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1 Preface 15
1.1 Fully Homomorphic Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

I TFHE Background 21

2 Understanding TFHE 23
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Notations and Mathematical Background . . . . . . . . . . . . . . . . . . . 23
2.1.2 Learning With Error Problems & its Variants . . . . . . . . . . . . . . . . . 25
2.1.3 Attacks on (G)LWE Problems . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.4 Practical Estimation of (G)LWE Security . . . . . . . . . . . . . . . . . . . 27
2.1.5 Fully Homomorphic Encryption . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 TFHE Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.1 TFHE Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.2 TFHE Ciphertexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 TFHE Modular arithmetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.1 Homomorphic Addition of (G)LWE ciphertexts . . . . . . . . . . . . . . . . 33
2.3.2 Rotation and Multiplication by Public Constants . . . . . . . . . . . . . . . 35
2.3.3 Key Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Programmable Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4.1 Programmable Bootstrapping Building Blocks . . . . . . . . . . . . . . . . . 41
2.4.2 Programmable Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4.3 Carry and Message Space Encoding . . . . . . . . . . . . . . . . . . . . . . 51

2.5 Optimization & Parameter Generation . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.5.1 Basis for FHE Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.5.2 The TFHE Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . 54
2.5.3 Pre-Optimization & Graph Transformations . . . . . . . . . . . . . . . . . . 55
2.5.4 Correctness and Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.6 Limitations of TFHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3 More Feature in TFHE 61
3.1 Relevant Algorithms and Improved Bootstrapping . . . . . . . . . . . . . . . . . . 61

3.1.1 Circuit Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.1.2 Horizontal and Vertical Packing . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.1.3 Bit Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.1.4 Multivariate Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.1.5 Extended Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3



CONTENTS

3.2 Parallelized Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2.1 Parallelized Extended Bootstrapping . . . . . . . . . . . . . . . . . . . . . . 70
3.2.2 Multi-Bit Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3 Without Padding Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.4 Multiple LUT evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

II TFHE High-Performance Primitives 83

4 Accelerating TFHE with Sorted Bootstrapping Techniques 85
4.1 Overview of the Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2 Sorted Extended Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.1 Sorted Bootstrapping Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3 Companion Modulus Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.4 Parallelism to Scale Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4.1 More Parallelism for the EBS . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.4.2 More Parallelism for the SBS . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 New Secret Keys for Enhanced Performance in TFHE 101
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2 Partial GLWE Secret Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.1 Hardness of Partial GLWE . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2.2 Algorithm with Partial GLWE Secret Keys . . . . . . . . . . . . . . . . . . 104

5.3 Secret Keys with Shared Randomness . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3.1 Hardness of Secret Keys with Shared Randomness . . . . . . . . . . . . . . 112
5.3.2 Advantages of Secret Keys with Shared Randomness . . . . . . . . . . . . . 113

5.4 Combining Both Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.5 Parameters & Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.5.1 Partial GLWE Secret Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.5.2 Secret Keys with Shared Randomness . . . . . . . . . . . . . . . . . . . . . 121
5.5.3 Combining Both . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.6 Some Higher Level Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6 Removing the Padding bit 125
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.2 Comparison Between A

(CJP21) and A
(GBA21) . . . . . . . . . . . . . . . . . . . . . . 125

6.3 Multi-Input Lookup Table Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.4 Comparison Between A

(this work), A(CJP21) and A
(GBA21) . . . . . . . . . . . . . . . 131

6.5 Comparison Between A
(this work) and A

(LMP21) . . . . . . . . . . . . . . . . . . . . 132

III Representation for Homomorphic Integer and Floating-Point 135

7 Homomorphic Large Integers 137
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.2 Modular Arithmetic with Several LWE ciphertexts . . . . . . . . . . . . . . . . . . 138

7.2.1 Radix-Based Large Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.2.2 CRT-Based Large Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.2.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.3 TFHE-based Large Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.3.1 Generalization of radix to any large modulus . . . . . . . . . . . . . . . . . 143
7.3.2 Larger Integer using Hybrid Representation . . . . . . . . . . . . . . . . . . 146
7.3.3 Generic Lookup Table Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 147

4



CONTENTS

7.3.4 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8 From Integers to Floating-points 151
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.1.1 Prior Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
8.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.2.1 New Integer Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.2.2 Traditional Floating-Point Representation . . . . . . . . . . . . . . . . . . . 156

8.3 Homomorphic Floating-Points (HFP) . . . . . . . . . . . . . . . . . . . . . . . . . . 157
8.3.1 MiniFloats: WoP-PBS Based Floats . . . . . . . . . . . . . . . . . . . . . 157
8.3.2 Homomorphic Floating-Point Encoding . . . . . . . . . . . . . . . . . . . . 158
8.3.3 Choosing Between Two Ciphertexts . . . . . . . . . . . . . . . . . . . . . . 160
8.3.4 Propagating the Carries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

8.4 Addition and Subtraction of HFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
8.4.1 Managing Mantissas and Exponents . . . . . . . . . . . . . . . . . . . . . . 163
8.4.2 Addition and Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

8.5 Multiplication and Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
8.5.1 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
8.5.2 Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

8.6 More Features over HFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
8.6.1 Managing Special Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
8.6.2 Computing Function Approximations . . . . . . . . . . . . . . . . . . . . . 175
8.6.3 More Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

8.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

9 Conclusion 181

A Appendix 195
A.1 Appendix Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

A.1.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
A.2 Appendix Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
A.3 Appendix Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

A.3.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

5



6



Résumé en Français

La cryptographie est une science visant à assurer la sécurité de l’information et des communications.
L’un des plus anciens cryptosystèmes documentés est le chiffrement de César, datant du premier
siècle avant J.-C., qui consiste en une permutation de l’alphabet.

Au fil du temps, la cryptographie a évolué, passant de simples chiffrements par permutation
aux systèmes cryptographiques modernes utilisés quotidiennement par des milliards de personnes
à travers le monde. Si la cryptographie a été initialement développée pour des usages militaires
ou diplomatiques, elle n’est désormais plus restreinte à ces domaines. De nos jours, les données
numériques circulent en continu sur des réseaux non fiables, faisant de la cryptographie une sci-
ence fondamentale pour la protection de la vie privée et des communications quotidiennes où elle
joue un rôle crucial dans la garantie de la confidentialité, de l’authenticité et de l’intégrité des
messages. La confidentialité assure qu’aucune information n’est divulguée à des entités malveil-
lantes, l’authenticité, quant à elle, garantit que la communication s’effectue bien avec les entités
prévues, et enfin, l’intégrité s’assure que les données n’ont pas été modifiées par un tiers. La cryp-
tographie est présente partout dans notre vie quotidienne. Elle est notamment intégrée dans de
nombreux appareils tels que les smartphones, les montres connectées et les ordinateurs. Elle est
aussi utilisée pour sécuriser des services comme les banques et les communications numériques. Des
schémas cryptographiques robustes sont donc essentiels. Leur sécurité repose sur des problèmes
mathématiques difficiles ainsi que sur des algorithmes cryptographiques, tous deux fondés sur des
modélisations et des preuves mathématiques, qui assurent qu’un schéma cryptographique satisfait
les propriétés de sécurité souhaitées. Nous pouvons ainsi distinguer deux grands paradigmes de
chiffrement: le chiffrement symétrique et le chiffrement asymétrique.

Le chiffrement symétrique, également appelé cryptographie à clé secrète, désigne les schémas
dans lesquels la même clé secrète est utilisée à la fois pour le chiffrement et pour le déchiffrement.
Dans ce contexte, deux parties partagent la même clé, ce qui permet d’assurer une communication
sécurisée et de protéger les données. Le chiffrement symétrique est par exemple employé dans le
chiffrement de disque, qui permet à un utilisateur de stocker et d’accéder à ses propres données en
toute sécurité. Ces schémas sont généralement très efficaces pour chiffrer de grandes quantités de
données et reposent sur des clés plus courtes que celles utilisées dans les schémas asymétriques. Le
principal inconvénient du chiffrement symétrique réside dans le fait que les deux parties doivent
avoir accès à la même clé secrète. La distribution sécurisée de cette clé n’est pas une tâche triviale,
et ce problème est généralement résolu grâce au recours au chiffrement asymétrique.

Le chiffrement asymétrique, également appelé cryptographie à clé publique, désigne les schémas
qui utilisent une paire de clés. La première, la clé publique, est accessible à tous et sert à chiffrer
les messages, tandis que la seconde, la clé privée, n’est connue que du destinataire et lui permet de
déchiffrer les textes chiffrés. Comme mentionné précédemment, les schémas asymétriques peuvent
être utilisés pour partager en toute sécurité une clé symétrique entre plusieurs parties: ce processus
est appelé échange de clés. Le premier protocole de chiffrement asymétrique fut un protocole
d’échange de clé créé par Diffie et Hellman en 1976 [DH76], suivi de l’algorithme RSA, développé
par Rivest, Shamir et Adleman en 1978 [RSA78].

Avènement de l’ordinateur quantique. La cryptographie moderne repose aujourd’hui sur des
problèmes mathématiquement difficiles, c’est-à-dire des problèmes qu’il est pratiquement impossi-
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ble de résoudre sans disposer d’informations auxiliaires, comme une clé secrète. La cryptographie
à clé publique s’appuie principalement sur deux grandes familles de problèmes: le problème de
la factorisation, qui consiste à retrouver les facteurs premiers p et q d’un produit N = p · q et le
problème du logarithme discret, qui consiste à retrouver l’exposant x tel que a = bx pour des a
et b donnés dans un groupe cyclique. Actuellement, ces problèmes sont encore considérés comme
difficiles, et réussir à les résoudre efficacement compromettrait tous les schémas cryptographiques
qui en dépendent.

En 1994, Peter Shor a introduit un nouvel algorithme quantique, aujourd’hui connu sous le
nom d’algorithme de Shor [Sho94], permettant de résoudre efficacement les problèmes difficiles
mentionnés ci-dessus à l’aide d’un ordinateur quantique suffisamment puissant. Grâce à cet al-
gorithme, la factorisation ou le calcul de logarithmes discrets pourraient être effectués en temps
polynomial, alors qu’actuellement ces problèmes nécessitent un temps exponentiel. Cela réduirait
ainsi la durée d’attaques, d’un temps impraticable à l’échelle humaine à seulement quelques jours
ou heures [GE21]. En 1994, les ordinateurs quantiques n’étaient encore qu’un concept théorique,
et ce type d’algorithmes n’avait donc aucun impact sur la sécurité des schémas basés sur ces
problèmes, tels que RSA [RSA78] ou l’échange de clés de Diffie–Hellman [DH76]. Au cours de la
dernière décennie, de grandes entreprises comme Intel, Microsoft, IBM et Google ont massivement
investi dans la recherche quantique, transformant progressivement cette technologie de la théorie
en réalité. Même si nous en sommes encore aux premiers stades, la menace posée par de tels
algorithmes doit être prise au sérieux. La cryptographie du futur doit s’adapter et reposer sur des
problèmes considérés comme résistants aux ordinateurs quantiques.

Au regard de la menace posée par les ordinateurs quantiques, le National Institute of Standards
and Technology (NIST) [NIS] a lancé en 2016 un processus de normalisation de la cryptographie
post-quantique. Au départ, 69 schémas de chiffrement et de signature étaient en compétition.
Finalement, seuls quatre ont été retenus, dont trois reposent sur des problèmes liés aux réseaux
(lattices): Kyber [BDK+18], Dilithium [DKL+18], Falcon [PFH+20]. Ces résultats font de la
cryptographie basée sur les réseaux un successeur post-quantique particulièrement prometteur.
Aujourd’hui, de nombreuses constructions cryptographiques reposent sur les réseaux, notamment
le chiffrement public, les protocoles d’échange de clés et le chiffrement homomorphe.

Chiffrement Totalement Homomorphe

Le chiffrement totalement homomorphe (Fully Homomorphic Encryption, FHE) désigne une famille
de schémas de chiffrement permettant d’effectuer des calculs directement sur des données chiffrées.
Cette propriété offre la possibilité à un tiers de manipuler des textes chiffrés tout en préservant la
confidentialité des données sous-jacentes. Actuellement, l’un des principaux domaines ciblés par
une telle technologie est l’apprentissage automatique (machine learning). Par exemple, des réseaux
de neurones peuvent être utilisés pour prédire des maladies comme le cancer à partir de dossiers
médicaux. Ces programmes aident la communauté médicale à améliorer la précision des diagnostics
et à renforcer la détection précoce des maladies graves. Cependant, les hôpitaux ne peuvent pas
partager directement des données médicales sensibles avec des tiers non fiables. C’est là que le
chiffrement totalement homomorphe constitue une solution idéale: les données sensibles peuvent
être chiffrées puis envoyées à un tiers, qui effectue des calculs de manière homomorphe sans rien
apprendre des données. Les résultats chiffrés sont ensuite renvoyés à la communauté médicale, qui
les déchiffre pour obtenir l’analyse, tout en préservant la confidentialité des patients. Un autre
domaine émergent est l’utilisation du chiffrement totalement homomorphe dans la blockchain, où
il permet d’effectuer des transactions sans divulguer d’informations, tout en garantissant que les
opérations sont correctement exécutées. De plus, il trouve des applications dans de nombreux
autres domaines, tels que le vote électronique ou le calcul multipartite sécurisé.

Le concept de chiffrement homomorphe a été introduit pour la première fois en 1978 par Rivest,
Adleman et Dertouzos [RAD+78], qui ont posé la question de l’existence d’un schéma de chiffrement
permettant de manipuler des données chiffrées sans rien révéler, et tel que le déchiffrement du texte
chiffré manipulé retourne le même résultat que si l’on avait appliqué les opérations directement
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sur les données en clair. Depuis, de nombreux schémas ont été développés pour satisfaire cette
propriété, et un champ entier de la cryptographie s’est construit autour de ce concept.

On distingue trois grandes familles de schémas de chiffrement homomorphe, les schémas par-
tiellement homomorphes (Partial Homomorphic Encryption, PHE), qui permettent un seul type
d’opération (addition ou multiplication uniquement), les schémas presque homomorphes (Some-
what Homomorphic Encryption, SHE), qui autorisent l’addition et la multiplication mais en nombre
limité, et enfin les schémas totalement homomorphes (Fully Homomorphic Encryption, FHE), qui
permettent d’effectuer des opérations arbitraires sans contrainte de profondeur de calcul.

Dans ce travail, nous nous concentrons uniquement sur les schémas totalement homomorphes.
Mais à titre d’exemple de schémas partiellement homomorphes, on peut citer RSA [RSA78] ou
ElGamal [ElG85], qui permettent un nombre quelconque de multiplications entre textes chiffrés
mais pas d’autres opérations, ce qui limite leur applicabilité. De même, le schéma de Paillier [Pai99]
autorise un nombre quelconque d’additions entre textes chiffrés, mais ne permet pas d’effectuer
d’autres opérations. Un des premiers schémas presque homomorphes a été proposé par Boneh, Goh
et Nissim [BGN05], permettant l’addition et la multiplication, mais seulement un nombre restreint
de fois.

La première solution pratique pour construire un schéma totalement homomorphe a été
présentée en 2009, lorsque Craig Gentry publia son travail “Fully Homomorphic Encryption us-
ing Ideal Lattices” [Gen09]. Ce travail fondateur, comme beaucoup d’autres par la suite, base sa
sécurité sur des éléments aléatoires, appelés bruit ou erreur, présents dans chaque texte chiffré.
Or, effectuer des opérations sur des données chiffrées fait crôıtre ce bruit. Une fois un certain seuil
dépassé, le bruit accumulé empêche de correctement déchiffrer le message. Ainsi, sans contrôle
de la croissance du bruit, aucun schéma dont la sécurité repose sur ces termes d’erreur ne peut
prétendre être totalement homomorphe.

L’une des contributions majeures de Craig Gentry fut de résoudre la limitation liée à la crois-
sance du bruit en proposant un nouvel algorithme appelé bootstrapping, qui réduit le bruit présent
dans un texte chiffré. Cette technique permet, en théorie, d’évaluer un nombre illimité d’opérations
sur des données chiffrées, rendant possible la construction de schémas totalement homomorphes
basant leur sécurité sur des termes d’erreur présents dans chacun des textes chiffrés. Même si
ce premier bootstrapping était extrêmement lent — prenant de 30 secondes à 30 minutes par
opération [GH11] — il a ouvert la voie à de nombreux autres schémas de chiffrement totalement
homomorphe et reste une pierre angulaire dans la conception des constructions modernes.

Les schémas totalement homomorphes reposent sur différents problèmes difficiles. Par exem-
ple, le schéma proposé dans [VDGHV10] est basé sur le problème de l’approximation du plus
grand commun diviseur (GCD), ceux de [LATV12, BIP+22] reposent sur le problème NTRU
(Nth-degree Truncated Polynomial Ring Unit) [HPS98]. De nos jours, les schémas FHE mod-
ernes s’appuient sur ce travail initial et reposent principalement sur l’hypothèse d’apprentissage
avec erreurs (Learning With Errors, LWE) introduite dans [Reg05], ainsi que sur ses variantes, le
Ring-LWE (RLWE) introduit dans [SSTX09, LPR10] ainsi que le General-LWE (GLWE) intro-
duit dans [BGV12, LS15]. Il est important de noter que l’hypothèse LWE et ses variantes sont
conjecturées résistantes aux attaques proposées par les ordinateurs quantiques. Par conséquent,
tous les schémas cryptographiques qui s’appuient sur ces hypothèses sont considérés comme post-
quantiques. Dans la même dynamique que le NIST, l’Organisation Internationale de Normalisation
(ISO) [ISO] a entrepris, depuis 2023, la normalisation des principaux schémas de chiffrement ho-
momorphe, incluant BGV [BGV12], B/FV [FV12, Bra12], CKKS [CKKS17], FHEW [DM17] et
TFHE [CGGI16a].

Alors que tous ces schémas implémentent un algorithme de bootstrapping, dans le cas de
BGV [BGV12], B/FV [FV12, Bra12] et CKKS [CKKS17], la stratégie consiste à l’éviter, car il
demeure une opération trop coûteuse. Ces schémas adoptent alors une approche dite leveled, c’est-
à-dire qu’ils utilisent des paramètres cryptographiques assez grands pour supporter un nombre fixe
d’opérations. Cela implique de choisir des paramètres assurant que l’erreur reste suffisamment
faible après ce nombre d’opérations. Cette stratégie est efficace dans certains cas, mais elle montre
des limites: supporter un grand nombre d’opérations requiert d’augmenter les paramètres, ce qui
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peut conduire à des tailles considérables. De plus, concevoir ces paramètres nécessite de connâıtre
à l’avance le circuit à évaluer.

La deuxième stratégie pour évaluer un circuit homomorphe consiste à utiliser le bootstrapping
comme opération centrale. Cette approche est principalement employée par FHEW [DM15] et
TFHE [CGGI16a], où le bootstrapping a été fortement optimisé, passant de moins d’une seconde
dans les premières implémentations de FHEW à seulement quelques millisecondes dans les ver-
sions récentes de TFHE. Cette amélioration provient essentiellement des optimisations introduites
par TFHE dans une opération clé du bootstrapping. Comparé aux autres approches, le boot-
strapping FHEW/TFHE est non seulement efficace mais également programmable, ce qui permet
d’évaluer toute fonction univariée durant le processus. L’inconvénient majeur de cette approche
réside toutefois dans l’espace de messages réduit, généralement limité à des valeurs inférieures à
8 bits [BBB+22]. Effectuer un bootstrapping sur des messages plus larges devient rapidement
inefficace.

Même si le chiffrement totalement homomorphe, et le bootstrapping en particulier, ont connu
des améliorations significatives en termes de performance au cours de la dernière décennie, ces
algorithmes restent beaucoup plus lents que les opérations en clair. Ce manque d’efficacité demeure
un frein majeur à une adoption massive des schémas totalement homomorphes, et la réduction de
la latence globale reste un défi crucial. Dans ce manuscrit, nous nous concentrons exclusivement
sur TFHE et présentons une étude détaillée de ce schéma, en introduisant plusieurs améliorations
visant à réduire la latence et à lever certaines de ses principales limitations.

Nos contributions.

TFHE est bien connu pour l’efficacité de son bootstrapping, qui non seulement réduit le bruit mais
permet également l’évaluation de fonctions univariées arbitraires, faisant ainsi du bootstrapping
l’une des opérations centrales de ce schéma. Nativement, TFHE supporte des messages booléens
ou de petits entiers (typiquement inférieurs à 8 bits), alors que l’informatique traditionnelle re-
pose sur des types de données élémentaires tels que les entiers 32 bits, 64 bits ou les nombres à
virgule flottante. De plus, les opérations homomorphes sont significativement plus lentes que leurs
équivalents en clair, avec un surcoût généralement d’un facteur d’au moins 106.

Tout au long de ce manuscrit, nous cherchons à améliorer le schéma TFHE en répondant à la
question centrale suivante:

Comment exploiter TFHE pour calculer homomorphiquement des types de données
élémentaires, afin de réduire l’écart entre le calcul chiffré et le calcul en clair ?

Pour répondre à cette question générale, le manuscrit est structuré en deux parties distinctes,
chacune dédiée à une sous-question:

Quelles stratégies peuvent être mises en œuvre pour accélérer les opérations de base
de TFHE ?

Comment représenter et calculer efficacement des types de données élémentaires en
utilisant TFHE ?

Avant d’apporter des réponses à ces questions, le Chapitre 2 introduit l’ensemble des con-
cepts fondamentaux nécessaires à la compréhension du chiffrement totalement homomorphe et,
plus particulièrement, de TFHE. Ce chapitre commence par présenter les problèmes difficiles qui
garantissent la sécurité de TFHE. Il décrit ensuite les différents textes chiffrés utilisés dans TFHE,
ainsi que les opérations de base du schéma. Il expose également certaines limitations connues de
TFHE, telles que la taille réduite de l’espace des messages, la taille importante des éléments publics
et des chiffrés ou encore l’efficacité limitée de certains algorithmes. Enfin, ce chapitre présente les
techniques employées pour générer les différents ensembles de paramètres, indispensables afin de
garantir à la fois la sécurité du schéma et la correction des opérations. Le Chapitre 3 se concentre
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sur l’état de l’art, en présentant des algorithmes classiques et avancés qui répondent à certaines
des limitations introduites dans le chapitre précédent.

Les Chapitres 4, 5 et 6 constituent la première partie de la thèse et visent à répondre à la
première sous-question. Dans le Chapitre 4, nous présentons une amélioration du bootstrapping
qui réduit le nombre d’opérations nécessaires à l’exécution de l’algorithme. Cette amélioration
réduit la latence du bootstrapping ainsi que celle de l’évaluation globale de n’importe quel circuit
homomorphe, ce qui en fait l’une des techniques les plus efficaces pour évaluer des textes chiffrés
de précision moyenne (messages entre 6 et 10 bits). Nous montrons aussi comment cette procédure
peut être améliorée en modifiant une autre partie du bootstrapping, et comment l’algorithme global
peut être parallélisé efficacement.

Le Chapitre 5 propose deux distributions alternatives pour les clés secrètes. Comme ces clés
impactent directement la sécurité de TFHE, nous fournissons une analyse démontrant comment les
utiliser de manière sûre. Nous présentons également les avantages liés à ces nouvelles distributions,
d’abord étudiées séparément, puis nous examinons les bénéfices offerts par la combinaison des deux
distributions. Ces distributions offrent plusieurs atouts, permettant la conception de nouveaux
algorithmes et une meilleure gestion de la propagation du bruit, ce qui conduit à une accélération
globale de TFHE, qu’elles soient utilisées individuellement ou conjointement.

Ensuite, le Chapitre 6 propose un nouvel algorithme qui résout simultanément plusieurs limita-
tions de TFHE. En particulier, cette opération se révèle efficace pour travailler avec des précisions
plus élevées que d’ordinaire et permet d’évaluer des opérations multivariées. À l’issue d’une étude
détaillée, menée selon une méthodologie rigoureuse, nous montrons que, pour des précisions im-
portantes (supérieures à 9 bits), cette technique surpasse les approches de l’état de l’art présentées
au Chapitre 3.

Enfin, les Chapitres 7 et 8 constituent la seconde partie de la thèse et visent à répondre
à la deuxième sous-question. Contrairement aux chapitres précédents, davantage centrés sur
l’amélioration d’opérations isolées et la résolution de limitations spécifiques, ces chapitres se con-
centrent sur les représentations et les encodages. Les améliorations étudiées dans les chapitres
précédents peuvent être adaptées et utilisées dans ces nouvelles constructions.

Dans le Chapitre 7, nous étudions comment représenter efficacement de grands entiers avec
TFHE, afin de correspondre aux types de données élémentaires tels que les entiers 32 bits et 64
bits. En raison des limitations de TFHE, il n’est pas possible d’encoder directement de grands
entiers. Nous les divisons donc en parties plus petites, en utilisant soit une représentation en base
(radix), soit le théorème des restes chinois (Chinese Remainder Theorem, CRT). Ces petits entiers
sont ensuite chiffrés séparément, ce qui introduit de nouvelles contraintes, que nous surmontons en
proposant de nouveaux algorithmes efficaces.

Enfin, le Chapitre 8 propose d’étendre le travail du chapitre précédent en introduisant des
représentations homomorphes efficaces des nombres à virgule flottante. En particulier, nous
présentons deux nouvelles méthodes. La première, basée sur les opérations du Chapitre 6, est
très efficace pour de petites précisions, mais devient inefficace lorsque la précision augmente. La
seconde, fondée sur la représentation du Chapitre 7, permet d’atteindre des précisions plus élevées.
Comme au chapitre précédent, nous y présentons de nouveaux algorithmes afin de répondre de
manière efficace aux contraintes introduites par ces deux nouvelles représentations.

Publications. Nous listons ici les contributions scientifiques et publications réalisées durant
cette thèse et présentées dans ce manuscrit, ainsi que les chapitres auxquels elles sont associées.

[BBB+23] Parameter Optimization and Larger Precision for (T)FHE.

Co-auteurs: Anas Boudi, Quentin Bourgerie, Ilaria Chillotti, Damien Ligier, Jean-Baptiste
Orfila et Samuel Tap. Publié dans le Journal of Cryptology. Présenté au Chapitre 6 et Chapitre 7.

[BCL+23] New Secret Keys for Enhanced Performance in (T)FHE.

Co-auteurs: Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, Adeline Roux-Langlois et
Samuel Tap. Publié à la conférence CCS 2024. Présenté au Chapitre 5.
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[BCL+25] TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point
Arithmetic.

Co-auteurs: Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila et Samuel Tap. Publié à la
conférence CHES 2025. Présenté au Chapitre 8.

[BORT25] Accelerating TFHE with Sorted Bootstrapping Techniques.
Co-auteurs: Jean-Baptiste Orfila, Adeline Roux-Langlois et Samuel Tap. Publié à la conférence

Asiacrypt 2025. Présenté au Chapitre 4.

Autre Publication. Durant cette thèse, nous avons également rédigé un article non inclus dans
ce manuscrit: Sharing the mask: TFHE bootstrapping on packed messages [BBC+25].
Dans cet article, nous présentons un nouveau format de texte chiffré, nommé common mask ci-
phertext, qui repose sur l’utilisation d’un masque partagé permettant de chiffrer plusieurs mes-
sages sous différentes clés secrètes. Le premier avantage de ce type de texte chiffré réside dans la
réutilisation du masque, ce qui permet une compression en éliminant le besoin d’un masque distinct
pour chaque message chiffré. En plus de cet avantage, nous montrons que tous les textes chiffrés
FHEW/TFHE connus, les éléments de clé publique et l’ensemble des opérations peuvent être na-
turellement étendus pour supporter ce format de masque commun. Enfin, à travers une série de
benchmarks, nous démontrons que ce nouveau format de texte chiffré améliore significativement
les performances dans le cadre des opérations amorties. Ce travail a été publié à la conférence
CHES 2025.

Évolution du domaine. Depuis l’introduction des premières techniques de bootstrapping pro-
posées par Gentry en 2009 [Gen09], qui ont démontré la faisabilité du chiffrement totalement
homomorphe, de nombreux schémas FHE ont vu le jour. En moins d’une décennie, avec [DM15]
puis [CGGI16a], la procédure de bootstrapping est passée de plus de 30 minutes (pour de larges
valeurs de paramètres) à seulement quelques millisecondes. Même si l’algorithme est devenu beau-
coup plus rapide au fil des années, évaluer un circuit homomorphe reste encore bien plus lent que
d’effectuer les opérations correspondantes en clair. Pour rendre le FHE pratique, des efforts con-
sidérables ont été consacrés, au cours de la dernière décennie, à l’accélération du bootstrapping et,
plus généralement, du chiffrement totalement homomorphe. Cette thèse a débuté à une période
où la plupart des premières idées avaient déjà été largement explorées et optimisées. Cependant,
au cours de ces trois années, nous avons réussi à découvrir de nouvelles techniques et algorithmes
qui ont contribué à l’amélioration du domaine. De plus, puisque de nombreux schémas totalement
homomorphes reposent sur les mêmes problèmes que TFHE, certaines des améliorations proposées
pourraient être généralisées à d’autres schémas.

Au fil de ces trois années de doctorat, nous avons vu le chiffrement totalement homomorphe
évoluer et s’améliorer, réduisant progressivement l’écart entre le calcul homomorphe et le calcul
en clair. En particulier, nous avons observé les nouvelles possibilités offertes par les avancées de
cette technologie. Comme mentionné dans l’introduction, le chiffrement totalement homomorphe
a été initialement conçu pour des applications en apprentissage automatique et en informatique
en nuage, permettant à des parties externes de calculer sur des données privées sans en révéler
le contenu sensible. Plus récemment, la blockchain a également évolué, permettant l’intégration
de schémas totalement homomorphes dans son infrastructure. Le chiffrement homomorphe rend
alors possibles des transactions sur la blockchain sans divulguer d’information, tout en garantissant
la validité et la bonne exécution des opérations. En rendant le FHE plus pratique, de nouvelles
applications concrètes pourraient émerger, faisant du chiffrement totalement homomorphe une
brique incontournable de la cryptographie moderne.

Enfin, le dernier sujet exploré au cours de ces trois années a été l’émergence d’un nouveau
modèle de sécurité spécifiquement conçu pour le chiffrement totalement homomorphe. Ce modèle
est similaire au modèle classique IND-CPA [BDPR98], mais dans ce nouveau modèle, nommé
IND-CPAD [LM21], l’adversaire dispose d’un oracle de déchiffrement. Un tel modèle permet de
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mieux cibler les particularités du chiffrement totalement homomorphe ainsi que les attaques po-
tentielles qui lui sont propres. Alors que le chiffrement totalement homomorphe est désormais
considéré comme suffisamment mature pour résister aux attaques classiques, de nouveaux types
d’attaques sont récemment apparus [CCP+24, LM21, CSBB24], tous fondés sur ce nouveau modèle.
Ces attaques exploitent la présence de bruit dans les textes chiffrés et la possibilité qu’un échec
lors du déchiffrement divulgue des informations sur le bruit et sur la clé secrète. Par conséquent,
la gestion du bruit et la probabilité d’échec deviennent des aspects essentiels dans l’étude de la
sécurité d’un schéma. Dans le même temps, ces nouvelles menaces ouvrent des pistes prometteuses
pour la conception de contre-mesures efficaces et l’atténuation de leur impact.
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Chapter 1

Preface

Cryptography is a science designed to secure information and communications. It has existed for
centuries, and one of the oldest documented cryptosystems is Caesar’s cipher, dating back to the
first century BC, which consists of substituting each letter of a message with another.

Over time, cryptography has evolved from simple substitution ciphers to modern cryptographic
systems used globally by billions of people every day. While it was originally developed for mil-
itary or diplomatic purposes, cryptography is no longer restricted to such uses. In today’s era,
where digital data flows continuously across untrusted networks, it has become fundamental to
individual privacy and everyday communication, playing a crucial role in ensuring confidentiality,
authenticity, and integrity. Confidentiality ensures that no information is leaked to malicious enti-
ties, authenticity verifies that the communication takes place with the desired entities, and finally,
integrity ensures that the data has not been modified by a third party. Cryptography can be found
everywhere in our daily lives. It is embedded in devices such as smartphones, smartwatches, per-
sonal computers, and is used to secure services such as online banking and digital communications.
Robust cryptographic schemes are therefore essential, and the security of such schemes relies on
hard problems and cryptographic algorithms, both based on mathematical modeling and proofs,
which ensure that a cryptographic scheme satisfies the desired security properties. From there, we
can define two types of cryptographic encryption paradigm: symmetric encryption and asymmetric
encryption.

Symmetric encryption, also known as private key cryptography, refers to encryption schemes
where the same secret key is used for both encryption and decryption. In this context, two parties
share the same secret key, which enables secure communication and also protects data, such as
in disk encryption, allowing a user to securely store and access his own data. These schemes
are typically very efficient for encrypting large amounts of data, and use smaller secret keys than
asymmetric encryption schemes. The main disadvantage of such schemes is that both parties must
have access to the same secret key. Securely distributing this key is not a trivial task and is
generally solved by using asymmetric encryption.

Asymmetric encryption, also known as public key cryptography, is family of encryption that
uses a pair of keys. The first, the public key, is publicly known and used to encrypt messages,
while the second, the private key, is known only by the receiver of the message and allows them to
decrypt ciphertexts. As mentioned before, asymmetric encryption schemes can be used to securely
share a symmetric secret key between multiple parties: this process is called key exchange. The
first asymmetric encryption protocol was the Diffie–Hellman key exchange [DH76], designed in
1976, followed by the RSA algorithm developed by Rivest, Shamir, and Adleman in 1978 [RSA78].

Advent of Quantum Computer. Modern cryptography is now based on mathematically hard
problems, meaning problems that are difficult to solve without access to side information, such as
the secret key. The most famous public key cryptography mainly relies on two families of hard
problems: the factoring problem, which consists of recovering the prime factors p and q from a
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product N = p ·q, and the discrete logarithm problem, which consists of recovering the exponent x
such that a = bx for given a and b in a cyclic group. Currently these problems are still considered
hard, and breaking one of these problems brings down all the cryptographic schemes relying on
them.

In 1994, Peter Shor introduced a quantum algorithm, now known as Shor’s algorithm [Sho94],
that efficiently solves the aforementioned hard problems, assuming access to a sufficiently powerful
quantum computer. With this algorithm, solving the factoring problem or the discrete logarithm
problem could be done in polynomial time, whereas solving these problems currently requires ex-
ponential time, reducing the computation time of the attacks from impractical duration to only a
few days or hours [GE21]. In 1994, quantum computers were still a theoretical concept, and these
types of algorithms had no impact on the security of schemes based on these problems, such as
RSA [RSA78] and the Diffie-Hellman key exchange [DH76]. Over the past decade, major corpo-
rations such as Intel, Microsoft, IBM and Google have massively invested in quantum computers,
transforming this technology from theory into reality. Even if we still are in the early stages of
the quantum computer, the threat of quantum algorithm needs to be taken seriously and future
cryptography needs to be based on quantum-resistant problems.

As a consequence, the National Institute of Standards and Technology (NIST) [NIS] launched in
2016 a post-quantum cryptography standardization process. At the beginning, 69 encryption and
signature schemes were listed to participate in this standardization, and finally, only 4 of them were
accepted, and, 3 of them are based on lattice problems: Kyber [BDK+18], Dilithium [DKL+18],
and Falcon [PFH+20]. These results make lattice-based cryptography a promising post-quantum
successor to current cryptography. Nowadays, many constructions are lattice-based such as public
encryption, key exchanges and homomorphic encryption.

1.1 Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE) refers to a family of encryption schemes that enable com-
putations on encrypted data. This capability allows a third party to process ciphertexts while
preserving the confidentiality of the underlying data. Currently, one of the main fields targeted
by such a technology is machine learning. For instance, neural networks can be used to predict
diseases such as cancer by analyzing medical records. These programs can assist the medical
community in improving diagnostic accuracy and enhancing early detection of serious diseases.
However, hospitals cannot share sensitive medical data with untrusted third parties. This is where
Fully Homomorphic Encryption (FHE) becomes an ideal solution. With FHE, sensitive data can
be encrypted and sent to a third party, who performs computations homomorphically without
learning any information about the data. The encrypted results are then returned to the medical
community, who decrypts them to obtain the analysis while preserving data privacy. Another
nascent field is the use of FHE in blockchain, permitting on-chain transactions without revealing
information, while still ensuring that operations are correctly executed. In addition, FHE can be
applied in many other domains, such as electronic voting and multi-party computation.

The concept of homomorphic encryption was first introduced in 1978 by Rivest, Adleman, and
Dertouzos [RAD+78], who raised the question of the existence of an encryption scheme where
encrypted data could be manipulated without revealing any information, and such that the de-
cryption of the manipulated ciphertext returns the same result as applying the operations on the
plaintext. Since then, many schemes have been developed to satisfy this property, and an en-
tire field of cryptography has emerged around this concept. We can distinguish three families of
homomorphic encryption schemes: Partial Homomorphic Encryption (PHE) schemes, Somewhat
Homomorphic Encryption (SHE) schemes and Fully Homomorphic Encryption (FHE) schemes.
Partial homomorphic encryption schemes allow only a single type of operation (only addition
or only multiplication). Then, somewhat homomorphic encryption schemes permit performing
addition and multiplication but in a limited amount. Finally, FHE schemes support arbitrary
operations without constraints on the computational depth.

In this work, we focus only on FHE schemes, but as examples of partial encryption schemes,
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we can cite the RSA [RSA78] or the ElGamal [ElG85] cryptosystems, which allow any number of
multiplications between ciphertexts but do not support other types of operations, limiting their
applicability. Similarly, we can mention the Paillier [Pai99] cryptosystem, which allows any number
of additions between ciphertexts but does not support other types of operations. One of the earliest
somewhat homomorphic encryption schemes was proposed by Boneh, Goh, and Nissim [BGN05].
This scheme permits to perform addition and multiplication, but only a limited number of times.

The first solution proposed to create an FHE scheme was presented in 2009, when Gentry
published his work “Fully homomorphic encryption using ideal lattices” [Gen09] in which he in-
troduced the first FHE scheme. This primary work, like many that followed, based its security on
small random terms, known as noise or error, present in each ciphertext. Therefore, performing
operations on encrypted data cause this noise to grow. Once the noise reaches a certain threshold,
too much noise is accumulated in the ciphertext, making correct decryption impossible. Conse-
quently, without controlling the noise growth, no scheme whose security is based on errors terms
can claim to be fully homomorphic. One of the most important contribution of this paper consists
of solving this limitation by proposing a new algorithm, called bootstrapping, which reduces the
noise present in a ciphertext. This technique theoretically enables the evaluation of an unlimited
number of operations on encrypted data, making it possible to construct FHE schemes where se-
curity is based on a small error term. Even though this first bootstrapping was slow, ranging from
30 seconds to 30 minutes per bootstrapping [GH11], it paved the way for the creation of many
other FHE schemes and has become a cornerstone in the design of modern FHE constructions.

FHE schemes are based on different hardness assumptions. For instance, the scheme pro-
posed in [VDGHV10] is based on the approximate greatest common divisor problem, while those
in [LATV12, BIP+22] rely on the N th-degree Truncated Polynomial Ring Unit (NTRU) prob-
lem [HPS98]. Nowadays, modern FHE schemes are based on this primary work and rely on the
Learning With Error (LWE) assumption introduced in [Reg05] and its variant, the Ring Learn-
ing With Error (RLWE) assumption introduced in [SSTX09, LPR10] and the General Learn-
ing With Errors (GLWE) assumption introduced in [BGV12, LS15]. We note that, the LWE
assumption and all its variants are conjectured to be post-quantum problems. Consequently,
all cryptographic schemes based on this assumption are resilient against quantum computers.
Following the same initiative as NIST, in 2023 the International Organization for Standard-
ization (ISO) [ISO] began standardizing the main homomorphic encryption schemes, including
BGV [BGV12], B/FV [FV12, Bra12], CKKS [CKKS17], FHEW [DM17], and TFHE [CGGI16a].

While all of these schemes implement a bootstrapping algorithm, in the case of BGV [BGV12],
B/FV [FV12, Bra12], and CKKS [CKKS17], the strategy is to avoid it, as it remains a highly costly
operation, even though these schemes can encrypt multiple messages within a single ciphertext
and then bootstrap several encrypted messages with only one bootstrapping. These schemes then
adopt a leveled approach, meaning they use cryptographic parameters large enough to support a
fixed number of operations. This implies selecting cryptographic parameters which can guarantee
an error small enough after performing the fixed number of homomorphic operations. These
strategies can be applied in many use cases, but certain limitations are already apparent. Indeed,
supporting a large number of operations requires increasing the cryptographic parameters to ensure
a sufficiently small error, which can lead to significantly large parameter sizes. Moreover, designing
such parameters requires prior knowledge of the circuit to be evaluated.

The second strategy for evaluating a homomorphic circuit follows a different approach by using
bootstrapping as a core operation. This strategy is primarily employed by FHEW [DM15] and
TFHE [CGGI16a], where bootstrapping is highly efficient, taking less than a second in the first im-
plementations of FHEW [DM15] and only a few milliseconds in recent versions of TFHE [CGGI16a].
This improvement comes essentially from the improvements to FHEW introduced by TFHE, par-
ticularly in how a key operation is performed in the bootstrapping. Compared to other boot-
strappings, FHEW/TFHE bootstrapping is not only efficient but also programmable, allowing
any univariate function to be evaluated during the bootstrapping process. The main drawback
of this approach is the small message space, which is generally limited to values smaller than
8 bits [BBB+22]. Performing bootstrapping on larger messages quickly becomes inefficient and
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impractical for higher precision.
Even if fully homomorphic encryption, and bootstrapping in particular, has become faster over

the last decade, algorithms remain slow compared to cleartext operations. This lack of efficiency
remains a major bottleneck to the massive adoption of FHE, and reducing the latency of oper-
ations remains a real challenge. In this manuscript, we focus exclusively on TFHE and present
a detailed study of the scheme, introducing several improvements that reduce latency and solve
several limitations of TFHE.

1.2 Our Contributions

TFHE is well known for its fast bootstrapping, which not only reduces noise but also enables the
evaluation of arbitrary univariate functions, making bootstrapping one of the central operations.
Natively, this scheme, supports boolean values and small integer messages (typically less than 8
bits), whereas traditional computing relies on standard data types such as 32-bit and 64-bit integers
or floating-point numbers. Moreover, homomorphic operations are significantly slower than their
plaintext counterparts, typically by a factor of at least 106. Throughout this manuscript, we aim
to improve the TFHE scheme by addressing the following central question: :

How can TFHE be leveraged to homomorphically compute primitive data types,
bridging the gap between encrypted and plaintext computation?

To answer this general question, the manuscript is structured into two distinct parts, each
dedicated to exploring one of the following sub-questions:

What strategies can be employed to accelerate the core operations of TFHE?

How can we represent and efficiently compute primitive data types using TFHE?

Before answering these questions, Chapter 2 introduces all the foundational concepts necessary to
understand fully homomorphic encryption and TFHE. This chapter starts by presenting the hard
problems that guarantee the security of TFHE. Then, it presents the different ciphertexts used in
TFHE based on these hard problems, along with the basic operations of the TFHE scheme. This
chapter also introduces and explains some of the known limitations of the TFHE scheme, such as
the small message space, the size of the public material, or the efficiency of certain algorithms. It
also presents techniques used to generate the different parameter sets necessary to ensure security
and correctness. Chapter 3 focuses on the state-of-the-art, presenting both classical and advanced
algorithms that address some of the limitations introduced in the previous chapter.

Then, Chapters 4, 5 and 6 constitute the first part of the thesis and aim to answer the first
sub-question. In Chapter 4, we present an improvement to the bootstrapping that reduces the
number of operations required to execute the algorithm. This improvement reduces the latency
of both the bootstrapping procedure and the overall evaluation of a homomorphic circuit, making
it one of the most efficient bootstrapping techniques for evaluating medium-precision ciphertexts
(messages between 6 and 10 bit) in TFHE. We also show how this new procedure can be improved
by modifying another part of the bootstrapping, and how the overall algorithm can be efficiently
parallelized.

Chapter 5 proposes two alternative distributions for the secret keys. As these secret keys affect
the security of TFHE, we provide an analysis to demonstrate how to use them safely. We also
present the different advantages of using them, first by studying them separately, and then by
analyzing the impact of combining these two new secret key distributions. These new distributions
offer multiple advantages, resulting in new algorithms and improved noise propagation, which leads
to an overall speed-up of TFHE when such secret keys are used together or separately.

Then, Chapter 6 proposes a new algorithm solving several limitations of TFHE at the same
time. In particular, this operation is efficient for working with higher precision than usual. After
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a detailed study following a rigorous methodology, we show that, for large precisions (greater than
9 bits), this technique surpasses the previous state-of-the-art approaches introduced in Chapter 3.

Finally, Chapters 7 and 8 form the second part of the thesis and aim to answer the second sub-
question. Compared to the previous chapters, which focused more on improving isolated operations
and solving specific limitations, these chapters focus on working with different representations and
encodings. The improvements studied in the previous chapters can easily be adapted and used in
the following constructions.

In Chapter 7, we studied how to efficiently represent large integers using TFHE to match the
primitive data types, such as 32- and 64-bit integers. Due to the limitations of TFHE, we cannot
directly encode large integers, so we split these integers into smaller parts using either a radix
or a Chinese Remainder Theorem (CRT) representation. These smaller integers are then each
encrypted into separate ciphertexts, introducing new constraints that we overcome by proposing
new efficient algorithms.

Finally, Chapter 8 proposes to extend the work presented in the previous chapter by intro-
ducing efficient homomorphic floating-point representations. Especially, we introduce two new
methods. The first one is based on the operations presented in Chapter 6 and is very efficient
for small precision but inefficient for higher precision. The second method is based on the
representation presented in Chapter 7 and allows reaching higher precision. As in the previous
chapter, we design new algorithms to efficiently address the new constraints introduced by these
two representations.

Publications. Here, we list the research contributions and publications made during this thesis
and presented in this manuscript, along with their associated chapters.

[BBB+23] Parameter Optimization and Larger Precision for (T)FHE.
Co-authors: Anas Boudi, Quentin Bourgerie, Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila,
and Samuel Tap. Published in the Journal of Cryptology. Presented in Chapter 6 and Chapter 7.

[BCL+23] New Secret Keys for Enhanced Performance in (T)FHE.
Co-authors: Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, Adeline Roux-Langlois, and
Samuel Tap. Published at the CCS 2024 conference. Presented in Chapter 5.

[BCL+25] TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point
Arithmetic.
Co-authors: Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap. Published at
CHES 2025 conference. Presented in Chapter 8.

[BORT25]Accelerating TFHE with Sorted Bootstrapping Techniques.
Co-authors: Jean-Baptiste Orfila, Adeline Roux-Langlois, and Samuel Tap. Published at
Asiacrypt 2025 conference. Presented in Chapter 4.

Other Works. I have also worked on another paper, named Sharing the mask: TFHE
bootstrapping on packed messages [BBC+25], that is not included in this manuscript. In this
paper, we present a new ciphertext format named common mask ciphertext, which consists of a
shared mask and multiple message bodies. Each body encrypts a distinct message while reusing
the same random mask. The first advantage of such ciphertexts is that they reuse the mask,
allowing ciphertext compression by eliminating the need for one mask per encrypted message. In
addition to the compression benefit, we show that all known FHEW/TFHE ciphertexts, public
key materials and all operations can be naturally extended to support this common mask format.
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Finally, through benchmarks, we demonstrate that this new ciphertext format leads to improved
performance for amortized operations. This work will be published at the CHES 2025 conference.

Evolution of the Domain. Since the introduction of the first bootstrapping techniques pro-
posed by Gentry in 2009 [Gen09], which demonstrated the feasibility of fully homomorphic en-
cryption, many FHE schemes have emerged. In less than a decade, with [DM15] closely followed
by [CGGI16a], the bootstrapping procedure went from more than 30 minutes (for large param-
eters) to only a few milliseconds. Even though the algorithm has become faster over the years,
evaluating a circuit homomorphically remains much slower than performing operations on cleart-
ext. To make FHE practical, significant effort has been focused over the last decade to accelerating
bootstrapping and FHE more generally. This thesis began in a period where most straightforward
ideas had already been thoroughly explored and optimized. However, during these three years, we
managed to discover many new techniques and algorithms that contributed to further improving
TFHE. Moreover, since the other FHE schemes are based on the same problems than TFHE, some
of the proposed improvements might be used more generally in other FHE schemes.

During these three years of thesis work, we have seen fully homomorphic encryption evolve
and improve, progressively bridging the gap between the homomorphic world and the cleartext
domain. In particular, we have seen the new possibilities offered by the advancements in this
technology. As presented in the introduction, FHE was initially designed for machine learning and
cloud computing, allowing external parties to compute over private data without exposing any
sensitive information. But recently, an emerging field integrating FHE schemes into its technology
is blockchain, where FHE could enable on chain transactions without revealing any information,
while still ensuring that operations are correctly executed. By making FHE more practical, new
real-world applications may come to light, making FHE an essential solution for modern cryptog-
raphy.

Finally, the last topic revealed during these three years was the emergence of a new model of
security specifically designed for FHE. This new security model is similar to the classical IND-CPA
model [BDPR98], but in this new model, named IND-CPAD [LM21], the adversary has access
to a decryption oracle. This new model allows better targeting of the capabilities of FHE and
the underlying possible attacks. While fully homomorphic encryption is now considered mature
enough to resist common attacks, we have seen the rise of new types of attacks, such as those
in [CCP+24, LM21, CSBB24], all based on this new model. All these attacks rely on the presence
of noise inside ciphertexts and the possibility of decryption failure leaking some information about
the noise or the secret key. Therefore, noise management and failure probability must be taken
into account when studying the security of a scheme. At the same time, they open up promising
directions for designing new countermeasures and mitigating the impact of such threats.
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Part I

TFHE Background
This first part of the thesis presents the TFHE scheme.

Chapter 2 begins by establishing the essential mathematical back-

ground required to understand TFHE. It introduces the hard prob-

lems such as the Learning With Errors (LWE) and its variants, on

which TFHE is based. This chapter also defines the ciphertext struc-

tures and the principal homomorphic operations, and finally presents

the main limitations of TFHE.
Then, Chapter 3, based on the previous construction, goes deeper into
the state-of-the-art algorithms that define the current capabilities of
TFHE. It presents advanced algorithms that improve the efficiency
and extend the range of applications of TFHE. It also serves as a
reference for comparing our future improvements or new algorithms
against the state-of-the-art.
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Chapter 2

Understanding TFHE

As introduced in the previous chapter, many fully homomorphic encryption (FHE) schemes are
lattice-based cryptosystems. This chapter presents the necessary mathematical background to
define and understand the principles of FHE schemes, and then explores in more detail the Torus
Fully Homomorphic Encryption (TFHE) scheme, which is the focus of this manuscript.

We first introduce the problems used in lattice-based FHE cryptography and briefly discuss the
security of such schemes by presenting common attacks.

Then we focus in more detail on TFHE. Based on the hard problems introduced previously,
we explain how to encode and encrypt a message. We present the different ciphertext types used
in TFHE, mainly for data encryption and later for generating public material required for more
complex operations. Finally, we show how to perform basic homomorphic operations such as
addition, rotation, and multiplication by a constant, as well as more complex operations such
as various forms of key switching, a central operation that enables changing the secret key of a
ciphertext.

All these operations highlight one of the primary limitations of TFHE, and more broadly of
FHE: the growth of noise during computation. As explained in the introduction, when noise
becomes too large, decryption may fail, making noise management essential throughout the com-
putation. This management is handled by the most important, yet most expensive, operation in
FHE: the bootstrapping. After presenting all the necessary building blocks for this operation, we
conclude by presenting the complete bootstrapping procedure.

To conclude the chapter, we present methodologies for parameter selection and explain how to
homomorphically evaluate arbitrary computational graphs. Indeed, careful parameter selection is
essential for enabling efficient circuit evaluation while maintaining low failure probability and the
desired security level.

This chapter concludes by identifying the current limitations of TFHE that are studied and
addressed in this manuscript.

2.1 Preliminaries

In this section, we present the notations used throughout the thesis and the mathematical back-
ground necessary to introduce TFHE and the improvements discussed in the following chapters.
We then introduce the Learning With Errors (LWE) problem and its variants, which have been
proven to be computationally hard to solve, and which form the fundamental basis of TFHE.
Finally, we provide a general definition of what an FHE scheme is.

2.1.1 Notations and Mathematical Background

We use the notations N to represent the natural numbers, Z to represent the natural integers and
R to represent the real numbers. We use the notation N∗ (resp. Z∗) to refer to N \ {0} (resp.
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Z \ {0}). For q a positive integer, we note Zq = Z/qZ the quotient ring of integers modulo q. By
convention, integers are denoted in lowercase x. For two integers a f b, we note by [a, b] the closed
interval, i.e., [a, b] = {k ∈ Z : a f k f b}. We use [a, b) to denote the interval [a, b − 1], (a, b] for
the interval [a+ 1, b] and finally, (a, b) for the interval [a+ 1, b− 1]. We write [.]q to denote the q
modular reduction. The usual notations for the floor +·,, the ceil +·, and the round +·, functions
are used.

Let N be a power of two, representing the degree of the quotient polynomial. Then, we note
Rq,N = Zq[X]/(XN +1) the quotient ring of polynomials modulo XN +1 with integer coefficients
modulo q. When N is clear from the context, we omit it and denote the ring simply by Rq.

Polynomials are noted in uppercase P or P (X) such that P (X) = P =
∑N−1

i=0 piX
i (We note that

N is the only exception of this notation and represents a parameter, the degree of the polynomials).
The vectors are written in bold x, and can be detailed with the notation (x0, . . . , xk). Given two
vectors of integers a and b, we denote the dot product as ïa, bð =∑i ai · bi. We use the notation
{xi}i∈[0,k] to denote the set {x0, . . . , xk}.

Let D be a probabilistic distribution. We denote x←↩ D(D) as the random sampling according
to the distribution D from the support D. Specifically, we denote U (.) as the uniform distribution
and NÃ2 as the Gaussian distribution with a mean set to zero and a standard deviation set to Ã.
We denote Var(X) the variance and E(X) the expectation of a random variable X. Finally, we
denote card(.) the cardinality of a given set.

We denote by ¼ the security level, meaning that an adversary needs to perform at least 2¼

operations to break a cryptographic primitive. Usually, to guarantee a long term security, ¼ is set
to 128.

Definition 1 (Noise & Cost Model). FHE operators are associated with a noise model and an
algorithmic cost model. A noise model is a formula used to model the noise evolution across an
FHE operator. The algorithmic cost model of a homomorphic operation is used to estimate the
cost of executing an algorithm. It is denoted by Cost·, where an atomic operation is denoted by C·.

Definition 2 (Standard score). Let A ←↩ N(0, Ã2) (centered normal distribution), let pfail be a

failure probability and let erf be the error function erf (z) 7→ 2√
Ã

∫ z

0
e−t2dt. We define the standard

score z∗ for pfail as z∗(pfail) =
√
2 · erf−1 (1− pfail) and we have: P(A ̸∈ (−z∗Ã, z∗Ã)) f pfail.

Let t ∈ R, we have z∗(pfail) · Ã f t⇒ P (A ̸∈ (−t, t)) f pfail

Definition 3 (Lattices). A lattice Λ of dimension n is a discrete additive subgroup of Rn, generated
by a finite set of linearly independent vectors.

Λ =

{
k∑

i=1

aibi

∣∣∣∣∣ ai ∈ Z

}

Where {b1, . . . , bk} is a set of linearly independent vectors called a basis of the lattice, and k is the
rank of the lattice. A full rank lattice in Rn is a lattice composed of n linearly independent vectors
in Rn; i.e., k = n.

Cyclotomic Polynomials. In lattice-based cryptography, which will be detailed later, we mostly
use quotient rings of polynomials with special algebraic structures. These structures are based on
cyclotomic polynomials and play a central role in ensuring the hardness assumptions on which
many cryptosystems are based.

Definition 4 (Cyclotomic Polynomials). The nth cyclotomic polynomials, denoted Φn, corresponds
to the unique irreducible polynomial with integer coefficients that divides Xn − 1 but does not a
divide Xk − 1 for any k < n.

For efficiency reasons, we mainly focus on the cyclotomic polynomial Φ2N = XN + 1, where
N is a power of two. Indeed, the underlying quotient ring permits fast polynomial arithmetic via
the Number Theoretic Transform (NTT) or Fast Fourier Transform (FFT). We note that using
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the FFT adds a supplementary error due to the casting of the polynomials (64-bit integers) into
floating-point numbers (double precision with a 53-bit mantissa). This error is analyzed later in
Subsection 2.5.3.

Even if we only study algorithms based on the cyclotomic polynomial Φ2N , with N a power of
two, all the results can be adapted to any cyclotomic polynomial.

Remark 2.1 (Negacyclicity). In this manuscript, we essentially work with the ring of negacyclic
polynomials Rq,N = Zq[X]/XN + 1 with N a power of two. This means that all polynomials are

modulo XN + 1. For any polynomials P (X) =
∑N−1

i=0 piX
i in Rq,N , for any k mod 2N ∈ [0, N)

we have:

P (X) ·Xk =

k−1∑

i=0

pN−k+i ·Xi −
N−1∑

i=k

pi ·Xi.

In particular, we have P (X) = P (X) ·X2N and P (X) = −P (X) ·X±N .

For more details on cyclotomic polynomials, we refer the reader to standard mathematical
references (e.g., [Con15]).

Radix Decomposition. In this manuscript we often refer to the radix decomposition first in-
troduced in [BV14]. This operation consists in decomposing an integer, starting from the most
significant bits, and outputting a vector containing the successive decomposition according to a
given base and level. In [Joy21], authors proposed a more complete analysis of the impact of the
decomposition and even proposed new techniques permitting to balance the decomposition.

Definition 5 (Radix Decomposition [BV14, CGGI16a]). Let ℬ ∈ N∗ be a base decomposition
and let ℓ ∈ N∗ be a level decomposition. Given the base and the level decomposition, the radix
decomposition algorithm (denoted Decℬ,ℓ(·)) takes as input an integer x ∈ Zq and outputs a vector
of integers (x1 . . . xℓ) ∈ Zℓ

q such that:

〈
Decℬ,ℓ(x),

( q

ℬ
, . . . ,

q

ℬℓ

)〉
=

⌊
x · ℬ

ℓ

q

⌉
· q

ℬℓ
= x+ ϵ.

With |ϵ| < q
ℬℓ . The vector Decℬ,ℓ(x) is referred to as the decomposition vector of x. In [CGGI16a],

the integers composing the vector Decℬ,ℓ(x) = (x1, . . . xℓ) are defined as the unique integers satis-
fying ⌊

x · ℬ
ℓ

q

⌉
· q

ℬℓ
, with xi ∈ [−ℬ/2,ℬ/2) .

In [Joy21], the authors highlight the benefit of using a balanced radix decomposition where the
xi are in

[
−ℬ

2 ,
ℬ

2

]
, which results in improved behavior for FHE algorithms.

Remark 2.2. In the previous definition, the radix decomposition is defined for integers, but we
note that it is also possible to apply it to any integer polynomial (respectively, vector of integers)
by applying the radix decomposition algorithm independently to each coefficient. This results in
a vector of integer polynomials (respectively, a vector of integer vectors).

2.1.2 Learning With Error Problems & its Variants

Defined in 2005 by Regev [Reg05], the Learning With Error (LWE) problem has become one of the
standard problems of lattice-based cryptography. At a high level, the problem consists in solving
a linear system modulo q, perturbed by some randomness known as the error e (also called noise),
in order to extract the secret key (or the error). The hardness of the problem is directly related
to the modulus q, the lattice dimension n and to the distribution of the error. If the error is close
to q, the problem is too hard and if the error is close to zero, the problem becomes easier (and
insecure if e = 0). Since the initial presentation of the LWE problem and its derivatives, many
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constructions based on this hard problem have emerged, including encryption schemes [BDK+18],
digital signatures [PFH+20, DKL+18], zero-knowledge proofs [LS18, YAZ+19, LNP22], and more
advanced schemes [CKKS17, CGGI16a].

Definition 6 (Learning With Errors [Reg05]). Let n ∈ N be the lattice dimension and q ∈ N be
the ciphertext modulus. Let s = (s0, . . . , sn−1) ∈ Zn

q be a secret, where si is sampled from a given
distribution Ds ∈ Zq for all 0 f i < n, and let Ç be an error distribution.

We define
(
a, b =

∑n−1
i=0 ai · si + e

)
∈ Zn+1

q to be a sample from the learning with errors

(LWEn,q,Ds,Ç) distribution, such that a = (a0, . . . , an−1) ←↩ U (Zq)
n
, meaning that all the co-

efficients of ai are sampled uniformly from Zq, and the error (noise) e ∈ Zq is sampled from Ç.
The Decision LWEn,q,Ds,Ç problem consists in distinguishing m independent samples from

U (Zq)
n+1

from the same amount of samples from the LWEn,q,Ds,Ç distribution.
The Search LWEn,q,Ds,Ç problem consists in finding the secret s ∈ Zn

q given m samples of
LWEn,q,Ds,Ç.

Theorem 2.1 (Hardness of LWE [Reg05, Pei09]). The Decision LWEn,q,Ds,Ç problem and Search
LWEn,q,Ds,Ç problem are equivalent. In [Reg05], Regev provided a quantum reduction from the De-
cision LWEn,q,Ds,Ç problem to the approximate Shortest Vector Problem (SVP). Later, in [Pei09],
Peikert provided a classical proof of this reduction.

Inspired from the LWE problems introduced previously, many variants were introduced adding
additional structures to the original construction. Typically, in this manuscript, alongside LWE,
we use the Ring Learning With Errors (RLWE) problem introduced in [SSTX09, LPR10] and the
General Learning With Errors (GLWE) problem introduced in [LS15, BGV12] also called Module
Learning With Errors problem.

Definition 7 (General Learning With Errors (GLWE) [LS15, BGV12]). Let the quotient ring Rq,N

for a modulo q ∈ N and a polynomial size N ∈ N, with N a power of two. Let k ∈ N be the GLWE
dimension. Let S = (S0, . . . , Sk−1) ∈ Rk

q,N be a secret, where Si =
∑N−1

j=0 si,jX
j is sampled from

a given distribution DS ∈ Rq,N for all 0 f i < k, and let Ç be an error distribution.

We define
(
A, B =

∑k
i=0 Ai · Si + E

)
∈ R

k+1
q,N to be a sample from the general learning with

errors (GLWEq,N,k,DS ,Ç) distribution, such that A = (A0, . . . , Ak−1) ←↩ U (Rq,N )
k
, meaning that

all the coefficients of Ai are sampled uniformly from Zq, and the error (noise) polynomial E ∈ Rq,N

is such that all the coefficients are sampled from the distribution Ç.
The decision GLWEq,N,k,DS ,Ç problem consists in distinguishing m independent samples from

U (Rq,N )
k+1

from the same amount of samples from the GLWEq,N,k,DS ,Ç distribution.
The Search GLWEq,N,k,DS ,Ç problem consists in finding the secret S ∈ Rk

q,N given m samples
of GLWEq,N,k,DS ,Ç.

Theorem 2.2 (Hardness of GLWE [LS15, BGV12]). The decision GLWEq,N,k,DS ,Ç problem and
the Search GLWEq,N,k,DS ,Ç problem are equivalent. The hardness of solving the search version
of the GLWE problem is related to the Approximate Shortest Vector Problem (³-SVP) on ideal
lattices.

Remark 2.3 (LWE, RLWE & GLWE). All the problems presented above are closely related,
indeed when N = 1, the GLWE problem corresponds to the LWE problem: GLWEq,1,k,DS ,Ç =
LWEk=n,q,Ds,Ç. In this case we consider the parameter n = k to be the size of the LWE secret key.

The RLWE problem is a particular case of the GLWE problem. When k = 1, the GLWE
problem corresponds to the RLWE problem: GLWEq,N,1,DS ,Ç = RLWEq,N,DS ,Ç.

To encompass all the problems together, we will refer to them collectively as (G)LWE. Lat-
ter, for the same reasons we will use this notation (with a G between parenthesis) for different
ciphertexts, to refer to all of them all at once.

In general, the secret key distribution DS ∈ Rq,N is such that the polynomial coefficients are
usually either sampled from a uniform binary distribution, a uniform ternary distribution or a
small Gaussian distribution ([BJRLW23, ACPS09]).
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Some works have studied specific secret key distributions that offer different trade-offs. One
example is the secret keys with a fixed hamming weight, i.e., secret keys where the number of
non-zero coefficients is fixed and publicly known, as presented in [KDE+23, GP25]. These types
of secret keys are used in different schemes, as they offer reduced noise growth. Another example
is the block secret keys [LMSS23], a type of secret key where the secret key can be expressed as a
concatenation of several vectors of Hamming weight at most one. Finally, we can mention sparse
secret keys [ABW10], where the number of non-zero elements is small, though the exact Hamming
weight is unknown. This type of key must be used with caution, as it may introduce vulnerabilities
and reduce the overall security level.

2.1.3 Attacks on (G)LWE Problems

In the previous section, we defined the LWE problem (Definition 6) and its variants (Definition 7).
We highlight that the security of these problems is directly linked to various parameters such as
the dimensions, the distributions, the modulus. In particular, the LWE problem can be interpreted
as a lattice problem, and it is at least as hard to solve as the well known Shortest Independent
Vector Problem (SIVP). Most attacks on (G)LWE schemes involve solving lattice-based problems.

Attacks on LWE. The first well known kind of attacks is the so called LWE primal attacks.
This attack was first formulated in [ADPS16] and improved in [AGVW17, DSDGR20, PV21]. It
consists in using lattice reduction to solve an instance of uSVP [Mic01] (the unique Shortest Vector
Problem) generated from LWE samples. The most common way to perform this reduction is to
use the BKZ algorithm [SE94] to reduce a lattice basis by using a SVP (Shortest Vector Problem)
oracle. Based on this attack, the security of an LWE instance relies on the cost of lattice reduction
for solving uSVP. In the paper [ADPS16], the authors propose to analyze the hardness of RLWE
as an LWE problem. All the research on this attack tend to find the best cost of solving uSVP in
order to find the closest model of security for LWE and by extension for RLWE.

The second type of attack is the LWE dual attacks. This attack is explained in [MR09] and
upgraded with the dual hybrid attacks in [Alb17]. It consists in solving an instance of the SIS
(Short Integer Solution) problem [Ajt96, MR07] in the dual lattice of the lattice formed by LWE
samples. As for the first type of attacks, the security of an LWE instance is based on the cost of
solving the problem SIS.

The third well known kind of attacks is the coded-BKW attacks, which are based on the
algorithm BKW (Blum, Kalai and Wasserman [BKW03]). This attack is explained in [GJS15,
KF15]. The BKW algorithm is a recursive dimension reduction for LWE instances. In [GJS15],
the authors make use of these attacks against RLWE. To do that, the RLWE problem is seen as
a sub problem of LWE.

Attacks on RLWE/GLWE. In the last decade, some attacks (for example [CDW17, PMHS19,
BRL20, BLNRL23]) tried to take advantage of the structure of RLWE and GLWE to solve the
id-SVP (ideal-Shortest Vector Problem). However, none of these attacks are as efficient as the
LWE attacks presented before. Thus, to efficiently break GLWE, one actually uses LWE attacks:
the security of GLWE ∈ R

k+1
N,q is then estimated as the LWE ∈ ZkN+1

q one.

Other Attacks. Some other attacks are not based on a reduction to a classical problem but
on the leakage of some fraction of the coordinates of the NTT transform of the RLWE secret. It
is the case in [DSGKS18] which proposes a more direct attack against RLWE under this leakage
assumption.

2.1.4 Practical Estimation of (G)LWE Security

The different attacks we just detailed, need to be taken into account when defining parameter sets
for (G)LWE problems. The security of all lattice-based cryptographic constructions relies on the
resistance against these different attacks.
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To estimate the security against the attacks aforementioned, in 2015, Martin R. Albrecht,
Rachel Player and Sam Scott [APS15] presented the Lattice Estimator, a tool that estimates the
cost of different attacks given parameters set. This tool has been a cornerstone in the adoption
of lattice-based cryptography and is integrated into the NIST standardization process, as well as
the ISO effort to standardize homomorphic encryption schemes. Using this tool, the objective is
to identify parameter sets that guarantee a desired security level ¼.

Remark 2.4. In this manuscript, we use the Lattice Estimator [APS15] to estimate the security
of the different parameter sets. All the parameter sets yield an estimated security level of ¼ g 128.
We note that this security level corresponds to the estimation at the time of the article publication.
Since then, new attacks or methodologies may have emerged, potentially leading to slight reductions
in the actual security.

2.1.5 Fully Homomorphic Encryption

A fully homomorphic encryption (FHE) scheme is a family of encryption schemes that allows
operations to be performed over encrypted data. Similar to classical encryption schemes, an FHE
scheme is composed of three core components: a key generation, an encryption, and a decryption
algorithm. In addition to these traditional algorithms, FHE schemes also include an evaluation
algorithm, which allows the execution of arbitrary computations on ciphertexts.

• Key generation: Given a security level ¼, generates the private secret key (sk) and the
public materials (PUB) necessary for the evaluation algorithm. In the case of asymmetric
encryption, it also outputs the corresponding public key (pk).

Keygen(1¼) = (pk, sk,PUB).

• Encryption: Given M the message space and C the ciphertext space, the encryption algo-
rithm takes as input a message m ∈M and the key, which is public in asymmetric encryption
(pk) and private in symmetric encryption (sk), and it outputs a ciphertext c ∈ C.

Enc(m, pk) = c.

• Decryption: The decryption algorithm takes as input a ciphertext c ∈ C and the private
secret key sk, and returns the original message m ∈M. It satisfies the correctness property
with probability greater than 1− ϵ, for ϵ g 0.

Dec(c, sk) = m such that Dec(Enc(m, pk), sk) = m.

An FHE scheme is perfectly correct if ϵ = 0.

• Evaluation: The evaluation algorithm enables homomorphic computation over encrypted
data. It takes as input a list of ciphertexts {ci}i∈[0,k] ∈ Ck+1, where each ci encrypts a message

mi ∈ M, the public materials (PUB) and a function fh corresponding to the homomorphic
circuit. This function corresponds to the cleartext function f representing the clear circuit.
The algorithm produces a new ciphertext that encrypts the result of applying f to the clear
messages:

Eval
(
{ci}i∈[0,k],PUB, fh

)
= fh

(
{ci}i∈[0,k]

)
.

It satisfies the correctness condition:

Dec
(
fh

(
{ci}i∈[0,k]

)
, sk
)
= f

(
{mi}i∈[0,k]

)
.

Due to the manipulability of ciphertexts, the security model adopted for FHE schemes was IND-
CPA, meaning that ciphertexts are indistinguishable under chosen-plaintext attacks. Recently, a
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stronger security model, denoted IND-CPAD [LM21], was proposed specifically for FHE schemes.
This new model increases the security of the standard IND-CPA definition by granting the ad-
versary access to a decryption oracle capable of decrypting ciphertexts that have been homo-
morphically evaluated. This new security model better targets the new attacks specifically de-
signed for FHE, where evaluating ciphertexts may permit new attacks, such as the one presented
in [LM21, CCP+24, CSBB24].

