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Resumé

Nous étudions les multiplicités du produit tensoriel des caractéres irréductibles de GL,,(F,)
et la cohomologie des champs de caractéres pour les surfaces de Riemann trouées et pour les
surfaces non orientables.

Nous donnons une formule pour la multiplicité (X3 ®- - -®@ Xy, 1) pour tout k-uplet de caractéres
semi-simples deployés (X1,---,Xk). Une telle formule était déja connue pour un k-uplet
générique grace a [45],[46].

Parmi nos résultats, nous prouvons que ces multiplicités sont polynomiales en ¢ avec des
coefficients entiers non négatifs et nous obtenons un critére de non-vanification. La formule
de la theése est donnée en reliant la multiplicité (X} ® --- ® X%, 1) au comptage des classes
d’isomorphismes des représentations d'un certain carquois étoilé sur F,.

Les champs de caractéres pour les surfaces de Riemann classifient les systémes locaux sur la
surface avec une monodromie locale prescrite. Pour un choix générique de la monodromie,
leur cohomologie est bien comprise grace a [46],[45],[72].

Nous calculons les E-séries de ces champs de caractéres et donnons une formule conjecturale
pour leurs séries de Poincaré mixtes pour tout choix de monodromie (pas nécessairement
générique). Nous vérifions cette conjecture dans le cas de la ligne projective et de quatre
points.

Le résultat concernant la E-série est obtenu en comptant les points sur les corps finis, en
généralisant 'approche introduite dans [46],[45].

Ces résultats complétent et renforcent également les résultats récents de Davison, Hennecart,
Schelegel-Mejia [24] concernant une version champ-étre de la théorie de Hodge non abélienne.

Enfin, nous donnons un contre-exemple a une formule suggérée par le travail de Letellier et
Rodriguez-Villegas [65] pour la série de Poincaré mixte des champs de caractéres pour les
surfaces non orientables. Le contre-exemple est obtenu par une description explicite de ces
champs de caractéres pour la somme connexe de deux copies du plan projectif réel.

Mots-clés : Représentations de groupes réductifs finis, représentations de carquois, champs
de carquois multiplicatifs, champs de caractéres, cohomologie & support compact.



Abstract

We study multiplicities for tensor product of irreducible characters of GL,(IF,) and the coho-
mology of character stacks for punctured Riemann surfaces and for non-orientable surfaces.
We give a formula for the multiplicity (X} ® --- ® Xk, 1) for any k-tuple of semisimple split
characters (X7, ..., &) of GL,(F,). Such a formula was previously known for a generic k-tuple
thanks to [45],[46].

Among our results, we prove that these multiplicities are polynomial in ¢ with non-negative
integer coefficients and we obtain a criterion for their non-vanishing. The formula in the thesis
is given relating the multiplicity (X; ® - - - ® X%, 1) to the counting of the isomorphims classes
of representations of a certain star-shaped quiver over F,.

Character stacks for punctured Riemann surfaces classify local systems on the Riemann sur-
faces with prescribed local monodromy. For a generic choice of the monodromy, their coho-
mology is well understood thanks to [46],[45],[72]. We compute the E-series of these character
stacks and give a conjectural formula for their mixed Poincaré series for any choice of mon-
odromy (not necessarily generic). We verify this conjecture in the case of the projective line
and four punctures.

The result about the E-series is obtained by counting points over finite fields, generalizing the
approach introduced in [46],[45].

These results also complement and reinforce the recent findings of Davison, Hennecart, Schelegel-
Mejia [24] regarding a stacky version of non-Abelian Hodge theory.

Finally, we give a counterexample to a formula suggested by the work of Letellier and Rodriguez-
Villegas [65] for the mixed Poincaré series of character stacks for non-orientable surfaces. The
counterexample is obtained by an explicit description of these character stacks for the con-
nected sum of two copies of the real projective plane.

Keywords: Representations of finite reductive groups, quiver representations, multiplicative
quiver stacks, character stacks, compactly supported cohomology.
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1 Introduction en francais

L’étude des relations entre la théorie des représentations, la combinatoire et la géométrie
algébrique, en particulier la compréhension des espaces de moduli, est l'une des lignes de
recherche les plus actives en mathématiques ces derniéres années.

La compréhension des interactions entre les représentations de groupes et d’algébres et la
cohomologie des espaces de modules s’est avérée étre un instrument puissant pour éclairer a
la fois la géométrie de ces espaces et la structure de ces représentations.

Une riche source de ce type d’interactions provient de I’étude des espaces de moduli apparais-
sant dans ce que l'on appelle la correspondance de Hodge non abélienne pour une surface de
Riemann, c’est-a-dire les empilements et variétés de caractéres et les espaces de moduli des
faisceaux de Higgs.

L’étude de la cohomologie de ces objets est liée & un large éventail d’arguments, allant de
I’étude du programme de Langlands géométrique et de la symétrie miroir [10],[43] & la preuve
du lemme fondamental de Ngo [77] et aux états BPS en physique et en théorie des cordes
[15],[27].

Dans cette thése, nous nous intéressons principalement a I’approche introduite dans [44],[46],[45],
ol les auteurs ont relié la cohomologie des champs de caractéres pour une surface de Riemann
au calcul des multiplicités dans I'anneau de caractéres de GL,(F,) et aux représentations de
carquois.

1.1 Etat de P’art sur les multiplicités et les champs de caractéres
1.1.1 Multiplicités pour les représentations des groupes linéaires généraux finis

La table de caractéres de GL,(F;) est connue depuis 1955 grace aux travaux de Green [41],
qui en a donné une description combinatoire. Ses formules pour les valeurs des caractéres
irréductibles sont de nature algorithmique.

Deligne et Lusztig [26] ont ensuite introduit les méthodes cohomologiques f-adiques dans
I’étude de la théorie des représentations des groupes réductifs finis. En utilisant cette approche,
Lusztig a trouvé dans [66] un moyen géométrique de structurer les caractéres irréductibles
d’un groupe réductif fini. Dans le méme livre, il a introduit la notion de caractére irréductible
semisimple et unipotent par analogie avec la décomposition de Jordan pour les classes de
conjugaison.

Pour le groupe linéaire général fini GL,(F,;), la construction de Lusztig a conduit & une
interprétation géométrique de la table de caractéres trouvée par Green, voir par exemple
Lusztig et Srinivasan [69].

Etant donné &, Xs, X3 caractéres irréductibles de GL,,(FF;), la multiplicité (X; ® A, X3) est
donnée par la formule

(X1 @ Xp, A3) = mge(};@ )Xl(g)XQ(g)XB(Q) (L.1.1)

Bien que la table des caractéres de GL,(IF,) soit connue depuis longtemps, il n’est pas facile
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d’extraire des informations générales de la formule ([2.1.1)) ci-dessus, en raison de la description
inductive des valeurs des caractéres.

Ezample 1.1.1. Rappelons que les caractéres unipotents de GL,,(F,), qui sont les "briques" de
la table de caractéres, sont en bijection avec les représentations irréductibles de S, et donc
avec les partitions de n.

Pour une partition p, on désigne par x* le caractére associ¢ de S, et par X, le caractére
unipotent associ¢ de GL,,(F,) (dans notre paramétrisation, nous associons & la partition (n)
le caractere trivial 1).

D’aprés la formule , il est presque impossible d’obtenir directement une description
combinatoire de I’ensemble {(\, p,v) € Py, | (X\ ® X, X,,) # 0}.

Déja pour Sy, le probléme de donner un critére combinatoire pour la non-vanification des
coefficients de Kronecker ng = (x* @ x*, x¥), est toujours ouvert et constitue un domaine
de recherche trés actif.

Il est intéressant de noter que Letellier a montré que les deux problémes étaient liés : en
particulier, Letellier a montré que si giu # 0 alors (X\ ® &, &) # 0 aussi.

Rappelons que la multiplicité (X ® X, X3) est égale & (X} @ Ao ® A3, 1) oit X3 est le caractére
dual de AX3. Un des objectifs de cette thése est de contribuer & I'étude des multiplicités
(X1 ® -+ ® Ay, 1) pour tout k-uplets de caractéres irréductibles (A7, ..., X).

La compréhension de ces quantités est encore un probléme ouvert en général, mais des progres
substantiels ont été réalisés récemment. Les premiers cas étudiés dans la littérature concer-
naient les k-uplets (X1, ..., X%) ou chaque X; est un caractére unipotent.

Hiss, Liibeck et Mattig [49] ont calculé, par exemple, les multiplicités (X; @ X2 ® X3, 1) pour
les caractéres unipotents Xy, Xo, X3 et n < 8 en utilisant CHEVIE. Ils ont remarqué que ces
quantités sont des polynomes en ¢, avec des coefficients positifs. Lusztig [68] a étudié les
multiplicités pour les faisceaux caractéres de PGL,.

Les premiers résultats généraux ont été obtenus dans les articles [45] Theorem 1.4.1],[46.
Theorem 3.2.7] par Hausel, Letellier, Rodriguez-Villegas. Les auteurs [45],[46] se sont limités
a une certaine classe de k-uplets (Xi,...,X), appelée générigue (voir la définition [8.1.1)).
Remarquons qu’'un k-uplet de caractéres unipotents n’est jamais générique.

Pour des k-uplets génériques de caractéres semi-simples deployés, les auteurs [46, Theorem
1.4.1] prouvent une formule combinatoire générale pour la multiplicité (X; ® --- @ Xj, 1) et
relient cette derniére quantité & la cohomologie des variétés de caractéres et des variétés de
carquois (voir ci-dessous pour plus de détails).

Ces résultats ont ensuite été généralisés a tout k-uplet de caracteéres génériques par Letellier
[63, Théoréme 6.10.1, Théoréme 7.4.1].

Le seul résultat général connu & ce jour dans le cas non générique est le travail de Letellier
[64] Proposition 1.2.1], qui décrit la multiplicité pour les k-uplets de caractéres unipotents en
termes de multiplicité pour les k-uplets génériques de caractéres unipotents tordus et ’action
d’un certain groupe de Weyl sur une certaine variété de carquois.

Un des objectifs de cette thése est de contribuer a la compréhension des multiplicités pour des
k-uplets qui ne sont pas nécessairement génériques.
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Nous reprenons ici rapidement et plus en détail les résultats de [45], [46], car ils sont un
élément clé de notre travail.

Soit L le sous-groupe de Levi L = GLy,, (Fy) x - -+ x GLy,, (F;) plongé en bloc diagonalement
dans GL,(F,), ot mq,...,mg sont des entiers non négatifs tels que my + --- + mg = n.
Considérons un caractére linéaire v : L — C* donné par

(M, ..., M) = yi1(det(My)) - - - vs(det(Ms))

pour i, ..,7s € Hom(Fy, C*).

Nous désignons par R% (v) le caractére induit de Harisha-Chandra de GL,,(F,). Rappelons que
si y; # 7; pour chaque 7 # j le caractere Rg(’y) est irréductible. Les caractéres irréductibles
de cette forme sont appelés semisimples deployés (voir pour plus de détails).

Considérons maintenant un k-uplet de caractéres semisimples deployés X' = (Rg1 (01)y.- -, Rfk (0r))
; ol pour i =1,...,k, nous avons L; = GLy,, , (Fg) X -+ X GLy, , (Fg) et

0i(My, ..., Ms;) = 0;1(det(My)) - - - 8 5, (M, ).

Soit maintenant P ’ensemble des partitions. Dans [45], les auteurs ont introduit, pour chaque
multipartition g € P* et chaque entier g > 0, une fonction rationnelle H,,(z,w) € Q(z,w),
définie en termes de polynomes de Macdonald (pour une définition précise, voir .
Considérons maintenant la multipartition g = (u', ..., u¥) € P* | ot chaque p7 est obtenu a
partir de (mj1,...,m; ;) & une permutation preés.

Les auteurs [46l Theorem 3.2.7] ont montré que si les d; sont choisis de telle sorte que
(Ri(&i))f:l soit générique (un tel choix est toujours possible si ¢ est suffisamment grand),
nous avons :

(A® RE (61) @ -~ @ RE, (8),1) = H(0,/q) (1.1.2)
ou A est le caractére de 'action de conjugaison de GL,,(F,) sur l'espace vectoriel C[gl,, (F,)?].

Un aspect intéressant des résultats de [45],[46] est que la formule (1.1.2)) ci-dessus est prouvée en
donnant une interprétation en terme des représentations des carquois a la quantité <R€1 (61)®
- ® RE, (6k),1).

Rappelons que pour un carquois fini I' = (J,2) , ou J est son ensemble de sommets et 2 son
ensemble de fleches, dans [52], pour chaque vecteur de dimension 3 € N7, Kac a introduit un
polynome a coefficients entiers ar g(t), appelé polynoéme de Kac, défini par le fait que ar g(q)
compte le nombre de classes d’isomorphisme des représentations absolument indécomposables
de T' (voir la définition de dimension 3 sur [Fy, pour tout g.

Kac a montré que ar g(t) est non nul si et seulement si 3 est une racine de @) et a conjecturé qu'il
a des coefficients non négatifs. Cette derniére conjecture a d’abord été prouvée par Crawley-
Boevey et Van der Bergh [21] dans le cas de j indivisible (c’est-a-dire ged(f5;) es = 1) et plus
tard pour tout 8 par Hausel, Letellier, Rodriguez-Villegas dans [47].

Dans les deux cas, les auteurs ont obtenu la propriété de non-négativité en donnant une
description des coefficients en termes de la cohomologie de certaines variétés de carquois.
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Par exemple, si § est indivisible, dans [21, End of Proof 2.4], on montre qu’il existe une égalité
P.(Q,t) = t"ag o (t?), (1.1.3)

pour une certaine variété de carquois Q, associée & (), o, ol dg est la dimension de Q.

Considérons maintenant un k-uplet X = (R%1 (61),..., R (0x)) comme ci-dessus et soit @ =
k
(1,9) le carquois étoilé (voir la page suivante pour une image), avec k jambes de longueur
s1,-..,SE respectivement et g boucles sur le sommet central.
olbl o ol12] .. oll:s1]
0[271} ‘i 0[272] . o[2>82]

okl (k2] o olk,s]

Soit vy le vecteur de dimension ay € NY défini par (ax)o = n et (ax);j) =n— Zh 1M
Remarquons que le carquois @ et le vecteur ay ne dépendent que des sous-groupes de Levi
L1,..., L et non des caractéres d1,..., 0.

Dans [46], on montre que, pour les sous-groupes de Levi Lq,..., Ly introduits ci-dessus et
un choix générique de 61, ..., g, la multiplicité (A9 ® Rfl 0)®-® ng (0r), 1) est égal au
nombre de classes d’isomorphisme de représentations absolument indécomposables de @) sur
F, de dimension ay, i. e

(A® R, (51) -~ ® RY, (5:),1) = ag.ay (4). (1.1.4)

Dans le méme article, par un argument combinatoire, les auteurs trouvent une formule pour

les polynémes de Kac pour les carquois étoilés et montrent en particulier que 'on a
Q0 (t) = Hy(0, V) (1.1.5)

et ils obtiennent ainsi la formule (1.1.2)) citée ci-dessus.

L’interprétation en terme des représentations de carquois des multiplicités rappelée ici a de
nombreuses conséquences intéressantes. Par exemple, elle implique que la multiplicité

(A® Rf (1) ® -+ ® Rf, (6k),1) #0
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si et seulement si agq,(t) # 0, c’est-a-dire si et seulement si ay est une racine de @ (voir
[46] Corollaire 1.4.2]).

Si ay est indivisible, la formule (1.1.3) donne en outre l'interprétation géométrique suivante
des multiplicités

(A® R (61) ® -+ ® RY, (0k), 1) = ¢~ "¢/2P.(Q, \/q). (1.1.6)

La variété de carquois Q apparaissant dans le RHS de la formule (1.1.6) admet la description
suivante. Fixez un k-uplet générique O = (Oq,...,Of) (voir [45, Définition 2.2. 1|) d’orbites
adjointes semisimples de gl,,(C) telles que p est la multipartition donnée par les multiplicités
des valeurs propres de Oq, ..., O.

Dans [45], on montre que la variété Q est isomorphe a

k g k

Qo = {(Al,Bl,...,Bg,Yl,...,Yk) € gl?(C) x [T 01D [4i, B+ ) _¥; = 0}// GLy(C).

j=1 i=1 j=1

Etudier si les variétés de la forme Qp pour g = 0 sont vides ou pas est généralement appelée
le probléme de Deligne-Simpson (voir par exemple [20]).

Comme mentionné au début, I’aspect le plus intéressant des résultats cités de [45] est que les
fonctions H,,(z,w) (et donc les multiplicités pour le produit tensoriel des représentations de
GL,,(F,) et les polynomes de Kac pour les carquois étoilés) sont ainsi liées a la cohomologie
des champs de caractéres génériques pour les surfaces de Riemann.

Cette relation entre des objets apparemment sans rapport s’est révélée étre 'une des approches
les plus efficaces pour calculer les invariants cohomologiques de ces espaces.

Nous passons en revue ces résultats et donnons des informations plus générales sur les champs
de caractéres dans le paragraphe ci-dessous.

1.1.2 Champs de caractéres pour les surfaces de Riemann

Considérons une surface de Riemann ¥ de genre g > 0, un sous-ensemble D = {p1,...,pp} C X
de k-points et un k-uplet C = (Cy,...,Ck) de classes de conjugaison semi-simples. Le champs
de caractéres associée est définie comme le champ quotient

Mg = [{p € Hom(m1 (X \ D), GLo(C)) | pla:) € c}] (1.1.7)

ou chaque x; est une petite boucle autour du point p;. Ces champs classifient les systémes
locaux sur ¥\ D tels que le monodromie autour du point p; se situe dans C;, pouri =1,...,k
et sont naturellement liés & certains espaces de moduli de fibrés de Higgs paraboliques sur X
via la correspondance de Hodge non abélienne, voir par exemple les travaux de Simpson [88].
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Le champ M a la forme explicite suivante en termes d’équations matricielles :

k g k

Me = {(Al,Bl,...,Bg,Xl,...,Xk) e GLY(C) x [[ ¢l [[14n. B [ X, = 1}/GLn(<C)
i=1 j=1

(1.1.8)

Dans ce qui suit, pour un champ complexe de type fini X, nous désignerons par H}(X) =
H} (X, C) sa cohomologie & support compact avec des coefficients C (ceci est bien défini grace
aux travaux de Laszlo et Olsson [59]).

Rappelons que chaque espace vectoriel H(X) est doté de la filtration par le poids WIH(X),
a partir de laquelle on définit la série de Poincaré mixte H.(X,q,t)

(X, q,t Zdlm WEJWE Dzt

La E-série E(X, q) est la spécialisation de H.(X, q,t) obtenue en branchant ¢t = —1, la série de
Poincaré P.(X,t) est la spécialisation de H.(X,q,t) obtenue en branchant ¢ = 1 et la partie
pure PH.(X,q,t) est définie comme

[

PH.(%,q) Zdlm (W2 /W2m g= .

La géométrie et la cohomologie des champs de caractéres ont été largement étudiées sous
différents angles. La plupart des résultats ont été obtenus dans le cas ou le k-uplet C est
générique (voir la définition [9.1.1)).

Pour un k-uplet générique C, le champ Mg est lisse et c’est un G,,-gerbe sur le quotient
GIT associé, que nous dénotons par M¢. Par conséquent, la cohomologie de Mg peut étre
facilement déduite de celle de la variété de caractéres Me.

Nous commencons par une revue rapide des résultats connus obtenus sur la cohomologie des
champs et variétés de caractéres génériques, voir pour plus de détails.

Les premiers résultats concernant ce sujet ont été obtenus dans le cas ot k = 1 et C est une
classe de conjugaison centrale. Pour n € N et d € Z, posons que M,, 4 soit le champ M¢ pour
kE=1letC= {eyln} c-a~-d

9 )
{(Al,Bl,...,A B GGLQQ HA“B —BQZZdIn}/GLn((C)
=1

Mya=

L’orbite C = {e%} est générique si et seulement si (n,d) = 1.

Hitchin [48] a calculé le polynéme de Poincaré P.(M, q4,t) dans le cas générique pour n = 2,
en utilisant la correspondance de Hodge non abélienne et la théorie de Morse sur ’espace de
moduli des faisceaux de Higgs. Gothen [40] a étendu son résultat pour n = 3.

Leur approche a ensuite été étendue pour calculer le polynome de Poincaré P.(Mc,t) dans le
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cas ol n = 2, n'importe quel k et n’importe quel k-uplet générique C par Boden, Yogokawa
[12] et lorsque n = 3, tout k et tout k-uplet générique C par Garcia-Prada, Gothen et Munoz
[37].

Cependant, les techniques de la théorie de Morse ne donnent pas d’information sur la filtration
des poids sur la variété de caractéres et sont difficiles & généraliser & n'importe quel n.

Hausel et Rodriguez-Villegas [44] ont été les premiers a obtenir un résultat général sur la
filtration par le poids pour n quelconque.

Les auteurs ont calculé la E-série E(M,, 4,q) des champs M,, 4 pour tout n,d tels que (n,d) =
1, en comptant les points sur les corps finis et ont proposé une formule conjecturale pour la
série de Poincaré mixte H.(M,, 4,q,1).

Schiffmann [84] a trouvé une expression pour la série de Poincaré P.(M,, 4,t) dans le cas
générique et Mellit [73] a vérifié plus tard que la formule de Schiffmann est en accord avec la
spécialisation de Hausel et la conjecture de Rodriguez-Villegas & ¢ = 1.

Hausel, Letellier et Rodriguez-Villegas ont ensuite généralisé les résultats de [44] et ont calculé
[45, Théoreme 1.2.3] 1a E-série E(Mc, q) des champs M pour tout k-uplet générique C. Nous
expliquons rapidement leurs résultats, car il s’agit du point de départ fondamental pour le
développement de ce travail.

Les auteurs [45] Theorem 1.2.3] ont montré qu’il existe une égalité

E(Mc,q) = qulﬂu <\/§\;a> (1.1.9)

ot 2d,, = dim(Mc) + 1 et p = (u!,..., u¥) est la multipartition donnée par les multiplicités

des valeurs propres de Cq,...,C, respectivement.

Dans le méme article, les auteurs [45, Conjecture 1.2.1] ont proposé la formule conjecturale
suivante pour la série de Poincaré mixte H.(Mg¢,q,t), qui généralise la conjecture de Hausel
et Rodriguez-Villegas énoncée dans [44] et qui déforme naturellement 1’ Identité ((1.1.9) :

dp

2 2
He(Mc,q,t) = (q(g )_ THy <t\/§, —%,) : (1.1.10)

Mellit [72], Theorem 7.12| a ensuite calculé la série de Poincaré P.(Mc,t) en utilisant la
correspondance de Hodge non abélienne. Sa formule correspond a la spécialisation & ¢ = 1 de
la formule conjecturale ([1.1.10) pour la série de Poincaré mixte.

Remarquons que, comme mentionné précédemment, la formule , la formule et
la conjecture relient étroitement la compréhension de la cohomologie des champs de
caractéres génériques & la compréhension des multiplicités génériques pour les représentations
de GL,(IFy) et les carquois étoilés.
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Par exemple, la conjecture ([1.1.10f) implique que nous avons

dp
2
PH,(Mc,q) = qqf (A ® R, (1) @ @ BE, (54), 1) (1.1.11)
pour tout k-uplet générique (Rf1 (01),... ,ng (0x)) tel que la multipartition associée est .
De plus, lorsque le vecteur de dimension oy associ¢ au k-uplet X = (RY (61),... ,ng(dk))
est indivisible, la conjecture (|1.1.10)) implique que nous avons
P,
PH(Me.q) = TH20:0 (1112)

c’est-a-dire que la partie pure de la série de Poincaré mixte de M est égale (& un facteur
q — 1 prés) au polynome de Poincaré a support compact de sa contrepartie additive Qp. Ceci
est généralement connu sous le nom de "conjecture de pureté".

Alors que dans le cas générique les travaux cités donnent une description assez compléte de
la cohomologie des champs de caractéres, la cohomologie des champs M pour les k-uplets C
non génériques a été peu étudiée jusqu’a récemment.

Les résultats les plus explicites et les plus généraux ont été obtenus dans le cas des champs
My, 4.

Hausel et Rodriguez-Villegas ont été les premiers a obtenir un résultat général dans cette
direction. Les auteurs [44, Theorem 3.8.1| ont exprimé les E-séries pour les champs M,, o en
termes des E-séries pour les champs de caractéres génériques M,, 1 par la formule suivante :

E(MTL,:[’q) n E(Mn,OuCI> n

Exp <Z WT => WT (1.1.13)
neN neN

ou Exp est 'exponentielle pléthystique dans I’anneau des séries formelles Q(q)[[T]] (voir

pour plus de détails sur les opérations pléthystiques). Le résultat des auteurs est obtenu en

comptant les points sur les corps finis.

Fixons maintenant » € Q. Récemment, Davison, Hennercart et Schelegel-Mejia [Théoréme
14.3, Corollaire 14.7|davison-hennecart ont prouvé la formule suivante exprimant la série de
Poincaré a support compact de M,, 4 pour tout n,d, en termes de série de Poincaré pour les
champs de caractéres génériques M, 1 :

§ : PC(Mn,d7 _t) n, d § : PC(MTLJ? _t) n, d
(n7d)EN>0 X7 (n,d)EN>0 X7,
t.q d=rn t.q d=rn

et ont formulé une conjecture similaire pour la série de Poincaré mixte de H.(M,, 4, q,t) pour
tout n, d (voir la discussion aprés [24, Théoreme 14.10]).

Ils ont obtenu cette formule en reliant la cohomologie des champ de caractéres a la cohomologie
de ce que 'on appelle les faisceaux BPS. Ces derniéres sont des faisceaux perverses définies sur
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les variétés de caractéres et leur cohomologie est bien comprise pour les champs M,, 4. Plus
précisément, la correspondance de Hodge non abélienne pour les champs, prouvée dans [24],
et le travail récent de Koseki et Kinjo [55] sur les faisceaux BPS pour le champ de module
des fibrés de Higgs, donnent un moyen de calculer la cohomologie des faisceaux BPS pour un
champ M,, 4.

Remarquons en outre que, puisque les auteurs utilisent la correspondance de Hodge non abéli-
enne qui ne préserve pas la filtration par le poids sur la cohomologie, leur méthode ne permet
pas de prouver une formule analogue pour les E-séries ou les séries de Poincaré mixtes de
Mg

Enfin, la cohomologie des faisceaux BPS pour les champs de caractéres M n’est pas comprise
pour un C arbitraire et donc une généralisation de la formule pour un C arbitraire
n’est toujours pas prouvée.

Un des buts principaux de cette thése est de contribuer & la compréhension de la cohomologie

des champs de caractéres M pour des k-uplets non nécessairement génériques, pour tout k
et C.

1.1.3 Champs de caractéres pour les surfaces non orientables

Une autre généralisation des résultats de [45] qui nous intéressera dans cette thése est 1’étude
des champs de caractéres pour les surfaces réelles non orientables plutdt que pour les surfaces
de Riemann.

Notre point de vue sur la géométrie réelle est celui introduit par Atiyah [3], c’est-a-dire qu’une
surface non orientable dans ce qui suit sera une paire (X, 0), oit ¥ est une surface de Riemann
et 0 : X — ¥ est une involution anti-holomorphe telle que 37 = @.

Remarquons que dans ce cas, le quotient S = /(o) est une surface réelle non orientable.
Dénotons par p : ¥ — S le morphisme quotient.

Fixons maintenant un sous-ensemble F = {y1,...,yr} C S et un k-uplet C de classes de con-
jugaison semi-simples de GL, (C). Remarquons que puisque l'action de o est libre, I'involution
o définit un morphisme € : 71 (S \ E) — Z/(2) ayant noyau p.(m1(2/p~1(E))).

Considérons maintenant le groupe GL,,(C)* := GL,(C) %y Z/(2), ou 6 : GL,(C) — GL,(C)
est I'involution de Cartan (M) = (M?')~! et dénotons par 7 : GL,(C)* — Z/(2) la projection

associée.

Le champ de caracteres associée Mg est définie comme

M = [{p 718\ E) = GLL(C)* pls) € C; and n(p(s)) = elg) }/ G (C)

ol chaque z; est une boucle autour du point y;. Le champ Mg a la forme explicite suivante
en termes d’équation matricielle :



k
ME = [{(Dl, ces Dy 27, ... Zk) € GL;(C)XH Cj ‘ DIG(Dl) R DTQ(DT)Zl SRRVARES 1}/GLH(C)
j=1
(1.1.15)
olt 7 = g+ 1. Nous désignons par MS le quotient GIT associé. Lorsque k = 1 et C = {e%dln},
nous désignons le champ Mg par My, ;.
Des définitions similaires peuvent étre données lorsque o a des points fixes, en utilisant le

groupe fondamental orbifold du quotient ¥/(co), voir par exemple [11].

Les champs M sont profondément liées a ce que l'on appelle les branes a l'intérieur des
espaces de moduli des fibrés de Higgs. Le calcul de la cohomologie des branes est un élément
clé dans la compréhension de la symétrie miroir pour le systéme de Hitchin.

Des références sur le sujet peuvent étre trouvées par exemple dans [6],[7],[IL],[9].

Peu de résultats ont été montrés dans la littérature concernant la cohomologie des champs
MG. Récemment, Letellier et Rodriguez-Villegas [65, Theorem 1.4] ont calculé la E-série
E(Mce,q) lorsque C est générique, en comptant les points sur les corps finis.

Baird et Wong [4] ont calculé le E-polynome de variétés analogues M ; lorsque l'involution
anti-holomorphe o a des points fixes. Leurs formules sont assez différentes de celles de [65].

Dans cette thése, nous nous concentrerons sur le cas des champs ./\/lf%d lorsque (n,d) = 1.
Dans ce cas, le champ M;,d est un po-gerbe sur la variété de caractéres M;,d. Cette derniére
variété est profondément lie & 'espace de moduli des fibrés de Higgs réels et quaternioniques
de rang n et de degré d sur 3.

1.2 Apercu de la thése

Nous donnons ici un résumé rapide de nos principaux résultats.

1.2.1 Multiplicités

En ce qui concerne les multiplicités, nous étudions les multiplicités (X1 ® - - - ® X, 1) pour des
k-uplets non nécessairement génériques k de caractéres irréductibles (X7, .-, Xx).

Dans cette thése, nous donnons une formule pour la quantité (Rf (v1)®- - -®Rfk (7&), 1) pour
tout choix de 71,...,7v; (pas nécessairement générique), en termes de polynomes de Kac du
carquois @ introduit précédemment.

Cette formule est obtenue en donnant une interprétation en terme des représentations de car-
quois de la multiplicité (Rg1 M- ® ng (V&), 1) pour tout k-uplet (Rg1 (71),--- ,Rfk (Vk))-
En conséquence de notre résultat, nous montrons que (Rgl M) ®- - ® ng (7k),1) est un
polynéme en ¢ avec des coefficients non-négatifs et nous montrons un critére pour verifier si
c’est 0 ou pas en termes du systéme de racines de Q). Ces résultats sont contenus dans [85].
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1.2.2 Cohomologie des champs de caractéres

En ce qui concerne les champs de caractéres pour les surfaces de Riemann, nous étudions
la cohomologie des champs de caractéres Me pour k-uplets qui ne sont pas nécessairement
génériques. L’un des principaux résultats de cette thése est une généralisation de la formule
a des C arbitraires pour la E-series F(Mg, q) au lieu de la série de Poincaré P.(Mg,t).
Nous obtenons ainsi une formule explicite pour E(Me, q) pour tout k-uplet C, voir le Théoréme
ci-dessous.

Nous donnons aussi une formule conjecturale (voir Conjecture pour la série de Poincaré
mixte H.(Me,q,t), que nous vérifions dans le cas de ¥ = ]P’(lc, k = 4 et une certaine famille de
quadruples non-génériques. Ces résultats font partie de [86].

La conjecture pour les champs M,, 4 est déja apparue dans [24], voir la discussion dans
loc. cit aprés le Théoréme 14.10. Remarquons que notre approche est trés différente de celle
de [24] car nous n’utilisons pas la théorie de Hodge non-abélienne ni les faisceaux BPS.

1.2.3 Surfaces non orientables

En ce qui concerne les champs de caractéres génériques pour les surfaces réelles compactes
non orientables, nous donnons une description explicite des champs M;, ; lorsque (n,d) =1
et 7 = 2, c’est-a-dire pour une courbe elliptique (réelle).

Cette description donne un contre-exemple a une formule proposée par [65] pour les séries de
Poincaré mixtes des champs Mg. La description de ce contre-exemple est le résultat principal
de [87].
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2 Introduction

The study of the relationships between representation theory, combinatorics and algebraic
geometry, in particular the understanding of moduli spaces, is one of the most active lines of
research in mathematics in recent years.

The understanding of the interactions between representations of groups and algebras and the
cohomology of moduli spaces has proved itself to be a powerful instrument for shedding light
both on the geometry of these spaces and the structure of these representations.

A rich source of this kind of interactions comes from the study of moduli spaces appearing
in the so-called non-abelian Hodge correspondence for a Riemann surface, i.e character stacks
and varieties and moduli spaces of Higgs bundles.

The study of the cohomology of these objects is related to a wide range of arguments, ranging
from the study of Geometric Langlands program and mirror symmetry [10],[43] to Ngo’s proof
of fundamental lemma [77] and to BPS states in physics and string theory [15],[27].

In this thesis, we are mostly interested in the approach introduced in [44],[46],[45], where the
authors related the cohomology of character stacks for a Riemann surface to the computation
of multiplicities in the character ring of GL,(IF,) and quiver representations.

2.1 State of the art on multiplicities and character stacks
2.1.1 Multiplicities for representations of finite general linear groups

The character table of GL,(FF,) is known since 1955 by the work of Green [41I], who gave a
combinatorial description of it. His formulae for the values of the irreducible characters have
an algorithmic nature.

Deligne and Lusztig [26] later introduced f-adic cohomological methods to the study of the
representation theory of finite reductive groups. Using this approach, in [66] Lusztig found a
geonetric way to costruct the irreducible characters of a finite reductive group. In the same
book, he introduced the notion of a semisimple and unipotent irreducible character by analogy
with the Jordan decomposition for the conjugacy classes.

For the finite general linear group GL,(F,), Lusztig’s construction led to a geometric in-
terpretation of the character table found by Green, see for example Lusztig and Srinivasan
[69].

Given X1, Xa, A5 irreducible characters of GL,(IF;), the multiplicity (X; ® X», A3) is given by
the formula

(2 © Xy, Ay) = ,GLl(]F), gGGLZ(F RCECED (2.1.1)

Altough the character table of GL,(IF;) is known for a long time, it is not easy to extract
general information from Formula (2.1.1)) above, due to the inductive description of the values
of the characters.

Ezample 2.1.1. Recall that the unipotent characters of GL,(F,), which are the "building
blocks" of the character table, are in bijection with the irreducible representations of S, and
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so with the partitions of n.

For a partition u, we denote by x* the associated character of S, and by &), the associated
unipotent character of GL,,(F,) (in our parametrization, we associate to the partition (n) the
trivial character 1).

From Formula , it is nearly impossible to obtain directly a combinatorial description of
the set {(\, 1, v) € Py | (X @ Xy, X)) # 0}, where Py, is the set of the partitions of n.
Already for S, the problem of giving a combinatorial criterion for the non-vanishing of the
Kronecker coefficients gi’ﬂ = (x* ®x*, x"), is still open and is a very active area of research.
Interestingly, the two problems were shown to be related by Letellier [64]: in particular,
Letellier [64, Proposition 1.2.4], showed that if 9%, # 0 then (X ® X, X)) # 0 too.

Recall that the multiplicity (X; ® X, A3) is equal to (X ® Xp @ Xy, 1) where A3 is the dual
character of X3. One of the aims of this thesis is to contribute to the study of the multiplicites
(X1 ® -+ ® Xy, 1) for any k-tuple of irreducible characters (X1, ..., X)).

The understanding of these quantites is still an open problem in general but substantial
progress were made recently. The first cases studied in the literature concerned k-tuples
(X1,...,Xx) where each Aj is an unipotent character.

Hiss, Liibeck and Mattig [49] computed, for example, the multiplicities (X; ® Xo ® X3,1) for
unipotent characters X7, Xs, X3 and n < 8 using CHEVIE. They noticed that these quantities
are polynomials in ¢, with positive coefficients. Lusztig [68] studied multiplicities for unipotent
character sheaves of PGLs.

The first general results were obtained in the papers [45, Theorem 1.4.1|,[46, Theorem 3.2.7| by
Hausel, Letellier, Rodriguez-Villegas. The authors [45],[46] restricted themselves to a certain
class of k-tuples (X1,...,X), called generic (see Definition [8.1.1). Notice that a k-tuple of
unipotent characters is never generic.

For generic k-tuples of semisimple split characters, the authors [46, Theorem 1.4.1] prove
a general combinatorial formula for the multiplicity (X} ® --- ® Xj, 1) and relate the latter
quantity to the cohomology of character varieties and quiver varieties (see below for more
details).

These results were later generalised to any k-tuple of generic characters by Letellier [63]
Theorem 6.10.1,Theorem 7.4.1].

The only general result known so far in the non-generic case is Letellier’s work [64, Proposition
1.2.1], which describes the multiplicity for k-uples of unipotent characters in terms of the
multiplicity for generic k-uples of twisted unipotent characters and the action of a certain
Weyl group on a certain quiver variety.

One of the aim of this thesis is to to contribute to the understanding of multiplicities for
k-tuples which are not necessarily generic.

We quickly resume here in more detail the results of [45], [46], since they are a key element
for our work.

Let L be the Levi subgroup L = GLyy,, (Fq) X -+ x GL,,, (F,) embedded block diagonally in
GL,(F,), where my, ..., mg are nonnegative integers such that m; + - -- + mg = n. Consider
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a linear character v : L — C* given by
Y(My, ..., M) =~1(det(My)) - - - vs(det(Mj))

for v1,...,7s € Hom(Fy, C*).

We denote by RY(v) the Harisha-Chandra induced character of GL,,(F,). Recall that if ; # ~;
for each ¢ # j the character Rg(v) is irreducible. The irreducible characters of this form are
called semisimple split (see §5.1.1] for more details).

Consider now a k-tuple of semisimple split characters X = (Rf1 (01),... ,ng (0r)) , where, for
i=1,...,k we have L; = GLp,, (Fg) x - -+ X GLy,, . (Fg) and

5i(M1, ey Msl) = 6i,1(det(M1)) s 5i75i(M5i)‘

Let now P be the set of partitions. In [45], the authors introduced, for each multipartition
i € P¥ and each integer g > 0, a rational function H,(z,w) € Q(z,w), defined in terms of
Macdonald polynomials (for a precise definition see .

Consider now the multipartition pu = (u',...,u*) € P* | where each x4/ is obtained from
(mj1,...,mys;) up to reordering.

The authors [46, Theorem 3.2.7| showed that if the d;’s are chosen so that (Rgi(él-))f:l is
generic (such a choice is always possible if ¢ is big enough), we have:

(A® Rf (1) ® -+ ® RE, (6x),1) = H,(0,/q) (2.1.2)

where A is the character of the conjugation action of GL,(IF,) on the vector space Clgl,, (F,)9].

An interesting side of the results of [45],[46] is that Formula (2.1.2]) above is proved by giving
a quiver-theoretic interpretation to the quantity <R€1(61) ®-® ng(ék), 1).

Recall that for a finite quiver I' = (J,Q) , where J is its set of vertices and Q its set of
arrows, in [52], for each dimension vector 8 € N’ Kac introduced a polynomial with integer
coefficients ar g(t), called Kac polynomial, defined by the fact that ar g(g) counts the number
of isomorphism classes of absolutely indecomposable representations of I' (see Definition
of dimension 3 over Fg, for any q.

Kac showed that ar g(t) is non-zero if and only if 3 is a root of @ and conjectured that it has
non-negative coefficients. The latter conjecture was first proved by Crawley-Boevey and Van
der Bergh [21] in the case of indivisible § (i.e gcd(3;)jes = 1) and later for any # by Hausel,
Letellier, Rodriguez-Villegas in [47].

In both cases, the authors obtained the non-negativity property by giving a description of the
coefficients in terms of the cohomology of certain quiver varieties.

For instance, if § is indivisible, in |21, End of Proof 2.4], it is shown, that there is an equality
PC(Q? t) = tanQ,a(t2)v (213)

for a certain quiver variety Q, associated to ), a, where dg is the dimension of Q.



25

Consider now a k-tuple X = (Rg1 (1), - ,ng (0x)) as above and let Q = (I,€2) be the star-
shaped quiver (see the next page for a picture), with k legs of length s1, ..., sg respectively
and g loops on the central vertex.

oLl 1] olLs1]
o2l 2] ol2,82]
G-
olbl] o[k . olkssk]

Let ay be the dimension vector ay € N defined as (ay)o = n and (ax)p) =n— Z{LZI M j-
Notice that the quiver ) and the vector ay depend only on the Levi subgroups Ly, ..., Lg
and not on the characters 61, ..., d.
In [46], it is shown that, for the Levi subgroups Li,..., Ly introduced above and a generic
choice of 41, ..., ) the multiplicity (A9 ® Rgl (0)®-® ng (0r), 1) is equal to the number of
isomorphism classes of absolutely indecomposable representations of @ over F, of dimension
ay, i.e

(A® Rf (1) ® -+ ® RY, (6k),1) = ag.ax(q). (2.1.4)

In the same paper, via a combinatorial argument, the authors find a formula for Kac polyno-
mials for star-shaped quivers and show in particular that we have

Q0 (t) = Hy(0, V) (2.1.5)

and thus they obtain Formula (2.1.2)) cited above.
The quiver-theoretic interpretation of multiplicities recalled here has many interesting conse-
quences. For instance, it implies that the multiplicity

(A® Rf (1) ® -+ ® Rf, (6k),1) #0

if and only if ag o, () # 0, i.e if and only if ay is a root of @ (see [46, Corollary 1.4.2]).
If ay is indivisible, Formula gives moreover the following geometric interpretation of
multiplicities

(A® R (61) ® -~ ® RY, (0k), 1) = ¢~ "¢/2P.(Q, \/q). (2.1.6)

The quiver variety Q appearing in the RHS of Formula ([2.1.6)) admits the following description.
Fix a generic k-tuple O = (O1,...,0) (see [45, Definition 2.2.1]) of semisimple adjoint
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orbits of gl,,(C) such that p is the multipartition given by the multiplicities of eigenvalues of
O1,...,0.
In [45], it is shown that the variety Q is isomorphic to

k g k
Qo = {(Al,Bl,...,Bg,m,...,Yk) cgl?(C) x [T o)l D 1A Bl + > V; = 0}// GL,(C).

j=1 i=1 7j=1

The study of the non-emptiness of the varieties of the form Qp for g = 0 is usually called the
Deligne-Simpson problem (see for example [20]).

As mentioned at the beginning, the most interesting aspect of the results just cited of [45] is
that the functions H, (z, w) (and thus the multiplicities for tensor product of representations of
GL,(F,) and Kac polynomials for star-shaped quivers) are thereby related to the cohomology
of generic character stacks for Riemann surfaces.

This relationship between seemingly unrelated objects has proved itself to be one of the most
effective approach to compute cohomological invariants of these spaces.

We review these results and give a more general background about character stacks in the
paragraph below.

2.1.2 Character stacks for Riemann surfaces

Consider a Riemann surface 3 of genus g > 0, a subset D = {p1,...,pr} C X of k-points and
a k-tuple C = (Cy,...,Ck) of semisimple conjugacy classes. The associated character stack is
defined as the quotient stack

Me = Hp € Hom(my (£ \ D), GL,(C)) | p(z;) € Ci fori =1, ... ,k}/GLn(C)] (2.1.7)

where each x; is a small loop around the point p;. These stacks classify local systems on ¥\ D
such that the monodromy around the point p; lies in C;, for ¢ = 1,...,k and are naturally
related to certain moduli spaces of (strongly) parabolic Higgs bundles on ¥ via the non-abelian
Hodge correspondence, see for example the work of Simpson [88].

The stack M has the following explicit form in terms of matrix equations:

k g

k
M = {(Al,Bl,...,Bg,Xl,...,Xk) e GLY(C) x [[ ¢l TT14: B[ X, = 1}/GLn(C)
j=1

j=1 i=1
(2.1.8)

In what follows, for a complex stack of finite type X, we will denote by H} (X) .= H}(X,C) its
compactly supported cohomology with C-coefficients (this is well defined thanks to the work
of Laszlo and Olsson [59]).

