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Abstract

Three-dimension (3D) continuum media with one dimension being much smaller than the

two others are omnipresent and play an important role in engineering, including, for example,

plates, shells, coatings and thin interphases in civil, mechanical and materials engineerings.

One problem of primary importance and lasting interest in mechanics is that of replacing a

3D continuum medium of weak thickness by a two-dimension (2D) continuum medium of null

thickness which is equivalent to the 3D one to within an acceptable error. In spite of the fact that

a great number of works dedicated to this problem have been reported, the present thesis aims

to propose a novel approach which is capable of treating it in a unified coordinate-free way and

whose applications lead to new results.

To achieve the aforementioned objective, a shell-like continuum medium of uniform thick-

ness is first considered. After recalling the main elements of a coordinate-free differential geom-

etry theory and the Hadamard relations for a curved interface, a scalar or a vector field defined

over the 3D shell-like continuum medium in question is then expressed in terms of the relevant

2D field defined on its middle surface by using the Taylor expansion with any desired degree

of accuracy in the sense of asymptotic analysis. When transport phenomena and elasticity are

concerned, the Taylor expansions in terms of the corresponding fields on the middle surface are

detailed in a coordinate-free way, making appear naturally some important orthogonal projection

operators. When elastic plates are concerned, using the obtained Taylor expansion expression of

the displacement vector field and a variational principle, a general plate model is derived, includ-

ing the well-known Mindlin plate model as a particular one and holding for any elastic symmetry.

When an elastic laminate plate is considered, the orthogonal projection operators are employed

to homogenizing it and the simple Kirchhoff-Love plate model applied to the homogenized plate

gives the results comparable to those provided by the widely used complicated zigzag model.

Finally, a general imperfect poroelastic interface model is established by using the Taylor ex-
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pansion technique together with some appropriate orthogonal projection operators. This general

model is numerically implemented by the extended finite element method and applied to the

homogenization of poroelastic composites.

Key words : Shell; Plate; Interphase; Imperfect interface; Coordinate-free differential geom-

etry; Asymptotic analysis; Homogenization; XFEM.
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Résumé

Les milieux continus tridimensionnel (3D) avec une dimension beaucoup plus petite que

les deux autres sont omniprésents et jouent un rôle important dans l’ingénierie, y compris, par

exemple, des plaques, des coques, des revêtements et des interphases minces en génie civil, en

génie mécanique et en génie des matériaux. Un problème de première importance et de grand

intérêt en mécanique est celui de remplacer un milieu continu 3D d’une faible épaisseur par

un milieu continu bidimensionnel (2D) d’épaisseur nulle qui est équivalent au milieu 3D à une

erreur acceptable près. Malgré le fait qu’un grand nombre de travaux dédiés à ce problème ont

été rapportés, la présente thèse a pour objectif de proposer une approche novatrice qui est capable

de traiter le problème d’une façon unifiée et indépendante de tout système des coordonnées et

dont les applications conduisent à de nouveaux résultats.

Pour atteindre l’objectif susmentionné, un milieu continu en forme d’une coque d’épaisseur

uniforme est d’abord considéré. Après avoir rappelé les éléments principaux d’une théorie de

géométrie différentielle sans utiliser un système de coordonnées et les relations Hadamard pour

une interface courbée, un champ scalaire ou vectoriel défini dans la coque en question est ensuit-

e exprimé en fonction du champ 2D correspondant défini sur sa surface médiane en utilisant le

développement de Taylor avec un degré de précision quelconque au sens de l’analyse asympto-

tique. Lorsque les phénomènes de transport et d’élasticité sont concernés, les développements de

Taylor en fonction des champs correspondants sur la surface médiane sont détaillés sans utiliser

un système de coordonnées, faisant apparaı̂tre naturellement certains opérateurs de projection

orthogonaux importants. Quand les plaques élastiques sont en jeu, en utilisant l’expression du

développement de Taylor du champ des déplacements et en faisant appel à un principe vari-

ationnel, un modèle général de plaques est dérivé, incluant le modèle de plaques de Mindlin

comme un cas particulier et étant valable pour toute symétrie élastique. Lorsqu’une plaque s-

tratifiée élastique est en question, les opérateurs de projection orthogonaux sont utilisés pour
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son homogénéisation et le simple modèle de plaques de Kirchhoff-Love appliqué à la plaque

homogénéisée donne les résultats comparables à ceux fournis par le modèle zigzag compliqué

largement utilisé. Enfin, un modèle général d’interface poroélastique imparfaite est établi en

utilisant la technique du développement de Taylor et certains opérateurs de projection orthogo-

naux appropriés. Ce modèle général est implémenté numériquement par la méthode d’éléments

finis étendus et appliqué à l’homogénéisation des composites poroélastiques.

Mots clés : Coque; Plaque; Interphase; Interface imparfaite; Géométrie différentielle intrin-

sèque; Analyse asymptotique; Homogénéisation; XFEM.
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Notations
• Tensorial Notations

a scalar, · contracted product of order one,

a vector, : contracted product of order two,

A second-order tensor, ⊗ tensor product,

A third-order tensor, ∇ gradient operator,

A fourth-order tensor, div divergence operator,

I identity tensor of order two, P tangential projection operator,

I identity tensor of order four, P⊥ normal projection operator,

δi j Kronecker symbol, n unit normal vector,

W Weingarten tensor, t unit tangent vector,

P fourth-order tangential projection operator, P⊥ fourth-order normal projection operator.

• Tensor Calculations

a ·b = aibi, (Ab)i = Ai jb j, (AB)i j = AikBk j,

A : B = Ai jB ji, (A : B) = Ai jklBlk, (AB)i jkl = Ai jmnBnmkl,

(a⊗b)i j = aib j, (A⊗B)i jkl = Ai jBkl, (A�B)ik = Ai jklB jl,

(A⊗a)i jk = Aika j, (A⊗a)i jk = A jkai, (A⊗a)i jk =
1
2(Aika j +Aikai),

(A⊗B)i jkl = AikB jl, (A⊗B)i jkl = AilB jk, (A⊗B)i jkl =
1
2(AikB jl +AilB jk).

•Material Parameters

C stiffness tensor, K permeability tensor,

S compliance tensor, K permeability,

λ , µ Lamé constants, θ Biot-Willis tensor,

C∗ homogenized stiffness tensor, θ∗ homogenized Biot-Willis tensor.
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•Mathematical notations

TxS tangent space of the surface S at the point x,

NxS normal subspace of the surface S at the point x,

δ (·)v(x) directional derivative along direction v,

∇S(·) tangential gradient,

∇N(·) normal gradient,

divS(·) tangential divergence,

divN(·) normal divergence,

4S(·) surface Laplacian operator,

〈·〉 volume average operator,

∇n(·) directional derivative along normal vector n.

• Additional notations

u displacement vector,

ε strain tensor,

σ stress tensor,

w velocity vector,

p pressure.
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General Introduction

The Background and Significance

In a three-dimensional (3D) Euclidean space R3, when one dimension of a structure is sig-

nificantly smaller than the two others, this dimension is typically referred to as its thickness, and

the structure in question can be modeled as a plate-like or shell-like structure. Such structures

are fundamental elements in civil, mechanical and aerospace engineerings [115, 130, 135, 5]

[130, 4, 90, 19]. They are also involved in others fields like medicine, biology [137, 32, 91], and

nanotechnology [131, 107, 47].

In the analysis of plate-like and shell-like structures, the concept of the midplane or mid-

surface is crucial. The midplane or midsurface is an imaginary plane or surface that divides

the thickness h of a plate-like or shell-like structure, running parallel to its surfaces (see Figure

2.2). It is commonly known as the middle surface or median plane of the structure. Due to

the weak thickness of a plate-like or shell-like structure, the distribution of the internal physical

fields can be accurately described by the relevant physical fields defined on the middle place

or surface. This simplification effectively transforms the originally complex three-dimensional

partial differential equations into a two-dimensional framework, significantly streamlining the

mathematical representation and computational complexity. It importantly retains essential de-

tails about the structure’s geometry and mechanical responses, proving especially effective for

analyzing thin-walled structures and composite material shell-like configurations.

When focusing on the distribution of the internal fields and the overall mechanical behav-

ior of the structure, with an emphasis on its geometric properties and global deformations, it

simplifies to the plate and shell theory. In specific terms, a plate theory is employed when

the mid-surface starts with a flat configuration [114, 118, 134, 113], whereas shell theory is

utilized when the mid-surface begins with curvature, reflecting structures with initially curved
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mid-surfaces [114, 134, 113, 5, 28]. When emphasizing the interaction between a shell-like

structure and surrounding materials with diverse properties, or when assessing its mechanical

influence on the overall structure, the analysis is streamlined to interface theory. For instance, in

composite materials composed of a matrix and particle or fiber reinforcements, the connection

between the matrix and the heterogeneous materials (particles or fibers) is typically maintained

through an extremely thin transition zone, which can be effectively modeled as an imperfect

interface [48, 145, 117, 147, 83, 84]. By simplifying complex three-dimensional problems in-

to two-dimensional analyses, these theories provide critical insights and practical solutions for

ensuring structural integrity and performance. Therefore, it is essential to strengthen the theoret-

ical foundations of the relevant theories to ensure accurate modeling and analysis in engineering

practice.

Overview of Plate Theories

The development of plate theories spans centuries, starting with Euler’s pioneering work in

1776 [39] on plate vibrations. Germain and Lagrange made significant contributions by for-

mulating the Germain-Lagrange plate equation, with Lagrange [81] correcting Germain’s initial

formulations in 1813 [44]. Cauchy [20] and Poisson [111] further advanced the theory in the

early 19th century by applying elasticity principles and deriving the governing differential equa-

tions for plate deflections. These foundational contributions laid the groundwork for modern

plate theories.

In 1850, Kirchhoff [78] introduced fundamental hypotheses and energy principles that rev-

olutionized plate bending theory. His work clarified the conditions for static equilibrium and

introduced the concept of Kirchhoff’s hypotheses, simplifying the analysis of plate behavior.

These hypotheses enabled Love [97] to establish the thin plate theory for homogeneous and

isotropic plates, commonly referred to as the Kirchhoff-Love plate theory. Throughout the 19th

and early 20th centuries, Kelvin and Tait [76], Timoshenko [127], and others [67, 70, 75, 136]

expanded the theory to include diverse loading conditions and material properties, solidifying

plate theory as essential in structural engineering and physics.

Reissner [115] introduced a new theory in 1945, known as Reissner plate theory or Reissner-

Mindlin [98] plate theory. This theory incorporates additional shear deformations and derives

the thick plate model using the principle of minimum complementary energy. This approach
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enables a more accurate description of the plate’s bending behavior and shear stress distribution,

particularly in addressing real-world applications extensively used in engineering practice. Tim-

oshenko’s [130] studies on large deformations expanded the scope of plate theory, accommodat-

ing complex real-world scenarios and laying the groundwork for advanced numerical methods.

This summary outlines the historical evolution and significant contributions to plate theory. For

deeper insights, readers are directed to specialized monographs [128, 133] on the topic.

Plate modeling methods can be broadly categorized into two approaches: axiomatic and

asymptotic [118, 3]. Axiomatic methods start with assumptions about the three-dimensional

displacement field of the plate and derive models using minimum potential energy principles,

constrained by challenges in accurately guessing microstructural field distributions. Asymptot-

ic methods follow axiomatic approaches and introduce a scaling parameter, typically the plate

thickness-to-span ratio, which tends to zero in the equations. These methods, employing asymp-

totic expansions and Γ-convergence, facilitate model derivation, validate axiomatic approaches

post facto, and underpin convergence results. However, they are limited by potential deviations

from asymptotic assumptions in practical scenarios, affecting model accuracy despite rapid con-

vergence rates. Moreover, both methods face theoretical challenges when dealing with plates

composed of materials exhibiting high degrees of anisotropy.

Overview of Laminated Plate Theories

Laminates are extensively utilized in a diverse range of industries owing to their exceptional

mechanical properties and high strength-to-weight ratio [43]. However, the presence of trans-

verse anisotropy in multilayered structures, influenced by factors such as layer orientation, ar-

rangement, material properties, and processing conditions, leads to complex phenomena like the

zigzag form of the displacement field and interfacial discontinuities in in-plane stresses, while

ensuring transverse stress continuity to maintain system stability and equilibrium [16, 17, 19].

The mechanical properties of laminated composites are complex and challenging to fully un-

derstand and characterize, requiring a multidisciplinary approach. Pagano [108, 109] established

analytical and three-dimensional elasticity solutions for laminates with isotropic or orthotropic

layers subjected to cylindrical bending and pinned edges, providing reference standards for sim-

pler laminates and serving as a basis for validating and comparing other methods, including

numerical simulations and experimental measurements. However, despite some algorithmic im-
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provements, the computational complexity of determining the unknowns in Pagano’s solutions

remains significant and prohibitive as the number of laminate layers increases [40]. Classical

Plate Theory (CPT) [109, 40, 113, 6], based on Kirchhoff assumptions, is a widely used method

for analyzing laminated composite plates, but it neglects shear deformation and transverse shear

stresses, leading to inaccuracies for thicker laminates. To improve accuracy, refined plate theo-

ries, such as High-Order Shear Deformation Theories (HSDT) [96, 106, 74] and Zigzag theories

[30, 103, 26], address these limitations by accounting for transverse shear deformation more

accurately. HSDT incorporates higher-order terms in the shear deformation, while Zigzag theo-

ries capture the zigzag phenomenon observed in the in-plane displacement fields due to material

heterogeneity across the laminate’s thickness [17, 16, 30, 103, 26, 116, 86, 85, 18]. Despite

providing more accurate results, these advanced theories come with increased computational

complexity, especially as the number of layers increases [18].

Homogenization theory provides a macroscopic view of laminates by analyzing their micro-

scopic constituents, offering a way to determine effective material properties for use in numer-

ical simulations. This approach has been instrumental in deriving closed-form expressions for

the effective properties of composite materials with complex microstructures, including elastic,

dielectric, magnetic, piezoelectric, and magneto-electric properties [25, 88, 14, 140, 77, 46].

Research by Gu and He presents a comprehensive study on the effective properties of layered

composites, utilizing homogenization methods to address linear uncoupled and coupled phe-

nomena, graded properties, and the impact of stiffeners and softeners [49].

Overview of the Imperfect Interface

Composite materials consist typically of a matrix phase, an inclusion phase, and a transition

layer. During manufacturing and service, the matrix and inclusion phases are often connect-

ed through a transition layer. The formation of the transition layer involves complex physi-

cal and chemical reactions, making its microscopic structure and physical properties marked-

ly different from those of the surrounding material phases. Generally, the transition layer,

which plays a critical role in load transfer, is one of the most vulnerable and essential com-

ponents of composites. This transition layer is typically modeled as an imperfect interface

[55, 104, 53, 66, 83, 48, 94, 117, 145] and influences the mechanical behavior of materials

and structures. Particularly, with the advancement of nanotechnology, there has been a growing
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interest in imperfect interfaces. This is attributed to the substantial ratio of interface (or surface)

area to volume in nanoscale materials or structures. At this scale, the expansive interface and

surface area in relation to the material volume result in heightened susceptibility to interface

and surface effects. These effects exert a significant influence on the mechanical and functional

behaviors exhibited by the materials or structures [35, 29, 142].

Despite a significant amount of research, the modeling of interfaces and surfaces and their

impact on the mechanical and physical behavior of materials and structures remains a broadly

open topic [2, 73]. Gurtin and Murdoch [55] utilized modern geometric concepts to construct a

precise and concise theoretical framework, systematically investigating the kinematics, dynam-

ics, and constitutive relations of material surfaces and interfaces based on modern continuum

mechanics . This theory has undergone significant refinement and expansion by Gurtin, Mur-

doch, their collaborators [104, 53, 52, 21, 56, 54, 105], and other researchers (e.g., [125], [132],

[141]), demonstrating its substantial utility in modeling interface and surface effects in nanoscale

materials and structures.

An alternative method to systematically and rigorously model imperfect interfaces consists

in using asymptotic analysis. Sanchez-Palencia [119], Pham-Huy, and Sanchez-Palencia [72] in-

troduced this mathematical technique to establish the Kapitza interface thermal resistance model

and the high thermal conductivity interface model. These models accurately represent discon-

tinuous interface relationships present in thin transition layers between adjacent phases, charac-

terized by either extremely low or high thermal conductivity. Subsequently, other researchers

have further developed and expanded upon these models [15, 87, 79, 13, 42, 80, 45, 61, 62, 12,

9, 10, 11, 82, 83, 84]. Hashin [61, 62] established the equivalent imperfect interface model for

transition layers with arbitrary conductivity or rigidity based on Taylor series expansions.

Gu and He [48] developed a unified and compact general imperfect interface model for ana-

lyzing coupled multifield phenomena, utilizing coordinate-free interfacial operators, Hadamard’s

relation (Hadamard, 1903), and Taylor expansion applied to a 3D curved thin interphase perfect-

ly bonded to its two adjacent phases. This general imperfect interface model can be applied

to transition layers with arbitrary electrical conductivity and stiffness, and in extreme cases, it

can degenerate into widely used spring imperfect interface model [8, 1, 58, 59, 60, 62, 112] and

membrane-type imperfect interface model [122, 121, 120, 34, 36, 31, 37, 22, 23, 24, 82, 83,

84, 101, 101, 145, 144, 99, 102]. Gu et al. [51] derived the weak form of the boundary val-
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ue problem for composite materials with general imperfect interfaces in the context of coupled

multifield phenomena, marking a crucial step towards implementing imperfect interface effects

within the Finite Element Method (FEM) [41] framework. Combining this approach with the

XFEM [7, 126, 100] is a highly effective strategy for studying the influence of imperfect in-

terfaces on the mechanical behavior of composite materials and structures. He, Gu and their

collaborators have significantly contributed to advancing, expanding, and applying this method-

ology [145, 146, 143, 144, 147, 94, 117, 50, 138, 93, 95].

The Works of This Thesis

The objective of this thesis is threefold. Firstly, inspired by the works of Gurtin and Mur-

doch [55], He [66], Gu and He [48], and based on differential geometry, it aims to develop an

effective asymptotic analysis method that is independent of any coordinate system for the anal-

ysis of plate-like and shell-like structures. Mathematically, by using Hadamard’s relations, and

some continuity and discontinuity conditions of physical quantities across perfect interfaces, this

study introduces conjugate fields that remain continuous across interfaces of different materials.

This approach facilitates an arbitrary-order expansion of scalar or vector functions at any point

of shell-like structures, encompassing the intrinsic material properties of these structures. The

capability to expand functions arbitrarily at any point underscores the method’s broad applicabil-

ity for modeling plate-like, shell-like structures and interfaces. Secondly, employing variational

methods, this study formulates the general governing equations of motion and corresponding

boundary conditions for plates in a unified and concise manner. Building upon an asymptot-

ic analysis that is independent of any coordinate system and grounded in differential geometry

methods, this approach ensures both mathematical rigor and clarity in its physical implication-

s. By utilizing specific operators, particularly in the asymptotic expansion process, the method

effectively addresses the challenges posed by high degrees of material anisotropy in plates and

broadens its applicability to plates with interfaces of various shapes. This advancement signif-

icantly enhances the modeling capabilities of classical plate theory. Furthermore, by utilizing

these operators, a homogenization method for laminated plates is established, and analytical

expressions for the effective moduli of transversely isotropic materials are derived. Thirdly, a

general imperfect interface model with an accuracy of O(h2) for poroelastic composite materials

is established. This model is then integrated with the XFEM and the GSCS for numerical and
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homogenization analyses.

This thesis is organized into two parts. The first part comprises two chapters that explore the

coordinate-free transition from 3D media to 2D ones. In Chapter 1, the fundamental elements

of differential geometry are discussed independently of specific curvilinear coordinate systems.

Additionally, the Hadamard relations for scalar, vector, and tensor functions are summarized.

In Chapter 2, by utilizing the groundwork laid out in Chapter 1, a shell is constructed and its

geometric properties are analyzed. Taylor series expansions for scalar and vector fields within

the shell are derived, enabling the modeling of plates, shells, and interfaces by transitioning from

three-dimensional to two-dimensional frameworks. This chapter constitutes the central compo-

nent of this thesis. The second part focuses on asymptotic modeling, analysis, and applications

of plates and interfaces, spanning three chapters. In Chapter 3, building upon the Taylor expan-

sions presented in Chapter 2, the governing equations of motion and boundary conditions for

plates are derived using variational methods. This chapter initiates with a general case study and

subsequently delves into significant special cases. Chapter 4 focuses on the theory of laminated

plates, where a homogenization approach is established using operators introduced in Chapter

2 and the continuity relations discussed therein for perfect interfaces. Additionally, a compre-

hensive comparative analysis with other classical theories of laminated plates is conducted. In

Chapter 5, a generalized model for imperfect interfaces in poroelastic composites is established,

and several significant special cases are examined. Specifically, these include the extreme cases

of the transition layer material and the scenarios where the constituent materials are isotropic.

Numerical analysis and homogenization calculations of models containing spherical inclusions

are conducted using XFEM and GSCS.
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Part I

Coordinate-Free Reduction of a 3D

Medium to a 2D One
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Chapter 1

Fundamental Elements of Coordinate-Free

Differential Geometry and Hadamard’s

Relations

The objective of this chapter is twofold. First, we introduce the main mathematical tools

necessary for the study of surfaces or planar curves in an Euclidean space Rk of dimension

k (k = 2,3). This includes revisiting fundamental concepts from differential geometry, with a

particular focus on defining surface differential operators that play a crucial role in subsequent

chapters of this thesis. Second, Hadamard’s relations are given and proved. Thes relations

relations hold for any function which is continuous but piecewise continuously differentable

over its definition domain. Following Gu and He [48], the fundamental elements of coordinate-

free differential geometry and Hadamard’s relations are presented in a coordinate-free way.

1.1 Definitions

Given a differentiable function φ : U ⊂Rk→R and a ∈ φ(U) as a regular value of φ , the set

φ−1(a) represents a regular surface (or regular planar curve) in Rk with k = 2 or 3 [33], defined

as:

S = {x ∈U | φ(x) = a}. (1.1)
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Figure 1.1: Geometry of a series of stacked regular surfaces.

Using this definition offers several significant advantages. Firstly, it enables a unified description

of 1D and 2D interfacial problems. Secondly, it is directly linked to the ”level set” numerical

method, which is highly efficient in dealing with surfacial and interfacial phenomena. In sub-

sequent chapters, we will use this numerical method. Thirdly, the continuous variation of the

regular value a facilitates the dynamic evolution of S within a k-dimensional space. This dy-

namic evolution can characterize more intricate geometric objects, such as higher-dimensional

manifolds, especially pertinent when k = 3. As shown in Fig. 1.1, when the regular value a

changes continuously, S can represent different parallel surfaces. By varying these values sys-

tematically, it is possible to construct a detailed 3D structure.

1.1.1 Normal Vector and Tangent Space

Given definition (1.1), which defines a regular surface S in terms of a differentiable function

φ and a regular value a, it follows that S is orientable. For a point x ∈ S, the unit vector n(x)

normal to S can be defined as

n(x) =
∇φ(x)
‖ ∇φ(x) ‖ , (1.2)

where ∇φ(x) represents the gradient of ϕ at x, and ‖ · ‖ denotes the Euclidean norm. The set

of all tangent vectors to the surface S at a point x forms a (k− 1)-dimension vector subspace,

which is referred to as the space tangent to the surface S at the point x, denoted as TxS. It is

defined by

TxS = {t ∈ Rk | t ·n(x) = 0}. (1.3)
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In the case where S is a planar curve (k = 2), the tangent space TxS corresponds to the tangent

line to S at x. If S is a surface (k = 3), the tangent space TxS represents the tangent plane to S at

x. These two situations are illustrated in Fig. 1.2.

S

n(x)

T xS

t(x
)

x

(a)

S

n(x)
TxS

t(x)x

(b)

Figure 1.2: (a) A plane curve in R2. (b) A surface in R3.

1.1.2 Orthogonal Projection Operators

Now, we introduce two complementary orthogonal projection operators defined at every

point x on S as:

P⊥(x) = n(x)⊗n(x), P(x) = I−P⊥(x), (1.4)

where I is the second-order identity tensor. These two operators play a fundamental role in our

studies. Geometrically, P(x) projects any vector v ∈ Rk onto the tangent space TxS of S at x,

while P⊥(x) projects v onto the normal subspace of S at x, denoted as NxS. Geometrically, by

employing the two projection operators, a k-dimensional space Rk can be partitioned into (k−1)-

dimensional tangent subspaces TxS and 1-dimensional normal subspace NxS of the surface S at

the point x, expressed as:

Rk = TxS⊥©NxS, (1.5)

where ⊥© signifies the direct sum, indicating that the subspaces TxS and NxS are mutually or-

thogonal complements. Therefore, any vector v ∈ Rk can be uniquely decomposed into its tan-

gential component vT ∈ TxS and its normal component vN ∈ NxS :

v = vN +vT , vN = P⊥v, vT = Pv. (1.6)
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The orthogonal projection operators P⊥ and P exhibit several fundamental properties. Firstly,

they demonstrate idempotence and symmetry expressed by

(P⊥)2 = P⊥, P2 = P, (P⊥)T = P⊥, PT = P. (1.7)

These expressions indicate that successive projections of a vector onto the same subspace result

in an unchanged projection, illustrating the idempotent nature of the operators, and highlight

the symmetry inherent in orthogonal projection. In addition, the orthogonal projection operators

also demonstrate orthogonal complementarity, as described by the equations:

P⊥P = PP⊥ = 0, P⊥+P = I. (1.8)

This property emphasizes that the mutual exclusivity and completeness of projections onto a

subspace and its orthogonal complementarity, thereby facilitating the comprehensive decompo-

sition of vectors into components along orthogonal subspaces. These properties can be easily

verified using the definitions in equation (1.4).

1.1.3 Tangential and Normal Gradients

Let ϕ be a scalar-valued field defined over U . Its variation at a point x ∈ U along any

direction v ∈ Rk is defined as

δϕv(x) = lim
τ→0

ϕ(x+ τv)−ϕ(x)
τ

, τ ∈ R. (1.9)

If ϕ is at least once continuously differentiable, the directional derivative δϕv(x) can be ex-

pressed as:

δϕv(x) = ∇ϕ(x) ·v, (1.10)

where ∇ϕ denotes the gradient of ϕ . As previously mentioned, utilizing the two projection

operators allows for the unique decomposition of any vector into its tangential and normal com-

ponents. Therefore, equation (1.10) can be rewritten as:

δϕv(x) = ∇ϕ(x) · (P⊥v+Pv) = (∇ϕ(x) ·P⊥+∇ϕ(x) ·P) ·v. (1.11)
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To facilitate our analysis, let us define the tangential gradient of ϕ at point x as ∇Sϕ(x) and the

normal gradient as ∇Nϕ(x):

∇Sϕ(x) = ∇ϕ(x) ·P, (1.12a)

∇Nϕ(x) = ∇ϕ(x) ·P⊥. (1.12b)

Note that ∇Sϕ(x) quantifies how the scalar field changes along the tangential direction to the

surface (or curve) S atx. In other words, ∇Sϕ(x) captures the rate of change of ϕ in the direction

parallel to S. The gradient ∇Sϕ(x) also called the surface gradient or curve gradient depending

on whether S is a surface or a curve. It is clear that ∇Sϕ(x) is a surface field. On the other

hand, ∇Nϕ(x) characterizes how the scalar field varies along the normal direction to S at x.

Thus, ∇Nϕ(x) measures the rate of change of ϕ along the direction perpendicular to the surface

(or curve). Similarly, the gradient of a vector field f and a second-order tensor field T can be

decomposed into the tangential gradient and the normal gradient. Precisely, we have

∇f = ∇ f ·P+∇f ·P⊥ = ∇Sf+∇Nf,

∇T = ∇T ·P+∇T ·P⊥ = ∇ST+∇NT.
(1.13)

The operators ∇S and ∇N provide valuable insights into how fields behave with respect to the

geometry of S, facilitating a detailed analysis of the spatial variations relative to the surface (or

curve) direction and enhancing our comprehension of relevant physical phenomena.

1.1.4 Tangential and Normal Divergences

Similarly, the divergence of a vector field f or a second-order tensor field T can be decom-

posed into tangential and normal components defined on a manifold (surface or plane curve) S.

These decompositions are essential for our studies as they provide a deeper understanding of

the behavior of vector and tensor fields in relation to the manifold. Specifically, the tangential

divergence measures the rate at which a vector or tensor field spreads out or converges within

the tangent plane of S. This provides insight into how the field changes in a direction parallel to

the surface. In a similar way, the normal divergence quantifies the rate of change of a field in the

direction orthogonal to S, illustrating its behavior perpendicular to the surface. The divergences
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of f and T can be decomposed as follows:

divf =∇f : I = ∇f : (P+P⊥),

divT =∇T : I = ∇T : (P+P⊥).
(1.14)

Let divSf and divNf represent the tangential and normal divergences of f and let divST and divNT

denote the tangential and normal divergences of T. Then, we have

divSf =∇f : P, divNf = ∇f : P⊥,

divST =∇T : P, divNT = ∇T : P⊥.
(1.15)

The tangential and normal divergences of a vector field f(x), are also related to its tangential and

normal gradients by

divSf(x) = tr[∇Sf(x)],

divNf(x) = tr[∇Nf(x)], (1.16)

where tr[·] represents the trace operation.

1.1.5 Tangential Derivatives of Composite Functions and Divergence The-

orem

Carrying out the decomposition of gradient and divergence into tangential and normal com-

ponents via orthogonal projection operators, the operations involving the tangential (or normal)

gradient and tangential (or normal) divergence for composite functions of scalars, vectors, and

tensors adhere to the same rules as those governing ordinary gradient and divergence opera-

tions [55, 104]. Employing tangential gradient and divergence as illustrative instances, we can

rigorously derive the following formulas:

∇S(ϕf) = ϕ∇Sf+ f⊗∇Sϕ, (1.17)
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divS(ϕf) = ϕdivSf+ f ·∇Sϕ, (1.18)

divS(ϕT) = ϕdivST+T ·∇Sϕ, (1.19)

divS(f⊗g) = fdivSg+∇Sf ·g, (1.20)

divS(Tf) = f ·divSTT +T : ∇Sf, (1.21)

where ⊗ signifies the tensor product and g represents a vector, while (·)T denotes the transpose

operation.

Let g denote a vector field defined on S, which is tangential such that g(x) ·n(x) = 0 for all

x ∈ E. Additionally, consider T as a tangential surface tensor field defined on S. Applying the

divergence theorem to g and T, we examine any subdomain Σ⊆ S with its boundary denoted by

∂Σ. Denoting by ν(x) the unit tangent vector to Σ but normal to ∂Σ at x ∈ ∂Σ, the divergence

theorem applied to g and T is expressed as:

∫
∂Σ

g ·ν dσ =
∫

Σ

divSgdS, (1.22)

∫
∂Σ

T ·ν dσ =
∫

Σ

divSTdS. (1.23)

When considering Σ as a surface, each equation’s left-hand side represents a line integral, captur-

ing the field’s flux across the boundary ∂Σ, while the right-hand side denotes a surface integral,

assessing the field’s divergence over the entire surface Σ. Conversely, if Σ is a plane curve, the

left-hand side of each equation converts into a definite integral, bounded by the curve’s end-

points, still reflecting the field’s flux along the curve. Meanwhile, the right-hand side remains

a line integral, signifying the field’s divergence along the surface. Notably, when Σ forms a

closed plane curve or surface, the left-hand side of each equation evaluates to zero, indicating

equilibrium in the flux across the entire boundary.
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1.2 Weingarten Tensor and Curvatures

1.2.1 Variation of the Unit Normal Vector

When studying curves or surfaces S, we are particularly interested in their local properties

at a point x ∈ S. These local properties can be effectively described by examining the variation

of the unit normal vectors n, which are intrinsically linked to fundamental characteristics such

as curvature and the normal acceleration of the curve or surface. To analyze this variation, we

first compute the gradient of the normal vector n(x). By employing the definitions provided in

equations (1.2) and (1.4), we derive the following expression:

∇n(x) =
∇2ϕ(x)
‖∇ϕ(x)‖ −

(∇ϕ(x)⊗∇ϕ(x))∇2ϕ(x)
‖∇ϕ(x)‖ = P

∇2ϕ(x)
‖∇ϕ(x)‖ . (1.24)

Under the assumption that ϕ ∈ C2(Rk,R), the Hessian matrix ∇2ϕ of ϕ is symmetric. Next,

in the neighborhood of the point x ∈ S, we consider an infinitesimal increment δx along the

direction tangent to the curve or surface, i.e, δx ∈ TxS). We aim to comprehend how the unit

normal vector n changes under this small increment δx. Describing this change in terms of the

directional derivative of n is natural and yields the expression:

δn(x;δx) = ∇n(x)δx= P
∇2ϕ(x)
‖∇ϕ(x)‖δx= P

∇2ϕ(x)
‖∇ϕ(x)‖Pδx, (1.25)

where the equality Pδx= δx is employed due to δx ∈ TxS. Introducing the Weingarten tensor

W(x) as defined by (see, for example, He et al. [66] and [63]): as follows

W(x) =−P
∇2ϕ(x)
‖∇ϕ(x)‖P, (1.26)

the directional derivative δn(x;δx) can be simply expressed as

δn(x;δx) =−W(x)δx. (1.27)

The Weingarten tensor W(x) is in fact the tangential gradient of the unit normal vector n(x),

albeit with an opposite sign:

W(x) =−∇Sn(x). (1.28)
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The explicit and concise expression (1.26) of the Weingarten tensor W(x) clearly indicates

that: (i) it is symmetric; (ii) it is a tangential surface tensor field. Using the definition of the

Weingarten tensor W(x), we can easily establish relationships between the tangential gradients

and divergences of P and W(x). These relationships are expressed concisely as follows:

∇P ·P = W⊗n+n⊗W, (1.29a)

∇P : P = ntr[W], (1.29b)

∇W ·P = n⊗W2 +P ·∇W ·P, (1.29c)

∇W : P = ntr[W2]+P ·∇W : P. (1.29d)

where the tensor product W⊗n is defined as (W⊗n)i jk =Wikn j.

1.2.2 Curvature of a Plane Curve and a Surface

The Weingarten tensor plays a fundamental role in differential geometry, particularly in char-

acterizing the local properties of a curve or surface S. It provides crucial insights into the ge-

ometric shape and curvature of surfaces. Specifically, the Weingarten tensor signifies the rate

of variation of the curve’s (or surface’s ) normal vectors along its tangential directions. This

variation rate is indispensable for understanding the curve’s (or surface’s ) curvature and the

directional alterations of its normal vectors. Consequently, analyzing the Weingarten tensor is

essential to comprehending the local geometric attributes of curves and surfaces, such as curva-

ture and convexity.

For a plane curve S , the Weingarten tensor W(x) of the curve is a rank-1 tensor. The

curvature κ(x) of S is calculated as follows:

κ(x) = tr[W(x)] =
∇2ϕ(x)
‖∇ϕ(x)‖ : P(x). (1.30)

In reality, W(x) has the simple representation:

W(x) = κ(x)P(x). (1.31)

For a surface S immersed in Euclidean space, its local geometric properties at a point x ∈ S are
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characterized by the concepts of mean curvature and Gaussian curvature, both of which provide

essential information about the surface’s curvature characteristics. The mean curvature κ̄(x) at

a point x on S is defined as half the trace of the Weingarten tensor W(x):

κ̄(x) =
1
2

tr[W(x)]. (1.32)

Geometrically, it quantifies the average rate of change of the unit normal vector along directions

tangent to the surface. The Gaussian curvature K̄(x) is an intrinsic measure of the curvature of

S and can be expressed through the determinant of W(x) by the relationship:

[W(x)a]× [W(x)b] = K̄(x)(a×b), for all a,b ∈ TxS, (1.33)

where a and b are arbitrary tangent vectors at x. This equation signifies that the Gaussian

curvature represents the product of the principal curvatures and characterizes the local deviation

of the surface from being flat.

The principal curvatures c̄1(x) and c̄2(x) at x are related to κ̄(x) and K̄(x) through the

following formulas:

c̄1(x) = κ̄(x)−
√

κ̄2(x)− K̄(x), (1.34a)

c̄2(x) = κ̄(x)+
√

κ̄2(x)− K̄(x). (1.34b)

These principal curvatures provide insights into the maximum and minimum curvatures at the

point x. Moreover, the principal curvature radii r̄1(x) = 1/c̄1(x) and r̄2(x) = 1/c̄2(x) offer

a quantitative measure of the curvature at x, providing valuable information about the local

geometric behavior of the surface S.

1.3 Hadamard’s Relation

In subsequent studies, we will frequently encounter functions that are continuous everywhere

but differentiable only almost everywhere. A prototype of such functions is a continuous func-

tion Ψ (scalar, vector, or tensor) defined in a domain Ω ⊂ R3, whose derivative exists and is

continuous at every point in Ω except on a surface Γ⊂Ω. The objective of this section is to pro-
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vide an explicit expression for the jump in the derivative of Ψ across Γ, depending on whether

Ψ is a scalar, vector, or tensor function. This expression for the jump in the derivative of Ψ is

termed the ”Hadamard’s relation”, as it was first established by Hadamard [57] in his renowned

treatise ”Leçons sur la propagation des ondes et les équations de l’hydrodynamique”. In me-

chanics, an excellent English reference on this subject, in our opinion, is a review article written

by Hill [68] 63 years ago. The presentation and proof methods of Hadamard’s relation in this

section are largely inspired by the work of Gu and He [48].

In accordance with the previous chapter, the surface Γ separating Ω into two subdomains

Ω(1) and Ω(2) (see Fig. 1.3) is characterized by a scalar function φ defined in R3:

Γ = {x ∈ R3 |φ(x) = 0}. (1.35)

The unit normal vector to Γ at point x is determined by equation (1.2).

n(x)x

Ω

Ω(1)

Ω(2)

Γ

Figure 1.3: Geometry of domain Ω.

1.3.1 Jump of the Derivative of a Scalar Function

Let ϕ : Ω⊂ Rk→ R be a scalar function defined piecewise by:

ϕ(x) =

ϕ(1)(x) if x ∈Ω(1)

ϕ(2)(x) if x ∈Ω(2)
, (1.36)

with the continuity condition on Γ:

ϕ(x) = ϕ(1)(x) = ϕ(2)(x), if x ∈ Γ, (1.37)
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where ϕ(i) : Ω(i) ⊂ Ω→ R (for i = 1,2) are continuously differentiable on their respective do-

mains. The domain Ω is the union of the subdomains Ω(1) and Ω(2) along with their common

boundary Γ, i.e., Ω = Ω(1)∪Ω(2)∪Γ.

For allx∈Γ, there exists a neighborhood U ⊂Γ such that for all y ∈Γ, the Taylor expansions

of the scalar functions ϕ(1) and ϕ(2) around x are given by:

ϕ(1)(y) = ϕ(1)(x)+∇ϕ(1)(x) · (y−x)+0(‖y−x‖2) (1.39a)

ϕ(2)(y) = ϕ(2)(x)+∇ϕ(2)(x) · (y−x)+0(‖y−x‖2) (1.39b)

where 0(‖y−x‖2) represents the higher-order terms in the expansions. Taking into account the

continuity condition (1.37), the difference ϕ(2)(y)−ϕ(1)(y) can be expressed as:

[∇ϕ(2)(x)−∇ϕ(1)(x)] · (y−x) = 0(‖y−x‖2). (1.39)

Dividing both sides of this equality by ‖y−x‖ results in:

[∇ϕ(2)(x)−∇ϕ(1)(x)] · y−x‖y−x‖ = 0‖y−x‖. (1.40)

Taking the limit as y→ x, we obtain:

[∇ϕ(2)(x)−∇ϕ(1)(x)] · t(x) = 0 for ∀x ∈ Γ, (1.41)

where

t(x) = lim
y→x

y−x
‖y−x‖ , (1.42)

is the unit tangent vector to the surface Γ at x. Considering that t ∈ TxΓ, where TxΓ is the

tangent space of Γ at x, we infer that the difference in gradients, ∇ϕ(2)(x)−∇ϕ(1)(x) belongs

to the normal subspace of Γ at x; that is,

∇ϕ(2)(x)−∇ϕ(1)(x) ∈ NxΓ for ∀x ∈ Γ. (1.43)

Thus, we have

∇ϕ(2)(x)−∇ϕ(1)(x) = αn(x) if x ∈ Γ, (1.44)
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where n(x) is the unit normal vector of the interface Γ at x and α is a scalar. When α 6= 0,

this equation establishes the Hadamard jump relation for a scalar function continuous but not

differentiable across Γ, confirming that the gradient jump aligns with the normal vector to the

surface. Additionally, the observation that the gradient jump belongs the normal subspace of Γ

at x leads to:

∇Sϕ(2)(x)−∇Sϕ(1)(x) = 0 if x ∈ Γ. (1.45)

This expression reveals the continuity of the surface gradient ∇Sϕ(x) across the interface Γ.

1.3.2 Jump of the Derivative of a Vector Function

Let’s extend our analysis to a vector function f : Ω⊂Rk→Rk, defined similarly to the scalar

function ϕ . Specifically, f(x) is defined piecewise as:

f(x) =

f(1)(x) if x ∈Ω(1)

f(2)(x) if x ∈Ω(2)
, (1.46)

subject to the continuity condition on Γ:

f(x) = f(1)(x) = f(2)(x), if x ∈ Γ, (1.47)

where f(i) : Ω(i) ⊂ Ω→ Rk (for i = 1,2) are continuously differentiable on their respective do-

mains. The domain Ω is composed of the subdomains Ω(1) and Ω(2) along with their shared

boundary Γ, i.e., Ω = Ω(1)∪Ω(2)∪Γ.