Nowadays, many FHE schemes are based on lattice cryptography, particularly on the LWE
problem and its variants. The most commonly used are BGV [BGV12], B/FV [FV12, Bra12],
HEEAN [CHK+18], CKKS [CKKS17], FHEW [DM15], and TFHE [CGGI16a]. Since these schemes
are based on the LWE problem, their security relies on small random terms, known as noise, present
in each ciphertext. When an homomorphic operation is performed on encrypted data, this noise
increases, and if it reaches a certain threshold, the ciphertext can no more be correctly decrypted.
Therefore, managing noise growth is essential to preserve correctness.

In 2009, Gentry [Gen09] proposed a technique to address this issue by refreshing the noise
inside a ciphertext. This technique is called bootstrapping. Following this blueprint, all the
aforementioned FHE schemes have their own bootstrapping procedures, each with its advantages
and disadvantages. In what follows, we focus on the TFHE scheme and its bootstrapping.

2.2 TFHE Scheme

Torus Fully Homomorphic Encryption (TFHE), also known as CGGI, is a (G)LWE-based fully
homomorphic encryption scheme initially presented in [CGGI16a]. It was initially presented as an
improvement over the FHE scheme FHEW [DM15], specifically improving the techniques used to
perform the bootstrapping (see Section 2.4), a core operation in both schemes that accounts for the
majority of the total execution time of a program. In addition, TFHE supports more functionalities
and enables more efficient homomorphic evaluation of any circuits. The main difference compared
to other FHE schemes, is that FHEW and TFHE have a very fast bootstrapping making it a
core of any computation. This advantage comes from the fact that both schemes are using small
ciphertexts (compared to other FHE schemes) using native CPU type for modulus and relatively
small lattices dimensions. Initially, both TFHE and FHEW were described for encoding boolean
messages, but further works such as [CJP21, CLOT21] noticed and studied how to natively handle
small integer messages (smaller than 10 bits).

Originally, in the first TFHE articles [CGGI16a, CGGI17, CGGI20], the message space and the
ciphertexts space were both defined over the real torus T = R/Z. In modern architecture, values
are natively represented over 32- or 64-bits precision. This is why in the first library [CGGI16b],
introduced with these articles, both the message space and the ciphertexts space are implemented
using the native machine arithmetics modulo 232 or 264. As detailed in [BGGJ20], working with
such values is equivalent to working over the discretized torus. Indeed, there exists an isomorphism
between Zq and the discretized torus 1

qZ/Z. In this document, we adopt the notation in the ring
integer Zq.

First, we introduce how messages are encoded in TFHE. Then, we present the different types
of TFHE ciphertexts that encrypt these encoded messages.

2.2.1 TFHE Encoding

In TFHE, messages must be encoded before encryption. Because the scheme is built on the
(G)LWE assumptions where ciphertexts contain an error term. If this error interferes with the
message during decryption, it may lead to an incorrect decryption. To prevents such loss, the
message is usually shifted to the most significant bits, ensuring that the error, concentrated in the
least significant bits, does not corrupt the message.
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Definition 8 (Polynomial Message Encode & Decode). Let q ∈ N be a ciphertext modulus, and let
p ∈ N a message modulus, and Ã ∈ N the number of bits of padding1. We have 2Ã · p f q and 2Ã · p
is the plaintext modulus. Let M ∈ Rp,N be a message. We define the encoding of M as: M̃ =
Encode (M, 2Ã · p, q) = +∆ ·M, ∈ Rq,N with ∆ = q

2Ã·p ∈ Q the scaling factor (see a visual example

in Figure 2.1). To decode, we compute the following function: M = Decode
(
M̃, 2Ã · p, q

)
=

⌊
M̃
∆

⌉
∈ Z2Ã·p.

In practice M̃ contains a small error term E =
∑N−1

i=0 ei · Xi ∈ Q[X]/(XN + 1), so we can

rewrite M̃ = ∆ ·M + E ∈ Zq. The decoding algorithm fails if and only if there is at least one
i ∈ [0, N − 1] such that |ei| g ∆

2 . We can note this probability as follows:

P

(⋃
|ei| g

∆

2

)
= P

(
Decode

(
M̃, 2Ã · p, q

)
̸= M

)
. (2.1)

∅ p e

Figure 2.1: Plaintext binary representation with p = 8 = 23 (cyan), Ã = 2 (dark blue) such that
2Ã · p f q, the error e (red). The white part is empty. The MSB are on the left and the LSB on
the right.

2.2.2 TFHE Ciphertexts

In this section, we present all the different ciphertexts used in TFHE. First, we introduce the
(G)LWE ciphertexts, which are the primary ciphertexts used in TFHE to encrypt the data. Then,
based on these ciphertexts, we present the (G)LEV ciphertexts, which lead to the (G)GSW ci-
phertexts, essential for public material and for performing more advanced algorithms such as
bootstrapping.

(G)LWE Ciphertexts. In TFHE, the common ciphertexts defined in [CGGI16a] are the LWE
ciphertexts encrypting only small integers. The security of these ciphertexts directly relies on the
LWE problem detailed in Definition 6.

Definition 9 (LWE Ciphertexts). Based on LWE samples LWEn,q,Ds,Ç as defined in Definition 6,
we can generate LWE ciphertexts encrypting an encoded messages ∆m ∈ Zq.

Let s = (s0, . . . , sn−1) ∈ Zn
q be the LWE secret key, with si sampled from the distribution Ds.

Let a = (a0, . . . , an−1) ∈ Zn
q be the LWE mask, with ai ←↩ U (Zq) for i ∈ [0, n − 1]. Given an

encoded message ∆m ∈ Zq, an LWE ciphertext encrypts the message in the LWE body b ∈ Zq such
that b = ïa · sð+∆m+ e where e is the error sampled from the distribution Ç.

We denote the LWE ciphertext encrypting an encoded message ∆m as follows:

ct = (a, b = ïa · sð+∆m+ e) ∈ LWEs(∆m) ¦ Zn+1
q .

Remark 2.5. In this manuscript, unless clearly defined, the secret key follows a Boolean distri-
bution. So for i ∈ [0, n− 1], we have si ←↩ U ({0, 1}), i.e., Ds = U ({0, 1}).

In the same manner, unless clearly defined, errors follow a Gaussian distribution with a mean
set to zero and a standard deviation set to Ã, i.e., e←↩ NÃ.

For algorithmic reason, TFHE also uses the GLWE ciphertexts. These ciphertexts permit en-
crypting polynomial small messages using the integer ring Rq,N = Zq[X]/XN +1 (See remark 2.1).
The security of these ciphertexts directly relies on the GLWE problem detailed in Definition 7.

1For simplicity we use a power of 2 for the padding, but this is not a necessary condition.
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Definition 10 (GLWE Ciphertexts). Based on GLWEq,N,k,DS,Ç samples as defined in Definition 7,
we can generate GLWE ciphertexts encrypting an encoded polynomial messages ∆M ∈ Rq,N .

Let S = (S0, . . . , Sk−1) ∈ Rk
q,N be the GLWE secret key, where Si =

∑N−1
j=0 si,jX

j is sampled

from the distribution DS for all 0 f i < k. Let A = (A0, . . . , Ak−1) ←↩ U (Rq,N )
k
be the GLWE

mask. Given an encoded polynomial message ∆M ∈ Rq,N , the GLWE ciphertext encrypts the

message in the GLWE body B ∈ Rq,N such that B =
∑k−1

i=0 Ai · Si +∆M + E where E ∈ Rq,N is
the polynomial error, and where each coefficient ei is sampled from the distribution Ç.

We denote the GLWE ciphertext encrypting an encoded polynomial message ∆M as follows:

CT =

(
A, B =

k−1∑

i=0

Ai · Si +∆M + E

)
∈ GLWES(∆M) ¦ R

k+1
q,N .

The encryption procedure is detailed in Algorithm 1.

Algorithm 1: CTM ← Encrypt(S,∆M)

Context:





N : Polynomial Size.

k : GLWE dimension.

q : GLWE modulus.

Ç : Noise Distribution.

Input:

{
∆M ∈ Rq,N : an encoded message.

S ∈ Rk
q,N : a GLWE secret key.

Output:

{
CTM ∈ GLWES(∆M) ¦ R

k+1
q,N :

a GLWE ciphertext encrypting M.

1 E ←↩ ÇN

2 B = ∆M + E mod Rq,N

3 for i ∈ [0, k − 1] do
4 Ai ←↩ U (Rq,N )
5 B = B +Ai · Si mod Rq,N

6 CTM = (A, B) = (A0, . . . , Ak−1, B)

7 return CTM ∈ GLWES(∆M) ¦ R
k+1
q,N

Remark 2.6 (Trivial Encryption). Given an encoded message ∆M ∈ Rq,N , anyone can create an
unencrypted ciphertext with the characteristics necessary to perform operations with encrypted
values. These ciphertexts are generated using trivial encryption, meaning they are created with
both the polynomial mask and the polynomial error set to zero. As a result, these ciphertexts are
not encrypted and are insecure. They are defined as follows:

CT = (0, B = ∆M) ∈ GLWES(∆M) ¦ R
k+1
q,N .

These types of ciphertexts are mainly used to perform operations between plaintext and ciphertext
and help simplify some algorithms.

Definition 11 (Flattened Representation of a GLWE Secret Key). A GLWE secret key S =(
S0 =

∑N−1
j=0 s0,jX

j , . . . , Sk−1 =
∑N−1

j=0 sk−1,jX
j
)
∈ Rk

q,N can be flattened into an LWE secret

key s̄ = (s̄0, . . . , s̄kN−1) ∈ ZkN in the following manner: s̄iN+j := si,j, for 0 f i < k and
0 f j < N .

Definition 12 ((G)LWE Decryption). Let CT ∈ GLWES(∆M) ¦ R
k+1
q,N be a ciphertext encrypting

the encoded message ∆M ∈ R
k+1
q,N , under the secret key S = (S0, . . . , Sk−1) ∈ Rk

q,N (Definition 10).
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The decryption returns the encoded message along the noise added during the encryption. The

decryption of CT =
(
A, B =

∑k−1
i=0 Ai · Si +∆M + E

)
, is computed as follows:

M̃ + E = ∆M + E = B −
k−1∑

i=0

Ai · Si.

The decryption procedure is detailed in Algorithm 2.

Remark 2.7. In the following, to lighten the notation and highlight the message, when ∆ is clear
from context, we will omit it in the ciphertext notation and simply write GLWES(M) for a GLWE
ciphertext that encrypts the encoded message ∆M ∈ Rq,N , or LWEs(m) for an LWE ciphertext
that encrypts the encoded message ∆m ∈ Zq.

Algorithm 2: ∆M + E ← Decrypt(S,CTM )

Context:





N : Polynomial Size.

k : GLWE dimension.

q : GLWE modulus.

Input:





CTM ∈ GLWES(M) ¦ R
k+1
q,N :

GLWE ciphertext encrypting M.

S ∈ Rk
q,N : the GLWE secret key

associated to the GLWE ciphertext.

Output:





∆M + E ∈ Rq,N :

The encoded message and the error

of the input ciphertext.

1 res = B
2 for i ∈ [0, k − 1] do
3 res = res−Ai · Si mod Rq,N

/* res = B −∑i=k−1
i=0 AiSi mod Rq,N */

4 return res ∈ Rq,N

(G)LEV Ciphertexts. Based on the (G)LWE ciphertexts, we can build more complex cipher-
texts useful to perform algorithm such as the key switch (Algorithm 4) or even more complex
ciphertexts such as the (G)GSW ciphertext detailed latter. (G)LEV ciphertexts were first detailed
in [CLOT21], they are composed of collection of (G)LWE ciphertexts, then their security also relies
on the (G)LWE problem (Definition 7).

Definition 13 (GLEV Ciphertexts). For a given decomposition base ℬ ∈ N∗ and a level decompo-
sition ℓ ∈ N∗, a GLEV ciphertext of a message M ∈ Rp,N under a secret key S ∈ Rk

q,N is a cipher-
text composed of ℓ GLWEq,N,k,DS ,Ç ciphertexts (Definition 7) encrypting the same message M for
different scaling factors (given by the base ℬ and the level ℓ). Let CTi ∈ GLWES

(
q

ℬi+1M
)
¦ Rk+1

q,N

for i ∈ [0, ℓ− 1]. Then, a GLEV ciphertext is denoted CT and is composed of ℓ GLWE ciphertexts.
He is defined as:

CT = (CT0, . . . ,CTℓ−1) ∈ GLEVℬ,ℓ
S (M) ¦ R

ℓ×(k+1)
q,N .

As for the (G)LWE ciphertexts (see Remark 2.3), a GLEV ciphertexts with N = 1 is a LEV
ciphertext and in this case we consider the parameter n = k for the size of the LWE secret key.
LEV ciphertexts are denoted ct. A GLEV ciphertext with k = 1 and N > 1 is a RLEV ciphertext.
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(G)GSW Ciphertexts. The last type of ciphertexts is the (G)GSW ciphertexts, built using
the (G)LEV ciphertexts introduced just before. These ciphertexts are useful in many algorithms
and especially, there are used to perform the bootstrapping (described latter in Algorithm 11) the
central operation of TFHE. At a high level, these messages are composed of collection of (G)LEV
ciphertexts and they was first detailed in [GSW13].

Definition 14 (GGSW ciphertexts). For a given decomposition base ℬ ∈ N∗ and a level decompo-
sition ℓ ∈ N∗, a GGSW ciphertext encrypting a message M ∈ Rp,N under a secret key S ∈ Rk

q,N is
composed by (k+1) GLEV ciphertexts (Definition 13) encrypting the same message M multiplied
by elements of the secret key for different scaling factor (given by the base ℬ and the level ℓ). Let

CTj ∈ GLEVℬ,ℓ
S (−Sj ·M) ¦ R

ℓ×(k+1)
q,N for j ∈ [0, k) and CTk ∈ GLEVℬ,ℓ

S (M) ¦ R
ℓ×(k+1)
q,N . Then,

a GGSW ciphertext is denoted CT, is composed of k + 1 GLEV ciphertexts and is defined as:

CT =
(
CT0, . . . ,CTk

)
∈ GGSWℬ,ℓ

S (M) ¦ R
(k+1)ℓ×(k+1)
q,N .

As for the (G)LWE ciphertexts (see Remark 2.3), a GGSW ciphertexts with N = 1 is a GSW
ciphertext and in this case we consider the parameter n = k for the size of the LWE secret key.
GSW ciphertexts are denoted ct. A GGSW ciphertext with k = 1 andN > 1 is a RGSW ciphertext.

Remark 2.8. In Section 2.2 we mentioned that TFHE was originally defined over the torus
T. In the literature, the different ciphertexts LWE /RLWE /GLWE and GSW /RGSW /GGSW
are also denoted as TLWE /TRLWE /TGLWE, and respectively TGSW /TRGSW /TGGSW to
emphasize that they are defined over the torus.

2.3 TFHE Modular arithmetics

In this section, we introduce the basic operations performed over TFHE ciphertexts. We first
present the addition between two (G)LWE ciphertexts and the multiplication by plaintext integers.
Then we present how to perform more complex operations such as the key switch, an operation
that allows changing the secret key of a ciphertext to another one, or the external product, an
operation that performs multiplication between (G)LWE and (G)GSW ciphertexts.

2.3.1 Homomorphic Addition of (G)LWE ciphertexts

The first operation we introduce is the addition between two (G)LWE ciphertexts. Even though
this is one of the simplest homomorphic operations, we analyze its cost and its noise, which allows
us to introduce the methodology used to study any algorithm throughout the manuscript.

Remark 2.9. To study the noise growth resulting from an operation, we proceed as follows.
We take two ciphertexts ct1 and ct2 encrypted with noise following the distributions Ç1 and Ç2,
respectively, and perform the operation under study. Then, we decrypt the resulting ciphertext
ctout using Algorithm 2, which outputs ∆mout + eout. We finally analyze the new distribution of
the output noise eout with respect to Ç1 and Ç2.

Theorem 2.3 (GLWE Addition (Algorithm 3)). Let CT1 = (A1,0, . . . , A1,k−1, B1) ∈ R
k+1
q,N

and CT2 = (A2,0, . . . , A2,k−1, B2) ∈ R
k+1
q,N be two GLWE ciphertexts encrypting the message

∆M1 ∈ Rq,N and the message ∆M2 ∈ Rq,N , respectively, under the GLWE secret key S =
(S0, . . . , Sk−1) ∈ Rk

q,N . The coefficients of the corresponding noise polynomials, E1 and E2,
are statistically independent and the coefficients of E1 (resp. E2) follow a centred gaussian dis-
tribution Ç1 = NÃ2

1
(resp. Ç2 = NÃ2

2
). Then, Algorithm 3 returns the new GLWE ciphertext

CT = (A0, . . . , Ak−1, B) encrypting the message ∆(M1 +M2) ∈ Rq,N such that:

CT = Add(CT1,CT2) = (A1,0 +A2,0, . . . , A1,k−1 +A2,k−1, B1 +B2) ∈ R
k+1
q,N .
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Algorithm 3: CT← Add(CT1,CT2)

Context:

{
S = (S0, . . . , Sk−1) ∈ Rk

q,N : The input GLWE secret key.

CTi = (Ai,0, . . . , Ai,k−1, Bi) ∈ GLWES(Mi) ¦ R
k+1
q,N for i ∈ {0, 1}.

Input:

{
CT1 ∈ GLWES(M1) ¦ R

k+1
q,N , with the message M1 ∈ Rq,N

CT2 ∈ GLWES(M2) ¦ R
k+1
q,N , with the message M2 ∈ Rq,N

Output:
{
CT ∈ GLWES(M1 +M2) ¦ R

k+1
q,N

1 for i ∈ [0, k − 1] do
2 Ai ← A1,i +A2,i

3 B ← B1 +B2

4 return CT = (A0, . . . , Ak−1, B)

After the addition, the noise output follows the distribution Ç = NÃ2
1+Ã2

2
.

The algorithmic complexity of Algorithm 3 is Costk,NAdd = (k+1)N ·Cadd where Cadd denotes the
complexity of adding two elements of Zq.

Remark 2.10. In the following, we use the classical notation + to denote the addition between two
ciphertexts. When multiple additions are chained, we use the classical notation

∑
. For instance,

the sum of 3 GLWE ciphertexts is denoted as:

2∑

i=0

CTi = CT0 + CT1 + CT2 = Add(CT2,Add(CT0,CT1)).

Proof (Theorem 2.3) Let S = (S0, . . . , Sk−1) ∈ Rk
q,N be the GLWE secret key. Let CT1 and

CT2 be two ciphertexts in R
k+1
q,N such that CTi = (Ai,0, . . . , Ai,k−1, Bi) ∈ GLWE(Mi) with Bi =

∑k−1
j=0 Ai,j · Sj + M̃i + Ei for i ∈ {0, 1}.
We suppose that the corresponding noise polynomials, E1 and E2, are statistically independent

and each of there coefficient follow two centred gaussian distribution Ç1 = NÃ2
1
and Ç2 = NÃ2

2
.

After Algorithm 3, we obtain:

CT = CT1 + CT2 = (A1,0 +A2,0, . . . , A1,k−1 +A2,k−1, B1 +B2) ∈ R
k+1
q,N .

Let us now decrypt CT using Definition 12.

M̃ + E = B −
k−1∑

i=0

AiSi = B1 +B2 −
k−1∑

i=0

(A1,i +A2,i) · Si

=

k−1∑

i=0

A1,iSi + M̃1 + E1 +

k−1∑

i=0

A2,iSi + M̃2 + E2 −
k−1∑

i=0

(A1,i +A2,i) · Si

= M̃1 + M̃2 + E1 + E2.

So after Algorithm 3, we obtain a new noise E equals to E1+E2. As E1 and E2 are statistically
independent, each coefficient of the output noise polynomial E follow a Gaussian distribution Ç =
NÃ2

1+Ã2
2
.

After performing an homomorphic addition, we see that the noise grows. As presented before,
the noise growth appear in almost all the following homomorphic operations.

We note that Algorithm 3, along with Theorem 2.3 and its corresponding proof, can be trivially
adapted to LWE and RLWE ciphertexts and to (G)LEV and (G)GSW ciphertexts.

In the case of addition between a cleartext and a ciphertext, it suffices to trivially encrypt the
cleartext (see Remark 2.6) in order to perform the operation. In this case, no additional noise is
introduced when applying Algorithm 3.
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2.3.2 Rotation and Multiplication by Public Constants

Here, we present how to perform various multiplications with public constants. First, we describe
how to rotate encrypted polynomials in RLWE/GLWE ciphertexts. Next, we show how to multiply
any ciphertext by a constant. Finally, building on these two operations, we explain how to perform
a multiplication by a known polynomial.

In the following, we use the classical notation ·, where CT ·w denotes the multiplication of each
polynomials composing the ciphertext CT by w ∈ Zq.

GLWE Ciphertext Rotations. As previously mentioned, we work in the ring Rq,N , where
multiplications are done modulo XN + 1. To perform a rotation by w ∈ Z of a polynomial, it
suffices to multiply it by Xw. Let us show how to perform a rotation of a polynomial encrypted
in a GLWE ciphertext.

Theorem 2.4 (Rotation of a GLWE ciphertext). Let CT = (A0, . . . , Ak−1, B) ∈ R
k+1
q,N be a

GLWE ciphertext encrypting the message M =
∑N−1

i=0 miX
i ∈ Rp,N under the GLWE secret key

S = (S0, . . . , Sk−1) ∈ Rk
q,N . The coefficients of the input polynomial noise E are independently

sampled from a centre Gaussian distribution NÃ2 . Let w ∈ [0, 2N − 1] be the number of position
by which the input message M is rotated. By applying a rotation to all the polynomials in CT ∈
GLWES(M), we obtain a new ciphertext, CTout, that encrypts M ·Xw.

CTout = CT ·Xw = (A0 ·Xw, . . . , Ak−1 ·Xw, B ·Xw) ∈ GLWES(M ·Xw) ¦ R
k+1
q,N .

After a rotation, the noise remains unchanged and does not increase.

Proof (Theorem 2.4). Let CT = (A0, . . . , Ak−1, B) ∈ R
k+1
q,N be the input GLWE ciphertext. Let

w ∈ [0, 2N−1] be the number of position by which the input message M is rotated. After a rotation,
we obtain the ciphertext CTout = CT ·Xw = (A0 ·Xw, . . . , Ak−1 ·Xw, B ·Xw). Let us now decrypt
CTout using Definition 12:

M̃out + Eout = B ·Xw −
k−1∑

i=0

Ai ·Xw · Si =

(
k−1∑

i=0

Ai · Si + M̃ + E

)
·Xw −

k−1∑

i=0

Ai ·Xw · Si

= M̃ ·Xw + E ·Xw.

So the output message Mout equals M ·Xw, and the output noise Eout = E ·Xw is simply rotation
of the input noise, no additional noise is introduced.

Multiplication by Integers. To multiply a message encrypted in a (G)LWE ciphertext by a
constant w ∈ Zq, the methodology is similar to the rotation operation described in Theorem 2.4.
However, this operation introduces additional noise. In the following, we study how to perform
this operation and analyze the resulting noise growth.

Theorem 2.5 (Multiplication by Integers). Let CT = (A0, . . . , Ak−1, B) ∈ R
k+1
q,N be a GLWE

ciphertext encrypting the message M =
∑N−1

i=0 miX
i ∈ Rp,N under the GLWE secret key S =

(S0, . . . , Sk−1) ∈ Rk
q,N . The coefficients of the input polynomial noise E are independently sampled

from a centre Gaussian distribution NÃ2 . Let w ∈ Zq be the constant which multiply the input
message. By multiplying all the coefficients of all the polynomials in CT ∈ GLWES(M), we obtain
a new ciphertext, CTout, that encrypts M · w.

CTout = CT · w = (A0 · w, . . . , Ak−1 · w,B · w) ∈ GLWES(M · w) ¦ R
k+1
q,N .

After this operations each coefficient of the noise polynomial follows the Gaussian distribution
N(Ã·w)2 .
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Proof (Theorem 2.5). Let CT = (A0, . . . , Ak−1, B) ∈ R
k+1
q,N be the input GLWE ciphertext. Let w ∈

Zq be the constant which multiplies the input message. After the operation, we obtain the ciphertext
CTout = CT · w = (A0 · w, . . . , Ak−1 · w,B · w). Let us now decrypt CTout using Definition 12:

M̃out + Eout = B · w −
k−1∑

i=0

Ai · w · Si

=

(
k−1∑

i=0

Ai · Si + M̃ + E

)
· w −

k−1∑

i=0

Ai · w · Si

= M̃ · w + E · w.

So the output message Mout equals M · w, and the output noise Eout equals E · w =
∑N−1

i=0 ei · w.
Each coefficient of the output noise is multiplied by w.

Multiplication by Polynomial. The multiplication of polynomial message encrypted in a
(G)LWE ciphertext by a public polynomial P ∈ Rq,N , can easily be done by combining the
two previous theorems (Theorem 2.4 and Theorem 2.5). In the following, we study how to perform
this operation and analyze the resulting noise growth.

Theorem 2.6 (Multiplication by Polynomial). Let CT = (A0, . . . , Ak−1, B) ∈ R
k+1
q,N be a GLWE

ciphertext encrypting the message M =
∑N−1

i=0 miX
i ∈ Rp,N under the GLWE secret key S =

(S0, . . . , Sk−1) ∈ Rk
q,N . The coefficients of the input polynomial noise E are independently sampled

from a centre Gaussian distribution NÃ2 . Let P =
∑N−1

i=0 piX
i ∈ Rq,N be the polynomial that

multiplies the input message. By multiplying all the polynomials in CT ∈ GLWES(M) by P , we
obtain a new ciphertext, CTout, that encrypts M · P .

CTout = CT · P = (A0 · P, . . . , Ak−1 · P,B · P ) ∈ GLWES(M · P ) ¦ R
k+1
q,N .

After this operation, all coefficients of the noise polynomial follow the Gaussian distribution
N((Ã · w)2), where w corresponds to the 2-norm of the coefficients of the polynomial P , i.e.,

w2 =
∑N−1

i=0 p2i .

Proof (Theorem 2.6). The proof of Theorem 2.6 is a composition of the proofs of Theorems 2.3, 2.4
and 2.5.

Homomorphic Dot Product. Finally, let us define the dot product, which corresponds to sum-
ming several LWE ciphertexts, each multiplied by different constant. This operation corresponds
to a composition of Theorem 2.3 and Theorem 2.5.

Theorem 2.7 (Homomorphic Dot Product). Let cti = (ai,0, . . . , ai,n−1, bi) ∈ Zn+1
q be LWE

ciphertexts encrypting the message mi ∈ Zp under the LWE secret key s = (s0, . . . , sn−1) ∈ Zn
q , for

i ∈ [0, ³ − 1]. The errors ei associated with the ciphertext cti is sampled from a centre Gaussian
distribution NÃ2

i
for i ∈ [0, ³ − 1]. Let wi ∈ Zq be a constant used to multiply each cti. Then, the

dot product corresponds to sum of all the multiplied ciphertexts:

ctout =

³−1∑

i=0

cti · wi.

After this operation, the output noise eout of ctout follows a Gaussian distribution N(Ã·w)2 with

w2 =
∑³−1

i=0 w2
i .

Proof (Theorem 2.7). The proof of Theorem 2.7 is an adaptation and composition of the proofs
of Theorems 2.3 and 2.5.
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Remark 2.11. As for the addition, all the previous operations (Theorem 2.4,Theorem 2.5 and
Theorem 2.6) can easily be generalized for RLWE, GLEV and RLEV or GGSW and RGSW
ciphertexts.

The previous operations (Theorem 2.5 and Theorem 2.7) can easily be generalized for LWE,
LEV and GSW ciphertexts.

2.3.3 Key Switches

In TFHE, operations can only be performed with ciphertexts encrypted under the same secret
key. Key switches (KS) are operations that allow switching from one secret key to another.
Basically, given a ciphertext CTin ∈ GLWESin

(M), a key switch creates a new ciphertext CTout ∈
GLWESout

(M) encrypting the same message under a new secret key. The output secret key Sout

can have different parameters from the input secret key S in, allowing for changes the polynomial
size N , the GLWE dimension k or the LWE dimension n (in the case of LWE key switches).
Unlike the previously introduced operations, key switching is less straightforward and requires
public material. This public material is named key switching key (KSK) and corresponds to an
encryption of the input secret key under the output secret key.

This operation is essential as it enables optimizations and enhancements in homomorphic circuit
evaluations. In the following, we will study different techniques for performing key switching. We
begin by introducing the LWE key switching followed by the GLWE key switching. Finally, we
present packing key switching, an operation that allows packing multiple LWE ciphertexts into a
single GLWE ciphertext.

Definition 15 (Key Switching Key (KSK)). The KSK is the public material required to perform
a key switch from an input secret key S in = (Sin,0, . . . , Sin,kin−1) ∈ R

kin

q,N to the output secret key

Sout ∈ R
kout

q,N . Each part of the KSK is a GLEV ciphertext that encrypts an element of the input
secret key under the output secret key with noise sampled from NÃ2

KSK
,

KSK =
{
KSKi ∈ GLEVℬ,ℓ

Sout
(−Sin,i)

}
i∈[0,kin−1]

∈ R
(kout+1)·ℓ·kin

q,N .

We denote each component of the KSKi by KSKi,j = (Ai,j , Bi,j) ∈ GLWESout

(
q

ℬj+1Sin,i

)
, for all

0 f i < kin and for all 0 f j < ℓ. As presented in Remark 2.3, the notation can be adapted
depending on the types of the input and output ciphertext.

LWE Key Switch. The LWE key switch allows switching an LWE ciphertext from one secret
key to another, either to a different LWE secret key or to a GLWE secret key. In the case of
switching to a GLWE secret key, the LWE ciphertext is transformed into a GLWE ciphertext that
encrypts the input message in the constant term of the polynomial message. All other coefficients
of the polynomial are set to zero.

The LWE key switch to a GLWE ciphertext is detailed in Algorithm 4 and can be easily adapted
to an LWE-to-LWE key switch.

Theorem 2.8 (LWE to GLWE Key Switch (Algorithm 4)). Let ctin ∈ LWEsin
(m) ¦ Zn+1

q be an
LWE ciphertext encrypting the message m ∈ Zp under the secret key sin = (sin,0, . . . , sin,n−1) ∈ Zn

q

where the noise e is sampled from a Gaussian distribution NÃ2 . Let Sout = (Sout,0, . . . , Sout,k−1) ∈
Rk

q,N be a GLWE secret key. Let ℬ ∈ Z∗ be the base decomposition and ℓ ∈ Z∗ the level de-

composition. Let KSK =
{
KSKi ∈ GLEVℬ,ℓ

Sout
(si)
}
i∈[0,n−1]

∈ R
(k+1)·ℓ·n
q,N be the key switching key as

presented in Definition 15.
Then Algorithm 4 outputs CTout ∈ GLWESout

(m) ¦ R
k+1
q,N , an GLWE ciphertext encrypting the

input message m under the secret key Sout. The noise variance after Algorithm 4 is:

Var(eKS) = Ãin + n ·
(

q2

12ℬ2ℓ
− 1

12

)
·
(
Var(si) + E2(si)

)
+

n

4
· Var(si) + n · ℓ · Ã2

KSK ·
ℬ

2 + 2

12
.
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Algorithm 4: CTout ← LWEKeySwitch(ctin,KSK)

Context:





sin = (sin,0, . . . , sin,n−1) ∈ Zn
q : The input LWE secret key.

Sout = (Sout,0, . . . , Sout,k−1) ∈ Rk
q,N : The output GLWE secret key.

∆m ∈ Zq : The encoded message.

KSKi ∈ GLEVℬ,ℓ
Sout

(−sin,i): Definition 13

ℬ ∈ Z∗ : The base decomposition.

ℓ ∈ Z∗ : The level decomposition.

Input:

{
ctin = (a0, . . . , an−1, b) ∈ LWEsin

(m) ¦ R
k+1
q,N

KSK = {KSKi}i∈[0,n−1] The key switching key from sin to Sout

Output:
{
CTout ∈ GLWESout

(m) ¦ R
k+1
q,N

1 CTout ← (0, . . . , 0, b)−
∑n−1

i=0

〈
KSKi,Decℬ,ℓ(ai)

〉

2 return CTout

The algorithmic cost of Algorithm 4 is:

Cost
ℓ,n,k,N
KS

= nCostℬ,ℓ
Dec

+ nℓ(k + 1)NCmul + ((ℓn− 1)(k + 1)N)Cadd.

Where Cadd denotes the complexity of adding two elements of Zq and Cmul denote the complexity
of multiplying two elements of Zq.

Proof (Theorem 2.8). The inputs of a LWE-to-GLWE key switching (Algorithm 4) are:

• The input LWE ciphertext: ctin = (ain,0, . . . , ain,n−1, bin) ∈ LWEsin
(m) ¦ Zn+1

q , where bin =∑n−1
i=0 ain,i · sin,i +∆m+ ein, with ein ←↩ NÃ2

in
.

• The key switch key: KSK = (KSK0, . . . ,KSKn−1) as presented in Definition 15.

The output of this algorithm is: CTout = (Aout, Bout) ∈ GLWESout
(m) ¦ R

k+1
q,N . By definition, in

the decomposition described in Definition 5, we have that Decℬ,ℓ (ain,i) = (ãin,i,0, . . . , ãin,i,ℓ−1) such

that ãin,i =
∑ℓ−1

j=0
q

ℬj+1 ãin,i,j, for all 0 f i < kin.

Let define āin,i = ain,i − ãin,i, |āin,i| ∈
[ −q
2ℬℓ ,

q
2ℬℓ

)
. So we have that their expectations and variances

are respectively E (āin,i) = − 1
2 , Var (āin,i) =

q2

12ℬ2ℓ − 1
12 , E (ãin,i) = − 1

2 and Var (ãin,i) =
ℬ

2−1
12 .

Let us now decrypt CTout using Definition 12.

M̃out + Eout = Bout −
n−1∑

i=0

AoutSout = ï(Aout, Bout), (−Sout, 1)ð

=

〈
(0, bin)−

n−1∑

i=0

Dec(ℬ,ℓ) (ain,i) · KSKi, (−Sout, 1)

〉

=bin −
n−1∑

i=0

ℓ−1∑

j=0

ãin,i,j ïKSKi,j , (−Sout, 1)ð

=bin −
n−1∑

i=0

ℓ−1∑

j=0

ãin,i,j

( q

ℬj+1
sin,i + Eksk,i,j

)

=bin −
n−1∑

i=0

ãin,isin,i −
n−1∑

i=0

ℓ−1∑

j=0

ãin,i,j · Eksk,i,j .
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Now let us focus on the constant coefficient of the previous equation:

bin −
n−1∑

i=0

ãin,isin,i −
n−1∑

i=0

ℓ−1∑

j=0

ãin,i,j · eksk,i,j,0 = bin −
n−1∑

i=0

(ain,i − āin,i)sin,i −
n−1∑

i=0

ℓ−1∑

j=0

ãin,i,j · eksk,i,j,0

= m̃+ e+

n−1∑

i=0

āin,isin,i −
n−1∑

i=0

ℓ−1∑

j=0

ãin,i,j · eksk,i,j,0.

We can now isolate the output error for the constant coefficient and remove the message coefficient.
We obtain that the output error is:

eout = e+

n−1∑

i=0

āin,isin,i +

n−1∑

i=0

ℓ−1∑

j=0

ãin,i,j · eksk,i,j,0.

Then, we obtain:

Var(eout) = Var(e) + nVar(āin,isin,i) + nℓVar(ãin,i,j · eksk,i,j,0)
= Ã2

in + n(Var(āin,i) · Var(sin,i) + Var(āin,i) · E2(sin,i) + E2(āin,i) · Var(sin,i))
+ nℓ(Var(ãin,i,j)Var(eksk,i,j,0) + Var(ãin,i,j)E

2(eksk,i,j,0) + E2(ãin,i,j)Var(eksk,i,j,0))

= Ãin + n ·
(

q2

12ℬ2ℓ
− 1

12

)
·
(
Var(si) + E2(si)

)
+

n

4
· Var(si) + n · ℓ · Ã2

KSK ·
ℬ

2 + 2

12
.

GLWE Key Switch. The GLWE key switch allows switching a GLWE ciphertext from one
secret key to another GLWE secret key. The procedure is similar to the LWE key switch presented
earlier, and Theorem 2.8 can be easily adapted to the GLWE key switch algorithm. Since both
algorithms are closely related, we simply refer to key switch for both of them when the context is
clear enough.

Algorithm 5: CTout ← GLWEKeySwitch(CTin,KSK)

Context:





S in = (Sin,0, . . . , Sin,kin−1) ∈ R
kin

q,N : The input GLWE secret key.

Sout = (Sout,0, . . . , Sout,k−1) ∈ R
kout

q,N : The output GLWE secret key.

∆M ∈ Rq,N : The encoded message.

KSKi ∈ GLEVℬ,ℓ
Sout

(−Sin,i): Definition 13

ℬ ∈ Z∗ : The base decomposition.

ℓ ∈ Z∗ : The level decomposition.

Input:

{
CTin = (A0, . . . , Akin−1, B) ∈ GLWESin

(M) ¦ R
kout+1
q,N

KSK = {KSKi}i∈[0,kin−1] The key switching key from S in to Sout

Output:
{
CTout ∈ GLWESout

(M) ¦ R
kout+1
q,N

1 CTout ← (0, . . . , 0, B)−∑kin−1
i=0

〈
KSKi,Decℬ,ℓ(Ai)

〉

2 return CTout

Remark 2.12. By modifying the key switching key, one can perform a key switch (Algo-
rithm 4 and Algorithm 5) that simultaneously evaluates a private function. This operation is
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named PrivateKS. In this case, to apply a linear function f during the key switch, the KSK ={
KSKi ∈ GLEVℬ,ℓ

Sout
(−Sin,i)

}
i∈[0,kin−1]

∈ R
(kout+1)·ℓ·kin

q,N (Definition 15) become a Private Functional

Key Switching Key PKSK =
{
KSKi ∈ GLEVℬ,ℓ

Sout
(−f · Sin,i)

}
i∈[0,kin−1]

∪
{
KSKkin

∈ GLEVℬ,ℓ
Sout

(f)
}
∈

R
(kout+1)·ℓ·(kin+1)
q,N and we need to perform a dot product between the decomposed B and KSKkin

.

Packing Key Switch. The packing key switch is an operation that takes as input several LWE
ciphertexts and outputs a GLWE ciphertext encrypting the messages from the input ciphertexts.
The signature of the packing key switch is as follows:

CT ∈ GLWES

(
³∑

i=0

miX
ji

)
← PackingKS

(
{cti ∈ LWEs(mi)}i∈[0,³], {ji}i∈[0,³],KSK

)
.

The packing key switch can be easily described using the previously introduced algorithm.
Indeed, the process to perform a packing key switch can be summarized by first performing LWE
to GLWE key switch (Algorithm 4), then a multiplication by a power of X (Theorem 2.5) to put
the constant coefficient at the desired position, and finally an addition (Algorithm 3) to add all
the coefficient together.

Theorem 2.9 (LWE to GLWE packing Key Switch). Let start with only one ciphertext (this case
is similar than only on LWE to GLWE key switch).

Let ctin ∈ LWEsin
(m) ¦ Zn+1

q be an LWE ciphertext encrypting the message m ∈ Zp under the
secret key sin = (sin,0, . . . , sin,n−1) ∈ Zn

q where the noise e is sample from a Gaussian distribution

NÃ2 . Let Sout = (Sout,0, . . . , Sout,k−1) ∈ Rk
q,N be a GLWE secret key. Let ℬ ∈ Z∗ be the base

decomposition and ℓ ∈ Z∗ the level decomposition. Let KSK =
{
KSKi ∈ GLEVℬ,ℓ

Sout
(sin,i)

}
i∈[0,n−1]

∈

R
(k+1)·ℓ·(n−1)
q,N be the key switching key as presented in Definition 15. Then the packing key switch

outputs CTout ∈ GLWESout
(m) ¦ R

k+1
q,N an GLWE ciphertext encrypting the input message m under

the secret key Sout.
We can distinguish two variances, the one with the input message:

Var(efill) = Ãin + n ·
(

q2

12ℬ2ℓ
− 1

12

)
·
(
Var(sin,i) + E2(sin,i)

)
+

n

4
· Var(sin,i) + n · ℓ · Ã2

KSK ·
ℬ

2 + 2

12
,

and the variance without the input message:

Var(eempty) = n · ℓ · Ã2
KSK ·

ℬ
2 + 2

12
.

When we pack 1 f ³ < N coefficients, we obtain the following noise variance:

Var(efill)
³
= Var(efill) + (³− 1)Var(eempty),

Var(eempty)
³
= ³

(
n · ℓ · Ã2

KSK ·
ℬ

2 + 2

12

)
.

Finally the cost of a packing key switch is:

Cost
³,ℓ,n,k,N
PackingKS = ³ · Costℓ,n,k,N

KS
+ (³− 1)Costk,NAdd .

Proof (Theorem 2.9). The proof of Theorem 2.9 is not provided but can easily be obtained by
combining the proof of Theorem 2.8 and the proof of Theorem 2.3.

Remark 2.13. Some algorithms use both key switching and packing key switching. To differenti-
ate the associated public material, the key switching key for standard key switching keeps its usual
name, while the key switching key for packing key switching is called the Packing Key Switching
Key, and is referred to as PKSK
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2.4 Programmable Bootstrapping

2.4 Programmable Bootstrapping

In the previous section, we saw that most homomorphic operations cause noise growth, which can
eventually become problematic. Indeed, after a certain number of operations, if this growth is not
managed, the accumulated noise may corrupt the message, making decryption wrong.

In this section, we present the building blocks required to perform TFHE’s bootstrapping. As
introduced in [CGGI16a, CGGI17, CGGI20], bootstrapping is a technique used to control and
reduce noise during computation. In addition to noise reduction, TFHE bootstrapping allows
the evaluation of univariate functions, which is why it is often referred to as programmable (or
functional) bootstrapping (PBS).

At a high level, the goal of bootstrapping is to reduce the noise by homomorphically evaluating
the decryption function (i.e., this reveals no information about the message of the input ciphertext)
to produce a less noisy ciphertext as output.

In the following, we describe the core building blocks of TFHE bootstrapping: Modulus Switch-
ing, Blind Rotation, and Sample Extraction. We then present the complete programmable boot-
strapping procedure and conclude with a discussion on efficient encoding strategies for TFHE based
on the bootstrapping strategies.

2.4.1 Programmable Bootstrapping Building Blocks

The bootstrapping introduced in [CGGI16a, CGGI17, CGGI20] is done in three distinct steps.
First, the modulus of the input LWE ciphertext is adjusted by performing an operation called
Modulus Switch (MS). Then a Blind Rotation (BR) is performed, this operation consisting in
chaining several External Products (EP) (products between GLWE and GGSW ciphertexts). This
step is the most expensive part of the PBS and corresponds to the linear part of the decryption
(see Definition 12). Finally, the last step is Sample Extraction (SE), an operation that enables the
extraction of an LWE ciphertext from a GLWE ciphertext.

Modulus Switch. The modulus switch takes as input an LWE ciphertext in Zn
q and changes the

modulus so that the output LWE ciphertext lies in Zn
w while keeping the most significant bit. In

the context of the PBS, w = 2N where N is the polynomial size of GLWE ciphertext used during
the PBS.

Algorithm 6: ctout ← ModulusSwitch(ctin, w)

Context:

{
w ∈ Z with w < q

s = (s0, . . . , sn−1) : the LWE secret key

Input:

{
ctin = (ain,0, . . . , ain,n−1, b) ∈ GLWEs(m) ¦ Zn+1

q

w : the new modulus

Output:
{
ctout ∈ LWEs

(⌊
m·w
q

⌉)
¦ Zn+1

w

1 for i ∈ [0, n− 1] do

2 aout,i ←
(⌊

ain,i·w
q

⌉)
mod w

3 bout ←
(⌊

bin·w
q

⌉)
mod w

4 return ctout = (aout,0, . . . , aout,n−1, bout)

Theorem 2.10 (Modulus Switch (Algorithm 6)). Let w ∈ Z be the new modulus with w < q. Let
ctin ∈ LWEs(m) ¦ Zn+1

q be an LWE ciphertext encrypting the message m ∈ Zp under the secret
key s = (s0, . . . , sn−1) ∈ Zn

q where the noise ein is sampled from a centered Gaussian distribution

NÃ2 . Then Algorithm 6 outputs ctout ∈ LWEs

(⌊
m·w
q

⌉)
¦ Zn+1

w .
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After the modulus switch, the noise variance of ctout is:

Var(ModulusSwitch) =
Ã2
inw

2

q2
+

1

12
− w2

12q
+

n

24
+

nw2

48q2
.

And the cost of Algorithm 6 is:

Cost
n,q,w
ModulusSwitch = (n+ 1)Cq,w

Round.

Where Cq,w
Round denotes the complexity of performing a modulus switch from q to w on a single

element of Zq.

Proof (Theorem 2.10). Let ctin ∈ LWEs(m) ¦ Zn+1
q be the input ciphertext. Let s be the secret

key. Let ctout ∈ LWEs

(⌊
m·w
q

⌉)
¦ Zn+1

w be the output ciphertext of Algorithm 6.

We note aout,i =
⌊
ain,i·w

q

⌉
=

ain,i·w
q + āi, then we have aout,i ∈ U

([−w
2 , w

2

))
and āi ∈

w
q U

([−q
2w , q

2w

))
. So we have that Var(āi) = 1

12 − w2

12q and E(āi) = −w
2q . We use the same no-

tation for bout and b̄ follows the same distribution.
Let us now decrypt ctout by using Definition 12:

m̃out + eout = bout −
n−1∑

i=0

ain,isi =

⌊
bin · w

q

⌉
−

n−1∑

i=0

⌊
ain,i · w

q

⌉
si

=
bin · w

q
+ b̄i −

n−1∑

i=0

(
ain,i · w

q
+ āi

)
si =

w

q

(
bin −

n−1∑

i=0

ain,isi

)
+ b̄−

n−1∑

i=0

āisi

=
w

q
m̃+

w

q
ein + b̄−

n−1∑

i=0

āisi.

We can now isolate the error:

Var(eout) = Var

(
w

q
ein + b̄−

n−1∑

i=0

āisi

)

=
w2Ãin

q2
+ Var(b̄) + n · Var(āi) · (Var(si) + E2(si)) + n · E2(ā·Var(si))

=
w2Ãin

q2
+

1

12
− w2

12q2
+ n ·

(
1

12
− w2

12q2

)
· 1
2
+ n · w

2

4q2
· 1
4
.

External Products. The external product [GINX16] is an operation that takes as input a
(G)LWE ciphertext and a (G)GSW ciphertext. Its goal is to compute a multiplication between
the two encrypted messages. The procedure is similar to the one used for key switching, as
described in Algorithm 5.

In this manuscript, we focus exclusively on the external product as the method for per-
forming multiplication between two encrypted values (between a GLWE ciphertext and a
GGSW ciphertext). However, in the literature, other approaches exist, such as those presented
in [FV12, CLOT21], which enable multiplication between two GLWE ciphertexts. This alternative
method consists of performing a tensor product followed by a relinearization (algorithm permitting
to recover the input secret key). Although this technique is more costly than the external product
and requires a relinearization key, it does not rely on GGSW ciphertexts. This procedure is latter
detailed in Algorithm 20.
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Algorithm 7: CTout ← ExternalProduct(CT,CT)

Context:





S = (S0, . . . , Sk−1) : the GLWE secret key

∆M ∈ Rq,N : The encoded message of CT

P ∈ Rp,N : The encoded message of CT

(ℬ, ℓ) ∈ (Z∗)2 : The (base, level) decomposition.

CT ∈ GGSWℬ,ℓ
S (P ) ¦ R

(k+1)ℓ·(k+1)
q,N : Definition 14

CTi∈[0,k−1] ∈ GLEVℬ,ℓ
S (−P · Si) ¦ R

(k+1)ℓ
q,N : Definition 13

CTk ∈ GLEVℬ,ℓ
S (P ) ¦ R

(k+1)ℓ
q,N : Definition 13

CT ∈ GLWES(M) ¦ R
k+1
q,N

Input:

{
CT = (A0, . . . , Akin−1, B)

CT = (CT0, . . . ,CTk−1,CTk)

Output:
{
CTout ∈ GLWES(M · P ) ¦ R

k+1
q,N

1 CTout ←
〈
CTk,Decℬ,ℓ(B)

〉
−∑kin−1

i=0

〈
CTi,Decℬ,ℓ(Ai)

〉

2 return CTout

Theorem 2.11 (External Products (Algorithm 7)). Let S = (S0, . . . , Sk−1) ∈ Rk
q,N be the GLWE

secret key. Let CT = (A0, . . . , Ak−1, B) ∈ GLWES(M) ¦ R
k+1
p,N be a GLWE ciphertext encrypting

the message M =
∑N−1

i=0 miX
i ∈ Rp,N with the noise sample from the centered Gaussian distribu-

tion NÃ2 . Let CT = (CT0, . . . ,CTk−1,CTk) ∈ GGSWℬ,ℓ
S (P ) ¦ R

(k+1)ℓ·(k+1)
q,N be a GGSW ciphertext

encrypting the message P =
∑N−1

i=0 piX
i ¦ Rp,N such that CTj∈[0,k−1] = (CTj,0, . . . ,CTj,ℓ−1) ∈

GLEVℬ,ℓ
S (−P · Sj) ¦ R

(k+1)ℓ
q,N and with CTk = (CTk,0, . . . ,CTk,ℓ−1) ∈ GLEVℬ,ℓ

S (P ) ¦ R
(k+1)ℓ
q,N

where the noise sample from the centered Gaussian distribution NÃ2
GGSW

.

Then Algorithm 7 returns an GLWE ciphertext CTout = (A0, . . . , Ak−1, B) ∈ GLWES(M ·P ) ¦
R

k+1
q,N . The cost of this Algorithm is:

Cost
ℓ,k,N
ExternalProduct = (k + 1) ·N · CostℓDec + ℓ · (k + 1) · CostNFFT

+ (k + 1) · ℓ · (k + 1) ·N · CostNmulFFT

+ (k + 1) · (ℓ · (k + 1)− 1) ·N · CostNaddFFT
+ (k + 1) · CostNiFFT.

Where CostNFFT and CostNiFFT denote the cost of performing a FFT (resp., an inverse FFT) of size
N. CostNaddFFT, Cost

N
mulFFT denotes the cost of performing addition and multiplication of size N in

the Fourier domain.
In the case where the GGSW ciphertext encrypts a constant polynomial with a message uni-

formly in {0, 1}, the variance after the external product is:

Var(ExternalProduct) = ℓ · (k + 1) ·N · ℬ
2 + 2

12
Ã2
GGSW +

Ã2
in

2
+

kN

8
Var(si)

+
q2 −ℬ

2ℓ

24ℬ2ℓ
·
(
1 + kN ·

(
Var(si) + E2(si)

))
+

1

16
· (1− kN · E(si))2.

In the following, we denote the external product as ⊡, such that:

ExternalProduct
(
CT,CT

)
= CT⊡ CT.

Proof (Theorem 2.11). The inputs of the external product (Algorithm 7) are:
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• The input GLWE ciphertext: CTin = (Ain,0, . . . , Ain,k−1, Bin) ∈ GLWES (Min) ¦ R
k+1
q,N , where

Bin =
∑k−1

i=0 Ain,i · Sin,i + M̃in + Ein, with Ein =
∑N−1

i=0 ein,iX
i such that ein,i ←↩ NÃ2 .

• The input GGSW ciphertext: CT =
(
CT0, . . . ,CTk−1,CTk

)
encrypting the message p ←↩

{0, 1} such that CTj∈[0,k−1] = (CTj,0, . . . ,CTj,ℓ−1) ∈ GLEVℬ,ℓ
S (−p · Sj) ¦ R

(k+1)ℓ
q,N and with

CTk = (CTk,0, . . . ,CTk,ℓ−1) ∈ GLEVℬ,ℓ
S (p) ¦ R

(k+1)ℓ
q,N . Each noise coefficient in the cipher-

text composing the GGSW ciphertext follow the centered Gaussian distribution NÃGGSW
.

The output of this algorithm is: CTout = (Aout, Bout) ∈ GLWESout
(Mp) ¦ R

k+1
q,N . By definition,

with the decomposition described in Definition 5, we have that Decℬ,ℓ (Ain,i) =
(
Ã0

in,i, . . . , Ã
ℓ−1
in,i

)

with Ãin,i =
∑N−1

j=0

∑ℓ−1
º=0 ã

º
in,i,j

q
ℬj+1X

º, such that Decℬ,ℓ (ain,i,j) =
(
ã0in,i,j , . . . , ã

ℓ−1
in,i,j

)
and ãin,i,j =

∑ℓ−1
º=0 ã

º
in,i,j, for all 0 f i < k and for all 0 f j < N . And we have that Decℬ,ℓ (Bin) =(

B̃0
in, . . . , B̃

ℓ−1
in

)
with B̃in =

∑N−1
j=0

∑ℓ−1
º=0 b̃

º
in,j

q
ℬj+1X

º, such that Decℬ,ℓ (bin,j) =
(
b0in,j , . . . , b

ℓ−1
in,j

)

and b̃in,j =
∑ℓ−1

º=0 b̃
º
in,j, for all 0 f j < N .

Let define Āin,i = Ain,i − Ãin,i and āin,i,j = ain,i,j − ãin,i,j, |āin,i,j | ∈
[ −q
2ℬℓ ,

q
2ℬℓ

)
and let define

B̄in = Bin − B̃in and b̄in,j = ain,j − b̃in,j, |b̄in,j | ∈
[ −q
2ℬℓ ,

q
2ℬℓ

)
So we have that their expectations and

variances are respectively E (āin,i,j) = − 1
2 , Var (āin,i,j) =

q2

12ℬ2ℓ − 1
12 = q2−ℬ

2ℓ

12ℬ2ℓ , E (ãin,i,j) = − 1
2 and

Var (ãin,i) =
ℬ

2−1
12 and we obtain the same values for b̄in,j and b̃in,j.

Let us now decrypt CTout using Definition 12.

M̃out + Eout = Bout −
k−1∑

i=0

AoutS = ï(Aout, Bout), (−S, 1)ð

=

〈
Dec(ℬ,ℓ) (Bin) · CTk −

k−1∑

i=0

Dec(ℬ,ℓ) (Ain,i) · CTk−1, (−S, 1)
〉

=

ℓ−1∑

j=0

B̃j
in ïCTk,j , (−S, 1)ð −

k−1∑

i=0

ℓ−1∑

j=0

Ãj
in,i ïCTi,j , (−S, 1)ð

=

ℓ−1∑

j=0

B̃j
in

( q

ℬj+1
p+ Ej

GGSW,k

)
−

k−1∑

i=0

ℓ−1∑

j=0

Ãj
in,i

( q

ℬj+1
p · Si + Ej

GGSW,i

)

=(Bin − B̄in) · p+
ℓ−1∑

j=0

B̃j
in · E

j
GGSW,k −

k−1∑

i=0

(
Ain,i − Āin,i

)
· p · Si −

k−1∑

i=0

ℓ−1∑

j=0

Ãj
in,iE

j
GGSW,i

=

(
Bin − B̄in −

k−1∑

i=0

(Ain,i − Āin,i) · Si

)
· p+

ℓ−1∑

j=0

B̃j
in · E

j
GGSW,k −

k−1∑

i=0

ℓ−1∑

j=0

Ãj
in,iE

j
GGSW,i

=M̃in · p+ Ein · p+ p

(
−B̄in +

k−1∑

i=0

Āin,i · Si

)
+

ℓ−1∑

j=0

B̃j
in · E

j
GGSW,k −

k−1∑

i=0

ℓ−1∑

j=0

Ãj
in,iE

j
GGSW,i.

Now, let us isolate and focus on the error associated with the constant coefficient in the previous
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equation (we note that the approximated result will be identical for all other coefficients):

e0,out = e0,in · p+


−b̄0,in +

k−1∑

i=0


āin,i,0 · si,0 −

N−1∑

j=1

āin,i,j · si,j




 · p

︸ ︷︷ ︸
I

+

ℓ−1∑

º=0


b̃in,0 · eºGGSW,k,0 −

N−1∑

j=1

b̃in,j · eºGGSW,k,N−1−j




︸ ︷︷ ︸
II

−
k−1∑

i=0

ℓ−1∑

º=0


ãºin,i,0 · eºGGSW,i,0 −

N−1∑

j=1

ãºin,i,j · eºGGSW,i,N−1−j




︸ ︷︷ ︸
II

.

Then, Var(I) can be approximated as follows:

Var(I) =
(
Var(p) + E2(p)

)
Var

(
−b̄0,in + kNāin,i,j · si,j

)
+ Var(p) · E2

(
−b̄0,in + kNāin,i,j · si,j

)

=
1

2
· Var

(
−b̄0,in + kNāin,i,j · si,j

)
+

1

4
· E2

(
−b̄0,in + kNāin,i,j · si,j

)
.

With:

E
(
−b̄0,in + kNāin,i,j · si,j

)
= E(−b̄0,in) + kNE(āin,i,j) · E(si,j)

=
1

2
− kN

1

2
E(si,j) =

1

2
(1− kNE(si,j))

E2
(
−b̄0,in + kNāin,i,j · si,j

)
=

1

4
(1− kNE(si,j))

2
.

And:

Var(−b̄0,in + kNāin,i,j · si,j) = Var(−b̄0,in) + kNVar(āin,i,j · si,j)

=
q2 −ℬ

2ℓ

12ℬ2ℓ
+ kN

(
Var(āin,i,j) ·

(
Var(si,j) + E2(si,j)

)
+ Var(si,j) · E2(āin,i,j)

)

=
q2 −ℬ

2ℓ

12ℬ2ℓ
+ kN

(
q2 −ℬ

2ℓ

12ℬ2ℓ
·
(
Var(si,j) + E2(si,j)

)
+

1

4
Var(si,j)

)

=
q2 −ℬ

2ℓ

12ℬ2ℓ
·
(
1 + kN

(
Var(si,j) + E2(si,j)

))
+

kN

4
Var(si,j).

Then, Var(II) can be approximated as follows:

Var(II) = ℓ ·N · Var(̃b0,in · eºGGSW,k,0) + kℓNVar(ãºin,i,0 · eºGGSW,i,0)

= (k + 1) · ℓ ·N · Var(ãºin,i,0 · eºGGSW,i,0)

= (k + 1)ℓN
(
Var(ãºin,i,0)Var(eGGSW,i,0) + E2(ãºin,i,0)Var(eGGSW,i,0) + Var(ãºin,i,0)E

2(eGGSW,i,0)
)

= (k + 1) · ℓ ·N
(
ℬ

2 − 1

12
Ã2
GGSW +

1

4
Ã2
GGSW

)
= ℓ · (k + 1) ·N · ℬ

2 + 2

12
Ã2
GGSW.

Finally, we obtain:

Var(eout) = Var(e0,in · p) + Var(I) + Var(II)

= ℓ · (k + 1) ·N · ℬ
2 + 2

12
Ã2
GGSW +

Ã2
in

2
+

kN

8
Var(si)

+
q2 −ℬ

2ℓ

24ℬ2ℓ
·
(
1 + kN ·

(
Var(si) + E2(si)

))
+

1

16
· (1− kN · E(si))2.
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Cmux. The CMux is a homomorphic operation that takes as input two ciphertexts and an
encrypted selector, and depending on the encrypted selector, outputs one or the other ciphertext
without leaking any information. It is an homomorphic selector. More precisely, given two GLWE
ciphertexts encrypting respectivelyM0 ∈ Rp,N andM1 ∈ Rp,N and a GGSW ciphertext encrypting
a bit b ∈ {0, 1}, the Cmux returns the ciphertext corresponding to the encrypted input bit b, i.e., it
returns Mb (M0 if b = 0, M1 otherwise). The main building block of the algorithm is the external
product (Algorithm 7), and the goal is to homomorphically compute (M1 +M0) · b+M0.

Algorithm 8: CTb ← CMux(CT0,CT1,CT)

Context:





S = (S0, . . . , Sk−1) : the GLWE secret key

∆Mi∈{0,1} ∈ Rq,N : The encoded message of CTi∈{0,1}
b ∈ {0, 1} : The encoded message of CT

(ℬ, ℓ) ∈ (Z∗)2 : The (base, level) decomposition.

CTi∈[0,k−1] ∈ GLEVℬ,ℓ
S (−P · Si) ¦ R

(k+1)ℓ
q,N (Definition 13)

CTk ∈ GLEVℬ,ℓ
S (P ) ¦ R

(k+1)ℓ
q,N (Definition 13)

Input:





CT0 ∈ GLWES(M0) ¦ R
k+1
q,N

CT1 ∈ GLWES(M1) ¦ R
k+1
q,N

CT ∈ GGSWℬ,ℓ
S (b) ¦ R

(k+1)ℓ·(k+1)
q,N (Definition 14)

Output:
{
CTb ∈ GLWES(Mb) ¦ R

k+1
q,N

1 CTb ← (CT1 − CT0)⊡ CT+ CT0; /* Algorithm 7 */

2 return CTb

Theorem 2.12 (Cmux (Algorithm 8)). Let S = (S0, . . . , Sk−1) ∈ Rk
q,N be the GLWE secret key.

For j ∈ {0, 1}, let CTj = (Aj,0, . . . , Aj,k−1, Bj) ∈ GLWES(Mj) ¦ R
k+1
q,N be a GLWE ciphertext

encrypting the message Mj =
∑N−1

i=0 mj,iX
i ∈ Rp,N with the noise sample from the centered

Gaussian distribution NÃ2 . Let CT = (CT0, . . . ,CTk−1,CTk) ∈ GGSWℬ,ℓ
S (b) ¦ R

(k+1)ℓ·(k+1)
q,N be

a GGSW ciphertext encrypting the constant message b with the noise sample from the centered
Gaussian distribution NÃ2

GGSW
.

Then Algorithm 8 returns an GLWE ciphertext CTout = (A0, . . . , Ak−1, B) ∈ GLWES(Mb) ¦
R

k+1
q,N . The cost of this algorithm is:

Cost
ℓ,k,N
CMux = ℓ · (k + 1) ·N · CostℓDec + ℓ · (k + 1) · CostNFFT

+ (k + 1) · ℓ · (k + 1) ·N · CostNmulFFT

+ (k + 1) · (ℓ · (k + 1)− 1) ·N · CostNaddFFT
+ (k + 1) · CostNiFFT + 2Costk,Nadd .

Where CostNFFT and CostNiFFT denote the cost of performing a FFT (reps., an inverse FFT) of size
N. CostNaddFFT, Cost

N
mulFFT denotes the cost of performing addition and multiplication of size N in

the Fourier domain.

The variance of Algorithm 8 is:

Var(Cmux) = Var(ExternalProduct).

Proof (Theorem 2.12). The proof is not provided, but can easily be retrieved from the proof of
Theorem 2.11.
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Blind Rotation. Blind rotation is the second major step of the bootstrapping. This operation
consists in chaining multiple CMuxes to perform a rotation of an input polynomial message en-
crypted under a GLWE ciphertext. Given a GLWE ciphertext encrypting a message M , the blind
rotation takes as input a set of rotations ri, each associated with a GGSW ciphertext encrypting
a selector bit bi. Then by chaining several CMuxes taking as input the output of the previous
CMux, the blind rotation outputs a ciphertext encrypting M ·X

∑
ribi .

In the context of the PBS, the input rotations correspond to the elements of (a, b) ∈ Zn+1
q of a

noisy LWE ciphertext, and the selectors correspond to the associated secret key bits. Consequently,
blind rotation outputs an encryption of M ·Xb−∑

aisi = M ·X∆m+e (Definition 12). We present
the details of the blind rotation in the PBS context in Theorem 2.13 and Algorithm 9.

The polynomial M ∈ Rp,N , known as the Lookup Table (LUT), is designed to implement
the rounding operation of the decoding process (see Definition 8). Each coefficient of the LUT
corresponds to a possible decoded message of the input LWE. More generally, to evaluate a function
homomorphically, the LUT can be constructed such that the ith coefficient encodes the value f(i),
enabling functional evaluation through blind rotation and sample extraction.

Definition 16. The Lookup Table (LUT) is a polynomial that encodes a function f such that
the ith coefficient corresponds to the encoding of f(i).

LUT =

N−1∑

i=0

encode(f(i), Ã, p, q) , See Definition 8.

In the commonly used case, when q and p are powers of two and Ã = 1 and with ∆m + e ∈
[0, N − 1], the LUT is constructed as follows:

LUT = X−∆/2

N/∆−1∑

i=0

∆∑

j=0

f(i)∆Xi·∆+j mod XN + 1.

With a such Lookup, after a rotation by −(∆m + e), the resulting polynomial LUT · X−(∆m+e),
have ∆f(m) as the constant term.

We note that this lookup table can be public and trivially encrypted, as explained in Remark 2.6,
or it can be encrypted within a GGSW ciphertext. In the second case, the function f remains hidden
from the server.

As presented in Definition 4, this work focuses exclusively on the cyclotomic polynomial XN+1.
For other cyclotomic polynomials, the construction of the lookup table must be adapted accord-
ingly, as detailed in [JW22].

Theorem 2.13 (Blind Rotation (Algorithm 9)). Let s = (s0, . . . , sn−1) ∈ Zn
q

be a binary LWE secret key and S ∈ Rk
q,N be a GLWE secret key. Let ctin =

(ain,0, . . . , ain,n−1, bin) ∈ LWEs(m) ¦ Zn+1
2N encrypting the message m ∈ Zp. Let n GGSW ci-

phertexts
{
CTi ∈ GGSWℬ,ℓ

S (si) ¦ R
(k+1)ℓ×(k+1)
q,N

}
i∈[0,n−1]

be a set of GGSW ciphertexts, each en-

crypting an element si of the LWE secret key under the GLWE secret key, with noise drawn from
the centered Gaussian distribution NÃ2

GGSW
. This collection will later corresponds to the bootstrap-

ping key (see Definition 17). Finally let the lookup table LUTf representing the function f as
presented in Definition 16

Then Algorithm 9 returns an GLWE ciphertext CTout ∈ GLWES

(
LUTf ·X−(b+

∑n−1
i=0 aisi)

)
¦

R
k+1
q,N . The cost of this algorithm is:

Cost
ℓ,k,N,n
BlindRotation = n · Costℓ,k,NCMux .
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Algorithm 9: CT← BlindRotation(ctin,CTf ,CTi∈[0,n−1])

Context:





s = (s0, . . . , sn−1) : the LWE secret key

S = (S0, . . . , Sk−1) : the GLWE secret key

∆m ∈ Z2N : The encoded message of ctin

LUTf : The Lookup table evaluating the function m 7→ f(m), Definition 16

CTf : Trivial encryption of LUTf (Remark 2.6)

(ℬ, ℓ) ∈ (Z∗)2 : The (base, level) decomposition.

Input:





ctin = (ain,0, . . . , ain,n−1, bin) ∈ LWEs(m) ¦ Zn+1
2N

CTf ∈ GLWES(LUTf ) ¦ R
k+1
q,N{

CTi ∈ GGSWℬ,ℓ
S (si) ¦ R

(k+1)ℓ×(k+1)
q,N

}
i∈[0,n−1]

Output:
{
CTout ∈ GLWES

(
LUTf ·X−(b−∑n−1

i=0 aisi)
)
¦ R

k+1
q,N

1 CTout ← CTf ·X−b

2 for i ∈ [0, n− 1] do
3 CT0 ← CTout

4 CT1 ← CTout ·Xai

5 CTout ← CMux
(
CT0,CT1,CTi

)
; /* Algorithm 8 */

6 return CTout

And for a trivially encrypted lookup table (Definition 16), the output noise variance is equal to:

Var(BlindRotation) = n · ℓ · (k + 1) ·N · ℬ
2 + 2

12
Ã2
GGSW +

nkN

8
Var(si)

+ n · q
2 −ℬ

2ℓ

24ℬ2ℓ
·
(
1 + kN ·

(
Var(si) + E2(si)

))
+

n

16
· (1− kN · E(si))2.

Proof (Theorem 2.13). This proof follows the idea of Theorem 2.12; in particular, it consists in
chaining n CMux operations.

Remark 2.14. For efficiency reasons, the blind rotation operates over polynomials in Rq,N where
N is much smaller than q. Although rotations could theoretically be done with polynomials of
degree q (i.e., in Rq,q), in practice q equals 32− or 64−bits. This would result in large poly-
nomials and extremely inefficient polynomial multiplications. Using smaller degree polynomials
significantly improves the efficiency of the blind rotation algorithm.

As a result, polynomials are in Rq,N and rotations are performed modulo 2N , but the poly-
nomial degree constraint the representation to only N distinct values. This constraint arises from
the negacyclicity property, as explained in Remark 2.1.

To solves this limitation, two strategies can be employed:

• Evaluate a negacyclic function, satisfying f(x) = −f(x + N) mod 2N then the encoded
message plus the error ∆m+ e ∈ Z2N can be in the full range [0, 2N − 1].

• Restrict the encoded message plus the error ∆m+ e ∈ Z2N to the range [0, N − 1].

The second approach is practically ensured by keeping the most significant bit (MSB) of the
plaintext at a known value (generally equal to zero), i.e., we force the padding bit to be equal
to zero. To maintain this guarantee, it is crucial to track the message growth throughout the
computation to ensure that the padding bit remains unused.

Sample Extract. The final step of the PBS is sample extraction, an operation that permits
obtaining an LWE ciphertext encrypting the constant coefficient from a GLWE ciphertext. The
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goal is to extract the constant term of B and each coefficient of the polynomials in A to obtain,
by rearranging these coefficients, an LWE ciphertext encrypted under the flattened representation
of the GLWE secret key (Definition 11).

Algorithm 10: ct← SampleExtract(CT)

Context:





S = (S0, . . . , Sk−1) ∈ Rk
q,N : the GLWE secret key

s = (s0, . . . , skN−1) ∈ ZNk
q : Flattened GLWE secret key; /* Definition 11 */

M =
∑N−1

i=0 miX
i ∈ Rp,N : The message of CT, b ∈ {0, 1}

Input:
{
CT = (A0, . . . Ak−1, B) ∈ GLWES(M) ¦ R

k+1
q,N

Output:
{
ct ∈ LWEs(m0) ¦ ZkN+1

q

1 b← b0
2 for i ∈ [0, k − 1] do
3 aiN ← ai,0 for j in [1, N − 1] do
4 aiN+j ← −ai,N−j

5 return cts = (a0, . . . ank−1, b)

Theorem 2.14 (Sample Extract (Algorithm 10)). Let CT = (A0, . . . , Ak−1, B) ∈ GLWES(M) ¦
R

k+1
q,N be a GLWE ciphertext encrypting the message M =

∑N−1
i=0 miX

i ∈ Rp,N with the noise sam-
ple from the centered Gaussian distribution NÃ2 . After Algorithm 10, we obtain an LWE ciphertext
ct ∈ LWEs(m0) encrypted under the secret s, the flatten representation of S (Definition 11). The
noise after the sample extract remains unchanged and the cost of Algorithm 10 is:

Cost
k,N
SampleExtract = (k + 1)NCCopy.

where CCopy denotes the computational cost of performing a copy operation on an element in Zq.
This operation is almost negligible compared to the complexity of other algorithms.

Proof (Theorem 2.14). Let S = (S0, . . . , Sk−1) ∈ Rk
q,N be the GLWE secret key. Let CT =

(A0, . . . , Ak−1, B) ∈ GLWES(M) ¦ R
k+1
q,N be a GLWE ciphertext encrypting the message M =

∑N−1
i=0 miX

i ∈ Rp,N with the noise sample from the centered Gaussian distribution NÃ2 such that

Aj =
∑N−1

i=0 aj,iX
i for j ∈ [0, k − 1] and B =

∑N−1
i=0 biX

i =
∑k−1

j=0 AjSj + M̃ + E.