Recall that each vector space H(X) is endowed with the weight filtration WIH!(X), from
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which we define the mixed Poincaré series H.(%, q,t)

x q,t Zdlm m 1)q%ti'

The E-series E(X,q) is the specialization of H.(X,q,t) obtained by plugging t = —1, the
Poincaré series P.(X,t) is the specialization of H.(X, ¢, t) obtained by plugging ¢ = 1 and the
pure part PH.(X,q,t) is defined as

PH.(%,q) = Zdlm (W2m /w2m g

The geometry and cohomology of character stacks have been extensively studied from different
perspectives. Most of the results have been obtained in the case where the k-tuple C is generic
(see Definition [9.1.1)).

For a generic k-tuple C, the stack M¢ is smooth and it is a G,,-gerbe over the associated GIT
quotient, which we denote by M. Therefore, the cohomology of M can be easily deduced
from that of the character variety Me.

We start by giving a quick review of the known results obtained about the cohomology of
generic character stacks and varieties, see for more details.

The first results concerning this subject were obtained in the case where k = 1 and C is a
central conjugacy class. For n € N and d € Z, let M,, 4 be the stack M¢ for £ = 1 and

27id

C={en I,}1ie

Mya=

9 )
{(Al,Bl,. . .,Ag,Bg) S GLng((C) | H[A“BZ] = 627:d1n}/GLn(C)

=1

The orbit C = {(3%} is generic if and only if (n,d) = 1.

Hitchin [48] computed the Poincaré polynomial P.(M,, 4,t) in the generic case for n = 2, using
non abelian Hodge correspondence and Morse theory on the moduli space of Higgs bundles.
Gothen [40] extended his result for n = 3.

Their approach was later extended to compute the Poincaré polynomial P,.(Mg,t) in the case
where n = 2, any k and any generic k-tuple C by Boden, Yogokawa [12] and where n = 3, any
k and any generic k-tuple C by Garcia-Prada, Gothen and Munoz [37].

However, Morse theoretic techniques do not give information about weight filtration on the
character variety and were hard to generalize to any n.

Hausel and Rodriguez-Villegas [44] were the first to obtain a general result about the weight
filtration for any n.

The authors computed the E-series E(M,, 4,q) of the stacks M,, 4 for any coprime n,d, by
counting points over finite fields and proposed a conjectural formula for the mixed Poincaré
series Ho(My 4, ¢,1).

Schiffmann [84] found an expression for the Poincaré series P.(M,, 4,%) in the generic case and
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Mellit [73] later checked that Schiffmann’s formula agrees with the specialization of Hausel
and Rodriguez-Villegas conjecture at ¢ = 1.

Hausel, Letellier and Rodriguez-Villegas afterwards generalized the results of [44] and com-
puted [45, Theorem 1.2.3] the E-series E(Mc, q) of the stacks M¢ for any generic k-tuple C.
We quickly explain in more detail their results, as it is the fundamental starting point for the
development of this work.

The authors [45, Theorem 1.2.3] showed that there is an equality

E(Mc.q) = qq_QlHu <\/§, \ja) (2.1.9)

where 2d,, = dim(Mc)+1 and p = (!, ..., p¥) is the multipartition given by the multiplicities

of the eigenvalues of Cy, ..., Cy respectively.

In the same paper, the authors [45, Conjecture 1.2.1| proposed the following conjectural for-
mula for the mixed Poincaré series H.(Mc,q,t), which generalizes Hausel and Rodriguez-
Villegas conjecture stated in [44] and naturally deformes Identity (2.1.9)):

d
(qt?)7

1
H.(Mc,q,t) = WHM <t\/§, —\/a,) . (2.1.10)

Mellit |72, Theorem 7.12] later computed the Poincaré series P.(Mc,t) using non-abelian
Hodge correspondence. His formula matches with the specialization at ¢ = 1 of the conjectural
formula (2.1.10)) for the mixed Poincaré series.

Notice that, as mentioned before, Formula (2.1.2)), Formula (2.1.9) and Conjecture (2.1.10)

closely relate the understanding of cohomology of generic character stacks with the under-
standing of generic multiplicities for representations of GL,(F,) and star-shaped quivers.

For instance, Conjecture (2.1.10) implies that we have

dip,
2
PH(Me,q) = = (A® RE,(3) @ - @ R, (54).1) (2.1.11)
for any generic k-tuple (Rgl(él), . .,ng (6r)) such that the associated multipartition is p.
Moreover, when the dimension vector ay associated to the k-tuple X = (R%1 (01)y---, ng (0r))
is indivisible, Conjecture (2.1.10)) implies that we have
P,
PH.(Mc,q) = C;QO{ 2 (2.1.12)

i.e that the pure part of the mixed Poincaré series of M¢ is equal (up to a ¢ — 1 factor) to
the compactly supported Poincaré polynomial of its additive counterpart Q. This is usually
known as the "purity conjecture".
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While in the generic case the works just cited give a fairly complete description of the coho-
mology of character stacks, the cohomology of the stacks Mg for non-generic k-tuples C has
been little studied until recently.

The most explicit and general results have mostly been obtained in the case of the stacks
My q.

Hausel and Rodriguez-Villegas were the first to obtain a general result in this direction. The
authors [44, Theorem 3.8.1] expressed the E-series for the stacks M,, o in terms of the E-series
for the generic character stacks M, 1 by the following formula:

E(Mn,17q> E(Mn,07Q>
neN neN

where Exp is the plethystic exponential in the ring of formal power series Q(q)[[T]] (see

for details about plethystic operations). The authors’ result is obtained by counting points

over finite fields.

Fix now r € Q. Recently, Davison, Hennercart and Schelegel-Mejia |24, Theorem 14.3, Corol-
lary 14.7] proved the following formula expressing the compactly supported Poincaré series of
M, q for any n,d, in terms of the Poincaré series for the generic character stacks M,, 1:

Pc(Mn,da _t) n d Pc(Mn,h _t) n d
(7’L7d)EN>O X7 (n,d)EN>0 X7,
d=rn d=rn

and formulated a similar conjecture for the mixed Poincaré series of H.(M,, 4,¢,t) for any
n,d (see the discussion after [24] Theorem 14.10]).

They obtained this formula by relating the cohomology of a character stack with the cohomol-
ogy of the so-called BPS sheaves. The latter are certain perverse sheaves defined on character
varieties and their cohomology is well understood for the stacks M,, 4. More precisely the non-
abelian Hodge correspondence for stacks, proved in [24], and the recent work of Koseki and
Kinjo [55] about BPS sheaves for the moduli stack of Higgs bundles, give a way to compute
the cohomology of BPS sheaves for a stack M,, 4.

Notice moreover that, since the authors use non abelian Hodge correspondence which does not
preserve weight filtration on cohomology, their method does not allow to prove an analogous
formula for the E-series or the mixed Poincaré series of M,, 4.

Finally, the cohomology of BPS sheaves for character stacks Mg is not understood for an
arbitrary C and so a generalization of Formula for an arbitrary C is still unproved.

One of the main aim of this thesis is to contribute to the understanding of the cohomology of
character stacks M¢ for not-necessarily generic k-tuples, for any k and C.
2.1.3 Character stacks for non-orientable surfaces

Another generalization of the results of [45] that will interest us in this thesis is the study of
character stacks for real non-orientable surfaces rather than Riemann surfaces.
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Our point of view on real geometry is that introduced by Atiyah [3], i.e a non-orientable
surface in the following will be a pair (X, 0), where ¥ is a Riemann surface and 0 : ¥ — ¥ is
an anti-holomorphic involution such that 7 = &.

Notice that in this case indeed, the quotient S = ¥ /(o) is a non-orientable real surface. Denote
by p: ¥ — S the quotient map.

Fix now a subset £ = {y1,...,yx} € S and a k-tuple C of semisimple conjugacy classes
of GL,(C). Notice that since the action of o is free, the involution o defines a morphism
e:m(S\ E) — Z/(2) with kernel p,(m(Z/p~Y(E)))

Consider now the group GL,(C)" := GL,(C) %y Z/(2), where 6 : GL,(C) — GL,(C) is
the Cartan involution §(M) = (M?*)~! and denote by 7 : GL,(C)* — Z/(2) the associated
projection.

The associated character stack Mg is defined as

M = [{p 7S\ E) = GLo(C)* | () € G and w(p(g)) = c(g) |/ GLu(C)

where each z; is a loop around the point y;. The stack Mg has the following explicit form in
terms of matrix equation:

k
ME = [{(Dl, ce ,D,«, Zl, cey Zk) S GL;(C)XH Cj ‘ DIG(Dl) s DTQ(DT)Zl s Zk- = 1}/GLH(C)
j=1
(2.1.15)
where r = g+1. We denote by M§ the associated GIT quotient. When k = 1 and C = {eﬂTzldIn},
we denote the stack Mg by Mj ;.
Similar definitions can be given when ¢ has fixed points, using the orbifold fundamental group

of the quotient X/(o), see for example [11].

The stacks Mg are deeply related to the so-called branes inside the moduli spaces of Higgs
bundles. The computation of the cohomology of branes is a key part in understanding mirror
symmetry for the Hitchin system.

References about the subject can be found for example in [6],[7],[I1],[9].

Few results have been shown in the literature concerning the cohomology of the stacks M.
Recently, Letellier and Rodriguez-Villegas [65, Theorem 1.4] computed the E-series £ (MG, q)
when C is generic, by counting points over finite fields.

Baird and Wong [4] computed the E-polynomial of analogous varieties M, , when the anti-
holomorphic involution ¢ has fixed points. Their formulas are quite different from the ones of
[65].

In this thesis, we will focus on the case of the stacks M; ;, when (n,d) = 1. In this case, the
stack M , is a us-gerbe over the character variety M, 4- The latter variety is deeply related
to the moduli space of real and quaternionic Higgs bundles of rank n and degree d over X.
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2.2 Overview of the thesis

We give here a quick summary of our main results, which we will explain more precisely in

the next Section.

2.2.1 Multiplicities

With regard to multiplicities, we study multiplicities (X} ® --- ® Xj, 1) for not necessarily
generic k-tuples of irreducible characters (A7, ..., X).

In this thesis, we give a formula for (Rg1 Mm@ ng (Vk), 1) for any choice of v1,...,7
(not necessarily generic), in terms of Kac polynomials of the quiver @ introduced before.

This formula is obtained by giving a quiver theoretic interpretation of the multiplicity (Rg1 (M1)®
e ® ng (7k), 1) for any k-tuple (Rf1 (m),--- ,ng (Vk))-

As a consequence of our result, we show that (Rf (1) ®---® ng (7), 1) is a polynomial in ¢
with non-negative coefficients and show a criterion for its non-vanishing in terms of the root
system of (). These results are contained in [85].

2.2.2 Cohomology of character stacks

With regard to character stacks for Riemann surfaces, we study cohomology of character stacks
M for k-tuples which are not necessarily generic. One of the main results of this thesis is
a generalization of Formula to arbitrary C for the E-series F(Mc,q) instead of the
Poincaré series P.(Mg,1t).

As a result we get an explicit formula for E(Mgc,q) for any k-tuple C, see Theorem
below.

We also give a conjectural formula (see Conjecture for the mixed Poincaré series
H.(Mg¢,q,t), which we verify in the case of ¥ = IP’}C, k = 4 and a certain family of non-
generic quadruples. These results are part of [86].

Conjecture for the stacks M,, 4 has already appeared in [24], see the discussion in loc.
cit after Theorem 14.10. Let us notice that our approach is very different from that of [24] as
we do not use non-abelian Hodge theory nor BPS sheaves.

2.2.3 Non-orientable surfaces

With regard to generic character stacks for non-orientable compact real surfaces, we give an
explicit description of the stacks M, ; when (n,d) = 1 and r = 2, i.e for a (veal) elliptic curve.
This description gives a counterexample to a formula suggested by [65] for the mixed Poincaré
series of the stacks MG. The description of this counterexample is the main result of the
article [87].

2.3 Main results

2.3.1 Main results about multiplicities

Fix Levi subgroups Li,..., Ly of GL,(F,) as in §2.1.1] To study the non-generic case, we
will start by defining a stratification both on the set of k-tuples of semisimple split characters
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X = (Rg1 (71), - .,Rfk (7%)) and on the set of representations of @ of dimension ay. This
stratification will be indexed by subsets V' C N’.

The level of the stratification associated to V' = {ay} will correspond to the case of generic
k-tuples/absolutely indecomposable representations respectively.

Consider more generally any finite quiver I' = (J, Q). To a representation M of I', we associate
the following subset H,; € N’. Given the decomposition into indecomposable components

Mg K2M"®- @& M™,

we define
Har = {dim(M),...,dim(Mp)}.

For any V C N”, we give the following definition of the representations of ' of level V (see

Definition [6.2.2)).

Definition 2.3.1. A representation M of T' is said to be of level V if Hy = {0 < g <
dimM | eV}

Remark 2.3.2. For a € N7, denote by N‘éa = {6 € N’/ | § < a}. Consider a representation M
such that dim M = a. Notice that, given V, V' C N7 such that VN NJ = V' NN/, we have
that M is of level V if and only if it is of level V".

Notice that, for 8 € N’ a representation of dimension §3 is of level {} if and only if is abso-
lutely indecomposable . In particular, the number of isomorphism classes of representations
of level {4} and dimension [ over finite fields is counted by the Kac polynomial ar (t).

However, for a general V C N”| the counting of the isomorphism classes of the representations
of I' of prescribed dimension and of level V' over F;, does not seem to give an interesting
generalization of Kac polynomials.

In this direction, to obtain such a generalization, we introduce the following definition of a
representation of level at most V (see Definition [6.2.4)).

Definition 2.3.3. For a subset V C N7, a representation M is said to be of level at most V
if it is of level V'’ for some V/ C V, i.e if and only if Hy; C V.

For any 8 € N’ and any V C N’, we show that the number of isomorphism classes of
representations of I' of level at most V' of dimension 3 over F, is equal to the evaluation of a
polynomial Mr gy (t) € Z[t] at t = gq.

Moreover, we prove a formula for the generating function of the polynomials M gy (t) of the
following type (see Lemma [6.2.2)):

Exp | Y ar,()y" | = > Mrgv(t)y’. (23.1)
~yeV BeNI

where Exp is the plethystic exponential.
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Remark 2.3.4. For V =N’ Formula (2.3.1) gives

Exp | Y ary(y | = Y Mrs(t)y” (23.2)
~yENJ BeNI

where Mr g(t) is the polynomial counting the number of isomorphism classes of representations
of I' of dim = j over Fy. This was already proved in [50].

Consider now the quiver @ and the dimension vector ay introduced above. Let (N7)* C N/
be the subset of vectors with non-increasing coordinates along the legs.

In , to any k-tuple X = (Rg1 (61)y- -+, ng (0x)) we associate an element oy € Hom(Fy, cH!
(see w' Let H} C (N')* be the subset defined by

ox,0x

*
HUXan

={0<f<ax]|oh=1}

where af( = H((UX),L-)B". For any V' C (N')* we give the following definition of a k-tuple
el

(Rg(&i))f’:l of level V' (see Definition .

Definition 2.3.5. A k-tuple X = (R7 (61), ..., RY (0x)) is said of level V if H,, .

f<al|BeV}

For V = {ax}, we show that if a k-tuple (R§1(51), e ng(ék)) is of level {ay} it is generic.

Conversely, if the k-tuple X' is generic, there are no elements 6,¢ € Hj, , \ {ax} such that

={0<

0+ € = a, see Lemma [8.2.4

The main result of this paper extends Formula (2.1.4]) by relating the multiplicity for k-tuples
of level V' and representations of level at most V in the following way.

Theorem 2.3.6. Let V C (N/)* and X = (Rfl((sl), . .,Rfk((sk)) be a k-tuple of level V.. The
following equality holds:

<A ® Rgl (51) - ® ng (516)’ 1> = MQ,ch,V(q) (233)

From Theorem and Formula (2.3.1)), in Proposition [8.2.12] we obtain the following cri-
terion for the non-vanishing of the multiplicity (A ® Rgl (01)®--® ng (0), 1), generalizing

the criterion for generic k-tuples of [46, Corollary 1.4.2] .
Proposition 2.3.7. For a k-tuple (Rg1 (01),... ,Rfk (0r)) of level V, the multiplicity

(A® RE, (1) ® - ® R, (6), 1)

15 mon-zero if and only there exist
b 61)"'767‘ € ¢+(Q)ﬁv
e my,...,m €N

such that mi8y + -+ - +m.B, = ay
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2.3.2 Main results about non-generic character stacks

An important tool to formulate and prove the main results of this thesis concerning non-generic
character stacks is the construnction of character stacks as multiplicative quiver stacks, as first
introduced by Crawley-Boevey and Shaw [18],[19], which we quickly recall here (see for
more details).

Notice that this construction is not needed for studying generic character stacks and does not
appear for example in the articles [45], [72]. However, it is a key point in our paper, as it allows
to distinguish between different levels of non-genericity for non-generic character stacks.

Let s1,...,s% € N be such that, for each ¢ = 1,..., k, the conjugacy class C; has s; + 1 distinct
eigenvalues 7,0, . .. ,7Vi,s; with multiplicities m;g,...,m; s, respectively. Let @ = (I,2) be the
star-shaped quiver with g loops on the central vertex and k legs of length sq,..., sg.

Recall that for any 3 € N/, there is a representation variety R(Q,3)** and a multiplicative
moment map
@ R(@Q,A)°" — GLy(C) = [[ CLs, (©).
el
For any s € (C*)!, we denote by s the central element s := (s;I3,)icr € GLg. The multiplica-
tive quiver stack with parameters (3, s is the quotient stack

t5=[(®5) " (s)/ GLg],
Consider now the dimension vector a¢ € N! defined as
(@C)[i,j] = Zmi,h
h=j

for every j = 0,...,s;, where we are identifiying [i,0] = O for each i = 1,...,k. Notice that
(ac)o = n. Let moreover v¢ € (C*)! be defined as follows

k
[Thigifi=0
(’YC)[z',j]Z -

W;jlfyi,j,l otherwise

The results of Crawley-Boevey [18, Proposition 2| impliy that, for the elements a¢, ¢, there
is an isomorphism of stacks

Me =2 M

Ye,ac”
Let now (N/)* C N’ be the subset of vectors with non-increasing coordinates along the legs
and denote by H* C (N)* the subset defined as

e,

H*

Ye,ee

:{5G(NI)*‘72:1 and 6 < ac}
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where 7% = [[((7e)i).
i€l

Ezample 2.3.8. 1t can be checked that a k-tuple C is generic if H, .. = {ac}, see Lemma
[0.1.4] for more details.

The subsets H2, .,
stacks Me.
The introduction of this stratification is one of the key ingredients to study the cohomology

define a natural stratification on the set of k-tuples C and so of character

*
Yye,ac

of Mg in the non-generic case. Notice that altough not explicitly defined, the subsets H
appear implicitly in [24].

For any 8 € (N/)* and for any j = 1,. o k, the integers (Bj,01=8,1)» - - - » Blj,s;— 11— Bljiss]» Blis;))
up to reordering form a partition ,ujﬁ € P. Denote by pug € P* the multipartition ng =
(ué, e ,ug) and by Hpg(z,w) the function Hy,, (2, w).

Remark 2.3.9. Notice that for a k-tuple C of semisimple conjugacy classes, the multipartition
Mo, € PF is the multipartition given by the multiplicities of the orbits Cy, ..., Cj respectively.
Moreover, it can be checked that

dlm(MC) = 2(0&0,0&0) +1,

where (, ) is the Euler form of Q. The result [45, Theorem 1.2.3| of Hausel, Letellier, Rodriguez-
Villegas for a generic k-tuple C can thus be rewritten as follows:

1
E(Mc,q)  THac (\/5, W)
q(CVC:OCC) - qg—1 '

(2.3.4)

The main result about character stacks of this paper (see Theorem [9.3.2)) is the following :

Theorem 2.3.10. For any k-tuple of semisimple conjugacy classes C, we have:

aHs (va. J;) BE(M
ﬁ o C?q)
Coeffa. [Exp | Y =T Y =~ facee) - (2.3.5)
PEM e ac

We compute the E-geries of the complex character stacks M through the approach introduced
in [44],[45],[65], i.e by reduction over finite fields and point counting. Namely, recall that if
there exists a rational function Q(t) € Q(t) such that, for any Fy-stack Mc r, obtained from
M by base change and any m, it holds

#Mc g, (Fgm) = Q(g™),

we have an equality

E(Me,q) = Q(q),
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see for more details.

However, the way we count rational points of character stacks in this paper is quite different
from that of [45]. The description of the rational functions Q(¢) for non-generic character
stacks is given through the results of Chapter and §7.3] where we show how to compute
the rational points of a multiplicative quiver stack for a star-shaped quiver over F,.

Notice that in the articles [46],[45], the authors did not need to introduce multiplicative quiver
stacks to compute F,-points of generic character stacks.

The results of and about the rational functions Q(t) will be obtained as a consequence
of one of the main technical results of this thesis which is Theorem [£.5.2 The latter theorem
is very general and works for certain families of rational functions called Log compatible.
Therefore, to prove Theorem we will have to prove that the rational functions involved
in it satisfy this Log compatibility property.

The proof of Theorem will be one of the main technical points of the first part of the
thesis. We will have to use combinatorial objects different from the ones used for the generic
case in [46],[45]. The definition of these objects and the study of their properties do not
seem to have been given before in the literature and constitute the main topic of the sections

395

Remark 2.3.11. Theorem about Log compatible functions can be used to give another
proof of Theorem about multiplicities for k-tuples of Harisha-Chandra characters, as
shown in section In the case of multiplicities, we could avoid the technical result by
interpreting multiplicities in terms of the counting of isomorphism classes in the category of
representations of a quiver.

For the E-series of character stacks, we lack such a categorical interpretation and we don’t
know an alternative way to Theorem [4.5.2]

Hausel, Letellier, Rodriguez Villegas conjectural formula (2.1.10]) for the mixed Poincaré series
of character stacks for generic k-tuples and Theorem [2.3.10] suggest the following conjecture
for the mixed Poincaré series of character stacks:

Conjecture 2.3.12. For any k-tuple of semisimple orbits C, we have:

CRLA NS o)) 2 HelMea.

Coeffye | Exp 1 = (gtd)ecoc)

(2.3.6)

BEH o

In , we verify that Conjecture [2.3.12 holds in the case where ¥ = PL, |D| = 4 and the
following family of non-generic quadruples.
Pick A1, A2, A3, Ay € C*\ {1, —1} and denote by C; the conjugacy class of the diagonal matrix

1 -
0 )\j
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Assume moreover that Aj, A2, A3, Ay have the following property. Given €1,...,e4 € {1,—1}
such that A --- Af* =1, then either e = - - =es=1lore =--- = = —1.

2.3.3 A common approach: non-generic to generic

One of the interesting aspects of our results about non-generic character stacks and non-
generic multiplicities is that in both cases E-series for any k-tuple C of semisimple conjugacy
classes and multiplicities for any k-tuple (R%1 (M), - ,Rfk (7)) are expressed in terms of the
E-series (respectively multiplicities) for generic k-tuples.

Similar type of results, relating non-generic to generic, have already appeared elsewhere, see
for example the results of [64] recalled above for unipotent characters or the discussion at the
end of

We can also cite Davison’s work [22, Theorem B| which recently showed that the cohomology
of non-generic quiver stacks can be expressed in terms of Kac polynomials and Letellier’s work
[61] where he computed the E-series for character stacks with unipotent local monodromies in
terms of the generic case.

2.4 Main results about character stacks for non-orientable surfaces

In [65], the authors obtained a combinatorial formula for the E-series E(MS§, ¢) for any generic
k-tuple C of semisimple conjugacy classes. Surprinsingly, the formulas found by the authors
for the E-series F(M§, q) strongly resemble the ones computing E-series for character stacks
for Riemann surfaces found in [45].

For instance, for r = 2h we have an equality E(M§, q) = E(Mc,q) where M¢ is associated
to a Riemann surface of genus h, see [65, Remark 1.5].

The authors’ [65, Theorem 4.8] verified that a completely analogous formula to that of Con-
jecture holds for Mg in the case of r = 1 and k = 1. Therefore, it would have been
natural to expect a similar formula to hold for any r. We give an explicit description of some
of these stacks in the case r = 2, giving a counterexample to the expected formula. More
precisely, we show the following.

Theorem 2.4.1. Putr =2, k =1 and consider M, , for (n,d) = 1. Then Mg is a p2-gerbe
over C*. In particular, its mized Poincaré series is

H (Mg, q,t) = qt® +t.

To prove Theorem we need some results of independent interest concerning the geometry
of the spaces M;,d‘

To summarize these results, let M, 4 be the character variety associated to the Riemann
surface ¥ (of genus 7 — 1) and o : ¥ — X be the involution which sends a representation
p € Myqtoo(p) =0(p)(o.) (for more details and a definition of o, see chapter §10).

In section we show the following Theorem:

Theorem 2.4.2. If r is odd, the fized point locus M ; is isomorphic to MS ,. If r is even,
there is an open-closed decomposition M¢ , = Mg; LIM. such that Mg; =~ M =M.
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Theorem (and the others in §10.4)) are probably known to the experts but we could not
locate a reference in the literature. We review them here for the sake of completeness.

Theorem is obtained by studying the action of o, on M, 4 for elliptic curves and finding
an explicit isomorphism
O+ A
M, = C*.
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3 Geometric and combinatoric background

This chapter recalls the geometric and combinatorics tools needed in the rest of the thesis.
The base field is K = C or K = F, where F, is the finite field with ¢ elements.

In section we review some generalities about the complex represention theory of finite
groups and fix some notations about the product and the convolution of class functions.

In section §3.2] we introduce some notations for varieties and algebraic groups over F, and
their twisted Frobenius structures.

In section we fix some notations and recall some generalities about algebraic stacks and
in particular about quotient stacks [X/G], where X is a variety and G a reductive group.

In section we recall the definition and some basic properties of compactly supported
cohomology H}(X) and weight filtration for a stack X of finite type over K.

In sections and we recall some notations and properties of partitions and multitypes.
The latter are of one the main combinatorial objects used in the thesis as they parametrize,
for example, the conjugacy classes of the groups of the type GL(F,) for o € [\

In section we review the definition and properties of A-rings and, in particular, of the
plethystic exponential Exp and of the plethystic logarithm Log. These operations will be the
main tool through which to express the non-generic case in terms of the generic ones, both
for multiplicities and character stacks.

In section §3.8] we recall the definition of the HLRV kernels H), 4(z,w), which are rational
functions of fundamental importance for the description of generic multiplicities and generic
character stacks.

3.1 Finite groups, irreducible characters and convolution

Let H be a finite group. We denote by C(H) the set of complex valued class functions, i.e the
functions f : H — C which are constant on the conjugacy classes of H. The constant function
equal to 1 is going to be denoted by 1.

For f,g € C(H), we denote by (f, g) the quantity

1 [
(.90 = > f(h)g(h).

heH

Recall that an orthonormal basis of C(H) is given by the irreducible characters of H. We will
denote the set of irreducible characters of H by HV.

The vector space C(H) is endowed with a ring structure (C(H),®) induced by tensor product
of representations, i.e for f,g € C(H) we define the class function f ® g € C(H) as

f@g(h) = f(h)g(h).
The ring (C(H),®) is usually called the character ring of H.

Given two class functions f,g € C(H) and an irreducible character y € H", the quantity
(f ® g, x) is usually called the multiplicity of x in the product f ® g.
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The computation of multiplicities is of fundamental importance for the full understanding of
the representation theory of the finite group H.

The vector space C(H) can be endowed with another ring structure (C(H), x) given by the
convolution product.

Given two class functions f1, fo € C(H), the convolution fi x fo is the class function defined
as

fix fa(g) = > filgh) fa(h71),

heH

Denote by CI(H) the set of conjugacy classes of H. For any O € Cl(H), we denote by
lp € C(H) the characteristic function of O. For a central element 7 € Zg, we denote by 1,
the characteristic function of the conjugacy class {n}.

Notice that, for any central element n € H and any class function f, there is an equality

)
<f 17]716> - ‘H‘ .

Recall now that

%:E:ﬁgx (3.1.1)

xE€EHY

We have therefore

_ x(1)
W = Z (f * 1an>m~ (3.1.2)

xXEHY

For any two class functions f1, fo : H — C and an irreducible character y € HV, there is an

H
(S fosx) = (oo )k (3.9
x(1)
(see for example [5I, Theorem 2.13]). In particular, from Formula (3.1.2)), we deduce the

identity:

equality

= X 0t = ¥ (f, ) X X3 (3.1.4)

Z 2N T

Remark 3.1.1. If H is abelian, we can build an isomorphism v : (C(H),®) — (C(H), *) in the
following way.

Since H is abelian, the set of irreducible characters H" is a group and we can find an isomor-
phism
9:H=H'

g — Xg-
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We define ¢ : C(H) — C(H) by extending by linearity ¢(14) = x4. Notice that

P(1lgy *1gy) = V(Lg1g0) = Xgrgo = X1 @ Xga
i.e 1 is an isomorphism (C(H),*) — (C(H), ®).

However, notice that in general, i.e if H is not abelian, the rings (C(H),®) and (C(H), ) are
not isomorphic.

3.2 Varieties over finite fields and twisted Frobenius

Let ¢ = p” where p is a prime number, F, the field with g elements and F, its algebraic closure.
In this paragraph, we review some properties of varieties over F,. We follow Milne’s book [74]
and Digne and Michel’s book [28]. We denote by F' : F, — F, the Frobenius morphism
F(z) = 2%

Consider a variety X over ﬁq, i.e a reduced and separated scheme of finite type over Fq. We
say that X is defined over F, or equivalently that it admits an Fg-structure if there is an
F-variety X¢ and an isomorphism

X0 XSpec(Fy) Spec(F,) = X.
Via the isomorphism above, the morphism
FXO x Id: Xy X Spec(F,) Spec(?q) — Xp X Spec(Fy) Spec(Fq)

defines a corresponding morphism on X, usually called geometric Frobenius, and denoted by
Fx : X — X. Here F¥, is the Frobenius morphism of the scheme Xy, i.e the morphism of
schemes given by the identity on the topological space and by taking the ¢-th power of the
elements of the structure sheaf.

Remark 3.2.1. Notice that a variety X can be endowed with different F,-structures (and
so different associated Frobenius morphisms). Consider for example the 1-dimensional torus
Gy = Spec(F,[t, t71]).

The canonical F,-structure of G,, is the F,-variety Xo = Spec(F,[t,t~1]) and the corresponding
Frobenius is the morphism F' : G,, — G,,, defined as t — 9.

However, G, can be endowed with another Fy-structure. Consider the F -variety

X{, = Spec(Fy[x, y]/(z* + y* — 1)).

It is possible to show that if —1 is not a square in Fy, the variety X is not isomorphic to Xo,
however we have
Fylz,y)/(2® +y* — 1) @p, Fy 2 F [t t 1]

In particular, X{, is another Fy-structure of G,,. The corresponding Frobenius morphism
FX(/) : Gy, — Gy, sends ¢ to t79.
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Consider an affine variety X = Spec(A) with A a finitely generately Fy-algebra. In this case,
we have the following description of the F-structures of X, see [28, Proposition 4.18].

Proposition 3.2.2. A morphism F : X — X is the Frobenius morphism attached to an F,-
structure of X if and only if the corresponding map of algebras F': A — A has the following
properiies:

o The map F has image equal to Al9) := {a? | a € A}.
e For any a € A, there exists n € N such that F™(a) = a?".
In this case, the corresponding variety Xo is Spec(A®), where Ag = {a € A | a? = F(a)}.

Because of Proposition for an affine variety X over F,, we call an F,-Frobenius morphism
(or simply a Frobenius morphism), a map F' : X — X respecting the two properties of

Proposition [3.2.2]

More generally, for any X we give the following definition.

Definition 3.2.3. A Frobenius morphism F : X — X is a bijective morphism such that
there exists an affine covering (Uj) ey of X such that, for each j, we have F(U;) C U; and
Fly, : Uj — Uj is a Frobenius morphism of an affine variety, i.e respects the properties of

Proposition [3.2.2]

Notice that, because of Proposition given a variety X and a Frobenius morphism F' :
X — X, glueing the associated Fg-structures of the affine covering (U;);es, we obtain an
Fg-structure Xo such that Fx = F'.

For this reason, hereafter we use the following terminology.
Definition 3.2.4. A variety over F, is a couple (X, F') where X is a variety over F, and F is

an F,- Frobenius morphism F': X — X.

For an Fy-variety (X, F'), for any m > 1, we denote by X (Fyn) the set Xo(Fym), i.e
X (Fym) = X(F,)F.
Whenever the Fg-structure of X is clear, we will often drop the Frobenius morphism in the

notation and we will simply use the terminology "the F,-variety X".

Ezample 3.2.5. For the F4-variety G,,, with its canonical Frobenius F' : G, — G,, we have
Gm(qu) == (ﬁ*)Fm == ]F*m.

Denote now by F’ : G,, — G,, the Frobenius morphism attached to the F,-structure X
introduced in Remark Notice that, in this case, we have for instance

*

Gm(Fy) = (F,)"" = {z € F, | 227 =1}.
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With this terminology, a morphism of Fy-varieties f : (X, F) — (Y, F) is a morphism of F,-
schemes f : X — Y which commutes with the corresponding Frobenius maps, i.e such that
the following diagram commutes

Given an affine variety (X, F) over F, with Frobenius F': X — X, consider the variety X¢
and the twisted Frobenius
Fy: X% x4
defined as
Fu(an, . 2a) = (F(za), F(21), .., F(za_1)).
In the following, we will usually denote the F,-variety (X¢, F,;) by X4 Notice that there is a
bijection X4(F;) = X(F,q). Indeed , we have

Xq(F,) = XYF )T = {(x1,...,2q) € X(F) | 21 = Flag) xo = F(x1)... ;09 = F(z4_1)} =

= {(F*(x), F3(x), ..., F" Y (2),2, F(2)) € X(F,)? | € X(F,) and F(z) = 2}

which is in bijection with X(F ). In particular, since X4F,) = X(F,)¢, we find that in
general the varieties (X9, F) and X, are not isomorphic over F,.

Ezxample 3.2.6. Consider the F,-variety G,,. The F,-variety (G;,)2 is the 2-dimensional torus

over [F, equipped with the non-split Frobenius
F:G2 — G2

(z,w) — (w9, 29).

In particular, we have
(Gm)2(Fq) = (G%(Fq))FQ =

{(z,w) GFZ XFZ | z=w? and w = 27} = {(z, 29) GFZ XFZ | 2 € Fp}

and the latter set is in bijection with Fy,. However, notice that Fi(z,w) = (2°,w?’) and
therefore we have
(Gm)Q(FqQ) =T, x FZz

q2

In particular, in general it is not true that Xy(IFym) is in bijection with X (F am) for any m.

Notice that for any F,-variety (X, F) and any d > 1, the diagonal embedding A : X — X% is
an [F-morphism
A: X — Xd.
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3.2.1 General linear groups over finite fields

For n € N, we denote by GL,, the general linear group over Fq. The group GL,, is endowed
with a canonical Frobenius morphism F((a;;);;) = (af ;)i ; for a matrix (a; ;)i € GLy.
For a € N/, we denote by GL, the Fg-linear algebraic group

GLq = [ [ GLq,

il

endowed with the canonical Frobenius.

Remark 3.2.7. For each n,d > 1, we define an embedding (GL,)q C GL,q4 over F, in the
following way. Let A : GLZ — GLy,q be the block diagonal embedding.

Notice that while A induces a morphism over F,, it does not define a morphism over F, from
(GLY, Fy) to (GLy,g, F)

Consider then the partition o € S,,4 given by

o=, mn+1), - ,(n(d=1)+1))---(n, 2n,--- ,dn)

and the associated partition matrix J, € GL,4.
Fix an element g, € GL,q such that g;'F(g,) = J, (such an element exists because of the
surjectivity of the Lang map see for example |28, Theorem 4.29]). The embedding

gUAgc;l : (GLfrluFd) — (GLn(bF)

is defined over FFy.
Similarly, we can define an F-embedding of (GLy, )4 inside GLy4 for any d > 1 and any o € N..

Example 3.2.8. Let n =2. Fix z € IFZQ \ Fy and let T, be the torus

1 az? — bx —a+b =
T, = ,beF, ».
{xq —x ((a —b)xx? —ax+ b:L'q> @ e }

The torus T is F-stable and is GLy(F,)-conjugated to the torus (G,,)2 embedded inside GLy
as in Remark [3.2.7] above.

Finally, we give the definition of weight for an embedding 1 : G,, — GL,. The weight || is
defined as the integer such that
deton : G, — Gy,

z— 2,

This definition can be extended to a morphism 1 : (G;,)q — GL, defined over F, in the
following way. In this case, we define

In| = |770A’
=
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where A : G, — (Gyy,)q is the diagonal embedding.
Ezample 3.2.9. For each d > 1, the weight of the embedding 7 : (G,,)q — GLg4 defined above
is

In| = 1.

3.3 Notations on stacks and quotient stacks

We follow [78] for notations and basic properties of Artin stacks. For us a stack Xover the
field K will be a category X fibered in groupoid over the category of K-schemes Schy with
the following properties:

e The diagonal morphism X — X Xgpec(x) X 18 representable by algebraic spaces
o There exists a smooth surjection 7 : X — X, where X is a scheme.

For a K-scheme T', we denote by X(T') the fiber groupoid of X over 7. Recall that X is said
of finite type if we can pick a smooth surjection 7 : X — X such that X is of finite type.

When K = FF, and X is a stack of finite type, for any m € Ny, the number of F4-points
#X(Fym) is defined as

1
#X(Fym) = x@%ﬂn) TR @) )] (3.3.1)

This quantity is well defined since X(Fym) is an essentially finite groupoid for any m (see for
example [8, Lemma 3.2.2]).

The stacks that will appear in this thesis are mainly going to be quotient stacks . We review
the definitions and some properties of these objects.

Consider an algebraic variety X over K and a K-algebraic group G acting on X. The quotient
stack [X/G] is the category fibered over the category of K-schemes defined as follows:

e An object over a K-scheme T is a pair (P, f), where P — T in a principal G-bundle
and f: P — X is a G-equivariant map.

e For two objects (P, f),(P, f') over schemes T, T’, a morphism « : (P, f) — (P’, f) over
a morphism h : T — T” is a bundle map « : P — P’ such that f'oa = f.

If X = Spec(K), the stack [Spec(K)/G] is called the classifying stack of G and is usually
denoted by BG. Notice that BG is the moduli stack of principal G-bundles, i.e for any K-
scheme T, giving a morphism T° — BG is equivalent to giving a principal G-bundle over
T.

3.3.1 Quotient stacks and GIT quotient

Consider the case where G is a (geometrically) reductive group (see [29]) and X = Spec(A4) is
an affine variety.
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It is a known result that the K -algebra A is finitely generated. This was shown for semisimple
complex groups by Weil and later generalised to any geometrically reductive group by Nagata.
The associated algebraic variety Spec(A%) is denoted by X//G and it is usually called the GIT
quotient.

The variety X//G is indeed a categorical quotient in the category Schy and, if K is alge-
braically closed, the K-points of X//G are in bijection with the closed orbits of the action of
G on X.

For such X, G, there is a canonical morphism of stacks

f:[X/G] = X//G.

The map f in general it is not an isomorphism. This is true in the case of schematically free
action. Consider more generally an algebraic variety (not necessarily affine) X and a linear
algebraic group G (not necessarily reductive).

Recall that the action of G on X is said to be schematically free if it is set-theoretically free
and the action map G x X — X is proper. For schematically free action we have the following
standard lemma.

Lemma 3.3.1. If the action of G on X is set-theoretically free, the algebraic stack [X/G]|
1s an algebraic space. Moreover, if the action is scheme-theoretically free, the algebraic space
[X/G] is a scheme, denoted by X/G, and the map X — X/G is a principal G-bundle.

Remark 3.3.2. In the case where X is affine, G is reductive, the scheme X/G is the GIT
quotient X//G and Lemma above is equivalent to state that the map f: [X/G] — X/G
is an isomorphism.

Remark 3.3.3. The map f carries a great deal of information about the geometry of the action
of G on X, but it is also extremely complicated to describe in general. Recently, Alper [2]
Remark 4.8] showed that if K = C, the map f is a good moduli space.

Davison [23, Theorem 6.1] showed that, under some conditions on the action of G, the map f
altough far from being proper, admits a sort of Decomposition Theorem

We will also need the following two Lemmas about isomorphism classes of quotient stacks.
Both Lemma are probably well known to the experts but we were not able to find
a reference in the literature.

Lemma 3.3.4. Let K = C and G be a K-linear algebraic group acting on the left on a K-
scheme X. Let H < G be a closed subgroup. Suppose that there exists a G-equivariant map
q: X — G/H, where G acts on G/H by left multiplication.
Denote by Xy = q ' (eH). The group H acts on Xy and there is an isomorphism of quotient
stacks

[X/G] = [ Xu/H]. (3.3.2)

Moreover, if X is an affine variety and G, H are reductive, there is an isomorphism of varieties:

X//G= Xy //H. (3.3.3)
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Proof. Notice firstly that, if X is affine and G, H are reductive, the isomorphism is
implied by the isomorphism as the varieties Xy //H, X//G are good moduli spaces
for the stacks [Xpy/H]|, [X/G] respectively, as recalled above. We are thus reduced to show
isomorphism ([3.3.2]).

Notice that in general there is always a canonical map « : [Xg/H| — [X/G], obtained by
extension of the structure group of a principal bundle from H to G. We must construct an
inverse 8 : [Xy/H] — [X/G].

Fix a scheme S and a pair (P, f) € [X/G](S), where P — S is a principal G-bundle and
f: P — X is a G-equivariant map. Consider the variety Py and the morphism fz such that
all square diagrams are cartesian:

Py 17 Xy eH
T
P X G/H.

We verify that Py is a principal H-bundle over S. Notice that Py — P is a closed embedding
and in the following we identify Py with its image in P. Notice that fy is H-equivariant,
being the restriction of f.

Denote by f:: qo f. If p € Py, then for each h € H, we have

f(h-p)=h-f(p)=h-eH =eH,
ieh-pe Py.
The closed subspace Py C P is thus H-stable and therefore we get an H action on it. Let us
show that this action equips Py with the structure of a principal H-bundle.
Denote by 7 : G — G/H the map defined as 7(g) = [g!], where [g] € G/H is the class of
g in the quotient. Notice that m is a left principal bundle, while the usual quotient map is a
right one.

Consider an fpqc open covering (S;);jes of S such that
Pj 2:PXSSJ'%G><SJ'

and, similarly, denote by (Pg); = Py x5 5;. By pullback, fvdeﬁnes G-equivariant morphisms
fj : G xS; = G/H, i.e morphisms ?j : S; = G/H such that

fi((g,8)) =g f;(s)-
Consider an étale open covering (V});er of G/H such that we have cartesian diagrams

HxV, —— G

| iy

Vi — % G/H
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and denote by r; : V; — G the morphism such that the morphism H x V; — G sends (h,v) to
h - TZ(U).

Denote by S;; = 7;1(1/1) and by Pj; = Pj xg; Sj; and (Py)ju = Pu Xs; Sj; the associated
pullback, by f;; :S;; — V| the associated morphisms. Notice that, for each j,1, we have

(Pr)j.={(g,8) € Gx S | 7(g7") =F;(f;(5))}-

Because of the definition of the schemes V;, there is an isomorphism (Pp);; =2 H x S;; given
by
H x Sji = (Pu)jy
(hys) = (h-ri(f5(s)), ).

Notice that (S;j;)jesier is an fpqe covering of S and therefore Py is an H-principal bundle
over S. We define thus

B [X/G] — [Xu/H]
B(P, f) = (Pu, fu).

It is not hard to check that the morphism ( is an inverse to a. O

Lemma 3.3.5. Consider linear algebraic groups G, H and a variety X with an action of
G x H such that the action of H on X obtained by restriction is schematically free. The
quotient X/H is a scheme equipped with a G-action and there is an isomorphism of quotient
stacks

[X/G x H] = [(X/H)/G.

Notice that the quotient X/H is a scheme by Lemma The G-action on it is defined as

g-mr(z) =7H(9 - 2),
where 7 : X — X/H is the quotient map. Notice that 7 is G-equivariant.

