paraboloid alternative method [165]:

x
(k+1/2)
j = xk

j −
∑

i aijωi([Ax(k)]i − pi) + 2λ
∑

s

∑
n e

s
nj([Esx

(k)]n − [Dzs]n)∑
i(aikωi

∑
j aij) + 2λ

∑
s

∑
n e

s
nk

∑
j e

s
nj

, ∀j (5.30)

Then, the resulting image is re-encoded in the dictionary with a matching pursuit. For
ADSIR, the procedure is the same, except that instead of a matching pursuit, a dictionary
learning algorithm is used to update both the code and the dictionary:

z, (D) = argmin
z,(D)

∑
s

∥Esx
(k+1/2) −Dzs∥22 +

∑
s

νs∥zs∥0. (5.31)

Reconstructed patches are then aggregated to reconstruct the whole image:

x
(k+1)
j =

∑
s E

T
sDzs∑

s

∑
n e

s
nk

∑
j e

s
nj

(5.32)

As CSC is faster than traditional dictionary techniques, it is now possible to consider
large 3D applications. The objective function is rewritten within the CSC framework [166].
All terms are similar to Equation 5.29, except that the sum of patches is replaced by the
convolutional encoding. The last term is slightly simplified with a constant ν for each
filter.

min
x,z,(D)

∑
i

ωi

2
([Ax]i − bi)2 + λ(∥

∑
m

dm ∗ zm∥22 + ν
∑
m

∥zm∥1) (5.33)
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The optimisation scheme remains the same as in [165]. Alternating optimisation of x
and then the dictionary and coefficient maps. Equation 5.30 is transformed to:

x
(k+1)
j = x

(k)
j −

∑
i aijωi([Ax(k)]− bi) + λ([

∑
m dm ∗ zm]j − x

(k)
j )∑

i(aikωi

∑
j aij) + λ

(5.34)

As before, the next step is to encode the result in the dictionary basis. We made
it with ADMM. Figure 5.13 shows four reconstructions with the different regularisation
methods and compared them to the dense reference and a SART reconstruction.

Figure 5.13: Reconstruction with different regularisation methods. Top left is the reference
reconstruction made with 928 projections and the mask. Top right is made with SART with
200 projections and 50 iterations. Bottom left is the results of the described regularised
reconstruction with classical sparse coding (Eq. 5.29). Bottom right is a regularised recon-
struction on 200 projections with CSC 64 atoms (Eq. 5.34).
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5.2.4 Classification

The strength of dictionary learning lies in its ability to extract essential features from a
signal to find the main patterns that constitute the signal. This ability to extract the
most representative features can also be used for classification tasks. One can make a
discriminant dictionary by building a structured dictionary whose atoms are dedicated
to describing one specific type of signal. A given signal is decomposed in a discriminant
dictionary, and according to the atoms that have been used, it is possible to determine the
class of the input signal. Generally, the global dictionary is made up of sub-dictionaries,
each representing a class. We can then look at the atoms used in the representation
of the input signal. If a class of atoms is more involved in the signal code, the signal
will be classified in that class. We can also compare the reconstruction errors of each
sub-dictionary and deduce the most appropriate dictionary for the signal and therefore
its class. It is also possible to determine physical properties or abnormalities from the
signal code. In [167], the Reynolds number of a flow around a cylinder is identified using
the sparse representation of the flow. In [168], authors adapt classification and dictionary
learning to detect faults and leakages in distributed water networks. The main difficulty
with this method is learning a dictionary whose atoms are discriminant from one class
to another. It is important to note that other strategies have been proposed, including
some that use analysis dictionary learning (as opposed to the previous methods called
synthesis) which directly transforms a signal to a sparse feature basis by multiplying the
signal [169], but the challenges and difficulties remain similar. Both strategies can be
applied at the same time for better performances [170].

Early attempts to create a discriminative dictionary for classification tasks used train-
ing samples directly to create the atoms of the dictionary [171]. This method is referred to
as sparse representation-based classifier (SRC). Subsequently, existing algorithms for dic-
tionary learning were adapted for classification, such as [172], who was the first to propose
to learn jointly a dictionary for representation and a classifier. The idea of adding a clas-
sifier was then retaken many times. Many methods, such as the Discriminative-KSVD,
include a classifier in its objective function. Label Consistent-KSVD goes even further by
incorporating a discriminative sparse-code error and a classification error term in its goal
function. However, the underlying idea behind these algorithms was to determine which
sub-dictionary best described the signal without looking at the similarities and differences
between these classes. As a result, the common characteristics between the classes led
to non-discriminating decompositions and, therefore, to insufficient results. One of the
solutions to this issue is to add a coherence penalty to the representation error [173], this
method is referred to as dictionary learning with structured incoherence (DLSI). For K
different classes, the objective function to minimise becomes:

min
Z,D

K∑
k=1

∥X−DZk∥2 + λ

K∑
k=1

∑
j ̸=k

∥DT
kDj∥22 (5.35)

Afterwards, concepts from Fisher discriminant analysis emerged in the newly proposed
methods [174, 175]. The objective function now has a discriminative fidelity term r:

r(Xi,Z,D) = ∥Xi −DZ∥2 +
∑
k∈C(i)

∥Xi −DkZk∥2 + ∥
∑
k/∈C(i)

DkZk∥2 (5.36)
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The first term represents the overall fidelity with every element from the dictionary. The
second term represents the fidelity only using the dictionary dedicated to Xi’s class C(i).
The last term reduces the participation of the rest of the dictionary in the representation.

But Fischer discriminant analysis also adds a discriminative coefficient term, called
g, made of SW (Z) which minimises the within-class scatter of the code and SB(Z) which
maximises the between-class scatter.

SW (Z) =
c∑

i=1

∑
zj∈Ci

(zj −mi)(zj −mi)
T (5.37)

SB(Z) =
c∑

i=1

ni(mi −m)(mi −m)T (5.38)

g(Z) = trace(SW (Z))− trace(SB(Z)) + η∥Z∥22 (5.39)

where mi and m represents the mean vectors of Zi and Z, and ni the number of samples
in the ith class. The whole objective function becomes:

argmin
Z,(D)

∑
i

r(Xi,Z,D) + g(Z) + λ∥Z∥1,1 (5.40)

This type of optimisation problem is often solved by fixing the coefficients and the
dictionary alternately. The discriminant terms introduced have greatly improved the
results, but they cannot prevent some atoms from being very similar in different classes.
Another solution was to add a common sub-dictionary D0 for patterns shared by the
different signal classes [176, 177]. It will then be necessary to modify the optimisation
and classification scheme to take this sub-dictionary into account. D0 is used for the
representation but not the classification, this method is referred to as COPAR. Figure 5.14
shows the importance of previously mentioned fidelity terms, as well as the usefulness of
a shared dictionary.

Low-Rank Shared Dictionary Learning, called LRSDL, takes things a step further
by adding all those ideas and forcing the shared dictionary to be low-rank so it does
not represent class-specific features [178]. The authors suggest the following objective
function:

argmin
Z,D̄

∑
i

ri(Xi, Z̄, D̄) + g(Z) + λ∥Z∥1,1 + η∥D0∥∗ (5.41)

ri(Xi,Z,D) = ∥Xi − D̄Z̄i∥2 + ∥Xi −DcZ
c
i −D0Z

0
i ∥2 +

∑
k>1,k ̸=c

∥DkZ
k
i ∥2 (5.42)

g(Z̄) = ∥Z0 −M0∥22 +
C∑
c=1

(∥Zc −Mc∥22 − ∥Mc −M∥22) + ∥Z∥22 (5.43)

where c is the class of Xi, the ith sample. D̄ = [D D0] denotes the concatenation of the
class-specific dictionaries and the shared one. The same notation is used for Z̄ = [ZT ZT

0 ]
T.

Mi = [mi, . . . ,mi] and M = [m, . . . ,m] are the mean matrices. The classification scheme
has also been adapted to take account of the specific features of the shared dictionary.

z̄ = argmin
z̄

1

2
∥x− D̄z̄∥22 + λ∥z0 −m0∥22 + λ1∥z̄∥1 (5.44)
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Figure 5.14: Illustration of the benefits of the shared dictionary and constraints on bad
classes. X belongs to the third class. Without dictionary constraints, X may have fea-
tures belonging to different classes, making classification difficult (left). A shared dictionary
containing features that the different classes have in common overcomes this problem, but
there is no guarantee that a linear combination of atoms can mimic a feature from a par-
ticular class (middle). We will therefore try to reduce the impact of the other classes when
learning to be sure of creating atoms capable of describing this feature sparsely (right).

argmin
c

ω∥x−Dczc∥22 + (1− ω)∥z0 −m0∥22 (5.45)

where ω ∈ [0, 1] balances the contributions of the two terms. This method showed better
results than the previous ones but still suffers from the same disadvantages. Many atoms
look similar in the same class, and most of the time, there are translated versions of
one another. Moreover, for large dimensions, dictionary learning suffers the curse of
dimensionality.

We propose to adapt dictionary learning to its convolutional version for classification.
This would reduce the size of the dictionary as there would not be the shifted versions
of a filter. Also, as CSC works with blocks, the size of the samples is not so relevant
anymore. Learning and testing can be done on images of different sizes. For our case, we
have focused on the latter Fischer Discrimination Dictionary Learning (FDDL), but the
convolutional formalism made several terms irrelevant. First, the discriminative coefficient
term g has been removed as CSC has no equivalent. We propose the following objective
function ∀k:

argmin
z,d

∣∣∣∣∣∣∣∣xk−
n∑

j=0

dj ∗zk,j
∣∣∣∣∣∣∣∣2

2

+∥xk−
∑

c∈C(k)

dc ∗zk,c∥22+
∣∣∣∣∣∣∣∣ n∑

j≥1,
j /∈C(k)

dj ∗zk,j
∣∣∣∣∣∣∣∣2

2

+λ∥z∥1,1 (5.46)

The first term is a fidelity term on the kth sample of x. The second term is a fidelity
term restrained on the classes to which xk belongs. The third term is a constraint on the
contribution of the classes xk does not belong to. The last term promotes sparsity in the
code. We use a General Consensus ADMM to optimise the function. The classification
scheme is the same as LRSDL, described by Equations 5.44 and 5.45.
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Figure 5.15: Additive manufactured aluminium cubes used for classification.