According to Definition 14, we have that b0 = m̃0 + e0 +
∑k−1

j=0

(
aj,0sj,0 −

∑N−1
i=1 aj,N−isj,i

)

which corresponds to an LWE ciphertext (a0,0,−a0,N−1, . . .− a0,1, a1,0, . . . ,−ak−1,1, b0) encrypting
m0 under the flatten representation of the secret key S (Definition 11).

The final step of the PBS consists of performing a sample extraction of the constant term from
a polynomial message encrypted in a GGSW ciphertext, as described in Algorithm 10. It is also
possible to extract coefficients other than the constant one. This can be achieved by properly
reordering the coefficients, as described later in Algorithm 29 for another context, or by applying
a rotation using Algorithm 2.4 before the sample extraction.

2.4.2 Programmable Bootstrapping

As presented in the section introduction, the TFHE bootstrapping introduced in [CGGI16a,
CGGI17, CGGI20] is an operation that reduces the noise of a noisy LWE ciphertext while en-
abling the evaluation of any univariate function. Previously, we have described all the building
blocks required to perform this operation. At a high level, the Programmable Bootstrapping (PBS)
first changes the modulus of the input LWE ciphertext to satisfy the conditions required to cor-
rectly perform a rotation modulo 2N . Then, a blind rotation is applied to a lookup table indexed
by the input LWE. Finally, the first coefficient of the rotated GLWE ciphertext is extracted, to
obtain the desired result in an LWE ciphertext. We now present how all these blocks interact to
form the complete programmable bootstrapping algorithm.
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Definition 17 (Bootstrapping key). Let s = (s0, . . . , sn−1) be an binary LWE secret key and S′

be a GLWE secret key. The bootstrapping Key (BSK) is the public material required to perform the
programmable bootstrapping. This secret key is composed of n GGSW ciphertexts, each encrypting
an element si of the LWE secret key under the GLWE secret key, with noise drawn from the
centered Gaussian distribution NÃ2

BSK
.

BSK = (BSK0, . . . ,BSKn−1) =
{
BSKi ∈ GGSWℬ,ℓ

S′ (si)
}
i∈[0,n−1]

.

Remark 2.15 (Public Material). To refer to all the public materials collectively, we introduce
the notation PUB, which denotes the set of all public materials required throughout this work.
This set includes: the Bootstrapping Key (Definition 17), the Private Function Key Switching
Key (Remark 2.12), the Packing Key Switching Key (Remark 2.13) and the Key Switching Key
(Definition 15).

Theorem 2.15 (Programmable Bootstrapping (Algorithm 11)). Let s = (s0, . . . , sn−1) be a
binary LWE secret key and S′ ∈ Rk

q,N be a GLWE secret key and s′ his flatten representation. Let

ctin = (ain,0, . . . , ain,n−1, bin) ∈ LWEs(m) ¦ Zn+1
2N encrypting the message m ∈ Zp. Let BSK be the

bootstrapping key as presented in Definition 17. Finally let the lookup table LUTf representing the
function f as presented in Definition 16.

Then Algorithm 11 returns an LWE ciphertext ctout ∈ LWEs′

(
f
(

(∆m+e)2N
q mod 2N

))
¦

R
k+1
q,N . An LWE ciphertext encrypting f

(
(∆m+e)2N

q mod 2N
)
under the secret key s′.

The cost of this algorithm is:

Cost
ℓ,k,N,n,q
PBS

= Cost
n,q,2N
ModulusSwitch + Cost

ℓ,k,N,n
BlindRotation + Cost

k,N
SampleExtract.

And for a trivially encrypted lookup table (Definition 16), the output noise variance is equal to:

Var(PBS) = n · ℓ · (k + 1) ·N · ℬ
2 + 2

12
Ã2
BSK +

nkN

32

+ n · q
2 −ℬ

2ℓ

24ℬ2ℓ
·
(
1 +

kN

2

)
+

n

16
·
(
1− kN

2

)2

.

Proof (Theorem 2.15). The correctness of the programmable bootstrapping algorithm relies on
the correctness of three algorithms: the Modulus Switch (Algorithm 6), the Blind Rotation (Algo-
rithm 9), and the Sample Extraction (Algorithm 10). The output variance is determined by the
variance introduced during the blind rotation, assuming a binary secret key. The corresponding
formula for the output variance can be obtained by directly applying the proof of Theorem 2.13.

Remark 2.16. The main difference between TFHE bootstrapping [GINX16, CGGI16a] and
FHEW bootstrapping [ASP14, DM15] lies in the way the product between ciphertexts is per-
formed. In TFHE, this operation uses the external product, which computes the product of a
GLWE ciphertext and a GGSW ciphertext (see Definition 2.11).

In contrast, in FHEW bootstrapping, the product is performed using an internal product,
which is a product between two GGSW ciphertexts, outputting another GGSW ciphertext (see
Definition 14). While the noise propagation is similar to that of the external product, the internal
product requires several external products to be performed, resulting in a higher cost compared to
using a single external product. Moreover, the internal product requires larger public material.

Since the binary distribution is the most commonly used in TFHE, Algorithm 11 is presented
with binary secret keys. In Subsection 2.1.2, we introduce several alternative secret key distri-
butions and the PBS can be performed with these alternative distributions, but it results in less
efficient computation. For instance, when the LWE secret key follows a ternary distribution, blind
rotation requires twice as many Cmux operations, as two chained Cmuxes are sufficient to represent
one elements of the LWE ternary secret key.
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Algorithm 11: ctout ← PBS(ctin, LUT,BSK)

Context:





s = (s0, . . . , sn−1) : the LWE secret key

S′ = (S′
0, . . . , S

′
k−1) : the GLWE secret key

s′ the flatten representation of the GLWE secret key, Definition 11

∆m+ e ∈ Zq : The encoded message of ctin, Definition 8

LUTf : The Lookup table evaluating the function m 7→ f(m), Definition 16

CTf : Trivial encryption of LUTf , Remark 2.6

(ℬ, ℓ) ∈ (Z∗)2 : The (base, level) decomposition.

Input:





ctin = (ain,0, . . . , ain,n−1, bin) ∈ LWEs(m) ¦ Zn+1
q

CTf ∈ GLWES(LUTf ) ¦ R
k+1
q,N

BSK =
{
BSKi ∈ GGSWℬ,ℓ

S′ (si)
}
i∈[0,n−1]

Output:
{
ctout ∈ LWEs′ (f (∆m+ e)) ¦ ZNk+1

q

1 ct← ModulusSwitch(ctin, 2N); /* Algorithm 6 */

2 CT← BlindRotation(ctin,CTf ,BSK); /* Algorithm 9 */

3 ctout ← SampleExtract(CT); /* Algorithm 10 */

4 return ctout

2.4.3 Carry and Message Space Encoding

In our work [BBB+23], we introduced an efficient method that uses an encoding scheme split into
two parts: the message and the carry. This encoding enables several levels of computation to be
performed before requiring a bootstrapping. This is another approach from the usual Boolean
encoding from the original TFHE scheme.

This encoding is obtained by modifying the Definition 8 in order to include a carry space into
the plaintext space. The core idea is to give enough room in a ciphertext encrypting an integer
message modulo ´ ∈ N to store more than just the message but also potential carries coming from
leveled operations such as addition or multiplication with a known integer.

In practice, we split the traditional plaintext space into three different parts: the message
subspace storing an integer modulo ´ ∈ Z (we call ´ the base), the carry subspace containing
information overlapping ´, and a bit of padding (or more) often needed for bootstrapping. In
this context, we refer to the carry-message modulo as the subspace including both the message
subspace plus the carry subspace, and we note it p ∈ N. Figure 2.2 shows a visual example.

∅ p

´

e

Figure 2.2: Plaintext binary representation with a base ´ = 4 = 22 (green), a carry subspace
(cyan), a carry-message modulo p = 16 = 22+2 (cyan+green) such that 0 < ´ < p, the error e
(red), and a bit of padding is displayed in the MSB (dark blue). The white part is empty. So the
plaintext modulo is 32 = 22+2+1. This means that we have 2 bits in the carry subspace (set to 0
in a fresh ciphertext), that will contain useful data when one computes leveled operations.

In order to keep track of the worst case message in each ciphertext, i.e., check if there is still
room to perform more operations or if we needs to perform a PBS to keep the padding bit empty,
we use a metadata that we call degree of fullness.

Definition 18. The degree of fullness, that we note deg, of an LWE ciphertext ct encrypting a
message 0 f m < p, is equal to deg (ct) = µ

p−1 ∈ Q, where µ is the known worst case for m, i.e.,
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the biggest integer that m can be, such that 0 f m f µ < p. To ensure correctness, the degree of
fullness should always be a quantity included between 0 and 1, where deg (ct) = 1 means that the
carry-message subspace is full in the worst case.

We take advantage of the carry subspace to compute leveled operations and to avoid bootstrap-
ping. In practice, the carry subspace acts as a buffer to contain the carry information derived from
homomorphic operations and the degree of fullness acts as a measure that indicates when the buffer
cannot support additional operations: once this limit is reached the carry subspace is emptied by
bootstrapping. To be able to perform a leveled operation between two LWE ciphertexts of that
type, they need to have the same base ´, carry-message p and ciphertext modulus q.

Remark 2.17. Using PBS on values encoded in the message-and-carry representation, it is possible
to apply a single PBS to process two fresh ciphertexts as input, thereby enabling the evaluation of
bivariate functions (See Algorithm 16). Moreover, information can be selectively extracted from
either the message or the carry component. These operations are often referred to as message
extraction and carry extraction. These operations are commonly used in more complex algorithms
and representations, as detailed in Chapter 7 and Chapter 8.

2.5 Optimization & Parameter Generation

The entire content of this section is derived from our article [BBB+23]. The presented algorithm al-
together enables the construction of a fully homomorphic encryption scheme. First, we can perform
linear operations such as additions (Algorithm 3), multiplications by a constant (Theorem 2.5), or
external products (Algorithm 7). Throughout these operations, the noise grows gradually. Once it
reaches a critical threshold, we must manage it using programmable bootstrapping (Algorithm 11)
to avoid noise to corrupts the message. After bootstrapping, the secret key may have changed,
requiring the use of a key switching (Algorithm 4) to retrieve the input secret key. This process
represents the first complete graph presented in the original TFHE scheme.

Along this journey, we distinguish many different parameters, such as, the LWE and GLWE
parameters such as the dimension n, the polynomial size N and the GLWE dimension k. These
parameters are named the macro parameter. In addition to perform operations such as the key
switch (Algorithm 5) or the programmable bootstrapping (Algorithm 11), introduces with new
parameter such as the bases ℬPBS and ℬKS, the different decomposition levels, ℓPBS and ℓKS.
These parameters are named the micro parameter. All the micro and macro parameters have
a huge impact on the correctness and the execution time of the different algorithms. Moreover
during a graph evaluation, it is crucial to track the noise growth to prevent decryption failures
(pfail, Definition 2) while maintaining security and maximizing efficiency.

Finding parameters that satisfy all the correctness constraints across the full computational
graph is highly challenging. In this section, we present methodologies that have been proposed to
determine optimal parameter sets balancing both security and execution efficiency. This method-
ology allows us to find parameter sets that satisfy the following three guarantees:

1. the desired level of security,

2. the correctness of the computation up to the desired correctness probability,

3. a cost as small as possible.

The first guarantee is easy to reach using the security oracle (already discussed in Subsec-
tion 2.1.4) that can be built using the lattice-estimator [APS15]. Indeed, one can always increase
the amount of noise at encryption (or key generation) to get the desired security. Using this, one
does not need to find the best encryption noise, one can simply look for the best LWE dimension
(or GLWE dimension and polynomial size) and take the minimal encryption noise given by the
security oracle. In the end, one is sure to provide enough security as the noise is chosen with
respect to other ciphertext parameters.
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To guarantee the correctness of a computation (guarantee 2), one needs to rely on the noise
model of each FHE operator in the graph. With FHE schemes, there is a link between the noise
inside a ciphertext and the correctness of the computation. In fact, if the noise grows too much,
the message will be tampered and the decryption algorithm will not yield the correct result. In
order to guarantee the correctness, one needs to track the noise at each step of the computation
(using the noise model) and choose parameters in a way that the noise remains small enough.

The last guarantee is to have a cost as small as possible. For that, one needs to use the cost
model and select the parameters that minimize this cost (among the ones that satisfy guarantee 2).
Naturally, the more realistic the cost model is, the better the parameters will be in practice.

2.5.1 Basis for FHE Optimization

Let us start by recalling some high-level definitions.

Definition 19 (FHE & Plain operator). Any FHE operator O is an implementation of an FHE
algorithm, on a given piece of hardware, taking as input some ciphertexts and/or plaintexts and
returning one or more ciphertexts. A plain operator is a function mapping several integers into an
output list of integers.

Noise formulae and cost model. A noise formula for a given homomorphic operator takes as
input the variance of the input ciphertext noises, some cryptographic parameters involved in the
operator computation, as well as the plaintext values used in the operator.

The noise of a freshly encrypted ciphertext is a random (small) integer drawn from a given
distribution Ç (Ã), where Ã2 is its variance. Variances help us quantifying noise in ciphertext, so
whenever it is written that a ciphertext contains more noise than another, we mean that the noise
inside the first ciphertext is drawn from a normal distribution with a larger variance than the
second one.

We will always consider the cost model to approximate the running time on a single thread.
More details on the cost model used in the experiments / benchmarks are provided later in the
manuscript. Other and more complex cost models could be considered (e.g., combining complexity
of operations with keys and ciphertext sizes, pieces of hardware, RAM, etc.), but it is note studied
in this manuscript.

Security. The security of a GLWE-based scheme depends on the distribution of the secret key
(for example binary, ternary or Gaussian), the product between the GLWE dimension and the
polynomial size (i.e. k ·N), the noise distribution, and the ciphertext modulus (often written q).
To estimate the security level offered by some given parameters one can use the LWE/Lattice-
estimator [APS15] (See subsection 2.1.4). As a general rule of thumb, to keep the same security
level, when increasing the product k ·N we can decrease the minimal noise needed inside a cipher-
text.

Noise Plateau. In TFHE’s implementations, q is often chosen equal to 232 or 264, in order to
be able to work with 32 or 64 bit integers, respectively, since they are native types in the majority
of machines used nowadays. As mentioned before, to keep the same security level when increasing
k ·N , we can reduce the variance Ã2 of the noise. But the value of q and the fact that we work with
discretized values, impose a lower bound on the variance, meaning that starting from a certain
point − that we call plateau − we can not reduce the variance anymore, otherwise we lose security.
Notice that, for LWE ciphertexts, a small increase of the value of n allows for a small decrease of
the value of Ã2. But when working with polynomials, moving to a bigger power of 2 for N will
lead to a large increase of the size of the secret key, from kN to k · 2N , and so a large decrease of
Ã2 when allowed. For the same security reason mentioned above, at some point we reach a limit
where we cannot reduce the variance Ã2 of the noise anymore. The consequence is that to avoid
having no security at all, we end up with a security level way higher than desired.

53



Chapter 2. Understanding TFHE

Definition 20 (Noise Plateau). The noise plateau is the threshold in the size of a ciphertext
beyond which noise can no longer be reduced without compromising security. This minimum noise
variance is studied in [GHS12, MR09].

Remark 2.18. We note that the notion of a Noise Plateau can be subject to controversy, as even
with very large coefficients and a small Ã2 value, errors may still be present, even with discretized
values. However, since this topic is still under discussion, we chose not to decrease the noise beyond
the noise plateau threshold during the parameters selection.

In the rest of this manuscript, we assume that, for each possible distributions of the secret key,
we have access to the following security oracle:

Definition 21 (Security Oracle). Given the product k · N , a level of security ¼ and a ciphertext
modulus q, the security oracle outputs the minimal noise variance Ã2

min needed in a ciphertext for
it to be secure with the required level of security.

2.5.2 The TFHE Optimization Problem

As said above, one needs to choose the macro-parameters among a set of possible values. For
example, the polynomial size N must be a power of 2. One wants to narrow it down to a finite set,
and a practical yet wide enough space for TFHE-like schemes could be PN =

{
28, 29, · · · , 217

}
.

In the same manner, the LWE dimension n could be selected in Pn = [256, 2048] and the GLWE
dimension in Pk = [1, 6]. The PN is called the search space of N .

Definition 22 (FHE Directed Acyclic Graph (FHE DAG)). Let G = (V, L) be a DAG of FHE
operators. We define V = {Oi}1fif³ as the set of vertices, each of them being an FHE operator.
We define L as the set of edges, each of them associated with the modulus p of the encrypted message
i.e. L ¢

{
{x, y, p} |(x, y) ∈ V 2, p ∈ N

}
. When L is not needed, we will simply write G = V . We

note CostG, x the cost of running the FHE graph G with the parameter set x.

For a given FHE DAG G (definition 22), one also needs to set the micro parameters. For
example, the logarithm of the decomposition base for a KS or a PBS log2 (ℬ) can be taken in
Plog2(ℬ) = [1, +log2(q),] and the level of the decomposition ℓ in Pℓ = [1, +log2(q),]. As (ℬ, ℓ) are
used to do a radix decomposition of each integer composing the input ciphertext, we know that
ℓ · log2 (ℬ) f log2(q) so in practice, we will consider (ℬ, ℓ) as one unique variable in Plog2(ℬ),ℓ ={
(log2 (ℬ) , ℓ) ∈ [1, +log2(q),]2, ℓ · log2 (ℬ) f log2(q)

}
.

In the end, one needs to choose a set of parameters in the Cartesian product of the search
spaces of all the micro and macro parameters of a graph G. This space is noted PG and is called
the search space of G. In the rest of the manuscript, this set is simply called P when there is no
ambiguity on the graph.

Definition 23 (Noise Bound). Let CT ∈ GLWES

(
M̃
)
a GLWE ciphertext of an encoding M̃ of

M with a message modulus p and Ã padding bits. The noise bound t³(Ã, p) for a failure probability
³ is the biggest integer satisfying:

Ã f t³ (Ã, p)⇒ P
(
Decode

(
M̃, 2Ã · p, q

)
̸= M

)
f ³.

The noise bound can also depend on other values, for instance it could take the degree of fullness
later defined in Definition 18.

Remark 2.19. Assuming that the input ciphertext contains a noise polynomial E =
∑N−1

i=0 eiX
i ∈

Rq,N such that ∀i, ei ∼ N
(
0, Ã2

)
, we have an explicit formula for the noise bound t³(Ã, p) =

∆
2·»

with » = z∗ (pfail), the standard score (Definition 2) for pfail = 1− N
√
1− ³. Let us assume Ã f t³.
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Immediately using Definition 2 and Equation 2.1, we have P
(
|ei| g ∆

2

)
f pfail = 1− N

√
1− ³. Thus

P
(
Decode

(
M̃, 2Ã · p, q

)
̸= M

)
= P

(⋃
|ei| g

∆

2

)

= 1− P

(⋂
|ei| <

∆

2

)

= 1−
N∏

i=1

P

(
|ei| <

∆

2

)
by indep. of {ei}i∈[[1,N ]]

= 1−
N∏

i=1

(
1− P

(
|ei| g

∆

2

))

f 1− (1− pfail)
1
N = ³.

When the input ciphertext is an LWE ciphertext i.e. N = 1, we have 1− N
√
1− ³ = ³.

Using the noise bound, we can guarantee a correct decoding up to a given probability using
only the distribution of the noise which can be publicly estimated. The tightness of the noise
model is crucial to build tight confidence intervals.

Every ciphertext in an FHE DAG must have a noise smaller than its associated noise bound
in order to guarantee the correctness of the computation. With those constraints, we define the
noise feasible set, a subset of the search space P where every set of parameters will guarantee a
correct computation.

Definition 24 (Noise Feasible Set). Let G, an FHE DAG such that G = (V, L) with L =
{(·, ·, pi)}i∈[1,|L|], and let ³ be a failure probability. Let {Ãi}i∈|L| be the standard deviation of the

noise in the ciphertexts transiting on every edge of G. For every edge i, we must have Ãi(x) f t³ (pi)
which defines a subset of the search space P: Si = {x ∈ P|Ãi(x) f t³ (pi)}. The intersection of all
those sets is the noise feasible set S: the set of parameter sets that will lead to a correct computation.
We have:

S =
⋂

i∈I

Si = {x ∈ P|∀i ∈ [1, |L|], Ãi f t³ (pi)} .

By choosing a set of parameters that is in the noise feasible set, we are sure to have a cor-
rect computation which satisfies guarantee 2. In this set, we want to find the set of parameters
minimizing the cost of the FHE DAG. Formally, we want:

argmin
x∈P

Cost(G, x) s.t. x ∈ S (G) . (2.2)

The problem of finding efficient and correct FHE parameters is then a minimization problem
under constraints. We can naturally use optimization techniques to solve it. The issue is that the
complexity of the problem is dependent on the size of the FHE DAG which can rapidly become
unrealistic for large DAGs. In the next section, we present several non trivial simplifications prior
to the optimization enabling to speed up the task.

Remark 2.20. As we defined a feasible set for the noise, we can also define other feasible sets for
other constraints. For instance to limit the size of the public keys (key switching keys, bootstrap-
ping keys, ...), the size of the ciphertexts (bandwidth) or even to add some constraints between
parameters.

2.5.3 Pre-Optimization & Graph Transformations

To simplify the optimization problem, we present an analysis that applies to any FHE DAG. The
idea is to subdivide it into subgraphs with the constraint that, to compute the noise distribution
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of a ciphertext in one of these subgraphs, we do not need to know the noise distribution of a
ciphertext in another subgraph.

The starting point is to note that there are some FHE operators that output ciphertexts with
a noise independent of the input noise for some well-chosen parameters. This motivates us to
distinguish those FHE operators from the rest:

Definition 25 (FHE operator Categories). We divide the FHE operators (definition 19) into two
categories regarding their respective noise formulae:

(i) an operator which outputs a noise independent of the input noise, such as the PBS in our
context;

(ii) an operator which adds some noise to the input noise, such as a KS or a dot product;

Using this distinction, for any FHE DAG, we can identify sub-graphs that are independent
from others. Now that we have several independent sub-graphs, we want to find a way to compare
them together. To do so, we define the notion of atomic pattern types to regroup sub-graphs of
FHE operators called atomic patterns that we know how to compare. For instance, two atomic
patterns of the same type can have a different message modulus p or different number of inputs.

For each atomic pattern types, we will compare atomic patterns and identify the ones where
the noise will be the highest. Those are the ones we need to take into account when trying to
construct S (G).

Definition 26 (Atomic Pattern Type). An Atomic Pattern (AP) type A
(·) corresponds to a sub-

graph of FHE operators that outputs one or several ciphertexts with a noise independent of the
input noise.

An Atomic Pattern A is a particular instance of an AP type A
(·). When an AP A ∈ A

(·) is
instantiated with a parameter set x, we write A (x). From A (x) one can estimate the amount of
noise at any edge of its FHE sub-graph and one can also estimate its total cost using a cost model.

Once we have identified the atomic pattern types in a graph G = (V,E), we can build
an FHE DAG G

′ = (V ′, E′) such that each FHE operator in V ′ is an atomic pattern i.e.
V ′ = {Ai(·)}i∈[1,|V ′|]. This new graph is equivalent to the input graph and we have S (G) =⋂

i∈[[1,|V ′|]] S (Ai (·)). We leverage the fact that we can compare the noise between atomic patterns
of the same type to efficiently find the atomic patterns that have the smallest feasible sets. We
will describe this procedure for a noise feasible set, but this can be extended to another kind of
feasible set - for instance, the evaluation key sizes.

Two AP of the same type can be compared even without a given set of parameters. Hence we
can introduce the notion of domination between AP.

Definition 27 (AP Domination). An AP A dominates A′ if any x ∈ P(G) satisfying the noise
constraints of A also satisfies the constraints of A′. More formally, we have S (A) ¢ S (A′) i.e.
S (A)

⋂
S (A′) = S (A). A′ is said to be dominated by A

For all AP types in a graph G, for all APs of this type, we can simply keep the ones that are
not dominated by any other AP. Indeed, we can discard the APs that are dominated because their
constraints will be satisfied if the constraints of one of their dominant AP are satisfied.

With TFHE, we mainly use three FHE operators: the homomorphic dot product (DP), the
key switch and the programmable bootstrapping. The key switch is generally computed before
the PBS (as in [CJP21]). We consider the noise formulae of [CLOT21] for the key switch and
the bootstrapping. Because of the FFT in TFHE PBS, we had to add a corrective formula to
take into account the noise added by the floating point representation. In particular, simply by
casting the bootstrapping key from a 64-bit integers to a float (represented with 64 bits) some
of the LSB are lost. Similarly, the error grows all along computations in the Fourier domain due
to the floating point arithmetic. To correct the formula accordingly, one solution is to collect
data regarding the noise in many different parameter settings and use them to deduce a corrective
formula that takes into account the FFT-induced error. Using this method, we found that the
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following formula provides a good correction for the variance of the output of a bootstrapping:
FftErrork,N,ℬ,ℓ = n · 2É1 · ℓ ·ℬ2 · N2 · (k + 1) with É1 ≈ 22 − 2.6 (where 22 is 2 · (64 − 53), since
q = 264, 53 corresponds to the mantissa bits in the 64-bit floating point representation, and 2.6 is
an experimental fitting).

All the experiments and benchmarks later provided in this manuscript will consider the al-
gorithmic complexity of each FHE algorithm for the cost model. It means that we count the
number of additions, multiplications, castings between integer types, and the asymptotic cost of
the FFT in each algorithm and use it as a surrogate of the execution time. For instance, the
operation

∑³
i=1 Mi ·CTi (where Mi ∈ Rq,N are polynomials and CTi = (Ai, Bi) ∈ R2

q,N are RLWE
ciphertexts) will have a cost of:

(2 + 1) ³ N log(N)︸ ︷︷ ︸
to FFT domain

+ 2³ N︸ ︷︷ ︸
float ×

+(³− 1)N︸ ︷︷ ︸
float +

+ 2 N log(N)︸ ︷︷ ︸
to standard domain

.

With this cost model, we assume the cost of a multiplication between floating point numbers or
integers to be same than the cost of an addition between integers. While this hypothesis might be
false in practice, it is close enough to provide efficient parameter sets. To simplify the problem, we
assume the cost of the dot product to be negligible compared to the other FHE operators. Here,
we assume the cost of an atomic pattern A to be the sum of the cost of every FHE operator inside
it, i.e. the cost of a PBS and the cost of a KS.

A homomorphic dot product is a dot product between a vector of ciphertexts and a vector
of integers. Notice that given some ciphertexts {cti}i∈I with independent noises coming from

N
(
0, Ã2

)
and some weights {Éi}i∈I , the noise in the output ciphertext ctout =

∑
i∈I cti · Éi follows

the distribution N
(
0, ¿2Ã2

)
with ¿22 =

∑
i∈I É

2
i , the squared 2-norm. Thus, given a dot product

between a vector of ciphertexts with the same (normal) noise distribution and a vector of integers,
we only need the 2-norm ¿ to characterize the output noise of a dot product.

Naturally, we define our first concrete atomic pattern type A(CJP21) which is composed of a dot
product, followed by a KS and a final PBS (i.e. a MS, a BR and a SE) as defined in [CJP21]
(Figure 2.3). Here we assume every input of the dot product to be the output of a bootstrapping,
hence we do not consider the fact that some of those inputs could be freshly-encrypted ciphertext.
Everything we describe below is easily modifiable to take that into account. In the definition of
the dot product, we saw that the 2-norm ¿ and the input variance are sufficient to compute the
output noise of a dot product if every input ciphertext has the same normal noise distribution.
Hence, an atomic pattern AP of type A

(CJP21) is entirely characterized by two values: the 2-norm
¿ and its noise bound t. We will note A = A (¿, t).

Figure 2.3: Representation of [CJP21] atomic pattern (A(CJP21)) where
∑

represents the homo-
morphic dot product (Theorem 2.7), KS the key switch (Algorithm 4), MS the modulus switch
(Algorithm 6), BR the blind rotation (Algorithm 9) and SE the sample extract (Algorithm 10).

It is easy to compare the noise in atomic patterns of this type using the following property
which is a special case of definition 27.

Theorem 2.16 (AP Domination). Let’s consider A1,A2 ∈ A
(·) two AP of a type that include a

homomorphic dot product, ¿1, ¿2 two 2-norms such that ¿1 f ¿2 and t1, t2 two noise bounds where
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t2 f t1. We have: S (A2(¿2, t2)) ¢ S (A1(¿1, t1)) i.e. S (A2(¿2, t2))
⋂

S (A1(¿1, t1)) = S (A2(¿2, t2)).
A1 is said to be dominated by A2

Proof (Sketch). A1 and A2 share the same type. When decreasing the noise bound, i.e. going
from t1 to t2, we have less possible solutions x, but all the ones that satisfy t2 will satisfy t1. The
same reasoning works for the 2-norms. By increasing the 2-norm, i.e. going from ¿1 to ¿2, there
are less possible solutions x, but all the solutions satisfying ¿2 will satisfy ¿1.

Given a graph G = {Ai}i∈I of atomic patterns of type A(CJP21), we can apply the theorem above
to simplify the construction of S (G). In fact, we do not need to build each S (Ai) as some of them
are included in others. From our input graph G, we construct a new graph Gpareto = Pareto (G) =
{A′

i}i∈Ipareto
containing only non-dominated atomic patterns using theorem 2.16 (Pareto comes from

Pareto front, well known in optimization). It follows that Gpareto contains at most as many atomic
patterns as there are different noise bounds in the graph.

An interesting property of Gpareto is that S (G) = S (Gpareto) i.e. if one solves the optimization
problem (Eq. 2.2) using S (Gpareto) instead of S (G), we will get the same optimal solution. This is
interesting because to compute S (G) =

⋂
i∈I S (Ai) we needed to build |I| search spaces and with

Gpareto, we only need to build |Ipareto| search spaces and most of the time |I| k |Ipareto|.
Another useful observation is to notice that in an atomic pattern of type A

(CJP21), the noise
is strictly increasing until the end of the modulus switching step in the final PBS. As the noise
bound is assumed to be constant inside one atomic pattern, we do not need to check that the noise
satisfies the noise bound t after the dot product or after the key switching, we only need to do it
after the modulus switch. If we note ÃMS,1, the standard deviation of the noise after the modulus
switching in an atomic pattern A1, we have S (A1) = {x ∈ P|ÃMS,1 (x) f t}.

As we assume the cost of a dot product to be negligible, the cost of an atomic pattern is only
dependent on the cryptographic set of parameters and not on a particular instance of an atomic
pattern of type A

(CJP21).
For a graph G = {Ai}i∈I , we have CostG, x =

∑
i∈I CostAi, x for x a solution in the search

space P and we now that for any (i, j) ∈ I2,CostAi, x = CostAj , x, so instead of minimizing the
cost of running the total graph G, we can settle for minimizing the cost of one atomic pattern of
type A

(CJP21).

To sum up, for a given graph G, instead of solving equation 2.2, we can build a new graph
Gpareto as described above and solve the following which will give us the same value but will be
easier to compute.

argmin
x∈P

Cost·, x s.t. x ∈ S (Gpareto) . (2.3)

The above problem is greatly simplified but still depends on the input graph G = {A (¿i, ti)}i∈I .
It can be useful to have access to sets of parameters that work for a wide range of applications.
Given a graph G, we will be able to select the best set of parameters in those pre-computed sets.

A simple way to do that is to introduce another special graph Gworst, that we call the worst
case atomic pattern. It is defined as Gworst = {A (maxi∈I ¿i,mini∈I ti)}. This graph is reduced to
only one atomic pattern that may or may not be present if the input graph G. Using theorem 2.16,
we know that S (Gworst) ¢ S (G). So if we solve equation 2.3 on Gworst, we end up with a feasible
solution for G. Using this new graph, we are able to pre-compute sets of cryptographic parameters
for different values of (¿, t). Given a graph G, we will select the set of parameters for the worst
case atomic pattern Gworst of G.

Above, we found a feasible solution and intuitively, this solution is close to the optimal one. To
have bounds on the optimality of the solution for a graph G = {Ai}i∈I , we can use another particu-
lar graph Gbest defined as Gbest = {A(¿∗, t∗)} with t∗ = mini∈I ti and ¿∗ = max {¿i|A (¿i, t

∗) ¢ G}
i.e. it is a graph composed of the atomic pattern of the graph G that have the smallest noise
bound and the highest norm2 for this noise bound. If the worst case atomic pattern is the
same as the best case atomic pattern, the method described above yields an optimal solution as
Gpareto = Gworst = Gbest. If they are different, we can deduce a bound of optimality: as Gbest ¢ G,
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we know that S (G) ¢ S (Gbest). Solving equation 2.3 for Gbest give us a lower bound on the cost
of the optimal solution of equation 2.3 for G and solving equation 2.3 for Gworst give us an upper
bound.

The atomic pattern types give us a powerful tool to compare several variants of the bootstrap-
ping existing in the FHE literature. As different bootstrapping techniques have different cost-noise
trade-offs, it is hard to compare them. By studying atomic patterns, we do not need to trouble
ourselves with that, if one bootstrap yields more noise than another, it will be taken into account
as the input noise of the atomic pattern will be higher.

2.5.4 Correctness and Security

As previously discussed, during the evaluation of an FHE computation graph, the noise grows until
it reaches a point where bootstrapping (Algorithm 11) must be performed. The parameters derived
from the methodologies explained in Section 2.5 guarantee a failure probability (pfail) smaller than
a predefined threshold.

Recently, the work in [LM21] showed that when errors occur in approximate FHE schemes
such as CKKS, attacks can be mounted to recover elements of the secret key. This class of attacks,
named IND-CPAD, leads to the definition of a new security model, in which the failure probability
must be explicitly considered during parameter generation.

Even though TFHE is called an exact scheme, a small failure probability remains, and errors
may still occur when the noise reaches its maximum. Later, in [CCP+24], the authors took
advantage of this phenomenon to generalize this type of attack to exact FHE schemes, including
TFHE. Even if an FHE scheme is called exact, an error may still occur during computation with
some probability. This error is due to the noise distribution which usually follows a Gaussian
distribution. There is a very small probability that the noise distribution becomes too large,
compromising the message. This probability can be fixed in the same manner as security, i.e.,
through the selection of adequate cryptographic parameters. This new attack arises by breaking
the parameter selection constraints and noise model. For example, an attacker could provide
ciphertexts with noises exceeding what the algorithm supports.

Indeed, if an oracle indicates whether the computed result is correct or not, it becomes possible
to retrieve certain secret key information. In response to this new attack, FHE schemes had to
reduce the failure probability to ensure their security. This yields an enlargement of the lattice
dimension, leading to a significant slowdown in all exact FHE schemes.

Remark 2.21. All the parameter sets proposed in this manuscript were obtained using the
methodologies presented earlier. At the time of their generation, they guaranteed at least 128−bit
of security. However, as these parameters have not been regenerated over time, some may no longer
meet the same security standards due to advances new attacks.

Notably, prior to the emergence of IND-CPAD attacks, the failure probability pfail was not
treated as a critical security parameter. Graphs with a failure probability close to 2−40 were
considered sufficiently secure, which explains why some of our reported results exhibit a relatively
high pfail

Today, to maintain a security level of ¼ = 2128, the failure probability pfail should ideally be
taken into account and set to 2−128.

2.6 Limitations of TFHE

In Chapter 2, we introduced the fundamental principles of TFHE. Although the scheme is highly
efficient, it still has several limitations that prevent it from reaching even greater efficiency. Below,
we present a list of these limitations:

Limitation 1 (Padding Bit). As presented in Remark 2.14, to correctly perform a blind rotation,
the padding bit needs to be known (and usually set to zero) to obtain the desired result.
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This limitation can naturally be addressed by evaluating only negacyclic functions, but the
problem remains that we can only evaluate N distinct values when the message space lies within
[0, 2N − 1].

Limitation 2 (Parallelization). The PBS (Algorithm 11)—the most computationally expensive
algorithm used throughout any TFHE graph—cannot be easily parallelized due to its core process.
Indeed, during the chain of CMux operations, each CMux must wait for the result of the previous
one before it can proceed.

However, parallelizing the bootstrapping would lead to significant performance improvements in
any TFHE graph evaluation.

Limitation 3 (Noise Plateau). This limitation was already presented in Definition 20.
We recall that the noise plateau is the threshold in the size of a ciphertext beyond which noise

can no longer be reduced without compromising security. This noise plateau leads to an unnecessary
level of security when working with large dimensions.

Limitation 4 (Precision). TFHE is very efficient for small precision (smaller than 8 bits). This
limitation stems from the bootstrapping procedure. To perform bootstrapping, polynomial multipli-
cations must be carried out with polynomials of degree N , and this degree is directly related to the
number of bits that need to be bootstrapped. The more bits we want to bootstrap, the larger the
polynomial degree must be, which in turn slows down the bootstrapping process.

Limitation 5 (Public Material Size). To perform algorithms such as key switching (Algorithm 5)
or bootstrapping (Algorithm 11), one needs access to public material (see Remark 2.15).

In some cases, the size of the public material can be very large, reaching several gigabytes.

Limitation 6 (GLWE Secret Key Size). GLWE ciphertexts work with polynomials whose degree
is a power of two (in Rq,N with N a power of two). If larger polynomials are needed, it becomes
necessary to double the polynomial degree. When we twice the polynomial size, we cannot reduce
the secret key size by choosing an arbitrary number of secret key coefficients. This limitation is
closely related to Limitation 3.

Limitation 7 (Multi inputs). TFHE bootstrapping operates on a single input ciphertext, which
restricts its use to univariate function evaluation. Extending programmable bootstrapping (PBS)
to support multiple input ciphertexts would enable the evaluation of multivariate functions.

Limitation 8 (Multi LUT evaluation). TFHE bootstrapping operates with a single lookup table
as input. Therefore, evaluating multiple functions requires performing a separate bootstrapping for
each function.

Limitation 9 (Efficiency). Even though TFHE is becoming increasingly faster, it still remains
slow compared to the plaintext evaluation of any graph. Reducing the gap between these two worlds
is currently one of the biggest challenges in TFHE, and more generally, in FHE.

Naturally, this list is non-exhaustive, and other limitations may still emerge as the field con-
tinues to evolve.
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More Feature in TFHE

The previous chapter introduced the foundation of the TFHE scheme. While these initial op-
erations already support a wide range of use cases, several limitations remain, as discussed in
Subsection 2.6. Addressing these limitations is essential for designing a less constrained homomor-
phic encryption scheme.

In this chapter, we present a set of algorithms from the literature that address specific limita-
tions identified in TFHE. Each algorithm has been studied independently, but many of them can
be combined to improve existing techniques.

In the first section, we introduce several well known algorithms that expand the design space
for new cryptographic constructions. Alongside these tools, we also present improvements to the
bootstrapping procedure that allow the evaluation of larger lookup tables with reduced public ma-
terial, allowing us to address Limitation 5. In the second section, we present advanced algorithms
aimed at overcoming Limitation 2, enabling parallelization of different steps of the bootstrapping
process. The third section introduces new techniques to address Limitation 1, allowing bootstrap-
ping to be performed without relying on a fixed padding bit. Finally, the last section presents
several methods designed to overcome Limitation 8, enabling the evaluation of multiple lookup
tables using only one algorithm.

All algorithms have been studied during this thesis, but the bit extraction (Algorithm 15) and
the extended bootstrapping (Algorithm 17 and Algorithm 18) have been deeply studied in our
articles [BBB+23] and [BORT25]; therefore, more details are provided in this chapter. For the
other algorithms, more details can be found in their respective original publication.

In the following chapters, we illustrate how the proposed algorithms are employed and inte-
grated into larger constructions (Chapters 7 and 8), how we have improved them (Chapter 4), and
how our proposed solutions achieve better efficiency (Chapter 6).

3.1 Relevant Algorithms and Improved Bootstrapping

This section introduces a set of new tools that enhance the capabilities of the TFHE scheme.
For instance, we present an algorithm, named circuit bootstrapping, which transforms an LWE
ciphertext encrypting a message m into a GGSW ciphertext encrypting the same message.

We also describe two methods for evaluating lookup tables, the vertical and the horizontal
packing, as well as an algorithm that enables the extraction of all message bits encrypted in an
LWE ciphertext.

Finally, we introduce a technique to perform a PBS with multiple input ciphertexts, and
another method that improves the bootstrapping procedure when working with large polynomials.
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3.1.1 Circuit Bootstrapping

Circuit bootstrapping is an algorithm that transforms an LWE ciphertext into a GGSW cipher-
text. This technique was first introduced in [CGGI17]. It takes as input an LWE ciphertext, a
bootstrapping key (BSK) and several key switching key. Then it outputs a GGSW ciphertexts en-
crypting the input message m. In addition to create a GGSW ciphertext, the circuit bootstrapping
also reduces the noise of the input ciphertext.

The circuit bootstrapping algorithm begins by performing ℓCBS programmable bootstrapping
to create ℓCBS LWE ciphertexts encrypting the message m q

ℬi for i ∈ [1, ℓCBS] under the flatten
GLWE secret key s′. Then it performs (k+1) private key switch (Remark 2.12) of each of the ℓCBS

ciphertexts to obtain (k + 1) · ℓCBS GLWE ciphertexts encrypting m q
ℬiSj for i ∈ [1, ℓCBS] and

j ∈ [0, k]. These ciphertexts are then rearranged to form the final GGSW ciphertext. The complete
circuit bootstrapping procedure is detailed in Algorithm 12, and the corresponding output noise
bounds can be derived using the proofs of Theorem 2.8 and Theorem 2.15 with further details
available in [CGGI17].

Algorithm 12: CTout ← CBS
(
ctin,BSK, {KSKj}j∈[0,k]

)

Context:





s = (s0, . . . , sn−1) : the LWE secret key

S′ = (S′
0, . . . , S

′
k−1) : the GLWE secret key

s′ the flatten representation of the GLWE secret key, Definition 11

∆m+ e ∈ Zq : The encoded message of ctin, Definition 8

LUTfi : The Lookup table evaluating the function m 7→ m q
ℬi

CBS

, Definition 16

CTfi : Trivial encryption of LUTfi , Remark 2.6

(ℬCBS, ℓCBS) ∈ (Z∗)2, (ℬPBS, ℓPBS) ∈ (Z∗)2, (ℬKS, ℓKS) ∈ (Z∗)2

: The (base, level) decomposition for the CBS, resp. PBS, resp. KS.

KSKi∈[0,k−1] =
{
KSKi,j ∈ GLEVℬKS,ℓKS

Sout
(−S′

i · s′j)
}
j∈[0,n−1]

∪
{
KSKi,n ∈ GLEVℬKS,ℓKS

Sout
(S′

i)
}

KSKk =
{
KSKk,j ∈ GLEVℬKS,ℓKS

Sout
(s′j)

}
j∈[0,n−1]

Input:





ctin ∈ LWEs(m) ¦ Zn+1
q

BSK =
{
BSKi ∈ GGSWℬPBS,ℓPBS

S′ (si)
}
i∈[0,n−1]

KSK = {KSKj}j∈[0,k]

Output:
{
CTout ∈ GGSWℬCBS,ℓCBS

S′ (m)

1 for i ∈ [1, ℓCBS] do
2 cti ← PBS(ctin, LUTfi ,BSK) ; /* Algorithm 11 */

3 for i ∈ [1, ℓCBS] do
4 for j ∈ [0, k] do
5 CTi,j ← PrivateKS(cti,KSKj) ; /* Algorithm 4 with Remark 2.12 */

6 return CTout = {CTi,j}j∈[0,k]
i∈[1,ℓCBS]

Remark 3.1. The cost of the circuit bootstrapping (Algorithm12) can be approximated by:

Cost
ℓPBS,ℓCBS,k,N,n,q
CBS

= ℓCBS · CostℓPBS,k,N,n,q
PBS

+ ℓCBS(k + 1) · CostℓCBS,k,N
PrivateKS

Where Cost
ℓCBS,k,N
PrivateKS is equivalent to the cost of an external product (CostℓCBS,k,N

ExternalProduct).
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3.1.2 Horizontal and Vertical Packing

In the original TFHE paper [CGGI16a], the authors proposed two algorithms: vertical packing
and horizontal packing, both allowing evaluation of lookup tables without reducing the noise.

First, horizontal packing takes as input a single message m composed of p bits, where the
message is encrypted in p GGSW ciphertexts (Definition 14), where each GGSW ciphertext corre-
sponds to a bit of m, along with 2p lookup tables, LUT0, . . . , LUT2p−1. Then, horizontal packing
outputs the mth lookup table LUTm ∈ Rq,N encrypted in a GLWE ciphertext. The core idea is to
construct a binary tree using CMux operations (Algorithm 8) on all the lookup tables to select the
one corresponding to the message. At each step of the CMux-tree, the algorithm removes half of
the lookup tables. The complete process is detailed in Algorithm 13, and additional explanations
are provided in [CGGI16a].

Algorithm 13: CTout ← HorizontalPacking

(
{LUTfi}i∈[0,2p−1],

{
CTi

}
i∈[0,2p−1]

)

Context:





S ∈ Rk
q,N : The GLWE secret key

m : The p-bits input message such that,m =
∑p−1

i=0 mi2
i

LUTf = [LUTf0 , . . . , LUTf2p−1
] : The Lookup table evaluating

the function m 7→ f(m), Definition 16 with LUTfi ∈ Rk
q,N

{CTfi}i∈[0,2p−1] : Trivial encryption of LUTfi , Remark 2.6

(ℬ, ℓ) ∈ (Z∗)2 : The (base, level) decomposition.

Input:




{LUTfi}i∈[0,2p−1]{
CTi ∈ GGSWℬ,ℓ

s (mi)
}
i∈[0,2p−1]

Output:
{
CTout ∈ GLWES(LUTfm)

1 for i ∈ [0, p− 1] do
2 for j ∈ [0, 2p−i] do

3 CTfj ← CMux
(
CTf2j ,CTf2j+1 ,CTi

)
; /* Algorithm 8 */

4 return CTout = CTf0

As with horizontal packing, vertical packing takes as input a single message m composed of p
bits, where each of these bits is encrypted into a GGSW ciphertext, and 2p−log(N) lookup tables
LUT0 = (l0, . . . , lN−1), . . . , LUT2p−log(N)−1 = (l2p−N , . . . , l2p−1). It outputs an LWE ciphertext
encrypting the value lm.

At a high level, the algorithm uses the p − log(N) most significant bits of m, each encrypted
in a GGSW ciphertext, to perform horizontal packing and select the correct lookup table that
contains lm. Then, using the remaining log(N) bits, it performs a blind rotation to select the
appropriate coefficient within the chosen lookup table. This operation can also be seen as a way
to evaluate large lookup tables containing more than N entries: the full table is split into smaller
lookup tables of size N , horizontal packing selects the correct chunk, and blind rotation extracts
the desired value. We note that if 2p < N , this operation reduces to a simple blind rotation
(Algorithm 9). As with the previous algorithm, the complete process is described in Algorithm 14,
and further details are provided in [CGGI16a].

Remark 3.2. The cost of the horizontal packing (Algorithm13) can be approximated by:

Cost
p,ℓ,k,N
HorizontalPacking = (2p − 1) · Costℓ,k,NCMux .

The cost of the vertical packing (Algorithm14) can be approximated by:

Cost
p,ℓ,k,N
VerticalPacking = Cost

max(0,p−log2(N)),ℓ,k,N
HorizontalPacking +min(log2(N), p) · Costℓ,k,NCMux + Cost

k,N
SampleExtract.
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Algorithm 14: ctout ← VerticalPacking

({
CTi

}
i∈[0,2p−1]

, {LUTfi}i∈[0,2p−log2(N)−1]

)

Context:





S ∈ Rk
q,N : The GLWE secret key

m : The p-bits input message such that, m =
∑p−log2(N)−1

i=0 mi2
i

LUTf = [LUTf0 , . . . , LUTf
2p−log2(N)−1

] : The Lookup table evaluating

the function m 7→ f(m), Definition 16 with LUTfi ∈ Rk
q,N

(ℬ, ℓ) ∈ (Z∗)2 : The (base, level) decomposition.

Input:




{LUTfi}i∈[0,2p−log2(N)−1]{
CTi ∈ GGSWℬ,ℓ

s (mi)
}
i∈[0,p−1]

Output:
{
ctout ∈ LWES(LUTf [m])

/* Algorithm 13 */

1 CT← HorizontalPacking

(
{LUTfi}i∈[0,2p−log2(N)−1],

{
CTi

}
i∈[log2(N),p−1]

)

2 for i ∈ [0, log2(N)− 1] do

3 CT← CMux(CT,CT ·X2i ,CTi); /* Algorithm 8 */

4 ctout ← SampleExtract(CT); /* Algorithm 10 */

5 return ctout

3.1.3 Bit Extraction

Bit extraction is an algorithm that enables the recovery of all the bits of a message encrypted
in an LWE ciphertext. In what follows, we describe how to extract the bits starting from the
least significant bit (LSB) up to the most significant bit (MSB). The idea is to iteratively extract
the LSB and subtract it from the input ciphertext. This operation reduces the message so that
the next least significant bit becomes the new LSB. The process is repeated until all bits of the
message m have been extracted.

This algorithm can also be easily modified to extract only a subset of the bits of the input
message. As the bit extraction is performed through the evaluation of a negacyclic function, this
algorithm can be executed even when the padding bit is unknown, addressing Limitation 1.

Lemma 3.1 (Bit Extraction (Algorithm 15)). Let s = (s0, . . . , sn−1) ∈ Zn
q be a binary LWE

secret key and S′ ∈ Rk
q,N be a GLWE secret key and s′ his flatten representation. Let ctin =

(ain,0, . . . , ain,n−1, bin) ∈ LWEs(m) ¦ Zn+1
2N encrypting the message m =

∑¶−1
i=0 mi2

i ∈ Zp with
¶ = log p. Let PUB be the public material (BSK and KSK, Remark 2.15).

Then Algorithm 15 returns a list of LWE ciphertexts encrypting the bits of m, i.e.,{
cti ∈ LWEs (mi) ¦ ZkN+1

q

}
i∈[0,¶)

. An LWE ciphertext encrypting f(m + e mod 2N) under the

secret key s′. The cost of this algorithm is:

Cost
ℓ,k,N,n,q,¶
BitExtract = (¶ − 1)

(
Cost

ℓ,k,N,n,q
PBS

+ Cost
ℓ,n,k,N
KS

+ Cost
k,N
Add

)
.

Proof (Lemma 3.1). To extract the ¶ occupied bits of the message in a ciphertext, i.e., m =∑¶−1
i=0 mi2

i, the goal is to extract each bit from the least significant to the most significant and store
each result in an individual ciphertext. Each step consists in extracting the current least significant
bit.

At each step, we shift the remaining least significant bit into the padding bit by multiplying
the ciphertext ct by 2¶+Ã−1−i. Thus, at the ith step, after the shift, the ciphertext cti encrypts a
message in [0, q

2 ) if mi = 0, and in [ q2 , q) if mi = 1.
Due to the negacyclicity property (see Remark 2.1), we cannot directly perform bootstrapping

to extract the value of mi. In fact, applying a bootstrapping with a lookup table encoding the
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Algorithm 15: ct0 . . . ct¶−1 ← BitExtract(ct,PUB)

Context:





s = (s0, . . . , sn−1) ∈ Zn
q : the LWE secret key

S′ = (S′
0, . . . , S

′
k−1) ∈ Rk

q,N : the GLWE secret key

s′ the flatten representation of the GLWE secret key, Definition 11

∆m+ e ∈ Zq : The encoded message of ctin, Definition 8

Ã : Number of padding bits

¶ : bits occupied by message in ciphertext ct

i.e., m =
∑¶

i=0 mi2
i with m ∈ Zp

(ℬ, ℓ) ∈ (Z∗)2 : The (base, level) decomposition for the PBS

Input:

{
ct ∈ LWEs′(m)

PUB : public keys required for the entire algorithm ; /* Remark 2.15 */

Output: (ct0 . . . ct¶−1)

1 for i ∈ [0; ¶ − 2] do
2 ϵ = q

4
3 if i == 0 and q

p /∈ N then

4 ϵ←
⌊

q
4p

⌋

5 ³ = q
2¶+Ã+1

6 L = [−³, . . . ,−³]
7 cti ← ct · 2¶+Ã−1−i + (0, . . . , 0, ϵ)
8 ctKSi

← KS(cti,PUB) ; /* Algorithmn4 */

9 ct′i ← PBS (ctKSi
,PUB, L); /* Algorithmn11 */

10 cti ← ct′i + (0, . . . , 0, ³)
/* Subtract the extracted bit from the original ciphertext */

11 ct← Sub(ct, cti)

12 ct¶−1 ← ct

13 return ct0 . . . ct¶−1

polynomial P (X) = −³ ·
∑N−1

i=0 Xi returns −³ when the encrypted message of cti is in [0, q
2 ), and

³ when it is in [ q2 , q), i.e.,

{
³ if Decrypt(cti · 2¶+Ã−1−i) ∈ [ q2 , q)

−³ otherwise.

However, if the encrypted value is close to the bounds 0 or q
2 , noise can influence the result.

For example, if cti encrypts q
2 (i.e., mi = 1) with a negative noise, it may yield the same output

as cti encrypting 0 (i.e., mi = 0) with a positive noise. As a result, we cannot reliably extract bit
values directly using this lookup table.

To resolve this, we must be cautious when encoded values are close to the thresholds 0 or q
2 , as

only the noise will determine the PBS output, potentially causing incorrect results. To mitigate
this issue, we introduce a corrective term in Line 7. In order to choose the right correcting term,
we need to determine the smaller distance (denoted d(·, ·)) between the preceding encoded value v1
and q, and the preceding encoded value v2 and q

2 , i.e.:

min
(
d
(
v1 ∈

[
0;

q

2

)
,
q

2

)
, d
(
v2 ∈

[q
2
; q
)
, q
))

.

We now compute the two distances. At this point, we need to distinct between two cases:
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1. p is a power of two, i.e., p = 2¶. The message m are encoded by q
p·2Ã ·m mod q with

m ∈ [0, 2¶). For the shift we compute q
p·2Ã · i · 2¶+Ã−1 mod q, so the only remaining encoded

values are 0 and q
2 , so the distance between these two values is d = q

2 and the correcting term
can be bound by half of this distance, i.e., ϵ = q

4 .

2. p is not a power of two. As p is much smaller than q, after the first shift, for all j ∈ [0, p)
we obtain the following bound on the encoded values:

⌊
q

p · 2Ã · j
⌉
· 2¶+Ã−1 mod q f

(
q

p · 2Ã · j +
1

2

)
· 2¶+Ã−1 mod q

f q

p
· j · 2¶−1 + 2¶+Ã−2 mod q.

The next is step is to compute the minimum of the distances:

min
(
d
(
v1 ∈

[
0;

q

2

)
,
q

2

)
, d
(
v2 ∈

[q
2
; q
)
, q
))
− 2¶+Ã−2, vi∈[1,2] ∈

{
q

p
· j mod q

}

j∈[0,p−1]

.

First we can bound v1:

v1 f
q

2
−
⌊
q

2p

⌋
.

So we have d1 = d
(
v1 ∈ [0; q

2 ),
q
2

)
g
⌊

q
2p

⌋
.

Next we can bound v2:

v2 f q −
⌊
q

p

⌋
.

So we have d2 = d
(
v2 ∈

[
q
2 ; q
)
, q
)
>
⌊
q
p

⌋
g
⌊

q
2p

⌋
. The distance is then bounded by

⌊
q
2p

⌋
−

2¶+Ã−2. The correcting term is finally defined as half of this bound, i.e., ϵ =
⌊

q
4p

⌋
− 2¶+Ã−3.

Since the term 2¶+Ã−2 is very small regarding q, it can be neglected. About the noise bound,
this term is also negligible, since it is smaller than 1 before the shift.

By adding ϵ to cti · 2¶+Ã−1 we ensure that for any message, an error e of size |e| < ϵ will lead
to a correct PBS evaluation. This means that before the shift, the noise in cti should be smaller
than ϵ · 2−+¶+Ã−1,.

At this point, the less significant bit has been extracted and stored into a new LWE0. To extract
the next bit, we first subtract LWE0 to the input ciphertext ct. With this operation we ensure that
the less significant bit is now equal to 0. As we want to extract the second less significant bit, we
now shift by 2¶+Ã−2. Finding the corrective term ϵ is much easier in this case, as the second bit is
equal to 0 after the shift. Hence, we can take ϵ = q

4 and extract the bit with a PBS. To extract the
remaining bits, we just need to repeat the previous steps (subtraction, shift, add ϵ = q

4 and PBS).

3.1.4 Multivariate Bootstrapping

In Section 2.6, one of the identified limitations is that PBS takes only a single ciphertext as input
(see Limitation 7). Allowing multiple ciphertexts as input to a single PBS would enable the
evaluation of multivariate functions.

In this section we will see how to take advantage of the encoding presented in Section 2.4
to perform multivariate using a trick that was already proposed in [CZB+22]. If the degrees of
the ciphertexts allow, the idea is to concatenate two messages m1 and m2 (or more) respectively
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encrypted in ct1 and ct2 by re-scaling the first one with constant multiplication to µ2 + 1 (where
µ2 is the worst possible value that can be reached by the m2) and add it to ct2 and finally compute
a PBS on the concatenation. Once the two messages are concatenated in a single ciphertext, the
bi-variate LUT L can be simply evaluated as a univariate LUT L′ on the concatenation of m1 and
m2. A visual example of Algorithm 16 in the bivariate case is proposed in Figure 3.1;

Inputs:

∅

0 0 0

´ ∅

0 0 0

´

Shift: 0 0 0 0 0 0

Addition: 0

Result LUT: 0 0 0

×´

+

KS-PBS

.

Figure 3.1: Example of a bi-variate LUT evaluation with shift and PBS.

Algorithm 16: ctout ← Multivariate−PBS(ctii∈[0,³], LUTf ,BSK)

Context:





s = (s0, . . . , sn−1) : the LWE secret key

S′ = (S′
0, . . . , S

′
k−1) : the GLWE secret key

s′ the flatten representation of the GLWE secret key, Definition 11

³+ 1 : The number of input ciphertext

cti∈[0,³] : The input ciphertext encoded as define in Section 2.4.3

with an empty carry and with p = ´³

LUTf : The Lookup table evaluating the function (x0, · · ·x³) 7→ f(x0, · · ·x³)

CTf : Trivial encryption of LUTf , Remark 2.6

(ℬ, ℓ) ∈ (Z∗)2 : The (base, level) decomposition.

Input:





cti ∈ LWEs(mi)i∈[0,³]

CTf ∈ GLWES(LUTf ) ¦ R
k+1
q,N

BSK =
{
BSKi ∈ GGSWℬ,ℓ

S′ (si)
}
i∈[0,n−1]

Output:
{
ctout ∈ LWEs′ (f (m0, . . . ,m³)) ¦ ZNk+1

q

1 ct← (0, 0) ∈ Zn+1
q

2 for i ∈ [0, ³] do
3 cti ← cti · ´i; /* Theorem 2.5 */

4 ct← ct+ cti; /* Algorithm 3 */

5 ctout ← PBS(ct, LUTf ,BSK); /* Algorithm 11 */

6 return ctout
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3.1.5 Extended Bootstrapping

In [LY23], the authors propose a new method to evaluate large lookup tables in Rq,¸N , where ¸ ∈ Z
is a power of two, by using public materials composed of polynomials in Rq,N and extending these
polynomials to Rq,¸N . They name this new bootstrapping techniqueExtended Programmable
Bootstrapping (EBS). Our work [BORT25], in addition to other improvements presented in
Chapter 4, extends this result to arbitrary cyclotomic polynomials.

This improvement is particularly efficient when the polynomial size reaches the noise plateau
(Limitation 3). Moreover, it enables bootstrapping of higher precision messages, addressing Limi-
tation 4.

First let us define the º function permitting to extend a polynomial in Rq,N to Rq,¸N .

Lemma 3.2. Let ¸ ∈ Z be a power of two and let the function º such that:

º : Rq,N → Rq,¸N

P (X) =

N−1∑

i=0

pi ·Xi 7−→ Pext(X) =

N−1∑

i=0

pi ·X¸i.

Then, º is a ring homomorphism.

Proof (Lemma 3.2). Let us show that º is a ring homomorphism. We have º(1) = 1. Let

P (X) =
∑N−1

i=0 aiX
i and Q(X) =

∑N−1
i=0 biX

i both in Rq,N . Let Pext = º(P (X)) =
∑N−1

i=0 piX
¸i

and Qext = º(Q(X)) =
∑N−1

i=0 qiX
¸i both in Rq,¸N .

The additive morphism is verified: º(P (X) + Q(X)) = º(
∑N−1

i=0 (pi + qi)X
i) =

∑N−1
i=0 (pi +

qi)X
¸i = º(P (X)) + º(Q(X)). The multiplication morphism is verified: indeed, as a poly-

nomial is a sum of monomials and the morphism is verified for addition, we only need
to study the multiplication of two monomials. So for i and j both in [0, N), we have:
º
(
Xi ·Xj mod XN + 1

)
= º

(
Xi+j mod XN + 1

)
= X(i+j)¸ mod X¸N + 1 = Xi¸Xj¸

mod X¸N + 1 = º
(
Xi mod XN + 1

)
º
(
Xj mod XN + 1

)
.

By applying the º function to each polynomial of a GLWE ciphertext in R
k+1
q,N (resp., a GGSW

ciphertext in R
(k+1)ℓ×(k+1)
q,N ) under a secret key S, we obtain an extended GLWE ciphertext in

R
k+1
q,¸N (resp., an extended GGSW ciphertext in R

(k+1)ℓ×(k+1)
q,¸N ) under an extended secret key Sext =

º(S).

º (GLWES(∆M)) = GLWESext
(∆Mext)

º
(
GGSWℬ,ℓ

S (M ′)
)
= GGSWℬ,ℓ

Sext
(M ′

ext).

Then the external product is naturally compliant with the extended ciphertexts:

GLWESext
(∆Mext)⊡GGSWℬ,ℓ

Sext
(M ′

ext) = GLWESext
(∆Mext ·M ′

ext).

Lemma 3.3. Let GLWESext
(∆M) ∈ R

k+1
q,¸N an GLWE ciphertext encrypting the message M ∈

Rp,N under the extended secret key Sext ← º(S), with S ∈ Rk
q,¸N . Let GGSWℬ,ℓ

Sext
(M ′

ext) ∈
R

(k+1)ℓ×(k+1)
q,¸N be and extended GGSW ciphertext encrypting an extended message M ′

ext ∈ Rp,¸N

under the same extended secret key Sext. Then we have GLWESext
(∆M) ⊡ GGSWℬ,ℓ

Sext
(M ′

ext) =
GLWESext

(∆M ·M ′
ext).

Proof (Lemma 3.3). Let M =
∑¸N−1

i=0 miX
i =

∑¸−1
i=0

∑N−1
j=0 miN+jX

iN+j ∈ Rq,¸N . We have
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∑¸−1
i=0 º

(
GLWES

(∑N−1
j=0 ∆miN+jX

j
))
·Xi = GLWESext

(∆M). Then, we have:

¸−1∑

i=0

º


GLWES




N−1∑

j=0

∆miN+jX
j




⊡GGSWℬ,ℓ

Sext
(M ′

ext) ·Xi

=

¸−1∑

i=0


GLWESext




N−1∑

j=0

∆miN+jX
¸j ·M ′

ext




 ·Xi

=

¸−1∑

i=0


GLWESext




N−1∑

j=0

∆miN+jX
¸j ·M ′

ext ·Xi




 = GLWESext

(∆M ·M ′
ext) .

Lemma 3.3 shows that the message in the extended GLWE ciphertext does not need to be
extended through the º function, as long as the secret key of the GLWE ciphertext is Sext. By
encrypting a lookup table in Rq,¸N into a trivial extended GLWE ciphertext, the EBS can be
computed as in the original PBS algorithm. The EBS is described in Algorithm 17.

Algorithm 17: ctout ← EBS(ctin, LUTf ,BSK)

Context:





s = [s0, . . . , sn−1] ¦ Zn
q

BSKi ∈ GGSWℬ,ℓ
S (si) ¦ R

(k+1)ℓ×(k+1)
q,N

BSKi,ext ∈ GGSWℬ,ℓ
Sext

(si) ¦ R
(k+1)ℓ×(k+1)
q,¸N

º : Rq,N → Rq,¸N , as defined in Lemma 3.2.
Sext is the extended secret key.(Sext ← º(S))

Input:





BSK = (BSK0, . . .BSKn−1) ∈
[
GGSWℬ,ℓ

S

]n
¦
[
R

(k+1)ℓ×(k+1)
q,N

]n

ctm = (a0, . . . , an−1, b) ∈ LWEs ¦ Zn+1
q

LUTf ∈ GLWESext
¦ R

(k+1)ℓ×(k+1)
q,¸N

Output: ctf(m) =
(
aout0 , . . . , aoutkN−1, b

)
∈ LWEsout

¦ ZkN+1
q

1 ctMS =
(
ã0, . . . , ãn−1, b̃

)
←MS(ctm, ¸ · 2N) ; /* Algorithm6 */

2 CTBR ← LUTf ·X b̃

3 for i in [0, n− 1] do
4 BSKi,ext ← º(BSKi)
5 CTBR ← CMux(CTBR,CTBR ·X ãi ,BSKi,ext) ; /* Algorithm8 */

6 return ctf(m) ← SampleExtract(CTBR) ; /* Algorithm10 */

Theorem 3.1 (Extended PBS (Algorithm 17)). Performing an EBS taking as input a ciphertext

ctm ∈ Zn
q , a bootstrapping key BSK = (BSK0, . . .BSKn−1) ∈

[
GGSWℬ,ℓ

S

]n
¦
[
R

(k+1)ℓ×(k+1)
q,N

]n
and

a lookup table LUTf ∈ GLWESext
¦ R

(k+1)ℓ×(k+1)
q,¸N output a ciphertext ctf(m) ∈ LWEsout

¦ ZkN+1
q

with an output noise estimated by the formula to Var(EBS) = Var(PBS).

The cost of Algorithm 17 is: Cost
ℓ,k,¸,N,n,q
EBS

= Cost
ℓ,k,¸N,n,q
PBS

.

Proof (Theorem 3.1). The proof of Lemma 3.1 is similar to the proof of the classical bootstrapping
Theorem 2.15. Indeed Lemma 3.3 show that the external product can be done in an extended
context, then we can perform the blind rotation. All other algorithms remain unchanged between
the classical and the extended context.

In the case of classical PBS, the size of the public material is directly linked to the size of the
lookup table, which is itself determined by the size of the message being evaluated. The larger the
message values we want to evaluate, the larger the lookup table and the public material need to be.
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With the technique introduced in this section, the size of the public material can be reduced while
still allowing the evaluation of large lookup tables. This EBS offers another degree of freedom
when choosing the parameters and results in better noise propagation. Finally, this technique
permits to address Limitation 5.

3.2 Parallelized Bootstrapping

Bootstrapping is not naturally parallelizable due to the chain of CMux operations executed during
the blind rotation algorithm (Algorithm 9), as highlighted in Limitation 2. In the literature,
several works such as [BMMP18, LLW+24, ZYL+18, JP22, LY23] propose techniques to address
this limitation.

We begin by presenting the second improvement introduced in [LY23]. Building on their first
contribution, which permits computations over extended polynomials, the second improvement
allows these extended polynomials to be split into smaller polynomials, enabling parallelization of
operations across them. This technique makes it possible to parallelize the computation of a single
CMux by distributing the work over smaller-degree polynomials. This technique is presented in the
Subsection 3.2.1

The second technique, described in [BMMP18, LLW+24], is straightforward. It involves ex-
panding the CMux chain such that multiple CMux operations can be executed in parallel, each with
the same individual cost. This technique is detailed and applied later in Chapter 4.

Finally, the third technique, proposed in [ZYL+18, JP22], consists of creating a special secret
key such that this new secret key permits to obtain the result of several CMuxes with a single
external product (Algorithm 7). This third technique is known as Multi Bit bootstrapping and is
presented in the Subsection 3.2.2.

The drawbacks of the second and the third techniques are the exponential growth of the secret
key size and a reduced effectiveness in noise management.

3.2.1 Parallelized Extended Bootstrapping

After defining the function º, the authors of [LY23] introduced another function, Ä , which allows
splitting a polynomial message encrypted in an extended GLWE ciphertext into several smaller
messages encrypted in smaller GLWE ciphertexts. This enables performing independent external
products on these smaller ciphertexts, thereby enabling the parallelization of the external product
(see Limitation 2).

Let us begin by defining the isomorphism Ä , which allows splitting a polynomial in Rq,¸N into
¸ polynomials in Rq,N .

Lemma 3.4. Let the function Ä be defined as:

Ä : Rq,¸N → [Rq,N ]
¸

P (X) =

¸N−1∑

i=0

pi ·Xi 7−→ [P0(X), . . . , P¸−1(X)] .

With Pj(X) =
∑N−1

i=0 pi¸+j ·Xi for j ∈ [0, ¸). Then Ä is an isomorphism.

Proof (Lemma 3.4). Let f be a function such that:

f : [Rq,N ]
¸ → Rq,¸N

[P0(X), . . . , P¸−1(X)] 7−→ P (X) =

¸N−1∑

i=0

pi ·Xi.

With Pj(X) =
∑N−1

i=0 pi¸+j · Xi for j ∈ [0, ¸). Then, we directly have f(Ä(P (X))) = P (X)
and Ä (f ([P0(X), . . . , P¸−1(X)])) = [P0(X), . . . , P¸−1(X)]. So f corresponds to Ä−1, thus Ä is an
isomorphism.
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By applying the function Ä to each polynomial composing a GLWE ciphertext in R
k+1
q,¸N , en-

crypted under an extended secret key Sext = [Sext,0, . . . , Sext,k−1] (with Sext,i =
∑N−1

j=0 sj,iX
¸j), we

then obtain ¸ GLWE ciphertexts in R
k+1
q,N encrypted under a secret key S = [S0, . . . , Sk−1] (with

Si =
∑N−1

j=0 sj,iX
j). Performing an external product between an extended GGSW ciphertext en-

crypting a bit b and an GLWE ciphertext encrypted under an extended secret key can be computed
on ¸ GLWE by using the function Ä . Indeed we have:

GLWESext
(∆M)⊡GGSWℬ,ℓ

Sext
(b)

= Ä−1
[
GLWES(∆M0)⊡GGSWℬ,ℓ

S (b), . . . ,GLWES(∆M¸−1)⊡GGSWℬ,ℓ
S (b)

]
.

with GLWESext
(∆M) ∈ R

k+1
q,¸N and Ä(M) = (M0, . . . ,M¸−1) with M ∈ Rp,¸N and Mi ∈ Rp,N for

i ∈ [0, N).
In what follows, we denote the extended lookup table by LUT ∈ R

k+1
q,¸N . The smaller lookup

table obtained by Ä(LUT) are denoted luti ∈ R
k+1
q,N for i ∈ [0, ¸), Ä(LUT) = [lut0, . . . , lut¸−1].

In [LY23], during the blind rotation, at each CMuxes, authors proposed using the function Ä to
split the lookup table in R

k+1
q,¸N into ¸ lookup tables in R

k+1
q,¸N . Then, they performed several small

CMuxes in parallel and used the function Ä−1 to reconstruct a lookup table in R
k+1
q,¸N to perform

the rotation of the entire lookup table. The Parallelized-EBS is described in Algorithm 18.