Proof. We define a map «a : [X/G x H] — [(X/H)/G] as follows. Consider S € Schi and a
pair (P, f) € [X/G x H]|(S). Since P — S is a principal G x H-bundle, the quotient P/H has
an induced structure of G-bundle. Moreover, as the map f: P — X is G x H-equivariant, it
descends to a G-equivariant map

f:P/H— X/H.
We define then
a((P,f)) = (P/H, [).

We define now a map g : [(X/H)/G] — [X/G x H] as follows. Consider a pair (Q,d) €
[(X/H)/G](S) and let P € Schg and f: P — X such that the following diagram is cartesian.
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LX
TH

—4 ., X/H

Q<+

Notice that
P={(z,q9) €Qx X | mp(z) =d(g)}.

We define a G x H-action on P as follows:

Notice that f : P — X is G x H-equivariant. We will show that P — S is a G x H-
principal bundle. Consider an fpqc covering (Sj);es of S such that @Q xg S; = G x S;. The
morphism d defines by pullback, G-equivariant morphisms d~j : G x S; — X/H, i.e morphisms
d; : S; — X/H such that

d;((g.s)) = g d;(s).

Consider an fpqc cover (Y]);er of X/H such that we have cartesian diagrams

HxY —— X

| [

Y, — s X/H

and denote by r; : Y} — X the corresponding morphism such that the morphism H x Y, — G
sends (h,y) to h-1r(y).

Denote by S;; = Ej_l(Yl) and by Pj; = Pj Xg; Sj; and by fj; : S;; — V; the associated
morphisms. Notice that we have the following commutative diagram, where both squares are

cartesian:

idxidx f;
G x H xS} gc>j’lG><H><YZL>X

l J g

o f X
Gx Sy I Gy T x/H

where 7(g,y) = g-7(y) and ¢;((g, h),y) = (g, h)-r;(y). We deduce therefore that the following

square is cartesian:

idxidx f;
G x H x sjflMJk

| I
TO'd .
G x S5 "D
Notice that
1o fi1 = diloxs;,

from which we deduce that
Pj,l =G x Hx Sj,l-
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We define therefore
B(Q,d)) = (P, f).

It is not hard to check that o and 3 are inverse one to each other.
O

We end this paragraph by recalling that the point counting of quotient stacks over finite fields
is well understood. More precisely, for K = F,, in [8, Lemma 2.5.1], it is shown that for a
quotient stack X = [X/G] where G is a connected linear algebraic group, we have

#X (Fq’")

#2Em) = gt (3.3.4)

for any m € N.

3.4 Compactly supported cohomology of stacks and weight filtration

Let X be an algebraic stack of finite type over an algebraically closed field K. For K = C,
we denote by H}(X) the compactly-supported cohomology groups with compact support with
coefficients in C.

For K = ﬁq, we denote by H}(X) the compactly supported étale cohomology groups with
coefficients in Q,. Both cohomology theories are well defined thanks to the recent work [59]
of Laszlo and Olsoon.

When K = C, each vector space H*(X) is endowed with the weight filtration W, by the work
of Deligne, see [25, Chapter §|.

For stacks over F, we have an analogous definition of a weight filtration induced by the
Frobenius action on cohomology, see for example [65, Section 2.2].

Remark 3.4.1. For a linear algebraic group G acting on the left on a scheme X of finite type
over C, the compactly supported cohomology H([X/G]) and its weight filtration have the
following more concrete description.

Consider an embedding G C GL,(C). For any m € N, denote by V;;, = Hom(C™,C"). Notice
that G acts on the right on the vector space V,, and acts freely on the open dense subset
U, = Hom®“7(C™, C"), given by surjective homomorphisms.

Consider the left action of G on X x Vj, defined as g - (z,u) = (¢-x,u-g~'). It is a known
fact that the action of G on U, is schematically free and the quotient stack [X x U,,/G] is
thus a scheme, which is usually denoted by X xg U,.

The projection p : X x V;,, — X induces a quotient morphism p : [X x V,,/G] — [X/G] such
that the following diagram is 2-cartesian

XxVy ———X

| J

(X X Vi /Gl — [X/G]
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and so the morphism p is a vector bundle. In particular, we have an isomorphism

Wi HL([X/G]) = Wiy dim(v,) HP2 V) (X % V;,/G)).

Let Z,, = Vi \ Up,. The codimension codimy;, (Z,,) goes to oo for m — +o00. In particular,
for any i € Z, there exists m € N such that

i+ 2dim(Vy,) > 2dim(Z,,) + 2(dim(X) — dim(G)) + 2.
Notice that in this case, we have

Hz’+2dim(Vm) (X % Z/G]) = Hz+2dim(Vm)*1 ([X x Zn/G]) = {0}.

From the long exact sequence in compactly supported cohomology for the open-closed decom-
position
[X X Vin/G] = X xg Un| |[X x Zn/G],

we deduce therefore that
HFP2AmVm) (X %V, /G)) = HEF™ V) (X X Uny)
and thus that, for any j, we have

Wi HA([X/G]) = Wjidaim He 28 Vm)(X X6 Up).

In particular, the (compactly supported) cohomology of the stack [X/G] can be computed
from that of the varieties X xg U,,.

This costrunction is an algebro-geometric version of the Borel construnction of equivariant
cohomology in differential geometry and was initially taken as a definition of G-equivariant
compactly supported cohomology or G-equivariant Borel-Moore homology of X, see [30].

3.4.1 Mixed Poincaré series

For X over C, we define the mixed Poincareé series H.(X,q,t) as

(X;5q,t Zdlm k gz R (3.4.1)

Notice that the specialization H.(X,1,t) of H.(X,q,t) at ¢ = 1 is equal to the Poincaré series
P.(%,t) of the stack X.

When Z Fdim(WE /Wk ) is finite for each m, we define the E-series:

m

E(X,q) == H.(X;q,— Zdlm k(=g (3.4.2)
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For the E-series of quotient stacks, moreover, we have the following Theorem (see [65, Theorem
2.5]).

Theorem 3.4.2. Let G be a connected linear algebraic group acting on a separated scheme of
finite type over K. The E-series of [X/G] is well-defined and

E([X/Gl,q) = E(X, 9 E(BG, q).

An efficient approach to compute E-series for complex stacks is counting points over F,. More
precisely, we give the following definition of a (strongly) rational count stack.

Let E be a Z-finitely generated algebra and ) be an E-stack. Assume that there exists
1 : B — C such that

QJ XSpec(R),z/J Spec((C) =X

The stack Q) is called a spreading out of X. For any ¢ : £ — 4, denote by

X¥ = 2 XSpec(R),¢ SpeC(FQ)'

Definition 3.4.3. We say that the stack X is (strongly) rational count if there exists an open
U C Spec(F) and a rational function Q(t) such that for any ¢ : E — F, with ¢(Spec(F,)) C U,
it holds

#X?(Fqn) = Q(q")
for every n > 1.

For strongly rational count stacks, the authors [65, Theorem 2.8] show the following result.

Theorem 3.4.4. If a quotient stack X = [X/G] is (strongly) rational count, we have:

E([X/G.q) = Q(a). (3.4.3)

Remark 3.4.5. Let X = [X/G] be a quotient stack over C. Consider a finitely generated Z-
algebra E and F-schemes Y7, Ys which are spreading out of X, G respectively. The E-stack )
is a spreading out X and, for any ¢ : £ — F,, we have

x4 = [X¥/G¥].
Notice moreover that by Formula (3.3.4), we have therefore an equality

_ #X@(qu)

#%W(]qu) - #GSD(qu).

Therefore, we deduce that the stack X is (strongly) rational count if and only if X, G are
(strongly) polynomial count.

Consider a reductive algebraic group G (i.e G = GL,,,PGL,,). In [25] it is shown that each
cohomology group H!"(BG) is pure of weight m. In [25] this is stated for cohomology rather
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than cohomology with compact support. The latter case is an immediate consequence thanks
to Poincaré duality.
From Theorem [3.4.4] we deduce the following Lemma:

Lemma 3.4.6. Suppose that G is (strongly) polynomial count. The classifying stack BG is
strongly polynomial count and we have

1

H.(BG,q,t) = E(BG, qt*) = . 3.4.4
(BG,q.1) = B(BG.at*) = o (3.4.4)
Ezample 3.4.7. We deduce, for instance, that, for each n € N, we have
H,(BGL,,q,t) = ! (3.4.5)
Cc 9 Q7 = n(n— n .
(@) @~ 1) (@)~ 1)
and
1 1
H.(BPGL,,q,t) = (3.4.6)

()2 (@ =1 (@) — 1)

Lastly, we will need the following Proposition about the cohomology of a quotient stack [X/G].
Assume that G = GL,, and the center G,, C GL,, acts trivially on the scheme X. There is
thus an induced action of PGL,, on X and a canonical morphism h : [X/ GL,] — [X/PGL,,].

Proposition 3.4.8. Let X be a C-variety with a GL,-action trivial on the center. We have
a natural isomorphism of mized Hodge structures:

HZ([X/ GLy]) = H([X/ PGL,)) ® H; (BGy,) (3.4.7)

Proof. We start by the case in which X = Spec(C) and the canonical morphism = : B GL,, —
BPGL,. In this case, eq.(3.4.7) is a direct consequence of eq.(3.4.5)), eq.(3.4.6]).
Notice now that there is a cartesian diagram:

BG,, — BGL,

! y

Spec(C) , BPGL,

where ¢ : Spec(C) — BPGL,, is the canonical projection. Since 1 is a smooth covering, for
each q € Z, the sheaf RImC is a local system with fiber HY (BG,,).

Moreover, as PGL,, is connected, each local system is trivial over B PGL,, see for example
[1, Proposition 6.13]. In particular, the Leray spectral sequence for compactly supported
cohomology and the morphism 7 in second page is

EP?: H?(BPGL,) ® HY(BG,,) = H?T9(B GL,).

From eq.(3.4.7)), we deduce that the spectral sequence collapses at page 2, i.e that the canonical
morphism

HE(BGLyn) = HZ(BGp)
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is surjective for every p.

Consider now a general X. In this case too, we have a Leray spectral sequence for compactly
supported cohomology with second page

EP? = H? ([X/PGL,], R C) = HP ([ X/ GL,)).
Notice that there is 2-Cartesian diagram

[X/GL,] — BGL,

| J

[X/PGL,] — BPGL,

where the morphism « : B GL, — BPGL, on the right is the canonical morphism between
classifying spaces. In particular, we have

RIWC = r*RiImC

where 7 : [X/PGL,| - BPGL,.
We deduce thus that each R0 C is trivial. Moreover, the associated map

HE([X/ GLn]) = HE(BGp)

is surjective, since the map H? (B GL,) — HZ(BG,,) is surjective, as remarked above. There-
fore, the spectral sequence EY'? collapses at page 2 and we obtain an isomorphism

H; ([X/ GL,]) = H ([X/ PGLy]) © H (BG)-

O
Remark 3.4.9. Notice that under the hypothesis of Proposition we have
H (| X/PGLy],q,t
Ho([X/ CLy), g, 1) = 2elX/PCLa]. 0. 1) (3.4.8)

qt? — 1

3.5 Partitions and multipartitions

We follow the classical book by Macdonald [70]. Recall that a partition A is a non-increasing
sequence A = (A, A2, ..., \p,...) with finite non-zero terms. We denote by P the set of all
partitions and by P* C P the subset of nonzero partitions.

A partition A will be denoted either by A = (A1, Aa...,Ap) with Ay > Ao > -+ > \j or
by A = (1™1A,2Mm2x ) where my, ) is the number of occurrencies of the number k in the
partition A. We will denote by X the partition conjugate to .

The size of A is
A=A
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and its length [(\) is the biggest i such that A; # 0. For each n € N, we denote by P,, the
subset of partitions of size n.

For two partitions A, i, we denote by (A, u) the quantity

M) = Ntk

7

The set P admits different possible orderings. In the following, we will denote by A < u the
ordering induced by the lezicographic order, i.e A < p if and only if \; < p; for any .

Recall that the conjugacy classes of the symmetric group S, are in bijection with P,. In-
deed, each element o can be written as a product of disjoint cycles ¢ = o1 --- 0y and, up to
reordering, the lengths of the cycles o1, ..., 01 give the associated partition.

For each A € P,,, denote by z) the cardinality of the centralizer of an element of the conjugacy
class associated to A. If A = (172,222 ) we have

Z\ = Hmj#\!jmj*.
J

Recall moreover that the set of irreducible characters of S, is in bijection with P,. In our
bijection we associate to the partition (n) the trivial character of S,,. We denote the irreducible
character of S,, associated to A by x* and its value at the conjugacy class associated to u € P,

by X;)l-

Fix now a finite set I. We consider the set of multipartitions P’. The elements of P! will
be usually be denoted in bold letters A € PL. To avoid confusion with the notation used for
partition, we will use the notation A = (\);c;. For A € P!, the size |A| € NI of X is defined
as

Ali = [N

For an element o € N/, we will denote by (1%) € P! the multipartition ((1%));c; and by
() € P! the multipartition ((a;))ies.

The order < induces the corresponding lexicographical ordering on P!, which we still denote
by <.

3.5.1 Partitions and symmetric functions

Let x = {x1,x2,...,} be an infinite set of variables. Denote by A(x) the ring of symmetric
functions over Q in the variables xy,...,x,,.... Notice that the ring A(x) admits a grading
given by the degree of a symmetric function. We denote by A(x),, the degree n part.

We can show that the ring A(x) is a polynomial ring in an infite set of variables. More
precisely, for each n € N, consider the elementary symmetric function e,(x) € A(x),, the
complete symmetric function h,(x) € A(x), and power sum p,(x) € A(x),, defined as

en(x) = > wmw,m,

1< <2<+ <ip
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ha(x) = Y andi,ew,

1<t <ip<++<ip
pala0) = af + a4 -
For each A = (A1,...,\n) € P, we introduce the associated elements
ex(x) = ex, (x) -+ - ex, (x)
ha(x) =y, (%) -+ By, (%)

PA(X) = Py (%) - - pa, (%).

The families of functions {e)(xX)}xep, {hr(X)}rep, {Pr(X)} rep are basis of the Q-vector space
A(x), or equivalently, the families of functions {e, (x) }nen, {hn(X) }nen, {Pn(X) fnen freely gen-
erate the ring A(x).

Another important basis of the ring A(x) is given by Schur functions {s)(x)}rep. There are
multiple ways to define these functions. One possible way is by the following formula:

A
) = 32 Epux).

Recall moreover that on the ring A(x) it is defined a canonical bilinear product (,) making
the Schur functions orthonormal, i.e

(sx(x), 5u(x)) = O -

3.6 Multitypes

A multitype is a function w : N x P! — N such that its support (i.e the elements (d, ) such
that w(d, u) # 0) is finite and w(0, ) = w(d,0) = 0 for any A € P! and d € N.
On the set N x P! put the total order defined by the following rules.

o If d> d then (d,A) > (d, p).
e If d=d and |A| > |u| then (d,X) > (d, )
o If [A| = |p| then (d,X) > (d', p) if X > p.

We can alternately think of a multitype w as a non-decreasing sequence w = (di, A1) ... (dr, Ar),
where the value w(d, A) corresponds to the number of times the element (d,A) appear in the
sequence (di, A1) ... (dr, Ay).

We will denote by T the set of multitypes. If |[I| = 1, we will call multytipes simply types.
For w € Ty where w = (d1, A1) ... (dy, Ar) and d € N5, we denote by ¥4(w) the multitype

wd(w) = (ddl, )\1) ce (ddr, )\T).
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Define the size |w| of a multitype w as the following element of N’

W= > dw(d,p)lp|

(d,n)eNxPI

and the integer w(w) € N as the quantity

w(w) = H d“ B (d, p)!.
(d,n)eNxPI

For a € N/, we denote by T, C T; the subset of multitypes of size a.

Ezample 3.6.1. Assume |I| = 1. For each A = (A1,..., ) € Py, there is an associated type
wy = (1,(1M)) ... (1, (1)) € T,. Whenever the context is clear, we will denote wy, simply by
A€ T,

Notice that, if A = (1™1x 222 ) for the type w) we have

wA((L, (1)) = mo
and therefore
Wy, = H my ;!
Jj=1
The sum of multitypes endows the set Ty with an associative operation
* T[ X T[ — T[.
More precisely, for w,ws multitypes , we define wy * wy as the multitype such that

wy * wa(d, A) = wi(d, N) + wa(d, A).

The reason for this choice of notation will be clear later. Notice that if |w1| = o and |we| = 3,
we have |wy *xwa| = a + .

We view Nxg x N/ as a subset of Nvg x P! by associating to (d, ) the element (d, (1%)). We
call a multitype w semisimple if its support is contained in Nyg x N’. Given a semisimple w
we will think of it as a function Nsg x N/ — N which we still denote by w with

w(d, a) = w(d, (1%)).

Whenever the context is clear, we will frequently switch between the two notations for semisim-
ple multitypes.
For each o € N/, we denote by w, the semisimple type defined as

{wa(l, a)
Wa(dv B)

1
0if (d, 8) # (1, )
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We denote by T3 C T the subset of semisimple types. Notice that for any semisimple
multitype w € T}, there exists di,...,d, € Nyg and aq,...,a, € N’ such that

W = Py (Way ) * * + + * Ya, (Wa, )-

For a type w = (di,A1)...(dr, Ar) € Ty, we define its semisimplification w® € T$* as the
semisimple type
w*s = (dy, (1P . (d,, 1)),

Le w™ =g, (Win,]) * -+ * Ya, (WA, ))-

To a semisimple type w = (d1,a1) ... (d, o), we associate the following polynomial P, (t) €

Z[t]
s
P,(t) =[]t - 1).
j=1
Notice that for any o € N/, it holds
P, (t)y=t—-1.

For a semisimple multitype w = (dy,81) - - - (dy, Br) € T2 put

C? =

,u(d)d“‘l(—l)r_l(r -1 ifdy=de=---=d,=d
0 otherwise.

where p denotes the ordinary Moébius function.
Lastly, we introduce the notion of levels for semisimple multitypes.

Definition 3.6.2. For a subset V' C N’ and a semisimple multitype w with

w = Yy (Way) * -+ % Ya, (Wa, ),

we say that w is of level V' if a; € V for each j =1,...,7.

Ezample 3.6.3. Notice that, for any o € N/, the multitype w, is of level {a}. Conversely, the
only multitype w € Ty, of level {a} is wq.

3.6.1 Multitypes and conjugacy classes

For any a € N!| the multitypes T, parametrize the conjugacy classes of GL4(F,) in the
following way.

Firstly, recall that the conjugacy classes of GL,(F,) are in bijection with the F-stable con-
jugacy classes of GL4(F,), i.e for each element O € Cl(GL4(F,)) there exists an F-stable
conjugacy class O C GL4(F,) such that

0 = 0F,
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see for example |28, Proposition 4.2.14].

We fix the following notations. For each element x € Fz and each multipartition A € P!, de-

note by J(x,A) € GL4(F,) the element such that J(x, A); is the matrix with upper triangular
Jordan blocks of eigenvalue x and sizes indexed by the partition \’.

Consider now an orbit 6 of the action of F' on ﬁ: and let d = |f|. For each A € P!, the
Frobenius acts on the element

J'(0,X) = P J(x,A) € GLg 5 (F,)
e

(where we are taking the componentwise direct sum) by permuting the factors J(z, A) and
so the conjugacy class of J'(6,) is F-stable. Therefore, there exists an element J(0,\) €
GLgx(F,) conjugated to J'(6, ).

Fix now a conjugacy class O € Clgy,, (r,) and an element g = (g;)icr € OF. For each i € I,
denote by E,, C FZ the set of eigenvalues of g; and denote by Ep C FZ the subset

Eo =|JE,,.
i€l

Since the conjugacy class O is F-stable, the subset Ep is F-stable too. There exist therefore
01,...,0, orbits for action of F' on FZ such that 6; # 0; for each ¢ # j and Ep = |_|§:1 0.
Looking at the Jordan decomposition of the elements g;, we find multipartition Aq,..., Ay
such that g is conjugated to

IT 75,2
j=1
For each j = 1,...,r, denote by d; the cardinality of ;. The type associated to O is
wWo = (dl, )\1) . (d,«, Ar)-

Ezample 3.6.4. Let [ = {1,2,3,4} and o = (2,1,1,1). Consider the conjugacy class O given

by
A0
= F* .
0 {((0 A),A,M) e }

The associated type is wo = (1, (1%)).

Remark 3.6.5. Notice that multitype wo of a conjugacy class O is semisimple if and only if
the Jordan block of the elements of O all have size 1, i.e if and only if the conjugacy class O

is semisimple.

For any O € CI(GL4(F,)) and any w € T,, we write O ~ w if wp = w. Similarly, for any
g € GL(F,), we write g ~ w if the type of the conjugacy class of g is w.

Recall that the cardinality of the centralizer CGLQ(Fq)(g) for g € GL4(IF4) depends only on the
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type of g. More precisely, for each A = (112,222 ) € P, let

Z(t) =t T mn )
=1

where @, (t) = (1 —t)(1 —t2)--- (1 — t™). For a multipartition A € P!, define

Z)\(t) = H Z)\i (t)

i€l
and for a multitype w € T with w = (d1, A1) ... (dr, Ay) let
Zu(t) =[] 2Za,(t%). (3.6.1)
j>1
We have the following Lemma, see for example [70] II, (1.6)].

Lemma 3.6.6. For any w € T, and g € GLo(Fy) such that g ~ w we have

CarLa @) (9)] = Zu(a)- (3.6.2)

3.7 Lambda rings and plethystic operations

In this paragraph we recall the definition and some properties of A-rings. We follow [39].

Definition 3.7.1. e A )A-ring R is a commutative Q-algebra with homomorphisms )4 :
R — R for any d > 1 such that g (1q(r)) = e (r) for every d,d" € Nsg and r € R.
The morphisms 14 are called Adams operations.

e A morphism f : R — R’ of A-rings is a morphism of Q-algebras commuting with the
Adams operations.

For any partition 1 = (p1,. .., n), we denote by v, : R — R the homomorphism defined by
u(r) = Puy (1) - by, (7).

Ezample 3.7.2. The ring Q(¢) is a A-ring , with Adams operations 14(f(t)) = f(t?). Notice
that we have

¢d(tn) — tnd'

Remark 3.7.3. The ring A(x) is a A-ring, with Adams operation ¥4(f(x)) = f(x%). We remark
that we have

Ya(Pn (X)) = Pna(x).

Notice that, for any A-ring R and any element r € R, we can define a unique A-ring homo-
morphism A(x) — R as

paA(x) = Pa(r).
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More precisely, for any A-ring R, we can define an operation called plethysm linear on the first

component

o:A(x) x R— R

such that we have

e For any r € R, the map —or: A(x) — R is a ring homomorphism.
* pa(x) o a = Yq(a).

For every integer n € N, denote by o, (f) the element

=Y % (3.7.1)

AEP,

Notice that, since

for any f € R. We have the following Lemma.

Lemma 3.7.4. For any f,g € R, we have the following identity:

on(f+9) = Z Oy (f)on, (9)- (3.7.2)

ni+no=n
Proof. Notice indeed that we can rewrite

DI D |

AEPy, AEPy, 7> >1 I

(1) s ()

Zmﬂ n

We have therefore

R A R TGO N P EIE

n1tnz=n nitne=n | (ml);5, j=1 (m3)j>1 J21 a

S8 o ()" (22" 37

ni+ng= n(m m2) >1]>1
Em ij=n1
3 -
Em]’]—n2
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1 i(f + m; ; m; ; m
it = 5 Moy (PE2)7 - 5 15| ¥ wene

1
(mj)j>1 J=1 J (mj)j>1 J>1 mi+m3=m; J J
>omjj=n >omjj=n
(3.7.5)
Rearranging the terms, we see that the RHS of eq.(3.7.4) and eq.(3.7.5)) are equal. O

For a A-ring R, consider now the ring R[[y;]]ic;. For a € N! we will denote by y® the monomial
a;
el

We endow the ring R|[[y;]]ic; with the A-ring structure given by the Adams operations defined
as

ba(ry®) = ba(r)y*
for 7 € R and a € N'. Denote by R[[y;]];; the ideal generated by the y;’s.

The plethystic exponential is the following map

Exp : R[[?/ZH:_GI — 1+ RHyiH;—eI

Exp(f) =exp | Y _ d)"r(Lf) . (3.7.6)
n>1
Notice that for f,g € R[[y:]]z;, we have
Exp(f + g) = Exp(f) Exp(9). (3.7.7)

We have the following Lemma, which gives another formula to compute Exp.

Lemma 3.7.5. For any f € R[[y:]]L,, we have

el

Exp(f) = Y ou(f) (3.7.8)

n>1

Proof. By Formula (3.7.7) and Formula (3.7.2)), it is enough to show eq.(3.7.8) in the case of

f =ry® for any r € R and for any a € N', i.e we can assume |I| = 1. Recall that, in the ring
A(x)[[T]], we have the following identity (see for example [70, I, (2.10)]):

exp Z}”ZSX)T" =3 ha(x)T™ (3.7.9)

n>1 n>1
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We can rewrite eq.(3.7.9) as the identity

Exp(p1(x)T) = Y _ hn(x)T" (3.7.10)

n>1

For any r € R, the plethysm — or : is a A-ring homomorphism A(x) — R. We have therefore

Exp(rT) = Exp(pi(x) o rT) = (= or)(Exp(p1(x)T)) = (—o7) | D _ha(x)T™ |  (3.7.11)
n>1
=3 on(nT" =) on(rT). (3.7.12)
n>1 n>1
O

FEzample 3.7.6. Consider R = Q and |I| = 1. In the ring Q[[T]] we have:

Exp(T) =exp | Y %ﬂ = exp <1og <1_1T>> = ﬁ (3.7.13)

n>1

Consider the A-ring R = Q[q¢], equipped with the Adams operations

for f(q) € Qlg]. Notice that 14(Z[q]) C Z[q]. We have the following Lemma:

Lemma 3.7.7. Given f € Z[q)[[yil];2; we have Exp(f) € 1+ Zq][[uil]i;
Proof. Notice that by Formula 1} it is enough to show that Exp(¢™y®) € 1+ Z|q][[vi]l;;
for any m € N and o € N’ i.e we can assume |I| = 1.

Similarly to Example above, we can show that, for any m € N, in the ring Qlq|[[T]], we

h
ave 1

T = 2 T € 1+ Z[g)[[T) (3.7.14)

Ex T) =
neN

O

The plethystic exponential admits an inverse operation Log : 1 + R[[yillir; — Rl[uillf;
known as plethystic logarithm. The plethystic logarithm can either be defined by the property
Log(Exp(f)) = f or by the following explicit rule. For o € N! we put

a = ged(o)ier
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and we define U, € R by:

Us o
log(f) = Y —y (3.7.15)
aeNI
Then put
Log(f) = Y _ Vay® (3.7.16)
aeN/!
where 1
Vo == u(d)a(Us) (3.7.17)
dlov

Notice that, for A, B € 1+ R[[y;]];L;, we have

Log(AB) = Log(A) + Log(B).

We have the following Lemma, which is often useful to compute plethystic logarithm (for a
proof see [75, Lemma 22]). For g € R let

Gn = %Zu (%) ¥s(9)-

s|n

Lemma 3.7.8. Given fy, f € 1+ R[[y;];L; such that

log(f1) = > galog(va(f2)) (3.7.18)
a>1
the following equality holds
Log(f1) = g Log(f2). (3.7.19)

3.7.1 Plethysm and multitypes

Let £f° be the Q-vector space having as a base the semisimple multitypes T7°. The size of
the types endows K3° with an N/-grading and we denote by K* the elements of grade a.

The operation * endows K7 with the structure of a Q-algebra in the following way. For
T =zwi + -+ Trw, and y = 2w + - - + 2wy, with z,, z; € Q and wy,w; € T3, we define

2 : / !
T kY = TsTyWg * Wy.
1<s<r
1<t<h

Notice that (K3°, %) is an N/-graded algebra, i.e K5 % K5 < Kyys

The functions ¢4 : Ty — T; endow the Q-algebra K7° with the structure of a A-ring with
Adams operations

Ya(qrwr + -+ grwr) = qpg(wr) + -+ + @rba(wy)
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for any element x = qiwi + - + ¢yw, € K3° wth ¢1,...,¢, € Q and wy, ..., w, € T.
Notice that given a semisimple multitype w = (dy, (1%1)) ... (d,, (1*")), we have an equality

W = ¢d1 (wal) *oeeex Tvbdr(wa'r)’
Therefore, we deduca that K£§° is isomorphic to the ring of polynomials in the variables ¢4(wq)

for (d, o) € Nsg x N,

Consider now the ring l@fs = K%*[[yillicr. For semisimple multitypes of level V', we have the
following lemma:

Lemma 3.7.9. For any V C NI, in the ring I@?S we have:

Exp <Z wayo‘> = Z ﬁy‘“‘ (3.7.20)

acV weTs®
of level V

Proof. By eq.(3.7.1)), there is an equality

Exp (Zwa@/“> =11 (Z ffn(%v)y"a) =11 (

acV acV \neN acV

> %(%‘)y““> . (3.7.21)
)

AeP

For each semisimple type w of level V', there exist unique 51 # s # ... # [, € V and integers
d171, . dl,ll,d271, - 7dh7lh such that w = (d171, (161))(d172, (151)) ce. (dh,lh7 (1Bh)) i.e

W = ¢d1,1(w61) Kok 7vz)dh,lh (wﬁh)'

Up to reordering, we can assume that for each j = 1,..., h, the sequence of integers (d; 1, . . ., dj,lj)
forms a partition A;. Therefore, we have

h
W = H w,\j(ng).
j=1

Notice moreover that zy, - -- 2\, = w(w). This implies that the RHS of eq.(3.7.21)) is equal to
the RHS of eq.(3.7.20)). O

3.8 HLRYV kernels
Let xy = {z11,212...},...,Xk = {k1,... } be k sets of infinitely many variables and put
A =Q(z,w) @ A(x1) ® - ® A(xx),

i.e Ay is the ring of functions over Q(z,w) separetely symmetric in each set of variables.
The A-ring structures on each A(x;) define a natural A\-ring structure on Ay, with Adams
operations ¥g : A, — A given by

¢d<f(xlv~- . 7Xk)) = f(Xilw-ng)
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Moreover, on Ay it is defined a natural bilinear form obtained by extending by linearity

k
(flxa) - fe(xa), gr(x1) - ge(xa)) = [ ] (i 9) -

i=1
For any w = (w1, ...,w;) € TX, denote by s, € Ay the function
Sw = Sy (X1) ** * Suwy, (Xk),

where, for each i =1,... k, given w; = (di 1, Ai;1) - - - (dir;s Nir,), we define
7
swi(xi) = [ [ s, (xi%9).
j=1

Ezample 3.8.1. Consider a multipartition g = (u',...,u*) with |pi| = |u?| = n for each
i,j. We denote by p also the corresponding element in TX with the notation introduced in

Example Notice that, for each j =1,...,s;, we have s(,:)(x;) = huj~ (x;) and therefore

Suw; (%1) = 1_1 hu§- (xi) = hyi(xi).-
j=1

For r € N and any A € P, let H, »(z,w) be the hook function:

(z2a(s)+1 _ w2l(s)+1)r

Hea(z,w) = H (220(5)12 — 21(3)) (z2a(s) — ¢20(5)+2) (3.8.1)
SEA
and the associated series Q,.(z,w) € Ag[[T]]
k
Q(z,w) = Z Hoa(z,w) H Hy\(xi, 2%, w?)TH (3.8.2)
AEP i=1

where Hy(xj,q,t) are the (modified) Macdonald symmetric polynomials (for a definition see
38, 1.11]).

For any n € N, Hausel, Letellier and Rodriguez-Villegas [45] introduced the following function
H,,»(2,w) € A, defined as

H,, (2, w) = (22 = 1)(1 — w?) Coeffzn (Log(Q(2, w))). (3.8.3)

These functions are known as HLRV kernel and are of fundamental importance in the de-
scription of the cohomology of generic character varieties and generic multiplicities, see §8/and

39

Lastly, consider an element w € TX. We denote by He, »(z, w) € Q(z,w) the rational function



defined as

Heyr(2,w) = (Hp (2, w), Sw)-

67
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4 General linear groups and admissible subtori

In this chapter, we study the properties of certain subtori of the groups GL,, which we
call admissible. Put n, = Zai and embed GL, inside GL,_, through the block diagonal
embedding. The admissible ;illatori are the subtori of GL, which are center of a Levi subgroup
of GL,,,.

These subtori will play a central role in the thesis. They are the center of the stabilizers of
the action of GL, on R(Q,«) and of GL,, on a multiplicative moment fiber (®%)~!(c).

In addition, they are a key part of the classification of the irreducible characters of GL4(FFy).
The aim of this chapter is to study the combinatorial properties of these tori and how they
are related to multitypes and plethystic operations.

In section we review some properties of reductive groups over a field K, of their Levi
and parabolic subgroups and recall the definition of flag varieties for GL,,.

In section we consider K = F,, we describe the maximal tori of G' defined over F, in
terms of its Weyl group and of its root system and give a more explicit description of these
objects in the case of general linear groups.

In section we give the definition of an admissible subtorus of GL, and we show how to
associate a semisimple multitype [S] € T%® to each admissible subtorus S C GL,.

In section §4.4] we associate a graph I'g to each admissible subtorus S. This association is
a key technical point of the proof of Theorem regarding Log compatible families, whose
proof is the main content of section §4.5]

Theorem is the main technical result of the thesis, from which we will deduce Theorem
about E-series of character stacks for Riemann surfaces.

4.1 Reductive groups, maximal tori and Levi subgroups

Let K be an algebraically closed field. In this paragraph, G is a connected reductive group
over K. We denote by rank(G) the dimension of a maximal torus of G.
For a maximal torus T' C GG, we denote by

X.(T) = Hom(T, G,,)

and
Y.(T) == Hom(G,,,, T")

the group of characters and cocharacters of T respectively. Recall that these are free abelian
groups of rank rank(G) and that there is a pairing

()1 YalT) x X.(T) > 2,
where, for 8 € Yi(T),a € X.(T), we have

oo B(z) = 2P
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for any z € G-
Denote by Wg(T) the Weyl group of G with respect to T', i.e Wg(T) = Ng(T')/T. Notice
that Wq(T) acts on X.(T) as follows

w-at) =a(w-t)
for each w € Wg(T), t € T and a € X, (T). For each w € W¢(T'), we denote by
w: Xu(T) — X (T)

the corresponding endomorphism.
Recall that inside X, (T') there is the root system ®(T)) C X.(T) given by the characters
appearing in the weight space decomposition of the adjoint action of 7' on g = Lie(G).
For any € € ®(T), there is an injective homomorphism u, : G, — G such that for any x € F,
and any t € T, we have

tue(z)t ™t = uc(e(t)z).

We denote by U, C G the subgroup U, := Im(u,).

Moreover, inside Y, (T') there is a dual root system ®V(T'), provided with a canonical bijection

O(T) +» ®Y(T)

€+ e’

such that (¥, €) = 2 for every € € ®(T).

4.1.1 Levi subgroups and parabolic subgroups

Recall that a parabolic subgroup P C (G is a closed, connected subgroup containing a Borel
subgroup and denote by Up its unipotent radical. A Levi factor of P is a reductive subgroup
L C P such that P = LUp, where Up is the unipotent radical of P. A Levi factor of a
parabolic subgroup is called a Levi subgroup of G.

Recall that, for any Levi subgroup L C G, there exists a maximal torus T C G such that
T C L. Moreover, the Levi subgroup L can be described in terms of the root systems ®(7T)
as follows.

Consider the subset @ (7") C ®(7T') defined as

O (T) :={e€ ®(T) | Ker(e) D Z;7 },
where Z7 is the connected componenent containing the identity of the center Z; C L.
We have the following Lemma, see [89, Lemma 8.4.2].
Lemma 4.1.1. The subset ®1(T) is a root subsystem of ®(T') and we have :

1. Ca(23) = L.
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2. Z3 = (] (Ker(e))

EG@L(T)

3. L=T H U..
EG‘I)L(T)

Example 4.1.2. For G = GL,, Levi subgroups and parabolic subgroups can be explicitly
described as follows. For any ng,...,ns € N such that ng + --- + ns = n, the subgroup
Ly,,...n, defined as

GL,, 0 0 0 0 0
0 GL,, O 0 0 0
Lgoom. =1 0 0 GL., 0 0 0
: : : Coe 0

0 0 0 0 0 0 GLy

-----

GLy, X -+ X GLyy € GLy, .

Notice that

Asn, 0 0 0 0 0
0 As—11ln, 0 0 0 0
Z; = 0 0 As—olpn, , 0 0 0 ’
: : : [ |
0 0 0 0 0 0 Xolp,
for Ag,...,As € E; and in particular that Zy is connected.

A parabolic subgroup P O L containing L as Levi factor is, for instance, given by the upper
block triangular matrices

GL,, * * x % *

0 GL,, , * x % *

P = 0 0 GLnS_2 * * *
0 0 0 0 0 0 GLy,

It is not difficult to verify that, for any Levi subgroup L C GL,, there exist ng,...,n, such
that ng +--- 4+ n, =n and L is conjugated to

GLj, X -+ X GLp, .
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4.1.2 Flag varieties

For G = GL,, and P the parabolic subgroup containing GL,,, x --- X GL,_ as a Levi factor
introduced above, the quotient variety GL,, /P is usually called partial flag variety and it has
the following geometric description.

Proposition 4.1.3. The variety GL,, /P is isomorphic to the following variety of partial flags
of K":

GL, /P={F =(Fs CFer1 C--- CFo=K") | dim(F) = > n;}. (4.1.1)
j=i

The isomorphism is obtained by associating to gP the flag F such that F; is the image via g
S

of the span of the first Z n; vector of the canonical basis of K™.
j=i

4.2 Finite reductive groups, rational tori and Levi subgroups

In this section and in the rest of the chapter, G is a reductive group defined over I, with a
fixed Frobenius morphism F' : G — G. In the cases that interest us in this article, G will
always be taken to be a product of factors of type (GL,)4’s. Recall that we always have an
F-stable maximal subtorus T' C G.

We denote by eg the rank of a maximal split F-stable subtorus of G. Notice that in general
e # rank(G). If rank(G) = e, we say that G is split.

Ezample 4.2.1. Consider the group (GL,,)4. Let T C G be the maximal torus T}, x - -- x T, C
(GLy, )4, where we denote by T, C GL,, the torus of diagonal matrices. Notice that T" is F-
stable and dim(7") = rank(G) = nd. However, it is possible to verify that e = n, i.e (GLy)q
is split if and only if d = 1.

Consider an F-stable maximal torus 7. Notice that since T is F-stable, the Frobenius acts
on the groups X, (T'),Y.(T) as follows

F: X.(T) — X.(T)

a—aoF

and
F:Y.(T)—Y.(T)

B — Fop.

4.2.1 Twisted Frobenius of maximal tori

Fix now a F-stable maximal torus T' C G. As T is F-stable, the Frobenius acts on the Weyl
group too. Given two elements hi, ho € Wg(T), we say that they are F-conjugated if there
exists w € Wg(T) such that hy = whoF (w) L.
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The set of F-conjugacy classes of W (T), usually denoted by H'(F, Wg(T)), parametrize the
GF-conjugacy classes of F-stable maximal tori in the following way.

Given a F-stable maximal torus 7" there exists ¢ € G such that gT'g~! = T'. As F(T") = T" we
see that w = g~ ' F(g) belongs to Ng(T') and so determines an associated element w € Wg(T).

We can reformulate this correspondence in terms of the twisted Fy-structures of the torus 7'
While the conjugation by g provides an isomorphism 77 = T over qu this isomorphism is not
in general an Fy-morphism (77, F) — (T, F).

However, endowing 1" with the [ structure coming from the twisted Frobenius wF : T"— T,
the conjugation by g is an I, -isomorphism

(T', F) =, (T, wF).

In the following, we assume to have fixed, for each w € Wg(T), a corresponding F-stable
maximal torus T,, C G.

Example 4.2.2. Consider the case of G = GL,, and T' = T,, the torus of diagonal matrices.
In this case, we have Wg(T,) = S, and the F-action on S, is trivial. In particular, the
F-conjugacy classes of S, are the conjugacy classes of S,, and are therefore indexed by the
partitions P, of size n.
For any A = (Ai,...,\s) € Py, any associated F-stable maximal torus 7" is GLj,(F,)-
conjugated to

(Gm))\l X X (Gm))\h7
i.e

(T/7F) = (Gm))\l X X (Gm))\h'

Ezample 4.2.3. Consider the group G = (GL,,)q and the F-stable maximal torus 7" introduced
above. The Weyl group W¢(T) is isomorphic to S? and the corresponding Frobenius action
F: 84— 8% is given by

F(oi,...,04) = (04,01,...,04-1).

The F-conjugacy classes of S? are in bijection with the conjugacy classes of S, in the following
way. Consider 7 = (71,...,74),0 = (01,...,04) € S%. The element 70 F(7)~! is equal to

TUF(T)*1 = (7'1017'(1_1, 7'2027'1_1, e TdO'de__ll).

Notice that we have

d—1 d—1
H(TO'F(T)il)d_Z’ = 14(0404-1 """ Ul)Td_l =7y (H O'd_i> Td_l.
=0

i=0
d—1 d
We deduce therefore that o,0’ € S? are F-conjugated if and only if H ad_i,Haé_i are
i=0 i=0

conjugated in S,,.
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Consider a pair of F-stable maximal tori T,7" with ¢gT'g~! =T and v = g~ F(g) € Ng(T")
and w € Wg(T") as above. There is an isomorphism of abelian groups

U, : X (T') = X.(T)

a—alg™ —g)

such that W, (®(T")) = ®(T'). Notice that in general, ¥, does not commute with the respective
Frobenius morphisms on X, (7T), X«(T") and indeed we have

U Py =wo F: X (T') = X.(T'). (4.2.1)

4.2.2 The case of finite general linear groups

For m € N, let GL,, be the general linear group over F,, with the canonical F,-structure
F: GL,, —» GL,,. Consider the maximal torus of diagonal matrices T,,, C GL,,. Notice that
in this case Wqr,, (Tim) = Spm and the F-action on Wgy,  (T),) is trivial.

Let ¢; € X.(T};,) be the homomorphism

Q)

g

o o X

o & o

o o

o o o
- o oo
o o o o

Il

w

K

00 0 0 0 0 zn
Notice that the subset {e1,...,em} C Xi(T)) is a basis of the free abelian group X, (T},),
which we denote by B(T),). Notice moreover that, for each i = 1,...,m, we have that

F(Ez) = (g¢€;.
Moreover, for such a basis, we have that

O(Tp) = {+eiFe; |i#7€{l,...,m.

For h,j € {1,...,m}, denote by €, ; = €, — €,. We denote by ®1(T},) the set of positive
roots with respect to the Borel subgroup of upper triangular matrices, i.e

(I)Jr(Tm) = {EiJ‘ ‘ 1 < ]}

For any other F-stable maximal torus 7" C GL,,, fix g such that ¢T},g~' = T and the
corresponding permutation w € War,,, (Th,) = Sm as the end of paragraph above. Denote by
B(T) = Wy(B(Tn)).

Whenever the torus T is fixed and the context is clear we will denote by ¢; also the element

U,(e;) € B(T) and by ¢ ; the element Wy(e; ;) € ®(T). We denote by @1 (T') = U (D1 (T5,)).
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Notice that, by eq.(4.2.1)), in the character group X,.(T") we have

F(€;) = qew(i)-

Consider now a € N/, put n, = Zie ;o and consider GL, as a subgroup of GL,,, through
the block diagonal embedding. Fix an F-stable maximal torus T C GL, C GL,_,. Notice that
T is a maximal torus for GL, and GL,,_. Consider then the basis B(T") as above.

Remark 4.2.4. For i € I, let m; : GL, — GL,, the canonical projection. For a maximal torus
T C GL,, denote by T; := m;(T). Notice that

rc ][z c]]GLa,.

icl el
As T is a maximal torus, we have thus an equality T = HE For dimension reasons, we
el
deduce that, for each ¢ € I, T; is a maximal torus of GL,,. From the identity 7" = H T;, we
i€l
deduce that there is an isomorphism X, (T) = EB X (Ty).

iel

Notice that we can choose g € GL, such that ¢T},,g~' = T. We deduce therefore that putting
B;(T) = B(T) N X«(T;), we obtain a partition

B(T) = | | B.(1)

i€l

such that each B;(T) is a basis of X, (7;) and B;(T) is w-stable for every i € I.