For every x ∈ Γ, we can find a neighborhood U ⊂ Γ such that for all y ∈ Γ, the Taylor

expansions of f(1) and f(2) around x are given by:

f(1)(y) = f(1)(x)+∇f(1)(x) · (y−x)+0(‖y−x‖2), (1.48a)

f(2)(y) = f(2)(x)+∇f(2)(x) · (y−x)+0(‖y−x‖2). (1.48b)

Here, 0(|y−x|2) represents higher-order terms in the expansions.Considering the continuity
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condition (1.47), the difference f(2)(y)− f(1)(y) can be expressed as:

[∇f(2)(x)−∇f(1)(x)] · (y−x) = 0(‖y−x‖2) (1.49)

Similarly, by dividing both sides of this equality by |y−x| and taking their limits as as y→ x,

we obtain

[∇f(2)(x)−∇f(1)(x)] · t = 0 for ∀x ∈ Γ, (1.50)

where the vector t is a unit tangent vector to Γ at x, as defined in the preceding paragraph

(i.e., t ∈ TxΓ).It follows that the tangent plane TxΓ is entirely equivalent to the kernel space

Ker[∇f(2)(x)−∇f(1)(x)] of the tensor ∇f(2)(x)−∇f(1)(x). Therefore, the image space Im[∇f(2)(x)−
∇f(1)(x)] should be the one-dimensional space orthogonal to the tangent plane, which is spanned

by the normal vectors to the tangent plane TxΓ. Consequently, ∇f(2)(x)−∇f(1)(x) takes the for-

m:

∇f(2)(x)−∇f(1)(x) = a⊗n(x) if x ∈ Γ, (1.51)

where a is a vector. If a 6= 0, f is not differentiable on Γ, and (1.51) represents the Hadamard’s

relation for a vector function. It is evident that even when ∇f(2)(x) 6= ∇f(1)(x) on Γ, the surface

gradient is continuous:

∇Sf(1)(x) = ∇Sf(2)(x) if x ∈ Γ, (1.52)

which also implies:

divSf(1)(x) = divSf(2)(x) if x ∈ Γ. (1.53)

These expressions indicate that even if ∇f(2)(x) and ∇f(1)(x) differ across Γ, the continuity of

the surface gradient and divergence is preserved.

1.3.3 Jump of the Derivative of a Tensor Function

The approach utilized to establish the Hadamard’s relation for scalar and vector functions

can be extended to derive analogous relations for higher-order tensor functions. Let’s consider

a second-order tensor function T : Ω ⊂ Rk → Rk×Rk, defined analogously to the scalar and
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vector function. Specifically, T(x) is defined piecewise as follows:

T(x) =

T(1)(x) if x ∈Ω(1)

T(2)(x) if x ∈Ω(2)
, (1.54)

subject to the continuity condition on Γ:

T(x) = T(1)(x) = T(2)(x) if x ∈ Γ, (1.55)

where T(i) : Ω(i) ⊂Ω→Rk×Rk (for i = 1,2) are continuously differentiable on their respective

domains. According to the previous derivation, we can deduce that:

∇T(2)(x)−∇T(1)(x) = A⊗n(x) if x ∈ Γ, (1.56)

where A is a second-order tensor. When A 6= 0, F is not differentiable on Γ, and (1.56) corre-

sponds to the Hadamard relation for a tensor function. From this relation, we directly infer that:

∇ST(1)(x) = ∇ST(2)(x) if x ∈ Γ, (1.57)

divST(1)(x) = divST(2)(x) if x ∈ Γ. (1.58)

These expressions illustrate the preservation of surface gradient and divergence continuity, even

in the presence of potential differences between ∇T(2)(x) and ∇T(1)(x) across Γ. Additionally,

extending this methodology to higher-order tensor functions allows for the consistent derivation

of analogous Hadamard relations, while also maintaining the continuity of surface gradient and

divergence properties.

1.3.4 Jumps of High Derivatives

The established relations illustrate that while the derivative of a continuous function across

a surface Γ may exhibit discontinuities, its surface derivative remains continuous. By iterative-

ly exploiting this observation, we can generalize the continuity of the tangential (or surface)

derivative of any order for continuous functions (scalar, vector, or tensor) across Γ. For exam-
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ple, considering the scalar function ϕ defined by (1.36) and (1.37), where ϕ is assumed to be

twice continuously differentiable in Ω, we can formulate:

∇S[∇Sϕ(1)(x)] = ∇S[∇Sϕ(2)(x)] for ∀x ∈ Γ, (1.59)

which implies further:

4Sϕ(1)(x) =4Sϕ(2)(x) for ∀x ∈ Γ, (1.60)

Here,4S represents the surface Laplacian, defined as:

4Sϕ(i)(x) = ∇S[∇Sϕ(1)(x)] for ∀x ∈ Γ. (1.61)
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Chapter 2

Taylor Expansions of 3D Fields About a

Curved Surface

In a three-dimension (3D) Euclidean space R3, when one dimension of a structure is sig-

nificantly smaller than the other two dimensions, this dimension is typically referred to as the

thickness of the structure, and the structure itself can be modeled as a plate-like or shell-like

entity. Given that the thickness of a (plate or) shell is considerably smaller than its other dimen-

sions, the internal field of the shell can be effectively approximated in terms of its distribution

on its median surface.

In this chapter, we first employ the surface definition of Chapter 1 to construct a shell and

analyze the geometric properties of this shell. Building on this foundation, and taking into

consideration the influence of the material properties of the shell on the continuity of the field,

we derive the Taylor series expansions for both scalar and vector fields within the shell. These

results are instrumental in subsequent analyses, enabling a transition from a 3D medium to a 2D

ones, thus facilitating the estabilishment of plate and shell theories as well as interface theories.

By reducing dimensions, we can more effectively analyze and predict the behavior of plates and

shells under various conditions. Furthermore, the expansions aid in the formulation of boundary

conditions and continuity requirements that are essential for the accurate modeling of physical

phenomena in thin-walled structures.
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2.1 Parallel Curves and Surfaces

Given a plane curve or surface S defined by (1.1), we can construct a parallel plane curve or

surface Sd as follows:

Sd = {y ∈ Rk |y = x+dn(x), x ∈ S,d ∈ R}, (2.1)

where n(x) denotes the unit normal vector to the curve or surface S at the point x. The parallel

curve or surface Sd is defined by translating each point x ∈ S a distance d in the direction of the

normal vector n(x). Therefore, the set Sd represents all points y ∈ Rk that are at a distance d

along the normal vector from the corresponding points on S. This construction ensures that Sd

is parallel to S, with an oriented distance d (see Fig. 2.1). The local geometrical properties of

S

n(x)

x

n(y)

y

Sd

d

O

TxS

TySd

Figure 2.1: Geometry of parallel surfaces.

Sd are determined by those of S and the distance d. Specifically, for ∀y ∈ Sd , ∃x ∈ S such that

y = x+dn(x), and the unit normal vector n(y) is collinear to the unit normal vector n(x). To

demonstrate this, consider the definition of Sd and compute the variation of y ∈ Sd due to an

increment δx ∈ TxS:

δy = δx+dδn(x;δx) = δx−dW(x)δx= [P(x)−dW(x)]δx. (2.2)
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Since W(x) is a tangential surface tensor field, it follows from the aforementioned equation that

the vector δy, tangent to Sd at y ∈ Sd , is parallel to the vector δx, tangent to S at x∈ S. In other

words, the tangent spaces TySd and TxS are parallel manifolds. From the above equation, it is

evident that the following condition must hold to ensure that the normal vectors remain well-

defined and non-degenerate as we construct the parallel surface Sd using the aforementioned

method:

1−dĉi(x) 6= 0 (i = 1,2), (2.3)

where ĉi(x) are the principal curvatures of S at the point x. Furthermore, if the condition is

satisfied, there exists a unique correspondence between δy and δx. Thus, for ∀y ∈ Sd , ∃x ∈ S

related by y = x+dn(x), we can write:

n(y) = n(x). (2.4)

An important implication of above equation is that:

∇n(x) ·n(x) = 0. (2.5)

To establish this, observe that ∇n(x) ·n(x) represents the directional derivative of n(x) in the

direction of n(x), which can be written as:

∇n(x) ·n(x) = lim
d→0

n[x+dn(x)]−n(x)
d

(2.6)

Substituting equation (2.4) into the right-hand side of above equation immediately gives relation

(2.5). This result indicates that the normal directional derivative of the unit normal vector field

within a domain consisting of parallel surfaces or curves is zero. This fundamental property will

be consistently utilized in our subsequent analyses. Similarly, the fact that TySd = TxS implies

that:

P(y) = P(x), (2.7a)

∇P(x) ·n(x) = 0. (2.7b)
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Combining equations (1.28) and (2.5), we derive the directional derivative of W(x) in the direc-

tion of n(x) as:

∇W(x) ·n(x) = W2, (2.8)

which can be further developed as:

∇Wr(x) ·n(x) = rWr+1, r ∈ Z+. (2.9)

We now propose to establish the expression of the Weingarten tensor W(y) of Sd at y in

terms of W(x) and d. By definition, we have

W(x) =−∇xn(x) ·P(x), W(y) =−∇yn(y) ·P(y). (2.10)

Taking into account relations (2.4), (2.7b), we can write

W(x) =−∇xn(y) ·P(y) =−∇yn(y) ·
(

∂y
∂x

)
·P(y). (2.11)

According to definition (2.1), we have ∂y
∂x = I+d∇xn(x), which leads to:

W(x) =−∇yn(y) · [I+d∇xn(x)] ·P(y) = W(y)[P(x)−dW(x)]. (2.12)

If condition (2.3) is satisfied, the tensor P(x)− dW(x) becomes an invertible transformation

from TxS to TxS, enabling us to express:

W(y) = W(x)[P(x)−dW(x))]−1. (2.13)

This relation implies that W(y) shares the same principal directions as W(x). In other words,

the principal curvature directions of W(y) are identical to those of W(x). When S and Sd are

two parallel plane curves, we deduce from (2.13) the relationship between the curvatures κ(x)

and κ(y):

κ(y) =
κ(x)

1−dκ(x)
. (2.14)

44



When S and Sd are two parallel surfaces, it follows from (2.13) that

ĉ1(y) =
ĉ1(x)

1−dĉ1(x)
, ĉ2(y) =

ĉ2(x)

1−dĉ2(x)
, (2.15)

which provide relations between the principal curvatures of S and Sd .

2.2 Taylor Expansion of 3D Fields About a Curved Surface

Let Ωh be the domain in R3 occupied by a shell of uniform thickness, which is bounded

by the top surface S+ and the bottom surface S−. The distance between these surfaces is small

in comparison to the other dimensions of the shell (see Fig. 2.2). The distance between the

top and bottom curved surfaces is defined as the thickness of the shell and is denoted by h.

The middle surface S0 of the shell is defined as the set of points that are equidistant from the

top surface S+ and the bottom surface S−. We assume that the shell has a uniform thickness,

meaning that the distance between the top surface S+ and the bottom surface S− is constant at

every point. Consequently, the middle surface S0 is parallel to both S+ and S−. Let x0 denote an

arbitrary point on the middle surface S0, as defined by the equation (1.1), where the regularization

parameter a is set to 0. Based on the construction of the parallel surfaces described previously

in equation (2.1), the surfaces S+ and S− can be expressed as follows:

+S

−S

0S

n

hΩ

S

2/h

2/h
ς

0S

n

Figure 2.2: Configuration of a shell formed by stacked parallel surfaces.

S+ = {x ∈ R3 | x= x0 +
h
2

n(x0), x0 ∈ S0}, (2.16)
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S− = {x ∈ R3 | x= x0−
h
2

n(x0), x0 ∈ S0}, (2.17)

while the domain Ωh bounded by S+ and S− be characterized as

Ωh = {x ∈ R3 | x= x0 +dn(x0), x0 ∈ S0, −
h
2
≤ d ≤ h

2
}, (2.18)

where n is the unit vector normal to the surfaces S0, S+ and S−.

Let Ψ : Ωh ⊂ Rk→ R or Rk represent a scalar field or a component of a vector field that is

sufficiently smooth. Considering that the thickness of the shell Ωh is much smaller than its other

dimensions, the fields within this three-dimensional shell can be approximated using a Taylor

series expansion about the mid-surface S0. Specifically, for any point x ∈ Ωh , Ψ(x) can be

expanded in terms of Ψ(x0) as follows:

Ψ(x) = Ψ(x0)+ ς∇nΨ(x0)+
ς2

2!
∇

2
nΨ(x0)+

ς3

3!
∇

3
nΨ(x0)+ · · ·+

ςN

N!
∇

N
n Ψ(x0)+ · · · , (2.19)

where ς is the normal distance between x and the mid-surface S0 and given by

ς = (x−x0) ·n. (2.20)

Note that

∇nς = ∇ς ·n = n. (2.21)

Here, ∇n denotes the normal derivative with respect to S0, capturing the rate of change of a field

in the direction normal to the mid-surface. Additionally, ∇N
n (N = 1,2,3, · · · ) represents denotes

the Nth normal derivative, defined recursively by

∇
N
n Ψ = ∇

(
∇

N−1
n Ψ

)
·n, (2.22)

indicating the N-fold differentiation along the normal direction to the surface S0. Formula (2.19)

allows for a field Ψ in the shell Ωh to be expressed in terms of its values and derivatives on the

mid-surface S0, thus reducing of a 3D problem to a 2D one.

However, in some situations, the function Ψ may not exhibit sufficient smoothness. For

instance, consider the middle surface S0 dividing the domain Ωh into two distinct subdomains
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Ω
(−)
h and Ω

(+)
h , each comprised of different materials. Even if Ω

(−)
h and Ω

(+)
h are perfectly

bonded, the field Ψ within Ωh may be continuous in Ωh but not continuously differentiable on

S0. In such an instance where Ψ is piecewise smooth, the application of Taylor series expansion

and the concept of normal derivatives may remain applicable within individual subdomains Ω
(−)
h

and Ω
(+)
h . This is expressed by:

Ψ(x) =


Ψ(x0)+ ς∇nΨ(+)(x0)+

ς2

2! ∇2
nΨ(+)(x0)+

ς3

3! ∇3
nΨ(+)(x0)+ · · · , if x ∈Ω

(+)
h

Ψ(x0)+ ς∇nΨ(−)(x0)+
ς2

2! ∇2
nΨ(−)(x0)+

ς3

3! ∇3
nΨ(−)(x0)+ · · · , if x ∈Ω

(−)
h

, (2.23)

where

∇nΨ
(±)(x0) = lim

t→0±

Ψ(x0 + tn)−Ψ(x0)

t
(2.24)

and higher-order normal derivatives can be defined in a similar way. The observed discontinuity

can be attributed to the inherent properties of the material. Additionally, as discussed previously

in the context of Hadamard’s relations, even though Ψ is not differentiable at the point x0 ∈ S0,

its surface gradient remains continuous, i.e.,:

∇SΨ
(+)(x0) = ∇SΨ

(−)(x0). (2.25)

Moreover, if S0 is a perfect interface, the normal components of the conjugate fields Φ of ∇Ψ

are continuous across the interface, i.e.,

Φ
(+) ·n = Φ

(−) ·n. (2.26)

Considering the influence of material properties on the distribution of the field, and utilizing

these two complementary continuous fields, we express the Taylor series expansion in an al-

ternative manner. Reviewing equation (2.19), for the sake of generalization, the Taylor series

expansion of Ψ(x) can be reformulated as follows:

Ψ(x) = A0 + ςA1 +
ς2

2!
A2 +

ς3

3!
A3 + · · ·+

ςN

N!
AN + · · · , (2.27)

where

AN = ∇
N
n Ψ for N = 0,1,2,3, . . . , (2.28)
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with each AN being recursively deducible from AN−1 and BN−1 = ∇N−1
n (Φ ·n). Simultaneous-

ly, BN−1 can be iteratively derived from AN−2 and BN−2. It is worth noting that AN and BN

denote scalar or vector functions defined on S0 ⊂ Ωh, depending on whether Ψ is a scalar or

vector field, respectively. For clarity, the derivation of AN and BN is detailed in the following

subsection.

2.2.1 Taylor Expansion of a Scalar Field Involved in a Transport-Like

Phenomenon

Let Ψ represent a scalar field such as temperature, pressure, or electric potential, while Φ

denotes the associated flux like heat flux, velocity vector, or electric current density, depending

on the specific physical nature of Ψ in question. In relation to these transport phenomena, when

Ω
(−)
h and Ω

(+)
h are perfectly connected by the interface S0, the scalar field Ψ within Ωh may

exhibit continuity throughout Ωh but may lack differentiability at a point x0 ∈ S0. However,

according to the Hadamard relations for scalar fields, we have:

∇SΨ
(+) = ∇SΨ

(−). (2.29)

On the other hand, the normal flux across the interface S0 is continuous, i.e.,

(Φ ·n)(+) = (Φ ·n)(−). (2.30)

In this scenario, let us delineate the explicit recursive formulas for AN and BN of scalar fields,

focusing on fluid flow through porous media as an illustrative example. To ensure precision in

our notation, we adhere to classical conventions, representing the scalar field p in place Ψ and

the vector flux field w instead of Φ. This physical context encompasses diverse applications

such as groundwater flow, oil and gas reservoir engineering, and soil mechanics. Assuming

that material forming Ωh is linear, the relationship between the velocity vector w and the pore

pressure p in Ωh, as described by Darcy’s law, is given by

w =−K ·∇p. (2.31)
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Here, the second-order tensor K, which is symmetric and positive definite, represents the per-

meability tensor characterizing the ability of the medium to transmit fluid This relationship is

widely used for predicting and managing fluid flow in various natural and engineered porous

media systems. Under steady-state conditions, and in the absence of any mass sources or sinks,

the mass conservation equation takes the form

div w = 0. (2.32)

In this case, AN and BN denote scalar functions defined on S0 ⊂ Ωh. These functions are

rewritten as follows:

AN = ∇
N
n p, BN = ∇

N
n (w ·n). (2.33)

2.2.2 Cases Where N = 0 and N = 1

Substituting N = 0 into equations (2.33), we obtain:

A0 = p, B0 = w ·n. (2.34)

When N = 1, to derive the explicit expressions of the operators A1 and B1, we recall that for

any given surface S, the gradient of the pore pressure field ∇p evaluated on S admits the unique

decomposition:

∇p = ∇S p+∇N p. (2.35)

Applying Darcy’s law, the normal velocity vector is related to ∇p by

wn = w ·n =−(K ·∇p) ·n.

Using the foregoing two equation, we obtain

w ·n = wn =−(K ·∇S p) ·n− (K ·∇N p) ·n, (2.36)

(K ·∇N p) ·n = (K ·P⊥ ·∇p) ·n = (n ·K ·n)∇p ·n. (2.37)
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Since the conductivity tensor K is a second-order positive-definite tensor, substituting equation

(2.37) into equation (2.36) and dividing both sides by n ·K ·n, we obtain

A1 = ∇n p =− wn

n ·K ·n − s ·∇S p (2.38)

where s is defined by

s =
n ·K

n ·K ·n . (2.39)

It is worth noting that wn and ∇S p are both continuous across any perfect interface.

Regarding the derivation of the expression for B1, we first recall that the unit normal vector

n defined in a domain formed by parallel sheets has the specific property

∇n ·n = 0. (2.40)

Thus, we have:

∇nwn = ∇(wn) ·n = ∇w : P⊥ = divNw. (2.41)

This equation implies that the directional derivative of wn in the normal direction is equal to the

normal divergence of the flux vector w. Simultaneously, the decomposition

divw = ∇w : P+∇w : P⊥ = divSw+divNw (2.42)

holds. Substituting this equation into the equilibrium equation (2.32) leads to

divNw =−divSw. (2.43)

Using Darcy’s law (2.31) and the decomposition (2.35), we calculate

divSw = ∇w : P =−∇(K ·∇p) : P =−∇(K ·P ·∇p) : P−∇(K ·P⊥ ·∇p) : P. (2.44)

In this formula,

∇(K ·P⊥ ·∇p) = ∇[K ·n(∇p ·n)]. (2.45)
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Taking into account the definition of ∇p ·n, above equation becomes

∇(K ·P⊥ ·∇p) =−∇

[
K ·n

n ·K ·nwn +
(K ·n)⊗ (n ·K)

n ·K ·n ·P ·∇p
]
. (2.46)

Substituting (2.46) into (2.44) and considering (2.43) leads to

B1 = ∇n(w ·n) = divS(S ·∇S p)−divS(swn) (2.47)

where the tensor S is defined by

S = K− (K ·n)⊗ (n ·K)

n · K ·n . (2.48)

It is evident that S is a symmetric second-order tensor.

2.2.3 Case Where N = 2

Applying the first formula of (2.33), we calculate A2 as follows:

A2 = ∇A1 ·n = ∇

(
− wn

n ·K ·n − s ·∇s p
)
·n (2.49)

where the expression (2.38) for A1 is used in the second equality. Given that ∇n · n = 0, we

have:

∇

(
1

n ·K ·n

)
·n = 0, ∇s ·n = 0. (2.50)

Consequently,

A2 =−
1

n ·K ·n∇wn ·n− s ·∇(∇S p) ·n. (2.51)

In this expression,

∇(∇S p) ·n = ∇(∇p ·P) ·n = ∇p ·∇P ·n+(∇2 p ·n) ·P. (2.52)

However, ∇P ·n =−(∇n ·n)⊗n−n⊗ (∇n ·n) = 0. Thus,

∇(∇S p) ·n = (∇2 p ·n) ·P = [∇(∇p ·n)−∇p ·∇n] ·P = ∇S(∇p ·n)+W ·∇S p. (2.53)
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Taking into account the definitions of A1 and B1, we arrive at the final form of A2:

A2 =−
B1

n ·K ·n − s · (∇SA1 +W ·∇SA0). (2.54)

Applying the second formula of (2.33), we calculate B2 as follows

B2 = ∇B1 ·n = ∇ [∇(S ·∇S p) : P−∇(swn) : P] ·n. (2.55)

Given that ∇P ·n = 0, we consider the first term on the right-hand side of the above equation:

∇ [∇(S ·∇S p) : P] ·n = [∇∇(S ·∇S p) ·n] : P

= ∇∇ [(S ·∇S p) ·n] : P− [∇(S ·∇S p) ·∇n] : P.
(2.56)

The term ∇∇ [(S ·∇S p) ·n] : P can be expanded as:

∇∇ [(S ·∇S p) ·n] : P = ∇S[S ·∇S(∇p ·n)] : I+∇S[S ·W ·∇S p] : I (2.57)

The term − [∇(S ·∇S p) ·∇n] : P can be rewritten as:

− [∇(S ·∇S p) ·∇n] : P = ∇S(S ·∇S p) : W. (2.58)

For the second term on the right-hand side of equation (2.55), given that ∇P ·n = 0, we have:

− [∇(swn) : P] ·n = [∇(∇swn) ·n] : P. (2.59)

This can be further decomposed as:

[∇(∇swn) ·n] : P =−∇ [∇(swn) ·n] : P+[∇(swn) ·∇n] : P. (2.60)

The first term on the right-hand side, −∇ [∇(swn) ·n] : P, can be expanded as follows

−∇ [∇(swn) ·n] : P =−∇S [s(∇wn ·n)] : I. (2.61)
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The second term, [∇(sqn) ·∇n] : P, can be rewritten as:

[∇(swn) ·∇n] : P =−∇S(swn) : W, (2.62)

Taking into account the definitions of A1 and B1, we arrive at the final form of B2:

B2 =∇S[S ·∇SA1] : I+∇S[S ·W ·∇SA0] : I+∇S(S ·∇SA0) : W

−2∇S(sB1) : I−2∇S(sB0) : W.
(2.63)

2.2.4 Case Where N is Arbitrary

By systematically extending the prior computations to N = 3,4,5, . . ., we have deduced the

general recurrence relations for AN and BN . These recursive expressions offer a concise and

effective means to compute AN and BN for any integer N. They are given as follows:

AN =− BN−1

n ·K ·n − s ·
N−1

∑
r=0

(N−1)!
(N−1− r)!

Wr ·∇SAN−1−r, (2.64)

BN =
N−1

∑
r=0

(N−1)!
(N−1− r)!

[
N−1−r

∑
k=0

(N−1− r)!
(N−1− r− k)!

∇S

(
S ·Wk ·∇SAN−1−r−k

)
: Wr

]

−
N−1

∑
r=0

(N−1)!
(N−1− r)!

[∇S(sBN−1−r) : Wr] .

(2.65)

By substituting N = 0,1,2 into the explicit recursive formulas (2.64) and (2.65) for AN and BN ,

respectively, we obtain results consistent with our earlier derivations. This process serves to

validate the accuracy of the explicit recursion formulas for AN and BN .

A rigorous proof of these formulas necessitates a step-by-step derivation, starting from the

base cases and iteratively progressing to higher values of N. While conventionally, one would

extend the recursion from AN−1 and BN−1 to obtain AN and BN , this procedure primarily

entails technical computations that closely parallel the subsequent validation process for the re-

cursion for vector field. Subsequently, a detailed exposition of the derivation process forAN and

BN from AN−1 and BN−1 within the vector framework will be provided. This comprehensive

treatment aims to furnish a scholarly reference for the verification of the recursion formulas,
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elucidating the underlying logic and methodology employed in ensuring the accuracy of the

mathematical expressions.

Combining equations (2.27), (2.64), and (2.65), we have presented the complete Taylor se-

ries expansion of the pore pressure field in this section. This explicit expression of the Taylor

series incorporates crucial information about the material properties, which are embedded in

the operators S and s. This Taylor series expansion is applicable to other types of transport

phenomena and exhibits a similar structure for AN and BN . For instance, when addressing

heat conduction problems, Darcy’s law is substituted with Fourier’s law, and the mass conser-

vation principle is replaced by the corresponding energy conservation principle. Despite these

variations, the equations maintain a comparable form, resulting in S and s also have analogous

expressions. This comprehensive examination of the Taylor series expansion highlights its broad

applicability across diverse domains, making it a versatile tool for modeling various transport

phenomena.

2.3 Taylor Expansion of a Vector Field Involved in an Elastic

Problem

Now, we are placed in the context of linear elasticity. Then, Ψ represents the displacement

vector field, while Φ ·n denotes the traction vector field. It is conveninet to adopt conventional

symbols: denote the displacement vector field by u instead of Ψ and symbolize the traction

vector field by t rather than Φ · n. According to the Cauchy theorem, the traction vector t is

given by t = σ ·n with σ being the second-order Cauchy stress tensor.

The material constituting Ωh is assumed to be linearly elastic and generally anisotropic. The

material constitutive law is specified by Hooke’s law:

σ = C : ε, (2.66)

where C is the fourth-order elastic stiffness tensor and has the usual minor and major symmetries

Ci jkl =C jikl =Ckli j. (2.67)

The tensor C is positive-definite. The infinitesimal strain tensor ε is a symmetric second-order
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tensor and defined by

ε =
1
2

[
∇u+(∇u)T

]
. (2.68)

On the other hand, the stress-strain relationship reads

ε = S : σ , (2.69)

where the elastic compliance tensor S is related to C by S = C−1. Thus, S has also the usual

minor and major and is positive definite. In the static situation and in the absence of body forces,

the stress tensor σ satisfies the equilibrium equations

divσ = 0. (2.70)

If S0 ⊂Ωh is a perfect interface partitioning Ωh into two distinct subdomains Ω
(−)
h and Ω

(+)
h ,

the displacement vector u and the traction t are both continuous across S0:

u(+)(x0) = u(−)(x0) for x0 ∈ S0, (2.71)

t(+)(x0) = t(−)(x0) for x0 ∈ S0. (2.72)

Applying the Cauchy theorem, we have t(±)(x0) = σ (±)(x0)n(x0). So, the above traction con-

tinuity condition can be further written as

σ (+)(x0)n(x0) = σ (−)(x0)n(x0) for x0 ∈ S0. (2.73)

Applying the Hadamard relation (1.51) for a vector-valued function given in the first chapter

to the displacement vector, we have

∇u(+)(x0)−∇u(−)(x0) = a⊗n(x0) for x0 ∈ S0 (2.74)

which implies that

∇Su(+)(x0) = ∇Su(−)(x0) for x0 ∈ S0. (2.75)
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Further, accounting for the strain tensor definition (2.68), the relation (2.74) gives rise to

ε(+)(x0)− ε(−)(x0) =
1
2
[a(x0)⊗n(x0)+n(x0)⊗a(x0)] for x0 ∈ S0. (2.76)

This relation implies that

ε(+)
s (x0) = ε(−)s (x0) for x0 ∈ S0, (2.77)

where εs is the surface (or tangential) strain tensor defined on S⊂Ωh by

εs(x) = P(x) · ε(x) ·P(x). (2.78)

The relations (2.76) or (2.77) formulates the well-known fact in mechanics: across a perfec-

t interface S0, the tangential components of the strain tensor are continuous while its normal

components are discontinuous.

It is useful to introduce two fourth-order complementary orthogonal projection operators

[69, 64] as follows:

P= P⊗P = I−P⊥⊗I− I⊗P⊥+P⊥⊗P⊥, (2.79)

P⊥ = I−P= P⊥⊗I+ I⊗P⊥−P⊥⊗P⊥. (2.80)

Above, I denotes the fourth-order identity tensor for the space of symmetric second-order tensors

and is defined by:

I= I⊗I =
1
2
(I⊗I+ I⊗I). (2.81)

In the foregoing formulae, ⊗ and ⊗ denote the Kronecker tensor product defined by

(X⊗Y)i jkl = AikB jl, (X⊗Y)i jkl = AilB jk, (2.82)

where X and Y are any two second-order tensors, and

X⊗Y =
1
2
(X⊗Y+X⊗Y). (2.83)
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We can verify tha P and P⊥ are two complementary orthogonal projection operators in the sense

that

P+P⊥= I, PP= P, P⊥P⊥= P⊥, (P)T = P, (P⊥)T = P⊥, PP⊥= P⊥P=O, (2.84)

where (·)T represents the transposition and O denotes the fourth-order zero tensor.

With the aid of the introduced projection operators, the relation (2.77) can be compactly

written as

P(x0)ε(+)(x0) = P(x0)ε(−)(x0) for x0 ∈ S0. (2.85)

Furthermore, the traction continuity condition (2.73) is equivalent to

P⊥(x0)σ (+)(x0) = P⊥(x0)σ (−)(x0) for x0 ∈ S0. (2.86)

Note that the continuity relations (2.85) and (2.86) are complementary. Indeed, equations (2.85)

and (2.86) reflect that the important fact that the strain components parallel to the plane tangent

to a perfect interface S0 are continuous across S0 while the stress components normal to the

plane tangent to the perfect interface S0 are continuous across S0. This fact holds independently

of material constituting Ωh.

In the case in question, AN and BN denote two vector functions defined on S0 ⊂ Ωh. Pre-

cisely, we have

AN = ∇
N
n u, BN = ∇

N
n t. (2.87)

2.3.1 Cases Where N = 0 and N = 1

Substituting N = 0 into (2.87) yields

A0 = u, B0 = t. (2.88)

When N = 1, to obtain the explicit expressions of the operator A1, we first note that ∇u

evaluated on S admits the following decomposition:

∇u = ∇u ·P+∇u ·P⊥ = ∇Su+∇nu⊗n. (2.89)
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Substituting this decomposition into the expression of t and considering the symmetry of tensor

C, we obtain

t = σ ·n = (C : ∇u) ·n = C : ∇Su ·n+(n ·C ·n) ·∇nu. (2.90)

The fourth-order tensor C is positive definite, namely ε : (Cε) > 0 for all ε 6= 0. This ensures

the positivity and invertibility of n ·C · n. Indeed, posing ε = a⊗ n with any a ∈ Rk being a

non-zero vector, we have

(a⊗n) : [C : (a⊗n)]> 0, (2.91)

because C is positive definite. This amounts to

a · (n ·C ·n) ·a > 0, (2.92)

showing that n ·C ·n is positive definite and therefore invertible. Let us define G = n ·C ·n and

denote its inverse as F = G−1. By substituting this definition into equation (2.90), we obtain:

∇nu = F · t−D : ∇Su (2.93)

where D is the third-order tensor defined by

D= F · (n ·C) . (2.94)

Using the decomposition (1.14), the equilibrium equation (2.70) can be rewritten as

∇σ : P+∇σ : P⊥ = 0. (2.95)

Given the fact that the unit normal vector n defined in a domain formed by parallel sheets satisfies

∇n ·n = 0, we can write

∇σ : P⊥ = ∇(σ ·n) ·n−σ ·∇n ·n = ∇nt. (2.96)

Accounting for this result, it follows from (2.95) that

∇nt =−divSσ . (2.97)
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Using Hooke’s law and the formula (2.89) in (2.97), we get

∇nt =−divS(C : (∇Su)−divS[(C ·n) ·∇nu] =−divS(C : (∇su)−divS[(C ·n) ·A1].

By substituting equation (2.93) into the preceding equation, we derive:

∇nt =−divS(A : ∇Su)−divS(B · t), (2.98)

where the tensors A and B are defined by

A= C− (C ·n) ·F · (n ·C) , (2.99)

B= (C ·n) ·F. (2.100)

It can be verified that A is the fourth-order symmetric having the minor and major symme-

tries:

Ai jkl = A jikl = Akli j. (2.101)

Additionally, it can be shown that A possesses the following properties:

A(PSP) = (PSP)A= P, AP= PA= A. (2.102)

Furthermore, the second term in the expression of A can be expressed by

(C ·n) ·F · (n ·C) = C : B : C (2.103)

where the fourth-order B is given by

B=
1
2
(F⊗P⊥+P⊥⊗F). (2.104)

The fourth-order tensor B relates the stress tensor to the normal component of the displacement

gradient, facilitating the expression of the anisotropic behavior of the material. Additionally, it

59



can be verified that

B(P⊥CP⊥) = (P⊥CP⊥)B= P⊥, BP⊥ = P⊥B= B. (2.105)

2.3.2 Case Where N = 2

When N = 2, we can figure out A2 by

A2 = ∇A1 ·n = (∇F ·n) · t+F · (∇t ·n)− (∇D ·n) : ∇Su−D : ∇(∇Su) ·n. (2.106)

To address the first term of equation (2.106), consider the inverse relationship between the ten-

sors G and F, implying that

∇(F ·G) ·n = ∇I ·n.

This leads to

(∇F ·n) ·G+F · (∇G ·n) = 0. (2.107)

Exploiting the property ∇n ·n = 0, we deduce:

∇G ·n = ∇(n ·C ·n) ·n = 0, (2.108)

implying (∇F ·n) ·G = 0. Since G is invertible, it follows:

∇F ·n = 0. (2.109)

For the second term of equation (2.106), it can be transformed into

F · (∇t ·n) = F ·B1. (2.110)

For the third term of equation (2.106), we consider the property ∇(n ·C) ·n = 0, so that

∇D ·n = ∇[F · (n ·C)] ·n = (∇F ·n) · (n ·C)+F · [∇(n ·C) ·n] = 0. (2.111)
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Now, for the last term of equation (2.106), considering ∇P ·n = 0, we proceed with the calcula-

tion:

D : ∇(∇Su) ·n =D : ∇(∇u ·P) ·n =D : [∇(∇u ·n) ·P−∇u ·∇n ·P] (2.112)

Taking into account the definitions of A1 and B1, we arrive at the final form of A2:

A2 = F ·B1−D : (∇SA1 +∇SA0 ·W). (2.113)

Applying the second formula of (2.87), B2 can be figured out by:

B2 =∇B1 ·n =−∇[(A : ∇Su)+divS(B · t)] ·n. (2.114)

The first term of equation (2.114) can be expanded as follows: given ∇P ·n = 0, then

∇[divS(A : ∇Su)] ·n = ∇[∇(A : ∇Su) : P] ·n

= ∇[∇(A : ∇Su) ·n] : P−∇(A : ∇Su) ·∇n ·P.
(2.115)

In the above expression, the first term can be further expanded as

∇[∇(A : ∇Su) ·n] : P = ∇[(∇A ·n) : ∇Su+A : (∇∇Su) ·n] : P, (2.116)

and the second term can be rewritten as

−∇(A : ∇Su) ·∇n ·P = ∇(A : ∇Su) : W. (2.117)

By adding the two foregoing expressions and taking into account the definitions of A0 and A1,

we obtain:

∇[divS(A : ∇Su)] ·n = ∇[A : (∇SA1 +∇SA0 ·W)] : P+[∇(A : ∇SA0) ·P] : W. (2.118)

As demonstrated by equation (1.15), ∇(·) : P = ∇S(·) : I, we have

∇[divS(A : ∇Su)] ·n = ∇S(A : ∇SA1) : I+∇S(A : ∇SA0 ·W) : I+∇S(A : ∇SA0) : W. (2.119)
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For the second term of equation (2.114), its expansion process and the properties used in the

expansion are similar to those employed in the expansion of the first term of equation (2.114)

(i.e., the expansion process mentioned above). To enhance clarity and coherence in the process,

we present the expansion process in a single continuous equation as follows:

∇[divS(B · t)] ·n =∇[∇(B · t) : P] ·n

=∇(B · t) : (∇P ·n)+ [∇∇(B · t) ·n] : P

=∇[∇(B · t) ·n] : P−∇(B · t) : (∇n ·P)

=∇[(∇B · t) ·n+B ·∇t ·n] : P+∇(B · t) ·W]

=∇(B ·B1) : P+∇(B ·B0) ·W

=∇S(B ·B1) : I+∇S(B ·B0) : W.

(2.120)

Combining the results obtained from equations (2.119) and (2.120), the expression of B2 takes

the form

B2 =−∇S(A : ∇SA1) : I−∇S(A : ∇sA0 ·W) : I−∇S(A : ∇sA0) : W

−∇S(B ·B1) : I−∇S(B ·B0) : W.
(2.121)

2.3.3 Case Where N is Arbitrary

By systematically continuing our computations for N = 3,4,5, . . ., we can establish the gen-

eral recurrence expressions for AN and BN . These recursive expressions provide a succinct and

efficient method for calculating AN and BN for any integer N. Precisely, they can be expressed

as follows:

AN = F ·BN−1−D :

[
N−1

∑
r=0

(N−1)!
(N−1− r)!

∇SAN−1−r ·Wr

]
, (2.122)

BN =−
[

N−1

∑
r=0

(N−1)!
(N−1− r)!

N−1−r

∑
r=0

(N−1− r)!
(N−1− r− k)!

∇s

[
A :
(

∇SAN−1−r−k ·Wk
)]

: Wr

]

−
N−1

∑
r=0

(N−1)!
(N−1− r)!

∇S(B ·BN−1−r) : Wr.

(2.123)

To validate the derivation from N−1 to N, we will detail the steps to derive AN and BN from

AN−1 and BN−1, based on the previously established recurrence relations. Assuming we have
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AN−1 and BN−1, the recurrence formula for AN is

AN = ∇nAN−1. (2.124)

Given

AN−1 = F ·BN−2−D :

[
N−2

∑
r=0

(N−2)!
(N−2− r)!

∇SAN−2−r ·Wr

]
, (2.125)

we calculate the normal derivative of AN−1:

AN = ∇

[
F ·BN−2−D :

N−2

∑
r=0

(N−2)!
(N−2− r)!

(∇SAN−2−r ·Wr)

]
·n. (2.126)

Considering the aforementioned fact that ∇F ·n = 0, the first term of the above equation can be

reformulated as

∇(F ·BN−2) ·n = (∇F ·n) ·BN−2−F · (∇BN−2 ·n) = F ·BN−1. (2.127)

Taking into account the fact that ∇D ·n = 0 as proved in equation (2.111), the second term can

be expressed as follows:

∇n

(
−D :

N−2

∑
r=0

(N−2)!
(N−2− r)!

(∇SAN−2−r ·Wr)

)
=−D :

N−2

∑
r=0

(N−2)!
(N−2− r)!

∇n(∇SAN−2−r ·Wr). (2.128)

Utilizing the previously provided rule that ∇Wr(x) ·n(x) = rWr+1, we can rewrite the equation

as:

−D :
N−2

∑
r=0

(N−2)!
(N−2− r)!

∇SAN−2−r · (∇Wr ·n) =−D :
N−2

∑
r=0

(N−2)!
(N−2− r)!

r∇SAN−2−r ·Wr+1. (2.129)
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Taking into account the fact that ∇P ·n = 0, we can proceed as follows:

−D :
N−2

∑
r=0

(N−2)!
(N−2− r)!

∇(∇SAN−2−r) ·n ·Wr

=−D :
N−2

∑
r=0

(N−2)!
(N−2− r)!

[∇(∇AN−2−r ·n)−∇AN−2−r ·∇n] ·P ·Wr

=−D :
N−2

∑
r=0

(N−2)!
(N−2− r)!

(∇AN−1−r ·P ·Wr +∇AN−2−r ·P ·Wr+1)

=−D :
N−2

∑
r=0

(N−2)!
(N−2− r)!

(∇SAN−1−r ·Wr +∇SAN−2−r ·Wr+1).

(2.130)

Combining equations (2.127), (2.128) and (2.130), we can express AN as follows:

AN = F ·BN−1−D :
N−2

∑
r=0

(N−2)!
(N−2− r)!

[
∇SAN−1−r ·Wr +(r+1)∇SAN−2−r ·Wr+1] .

The above equation can be reduced to

AN = F ·BN−1−D :

[
N−1

∑
r=0

(N−1)!
(N−1− r)!

∇SAN−1−r ·Wr

]
, (2.131)

which is consistent with equation (2.122). Hence, the recursion formula for AN has been vali-

dated.

Similarly, BN can be calculated by

BN = ∇BN−1 ·n.

Given the expression

BN−1 =−
[

N−2

∑
r=0

(N−2)!
(N−2− r)!

N−2−r

∑
r=0

(N−2)!
(N−2− r− k)!

∇S

[
A :
(

∇SAN−2−r−k ·Wk
)]

: Wr

]

−
[

N−2

∑
r=0

(N−2)!
(N−2− r)!

∇S(B ·BN−2−r) : Wr

]
,

(2.132)
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we compute the normal derivative of BN−1:

BN =−∇

[
N−2

∑
r=0

(N−2)!
(N−2− r)!

N−2−r

∑
r=0

(N−2)!
(N−2− r− k)!

∇S

[
A :
(

∇SAN−2−r−k ·Wk
)]

: Wr

]
·n

−∇

[
N−2

∑
r=0

(N−2)!
(N−2− r)!

∇S(B ·BN−2−r) : Wr

]
·n.

(2.133)

Since that the derivation process has already made use of the properties mentioned earlier, for

the sake of clarity and coherence, the complete derivation steps for both terms will be directly

presented in a unified manner. This approach aims to provide a comprehensive understanding of

the derivation process. For the first term, derivation proceeds as follows:

∇[∇S[A : (∇SAN−2−r−k ·Wk)] : Wr] ·n

=∇[∇[A : (∇SAN−2−r−k ·Wk)] ·P : Wr] ·n

=∇[A : (∇SAN−2−r−k ·Wk)] · (∇P ·n) : Wr +[(∇∇(A : (∇SAN−2−r−k ·Wk)) ·n) ·P] : Wr

+[∇(A : (∇SAN−2−r−k ·Wk)) ·P] : (∇Wr ·n)

=[(∇∇(A : (∇SAN−2−r−k ·Wk)) ·n) ·P] : Wr− [∇(A : (∇SAN−2−r−k ·Wk)) · (∇n ·P)] : Wr

+[∇(A : (∇SAN−2−r−k ·Wk)) ·P] : (∇Wr ·n)

=(r+1)∇S[A : ∇S(AN−2−r−k ·Wk)] : Wr +∇s[A : (∇SAN−1−r−k ·Wk)] : Wr

+(k+1)∇S[A : (∇SAN−2−r−k ·Wk+1)] : Wr.