Algorithm 18: ctout ← Parallelized-EBS(ctin, LUTf ,BSK)

Context:





s = [s0, . . . , sn−1] ¦ Zn
q

BSKi ∈ GGSWℬ,ℓ
S (si) ¦ R

(k+1)ℓ×(k+1)
q,N

¸ = 2k : The extended factor
º : Rq,N → Rq,¸N , as defined in Lemma 3.2.
Ä : Rq,¸N → [Rq,N ]

¸
, as defined in Lemma 3.4.

Sext is the extended secret key.(Sext ← º(S))

Input:





BSK = (BSK0, . . . ,BSKn−1) ∈
[
GGSWℬ,ℓ

S

]n
¦
[
R

(k+1)ℓ×(k+1)
q,N

]n

ctm = (a0, . . . , an−1, b) ∈ LWEs ¦ Zn+1
q

LUTf ∈ GLWESext
¦ R

(k+1)ℓ×(k+1)
q,¸N

Output: ctf(m) =
(
aout0 , . . . , aoutkN−1, b

)
∈ LWEsout

¦ ZkN+1
q

1 ctMS =
(
ã0, . . . , ãn−1, b̃

)
←MS(ctm, ¸ · 2N) ; /* Algorithm 6 */

2 CTBR ← LUTf ·X b̃

3

[
CT0

BR, . . . ,CT¸−1
BR

]
← Ä (CTBR)

4 for i ∈ [0, n− 1] do

5

[
CT0

BR,tmp, . . . ,CT
¸−1
BR,tmp

]
← Ä

(
CTBR ·X ãi

)

6 for j in [0, ¸ − 1] do
/* Each step of this loop can be done in parallel */

7 CT
j
BR
← CMux(CTj

BR
,CTj

BR,tmp,BSKi) ; /* Algorithm 8 */

8 CTBR = Ä−1
(
CT0

BR, . . . ,CT¸−1
BR

)

9 return ctf(m) ← SampleExtract(CT0
BR) ; /* Algorithm 10 */

Remark 3.3. The noise distribution of this algorithm is similar to the one from the PBS described
in Theorem 2.15. The difference is about the polynomial degree: for a fixed precision, when ¸ > 1,
a classical PBS operates with polynomials of degree N¸, whereas the Parallelized-EBS operates
with polynomials of degree N . Overall, the noise added during the Parallelized-EBS is equivalent
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Chapter 3. More Feature in TFHE

to the noise added by a classical bootstrapping with a polynomial size equal toN , whereas to obtain
the same result, a classical bootstrapping needs to work with a polynomial size equal to ¸N . The
cost of Algorithm 17 is:

Cost
ℓ,k,¸,N,n,q
Parallelized-EBS

= Cost
n,q,2¸N
ModulusSwitch + ¸ · Costℓ,k,N,n

BlindRotation + Cost
k,N
SampleExtract.

Remark 3.4. In [LY23], authors utilize this method for the parallelized version and perform all
the computations in the extended ring for the sequential version. However, this trick can also
be applied in a sequential context leading to a better or equal version than the extended one.
In the extended bootstrapping with Rq,¸N , the cost of one polynomial product is approximately
N¸ log2(N¸) (i.e., using an FFT-based algorithm). In the parallelized version, to perform the
same operation in Rq,N , we need to perform ¸ polynomial products, each with an individual cost
of N log2(N). We then refer to the EBS (Algorithm 18) for either the parallelized or the sequential
versions.

In [LY23], they mention that using Ä and Ä−1 at each step is not mandatory but they did not
explicit how to perform this rotation. In the following, we explicit how to compute the rotation
without using Ä and Ä−1 at each step of the blind rotation, by performing inner rotations on each
smaller luts and updating their index accordingly. We make this rotation explicit in the following
lemma:

Lemma 3.5. Let Ä the function defined in Lemma 3.4. Let P (X) =
∑¸N−1

i=0 piX
i be a polynomial

in Rq,¸N such that Ä(P (X)) = [P0(X), . . . , P¸−1(X)] with Pi(X) =
∑N−1

j=0 pj¸+iX
j a polynomial

in Rq,N for i ∈ [0, ¸).
For any » ∈ Z we have Ä(P (X) · X») = [P ′

0(X), . . . , P ′
¸−1(X)] with P ′

j(X) = P[(j−»)]¸
(X) ·

X+
»−j
¸ ,.

Proof (Lemma 3.5). Let P (X) =
∑¸N−1

i=0 piX
i ∈ Rq,¸N such that Ä(P (X)) =

[P0(X), . . . , P¸−1(X)] with Pi(X) =
∑N−1

j=0 pj¸+iX
j ∈ Rq,N . We give a proof by induction over

the rotation ».
Base case: » = 1 We have the following equation:

P (X) ·X =

¸N−1∑

i=1

pi−1X
i + p¸N−1X

¸N

P (X) ·X =

¸−1∑

j=0

N−1∑

i=0

pi¸−1+jX
i¸+j − p¸N−1

N−1∑

i=0

X¸i mod Rq,¸N (with p−1 = 0)

= −p¸N−1 +

N−1∑

i=1

pi¸−1X
¸i +

¸−1∑

j=1

N−1∑

i=0

pi¸−1+jX
i¸+j mod Rq,¸N .

By the previous equation, we have Ä(P (X) · X) = [P¸−1(X) · X,P0(X), . . . , P¸−2(X)] =

[P ′
0(X), . . . , P ′

¸−1(X)] which correspond to P ′
j(X) = P[(j−1)]¸

(X) ·X+
1−j
¸ ,

Inductive hypothesis: We assume that for a given », the hypothesis is true for the previous step. So

we have Ä(P (X) ·X») = [P ′
0(X), . . . , P ′

¸−1(X)] with P ′
j(X) = P[(j−»)]¸

(X) ·X+
»−j
¸ , for i ∈ [0, ¸).

Inductive step: For »+ 1, we obtain:

Ä(P (X) ·X»+1) = Ä(P (X) ·X» ·X) = [P ′
¸−1(X) ·X,P ′

0(X), . . . , P ′
¸−2(X)]

= [P ′′
0 (X), . . . , P ′′

¸−1(X)].

With

P ′′
0 (X) = P ′

[¸−1]¸
(X) ·X = P[¸−(»+1)]¸

(X) ·X+
»−(¸−1)

¸ , ·X

= P[¸−(»+1)]¸
(X) ·X+

»−(¸−1)+¸

¸ , = P[−(»+1)]¸
(X) ·X+

»+1
¸ ,.
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3.3 Without Padding Bootstrapping

and, for j ∈ [1, ¸ − 1):

P ′′
j (X) = P ′

[j−1]¸
(X) = P[j−1−»]¸

(X) ·X+
»−(j−1)

¸ , = P[j−(»+1)]¸
(X) ·X+

»+1−j
¸ ,.

Remark 3.5. A consequence of this lemma is that applying a rotation X», in LUT ∈ Rq,¸N , can
be expressed as changing the index of lut ∈ Rq,N along with an inner rotation within each lut.
Furthermore, we show that two lookup tables, luti and lutj , with i ̸= j, will never interact during
the rotation.

To perform the Parallelized-EBS without using Ä and Ä−1, we simply need to remove Lines 5
and 8 from Algorithm 18, and replace Line 7 with:

CT
j
BR
← CMux

(
CT

j
BR

,CT
[j−ai]¸
BR

·X+
ai−j

¸ ,,BSKi

)
.

3.2.2 Multi-Bit Bootstrapping

The technique proposed in [ZYL+18, JP22] focuses exclusively on parallelizing the blind ro-
tation (Algorithm 9), which is the most expensive part of the bootstrapping. In this section, we
focus solely on the blind rotation. To improve the PBS (Algorithm 11), it is sufficient to replace
the usual blind rotation with the multi bit blind rotation.

The multi bit blind rotation performs blind rotation by grouping several external products into
a single external product, producing the same result as computing multiple CMux operations in
the standard blind rotation. The number of grouped elements is referred to as the grouping factor
and is denoted by gf. To enable this optimization, a new structure for the bootstrapping key
(BSK) is required, called the multi-bit bootstrapping key (MB-BSK). The size of this key grows
exponentially with the grouping factor gf.

Similar to the standard variant, the multi-bit approach allows to blindly rotate the lookup table
by Xb−∑

ai·si . However, instead of applying the rotation sequentially with a CMux at each step,
the multi-bit scheme applies a block of gf rotation at once through an alternate update step, as
described in Algorithm 19.

For instance, when gf = 2, the multi-bit update step is computed as follows:

CTout ←
(
X0 · CTi,∅ +Xa2i+0 · CTi,{0} +Xa2i+1 · CTi,{1} +Xa2i+0+a2i+1 · CTi,{0,1}

)
⊡ CTout.

where CTi,∅ ∈ GGSWℬ,ℓ
S

(
(1−s2i+0)·(1−s2i+1)

)
, CTi,{0} ∈ GGSWℬ,ℓ

S

(
s2i+0 ·(1−s2i+1)

)
, CTi,{1} ∈

GGSWℬ,ℓ
S (

(
1− s2i+0) · s2i+1

)
and CTi,{0,1} ∈ GGSWℬ,ℓ

S

(
s2i+0 · s2i+1

)
.

In general, for a fixed i, there is exactly one element in the set
{
CTi,J

}
J¦{0,...,gf−1}

that

encrypts 1. We denote by J̄ the unique subset such that
∏

j∈J̄ si·gf+j

∏
j /∈J̄(1 − si·gf+j) = 1, i.e.,

J̄ = {j | si·gf+j = 1}, while the other ciphertexts encrypt 0. It follows that the new ciphertext

CTout encrypts the plaintext of the old CTout multiplied by X
∑

j∈J̄ ai·gf+j = X
∑gf−1

j=0 ai·gf+jsi·gf+j .

Remark 3.6. The cost of the multi bit blind rotation (Algorithm 19) can be approximated by:

Cost
n,gf,ℓ,k,N
MB−BR = y · Costℓ,k,NExternalProduct.

Where gf is the grouping factor and where n = gf · y with y ∈ N.

3.3 Without Padding Bootstrapping

In Section 2.4, we seen that a padding bit is needed to correctly evaluate non-negacyclic function
(see Limitation 1). A WoP-PBS, i.e., a PBS which does not require a bit of padding, is a
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Chapter 3. More Feature in TFHE

Algorithm 19: ctout ← MultiBit-BlindRotation(ctin,MB-BSK, LUTf )

Context:





gf ∈ N : grouping factor, typically a small integer ∈ {2, 3, 4}
where n = gf · y for some y ∈ N

s = (s0, . . . , sn−1) ∈ Zn
q : the LWE input secret key with si ←↩ U ({0, 1})

S = (S0, . . . , Sk−1) ∈ Rk
q,N : the output GLWE secret key

LUTf ∈ Rq,N : a lookup table for a function x 7→ f(x)

∆m+ e ∈ Z2N : The encoded message of ctin
Input: 




ctin = (a0, . . . , an−1, b) ∈ LWEs(m) ¦ Zn+1
2N

MB-BSK =

{{
CTi,J ∈ GGSWℬ,ℓ

S (
∏

j∈J si·gf+j

∏
j /∈J(1− si·gf+j))

}
J¦{0,...,gf−1}

}y−1

i=0

:

a multi-bit bootstrapping key from s to S

CTf ∈ GLWES (Mf ) ¦ R
k+1
q,N : an encrypted (possibly trivially) lookup table

Output: CTout ∈ GLWES

(
Mf ·X−∆m−e

)
, where e is the noise in ctin

1 CTout ← CTf ·X−b

2 for 0 f i f y − 1 do

3 CTout ←
(∑

J¦{0,...,gf−1} X
∑

j∈J ai·gf+j · CTi,J

)
⊡ CTout

4 return CTout

method that was introduced for the first time in [CLOT21]. In this section, we first present
the first WoP-PBS introduced in [CLOT21] followed by the WoP-PBS from [KS21]. Then we
introduce the WoP-PBS presented in [LMP21, YXS+21].

[CLOT21] WoP-PBS. The WoP-PBS algorithm introduced in [CLOT21] takes as input an
LWE ciphertext encrypting a message m. It consists of first performing a PBS to extract the sign
(i.e., the most significant bit), followed by another PBS to evaluate the target function f . The two
results of the PBS algorithm are then multiplied. As a result, the WoP-PBS procedure outputs
an LWE ciphertext encrypting f(m).

Before detailing the [CLOT21] WoP-PBS, we first to introduce how we perform the multipli-
cation between two LWE ciphertexts without using the external product algorithm (Algorithm 7).
Although this technique is more costly than the external product (see External Product in Subsec-
tion 4) and requires a relinearization key, it does not rely on GGSW ciphertexts. This alternative
method (detailed in Algorithm 20) consists of performing a tensor product followed by a relin-
earization, which allows to switch back to the input secret key.

We then present the WoP-PBS in Algorithm 21.

Remark 3.7. The cost of the [CLOT21] WoP-PBS (Algorithm 21) can be approximated by:

Cost
ℓ,k,N,n,q
WoPPBSCLOT21 = 2 · Costℓ,k,N,n,q

PBS
+ Cost

ℓ,n,k,N
KS

+ Cost
ℓ,n,k,N
LWEMult.

And cost of the LWE Multiplication (Algorithm 20) can be approximated by:

Cost
ℓ,n,k,N
LWEMult = 2 · Costℓ,n,k,N

KS
+ Cost

k,N
TensorProduct + Cost

ℓ,k,N
Relin + Cost

k,N
SampleExtract.

Whit

Cost
k,N
TensorProduct = 2(k + 1)NCostFFT + kCostiFFT + (k + 1)

2
NCostMltFFT + kNCostaddFFT.

and

Cost
ℓ,k,N
Relin = NℓkCostDec + kℓCostFFT + kℓ(k + 1)NCostmultFFT

+(kℓ− 1)(k + 1)NCostaddFFT + (k + 1)CostiFFT.
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3.3 Without Padding Bootstrapping

Algorithm 20: CTout ← LWEMult(ct1, ct2,RLK,KSK)

Context:





s = (s0, . . . , sn−1) : the LWE secret key

S′ = (S′
0, . . . , S

′
k−1) : the GLWE secret key

s′ the flatten representation of the GLWE secret key, Definition 11

KSKi ∈ GLEVℬ,ℓ
S (−si): Definition 13

RLKi,j ∈ GLEVℬ,ℓ
S (Si · Sj): Definition 13

Input:





ct1 ∈ LWEs(m1) ∈ Zn+1
q

ct2 ∈ LWEs(m2) ∈ Zn+1
q

KSK = {KSKi}i∈[0,kin−1]: The key switching key from S in to Sout

RLK = {RLKi,j}j∈[0,i]
i∈[0,k−1]: The relinearization key

Output:
{
CTout ∈ GLWES(M · P ) ¦ R

k+1
q,N

/* Algorithm 4 */

1 CT1 = (A1,0, . . . , A1,k−1, B1) ∈ GLWES′(m1)← LWEKeySwitch(ct1,KSK)
/* Algorithm 4 */

2 CT2 = (A2,0, . . . , A2,k−1, B2) ∈ GLWES′(m2)← LWEKeySwitch(ct1,KSK)

/* Tensor product */

3 for i ∈ [0, k − 1] do

4 T ′
i ←

[⌊
[A1,i·A2,i]Q

∆

⌉]
q

5 A′
i ←

[⌊
[A1,i·B2+A2,i·B1]Q

∆

⌉]
q

6 for j ∈ [0, i] do

7 R′
i,j ←

[⌊
[A1,i·A2,j+A2,i·A1,j ]Q

∆

⌉]
q

8 B′ ←
[⌊

[B1·B2]Q
∆

⌉]
q

/* Relinearization */

9 CT←
(
A′

0, . . . , A
′
k−1, B

′)+∑k−1
i=0 ïCT i,i,Decℬ,ℓ(T ′

i )ð+
∑i

j=0ïCT i,j ,Decℬ,ℓ(R′
i,j)ð

10 ctout ← SampleExtract(CT); /* Algorithm 10 */

11 return ctout

[KS21] WoP-PBS. This second variant of WoP-PBS takes as input an LWE ciphertext en-
crypting a message m. As in the previous algorithm, the first step consists in extracting the sign
bit (i.e., the most significant bit). The extracted sign, initially encrypted in an LWE ciphertext, is
then transformed into a GGSW ciphertext using circuit bootstrapping (Algorithm 12).

With the resulting GGSW ciphertext, the algorithm selects between two lookup tables, one
corresponding to a positive sign and the other to a negative sign, using a CMux (Algorithm 8).
Finally, the selected lookup table is evaluated using a classicalPBS (Algorithm 11). This algorithm
is also known as Full Domain Functional Bootstrapping (FDFB).

Remark 3.8. The cost of the [KS21] WoP-PBS (Algorithm 22) can be approximated by:

Cost
ℓPBS,ℓCBS,k,N,n,q
WoPPBSKS21

= 2 ·
(
Cost

ℓPBS,k,N,n,q
PBS

+ ·CostℓPBS,n,k,N
KS

+ Cadd

)
+ Cost

ℓPBS,ℓCBS,k,N,n,q
CBS

+ Cost
ℓPBS,k,N
CMux .

Where Cadd denotes the complexity of adding two elements of Zq.
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Algorithm 21: ctout ←WoP-PBS[CLOT21](ctin, LUT,PUB)

Context:





s = (s0, . . . , sn−1) : the LWE secret key

S′ = (S′
0, . . . , S

′
k−1) : the GLWE secret key

∆m+ e ∈ Zq : The encoded message of ctin, Definition 8

LUTi : Lookup table evaluating the function x 7→ fi(x) for i ∈ {0, 1}
LUT1 : Lookup table evaluating the function x 7→ 1

Input:





ctin = (ain,0, . . . , ain,n−1, bin) ∈ LWEs(m) ¦ Zn+1
2N

LUT : Lookup Table if the padding bit equals 1

PUB : public keys required for the entire algorithm ; /* Remark 2.15 */

Output:
{
ctout ∈ LWEs (f (∆m+ e)) ¦ R

k+1
q,N

1 ctin ← KS(ctin,KSK); /* Algorithm 4 */

2 ctsign ← PBS(ctin, LUT1,BSK); /* Algorithm 11 */

3 ctf± ← PBS(ctin, LUT,BSK); /* Algorithm 11 */

4 ctf ← LWEMult(ctf± , ctsign); /* Algorithm 20 */

5 return ctout = ctf

Algorithm 22: ctout ←WoP-PBS[KS21](ctin,PUB, LUT0, LUT1)

Context:





s = (s0, . . . , sn−1) : the LWE secret key

S′ = (S′
0, . . . , S

′
k−1) : the GLWE secret key

∆m+ e ∈ Zq : The encoded message of ctin, Definition 8

LUTi : Lookup table evaluating the function x 7→ fi(x) for i ∈ {0, 1}
LUT1 : Lookup table evaluating the function x 7→ 1

Input:





ctin = (ain,0, . . . , ain,n−1, bin) ∈ LWEs(m) ¦ Zn+1
2N

LUT1 : Lookup Table if the padding bit equals 1

LUT0 : Lookup Table if the padding bit equals 0

PUB : public keys required for the entire algorithm ; /* Remark 2.15 */

Output:
{
ctout ∈ LWEs (fsign (∆m+ e)) ¦ R

k+1
q,N

/* Generalization of Proof 13 (Algorithm 15) to enable the extraction of

the most significant bit for message larger than one bit */

1 ctin ← KS(ctin,PUB) ; /* Algorithmn4 */

2 cttmp ← ctin + (0,∆/2)
3 ctsign ← PBS (cttmp, LUT1,PUB) ; /* Algorithm 11 */

4 ctsign ← ctsign + (0,∆/2)

5 ctsign ← KS(ctsign,PUB) ; /* Algorithmn4 */

6 CTsign ← CBS (ctsign,PUB); /* Algorithm 12 */

7 LUT← CMux
(
LUT0, LUT1,CTsign

)
; /* Algorithm 8 */

8 ctout ← PBS(ctin, LUT,PUB); /* Algorithm 11 */

9 return ctout
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[LMP21, YXS+21] WoP-PBS. Finally, the lastWoP-PBS bootstrapping algorithm starts by
enlarging the message space by adding a random bit which act as a new random padding bit. This
newly created padding bit is then extracted and subtracted from the enlarged input ciphertext.

As a result, the ciphertext now encrypts the original input message along with a padding bit
set to zero, which enables the use of a classical PBS to compute the desired result.

Remark 3.9. The cost of the [LMP21] WoP-PBS (Algorithm 23) can be approximated by:

Cost
ℓ,k,N,n,q
WoPPBSLMP22 = Cost

n,q,2q
ModulusSwitch + 2 · Costℓ,k,N,n,q

PBS
+ 2 · Costℓ,n,k,N

KS
+ Cost

k,N
Add + 2 · Cadd.

Where Cadd denotes the complexity of adding two elements of Zq.

Algorithm 23: ctout ←WoP-PBS[LMP22](ctin,BSK, LUT)

Context:





s = (s0, . . . , sn−1) : the LWE secret key

S′ = (S′
0, . . . , S

′
k−1) : the GLWE secret key

∆m+ e ∈ Zq : The encoded message of ctin, Definition 8

LUT1 : Lookup table evaluating the function x 7→ 1

Input:





ctin = (ain,0, . . . , ain,n−1, bin) ∈ LWEs(m) ¦ Zn+1
2N

LUT : Lookup table evaluating the function x 7→ f(x)

PUB : public keys required for the entire algorithm ; /* Remark 2.15 */

Output:
{
ctout ∈ LWEs (f (∆m+ e)) ¦ R

k+1
q,N

/* Increase the message/ciphertext space by adding a random padding bit */

1 ct ∈ Zn
2q ← ModulusSwitch(ctin, 2q) ; /* Algorithm 6 */

/* Generalization of Proof 13 (Algorithm 15) to enable the extraction of

the most significant bit for message larger than one bit */

2 cttmp ← ct+ (0,∆/2)
3 cttmp ← KS(cttmp,PUB) ; /* Algorithmn4 */

4 ctsign ← PBS (cttmp, LUT1,BSK) ; /* Algorithm 11 */

5 ctsign ← ctsign + (0,∆/2)

6 ct← ct− ctsign
7 ct← KS(ct,PUB) ; /* Algorithmn4 */

8 ctout ← PBS(ct, LUT,BSK); /* Algorithm 11 */

9 return ctout

In all the presented algorithm, one of the main step consisting on extracting the sign (i.e., the
most significant bit). The proof of correctness of this operation can easily be adapted from the
proof of Algorithm 15 (Theorem 3.1).

Later in Chapter 6, we will introduce a new variant of WoP-PBS developed and studied during
this thesis.

3.4 Multiple LUT evaluation

In Section 2.6, one of the identified limitations is that the PBS procedure can evaluate only a
single lookup table per operation (see Limitation 8). In this section, we present several solutions
proposed in the literature to overcome this constraint.

We begin with the many-LUT PBS method introduced in [CLOT21], which enables the eval-
uation of multiple functions during a single bootstrapping operation. We then discuss the boot-
strapping techniques proposed in [CIM19] and [GBA21], which introduce more complex algorithm
to overcome Limitation 8.
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Bootstrapping Many Lut. The first technique proposed to overcome Limitation 8 is the many-
LUT bootstrapping method introduced in [CLOT21]. This PBS technique is similar to the classical
version (Algorithm 11); however, compared to classical PBS, it requires some side information
about the message. The ability to evaluate multiple functions lies in how the lookup table is
constructed using this side information. Then, instead of performing a single sample extraction,
several sample extractions are necessary, depending on the side information available.

During PBS, one performs a rotation of a lookup table representing N distinct values. To
ensure correctness, a padding bit is required (Remark 2.14), which allows the encoded message to
lie in the range [0, N−1]. If two padding bits are used, the encoded message lies in [0, N/2−1], and
only half of the LUT is used during rotation. Consequently, the remaining part of the lookup table
can be repurposed to encode additional functions. The more we know empty bit in the encoded
message, the more we can evaluate different functions.

Algorithm 24: {ctout,i}i∈[0,2Ã−1] ← ManyLut(ctin,CTf ,BSK)

Context:





s = (s0, . . . , sn−1) : the LWE secret key

S′ = (S′
0, . . . , S

′
k−1) : the GLWE secret key

s′ the flatten representation of the GLWE secret key, Definition 11

∆m+ e ∈ Zq : The encoded message of ctin, Definition 8

Ã : The number of padding bits

LUTf : The Lookup table evaluating the function

x 7→ f1(x) on the N/2Ã−1 first coefficients,

then the function x 7→ f2(x) on the N/2Ã−1 next coefficients

and so on until x 7→ f2Ã−1(x)

CTf : Trivial encryption of LUTf , Remark 2.6

(ℬ, ℓ) ∈ (Z∗)2 : The (base, level) decomposition.

Input:





ctin = (ain,0, . . . , ain,n−1, bin) ∈ LWEs(m) ¦ Zn+1
2N

CTf ∈ GLWES(LUTf ) ¦ R
k+1
q,N

BSK =
{
BSKi ∈ GGSWℬ,ℓ

S′ (si)
}
i∈[0,n−1]

Output:
{
ctout ∈ LWEs′ (f (∆m+ e)) ¦ R

k+1
q,N

1 ct← ModulusSwitch(ctin, 2N); /* Algorithm 6 */

2 CT← BlindRotation(ctin,CTf ,BSK); /* Algorithm 9 */

3 for i ∈ [1, 2Ã−1] do
4 ctout,i ← SampleExtract(CT); /* Algorithm 10 */

5 CT← CT ·XN/2Ã−1

; /* Theorem 2.4 */

6 return {ctout,i}i∈[0,2Ã−1]

Theorem 3.2 (Bootstrapping Many-LUT (Algorithm 24)). Let s = (s0, . . . , sn−1) ∈ Zn
q be a

binary LWE secret key and S′ ∈ Rk
q,N be a GLWE secret key and s′ his flatten representation. Let

ctin = (ain,0, . . . , ain,n−1, bin) ∈ LWEs(m) ¦ Zn+1
2N encrypting the encoded message m∆ + e ∈ Zq

with Ã padding bits fixed to zero. Let BSK be the bootstrapping key as presented in Definition 17
Finally let the lookup table LUTf ∈ Rq,N such that the N/2Ã−1 first coefficients encode the function
f1 : x ∈ [0, N/2Ã−1] → f1(x), then the next N/2Ã−1 encode the function f2 : x ∈ [0, N/2Ã−1] →
f2(x) and so on until the function f2Ã−1 : x ∈ [0, N/2Ã−1]→ f2Ã−1(x).

Then Algorithm 24 returns 2Ã−1 LWE ciphertexts each encrypting the input message evaluated

with one of the function
{
ctout,i ∈ LWEs′ (fi(∆m+ e mod 2N)) ¦ R

k+1
q,N

}
i∈[0,2Ã−1]

. An LWE ci-

phertext encrypting f(m+ e mod 2N) under the secret key s′
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3.4 Multiple LUT evaluation

The cost of the Many Lut Bootstrapping (Algorithm 24) is equivalent to that of the standard
bootstrapping (Algorithm 11), except that 2Ã−1 sample extractions must be performed.

Cost
ℓ,k,N,n,q,Ã
ManyLut = Cost

ℓ,k,N,n,q
PBS

+ (2Ã−1 − 1)Costk,NSampleExtract.

And for a trivially encrypted lookup table (Definition 16), the output noise variance is equal to:

Var(ManyLut) = Var(PBS).

Proof (Theorem 3.2). The proof is similar to that of bootstrapping (Theorem 2.15). The main
differences lie in the lookup table generation and the final sample extractions. After the blind
rotation, we obtain CT = CTf · X∆m+e with ∆m + e ∈ [0, N/2Ã−1]. So the first sample extract
returns ctout,1 = LWEs′(f1(∆m + e)). We then apply the rotation by N/2Ã−1, so we have CT =

CTf ·X∆m+e+N/2Ã−1

. Since each encoded function occupies N/2Ã−1 coefficients, the first coefficient
on CT now corresponds to the value f2(∆m+ e), which is extracted in the next sample extraction.
The algorithm continues this way until all function results have been extracted.

Bootstrapping [CIM19]. The second technique proposed to address Limitation 8 is the boot-
strapping method introduced in [CIM19]. This technique enables the evaluation of multiple func-
tions {fi}i over a single encrypted value. Each function fi is first represented as a polynomial Pi.
Then, for each of these polynomials, one needs to find a common polynomial Q such that for every i
we have P ′

i ·Q = Pi. This process is referred to as PolyFactor where (Q, {P ′
i}i)← PolyFactor({Pi}i).

A programmable bootstrapping is then performed using the lookup table Q and the input cipher-
text ctin. Finally, each polynomial P ′

i is multiplied with the result of the PBS resulting in GLWE
ciphertexts that encrypting P ′

i · Q (see polynomial multiplication Theorem 2.6). Each resulting
GLWE ciphertext is then sample extracted to obtain an LWE ciphertext encrypting fi(∆m+ e).

Remark 3.10. Compared to classical PBS, the bootstrapping method from [CIM19] can take as
input multiple lookup tables, enabling the evaluation of several functions on a single ciphertext.

The drawback of this approach is the noise introduced during the final polynomial multiplication
by the constant P ′

i . Indeed, this multiplication adds a significant amount of noise, depending on
the value of P ′

i . But compared to the previous technique, no side information is required.
The cost of Algorithm 25 can be approximated by:

Cost
ℓ,k,N,n,q,z
CIM19PBS

= Cost
ℓ,k,N,n,q
PBS

+ z · Costk,NSampleExtract.

Bootstrapping [GBA21]. In [GBA21], the authors propose two bootstrapping methods,
namely tree-PBS and chain-PBS, which enable bootstrapping over high-precision ciphertexts,
solving Limitation 4. Furthermore, by employing specially constructed lookup tables, these PBS
methods also allow for the evaluation of multivariate functions using multiple input ciphertexts,
thus solving Limitation 7.

The goal of this bootstrapping is to enable the evaluation of multivariate function taking as
input several ciphertexts. These input ciphertexts can either represent distinct variables—allowing
the evaluation of a multivariate function via a multivariate lookup table or they can encode a
single high-precision message split across multiple ciphertexts. This encoding for large precision is
discussed in greater detail in Chapter 7 Section 7.2.

The case of a high-precision message encoded in two ciphertexts is detailed in Algorithm 26,
though the same approach can be adapted to evaluate bivariate lookup tables as well. The main
difference between the two cases lies in the generation of the lookup table.

The idea behind the tree-PBS (Algorithm 26), is to leverage the PBS technique from [CIM19]
(Algorithm 25) on the first input ciphertext to compute multiple intermediate values. These
values are then used to construct a new lookup table via a packing key switch (Theorem 2.9).
Finally, this new lookup table is evaluated using a classical PBS applied with the second input
ciphertext. To extend the procedure to more than two ciphertexts, the idea is to perform several
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Chapter 3. More Feature in TFHE

Algorithm 25: {ctout,i}i∈[0,z] ← [CIM19] Bootstrapping(ctin, {Pi}i∈[0,z],BSK)

Context:





s = (s0, . . . , sn−1) : the LWE secret key

S′ = (S′
0, . . . , S

′
k−1) : the GLWE secret key

s′ the flatten representation of the GLWE secret key, Definition 11

∆m+ e ∈ Zq : The encoded message of ctin, Definition 8

z : The number of function

Pi : The function fi encoded as a polynomial

(ℬ, ℓ) ∈ (Z∗)2 : The (base, level) decomposition.

Input:





ctin = (ain,0, . . . , ain,n−1, bin) ∈ LWEs(m) ¦ Zn+1
q

{Pi}i∈[0,z]

BSK =
{
BSKi ∈ GGSWℬ,ℓ

S′ (si)
}
i∈[0,n−1]

Output:
{
{ctout,i ∈ LWEs′

(
fi (∆m+ e) ¦ ZkN+1

q

)
}
i∈[0,z]

1 (Q,P ′
i )← PolyFactor({Pi}i∈[0,z])

/* Algorithm 11, without sample extract (Algorithm 10) */

2 CT← PBS(ctin, Q,BSK)
3 for i ∈ [0, z] do
4 CTi ← CT · P ′

i

5 ctout,i ← SampleExtract(CTi); /* Algorithm 10 */

6 return {ctout,i}i∈[0,z]

successive [CIM19]−PBS, where at each step, the evaluated lookup table is derived from the result
of the previous [CIM19] bootstrapping.

In the second method, i.e., the chain-PBS, the idea is that the output of a lookup is used to
construct the selector for the next lookup, whereas in the tree-based approach, the output is used
to construct the next lookup table. This distinction has significant implications for both error
propagation and the overall functionality of the algorithm.

Remark 3.11. The cost of the [GBA21] WoP-PBS (Algorithm 26) can be approximated by:

Cost
ℓ,k,N,n,q,z
GBA21PBS

= Cost
ℓ,k,N,n,q,z
CIM19PBS

+N · Costk,NAdd + ·Costℓ,k,N,n,q
PBS

+ z · Costℓ,n,k,N
KS

.
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3.4 Multiple LUT evaluation

Algorithm 26: {ctout} ← [GBA21] Bootstrapping(ct1, ct2, {Pi}i∈[0,p−1],PUB)

Context:





s = (s0, . . . , sn−1) : the LWE secret key

S′ = (S′
0, . . . , S

′
k−1) : the GLWE secret key

s′ the flatten representation of the GLWE secret key, Definition 11

∆mi + ei ∈ Zq : The encoded message of cti,

with mi ∈ Zp for i ∈ [0, 1], Definition 8

Pi : The function fi encoded as a polynomial

(ℬ, ℓ) ∈ (Z∗)2 : The (base, level) decomposition.

Input:





ct1 ∈ LWEs(m1) ¦ Zn+1
q

ct2 ∈ LWEs(m2) ¦ Zn+1
q

{Pi}i∈[0,p−1]

BSK =
{
BSKi ∈ GGSWℬ,ℓ

S′ (si)
}
i∈[0,n−1]

KSK =
{
KSKi ∈ GLEVℬ,ℓ

Sout
(−sin,i)

}
i∈[0,n−1]

Output:
{
{ctout,i ∈ LWEs′

(
fi (∆m+ e) ¦ ZkN+1

q

)
}
i∈[0,z]

1 {cti}i∈[0,p−1] ← [CIM19]−Bootstrapping(ct1, {Pi}i∈[0,p−1],BSK); /* Algorithm 25 */

2 LUT← (0, 0)
3 for i ∈ [0, N/p− 1] do
4 CT← LWEKeySwitch(cti,KSK) ; /* Algorithm 4 */

5 for j ∈ [0, p− 1] do
6 LUT← LUT+ CT ·Xi·p+j

7 ctout ← PBS(ct2, LUT,BSK); /* Algorithm 11 */

8 return {ctout}
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Part II

TFHE High-Performance
Primitives

This part of the thesis explores new advancements that enhance the

efficiency of TFHE and, more generally, Fully Homomorphic Encryp-

tion. While FHE has made significant progress over the past decade,

computational efficiency remains a critical challenge for its practi-

cal deployment. To address this challenge, we investigate different

approaches, such as developing and optimizing new algorithms or in-

troducing new security assumptions that enable the creation of novel

cryptographic techniques.
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Chapter 4

Accelerating TFHE with
Sorted Bootstrapping

Techniques

In Chapter 2, we outlined several limitations of the TFHE scheme. Notably, we presented that
TFHE bootstrapping becomes progressively less efficient as the precision increases, and impractical
for high-precision computations. This chapter focuses on improving the bootstrapping for medium
precision making TFHE more efficient for these precisions. In Chapter 3, Sections 3.1.5 and 3.2.1,
we detail the Extended PBS (EBS) and its parallelized version, a bootstrapping technique that is
particularly efficient for medium precision (between 5 and 8 bits). We recall, that theEBS improves
the performance of blind rotation by splitting the polynomials used during the blind rotation into
several smaller polynomials. This approach enables faster computation of the external products,
directly reducing the execution time of the PBS.

This chapter presents new methods and optimizations based on the EBS algorithm, leading to
significant performance improvements. First, we show a simple but not straightforward technique
used to eliminate external products necessary to perform the blind rotation during the SBS. Then,
we show how the number of removed operations can be improved by modifying the modulus switch,
and finally, we present how to increase the parallelization of this new technique.

4.1 Overview of the Construction

The first improvement presented in this chapter is the Sorted Extended PBS (SBS). By analyzing
the rotation of lookup tables in the EBS, we identify patterns of rotation among the different
split lookup tables. These patterns reveal that certain external products are unnecessary for the
correctness of the final result and then can be removed during the blind rotation. By sorting the
order of each rotation during the blind rotation, the number of external products can be minimized,
offering a speedup compared to the EBS.

More precisely, in the EBS, the sample extract only needs to be performed on the first
split lookup table lut0. Thus, in the last step, only one of the ¸ CMuxes operations needs
to be computed, the one that returns lut0. This insight can be pushed further: during the
extended blind rotation, only the CMuxes operations that impact the output of the last CMux

need to be computed. The idea is to perform a backward tracing of the full blind rotation, to
identify which external products are necessary to obtain the correct result. In Section 3.1.5, we
introduced the Ä(·) function, which allows splitting a GLWE ciphertext under an extended secret
key into multiple GLWE ciphertexts of smaller degree. Then, Lemma 3.5 shows that a rotation
r of Ä(LUT) = [lut0, . . . , lut¸−1] can be expressed as a change of indices along with an internal
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Chapter 4. Accelerating TFHE with Sorted Bootstrapping Techniques

Figure 4.1: Representation of the chain of CMuxes during the blind rotation using the usual TFHE ap-
proach [CGGI20] (left side), the Extended bootstrapping one [LY23] (middle) and our Sorted bootstrapping
(right side). Lines represent ciphertexts, and rounded rectangles correspond to CMuxes. Larger lines in
left side represents larger polynomial degrees.

rotation, such that Ä(LUT ·Xr) = [lut′0, . . . , lut
′
¸−1] where lut

′
i = lut[(i−r)]¸

·X+
r−i
¸ ,, for i ∈ [0, ¸).

By examining the rotation by r, we show that if r = 0 mod ¸, lut′0 only corresponds to a
rotation of lut0. Similarly, if r = 0 mod ¸/2, lut′0 corresponds either to a rotation of lut0 or
a rotation of lut¸/2. Finally, when r ̸= 0 mod 2, lut′0 can corresponds to a rotation of any
lut. During bootstrapping, the rotation is performed using the coefficients ai from the input
LWE ciphertext. The goal is now to minimize the number of external products used during
the blind rotation. This implies that the first rotations by all the ai ̸= 0 mod 2 require
¸ CMuxes. The subsequent rotations for ai values such that ai ̸= 0 mod 22 need ¸/2 CMuxes,
and so on. The final rotations require only one CMux. This results in a CMux tree, where
at each step, the number of CMuxes operations is divided by 2. In comparison, the usual
approach would requires ¸ CMuxes for each rotation. As previously explained, the goal is to
sort the coefficients ai in order to construct a CMux tree that minimizes the number of CMux

operations required to perform the blind rotation. This optimization is fully detailed in Section 4.2.

The second improvement is a variant of the modulus switch (Algorithm 6), named Companion
Modulus Switch (CMS), designed to increase the number of elements in the blind rotation that
fulfill the necessary conditions for reducing the number of external products in the SBS. The goal
of the CMS is to improve the sorting in the SBS by grouping more elements into classes of sorted
elements which reduces the number of external products. To achieve this, instead of applying a
standard rounding, the CMS computes a larger approximation, ensuring that the resulting values
belong to appropriate sorted classes. For instance, when computing a SBS, the largest number of
external products required in a single step occurs when the rotation satisfies aj ̸= 0 mod 2. In
a bootstrapping, the aj are the results of the usual modulus switch, i.e., a rounding operation,
which could equivalently be written as either the ceil or a floor, depending on the input value.
Results are generally rounded to the nearest representable value, i.e., using the rounding to the
nearest mode. In some cases, this mode gives a value aj such that aj ̸= 0 mod 2, whereas
computing another rounding could have led to a more convenient value aj = 0 mod 2. The
larger the value of i for i ∈ [0, log2(¸)] such that the rounding of aj equals 0 mod 2i, the greater
the reduction in the number of external products. The idea is then to take the adequate rounding
mode for certain aj where aj ̸= 0 mod 2. Practically, this means that if the rounding operation
is equivalent to a floor, we apply the ceiling instead, and vice versa. To limit the additional noise
introduced compared to the usual modulus switch, it is generally better to modify only a subset of
the values rather than all of them. This introduces a new fine-grained parameter that optimizes
the number of CMuxes to compute while limiting noise growth. We show that only the first layer
of aj needs to be considered to maximize the efficiency of this approach. This adjustment results
in an additional latency reduction for the PBS and is detailed in Section 4.3.

Finally, we focus on reducing the latency of both EBS and SBS by mixing several
steps of the blind rotation into a single parallel operation. We demonstrate how techniques
from [BMMP18, LLW+24] can be effectively integrated into our sorted approach. The idea stems
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from developing the original CMux equation to mix and match the rotations done through the keys,
and the sorted bootstrapping. To compute a bootstrapping using the two combined techniques,
instead of computing n sequential CMuxes over polynomials of size ¸ ·N , we can compute a boot-
strapping in the equivalent of n

ϖ sequential CMuxes by using ¸ · 2ϖ threads, where ϖ corresponds
to the number of packed rotations. We analyze the balance between the size of the polynomials
and the number of parallelized external products to achieve optimal parallelization efficiency. This
leads to a highly parallel bootstrapping, particularly well suited for hardware architectures. This
is detailed in Section 4.4.

4.2 Sorted Extended Bootstrapping

In this section, propose a new method to compute the EBS presented in Section 3.2.1 which in a
sequential context provides significant speedups compared to the classical PBS or the EBS, and in
a parallelized context, frees up some threads (i.e., improves the throughput). To enhance the work
proposed with [LY23], the idea is to sort the ai mask coefficients of the input LWE ciphertext of
the PBS. By performing this sorting, some of the CMuxes can be removed during the computation
of the blind rotation. This new PBS is called SBS for Sorted Extended Bootstrapping.

The idea comes from the following observation: since we work with an extended secret key,
i.e., a secret key composed of both random elements and known zeros, the sample extraction
(Algorithm 10) performed at the end of bootstrapping only needs to be applied to coefficients
that are encrypted under unknown key elements and involved in the encryption of b0. When
we apply the function Ä to the lookup table, i.e., Ä(LUT) = (lut0, . . . , lut¸−1), the value b0 is
encrypted in the first lookup table, lut0. Then, we only need to perform sample extraction on
lut0, as the other values do not affect the encryption of b0. In a standard bootstrapping, at
the nth step, we compute: (LUT · Xan−1 − LUT) ⊡ GGSWℬ,ℓ

Sext
(sn−1) + LUT (Algorithm 8). To

achieve the equivalent computation in the extended bootstrapping(Algorithm 17), we apply the

function Ä to the ciphertext and compute (lut′j − lutj)⊡GGSWℬ,ℓ
S (sn−1)+ lutj for j ∈ [0, ¸) where

lut′j = lut[(j−an−1)]¸
· X

⌈

an−1−j

¸

⌉

(see Lemma 3.5). However, in the extended bootstrapping case,

only the final result of lut0 matters, then we only need to compute the CMux impacting the result
on lut0 without losing any information required for subsequent steps.

First, we notice that the CMuxes can be computed in any order without impacting the result,
as long as the ai rotation is performed with the corresponding GGSW encrypting si. This comes
from the linear part of the decryption, i.e., the dot product between s and a. So, to perform the
blind rotation, we can sort the input pairs (ai, GGSWℬ,ℓ(si)) in any specific order. So we raise the
following question: Can we generalize the observation made for the last CMux to the other steps
of the CMux during the blind rotation?

Let us introduce some arithmetic results that will be used to prove the correctness of the SBS.

Lemma 4.1. Let ¸ ∈ Z be a power of two. Let µ be a divisor of ¸. For a ∈ Z, for i ∈ [0, ¸) if
a = 0 mod µ and i+ a = 0 mod ¸ then i = 0 mod µ.

Proof (Lemma 4.1). Let ¸ ∈ Z be a power of two and µ ∈ Z such that µ|¸. Let a ∈ Z, such that
a = 0 mod µ, so it exists k ∈ Z such that a = kµ. Let i+ a = 0 mod ¸, so it exists a p ∈ Z such
that i+ a = p¸. We have:

i+ a = p¸ ô i+ kµ = pµ
¸

µ
ô i = −kµ+ p

¸

µ
µ = µ

(
−k + p

¸

µ

)
.

Lemma 3.5 states that a rotation of a polynomial P (X) by » can be expressed as Ä(P (X)·X») =

[P ′
0(X), . . . , P ′

¸−1(X)] where P ′
j(X) = P[(j−»)]¸

(X) ·X+
»−j
¸ ,. Then, according to Lemma 4.1, after

a rotation where » = 0 mod µ, only the polynomial Pi with index i = 0 mod µ can appear as
the first polynomial P ′

0(X).
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This observation can be directly applied to the lookup table during blind rotation: when
performing a rotation by a = 0 mod µ, only the lookup table components with indices i = 0
mod µ can impact the first lookup table lut0. All other lookup table have no direct impact on lut0
during this step of the rotation. However, since these components may influence the correctness
in subsequent steps, they cannot be directly removed from the computation.

Definition 28. Let 2À = ¸ ∈ Z be the expansion factor. Let an LWE ciphertext (a0, . . . , an−1, b) ¦
Zn+1
q , we denote ak the set containing the ai, for i ∈ [0, n), such that ai = 0 mod 2k and ai ̸= 0

mod 2k+1 for k ∈ [0, À), and we denote aÀ the set containing the ai such that ai = 0 mod ¸. Note
that each ai belongs to only one of the sets a.

4.2.1 Sorted Bootstrapping Algorithm

This section describes how to sort the mask elements of the input LWE ciphertext, a core
component of the SBS algorithm. Each coefficient is sorted into sets denoted ak, and we compute
only the necessary CMux operations for each of these sets, starting with a0 elements, then a1

elements, and continuing up to aÀ. These sets are composed of the mask coefficients of the input
ciphertext based on their results modulo 2k for each k ∈ [0, À] with À ∈ N. This sorting strategy
maximizes the number of unnecessary CMux operations that can be removed without impacting
the correctness. As explained in the introduction, this approach ensures that we only execute
the operations that impact the first lookup table, without losing any information necessary for
subsequent steps. Specifically, during the blind rotation, when a coefficient a belongs to ak, for
some k ∈ [0, À], we need to compute only ¸

2k
external products. This is because only ¸

2k
indices

i ∈ [0, ¸) satisfy i = 0 mod 2k (Lemma 4.1).
We first introduce the Sorted Extended Programmable Bootstrapping (SBS) procedure in

Algorithm 27. We then prove the correctness of this method and analyze the average performance
gain it offers.

Remark 4.1. The noise distribution of this algorithm is similar to the one from the PBS described
in Theorem 2.15. The difference is about the polynomial degree: for a fixed precision, when ¸ > 1,
a classical PBS operates with polynomials of degree N¸ − 1, whereas the SBS operates with
polynomials of degree N − 1. As a result, the noise introduced by the SBS is smaller than that of
the classical PBS for the same target precision. It can be approximated using the same estimation
formula: Var(SBS) = Var(PBS) with polynomial size equals N instead of ¸N .

Lemma 4.2 (Cost & Correctness of Algorithm 27). Algorithm 27 takes as input the bootstrapping

key BSK = (BSK0, · · ·BSKn−1) ∈
[
R

(k+1)ℓ×(k+1)
q,N

]n
(Definition 17), the lookup table LUTf ∈

R
(k+1)ℓ×(k+1)
q,¸N encoding the function f (Definition 16) and the input ciphertext ctm ∈ LWEs(m) ¦

Zn+1
q . Then Algorithm 27 outputs the ciphertext ctf(m) ∈ LWEsout

(f(m)) ¢ ZkN+1
q with probability

1− pfail (Definition 2). On average, the number of CMuxes required in Algorithm 27 is n ·
(

2¸2+1
3¸

)

and his cost is:

Cost
ℓ,k,N,¿
SBS

= Cost
n,2¸N
MS

+ n

(
2¸2 + 1

3¸

)
Cost

ℓ,k,N
CMux + CostNSE.

Proof (Correctness of Algorithm 27). The correctness of the EBS, i.e., the case where all CMuxes

are computed, has been proven in [LY23] and recalled in Section 3.1.5 in proof of Theorem 3.3 and
proof of Theorem 3.4. In this proof, we show that the correctness is preserved after removing the
useless CMuxes.

We recall that, at the end of the SBS, the sample extract is only done on the first split lookup
table (lut0), so the blind rotation only need to compute the external products which impact this lut.

From Lemma 4.1, we know that only the lookup table luti with indices i = 0 mod 2k can
affect lut0 when the rotation is ã = 0 mod 2k. The goal is now to show that moving to the next
congruence class does not involve any lookup table component that was previously discarded.
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Algorithm 27: ctf(m) ← SBS(ctm, LUTf ,BSK)

Context:





s = [s0, . . . , sn−1] ¦ Zn
q

BSKi ∈ GGSWℬ,ℓ
S (si) ¦ R

(k+1)ℓ×(k+1)
q,N

¸ = 2À : The extended factor
º : Rq,N → Rq,¸N , as defined in Lemma 3.2.
Ä : Rq,¸N → [Rq,N ]

¸
, as defined in Lemma 3.4.

Sext is the extended secret key.(Sext ← º(S))

Input:





BSK = (BSK0, . . . ,BSKn−1) ∈
[
R

(k+1)ℓ×(k+1)
q,N

]n

ctm = (a0, . . . , an−1, b) ∈ LWEs ¦ Zn+1
q

LUTf ∈ GLWESext
¦ R

(k+1)ℓ×(k+1)
q,¸N

Output: ctf(m) =
(
aout0 , . . . , aoutkN−1, b

)
∈ LWEsout

¦ ZkN+1
q

1 ctMS =
(
ã0, · · · ãn−1, b̃

)
←MS(ctm, ¸ · 2N)

2 a0 = a1 = · · · = aÀ = ∅
3 BSK

′
0 = BSK

′
2 = · · · = BSK

′
À = ∅

4 for i ∈ [0, n− 1] do
5 j ← 1
6 while ãi = 0 mod 2j and j < À do
7 j ← j + 1

8 aj−1 ← append (aj−1, ãi)

9 BSK
′
j−1 ← append

(
BSK

′
j−1,BSKi

)

10 CTBR ← LUTf ·X b̃

11

[
CT0

BR, . . . ,CT¸−1
BR

]
← Ä (CTBR)

12 for i ∈ [0, À] do
13 for j ∈ [0, len(ai)) do
14 for k ∈ [0, ¸

2i − 1] do
/* Each step of the loop can be done in parallel */

15 CTk·2i
BR ← CMux

(
CTk·2i

BR ,CT
[k·2i−ai[j]]¸
BR

·X
⌈

ai[j]−k·2i

¸

⌉

,BSK′

i[j]

)
;

/* Algorithm 8 */

16 return ctf(m) ← SampleExtract(CT0
BR)

When moving to the next congruence class ak+1, only the indices i = 0 mod 2k+1 influence
lut0, and it holds that:

{
i ∈ [0, ¸) | i = 0 mod 2k+1

}
¢
{
i ∈ [0, ¸) | i = 0 mod 2k

}
; Thus, when

transitioning from ak to ak+1, none of the lookup table components removed in earlier steps will
affect the subsequent computation.

This guarantees that only the necessary CMux operations are performed during the blind rota-
tion, without compromising correctness.

Proof (Cost of Algorithm 27). The ai are uniformly distributed for i ∈ [0, n − 1] and sorted into
sets ak, for k ∈ [0, À], as explained in Definition 28. When ã is in ak for k ∈ [0, À], only ¸/2k

external products need to be computed. On average,
(
1− 1

2

)
· n elements are in a0 (and thus there

remains n
2 elements such that ai = 0 mod 2). For each of these elements, we need to compute ¸

CMuxes. In the second step, with the n
2 remaining ai, on average, we have card(a1) =

(
1− 1

2

)
· n2

(and thus there remain n
22 elements such that ai = 0 mod µ). For each coefficients in a1, we need

to compute ¸
2 CMuxes.

We continue this process until the set aÀ−1. At this step, there remain
(
1− 1

2

)
· n
2À−1 elements
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that are not equal to zero modulus ¸ and n
2À

elements such that ai = 0 mod 2À−1. For these ai,
we need to compute ¸

2À−1 · CMuxes. For each of the n
¸ remaining ai in aÀ, we need to compute one

CMux. So, the total number of CMuxes is equal to:

n

2À
+

À−1∑

i=0

(
1− 1

2

)
n

2i
2À−i = n

(
2−À + 2−1 2

À − 2−À

1− 2−2

)
= n ·

(
2¸2 + 1

3¸

)
.

Remark 4.2. For the last ai of each set ak, for k ∈ [0, À], we only need to compute ¸/2k+1 CMuxes

(compared to ¸/2k CMuxes for all the other ai of the set ak). Indeed, the lut of index j such that
j = 0 mod 2k and j ̸= 0 mod 2k+1 will never be used in the following computation (the ai of the
set ak+1 work only on the lut of index j such that j = 0 mod 2k+1). By considering this remark,

we can reduce the number of CMuxes by ¸
2

∑À−1
i=0

1
2i = ¸ − 1.

4.3 Companion Modulus Switch

In Section 4.2.1, we show that when the mask elements are sorted per ak for k ∈ [0, À], only ¸
2k

external product at each step of the blind rotation are needed. When ã is in ak, the higher the
value k, the more we can reduce the number of external products. An easy way to improve the
SBS is to reduce the number of mask elements in a0 (i.e., when the maximum number of external
products needs to be computed at each step of the blind rotation) and maximize the number of
mask elements ã such that ã ∈ a¸. To achieve this, we propose modifying the modulus switch
by intentionally selecting either the ceiling or floor during the rounding operation. By doing so,
for a mask element that would typically be in a0 with the classical modulus switch, selecting the
opposite rounding result (i.e., the floor if the rounding returns the ceiling and vice versa) can
place the mask element into another ak for k ∈ [1, À]. The goal is to identify mask values where
changing the rounding result shifts the value to ak for a k value close to À. The drawback of this
modification is its impact on the noise. By selecting the ceiling or floor instead of the rounding
result, we increase the rounding error added by the modified mask elements.

The modulus switch is already well known to be one of the most noisiest operations, therefore,
we cannot arbitrarily change all the elements as desired. To moderate this noise growth, we
introduce a new parameter d representing the number of ãi on which this modified modulus switch
will be applied. Assuming a fixed failure probability and security level, if the noise increase is too
large, cryptographic parameters must also be larger to ensure the previous conditions. This might
ruin the performance gain from this optimization. The goal is then to find the best value for d to
improve the overall performance. We refer to it as the Companion Modulus Switch and denote it
by CMS.

In this section, we first study the noise evolution of the CMS to ensure the correctness of the
whole algorithm. Indeed the output noise of the CMS needs to satisfy the noise constraints for a
given failure probability to be correctly applied during the SBS. We then present the average and
the maximum gain offer by this method.

Lemma 4.3 (Noise CMS). Let (a0, . . . , an−1, b) ∈ LWEs ¦ Zn+1
q be the input ciphertext. Let

³ = qin
qout

and let Ã2
in denote the input noise variance. For a chosen d, the CMS operation is done by

computing a′i =
[⌊

qout
qin

ai

⌉]
qout

for i ∈ [0, n−d) and a′′i =
[⌊

qout
qin

ai

⌋]
qout

+
[⌈

qout
qin

ai

⌉]
qout
−
[⌊

qout
qin

ai

⌉]
qout

for i ∈ [n− d, n). Any of the ai for the d modified values can be chosen, but to simplify the d last
values are taken. The variance of the CMS is:

Var(eCMS) =
Ã2
in

³2
+

1

12
− 1

12³2
+

d

16³2 − 48³+ 144

+
n− d

24
+

(n− d)

48³2
+

d(7³4 − 39³3 + 29³2 + 90³− 72)

24³2(³− 3)
2 .
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and

E(eCMS) =
1

2³
·
(
n− d

2
− 1

)
+

d

4³− 12
.

Proof (Lemma 4.3). Let note a′i =
⌊
qout
qin

ai

⌉
= qout

qin
ai + āi. Then we have a′i ∈ U

([−qout
2 , qout

2

))

and āi ∈ qout
qin

[
−qin
2qout

, qin
2qout

)
. So Var(a′i) =

q2out−1
12 and E(a′i) =

−1
2 , and that Var(āi) =

1
12 −

q2out
12q2

in

and

E(āi) = −−qout
2qin

.

Let note a′′i = qout
qin

ai + ¯̄ai the ceiling or the floor chosen as the opposite of the round result (if

a′i =
⌊
qout
qin

ai

⌉
=
⌈
qout
qin

ai

⌉
then a′′i =

⌊
qout
qin

ai

⌋
and if a′i =

⌊
qout
qin

ai

⌉
=
⌊
qout
qin

ai

⌋
then a′′i =

⌈
qout
qin

ai

⌉
).

Then we have a′′i ∈ U
([−qout

2 , qout
2

))
and ¯̄ai ∈ qout

qin
U

((
−qin
qout

, −qin
2qout

)
∪
[

qin
2qout

, qin
qout

))
Let qin

qout
= ³.

First, let compute the expectation and the variance of ¯̄ai.

³E(¯̄ai) =
1

³− 3




−³
2 −1∑

i=−³+1

i+

³−1∑

i=³
2

i


 =

1

³− 3

³

2
=

1

2− 6³−1

E(¯̄ai) =
1

2³− 6
.

³2Var(¯̄ai) =
1

³− 3




−³
2 −1∑

i=−³+1

(
i− 1

2− 6³−1

)2

︸ ︷︷ ︸
I

+

³−1∑

i=³
2

(
i− 1

2− 6³−1

)2

︸ ︷︷ ︸
I


 .

First let isolate I and develop the equation:

(
i− 1

2− 6³−1

)2

= i2︸︷︷︸
II

− 2i

2− 6³−1
︸ ︷︷ ︸

III

+

(
1

2− 6³−1

)2

︸ ︷︷ ︸
IV

.

Now let compute II, III and IV with the sums
∑−³

2 −1
i=−³+1 and

∑³−1
i=³

2

−³
2 −1∑

i=−³+1

−2i
2− 6³−1

+

³−1∑

i=³
2

−2i
2− 6³−1

=
−2

2− 6³−1




−³
2 −1∑

i=−³+1

i+

³−1∑

i=³
2

i


 =

−³
2− 6³−1

.

−³
2 −1∑

i=−³+1

(
1

2− 6³−1

)2

+

³−1∑

i=³
2

(
1

2− 6³−1

)2

=

(
1

2− 6³−1

)2

(³− 3).

−³
2 −1∑

i=−³+1

i2 +

³−1∑

i=³
2

i2 = 2

³−1∑

i=³
2 +1

i2 +
³2

4

=
1

3

(
(³− 1)³(2³− 1)−

(³
2
+ 1
)(³

2
+ 2
)
(³+ 3)

)
+

³2

4

=
1

3

(
7³3

4
− 21³2

4
− 11³

2
+ 6

)
+

³2

4
.
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We now compute all together and we obtain the final variance:

³2Var(¯̄ai) =
1

³− 3

[
−³

2− 6³−1
+

(
1

2− 6³−1

)2

(³− 3)

+
1

3

(
7³3

4
− 21³2

4
− 11³

2
+ 6

)
+

³2

4

]

=
7³4 − 39³3 + 29³2 + 90³− 72

12(³− 3)
2

Var(¯̄ai) =
7³4 − 39³3 + 29³2 + 90³− 72

12³2(³− 3)
2 .

Now, we can compute the expectation and the variance of the MS noise. First we decrypt the
output.

Decrypt(
(
a′0, · · · a′n−1−d, a

′′
n−d, · · · a′′n−1, b

′) , s) = b′ −
n−d−1∑

i=0

a′isi −
n−1∑

i=n−d

a′′i si

= ³−1b+ b̄−
n−d−1∑

i=0

(³−1ai + āi)si −
n−1∑

i=n−d

(³−1ai + ¯̄ai)si

= ³−1

(
b−

n−1∑

i=0

aisi

)
+ b̄−

n−1−d∑

i=0

āi · si −
n−1∑

i=n−d

¯̄aisi

= ³−1¶m+ ³−1e+ b̄−
n−1−d∑

i=0

āisi −
n−1∑

i=n−d

¯̄aisi.

Next, we can study the error in the case of binary keys (Var(si) =
1
4 and E(si) =

1
2):

Var(ECMS) = Var

(
³−1e+ b̄−

n−1−d∑

i=0

āi · si −
n−1∑

i=n−d

¯̄aisi

)

= Var(³−1Ãin) + Var(b̄) + (n− d)Var(āi)(Var(si) + E2(si))

+(n− d)E2(āi)Var(si) + dVar(¯̄ai)(Var(si) + E2(si)) + dE2(¯̄ai)Var(si)

=
Ã2
in

³2
+

1

12
− 1

12³2
+

n− d

24
+

(n− d)

48³2

+
d(7³4 − 39³3 + 29³2 + 90³− 72)

24³2(³− 3)
2 +

d

16³2 − 48³+ 144
.

and

E(ECMS) = E

(
³−1e+ b̄−

n−1−d∑

i=0

āisi −
n−1∑

i=n−d

¯̄aisi

)

=
�
�
�
��E

(
³−1e

)
+ E

(
b̄
)
+

n−1−d∑

i=0

E (āisi) +

n−1∑

i=n−d

E (¯̄aisi) =
1

2³
·
(
n− d

2
− 1

)
+

d

4³− 12
.

The CMS can be implemented in Algorithm 27 by substituting the existing modulus switch
in line 1 with the new one. From Lemma 4.3, we have the correctness of this new version of
Algorithm 27 if the noise added by the CMS is smaller than a given constraint that ensure the
correctness of the SBS with a given failure probability (Definition 23). The Companion Modulus
Switch is denoted as:

CTout ← CMS(CTin, qout, d)
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With the CMS, we reduce the number of CMuxes needed to compute the BR. Indeed, we can find
the ãi values that require ¸ CMuxes and modify them to compute only 2k CMuxes with 0 f k < À.
In the best case, we aim for the modified ãi to be congruent to 0 modulus ¸, requiring only one
CMux to be performed. Due to the CMS, we have fewer coefficients in a0. The next lemma shows,
on average, how many CMuxes are removed during the computation of the SBS.

Lemma 4.4. Let d ∈ Z. By performing Algorithm 27 with the Companion Modulus Switch
CMS(CTin, qout, d) instead of the classical Modulus Switch MS(CTin, qout), on the average case, we

only need to compute n ·
(

2¸2+1
3¸

)
− d−¸2−2

3¸ CMuxes. In the best case, where all the modified values

satisfy ai = 0 mod ¸, we only need to compute n ·
(

2¸2+1
3¸

)
− d(¸ − 1) CMuxes. The cost of the

CMS is similar to the one of the usual MS and we obtain:

Cost
d,ℓ,k,N,¿
SBS−CMS = Cost

n,2¸N
MS

+

(
n

(
2¸2 + 1

3¸

)
− d
−¸2 − 2

3¸

)
· Costℓ,k,NCMux + CostNSE; (average).

Cost
d,ℓ,k,N,¿
SBS−CMS = Cost

n,2¸N
MS

+

(
n

(
2¸2 + 1

3¸

)
− d(¸ − 1)

)
· Costℓ,k,NCMux + CostNSE; (best).

Proof (Lemma 4.4). This proof follows the same idea as in Proof 16. In Proof 16, we saw that we

need to compute n·
(

2¸2+1
3¸

)
CMuxes to perform a blind rotation. With the CMS, we choose d values

ai in a0 and we modify them to obtain ai in ak for some k ∈ [1, À]. As we modify d values, we need
to subtract the d · ¸ CMuxes computed with the original ai and add the new CMuxes performed with
the d modified values to the total number of CMuxes. For these d new ai, on average, there are(
1− 1

2

)
d new ai such that ai is in a1. For these ai, we need to compute ¸/2 CMuxes. After this

step, there remain 1
2d values and from these values, we have

(
1− 1

2

)
1
2d values such that ai ∈ a2.

For these ai, we only need to compute ¸/22 CMuxes, and so on until ai ∈ aÀ where we only need
to compute one CMux.

n ·
(
2¸2 + 1

3¸

)

︸ ︷︷ ︸
I

−d¸ +

À−1∑

i=0

(
1− 1

2

)
d

2i
2À−i = I − d¸ + d2À−1

À−1∑

i=0

2−2i

= I − d¸ + d2À−1 1− 2−2À

1− 2−2
= I − d

−¸2 − 2

3¸
.

In the best case, all the d modified ai belong to a¸. So, at each step of the blind rotation, only
one CMux is required to perform what previously needed ¸ CMuxes.

4.4 Parallelism to Scale Performance

In [ZYL+18] or [JP22], the authors give some methods to parallelize multiple sequential CMuxes

of the blind rotation. In essence, their method uses a bootstrapping key that encrypts cross-
products of consecutive secret-key bits. With this larger bootstrapping key, it becomes possible to
precompute rotations for multiple mask elements and apply them with a single external product,
rather than one per mask element, thereby reducing the overall cost of the bootstrapping operation.
An important difference with the traditional external product is that with these methods, the
message encrypted in each of the GGSWs is a polynomial and not just a secret key bit. This
explain why these techniques cannot be directly applied to the SBS. Indeed, one condition for
using Ä and performing an external product with smaller polynomials is to have a GGSW ciphertext
encrypting an integer and not a polynomial (See Section 3.2.1).

To parallelize the CMuxes, we will follow the methods proposed in [BMMP18, LLW+24]. This
methods lies in expanding the computation of several CMuxes such that all the operations required
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to perform these CMuxes can be executed in parallel with the same individual cost. First, we show
how to apply these on the original extended bootstrapping. Second, we detail the required changes
to make these techniques compliant with the SBS.

4.4.1 More Parallelism for the EBS

In this section, a method is introduced to parallelize multiple sequential CMuxes, while retaining
the capability to parallelize each external product with the previously described techniques used
in SBS or in EBS.

First, as in [BMMP18, LLW+24], we observe that two consecutive CMuxes on a GLWE ci-
phertext LUT to apply the rotation ã0s0 and ã1s1 using respectively BSKs0 and BSKs1 (where

BSKx ∈ GGSWℬ,ℓ
S (x) is the bootstrapping key encrypting the secret x) are computed using the

following formula:

((
LUT ·X ã0 − LUT

)
⊡ BSKs0 + LUT

)
⊡ BSKs1

+
((
LUT ·X ã0 − LUT

)
⊡ BSKs0 + LUT

)
= LUT ·X ã0s0+ã1s1 .

With BSKsi ∈ GGSWℬ,ℓ
S (si) for i ∈ {0, 1}. This equation can be rewrite like:

(
LUT ·X ã1

)
⊡ BSK(1−s0)(s1) +

(
LUT ·X ã0+ã1

)
⊡ BSK(s0)(s1)

+ LUT⊡ BSK(1−s0)(1−s1) +
(
LUT ·X ã0

)
⊡ BSK(s0)(1−s1) = LUT ·X ã0s0+ã1s1 .

With BSK(1−s0)(1−s1) ∈ GGSWℬ,ℓ
S ((1− s0)(1− s1)), BSK(s0)(1−s1) ∈ GGSWℬ,ℓ

S ((s0)(1− s1)), and

BSK(1−s0)(s1) ∈ GGSWℬ,ℓ
S ((1− s0)(s1)), BSK(s0)(s1) ∈ GGSWℬ,ℓ

S ((s0)(s1)).
Compared to two sequential CMuxes, this operation requires twice as many CMuxes as the

previous equation. However, compared to sequential CMuxes where two CMuxes must be executed
sequentially, these four CMuxes can all be performed in parallel. Moreover, each BSK encrypts
an integer, allowing each external product to be computed using an EBS. Since in a parallel
context the EBS is faster than a classical PBS, this parallelization becomes even more efficient.
By generalizing this idea, we obtain the following lemma:

Lemma 4.5. Let ϖ the number of CMuxes performed in parallel with the secret keys
{s0, . . . , sϖ−1}, with si ←↩ U (0, 1) and the associated mask elements (ã0, . . . , ãϖ−1). Let S be
the set {0, . . . , ϖ − 1}. For each subset sr ¦ S, we define the bootstrapping key BSKsr which en-
crypts the secret value Πj∈srsjΠi∈S\sr(1− si) for r ∈ [0, 2ϖ). So to perform ϖ CMuxes in parallel,
we need to have a bootstrapping key 2ϖ times larger than a traditional PBS. A rotation of a

GLWE by X
∑ϖ−1

i=0 ãi·si can be computed using the following formula:

2ϖ−1∑

r=0

GLWE ·X
∑

i∈sr

ãi ⊡ BSKsr = GLWE ·X
∑ϖ−1

i=0 ãi·si .

And the noise variance of ϖ parallel CMuxes is:

Var(e) = 2ϖℓ(k + 1)N
ℬ

2 + 2

12
Ã2
GGSW +

2ϖÃ2
GLWE

2
+

1

16
(1− kNE(si))

2

+
q2 −ℬ

2ℓ

24ℬ2ℓ

(
2ϖ + kN

(
Var(si) + E2(si)

))
+

kN

8
Var(si) + 2ϖ−4.

Proof (Correctness of Lemma 4.5). The product Πj∈srsj is equal to one only if all the secret keys
sj for j ∈ sr are equal to one. The product Πi∈S\sr(1−si) is equal to one only if all the secret keys
si for i ∈ S\sr are equal to zero. There exists only one subset sr containing all the indices such
that all the secret keys equal to one are represented and no secret keys equal to zero are represented.
Thus, the subset S\sr contains only the indices of the secret keys equals to 0. Let us denote this
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subset s. With this subset, we have Πj∈ssjΠi∈S\s(1 − si) is equal to one. All the other products
with the other subsets will be equal to zero. The product Πj∈ssjΠi∈S\s(1 − si) equals one and is
associated to the sum

∑
j∈s

ãj, which corresponds to the ãj where the secret keys are equal to one.

So GLWE ·X
∑

i∈s
ãi ⊡ BSKs is equal to GLWE ·X

∑ϖ−1
i=0 ãi·si all the other products will return a

ciphertext encrypting zero.
Proof (Noise analysis of Lemma 4.5). The previous operation is done by performing ϖ operations
in parallel between a GLWES ciphertext encrypted with a noise variance Ã2

GLWE and a bootstrapping

key BSK ∈ GGSWℬ,ℓ
S encrypting a secret key under a noise variance Ã2

GGSW. Next, we sum all the
result. We know that only one of the secret keys BSKsr , for r ∈ [0, 2ϖ), is equal to one. So for the
bootstrapping key that is equal to one we have the following noise variance (Theorem 2.11):

Var(eEP 1) = ℓ(k + 1)N
ℬ

2 + 2

12
Ã2
GGSW +

Ã2
GLWE

2
+

1

16
(1− kNE(si))

2

+
q2 −ℬ

2ℓ

24ℬ2ℓ

(
1 + kN

(
Var(si) + E2(si)

))
+

kN

8
Var(si).

Where Var(eEP 1) correspond to the variance added by an external product where the secret key is
uniformly random in {0,1}.

And for the other external product, where the encrypted secret keys equal zero, we have the
noise variance:

Var(eEP 0) = ℓ(k + 1)N
ℬ

2 + 2

12
Ã2
GGSW +

Ã2
GLWE

2
+

1

16
+

q2 −ℬ
2ℓ

24ℬ2ℓ
.