In this section, we needed several samples to classify so we did not use the usual tro-
phy. The experimental data considered belong to a set of Aluminium cubes created by
Laser Powder Bed Fusion (LPBF) additive manufacturing process using different process
parameters (laser power and speed). The dense acquisition was made on a circular tra-
jectory with 900 projections. The voxel size is 20.8µm, voltage is 140 kV, and current is
100µA. So far, we have only been able to test our results on four samples. Initially, we
reconstructed four cubes using all available projections to learn dictionaries from these
volumes. However, in the second phase, sparse reconstructions with 100 projections will
be used to test our classification methods. The dense samples are depicted in Figure
5.15. The features to be represented are diverse, including cracks, porosities, bubbles,
inclusions, and pores. Nevertheless, within a single sample, the texture remains fairly
consistent. The intra-class variance is acceptable, while the inter-class variance is higher.

We tested our method and compared it to other state-of-the-art techniques. Unfortu-
nately, due to implementation time constraints, the state-of-the-art methods are in 2D,
while our implementation is in 3D. For each method, 8×8 blocks were classified into one
of four classes. For each method, the percentage of exactitude is reported. It is noted
that the percentage is relatively low for each method. This is due to the substantial con-
tribution of the shared dictionary and the areas without distinctive features. Most of the
misclassified blocks are homogeneous regions.
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Table 5.4: Results and comparison of classification of aluminium cubes blocks

Methods Exactitude [%]
DLSI [173] 31
SRC [171] 38

COPAR [176] 41
LRSDL [178] 53
Our method 61

Currently, the results are rather unsatisfactory. It would be prudent to test the meth-
ods on a different dataset to determine if the results vary. The classification step needs
modification to address the issue of the shared dictionary, which describes almost all the
energy in patches. Perhaps these cases should be excluded from classification, and such
patches ignored. It would also be wise to study the impact of patch size, as certain
features, like large bubbles, extend beyond the window of a single patch.
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Chapter 6

Conclusion

The objective of this thesis was to propose a methodology for integrating a priori infor-
mation into the X-ray tomographic reconstruction process in an industrial context. We
considered the sparse-view scenario, where the number of available projections is limited.
Constraints related to acquisition time or radiation dose often prevent us from obtaining
a sufficient number of projections, making sparse-view increasingly common. However,
this is a challenging problem because the lack of information introduces significant arte-
facts during reconstruction, severely reducing its quality. Therefore, finding solutions to
this challenge is essential. In this thesis, we did not aim to propose a single method but
rather a methodology, as it is crucial to adapt each process to the studied part and the
industrial needs. We presented a series of techniques and ideas that can be selected to
leverage the available a priori information that the industry possesses. We assumed that
the industry has access to a CAD model of the inspected object and a reconstruction of
an object similar to the one of interest. We are not in a situation where we have enough
information to train a model or learn a distribution. The a priori information we have is
almost exclusively the "theoretical" geometry of the object. This is where the difficulty of
sparse-view lies. The available a priori information, such as the CAD, does not provide
information of interest, since it is precisely the deviations from this theoretical design that
we seek to evaluate with tomography. Therefore, it is essential to propose methods that
are robust to the variations present in the actual object.

Our work begins with selecting the best projections for tomographic reconstruction,
as described in Chapter 2. Not all projections provide the same amount of information,
and it is important to choose the views that complement each other best, especially when
they are limited in number. We proposed methods based on the Empirical Interpolation
Method, testing several variants: DEIM, QDEIM, and CQDEIM. These methods are fast,
simple to implement, and have shown a real gain in sparse-view reconstruction, with
improvements of up to several dB in PSNR. Projection selection is particularly promising
and should be further explored with the integration of more physical effects, as well as the
consideration of regions of interest. We aim to develop methods tailored to specific types
and locations of known defects, in order to propose a trajectory that is even more specific
to the experimenter’s needs. We would like to further refine the selection of trajectories
by incorporating variable magnification factors and tilted detectors.

Next, we proposed registration methods in Chapter 3. Registration and tracking
are well-known problems in optics, so we drew inspiration from work in these fields to
propose a Point Visual Servoing method and an Image-Based Visual Servoing method.
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The first, Convex Hulls Iterative Inverse Perspective Matching, is based on detecting the
convex hull points of the CAD and experimental projections. These points are matched
to propose a registration. In the second IBVS-based method, projections are simulated
from the CAD and compared to experimental projections to suggest a movement that
corrects the position of the CAD to match the real object. Both proposed methods are
complementary: the first is faster, while the second is more precise. Ultimately, we achieve
object registration with an accuracy of a few pixels. Having the CAD and the real object
in the same reference frame is particularly useful as it allows us to directly use the CAD
for volume reconstruction. The method must be extended to register greyscale features.
This would allow the alignment of parts with interval grooves. Furthermore, extensions of
our methods need to be developed to enable registration based on truncated projections
of the object.

In Chapter 4, we leverage this registration to reduce the volume to be reconstructed
using a mask. The mask is obtained by voxelizing the CAD mesh, allowing us to select only
the voxels that potentially contain material during reconstruction. The mask significantly
improves the reconstruction, reducing artifacts, providing sharper discontinuities, and
smoother homogeneous areas, and increasing the PSNR by several dB. The reconstruction
on the mask can be adapted to all algorithms by defining new masked projection and
back-projection operators. We went even further and experimented with performing a
reconstruction on a mesh using BVH to accelerate ray tracing. We transformed the CAD
into a volumetric tetrahedral mesh and implemented ray tracing on tetrahedra. It is quite
challenging to create a mesh directly from the CAD that is well-suited for the object to
be reconstructed, so we attempted to develop an adaptive meshing method. Although
we could not fully complete our developments, the initial results are very encouraging.
We achieved high-quality reconstruction with fewer unknowns than in the conventional
voxelized version. Currently, we are limited by computation times, but reconstruction on
a mesh presents a promising potential. This work must be continued in order to explore
all the potential opportunities it presents.

Subsequently, in Chapter 5, we focused on the reconstruction step and post-processing
to improve sparse-view reconstruction. Since we cannot effectively learn an image texture
from a CAD and generally do not have access to databases, we used sparse coding and
dictionary learning. Dictionary learning allows for effective denoising of small blocks of
the volume to be reconstructed by assuming that these blocks are sparse in a redundant
dictionary. This method has proven effective for image denoising, and we tested it on
tomographic reconstructions. However, this method is computationally expensive and
does not account for the continuity between blocks. We proposed convolutional sparse
coding to address these challenges. In this thesis, we proposed an efficient implementation
of CSC that enables not only denoising but also super-resolution and regularisation. We
even show some results on a classification problem. The CSC shows promising results,
but there are still many areas for improvement. By incorporating regularisation terms
into the basis pursuit, using blocks of variable sizes, and possibly exploring multi-layered
approaches, the results could be further enhanced.

X-ray tomography is a vast and multidisciplinary field. It is necessary to advance
it by combining methods and integrating as much a priori information as possible. By
combining the improvements of each method, it will become possible to achieve sparse-
view reconstructions with good quality, potentially in a fully automated manner.
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Appendix A

Appendix

A.1 Interaction matrix for visual servoing

To handle a general case with arbitrary features, we provide a method for computing the
interaction matrix Lc. Let us define Ps as one of the features composing the pattern in
the scene, parameterised by P. Similarly, we define pi as one of the features forming the
resulting image after projection, parameterised by p. Consider a parametrizable geometric
primitive in the scene, Ps, which can be generally described by the equation:

h(X,P) = 0, (A.1)

where h defines the primitive and the parameter P represents one of its configurations.
Our objective is to estimate the value of the parameters P in order to reconstruct and
locate the primitive Ps, described by h (the type of primitive to be reconstructed is
assumed to be known a priori). To achieve this, the representation of Ps by the set of
parameters P is chosen such that it is complete and unique. Thus, for any configuration
of the primitive, there exists only one unique set of values for P corresponding to that
configuration.

Using the perspective projection equation, and after rearranging the terms, we obtain:

h(Zx,P) = 0 and h′(Z,x,P) = 0. (A.2)

The implicit function theorem guarantees that under the condition ∂h′

∂Z
̸= 0 (which is

satisfied in non-degenerate cases, such as when a line projects to a point), there exists a
unique function f in a neighbourhood of the solution to EquationA.2 such that:

Z = f(x,P). (A.3)

Since pi is the projection of Ps onto the image plane, using the preceding equations, we
can write:

h′(x,P) = 0, (A.4)

which, after reparametrisation, can be rewritten as:

g(x,p) = 0. (A.5)
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The calculation of the interaction matrix can now be carried out under the assumption
of rigidity of the geometric primitive:

ġ(x,p) = 0, ∀x ∈ Pi, (A.6)

leading to:
∂g

∂p
(x,p)ṗ = −∂g

∂x
(x,p)ẋ. (A.7)

By incorporating the optical flow equations into ẋ, we obtain:

∂g

∂p
(x,p)ṗ = −∂g

∂x
(x,p)LcT, (A.8)

where T is the kinematic twist that represents the relative velocity of the scene with
respect to the camera. To solve for Lc analytically, or through a system, consider:

∂g

∂p
(xi,p)ṗ = αT

i , i ∈ [1,m], (A.9)

−∂g
∂x

(xi,p)Lc
T = βT

i , i ∈ [1,m], (A.10)

where m is the dimension of the parametrisation. Solving for Lc
T yields:

Lc
T = (αT)−1βT. (A.11)

The matrix Lc has dimensions m×6. To convert from one parameterisation p′ to another
parametrisation p, we use:

LT(P,p′) =
∂p′

∂p
LT(P,p). (A.12)

A.2 Projection of a convex hull

We will show that the points on the convex hull of the projection onto the detector are
the projections of the points on the convex hull of the 3D object. Here, we model the
CAD as a set of triangles, which is equivalent to considering the STL model. The camera
or X-ray source is at the origin O. Let’s consider a line AB of the convex hull of the
projection. By definition, all the points on the convex hull are on the same side of AB
(or belong to the line); conventionally, we say these points are ’beneath’ the facet AB
(opposed to ’beyond’). Now, let’s consider the points A’ and B’ of the object from which
A and B originate. We have P (A′) = A and P (B′) = B (A′ and B′ may not be unique,
but their existence is guaranteed; otherwise, A and B would not be defined). Now, let’s
consider the plane ∆(A′B′O) and a point p on the 3D convex hull, denoted as S. If for
every p in S, p is in or beneath the plane, then all the points in S are on the same side of
the plane ∆(A′B′O), so the points A′ and B′ belong to the convex hull of the object. If
there exists a p for which this property is not satisfied, then P (p) is beyond AB, so AB
is not a side of the convex hull, which contradicts the definition of the points A and B.
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O