(2.134)

For the derivation of the second term, the following steps are taken:

∇[∇S(B ·BN−2−r) : Wr] ·n

=∇[∇(B ·BN−2−r) ·P : Wr] ·n

=[∇(B ·BN−2−r) · (∇P ·n)] : Wr +[(∇∇(B ·BN−2−r) ·n) ·P] : Wr +[∇(B ·BN−2−r) ·P] : (∇Wr ·n)

=[∇(B · (∇BN−2−r ·n)) ·P] : Wr +[∇(B ·∇BN−2−r) ·P ·W] : Wr +[∇(B ·BN−2−r) ·P] : (rWr+1)

=∇S(B ·BN−1−r) : Wr +∇S(B ·BN−2−r) : Wr+1 + r∇S(B ·BN−2−r) : Wr+1

=∇S(B ·BN−1−r) : Wr +(r+1)∇S(B ·BN−2−r) : Wr+1.

(2.135)
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The addition of the outcomes derived from equations (2.134) and (2.135) yields:

BN =− [
N−2

∑
r=0

(N−2)!
(N−2− r)!

N−2−r

∑
r=0

(N−2)!
(N−2− r− k)!

[(r+1)∇S[A : ∇S(AN−2−r−k ·Wk)] : Wr

+∇S[A : (∇SAN−1−r−k ·Wk)] : Wr +(k+1)∇S[A : (∇SAN−2−r−k ·Wk+1)] : Wr]]

−
N−2

∑
r=0

(N−2)!
(N−2− r)!

[∇S(B ·BN−1−r) : Wr +(r+1)∇S(B ·BN−2−r) : Wr+1].

(2.136)

The above equation can be reduced as

BN =−
[

N−1

∑
r=0

(N−1)!
(N−1− r)!

N−1−r

∑
r=0

(N−1− r)!
(N−1− r− k)!

∇S

[
A :
(

∇SAN−1−r−k ·Lk
)]

: Wr

]

−
N−1

∑
r=0

(N−1)!
(N−1− r)!

∇S(B ·BN−1−r) : Wr

(2.137)

which is consistent with equation (2.123). Therefore, the validity of the recursion formula for

BN has been confirmed.

2.4 Particular Cases of Isotropic and Transversely Isotropic

Materials

2.4.1 Scalar Fields with Isotropic Materials

When the material forming the domain Ωh is isotropic, the permeability is direction-independent.

In this case, the permeability tensor K is isotropic and takes the simplest form:

K = KI, (2.138)

where K is a positive scalar coefficient. As a result, the operators involved in the Taylor series

expansion of the scalar field possess explicit and simplified expressions. By substituting the

above expression of K into the definition (2.39) of s, we obtain

s = n. (2.139)
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This indicates that s equals the unit normal vector n. Similarly, substituting (2.138) into the

definition (2.48) of S, it follows that

S = KP⊥. (2.140)

2.4.2 Vector Fields with Transversely Isotropic Materials

When the elastic material constituting Ωh is transversely isotropic about the axis normal to

the middle surface, the elastic stiffness tensor C has the expression

C= (C11−C12)P+2C44P⊥+C12P⊗P+C13(P⊗P⊥+P⊥⊗P)+(C33−2C44)P⊥⊗P⊥. (2.141)

where the fourth-order tensors P, P⊥, P⊗P, P⊗P⊥+P⊥⊗P, P⊥⊗P⊥ form a complete set of

transversely isotropic tensor generators. In Voigt notation, the matrix representation of C for the

transversely isotropic material in question is given by

[C] =



C11 C12 C13 0 0 0

C12 C11 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 1
2(C11−C12)


. (2.142)

In the case under consideration, the operators appearing in the Taylor series expansion of the

displacement vector admit explicit expressions. Before proceeding with the derivation of these

explicit expressions, it is necessary to present a technique for computing the inverse of a tensor

having the form (U+αa⊗b), as outlined by He and Feng [65]. Here, U denotes an inversible

tensor, and the secalar α and the vectors a and b are such that 1+α(b ·Ua) 6= 0. Then, the

following formula holds:

(U+αa⊗b)−1 = U−1− α
1+α(b ·Ua)

(U−1a)⊗ (U−1b). (2.143)

Given the expression (2.141) of the elastic stiffness tensor C for a transversely isotropic
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material, we can write

G = n ·C ·n =C44I+(C33−C44)P⊥. (2.144)

Applying (2.143), we can deduce the inverse of G as follows:

F =
1

C44
I−C33−C44

C33C44
P⊥. (2.145)

Utilizing the properties of operators P⊥ and P as described in (2.84), respectively, we obtain:

P⊥CP⊥ = 2C44P⊥+(C33−2C)P⊥⊗P⊥. (2.146)

Taking into account that B(P⊥CP⊥) = (P⊥CP⊥)B = P⊥, indicating that the inversion formula

(2.143) is applicable to PCP as well, we can consequently infer:

B=
1

2C44

(
P⊥−C33−2C44

C33
P⊥⊗P⊥

)
. (2.147)

We proceed by computing C : B : C, a crucial step in determining A. It can be verified that

C : B : C= 2C44P⊥+
C2

13
C33

P⊗P+C13(P⊗P⊥+P⊥⊗P)+(C33−2C44)P⊥⊗P⊥. (2.148)

By substituting the above equation into equations (2.99) and (2.103), we derive the expression

for A as:

A= (C11−C12)P+
(

C12−
C2

13
C33

)
P⊗P. (2.149)

Given equation (2.141) and combining it with the definitions of B and D provided in equations

(2.94) and (2.100) respectively, we obtain

D=
C13

C33
n⊗ I+

(
C33−C13

C33

)
n⊗n⊗n+2n⊗P, (2.150)

B=
C13

C33
I⊗n+

(
C33−C13

C33

)
n⊗n⊗n+2P⊗n. (2.151)
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2.4.3 Vector Fields within Isotropic Materials

When the material forming Ωh exhibits isotropy, the elastic stiffness tensor C takes the classic

form:

C= λI⊗I+2µI, (2.152)

where, λ and µ denote the Lamé elastic coefficients. The expression (5.77) is a particular case

of (2.141). Indeed, it suffices to note that the parameters C11−C12 and 2C44 are both equiva-

lent to 2µ , whereas C12, C13, and C33− 2C44 all correspond to λ . Then, accounting for these

relationships in equations (2.144)-(2.151), we can readily obtain

G = µI+(µ +λ )P⊥, (2.153)

F =
1

λ +2µ
P⊥+

1
µ

P, (2.154)

B=
1

2µ

(
P⊥− λ

λ +2µ
P⊥⊗P⊥

)
, (2.155)

A= 2µP+
2µλ

λ +2µ
P⊗P, (2.156)

D=
λ

λ +2µ
n⊗ I+

2µ
λ +2µ

n⊗n⊗n+2n⊗P, (2.157)

B=
λ

λ +2µ
I⊗n+

2µ
λ +2µ

n⊗n⊗n+2P⊗n. (2.158)

2.5 Conclusion

In this chapter, we have explored the theoretical framework for analyzing thin-walled struc-

tures within three-dimensional Euclidean space, focusing particularly on shells modeled as en-

tities with significantly smaller thickness compared to their other dimensions. By developing

Taylor series expansions for scalar and vector fields within these shells, we transitioned from

three-dimensional to two-dimensional frameworks, facilitating the application of plate and shell
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theories as well as interface theories. In the context of interfaces where scalar or vector function-

s exhibit piecewise continuity between distinct regions, traditional Taylor series expansions are

typically conducted separately on each side of the interface. Specifically, assuming the interface

divides two distinct domains in space, the function’s expansion near the interface is segmented

into two parts: one originating from one side of the interface and another from the opposite

side, as shown in equation (2.23). It is noteworthy that this piecewise discontinuity arises due

to material properties. Taking this into consideration, we introduce continuous dual variables

across this interface and establish recursive formulas in a unified format akin to the Taylor series

expansion, as shown in equation (2.27). Moreover, we have provided the form of the recursive

formula and detailed derivations demonstrating the correctness of this recursive formula for the

Taylor series expansion of scalar and vector functions.

This form of Taylor series expansion is widely applied in the field of mechanics. Indeed,

when investigating the distribution of fields within thin-walled structures, this Taylor series en-

ables the derivation of a comprehensive framework encompassing various plate and shell the-

ories. In the subsequent chapter, we will present a detailed exposition of this concept. When

our focus is solely on the mechanical influence of thin-walled structures on the overall structure

rather than the distribution of internal physical fields, we can utilize this Taylor series expan-

sion to establish imperfect interface models. This topic will be presented in Chapter 5. During

the derivation of the Taylor series expansion, certain operators were introduced. This chapter

also extensively discusses their explicit expressions under transversely isotropic and isotropic

conditions. Utilizing these operators, we can homogenize laminated plates, a topic that will be

addressed in the procedural section of Chapter 4.

In conclusion, the analytical tools developed in this study not only simplify the dimensional

complexity but also facilitate accurate predictions of shell behavior under diverse conditions.

Looking ahead, these findings lay the groundwork for further refining these models, investigating

additional material properties, and broadening applications to fields like aerospace engineering

and structural mechanics. Our study underscores the critical role of dimensional reduction in

advancing the comprehension and predictive capabilities of shell structures. The methodologies

and results presented herein establish a robust foundation for future advancements in the analysis

and design of thin-walled structures.
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Part II

Asymptotic Modeling, Analysis, and

Applications
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Chapter 3

Derivation of Compact Coordinate-Free

Plate Theory from Taylor Expansions of

Strain Energy via Variational Analysis

When studying surfaces in differential geometry, the geometric properties are often charac-

terized by the surface’s position vector r. The first fundamental form, involving dr, provides

metric information such as lengths and angles on the surface. On the other hand, the second

fundamental one, involving d2r, offers curvature information that aids in understanding the de-

gree of curvature and variation of curvature across the surface. Thus, by examining dr and d2r,

we obtain fundamental geometric insights into the surface, including its metric properties and

curvature characteristics. These insights are pivotal for comprehending the shape, structure, and

evolution of the surface, serving as the foundation for a thorough exploration of its geometric

attributes. Such an expansion for the gradient of displacement holds significance; indeed, it

encompasses ∇u and ∇2u, analogous to dr and d2r in the context of differential geometry.

Drawing inspiration from this differential geometric framework, we apply the Taylor series

expansion of displacements from Chapter 2 to establish a general expression for the strain energy

of plate-shell structures in terms of the deformation metrics of the mid-surface. Subsequently,

we derive stress measures conjugate to the deformation metrics of the mid-surface. Employing

a variational approach, we systematically derive the dynamic governing equations and corre-

sponding boundary conditions for plate-shell structures in a concise and rigorous manner.

Additionally, we thoroughly investigate scenarios where coupling effects are neglected, pro-
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viding detailed analyses of the corresponding stress measures, constitutive equations, and bound-

ary conditions. In cases where the structure starts as a flat plate (zero curvature) and undergoes

small deflections and rotations, this theoretical framework simplifies to the Mindlin plate theory

(2D) and Timoshenko beam theory (1D). Furthermore, we conduct a comprehensive exploration

of scenarios neglecting both coupling effects and shear forces, including detailed examinations

of stress measures, constitutive equations, and boundary conditions. Under the assumption of

a flat initial configuration and small deflections and rotations, this theoretical framework aligns

with the Kirchhoff plate theory (2D) and the Bernoulli-Euler beam theory (1D).

It is important to notice that these theoretical frameworks are applicable to plate-shell struc-

tures composed of anisotropic materials, reflecting their wide-ranging practical utility. Further-

more, we extensively investigate their explicit formulations for both transversely isotropic and

isotropic cases, enhancing their applicability across different material compositions and struc-

tural configurations.

3.1 General Taylor Expansions of Strain Energy

Let Ξh denote the strain energy, which quantifies the elastic potential energy stored in a thin

plate-shell structure Ωh due to deformation under applied loads. Specifically, the strain energy

Ξh of the thin plate-shell structure is expressed as:

Ξh =
1
2

∫
Ωh

σ : εdv, (3.1)

where σ denotes the stress tensor and ε signifies the strain tensor. By substituting Hooke’s law

(2.66) and the definition (2.68) of ε into the equation above, and accounting for the symme-

try of the elastic stiffness tensor C, the strain energy Ξh can be reformulated in terms of the

displacement gradient ∇u as follows:

Ξh =
1
2

∫
Ωh

(∇u : C : ∇u)dv. (3.2)

Assuming the domain Ωh is structured as described in Chapter 2, we define a coordinate system

(x1,x2,x3) such that the x3-axis is aligned with the unit normal vector n to the mid-surface S0 at

each point x0 ∈ S0. Specifically, S0 is parameterized by (x1,x2) coordinates, and x3 measures
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the perpendicular distance from S0 along the direction of n. In this context, applying the de-

composition (2.89) and combining it with the Taylor expansion (2.19) of the displacement u, the

gradient of u is written as follows:

∇u = [∇S (u|x0)+∇nu|x0⊗n]+ x3
[
∇S (∇nu|x0)+∇

2
nu|x0⊗n

]
+0
(∣∣x2

3
∣∣) . (3.3)

The term 0(|x3|) indicates that in the gradient expansion, we have considered only the zero

and first-order terms associated with x3, while neglecting higher-order terms. Substituting this

gradient expansion into the strain energy expression (3.2), we obtain:

Ξh =
1
2

∫
S0

∫ h
2

− h
2

[∇Su+∇nu⊗n] : C : [∇Su+∇nu⊗n]dx3ds

+
∫

S0

∫ h
2

− h
2

x3
[
∇S (∇nu)+∇

2
nu⊗n

]
: C : [∇Su+∇nu⊗n]dx3ds

+
1
2

∫
S0

∫ h
2

− h
2

x2
3
[
∇S (∇nu)+∇

2
nu⊗n

]
: C :

[
∇S (∇nu)+∇

2
nu⊗n

]
dx3ds+0

(
h4) .

(3.4)

Hence, on one hand, we decompose the original integral expression for energy from a volume

integral into a line integral along the thickness direction (i.e., x3) and a surface integral along the

mid-surface (i.e., S0). On the other hand, it is evident that substituting the Taylor expansion in

the form of equation (3.3) into the energy integral formula results in an energy expression that is

a third-order approximation in terms of the thickness.

Building upon the groundwork established in Chapter 2, we can now proceed to analyze each

integral term separately. For the first term, we can further expand it as follows:

[∇Su+∇nu⊗n] : C : [∇Su+∇nu⊗n] (3.5)

= ∇Su : C : ∇Su+∇Su : C : (∇nu⊗n)+(∇nu⊗n) : C : ∇Su+(∇nu⊗n) : C : (∇nu⊗n)

As shown in (2.93), ∇nu is given by:

∇nu = F · t−D : ∇su. (3.6)

Moreover, due to the fact that F is invertible as discussed in Chapter 2, we can dot-multiply both

sides of the equation by F−1 = n ·C ·n. Consequently, the above expression can be reformulated
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as:

t = (n ·C ·n) ·∇nu+(n ·C) : ∇Su. (3.7)

We can consolidate therefore the last two terms on the right-hand side of equation (3.5) as fol-

lows:

(∇nu⊗n) : C : ∇Su+(∇nu⊗n) : C : (∇nu⊗n) = ∇nu · [(n ·C) : ∇Su+(n ·C ·n) ·∇nu]

= ∇nu · t (3.8)

By introducing two operators P and P⊥ which have been defined in Chapter 1, we rewrite the

above equation as:

∇Su : C : (∇nu⊗n) = ∇Su : (C ·n) · (F · t)−∇Su : (C ·n) ·D : ∇Su)

= ∇Su : B · t−∇Su : [(C ·n) ·F · (n ·C)] : ∇Su.
(3.9)

Expanding upon this, by introducing operators P and P⊥, we can reframe the above equation as:

∇Su : C : (∇nu⊗n) = ∇Su : (P+P⊥) ·B · t−∇Su : [(C ·n) ·F · (n ·C)] : ∇Su

= P ·∇Su : B · t+∇S(u ·n) · t−∇Su : [(C ·n) ·F · (n ·C)] : ∇Su
(3.10)

By combining equations (3.5) and (3.8) with (3.10), equation (3.5) can be simplified to:

[∇Su+∇nu⊗n] : C : [∇Su+∇nu⊗n]

= ∇Su : A : ∇Su+∇Su : B · t+∇S(u ·n) · t+∇nu · t.
(3.11)

The expansion of the second integral term of equation (3.4) yields:

∇S(∇nu) : C : (∇nu⊗n)

= ∇S(∇nu) : (C ·n) · (F · t)−∇S(∇nu) : (C ·n) · (D : ∇Su)

= ∇S(∇nu) : B · t−∇S(∇nu) : [(C ·n) ·F · (n ·C)] : ∇Su

(3.12)

At this point, we make the assumption that each layer parallel to the mid-surface of the plate
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experiences no compression from adjacent layers, while the cross-section of the plate remains

planar after deformation. Hence, we have:

t ·n = 0, ∇
N
n t = 0 (N = 1,2,3,4,5, . . .). (3.13)

Therefore, equation (2.113) can be simplified as follows:

∇
2
nu =−D : (∇S(∇nu)+∇Su ·W), (3.14)

In the case where the cross-section of the plate maintains planarity post-deformation, we will

subsequently introduce ∇S(∇nu) as a representation of the curvature of the mid-plane. With-

in the context of infinitesimal deformations, the term ∇Su ·W is small compared to ∇S(∇nu).

Consequently, the aforementioned equation can be further expressed as:

∇
2
nu =−D : ∇S(∇nu), (3.15)

Hence, the second integral term can be simplified to:

[
∇S(∇nu)+∇

2
nu⊗n

]
: C : [∇Su+∇nu⊗n]

= ∇S(∇nu) : A : ∇Su+∇S(∇nu) : B · t−D : ∇S(∇nu) · t
(3.16)

Similarly, the third integral term can be simplified to:

[
∇S(∇nu)+∇

2
nu⊗n

]
: C :

[
∇S(∇nu)+∇

2
nu⊗n

]
= ∇S(∇nu) : A : ∇S(∇nu) (3.17)

By introducing the surface strain, denoted by εs and defined by:

εs =
1
2

P · [∇u+(∇u)T ] ·P, (3.18)

we obtain with the aid of the symmetric properties of A

1
2

∫
S0

∫ h
2

− h
2

∇Su : A : ∇Sudx3ds =
1
2

∫
S0

∫ h
2

− h
2

εs : A : εsdx3ds. (3.19)
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Finally, with (3.11)-(3.17) and (3.19), we have

Ξh =
1
2

∫
S0

∫ h
2

− h
2

[εs : A : εs + εs : B · t+∇S(u ·n) · t+∇nu · t]dx3ds

+
∫

S0

∫ h
2

− h
2

x3 [∇S(∇nu) : A : ∇Su+∇S(∇nu) : B · t−D : ∇S(∇nu) · t]dx3ds

+
1
2

∫
S0

∫ h
2

− h
2

x2
3 [∇S(∇nu) : A : ∇S(∇nu)]dx3ds+0

(
h4) .

(3.20)

The integral (3.19) exhibits a quadratic form of metric tensors related to the displacement field of

the mid-surface. This displacement field is intricately connected to the formulation of membrane

energy, representing the elastic energy associated with the deformations in the mid-surface of the

structure. Hence, we can write

Ξmembrane =
1
2

∫
S0

∫ h
2

− h
2

(εs : A : εs)dx3ds. (3.21)

As previously assumed, the neglect of normal stresses in the thickness direction (i.e., t ·n = 0)

implies that the vector t solely represents shear forces along the thickness direction. Conse-

quently, the term ∇S(u ·n) · t+∇nu · t signifies the work done by shear forces along the thickness

direction. Therefore, we denote

Ξshear =
1
2

∫
S0

∫ h
2

− h
2

(∇S(u ·n) · t+∇nu · t)dx3ds. (3.22)

Utilizing operators P and P⊥, equation (3.7) can be expressed as follows:

t =(n ·C ·n) ·∇nu+(n ·C) : ∇Su

=(n ·C ·n) ·∇nu+(n ·C · (P+P⊥)) : ∇Su

=(n ·C ·n) ·∇nu+(n ·C ·n) ·∇S(u ·n)+(n ·C) : εs.

(3.23)

Physically, the term (n ·C) : εs denotes the projection the stress field within the curved surface

onto the normal direction of this surface. Notably, the outcome of this projection is evidently

zero. This implies that the stress vector t given by (3.23) is reduced to

t = (n ·C ·n) ·∇nu+(n ·C ·n) ·∇S(u ·n). (3.24)
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Therefore, the shear energy (3.22) can be expressed as the following symmetric quadratic form:

Ξshear =
1
2

∫
S0

∫ h
2

− h
2

[∇S(u ·n)+∇nu] ·G · [∇S(u ·n)+∇nu]dx3ds. (3.25)

The third integral term of equation (3.20) can be expressed as:

Ξbending =
1
2

∫
S0

∫ h
2

− h
2

x2
3 [∇S(∇nu) : A : ∇S(∇nu)]dx3ds. (3.26)

Indeed, ∇S(∇nu) : A : ∇S(∇nu) constitutes a quadratic form involving the components of the

variation in the curvature tensor associated with a displacement field of the mid-surface of the

shell or plate. Prior to undertaking the variation derivation of pure bending energy, we introduce

a symmetric curvature tensor defined by

κ=
1
2

[
∇S(∇nu)+(∇S(∇nu))T

]
. (3.27)

The curvature tensor κ holds significant geometric importance on a curved surface, providing

essential information about the curvature radius and direction of the surface. By computing the

principal curvatures and their corresponding directions, insights into the degree and orientation

of curvature at a given point on the surface can be obtained. The symmetric curvature tensor κ is

instrumental in simplifying subsequent derivations, contributing to a more rigorous and compact

mathematical framework. Indeed, due to the symmetry of the tensor A, the expression for the

pure bending energy (3.26) can be further simplified as:

Ξbending =
1
2

∫
S0

∫ h
2

− h
2

x2
3 [∇S(∇nu) : A : ∇S(∇nu)]dx3ds

=
1
2

∫
S0

∫ h
2

− h
2

x2
3 [κ : A : κ]dx3ds.

(3.28)

The remaining terms of the strain energy in equation (3.20) can be expressed as:

Ξcouple = Ξcouple1 ++Ξcouple2 +Ξcouple3 (3.29)

where Ξcouple1, Ξcouple2 and Ξcouple3, representing the coupling effects between membrane, s-
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hear, and bending deformations, are given by

Ξcouple1 =
1
2

∫
S0

∫ h
2

− h
2

[εs : B · t]dx3ds, (3.30)

Ξcouple2 =
∫

S0

∫ h
2

− h
2

x3 [∇S(∇nu) : B · t−D : ∇S(∇nu) · t]dx3ds, (3.31)

Ξcouple3 =
∫

S0

∫ h
2

− h
2

x3 [∇S(∇nu) : A : εs]dx3ds. (3.32)

As before, εs : (C ·n), denoting the projection of the stress field within the curved surface onto

its normal direction, notably vanishes. Consequently, introducing equation (3.7) into equation

(3.30), it can be shown that

Ξcouple1 =
1
2

∫
S0

∫ h
2

− h
2

[εs : (C ·n) ·∇nu+ εs : (C ·n) ·∇S(u ·n)]dx3ds = 0. (3.33)

By substituting equation (3.7) into equation (3.31), the expression of Ξcouple2 is given by:

Ξcouple2 =
∫

S0

∫ h
2

− h
2

x3 [∇S(∇nu) : B−D : ∇S(∇nu)] ·G · [(∇S(u ·n)+∇nu)]dx3ds. (3.34)

Due to the symmetries Bi jk = B jik and Di jk = Dik j of B and D, the above equation can be

rewritten as:

Ξcouple2 =
∫

S0

∫ h
2

− h
2

x3 (κ : B−D : κ) ·G · [(∇S(u ·n)+∇nu)]dx3ds. (3.35)

In addition, Ξcouple3 can take the equivalent expression as follows:

Ξcouple3 =
∫

S0

∫ h
2

− h
2

x3 (κ : A : εs)dx3ds. (3.36)

Finally, the strain energy is can be decomposed into four parts as

Ξh = Ξmembrane +Ξbending +Ξshear +Ξcouple (3.37)

where Ξmembrane, Ξbending and Ξshear are respectively the elastic energies associated with the
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membrane, pure bending and pure shear deformations while Ξcouple is related to their coupled

effects.

3.2 Strain Energy for Special Cases

3.2.1 Case of Transversely Isotropic Materials

When the material constituting of Ωh is assumed to be transversely isotropic, the tensors

involved in energy expressions are represented more succinctly, as demonstrated in equations

(2.144)-(2.151). By substituting these tensors into the previous energy computation formulas, a

more concise formulation can be derived. Upon examining these streamlined energy expression-

s, it becomes evident that specific geometric features are intricately linked to particular types of

energy in the system. Specifically, the energy associated with membrane deformation, denoted

by Ξmembrane, can be described as follows:

Ξmembrane =
1
2

∫
S0

∫ h
2

− h
2

{(
C12−

C2
13

C33

)
[tr(εs)]

2 +C1 (εs : εs)

}
dx3ds, (3.38)

where, tr(·) is the trace of the tensor and εs is a surface strain tensor characterizing the overall

deformation in the mid-surface area of the plate. The elastic energy associated with bending,

denoted as Ξbending, is given by:

Ξbending =
1
2

∫
S0

∫ h
2

− h
2

x2
3

{(
C12−

C2
13

C33

)
[tr(κ)]2 +C1 (κ : κ)

}
dx3ds. (3.39)

As previously mentioned, κ represents the curvature tensor of the mid-surface. The energy

expression above is specifically associated with the curvature of the mid-surface, indicating the

energy exclusively arising from pure bending. The shear energy Ξshear characterizing the energy

associated with shear deformation takes the following expression:

Ξshear =
1
2

∫
S0

∫ h
2

− h
2

C44 {[∇S(u ·n)+∇nu] · [∇S(u ·n)+∇nu]}dx3ds. (3.40)

As illustrated in Fig. 3.2, when the cross-section of the plate remains planar after deformation,

the term ∇S(u · n)+∇nu signifies a shear deformation. Consequently, the energy expression
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above characterizes the energy arising solely from shear deformation.

In the context of transversely isotropic plates, the coupled effect Ξcouple2 between bending

and shear deformation, specified by equation (3.35), takes the following simple expression:

Ξcouple2 =
∫

S0

∫ h
2

− h
2

x3

(
C44 +

C44C13

C33

){
1
2
[n ·κ +κ ·n] · [∇S(u ·n)+∇nu]

}
dx3ds. (3.41)

The coupled effect Ξcouple3 between membrane and bending deformation, given by equation

(3.36), is now reduced to

Ξcouple3 =
∫

S0

∫ h
2

− h
2

x3

{(
C12−

C2
13

C33

)
[tr(εs)tr(κ)]+C1 (εs : κ)

}
dx3ds. (3.42)

3.2.2 Case of Isotropic Materials

Similarly, in the context of isotropic materials, there is a notable streamlining of the tensors

present in energy expressions, as shown by equations (2.153)-(2.158). By introducing these

tensors into the previous energy computation formulas, the expressions for Ξmembrane, Ξbending,

Ξshear, Ξcouple2, and Ξcouple3 can be obtained in a more concise manner as follows:

Ξmembrane =
1
2

∫
S0

∫ h
2

− h
2

{
2µλ

λ +2µ
[tr(εs)]

2 +2µ (εs : εs)

}
dx3ds, (3.43)

Ξbending =
1
2

∫
S0

∫ h
2

− h
2

x2
3

{
2µλ

λ +2µ
[tr(κ)]2 +2µ (κ : κ)

}
dx3ds, (3.44)

Ξshear =
1
2

∫
S0

∫ h
2

− h
2

µ {[∇S(u ·n)+∇nu] · [∇S(u ·n)+∇nu]}dx3ds, (3.45)

Ξcouple2 =
∫

S0

∫ h
2

− h
2

x3

(
µ +

λ µ
λ +2µ

){
1
2
[n ·κ +κ ·n] · [∇s(u ·n)+∇nu]

}
dx3ds, (3.46)

Ξcouple3 =
∫

S0

∫ h
2

− h
2

x3

{
2µλ

λ +2µ
[tr(εs)tr(κ)]+2µ (εs : κ)

}
dx3ds. (3.47)
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3.3 Variational Analysis for Equations of Motion and Bound-

aries in Energy Functionals

To study the motion and mechanical response of dynamical systems, we often rely on ener-

gy functionals to describe the behavior of the system. Energy functionals provide a convenient

way to capture the energy distribution and evolutionary trends of the system. However, merely

knowing the energy functional is insufficient to fully understand the dynamical characteristics of

the system. We also need to derive the appropriate equations of motion and boundary conditions

from these energy functionals to comprehensively understand the system’s behavior. In this chal-

lenging task, the variational method becomes an important tool. The core idea of the variational

method is to find the extremum of an energy functional. By performing variational operations on

the functional, we can find the functions that make the functional extremal, which describe the

optimal behavior of the system. In dynamical systems, this optimal behavior typically manifests

as functions that satisfy the system’s equations of motion and boundary conditions.

Therefore, through the variational method, we can systematically derive the governing equa-

tions that describe the system’s motion and the constraints at the boundaries. In this part, we

will delve into how to use the variational method to analyze energy functionals and derive the

equations of motion and boundary conditions from them. In this process, we will also introduce

the energy density function and thereby derive the stress resultants, moment resultants, and s-

hear resultants. Through such analysis, we will gain a more comprehensive understanding of the

dynamical behavior of the system, providing robust theoretical support and guidance for solving

practical problems

3.3.1 Strain Energy Density Function and Constitutive Equations of Plates

Let’s introduce the strain energy density function, denoted by E. When studying a structure’s

strain energy, we’re often interested in how it varies across different locations. This spatial

distribution is captured by the strain energy density function, which provides a detailed picture

of energy distribution within the system. By analyzing the fluctuations of this density function,

we can understand how strain energy varies across different regions, aiding in structural design

and optimization.

Furthermore, the total strain energy of a structure can be calculated by integrating the strain
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energy density function over the entire surface. By taking partial derivatives of this function with

respect to the fields εs, κ , and ∇S(u ·n)+∇nu, we can determine their corresponding physical

quantities: in-surface stress resultants, moment resultants, and shear resultants, respectively. The

strain energy density can be expressed as:

E =
1
2

∫ h
2

− h
2

(εs : A : εs)dx3 +
1
2

∫ h
2

− h
2

x2
3(κ : A : κ)dx3

+
1
2

∫ h
2

− h
2

(∇S(u ·n)+∇nu) ·G · (∇S(u ·n)+∇nu)dx3

+
∫ h

2

− h
2

x3[(κ : B−D : κ) · (∇S(u ·n)+∇nu)]dx3 +
∫ h

2

− h
2

x3[κ : A : εs]dx3.

(3.48)

Consequently, the constitutive equations can be obtained as follows:

Firstly, when we differentiate the energy density function with respect to εs, we derive the

resulting in-plane stress resultant Ns

Ns =
∂E
∂εs

=
∫ h

2

− h
2

(A : εs + x3A : κ)dx3. (3.49)

Secondly, differentiating with respect to κ , yields the moment resultant, M:

M =
∂E
∂κ

=
∫ h

2

− h
2

{x2
3(A : κ)+ x3A : εs + x3[B ·G · (∇S(u ·n)+∇nu)

− (∇S(u ·n)+∇nu) ·G ·D]}dx3.

(3.50)

Finally, the shear force resultant, Q, is obtained by differentiating with respect to (∇S(u ·n)+∇nu):

Q =
∂E

∂ (∇S(u ·n)+∇nu)
=
∫ h

2

− h
2

[G · (∇S(u ·n)+∇nu)+ x3(κ : B−D : κ)]dx3

=
∫ h

2

− h
2

(t+ x3κ : (C ·n))dx3.

(3.51)

Consequently, the strain energy density can be rewritten in the following equivalent form

E =
1
2
[εs : Ns +κ : M+(∇S(u ·n)+∇nu) ·Q]. (3.52)
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3.3.2 Equilibrium Equations and Boundary Conditions of plates

Given the general expressions for the total strain energy in equations (3.21) to (3.36), we

will apply a variational analysis to each term individually. Starting with the membrane energy

expression in equation (3.21), we expand this term using the chain rule and the symmetries of

the tensor A. This yields the following detailed variation of the membrane energy:

δΞmembrane =
∫

S0

∫ h
2

− h
2

[∇ · [(εs : A) ·δ (P ·u)]−∇ · (εs : A) ·δ (P ·u)]dx3ds, (3.53)

where δ denotes the variation operator. Next, we consider the variation of the pure bending

energy as given in equation (3.26). By taking into account the definition of the curvature tensor

κ from equation (3.27) and the symmetry of the tensor A, we can systematically expand the

variational derivative of the pure bending energy as follows:

δΞbending =
∫

S0

∫ h
2

− h
2

[
∇ · (x2

3P · (κ : A) ·δ∇nu)−∇ · (x2
3κ : A ·P) ·δ∇nu

]
dx3ds. (3.54)

Given the shear energy in equation (3.25), we can express its variation as follows:

δΞshear =
∫

S0

∫ h
2

− h
2

[∇ · (P · tδ (u ·n))−∇ · (P · t)δ (u ·n)+ t ·δ (∇nu)]dx3ds. (3.55)

The variational formulation for Ξcouple2 given by equation (3.35) reads:

δΞcouple2 =
∫

S0

∫ h
2

− h
2

{x3(κ : B−D : κ) ·G ·δ (∇nu)+∇ · [x3(κ : B−D : κ) ·G ·Pδ (u ·n)]

+∇ · [x3P · (B ·G · (∇S(u ·n)+∇nu)− (∇S(u ·n)+∇nu) ·G ·D) ·δ (∇nu)]

−∇ · [x3(B ·G · (∇S(u ·n)+∇nu)− (∇S(u ·n)+∇nu) ·G ·D) ·P] ·δ (∇nu)

−∇ · [x3(κ : B−D : κ) ·G ·P]δ (u ·n)}dx3ds.

(3.56)

Similarly, the variational formulation for Ξcouple3 provided by equation (3.32) implies:

δΞcouple3 =
∫

S0

∫ h
2

− h
2

[∇ · (x3εs : A ·δ (∇nu))−∇ · (x3εs : A) ·δ (∇nu)

+∇ · (x3κ : A ·δ (P ·u))−∇ · (x3κ : A) ·δ (P ·u)]dx3ds.

(3.57)

Through this detailed variational analysis, we systematically derive the governing equations
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of motion and their corresponding boundary conditions. By combining the variational expres-

sions and integrating the constitutive relations (equations (3.49)-(3.51)), we obtain the variation-

al derivative of the total strain energy as follows:

δΞ =
∫

S0

{∇ · [Ns ·δ (P ·u)]− (∇ ·Ns) ·δ (P ·u)+∇ · [P ·M ·δ (∇nu)]

−∇ · (M ·P) ·δ (∇nu)+Q ·δ (∇nu)+∇ · [P ·Qδ (u ·n)]−∇ · (P ·Q)δ (u ·n)}ds.
(3.58)

The work done by external forces, denoted by W , is defined as a functional representing the

energy exerted by these forces during associated displacements, assuming they remain constant

throughout the deformation process. The variation of the work done by external forces is given

by:

δW =
∫

S0

(f ·δu)ds+
∫

∂S0

[N̄ ·δ (P ·u)+M̄ ·δ (∇nu)]dl

=
∫

S0

[fs ·δ (P ·u)+ fx3δ (u ·n)]ds+
∫

∂S0

[N̄ ·δ (P ·u)+M̄ ·δ (∇nu)]dl
(3.59)

where f represents the body force resultant acting on the middle surface of the plate S0, and N̄

and M̄ denote, respectively, the Cauchy traction resultant and moment applied to the boundary

of the middle surface of the plate ∂S0. The kinetic energy of the plate is given by

K =
∫ h

2

− h
2

∫
S0

1
2

ρu̇2dx3ds (3.60)

where the superimposed dot on a variable denotes the time derivative (e.g., u̇ = ∂u/∂ t). The

variation of the kinetic energy can be rewritten as

δK =
∫ h

2

− h
2

∫
S0

ρü ·δudx3ds (3.61)

=−
∫

S0

{[I0
¨(P ·u)+ I1

¨(∇nu)] ·δ (P ·u)+ [I1
¨(P ·u)+ I2

¨(∇nu)]δ (∇nu)+ [I0
¨(u ·n)]δ (u ·n)}ds,

where I0, I1 and I2 are defined by

I0 =
∫ h

2
− h

2
ρdx3, I1 =

∫ h
2
− h

2
ρx3dx3, I2 =

∫ h
2
− h

2
ρx2

3dx3. (3.62)

These integrals are determined by the spatial distribution of mass density ρ along the thickness
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dimension. The dynamic formulation of the variational principle for total energy, or equivalently,

Hamilton’s principle, is expressed as:

δΠ =
∫ T

0
(δΞ−δW −δK)dt = 0 (3.63)

where δΠ denotes the variation of the total potential energy over the time interval [0,T ], encom-

passing variations in strain energy δΞ, work done by external forces δW , and kinetic energy

δK. This formulation ensures the total potential energy is stationary with respect to infinitesimal

variations in the deformation field and velocities, reflecting the system’s dynamic equilibrium.

Substituting equations (3.58), (3.59), and (3.61) into equation (3.63) yields the explicit expres-

sion for the variational derivative of the total potential energy:

∫ T

0

∫
S0

{[−fs−∇ ·Ns + I0
¨(P ·u)+ I1

¨(∇nu)] ·δ (P ·u)+ [−∇ · (M ·P)+Q+ I1
¨(P ·u)+ I2

¨(∇nu)] ·δ (∇nu)

+ [− fx3−∇ · (P ·Q)+ I0
¨(u ·n)]δ (u ·n)}dsdt +

∫ T

0

∫
S0

{∇ · [Ns ·δ (P ·u)]+∇ · [(P ·Q)δ (u ·n)] (3.64)

+∇ · [P ·M ·δ (∇nu)]}dsdt−
∫ T

0

∫
∂S0

[N̄ ·δ (P ·u)+M̄ ·δ∇(u ·n)]dldt = 0.

By applying the divergence theorem and Stokes’s theorem, equation (3.64) can be reformulated

in the following manner:

∫ T

0

∫
S0

{[−fs−∇ ·Ns + I0
¨(P ·u)+ I1

¨(∇nu)] ·δ (P ·u)+ [−∇ · (M ·P)−Q+ I1
¨(P ·u)+ I2

¨(∇nu)] ·δ (∇nu)

+ [− fx3−∇ · (P ·Q)+ I0
¨(u ·n)]δ (u ·n)}dsdt +

∫ T

0

∫
∂S0

{[Ns ·m− N̄] ·δ (P ·u)+ [P ·Q ·m]δ (u ·n)

+ [P ·M ·m−M̄] ·δ (∇nu)}dldt = 0 (3.65)

where m denotes the unit normal vector at the edge of the plates, as illustrated in Fig. 3.1.

Considering the first integral term in the above equation, since the variables δ (P ·u), δ (u ·n),
and δ (∇nu) are arbitrary, we obtain therefore the following equilibrium equations

fs +∇ ·Ns = I0
¨(P ·u)+ I1

¨(∇nu)

∇ · (M ·P)−Q = I1
¨(P ·u)+ I2

¨(∇nu)

fx3 +∇ · (P ·Q) = I0
¨(u ·n)


, (3.66)
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Figure 3.1: Geometry of a plate with curved boundary.

where the terms involving I2 can contribute to higher frequencies of vibration which is called

rotary (or rotatory) inertia term. The corresponding boundary conditions can be derived from

the second integral term:

Ns ·m− N̄ = 0

P ·Q ·m = 0

P ·M ·m−M̄ = 0

 . (3.67)

3.3.3 Application to Transverse Isotropic Plates

For plates with transversely isotropic materials, the energy density function in equation

(3.48) can be explicitly determined. This can be achieved either by deriving it from the strain

energy formula specific to transverse isotropy (equations (3.43) to (3.42)) or by substituting

the transverse isotropic operators (equations (2.144)-(2.151) from subsection 2.4.2 into equation

(3.48). Importantly, both methods yield equivalent energy density functions. Specifically, for
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transverse isotropy, E is expressed as:

E =
1
2

∫ h
2

− h
2

{(
C12−

C2
13

C33

)
[tr(εs)]

2 +(C11−C12)(εs : εs)

}
dx3

+
1
2

∫ h
2

− h
2

x2
3

{(
C12−

C2
13

C33

)
[tr(κ)]2 +(C11−C12)(κ : κ)

}
dx3

+
1
2

∫ h
2

− h
2

C44 {[∇S(u ·n)+∇nu] · [∇S(u ·n)+∇nu]}dx3

+
∫ h

2

− h
2

x3

(
C44 +

C44C13

C33

){
1
2
[n ·κ +κ ·n] · [∇S(u ·n)+∇nu]

}
dx3

+
∫ h

2

− h
2

x3

{(
C12−

C2
13

C33

)
[tr(εs)tr(κ)]+(C11−C12)(εs : κ)

}
dx3.

(3.68)

The in-plane stress resultants Ns, moment resultants M, and shear resultants Q, obtained by d-

ifferentiating the energy density function E with respect to the corresponding deformation mea-

sures take therefore the following forms:

Ns =
∫ h

2

− h
2

{(
C12−

C2
13

C33

)
[tr(εs)+x3tr(κ)]P+(C11−C12)(εs +x3κ)

}
dx3, (3.69)

M =
∫ h

2

− h
2

{
x2

3

[(
C12−

C2
13

C33

)
tr(κ)P+(C11−C12)κ

]
+ x3

[(
C12−

C2
13

C33

)
tr(εs)P+(C11−C12)εs

]
+ x3

(
C44

2
+

C44C13

2C33

)[
n⊗ (∇S(u ·n)+∇nu)+(∇S(u ·n)+∇nu)⊗n

]}
dx3,

(3.70)

Q =
∫ h

2

− h
2

[
C44(∇S(u ·n)+∇nu)+ x3

C44

2
(n ·κ +κ ·n)

]
dx3. (3.71)

By substituting the transverse isotropic operators (2.144)-(2.151) into equations (3.49)-(3.51),

the same expressions for Ns, M, and Q as derived above are obtained. Based on the constitutive

equations provided above, the strain energy density of transversely isotropic materials can be

expressed as:

E =
1
2
[εs : Ns +κ : M+(∇S(u ·n)+∇nu) ·Q], (3.72)

which is consistency with that of anisotropic materials in form.
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By performing variational differentiation on the strain energy formula specific to transverse

isotropy (equations (3.43)-(3.42)) and considering the constitutive relations (equations (3.69)-

(3.71)), we derive a total energy variation consistent with that of equation (3.58). Consequently,

the resulting governing equations and boundary conditions are formally identical to equations

(3.66) and (3.67), respectively. The consistency of the previously derived strain energy density

functions confirms that while the expressions for Ns, M, and Q vary with material properties,

the fundamental governing equations and boundary conditions remain invariant.