Where, Var(eEP 0) denotes the variance introduced by an external product where the secret key is
equal to zero.

Then the variance equals Var(e) = Var(eEP 1) + (2ϖ − 1)Var(eEP 0)

4.4.2 More Parallelism for the SBS

In the previous section, we have seen how to parallelize groups of CMuxes in a EBS. In Sec-
tion 4.2.1, we introduced the SBS. In this section, we will see how to sort the ai to parallelize the
CMuxes and maximize the advantage offered by the sorting.

Lemma 4.6. By packing ϖ ·CMuxes together as defined in Lemma 4.5, and using a SBS, the cost
of the new algorithm is:

À∑

i=0

(
1− 1

2ϖ

)(
1

2ϖ

)i

n2ϖ
¸

2i
+

1

¸ϖ

(
1

2ϖ

)À+1

n2ϖ

= 2ϖ
[(

1− 1

2ϖ

)
¸
1 + 2−(ϖ+1)(À+1)

1− 2−(ϖ+1)
+ ¸−ϖ2−ϖÀ

]
.

Proof (Lemma 4.6). The proof follows the one of Lemma 4.2, except that the condition for
removing CMuxes needs to be verified by the ϖ consecutive ãi done in parallel. By taking several
ãi from different ak for k ∈ [0, À] ∪ {¸}, we can reduce the numbers of CMuxes as for the ãi in
the a with the smallest k. Then, the blind rotation is performed as in Lemma 4.2 by parallelizing
ϖ · CMuxes at each step of the blind rotation. By applying the same methodology, we obtain the
given equation.

Remark 4.3. By using the companion modulus switch presented in Lemma 4.3, we can drastically
increase the probability that ϖ ai are on a set a, which reduces the numbers of external products
needed to perform the SBS.

Applying this method to the SBS is theoretically not faster than groupingϖ CMuxes to perform
an EBS, but during computation, it frees some threads, consequently reducing synchronization
times between two CMuxes. This results in a small speed-up in addition to freeing threads. When
ϖ = 1, this operation corresponds to the SBS presented in Section 4.2.1.
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4.5 Experimental Results

In this section, we describe the experiments conducted. We determined parameter sets for each
experiment for a security level ¼ = 2132 and failure probabilities: 2−40, 2−64, 2−80, and 2−128. We
show experiments for precision ranging from 4 to 9 bits, where the improvements become apparent.
As the proposed techniques allow working with large lookup tables while maintaining small poly-
nomial sizes, the improvements become evident when the noise plateau is reached, as described
in Definition 20. All parameter sets were determined following the methodology proposed in Sec-
tion 2.5. When the parameters are the same as those of the previous method, and consequently
no improvements are observed, we denote them as “-”.

In the presented experiments, we used the same operations as in the atomic pattern
CJP [CJP21], which consist of a key switch followed by a bootstrapping. This model served
as a reference for benchmarking all other experiments, i.e., we performed a key switch before any
bootstrapping. Our main experiments compared the EBS, the SBS and the SBS with the CMS to
the baseline PBS. This comparison shows that our method consistently outperforms the one pro-
posed in [LY23], offering a speed-up ranging from 1.75 to 8.28 times. To have a full understanding
of the impact of each technique, we perform further comparisons, first by taking the EBS as the
baseline in Table 4.2. Then, to isolate the contribution of the CMS, we set the SBS as the baseline
and analyze the relative improvements in Table 4.3. Finally, the last comparison in Table 4.4 shows
the impact of the sorted bootstrapping compared to the EBS both in a parallelized context (16
threads).

For each experiment, we highlight the gains achieved compared to the baseline. The most
significant gains are written in bold. The experiments presented in this chapter were conducted
on AWS with an hpc7.96xlarge instance equipped with an AMD EPYC 9R14 Processor run-
ning at 3.7 GHz, 192 vCPUs, and 768 GiB of memory. The experiments utilized the TFHE-rs

library [Zam22]. All the parameter sets used can be found in the Appendix: Tables A.2, A.5, A.7,
and A.10 for the EBS and SBS and Tables A.3, A.8, and A.11 for the SBS with the Companion
Modulus Switch.
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4.5 Experimental Results

pfail Precision 4 5 6 7 8 9

2−40

PBS [CJP21] 13.390 ms 38.159 ms 106.920 ms 233.04 ms 517.97 ms 1480.8 ms
EBS [LY23] − 25.055 ms 68.579 ms 137.960 ms 279.08 ms 561.890 ms

Gain 1.52× 1.56× 1.69× 1.86× 2.63×
SBS − 20.193 ms 48.499 ms 97.026 ms 196.440 ms 383.390 ms
Gain 1.89× 2.20× 2.40× 2.64× 3.86×

SBS + CMS − 19.900 ms 47.606 ms 87.352 ms 168.38 ms 342.51 ms
Gain 1.92× 2.25× 2.67× 3.08× 4.32×

2−64

PBS [CJP21] 14.016 ms 51.042 ms 112.660 ms 268.560 ms 759.87 ms 3357.2 ms
EBS [LY23] − 38.874 ms 75.020 ms 145.620 ms 290.9 ms 601.330 ms

Gain 1.31× 1.50× 1.84× 2.61× 5.58×
SBS − 28.335 ms 54.691 ms 101.89 ms 195.860 ms 405.740 ms
Gain 1.80× 2.06× 2.63× 3.88× 8.28×

2−80

PBS [CJP21] 17.369 ms 103.510 ms 222.900 ms 502.95 ms 1414.4 ms 3500.3 ms
EBS [LY23] − 46.752 ms 136.040 ms 266.680 ms 542.300 ms 1118.8 ms

Gain 2.21× 1.64× 1.89× 2.61× 3.13×
SBS − 35.428 ms 93.721 ms 178.590 ms 357.620 ms 755.120 ms
Gain 2.92× 2.38× 2.82× 3.96× 4.64×

SBS + CMS − 29.944 ms 67.443 ms 128.660 ms 256.320 ms 521.76 ms
Gain 3.33× 3.25× 3.69× 5.32× 6.71×

2−128

PBS [CJP21] 32.858 ms 108.76 ms 256.90 ms 517.01 ms 1441.0 ms 4082.6 ms
EBS [LY23] 24.808 ms 51.305 ms 135.86 ms 272.92 ms 553.04 ms 1145.0 ms

Gain 1.32× 2.12× 1.89× 1.90× 2.60× 3.56×
SBS 21.059 ms 37.334 ms 94.098 ms 185.40 ms 376.48 ms 766.65 ms
Gain 1.56× 2.91× 2.73× 2.79× 3.83× 5.33×

SBS + CMS 18.775 ms 37.011 ms 80.879 ms 153.88 ms 320.84 ms 676.720 ms
Gain 1.75× 2.94× 3.18× 3.36× 4.49× 6.03×

Table 4.1: Comparison of KS-PBS, KS-EBS, KS-SBS and KS-SBS with CMS, (Base line
KS-PBS). All parameter sets are in Appendix A.1.1. Parameters used for PBS are in Ta-
ble A.1, A.4, A.6 and A.9. Parameters used for EBS and SBS are in Table A.2, A.5, A.7 and A.10.
Finally, parameters used for SBS with Companion Modulus Switch are in Table A.3, A.8 and A.11.
All the comparisons were conducted on single thread.
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pfail Precision 4 5 6 7 8 9

2−40

EBS [LY23] - 25.055 ms 68.579 ms 137.960 ms 279.08 ms 561.890 ms
SBS - 20.193 ms 48.499 ms 97.026 ms 196.440 ms 383.390 ms
Gain 1.24× 1.41× 1.42× 1.42× 1.47×

SBS + CMS - 19.900 ms 47.606 ms 87.352 ms 168.38 ms 342.51 ms
Gain 1.26× 1.44× 1.58× 1.66× 1.64×

2−64
EBS [LY23] - 38.874 ms 75.020 ms 145.620 ms 290.9 ms 601.330 ms

SBS - 28.335 ms 54.691 ms 101.89 ms 195.860 ms 405.740 ms
Gain 1.37× 1.37× 1.43× 1.48× 1.48×

2−80

EBS [LY23] - 46.752 ms 136.040 ms 266.680 ms 542.300 ms 1118.800 ms
SBS - 35.428 ms 93.721 ms 178.590 ms 357.620 ms 755.120 ms
Gain 1.32× 1.45× 1.49× 1.51× 1.48×

SBS + CMS - 29.944 ms 67.443 ms 128.660 ms 256.320 ms 521.76 ms
Gain 1.56× 2.02× 2.07× 2.11× 2.14×

2−128

EBS [LY23] 24.808 ms 51.305 ms 135.860 ms 272.920 ms 553.040 ms 1145.000 ms
SBS 21.059 ms 37.334 ms 94.098 ms 185.40 ms 376.480 ms 766.650 ms
Gain 1.18× 1.37× 1.44× 1.47× 1.47× 1.50×

SBS + CMS 18.775 ms 37.011 ms 80.879 ms 153.88 ms 320.84 ms 676.720 ms
Gain 1.32× 1.39× 1.52× 1.53× 1.55× 1.53×

Table 4.2: Comparison of KS-EBS, KS-SBS and KS-SBS with CMS, (Base line KS-EBS). All pa-
rameter sets are in Appendix A.1.1. Parameters used for EBS and SBS are in Table A.2, A.5, A.7
and A.10. Finally, parameters used for SBS with Companion Modulus Switch are in Appendix A.1.1 in
Table A.3, A.8 and A.11. All the comparisons were conducted on single thread.

pfail Precision 4 5 6 7 8 9

2−40
SBS − 20.193 ms 48.499 ms 97.026 ms 196.440 ms 383.390 ms

SBS + CMS − 19.900 ms 47.606 ms 87.352 ms 168.38 ms 342.51 ms
Gain 1.02× 1.02× 1.11× 1.17× 1.12×

2−80
SBS − 35.428 ms 93.721 ms 178.590 ms 357.620 ms 755.120 ms

SBS + CMS − 29.944 ms 67.443 ms 128.660 ms 256.320 ms 521.76 ms
Gain 1.18× 1.39× 1.39× 1.40× 1.45×

2−128
SBS 21.059 ms 37.334 ms 94.098 ms 185.40 ms 376.480 ms 766.650 ms

SBS + CMS 18.775 ms 37.011 ms 80.879 ms 153.88 ms 320.84 ms 676.720 ms
Gain 1.12× 1.01× 1.16× 1.20× 1.17× 1.13×

Table 4.3: Comparison of KS-SBS with KS-SBS with CMS, (Baseline: KS-SBS). All parameter
sets are in Appendix A.1.1. Parameters used for SBS are in Table A.2, A.5, A.7 and A.10. Finally,
parameters used for SBS with Companion Modulus Switch are in Table A.3, A.8 and A.11. All
the comparisons were conducted on single thread.
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pfail Precision 2 3 4 5 6 7 8 9

2−40
EBS [LY23] 27.874 ms 33.930 ms 37.006 ms 39.197 ms 41.012 ms 57.405 ms 62.474 ms 120.13 ms

SBS 21.502 ms 26.990 ms 30.018 ms 30.920 ms 33.174 ms 57.543 ms 54.484 ms 116.94 ms
Gain 1.30× 1.26× 1.23× 1.27× 1.24× 1.00× 1.15× 1.03×

2−64
EBS [LY23] 28.861 ms 34.749 ms 42.066 ms 39.979 ms 44.540 ms 67.070 ms 81.859 ms 152.42 ms

SBS 22.269 ms 28.012 ms 34.802 ms 36.764 ms 35.854 ms 46.369 ms 59.621 ms 142.10 ms
Gain 1.30× 1.24× 1.21× 1.09× 1.24× 1.45× 1.37× 1.07×

2−80
EBS [LY23] 29.555 ms 40.686 ms 37.847 ms 40.542 ms 49.049 ms 69.116 ms 115.97 ms 224.86 ms

SBS 22.848 ms 28.025 ms 35.331 ms 38.197 ms 41.721 ms 62.723 ms 111.73 ms 210.86 ms
Gain 1.29× 1.45× 1.07× 1.06× 1.17× 1.10× 1.04× 1.07×

2−128
EBS [LY23] 31.260 ms 42.073 ms 43.992 ms 40.363 ms 56.615 ms 62.079 ms 161.17 ms 276.29 ms

SBS 23.992 ms 29.039 ms 30.958 ms 32.065 ms 56.789 ms 53.287 ms 151.28 ms 266.99 ms
Gain 1.30× 1.45× 1.42× 1.26× 1.00× 1.17× 1.07× 1.03×

Table 4.4: Comparison of the parallelized version of the EBS with the parallelized version SBS,
(Baseline: EBS). All parameter sets are in Appendix A.1.1. Parameters used for parallelized EBS
and parallelized SBS are in Table A.12, A.13, A.14 and A.15. All experiments were conducted on
16 threads.
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Chapter 5

New Secret Keys for Enhanced
Performance in TFHE

In Chapter 2, we introduced all the ciphertext types necessary to define the TFHE scheme. In par-
ticular, we showed that, for both security and efficiency reasons, TFHE operates with polynomials
in the ring Rq,N . As a result, when selecting parameter sets for GLWE or GGSW ciphertexts, the
polynomial degree must be a power of two, and intermediate polynomial sizes cannot be used.

In this chapter, we introduce two new types of secret key distributions. The first allows compu-
tations within the ring Rq,N while using secret keys where the number of unknown coefficients is
not necessarily a power of two. The second type enables the sharing of certain coefficients between
different keys. These new distributions lead to the development of new algorithms and improved
noise propagation, resulting in an overall improvement to the TFHE scheme. In this chapter, we
study in detail the security and performance enhancements offered by these new key distributions.

5.1 Introduction

In this chapter, we introduce two novel types of secret keys. We begin by describing each key
independently, and then demonstrate how they can be combined together. We call these two new
distributions partial secret keys and secret keys with shared randomness . The first kind, the partial
secret keys, consists of allowing a GLWE secret key, traditionally containing kN random elements
(sampled from a distribution D), to contain only ϕ random elements and setting the rest to zeros.
Intuitively, this technique enables the use of a smaller secret key of size ϕ, while keeping a large
polynomial degree N . This allows bootstrapping of higher precision messages with a better noise
management. As a result, the security of the GLWE assumption now relies on the parameter ϕ
instead of the dimension N . This new secret key is detailed in Section 5.2

The second kind, the secret keys with shared randomness, consists of reusing the randomness
from a larger key (for example the input key of the key switch algorithm) inside a smaller key
(its output), instead of generating it independently as done traditionally. For instance, we can
consider two integers 1 < n0 < n1 and a secret key s(1) ∈ Zn1

q generated in the traditional
manner (either sampled from a uniform binary/ternary, or a small Gaussian). Let us write it
as a concatenation of two vectors: s(1) = r(0)||r(1). We can now build a smaller secret key
out of s(1) such that the smaller one will be included in the larger one, in its first coefficients:
s(0) = r(0) ∈ Zn0

q and s(1) = r(0)||r(1) ∈ Zn1
q . This second new secret key is then presented in

Section 5.3.
Finally, in Section 5.4, we study the impact of combining secret keys with shared randomness

with partial secret keys. All our contributions reduce the size of the secret key, and then have a
significant impact on the size of public keys, including key-switching keys and bootstrapping keys.
It also has an impact on the operations that use these keys, i.e., key-switching and bootstrapping.
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5.2 Partial GLWE Secret Key

As presented in the introduction, the partial GLWE secret key is composed of two parts, the
first one contains random secret elements (sampled from a distribution D) and the second part
is filled with zeros at known positions. As a simple example, we can define the following partial

GLWE secret key: S = (S0, S1) ∈ R2
q,N with S0 =

∑N−1
j=0 s0,jX

j and S1 =
∑N/2−1

j=0 s1,jX
j where

s0,0, · · · , s0,N−1 and s1,0, · · · , s1,N2 −1 are sampled from DS , and the other coefficients are publicly

known to be set to zero. We recall the two limitations of TFHE (already mentioned in Section 2.6):

1. There is no fine-grained control over the size of a GLWE secret key, it is of the form kN with
N a power of two;

2. When one increases n (or kN), a plateau in terms of noise variance is reached. Concretely,
nplateau is the first value of this plateau i.e., for larger value of n, the minimal standard
deviation of the noise is constant. We evaluated its value using the lattice estimator (Sub-
section 2.1.4) to be 2443 for 128 bits of security and q = 264.

Thanks to these new types of secret keys, these limitations can be overcome. These new keys help
reduce noise growth during certain operations (for instance, the external product or the key switch)
over RLWE and GLWE ciphertexts, either due to the presence of known zeros in the secret keys or
the reduction in computation steps when secret keys are reused. Since bootstrapping is a chain of
external products, partial secret keys will also be beneficial to its noise growth. After the sample
extract, we can discard the mask elements associated with the positions of the zeros resulting in
a smaller LWE dimension compared to traditional secret keys. This smaller LWE dimension will
likely improve the cost of the next key switch.

In this section, we first formally define the notion of partial secret key, and then study the
hardness of the underlying problem. Finally, we list the different advantages and improvements
they offer.

Definition 29 (GLWE Partial Secret Key). A Partial GLWE secret key is a vector S
[ϕ] ∈ Rk

q,N

associated with its filling amount ϕ such that 0 f ϕ f kN . This key will have ϕ random coefficients
sampled from a distribution DS and kN−ϕ known zeros. Both the locations of the random elements
and the zeros are public. By convention, the coefficients start at coefficient s0,0, then s0,1 and so
on. When the first polynomial is entirely filled, the second polynomial starts with s1,0 and so on,
until ϕ coefficients are determined, up to sk−1,N−1.

We now define the flattened representation of a Partial GLWE Secret Key.

Definition 30 (Flattened Representation of a Partial GLWE Secret Key). A partial GLWE se-

cret key S
[ϕ] =

(
S0 =

∑N−1
j=0 s0,jX

j , · · · , Sk−1 =
∑N−1

j=0 sk−1,jX
j
)
∈ Rk

q,N (Definition 29) can

be viewed as a flattened LWE secret key s̄ = (s̄0, · · · , s̄ϕ−1) ∈ Zϕ in the following manner:
s̄iN+j := si,j, for 0 f j < N and 0 f i < k with iN + j < ϕ. This flattened representation
contains only ϕ unknown coefficients.

5.2.1 Hardness of Partial GLWE

The GLWE partial secret key problem S
[ϕ] ∈ Rk

q,N from Definition 29, seems to be at least as hard
as a GLWE problem in a ring of dimension ϕ. First, we present the GLWE alternate partial secret
key, a key where the secret elements are separated by 2¿ − 1 known zeros. We prove the security
of a such secret key distribution by proving that the GLWE problem in R

k+1
q,N/2¿ is equivalent to

the GLWE problem in R
k+1
q,N instantiated with alternate partial GLWE secret keys, this problem

is denoted P-GLWE¿,q,k,N,Ç.

Definition 31 (Alternate Partial GLWE Secret Key). An alternate partial GLWE secret, is a
GLWE secret where the key alternates between one unknown element and 2¿ − 1 known elements.
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This key has of N
2¿ random coefficients sampled from a distribution DS and N − N

2¿ known zero
coefficients. As for the partial GLWE secret key (Definition 29), both the locations of the random
elements and the known zeros are public. The binary version of partial secret keys in Rq,N is

defined by S =
∑N/2¿−1

k=0 sk ·Xk·2¿ , with si ←↩ U ({0, 1}).

Theorem 5.1 shows that the alternate partial GLWE problem (Definition 31) on the ring Rq,N is
at least as hard as the GLWE problem on the ring Rq,N/2¿ .

Theorem 5.1 (Hardness of P-GLWE). For any ¿ ∈ Z, the P-GLWE¿,q,k,N,Ç problem with samples
in R

k+1
q,N is as least as hard than solving the GLWEN/2¿ ,k,Ç problem with 2¿ samples in R

k+1
q,N/2¿ .

Proof (Theorem 5.1). The idea of this proof is to pack 2¿ GLWEN/2¿ ,k,Ç samples in one

P-GLWE¿,q,k,N,Ç sample. To do so, we differentiate the 2¿ samples from GLWEN/2¿ ,k,Ç in R
k+1
N/2¿ ,q,

by noting them GLWEw
S(X) with w ∈ [0, 2¿). Observe that all of them are encrypted under the same

secret key S = (S0, . . . , Sk−1) ∈ Rk
q,N/2¿ , with Si =

∑N/2¿−1
j=0 si,jX

j, with i ∈ [0, k).

Each one of the k polynomials composing the GLWEw
S(X) sample is noted with an exponent w:

Aw
i =

∑N/2¿−1
j=0 awi,jX

j, with i ∈ [0, k). Starting from these 2¿ samples, we define a new sample

from P-GLWE¿,q,k,N,Ç. First, for each sample GLWEw
S(X) ∈ R

k+1
q,N/2¿ , we need to evaluate each

polynomial in X¿ :

Rq,N/2¿ −→ Rq,N ,

Aw
i (X) =

N/2¿−1∑

j=0

awi,j ·Xj 7−→ Ãw
i (X) =

N/2¿−1∑

j=0

awi,j ·Xj·2¿ .

So, for each sample GLWEw
S(X) in R

k+1
q,N/2¿ , we obtain a new sample G̃LWE

w

S(X2¿ ) in R
k+1
q,N/2.

We notice that for each polynomial, each coefficient is separated from the other by 2¿ − 1 zeros.
Following the previous definition of P-GLWE (Definition 31), the secret key is in the desired shape.

But the Ãw
i (X) polynomials are not uniform anymore, only the coefficients of degree multiple

of 2¿ are. So we can’t already define G̃LWE
w

S(X2¿ ) as a sample of P-GLWE¿,q,k,N,Ç. For each

G̃LWE
w

S(X2¿ ) we now rotate all the Aw
i and the Bw polynomials by Xw: We now sum all of them

together to obtain the expected sample from P-GLWE¿,q,k,N,Ç ∈ ℛ
k+1
q,N :

2¿−1∑

w=0

(
Aw

0 (X
2¿ )Xw, . . . , Aw

k−1(X
2¿ )Xw, Bw(X2¿ )Xw

)

= (A0, . . . , Ak−1, B) ∈ P-GLWE¿,q,k,N,Ç .

with:

Si =

N/2¿−1∑

j=0

si,j ·Xj·2¿ =
N−1∑

j=0

s̃i,j ·Xj for i ∈ [0, k)

Ai =

2¿−1∑

w=0

Ãw
i (X)Xw =

2¿−1∑

w=0

N/2¿−1∑

j=0

awi,jX
j·2¿+w =

N−1∑

j=0

ãi,jX
j for i ∈ [0, k)

B =

2¿−1∑

w=0

Bw(X2¿ )Xw =

2¿−1∑

w=0

N/2¿−1∑

j=0

bwj X
j·2¿+w =

N−1∑

j=0

b̃jX
j .
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Let us focus on how bwj evolve all along the reduction:

bwj =

k−1∑

i=0




j∑

Ä=0

awi,Ä · si,j−Ä −
N/2¿−1∑

Ä=j+1

awi,Ä · si,N+j−Ä


+ ewj

=

k−1∑

i=0




j2¿+w∑

Ä=0

ãi,Ä · s̃i,j2¿+w−Ä −
N−1∑

Ä=j2¿+w+1

ãi,Ä · s̃i,2¿(N+j)+w−Ä


+ ẽj2¿+w = b̃j2¿+w.

Each coefficient is correctly decrypted and each b̃j2¿+w is equal to bwj . Moreover, the polynomials
Ai of the new P-GLWE¿,q,k,N,Ç sample follows the same distribution as the polynomials Aw

i (resp.
B). To conclude, we have packed several GLWEN/2¿ ,k,Ç ciphertext in one P-GLWEN,k,Ç ciphertext
by increasing the dimension of this new ciphertext without changing the noise distribution Ç.

Remark 5.1 (Security of Partial Secret Key). The reduction presented in Theorem 5.1 proves
that the partial alternate secret keys (Definition 31) problem in Rk

q,N is at least as hard as a GLWE

problem in Rk
q,N/2¿ , i.e., when ϕ = N/2¿ . So adding zeros at specific places in the secret key and

increasing the dimension from N/2¿ to N allows keeping the same security level. We assume this
result is generalizable to any ϕ < N .

Now, if we take two GLWE samples such that the first one is encrypted under an alternate
partial key (Definition 31) and the second one is encrypted under a secret partial key (Definition 29)
which have the same amount of unknown coefficients, this two samples should be indistinguishable.

We recall that in LWE samples, the security depends on the dimension and the noise (increasing
one could allow to reduce the other one). Intuitively, the security of GLWE samples, encrypted
under a partial key with ϕ random elements, is linked to the relation of ϕ and the noise Ã (instead
of N and Ã). A larger ϕ will lead to a smaller noise Ã. To sum up, to guarantee a given level of
security for GLWE samples encrypted under a partial secret key with ϕ random elements, we use
the noise parameter given for LWE samples of dimension n = ϕ with the same level of security.

Impact of Partial Key on the Noise Distribution. Regarding the security of the partial
secret key and the different attacks presented in Section 2.1.3, we can use the lattice estimator to
find out the smallest noise variance Ã2 for an LWE ∈ Zϕ+1

q guarantying the desired level of security
¼.

5.2.2 Algorithm with Partial GLWE Secret Keys

Partial GLWE secret keys enable to reduce the computational cost and/or the noise growth for
certain algorithms. For a given failure probability and security level, the parameter sets obtained
after optimization will lead to better timings for the functionality (more details in Section 5.5).

In what follows, we describe all the advantages of using partial secret keys by first introducing
a variant relying on the GLWE-to-GLWE key switching(Algorithm 30) and a second one relying on
the secret product GLWE-to-GLWE key switching (Algorithm 31). Moreover, partial GLWE secret
keys can be used to design a new and more efficient LWE-to-LWE key switching that is FFT-based
(Algorithm 32). The idea is an adaptation of [CDKS20] but now exploits the use of partial GLWE
secret keys. First we cast the input LWE ciphertext into a GLWE ciphertext (Algorithm 29) so we
can apply a GLWE-to-GLWE key switching to go to a partial GLWE secret key. This leverages
the speed-up coming from the FFT. Finally, we compute a sample extract (Algorithm 28). We
then detail each step of the Algorithm 32, which is studied more in details in Section 5.2.2.5.

5.2.2.1 Sample Extract with Partial GLWE Secret Keys

In Section 2.4, we introduced the sample extract algorithm (Algorithm 10). In the case of partial
GLWE secret keys, the algorithm only needs to extract the mask coefficient corresponding to
unknown secret key coefficients. The complete algorithm is described in 28, and can trivially be
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adapted in the context of partial GLWE secret keys. They are generalizations of the same algorithm
used for “traditional” secret keys. Indeed, a traditional secret key is captured when ϕ = k ×N .

Algorithm 28: ctout ← ConstantSampleExtract(CTin)

Context:





S
[ϕ] ∈ Rk

q,N : a partial secret key (Definition 29)

(k − 1)N + 1 f ϕ f kN : filling amount of the partial secret key

s̄ ∈ Zϕ : the flattened version of S[ϕ] (Definition 30)

M =
∑N−1

i=0 miX
i ∈ Rp,N

CTin =
(∑N−1

i=0 a0,iX
i, . . . ,

∑N−1
i=0 ak−1,iX

i,
∑N−1

i=0 biX
i
)
¦ R

k+1
q,N

Input: CTin ∈ GLWES[ϕ] (M) : a GLWE encryption of the plaintext M

Output: ctout ∈ LWEs̄ (m0) : an LWE encryption of the plaintext m0

1 for i ∈ [0;ϕ− 1] do

2 set ³ :=
⌊

i
N

⌋
, ´ := (N − i) mod N and µ := 1− (´ == 0)

3 set aout,i := (−1)µ · a³,´
4 return ctout := (aout,0, . . . , aout,ϕ−1, b0) ¦ Zϕ+1

q

Remark 5.2. The correctness proof of Algorithm 28 is similar to the proof of Theorem 2.14, of
the sample extraction algorithm (Algorithm 10).

Noise and Cost of Sample Extract A sample extract, whether it includes a partial secret key
or not, does not add any noise to the plaintext. The cost is also roughly the same and remains
negligible.

Inverse Constant Sample Extract An LWE ciphertext of size n+1 can trivially be cast into
a GLWE ciphertext of size k+ 1 and with polynomials of size N . For completeness, the process is
detailed in Alg. 29.

We obviously need n f kN . If n = kN , the output is a GLWE ciphertext under a traditional
secret key, otherwise it is a GLWE ciphertext under a partial GLWE secret key. Note that the
constant term of the output GLWE plaintext is exactly the plaintext of the input LWE ciphertext,
however the rest of the coefficients of the output GLWE ciphertext are filled with uniformly random
values. We have the property that for all m ∈ Zp, for all s ∈ Zn

q , for all ct ∈ LWEs (p) ¦ Zn+1
q

and for all (k,N) ∈ N2 s.t. n f kN :

ct = ConstantSampleExtract
(
ConstantSampleExtract−1 (ct, k,N)

)
.

5.2.2.2 Key Switch with Partial GLWE Secret Key

A GLWE-to-GLWE key switching withN > 1, as described in Algorithm 30 takes as input a GLWE
ciphertext CTin ∈ R

kin+1
q,N encrypting the plaintext M ∈ Rp,N under the secret key S

[ϕin] ∈ R
kin

q,N ,

and outputs CTout ∈ R
kout+1
q,N encrypting the plaintext ∆M + EKS ∈ Rq,N under the secret key

S
[ϕout] ∈ R

kout

q,N . The noise EKS added during this procedure, is composed of a rounding error plus
a linear combination of the noise from the key switching key ciphertexts. The larger ϕin, the more
significant the rounding error.

Theorem 5.2 (Noise of GLWE Key Switch). Let CTin ∈ GLWE
S

[ϕin]

in

(M) ¦ R
kin+1
q,N be a

GLWE ciphertext encrypting the message M ∈ Rp,N under the partial GLWE secret key

S
[ϕin]
in = (Sin,0, . . . , Sin,kin−1) ∈ R

kin

q,N . Let S
[ϕout]
out ∈ R

kout

q,N be an output partial GLWE se-
cret key. Let ℬ ∈ Z∗ be the base decomposition and ℓ ∈ Z∗ the level decomposition. Let
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Algorithm 29: CTout ← ConstantSampleExtract−1(ctin, k,N)

Context:





s ∈ Zn
q : the input LWE secret key

S
[n] ∈ Rk

q,N : a partial secret key (Definition 29)

such that its flattened version is s (Definition 30)

R :=
∑N−1

i=1 ri ·Xi ∈ Rq,N , where ri are uniformly random

ctin = (a0, . . . , an−1, b) ¦ Zn+1
q

p ∈ Zq

Input:





ctin ∈ LWEs (m) : an LWE encryption of the plaintext m

k ∈ N : the output GLWE dimension

N ∈ N : the output polynomial size

Output: CTout ∈ GLWES[n] (m+R) : a GLWE encryption

/* put the b part in a polynomial */

1 set B′ := b ∈ Rq,N

/* put the rest in polynomials */

2 for i ∈ [0; k ·N ] do

3 set ³ :=
⌊

i
N

⌋
, ´ := (N − i) mod N and µ := 1− (´ == 0)

4 if i f ϕ− 1 then
5 set a′³,´ := (−1)µ · ai
6 else
7 set a′³,´ := 0

8 return CTout :=
(
A′

0 :=
∑N−1

j=0 a′0,jX
j , · · · , A′

k−1 :=
∑N−1

j=0 a′k−1,jX
j , B′

)
¦ R

k+1
q,N

Algorithm 30: CTout ← GLWEKeySwitch(CTin,KSK)

Context:





S
[ϕin]
in ∈ R

kin

q,N : the input partial secret key (Definition 29)

S
[ϕin]
in = (Sin,0, . . . , Sin,kin−1)

S
[ϕout]
out ∈ R

kout

q,N : the output partial secret key (Definition 29)

(kin − 1)N < ϕin f kinN and (kout − 1)N < ϕout f koutN

ℓ ∈ N : the number of levels in the decomposition

ℬ ∈ N : the base in the decomposition

Input:





CTin ∈ GLWE
S

[ϕin]

in

(M) ¦ R
kin+1
q,N , with M ∈ Rp,N

KSK = {(KSK0, . . . ,KSKkin−1)} ; /* Definition 15 */

With KSKi ∈ GLEVℬ,ℓ

S
[ϕout]
out

(S
[ϕin]
in,i ) for i ∈ [0, kin − 1]

Output: CTout ∈ GLWE
S

[ϕout]
out

(M) ¦ R
kout+1
q,N

1 Set CTout := (0, . . . , 0, B) ∈ R
kout+1
q,N

2 for i ∈ [0; kin − 1] do

/* Decompose the mask */

3 Update CTout = CTout −
〈
KSKi,Dec(ℬ,ℓ) (Ai)

〉

4 return CTout
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KSK =
{
KSKi ∈ GLEVℬ,ℓ

S
[ϕout]
out

(Sin,i)
}

i∈[0,kin−1]
∈ R

(kout+1)·ℓ·kin

q,N be the key switching key as presented

in Definition 15.

Then Algorithm 4 outputs CTout ∈ GLWE
S

[ϕout]
out

(m) ¦ R
kout+1
q,N a GLWE ciphertext encrypting

the input message M under the secret key S
[ϕout]
out . The variance of the noise of each coefficient of

the output can be estimated by:

Var (CTout) = Ã2
in + ϕin

(
q2 −ℬ

2ℓ

12ℬ2ℓ

)(
Var

(
S

[ϕin]
in

)
+ E2

(
S

[ϕin]
in

))

+
ϕin

4
Var

(
S

[ϕin]
in

)
+ ℓkinNÃ2

ksk

ℬ
2 + 2

12
.

Proof (Theorem 5.2). The inputs of a GLWE-to-GLWE key switching (Algorithm 30) are:

• The input GLWE ciphertext: CTin = (Ain, Bin) ∈ GLWE
S

[ϕin]

in

(∆ ·M) ¦ R
kin+1
q,N , where Bin =

∑kin−1
i=0 Ain,i · Sin,i + ∆ ·M + Ein, Ain,i =

∑N−1
j=0 ai,j · Xj ←↩ U (Rq,N ) for all i ∈ [0, k) and

Ein =
∑N−1

j=0 ej ·Xj, and ej ←↩ NÃ2
in
for all j ∈ [0, N − 1).

• The key switch key: KSK = (KSK0, . . . ,KSKkin−1), where KSKi ∈ GLEV
S

[ϕout]
out

(Sin,i) =(
GLWE

S
[ϕout]
out

(
q
ℬ
Sin,i

)
, . . . ,GLWE

S
[ϕout]
out

(
q
ℬℓSin,i

))
for all 0 f i < kin. We note by KSKi,j =

(Ai,j , Bi,j) ∈ GLWE
S

[ϕout]
out

(
q

ℬj+1Sin,i

)
, for all 0 f i < kin and for all 0 f j < ℓ, where

Bi,j =
∑kout−1

Ä=0 Ai,j,Ä · S[ϕout]
out,Ä + q

ℬj+1Sin,i + Eksk,i,j, and Eksk,i,j =
∑N−1

Ä=0 eksk,i,j,Ä · XÄ and
eksk,i,j,Ä ←↩ NÃ2

ksk
.

The output of this algorithm is: CTout = (Aout, Bout) ∈ GLWE
S

[ϕout]
out

(∆ ·M) ¦ R
kout+1
q,N .

By definition, in the decomposition described in Definition 5, we have that Dec(ℬ,ℓ) (Ain,i) =(
Ãin,i,0, . . . , Ãin,i,ℓ−1

)
such that Ãin,i =

∑ℓ−1
j=0

q
ℬj+1 Ãin,i,j, for all 0 f i < kin.

Let define Āin,i = Ain,i − Ãin,i, |āi,Ä | = |ai,Ä − ãi,Ä | < q
2ℬℓ , āi,Ä ∈

[ −q
2ℬℓ ,

q
2ℬℓ

)
for all 0 f Ä < N . So

we have that their expectations and variances are respectively E (āi,Ä ) = − 1
2 , Var (āi,Ä ) =

q2

12ℬ2ℓ− 1
12 ,

E (ãi,Ä ) = − 1
2 and Var (ãi,Ä ) =

ℬ
2−1
12 .

Now, we can decrypt:

Bout −

〈
Aout,S

[ϕout]
out

〉
=
〈
(Aout, Bout) ,

(
−S

[ϕout]
out , 1

)〉

=

〈
(0, Bin)−

kin−1∑

i=0

Dec
(ℬ,ℓ)

(
Ain,i

)
· KSKi,

(
−S

[ϕout]
out , 1

)〉

=Bin −

kin−1∑

i=0

ℓ−1∑

j=0

Ãin,i,j

〈
KSKi,j ,

(
−S

[ϕout]
out , 1

)〉

=Bin −

kin−1∑

i=0

ℓ−1∑

j=0

Ãin,i,j

(
q

ℬj+1
Sin,i + Eksk,i,j

)

=Bin −

kin−1∑

i=0

Ãin,iSin,i

︸ ︷︷ ︸
(I)

−

kin−1∑

i=0

ℓ−1∑

j=0

Ãin,i,j · Eksk,i,j

︸ ︷︷ ︸
(II)

.
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Now let’s focus on the wth coefficient of part (I):

bin,w −

kin−1∑

i=0




w∑

Ä=0

ãin,i,w−Ä · sin,i,Ä −

N−1∑

Ä=w+1

ãin,i,N+w−Ä · sin,i,Ä




= bin,w −

kin−1∑

i=0

(
w∑

Ä=0

(
ain,i,w−Ä − āin,i,w−Ä

)
· sin,i,Ä

−

N−1∑

Ä=w+1

(
ain,i,N+w−Ä − āin,i,N+w−Ä

)
· sin,i,Ä




= ∆mw + ew +

kin−1∑

i=0




w∑

Ä=0

āin,i,w−Ä · sin,i,Ä −

N−1∑

Ä=w+1

āin,i,N+w−Ä · sin,i,Ä


 .

Now let’s focus on the wth coefficient of part (II):

kin−1∑

i=0

ℓ−1∑

j=0




w∑

Ä=0

ãin,i,j,w−Ä · eksk,i,j,Ä −

N−1∑

Ä=w+1

ãin,i,j,N+w−Ä · eksk,i,j,Ä


 .

We can now isolate the output error for the wth coefficient and remove the message coefficient.
We obtain that the output error is:

e′w = ew +

kin−1∑

i=0




w∑

Ä=0

āin,i,w−Ä · sin,i,Ä −

N−1∑

Ä=w+1

āin,i,N+w−Ä · sin,i,Ä




︸ ︷︷ ︸
(∗)

+

kin−1∑

i=0

ℓ−1∑

j=0




w∑

Ä=0

ãin,i,j,w−Ä · eksk,i,j,Ä −

N−1∑

Ä=w+1

ãin,i,j,N+w−Ä · eksk,i,j,Ä


 .

Observe that in the term (∗) there are kinN − ϕin terms of type āin,i,· · sin,i,· that are equal to 0.
So we have:

Var(e′w) = Var(ew) + ϕin · Var
(
āin,i,· · sin,i,·

)
+ kin · ℓ ·N · Var

(
ãin,i,j,· · eksk,i,j,·

)

= Ã2
in + ϕin(Var

(
āin,i,·

)
Var

(
sin,i,·

)
+ Var

(
āin,i,·

)
E2
(
sin,i,·

)

+ E2(āin,i,·)Var
(
sin,i,·

)
)

+ ℓkinN
(
Var

(
ãin,i,j,·

)
Var

(
eksk,i,j,·

)
+ E2

(
ãin,i,j,·

)
Var

(
eksk,i,j,·

)

+ Var
(
ãin,i,j,·

)
E2
(
eksk,i,j,·

))

= Ã2
in + ϕin

(
q2 −ℬ

2ℓ

12ℬ2ℓ

)(
Var

(
S

[ϕin]
in

)
+ E2

(
S

[ϕin]
in

))

+
ϕin

4
Var

(
S

[ϕin]
in

)
+ ℓkinN

ℬ
2 + 2

12
Ã2
ksk.

Note that when ϕin = kin · N we end up with the same formula than the classical GLWE to
GLWE key Switch.

Remark 5.3 (Cost of a GLWE Key Switch). We recall that the cost of a GLWE-to-GLWE key
switching, which remains the same whether it involves partial secret keys or not, is

Cost
kin,kout,N,ℓ
FftLweKeySwitch = kin · ℓ · CostNFFT + (kout + 1) · CostNiFFT

+Nkinℓ · (kout + 1) · CostN×C
+N · (kinℓ− 1) · (kout + 1) · CostN+C

.

where +C and ×C represent a double-complex addition and multiplication (in the FFT domain)
respectively, and FFTN (resp. iFFTN ) the Fast Fourier Transform (resp., inverse FFT).
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5.2.2.3 Secret Product GLWE Key Switch with Partial Secret Key

A GLWE-to-GLWE key switch, also computing a product with a secret polynomial, as described
in Algorithm 31, follows the exact same definition than above, except that the output ciphertext
encrypts P ·M + EKS where P ∈ Rq,N is the secret polynomial hidden in the key switching key.

The added noise EKS also depends on the input secret key S
[ϕin] and its filling amount ϕin. Indeed,

this term is the product between the rounding term (dependent on ϕin) and the polynomial P .

Algorithm 31: CTout ← SecretProductFftGLWEKeySwitch(CTin,KSK)

Context:





S
[ϕin]
in ∈ R

kin

q,N : the input partial secret key (Definition 29)

S
[ϕin]
in = (Sin,0, . . . , Sin,kin−1)

S
[ϕout]
out ∈ R

kout

q,N : the output partial secret key (Definition 29)

(kin − 1)N < ϕin f kinN and (kout − 1)N < ϕout f koutN

P =
∑N−1

i=0 piX
i ∈ Rq,N

ℓ ∈ N : the number of levels in the decomposition

ℬ ∈ N : the base in the decomposition

Input:





CTin = (A0, . . . , Akin−1, B) ∈ GLWE
S

[ϕin]

in

(M) ¦ R
kin+1
q,N , with M ∈ Rp,N

KSK =
{
(KSK0, . . . ,KSKkin

) ; /* Definition 15 */
}

With KSKi ∈ GLEVℬ,ℓ

S
[ϕout]
out

(Sin,i · P ) for i ∈ [0, kin − 1]

And KSKk ∈ GLEVℬ,ℓ

S
[ϕout]
out

(P )

Output: CTout ∈ GLWE
S

[ϕout]
out

(P ·M) ¦ R
kout+1
q,N

1 Set CTout :=
〈
KSKkin

,Dec(ℬ,ℓ) (B)
〉

2 for i ∈ [0; kin − 1] do

/* Decompose the mask */

3 Update CTout = CTout −
〈
KSKi,Dec(ℬ,ℓ) (Ai)

〉

4 return CTout

Theorem 5.3 (Noise of Secret-Product GLWE Key Switch). After performing a Secret-Product
key switching (Algorithm 31), taking as input a GLWE ciphertext CTin ∈ R

kin+1
q,N under the secret

key S
[ϕin]
in ∈ R

kin

q,N and a key switching key with noise variance Ã2
KSK encrypting a secret message

M2, and outputting a GLWE ciphertext CTout ∈ R
kout+1
q,N under the secret key S

[ϕout]
out ∈ R

kout

q,N , the
noise variance of each coefficient of the output can be estimated by

Var (CTout) = ℓ(kin + 1)NÃ2
KSK

ℬ
2 + 2

12

+ ||M2||22 ·
(
Ã2
in +

(
q2 −ℬ

2ℓ

12ℬ2ℓ

)(
1 + ϕin

(
Var

(
S

[ϕin]
in

)
+ E2

(
S

[ϕin]
in

)))
+

ϕin

4
Var

(
S

[ϕin]
in

))
.

Proof (Theorem 5.3) The proof can trivially be adapted from the proof of Theorem 5.2.

5.2.2.4 External Product with Partial Secret Key

An external product is a special case of a secret-product GLWE-to-GLWE key switch where the
input secret key and the output secret key are the same. It is pretty easy to compute the noise this
procedure will add. The cost to compute a GLWE external product whether it includes a partial
secret key or not, is the same.
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Theorem 5.4 (Noise of GLWE External Product). The external product algorithm is the same
as the algorithm of secret-product GLWE key switch (Algorithm 32). The only difference is that

the external product uses the same key S
[ϕ] ∈ Rk

q,N as input and as output, and the key switching

key is now seen as a GGSW ciphertext of message M2 encrypted with noise variance Ã2
2. For each

coefficient of the output CTout, the noise variance can be estimated by

Var (CTout) = ℓ(k + 1)NÃ2
2

ℬ
2 + 2

12

+ ||M2||22 ·
(
Ã2
in +

(
q2 −ℬ

2ℓ

12ℬ2ℓ

)(
1 + ϕ

(
Var

(
S

[ϕ]
)
+ E2

(
S

[ϕ]
)))

+
ϕ

4
Var

(
S

[ϕ]
))

.

Proof (Theorem 5.4) The proof can trivially be adapted from the proof of Theorem 5.3 with k =

kin = kout and S
[ϕ] = S

[ϕin]
in = S

[ϕout]
out .

Noise Advantage with TFHE’s PBS. Using a partial GLWE secret key to encrypt a boot-
strapping key for TFHE’s programmable bootstrapping enables two convenient features: first to
have a smaller output LWE ciphertext with less than k ·N + 1 coefficients, and second to reduce
the noise growth in each external product (see Theorem 5.4).

External product is the main operation used in the CMuxes of the blind rotation, as explained
above. The direct consequence of having smaller output ciphertexts is the fact that we can perform
smaller LWE-to-LWE key switchings before the next PBS. Furthermore, when k ·N is large enough
to reach the noise plateau (as explained in Limitation 2), partial secret keys enable to avoid adding
unnecessary noise to the bootstrapping.

5.2.2.5 LWE-to-LWE Key Switch

Finally, we study the complete algorithm to compute and LWE-to-LWE key switch. We assume
using the GLWE-to-GLWE key switch, but the formulae can easily be adapted to the private
product one.

Theorem 5.5 (Noise & Cost of FFT-Based LWE Key Switch). We consider the new LWE-to-LWE
key switch as described in Algorithm 32. Its cost is the same as the cost of a GLWE-to-GLWE key
switch as introduced in Remark 5.3 i.e., C (FftLweKeySwitch) = C (GlweKeySwitch).

The output noise can be expressed from the noise formula of the GLWE-to-GLWE key switch
(Theorem 5.2). To sum up, the output noise is:

Var (FftLweKeySwitch) = FftErrorkmax,N,ℬ,ℓ + Var (GlweKeySwitch)

with ϕin = nin, ϕout = nout, kmax = max (kin, kout) and FftErrorkmax,N,ℬ,ℓ being the error added by
the FFT conversions.

Proof (Theorem 5.5). Expressing the cost is quite straight forward, since we can neglect the
complexity of the sample extraction and its inverse. The estimation of the variance of the error
is immediate as well. We use the corrective formula introduced in Subsection 2.5.3 to estimate an
upper bound on the FFT error. Indeed, it is easy to see that the FFT-based LWE key switch with
kin and kout is a special case of an external product with kmax = max (kin, kout) where some of the
ciphertexts composing the GGSW are trivial encryptions of 0 or 1 (no noise, all mask elements set
to zero and the plaintext put in the b/B part).

Practical Improvement. The use of partial secret keys provides a significant practical improve-
ment in homomorphic computations. Indeed, it introduces an additional degree of freedom when
selecting parameters, allowing for the choice of more efficient parameter sets that result in reduced
latency.

Table 5.1 presents a comparison of our techniques and the state-of-the-art [CJP21]. More
details on the experiments are reported in Section 5.5.1.
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Algorithm 32: ctout ←FftLweKeySwitch(ctin,KSK)

Context:





S
[ϕin]
in ∈ R

kin

q,N : the input partial secret key (Definition 29)

S
[ϕin]
in = (Sin,0, . . . , Sin,kin−1)

sin : the flatten version of S
[ϕin]
in (Definition 11)

S
[ϕout]
out ∈ R

kout

q,N : the output partial secret key (Definition 29)

(kin − 1)N < ϕin f kinN and (kout − 1)N < ϕout f koutN

ℓ ∈ N : the number of levels in the decomposition

ℬ ∈ N : the base in the decomposition

Input:





ctin ∈ LWEsin
(m) ¦ Zn

q , with m ∈ Zp

KSK =
{(

KSK0, . . . ,KSKkin−1

)}
; /* Definition 15 */

With KSKi ∈ GLEVℬ,ℓ

S
[ϕout]
out

(Sin,i) for i ∈ [0, kin − 1]

Output: ctout ∈ LWEsout
(m) ¦ Zϕout+1

q

/* Inverse of a constant sample extraction (Algorithm 29) */

1 Set CT = (A0, . . . , Akin−1, B)← ConstantSampleExtraction−1 (ctin, kin, N) ∈ R
kin+1
q,N

/* GLWE Key Switch with Partial Secret Keys (Algorithm 30) */

2 Set CT′ ← GlweKeySwitch (CT,KSK) ∈ R
kout+1
q,N

/* Constant sample extraction (Algorithm 28) */

3 Set ctout ← ConstantSampleExtract
(
CT′) ∈ Zϕout+1

q

4 return ctout

5.3 Secret Keys with Shared Randomness

To use FHE schemes, one needs to generate several secret keys of different sizes (Remark 2.15).
Our main observation is that instead of sampling those keys independently, we can generate a list
of ³ nested GLWE keys with the same level of security ¼.

As a simple example we consider three integers 1 < n0 < n1 < n2 and a secret key s(2) =
r(0)||r(1)||r(2) ∈ Zn2

q generated in the traditional manner. We can now build two smaller secret

keys out of s(2) such that for all pair of keys, the smaller one will be included in the bigger one, in
its first coefficients: s(0) = r(0) ∈ Zn0

q and s(1) = r(0)||r(1) ∈ Zn1
q , as represented in Figure 5.1.

With this new secret keys, the cost and the noise of a key switch between s(1) and s(0) will no
longer depend on n0 and n1 but on n1−n0 and n0. If we want to key switch from s(0) to s(1), the
key switch will come for free: it will add no noise and will have no cost. Note that each of those
secret keys use a different variance for the noise added during encryption: the smaller the secret
key, the larger the required noise variance, so they can all guarantee the same level of security ¼.

In this section, we first define the secret key with shared randomness. We then study the
impact of these keys on the security of the underlying LWE problems. Finally, we list the different
advantages and improvements which they offer.

Definition 32 (GLWE Secret Keys with Shared Randomness). Two GLWE secret keys S ∈ Rk
q,N

and S
′ ∈ Rk′

q,N ′ , with kN f k′N ′, are said to share randomness if we have that for all 0 f i <
kN, s̄i = s̄′i, where s̄i and s̄′i respectively come from the flattened view (Definition 11) of S and
S

′. We note by S z S
′ this relationship between secret keys.
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s(0) : r0 · · · rn0−1

s(1) : r0 · · · rn0−1 rn0 · · · rn1−1

s(2) : r0 · · · rn0−1 rn0 · · · rn1−1 rn1 · · · rn2−1

free

free

n1 − n0 elements

n2 − n1 elements

shrinking key switch

enlarging key switch

Figure 5.1: Illustration of simplified key switch procedures between three LWE secret keys with
shared randomness.

5.3.1 Hardness of Secret Keys with Shared Randomness

Let us consider different samples of GLWE with shared randomness, i.e., samples under the LWE se-
cret key s0 = (s0, . . . sn0−1) and other samples under the secret key s1 = (s0, . . . sn0−1, sn0

, . . . sn1
).

By only considering the samples under the secret key s0, all these samples are secure and have a
level of security ¼. The same holds for samples under the secret key s1. We now study the level
of security of several samples of GLWE considered together with shared secret keys.
First, we present the decisional LWE problem with shared randomness and prove that, under
certain conditions, this problem can be reduced to a LWE problem. Next we show that the new
operations offered by the secret key with shared randomness can not impact the security.

Definition 33 (Secret Key with Shared Randomness Decisional Problem). Let n1 > n0.
Given a secret key s(0) ∈ Zn0

q following a given distribution D, a secret r ∈ Zn1−n0
q fol-

lowing the same distribution D, and two errors distribution Ç0 and Ç1, we define the LWE
with secret key with shared randomness samples and we note sh-LWEn0,Ç0,n1,Ç1 the pairs(
(a0, b0 =

〈
a0, s

(0)
〉
+ e0), (a1, b1 =

〈
a1, s

(1)
〉
+ e1)

)
∈ Zn0+1

q × Zn1+1
q , where s(1) = s(0)||r,

a0 ←↩ U (Zq)
n0 , a1 ←↩ U (Zq)

n1 , e0 ←↩ Ç0 and e1 ←↩ Ç1.

The decision sh-LWEn0,Ç0,n1,Ç1
problem consist of distinguishing m independent samples from

U
(
Zn0+1
q × Zn1+1

q

)
from m independent samples ((a0, b0), (a1, b1)) ∈ LWEn0,Ç0 ×LWEn1,Ç1 ¦

Zn0+1
q × Zn1+1

q as defined above.

Theorem 5.6 (Hardness of sh-LWE). If we have three random distributions Ç0, Ç1 and Ç′ such
that, if we sample e1 ←↩ Ç1 and e′ ←↩ Ç′, e1+e′ follows the distribution Ç0. Then sh-LWEn0,Ç0,n1,Ç1

with m samples is at least as hard than LWEn0,Ç1
with 2m samples.

Remark 5.4 (Error Distribution Ç). In GLWE-based FHE schemes, Ç usually follows a discrete
normal distribution. The condition for Theorem 5.6 is then always verified. In the following, the
goal is to use a noise variance Ã0 for Ç0 and a noise variance Ã1 for Ç1 such that n0 < n1 and
Ã0 > Ã1.

Proof (Theorem 5.6). We define an instance of LWEn0,Ç1 where the samples are encrypted under
a secret key s(0) ∈ Zn0

q which follows a given distribution D, and where for the given distribution
Ç1 it exists a distribution Ç′ such that, for any e1 ←↩ Ç1 and for any e′ ←↩ Ç′, we have that e1 + e′

follows a distribution Ç0.

We now prove that solving the problem sh-LWEn0,Ç0,n1,Ç1 is at least as hard than solving the
problem LWEn0,Ç1 . To do so, we consider an oracle that can solve the decision sh-LWEn0,Ç0,n1,Ç1

problem and show that a such oracle can solve the decisional LWEn0,Ç1 instance.

Observe that, starting from an LWEn0,Ç1
sample, we can easily create either an LWEn0,Ç0

sample or an LWEn1,Ç1
sample. To create an LWEn0,Ç0

sample (a0, b0 =
〈
a0, s

(0)
〉
+ e0) ∈ Zn0+1

q ,

with e0 coming from a distribution Ç0, from an LWEn0,Ç1
sample (a1, b1 =

〈
a1, s

(0)
〉
+e1) ∈ Zn0+1

q ,
with e1 coming from a distribution Ç1, we only need to take a0 = a1 and modify the noise. Following
the above condition, it is sufficient to sample e′ ←↩ Ç′ and then take b0 = b1+ e′, to make the noise
in b0 be equal to e1 + e′. This now follows the distribution Ç0.
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To create an LWEn1,Ç1
sample (a1, b1 =

〈
a1, s

(1)
〉
+ e1) ∈ Zn1+1

q from a LWEn0,Ç1
sample

(a0, b0 =
〈
a0, s

(0)
〉
+ e1) ∈ Zn0+1

q , we start by generating a random key r ∈ Zn1−n0
q , which follows

the same distribution Ds than s(0), as well as a new vector a′ ∈ U
(
Zn1−n0
q

)
. Then, we take

a1 = a0||a′ and b1 = b0 + ïa′, r′ð, which give us an LWEn1,Ç1
sample as expected.

Following what just described, we observe that given 2m LWEn0,Ç1 samples, we can gener-
ate m LWEn0,Ç0

samples and m LWEn1,Ç1
samples. Now we can provide all the valid samples

of LWEn0,Ç0
×LWEn1,Ç1

to the oracle. Otherwise, when the decisional LWEn0,Ç1
problem send

uniform samples in Zn0
q , the two transformations proposed before also return uniform samples in

Zn0
q or in Zn1

q . As the oracle can solve the decision sh-LWEn0,Ç0,n1,Ç1 problem, we can solve the
decision LWEn0,Ç1 problem.

Remark 5.5 (Security with more than two shared Keys). The Proof 5.3.1, can easily be adapted
to more than only two shared keys.

Operations Under Shared Randomness Any known homomorphic operation (that we know)
that makes two or more ciphertexts interact (encrypted under the same key or different keys) will
have as a result a ciphertext with a level of security at least as high as the input with the lowest
security level. In light of the common existing attacks, the level of security of a set of GLWE
samples encrypted under secret keys with shared randomness is then lower bounded by the level
of security of the GLWE having the smallest level of security.

As for the partial secret keys, this new type of keys may lead to new unknown attacks and the
level of security could be impacted. But at the current state-of-the-art, no attacks seem to have
an impact on secret key with shared randomness. However, if one of the key sets is compromised,
the other key sets will be impacted consequently.

5.3.2 Advantages of Secret Keys with Shared Randomness

Using secret keys with shared randomness enables us to speed up homomorphic computations and
to reduce the amount of noise added by these operations. This is particularly useful for LWE-to-
LWE key switch procedures.

5.3.2.1 Advantages with LWE-to-LWE Key Switch

The first operation that benefits from secret keys with shared randomness is key switching. Fig-
ure 5.1 illustrates key switching processes between three LWE secret keys with shared randomness.
A key switch to a bigger key is represented with dotted arrows and is called enlarging key switch.
A key switch to a smaller key is represented with solid arrows and is called shrinking key switch.

Enlarging Key Switch. When we consider a ciphertext ctin = (a0, . . . , an1−1, b) ∈
LWEs(1) (m) ¦ Zn1+1

q under the secret key s(1) ∈ Zn1
q and want to key switch it to the secret

key s(2) ∈ Zn2
q , where s(1) z s(2), The algorithm reduces to simply appending zeros to the end of

the ciphertext:

ctout := (a0, . . . , an1−1, 0, . . . , 0, b) ∈ LWEs(2) (m) ¦ Zn2+1
q .

Algorithm 33, describes this procedure in detail. We note that we only use this algorithm with
LWE ciphertexts, but it can trivially be extended to GLWE ciphertexts.

To sum up, the enlarging key switching are basically zero-cost operations and do not require
the use of a public key. They also add no noise, instead of adding a linear combination of freshly
encrypted ciphertexts under s(2). The proof of next theorem is trivial.

Theorem 5.7 (Cost & Noise of Enlarging Key Switching). When working with secret keys with
shared randomness, the cost of an enlarging key switching (Algorithm 33) is reduced to zero, and
the noise in the output is the same as the one in the input (no noise is added).
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Algorithm 33: ctout ← EnlargingKeySwitch(ctin)

Context:





sin ∈ Znin
q : the input secret key

sout ∈ Znout
q : the output secret key

sin z sout : secret keys with shared randomness (Definition 32)

m ∈ Zp

ctin = (a0, . . . , anin−1, b) ∈ Znin+1
q

Input: ctin ∈ LWEsin
(m)

Output: ctout ∈ LWEsout
(m)

/* Pad with zeros between the mask and the b part */

1 Set ctout := (a0, . . . , an−1, 0, . . . , 0, b) ∈ Znout+1
q

2 return ctout

Shrinking Key Switch. When we consider a ciphertext ctin = (a0, . . . , an2−1, b) ∈ Zn2+1
q under

the secret key s(2) ∈ Zn2
q and we want to key switch it to the secret key s(1) ∈ Zn1

q , where s(1) z s(2)

and s(2) = s(1)||r(2), the algorithm is simplified precisely because of the shared randomness:
1. the parts (a0, . . . , an1−1) and b do not need to be processed but simply reorganized into a

temporary ciphertext: ct = (a0, . . . , an1−1, b) ∈ Zn1+1
q ,

2. the part (an1
, . . . , an2−1) has to be key switched, which can be viewed as a traditional key

switching algorithm: i.e., key switching the ciphertext (an1
, . . . , an2−1, 0) ∈ Zn2−n1+1

q with a

key switching key going from the secret key r(2) to s(1), and at the end, adding it to ct and
returning the result.

Algorithm 34, describes this procedure in detail. We only use this algorithm with LWE cipher-
texts, but it can be also trivially extended to GLWE ciphertexts.

Algorithm 34: ctout ← ShrinkingKeySwitch(ctin,KSK)

Context:





sin = (s0, . . . , snin−1) ∈ Znin
q : the input secret key

sout ∈ Znout
q : the output secret key

nout < nin

sout z sin : secret keys with shared randomness (Definition 32)

m ∈ Zp

ctin = (a0, . . . , anin−1, b) ∈ Znin+1
q

ℓ ∈ N : the number of levels in the decomposition

ℬ ∈ N : the base in the decomposition

Input:





ctin ∈ LWEsin
(m)

KSK = {KSKi}noutfi<nin
: a key switching key

With KSKi ∈ LEVsout
(sin,i)

Output: ctout ∈ LWEsout
(m)

/* Keep the beginning of the mask and the B part */

1 Set ctout := (a0, . . . , anout−1, b) ∈ Znout+1
q

2 for i ∈ [nout;nin − 1] do

/* Decompose the rest of the mask */

3 Update ctout = ctout −
〈
KSKi,Dec(ℬ,ℓ) (ai)

〉

4 return ctout
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To sum up, the shrinking key switching requires smaller key switching keys: their size becomes
proportional to n2 − n1 instead of n2. As a consequence, the computation is faster, equivalent
to key switch a ciphertext of size n2 − n1 + 1 instead of n2 + 1. Finally, the noise in the output
is also smaller because the algorithm involves a smaller linear combination of freshly encrypted
ciphertexts under s(1).

Theorem 5.8 (Cost & Noise of Shrinking Key Switching). Consider two secret keys with shared
randomness s(0) z s(1) with s(0) ∈ Zn0

q , s(1) ∈ Zn1
q and 1 < n0 < n1. Let ℬ ∈ N∗ and ℓ ∈ N∗

be the decomposition base and level used in key switching. The cost of our shrinking key switching
(Algorithm 34) is ℓ (n1 − n0) (n0 + 1) integer multiplications and (ℓ (n1 − n0)− 1) (n0 + 1) integer
additions. The noise added by the procedure satisfies

Var(ShrinkingKeySwitch) = (n1 − n0)

(
q2 −ℬ

2ℓ

12ℬ2ℓ

)(
Var (sin) + E2 (sin)

)

+
(n1 − n0)

4
Var (sin) + ℓ · (n1 − n0) ·

ℬ
2 + 2

12
Ã2
KSK .

Proof (Theorem 5.8). The proof is similar to that of Algorithm 4 (Theorem 2.8), except that we
only need to key switch the unshared elements.

5.3.2.2 Stair Key Switch

In Section 5.3.2.1, we showed that using secret keys with shared randomness can reduce the cost
of one of the central algorithms in TFHE, resulting in an overall speedup. However, this concept
can also be used locally inside a key switch procedure to explore a cost/noise trade-off.

For simplicity, let us consider an FHE use case where there are only two LWE secret keys, and
only a key switch from the large one to the small one. We start by setting the two secret keys with
shared randomness. The idea here is to add one or several secret keys with shared randomness,
only during the key switch procedure.

For example, let us assume a fixed decomposition base ℬ, a fixed number of levels ℓ and let s(2)

be our large secret key and s(0) be our small (as defined in Section 5.3.2.1). To key switch from s(2)

to s(0), we will add one intermediate secret key with shared randomness s(1) and compute first a
key switch from s(2) to s(1) and then another from s(1) to s(0). This algorithm will be more costly,
because its first part will be a linear combination of (n2 − n1) ciphertexts of size n1 + 1, and its
second part a linear combination of (n1−n0) ciphertexts of smaller size n0+1, instead of having a
single linear combination of n2−n0 ciphertexts of size n0+1: so the total number of ciphertexts in
the linear combination and in the key switching key has not changed (n2−n1 +n1−n0 = n2−n0

as in the key switching from s(2) to s(0)), but the linear combinations are slightly more costly and
the ciphertexts composing the key switching keys slightly larger. However, this algorithm produces
less noise: indeed its first part has ciphertexts with lower noise because they are encrypted under
a larger secret key.

Here is the trade-off we want to study. The extreme is to go from s(nb) to s(0) by key switching
one element of the key in each key switching, meaning that we will have a total number of nb =
nnb−n0 shrinking key switching (Algorithm 34) to perform. So nb corresponds to the steps in the
stair. This means considering a total number of shared keys equals to nb+ 1, including the secret
s(nb) and s(0) which are the end points of the stair. We call the added keys between s(nb) and s(0)

intermediate secret keys, so we have a total of nb − 1 intermediate secret keys. In practice, we
start with coefficient annb−1 and key switch it to the secret key with nnb−1 elements, add it to the
rest, and do the same with the next last element, and so on until we reach the desired secret key,
one coefficient at a time. The other extreme case is when we key switch directly from s(1) and s(0)

without intermediary key switchings, so nb = 1.
Algorithm 35 gives details about this procedure. It is important to point out that there are

now nb couples of decomposition parameters (ℬ³, ℓ³) for 0 f ³ f nb− 1, one for each step of the
stairs.
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Algorithm 35: ctout ← StairKeySwitch
(
ctin, {KSK³}0f³fnb−1

)

Context:





nb ∈ N : the number of steps in the algorithm

n0 < n1 < · · · < nnb

s(nb) ∈ Znnb
q : the input secret key

s(0) ∈ Zn0
q : the output secret key

s(³) ∈ Zn³
q , ∀1 f ³ f nb− 1 : intermediate secret keys

s(0) z s(1) z · · · z s(nb) : secret keys shared randomness (Definition 32)

Input:





ctin ∈ LWEs(nb) (m) ¦ Znnb+1
q , with m ∈ Zp

{KSK³}0f³fnb−1 : intermediate key switching key as in Algorithm 34

where KSK³ switches from s(³+1) to s(³)

Output: ctout ∈ LWEs(0) (m) ¦ Zn0+1
q

/* Set the counter to go from nb− 1 to 0 */

1 Set ³ := nb− 1

/* Set the initial ciphertext */

2 Set ct := ctin

3 while ³ >= 0 do

/* Call to Algorithm 34 */

4 Update ct← ShrinkingKeySwitch(ct,KSK³) ∈ LWEs(³) (m) ¦ Zn³+1
q

5 ³ := ³− 1

6 return ctout := ct

Theorem 5.9 (Cost & Noise of Stair Shrinking Key Switching). Consider the stair key switch

as detailed in Algorithm 35. Its cost is
∑nb−1

³=0 ℓ³ (n³+1 − n³) (n³ + 1) integer multiplications and∑nb−1
³=0 (ℓ³ (n³+1 − n³)− 1) (n³ + 1) integer additions. The noise added by the procedure satisfies

Var(StairShrinkKS) =

nb−1∑

³=0

(n³+1 − n³)

(
q2 −ℬ

2ℓ³
³

12ℬ2ℓ³
³

)(
Var

(
s
(³+1)

)
+ E2

(
s
(³+1)

))

+
(n³+1 − n³)

4
Var

(
s
(³+1)

)
+ ℓ³ · (n³+1 − n³) ·

ℬ
2
³ + 2

12
Ã2
KSK³

.

Proof (Theorem 5.9). The cost and noise of the stair shirnking key switching can be trivially de-
duced from the Theorem 5.8. Indeed, at step ³ of the loop in Algorithm 35, the cost of the shrinking
key switching is ℓ³ (n³+1 − n³) (n³ + 1) integer multiplications and (ℓ³ (n³+1 − n³)− 1) (n³ + 1)
integer additions.

The variance of the noise added at the step ³ is:

Var(ShrinkKS³) = (n³+1 − n³)

(
q2 −ℬ

2ℓ³
³

12ℬ2ℓ³
³

)(
Var

(
s
(³+1)

)
+ E2

(
s
(³+1)

))

+
(n³+1 − n³)

4
Var

(
s
(³+1)

)
+ ℓ³ · (n³+1 − n³) ·

ℬ
2
³ + 2

12
Ã2
KSK³

.

To obtain the total cost of the algorithm and the total variance of the noise added, we simply
iterate from ³ = 0, . . . , nb− 1.

Remark 5.6 (Stairs in the Blind Rotation.). A similar process can be introduced in the blind
rotation algorithm. The idea would be, during the blind rotation, to progressively use GLWE
partial secret keys (Definition 29) with a smaller filling amount ϕ which will reduce the output
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noise of the blind rotate. As with the stair shrinking key switch, we could use different bases and
levels in the external products thus offering potentially an overall speed-up. We leave this problem
as a topic for future work.

Practical Improvement. The use of shared secret keys brings a practical significant improve-
ment to homomorphic computations: Table 5.1, presents a comparison of our techniques to the
state-of-the-art [CJP21]. More detailed experiments are reported in Section 5.5.2.

5.4 Combining Both Techniques

In this section, we provide details on FHE algorithms that benefit from having secret keys that are
both partial and with shared randomness.

Partial GLWE secret keys with shared randomness are simply a list of partial GLWE secret
keys with some public knowledge about shared coefficients. This type of keys is a combination of
shared randomness and partial secret keys, offering advantages of both types.

It is possible to design a faster shrinking key switch (Algorithm 30) which uses partial secret
keys (Definition 29). This means that for this faster algorithm, we use both partial secret keys and
secret keys with shared randomness. Details about this new procedure is given in Algorithm 36.

Algorithm 36: ctout ← FftShrinkingKeySwitch(ctin,KSK)

Context:





nout < nin, nin − nout f kKSK,in ·NKSK and nout f kKSK,out ·NKSK

sout z sin : secret keys shared randomness (Definition 32)

sout ∈ Znout
q : the output LWE secret key

s = (snout
, . . . , snin−1) ∈ Znin−nout

q

sin = sout||s ∈ Znin
q : the input LWE secret key

Input:





ctin = (a0, . . . , anin−1, b) ∈ LWEsin
(m) ¦ Znin+1

q , where p ∈ Zq

KSK =
{(

KSK0, . . . ,KSKkin−1

)}
; /* Definition 15 */

With KSKi ∈ GLEVℬ,ℓ

S
[ϕout]
out

(Sin,i) for i ∈ [0, kin − 1]

Output: ctout ∈ LWEsout
(m)

/* Split the input LWE ciphertext into two parts: one related to sout, and

the rest */

1 Set ct0 := (a0, . . . , anout−1, b) ∈ Znout+1
q

2 Set ct1 := (anout
, . . . , anin−1, 0) ∈ Znin−nout+1

q

3 Set ct′1 ← FftLweKeySwitch (ct1,KSK) ∈ Znout+1
q /* Call Algorithm 32 */

4 return ctout = ct0 + ct′1

Theorem 5.10 (Noise & Cost of the FFT-Based Shrinking Key Switch). We consider the FFT-
based LWE shrinking key switching as detailed in Algorithm 36. Its cost can be expressed from the
cost of a GLWE-to-GLWE key switch (Remark 5.3) since we neglect the costs of sample extraction
and its inverse. The cost is then C (FftShrinkingKeySwitch) = C (GlweKeySwitch). Note that kin is
smaller thanks to the shared randomness property of the secret keys, which leads to a faster proce-
dure. The added noise can be expressed from the noise formula of the GLWE-to-GLWE key switch
(Theorem 5.2) which gives Var (FftShrinkingKeySwitch) = FftErrorkmax,N,ℬ,ℓ + Var (GlweKeySwitch)
with ϕin = nout − nin and kmax = max (kin, kout).