4.2.3 F-stable Levi subgroups

Consider a Levi subgroup L C GL,, and assume that L is F-stable. Similarly to what we
said about F-stable tori in Example [4.2.2] we can show that there exist dy,...,d, € N and
mo, ..., my such that L is conjugated by an element of GL,,(FF,) to the group

(GLpg)dy % -+ - X (GLm,.)d,
i.e there is an F -isomorphism
(L, F) = (GLing)do X - -+ X (GLin, )d, -
Notice that in this case we have an isomorphism

(ZL, F) = (Gm)dy X -+ X (G)d,-
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4.3 Subtori and multitypes

For a € N/, consider GL,, as a subgroup of GL,,, via the block diagonal embedding. Recall
that I can be thought of as the set of vertices of a star-shaped quiver. We introduce here the
definition of the admissible subtori of GL,,.

Admissible subtori will play a significant role in this thesis. For instance, they appear in the
classification of the irreducible characters of the finite group GL4(Fy), see . They are also
a key part of the proof of Theorem which will be the main technical result needed to
study the cohomology of non-generic character stacks.

Definition 4.3.1. An subtorus S of GL, is said admissible if there exists a Levi subgroup
Lg C GL,,, such that Z;, = S.

Ezample 4.3.2. For any a € N/, there is an admissible subtorus Z, C GL, given by Z, =
ZGL,, € GLq, i.e the elements of Z, are of the form (A, )ier, for A € FZ.

We have the following Lemma (see [28, Proposition 3.4.6])

Lemma 4.3.3. For an admissible S and a Levi subgroup Ls such that Z;, = S, we have
CaL,, (S) = Ls. In particular, the group Lg is unique.

Remark 4.3.4. Notice that from Lemma [4.3.3|above, we have that S is F-stable if and only if
Lg is F-stable.

Ezample 4.3.5. Put |I| =1 and let S C GLg be the torus

A0 —
{2 1) nem)

Notice that Cqr,, (S) = T5, where T is the torus of diagonal matrices. However, Z7, = T5 # S.
We deduce thus that the torus S is not admissible.

Consider an admissible subtorus S C GL,, and the associated Levi subgroup Lg C GL,_,. The
group Car,, (S) is a Levi subgroup of GL,, (see |28, Proposition 3.4.7]) which we will denote
by LNS

Notice that Lg is equal to Lg N GLq as Car,, (8) N GLy = Car,(S). In particular, there
exists a maximal torus T C GL,, such that S C T C ivs

Conversely, consider an F-stable Levi subgroup L C GL,,, such that there exists a maximal
torus T C LN GL,. As Z;, C T, the center Zy, is an admissible subtorus of GL.

Ezample 4.3.6. Notice that even if two admissible tori S, S’ are different, we can have E;v = /L;
Consider for example S = Z, and S’ defined as

=%

S" = {(Niay)ier | (\)ier € (Fy)T1.
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In general, we have S # S’. However, for any a € N, for both tori we have

Ls = Lg = GLy.

For each o € N/, denote by Z, the subset of F-stable admissible subtori of GL, and denote
by Z the set defined as
z=|] 2a

aeN/!

Ezample 4.3.7. Consider I = {1,2,3,4} and a = (2,1,1,1) € N/. Notice that n, = 5.
Consider for example the admissible subtori S1, 52,55 C GL, given by

51:{<<3 2),)\,)\,)\> |)\,MEIF‘Z}
A —
SQZ{(<O 2)7)‘muv>‘> )"N’E]Fq}
A0 —
53:{<<0 M)mé,n) M,u,%&nelﬁ‘q}.

In this case, Lg, is GL5(F,)-conjugated to GL4 x GL; and lfl\g/l = T5 x GLy x GL; x GLq,
where To C GLs is the torus of diagonal matrices. Moreover, we have that Lg, is GL5(F,)-
conjugated to GLg x GL3 and E\S/l = E\S/Q

Lastly, notice that Lg, is the maximal torus of diagonal matrices T5 C GLj5, and fg; = Esvl

and

t00.

For a multitype w = (d1, A1) ... (dr, Ay) of size «, we denote by S, € Z, the torus defined as
(ZixiDdr < - X (Zia,))dr € GLq

where (Z)x,)a; X -+ X (Z)x,|)d, is considered a subtorus of GL,, via the componentwise block
diagonal embedding. Put 3; = |A;| € N/, for each j = 1,...,r. For the Levi subgroup
L, € GL,_, defined as

Ly = (GLjg,)ay % -+ X (GLyg,|)a,

embedded block diagonally, we have Z; = S, i.e S, is admissible.
We will denote by IA/; the Levi subgroup of GL, defined as E; = L, N GL,. Notice that the
groups L, Sy, L, depend only on the semisimplification w®® of w.

Remark 4.3.8. Let w € Ty and dy,...,d, € Nand f31,..., 3, € NI with

w® = wch (wﬁ1) Foeeok wdr<w5r)'
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Notice that, for each i € I, we have a Levi subgroup
(GLgy)Jay % -+ x (GLg,),)d, € Gla,
embedded block diagonally. The Levi subgroup L, is given by

Lo = H(GL(ﬁl)z‘)dl x - X (GLg, ), )d,-
el

From the description of the Levi subgroups of GL,,, of §4.2.3] we deduce the following Lemma.

Lemma 4.3.9. For any F-stable admissible E € Z,, there exists a unique semisimple type,
which we denote by [E], such that E is GLy(Fy)-conjugated to Sig.

Ezample 4.3.10. For any o € N/, we have that

[Za] = wa.

Let ~ be the equivalence relation on Z,, induced by the conjugation by GL.(F,) and let
Z := Z/ ~ be the quotient set. The map Z, — T$* given by S — [S], induces thus a bijection

Z > T

For an admissible torus S and (d,) € N x N/, we denote by m(4,q),5) the value [S]((d, o))
i.e the number of appearances of (d, «) in the writing

[S] = Ya, (wWay) * -+ * Y, (wa,)-
Lastly, we give the following definition of levels for the admissible subtori.,

Definition 4.3.11. Given S € Z and V C N/, we say that S is of level V if [S] is of level V

(see Definition [3.6.2).

Example 4.3.12. Consider the tori S, 52, 53 introduced in Example [4.3.7] The torus 57 is the
product Zq1,1,1) X Z(1,0,0,0) €mbedded componentwise block diagonally into GL,. The type
[S1] is therefore the semisimple type

[S1] = (1, AWEEDY) (1, (1E000)) = w111y * wi00,0)-

byt

Similarly, we have
[S2] = w(1,0,1,0) * W(0,1,0,1)
and

[S3] = W(1,0,0,0) * W(1,0,0,0) * W(0,1,0,0) * W(0,0,1,0) * ¥(0,0,0,1)-

Notice that for V = {(1,1,1,1),(1,0,0,0)}, we have that S; if of level V', while Sy, S5 are not.
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4.3.1 Regular elements and Md&bius function for admissible tori

In this paragraph we give to Z the structure of a locally finite poset, with the ordering induced
by inclusion and we introduce the associated M&bius function

w:Zx2Z =17

and we recall more generally some properties of the Mobius function of a locally finite poset.
The M6bius function y is going to be one the main technical ingredient in the proof of Theorem
4.5.2

4.3.2 Poset of F-stable admissible subtori

For any two elements S, S’ of Z,, we say that S < S’ if S C S’. Notice that Z, < S for any
admissible S C GL,. For any S € Z, we denote by S™Y the subset of regular elements of S
defined as

S :={seS|s¢ S forany S’ < S, § € Z}. (4.3.1)

We have the following disjoint union

S=| ] (4.3.2)
S'<S

and so, taking F-fixed points,

SF =] (s)o)F. (4.3.3)

S'<S

In particular, we have an equality |ST| = Z [((8))e9)F'|. Notice that, if
S'<S

[S] = tba, (wpy) * - - - * a, (wg, ),

we have

5" = [1(Gm)a, (Fy) = [T ¥,
j=1

7j=1
and therefore we have
1S = P (q). (4.3.4)

4.3.3 Mobius functions of locally finite posets
For a finite poset (X, <) denote by
nx - XxX—>7Z

its associated Mdobius functions. Recall that px is defined by the following two properties:

e u(z,x) =1 for each z € X
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e For each z S 2/, we have

Z w(z, ") = —p(z,x') (4.3.5)

xSx”ém’
The Mobius function has the following property.

Proposition 4.3.13. Given f1, fo : X — C such that

fi(x) =" f),

' <z

we have an equality

fola) = fila")ux (@, ). (4.3.6)

z' <z

Lastly, we recall the following standard Lemma about Mdbius functions.

Lemma 4.3.14. Let (X, <), (Y, <) be two locally finite posets and equip X X Y with the
ordering defined as (z,y) < (2/,y') if and only if v < 2’ and y < y'.
For the locally finite poset (X x Y, <), we have

pxxy ((z,y), («,9) = px ((z,2") py ((y, ). (4.3.7)

Proof. By induction we can assume that

pxxy (@ y), (2", y") = px (@, 2")) py ((y, ")) (4.3.8)

for all (z,y) < (2”,y") < («/,y). From eq.(4.3.5) we have therefore

pxxy () (@) = — > px (z, 2"y (y,9") = (4.3.9)
(zy)<(z"y")<(z"y')
> ux(@a”) D wyy ") +Fpx(a) D py(yy). (4.3.10)
r<z" <z’ y<y"'<y’ y<y'<y’
By eq.(4.35), > py(y,y") and Yooy iy (y,y") = —py (y,y') and therefore
y<y"'<y’
pxoy (@) (@) = px(x,2') D wy(wy") = —px (@, 2 py (u,y). (4.3.11)
y<y"’'<y’
0

For x € X, denote by [z,00]x C X the poset
[z,00] ={2' € X | 2’ > z}.

Notice that, for each 2’ € [z, 00| x, from eq.(4.3.5), we deduce that we have:

px (2, 2") = pip ooy (2, 2") (4.3.12)
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FEzample 4.3.15. Consider N- with the ordering < defined as d < n if and only if d|n. In this

case, for any r < 1/, we have
/
, r
MN>0(T,T ) =u <T> )

where p : N — 7Z us the usual Mébius function.

4.3.4 Mobius function for admissible subtori

Notice that the ordering < equips the set Z with the structure of a locally finite poset. In the
following, we denote simply by
=, =) Zx 2172

the associated Mébius function.
Ezample 4.3.16. Let f1, fo : Z — C be the functions defined as

A(S) =15

and

f2(S) = |(879)".
By eq.(4.3.6) and eq.(4.3.3)), we have the following identity:

(59| = ST 1) Iu(S', S) = 3 Plon(@u(S, ). (4.3.13)

S'<S S'<S

Consider more generally a complex valued function f : S¥ — C. We define a function
f: 2 — C as follows:

0if £ S
f(8') = Z f(s) otherwise
se(SHF
We define similarly g : Z2 — C by
0if £ S
9(5") = Z f(s) otherwise

se((S)7eo)”

From Identity (4.3.3) we deduce that
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and so that, from eq.(4.3.6)), we have:

Yo He)=9(9) =D fSS, ) =D | D )| u(S,8). (43.14)

sE(Sreg)F S'<S S'<S \te(SH)F

4.3.5 Multitype of a conjugacy class and admissible subtori

The correspondence between T, and the conjugacy classes of GL(F,) of can be ex-
plained using the notion of admissible subtori in the following way.

Consider a conjugacy class O of GL4(FF;), an element g € O and its decomposition into a
semisimple and unipotent element g = gssg,. The centralizers Cqr,, (9ss), CaL,,, (9ss) are Levi
subgroups of GL,, GL,,, respectively.

Notice that Cqr,(g9ss) € CaL,, (9ss) and therefore there exists a maximal torus 7' C GL,
such that

TC CGLa (gss) - CGLna (gss)-

The center of the Levi subgroup Cqr,,, (gss) is thus an admissible subtorus S C GL,. Let
[S] = (di, (171)) ... (dp, (177))
be the associated semisimple type. Up to conjugacy we can assume that

S = (Zﬂl)dl X X (Zﬁr)d'r

embedded block diagonally.
Since gss € S™ and [gss, gu] = 1, we have that g, belongs to Cqr,, (5), i.e

gu € Ls = [[(GL(g,),)a, x -+ x (GL(g,),)a,
i€l

and therefore g, determines, for each ¢ € I and j = 1,...,r unipotent elements g, ;; €
GL(ﬁj)i(quj) for each ¢ € I. For each j =1,...,r, the Jordan forms of (gyj,i)icr determine a
multipartition A; € P! such that |A;| = 3;.

The type wo associated to O is thus

wWo = (dla)\l) e (dr,)\r)'

Remark 4.3.17. Let w € Ty and g € GL(F,) such that g ~ w. Consider the Jordan de-
composition gssg, = g. Let S be the admissible torus given by the center of Cqr,_ (gss),
introduced above. Notice that gss € (S79)F". Conversely, for every s € (S™9)F the element
sgu € GLq(Fy) is of type w.

The map (S79)F" — {GL,(F,) — orbits of type w} which sends s to the orbit of sg, is surjec-
tive. Two elements s, s’ € (S79)" have the same image if and only if there exists g € GLq(F,)
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1 1 1

such that gs¢g~! = s’ and gug~! = u. Notice that, since gsg~! = s’, we have

9Car,. (s)g ' =gSg~ ' = Car,.(s) =S

and therefore
9Car,, (8)g™ ' =gLsg™' = Caur,, (S) = Ls.

The fibers of the map are therefore identified with the group
_ _ ~F
{9 € GL4(F,) | gLsg ' = Lg and gug™ = u}/Lg

which has cardinality w(w).

4.4 Admissible subtori, graphs and Mdbius functions

In this section, we will associate certain graphs, said admissible, to the elements of Z. This
construction will be useful to understand the Mébius function p: Z x Z — Z and to develop
the combinatorial arguments of §4.4.4] both of which will be key parts of the proof of Theorem
about Log compatible functions.

4.4.1 Notations about graphs

We fix some notations about graphs. Let I' be a finite graph with set of vertices M and
m = |M]|.

Definition 4.4.1. We say that I is of type K, if it is the complete graph associated to M,
i.e each pair of distinct vertices is connected exactly by one edge.
We say that ' is admissible if each of its connected components is of type Ky for some d.

Remark 4.4.2. Notice that the property of being admissible for a graph I' can be stated in the
following equivalent way.

For any two m, m’ € M, there is at most one edge of " joining m to m’ and, if my, mo, ms € M
are such that there is an edge of I between m; and mo and an edge of I' between ms and ms,
there is an edge of I' between m; and ms.

In particular, an admissible graph I is totally determined by the partition of M given by the
sets of vertices of the connected components of I'.

4.4.2 Root system and graphs
Let now a € N! and fix an F-stable maximal torus T C GL, C GL,,,.

Denote simply by B, ®, & the sets B(T), ®(T),®"(T) and by o € S, the permutation such
that F'(€;) = geq(;) for each ¢; € B.

For any two admissible graphs I', I with set of vertices B and sets of edges Qr, Qr respectively,
we say that I' < T if Qr D Q.
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We denote by A(B, o) be the poset of admissible and o-stable graph with set of vertices B and
by up.(—,—) the associated Mobius function. Moreover, we will denote the complete graph
with vertices B by I'o € A(B, o).

Remark 4.4.3. From Remark , we see that the poset A(B, o) is the the poset of o-stable
partitions of the set B with ordering given by the reversed inclusion, i.e the fixed point set
lattice considered in [42].

In the latter article, the author computed certain values of the M&bius function pp, and in
particular the values pg (o, ") for each I''. We will review this result in Proposition m

We prefer to introduce this graph theoretic description, as in our opinion this can ease the
notations and give a more direct understanding of the results of this section about the rela-
tionship between admissible graphs and admissible tori.

Fix now an admissible o-stable graph I'" with set of vertices B. Notice that, as I' is o-stable,
o acts by permutation on the set of connected components of I'. Assume that this action has
r orbits of length dy, ..., d, respectively, which we denote by Oq,...,O,.

For each j =1,...,r, denote by Bg C B the set of vertices contained in the orbit O;. Notice
that each BJF is o-stable and there is an equality

T
B=|]B8].
j=1
For each j =1,...,r, choose a partition of B; into d; subsets
Il r
By =B || B4,
such that:

e Kach B;,h is given by the vertices of a connected component belonging to the orbit O;
e We have O‘(B}:h) = B;hH for each h = 1,...,d; (here we consider the indices modulo
dj).
For each j =1,...,r, let §8; € N’ be the element defined as
(B7)i = B, N Bl
for 1 € I. We denote by wr € T?® the semisimple multityped defined as

wr =Yg, (wg,) * -+ - * Y, (Wg, )

In [42], it is shown the following Proposition.

Proposition 4.4.4. For each T' € A(B, o), we have

:U’A(B,a)(Zav F) = CZF. (441)
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Denote now by I';; the restriction of I' to the set BF . Notice that F]h is the complete

graph with vertices BFh and so T is totally determmed by the subsets {B 1}] 1....r- Notice,
in addition, that for each j = 1,...,r, we have o (BF )= B£
We have the following Lemma.
Lemma 4.4.5. There is an equivalence of posets
T
[F7OO]A(B,O') = H[Fj,h ] (B]Fl, 5) (442)
j=1

and, for each I'" > T, denoting by I, , the restriction of I' to th, we have

(15,00, T") HMBF ST, T50). (4.4.3)
Proof. Notice indeed that, given admissible graphs I" 3,1 with vertices B}:l foreach j=1,...,7,

there exist a unique o-stable and admissible graph I with vertices B containing as subgraphs

I q,...,I; and such that T" > T.

Eq.(#.4.3)) is thus a consequence of eq.(#.4.2) and Lemma [£.3.7]

4.4.3 Admissible subtori and admissible graphs

Fix now an admissible torus S C T'. Denote by Jg C ® the subset
Jg={e€ ®|S CKer(e)}.

From Lemma we deduce that we have
S = ﬂ Ker(e)
ecJg

and

Lg=T H U..
ecJg

Notice moreover that the subgroup S is F-stable if and only if Jg is o stable.

We now associate the following graph I'g to the admissible torus S.

e The set of vertices of I'g is B

e I'g has an edge between vertices ¢; and ¢; if and only if ¢;; € Jg N @™

We denote by Qrg be the set of edges of I's. The group S is F-stable if and only if I'g is

o-invariant.
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Ezample 4.4.6. Let I = {-} and T be the torus of diagonal matrices ' C GL,,. In this case,
o is trivial.

The graph I'r is thus the graph with no edges and m vertices, while the graph 'z, associated
to ZgL,, is the complete graph with m vertices Kp,.

Ezample 4.4.7. For any I and any o € N’ notice that 'y, = T,,.

We can now state the following Lemma, relating admissible graphs and subtori.

Lemma 4.4.8. For any admissible torus S, the graph I's is admissible. Conversely, for any
o-stable admissible graph T' with set of vertices B, there is a unique F-stable admissible torus
S CT such that 'g =T.

Here o-stable means that I" has an edge between ¢; and ¢; if and only if it has an edge between
€o (1) and €o(j5)-

Proof. For an admissible subtorus S, notice that if €; j, €;, € Jg then ¢ ;, € Jg. From Remark
we deduce that I'g is admissible.

Consider now an admissible I and the subset
Jr = {€; € ® | there is an edge of I' which has vertices €, €5, }.

From [28, Corollary 3.3.4], the subset Jr is a root subsystem and, from [89, Lemma 8.4.2], we
have that the torus

Sp = (1) Ker(e) (4.4.4)
ecJr
is admissible and F-stable with
Ls, =T [] Ue. (4.4.5)
ecJr

It is not difficult to check that the graph associated to St is I
O

Let S, 5" be two admissible subtori such that S O 7,5 O T. From Lemma we deduce
the following Proposition

Proposition 4.4.9. Given S,S" C T, we have that S < S’ if and only if T's < T'g.

From eq.(4.3.5)), Proposition and Lemma [4.4.8] we deduce the following Lemma.

Lemma 4.4.10. For any S, S’ € Z such that S, S’ C T, we have an equality

pase)Ts,Tsr) = p(S, ") (4.4.6)

Consider now an admissible graph I' € A(B, o) and the admissible F-stable torus St associated
to I'. We have the following proposition.
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Proposition 4.4.11. With the notations introduced above, the multitype associated to St is

[Sr] = Ya, (wﬁ1) koeeok wdr(wﬁr)7

i.e we have
[SF] = wr.

Fix now I'/,T' € A(B, o) such that I' < T, and denote by S = Sp and S” = Spv. Notice that
T

we have S C S’. The torus S is GLy(F,) conjugated to H(Zgj)dj. The admissible graphs
j=1
I‘;l correspond to admissible tori S;- C GLg,, for each j =1,...,7.

From eq.(4.4.6) and eq.(4.4.3), we deduce the following equality

u(s.8") = [ m(Zs,.55) =[] Gy (4.4.7)
j=1 j=1

FEzample 4.4.12. Consider the set I = {1,2, 3,4}, the dimension vector & = (2,1,1,1) and the
admissible tori S, 52,53 € Z, of Example £.3.7 Notice that S1, S2, S3 are all contained in
the maximal torus T = T X G, X Gy, X Gy, where Ty C GLg is the maximal torus of diagonal
matrices and more precisely that T = Ss.

With the notations just introduced, we have B = {e1, €2, €3, €4, €5}, 0 is the identity and

By = {e1,e2} Ba = {e3}

and

Bs ={es} By={es5}.

The graph I'g, associated to the torus S; is

€1 €3 €4 €5

€2

The graph I's, associated to the torus Sy is

T

) 6/3 “ N
€2

The graph I's, associated to the graph S3 is
€1 €3 €4 €5

€2
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Notice that I'g,,I's, < TI's, and we have corresponding inclusions S1,S2 C S3

Ezample 4.4.13. Consider I = {1,2} and the dimension vector a = (2,2) € N’ i.e GL, =
GLy x GL9 and let T' C GL,, be the torus

T:TEXngGLQXGL27
where T, C GLg is the torus of Example [3.2.8] In this case, we have B = {e1, €2, €3, €4} with
Bi = {e1,e2} By ={e3,ea},

and o is the permutation o = (12)(34) € S.
Let S C GLg be the admissible subtorus

06 ) )

Notice that S C T and the graph I'g is given by

Notice that I's has two connected components which are both stabilized by o. With the
notations introduced before, we have therefore two orbits O1, O with B{S = By and BQFS = By

and di = dz = 1. Denote by I's 1,I's 2 the restriction of I' to By, By respectively.

Notice moreover that the associated elements (31, 2 are given by

pr = (270) B2 = (07 2)

and, from Lemma [4.4.11] we find
[S] = wpy *wg, -

Notice indeed that the torus S is Zg, x Zg, embedded block diagonally in GL,.

Moreover, from eq.(4.4.7)), we deduce that

1(S,T) = pg, o (Ts1, D)8y 0(Ts2, T'1.) = (Za, Te)?, (4.4.8)

where Zy = Zgr,. Notice that eq.(4.4.8) can be checked directly from the definition of the
Mébius function p.

Notice indeed that we have

{Z/Bl X Zgy, Zp, X Te, Te % Zﬁz} = {SH € 2, | Zp, X Zpgy < " ; Te x Te}.
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From. eq(4.3.5)), we deduce that we have
1(Zp, x Zgy, Zp, x Te) = i Zp, X Zpy, Te X Zg,) = (22, Te) = —1
and thus from eq.(4.3.5)) that we have

w(S,Te xT.) = —(—1—141) =1 = u(Z, T.)>.

Consider now the admissible and o-stable graph I given by

€1 €3

DS

€ €4
and denote by S’ = Sp/. The torus S’ is given by
1 ar? — bx —a+b 1 ax? — bz —a+b ——
S = —_— — belF, 3.
{ (:Eq —x ((a —b)xx? —ax+ b:pq> Trl—x ((a —b)xx? —ax+ bmq)) la.b e, }
(4.4.9)

Notice that in this case, the graph I has 2 connected components, which are swapped by o.
We have therefore a single orbit O; of length dy = 2 with

B{& = {e1,€3} B{,/z = {e2, €4}

Notice that the associated dimension vector 3] is 5 = (1,1). Proposition {.4.11 states
therefore that S’ is GL4(F;)-conjugated to the torus

(Z1,1))2 € GLq,

which is also directly seen by the expression of S’ in eq.(4.4.9).
Notice that
o?=1d: B — Bl .

From eq., we find therefore
u(S',T) = NB;’UId(F/l,pFTQ) =wZ11), Za0) X Zo,1))-
4.4.4 Inclusion of admissible subtori
Let wi,wp € TS’ . Fix a maximal torus 7" such that S,, €T C GL, . Define the set F,, ., as
Pow, ={5€Zy |[S]=w1,5 <8}

In this paragraph we give a combinatorial description of F,;, .., which will be used in the proof
of Theorem [1.5.2]
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Assume that

wi = Ya, (wg,) * -+ * Y, (wg,)
and

wa = Pgy (wgr) * -+ * Pgr (wgy)

respectively.
Up to reordering the factors in the product w; = H;:l Y, (ng), we can assume that there
exists a strictly increasing sequence iy < --- < i € {1,...,r} such that:

o (dj,Bj) = (d1, 1) for j=1,....4
° (dj,,@j) = (dipyﬁip) for all ip_l <j< ip for p € {2, - ,k‘}

Notice that i1 = m(q, 8,)w,) and

W1

h—1
th 2 :ZP = M((dsy, ,Bi),)w1)
p=1

Let My, ., be the set of partitions of {1,...,t} into r non-empty disjoint subsets X7i,..., X,
with the following properties:

e If h belongs to Xj, then d;|d},

!
e For every j = 1,...,r, it holds Z d—hﬂﬁl = B;.
hGXj J

We will denote the element of M, ., associated to the subsets Xi,..., X, by (X1,...,X;).

Consider now the group W/, defined by

W, = Sm xS

((dsy,Biy)w1) X M((dgy, B4y, ) 1)

The set M, o, is endowed with an action of the group W[, defined by the following rule.
Consider elements o = (01,...,04) € W, and (X1,...,X,) € My, ,. We define

g - (Xl, e 7X7‘) = (X01(1)7 - -aXal(i1)7X0'2(i1+1)7 con ,ng(r)).

Notice that W, acts freely on M, ,. We denote by M, ., the quotient set M, o,/ W/,
We will now define the following morphism

Twy,wa - PW17W2 — Mwl,w2'

We denote by I the graph associated to S,,, with respect to the torus 7. Let {B;;L}}g:l,m,tl
- tARAS] J

be the partition of the set B introduced in Paragraph above for the graph IT".
Consider an F-stable admissible torus S C S, with [S] = w; and the corresponding o-stable
graph I' < T", i.e Qr D Q.
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Let O, ..., O, be the r orbits for the action of o on the connected components of I' of length
dy,...,d, respectively and assume to have fixed representatives I'1 1,...,I'.1 for each of the
orbits.

For each j = 1,...,r, there exists a subset X; C {1,...,t} and, for each | € X;, a subset
Zy C{1,...,d;}, such that I'; ; is the complete graph with vertices

LI L&

lEXj Z2E€Z)

Notice that the subsets X; do not depend on the choice of the representatives I'1 1,...,11
and form a partition of the set {1,...,t}. The partition (X1,...,X,) belongs to M, w,.
Indeed, since the orbit O; has length d;, we must have that

o® B | n Bl =2
|_| |_| l,z |_| |_| l,z

ZGXj z€Z) lGXj z€EZ)

forany 0 < s <d; — 1 and

AR

lEXj zZE€EZ; lEXj ZEZ,

Recall that o (B} ;) = Bl ; 41, Where the index z of Blr; is always considered modulo dj. We
deduce therefore that Z; is such that

(Z1+s)NZs =@ mod d;
for each 0 < s <d; — 1 and
7 + dj = Zj mod dj.
This implies that d;|d; and that there exists a; € Z; such that

dj
Z; = al—i—djk:]k:l,...,— .
d;

!/

d
In particular, it holds that |Z;| = d—l, from which we deduce that
J

d/
> Bi=5

lex; Y

We define then
le,wz(U) = [(le oo aXT‘)]

where [(X1,...,X,)] is the class of the element (X7,...,X,) in the quotient M, u,.

Notice that the morphism 7, ., is well-defined, i.e does not depend on the choice of the
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ordering of the orbits Oy,..., O, and it is surjective as we are taking the class [(X1,..., X})]
in the quotient M,,, ., for the action of W/, .

From the description of the subsets Z; given above, we deduce that, for each [(X1,...,X,)],
the fiber 751 ([(X1,...,X,)]) has cardinality

w1 ,w2

T

ot (X0 XD = [T (4.4.10)
j=1

4.5 Log-compatible functions and plethystic identities

In this section, we recall the definition of a Log compatible family, first introduced by Letellier
[62] and we prove our main Theorem about these families pf rational functions, which
will be the key tool of this paper to compute the E-series of the cohomology of non-generic
character stacks.

4.5.1 Log-compatible families

Consider a family of rational functions {F,(t)}wer, € Q(t). For any V C N!| we define the
rational function Fy, v (t) € Q(¢) as follows:

F,(t
Fay() = % w“ S PSS |- (4.5.1)
w€ET S’ Sw
© S’ of%avel \%

For V' = {a} we will use the notation Fy gen(t) = Fy, {4} (t). Notice that

Fogen(t) = Z F @) (t = Dp(Za, Su) = Z Fu(t) (t—1)C%ss.

w(w) 2= wlw)

We give the following definition of a Log-compatible family {F,,(¢)}u,er,-

Definition 4.5.1. We say that {F,,(t)}.er, is Log compatible if for any o € N/, w € T, and
for every multitypes vy, ..., v, and integers di, ..., d, such that ¢g, (1) *---x1g. (1) = w, we
have

f[ F,,(t%) = F,(t).
j=1

4.5.2 Plethysm and Log compatibility: main result

Fix now an element o € N! and a subset V C NZ. We have the following theorem:

Theorem 4.5.2. For a Log compatible family {F,,(t)}wer, € Q(t), we have:
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Coeffo [ BExp | Y Fagen(®)y” | | = Fav(t) (4.5.2)
Bev

Proof. There is a unique morphism © of A-rings
0: K7 — Q1)

obtained by extending
O(wa) = Fagen(t).

By Lemma [3.7.9, Identity (4.5.2) is equivalent to the following Identity

3 % ; = Fay(t) (45.3)
VETSS
level V'

The RHS of eq.(.5.3)), is given by

Far)= % | Y Ag@uss.) |- (45.4)
wE’IFa SSSu
level V'

Consider now f1, ..., 3, € N/ such that v = ¢4, (wp, ) * -+ * g, (wg, ). We have therefore that

r d;
@(V) 1 Fwﬁj(t J) d.
=— ——— (Y = Du(Zs,,8,,) | = 4.5.
o)~ oy L 22 ooy 0~ DnlZs,. i) (4.5.5)
7j=1 wJ'ETﬁj
F,(t)P,(t) 1 .
—wWAm YA Z5.,S.,, 4.5.
Z w(u) Z w(wl)"'w(wr) H'LL( 5J’S.7) ( 56)
w€Tq w1€T51,...,wT€TBT 7=1
Yy (W1)x-xg,. (wr)=w
Fix now a multitype w € T, with
$omega = (dy, A1) -+ (d}, A¢)
for multipartitions Aq,..., A; and its associated admissible torus S, C GL,.

Denote by H,,, the set defined by

H, o ={(wi,...,wr) € Tg, x--- xTg, | Vg, (w1) *---* g, (wr) = w}



93

and by 9, : H,,, — Z the function defined as

T

(Wi, wy)) = H (Zg; 5 Sw;)-

J=1

Let M, ,ss be the set introduced in eq. (4.4.7). Consider the following function
fl/,o.) . My7wss — HI/,w

defined as:
fy,w((Xl, . "X’]")) = (W1, R 7w7“)

where ,

wi(d,X) = #{h € X, such that <Ccll}f,)\h> = (d,\)}

7

for every (d,\) € N x P

The function f,, is surjective and for each (w1, ...,w,), the cardinality of the fiber is given
by

B d,\)!
1w7...,W7“ = UJ( : 5.7
[ ol ) (dx)gm won(d, M) (d, V)] 40

Notice that for any (w1, ...,w,) € H,,,, we have the following equality:

r d,
H w(d, A\)! B w(w) [Tj=1 [Thex, (f) (45.8)
... 1 o t ) "
ANENPT wi(d, ) we(d, AN w(wr) - w(w,) 1.4
As 3771 |Xj| = t, the right hand side of eq.(4.5.8) is equal to
w(w) 1
: 4.5.9)
w(wy) - w(wy) szl di
For an element m = (X7,...,X,) € M, s, put
dpm = H d|ij|.
j=1
We can thus rewrite the RHS of eq.(4.5.6) as:
Fu(t) 1
op((w1,.- o wr)) | = 4.5.10
’U)(I/) Z UJ(Wl)"'U)(wT) (((.Ul w )) ( )

(w1yeeswr ) EHp o
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Mt)w 5 ww)  S(fuwlm) ) Fut) S 6u(frw(m))dm

www) \ | G7 wlw)w@) |fim) | w@wew) | 4
(4.5.11)
The set H,,, is endowed with the following action of W},. An element o = (071,...,0%) € W,
acts on (wi,...,w;) € Hy,, by
g - (wl, oo ,w,,) = (wal(l)a v 7w01(i1)7w0'2(1)7 oo 7w0'k(k))'

Notice that the function §, is W}, invariant and f, ., is W) equivariant. The function
0y 0 fow: Mywss — Z

is therefore W), invariant and descends to a function M, s — Z which we still denote by
0y 0 fyw. Notice moreover that the quantity d,, is W}, invariant too and so d, is well defined
for an element m € M, s too.

The right hand side of eq.(4.5.10)) is therefore equal to

A |W, |
w(v)

v (frw(m))

EULON I S (4.5.12)

w(w
( ) me]\/[wwss
Notice that, for any m € M, s, we have

ro Xl r
m’W/ dJ Hd|'Xj|_l
j

By eq.(4.4.10)), we can thus rewrite the sum of eq.(4.5.12)) as

> Sulfrwl(mw(S)) | - (45.13)

Sepyywss

From the remarks made in and eq. (4.4.7), we see that we have an equality

v (frw(mywss (S))) = (S, Su)

and so, from eq.(4.5.10), we deduce that

o) _ 3 Fy ()P (1) ST s, S) (4.5.14)

w(y) w€Tq ’UJ(W) SEP, . ss
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Summing over the v € TS® of level V', we have therefore:

B — _
Coeft,, | Exp g F3 gen(t)y = E o) " (4.5.15)
BeV veTss
of level V/

3 ZW > MSﬁd:ZZW(S)) S Py0u(s S | (45.16)

veTs? weTq SEP, ,ss w€ETy S<Sw
of level V' of level V'
The right hand side is equal to Fy, v (t) by eq.(4.5.4). O

Remark 4.5.3. The notion of a Log compatible family and the polynomials Fi gen(t) had
already been introduced in [62, Paragraph 2.1.2]

Letellier [62, Theorem 2.2] used these notions to show the case where V = N’ of Theorem
above. His proof is different from ours as it uses symmetric funtions and does not seem
to extend immediately to the case of any V.



96

5 Representation theory of finite reductive groups and Log com-
patibility

In this chapter, G is a connected reductive group over F, with Frobenius morphism F': G — G.
We review the construnction of the irreducible characters of G(F,), with a focus on the case
of GL,(F,), GL4(F,) for o € NI, We will mostly follow the book by Digne and Michel [28].
Fix a prime ¢ such that (¢,q) = 1 and an isomorphism Q, = C. In the following, we identify
vector spaces over Q; with vector spaces over C, through this isomorphism.

Section and address the definition of Deligne-Lusztig induction and of the unipotent
characters of a finite reductive group.

For GL,, given an F-stable maximal torus T C GL, and a character  : T — C*, in section
we define an associated graph, in a sort of dual way to what has been done in §4.4]
This construction is used in section to give the definition of a reduced character of a Levi
subgroup and, using the latter, to build the irreducible characters of the groups GL (Fy).
Moreover, in section the construction of Section is used to show how to associate a
multitype to an irreducible character of GL(IFy).

These results are preliminary to sections and where we show the main technical
results of the chapter, Theorem [5.7.5] and Theorem [5.8.4]

The latter theorems are consequences of Theorem about Log compatible families and
show how to compute certain invariants in the rings (C(GLq4(Fy)), ®), (C(GLq(Fy)), *) respec-
tively.

These results are going to be used in chapter §8 and chapter to compute multiplicities
for k-tuples of Harisha-Chandra characters/E-series of character stacks for Riemann surfaces
respectively.

5.1 Deligne-Lusztig induction

Consider an F'-stable Levi subgroup L of G, a parabolic subgroup P having L as Levi factor
and denote by Up the unipotent radical of P. Recall that there is an isomorphism P/Up = L
and denote by 7y, : P — L the associated quotient map.

Remark 5.1.1. Notice that in general P can not be taken to be F-stable. We can find an
F-stable parabolic subgroup P DO L if and only if € = eg.

Denote by £ the Lang map £ : G — G given by £(g) = g~ 'F(g). The variety X := L1 (Up)
has a left GF-action and a right L¥-action by multiplication on the left /right respectively.
These actions induce actions on the compactly supported étale cohomology groups H:(X 1, Q)
and so endow the virtual vector space

H} (X1, Q) = @(-1)'HI(X1, Q)

>0

with the structure of a virtual G¥-representation-L*".
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For an L¥-representation M, we define the Deligne-Lusztig induction RE(M ) as the virtual
GF-representation given by

RE (M) = H} (X1, Q) ®cpr M.
We will denote by R% the induced linear map
RY . c(LF) — c(ah).

Remark 5.1.2. In the case that will interest us in the thesis, it will always be true that the
functor Rf does not depend on the choice of the parabolic subgroup P O L (see for example

[13]).

5.1.1 Harisha-Chandra characters

Consider the case where L is split, i.e there exist ng,...,ns such that
(L, F) = GLp, X -+ X GLy, .

In this case, we can take P,Up to be F-stable too. The variety X, is a Up-principal bundle
over the finite variety G¥ /U¥, see the discussion before [28, Lemma 9.1.5].

Since Up is isomorphic to an affine space, the cohomology H} (X, Q) is concentrated in
degree 2dim(Up) and we have an equality

R{ (M) = C[G" /U] ®¢|pr M

for every L¥-representation M.

In the split case, we can give the following equivalent description of this functor. For an
L¥-representation M, denote by Inﬂfﬁ(M) the natural lift to a PF-representation via the
quotient map 7r,.

In |28 Proposition 5.18 (1)], it is shown the following Lemma: .

Lemma 5.1.3. We have an isomorphis of functors:
RS = Ind$, (Infily).

The functor on the right hand side is usually called Harisha-Chandra induction. For any
character v : L' — C*, we call R¥(7) an Harisha-Chandra character. If an Harisha-Chandra
character is irreducible, we will call it semisimple split.

The Harisha-Chandra induction can be explicitly described on class functions. More precisely,
consider a class function f € C(L¥) and g € G¥. By inflation, we get a class function
f € C(PF) and we have:

RE(f)= >, [f(h'gh). (5.1.1)
hPFeGF /PF
h~lgheP¥
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In the case of G = GL,, the formula above has the following reformulation in terms of flag
varieties. Let no, ..., ns be integers such that L C GL,, is the split Levi subgroup GLy,, X - - - x
GL,, embedded diagonally into GL,, i.e

GL,, 0 0 0 0 0
0 GLn., O 0 0 0
L= 0 0 GL,, 0 0 0
0
0 0 0 0 0 0 GLy

The finite group L¥ is therefore isomorphic to
F = QL (Fy) % -+ x GLy, (F,).

Let P be the F-stable parabolic subgroup containing L and the upper triangular matrices.
Recall that the quotient G/P is identified with the variety of partial flags inside F:

GL,/P={F=(Fs CFse1 C--- C Fy=F,) | dim(F, Zn]} (5.1.2)

The Fy-rational points GL,(F,)/P(Fq) = (GLy, /P)(FF,) are thus identied with partial flags of
vector subspaces of Fy

(GLn /P)(Fg) ={F = (Fs C Feu1 C--- C Fo=F})) | dim(F, an} (5.1.3)

Notice that for g € GL,(F,) and hP(F,) € GL,(F,)/P(F,), we have h~'gh € P(F,), if and
only if g - hP(F,;) = hP(F,), i.e if and only if g stabilizes the flag associated to hP(Fy).

We end by recalling the following properties of Deligne-Lusztig induction.

Lemma 5.1.4. For a reductive group G and a Levi subgroup L, the following holds:

1. Given an F-stable Levi subgroup L' O L, there is an isomorphism of functors: Rg,(RL/) =
RY.

2. Assume there exist reductive groups G1,Go and Levi subgroups L1, Lo such that G =
G1xGy and L = L1 x Lo. For an Lf—representatz'on M; and an Lg—representation Mo,
there is a natural isomorphism RS (M; X M) = Rfll (M) X jo(Mg)

Proof. The first point is shown in [28, Proposition 9.1.8|. For the second point, we can choose
parabolic subgroups Gy 2 P, O Ly and G2 2 P>, O Lg such that Py, P, have as Levi factor
L1, Lo respectively. Notice thus that P = P; x P, C G is a parabolic subgroup having L as
Levi factor and Up = Up, x Up,. We have therefore

L7 (Up) = L7 (Up,) x L7(Up,)
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and therefore

H:(E_I(UP))@) = H;(E_I(Upl), @) X H:(‘C_I(UPz)v @)7
from which we deduce that

RE (My B M) = RE} (M) B RE2 (My).

Remark 5.1.5. Consider an F-stable Levi subgroup L’ O L and a linear character 0 : (L')f —
C*. By restriction, we can consider it as a character 6 : L' — C*.
For any f € C(LF), we have an identity RE () = ORE'(f) and therefore, by Lemma (1),
an equality

RE(0f) = RE/(ORY (£))-

5.2 Unipotent characters
5.2.1 Frobenius actions on Weyl groups of F-stable maximal tori

Fix a group G and an F-stable maximal torus T C G as above. We follow the notations of
[28, Chapter 11].

Denote by W the Weyl group W (T') and by W the semidirect group W x (F), where (F') is
the group generated by the finite order automorphism induced by F on W.

Denote by C(WF') the vector space of function f : W — C constant on F-conjugacy classes.
Equivalenty, a function f € C(WF') can be seen as a function on the coset WFE C /I/Iv/, invariant
under W-conjugation.

The vector space C(W F) is endowed with the Hermitian product defined by

1 -

weWF

for f,g € C(WF).

Ezample 5.2.1. Let G = (GL,,)4 and T be the torus of Example4.2.3] By the remarks thereby
made, the morphism

g : C(Sy) — C(WF)

defined as
Ya(f)(o1,...,00) = flog---01)

is an isomorphism.
Notice that 14 is an isometry too. Indeed, for each f, f’ € C(S,,), we have:

GalD)valf) = = S Foar o) Floaon) = (5.2.1)
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= ’;d’ Z f(O')m#{(Ul,...,O'd) € Sg |og-01 =0} = <f,f/> (5.2.2)

O‘ESn

where the last equality comes from the fact that, for each o € S,,, we have

#{(o1,...,04) € Sff | og--01 =0} = |S7‘f_1|.

In |28 Chapter 11.6], it is shown the following Lemma.

Lemma 5.2.2. For each x € (WY)F, there exists an extension X € (V[N/v) The restrictions
of these irreducible characters to the coset WE C W, i.e the elements {x € C(WF)} cqwvyr
are an orthonormal basis of C(WF).

5.2.2 The case of finite general linear groups

Consider the group G and the torus T of Example [5.2.1) above. In this case, the constructions
of Lemma [5.2.2| can be explicitly described as follows.

An irreducible character x € WV is determined by partitions A!,..., A% € P, such that
1 d

The character x is F-stable if and only if Al = --- = A4 = X ie x = (x")¥, so that (WY)F
is in bijection with P,.

Consider now a representation p : W — GL(V3) affording the irreducible character x*.

Let 74 € Sy be the permutation 74 = (1 2--- d). For ((oq,...,04),F') € W, we define
p(((o1,...,04), F%)) € GL(V?) extending by linearity

p((o1,---,02), F)) (01 ® - ® va) = p(01)vri (1) ® -+~ @ p(0d)0ria)

for each vy,...,vq € V).
Notice tha, for any ((o1,...,0q), F')((0},...,0%), F7) € W, we have

o(((o1,...,00), F)Y((a),...,0), F)(01®---@uvg) = 5(((010’/73(1), e Udo—/r;(d))’ FHI)N (0@ - -Qug) =
(5.2.3)

= p(ala;—é(l))vré+'7(l)®‘ . -®p(0das_é(d))'v7_;+j(d) = P(Ul)p(U/Té(l))UT;+.i(l)®- . '®p(0d)p(a;§(zi))'UT%+-7(d) =
5.2.4

p(o1,...,0q), FYG((, ..., o), F) (01 @ - @ vg)) (5.2.5)

i.e p defines a representation p: W — GL(VZh.

The character of the representation p is the extension (x*)®¢ of Lemma|5.2.2/above. Consider
the restriction of (x*)%¢ to the coset WF C W and the corresponding function (y*)¥d €
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C(WF).
We now verify that we have

YH(AN)H) = x* € C(Sy).

We have indeed, for each o € S,

HONE) (o) = tr(p((0, 1, - .., 1), F). (5.2.6)
Fix now a basis B = {ej,...,ep} of V. Recall that a basis of V/\®d is given by
B = {e;, @ ®ej, | (j1,-..,4a) € {1,...,h}}.
For any (j1,...,ja) € {1,...,h}?, we have
p((o,1,...,1), F)(ej, ®---®ej,) =ej, @plo)ej;, @ ®ej, , (5.2.7)

We deduce therefore that the coefficient of the element ej, ® --- ® ej, in the writing of
p((o,1,...,1),F)(ej, ®--- ®@ej,) in the basis B¥? is given by

e the coefficient of the element e; in the writing of p(e;) in the basis B if j; = -+ = jq = J.
e ( otherwise.

We deduce therefore that

i.e that we have

5.2.3 Definition of unipotent characters

In [28, Chapter 11.6] for f € C(WF), it is defined a class function Ry : G — C as

Ry = |VlV| u;{/f(w)R%U(l). (5.2.8)

In locus cit, it shown that the map f — Ry induces an isometry C(WF) — C(GT). In
particular, the elements { Ry}, cwv)r have norm 1 and are pairwise orthogonal in C(GF).

Consider now an F-stable Levi subgroup L O T and the corresponding Weyl group Wy =
W (T) which is an F-stable subgroup of W. Define the induction map

Indyyp : C(WLF) — C(WF)

as
1 _
Indiy; v (f)(w) = 7 > f(TwF(h)).
L heWr,
h=twEF(h)eWr,
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In [28] Proposition 11.6.6] it is shown the following Lemma.

Lemma 5.2.3. For any f € C(WLF), we have:

RY(Ry) = Rlnd%fp(f) (5.2.9)

Let G = (GLy,)q and T be the torus considered above. In |28, Chapter 11.7|, it is shown the
following Lemma.

Lemma 5.2.4. For each x € (W), the class function Ry is an irreducible character of GF.

The irreducible characters of this form are called unipotent characters. In particular, for every

A € Py, there is a corresponding irreducible character R, which we will denote by R).
XX

Notice that Lemma is true for any group G of the form (GLy, )4, X -+ (GLy, )q,.. In this
case, the unipotent characters, by Lemma [5.1.4(2), are in bijection with the multipartitions
A€ Py X xPp, and we denote by Ry the associated irreducible unipotent character.

For a such a group G, all F-stable Levi subgroups are still of the form (GLn/1 )dﬁ X+ (GLpr )ar -
By eq.(5.2.9)), we deduce the following Proposition.

Proposition 5.2.5. Let G = (GLy,)a, X -+ (GLp, )4
such that

and L C G an F-stable Levi subgroup

r

(L, F) = (GLyy )ay % -+ (GLng )a -

For any p € Ppr X -+ X Py, the character Rg(R“) belongs to the vector space spanned by the
unipotent characters of G¥.

Ezxample 5.2.6. Consider G = GL, and T' = T,, the torus of diagonal matrices. In this case,
W =S, and the action of F' on S, is trivial and therefore the functions C(S, F') are the class
functions C(Sy,).
Notice that Wp(T) is the trivial group. In particular, from Lemma , we deduce that we
have an equality

RE(1) = Ry sn (5.2.10)
{e}
The character Indf{g;"} is the character of the group algebra C[S,], i.e we have
Sn _ AU
Indyy = 2 XwX
AEP,
We deduce therefore that we have an equality
RE(1) = > X B (5.2.11)

AEPy,

In particular, the Harisha-Chandra character R% (1) is not irreductible and decomposes as a
direct sum of unipotent characters. This is the reason why we avoid using the term "semisimple
split" for an Harisha-Chandra character Rf(*y) which is not necessarily irreducible.
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Consider an F-stable Levi subgroup L C G, a unipotent character Ry € C(LY) and a linear
character # : LT — C*. Fix a central element v € GF'. Notice that v € LT too. Mackey’s
formula [28, Proposition 10.1.2| implies the following Proposition.

Proposition 5.2.7. We have an equality:
RE(ORs)(7) = RE (Ry)(e)0(y). (5.2.12)

5.3 Characters of tori and graphs

Fix o € N!, consider the group GL, and fix an F-stable maximal torus T C GL,. We follow
the notations of section
Recall that inside Y, (7)) there is the dual root system ®" C Y, (T') which is provided with a
canonical bijection ® < ®V.

Consider now a character § : TF — C*. In the following, we will show how to associate an
admissible graph I'g with vertices B to the character 6.
In 28] Proposition 11.7.1] it is shown the following Lemma:

Lemma 5.3.1. Fiz an isomorphism FZ = (Q/Z)y and let n € N be such that T is split over
m—1

Fyn. For any m € N, denote by Npm : T — T the map Npm(x) = H Fi(z).
j=0

There is a short exact sequence:

F-1 or

1 —— Yi(T) —= Y.(T) TF 1.

where 7 () = Npn (ﬁ <qnl_1

via the isomorphism Fz = (Q/Z)y

)), where we are identifying ¢ — 1 with an element of F;,

In particular, the character 6 : TF — C* induces by restriction a morphism

0:=006p:Y.(T)— C.

The graph 'y is defined as follows.

e The set of vertices of I'y is B.

e For each h > j, there is an edge between €, and ¢; if and only if EXJ € Ker(6).
From Remark we deduce the following Lemma.
Lemma 5.3.2. For any 0 : TF — C*, the graph Ty is admissible.

In particular, as remarked in Paragraph §4.4] there exists a unique admissible subtorus Sy C
GL, such that I's, = I'y.

We will denote by Ly = CaL,, (Sp) and by Z; = Ly N GL,. The Levi subgroup Ly is the
connected centralizer of 6, as introduced in |26, Definition 5.19].
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FEzample 5.3.3. Consider the subset I = {1,2,3,4}, the dimension vector a = (2,1,1,1) and
the torus T' of diagonal matrices of Example [4.4.12] Notice that

TF={<<0 M)mé,n) | Ay, 0,m € Fq}-

Consider (31, 82) € Hom(F,, C*)? and let
9[31’52 : TF — C*

defined as
03,,8, (A 1,7, 0,m) = Br(Ayom) Ba ().

If B # B9, the graph 1“9/317[32 is

€1 €3 €4 €5

€2
and the admissible torus Sgﬁl_’ 5y 18 therefore the torus S7 of Example W
If 81 = B9, the graph P951v51 is

€1 €3 €4 €5

€2

and the admissible torus Sgﬁlﬁl 18 Zg.

5.4 Irreducible characters of finite general linear group
5.4.1 Reduced characters and connected centralizers

Let now G = GL,, (i.e |[I| = 1) and consider an F-stable Levi subgroup L C GL, and a
linear character @ : LY — C*. The Levi subgroup L contains an F-stable maximal torus 7.
From 0,T, we determine the connected centralizer Ly O L as above. The character 6 is called
reduced if Ly = L.

Remark 5.4.1. While the connected centralizer Ly does depend on the choice of torus T,
from [26] Proposition 5.11(ii), Proposition 5.20] we deduce that for two F-stable maximal
tori T',7" C L and corresponding connected centralizers Ly, Ly, there exists an element g €
GL,,(F,) such that gLgg~' = L,

In particular, the choice of the torus is not relevant to determine whether the character 6 is
reduced or not.

For any two positive integers r,d such that r|d, the norm map NJF*d/JF*T : F;d — F» induces
qd’ " a

by precomposition an injective homomorphism

') 4 == Hom(F,.,C*) — Hom(FZd, C*).



105

We denote by I' the inductive limit via these maps
= ligHom(de, C*).

Notice that, for any d > 1, we can view Hom(IFZd, C*) as a subgroup of ' through the universal
maps of the limit. The Frobenius morphism acts by precomposition on each term Hom([F ;d, C*)
(i.e F(y) =yo F) and so defines a morphism F : T' — T.

Consider the Levi subgroup

L= (GLp;)a, x -+ x (GLp, )4,

with ny,...,n., di,...,d, positive integers such that din; +--- + d,n, = n and let T be the
maximal torus

(Tn1>d1 Xoeee (an)dr‘

The group LY is isomorphic to GLy, (Far) X -+ x GLy, (Fga, ). A character 0 : LY — C* is
therefore given by an element (61,...,0,) € Hom(IFZd1 ,C*) x oo X Hom(F;dT ,C*) such that

O(M;, ..., M) =[] 0;(det(;))
j=1

with M; € GLy,(F _a;). We have the following Lemma
q

Lemma 5.4.2. The character 0 is reduced if and only if the F-orbits of 01,...,0, inside I’
have length dy, ..., d, respectively and are pairwise disjoint.

Proof. Notice that, for any h € {1,...,n} there exist unique ip, € {1,...,7r} and j, €
{1,...,dp} such that
in—1

th
D deng <h <) deng
s=1 s=1

and
ip—1 ip—1
> dsng + i, (jn = 1) <h <Y dsng + iy -
s=1 s=1

From the definition of 5, we deduce that, for hy, he € {1,...,n}, we have that

0(er, n,) =1

if and only if
quhl ‘_qj}LQ

Zhl ’Lh2

=1

as elements of I', from which we deduce the Lemma above.
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Ezample 5.4.3. Consider a split Levi subgroup L C G and ny, ..., ns such that
(L, F) = GLp, X -+ X GLy, .

A character v : L — C* corresponds thus to 7o, ...,vs € Hom(Fy, C*) and v is reduced if
and only if v; # ~y;, for each h # j.

Consider now two Levi subgroups L C GL,, and L' C GL, and the product Levi subgroup
M =L x L' C GL,, embedded block diagonally, where m = n + n’.
Assume that L = (GLy, )4, X - -X(GLy, )a, and L' = (GLy ) g, X - -X(GLy )a; and consider two
reduced characters 6 : LT — C* and ' : (L')f" — C* corresponding to (01,...,0,),(6,...,0%)
where 0; € Hom(F;di,(C*),H; € Hom(F*dQ,C*) fori=1,...,r,j=1,...,s.
Consider the character !

y=0x0: M- C".

Its connected centralizer M., admits the following description. For i € {1,...,r}, consider the
subset J; C {1,...,s} defined by

Ji = {j e{l,...,s}| d} = d; and the F-orbits inside I" of 6;, 93» have nonempty intersection}.

Notice that either J; = @ or J; = {j;} for an element j; € {1,..., s}, as the characters 6, 6’ are
both reduced. Denote by I’ C {1,...,r} the subset I' := {i | J; = @} and by J' C {1,...,s}
T

the subset J' = {1,...,s} — |_| J;.
i=1

A similar argument to the one used to prove Lemma shows that a connected centralizer
M, is GL,(F,)- conjugated to the Levi subgroup

H(GLn)dz H(GLn’})d; H (GLnL-i-n;Z)dz

iel’ jeJ’ ie(l’)e

Via this conjugation, the character v corresponds to the character associated to
((02)icrrs (05)jears (Bi)icrr)e)-

5.4.2 Characters of Levi subgroups

Consider L, T C GL,, and 6 : L — C* as before. As mentioned at the end of the
character 6 can be extended to the connected centralizer 6 : Lg — C* and Ly D L.
Conversely, for each character v : TF — C* such that L, O L, the character v can be first
extended to 7 : Lf — C* and then restricted to obtain a linear character v : L — C*.

We deduce therefore the following Proposition.

Proposition 5.4.4. There is a bijection:

Hom(L",C*) < {y € Hom(T*,C*) | L, D L}. (5.4.1)
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Consider now G = GL,, an admissible torus ., the associated Levi subgroups Ls = Zqt,,, (S) C
GL,,, and Lg = Lg N GL,. Cousider an F-stable maximal torus 7" with Lg 2 T O S. The
correspondence 1} can be rewritten as the following partition of Hom(L%, C*).

Proposition 5.4.5. There are bijections:
~—F F % F o~
{6 € Hom(Ls ,C*) | Ty <Ts} <> | | {0 € Hom(T*",C*) | Ty =Ty} «» Hom(L§, C*).

U<S
(5.4.2)

5.5 Construction of irreducible characters

In this paragraph, we quickly recall how to build the character table of the general linear
group GL,(FF,). We start from the following Lemma, which will also be needed later.

Lemma 5.5.1. Consider G = GL,, a Levi subgroup L C G and two characters Ry, , Ry, for
@1, 2 € C(WLF). Let 0 : L¥ — C* be a reduced character. We have the following equality:
<R€(‘9R¢J1)7 Rg(aRsoz»GF = <R<P17R<P2>LF~
Notice in particular that if ¢ = 9 = ¢ with ¢ € (W), we obtain that
(R (9Ry), RE(ORy)) = (R, Ry) = 1.

In particular, the character Rf(@R 1[}) is a virtual irreducible character, i.e an irreducible
character up to a sign.
From these remarks, in [69, Theorem 3.2|, it is shown the following Theorem.

Theorem 5.5.2. For an irreducible character x € GLy(F,)Y, we have
— G -
X = egeL Ry <9R§0)7

where L 4s an F-stable Levi subgroup, ¢ € (WLV)F and 0 : L — C* is a reduced character.
Two characters x1, x2 with associated data (L1,601,p1) and (Lo, 02,¢2) are equal if and only
if the triple (L1,61, 1), (L2, 02, p2) are GL,,(F,)-conjugated.

For an irreducible character y with associated datum (L,0,¢), we will refer to the couple
(L,0) as the semisimple part of x. This is well defined up to GL, (IF,)-conjugacy.

Example 5.5.3. For a split Levi subgroup L C GL,,, with
L =g, GLyp, x -+ X GLy,,

from Theorem m above, we deduce that, for any v = (70,...,7s) : LT — C*, the Harisha-
Chandra character RY(7) is irreducible if and only if v is reduced, i.e if and only if vy, # ;
for each h # j.

In we show how to prove the latter result in an alternative way, using quiver represen-
tations and our main result about multiplicities, Theorem
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Remark 5.5.4. Let G = GL,, and consider now an F'-stable Levi subgroup L, a character = :
L¥ — C* (not necessarily reduced) and a unipotent irreducible character Ry for ¢ € (W)HE.
Let L. be the connected centralizer of . By Remark [5.1.5] we have an equality

RG(vR;) = RS (vR(Ry)). (5.5.1)

Notice that from Proposition [5.2.5] we have that R? (RQZ) belongs to the vector space spanned

by the unipotent characters of L,. We deduce thus the following Proposition.

Proposition 5.5.5. For any v : L' — C* and any v € (W)Y, the character Rg(’de;)
belongs to the vector space spanned by the irreducible characters of GLy(Fy) with semisimple

part (L’Y7 fY)

For any o € N/, the irreducible characters GL(F,)" have a similar description to that of
Theorem Namely, as each x € GLq(F,)" is of the form

X = MierXi,

with x; € GLgi (Fq), from Lemma we deduce that there exist an F-stable Levi subgroup
L C GL,, a unipotent character RQ; with ¢ € (Wi/)F and a reduced character 0 : LF' — C*
such that x = eGeLRg(QRJ)).

5.6 Type of an irreducible character

Let x € GL,,(F,)" with associated datum (L, 8, ). Up to conjugacy, L is equal to (GLy, )a, X
-+ X (GLyp, )q, and ¢ = Ry for A = (A1,...,\;) € Pp, X - -+ X Py, a multipartition. The type

w = (dl,)\l) ... (dr, /\r) eT,
is called the type of the irreducible character y.

Ezample 5.6.1. Consider a split Levi subgroup L, a reduced 6 : L — C* and the irreducible
character RY(0). There exists a partition g = (u1,...,p) € Py such that L is GL,(F,)-
conjugated to L, = GLj, x GL,, x--+ x GL,, € GL,. The type of the character R%(6)
is

(1’ (Nl)) e (1’ (Nh))'

In a similar way, for any finite set I and any o € N, to each irreducible character y €
GL4(Fy)Y, we can associate a multitype wy € T,. Let x = eGLaeLRE’La(R¢9) with 6 : LF —
C* a reduced character and R a unipotent character of Lt with ¢ € (W)

Consider an F-stable torus 7 C L and the restriction of 6 : TF — C*. As explained in §5.3)
this determines a Levi subgroup Ly C GL,| with admissible center Sy C T" and such that

LoNGL, =Ly = L.
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Consider the semisimple multitype
[Se] = (d1, (17)) ... (dy, (177)).
By Remark we see that Ly is GL, (F4)-conjugated to
T
H H<GL(5J)¢)dj < H GLa, -
il j=1 i€l
The set (W))F is thus in bijection with
s T
Voo
H H S(/Bj)i - H H P(ﬁj)i'
el j=1 iel j=1

The element ¢ determines multipartition Aq,..., A, € P! such that |Aj| = B;. The type w,
associated to x is given by
Wy = (dl, Al) N (dr, )\r)-

FEzample 5.6.2. Let I ={1,2,3,4} and v = (2,1,1,1). Let T'C GLg be the F-stable torus of
diagonal matrices, consider 8 # v € Hom(F;, C*) and the associated character (3,7) : TF -
C*. Let x be the character x € GLq(F,)Y

x = RE((8,7)) B(det) B y(det) B 1(det).
Let g1 = (1,1,1,1) and B2 = (1,0,0,0). The associated multitype is

wy = (1, (61))(1, (B2))-

Remark 5.6.3. Given w € T,, consider an irreducible character xy € GL4(F,)" of type w. Fix
S € Z, such that [S] = w® (for example S = S,,). We can assume then that

X = EE; €GL, R%O‘ (QR(,;)

~F —~F
with @ : Lg — C* such that Sp = S and Rz a unipotent character of Lg . For any
~F
v:Ls — C* such that S, = S, the character € €CLa R%La (7Rg) is irreducible and of type
S
w.

The map from
~F
{v:Ls —C"|S,=5}

to
{x € GL4(F,)" of type w}

which sends 7 to ep— eGLaR%P“ (vRg) is surjective. A similar argument to the one used to
S
define the multitype of a conjugacy class of GLy(Fy) in §4.3.5| shows that its fibers have
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cardinality w(w).

x(1)
| GLa (Fg)|
precisely, for a partition A € P, let H)(t) be the hook polynomial

Hy(t) = [ (1 - ).

SEX

Recall that the value for x € GL4(F,)Y depends only on the type of x. More

For a multipartition A = (A);c; € P!, we define Hy(t) == HHV (t). Given a multitype
i€l
w=(d1,A1)...(d, ), define HY(t) as

HY (1) = ik

— (5.6.1)
. a; (o —1) —n(w r )
q(zzel 2 ( )) Hj:l H)\j (tdﬂ)

where if |A1| = Bi,...,|A| = Br, then f(w) = Z |Bj]. We have the following Proposition
j=1
(see for example [70] IV, 6.7]).

Proposition 5.6.4. For any x € GLy(F,), we have:

x(1

IGLa(J)Fq)I = H;, (@) (5.6.2)

5.7 Log compatibility for family of class functions
5.7.1 Multiplicative parameters

Given o = (0y)ier € Hom(IFZ,(C*)I and 6 € N/ we denote by ¢° the element of Hom(Fy, C*)

defined as
o . 05
ot = [
iel

We denote by H,, the subset of N/ defined as
Ho, ={6eN |o® =1}
and, for any o € NI, by Ho .« the intersection Hy o == Hs N NIS&.

Definition 5.7.1. For an admissible torus S € Z, , we say that S is of level ¢ if it is of level
Ho o

Let S € GL, be an admissible torus and v = (v;)ier € Hom(JF;,(C*)I. Let det; be the
morphism det; : GLy(F,) — (F(’;)I defined as

det 1((gi)ier) = (det(gi))icr-
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For an element v = (v;)ier € Hom(F, C*)! denote by p., the character

gz zEI Hﬁ}’z det gz
el

By eq.(4.3.14)), there is an equality

o= DY s | uls,9). (5.7.1)

se(Sree)F 5'<S \s'e(S")F

As dety is invariant up to conjugation, to evaluate Z py(s’), we can assume S’ to be equal

s'e(8")F
to

S/ = (Zﬁl)dl X X (ZIBT)dT

embedded block diagonally, for certain 31, ..., 3, € Nl and di,...,d, € Nsg. The finite group
(8")F is identified with F;dl X e X ]der and, via this identification, we see that

pr(zts e 2) = 9 (N, g (21)) o™ (N, g (21):

Therefore, we have that pv\(sl)p = 1if and only 8; € H, o for each j = 1,...,7, i.e if and
only if S’ is of level v. We deduce the following Proposition.

Proposition 5.7.2. For any v € Hom(IFZ,(C*)I and any S € Z,, we have:

Y= D 1SS, )= > Pe@us,S) (5.7.2)

s€(Sreg)F S'<S S'<S
of level ~ of level v

5.7.2 Multiplicities for Log compatible families

Assume now to have been given a family {7 },eny With 7o € C(GLA(Fy)).

Definition 5.7.3. We say that {r, },ens is Log compatible if, for each o € N/, the value of

T4 1S constant on conjugacy classes of the same type and its value at a type w € T, is of the
form R, (q) where R, (t) € Q(t) and the family {R,(t)}weT, is Log compatible.

Remark 5.7.4. Notice that given two Log compatible families {74 }qenis {7h }aens the family
{TaT/a}aeNz is Log compatible too.

For each w € T, denote by Ew(t) =

Y From eq.(3.6.1), we deduce tht {Z,(t)}yer, is

Log compatible and therefore the family {R.,(t)}wer, is Log compatible too.
For each a € N/ and for each o € Hom(F;,C*)!, we will denote the polynomial Eaﬂma(t)
introduced in eq. by Ro ().
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Notice that for each o € N/ and any character v € Hom(F7, C*)!, there is an equality

<ra®pwl>=|GLa1(Fq)| > ralg)eyle) = |GL o DD ralg)ple) = (5.73)

9EGLA (F,) WETq 9w

) Ru(q)
Z |GL B) (Z/’W )‘Z Zo() Z py(0). (5.7.4)

w€ETqw grw w€eT, 0€eCl(GLa/(Fq))
O~w

Using the parametrization of the set {O ~ w} introduced in Remark 4.3.17, we deduce that
the RHS of eq.(5.7.4) is equal to

Ry B / )
ZZ(q)(wQ)W) 2 M) =2 w(iq)) > Ps@n(8',5.) | = Raqle)

weTy ¥ SE(SIE)F w€Ta 5'<8.,
of level v

(5.7.5)
where the equality at the middle is a consequence of eq.(5.7.2)).

From Theorem we thus get the following result:

Theorem 5.7.5. For any Log compatible family {r, € C(GLa(Fy))}oent, for any a € NI and
any y € Hom(Fz,(C*)], there is an equality:

(ra @ py, 1) = Coeff,, | Exp Z R@gm(q)yﬁ (5.7.6)
Ber,

Remark 5.7.6. The definition of a Log compatible family of class functions had already been
introduced by Letellier in [62, Paragraph 2.1.2].

The author [62, Theorem 2.2] thereby showed the case where v; = 1 for each i € I of Theorem
b.7.50l However, his method is different from ours and does not seem to extend to the case of
a general v € Hom([Fy, Cc*)L.

Remark 5.7.7. For o € Hom(IE‘Z, C*)! and B € N/, we say that o is generic with respect to 3
if Ho 3 = {B}. If ¢ is big enough, for any /3 there exists a character o generic with respect to

B.

Fix now a € N/. Assume that ¢ is sufficiently big and for any 0 < 8 < a, choose Y8,gen €
Hom(F7, C*)! generic with respect to 8. The argument preceding Theorem shows that
for any 0 < 8 < a, there is an equality

(13 ® Py yons 1) = R gen(q)- (5.7.7)

Notice that the multiplicity (rg® P gens 1) is therefore given by a polynomial in ¢ which does
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not depend on g gep, but only on the dimension vector 5. Eq.(5.7.7) had already been proved
in [62, Theorem 2.2].

Eq.(5.7.6) and eq.(5.7.7) give therefore a way to express the multiplicity (ro ® p,,1) for any
v € Hom(Fy, C*)! in terms of the analogous multiplicities for generic parameters.

5.8 Dual Log compatibility for families of class functions
5.8.1 Multiplicative parameters
Given an element n = (1;)ie; € (F)! and 6 € N/, we define
775 _ H 7751
i€l
We denote by H,, the subset of N’ defined as
H, = {0 N | n° =1}
and, for any o € N! by H,, o the intersection H,;, o = H, N Néa.

Definition 5.8.1. For an admissible torus S € Z, , we say that .S is of level 5 if it is of level
ana'

Assume now to have fixed, for each S € Z,, an F-stable maximal torus GL, 2 Tg O S in
such a way that if S < S’ then Ts = Ts. Define then the functions gy, fy : 2o — C as

m(S):="> 6
6:TE —-C*
To=Ts

and

fn(8) = Z 0(n).

0:TF —C*
Ty<T's
By Identity (4.3.6]), we have
g0(S) = > (S, 8) f(5") (5.8.1)
S'<S

Notice that by the bijection of eq.(5.4.2), for each S € Z,, we have

f(S)=">_ 6.

9:L§~>(C*

Fix now S with type [S] = (dy,81) ... (dy, B:), with Bq,..., B, € NI. Notice that there exists
h € GL4(F,) such that

r

hSht = T](2s,)q,

j=1
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and so
T

hLsh™" = [[(GLy, )a;-
j=1

In particular, a character 6 : Lg — C*, via the conjugation above, corresponds to an element
(01,...,0,) € Hom(FZdl,C*) X e X Hom(FZdr,(C*) such that

O(My, ..., M) = ] 0;(det(M;))
j=1

with M; € GL, (F ).
As the element 7 € GL,(F,) is central, we have the following equality

o) =[] 6:0™). (5.8.2)
j=1

In particular, eq. 1b implies that f,(S) # 0 if and only if nPi =1foreach j=1,...,r ie
if and only if S is of level . We deduce the following Proposition.

Proposition 5.8.2. For each S € Z,, there is an equality

gn(S) =Y |Hom(L§,C) (S, S) = > Psil@u(s,s). (5.8.3)
5'<8 5'<S
of level n of level n

5.8.2 Convolution for dual Log compatible families

Assume to have been given a family {cq },enz With co € C(GLG(Fy)).

Definition 5.8.3. The family {c,},cns is said to be dual Log compatible if, for any x €
GLq(Fy), the product (cq, x) depends only on the type of x and the value of (cq, x) for x ~ w
is of the form C,(q) where {C,(t) € Q(t)}wer is a family of rational functions such that for
any di,...,d, € Nand wy € Tg,,...,w, € Tg, such that g, (w1) * - - * g, (wy) = w, we have:

Con (tdl) o 'er(tdr) H H()J/j (tdj) = Cw(t)H;;/(t)- (5.8.4)
j=1
i.e the family {C,,(t)H (t)}u,eT is Log compatible.

For each w € T, denote by Cy(t) == Cu(t)HY(t). The family {C,}wer is therefore Log
compatible. For each o € N/ and for each 7 € (]Fj;)l, we will denote the polynomial Cy 3, ()

introduced in eq. 1} by éa,n(t).

For each a € N! and any parameter n € (]F;)I , by eq. 1} we deduce the following chain of
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equalities:

Ca(n) _ Z <Ca7X> i(;]) (585)

|GLa(F)l | e

=> > <ca,x>$Hl(q)=Z&(q) > 222717; (5.8.6)

w€ET XEGL IF )\/
X~w xX~w

By Remark the RHS of eq.(5.8.6) is equal to

2 %(Ej)) > )| = %Ef)) > Pe(@u(S,S) | =Canla) (5.8.7)
weTq 9:[75,%@* WET, S'<S,,

Ty=Ts, of level n

where the equality at the middle is a consequence of eq.(5.8.3). We deduce therefore the
following Theorem:

Theorem 5.8.4. For any dual Log compatible family {ca}oenr and any n € (F})!, there is
an equality

Ca(n

) 5 8
————~— = Coeff, | Exp Cs.gen(Q)y (5.8.8)
R 2 G

BEH,

Remark 5.8.5. For 3 € Nl andn € (F(’;)I, say that 7 is generic with respect to 3 if H, g = {8}.
For any (3, if q is sufficienty big, there exists an element of (FZ)I generic with respect to it.

Fix now o € N/, Assume that ¢ is sufficiently big and for any 0 < 3 < «, choose 18,gen € (IFZ)I
generic with respect to 5. The reasoning used to prove Theorem shows that for any
0 < B < a, there is an equality

% = Cs.gen(q)- (5.8.9)

cp (nﬁ,gen)

Notice therefore that the quantity is given by a rational function in ¢ which does

| GLs(IF)|
not depend on 73 4e, but only on the dimension vector 3.
Eq.(5.8.8)) and eq.(5.8.9)) give therefore a way to express the quantity |GCI?C(ZI§)| for any central
allq

element n € (IF;)I in terms of the analogous values for generic parameters.

Remark 5.8.6. While the notion of a Log compatible family of class functions already appeared
in Letellier’s article [62], the definiton of a dual Log compatible family seems to not have been
given before in the literature.
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The latter notion is going to be the key technical point to show our Theorem about
E-series of character stacks for Riemann surfaces.

Example 5.8.7. Let I = {-} and, for any n € N, let f,, : GL,(F;) — C be the class function

fu(h) = ##{(z,y) € GLn(Fy) x GLy(Fg) | [, 9] = h}

for h € GL,,(F,). For any x € GL,(F,)" of type w, it holds (f,, x) = . More generally

1
Hy(q)

w

for any finite group G and any irreducible character y € GV it holds:

G
> x(la,b]) = ’(1‘) (5.8.10)
(a,b)eG? X
This equality is obtained by applying Schur’s lemma in a classical way as explained in [44]
1
Paragraph 2.3]. Notice that, from the identity (f,, x) = ———, we immediately deduce that

Hy(q)
the family {f,}ren is dual Log compatible.

The notion of dual Log compatibility is well behaved with respect to convolution, as explained
by the following Lemma.

Lemma 5.8.8. Let {fo}oents {fotacns be two families of dual Log compatible functions. The
/

Jamily {ko}oent, defined as ko = fZa:* fa2 is dual Log compatible.

qiel i
Proof. Let F,o(t), F, ,(t) be the polynomials such that (fa,Xx) = Fua(q) and (fi,x) =
F, o(q) for every x € GLa(FF)"¥ of multitype w € To. By eq.(3.1.3)), we see that

Fo.a (Q)Fu/;,a(Q)

ko X) = .
< X> HX(q)quGI a?

Fix di,...,d, € Nand wy € Tg,,...,w, € Ty, such that ¢g, (w1) *- - - *x g, (wr) = w. To check
eq.(5.8.4) for the functions k,, we need to verify that

d; dj\ T
o By, @)L, (00) g Fea@Fa(a) oy S 811
H v di\di S, (/3)2 H wj( )_ N . a2 (Q) ( o )
Hw]_(q ])q i 22ier\Pj)7 - : Hw(q)q ier &

J=1

By dual Log compatibiliy for f,, f., this is equivalent to verify the equality

H;=1 Ho\.z/]' (tdj) ? tZiela? 51
H(t) I, T Y e B0 (5.8.12)

which is a direct consequence of the Identity (5.6.1)).
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Remark 5.8.9. From Lemma above and Example [5.8.7, we deduce that for any g > 1,
the family of class function {f{ : GL,(Fq) = C}nen, where

# T1,Y1,---5Tgy Y Zg: Liy Yi =h
F9(h) = {(z1, 1 g(n29(2]_|1)1)_[ 1 ] }
q

is dual Log compatible.

GL,(F
In [44] Section 2.3|, it is shown that (fi,x) = ‘T(Li)q”
X

check Dual log compatibility directly from eq.(5.8.4)).

2g—1
> , from which it is possible to
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6 Quiver representations and a generalization of Kac polyno-
mials

In this chapter, we study representations of a finite quiver @ = (I, ).

In section we recall the definition of representations of @ over a field K and we review
some properties of the representation theory of a quiver @Q = (I,).

For K = F,, we recall the results of Kac [52] and Hua [50], regarding the counting of the
isomorphism classes of Fy-representations.

More precisely, in [52], the author showed that, for any 8 € N/, there exists a polynomial
agp(t) € Z[t], called Kac polynomial, such that ag g(q) counts the number of isomorphism
classes of absolutely indecomposable representations of @ over F, of dimension f.

These polynomials have a geometric interpretation in terms of the cohomology of certain
quiver varieties, see for example [47].

In [50], the author uses Kac polynomials to give formulas for the number of isomorphism
classes of representations of ) over [, of fixed dimension a € N7

In section §6.2] we introduce the notion of levels for representations of a quiver I'. For V' C
N, a representation M over K is called of level at most V if the dimension vector of the
indecomposable components of M ® K belong to V.

We show that, for any V, «, there exists a polynomial Mg o v (t) € N[t] such that Mg v (q)
counts the number of isomorphism classes of representations of level at most V' of dimension
« over IFy. Notice that for V' = {a}, we have an equality Mg o (0} (t) = ag.a(t).

In general, in Lemma we show a formula expressing Mg o v (t) in terms of the Kac
polynomials ag g(t) for § € V. The polynomials Mg o v(t) will be used in Chapter §§| to
compute the multiplicities for k-tuples of Harisha-Chandra characters of GL,(FF,).

In we show how to express the polynomials M¢ o v (t) in terms of certain representations
of the finite group GL,(F,), generalizing the results of Letellier [62] about Kac polynomials
and DT invariants.

6.1 Quiver representations

A quiver @ is an oriented graph @ = (I,), where I is its set of vertices and  is its set of
arrows. We will always assume that I, are finite sets. For an arrow a : ¢ — j in £ we denote
by i = t(a) its tail and by j = h(a) its head.

Fix a field K. A representation M of @ over K is given by a (finite dimensional) K-vector
space V; for each vertex ¢ € I and by linear maps M, : M) — Mj,(q) for each a € Q.

Given two representations M, M’ of @), a morphism f : M — M’ is given by linear maps
{fi : M — M]}icr such that, for all a € 2, we have:

Fri@yMa = Mg fy(0)-

The category of representations of @ over K is denoted by Repg(Q). For a representation
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M, the dimension vector dim M € N is defined as
dim M = (dim M;);e;.

It is an isomorphism invariant of the category Rep,(Q).

For a representation M of dimension «, up to fixing a basis of the vector spaces M; for each
i € I, we can assume that M; = K. For a € €, the linear map M, : K% — K" can be
therefore identified with a matrix in Mat(ay(q), @ (a), K).

Consider then the affine space

a) = @) Mat(ovy(a), @4(a), K).

a€ef

We can endow R(Q), ) with the action of the group GL, = H GL,, defined by
i€l

g (Ma)aecq = (gh(a)Magt_(;))aEQ'
The orbits of this action are exactly the isomorphism classes of representations of @ of dim = «.

Denote by (—, —) : Z! x Z! — Z the Euler form of @, defined by

o, B) = Z Q4(a)Bh(a) — Zazﬂi-

a€ef i€l

We briefly recall also the definition of the moment map of Q. Denote by Q the double quiver
Q (I,Q) with the same vertices of @ and as set of arrows Q = {a,a* | a € Q} where
:j—ifora:i— j. For a € N/, the moment map p is the morphism

R(Q, ) — Endg(a)

T = (Za, Ta*)acn — Z[xaama*}
a€eN

where
Endg(a) = {(M;) € End(a) | Y tr(M,
el

Given A € K' such that A -a = 0, the element (\;l4,)ic; (which we still denote by \) is a
central element of Endg(a) and the fiber ugt(\) is GL, invariant. We denote by Q,, the
quiver variety associated to A, which is defined as the GIT quotient

Qo =ty (A)// GLq .

The quiver stack M) ,, is defined as the quotient stack

Mo = [M;I(/\)/GLa]~
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6.1.1 Multiplicative quiver stacks

There is also a multiplicative version of the moment map pue, usually called multiplicative
moment map.

More precisely, for o € N/, let R(Q, a)° be the open subvariety of R(Q,«a) such that (1 +
Tpxp+ ), (1 + xpexp) is invertible for every b € Q.

Assume to have fixed an ordering < on ). The multiplicative moment map P, is the GL,-
equivariant morphism

D, : R(Q,a)° — GL,
(Tq, Tqr) — H(1+xa3:a*)(1+xa*xa)_1 (6.1.1)
acN
where we are taking the ordered product with respect to <.
For o € (K*)!, the element (0ila,)icr € GLq, which we still denote by o, is central and the
fiber ®_ (o) is GL,-invariant.

We define the multiplicative quiver stack M, , of parameters o, as the quotient stack

Moy = [®;1(0)/ GL4].

Remark 6.1.1. While the morphism &, depends on the ordering <, the isomorphism class of
the multiplicative quiver stack M, o does not depend on it, see for example [19, Proposition
1.4].

6.1.2 Krull-Schmidt decomposition and endomorphism rings

Recall that the category Repg(Q) is abelian and Krull-Schimdt, i.e we have the following
Theorem, see for example [56, Theorem 1.11].

Theorem 6.1.2. Each object M € Repy(Q) admits a decomposition into a direct sum of

M:@MJ’“

jeJ

indecomposable ones

and such a decomposition is unique up to permuting the factors.

Recall that a representation M is indecomposable if and only if End(M) is a local algebra.
Its maximal ideal is denoted by Rad(M ) C End(M). It is the set of nilpotent endomorphisms
of M. The quotient End(M)/Rad(M) is thus a division algebra, which is usually denoted by
top(M).

More generally, given two representations M, N it is possible to define a subset Rad(M, N) of
Hom(M, N) as

Rad(M,N) = {g € Hom(M,N) | 1 + gf € Aut(N) ,Vf € Hom(N, M)}.
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If M = N and M is indecomposable, Rad(M) = Rad(M,M). In general, Rad(N,N) is
still an ideal of End(N) and if M, N are non-isomorphic indecomposable representations,
Rad(M,N) = Hom(M, N). The radical is additive i.e

Rad(M @& M’,N) = Rad(M, N) ® Rad(M', N).

We have the following proposition (see [36 Section 3.2]):

Proposition 6.1.3. Given a representation X of Q and an endomorphism ¢ € End(X), ¢
is invertible if and only if its class @ in End(X)/Rad(X) is invertible.

Remark 6.1.4. Fix a representation X and its Krull-Schmidt decomposition X = @jeJ X;j.
For an endomorphism ¢ € End(X), we denote by ¢; the associated element in End(X;j ) and

by ©; the associated element in
End(X;j)/ Rad(X;j) = Mat(rj, top(X;)).

As Rad(X;, X;) = Hom(X;, X;) for every i # j, the following isomorphism of K-algebras
holds:

End(X)/Rad(X) = @ Mat(r;, top(X;)). (6.1.2)
JjeJ
o — (@)jes (6.1.3)

Proposition can therefore be rephrased as: ¢ is an isomorphism if and only if ©; is
invertible for each j € J.

6.1.3 Indecomposable over finite fields and Kac polynomials

In this paragraph, unless explicitly specified, we assume K = F,. Wedderburn’s theorem
implies that every finite dimensional division algebra over I, is a finite field. For an indecom-
posable representation M € Requ(Q), we have therefore top(M) = F 4 for some d > 1.

Fix a representation X with Krull-Schimdt’s decomposition
_ rj
X =Px;
Jj€J

and integers d; such that top(X;) = F4; for each j € J. From Remark there is a
morphism of finite groups

px : Aut(X) — [[ GL,, (F 4)) (6.1.4)
jeJ
o — (®)jes- (6.1.5)

and its kernel Ker(px) is the subset Ux = {1+ f | f € Rad(X)} C Aut(X). In particular,
all the elements inside Ker(px) are unipotent.

The integers d; admit the following description in terms of absolutely indecomposable repre-
sentations (see Definition below).
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Definition 6.1.5. A representation V over a field K is absolutely indecomposable if V @ K
is indecomposable.

To relate absolutely indecomposable and indecomposable representations over F,, we introduce
the action of the Frobenius.
Denote by (Fq)w’ the set Fq with the structrure of Fq vector space given by

v = F'{(\).

Consider an F -representation N. We define Fr'(N) to be the representation N ®F, (Fy)pyi-
Over the parameter space R(Q, «)(F,), the Frobenius action corresponds to the usual (geo-
metric) Frobenius, i.e for + € R(Q, a)(F,) the representation Fr’(x) is given by the element

Fi(z) € R(Q,a)(F,), where F : R(Q, ) — R(Q,«) is the canonical Frobenius.

Consider a representation M of @ over F, and d € N5 such that Frd(M) = M. Since the
stabilizers of the action of GL, on R(Q, «) are connected, by |28, Proposition 4.2.14| there
exists an F s-representation My of () such that

Mo @F 4 F, = M.

In this case, we say thus that M is defined over Fa. Define size(M) to be the smallest d such
that Fré(M) = M, i.e such that M is defined over F,a. Notice that, for M € R(Q, a)(F,), the
size size(M) is the cardinality of the orbit of M for the action of the Frobenius on R(Q, «)(F,).
Notice moreover that size(M) is an isomorphism invariant and we can therefore talk about
the size of an isomorphism class.

By what we just said, we deduce that, for any 8 € N/ and d > 0, we have the following
equality.

agQ.p (¢%) = #{ Tsomorphism classes of indecomposable representations M over F, | (6.1.6)

dim(M) = B and Fr¢(M) = M}} = (6.1.7)

= |_| #{ Isomorphism classes of indecomposable representations M over F,, | (6.1.8)
r|d

dim(M) = § and size(M) =r} (6.1.9)

Indecomposable representations are described in terms of absolutely indecomposable ones by
the following Lemma, see [52].

Lemma 6.1.6. For every indecomposable representation W of Q of dimension o over F,
such that size(W) = d, there exists an indecomposable representation M over Fy such that
top(M) = d and

I
2
=

M ®Fq qu
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Conversely, for an indecomposable representation M over Fy, such that top(M) = Fa, there
exists an absolutely indecomposable representation W of Q over Fa such that dim(W) = 9,
size(W) = d and we have :

T
L

M ®p, Fua = EQF(W). (6.1.10)

Remark 6.1.7. Notice that Lemma implies in particular that, given an indecomposable

representation M of @ of dimension a over F, with top(M) = F 4, we have d|a = ged(a)ier-

Moreover, absolutely indecomposables of @) over finite fields are described by the following
result, see [52, Theorem A].

Theorem 6.1.8. (i) There exists a polynomial with integer coefficients ag o (t) € Z[t] such
that, for each q, ag.o(q) is equal to the number of isomorphism classes of absolutely indecom-
posable representations of QQ over Fy of dimension vector a.

(ii) The Kac polynomial ag.o(t) # 0 if and only if « € ®(Q)T. Moreover, ago(t) =1 if and
only if a is a real root (see [52, Section (a)] for a definition). Otherwise ag (t) is monic of
degree 2 — o' Ca

Here ®*(Q) C N’ is the root system of @, introduced in [52, Section (a)] and C = (C; ;)i jer
is the Cartan matrix of the quiver given by

{2 — 2(the number of edges joining i to itself) if i = j
ij =

—(the number of edges joining ¢ to j) otherwise.
Thanks to the isomorphism (6.1.10)), in [52] Section 1.14] it is shown the following Proposition.

Proposition 6.1.9. There exists a polynomial 19 o 4(t) such that, for any q, 1g.a,d(q) is
equal to the number of isomorphism classes of indecomposable representations M such that
dim M = « and top(M) = F_a and we have

10,04t d2u< > ag,= (") (6.1.11)

Proof. Let Xg = {r € N | r divides d}. Notice that X, is a poset with the ordering given by
r’ <r if and only if »’|r. Consider the functions fi, fo : Xq4 — N defined as

f2(r) = #{ Isomorphism classes of indecomposable representations M over F, |

dim(M) = % and size(M) =r}.
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By eq. 1} we have that fi(r) = Zr'gr f2(r) and, therefore, by Proposition 4.3.13| we have
d d .
Pad)y=> u( ) Al)=>_ n(~)aqs@) (6.1.12)
rld rld

Notice that, by Lemma [6.1.6], we have that
dfa2(d) = #{Isomorphism classes of indecomposable representations of @) over Fy |

dim(M) = a,top(M) = Fa},
from which we deduce Proposition [6.1.9]
O

We finish the section by recalling the Kac conjecture which was proved by Hausel, Letellier,
Rodriguez-Villegas in [47, Corollary 1.5]

Theorem 6.1.10. For any o € N!, the Kac polynomial aQ.o(t) has nonnegative integer
coefficients.