A’
A

Beneath A

Beyond A

Figure A.1: Illustration of the projection of a convex hull point

A.3 Iterative Inverse Perspective Matching

We can demonstrate that the iterative inverse perspective matching converges monotoni-
cally towards a local minimum. We denote Y0 the initial set of image features, R0 = I3
the initial rotation, t0 = 0 the initial translation and H0 the initial homography made
with the rotation and the translation. Given Yk=

{
Yk

i

}
i

= Hk(Y0), we can define the
errors:

ek =
1

N

N∑
i=1

∥Xk
i −Yk

i ∥2 (A.13)

dk =
1

N

N∑
i=1

∥Xk
i − (RkY0

i + tk)∥2 (A.14)

The error ek represents the error at the start of the kth iteration after the matching
process, while dk represents the error at the end. The relation dk ≤ ek holds, otherwise if
dk > ek, then (Rk = I3, tk = 0) would be a better solution to the least-squares problem,
which is impossible by definition. During the iterations, the movement Hk is applied to
the set Y0. If the matching does not change, then:

dk =
1

N

N∑
i=1

∥Xk
i −Yk+1

i ∥2 (A.15)

However, if Xk changes:

∥Xk+1
i −Yk+1

i ∥ ≤ ∥Xk
i −Yk+1

i ∥ (A.16)

Which leads to the following equations:

0 ≤ dk+1 ≤ ek+1 ≤ dk ≤ ek , ∀k (A.17)

The procedure monotonically converges to a local minimum.
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A.4 Effects of the simulated annealing on the Robust Hy-
brid Visual Servoing

The algorithm for the Robust Hybrid Visual Servoing method is summarised below:

Algorithm 12: Robust Hybrid method
Data: CAD file, Experimental projections pexp, Experimental setup, initial position

H0, threshold ϵ, step λ, timestep ∆t
Result: H
Compute projections p at H0

H, p← H0, ProjH0(CAD)
i = 0
s∗ = contours points from pexp

s = contours points from p
while visual error > ϵ do

v = −λL+
e (s− s∗)

H = H+ v ·∆t
Recompute p and s
ϵ = ||s− s∗||
if i % 10 ==0 then

Update H with simulated annealing
end
i = i +1

end
Choose moment features and compute the new Le

s∗ = moments features from pexp

s = moments features from p
while visual error > ϵ do

v = −λL+
e (s− s∗)

H = H+ v ·∆t
Recompute p and s
ϵ = ||s− s∗||
if i % 10 ==0 then

Update H with simulated annealing
end
i = i +1

end
return H

To demonstrate the benefits of simulated annealing, we will show the result of a
registration without this step. Figure A.2 shows the overlapping after registration. The
results are not satisfactory, the algorithm has almost converged after the first half with
points registration but then diverged with moments. The shown results are taken from
the iteration with the best overlapping score. Table A.1 shows the Hausdorff distance
and the accuracy with and without the simulated annealing. The simulated annealing is
clearly essential to the method. This can also be seen in Figure A.3 and A.4.
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(a) Front view (b) Transverse view

Figure A.2: Illustration of the overlapping between binarised experimental images (left) and
simulations (right) for the front and transverse views without simulated annealing.

Table A.1: Quantitative registration results for the star trophy without simulated annealing

Metric Front View Transversal View
Hausdorff distance [pixel]

Before registration 181.1 218.8
After registration 2.000 −→42.48 2.236 −→21.58

Accuracy [%]
Before registration 63.32 69.55
After registration 99.64 −→ 96.49 99.67 −→ 96.22
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(a) Low order moments (b) Symmetric moments

(c) Antisymmetric moments (d) High order moments

Figure A.3: Image moments convergence for the transverse view without simulated anneal-
ing
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Figure A.4: Parameters convergence. First row represents the angle (ωx, ωy, ωz) [◦], second
row represents the translations(tx, ty, tz) [mm].
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A.5 Matching Pursuit Algorithm

Algorithm 13: Matching Pursuit
Data: Dictionary D ∈ Rm×n

Signal x ∈ Rm

Sparsity level τ
Convergence criteria ϵ

Result: Representation support S
Sparse reconstruction z ∈ Rn

Initialise S = ∅, R = x
while ∥R∥2 < ϵ and ∥zs∥0 < τ do

Find dk ∈ D with maximum inner product |⟨R,dk⟩|
Update support S ← S ∪ {k}
Update code zk ← ⟨R,dk⟩
Compute new residual R← R - ⟨R,dk⟩

end
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A.6 ADMM for basis pursuit

Algorithm 14: Scaled ADMM for linear system with ℓ1 norm constraint
Data: Initial guess x0 ∈ Rm, ρ parameter

Signal x ∈ Rm

Result: Argmin x ∈ Rm

Initialize z0 = x0,uk = 0
while the convergence criteria have not been met do

xk+1 = (ATA+ ρI)−1(AT b+ ρy − u)
yk+1 = Tλ/ρ(x+ y/ρ)
uk = uk + xk+1 − zk+1

end

Algorithm 15: Scaled ADMM for basis pursuit with ℓ1 norm and constraint Ax=b
Data: Initial guess x0 ∈ Rm, ρ parameter

Signal x ∈ Rm

Result: Argmin x ∈ Rm

Initialize z0 = x0,uk = 0
while the convergence criteria have not been met do

xk+1 = T1/ρ(y − u)
yk+1 = (I − AT (ATA)−1A)(x+ u) + AT (AAT )−1b
uk = uk + xk+1 − zk+1

end
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A.7 ADMM for CSC

Algorithm 16: ADMM CSC
Data: Initial dictionary {dj}1≤j≤m of m filters

K training images {xj}1≤j≤K of N voxels each
Regularisation parameter λ
Initial penalty parameter ρ
Maximum iterations number jmax

Result: Dictionary {gi}, coefficient maps {yi}
Initialize ∀(k, i): yk,i = yprev

k,i = 0,uk,i = 0
∀i hi = 0, hi = 0, gi = gprev

i = di}
j = 1
while j < jmax do

ĝi = FFT (gi) , ∀i
ŵk,i = FFT (yk,i − uk,i) , ∀k, i

Solve argmin
x̂k

1

2
∥

m∑
j=1

D̂jzk,j − ŝk∥22 +
ρ

2

m∑
j=1

∥ẑk,j − ŵk,j∥22, with

Sherman-Morrison formula ∀k
zk,i = IFFT (ẑk,i) , ∀i
zrelaxk,i = αzzk,i + (1− αz)yk,i

yk,i = Tλ/ρ(zrelaxk,i + uk,i), ∀(k, i)
uk,i = uk,i + zrelaxk,i − yrelax

k,i , ∀(k, i)
ŷk,i = FFT (yk,i) , ∀(k, i)
ŵi = FFT (gi − hi) , ∀i

Solve argmin
d̂

1

2

m∑
j=1

∥Ẑjdj − x̂k

∣∣∣∣∣∣∣∣2
2

+
ρ

2

m∑
j=1

∥ẑj − ŵj∥22, with Sherman-Morrison

formula
di = IFFT (d̂i) , ∀i
drelax
i = αddi + (1− αd)di , ∀i

gi = proxιCPN
(drelax

i + hi) , ∀i
hi = hi + drelax

i − zi, ∀i
yprev
i = yi, ∀i

gprev
i = gi, ∀i

end
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Appendix B

Résumé Etendu

B.1 Contexte

Cette thèse explore des sujets de recherche dans le domaine du contrôle non destruc-
tif industriel par rayons X (CND). Le CND est nécessaire puisqu’il permet d’évaluer les
propriétés d’un matériau ou d’un système sans causer de dommages. Parmi les diverses
méthodes de CND, on note le contrôle ultrasonique, la thermographie, les courants de
Foucault, la radiographie et surtout la tomographie par rayons X (CT). Cette dernière se
distingue comme un outil puissant pour caractériser ou localiser des défauts internes et
vérifier la conformité géométrique d’un objet. L’application de la CT s’est considérable-
ment étendue et son utilisation s’est intensifiée dans de nombreux secteurs industriels,
notamment pour l’inspection de composants afin de détecter des défauts, mesurer des
paramètres géométriques, et pour des applications d’ingénierie inversée. La CT peut
être employée pour inspecter des composants pendant la fabrication, garantissant ainsi
l’intégrité des produits. Bien que son utilisation principale fut longtemps l’imagerie médi-
cale, l’inspection par CT est désormais bien établie dans le domaine industriel. Cepen-
dant, en raison des exigences croissantes et des contraintes sur les processus de contrôle,
celle-ci se doit de constamment évoluer et s’adapter. Que ce soit en termes de qualité
de reconstruction ou en temps d’inspection, la tomographie par rayons X est en con-
stante progression, notamment dans ce qu’on appelle la stratégie de vues éparses. Cette
stratégie consiste à reconstruire un objet en utilisant le minimum possible de projections
radiologiques tout en maintenant une qualité de reconstruction satisfaisante. Cette ap-
proche réduit les temps d’acquisition et les coûts associés. La reconstruction en vues
éparses constitue un véritable défi car le problème tomographique est mal conditionné,
on le dit mal posé. De nombreuses techniques ont été développées pour surmonter cet
obstacle, dont plusieurs sont basées sur l’utilisation d’informations a priori lors du pro-
cessus de reconstruction. En exploitant les données et les connaissances disponibles avant
l’expérience, il est possible d’améliorer le résultat de la reconstruction malgré le nombre
réduit de projections.

Dans la majorité des cas, l’intégration d’informations a priori se fait via un terme de
régularisation qui modélise des connaissances sur l’objet, souvent appris par apprentis-
sage automatique à partir d’échantillons similaires à celui étudié. Cependant, l’utilisation
d’informations a priori peut être étendue à de nombreuses autres étapes du proces-
sus tomographique. Qu’il s’agisse de l’expertise de l’expérimentateur dans le choix des
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paramètres optimaux de la machine, du positionnement précis des objets, de la trajectoire
idéale, ou même de connaissances spécifiques sur le type de pièce inspectée : les informa-
tions a priori peuvent prendre différentes formes. Toutes ces connaissances peuvent être
mises à profit pour améliorer la reconstruction en vues éparses.