Proof (Theorem 5.10). The estimation of the variance of the error is immediate. For the FFT
error, we refer to Subsection 2.5.3 and proof of Theorem 5.5.

Algorithm 37 summarizes the process to compute a key switch when both approaches are mixed.

117



Chapter 5. New Secret Keys for Enhanced Performance in TFHE

Theorem 5.11. (Noise of GLWE Key Switching With Partial & Shared Randomness Keys) Per-

form a key switching (Algorithm 37) from CTin ∈ R
kin+1
q,N under the secret key S

[ϕin]
in ∈ R

kin

q,N , to

CTout ∈ R
kout+1
q,N under the secret key S

[ϕout]
out ∈ R

kout

q,N , where the key are shared and partial, i.e.,

S
[ϕout]
out z S

[ϕin]
in . Each coefficient of the output has added noise estimated as

Var(GlweKeySwitch′) = (ϕin − ϕout)

(
q2 −ℬ

2ℓ

12ℬ2ℓ

)(
Var

(
S

[ϕin]
in

)
+ E2

(
S

[ϕin]
in

))

+
ϕin − ϕout

4
Var

(
S

[ϕin]
in

)
+ ℓ(kin − kout)NÃ2

ksk

ℬ
2 + 2

12
.

Algorithm 37: CTout ← GlweKeySwitch′(CTin,KSK)

Context:





S
[ϕin]
in ∈ R

kin

q,N : the input partial secret key (Definition 29)

S
[ϕin]
in = (Sin,0, . . . , Sin,kin−1)

S
[ϕout]
out ∈ R

kout

q,N : the output partial secret key (Definition 29)

S
[ϕout]
out = (Sout,0, . . . , Sout,kout−1)

(kin − 1)N < ϕin f kinN and (kout − 1)N < ϕout f koutN

S
[ϕout]
out z S

[ϕin]
in : secret keys with shared randomness (Definition 32)

S
[ϕin]
in ̸= S

[ϕout]
out and kout f kin

k ∈ {kout − 1, kout} such that ∀0 f i < k, Sin,i = Sout,i

CTi,j ∈ GLWE
S

[ϕout]
out

(
q
ℬj · Sin,i

)
, for kout f i < kin & 0 f j < ℓ

if k = kout − 1 :

CTk,j ∈ GLWE
S

[ϕout]
out

(
q
ℬj · (Sin,k − Sout,k)

)
, for 0 f j < ℓ

ℓ ∈ N : the number of levels in the decomposition

ℬ ∈ N : the base in the decomposition

Input:

{
CTin = (A0, . . . , Akin−1, B) ∈ GLWE

S
[ϕin]

in

(M)

KSK = {Ki = (CTi,0, . . . ,CTi,ℓ−1)}kfi<kin

Output: CTout ∈ GLWE
S

[ϕout]
out

(M)

/* Keep the B part and the first part of the mask */

1 Set CTout := (A0, . . . , Akout−1, B) ∈ R
kout+1
q,N

/* Different public material for this potential partial-shared secret key

polynomial */

2 if k = kout − 1 then

3 Update CTout = CTout −
〈
Kk,Dec(ℬ,ℓ) (Ak)

〉

4 for i ∈ [kout; kin − 1] do

/* Decompose the mask */

5 Update CTout = CTout −
〈
Ki,Dec(ℬ,ℓ) (Ai)

〉

6 return CTout

Proof (Theorem 5.11). Lets consider two shared and partial secret keys such that S
[ϕout]
out z S

[ϕin]
in .

We have S
[ϕout]
out = (Sout,0, . . . , Sout,kout−1), where Sout,kout−1 =

∑ϕout−(kout−1)N−1
i=0 sout,kout−1,iX

i we
call Sout,kout−1: S.

We have S
[ϕin]
in = (Sin,0, . . . , Sin,kin−1) such that for all j ∈ [0, kout − 1), Sout,j = Sin,j and

Sin,kout−1 = S + S̄ where S̄ =
∑N−1

j=ϕout−(kout−1)N sin,kout−1,jX
j.

The inputs of a GLWE key switching with partial & shared randomness keys (Algorithm 37)
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are:
• The input GLWE ciphertext: CTin = (Ain, Bin) ∈ GLWE

S
[ϕin]

in

(∆ ·M) ¦ R
kin+1
q,N , where Bin =

∑kin−1
i=0 Ain,i · Sin,i + ∆ ·M + Ein, Ain,i =

∑k−1
j=0 ai,j · Xj ←↩ U (Rq,N ) for all i ∈ [0, k) and

Ein =
∑k−1

j=0 ej ·Xj, and ej ←↩ NÃ2
in
for all j ∈ [0, N − 1).

• The key switch key: KSK = (KSKkout−1 ,KSKkout
· · · ,KSKkin−1), where KSKi ∈

GLEV
S

[ϕout]
out

(Sin,i) =
(
GLWE

S
[ϕout]
out

(
q
ℬ
Sin,i

)
, . . . ,GLWE

S
[ϕout]
out

(
q
ℬℓSin,i

))
for all kout f i < kin,

and KSKkout−1 ∈ GLEV
S

[ϕout]
out

(
S̄
)
=
(
GLWE

S
[ϕout]
out

(
q
ℬ
S̄
)
, . . . ,GLWE

S
[ϕout]
out

(
q
ℬℓ S̄

))

We note by KSKi,j = (Ai,j , Bi,j) ∈ GLWE
S

[ϕout]
out

(
q

ℬj+1Sin,i

)
, for all kout f i < kin for all 0 f

j < ℓ, where Bi,j =
∑kout−1

Ä=0 Ai,j,Ä ·Sout,Ä+
q

ℬj+1Sin,i+Eksk,i,j, and Eksk,i,j =
∑N−1

Ä=0 eksk,i,j,Ä ·XÄ

and eksk,i,j,m ←↩ NÃ2
ksk
.

We note KSKkout−1,j = (Akout−1,j , Bkout−1,j) ∈ GLWE
S

[ϕout]
out

(
q

ℬj+1 S̄
)
for all 0 f j < ℓ,

where Bkout−1,j =
∑kout−1

Ä=0 Akout−1,j,Ä · Sout,Ä + q
ℬj+1 S̄ + Eksk,kout−1,j, and Eksk,kout−1,j =∑N−1

Ä=0 eksk,kout−1,j,Ä ·XÄ and eksk,kout−1,j,m ←↩ NÃ2
ksk
.

The output of this algorithm is: CTout = (Aout, Bout) ∈ GLWE
S

[ϕout]
out

(∆ ·M) ¦ R
kout+1
q,N .

By definition, for any polynomial Ain,i, we have the decomposition (described in Definition 5),

Dec(ℬ,ℓ) (Ain,i) =
(
Ãin,i,1, . . . , Ãin,i,ℓ

)
such that Ãin,i =

∑ℓ−1
j=0

q
ℬj+1 Ãin,i,j. Now, we can decrypt:

Bout −

〈
Aout,S

[ϕout]
out

〉
=
〈
(Aout, Bout) ,

(
−S

[ϕout]
out , 1

)〉

=
〈(

Ain,0, . . . , Ain,kout−1, 0 · · · , 0, Bin

)
−Dec

(ℬ,ℓ)
(
Ain,kout−1

)
KSKkout−1

−

kin−1∑

i=kout

Dec
(ℬ,ℓ)

(
Ain,i

)
KSKi,

(
−S

[ϕout]
out , 1

)〉

= Bin −

kout−1∑

i=0

Ain,iSout,i −

ℓ−1∑

j=0

Ãin,kout−1,j

〈
KSKkout−1,j ,

(
−S

[ϕout]
out , 1

)〉

−

kin−1∑

i=kout

ℓ−1∑

j=0

Ãin,i,j

〈
KSKi,j ,

(
−S

[ϕout]
out , 1

)〉

= Bin −

kout−2∑

i=0

Ain,iSin,i −Ain,kout−1S −

ℓ−1∑

j=0

Ãin,kout−1,j

(
q

ℬj+1
S̄ + Eksk,kout−1,j

)

−

kin−1∑

i=kout

ℓ−1∑

j=0

Ãin,i,j

(
q

ℬj+1
Sin,i + Eksk,i,j

)

= Bin −

kout−1∑

i=0

Ain,iSin,i −Ain,kout−1S

︸ ︷︷ ︸
(I)

−Ãin,kout−1S̄ −

ℓ−1∑

j=0

Ãin,kout−1,j · Eksk,kout−1,j

︸ ︷︷ ︸
(II)

−

kin−1∑

i=kout

Ãin,iSin,i −

kin−1∑

i=kout

ℓ−1∑

j=0

Ãin,i,j · Eksk,i,j

︸ ︷︷ ︸
(III)

.

After decrypting, we can split the previous result in three distinct part and analyze the noise provide
by each of them. The first part of the result (term (I)) is only composed of the noise present in the
Bin.
The second part of the result (term (II)) can be seen as a key switching with partial key (Algo-
rithm 30) from S̄ to Sout. The proof of noise add by this part follows the proof of Theorem 5.2.
As for the second part of the result, the third part of the result (term (III)) can be seen as a key
switching with partial key (Algorithm 30) from (Sin,kout

, . . . , Sin,kin−1) to Sout. The proof of noise
add by this part follows as well the proof of Theorem 5.2.
By adding this different noises, we will obtain Var(eout) = Var(I) + Var(II) + Var(III) where:
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Var(I) = Ã2
in

Var(II) = (Nkout − ϕout)

(
q2 −ℬ

2ℓ

12ℬ2ℓ

)(
Var

(
S

[ϕin]
in

)
+ E2

(
S

[ϕin]
in

))

+
Nkout − ϕout

4
Var

(
S

[ϕin]
in

)
+ ℓNÃ2

ksk

ℬ
2 + 2

12

Var(III) = (ϕin −Nkout)

(
q2 −ℬ

2ℓ

12ℬ2ℓ

)(
Var

(
S

[ϕin]
in

)
+ E2

(
S

[ϕin]
in

))

+
ϕin −Nkout

4
Var

(
S

[ϕin]
in

)
+ ℓ(kin − kout − 1)NÃ2

ksk

ℬ
2 + 2

12
.

To conclude we have:

Var(eout) = Ã2
in + (ϕin − ϕout)

(
q2 −ℬ

2ℓ

12ℬ2ℓ

)(
Var

(
S

[ϕin]
in

)
+ E2

(
S

[ϕin]
in

))

+
ϕin − ϕout

4
Var

(
S

[ϕin]
in

)
+ ℓ(kin − kout)NÃ2

ksk

ℬ
2 + 2

12
.

5.5 Parameters & Benchmarks

In this section, we describe how to generate FHE parameters for all our experiments. We use
the procedure introduced in Chapter 2, Section 2.5 to compare the different approaches. To
demonstrate the impact of partial and/or secret keys with shared randomness, we use the Atomic
Pattern (AP) (Definition 26) called CJP (the name coming from the paper [CJP21]). After recalling
its definition, we explain how to optimize parameters for the different experiments and show the
different improvements (both in computational time and size of public material) brought forward
by each of the new procedures introduced.

Real life applications use additions and multiplications by public integers (i.e., a dot prod-
uct) between two consecutive bootstrappings. Formally, given a list of ciphertexts {cti}i∈[1,³] ∈
(LWEsin

)
³
(with independent noise values) and a list of integers {Éi}i∈[1,³] ∈ Z³, one computes∑³

i=1 Éi · cti. In that case, we have ¿2 =
∑³

i=1 É
2
i and ¿ is used to fully describe the noise growth

during a dot product (Theorem 2.7). We set ¿ = 2p where p is the precision of the message. For
every experiment below, the probability of failure is set to pfail f 2−13.9. Note that with the FHE
parameter generation process, any other probability can be chosen. In what follows, we use the
CJP atomic pattern which denotes the chaining of a dot product, a key switch and a PBS.

All of the experiments presented have been carried out on AWS with a m6i.metal instance Intel
Xeon 8375C (Ice Lake) at 3.5 GHz, with 128 vCPUs and 512.0 GiB of memory using the TFHE-rs
library [Zam22]1. In Appendix A.2 (Tables A.16,A.17,A.18 and A.19), we give the parameter sets
used for the experiments reported in Table 5.2 along with benchmarks and public material sizes.

5.5.1 Partial GLWE Secret Key

We conduct three experiments with partial GLWE secret keys (Definition 29) that are displayed
in Table 5.1. This shows the cost estimated by the optimizer (divided by 106) in function of the
precision.

Our baseline is CJP. The first experiment focuses on the CJP atomic pattern where the GLWE
secret key could be partial with a filling amount ϕ. During optimization, we set ϕ to the minimum
between k · N and the value nplateau discussed in limitation 2. As expected, this is mostly better
with larger precisions, starting at p = 6 where the plateau is reached.

The second experiment considers the CJP atomic pattern where the traditional LWE-to-LWE
key switch is replaced with the FFT-base LWE key switch introduced in Algorithm 32. During the

1https://github.com/zama-ai/tfhe-rs/tree/artifact_ccs_2024
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optimization, we had to introduce new FHE parameters for this particular key switch: an input
GLWE dimension kin, an output GLWE dimension kout and a polynomial size NKS. We observe a
significant improvement for all precisions when using this key switch, but it is more visible with
smaller precisions, between 1 and 6.

The third and last experiment is the combination of the two first ones: we allow the GLWE
secret key to be partial (when the plateau is reached) and use the FFT-based LWE key switch
(Algorithm 32). As expected, this last experiment outperforms the other two. We can see a
significant improvement for all precisions.

Note that there is no way to build an LWE-to-LWE key switch based on the FFT without
partial secret keys, so no comparison with our results can be done.

5.5.2 Secret Keys with Shared Randomness

We conduct two experiments with secret keys with shared randomness (Definition 32), and we
display the results predicted by an optimizer in Table 5.1.

The first experiment is the CJP atomic pattern where we allow the secret keys to share their
randomness using the shrinking LWE key switch described in Algorithm 34. We observe a signifi-
cant improvement with small precisions, up to p = 6.

The second and last experiment is the CJP atomic pattern where we allow the secret keys to
share their randomness, so we can use the 2-step stair LWE key switch from Algorithm 35. We see
a significant improvement at all precisions. Note that if one tries to trivially have a 2-step stair key
switch without any shared randomness, the computational cost is basically the same as in CJP.

Precision & 2−norm 1 2 3 4 5 6 8 10
Cost Gain Cost Gain Cost Gain Cost Gain Cost Gain Cost Gain Cost Gain Cost Gain

CJP 31 − 42 − 63 − 78 − 118 − 347 − 2351 − 20813 −
Partial: BSK 31 −0% 42 −0% 63 −0% 78 −0% 118 −0% 318 −8% 1934 −18% 16449 −21%
Partial: FFT−KS 25 −18% 33 −21% 41 −35% 62 −21% 92 −22% 298 −14% 2053 −12% 18841 −9%
Partial: BSK + FFT−KS 25 −18% 33 −21% 41 −35% 62 −21% 92 −22% 285 −17% 1879 −20% 16426 −21%
Shared: Shrinking−KS 29 −9% 39 −8% 49 −23% 72 −8% 105 −11% 336 −3% 2331 −0.8% 20785 −0.1%
Shared Stair−KS 27 −15% 35 −17% 42 −32% 66 −17% 94 −20% 316 −9% 2057 −12% 16624 −20%

Table 5.1: Comparison in terms of estimated execution time, between traditional CJP, our baseline,
two variants of CJP based on secret keys with shared randomness and three variants based on
partial secret keys.

5.5.3 Combining Both

We conduct two experiments with both partial (Definition 29) and secret keys with shared ran-
domness (Definition 32). As previously, the blue dashed curve with the • symbol shows the CJP
baseline.

The first experiment is the CJP atomic pattern where we allow the secret keys to be partial
and to share their randomness. We use the 2-step stair LWE key switch from Algorithm 35 and we
allow the GLWE secret key to be partial when the plateau is reached. This is the red solid curve
with the + symbol. We see a definite improvement at all precisions.

The second and last experiment also focuses on the CJP atomic pattern where we allow secret
keys to be partial and to share their randomness. We allow the GLWE secret key to be partial
(when the plateau is reached), and use the FFT-based LWE key switch (Algorithm 36) since our
secret keys also share randomness. On the figure, it is the green dotted curve with the ▼ symbol.
We see a similar improvement at all precisions.

We plot the timings obtained with benchmarks in Figures 5.2 and 5.3 to validate our predictions.
Both the stair key switch curve and the FFT shrinking key switch curve are below our baseline
as predicted, and we have even better results with the FFT shrinking key switch than expected.
Note that at precision p = 3 we have a 2.4 speed-up factor compared to the baseline (Figure 5.2).

Our new secret key generation also has the advantage to reduce the key sizes. For those
experiments, we plot the size of the public material needed in Figure 5.5.3, to demonstrate their
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Figure 5.2: Comparison in terms of time of computation of the traditional CJP, our baseline, with
two variants of CJP based on both partial secret keys and secret keys with shared randomness. De-
tails can be found in Section 5.5.3 and exact plotted values can be found in Tables A.16, A.17, A.18
and A.19 in Appendix.

Figure 5.3: Comparison in terms of time of computation, between traditional CJP, our baseline, and
two variants of CJP based on both partial secret keys and secret keys with shared randomness. De-
tails can be found in Section 5.5.3 and exact plotted values can be found in Tables A.16, A.17, A.18
and A.19 in Appendix.

benefit in this matter. For instance, the storage needed for the public material when p = 3 is going
from approximately 105 MB with the CJP method, to 50 MB with the FFT-based approach.

5.6 Some Higher Level Applications

Through Sections 5.2.2, 5.3.2 and 5.4, we discussed the many advantages of using partial and/or
secret keys with shared randomness. We now discuss the advantages at a somewhat high level.
Key Switching Key Compression. When one deploys an FHE instance using the shared
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Precision & 2-norm 1 2 3 4 5 6 8 10
Time Gain Time Gain Time Gain Time Gain Time Gain Time Gain Time Gain Time Gain

CJP 5.43 − 8.75 − 12.2 − 12.6 − 20.0 − 55.6 − 415 − 4710 −
All + Stair−KS 3.78 −30% 6.28 −28% 6.22 −49% 9.35 −25% 13.8 −31% 44.3 −20% 323 −22% 3620 −23%
All + FFT shrinking−KS 3.27 −39% 5.32 −39% 5.12 −58% 7.38 −41% 11.0 −45% 41.1 −26% 306 −26% 3603 -23%

Table 5.2: Comparison in terms of computational time (in ms) of the traditional CJP, our baseline,
with two variants of CJP based on both partial secret keys and secret keys with shared randomness.

Figure 5.4: Comparison between traditional CJP and two variants of CJP based on both partial
secret keys and secret keys with shared randomness. More details in Section 5.5.3 and exact plotted
values in Tables A.16, A.17, A.18 and A.19 in Appendix.

randomness property, the total amount of public material for key switching is smaller than usual.
Indeed, this only requires to generate all the shrinking key switching keys (Algorithm 34), from
the largest key to the smallest. All of these shrinking key switching keys are way smaller than the
sum of all the traditional key switching keys that are usually needed. Note that it is possible to
provide more levels in some of the key switching keys, and only use the ones that are needed at a
moment for a given noise constraint.

Compressed Bootstrapping Key. Similarly, with secret keys with shared randomness, the
amount of public material for bootstrapping keys can be reduced. A bootstrapping key is a list of
GGSW ciphertexts, each one encrypting a secret key coefficient of the input LWE secret key. Then,
giving the GGSW ciphertexts for the largest LWE secret key of the instance is enough. Whenever
bootstrapping an LWE ciphertext with a smaller dimension is required, one will only use the first
part of the bootstrapping key. In the same spirit, additional levels can be added, and only used
when strictly needed.

Easier Parameter Set Conversion. Later, Chapter 7, Section 7.3.4, considers use-cases where
there are a couple of coexisting parameter sets, and it is necessary to move from one to the other.
Using shared (and partial) secret keys helps converting more efficiently ciphertexts between two
(or more) parameter sets. This is due to the removing of some key switchings and limiting the
noise growth.

Multikey Compatibility. Both the partial and shared randomness properties are preserved in
the MK-FHE (such as [KKL+22, KMS22]) and in threshold-FHE approaches. Indeed, summing
two partial secret keys results in another partial secret key, and summing two pairs of secret keys
with shared randomness together results in a new pair of secret keys with shared randomness.
Those new secret keys could improve the performance of MK-FHE and threshold-FHE, which are
in general less efficient that the ones of (single key) FHE, as well as reduce the total size of the
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public material.
Other FHE Schemes. Partial and secret keys with shared randomness could be used in other
FHE schemes such as FHEW [DM15] or NTRU-based schemes (such as [BIP+22]). This types of
keys could also be used in BFV [Bra12, FV12] or CKKS [CKKS17] when larger polynomials are
required for the same modulus q, for instance.
Combination With Fixed Hamming Weight. Both partial and secret keys with shared
randomness could be instantiated with a fixed Hamming weight We do not explore this topic any
further here.
LWE Encryption Public Key With GLWE Material. If one wants to take advantage of
the FFT to encrypt fresh LWE ciphertexts with a secret key s ∈ Zn

q , and/or shrink the size of
ciphertexts with partial GLWE secret key, it is possible to provide a GLWE encryption public key
for a partial GLWE secret key S

[ϕ=n] ∈ Rk
q,N such that its flattened version is actually s. In this

case, one uses GLWE encryption and applies a sample extract right after that to obtain the desired
LWE ciphertext.
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Chapter 6

Removing the Padding bit

Section 3.3 presented several state-of-the-art algorithms designed to address the limitations intro-
duced in Section 2.6. These contributions include algorithm that either avoid the requirement for
padding bits (Limitation 1), facilitate computations at higher precision levels (Limitation 4), or
support multi-input ciphertext evaluations (Limitation 7).

In this chapter, we introduce a new algorithm that simultaneously resolves all the three limita-
tions: Limitation 1, 4, and 7. We start by providing a detailed description of this new algorithm
and present an in-depth comparison with state-of-the-art techniques, demonstrating a significant
improvement for high precision. Overcoming these limitations allows for more efficient deployment
of novel FHE algorithms and is essential for advanced constructions, such as those described in
Chapters 7 and 8.

6.1 Introduction

As discussed in Section 2.4, the PBS takes a single LWE ciphertext as input and outputs one LWE
ciphertext corresponding to the LUT evaluation of the encrypted input message. However, when
multiple messages are encoded in multiple LWE ciphertexts, or when we need to evaluate a func-
tion with multiple input values, a single PBS is not enough and can not easily perform multi-input
evaluation. The Tree-PBS method proposed in 2021 by Guimarães, Borin and Aranha [GBA21]
(Algorithm 26), enables us to evaluate a large lookup table over multiple input ciphertexts. For
completeness, we provide details about how to use this technique for large homomorphic integers
in 7.3.3. The Tree-PBS is a valid solution for the evaluation of generic LUT for multiple input
ciphertexts, but its complexity increases exponentially with the number of ciphertexts. Addition-
ally, the Tree-PBS technique uses the classical PBS [CGGI20, CJP21], which has the constraints
on the bit of padding and on the small precision of the messages.

This chapter focuses on solving Limitation 1, 4 and 7 while improving the previous solutions
presented in Sections 3.3. First, we will compare the current solution proposed in the state-of-
the-art in Section 6.2. Then, in Section 6.3, we will present our new WoP-PBS algorithm. This
new technique consists of using the bit extract (Algorithm 15) followed by circuit bootstrapping
(Algorithm 12) to obtain GGSW ciphertexts encrypting the bit decomposition of each message.
With these GGSW ciphertexts, we can evaluate generic LUTs on large integers. This approach
scales more efficiently than Tree-PBS and removes constraints on padding bits for high-precision
inputs.

6.2 Comparison Between A
(CJP21) and A

(GBA21)

In Chapter 2, we introduced various PBS techniques. In particular, Section 3.4 presented several
bootstrapping methods that allow the evaluation of multiple lookup tables, including the boot-
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strapping proposed in [GBA21] (Algorithm 26). This bootstrapping method is particularly efficient
for evaluating multiple ciphertexts representing high precision message. In this section, we compare
this approach with the classical PBS.

To begin, we define an additional atomic pattern type, denoted apGBA, in Definition 26. This
pattern is composed of a dot product, a key switch, and the Tree-PBS procedure introduced
in [GBA21]. The only way to compare the PBS of [CGGI20] in apCJP and the tree-PBS in
apGBA is by solving equation 2.3 for the two types of atomic patterns with a range of 2-norms
and a range of message precision, and finally plot the results.

In the Figure 6.1, we display the comparison between apCJP and apGBA for 4 distinct 2-
norms and for message precision in

{
21, . . . , 224

}
. The padding bit is not included in the message

precision.

Figure 6.1: In this figure, we compare the cost of AP type apCJP and AP of type apGBA with 2
and 3 blocks.

In this experiment, we choose P (N) =
{
21, . . . , 218

}
, the search space of the polynomial size

N . We set q = 264 and we used a probability of failure pfail ≈ 2−35 and one bit of padding (i.e.
Ã = 1).

Remark 6.1 (Noise Bound). For apCJP, the noise bound (definition 23) is defined as t (p, 1) =
q

21+1·p·z∗(pfail)
.

For apGBA, the noise bound needs to be computed differently because this AP with 2 blocks
(respectively 3 blocks) involves ¸2 (respectively ¸3) PBS, all sources of potential failures.

¸i = i · p
i−1 − 1

p− 1
+ 1, with i the number of blocks.

To guarantee a global failure probability for one apGBA, the noise bound needs to be computed
from the number ¸i of PBS. We start by computing the failure probability needed for one PBS

defined as p′i = 1− (1− pfail)
1
ηi and from it we can finally compute the noise bound for each PBS

t (p, 1) = q

21+1·p·z∗(p′

i)
.

The first takeaway is that TFHE bootstrapping (in atomic pattern apCJP, blue/• curve) can
only handle messages up to 11 bits of precision. By using these parameters set, the cost of this
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atomic pattern with regards to the precision is an exponential function in two parts. For precisions
above 4 to 5 bits (padding bit not included), adding a bit of precision more than doubles the cost,
indeed the polynomial size doubles for every additional bit of precision. TFHE PBS does not scale
well with the precision, to maximize efficiency, it should not be used when the messages have more
than 5 bits of precision.

For apGBA, we used on the first layer the multi-value PBS introduced in [CIM19] and we used
PBS over encrypted lookup tables [CGGI20] on the other layers. The tree-PBS of [GBA21] takes
as input a vector of ciphertexts each containing part of the message. The red/+ curve (respec-
tively green/▼ curve) represents the cost to compute a tree-PBS over 2 ciphertexts (respectively 3
ciphertexts) each one containing a chunk of the message. Using this, we can reach precisions that
are not feasible with the bootstrapping from [CGGI20]. Above 11 bits, we cannot find parameters
that will guarantee the correctness of apCJP. Regarding the tree-PBS with 2 blocks, it becomes
interesting in term of cost with 6 bits of precision or more, and offers parameters up to 16 bits of
precision. For higher precision, no feasible solution could be found. The tree-PBS with 3 blocks
provides a way to go above that and we found solutions for precision up to 21 bits. It is more
efficient than the other two starting at 10 bits of precision. It is important to notice that even
if solutions exist, computing apGBA over message of 21 bits costs more than 220 times the cost
of [CGGI20] PBS over Boolean messages.

To conclude this comparison, [CGGI20]’s bootstrapping used as in [CJP21] (i.e., with a KS
before and not after) is the best way to apply a function over message of small precision (1 to 5
bits). For precision above 11 bits, we have to use the tree-PBS in [GBA21]. But as we can see in
the figures, we need an algorithm more efficient than [GBA21] when it becomes too expensive, i.e.,
above 9 bits, especially if one wants to build efficient operations over larger homomorphic integers
with TFHE and still being able to compute LUTs on them.

6.3 Multi-Input Lookup Table Evaluation

In this section, we present a new without padding PBS (WoP-PBS) that is able to take as input
not only one LWE ciphertext but several, it is able to round (or truncate or more) each of the
input messages to a given precision, and it can be used to compute several LUT on the same set
of inputs at the cost of (about) a single LUT.

Our method is based on two building blocks: the circuit bootstrapping (Algorithm 12) and the
mixed (or vertical or horizontal) packing from [CGGI20] (Algorithm 14) presented in Chapter 3.
In practice, the algorithm executes the following steps:

• It starts by using generalized PBS [CLOT21], evaluating a scaled sign function (negacyclic),
and homomorphic subtraction to extract all the bits of each encrypted message. Each bit is
output as a LWE ciphertext (see Algorithm 15).

• It converts each of the LWE ciphertexts extracted by previous step into GGSW ciphertexts,
by using circuit bootstrapping [CGGI20] (see Algorithm 12).

• It uses the GGSW ciphertexts from previous step to evaluate the LUT as a mixed (or vertical
or horizontal) packing [CGGI20] (see Algorithm 14): it consists in practice in a CMux tree,
followed by a blind rotation and one (or several) sample extraction.

The cleartext representation of the new WoP-PBS is presented in Figure 6.2.

In general, the circuit bootstrapping is the most expensive part of the algorithm (each circuit
bootstrapping requires several PBSs, each followed by several functional key switchings). Since the
number of circuit bootstrapping corresponds to the number of bits composing the input message,
the technique generally scales linearly in the size of the input message. However, after a certain
input size, the mixed packing stops being negligible and becomes as costly (or even more) than
the circuit bootstrapping part: roughly speaking, this happens when the number of CMuxes in the
mixed packing part becomes as big as the number of CMuxes in the PBSs computed inside the
circuit bootstrappings (e.g., for the parameter sets that we use in our experiments, this happens
when the input size is about 28 bits).
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m = m3

Bit Extract
+ CBS
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L0,m3,3

L1,m3,3

Lm3,2,m3,3 L[m]
Select

in LUT

Figure 6.2: Cleartext evaluation of the new WoP-PBS (toy example). The values mi,j (for
i, j ∈ {0, 1, 2, 3}) are bits. We split the LUT L into 4 smaller LUTs (L0,0, L0,1, L1,0, L1,1) to be
evaluated in the CMux tree. The output LUT of this tree is given in input to the operation selecting
the right output of a LUT (corresponding to the blind rotation). The output L[m] is the element
in the LUT L corresponding to the input message m. The Bit Extract blocks correspond to the
line 2 in Algorithm 38 and the CMux tree followed by a blind rotation corresponds to the vertical
packing (VerticalPacking, line 6).

We provide the details of the technique (using vertical packing in this case) in Algorithm 38.
To evaluate several LUT, we just need to repeat the vertical packing for each LUT evaluation.

Lemma 6.1 (Correctness of Algorithm 38). Let » ciphertexts cti ∈ LWEs(mi) with mi ∈ Zpi
with

log2(pi) = ¶i, such that mi =
∑¶i−1

j=0 mi,j2
j, for i ∈ [0, » − 1] and let m =

∑»−1
i=0 mi2

∑i−1
j=0 ¶j be

the message formed by th concatenation of each messages. Let PUB be the public material, i.e.,
the BSK, the KSK and the PKSK as detailed in Remark 2.15. Let ¿ be the number of functions
evaluated. Let Lj the set of lookup table representing the function fj for j ∈ [0, ¿ − 1], each
composed of log2

(⌈
Ω
N

⌉)
lookup tables such that Lj = {LUTj,0, . . . , LUTj,log2(+ Ω

N ,)−1}, such that

LUTj ∈ R
k+1
q,N with Ω = max

(
N,
∏»

i=0 2
¶i
)
. Then Algorithm 38 takes as input {cti}i∈[0,»−1], PUB

and {Lj}j∈[0,¿−1] and outputs {ctj ∈ LWEs(fj(m))}j∈[0,¿−1].

Proof (Lemma 6.1). In what follows, we prove that the output of Algorithm 38 is:

(LWEs(f0(m)), . . . ,LWEs(f¿−1(m))), with m =
∑»−1

i=0 mi2
∑i−1

j=0 ¶j the concatenation of each mes-
sages. First, Algorithm 15 extracts the occupied bit of each ciphertext. For each extracted bit,
Algorithm 12 transforms the corresponding LWE ciphertext into a GGSW ciphertext encrypting
a single bit. Then, taking as input all the GGSW ciphertexts, the vertical packing outputs, for
each lookup table, a ciphertext encrypting the index of the lookup table corresponding to the binary
decomposition of the concatenated bits from all messages mi =

∑¶i−1
j=0 mi,j2

j, where i ∈ [0, »− 1].
We refer to Section 3 for the correctness of the bit extraction algorithm (Algorithm 15), the circuit
bootstrapping algorithm (Algorithm 12), and the vertical packing algorithm (Algorithm 14).

128



6.3 Multi-Input Lookup Table Evaluation

Algorithm 38: {ctouti}
¿−1
i=0 ←WoP-PBS((ct0, . . . , ct»−1),PUB, {L0, . . . , L¿−1})

Context:





∆i : scaling factor for the ciphertext cti

¶i : bits occupied by message in ciphertext cti starting from ∆i

such that mi =
∑¶i−1

j=0 mi,j2
j

We note m =
∑»−1

i=0 mi2
∑i−1

j=0 ¶j

Ω = max (N, 2
∑κ−1

i=0 ¶i)

(ℬCBS, ℓCBS) : the base and level of the output GGSW

ciphertexts to the circuit bootstrapping

Lj =
{
LUTj,0, . . . , LUTj,log2(+ Ω

N ,)−1

}
j∈[0,»−1]

Input:





(ct0, . . . , ct»−1) with for 0 f i < », Decode (Decrypt (cti)) = mi

PUB : public keys required for the whole algorithm ; /* Remark 2.15 */

¿ Lookup Tables : L = {L0, . . . , L¿−1},

Output: {ctouti ∈ LWEs (li,m)}¿−1
i=0

1 for i ∈ [0;»− 1] do

/* Extract all bits from the LSB of the message to the non empty MSB */

2 [ct′i,0, . . . , ct
′
i,¶i−1]← BitExtract(cti); /* Algorithm 15 */

3 for j ∈ [0; ¶i − 1] do
/* Circuit bootstrap [CGGI20] the extracted bit into a GGSW */

4 Ci,j ← CircuitBootstrap(ct′i,j ,PUB); /* Algorithm 12 */

5 for k ∈ [0; ¿ − 1] do
/* Vertical Packing LUT evaluation [CGGI20] */

6 ctoutk ← VerticalPacking

({
Ci,j

}j∈+0;¶i−1,

i∈[0;»−1]
, Lk

)
; /* Algorithm 14 */

7 return {ctouti}
¿−1
i=0

Lemma 6.2. The noise of the output of Algorithm 38 is:

Var(EWoP-PBS) = Var(ECBS)+

(
»−1∑

i=0

¶i

)
ℓCBS(k + 1)N

ℬ
2
CBS + 2

12
Var(ECBS) +

(
»−1∑

i=0

¶i

)
kN

32
+

︸ ︷︷ ︸
mixed packing

+

(
»−1∑

i=0

¶i

)
q2 −ℬ

2ℓCBS

CBS

24ℬ2ℓCBS

CBS

(
1 +

kN

2

)
+

(∑»−1
i=0 ¶i

)

16

(
1− kN

2

)2

︸ ︷︷ ︸
mixed packing

.
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With

Var(ECBS) = nℓBR(k + 1)N
ℬ

2
BR + 2

12
Var(BSK) + n

q2 −ℬ
2ℓBR

BR

24ℬ2ℓBR

BR

(
1 +

kN

2

)
+

︸ ︷︷ ︸
PBS

+
nkN

32
+

n

16

(
1− kN

2

)2

︸ ︷︷ ︸
PBS

+ ℓBR(n+ 1)
ℬ

2
BR + 2

12
Var(KSK)+

︸ ︷︷ ︸
private functional KS

+
q2 −ℬ

2ℓBR

BR

24ℬ2ℓBR

BR

(
1 +

n

2

)
+

n

32
+

1

16

(
1− n

2

)2

︸ ︷︷ ︸
private functional KS

.

Proof (Lemma 6.1). The noise of the output of Algorithm 38 corresponds to the noise of a cir-
cuit bootstrapping (a PBS (proof of Theorem 2.15), followed by a private functional KS (i.e.,

an external product (proof of Theorem 2.11))) followed by
∑»−1

i=0 ¶i CMuxes (all the keys are uni-
formly binary). The formula can be obtained from the noise formulae presented in Chapter 2 and
Chapter 3. More detailed of the noise formulae can be found in [CLOT21].

Remark 6.2. The cost of Algorithm 38 can be approximated by:

Cost
ℓPBS,ℓCBS,k,N,n,q,¿,Ω,¶
WoP-PBS = » · ¶ · CostℓPBS,ℓCBS,k,N,n,q

CBS + ¿ · CostΩ,ℓPBS,k,N
VerticalPacking + » · CostℓPBS,k,N,n,q,¶

BitExtract .

Where each ciphertext is composed of messages of ¶ bits.

Observe that the base and level used in the PBS for bit extraction and in the PBS for circuit
bootstrapping might be chosen differently. Several optimizations are possible in Algorithm 38. We
did not include them directly in Algorithm 38 to simplify the explanation:

• The PBSs in the first step of the algorithm can either be computed independently, or se-
quentially, from LSB to MSB, by removing an extracted bit from the input ciphertext before
extracting the next one.

• The second step of the circuit bootstrapping, which is a series of several packing functional
key switchings, can be improved by following a similar footstep as a technique proposed
in [CCR19]. We perform an initial LWE-to-GLWEKS (not functional) to each of the outputs
of the PBS, and then, as already done in [CCR19], we perform an external product times
the GGSW encryption of the GLWE secret key to obtain the remaining GLWE ciphertexts.
This allows us to reduce the size of public evaluation keys at the cost of a slightly larger noise
in the output.

• The KS-PBS performed in the BitExtract algorithm is a Generalized PBS, as described
in [CLOT21], so the modulus switching directly reads the next bit to be extracted. The
sign function is evaluated in order to re-scale the bit at the right scaling factor. The circuit
bootstrappings used in Line 4 are also instantiated with a Generalized PBS. If we choose
parameters that allow to have more padding bits, we could improve the circuit bootstrappings
with a PBSmanyLUT, as described in [CLOT21], i.e., perform all the PBS in a circuit
bootstrapping at the cost of a single PBS. Using this technique imposes an additional
constraint on the noise in input of the circuit bootstrapping.

• We can observe that one of the PBS of the circuit bootstrappings used in Line 4 could
be avoided by slightly modifying the Bit Extract algorithm (Algorithm 15) to provide the
extracted bit at the right re-scaling factor.

Remark 6.3. In general, the number of circuit bootstrappings performed in Algorithm 38 corre-
sponds to the number of bits of the input message. However, this number might be slightly larger
in some special cases, such as the case where the carry buffers have not been emptied beforehand,
or the case of non power of two encoding. In these cases, we might need to extract more bits of
information, and so perform more PBSs during bit extraction and more circuit bootstrappings.
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6.4 Comparison Between A
(this work), A(CJP21) and A

(GBA21)

Furthermore, different possible inputs might encode the same value, hence the LUT L needs to
contain some kind of redundancy. If the goal is to compute the discrete function f , one needs to
compute the L as L[(m0, . . . ,m»−1)] = Encode (f (Decode (m0, . . . ,m»−1))).

Remark 6.4 (Faster Algorithm 38 for Special LUTs). Observe that the new WoP-PBS approach
can be also adapted, and be very convenient, for particular LUTs such as the ReLU or the sign
function in the radix mode, as instance. Indeed, for these functions we are only interested in the
MSB part of the message, so the mixed packing is greatly simplified, and the cost of the WoP-PBS
becomes linear in the number of blocks.

6.4 Comparison Between A
(this work), A(CJP21) and A

(GBA21)

In Section 6.3, we introduced a new WoP-PBS in Algorithm 38. We can now resume our compari-
son, started in Section 6.2, to find out which algorithm is the best (depending on some parameters)
to compute over ciphertexts with large precision. To do so, we consider a new atomic pattern type
A

(this work) composed of a dot product (DP, Theorem 2.7) and the WoP-PBS (Algorithm 38). As
this algorithm can work on a single ciphertext or on several ciphertexts containing chunks of the
message, we present three variants: 1, 2 and 4 blocks. We display a comparison between A

(CJP21),
A

(GBA21) and A
(this work) on figure 6.3. We used the exact same context as in Figure 6.1 for this

experiment, so the failure probability is for the three of them pfail ≈ 2−35.

Figure 6.3: In this figure, we evaluate a LUT over a few encrypted inputs. We compare A type
A

(this work), corresponding to the WoP-PBS introduced in this chapter (1, 2 and 4 blocks), and
A type A

(GBA21), corresponding to the Tree-PBS [GBA21] (2 and 3 blocks). As a baseline, A of
type A

(CJP21) is also plotted.

Remark 6.5 (Noise Bound). For A
(CJP21) and A

(GBA21), please refer to Remark 6.1. For
A

(this work), we have a certain number of sequential bit extractions per input LWE ciphertext
/ block. In theory, we want to take into account all those potential PBS (one per bit extraction),
but we noticed that the first one dominates all the others regarding noise. In fact, their impact
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on the total failure probability is negligible compared with the first bit extraction. Our exper-
iments showed that for 2-norms ¿ g 4, and for failure probability below 2−25 this assumption
holds. We leave as future works the exploration of this topic. With this assumption, we start

by computing the failure probability needed for one PBS defined as p′i = 1 − (1− pfail)
1
κ , since

there are » input LWE ciphertexts. From it, we can finally compute the noise bound for each PBS
t (p, 0) = q

21·p·z∗(p′

i)
.

The brown/♦ curve represents the cost of the best parameter set for an atomic pattern
A

(this work) working over one block. We can immediately notice that, between 1 and 9 bits of
precision, A

(CJP21) is more interesting than the new bootstrapping (Algorithm 38). However,
with precisions from 10 bits and above, A(this work) has solutions that are more efficient than the
A

(CJP21)’s existing ones, and finds solutions when A
(CJP21) cannot. For small ¿, it offers solutions

that are slightly better than the ones from A
(GBA21).

The pink/ curve (respectively the pink/■ curve) represents the atomic pattern A
(this work)

for two blocks (respectively four blocks) of message. On those curves, we see that it scales much
better than the other atomic pattern types. With Algorithm 38, we manage to find solution up
to 24 bits of precision. Those solutions are costly but far less than the ones for A

(GBA21), and
for comparison, it is only 210 times more costly to compute a LUT over a message with 24-bits
of precision with A

(this work) than compute a LUT with 1-bit of precision with A
(CJP21). Also for

18 bits of precision, the new WoP-PBS with two blocks is approximately 27 times faster than the
tree-PBS in A

(GBA21) with three blocks.
To sum up, for small precisions (up to 5 bits), TFHE PBS is the best option among the

three considered. Above 10/11 bits of precision, the algorithm we introduced in this chapter
(Algorithm 38) becomes the best alternative and improves the state-of-the-art by a non-negligible
factor.

Remark 6.6 (LUT Evaluation for Even More Precision). It is important to observe that evaluating
a LUT on integers larger than e.g., 30 bits, even in clear, becomes too expensive in terms of memory
(e.g., a LUT for 30-bit input and output integers contains 230 · 64 bits = 8 GB of information). So
both techniques, the Tree-PBS and our new WoP-PBS, are anyway not practical anymore.

Remark 6.7 (Small Public Material for Algorithm 38). An important observation to make about
Algorithm 38 is that the size of the needed public material scales way better than a tree-PBS
as in [GBA21]. As an example, for a total of 18 bits of precision we have a key of 1.65 GB for
A

(GBA21) and a size of 0.926 GB for A(this work).

6.5 Comparison Between A
(this work) and A

(LMP21)

A few WoP-PBS constructions have been proposed in the literature. Some works [KS21, LMP21]
already compare them, but our optimization framework enables us to truly do it by comparing
them at the best of their efficiency. This can be done by putting each of them in a different
atomic pattern type and finding optimal parameters for different 2-norms and precisions. To do
so, we create one additional atomic pattern type called A

(LMP21) composed of a DP, a KS and the
WoP-PBS from [LMP21]. We used the exact same context as in Figure 6.1 for this experiment, so
the failure probability is for the both of them pfail ≈ 2−35. We display in figure 6.4 the comparison
between our new WoP-PBS (Algorithm 38, blue/• curve) in A

(this work) and the WoP-PBS
from [LMP21] in A

(LMP21) (red/+ curve).

Remark 6.8 (Noise Bound). For A(this work), please refer to Remark 6.5. For A(LMP21), we consider
the two sequential PBS involved in the algorithms. They almost have the same amount of input
noise and thus we assume that they both contribute equally to the overall failure probability. We
experimented the two possible scenarios, (i) taking the first PBS’s input noise for the computation
or (ii) taking the second one. We did not observe any difference between the two approaches for
the considered failure probabilities and 2-norms. We start by computing the failure probability
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(this work) and A

(LMP21)

needed for one PBS defined as p′i = 1 − (1− pfail)
1
2 and from it we can finally compute the noise

bound for each PBS t (p, 0) = q

21+1·p·z∗(p′

i)
.

Figure 6.4: In this figure, we compare the cost of A type A
(this work) and type A

(LMP21). The first
one corresponds to DP-KS followed by our new WoP-PBS (Section 6.3), and the second one to
DP-KS followed by the WoP-PBS from [LMP21].

The first thing that we learn on the WoP-PBS of [LMP21] is that it does not scale well with
big precisions, which is not surprising as the algorithm uses as subroutine two PBS from [CGGI20]
to compute the WoP-PBS. Thus, as for A

(CJP21), for precisions above 10, we do not find any
feasible solutions. We can also identify as before two parts on the curve, the first one for small
precisions (1 to 8 bits) and a second one for higher precisions: the reason behind this sudden
growth in cost is also due to the increase of the polynomial size to manage bigger messages.

Thanks to the new WoP-PBS (Algorithm 38), we are able to compute a WoP-PBS over
large messages. To conclude, this new algorithm scales better than existing algorithms to compute
LUTs over large message and we do not need a padding bit which is a known constraint of TFHE
bootstrapping.
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Part III

Representation for
Homomorphic Integer and

Floating-Point
This part of the thesis explores new constructions for representing

larger numerical values in TFHE, overcoming the limitation of small

message spaces (less than 10 bits). Expanding the range of repre-

sentable values is essential for building new applications with real-

world use cases.

To address these challenges, we first introduce efficient encodings and

algorithms for representing large integers within the constraints of

TFHE. Then, building on these new constructions, we develop more

complex structures to efficiently represent floating-point numbers and

design dedicated arithmetics. By addressing these challenges, we ex-

tend the practical usability of TFHE beyond simple Boolean and

small integer computations.
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Chapter 7

Homomorphic Large Integers

In Chapter 2, we discussed how TFHE was initially designed as a Boolean scheme and later
extended to support small integers (smaller than 8 bits). However, modern architectures rely on
32- or 64-bit integers, and most software is built around these native precisions. As seen in the
introduction, an objective of FHE is to replicate the clear world, allowing any cleartext operation
to be executed homomorphically. Alas, TFHE is limited to small integer precision, which restricts
its use cases as an FHE scheme (Limitation 4). Indeed, many use cases require higher precision
and cannot be directly executed with TFHE. Solutions must be found either to work with smaller
representations, such as in machine learning, where circuits can be quantized to smaller integers
(at the cost of precision), or to represent high precision using specific encodings for TFHE, as will
be presented in this chapter.

Even with the advancements detailed in Part II, particularly with the methods proposed in
Chapter 4 and Chapter 6, achieving high precision using a single ciphertext remains a signifi-
cant challenge. In this chapter, we take on this challenge and present different encodings and
constructions based on several ciphertexts that enable us to efficiently reach higher precision.

7.1 Introduction

In this chapter, we propose to study how to represent large integers by using several LWE ci-
phertext. In the state-of-the-art, several approaches using many ciphertexts to represent a single
message are proposed. We can summarize these approaches in two main categories: the radix and
the CRT (Chinese Reminder Theorem) representations.

The radix representation consists in decomposing a message into several chunks according to
a decomposition base. It is very similar to the representation in base 10 we use in our daily lives,
where to represent a large number we use several digits. Then the idea is to put each of the
elements of the decomposition into a separate ciphertext and to define the new encryption of the
large message as the list of these ciphertexts.

The CRT approach consists in representing a number x modulo a large integer Ω =
∏»

i=0 Éi,
where the Éi are all co-primes, as the list of its residues xi = x mod Éi. Each of the reduced
elements is then encrypted into a different ciphertext and, as for the radix approach, the new
encryption of the large message modulo Ω is the list of these ciphertexts. Observe that the CRT
approach in the plaintext space is different from the well known SIMD style [GHS12].

In order to use these two approaches in TFHE, the elements of the decomposition (for the radix
approach) and the residues (for the CRT approach) need to be quite small (generally less than 8
bits).

The approach of splitting a message into multiple ciphertexts has already been proposed for
binary radix decomposition in FHEW [DM15] and TFHE [CGGI20], and for other representations
in [BST20], [GBA21], [KO22], [CZB+22], [LMP21] and [CLOT21]. However, none of them takes
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advantage of carry buffers, introduced in Definition 8, to make the computations more efficient
between multi-ciphertext encrypted integers by avoiding bootstrapping as much as possible.

The idea of using the CRT approach is mentioned in [KS21] but authors do not change the
traditional TFHE encoding to fit the CRT representation. In the following sections, we provide
detailed algorithms to describe the use of the CRT in the plaintext space with two different ap-
proaches (with or without carry buffers, along with their respective encoding). Both of the radix
and the CRT approaches are detailed in Section 7.2.

These techniques are the first step towards larger precision. Indeed, they have some limitations.
In particular, the radix approach does not allow any modulo to be represented, but only multiples of
a certain base (or bases), and the CRT is limited on the maximal number that could be represented,
because there exists a very limited amount of primes or co-primes smaller than 8 bits. In Section 7.3,
we demonstrate how to overcome these limitations.

7.2 Modular Arithmetic with Several LWE ciphertexts

In TFHE, a single ciphertext can efficiently encrypt up to 8-bits of information. Larger messages
should be encrypted in a different way: a possibility is to use many ciphertexts to encrypt a single
large precision message in LWE. In that case, there are two options that are already used in the
literature: the radix representation or the CRT representation. They are both valid approaches
but have some limitations in their actual state.

We begin by introducing radix-based large integer using the carry/message encoding detailed
in Subsection 2.4.3. Next, we demonstrate how to perform basic operations, such as addition and
multiplication, using this representation. Lastly, we present how to achieve high precision using
the CRT representation with TFHE.

7.2.1 Radix-Based Large Integers

The radix based approach consists in encrypting a large integer modulo Ω =
∏»−1

i=0 ´i as a list of
» ∈ N LWE ciphertexts. Each of the » ciphertexts is defined according to a pair (´i, pi) ∈ N2 of
parameters, such that 2 f ´i f pi < q, which respectively corresponds to the message subspace
and the carry-message subspace involved with the modular arithmetic, as described in Definition 8
Figure 7.1 gives a visual representation out of a toy example.

∅

0

p0

0 0

´0

· · ·

e0

ct0 = LWE(m̃0)

∅

0

p1

0 0

´1

· · ·

e1

ct1 = LWE(m̃1)

∅

0

p2

0 0

´2

· · ·

e2

ct2 = LWE(m̃2)

Figure 7.1: Plaintext representation of a fresh radix-based modular integer of length » = 3 working

modulo Ω = (22)
3
with msg = m0 +m1 · ´0 +m2 · ´0 · ´1. The symbol ∅ represents the padding

bit needed for the PBS. For each block we have m̃i = Encode (mi, pi, q). For all 0 f i < » we
have ´i = 4, pi = 16, » = 3 and Ω = 43.

In practice, the restriction for Ω is that it has to be a product of small basis. Indeed, TFHE-
like schemes do no scale well when one is increasing the precision, so the good practice is to keep
pi f 28.

To encode a message msg ∈ ZΩ, one needs to decompose it into a list of {mi}»−1
i=0 such

that msg = m0 +
∑»−1

i=1 mi ·
(∏i−1

j=0 ´j

)
. Then we can independently call the Encode func-

tion (definition 8) on each mi so we have m̃i = Encode (mi, 2
Ã · pi, q) with Ã the number of

bits of padding. Finally we can encrypt each m̃i into an LWE ciphertext such that we have
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ct = [ct», . . . , ct0] ∈ [LWE(m̃»−1), . . . ,LWE(m̃0)]. To decode, we simply recompose the integer
from the mi values.

In terms of operations between radix-based large integers, it is important to recall that two
messages can interact if they are encoded and encrypted with the same parameters. The majority
of the arithmetic operations can be computed by using a schoolbook approach (homomorphically
mixing linear operations and PBS) and by keeping an eye on the degree of fullness in each block
(Definition 18). When carries are full, they need to be propagated to next block: this is done by
extracting the carry and the message and adding carry to the next block (last carry can be thrown
away).

7.2.1.1 Radix-Based Large Integer Operations

In this section, we present the main algorithms for efficiently working with large integers (we note
that several additional algorithms, including more optimized variants, are presented in [BdBB+25]).
For efficiency reasons, we focus on the radix representation, where the carry and the message spaces
represent the same amount of information. For the » ciphertexts composing a large integer, we
have pi = ´2

i = κ
√
Ω for i ∈ [0, » − 1]. This representation will be intensively used in the next

chapter (Chapter 8).

Carry Propagation During arithmetic operations, the carry buffer in each block accumulates
values, and at some point, it becomes necessary to free the carry space through carry propagation.
This is required either when the carry spaces reach their capacity or when the next algorithm needs
to operate with a fresh carry space.

The carry propagate is a sequential algorithm that starts from the least significant block extract
both the carry and the message using two separate PBS. The extracted carry is then added to
the next blocks, and this process continue until the most significant block, where we only need to
extract the message. Indeed the carry value in the most significant block represents value higher
than the modulo Ω. This procedure is detailed in Algorithm 39.

Algorithm 39: ctout ← CarryPropagate (ct,PUB)

Context:





LUTCarry : LUT to return the carry of the ciphertext (return
⌊
m
´

⌋
).

LUTMsg : LUT to return the message of the ciphertext (return m mod ´).
p : the carry-message modulus
´ : the message modulus

Input:

{
ct = [ct»−1, . . . , ct0] ∈ Z(n+1)·»

q

PUB : Public materials for KS and PBS; /* Remark 2.15 */

Output:
{

ctout = [ctout,»−1, . . . , ctout,0] ∈ Z(n+1)·»
q

1 for i ∈ [0;»− 1] do
2 if i ̸= »− 1 then

/* Extract the carry */

3 ctcarry ← KS-PBS(cti,PUB, LUTCarry) ; /* Algorithm 4 and 11 */

4 cti+1 ← cti+1 + ctcarry

/* Extract the message */

5 ctout,i ← KS-PBS(cti,PUB, LUTMsg) ; /* Algorithm 4 and 11 */

6 return (ctout = [ctout,»−1, · · · ctout,0])

Theorem 7.1 (Correctness of Algorithm 39). Let ct = [ct»−1, . . . , ct0] be ciphertexts encrypting

msg =
∑»−1

i=0 mi ·´i such that cti encrypts mi with mi < p−´. Then Algorithm 39 returns ctout =
[ctout,»−1, . . . , ctout,0] encrypting msg mod Ω such that ctout,i encrypting mout,i with mi < ´.

139



Chapter 7. Homomorphic Large Integers

The cost of Algorithm 39 is: Cost
ℓ,k,N,n,q,»
CarryPropagate = (2»− 1)

(
Cost

ℓ,k,N,n,q
PBS + Cost

ℓ,n,k,N
KS

)
.

Proof (Theorem 7.1). In this Algorithm, each block cti encrypts mi = ci · ´ + m̃i < p − ´. The
message extraction returns m̃i < ´. The carry extraction returns the carry ci < ´ from block i
and adds this carry to the following block i + 1. As mi+1 = ci+1 · ´ + m̃i+1 < p − ´, we have
mi+1 = ci+1 · ´ + m̃i+1 + ci < p so we can perform the addition without compromising the padding
bits and without losing any information. After Algorithm 39, each ciphertext of ct encrypts m̃i < ´
such that

∑»−1
i=0 mi · ´i mod Ω =

∑»−1
i=0 m̃i.

At each step, one needs to compute two PBS: one to extract the message and another one to
extract the carry, except for the most significant block, where only one PBS is required to extract
the message. We note that more efficient algorithms have been studied in [BdBB+25].

Radix Addition. The addition between two large integers is presented in Algorithm 40.

Algorithm 40: ctout ← RadixAdd (ct0, ct1,PUB)

Context:

{
´ : the message modulus
p = ´2 : the carry-message modulus

Input:





ct0 = [ct0,»−1, . . . , ct0,0] ∈ Z(n+1)·»
q

ct1 = [ct1,»−1, . . . , ct1,0] ∈ Z(n+1)·»
q

PUB : Public materials for KS and PBS; /* Remark 2.15 */

Output:
{

ctout = [ctout,»−1, . . . , ctout,0] ∈ Z(n+1)·»
q

1 for i ∈ [0;»− 1] do
2 ctout,i ← Add(ct0,i, ct1,i) ; /* Algorithm 3 */

3 [ctout,»−1, · · · ctout,0]← CarryPropagate([ctout,»−1, · · · ctout,0],PUB) ; /* Algorithm 39 */

4 return (ctout = [ctout,»−1, · · · ctout,0])

Theorem 7.2 (Correctness of Algorithm 40). Let cti = [cti,»−1, . . . , cti,0] be ciphertexts encrypting

msgi =
∑»−1

j=0 mi,j · ´j such that cti,j encrypts mi,j for i ∈ {0, 1} such that m0,j +m1,j < p. Then
Algorithm 40 returns ctout = [ctout,»−1, . . . , ctout,0] encrypting msg0 +msg1 mod Ω.

The cost of Algorithm 40 is: Cost
ℓ,k,N,n,q,»
RadixAdd = » · Costn,1add + Cost

ℓ,k,N,n,q,»
CarryPropagate.

Proof (Theorem 7.2). As for each message m0,j, m1,j we have m0,j + m1,j < p − ´, for each
ciphertext we can do the addition of ct0,j and ct1,j encrypting the sum of m0,j and m1,j in the ci-

phertext ctout,j (Algorithm 3). Finally, we have ctout which encrypts
∑»−1

j=0 m0,j´
j+
∑»−1

j=0 m1,j´
j =∑»−1

j=0 (m0,j +m1,j)´
j mod Ω.

We observe that the most computationally expensive part of the algorithm is the carry propaga-
tion. Depending on the parameters and the degree of fullness, when chaining multiple additions, it
is not necessary to perform a carry propagation after each addition.

Moreover, if the carry space is nearly full, i.e., if for two messages m0,j and m1,j we have
m0,j +m1,j g p− ´, we need to perform a carry propagation (Algorithm 39) before performing the
addition.

Radix Multiplication. The multiplication of two large integers is presented in Algorithm 41.
Before performing this operation, the carry buffers of both ciphertexts must be empty. If they are
not, a carry propagation (Algorithm 39) must be executed before.

Theorem 7.3 (Correctness of Algorithm 41). Let cti = [cti,»−1, . . . , cti,0] be ciphertexts encrypting

msgi =
∑»−1

j=0 mi,j ·´j such that cti,j encrypts mi,j for i ∈ {0, 1} with mi,j < ´. Then Algorithm 41
returns ctout = [ctout,»−1, . . . , ctout,0] encrypting msg0 ·msg1 mod Ω.

140



7.2 Modular Arithmetic with Several LWE ciphertexts

Algorithm 41: ctout ← RadixMul (ct0, ct1,PUB)

Context:





´ : the message modulus
p = ´2 : the carry-message modulus

LUTMSB : LUT to return
(⌈

m
´

⌉
· (m mod ´)

)
mod ´.

LUTLSB : LUT to return
(+m

β ,·(m mod ´))
´ mod ´.

Input:





ct0 = [ct0,»−1, . . . , ct0,0] ∈ Z(n+1)·»
q

ct1 = [ct1,»−1, . . . , ct1,0] ∈ Z(n+1)·»
q

PUB : Public materials for KS and PBS; /* Remark 2.15 */

Output:
{

ctout = [ctout,»−1, . . . , ctout,0] ∈ Z(n+1)·»
q

1 for i ∈ [0;»− 1] do
2 cttmp ← ct0,i · ´
3 ctLSB,i ← {}
4 ctMSB,i ← {}

/* Trivial encryption of zero, Remark 2.6 */

5 tmpLSB ← {ct(0)}i

6 tmpMSB ← {ct(0)}i+1

7 for j ∈ [»− 1− i; 0] do
8 cttmp = add(cttmp, ct1,j) ; /* Algorithm 3 */

9 ctLSB,i ← ctLSB,i.append (KS-PBS(cttmp,PUB, LUTLSB))
10 if i+ j ̸= »− 1 then
11 ctMSB,i ← ctMSB,i.append (KS-PBS(cttmp,PUB, LUTMSB))

12 ctLSB,i ← ctLSB,i.append (tmpLSB)
13 ctMSB,i ← ctMSB,i.append (tmpMSB)

14 ctout ← {ct(0)}»
15 for i ∈ [0;»− 1] do
16 ctout ← RadixAdd(ctout, ctLSB,i,PUB) ; /* Algorithm 40 */

17 ctout ← RadixAdd(ctout, ctMSB,i,PUB) ; /* Algorithm 40 */

18 return (ctout = [ctout,»−1, · · · ctout,0])

The cost of Algorithm 41 can be bounded by: Cost
n,»,ℓ,k,N,q
RadixMul = 2» · Costℓ,k,N,n,q,»

RadixAdd + »2/2 ·
Cost

n,1
add + »(» − 1) ·

(
Cost

ℓ,k,N,n,q
PBS + Cost

ℓ,n,k,N
KS

)
. This cost estimation does not take into account

several potential improvements, such as the one described in Theorem 7.2.

Proof (Theorem 7.3). Considering the correctness of each algorithm used in Algorithm 41,
during each iteration of the loop at line 1, we compute the equivalent of the clear result
m0,i · ´i · ∑»−1−i

j=0 m1,j´
j =

∑»−1−i
j=0 m0,i · m1,j´

j+i. Since m0,i < ´ and m1,j < ´, we

have m0,i · m1,j = ci,j · ´ + m̃i,j < ´2 = p. Thus, for each block multiplication, we have

m0,i´
i · m1,j´

j = ci,j · ´i+j+1 + m̃i,j´
i+j. We can rewrite m0,i · ´i · ∑»−1−i

j=0 m1,j´
j as

∑»−1−i
j=0 m̃i,j´

j+i +
∑»−2−i

j=0 ci,j´
j+i+1. We note that

∑»−1−i
j=0 m̃i,j´

j+i is encrypted in ctLSB,i and∑»−2−i
j=0 ci,j´

j+i+1 is encrypted in ctMSB,i

Then, the rest of the proof is straightforward and follows the standard schoolbook multiplication
method.
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7.2.2 CRT-Based Large Integers

The CRT based approach consists in encrypting a large integer modulo Ω =
∏»−1

i=0 ´i as a list of »
LWE ciphertexts, such that each pair ´i and ´j ̸=i of bases are co-primes. Each of the » ciphertexts
is defined according to a pair {´i, pi}0fi<» such that 2 f ´i < pi < q.

In order to encode a message msg ∈ ZΩ, one needs to compute {mi}»−1
i=0 such that msg = mi

mod ´i for all 0 f i < ». Then we can independently encode and encrypt each mi into an LWE
ciphertext. To decode, we simply need to compute the modular reduction in base ´i and compute
the inverse of the CRT.

With this CRT encoding, we have to empty the carry buffers when they are (almost) full.
Indeed, the quantity overlapping the base ´i is not needed to maintain correctness but when using
TFHE PBS, the bit of padding needs to be preserved. We need to only call the message extraction
algorithm, described in Remark 2.17 when needed.

All the arithmetic operations can be performed independently on the blocks by using the
operators described in Section 2.3. Concerning the evaluation of LUT, the only known way in the
literature to compute them on CRT-based large integers, is the technique proposed by [KS21], that
can be used only when the LUT to evaluate is CRT friendly. By CRT friendly, we intend a LUT L
that can be independently evaluated in each component, i.e., L such that EncodeCRT (L (msg)) =
(L0 (m0) , . . . , L»−1 (m»−1)) where EncodeCRT = (m0, . . . ,m»−1). For generic LUT evaluations, we
can used either the WoP-PBS (Algorithm 38) presented in Chapter 6 or the technique introduced
by [GBA21] (Algorithm 26).

Native CRT. In TFHE, we can also encode CRT integers by using no padding bit and no carry

buffer (so no degree of fullness either), and by encoding the message mi as
⌊

q
´i
·mi

⌉
. By doing so,

additions and scalar multiplications become native and do not require any PBS, except for noise
reduction. To compute additions one can use the LWE addition on each residue, and to compute
a scalar multiplication by ³, one can decompose ³ with the CRT basis into smaller integers, and
compute scalar multiplications with them. Without the bit of padding, the PBS can be evaluated
only with a WoP-PBS algorithm such as the ones presented in Section 3.3 and Algorithm 38
introduced in Chapter 6.

7.2.3 Limitations

The radix and CRT approaches discussed in this section are a first step towards solving the precision
problem in TFHE-like schemes. However, they come with limitations:

• The radix approach is limited to the modulo Ω that can be expressed as a product of bases.
But if the modulo is as instance a large prime, no solution is known.

• The CRT approach suffers from the CRT requirements, i.e., co-prime bases, and the precision
limitation we have in practice with TFHE. Indeed, there are a limited number of primes
between 2 and 128. It means that this approach is good when Ω is composed of small enough
co-prime factors but for the rest of the possible Ω we need other solutions.

In the next section, we provide solutions to overcome all these limitations.

7.3 TFHE-based Large Integers

In this section, we propose two improvements. First, we generalize the radix approach to support
any large modulus Ω. Then, we introduce a hybrid approach that combine the advantage of both
the radix and the CRT approaches and allows us to work efficiently with any moduli. In practice,
without the first improvement, the number of possible CRT residues is limited by the number of
small prime integers, significantly restricting the range of available general moduli Ω offered by the
hybrid approach.
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7.3.1 Generalization of radix to any large modulus

By using the radix representation, homomorphic modular integers are defined modulus Ω, that is
equal to the product of the bases ´i ∈ N, i ∈ [0, » − 1], i.e., Ω =

∏»−1
i=0 ´i. Here, we propose to

remove this restriction by generalizing the previous arithmetic to any modulus Ω s.t.
∏»−2

j=0 ´j <

Ω <
∏»−1

j=0 ´j . The only difference with the previous approaches lies in the computation of the
modular reduction. In what follows, we propose two complementary methods to perform this
modular reduction, whose efficiency depends on Ω and the product of the selected basis.

First method for modular reduction. The first method consists in performing multiple LUT

evaluations in the most significant block to reduce it modulo Ω. Indeed, the modular reduction
is applied on the »th block (i.e., ct»−1) which represents m»−1 ·

∏»−2
i=0 ´i with m»−1 < p»−1, and

which might be larger than Ω. The complete process is detailed in Algorithm 42. The modular
reduction is performed as a series of » PBS (with KS, Line 2) and the result is a radix-based
integer with a base (´0, . . . , ´»−1) decomposition. The final step is to add the first »− 1 blocks of
the result of the modular reduction to the first » − 1 blocks of the input (Line 4) and to replace
the last block in the result by the (»− 1)-th block obtained in the modular reduction (Line 5).

Algorithm 42: (ct′0, . . . , ct
′
»−1)← ModReduction1((ct0, . . . , ct»−1),PUB)

Context:





Lj : r-redundant LUT for





Zpκ−1
→ Zℬj

x 7→ x′
j = Decompj

(
x ·

»−2∏

h=0

ℬh mod Ω

)

x′
j is the j-th element in the decomposition in base (ℬ0, . . . ,ℬ»−1)

s.t. x ·∏»−2
h=0 ℬh mod Ω = x′

0 +
∑»−1

i=1 x′
i ·
(∏i−1

j=0 ℬj

)

Input:





(ct0, . . . , ct»−1), encrypting msg = m0 +
∑»−1

i=1 mi ·
(∏i−1

j=0 ℬi

)

s.t. cti encrypts message mi with parameters (ℬi, pi)

PUB: public material for KS and PBS; /* Remark 2.15 */

Output: (ct′0, . . . , ct
′
»−1), encrypting msg = m0 +

∑»−1
i=1 mi ·

(∏i−1
j=0 ℬi

)
mod Ω

/* Decompose message in block »− 1 with respect to base (ℬ0, . . . ,ℬ»−1) */

1 for j ∈ [0;»− 1] do
2 cj ← KS-PBS(ct»−1,PUB, Lj)

/* Add (as in Algorithm 3) decomposition to all the blocks up to »− 2 */

3 for j ∈ [0;»− 2] do
4 ct′j ← Add(ctj , cj)

/* Replace »− 1 block with »− 1 element in decomposition */

5 ct′»−1 ← c»−1

6 return (ct′0, . . . , ct
′
»−1)

Observe that the » KS-PBS in Line 2 of Algorithm 42 could be replaced by optimized pro-
cedures evaluating several different LUT on the same input ciphertext. A few constructions have
been proposed in the literature, such as the PBSmanyLUT [CLOT21] (see Algorithm 24) or the
multi-value bootstrapping [CIM19] (see Algorithm 25).

Theorem 7.4. (Correctness of Algorithm 42) Let » ciphertexts cti for i ∈ [0, »− 1] representing
a large integer modulo Ω as defined in Section 7.2.1. By applying Algorithm 42, we correctly clear
the carry space without losing any information from the input ciphertexts.

Proof (Theorem 7.4). By construction, we have that
∏»−2

j=0 ´j < Ω <
∏»−1

j=0 ´j. Then, reducing

the (»−1)-th block encrypting the message m»−1 < p»−1, rescaled by the product
∏»−2

i=0 ´i modulus
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Ω is enough to correctly clear its carry space without loosing information. This is homomorphically

done by evaluating the » functions x ∈ Zpκ−1
7→ Decompj

(
x ·∏»−2

h=0 ´h mod Ω
)
with j ∈ [0, »−1].

Then, for all i ∈ [0;»− 1], Decrypt(ci) = ri, giving r = r0 +
∑»−1

i=1 ri ·
(∏i−1

j=0 ´j

)
with ri < ´i and

0 f r < Ω. The last step is to compute the addition between each cti but the (»− 1)-th with the ci.
The final output is given by ct′ = (ct′0, . . . ct

′
»−1). Then, for all i ∈ [0;»−2], Decrypt(ct′i) = mi+ri,

such that Decrypt(ct′) = m0 + r0 +
∑»−2

i=1 (mi + ri) ·
(∏i−1

j=0 ´j

)
+ rk−1

∏»−1
j=0 ´j.

Second method for modular reduction. The second method idea is based on the shape of
−∏»−2

h=0 ´h (i.e., the negation of the scaling factor of the message in the » − 1 block) reduced
modulo Ω. The radix decomposition is:

»−2∏

h=0

´h mod Ω = ¿0 + ¿1 · ´0 + ¿2 · ´0´1 + · · ·+ ¿»−1 ·
»−2∏

j=0

´j .

If ¿»−1 = 0 and the other elements of the decomposition, i.e., ¿0, ¿1, . . . , ¿»−2, are small
integers (ideally many of them set to 0), then this method is more efficient. Indeed, when these
conditions are respected, the idea is to replace the MSB block by multiplying it by the non-zero
constants ¿j and subtracting the results from the j-th input block, for j ∈ [0, » − 2]. Some
multiplications with positive constants are needed and might require some carry propagation prior
to them depending on the degrees of fullness. This method is detailed in Algorithm 44. In the
general case where the bases for each block are different, the algorithm performs a homomorphic
decomposition into the right base, corresponding to a series of PBSs, as detailed in Algorithm 43.
This step could be skipped if the bases are compatible. The padding algorithm that follows is
simply a padding with zero ciphertexts for the addition and subtraction to work.

Algorithm 43: (ctj)j∈[0,µ] ← Decomp (ctin, ´,p,PUB)

Context:





(q, p, deg) : parameters of ctin

µ := deg ·(p− 1)

qi,´(x) =

{
x, if i = −1⌊
qi−1,β(x)

ℬi

⌋
, if i g 0

ri,´(x) = qi−1,´(x)− qi,´(x) ·ℬi, i g 0

µ´(x) =

{
min(i ∈ Ω), Ω = {i < |´|, qi,´(x) = 0}
|´| if Ω = ∅.

µ := µ´(µ)

s ∈ Zn : the secret key

Li,´ : a LUT for x→ ri,´(x) · q
2·pi

, i ∈ [0, »− 1]

Input:





ctin : LWE encryption of a message m

(p, ´) ∈ N»2

PUB: public material for KS and PBS; /* Remark 2.15 */

Output: (ctj)j∈[0,µ] encrypting the message m

1 for j ∈ [0, µ] do
2 ctj ← KS-PBS(ctin,PUB, Li)

3 with ctj LWE encryption with parameters
(
q,ℬj , pj , deg = min

(
ℬj−1
pj−1 ,

qj−1,β(µ)
pj−1

))

4 end
5 return (ctj)j∈[0,µ]
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Example of Algorithm 44. Let us develop the algorithm for a 3-blocks integer:

m = m0 +m1´0 +m2´0´1 and ´0´1 = ¿0 + ¿1´0 + ¿2´0´1 mod Ω.

therefore,

m = m0 +m1´0 +m2¿0 +m2¿1´0 +m2¿2´0´1

= (m0 +m2¿0) + (m1 +m2¿1)´0 + (m2¿2)´0´1 mod Ω.

If ¿2 = 0, then we will have emptied the last block. Let us try this method on an example:

Ω = 1055, » = 3, β = (´, ´, ´) with ´ = 25 and p = (p, p, p) with p = 27. Observe that (25)
2

mod 1055 = −31 = −1 · 25+1 (so ¿0 = 1, ¿1 = −1 and ¿2 = 0). Then, the new reduced ciphertext
would be composed by:

• in the block 0: the addition between the previous block 0 and the previous block 2 multiplied
times 1;

• in the block 1: the addition between the previous block 1 and the previous block 2 multiplied
times −1;

• in the block 2: an encryption of 0.

Algorithm 44:
(
ct′0, . . . , ct

′
»−1

)
← ModReduction2((ct0, . . . , ct»−1),PUB)

Context:

{
ν = (¿0, ¿1, . . . , ¿»−1) be a convenient decomposition s.t.∏»−2

h=0 ´h mod Ω = ¿0 + ¿1´0 + ¿2´0´1 + · · ·+ ¿»−2

∏»−3
j=0 ´j

Input:

{
(ct0, . . . , ct»−1) , encrypting msg = m0 +

∑»−1
i=1 mi

(∏i−1
j=0 ´i

)

s.t. cti encrypts message mi with parameters (´i, pi)

Output:
(
ct′0, . . . , ct

′
»−1

)
encrypting msg = m0 +

∑»−1
i=1 mi

(∏i−1
j=0 ´i

)
mod Ω

/* Copy input and set the »− 1 block to zero (trivial encryption,

Remark 2.6) */

1

(
ct′0, . . . , ct

′
»−1

)
← (ct0, . . . , ct»−2,0)

2 for j ∈ [0;»− 2] do
/* Multiply block »− 1 times ¿j, Multiplication with a Positive Constant

as in Theoreme 2.5. */

3 if ¿j < 0 then
4 cj ← ScalarMul(ct»−1,−¿j)
5 else
6 cj ← ScalarMul(ct»−1, ¿j)

/* Decompose (Algorithm 43) cj block starting from the ´j */

7 (cj,0, . . . , cj,»−j−1)← Decomp
(
cj , (´i)i∈[j,»−1] , (pi)i∈[j,»−1] ,PUB

)

/* Update the output */

8 if ¿j < 0 then

9

(
ct′0, . . . , ct

′
»−1

)
← Add

((
ct′0, . . . , ct

′
»−1

)
,
(
c′j,0, . . . , c

′
j,k−1,0, . . . ,0

))

10 else

11

(
ct′0, . . . , ct

′
»−1

)
← Sub

((
ct′0, . . . , ct

′
»−1

)
,
(
c′j,0, . . . , c

′
j,k−1,0, . . . ,0

))

12 return
(
ct′0, . . . , ct

′
»−1

)

Observe that in Algorithm 44 the subtraction algorithm follows the regular schoolbook sub-
traction modulo an integer Ω.
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Theorem 7.5. (Correctness of Algorithm 44) Let » ciphertexts cti for i ∈ [0, » − 1] represent-
ing a large integer modulo Ω as defined in Section 7.2.1. If the degree of fullness of the input
(» − 1)-th block is small enough to be able to perform a constant multiplication times the largest
of the constants ¿0, . . . , ¿»−2 (as defined in Paragraph 6), followed by a homomorphic addition,
Algorithm 44, correctly output a modular reduction without losing any information from the input
ciphertexts.

Proof (Theorem 7.5). If the degree of fullness of the input (»− 1)-th block is small enough to be
able to perform a constant multiplication times the largest of the constants ¿0, . . . , ¿»−2, followed
by a homomorphic addition, the algorithm can start. In fact, the algorithm consists in multiplying
the non-zero constants ¿j times the block ct»−1 and then to subtract the result to the input ctj
block, for j ∈ [0, » − 2]. The result of this operation, by definition of the constants ¿0, . . . , ¿»−1,
is a new radix-based encryption of msg reduced modulo Ω. In case the bases in the blocks are not
the same, a homomorphic decomposition step (as described in Algorithm 43) needs to be performed
before addition.

As for Algorithm 42, this new ciphertext is not a “fresh” ciphertext, in the sense that the carries
in the blocks are not all empty (because of the homomorphic addition). A carry propagation step
can be applied if necessary and it can be used to continue the computations.

7.3.2 Larger Integer using Hybrid Representation

As we explained above, the CRT-only approach has some limitations. To overcome them, we
create a new homomorphic hybrid representation that mixes the CRT-based approach with the
radix-based approach, in order to take advantage of the best of both worlds. The idea is to use the
CRT approach as the top layer in the structure, and to represent the CRT residues by using radix-
based modular integers when needed: with this approach we do not have any more restrictions on
Ω.

Encode. Let (Ω0, . . . ,Ω»−1) be integers co-primes to each other, i.e., (Ωi,Ωj) co-primes for all

i ̸= j, and let Ω =
∏»−1

i=0 Ωi. To encode a message msg ∈ ZΩ, as in the CRT-only approach, the

message is split into a list of {msgi}»−1
i=0 such that msgi = msg mod Ωi for all 0 f i < ». At

this point, for each message msgi for i ∈ [0, » − 1], the encoding used for radix-based modular
integers is used (Encode from Definition 8). Then, any CRT residues Ωi have its own list of radix
bases: (´i,»i−1, . . . , ´i,0) and more generally its parameters {(´i,j , pi,j)}0fj<»i

∈ N2»i . The formal
encoding is described in the Figure 7.2.

msg mod Ω 7→















































































msg0 = msg mod Ω0 7→























{m0,j}κ0−1
j=0 s.t.

msg0 = m0,0 +
∑κ0−1

j=1 m0,j ·
(

∏j−1
k=0 ´0,k

)

and m̃0,j = Encode (m0,j , p0,j , q)

∀ 0 f j < »0

.

.

.

msgκ−1 = msg mod Ωκ−1 7→























{mκ−1,j}
κκ−1−1

j=0 s.t.

msgκ−1 = mκ−1,0 +
∑κκ−1−1

j=1 m0,j ·
(

∏j−1
k=0 ´κ−1,k

)

and m̃κ−1,j = Encode (mκ−1,j , pκ−1,j , q)

∀ 0 f j < »κ−1

Figure 7.2: Hybrid approach visualization combining CRT representation on the top level and radix
representation below.

Decode. The decoding is done in two steps: first, each independent radix-based modular integer
is decoded to obtain the independent residues modulo Ω0, . . . ,Ω»−1, and then the CRT is inverted
to retrieve the message modulo Ω.
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Arithmetic operations. To perform any homomorphic operation, it is enough to perform the
computation on each radix component independently, as shown for the CRT-only approach. Then,
depending on the Ωi values, the modular reduction algorithms (i.e., Alg. 42 or Alg. 44) can be
used.

The hybrid approach can be seen as a generalization of both the CRT-only approach (if »i = 1
for all 0 f i < ») and the pure radix-based modular integer approach (if » = 1). It also covers the
mixed cases where some of the »i are equal to 1 and the others are greater.

7.3.3 Generic Lookup Table Evaluation

One of the strengths of TFHE is its ability to evaluate any univariate function using bootstrapping.
However, as seen in Chapter 3, the native bootstrapping of TFHE is inefficient for evaluating
multivariate functions. To overcome this limitation, the only known efficient solutions are the
Tree-PBS [GBA21] and the WoP-PBS technique presented in Chapter 6. We now recall how
these two bootstrapping techniques can be used for high-precision computations.

Tree PBS approach on Radix-Based Modular Integers. In [GBA21] the plaintext integers
are all encrypted under the same basis ´: we offer here the possibility to evaluate a large lookup
table with integers set in different basis (´0, . . . , ´»−1).

Let Ω =
∏»−1

i=0 ´i, and let L = [l0, l1, . . . , lΩ−1] be a LUT with Ω elements. We want to evaluate

this LUT on a radix-based modular integer encrypting a message msg = m0 +
∑»−1

i=1 mi

∏i−1
j=0 ´j .

Then, to evaluate the new multi-radix tree-PBS we performs the following steps:
1. We note as B = {´i|i ∈ [0, »− 1]} and as ϑ(´i) the component mi of msg associated to ´i.
2. We define ´max = max(´ ∈ B).

3. We split the LUT L into ¿ =
∏

βi∈B ´i

´max
smaller LUTs (L0, . . . , L¿−1) that each contain ´max

different elements of L.
4. We compute a PBS on each of the ¿ LUTs using the ciphertext encrypting ϑ(´max) as a

selector.
5. We build a new large lookup table L by packing, with a key switching, the results of the ¿

iterations of the PBS in previous step.
6. We remove ´max from B: B = B − ´max.
7. We repeat the steps from 2 to 6 until B is empty.
The generalized multi-radix tree-PBS takes as input a radix-based modular integer ciphertext,

a large lookup table L and the public material required for the PBS and key switching and returns
a LWE ciphertext. The signature is: ctout ← Tree-PBS((ct0, . . . , ct»−1),PUB, L).

WoP-PBS approach on Radix-Based Modular Integers. In Chapter 6, we present how
to perform the WoP-PBS over several ciphertexts with messages encoded in different bases
(´0, . . . , ´»−1).

Let +log2(´i), = ¶i, assuming that
∏»−1

i=0 2¶i > N , we denote Ω =
∏»−1

i=0 2¶i . Let L ={
LUT0, . . . , LUT+log2( Ω

N ),−1

}
be a LUT with Ω elements where {LUTi}i∈[0,+log2( Ω

N ),−1] is a small

lookup table composed of N elements. We want to evaluate this LUT on a radix-based modular
integer encrypting a message msg = m0 +

∑»−1
i=1 mi

∏i−1
j=0 2

¶j .
Then, to evaluate the new multi-radix encoding with the WoP-PBS we performs the following

steps:
1. We first extract the ¶i bits of the ith ciphertext.
2. Each LWE ciphertext encrypting a bit is transformed into GGSW ciphertext using a circuit

bootstrapping (Algorithm 12).
3. We then evaluate a vertical packing (Algorithm 14) using the GGSW representing the

log2
(
Ω
N

)
most significant bits to select the lookup table LUTres with res =

∑»−1
i=N mi

∏i−1
j=0 2

¶j .
4. Next, using the N remaining GGSW ciphertexts, we execute a blind rotation corresponding

to a rotation by
∑N−1

i=0 mi

∏i−1
j=0 2

¶j elements.
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5. Finally we sample extract the constant terms which corresponds to the encrypted value
f(m0, . . . , »− 1).

More details on this algorithm are provided in Chapter 6, in Algorithm 38.

For all the representations, i.e., the CRT, the native CRT, and the hybrid approaches, the
multi-radix Tree-PBS and the WoP-PBS operate in the same manner. Only the lookup table
generation needs to be changed. As studied in Chapter 6, the WoP-PBS is more efficient for
large precision. In the following, we focus on a 16-bit representation where the WoP-PBS is more
suitable. Consequently, our benchmark evaluation focuses exclusively on this approach.

7.3.4 Benchmarks

In this section, we provide a few practical benchmarks for integers of sizes 16 and 32 bits. All the
cryptographic parameters are detailed in Appendix A.3.1. The specifications of the machine are:
Intel(R) Xeon(R) Platinum 8375C@2.90GHz with 504GB of RAM. Note that such an amount of
RAM is not needed: all benchmarks can be run on a basic laptop. All implementations are done
using TFHE-rs1.

Compatibility Between A
(this work) and A

(CJP21). We generated couples of parameter sets
that are compatible, one for A(CJP21) and the other for A(this work). By compatible, we mean that
one can go from one to the other freely and smoothly. From A

(CJP21) to A
(this work), one needs

to remove the bit of padding in the usual LUT of A(CJP21)’s PBS. From A
(this work) to A

(CJP21),
one needs to add a bit of padding in the LUT of the usual A(this work)’s WoP-PBS. But we also
need other guarantees to be able to freely compose atomic patterns A

(CJP21) and A
(this work). In

particular, we need to guarantee that (i) each atomic pattern can absorb/deal with input noise
either coming from A

(CJP21) or A
(this work) and (ii) the input LWE dimensions of each atomic

pattern are compatible i.e., the product of the GLWE dimension k by the polynomial size N must
be equal in both atomic patterns. We could remove constraint (ii) by adding two key switching
keys, one to go from A

(CJP21) to A
(this work) and one to go from A

(this work) to A
(CJP21): we leave

it as future work.
To satisfy those two conditions, we decided to first solve the optimization problem on A

(this work)

and later on A
(CJP21) with more constraints. The first optimization gives us the product k · N

and the output variance of A
(this work). Then we solve the optimization problem for A

(CJP21)

with an additional constraint for the polynomial size N and the GLWE dimension k to satisfy
(i) and using the maximum between the output noise of A(CJP21) and A

(this work) as the input
noise of A(CJP21) which satisfies (ii). This approach works well for parameter couples (#1,#8)
and (#2,#9). But for the last parameter set couple (#3,#10), there is no solution for A

(CJP21)

with the aforementioned constraints. For this special case, we reverse the order of the optimization
and first solve the optimization problem for A(CJP21) and then for A(this work) with the additional
constraints mentioned above.

7.3.4.1 Experimental results

The tables presented in this section contain timings related to 16 and 32-bit integer operations
using the radix approach (Table 7.1), the CRT approach (Table 7.2) and the native CRT approach
(Table 7.3). The benchmarks measure timings to compute homomorphic additions, multiplica-
tions, carry cleanings (apart from the native CRT approach) and LUT evaluations (only for 16-bits
integers). As explained in Remark 6.6, it is not doable to evaluate LUT on 32-bit integers.

Radix Approach. In Table 7.1, dedicated to the radix approach, we display two instances of
16-bit integers and three instances of 32-bit integers. The number of additions is bounded by the
room available in the carry buffer, and once it is full, a carry cleaning is needed.

1https://github.com/zama-ai/tfhe-rs
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For the 16-bit integers, it is possible to use both the A
(CJP21) and the A

(this work) operators.
This means that for 16-bits integer, classical arithmetic uses the usual PBS (A(CJP21)), and LUT
evaluation is done with the WoP-PBS (A(this work)). We assume that the WoP-PBS is done over
integers with free carry buffers (i.e., after a carry cleaning). The parameters have been generated
as described in Paragraph 7.3.4. Note that the addition does not require any PBS to be computed
(this is denoted with a star +∗), but is done accordingly to the parameters generated for the
bootstrapping.

For 32-bit integers, only arithmetic operations are possible. So, cryptographic parameters are
optimized following A

(CJP21) only. Hence, some operations are executed faster on 32-bit integers
than on 16-bit ones.

integer parameters PBS based operations WoP-PBS based operations

Ω p
carry

»
param

+∗ × carry
param ID LUT evaluation

modulus ID cleaning

216 21 21 16 #1 12.8 µs 29.0 s 932 ms #8 823 ms

216 22 22 8 #2 6.67 µs 5.73 s 657 ms #9 1.80 s

232 21 21 32 #4 19.1 µs 43.8 s 685 ms
∅232 22 22 16 #5 12.3 µs 9.60 s 514 ms

232 24 24 8 #6 137 µs 25.0 s 6320 ms

Table 7.1: Sequential benchmarks for 16-bit and 32-bit homomorphic integers based on the radix
approach. The star (∗) means that a PBS is not required to compute the operation.

Remark 7.1 (Multiplication Failure Probability). When 32-bit integers are represented with 32
blocks (i.e., » = 32), the number of AP of type A

(CJP21) required to compute a multiplication is
quadratic in the number of blocks. Because the error probability pfail of this AP is bounded by
2−13.9 in our experiments, the error probability at the level of the multiplication will be increased
greatly. Timings are clearly not in favor of this representation, and the probability of having
an error is small enough for the other representations (with a smaller number of blocks). One
solution is to keep the same value of pfail and consider a small enough », resulting in a better
trade-off between running time and failure probability at the multiplication level (e.g., the one
associated with the parameter ID#5). Another way of solving this problem would be to have
another parameter set dedicated to the multiplication algorithm, with a smaller failure probability
pfail but we leave that as an future work.

CRT Approach. Table 7.2 is dedicated to the CRT approach. In this representation, each block
have a dedicated basis, and are independent by construction. We display one instance for 16-bit
integers and another one for 32-bit integers. For both of them we show the total time needed to
compute the operations, as well as the amortized time when the implementation is multi-threaded.
As for Table 7.1, the number of additions is bounded by the room available in the carry buffer,
and once it is full, a carry cleaning in needed. Note that in the case of homomorphic evaluation
of polynomial functions, using the CRT representation offers better timings, since it is sufficient
to compute a PBS on each CRT residue. The timings are then the same as the ones of the carry
cleaning when there is one block per residue, otherwise it means that we are considering the hybrid
approach, and in that case, it is the cost of a LUT evaluation separately on each block.

For the 16-bit integers, the basis is given by Ω = 23 · 32 · 7 · 11 · 13 ≈ 216. As for 16-bit in radix
representation, it is possible to use both the A

(CJP21) and the A
(this work) operators. However,

the major difference here is about the parameter optimization: in this case, the atomic pattern
A

(CJP21) has been privileged. Thus, the timings for the evaluating a LUT using a WoP-PBS are
way slower. By removing the constraint of compatibility, the performance should be closer to the
one of Table 7.3. The WoP-PBS is parallelized by extracting bits for each block independently.
Then, each LUT evaluation outputting one block (and taking all bits as input) is computed in
parallel: note that this approach could also be applied in the case of the radix decomposition.

We consider the basis defined by Ω = 25 · 35 · 54 · 74 ≈ 232 to represent 32-bit integers using the
hybrid representation. For instance, to represent integers under the modulus 74, we use radix-based
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integers with 4 blocks and a message modulus equals to 7. Thanks to the CRT representation, by
using this basis, multiplications can be computed with the fast bi-variate PBS approach described
in Algorithm 16.

type of
PBS based operations WoP-PBS based operations

Ω
execution

param
+∗ × carry

param ID LUT evaluation
ID cleaning

≈ 216
sequential

#3
8.36 µs 401 ms 251 ms

#10
23.1 s

5 threads 1.67 µs 80.3 ms 50.2 ms 4.61 s

≈ 232
sequential

#7
27.6 µs 5.17 s 2400 ms

∅
4 threads 8.78 µs 1.82 s 729 ms

Table 7.2: Benchmarks for 16-bit homomorphic integers based on the CRT approach and 32-bit
integers are computed with a hybrid approach. We use the following CRT basis: Ω = 7·8·9·11·13 ≈
216 and Ω = 25 · 35 · 54 · 74 ≈ 232.

Native CRT Approach. In Table 7.3, dedicated to the native CRT approach (detailed in
Paragraph 7.2.2), we display one instance of 16-bit integers and another of 32-bit integers. We
consider Ω = 7 · 8 · 9 · 11 · 13 ≈ 216 and respectively Ω = 3 · 11 · 13 · 19 · 23 · 29 · 31 · 32 ≈ 232 Since
there is no carry buffer in this representation, there is no need for a carry cleaning. However, to
avoid incorrect computation, the number of additions is bounded for these parameter sets by the
value ¿. Once this bound is reached, a WoP-PBS is required to reduce the noise.

We observe a slower latency for the multiplication with 32-bit integers, 36.8 seconds, which
leads us to think that for the precision around 32 bits, a hybrid approach is more efficient. Indeed,
the native CRT approach requires to have in a single LWE ciphertext a small enough noise (after
the bootstrapping) to preserve the message (with a size equal to the co-prime modulo) and the
room for the 2-norm ¿ needed to compute multiplications with known integers or additions between
ciphertexts. So when one tries to build a big Ω, since small prime numbers are not infinite, they
end up with big co-prime residues and as a consequence needs big 2-norm which means very slow
parameter sets.

Ω
type of

WoP-PBS based operations

execution param ID
+∗

× LUT evaluation
ν time

≈ 216
sequential

#11 5
4.32 µs 7.42 s 3.81 s

5 threads 0.862 µs 1.65 s 0.761 s

≈ 232
sequential

#12 25
6.98 µs 36.8 s

∅
8 threads 0.873 µs 5.31 s

Table 7.3: Benchmarks for 16-bit and 32-bit homomorphic integers based on the native CRT
approach. We use the following CRT basis: Ω = 7·8·9·11·13 ≈ 216 and Ω = 3·11·13·19·23·29·31·32 ≈
232.
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Chapter 8

From Integers to
Floating-points

In Chapter 7, we presented different methods to efficiently represent large integers and mimic
the precision of modern architectures. In addition to 64- and 32-bit integers, another commonly
used representation is floating-point numbers. This chapter focuses on representing homomorphic
floating-point numbers, which completes the classical representation framework, allowing us to
mimic all conventional number formats used in the clear domain.

In this chapter, we propose two new methods to represent floating-point numbers. The first is
based on the WoP-PBS (Algorithm 38) presented in Chapter 6, and suits well for floating-point
numbers with low precision, but is impractical for larger precision (see Remark 6.6). The second
method relies on the radix representation introduced in Chapter 7. This representation can be
efficiently used for precisions not covered by the first technique. With these two techniques, we
can now efficiently reach a wide range of floating-point precisions.

8.1 Introduction

In the current landscape, FHE schemes, and especially TFHE, are not designed to seamlessly
integrate with established floating-point standards, which are tailored to match hardware specifi-
cations, such as bit sizes and the frequent use of conditional instructions. This chapter introduces
novel homomorphic operators that can serve as the building blocks for constructing homomorphic
floating-point arithmetic with arbitrary precision within a given FHE framework.

To construct floating-point arithmetic, we must represent mantissas m and exponents e, which
can be viewed as large integers as presented in Chapter 7 and the sign s, which can be viewed
as a boolean ciphertext. We introduce novel algorithms that automatically retain only the most
significant bits and discard some of the least significant bits, maintaining the same representation
throughout. This mimics a well-known round mode of floats, called the rounding towards zero
mode. We refer to [MBDD+18, Section 2.2.1] or to [Hwa24] for more details. Our first method,
based on Chapter 6, ensures the correct encoding after each operation. This method is effective
for small mantissas and exponents but does not scale well. The second method, based on
Chapter 7, leverages circuit bootstrapping to obtain the carry value, allowing the ciphertext to be
updated accordingly. This approach is faster than the first method for large mantissas or exponents.

Building on large integers, we introduce two different methods to build efficient floating-point
arithmetic, each with its own pros and cons. The first approach, detailed in Section 8.3.1, heavily
utilizes the alternative PBS proposed in Chapter 6 (referred to as WoP-PBS) to perform oper-
ations on floating-point numbers. This method allows for the efficient evaluation of functions on
ciphertexts that encrypt large integers. Our approach, while straightforward, distinguishes itself
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from other homomorphic floating-point methods by representing a floating-point number within a
single ciphertext (or more). This technique is especially effective when working with low precision
floating-point numbers, typically up to 12 bits.

The second approach, which is the core of this contribution, constructs floating-point arithmetic
based on TFHE that can follow standards such as [Ins08] and is not constrained by precision. Our
new algorithms make extensive use of an extended version of CMux, a homomorphic operator that
selects between two inputs based on an encrypted decision bit. This method is key to developing
faster homomorphic operations that effectively combine the sign, mantissa, and exponent of one or
more homomorphic floats. During homomorphic floating-point operations, to compute the resulting
mantissa, an extra LWE ciphertext is used to make the operation both faster and more precise.
Indeed, since we work in the worst case scenario to avoid losing any information, it is necessary
to preserve the message contained in the last carry of the mantissa. This approach, soberly titled
homomorphic floating-point (HFP). As it reaches execution times close to the second, compared
to other implementations that are slower by several minutes, it is the first that can be considered
suitable for deployment in real world use cases. Beyond the description of all arithmetic operations,
including the division, we also provide their noise analysis and the hypotheses done to generate the
cryptographic parameters and their associated failure probability. We also include algorithms to
efficiently compute the ReLU and the sigmoid, two of the most used functions in machine learning.
We show how to easily extend our approach to take into account some floating-point subtleties,
like the special values (±∞ or NaN). As a simple application and showcase of the versatility of
floating-points, we briefly detail how to compute the approximation of any functions. In the end,
our method outperforms the state-of-the-art (as shown in the next section), which was more about
showing that floating-points might be doable with TFHE, rather than giving a practical solution
as we do here.

8.1.1 Prior Approaches

Efforts to develop efficient FHE computation methods for real numbers can be categorized into
two approaches: the fixed-point arithmetic approach and the floating-point arithmetic approach.
Most of the first attempts [CSVW16, Lai17, AN16] focus on the BFV scheme [Bra12, FV12].
In [CSVW16, Lai17], the authors chose the fixed-point approach. Roughly, their idea is to de-
compose a real number into two integers, one representing the value before the point and the
second representing the value after the point. The binary decomposition of the two integers is
encrypted in one RLWE ciphertext such that the integer part is encrypted over the coefficient of
small degree and the fractional part is encrypted on the coefficient of high degree. This method
encounters two significant limitations: first, after several operations, accuracy is compromised due
to the mixing of the fractional and the integer parts of the number. Second, the computation must
remain within a certain modulus limit; exceeding this threshold also results in a loss of correctness.
Thus, using fixed-point arithmetic is particularly suitable for FHE schemes where the depth of the
circuit is somewhat bounded, since they share a similar constraint. In fact, an encrypted floating-
point number is often represented by one ciphertext for the sign, one or several ciphertexts for the
mantissa and one or several ciphertexts for the exponent. Their approach is also based on FV,
whose bootstrapping is neither efficient nor programmable. This results in unpractical methods
that cannot be adapted to TFHE.

In the TFHE context, to the best of our knowledge, only two techniques have been stud-
ied [ML20] and [LS22]. The former [ML20] uses the traditional floating-point representation, where
each LWE ciphertext contains one boolean value. Then, they rely only on boolean gate operations
to perform the floating-point computation. Beyond the lack of space efficiency, the major problem
with this solution is its time complexity. In the latter [LS22], the authors take advantage of RLWE
ciphertexts to represent floats. They have a floating-point in three parts: an RLWE for the sign,
one for the mantissa and another one for the exponent. In this representation, the sign and the
exponent are each represented on the first coefficient of their RLWE. The mantissa is represented
by several coefficients depending on the base of the decomposition. In this work, they propose a
method to detect overflow based on an encrypted witness. As previously, the main drawback lies
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in the time complexity, which suffers from an exponential factor related to the size of the exponent
and the use of tensor product and relinearization (Algorithm 20).

In our work, we use the standard representation proposed before (several LWE ciphertexts for
the mantissa, several LWE ciphertexts for the exponent and one LWE ciphertext for the sign).
The main change in our algorithm is the use of circuit bootstrapping (CBS) which is costlier than
a PBS (CostCBS ≈ ℓCBS ·CostPBS (See Remark 3.1)) but gives the possibility to perform CMuxes
and reduce the cost of the TFHE algorithm used in the floating-point arithmetic. Note that our
work could benefit from recent optimizations done in [WWL+24].

The code for [ML20] is not publicly available, and despite significant effort, we were unable
to successfully run the code provided with [LS22]. As a result, the comparison below is based
on the timings reported in the respective papers. In [ML20], the experiments were conducted on
an Intel i7−6700@3.40 GHz (up to 4 GHz) with 8 threads. Since the computational model (i.e.,
sequential or parallel) is not specified, we assume these experiments were run sequentially. In the
latter paper [LS22], experiments were run on an Intel Xeon Silver 4210@2.40 GHz, with 40 threads.

As shown in Table 8.1, our approach significantly outperforms existing methods, achieving at
least an 8-fold improvement (for 32-bit floating-point multiplication) and up to 100-fold improve-
ment (for 64-bit floating-point addition). Using a m6i.metal instance Intel Xeon 8375C (Ice Lake)
at 3.5 GHz, with 128 vCPUs and 512.0 GiB of memory using the TFHE-rs library [Zam22], the
sequential timings are:

Paper (Precision) Add Mul
[ML20] (32-bits) 490s 162s
[LS22] (32-bits) 530s 443s
Ours (32-bits) 7s 20s

[ML20] (64-bits) 1200s 686s
[LS22] (64-bits) 858s 808s
Ours (64-bits) 12s 82s

Table 8.1: Comparison of addition and multiplication times with the state-of-the-art.

As explained above, each technique was evaluated on different machines, with some assumptions
regarding the nature of the computation (sequential or parallel). To provide a more complete
comparison, Table 8.2 presents a complexity comparison in terms of the number of PBS operations
required for the main operations (addition and multiplication) between our work and the state-
of-the-art. This comparison highlights the removal of the exponential factor in the complexity
formulas, further emphasizing the efficiency of our approach.

In this context, the terms Äm · ℓm and Äe · ℓe represent the number of bits in the mantissa and
exponent, respectively. In our method, Äm (and Äe) corresponds to the message space in each LWE
ciphertext for the mantissa (and exponent), while ℓm (and ℓe) indicates the number of ciphertexts
representing the mantissa (and exponent). Considering the complexity of the two previous works
based on TFHE, we achieve a significant gain by eliminating the exponential factor for addition
(present in both previous techniques) and for multiplication specifically in [LS22].

Addition Complexity Multiplication Complexity

[ML20] ≈ 2Äeℓe(ℓmÄm + ℓeÄe) log(ℓmÄm + ℓeÄe) CostPBS ≈ (ℓmÄm)
2 + ℓeÄe log(ℓeÄe) CostPBS

[LS22] > 2Äeℓe+1 CostPBS > 2Äeℓe+1 CostPBS

Ours (3 · ℓm + 6 · ℓe + 3)CostPBS + (ℓm + ℓe · Äe + 3)CostCBS

(

ℓm
2

2

(

1 + 1
Äe

)

+ ℓm
(

2 + 1
Äe

)

+ 4
)

CostPBS + CostCBS

Table 8.2: Our Method vs. Existing Works.
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Chapter 8. From Integers to Floating-points

8.2 Preliminaries

The constructions proposed in this chapter mainly rely on the radix representation introduced in
Chapter 7. In particular, we focus on the case where the carry space and the message space are
equal, i.e., p = ´2 (see Section 7.2.1). To distinguish the different parts of a floating-point number,
we use the notation m for the mantissa, e for the exponent, and s for the sign. When an algorithm
applies equally to either the mantissa or the sign, we use the generic notation z.

8.2.1 New Integer Algorithms

Extended Carry Propagate. By construction, after a given number of operations, the carry
space is full and we need to call the CarryPropagate algorithm to homomorphically propagate the
carries (See Theorem 7.1). The goal of this algorithm is to clear the carry space of each input
ciphertext without losing information, except for the most significant carry, which is lost. This

loss occurs because, in Chapter 7, the integer representation works modulo Ä
ℓz
z .

When dealing with floating-point numbers, however, losing this information is not acceptable,
especially when the mantissa is full. By retaining this information, we can grow the exponent if
necessary. To address this limitation, we modified the CarryPropagate Algorithm 39 and named
it CarryPropagateExtended, which is detailed in Algorithm 45. Note that to recover the original
CarryPropagate algorithm, it is sufficient to execute the loop from 0 to ℓz − 2.

Algorithm 45: ctzout ← CarryPropagateExtended (ctzin ,PUB)

Context:



























∆z : scaling factor

LUTCarry : LUT to return the carry of the ciphertext (return
⌊

m
´z

⌋

).

LUTMsg : LUT to return the message of the ciphertext (return m mod pz).
pz : the carry-message modulus
´z : the message modulus

Input:

{

ctzin = [ctzin,ℓz−1, . . . , ctzin,0] ∈ Z
(n+1)·ℓz
q

PUB : Public materials for KS and PBS; /* Remark 2.15 */

Output:
{

ctzout = [cttmp, ctzout,ℓz−1
, · · · ctzout,0 ] ∈ Z

(n+1)·(ℓz+1)
q

1 for i ∈ [0..ℓz − 1] do
/* Extract the carry */

2 cttmp ← KS-PBS(ctzin,i,PUB, LUTCarry) ; /* Algorithm 4 and 11 */

/* Extract the message */

3 ctzout,i ← KS-PBS(ctzin,i,PUB, LUTMsg) ; /* Algorithm 4 and 11 */

4 if i ̸= ℓz−1 then
5 ctzin,i+1 ← ctzin,i+1 + cttmp

6 return (ctzout = [cttmp, ctzout,ℓz−1
, · · · ctzout,0 ])

Integer Subtraction. In the following floating-point algorithms, we require an operation that
takes as input two vectors of ciphertexts and returns the sign of the subtraction along with a
vector of ciphertexts representing the absolute value of the subtraction. This method is detailed
in Algorithm 46. Intuitively, in the initial steps, an offset is added to ensure that the messages in
each ciphertext of the first input are larger than those of the second input. Next, we perform the
subtraction between the adjusted first input and the second input, followed by a carry propagation
as described in Algorithm 45. We then extract the most significant bit (MSB) of the top block
from the resulting ciphertext. Finally, we traverse all the blocks, returning the value if the MSB
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8.2 Preliminaries

is set to 1, or the opposite if it is not. The sign is encoded in the padding bit, with an offset such
that the most significant bit is 0 for positive values and 1 for negative values.

Lemma 8.1 (IntSub∗ (Algorithm 46)). Let ctzi = [ctzi,ℓz−1, . . . , ctzi,0] ∈
[

LWEs(zi,ℓz−1), · · ·LWEs(zi,0)
]

¦ Z
(n+1)·ℓz
q with i ∈ {0, 1} be two ciphertexts encrypting

zi ∈ N.
Then, Algorithm 46 returns (ctzsub , cts) with Decrypts(ctzsub) = |z1 − z2| and Decrypts(cts) =

Sign(z1 − z2).

The complexity of Algorithm 46 can be defined as Cost
ℓz,ℓ,k,N,n,q
RadixSub∗ = (3 · ℓz + 1) ·

(

Cost
ℓ,k,N,n,q
PBS + Cost

ℓ,n,k,N
KS

)

.

Algorithm 46: (ctzsub
, ctsign)← RadixSub∗ (ctz1 , ctz2 ,PUB)

Context:























∆z : scaling factor

LUTExtract : LUT to extract the MSB (i.e., the (log2(q)− 2)thbit)
LUTf : LUT to return z− q/4 if the MSB equals 1; q/4− z otherwise
pz : the carry-message modulus
´z : the message modulus

Input:











ctz1 = [ctz1,ℓz−1, . . . , ctz1,0] ∈ Z
(n+1)·ℓz
q

ctz2 = [ctz2,ℓz−1, . . . , ctz2,0] ∈ Z
(n+1)·ℓz
q

PUB : Public materials for KS, PBS and CBS; /* Remark 2.15 */

Output:

{

ctzsub = [ctzsub,ℓz−1 , · · · ctzsub,0 ] ∈ Z
(n+1)·ℓz
q

cts ∈ Zn+1
q

1 for i ∈ [1..ℓz − 1] do
/* Ensure that ctz1,i is larger than ctz2,i */

2 ctz1,i ← ctz1,i + TrivialEncrypt(22·Äz−1, 1) ; /* Remark 2.6 */

3 ctz1,i ← ctz1,i − TrivialEncrypt(2Äz−1, 1); /* Remark 2.6 */

4 ctzsub,i ← ctz1,i − ctz2,i

5 ctz1,0 ← ctz1,0 + TrivialEncrypt(22·Äz−1, 1) ; /* Remark 2.6 */

6 ctzsub,0 ← ctz1,0 − ctz2,0

7 ctzsub
← CarryPropagate(ctzsub

= [ctzsub,ℓz−1, . . . , ctzsub,0],PUB); /* Algorithm 39 */

/* Extract the msb to get the sign */

8 cts ← KS-PBS(ctzsub,ℓz−1,PUB, LUTExtract); /* Algorithm 4 and 11 */

/* Return the value if MSB==1, the opposite otherwise */

9 for i ∈ [0..ℓz − 1) do
10 ctzsub,i ← ctzsub,i + cts

11 ctzsub,i ← KS-PBS(ctzsub,i ,PUB, LUTf); /* Algorithm 4 and 11 */

12 ctzsub,ℓz−1 ← KS-PBS(ctzsub,ℓz−1 ,PUB, LUTf); /* Algorithm 4 and 11 */

/* Put the sign on the padding bit plus flip the bit to keep the representation 0
is positive and 1 is negative */

13 cts ← cts · 2 + TrivialEncrypt(q/2, 1); /* Remark 2.6 */

14 return (cts, ctzsub
= [ctzsub,ℓz−1 , . . . , ctzsub,0 ])

Proof (Correctness of Algorithm 46). In this algorithm, CTz can represent the mantissa or the
exponent. The goal of this algorithm is to return |z1 − z2| and Sign(z1 − z2). The first step of this
algorithm is to ensure that the message z1 is bigger than z2. To do that, we add 2(ℓz+1)·Äz−1 to
z1, which automatically guarantees that all the LWE that compose z1 such that all the LWE of z1
are bigger than the ones of z2. Now we can perform the subtraction term by term. After a carry
propagate, if z1 > z2, we retrieve on the most significant LWE the added value at the beginning of
the algorithm. Otherwise, this added value is used during the subtraction. This value corresponds to
Sign(z1− z2). By extracting this sign, and adding it to each LWE, with a PBS, we can see whether
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Chapter 8. From Integers to Floating-points

z1 > z2 or not and choose between the ciphertext obtain after the subtraction or its opposite and
get |z1 − z2|.

Lemma 8.2 (Noise Constraints of Algorithm 46). The output noise variances of ciphertexts of
Algorithm 46, cts and ctzsub , are respectively 4 · Ã2

BR and Ã2
BR.

To guarantee correctness of this operation, we need to find parameters that verify the following
inequality:

2 · Ã2
in + Ã2

BR + Ã2
KS + Ã2

MS f t2.

with ÃBR the noise added by the blind rotation, ÃKS the noise added by the key switch, Ãcmux the
noise added by the CMux and finally ÃMS, the noise added by the modulus switch and where t is a
noise bound such that t = ∆

2·z∗(pfail)
with the standard score z∗(pfail) =

√
2 · erf−1(1 − pfail) and the

scaling factor ∆ introduced in Subsection 2.2.1.

Proof (Lemma 8.2). In this proof, we use the same techniques as those introduced in Chapter 2,
in Section 2.5. In particular, we use the noise bound (Definition 23), a quantity representing the
maximum noise variance that still guarantees the correctness up to some failure probability. We
also use a simpler version of Theorem 27 which consists of removing redundant inequalities and
dominated constraints. Simply put, if we have two inequalities f(x)+ g(x) f t and f(x) f t with f
and g two positive functions, we can focus on the first one as the second one will be automatically
satisfied if the first is. In this proof and the next ones, when this situation arises, we will say that
the second inequality is dominated by the first.

Let us look at the noise propagation in Algorithm 46. We assume that each input ciphertext
contains a noise following a centered Gaussian distribution with a variance Ã2

in. These noises are
also assumed to be statistically independent.

If we find parameters that guarantee the inequality above, the bootstrapping will be successful
with probability 1 − pfail. At the end of line 6, the variance of the noise in ctzsub,i is 2 · Ã2

in for
0 f i < lz. The worst operation in terms of noise in the carry propagation on line 7 consists of
adding a freshly bootstrapped ciphertext with one of the ctzsub,i and applying to it a key switch and
a bootstrapping. It means that to have correctness we must verify the following inequality:

2 · Ã2
in + Ã2

BR + Ã2
KS + Ã2

MS f t2.

with Ã2
BR, Ã

2
KS, Ã

2
MS, the noise after respectively a bootstrapping, a key switch and a modulus switch

and where t is a noise bound such that t = ∆
2·z∗(pfail)

with the standard score z∗(pfail) =
√
2 ·erf−1(1−

pfail) and the scaling factor ∆ introduced in Section 2.2.1.
On line 8, another noise constraint appears.

Ã2
BR + Ã2

KS + Ã2
MS f t2.

As the left hand term is smaller than the one of the previous inequality, we can discard this
constraint. On lines 11 and 12, we have the following constraints

2 · Ã2
BR + Ã2

KS + Ã2
MS f t2 & Ã2

BR + Ã2
KS + Ã2

MS f t2.

Using the fact that the last constraint is dominated by the others, we can remove it from the set
of constraints. In the end of Algorithm 46, the sign cts has a noise variance of 4 · Ã2

BR and the
each ciphertext in the vector ctzsub has a noise variance Ã2

BR.

8.2.2 Traditional Floating-Point Representation

Floating-points have become the standard to represent real numbers in computer science, as de-
scribed in [Ins08]. Their main advantage lies in having a variable precision all along computations,
giving more flexibility and accuracy. Usually a floating-point is represented by three values: the
sign, the mantissa and the exponent. The most common floating-point encodings on CPU are
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the single precision, represented on 32 bits (with 1 bit of sign, 8 bits of exponent and 23 bits of
mantissa) and the double precision over 64 bits (1 bit of sign, 11 bits of exponent and 52 bits of
mantissa). Less common but still useful encodings are the half-precision which represents 16-bit
floats, or some alternative called Bfloat [WK19]. Without getting into details, these encodings
mainly differ in the distribution of the bit number associated to the mantissa and the exponent.
Finally, another family called MiniFloat is dedicated to floats whose the size is 8 bits. We refer
to [MBDD+18] for more information about floats.

Definition 34 (Floating-Point). Let b ∈ N such that b g 2. Let maxe ∈ N∗ and a fixed bias ∈
[0,maxe]. A floating-point number x ∈ R is partially characterized by three values (s,m, e) ∈
{0; 1} × N × [0,maxe], such that: x = (−1)s · m · be−bias. With this definition, a floating-point
number may have several representations. To obtain a unique representation, the mantissa m must
be in the interval [1, b) except for the value zero where m = 0.

8.3 Homomorphic Floating-Points (HFP)

In this section, we present two approaches for working with floating-point numbers in TFHE. The
first introduces a promising yet precision-limited approach that leverages the WoP-PBS (Algo-
rithm 38) to efficiently compute operations on floating-point values. The second approach focuses
on translating the traditional floating-point format into a TFHE compatible representation suit-
able for higher precisions. We then describe the initial building blocks required to perform more
advanced operations on these homomorphic floating-point numbers.

8.3.1 MiniFloats: WoP-PBS Based Floats

A powerful approach to define homomorphic floats for TFHE-like schemes relies on theWoP-PBS.
The method is somewhat similar to the gate bootstrapping approach defined in [CGGI20]: each
operation is performed using a WoP-PBS.

Minifloat Encoding. Let Ä be the number of bits of precision for a message in an LWE cipher-
text, and let Äm (resp., Äe) be the number of bits of the mantissa (resp., the exponent). In this first
attempt at building TFHE-minifloats, we do not need to have distinct ciphertexts for the mantissa,
the sign and the exponent. For instance, we can define an 8-bit floating-point with Ä = 4, Äm = 3
and Äe = 4 using only two LWEs, ct1 ∈ LWEs(s||m2||m1||m0) and ct2 ∈ LWEs(e3||e2||e1||e0) where
mi (resp., ei) corresponds to the ith bit of the mantissa (resp., of the exponent). Each element can
be dispatched in any order, but the order must be publicly known to correctly generate the LUT.
We call this encoding the minifloat encoding and we write it as follows:

TFHE-MinifloatÄ(Äm, Äe, bias) = EncodeÄ (s||m||e, p, q) .

Minifloat Operations. Defining operations over the minifloat encoding is easy: each one of
them is computed with a WoP-PBS where the LUT associated with the operation is given.
The WoP-PBS can easily be extended to take many ciphertexts as input in order to compute
multivariate operations: the bit extraction step can be done for every input and then a single
CMux tree using the bits of every input. Let Op be an operation (e.g., an addition), and LUTOp

its associated LUT (for more details on how to properly generate the LUT, we refer to Chapter 2,
Definition 16). For some k ∈ N, let ctfi for i ∈ [0, k−1] be the input ciphertexts. Then, the output

is given by: ctfout ←WoP-PBS
(

{ctfi}
k−1
i=0 ,PUB, LUTOp

)

, see Algorithm 38.

The main advantage is about the complexity of this method, which is not dependent on the
functions that have to be computed, i.e., any univariate functions will take the same time (e.g.,
cosine, logarithm, . . . ).
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Remark 8.1. Some operations do not require a complete WoP-PBS. For example, to perform
a ReLU, we only need to extract the sign and perform a CMux between input value and a trivial
LWE (defined in 4) that encrypts zero.

We provide benchmarks for this method in Section 8.7. This method is very efficient but it is
limited in terms of precision. In fact, this method does not work when the combined bit size of
all inputs of a WoP-PBS exceeds approximately twenty bits, because the number of values that
need to be represented is too large and the LUT quickly becomes too big (See Remark 6.6). Next
section explores another encoding that can efficiently support large floating-point numbers.

8.3.2 Homomorphic Floating-Point Encoding

As in the traditional representation of floating-point numbers, the homomorphic floating-point
representation is divided into three parts: the sign, the mantissa and the exponent.

The sign (s) is encoded by one LWE ciphertext. This ciphertext encrypts the value 0 if the
sign is positive or 1 if the sign is negative.

The mantissa (m) is encoded by several LWE ciphertexts (at least 2). Each ciphertext associ-
ated with the mantissa encodes the same amount of message bits (denoted Äm in the following). For
a mantissa represented by ℓm LWE ciphertexts, we can represent integers in

[

0; 2ℓm·Äm

)

. The cipher-
text encrypting the most significant bits (respectively, the least significant bits) of the mantissa is
called the most significant (respectively, the least significant) ciphertext. With this representation,
we can ensure that the precision of the mantissa is at least ((ℓm−1) ·Äm+1)-bits. Indeed, the least
significant ciphertext will be discarded after some operations, so the information in this block must
not be seen as additional precision: when the carry space of the most significant LWE ciphertext
is full, a new LWE ciphertext is added as the new most significant block. The less significant block
is then removed and the exponent value is increased. In floating point arithmetic, this approach
is generally called rounding towards zero. This way, the exponent can be smaller and represent
a larger range of values. In our representation, to keep a unique encoding for any floating-point,
the most significant block should always be different from zero (except for the special value zero
where all the blocks are equal to zero). So for any non-zero values, the mantissa is an integer in
[

2Äm·(ℓm−1); 2Äm·ℓm
)

.
The exponent (e) is encoded by one or more LWE ciphertexts. Each LWE ciphertext encrypts

the same amount of bits Äe. The value represented by the exponent is in base 2Äm (as already
mentioned in the mantissa). So an exponent encrypted in ℓe LWE ciphertexts represents values

in
[

0; (2Äm)
2ℓe·Äe

)

. To represent an exponent that can be negative or positive, the positive value

encoded in these ℓe LWE ciphertexts needs to be subtracted by a value named bias. When we

decode, we obtain, e ∈
[

(2Äm)
−bias

; (2Äm)
2ℓ·Äe−bias

)

. The encoding of the TFHE floating-point

is illustrated in Figure 8.1, and we refer to it as follows:

TFHE Fp(ℓm, Äm, ℓe, Äe, bias).

Bias The value bias can be set to any value, but to represent a large range of values, in the
traditional floating-point, this value is often set to be half of the range of the exponent. With
our representation, this value should correspond to 2ℓe·Äe−1, but in our algorithm we choose to
use bias = 2ℓe·Äe−1 + ℓm − 1. Through this specific value, we gain a speed-up in the homomorphic
floating multiplication proposed in Algorithm 54.

Special Values. In the floating-point arithmetic, the subnormal values are the closest values to
zero: they are represented by an exponent equal to zero and the leading significant digits equal to
zero. In our implementation we choose to not represent these values to have better performance,
but our algorithm can be easily modified to take these values into account. In what follows, the
leading significant block is always strictly positive except for the zero value. This is the only value
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Figure 8.1: The figure illustrates the encoding of a homomorphic floating-point. The Mantissa (in
pink) and the Exponent (in green) are split in several ciphertexts which each ciphertext encrypting
4 bits. The fully colored boxes in the figure represent the bits of messages space and the empty
colored boxes correspond to the bits of carry space. The sign (in blue) is encoded in only one
ciphertext where the information is encrypted on the most significant bit.

represented by each mantissa and exponent blocks equals to zero. Thus, if an operation yields an
encrypted float which has its most significant LWE equal to zero, the result will encrypt the zero
value (i.e., all the mantissa and exponent LWE will be equal to zero). To keep the algorithms
easier to read, other special values like infinities, or NaN are voluntary excluded. Note that the
process to support these is detailed in Section 8.6.1.

Encoding and Encrypting. We propose an algorithm to encode and decode real numbers for
TFHE with the representation TFHE Fp(ℓm, Äm, ℓe, Äe, bias). Let f be a real number. First, we need
to find m ∈ [0, ℓm · Äm) and e ∈ [0, ℓe · Äe) such that:

f = (−1)s ·m · (2Äm)
e−bias

.

To obtain a unique representation of these floating-point representations, we impose that the
most significant block of the mantissa must be strictly positive (except for the value zero). From
this first encoding, we split the mantissa and the exponent according to the 2Äm and 2Äe -radix
decompositions, i.e., m ← Encoding2

Äm

(m) and e ← Encoding2
Äe

(e). The final encoding is given
by:

Encodingf =
(

s,m = (mℓm−1, . . . ,m0)Äm
, e = (eℓe−1, . . . , e0)Äe

)

.

In absolute value, the maximum value represented by this encoding is max = (2ℓm·Äm − 1) ·
(2Äm)

2ℓe·Äe−bias−1
. Since the subnormal values are not taken into account, the minimum positive

value reached by this encoding (without zero) is min = (2ℓm·Äm−1) · (2Äm)
−bias

. In Algorithm 47
(resp., Algorithm 48), the method to encrypt (resp., decrypt) a floating-point number is described.
The following lemma states the correctness and the notations used to represent homomorphic
floats.

Algorithm 47: ctf ← EncryptFloat(s,m, e)

Input: EncodeFloat(x) = (s,m, e)
Output: ctf = [cts, ctm, cte]

1 cts ← Encrypts(
q
2 · s) ∈ LWE(s)

2 ctm = (ctm,ℓm−1, . . . , ctm,0)← Encrypts(m)
3 cte = (cte,ℓe−1, . . . , cte,0)← Encrypts(e)
4 return ctf = [cts, ctm, cte]

Lemma 8.3 (Correctness of DecryptFloat (48)). Let f = (s,m, e) ∈ {0, 1} × [0, ℓm · Äm) ×
[0, ℓe · Äe). Let ctf ← EncryptFloat(f) such that ctf = [cts, cte, ctm], with cts ∈ LWEs (s),
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Algorithm 48: f← DecryptFloat(ctf)

Input: ctf = [cts, ctm, cte]

Output: f = (−1)s ·m · (2Äm)
e−bias ∈ R

1 If Decrypts(cts) = 0 then s = 1, Else s = −1
2 m← Decrypts(ctm)
3 e← Decrypts(cte)

4 return f← (−1)s ·m · (2Äm)
e−bias

cte = [cte,ℓe−1, . . . , cte,0] ∈
[

LWEs

(

e1ℓe−1

)

, . . . ,LWEs (e10)
]

and ctm = [ctm,ℓm−1, . . . , ctm,0] ∈
[

LWEs

(

m1ℓm−1

)

, . . . ,LWEs (m10)
]

. Then, DecryptFloats(ctf) = f.

Trivial Encrypt. A trivial encryption is an LWE ciphertext where all the ai are equal zero
(see Remark 2.6). This is trivially extendable to the floats. This is denoted TrivialEncryptFloat(f).
Sometimes, we only need to trivially encrypt a part of a floating-point: which is suggested by
the notation TrivialEncrypt(Value,NumberOfBlocks). For instance, to encrypt the value v as an
exponent, we note TrivialEncrypt(v, ℓe).

Definition 35 (Maximum error after operation). In the context of floating-point, due to the en-
coding, after each operation a small error could be introduced (this error is not tied to the TFHE
noise). This added error is denoted ϵ. To find the errors added after each operation by our encod-
ing, we look at the maximal error added in the mantissa and we multiply this error by the exponent.
For a floating-point f = (−1)s · m · (2Äm)

e−bias
, the error, after an operation, can be bounded by

errorm · (2Äm)
e−bias

. As we do not represent the subnormal values, if the e is equal to 0, the error is

bounded by 2Äm·(ℓm−1) · (2Äm)
−bias

.

Example: Encoding a 64 bits Floating-Point. In the [Ins08] standard, a floating-point is
composed of 1 bit of sign, 11 bits of exponent and 52 bits plus one hidden bit of mantissa. So
as mentioned in the beginning of Section 8.3, to ensure a precision of at least 53 bits, we need to
have (ℓm − 1) · Äm + 1 g 53, i.e., one additional block to perform operations without losing the
precision of 53 bits. For the mantissa, we choose ℓm = 27 with Äm = 2. In [Ins08], the exponent
value e belongs to [−1023, 1024). To simplify the implementation, we prefer to have Äe = Äm, and
a bias equal to 2ℓe·Äe−1 + ℓm − 1 with ℓe = 5. Thus, this yields in a floating-point exponent in
[

−bias · Äm, (2ℓe·Äe − bias− 1) · Äm
]

= [−1076, 970] with bias = 538. This allows representing as
many values as the standard one, but with a different scale: the upper bound is lower, but more
precision is given near values close to zero. These parameters correspond to the representation:

TFHE Fp64b(ℓm = 27, Äm = 2, ℓe = 5, Äe = 2, bias = 538).

More encoding examples for 32-bits, 16-bits and 8-bits are given in Table 8.4 (Section 8.7).

8.3.3 Choosing Between Two Ciphertexts

In what follows, we extensively use Algorithm 49 to homomorphically make a choice between two
LWE ciphertext lists depending on an encrypted bit. This algorithm is an extended version of the
CMux described in [CGGI20, Lemma 3.16]. The selector is a GGSW ciphertext, and the choice is
done between two lists of LWE ciphertexts.

Lemma 8.4. Let cti = [ctzi,ℓz−1, . . . , ctzi,0] ∈
[

LWEs(zi,ℓz−1), . . .LWEs(zi,0)
]

¦ Z
(n+1)·ℓz
q with

i ∈ {0, 1} be two ciphertexts encrypting zi ∈ N. Let CTSel ∈ GGSWℬ,ℓ
S

(b) (with b ∈ {0, 1}).
Then Algorithm 49 returns ctres with Decrypts(ctres) = zb.
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Algorithm 49: ctres ← ExtendedCMux(ct0, ct1,CTSel)

Input:











ct0 = [ct0,ℓz−1, . . . , ct0,0] ∈ Z
(n+1)·ℓz
q with cti,j ∈ LWEs(mi,j)

ct1 = [ct1,ℓz−1, . . . , ct1,0] ∈ Z
(n+1)·ℓz
q

CTSel ∈ GGSWℬ,ℓ
S

(b) (with b ∈ {0, 1})

Output:
{

ctres = [ctb,ℓz−1, . . . , ctb,0] ∈ Z
(n+1)·ℓz
q

1 for i ∈ [0..ℓz) do
2 CT0,i ← ConstantSampleExtract−1(ct0,i) ; /* Algorithm 29 */

3 CT1,i ← ConstantSampleExtract−1(ct1,i); /* Algorithm 29 */

4 CTres,i ← CMux(CT0,i,CT1,i,CTSel); /* Algorithm 8 */

5 ctres,i ← Sample extract(CTres,i); /* Algorithm 28 */

6 return ctres = [ctres,ℓz−1, . . . , ctres,0]

Proof (Correctness of Algorithm 49). Let us execute each instruction of Algorithm 49. In Lines
2 and 3, both LWE ciphertexts are transformed into GLWE ciphertexts with the message on the
first coefficient and random messages on all the other coefficients, i.e., CT (Mj,i) ∈ GLWES (Mj,i)

with Mj,i = mj,i+
∑N−1

³=1 rj,i,³X
³, for some ri,j,³ ∈ Zq with j ∈ {0, 1}. Next, in Line 4: CTres,i is

the result of the CMux, i.e., CTres,i(Mb,i) ← CMux
(

CT (M1,i) ,CT (M0,i) ,CTSel(b)
)

, (as defined

in Algorithm 8), with b ∈ {0, 1}. At Line 5, we extract the first coefficient of CTmres,i. The result
is then ct (mres,i) ∈ LWEs (mb,i).
Proof (CMux Noise Analysis). We adapt proof of Theorem 2.11 for an external product using
a binary secret in the GGSW ciphertext. The only difference is that the GGSW ciphertext is
obtained through a CBS rather than a freshly encrypted ciphertext, so we use the same noise
formula. However, the noise of the bootstrapping key is defined as the output noise of circuit
bootstrapping instead of fresh encryption.

8.3.4 Propagating the Carries

Since HFP are based on radix-based homomorphic integers, the need to propagate the carry must
be considered to ensure correctness. Indeed, in each block, carry might accumulate all along com-
putation up to point where the carry space is full. Differently from modular integer computation,
where the modulus is generally a power of two, we cannot simply remove the carry from the most
significant block. In our case, when the mantissa has a carry that has been propagated to the most
significant block, a new one must be created and the last one can be removed. In Algorithm 50, we
describe the process to perform this homomorphically. It takes as input a ciphertext encrypting a
floating-point, and returns another ciphertext where the carries have been propagated.

Lemma 8.5. Let ctf = [cts, ctm, cte] encrypting f = (−1)s ·m ·2Äm
e−bias

, with cts ∈ LWEs (s) , cte =
[cte,ℓe−1, . . . , cte,0] ∈ [LWEs (eℓe−1) , . . . ,LWEs (e0)] and ctm = [ctm,ℓm−1, . . . , ctm,0] ∈
[LWEs (mℓm−1) , . . . ,LWEs (m0)] such that some ctm,i (resp., cte,i) encrypting some mi > 2Äm

(resp., ei > 2Äe).

Then, Algorithm 50 outputs ctfout such that DecryptFloats(ctfout) = (−1)sout ·mout ·2Äm
eout−bias

with
mout ∈

[

2Äm·(ℓm−1), 2Äm·ℓm
]

if m ∈
[

2Äm·(ℓm−1), 2Äm·ℓm
]

, otherwise mout ∈
[

2Äm·(ℓm−1), 2Äm·ℓm
]

and
eout = e + 1. Moreover, for all i ∈ [0, ℓm − 1] (resp., i ∈ [0, ℓe − 1]), mout,i ∈ [0, 2Äm − 1] (resp.,
eout,i ∈ [0, 2Äe − 1]).

Proof (Correctness of CarryPropagateFloat (Algorithm 50)). In Line 2, we get cte′ =
[cte′,ℓe−1, . . . , cte′,0] such that ∀i ∈ [0, ℓe − 1],Decrypt(cte′,i) = e′i < 2Äe after the carry prop-
agation. Likewise, in Line 3, we do an extended carry propagation of the mantissa, so that
ctm′ = [ctm′,ℓm , . . . , ctm′,0] such that, ∀i ∈ [0, ℓm],Decrypt(ctm′,i) = m′

i < 2Äm . Note that the
carry on the most significant block is not lost and creates a new LWE ciphertext ctm′,ℓm encrypting
the propagated carry of ctm,ℓm−1.
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Algorithm 50: ctfout ← CarryPropagateFloat (ctf)

Context: LUTid : Lookup Table associated to the id function.

Input:















ctf =





cts ∈ LWEs (s)
cte = [cte,ℓe−1, . . . , cte,0] ∈ [LWEs (eℓe−1) , . . . ,LWEs (e0)]
ctm = [ctm,ℓm−1, . . . , ctm,0] ∈ [LWEs (mℓm−1) , . . . ,LWEs (m0)]

PUB : Public keys for KS, PBS and CBS; /* Remark 2.15 */

Output:







ctfout =





ctsout ∈ LWEs (s)
cteout = [cteout,ℓe−1, . . . , cteout,0] ∈ [LWEs (eout,ℓe−1,) , . . . ,LWEs (eout,0)]
ctmout

= [ctmout,ℓm−1, . . . , ctmout,0] ∈ [LWEs (mout,ℓm−1) , . . . ,LWEs (mout,0)]

1 ctsout ← KS-PBS (cts, LUTId,PUB); /* Algorithm 4 and 11 */

2 cte′ ← CarryPropagate (cte,PUB) ; /* Algorithm 39 */

3 ctm′ = [ctm′,ℓm , . . . , ctm′,0]← CarryPropagateExtend (ctm,PUB); /* Algorithm 45 */

4 ctm+ = [ctm′,ℓm , . . . , ctm′,1], ctm−
= [ctm′,ℓm−1, . . . , ctm′,0]

5 CT← CBS
(

ctm′

ℓm
,PUB

)

; /* Algorithm 12 */

6 ctmout
← ExtendedCMux

(

ctm−
, ctm+ ,CT

)

; /* Algorithm 49 */

7 cteout ← ExtendedCMux
(

cte′ , cte′ + TrivialEncrypt(1, ℓe),CT
)

; /* Algorithm 49 */

8 return ctfout = (ctsout ; cteout ; ctmout
)

In the next steps, the idea is to decide if we need to keep this block ctm′,ℓm and remove the least
significant block (i.e., to return ctm+

) or if we can discard it (i.e., to return ctm−
). This allows

us to output a result which has the same number of blocks ℓm than the input. To do so, in Line 6

we perform a circuit bootstrapping returning a GGSW ciphertext: CT ∈ GGSWℬ,ℓ
S

(0) if the new

ctm′,ℓm is in LWEs(0), otherwise, CT is in GGSWℬ,ℓ
S

(1). Next in Line 7, Algorithm 49 returns

ctm+ if CT is in GGSWℬ,ℓ
S

(1), or ctm−
otherwise. Likewise, in the case where ctm′,ℓm does not

encrypt 0, the exponent should be updated. The condition is then the same as previously, so that

we can use the same selector CT to choose between the initial value of the exponent cte′ or the one
which has been increased by one cte′ + TrivialEncrypt(1, ℓe).

Remark 8.2 (Carry Propagation & Refresh). After most operations, we will apply Algorithm 50
to properly propagate the carries and refresh the noise. However, after operations like the ReLU
(Algorithm 56) or the approximated Sigmoid (Algorithm 57) that do not fill the carry block, we
only need to perform a PBS on each ciphertext to obtain fresh noise.

Lemma 8.6 (Noise Constraints of Algorithm 50). The output ciphertexts of Algorithm 50, ctmout

has a noise variance Ã2
BR + Ã2

CMux, cteout has a noise variance Ã2
BR + Ã2

CMux and ctsout has a noise
variance Ã2

BR.
To guarantee correctness of Algorithm 50, we need to find parameters that verify the following

inequalities:
Ã2
in,e + Ã2

BR + Ã2
KS + Ã2

MS f t2 & Ã2
in,m + Ã2

BR + Ã2
KS + Ã2

MS f t2.

With Ãin,e the noise variance of the input exponent ciphertexts, Ãin,m the noise variance of the
input mantissa ciphertexts and with ÃBR the noise added by the blind rotation, ÃKS the noise added
by the key switch, ÃCMux the noise added by the CMux and finally ÃMS, the noise added by the
modulus switch and with t2, the noise bound as defined in the proof of the noise constraints of
Algorithm 46.

Proof (Lemma 8.6). Let us assume that the input ciphertexts cts, cte and ctm have respectively
the following noise variances Ã2

in,s, Ã
2
in,e and Ã2

in,m. The first line of the algorithm consists in a key

switch and a bootstrapping. We have the following noise constraint: Ã2
in,s + Ã2

KS + Ã2
MS f t2, with

Ã2
KS and Ã2

MS the noise added respectively by the key switch and the modulus switch. t is a noise
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bound such that t = ∆
2·z∗(pfail)

with the standard score z∗(pfail) =
√
2 · erf−1(1− pfail) and the scaling

factor ∆ introduced in Section 2.2.1. If we find parameters that guarantee the inequality above, the
bootstrapping will be successful with probability 1− pfail.

Then, we have a carry propagate and an extended carry propagate. We refer to the analysis for
Algorithm 46 for the explanation about the constraints in these algorithms:

Ã2
in,e + Ã2

BR + Ã2
KS + Ã2

MS f t2 & Ã2
in,m + Ã2

BR + Ã2
KS + Ã2

MS f t2.

Finally, we have a circuit bootstrapping that also creates a noise constraint Ã2
BR+Ã2

KS+Ã2
MS f t2.

Notice that the left-hand side here is smaller than in both inequalities above, so we can remove this
last inequality from the set of constraints. Then, the output ciphertexts ctmout

, cteout and ctsout have
respectively a noise variance Ã2

BR +Ã2
cmux, Ã

2
BR +Ã2

cmux and Ã2
BR with Ã2

cmux the variance added by an
extended CMux using a GGSW coming from a circuit bootstrapping.

8.4 Addition and Subtraction of HFP

In this section, we detail the algorithms used to perform addition and subtraction operations with
our floating-point representation. Initially, we describe the operations that manage the mantissa:
the first aligns the two mantissas, and the second carries out the subtraction between them, followed
by a realignment of the resulting value. Ultimately, the application of these algorithms enables us
to efficiently implement homomorphic floating-point (HFP) addition and subtraction operations.

8.4.1 Managing Mantissas and Exponents

To add two floating-point numbers, we can not directly add their mantissas. First, we need their
exponents to be equal and the mantissas to be aligned properly. In what follows, we describe the
algorithms to homomorphically perform these operations.

Aligned Mantissa Algorithm. Algorithm 51 takes as input ciphertexts encrypting two man-
tissas and their corresponding exponents, and returns the largest exponent emax along with both
aligned mantissas. The first step of this operation is to perform a subtraction between the two
exponents to obtain d = |e1 − e2| and the sign of this difference. The sign then allows us to select
the largest exponent and the mantissa that needs to be aligned. Finally, a tree of CMux, using
the bits of d, aligns the selected mantissa by removing the d least significant ciphertexts from the
mantissa associated with emin. All the steps of this operation are illustrated in Figure 8.2.

Lemma 8.7 (Aligned mantissa (Algorithm 51)). Let ctmi
and ctei such that ctei =

[

ctei,ℓe−1
, . . . , ctei,0

]

∈ [LWEs (ei,ℓe−1) , . . . ,LWEs (ei,0)] and ctmi
=

[

ctmi,ℓm−1
, . . . , ctmi,0

]

∈
[LWEs (mi,ℓm−1) , . . . ,LWEs (mi,0)] with i ∈ {1, 2} be two ciphertexts encrypting mi · (2Äm)

ei−bias
.

Then, Algorithm 51 returns (ctm′

1res
, ctm′

2res
, ctemax) with, emax = max(e1, e2). If e1 > e2, m

′
1res =

m1, then m′
2res =

⌊

m2/2
Äm·d⌋ with d = e1 − e2. Else if e1 < e2, m

′
2res = m2, then m′

1res =
⌊

m1/2
Äm·d⌋

with d = e2 − e1. Else if e1 = e2, then m′
1res = m1 and m′

2res = m2.
The complexity of the algorithm is:

Cost
ℓPBS,ℓCBS,k,N,n,q,ℓe,Äe

AlignMantissa = (ℓe · Äe + 1) · CostℓPBS,ℓCBS,k,N,n,q
CBS + Cost

ℓe,ℓPBS,k,N,n,q
RadixSub∗

Proof (Correctness of AlignMantissa (Algorithm 51)). In what follows, we use the index of a
ciphertext to refer to the plaintext value it encrypts, i.e., z = Decrypts(ctz). From Algorithm 46,
we have that d = |e1 − e2| and s = 0 if e1 g e2, 1 otherwise. Each bits of cts and ctd are converted

to GGSW via a CBS, so that after Line 5, we have:
{

CTdi
∈ GGSWS(di)

}

i∈[0,ℓe·Äe−1]
(such that

d =
∑ℓe·Äe

i=0 di2
i) and CTs ∈ GGSWS(ds). From Algorithm 49, after Line 6, we get m

ï0ð
out = m2 if

ds = 0, m1 otherwise. This gives which of the mantissa needs to be aligned, i.e., if the ciphertext

CTds
is in GGSWℬ,ℓ

S
(0), e1 g e2 so we need to align m2, otherwise e1 < e2, and thus m1 needs
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Algorithm 51:
(

ctm1′
, ctm2′

, cte
)

← AlignMantissa(cte1 , ctm1
, cte2 , ctm2

,PUB)

Input:







































cte1 = [cte1,ℓe−1, . . . , cte1,0] ∈
[

LWEs

(

e1ℓe−1

)

, . . . ,LWEs (e10)
]

ctm1 = [ctm1,ℓm−1, . . . , ctm1,0] ∈
[

LWEs

(

m1ℓm−1

)

, . . . ,LWEs (m10)
]

cte2 = [cte2,ℓe−1, . . . , cte2,0] ∈
[

LWEs

(

e2ℓe−1

)

, . . . ,LWEs (e20)
]

ctm2 = [ctm2,ℓm−1, . . . , ctm2,0] ∈
[

LWEs

(

m2ℓm−1

)

, . . . ,LWEs (m20)
]

PUB : Public materials for KS, PBS and CBS; /* Remark 2.15 */

Output:































ctm′

1
=

[

ctm′

1,ℓm−1, . . . , ctm′

1,0

]

∈
[

LWEs

(

m′
1ℓm−1

)

, . . . ,LWEs (m
′
10)

]

ctm′

2
=

[

ctm′

2,ℓm−1, . . . , ctm′

2,0

]

∈
[

LWEs

(

m′
2ℓm−1

)

, . . . ,LWEs (m
′
20)

]

cte = [cte,ℓe−1, . . . , cte,0] ∈ [LWEs (eℓe−1) , . . . ,LWEs (e0)]

/* Subtraction between the two exponents follows by the bit extraction */

1 (cts, ctd = [ctd,ℓe−1, . . . , ctd,0])← RadixSub∗ (cte1 , cte2 ,PUB) ; /* Algorithm 46 */

2 for i ∈ [0..ℓe − 1] do
3 for j ∈ [0..Äe − 1] do

/* Extract each bit of ctd */

4 CTd(i·Äe+j)
← CBS (ctd,i,PUB); /* Algorithm 12 */

5 CTds ← CBS (cts,PUB) ; /* Algorithm 12 */

/* selects the CT we need to align */

6 ct
ï0ð
mout = [ctmout,ℓm−1, . . . , ctmout,0]← ExtendedCMux

(

ctm2 , ctm1 ,CTds

)

; /* Algorithm 49 */

7 for i ∈ [1..ℓm] do

/* Remove the ith less significant blocks and add i trivial Zero LWEs on the most

significant blocks */

8 ct
ïið
mout ← [TrivialEncrypt (0, i), ctmout,ℓm−1, . . . , ctmout,i]

9 for i ∈ [0..ℓe · Äe) do
10 if

⌊

ℓm/2
i+1

⌋

= 0 then

11 ct
ï0ð
mout ← ExtendedCMux

(

ct
ï0ð
mout ,TrivialEncrypt (0, ℓm) ,CTdi

)

; /* Algorithm 49 */

12 else

13 for j ∈
[

0..
⌊

ℓm/2
i+1

⌋]

do

/* If ct
ï2·j+1ð
mout is not defined, then it is equal to TrivialEncrypt (0, ℓm) */

14 ct
ïið
mout ← ExtendedCMux

(

ct
ï2·jð
mout , ct

ï2·j+1ð
mout ,CTdi

)

; /* Algorithm 49 */

15 ctm′

1
← ExtendedCMux

(

ctm1 , ct
ï0ð
mout ,CTds

)

; /* Algorithm 49 */

16 ctm′

2
← ExtendedCMux

(

ct
ï0ð
mout , ctm2 ,CTds

)

; /* Algorithm 49 */

17 cte ← ExtendedCMux
(

cte1 , cte2 ,CTds

)

; /* Algorithm 49 */

18 return
(

ctm′

1
, ctm′

2
, cte

)

to be aligned. In next loop, encryption of all possible mantissa shifts are created, i.e., M ï0ð =
{

ct
ïið
mout

= [0, . . . ,0, ctmout,ℓm−1, . . . , ctmout,i]
}

i∈[1,ℓm−1]
with 0 ∈ LWEs(0), s.t. m

ïið
out =

⌊

m
ï0ð
out/2

Äm·i
⌋

.

The next steps consists in choosing the right mantissa from this set, depending on the value of d.
Informally, d is the number of blocks by which the mantissa should be shifted. At each step i of the
loop, the set M ïið is updated with respect of the binary value of d, to contains the encryption of

each value in
{

ct
ï³ð
mout

=
⌊

m
ï0ð
out/2

Äm·³
⌋

s.t. ³ =
∑i−1

j=0 dj2
j mod 2i+1

}

. Note that in the case where

e1 = e2, the algorithm will return the selected mantissa without any change. In the end, the set
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is reduced to a singleton containing
⌊

m
ï0ð
out/2

Äm·d
⌋

. Finally, the last three CMux gates replace the

mantissa value with the aligned one and select the larger exponent.

Figure 8.2: This figure illustrates the main steps of the Homomorphic AlignMantissa operation
(see Algorithm 51). The goal is to align the mantissas based on their exponents. At a high level,
we first use Algorithm 46 on the two exponents (in green) to compute the difference between the
two exponents, along with the sign. Using the sign, we can determine which mantissa (in pink) is
smaller. Then, with the difference and a tree of Extended CMux operations, we can decide how
many ciphertexts are needed to increase the smaller mantissa and align the exponents. The final
step involves correctly ordering the two mantissas and selecting the larger exponent.

Lemma 8.8 (Noise Constraints of Algorithm 51). The output noise variances of the ciphertexts

of Algorithm 51, ctm′

i
and cte, are respectively Ã2

in,m + (Äe·ℓe+3)
2 · Ã2

cmux and Ã2
in,e + Ã2

cmux.
To guarantee correctness of Algorithm 51, we need to find parameters that verify the following

inequalities:
4 · Ã2

BR + Ã2
KS + Ã2

MS f t2.

With Ãin,e the noise variance of the input exponent ciphertexts, Ãin,m the noise variance of
the input mantissa ciphertexts and with ÃBR the noise added by the blind rotation, ÃKS the noise
added by the key switch, ÃCMux the noise added by the CMux and finally ÃMS, the noise added by
the modulus switch. with t2, the noise bound as defined in the proof of the noise constraints of
Algorithm 46.

Proof (Lemma 8.8). Let us assume that the input ciphertexts ctei and ctmi
have respectively a

noise variance Ã2
in,e and Ã2

in,m. The first line calls Algorithm 46 (see Lemma 8.2 for more details).
In particular, we compute the output noise of Algorithm 46. The noise variances of cts and ctd

are respectively 4 · Ã2
BR and Ã2

BR with Ã2
BR, the noise variance of a freshly bootstrapped ciphertext.

In the next lines, the algorithm heavily relies on circuit bootstrapping which gives us the following
noise constraints: Ã2

BR+Ã2
KS+Ã2

MS f t2 & 4 ·Ã2
BR+Ã2

KS+Ã2
MS f t2, with Ã2

KS and Ã2
MS respectively

the noise variance added by a key switch and by a modulus switch. t2 represents the noise
bound as previously defined in the proof of Lemma 8.2. As the first constraint is dominated by
the second, we can remove it from the set of constraints. Then, we apply an extended CMux and
we create ℓm vectors of ciphertexts composed of outputs of the previous extended CMux and trivial
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ciphertexts. At this stage, we assume that every ciphertext in these vectors has the same noise
variance Ã2

in,m+Ã2
cmux with Ã2

cmux the noise added by a CMux using a GGSW coming from a circuit

bootstrap with a noise variance Ã2
BR+Ã2

PPKS. Then, we apply an extended CMux tree of depth Äe ·ℓe.
Therefore, at the end of the tree, the ciphertexts have a noise variance Ã2

in,m + (Äe · ℓe + 1) · Ã2
cmux.

At the end of the algorithm, assuming that cts encrypt 0 or 1 with probability 1
2 , the noise variance

of ctm′

i
is Ã2

in,m + (Äe·ℓe+3)
2 · Ã2

cmux. The noise variance of cte is Ã2
in,e + Ã2

cmux.

SubMantissa. SubMantissa performs the subtraction of two mantissas and shifts the result such
that the most significant block is not empty (unless the result is zero or too small to be represented).
It changes the value of the exponent and the sign consequently. To perform this operation, the two
mantissas must to be aligned. Algorithm 52 takes as input the encryption of two aligned mantissas,
the exponent and the sign, and returns the encryption of the absolute value of the difference of the
mantissas, the exponent and the sign of this subtraction.

Lemma 8.9 (SubMantissa (Algorithm 52)). Let ctmi
= [ctmi,ℓm−1, . . . ctmi,0] ∈

[

LWEs

(

miℓm−1

)

, . . .LWEs (mi0)
]

with i ∈ {0, 1} be ciphertexts encrypting mi < 2Äm . Let
cte = [cte,ℓe−1, . . . cte,0] ∈ [LWEs (eℓe−1) , . . .LWEs (e0)] a ciphertexts encrypting e < 2Äe . Let

cts1 ∈ LWEs(s1) and cts2 ∈ LWEs(s2) with s1 = 1− s2 such that f1 = (−1)s1 ·m1 · (2Äm)
e−bias

and

f2 = (−1)s2 ·m2 · (2Äm)
e−bias

.
Then, Algorithm 52 outputs ctfsub = (ctmsub

, ctesub , ctssub) such that DecryptFloats(ctfsub) = f1 −
f2 = (−1)ssub ·msub · (2Äm)

esub−bias
with ssub = s1 if m1 g m2, or s2 if m1 < m2.

Assuming m1 ̸= m2, we note ³ be the index of the first non zero block of m = |m1 − m2| i.e.,
³ = mini∈[0,ℓm−1] {ℓm − 1− i s.t. mi ̸= 0}. Then if e g ³, esub = e−³ and msub = |m1−m2| ·2

Äm·³.
Else if m1 = m2 or if e− ³ < 0, then, msub = 0, esub = 0.
The complexity of the algorithm is:

Cost
ℓPBS,ℓCBS,k,N,n,q,ℓe,Äe,ℓm
SubMantissa =

Cost
ℓm,ℓPBS,k,N,n,q
RadixSub∗ + Cost

ℓe,ℓPBS,k,N,n,q
RadixSub∗ + (ℓm + 1) · CostℓPBS,ℓCBS,k,N,n,q

CBS .

Proof (Correctness of SubMantissa (Algorithm 52)). The first step of the algorithm is to subtract
the two mantissas. We obtain ctm0 which is equals to |ctmin,1

− ctmin,2
| and cts the sign of this

subtraction. As the two mantissas are aligned, we have m0 in [0, 2ℓm·Äm).
At each step i of the loop, we take the previously computed ciphertext ctmi−1

encrypting a
message mi−1 and build another ciphertext ctmi

encrypting the message mi = mi−1 · 2
Äm . On line

7, we create a GGSW ciphertext CT encrypting 0 if the most significant block of the mantissa
mi−1,ℓm−1 is equal to 0 and 1 if it contains some non-zero integer. Remember, our goal is to
realign the mantissa to stay in the classical representation (i.e., msub ∈

[

2(ℓm−1)·Äm , 2ℓm·Äm

)

or
msub = 0 if min,1 = min,2). Therefore, we use a CMux to select ctmi−1

if mi−1,ℓm−1 ̸= 0 and ctmi
if

mi−1,ℓm−1 = 0. In the same way, we use the CMux to update the value of the exponent. To do so,
we take the previously computed ctei−1

and create a new ciphertext ctei , a trivial encryption of i.
As we want to select ctei−1 (respectively ctei) if we selected ctmi−1 (resp. ctmi

) in the previous step,

we can perform a CMux with the same GGSW ciphertext CT. Assuming that we have m0 ̸= 0, at
the end of the for-loop, ctei is encrypting a value ³ such that m0 · 2

Äm·³ ∈
[

2(ℓm−1)·Äm , 2ℓm·Äm

)

and
ctmi

is encrypting m0 · 2
Äm·³. If we have m0 = 0, ctmi will still be equal to 0.

The next step is to update the exponent. In line 13, we subtract the value ³ encrypted in cteℓm to
cte. The sign of this subtraction is in LWEs(0) if we can do the subtraction (e > ³) otherwise, the
result is in LWEs(1), the value of the subtraction is too small to be represented with our encoding.

With this sign we create a new GGSW ciphertext CT. Finally, the last CMux returns the ciphertexts
encrypting mantissa msub = m0 · 2

Äm·³ and the ciphertexts encrypting the exponent esub = e− ³ if
the subtraction can be done, otherwise it returns the ciphertexts encrypting 0.
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Algorithm 52: (ctmsub
, ctesub , ctssub)← SubMantissa(ctmin,1

, ctmin,2
, cte, cts1 ,PUB)

Input:























ctmin,1
=

[

ctmin,1,ℓm−1, . . . , ctmin,1,0

]

∈
[

LWEs

(

min,1ℓm−1

)

, . . . ,LWEs (min,10)
]

ctmin,2
=

[

ctmin,2,ℓm−1, . . . , ctmin,2,0

]

∈
[

LWEs

(

min,2ℓm−1

)

, . . . ,LWEs (min,20)
]

cte = [cte,ℓe−1, . . . , cte,0] ∈ [LWEs (eℓe−1) , . . . ,LWEs (e0)]
cts1 ∈ LWEs (sign1)
PUB : Public keys for KS, PBS and CBS; /* Remark 2.15 */

Output:







ctmsub
= [ctmsub,ℓm−1, . . . , ctmsub,0] ∈

[

LWEs

(

msubℓm−1

)

, . . . ,LWEs (msub0)
]

ctesub = [ctesub,ℓe−1, . . . , ctesub,0] ∈
[

LWEs

(

esubℓe−1

)

, . . . ,LWEs (esub0)
]

ctssub ∈ LWEs (ssub)

1 (cts, ctm0 = [ctm0,ℓm−1, . . . , ctm0,0])← RadixSub∗
(

ctmin,1
, ctmin,2

,PUB
)

; /* Algorithm 46

*/

2 cte0 ← TrivialEncrypt (0, ℓe)
3 for i ∈ [1..ℓm] do
4 ct

′
ei
← TrivialEncrypt (i, ℓe)

5 ct0 ← TrivialEncrypt (0, 1)

6 ctmi
←

[

ctmi−1,ℓm−2, . . . , ctmi−1,0, ct0
]

/* CT ∈ GGSWℬ,ℓ
S

(0) if ctmi−1,ℓm−1 ∈ LWEs (0), CT ∈ GGSWℬ,ℓ
S

(1) otherwise

*/

7 CT← CBS
(

ctmi−1,ℓm−1,PUB
)

; /* Algorithm 12 */

8 ctmi
← ExtendedCMux

(

ctmi
, ctmi−1

,CT
)

; /* Algorithm 49 */

9 if i ̸= ℓm then ct
′
ei
← ExtendedCMux

(

ct
′
ei
, ct′ei−1

,CT
)

; /* Algorithm 49 */

10 else ct
′
ei
← ExtendedCMux

(

cte, ct
′
ei−1

,CT
)

; /* Algorithm 49 */

11 ;

12 (ctse , cteres)← RadixSub∗
(

cte, ct
′
eℓm

,PUB
)

; /* Algorithm 46 */

/* CTse ∈ GGSWℬ,ℓ
S

(0) if ctse ∈ LWEs (0), CTse ∈ GGSWℬ,ℓ
S

(1) otherwise */

13 CTse ← CBS (ctse ,PUB); /* Algorithm 12 */

14 ctmsub
← ExtendedCMux

(

TrivialEncrypt (0, ℓm), ctmℓm
,CTse

)

; /* Algorithm 49 */

15 ctesub ← ExtendedCMux
(

TrivialEncrypt (0, ℓe), cteres ,CTse

)

; /* Algorithm 49 */

16 ctssub ← cts1 + cts
17 return (ctesub ; ctmsub

; ctssub)

Lemma 8.10 (Noise Constraints of Algorithm 52). The output noise variances of ciphertexts
of Algorithm 52, ctmsub

, ctesub and ctssub , are respectively Ã2
BR + (ℓm + 1) · Ã2

cmux, Ã
2
BR + Ã2

cmux and
Ã2
in,s + 4Ã2

BR.
To guarantee correctness of Algorithm 52, we need to find parameters that verify the following

inequalities:

Ã2
BR + (i− 1) · Ã2

cmux + Ã2
KS + Ã2

MS f t2 & 4Ã2
BR + Ã2

KS + Ã2
MS f t2.

With Ãin,s the noise variance of the input sign ciphertext and with ÃBR the noise added by the
blind rotation, ÃKS the noise added by the key switch, ÃCMux the noise added by the CMux and
finally ÃMS, the noise added by the modulus switch and t2, the noise bound as defined in the proof
of the noise constraints of Algorithm 46.

Proof (Lemma 8.10). Let us assume that the input ciphertexts cte, ctmi
and cts1 have respectively

a noise variance Ã2
in,e, Ã

2
in,m and Ã2

in,s.
Using the noise analysis of Algorithm 46 presented in Lemma 8.2, we know that the noise

variance of ctm0
and cts are respectively Ã2

BR and 4 · Ã2
BR. In the for-loop, for each index 1 f
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Figure 8.3: This figure represents the main steps of Algorithm 52. At a high level, we first subtract
the two mantissas using Algorithm 46, obtaining the absolute value of the subtraction along with
the sign. Next, we perform a loop where, at each step, the first ciphertext of the new mantissa is
transformed into a GGSW ciphertext using a CBS. Using this GGSW ciphertext, we remove the
most significant ciphertext if it is empty otherwise, we keep the mantissa. At the same time, at
each step, we count the number of ciphertexts removed. When the loop finishes, we subtract the
number of removed ciphertexts from the exponent. Finally, we use an extended CMux to return 0
if the exponent is negative or if the mantissa is empty.

i f ℓm, we can compute the noise constraint Ã2
BR + (i − 1) · Ã2

cmux + Ã2
KS + Ã2

MS f t2 and the
noise variance of ctmi

is Ã2
BR + i · Ã2

cmux, the noise variance of ctei is i · Ã2
cmux for i ̸= ℓm and

max
(

(ℓm − 1) · Ã2
cmux, Ã

2
in,e

)

+ Ã2
cmux for i = ℓm. As in the previous proofs, we only need to retain

the noise constraint for i = ℓm, as it dominates the other constraints. Then, we have a call to
Algorithm 46 which gives us ciphertexts of variances respectively 4Ã2

BR and Ã2
BR. Next, we perform

a circuit bootstrapping which gives us the following constraint 4Ã2
BR + Ã2

KS + Ã2
MS f t2. Finally, the

algorithm outputs ctmsub
, ctesub and ctssub of respective variances Ã2

BR + (ℓm + 1) · Ã2
cmux, Ã

2
BR + Ã2

cmux

and Ã2
in,s + 4Ã2

BR.

8.4.2 Addition and Subtraction

This operation performs the addition of two homomorphic floating-point numbers. To perform a
subtraction, we only need to change the input sign of the second ciphertext. This operation is
straightforward, as the sign is on a padding bit, adding the clear integer q/2 to the sign ciphertext
change the sign of the floating-point.

This operation is based on the previous algorithms. We first need to align the mantissas
(Algorithm 51). Next, we perform both the addition and the subtraction (Algorithm 52) of the
mantissas and then we choose which of the two results to output based on the signs. All the steps
of this operation are illustrated in Figure 8.4.

After this operation, we need to perform the operation CarryPropagateFloat (Algorithm 50)
to retrieve a proper homomorphic floating-point representation.

Lemma 8.11 (Addition (Algorithm 53)). Let ctfi such that ctsi ∈ LWEs (si),ctei =
[

ctei,ℓe−1
, . . . , ctei,0

]

∈ [LWEs (ei,ℓe−1) , . . . ,LWEs (ei,0)] encrypting ei < 2Äe and ctmi
=
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[

ctmi,ℓm−1
, . . . , ctmi,0

]

∈ [LWEs (mi,ℓm−1) , . . . ,LWEs (mi,0)] encrypting mi < 2Äm with i ∈ {1, 2}

be two ciphertexts encrypting fi = (−1)
si ·mi · (2

Äm)
ei−bias

.

Then, Algorithm 53 returns (ctmres
, cteres , ctsres) = ctfres such that DecryptFloat(ctfres) = (−1)

sres ·

mres ·(2
Äm)

eres−bias
= fres = f1+ f2+ϵ with, m′

1 = m1 and m′
2 = +m2/2

Äm·µ, for µ = e1−e2, if e1 g e2.
Otherwise m′

2 = m2 and m′
1 = +m1/2

Äm·µ, for µ = e2 − e1. For ϵ, we refer to Definition 35. If
s1 = s2, then sres = s1, eres = max(e1, e2) and mres = m′

1 +m′
2.

Else if s1 ̸= s2 and if m′
1 g m′

2, then sres = s1; or if m
′
1 < m′

2, then sres = s2. Assuming m′
1 ̸= m′

2

and s1 ̸= s2, let ³ be the index of the first non zero block of m = |m′
1−m′

2|, if max(e1, e2) g ³, then
eres = max(e1, e2)− ³ and mres = |m

′
1 −m′

2| · 2
ℓm·³. Else if max(e1, e2) < ³, then eres = 0, mres = 0

and eres = 0.

The complexity of the algorithm is:

Cost
ℓPBS,ℓCBS,k,N,n,q,ℓe,Äe,ℓm
Addition =

Cost
ℓPBS,ℓCBS,k,N,n,q,ℓe,Äe,ℓm
SubMantissa + Cost

ℓPBS,ℓCBS,k,N,n,q,ℓe,Äe

AlignMantissa + Cost
ℓPBS,ℓCBS,k,N,n,q
CBS .

Algorithm 53: ctfres ← Addition (ctf1 , ctf2 ,PUB)

Input:















































ctf1 =







cts1 ∈ LWEs (s1)
cte1 =

[

cte1,ℓe−1
, . . . , cte1,0

]

∈ [LWEs (e1,ℓe−1) , . . . ,LWEs (e1,0)]
ctm1

=
[

ctm1,ℓm−1
, . . . , ctm1,0

]

∈ [LWEs (m1,ℓm−1) , . . . ,LWEs (m1,0)]

ctf2 =







cts2 ∈ LWEs (s2)
cte2 =

[

cte2,ℓe−1
, . . . , cte2,0

]

∈ [LWEs (e2,ℓe−1) , . . . ,LWEs (e2,0)]
ctm2 =

[

ctm2,ℓm−1
, . . . , ctm2,0

]

∈ [LWEs (m2,ℓm−1) , . . . ,LWEs (m2,0)]
PUB : Public materials for PBS, KS and CBS; /* Remark 2.15 */

Output:







ctfres =







LWEs (sres)
cteres = [cteres , . . . , cte0 ] ∈ [LWEs (eres,ℓe−1) , . . . ,LWEs (eres,0)]
ctmres

= [LWEs (mres,ℓm−1) , . . . ,LWEs (mres,0)]

1

(

ctm′

1
, ctm′

2
, cte

)

← AlignMantissa(cte1 , ctm1
, cte2 , ctm2

,PUB) ; /* Algorithm 51 */

2 ctmadd
← Add(ctm′

1
, ctm′

2
) ; /* Algorithm 40 */

3 (ctmsub
, ctesub , ctssub)← SubMantissa(ctm′

1
, ctm′

2
, cte, cts1 ,PUB) ; /* Algorithm 52 */

/* CTs ∈ GGSWℬ,ℓ
S

(0) if cts1 + cts2 ∈ LWEs (0);CTs ∈ GGSWℬ,ℓ
S

(1) otherwise. */

4 CTs = CBS (cts1 + cts2 ,PUB); /* Algorithm 12 */

5 cteres ← ExtendedCMux
(

cte , ctesub ,CTs

)

; /* Algorithm 49 */

6 ctmres
← ExtendedCMux

(

ctmadd
, ctmsub

,CTs

)

; /* Algorithm 49 */

7 ctsres ← ExtendedCMux
(

cts1 , ctssub ,CTs

)

; /* Algorithm 49 */

8 return ctfres = (ctsres , cteres , ctmres
)

Proof (Correctness of Addition (Algorithm 53)). As defined in AlignMantissa (Algorithm 51),
line 1 returns e = max(e1, e2) and ctm′

1
and ctm′

2
aligned (such that if e1 g e2, m′

1 = m1 and
m′

2 = +m2/2
Äm·µ, with µ = e1 − e2. And if e1 f e2, m′

2 = m2 and m′
1 = +m1/2

Äm·µ, with
µ = e2 − e1.).

Line 2 adds the two aligned mantissas m′
1 and m′

2 by adding together each LWE ciphertext. As
the carry block is empty, these operations can be done directly.

As defined in Algorithm 52, line 3 returns ctmsub
= |m′

1 − m′
2| · 2

ℓm·³, ssub = s1 if m′
1 > m′

2,
or ssub = s2 if m′

1 < m′
2. Assuming m′

1 ̸= m′
2, let ³ be the index of the first non zero block of

mres = |m
′
1 − m′

2| · 2
ℓm·³, then if e > ³ the algorithm returns esub = e − ³. If m′

1 = m′
2 or e < ³,

msub = 0, esub = 0 and ssub = s1.
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Figure 8.4: This figure gives an overview of each step needed to perform the homomorphic floating-
point addition.

By adding the sign on line 4 and performing a CBS over the result, we obtain a GGSW

ciphertext which encrypt s1 + s2. So CT ∈ GGSWℬ,ℓ
S

(0) if the two signs are equal or CT ∈

GGSWℬ,ℓ
S

(1) if the signs are different.
So with this GGSW ciphertext, we will return the mantissa, the exponent and the sign corre-

sponding to the addition if the signs are equal and if they are different, we return the mantissa, the
exponent and the sign corresponding to the subtraction as proposed on the lemma 8.11.

Lemma 8.12. (Noise Constraints of Algorithm 53) The output noise vari-
ances of ciphertexts of Algorithm 53, ctmres

, cteres and ctsres , are respectively
max

(

2Ã2
BR + (Äeℓe + 5) · Ã2

cmux, Ã
2
BR + (ℓm + 1) · Ã2

cmux

)

+ Ã2
cmux, Ã

2
BR + 2Ã2

cmux and 5Ã2
BR + Ã2

cmux.
To guarantee correctness of this operation, we need to find parameters that verify the following

inequalities:

2max
(

(ℓm − 1) · Ã2
cmux, Ã

2
BR + 2 · Ã2

cmux

)

+ Ã2
BR + Ã2

KS + Ã2
MS f t2

max
(

2Ã2
BR + (Äeℓe + 5)Ã2

cmux, Ã
2
BR + (ℓm + 1)Ã2

cmux

)

+ Ã2
cmux + Ã2

BR + Ã2
KS + Ã2

MS f t2.

With Ãin,e the noise variance of the input exponent ciphertexts, Ãin,m the noise variance of
the input mantissa ciphertexts and with ÃBR the noise added by the blind rotation, ÃKS the noise
added by the key switch, Ãcmux the noise added by the CMux and finally ÃMS, the noise added by
the modulus switch and t2, the noise bound as defined in the proof of the noise constraints of
Algorithm 46.

Proof (Lemma 8.12). Let us assume that the inputs of this algorithm are the outputs of Algo-
rithm 50. It means that the variances of ctsi

, ctei and ctmi
are respectively Ã2

BR, Ã
2
BR + Ã2

cmux and
Ã2
BR + Ã2

cmux (see Lemma 8.6).
The first line calls Algorithm 51, we use Lemma 8.8 to estimate the noise variances of ctm′

1
, ctm′

2

which are equal to Ã2
BR+

(

Äeℓe+5
2

)

·Ã2
cmux and the noise variance of cte′ which is equal to Ã2

BR+2·Ã2
cmux.

Then, ctm′

1
and ctm′

2
are added which doubles the variance.

Next, we call Algorithm 52 and using Lemma 8.10, we deduce that the noise variances of
ctmsub

, ctesub and ctssub are respectively Ã2
BR + (ℓm + 1) · Ã2

cmux, Ã
2
BR + Ã2

cmux and 5Ã2
BR.
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Then, we have a circuit bootstrap which must satisfies the following constraint 2Ã2
BR +

Ã2
KS + Ã2

MS f t2. Finally, we have an extended CMux for the mantissa, the ex-
ponent and the sign. The noise variances of ctmres

, cteres and ctsres are respectively
max

(

2Ã2
BR + (Äeℓe + 5) · Ã2

cmux, Ã
2
BR + (ℓm + 1) · Ã2

cmux

)

+ Ã2
cmux, Ã

2
BR + 2Ã2

cmux and 5Ã2
BR + Ã2

cmux.
Using Lemmas 8.6, 8.2, 8.8 and 8.10 and by noticing that some of the inequalities are dominated

by others, we find the complete set of constraints. As we want to be able to chain several additions,
we will assume that after the addition, we apply Algorithm 50. The non-dominated set of constraints
is the following:

2max
(

(ℓm − 1) · Ã2
cmux, Ã

2
BR + 2 · Ã2

cmux

)

+ Ã2
BR + Ã2

KS + Ã2
MS f t2

max
(

2Ã2
BR + (Äeℓe + 5)Ã2

cmux, Ã
2
BR + (ℓm + 1)Ã2

cmux

)

+ Ã2
cmux + Ã2

BR + Ã2
KS + Ã2

MS f t2.

We need to find parameters that verify these inequalities to guarantee correctness.

8.5 Multiplication and Division

In this section, we introduce a very efficient floating-point multiplication with the HFP represen-
tation. Then, we detail a second algorithm to perform division. Finally, we briefly describe how
to perform the ReLU and an approximated Sigmoid.

8.5.1 Multiplication

This operation computes the product of two HFPs. Following this procedure, it is necessary to
apply the CarryPropagateFloat algorithm (Algorithm 50). This step ensures that the homomorphic
floating-point number is returned to its standard representation, aligning it with the conventional
HFP formalism. At a high level, the goal is to multiply the two mantissas without losing precision.
Next, the exponent is updated by computing the sum of the two exponents and subtracting the
bias. We note that we selected this bias to allow for efficient computation of this step. Due to the
representation, we know that if the most significant ciphertext of the mantissa equals zero, or if
the exponent is negative, the result of the operation is zero since we do not work with subnormal
values. Otherwise, we return the result of the multiplication along with the updated exponent.

Lemma 8.13 (Multiplication (Algorithm 54)). Let ctfi such that ctsi ∈ LWEs (si), ctei =
[

ctei,ℓe−1
, . . . , ctei,0

]

∈ [LWEs (ei,ℓe−1) , . . . ,LWEs (ei,0)] encrypting ei < 2Äe and ctmi
=

[

ctmi,ℓm−1
, . . . , ctmi,0

]

∈ [LWEs (mi,ℓm−1) , . . . ,LWEs (mi,0)] encrypting mi < 2Äm with i ∈ {1, 2}

be two ciphertexts encrypting fi = (−1)
si ·mi · (2

Äm)
ei−bias

.
Then Algorithm 54 returns (ctmres

, cteres , ctsres) = ctfres such that DecryptFloat(ctfres) = fres =

(−1)
sres · mres · (2

Äm)
eres−bias

= f1 · f2 + ϵ with ctsres = cts1 + cts2 and ϵ is the maximum error added
by the operation as express in Definition 35.

If m1 ̸= 0 and m2 ̸= 0, if e1 + e2 g bias − ℓm + 1 then mres =
⌊

m1 ·m2/2
(ℓm−1)·Äm

⌋

and

eres = e1 + e2 − bias + ℓm − 1 with |ϵ| < (2Äm)
eres−bias

. If e1 + e2 < bias − ℓm + 1 then mres = 0

and eres = 0 with |ϵ| < 2Äm·(ℓm−1)(2Äm)
−bias

. If m1 = 0 or m2 = 0 then mres = 0 and eres = 0 with

|ϵ| < 2Äm·(ℓm−1)(2Äm)
−bias

.
The complexity of the algorithm is:

Cost
ℓPBS,ℓCBS,k,N,n,q,ℓm,
Multiplication =

costn,ℓm,ℓPBS,k,N,q
RadixMul + 2 ·

(

Cost
ℓ,k,N,n,q
PBS + Cost

ℓ,n,k,N
KS

)

+ Cost
ℓPBS,ℓCBS,k,N,n,q
CBS .

Proof (Correctness of Multiplication (Algorithm 54)). In the first step of the operation, we compute
the sign of the multiplication by summing the two signs s1 and s2. As the sign is on the padding
bit, the addition is done modulo 2. If the signs are equal, after the operation, the sign is positive
(cts1 + cts2 ∈ LWEs(0)), otherwise the sign is negative (cts1 + cts2 ∈ LWEs (1)).
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Algorithm 54: CTfres ← Multiplication(ctf1 , ctf2 ,PUB)

Context:

{

LUTm : LUT to return 1 if the value equals 0; 0 otherwise
LUTe : LUT to return 0 if

(

x g 2Äe−1
)

; 1 otherwise

Input:























































ctf1 =







cts1 ∈ LWEs (s1)
cte1 = [cte1,ℓe−1, . . . , cte1,0] ∈

[

LWEs

(

e1ℓe−1

)

, . . . ,LWEs (e10)
]

ctm1 = [ctm1,ℓm−1, . . . , ctm1,0] ∈
[

LWEs

(

m1ℓm−1

)

, . . . ,LWEs (m10)
]

ctf2 =







cts2 ∈ LWEs (s2)
cte2 = [cte2,ℓe−1, . . . , cte2,0] ∈

[

LWEs

(

e2ℓe−1

)

, . . . ,LWEs (e20)
]

ctm2 = [ctm2,ℓm−1, . . . , ctm2,0] ∈
[

LWEs

(

m2ℓm−1

)

, . . . ,LWEs (m20)
]

PUB : Public materials for KS, PBS and CBS; /* Remark 2.15 */

Output:







ctfres =







ctsres ∈ LWEs (sres)
cteres = [cteres,ℓe−1, . . . , cteres,0] ∈

[

LWEs

(

eresℓe−1

)

, . . . ,LWEs (eres0)
]

ctmres
= [ctmres,ℓm−1, . . . , ctmres,0] ∈

[

LWEs

(

mresℓm−1

)

, . . . ,LWEs (mres0)
]

1 ctsres ← cts1 + cts2
2 ctmmul

= [ctmmul,2ℓm−1, . . . ctmmul,0]← RadixMul (ctm1
, ctm2

,PUB); /* Algorithm 41

(modified) */

3 ctmmul,2ℓm−2 ← ctmmul,2ℓm−1 · 2
Äm + ctmmul,2ℓm−2

4 ctmres
= [ctmres,ℓm−1, . . . , ctmres,0]← [ctmmul,2ℓm−2, . . . ctmmul,ℓm−1]

/* cttmp
m
∈ LWEs (1) if ctmres,ℓm−1 ∈ LWEs (0); cttmp

e
∈ LWEs (0) otherwise */

5 cttmp
m
← KS-PBS (ctmres,ℓm−1, LUTm,PUB) ; /* Algorithm 4 and 11 */

6 cteres = [cteres,ℓe−1, . . . cteres,0]← RadixAdd (cte1 , cte2 ,PUB); /* Algorithm 40 */

/* cttmp
e
∈ LWEs (0) if cteres,ℓe−1 ∈ LWEs (x) with x g 2Äe−1; cttmp

e
∈ LWEs (1)

otherwise */

7 cttmp
e
← KS-PBS (cteres,ℓe−1, LUTe,PUB); /* Algorithm 4 and 11 */

/* bias have been choose such that bias− ℓm + 1 is equal to 2ℓe·Äe−1 so this

subtraction can be done only on the most significant block */

8 cteres,ℓe−1 ← cteres,ℓe−1 − TrivialEncrypt(2Äe−1, 1)
/* cttmp ∈ LWEs (0) if e is big enough and the most significant mantissa LWE

is not null */

9 cttmp ← cttmp
m
+ cttmp

e

/* encrypt 0 if cttmp ∈ LWEs (0), 1 otherwise */

10 CT← CBS (cttmp,PUB); /* Algorithm 12 */

11 cteres ← ExtendedCMux
(

cteres ,TrivialEncrypt (0, ℓe) ,CT
)

; /* Algorithm 49 */

12 ctmres
← ExtendedCMux

(

ctmres
,TrivialEncrypt (0, ℓm) ,CT

)

; /* Algorithm 49 */

13 return ctres = (ctsres ; cteres ;CTmres
)
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8.5 Multiplication and Division

Next, we compute the multiplication of the two mantissas. RadixMul return the product of
two integers. If m1 ̸= 0 and m2 ̸= 0, we have mi ∈

[

2(ℓm−1)·Äm , 2ℓm·Äm − 1
]

for i ∈ {0, 1}, so

m1 ·m2 ∈
[

22·(ℓm−1)·Äm , 22·ℓm·Äm − 2ℓm·Äm+1 + 1
]

(note that the value is stored in 2 · ℓm blocks). As
we want to keep the classical representation of the mantissa (ℓm blocks, where the most significant
block is non-zero except when the result equals zero), we will remove the least significant blocks,
ensuring that only the ℓm most significant blocks remain.

To do so, we distinguish two cases after the multiplication. The case where m1 · m2 ∈
[

22·(ℓm−1)·Äm , 2(2·ℓm−1)·Äm

)

(the most significant block after the multiplication contains zero)

and the case where m1 · m2 ∈
[

2(2·ℓm−1)·Äm , 22·ℓm·Äm − 2ℓm·Äm+1 + 1
]

. During the operation
RadixMul, the carry buffer of each ciphertext in ctmmul

is emptied. As the carry buffer of
ctmmul,2ℓm−1 and ctmmul,2ℓm−2 are empty, by multiplying ctmmul,2ℓm−1 by 2Äm , we have ctmmul,2ℓm−1 ·
2Äm ∈ {0} ∪

[

2Äm , 22·Äm

)

. As ctmmul,2ℓm−2 ∈ [0, 2Äm), we can sum these two values such
that ctmmul,2ℓm−1 = ctmmul,2ℓm−1 · 2

Äm + ctmmul,2ℓm−2 (Line 3). We have now m1 · m2 ∈
[

22·(ℓm−1)·Äm , 22·ℓm·Äm − 2ℓm·Äm+1 + 1
]

stored in 2 · ℓm − 1 blocks. Now, we remove the ℓm − 1
less significant block of the multiplication which represents too small values for the mantissa pre-
cision and the most significant block which have its information already stored in the second most
significant block ctmmul,2ℓm−1. We obtain mres =

⌊

m1 ·m2/2
(ℓm−1)·Äm

⌋

∈
[

2(ℓm−1)·Äm , 2(ℓm+1)·Äm

)

(Line 4). (In practice, we have modified the algorithm RadixMul such that the carry propagation
of the most significant block is not done and such that the useless parts of the multiplication are
not computed (Proof 13)). In the special case where m1 = 0 or m2 = 0, the previous step has no
impact and RadixMul will return the value 0 on each block. To distinguish the two cases, line 5,
a PBS checks if the most significant block of the mantissa is equal to zero, such that cttmp

m
is in

LWEs(1) if ctmres,ℓm−1 is in LWEs(0), otherwise it returns cttmp
m

in LWEs(0).
Now, we need to update the exponent e. First we will sum the two exponents (Line 6). Next,

as the exponent has the shape e′i + bias after the sum we obtain e1 + e2 = eres = e′res + 2 · bias.
So to keep the same representation, we need to remove one bias. Moreover, in the previous step,
we have removed the ℓm − 1 blocks of the mantissa, so we need to add ℓm − 1 to the exponent. In
Section 8.2.2, we chose the bias such that bias−ℓm+1 = 2ℓe·Äe−1 so we only need to subtract 2ℓe·Äe−1

from the sum of the exponents. Line 4, a PBS checks if the exponent is big enough and return an
LWE ciphertext such that cttmp

e
∈ LWEs(0) if cteres,ℓe−1

is in LWEs(x) with x g 2Äe−1, otherwise

it returns cttmp
e
∈ LWEs(1). We can now subtract 2ℓe·Äe−1 from the sum of the exponent (Line

8). This operation impacts only the most significant block of the exponent and can be performed
directly.

Now, looking at the two previous control LWE ciphertexts (cttmp
m
and cttmp

e
), by summing these

two values, we obtain cttmp
m
+cttmp

e
∈ LWEs(0) if ctmres,ℓm−1 /∈ LWEs(0) and cteres,ℓe−1

∈ LWEs(x)
with x g 2Äe−1. Otherwise, one of the two conditions to perform the multiplication is unmet and
the multiplication is not feasible. By using a circuit bootstrapping, we obtain a GGSW ciphertext

CT such that CT ∈ GGSWℬ,ℓ
S

(0) if we can perform the multiplication and CT ∈ GGSWℬ,ℓ
S

(1)

otherwise. With the last 2 lines, if CT is in GGSWℬ,ℓ
S

(0), the algorithm returns the result of the
multiplication, otherwise the multiplication is not doable and it returns zero.

Lemma 8.14 (Costn,ℓm,ℓPBS,k,N,q
RadixMul ). To simplify the algorithm, the operation RadixMul

proposed in the algorithm, have a complexity which can be bound by
(

2 · ℓm
2 + ℓm

2/Äm
)

·
(

Cost
ℓ,k,N,n,q
PBS + Cost

ℓ,n,k,N
KS

)

. However, in our implementation, we use a slight modifica-

tion of this algorithm to remove unnecessary computations (the part of the multiplication
which does not appear in the final mantissa). In practice, the complexity is bounded by
(

2 · (ℓm/2 + 1)
2
+ ℓm · (ℓm/2 + 1)/Äm

)

·
(

Cost
ℓ,k,N,n,q
PBS + Cost

ℓ,n,k,N
KS

)

.

Proof (Lemma 8.14). The mantissa m represents a value in
[

2Äm·(ℓm−1), 2Äm·ℓm − 1
]

. So m2

is in
[

22·Äm·(ℓm−1), 22Äm·ℓm − 2Äm·ℓm+1 + 1
]

. After a multiplication, the smallest reachable value

is 22·Äm·(ℓm−1) and as we keep only the ℓm most significant blocks, all the values smaller than
22·Äm·(ℓm−1)−ℓm·Äm = 2Äm·ℓm−2Äm are lost so we don’t need to compute them. These values cor-
respond to the part of the mantissa m′ such that m′2 < 2Äm·ℓm−2Äm so the part m′ such that
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m′ < 2Äm·(ℓm−2)/2. The part of the mantissa m′ corresponds to the ℓm/2− 1 least significant blocks
of the mantissa m. So we only need to compute the multiplication on the ℓm/2+ 1 most significant
blocks.

8.5.2 Division

This operation computes the division of two HFPs. Following this procedure, it is necessary to
apply the CarryPropagateFloat algorithm (Algorithm 50). This step will ensure that the ho-
momorphic floating-point number is returned to its standard representation, aligning it with the
conventional HFP formalism.

Lemma 8.15 (Division (Algorithm 55)). Let ctfi such that ctsi ∈ LWEs (si), ctei =
[

ctei,ℓe−1
, . . . , ctei,0

]

∈ [LWEs (ei,ℓe−1) , . . . ,LWEs (ei,0)] encrypting e < 2Äe and ctmi
=

[

ctmi,ℓm−1
, . . . , ctmi,0

]

∈ [LWEs (mi,ℓm−1) , . . . ,LWEs (mi,0)] encrypting m < 2Äm with i ∈ {1, 2}

be two ciphertexts encrypting fi = (−1)
si ·mi · (2

Äm)
ei−bias

.
Then Algorithm 55 returns (ctmres

, cteres , ctsres) = ctfres such that DecryptFloat(ctfres) = fres =

(−1)
sres · mres · (2

Äm)
eres−bias

= f1/f2 + ϵ with |ϵ| < (2Äm)
eres−bias

s.t. ctsres = cts1 + cts2 . If cte2 <
cte1 + bias+ ℓm − 1, then ctmres

=
⌊

ctm1 · 2
ℓm−1/ctm2

⌋

and cteres = cte1 + bias+ ℓm − 1− cte2 . Else,
cteres = 0 and ctmres

= 0.
The complexity of the algorithm is:

Cost
ℓPBS,ℓCBS,k,N,n,q,ℓe,
Division = Cost

n,ℓe,ℓPBS,k,N,q
RadixMul + Cost2·ℓmIntDiv + Cost

ℓPBS,ℓCBS,k,N,n,q
CBS .

Algorithm 55: ctf ← Division(ctf1 , ctf2 ,PUB)

Input:















































ctf1 =







cts1 ∈ LWEs (s1)
cte1 =

[

cte1,ℓe−1
, . . . , cte1,0

]

∈ [LWEs (e1,ℓe−1) , . . . ,LWEs (e1,0)]
ctm1

=
[

ctm1,ℓm−1
, . . . , ctm1,0

]

∈ [LWEs (m1,ℓm−1) , . . . ,LWEs (m1,0)]

ctf2 =







cts2 ∈ LWEs (s2)
cte2 =

[

cte2,ℓe−1
, . . . , cte2,0

]

∈ [LWEs (e2,ℓe−1) , . . . ,LWEs (e2,0)]
ctm2 =

[

ctm2,ℓm−1
, . . . , ctm2,0

]

∈ [LWEs (m2,ℓm−1) , . . . ,LWEs (m2,0)]
PUB : Public materials for KS, PBS and CBS; /* Remark 2.15 */

Output:







ctfres =







ctsres ∈ LWEs(sres)
cteres = [cteres,ℓe−1, . . . , cteres,0] ∈ [LWEs(eresℓe−1

), . . . ,LWEs(eres0)]
ctmres

= [ctmres,ℓm−1, . . . , ctmres,0] ∈ [LWEs(mresℓm−1
), . . . ,LWEs(mres0)]

1 ctsres ← cts1 + cts2
2 cte1 ← Add(cte1 ,TrivialEncrypt(bias+ ℓm − 1, ℓe)) ; /* Algorithm 40 */

3 (ctes , cte = [cte,ℓe , . . . , cte,0])← RadixSub∗ (cte1 , cte2 ,PUB); /* Algorithm 46 */

4 ctm1
= [ctm1,ℓm−1, . . . , ctm1,0, ct0, . . . , ct0]← ctm1

||TrivialEncrypt(0, ℓm − 1)
5 ctm2

= [ct0, . . . , ct0, ctm2,ℓm−1, . . . , ctm2,0]← TrivialEncrypt(0, ℓm − 1)||ctm2

6 ctmdiv
= [ctmdiv,2...ℓm−1, . . . , ctmdiv,0]← RadixDiv(ctm1 , ctm2 ,PUB)

7 ctmdiv,2ℓm−2 ← ctmdiv,2ℓm−1 . . . 2
Äm + ctmdiv,2ℓm−2

8 ctmres
= [ctmres,ℓm−1, . . . ctmres,0]← [ctmdiv,2ℓm−2, . . . ctmdiv,ℓm−1]

9 CTes ← CBS (ctes ,PUB); /* Algorithm 12 */

10 cteres ← ExtendedCMux
(

cte,TrivialEncrypt(0, ℓe),CTes

)

; /* Algorithm 49 */

11 ctmres
← ExtendedCMux

(

ctmres
,TrivialEncrypt(0, ℓm),CTes

)

; /* Algorithm 49 */

12 return ctf = (ctsres , cteres , ctmres
)

Proof (Correctness of Division (Algorithm 55)). On the first line, we compute the output sign. If
the signs are equal, the sign after the operation is positive (cts1 + cts2 ∈ LWEs(0)), otherwise the
sign is negative (cts1 + cts2 ∈ LWEs (1)).
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8.6 More Features over HFP

The algorithm RadixDiv takes two vectors of ciphertexts that represent two integers and returns
the quotient of the division. In our context, we can not divide directly the mantissas. In fact,
the mantissas are in the same interval and very close, if we were to divide them directly, the
quotient would only be a value of a few digits. In our case, we want a value in the interval
[

2Äm·(ℓm−1), 2Äm·ℓm
)

. To get a result in the right interval, we add some blocks encrypting zeros
after the blocks of the first mantissa m1 (Line 4). Adding the zeros to ctm1

corresponds to compute
m1 · 2

ℓm·Äm ∈
[

2Äm·(2ℓm−1), 2Äm·2ℓm
)

. Now if we divide m1 · 2
ℓm·Äm by m2, we will obtain a result

in
[

2(ℓm−1)·Äm , 2(ℓm+1)·Äm

)

. As explained in Proof 13, this value can be stored in ℓm blocks if we
use the carry buffer of the most significant block. The carry buffer will be later cleaned during the
call to CarryPropagateFloat (Algorithm 50). So after the shift of the mantissa (Line 4) and the
division (Line 6), we obtain a new mantissa in the interval

[

2(ℓm−1)·Äm , 2(ℓm+1)·Äm

)

.
After the division of the mantissa, we need to update the exponent. To do so, we need to subtract

(Line 3) the two exponents, then add the bias and finally add the number of trivial ciphertexts added
in Line 4. If the subtraction of the exponent returns a negative result (Line 3, ctes ∈ LWEs(0)),
the division can not be done. In this case, Algorithm 55 returns the value zero (Line 10 and 11),
otherwise it returns the result of the division of the two floating-point numbers.

8.6 More Features over HFP

This section extends our approach to cover a wider range of practical applications by adding the
support of special values and efficient approximate functions.

8.6.1 Managing Special Values

In the classical floating-point arithmetic, when a value overflows the highest bound of the exponent,
this value can not be represented anymore. In this case, the floating-point reaches the infinity. As
previously described, our algorithms do not manage the values plus/minus infinity and Not a
Number (NaN), but as we show now, they can easily be extended to do so. The idea is to add
two encrypted Booleans to represent +∞ and −∞ such that: if only one is set, then it means
that we have reached plus (resp., minus) infinity; if both are set, the value is interpreted as NaN.
During an operation, the infinity value is reached as soon as an overflow occurs on the exponent,
i.e., if the carry of the most significant block of the exponent is not empty. This check is done by
computing a simple PBS on ctres,ℓe−1, which returns a flag encrypting 0 if the carry is empty, or
1 otherwise. This flag is then given as an additional input to the CarryPropagateFloat (Alg. 50).
Then, by computing a CBS on the sign, this will return the correct sign of the flag, i.e., plus or
minus infinity (or 0). This process ends with the computation of a simple CMux tree which will
properly update Booleans ciphertext depending on the flag value. Regarding the support of special
values, the overhead is linear in the number of blocks composing the HFP. Thus, in comparison
with the numbers of PBS or CBS needed to perform operations without any special values, the
overhead should be negligible.

8.6.2 Computing Function Approximations

Beyond the arithmetic operations, floating-point numbers are particularly convenient to compute
approximations of complex functions, via the Taylor series. A Taylor series of a real function f(x)

that is infinitely differentiable at a real number a is the power series
∑∞

n=0
f(n)(a)

n! (x− a)
n
, where n!

denotes the factorial of n and f (n)(a) denotes the nth derivative of f evaluated at the point a. When

a = 0, this is called a Maclaurin series and takes the form
∑∞

n=0
f(n)(0)

n! xn. The Maclaurin method
is advantageous when working with homomorphic floating-point numbers, given that the value of
f(a) is not known. Computing such a series is a direct application of our method, as each of its term
can be computed using the previously defined arithmetic operators. Another advantage is that the
needed precision and the computational time can be adjusted to fit the use case, i.e., by changing the
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value of n. For instance, we have practically computed sin(x) ≈
∑2

n=0
(−1)n

(2n+1)!x
2n+1 = x− x3

3! +
x5

5!

and cos(x) ≈
∑2

n=0
(−1)n

(2n)! x
2n = 1− x2

2! +
x4

4! , which gives good results for values of x ∈ [−1, 1]. In

Table 8.3, we present numerical values obtained from our approximations of the cosine and sine
functions using the Maclaurin series.

Cos(0.9636989235877991) Sin(0.41880202293395996)

Exact value (64 bits) 0.5704859425112639 0.4066663011129846

Approximate value (64 bits) 0.5715802311897278 0.4066667483866177

Approximate value (32 bits) 0.57158023 0.40666676

This work (32bits) 0.5715802311897278 0.40666675567626953

Table 8.3: Result obtain for the cosines and sinus with Maclaurin series. The bold digits are the
one which are equal to the digits of the approximate result of the clear double precision value.

8.6.3 More Operations

With the homomorphic floating-point representation, we can efficiently support usual functions
used in machine learning. To evaluate the ReLU function, we can apply a circuit bootstrapping on
the sign s and return either the input floating-point or an encryption of zero using a CMux. The
complete algorithm is detailed in Algorithm 56 in Section 8.6.3.

In the same manner, we can evaluate an approximate sigmoid function that returns the identity
for values in the interval [−1, 1], and returns the constant value 1 or −1 otherwise. More details are
provided in Algorithm 57 in Section 8.6.3. To be closer to the classical sigmoid, we can combine
this approximate sigmoid with the Maclaurin series introduced in Section 8.6.2. Other classical
operations like the minimum, the maximum or the equality between two values can be easily
performed on homomorphic floating-point numbers.

ReLU. A Rectified Linear Unit (ReLU) is an activation function widely used in neural networks.
It computes the function f(x) = max(0, x) for x ∈ R.

Lemma 8.16 (ReLU (Algorithm 56)). Let ctf such that cts ∈ LWEs (s),cte =
[

cteℓe−1
, . . . , cte0

]

∈

[LWEs (eℓe−1) , . . . ,LWEs (e0)] encrypting e < 2Äe and ctm =
[

ctmℓm−1
, . . . , ctm0

]

∈
[LWEs (mℓm−1) , . . . ,LWEs (m0)] encrypting m < 2Äm be the ciphertext encrypting f = (−1)

s
·

m · (2Äm)
e−bias

.
Then Algorithm 56 returns (ctmres

, cteres , ctsres) = ctfres such that DecryptFloat(ctfres) = fres with

fres = (−1)
sres ·mres · (2

Äm)
eres−bias

. If cts ∈ LWEs(0), ctsres = cts, cteres = cte and ctmres
= ctm. Else

ctfres encrypt zero.

The complexity of the algorithm is: Cost
ℓPBS,ℓCBS,k,N,n,q
ReLU = Cost

ℓPBS,ℓCBS,k,N,n,q
CBS .

Proof (ReLU (Algorithm 56)). First we use a CBS on the sign to obtain a GGSW ciphertext

such that CT ∈ GGSWℬ,ℓ
S

(0) if cts is in LWEs(0), otherwise, CT is in GGSWℬ,ℓ
S

(1)
Next with the GGSW ciphertext, we return the input ciphertext if the sign is positive otherwise

we return zero.

Approximate Sigmoid. An efficient algorithm to compute an approximation of the sigmoid
function compatible with the HFP representation is presented in Algorithm 57.

8.7 Experimental Results

In this section, we demonstrate the practicability of our results by providing all cryptographic
parameters, encodings, and both sequential and parallel timings.
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Algorithm 56: ctf ← ReLU(ctf,PUB)

Input:























ctf =







cts ∈ LWEs (s)
cte = [cte,ℓe−1, . . . , cte,0] ∈ [LWEs (eℓe−1) , . . . ,LWEs (e0)]
ctm = [ctm,ℓm−1, . . . , ctm,0] ∈ [LWEs (mℓm − 1) , . . . ,LWEs (m0)]

PUB : Public materials for KS, PBS and CBS; /* Remark 2.15 */

Output:







ctf =







cts ∈ LWEs (sres)
cteres = [cteres,ℓe−1, . . . , cteres,0] ∈ [LWEs (eres,ℓe−1) , . . . ,LWEs (eres,0)]
ctmres

=
[

ctmres,ℓm−1
, . . . , ctm,res,0

]

∈ [LWEs (mres, ℓm − 1) , . . . ,LWEs (mres,0)]

/* encrypt 0 if sign == 0, 1 otherwise */

1 CT← CBS(cts,PUB); /* Algorithm 12 */

2 cteres ← ExtendedCMux(cte,TrivialEncrypt(0, ℓe),CT); /* Algorithm 49 */

3 ctmres
← ExtendedCMux(ctm,TrivialEncrypt(0, ℓm),CT); /* Algorithm 49 */

4 return ctf = [cts, ctmres
, cteres ]

Encodings. In Table 8.4, we describe the different encodings used to represent 64, 32, 16 and 8
bits floating-point numbers (Sec. 8.3.2) in the homomorphic world. Chapter 6 and 7 indicates that a
4-bit precision message leads to the best precision-cost ratio; therefore, we focus on representations
with Äm = Äe = 2. However, variations with Äm ̸= Äe may yield better timings depending on the
use case. Additionally, in Table 8.4, we give the encoding for the TFHE-minifloats encoded over 8
bits as detailed in Sec. 8.3.1. For the TFHE-Minifloats, the value of the bias does not impact the
timings and can be freely chosen.

Parameter Selection. In Lemma 8.12, we found two noise constraints that the parameters must
satisfy in order to guarantee the correctness of Algorithm 53. We applied the same reasoning to
Algorithm 54 and found that all the additional noise constraints are dominated by the constraints
introduced in Lemma 8.12. It means that parameters that satisfy the constraints of Algorithm 53
will also satisfy the constraints of Algorithm 54.

As explained in Lemmas 8.11 and 8.13, the number of PBS in each algorithm is different and
this has an impact on the failure probability of each algorithm. We followed the methodology
presented in Chapter 2, Section 2.5, to compute the individual PBS failure probability using the
number of dominant PBS in each algorithm. Using the parameters presented in Table 8.5, the
maximal failure probability for the homomorphic addition and for the homomorphic multiplication
are respectively 2−13.9 and 2−12.8 (note that the failure probability of one KS-PBS is smaller than
2−40). We tested these parameters on a chain of a hundred operations on random inputs with
random operations without detecting any errors due to the noise, only errors due to floating-point
approximations.

Timings. All of our experiments have been carried out on AWS with a m6i.metal instance Intel
Xeon 8375C (Ice Lake) at 3.5 GHz, with 128 vCPUs and 512.0 GiB of memory using the TFHE-rs
library [Zam22]. Our code is available here1. In Table 8.6, we give the timings in seconds for all
the arithmetic operations (i.e., add, sub, mul, div) and the ReLU and Sigmoid functions. Both
sequential and parallel timings are given when possible (e.g., the division over integers is only
implemented in parallel in TFHE-rs). Note that all arithmetic operations are followed by a carry
propagation, which is obviously taken into account in the timings.

Finally, in Table 8.7, we present the timings for the WoP-PBS based approach. Although
the multiplication timings are quite similar between HFP and minifloats, the addition operations
perform significantly better using the WoP-PBS. This means that when computing with 8-bit

1https://github.com/zama-ai/tfhe-rs/tree/artifact_tches_2025
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Chapter 8. From Integers to Floating-points

Algorithm 57: ctf ← ApproxSigmoid (ctf,PUB)

Context:

{

LUTm : LUT to return 1 if the value equals 1, 1 otherwise
LUTe : LUT to return 0 if

(

x >= 2Äe−1
)

; 1 otherwise

Input:























ctf =







cts ∈ LWEs (s)
cte = [cte,ℓe−1, . . . , cte,0] ∈ [LWEs (eℓe−1) , . . . ,LWEs (e0)]
ctm = [ctm,ℓm−1, . . . , ctm,0] ∈ [LWEs (mℓm − 1) , . . . ,LWEs (m0)]

PUB : Public materials for KS, PBS and CBS; /* Remark 2.15 */

Output:







ctf =







cts ∈ LWEs (s)
cte = [cte,ℓe−1, . . . , cte,0] ∈ [LWEs (eℓe−1) , . . . ,LWEs (e0)]
ctm = [ctm,ℓm−1, . . . , ctm,0] ∈ [LWEs (mℓm − 1) , . . . ,LWEs (m0)]

1 ct1 = [cte1 , ctm1
, cts1 ]← TrivialEncryptFloat (1)

2 ct−1 = [cte−1
, ctm−1

, cts−1
]← TrivialEncryptFloat (−1)

3 CTs ← CBS (cts,PUB); /* encrypt 0 if sign == 0, 1 otherwise */

4 ctstmp
← ExtendedCMux

(

cts1 , cts−1
,CTs

)

; /* Algorithm 49 */

5 ctetmp
← ExtendedCMux

(

cte1 , cte−1 ,CTs

)

; /* Algorithm 49 */

6 ctmtmp
← ExtendedCMux

(

ctm1 , ctm−1 ,CTs

)

; /* Algorithm 49 */

/* If cteℓe−1
∈ LWEs(x) with x < 2Äe−1 then LWEs(1) else LWEs(0) */

7 cttmp
e
← KS-PBS

(

cteℓe−1
,PUB, LUTe

)

; /* Algorithm 4 and 11 */

/* If ctmℓm−1
∈ LWEs(x) with x < 2Äm−1 then LWEs(1) else LWEs(0) */

8 cttmp
m
← KS-PBS

(

ctmℓm−1
,PUB, LUTm

)

; /* Algorithm 4 and 11 */

9 cttmp ← cttmp
m
+ cttmp

e
; /* tmp equals zero only if |Dec(ctf)| > 1 */

/* encrypt 0 if tmp == 0, 1 otherwise */

10 CTtmp ← CBS (cttmp,PUB); /* Algorithm 12 */

11 cts ← ExtendedCMux
(

cts, ctstmp
,CTtmp

)

; /* Algorithm 49 */

12 cte ← ExtendedCMux
(

cte, ctetmp
,CTtmp

)

; /* Algorithm 49 */

13 ctm ← ExtendedCMux
(

ctm, ctmtmp
,CTtmp

)

; /* Algorithm 49 */

14 return ctf = [cts, ctm, cte]

floats, using the minifloats is generally better. Any larger precision requires to run the HFP
method, whose timings show that many circuits based on floats can be practically evaluated for
the first time. Only the division operation cannot be considered as practical. Note that the division
is suffering from the slowness of the division over the integers, and not really from the approach
described in here.

In the previous table, we present benchmarks obtained with a failure probability around 2−14.
To better evaluate our new algorithms, we also include benchmarks of the addition and the multi-
plication with a failure probability of around 2−40 (see Table 8.8). We observe that reducing the
failure probability has only a minor impact on execution time which proves that our contribution
scales well with small failure probabilities.
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8.7 Experimental Results

ℓm Äm ℓe Äe bias

TFHE FP64b 27 2 5 2 539
TFHE FP32b 13 2 4 2 140
TFHE FP16b 6 2 3 2 37
TFHE FP8b 3 2 2 2 10

TFHE-MinifloatÄ=4 3 ∅ 4 ∅ 8

TFHE-MinifloatÄ=2 3 ∅ 4 ∅ 8

Table 8.4: Encodings for HFP and Minifloats.

LWE parameters GLWE parameters PBS parameters CBS parameters LWE-to-LWE KS Packing KS
n log

2
(Ãn) N log

2
(ÃN ) k Base Level Base Level Base Level Base Level

TFHE FP64b 736 −16.59 1024 −51.49 2 12 3 8 2 1 14 17 2

TFHE FP32b 720 −16.17 1024 −51.49 2 12 3 8 2 1 15 17 2

TFHE FP16b 728 −16.38 1024 −51.49 2 15 2 6 3 1 14 17 2

TFHE FP8b 720 −16.17 1024 −51.49 2 15 2 6 3 1 14 13 2

TFHE-Minifloat4 592 −12.77 1024 −51.49 2 9 4 14 1 2 5 17 2

TFHE-Minifloat2 564 −12.02 1024 −51.49 2 12 3 13 1 2 5 17 2

Table 8.5: Homomorphic floating-point parameters used for the 8 bits, 16 bits, 32 bits and 64 bits
equivalent representation (See section 8.3.2).

Addition Multiplication Division Sigmoid ReLU
(Alg.53 & 50) (Alg.54 & 50) (Alg.55 & 50) (Alg.57) (Alg.56)

TFHE FP64b Sequential 12.32 s 87.15 s ∅ 0.342 s 0.122 s
Parallel 3.98 s 2.26 s 39.75 s ∅ ∅

TFHE FP32b Sequential 7.10 s 20.57 s ∅ 0.342 s 0.120 s
Parallel 2.50 s 1.03 s 15.18 s ∅ ∅

TFHE FP16b Sequential 3.89 s 3.83 s ∅ 0.361 s 0.155 s
Parallel 1.52 s 0.558 s 4.34 s ∅ ∅

TFHE FP8b Sequential 2.21 s 1.19 s ∅ 0.388 s 0.153 s
Parallel 1.13 s 0.444 s 1.76 s ∅ ∅

Table 8.6: Timings of the HFP depending on the precision.

TFHE-MinifloatÄ=4 TFHE-MinifloatÄ=2

Bivariate Operation
1.2819 s 0.9957 s

(e.g., add, mul, . . .)

Table 8.7: Timings for the 8 bit representations of the TFHE-Minifloat.

Add Mul
TFHE FP32b Sequential 7.49s 23.2s
TFHE FP32b Parallelized 2.83s 1.24s

TFHE FP64b Sequential 13.3s 98.2s
TFHE FP64b Parallelized 4.28s 2.75s

Table 8.8: Performance for Addition and Multiplication using pfail f 2−40.
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Chapter 9

Conclusion

In the previous chapters, we explored several topics aimed at improving multiple aspects of TFHE
by proposing solutions to the limitations introduced in Section 2.6, with the goal of addressing the
question raised in the introduction:

How can TFHE be leveraged to homomorphically compute primitive data types,
bridging the gap between encrypted and plaintext computation?

To answer this question and address the identified limitations, we have investigated improve-
ments to existing algorithms, new data representations, and novel algorithms throughout this
manuscript. In TFHE, the PBS is among the most computationally expensive algorithms, despite
its efficiency for small precisions. Nevertheless, it remains a central operation, as nearly every
circuit relies on it. For efficiency reasons, the PBS is generally not executed alone; instead, TFHE
employs the atomic pattern introduced in [CJP21]. This pattern comprises dot products, key
switching, and bootstrapping (Figure 2.3), and improving any of these steps results in a global
performance gain for the TFHE scheme.

After presenting TFHE, its limitations, and the state of the art in the first part of the
manuscript, the second part introduces several methods for enhancing TFHE. We focus on
improving core operations, including the PBS (Chapter 4), as well as key-switching and parameter
selection (Chapter 5). In the final chapter of this part, Chapter 6, we present a novel algorithm
that addresses multiple limitations identified in Section 2.6 and is employed extensively in the third
part of the manuscript. Chapter 4 introduces a novel methodology for optimizing bootstrapping
by minimizing the number of necessary CMux operations to execute the algorithm. This new
technique relies primarily on the bootstrapping method proposed in [LY23], which consists in eval-
uating each step of the bootstrapping over several small polynomials, resulting in multiple CMux

operations per step instead of a single CMux operation over large polynomials. Our technique
involves sorting the mask elements to reveal patterns during the blind rotation. These patterns
help identify CMux operations that do not affect the final result, allowing us to safely eliminate
them. This method enhances bootstrapping efficiency and offers speed-ups, particularly for
high-precision computations. Based on this first improvement, we also investigated a modification
of the modulus switching algorithm, aimed at increasing the number of operations that can be
safely skipped during bootstrapping without affecting the final result. Using this new technique,
we achieve a speedup of up to 2.4× compared to the PBS from [LY23], and up to 8.2× compared to
the classical PBS. Finally, we presented a method to highly parallelize the bootstrapping proposed
in [LY23] as well as our technique. This technique has not been intensively explored yet, as it re-
quires dedicated hardware such as FPGAs or GPUs and will be studied later as part of future work.

Then, Chapter 5 presented another angle of research by introducing two new distributions
for secret keys: partial secret keys and secret keys with shared randomness. The first one, the
partial secret key, is used in GLWE ciphertexts, especially when the polynomial size becomes too
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Chapter 9. Conclusion

large. This new secret key, with known zero coefficients, allows us to introduce new algorithms
that take advantage of this representation. In addition to these new algorithms, reducing the
number of unknown coefficients in the secret key helps to reduce noise propagation. The second
key distribution, the secret key with shared randomness, as the name suggests, allows coefficients
to be shared between different secret keys. With this representation, during a key switch, only the
key elements that are not shared need to be switched. Moreover, this structure enables performing
the key switch in multiple steps, allowing a trade-off between efficiency and noise growth. As with
the partial secret key, this structure and the resulting algorithms provide improvements in both
noise growth and execution time. Finally, we evaluated the combined use of both key types and
conducted a detailed analysis of the noise propagation, leading to a reduction in the execution time
of the CJP atomic pattern by up to 58%.

Chapter 6 present a new without padding PBS. This WoP-PBS is based on several known
building blocks: the bootstrapping, the circuit bootstrapping, and the Vertical Packing. This
technique consists in first extracting all the bits of all ciphertexts, then converting all the resulting
LWE ciphertexts encrypting bits into GGSW ciphertexts, and finally executing a CMux tree and
a blind rotation using these GGSW ciphertexts. This new method allows the efficient evaluation
of multi-input operations and enables the use of large lookup tables, making it possible to perform
computations with high-precision representations as presented in the next chapter. This technique
permits to efficiently addresses multiple TFHE limitations within a single operation and, through
a detailed study, we demonstrate that this technique outperforms previously proposed solutions
for large precisions. In the following two chapters, this algorithm is intensively used to evaluate
multivariate operations over multiple input ciphertexts.

Chapters 7 and 8 constitute the third part of the manuscript. In this part, we focus on
representing primitive data types, such as 32-bit or 64-bit integers and floating-points. In,
Chapter 7 presents different techniques to efficiently represent large homomorphic integers.
To work with TFHE and represent large integers, one solution consists of splitting a large
integer into several smaller ones using a radix decomposition, a CRT decomposition, or a hybrid
approach combining both. These smaller integers are then encoded in multiple ciphertexts, taking
advantage of the message/carry encoding. This chapter then studies how to efficiently perform
operations on these ciphertexts, while using the carry to perform leveled operations before boot-
strapping or to perform multivariate operations. This chapter presents one of the first practical
applications of the WoP-PBS algorithm, introduced in the previous chapter. It demonstrates
how this technique can be applied to operate directly on CRT or hybrid based representations,
enabling bootstrapping that simultaneously processes all ciphertexts involved in the representation.

Based on previous chapters, Chapter 8 proposes two efficient techniques to represent floating
point numbers, each with its own pros and cons.

The first technique is based on the WoP-PBS described in Chapter 6. In this approach, the
three components of a floating point are encoded across one or more ciphertexts, with all operations
performed using the WoP-PBS technique. This solution is highly efficient for small precision but
becomes inefficient as the precision increases. The performances of this method are directly tied
to the in-depth study of the algorithm.

The second technique is based on the radix representation introduced in Chapter 7. First,
each part of a floating-point (sign, mantissa, and exponent) is split into three distinct integers,
and each integer is then decomposed using radix representation, according to the methodol-
ogy presented in the previous chapter. The objective is to design new algorithms capable of
efficiently working with this representation. In particular, we need algorithms that interact
effectively across the different parts of an encoded floating-point. We also studied the noise propa-
gation and parameter selection to ensure efficiency, security, and a relatively low failure probability.

Each solution to the limitations proposed in these different chapters has been studied indepen-
dently, but many of them can be easily combined, resulting in a global improvement of the TFHE
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scheme in terms of efficiency, latency, and message precision. All these contributions make the
scheme significantly more practical, helping to bridge the gap between homomorphic encryption
and conventional plaintext computation.

In addition to this research work, all the solutions were implemented and tested in the TFHE-
rs library [Zam22]. Many of the solutions introduced in this manuscript are now public and used
every day by the users of the library.

Future Works. As presented in Chapter 2 and 3, bootstrapping is a well known operation and
many studies have been conducted to improve this algorithm. Even though a lot of research has
already been done, recent works such as the bootstrapping proposed in [LMK+23], the one proposed
by [LY23], and the follow-up enhancements presented in Chapter 4, show that there is still room
for major advancements. As studied in this manuscript, solutions can arise from new methods of
parallelization, improved techniques for performing blind rotation, or rethinking the bootstrapping
process itself, such as with the WoP-PBS presented in Chapter 6. Even though the PBS is the
slowest algorithm, improving other algorithms, such as the key switch, can also contribute to
overall performance gains. Another topic explored in Chapter 5 is the size of the public material.
Over time, and especially with the growing need to reduce the failure probability of algorithms,
the size of the public material has increased, often reaching several gigabits. Reducing this size
while maintaining both the security and performance of the algorithms is a highly challenging yet
promising research direction.

Our constructions, presented in Chapters 7 and 8, rely on standard algorithms such as boot-
strapping (Algorithm 11) and circuit bootstrapping (Algorithm 12). Employing more refined ho-
momorphic techniques, like those introduced in Chapter 4, or in recent works such as [LMK+23]
for bootstrapping and [WWL+24] for circuit bootstrapping, could yield significant performance
improvements. Additional gains may also be achieved by optimizing the underlying arithmetic of
these homomorphic operations. All these techniques need to be studied more in details to make
this new constructions even faster.

This manuscript focuses solely on TFHE, but we have seen that many FHE schemes are
lattice-based cryptosystems and all based on the LWE assumption and its derivatives. Thus, it is
interesting to study recent improvements from other schemes to determine if they can be adapted
to TFHE. For instance, it could be interesting to bootstrap several ciphertexts with a better
amortized cost, such as the PBS proposed with CKKS. We note that already several work have
been done in this sens such as [MS18, GP25, LW23]. