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Titre: Graph Neural Networks pour la mécanique des fluides : assimilation de données et opti-misation.
Mots clés: Apprentissage automatique, Apprentissage automatique informé par la physique,Graph Neural Networks, Dynamique des fluides numérique, Équations de Reynolds-AveragedNavier Stokes, Assimilation de données.
Résumé: Cette thèse explore l’application desréseaux de neurones en graphes (GNN) dansla dynamique des fluides numérique (CFD),avec un accent sur l’assimilation de données etl’optimisation. Le travail est structuré en troisparties principales : assimilation de donnéespour les équations de Navier-Stokes moyen-nées à la Reynolds (RANS) basée sur des mod-èlesGNN ; assimilation augmentée par des con-traintes physiques via laméthode adjointe ; op-timisation des systèmes fluides par des tech-niques d’apprentissage automatique (ML).Dans la première partie, la thèse examinele potentiel des GNN pour contourner les mod-èles de fermeture traditionnels, souvent cali-brés manuellement et sources d’inexactitudes.En exploitant des simulations haute-fidélité, lesGNN sont entraînés à apprendre directementles quantités non résolues des écoulements, of-frant une approche plus flexible et généraliséepour le problème de fermeture des équationsRANS. Une étude approfondie est égalementmenée sur l’impact de la quantité de donnéessur les performances des GNN, avec la miseen place d’une stratégie d’Active Learning poursélectionner les données les plus informatives.Sur cette base, la deuxième partie de lathèse aborde un défi critique des modèlesd’apprentissage automatique : l’absence degarantie de cohérence physique dans leurs pré-dictions. Afin de garantir que les GNN pro-duisent des résultats à la fois précis et con-formes aux lois physiques, cette partie intègredes contraintes physiques directement dans

le processus d’entraînement. En incorporantles principes fondamentaux de la mécaniquedes fluides dans le cadre de l’apprentissage au-tomatique, le modèle génère des prédictionscohérentes et fiables, renforçant leur applica-bilité aux problèmes réels.Dans la troisième partie, la thèse démon-tre comment les GNN peuvent optimiser lessystèmes de dynamique des fluides, notam-ment dans la conception d’éoliennes. Les GNNservent de modèles de substitution, permet-tant des prédictions rapides pour des config-urations variées sans nécessiter une simula-tion CFD complète à chaque itération. Cetteapproche réduit significativement le temps decalcul, accélère le processus de conception etfacilite l’exploration des espaces de solutions,aboutissant à une convergence plus rapide versdes configurations optimales.Sur le plan méthodologique, la thèse in-troduit une architecture GNN adaptée spé-cifiquement aux applications CFD. Contraire-ment aux réseaux de neurones traditionnels,les GNN gèrent intrinsèquement les donnéesde maillage non structurées, fréquentes dansles problèmes de mécanique des fluides avecdes géométries complexes. Une interface spé-cifique entre les solveurs de la méthode deséléments finis (FEM) et l’architecture GNN estproposée, transformant les champs vectorielsFEM en tenseurs numériques traitables par lesréseaux neuronaux. Cela permet un échangefluide et efficace entre les environnements desimulation et d’apprentissage.



Title: Graph Neural Networks for fluid mechanics: data-assimilation and optimization
Keywords: Machine Learning, Physics-Informed Machine Learning, Graph Neural Networks,Computational Fluid Dynamics, Reynolds-Averaged Navier-Stokes, Data assimilation
Abstract: This PhD thesis investigates the ap-plication of Graph Neural Networks (GNNs)in the field of Computational Fluid Dynam-ics (CFD), with a focus on data-assimilationand optimization. The work is structuredinto three main parts: data-assimilation forReynolds-AveragedNavier-Stokes (RANS) equa-tions based on GNN models; data-assimilationaugmented by GNN and adjoint-based en-forced physical constraint; fluid systems opti-mization by ML techniques.In the first part, the thesis explores the po-tential of GNNs to bypass traditional closuremodels, which often require manual calibra-tion and are prone to inaccuracies. By lever-aging high-fidelity simulation data, GNNs aretrained to directly learn the unresolved flowquantities, offering a more flexible frameworkfor the RANS closure problem. This approacheliminates the need for manually tuned clo-sure models, providing a generalized and data-driven alternative. Moreover, in this first part,a comprehensive study of the impact of dataquantity on GNN performance is conducted,designing an Active Learning strategy to selectthe most informative data among those avail-able.Building on these results, the second partof the thesis addresses a critical challenge of-ten faced by ML models: the lack of guaran-teed physical consistency in their predictions.To ensure that the GNNs not only minimize er-rors but also produce physically valid results,this part integrates physical constraints directly

into the GNN training process. By embeddingkey fluidmechanics principles into themachinelearning framework, the model produces pre-dictions that are both reliable and consistentwith the underlying physical laws, enhancing itsapplicability to real-world problems.In the third part, the thesis demonstratesthe application of GNNs to optimize fluid dy-namics systems, with a particular focus onwindturbine design. Here, GNNs are employed assurrogate models, enabling rapid predictionsof various design configurations without theneed for performing a full CFD simulation ateach iteration. This approach significantly ac-celerates the design process and demonstratesthe potential of ML-driven optimization in CFDworkflows, allowing for more efficient explo-ration of design spaces and faster convergencetoward optimal solutions.On the methodology side, the thesis intro-duces a custom GNN architecture specificallytailored for CFD applications. Unlike traditionalneural networks, GNNs are inherently capableof handling unstructured mesh data, which iscommon in fluid mechanics problems involv-ing irregular geometries and complex flow do-mains. To this end, the thesis presents a two-fold interface between Finite Element Method(FEM) solvers and the GNN architecture. Thisinterface transforms FEM vector fields into nu-merical tensors that can be efficiently pro-cessed by the neural network, allowing dataexchange between the simulation environmentand the learning model.
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1 - Synthèse en Français

1.1 . Introduction

Cette thèse explore en profondeur l’application des réseaux de neurones
en graphes orGraphNeural Network (GNN) à lamécaniquedes fluides numérique
(CFD). L’objectif principal est d’apporter une avancée significative dans les sim-
ulations d’écoulements complexes en réduisant les coûts computationnels ou
augmentant la précision des prédictions. Le cadre théorique etméthodologique
repose sur les équations de Navier-Stokes moyennées (équations RANS) et
sur une architecture GNN, conçue spécifiquement pour s’adapter aux don-
nées maillées non structurées fréquemment rencontrées dans les simula-
tions CFD.

Les GNN offrent un cadre d’apprentissage adapté aux données relation-
nelles non structurées. Contrairement aux architectures classiques telles que
les CNN ou les RNN, les GNN peuvent traiter des maillages irréguliers, ce qui
est essentiel pour les simulations de dynamique des fluides impliquant des
géométries complexes. De plus, les GNN assurent une invariance par permu-
tation des nœuds dans les graphes, ce qui leur confère unemeilleure capacité
de généralisation.
Trois axes principaux ont été définis pour cette recherche :

• Prédiction des termes de fermeture pour les équations RANS (Partie I),
afin de compléter et soutenir les modèles empiriques traditionnels.

• Intégration de contraintes physiques dans les modèles GNN (Partie II),
pour garantir une stricte cohérence avec les lois fondamentales de la
physique.

• Optimisation avancée des systèmes fluides (Partie III), avec un accent
particulier sur des cas pratiques tels que la conception de turbines éoli-
ennes à diffuseur (DAWT).

1.2 . Partie I : Prédictiondes termesde fermeturepour les équa-
tions RANS

Cette partie traite du problème de fermeture des équations RANS, un défi
classique qui nécessite traditionnellement l’utilisation demodèles empiriques
ajustés manuellement. Les GNN sont ici utilisés pour apprendre directement
les termes non résolus à partir de données de simulation à haute fidélité,
ouvrant la voie à une approche plus générale et automatisée.
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1.2.1 . Méthodologie
Les équations de Navier-Stokes moyennées (RANS) introduisent des ter-

mes non résolus qui nécessitent des modèles de fermeture. Les approches
traditionnelles sont souvent limitées par des hypothèses empiriques et des
ajustements spécifiques à des cas particuliers. Cette thèse propose l’utilisation
des GNNpourmodéliser ces termes en exploitant des données issues de sim-
ulations directes à haute résolution.
Un processus innovant d’apprentissage actif (Active Learning, AL) a étémis en
œuvre pour identifier les données les plus informatives parmi un ensemble
donné. Cette méthode maximise l’efficacité du modèle en réduisant le nom-
bre de données nécessaires à l’entraînement tout en assurant une couverture
optimale des cas représentatifs. Les simulations incluent des écoulements
autour de formes simples, comme des cylindres, ainsi que des configurations
géométriques complexes, renforçant la robustesse des prédictions des GNN.
La thèse introduit également des critères de similarité pour optimiser le choix
des données utilisées dans les phases d’entraînement et de validation.

1.2.2 . Résultats
Les résultats démontrent que les GNN peuvent généraliser efficacement

leurs prédictions à de nouvelles configurations géométriques, réduisant sig-
nificativement les erreurs par rapport aux approches traditionnelles de ma-
chine learning basées sur les données (data-driven). L’intégration de la stratégie
d’apprentissage actif a permis d’optimiser les performances tout enminimisant
les coûts liés à la collecte de données. L’évaluation quantitative des perfor-
mances des GNN montre une amélioration notable en termes de générali-
sation à de nouvelles configurations géométriques, surpassant les modèles
de machine learning traditionnels basés sur les données (data-driven), sans
prétendre concurrencer directement les modèles empiriques classiques.

1.3 . Partie II : Intégration des contraintes physiques dans les
modèles GNN (PhyCo-GNN)

Cette section aborde un problème critique des modèles purement basés
sur les données: l’absence de garantie de cohérence physique. Afin de pallier
cette limitation, des contraintes physiques, telles que la conservation de la
masse et de la quantité de mouvement, ont été intégrées directement dans
le processus d’entraînement des GNN.

1.3.1 . Méthodologie
Une fonction de perte ajustée a été développée pour incorporer ces con-

traintes physiques. Cette fonction combine les écarts par rapport aux don-
nées observées avec les violations des lois fondamentales de la physique,
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garantissant ainsi des prédictions conformes aux réalités physiques. Lesméth-
odes adjointes, utilisées pour calculer efficacement les gradients, permettent
d’optimiser les paramètres du modèle tout en respectant les principes sous-
jacents de la mécanique des fluides. La formulation adjointe impose des
contraintes explicites sur les variables d’état, garantissant des résultats con-
formes aux lois de conservation.
Les GNN sont entraînés sur des cas tests de complexité croissante, allant des
écoulements stationnaires à des régimes transitoires non turbulents. Des
techniques de pré-entraînement sont utilisées pour améliorer la convergence
du modèle, en réduisant les écarts initiaux entre les prédictions et les obser-
vations.

1.3.2 . Résultats
Le modèle PhyCo-GNN produit des prédictions qui sont à la fois précises

et physiquement cohérentes. Ces résultats renforcent la pertinence des GNN
dans les simulations CFD et ouvrent la voie à une adoption plus large de cette
technologie dans des contextes industriels exigeants. La flexibilité du mod-
èle pour s’adapter à des scénarios divers, y compris des cas avec mesures
éparses (sparsemeasurement), débruitage (denoising) et complétion de don-
néesmanquantes (inpainting), est un avantage clé de cette approche. Des cas
pratiques montrent que cette méthodologie réduit les écarts par rapport aux
mesures expérimentales tout en maintenant une faible complexité computa-
tionnelle.

1.4 . Partie III : Optimisation des systèmes fluides (DAWT)

Dans cette partie, les GNN sont appliqués à l’optimisation des systèmes
fluides, avec un focus sur la conception de turbines éoliennes à diffuseur
(DAWT). Ces systèmes complexes nécessitent une approche rapide et précise
pour explorer un large éventail de configurations de conception.

1.4.1 . Méthodologie
Les GNN sont utilisés comme modèles de substitution, remplaçant les

simulations RANS complètes à chaque itération du processus d’optimisation.
Une boucle d’optimisation intégrant des techniques d’apprentissage par ren-
forcement (RL) a été mise en œuvre pour accélérer l’exploration de l’espace
des conceptions possibles. Cetteméthodepermet une réduction substantielle
du temps et des ressources nécessaires tout en augmentant la qualité des ré-
sultats obtenus. Lemodèle proposeune fonction de coût combinant efficacité
énergétique et contraintes structurelles, assurant un équilibre entre perfor-
mances et durabilité.
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1.4.2 . Résultats
Les turbines optimisées via cette approche présentent des améliorations

significatives en termes de coefficient de puissance, tout en réduisant les
coûts et délais de conception. De plus, cette méthodologie s’est révélée re-
marquablement robuste face aux contraintes pratiques, démontrant un po-
tentiel significatif pour une utilisation dans des workflows industriels com-
plexes. L’utilisation des GNN dans ce contexte offre une flexibilité et une ra-
pidité d’exécution qui dépassent de loin celles des méthodes traditionnelles,
ouvrant la voie à de nouvelles opportunités d’optimisation dans les systèmes
fluides. Les simulations ont montré que les GNNs fournissent un proxy effi-
cace des RANS, particulièrement adapté aux processus d’optimisation mul-
tiparamétrique. Bien que cette partie constitue un proof of concept de la
boucle d’optimisation, elle met en lumière que l’algorithme développé est un
résultat clé en lui-même, illustrant la faisabilité et le potentiel de cette ap-
proche.

1.5 . Conclusion

En conclusion, cette thèse a exploré l’application des réseaux de neurones
en graphes (GNN) à la mécanique des fluides numérique (CFD) en se concen-
trant sur trois axes principaux : l’amélioration des modèles de fermeture des
équations RANS, l’intégration de contraintes physiques dans les prédictions
basées sur les données, et l’optimisation des systèmes fluides complexes.

Les travaux ont démontré que les GNN peuvent offrir une alternative ef-
ficace aux modèles de fermeture traditionnels, en apprenant directement les
termes non résolus des équations RANS à partir de données de simulation
haute fidélité. Lamise enœuvre d’une stratégie d’apprentissage actif a permis
d’optimiser la sélection des données utilisées pour l’entraînement, réduisant
le coût associé à la collecte de données tout en maintenant un niveau de pré-
cision satisfaisant. Ces résultatsmontrent une capacité desGNNà généraliser
leurs prédictions à des configurations géométriques variées.

L’intégrationde contraintes physiques dans lesmodèles a permis d’améliorer
la cohérence des prédictions avec les lois fondamentales de lamécanique des
fluides, comme la conservation de la masse et de la quantité de mouvement.
Cette approche a renforcé la fiabilité des prédictions, particulièrement dans
des contextes où la précision physique est essentielle.

Enfin, les GNN ont été appliqués comme modèles de substitution pour
optimiser des systèmes fluides, notamment dans la conception de turbines
éoliennes à diffuseur (DAWT). En réduisant la dépendance aux simulations
complètes, ces modèles ont permis d’accélérer le processus d’optimisation
tout en réduisant les ressources nécessaires. Les résultats ont montré que
cette méthode peut s’appliquer efficacement à des problèmes d’optimisation
multiparamétrique dans des contextes industriels.
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2 - Introduction

2.1 . Impact of Machine Learning (ML) on Scientific World

Figure 2.1: Alan Mathison Tur-ing (London, 1912 – Wilmslow,1954)

The history of ML dates back to mid-
20th century. In 1950, Alan M. Turing
(Fig. 2.1), a British mathematician and logi-
cian, posed the revolutionary question "Can
machines think?" presented in his seminal
paper "Computing Machinery and Intelli-
gence" [Turing, 1950]. Turing questioned for
the first time in history whether a machine
could exhibit intelligent behavior compara-
ble or indistinguishable from that of a hu-
man.
It’s the birth of themodernMachine Learning
(ML). In less than 10 years, in the late 1950s,
the term "Machine Learning" was officially
coined by Arthur Lee Samuel, a USA profes-
sor and pioneer in Artificial Intelligence (AI)

and Computer Sciences [Samuel, 1959]. Samuel’s work, firstly on a checkers-
playing game, effectively demonstrated that machines could be taught to im-
prove their performance through experience, concept that, later on, will be
known as Reinforcement Learning (RL), a branch of the broader AI.
During the next decade, in the 1960s, human brain’s structure and functioning
inspired the conception of the Neural Network (NN) whose first implementa-
tion was represented by the Perceptron idealized by Frank Rosenblatt, a USA
psychologist [Rosenblatt, 1958].
From that point on and for more than 20 years, due to the strong critics by
Marvin Minsky and Seymour Paper, the ML field falls in a forgotten area of
study, known as Artificial Intelligence winter. In their book "Perceptron", in-
deed, they pointed out the insurmountable limitations of early NN as com-
pared to the available computational resources of the time [Minsky and Pa-
pert, 1969].
The resurrection of the ML began between the 1980s and 1990s with the de-
velopment, in 1986, of the back-propagation algorithm. Designed by David
Rumelhart, Geoffrey Hinton and RonaldWilliams, this algorithm soon became
a milestone in the ML field [Rumelhart et al., 1986]. This mechanism, indeed,
made it feasible to efficiently train NNs with more than one layers, known as
Multi-Layer Perceptron (MLP). Accelerated by the huge increase of the com-
putational power, research in ML finally gained significant momentum, and
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techniques such as Decision Trees [Quinlan, 1986], Support Vector Machines
[Cortes and Vapnik, 1995] and Ensemble Methods [Breiman, 1996] became
prominent.
The 21st century has seen exponential growth in ML, driven by the advent of
Big Data and the continuous increase of computational resources’ availabil-
ity. During this period, the concept of DL [Goodfellow et al., 2016] emerged,
characterized by the use of NNs significantly deeper and novel architectures,
which allowed for the modeling of complex patterns and hierarchical repre-
sentations far beyond what traditional MLPs could achieve. This new subfield
of ML has led to breakthroughs in fields such as image and speech recogni-
tion, natural language processing and autonomous systems.
The global attention on ML was further boosted by the victory in 2016 of the
DeepMind’s AlphaGo, a ML based software, which defeated the world cham-
pion Go player [Silver et al., 2016].
Since then, researcher throughout theworld have contributed toML advance-
ment. More and more scientists began to question about the benefits of ML
in scientific progress, leading to a huge dissemination of AI algorithms across
almost every scientific discipline.
As a matter of fact, Machine Learning has profoundly transformed the sci-
entific landscape, with its unparalleled capability to process and analyze vast
sets of data, uncover complex patterns, generative and predictive potential.
In genomics, for example, analysis of large scale DNA with sequencing data
ML techniques has paved the way to discoveries about genetic disorders, evo-
lutionary biology and personalized treatments [Libbrecht and Noble, 2015].
On the medical point of view, among many other applications, it has been
successfully used to enhance biomarkers analysis for early cancer diagnosis
[Esteva et al., 2019].
In chemistry, ML models can be used to predict molecular properties and
reactions, accelerating the process of drugs design and materials discovery
[Butler et al., 2018].
In physics, ML algorithm can analyze experimental data to further enhance
the physics phenomena understanding. The Large Hadron Collider (LHC) at
CERN, for instance, heavily relies onML to process and interpret the immense
volumes of data produced by particle collisions [Radovic et al., 2018].
Therefore, ML has a deep impact on the scientific world by enhancing data-
driven discovery, improving predictive models, accelerating research and fos-
tering interdisciplinary collaborations. Nowadays, ML is still a very promising
research field on itself and for its application to scientific world and its popu-
larity and influence is expected to grow even further in the near future.
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2.2 . Machine Learning (ML) in Computational Fluid Dynamics
(CFD)

Figure 2.2: Claude-Louis Navier (Left)and George Stokes (Right)

Among the many scientific fields
being revolutionized by the increas-
ing integration ofML, Computational
Fluid Dynamics (CFD) offers a very
promising area for significant ad-
vancements.
CFD is a branch of fluid mechan-
ics that uses numerical analysis to
solve problems involving fluid flows.
CFD spans through a wide range of
applications including aerodynam-
ics, weather forecasting, ocean mo-
tion and environmental engineering.

By solving the Navier-Stokes Equations (NSE), proposed in the 19th century
by Claude-Louis Navier and George Stokes (see Fig. 2.2), which describe the
motion of fluid flows, CFD allows simulating the behavior of fluids in various
conditions, providing insights that are often difficult or impossible to obtain
experimentally. However, this process can be computationally expensive and
time-consuming, and it often requires significant expertise to achieve accu-
rate results. ML inclusion in traditional CFD techniques offers an innovative
and promising approach to tackle these problems and enhance CFD’s capa-
bility to explore a broader range of fluid dynamics phenomena, overcoming
the limitations of mathematical traditional techniques [Brunton et al., 2020b].
ML models offer the capability to learn from large datasets of high-fidelity
simulations or experimental data, enhancing the prediction of fluid behav-
iors. Brunton et al. [2020b] provides an extensive review of ML’s applications
to fluid mechanics, emphasizing how data-driven models can complement
traditional methods and lead to enhanced simulations by reducing the need
for empirical adjustments.
Alternative applications can be found for fluidmechanics in the realms of clas-
sification problems, clustering or control, where the number of contributions
combiningML and standard techniques of analysis has been constantly grow-
ing in the last years [Raissi et al., 2020, Brunton et al., 2020a,b, Garnier et al.,
2021, Vinuesa and Brunton, 2022, Mendez et al., 2023, 2022].

A major area where ML has been applied in CFD is turbulence model-
ing. Traditional approaches such as the Reynolds Averaged Navier-Stokes
(RANS) equations, used for time-averaged flow quantities, introduce a clo-
sure term that needs to be modeled. This can be done using the classical
closure models discussed in section 3.3.4, or leveraging ML for directly ap-
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proximating the Reynolds stress or improving the existing models [Lapeyre
et al., 2019, Beck and Kurz, 2021, Volpiani et al., 2021, Patel et al., 2024, Zhao
et al., 2020]. Among the numerous authors that addressed this problem, Ling
and Templeton [2015] applied classification methods for identifying regions
of uncertainties where the closure term of the RANS might fail; Ströfer and
Xiao [2021] combined data assimilation with NN modelling of the Reynolds
stress using limited observation. Other approaches leverage baseline models
such as the Spalart-Allmaras closure [Singh and Duraisamy, 2016], Physics-
Informed Neural Network (PINN)s [Eivazi et al., 2022, Patel et al., 2024], ran-
dom forests [Wang et al., 2017], regression methods [Schmelzer et al., 2020],
decision trees [Duraisamy et al., 2019], ensemble methods [McConkey et al.,
2022], genetic programming [Weatheritt and Sandberg, 2016, Zhao et al., 2020]
or Bayesian approaches [Xiao et al., 2016]. Dupuy et al. [2023a] introduced a
data-driven wall modeling approach for turbulent separated flows, demon-
strating the potential of neural networks tomodelwall shear stress effectively,
even in complex separated regions. For a broader overview, we refer to Du-
raisamy et al. [2019] and Beck and Kurz [2021], where the different levels of
approximation are discussed together with a critical take on the limitations
of the approach. In the specific case of an eddy viscosity closure model, the
recent studies by Ling et al. [2016] demonstrated the effectiveness of Tensor-
Basis Neural Networks (TBNNs) in learning a General Eddy Viscosity model
type [Pope, 1975]. TBNNs capitalize on the tensor decomposition approach
proposed by Pope to account for invariances and streamline the number of
parameters to be learned. The inductive bias introduced by this modelling
approach restricts TBNN application to nearly homogeneous flows with high
Reynolds numbers, where local effects predominate [Cai et al., 2024].

In the context of dimensionality reduction, Beck and Kurz [2021] explored
the use of ML for dimensionality reduction, combining these techniques with
reduced-order models to create efficient solutions for high-dimensional fluid
problems.
Among the ML applications, clustering and classification techniques are play-
ing an important role in Fluid Mechanics, due to their versatility in identifying
flow structures and complementing advanced methods, such as the multi-
scale Proper Orthogonal Decomposition (POD) [Mendez et al., 2019]. These
methods are used for identifying flow structures or - for the case of POD or
related techniques - used as basis of projection for computing reduced or-
der models preserving the key flow characteristics. Kaiser et al. [2014] suc-
cessfully employed k-means clustering to discretize a high-dimensional phase
space for the fluid mixing layer. This approach was later enhanced by Colvert
et al. [2018], who used NNs to classify wake topologies behind a pitching air-
foil. Their work highlights how ML can automate the identification of flow
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features, improving both accuracy and efficiency.
Super-resolution, another area where ML has proven valuable, has been

used to enhance the resolution of fluid flow simulations. Fukami et al. [2018]
developed a CNN-based super-resolution algorithm to reconstruct turbulent
flow fields, accurately preserving the energy spectrum. Xie et al. [2018] em-
ployed Generative Adversial Network (GAN)s to further improve the resolu-
tion of flow simulations, demonstrating that ML can provide high-fidelity re-
sults with reduced computational costs.

ML has also found extensive application in both the optimization and con-
trol of fluid systems. To begin with, we cite the comparative analysis by Pino
et al. [2023], where various ML methods for active flow control are assessed.
Among them, Rabault et al. [2019] used deep Reinforcement Learning (RL) to
control oscillatory laminar flows; Bucci et al. [2019] applied Deep RL to control
chaotic systems governed by the Kuramoto-Sivashinsky equation, which is a
benchmark for spatiotemporal chaotic systems; Lee et al. [1997] investigates
the use of NNs, for turbulence control aimed at drag reduction, specifically
employing feedforward NNs trained to optimize control strategies; Colabrese
et al. [2017] applied RL to optimize the movement of micro-swimmers, tiny
artificial agents that navigate fluid environments; Sun et al. [2020] employed
a ML algorithm as a surrogate model to rapidly predict metrics of fluid flow
cases, without performing the entire CFD simulation. In this latter context, ML
can, therefore, also enhance the spectrum of potential configurations by ex-
ploring a larger solution space and even find optimal solutions thatmay seem
not intuitive for engineers.

Despite these benefits, there are some warnings to be aware of when in-
tegrating ML in CFD. Firstly, every ML algorithm is fueled by a huge availability
of data [Jordan andMitchell, 2015]. Moreover, high-quality data are necessary
for an accurate NN training. Generating andmaintaining such data can be re-
sources demanding and computationally expensive, although without it, the
potential of a ML based model is severely limited.
While ML algorithms are often valued for their potential to model complex
patterns, their ability to generalize to unseen scenarios remains a significant
challenge, particularly when the unseen data falls outside the range or vicinity
of the training data. The threshold at which the model’s capability to gener-
alize starts to degrade is typically loose and not well-defined, making predic-
tions beyond the training range less reliable and prone to inaccuracies. These
latter limits, often related to the overfitting and underfitting problems, are of
great concern and must be carefully taken into consideration to avoid poor
prediction results.
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Eventually, ML algorithms in their original conception, are fully data-driven as
they leverage data to be trained, and they act as a statistical tool on these data.
The physical plausibility of a NN outcome, therefore, is not a-priori granted.
As a consequence, many ML algorithms require the incorporation of physi-
cal constraints during the training process to ensure coherence and reliabil-
ity in their predictions. This process often involves sophisticated techniques
that blend traditional physics-based methods with advanced ML approaches
[Willard et al., 2020]. When used with caution, the application of ML algorithm
to CFD field is, ultimately, leading this latter to a whole new level by improving
the efficiency of classical techniques or reducing the computational expenses
naturally associated with CFD simulations.

2.3 . The chosen physical model: introduction to Reynolds Av-
eraged Navier-Stokes Equations (RANS)

In the realm of CFD, the selection of an appropriate physical model is es-
sential to achieve a balance between computational feasibility and the de-
sired level of accuracy. The most accurate available method is Direct Nu-
merical Simulation (DNS) [Moin andMahesh, 1998], which involves solving the
full, time-dependent NSE without introducing any simplifying assumptions or
modeling approximations. This method directly resolves all scales of turbu-
lence (Sec. 3.3.1), capturing the full spectrum of fluid motion. However, de-
spite the accuracy it offers, the computational cost associated with DNS is
prohibitively high for most practical applications, especially in industrial set-
tings.
In many industrial environments, indeed, the focus often shifts away from
capturing the detailed, chaotic and transient fluid behavior to obtaining key
integral quantities, such as forces on structures, heat transfer rates, or time
averaged flow characteristics over the entire computational domain. These
quantities are typically statistically steady or time-averaged, making a highly
detailed resolution of turbulent structures unnecessary. For these applica-
tions, the trade-off between accuracy and computational efficiency becomes
critical. This is where the RANS model excels. RANS simplifies the problem by
focusing on time-averaged quantities, rather than attempting to resolve the
full turbulent structure at every scale [Pope, 2000].
While this significantly reduces the computational demands, it introduces ad-
ditional challenges: the turbulent fluctuations need to be modeled through
turbulence closure schemes. These schemes provide approximations for the
unknown terms introduced by the averaging process, but their accuracy can
vary depending on the flow conditions. The empirical nature of many turbu-
lence models involve correlations and assumptions that may not hold univer-
sally and as a result, careful calibration of the turbulencemodel to the specific
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flow conditions is often required to ensure accurate results.
Nonetheless, for many industrial applications, where the primary concern is
obtaining reliable predictions of averaged quantities at a reasonable compu-
tational cost, RANS remains the most widely used approach.
In conclusion, while DNS offers unmatched accuracy by capturing all scales
of turbulence, its computational cost makes it impractical for most real-world
applications, particularly when combined with machine learning (ML) algo-
rithms. These latter, indeed, require large amounts of data and therefore a
huge number of simulations. For these reasons, the RANS model has been
chosen as the reference physical model in this thesis, as it allows for a feasi-
ble integration with ML algorithms.

2.4 . The chosenML architecture: introduction to GraphNeural
Network (GNN)

Figure 2.3: A Graph Neural Network(GNN) representation

In the realm of ML, selecting the
NN architecture is critical to achieve
optimal performances. While tra-
ditional NN such as Convolutional
Neural Network (CNN)s [LeCun et al.,
1998] or Recurrant Neural Networks
(RNN)s [Hopfield, 1982] have demon-
strated exceptional performance in
processing structured data such as
images or time series respectively,
they face significant limitationswhen
applied to unstructured data, which
is often the case in CFD field. When

dealing with complex geometries or intricate fluid flow cases, indeed, the re-
finement of the mesh is of fundamental importance to achieve accurate re-
sults in the simulation. Structured meshes, exhibiting regular and ordered
elements to represent the computational domain, are sometimes not flexible
enough to handle these cases; unstructured meshes are therefore essential
and lead to great improvement in the simulation accuracy. Therefore, in CFD,
data typically come from spatial discretization in the form of irregular, un-
structured meshes.
To overcome these challenges, Graph Neural Network (GNN)s (Fig. 2.3)
[Scarselli et al., 2008] have emerged as a powerful alternative. Unlike CNNs
or RNNs, GNNs are explicitly designed to operate on graph-structured data,
making them ideally suited for the kind of unstructured, relational data found
in CFD simulations. In a GNN, nodes represent entities such as mesh points,
while edges capture the interactions or dependencies between these entities,
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mirroring the relationships found in fluid flow simulations mesh points. This
feature improves the capability of this ML architecture to effectively capture
the spatial dependencies between data, leading to a more accurate and real-
istic simulations of the fluid behavior.
Another key aspect of the GNNs is their inherent invariance to permutation
[Scarselli et al., 2008] of the nodes in the graph, meaning that the NN’s output
does not depend on the order of the nodes. This feature is essential for the
generalization capability since it allows the GNN to be completely detached
from the position of the mesh points within the computational domain and
therefore be able to provide predictions for geometric configurations never
seen in the training process.
For all these reasons, the GNN architecture offers an excellent choice for CFD
problems, as a robust and flexible learning framework. It will be the standard
ML base when referring to NN architecture in this thesis.

2.5 . Objectives of the thesis

The main goal of this thesis is to investigate the extent to which a ML al-
gorithm, specifically a GNN, can be effectively integrated into the framework
of RANS simulations in the CFD context. This research focuses on evaluating
various applications of GNNs within RANS simulations to demonstrate their
potential advantages over traditional CFD techniques, particularly in terms of
improving prediction accuracy and reducing computational costs.
The thesis is organized around three key challenges and objectives, each ad-
dressing a critical aspect of the integration of ML models into CFD workflows:

• Addressing the RANS Closure Problem: justified by the growing body of
literature demonstrating the success of data-driven models in learning
complex, nonlinear relationships [Wang et al., 2020, Pfaff et al., 2021],
the first objective of this thesis is to explore whether GNNs can leverage
high-fidelity simulation data, to directly infer the missing RANS closure
term. This approach is focused on transitional flow regimes where the
complexity associated with turbulence modeling is reduced, providing
a proof-of-concept for thismethodology. While not imposing additional
physical constraints, this work explores the feasibility of data-driven clo-
sure modeling in a controlled setting, paving the way for future gener-
alizations.

• Physical Consistency in Data-Driven Approaches: While purely data-driven
models have shown great potential, they are not without limitations. A
common issuewith data-drivenMLmodels is their tendency to produce
physically inconsistent results. For instance, ML models may predict
solutions that violate fundamental physical laws, such as conservation
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of mass or momentum. The second objective of this thesis is to ad-
dress this challenge by incorporating physical constraints directly into
the training process of the GNN. This approach, that will be referred to
as physics-constrained ML, involves embedding known physical equa-
tions into the architecture of the GNN to guide the learning process.
By doing so, the model is not only trained to minimize error against
the data, but also to ensure that its predictions adhere to key phys-
ical principles. This hybrid approach, combining data-driven learning
with physics-based constraints, is expected to improve the robustness
and reliability of the GNN’s predictions, making it more suitable for real-
world engineering applications where physical consistency is critical.

• Optimization in Fluid Systems: The third objective of this thesis is to test
the proposed GNN architecture in the context of fluid system optimiza-
tion, focusing on a practical case involving the cross-section shape op-
timization of a duct placed around a wind turbine rotor, with the aim
of increasing its power output. The goal, here, is not solely to focus on
the specifics of wind turbine design, but rather to show how GNNs can
transform the optimization process in fluid dynamics applications. In
conventional CFD-based optimization, a series of simulations are run
iteratively with varying control parameters, to converge on an optimal
solution. In this thesis, GNNs are introduced as a surrogate model to
predict the outcomes of different design configurations without need-
ing to run a full CFD simulation for each iteration.

2.6 . Structure of the thesis

The thesis is structured in two parts. In the first part, covering the chapters
3-5, we briefly introduce the theoretical foundations and the methodologies,
including some practical applications of GNN in CFD. In particular, the first
section set the stage providing basic concepts and nomenclature for the CFD
(Sec. 3), including the underlying governing equations (Sec. 3.2), and basics
on the numerical schemes adopted in the thesis. The section also includes a
thorough explanation of the RANS equations (Sec. 3.3), turbulence modeling
challenges (Sec. 3.3.1), and the RANS closure problem (Sec.3.3.3).
Following the CFD section, the thesis shifts into the theoretical framework of
NNs (Sec. 4) before delving into the specific of the GNNs architecture. Sec. 4.7
is dedicated to provide an overview of this NN architecture, covering its key
components (Sec. 4.7.1). The chapter also details the custom GNN designed
in the context of this thesis (Sec. 4.8) and the training algorithms used for the
training process (Sec. 4.8.2). Finally, the first part finalizes with an introduction
to adjoint methods (Sec. 5), adopted to enforce physical constraints directly
into the GNN training loop. In the specific, the adjoint method allows for the

25



efficient calculation of gradients, enabling the model to learn from both the
data and the governing physical equations.
The second part consists of three distinct yet interconnected projects (see
Sec. 2.5) demonstrating the practical application of GNNs to CFD problems.
These projects serve as case studies to highlight the potential benefits of in-
tegrating GNNs into RANS simulations or fluid systems’ optimization. The first
two works in (Sec. 6 and Sec. 7) are adapted from submitted journal articles,
while the third (Sec. 8) is a technical report.
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3 - Computational Fluid Dynamics (CFD)

3.1 . General Aspect

Figure 3.1: A fluid dynamic simulation

Computational Fluid Dynamics
(CFD) is a branch of fluid mechanics
that uses numerical methods and al-
gorithms to analyze and solve prob-
lems that involve fluid flows (Fig. 3.1).
The development of CFD as a disci-
pline can be traced to the beginning
of the 1960s with the advent of digi-
tal computers. At the very beginning,
this disciplinewas focused on simple
flow problems and laid the founda-

tion for the sophisticated methods used today. It was during the 1970s that
CFD gained its proper traction in scientific research. Over the decades, ad-
vances in computational power, numerical methods, and understanding of
fluid dynamics have transformed CFD into a critical tool in both academic re-
search and industrial applications.
The vast importance of CFD lies in its ability to provide detailed and compre-
hensive insight into fluid flow phenomena without the need for physical pro-
totypes or experiments, which can be expensive and time-consuming. By us-
ing CFD, engineers and scientists can predict performance, identify potential
issues and optimize designs in a virtual environment for fluid dynamics re-
lated applications.
Due to its broad range of applications, from aerospace to biomedical engi-
neering, CFD is nowadays a fundamental tool in modern science.

3.2 . Navier-Stokes (NS) Equations

In CFD, the behavior of fluid flows is governed by mathematical equations
that describe how quantities like velocity, pressure, and temperature evolve
over space and time. The most critical of these equations for CFD are the
Navier-Stokes Equations (NSE), which provide a detailed description of fluid
flow evolution. The NSE are derived from the fundamental principles of con-
servation of mass, momentum and energy and are essential for accurately
modeling fluid dynamics across a wide range of applications.
The NSE are a set of nonlinear Partial Differential Equation (PDE)s, particularly
challenging to solve analytically. Interestingly, the NSE are also at the center
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of one of the most famous unsolved problems in mathematics, highlighted
by the Millennium Prize Problems.
Given thedifficulty in finding exact closed solutions, the field of CFDhas emerged
as a practical and powerful alternative. By employing numerical methods,
CFD enables the approximation of solutions to the NSE, making it possible to
simulate complex fluid behaviors in a wide range of engineering and scien-
tific applications. Instead of seeking exact analytical solutions, CFD breaks
down the flow domain into discrete elements and applies numerical tech-
niques to solve the governing equations locally. These numerical methods,
such as the Finite Volume Method (FVM), the Finite Element Method (FEM), or
the Finite DifferenceMethod (FDM), allow for the discretization of the fluid do-
main, transforming the NSE into a system of algebraic equations that can be
solved iteratively. By leveraging the power of computational resources, CFD
has become indispensable for modeling fluid dynamics, enabling engineers
and scientists to predict and analyze flow behaviors that would be otherwise
impossible to capture analytically.

The NSE include the continuity equation (Eq. 3.1), which ensures the con-
servation of mass, themomentum equations (Eq. 3.2), derived fromNewton’s
second law, and the energy equation, which accounts for the conservation of
energywithin the system. However, in the case of incompressible flows, which
are the focus of this thesis, the energy equation can be neglected. This sim-
plification is justified by the fact that in incompressible flows, changes in fluid
density are negligible. Consequently, the variations in internal energy, which
the energy equation would capture, are minimal and have little to no impact
on the velocity and pressure fields of the flow [White, 2006].

3.2.1 . Continuity Equation
The equation ensuring the conservation of mass, also referred to as the

continuity equation, for incompressible flows is expressed as
∇ · u = 0, (3.1)

where u = (u, v, w) is the velocity vector representing the fluid velocities in
the x, y and z directions respectively. The physical meaning of this equation
is that, for an incompressible flow, the volume of fluid entering and leaving
any given control volume is balanced, ensuring that no accumulation or de-
pletion of mass occurs over time. In other words, for incompressible flows,
the density of the fluid remains constant, and thus the rate of mass across
any arbitrary boundary must be conserved. Without satisfying this condition,
fluid simulationswould yield physically unrealistic results, such as the artificial
creation or destruction of mass. Therefore, enforcing the continuity equation
is a necessary step to ensure the accuracy and physical relevance of CFD sim-
ulations for incompressible flows.
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3.2.2 . Momentum Equation
The conservation of momentum equation states that the rate of change

of momentum within a fluid system must be balanced by the forces acting
of the fluid. In other words, the momentum of a fluid element (the product
of mass and velocity) changes over time due to the transport of momentum
(through convection) and the influence of external forces. This fundamental
concept is mathematically represented by the momentum equation, which
for an incompressible Newtonian fluid takes the form:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u+ F. (3.2)

Each term in this equation has a specific physical meaning, contributing to the
description of how forces and flow dynamics interact within the fluid:

• Density (ρ): represent the fluid’s density, assumed to be constant for
incompressible flows.

• Local Acceleration
(
∂u

∂t

)
: captures the rate of change of the fluid ve-

locity at a specific point in space over time. In steady-state conditions,
this term becomes zero, simplifying the momentum equation further.

• Convective Acceleration (u · ∇u): describes how the velocity changes
due to the movement of the fluid itself. It represents the transport of
momentum by the flow, meaning that as fluid particles move from one
region to another, they carry their momentum with them.

• Pressure Gradient Force (−∇p): where p is the pressure field. This term
reflects the force (per unit area) exerted by pressure differences within
the fluid. Fluids naturally move from regions of higher pressure to re-
gions of lower pressure, and this term drives much of the motion in
many fluid flows. In physical terms, the pressure gradient force repre-
sents the driving force in fluid flows phenomena.

• Viscous Force (µ∇2u): with µ being the dynamic viscosity. This term
accounts for the internal friction within the fluid due to viscosity, which
acts to resist motion and causes the diffusion of momentum.

• External Forces (F): represents any additional forces acting on the fluid
from external sources, such as gravity, electromagnetic fields, or sur-
face tension, which can influence the flow dynamics.
3.2.3 . Non-dimensionalization and Dimensionless Equations

Often the NSE are presented in their non-dimensional form. This process,
known as non-dimensionalization, is a mathematical technique used to re-
duce the number of parameters governing the physical problem. By trans-
forming the dimensional variables into their dimensionless counterpart, the
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Scaling Parameter Description Dimensionless variable
U Characteristic Speed u∗ =

u

U
L Characteristic Length x∗ =

x

L
and∇∗ = L∇

L/U Characteristic Time t∗ =
t

L/U
=

tU

L

P = ρU2 Characteristic Pressure p∗ =
p

ρU2

Table 3.1: Dimensionless Variable
equations are simplified and reveal dominantmechanisms governing the flow
behavior. This approach allows for a clearer comparison of different flow
regimes and systems, regardless of the specific physical units being used.

To beginwith, it is necessary to identify the relevant dimensional variables;
in incompressible flows, they are usually the velocity u = (u, v, w), the spatial
coordinates x = (x, y, z), time t and pressure p. Next, we introduce character-
istic scales to normalize these variables. The characteristic scales represent
typical magnitudes of the relevant physical quantities, chosen based on the
specifics of the problem or the geometry being studied. The typical charac-
teristic scales, summarized in Tab. 3.1, are:

• Characteristic speed U : A representative velocity scale, such as the free-
stream velocity.

• Characteristic length L: A typical length scale, such as the diameter of a
bluff body or the length of an airfoil.

• Characteristic pressure P : A representative pressure scale, often taken
as ρU2, where ρ is the fluid density.

Plugging these dimensionless variables into the dimensional NSE and dividing
by U2/L, the resulting system of equations reads as:

∂u∗

∂t
+ (u∗ · ∇∗)u∗ = −∇∗p∗ + ν

UL
∇∗2u∗ + F (3.3a)

∇∗ · u∗ = 0 (3.3b)
where ν is the dynamic viscosity. To further simplify, a dimensionless number
can be introduced and referred to as the Reynolds Number (Re)

Re =
ρUL

µ
=
UL

ν
. (3.4)

The Reynolds numberRe is an extremely important dimensionless parameter
that quantifies the relative importance of the inertial forces (which drive the
flow) to viscous forces (which resist the flow). The Reynolds number allows
characterizing different flow regimes
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• Low Reynolds numbers indicate that viscous forces dominate, leading
to smooth, orderly, and laminar flow.

• Intermediate Reynolds numbers suggest a transitional regime, where
the flow may shift from laminar to turbulent depending on the condi-
tions.

• High Reynolds numbers signify that inertial forces dominate, leading to
chaotic and turbulent flow with significant mixing and irregular fluid
motion.

Critical Reynolds numbers characterize the threshold identifying the shifting
between the different regimes, and can be determined according to the cases
under investigations. By introducing theReynolds number into thenon-dimensional
NSE (Eq. 3.3b), results in the final dimensionless formulation of the NSE:

∂u∗

∂t
+ (u∗ · ∇∗)u∗ = −∇∗p∗ + 1

Re
∇∗2u∗ + F (3.5a)

∇∗ · u∗ = 0. (3.5b)
In the following, the ∗ superscript will be dropped, and the NSE will be always
expressed in their nondimensional form.

3.3 . Reynolds Averaged Navier-Stokes (RANS) Equations

Solving the complete NSE (Eq. 3.5b) for turbulent flows via DNS can be
computationally prohibitive, especially for large-scale, high Reynolds number
flows. The number of Degrees Of Freedom (DOF), or grid points, necessary
for a DNS increases dramatically as the Reynolds number grows. Specifically,
the computational cost of DNS scales with the Reynolds number Re as Re9/4
[Pope, 2000]. This scaling is due to the fact that the smallest turbulent scales
decrease in size asRe increases, which means that finer spatial and temporal
resolutions are required to accurately capture the entire range of turbulent
motions. As a result, for high Reynolds number flows, which are common in
industrial and engineering applications, the number of grid points and time
steps needed to solve the flow can become prohibitively large. For example, a
DNS simulation of turbulent air flow around a large aircraft atRe ∼ 106 would
require a number of grid points on the order ofRe9/4 ∼ 1015. Simulating such
flows usingDNSwould be computationally infeasible with current technology.
Therefore, various approximation methods have been developed to balance
accuracy and computational feasibility.
The RANS approach is one of the most widely used models in industrial ap-
plications. This allows for capturing essential flow features without resolving
every turbulent scale, making it suitable for practical engineering problems.
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Although this thesis does not focus on turbulence models or turbulent flow
cases, a brief introduction to turbulence is provided for completeness. This
general overview provides the necessary context to better understand how
the RANS equations are derived, and highlights the key differences between
RANS and the full NSE.

3.3.1 . Introduction to turbulence

Figure 3.2: The Kolmogorov EnergyCascade

Turbulence is a highly complex,
multiscale, chaotic phenomenon that
arises in fluid flowswhen theReynolds
number (Eq. 3.4) is sufficiently high
and inertial forces dominate over
viscous forces. In turbulent flows,
there is a wide range of energy
scales, from large energy-containing
eddies to small dissipative eddies
where energy is dissipated as heat
due to viscous forces. The Kol-
mogorov Energy Cascade (Fig. 3.2)
better introduces this key concept.

Introduced by Andrey Kolmogorov in 1941, this model explains how energy is
transferred from large eddies down to progressively smaller eddies through
a cascade process until it reaches the smallest scales, called the Kolmogorov
scales, where energy dissipation occurs. The size of the Kolmogorov scale can
be estimated as

η =

(
ν3

ϵ

)0.25

, (3.6)
where ν is the kinematic viscosity and ϵ is the rate of energy dissipation. In
other words, the largest eddies collapse and split into smaller eddies, trans-
ferring energy to finer scales until it eventually dissipates at the Kolmogorov
scale.

For this reason, resolving all turbulent scales, from largest to Kolmogorov
scale, requires fine meshes and appropriate time discretization, which is in-
feasible for most real world applications. Therefore, models are needed to
approximate turbulent behavior without solving every scale explicitly.

3.3.2 . Approximate Models for Navier-Stokes Equations
Tohandle the challenges posedby turbulence, several approximationmod-

els have been developed, each targeting different scales of the turbulence
spectrum. The primary approaches used in relation to the Kolmogorov en-
ergy cascade (Fig. 3.2) are:
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• Direct Numerical Simulation (DNS): DNS resolves all turbulence scales
by solving the full NSE without any approximation. While DNS provides
highly accurate results, it is computationally prohibitive because it re-
quires resolving the smallest Kolmogorov scales, demanding extremely
fine spatial and temporal discretization.

• Large Eddy Simulation (LES): LES resolves the large, energy-containing
eddies while modeling the smaller dissipative eddies. By resolving only
the large-scale structures, LES reduces computational cost compared
to DNS, but it is still computational demanding, particularly for high
Reynolds number flows or complex geometries. The smallest scales are
approximate using models like the Smagorinsky model [Pope, 2000].

• Reynolds Averaged Navier-Stokes (RANS): RANS completely models the
turbulent phenomenon without resolving any of its scale. By time aver-
aging the fluctuating quantities, this model focuses on the mean flow.
While less accurate than DNS or LES, RANS is computationally efficient
and widely used in cases where steady-state or time-averaged quanti-
ties are of interest, such as for example drag or lift. To approximate the
effects of turbulence on the mean flow, a turbulence closure models is
required. Some of the most commonly used includes the k − ϵ or the
k−ω models as well as the Spalart-Allmaras model (Sec. 3.3.4) [Wilcox,
2006].

• Hybrid RANS/LES: Hybrid RANS/LES models combine the advantages of
both RANS and LES approaches. The idea is to use RANS to model the
flow in regions where turbulence is less significant and the mean flow
dominates, while applying LES in regions where turbulent structures
need to be resolved, such as near walls or in separated flows. This hy-
brid approach offers a compromise, improving accuracy in critical flow
regions while keeping computational costs lower than a full LES simu-
lation.
3.3.3 . From NS to RANS

The transition from the full NSE to theRANS formulation is achieved through
Reynolds decomposition, which separates flow variables into mean and fluc-
tuating components. Given the velocity field u(x, t) = (u, v, w)T , it can be
decomposed as:

u(x, t) = u(x) + u′(x, t) (3.7)
where u(x) = (u, v, w)T represents the time-averaged component of the un-
steady velocity andu′(x, t) = (u′, v′, w′)T is the fluctuating component around
the mean flow. Plugging the Reynolds decomposition (Eq. 3.7) into the NS
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equations (Eq. 3.5b) and ensamble averaging results in:
u · ∇u+∇p− 1

Re
∇2u = f (3.8a)
∇ · u = 0, (3.8b)

where p is the mean pressure field and the term f is the Reynolds stress ten-
sor. The introduction of the Reynolds stresses brings additional unknowns
to the system, making the equations underdetermined. To close the system,
turbulence closure models are used, the most common of which are detailed
in Sec. 3.3.4, which approximate the Reynolds stresses based on known quan-
tities. Ideally, f can be directly computed, when data are available, as:

f = −∇ · (u′u′) (3.9)
In practice, mathematically computing f requires sufficient statistical conver-
gence of the second-order statistics, which can be achieved through either
DNS or experimental measurements. While time-resolved data can provide
detailed insights, techniques such as Laser Doppler Velocimetry (LDV), which
provide pointwise measurements, or Particle Image Velocimetry (PIV), which
provide spatially resolved data, are often sufficient for obtaining reliable sta-
tistical averages. This challenge is commonly referred to in CFD as the RANS
closure problem.

3.3.4 . RANS Turbulence Closure Models
This section provides a concise overview of the most widely used turbu-

lence closure models for RANS equations. The theoretical foundations and
equations presented here are derived primarily from Wilcox [2006], a com-
prehensive reference on turbulence modeling. The Reynolds stress tensor, f
(Eq. 3.9), which appears in the RANS formulation, introduces additional un-
knowns. A turbulence closure model provides practical, computationally ef-
ficient approximations for these terms. Among the many turbulence closure
models exiting in the literature for engineering applications, the most widely
used are the k-ϵmodel, the k-ω model and the Spalart-Allmaras model. Each
of these models is fundamentally based on the Boussinesq approximation
which models the Reynolds stresses as:

−u′u′ = νt(∇u+∇uT )− 2

3
kI (3.10)

where νt is the turbulent or eddy viscosity, k is the turbulent kinetic energycontributing to the isotropic component of the stress, and I is the identity ma-
trix, ensuring that k contributes only to the normal (diagonal) components.
It is important to note that the Spalart-Allmaras model omits the term −2

3
kI,

due to its formulation, which does not explicitly depend on turbulent kinetic
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energy. Consequently, it employs the resulting simplified expression for the
Reynolds stresses. A short description of themost usedmodels (non-exhaustive
list) is provided below:

• k-ϵmodel: it is one of the most widely used two-equation models in
CFD for RANS-based turbulence modeling. It introduces two transport
equations, one for the turbulent kinetic energy (k) and another for the
rate of turbulent dissipation (ϵ). The transport equation for the turbu-
lent kinetic energy k is formulated as:

∂k

∂t
+ (u · ∇)k = Pk − ϵ+∇ ·

((
ν +

νt
σk

)
∇k
)

(3.11)
where ϵ is the turbulent dissipation rate, σk is a model constant con-
trolling the diffusion of k, νt represents the turbulent viscosity, whoseexpression will be provided in Eq. 3.14 below, and Pk is the turbulentkinetic energy production term expressed as:

Pk = νt(∇u : ∇u) (3.12)
The transport equation for the turbulent dissipation rate ϵ is given by:

∂ϵ

∂t
+ (u · ∇)ϵ = Cϵ1

ϵ

k
Pk − Cϵ2

ϵ2

k
+∇ ·

((
ν +

νt
σϵ

)
∇ϵ
)

(3.13)
where σϵ is a model constant for the diffusion of ϵ and Cϵ1 and Cϵ2 areempirically derived constants. The turbulent viscosity νt is computed
as:

νt = Cµ
k2

ϵ
(3.14)

where Cµ is a model constant. The standard k-ϵmodel is based on the
following constants [Launder and Sharma, 1974]:
Cϵ1 = 1.44, Cϵ2 = 1.92, Cµ = 0.09, σk = 1.0, σϵ = 1.3 (3.15)

The k-ϵ model is widely used due to its computational efficiency and
versatility, particularly in free-shear flows such as jets andmixing layers.
However, a notable disadvantage is its limited accuracy near walls, es-
pecially in flowswith strong pressure gradients, separations, or adverse
wall effects. The model also assumes isotropy in turbulence, which lim-
its its accuracy in flowswith high anisotropy, such as swirling or complex
separated flows.

• k-ω model: another widely used two-equations turbulence model, sim-
ilar in the structure to the previous k-ϵmodel. This approach often en-
hances performance in boundary layers and flows with adverse pres-
sure gradients. The transport equation for k in the k-ωmodel is formu-
lated as:

∂k

∂t
+ (u · ∇)k = Pk − β∗kω +∇ ·

((
ν + σ∗

k

ω

)
∇k
)

(3.16)
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where Pk is the kinetic energy production term as defined in Eq. 3.12,
β∗ and σ∗ are model constants.
The transport equation for the specific dissipation rate ω is given by:
∂ω

∂t
+(u ·∇)ω = α

ω

k
Pk−βω2+

σd
ω
∇k∇ω+∇·

((
ν + σ

k

ω

)
∇ω
)

(3.17)
where α, β, σd and σ are model constants controlling the balance be-
tween production and dissipation of ω. With these equations, the eddy
viscosity νt is calculated as:

νt =
k

ω
(3.18)

The k-ωmodel is effective in simulating flows with strong adverse pres-
sure gradients and boundary layer effects, which makes it a preferred
choice for applications involving near-wall regions and complex bound-
ary layer behaviors. However, thismodel canbe sensitive to free-stream
boundary conditions, which may lead to inaccuracies in flows where
boundary conditions are uncertain or vary significantly.

• Spalart-Allmaras model: is a one-equation turbulence model. Unlike
the k-ϵ and k-ωmodels, the Spalart-Allmaras model uses a single trans-
port equation for a modified eddy viscosity ν̃. This design simplifies
the model, which is effective for boundary-layer-dominated flows. The
transport equation for ν̃ is given by:

∂ν̃

∂t
+ (u · ∇)ν̃ = Cb1S̃ν̃ +

1

σ
∇ · ((ν + ν̃)∇ν̃)

+
Cb2

σ
(∇ν̃) · (∇ν̃)− (Cw1fw)

ν̃2

d2

(3.19)

where d is the distance to the nearest surface and σ, Cb1, Cb2, Cω1 aremodel constants. The function fω depends on themodel constant while
S̃ is defined as:

S̃ = S +
ν̃

k2d2
fv2 (3.20)

fv2 being a function of the model constants and S being the magnitude
of the mean strain rate, defined as:

S =
√
2ΩijΩij (3.21)

with Ωij as the rotation tensor.The eddy viscosity is then determined as:
νt = ν̃fv1 (3.22)

where fv1 is a function designed to adjusts ν̃ in near walls regions, im-
proving performance in boundary layers. The Spalart-Allmaras model,
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as a one-equationmodel, is computationally simpler andmore efficient
than two-equation models. However, the model is limited in accurately
capturing complex turbulent flows with separation, reattachment, or
high anisotropy, as it lacks a term explicitly representing turbulent ki-
netic energy.

In contrast to the turbulence closure models discussed above, this thesis em-
ploys a fundamentally different approach by directly deriving the Reynolds
stresses f from their analytical formulation (Eq. 3.9), as obtained from the fluc-
tuating components in DNS data. Unlike turbulence models, which impose
predefined assumptions on turbulence structure and behavior, this method
seeks to represent the turbulent stress tensor using information directly re-
solved by DNS, reducing reliance on potentially restrictive or inaccurate as-
sumptions. While this method avoids the explicit modelling assumptions in-
herent to traditional turbulence closuremodels, the computation of Reynolds
stresses from DNS data requires careful consideration of statistical conver-
gence to ensure accurate representation of the turbulent stress tensor. This
thesis aims to mitigate these limitations by combining high-fidelity DNS data
withmachine learning techniques that are capable of capturing complex, non-
linear dependencies within the data. The goal is to train ML models that are
not only informed by accurate data derived from DNS but also generalizable
to new, unseen flow conditions beyond those explicitly simulated. By mini-
mizing explicit bias in the initial formulation of the Reynolds stress tensor, the
ML model is provided with the flexibility to explore a broader range of poten-
tial relationships within the data. However, this flexibility is contingent upon
the statistical reliability of the DNS-derived stresses, which requires rigorous
preprocessing and validation to ensure consistency. The resulting model, in-
formed by high-fidelity data and guided by machine learning inference, re-
tains the full complexity of turbulent structures while aiming to generalize
beyond the specific conditions of the original dataset.
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3.4 . Finite Element Methods (FEM)

3.4.1 . Introduction

Figure 3.3: Boris Grigorye-vich Galerkin (Polotsk, 1871 –Moscow, 1945)

Finite Element Method (FEM) is a numer-
ical technique developed to find approxi-
mate solutions to complex PDEs in various
engineering and scientific disciplines [Logg
et al., 2012]. Its original formulation can be
traced to the 1940s and 1950s, when it was
primarily developed for structural analysis in
aerospace engineering. The method gained
widespread adoption in the 1970s due to ad-
vances in digital computing and numerical
methods.
In CFD, FEM is used to numerically solve the
NSE and other governing equations of fluid
dynamics. The core strength of the FEM
method is in its flexibility in handling com-
plex geometries and fluid dynamic configu-
rations.

The application of FEM typically follows a structured process that includes
the following key steps:

• Spatial and Temporal Discretization: The first step is to discretize both
the spatial and temporal domains. The physical domain is divided into
finite discrete elements that cover the problem space, known asmesh.
In case of time-dependent problems, the simulation time is also divided
into discrete time steps, enabling the solution to evolve incrementally
over time.

• Weak Formulation: The governing PDEs are transformed into theirweak
form, typically through the Galerkin (Fig. 3.3) method. The weak form
reduces the complexity of the equations, making them suitable for nu-
merical solutions.

• Assembly of Global System of Equations: The local equations fromeach
element are then assembled into a global systemof algebraic equations
that represents the entire problem domain.

• Boundary Conditions: Applying appropriate boundary conditions is cru-
cial to ensure a physically meaningful solution. These conditions can
include prescribed velocities or pressures at the domain boundaries,
and their correct implementation significantly affects the accuracy of
the simulation.
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Figure 3.4: (Left) Structured mesh (Right) Unstructured mesh

• Numerical Solver: Finally, the assembled system of equations is solved
using iterative numerical techniques. Given the large size of the systems
involved in CFD, specialized solvers are used to efficiently handle the
sparse matrices resulting from the FEM discretization.
3.4.2 . Spatial and Temporal Discretization

Spatial discretization refers to subdividing thephysical domain into smaller,
discrete elements, resulting in what is known as the mesh. The quality and
type of spatial discretization are crucial, as they directly influence the accu-
racy and computational efficiency of the CFD simulation. The two primary
types of meshes are:

• Structured Meshes (Fig. 3.4, Left): These are characterized by a regular,
grid-like arrangement of elements, where each element (triangular, quadri-
lateral or hexahedral) follows a predictable and ordered pattern. The
discretized domain can therefore be described by a uniform Cartesian
grid:

xi = i ·∆x, yj = j ·∆j, (3.23)
with i, j being the index of the node and∆x and∆y the element size in
x and y direction, respectively. This regularity allows for efficient imple-
mentation, but structured meshes are less flexible in handling complex
geometries or localized refinement, which is often required in CFD.

• Unstructured Meshes (Fig. 3.4, Right): These meshes are composed of
elements arranged in an irregular pattern. The flexibility of unstruc-
tured meshes makes them ideal for handling complex geometries, as
they can easily adapt to curved surfaces, sharp corners, and varying lev-
els of detail. The flexibility of unstructured meshes comes at the cost
of increased computational complexity and a more challenging solver
implementation.
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The choice between these two types of meshes hugely depends on the spe-
cific requirements and necessity of the CFD simulation.

In addition to discretizing space, temporal discretization is necessary for
time-dependent problems. This process involves breaking the time domain
into discrete intervals, called time steps, and approximating the time deriva-
tives in the governing equations using finite difference methods. There are
several commonly used methods for temporal discretization:

• Explicit Methods: In an explicitmethod, such as the forward Eulermethod,
the time derivative is approximated as:

∂u

∂t
≈ un+1 − un

∆t
(3.24)

where n represents the time step. The future state un+1 is computed
directly from the known value at the current time step un. These meth-
ods are simple to implement, but they are conditionally stable. The time
step size must, indeed, be sufficiently small to ensure that information
does not travel more than one grid cell in a single time step. This con-
dition is known as Courant-Friedrichs-Lewy (CFL) condition and for the
stability of explicit methods must be satisfied as:

CFL =
U ·∆t
∆x

≤ 1 (3.25)
where U is the characteristic velocity, ∆x is the spatial mesh size, and
∆t is the time step size. For problems with rapid changes or high ve-
locities, this can lead to an impractically small time step, increasing the
computational cost.

• Implicit Methods: In an implicit method, such as the backward Euler
method, the time derivative is approximated as:

∂u

∂t
≈ un − un−1

∆t
(3.26)

where n represents the time step. While implicit methods are compu-
tationally more expensive, they are unconditionally stable, allowing for
larger time steps without risking instability.

• Crank-Nicolson Methods: This method is a combination of explicit and
implicit methods. It averages the forward Euler and backward Euler
methods to achieve second-order accuracy in time and it balances the
accuracy of explicit methods with the stability of implicit methods

The coupling between spatial and temporal discretization impacts the stabil-
ity and convergence of the simulation [Drazin and Reid, 2002, Charru, 2011].
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For instance, finer meshes in regions of interest (e.g., boundary layers or ar-
eas with steep gradients) necessitate smaller time steps in explicit methods,
increasing the overall computational cost. Implicit methods, though compu-
tationally intensive, allow for larger time steps, making them better suited
for simulations where long-term accuracy is prioritized over computational
speed.

3.4.3 . Weak Formulation
Named after Boris G. Galerkin (Fig. 3.3), a Russian mathematician, the

Galerkin method is a key component of the FEM since it allows to convert a
PDE into a system of algebraic equations that can be solved numerically. The
essence of the Galerkin method lies in approximating the solution of a PDE as
a linear combination of basis functions, transforming a continuous problem
into a discrete one.

Consider a PDE such as the Poisson equation, which often arises in physics
and engineering problems. The equation is given by

−∇2u = s, (3.27)
where u is the unknown solution and s is a source term.

The first step in FEM consists of deriving a weak form (or variational form)
of the PDE. This is done by multiplying the governing equation by a test func-
tion v, chosen from a suitable function space, and integrating over the com-
putational domain Ω

−
∫
Ω
v∇2udΩ =

∫
Ω
vsdΩ. (3.28)

The test function v is typically chosen from the same function space as the
trial (or solution) function u. The appropriate function space is typically the
Sobolev space,H1(Ω), which consists of functions that are square-integrable
along with their first derivatives. Mathematically, this is expressed as

H1(Ω) =
{
u ∈ L2(Ω)|∇u ∈ L2(Ω)

}
, (3.29)

which ensures that u and∇u are square-integrable on the computational do-
main and thus that the integral is well-defined and meaningful in the weak
form. To reduce the complexity of the equation and lowering the order of
differentiation required, an integration by parts is then applied. Applying this
technique to the weak form of the Poisson equation leads to∫

Ω
∇v · ∇udΩ−

∫
∂Ω

v∇u · ndT =

∫
Ω
vsdΩ, (3.30)

where ∂Ω is the boundary of the domainΩ andn is the outward normal to the
boundary. This latter formulation involves quantities defined on the bound-
ary of the domain, therefore incorporating appropriate boundary conditions
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is crucial as they are essential in ensuring that the solution behaves as ex-
pected at the edges of the domain (Sec. 3.4.5).

Once the weak form has been established, the next step is to approximate
the solution u and the test function v using basis functions (also called shape
functions). These functions are defined locally on each element of the dis-
cretized mesh and represent the solution in terms of its values at the mesh
nodes. The finite element approximation of the solution and test functions
can be written as

uh =
N∑
i=1

Uiϕi, vh =
N∑
i=1

Vjϕj , (3.31a)

where uh and vh are the approximated solution and test function, respec-
tively; ϕi and ϕj are the basis functions, typically chosen to have local sup-
port, meaning that they are non-zero only over a small number of elements;
Ui and Vj are the unknown coefficients that need to be determined, andN is
the total number of nodes in the mesh.

3.4.4 . Assembly of Global System of Equations
The solution and the test functions are approximated by a finite set of

basis (or shape) functions. For each element e in the mesh, a local version
of the weak form is computed, producing a local stiffness matrix Ae and a
local force vector Fe. These local matrices and vectors are derived from the
integration of the weak form over each element, using the shape functions
defined for that element.
To form the global system of equations, the contributions from each element
need to be combined. For the entiremesh, this results in the following system:

AU = F, (3.32)
whereA is the global stiffnessmatrix,U is the vector of unknown coefficients
at each node in the mesh, and F is the global force vector. The global stiff-
ness matrix A and the global force vector F are obtained by assembling the
contributions from all the elements in the mesh:

A =
∑
e

Ae F =
∑
e

Fe (3.33a)

The stiffness matrix A that results from this process is typically sparse. This
means that most of the entries in thematrix are zero. The sparsity ofA is one
of the key advantages of FEM because it allows the system of equations to be
solved efficiently, even for large-scale problems.
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3.4.5 . Boundary conditions
Boundary conditions are essential in defining a well-posed problem in the

FEM. They describe how the solution behaves at the boundaries of the com-
putational domain and must be carefully incorporated into the weak form of
the PDEs. Depending on the nature of the PDE and the problem being solved,
different types of boundary conditions can be applied.

• Dirichlet Boundary Conditions: specify the value of the solution on the
boundary of the domain. These conditions are used when the value of
the variable being solved for (e.g., temperature, velocity, or displace-
ment) is known or fixed at certain points on the boundary. In the con-
text of FEM, Dirichlet boundary conditions are applied directly to the
trial function u. This is typically done bymodifying the basis functions to
respect the boundary conditions. For example, if the solution u is fixed
at a certain boundary node, then the corresponding entry in the global
system of equations is adjusted to reflect this known value. Mathemat-
ically, Dirichlet boundary conditions take the form:

u = g on ∂ΩD (3.34)
where g is the prescribed value at the Dirichlet boundary ∂ΩD.

• Neumann Boundary Conditions: specify the value of the derivative of
the solution normal to the boundary. These conditions are often used
when the flux or gradient of a variable is known along the boundary.
Mathematically, Neumann conditions are written as:

∂u

∂n
= h on ∂ΩN (3.35)

where ∂u
∂n is the derivative of the solution normal to the boundary ∂ΩN ,and h is the prescribed flux or gradient. These conditions are incorpo-

rated into the weak form through the boundary integral term, which
arises during the integration by parts process.

• Mixed Boundary Conditions: involve the application of both Dirichlet
and Neumann conditions on different parts of the boundary. This is
common in many real-world problems, such as fluid flow, where one
part of the boundary may have a specified velocity (Dirichlet), while an-
other partmay have a specified stress or flux (Neumann). Incorporating
mixed boundary conditions requires careful handling during the formu-
lation and solution process, ensuring that both types of conditions are
appropriately enforced in the weak form and the system of equations.
The Dirichlet conditions directly modify the solution, while Neumann
conditions are incorporated via the boundary integral terms.
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3.4.6 . Numerical Solver
Depending on the nature of the underlying PDE, the resulting system can

either be linear or nonlinear.
For linear systems (i.e., when the governing equations and boundary con-

ditions are linear), solvers can be broadly classified into direct solvers and
iterative solvers. Direct solvers, such as Gaussian elimination and LU decom-
position, compute the solution by manipulating the matrix to eliminate un-
knowns. Thesemethods are accurate but computationally expensive for large
systems. Iterative solvers, such as Conjugate Gradient (CG) and GMRES, are
more efficient for large, sparse systems. These methods iteratively approxi-
mate the solution by refining an initial guess, making them more suitable for
the large-scale linear systems common in FEM.

For nonlinear systems of equations, the relationship between the solu-
tions and the governing equations exhibits nonlinear behavior. These sys-
tems arise naturally inmanyfields, including problems governedbyNSE. There
are several iterative methods available for solving nonlinear systems. The
Newton’s method is the most widely used approach for nonlinear systems.
It iteratively refines the solution by linearizing the system at each step using a
Taylor series expansion. The Quasi-Newton methods approximate the Jaco-
bianmatrix, reducing the computational cost compared to Newton’s method.
Finally, the Newton-Krylov methods combine Newton’s method with Krylov
subspace solvers (like GMRES) to handle large systemswithout explicitly form-
ing the Jacobian matrix.

Although thesemethods canbeused in various contexts, Newton’smethod
is the solver employed in this thesis due to its effectiveness for handling the
nonlinearities characterizing the NSE and for its quadratic convergence when
the initial guess is close to the true solution. Details of the numerical setting,
including boundary conditions and time integration scheme, are provided in
Chapter 6.
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4 - Machine Learning (ML)

ML provides a vast range of tools and approaches, from traditional lin-
ear models to advanced deep learning techniques, each suited to different
types of data and analytical goals. However, given the specific objectives of
this thesis, the focus will be directed toward NNs and GNNs. On one hand,
NNs provide a general structure for capturing complex relationships across
data, while GNNs extend this capability specifically to graph-structured data,
aligning with the scope of the present thesis.

4.1 . Basic structure of a Neural Network (NN)

At the core of any NN is the artificial neuron also known as Perceptron
[Rosenblatt, 1958], which mimics the behavior of biological neurons in the
brain. While biological neurons receive electrical impulses through synapses,
artificial neurons receive input values. Although the biological analogy is in-
spiring, NNs are based on mathematical principles, where artificial neurons
process inputs, apply transformations, and produce outputs that drive pre-
dictions or decisions.

Figure 4.1: (Left) A Perceptron and (Right) a Multi-Layer Perceptron MLP rep-resentation.
Each neuron performs a simple mathematical operation by combining

these inputs into a weighted sum, adding a bias term, and then passing the
result through a non-linear function known as the activation function. With
reference to Fig. 4.1 (Left), the operation of a Perceptron can be expressed
mathematically as:

z =

n∑
i=1

wixi + b (4.1)
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where z is the pre-activation value, xi are the inputs to the neurons, wi are theweights applied to each input, b is the bias term and n is the number of in-
put nodes. The weights wi represent the strength of the connection betweentwo neurons, while the bias b helps the neuron to adjust its output indepen-
dently of its inputs, adding flexibility to the model. A compact representation
of Eq. 4.1, particularly useful when handling inputs of higher dimensions, i.e.
xi ∈ Rm, can be expressed in matrix notation as:

z = WTx+ b, (4.2)
where x ∈ Rn×m is the input tensor, WT ∈ Rf×n is the weight tensor, z ∈
Rf×m is the pre-activation tensor, b ∈ Rf×m is the bias tensor, n is the number
of input nodes,m is the dimension of xi and f is the number of output nodes.
Once the neuron computes the weighted sum z, it passes the result through
an activation function σ(z), which introduces non-linearity and provides the
output y

y = σ(z). (4.3)
Non-linearity is essential because, without it, the NN would behave like a sim-
ple linear model, unable to capture complex patterns in data. Some com-
monly used activation functions include (non-exhaustive list):

• Linear Activation function: is the simplest form of activation, where the
output is directly proportional to the input. However, since it does not
introduce any non-linearity, a network with only linear activations be-
haves like a linear model regardless of the number of layers:

σ(z) = z. (4.4)
• Sigmoid function: maps the output to a range between 0 and 1, and
it’s useful in the output layer for binary classification, where the output
represents a probability.:

σ(z) =
1

1 + e−z
. (4.5)

• Hyperbolic Tangent (Tanh): similar to the Sigmoid function but outputs
values between−1 and 1, often leading to faster convergence in certain
tasks:

σ(z) = tanh(z) = ez − e−z

ez + e−z
. (4.6)

• Rectified Linear Unit (ReLU): themost popular activation function in deep
learning, ReLU outputs z if z > 0 and 0 otherwise. ReLU is computation-
ally efficient and well-suited for hidden layers in deep neural networks:

σ(z) = max(0, z) (4.7)
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• Softmax: is used in the output layer of neural networks when handling
multi-class classification problems. It converts the raw output scores
into probabilities that sum to 1, providing a normalized distribution
across all possible classes. In the following equation, zi represents thescore for class i, and the denominator normalizes the values across all
classes j:

σ(zi) =
ezi∑
j e

zj
. (4.8)

The choice of activation function can significantly affect the performance of
a NN. There is no universal rule for selecting the best activation function; in-
stead, the optimal choice heavily depends on the specific problem being ad-
dressed, and empirical experimentation is often necessary. The artificial neu-
ron thus serves as the building block for all NNs, where theweights and biases
are adjustable parameters that are learned during the training process.
When Perceptrons start to be stacked together, a more complex network
emerges, knownasMulti-Layer Perceptron, see Fig. 4.1 (Right) [Rosenblatt, 1958].
TheMLP extends the concept of the Perceptron by introducingmultiple layers
of neurons, organized into an input layer, one or more hidden layers, and an
output layer. Each layer can be fully connected to the next, meaning that each
neuron in a given layer is connected to every neuron in the following layer.

4.2 . Functioning of a Neural Network (NN)

The functioning of a NN, particularly during training, revolves around two
key processes: forward propagation and backward propagation [Rumelhart et al.,
1986]. These two stepswork together to enable the network to learn fromdata
and improve its predictions.
With reference to Fig. 4.1 (Right), in the forward propagation step, input data
is fed into the network, processed through each hidden layer of neurons, and
transformed into an output. Starting from the input layer, the flowing of in-
formation in an MLP can be mathematically described as follows, in matrix
notation

• Input to the first hidden layer:
z(1) = W(1)x+ b(1) (4.9a)
a(1) = σ(z(1)). (4.9b)

• Subsequent hidden layers:
z(l) = W(l)a(l−1) + b(l) (4.10a)
a(l) = σ(z(l)). (4.10b)
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• Output layer:
y = W(L)a(L−1) + b(L), (4.11)

where W(i) are the weight matrices, x the input vector, y the output vector,
a(i) the inner layer vectors, b(i) the bias vectors, σ the non-linear activation
functions; the apex represents the step index in the NN structure, ranging
from 1 (input layer) to L (output layer). The final output of the network is the
result of this process and represents the network’s prediction. Depending on
the task at hand, the output can be interpreted as a classification, regression
value, or any other target.
Once the forward pass is complete, the network compares its predicted out-
put ŷ with the actual target value y using a loss function. The loss function
quantifies the error between the predicted and actual values, guiding the net-
work in learning how to improve its predictions. Among several loss functions
available, the most common include (non-exhaustive list):

• Mean Squared Error (MSE): for regression tasks. It calculates the aver-
age squared difference between the predicted and actual values as:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2. (4.12)

• Cross-Entropy Loss: for classification tasks. It compares the predicted
probability distribution ŷ with the true distribution y, driving themodel
to assign higher probabilities to the correct classes:

Cross-Entropy = − n∑
i=1

yi log(ŷi). (4.13)

After the loss is calculated, the network enters the backward propagation
step, where it adjusts its weights and biases to reduce the loss in future pre-
dictions. Backward propagation works by computing the gradients of the loss
function with respect to each weight and bias in the network using the chain
rule from calculus. This process estimates how much each weight and bias
in the network contribute to the error. Then, weights and biases of the NN
are adjusted using an optimization algorithm. Among several optimization
methods available, the most common include (non-exhaustive list):

• Stochastic Gradient Descent (SGD): SGD is one of the most commonly
used optimization algorithm. The term stochastic refers to the random-
ness introduced by using only a random subset xN ⊂ X of data ex-
tracted from the datasetX, rather than the full dataset, when comput-
ing the required gradients. This randomness often helps escape local
minima or saddle points, allowing the network to find a better global
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optimum.
Each update of the weights for the l-th layer of the NN in SGD is calcu-
lated as:

W(l) ←W(l) − η∂L(xN )

∂W(l)
(4.14a)

b(l) ← b(l) − η∂L(xN )

∂b(l)
(4.14b)

where xN represents the portion of the data used to compute the gra-
dients and η is the learning ratewhich controls the step size in the gradi-
ent direction. ∂L(xN )/∂W(l) and ∂L(xN )/∂b(l) are the gradients of the loss
function with respect to the weights matrix and the bias vector, respec-
tively.

• Adaptive Moment Estimation (ADAM): ADAM is an advanced optimiza-
tion algorithm. Instead of using a single global learning rate, ADAM
maintains adaptive learning rates for each parameter based on the first
and secondmoments (mean and uncentered variance) of the gradients.

A complete forward-backward loop on each data x in the training datasetX is
called an epoch. The number of epochs determines howmany times the entire
dataset is passed through the network during the training phase. The training
process continues until the loss converges, meaning that additional training
no longer leads to significant improvements, or until a specified number of
epochs is reached. The network typically improves over multiple epochs, but
it’s important to monitor the loss to avoid some of the common problems
found when training a NN.

4.3 . Neural Networks (NNs) as Universal Approximator

One of the most remarkable properties of NNs is their ability to function
as Universal Approximators. This concept, formalized by Cybenko [1989] for
sigmoid activation functions and later extended by Hornik [1991], is known as
the Universal Approximation Theorem. It’s definition asserts:
Universal Approximation Theorem. Let σ be a continuous, bounded, and
non-constant activation function. Then for any continuous function f defined on
a compact subset K ⊂ Rn and for any ϵ > 0, there exists a feedforward neural
network with a single hidden layer and a finite number of neurons such that the
network’s output f̂ approximates f within ϵ, i.e.,

|f(x)− f̂(x)| < ϵ ∀x ∈ K

In other words, this theorem states that a feedforward NN, with at least
one hidden layer containing a sufficient number of neurons, can approximate
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any continuous function to any desired degree of accuracy. The theoremhigh-
lights the immense expressive power of NNs, making them capable of repre-
senting highly complex, non-linear relationships between inputs and outputs.
The two conditions posed in the theorem definition are critical requirements;
firstly, the activation function must be non-linear. In the case of a linear ac-
tivation function, the network’s output would simply be a linear combination
of the inputs, limiting the network to modeling only linearly separable data.
Secondly, the activation functionmust be bounded, meaning that there exists
some constantM > 0 such that |f(z)| ≤M for all z ∈ Rn.
The Universal Approximation Theorem guarantees that NNs can, in principle,
learn and approximate any continuous function as long as they have suffi-
cient capacity, meaning enough neurons and layers.
However, it’s important to note that the theorem only guarantees the exis-
tence of a network capable of approximating the function, but it doesn’t pro-
vide practical guidance on how to design such a network or how to efficiently
train it. In practice, achieving good approximations often requires careful ar-
chitecture design, hyperparameter tuning, and a well-chosen training algo-
rithm.
In addition, the theorem doesn’t account for the generalization ability of the
network. A model that perfectly approximates a function on the training data
may not generalize well to unseen data if it has been overfitted. Thus, while
neural networks have the power to approximate any function, considerations
such asmodel expressivity, complexity, and generalization are crucial for real-
world applications.

4.4 . Types of Neural Networks (NNs)

NNs come in a great variety of architectures, each suited to different types
of data and tasks. The architecture chosen for a specific task depends on the
nature of the data, the complexity of the problem, and the desired output.
Below are the primary types of neural networks, their structural characteris-
tics, and their typical applications (non-exhaustive list):

• Multi-Layer Perceptron (MLP)s: the simplest form of Neural Network,
characterized by the presence of one or more hidden layers between
those of input and output. In these networks, data flows in a unidirec-
tional manner, passing through the various hidden layers, with each
neuron in one layer connected to all neurons in the subsequent layer.
MLP utilize non-linear activation functions (Sec. 4.1) which allow them to
learn complex representations from the data. This architecture is par-
ticularly effective for classification and regression tasks, making them
suitable for a wide range of applications, including image recognition,
data analysis, and predictive modeling.
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• Convolutional Neural Network (CNN)s: specifically designed to process
data with a grid-like topology, such as images or videos. CNNs utilize
a specialized layer known as the convolutional layer, which applies fil-
ters or kernels over the input data to automatically detect and learn
important features such as edges, textures, or complex patterns. This
is followed by pooling layers that reduce the spatial dimensions of the
data, helping to reduce the computational cost by retaining only the
most important features.

• Recurrant Neural Networks (RNN)s: designed to handle sequential data,
where the order of the inputs is important. RNNs have connections that
form cycles, allowing the network to maintain a memory of previous in-
puts by passing information forward through time. This makes RNNs
especially suited for tasks that require the network to reproduce the
temporal correlation and dynamics underneath the data.

• Autoencoders: primarily used for unsupervised learning. The architec-
ture consists of two main components: an encoder, which compresses
the input data into a low-dimensional latent space, and adecoder, which
reconstructs the original input from this compressed representation.
The goal is to learn an efficient representation of the data in the latent
space that captures themost salient features. Autoencoders are widely
used for dimensionality reduction, anomaly detection, and data gener-
ation.

• Generative Adversial Network (GAN)s: consist of two competing NNs: a
generator and a discriminator. The generator’s task is to create realistic-
looking fake data samples (e.g., images, videos, or audio), while the dis-
criminator tries to distinguish between real and fake data samples. The
two networks are trained simultaneously in a game-theoretic frame-
work, where the generator improves by "fooling" the discriminator, and
the discriminator improves by getting better at detecting fakes. GANs
have revolutionized the field of generative models, producing highly re-
alistic images, video, and audio content.

• Graph Neural Network (GNN)s: designed to handle data represented in
graph structures, where relationships between entities are defined by
edges. GNNs excel at capturing complex dependencies and relation-
ships between entities in unstructured data. In GNNs, nodes represent
data points, and edges represent the relationships or interactions be-
tween them. Due to their unique ability tomodel relationships between
entities, GNNs are increasingly used in fields like network analysis, so-
cial networkmodeling, recommendation systems, andmolecular chem-
istry. More recently, GNNs have been applied to CFD to model fluid
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interactions, making them an emerging tool in this field.

4.5 . Limitations of Neural Networks (NNs)

Despite their success, traditional NNs face several limitations that restrict
their scalability, interpretability, and efficiency in real-world applications.
A first concern is about the scalability of these structures. As NNs grow in
size to handle complex tasks, their computational complexity increases ex-
ponentially. Training deep networks with millions (or billions) of parameters
requires substantial computational resources and can take significant time,
especially when dealing with large datasets. This high resource demand can
make NNs impractical for real-time or resource-constrained environments.
Directly related to this problem is the high energy consumption and, as ex-
tension, the environmental impact concerns, emphasizing the need for more
efficient and sustainable AI technologies.
Another key limitation of NNs is their black box nature, which results from
their lack of transparency in decision-making. The internal processes of a NN
are indeed not easily interpretable, making some outputs difficult to explain.
This characteristic can pose challenges in sensitive domains such as health-
care, finance, and autonomous systems, where decisions need to be both
explainable and reliable.
Moreover, NNs are data-hungry and require large amounts of labeled data to
perform well. This dependence can be a bottleneck in data-scarce fields. Ad-
ditionally, traditional NNs often struggle with generalization to unseen data,
especially when trained on narrow or biased datasets. NNs are often ineffi-
cient in termsof parameter utilization. While they are powerful universal func-
tion approximators, traditional feedforward architectures can require a dis-
proportionately large number of parameters to represent even simple func-
tions in low-dimensional spaces. In an attempt to overcome these limitations,
researchers are developing advanced NN architectures and research focuses
on energy-efficient models, enhancing explainability through Explainable AI
[Barredo Arrieta et al., 2020], and improving generalization using techniques
like transfer learning [Thrun and Pratt, 1998].

4.6 . Graph Theory

Graph theory is a fundamental branch of mathematics that deals with
studying the properties and relationships of graphs [Wilson, 1996]. Graphs are
mathematical structures used to represent pairwise connections between ob-
jects. These structures are pivotal in awide range of fields, including computer
science, physics, engineering, biology, and social sciences. In the context of
this thesis, graph theory provides the foundational framework necessary to
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Figure 4.2: A pictorial representation of a graph G (Eq. 4.15)

understand the working principles of GNNs, the central model explored in
this work.

4.6.1 . Introduction to Graph Theory
Formally, a graphG, whose sketch can be seen in Fig. 4.2, is defined as an

ordered pair
G = (V,E) , (4.15)

where V represents the set of vertices (or nodes) and E is a set of edges
connecting pairs of vertices. The verticesV can represent entities or objects in
a system, while the edges E define the relationships or interactions between
these entities.
Graphs can be categorized based on their structural characteristics and the
nature of connections between their vertices:

• Directed and Undirected Graphs: An Undirected graph is one in which
edges have no direction, meaning that an edge between two vertices u
and v, denoted as (u, v) is identical to (v, u). Undirected graphs are used
in situations where relationships are mutual, such as friendships in so-
cial networks. On the other hand, when (u, v) is not the same as (v, u)
and the edge represents a one-way relationship, such as the flow of in-
formation in communication networks or dependencies in task schedul-
ing, the graph is called directed graph.
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• Weighted and Unweighted Graphs: A weighted graph assigns a numer-
ical weight to each edge, representing the strength, cost, or capacity
of the relationship between the connected vertices. For example, in
a transportation network, weights could represent distances or travel
times between cities. An unweighted graph treats all edges as equal,
with no specific value assigned to the relationships.

• Simple Graphs and Multigraphs: A simple graph contains no loops (edges
that connect a vertex to itself) and nomultiple edges between the same
pair of vertices. This is the most basic type of graph and is widely used
in many applications where redundant or reflexive relationships are
not meaningful. A multigraph, by contrast, allows multiple edges be-
tween the same pair of vertices, which can represent multiple types or
instances of relationships.

• Complete Graphs: A complete graph is one in which every pair of dis-
tinct vertices is connected by a unique edge. These graphs are often
used in theoretical contexts, as they represent the maximum number
of relationships between a set of nodes. In practical applications, they
are less common due to their density and complexity.

• Bipartite Graphs: A bipartite graph is one where the vertex set V can
be divided into two disjoint subsetsV1 andV2, such that all edges con-nect a vertex in one set to a vertex in another set. There are no edges
between vertices within the disjoint sets.

Depending on the types of connected information upon which the graph is
built, mathematical differences there exists and, as a consequence, different
types of graphs shows different properties and are suited for different analy-
sis and applications.

4.6.2 . Mathematical representation of Graphs
Graphs can be mathematically represented in multiple ways depending

on the type of analysis or application. Each representation provides a differ-
ent perspective on the properties of the graph’s structure and connectivity.
This section explores the most common ways to represent a graph mathe-
matically, as well as key properties that provide deeper insights into its struc-
ture.

• Adjacency Matrix: one of the most widely used representations of a
graph. Given a graph G (Eq. 4.15) with n vertices, the adjacency ma-
trixA is an n×nmatrix that encodes the presence or absence of edges
between pairs of vertices. The matrix element Aij is defined as:

Aij =

{
1 if there is an edge between vertex vi and vj ,
0 otherwise. (4.16)
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Forweighted graphs, the adjacencymatrix generalizes to store theweight
of the edge between two vertices:

Aij =

{
wij if there is an edge between vertex vi and vj ,
0 otherwise. (4.17)

For undirected graphs, the matrix is symmetric (i.e., Aij = Aji), whilefor directed graphs, the matrix is not necessarily symmetric, reflecting
the directionality of the edges.

• Incidence Matrix: captures the relationship between vertices and edges.
LetG have n vertices andm edges. The incidence matrixB is an n×m
matrix, where each row corresponds to a vertex and each column cor-
responds to an edge. The matrix element Bij is defined as:

Bij =

{
1 if vertex vi is incident to edge ej ,
0 otherwise. (4.18)

Alongside their representation,manyproperties canbedefined for a graph.
• Degree of a Vertex: It represents the number of edges connected to a
given vertex. In undirected graphs, the degree of a vertex vi denoted as
d(vi), is simply the number of edges that involve vi. In directed graphs,an in-degree and an out-degree can be defined on each vertex. Mathe-
matically, they are defines as:

din (vi) =
n∑

j=1

Aji, dout (vi) =
n∑

j=1

Aij . (4.19a)
They indicate respectively the number of incoming and outgoing edges
for the vertex vi

• Path and Cycle: A path in a graph is a sequence of edges that connects
a sequence of distinct vertices. Formally, a path P of length k is a se-
quence of vertices (v0, v1, . . . , vk) such that there exists an edge be-
tween vi and vi+1 for all 0 ≤ i < k. Paths are fundamental for traversing
graphs and are used in algorithms such as shortest path algorithms.
A cycle is a special type of path where the starting and ending vertices
are the same. Formally, a cycleC is a path P = (v0, v1, . . . , vk) such that
v0 = vk. These two concepts are visually represented in Fig. 4.2.

• Graph Diameter and Radius: Thediameter of a graph is the longest among
the shortest path between any two vertices. Formally, if d(u, v) repre-
sents the shortest path between vertices u and v, the diameter of the
graphG is given by:

diam(G) = max
u,v∈V

d(u, v). (4.20)
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The diameter gives an indication of the spread of the graph, represent-
ing the maximum distance between any two vertices. The radius of a
graph is the minimum eccentricity of any vertex. The eccentricity e(v)
of a vertex v is the greatest distance from v to any other vertex. The
radius is defined as:

radius(G) = min
v∈V

e(v). (4.21)
This measure provides insight into the centrality of the most central
vertex in the graph.

• Centrality and Importance of Vertices: The centrality of a vertex quan-
tifies its relative importance within a graph. One simple measure is the
degree of centrality, which is proportional to the number of edges con-
nected to a vertex. Vertices with high degree of centrality are often seen
as influential or central to the graph’s structure. Other centrality mea-
sures, such as betweenness centrality and closeness centrality, focus on
the role of a vertex in facilitating connections between other vertices or
its proximity to other vertices within the network.

4.7 . Graph Neural Network (GNN)

GNNswere introduced to extend traditionalNNs to graph-structureddata,
addressing the limitations of standard models designed for grid-like struc-
tures (e.g., images, sequences). The foundational work by Scarselli et al. [2008]
formalized GNNs, focusing on the need to model complex relationships in
fields such as social networks and molecular chemistry. Early GNNs aimed
to process data with irregular structures, where nodes and edges represent
entities and their relationships.
The key mechanism in GNNs ismessage passing (Sec. 4.7.1), where each node
aggregates information from its neighbors, updating its representation. Through
multiple layers, the network learns complex relationships by iteratively ex-
changing information across the graph. This allows GNNs to capture both
local and global structural patterns, making them powerful for relational data
modeling.

4.7.1 . Core principles of GNNs
GNNs are a powerful extension of traditional NNs, designed to process

graph-structured data. Unlike data arranged in regular grids (e.g., images or
sequences), graphs consist of nodes (vertices) and edges, representing com-
plex relationships between entities. The foundational computational frame-
work of GNNs is known asmessage passing or neighborhood aggregation, which
enables nodes to exchange information iteratively with their neighbors, up-
dating their representations layer by layer.

56



This core operation can be expressed using the following general message
passing formula:

x
(k+1)
i = γ(k)

x
(k)
i ,

⊕
j∈N (i)

ϕ(k)(x
(k)
i ,x

(k)
j , eij)

 (4.22)
This formula encapsulates the entire message passing mechanism, and un-
derstanding it is crucial to grasp how GNNs operate. Each component of this
equation is examined in the following, along with the theoretical principles
that govern them.

• Node Features x(k)
i : The feature vector x(k)

i represents the state of the
node i at layer k of the GNN. Initially, these features may represent in-
trinsic properties of the node (e.g., molecular structure in a chemistry
graph or user profile in a social network). As theMP iterates, this feature
vector is updated through interactions with neighboring nodes, pro-
gressively incorporating more information from the graph structure.

• NeighborhoodN (i): N (i) denotes the set of neighbors of node i. GNNs
are local aggregators, meaning that at each step of the MP, a node
only interacts with its immediate neighbors. As the GNN goes deeper
(i.e., through more MP steps), the node indirectly aggregates informa-
tion from nodes further away in the graph, eventually capturing global
graph patterns.

• Message Functionϕ(k): The functionϕ(k) computes themessagepassed
from each neighboring node j to node i. This function depends on the
features of both the source node j and the target node i, as well as any
additional edge features eij thatmay exist between them. Themessage
function ϕ is typically a learnable transformation, such as an MLP. The
purpose of this function is to encode the interaction between neigh-
boring nodes in a way that is useful for the task at hand (e.g., node
classification, link prediction).

• Aggregation Function ⊕: The symbol ⊕ represents the aggregation
operation, which combines the messagesmi,j received from all neigh-
bors j ∈ N (i). Common choices for this aggregation include:

– Summation: which aggregates the messages by adding them to-
gether: ∑

j∈N (i)

mi,j . (4.23)
– Mean: which takes the average of the messages:

1

|N (i)|
∑

j∈N (i)

mi,j . (4.24)
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– Maximization: which selects the maximum message value across
all neighbors:

max
j∈N (i)

mi,j . (4.25)
The choice of aggregation function can significantly impact the perfor-
mance of the GNN and heavily depends on the task at hand.

• Update Function γ(k): After aggregating the messages from neighbors,
the update function γ(k) combines the aggregated message with the
current feature vector of the node to produce the updated node repre-
sentation x

(k+1)
i . This step allows the node to incorporate information

from its neighbors while retaining aspects of its previous state. The up-
date function is often implemented as a learnable neural network layer,
such as an MLP.

The procedure of the MP is repeated for multiple layers (or iterations), al-
lowing information to propagate across the graph. At each layer k, a node
aggregates information from its neighbors, updates its feature vector, and
passes this information to the next layer. After K layers, each node has ag-
gregated information from nodes up to K graph steps away, thus captur-
ing broader graph structures. This iterative nature is what allows GNNs to
model complex dependencies in the graph. A shallow GNN (e.g., with one
or two layers) may only capture local structures, while a deeper GNN can
learn more global patterns by aggregating information from nodes that are
far apart in the graph. However, deeper GNNs can also suffer from issues
like over-smoothing, where node features become indistinguishable as more
layers are added.

4.8 . A custom Graph Neural Network (GNN) architecture

Building upon the general principles of GNNs introduced in Sec. 4.7.1, this
section presents the custom GNN architecture specifically designed to tackle
challenges in CFD. The architecture is tailored to fit the physics of the fluid sys-
tem, characterized by convective and diffusive dynamics, the flow properties
like the Reynolds number and the chosen numerical approximation defined
on an unstructured mesh.
This custom GNN model will be used throughout the present thesis as the
primary architecture for all the proposed CFD applications. It is specifically
designed to interact with unstructured CFD data and to adapt across a wide
range of geometries and problem settings, making it a versatile solution for
the problems tackled in this work. MP, as referred to our custom GNN, to be
thought as node centered, involves three fundamental steps:
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1. Message Creation: Eachnode i initiates an embedding state represented
by an array hi. Initially set to zero, this vector accumulates and handles
information as the MP proceeds. The dimension dh of hi is constantacross all nodes and is a key model hyperparameter. Note that the em-
bedded state itself does not have a direct physical interpretation.

2. Message Propagation: Information is then propagated between nodes.
To capture the convective and diffusive dynamics of the underlying CFD
systems, messages are transmitted bidirectionally between connected
nodes. Given a generic pair of connected nodes i and j and a directed
connection between them aij from i to j, the abstract information (or
message) generated on them is defined as:

ϕ
(k)
i,j = ζ(k)(h

(k−1)
i ,aij ,h

(k−1)
j ), (4.26)

where h
(k−1)
i is the embedded state from the previous MP layer k −

1, and ζ(k) is a differentiable operator, such as, in our case, an MLP.
Note that swapping the indices i and j in Eq. 4.26, gives the definition
for the message that flows from j to i. Depending on the number of j
connected nodes in the neighboring set of i, namely Ni, for each node
i the global outgoing message is then computed as:

ϕi,→ =
⊕
j∈Ni

ϕi,j (4.27)

where⊕ is an arbitrary differentiable, permutation invariant function,
e.g., sum, mean or max.

3. Message Aggregation: Each node i aggregates the collected informa-
tion to update its embedded state h

(k)
i :

h
(k)
i = h

(k−1)
i + αΨ(k)(h

(k−1)
i ,Gi,ϕ

(k)
i,→,ϕ

(k)
i,←,ϕ

(k)
i,⟳), (4.28)

where Gi represents the external injected quantities, i.e. the data in-
put to the GNN. This input, provided at each update k, depends on the
specific application, and it will be clarified for each of them. The vectors
ϕ
(k)
i,→ and ϕ

(k)
i,← represent respectively the message sent to and received

from all the neighboring nodes. The vectorϕ(k)
i,⟳ is the self-message that

the node i send to itself in order to maintain the node’s own informa-
tion while aggregating messages from its neighbors. Their mathemati-
cal definition, with the appropriate change in notation, is expressed in
Eq. 4.26. The term Ψ(k) is a differentiable operator, typically an MLP,
used to handle together the gathered information. The term α is a hy-
perparameter relaxation coefficient controlling the update scale.
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By the end of the message passing process, each node’s embedded state
has been updated k times, integrating information from other nodes in the
graph. Research has shown that the choice of this hyperparameter k is crucial:
it should be adapted to the specific mesh to improve the network’s general-
ization capability across graphs of varying sizes. The study by Nastorg [2024]
demonstrates that k should ideally be proportional to the graph’s diameter
(Sec. 4.6.2), ensuring effective information propagation throughout the entire
structure. [Donon et al., 2020], suggest that k should match or exceed the
diameter of the graph. However, since the graphs in the dataset used in this
study exhibit a relatively consistent diameter, we opted to optimize this hy-
perparameter using genetic algorithms (Sec. 4.8.3). This approach allows the
network to efficiently adapt to the dataset’s structure, without overextending
beyond the scope of this thesis, as hyperparameter tuning is not our primary
focus. Interestingly, Nastorg [2024] explored a recurrent or adaptive architec-
ture that could theoretically allow for variable k, dynamically adjusting to the
graph’s structure.
At the end of the MP process, the latest k-updated embedded state on each
node i is projected back into a physical state as prediction of the required
target, which depends on the specific learning task. A differentiable operator
such as an MLP, namely a DecoderD, is tasked with this latter operation.
It is important to highlight the custom GNN architecture presented here di-
verges from standard GNN models (Sec. 4.7) as it address specific require-
ments that are typical of CFD applications. First, external quantities G are
introduced at each update step, allowing the network to incorporate domain-
specific information. Secondly, the MP process is bidirectional: it considers
both incoming and outgoing information at each node, a design choice that
reflects the conservation principles and convective-diffusive dynamics of the
governing physical laws. Finally, as the aggregation function, themean is cho-
sen to maintain permutation invariance with respect to the number of neigh-
boring nodes. This decision is critical for working with unstructured meshes,
where the neighborhood size of each node may vary across cases and nodes,
allowing the model to generalize effectively over different mesh configura-
tions.

4.8.1 . Data Structuring
Applying GNNs to unstructured data requires their graph representation.

In order to obtain the CFD-GNN interface, each mesh node is aligned with a
GNNnode. To this end, the CFD data are structured into tensors thatmaintain
adjacency properties from the mesh. Specifically, for each case in the ground
truth dataset, different data structure are generated:

• A matrix A ∈ Rni×dh , where ni is the number of nodes in the mesh
and dh is the dimension of the embedded state defined on each node.
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A, therefore, is a tensor stacking together all the embedded arrays hidefined on all the nodes.
• A matrix C ∈ Rc×2, where c is the number of mesh edges, defining the
nodes connections. C, therefore, is a tensorial representation of the
adjacency scheme of the mesh.

• AmatrixD ∈ Rc×2, containing the distances between connected nodes
in the x and y directions. D, therefore, express the properties, in the
meaning of nodes distances, of the adjacency scheme of the mesh.

Ani,dh =


a1,1 a1,2 · · · a1,dh
a2,1 a2,2 · · · a2,dh... ... . . . ...
ani,1 ani,2 · · · ani,dh

 ,

Cc,2 =


i1 j1
i2 j2... ...
ic jc

 , Dc,2 =


xi1 − xj1 yi1 − yj1
xi2 − xj2 yi2 − yj2... ...
xic − xjc yic − yjc

 .
Each column ofA serves as a feature vector for neurons in the MLPs used in
the GNN (ζ ,Ψ, and the decoderD). The structure of these MLPs is instead de-
fined by the dimension dh of the embedded state, while the number of nodes
ni corresponds to the feature count per neuron. This setup allows us to ap-
ply the same MLPs architectures across different CFD simulations, regardless
of the geometry or node count, as the number of nodes does not affect the
underlying structure of the MLPs. This approach makes the presented cus-
tom GNN particularly well-suited for interacting with unstructured meshes,
learning from various geometries and configurations.
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4.8.2 . GNN Training Algorithm

Figure 4.3: The overall framework of our GNN training process. MP k arethe message passing algorithms; Dk are the k decoders trainable MLPs; Ak

are the k matrices containing the embedded states from each node;G is thevector containing the input injected in the GNN. Figure inspired by Dononet al. [2020].

The training framework for the GNN is illustrated in Fig. 4.3. The process
begins with A0, a matrix of zero-initialized embedded states. This matrix,
along with external inputs G, is provided to the first message passing algo-
rithm MP1. The updated embedded state matrix A1, then, passes through
a decoder D1, an MLP tasked with reconstructing the target physical state
g. The predicted target ĝ1 is compared with the ground truth corresponding
data g using a loss function:

ℓk =
1

ni

ni∑
i=1

(gki − ĝi)2 (4.29)

where ni is the number of nodes and k indicates the layer number of the
MP process. This process is then repeated across the k layers of the GNN.
Following the intuition ofDonon et al. [2020], all these intermediate loss values
from the different update layers are considered in a global loss function L, in
order to robustify the learning process:

L =

k̄∑
k=1

γk̄−k · ℓk (4.30)

where, k̄ is the number of update layers, and γ is a hyperparameter control-
ling the weight of each of them. As the MP process goes on, each node col-
lects more and more information. The exponential term γk̄−k ensures that
later updates, which are supposed to be richer in information, have greater
influence on the learning process.
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4.8.3 . GNN hyperparameters
The structure and performance of a neural network, are heavily influ-

enced by its hyperparameters. These hyperparameters are values set before
the training process begins and are not learnable from the data during train-
ing, but instead, they govern the capacity and behavior of the model. We can
categorize hyperparameters into twomain types: model hyperparameters and
process hyperparameters.

• Model hyperparameters: These define the capacity of the NN, which
refers to the model’s ability to approximate complex, non-linear func-
tions. The capacity is directly influenced by factors such as the number
of layers, the number of neurons in each layer, and the dimensionality
of the embedded node features. Higher capacity allows the model to
representmore complex relationships in the data but comes at the cost
of increased computational demand. In our GNN, model hyperparam-
eters determine how well the network can capture the patterns of fluid
dynamics represented in the mesh-based CFD data.

• Process hyperparameters: These govern the training process itself, af-
fecting the duration, computational costs, and efficiency of the training
phase. Process hyperparameters include aspects such as the learning
rate, which controls how fast the model’s weights are updated, and the
regularization techniques applied to prevent overfitting. Proper tuning
of these hyperparameters is essential to ensure that the model con-
verges effectively while minimizing training time and computational re-
source usage.

Given the need for a computationally efficient yet expressive model, the hy-
perparameters defining the NNs architecture must be optimized carefully.
Unlike continuous parameters that can be fine-tuned using gradient-based
methods, many of the hyperparameters involved in NN design, such as the
number of layers or neurons, are discrete and cannot be adjusted using stan-
dard gradient-based optimization techniques. For this reason, gradient-free
optimization algorithms are used to explore the hyperparameter space effi-
ciently.
Various libraries and tools are available for automating the hyperparameter
optimization process by systematically searching through combinations of
possible hyperparameters and pruning unpromising configurations. In this
work, we employed the open-source optimization library Optuna [Akiba et al.,
2019], which combines efficient searching with advanced pruning strategies
to identify the best-performing set of hyperparameters based on validation
metrics.
Optuna operates by first defining the search space, which includes the pos-
sible ranges or values for each hyperparameter. It then evaluates the GNN’s
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performance over multiple trials, each corresponding to a different set of hy-
perparameters. During this process, Optuna applies dynamic pruning, where
trials that are unlikely to yield improvements are terminated early, reducing
unnecessary computational costs.
After extensive exploration of the hyperparameter space, Optuna identified
the following optimal set of hyperparameters, which maximized the GNN’s
performance in terms of accuracy, at least for the flow cases under consider-
ation, that will be discussed in Chapters 6, 7, and 8:

• Embedded dimension: 35. This hyperparameter controls the size of the
hidden feature space for each node in the GNN. A higher dimension
allows for richer representations of each node’s features, but too high a
valuewould increase computational cost without necessarily improving
performance.

• Number of GNN layers: k = 40. This defines the depth of the GNN,
which in turn determines how many message-passing steps are per-
formed across the graph. A deeper network allows each node to ag-
gregate information from further parts of the graph, capturing global
structure. However, increasing the number of layers toomuch can lead
to over-smoothing, where node features become indistinguishable, and
computational costs rise unnecessarily.

• Update relaxation weight: α = 6× 10−1. This coefficient scales the con-
tribution of each message-passing update, controlling how much new
information influences the node’s updated feature representation. A
well-chosen value of α ensures that updates are neither too drastic nor
too small, facilitating stable and effective learning.

• Loss function weight: γ = 0.1. This parameter controls the weight-
ing of the loss terms from different layers in the GNN during training.
By assigning higher weights to losses from later layers, we emphasize
updates that incorporate information from a wider context, which can
improve the model’s ability to capture long-range dependencies in the
graph.

• Learning rate: LR = 3 × 10−3. The learning rate governs the step size
for gradient descent during the training process. A higher learning rate
speeds up convergence but may result in unstable updates, while a
lower learning rate ensures more stable learning but can slow down
convergence.

These hyperparameters were optimized to achieve a balance between the
model’s accuracy and its computational efficiency. The final set of hyperpa-
rameters enables the GNN to effectively model the complex dynamics of fluid
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flows, while maintaining computational feasibility as a surrogate model for
CFD applications.
It is worth noting that these hyperparameters are inherently task-dependent
and, in theory, should be re-optimized for each specific learning task to en-
sure optimal performance. However, the primary objective of this thesis is to
demonstrate the methodology rather than to focus on the exact numerical
outcomes for each case. Consequently, it was not necessary to perform a hy-
perparameter optimization for every individual scenario.
Re-optimization was conducted for certain learning tasks, and the results in-
dicated that the hyperparameters remained largely consistent, with only mi-
nor variations across different tasks. This outcome suggests that the GNN ar-
chitecture demonstrates inherent robustness to hyperparameter variations
within the range of learning tasks addressed in this thesis. As a result, the
proposed GNN structure exhibits significant resilience to changes in hyper-
parameters, enabling it to perform effectively and efficiently across a broad
spectrum of CFD problems without requiring substantial hyperparameter ad-
justments.

65



66



5 - Adjoint Optimization

5.1 . Introduction to optimization methods

Optimization methods are mathematical techniques designed to find the
best possible solution to a problem within a set of constraints. These meth-
ods are essential in fields such as engineering, economics, and data science,
where improving efficiency, performance, or resource allocation is key im-
portant. The core of optimization lies in maximizing or minimizing an objec-
tive function, which represents the goal of the problem, subject to given con-
straints.
In the context of this thesis, optimization methods are introduced to provide
the foundation for the adjoint methods, which are critical, in this context, for
enforcing the RANS equations within the optimization loop of the GNNmodel.

5.2 . History of optimization

Figure 5.1: (Left) Johann Bernoulli(Basel, 1667 - Basel 1748) (Right) Leon-hard Euler (Basel, 1707 – Saint Peters-burg, 1783

The history of optimization re-
flects the broader evolution ofmath-
ematical thought and the increas-
ing computational capabilities that
have shaped its development over
the centuries. In the 17th century,
pioneers like Johann Bernoulli and
Leonhard Euler (Fig. 5.1) began ex-
ploring optimization through the cal-
culus of variations, applying it to
physical problems. Their work laid
the groundwork for formal optimiza-
tion techniques.
In the 20th century, George Dantzig
introduced the Simplex Method, a

major breakthrough in solving linear programming problems. This method
quickly found applications in transportation, manufacturing, and finance by
optimizing linear objective functions under linear constraints. With the rise
of computational power, non-linear optimization methods such as gradient
descent and Newton’s method were developed to handle more complex sys-
tems where both the objective functions and constraints are non-linear.
The latter half of the century saw the emergence of global optimization tech-
niques like Genetic Algorithms [Goldberg and Holland, 1988], Simulated An-
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nealing [Kirkpatrick et al., 1983], and Particle Swarm Optimization [Kennedy
and Eberhart, 1995]. Thesemetaheuristic approaches were designed to tackle
problems with multiple local optima, inspired by natural processes and offer-
ing solutions for highly complex and multimodal problems.
In recent years, optimization has advanced further with machine learning
and computational growth. Modern methods such as Bayesian optimiza-
tion and Reinforcement Learning (RL) are now used to solve large-scale, high-
dimensional problems, particularly in fields like artificial intelligence and data
science.

5.3 . Fundamental concepts of optimization

Optimization problems involve determining the best possible solution by
maximizing or minimizing an objective function, which mathematically repre-
sents the goal of the problem. Formally, the objective function is expressed
as f(x), where x represents the decision variables on which the function de-
pends. For example, in a cost minimization problem, f(x) could represent
the total cost to be minimized, and x could be the set of variables influencing
that cost.
In most optimization problems, solutions are subject to certain constraints,
which are conditions that must be satisfied by the decision variables. Con-
straints can be written in the form of equalities (e.g., g(x) = 0) or inequalities
(e.g., h(x) ≤ 0) and represent the physical, financial, or operational limitations
of the problem. These constraints define the feasible region, which is the set
of all points x that satisfy the given constraints. The solution to the optimiza-
tion problem must lie within this feasible region.
Depending on the structure of the objective function and the constraints, op-
timization problems can be classified into different categories:

• Linear Optimization: In linear optimization, both the objective function
and the constraints are linear. A linear objective function can be ex-
pressed as:

f(x) = Cx (5.1)
where C ∈ Rm×n is the coefficients matrix and x ∈ Rn is the decision
variables vector. Similarly, the constraints are also linear functions of
the decision variables. This class of problems can be efficiently solved
using methods like the Simplex Method or Interior Point Methods.

• Nonlinear Optimization: In nonlinear optimization, either the objective
function or the constraints (or both) are nonlinear, for example:

f(x) = N (x) (5.2)
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where N (x) is a generic non-linear operator. Nonlinear problems are
inherently more complex and often require iterative methods like Gra-
dient Descent, Newton’s Method, or Quasi-Newton Methods. These al-
gorithms are commonly used inmachine learning, engineering, and sci-
entific research.

A special class of optimization problems arises when the objective func-
tion is convex and the feasible region is a convex set. Convexity is a critical
property that simplifies the optimization process. In convex optimization, if a
function f(x) is convex and the feasible region is also convex, any local mini-
mum is guaranteed to be a global minimum. Mathematically, a function f(x)
is convex if:

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) (5.3)
for all x1,x2 ∈ Rn and λ ∈ [0, 1]. This property greatly reduces the complex-
ity of finding an optimal solution, as it avoids the problem of multiple local
minima often present in non-convex optimization.

For a solution to be considered optimal, certain conditions must be sat-
isfied. These conditions vary depending on whether the problem is uncon-
strained or constrained.

• Unconstrained Optimization: In the simplest case, the goal is to find the
minimum or maximum of an objective function f(x) without any con-
straints. If the function is differentiable, a necessary condition for x to
be a local minimum, called xopt, is that the gradient of f at xopt must be
zero:

∇f(xopt) = 0 (5.4)
This condition indicates that the function has a stationary point at xopt.
However, this is only a necessary condition. To further ensure that xopt

is a localminimum, a second-order conditionmust also be satisfied: the
Hessian matrix of f(x), denoted by Hf (x

opt), must be positive semi-
definite at xopt. This ensures that the function curves upwards in all
directions at xopt, confirming it is a local minimum.

• Constrained Optimization: When constraints are present, the optimal-
ity conditions become more complex. In this case, the Karush-Kuhn-
Tucker (KKT) conditions provide the necessary criteria for optimality.
The KKT conditions extend the concept of the gradient to account for
the constraints by introducing Lagrange multipliers.

5.4 . Optimization methods overview

Optimization problems can be broadly categorized into gradient-based
methods, gradient-free methods, and hybrid methods. Each category ad-
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dresses different types of optimization problems by employing various math-
ematical and computational strategies to search for optimal solutions. The
choice of method depends on the properties of the objective function, such
as smoothness, differentiability, and the presence of constraints, as well as
the computational resources available.

5.4.1 . Gradient based methods
Gradient-based methods rely on the gradient of the objective function to

iteratively move towards an optimal solution. These methods assume that
the objective function is differentiable, and they make use of first-order (and
sometimes second-order) derivative information to guide the search. Gradient-
based techniques are effectivewhen the function is smooth andwell-behaved,
as they can exploit local curvature information to accelerate convergence.

• Gradient Descent: The Gradient Descent method is one of the simplest
and most widely used optimization algorithms. It iteratively adjusts the
solution based on the gradient of the objective function, moving in the
direction of steepest descent to minimize the function. Starting from
an initial guess x0, the update rule is given by:

xk+1 = xk − α∇f (xk) (5.5)
where α is the step size or learning rate and ∇f (xk) is the gradient ofthe objective function evaluated at xk. The algorithm continues until
the gradient is sufficiently small, indicating convergence to a local mini-
mum. An important variant is Stochastic Gradient Descent (SGD), which
approximates the gradient using a random subset (or mini-batch) of
data points, making it particularly effective for large-scale problems like
those encountered in machine learning. The use of smaller batches re-
duces computational overhead per iteration, but it may introduce noise
into the gradient, which can slow convergence but also help escape lo-
cal minima.

• Newton’s Method: Newton’smethod incorporates second-order deriva-
tive information through the Hessianmatrix of the objective function. It
is particularly effective when the objective function is smooth and con-
vex, as it adjusts the step direction and size based on the curvature of
the function. The update rule for Newton’s method is:

xk+1 = xk −Hf (xk)
−1∇f (xk) (5.6)

whereHf (xk) is theHessianmatrix, which represents the second-order
partial derivatives of the objective function at xk. This method con-
verges faster than gradient descent, especially near the optimal point,
but requires calculating and inverting the Hessian, which can be com-
putationally expensive for large problems.
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• Quasi Newton Method: Quasi-Newtonmethods aim to approximate the
behavior of Newton’s method without directly computing the Hessian
matrix. Instead, they build an approximation to the Hessian using only
gradient information. One of themostwidely used quasi-Newtonmeth-
ods is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. The
BFGS method iteratively updates an estimate of the Hessian inverse,
making it more efficient for high-dimensional problems compared to
standard Newton’s method. A limited-memory version, L-BFGS, is often
used for very large-scale problems, as it reduces memory and compu-
tational requirements by storing only a few vectors from the gradient
history.

• Conjugate Gradient Method: The conjugate gradient method is partic-
ularly suited for large-scale optimization problems, especially those in-
volving large, sparse systems. Conjugate gradient methods generate
a sequence of k search directions that are mutually conjugate with re-
spect to the Hessian Hf , meaning that the following condition has to
be satisfied by the k-th search direction pk:

pT
kHfpk−1 = 0. (5.7)

This method is commonly used for solving large linear systems but can
also be applied to non-linear optimizationwhen coupledwith line search
techniques. The next step optimization process is obtained as:

xk+1 = xk + αkpk (5.8)
where αk is the step size along the k-th search direction.
5.4.2 . Gradient free methods

In situations where the objective function is non-differentiable, discon-
tinuous, or noisy, or computation of gradients is computationally expensive,
gradient-basedmethods become impractical or ineffective. Gradient-freemeth-
ods are designed for such cases, as they do not require derivative information
and instead rely on function evaluations.
The key techniques in this category include (non-exhaustive list):

• Genetic Algorithms (GA): are inspired by the principles of natural selec-
tion and genetics. Theywork by evolving a population of candidate solu-
tions over several iterations (generations). At each generation, the best
solutions are selected, combined (crossover), and randomlymutated to
explore new areas of the solution space. Over time, the population con-
verges toward optimal or near-optimal solutions. Genetic Algorithms
are highly flexible and can be applied to a wide range of optimization
problems, especially those with complex, multimodal landscapes.
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• Simulated Annealing (SA): is inspired by the annealing process in met-
allurgy, where a material is slowly cooled to remove defects and min-
imize energy. In optimization, SA probabilistically accepts worse solu-
tions early in the search to avoid local minima, but gradually reduces
the acceptance probability as the search progresses. This approach al-
lows the algorithm to explore the solution space more broadly at the
start and then focus on fine-tuning the best solutions as it converges.

• Bayesian Optimization: is a sequential design strategy for the global op-
timization of black-box functions, where the objective function is ex-
pensive to evaluate. It builds a probabilistic model (usually a Gaussian
process) of the objective function and uses this model to decide where
to sample next. By balancing exploration (sampling regions with high
uncertainty) and exploitation (sampling regions likely to have good solu-
tions), Bayesian optimization can efficiently find optimal solutions with
a limited number of function evaluations.

5.5 . Introduction to Adjoint Methods

In the context of optimization, especially for high-dimensional and com-
putationally expensive problems, Adjoint Methods provide an efficient way to
compute gradients of an objective function with respect to a large number of
variables. These methods are particularly valuable when solving optimization
problems that involve PDEs, such as the RANS equations in CFD.
Adjointmethods have been foundational in CFDoptimization, notably through
the pioneering contributions by Jameson [1988], who pioneered adjoint-based
optimization for aerodynamic design, and by Pironneau [1974], who explored
optimal design approaches in fluid mechanics, laying the groundwork for ad-
joint applications in CFD. Amoignon et al. [2004] extended these ideas by ap-
plying adjoint-based techniques for the shape optimization of aerodynamic
surfaces, specifically targeting natural laminar flow designs. Giles and Pierce
[2000], furthered this development, providing a comprehensive introduction
to the adjoint approach specifically tailored to design problems in CFD. Opti-
mization problems with PDE constraints have also received considerable at-
tention. Works by Borzi and Schulz [2012] and Hinze et al. [2008] address
the complexities involved in optimization constrained by elliptic and parabolic
PDEs, while Lions [1971] introduced foundational concepts for handling hyper-
bolic constraints in optimization frameworks.
Within this context, the Field Inversion and Machine Learning (FIML) frame-
work proposed by Parish and Duraisamy [2016] is particularly relevant. This
approach combines adjoint-basedoptimizationwithmachine learning to infer
unknown quantities, such as closure terms in turbulence modeling, directly
from data. The methodology shares conceptual similarities with the scope of
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this thesis, where adjoint methods are used to guide the training of ML mod-
els while ensuring consistency with governing PDEs.
Based on these fundamental works, adjoint equations have been also ex-
tensively used in the context of flow control, flow sensitivity and instability
[Cherubini et al., 2010, 2013, Semeraro et al., 2013, Loiseau et al., 2014]. Among
the others, it is worth mentioning the works by Giannetti and Luchini [2007],
Marquet et al. [2008] and Luchini et al. [2009] on the sensitivity framework,
providing a method to identify critical regions in the flow most susceptible
to control interventions. This technique has been later extended to numer-
ous works and configurations, ranging from bluff bodies wakes to control of
Rijke tube oscillations [Luchini and Bottaro, 2014]. These approaches allow
targeted adjustments that can suppress instability or delay transition by care-
fully manipulating the sensitive regions identified by adjoint solutions. Recent
developments discussed in Costanzo et al. [2022] may enable the application
of these techniques to cases characterized by larger computational domains
or unsteady flows through parallel-in-time optimization.
An extensive review covering many of these applications is provided by Lu-
chini and Bottaro [2014], who highlight how adjoint-based techniques have
transformed our understanding of flow stability and receptivity, particularly
in cases like the noise-amplifying instabilities in boundary layers.

The applications of adjoint methods extend beyond stability analysis. For
instance, they have become crucial in error estimation and grid adaptation
within CFD, as noted by Venditti and Darmofal [2003] and Park [2002], who
demonstrate how adjoint error analysis can guide grid refinement to improve
accuracy in functional outputs like drag or lift. The importance of this ap-
proach is underscored by Rumsey and Ying [2002] for high-lift configurations,
where numerical errors and modeling fidelity significantly affect simulation
results. Furthermore, uncertainty quantification has leveraged adjoint-based
sensitivity to manage the curse of dimensionality, allowing efficient propaga-
tion of uncertainties through complex CFD simulations. For example, Wang
et al. [2009] and Dow andWang [2013] have used adjoint sensitivity analysis to
identify themost influential variables affecting turbomachinery performance,
while facilitating surrogatemodel development to address geometric variabil-
ity.

In this thesis, Adjoint Methods are crucial because they enable us to en-
force the physical constraints defined by the RANS equations within the train-
ing process of the GNN. By integrating adjoint-based optimization, we can ef-
fectively compute the gradients required to adjust the parameters of theGNN.
This makes the optimization process physically consistent, ensuring that the
predictions of the GNN align with fluid behavior.

5.5.1 . General Methodology of Adjoint Methods
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The central idea behind Adjoint Methods is to reformulate optimization
problems constrained by partial differential equations (PDEs). Thesemethods
leverage the fact that the governing constraints, expressed as PDEs such as
the RANS equations, are inherently satisfied by the solver, without requiring
them to be explicitly enforced in the optimization process. This allows the in-
troduction of adjoint variables (or Lagrange multipliers), which are chosen to
simplify the gradient computation. With reference to a general optimization
problem, we introduce an objective function J(x), which we aim to minimize
(or maximize), subject to constraints represented by a set of PDEs

min
x

J(x,u(x)) subject to C(u(x),x) = 0 (5.9)
where J(x,u(x)) is the objective function that depends on both the design
variables x and the state variables u(x), which typically satisfy the govern-
ing PDEs. C(u(x),x) = 0 represents the PDE constraint, where C is a set of
governing equations (e.g., RANS equations) that describe the behavior of the
state variables u given the design variables x.
The key challenge here is that directly computing the gradient of J with re-
spect to x would require solving the PDE for every design variable, which is
computationally prohibitive for high-dimensional problems. To overcome this
issue, the adjoint method introduces the Lagrangian functional:

L(x,u,λ) = J(x,u) + λTC(u,x), (5.10)
where λ is the vector of adjoint variables (or Lagrange multipliers). The PDE
constraints C(u,x) = 0 are inherently satisfied by the solver ensuring that
the term λTC(u,x) is identically zero. This provides the flexibility to choose
λ in a way that simplifies the gradient computation.
By constructing the Lagrangian functional, we convert the constrained opti-
mization problem into an unconstrained one, where the solution is sought by
zeroing the variations of L with respect to both the state variables u and the
adjoint variables λ. To compute the gradient of J with respect to the design
variables x, we proceed by taking the total derivative of L with respect to x:

dL
dx

=
∂J

∂x
+
∂J

∂u

du

dx
+ λT

(
∂C

∂x
+
∂C

∂u

du

dx

)
(5.11)

In this expression, dudx represents how the state variables change with respect
to the design variables. However, solving for du

dx directly is expensive, as it in-
volves differentiating the entire set of PDEs with respect to x. To avoid this,
we first take the variation of the Lagrangian functional with respect to u, en-
forcing the following adjoint equation to be satisfied:

dL
du

=
∂J

∂u
+ λT ∂C

∂u
= 0. (5.12)
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Solving this equation provides the adjoint variable λ. With λ determined, the
gradient of the objective function with respect to the design variables x can
be simplified to:

dL
dx

=
∂J

∂x
+ λT ∂C

∂x
. (5.13)

This is the central result of the adjoint method: the gradient dL
dx

is computed
without needing to evaluate du

dx
directly, which significantly reduces the com-

putational cost.
To summarize the entire adjoint process:
1. Solve the PDE (primal problem): For a given design variable x, solve the
governing equations C(u(x),x) = 0 to find the state variables u(x).

2. Solve the adjoint equation: Using the solution for u(x), solve the ad-
joint equation to find the adjoint variable λ.

3. Compute the gradient: With λ and u(x), compute the gradient of the
objective function with respect to the design variables x.

4. Update the design variables: Use an optimization algorithm (e.g., gra-
dient descent, Newton’s method) to update x based on the computed
gradient.

By repeating these steps, the adjoint method efficiently finds the optimal so-
lution to high-dimensional optimization problems constrained by complex
PDEs.

In this thesis, adjoint methods are employed to compute the gradients
necessary for training the GNN. Instead of relying solely on the differentiable
nature of the GNN to calculate the gradients from numerical data, the adjoint
method is used to obtain analytic gradients that are grounded in the RANS,
which govern fluid dynamics. This approach ensures that the gradients incor-
porate the underlying physical laws, rather than being based purely on data.
By leveraging adjoint methods, the GNN is trained to not only minimize pre-
diction error but also to adhere to the RANS equations, resulting in a model
that is both data-driven and physically consistent.

5.5.2 . Adjoint Method applied to RANS
In this section, the Adjoint Method is tailored for the CFD applications an-

alyzed in this thesis. While the general principles of Adjoint Methods have
already been discussed, this section introduces the specific details of the cus-
tom Adjoint Method we developed for our case study. The application draws
inspiration from the work of Foures et al. [2014], where a data assimilation
scheme is introducedbasedon this framework; specifically, the baselinemodel
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is provided by the RANS equations (Eq. 3.8b) and the control variable is rep-
resented by the forcing stress term f (Eq. 3.9). The goal is to minimize the
discrepancy between a reconstructed mean flow field û and a ground truth
mean flow u (Eq. 3.7) obtained from numerical simulations.
At the core of any adjoint-based optimization method lies the definition of a
cost function that quantifies the differencebetween thedesired andpredicted
results. In our case, the goal of the optimization is to minimize the error be-
tween the ground truth mean flow u (obtained from high-fidelity simulations)
and the reconstructed mean flow û produced by the RANS model during the
optimization loop. The cost function thatmeasures this discrepancy is defined
as:

ε
(
û
)
=

1

2
||u− û||2 (5.14)

where || · ||2 represents the L2-norm, defined as
||c||2 =

√
⟨c · c⟩, (5.15)

and associated with the scalar product
⟨a,b⟩ =

∫
Ω
a · bdΩ, (5.16)

with a, b and c denoting arbitrary vectors and Ω denoting the computational
domain. The smaller the value of ε, the closer the predicted flow û is to the
ground truth u.
The control variable in our optimization framework is the forcing stress term f .
This forcing term is introduced into the RANS equations (Eq. 3.8b) as a means
to adjust the flow predictions û in order to minimize the cost function. The
ultimate goal of the optimization process is to iteratively refine this forcing
term so that the predicted flow ûmatches the ground truth flow as closely as
possible. However, since the cost function ε does not directly depend on the
forcing stress f (Eq. 3.9), a relationship between the two must be established
in order to compute the necessary gradients for optimization. To this end, an
augmented Lagrangian functional is introduced, that incorporates both the
objective function and the governing constraints (i.e., the RANS equations).
The augmented Lagrangian formalism allows to transform a constrained op-
timization problem into an unconstrained one. This is achieved by incorporat-
ing the governing equations of the system (in this case, the RANS equations)
into the optimization framework via Lagrange multipliers. For our case, the
augmented Lagrangian functional is defined as:
L
(
f , û, p̂, û

†
, p̂†
)
= ε

(
û
)
−⟨û†, û ·∇û+∇p̂− 1

Re
∇2û− f⟩−⟨p̂†,∇· û⟩. (5.17)

In this expression, û† and p̂† are the adjoint variables (also called Lagrange
multipliers), introduced to compute the gradients efficiently. These adjoint
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variables are fundamental to the adjoint method, as they ensure that the cost
function minimizes with respect to both the direct variables (û and p̂) and
the control variable (f ). The terms ⟨·, ·⟩ represent spatial scalar products as
defined in Eq. 5.16, integrating the Lagrangemultiplier terms over the domain
of the flow.
By minimizing the augmented Lagrangian functional, we derive the adjoint
NSE. These equations govern the behavior of the adjoint variables and are
essential for computing the gradient of the cost function with respect to the
control variable f . The adjoint NSE are given by:

−û · ∇û† + û
† · ∇ûT −∇p̂† − 1

Re
∇2û

†
=
∂ε

∂û
(5.18a)

∇ · û† = 0. (5.18b)
The first equation governs the momentum equation for the adjoint variables,
while the second enforces the incompressibility condition on the adjoint ve-
locity field. These adjoint equations are forced by the derivative of the cost
function ε with respect to the predicted mean flow û. This term, ∂ε

∂û
, can be

computed directly from the cost function as:
∂ε

∂û
= û− u. (5.19)

This equation expresses the difference between the predictedmean flow and
the ground truth mean flow, which drives the adjoint optimization process. It
provides the necessary gradient information for adjusting the forcing term f

to minimize the cost function ε.
Once the adjoint equations have been solved, we can compute the gradient of
the cost function with respect to the control variable f . This gradient is given
by:

∂ε

∂f
= û

†
. (5.20)

This equation provides the information needed to update the forcing term f

during the optimization process. The adjoint variable û
† acts as the sensitiv-

ity of the cost function to changes in the forcing term. By using this gradient,
we can iteratively adjust the forcing term to minimize the cost function and
bring the predicted flow closer to the ground truth. The optimization process
proceeds by updating the forcing term f according to a gradient descent al-
gorithm:

f (n+1) = f (n) − ∂ε(n)

∂f (n)
(5.21)

where n denotes the iteration number. The optimization loop continues until
the cost function ε reaches an acceptable threshold, indicating that the pre-
dicted flow û closely matches the ground truth u.
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The boundary conditions for the adjoint NSE differ from those of the direct
problem, as they reflect the sensitivity of the cost function to perturbations at
the boundaries. Nonetheless, since the adjoint boundary conditions rely on
the direct problem’s boundary conditions, these latter are included here for
reference and clarification

u = 1, v = 0 at the inlet,
u = 0, v = 0 on the cylinder surface,

∂yu = 0, v = 0 on symmetry boundaries,
1

Re
∂xu− p = 0, ∂xv = 0 at the outlet.

(5.22)

By performing integration by parts and eliminating terms that depend on
boundary conditions, we derive the boundary conditions for the adjoint prob-
lem directly from those of the direct problem. For our adjoint method, this
leads to the following boundary conditions for the adjoint velocity û† and ad-
joint pressure p̂†:

u† = 1, v† = 0 at the inlet,
u† = 0, v† = 0 on the cylinder surface,

∂yu
† = 0, v† = 0 on symmetry boundaries,

1

Re
∂xu

† + p† = −uu†, 1

Re
∂xv
† = −uv† at the outlet.

(5.23)

These boundary conditions ensure that the adjoint variables are appropri-
ately constrained at the domain boundaries, allowing for accurate computa-
tion of the gradient ∂ε

∂f
.

To summarize the complete optimization loop, the key steps are listed in the
following.

• Initialization: An initial guess for the control variable f ismade. Typically,
f = 0 is chosen as the starting point to satisfy divergence-free and no-
slip conditions.

• Forward Step: The direct RANS equations are solved to obtain a predic-
tion of the mean flow û, given the current forcing term f .

• Cost Function Evaluation: The cost function ε is evaluated, measuring
the error between the predicted flow û and the ground truth u.

• Adjoint Step: The adjoint NSE are solved to compute the adjoint vari-
ables û† and p̂†.

• Control Variable Update: Using the adjoint variables, the gradient of the
cost function with respect to the forcing term is computed, and f is up-
dated accordingly.
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The loop is repeated until convergence, i.e. when the cost function ε falls be-
low a chosen threshold.

The adjoint method developed for this thesis handles the optimization
of the forcing term f within the RANS framework. By combining the adjoint-
based gradients, this data assimilation scheme can be coupled to the training
process of the GNN in order to ensure that the model is trained in a manner
consistent to the simulation data and the governing laws. This physically con-
sistent approach enhances the predictive accuracy of the model while mini-
mizing computational costs, making it a robust tool for CFD applications.
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6 - Part I: RANS closure term prediction

6.1 . Introduction

The main goal of the present work is to develop a GNN-based surrogate
model to predict the closure term f of a RANS system of equations, given as
input the meanflow.
In a very schematic way, for a regression problem, ML techniques enable to
identify mappings between observables of a system (inputs) and quantities of
interest (outputs) we aim to predict by leveraging data; when these analyzed
data are governed by deterministic or statistical laws, in principle, these map-
pings correspond to approximating models.
At low Reynolds numbers, we consider a data assimilation approach, where
the closure model corresponds to the control parameter of an adjoint-based
loop [Foures et al., 2014]; without explicitly introducing a tensor structure or
Boussinesq approximations, thismethod is well suited for non-homogeneous
flows at lower Reynolds numbers. Here, we take inspiration from these ap-
plications and mainly focus on unsteady flows developing past bluff bodies
at low Reynolds numbers 50 ≤ Re ≤ 150; we consider RANS as baseline, al-
though alternative choices can be also adopted, such as Euler equations or
linearized NSE in resolvent form, where the parameter to be tuned is the dis-
sipation term [Morra et al., 2019, Pickering et al., 2021, von Saldern et al., 2023].
With respect to standard approaches, we focus here on a supervised learn-
ing strategy where the closure model is identified by inference from available
data. In principle, we could identify universal closure models directly from
data, having at disposal an infinite amount of them. In practice, in real cases,
we may deal with a limited amount of data or few localized measurements;
these limitations can impact on the use ofmethods such asNNs, where the ex-
pressivity and generic structure make them suitable for a large class of mod-
els, but prone to generalization problems. In this sense, ML models risk to be
representative solely of the datasets included in the training process; thus, it
becomes compelling given the available data to circumvent these problems
by inputting well selected data during the training or providing prior knowl-
edge through modelling [Shukla et al., 2022, Bucci et al., 2023].

With this in mind, we will test if it is possible to identify generic closure
models from data defined on unstructured meshes while only relying on a
small amount of data chosen on principled criteria. In order to answer these
questions, a first ingredient is the introduction of GNN [Scarselli et al., 2008];
this architecture is characterized by complex multi-connected nets of nodes
that can be naturally adapted to unstructured meshes: the convolution in a
GNN is performed by aggregating information from neighboring nodes, thus
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overcoming the limitations imposed by the geometry in contrast with CNN.
Moreover, GNNs: i) show remarkable generalization capabilities as compared
to standard network models [Sanchez-Gonzalez et al., 2018]; ii) are differen-
tiable; iii) provide the possibility of directly targeting the learning of the oper-
ator via discrete stencils [Shukla et al., 2022]. Due to these features, this archi-
tecture has recently attracted attention in fluid mechanics. A review is avail-
able on the subject authored by Lino et al. [2023], while examples are given
by the works of Toshev et al. [2023] or Dupuy et al. [2023b], where wall shear
stress are modelled for LES simulations based on GNN. Here, we take inspira-
tion from Donon et al. [2020], where a GNN-based architecture incorporating
permutation and translation invariance is combined with the statistical solver
problem; Donon et al. [2020] proofed that the architecture – referred to as
deep statistical solver – has some universal approximation properties, and it
is capable of operator learning.

In this contribution, GNN are combined with numerical simulations per-
formed using FEM. The GNN-FEM interface allows the use of NN predictions
in post-processing FEM analysis since it provides a two-way coupling between
NN and FEM environments. However – as already mentioned – the volume of
data can represent a bottleneck if the available amount is insufficient. More-
over, also quality of data impacts on the prediction properties in pure data-
driven modelling [Bucci et al., 2023], in particular when data at hand are not
sufficient in representing correctly the distribution of the overall dataset. In-
consistent or unbalanceddata distributionsmay lead themodel to being trained
on subsets of data that do not adequately represent the underneath physics
of the problem. Thus, as second, fundamental ingredient we adopt active
learning, aimed to increase the dissimilarity between data points and ensure
that the model distills all discriminant features necessary to perform the re-
quired task effectively. At the best of our knowledge, this application is among
the first in fluid mechanics where selection of data is performed by applying
an active learning criterion. Readers are directed to Ren et al. [2021] for a com-
prehensive overview of active learning methods in deep learning. We follow
the work by Charpiat et al. [2019] where scalar products of gradients asso-
ciated with the update of the model weights of the GNN are considered as
similarity metric between samples; the chosen criterion allows to dynamically
increase the training dataset by introducing data that promote diversity in the
dataset.

The set of equations used for the numerical simulations is discussed in
Sec. 3.3.3, while details on the numerical setup can be found in Sec. 6.2.1.
The flow cases are shown in Sec. 6.2. The theoretical background and how
this architecture is coupled with numerical simulations resolved on unstruc-
tured meshes can be found in Sec. 4.8. Then, the work moves into the re-
sults section (Sec. 6.3): GNNmodels are trained on datasets composed by the
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mean flows (input) and the Reynolds stress (target); the baseline is provided
by the closure problem in cylinder flows at Reynolds numbers 50 ≤ Re ≤ 150

(Sec. 6.3.2). Generalization properties are assessed using 4 different bench-
marks defined in Sec. 6.3.1, not included in the training sets. This baseline
is thus compared with models trained with different strategies of data selec-
tion. First, we consider cases where data augmentation is performed using
simulations of flows past bluff bodies of random geometry (Sec. 6.3.3); sec-
ond, active learning is introduced in Sec. 6.3.3. Some conclusions on the work
presented in this Chapter are drawn in Sec. 6.4.

6.2 . Design of experiment and numerical setup

The numerical simulations used to generate the ground truth data for
training the GNNwere conducted in-house using a custom Python script, built
on the FEniCS library [Alnæs et al., 2015]. This computational framework was
specifically designed to solve the PDEs equations such as fluid dynamics re-
lated problems using the FEM approach. In this study, we consider bluff bod-
ies geometries at different Reynolds numbers, such that a comprehensive
dataset is obtained to handle a larger variety of flow scenarios. In the follow-
ing, the reference case – i.e. the cylinder flow – is discussed in Sec. 6.2.1 along
with the necessary numerical details, while the flows past random geometries
are discussed in Sec. 6.2.2.

6.2.1 . Cylinder flow

Figure 6.1: (a) Stream-wise component of the meanflow u and vorticity iso-lines ω = ∇ × u for the flow past a cylinder at Re = 150. (b) For the samecase, the stream-wise component of the closure term f is shown. In bothcases, only a portion of the domain is shown.

(a) (b)

Theunsteadywakedeveloping past a cylinder is awell documentedbench-
mark in fluid dynamics literature, and it is often found as reference case in
works of data-assimilation for the assessment of novel techniques; it exhibits
steady behavior until a critical Reynolds number of Rec ∼= 46.7, when a su-
percritical Hopf bifurcation occurs [Provansal et al., 1987, Giannetti and Lu-
chini, 2007]. At higher Reynolds numbers, the baseflow becomes an unsta-
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ble solution and the unsteady flow develops into a limit cycle known as von
Karman street (Fig. 6.1a). This behavior can be observed until Re = 150, for
two-dimensional (2D) cases. Beyond this point, alongside periodic vortex for-
mation, irregular velocity fluctuations begin to emerge [Anatol, 1958]; note
that transition to turbulence occurs when three dimensional cases are con-
sidered, which is beyond the scope of the present work. Instead, this work
aims at a quantitative analysis of GNN model emulators trained in low-data
limits leveraging active learning processes; as such, we will benchmark the
proposed algorithm on simpler 2D scenarios exhibiting the limit cycle behav-
ior, in the range 50 ≤ Re ≤ 150; we perform numerical simulations at differ-
ent Re numbers in the mentioned range, with ∆Re = 10, in order to collect
the necessary data to train the GNNmodel and compose the dataset. The nu-
merical simulations are resolved in time, while themeanflowu and the forcing
term f (Eq. 3.9) are computed by averaging on-the-fly until convergence. As
an example of this data, Fig. 6.1a illustrates the stream-wise component of the
meanflow u alongside the vorticity isolines ω = ∇ × u, while Fig. 6.1b shows
the stream-wise component of the closure term f for Re = 150. The key nu-
merical aspects of the simulations, including the employed spatial discretiza-
tion, time integration schemes, and solver techniques, are detailed in Guégan
[2022]. Here, we provide a summary of the essential elements and highlight
the validation process that underlines the reliability of the simulation data.

From a numerical perspective, the spatial discretization follows the finite
element framework, using a weak formulation of the NSE. Specifically, the
Taylor-Hood elements are employed, which use second-order (P2) elements
for the velocity field and first-order (P1) elements for the pressure field. This
choice ensures both the stability and accuracy of the solution, particularly for
incompressible flow simulations, which are the primary focus of this work.
The time-stepping is handled via a second-order Backward Differentiation
Formula (BDF), which ensures temporal accuracy:

(
3un − 4un−1 + un−2

2∆t

)
+ (un−1 · ∇)un + (un · ∇)un−1

−(un−1 · ∇)un−1 − 1

Re
∆un +∇pn = 0

∇ · un = 0,

(6.1)

In this formulation the n superscript refers to the current time step, with n−1

and n−2 representing values from the previous two time steps. The time step
∆t satisfies the CFL condition, ensuring numerical stability withCFL ≤ 0.5 for
all fluid flow cases under consideration.
The convective terms are handled using a combination of Newton and Picard
iterative methods, where each iteration solves a linear system to converge to
the final solution at each time step.
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Figure 6.2: Sketch of the computational domain geometry. The diameter ofthe circumscribed circle of the bluff body, the height and length of the domainare given in non-dimensional units.
Themesh used in the simulations is unstructured and refined around crit-

ical flow regions, such as the area near the obstacle and the wake behind it.
This mesh refinement ensures that the simulation accurately captures impor-
tant flow features, including instabilities and vortex shedding. The reference
mesh is based on the well-known benchmark case of flow around a cylinder,
which serves as the foundation for validating the solver and ensuring the ac-
curacy of the results.
Concerning the reference numerical setup, the characteristic dimension is the
diameter D of the circumscribed circle to the bluff body. Based on this di-
mension, the computational domain extends Lx = 27 units in the stream-
wise direction and Ly = 10 units in the transverse direction. The system’s
origin O(0, 0) is positioned ∆x = 9 units downstream from the inlet and
∆y = 5units from the symmetry boundaries. A pictorial sketch of the geomet-
ric configuration of the computational domain is reported in Fig. 6.2. The flow
evolves from left to right with a dimensionless uniform velocity u = (1, 0)T ,
normalized by the reference velocity U∞ of the undisturbed flow. Boundary
conditions follow the setup described by Foures et al. [2014], which read as:

u = 1, v = 0 at the inlet,
u = 0, v = 0 on the cylinder surface,

∂yu = 0, v = 0 on symmetry boundaries,
1

Re
∂xu− p = 0, ∂xv = 0 at the outlet.

(6.2)

Validation of the numerical solver was conducted by comparing the simulated
drag coefficient (Cd) and lift coefficient (Cl) for flow past a cylinder with estab-
lished results from previous studies. The time evolution of these coefficients
is shown in Fig. 6.3, demonstrating the periodic nature of vortex shedding, a
key characteristic of this type of flow. Additionally, a quantitative comparison
of the time-averaged drag coefficient and the amplitude of the lift coefficient
is presented in Table 6.1. Our results are consistent with values reported in
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the literature, with only minor discrepancies. The slight overestimation of Clis likely due to the size of the computational domain in the y-direction, which
may introduce minor numerical blockage effects.

Figure 6.3: Drag coefficient Cd and lift coefficient Cl of flow past a cylinder.

Cylinder Cd average Cl amplitudeEtienne and Pelletier [2015] 1.36 0.67Li et al. [2005] 1.34 0.69Liu et al. [1998] 1.31 0.69Present result 1.32 0.73
Table 6.1: Comparison of Cd average and Cl amplitude
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6.2.2 . Flow around random shapes

(a) (b)

(c)

Figure 6.4: Flow past a bluff body with a randomly generated shape at Re =
90. (a) Geometry of the bluff body with α = 60° and unitary diameter ofthe circumscribed circle around the body. The resulting meanflow and thevorticity isolines ω = ∇ × u are shown in (b), while (c) shows the forcingstress term in a portion of the domain.

As mentioned previously, the dataset can be enriched by including dif-
ferent geometries; thus, alongside with the flow past a cylinder, we include
in the dataset flow fields around obstacles of random shapes. In principle,
we should determine the critical Reynolds number (Rec) at which the flow
around each of the random geometries under analysis develops into unsta-
ble baseflows. This would require an extensive campaign of simulations and
a comprehensive stability analysis, along the footprints of the recent works by
Chiarini et al. [2021, 2022]. Therefore, we adopt amore pragmatic approach by
retaining the geometries that in the range 50 ≤ Re ≤ 150 develop unsteady
flows.

Regarding the geometries of the obstacles, their shape is defined by a set
of splines connected at the location of 4 control points, assuring aC1 continu-
ity between them. The control points (P1 to P4 in Fig. 6.4a) are located along
two orthogonal axes rotated of an angle α with respect to the Cartesian coor-
dinates system of reference. Their distance from the origin O(0, 0) is defined
in the range |s| ∈ [0.1, 0.6], with a discrete step size of ∆s = 0.1. An addi-
tional degree of freedom is added for controlling the angle α ∈ [0◦, 90◦], with
a discrete step size of∆α = 30◦.

Finally, the random shapes generation script prevents the repetition of
the same set of degrees of freedom defining the shape such that each geom-
etry appears only once in the final dataset. Note that the center of the circum-
scribed circle of each random shape does not align necessarily with the center
of the coordinate system. This is not an accidental feature: in the context of
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NN training, this strategy corresponds to introducing some positional noise in
the training dataset, thus promoting a more robust and prone-to-generalize
learning of the underlying data. Such variability in the training data further
contributes to reduce the risk of overfitting and enhances the NN ability to
generalize its predictions to new, unseen geometries.

6.3 . Results

The present section is dedicated to the presentation of the results. We in-
troduce a proof-of-concept of the approach in Sec. 6.3.2; in this first analysis,
we train the GNNwith a dataset composed of data obtained from simulations
of the flow past a cylinder at different Reynolds numbers. The aim is to ver-
ify the robustness of the approach with respect to unseen conditions, using
the benchmark cases in Sec. 6.3.1. In Sec. 6.3.2, we focus on the appropriate
choice of the dataset and how the selection of training data can impact the
generalization capabilities of the GNN. In Sec. 6.3.3, we include in the dataset
flow fields from simulations of wakes past randomly generated bluff bodies
(details of shape generation in Sec. 6.2.2); the effects of dataset augmenta-
tion and dataset expansion are discussed in Sec. 6.3.3 and Sec. 6.3.3, respec-
tively, while data selection by active learning criteria is discussed in Sec. 6.3.3.
A quantitative comparative analysis of these training approaches is summa-
rized in Sec. 6.3.5; in the following, we introduce the 4 reference cases used
for all the comparisons discussed in this section.

6.3.1 . Test Cases
We introduce 4 benchmarks to assess the performance of theGNNmodel.

The test cases, labelled fromCase 1 to Case 4, are designed to evaluate specific
aspects of the GNN’s prediction. We cover a broad spectrum of scenarios, in-
cluding variability in Reynolds number and geometry, changes in the position
with respect of the inlet and number of the obstacles.

1. Case 1: in this scenario, we consider the flow past a cylinder, where the
Reynolds number is increased to Re = 200. This exceeds the training
dataset interval, ranging in 50 ≤ Re ≤ 150, and it is used to test the
model’s capability to extrapolate beyond the training data.

2. Case 2: here, we introduce as a test case the flow past a bluff body of
random shape not included in the training dataset atRe = 120, in order
to assess the model generalization capability to unseen shapes.

3. Case 3: this case involves data from simulation of a flow past a bluff
body of random shape, not present in the training dataset, atRe = 100.
The obstacle is positioned downstream of the reference position used
in the dataset.
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4. Case 4: this test considers a two side-by-side cylinders configuration;
two bluff body obstacles are present in the flow, in contrast to the single
obstacle used for the training. The Reynolds number is Re = 90 and
the aim is to test geometries inducing different dynamics, here the one
stemming from multiple interacting bluff bodies.

Fig. 6.5 shows the streamwise component of the meanflow velocity u, the
isolines of the vorticity ω = ∇ × u (left column) and streamwise component
of the forcing stress f (right column) computed using numerical simulations
for the 4 benchmarks Case 1-4.

Twometrics will be used to evaluate the performance of theGNN. The first
one will be a comparison between the ground truth f and the GNN prediction
for each of the cases, considered as the relative error ε, based on theL2-norm,
defined as

ε =
||f − f̂ ||
||f ||

=

[∫
Ω(f − f̂)2dΩ

]1/2
(∫

Ω f2dΩ
)1/2 . (6.3)

The secondmetric employed arises from the necessity to assess the accuracy
on the meanflow reconstruction û from the GNN prediction with respect to
the ground truth meanflow u. It is defined as

δ =
||u− û||
||u||

=

[∫
Ω(u− û)2dΩ

]1/2(∫
Ω u2dΩ

)1/2 . (6.4)

In the previous equations, Ω is the computational domain (Sec. 6.2.1), f̂ is the
GNN prediction and f is the closure term of the RANS equations coming from
theDNS. Plugging f̂ in Eq. 3.8b and solving the inverse problem, we can obtain
û, a reconstruction of the meanflow based on the GNN prediction.

6.3.2 . Proof-of-concept training: flow past a cylinder flow
Here, we consider the baseline results that in the following we will indi-

cate as proof-of-concept (PC). The training dataset contains data obtained
from DNS simulations of the flow past a cylinder; it is composed by 11 pairs
of meanflows u (input) and Reynolds forcing stress f (target), in the interval
50 ≤ Re ≤ 150, with a stride of ∆Re = 10. As previously mentioned, all the
cases in the dataset exhibit a von Karman street instability in the wake of the
bluff body.

Fig. 6.6 shows the training and validation loss curves for this training ap-
proach. The training loss behavior underlines the model’s ability to capture
thedynamics of the fluid flows and to learn thepatterns in the training dataset.
However, a significant gap can be observed between the training and valida-
tion loss curves. This discrepancy suggests a potential problem of overfitting
to the training data. This problem is not unexpected, considering that the
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Case 1

Case 2

Case 3

Case 4

Figure 6.5: Test cases used as a benchmark of the learning strategies dis-cussed in Sec. 6.3. From the top raw to the bottom one: Case 1, cylinder flowat Re = 200; Case 2, flow past a random-shaped bluff body at Re = 120;Case 3, flow past a random-shaped bluff body shifted in the computationaldomain at Re = 100; Case 4, flow past a two side-by-side cylinders configura-tion atRe = 90. For each of the cases, the left column shows the stream-wisecomponent of the meanflow u, along with the vorticity isolines ω = ∇ × u,while the right column show the stream-wise component of the forcing stress
f .

training dataset is composed exclusively of data obtained from simulations
past the same geometry. Thus, when the GNN model is tested with unseen
shapes or fluid dynamic conditions, the performance drops.

Regarding the test cases, in Case 1 (Fig. 6.7a), the GNN prediction shows
good accuracy in reproducing the fluid structures at higher Reynolds num-
ber Re = 200, with ε = 0.1153. Fig. 6.7(b) shows Case 2, where the differ-
ence between the GNN prediction and the DNS data is primarily visible in the
near wake region. This region is crucial for the development of the unsta-
ble dynamics as it corresponds to the so-called wavemaker region [Giannetti
and Luchini, 2007]; for cases as such of non-standard geometrical shape, the
flow vortex shedding behavior can be quite different from the one observed
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Figure 6.6: Curves for the training and validation loss for the proof-of-conceptbaseline, trained until 3000 epochs. The training dataset is composed by 11meanflow-forcing pairs stacked at different Reynolds numbers in the range
50 ≤ Re ≤ 150 with ∆Re = 10. The validation set is formed by the test casespresented in Sec. 6.3.1.

in standard cylinder cases. The ε norm in this case is ε = 0.2995. Case 3
in Fig. 6.7(c) tests the GNN generalization capabilities when the bluff body
changes; the main discrepancies are again observed in the near wake of the
bluff body. The ε norm in this case is ε = 0.2084. Finally, Case 4 in Fig. 6.7(d)
is particularly challenging as it tests generalization capabilities in presence of
multiple bluff bodies. The GNN model’s predictions capture the major fea-
tures of the forcing stress of each of the cylinder. However, discrepancies are
mainly observed in the area between the two cylinders and extending in the
far wake region, where interactions between the Reynolds stress fields of the
two cylinders occur. The ε norm in this case is ε = 0.8704, significantly higher
compared to the previous cases.

In all the cases discussed so far, the presence of some numerical errors
in all the predictions is noted, but these are primarily attributed to statistical
noise or inherent errors typical of neural network models. Neural networks
indeed, by their nature, include elements of statistical uncertainty due to fac-
tors such as the stochastic nature of their training algorithms (e.g., random
initialization of weights, batch selection during training), and the approximate
nature of the model that represents the underlying physics. Beside this as-
pect, this preliminary analysis based on the benchmark cases suggests that
the GNN model performance could be further improved with a training set
including a larger variety of bluff body shapes. Therefore, in what follows, we
study the effects of the data augmentation by including in the training dataset
random shaped bluff bodies with the aim of enhancing the model’s robust-
ness and generalization capabilities.
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(a)

(b)

(c)

(d)

DNS GNN Difference

Figure 6.7: Stream-wise component comparison of the Reynolds stress ten-sor. The GNN’s model is trained with a dataset composed by 11 cases of cylin-der shape bluff bodies, ranging in 50 ≤ Re ≤ 150, ∆Re = 10. (a) Case 1,
Re = 200, cylinder bluff body shape; (b) Case 2, Re = 120, random shapebluff body; (c) Case 3,Re = 100, random shape shifted bluff body; (d) Case 4,
Re = 90, flow past two side-by-side cylinders.

6.3.3 . Data augmentation and active learning: fluid flows past
random geometries

In the following, we study the effects of data amount and quality on the
training process and generalization properties of the GNNmodels. This study
is structured into distinct steps.

1. Data augmentation (DA): this first approach involves dataset augmen-
tation, meaning that we incorporate bluff bodies of random shapes
cases into the existing dataset, while maintaining the same dataset size
used in the PC case, i.e. 11 cases. This method is aimed at diversifying
the range of geometries used during the training of the model, without
increasing the data volume.

2. Dataset expansion: in this second approach, we expand the dataset
by including 33 cases of bluff bodies of random shapes. We assess the
quality of the used data in terms of sensitivity of the model to specific
configurations by performing a k-fold validation.

3. Active learning (AL) data selection: in this last approach, the training
set is built by adding progressively data chosen by similarity criterion.
The goal is to develop a surrogate model that can generalize at its best
to unseen cases based on a given dataset.
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Figure 6.8: Curves for the training and validation loss for when DA is per-formed by introducing 11 cases of flows past random geometries in thedataset. The Reynolds number varies in the range 50 ≤ Re ≤ 150 with
∆Re = 10. The training runs until 3000 epochs. The validation set is formedby the test cases presented in Sec. 6.3.1.
1 - Data augmentation with random shapes

In this phase of the study, we employ a stratified random sampling criterion
to select shapes among the randomly generated configurations detailed in
Sec. 6.2.2. This latter involves the generation of the entire set of shapes for
eachReynolds number in the interval 50 ≤ Re ≤ 150,∆Re = 10 and randomly
select 1 shape for each value of the Reynolds number, for a total of 11 shapes
that compose the new training dataset. The chosen geometries are unique.
On the selected shapes, we perform DNS simulations in order to obtain the
meanflow (input) and the forcing stress (target) used to train the GNN.

Fig. 6.8 shows the training and validation loss curves for this second train-
ing approach. The training loss demonstrates a consistent downward trend,
highlighting the learning effectiveness of theGNNmodel. Notably, while there
remains a significant gap between the training and validation loss curves,
this gap is less pronounced when compared to the initial training approach
(Fig. 6.6). This reduced gap is indicative of diminished overfitting and suggests
that the introduction of a wider variety of shapes and flow conditions into the
training dataset leads to improved GNN model’s generalization capabilities.

Regarding theGNNpredictions on test cases, Case 1 (Fig. 6.9a) shows larger
discrepancies in the forcing prediction in the neighborhood of the cylinder
compared to the training approach discussed in Sec. 6.3.2, ε = 0.5033. An in-
terpretation for this result is given by the nature of the PC training dataset that
solely relies on cylindrical geometries; thus, the resulting GNN model is spe-
cialized in the prediction of the cylinder flows. In contrast, the current train-
ing strategy involves flows past random shapes: from one hand, this choice
broads the GNN’s flexibility to capture diverse flow conditions by enhancing
generalization capabilities; on the other hand, it simultaneously decreases the
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Figure 6.9: Stream-wise component comparison of the Reynolds stress ten-sor. The GNN’s model is trained with a dataset composed by 11 cases of ran-dom shaped bluff bodies, ranging in the interval 50 ≤ Re ≤ 150, ∆Re = 10.
(a) Case 1, Re = 200, cylinder bluff body shape; (b) Case 2, Re = 120, randomshape bluff body; (c) Case 3, Re = 100, random shape shifted bluff body; (d)Case 4, Re = 90, flow past two side-by-side cylinders.

prediction accuracy for cylinder shaped cases.
Case 2 (Fig. 6.9b) and Case 3 (Fig. 6.9c) show mainly numerical and sta-

tistical noise in the difference fields while the main features of the Reynolds
stress tensor are well reproduced in the prediction. Contrary to what is ob-
served in Case 1, this training approach leads to an efficient GNN model in
predicting the features of the flows past random shaped bluff bodies. Error
norm is comparable for the two test cases, namely ε = 0.2063 for Case 2 and
ε = 0.1999 for Case 3. Finally, Case 4 is characterized by inaccuracies primarily
located in the wake region similar to the one already observed in the PC case
(for a reference, the reader can compare Fig. 6.7d and Fig. 6.9d). However, it’s
important to note that these errors are quantitatively less significant to those
observed in the first training approach, with ε = 0.6312.

2 - Dataset Expansion

A common technique to improve generalization in neural network models is
to enlarge the volume of data the model is trained with. This approach re-
duces the risk for the NNmodel to overfit to specific conditions observed in a
small dataset and ismore likely to capture the underlying phenomena. There-
fore, we study the effect of tripling the amount of data in the training dataset.
With the same stratified random sampling approach described in the previ-
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(a) (b)

Figure 6.10: Training and validation loss curves for models trained using 10 k-fold up to 3000 epochs. (a) shows the training curves, (b) the correspondingvalidation curves for each fold.

ous paragraph, we select 3 cases for each of the 11 Reynolds numbers chosen
in the interval of reference, resulting in a 33 cases training dataset. In order
to analyze the sensitivity of the GNN model’s generalization capabilities with
respect to the training dataset, we employ a k-fold validation test. First, we
divide the training dataset into k groups and train k different models. For
each of the kmodels, we use k−1 groups as the training dataset and the k-th
remaining group as the validation dataset. Although this approach is not fea-
sible in practical applications, it is very informative for assessing preliminarily
the impact of the quality of data on the final prediction.

Fig. 6.10(a) shows the training curves of the 10 models, one for each of
the k folds, while Fig. 6.10(b) displays their corresponding validation curves.
The training curves are rather close, independently of the chosen dataset,
thus suggesting a rather consistent behavior of the chosen GNN architecture.
However, the validation loss varies significantly. This variability can be at-
tributed to the distribution of the training dataset. Inconsistent or unbalanced
data distributionsmay lead themodel to being trained on subsets of data that
do not adequately represent the overall dataset, thus impacting negatively on
the validation results. To address this challenge and identify the most effec-
tive dataset, we introduce AL in the following.
3 - Active Learning data selection

AL allows to dynamically adjust the dataset, targeting the data that contribute
most significantly to the model’s generalization capability. We exploit a simi-
larity criterion from theGNNperspective, following the study by Charpiat et al.
[2019]. The key idea is to avoid including in the training dataset cases that
do not lead to any significative improvement of the model from the gener-
alization viewpoint; instead, in order to induce diversity in the GNN model,
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we need to select cases that are as most as different from each other from
the GNN perspective. We can achieve this goal by comparing, for each of the
available data pairs, the vector gradient of the cost function with respect to
the θ learnable parameters of the GNN by means of scalar products. As a
comparison metric, we employ the cosine similarity angular distance

cos(β) =
a · b
∥a∥ ∥b∥

, (6.5)
where a ∈ Rm and b ∈ Rm are two generic m-dimensional vectors and β is
the angle between them. The basic idea is that each gradient vector steers
the neural network’s state to a specific direction within the solution space.
Therefore, including multiple data points whose gradients point in the same
direction might be redundant. Instead, our aim is to select and include in the
training dataset as many different directions as possible, in order to explore
more extensively the solution space (see also 6.3.4).

The selectionprocess stopswhenapredefined similarity threshold is reached,
such that only the pairs exhibiting a similarity below this threshold are added
to the dataset. Conversely, cases that show a similarity value exceeding the
threshold are discarded. However, the similarity threshold does not have a
direct, interpretablemeaning and needs to be tuned as an input parameter of
the process, according to the required performances. In general, a lower simi-
larity thresholdmeans thatmore caseswill be included in the training dataset.
While this can enhancemodels behavior to diverse scenarios, it may also lead
to a more complex and time-consuming training process. On the other hand,
a too restrictive similarity threshold might exclude potentially valuable train-
ing data. Therefore, an optimal similarity threshold is chosen as a trade-off
between the training computational costs and the model generalization per-
formances.

In our study, we explore three different similarity threshold values, cos(β) ∈
[0.7, 0.8, 0.9]. This approach allows to observe the impact of varying levels of
data inclusion on the model’s training and performance. Results shown in
Fig. 6.12 and Fig. 6.11 are obtained with a similarity threshold of 0.8, which re-
sults in only 6 selected random bluff body cases for the training dataset; the
results for the other threshold values are detailed in Sec. 6.3.5. Fig. 6.11 re-
ports the training and validation loss curves: the reduced disparity observed
between the two curves – compared to the results from the previous learning
approaches – underscores a notable decrease in the issue of overfitting. The
training is initiated with a single case in the training dataset, specifically the
cylinder case at Re = 120.

Once the convergence of the vector gradients is reached (Sec. 6.3.4), a new
case in the training set is selected; since this process is a seek-and-include al-
gorithm that enlarges the dataset at each step, two different approaches can
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Figure 6.11: Training and validation loss curves are shown when AL with sim-ilarity threshold 0.8 is performed until 3000 epochs. The training dataset isformed by 6 random shaped bluff bodies. Their Reynolds number varies inthe interval 50 ≤ Re ≤ 150. The validation set is formed by the test casespresented in Sec. 6.3.1.

be applied. The first strategy is inspired by the curriculum learning framework
[Bengio et al., 2009], where each selected case is added to the ongoing train-
ing. Thus, the model is progressively updated. A second approach, applied
in this work, consists in reinitializing the GNN weights every time the dataset
is enlarged with a new pair. The rationale behind this choice is based on the
dynamics of the solution space, that changes when new data are added to
the training set; in this sense, there is no guarantee that the new minima will
be "closer" to the previous ones than to the initialization point of the GNN.
Nonetheless, we observed that for the analyzed flow cases the two training
strategies lead to negligible differences in the final results.

Considering the benchmarks for the model assessment, Case 1 leads to
ε = 0.5507 between the GNN predictions of the Reynolds stress tensor and
the DNS ones. The error is ε = 0.1518 for the random shape bluff body
case (Case 2), ε = 0.3595 for the downstream shifted random shape bluff
body (Case 3) and ε = 0.5243 for the two side-to-side cylinder configuration
(Case 4). The results respect the symmetry of the solutions with respect of
the y axis and only minor inconsistencies can be observed in the far wake; we
note that the errors are concentrated in the region immediately downstream
of the bluff body, but we interpret these errors as numerical or stochastic in
nature rather than being prediction inaccuracies of the fluid structures.
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DNS GNN Difference

Figure 6.12: Stream-wise component comparison of the Reynolds stress ten-sor. The GNN’s model is trained with a dataset composed by 6 cases of bluffbodies of random shape selected with the AL approach, ranging in the inter-val 50 ≤ Re ≤ 150,∆Re = 10. (a) Case 1, flow past a cylinder at Re = 200; (b)Case 2, flow past a random shaped bluff body atRe = 120; (c) Case 3, randomshaped bluff body atRe = 100, shifted downstream; (d) Case 4, flow past twoside-by-side cylinders at Re = 90.
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6.3.4 . Similarity criteria algorithm details

Figure 6.13: Visualization of gradient auto-similarity convergence over multi-ple training epochs using MAE for 9 distinct cases within the training data set.
The similarity criteria algorithm designed to compare different data from

the neural network perspective is based on the analysis of the vector gra-
dients of a metric function (Eq. 6.7) with respect to the θ parameters of the
neural network. In particular, the similarity comparison between two generic
m-dimensional vectors a ∈ Rm and b ∈ Rm is computed using the cosine
similarity, defined as

cos(β) =
a · b
∥a∥ ∥b∥

, (6.6)
where β is the angle between the two vectors. In this context the metric we
use is the Mean Absolute Error (MAE), a piecewise linear function defined as:

MAE =

ni∑
i=1

|xi − yi|, (6.7)
in which xi is the NN prediction on the node i, yi the ground truth and ni thenumber of nodes.

The choice of MAE is crucial for our analysis. In scenarios where the Mean
Squared Error (MSE) is used, we empirically observe marked oscillations in
the direction of the auto-similarity of the vector gradient throughout succes-
sive training epochs. Conversely, when employing MAE, the auto-similarity
of the vector gradient tends to approach unity, suggesting a stable direction
in the solution space, for the data under analysis. A visual representation of
the consistent convergence of the vector gradient auto-similarity as function
of the epochs is shown in Fig. 6.13, for a training process involving 9 cases in
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the training dataset. Training begins with a specific initial dataset; when ev-
ery data point in the training dataset achieves an auto-similarity convergence
exceeding a predefined threshold of 0.99, the training is stopped and we can
assume that the vector gradient’s direction for each instance in the training
dataset has stabilized.

The following step is to assess the similarity between cases within the
training dataset and those outside it. This aims at identifying the most di-
verse cases among those not included in the training set, which will then be
added to the training dataset to enhance diversity. Firstly, the GNN runs for
additional 10 epochs to obtain the vector gradients of each out-of-training
dataset instance. Then, a similarity matrix is computed by cross calculating
the similarity between each in-training instance and each out-of-training in-
stance. The case that shows the lowest similarity score is also themost diverse
one and enables to promote diversification in the training dataset based on
available data. Note that the values are normalized using a z-score value

z =
S − µ
σ

, (6.8)
where S represents the similarity score for a specific data point, µ is themean
of all similarity scores, and σ their standard deviation. In summary, the ap-
proach outlined here serves as a robust method for comparing and evalu-
ating the similarities in data behavior leveraging the neural network model,
thereby enhancing the efficacy of the training process.

6.3.5 . Quantitative comparison
In conclusion, we summarize the results in Tab. 6.2. A direct comparison

between the first two training approaches (PC and DA) reveals that enriching
the training dataset with random geometries enhances the generalization ca-
pabilities of the GNN. This behavior is not unexpected, although an exception
is observed when extrapolating at higher Reynolds numbers (Case 1), where
we observe that the PC approach outperforms DA. As already discussed, this
behavior can be understood by observing that the GNNmodel trained follow-
ing the approach PC is specialized in predicting the flow past a cylinder as it
is trained on this specific geometry.
On the other hand, the AL training approach allows to obtain GNN models
demonstrating overall superior performance in terms of generalization capa-
bilities as compared to PC and DA approaches, in particular for Case 2 and
Case 4, while in Case 3 performance are essentially comparable. The mean
error decreases in all the 4 test cases in the AL approach, indicating an im-
provement in the global performance of the model. An important aspect re-
garding the active selection of data for the training is the amount of data.
Good performances are achieved with only 6 pairs when a threshold 0.8, al-
though it is also possible to observe a strong variation in the total number of
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Cases
PC DA AL

0.7 0.8 0.9
ε δ ε δ ε δ ε δ ε δ

Case 1 0.1153 0.0118 0.5033 0.1987 0.8671 0.1859 0.5507 0.1165 0.4132 0.1162
Case 2 0.2995 0.0280 0.2063 0.0160 0.1256 0.0079 0.1518 0.0166 0.1124 0.0092
Case 3 0.2084 0.0131 0.1999 0.0090 0.3058 0.0107 0.3595 0.0183 0.2123 0.0082
Case 4 0.8707 0.2683 0.6312 0.1701 0.6751 0.1930 0.5243 0.1565 0.5719 0.1653

Training data 11 11 3 6 19
Table 6.2: Comparison on the 4 cases defined as benchmark for thethree different training approaches: the proof-of-concept (PC) training(Sec. 6.3.2), the data augmentation (DA) training (Sec. 6.3.3), and the ac-tive learning (AL) strategy (Sec. 6.3.3). For the latter, we consider threesimilarity threshold values cos(β) ∈ [0.7, 0.8, 0.9]. The chosen metric εand δ are defined respectively in Eq. 6.3 and Eq. 6.4. In the last row,the number of pairs used during the training process is reported.
pairs used for the training as a function of the chosen threshold. It is crucial
to observe, however, that for all the AL cases the introduction of a selection
criterion guarantees that the chosen data points lead to good performance in
terms of generalization.
When comparing our work with existing literature, the notable aspect is that
our approach achieves comparable accuracy with significantly fewer train-
ing cases. For instance, in Chen et al. [2021] the authors utilize 2000 cases
in their training dataset for steady-state incompressible flow around a cylin-
der at Re = 10. In contrast, we use only 19 cases for the largest dataset used
and still manage to generalize to different Reynolds numbers and bluff body
positions, with comparable accuracy results. In Lee and You [2019], 500k cases
are used for the training dataset, although an unsteady flow is predicted us-
ing CNN. It is worth noting that the use of a GNN architecture enables to
generalize on different geometries and Re numbers, an aspect that is not
addressed in Lee and You [2019]. Finally, in Thuerey et al. [2020], a GNN is
employed for predicting time–averaged steady flow. The dataset consists of
12800 data points while the GNNmodel has a complexity of over 30M param-
eters, prohibitive for most practical applications. Our GNN architecture, on
the contrary, can count up to approximately 900k parameters. In conclusion,
we believe that the combination of GNN models and active learning makes
our method more accessible and practical for broader applications thanks to
the parsimony of the data requirements.
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6.4 . Discussion

The application ofmachine learning techniques in fluidmechanics is often
characterized by shortcomings such as overfitting, lack of robustness of the
prediction with respect to unseen cases and data-hungriness. In this study,
we proposed a novel approach that combines a neural architecture based
on Graph Neural Network (GNN), numerical solvers based on Finite Element
Method (FEM) and an active learning procedure in order to tackle some of
these limitations. Here, we consider a data-assimilation schemes that does
not rely on anoptimizationprocess anduse as baseline equations theReynolds
Averaged Navier-Stokes (RANS) equations. GNN models are trained as a sur-
rogate to predict the forcing/closure term, obtained as an output of the su-
pervised learning, while a givenmean flow serves as input. The GNN architec-
ture is particularly suitable in this study due to its adaptability to unstructured
meshes and its generalization capability, as compared to other literature ap-
proaches. Moreover, this architecture allows frugal training within the low-
data limit, as compare to alternative, more expensive in terms of required
data, architectures.

A two-fold interface between FEM and GNN environment has been devel-
oped to transform a FEM vector field into a numerical tensor that can be han-
dled by a NN structure and vice versa, preserving critical information through-
out the process. As a test-bed, we focussed on two dimensional, incompress-
ible flows past obstacles at low Reynolds numbers, namely in the range 50 ≤
Re ≤ 150. At these regimes, the presence of obstacles triggers instabilities
developing in unsteady flows. We started by studying a cylindrical geometry
in the range 50 ≤ Re ≤ 150 as initial benchmark, in order to assess the ex-
tent to which a model based on this training dataset can be used also for un-
seen cases. Not surprisingly, we found good performance at unseen Reynolds
number for the cylinder case. On the other hand, when the flow around the
bluff bodies of random geometry is considered, it is observed lack of accuracy
in the prediction and overfitting.
In order to tackle these limitations, we explored the impact of the training data
on the generalization capabilities of the GNN in terms of quantity and quality
of data. First, we considered an extended dataset. Our results indicate that
the quality and volumeof data notably affect the spectrumof unseen cases on
which the model can generalize to. Particularly, the inclusion of diverse fluid
flow conditions into the training dataset improves the overall generalization
capabilities for the vast majority of cases. Finally, we introduced an active
learning data selection criterion based on the analysis of gradient similarity,
with the aimof building a dataset extending the distribution of the data. At the
best of authors knowledge, this is one of the first applications in the commu-
nity of fluid mechanics where a systematic selection of the data is performed
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addressing the generalization of the NNmodel prediction to unseen cases by
maximizing the quality of the predictions and at same time minimizing the
amount of data used in the training set. The results clearly indicate the possi-
bility of improving the performance of the model, also in terms of generaliza-
tion, while keeping a rather small amount of data in the training set. The crite-
rion is especially relevant in the contexts where computational resources for
training surrogatemodels are limited, and a trade-offbetween accuracy of the
predictions and training computational cost is sought. It is stressed that the
datasets used during the training process are relatively small as compared to
other approaches appeared in ML literature, as the most expensive one con-
sists of less than 20 pairs of snapshots. These datasets are selected through
a criterion that minimizes the number of data points required and is robust
enough to be applied to larger datasets to efficiently reduce themwhilemain-
taining essential information. In terms of future studies, this project hasmany
potential directions and developments that can be pursued. Among them,
one possible development is the implementation of a sensitivity analysis of
the GNN predictions by leveraging the gradients of the model. Specifically,
this involves analyzing the sensitivity of GNN predictions with respect to vari-
ations in the input parameters, such as themean flow. This could be followed
by an adaptive training procedure where a weight mask is applied to the loss
function to concentrate the training effort on the most sensitive regions of
the flow. For example, the GNN could initially predict a sensitivity map of the
input mean flow, highlighting the zones with the highest influence on the pre-
dicted field. The loss function could then be adapted for each specific case to
focus the training more accurately on these sensitive areas, leading to more
efficient and localized learning.
A similar approach could be adopted using uncertainty quantification. By
quantifying the uncertainty in the GNN’s predictions, regions with high un-
certainty could be identified, and the training could be adaptively focused
on these areas to reduce the model’s uncertainty and increase robustness.
This would involve dynamically adjusting the loss function to prioritize regions
with higher uncertainty, thereby guiding the model to learn where it is most
needed.
Another promising direction is exploring different neural network architec-
tures, such as Recurrant Neural Networks (RNN)s with adaptive updatemech-
anisms. This could involve an adaptive number of iterations to improve effi-
ciency and accuracy depending on the training case [Nastorg, 2024].
Transformers [Vaswani et al., 2017], with their ability to capture long-range
dependencies, could be another architecture worth exploring. Unlike GNNs,
which excel in capturing local relationships, transformers could help in under-
standing global interactions between distant points in the flow field. Leverag-
ing a combination of these two approaches could lead to potential benefit in
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terms of accuracy and generalization capabilities.
In the next Chapter we will extend our findings by incorporating physi-

cal constraint in the learning loop through the adjoint equations associated
with the assimilation loop. This integration aims to further refine the predic-
tive performance and generalization capabilities of the GNN leveraging the
physics constraints. The final goal of these data-assimilation schemes is to
adapt our training approach to cases where solely limited or corrupted mea-
surements of the flow are available, such as those based on sparse probe
measurements, noisy or incomplete data.
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7 - Part II: Physics-Constrained Graph Neural
Network (PhyCo-GNN)

7.1 . Introduction

In recent years, the integration of Machine Learning (ML) algorithms into
Computational Fluid Dynamic (CFD) has seen a significant boost, driven by the
increasing efficiency of ML models in processing large dataset and their im-
pressive inference and predicting capabilities.
Literature is already disseminated with different, effective ways to combine
ML algorithms into CFD, as can be found in the annual review by Brunton et al.
[2020b] and in Vinuesa and Brunton [2022]. These applications range from
addressing the closure problem of Reynolds-averaged Navier-Stokes (RANS)
equations to optimization problems. Notably, Duraisamy et al. [2019] and
Beck and Kurz [2021] provide a thorough overview of ML techniques applied
specifically to turbulence modeling and RANS equation closure. In Ling and
Templeton [2015], authors used classification methods to identify regions of
high uncertainty in RANS fluid flow predictions. In Ströfer and Xiao [2021], the
authors combined NN with a Spalart-Allmaras turbulence baseline model to
enhance fluid flow RANS predictions. Data-assimilation techniques are also
been explored to enhance the turbulence models of RANS equations, as can
be found in the extensive study by Cato et al. [2023]. However, despite the
potential of ML models, one of the persistent challenges is ensuring that the
learned solutions adhere to fundamental physical laws. Unconstrained ML
models may yield results that violate physical principles, undermining the re-
liability and interpretability of simulations. To address this problem, an es-
tablished approach is the use of Physics-Informed Neural Network (PINN)s,
which incorporate physical equations as part of the NN training process to
maintain physical consistency Cai et al. [2021].

In this Chapter, we propose a novel approach by combining Graph Neural
Networks (GNNs) (Sec. 4.7) as ML framework with Reynolds-Averaged Navier-
Stokes (RANS) (Sec. 3.3) equations as our physical baseline model. GNNs are
particularly suited for CFD problems due to their ability to handle complex
geometries, often encountered in fluid flow simulations. They extend tradi-
tional neural networks by considering the relationships between data points,
making them ideal for capturing the particles interactions in a fluid flow sys-
tem.
Our primary goal is to develop a hybrid ML-CFD model to accurately recon-
struct themean flow of a fluid dynamics simulation across various application
cases. Traditionally, mean flow reconstruction has been tackled using data-
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assimilation techniques that combine experimental measurements with CFD
models. Foures et al. [2014] proposed a variational data-assimilation method
that uses forced RANS equations to reconstruct the mean flow field from par-
tial measurements. This method minimizes the discrepancy between the ex-
perimental data and numerical solutions by identifying the optimal forcing
term that represents the unknown Reynolds stresses.
More recently, ML techniques have been explored to enhance flow recon-
struction. Belbute-Peres et al. [2020] developed a hybridmodel that combines
GNNs with differentiable fluid dynamics solvers. This approach leverages the
efficiency of NNs while maintaining the accuracy of physical solvers. Further-
more, Chen et al. [2021] demonstrated the use of GNNs for predicting laminar
flows around arbitrary 2D shapes, showing promising results in terms of ac-
curacy and computational speed compared to traditional solvers.

Specifically, we aim to integrate RANS equations into a GNN training pro-
cess, leveraging the RANS closure term as an optimization term through the
adjoint method (Sec. 5.5). Adjoint method is a powerful mathematical tool
used in CFD to compute gradients efficiently, which are essential in a classical
optimization process. We use the adjointmethod to ensure that the gradients
used in the GNN training process are obtained through a deterministic phys-
ical model. With this approach, we can train the ML model by guaranteeing
physical consistency and leading to improved performance and accuracy with
respect to supervised learning or standard methods. We test our approach
on different CFD scenarios, showing remarkable improvements in mean flow
reconstruction accuracy for different learning tasks as compared to the non
physics constrained counterpart.

Thephysical baselinemodel for theCFD simulations is detailed in Sec. 3.3.3.
The numerical setting used in this study is inherited by the previous study 6,
specifically in 6.2.1. The adjoint optimizationmethod can be found in Sec. 5.5.1.
Sec. 4.7 describes the ML framework, detailing the custom GNN architecture
used in (Sec. 4.7.1), the dataset preprocessing (Sec. 4.8.1) and the training algo-
rithm (Sec. 4.8.2). We continue, then, by presenting our innovative approach
to combine these two frameworks in Sec. 7.2. Results, along with the different
application cases, are presented in Sec. 7.3.

7.2 . Methodology

This section describes themethodology developed here, combining RANS
(Sec. 3.3.3) and the training of a GNN model (Sec. 4.7). The main focus of the
approach relies on the use of gradients derived analytically from the RANS
equations through the adjoint method (Sec. 5.5) to enhance the learning pro-
cess of the GNN and ensure physical consistency in its predictions. The com-
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plete training process is shown in Fig. 7.1. In the following, Sec. 7.2.2 gives
some technical details on the pre-training phase of the GNN model, while
Sec. 7.2.3 details the approach adopted to combine the transition between
the pre-training phase and the effective training of the GNN.

7.2.1 . The training process

Figure 7.1: End-to-end training loop; u is the GNN’s input mean flow; f̂ is theGNN’s predicted forcing stress term; θ are the GNN’s trainable parameters;
J (û) is the cost function to minimize.

With reference to Fig. 7.1, the global training process can be ideally divided
into two phases, the forward and the backward step. The forward step begins
with the input of themean flow u (and Reynolds numberRe) into a pretrained
GNN (Sec. 7.2.2), which predicts a forcing stress term f̂ . This predicted forc-
ing term is plugged into the direct RANS equations (Eq. 3.8b). By using the
Finite Element Method (FEM) approach, handled by the python library FEniCS
[Alnæs et al., 2015], we solve numerically the RANS inverse problem to ob-
tain a mean flow prediction û. This result is then compared with the mean
flow ground truth u obtained from the DNS to compute a loss function J that
needs to be minimized:

J =

∫
Ω
(u− û)2dΩ. (7.1)

Eq. 7.1 is computed directly in the FEM environment as an integral over the
entire computational domain Ω of the squared difference between the pre-
dicted mean flow û and its ground truth u.
The second phase, the backward step, starts with the requirement to com-
pute the derivative of the loss function J with respect to the θ parameters of
theGNN. The gradient chain rule for this required term can bemathematically
expressed as:

∂J
∂θ

=
∂J
∂û
· ∂û
∂ f̂
· ∂ f̂
∂θ

=
∂J
∂ f̂
· ∂ f̂
∂θ
. (7.2)
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The first term ∂J
∂ f̂

of the right-hand side is obtained from Eq. 5.20 after solv-
ing the adjoint equations (Eq. 5.18b). The second term ∂ f̂

∂θ of the right-hand
side is indeed the gradient of the GNN’s output with respect to the θ parame-
ters of the GNN, which is available using the automatic differentiation. These
two gradients, the analytical one discretized using FEniCS and the numerical
one obtained by the automatic differentiation included in PyTorch Geometric
[Fey and Lenssen, 2019] are combined together to complete the chain rule. Fi-
nally, these compounded gradients are used to train the GNN.

7.2.2 . On the pre-training step
A crucial step of the algorithm is the GNNmodel’s pre-training phase. This

step is necessary to ensure that the GNN’s prediction is plausible enough to
be plugged into the RANS equations. Indeed, the GNN model’s weights and
biases are defined using a default initialization [He et al., 2015] and therefore
early GNN’s predictions are non-physical and cannot be reliably used in the
forward step where the forcing is introduced in the RANS equations for the
computation of the mean flow (Sec. 7.2.1). Indeed, the solution to the RANS
inverse problem may not exist if the initial guess for the forcing term, f̂ , is
too far from a physical value. The pre-training step helps in stabilizing the
GNN’s output and overcome this problem, making the forcing stress term f̂

prediction suitable for subsequent integration into the RANS equations. The
pre-trained model is obtained via a pure supervised learning of the mapping
between the mean flow u (and Reynolds number Re) used as input and the
forcing stress term f as target, both coming from DNS. The loss function used
in this phase is the Mean Squared Error (MSE) lossM, reading as

M =
1

n

n∑
i=1

(fi − f̂i)
2, (7.3)

where n is the number of nodes of the GNN. The number of epochs needed
to reach the required closure term accuracy depends on the specific case at
hand, and it will be specified for each of the training cases shown in the re-
sult section (Sec. 7.3). The closure term accuracy, in this context, refers to
the level of precision necessary for the GNN to produce predictions that en-
able the FEM solver to successfully solve the RANS equations. Throughout the
pretraining phase, the GNN predictions are periodically evaluated by solving
a test FEM step. If the solver converge and accurately resolve the RANS equa-
tions using the GNN predicted closure term, the pretraining phase is consid-
ered complete. This ensures that the GNN has learned an accurate and reli-
able representation of the closure term, making it suitable for advancing to
the full training scheme.
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7.2.3 . On the loss function
During the pre-training step (Sec. 7.2.2), the GNN model is updated using

a loss function designed to align the model’s predictions with the available
data from DNS. As already stated, this phase can be seen as a warm-up step
of the subsequent main training (Sec. 7.2.1). However, when the pre-training
ends and themain training begins, a different loss function is adopted, as can
be observed by comparing Eq. 7.3 with Eq. 7.1. This change may be detrimen-
tal in terms of convergence and destabilize the training process, as the two
optimization landscapes can be significantly different. To mitigate this risk,
both loss functions are retained during themain training phase and combined
through a weight coefficient β as:

L = (1−β)M+βJ = (1−β)

(
1

n

n∑
i=1

(fi − f̂i)
2

)
+β

(∫
Ω
(u− û)2dΩ

)
. (7.4)

This strategy facilitates a smooth transition between the two optimization
steps by adjusting the relative importance of the pretraining and main train-
ing loss functions. In particular, the loss functionM (Eq. 7.3) associated with
the supervised pre-training continues to enforce a data-driven alignment and
guarantees "continuity" in the optimization process. The term J (Eq. 7.1) cor-
responding to the loss function of the physics-constrained loop is introduced
to minimize the mean flow reconstruction error.

Thenext section is dedicated to the discussion of the results. We show that
the converged GNNmodel effectively predicts a forcing term f that is aligned
with the ground truth and consistent with the physics of the system through
the constraint introduced using the adjoint equations. At the same time, an
effective model reconstructing the mean flow u is learned. The method out-
perform the accuracy of standard techniques of mean flow reconstruction.

7.3 . Results

In this section, wepresent the improvements obtainedusing theproposed
data assimilation scheme for the reconstruction of the mean flow field u.
Tests are carried out by considering several scenarios, and in particular the
reconstruction of the mean flow starting from noisy probes, incomplete flow
fields (inpainting) and sparse measurements. The models are compared with
the supervised learning method introduced in chapter 6 introduced as base-
line reference, where the GNN model is trained by solely learning the forcing
stress f based on the DNS data. This forcing stress f is then used as input to
the RANS equations (Eq. 3.8b) in order to reconstruct the mean flow u. The
GNN’s objective is to minimize the discrepancy between the predicted and
the ground truth forcing stress (Eq. 4.30), without any constraint introduced
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based on the physics of the system. In contrast, the hybrid data assimila-
tion scheme discussed in this chapter introduces in the training process of
the GNN the physics constraint. To compare the two methods, we evaluate
their training curves after the pre-training phase by identifying the minimum
loss values reached by each model in the training process. The percentage
improvement is then computed as follows:

I(%) =
min(JSupervised)−min(JPhysics constrained)

min(JSupervised) · 102, (7.5)
wheremin(JSupervised) andmin(JPhysics constrained) represent theminimumval-
ues of the loss function on themean flow reconstruction (Eq. 7.1) for the base-
line (pure supervised learning) and the adjoint based methods, respectively.
In the following, we introduce different learning task by focusing on the tech-
nical features of the method and discussing the achieved improvements in
terms of mean flow reconstruction.

7.3.1 . Proof of Concept
The first test case we consider is the flow field reconstruction when the

input of GNN is the complete mean flow u (and Reynolds numberRe) defined
on the entire computational domain Ω. This test case is introduced as proof
of concept of the method. We consider two cases of increasing complexity.
The first case is a flow developing past a 2D cylinder at Reynolds number of
Re = 150. This case is well documented in literature and its time-averaged
mean flow is shown in Fig. 7.2a. The training dataset only contains as input
the mean flow u and its corresponding forcing term f as GNN target. The
training curves in Fig. 7.2b show that starting from the pre-training phase, the
implementation of the approach described in this paper leads to a substantial
improvement in the mean flow reconstruction. Specifically, the improvement
attains the value of I = 58.59%.

The second case consists of a two side-by-side cylinders configuration,
also known in literature as the ’flip flop’ case, at Reynolds number Re = 90.
Its RANS resulting mean flow is shown in Fig. 7.3a. The training curves for this
case in Fig. 7.3b demonstrate an even more pronounced improvement, with
a reduction of I = 82.90% in the loss curve. The results indicate not only the
broad adaptability of the proposed approach but also how, in more complex
models, the underlying physics and governing equations play a crucial role in
further increasing the accuracy of the GNN model’s prediction.

7.3.2 . Generalization
In this section, we test the generalization capabilities of the learnedmodel.

The training dataset consists of three cases of 2D cylinder at Reynolds num-
bers ofRe = [90, 110, 130]. On the other hand, the validation dataset includes
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a) b)

c) d)

Figure 7.2: (a) The training mean flow input from the ground truth. Thetraining dataset is composed by 1meanflow-forcing pair at Reynolds number
Re = 150; (b) the loss curves for the pure supervised approach (orange line)and the proposed approach (blue line) are shown. The two horizontal dottedlines indicate theminimumvalues of both curves, while the dotted vertical lineindicates the end of the pre-training phase (Sec. 7.2.2); (c) the reconstructedmean flow from the pure supervised approach; (d) the reconstructed meanflow from the present approach. 1D line plots are overimposed on figures (c)and (d), comparing the predicted flow values (red line) with the ground truth(black line) at various sections along the flow field.

data points not included in the training set related to simulations of the flow
around a 2D cylinder at Reynolds number Re = 120 as interpolation test,
and Re = 150 aimed at testing the extrapolation properties. In Fig. 7.4a, the
mean flow u ground truth atRe = 120 case is shown. Based on the validation
cases, we observe an improvement in the mean flow reconstruction by an
average over the entire validation dataset of I = 73.27%. Specifically, we ob-
tained an improvement of I = 78.96% for the interpolation case at Re = 120,
and I = 13.96% for the extrapolation case at Re = 150. The improvement
obtained on the training cases is I = 40.16% as an average over the entire
training dataset.

With this test case, the primary objective is to show that the presented
approach enhances the generalization capabilities of the GNN model. To en-
sure clarity in our analysis, this generalization test case is deliberately isolated
from the others. This separation allows maintaining a focused evaluation for
each individual test case, targeting the specific goals of those tests without
introducing confounding variables related to generalization.
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Figure 7.3: (a) The training mean flow input from the ground truth. Thetraining dataset is composed by 1meanflow-forcing pair at Reynolds number
Re = 90; (b) the loss curves for the pure supervised approach (orange line)and the proposed approach (blue line) are shown. The two horizontal dottedlines indicate theminimumvalues of both curves, while the dotted vertical lineindicates the end of the pre-training phase (Sec. 7.2.2); (c) the reconstructedmean flow from the pure supervised approach; (d) the reconstructed meanflow from the present approach. 1D line plots are overimposed on figures (c)and (d), comparing the predicted flow values (red line) with the ground truth(black line) at various sections along the flow field.

7.3.3 . Sparse Measurement

The learning task presented here involves the reconstruction of the mean
flowon the entire computational domain using as input for theGNNmeasure-
ments from randomly distributed probes. The training dataset is composed
by two simulations of the flow past a cylinder for each Reynolds number in
the range Re = [90, 110, 130], resulting in six cases. For each case, 450 probes
are placed in the mean flow stream, uniformly distributed across the entire
computational domain Ω. Subsequently, 200 of these probes are randomly
removed, leaving a sparse set of 250 probes. This sparse set of measurement
on the mean flow u is used as input to the GNN while its output prediction is
compared with the corresponding forcing stress tensor from the DNS ground
truth. Fig. 7.5a shows the random probes positioning on themean flow, while
Fig. 7.5b the average training curves on the training dataset. In this case, we
demonstrate an improvement in the mean flow reconstruction across all the
training cases by an average of I = 55.09%. This result highlights the ro-
bustness of the proposed approach in scenarios with sparse and randomly
distributed measurements.
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Figure 7.4: (a) The training mean flow input (at Re = 120) from the groundtruth. The training dataset is composed by 3 meanflow-forcing pair atReynolds number Re = [90, 110, 130] while the validation dataset containscylinder cases at Re = [120, 150]; (b) the loss curves for the pure supervisedapproach (orange line) and the proposed approach (blue line) are shown. Thetwo horizontal dotted lines indicate theminimum values of both curves, whilethe dotted vertical line indicates the end of the pre-training phase (Sec. 7.2.2);(c) the reconstructed mean flow (at Re = 120) from the pure supervised ap-proach; (d) the reconstructed mean flow (at Re = 120) from the present ap-proach. 1D line plots are overimposed on figures (c) and (d), comparing thepredicted flow values (red line) with the ground truth (black line) at varioussections along the flow field.

7.3.4 . Denoising
In this test case, the input mean flow field is perturbed with a Gaussian

noise. The probability density function used for the Gaussian distribution
used to generate the noise is given by

ψ (z) =
1

σ
√
2π
e

−(z−µ)2

2σ2 , (7.6)
where z is the random variable, µ is the mean value of the normal distribu-
tion and σ represents its standard deviation. In this case we assumed µ = 0,
namely a standard normal distribution. The training dataset consists of three
cases of cylinder flows, at Reynolds number Re = [90, 110, 130], perturbed
with Gaussian noise having σ = [0.6, 0.4, 0.2], respectively. Fig. 7.6a shows the
effect of σ = 0.4Gaussian noise on themean flow (atRe = 110) while Fig. 7.6b
presents the accuracy in the mean flow reconstruction. The goal here is to re-
move the Gaussian noise and accurately reconstruct the denoised mean flow
field. Our approach demonstrates an improvement on the training dataset
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Figure 7.5: (a) An example of the probes positioning on the mean flow. Thetraining dataset is composed by 6 mean flow-forcing pairs at Reynolds num-ber in the range Re = [90, 110, 130] (two instances for each case) with 250randomly distributed probes; (b) the loss curves for the pure supervised ap-proach (orange line) and the proposed approach (blue line) are shown. Thetwo horizontal dotted lines indicate theminimum values of both curves, whilethe dotted vertical line indicates the end of the pre-training phase (Sec. 7.2.2);(c) the reconstructed mean flow (at Re = 110) from the pure supervised ap-proach; (d) the reconstructed mean flow (at Re = 110) from the present ap-proach. 1D line plots are overimposed on figures (c) and (d), comparing thepredicted flow values (red line) with the ground truth (black line) at varioussections along the flow field.

by a factor of I = 45.67% as an average over the training cases.
7.3.5 . Inpainting

In this test, masking patches are randomly applied to the input mean
flow field. The training dataset consists of three cases of cylinder obstacle
at Reynolds number Re = [90, 110, 130], each with different patch locations
(Fig. 7.7a). The goal is to reconstruct the mean flow field by filling in the miss-
ing patches. The approach demonstrates improvements on the training cases
by an average of I = 41.73%, successfully restoring the missing portions of
the field and enhancing the overall reconstruction accuracy.

7.3.6 . Discussion and outlooks
In this section, we introduced a hybrid data-assimilation for the recon-

struction of the mean flow, starting from corrupted or incomplete data. By
integrating RANS equations into the GNN training process through an adjoint
optimization framework (Sec.5), our model demonstrates superior accuracy
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Figure 7.6: (a) Gaussian perturbed mean flow (at Re = 110). The train-ing dataset is composed by 3 mean flow-forcing pairs at Reynolds number
Re = [90, 110, 130] perturbed with a Gaussian noise having µ = 0 and
σ = [0.6, 0.4, 0.2], respectively; (b) the loss curves for the pure supervised ap-proach (orange line) and the proposed approach (blue line) are shown. Thetwo horizontal dotted lines indicate theminimum values of both curves, whilethe dotted vertical line indicates the end of the pre-training phase (Sec. 7.2.2);(c) the reconstructed mean flow (at Re = 110) from the pure supervised ap-proach; (d) the reconstructed mean flow (at Re = 110) from the present ap-proach. 1D line plots are overimposed on figures (c) and (d), comparing thepredicted flow values (red line) with the ground truth (black line) at varioussections along the flow field.

in reconstructing mean flows, outperforming purely data-driven models. The
proposed method takes mean flow inputs under varying conditions, such as
noisy, sparse measurements or patch—masked flows, and predicts the clo-
sure term of the RANS equations. This predicted term is then used to solve
the RANS equations and reconstruct a complete, uncorruptedmean flow. The
use of adjointmethods for computing the gradients of the loss function allows
the GNN to incorporate physical knowledge into its training process and en-
hances results’ accuracy when compared to the supervised learning strategy
introduced in chapter 7.

The study offers numerous possibilities for future research. First of all,
the introduction of a numerical solver represents also a bottleneck, as the
solution of the direct and adjoint RANS equations is required. The perfor-
mance of the entire method highly depends on the available computational
resources and the efficiency of the numerical solver used. Improvements can
be achieved by efficient, parallel FEM code. This would enable to test the ap-
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Figure 7.7: (a) Patch mask applied on the mean flow (at Re = 110). Thetraining dataset is composed of 3 mean flow-forcing pairs at Reynolds num-ber Re = [90, 110, 130] with randomly located patching mask; (b) the losscurves for the pure supervised approach (orange line) and the proposed ap-proach (blue line) are shown. The two horizontal dotted lines indicate theminimum values of both curves, while the dotted vertical line indicates theend of the pre-training phase (Sec. 7.2.2); (c) the reconstructed mean flow (at
Re = 110) from the pure supervised approach; (d) the reconstructed meanflow (at Re = 110) from the present approach. 1D line plots are overimposedon figures (c) and (d), comparing the predicted flow values (red line) with theground truth (black line) at various sections along the flow field.

plication of the current data assimilation scheme to more complex 3D cases,
including turbulent flows at higher Reynolds numbers. Test cases of higher
complexity would provide valuable insights into the applicability to realistic
cases at larger scales.

From theML viewpoint, amulti-scale prediction process can be envisioned
where a series of GNNs is introduced at different resolutions aimed at refining
progressively the closure term predictions. For instance, one may introduce
an initial GNN model predicting the forcing stresses on a coarse or sparse
grid, followed by models refining the prediction at finer scales, as done with
super-resolution techniques.
Moreover, additional physics-informed elements could be added into the loss
function. Beyond the RANS equations, the model could include explicit terms
associated with boundary conditions, such as the inflow or outflow profiles,
ensuring that the predicted flows better represent physical expectations.

Finally, one could consider alternative MLmodels to the GNNs such as the
transformers [Vaswani et al., 2017]. In contrast with GNN models, transform-
ers are highly effective in capturing dependencies between widely separated
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nodes. This attribute is particularly valuable when dealing with sparse or ir-
regularly distributed measurements, as it allows the model to identify spatial
dependencies in the flow field.
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8 - Part III: Shape optimization of DuctedWind
Turbines (DAWT)

8.1 . Introduction

In the field of CFD, traditional optimization methods (Sec. 5.4) face signif-
icant challenges, particularly when applied to complex, nonlinear and multi-
parametric systems. These methods often depend on iterative evaluations of
the objective function, which, when this latter depends on numerical simula-
tions, become computationally expensive [Jameson, 1995, Rao, 2009]. More-
over, these methods struggle to perform effectively in scenarios with large
and complex parameter spaces, where the relationship between design vari-
ables and performance metrics is often highly non-linear. In other words,
the high computational cost of each numerical simulation, combined with the
need for numerous iterations, makes traditional approaches infeasible for op-
timization tasks that demand the exploration of a wide design space. These
limitations hinder the ability to achieve optimal solutions within a reasonable
time frame. An example is givenby the optimization of energy production flow
systems, in which the maximization of the desired output (i.e., the power pro-
duction, or the overall efficiency of the system, among others) depends on the
complex dynamics of an infinite-dimension system characterized by an often
chaotic and three-dimensional behaviour such as the fluid flow which invests
the machine. A notable example are wind turbines, whose performance opti-
mization is based on the non-trivial dynamics of the flow which invests them,
which is inherently three-dimensional and turbulent (Porté-Agel et al. [2020],
De Cillis et al. [2022]), as well as on the numerous parameters describing the
geometrical configuration of each element of the system (namely, the blade
airfoils and their radial development, the tower and nacelle, etc..).

In this framework we tackle, using ML techniques, the geometry optimiza-
tion of an element of a newly developed wind energy system for urban use,
the Diffuser-Augmented Wind Turbine (DAWT).

DAWTs (Fig. 8.2) are an advanced class of wind turbines that differ from
traditional Open-Rotor Wind Turbines (OWT) by incorporating a surround-
ing diffuser or duct, designed to enhance the flow of wind through the ro-
tor. This configuration results in an increase in power output due to what is
known as the diffuser effect, exceeding the Lanchester-Betz limit for conven-
tional Horizontal Axis Wind Turbines (HAWT) [Bontempo and Di Marzo, 2023].
The Lanchester-Betz limit, formulated by German physicist Albert Betz in 1919,
states that no wind turbine can convert more than 59.3% of the kinetic energy
of the wind into mechanical energy.
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Figure 8.1: (Left) Representation of the actuator disk configuration for a windturbine. (Right) Power coefficient Cp as a function of the axial flow inductionfactor a for a wind turbine.

This theoretical maximum arises in the context the actuator disk model,
which is a theoretical approach used to represent the time-averaged behavior
of a wind turbine. It conceptualizes the turbine as a uniformly permeable
disk that extracts energy from the wind flow, without explicitly modeling the
blades.
The actuator disk model assumes that the wind slows down as it approaches
the rotor plane, where energy is extracted. With reference to Fig. 8.1(Left),
denoting the undisturbed velocity of the wind far upstream as v∞, the velocityat the rotor plane vD can be expressed in terms of the axial flow induction
factor a as:

vD = v∞(1− a) (8.1)
The energy extraction also results in a reduction of wind velocity downstream
vw of the turbine. The velocity far downstream, vw, can be derived as:

vw = (1− 2a)v∞. (8.2)
Given the velocity difference between up and down far stream, an axial thrust
T exerted on the air by the rotor can be defined as:

T = (v∞ − vw)ρAvD (8.3)
This force on the air flow comes from the rotor, or actuator disk, and it’s due
to the pressure difference across the disk. Therefore, it can be seen as:

(p+D − p
−
D)A = (v∞ − vw)ρAv∞(1− a). (8.4)

where vD is expressed as reported in Eq. 8.1. Combining Eq. 8.4 and Eq. 8.2
and multiplying by vD, the power extracted from the wind can be written as:

P = TvD = 2ρAv3∞a(1− a)2 (8.5)
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To quantify the efficiency of the energy extraction, we define the power coef-
ficient Cp (Fig. 8.1(Right)):

Cp =
P

1
2ρAv

3
∞

(8.6)
where the denominator 1

2ρAv
3
∞ represents the total available power in the

wind. Plugging Eq. 8.5 in Eq. 8.6 gives:
Cp = 4a(1− a)2 (8.7)

To determine the maximum Cp, we take the derivative of Cp with respect to
the axial flow induction factor a and set it equal to zero:

dCp

da
= 4(1− a)(1− 3a) = 0 (8.8)

Solving this equation gives:
a =

1

3
(8.9)

Substituting a = 1
3 back into the expression for Cp, we get:

Cp =
16

27
≈ 0.593 (8.10)

This theoreticalmaximumefficiency arises because thewindmust retain enough
energy to keep flowing past the turbine, ensuring a continuous flow.

In order to overcome this theoretical limit, research have recently devel-
oped the DAWTs concept, where the diffuser accelerates the airflow through
the rotor and creates a region of lower pressure downstream that draws ad-
ditional air through the rotor. This effect allows DAWTs to produce more
power than conventional open-rotor turbines of comparable rotor size [van
Bussel, 2007, Ilhan et al., 2021]. Other advantages of DAWTs are the lower cut-
in speed, sensitivity to yaw angles, noise level, tip speed losses, and a higher
safety footprint in case of mechanical failure of the rotor. All these aspects
make DAWTs particularly suitable for small-size applications in urban envi-
ronments [Dilimulati et al., 2018, Stathopoulos et al., 2018, Hassanli et al., 2019,
Potsis et al., 2023]

Small changes in the duct geometry, particularly in the diffuser angle and
its placement relative to the rotor, can lead to significant variations in DAWT
performance,making it an ideal candidate for shapeoptimization. Indeed, op-
timization of DAWTs has been extensively explored in the literature, focusing
particularly on how geometricmodifications to the diffuser or duct can impact
the turbine performance. Foreman et al. [1978] explored these effects by con-
ducting experiments on diffuser-augmented models, highlighting how spe-
cific duct orientations and geometries could improve wind turbine efficiency.
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Figure 8.2: (Left) Frontal view of a Diffuser-Augmented Wind Turbine (DAWT)and its perspective view (Right). Figure inherited from Bontempo and Manna[2022]

Aranake et al. [2015] advanced the field by applying three-dimensional CFD
analyses to various shrouded turbine configurations, focusing on the effects
of boundary layer separation and vortex shedding within the duct. Their work
showed that flow separation along the inner surfaces of the duct could reduce
efficiency, indicating the need for precise duct shape optimization to mitigate
these effects. Venters et al. [2016] introduced optimization techniques based
on RANS simulations to identify optimal duct configurations for enhanced en-
ergy capture. Their approach used high-fidelity CFD models to iteratively re-
fine duct shapes, emphasizing the computational challenges of such optimiza-
tion processes due to the large number of design variables and the need for
extensive computational resources.
These studies collectively underscore the significant computational cost asso-
ciated with duct shape optimization for DAWTs as many of these approaches
rely on iterative CFD simulations. Each shape modification or adjustment in
duct orientation requires, indeed, a completely new full simulation: an exten-
sive analysis of all possible geometric configurations would result in a high-
dimensional, nonlinear design space, requiring a large number of simulations,
and thus leading to impractical computational costs.

To overcome these limitations, in this work we introduce a GNN as a sur-
rogate model, in order to quickly evaluate the flow fields associated with dif-
ferent duct geometries. This surrogate model, trained on high-fidelity CFD
data (Sec. 8.2), enables a quick evaluation of the performance metrics, avoid-
ing the need of RANS simulations at each iteration. The chosen metric is the
power coefficient (Cp). In principle, simpler NN architectures can be used for
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the prediction of a scalar output, without necessary including geometric in-
formation. In practice, although Cp remains a crucial performance metric, it
alone cannot capture the interactions in the flow field, which are essential
for assessing variables that impact downstream conditions. For instance, the
prediction of the full flow field enables for broader optimization targets, such
as the reduction of the turbulence intensity and the enhancement of the flow
regularity downstream of the turbine, that are critical in wind farms, where
the wake from an upstream turbine can substantially affect the performance
of downstream turbines, or else, in urban applications, where they impact on
the local population or ecosystem, due to noise or unsteady airflow. More-
over, predicting thewhole flowfield allows to avoid critical flow configurations
indicating an incipient flow separation on the diffuser, which may result in a
performance drop for a minimal change of the flow conditions. In this sense,
an architecture predicting the entire flow field offers significant advantages
in addressing these optimization objectives. Finally, it is worth stressing that
the choice of GNNmeets the need of a detailed, geometrical parametrization
of key turbine components, such as the duct shape and diffuser position.

In this work, the optimization process is carried out by pairing the sur-
rogate model based on GNN with a Reinforcement Learning (RL) algorithm
[Sutton and Barto, 2018], which acts as an agent optimizing the duct’s ge-
ometry by adjusting control parameters iteratively based on the feedback
from the surrogate model used as the environment. RL is an umbrella term
covering numerous strategies and algorithms aimed at maximizing or mini-
mizing a reward or cost-function by learning policies from interactions with
an environment that is not necessarily known a priori. Recent results are
showing that these techniques are particularly suitable for problems involving
non-linear environments, including active control of fluid flows and problems
where standard techniques of optimization can be limited due to uncertain-
ties in the modeling step [Rabault et al., 2019, Bucci et al., 2019].

In this part of the thesis, we consider a proof of concept for demonstrating
the feasibility of the approach by focusing on a single geometric parameter:
the angle of the duct α. The RL algorithm is used to optimize this parame-
ter to maximize the power coefficient (Cp). Although this is a simplified case,
the goal is to showcase the potential of combining a GNN-based surrogate
model replacing a full-scale numerical simulation with RL algorithms for the
optimization.
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Figure 8.3: Sketch of a ducted wind turbine DAWT reporting the relevant geo-metrical parameters. Figure adapted from Bontempo and Di Marzo [2023].

8.2 . DAWT Ground Truth Data and Numerical Setup

The CFD flow fields used in this work for the optimization of DAWTs duct’s
shape are a series of RANS simulations provided by R. Bontempo 1. These
RANS simulations provide a rich and comprehensive dataset for DAWT per-
formance analysis, with particular focus on the influence of duct geometry on
the wake structure and turbine efficiency. These simulations data serve as
training dataset for the GNN employed in the optimization stages.

In the following, we quickly summarize themain features of the flowunder
consideration, outlined in the work by Bontempo and DiMarzo [2023]. Fig. 8.3
shows a sketch of a DAWT, including the main geometrical parameters de-
scribing its geometry. Specifically, α represents the stagger angle of the duct
(the control parameter in this work), CD is the chord of the duct airfoil shape,
g is the rotor-duct tip gap, R the rotor radius, rhub the hub radius and zLEthe leading edge (LE) axial coordinate. The aerodynamic flow of the DAWT
is simulated using a coupled Blade Element Theory (BET) approach [Burton
et al., 2011]. In this method, Blade Element Theory (BET) is employed to model
the rotor’s aerodynamics, while simultaneously incorporating the effects of
the duct. This coupled approach ensures that the aerodynamic interactions
between the rotor and the duct are fully captured, leading to a more accu-
rate and realistic representation of the complex flow dynamics in the CFD
simulation. The computational domain is a cylindrical volume designed to

1Prof. at Dipartimento di Ingegneria Industriale, Università degli Studi di NapoliFederico II, Naples, Italy
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Figure 8.4: Representation of a portion of the computational domain alongwith the adopted boundary conditions. Figure adapted from Bontempo andDi Marzo [2023]

capture the flow field around the DAWT while ensuring minimal boundary
interference, so that the computational results accurately reflect the aerody-
namic interactions without significant distortions from artificial boundary ef-
fects. To this end, the domain extends both upstream and downstream, with
the inlet and outlet boundary set 15 rotor radii R upstream and downstream
from the rotor plane, respectively. The radial boundary extends to 20 rotor
radiiR, balancing computational feasibility with the need for accurate far-field
boundary conditions (Fig. 8.4). The boundary conditions are tailored to reflect
realistic operating conditions for DAWTs. At the inlet boundary, a uniform ve-
locity profile, V∞, simulates the ambient wind. At the outlet boundary, a zero
static pressure condition with radial equilibrium is imposed. The outer radius
boundary is treated as a free-shear wall, while periodic conditions are applied
to the lateral surfaces.

The mesh is divided into distinct regions for the rotor, duct, and exter-
nal flow to optimize grid density where it is most critical. The mesh employs
structured grids for the rotor and duct regions, with dense clustering near
blade surfaces and the duct’s inner walls. This localized refinement is cru-
cial for resolving boundary layer dynamics, flow separation, and other near-
surface phenomena that influence the ducted turbine’s performance. The ro-
tor mesh, developed by stacking 2D grids in the spanwise direction, allows for
detailed representation of blade curvature and twist. Mesh independence is
validated by monitoring the convergence of Cp and radial force distributionsacross multiple grid densities (Fig. 8.5), with grid refinement concentrated in
the wake region; only minimal changes were observed between the medium
and fine grids, confirming the mesh’s adequacy for performance analysis.
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Figure 8.5: Grid independence test. (Left) Power CoefficientCp andmass flowrate ingested by the rotor (Right) Linear density of the axial and tangentialforces. Figure taken from Bontempo and Di Marzo [2023]

Figure 8.6: Comparison between the ducted (DAWT) (Top) and open (OWT)(Bottom) configurations for V∞ = 7m/s: (a) azimuthally-averaged normalizedaxial velocity, (b) azimuthally-averaged normalized radial velocity contours,
(c) azimuthally-averaged normalized tangential velocity contours, (d) normal-ized axial velocity contours at the rotor plane. Figure adapted fromBontempoand Di Marzo [2023]

(a) (b) (c) (d)

RANS equations are numerically solved using Ansys Fluent’s [ANSYS Inc.,
2023] Finite Volumeapproach. Convective fluxes are discretizedwith a second-
order upwind scheme, and diffusive terms use a central-difference scheme
to maintain accuracy. To model turbulence, the κ-ω Shear Stress Transport
(SST) model by Menter et al. [2003] is selected for its suitability in wind tur-
bine applications, given its balance of accuracy in boundary layer regions and
computational efficiency. This model is particularly effective in resolving the
separation and reattachment behaviors along the duct surfaces and the rotor
blades, which directly impact DAWT performances.

The resulting flow field is shown in Fig. 8.6 for a freestream velocity V∞ =

7m/s; this velocity is adopted for all the simulations used for creating thedatasets,
ensuring uniformitywhile varying other parameters, such as the angleαof the
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duct. These flow fields are used as training dataset for the GNN in the next
optimization stages, as detailed in Sec. 8.3.

8.3 . Optimization Loop

Figure 8.7: End-to-end optimization loop; the complete mesh along with thecontrol variable α are the NN’s block input (Sec. 8.4); u is the GNN’s predictedmean flow; Cp is power coefficient to maximize.
The optimization process is illustrated in the diagram in Fig. 8.7, which

highlights the interactions between each step in the loop. The aim of this
iterative cycle is to refine the duct’s angle α in order to maximize the power
coefficient (Cp). Below, a brief overview of the loop is provided.

• Mesh input: The loop begins by feeding a mesh of the DAWT, with an
initial duct angle α, into a pre-trained NN block (Sec. 8.4), which has
been trained to predict the flow fields, given a certain mesh.

• Flow Field Prediction: The pre-trained NN model (Sec. 8.4) takes this
mesh as input, and provides as output the predicted flow fields, thus
replacing in this step a full-order numerical simulation. The NN acts as
surrogate model of the system.

• Cp computation: Thepredicted flowfields are used to calculate the power
coefficient (Cp) (Sec.8.5), which is the performance metric we aim to
maximize.

• Optimization – Reinforcement Learning (RL): The calculated Cp, alongwith the geometric parameters of the duct (in this case, the angle of the
duct α), are provided to a RL algorithm (Sec. 8.6). The RL agent evalu-
ates these inputs and selects improved geometric parameters with the
goal of increasing Cp.
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• Mesh Generation: The optimized parameters chosen by the RL agent
are then passed to a mesh generator, which creates a newmesh based
on the updated geometry.

The new mesh is fed back into the NN surrogate model (Sec. 8.4), and the
loop continues until an optimalCp is achieved. This optimization cycle iterates
until the system converges on an optimal duct geometry that maximizes the
Cp. One of the significant advantages of using a GNN-based surrogate model
in combination with RL is the reduction in computational cost. The ground
truth, which relies on RANS simulations, requires approximately 20 minutes
per simulation, executed on 5 cores of an Intel(R) Core(TM) i9-10900X CPU @
3.70GHz. In contrast, theGNNsurrogatemodel can provide an approximation
of the flow field in just a few seconds on a single core of an Intel(R) Core(TM)
i5-1135G7 @ 2.40GHz. This strong reduction in computational time allows for
more efficient exploration of the design space andmakes RL-based optimiza-
tion practical for realistic applications or when computational resources are
limited.

8.4 . Machine Learning (ML) in the Optimization Loop

This chapter delves into the details of the NN pre-trained block within the
optimization loop (Fig. 8.7). The NN block consists of two primary compo-
nents: a MLP Positional Encoder and a GNN. These two NNs operate in tan-
dem to predict the flow fields for different wind turbine duct configurations,
providing a fast and efficient surrogate model that can replace computation-
ally intensive CFD simulations. Notably, the GNN used in this work shares the
same hyperparameters as the one used in the previous chapters, detailed in
Sec. 4.8.3.

The optimization process starts when the mesh of the wind turbine is fed
into the NN block. However, one of the key challenges in this setup is en-
suring that the GNN can generalize to unseen configurations, as different ge-
ometries andmesh topologiesmay significantly affect the predictive accuracy
of the model. Directly inputting the raw coordinates of the mesh points into
the GNN would result in a GNN model that is highly sensitive to the specific
arrangement of the nodes. The model tends to learn a specific mapping be-
tween these fixed coordinates in the training dataset and the associated flow
field, becoming overly dependent on the precise arrangement of the input
nodes and therefore loosing its inherent invariance to nodes permutation.
In other words, the GNN becomes "fixed" to particular spatial arrangements
from the training dataset, and therefore it struggles to generalize when tested
on new mesh arrangements. This sensitivity can lead to poor generalization,
especially when the mesh structure changes.
To overcome this limitation, weuse anMLPPositional Encoder as a pre-processing
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step. The MLP transforms the raw coordinates of the mesh points into a la-
tent, non-physical representation. This transformation captures the impor-
tant positional information of the mesh points while abstracting away the ex-
act permutation of these points. The MLP effectively creates a latent space
representation that decouples theGNN from the specific arrangement of nodes,
enabling the GNN to operate independently of the mesh structure. Once the
mesh coordinates have been encoded by the MLP, the resulting latent repre-
sentations are fed into the GNN. The GNN is then responsible for predicting
the flow fields based on the latent representation of the mesh.

This combination of the MLP and GNN allows the network block to handle
a wide range ofmesh configurations and generalize effectively to new geome-
tries. The MLP ensures that the input data is processed in a consistent way,
while the GNN exploits the encoded positional relationships to predict the
flow fields.

8.4.1 . NNs pre-training

A critical aspect of the whole optimization loop is the pre-training of both
the Positional MLP and the GNN. Before these NNs can be used in the opti-
mization process, they must be trained on ground truth data obtained from
CFD simulations (Sec. 8.2), learning to infer the flow fields given a mesh as in-
put. The pre-training is conducted in a supervised learning environment on
data obtained from RANS simulations. From these simulations, a subdomain
of size 1 × R upstream, 2 × R downstream, and 2 × R in the radial direc-
tion (where R is the rotor radius) is extracted. This subdomain is chosen to
reduce the computational load of training the NNs, as the calculation of the
power coefficient (Cp), which we aim to optimize, only requires the flow field
in the immediate vicinity of the rotor. Nonetheless, future works aimed at op-
timizing the far field will require an extended domain for the training process.

The training dataset consists of flow fields for duct configurations with
angles α ranging from 5◦ to 25◦ with ∆α = 5◦, excluding α = 15◦, which was
reserved for validation purposes. A sketch representation of the possible duct
positioning in the training dataset is given in Fig. 8.10. These angles represent
variations in the duct geometry, starting from a baseline configuration where
α = 0. The variations are generated by applying a rigid rotation to the duct
using a rotation matrix centered at the throat point of the duct-rotor system.
The resulting flow fields corresponding to these rotated geometries serve as
the ground truth for the supervised learning process. During training, the two
NNs, the Positional MLP and the GNN, are trained together to learn the map-
ping between the input mesh and duct angle to the corresponding flow fields.
This pre-training phase is conducted independently of the optimization loop
to ensure that the networks can make accurate predictions when included
in the wider optimization framework. Fig. 8.8(a) shows the flow fields sub-
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Figure 8.8: Comparison of flow fields for α = 15◦ (not included in the trainingdataset). (a) the ground truth flow fields, (b) the GNN flow fields prediction,(Top) axial velocity component, (Bottom) swirl velocity component.

(a) (b)

domain extraction as it comes from the ground truth, while Fig. 8.8(b) their
relative NNs prediction for an angle α not included in the training dataset,
specifically α = 15◦. The accuracy of the reconstruction demonstrates the
network’s ability to generalize to unseen cases included in the interval of pa-
rameters.

8.5 . The Optimization Cost Function

The optimization loop aims to maximize the power coefficient (Cp) of thewind turbine. Specifically, the power coefficient is calculated using the Euler
equations for turbomachinery, introduced in the following (Eq. 8.14). This ap-
proach provides an efficient method for approximating the power coefficient
Cp based on the flow characteristics upstream and downstream of the rotor
disk. As previously discussed, this model is primarily based on momentum
theory, which considers the conservation of mass, momentum, and energy
across the control volume. While this approach is relatively simplified com-
pared to more detailed models like the Blade Element Theory (BET), it is com-
putationally inexpensive and well-suited for rapid iterative optimization.
Within the rotor disk context, the power extracted by the wind turbine can
be derived using the Euler’s equations for turbomachinery, which describe
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the relationship between the flow velocity components and the energy ex-
tracted. The basic principle relies on the conservation of angular momentum
through an infinitesimal annular ring of area 2πrdr, which induces a corre-
sponding torque. Since both axial (i.e., va) and tangential (i.e., vθ) components
of the flow velocity depend on the considered radius, the mechanical power
extracted by each infinitesimal annulus of the wind turbine rotor (dP ) can be
written as:

dP (r) = dṁ(r)U(r)∆vθ(r) (8.11)
where dṁ is the mass flow rate through the considered annulus; U is the lin-
ear velocity of the rotor’s blade at the considered radius;∆vθ is the differencein tangential (or swirl) velocity between the upstream and downstream flow
across the actuator disk. The mass flow rate ṁ is defined as

dṁ = 2πrρvadr, (8.12)
in which ρ is the air density, 2πrdr is the cross-sectional area of the annulus
and va is the axial velocity of the flow through the considered annulus. Plug-
ging Eq. 8.12 into Eq. 8.11, we get the equation that represents the mechanical
power extracted from the wind by an annulus of the rotor, where the key
parameters include the mass flow rate, axial velocity, tangential velocity dif-
ference, and the rotor’s angular velocity

dP = 2πrρvaU∆vθdr. (8.13)
To obtain the total power extracted by the rotor, wemust integrate Eq. 8.13

along the entire blade length from the hub (rhub) to the tip (rtip). In fact, the
contribution of each blade element to the total power is, indeed, not uniform,
as the tangential and axial velocity change along the blade. The power extrac-
tion over the entire blade length is given by

P =

∫ rtip

rhub
ρva(r)rω∆vθ(r)2πrdr, (8.14)

where ω is the angular velocity of the rotor and r is the local radius of the
actuator disk. This integral equation (Eq. 8.14) accounts for the fact that the
blade speed (related to rω), the tangential flow velocity difference and the
axial velocity vary with the radial position.
Finally, the power coefficient (Cp) quantifies the efficiency of the turbine in
converting wind energy into mechanical power. It is defined as the ratio of
the power extracted by the turbine P (Eq. 8.14) to the total available power in
the wind Pwind. The total available power in the wind is expressed as

Pwind =
1

2
ρAv3∞, (8.15)
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Figure 8.9: Ground truth Cp values for duct angles α ranging from 5◦ to 25◦,used as a reference dataset for optimization as compared with the Cp ob-tained by the GNN predicted flows.

in which v∞ is the free-stream velocity of the wind upstream the turbine. The
power coefficient is then given by

Cp =
P

Pwind . (8.16)
Using the Euler’s equations for turbomachinery to calculate the power coef-
ficient strikes a balance between computational efficiency and accuracy. By
focusing on key flow components such as axial and tangential velocities, this
approach avoids the complexity of methods like Blade Element Theory (BET),
which require detailed geometric and aerodynamic modeling of each blade.
The integration over the rotor radius further enhances accuracy by accounting
for velocity variations across the span. This approach is particularly advanta-
geous in optimization scenarios, where rapid evaluations of Cp are needed toexplore large design spaces efficiently. This latter (Eq. 8.16) will eventually be
the cost function used in the present work, with the aim to maximize it.
The ground truth data available for this work consist of power coefficient (Cp)values corresponding to specific duct angles α. The angles α range from 5◦

to 25◦ with a stride of 5◦. Although this dataset covers only a few angles, it
serves as a proof of concept for validating the optimization process. The Cpvalues associated with these angles, for both the ground truth data and GNN
predicted, are shown in Fig. 8.9, representing the performance of thewind tur-
bine for these specific angles. The maximum of the discrepancy is observed
at α = 20◦, where it reaches a value of 3.8%, which is considered acceptable
for engineering design purposes. Although this discrepancy appears small in
absolute terms, it still requires further investigation, as it reflects the limita-
tions in the generalization capabilities of the GNN. In this case, we observe a
monotonically increasing trend in theCp values as the duct angle α increases.
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8.6 . Reinforcement Learning (RL) in the Optimization Loop

The application of RL algorithms for optimization of fluid flows is a re-
cent yet rapidly evolving area of research, showcasing significant potential for
solving complex, high-dimensional problems. Several works have explored
the application of RL in different flow control contexts. For example, Rabault
et al. [2019] demonstrated the use of Proximal Policy Optimization (PPO), an
actor-based RLmethod, to control the flow past a cylinder, achieving effective
performance by leveraging the system’s cumulative rewards. Similarly, Bucci
et al. [2019, 2022] applied the Deep Deterministic Policy Gradient (DDPG) [Sil-
ver et al., 2014, Lillicrap et al., 2015] algorithm to stabilize nonlinear dynamics,
such as those governed by the Kuramoto-Sivashinsky equation. Beyond flow
control, RL has been applied to shape optimization problems. Notable works
in this area include those by Viquerat et al. [2021], Keramati et al. [2022], Dus-
sauge et al. [2023], which demonstrate the ability of RL to optimize shapes
for improved system performance. Furthermore, adaptive mesh refinement
using RL has gained traction in recent years, with innovative approaches pro-
posed by Yang et al. [2023], Foucart et al. [2023] to dynamically refine meshes
and enhance simulation accuracy. A recent review by Vignon et al. [2023]
provides a comprehensive overview of these advancements, highlighting the
growing importance of RL in fluid mechanics.

The goal of this section is not to provide an exhaustive introduction to RL,
as the field is vast, multidisciplinary, and mathematically involved. Indeed, RL
encompasses a wide range of methods, with deepmathematical foundations
that extend beyond the scope of this work. For amore detailed exploration of
RL, readers are referred to foundational resources such as Sutton and Barto
[2018]. In this thesis, RL is used as a practical optimization tool. We adopt RL
as a "plug-and-play" strategy, focusing on the DDPG algorithm [Silver et al.,
2014, Lillicrap et al., 2015], which is well-suited for continuous action spaces
like those found in fluid mechanics.

8.6.1 . Introduction to Reinforcement Learning (RL)
Reinforcement learning is a subfield of Artificial Intelligence (AI) in which

an agent interacts with an environment to achieve a certain goal. The agent
learns to make a sequence of decisions by taking actions in the environment,
observing the results (rewards), and improving its decision-making policy over
time. The ultimate goal is to find the optimal policy thatmaximizes the reward
over time, evaluated by a critic. At a high level, RL involves the following core
components:

• Agent: The agent is the decision-maker. It interacts with the environ-
ment by observing its current state st and selecting actions at to influ-ence the environment’s future states. The agent’s objective is to maxi-
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mize its cumulative reward Rt over time, which is achieved by improv-
ing its decision-making policy π through trial and error. In this work,
the agent’s role is to determine the optimal adjustments to the wind
turbine’s duct angle α in order to maximize the power coefficient (Cp).

• Environment: The environment represents the external systemwithwhich
the agent interacts. It defines the state space, the available actions,
and the rewards the agent receives as feedback. The environment in
RL is dynamic, changing in response to the agent’s actions. In our case,
the environment is the wind turbine system, including the aerodynamic
and physical characteristics that influence the power output as a result
of changes in duct angle. The environment provides feedback to the
agent based on how well the turbine performs with respect to energy
extraction after each adjustment.

• State: The state st represents the environment at a specific time step t.
It describes the current situation that the agent perceives, and it may
include all or only a portion of the information necessary for decision-
making. The state space could be continuous or discrete, and the agent
must learn to take appropriate actions based on the current state. In
this work, the state represents the current duct angle α.

• Action: The action at is the decision made by the agent at a given time
step t. It represents the specific operation that influences the environ-
ment. The set of possible actions available to the agent is known as
the action space, which can be either discrete or continuous. In a con-
tinuous action space, like in this work, the agent selects actions that
gradually adjust the duct angle α to optimize Cp.

• Policy: The policy π is a strategy or set of rules that define how the agent
selects actions based on the current state. In mathematical terms, a
policy can be represented as

π : st → at (8.17)
The policy is central to RL because it directly maps the information the
agent observes about the environment (states, st) to its decisions (ac-
tions, at). As the agent learns, it refines its policy π to make better de-
cisions and maximize rewards. In DDPG, a deterministic policy is used,
meaning that for each observed state (e.g., a particular duct angle), the
agent will select a specific adjustment action.

• Reward: The instantaneous reward rt is a score associated with the
action taken by the agent and the environment response to it. It is a
scalar signal that indicates the success or failure of the action in terms
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of achieving the agent’s overall goal. The agent uses this feedback to
assess the effectiveness of its actions and adjust its policy accordingly.
The ultimate objective of the agent is to maximize the cumulative re-
ward Rt it receives over time. Thus, the cumulative return Rt startingfrom a given time step t is defined as

Rt =
∞∑
k=0

γkrt+k (8.18)

where γ is the discount factor (0 ≤ γ < 1) that determines the impor-
tance of future rewards. A higher γ placesmore emphasis on long-term
rewards, while a lower γmakes the agent prioritize immediate rewards.
In the context of optimizing the wind turbine, the reward is linked to the
power coefficient (Cp): a higher Cp results in a higher reward, signalingto the agent that it has made a favorable adjustment to the duct angle.

• Value Function: The value function estimates the expected cumulative
future reward from a given state-action pair. The value function can
be thought of as a measure of long-term potential reward, taking into
account not only immediate rewards but also the future rewards that
the current state or action might lead to. There are two types of value
functions commonly used in RL:

– State Value Function (V (st)): It gives the expected cumulative re-
ward starting from state st and following a certain policy there-
after:

V (st) = E[Rt|st] (8.19)
– Action Value Function or Q-Function (Q(st, at)): It gives the ex-
pected cumulative reward starting from state st, taking action at,and following the policy thereafter:

Q(st, at) = E[Rt|st, at] (8.20)
• Critic: The critic is responsible for evaluating the actions taken by the
agent based on the state-action pair. In DDPG, the critic approximates
the Q-Function, which estimates the value of a particular action in a
given state. This feedback helps the agent update its policy to choose
actions that maximize long-term rewards. The critic uses the Bellman
equation [Sutton and Barto, 2018] to iteratively improve its estimates of
future rewards, learning how good an action is in terms of maximizing
cumulative rewards. The critic and actor work together: the actor sug-
gests actions, and the critic evaluates them, guiding the actor toward
better policies.
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This approach allows for control of complex, nonlinear systems through the
interactions of the agent with the environment, assessed by the critic part.
The following section will focus on how DDPG is applied to this problem to
optimize the duct angle for maximizing the power coefficient (Cp).

8.6.2 . Application of DDPG in the Optimization Loop

The DDPG algorithm is an actor-critic method that is well-suited for op-
timization problems involving continuous control. In this work, we will use
a continuous action space to achieve more precise optimization. By allow-
ing the agent to explore continuous values, it can adjust the duct angle with
fine precision to maximize the turbine’s performance. In DDPG, the actor and
the critic are represented by two NNs, namely two MLPs, to approximate key
functions to guide the learning process.

The actor network is responsible for determining which action to take,
given the current state of the system. In this context, the action represents an
adjustment to the duct angle of the wind turbine. The critic network evaluates
the quality of the actions taken by the actor. It does this by approximating
the Q-Function, which predicts the expected cumulative reward (here, related
to the power coefficient Cp) for a given state-action pair. The critic provides
feedback to the actor, helping it improve its policy over time.

In RL, the agent interacts with the environment in episodes. During each
episode, the agent observes the current state, takes an action (adjusts the
duct angle), receives a reward (based on Cp), and transitions to a new state.
The agent’s goal is to maximize the cumulative reward over time by learning
the best sequence of actions. To further stabilize learning, DDPG makes use
of a replay buffer. During training, the agent stores past experiences in the
buffer, where each experience consists of a tuple: state, action, reward, next
state. Instead of updating the actor and critic after each individual experi-
ence, the agent samples mini-batches of experiences from the replay buffer.
This random sampling breaks the temporal correlation between consecutive
experiences, allowing the agent to learn more effectively from diverse situa-
tions.

In the context of this work, the state includes the current duct angle (and
in future works possibly other environmental variables). The action is a con-
tinuous adjustment to the duct angle, and the reward is the power coefficient
(Cp). The DDPG agent interacts with the wind turbine system over multiple
episodes, continuously adjusting the duct angle based on the feedback it re-
ceives. As the agent observes the results of its actions, whether Cp increasesor decreases, it learns to fine-tune its policy. Throughout the training process,
the actor network improves its ability to output the best duct angle adjust-
ments, while the critic network learns to evaluate these actions. Over time,
this results in the agent converging to a policy that optimally adjusts the duct
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angle, maximizingCp and enhancing the overall performance of the wind tur-
bine.

8.7 . The Mesh Generator

In this section, we describe the mesh generator script, which plays a cru-
cial role in the optimization loop. It generates new mesh geometries based
on the updated design parameters received from the reinforcement learning
(RL) algorithm, specifically, the duct angle α in this case. This script is written
in Python and uses the Gmsh [Geuzaine and Remacle, 2009] library to create
and modify the mesh.
A critical feature of this mesh generation process is the refinement of the
mesh in specific areas, particularly near the actuator disk. This local refine-
ment is necessary to enhance the precision of the NN predictions, as accurate
flow field predictions are vital in regions where energy extraction occurs. By
increasing the density of mesh elements near the actuator disk, the genera-
tor ensures that the predicted flow characteristics are more detailed, which
in turn improves the feedback provided to the RL agent during optimization.

Figure 8.10: Cross-sectional generated mesh with refinement near the actua-tor disk at x = 0 along with the different duct positioning based on the angle
α from 5◦ to 25◦

Fig. 8.10 illustrates a two-dimensional cross-sectional view of the gener-
ated wind turbinemesh. Themost refined section of themesh is located near
the actuator disk, which is positioned at x = 0. This increased mesh density
in the region surrounding the actuator disk ensures that the flow predictions
in this critical area are highly accurate. In addition, the various duct positions
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Figure 8.11: Optimization cycle performance: (Left) the optimization statecurve as a function of the steps in the episodes (Right) the cumulative rewardsper episode

corresponding to angles α ranging from 5◦ to 25◦ are overlaid in the figure.
These ducts represent the different configurations evaluated in the current
optimization process.
Fig. 8.11 showshow theRL-drivenoptimization follows a trajectory thatmatches
the performance of the real system as represented by the ground truth. This
demonstrates that the methodology is not only effective but also accurate,
within the limits of the surrogate model used. The results obtained in this
study are consistent with expectations, demonstrating that the optimization
loop effectively finds themaximumpower coefficient (Cp) within a small num-
ber of episodes. The iterative process of adjusting the duct angle, guided by
the RL algorithm, shows that the system is capable of optimizing the Cp effi-
ciently.

8.8 . Discussion

In this work we combined the use of a surrogate model based on GNN
with an optimization process based on RL; in particular, by considering as
optimization parameter the duct angle α, we demonstrated that it is possible
to combine the two data-driven frameworks for obtaining robust prediction
of the Cp (Fig. 8.9) and maximizing it. The performance of the optimization
loop is effectively captured in Fig. 8.11, which illustrates both the evolution of
the state st of the system over the step in each episode and the cumulative
rewards Rt (Eq. 8.18) at each episode.The left panel of Fig. 8.11 illustrates the optimization averaged state curve,
where the state of the system st, specifically the duct angle α, as a function ofthe step within each episode. The curve presented is an average over all 50
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episodes, providing a single view of how the state of the system st evolvesthroughout the optimization process. The curve shows how the RL agent
gradually learns to adjust the duct angle α, with a consistent trend toward the
maximum angle that optimizes Cp. As the episodes progress, α converges to-ward higher values, aligning with the physical understanding that increasing
αmaximizes the power coefficient Cp (Fig. 8.9).

The right panel of Fig. 8.11 presents the cumulative rewards Rt obtainedduring the training process. The cumulative reward reflects the agent’s over-
all success in achieving its objective, in this case maximizing Cp. The initial
cumulative rewards are relatively low, reflecting the agent’s early phase of
random exploration, where it lacks sufficient knowledge about the system to
make effective adjustments to α. As training proceeds, the cumulative re-
ward increases sharply, indicating rapid learning and an effective refinement
of the agent’s strategy π. This quick rise demonstrates that the agent is effi-
ciently learning the relationship between the duct angle α and Cp. The steepincrease followed by a stabilization at higher reward values confirms that the
optimization problem is relatively simple, allowing the agent to learn an effec-
tive policy rapidly.

Additionally, the cumulative reward curve eventually oscillates around a
maximum value. This behavior is expected in RL applications, particularly
in scenarios where the environment presents some degree of variability or
when the agent reaches a near-optimal policy. The oscillations indicate that
the agent has found a high-performing strategy but continues to explore mi-
nor variations around this optimal configuration to fine-tune its performance.
This exploration-exploitation balance is a distinctive feature of RL, as the agent
seeks to maximize long-term rewards while still occasionally testing slight ad-
justments to ensure it is not missing any better configurations.

Notably, the GNN used in this study was not subject to any hyperparam-
eter optimization (Sec. 4.8.3). The robustness of the learning framework is
demonstrated by the fact that the same hyperparameters, which was opti-
mized in a different case study (Sec. 6 or Sec. 7), also perform well in this
entirely different application. This indicates the general effectiveness of the
chosen GNN configuration. A hyperparameters optimization would likely en-
hance theGNN’s predictive accuracy and the overall efficiency of the optimiza-
tion loop.

While the study focuses on a relatively simple scenario due to the mono-
tonic dependence of the coefficientCp as a function ofα, the primary aim is to
demonstrate the methodology and the ability of the RL algorithm, combined
with the NN surrogate model, to optimize the duct geometry effectively.

In future works, we aim to expand this optimization framework to address
more complex and realistic scenarios. Specifically, the approach will be ex-
tended to include additional geometric design variables and control param-
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eters that influence the resulting flow field. By broadening the range of vari-
ables under consideration, we will aim at optimizing both the geometry and
the flow characteristics simultaneously. As already pointed out in Sec. 8.1,
the optimization framework will be adapted to accommodate multi-objective
optimization problems, balancing aerodynamic efficiency with other critical
factors, such as flow regularity, structural integrity, or environmental impact.
The RL framework is deemed suitable tomanage large and complex optimiza-
tion spaces, like the ones represented by parametrized turbine designs. This
generalization will be crucial for applications such as wind farm optimization,
whereminimizing downstream turbulence andmaximizing overall energy ex-
traction are essential, or urbanwind turbine setups, whereminimizing the dis-
turbance to the environment is a key objective. To this end, future work will
also focus on enhancing the GNN’s capability to generalize across a broader
range of geometries and flow conditions, which will lead to even more accu-
rate and efficient optimizations.
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9 - Conclusion

The primary objective of this thesis was to investigate the integration of
a ML algorithm, specifically Graph Neural Network (GNN)s, into the field of
Computational Fluid Dynamics (CFD), focusing on data assimilation problems
and optimization of fluid systems. This research is driven by the potential of
ML tools to address some of the limitations of traditional CFD methods, par-
ticularly their high computational cost. These challenges often stem from the
complex parameterization of fluid systems and the need to analyze various
boundary conditions, flow regimes, and geometric configurations, which typ-
ically require extensive additional CFD simulations. By incorporating GNNs,
we aimed to explore practical ways to face these challenges, ultimately sup-
porting the cited aspects of fluid dynamics workflows. This integration is sig-
nificant as emerging computational tools, such as ML, and the increasing of
computational power are becoming available to support and enhance tradi-
tional CFD techniques.

Our researchwas organized around threemain subjects. The first onewas
to address the RANS closure problem by determining whether GNNs could ef-
fectively learn the closure terms for (RANS) models, which can be challenging
to determinewhen complex geometries are analyzed or the access to full data
is limited. Traditional RANS models depend significantly on manually tuned
turbulence closuremodels, which are inherently empirical and often lack gen-
eralizability across different flow conditions. By leveraging high-fidelity Direct
Numerical Simulation (DNS) data, we demonstrated that GNNs could poten-
tially learn these closure terms directly and reduce reliance on traditional tur-
bulence models in certain cases. It is important to emphasize that the aim
here is not to replace traditional turbulence modeling approaches, but rather
to demonstrate how innovative tools like GNNs can provide more adaptive
and general frameworks. Additionally, we employed an active learning strat-
egy to efficiently select data for the training dataset, ensuring that only the
most informative data points were included. This approach minimized the
inclusion of redundant data and enhanced the GNN’s performance and accu-
racy.

Secondly, we explored the importance of physical consistency in MLmod-
els. While data-driven techniques have proven powerful, they often produce
solutions thatmaynot fully adhere to fundamental physical laws, limiting their
application to relevant engineering problems. In response, we embedded
physical constraints into the GNN training process. This physics-constrained
approach helps ensure that the network’s outputs are not only statistically ac-
curate but also consistent with core fluid mechanics principles. This method-
ology aims to bridge the gap between purely empirical modeling and phys-
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ically grounded predictions, thereby improving the model’s robustness and
fidelity for engineering applications. Although incorporating such physical
constraints shows promises, it remains an area that requires further refine-
ment, as this work primarily aims to show a possible technique to include the
physics of the problem into the GNN training process. ML remains fundamen-
tally a statistical tool, contrasting with the deterministic nature of traditional
CFD methods, and therefore cannot be fully relied upon on its own. This part
of the thesis aims at demonstrating, once again, how this approach can po-
tentially support deterministic CFD techniques, and how a combination of the
two might be both efficient and productive.

The third subject we addressedwas the optimization of fluid systems, with
a focus on practical engineering applications. We employed GNNs as sur-
rogate models to optimize the design of Diffuser-Augmented Wind Turbine
(DAWT) ducts, with the aim to significantly reduce the computational cost as-
sociated with the CFD simulations running during the iterative optimization
process for the cost function evaluations. The approach enabled a more effi-
cient exploration of the design space, serving as a proof of concept for using
GNNs in optimization environments. The results suggest that a surrogate ML
model can be used in fluid dynamics optimization, enabling faster conver-
gence to workable designs and providing a starting point for more compre-
hensive future studies. Even though the application here is limited in terms
of the number of parameters involved in the optimization process, this effort
serves primarily as a preliminary demonstration of the potential for efficient
numerical optimizations. More complex optimizations will require further de-
velopment and testing to establish their effectiveness.

Looking ahead, several promising avenues for further research await ex-
ploration. While GNN-based models have shown potential, further refine-
ments are necessary. From the training process viewpoint, incorporatingmore
complex and diverse datasets, as well as exploring additional neural network
architectures, could enhance the performance and the generalizability of the
models. For example, hybrid architectures that combine GNNs with Recur-
rant Neural Networks (RNN)s or transformers may prove useful in adapting
to various flow conditions and improving predictive accuracy. Additionally,
the development of adaptive learningmethods, such as active learning, could
optimize the training process by selectively focusing on the most informative
data. This targeted approach to data usage has the potential to reduce train-
ing times and enhance the overall robustness and efficiency of the models.

Another area for future exploration is the integration of uncertainty quan-
tification into our GNN framework. AsMLmodels are increasingly deployed in
engineering systems, understanding and mitigating prediction uncertainties
becomes crucial. Incorporatingmethods for uncertainty quantification would
improve the reliability of GNN-based models and support decision-making
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processes in tasks such as design optimization.
Furthermore, applying these methodologies to more complex flow sce-

narios, such as three-dimensional flows or fully turbulent flows, could help
demonstrate the potential utility of GNNs as these are indeed the scenarios
where traditional CFD approaches face significant computational challenges
and could benefit most from additional support.

Lastly, the combination of Reinforcement Learning (RL) and fluid dynam-
ics optimization holds some promises. The preliminary results reported in
the thesis enter an already wide literature on the potential for reinforcement
learning to effectively optimize dynamic systems. RL may prove particularly
useful in applications requiring continual adaptation, such as the control of
unsteady aerodynamic surfaces, adaptive turbine blade adjustments, or the
real-time optimization fluid systems. By integrating RL with GNN-based mod-
els, it may be possible to create systems capable of learning and adapting in
real-time, potentially improving operational efficiency in specific applications.

In conclusion, this thesis has aimed to provide a contribution towards in-
tegrating GNNs into CFD workflows, demonstrating some predictive and op-
timization capabilities. The findings presented here suggest potential direc-
tions for broader applications that could contribute to more efficient fluid dy-
namics approaches. As ML technologies continue to evolve, its role in fluid
mechanics may grow, offering useful tools to face certain engineering chal-
lenges. While GNNs show promise, significant challenges remain, and con-
tinued research and refinement are necessary to fully understand and utilize
their potential. The work presented in this thesis should be seen as an ex-
ploratory step in integrating modern ML tools with traditional fluid dynamics
approaches, providing insights that could inform both engineering and scien-
tific research in the future.
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