6.2 Quiver representations of level V

Let Q = (I,9) be a finite quiver and let V be a subset of N’. For o € N/ we denote by Néa
the subset N[Sa ={0<p<al|pe NI} and similarly Voo, ={0< 8 <a | B eV}

Ezample 6.2.1. Given A € C! we denote by Vy the subset V) := {3 € N/ | 8-\ = 0}, where -
is the canonical orthogonal product on N. Notice that for A = 0 we have Vy = N.

To a representation X of dimension «, we associate the following subset Hx C Nf<a. Given
the decomposition of X ® g K into indecomposable components

XoxK =@y,
jeJ
we define
Hx = {dimYj};e;. (6.2.1)
For any V C N’ we give the following definition of the representations of the quiver @ of level
V.

Definition 6.2.2. A representation X of dimension « is said to be of level V if we have
Hx = Veo. For V =V, with A\ € C!, we say that X is of level \.

Ezample 6.2.3. Let V = {a} for a vector a € N/. A representation X € R(Q,«) is of level
{a} if and only if X ® ¢ K is indecomposable, i.e if and only if X is absolutely indecomposable.

The notion of being of level V induces a stratification (indexed by the subsets of NIS o) on the
representations of () of dimension .
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Since on the set of subsets of NI< , there is a natural order relation, induced by inclusion, we
can also counsider the filtration associated to such a stratification. In particular, we give the
following definition of a representation of level at most V.

Definition 6.2.4. For a subset V C N/, a representation X is said to be of level at most V' if
it is of level V' for some V' C V. For V = V), we say that a representation is of level at most

A

Remark 6.2.5. Notice that a representation X of dimension « is of level at most V' if and only
if Hx C V<q. In particular, for V = N, any representation of Q is of level at most N’.

If K=F;,and A € C’, Definition for representations of level at most A is equivalent to
the following one:

Definition 6.2.6. A representation X is of level at most A if given its Krull-Schimdt decom-
position X = @X;j we have dim X; - A = 0 for each j € J.
je€J

Proof. Given the Krull-Schidmt decomposition X = @X;j, from Lemma [6.1.6] for each
Jj€J

j € J there is an isomorphism
Xjop, Fg=Y; @ Fr(Y;) @ @t} (y)
where top(X;) = quj. The decomposition in indecomposable factors of X ®r, F, is thus

X ©r, Fy = PV 0 Fr(Y)) ©--- 0 i 7(Y)))
jeJ

with dimY) = dirczxj. We have then dimYj - A = 0 if and only if dim X; - A = 0, for each

jed. 0

For a € N’ the representations of @ of level at most V form a constructible subset of R(Q, ),
as explained by the following proposition:

Proposition 6.2.7. There ezists a constructible subset R(Q, o, V) C R(Q, «) such that ,for
each extension K C L, the set of L-points R(Q,a,V)(L) is the subset of representations of
level at most V of Q over L. If V.=V for A € C!, we denote R(Q,,Vy) by R(Q,a, \).

Proof. In [52] Section 1,8], Kac showed that, for any o € N/, there exists a constructible subset
A(Q,a) € R(Q, «), such that, for any field extension K C L, the set of L-points A(Q, «)(L)
is the subset of absolutely indecomposable representationsover L.

Let Wy, be the constructible subset defined by

Uyo = a A(Q,a1) x - X A(Q, o).

Aty €V
st a1+t ar=a
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Consider the morphism
(I)V@ : GLa X\I/\/,Oé — R(Q, a)

defined by
©V7O‘(g’M1"' . 7MT> =g- (Ml ®--- EBMT)

for g € GLo, My € A(Q,01),...,M, € A(Q,,) and a3 +-- -+ . = a. We define R(Q,a, V)
to be the image of ®y,, which is a constructible subset by Chevalley’s theorem.
O

Ezample 6.2.8. Consider the case where @ is the Jordan quiver (the quiver with one vertex
and one arrow), i.e |I| = |Q| = 1.

£

For n € N and a field K, the representation space R(Q,n) is given by the n x n matri-
ces Mat(n, K). The isomorphism classes of R(Q,n) correspond to the conjugacy classes of
Mat(n, K).

If K = K, the indecomposable representations correspond to matrices conjugated to a single
Jordan block and the decomposition into indecomposable components of a representation
M € Mat(n, K) corresponds to the writing of M into its Jordan form.

Consider now the subset V' = {1} C N. Notice that in this case, a representation is of level
{1} if and only if is of level at most {1}.

A matrix M € Mat(n, K) is of level {1} if and only if its Jordan form over K has only blocks
of size 1, i.e if and only if M is diagonalizable over K.

The subset R(Q,n,{1}) C R(Q,n) = Mat(n, K) is therefore given by the semisimple matrices
of size n.

Remark 6.2.9. Let k be an algebraically closed field of char = 0 and let A be an element
of kI. We denote by 7 the projection map 7 : ugt(A) — R(Q,a) sending (74, Ta* )acq t0
T((Za; Xar)aco) = (Xa)aco-

From the result of Crawley-Boevey [I7, Lemma 3.2|, we deduce that a representation = €
R(Q, ) belongs to Im(7y) if and only if, given its Krull-Schimdt decomposition x = €

jeg L

we have dimz; - A = 0 for each j € J.
From Remark we deduce therefore the following Proposition.

Proposition 6.2.10. For K = C, for any o € N! and any \ € C!, we have

R(Q,a, A) = Im(my).

Remark 6.2.11. Altough the result of Crawley-Boevey is there stated only for algebraically
closed field of char = 0, Remark above can be extended over a finite field IF, of sufficiently
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big characteristic. More precisely, consider A € Z! and still denote by A the corresponding
element of Fé.

Using an argument similar to the one of Proof[6.2] we deduce that, if ¢ >> 0, we have
Im(ﬂ-)\) = R(Q7 «, )‘)

The following Lemma provides a way to compute the number of isomorphism classes of rep-
resentations of level at most V' of dimension « over a finite field F, .

Lemma 6.2.12. For each V C NI and o € N! there exists a polynomial Mg v (t) € Z[t] such
that, for any q, Mg o,v(q) is equal to the number of isomorphism classes of representations of
level at most V' of dimension vector a over F,. Moreover, the following identity holds:

Exp | > agst)y’ | = > Mgav(t)y” (6.2.2)
BEV aeN!

Proof. For 8 € NI denote by ag s, (t) the polynomial defined by:

0iffeV

aqpv(f) = {aQ,B(t) ifBeV

With an argument similar to that of Proposition [6.1.9] the number of isomorphism classes
of indecomposable representations M of level at most V' of dimension  over F, such that

top(M) =F
2%;# <i> aqs,v(d")-

Let then Ig g v (t) be the polynomial defined by:

loav(® =3 3 ¥ n (%) ao v (®) (623

dla r|ld

q¢ 18 equal to

Notice that for any ¢, I v (q) is equal to the number of isomorphism classes of indecompos-
able representations of level at most V' and of dimension 3 over F,. For each v € N’, denote
by Mg ~,v(t) the polynomials defined by the following identity:

> Moyt = [ (1—y%)Tesv®, (6.2.4)
yENT BeNT

As Repg, (Q) is a Krull-Schimdt category, we deduce that, for any ¢, Mg v(q) is equal to
the number of isomorphism classes of representations of level at most V' of dimension v over
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F,. Specializing the identity (6.2.4)) at ¢ = ¢ we can rewrite it as the following identity :

N Moav(@y® =[] 11 1_; HH‘”d(l_

acN! aeN! MeInd(Q,a,V)/= aeN! da
tOp(M) Fa

) é Zr'|d #(%)‘ZQ,%,V(‘]T)

(=1
d

(6.2.5)
The right hand side of Equation (6.2.5) can be rewritten as

[ ITv (s [T 11w (5

aeN! dja ~eNI d>1

>§2Tdu(f)a(gv,cdv(q >izrdu(f)ac},%v(qr)

(6.2.6)
As Equation (6.2.6) holds for any ¢, we deduce that the following identity holds

log | Y Mgav(tly Z%(

aeN! ~yeN!
d>1

) (agr v (1)) (6:2.7)

1 d
where (ag,v(t))d = p Z,u (r) ag~,v(t"). By Lemma [3.7.8 and Equation (6.2.7)), we de-
r|d

duce finally:

Log ZMQ(XV ZaQaV LOg(

aeN! aeN!

> > ag.al (6.2.8)

aceV

Ezample 6.2.13. Consider the Jordan quiver @ of Example V = {1} and apply Formula

(6.2.2). As ag(t) =t, we find

> Mgy (t)y" = Exp(ty) = > t"y" (6.2.9)

neN neN

where the last equality comes from Example|3.7.13] We obtain therefore

Mg 1y (t) = 1"

Evaluating MQ,m{l}(t) at t = ¢, by Example we find that the number of semisimple
conjugacy classes of Mat(n,F;) is ¢". This is a classical combinatorial result (see for example
[58]) which comes from the observation that the semisimple conjugacy classes are in bijection
with the monic polynomials of Fy[t] of degree n.

From Lemma [6.2.12] we deduce the following proposition.
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Proposition 6.2.14. 1. For any subset V. C N! and o € NI, the polynomial Mg oy (t)

has nonnegative integers coefficients.

2. The polynomial Mg o v (t) is non-zero if and only there exist

b Bl,...,ﬁr€(¢+(Q)ﬂV)
L] hl,...,hrEN

such that hif1 + -+ h.0, =

Proof. By Lemma the polynomials Mg v (t) have integer coefficients. By the definition
of Exp and Lemma [6.2.12) Mg o v (t) is a sum of products of the form

aqp, (") ag p, (t"2)™  aqp (t")™
]{71 k‘2 kl

(6.2.10)

with kq,...k;,m1,...,my,n1,...,n; positive integers such that mini6y + -+ + nymyB; = a.
Kac conjecture (see Theorem implies that these products have nonnegative coefficients.
By Proposition we see that a product as in Equation is different from 0 if and
only if f1,..., 3 € ®T(Q) and so we deduce property (2). O

6.2.1 Quiver stacks

Let K = C and fix A € C!. Let @ € N and consider the associated quiver stack My a-
Davison [22, Theorem B| showed that we have:

t2

Pe(Mpa,t) =t Coeffo | Exp [ ) jaw(ﬂ)yﬁ (6.2.11)

where (a, «) is the Euler form of Q). From Identity (6.2.11]) and Proposition [6.2.12in the case
where V' = V), we deduce the following Proposition.

Proposition 6.2.15. 1. The quiver stack My o (and so the quiver variety Qy o) is non
empty if and only Mg o 2(t) # 0.

2. The number of irreducible components of top dimension of the stack M) , is equal to
the top degree coefficient of Mg o (t).
6.2.2 Counting representations of level at most

In the paper [62] Theorem 1.1], Letellier linked the Kac polynomial ag (t) to the representa-
tion theory of the finite group GL,(F,). In this paragraph, we will explain how to generalize
his results to the case of representations of level at most V for certain subsets V C N/,

The finite group GL, (IF;) acts on the finite set R(Q, o)(F,). We denote the associated complex
character of GLq(Fy) by rq.
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Remark 6.2.16. Fix a dimension vector § € N!, an integer r € N, an indecomposable rep-
resentation M € R(Q, 3)(F,) and denote by N the representation N = M®". As seen at
the beginning of paragraph there is an isomorphism Aut(N)/Uy = GL,(F,a) where
top(M) = qu.
As Uy is a unipotent subgroup, the morphism det; passes to the quotient Aut(N)/Uy and
induces thus a morphism det; : GL(Fya) — (F})’. Its value at a matrix A € GL,(Fa) is

given by

»

7

det [(A) = (N]F;d/]F; (det(A)F))Zel (6212)

Consider now a subset V' C N!. The main result of this paragraph is the following Theorem:

Theorem 6.2.17. If there exists an element o € Hom(FZ,C*)I such that V<o, = Hoo, we
have:
(ra ® po,1) = Mg,a,v(q) (6.2.13)

Proof. Fix a representation z inside R(Q, a)(F;). We start by showing that ps|stab(z) = 1 if
and only if z € R(Q, o, V)(F,). Consider the Krull-Schmidt decomposition

T
=@

Let f3; be the dimension vector dimz; and d; the integer such that F = top(x;) for j € J.
As explained at the beginning of §6.1.3] quotienting by the subgroup U, C Stab(z) there is
an isomorphism

Stab(z)/Us = [ [ GL, (F

jeJ
The character p, is trivial over U, and induces therefore a character p, : H GLT]. (Iquj) — C*

Jje€J
which by Remark [6.2.16]is given by

po((A))jer) HU i NIF* /F*(A‘))-
jeJ

Therefore, we deduce that py[gian(z) = 1 if and only if g—j € Hoa = V<q for each j € J. This

J
is exactly the condition that must hold for x to be of level at most V.

From the discussion above, we deduce therefore that we have:

1 1
e [ D DU DR G R 1o AT DR el
U 2eR(Q,a)(Fy) geStab(x VT 2eR(Q,0,V)(Fy)
(6.2.14)

Applying the Burnside formula to the RHS of eq.(6.2.14)) we obtain thus the equality

(ra ® pg,1) = MQ7047V(q)~
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O

Theorem[6.2.17|can also be proved using the results of Section Hua [50, Proof of Theorem
4.3] showed indeed the following formula for the class functions rq.

Lemma 6.2.18. For a € N! and g € GL,(F,) such that g ~ w and w = (d1, A1) ... (dr, Ar),
we have

ralg) = [T TL @)™, (6.2.15)

j=1la€Q

Notice that Formula (6.2.15]) implies in particular that the family of class functions {rq }oenz
is Log compatible. This was already remarked by Letellier [62], where the author in addition
[62, Proposition 2.4] showed that

Ro gen (t) = aQ,a (t) (6.2.16)

for any a € N! and used the latter equality to show the case of V = N! of Lemma [6.2.12
However, Letellier’s approach is different from ours as it involves symmetric functions and
does not seem to extend immediately to the case of any V.

Notice that Theorem Formula (6.2.16)) and Lemma [6.2.12] give an alternative way to
show Theorem [6.2.17
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7 Star-shaped quivers, multiplicative quiver stacks and charac-
ter stacks for Riemann surfaces

In this chapter, we review some properties of star-shaped quivers and of the associated mul-
tiplicative quiver stacks. This type of quivers will be of fundamental importance for showing
both the results of Chapter §8| regarding multiplicities for k-tuples of Harisha-Chandra char-
acters of GL,,(F,) and the results of Chapter §[§] about the cohomology of character stacks M¢
for a Riemann surface.
In section we introduce star-shaped quivers, fix some notations about their representa-
tions and recall the results of [46] expressing the Kac polynomials for these quivers in terms
of the HLRV kernel, see §3.8]
In section §7.2 we review the definition of the multiplicative moment map ®, for star-shaped
quivers and of the associated multiplicative quiver stacks M7 ,. The map @, is the restriction
of the morphism &, introduced in to a certain open subset R(Q,a)** C R(Q, a)°.
In section §7.3] we show that, for each o € (C*) and B € N/, the multiplicative quiver stack
M(’;ﬁ is isomorphic to a certain stack M, p ., defined in terms of partial Springer resolutions
of conjugacy classes of GL,(C). The latter stacks are the stacky versions of the varieties
considered by Letellier [61] in the generic case.
In section §7.4] we review the definition of character stacks for a punctured Riemann surface X
and a k-tuple C of conjugacy classes of GL,,(C) and show how they are related to multiplicative
quiver stacks for star-shaped quivers.
In particular, for any k-tuple C of semisimple conjugacy classes, we show that there exists
ve € (C), ac € N! such that we have an isomorphism

Me =M

;K/c,ac :

The latter isomorphism is going to be one of the key ingredients of our proof of Theorem
about E-series of character stacks.

7.1 Star-shaped quivers

Fix g,k > 0, integers s1,...,s; € N and let @ = (I,9) be the following star-shaped quiver
with g loops on the central vertex:

1,1]

ol —— olt2 e olbs1]

o2 o[22 ol2:52]

o[kvl] — o[k72] - o[k’sk‘}
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We will denote the vertex 0 also by [i,0] for i =1,... k.

For a representation z € R(Q,«), for each h = 1,...,k and j = 0,...,sp, we denote by
Tp; € Mat(ayp, 1, o j4+1), K) the matrix associated to the arrow a having s(a) = [h,j + 1]
and t(a) = [h, j|, where we put x5, = 0.

Similarly, for an element = Eﬁ(@, a) we denote by T € Mat(ap, j11), a5, K) the matrix
associated to the arrow a* € (.

Lastly, for i = 0,...,g and a representation T € R(Q,«a), we denote by eq,...,eq, €}, ... ;€5 €
Mat(«g, K) the matrix associated to the g loops of @ and the corresponding reversed arrows
of Q respectively.

We denote by (N7)* the subset of dimension vectors that are non increasing along the legs
and for a subset V C N/, by V* =V n (N/)*.

For any 8 € N/, denote by R(Q, 3)* C R(Q, ) the representations which have injective maps
along the legs. Notice that if 3 & (N7)*, we have R(Q, B)* = .

Remark 7.1.1. Consider 8 € (N/)* and denote by

GLy= [] GLs.
ieI\{0}

Notice that GLg = GLg, x GLj and the action of GLj; obtained by restriction of the action of
GLg on R(Q, 8)" is free. Indeed, consider an element x € R(Q, 8)* and g = (gi)ier\{0} € GL’B
such that

g-r==x
For each 7 =0,...,k, we have
—1
23,09151) = %30
and, since x; is injective, we deduce that g; 1) = Io; . Similarly, for each j =0,...,k, we
have

~1 ~1
915, 1)%5,19,2) = L5.19}59) = Tjd
and therefore gj; o) = I, ,- By recurrence, we deduce that g = (Ig,)ien\{0}-

For any such @, we denote by Qo = (I,£) the quiver with same vertices of @), where we
eliminate the g loops on the central vertex. Notice that we have

R(Q,a) = g2 @D R(Qu, o

7.1.1 Indecomposable of star-shaped quivers

The indecomposable representations of the quiver @ have the following property (for a proof
see [46, Lemma 3.2.1]).

Lemma 7.1.2. If M € Repg(Q) is an indecomposable representation such that (dim M)y # 0,
then all the maps of M along the legs are injective. In particular dim M € (NT)*.
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Using Lemma Kac polynomials of star-shaped quivers were computed in [46]. More
precisely, for any 8 € (N/)* and for any j = 1,..., k, the integers

(B0 = Bips - -+ Bis;—1] — Bliss)s Blis;])

up to reordering form a partition ,u% ep.

Denote by pg € Pk the multipartition

= (b 1)

and the associated element g € TF as in Example Moreover, denote by Hpg(z, w) the
function
Hj(21w) = Hy, 20z, w).

In [46], the authors show the following Theorem.

Theorem 7.1.3. For any § € (N))*, we have

ag,p(t) = Hg(0,Vt). (7.1.1)

7.2 Multiplicative quiver stacks for star-shaped quiver stacks

For a star-shaped quiver @ = (1,2), we introduce two variants of the multiplicative moment
map, which are going to be the key objects for our study of character stacks.

Let R(Q,a)> C R(Q,a)° be the open subset of representations
R(Q,a)*! = {(&a, Ta* )aca € R(Q, ) | x4 is invertible for every loop a around 0}.

Notice that R(Q,a)*! = @ if ag = 0. We denote by

I _
o = Palpg.ae
the restriction of the multiplicative moment map, i.e
d! - R(Q,a)* — GL,
g k  sn
(€1, s gy €1yt Ty Thg) — | [(reie) (1+eied) ™ [T T[] +an i) Atah o )
i=1 h=1j=1

For o € (K*)!, we define the multiplicative quiver stack ./\/lf,va as the quotient stack
Mg o = [(®4) 7" (0)/ GLal.

Notice that, for a point 7 € (®!)~!(s), we have the following relationships. At the central
vertex, we have:
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k
[T+ 2i0x70) = o0la (7.2.1)
h=1
Forany h=1,...,kand j=1,...,s,, we have
(1 +zp 7y 5)(1+ iﬁ}:,j_ll"h,j—l)_l = o lap. (7.2.2)
which can be rewritten as
(Eh’jl’;j — a[h,j]:r;j_la:h,j_l = (U[h,j] — 1)Ia[h,j]' (723)
Notice that, for j = sp,, we have

O-[hvsh]l‘;klysh*lxhzshfl = (1 - O—[hvsh])]-a[h,sh] . (724)

Ezample 7.2.1. Let Q = (1,Q) be the Jordan quiver, i.e the quiver with 1 vertex and one
arrow. For n € N, the variety R(Q,n) is gl,,(K) x gl,,(K) and the variety R(Q,n)>! is given
by

R(Q,n)* = {(e,e*) € gl,(K) x gl,,(K) | e,1 + ee*, 1+ e*e € GL,(K)}.

Notice that the variety R(Q,n)°! is isomorphic to GL,(K) x GL,(K) via the isomorphism
R(Q,n)°! = GL,(K) x GL,(K)
(e,e*) = (e,e L +¢€%).

Via this identification, the multiplicative moment map ®!, corresponds to the morphism

®! : GL,(K) x GL,(K) = GLy(K)
given by

p” (A, B) = [A, B].
Consider now the open subset R(Q,a)** C R(Q,a)°! defined as
R(Q, )" = {(Ta, Ta* )aca € R(Q, ) | z4 is injective for each a € Q}.

Notice that R(Q,a)** = @ if a ¢ (N1)*.
The multiplicative moment map which will interest most in the thesis is the restriction of ®,
to R(Q, a)®*, which we will denote by

o = Palp@.ayee:

For o € (K*)!, we define the multiplicative quiver stack MG , of parameter o, v as the quotient
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stack

Mo = (@) (0)/ GLa].

7.3 Geometric description of multiplicative quiver stacks

In the rest of the chapter, we assume K = C. In this section, for a star-shaped quiver
Q = (1,92), we describe an isomorphism between the multiplicative quiver stacks M , and
certain quotient stacks defined in terms of Springer resolutions of conjugacy classes of GL,,(C).

7.3.1 Springer resolutions of conjugacy classes

Consider a Levi subgroup L C GL,(C) and a parabolic subgroup P O L having L as Levi
factor. Let Up C P be the unipotent radical. Fix an element z € Z, and let Y, be the variety

Y, = {(X,gP) € GL,(C) x GL,(C)/P | g7*Xg € 2U}.

Let 7, : Y, — GL,,(C) be the projection 7,((¢gP, X)) = X. The following proposition is well
known (see for instance [35] and the reference thereby for unipotent orbits).

Proposition 7.3.1. The image of 7, is the Zariski closure C of a conjugacy class C C GL,,(C)
and the morphism 7, is a resolution of singularities.

If z € (Zp)™®, the map 7, is an isomorphism between Y, and the conjugacy class of z in
GL,(C).

The morphism 7, : Y, — C C GL,(C) is sometimes called a partial Springer resolution.

Remark 7.3.2. The variety Y, can be described in the following equivalent way. Consider
no,...,ns such that L = GL,, x --- x GL,,,. The element z € Zj, corresponds therefore to
20,...,2s € C* such that

2= (2slngs .-y 20ln,).

Identify GL,, /P with the corresponding partial flag variety, as in §4.1.2l We have

Y, = {(X,f) € GL,(C) x GL,(C)/P | X(F;) C Fj foreach j =0,...,s

and the morphism induced by X on F;/Fj11 is sznj}

7.3.2 Multiplicative quiver stacks for star-shaped quivers and resolution of con-
jugacy classes

Consider now a star-shaped quiver Q = (I, ), a dimension vector 3 € (N/)* and a parameter
o€ (C*)!. Foreach h=1,...,kand j =0,...,sp, define

nhj = Bin,j) — Bln,j+1] (7.3.1)
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where we are identifying S, 0 = 8o and B, 5,41) = 0. For h = 1,...,k let then Ly be the
Levi subgroup of GL,,(C)

Sh

Ly =[] GLy,,(C).
j=0

Fix parabolic subgroups P, 2 L such that the Levi factor of Py is Ly and let Uy C Py the
associated unipotent subgroup.

The element o € (C*)! determines, for each h = 1,...,k, the following element 2z, € Zp, .
Choose elements 21, ..., 20 € C* such that

210" 2k,0 = 00-

Let then z; be the central element

Sh
zh = (21,0000, 21,000,111 - - -5 2000701 J[hvsh]jnh,%) < H GLn,,,(C).
=0

Denote by L the k-tuple of Levi subgroups (Li,..., L) and by P the k-tuple of parabolic
subgroups (P, ..., Pg).
Let now X, p, be the variety defined as

XLpo = {(AlaBla--~aAgaBgay1P1aXla ) € GL(C XHYzh| HAz,B 'szl}

and My, p , the quotient stack
Mrpo = [XLps/GL,(C)].
We have the following Theorem for the stack Mr, p .
Theorem 7.3.3. For any 8 € (N))* and any o € (C*)!, there is an isomorphism of stacks
Mo EMLps
for L, P as above.

In the proof, we suppose g = 0 to simplify the notations. The case of higher genus is an
immediate generalization.

Proof. We define the following morphism
fi(@5)7 o) = XLpao.
For an element 7 € (@2)_1(0), consider the flag

.7:]‘3 = ((C” :_) Im($j70) :_) Im(:(}jvoij) :_) e :_) Im(mj’() . -$j’5j_1)).
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Notice that, for each h =0,...,s; — 1, we have
dim(Im(zj0---xjp)) = B[j’h]j

since xj, is injective for each j and r. In particular, F;z belongs to the partial flag variety
GL,, /P;. We define therefore

f(@) = (Fiz, 210 + 21,001,027 0, F2z, - - 5 26,0 T 28,0Tk,0T) 0)-
Foreach h =1,... k, put X}, := 250+ 21,0Th,07}, o- Notice that from eq. li we have that
X;-Xp=1.

To check that the morphism f is well defined we need to check thus the following two condi-

tions.

1. The flag Fj, z is X}, invariant for each h.

2. The morphism that X} induces on the the quotient space

Im(zpo---xp;)/Im(zno - ohj41)

and which we denote by Yhyj is equal to zh,jfg[h i

From eq.(7.2.3)), by recurrence, we deduce that for each h =1,...,kand each j =0,...,s,—1
and v € C*ndl, we have

Xj(xnoxnj(v) = 2n0Tn0 Th,j (V) + 20,0Th,0Th 0Th0 "~ Th,j(V) = (7.3.2)

2,0
= Tho Thj(V) + Tho ThjThj+1Th j4+1(V) (7.3.3)
Olh,1) """ Ofhyj+1]

. e
where we are putting zj, 5, = Tp o = 0.

Notice that
Zh,0

Olh,1) " Olh,j+1]
From eq.(7.3.3), we deduce therefore that properties 1),2) above are respected for each h, j
and therefore f is well defined.

= Zh,j-

We use the notations of Remark[7.1.1] Notice that from the aforementioned remark, the action
of GLj on (®%)~'(0) is free.
In addition, notice that the map f is GL%—invariant. Denote by

f:(@5) Y (0)/GLy —» XLpo
the associated morphism. By Lemma to show that

*
M, = Myp,,
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it is sufficient to show that fvis an isomorphism.

We define the following morphism 6 : X1, p , — (@E)_l(o)/ GLj. Consider an element
(Fi, X1, .., Fi, Xi) € X1, po-
For each h=1,...,kand j =1,..., s, fix a basis of the vector space F}, ; and denote by
zp i1 : CPal — CPims—1)

the morphism such that zj ;15 ;1 corresponds to the writing of the inclusion Fj, ; C Fp j—1
in the respective fixed bagis.
By definition of X1, p 5, we have that

(Xn = 20,10)(Fhj) € Fhjt1s
i.e Xy — zp jI, defines a morphism Fj, ; — Fj j+1 and we denote by
I CPivgl — CPiri+1]

its associated matrix in the fixed basis.
Notice that, by definition, for each h = 1,...,k, we have

Xy = Zho + Zh70.%'h70$;’0 (7.3.4)

Notice moreover, that, for each j = 1,..., sy, we have that z, jx; pa} ;18 the matrix associated
to the morphism
Xj = 2njln s Fnj = Fh

and xzj_lzh’j_lxhj_l is the matrix associated to the morphism
Xj = 2nj-1dn : Fnj = Fhj

in the respective basis.
In particular, we have that

* *
TG hTh, G = Zhj—1Thj-1Thj—1 = (2hj = 2ni-1) gy, 5 (7.3.5)

. Zh,j—1
and, since —I—

= o[p,j), we find
Zh,j

:rjﬁx;;’j — U[h,j]xz,jflwhg'—l =(1- O—[hvj])jﬂ[h,j] (7.3.6)

By eq.(7.2.3), we deduce that (xhyj,x’,;j) h=1,.k defines a point T € (@Zg)*l(a) and we put

J yeesSh—1

9(.7:1,X1, R ,Fk,Xk) =T.

From eq. 1} and the definition of Z, we deduce that 6 and f are inverse one to each other,
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i.e that fis an isomorphism. O

Remark 7.3.4. Notice that Theorem shows in particular that the isomorphism class of
the stack My, p» does not depend on the choice of the central elements z1,..., 2.

7.4 Character stacks for Riemann surfaces and multiplicative quiver stacks

Fix integers g,k € N, a Riemann surface ¥ of genus g and a subset D = {dy,...,dr} C X.
In this paragraph we recall the definition of character stacks for the Riemann surface ¥ with
punctures at the points of D and their relationship with multiplicative quiver stacks for star-
shaped quivers.

Let C be a k-tuple of adjoint orbits C = (Cy,...,Ck). Denote by X¢ the following affine variety
Xc == {p € Hom(m (X \ D),GL,(C)) | p(6) €Cp, for h=1,...,k}

where, for each h = 1,...,k, we denote by d; a small loop around the point dp.

The variety X¢ is the variety of representations of the fundamental group of ¥\ D with image
lying in Cj, around the points of D or, equivalently, the variety of local systems on X \ D with
prescribed monodromy around D.

Recall that the fundamental group 71 (X \ D) admits the following explicit presentation
7T1(E\D) = (al,bl,...,ag,bg,él,...,ék | [al,bl] s [ag,bg]51 5k = 1>

where each §; is a loop around the puncture x;.
The variety X¢ can therefore be written down in the following explicit way:

Xc = {(Al,Bl,... ,Ag,Bg,Xl,. . ,Xk) S GLn(C)zgan'- X?k‘ [Al,Bl] cee [Ag,Bg]Xl .. Xk

The character stack M associated to (X, D,C) is defined as the quotient stack
M = [X¢/ GL,(C)].
We define also the character variety Mc, given by the GIT quotient,

MC = Xc// GLn(C)

Consider now L, P, o as before and let C = (Cy,...,Cx) be the k-tuple such that C; is the
image of the projection Y, — GLj,.
Notice that the projections 7,,..., 7, induce a morphism

C . XL,P,U — Xc

(Al,Bl, .. -;AgaBg;glplaXlw .. ,ngk,Xk) — (Al,Bl,. . .,Ag7Bg,X1, c. ,Xk)
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As 7 is GLy(C)-equivariant, it descends to a morphism of quotient stacks , which we still
denote by 7 : My, p s — M and so, by Theorem to a morphism,

™ Mj, — Me.

Remark 7.4.1. Notice that, if z; € (Z1,)™®,..., 2z, € (21, )8, the morphism 7 is actually an
isomorphism.

Remark 7.4.2. Notice that the morphism ¢ is obtained by restricting the product of the partial
Springer resolution Y, — Cp, and then quotienting by GL,,. The decomposition theorem (and
its equivariant version) for partial Springer resolutions are well understood in terms of the
representation theory of Weyl groups.

Altough we will not cover this in the thesis, it is natural to expect that the cohomological
properties of the morphism ¢ could have a similar description.

Ezample 7.4.3. Consider the case where ¢ = 0,k = 2, where o; = 1 for each ¢ € I and
Bn,;) = n — j for each h =1,2.

In this case, we have Ly = Ly = T where T' C GL,(C) is the maximal torus of diagonal
matrices. We can therefore take P = P, = B, where B is the Borel subgroup of upper
triangular matrices. Denote by U the unipotent radical of B, i.e the upper triangular matrices
having only 1’s on the diagonal.

It is not difficult to see that for the corresponding orbits C; = C and C; = N, where N C
GL,,(C) is the subvariety of unipotent matrices. The variety X¢ is therefore given by

Xe = {(X1,X2) € N? | X1Xo =1}
The morphism which sends (X7, X2) to X is an isomorphism between X = N. There is thus
an isomorphism M¢ = [N/ GL,(C)].
Similarly, the variety X, p » is isomorphic to the variety

{(X,91B,g2B) € N x GL,,(C)/B x GL,(C)/B | ;' Xg1 € U and g5 ' Xgo € U} 2 Y, xy Y..

The variety Y. X Y, is the so-called Steinberg variety, well studied in geometric representation
theory of reductive groups and Weyl groups (see for example [16]).
There is thus an isomorphism

MG, = [Ye xn Ye/ GL,(C)).
Via these identifications, the morphism 7 : M , — Mc corresponds to the morphism
7 [Ye Xy Yo/ GLn(C)] — [N/ GLn(C)]
obtained by taking the quotient by GL,(C) of the canonical morphism Y, xy xY, — N.

Conversely, to a k-tuple C, we start by associating the following star-shaped quiver @ = (1,€),
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the following ac € NI and ¢ € (C*)?.

Assume that each Cj, has eigenvalues v, . .., Vh,s, With Jordan forms associated to partitions
)\h70, - 7>‘h,5h eP.
Put
s
Sh=) U \uy)
r=0

and Q = (I,Q) be the star-shaped quiver with k legs of length 51, ..., S} respectively.

Consider the dimension vector ac € (N?)* defined as follows. For each h = 1,..., k and each
pj—1 Pj
j € {1,...,5,} there exists unique p; € {0,...,s,} such that Z I(AL,) << Zl( hr)-
r=0 r=0
Put
pj—1

Ty =J- Z l( /h,r)'
r=0

We define then
nifj=0
() = ¢ B £
) Z | Ar| + Z( ?z,pj)r otherwise.
r=0 r=1

For each h = 1,...,k, denote by 7, € (C*){%r} the element such that (31,)0 = Va0 and
(Yn)j = Ynp;-
We define then the element yc € (C*)! as follows:

k
Hry,;}) ifj=0
h=1

P . .
Yhj Vhj—1 otherwise .

(ve)hg) =

Example 7.4.4. Assume now that each Cj, is semisimple (i.e C; = C) and it is the conjugacy
class of a diagonal matrix Cj, with distinct eigenvalues vy, ...,7vn,s, € C* and multiplicities
Mh,0; - - -, Mp s, Tespectively.

Notice that for each h =1,...,k and each j =0,..., sy, we have \j j = (1""7) and therefore
Sp, = sp. The quiver @ = (I,Q) is therefore the star-shaped quiver with k legs of length
81, ..., Sk respectively.

The dimension vector a¢ € (N7)* is given by

Sh
(ac)[h,j] = Z mp,l
=3
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and ¢ € (C*)! is given by

k
[ iti=o0
g =S sy

yg;fyw_l otherwise

From ac,vc, define L = (Ly,...,Ly), P=(P1,...,P;) and 21 € Zp,,..., 2, € Z1, as above.
Notice that, for each h =1,...,k, we have that the image of m, : Y, — GL,, is Cij

From the reasoning above, we have therefore a morphism

T MZC’,YC — Me.
Notice that if Cj, is semisimple for each h = 1,...,k, we have that 21 € (Z;7),..., 2, €

(Zr,) 9. In particular, from Remark we deduce the following Theorem.

Theorem 7.4.5. For any k-tuple of semisimple conjugacy classes C, we have an isomorphism
of stacks
M*

Yeae = Me.
7.4.1 Remarks on character stacks for k-tuples of not necessarily semisimple
conjugacy classes

In paragraph we introduced two versions of the multiplicative moment map for a star-
shaped quiver: the morphism <I>;§ and the morphism <I>l5.

While we described the relationship between multiplicative quiver stacks ./\/l: 3 and character
stacks M, we did not give such a description for the map <I>lﬁ.

In this paragraph, we make a few remarks on the behaviour of the multiplicative quiver stack
M/ZB »» Which in general is far more complicated than that of M7 .

Firstly, we show that for k-tuples of semisimple conjugacy classes, which are the objects which
interest us in this thesis, the two maps give the same result as explained by the following
Lemma.

Lemma 7.4.6. For a k-tuple C such that Cp, 1s semisimple for each h = 1,... k, we have

l _ * .
MVc,ac - M’Yc,ac’ L€ } 1 1
(o)™ (ve) = (25.) " (e)-
Proof. For an element T € (q)flc)*l(yc) we show that xp, ; is injective for every h =1,... k
and j = 1,..., sy in the following way.

Firstly, consider the case where j = s, and let v € C@)nsn) guch that Zh,s,—1(v) = 0.

By eq.(7.3.2), we have

VA T g 1h,s,-1 (V) = (), 1V (7.4.1)
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and therefore v = (’YC)[_hlsh}U' Since (Y¢)(h,s,] = ’Y{ih’m,srl # 1, we deduce that v = 0.
Consider now j < sj, and let v € C(*)n.il such that xpj—1(v) = 0. By eq. 1} we have

Th,%h,; (V) = (V) n.g — Do (7.4.2)

and using eq.(7.2.3), we show in a similar way that

r—1

Thewy, w5 (0) = (0 m — 1) = ([T g = Vg oy -2 () (7.4.3)
5=

Notice that Hz;jl (V)] = 'th,l’y,:iil # 1 and, for each r, we have thus

Thjt1 Thyr1T), g " T, j+1(U)
Thjs1 * Thye®h, o T g (V) = -~ : 2 : (7.4.4)
' ’ (=, (g — 1)

We deduce that we have an equality

v h,j+1 h,spth,sy, h7]+1( ) (745)

I L (e)py — 1)

At the same time, eq.(7.4.3)), for r = s, — 1, gives the equality:

ThysyThysy " Thyjp1(V) = (Sﬁl(’)’c)[h,j’] = D)ap 1 @41 (V) (7.4.6)
5=
From eq., we deduce that we have
T Th 1 (V) = (V) hsn) @hs, -+ Ty (V) + T g, Thosy Th g, - Th 1 (0) = (TA4T)
Sh,
= [1Om@is, - @i (0)- (7.4.8)
5=

Notice that (v¢)n,j;) = Vh,j—ﬂh_ih # 1 and therefore z}, . -~} ;.4(v) = 0. From eq. 1)
we see that v = 0.

O

For a general k-tuple C (i.e of not necessarily semisimple conjugacy classes), we can have
that @, (v¢) # ®%.(7c). However, we can relate the character variety Mc (rather than the

ac

. . . . . l . .
character stack) to the multiplicative quiver variety M., ,., as explained by the following

Theorem, shown in [90].

Theorem 7.4.7. For any k-tuple C of conjugacy classes, we have an isomorphism

Me = M!

Ye,oc”
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Notice that the analogous of Theorem [7.4.7] does not hold in general for character stacks and

multiplicative quiver stacks, i.e in general
!
M’YC#"C % MC
as explained by the following Example.

Ezample 7.4.8. Consider as in Example [7.4.3) n = k = 2, g = 0 and the pair C = (C1,Cs),
with Co = Cy and C; is the regular unipotent conjugacy class of GLs, i.e the conjugacy class

of
11
0 1/
As remarked in Example [7.4.3] we have an isomorphism

Me = [N/ GLQ].

Notice in particular that the stack Mg is irreducible.

In this case, the associated quiver @ = (I,2) and the dimension vector a¢ are depicted below
1
2+—1

The associated element ~¢ is given by
(v)i=1 foreachiel.
As explained in [53, Example 2.3], in this case we have an isomorphism

Ml

Ye,ee

= Mﬂ,ac )

where we denote by 0 = (0);c7 € C! and Mo . is the associated quiver stack, see .
By Lemma [6.2.15] we have therefore that the number of irreducible components of maximal
dimension is the top degree coefficient of the polynomial

MQ,O,QC (t) = MQzaC (t)'

A direct computation shows that
MQ,OLC (t) = 5

and, in particular, the stack M is not irreducible and therefore not isomorphic to the

l
Ye,ac
character stack Me.
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8 Multiplicities for tensor product of representations of finite
general linear group

In this chapter, we study multiplicities (X} ® --- ® Xk, 1) for k-tuples X = (&3,..., X)) of
irreducible characters of GL,,(F,).

These multiplicities are well understood when the k-tuple is generic, thanks to Hausel, Letellier
and Rodriguez-Villegas’ works [45],[46] and their later generalization by Letellier [63]. These
results will be reviewed in section

Our main result is a formula for the multiplicity <R€1 (M) ®-® Rfk (7vk), 1) for any k-tuple
of Harisha-Chandra characters (Rf1 (7),---, ng (7)) (not necessarily generic). We will show
this formula in two different ways.

At first istance, we follow a more algebraic approach. In section §8.2] we show how to relate
the multiplicity <R€1 Mm)®---® Rfk (7k), 1) to the counting of representations of at most a
certain level of a certain star-shaped quiver Q = (1,2). This quiver-theoretic interpretation
gives a way to express <R€1 M- ng (7%), 1) in terms of the Kac polynomials ag g(t).

In section we show the same formula by following a more combinatorial approach. In par-
ticular, we apply the results of to the Log compatible family of class functions {r}} enr,
where 77, is the character of the GL, (IFy)-representation C[R(Q, o)*(Fy)].

For both approaches, we use in a key way Lemma [8.2.11] which relates Deligne-Lusztig induc-
tion to quiver representations. Such a result does not appear to have been previously reported
in the literature.

Lasty, in section §8.4] we show some concrete applications of our results. In particular, we
show through quiver representations the classical criterion for the irreducibility of an Harisha-
Chandra character RY(v) of GL,(F,) and we compute explicitly the multiplicity (X; ® -+ ®
X, 1) for any k-tuple of semisimple split characters of GLa(Fy).

8.1 Multiplicities in the generic case

Hausel, Letellier, Rodriguez-Villegas [46] Definition 2.2.5] gave the following definition of
genericity for k-tuples of irreducible characters of GLy,(Fy).

Definition 8.1.1. We say that the a k-tuple X = (X1,...,X%) is generic, where X; =
eLieGLnRi (7iRy,), if for any F-stable Levi subgroup M C GL, and g¢i1,...,gr € GLy(Fy)
such that Zy; C g;L;g; 1, the character I'y; of Z ﬂ defined as

k
T(z) = [ [vilgizg™)
i=1

for z € Zﬂ, is a generic linear character of Z ﬂ
By this, it is meant that FM\Zg is trivial and for any F-stable M C M’ C G the restriction
Iar|,r s non trivial.

M’
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Ezample 8.1.2. Consider a k-tuple of irreducible characters (ag odet, ..., o odet), with «o; €
Hom(F, C*). This k-tuple is generic if and only if the element «a; - - - oy has order n.

Consider now a k-tuple X = (&1, ..., &) of irreducible characters of GLy,(F,) and the element
wy = (Wxy,-..,wx,) € TE. Letellier [63, Theorem 6.10.1] showed the following result.

Theorem 8.1.3. Fiz g € N and let A be the character of the representation of GLy,(Fy) on
Clgl,,(Fq)?], where GLy(Fq) acts by conjugation. For any generic k-tuple X, we have

Hw’x,?g(O? \/a) = <A QX ®- & X, 1>- (8.1.1)

Assume that each A&j is semisimple split, i.e &; = Ri (vi) and let p' = (pi,...,put) be the
partition such that wy, = (1, (ui))... (1, (ki,)). We have therefore wy = p = (u',...,p")
and

Hyu,29(0,v/@) = (A ® RE, (1) © -+ @ R, (), 1) (8.1.2)

Formula ({8.1.2) was already proved in [46, Theorem 1.4.1].

8.1.1 Star-shaped quivers and Harisha-Chandra characters

Fix an integer g > 0 and let & be a k-tuple of Harisha-Chandra characters

X = (R (m),...,RE ()

with
Lj:Ganj’0 X e xGLnjg .