Dans notre contexte industriel, par exemple, le modèle de conception assistée par
ordinateur (CAO) de l’objet est souvent disponible, ce qui représente une information
précieuse sur la géométrie de l’objet étudié. Néanmoins, il est important de noter que
le modèle CAO ne fournit qu’une représentation approximative de l’objet. En CND ou
en métrologie, ce sont précisément les différences entre un objet et son modèle CAO qui
sont d’intérêt. Par conséquent, l’intégration d’informations a priori est complexe car ces
informations sont souvent "approximatives" et ne peuvent pas être utilisées telles quelles.
Ainsi, dans cette thèse, nous ne visons pas à incorporer des informations a priori obtenues
à partir de vastes bases de données pour créer un terme de régularisation a priori. Nous
proposons plutôt d’utiliser judicieusement les informations géométriques disponibles à
partir du modèle CAO à chaque étape du processus. Nous ne proposons donc pas une
méthode, mais une méthodologie pour l’intégration des informations géométriques a priori
lors la reconstruction tomographique par rayons X.

Les différents chapitres de cette thèse proposent chacun des innovations pour chaque
étape du processus tomographique. Mis bout à bout, ces étapes forment notre méthodolo-
gie optimisée. La méthodologie est résumée dans la figure B.1 ci-dessous. A travers les
chapitres, nous montrerons à chaque fois des nouveaux résultats sur des données expéri-
mentales d’une pièce en fabrication additive plastique. Cette pièce représente une figurine
en forme de trophée étoile.

Figure B.1: Diagramme du processus tomographique. Les informations a priori sont util-
isées à différentes étapes afin d’optimiser la qualité de la reconstruction en vue éparse.

Le chapitre 1 fournit une introduction générale à la tomographie, couvrant à la fois
les composants physiques pour la génération et la détection des rayons X, ainsi que les
composants mathématiques pour résoudre le problème tomographique.

Le chapitre 2 présente l’état de l’art des méthodes d’optimisation de trajectoire d’acquisition
de projections ainsi que les méthodes que nous avons développées. Nos algorithmes, basés
sur la méthode d’interpolation empirique (EIM), utilisent le modèle CAO comme in-
formation géométrique a priori pour définir les projections les plus pertinentes pour la
reconstruction. Au fur et à mesure de l’avancement de nos recherches, nous avons pro-
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posé plusieurs variantes en fonction de l’algorithme. Les méthodes ont été testées sur de
nombreux objets et certains résultats ont déjà été publiés.

Le chapitre 3 introduit les techniques de recalage 2D/3D. Le recalage est une étape
préliminaire essentielle pour incorporer les informations a priori, car elles doivent souvent
être positionnées dans le même référentiel que l’objet réel. Nous introduirons les concepts
fondamentaux du recalage de modèles CAO sur des objets réels. Deux techniques de
recalage ont été développées et sont présentées : le recalage hybride 3D/2D robuste par
asservissement visuel et la correspondance itérative par perspective inverse sur enveloppe
convexe. Chacune présente des avantages selon les besoins en qualité ou rapidité. La
première méthode utilise l’asservissement visuel et les moments d’image, tandis que la
seconde utilise un schéma itératif proche de l’ICP pour recaler le modèle CAO sur des
projections expérimentales.

Le chapitre 4 propose d’utiliser nos informations géométriques a priori pour fournir
une description mathématique adaptée à l’objet étudié. En utilisant le modèle CAO,
il est possible d’adapter la discrétisation de l’objet pour réduire le nombre de variables
et améliorer la résolution. Nous présenterons des résultats sur les reconstructions dites
masquées ainsi que sur les structures hiérarchiques en arbres mêlées à des maillages.

Le chapitre 5 n’utilise pas d’informations géométriques a priori mais se concentre
plutôt sur l’information de texture et l’apparence des objets reconstruits. Ce chapitre
introduit les concepts fondamentaux du codage parcimonieux et de l’apprentissage de
dictionnaire pour débruiter les reconstructions en vues éparses. Nous présentons une
extension des méthodes classiques utilisant la convolution. Les résultats sur le débruitage,
la régularisation et même la classification seront présentés.

Enfin, le chapitre 6 conclut nos travaux et présente les perspectives futures.

B.2 Contributions

Dans le cadre de mes travaux de recherche, j’ai eu la chance de pouvoir publier mes
contributions.

• Dans un premier article, nous présentons des algorithmes d’optimisation des trajec-
toires d’acquisition basés sur l’interpolation empirique, exploitant les modèles CAO
pour définir les projections les plus pertinentes, augmentant ainsi la qualité des re-
constructions pour des objets complexes.
V. Bussy, C. Vienne, and V. Kaftandjian. Fast algorithms based on empirical in-
terpolation methods for selecting best projections in sparse-view x-ray computed
tomography using a priori information. NDT&E International, 2022.

• Nous avons même pu complétrer nos travaux sur les trajectoires et rajouter une
contrainte physique dans la méthode précédente
V. Bussy, C. Vienne, J. Escoda, and V. Kaftandjian. Best projections selection al-
gorithm based on constrained qdeim for sparse-views x-ray computed tomography.
In 12th Conference on Industrial Computed Tomography (iCT) 2023, 27 Febru-
ary - 2 March 2023 in Fürth, Germany. e-Journal of Nondestructive Testing Vol.
28(3),2023.
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• Par la suite, pour le recalage nous avons publié un article sur l’asservissement visuel
en points et en moments d’images.
Victor Bussy and Caroline Vienne. Robust 3D/2D hybrid registration for inte-
grating a priori CAD model into X-ray Computed Tomography. In ORASIS 2021,
Saint Ferréol, France, September 2021. Centre National de la Recherche Scientifique
[CNRS].

• Cette dernière méthode de recalage a été complétée par un autre article pour
un recalage rapide basée sur la correspondance en perspective inverse des points
d’enveloppes convexes. Dans cet article, nous avons justement utilisé ce recalage
afin d’introduire une notion de masque dans les reconstructions. Cette approche
permet de réduire le nombre de variables et baisser considérablement les artefacts.
Victor Bussy, Caroline Vienne, Julie Escoda, and Valérie Kaftandjian. Sparse-View
X-Ray CT Reconstruction using CAD Model Registration. volume 2022 49th An-
nual Review of Progress in Quantitative Nondestructive Evaluation of Quantitative
Nondestructive Evaluation, page V001T13A001, 07 2022.

• L’idée de réduire le nombre de variables a été poursuivie et nous avons chercher à
utiliser des structures hiérarchiques en arbres mêlées à des maillages pour la recon-
struction ce qui a fait l’objet d’un brevet.

• Nos travaux sur le codage parcimonieux convolutifs et ses applications en débruitage
de volumes reconstruits en vues éparses ont été validés sur des pièces manufacturées
et ont montré des résultats prometteurs, ouvrant la voie à des améliorations futures
dans les domaines du contrôle non destructif et de la métrologie industrielle.
Chuan Huang, Paul Vaska, Yongfeng Gao, Shaojie Chang, Thomas Wesley Holmes,
Amir Pourmorteza, and Jerome Liang. Proceedings of the 17th international meet-
ing on fully 3d image reconstruction in radiology and nuclear medicine, 2023.

• Nous avons déroulé notre méthodologie entière pour la reconstruction d’un objet
métallique en fabrication additive. Cette approche a permis d’améliorer significa-
tivement la précision des reconstructions tout en réduisant les temps d’acquisition.
Victor Bussy, Caroline Vienne, Julie Escoda, and Valerie Kaftandjian. Méthodologie
optimisée pour la reconstruction tomographique avec ajout d’informations a priori
pour l’inspection par rayons x. e-Journal of Nondestructive Testing, 28, 09 2023.

B.3 Introduction à la reconstruction tomographique par
rayons X

Figure B.2: Représentation schématique d’un processus de tomographie par rayons X
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Pour introduire notre méthodologie optimisée pour la tomographie industrielle, il est
primordial d’abord de comprendre l’ensemble du processus tomographique. Les rayons X
sont générés par une source, absorbés par l’objet étudié puis détectés. Le signal sera en-
suite traité pour reconstruire l’objet en 3 dimensions et inspecter l’intérieur de la matière.
Le processus global est explicité dans le diagramme B.2. Les concepts abordés ici sont
développés dans les références [1, 3, 15].

B.3.1 Génération des rayons X

Les rayons X ont été découverts par Wilhelm Conrad Röntgen, une découverte qui lui
valut le prix Nobel en 1901. Leur capacité à pénétrer la matière organique permet de
différencier nettement les tissus et les os sur les images radiographiques. Les rayons X ont
une longueur d’onde variant entre 0,01 nm (rayons X durs) et 10 nm (rayons X mous), mais
on les décrit plus souvent en termes d’énergie, allant de 100 eV à 1 MeV. Les dispositifs
les plus courants pour générer des rayons X dans les domaines médical et industriel sont
les tubes à rayons X, tels que le tube Coolidge. Ce dernier comporte une cathode et une
anode ; la cathode est chauffée pour libérer des électrons par émission thermoïonique, et
ces électrons sont ensuite accélérés vers l’anode sous l’effet d’une différence de potentiel.
Lorsque les électrons entrent en collision avec l’anode, plusieurs interactions peuvent se
produire :

• Rayonnement de freinage (Bremsstrahlung) : l’électron est dévié par le champ élec-
tromagnétique du noyau de l’atome et perd de l’énergie sous forme de rayonnement
continu (voir Figure B.3a).

• Radiation caractéristique : l’électron incident éjecte un électron d’une couche in-
terne de l’atome, ce qui libère de l’énergie sous forme de photons lorsque l’atome se
réorganise (voir Figure B.3b).

• Interaction directe électron-noyau : l’électron transfère toute son énergie sous forme
de photon, mais cette interaction est rare (voir Figure B.3c).

Figure B.3: Principe de génération des rayons X. Image adaptée de [1]. (a) Effet
Bremsstrahlung. (b) Radiations caractéristiques. (c) Interaction directe électron/noyau.
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B.3.2 Absorption des rayons X

Une fois générés, les rayons X pénètrent l’objet à étudier et subissent diverses interac-
tions avec le matériau traversé, telles que l’effet photoélectrique, la diffusion Compton
incohérente, la diffusion Rayleigh et la production de paires. L’effet photoélectrique pré-
domine à basse énergie, tandis que la diffusion Compton prend de l’importance à haute
énergie. Ces interactions sont modélisées par le coefficient d’atténuation linéaire µ, mesuré
en cm−1, qui dépend de l’énergie du photon et du matériau traversé.

Le processus d’atténuation globale des rayons est décrit par la loi de Beer-Lambert, qui
relie l’intensité transmise I à l’intensité initiale I0 en fonction du coefficient d’atténuation
µ et du chemin L parcouru par le faisceau. Si on note µi l’atténuation du ième pixel et ℓi
la contribution de ce pixel, l’équation s’écrit :

ln

(
I

I0

)
= −

∑
i

µiℓi. (B.1)

B.3.3 Détection des rayons X

Une fois que le faisceau de rayons X a interagi avec l’objet, le rayonnement atténué est
détecté par le système d’imagerie. Historiquement, les détecteurs de rayons X étaient
basés sur la technologie des films photographiques. Cependant, ceux-ci ont été progres-
sivement remplacés par des détecteurs numériques. Ces détecteurs de rayons X se répar-
tissent en trois catégories principales : les détecteurs à ionisation gazeuse, les détecteurs
à semi-conducteurs et les détecteurs à scintillation. Parmi eux, les détecteurs à scintil-
lation prédominent dans les systèmes contemporains de tomographie industrielle. Ces
détecteurs sont constitués d’un cristal scintillateur couplé à un photodétecteur. Lorsque
les rayons X frappent la couche scintillante, ils sont convertis en photons de lumière vis-
ible. Cette lumière est ensuite absorbée par le photodétecteur, qui génère une charge
électrique proportionnelle à l’énergie du rayonnement X [16, 18].

B.3.4 Reconstruction tomographique

Les méthodes de reconstruction tomographique peuvent être analytiques ou itératives.
Parmi les méthodes analytiques, la transformation de Radon, qui représente l’intégrale de
ligne de la fonction d’atténuation, est un concept clé. Elle est utilisée dans les algorithmes
de reconstruction tels que la rétroprojection filtrée (FBP). Ces méthodes permettent de
reconstituer l’image de l’objet à partir des projections radiographiques collectées sous
différents angles.

Il existe de nombreux algorithmes itératifs pour résoudre le problème de la tomo-
graphie. Les plus connus sont les algorithmes de Landweber, souvent utilisés pour la
reconstruction itérative des images en rayons X. Ils fonctionnent par descente de gradient
en appliquant l’opérateur adjoint au résidu de la projection. Parmi ces méthodes, on
retrouve l’Algebraic Reconstruction Technique (ART), mais aussi toutes ses variantes.

D’autres méthodes d’optimisation sont aussi couramment utilisées comme l’algorithme
des gradients conjugués (CGLS) et l’algorithme Maximum Likelihood Expectation Maxi-
mization (MLEM). Mais récemment ce sont les méthodes proximales qui sont les plus pop-
ulaires car elles permettent d’inclure du Plug-and-Play. L’Alternating Direction Method
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of Multipliers (ADMM) et l’algorithme Primal-Dual Hybrid Gradient (PDHG) sont les
plus célèbres de ce genre.

B.3.5 Post-traitement de la reconstruction

Une fois la tomographie terminée, on peut directement passer au diagnostic et à l’étude
de l’image reconstruite. Malheureusement, et particulièrement en vues éparses, lors de la
reconstruction de nombreux bruits et différents types d’artefacts surviennent et réduisent
la qualité de reconstruction et donc rendent difficile le diagnostic. A cause du durcissement
de faisceaux, des effets de cône, du manque de projections ou d’un mauvais alignement
de l’appareil de mesure, la qualité de reconstruction peut être compromise. Il faut alors
quantifier la qualité de reconstruction. Il existe de nombreuses métriques comme l’erreur
quadratique moyenne, pic du signal sur bruit, ratio signal-bruit, similarité de structure,
etc. Ces dernières nécessitent une référence pour évaluer une image mais il existe d’autres
méthodes lorsqu’aucune référence n’est disponible.

B.4 Optimisation de trajectoire en vues éparses

L’acquisition de données en imagerie par rayons X est souvent réalisée selon une trajectoire
circulaire autour de l’objet, car celle-ci est facile à mettre en œuvre. Cependant, cette
trajectoire ne respecte pas le critère de Tuy pour la complétude des données, qui exige
que chaque plan contenant un point d’intérêt coupe la trajectoire de la source de manière
non tangentielle. Cela a conduit à l’exploration de trajectoires alternatives, notamment
les trajectoires hélicoïdales, utilisées en imagerie médicale et industrielle.

Le premier concept clé est l’importance des rayons tangents pour bien reconstruire les
contours et capturer les discontinuités dans les images. Ce concept a été détourné selon
plusieurs critères, comme : la richesse spectrale, l’entropie, la densité fréquentielle ou les
wavelets, etc. Un critère de plus en plus populaire est l’indice de détectabilité, qui évalue
la performance d’un ensemble de projections pour une tâche spécifique en utilisant des
observateurs modèles.

Enfin, des méthodes inspirées par les méthodes de modèles d’ordre réduit (ROM) ont
été explorées pour réduire le nombre de projections tout en maintenant une bonne qualité
de reconstruction.

L’une de ces méthodes est l’Empirical Interpolation Method (EIM), utilisée pour
l’échantillonnage parcimonieux et l’approximation d’opérateurs non-linéaires coûteux en
calcul dans les équations différentielles. Elle est utilisée dans divers domaines comme les
éléments finis, en particulier pour les systèmes complexes et de grande dimension, car son
coût de calcul dépend du rang de la décomposition en bases orthogonales propres (POD),
une technique couramment utilisée pour la réduction de dimensionnalité.

L’algorithme DEIM, pour Discrete-EIM, utilise la POD d’une matrice de "snapshots"
pour sélectionner les emplacements d’échantillonnage les plus pertinents. L’intérêt pour
les méthodes d’interpolation empirique a suscité de nombreuses études, donnant lieu à
plusieurs variantes, comme l’algorithme Q-DEIM, qui utilise la décomposition QR pivotée
pour sélectionner les meilleurs emplacements d’échantillonnage. Une variante du Q-DEIM
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applique d’abord une POD sur les snapshots, puis effectue une décomposition QR pour
sélectionner les points d’échantillonnage à l’aide du pivot.

Les méthodes EIM sont prometteuses pour la sélection de projections, mais elles re-
posent uniquement sur des raisonnements algébriques et ne prennent pas en compte cer-
tains aspects physiques comme le bruit, l’absorption ou les artefacts. Cela peut poser des
problèmes dans certains cas, car la vue la plus informative peut également être celle où
le bruit est le plus important. Pour améliorer les résultats du Q-DEIM, il est proposé
d’intégrer les aspects physiques des rayons X en imposant une contrainte sur le pivot de
la décomposition QR, en attribuant un poids à chaque projection potentielle en fonction
de la tâche spécifique (bruit, stabilité du bras robotique, etc.).

Des résultats simulés concernant ces méthodologies ont été publiés, notamment dans
le cadre de l’application sur un modèle CAO d’une grille métallique fabriquée par fab-
rication additive. Les résultats ont montré que l’optimisation des vues améliore la re-
construction des détails, notamment avec une trajectoire sphérique plutôt que circulaire.
La variante avec contraintes a également été testée, intégrant des paramètres physiques
comme l’atténuation, l’espacement des projections et le bruit ; et a montré des résultats
intéressants. Les trajectoires sphériques, avec une magnification constante, ont montré
un plus grand potentiel d’amélioration, surtout avec des comparaisons de projections plus
homogènes.

Dans cette section, nous avons présenté des algorithmes de sélection de trajectoires et
montré les résultats de nos propres algorithmes. Les méthodes que nous avons proposées
sont rapides et faciles à mettre en œuvre, car elles ne nécessitent aucun paramètre à ré-
gler ni de connaissance approfondie de l’objet étudié. Elles nous permettent d’améliorer la
qualité de la reconstruction en utilisant une stratégie de vue éparse. Pour les développe-
ments futurs, nous visons à comparer nos méthodes avec les techniques de pointe et à
développer de nouvelles fonctionnalités dans l’optimisation des trajectoires. Incorporer la
notion de région d’intérêt dans la sélection des vues serait particulièrement bénéfique.
Si une zone spécifique est sujette à des défauts ou à des caractéristiques nécessitant
un diagnostic, améliorer la qualité de la reconstruction dans cette région devient cru-
cial. Des développements supplémentaires sont prévus pour explorer des trajectoires au-
delà de celles avec une amplification constante. De plus, il serait intéressant d’optimiser
l’orientation du détecteur.

B.5 Recalage

Cette thèse vise à intégrer des informations a priori du modèle CAO vers l’objet réel.
Pour se faire, il faut impérativement faire correspondre les référentiels de ces derniers.
Disposer d’une CAO recalée permet non seulement de comparer l’objet à son modèle,
mais également de simuler l’environnement expérimental, les projections, de corriger la
position de la source de rayons X.

Pour aligner le modèle CAO avec l’objet réel, plusieurs stratégies sont possibles.
L’option la plus couramment utilisée est le recalage 3D/3D : l’objet est reconstruit, puis
le volume est recalé avec le modèle CAO. Cette procédure est fréquemment rencontrée
dans les tests non destructifs, car elle permet de comparer directement la reconstruction
avec le modèle CAO pour estimer l’état de surface. Une autre option, appelée recalage
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Reference Random Equidistant

DEIM QDEIM POD-QDEIM

Figure B.4: Coupe transversale d’une grille reconstruit avec 10 projections selon une
trajectoire sphérique utilisant différentes stratégies d’acquisition. Image tirée de [4].
L’optimisation de la trajectoire améliore considérablement la qualité de la reconstruction,
en particulier dans le cas des trajectoires non planes.

(a) Reference (b) Uniform Sampling (c) QDEIM (d) Constrained QDEIM

Figure B.5: Comparaison d’une coupe transversale reconstruite pour différentes stratégies
d’échantillonnage à 40 projections. Image tirée de [9].

Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0116/these.pdf © [V. Bussy], [2024], INSA Lyon, tous droits réservés



3D/2D, consiste à aligner le modèle CAO à partir de quelques projections expérimentales.
Le recalage 3D/2D ne nécessite pas de reconstruction tomographique. C’est cette dernière
stratégie que nous avons choisi d’étudier dans nos travaux.

L’objectif du recalage est d’aligner le modèle CAO avec l’objet physique dans un sys-
tème de coordonnées commun. Cela nécessite de déterminer une transformation entre le
système de coordonnées CAD et le système de coordonnées world. Étant donné que la
plupart des pièces examinées dans cette étude sont non déformables, nous nous concen-
trerons sur les transformations rigides. Les transformations rigides impliquent seulement
six paramètres, représentant une translation 3D et des rotations autour de chaque axe.

Le recalage peut s’appuyer sur des marqueurs fiduciaires ou des cadres stéréotactiques.
On parle alors de recalage extrinsèque basé sur des marqueurs est plus facile. En revanche,
pour le recalage intrinsèque, les caractéristiques naturelles des images sont utilisées. Cela
nécessite de trouver des primitives particulières dans les projections et l’objet 3D et de les
faire correspondre. Les possibles primitives ne se basent pas uniquement sur l’intensité
de l’image, elles peuvent être de toute nature. Dans cette thèse, nous avons choisi de
ne pas ajouter de marqueurs à nos images. Toutes les techniques employées utiliseront
exclusivement des primitives naturelles.

B.5.1 Recalage par Asservissement visuel

Dans cette thèse, nous avons développé deux méthodes de recalage. La première est
basée sur l’asservissement visuel. Pour illustrer le fonctionnement de l’asservissement
visuel, nous montrerons un exemple où les primitives utilisées pour le recalage sont des
points. Comme nous comparerons des images expérimentales avec des images simulées, il
s’agit d’un exemple dit image-based. Nous noterons d la distance source-détecteur, x les
coordonnées d’un point sur le détecteur et X le point correspondant sur l’objet 3D. La
projection perspective donne l’équation :

x =
d

Z
X. (B.2)

Notez que la valeur de Z est approximative ; elle n’est pas supposée être connue au début
de l’algorithme. De plus, la vitesse du point 3D peut être exprimée en fonction de la
vitesse spatiale de la caméra v = (vc,ωc) comme suit :

Ẋ = −vc − ωc ×X. (B.3)

En utilisant les équations B.2 et B.3, nous obtenons :

ẋ = − d
Z
vx +

x

Z
vz +

xy

d
ωx − d

(
1 +

x2

d2

)
ωy + yωz, (B.4)

ẏ = − d
Z
vy +

y

Z
vz + d

(
1 +

y2

d2

)
ωx −

xy

d
ωy − xωz. (B.5)

En réarrangeant les termes, on obtient le résultat souhaité ẋ = Lev, avec :

Le =

− d
Z

0 x
Z

xy
d

−
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1 + x2
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d y

0 − d
Z
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(
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 . (B.6)
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La matrice d’interaction Le dépend de la position de l’objet, un facteur qui reste
inconnu. Par conséquent, une approximation, notée L̂e, est utilisée pour pallier cette
limitation. La matrice d’interaction peut également être approximée par Le∗ , mais ce
choix impacte la trajectoire.

L’aspect critique de la commande visuelle basée sur l’image réside dans la sélection des
bonnes primitives pour le recalage. Ici, nous ne considérerons pas l’intégralité de la pro-
jection, mais nous nous concentrerons uniquement sur ses contours. Nous avons observé
que quelques points bien choisis fournissent suffisamment d’informations pour un recalage
précis. Bien que l’image complète contienne une quantité importante d’informations, nous
nous limitons à nouveau à quelques points pour assurer la robustesse de l’algorithme.

De plus, comme nous nous limitons aux contours, nous avons binariser les projections.
La binarisation des projections s’avère avantageuse car elle rend le processus indépendant
des niveaux de gris. Par conséquent, la connaissance précise de l’énergie de la source ou de
la durée d’exposition n’est plus nécessaire. Cela simplifie considérablement la simulation
de projections. Il suffit uniquement de détecter les intersections entre les rayons et la
CAO. De plus, pour la rasterisation, le fichier CAO est d’abord décimé pour minimiser le
nombre d’éléments [112]. Cette simplification délibérée accélère efficacement l’ensemble
du processus.

Ayant opté pour des images binaires, la prochaine étape consiste à sélectionner des
primitives pour le processus de recalage. La décision a été prise d’utiliser exclusivement
les points formant les contours. Ils existent toujours, sont faciles à détecter et sont en
nombre suffisant.

Les points des contours des images expérimentales seront notés s∗, tandis que ceux des
projections simulées seront représentés par s. L’étape de correspondance sera effectuée
en utilisant l’algorithme ICP. Chaque s∗ se verra attribuer un équivalent dans l’image
simulée. Le déplacement du robot v est donnée selon :

v = −λL̂e

−1
(s∗ − s). (B.7)

En pratique, nous avons observé une dépendance significative de la méthode à la
qualité de l’étape de correspondance ICP. La rotation autour de l’axe vertical Oy présente
un défi particulier en raison de son caractère inobservable dans une vue frontale directe
lors d’une trajectoire circulaire. Pour remédier à ce problème, une solution a été proposée
impliquant un recuit simulé pour la rotation autour de l’axe vertical Oy. Le recuit simulé
est généralement utilisé pour contourner les minima locaux. Dans notre méthode, il a le
double effet d’éviter les minima locaux et d’améliorer la robustesse de la méthode.

Avec l’introduction de la stratégie de recuit simulé, la méthode se montre plus robuste
et donne de meilleurs résultats, bien que le processus de correspondance puisse encore
présenter des erreurs. Une autre solution à ce problème a été proposée : les moments
d’images. L’asservissement visuel par moments d’images n’impliquent pas d’étape de
correspondances. Les primitives sont globales, plutôt que locales [117]. Les moments
d’image servent de descripteurs mathématiques dans l’analyse d’images et la vision par
ordinateur, fournissant une compréhension approfondie des propriétés intrinsèques d’une
image. Ils jouent un rôle fondamental dans la caractérisation d’aspects cruciaux tels que la
forme, l’orientation, la taille et la distribution d’intensité. La méthode a été testée sur des
données simulées dans [12] et réelles dans cette thèse. Les résultats sont satisfaisants en
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(a) Front view final overlap (b) Transverse view final overlap

Figure B.6: Supoerposition finale après 70 itérations en points puis 70 itérations en mo-
ments.

termes de qualité, démontrant clairement les avantages du recuit simulé. Le résultat final
de la superposition des images expérimentales et simulées est présentée dans la figure B.6.
La cible est représentée en noir, le modèle CAO est en blanc et le chevauchement des deux
est montré en gris. Le recalage est très satisfaisant. Les imperfections observées peuvent
être attribuées aux différences entre le modèle 3D et l’objet réel, ainsi qu’aux erreurs de
position de la source entre les deux projections.

B.5.2 Iterative Inverse Perspective Matching

L’appariement par perspective inverse a été initialement introduit par Wunsch et al. [113].
Cette méthode s’apparente à l’algorithme ICP, mais avec une approche distincte im-
pliquant l’établissement de correspondances entre des lignes et des points. Le concept
fondamental de l’appariement par perspective inverse est d’établir des correspondances
entre des primitives 2D de l’image sur le détecteur et des primitives 3D du modèle CAO.
Cependant, ces correspondances sont établies dans le domaine spatial 3D, plutôt que dans
l’espace image 2D. On parle ici de recalage pose-based.

Pour chaque point caractéristique de la projection expérimentale, un rayon est rétro-
projeté jusqu’à la source rayons X. Le processus d’appariement consiste à associer chaque
point 3D du modèle CAO à son rayon le plus proche, et par conséquent à une caractéris-
tique d’image. Chaque point du modèle CAO est ensuite projeté orthogonalement sur son
rayon correspondant, créant ainsi des paires de points. Ce processus garantit qu’à chaque
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point du modèle CAO correspond un point 3D, transformant ainsi le problème initial en
un recalage 3D/3D, généralement plus simple que le recalage 3D/2D.

De plus, afin d’améliorer la robustesse de la méthode, de réduire l’impact des valeurs
aberrantes et d’assurer une stabilité numérique, la distance utilisée est la fonction M-
estimateur de Huber. Le recalage peut être réalisé en utilisant l’algorithme de Kabsch-
Umeyama [100], qui produit la matrice de rotation R et le vecteur de translation t min-
imisant la distance entre le modèle et les points rétro-projetés. Le schéma de contrôle et la
mise à jour de la position sont relativement simples et efficaces sur le plan computationnel.

Cependant, la convergence pratique devient incertaine lorsque l’appariement par per-
spective itérative est appliqué tel quel. L’étape cruciale de l’établissement des corre-
spondances influence fortement la précision des calculs de déplacement. Des associations
incorrectes peuvent entraîner des mouvements erronés. Nous avons donc décidé d’utiliser
deux projections pour améliorer la robustesse de la méthode, une stratégie reconnue pour
son efficacité dans l’amélioration de la convergence [113].

De plus, notre implémentation se distingue par le fait que nous nous concentrons
uniquement sur l’enveloppe convexe du modèle CAO 3D et l’enveloppe convexe de la pro-
jection expérimentale. Ces points sont particulièrement importants dans notre contexte.
D’une part, ils sont relativement rares pour les pièces industrielles. D’autre part, afin
de réduire encore le nombre de points, les points de l’enveloppe 3D sont eux-mêmes fil-
trés. Typiquement, de nombreux points de l’enveloppe 3D ne sont pas responsables de
l’enveloppe convexe de la projection. Ainsi, l’enveloppe convexe 3D est projetée sur le
détecteur à chaque itération. Seuls les points contribuant aux enveloppes convexes des
projections sont conservés. Ce processus élimine les points incapables de générer des cor-
respondances, améliorant la stabilité de la méthode en réduisant les appariements erronés,
qui pourraient rallonger la phase de minimisation en raison d’erreurs importantes.

La méthode a d’abord été validée sur des données simulées et les résultats correspon-
dants ont été présentés dans [13], visibles dans la Fig. B.7. Les résultats sont extrêmement
encourageants, certains cas montrant des écarts d’environ un pixel sur le détecteur. En
utilisant deux projections perpendiculaires, nous avons réussi à aligner presque parfaite-
ment la bielle. Cet alignement a même été utilisé pour appliquer un masque lors de la
reconstruction.

La méthode a également été testée sur une pièce réelle avec des projections expérimen-
tales dans [11], où la pièce étudiée était très différente de son modèle 3D. La figure B.8
montre les superpositions initiales et finales après 50 itérations pour une pièce expérimen-
tale recalée sur deux projections perpendiculaires. La cible est représentée en noir, tandis
que la projection du modèle CAO est en blanc. La superposition des deux est en gris.
L’objectif est de maximiser la zone grise. La première ligne représente la superposition
initiale, et la seconde montre la superposition après le recalage. La vue transverse montre
un alignement très précis, avec seulement une petite portion des contours non superposée.
Le tableau B.1 présente la distance de Hausdorff en pixels et la précision du recalage.

B.6 Reconstruction sur un masque

Dans l’étape précédente, nous avons aligné notre modèle CAO. Nous pouvons désormais
incorporer directement nos a priori et passer à la phase de reconstruction. Traditionnelle-
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ment, cette reconstruction est effectuée sur une grille de voxels, mais d’autres méthodes
de discrétisation de l’espace existent.

Les méthodes de reconstruction, qu’elles soient analytiques ou itératives, nécessitent
une discrétisation de l’espace. Bien que plusieurs types de discrétisations existent, la
plus couramment utilisée est la fonction indicatrice sur une grille cartésienne régulière,
ce qui donne les pixels/voxels habituels. Cependant, cette approche, bien que simple,
consomme beaucoup de mémoire et ne permet pas de représenter efficacement des objets
curvilignes, ce qui peut entraîner des artefacts d’aliasing. Nous avons d’abord conservé
l’approche conventionnelle basée sur les voxels, mais en l’optimisant grâce à l’intégration
d’un masque. Plutôt que de modifier la base de représentation, nous avons ajouté une

(a) Vue frontale initiale (b) Vue transverse initiale

(c) Vue frontale finale (zoom) (d) Vue transverse finale (zoom)

Figure B.7: Recalage de la bielle. Les zones bien recalées sont en gris, les projections
cibles sont en noir et les projections du modèle CAD en blanc.
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(a) Vue frontale superposition initiale (b) Vue transverse superposition initiale

(c) Vue frontale superposition finale (d) Vue transverse superposition finale

Figure B.8: Superpositions initiales et finales.

contrainte : seuls les voxels appartenant au "masque" seront pris en compte dans la
reconstruction. Un masque est une matrice booléenne où les valeurs True/1 représentent
les voxels à reconstruire, tandis que les autres sont ignorés. Cela réduit le nombre de
variables à résoudre dans le système tomographique, ce qui permet une reconstruction de
qualité supérieure avec un nombre réduit de projections. Cette stratégie permet de réduire
les artefacts, d’améliorer la précision dans les zones d’intérêt et d’accélérer le processus
de reconstruction.
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Table B.1: Résultats quantitatifs du recalage pour le trophée étoilé.

Métrique Vue frontale Vue transverse
Distance de Hausdorff [pixel]

Avant recalage 181.1 218.8
Après recalage 13.15 4.000
Précision [%]

Avant recalage 63.32 69.55
Après recalage 97.77 99.29

B.6.1 Reconstruction masquée

Pour incorporer le masque, il est nécessaire de modifier les opérateurs de projection et
rétroprojection. La projection reste simple : on applique le masque binaire au volume
avant d’utiliser les outils conventionnels. Cependant, la rétroprojection est plus complexe
car elle dépend de la longueur du rayon traversant le masque.

Il existe deux approches : l’approche "négative", qui exclut les voxels hors du masque,
et l’approche "positive", qui rétroprojette les valeurs sur tout le volume, puis applique
le masque après coup. Les deux méthodes ajustent les valeurs rétroprojetées pour corre-
spondre à la longueur parcourue dans le masque.

Les deux stratégies sont décrites par l’équation :

ri

∥Ãi∥2
=

r̃i
∥Ai∥2

,

où ri est le résidu à rétroprojetter, ∥Ai∥ est la norme de la matrice de projection, et
le tilde désigne les opérateurs masqués. Des valeurs incohérentes peuvent apparaître aux
bords du masque, et ces points non physiques doivent être retirés avant la rétroprojection.

B.6.2 Résultats expérimentaux

L’efficacité de la reconstruction masquée a été validée sur des données simulées et réelles.
Dans nos travaux précédents [13], l’utilisation du masque a permis d’améliorer la prob-
abilité de détection d’un défaut de 3,576% à 16,66%. Nous avons également testé la
reconstruction masquée sur un objet expérimental, en utilisant une version masquée du
SIRT sur 150 itérations avec un volume de 1772 × 1204 × 1204 voxels.

Figure B.9 compare les reconstructions avec et sans masque pour 100 et 928 projec-
tions. Le masque améliore significativement la clarté des images, réduisant le flou et
révélant des détails plus fins, comme les imperfections liées à la fabrication additive. Bien
que certaines lignes discrètes subsistent dans les reconstructions masquées, les artefacts
sont nettement moins marqués que dans les méthodes non masquées.

B.7 Reconstruction sur arbres et maillages

Dans notre recherche, nous avons cherché à explorer un cadre plus polyvalent et adaptable
que celui basé sur les voxels. Les maillages se sont rapidement imposés comme une option
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(a) Sans masque, 928 projections (b) Masqué, 928 projections

(c) Sans masque, 100 projections (d) Masqué, 100 projections

Figure B.9: Comparaison de la reconstructions SIRT avec et sans masque pour 928 et 100
projections.

attrayante en raison de leur flexibilité. Cependant, les études antérieures ont montré que
les résultats obtenus avec les maillages sont souvent limités, principalement à cause de
la lenteur de convergence due à l’intensité des calculs liés aux opérateurs de projection
et rétroprojection. En parallèle, les structures arborescentes, comme les octrees, sont
déjà optimisées pour le lancer de rayons grâce à des algorithmes rapides développés pour
l’infographie et la vision par ordinateur. Notre objectif est de combiner les forces de
ces deux structures afin d’optimiser notre processus de reconstruction. En intégrant un
maillage dans une structure hiérarchique, nous escomptons bénéficier des avantages de
vitesse des arbres tout en conservant la flexibilité des maillages.

La première structure que nous avons examinée pour réduire le nombre de variables
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a été l’octree [122]. Toutefois, l’inconvénient majeur de l’octree est qu’il divise systéma-
tiquement l’espace en deux parties égales, indépendamment de la répartition des objets.
En alternative, nous proposons l’utilisation d’une structure plus générale, le Bounding
Volume Hierarchy (BVH). Une BVH est une structure de données principalement util-
isée en infographie et géométrie computationnelle pour accélérer les algorithmes de lancer
de rayons et de détection de collisions. Elle permet d’organiser les objets ou les formes
géométriques dans une hiérarchie de volumes englobants, facilitant ainsi les requêtes spa-
tiales comme les tests d’intersection de rayons. Cette organisation hiérarchique permet
de réduire la complexité temporelle de ces tests, la rendant logarithmique par rapport au
nombre d’objets dans la scène. Chaque nœud dans un arbre BVH représente un volume
englobant qui encapsule un ensemble d’objets ou d’autres volumes englobants.

A B

C

D

A

B

C

D

Figure B.10: Représentation d’une BVH. À gauche, la scène contient six objets distribués
hiérarchiquement dans des boîtes englobantes (A, B, C, D). À droite, l’arbre BVH de la
même scène est représenté. Chaque boîte contient soit des objets, soit d’autres boîtes
englobantes.

En ce qui concerne les maillages, il a d’abord été nécessaire de convertir ces modèles
en maillages volumétriques tétraédriques. L’avantage d’utiliser des tétraèdres réside dans
leur simplicité et leur compatibilité avec les outils efficaces existants pour nos algorithmes.

Lors de notre première tentative de reconstruction, la taille des cellules était trop
importante. Le maillage comportait 1 257 tétraèdres pour un volume qui correspondait
auparavant à 4x1204x1204 voxels, dont 643 926 faisaient partie du masque (représentant
seulement 0,2% des variables comparées à la description voxel). Le maillage était trop
grossier, et la forme de l’objet était à peine reconnaissable. Les tétraèdres étaient trop
grands et irréguliers, donnant une apparence très polygonale à la représentation, à la
fois désagréable et imprécise. Nous avons donc procédé à une nouvelle reconstruction en
augmentant considérablement le nombre de tétraèdres, atteignant 2 172 096 tétraèdres
(soit 37% des variables par rapport à la description voxel). Chaque tétraèdre a été divisé en
quatre tétraèdres plus petits et un octaèdre, qui a ensuite été subdivisé en huit tétraèdres.
Cette opération a été répétée plusieurs fois pour affiner le maillage. Une limite supérieure
à la taille des cellules a également été imposée afin d’assurer la présence de petites cellules,
même dans les régions vides, permettant ainsi de réduire le nombre total de cellules. La
Figure B.11a montre la reconstruction obtenue, qui est visuellement améliorée, bien que
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des imperfections subsistent. La forme de l’objet est plus discernable, avec des zones
de matière et de vide mieux définies. Les streak artefacts semblent moins présents par
rapport à la reconstruction voxel, et l’arrière-plan est mieux défini, mais l’affichage avec
des triangles crée un effet visuel rendant la comparaison difficile à l’œil.

Un développement encore inachevé de cette méthode concerne la mise à jour du mail-
lage au fil des itérations de reconstruction. Pour obtenir un maillage optimal adapté à
l’objet reconstruit, il est nécessaire de mettre en place une stratégie d’évolution du mail-
lage au cours du processus. La première stratégie que nous avons envisagée est de calculer
simplement le gradient dans le volume. Si le gradient est trop important, la cellule doit
être subdivisée. Cette opération peut être réalisée à l’aide d’opérations topologiques,
telles que les mouvements bistellaires ou les flips de Pachner [135]. L’avantage de cette
méthode est que nous pouvons augmenter le nombre de cellules si le gradient est trop
fort, et inversement, réduire le nombre de cellules si le gradient est faible. De plus, les
flips ’2-2’ peuvent être utilisés pour aligner les normales des faces avec le gradient. Par la
suite, les sommets peuvent également être déplacés pour améliorer la qualité du maillage.
Nous avons commencé à développer ces méthodes au cours des itérations de SART, mais
nous n’avons malheureusement pas pu mener ces expériences à terme.

La version finale optimisée du maillage contient 84 212 tétraèdres, soit 13% des vari-
ables par rapport à la description voxel. Les résultats visuels montrent une meilleure
représentation de l’objet avec moins de tétraèdres qu’auparavant. Les tétraèdres appa-
raissent plus réguliers, créant l’impression d’un pavage homogène et agréable. La version
non optimisée du maillage présente des pointes et des sommets partagés par plusieurs
tétraèdres, donnant une représentation moins esthétique. Chaque itération a pris environ
5 minutes. La Figure 4.23 montre un zoom sur la coupe transversale avec et sans opti-
misation du maillage. L’optimisation améliore clairement la qualité de la reconstruction.
L’apparence irrégulière de certains tétraèdres est éliminée, au profit d’une représentation
avec des tétraèdres plus équilibrés. Les faces des tétraèdres sont mieux alignées avec les
contours, permettant une délimitation plus nette. L’amélioration du maillage favorise
également l’étude de la connectivité. Avec le maillage optimisé, la branche horizontale à
droite n’est pas connectée à la branche verticale.

À l’heure actuelle, le maillage semble satisfaisant et la reconstruction semble de bonne
qualité. Cependant, comparée à la description voxel, l’image contient moins de nuances de
gris et présente un aspect plus binaire : matière/vide. Ce résultat est encourageant, car il
permet une meilleure segmentation de l’objet et une définition plus claire de ses contours,
malgré le nombre réduit de tétraèdres. De plus, nous n’exploitons pas encore pleinement
le potentiel du BVH. Dans cette thèse, nous nous sommes limités à l’utilisation de tétraè-
dres, mais il est essentiel de considérer des représentations plus complexes, incluant des
éléments courbes. Le modèle CAO offre un excellent point de départ pour la reconstruc-
tion maillée, et s’il contient une représentation analytique (au-delà des simples triangles),
il serait possible d’optimiser les éléments courbes. Cela modifierait également la manière
dont l’objet réel est comparé au modèle CAO, et le lancer de rayons pourrait s’appuyer
directement sur cette description. Nous pourrions alors reconstruire directement en ter-
mes d’éléments courbes, en remplaçant les rayons par des surfaces et les intersections par
des tests analytiques. Cette approche semble prometteuse pour des recherches futures.
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(a) Maillage non optimisé

(b) Maillage optimisé

Figure B.11: Aspects des différents maillages. L’optimisation du maillage au fil des itéra-
tions permet d’obtenir une structure mieux adaptée à la représentation de l’image et d’éviter
l’effet visuel en dents de scie.

B.8 Régularisation et post-traitement par codage parci-
monieux

Dans le cadre de la stratégie d’acquisition en vues éparses, le manque d’informations
conduit inévitablement à des artefacts et dégrade la qualité de la reconstruction. Bien que
les méthodes présentées précédemment permettent d’améliorer la qualité, l’approche la
plus efficace consiste à agir directement sur le volume à reconstruire grâce à des méthodes
de débruitage ou de régularisation.

Une famille de méthodes intéressante est celle basée sur des patchs (ou blocs en 3D),
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où chaque patch est traité indépendamment ou en conjonction avec d’autres patches
similaires. Cela permet de surmonter les limitations liées aux ressources numériques,
tout en réduisant la dimensionnalité et en accélérant les processus, tout en améliorant
l’efficacité du débruitage grâce à la redondance du signal [145].

Dans notre cas, nous disposons d’un ou deux échantillons déjà scannés et analysons
une trajectoire dense ou parcimonieuse. Nous supposons que des connaissances a priori
sur la texture de l’image sont disponibles, mais nous ne disposons pas de suffisamment
d’échantillons pour utiliser des méthodes avancées comme l’apprentissage profond. Ainsi,
nous nous intéressons aux méthodes de codage parcimonieux et d’apprentissage de dictio-
nnaire, bien adaptées à notre cas d’utilisation. Ils sont particulièrement utiles en tomo-
graphie industrielle car ils nécessitent peu d’informations a priori et généralisent bien sur
des types de données variées.

Le codage parcimonieux est une technique couramment utilisée dans le traitement
du signal et les problèmes inverses. Cette technique suppose qu’un signal x ∈ Rm peut
être reconstruit à partir de quelques éléments, appelés atomes, issus d’un dictionnaire
redondant D ∈ Rm×n. Dans ce cadre, chaque bloc xs d’un signal x est encodé via une
combinaison linéaire parcimonieuse zs ∈ Rm d’atomes du dictionnaire, telle que pour
chaque bloc xs ≈ EsDzs, où Es représente un opérateur permettant d’extraire le bloc xs.
Le problème de trouver une représentation parcimonieuse est appelé sparse pursuit, et il
constitue un point central dans toutes les techniques de codage parcimonieux. Différentes
méthodes ont émergé pour résoudre ce problème. Parmi les plus utilisées, on trouve
les algorithmes de matching pursuit, qui cherchent une solution de manière gloutonne,
et des formulations convexes comme le basis pursuit qui résolvent le problème avec une
contrainte de norme ℓ1 sur la représentation [152]. L’objectif dans ce cas devient :

ẑ = argmin
z,(D)

1

2

∑
s

∥Dzs − Esx∥22 + λ
∑
s

∥zs∥1, (B.8)

où λ est un paramètre équilibrant les termes de fidélité des données et de parcimonie.
Le dictionnaire peut également être appris en même temps que la représentation parci-
monieuse, rendant ainsi le problème dépendant de la variable D, ce qu’on appelle l’apprentissage
de dictionnaire.

Cependant, un inconvénient majeur des concepts précédents est la non-continuité
du signal, chaque patch étant traité indépendamment. L’agrégation des patchs peut
entraîner des artefacts, un problème que l’on peut atténuer en considérant des patchs
chevauchants, bien que cela augmente les opérations de calcul. Pour surmonter ces limi-
tations, le codage parcimonieux convolutionnel (CSC) propose une nouvelle formalisation
qui prend en compte la continuité des images [157]. Il reformule le signal comme une
somme de convolutions entre des filtres locaux et des cartes de coefficients, supprimant
ainsi l’étape d’agrégation des patchs. Cette approche permet de réduire considérablement
le nombre d’atomes nécessaires tout en maintenant la continuité de l’image, améliorant
ainsi la qualité de la reconstruction [159]. La fonction objectif s’écrit désormais :

argmin
z,(d)

1

2

∣∣∣∣∣∣∣∣∑
j

dj ∗ zj − x

∣∣∣∣∣∣∣∣2
2

+ λ
∑
j

∥zj∥1, (B.9)
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B.8.1 Débruitage

L’application la plus simple du codage parcimonieux est le débruitage d’images, qui
s’effectue de manière directe grâce à un matching pursuit. Si des données d’entraînement
sont disponibles, un dictionnaire est d’abord appris à partir de celles-ci.

Lors de notre étude nous avons comparé les méthodes de débruitage utilisant des dictio-
nnaires classiques et convolutionnels sur une coupe de reconstruction parcimonieuse d’une
étoile de fabrication additive. Des différences de performance notables ont été observées.
Les résultats indiquent que dans le CSC, le nombre d’atomes a un impact minimal sur
la performance du débruitage. Réduire le nombre d’atomes ne dégrade pas significative-
ment la performance, ce qui améliore l’efficacité computationnelle. En revanche, dans le
codage parcimonieux classique, le nombre d’atomes affecte de manière cruciale le résultat.
Un dictionnaire redondant est nécessaire pour garantir une représentation parcimonieuse
robuste et un débruitage efficace. En outre, l’importance du dictionnaire dans la représen-
tation est encore plus soulignée. Le dictionnaire analytique (DCT) produit des résultats
inférieurs par rapport aux autres. Le dictionnaire appris à partir d’images montre des
résultats satisfaisants, surtout compte tenu du fait qu’aucune donnée CT n’a été utilisée.
Le dictionnaire personnalisé montre des résultats supérieurs, atteignant la convergence
plus rapidement et de manière plus efficace.

B.8.2 Dictionnaires joints

Une approche supplémentaire pour le débruitage d’un signal consiste à utiliser des dic-
tionnaires joints. Deux dictionnaires sont appris conjointement sur les reconstructions
sparse et dense d’un même échantillon. En forçant les deux reconstructions à partager les
mêmes coefficients de codage mais sur des bases différentes, chaque filtre dans le diction-
naire ’sparse’ Ds est associé à un filtre correspondant dans le dictionnaire ’dense’ Dd. Les
résultats obtenus par un basis pursuit dans la base ’sparse’ peuvent ainsi être réutilisés
dans la base ’dense’.

Nous proposons une méthode intermédiaire pour la CSC entre les méthodes analy-
tiques et directes. Grâce à un optimiseur ADMM, un dictionnaire Ds est appris à partir
des données sparse, puis chaque filtre est exprimé comme une combinaison linéaire de
blocs extraits du volume sparse. Une version dense du dictionnaire est créée en utilisant
les mêmes blocs extraits aux mêmes emplacements dans la reconstruction dense. Cette
technique combine les avantages de la méthode analytique (détection des structures sous-
jacentes du signal) avec la simplicité et la rapidité de la méthode directe. La figure B.12
illustre les filtres associés dans Ds et Dd, où les motifs communs, tels que les interfaces,
sont clairement visibles dans le dictionnaire ’dense’. Des résultats de débruitage sur un
cube d’aluminium en fabrication additive sont montrées en figure B.13.

B.9 Conclusion

Les travaux menés dans cette thèse ont permis de proposer plusieurs méthodes innovantes
pour améliorer la reconstruction tomographique à partir de vues éparses en intégrant des
informations a priori.
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Figure B.12: Dictionnaires joints réalisés avec la méthode hybride proposée (8×8×8)

Figure B.13: Résultats des différentes techniques de débruitage sur un cube de
fabrication additive.

Tout d’abord, la sélection des projections optimales a montré une amélioration signi-
ficative de la qualité de reconstruction. Les méthodes basées sur l’Empirical Interpolation
Method (EIM) et ses variantes (DEIM, QDEIM, et CQDEIM) ont permis d’augmenter
la qualité de reconstruction dont le PSNR de plusieurs dB, prouvant ainsi leur efficacité
dans un contexte de vues éparses. Ces méthodes sont rapides, simples à mettre en œuvre,
et offrent une complémentarité des vues optimale.

Ensuite, les méthodes de recalage ont montré des résultats prometteurs. En particulier,
l’algorithme basé sur les enveloppes convexes et la méthode par asservissement visuel
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ont permis d’atteindre un recalage de l’objet avec une précision de quelques pixels. Le
recalage précis entre le modèle CAO et l’objet réel s’est avéré essentiel pour améliorer la
reconstruction et l’utilisation des informations géométriques disponibles.

L’utilisation de masques obtenus par voxelisation du CAO a également montré une
nette amélioration de la reconstruction, en réduisant les artefacts, en augmentant la net-
teté des discontinuités, et en rendant les zones homogènes plus lisses. Cette approche a
permis de gagner plusieurs dB en PSNR, tout en réduisant le nombre de voxels à recon-
struire. L’extension de cette idée vers la reconstruction sur un maillage volumétrique a
démontré un potentiel important, bien que les temps de calcul actuels restent un frein à
son utilisation.

Enfin, la reconstruction basée sur l’apprentissage de dictionnaires a permis de réduire
le bruit dans les reconstructions et d’améliorer la résolution. L’implémentation efficace
du Convolutional Sparse Coding a ouvert la voie à des améliorations non seulement en
termes de débruitage mais aussi de super-résolution et de régularisation.

En conclusion, les méthodes proposées ont montré des gains significatifs en qualité
de reconstruction dans des scénarios de vues éparses, avec des améliorations mesurables
en termes de PSNR, de réduction d’artefacts, et d’amélioration de la résolution. Ces
résultats ouvrent des perspectives prometteuses pour des applications industrielles où la
reconstruction précise d’objets avec un nombre limité de projections est cruciale.
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