3.3.4 Application to Isotropic Plates

Similarly, for isotropic materials, the energy density function in equation (3.48) can be ex-

plicitly expressed as

E =
1
2

∫ h
2

− h
2

{
2µλ

λ +2µ
[tr(εs)]

2 +2µ (εs : εs)

}
dx3

+
1
2

∫ h
2

− h
2

x2
3

{
2µλ

λ +2µ
[tr(κ)]2 +2µ (κ : κ)

}
dx3

+
1
2

∫ h
2

− h
2

µ {[∇S(u ·n)+∇nu] · [∇s(u ·n)+∇nu]}dx3

+
∫ h

2

− h
2

x3

(
µ +

λ µ
λ +2µ

){
1
2
[n ·κ +κ ·n] · [∇S(u ·n)+∇nu]

}
dx3

+
∫ h

2

− h
2

x3

{
2µλ

λ +2µ
[tr(εs)tr(κ)]+2µ (εs : κ)

}
dx3.

(3.73)

The expressions for Ns, M, and Q are derived by differentiating the energy density function E

with respect to the corresponding deformation measures as follows:

Ns =
∫ h

2

− h
2

{
2µλ

λ +2µ
[tr(εs)+ x3tr(κ)]P+2µ (εs + x3κ)

}
dx3, (3.74)

M =
∫ h

2

− h
2

{
x2

3

(
2µλ

λ +2µ
tr(κ)P+2µκ

)
+ x3

[
2µλ

λ +2µ
tr(εs)P+2µεs

]
+ x3

(
µ
2
+

µλ
2(λ +2µ)

)[
n⊗ (∇S(u ·n)+∇nu)+(∇S(u ·n)+∇nu)⊗n

]}
dx3,

(3.75)
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Q =
∫ h

2

− h
2

[
µ(∇S(u ·n)+∇nu)+ x3

µ
2
(n ·κ +κ ·n)

]
dx3. (3.76)

By inserting the operators for isotropy (2.153)-(2.157) into equations (3.49)-(3.51), one arrives

at the same expressions for Ns, M, and Q as derived above. The strain energy density of isotropic

materials maintains consistency with that of anisotropy materials in form, i.e.:

E =
1
2
[εs : Ns +κ : M+(∇S(u ·n)+∇nu) ·Q]. (3.77)

As previously discussed, the formulations for Ns, M, and Q vary depending on whether the

material is isotropic, transversely isotropic, or anisotropic. Nonetheless, the governing equations

of motion and boundary conditions, which are analogous to equations (3.66) and (3.67), respec-

tively, maintain the same structural form for both transversely isotropic and isotropic materials.

3.4 The Dynamic Plate Theory without Coupling Effect

Consider a geometrically symmetric plate constituting of a homogeneous material. Under

the assumption of small rotations and deflections, as indicated by equation (2.14) in Chapter

2.1, curvature variations through the thickness are negligible. This aligns with the fundamental

principles of classical plate theory.

Given the absence of inter-layer compression and the resulting uniform stress vector t through

the thickness, the integral term in equation (3.31) representing Ξcouple2 exhibits odd symmetry

with respect to x3, integrating to zero. Additionally, since εs is a surface tensor (equation (3.18)),

it remains constant through the thickness. Consequently, the corresponding integral term in e-

quation (3.36) for Ξcouple3 also vanishes. Therefore, the coupling effect can be disregarded in

this case.

Revisiting the strain energy formulation based on these assumptions, we reintroduce the

strain energy density function and employ variational methods to derive the governing equations

and associated boundary conditions. This framework reduces to the classical Mindlin plate

theory in two dimensions and the Timoshenko beam theory in one dimension.
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3.4.1 General Form of Plate Theory without Coupling

By neglecting the coupling effect, the total strain energy Ξh comprises the membrane energy

Ξmembrane, the bending energy Ξbending, and the shear energy Ξshear, as defined in equations

(3.21), (3.28), and (3.25), respectively. Explicitly,

Ξh =
1
2

∫
S0

∫ h
2

− h
2

(εs : A : εs)dx3ds+
1
2

∫
S0

∫ h
2

− h
2

x2
3(κ : A : κ)dx3ds

+
1
2

∫
S0

∫ h
2

− h
2

x2
3 [(∇S(u ·n)+∇nu) ·G · (∇S(u ·n)+∇nu)]dx3ds.

(3.78)

Correspondingly, the energy density function E is given by:

E =
1
2

∫ h
2

− h
2

(εs : A : εs)dx3 +
1
2

∫ h
2

− h
2

x2
3(κ : A : κ)dx3

+
1
2

∫ h
2

− h
2

(∇S(u ·n)+∇nu) ·G · (∇S(u ·n)+∇nu)dx3.

(3.79)

Differentiating the energy density function E with respect to the corresponding deformation

measures implies the expressions of the in-surface stress resultants Ns, moment resultants M,

and shear resultants Q as follows:

Ns =
∂E
∂εs

=
∫ h

2

− h
2

(A : εs)dx3, (3.80)

M =
∂E
∂κ

=
∫ h

2

− h
2

x2
3(A : κ)dx3, (3.81)

Q =
∂E

∂ (∇s(u ·n)+∇nu)
=
∫ h

2

− h
2

[K · (∇S(u ·n)+∇nu)]dx3 =
∫ h

2

− h
2

tdx3. (3.82)

Building on the derived expressions for for Ns, M, and Q, the energy density function E can be

concisely expressed as:

E =
1
2
[εs : Ns +κ : M+(∇S(u ·n)+∇nu) ·Q]. (3.83)
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Substituting equations (3.80), (3.81), and (3.82) into (3.53)-(3.55), the variations of Ξmembrane,

Ξbending, and Ξshear are given by:

δΞmembrane =
∫

S0

[∇ · [Ns ·δ (P ·u)]− (∇ ·Ns) ·δ (P ·u)]ds, (3.84)

δΞbending =
∫

S0

[∇ · (P ·M ·δ (∇nu))−∇ · (M ·P) ·δ (∇nu)]ds, (3.85)

δΞshear =
∫

S0

[∇ · (P ·Qδ (u ·n))−∇ · (P ·Q)δ (u ·n)+Q ·δ (∇nu)]ds. (3.86)

Summing the above variations, the variation of the total strain energy Ξ is

δΞ =
∫

S0

{∇ · [Ns ·δ (P ·u)]− (∇ ·Ns) ·δ (P ·u)+∇ · [P ·M ·δ (∇nu)]

−∇ · (M ·P) ·δ (∇nu)+Q ·δ (∇nu)+∇ · [P ·Qδ (u ·n)]−∇ · (P ·Q)δ (u ·n)}ds,
(3.87)

which agrees with the form in equation (3.58). Additionally, the variations of the work done

by external forces and the kinetic energy correspond to those in equations (3.59) and (3.61),

respectively. It can be deduced from the Hamilton’s principle (3.63) the following governing

equations:

fs +∇ ·Ns = I0
¨(P ·u)+ I1

¨(∇nu)

∇ · (M ·P)−Q = I1
¨(P ·u)+ I2

¨(∇nu)

fx3 +∇ · (P ·Q) = I0
¨(u ·n)


, (3.88)

and the boundary conditions:

Ns ·m− N̄ = 0

P ·Q ·m = 0

P ·M ·m−M̄ = 0

 . (3.89)

While the governing equations and boundary conditions match those in equations (3.66) and

(3.67), the formulations for Ns, M, and Q used here differ from previous expressions. These

differences were detailed earlier, where specific calculations for Ns, M, and Q were provided.
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Notably, the Ns, M, and Q introduced in this section exclude coupling effects, unlike those in

Chapter 3.3.1.

3.4.2 Mindlin Plate Theory

Consider a plate with uniform thickness h. A rectangular Cartesian coordinate system (x1,x2,x3)

is adopted, where the x1-x2-plane coincides with the plate’s geometric mid-plane and the x3-

coordinate is positive downward. Fig. 3.2 illustrates this configuration. The time-dependent

displacement field of the middle surface is represented by:

u0(x, t) =


u0(x1,x2, t)

v0(x1,x2, t)

w(x1,x2, t)

 , (3.90)

where:

• u0(x1,x2, t) represents the displacement of a material point in the x1-direction at the middle

surface at time t.

• v0(x1,x2, t) represents the displacement of a material point in the x2-direction at the middle

surface at time t.

• w(x1,x2, t) represents the bending deflection of the middle surface at time t.

For simplicity, we denote hereafter the three quantities mentioned above as u0, v0 and w. The

deformed mid-surface of the plate can be represented by

Γ = {x ∈ R3 | g(x) = x3−w = 0}. (3.91)

Substituting the expression for the mid-surface into equation (1.2) yields the expression of the

normal vector to the mid-surface:

n =


n1

n2

n3

=
1√

( ∂w
∂x1

)2 +( ∂w
∂x2

)2 +1


− ∂w

∂x1

− ∂w
∂x2

1

 . (3.92)
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The two complementary orthogonal projection operators P⊥ and P can be obtained as follows:

P⊥ = n⊗n =
1

( ∂w
∂x1

)2 +( ∂w
∂x2

)2 +1



( ∂w
∂x1

)2 ∂w
∂x1

∂w
∂x2

− ∂w
∂x1

∂w
∂x1

∂w
∂x2

( ∂w
∂x2

)2 − ∂w
∂x2

− ∂w
∂x1

− ∂w
∂x2

1


, (3.93)

P = I−P⊥ =
1

( ∂w
∂x1

)2 +( ∂w
∂x2

)2 +1



1+( ∂w
∂x2

)2 − ∂w
∂x1

∂w
∂x2

∂w
∂x1

− ∂w
∂x1

∂w
∂x2

1+( ∂w
∂x1

)2 ∂w
∂x2

∂w
∂x1

∂w
∂x2

( ∂w
∂x1

)2 +( ∂w
∂x2

)2


. (3.94)

For infinitesimal strains and rotations, the mid-surface deflection (the normal displacement com-

ponent) is significantly smaller than the plate thickness. This results in an exceptionally small

surface curvature, with its square negligible compared to unity. Consequently, the normal vector

can be expressed as:

n =


n1

n2

n3

=


− ∂w

∂x1

− ∂w
∂x2

1

 . (3.95)

The complementary orthogonal projection operators P⊥ and P are therefore reduced to

P⊥ =


0 0 − ∂w

∂x1

0 0 − ∂w
∂x2

− ∂w
∂x1

− ∂w
∂x2

1

 , (3.96)

and

P =


1 0 ∂w

∂x1

0 1 ∂w
∂x2

∂w
∂x1

∂w
∂x2

0

 . (3.97)
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Figure 3.2: The deformed configuration of a Mindlin plate.

For infinitesimal deflections and rotations, the normal gradient operator ∇n(·) which repre-

sents the gradient along the direction normal to the mid-surface can be expressed as:

∇n(·) =
∂ (·)
∂x3

. (3.98)

Essentially, it describes the change of a scalar or vector function in the direction perpendicular

to the mid-surface, represented by the partial derivative with respect to the coordinate x3. The

assumption (3.13) is rewritten as:

∇nt = ∇n(G · [∇S(u ·n)+∇nu]) = 0. (3.99)

As illustrated in Fig. 3.2, the equation above signifies that the gradient of γ = ∇S(u ·n)+∇nu

along the direction normal to the midplane is zero. Based on its geometric interpretation, we can

derive the following expression:

∇
2
nu =

∂ (∇nu)
∂x3

= 0. (3.100)

The vanishing partial derivative of the normal gradient ∇nu with respect to x3 indicates that

the normal displacement gradient is independent of the thickness coordinate during deformation.

This motivates introducing a concise representation for the normal gradient ∇nu as the vector

functionφ(x1,x2, t), capturing the displacement characteristics relative to the mid-surface. Thus,

∇nu is expressed as:

∇nu = φ(x1,x2, t), (3.101)
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where φ is a vector function solely dependent on x1, x2, and t, with components:

φ(x1,x2, t) =


φ1(x1,x2, t)

φ2(x1,x2, t)

0

 . (3.102)

Similarly, the normal gradient ∇nu of the displacement field u equals its partial derivative with

respect to the thickness direction x3

∇nu =
∂u
∂x3

. (3.103)

Accordingly, referring to equation (3.101), the displacement at any point x within the plate and

at time t can be succinctly expressed as:

u(x, t) =ϕ(x1,x2, t)+ x3φ(x1,x2, t) (3.104)

where ϕ represents a vector function dependent solely on x1, x2, and t. Considering the dis-

placement at the mid-surface, we have:

u|x3=0 = u0, (3.105)

where u0 is defined by (3.90). This yields:

ϕ(x1,x2, t) = u0(x1,x2, t). (3.106)

Hence, a direct correspondence exists between the displacement at any point within the plate

and that at its mid-surface. The displacement field at any point within the plate can be expressed

as:

u(x, t) = u0(x1,x2, t)+ x3φ(x1,x2, t). (3.107)
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Substituting equation (3.107) into equation (3.18) yields the explicit expression of the strain

tensor εs:

εs =



∂u0
∂x1

1
2(

∂u0
∂x2

+ ∂v0
∂x1

) 0

1
2(

∂u0
∂x2

+ ∂v0
∂x1

) ∂v0
∂x2

0

0 0 0


. (3.108)

Similarly, by introducing equation (3.107) into equation (3.27), we obtain the explicit expression

for the curvature tensor κ:

κ =



∂φ1
∂x1

1
2(

∂φ1
∂x2

+ ∂φ2
∂x1

) 0

1
2(

∂φ1
∂x2

+ ∂φ2
∂x1

) ∂φ2
∂x2

0

0 0 0


. (3.109)

Furthermore, the expression of ∇S(u ·n) can be specified by:

∇S(u ·n) =


∂w
∂x1

∂w
∂x2

0

 . (3.110)

Building on these formulations, explicit expressions for the in-plane stress resultants Ns, mo-

ment resultants M, and shear resultants Q can be derived once the plate’s material properties are

known. The following subsections detail two important cases: plates with transversely isotropic

and isotropic materials.

3.4.3 Transversely Isotropic Material

For a plate made of a transversely isotropic material, the in-plane stress resultants, Ns, mo-

ment resultants, M, and shear resultants, Q, can be derived by substituting the operators (2.144)-

(2.151) for transverse isotropy into equations (3.80)-(3.82). The specific expressions for Ns, M,
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and Q are as follows:

Ns =
∫ h

2

− h
2

{(
C12−

C2
13

C33

)
tr(εs)P+(C11−C12)εs

}
dx3, (3.111)

M =
∫ h

2

− h
2

{
x2

3

[(
C12−

C2
13

C33

)
tr(κ)P+(C11−C12)κ

]}
dx3, (3.112)

Q =
∫ h

2

− h
2

C44(∇S(u ·n)+∇nu)dx3. (3.113)

Using the expressions for εs and P in equations (3.97) and (3.108), Ns can be expanded into the

following matrix form:

Ns = h
(

C12−
C2

13
C33

)
∂u0
∂x1

+ ∂v0
∂x2

0 0

0 ∂u0
∂x1

+ ∂v0
∂x2

0

0 0 0

+h(C11−C12)


∂u0
∂x1

1
2(

∂u0
∂x2

+ ∂v0
∂x1

) 0
1
2(

∂u0
∂x2

+ ∂v0
∂x1

) ∂v0
∂x2

0

0 0 0

 .

In accordance with the fundamental assumption of Mindlin plate theory, which postulates that

the thickness of the plate remains invariant during deformation, the modulus C33 is considered

to be a significantly large quantity. Therefore, the term C2
13/C33 approaches zero, leading to the

simplification of Ns as follows:

Ns = h


C11

∂u0
∂x1

+C12
∂v0
∂x2

(C11−C12)
2 (∂u0

∂x2
+ ∂v0

∂x1
) 0

(C11−C12)
2 (∂u0

∂x2
+ ∂v0

∂x1
) C12

∂u0
∂x1

+C11
∂v0
∂x2

0

0 0 0

 . (3.114)

Using the expressions for κ and P given by equations (3.97) and (3.109), the moment tensor M

provided by (3.112) is rewritten in the following matrix form:

M=
h3

24

(
C12−

C2
13

C33

)
∂φ1
∂x1

+ ∂φ2
∂x2

0 0

0 ∂φ1
∂x1

+ ∂φ2
∂x2

0

0 0 0

+ h3

24
(C11−C12)


∂φ1
∂x1

1
2(

∂φ1
∂x2

+ ∂φ2
∂x1

) 0
1
2(

∂φ1
∂y + ∂φ2

∂x1
) ∂φ2

∂x2
0

0 0 0

 .
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Similarly, as C2
13/C33 approaches zero, the expression of M takes the following simple form:

M =
h3

24


C11

∂φ1
∂x1

+C12
∂φ2
∂x2

(C11−C12)
2 (∂φ1

∂x2
+ ∂φ2

∂x1
) 0

(C11−C12)
2 (∂φ1

∂x2
+ ∂φ2

∂x ) C12
∂φ1
∂x +C11

∂φ2
∂x2

0

0 0 0

 . (3.115)

For the shear resultant Q, substituting equations (3.102) and (3.110) into equation (3.113) yields

its explicit expression:

Q = hC44


∂w
∂x1

+φ1

∂w
∂x2

+φ2

0

 . (3.116)

3.4.4 Isotropic Material

For an isotropic plate, the in-plane stress resultants Ns, moment resultants M, and shear

resultants Q can be obtained by substituting the isotropy operators (2.153)-(2.157) into equations

(3.80)-(3.82). Specifically:

Ns =
∂E
∂εs

=
∫ h

2

− h
2

{
2µλ

λ +2µ
tr(εs)P+2µεs

}
dx3, (3.117)

M =
∂E
∂κ

=
∫ h

2

− h
2

x2
3

(
2µλ

λ +2µ
tr(κ)P+2µκ

)
dx3, (3.118)

Q =
∂E

∂ (∇S(u ·n)+∇nu)
=
∫ h

2

− h
2

µ(∇S(u ·n)+∇nu)dx3. (3.119)

Given the expressions for εs and P in equations (3.97) and (3.108), Ns can be expressed in matrix

form as follows:

Ns =
2hµλ

λ +2µ


∂u0
∂x1

+ ∂v0
∂x2

0 0

0 ∂u0
∂x1

+ ∂v0
∂x2

0

0 0 0

+2hµ


∂u0
∂x1

1
2(

∂u0
∂x2

+ ∂v0
∂x1

) 0
1
2(

∂u0
∂x2

+ ∂v0
∂x1

) ∂v0
∂x2

0

0 0 0

 ,
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or equivalently,

Ns =
hE

1−ν2


∂u0
∂x1

+ν ∂v0
∂x2

(1−ν)
2 (∂u0

∂x2
+ ∂v0

∂x1
) 0

(1−ν)
2 (∂u0

∂x2
+ ∂v0

∂x1
) ν ∂u0

∂x1
+ ∂v0

∂x2
0

0 0 0

 , (3.120)

where E is Young’s modulus, ν is Poisson’s ratio, and their relationship with the Lame coeffi-

cients is given by:

λ =
Eν

1−ν2 , µ =
E

2(1+ν)
. (3.121)

Similarly, the moment tensor M given by (3.184) takes the following matrix form:

M =
h3µλ

6(λ +2µ)


∂φ1
∂x1

+ ∂φ2
∂x2

0 0

0 ∂φ1
∂x1

+ ∂φ2
∂x2

0

0 0 0

+ h3µ
6


∂φ1
∂x

1
2(

∂φ1
∂x2

+ ∂φ2
∂x1

) 0
1
2(

∂φ1
∂x2

+ ∂φ2
∂x1

) ∂φ2
∂x2

0

0 0 0


or equivalently,

M =
h3E

12(1−ν2)


∂φ1
∂x1

+ν ∂φ2
∂x2

(1−ν)
2 (∂φ1

∂x2
+ ∂φ2

∂x1
) 0

(1−ν)
2 (∂φ1

∂x2
+ ∂φ2

∂x1
) ν ∂φ1

∂x1
+ ∂φ2

∂x2
0

0 0 0

 . (3.122)

By inserting equations (3.102) and (3.110) into equation (3.119), the explicit expression for the

shear resultant Q can be obtained:

Q = hν


∂w
∂x1

+φ1

∂w
∂x2

+φ2

0

 . (3.123)

3.4.5 Timoshenko Beam Theory

When the field in the x2 direction vanishes and the fields in the x1-direction and x3-direction

are independent of x2, the Mindlin plate reduces to a Timoshenko beam. For a beam with uniform

thickness h and length L, the coordinates at any point x within the beam simplify to x ∈ R2. To

maintain consistency with the previous Mindlin plate discussion, the coordinate system (x1,x3)
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is adopted, with x1 along the beam’s centerline and x3 positive upward. This configuration is

shown in Fig. 3.3. The time-dependent displacement field of the midline curve is expressed as:

u0(x, t) =

u0(x1, t)

w(x1, t)

 . (3.124)

The deformed midline curve of the beam can be represented by

Γ = {x ∈ R2 | g(x) = x3−w = 0}. (3.125)

The normal vector perpendicular to the deformed midline curve of the beam is referred to as:

n =

n1

n3

=

− ∂w
∂x1

1

 . (3.126)

x3

x1

γ

s

(u·n)

nu

Figure 3.3: The deformed configuration of a Timoshenko beam.

The complementary orthogonal projection operators P⊥ and P can be expressed as:

P⊥ =

 0 − ∂w
∂x1

− ∂w
∂x1

1

 , (3.127)

and

P =

 1 ∂w
∂x1

∂w
∂x1

0

 . (3.128)

Therefore, the displacement is reduced to the following form:

u(x, t) = u0(x1, t)+ x3φ(x1, t), (3.129)
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where φ(x1, t) is a vector function given as follows:

φ(x1, t) =

φ1(x1, t)

0

 . (3.130)

The expressions of εs, κ , and ∇S(u ·n) takes the following forms:

εs =

∂u0
∂x1

0

0 0

 , (3.131)

κ =

∂φ1
∂x1

0

0 0

 , (3.132)

∇S(u ·n) =

 ∂w
∂x1

0

 . (3.133)

The axial force Ns, bending moment M, and the shear force Q can be obtained as:

Ns =
Eh

1−ν2
∂u0

∂x1
, (3.134)

M =
Eh3

12(1−ν2)

∂φ1

∂x1
, (3.135)

Q = µh(φ1 +
∂w
∂x1

). (3.136)

The equations (3.66) are reduced to:

Eh
1−ν2

∂ 2u0

∂x2
1
+ fs = ρh

∂ 2u0

∂ t2 , (3.137a)

Eh3

12(1−ν2)

∂ 2φ1

∂x2
1
+µh(φ1 +

∂w
∂x1

) =
ρh2

12
∂ 2φ1

∂ t2 , (3.137b)

µh(φ1 +
∂w
∂x1

)+ fx3 = ρh
∂ 2w
∂ t2 , (3.137c)
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for any x1 ∈ (0,L) and t ∈ (0,T ). And the boundary conditions (3.67) are simplified to:

Ns = N̄s or u0 = ū0 at x1 = 0 and x1 = L, (3.138a)

M = M̄ or φ1 = φ̄1 at x1 = 0 and x1 = L, (3.138b)

Q = Q̄ or w = w̄ at x1 = 0 and x1 = L. (3.138c)

This formulation constitutes a boundary-initial value problem for determining u0, w , and

φ1, governed by the system of differential equations in equations (3.137a-c) and the boundary

conditions in equations (3.138a-c), with initial conditions at t = 0 and t = T . This establishes

a non-classical Timoshenko beam model. Unlike the classical Timoshenko beam theory, the

equations of motion in (3.137a-c) explicitly incorporate the Poisson effect. While this effect is

often negligible for slender beams with significant aspect ratios (by setting ν = 0), it becomes

crucial for non-slender beams or materials with pronounced Poisson effects to ensure accurate

results. Ignoring the Poisson effect reduces the model to the classical Timoshenko beam. Ne-

glecting axial effects (u0 = 0) simplifies equations (3.137a) and boundary conditions (3.138a) to

the classical model in Hutchinson [71]. For time-independent fields w = w(x1), and φ1 = φ1(x1),

the model reduces to the quasistatic Timoshenko beam of Wang [139].

3.5 The Dynamic Plate Theory without Coupling Effect and

Shear Force

Let us consider a scenario where the plate structure exhibits geometric symmetry about its

mid-surface, and the material composing the plate is homogeneous. Given the context of small

rotations and deflections, as previously outlined, we will disregard the coupling effect. In the

previous case, shear forces were taken into account, which is applicable to moderately thick

plates. However, in the case of thin plates, the thickness of the plate is typically much smaller

compared to its width and length. Consequently, the stiffness of the plate is primarily deter-

mined by its bending stiffness, while the shear stiffness is relatively small. Due to this smaller

shear stiffness, the deformation of the plate is primarily bending deformation, with shear de-

formation being comparatively minor. Therefore, in analysis, the influence of shear forces can

typically be neglected.In this section, we revisit the formulation of the strain energy based on
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the aforementioned foundations and reintroduce the strain energy density function. Utilizing

variational methods, we derive the governing equations and corresponding boundary conditions.

This theory simplifies to classical Kirchhoff-Love plate theory in the two-dimensional case and

degenerates to Bernoulli-Euler beam theory in the one-dimensional case.

3.5.1 General Form of Plate Theory without Coupling Effect and Shear

Force

When neglecting both the coupling effect and shear force (i.e., Ξcouple = 0, and Ξshear = 0),

the total strain energy Ξh consists of the membrane energy Ξmembrane and the bending energy

Ξbending, as outlined in equations (3.21) and (3.28). Specifically, it can be formulated as:

Ξh =
1
2

∫
S0

∫ h
2

− h
2

(εs : A : εs)dx3ds+
1
2

∫
S0

∫ h
2

− h
2

x2
3 [κ : A : κ]dx3ds. (3.139)

Given the previously provided expression for the total strain energy, we can derive the corre-

sponding energy density function E as follows:

E =
1
2

∫ h
2

− h
2

(εs : A : εs)dx3 +
1
2

∫ h
2

− h
2

x2
3(κ : A : κ)dx3. (3.140)

Based on the energy density function, it is evident that the involved geometric measures are

solely εs and κ . Consequently, the conjugate physical fields, i.e., the in-plane stress resultants

Ns and moment resultants M, can be determined by differentiating the energy density function

E with respect to the respective deformation measures. Their expressions are specifically given

by:

Ns =
∂E
∂εs

=
∫ h

2

− h
2

(A : εs)dx3, (3.141)

M =
∂E
∂κ

=
∫ h

2

− h
2

x2
3(A : κ)dx3. (3.142)

Utilizing the provided constitutive equations, we can concisely express the energy density func-

tion E as follows:

E =
1
2
[εs : Ns +κ : M]. (3.143)
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Before we proceed with the variation of the total strain energy Ξ, it is necessary to determine

the number and nature of the independent variables involved in the variation process, due to the

reduced geometric measurements, as previously mentioned. Specifically, under the condition

that Ξshear = 0 and according to equation (3.25), the following constraint applies:

[∇S(u ·n)+∇nu] · (n ·C ·n) · [∇S(u ·n)+∇nu] = 0. (3.144)

Given that n ·C · n is positive definite and invertible, as detailed in equations (2.90)-(2.93) of

Chapter 3.4, the above equation indicates that:

∇nu+∇S(u ·n) = 0. (3.145)

Based on the preceding explanation, we can deduce that:

δ∇nu =−δ∇S(u ·n). (3.146)

In the variational process, it is noteworthy that the variation of ∇Su on a given surface S0 is

not independent of the variation of u. As a result, the independent variables in this variational

framework reduce to δ (P ·u) and δ (u ·n). This distinction marks a significant departure from the

previous variational processes discussed in Chapters 4.5 and 4.6. It will be applied in subsequent

analyses of the work done by external forces and kinetic energy.

Now, we proceed to perform a variational analysis of the total strain energy term by term.

Based on equations (3.53) and (3.141), we obtain the variation of Ξmembrane as:

δΞmembrane =
∫

S0

[∇ · [Ns ·δ (P ·u)]− (∇ ·Ns) ·δ (P ·u)]ds. (3.147)

Considering the definition of the curvature tensor κ given in equation (3.27) and employing the

intrinsic symmetry of the tensor A, we can systematically unfold the variational derivative of the

pure bending energy in the following manner:

δΞbending =
∫

S0

{−∇ · [P ·M ·P ·δ (∇(u ·n))]+∇ · [∇S · (M ·P)δ (u ·n)]

−∇ · [∇S · (M ·P)]δ (u ·n)}ds.
(3.148)
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By summing the variations of the membrane and bending energies, we obtain the total variation

of the strain energy Ξ as follows:

δΞ =
∫

S0

[∇ · [Ns ·δ (P ·u)]− (∇ ·Ns) ·δ (P ·u)−∇ · [P ·M ·P ·δ (∇(u ·n))]

+∇ · [∇S · (M ·P)δ (u ·n)]−∇ · [∇S · (M ·P)]δ (u ·n)]ds.
(3.149)

The potential energy of external forces, denoted as W , quantifies the work exerted by these

forces through corresponding displacements, under the assumption of force constancy during

deformation. The variation in external work is expressed as:

δW =
∫

S0

(f ·δu)ds+
∫

∂S0

[N̄ ·δ (P ·u)+M̄ ·δ∇(u ·n)]dl

=
∫

S0

[fs ·δ (P ·u)+ fx3δ (u ·n)]ds+
∫

∂S0

[N̄ ·δ (P ·u)+M̄ ·δ∇(u ·n)]dl
(3.150)

where f, N̄, and M̄ denote the body force resultant applied to the middle surface of the plate S0,

and the Cauchy traction resultant and moment applied to the boundary of the middle surface of

the plate ∂S0, respectively.

The kinetic energy of the plate is defined as the integral of the kinetic energy density over its

volume, which is given by:

K =
∫ h

2

− h
2

∫
S0

1
2

ρu̇2dx3ds (3.151)

where the superposed dot on a variable indicates time derivative (e.g., u̇ = ∂u/∂ t). The variation

in kinetic energy, denoted by δK, can be derived by decomposing the displacement field u and

using the chain rule of differentiation. Specifically, it can be expressed as:

δK =
∫ h

2

− h
2

∫
S0

ρü ·δudx3ds (3.152)

=
∫

S0

[(I0P · ü) ·δ (P ·u)+ [I0(ü ·n)− (I2∇ ·∇(ü ·n)]δ (u ·n)+ I2∇ · (∇(ü ·n)δ (u ·n))]ds

where I0 and I2 are the mass moments of inertia and they can be calculated by

I0 =
∫ h

2
− h

2
ρdx3, I2 =

∫ h
2
− h

2
ρx2

3dx3. (3.153)

The dynamic version of the variational principle of total energy, which can be interpreted as

107



the minimization of the total potential energy with the inclusion of kinetic energy effects, is

expressed as:

δΠ =
∫ T

0
(δΞ+δW −δK)dt = 0. (3.154)

Expanding this integral, we obtain:

∫ T

0

∫
S0

{[fs−∇ ·Ns− I0P · ü] ·δ (P ·u)+ [ fx3−∇ · [∇s · (M ·P)]− I0(ü ·n)+ I2∇ ·∇(ü ·n)]δ (u ·n)}dsdt

+
∫ T

0

∫
S0

{∇ · [Ns ·δ (P ·u)]−∇ · [P ·M ·P ·δ (∇(u ·n))]+∇ · [∇S · (M ·P)]− I2∇(ü ·n)]δ (u ·n)]}dsdt

+
∫ T

0

∫
∂S0

[N̄ ·δ (P ·u)+M̄ ·δ∇(u ·n)]dldt = 0. (3.155)

Before obtaining the boundary conditions in terms of displacements, forces, and moments along

an edge, it is essential to precisely define the unit normal vector m of this edge. Applying the

divergence theorem and Stokes’s theorem, equation (3.155) can be reformulated as:

∫ T

0

∫
S0

{[fs−∇ ·Ns− I0P · ü] ·δ (P ·u)+ [ fx3−∇ · [∇S · (M ·P)]− I0(ü ·n)+ I2∇ ·∇(ü ·n)]δ (u ·n)}dsdt

+
∫ T

0

∫
∂S0

{[(Ns ·m+ N̄) ·δ (P ·u)]− [((P ·M ·P) ·m+M̄) ·δ (∇(u ·n))]+ [∇S · (M ·P) (3.156)

− I2∇(ü ·n)] ·mδ (u ·n)}dldt = 0.

In the given equation, the variables δ (P ·u) and δ (u ·n) are considered arbitrary. Consequently,

we derive the following equilibrium equations:

fs−∇ ·Ns = I0P · ü
fx3−∇ · [∇S · (M ·P)] = I0(ü ·n)− I2∇ ·∇(ü ·n)

 . (3.157)

For the second integral term of above equation, considering a more general case of a plate

whose edges are not parallel to the x- and y-axes, as shown in Fig. 3.1, we introduce a rotation

tensor R which relates Cartesian coordinates (x,y,z) to Coordinates (m,s,z) by
x

y

z

=


cosθ −sinθ 0

sinθ cosθ 0

0 0 1




m

s

z

=


mx −my 0

my mx 0

0 0 1




m

s

z

 . (3.158)
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where θ is the rotation angle around the z -axis. Hence, the displacement (u0m,u0s,w) are related

to (u0,v0,w) by the transformation
u0

v0

w

=


cosθ −sinθ 0

sinθ cosθ 0

0 0 1




u0m

u0s

w

 , (3.159)

which can be expressed as

u = R · û. (3.160)

Similarly, the force tensor, the moment tensor and the normal derivative in the coordinate system

(x,y,z) are related to those in the coordinate system (m,s,n) through the following transform

expression

M = R ·M̂ ·RT , (3.161)

Ns = R · N̂s ·RT , (3.162)

and

∇(u ·n) = ∇(R · û ·n). (3.163)

Now we can rewrite the boundary expressions in equation (3.156) in terms of the displacements

û

∫ T

0

∫
∂S0

{[N̂s ·RT ·m− Ñ] ·δ (P · û)+ [M̂ ·RT ·m−M̃] ·δ∇(û ·n)

− [∇ ·M− I2∇(ü ·n)] ·mδ (u ·n)}dldt = 0,
(3.164)
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which gives the following corresponding boundary conditions:

N̂s ·RT ·m− Ñ = 0

M̂ ·RT ·m−M̃ = 0

∇ ·M− I2∇(ü ·n) = 0

 . (3.165)

These boundary conditions provide constraints on the displacements, forces, and moments along

the edge, offering further insights into the behavior of the system under consideration.

3.5.2 The Kirchhoff-Love Plate Theory

Consider a plate with uniform thickness h in a rectangular Cartesian coordinate system

(x1,x2,x3). The x1-x2-plane coincides with the plate’s mid-plane, and the x3-axis is oriented

downward, as shown in Fig. 3.4.

The displacement field describing the time-dependent deformations of the middle surface is

given by:

u0(x, t) =


u0(x1,x2, t)

v0(x1,x2, t)

w(x1,x2, t)

 , (3.166)

where u0(x1,x2, t) and v0(x1,x2, t) are the in-plane displacements of a material point on the mid-

dle surface in the (x1,x2,x3) coordinate directions, and w(x1,x2, t) is the transverse displacement

(or bending deflection) of the middle surface. For brevity, we denote these quantities as u0, v0,

and w throughout this subsection. The deformed middle surface of the plate can be expressed

as:

Γ = {x ∈ R3 | g(x, t) = z−w(x1,x2, t) = 0}. (3.167)

Following Mindlin plate theory for small strains and rotations, the mid-surface deflection is

significantly smaller than the plate thickness. This leads to negligible surface curvature, allowing

us to approximate the normal vector as:

n =


n1

n2

n3

=


− ∂w

∂x1

− ∂w
∂x2

1

 . (3.168)
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Figure 3.4: The deformed configuration of a Kirchhoff-Love plate.

Similarly, the complementary orthogonal projection operators P⊥ and P take the following

forms:

P⊥ =


0 0 − ∂w

∂x1

0 0 − ∂w
∂x2

− ∂w
∂x1

− ∂w
∂x2

1

 , (3.169)

and

P =


1 0 ∂w

∂x1

0 1 ∂w
∂x2

∂w
∂x1

∂w
∂x2

0

 . (3.170)

As in the Mindlin-Reissner plate theory, the displacement field at any point within the plate can

be formally expressed as:

u(x, t) = u0(x1,x2, t)+ x3φ(x1,x2, t), ∇nu = φ(x1,x2, t). (3.171)

Starting from the assumption for the Kirchhoff-Love plate theory that the shear force is neglect-

ed, we have:

t = (n ·C ·n) · [∇nu+∇S(u ·n)] = 0. (3.172)

Since n ·C ·n is positive definite and invertible, the equation above holds if and only if:

∇nu+∇S(u ·n) = 0. (3.173)

By combining equations (3.168) and (3.171), and accounting for the definition of ∇S, the ex-
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pression for ∇S(u ·n) in this case is given as:

∇S(u ·n) =


∂w
∂x1

∂w
∂x2

0

 . (3.174)

It can be reduced from equation (3.173) that
φ1(x1,x2, t)

φ2(x1,x2, t)

0

=−


∂w
∂x1

∂w
∂x2

0

 . (3.175)

Consequently, the displacement field at any point within the plate is given by:

u(x, t) = u0(x1,x2, t)− x3


∂w
∂x1

∂w
∂x2

0

 . (3.176)

Substituting equation (3.176) into equation (3.18) yields the explicit expression of the strain

tensor εs:

εs =


∂u0
∂x1

1
2(

∂u0
∂x2

+ ∂v0
∂x1

) 0
1
2(

∂u0
∂x2

+ ∂v0
∂x1

) ∂v0
∂x2

0

0 0 0

 . (3.177)

Similarly, substituting equation (3.176) into equation (3.27) yields the explicit expression for the

curvature tensor κ:

κ =−


∂ 2w
∂x2

1

∂ 2w
∂x1x2

0

∂ 2w
∂x1x2

∂ 2w
∂x2

2
0

0 0 0

 . (3.178)

3.5.3 Transversely Isotropic Material

For a plate with transversely isotropic maretial, the in-plane stress resultants Ns and moment

resultants M are determined by substituting the transverse isotropic operators (2.144)-(2.151)
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into equations (3.141)-(3.142). The explicit expressions for Ns and M are:

Ns =
∫ h

2

− h
2

{(
C12−

C2
13

C33

)
tr(εs)P+(C11−C12)εs

}
dx3, (3.179)

M =
∫ h

2

− h
2

{
x2

3

[(
C12−

C2
13

C33

)
tr(κ)P+(C11−C12)κ

]}
dx3. (3.180)

Using the expressions for εs and P provided in equations (3.170) and (3.177), the representation

of Ns in the matrix form is

Ns = h
(

C12−
C2

13
C33

)
∂u0
∂x1

+ ∂v0
∂x2

0 0

0 ∂u0
∂x1

+ ∂v0
∂x2

0

0 0 0

+h(C11−C12)


∂u0
∂x1

1
2(

∂u0
∂x2

+ ∂v0
∂x1

) 0
1
2(

∂u0
∂x2

+ ∂v0
∂x1

) ∂v0
∂x2

0

0 0 0

 .

According to the fundamental assumption of the Kirchhoff-Love plate theory, in which the thick-

ness of the plate is considered unchanged during deformation, the modulus C33 is considered

significantly large. This implies that C2
13/C33 approaches zero, simplifying the expression for Ns

reduces to:

Ns = h


C11

∂u0
∂x1

+C12
∂v0
∂x2

(C11−C12)
2 (∂u0

∂x2
+ ∂v0

∂x1
) 0

(C11−C12)
2 (∂u0

∂x2
+ ∂v0

∂x1
) C12

∂u0
∂x1

+C11
∂v0
∂x2

0

0 0 0

 . (3.181)

By substituting the expressions for κ and P provided in (3.170) and (3.178)) into equation

(3.180), the matrix representation of the moment tensor M is given by:

M=
h3

24

(
C12−

C2
13

C33

)
−∂ 2w

∂x2
1
− ∂ 2w

∂x2
2

0 0

0 −∂ 2w
∂x2

1
− ∂ 2w

∂x2
2

0

0 0 0

+ h3

24
(C11−C12)


−∂ 2w

∂x2
1
− ∂ 2w

∂x1∂x2
0

− ∂ 2w
∂x1∂x2

−∂ 2w
∂x2

2
0

0 0 0

 .

As before, since C2
13/C33 approaches zero, M takes the following simple form:

M =−h2

24


C11

∂ 2w
∂x2

1
+C12

∂ 2w
∂x2

2
(C11−C12)

∂ 2w
∂x1∂x2

0

(C11−C12)
∂ 2w

∂x1∂x2
C12

∂ 2w
∂x2

1
+C11

∂ 2w
∂x2

2
0

0 0 0

 . (3.182)

113



3.5.4 Isotropic Material

For an isotropic plate, the in-plane stress resultants Ns and moment resultants M can be

determined by applying the isotropy operators (2.153)-(2.157) to equations (3.141)-(3.142). This

yields:

Ns =
∂E
∂εs

=
∫ h

2

− h
2

{
2µλ

λ +2µ
tr(εs)P+2µεs

}
dx3, (3.183)

M =
∂E
∂κ

=
∫ h

2

− h
2

x2
3

(
2µλ

λ +2µ
tr(κ)P+2µκ

)
dx3. (3.184)

By substituting equations (3.170) and (3.177) into equation (3.183), we can express Ns in the

following matrix form:

Ns =
2hµλ

λ +2µ


∂u0
∂x1

+ ∂v0
∂x2

0 0

0 ∂u0
∂x1

+ ∂v0
∂x2

0

0 0 0

+2hµ


∂u0
∂x1

1
2(

∂u0
∂x2

+ ∂v0
∂x1

) 0
1
2(

∂u0
∂x2

+ ∂v0
∂x1

) ∂v0
∂x2

0

0 0 0

 , (3.185)

or equivalently,

Ns =
hE

1−ν2


∂u0
∂x1

+ν ∂v0
∂x2

(1−ν)
2 (∂u0

∂x2
+ ∂v0

∂x1
) 0

(1−ν)
2 (∂u0

∂x2
+ ∂v0

∂x1
) ν ∂u0

∂x1
+ ∂v0

∂x2
0

0 0 0

 . (3.186)

The moment tensor M, determined by substituting equations (3.170) and (3.178) into equation

(3.184), is given by:

M =
h3µλ

6(λ +2µ)


−∂ 2w

∂x2
1
− ∂ 2w

∂x2
2

0 0

0 −∂ 2w
∂x2

1
− ∂ 2w

∂x2
2

0

0 0 0

+ h3µ
6


−∂ 2w

∂x2
1
− ∂ 2w

∂x1∂x2
0

− ∂ 2w
∂x1∂x2

−∂ 2w
∂x2

2
0

0 0 0

 (3.187)

or equivalently,

M =
h3E

12(1−ν2)


−∂ 2w

∂x2
1
−ν ∂ 2w

∂x2
2
−(1−ν) ∂ 2w

∂x1∂x2
0

−(1−ν) ∂ 2w
∂x1∂x2

−ν ∂ 2w
∂x2

1
− ∂ 2w

∂x2
2

0

0 0 0

 . (3.188)
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3.5.5 Bernoulli Beam Theory

When the field in the x2 direction vanishes and the fields in the x1-direction and x3-direction

are independent of x2, the Kirchhoff-Love plate reduces to a Bernoulli beam. For a beam with

uniform thickness h and length L, the coordinates at any point x simplify to x ∈ R2. Consistent

with the Kirchhoff-Love plate, the coordinate system (x1,x3) is adopted, with x1 aligned with the

beam’s centerline and x3- positive downward (see Fig. 3.5). The displacement field governing

the beam’s time-dependent midline deformations is:

u0(x, t) =

u0(x1, t)

w(x1, t)

 . (3.189)

x3

x1

s(u·n)

nu

O

=

Figure 3.5: The deformed configuration of a Bernoulli beam.

The deformed midline curve of the beam is described by:

Γ = {x ∈ R2 | g(x) = x3−w = 0}. (3.190)

The normal vector perpendicular to the deformed midline curve of the beam is given by:

n =

n1

n3

=

− ∂w
∂x1

1

 . (3.191)

The complementary orthogonal projection operators P⊥ and P are

P⊥ =

 0 − ∂w
∂x1

− ∂w
∂x1

1

 , (3.192)
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and

P =

 1 ∂w
∂x1

∂w
∂x1

0

 . (3.193)

Therefore, the displacement is reduced to the following form:

u(x, t) = u0(x1, t)− x3

 ∂w
∂x1

0

 . (3.194)

The expressions for εs and κ can be determined as follows:

εs =

∂u0
∂x1

0

0 0

 , (3.195)

κ =

−∂ 2w
∂x2

1
0

0 0

 . (3.196)

Assuming that the material of the beam is homogeneous and isotropic, the axial force Ns and

bending moment M can be determined as follows:

Ns =
Eh

1−ν2
∂u0

∂x1
, (3.197)

M =− Eh3

12(1−ν2)

∂ 2w
∂x2

1
. (3.198)

The equations of motion reduce to:

Eh
1−ν2

∂ 2u0

∂x2
1
+ fs = ρh

∂ 2u0

∂ t2 , (3.199a)

Eh3

12(1−ν2)

∂ 4w
∂x4

1
− fx3 =

ρh2

12
∂ 4w

∂x2
1∂ t2 −

∂ 2w
∂ t2 , (3.199b)

for any x1 ∈ (0,L) and t ∈ (0,T ). Correspondingly, the boundary conditions are given by:

Ns = N̄s or u0 = ū0 at x1 = 0 and x1 = L, (3.200a)

M = M̄ or w = w̄ at x1 = 0 and x1 = L. (3.200b)
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This formulation constitutes a boundary-initial value problem for determining u0, w, gov-

erned by the system of differential equations in equations (3.199a-b) and the boundary con-

ditions in equations (3.200a-b), with initial conditions at t = 0 and t = T . This establishes a

non-classical Bernoulli-Euler beam model. Unlike the classical Bernoulli-Euler beam theory,

the equations of motion in (3.199a-b) explicitly incorporate the Poisson effect. While this effect

is often negligible for slender beams with significant aspect ratios (by setting ν = 0), it becomes

crucial for non-slender beams or materials with pronounced Poisson effects to ensure accurate

results. Ignoring the Poisson effect reduces the model to the classical Bernoulli-Euler beam.

Neglecting axial effects (ν = 0) simplifies equations (3.199a) and boundary conditions (3.200a)

to the classical model in Timoshenko [129]. For time-independent fields (w = w(x1)), the model

reduces to the quasistatic Bernoulli-Euler beam in Timoshenko [129].

3.6 Conclusion

Based on the theoretical frameworks established in Chapters 1 and 2, a comprehensive the-

oretical model for the strain energy of plate-shell structures has been developed. Employing a

Taylor series expansion of displacements, a general strain energy expression in terms of mid-

surface deformation metrics was derived. This enabled the introduction of a strain energy den-

sity function and subsequent derivation of conjugate stress measures. A variational approach

systematically yielded the dynamic governing equations and boundary conditions for plate-shell

structures.

The model was extended to scenarios neglecting coupling effects, leading to detailed formu-

lations for corresponding stress measures, governing equations, and boundary conditions. For

flat plates undergoing small deflections and rotations, the framework reduces to the well-known

Mindlin plate and Timoshenko beam theories. Further simplification by neglecting both cou-

pling and shear effects aligns the model with Kirchhoff plate and Bernoulli-Euler beam theories.

The framework accommodates anisotropic materials, as demonstrated by explicit formula-

tions for transversely isotropic and isotropic cases. This expands the model’s applicability to a

wider range of structural materials.

The presented work provides a robust formulation for the analysis and design of advanced

plate-shell structures. Accurate modeling and prediction of these structures under diverse load-
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ing conditions are crucial for aerospace, civil, and mechanical engineering. The ability to ac-

commodate complex material behaviors and structural configurations opens new avenues for

efficient and resilient structural system development. This study offers valuable insights and

tools for engineers and researchers at the forefront of structural analysis and design.
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Chapter 4

Comparative Study of Homogenization

Techniques Using Projection Operators for

Laminated Plates

Laminated plates, renowned for their exceptional mechanical properties and high strength-

to-weight ratio, are widely used across industries. These composites comprise multiple bonded

layers, each typically homogeneous, contributing distinct mechanical properties. A character-

istic feature of laminated plates is the zigzag (ZZ) displacement field, exhibiting abrupt slope

changes at layer interfaces. This chapter introduces generalized zigzag theories, higher-order

plate theories capturing transverse shear deformation and the zigzag phenomenon in laminated

plate thickness.

Given the correspondence of the zigzag displacement effect with Hadamard’s relation intro-

duced in Chapter 1, and utilizing the operator introduced in Chapter 2, we have developed a

homogenization method. This method ensures the continuity of transverse stresses at each lay-

er interface. Additionally, analytical expressions are provided for the effective elastic tensor of

transversely isotropic laminated plates.

The chapter further derives the 3D exact (H-Exact) and Kirchhoff plate (HK-LPT) solutions

for the homogenized laminate. A comparative analysis of Zig-Zag, H-Exact, Classical Laminat-

ed Plate Theory (CPT), and HK-LPT methods for layered media is presented.
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4.1 An Overview of Zigzag Theory in Analysis of Laminated

Plates

k+1

k

2

1

n-1

n

zn+1

z1

zn

z2

zn-1

z3

zk

zk+1

z

y

x

y

z

b

a

h
2

h
2

Figure 4.1: Geometry and coordinate system of a laminate plate with n layers.

Consider a laminated composite plate consisting of n parallel plane layers which, individ-

ually made of linearly elastic homogeneous materials, are perfectly bonded together. Let us

introduce a system of Cartesian coordinates (x,y,z) such that the coordinates x and y are parallel

to plane layers while the coordinate z is perpendicular to them (see Fig. 4.1). In particular, the

bottom and top surfaces of the k-th layer with 1 ≤ k ≤ n are the corresponding coordinates zk

and zk+1 along the z-direction.

Let uk denote the displacement vector defined within the k-th layer. According to the gen-

eralized zigzag theory of laminate plates [89, 92], the components (uk,vk,wk) of uk along the

respective x, y and z axes are assumed to have the following expressions:

uk(x,y,z) = uk
0(x,y)+uk

1(x,y)z+uk
2(x,y)z

2 +uk
3(x,y)z

3 +uk
4(x,y)z

4 +uk
5(x,y)z

5 + · · · ,

vk(x,y,z) = vk
0(x,y)+ vk

1(x,y)z+ vk
2(x,y)z

2 + vk
3(x,y)z

3 + vk
4(x,y)z

4 + vk
5(x,y)z

5 + · · · ,

wk(x,y,z) = w0(x,y).

(4.1)

It is worth noting that in generalized zigzag theories, only zeroth- and first-order terms are con-

sidered in the expressions for the in-plane displacements. However, the displacement expres-
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sions provided in the previous equations represent a more generalized theory, capable of incor-

porating higher-order terms depending on the chosen order of the zigzag theory. To clarify the

derivation process, a third-order theory is chosen, extending the in-plane displacement up to the

third order in z. Therefore, the displacement of the k-th layer can be expressed as:

uk(x,y,z) = uk
0(x,y)+uk

1(x,y)z+uk
2(x,y)z

2 +uk
3(x,y)z

3,

vk(x,y,z) = vk
0(x,y)+ vk

1(x,y)z+ vk
2(x,y)z

2 + vk
3(x,y)z

3,

wk(x,y,z) = w0(x,y).

(4.2)

The strain distribution within each layer, which is related to the displacement field, can be de-

scribed by the following equation:

εk =
1
2
[∇uk +(∇uk)T ], (4.3)

where εk represents the strain tensor in layer k, and the symbol ∇ denotes the gradient opera-

tor. The constitutive equation governing the behavior of the k-th layer orthotropic material is

expressed in matrix form as:

σ k
x

σ k
y

σ k
z

τk
yz

τk
xz

τk
xy


=



Ck
11 Ck

12 Ck
13 0 0 0

Ck
12 Ck

22 Ck
23 0 0 0

Ck
13 Ck

23 Ck
33 0 0 0

0 0 0 Ck
44 0 0

0 0 0 0 Ck
55 0

0 0 0 0 0 Ck
66





εk
x

εk
y

εk
z

γk
yz

γk
xz

γk
xy


. (4.4)

Given the perfect bonding between layers in laminated plates, the continuity of in-plane dis-

placement and transverse stress fields at the interface between adjacent layers is ensured. This

continuity is mathematically expressed as follows:

uk−1 |z=zk= uk |z=zk , vk−1 |z=zk= vk |z=zk ,

τk−1
xz |z=zk= τk

xz |z=zk , τk−1
yz |z=zk= τk

yz |z=zk , (k = 2,3, · · · ,n).
(4.5)

At the bottom (z = z1) and top (z = zn+1) surfaces of the laminate, the transverse shear stresses
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τxz and τyz satisfy free shear traction conditions, which are expressed as follows:

τ1
xz(z1) = 0, τn

xz(zn+1) = 0, τ1
yz(z1) = 0, τn

yz(zn+1) = 0. (4.6)

In the framework of the generalized zigzag theory, the number of unknown variables increase

proportionally with the number of layers in the laminate plate, depending on the assumed dis-

placement. For instance, if we consider the displacement pattern described by equation (4.2), the

total number of unknown variables for an n-layer laminated plate is given by 4n+5. However,

it’s essential to note that these 4n+5 unknown variables are not independent.The displacement

is constrained by the necessity to satisfy 4(n-1) prescribed continuity conditions (i.e., equation

(4.5)) and 4 specified free shear traction conditions (i.e., equation (4.6)), thereby resulting in a

reduction of the total number of unknown variables to 5. Substituting equations (4.2), (4.3), and

(4.4) into equations (4.5) and (4.6) yields the following set of equations:

uk
0 = u1

0 +Fk
0 u1

1 +Gk
0w0,x,

uk
1 = Fk

1 u1
1 +Gk

1w0,x,

uk
2 = Fk

2 u1
1 +Gk

2w0,x,

uk
3 = Fk

3 u1
1 +Gk

3w0,x,

vk
0 = v1

0 +Hk
0v1

1 + Ik
0w0,y,

vk
1 = Hk

1v1
1 + Ik

1w0,y,

vk
2 = Hk

2v1
1 + Ik

2w0,y,

vk
3 = Hk

3v1
1 + Ik

3w0,y.

(4.7)

These equations demonstrate that the unknown variables in the assumed displacement (4.2) can

be expressed in terms of five independent variables: u1
0, u1

1, v1
0, v1

1, and w0. To facilitate subse-

quent discussions, we substitute u0, u1, v0, v1, and w0 as the replacements for these five indepen-

122



dent variables. By introducing the following coefficients defined by

F2 =
αn

3 −3αn
1 z2

1 +3z2
n+1

−2αn
3 z1 +3αn

2 z2
1 +6z1zn+1(z1− zn+1)

,

G2 =
αn

3 −3(1+αn
4 )z

2
1 +3z2

n+1

−2αn
3 z1 +3αn

2 z2
1 +6z1zn+1(z1− zn+1)

,

H2 =
β n

3 −3β n
1 z2

1 +3z2
n+1

−2β n
3 z1 +3β n

2 z2
1 +6z1zn+1(z1− zn+1)

,

I2 =
β n

3 −3(1+β n
4 )z

2
1 +3z2

n+1

−2β n
3 z1 +3β n

2 z2
1 +6z1zn+1(z1− zn+1)

,

F3 =
−αn

2 +2αn
1 z1−2zn+1

−2αn
3 z1 +3αn

2 z2
1 +6z1zn+1(z1− zn+1)

,

G3 =
−αn

2 +2(z1 +αn
4 z1− zn+1)

−2αn
3 z1 +3αn

2 z2
1 +6z1zn+1(z1− zn+1)

,

H3 =
−β n

2 +2β n
1 z1−2zn+1

−2β n
3 z1 +3β n

2 z2
1 +6z1zn+1(z1− zn+1)

,

I3 =
−β n

2 +2(z1 +β n
4 z1− zn+1)

−2β n
3 z1 +3β n

2 z2
1 +6z1zn+1(z1− zn+1)

,

(4.8)

all coefficients in equation (4.7) are determined by laminate properties and coordinates as fol-

lows:

Fk
1 = αk

1 +F2αk
2 +F3αk

3 ,

Gk
1 = αk

4 +G2αk
2 +G3αk

3 ,

Hk
1 = β k

1 +H2β k
2 +H3β k

3 ,

Ik
1 = β k

4 + I2β k
2 + I3β k

3 ,

Fk
0 =

k

∑
j=2

(F j−1
1 −F j

1 )z j,

Gk
0 =

k

∑
j=2

(G j−1
1 −G j

1)z j,

Hk
0 =

k

∑
j=2

(H j−1
1 −H j

1)z j,

Ik
0 =

k

∑
j=2

(I j−1
1 − I j

1)z j, (k = 2,3, · · · ,n)

(4.9)
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where αi and βi (i=1,2,3,4) can be calculated as follows:

αk
1 =

C1
55

Ck
55
, β k

1 =
C1

44
Ck

44
,

αk
2 = 2

Ck
55

∑
k
j=2(C

j−1
55 −2C j−2

55 +C j
55)z j, β k

2 = 2
Ck

44
∑

k
j=2(C

j−1
44 −2C j−2

44 +C j
44)z j,

αk
3 = 3

Ck
55

∑
k
j=2(C

j−1
55 −2C j−2

55 +C j
55)z

2
j , β k

3 = 3
Ck

44
∑

k
j=2(C

j−1
44 −2C j−2

44 +C j
44)z

2
j ,

αk
4 = αk

1 −1, β k
4 = β k

1 −1, (k = 2,3, · · · ,n).

(4.10)

By examining equations (4.8) and (4.9), it becomes evident that the coefficients present in e-

quation (4.7) are exclusively governed by the specific material properties and thickness of each

layer in the laminated plate. Once these five independent unknown variables, as presented in

equation (4.7), are determined, the displacements of individual layers within the laminate can

be computed, thereby yielding the overall displacement of the laminated plate. To formulate

the equilibrium equations governing these five independent variables and their corresponding

boundary conditions, we utilize the principle of virtual work, which is expressed as follows:

∫ h/2

−h/2

∫
Ω

(σxδεx +σyδεy +σzδεz +2τxyδγxy +2τyzδγyz +2τxzδγxz)dAdz−
∫

Ω

(qzzδw)dA (4.11)

=
∫

Ω

[
n

∑
k=1

∫ zk+1

zk

(σ k
x δεk

x +σ k
y δεy +σ k

z δεk
z +2τk

xyδγk
xy +2τk

yzδγk
yz +2τk

xzδγk
xz)dz−qzzδw]dA = 0.

Substituting equations (4.7) into equation (4.11) and and considering the arbitrariness of the

independent variables u0, u1, v0, v1, and w0, the following equilibrium equations are obtained:

δu0 :
∂Nx

∂x
+

∂Nxy

∂y
= 0,

δv0 :
∂Nxy

∂x
+

∂Ny

∂y
= 0,

δw0 :
∂ 2Mx

∂x2 +2
∂ 2Mxy

∂x∂y
+

∂ 2My

∂y2 +
∂Rxz

∂x
+

∂Ryz

∂y
+qzz = 0,

δu1 :
∂Px

∂x
+

∂Pxy1

∂y
+Rx = 0,

δv1 :
∂Pxy2

∂x
+

∂Py

∂y
+Ry = 0,

(4.12)
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with the corresponding boundary conditions related on:

u0 or Nxnx +Nxyny,

v0 or Nxynx +Nyny,

w0 or Mx,xnx +Mx,yny +Mx,ynx +My,yny +Rxznx +Ryzny,

u1 or Pxnx +Pxy1ny,

v1 or Pxy2nx +Pyny.

(4.13)

The resulting forces and moments in equation (4.12) are expressed as follows:

(Nx,Ny,Nxy) = (
n

∑
k=1

∫ zk+1

zk

σ k
x dz,

n

∑
k=1

∫ zk+1

zk

σ k
y dz,

n

∑
k=1

∫ zk+1

zk

σ k
xydz),

Mx =
n

∑
k=1

[
∫ zk+1

zk

(Gk
0 +Gk

1z+G2z2 +G3z3)σ k
x dz],

My =
n

∑
k=1

[
∫ zk+1

zk

(Ik
0 + Ik

1z+ I2z2 + I3z3)σ k
y dz],

Mxy =
n

∑
k=1

[
∫ zk+1

zk

(Ik
0 +Gk

0 +(Ik
1 +Gk

1)z+(Ik
2 +G2)z2 +(Ik

3 +G3)z3)τk
xydz],

Rxz =
n

∑
k=1

[
∫ zk+1

zk

(1+Gk
1 +2G2z+3G3z2)τk

xzdz],

Ryz =
n

∑
k=1

[
∫ zk+1

zk

(1+ Ik
1 +2I2z+3I3z2)τk

yzdz],

Px =
n

∑
k=1

[
∫ zk+1

zk

(Fk
0 +Fk

1 z+F2z2 +F3z3)σ k
x dz],

Py =
n

∑
k=1

[
∫ zk+1

zk

(Hk
0 +Hk

1z+H2z2 +H3z3)σ k
x dz],

Pxy1 =
n

∑
k=1

[
∫ zk+1

zk

(Fk
0 +Fk

1 z+F2z2 +F3z3)τk
xydz],

Pxy2 =
n

∑
k=1

[
∫ zk+1

zk

(Hk
0 +Hk

1z+H2z2 +H3z3)τk
xydz],

Rx =
n

∑
k=1

[
∫ zk+1

zk

(Fk
1 +2F2z+3F3z2)τk

xzdz],

Ry =
n

∑
k=1

[
∫ zk+1

zk

(Hk
1 +2H2z+3H3z2)τk

yzdz].

(4.14)

The equilibrium equations and corresponding boundary conditions are crucial for laminate anal-
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ysis. Solving these equations under specific boundary conditions determines the laminate’s dis-

placement and stress distributions, providing insights into its response to external loads.

z qt
zz(x,y) qt

zz(x,y)

y

z

y
h

x

b

y

a

at y=b

σy=0

u=w=0

at y=0

σy=0

u=w=0

at x=0

σx=v=w=0

at x=a

σx=v=w=0

(a) Laminate plate with n layers (b) Homogenized plate

Figure 4.2: Schematic illustration of simply supported boundary conditions for a laminate plate
and homogenized rectangular plate under distributed load.

Consider a rectangular laminate with orthogonal sides a and b, aligned with the x and y axes.

The laminate is simply supported along all edges and subjected to a normal traction qzz(x,y) on

its upper surface. The corresponding boundary conditions are:

on x = 0, a : v0 = w0 = Nx = Mx = 0,

on y = 0, b : u0 = w0 = Ny = My = 0.
(4.15)

Under the prescribed boundary conditions, the solution of the governing differential equation

(4.12) can be sought in the form of an infinite Fourier series, taking into account the orthogonal-
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ity of the sine and cosine functions. The variables can be expressed as:

u0 =
∞

∑
n=1

∞

∑
m=1

U0
mn cospx sinqy

u1 =
∞

∑
n=1

∞

∑
m=1

U1
mn cospx sinqy

v0 =
∞

∑
n=1

∞

∑
m=1

V 0
mn sinpx cosqy

v1 =
∞

∑
n=1

∞

∑
m=1

V 1
mn sinpx cosqy

w0 =
∞

∑
n=1

∞

∑
m=1

W 0
mnsinpx sinqy

(4.16)

where p and q are determined by

p =
nπ
a
, (4.17)

q =
mπ
b

. (4.18)

The terms m and n represent the sequences of Fourier series utilized to expand the displacement

functions. The sequence n corresponds to the Fourier series expansion in the x direction, while

the sequence m corresponds to the Fourier series expansion in the y direction. In addition, the

load can be expressed as a Fourier series:

qzz =
∞

∑
n=1

∞

∑
m=1

Qmnsinpx sinqy, (4.19)

where Qmn are the coefficients determined by integrating the product of the load qzz and the basis

functions:

Qmn =
4

ab

∫ b

0

∫ a

0
(qzz sinpx sinqy)dxdy. (4.20)

Substituting equations (4.16) and (4.19) into the equilibrium equation (4.12) yields a system

of equations for the coefficients U1
mn, V 0

mn, V 1
mn, and W 0

mn for each sequence m and n. Solving this

system determines these coefficients, which define the displacement functions u0, u1, v0, v1, and

w0 for the given problem.
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As evidenced by the preceding discussion, the Zigzag theory demonstrates flexibility and can

accommodate various boundary conditions, making it suitable for a wide range of engineering

applications. In addition, by increasing the order of the displacement polynomial (i.e., high-

order Zigzag theories), as depicted in equation (4.1), these higher-order Zigzag theories demon-

strate improved convergence towards the exact solutions for displacement and stress distribution-

s. Consistent with the third-order Zigzag theory previously exhibited, the number of independent

unknown variables in higher-order Zigzag theories is reduced by 4n compared to the assumed

displacement variables, owing to continuity and free shear traction conditions. Additionally, the

establishment of governing equations for independent unknown variables, accompanied by their

respective boundary conditions, as well as the analytical framework for evaluating the response

of laminated plates under specific boundary conditions, remains consistent with the third-order

Zigzag theory presented previously.

However, escalating the order of the displacement polynomial significantly increases com-

putational workload by expanding the degrees of freedom, especially in complex loading cases,

which is crucial in practical engineering analyses employing higher-order Zigzag theory. As

illustrated by equation (4.16), in complex loading cases, obtaining a closed-form solution of the

displacement requires the Fourier expansion, which introduces numerous undetermined Fourier

coefficients, leading to a significant increase in computational workload. On the other hand,

as discussed in [92], the degree of convergence with the exact solution does not necessarily in-

crease proportionally. This leads to limited practical applicability, particularly for the analysis

of large and complex laminates. Striking a balance between accuracy and computational effi-

ciency becomes crucial to ensure the feasibility and effectiveness of Zigzag theory in practical

engineering analyses.

4.2 Homogenization of Laminated Plates

As previously discussed, the Zigzag effect and interfacial continuity conditions require the

displacement function to satisfy C0 continuity across the interfaces of the laminated compos-

ite. Moreover, the assumption of perfect bonding at the interface of laminates entails continuity

of in-plane strain at the interface. Developing a comprehensive understanding of these effects

is essential for designing and optimizing layered material systems that can attain desired me-
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chanical and physical properties. Consequently, it is imperative to consider these effects while

performing the equivalent homogenization of the laminate structure.

In accordance with the preceding discussion, each layer of the laminate is assumed to be

composed of a material exhibiting linear elasticity, with the stress-strain relationship governed

by Hooke’s law as expressed in (2.66). In the absence of body forces, the stress tensor σ must

satisfy the condition of being divergence-free, as provided in (2.70). In the process of homog-

enizing laminated plates, it is crucial to ensure the continuity of transverse stresses at the in-

terfaces between distinct layers. Achieving this involves decomposing the second-order tensors

ε and σ into their respective in-plane and transverse components. This decomposition process

can be facilitated by introducing two extended orthogonal projection operators, P⊥ and P, which

project tensors onto the transverse and in-plane directions, respectively. The definitions and

properties of these two projection operators are elaborated in detail in subsection (3.4), specif-

ically in equations (2.79) through (2.84). Therefore, by employing the extended orthogonal

projection operators P⊥ and P, the strain tensor ε and stress tensor σ can be decomposed into

their respective in-plane and transverse parts, as represented by:

ε = P⊥ε +Pε, (4.21)

σ = P⊥σ +Pσ . (4.22)

By incorporating the above mentioned decompositions of stress and strain tensors into Hooke’s

law (2.66), and subsequently multiplying both sides by the projection tensor P⊥, the following

expression is obtained:

P⊥CP⊥ε = P⊥σ −P⊥CPε. (4.23)

To simplify the aforementioned equation, we introduce the fourth-order tensor B as defined in

(2.104). Recalling the properties of B provided in equation (2.105):

B(P⊥CP⊥) = (P⊥CP⊥)B= P⊥, BP⊥ = P⊥B= B. (4.24)

These properties facilitate the simplification process by ensuring that B effectively interacts with

the projections P⊥ and the material stiffness tensor C. Therefore, we present them here once
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again for clarity. Consequently, equation (4.23) can be transformed into a more concise form:

ε = Bσ +(I−BC)Pε. (4.25)

Similarly, by introducing the previously mentioned decompositions of stress and strain tensors

into equation (2.69) and following a similar procedure, we derive the relationship:

σ = Aε +(I−AS)P⊥σ , (4.26)

where tensor A is defined in equation (2.99). In correspondence with equation (4.24), tensor A

possesses the following properties:

A(PSP) = (PSP)A= P, AP= PA= A. (4.27)

These properties facilitate the simplification process by ensuring that A effectively interacts with

the projections P and the material compliance tensor S. Additionally, the relationship between

A and B can be established by using the following equations:

CB+AS= BC+SA= I. (4.28)

To further characterize the composite, we define the representative volume element (RVE)

as a closed domain Ω of volume V, which encompasses the entire composite structure. The

total thickness of the composite is denoted by h. Additionally, we define sub-domains Ω(k),

occupied by the kth-layered material, each characterized by volumes V (k) and thicknesses h(k).

Fig. 4.1 illustrates the geometric configuration of the composite, with distinct layers and their

corresponding sub-domains labeled. To enhance analytical clarity, we propose a redefinition

of the coordinate system depicted in Fig. 4.1. Specifically, we employ a Cartesian coordinate

framework featuring an orthonormal basis (e1,e2,e3), where the unit vector perpendicular to all

layers aligns with e3 (i.e., (x1,x2,x3)� (x,y,z)). The individual thickness of each layer can be

determined by evaluating the separation distance between the x3-coordinates (i.e., z-coordinates)

of adjacent interfaces. Specifically, the thickness of the kth-layer can be calculated using the
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expression:

h(k) = zk+1− zk. (4.29)

Given that each layer has uniform thickness, the volume fraction f k of the kth layer can be

expressed as

f (k) =
h(k)

h
. (4.30)

The constitutive equation governing the mechanical behavior of the kth-layer material is given

by:

σ(k) = C(k)ε(k), (4.31)

where σ(k) and ε(k) denote the stress and strain tensors for the kth-layer material, respectively,

with C(k) representing the corresponding fourth-order elasticity tensor.

The assumption of perfect bonding between laminate layers ensures continuity. Additionally,

we neglect end effects from the sides of the composite and consider uniform surface charges on

the top and bottom surfaces. As a result, P⊥σ and P‖ε remain uniformly constant throughout

all layers. More precisely,

P⊥σ (1) = P⊥σ (2) = · · ·= P⊥σ (n), Pε(1) = Pε(2) = · · ·= Pε(n). (4.32)

We introduce the bracket notation 〈·〉 and 〈·〉(k) to denote the volume average of a quantity over

the entire composite and kth-layer, respectively. The averages are defined as follows:

〈·〉= 1
V

∫
Ω

(·)dv, 〈·〉(k) = 1
V (k)

∫
Ω(k)

(·)(k)dv, (4.33)

where (·)(k) represents the value evaluated within the kth-layer. These notations are related by

〈·〉=
N

∑
k=1

f (k)〈·〉(k). (4.34)

The macroscopic divergence-free fields σ∗ and curl-free fields ε∗ are defined as the volume

averages of the microscopic quantities σ and ε , respectively, as expressed by:

σ∗ = 〈σ〉, ε∗ = 〈ε〉. (4.35)
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By substituting equations (4.25) and (4.26) into equation (4.35), and accounting for the continu-

ity condition (4.32), we derive the following expressions:

ε∗ = 〈SA〉σ∗+ 〈B〉P⊥σ∗, (4.36)

σ∗ = 〈A〉ε∗+ 〈CB〉P⊥σ∗. (4.37)

Removing the term P⊥σ∗ from the expressions for σ∗ and ε∗, as described above, yields the

macroscopic constitutive relation:

σ∗ = C∗ε∗, (4.38)

where the effective tensor C∗ is defined as

C∗ = 〈C−CBC〉+ 〈CB〉〈P⊥CP⊥〉〈BC〉. (4.39)

Once the parameters, including the number of laminated plate layers, their respective thickness-

es, and the material properties of each layer, are determined, equation (4.39) can be utilized

to compute the effective tensor C∗ of the laminate. This equation provides a comprehensive

framework for integrating these parameters into the calculation, thereby facilitating a thorough

understanding of the process involved in determining the laminate’s mechanical properties. Fur-

thermore, the explicit matrix representation of F, which is important in the homogenization pro-

cess, can be derived utilizing the definitions outlined in equations (2.66) and (2.92). Specifically,

we have:

F =


Ci1 j1nin j Ci1 j2nin j Ci1 j3nin j

Ci2 j1nin j Ci2 j2nin j Ci2 j3nin j

Ci3 j1nin j Ci3 j2nin j Ci3 j3nin j


−1

. (4.40)

It is crucial to emphasize that when all layers exhibit transverse isotropy relative to the axis

perpendicular to them, the expression for the fourth-order elastic tensor can be straightforwardly

described by a specific mathematical formula, as shown in equation (2.141). Additionally, during

the derivation of the effective modulus C∗ for the homogenized material, important tensors such

as A, B, and F are involved. Notably, in this case, these tensors possess explicit expressions, as

presented in subsection (3.4). On this basis, the effective elasticity tensor C∗ has a closed-form
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expression.

Considering the expression (2.145) of tensor F as delineated in chapter 2.4, in conjunction

with the definitions provided in equation (4.33) for the averages, we can formulate:

〈F〉=
〈

1
C44

〉(
I−
〈

C33−C44

C33C44

〉
P⊥
)
. (4.41)

By substituting the above equation into the method for inversion, as denoted by formula (2.143),

the inverse of 〈F〉 can be computed as follows:

〈F〉−1 =
1

〈1/C44〉

(
I+

〈(C33−C44)/(C33C44)〉
〈1/C44〉−〈(C33−C44)/(C33C44)〉

P⊥
)
. (4.42)

Considering the expression (2.147) of tensor B as delineated in subsection (3.4), the averages of

B are given by:

〈B〉=
〈

1
2C44

〉(
P⊥−

〈
C33−2C44

C33

〉
P⊥⊗P⊥

)
. (4.43)

According to the properties provided by description (4.24) and the formula (2.143), the averages

of P⊥CP⊥ can be expressed as:

〈P⊥CP⊥〉= 1
〈1/(2C44)〉

(
P⊥+

〈(C33−2C44)/(2C33C44)〉
1/〈(2C44)〉−〈(C33−2C44)/(2C33C44)〉

P⊥⊗P⊥
)
. (4.44)

According to equation (2.99) and (2.103), the average of tensor C−CBC, which appears in the

computation of the effective elastic tensor C∗, can be calculated as:

〈C−CBC〉= 〈C11−C12〉P+

〈
C12C33−C2

13
C33

〉
P⊗P. (4.45)

Combining equations (2.141), (2.147), and (4.33), the averages of BC and CB can be computed

as:

〈CB〉= P⊥+
〈

C13

C33

〉
P⊗P⊥, (4.46)

133



〈BC〉= P⊥+
〈

C13

C33

〉
P⊥⊗P. (4.47)

Therefore, the residual term in equation (4.39) for computing the effective elasticity tensor C∗

can be calculated as:

〈CB〉〈P⊥CP⊥〉〈BC〉= 1
〈1/(2C44)〉

[
P⊥+

〈(C33−2C44)/(2C33C44)〉
1/〈(2C44)〉−〈(C33−2C44)/(2C33C44)〉

P⊥⊗P⊥
]

+

[
(〈C13/C33〉)2

〈1/(2C44)〉
+

(〈C13/C33〉)2〈(C33−2C44)/(2C33C44)〉
〈1/(2C44)〉−〈(C33−2C44)/(2C33C44)〉

]
P⊗P

+2
[ 〈C13/C33〉
〈1/(2C44)〉

+
〈C13/C33〉〈(C33−2C44)/(2C33C44)〉
〈1/(2C44)〉−〈(C33−2C44)/(2C33C44)〉

]
P⊥⊗P.

(4.48)

Summing equations (4.45) and (4.48), we obtain the expression for computing C∗ as:

C∗ =〈(C11−C12)〉P+
1

〈1/(2C44)〉

[
P⊥+

〈(C33−2C44)/(2C33C44)〉
1/〈(2C44)〉−〈(C33−2C44)/(2C33C44)〉

P⊥⊗P⊥
]

+

[〈
C12C33−C2

13
C33

〉
+

(〈C13/C33〉)2

〈1/(2C44)〉
+

(〈C13/C33〉)2〈(C33−2C44)/(2C33C44)〉
〈1/(2C44)〉−〈(C33−2C44)/(2C33C44)〉

]
P⊗P

+2
[ 〈C13/C33〉
〈1/(2C44)〉

+
〈C13/C33〉〈(C33−2C44)/(2C33C44)〉
〈1/(2C44)〉−〈(C33−2C44)/(2C33C44)〉

]
P⊥⊗P.

(4.49)

Voigt notation is adopted for analytical clarity, considering the inherent symmetry of C∗ as

demonstrated by its general expression in equation (4.39) and the above specific closed-form

computations for transversely isotropic materials, where (I)� [(i j) = ( ji)]. More Preciesely,

(1,2,3,4,5,6)� [(11),(22),(33),(13,(12))]. Furthermore, in Voigt notation, the matrix repre-

sentation of the tensor C∗ is as follows:

[C∗] =



C∗11 C∗12 C∗13 0 0 0

C∗12 C∗11 C∗23 0 0 0

C∗13 C∗23 C∗33 0 0 0

0 0 0 C∗44 0 0

0 0 0 0 C∗44 0

0 0 0 0 0 1
2(C

∗
11−C∗12)


. (4.50)

After obtaining the effective elastic tensor C∗ of the laminate via homogenization, we can

analyze the composite laminate as a homogeneous structure, thereby simplifying the analysis
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of complex structures. This method provides a simplified and efficient way to determine the

effective mechanical properties of the laminates, enabling the prediction of the mechanical be-

havior of the composite materials under different loading conditions. This is crucial for the

design and optimization of the laminates. Moreover, the homogenization method is versatile

and practical, as it can be applied to various types of laminated composites, including those

with irregular shapes, non-uniform fiber orientations, and multiple layers. Therefore, the ho-

mogenization method has become an indispensable tool for the analysis and design of laminated

composites, particularly in the aerospace and automotive industries.

4.3 The Bending Analysis of Homogenized Laminated Sim-

ply Supported Plates

4.3.1 3D Exact Solution for the Homogenized Laminate

For the purpose of comparison, the study systematically analyzes a composite material con-

sisting of n parallel plane layers. Each layer is composed of a linearly elastic homogeneous

material and is perfectly bonded to adjacent layers. Utilizing the homogenization approach pre-

viously outlined, we derive an equivalent homogenized laminate. The equivalent homogenized

laminate is subjected to the same external loads, boundary conditions, and coordinate conditions

as the original laminated rectangular structure, which is illustrated in Fig. 4.2.

Under these specified conditions, we derive 3D-exact analytical solutions for the equivalent

homogenized laminate. The equations governing the equilibrium of stresses for the homogenized

laminate are expressed as follows:

∇ ·σ + f = 0. (4.51)

where, f represents the external load, which, in this particular case, takes the form of a vector

{qxz,qyz,qzz}T . The boundary conditions for the simply supported edges are defined as:

on x = 0, a : σx = v = w = 0,

on y = 0, b : σy = u = w = 0,
(4.52)

where u, v, and w denote the displacement along the x, y, and z axes, respectively. In this case,
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the solution of the governing differential equation, i.e., the expressions of the displacements, can

be sought in the form of an infinite Fourier series, as follows:

u =


u

v

w

=
∞

∑
n=1

∞

∑
m=1


umn(z) cospx sinqy

vmn(z) sinpx cosqy

wmn(z) sinpx sinqy

 , (4.53)

where values of p and q are determined by equations (4.17) and (4.18). The terms m and n

represent sequences of Fourier series that are used to expand the displacement functions. Each

sequence of Fourier series m and n dictates the number of harmonic terms comprising the series

expansion, with the functions umn(z), vmn(z), and wmn(z) formulated accordingly, as expressed

below: 
umn(z)

vmn(z)

wmn(z)

=


u◦mn

v◦mn

w◦mn

esz, (4.54)

where u◦mn, v◦mn, w◦mn and s denote the unknown variables requiring determination. Upon sub-

stitution of equation (4.53), and the homogenized constitutive law for the laminated structure

given by equation (4.39) into equation (4.51), a set of equations representing the system for the

general solution is derived for each combination of the indices m and n. The equations can be

compactly expressed in matrix form as follows:

Mu◦mn = 0, (4.55)

where M is a 3× 3 is coefficient matrix and u◦mn = {u◦mn,v
◦
mn,w

◦
mn}T is the vector of unknown

variables. The components of M are calculated as follows:

M11 =−C∗11 p2−C∗66q2 +C∗55s2,

M12 = M21 =−(C∗12 +C∗66)pq,

M13 = M31 = (C∗13 +C∗55)ps,

M22 =−C∗22q2−C∗66 p2 +C∗44s2,

M23 =−M32 = (C∗23 +C∗44)qs,

M33 =−C∗55 p2−C∗44q2 +C∗33s2,

(4.56)
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where C∗i j represents the components of the effective elastic tensor after homogenization, fol-

lowing the Voigt notation mentioned previously.

To obtain nontrivial solutions for the unknown constants in the vector u◦mn, it is necessary for

the determinant of the coefficient matrix M in the equation system to vanish for each combination

of m and n. This requirement ensures the existence of nontrivial solutions to the governing

equations of the structure under combined bending and axial loading. Solving the eigenvalue

problem associated with the determinant of M yields six roots of this equation, defining six

values of s and their corresponding eigenvectors. These eigenvectors describe the mode shapes

of the homogenized laminated structure under combined bending and axial loading, representing

the deformation and displacement patterns induced by the applied loading conditions. These

eigenvectors can be expressed as: 
a1(si)

a2(si)

a3(si)

esiz, (4.57)

where si represents the ith root of the characteristic equation, and a1(si), a2(si), and a3(si) are

constants determined by:

a1(si) = [(C∗13 +C∗55)(−C∗22q2−C∗66 p2 +C∗44s2
i )+(C∗12 +C∗66)(C

∗
23 +C∗44)q

2]psi,

a2(si) = [(C∗23 +C∗44)(−C∗11 p2−C∗66q2 +C∗55s2
i )+(C∗12 +C∗66)(C

∗
13 +C∗55)p2]qsi

a3(si) =−(−C∗11 p2−C∗66q2 +C∗55s2
i )(−C∗22q2−C∗66 p2 +C∗44s2

i )+((C∗12 +C∗66)pq)2.

(4.58)

Based on this, equation (4.54) can be explicitly written as:
umn(z)

vmn(z)

wmn(z)

=
6

∑
i=1


a1(si)

a2(si)

a3(si)

kiesiz. (4.59)

The coefficient ki is determined from the boundary conditions of the laminated structure. By

substituting the above equation into equation (4.53), we can obtain a closed-form expression

for the displacement u containing undetermined coefficients ki. Subsequently, substituting this

closed-form displacement into the homogenized constitutive relation (4.39) yields the following
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expression for stresses:

σx =
∞

∑
n=1

∞

∑
m=1

[
6

∑
i=1

(−C∗11 pa1(si)−C∗12qa2(si)+C∗13a3(si)si)kiesiz] sinpx sinqy,

σy =
∞

∑
n=1

∞

∑
m=1

[
6

∑
i=1

(−C∗12 pa1(si)−C∗22qa2(si)+C∗23a3(si)si)kiesiz] sinpx sinqy,

σz =
∞

∑
n=1

∞

∑
m=1

[
6

∑
i=1

(−C∗13 pa1(si)−C∗23qa2(si)+C∗33a3(si)si)kiesiz] sinpx sinqy,

τxy =
∞

∑
n=1

∞

∑
m=1

[C∗66

6

∑
i=1

(pa1(si)+qa2(si))kiesiz] cospx cosqy,

τxz =
∞

∑
n=1

∞

∑
m=1

[C∗55

6

∑
i=1

(a1(si)si + pa3(si))kiesiz] cospx sinqy,

τyz =
∞

∑
n=1

∞

∑
m=1

[C∗44

6

∑
i=1

(a2(si)si +qa3(si))kiesiz] sinpx cosqy.

(4.60)

To determine the coefficient ki (i = 1,2, · · · ,6), the stresses expression derived above is substi-

tuted into the boundary condition (4.52), resulting in a set of equations expressed in matrix form

as: 

φ 1(h
2) φ 2(h

2) · · · φ 6(h
2)

ϕ1(h
2) ϕ1(h

2) · · · ϕ6(h
2)

χ1(h
2) χ2(h

2) · · · χ6(h
2)

φ 1(−h
2) φ 2(−h

2) · · · φ 6(−h
2)

ϕ1(−h
2) ϕ1(−h

2) · · · ϕ6(−h
2)

χ1(−h
2) χ2(−h

2) · · · χ6(−h
2)





k1

k2

k3

k4

k5

k6


=



Qt
zz

Qt
xz

Qt
yz

Qb
zz

Qb
xz

Qb
yz


, (4.61)

where φ i(z), ϕ i(z), and χ i(z) are given by:

φ i(z) = [−C∗13 pa1(si)−C∗23qa2(si)+C∗33a3(si)si]esiz,

ϕ i(z) =C∗55[a1(si)si + pa3(si)]esiz,

χ i(z) =C∗44[a2(si)si +qa3(si)]esiz.

(4.62)

The Fourier coefficients Qi j represent the distribution of the external load applied to the struc-

ture, calculated by integrating the traction vector components qi j over the plate’s surface using

appropriate sine and cosine functions. Specifically, the six Fourier coefficients Qi j are are calcu-
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lated as follows:

Qt
zz =

4
ab

∫ b

0

∫ a

0
(qt

zz sinpx sinqy)dxdy,

Qt
xz =

4
ab

∫ b

0

∫ a

0
(qt

xz cospx sinqy)dxdy,

Qt
yz =

4
ab

∫ b

0

∫ a

0
(qt

yz sinpx cosqy)dxdy,

Qb
zz =

4
ab

∫ b

0

∫ a

0
(qb

zz sinpx sinqy)dxdy,

Qb
xz =

4
ab

∫ b

0

∫ a

0
(qb

xz cospx sinqy)dxdy,

Qb
yz =

4
ab

∫ b

0

∫ a

0
(qb

yz sinpx cosqy)dxdy,

(4.63)

where the superscript ”t” and ”b” in the Fourier coefficients denote the location of the physical

quantity on the upper and lower surfaces, respectively. Hence, once the external loads are de-

termined and substituted into equation (84), the system of linear equations (82) can be solved to

determine the undetermined coefficients ki (i = 1,2, · · · ,6). This enables the computation of the

displacement, providing a comprehensive representation of the plate’s response to applied loads.

4.3.2 Kirchhoff-Love Plate Theory for the Homogenized Laminate

In Kirchhoff-Love plate theory, the deformation of a thin plate is described by a displace-

ment field u(x,y) varying over its two-dimensional domain. This field is composed of three

components: in-plane displacements u and v, representing displacements within the plane of the

plate, and the out-of-plane displacement w describing deformation perpendicular to the plate.

Mathematically, these displacement components are expressed as:

u =


u

v

w

=


u0(x,y)− z∂w0(x,y)

∂x

v0(x,y)− z∂w0((x,y)
∂y

w0(x,y)

 , (4.64)

where u0, v0, and w0 respectively denote the displacements along the x, y, and z directions at

the mid-plane of the homogenized plate. The equilibrium equations governing the displacement

field of a homogenized orthotropic plate in relation to its elastic properties may be expressed as
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follows in terms of the of the mid-plane displacements u0, v0, and w0, as follows:

A11
∂ 2u0

∂x2 +A12
∂ 2v0

∂x∂y
+A66(

∂ 2u0

∂y2 +
∂ 2v0

∂x∂y
)−B11

∂ 3w0

∂x3 − (B12 +B66)
∂ 3w0

∂x∂y2 = 0,

A66(
∂ 2u0

∂x∂y
+

∂ 2v0

∂x2 )+A12
∂ 2u0

∂x∂y
+A22

∂ 2v0

∂y2 − (B12 +B66)
∂ 3w0

∂x2∂y
−B22

∂ 3w0

∂y3 = 0,

D11
∂ 4w0

∂x4 +2(D12 +2D66)
∂ 4w0

∂x2∂x2 +D22
∂ 4w0

∂y4 −B11
∂ 3u0

∂x3

− (B12 +2B66)(
∂ 3u0

∂x∂y2 +
∂ 3v0

∂x2∂y
)−B22∂ 3 ∂ 3v0

∂y3 = Q0,

(4.65)

where the right-hand side of the third equation, Q0, represents any applied loads or moments on

the plate. The coefficients in the equations of equilibrium, which include the extensional stiffness

coefficient Ai j, bending-extensional coupling coefficient Bi j, and bending stiffness coefficients

Di j, are determined through integrals involving the elastic constants of the plate. Specifically,

they can be expressed as follows:

(A11,B11,D11) =
∫ h

2

−h
2

C∗11(1,z,z
2)dz,

(A12,B12,D12) =
∫ h

2

−h
2

C∗12(1,z,z
2)dz,

(A22,B22,D22) =
∫ h

2

−h
2

C∗22(1,z,z
2)dz,

(A66,B66,D66) =
∫ h

2

−h
2

C∗66(1,z,z
2)dz.

(4.66)

In the case of a simple support edge condition, the following boundary conditions are prescribed:

on x = 0, a : v0 = w0 = Nx = Mx = 0,

on y = 0, b : u0 = w0 = Ny = My = 0,
(4.67)

where Nx,Ny and Mx,My are the normal and moment components of the traction vector at the

boundary, respectively. Similarly, the displacement field of the plate can be represented by a
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general solution comprising a series of sinusoidal functions, as shown below:

u0 =
∞

∑
n=1

∞

∑
m=1

Umn cospx sinqy,

v0 =
∞

∑
n=1

∞

∑
m=1

Vmn sinpx cosqy,

w0 =
∞

∑
n=1

∞

∑
m=1

Wmnsinpx sinqy,

(4.68)

where the coefficients Umn, Vmn, and Wmn govern the amplitudes of the sinusoidal functions that

constitute the general solution for the displacement field of the plate. Determining their values is

essential for fully characterizing the displacement field. The substitution of equation (4.68) into

equation (4.65) results in a system of equations concerning the coefficients Umn, Vmn, and Wmn.

These equations can be expressed in a more concise matrix form, as follows:

KUmn =


0

0

Qmn

 (4.69)

where the vector Umn represents the unknown variables, and the components of the coefficient

matrix K are determined as follows:

K11 =−A11 p2−A66q2,

K12 = K21 =−(A12 +A66)pq,

K13 = K31 = B11 p3 +(B12 +B66)pq2,

K22 =−A66 p2−A22q2,

K23 = K32 = (B12 +B66)p2q+B22q3,

K33 = D11q4 +2(D12 +2D66)p2q2 +D22q4.

(4.70)

The values of Qmn appearing on the right-hand side of the system of equations can be computed

by evaluating the following double integral:

Qmn =
4

ab

∫ b

0

∫ a

0
(Q0 sinpx sinqy)dxdy. (4.71)

141



By solving the system of linear equations represented by equation (4.69), the displacement val-

ues corresponding to a particular load can be obtained. Therefore, the analytical expressions for

in-plane stress can be derived by applying the stress-strain relationship to the obtained displace-

ment field. Specifically, the stress components can be written as follows:

σx =
∞

∑
n=1

∞

∑
m=1

[C∗11(−Umn p+ zWmn p2)+C∗12(−Vmnq+ zWmnq2)] sinpx sinqy,

τxy =
∞

∑
n=1

∞

∑
m=1

[C∗66(Umnq+Vmn p−2zWmn pq)] cospx cosqy,

σy =
∞

∑
n=1

∞

∑
m=1

[C∗12(−Umn p+ zWmn p2)+C∗22(−Vmnq+ zWmnq2)] sinpx sinqy.

(4.72)

In Kirchhoff-Love plate theory, the plate is assumed to be thin and subjected to in-plane loads

only, resulting in a planar stress state in the plate. The transverse stresses, which are perpen-

dicular to the plane of the plate, can be obtained from the equilibrium equations, which require

that the sum of the forces and moments in the z-direction be zero. By solving these equilibrium

equations, the expressions for the transverse stresses can be obtained, as shown in the equations

provided:

τxz =
∞

∑
n=1

∞

∑
m=1

[zUmn(C∗11 p2 +C∗66q2)+ zVmn(C∗12 +C∗66)pq

− 1
2

z2Wmn(C∗11 p3 +C∗12 pq2 +2C∗66 pq2)+Hmn] cospx sinqy,

τyz =
∞

∑
n=1

∞

∑
m=1

[zUmn(C∗12 +C∗66)pq+ zVmn(C∗66 p2 +C∗22q2)

− 1
2

z2Wmn(C∗12 p2q+C∗22q3 +2C∗66 p2q)+ Imn] sinpx cosqy,

σz =
∞

∑
n=1

∞

∑
m=1

[z(Hmn p+ Imnq)+
1
2

z2Umn(C∗11 p3 +2C∗66 pq2 +C∗12 pq2)

+
1
2

z2Vmn(C∗1122 p2q+2C∗66 p2q+C∗22q3)− 1
6

z3Wmn(C∗11 p4

+2C∗12 p2q2 +4C∗66 p2q2 +C∗22q4)+ Jmn] sinpx sinqy,

(4.73)

where the coefficients Hmn, Imn, and Jmn in the expressions for the transverse stresses are un-

known constants that are to be determined by satisfying the boundary conditions at the top and

bottom surfaces of the plate.
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4.4 Comparative Analysis of Displacement and Stress Predic-

tions for Laminated Plates

To assess the predictive accuracy of the proposed method for predicting displacements and

stresses in laminated plates, a comparative analysis is conducted against established theories,

including 3D exact elasticity solution by Pagano (3D-Elasticity), classical laminated plate the-

ory (CPT), and Zig-Zag theory (Zig-Zag) with a sixth-order polynomial approximation. The

comparative study focuses on a rectangular symmetric laminate subjected to simply supported

boundary conditions at x=0, a, and y=0, b.

Two distinct geometric configurations of laminated composite structures are investigated in

this study. These configurations involve laminates composed of three, five, seven, and nine

layers, all under uniform boundary conditions and consistent external loading conditions. The

two primary configurations are delineated as follows:

(1) Unidirectional Fiber-Reinforced Laminate(Orthotropic Laminate): In this configuration,

the laminate consists of multiple layers of unidirectional fiber-reinforced material. The layer

material properties for this configuration are as follows:

EL = 25×106 psi, ET = 10×106 psi,

GLT = 0.5×106 psi, GT T = 0.2×106 psi,

νLT = νT T = 0.25,

(4.74)

where the symbol ’L’ denotes the fiber-aligned direction, while ’T’ corresponds to the direction

perpendicular to the fiber orientation. To provide a more detailed description of the stacking

structure of the laminate, the designation ’0’ indicates the alignment of fibers along the x-axis,

whereas ’90’ denotes alignment along the y-axis. For example, in a three-layer laminate, if the

central layer has fibers oriented along the y-axis while the top and bottom layers have fibers

oriented along the x-axis, this configuration can be represented symbolically as ’[0/90/0]’.

(2)Bidirectional Fiber-Reinforced Laminate: In this configuration, every layer exhibits in-

plane isotropy, with uniform material properties within a plane perpendicular to the thickness

direction. To achieve these configurations, we employed a combination of bidirectional plates

(represented by ’†’) with fibers aligned along the x and y axes, and unidirectional plates (repre-

sented by ’|’) with fibers oriented along the z-axis direction. For example, a three-layer laminate
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with the central layer as a unidirectional plate and the top and bottom layers as bidirectional

plates can be symbolically denoted as ’[†/|/†]’. The material properties of the unidirectional

plates align with those specified in case 1. For the bidirectional plates in this configuration, the

material properties are as follows:

EL = 25×106 psi, ET = 10×106 psi,

GLT = 0.5×106 psi, νLT = νT T = 0.25.
(4.75)

The stacking sequences for these laminated structures were determined based on the specifi-

cations outlined in Table 4.1. Subsequently, these configurations and stacking sequences were

analyzed using various methodologies to examine their responses under the specified boundary

and loading conditions.

As previously mentioned, the load applied to the laminate can be decomposed into a double

Fourier series, enabling its representation as a series of sinusoidal terms. In this study, we as-

sume that the simply supported laminate is subjected to a sinusoidal transverse load qt
zz(x,y) =

σ0sin(πx
a )sin(πy

b ) on its top surface, where σ0 is a constant. Given the prescribed boundary

conditions and assumptions, the displacement and stress of the laminate can be accurately de-

termined and analyzed using various theoretical approaches. To facilitate a comprehensive com-

parison and analysis of predicted results obtained from different theoretical approaches, we im-

plement the conventional approach of non-dimensionalization to normalize displacements and

stresses. This involves introducing a set of rigorously defined dimensionless parameters, as fol-

lows:

(σ̄x, σ̄y, σ̄xy) =
1

σ0S2 (σx,σy,σxy),

(τ̄xz, τ̄yz, σ̄z) =
1

σ0S
(τxz,τyz,σz),

ū =
ET u

σ0hS3 , w̄ =
100ET w
σ0hS4 ,

S =
a
h
, z̄ =

z
h
.

(4.76)

Table 4.1 provides an comparative analysis of the performance of the Zig-Zag, H-Exact,

CPT, and HK-LPT analyses, with respect to the 3D-Elasticity approach, which serves as the

benchmark for this study. To accurately evaluate the convergence of each method, a global
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convergence rate is introduced, defined as the L2-norm indicator given by:

err =

√
1
h
∫ h

2
− h

2
‖ p− p0 ‖2 dz√

1
h
∫ h

2
− h

2
‖ p0 ‖2 dz

(4.77)

where p0 represents the value obtained by the 3D-Elasticity theory, while p represents the value

obtained by the other theories. The global convergence rate quantifies the overall discrepancy

across the entire thickness of a laminate between the 3D-Elasticity theory and alternative meth-

ods for approximating the solution of a given problem. As presented in Table 4.1, the maximum

values and global convergence rates of stress components and in-plane displacements for four

distinct laminated systems, acquired through various theories, have been provided. In some in-

stances, as shown in Fig. 4.10(a), the maximum values of τ̄yz obtained through the 3D-Elasticity

and Zig-Zag are not observed at z̄ = 0. In such cases, we have precisely annotated the coor-

dinates of the maximum values and their corresponding locations on the graph for accuracy

and completeness. The correlation between the maximum normalized deflection (w̄) and the

span-to-depth ratio (S) for both cases is visually presented in Fig. 4.3(a) and Fig. 4.3(b). It is

evident that, particularly at lower S values in both cases, the CPT and the HK-LPT consistently

underestimate the plate deflection. As the value of S increases, it becomes apparent that the ap-

proximations of the deflection computed using the CPT in both Case 1 and Case 2 progressively

converge toward the exact solutions of deflection w̄. And in Case 1, the HK-LPT demonstrates

a gradual convergence of its computed approximate deflection towards the exact solution, while

in Case 2, HK-LPT yields slightly higher deflection values relative to the exact solution. The

Zigzag method provides a remarkably precise approximation of w that closely aligns with the

true solution. The H-Exact method consistently provides highly accurate approximations of w̄

in relation to the exact solution, except in the case of a large span-to-depth ratio S in Case 2,

where it exhibits a slight tendency to overestimate w̄ relative to the exact solution. Indeed, for

large-span plates, deflection is primarily governed by flexural rigidity, which is closely linked

to the z-direction elastic modulus. In the case of laminate plates, where the z-direction elas-

tic moduli may not be uniform across each layer, the homogenization process that averages the

z-direction elastic moduli can introduce some deviation between the computed deflection and

the exact solution. Hence, in the case of large spans, particularly in Case 2, both the H-exact
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Table 4.1: Comparison of 3D-Elasticity theory and alternative methods for multi-layer laminate
analysis

ū σ̄x τ̄xy τ̄xz τ̄yz σ̄z
case value err value err value err value err value err value err

(0, b
2 ,− 1

2 ) % ( a
2 ,

b
2 ,

1
2 ) % (0, b

2 ,− 1
2 ) % (0, b

2 ,0) % ( a
2 ,0,0) % ( a

2 ,
b
2 ,

1
2 ) %

3D-Elasticity
case1 0.00936 - 0.801 - 0.0505 - 0.256 - 0.217 - 0.25 -

Zig-zag
3layers 0.01030 22.4 0.842 17.2 0.0495 5.8 0.238 6.3 0.233 7.1 0.25 1.1

H-Exact
[0/90/0] 0.00882 53.4 0.517 43.9 0.0300 47.0 0.254 20.4 0.179 48.4 0.25 0.9

CPT
0.00677 81.6 0.539 63.6 0.0213 50.4 0.395 38.2 0.0823 61.9 0.25 2.8

HK-LPT
0.00670 81.0 0.367 60.3 0.0210 50.9 0.305 23.3 0.172 36.8 0.25 2.8
0.00845 - 0.719 - 0.0408 - 0.268 - 0.208 - 0.25 -

5layers 0.00897 19.3 0.725 7.7 0.0376 10.7 0.259 2.9 0.223 6.47 0.25 0.8
[0/90/0 0.00902 43.1 0.479 39.5 0.0296 29.6 0.239 14.4 0.194 33.8 0.25 1.7
/90/0] 0.00677 60.0 0.539 43.2 0.0213 37.7 0.311 21.4 0.166 28.5 0.25 1.0

0.00670 59.1 0.334 55.4 0.0210 38.2 0.279 17.9 0.199 25.6 0.25 1.0
0.00818 - 0.694 - 0.0360 - 0.236 - 0.218 - 0.25 -

7layers 0.00890 21.5 0.717 16.5 0.0346 8.3 0.215 6.2 0.219 2.3 0.25 1.0
[0/90/0 0.00912 32.9 0.463 42.0 0.0296 18.5 0.232 12.0 0.200 25.0 0.25 1.3
/90/0/90 0.00677 47.0 0.539 34.4 0.0213 30.7 0.300 17.5 0.177 18.9 0.25 1.3
/0] 0.00670 46.1 0.319 57.0 0.0210 31.2 0.267 17.1 0.210 18.3 0.25 1.3

0.00815 - 0.690 - 0.0336 - 0.237 - 0.211 - 0.25 -
9layers 0.00899 19.6 0.724 16.4 0.0334 7.5 0.223 5.9 0.210 17.0 0.25 1.1
[0/90/0 0.00917 26.1 0.453 45.7 0.0295 12.2 0.229 10.5 0.204 19.5 0.25 0.8
/90/0/90 0.00677 40.7 0.539 31.1 0.0213 27.9 0.281 15.7 0.197 14.5 0.25 1.6
/0/90/0] 0.00670 39.8 0.311 59.3 0.0210 28.3 0.261 16.3 0.217 14.0 0.25 1.6

case2 0.00374 - 0.430 - 0.0234 - 0.216 - 0.216 - 0.25 -
3layers 0.00400 10.2 0.422 5.8 0.0251 8.4 0.213 1.9 0.213 1.9 0.25 0.7
[†/|/†] 0.00520 45.1 0.407 15.2 0.0327 45.7 0.218 23.1 0.218 23.1 0.25 0.4

0.00284 21.2 0.297 18.5 0.0178 20.6 0.222 45.1 0.222 45.1 0.25 1.3
0.00390 45.7 0.279 25.9 0.0245 49.7 0.239 72.8 0.239 72.8 0.25 2.0
0.00410 - 0.466 - 0.0258 - 0.195 - 0.195 - 0.25 -

5layers 0.00445 18.5 0.469 9.5 0.0280 12.5 0.186 3.0 0.186 3.0 0.25 1.1
[†/|/† 0.00556 35.8 0.390 31.7 0.0268 47.1 0.220 10.1 0.220 10.1 0.25 2.5
/|/†] 0.00340 21.8 0.356 14.9 0.0214 17.4 0.208 3.9 0.208 3.87 0.25 1.3

0.00427 40.2 0.277 46.2 0.0350 58.8 0.239 17.1 0.239 17.1 0.25 4.5
0.00445 - 0.503 - 0.0280 - 0.208 - 0.208 - 0.25 -

7layers 0.00485 13.8 0.512 9.9 0.0304 11.5 0.198 3.8 0.198 3.8 0.25 1.3
[†/|/† 0.00574 27.8 0.382 41.9 0.0361 48.8 0.221 10.8 0.221 10.8 0.25 2.5
/|/†/| 0.00376 21.1 0.393 16.3 0.0236 18.2 0.221 5.5 0.221 5.5 0.25 1.7
/†] 0.00445 33.8 0.276 53.8 0.0279 60.7 0.239 17.1 0.239 17.1 0.25 4.4

0.00473 - 0.534 - 0.0297 - 0.204 - 0.204 - 0.25 -
9layers 0.00514 11.2 0.542 8.9 0.0323 10.1 0.196 3.5 0.196 3.5 0.25 1.2
[†/|/† 0.00584 20.8 0.379 47.9 0.0295 49.7 0.221 10.1 0.221 10.1 0.25 2.3
/|/†/| 0.00399 14.4 0.418 17.2 0.0251 18.8 0.219 6.1 0.219 6.1 0.25 1.7
/†/|/†] 0.00455 23.4 0.275 57.7 0.0286 61.1 0.239 16.0 0.239 16.0 0.25 4.1
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and HK-LPT methods exhibit a degree of discrepancy in the computed deflection relative to the

exact solution.
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Figure 4.3: Comparison of normalized maximum deflection with varying span-to-depth ratio (S)
for a three-layer laminate under sinusoidal transverse load: (a) case 1, (b) case 2.

The Fig. 4.4 illustrates the comparison of normalized deflections at the thickness-center

and width-center cross-sections along the lengthwise direction in a three-layer laminate, with

a specified span-to-depth ratio (S = 4). Owing to the axial symmetry inherent in the structural

configuration and the sinusoidal characteristics of the externally applied load, the deflection

distribution demonstrates prominent symmetry. To enhance analytical efficiency, we have selec-

tively illustrated a quarter (1/4) of the deflection profile along the longitudinal axis. It can be

observed that the deflection distribution trends obtained through various approximation methods

in both Case 1 and Case 2 align with those derived from the 3D-Elasticity. However, it is evident

that the deflections obtained through the Zig-Zag method and H-Exact method closely approxi-

mate the values of the 3D-Exact solution at the respective positions along the x̄-axis, conforming

consistently to the comparisons illustrated in Fig. 4.3.

The distributions of displacements and stresses within 9-layer laminated plates for both Case

1 and Case 2, along with the stacking sequence detailed in Table 4.1, are illustrated in Figs.

4.5-4.10. Each figure shows the maximum value of a particular displacement or stress function

along a vertical line across the laminate. Fig. 4.5 shows the variation of normalized in-plane

displacement ū through the thickness. With Table 4.1 as reference, it is evident that, for lam-
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Figure 4.4: Comparing normalized deflections at the thickness-center and width-center cross-
sections along the lengthwise direction in a three-layer laminate: : (a) case 1, (b) case 2.

inated structures with identical total thickness, the distribution of the displacement ū derived

from the Zig-Zag, H-Exact, CPT, and HK-LPT, progressively converges towards the ū obtained

from 3D-Elasticity, with a corresponding decrease in the global error, as the number of layers in

the laminate increases. This convergence can be attributed to a more uniform stress distribution

throughout the laminate with an increase in the number of layers, resulting in reduced interlam-

inar shear stresses that may otherwise negatively affect the accuracy of the solutions. Notably,

the H-Exact method exhibits a significant and consistent trend in the convergence of the ū distri-

bution, implying that it is capable of capturing the interlaminar shear stresses and their influence

on the transverse deformation behavior of the laminate. As a result, it provides a precise pre-

diction of the distribution of in-plane displacement and shear stresses. This assertion is further

supported by the data presented in Table 4.1 and Figs. 4.7, 4.9, and 4.10, which illustrate the

distribution of τ̄xy, τ̄xz, and τ̄yz, respectively, along a vertical line across the laminate. Addition-

ally, Fig.4.9 demonstrates that the H-Exact method provides a highly accurate estimation of the

transverse stress σ̄z compared to the value obtained by 3D-Elasticity.

Based on the obtained results, it can be inferred that the exact solution of the homogenized

plate (H-Exact) has the potential to provide a reliable and accurate estimation of the elastic so-

lution of the laminate (3D-Elasticity). Specifically, the degree of approximation achieved by the

H-Exact method is observed to be comparable to that of the sixth-order Zig-Zag theory for mul-
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Figure 4.5: Variation of in-plane displacement ū(0, b
2 , z̄) through the normalized thickness of a

nine-layer laminate under sinusoidal transverse load: (a) case 1, 9 layers; (b)case 2, 9 layers.
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Figure 4.6: Variation of in-plane normal stress σ̄x(
a
2 ,

b
2 , z̄) through the normalized thickness of a

nine-layer laminate under sinusoidal transverse load: (a) case 1, 9 layers; (b)case 2, 9 layers.
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Figure 4.7: Variation of in-plane shear stress τ̄xy(0,0, z̄) through the normalized thickness of a
nine-layer laminate under sinusoidal transverse load: (a) case 1, 9 layers; (b)case 2, 9 layers.
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Figure 4.8: Variation of transverse normal stress σ̄z(
a
2 ,

b
2 , z̄) through the normalized thickness of

a nine-layer laminate under sinusoidal transverse load: (a) case 1, 9 layers; (b)case 2, 9 layers.
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Figure 4.9: Variation of transverse shear stress τ̄xz(0, b
2 , z̄) through the normalized thickness of a

nine-layer laminate under sinusoidal transverse load: (a) case 1, 9 layers; (b)case 2, 9 layers.
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Figure 4.10: Variation of transverse shear stress τ̄yz(
a
2 ,0, z̄) through the normalized thickness of

a nine-layer laminate under sinusoidal transverse load: (a) case 1, 9 layers; (b)case 2, 9 layers.
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tilayer laminates. Therefore, the H-Exact method can be considered as a promising alternative

to existing theories for the analysis of laminated structures. Furthermore, the H-Exact method

presents a promising approach for implementation in finite element analysis, particularly for

modeling 3D elements of laminated structures encountered in practical engineering applications

that often involve complex geometries, external loads, and boundary conditions. The accurate

predictions of the displacement and stress distributions provided by the H-Exact method can

enhance the reliability and efficiency of finite element simulations. Therefore, the incorpora-

tion of the H-Exact method into finite element models can lead to significant improvements in

the design and optimization of laminated structures in various engineering fields. Specifically,

the combination of H-exact method and finite element analysis is more suitable for thick and

multi-layered laminated structure.

In contrast, certain local values, specifically the in-plane stress components σ̄x and τ̄xy,

show significant differences. As previously noted, discontinuities in in-plane stresses may be

inherent in solutions derived from 3D-Elasticity. However, the H-Exact and HK-LPT methods

use homogenized equivalent structures, resulting in smoother, continuous in-plane stress curves.

Interestingly, the overall in-plane stress distribution obtained from the H-Exact method closely

approximates that derived from 3D-Elasticity. Simultaneously, within the distribution of trans-

verse stresses, notable alignment is observed between the stress profiles derived from H-Exact

and Zig-Zag theories and those obtained through 3D-Elasticity. Furthermore, the analysis pre-

sented in Table 1 highlights that the overall errors associated with these values are remarkably

minimal, with their maximum magnitudes exhibiting close proximity. This consistent corre-

spondence underscores the capacity of these methods to provide precise predictions for the com-

prehensive distribution of transverse stresses, strengthening their reliability in results analysis.

Examination of these distribution plots and Table 4.1 reveals that, in comparison to the stress

and displacement distributions obtained through Zig-Zag and H-Exact methods, the precision of

the solution derived from the HK-LPT method exhibits a relatively modest level in comparison.

It is noteworthy that HK-LPT employs an equivalent homogenized structure while simultane-

ously incorporating assumptions from Kirchhoff-Love plate theory. This dual approach involves

a trade-off with respect to precision, yet yields a substantial improvement in computational effi-

ciency. Furthermore, the analysis suggests that increasing the number of layers in the laminate

improves the accuracy of predictions by both HK-LPT and CPT, when the total thickness of the
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laminate is kept constant.

4.5 Conclusion

This chapter introduces generalized zigzag theories to capture transverse shear deformation

and the zigzag phenomenon in laminated plates. A homogenization method, using Hadamard’s

relation and previously introduced operators, was developed to ensure continuous transverse

stresses at layer interfaces. Analytical expressions for the effective elastic tensor of transversely

isotropic laminates were derived.

Additionally, the 3D exact (H-Exact) and Kirchhoff plate (HK-LPT) solutions for homoge-

nized laminates were presented. Comparative analyses between zigzag theory, H-Exact, Clas-

sical Laminated Plate Theory (CLPT), and Kirchhoff plate theory (KPT), benchmarked against

3D elasticity, demonstrated the improved zigzag theory’s accuracy, comparable to sixth-order

polynomials, in capturing laminated plate behavior.

For thick, multi-layered structures, combining H-Exact with finite element analysis offers a

more efficient approach. This homogenization method effectively captures complex mechanical

behavior due to transverse anisotropy and interfacial discontinuities, enabling simpler analysis

through equivalent homogeneous material modeling.

In summary, the derived H-Exact and HK-LPT solutions provide a comprehensive analysis

of laminated composites. While HK-LPT simplifies the model for practical applications, H-

Exact offers a detailed approach. This work establishes a solid foundation for future research

and practical applications in advanced laminated composite analysis and design.
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Chapter 5

General Imperfect Interface Model for

Poroelastic Composites and its Numerical

Implementation Using XFEM

In Chapter 2, we presented Taylor expansions for both scalar and vector fields. Building upon

this foundation, the current chapter extends these expansions to scenarios where both types of

fields coexist. This extension forms the basis for developing an imperfect interface model aimed

at replacing the transition layer in porous composites. Specifically, this model conceptualizes the

transition layer, which connects the matrix and inclusion phase with a uniform slight thickness h,

as a zero-thickness interface. Leveraging coordinate-free interfacial operators introduced earlier

in Chapter 2, we derive precise jump relations that describe the discontinuities in physical fields

at both ends of this transition layer. These relations provide a rigorous and concise mathematical

framework for understanding the behavior across imperfect interfaces.

In the context of isotropic material configurations, explicit forms of jump relations for im-

perfect interfaces are provided and extensively discussed. Special attention is given to scenarios

where the transition layer material itself is isotropic, further refining the theoretical underpin-

nings.

To showcase the efficiency of our numerical methods, we employ the principle of virtual

work to derive weak forms that address the complex coupled boundary conditions typical of

particulate composites. Within the eXtended Finite Element Method (XFEM) framework, we

introduce enrichment functions designed to enhance the accuracy of interpolation functions in
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capturing discontinuous relations. These weak forms are then discretized to obtain equilibrium

equations, which serve as a robust theoretical basis for our numerical simulations.

Moreover, we utilize the level set function defined in Chapter 1 to effectively trace the im-

perfect interface within the composite material. This approach categorizes elements divided by

the imperfect interface into different types, each requiring specific integration strategies. We

have developed a sophisticated computational program tailored to solve the practical problem

of a spherical inclusion embedded in an infinite matrix via a generalized imperfect interface un-

der prescribed boundary conditions. Furthermore, rigorous analytical solutions are derived for

benchmarking purposes, allowing us to thoroughly assess the accuracy and convergence of our

numerical method.

Lastly, the Generalized Self-Consistent Scheme (GSCS) has been extensively employed to

estimate effective poroelastic properties, underscoring its broad applicability and relevance in

the field of composite materials characterization and analysis.

5.1 Theoretical Modeling Approach for General Imperfect In-

terface in Poroelastic Composites

We first focus on creating a comprehensive imperfect interface model to replace the transition

layer discussed in this document. Then, we conduct theoretical analyses to outline the structural

and physical attributes of this model through mathematical deduction. Specifically: (i) The

interphase Ω(1) is perfectly bonded to its neighboring phases Ω(1) and Ω(2) by the interface S1

and S2 in three-phase configuration , as shown in Fig. 5.1. Initially, we replace the transition

layer with a zero-thickness imperfect interface S0 located in the middle of the transition layer

geometrically. The materials surrounding the transition layer, Ω(1) and Ω(2) are extended to

the imperfect interface S0 while the perfect interfaces S1 and S2 as shown in Fig. 5.2. Thus,

the transition from a three-phase configuration to the corresponding two-phase configuration is

geometrically achieved. (ii) To characterize the physical properties of the transition layer, it is

essential to express the relationship between the physical fields on both surfaces S1 and S2 of the

transition layer in the three-phase configuration. Subsequently, we derive relevant discontinuity

relations that the physical fields across the imperfect interface exhibit equivalently in the two-

phase configuration.
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5.1.1 Governing Equations

Let us consider that the material constituting the three-phase configuration exhibits linearly

poroelastic behavior for each phase. This assumption serves as the basis for introducing a con-

stitutive law, which provides a rigorous framework for understanding the mechanical behavior

of porous materials under the influence of fluid pressure in isothermal conditions. This law,

essential to our analysis, can be expressed concisely as follows:

σ = Cε +θp, ε= S(σ−θp) (5.1)

where, σ represents the stress tensor, ε denotes the strain tensor, and p signifies the fluid pres-

sure. The tensors C and S = C−1 characterize the elastic properties of the porous medium,

representing the fourth-order stiffness and compliance elasticity tensors, respectively. These

tensors possess symmetric components Ci jkl and Mi jkl satisfying the minor and major symme-

tries Ci jkl =C jikl =Ckli j and Si jkl = S jikl = Skli j. Additionally, they exhibit positive definiteness.

The term θ denotes the Biot-Willis tensor, accounting for the interaction between the solid skele-

ton and the fluid phase. Similarly, the Biot-Willis tensor θ is also symmetric, such as θi j = θ ji.

The infinitesimal strain tensor ε is determined by the displacement vector u as follows:

ε =
1
2
[∇u+(∇u)T ] (5.2)

where, the symbol ∇ represents the gradient operator, while (·)T denotes the transpose operation.

In the absence of body forces, the stress tensor σ adheres to the equilibrium equation, expressed

mathematically as:

divσ = 0. (5.3)

The velocity vector w, denoting the relative velocity of the fluid, follows the mass conservation

equation:

divw =−θ : ε̇ +
ṗ
η
. (5.4)

Here, η denotes the Biot’s modulus, and the dot indicates the time derivative. The relationship

between the velocity vector w and the pore pressure p can be described by the Darcy law as
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follows:

w =−K∇p, (5.5)

where K represents the permeability tensor of the porous material.

The extended orthogonal projection operators P⊥ and P facilitate the decomposition of the

strain tensor ε and the stress tensor σ into their respective in-plane and transverse components

as follows:

ε = P⊥ε +Pε, (5.6)

σ = P⊥σ +Pσ . (5.7)

Substituting these decompositions into the first part of the constitutive law (5.1) gives:

P⊥σ +Pσ = CP⊥ε +CPε +θp. (5.8)

Multiplying both sides by P⊥ and utilizing the properties (2.84) results in:

P⊥CP⊥ε = P⊥σ −P⊥CPε−P⊥θp. (5.9)

Introducing the fourth-order tensor B as defined in (2.104) and considering its properties (2.105),

the above equation is simplified to:

P⊥ε = Bσ−BCPε−Bθp. (5.10)

By adding Pε to both sides and applying the complementary property (4.28), the equation is

transformed into:

ε = B : (σ−θp)+S : A : ε. (5.11)

Similarly, by substituting the decomposed forms of ε and σ into the second part of constitu-

tive law (5.1), the following is obtained:

P⊥ε +Pε = SP⊥σ +SPσ −Sθp. (5.12)
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Multiplying both sides by P and using the properties (2.84) yields:

PSPσ = Pε−PSP⊥σ +PSθp (5.13)

Introducing the fourth-order tensor A as defined in (2.99) and recalling its properties in (2.102),

the above equation is rewritten as:

Pσ = Aε−ASP⊥σ +ASθp (5.14)

Adding P⊥σ to both sides and applying the complementary property (4.28) results in:

σ = A : ε +C : B : σ+A : S : θp. (5.15)
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Figure 5.1: The interphase Ω(0) is bonded perfectly to its two neighboring phase Ω(1) and Ω(2)

in three-phase configuration.

5.1.2 The Relations for Perfect Interfaces and Imperfect Interfaces

As illustrated in Fig. 5.1, the domain of R3 is divided into three sub-domains, Ω(0), Ω(1), and

Ω(2), by a curved interphase with uniform thickness h. The notation Ω(i) (i = 0,1,2) designates

the sub-domain occupied by different materials, such as the interphase (Ω(0)) and phase 1 (Ω(1)).

The behavior of materials within these sub-domains is linear and governed by equations (5.11)

and (5.15). The interphase is assumed to bond the phase 1 and phase 2 perfectly, namely the

surface S1 and S2 are both perfect. To continue the derivation, we introduce the discontinuity re-
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lation proposed by Hadamard [57] regarding a function that remains continuous across a surface

Si(i = 1,2) within its domain Ω but lacks continuous differentiability at Si. For illustrative pur-

poses, we discuss the case at S1, where the functions confined within Ω(1) and Ω(0) are denoted

as (·)(1) and (·)(0) respectively. Analogous considerations hold for S2. The Hadamard relations

for the scalar function ϕ and the vector function g, presumed to be continuously and piecewise

continuously differentiable over Ω(i) (i = 0,1) but not necessarily continuously differentiable at

S1, are expressed as follows:

∇Sϕ(1) = ∇Sϕ(0) on S1, (5.16)

∇Sg(1) = ∇Sg(0) on S1, (5.17)

divSg(1) = divSg(0) on S1. (5.18)

Consider an interface S0, parallel to the surface S1 and S2, which geometrically lies midway

between S1 and S2 [100]. The distance of a point x ∈ S0 to S1 and S2 are both equal to h/2.

The connections of S0 to S1 and S2 at point x can be established by the distance h, described

mathematically as follows:
S0 = {x ∈Ω| f (x) = 0};
S1 = {y ∈ R3|y = x−hn(x),x ∈ S0};
S2 = {y ∈ R3|y = x+hn(x),x ∈ S0}.

(5.19)

It is evident that Si (i = 0,1,2) represent perfect interfaces, with certain fields demonstrating

continuity across them, as specified in equations (2.29), (2.30), (2.73), and (2.75). They can be

uniformly represented as:

(·)(+)|Si = (·)(−)|Si. (5.20)

Here, (·)(+) and (·)(−) denote the physical quantities involved in equations (2.29), (2.30), (2.73),

and (2.75) on the respective sides of the interface. In this section, the following physical quanti-
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ties are considered:
p(+)|Si = p(−)|Si, u(+)|Si = u(−)|Si,

∇S p(+)|Si = ∇S p(−)|Si, (w ·n)(+)|Si = (w ·n)(−)|Si,

Pε(+)|Si = Pε(−)|Si, P⊥σ (+)|Si = P⊥σ (−)|Si.

(5.21)

On these basic, the displacement vector u on the middle surface S0 of the three-phase com-

posite can be approximated by its quantity on the adjacent surface S1 or surface S2 with a Taylor

expansion:

u(0)|S0 = u(0)|S2−
h
2
(∇u(0) ·n)|S2 +0(h2),

u(0)|S0 = u(0)|S1 +
h
2
(∇u(0) ·n)|S1 +0(h2). (5.22)

The following equation is derived by subtracting the two preceding equations and applying the

properties of the perfect surfaces S1 and S2, specifically the conditions related to u as detailed in

equation (5.21):

u(2)|S2−u(1)|S1 =
h
2
[(ε(0) ·n)|S2 +(ε(0) ·n)|S1]+0(h2). (5.23)

By substituting the first part of the recast constitutive equation (5.11) into the above equation

and applying the properties of the perfect surface S1 and S2 (5.21), we obtain:

u(2)|S2−u(1)|S1 =
h
2
(B(0) : σ(2)−B(0) : θ(0)p(2)+S(0) : A(0) : ε(2))|S2 ·n

+
h
2
(B(0) : σ(1)−B(0) : θ(0)p(1)+S(0) : A(0) : ε(1))|S1 ·n+0(h2).

(5.24)

It is worth noting that, in the derivation above, we have utilized the properties of the operators B

and A, specifically BP⊥ = B and AP= A.

The stress vector t = σ · n mentioned previously is continuity when it across the perfect

interface. The stress vector t on the middle surface S0 of the three-phase composite can be ap-
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proximated by its value on either the adjacent surface S1 or surface S2 using a Taylor expansion:

t(0)|S0 = t(0)|S2−
h
2
(∇t(0) ·n)|S2 +0(h2),

t(0)|S0 = t(0)|S1 +
h
2
(∇t(0) ·n)|S1 +0(h2). (5.25)

Subtracting the first expression from the second yields:

t(2)|S2− t(1)|S1 =
h
2
[(∇t(0) ·n)|S2 +(∇t(0) ·n)|S1 ]+0(h2). (5.26)

Based on the previous definition of stress vector t, the term ∇t ·n can be further expanded as:

∇t ·n = ∇(σ ·n) = (∇σ ·n) ·n+σ · (∇n ·n). (5.27)

Given the fact that ∇n ·n = 0, it follows that:

∇t ·n = ∇σ : N = divNσ. (5.28)

Since the stress tensor σ is divergence-free, and recognizing that the divergence can be decom-

posed as divσ = divNσ+divSσ, we derive the important relation:

∇t ·n =−divSσ. (5.29)

By substituting the second part of the recast constitutive equation (5.15) into the preceding e-

quation, we obtain the following result:

∇t ·n =−divS(A : ε +C : B : σ+A : S : θp). (5.30)

By incorporating this expression into equation (5.25) and applying the properties of the perfect

surface S1 and S2 (5.21), we obtain the following relation for the stress vector:

t(2)|S2− t(1)|S1 =−
h
2

divS(A(0) : ε(2)+C(0) : B(0) : σ(2)+A(0) : S(0) : θ(0)p(2))|S2

− h
2

divS(A(0) : ε(1)+C(0) : B(0) : σ(1)+A(0) : S(0) : θ(0)p(1))|S1 +0(h2).

(5.31)
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Similarly, the pore pressure p on the middle surface S0 of the three-phase composite can be
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Figure 5.2: The transformation of three-phase configuration into two-phase configuration by
replacing the interphase Ω(0) with the imperfect interface S0.

approximated using a Taylor series expansion around the adjacent surfaces S1 and S2, leading to

the following expressions:

p(0)|S0 = p(0)|S2−
h
2
(∇p(0) ·n)|S2 +0(h2),

p(0)|S0 = p(0)|S1 +
h
2
(∇p(0) ·n)|S1 +0(h2). (5.32)

By subtracting these two equations and taking into account the continuity of p across the perfect

interface, the following result is obtained:

p(2)|S2− p(1)|S1 =
h
2
[(∇p(0) ·n)|S2 +(∇p(0) ·n)|S1]+0(h2). (5.33)

While the normal fluid flux wn on the middle surface S0 of a three-phase composite can be

approximated by a Taylor series expansion around the adjacent surfaces S1 and S2, yielding:

w(0)
n |S0 = w(0)

n |S2−
h
2
(∇w(0)

n ·n)|S2 +0(h2),

w(0)
n |S0 = w(0)

n |S1 +
h
2
(∇w(0)

n ·n)|S1 +0(h2). (5.34)

Considering the continuity of wn across the perfect interface and subtracting the previous two

equations yields:

w(2)
n |S2−w(1)

n |S1 =
h
2
[(∇w(0)

n ·n)|S2 +(∇w(0)
n ·n)|S1]+0(h2). (5.35)
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5.1.3 Jumps Across the Imperfect Interface in the Two-Phase Configura-

tion

As mentioned before, in the two-phase configuration, the transition layer is replaced by the

imperfect surface S0 with the neighboring phases 1 and 2 being extended to the surface S0. The

domain R3 is regarded as divided into two sub-domains Ω(−) and Ω(+) by the surface S0 as

shown in Figure 5.2. To physically equivalent the three-phase configuration with the two-phase

configuration, the physical fields across the imperfect interface S0 must satisfy certain discon-

tinuous relations that characterize the jump of the physical field across the domain restricted by

the surfaces S1 and S2 in the three-phase configuration.

Applying the Taylor expansion, the displacement vector u on the surfaces S1 and S2 can be

conveyed by the vector u on the imperfect interface with an error of order 0(h2)

u(2)|S2 = u(+)+
h
2
(∇u(+) ·n)+0(h2),

u(1)|S1 = u(−)− h
2
(∇u(−) ·n)+0(h2), (5.36)

where (·)(+) denotes the physical parameter evaluated on the phase 2 side of S0 and the value

(·)(−) is on the phase 1 side of S0. By subtracting these two equations, we obtain the following

relation:

u(2)|S2−u(1)|S1 = JuK+
h
2
(ε(+) ·n+ ε(−) ·n)+0(h2), (5.37)

where, the jump operator J·K is defined as J·K = (·)(+)− (·)(−) denoting the discontinuity of the

quantity (·) across the interface S0. Substituting equation (5.24) into this expression yields the

following result:

JuK =
h
2
[(B(0) : σ(2)−B(0) : θ(0)p(2)+S(0) : A(0) : ε(2)) ·n]|S2

+
h
2
[(B(0) : σ(1)−B(0) : θ(0)p(1)+S(0) : A(0) : ε(1)) ·n]|S1

− h
2
(ε(+)+ ε(−)) ·n+0(h2).

(5.38)
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Next, applying the Taylor expansion gives the following expressions:

(B(0) : σ(2)−B(0) : θ(0)p(2)+S(0) : A(0) : ε(2))|S2

= B(0) : σ(+)−B(0) : θ(0)p(+)+S(0) : A(0) : ε(+)+0(h),
(5.39)

and

(B(0) : σ(1)−B(0) : θ(0)p(1)+S(0) : A(0) : ε(1))|S1

= B(0) : σ(−)−B(0) : θ(0)p(−)+S(0) : A(0) : ε(−)+0(h).
(5.40)

Utilizing equation (5.11), we establish the following relationship:

ε(+)+ ε(−) =S(2) : A(2) : ε(+)+B(2) : σ(+)−B(2) : θ(2)p(+)

+S(1) : A(1) : ε(−)+B(1) : σ(−)−B(1) : θ(1)p(−).
(5.41)

Substituting equations (5.39)-(5.41) into equation (5.38), we obtain the following jump condition

JuK =
h
2
[(S(0) : A(0)−S(2) : A(2)) : ε(+)+(S(0) : A(0)−S(1) : A(1)) : ε(−)] ·n

− h
2
[(B(0) : θ(0)−B(2) : θ(2))p(+)+(B(0) : θ(0)−B(1) : θ(1))p(−)] ·n

+
h
2
[(B(0)−B(2))σ(+)+(B(0)−B(1))σ(+)] ·n+0(h2).

(5.42)

Using equation (2.104), we observe that nBσ = F · t. Substituting this relation into the previous

expression, the equation can be reformulated as follows:

JuK =
h
2
[(S(0) : A(0)−S(2) : A(2)) : ε(+)+(S(0) : A(0)−S(1) : A(1)) : ε(−)] ·n

− h
2
[(B(0) : θ(0)−B(2) : θ(2))p(+)+(B(0) : θ(0)−B(1) : θ(1))p(−)] ·n

+
h
2
[(F(0)−F(2)) · t(+)+(F(0)−F(1)) · t(−)]+0(h2).

(5.43)

For the traction vector t in the two-phase configuration, we can derive the following using

Taylor expansion:

t(2)|S2− t(1)|S1 = JtK+
h
2
(∇t(+) ·n+∇t(−) ·n)+0(h2). (5.44)
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Incorporating equations (5.31) and (5.30) into the preceding expression, we obtain:

JtK =− h
2

divS(A(0) : ε(2)+C(0) : B(0) : σ(2)+A(0) : S(0) : θ(0)p(2))|S2

− h
2

divS(A(0) : ε(1)+C(0) : B(0) : σ(1)+A(0) : S(0) : θ(0)p(1))|S1

+
h
2

divS(A(2) : ε(+)+C(2) : B(2) : σ(+)+A(2) : S(2) : θ(2)p(+))

+
h
2

divS(A(1) : ε(−)+C(1) : B(1) : σ(−)+A(1) : S(1) : θ(1)p(−))+0(h2).

(5.45)

Using Taylor expansion, we can express the following:

(A(0) : ε(2)+C(0) : B(0) : σ(2)+A(0) : S(0) : θ(0)p(2))|S2

= A(0) : ε(+)+C(0) : B(0) : σ(+)+A(0) : S(0) : θ(0)p(+)+0(h),
(5.46)

and

(A(0) : ε(1)+C(0) : B(0) : σ(1)+A(0) : S(0) : θ(0)p(1))|S1

= A(0) : ε(−)+C(0) : B(0) : σ(−)+A(0) : S(0) : θ(0)p(−)+0(h).
(5.47)

Thus, substituting these expressions into equation (5.45) yields:

JtK =
h
2

divS[(A(2) : S(2) : θ(2)−A(0) : S(0) : θ(0))p(+)+(A(1) : S(1) : θ(1)−A(0) : S(0) : θ(0))p(−)]

+
h
2

divS[(C(2) : B(2)−C(0) : B(0)) : σ(+)+(C(1) : B(1)−C(0) : B(0)) : σ(−)]

+
h
2

divS[(A(2)−A(0)) : ε(+)+(A(1)−A(0)) : ε(−)]+0(h2).

(5.48)

While for the pore pressure p in the two-phase configuration, we can derive the following

using Taylor expansion:

p(2)|S2 = p(+)+
h
2
(∇p(+) ·n)+0(h2),

p(1)|S1 = p(−)− h
2
(∇p(−) ·n)+0(h2), (5.49)

By subtracting the above two equations, the following relation is obtained:

p(2)|S2− p(1)|S1 = JpK+
h
2
(∇p(+) ·n+∇p(−) ·n)+0(h2). (5.50)
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Substituting (5.33) into the above equation yields:

JpK =
h
2
[(∇p(0) ·n)|S2 +(∇p(0) ·n)|S1− (∇p(+) ·n+∇p(−) ·n)]+0(h2). (5.51)

Recalling Darcy’s law (5.5), we can decompose the normal fluid flux wn = w ·n as follows:

w ·n =−(K ·∇p) ·n =−[K · (T+N) ·∇p] ·n, (5.52)

which can be further rewritten as:

wn = n ·K ·∇S p− (n ·Kn)∇p ·n. (5.53)

Considering the positive definiteness of K, which implies that n ·Kn 6= 0, we can derive from

the above expression that:

∇p ·n =− wn

n ·Kn
− n ·K

n ·Kn
·∇S p. (5.54)

We introduce the following definitions:

knn = n ·Kn, s =
n ·K

n ·Kn
. (5.55)

Substituting these definitions into (5.54), the expression simplifies to:

∇p ·n =−wn

knn
− s∇S p. (5.56)

Applying the Taylor expansion, we obtain:

(−w(0)
n

k(0)nn

− s(0)∇S p(0))|S2 =−
w(+)

n

k(0)nn

− s(0)∇S p(+)+0(h),

(−w(0)
n

k(0)nn

− s(0)∇S p(0))|S1 =−
w(−)

n

k(0)nn

− s(0)∇S p(−)+0(h).

(5.57)
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According formula (5.56), it follows that

∇p(+) ·n+∇p(−) ·n =−w(+)
n

k(2)nn

− s(2)∇S p(+)− w(+)
n

k(1)nn

− s(1)∇S p(+). (5.58)

By substituting (5.57) and (5.58) into (5.51), we derive the pressure jump JpK as follows:

JpK =
h
2

[
w(+)

n

k(2)nn

+
w(−)

n

k(1)nn

− w(+)
n

k(0)nn

− w(−)
n

k(0)nn

]
− h

2

[
(s(0)− s(1))∇S p(−)+(s(0)− s(2))∇S p(+)

]
+0(h2). (5.59)

And for the normal fluid flux in the two-phase configuration, the following can be derived using

a Taylor expansion:

w(2)
n |S2 = w(+)

n +
h
2
(∇w(+)

n ·n)+0(h2),

w(1)
n |S1 = w(−)

n − h
2
(∇w(−)

n ·n)+0(h2). (5.60)

Subtracting the above two equations yields the following relation:

w(2)
n |S2−w(1)

n |S1 = JwnK+
h
2
(∇w(+)

n ·n+∇w(−)
n ·n)+0(h2), (5.61)

Substituting equation (5.35) into the above expression results in:

JwnK =
h
2
[(∇w(0)

n ·n)|S2 +(∇w(0)
n ·n)|S1− (∇w(+)

n ·n+∇w(−)
n ·n)]+0(h2). (5.62)

Recalling the definition of wn and the fact that ∇n ·n = 0, we obtain:

∇wn ·n = ∇w : N+w · (∇n) ·n = divNw. (5.63)

According to equation (5.4), it follows that:

divNw =−divSw−θ : ε̇ +
ṗ
η
. (5.64)
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The term divSw can be expanded as:

divSw =−∇(K · (N+T)p) : T =−divS(K ·∇S p)−∇[(K ·n)(∇p ·n)] : T. (5.65)

Applying the expression for ∇p ·n from equation (5.54), we get:

∇[(K ·n)(∇p ·n)] : T = ∇[− Kn
n ·Kn

wn−
(Kn)⊗ (n ·K)

n ·Kn
∇S p] : T

= divS[−swn−
(Kn)⊗ (n ·K)

n ·Kn
∇S p].

(5.66)

Substituting equations (5.65) and (5.66) into (5.64) and defining D = K− (Kn)⊗(n·K)
n·Kn , yields:

∇wn ·n = divS(−swn +D ·∇S p)−θ : ε̇ +
ṗ
η
. (5.67)

By applying the Taylor expansion, the following expressions are obtained:

[divS(−s(0)w(0)
n +D(0) ·∇S p(0))−θ(0) : ε̇(0)+

ṗ(0)

η(0) ]|S2

= divS(−s(0)w(+)
n +D(0) ·∇S p(+))−θ(0) : ε̇(+)+

ṗ(+)

η(0) +0(h),

(5.68)

and

[divS(−s(0)w(0)
n +D(0) ·∇S p(0))−θ(0) : ε̇(0)+

ṗ(0)

η(0) ]|S1

= divS(−s(0)w(−)
n +D(0) ·∇S p(−))−θ(0) : ε̇(−)+

ṗ(−)

η(0) +0(h).

(5.69)

According to equation (5.67), the expression for ∇w(+)
n ·n+∇w(−)

n ·n becomes:

∇w(+)
n ·n+∇w(−)

n ·n =divS(−s(2)w(+)
n − s(1)w(−)

n +D(2) ·∇S p(+)+D(1) ·∇S p(−))

−θ(2) : ε̇(+)+
ṗ(+)

η(2)
−θ(1) : ε̇(−)+

ṗ(−)

η(1)
.

(5.70)

To obtain the expression for the normal fluid flux jump JwnK, substitute equations (5.68) and
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(5.70) into (5.62), yielding:

JwnK =
h
2

divS[(D(0)−D(1)) ·∇S p(−)+(D(0)−D(2)) ·∇S p(+)]− h
2

divS[(s(0)− s(1))w(−)
n +(s(0)− s(2))w(+)

n ]

− h
2

[
(θ(0)−θ(1)) : ε̇(−)+(θ(0)−θ(2)) : ε̇(+)−

(
1

η(0) −
1

η(1)

)
ṗ(−)−

(
1

η(0) −
1

η(2)

)
ṗ(+)

]
+0(h2).

(5.71)

To display the discontinuity expression more compact, several computational symbols are de-

fined as follows:

(·)(±) = [
1
2
((·)(+)+(·)(−))± 1

2
((·)(+)− (·)(−))] = 〈·〉± 1

2
J·K, (5.72)

where, the symbol 〈·〉 = 1
2((·)(+) + (·)(−)) denotes the average of the quantity (·) across the

interface S0. Utilizing the established symbols, the jump relations across the imperfect interface

can be systematically formulated into concise and efficient equations, as shown below:

JuK =
h
2

{
[(2S(0) : A(0)−S(2) : A(2)−S(1) : A(1)) : 〈ε〉] ·n+(2F(0)−F(2)−F(1)) · 〈t〉

− (2B(0) : θ(0)−B(2) : θ(2)−B(1) : θ(1))〈p〉 ·n
}
+0(h2), (5.73)

JtK =
h
2

divS[(A(2)+A(1)−2A(0)) : 〈ε〉+(C(2) : B(2)+C(1) : B(1)−2C(0) : B(0)) : 〈σ〉

+(A(2) : S(2) : θ(2)+A(1) : S(1) : θ(1)−2A(0) : S(0) : θ(0))〈p〉]+0(h2), (5.74)

JpK =
h
2

[(
1

k(2)nn

+
1

k(1)nn

− 2

k(0)nn

)
〈wn〉

]
− h

2

[
(2s(0)− s(1)− s(2)) ·∇s〈p〉

]
+0(h2), (5.75)

JwnK =
h
2

divS[(2D(0)−D(1)−D(2)) ·∇S〈p〉]−
h
2

divS[(2s(0)− s(1)− s(2))〈wn〉]

−h
2

[
(2θ(0)−θ(1)−θ(2)) : 〈ε̇〉−

(
2

η(0)
− 1

η(1)
− 1

η(2)

)
〈ṗ〉
]
+0(h2). (5.76)
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5.1.4 General Isotropic Interface Model and Extreme Particular Interface

Models

When all phases within the three-phase configuration are isotropic, the elastic stiffness and

compliance tensors assume simplified forms. Specifically, they can be expressed as:

C(i) = 2µ(i)I+

(
3κ(i)−2µ(i)

3

)
I⊗ I, S(i) =

1
2µ(i)

I+

(
2µ(i)−3κ(i)

18κ(i)µ(i)

)
I⊗ I, (5.77)

where κ(i) and µ(i) denote the bulk modulus and shear modulus, respectively, of phase i (i = 0,1,

or 2). Under isotropic conditions, where material properties remain uniform in all directions, the

coupling between strain and fluid pressure is homogeneous across all directions. Additional-

ly, the material’s permeability remains constant irrespective of orientation. Consequently, this

enables us to express the Biot’s tensor θ and the permeability tensor K as follows:

θ(i) = θ (i)I, K(i) = K(i)I, (5.78)

where θ (i) and K(i) denote scalar coefficients. By substituting equation (5.77) into equations

(2.153)-(2.158), the following relations can be inferred:

G(i) = µ(i)P+

(
4µ(i)+3κ(i)

3

)
P⊥, (5.79)

F(i) =
1

µ(i)
P+

(
3

4µ(i)+3κ(i)

)
P⊥, (5.80)

B(i) =
1

2µ(i)

(
P⊥+

2µ(i)−3κ(i)

4µ(i)+3κ(i)
P⊥⊗P⊥

)
, (5.81)

A(i) = 2µ(i)

(
P− 2µ(i)−3κ(i)

4µ(i)+3κ(i)
P⊗P

)
. (5.82)
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Combining the tensors obtained above along with equations (5.77) and (5.78), and substituting

them into equations (5.73)-(5.76), we derive the interfacial jump relations in the isotropic case:

JuK =
h
2
[c1(P : 〈ε〉) ·n+(c2P⊥+ c3P) · 〈t〉+ c4〈p〉n]+0(h2), (5.83)

JtK =
h
2

divS[(c5P+ c6P⊗P) : 〈ε〉+(c1P⊥ : 〈σ〉)P+ c7〈p〉P]+0(h2), (5.84)

JpK =
h
2

c8〈wn〉+0(h2), (5.85)

JwnK =
h
2

c9∆S〈p〉−
h
2
[c10tr〈ε̇〉− c11〈ṗ〉]+0(h2), (5.86)

where the material parameters ci (i = 1,2, ...,9) are detailed in Appendix A, while ∆S〈p〉 denotes

the surface Laplacian of 〈p〉, computed as ∆S〈p〉= divS(∇S〈p〉).

Analyzing the general interface model in the two opposite extreme cases, where the inter-

phase exhibits significantly higher or lower rigidity and permeability compared to that of the

surrounding phases, is crucial for understanding imperfect interface. To facilitate the analysis of

these two cases, we introduce a small dimensionless parameter ς = h/h0� 1, with h0 represent-

ing a reference length on the same order as the geometrical dimensions of the inhomogeneities

within a composite material. Subsequently, we can express the extreme cases as follows:

Case 1 - high rigidity and permeability of interphase

C(0) =
Ĉ(0)

ς
, C(2) = Ĉ(2), C(1) = Ĉ(1),

θ (0) =
θ̂ (0)

ς
, θ (2) = θ̂ (2), θ (1) = θ̂ (1), (5.87)

K(0) =
K̂(0)

ς
, K(2) = K̂(2), K(1) = K̂(1),

1
η(0)

=
1

ςη̂(0)
,

1
η(2)

=
1

η̂(2)
,

1
η(1)

=
1

η̂(1)
;
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Case 2 - low rigidity and permeability of interphase

C(0) = ςĈ(0), C(2) = Ĉ(2), C(1) = Ĉ(1),

θ (0) = ς θ̂ (0), θ (2) = θ̂ (2), θ (1) = θ̂ (1), (5.88)

K(0) = ςK̂(0), K(2) = K̂(2), K(1) = K̂(1),

1
η(0)

=
ς

η̂(0)
,

1
η(2)

=
1

η̂(2)
,

1
η(1)

=
1

η̂(1)
.

Here, Ĉ(i), θ̂ (i), K̂(i), and η̂(i) (i = 1,2,3)denote the reference stiffness tensors, Biot’s tensors,

permeability tensors, and Biot’s modulus, respectively, each of which is of the same order.

In the first case, considering the material relations (5.87) within the jump relations (5.73)-

(5.76), it can be demonstrated that, with an error of the order of 0(h) or 0(h),

JuK = 0, (5.89)

JtK =−h0divS

[
Â(0) : 〈ε〉+ Â(0) : Ŝ(0) : θ̂(0)〈p〉

]
, (5.90)

JpK = 0, (5.91)

JwnK = h0

[
divS(D̂(0) : ∇S〈p〉)− θ̂(0) : 〈ε̇〉+ 〈ṗ〉

η̂(0)

]
. (5.92)

In this case, it is clear that both the displacement vector and fluid pressure maintain continuity

across the interface, with an error of order 0(h) or 0(h). Conversely, the traction vector and

normal fluid flux display a discontinuous behavior. These relations characterize the poroelastic

coherent imperfect interface model, which can be viewed as the extension to poroelasticity of the

well-known Gurtin-Murdoch model. According to the subsection (5.1.4), when the interphase

exhibits isotropy, the jump relations (5.90) and (5.92) can be simplified as follows:

JtK =−divS [λstr(εs)P+2µsεs + pθsP] , (5.93)

JwnK =
[

Ks1∆S p−h0θ̂ (0)tr(〈ε̇〉)+ h0

η̂(0)
ṗ
]
, (5.94)

with

εs = P : ε(+) = P : ε(−), p = p(+) = p(−), ṗ = ṗ(+) = ṗ(−), (5.95)
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λs =
2h0µ̂(0)(2µ̂(0)−3κ̂(0))

4µ̂(0)+3κ̂(0)
, µs = h0µ̂(0), θs =

6h0µ̂(0)θ̂ (0)

4µ̂(0)+3κ̂(0)
, Ks1 = h0K̂(0). (5.96)

In the second case, taking into account material relations (5.88) in jump relations (5.73)-(5.76),

it can be shown that, with an error of the order of 0(h) or 0(h),

JuK = h0F̂(0)t, (5.97)

JtK = 0, (5.98)

JpK =− h0

k̂(0)nn

wn, (5.99)

JwnK = 0, (5.100)

with

t = t(+) = t(−), wn = w(+)
n = w(−)

n . (5.101)

In this case, it is evident that the traction vector and normal fluid flux maintain continuity across

the interface, with an error of order 0(h) or 0(h). Conversely, the displacement vector and fluid

pressure exhibit a jump across the same interface. These relations characterize the poroelastic

coherent imperfect interface model, which can be regarded as an extension of the widely recog-

nized spring-layer interface model to the realm of poroelasticity. When the interphase demon-

strates isotropy, the jump relations (5.97) and (5.99) can be reduced to the following form:

JuK = (αtP+αnP⊥)t, (5.102)

JpK =−Ks2wn, (5.103)

(5.104)

with

αt =
3h0

4µ̂(0)+3κ̂(0)
, αn =

h0

µ̂(0)
, Ks2 =

h0

K̂(0)
. (5.105)
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5.2 Numerical Implementation with XFEM

The discontinuous relations governing a general imperfect interface, which is equivalent to

the interphase embedded in the matrix and the inclusion phase of a composite material, have

been rigorously derived. In this section, our focus lies on elaborating an effective numerical

method specific to dealing with imperfect interfaces. We center our attention on the analysis

of porous composites, thoroughly illustrating the numerical calculation process, thereby pro-

viding a valuable reference for the numerical analysis of composite materials. To facilitate the

implementation of numerical methods and reduce complexity, we proceed to simplify the dis-

continuous relations (5.73) and (5.74) as follows:

JuK =
h
2
[(n ·F) : 〈ε〉− (n ·R)〈p〉+H · 〈t〉]+0(h2), (5.106)

JtK =
h
2

divS[S〈p〉+(Y ·n)〈t〉+Z : 〈ε〉]+0(h2). (5.107)

The symbols appearing in the two simplified equations above are specifically defined as follows:

F = 2S(0) : A(0)−S(2) : A(2)−S(1) : A(1), (5.108)

R = 2B(0) : θ(0)−B(2) : θ(2)−B(1) : θ(1), (5.109)

H = 2F(0)−F(2)−F(1), (5.110)

S = A(2) : S(2) : θ(2)+A(1) : S(1) : θ(1)−2A(0) : S(0) : θ(0), (5.111)

Y = C(2) : B(2)+C(1) : B(1)−2C(0) : B(0), (5.112)

Z = A(2)+A(1)−2A(0). (5.113)

In accordance with the conversion relation C : B+A : S = I, we can deduce the following

expression:

F= B(2) : C(2)+B(1) : C(1)−2B(0) : C(0) = YT . (5.114)

Additionally, it is imperative to acknowledge these computational properties: P : S = S, F : P=

F, Z : P= Z, and Y : P⊥ = Y, owing to the relations A : P= A and B : P= B.
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5.2.1 Strong and Weak Formulations for Boundary Value Problems

The discontinuities obtained above are initially expressed as differential equations (strong

formulations), which should be converted into the corresponding integral equations (weak for-

mulations) to suit the discretization within the extended finite element method (XFEM) frame-

work. For computational efficiency without sacrificing essential properties, a poroelastic com-

posite comprising only one matrix and one inclusion phase is selected as the computational mod-

el (see Fig. 5.3). The symbol Ω denotes the entire analysis domain of the composite, bounded by

Figure 5.3: The boundary condition of the inclusion phase embeds in matrix phase bonded by a
general imperfect interface.

a surface ∂Ω. The sub-domains occupied by the matrix and inclusion phases are represented as

Ω(+) and Ω(−), respectively. The general imperfect interface, characterized by equations (5.73),

(5.74), (5.75), and (5.76), which divides the analysis domain into Ω(+) and Ω(−), is denoted by

Γ. Thus, Ω = Ω(−)∪Ω(+)∪Γ. The external boundary conditions are specified as follows:

u = u on ∂Ωu, t = t on ∂Ωt , (5.115)

p = p on ∂Ωp, wn = wn on ∂Ωwn. (5.116)

The external boundary conditions adhere to the conditions where ∂Ωu∪∂Ωt = ∂Ωp∪∂Ωwn =

∂Ω, and ∂Ωu ∩ ∂Ωt = ∂Ωp ∩ ∂Ωwn = /0. Here, u, t, p, and wn represent the corresponding

imposed physical quantities at the boundary. The boundary of the sub-domain Ω(−) comprises

the closed imperfect interface Γ, while that of Ω(+) is formed by ∂Ω and Γ.
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Employing a piecewise differentiable virtual displacement field δu defined over Ω as an

independent control variable, the weak formulation for the boundary value problem is derived as

follows, with the virtual work principle imposed on Ω(−) and Ω(+)

∫
Ω(2)
σ : δεdv =

∫
∂Ωt

t ·δu−
∫

S
t(+) ·δu(+)ds, (5.117)∫

Ω(1)
σ : δεdv =

∫
Γ

t(−) ·δu(−)ds, (5.118)

where δε represents the virtual strain tensor determined by δε =∇(δu), with the condition δu=

0 on Ωu. By combining equations (5.117) and (5.118), the weak form of the entire composite

can be expressed as follows:

∫
Ω

σ : δεdv+
∫

Γ

Jt ·δuKds =
∫

∂Ωt

t ·δuds. (5.119)

Making a difference between equations (5.106) and (5.107) the second term on the right-hand

side of the equation above can be obtained using the surface divergence (or Stokes) theorem:

∫
Γ

Jt ·δuKds =
h
2

∫
Γ

[〈t〉 ·H〈δ t〉−〈δε〉 : Z〈ε〉]ds

− h
2

∫
Γ

[〈t〉 · (n ·R)〈δ p〉+ 〈δε〉 : S〈p〉]ds. (5.120)

To ensure that the weak formulations involve only the control variables u and p, we utilize

equation (5.106) to express the traction vector t and the virtual traction vector δ t in terms of the

displacement vector u, the virtual displacement vector δu, and the strain gradient ε , as follows:

〈t〉= 2
h

H−1JuK+H−1(n ·R)〈p〉−H−1(n ·F)〈ε〉, (5.121)

〈δ t〉= 2
h

H−1JδuK+H−1(n ·R)〈δ p〉−H−1(n ·F)〈δε〉. (5.122)

Finally, the concrete expression of the weak form is obtained through rigorous mathematical
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calculation, yielding:

∫
Ω

ε : Cδεdv+
∫

Ω

pθ : δεdv− h
2

∫
Γ

[〈δε〉 : Z〈ε〉]ds− h
2

∫
Γ

[〈δε〉 : S〈p〉]ds+
2
h

∫
Γ

JuK ·H−1JδuKds

−
∫

Γ

JuK ·H−1(n ·F)〈δε〉ds+
∫

Γ

JδuK ·H−1(n ·R)〈p〉ds− h
2

∫
Γ

〈p〉(RT n) ·H−1(n ·F)〈δε〉ds

−
∫

Γ

JδuK ·H−1(n ·F)〈ε〉ds+
h
2

∫
Γ

〈ε〉 : (FT ·n) ·H−1(n ·F)〈δε〉ds =
∫

∂Ωt

t ·δuds. (5.123)

For the fluid phase, we apply a similar method and procedure to derive the weak form within

the composite. The weak form for the fluid phase is expressed as follows:

−
∫

Ω

K∇p ·∇(δ p)dv+
∫

Γ

JpK

(
1

k(2)nn

+
1

k(1)nn

− 2

k(0)nn

)−1(
2Jδ pK

h
+(2s(0)− s(1)− s(2)) ·∇S〈δ p〉

)
ds

+
h
2

∫
Γ

(
1

k(2)nn

+
1

k(1)nn

− 2

k(0)nn

)−1

∇S〈p〉 · (2s(0)− s(1)− s(2))
(

2Jδ pK
h

+(2s(0)− s(1)− s(2)) ·∇S〈δ p〉
)

ds

−h
2

∫
Γ

[
(2θ(0)−θ(1)−θ(2)) : 〈ε̇〉〈δ p〉−

(
2

η(0) −
1

η(1) −
1

η(2)

)
〈ṗ〉〈δ p〉

]
ds (5.124)

−h
2

∫
Γ

(2D(0)−D(1)−D(2))∇S〈p〉 ·∇S〈δ p〉ds =
∫

Ω

(
θ : ε̇− ṗ

η

)
δ pdv+

∫
∂Ωwn

wn ·δ pds.

5.2.2 Level Set Function and Enriched Shape Functions

In the analysis of inclusion problems, the Extended Finite Element Method (XFEM) intro-

duces additional degrees of freedom and modifies the form of basis functions within discontin-

uous regions (i.e., elements intersected by imperfect interfaces), thereby facilitating improved

accommodation of discontinuities. By incorporating additional degrees of freedom and adjust-

ing the basis functions, XFEM efficiently accommodates discontinuous features without exces-

sive reliance on grid refinement or interpolation techniques. This intrinsic flexibility enables

XFEM to provide highly accurate numerical solutions for problems involving interface discon-

tinuities while optimizing computational resources and enhancing overall efficiency. The level

set method (LSM) is highly effective in offering accurate and adaptable portrayal of imperfect

interface positions and geometries. By employing an additional scalar function, known as the

level set function, LSM represents the position of an interface. This function defines a surface

in a higher-dimensional space, where points on the surface directly correspond to points on the
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interface. The numerical values assigned to these points denote their signed distances from the

interface. Specifically, the imperfect interface S is represented as the zero level-set of a function,

defined as:

S = {x ∈ R3 | φ(x) = 0}. (5.125)

The interface S divides the solution domain Ω into two subdomains: Ω(−) and Ω(+). In Ω(−), the

level set function φ(x) is negative (φ(x)< 0), indicating points inside the interface. Conversely,

in Ω(+), φ(x) is positive (φ(x)> 0), representing points outside the interface. The value φ(x) at

any point within an element can be approximated by a linear combination of the shape functions

and the level set function values at the nodes of that element. This approximation is expressed

as:

φ(x)≈
n

∑
i=1

Ni(x)φi(x), (5.126)

where Ni(x) represents the shape function associated with the standard finite element, and φi(x)

denotes the value of the level set function at the nodes of the element. The unit normal vector

n(x) at a point x on the interface S is computed as follows:

n(x) =
∇φ(x)
‖∇φ(x)‖ . (5.127)

When elements are cut by imperfect interfaces, adjustments in form and degrees of freedom are

essential for capturing displacement and pore pressure jumps accurately. Introducing addition-

al degrees of freedom and modifying the basis function form enables solutions to effectively

represent discontinuities across interfaces, thereby facilitating a more appropriate depiction and

precise capture of such phenomena. In the XFEM, the displacement and pore pressure approx-

imate expressions are decomposed into three parts, with the first part capturing continuous be-

havior, while the second and third parts are designed to address strong and weak discontinuities,

respectively. Specifically, the expressions are formulated as follows:

u(x)≈
n

∑
i=1

Nu
i (x)ui +

m

∑
j=1

Nu
j (x)χ j(x)c j +

m

∑
j=1

Nu
j (x)Ψ j(x)c j, (5.128a)

p(x)≈
n

∑
i=1

N p
i (x)pi +

m

∑
j=1

N p
j (x)χ j(x)g j +

m

∑
j=1

N p
j (x)Ψ j(x)g j. (5.128b)
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In the expressions above, u(x) and p(x) denote the displacement and pore pressure fields, re-

spectively, evaluated at arbitrary points within an element. The symbols N(·)
i (·=u or p) represent

the shape functions of the standard finite element, while ui and pi denote the displacement and

pore pressure at the ith node of this element. c j, c j , g j, and g j denote the enriched degrees of

freedom (DOFs) for displacement and pore pressure, respectively. Here, n represents the num-

ber of nodes in a standard finite element, while m indicates the number of enriched nodes. It

is essential to emphasize that the value of m is determined by the type of the enriched element

and must adhere to the condition m 6 n. Additionally, χ j(x) and Ψ j(x) represent enrichment

functions employed to characterize strong and weak discontinuities within elements cut by the

imperfect interface, respectively. They are defined as follows:

χ j(x) = sign(φ(x))− sign(φ j(x)), (5.129)

Ψ j(x) =
n

∑
i=1

Ni(x)|φi|− |
n

∑
i=1

Ni(x)φi|, (5.130)

where the function sign(φ(x)) yields a value of 1, 0, or -1 depending on whether φ(x) is positive,

zero, or negative, respectively. The derivative expressions of these two enrichment functions are

as follows:
∂ χ j(x)

∂x
= 0, (5.131)

∂Ψ j(x)

∂x
=

n

∑
i=1
{∂Ni(x)

∂x
[|φi|− sign(

n

∑
i=1

Ni(x)φi)φi]}. (5.132)

The enrichment functions χ j(x) and Ψ j(x) play crucial roles in capturing discontinuities with-

in the finite element framework. Specifically, χ j(x) exhibits a clear discontinuity across the

imperfect interface, with its derivatives uniformly zero throughout the domain Ω. In contrast,

Ψ j(x) demonstrates continuity across the same interface, yet its derivative lacks continuity.

Through the implementation of enrichment functions (5.129) and (5.130), both strong and weak

discontinuities can be effectively represented, providing a comprehensive approach to handling

interface-related phenomena within the XFEM.
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5.2.3 Parameters of Discrete Control Equations

Substituting the approximate expressions for displacement and pore pressure, given by (5.128b)

and (5.128a), into the weak formulations (5.123) and (5.125), and considering the arbitrariness

of node variations, yields the governing equation of the discrete system as follows:

[Qup +Qus]{u̇}+[Qpp +Qps]{ṗ}+[Hpp +Hps]{p}= {fp}, (5.133)

[Wuu +Wus]{u}+[Wup +Wsp]{p}= {fu}, (5.134)

where, the vector {p} includes both the classic DOFs (pi) and the enriched DOFs (g j,g j), while

the vector {u} consists of the classic DOFs u as well as the enriched DOFs (c, c). The symbols

ṗ and u̇ denote the time derivatives of the vectors p and u, respectively, indicating the rates of

change of the DOFs with respect to time. Through the utilization of a time integration technique

such as the Newmark method, these derivatives undergo discretization. Consequently, the time

derivatives of primary variables at the current time step are determined in relation to known

values from the preceding time step, in accordance with the iterative nature inherent in numerical

methods. This process follows a progression as outlined below:

{u̇}n+1 = a0({u}n+1−{u}n)−a1{u̇}n

{ṗ}n+1 = a2({p}n+1−{p}n)−a3{ṗ}n

(5.135)

where a0 =
γ

β∆t , a1 =
γ
β −1, and a2 =

γ
β −1. The constants γ and β denote the Newmark con-

stants, while ∆t represents the time step. Furthermore, the computation of the matrices related
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to material properties in equations (5.133) and (5.134) is elaborated as follows:

Qup =
∫

Ω
NT

p mθ(r)Budv, Qus =
h
2
∫

Γ
ÑT

p mθ̃B̃udv,

Qpp =−
∫

Ω
NT

p
1

η(r) Npds, Qps =−h
2
∫

Γ
ÑT

p η̃ÑT
p ds,

Hpp =
∫

Ω
BT

p K(r)Bpdv, Hps = Hps1 +Hps2 +Hps3 +Hps4 +Hps5,

Hps1 =−2
h
∫

Γ
NT

p k̄nnNpds, Hps2 =−
∫

Γ
k̄nnNT

p ms̃B̃pds,

Hps3 =−
∫

Γ
k̄nnB̃T

p s̃mT Npds, Hps4 =−h
2
∫

Γ
k̄nnB̃T

p s̃s̃T B̃pds,

Hps5 =
h
2
∫

Γ
B̃T

p D̃B̃pds, fp =
∫

∂Ωwn
NT

p wnds,

Wuu =
∫

Ω
BT

u L(r)Budv, Wus = Wus1 +Wus2 +Wus3 +Wus4 ,

Wus1 =
2
h
∫

Γ
NT

u H−1Nuds, Wus2 =−h
2
∫

Γ
B̃T

u [Z− (FT ·n) ·H−1 · (n ·F)]B̃uds,

Wus3 =−
∫

Γ
NT

u [H−1 · (n ·F)]B̃uds, Wup =
∫

Ω
BT

u θ
(r)mT Npdv,

Wsp = Wsp1 +Wsp2 +Wsp3, Wsp1 =
∫

Γ
NT

u [H−1 · (n ·R)]mT Ñpds,

Wsp2 =−h
2
∫

Γ
B̃T

u SmT Ñpds, Wsp3 =−h
2
∫

Γ
B̃T

u [(FT ·n) ·H−1 · (n ·R)]mT Ñpds,

fu =
∫

∂Ωt
NT

u tds.
(5.136)

Here (·)(r) (with r = 1,2) denotes the physical quantities associated with the material properties

of the inclusion and matrix phases, respectively. The vector m is represented as [1 1 1]. Detailed

calculation formulas for the effective scalar η̄ , k̄nn, effective vector s̃, and effective tensors θ̃

and T̃ are provided in Appendix (B). Additionally, symbols Np, Np, and Ñp represent the shape

function matrices associated with variables p, JpK, and 〈p〉, respectively. The derivatives of these

shape function matrices, denoted as Bp, Bp, and B̃p, are defined through the mathematical rela-
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tionships ∇p = Bp pe, ∇JpK = Bp pe, and ∇〈p〉= B̃p pe, which correspond to the form functions

Np, Np, and Ñp. More precisely, the formulations for these relationships are as follows:

p = Np pe, Bp = LpNp,

JpK = Np pe, Bp = LpNp,

〈p〉= Ñp pe, B̃p = LpÑp,

(5.137)

where, the vector pe represents the pressure values at the nodes, while the matrix Lp represents

a symbolic matrix operator composed of partial derivative operators. In the specific context of

solving a three-dimensional problem, Lp assumes the following form:

Lp =



∂
∂x1

∂
∂x2

∂
∂x3


. (5.138)

Similarly, the shape functions, denoted as Nu, Nu, and Ñu, correspondingly relate to distinct

displacement fields u, JuK, and 〈u〉. The strain matrices Bu, Bu, and B̃u represent the derivatives

of these shape functions, i.e., Nu, Nu, and Ñu, and are interconnected through the computational

relations ∇u = Buue, ∇JuK = Buue, and ∇〈u〉= B̃uue. The specific computational framework is

detailed as follows:
u = Nuue, Bu = LuNu,

JuK = Nuue, Bu = LuNu,

〈u〉= Ñuue, B̃u = LuÑu,

(5.139)

where the vector ue represents the displacement values at the nodes, while the matrix Lu denotes

a symbolic matrix operator comprising partial derivative operators as its elements. Particularly,
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for three-dimensional problem computations, its formulation can be expressed as:

Lu =



∂
∂x1

0 0

0 ∂
∂x2

0

0 0 ∂
∂x3

∂
∂x2

∂
∂x1

0

0 ∂
∂x3

∂
∂x2

∂
∂x3

0 ∂
∂x1


. (5.140)

5.2.4 Element Types and Numerical Integration Strategies

As stated in equations (5.128a) and (5.128b), the value of m is determined by the type of

the enriched element. Moreover, within XFEM, varying integration strategies are implemented

for different types of elements. Therefore, the classification of elements plays a crucial role

within the XFEM framework. The determination of element types relies on assessing the spatial

relationship between the element and the interface, facilitated by the LSM primarily through

evaluating the level set function value of nodes within the element. To describe the type of el-

ement in a visualized way, We establish a two-dimensional model that is divided by triangular

elements as schematically illustrated in Fig. 5.4. In this instance, the elements can be classi-

fied into three types through the geometric position relationship between the elements and the

interface.

blending elements
        (type II)

standard elements

S

blending elements
         (type I)

enrinched nodes

 cut elements

enrinched nodes on S

Figure 5.4: 2D representation of the different kinds of element generated by the interface S
intersecting the standard triangular elements.
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(i) Standard finite elements These elements lack enriched nodes and are implemented using

the standard finite element method.

(ii) Fully cut elements When elements are divided by the interface, resulting in two parts,

they are categorized as fully cut elements. In this case, all nodes within the element are

enriched.

(iii) Blending elements These elements have some nodes enriched, and there are two subtypes.

Blending elements type I have nodes located directly on the interface, while Blending

elements type II are positioned near the cut element and share only some nodes with it.

To obtain the values of the coefficient matrices associated with the unknown vector u and

p as displayed in equation (5.136), numerical integration techniques need to be applied. This

entails calculating volume and area integrals, typically estimated using numerical integration

methods or approximation techniques. Among numerical integration methods, Gauss quadra-

ture, chosen for its efficiency with polynomial or nearly polynomial functions, plays a pivotal

role in computing characteristic matrices of elements. In XFEM, different numerical integra-

tion strategies are employed for various element types. For standard elements, the integration

procedure is similar to that of classical finite element methods. Conversely, for blending ele-

ments, the integral points are adjusted depending on the specific characteristics of each element

type. For the cutting elements, wherein physical fields exhibit piecewise continuity due to the

presence of interfaces, a specialized integration approach becomes essential to ensure precision

and effectively characterize field discontinuities across these interfaces. Specifically, when an

element intersects with an imperfect interface, it undergoes a detailed subdivision into multi-

ple sub-elements, each possessing edges that closely approximate the interface geometry. This

subdivision process guarantees the continuity of fields within each sub-element, thereby facil-

itating individualized integration over these sub-regions. Meanwhile, the number and types of

generated sub-elements vary based on the different types of intersection between interfaces and

elements, as illustrated in Figure 4 for tetrahedral elements. The intersection types between in-

terfaces and elements can be discerned by evaluating the level set function values of nodes within

the elements. The strategies for determining intersection types and generating sub-elements are

implemented in the computational program. The Gauss quadrature method is based on selecting

suitable weights and integration points to ensure exact integration of the highest possible poly-

nomial. To ensure calculation accuracy, the following integral schemes are used to compute the
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Figure 5.5: The type that the tetrahedral elements cut by the imperfect interface.

coefficient matrices:

(1) For standard elements without enrichment nodes, a single Gauss integral point is em-

ployed.

(2) For blending elements, four Gauss integral points are adopted.

(3) In cut elements, 15 Gauss integral points are applied for each sub-element, and seven

Gauss integral points are used on the imperfect interface.

5.3 Validation and Discussion of Imperfect Interface Model

and Numerical Method

In this section, we consider the case of a steady state in which the solution of a two-phase

poroelastic composite with general imperfect interface can be first obtained analytically and

exactly. This solution is then used as a benchmark to compare with the numerical solution

derived by applying the numerical method established in the previous section. This comparison

aims to illustrate the correctness and effectiveness of the numerical method as well as the general

imperfect interface model.
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5.3.1 Analytical Solutions to Boundary Value Problems

First of all, we recall that a steady state in poroelasticity can be characterized by the fact that

the derivative with respect to time of any quantity will vanish, i.e. ε̇= 0 and ṗ = 0. To obtain the

analysis benchmark, we consider first the two-phase configuration in which a spherical inclusion

Ω(1) of radius R embedded in an infinite matrix Ω(2). The interface S between the matrix and

inclusion is described by a general imperfect interface model in which the discontinuities of the

physical fields across the interface are specified by equations (5.73), (5.74), (5.75) and (5.76).

A cartesian coordinate system of which the origin coincides with the geometric center of the

spherical inclusion is introduced. The materials forming both the inclusion and matrix domains

are assumed to be linearly poroelastic and isotropic.

Let the poroelastic composite Ω be subjected to the following prescribed uniform pressure

and linear displacement boundary conditions on its external surface ∂Ω:

L

L

x3

x1

x2

R

L

Figure 5.6: The spherical inclusion embeds in a hexahedron matrix bonded by a general imper-
fect interface.

p̄ = β0, (5.141)

ū = ε0x (5.142)

where β0 and ε0 are two prescribed constants. Starting from the spherical symmetry of the
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problem, we look for the pressure and displacement fields in the inclusion and matrix phases in

the following forms:

p(r) = β0, (5.143)

u(r)(x) = F(r)x+G(r) x
||x||3 (5.144)

where F(r) and G(r) are two constants to be determined from the boundary and interfacial condi-

tions and the value of the superscript is r = 1 evaluated at x∈Ω(1) or r = 2 evaluated at x∈Ω(2).

The requirement for finiteness of the displacement at the center x = 0 of the spherical inclusion

Ω(1) implies that G(1) = 0. Employing the remote boundary conditions (5.142), F(2) = ε0 can

be deduced. Therefore, we obtain

p(1) = p(2) = β0, (5.145)

u(1) = F(1)x, (5.146)

u(2) =

(
ε0 +

G(2)

||x||3

)
x. (5.147)

Consequently, the resulting strain tensor ε(1) of the matrix phase Ω(1) can be determined by

ε(1) =
1
2
(∇u(1)+∇

T u(1)) = F(1)I. (5.148)

Similarly, the strain tensor ε(2) of the matrix phase Ω(2) is given by

ε(2) =
1
2
(∇u(2)+∇

T u(2)) =

(
ε0 +

G(2)

||x||3

)
I− 3G(2)

||x||5 x⊗x. (5.149)

As mentioned previously, the materials forming the inclusion, matrix and interphase are linearly

poroelastic and isotropic. Consequently, the governing equation (1) takes therefore the following

simple form

σ = (κ− 2
3

µ)Tr(ε)I+2µε+θ pI (5.150)

where κ and µ are the bulk modulus and shear modulus respectively and θ represents the Biot
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coefficient. Introducing (5.148) and (5.149) into the constitutive equation (5.150), the stress

tensors σ(1) and σ(2) evaluated at the domain Ω(1) and Ω(2) can be obtained as follows:

σ(1) = (κ(1)− 2
3

µ(1))(3F(1)I)+2µ(1)F(1)I+θ (1)p(1)I = 3κ(1)F(1)I+θ (1)β0I, (5.151)

σ(2) = 3ε0κ(2)I+
2µ(2)G(2)

||x||3
(

I−3
x⊗x
||x||2

)
+θ (2)β0I. (5.152)

Then, the traction vectors evaluated on the two sides of the imperfect interface S characterized

by ||x||= R are given by

t(−) = σ(1) ·n = (3κ(1)F(1)+θ (1)β0)n, (5.153)

t(+) = σ(2) ·n =

(
3κ(2)ε0 +θ (2)β0−

4µ(2)G(2)

R3

)
n. (5.154)

According to the above calculation, the jumping relationships of the displacement and stress

vector fields u and t across the interface can be worked out, which contain unknown parameters

F(1) and G(2). If the two unknown parameters are solved, the displacement field of the whole

domain can be clearly expressed. Recalling the discontinuity relations previously derived, the

two unknowns parameters, with which the displacement field of the whole domain can be clearly

expressed, can be solved.

Introducing the expressions (5.146), (5.147), (5.153) and (5.154) into relations (5.73) and
(5.74), the jump relations of the traction vector t and displacement field u across the general
imperfect interface model take the following forms:

3κ(2)ε0 +θ (2)β0−
4µ(2)G(2)

R3 −3κ(1)F(1)−θ (1)β0 =

(
4µ(0)θ (0)

λ (0)+2µ(0) −
2µ(1)θ (1)

λ (1)+2µ(1) −
2µ(2)θ (2)

λ (2)+2µ(2)

)
β0h
R

+

(
λ (0)

λ (0)+2µ(0) −
λ (1)

2(λ (1)+2µ(1))
− λ (2)

2(λ (2)+2µ(2))

)(
3κ(1)F(1)+(θ (1)+θ (2))β0 +3κ(2)ε0−4µ(2) G(2)

R3

)
h
R

+

(
4µ(0)λ (0)

λ (0)+2µ(0) −
2µ(1)λ (1)

λ (1)+2µ(1) −
2µ(2)λ (2)

λ (2)+2µ(2) +2µ(0)−µ(1)−µ(2)

)(
F(1)+ ε0 +

G(2)

R3

)
h
R
, (5.155)
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ε0R+
G(2)

R2 −F(1)R =−
(

θ (0)

λ (0)+2µ(0) −
θ (1)

2(λ (1)+2µ(1))
− θ (2)

2(λ (2)+2µ(2))

)
hβ0 (5.156)

+

(
1

2(λ (0)+2µ(0))
− 1

4(λ (2)+2µ(2))
− 1

4(λ (1)+2µ(1))

)(
3κ(1)F(1)+(θ (1)+θ (2))β0 +3κ(2)ε0

−4µ(2)G(2)

R3

)
h+

(
λ (2)

2(λ (2)+2µ(2))
+

λ (1)

2(λ (1)+2µ(1))
− λ (0)

λ (0)+2µ(0)

)(
F(1)+ ε0 +

G(2)

R3

)
h

where λ (r) = κ(r)− 2
3 µ(r) denote the Lamé coefficient. By solving the system of two equations

(5.155) and (5.156) with two unknown constants F(1) and G(2), we obtain first F(1) and G(2) and

derive then the displacement, strain and stress fields in the matrix and inclusion phases as well

as the jumps of the displacement and traction fields through the general imperfect interface.

When the three-phase matrix/interphase/inclusion configuration is concerned, under the same

boundary conditions (5.141) and (5.142), the pressure and displacement fields in the inclusion

and matrix phases take the same expressions as in the two-phase matrix/inclusion configuration

while the pressure and displacement fields in the interphase are given by

p(0) = β0, (5.157)

u(0) =

(
F0 +

G(0)

||x||3

)
x. (5.158)

Owing to the fact that the interface S1 (||x||=R− h
2 ) between the inclusion and interphase and the

interface S2 (||x||= R+ h
2 ) between the matrix and interphase are both perfect, the displacement

and stress vectors are therefore continuous across these interfaces S1 and S2, or equivalently

F(0)+
G(0)

(R− h
2)

3
= F(1), (5.159)

3κ(0)F(0)− 4µ(0)G(0)

(R− h
2)

3
+θ (0)β0 = 3κ(1)F(1)+θ (1)β0, (5.160)
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F0 +
G(0)

(R+ h
2)

3
= ε0 +

G(2)

(R+ h
2)

3
, (5.161)

3κ(0)F0−
4µ(0)G(0)

(R+ h
2)

3
+θ (0)β0 = 3κ(1)ε0−

4µ(2)G(2)

(R+ h
2)

3
+θ (2)β0. (5.162)

We obtain another system of 4 linear equations (5.176)-(5.177) with 4 unknown constants F(1),

F(0), G(0) and G(2). The resolution of this system of 4 linear equations implies the pressure,

displacement, strain and stress fields in the matrix, interphase and inclusion phases.

5.3.2 Convergence Analysis

The validity and accuracy of the proposed numerical procedure can be verified through con-

vergence analysis, which calculates the error of the approximate numerical results with respect

to the corresponding analytic exact solution. To conduct this analysis, a cube with a side length l

is extracted from the infinite matrix. Within this cube, a spherical inclusion with a radius R = 1
4 l

is embedded at the center, and both are divided into tetrahedra with a side length he. To examine

the effect of interface thickness on convergence, interfaces with varying thickness are selected

for the convergence analysis.

The displacement fields within the inclusion and matrix phase as well as on the interface

of the cube are given by the analytical exact expression (5.146) in conjunction with (5.147).

To enhance the precision of the convergence analysis, the global convergence rate is employed,

defined by the following L2-norm indicator:

e =

√
1

vol(Ω)

∫
Ω
‖ uhe−u ‖2 dV + 1

area(S)

∫
S ‖ JuKhe− JuK ‖2 dS√

1
vol(Ω)

∫
Ω
‖ u ‖2 dV + 1

area(S)

∫
S ‖ JuK ‖2 dS

(5.163)

where the uhe represents the displacement vector of numerical solution by XFEM and the u

indicates the quantity of analytic exact solution. vol(Ω) is the volume of the cube matrix and

area(S) denotes the area of imperfect interface between the cube and the spherical inclusion.

The granite is selected as the research object. The parameters used in our analysis are shown

in Table 5.1. To illustrate the applicability and generality of the general imperfect interface

above, the Young’s modulus of the interphase is set to vary from 50 MPa to 5×106 MPa while the
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Poisson’s ratios of the inclusion, matrix and interphase are kept constant with ν(1) = ν(0) = 0.2

and ν(2) = 0.23.

Table 5.1: Parameters used for the analysis

Set no. E(1)(MPa) E(2)(MPa) E(0)(MPa) interphase thichness

1 4×104 9×104 50∼ 5×107 10−3l
2 4×104 9×104 50∼ 5×107 10−4l

As the element size he decreases, the results of the convergence analysis are plotted in Fig.

5.7. We can notice that, with the element size he diminishes, the relative error e decreases.

As shown, they also reflect that the numerical solutions converge to the corresponding analytical

exact solution. Meanwhile, the convergence rates with a smaller value of the interphase thickness

h are better than those with a larger value. Indeed, the interphase thickness h involved in the

weak form (5.123) and (5.125) plays a central role in the process of establishing the imperfect

interface model and numeric implementation. Note that in these processes, some of the higher

order infinitesimal quantities about h are treated as zero. Thus, when the interphase thickness h

increases, the convergence rates are smaller.

5.3.3 Analysis of Numerical and Analytical Results

In addition, we deeply discuss the effectiveness of the discontinuities across the general

imperfect interfaces by analyzing the distribution of the displacement and stress fields. The

previous model with the same material and geometric parameters, as shown in Fig. 5.6, is

employed for analysis. The whole model domain is meshed with 296595 tetrahedron elements

and 64000 nodes. In order to characterize the effect of interface thickness on discontinuity, we

choose the interphase with different thickness for analysis.

To ensure that the physical fields of the numerical method model are consistent with those

of the theoretical method model, the displacement field on the surface of the cube is provided

by the the analytical exact expression (5.155) together with (5.156). Along the direction of the

x3-axis, a straight line normal to the x1− x2 plane is selected in the origin of the analysis mod-

el. In this straight line, 20 points are evenly chosen, then the displacement component u3 and

stress component σ33 along the x3-axis of these point are drawn. The comparison of the numer-

ical result obtained by the XFEM-based implementation proposed and the analytical results are
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Figure 5.7: Convergence analysis for the spherical inclusion problem with the general interface.

exhibited in Figure 5.8 and Figure 5.9. The comparison chars show that the the displacement
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Figure 5.8: Comparison of the numerical and analytical results for the displacement component
u3 and stress component σ33 along the x3-axis with the thickness 10−3l of the interphase.

component u3 and stress component σ33 of the numerical method accord with that of the analyt-

ical method. The displacement field is continuous in the solution domain except the imperfect

interface. From these figures, when the Young’s modulus of the interphase is much smaller than

that of the surrounding phase, displacement at the imperfect interface suffers a very significant

jump. As the Young’s modulus of the interphase increases, the displacement jump at the inter-

face diminishes. When the Young’s modulus of the interphase is much larger than that of the

surrounding phases, the displacement field at the imperfect interface converts into continuous.

From the distribution of the stress component in the whole domain, it is continuous at the inter-
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face when the Young’s modulus of the interphase is several orders of magnitude smaller than that

of the matrix phase and inclusion phase. When the Young’s modulus of the interphase becomes

larger than that of the surrounding phases, the stress component begin to become discontinuous

at the interface. The distribution of these fields varying with the different Young’s modulus of

the interphase consistent with the properties of the imperfect interface introduced previously. E-

specially the cases that the Young’s modulus of the interphase is much larger or smaller than that

of the surrounding phases correspond to the spring-layer model or the coherent interface model.

The foregoing discussions clearly indicate that the proposed numerical method is applicable and

universal for the analysis of the saturated porous composites. It is available to handle various

interface cases across which the physical fields suffer the strong and weak discontinuities.
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Figure 5.9: Comparison of the numerical and analytical results for the displacement component
u3 and stress component σ33 along the x3-axis with the thickness 10−4l of the interphase.

Comparing the Fig. 5.8 and Fig. 5.9, we can see that the thickness of the interphase has a

significant influence on the interface effect. Indeed, distribution of these fields of the numerical

results and theoretical results are obviously different with the two different thickness of the

interphase. As the thickness of the interphase increases, there is a more remarkable jump of the

physical fields at the interface.
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5.4 Generalized Self-Consistent Scheme (GSCS) for Estimat-

ing Effective Poroelastic Properties

In order to determine the effective poroelastic properties of the composite constituted by

a poroelastic matrix reinforced by spherical poroelastic inclusions, a micromechanical model

based on the generalized self-consistent scheme is now proposed. The matrix and inclusion

phases are assumed to be both isotropic, and the interface between them is described by a general

imperfect interface model. This model is an extension to poroelastic materials with general

imperfect interfaces of the classical GSCS, which was initiated by Van der Poel [110], improved

by Smith [123, 124], and completed by Christensen and Lo [27].

According to this model, we first consider an infinite body Ω∞ made of the effective homo-

geneous medium, which is subjected to the same uniform boundary conditions as shown in Eqs.

(5.141) and (5.142). Due to the linearity of the local constitutive laws of each phase and to that

of the imperfect interface, the corresponding effective behavior remains isotropic and linearly

poroelastic and takes the form

σ∗ =
(

κ∗− 2
3

µ∗
)

tr(ε∗)I+2µ∗ε∗+θ ∗p∗I (5.164)

where κ∗, µ∗ and θ ∗ are the effective bulk and shear modulus and the effective Biot’s coefficient.

Under the uniform boundary conditions Eqs. (5.141) and (5.142), the following displacements,

pressure, strain and stress tensors, traction vector are given in Ω∞

u∗(x) = ε0x, θ ∗(x) = β0, ε∗(x) = ε0I,

σ∗(x) = (3κ∗ε0 +θ ∗β0)I, t∗ = (3κ∗ε0 +θ ∗β0)n. (5.165)

The free energy of Ω∞ takes the following form

U0(ε0,β0) =
1
2

vol(Ω∞)

(
9κ∗ε2

0 +6θ ∗ε0β0−
β 2

0
η∗

)
(5.166)

where η∗ represents the effective Biot’s modulus.

Next, we cut a sphere out of the foregoing infinite effective medium Ω∞ and substitute back

a composite sphere Ω while imposing the same boundary condition on ∂Ω∞ as before. The
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interface between the composite sphere and outside medium is assumed perfectly bonded. The

core of this composite sphere is made of the inclusion phase 1 and is surrounded by a concentric

shell consisting of the matrix phase 2. The radii of the core and coating, symbolized by R and ρ

are chosen so as to be compatible with its prescribed phase volume fractions

c1 = 1− c2 =

(
R
ρ

)3

. (5.167)

The spherical interface S between the matrix and inclusion is formulated by the general imperfect

interface model as described in Section 2. Starting the spherical symmetry of the problem and

taking account to the boundary condtions Eqs. (5.141) and (5.142), we seek the pressure and

displacement fields within the inclusion (phase 1), matrix (phase 2) and effective medium (phase

e) in the following forms:

p(1) = p(2) = p(e) = β0, (5.168)

u(1) = (F(1)ε0 + f (1)β0)x,

u(2) =

(
F(2)ε0 + f (2)β0 +

G(2)ε0 +g(2)β0

||x||3

)
x,

u(e) =

(
ε0 +

G(e)ε0 +g(e)β0

||x||3

)
x.

(5.169)

Here, F(1), F(2), G(2) and G(e) are unknown constants associated with the displacement loading

ε0 while f (1), f (2), g(2) and g(e) are unknown constants connected with the pressure loading β0.
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The resulting strain and stress tensors are given by

ε(1) = (F(1)ε0 + f (1)β0)I,

ε(2) =

(
F(2)ε0 + f (2)β0 +

G(2)ε0 +g(2)β0

||x||3

)
I− 3(G(2)ε0 +g(2)β0)

||x||5 x⊗x,

ε(e) =

(
ε0 +

G(e)ε0 +g(e)β0

||x||3

)
I− 3(G(e)ε0 +g(e)β0)

||x||5 x⊗x, (5.170)

σ(1) = 3κ(1)(F(1)ε0 + f (1)β0)I+θ (1)β0I,

σ(2) = 3κ(2)(F(2)ε0 + f (2)β0)I+
2µ(2)(G(2)ε0 +g(2)β0)

||x||3
(

I−3
x⊗x
||x||2

)
+θ (2)β0I,

σ(e) = 3ε0κ∗I+
2µ∗(G(e)ε0 +g(e)β0)

||x||3
(

I−3
x⊗x
||x||2

)
+θ ∗β0I. (5.171)

The traction vectors, t(−) and t(+), evaluated on the two sides of the imperfect interface S, char-

acterized by ||x||= R, are specified by

t(−) = σ(1) ·n = [3κ(1)(F(1)ε0 + f (1)β0)+θ (1)β0]n, (5.172)

t(+) = σ(2) ·n =

[
3κ(2)(F(2)ε0 + f (2)β0)+θ (2)β0−

4µ(2)(G(2)ε0 +g(2)β0)

R3

]
n. (5.173)

The traction vector t on the interface ∂Ω with ||x||= ρ between the matrix and effective medium

is expressed by

t =

[
3κ(2)(F(2)ε0 + f (2)β0)+θ (2)β0−

4µ(2)(G(2)ε0 +g(2)β0)

ρ3

]
n. (5.174)

Across the general imperfect interface S, the jump relations of the traction vector t and displace-
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ment field u can be rewritten in the following form

3κ(2)(F(2)ε0 + f (2)β0)+θ (2)β0−
4µ(2)(G(2)ε0 +g(2)β0)

R3 −3κ(1)(F(1)ε0 + f (1)β0)−θ (1)β0

=

(
4µ(0)θ (0)

λ (0)+2µ(0)
− 2µ(1)θ (1)

λ (1)+2µ(1)
− 2µ(2)θ (2)

λ (2)+2µ(2)

)
β0h
R

+

(
λ (0)

λ (0)+2µ(0)
− λ (1)

2(λ (1)+2µ(1))

− λ (2)

2(λ (2)+2µ(2))

)(
(θ (1)+θ (2))β0 +3κ(1)(F(1)ε0 + f (1)β0)+3κ(2)(F(2)ε0 + f (2)β0)

−4µ(2) (G
(2)ε0 +g(2)β0)

R3

)
h
R
+

(
2µ(0)−µ(1)−µ(2)+

4µ(0)λ (0)

λ (0)+2µ(0)
− 2µ(1)λ (1)

λ (1)+2µ(1)

− 2µ(2)λ (2)

λ (2)+2µ(2)

)(
F(1)ε0 + f (1)β0 +F(2)ε0 + f (2)β0 +

(G(2)ε0 +g(2)β0)

R3

)
h
R
, (5.175)

(F(2)ε0 + f (2)β0)R+
(G(2)ε0 +g(2)β0)

R2 − (F(1)ε0 + f (1)β0)R =−
(

θ (0)

λ (0)+2µ(0) −
θ (1)

2(λ (1)+2µ(1))

− θ (2)

2(λ (2)+2µ(2))

)
hβ0 +

(
1

2(λ (0)+2µ(0))
− 1

4(λ (2)+2µ(2))
− 1

4(λ (1)+2µ(1))

)(
3κ(1)(F(1)ε0 + f (1)β0)

+(θ (1)+θ (2))β0 +3κ(2)(F(2)ε0 + f (2)β0)−
4µ(2)(G(2)ε0 +g(2)β0)

R3

)
h+

(
λ (2)

2(λ (2)+2µ(2))

+
λ (1)

2(λ (1)+2µ(1))
− λ (0)

λ (0)+2µ(0)

)(
F(1)ε0 + f (1)β0 +F(2)ε0 + f (2)β0 +

(G(2)ε0 +g(2)β0)

R3

)
h. (5.176)

Across the perfect bonded interface ∂Ω, the continuity conditions of the traction vector t and

displacement field u read

3κ(2)(F(2)ε0 + f (2)β0)−
4µ(2)(G(2)ε0 +g(2)β0)

ρ3 +θ (2)β0

= 3κ∗ε0−
4µ∗(G(e)ε0 +g(e)β0)

ρ3 +θ ∗β0,

(5.177)

(F(2)ε0 + f (2)β0)ρ +
(G(2)ε0 +g(2)β0)

ρ2 = ε0ρ +
(G(e)ε0 +g(e)β0)

ρ2 . (5.178)

Due to the presence of the composite sphere in the effective medium, the initially uniform strain

and stress fields of the latter are disturbed. It is shown in Appendix that the free energy U(ε0,β0)
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of Ω∞ after inserting the composite sphere Ω is given by the following formula:

U =U0 +
1
2

∫
∂Ω

(t ·u∗− t∗ ·u)ds+
1
2

∫
Ω

(
β0θ tr(ε)− β 2

0
η

)
dv− 1

2

(
3θ ∗ε0β0−

β 2
0

η∗

)
vol(Ω).

(5.179)

Here, u∗ and t∗ are the initial traction and displacement vectors on ∂Ω; u and t are the trac-

tion and displacement vectors on ∂Ω when the composite sphere has been introduced; ε is the

strain field in the composite sphere. Compared with the classical formulas of Eshelby [38], Eq.

(5.179) can be viewed as a poroelastic extension. As in the GSCS of Christensen and Lo [27],

the effective poroelastic properties of the effective medium are required to be such that the pres-

ence of the composite sphere does not change the initial free energy. Thus, the self-consistency

condition reads

∫
∂Ω

(t ·u∗− t∗ ·u)ds+
∫

Ω

(
β0θ tr(ε)− β 2

0
η

)
dv−

(
3θ ∗ε0β0−

β 2
0

η∗

)
vol(Ω)

+
∫

S

(
θ (0)β0JuiKni−

hβ 2
0

η(0)

)
ds = 0.

(5.180)

Note that when β0 = 0, the self-consistency condition (5.180) reduces to that of Christensen and

Lo [27].

Firstly, we introduce the expressions of u∗, t∗ given by Eq. (5.165), and of the strain field ε

provided by Eq. (5.170) into Eq. (5.180). Accounting for Eqs. (5.177) and (5.178) implies that

the self-consistency condition (5.180) holds for any ε0 and β0 if and only if

G(e) = 0, (5.181)

θ ∗ = c1θ (1)F(1)+ c2θ (2)F(2)+ c1θ (0)

(
F(2)+

G(2)

R3 −F(1)

)
− (3κ∗+4µ∗)

(
g(e)

ρ3

)
, (5.182)

1
η∗

= 3θ ∗
(

g(e)

ρ3

)
+ c1

(
1

η(1) −3θ (1) f (1)
)
+ c2

(
1

η(2) −3θ (2) f (2)
)

+3c1

[
h

Rη(0) −θ (0)

(
f (2)+

g(2)

R3 − f (1)
)]

. (5.183)

Secondly, setting β0 = 0, G(e) = 0, and ε0 = 1 into Eqs. (5.175)-(5.178), we obtain a system

of four linear equations for the four unknowns F(1), F(2), G(2), and κ∗. The resolution of this

system of four linear equations allows us to calculate the effective compressibility modulus κ∗
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as well as the values of F(1), F(2) and G(2).

Thirdly, introducing Eq. (5.182) and setting β0 = 1 and ε0 = 0 into Eqs. (5.175)-(5.178)

yield a new system of four linear equations for the four unknowns f (1), f (2), g(2), and g(e). By

solving this system of four linear equations, we obtain the values of unknown constants f (1),

f (2) and g(2). Moreover, we can also show that

g(e) = 0. (5.184)

Consequently, the effective Biot’s coefficient θ ∗ given by Eq. (5.182) takes therefore a simple

form:

θ ∗ = c1θ (1)F(1)+ c2θ (2)F(2)+ c1θ (0)

(
F(2)+

G(2)

R3 −F(1)

)
. (5.185)

Finally, by using Eq. (5.183) and by taking into account Eq. (5.184), we can calculate the

effective Biot modulus η∗ by

η∗ =
{

c1

(
1

η(1)
−3θ (1) f (1)

)
+ c2

(
1

η(2)
−3θ (2) f (2)

)
+3c1

[
h

Rη(0)
−θ (0)

(
f (2)+

g(2)

R3 − f (1)
)]}−1

.

(5.186)

Table 5.2: Material parameters used for the analysis

Material parameters Inclusion Interphase Matrix

Young modulus (Pa) E(1) = 9×106 E(0) = 5×103 to 5×109 E(1) = 2×106

Poisson’s ratio ν(1) = 0.4 ν(0) = 0.35 ν(2) = 0.3
Biot’s coefficient θ (1) = 0.8 θ (0) = 0.5 θ (2) = 0.45

Biot’s modulus (Pa) η(1) = 2×106 η(0) = 2×103 to 2×109 η(2) = 106

To numerically illustrate the results obtained above for the effective poroelastic properties

of composites with general imperfect interfaces, we consider a composite consisting of a host

matrix phase reinforced by spherical inclusions. The material properties of the inclusion, inter-

phase, and matrix phases are given the same values as in the previous section and are provided

in Table 5.2. In Figs. 5.10, 5.11, and 5.12, we plot the variations of the effective properties κ∗,

θ ∗, and η∗ in terms of the volume fraction of inclusions c1.

It can be seen from Figs. 5.10 and 5.12 that when the interphase is not very soft with respect
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to the matrix and inclusion phases, due to the fact that the inclusion phase is stiffer than the

matrix, the effective compressibility modulus κ∗ and Biot’s modulus η∗ increase as the volume

fraction of inclusions c1 increases. This is because the effect of the imperfect interface on the

effective properties is weak.

However, when the interphase is very soft with respect to the matrix and inclusion phases,

Figs. 5.10 and 5.12 show that the effective compressibility modulus κ∗ and Biot’s modulus η∗

decrease even as the volume fraction of inclusions c1 increases. This indicates that the effect of

the imperfect interface on the effective compressibility modulus κ∗ and effective Biot’s modulus

η∗ becomes important.

In contrast to the observations from Figs. 5.10 and 5.12, we can observe from Fig. 5.11 that,

despite the variation in the interphase’s properties, the effective Biot’s coefficient θ ∗ always

increase as the volume fraction of inclusions c1 increases.
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Figure 10: The effective compressibilty modulus κ∗ versus the volume fraction of inclusions c1.
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Figure 11: The effective Biot’s coefficient θ ∗ versus the volume fraction of inclusions c1.

28

Figure 5.10: The effective compressibilty modulus κ∗ versus the volume fraction of inclusions
c1.
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Figure 10: The effective compressibilty modulus κ∗ versus the volume fraction of inclusions c1.
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Figure 11: The effective Biot’s coefficient θ ∗ versus the volume fraction of inclusions c1.
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Figure 5.11: The effective Biot’s coefficient θ ∗ versus the volume fraction of inclusions c1.
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Figure 12: The effective Biot’s modulus η∗ versus the volume fraction of inclusions c1.
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Figure 5.12: The effective Biot’s modulus η∗ versus the volume fraction of inclusions c1.
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5.5 Conclusion

In this work, we have successfully established a comprehensive imperfect interface mod-

el for poroelastic composites through theoretical analysis. Our approach involves deriving and

expressing the discontinuities of the fields across the interface in a coordinate-free and com-

pact manner. This has laid the groundwork for an efficient numerical method to analyze these

models. By formulating the governing equations and weak forms for composites with imperfect

interfaces, we provided a robust theoretical foundation for numerical implementation.

Utilizing the framework of the Extended Finite Element Method (XFEM), we introduced

approximate interpolation functions enriched with appropriate functions to characterize both

strong and weak discontinuities. The numerical solutions of the model were computed using a

Matlab program, demonstrating the method’s capability to handle coupled boundary conditions.

The results of our numerical simulations were validated against analytical solutions, highlighting

the applicability and generality of the imperfect interface model.

Our numerical method is not only capable of capturing strong and weak discontinuities but

also serves as a powerful tool for homogenizing poroelastic composites and determining size-

dependent effective properties of composites with complex microstructures. This work paves

the way for future studies that could incorporate the effects of temperature, thereby addressing

more realistic engineering scenarios where temperature influences material properties.

Further extensions of this study could explore composites with multiple irregular-shaped in-

clusions, moving beyond the single spherical inclusion embedded in an infinite matrix analyzed

here. The theoretical and numerical framework developed in this work, supported by rigorous

jump relations and effective use of the level set function for interface tracking, provides a solid

basis for ongoing research.

Additionally, the application of the Generalized Self-Consistent Scheme (GSCS) under-

scores the broad relevance and utility of our methods in estimating the effective poroelastic

properties of composites. This work contributes significantly to the field of composite materials

characterization and analysis, offering both theoretical insights and practical numerical tools for

handling complex material interfaces.
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Conclusions

This thesis has made significant contributions to the modeling and analysis of shell-like struc-

tures in composite materials and structures, primarily in the following three aspects:

Firstly, this study develops a systematic and coordinate-independent asymptotic analysis

method for characterizing scalar or vector functions within shell-like structures. The primary

advantage of this approach lies in its independence from any specific coordinate system, facili-

tating straightforward conversion to Cartesian coordinates. Moreover, it allows for the represen-

tation of scalar or vector functions at arbitrary points within the shell-like structure, even when

these functions are piecewise continuous. This adaptability ensures broad applicability in mod-

eling plates, shells, and interfaces. By accurately capturing the intrinsic material properties of

these structures, this innovative approach significantly enhances the precision and reliability of

their modeling. Consequently, it offers a robust framework for advancing the understanding and

simulation of complex structural behaviors, making it invaluable for future research in this field.

Secondly, this study has utilized variational methods to derive the comprehensive govern-

ing equations of motion and associated boundary conditions for plates in a unified and succinct

framework. Building upon an asymptotic analysis that is free from dependency on any spe-

cific coordinate system and rooted in differential geometry, this approach effectively tackles

the complexities arising from significant material anisotropy in plates. Moreover, this method

significantly expands the classical plate theory’s applicability to plates featuring interfaces of

diverse geometries. By integrating variational principles with asymptotic techniques and differ-

ential geometry, this research not only enhances the theoretical foundations but also provides

practical tools for modeling and analyzing complex plate structures. The systematic formula-

tion of governing equations and boundary conditions underscores the method’s robustness in

capturing the intricate behavior of plates with varying material properties and interface config-

urations. Furthermore, a homogenization approach is established utilizing operators introduced
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in the process of asymptotic expansion of vector functions and the continuity relations discussed

for perfect interfaces.

Thirdly, this study has developed a general imperfect interface model with an accuracy of

O(h2) for poroelastic composite materials. By specifically addressing critical scenarios such as

extreme cases involving transition layer materials and isotropic constituents, this model greatly

enhances the capabilities for modeling and practical application in the analysis of poroelastic

composites. Integration of this model with advanced computational techniques such as XFEM

and GSCS enables robust numerical simulations and homogenization analyses. This combined

approach not only strengthens the theoretical foundation of poroelasticity but also provides a

powerful framework for studying complex material interactions and structural behaviors in het-

erogeneous media.

Building upon the foundation laid in this research work, the following new research direc-

tions can be initiated:

Firstly, the asymptotic analysis method utilized in this study proves to be equally effective in

the modeling of shells. By combining it with variational methods, one can systematically derive

the governing equations and boundary conditions that govern the motion of shells in a unified

and compact manner. This approach not only ensures a rigorous theoretical foundation but also

facilitates the efficient computation of shell behaviors under various conditions. The integration

of asymptotic analysis and variational techniques enables a comprehensive exploration of shell

dynamics, addressing complex interactions between geometry, material properties, and external

forces.

Secondly, in Chapter 3, which focuses on plate theory, has primarily examined examples

characterized by linear behavior-specifically, small deflections and modest rotational angles.

However, it is essential to extend our analysis and validation to encompass scenarios involving

large deflections or significant rotational angles. The nonlinear behavior exhibited by plates un-

der substantial deformations necessitates a more comprehensive investigation. To address these

challenges, a rigorous exploration of the nonlinear aspects of plate mechanics is imperative. This

involves revisiting the fundamental equations governing plate deformation to accurately capture

nonlinear effects, such as deriving normal vectors pertaining to the mid-surface and orthogo-

nal projection operators, alongside various geometric equations involving deformation metrics.

Furthermore, the validation of theoretical predictions through experimental or numerical simu-
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lations is crucial to ensuring the reliability and applicability of the proposed models under real-

world conditions. By enhancing our understanding of plate mechanics under large deflections

and rotations, we contribute to advancing structural analysis and design methodologies, thereby

fostering innovation in engineering applications. Furthermore, the interface models established

in this study are linear. However, when a nonlinear intermediate phase exists between nonlinear

phases, the derivation of interface models remains largely unresolved. Extending the methods

developed in this paper to address this issue represents a critically important research direction.

Additionally, this chapter discusses plate modeling starting with the elastic field, which is the

most fundamental physical model, primarily focusing on the deformation and stress distribution

of materials under external forces. However, in practical applications, materials and structures

are subjected not only to mechanical forces but also to other physical fields such as electric,

magnetic, and thermal fields. Therefore, plate modeling needs to be extended to multi-field

coupling, for example, considering piezoelectric and flexoelectric effects. This requires incor-

porating multi-field coupling physical models, expanding the constitutive relations of materials

to include electric fields and electric displacement, and formulating coupled governing equations

through asymptotic and variational methods. This approach allows for a more accurate repre-

sentation of the multi-physical interactions in engineering applications, providing a theoretical

foundation for the design and optimization of multifunctional materials and structures.

Thirdly, in Chapter 2, the asymptotic expansions of the physical fields in shell-like structures

have focused on linear geometric and constitutive equations. These developments can be extend-

ed to nonlinear scenarios, particularly within the framework of large deformations. The linear

geometric and constitutive equations discussed provide a foundational understanding applicable

to initial analyses. However, for practical applications involving shell-like structures experi-

encing significant deformations, nonlinear formulations are essential. Extending the asymptotic

expansions to incorporate nonlinear geometric effects and material behavior under large defor-

mation conditions is crucial for accurately predicting the structural response. By advancing

towards nonlinear asymptotic analyses, we can better capture complex phenomena such as geo-

metric nonlinearity and material plasticity, which are pivotal in engineering design and structural

integrity assessments. This progression enhances our capability to model and analyze shell-like

structures more realistically, thereby facilitating advancements in the field of structural mechan-

ics and design optimization.
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Furthermore, integrating these established models with advanced numerical methods remains

a crucial area of research. For example, combining finite element methods and proposing suit-

able elements such as plate, shell, or interface elements to streamline analysis is imperative.

This approach represents a pivotal advancement in enhancing the computational efficiency and

accuracy of structural and material simulations. By utilizing and extending advanced numeri-

cal methods, we can broaden the applicability of the developed models to effectively address

real-world complexities. This integration not only enhances the predictive capabilities of struc-

tural analysis but also fosters exploration into innovative design possibilities across engineering

applications.
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Appendix

Appendix A: The expression of the material parameters ci.

The explicit expressions of the material parameters ci in the isotropic case, derived in chapter

5.1.4, are as follows:

c1 =
2µ(2)−3κ(2)

4µ(2)+3κ(2)
+

2µ(1)−3κ(1)

4µ(1)+3κ(1)
−2

2µ(0)−3κ(0)

4µ(0)+3κ(0)
,

c2 =
6

4µ(0)+3κ(0)
− 3

4µ(2)+3κ(2)
− 3

4µ(1)+3κ(1)
,

c3 =
2

µ(0)
− 2

µ(2)
− 2

µ(1)
,

c4 =
3θ (2)

4µ(2)+3κ(2)
+

3θ (1)

4µ(1)+3κ(1)
− 6θ (0)

4µ(0)+3κ(0)
,

c5 = 2µ(2)+2µ(1)−4µ(0),

c6 =
2µ(2)(2µ(2)−3κ(2))

4µ(2)+3κ(2)
+

2µ(1)(2µ(1)−3κ(1))

4µ(1)+3κ(1)
− 4µ(0)(2µ(0)−3κ(0))

4µ(0)+3κ(0)
, (A.1)

c7 =
6µ(2)θ (2)

4µ(2)+3κ(2)
+

6µ(1)θ (1)

4µ(1)+3κ(1)
− 12µ(0)θ (0)

4µ(0)+3κ(0)
,

c8 =
1

K(2)
+

1
K(1)
− 2

K(0)
,

c9 = 2K(0)−K(1)−K(2),

c10 = 2θ (0)−θ (2)−θ (1),

c11 =
2

η(0)
− 1

η(1)
− 1

η(2)
.
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Appendix B: The effective coefficient appearing in equation E-

q. (5.136).

η̃ = 2
η(0) − 1

η(1) − 1
η(2) , k̄nn =

(
1

k(2)nn
+ 1

k(1)nn
− 2

k(0)nn

)−1

,

θ̃ = 2θ(0)−θ(1)−θ(2), D̃ = 2D(0)−D(1)−D(2),

s̃ = 2s(0)− s(1)− s(2).

(B.1)

Appendix C: The derivation of Eq. (5.179)

First, the free energy of Ω∞ containing a composite sphere takes, by definition, the following

form

U =
1
2

∫
Ω∞

(
εi jLi jklεkl +2θεkkβ0−

β 2
0

η

)
dv+

1
2

∫
S
Jσi juiKn jds

+
1
2

∫
S

(
θ (0)β0JuiKni−

hβ 2
0

η(0)

)
ds.

(C-1)

where the second and third terms on the right hand side is related to the discontinuities of the

stress and displacement vectors across the imperfect interface S0.

Next, using the constitutive law equation (5.1), we calculate 2(U−U0) as follows:

2(U−U0) =
∫

Ω∞

(
σi jεi j +θεkkβ0−

β 2
0

η

)
dv+

∫
S
Jσi juiKn jds+

∫
S

(
θ (0)β0JuiKni−

hβ 2
0

η(0)

)
ds

− 1
2

∫
Ω∞

(
σ∗i jε

∗
i j +θε∗kkβ0−

β 2
0

η∗

)
dv

=
∫

Ω∞

(
σi jui, j +θεkkβ0−

β 2
0

η

)
dv+

∫
S
Jσi juiKn jds+

∫
S

(
θ (0)β0JuiKni−

hβ 2
0

η(0)

)
ds

− 1
2

∫
Ω∞

(
σ∗i j,u

∗
i, j +θε∗kkβ0−

β 2
0

η∗

)
dv. (C-2)

Applying the integration by parts, divergence theorem, and equilibrium equation (5.3), it can be
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shown from equation (C-2) that

2(U−U0) =
∫

Ω

(
σi ju∗i, j−σ∗i jui, j

)
dv+

∫
S

(
Jσi jKn ju∗i −σ∗i jn jJuiK

)
ds

+
∫

Ω

(
θεkkβ0−

β 2
0

η
−θ ∗ε∗kkβ0 +

β 2
0

η∗

)
dv+

∫
∂Ω∞

(σi j +σ∗i j)(ui−u∗i )n jds

+
∫

Ω∞\Ω

(
σi jε∗i j +θεkkβ0−

β 2
0

η
−σ∗i jεi j−θ ∗ε∗kkβ0 +

β 2
0

η∗

)
dv (C-3)

+
∫

S

(
θ (0)β0JuiKni−

hβ 2
0

η(0)

)
ds.

By accounting for the boundary conditions (5.141) and (5.142), it is immediate that

∫
∂Ω∞

(σi j +σ∗i j)(ui−u∗i )n jds = 0. (C-4)

It follows from the integration by parts, divergence theorem and equilibrium equation (5.3) that

∫
Ω

(
σi ju∗i, j−σ∗i jui, j

)
dv+

∫
S

(
Jσi jKn ju∗i −σ∗i jn jJuiK

)
ds =

∫
∂Ω

(t ·u∗− t∗ ·u)ds. (C-5)

Due to the fact that the effective outside medium Ω∞ \Ω is homogeneous with the effective

constitutive laws given by

σ∗=
(

κ∗− 2
3

µ∗
)

tr(ε∗)I+2µ∗ε∗+θ ∗β0I, σ=

(
κ∗− 2

3
µ∗
)

tr(ε)I+2µ∗ε+θ ∗β0I, (C-6)

and θ = θ ∗, it can be demonstrated that

∫
Ω∞\Ω

(
σi jε∗i j +θεkkβ0−

β 2
0

η
−σ∗i jεi j−θ ∗ε∗kkβ0 +

β 2
0

η∗

)
dv = 0. (C-7)

Finally, by introducing equations (C-4)-(C-7) into equation (C-3), we obtain

2(U−U0) =
∫

∂Ω

(t ·u∗− t∗ ·u)ds+
∫

Ω

(
θεkkβ0−

β 2
0

η
−θ ∗ε∗kkβ0 +

β 2
0

η∗

)
dv

+
∫

S

(
θ (0)β0JuiKni−

hβ 2
0

η(0)

)
ds.

(C-8)

This equation allows us to express the free energy U of the effective medium with the composite

sphere as specified in equation (5.179).
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