I

Let @ = (1,9) be the following star-shaped quiver:

oLl 1] olLs1]

o2 2] ol2,82]
G-

olkll  olk2l e olk:sk]

We will denote the vertex 0 also by [i,0] for i = 1,...,k. Let ax € N! be the dimension
vector defined as

Si
() =n— Z n; ; otherwise.
h=j
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Notice that ) and ay depend only on Ly, ..., Ly and not on the characters v1,..., V&.
If X is generic, notice that Formula (8.1.2)) can be rewritten as

HCXX(Q\/@ = <A®R€1(71> & ®R€k(7k>71> (8.1.3)

i.e, from Theorem [7.1.3] that we have

aQax(q) = (A® RY (M) ® -+ ® RE (), 1) (8.1.4)

8.2 Multiplicities for Harisha-Chandra characters and quiver representa-
tions

8.2.1 Levels for k-tuples of characters

Consider now, for each i = 1,...,k, a character v; = (75,0,--.,%,s) : Lf — C*. To the
k-tuple of characters X' = (Ri (v:))F_, we associate an element oy € Hom(]F(’;,(C*)I defined
as:

k
Yioif 7 =0
)1 = 1;[1 : (8.2.1)
Vi Vi, ]-1,1 otherwise
Recall that the subset H*

ox,0x

C (N)* is defined as follows

*
HUX,a

={5e(N)"|0<d<ax, o) =1}

For a subset V' C (N?)*, we give the following definition of a k-tuple (Rf1 (M), .- ,R%k (V&)
of level V.

Definition 8.2.1. The k-tuple (Rf1 (M), - .,Rfk (7)) is said to be of level V if H}

ox,0x T

Veay- For A € C!, we say that (Rg1 (m),--- ,ng (7)) is of level A if it is of level V.

Remark 8.2.2. Notice that any k-tuple X = (Rg1 (71)s -+ ng (vx)) is automatically of level
H*

ox,0x "

Ezample 8.2.3. Notice the k-tuple of split Levi characters (Ri(l))k | is of level (NY)*. In this

=

case indeed ox =1 and so H,, . = (NI<OCX)*—

We have the following Lemma for generic k-tuples of Harisha-Chandra characters.

Lemma 8.2.4. For a k-tuple of Harisha-Chandra characters X = (Rg1 (71),--. ,ng (), if
H = {a}, then X is generic as in Definition|8.1.1, On the other side, if the k-tuple X

ox,0x

is generic, there are no elements 0,e € Hy,, .. \ {ax} such that § + e = ax.
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Proof. Pick M C G an F-stable Levi subgroup and let my...,m;,dy,...,d, be the non-
negative integer associated to M such that

(M7 F) = (GLml)dl X X (GLmr)d

e

There is therefore an isomorphism

(ZM,F) = (Gm)dl X - X (Gm)dr-

There exist elements gi,...,gr € GF such that ¢;Z MY; 1 C L; if and only if there exist k
embeddings
)\z' : (Gm)dl X X (Gm)dr — (Li,F)

respecting the condition about weights we will explicitate in Equation (8.2.2)) below. For
j = 1,...,r, we denote by X : (Gm)a; — (Li, F) the restriction of A; to the subgroup
{1} x -+ x (Gm)g; x {1} x - -+ so that

A = f[Ag’.
j=1

The composition of )\g and the inclusion L; C G defines a morphism which we still denote by
A+ (Gp)a; — GLy, that must respect the following equality:

IN| = m; (8.2.2)

Fori=1,...,kand [ =0,...,s;, denote by p;; the projection p;; : L; = GLy,, and by )\gl
the morphism
/\g,l =Pl ° /\g : (Gm)dj — GLni,l .

Denote by 7" : ZI, — C* the morphism given by 7¥(2) = vi(gizgfl). Via the identifications
above, the character vJ* corresponds to the character

Vi oA (Gm>d1 (Fq) X X (Gm)dran) = del Koo X der — C*

given by
Yy
(w1, r) — [ [0 (Nee, ey () (8.2.3)
gl !
The equality
k
1=][+:zy —»cC
i=1

therefore holds if and only if for every j =1,...,r

J
[ Vit (Ng=, /e ()Xl =1 (8.2.4)
q

1,1
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Put Ng , /r,(7;) = y. The following equality holds:
q%i

J " -1y ;
[Tt = <H%-,o<y>> o)y ==ibel = o) (825)
il i

il

where ¢; is the element of N’ given by 6y = m; and

-1
Sig) =m5 — Y _ |Aisl.
s=1

Therefore, from Equation (8.2.5)), we deduce that if #

> v.ax = 10x} the k-tuple of characters
X = (Rg1 (7). ng (7)) is generic.

Conversely, assume that the k-tuple X is generic and assume the existence of 6 € H ..

such that 6 # ax and € := ay — d belongs to H;, , too. Consider the F-stable split Levi
subgroup M = GL;, x GL., € GL,, embedded block diagonally. Notice that in particular
ZM = Gm X Gm

For each i = 1,...,k, there exist embeddings A\},\? : G,,, — (L;, F) such that, with the
notations used before,

AL = 01 = O]
and

\)\12,1\ = €[4,1] — €[i,l41]
The associated embeddings A} x A? : (Zy, F) — (L;, F) correspond to elements g1, ..., g €
GF such that giZMg;1 C L; and for (z1,22) € Z}C] = [y x Iy we have

k
T (z) = [[ 7 (@1, 20) = 0% (1) (w2) = 1.
=1

Remark 8.2.5. For any 3 € (N!)*, there exists a generic k-tuple X of Harisha-Chandra char-
acters such that ay = f if ¢ is sufficiently big (see for example the discussion after [46]
Proposition 2.2.4| ).

8.2.2 Star-shaped quiver of type A and Harisha-Chandra characters

Consider the case in which k = 1, g = 0 i.e X = (R¥(7)) and the associated type A quiver
Q = (1,9). In this paragraph, we show how to express the character RY(v) in terms of the
representations of Q).
This relationship is going to be the main ingredient to prove Theorem [8.2.8 which is the main
result of this chapter.
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Consider ny, ...,n; € N such that
(L, F) = GLp, x -+ x GLy, .

Denote by I = {0,...,1} the set of vertices of @ and by o = ay the dimension vector
associated to R% (7). Notice that

with

Let 4o, ...,v € Hom(F,, C*) such that v = (70, ...,7), with the notations of §5.4.1] In this
case, denote by o, € Hom(]F:;, C*)! the associated element and put

Py = Poy-

Lastly, denote by 77, the character of GL, (F,) given by its action on the finite set R(Q, )*(IF,).
We have the following Lemma.

Lemma 8.2.6. For any go € GL,(F,), we have:

RE(v)(g0) = 2 (90, 91, - g1 p1(90, 91, 91) (8.2.6)
po = 2l TGL (Bl [ Ol ()

9j GGLQJ' (Fq)

Proof. Let P be the unique parabolic subgroup of GL,, containing the upper triangular ma-
trices and L. Recall that by Formula (5.1.1)) we have:

RY(7)(g0) = S A goh).
heGLy, (Fq)/P(Fq)
QO‘hP(Fq):hP(Fq)

The character r}, satisfies:

75(90, 91,5 -5 q1) = #{fz € Hom™ (Fg", Fg'™), ...,

fi € Hom™ (F&" F7) st gofigi ' = fi,.--. qi-1fig] ' = fz}-

We denote by X (go) the set defined as:

X(go) == {g1 € GLq, (Fy), ..., 91 € GLo, (Fy), fi € Hom™ (Fy' F' ™), ...,
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fi € Hom™ (Fg, Fp) st gofigy ' = f1,- -, gi1fig) ' = fl}
and for z = (fla"'?flvgla"wgl) € X(g) we put

P«,(Hf) = pV(govgla B 7gl)'

For a fixed g9 € GL,,(F,), we have thus the following equality :

l

Z TZ(QO)gla"'7gl)p’}/(90’glv"‘7gl) _ Z p»y(l‘)
| GLa, (Fg)| - - - | GLaq, (Fq)| | GLa, (Fg)| - - | GLa, (Fq)|

Jj=1

.Z’EX(g())
gj EGLQJ. (Fq)

There is a map ¢ : X(go) = (GLn(Fy)/P(F;))% defined as

w((glw"vglaflv"'afl)) = (Im(flfl) - Im(fl"'fl—l) C-- glm(fl) QFZ)

To see that ¢ is well defined we need to verify that the subspaces Im(f--- fi),Im(f1 -+ fi—1)
..., Im(f1) are all gp-stable.

Start with Im(f1). We have gofi = f1g1 and so go(Im(f1)) C Im(f;). For a general j > 1 we
see similarly

g_ofl"'fj:flglfQ"'fj: ...... :fl"'fjgj-

Let us show that the map v is surjective. Given a gg-stable flag
(ViCVie1 C--- CVI CF}) = hP(F,),

we can choose for each j = 1,...,l a basis B, of V; such that B; C B;_; as ordered sets.
The choices of the B;s define morphisms f; : Fg? < Fg?~' such that Im(fifa--- f;) C Fy is
go-stable for any j =1,...,L

For each j = 1,...,l, the automorphism gohm(flfQ“'fj) written in the basis ®B; define an
element g; € GL,,(F;) and the element x, € X(g) defined as xj, = (g1,..., 4, f1,..-, f1) is
such that

W(@) = (Vi CVi  C--- CV CFD),

i.e the morphism % is surjective.

l
There is an action of H GLq, (Fy) on X(g) defined as
j=1

. —1 —1 —1 -1 -1
(mlv'-‘7ml)'<gl7"‘7gl7f17"‘7fl) = (mlglml 7"')mlglml 7f1m1 7m1f2m2 )"'Jflml )

!
Notice that the latter action is free by Remark [7.1.1L The map 1) is H GLq, (F;) invariant
j=1
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!
and, for each h € GL,(F,)/P(F,), the fiber t»~1(h) is equal to the orbit H GLq,(q) | - 7p-
j=1

l
Therefore, as py((m1,...,my) - x) = py(x) for any (m1,...,my) € H GLy, (Fy), we have
7=1

p~(2) _ -
S Ol G~ oy 2y O

z€X (g0 heGLn (Fq)/P(Fq))9

We are thus left to show that p, ("1 (h)) = v(h~tgoh). On the one side, by evaluating p. at
the element z;, € 1 ~!(h) defined above, we see that:

py (71 (h)) = () (det(golw)) - - (o(det(go)))-

On the other side, the matrix h~!goh is a block upper triangular matrix:

9
0 g1
e R
0 0 *
0 0 0 0 -
0 0 0 0 0 g
9

where g; is goly, written in the basis B, the matrix ,
911

the basis B;_1 and so on. Thus, we have the following identity:

*
) is equal to goly;_, written in

l

y(h ' goh) = ] ;(det(g})) =
=0

= yi(det(golv;)) (v-1(det(golvi_, )y} (det(golvi))) (vi—2(det(golvi_,)) %5 (det(g — Oly;_,))))
-+ (70(det(g0))vy (det(golry))) =
= (v n(det(golv;))) - - (ro(det(go)))-

Remark 8.2.7. Notice that Lemma gives a way to express Harisha-Chandra induction (or
split Deligne-Lusztig induction) in terms of quiver representation. A similar formula seems to
not have been known before in the literature.

It would be interesting to find a way to relate quiver representations to Deligne-Lusztig char-
acters associated to non-split Levi subgroups too.
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8.2.3 Main result

The main result of this chapter is the following Theorem.

Theorem 8.2.8. Let V C (NI)* and let X = (RY (71),.. .,Rfk (vk)) be a k-tuple of Harisha-

1

Chandra characters of GLy(Fy) of level V.. The following equality holds:

k
<A ® ® Ri (i), 1> = MQ,a.,v(q) = Coeff,, | Exp Z H(0, v/q)y” . (8.2.7)

i=1 BeV

Notice that the last equality of eq.(8.2.7) is a consequence of Lemma and Theorem
Before giving the proof of Theorem [8.2.8] we make some examples of cases in which this result

was already known.

Remark 8.2.9. Consider a generic k-tuple X' = (Rgl(él), e ,R%k(ék)). By Lemma and

Lemma[6.2.12] we have MQ’QX,H;X’QX (t) = aQ,a (t) and therefore Formula |D implies the
following ldentity:

k
<A ® ® Ri(al)ﬂ 1> = AQ,ax (Q) (828)
=1

which had already been proved in [46, Theorem 3.4.1.].

Ezample 8.2.10. Consider the case where V = (N/)*. As remarked in Example [8.2.3] the
k-tuple (Rﬁ,(l))f:1 is of level (NT)*.

From Lemma we deduce that for a subset V C (N)* and any 3 € (N/)*, the represen-
tations R(Q, B,V) of level V are all contained in R(Q, 5)*.

In particular, for V' = (N7)* we have an identity R(Q, 3, (N))*) = R(Q, 8)*. Formula
implies thus the following identity:

Y Mypt)y’ =Exp | Y aqgs(t)y’ (8.2.9)
Be(NT)* Be(NT)*

where the polynomials Maﬁ(t) are such that, for any g, Maﬁ(q) is equal to the number of
isomorphism classes of representations of dimension S with injective maps along the legs over
F,.

By eq. we obtain the identity

(R ()@ -+ ® RY (1),1) = M}, . (q) (8.2.10)

The latter identity was already proved in [46, Proposition 3.2.5]. Roughly speaking, in this
k

case Identity (8.2.10) comes from the fact that HRi(l)(h), for each h € GL,(F,), is the
i=1
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number of k-tuple of flags of Fy; of type a.x fixed by h and Burnside’s formula (see [46, Lemma
2.1.1)).

Fix now a k-tuple X = (Rﬁ (m),---, ng (v%)) and, to ease the notations, denote by px the
character p,, asin i For any o € N’ we denote by 77, the complex character of GL, (Fy)
given by its action on the finite set R(Q, a)*(Fy).

Notice that Lemma implies the following Lemma:
Lemma 8.2.11. We have the following identity:

k
(roy @ pa,1) = <A®®Ri(%),l> (8.2.11)

i=1

Proof of Theorem 7.2.8. The proof of Theorem [6.2.17] can be slightly modified to show that
for V' C (NT)* such that Ven, = H

*
o0y We have

(ron ® P2, 1) = Mg.an v (9)- (8.2.12)
From eq.(8.2.11)) and eq.(8.2.12) we deduce directly Theorem 0

8.2.4 Non-vanishing of multiplicities
From Proposition [6.2.14] we deduce the following proposition.

Proposition 8.2.12. 1. For a k-tuple of Harisha-Chandra characters

X = (R€1 (’Yl)) ) ng (Vk))a

the multiplicity (A ® Rgl Mm)®- - ® ng (Vk), 1) is the evaluation at q of a polynomial
with non-negative coefficients.

2. Giwen Q,ax as above the multiplicity <A® R (1) ® - ®R§k (&), 1> is non-zero if
and only there exist

o fi,....0r €(2H(Q)NYV)
e my,...,m, €N
such that m1B1 + - +m, 0, = ay.
Notice that this implies that if ®T(Q) NV = @ the multiplicity is 0. Similarly, if axy € V
we have that the multiplicity is 0. Indeed, as V<a, = Hy, o, if Bi € V with §; < a and
m;B; < « too, we have m;B8; € V and ay = mip1+---+m.G, € V.

k
Remark 8.2.13. Identity (8.2.7) implies that the multiplicity <A ® Q) RE, (1), 1> does not
i=1
depend on the characters 71, ...,y but only on the Levi subgroups Ly, ..., L; and the subset
H*

ox,0x "
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As agp(t) # 0 if and only if § € ®7(Q), we deduce more precisely that the multiplicity
depends only on the intersection of H} and ®7(Q).

ox,0x

8.3 Multiplicities for Harisha-Chandra characters and Log compatibility

In this paragraph, we give a alternative proof of Theorem which uses the results of
Section §5.8.2] rather than the levels of representations of quivers.
We start by noticing that we have the following Lemma.

Lemma 8.3.1. For a € N and g € GL4(F,) such that g ~ w and w = (d1, A1) ... (dr, \p),
we have

. A(go) H H (qdj)</\;(a)7,\;(a)>7l(qdj _ 1) Zf ‘A]’ c (NI)* fO'r a”]
ro(9) = i=1a€eQ0 (8.3.1)

0 otherwise

In particular, the family of functions {r}},cnr is Log compatible.

The proof follows closely the arguments of Hua’s [5(0, Proof of Theorem 4.3| for the family
{ra}aent.- We give a sketch of the proof for completeness.

Proof. Notice that we have:

ra(9) = Mgo) [] {M € Hom™ (s(a),t(a), Fy) | gsa)Mgyay = M}, (8.3.2)
a€
Put

rio(9) = [ HM € Hom™ (s(a), t(a), F,) | gy M}y = M.
a€g

We use the notations of §3.6.1] Consider F-orbits 601,...,60, of cardinality di,...,d, respec-
tively and multipartitions Ay, ..., A, of size f1,..., B, respectively, such that g is conjugated
to

[T 7662
j=1

Hua’s arguments show that
T
reo(9) = [T 7ls, 0705 2,))-
j=1

Notice that if there exists j € {1,...,7} such that 3; ¢ (N/)*, we have Tzﬂj,o(‘](ejv)‘j)) =0
and therefore r (g) = 0.
Otherwise, we have

L s(a) yt(a)
[T HM € Hom™ (s(a), #(a), Fg) | J (05, Ag) sty M (05, X))ty = M = T (@)™ 47 (-1
a€Qo a€Qo
(8.3.3)
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We deduce therefore the equality of Lemma [8.3.1 O

By Theorem for any o € Hom([Fy, C*)!, we have an identity
(ri ® ps,1) = Coeff,, | Exp Z ﬁkg,geyL(q)yﬁ (8.3.4)
BEH

where Rj‘a,gen(t} are the polynomials associated to the Log compatible family {r} } ,enr. Notice
that R*3 gen(t) = 0 if 8 ¢ (NI)*. In particular, if o is such that H 5 = {B}, we have that

Rj gen(9) = (rf ® po 1).
From Remark and Theorem [7.1.3] we see that we have
Rp gen(t) = aq5(t) = Hg(0, V1) (8.3.5)
if B e (N)~.

Eq.(8.3.4) gives therefore another way to show Identity ({8.2.7).

8.4 Computations
8.4.1 Irreducibility for semisimple split characters

Consider the case of g = 0 and k = 2. Consider a split F-stable Levi subgroup L C GL,, and
v : LF — C*. Let X be the couple of Harisha Chandra characters X' = (R%(v), R (v™1)).
Notice that R¥ (y~!) is the dual of R¥(7y) and therefore we have

(RE(v) ® RE(v™1),1) = (RE (7). RE (7))
Using Theorem we give an alternative proof of the classical result that
(RE(7), RE (7)) = 1 (8.4.1)

if and only if 7; # ~; for all 4 # j. Notice that the Identity (8.4.1) holds if and only if the
character R¥(v) is irreducible.

Let L = GL,, x --- x GL,, and g = 0. The associated quiver @ is thus the following type A
quiver.

0[17” R o[u_l} 0[1’1] o0 0[2’1] — o[

The associated dimension vector ay is

ayx =(nn+n—1,...,n+---+n,n,n +--+n...,n—1+n;,n)

2,2] . ol2.]
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and the element oy is equal to

ox = (WY M=17 s - MY L0 - =2 Y )

As @ is a Dynkin quiver of type A, the subset ®*(Q) has an explicit description and each root
B € &1 (Q) is real, i.e ags(t) = 1 (see Proposition [6.1.8). For j = 0,...,l and h = 0,...,1
define the dimension vector (3;, as

0ifi=[1,a] with a > j or i = [2,b] with b > h
(Bj,n)i =

1 otherwise

The set ®7(Q) N (NI)* is given by {Bjn}jn=o,.. 1 Let us denote by M; the absolutely

indecomposable representation of dimension vector 3;, over F,. Notice that afg’h = Y 1
and so we see that a?j‘i =1 for every i = 0,...,l. The representation

l
_ ©®n;
M =P M,;]
=0

is thus of level at most H} and the dimension vector of M is equal to a. If v; = «, for

ox,x
J # h, we have B, Bnj € Hg, o, The representation
i—1 -1 —
N=| @ My |oMi oM oM™ @ Mo M,

m;'éo’j’h

is therefore of level at most H* and of dimension vector dim N = ay. We deduce that

ox,0x

Mqon sy o, (t) = 1 if and only if ~; # 7y, for every j # h.

8.4.2 Explicit computation for n =2

Let us look at the case where X" is a k-tuple of semisimple split characters of GLa(IF,) with
X = (R%(m),...,R% (7)) where T C GLg is the (split) maximal torus of diagonal matrices.
Each character ~; is thus of the form

We fix ¢ = 0 in the following. The associated quiver @ = (I,2) has thus a central vertex

0 and k other vertices [1,1],...,[k,1]. We will denote the vertex [i, 1] simply by ¢ for each
i=1,...,k.
The associated dimension vector « is given by ag = 2 and o; = 1 for each ¢ = 1,...,k. The

quiver ) and the dimension vector ay for k = 4 are depicted below.
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For the sake of simplicity, we assume that 5;1 = fB; and 2 # 1, for each i = 1,..., k. The

k
element oy associated to X = (R%(v;))k_, is thus given by (ox)o = Héi and (ox); = 0; %.

i=1
Notice that o%* = 1.
We will explicitly verify that the following equality holds:
k
<® RE (%), 1> = Coeffay (Exp | D agn(@y" | | = Mooy, (@) (842)
=1 WG’H;X’O‘X

Notice that if 7 < o and 1 € (N?)* then either (1)o = 1 or ()¢ = 2. For an element n € (N/)*
such that 9 = 1, we have ag,(t) = 1. An element n € (N)* such that 79 = 1 is identified by
the subset A, C {1,...,k} defined as A, ={1 <i <k st. n =1}

For such an 7, we have thus

ol = (ﬁa) II52=115"II o

jEA, JEA, he Ag

For n1,...m € (N[)* and mq,...,m, € N* such that min; + --- + m,n, = a we have that
either r =1, m =1 and n = q, either r =2, my = mgo =1 and n1 + 170 = a with 1 # 72 and
(m)o = (n2)o =1 . The right hand side of Equation (8.4.2) is thus equal to:

1 Ho 00 — L]
Coeffa | Exp | > aga(@)y” | | =aa(@ts D, aQa(@)aqa-n(2) = agay(a)+ =5
nEng,a nEH;X’aX
s.t no=1
(8.4.3)
Notice that the cardinality |H} , , —{a}|is even as the set H; , . —{a} admits the involution

without fixed points which sends 7 to ay — 7.

The left hand side of Equation (8.4.2) can be computed explicitly using the character table of
GL2(F,), which can be found for example on [28 Page 194].

We have indeed four types for the conjugacy classes of GLa(Fy).

A0
1. We say that g is of type wy (and we write g ~ wy) if g is of the form <0 /\) for A € Fy
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2. We say that g is of type we (and we write g ~ ws) if g is conjugated to a Jordan block

<E)\ /1\> for A € ;. The centralizer of such a g has cardinality q(q — 1)

3. We say that g is of type w3 (and we write g ~ ws) if g is conjugated to a diagonal matrix
A

with A # p € F. The centralizer of such a g has cardinality (¢ — 1)2
L
4. We say that g is of type wy (and we write g ~ wy) if g is conjugated to a matrix of the

0 -1
form with  # 29 € F*,. The centralizer of such a ¢ has cardinality
xx? x4 xf a

¢ -1

For a semisimple split character of the form R%(y) and g € GLa(F,), the value R%(7)(g)
depends on the type of g in the following way:

1. If g ~ wi, then RE(v)(9) = (¢ + 1)7v(N)
2. If g ~ ws, then RE(7)(9) = v(N)

3. If g ~ w3 and g is conjugated to (3 0), then RE(v)(g) = v(A, 1) + (1, A)
U

4. If g ~ wy, then RE(v)(g) = 0.

To compute the left hand side of Equation (8.4.2), we will split the sum over the types of the
conjugacy classes:

k 1 k
<§R§(7¢),1> ~ TCLED] > J[RE(w)g) = |GL2 5 > ZHRT )

g€GL2 (]Fq) =1 weTy gw i=1

We see that . o1
1 -1 )
S B () _(q+ )2(61 ) _(a+1)
| GLa(F,)]| GLQ ol o2, (a—1D%(@+1)  ala—1)
and ( 1) 1
RE(vi)(g) = —— = ~.
\GLz \2 T =4 T
In a similar way,
> RE(w)g) = S - > ﬁ(d(MlHd_l(/\ul)) =
|GL2 2l o 2(qg — 1)2 L ’
grws A\ peF? i=1

q
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As the homomorphism Fy x Fj — F which sends (\, ) to Au~! is surjective, we can rewrite
the sum above as:

e =D DD | LN DX

ecF? BC{1,...,k} 1€B 1€ B¢

2k—l

Hy ar — 10}
_(q—l) q—l 2 2 2 S (g-1)

nE(NT)* c€lfg

no=1
and so
+ DR 1 [ o —{ed] 28!
<®RT > (q(q—)l) ot 5 Y (8.4.4)
k—1 1) _ ok—1 o
_ ety qJ(rq(q_ 1)1) 27 | Moo 5 i (8.4.5)

Recall that the Identity (8.2.8)) gives an equality ag a, (¢) = <®f:1 R$ (i), 1> for a generic

k-tuple (R%(1:))% ;. The multiplicity <®f:1 R% (i), 1> can be computed in the same way
as Identity (8.4.4) above and gives the identity:

(q+ D"+ (g—1)—2"1q
q(g—1)

From Identity (8.4.3) and Identity (8.4.5)), we deduce Identity (8.4.2]).

aQ,a(q) = (8.4.6)
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9 Cohomology of non-generic character stacks for Riemann sur-
faces

In this chapter we study cohomology of character stacks for punctured Riemann surfaces Mg,
when the conjugacy classes of the k-tuple C are semisimple. If the k-tuple C is generic, the
cohomology admits an almost complete description due to the results of the articles [45],[72],
which we review in Section

Our main result is a formula for the E-series E(Mc,q) for any k-tuple C, not necessarily
generic, and a conjecture for the mixed Poincaré series H.(Me, q,t). The proof of this formula
is obtained using the results of Section

More precisely, in section we show that the family of class functions associated to the
multiplicative moment map for a star-shaped quiver over I, is dual Log compatible.

The proof of this result is obtained by reducing the statement to the case of the Kronecker
quiver through some convolution arguments and it is the main technical point of the chapter.
In section we show how to apply this result to express the E-series F(Me, ¢) in terms of
the E-series for generic character stacks and we propose our conjecture for the mixed Poincaré
series.

Finally, in section , we verify that this conjecture holds in the case of ¥ = P!, k = 4
and a certain family of non-generic k-tuples, by giving an explicit geometric description of the
corresponding character stacks.

9.1 Generic character stacks

Let C be a k-tuple of semisimple conjugacy classes of GL,,(C). Let @ = (I, Q) be the associated
quiver and v¢ € (C*)!, a¢ € (N)* the associated parameters, introduced in §7.4L With similar

notations to §5.8.1] we put

7_[*

Ye,ee

={0€ (N))* |74 =1and § < ac}.

In [45], it is given the following definition of a generic C.

Definition 9.1.1. The k-tuple C is generic if given a subspace W of C™ which is stabilized
by some X; € C;, for each ¢ = 1,..., k, such that

k
Hdet(XLlw) =1
i=1

then either W = {0} or W = C".

27mid

Ezample 9.1.2. Let k =1 and C = {e = }. In this case, the stack Mc is denoted by M,, 4.
The conjugacy class C is generic if and only if (n,d) = 1. E-series for generic character stacks

M,, 4 were computed in [44].
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Remark 9.1.3. For any 8 € (NI )*, there exists a generic k-tuple C’ with associated dimension
vector aer = f (see for example [45, Lemma 2.1.2]).

If C is generic, the geometry of the character stack M is particularly well behaved. In
particular, the variety X¢ is smooth and the action of PGL,, on X¢ is schematically free, see
[45] Theorem 2.15]. From Lemma we deduce that we have [X¢/PGL,(C)] = M¢ and
the variety M¢ is smooth.

In addition, from Lemma the canonical morphism M¢ — M is a Gy,-gerbe and we

have an equality
H.(Me,q,1)

HC(MC7Q7t) = 2 _1

(9.1.1)
In particular, the cohomology of M is determined from that of the smooth variety Me.

We have the following Lemma for generic k-tuples, whose analogous result for k-tuples of
Harisha-Chandra characters is Lemma,

= {ac} the k-tuple C is generic. On the other side, if C is generic,
\ {ac} such that § + € = ac.

Lemma 9.1.4. If H3, .

*
there are no §,e € H7, .

Proof. Suppose that for a k-tuple C there exists a proper subspace 0 C W C C" and X; €
Ci,...,Xj € Ck such that X;(W) C W for each i and

k
[ det(Xilw) = 1.
=1

Fori=1...,kand j=0,...,s;, put V,, , = Ker(X; —v; ;1) and W,, . = W NV, .. Notice

that, for each ¢, we have
5
W= @ W
Jj=0

and

Si

dim W.
det(X;|lw) = H’ylm T

Consider now the dimension vector 3 € (N)* defined as

5[@1] = Zdim(W%‘,]’)'
h=j

Notice that 8 < a¢. Moreover, we have

k 5 g Si 5 4 5 4
o 1 )B[i’j] B =2 po dim Wy, =2, dim Wy, o 350 dim W, B
% 0 %,j Yij-1 =11%0 Vi j Tij—1 -
j=1 i=1 j=1
(9.1.2)
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S;

k k

—dim W, . _

=111, =I]det(Xilw)™" =1. (9.1.3)
i=15=0 i=1

Conversely, suppose that there exists 8 € HZ, . \ {ac} such that € := ac — 3 belongs to

HZ. oe \ {ac} too. Notice that, since e € (N')*, for each j, h, we have

Bing) = Binj+1) < (ac)ing) — (@c)n,j+1) = Mhy)

where my, ; is the multiplicity of the eigenvalue 7, ; in the orbit C;.

Put m = Gy and let W = C™ C C" be the span of the first m vectors of the canonical basis.
Notice that m < n, since € € (N1)*.

For each i = 1,... k, there exists a diagonal matrix X; € C; such that its first m diagonal
entries are given by J|; ;) times the element 7; s,, then B[; 5,_1)— Bj; 5, times the element ; 5,1
and so on. Notice that W is X;-stable for each ¢ = 1,...,k and, moreover,

det(X;w) =75 = 1,

from which we deduce that C is not generic.

*
Ye,ee

instance the case where k = 3,n = 2 and C = (C1,Cq,C3) where each C; is the conjugacy class

Remark 9.1.5. Tt is not true that for a generic k-tuple C we have H = {ac}. Consider for

of the following matrix Xj:

-1 -1 —1
Xl = 0 01 aX2 = 0 01 7X3 = 0 04 .

The associated quiver ) and dimension vector ¢ are:

1] —2+—1

The associated parameter ¢ is given by

2
2 J1 L
4
Notice in particular that H>, ,. = {ac, 8}, where By = 2 and f; ;) = 0 for each i = 1,2,3.
By Lemma we deduce that C is generic, while H, . # {ac}.

Hausel, Letellier, Rodriguez-Villegas [45, Theorem 5.2.3] showed the following result:
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Theorem 9.1.6. For any generic k-tuple C of semisimple conjugacy classes, we have:

E(Mec,q) _ e <\/ZJ’ \2)

glac.ac) o g—1

(9.1.4)

Remark 9.1.7. The quantity (ac,ac) can be expressed in terms of the multiplicities of the
eigenvalues of Cy, ...,C}, as follows. Notice indeed that p., is the multipartition given by the
multiplicities of the eigenvalues of Cy,...,C; and we have

(ac,ac) =nP(29 — 2+ k) = > (1)}
,J

In [45, Theorem 2.15] it is also shown that we have

dim(Me¢) = 2(ag, ac) + 2. (9.1.5)

In the same paper, the authors [45, Conjecture 1.2.1| proposed the following conjectural iden-
tity for the mixed Poincaré series of the character stack Mg, when C is generic, naturally

deforming eq.(9.1.4)):

Conjecture 9.1.8. For any generic k-tuple C of semisimple conjugacy classes, we have

1

) Hae | t3/G, —
gy _ e (1 )
(q?)ocod) -1

(9.1.6)

The specialization at ¢ = 1 of Conjecture [9.1.8] i.e the Poincaré series of generic character
stacks, was verified by Mellit [72] by counting rational points over finite fields of the corre-
sponding moduli spaces of parabolic Higgs bundles .

9.2 Dual log compatibility for multiplicative moment map

In this chapter, we show how to relate the results about dual Log compatible families of §5.8.2)
to the study of multiplicative quiver stacks for star-shaped quivers.

Consider now the construction of ~< in the case in which K =F,. Fix 8 € N/ consider the
multiplicative moment map

P R(Q,B)>* — GLg

over Fy. We denote by mg : GLg(F,) — C the class function defined by

®%) " (g)(F
)= )
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Notice that, for o € (F}), we have:

# Mg 5(Fq)
<m5 * ].0—7 1€> = W

For the family of class functions {mq },enr we have the following Theorem:
Theorem 9.2.1. The family {mq},ent is dual Log compatible
The proof of Theorem is the most technical part of the chapter and is going to be given

through several steps.

We start by showing Proposition in the case where Q = (I,() is the star-shaped quiver
with two vertices I = {0,1} and one arrow a : 1 — 0 between them (i.e g = 0 and k = 1).
This is usually called the Kronecker quiver, see below.

04— 1

A dimension vector « is thus a couple @ = (ag, ;) € N2 and the function mq/(go, g1) for a
couple (go, g1) € GLq, (Fq) x GLq, (Fy) is given by

#{f € Hom™ (Fo1,F20), f* € Hom(F30,Fo1) | 1+ ff* =go, 1+ f*f =97 '}

qoaooal—ag—a%

ma(g()agl) =

Remark 9.2.2. Notice that given f € Hommj(IFg”,IFg“o) and f* € Hom(Fgo,Fgt) such that
1+ ff* € GLoy(Fg) then 1+ f*f € GLq, (Fy). It is enough to check indeed that 1+ f*f is
injective. Given z,y € Fgt such that (1+ f*f)(z) = (1 + f*f)(y) we have indeed

fo(+ 7)) =fo(l+ff)y)

and, given that fo (1 + f*f) = (1 + ff*) o f and 1 + ff* is invertible, we deduce that
f(z) = f(y) and so that x = y.

Lemma 9.2.3. In the case where Q is the Kronecker quiver, the family {maq},enr is Dual log
compatible.

Proof. Notice that m, = 0 if o ¢ (N!)*. Fix then a € (N/)* and denote by ay = ag — ;. Fix
an irreducible character x = xo X x1 € GL4(Fy)" with x; € GLq, (Fy)" for i = 0,1. We have:

1 * * —
o Falld feHom™ (g Fy )

f*€Hom(Fq" Fq!)
st 1+ ff*E€GLqg (Fq)
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Let J, € Homi”j(IE‘Z‘l,IE‘gO) be the block matrix given by the identity on the first a; rows and
0 everywhere else, i.e

1 0 0 O 0
10 0 O 0
001 0 O 0
Jo = ]
000 0O O 0 1

Let P, be the centralizer of J, inside GL,,, i.e

P, ={g € GL, | gJag_1 = Juo}.

Notice that if g = (go,g1) € Pa, then go preserves Im(J,) and g1 = golim(s,)- Denote by
7o ¢ GLo — GL4, the canonical projection. We deduce that g is an isomorphism from P, to
the image P = mo(F,).

Notice that P C GL,, is the parabolic subgroups given by the matrices which preserve the
image of J,.

We denote by L C P its Levi factor given by GL,, x GL,, embedded block diagonally.

The action of GL4(FFy) on Hommj(Fg‘l,Fg‘O) is transitive and we can therefore identity the

latter set with GLy(F,)/Pa(F,) via the map which sends (go, 91) Pa(Fy) — goJag; - We can
thus rewrite the sum above as :

1 - * * - —
alllg

(90,91) Pa(Fq)EGLa (Fq)/ Pa(Fq) f*eHom(F,(;O,Fgl)
s.t. 1+90Jag;1f*€GLao (Fq)
(9.2.1)
For each (go, g1)Pa(Fy) we can rewrite the last term of eq.(9.2.1)) as
) Xo(90(1 + Jagy ' f*g0)95 )x1(91 (1 + g7 ' frg0a) Tgrh). (9:2.2)

f*€Hom(Fg°,Fg1)
s.t. 1+Jagy ' f*90€GLag (Fq)

Notice that for any (go, g1) € GLa(Fy), we have a bijection

{f* € Hom(F°,Fg") s.t. 1+Jagl_1f*go € GLa, (Fg)} <> {f* € Hom(F,°, Fg") s.t. 1+Jaf" € GLa,(Fg)}
g1fgyt — I

As xo, x1 are class functions, from eq., we can rewrite the sum in eq. as

1 * * —
| Pa(Fy) |g) > Xo(L+ Jof (L4 f*Ja) ™). (9.2.3)
T/l f*€Hom(Fg° Fg1)

s.t. 14+Ja f*€GLag (q)
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Writing f* as a block matrix (A|B) with A € Mat(oy,F,), we have

1+ Jof* = <1J6A Jf)

and 1+ f*J, =1+ A. Let ag = ap — ;. We can rewrite the sum of eq.(9.2.3) as

MeGL,,
BeMat(az,01,Fq)

By eq.(3.1.1)), the latter sum can be rewritten as

= xa(1)
ey 2 > xo(h) Infl7 (x} B xa) (h) g1 = (9.2.5)
|P(Fy)lg(e )XzeGLaQ( Fq)V heP(Fq) | GLq, (F,)]
1 Ya(l
= w2 (Respr,(x0), Il O @XQ»‘GLQ((I)FN = (9.2.6)
q X2€GLas, (Fg)V az\*q
1 G x2(1)
) X x2)) = 9.2.7
q(a,oc) Z <X07 RL (Xl X2)> ’ GLaZ (Fq)| ( )

X2€GLay, (Fq)V

We start by the case where the type of x = xo X x1 is (1,A), where A = (A%, A\!) with
N0 e Pao> A € P,,. We have then

Xo = (yodet)Ryo

and
x1 = (yodet)Ry1,

with v € Hom(F}, C*).
GLO(Q

(02Rg,) for a certain ¢g € (Wr,)¥. From Lemma [5.1.4we have an

Let x2 = €GLa, ELQR

equality
RE (x1 ¥ x2) = REL, x1,(((7 0 det) x 62)(Ry, K Ry)).

Let L' be the connected centralizer of
(yodet) x 0 : GLg, (Fy) x LY — C*.

By Remark , the character Rf(xl Xx2) belongs to the vector space spanned by irreducible
characters with semisimple part (L', (y o det) X 65).

The multiplicity ((yodet)Ry,, RY((yodet)Ry, X x2)) is therefore equal to 0 if L' is different
from GLq, (Fy)-

To compute the right hand side of eq.(9.2.6) we can thus restrict to the case when x9 is given
by (7 o det)Ry2 for A2 € P,,. From Remark the right hand side of eq. is thus
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equal to:
1 G (=1)72

] > ((vodet)Ryo, (vodet)RY (Ry B Ry2)) ——5 ey (9.2.8)

T x2ep,, g 2 " Hy(q)
From eq.(5.2.9)) , the sum in eq.(9.2.8) is equal to

1 S, (—1)*2 1 30 (—1)*2
(0, Indg™ o (X EXa2)) —msm = CXL A2 "ag(ags
q(a,a) )\2%;&2 1 XSaq q 2( 22 1)_n()\2)H)\2 (q) q(a,a) )\2;&2 q 2( 22 1) _noQ)H)\z (q)
(9.2.9)

For any couple of partitions (A, u) denote by C) ,(t) € Q(g) the function defined as

0 if [A] < |pf
Crplt) = 1 Z A (_1)\/\|f|u| |
HM I =X =u]? pv w—n(u)]{y(t)

VEP| x|~ |ul

The reasoning above shows that for any x € GLo(F,)" of type (1, ), there is an equality

(Ma, X) = Croxi(q)-

Let now § € N/ and consider y = xo X x1 € GL;§(F,)" of type w € Ts, where
w = (dla )‘1) e (dm Ar),

where for j =1,...,r we have A\; = ()\9, )\}) € 772 and we denote by ; = |A;|. Consider the

Levi subgroups LU = H(GL(ﬁj)O)dj and L1 = H(GL(ﬁj)l)dj'

Jj=1 j=1
There exist reduced characters 6° : LF — C* and 6* : LF — C* such that 0° : LF — C* and
oL : LF — C* are reduced and

Xo = RE (0°Ry B --- K Ryo)

and
GL51

xi =R " (0'Ry K- K Ry)

and 6°, 6! are associated to the same r-tuple (61,...,60,) € Hom(IFZd1 ,C*)x-- -xHom(IE‘;dT ,C%),
via the correspondence of . We denote by Ag,A; € P" the multipartitions Ag =
(00, A0, Ay = (AL ),

To verify the Dual log compatibility of the family {maq},enr, it is enough to check that it
holds:

(ms, x) HOAW IVHY 5, (@) (9.2.10)
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Notice that, if 6 ¢ (N/)*, there must exist Bj such that g; & (NT)*. Eq.(9.2.10) therefore holds
as both sides are equal to 0.

Assume then that 6 € (N/)*. From eq.(9.2.6), there is an equality

1
5 D <X07R1\G4(X1®X2)>(}><E(> (9.2.11)
" X2€GLY, | GLs,(q)]

(ms, x) =

where M = GLg, x GLs, € G. Let x2 = eGL526L2R€2(92R¢2), with Ly C GLg, a Levi
subgroup and 62 : LY — C* a reduced character. From Lemma |5.1.4] there is an equality

R (x1 B x2) = R, (0" x 6%)(Rg; K Rgy)).

Let L' be the connected centralizer of ! x #? : L; x Ly — C*. As remarked above, the
multiplicity (xo, R§;(x1 X x2)) = 0 if the semisimple part (L',0' x 62) is not GLq,(F,)-
conjugated to (Lo, #°). From Remark we deduce that, for (L', x 6?) to be GLq, (Fy)-
conjugated to (LY, 6°), we must have |)\§-)] > |)\j1<|7 ie Bj € (N)* foreach j=1,...,7.

If there exists j € {1,...,7} such that 8; & (N1)*, eq.(9.2.10) is thus verified as both sides are
equal to 0.

If B1,..., B € (ND)*, from Remark we deduce that there exist a unique couple (Lg, 6?),
up to GLg, (F,)-conjugacy, such that (L', x 62) is GF-conjugated to (L°,6°). In particular,

we can take Ly to be
I8

Ly = H(GL(ﬁj)z)dj

J=1

and 62 : Lg — C* the reduced character associated to the r-tuple (01,...,6,). We have
therefore

B (RY (0°Rx;), R 1,((0" x 6*) Ry~ ) Ry-)) (—1)B)2+(Br)z
max) = _ 2 q®9) 2025 dn(X2) T d;
Xa=(A2,.. \2)E q 2 i= 7 = Hoz(a™)
Pipryo > *Psr)g
(9.2.12)

By Lemma [5.1.4] and Lemma [5.5.1] we have

! (GL(g.y)d.
G (p0 G 1 2 _
(RLO (9 Rr0)7 RL1 X Lo ((9 Xe )RTIIERTZ)> - H<R)\JO’ R(GL<52)(1))‘1; X(GL(Bj)Q)d]' (R)\}IER)\?)>(GL(BJ.>O)(1]. (]Fq)'

J=1

By Proposition and for each j =1,...,r, we deduce that we have an equality
(GLs;)0)4; S50 A
(GL(B;)l)djx(GL(ﬁj)Q)dj (R/\Jl. &R@»(GLW)O)% (Fq) = (XA(JHInds( ’ XS(BJ')Q(X,\JI. &X/g»s(ﬁj)o = C/\jl,/\f'

<R/\?7R Bj)1
(9.2.13)
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From eq.(9.2.13]), we deduce that we have

1 - A0 (_1)(5j)2
(ms,X) = ——5—1 H Z C\1 2 . (9.2.14)
(8,6)+22002=1) - AAT = dnOD B, (g
q 2 7=1 Aiep(ﬁjh q J )\3 (q J)
From eq.(9.2.14) above, we deduce that we have:
2,2 2
r (I = 02— g P2
mooxo i d? 0 2 : (9.2.15)
[[j=1 Cron (¢%) q(5,5)+w o
777

From the fact that 6 = 63+9%? —2506; and, for each j = 1,..., 7, |)\?|2 = |)\9|2+|>\]1]2—2|)\?||>\31|
and Identity (5.8.12), we have the following equality

2212 = |2 A012 k)2
CIAOIAL[—[A0| 2L 24 il AT v T
H;jzlng(\AJIIAJ\ A2 =M 1P 4+ ———) S di(——4 1) HY(q)

60 ED I B N0

From the Identity right above and eq.(9.2.15)), we deduce therefore equality (9.2.10)).

We now show how Lemma [9.2.3| implies Theorem

Proof of Theorem 8.2.1. We proceed by induction on the cardinality of I.

Let [I| = 1. The quiver @ has thus 1 vertex and g loops. The argument of Example
shows that in this case, for each n € N, we have an equality m,, = f5, where f : GL,(F,) — C
is the function defined as

fg(h) _ #{(xlaylv s 7xgvyg> € GLn(Fq)Qg ’ Hle[xz,yz] = h}
" 72 (o1)

introduced in Remark [5.8.9} It was thereby shown that {fJ},en is a dual Log compatible
family.

Assume now to have shown Proposition for all star-shaped quivers with m vertices and
k legs and fix a star-shaped quiver @ = (I,2) with |[I| = m + 1. We can assume that s > 1.
Let Q = (I,Q) be the subquiver of Q, with set of vertices I = I — {[k, 5]} and as set of arrows
the arrows of Q between elements of 1.

For a dimension vector o € N/, we denote by @& the element of N/ obtained by the natural
projection N/ — N’ and we denote by 7, the natural projection 7, : GLo(Fy) — GLg(Fy).
For a € N/, let mg be the function associated to the star-shaped quiver Q = (1:, Q) and & and
denote by g : GLo(Fy) — C the class function defined by
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mea(mo(h)) .
7((12 ( )) if h[kvsk] = 1,
ga(h) = q skl

0 otherwise

Notice that the function g, can be equally rewritten as:

mea(ma(h X(1
9a(h) = % > X Wﬁk})GL()(F)\ (92:16)
q [k,sg] XGGLa[k,sk](]Fq)v Alk,spl N 4

Using identity (9.2.16]) and the dual Log compatibility of the functions {mg}, it is not difficult
to verify that the family of functions {ga}ens is dual Log compatible. Indeed, for each
X € GL4(F,), write x = X ¥ xx, with Yy € GL4(F,)" and xx € GLY _ (F,). We have

a[k,sk]
1
(Gas X) = [GLo(Fy)| Z ga(h)x(h) = (9.2.17)
U heGLa (Fy)
1 Oy 4] X (1)
o~ q "k
T ma(M)X(h) | | mer = X (hie) 7~ X (P
| GL&(FQ)‘ 1 Z | GLOé[k,sk] (Fq)’ Z v | GLa[k,s ](Fq)|
€GL4 (Fq) ¢ XeGLa[k,sk](Fq) k
hkeGLa[hSk]
(9.2.18)
= (mg, ) T HY (). (9.2.19)

and therefore, if we put w, = w, wy = @ and w,, = wy, we have
2
(g X)Hyy (q) = (ma, X)Hy (q)q" "4 (Hyy, (q))*. (9.2.20)

Since the family {md}aeNf is dual Log compatible, from eq.(9.2.20)), we deduce that Identity
(19.2.16f) is equivalent to show that, for any n € T, any v € T,, and any dy,...,d, and types

Vi,...,Vp such that w = g, (v1) * - -+ * g, (vr), we have
(H"(t))? [T}, talil (0221)
[T, (Y (#4))2 o .

which is a direct consequence of eq.(5.6.2)).

Let now I = I —{[k, sp—1], [k, sg]} and, for o € NI, denote by @ the element of N? obtained by
the natural projection N/ — N’ and by 7, : GLo(F;) — GLz(F,) the associated projection.
For a couple (8,7) € N2, denote by m{g’,y) the class function associated to the Kronecker

quiver and the dimension vector (3, ) for it, which was studied in Lemma [9.2.3|
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Consider then the function k, : GL(IFy) — C defined as

Kr
O‘[k,sk—l]vo‘[k,sk](h[kvsk_l]’ h[k»Sk]) it 7 (h) = 1
ko(h) = q Tierod “ B
0 otherwise
Notice that the function k., can be equally rewritten as
Kr
— X(1> ma[k,skfl]va[k,sk] (h[kvsk_”’ h[kvsk]>
« = « . 9.2.22
kb= S Mm W) igty, p= et (9222

XEGL (Fq)

By identity (9.2.22) and Lemma [9.2.3it can be verified that the family of functions {kq }oent
is dual Log compatible in a similar way to what has been done for {g, },cns- By Lemma

the family of class functions
{ Ja * kq }
. 2
quGI a; aENI

By direct calculation, we verify lastly that, for every o € N/, we have the equality

is dual Log compatible too.

Yo *ka

My = = —>5-
qz'LEI @

Lemma implies therefore the family {mg},cns is dual Log compatible.

9.3 Main result about non-generic character stacks

Consider a star-shaped @ = (1,Q). For any o € (C*)! and any 8 € (N!), we will construct a
spreading out of the stack M7 5 in the following way.

Let By = Z[xi,l';l]iej be the ring in |I| invertible variables. For any § € N!, denote by
2% € Ey the element z° := Hmfl
el
Let Ny 3 = (NISB)* \ H, . Consider the multiplicative set S C Ej generated by the elements
20 —1ford € Ny 5. Denote by J C S71Ey the ideal generated by (2° — 1) for 6 € Hsp and
let E be the quotient
E:=S"1E/J.

Notice that, given a field K, a map ¢ : ¥ — K corresponds to an element v, € (K*)! such
that H’Y#Paﬁ = Hgvﬁ'

Let Ap be the polynomial E-algebra in 2 Z s(a)t(a) variables corresponding to the entries

ac)
of matrices (24, Ze*)acq. Let W C Ay be the multiplicative system generated by det(1 +

TaZar), det(1 + zq=2,) for a € Q and let A) = WL Ay.
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Consider the ideal Z C Aj, generated by the entries of

O+ zazas) A+ 2grma) ' = [[(wila,)

a€cfl el

and let
A= AB/I.

Let Y = Spec(A) and let Y* C Y be the open subset given by y € Y such that for any
algebraically closed field K and any morphism Spec(K) — Y with image y, the corresponding
element (74, 7e)acq € R(Q, o, K) has injective maps (24)qcq-

Let now v : E — C be the map induced by the element o € (C*)!. Notice that
Y* ><Spec(E),w Spec((C) = ((I)Z’>_l(0—)

and therefore Y* is a spreading out of ((I)Z))_I(O'). Similarly, for any ¢ : £ — [, corresponding
to an element v, € (F;)" with 7, g = Ho,g, we have

(25)7(0))? = (25) (%)-

Let GLq g be the E-group scheme [[;.; GLq, g. The stack Y* = [Y*/GLq g] is therefore a
spreading out of M7 ;.

By Remark and the results of Theorem [5.8.4] and Theorem we deduce that the
stack M 5 is rational count and that we have:

E(M; 5,9) .
q(ﬁigj = Coeff | Exp | > Magen(0)y” (9.3.1)
0€H s

where ]\75796”(75) are the rational functions associated to the dual Log compatible family
{ms}scnr, as in . Notice that M; gen(t) =0 if 6 ¢ (NI)*.

In particular, if o is such that H; 5 = {B}, we have that E(/\/l;ﬁ, q) = q_(B’B)M@gen(q). From
Remark [9.1.3] we see that for any 6 € (N/)* it holds

s (Vi )

M&gen(q) = q— 1

We can resume all the arguments above in the following Theorem:

Theorem 9.3.1. For any € (N')* and any o € (C*)!, there is an equality:

1
E(M? 4,q) qHs (\/6, )
o4 Va) s
B Coeffs | Exp g p— Yy (9.3.2)
SEM? 4



175

9.3.1 E-series for character stacks with semisimple monodromies

From Theorem [9.3.1] we deduce the following Theorem about E-series for character stacks
agsociated to k-tuples of semisimple orbits.

Theorem 9.3.2. For any k-tuple C of semisimple orbits of GL,(C), we have:

ity (Vi )
qg—1

E(Me, q)
T laran) = Coeffac EXp Z
glacsac) set

(9.3.3)

Remark 9.3.3. Notice that Theorem implies that the E-series E(M¢, q) does not depend

*

on the values on the eigenvalues {v; 5} j=1,.., but only on the subset Hip o0

h=0,...,s;

From Theorem [9.3.2] it seems natural to formulate the following generalization of Conjecture

9.1.8]
Conjecture 9.3.4. For any k-tuple of semisimple orbits C, we have:

(@85 (¢ )
qt? — 1

HC(MC7 q, t)
(th)(OéCvOéC)

= Coeft,, | Exp (9.3.4)

BEH o o

9.4 Mixed Poincaré series of character stacks for P} with four punctures

In this section we will verify Conjecture for a certain family of non-generic character
stacks.

Let L =Pt (e g=0),k=4and n=2. Let D = {x1,...,24} CPL. For j =1,...,4, pick
Aj € C* with A\; # %1 and denote by C; the conjugacy class of the diagonal matrix

—1)-
0 A

Let C be the k-tuple (Cy,...,Cyq). The variety X¢ is therefore
Xe={(X1,...,X4) €Cr x -+ xCy | X1X2X3Xy = 1}.

Denote by M¢ the GIT quotient M¢ := X¢// GLa(C). Recall that the points of M¢ are in
bijection with the isomorphism classes of semisimple representations of 7(X \ D) inside X¢.

The study of the geometry of the character varieties M¢ goes back to Fricke and Klein [33],
who gave a description of them in terms of cubic surfaces. Denote by a; = A; + )\Z-_l.

The character variety M is isomorphic to the cubic surface defined by the equation in 3
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variables z, vy, 2

xyz—l—xz—f—yZ—}—zz—(a1a2+a3a4)x—(a2a3+a1a4)y—(a1a3+a2a4)z+a1a2a3a4+a%+a%+a§+ai—4 =0.
(9.4.1)

If C is generic, this description identifies M¢ with a smooth (affine) Del Pezzo cubic surface

(see [32, Theorem 6.1.4]), i.e a smooth cubic projective surface with a triangle cut out of it.

The cohomology of this kind of surfaces is well known. In particular, if C is generic, it holds:

H,(Me,q,t) = ¢°t* + 4qt*> + 12
and therefore we have

Gt 4 Agt? + 12

H, t) =
C(MC7Q7 ) qt2—1

The Identity above agrees with Hausel, Letellier, Rodriguez-Villegas Conjecture [9.1.8 as ex-
plained in [45, Paragraph 1.5].

Pick now Aq,..., Ay € C*\ {1, —1} with the following property. For €1,...,e4 € {1, —1} such
that AT'--- A" = 1, then either ¢ =--- = ¢4 =1 or ¢ =--- = ¢4 = —1. Notice that in this

case, the associated k-tuple C is not generic.

In the following section, we will compute the mixed Poincaré series H.(Mg¢,q,t) and verify
that it respects Conjecture [9.3.4]

For the character stack M¢, the associated quiver @ = (I,€) is the star-shaped quiver with
one central vertex and four arrows pointing inwards. We denote the central vertex by 0 and
the other vertices by [i,1] for i = 1,...,4.

The dimension vector ac is the dimension vector for ) defined as (ac)o = 2 and (ac)j,y = 1
fori=1,...,4. The quiver @ with the dimension vector « is depicted below.

The associated parameter ~¢ is given by

(re)o = (MA2dsAa)h =1
and, fori =1,...,4
(70)[i,1] = )\22-
Denote by 31,82 € (N)* the elements defined as (B1)o = L(B1)ga = 1 and (B2)1 =
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1,(B2)i,1) =0 for i =1,...,4. Notice that it holds #? = {a, b1, P2}. There are equalities

Ye,oe

o (v ) (v )

Conjecture predicts then the following equality

oo (10, 55) 01, (13 ) B (113 )

H, t) = = 9.4.2
C(MC7 q, ) qt2 1 + (qt2 — 1)2 ( )
¢*th + Aqt® + 2 gt P10 + 4t + gt — 4qt* — 2
qt* — 1 (qt? —1)? (qt? — 1)

Denote by Mp the quotient stack M = [X¢/PGLg]. Notice that M¢ is a G,,-gerbe over
M, and from Lemma we have

H.(Mg,q,t)

H t) =
C(MCaQ7 ) qt2—1

(9.4.4)

We can thus reduce ourselves to compute the cohomology of the stack M.

Inside X¢ there is the open (dense) subset which we denote by X5 C X, given by quadruple
(X1, X2, X3,Xy) € C; x -+ x Cq corresponding to irreducible representations of 71 (X \ D).
Recall that X3 is smooth (see for example [31], Proposition 5.2.8]).

Denote by NV the quotient stack [ X5/ PGLs]. Notice that the action of PGLg is schematically
free on X3 and therefore by Lemma the stack N is an algebraic variety.

The non irreducible representations of X¢ all have the same semisimplification, up to isomor-
phism, which corresponds to the point m € Mg, associated to the isomorphism class of the

A1 0 A9 0 A3 0 A\ 0
m:<<0 Afl>’<0 A51>’<0 /\§1>’<0 A;1>>‘ (9.4.5)

We denote by O C X¢ the GLa(C)-orbit associated to m. A representation z € X which is
neither irreducible nor semisimple, i.e neither inside X3 nor inside O, can be of the following

representation

two types. Either x is isomorphic to a quadruple of the form

)\1 0 )\2 a )\3 b )\4 C
o= 9.4.6
= (3 ) (5 am) (5 0) (6 o) oo

with (a,b,c) € C3 —{(0,0,0)} and

A1 Ao A3c + A1 Aapgb + Ao dzc =0 (9.4.7)
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or of the form

—— A0 Ao O A3 O AN O
a,b,c T 0 )\1—1 ’ a Ag_l ’ b Agl ) c )\4_:1
with (a,b,¢) € C3 — {(0,0,0)} and
MAT Aza + AT b+ AT T e = 0. (9.4.8)
We denote by Zg C Xc and by Z, C Xc the locally closed subsets of representations
isomorphic to elements of the form m or m,

(a.bc) (ae) Tor some (a,b,c) € C° —{(0,0,0)}
respecting the conditions of eq.(9.4.7), eq.(9.4.8) respectively.

9.4.1 Cohomology of the character variety in the non-generic case

As recalled before, the variety M¢ is a cubic surface defined by the equation of formula .
Denote by M¢ C IP’% the associated projective cubic surface. Notice that M is obtained by
adding to M the triangle at infinity xyz = 0, which we will denote by U C M.

Unlike the case where C is generic, for our choice of quadruples the surface M¢ is singular,
with m being is its only singular point. We have moreover an isomorphism

NG = Mg — {m}.

It is a well known result (see for example [60]) that for such a singular cubic surface M¢, there
exists a resolution of singularities
f : MC — MC

such that f~!(m) = PL and f is an isomorphism over M¢ — {m}, i.e
fH(Me — {m}) = Mc — {m}.

Moreover, it is known that ]\A/[E is the blow-up of IP’% at 6 points. There is thus an equality
Ho(Me,q,t) = ¢*t* + 7qt* + 1.

Using the long exact sequence in compactly supported cohomology for the open-closed decom-
position M¢ = f~1(M¢ — {m})| ] f~(m), we find that

H.(M¢ —{m},q,t) = H.(f*(Mc — {m}),q,t) = ¢*t* + 6qt*

and so that H.(Mc,q,t) = ¢*t* + 6qt> + 1.

It is not difficult to check that the compactly supported Poincaré polynomial of U is H.(U, ¢, t) =
3qt> +t + 1. Applying the long exact sequence in compactly-supported cohomology for the
open-closed decomposition M¢ = Mc| |U we find finally that

H.(Mc,q,t) = ¢*t* + 3qt> + t2. (9.4.9)
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From eq.(9.4.9)), using the long exact sequence for the open-closed decomposition M¢ = (Mg —
{m})| [{m} we deduce that it holds

Ho(NE, q,t) = Ho(Mc — {m}, q,t) = ¢*t" + 3¢t* + t* + ¢. (9.4.10)

9.4.2 Cohomology of the character stack in the non-generic case

We introduce the following notations. Let Yo = X¢ — O and N¢ = [Y¢/ PGLs]. Notice that
the action of PGLy on Y is set-theoretically free so that N is at least an algebraic space.
Let V' =Ye \ Z; and Y; = Y¢ \ Z7 and denote their quotients by N = [Y;7/PGLy)] and
Nz = [Y; /PGLs] respectively.

Notice that there is an isomorphism [0/ PGLg] = BG,, and an open-closed decomposition
M¢ = Ne| ][O/ PGLy].

Applying the long-exact sequence for compactly supported cohomology to the decomposition
above and knowing that H*(BG,,) is concentrated in strictly negative even degrees, we obtain

H (Mg, q,t) = He(Ne, q,t) + Heo(BGy, q,t) = He(Ne, g, t) + (9.4.11)

gt — 1

We have then reduced ourselves to compute the cohomology of Ne. We will apply Lemma [3.3.4
in the following way in the case where X = X¢, G = PGLo and H C PGL> is the maximal
torus of diagonal matrices. In the following, we identify H = G,,, via the map G, — PGLo,
0

which sends z € C* to the class of (g )

Recall that there is an isomorphism C; = G/H. Via this latter isomorphism, the projection
on the first factor induces a G-equivariant morphism

p:Xe— G/H =
(X15X27X3)X4) — X1~
Notice that

Ao
(XC)H_{X2€C27X36637X4€C4’X2X3X4_( 6 /\)}
1

Denote by (Me)y == (X¢)g//H. Lemma implies that there is an isomorphism

We employ similar notations for (N¢)ar, (NG )i, (NG )i, (NE) . Reapplying Lemma we
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see that there is an isomorphism (NJ)g = N{. In particular,

H(NE)m,q,t) = ¢°t* + 3qt” + 7 + . (9.4.12)

Consider now the character 61 : H = G,,, — G, given by 61 (z) = z. The character 6 induces
a linearization of the H-action on the affine variety (X¢)g (see for example [54 Section 2]).
Using Mumford’s criterion (see [54, Proposition 2.5]), we check that the semistable points
(X(;)i‘;’e+ are given by
0+
(X" = 0.

We have indeed four type of points inside (X¢)pg:

e Notice that O N (X¢)y is the singleton {m}, corresponding to the quadruple (9.4.5).
The point m, being a G, fixed point, is unstable. Indeed, considering the 1-parameter
subgroup A : G, — G, given by A(z) = z~1, we have (7, \) = —1 < 0 while it exists
lim A(t) - m = m.

t—0

e The points of (XZ)p are stable. Each x € (X¢)g corresponds to an irreducible repre-
sentation. For a 1-parameter subgroup A : G,, — G,,, the limit %in% A(t) - x exists if and
—

only if \ is trivial, i.e (87, \) = 0.

e The points of (Z7 )y are semistable. Notice that (Z1)y is given by points of the form

m(J;,b,c) as in eq. QD for (a,b,c) € C*> — {(0,0,0)} which respects eq. 1’

For A : G, — Gy, given by A(t) = t" for n € Z and t € C*, we have
)\(t) . mz;quc) = m(t7La7tnb7tnc).

In particular, we see that the limit %ir% A(t) - mz; ey €XIsts (and it is given by m) if and
% "

only if n > 0, i.e if and only if (61, \) > 0.

e By a similar reasoning to the case of (Z1)y, the points of (Z; )y are unstable.

The algebraic space (N )y = [(Y;")/H] is therefore an algebraic variety and the canonical

map

ST N e — (Me)r

is proper. Notice moreover that (f*)™'(m) = (Z1)u/H. As recalled above, (Z3)y is isomor-
phic to C? — {(0,0)}. Via this identification G,, acts on C? — {(0,0)} by scalar multiplication
on both coordinates. We have therefore:

(Z8)u/H = (C* = {(0,0)}) /G = Pt
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Consider now the Leray spectral sequence for compactly supported cohomology
B HE((Me)m, Rf,SQ) = HIY((N)m, Q).

Notice that RIf;FQ # 0 if and only if ¢ = 0,2. More precisely, we have ffQ = Q and
R%2f+Q = (i;n)«Q, where i,, is the closed embedding

im : {m} — (MC)H
Recall that the differential maps of the spectral sequence go in the direction
q . ) 4 1
db? : EP9 — pPTTaTHL

As R1fFQ is 0 for odd g, the differential d5? is the zero map for each p,q and therefore we
have EY = ED? for each p,q. Moreover, notice that the differentials on the third page go in
the direction d4? : EYY — E§+3’q_2. Notice that, if ¢ # 0,2, the vector space E}'? is equal to
0.

Moreover, if ¢ = 0, we have E??)”_3 = {0} and so d5 = 0. Lastly, if ¢ = 2, we have E{? = {0}
if p>1and if p=0, we have Eg’o = H3((M¢)y,Q) = {0}.

We deduce therefore that the differential maps d5'? are all zero. In a similar way, it is possible
to verify that di'? = 0 if » > 2, for any p, ¢ and so that the spectral sequence collapses at the
second page.

From the description of the sheaves RfQ given above, we deduce that we have

He (NG, q:) = ¢t + 4gt” + 12 (9.4.13)

Remark 9.4.1. Notice that the variety (NVZ')g is smooth, the morphism f7 is proper and we
have (f7)~1(m) = PL.

In particular, (V') g is a resolution of singularity of the variety (Mc)y. By the isomorphisms
of Lemma, we see that the variety ./\/CJr is the canonical resolution of singularity of the
singular affine cubic surface M¢.

We have therefore found a natural way to build the resolution of singularity of the GIT
quotient Mc as a locally closed subvariety of the quotient stack M. It would be interesting
to generalize the same approach to other type of character stacks.

A similar reasoning can be applied to the opposite linearization, induced by the character
0~ : G, — Gy, given by 7 (2) = 271,

$s,0~

semistable points (X¢),;~ are given by (Y, )g.

In this case in a similar way we can argue that the

For the corresponding quotient (N, )y there is therefore an equality

Ho((NG ) msq.t) = ¢*t* + dgt® + 12

Denote now by j*,j~ the open embeddings j* : (N )y = (Ne)m and j+ : (NG )i — (Ne)u
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and by j the open embedding (N)y — (Nc)m. Notice that there is a short exact sequence
of sheaves on (N¢) g

0 71Q Qe Q—— Q——0

and therefore an associated long exact sequence in compactly supported cohomology

Hi7 (M) i, Q) —— HANE, Q) —— HI((N) g, Q) @ HA((NG )i, Q) —— HA((Ne)w, Q)

Notice that from Lemma [3.3.4] there is an isomorphism (N¢)g = Ne. From the long exact
sequence above and equations(9.4.13)),(9.4.12)), it is therefore not difficult to see that

H.(Ne,q,t) = ¢*t* + 5qt* + 12 + 1. (9.4.14)

Plugging this result into eq.(9.4.11)) and using identity (9.4.4]), we verify finally identity (9.4.3]).
O
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10 Character stacks for non-orientable surfaces

In this chapter we study character stacks for real non-orientable surfaces, rather than Riemann
surfaces. Our approach to real geometry follows the one introduced in [3], i.e a real non-
orientable surface is a pair (X, o), where X is a compact Riemann surface and o : X — X an
antiholomorphic involution without fixed points. The associated non-orientable surface is the
quotient X /(o).

In section we review some generalities about fundamental groups of non-orientable
surfaces. In section we define character stacks for non-orientable surfaces Mg associated
to a k-tuple of semisimple conjugacy classes C and we show how they are related to involutions
on character stacks for the Riemann surface X.

In section we review the results of Letellier and Rodriguez-Villegas [65], where the
authors compute the E-series F(M§, q), when C is generic. Their formula strongly resembles
Formula for the E-series of character stacks for Riemann surfaces and the authors
[65, Theorem 4.8] verified that a formula analogous to Conjecture holds for the mixed
Poincaré series Ho(M§g, q,t) when X =P{ and k = 1.

It would be natural to expect that a similar formula would be true for any X and any k.
The main result of this chapter is a counterexample to such a conjectural formula, obtained
in section by explicitly describing these spaces in the case in which X is an elliptic curve
and C = {e%d}, for (d,n) = 1.

To completely describe these spaces we will need some general results about character stacks
for non-orientable surfaces for C = {eﬂTm}, which we review in .

10.1 Notations and fundamental groups for real curves

Let X be a compact and connected Riemann surface of genus g. Assume to have fixed a real
structure on X, i.e an antiholomorphic involution ¢ : X — X. The involution ¢ determines
a real projective curve X, i.e a smooth projective variety of dimension 1 over Spec(R) such
that

XR Xgpec(r) Spec(C) = X

and, via the isomorphism above, o corresponds to the complex conjugation on the second
factor, see for example [3].

Notice that Xg(R) = X?. From now on, we will assume that X? = &, (i.e that Xg has no
real points). Notice that this implies that the action of (o) on X is free.

In particular, the quotient space

S = X/(o)

has the structure of a real non-orientable surface. We denote by p : X — § the quotient
morphism. Recall that S is homeomorphic to the the connected sum of r := g + 1 projective
planes.

Remark 10.1.1. Consider conversely a connected, compact real non-orientable surface Y, the
orientation cover p: Y — Y and the orientation reversing involution o : ¥ — Y.
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Notice that YV is a compact, connected and orientable real surface, i.e can be equipped with
the structure of a Riemann surface.With respect to this complex structure, the involution o
is antiholomorphic.

Let £ € N and consider a subset D C X of 2k points D = {y1,1,...,¥1.k:Y2,1,---, Y2k} With
o(y1,i) = yo,; for each i =1,... k. Fix now a point 2o € X \ D and denote by

II .= 7T1($0,X\D)

the fundamental group with basepoint xg.

Fix a path A, from z¢ to o(xg). Define then the morphism
ox I = 11

a— M to(a)Ns.

Notice that o2 is the conjugation for the element Ao (\;!) which, in general, is different

from the identity. In particular, in general o2 is not the identity, i.e o, is not an involution.
Denote by zy = p(zo), by z; = p(y1,) for each i = 1,...,k and by D' = {z1,...,zx}, i.e
D’ = p(D’). We put then

1€ == (20,58 \ D')
the fundamental group with basepoint zg.

Recall that in this case, there is an explicit presentation of the fundamental group II¢ given
by
e = (02 ey o2 = 1),

where each z; is a loop around z;.

Notice that there is a short exact sequence

1 — 25T —57/(2) — 1. (10.1.1)

For each j =1,...,r, we have €(d;) = —1.

Ezample 10.1.2. Consider the elliptic curve X associated to the lattice (1,7) C C i.e
X =C/(1,4)

and let m be the projection 7 : C — X. Let 0 : X — X be the involution without fixed points
defined by

o(z) =z +

N =

and p: X — S := X/(o) be the associated quotient.
We fix a point z; € S and we let its preimage in X be p~1(z1) = {y1.1,y12}. Put 20 = p(0)
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and xp = 0 as base points and
Ao =m(7(1))

1
where y(t) = it'

Denoting by a, b the paths a(t) = 7(it) and b(t) = 7(t), the fundamental group IT = 71 (zo, X\
{y11,v1,2}) admits the presentation

(b~ 'a"ba = xom1). (10.1.2)
where 1,9 are two loops around yq, y2. It is not difficult to compute that
ox(a) = r1a™! (10.1.3)

and
o.«(b) =10 (10.1.4)

Moreover, the following equalities hold:

)\;la(ml))\g = amflxgl:z:la_l and )\;10'(1‘2))\0 = bamfla_lb_l.

10.2 Character stacks for non-orientable surfaces

We fix an algebraically closed field K (which for us will be either C or ;). We denote by G
the general linear group GL, over K and by 6 : G — G the Cartan involution g — (‘g)~!.

The corresponding semidirect product will be denoted by
Gt =G xpZ/(2).
Let C = (Cy,...,Ck) be a k-tuple of semisimple conjugacy classes of G. We consider the variety
Xé={p:1I° = G | m(p(d;)) = —1 and p(2;) € h(C;) for all 4, j}

where 7 : Gt — Z/(2) is the natural projection and h : G — G the natural inclusion.

Given the explicit presentation of II¢ we can rewrite X5 as

XE»:{(Dl,...,Dr,Zl,...,Zk) eG" xCy x--Cp | D19(D1)Dr9(Dr)Zle:1}

The variety X is endowed with a G-action defined as:
g-Di=gDi'g g-Zi=gZig " (10.2.1)

The character stacks for the non-orientable surface (X, o) are the quotient stacks

Me = [X¢/Gl.
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As X§ is affine and G is reductive, we can also consider the GIT quotient
Mg = X5//G
and the universal map ¢ : M§ — M¢.

The stacks Mg admit an alternative description in terms of the so-called real o-invariant
representations (which can be found, for instance, in [81) Section 2|[79, Section 3, 3.2] and
[65, Remark 4.2]).

A representation p € X§ gives by restriction a representation p : II — G such that the
following diagram commutes

1— O —2 5 7(2) > 1 (10.2.2)
bl
1 yG—— Gt —"57/(2) > 1

It is therefore natural to ask conversely which representations p of Il can be lifted to a mor-
phism p : II* — G which makes the diagram commute. To answer to the question,
it is necessary to precisely describe monodromies around the punctures, as explained in [65]
Remark 4.2].

We can rewrite the standard presentation of II as
([a1,b01] -+~ [ag, bglw1 1 -+ w1 w21 - T2 = 1).

where each z; ; is a path around y; ;. Let C be the 2k-tuple C = (Ciy...,C,Ch,...Ck) and
consider the associated representation variety Xz

For a representation p € X5 we say that p is o-invariant if
522 0(5(0.)).
This is equivalent to asking for the existence of an element h, € G which verifies
hophyt = 0(p(0)). (10.2.3)

Definition 10.2.1. Given a o-invariant p € X5, we say that the representation p is real if
there exists h, as in eq.(10.2.3)) such that

plo(Ao)Ne) = h t0(h ). (10.2.4)

We say that p is quaternionic if there exists h, as in eq.(10.2.3)) such that g(o(As)As) =
—hgt0(hg").

If the conditions of Equations (10.2.3),(10.2.4)) are satisfied, the couple (p, h,) can be extended
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to a map p € X§ such that the diagram ((10.2.2) commutes. Let Ue be the variety

Ue = {(p,he) € Xz x G which verify Equations [10.2.3)10.2.4]}. (10.2.5)

The variety Ue is endowed with a G-action defined by

g+ (p.he) = (gpg~",0(g)hg™"). (10.2.6)

The arguments above imply the following Proposition

Proposition 10.2.2. There is an isomorphism of quotient stacks

Me = [Ue /G-

Remark 10.2.3. If p is an irreducible representation and h is such that there is an equality
hph~! = 0(p(04)), then either h=10(h™ 1) = p(a(As)As) or A719(h™Y) = —p(0(As)Ns) and
only one of the two is true (see [82] II1.5.1.2]), i.e an irreducible o-invariant representation is
either real or quaternionic.

Remark 10.2.4. Tt is natural to consider the stack M and the associated GIT quotient Mz.
The stacks M and Ms admit an involution, which we denote again by o, induced by the

map

o(p) = 8(4(0.)).

We can define a morphism f : M5 — Mg which maps a couple (p, h) as in Equation ([10.2.5])
to the representation p.
In a slightly more involved way, it would be possible to lift the map f to a morphism of

quotient stacks F': Mg — Mg These morphisms are in general not even surjective. We will
describe the image of f in certain cases in Proposition [10.4.3]

10.3 Cohomology results for generic character stacks for non-orientable
surfaces

Put K = C and let us now explain one of the main results of [65] about the stacks M. Let
C =(Cy,...,Ck) be a k-tuple of semisimple conjugacy classes of G.
In [65, Theorem 4.6], the authors showed the following Theorem.

Theorem 10.3.1. For any generic C, the following equality holds:
du
E(Mgq) = L H,, (va € (10.3.1)
C» q _ 1 ., ) \/a -J.

where p = (p1, ..., pg) is the multipartition given by the multiplicities of the eigenvalues of
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Ci,...,Cy respectively and

dp=n*(r—2+k) +2-> (i)

0]

This result is surprisingly similar to Theorem about generic character stacks for Riemann
surfaces. Notice, for instance, that for r = 2h the E-polynomial of Mg agrees thus with the
one of Mg for a Riemann surface X of genus h.

In [65, Theorem 4.6] it is proved that a formula analogous to Formula (9.1.6) holds in the
non-orientable setting for r = k = 1 i.e that the following equality holds

du
(qt?)
qt? — 1

1
H(Mg, 1) = B2 g, (wa, —) . (103.2)

Va

It would therefore have been natural to expect that such a formula holds for all , k i.e that

H(MS t)—WH N (10.3.3)
c C7q7 - qt2_1 w,r \/&7 \/a . L.

for a generic C. The main result of this paper is a counterexample to Formula ([10.3.3]), obtained
by an explicit description of these spaces in the case r = 2, i.e when X is an elliptic curve.

10.4 Character stacks for £k = 1 and generic central orbit

In this section we assume that K = C. We fix » > 1 and a Riemann surface X of genus
g =1 — 1 with an antiholomorphic involution ¢ : X — X.

Consider a point z; € S = X/(o) and the subset D" := {21} C ¥ (ie k =1). Let d,n € N
such that d is even and (d,n) = 1.

Let C be the generic semisimple orbit of GL,(C) given by C = {em%In}. We denote the
associated character stack in this case by M;j ;, = Mg and similarly the associated GIT
quotient by Mfl’d.

Remark 10.4.1. As C is a central orbit, the character stack Mg is the twisted character stack

2mid

Mn,d: [{Al,Bl,...,Ag,Bg € GLn ‘ [Al,Bl]-“[Ag,Bg] =€ n }/GLn]

As d and n are coprime, the representations p € M,, 4 are irreducible, see for example [44
Lemma 2.2.6]. In this case, given an element p € X§ corresponding to a couple (p, hy) with
p € X we have Stabg(p) = £1 (see [82] 111.5.1.3]). The morphism

. € €
q: Mn,d — Mn,d

is thus a p9-gerbe.

Remark 10.4.2. The canonical morphism q : ./\/lf%d — My, 4, being a pia-gerbe, is proper. The
proper base change for Artin stacks implies that for every x € My , and for every i € Z we
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have
(R'¢:C)y = H'(Buz).

As the rational higher cohomology of Bus vanishes, R'q,C = 0 if i # 0 and ¢,C = C. The
Leray spectral sequence for cohomology with compact support implies that we have

HE (M, q) = HE (M, ).

The cohomology of the quotient stack is isomorphic to that of the GIT quotient. In particular,
the (compactly-supported) cohomology of M; 4 15 0 in negative degrees.

The main result of this paragraph is the following proposition:

Proposition 10.4.3.
(1) If v is odd there are no quaternionic representations inside Mg,d . Ifr is even, Mg,d admits
a decomposition into open-closed subvarieties

o __ o+ o,—
n,d — Mn,d |_| Mn,d

where MZ’;, M,:d_ are given by real/quaternionic representations respectively and there is an
isomorphism MZ’; s Mg’;,
(i) The map f : M;;d — MS; introduced in Remark |10.2.4| is an tsomorphism.

Remark 10.4.4. Proposition [10.4.3| and the other results of this section are probably known
to the experts but we could not locate a reference in the literature. We review them here for
the sake of completeness.

Before proving Proposition [10.4.3] we notice that the quaternionic and the real representations
form disjoint subsets by Remark

To see that there are no quaternionic representations for r odd, we will use the equivalence
between quaternionic representations and quaternionic Higgs bundles. As this correspondence
is crucial for the study of the varieties My, 4 let us briefly review it here. For more details,
see for example [11],[80],[6],[7].[9]

10.4.1 Real and quaternionic Higgs bundles

A Higgs bundle over X is a pair (£, ®) where £ is a vector bundle over X and ¢ a morphism
D:E—E@OL.
The moduli space of (stable) Higgs bundle over ¥ of rank n and degree d is denoted by Mpey n.4
(for a definition of stability see for example [6, Section 4.1] or 11l Definition 2.3]).
It is a fundamental result (see for example [88]) that there is a homeomoprhism (called non
abelian Hodge correspondence)

Mpotna = My g. (10.4.1)
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We consider the involution on Mpj . q , which we denote again by o, given by

o((€,8)) = (0 (B), " (®))
and we say that a Higgs bundle (£, ®) is o-invariant if there exists an isomorphism
a:(E,P) = o((&,)).
Real Higgs bundles are pairs ((£, ®), o) such that
o (@)a = I¢.
In a similar way, quaternionic Higgs bundles are defined by asking for the equality
o (@)a = —I¢.

In [I1, Proposition 5.6],[9, Theorem 4.8] it is shown that the homemorphism (10.4.1)) restricts
to a homeomorphism

~

od = Mpoin a-
In loc.cit it is shown moreover that this bijection sends real /quaternionic representations into
real/quaternionic Higgs bundles respectively. We will denote the subsets of Mpe 4 given by
real /quaternionic Higgs bundles by Mg;gn J /Mg(;n , respectively.
Notice that, as
0 Mpoind — Mpoin,d

is antiholomorphic, the fixed points locus Mp,, , ; 1s not a complex algebraic variety anymore.
It is a real analytic variety which is identified with the set of R-points of Mp; , ¢ With respect
to the real structure induced by o.

For odd r, if a quaternionic couple (p, h) existed (i.e M;’d # @) there would exist a stable
quaternionic Higgs bundle (£,®) on X. Its determinant det(€) would be a quaternionic line
bundle of degree d over X.

The quaternionic condition is preserved under taking the determinant as n is odd. The
existence of a quaternionic line bundle for odd r is ruled out by the topological criterion of
[79, Theorem 2.4].

To prove Proposition [10.4.3], we will need the following preliminary Lemma.
Lemma 10.4.5. Put X, 4 := X; and let us consider the varieties Y, 4, Z, 4 defined by
Yo = Xnd XM, 4 Xnda = {(P1,p2) | pr = p2}

and
Zna = 1{(p1,p2,h) | (p1,p2) €Y , h € GL,, | hprh™! = po}.

The projection map v : Zy, q — Yy, q 15 a principal G,,-bundle for the étale topology.
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Proof. The variety Z, 4 is endowed with the G,, action defined as

t-(p1, p2,h) = (p1, p2,th).

This action is free and transitive on the fibers of v, as all the representations inside X, 4 are
irreducible. Moreover (¢ - z) = 1)(z) for all z € Z, 4. We are thus reduced to show that 1 is
locally trivial for the étale topology.

As the map ¢ : X,, g — M, 4 is a principal PGL,-bundle for the étale topology, there exists
an étale open covering {U;}ier of M, 4 such that ¢ 1(U;) 2 U; x PGL, for each i € I.

Put Yy, = Yna Xum, , Ui and similarly Zy, = Z,, 4 XM, q4 Ui 1t 18 enough to show that the
pullback map v : Zy, — Yy, is locally trivial in the étale topology for each ¢ € I.

Fix then ¢ € I and put U; = U. Notice that the variety Yy admits the following isomorphism:

Yy =q¢ HU) xy ¢ HU) =2 (U x PGL,) xy (U x PGL,) = U x PGL, x PGL, .
In a similar way, the variety Zy is isomorphic to
Zy = (Yy) = {(u,g,h,s) € U x PGL,, x PGL,, x GL,, | gh™! = [s]}

so that ¢ corresponds to the morphism ¥ (u, g, h,s) = (u,g,h). We can view Yy as a subset
of U x PGL,, x PGL,, x PGL,, as

Yy = {(u,g,h,s) € U x PGL, x PGL,, x PGL,, | gh™! = s}.
Via these identifications, the map v corresponds to the restriction of the morphism
U x PGL,, x PGL,, x GL,, = U x PGL,, x PGL,, x PGL,,

given by the identity on the first three factors and the quotient map GL,, — PGL,, on the last
one. This is a principal G,,-bundle because GL,, —» PGL,, is so.
O

We now prove Proposition [L0.4.3] We keep the notations of Lemma [10.4.5

Proof of Proposition[10.4.5
Let G : X,,q — M, 4 be the quotient map. Put X7, = ¢ (M7 ,) and X7'7 = ¢ (M) and

similarly for quaternionic representations X Z’; = (j’l(MZ’d_). The variety X& 4 1s isomorphic

to the closed subvariety Y7, of Y,, 4 given by:

Y. = 1{(p1,02) € Yna | p2 =0p104}

via the map pl‘Y;{d Y7, — X5 4, where py is the projection onto the first factor of Y,, 4. Put
YTZj = pfl(XZ::{) and similarly Y. From Remark |10.2.3| there is a well-defined morphism

p3 07 (V) = {In, —In}
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(ﬁh P2, h) - H(h)hﬁ(a(/\a>)\a)'

Notice that Y7 = ¢(p3'(I,)) and Y7 = 4(p3'(—1,)). As 9 is open, we deduce that
XZ’;, XZ’; are disjoint and open and so closed too inside X7 ;. The same is true then for

MZ¥ M. The projection (p1, p2,h) — (p1,h) induces an isomorphism ¥~ (Y.7:1) = X¢ ..

n,d """ n,

By Proposition the morphism
Xna— X4

is thus a principal Gy,-bundle. The G-action on X ; defined by the Formula induces
an action of the center Zg = G, which differs from the one coming from the principal G-
bundle structure by a square factor. The morphism X 2 i X g:{ induces thus a G-equivariant
isomorphism 7

Xyl G/ (£1n)) = X777 (10.4.2)

We deduce the following chain of isomorphisms:

My, g = X5, 4/ (GLa(C)/(£1n)) = (X5, 4/ (Gm/ (£11)))/(GLa(C) /Gm) = M,y -

n

O

To end the proof of Proposition it actually remains to show that MZ,’;7MZ,’; are
isomorphic if r is even. For r even there exists a quaternionic representation 7 € Mf p of rank
1 over X (see [80, Theorem 2.4|).

Taking the tensor product by 7 gives then an isomorphism — ® 7 : Mg; — Mgd_ the same

proof was carried out for real and quaternionic vector bundles in [80, Theorem 1.1].

10.5 Character stacks for (real) elliptic curves

We focus now on the case r = 2. We consider the elliptic curve X and the antiholomorphic
involution ¢ introduced in Example[10.1.2l We keep the notations introduced in the Example
T0.1.2

In [44] Lemma 2.2.6] it is shown that for (n,d) =1 there is an isomorphism
M, q=C* x C*. (10.5.1)

To see this, notice that a representation p € M, 4 corresponds to a pair of matrices A, B such
that

2mid

B 'A'BA=¢"" 1,.

where p(a) = A and p(b) = B. Let z,w € C* such that A" = zI,, and B" = wl,(see [44]
Theorem 2.2.17]). The isomorphism ((10.5.1)) is obtained by mapping p to the couple (z,w).
Via this identification, the involution o is given by:

o(z,w) = (z,w™ )
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and so
ca=Cr]c
From Equation (10.1.3) we deduce indeed that
0(p(0+(b))) = 0(p(b)) = 0(B)
and so (0(p(o«(b))))" = 0(B)" = w™'I,. By Equation (10.1.4) the following equality holds:
. o . . _md
0(p(0+(a))) = O(p(z1a™")) = O(p(21))0(A™") = e™ n A!

and so (0(p(ox(a)))™ = (AY)™ = zI,,. By Proposition [10.4.3] we deduce the following result :

Theorem 10.5.1. For r = 2, the character variety My ; is isomorphic to C* as an affine
variety and the character stack M, ; is a p2-gerbe over C*.

By Remark [10.4.2] for » = 2 we have the following identity:
HC(M’;,d? q, t) = qt2 +t. (1052)

As suggested in the introduction, this does not agree with the expected formula ((10.3.3[). If
the Formula ([10.3.3]) were true, the following identity would hold

. qt? 1
HC( n,d» 4 t) = qt2 . 1Hn72 t\/av _%
where Hi, »(z, w) are the functions defined in §3.8for 4 = ((n)). The functions Hy, 2(z, w) have
been explicitly computed in [14, Theorem 1.0.2]. The result of [14] agrees with the conjectural
formula (9.1.8) for the mixed Poincaré series of character varieties M,, 4 for elliptic curves, i.e

1
2 2 2
qt H,2<t q,— >: qt* +1)°.
(qt")Hnz2 { tv/q NG ( )
This implies that
(qt* +t)? qt? 1 )
= H t - t°+t 10.5.3

giving a counterexample to the conjectural formula ((10.3.3)).
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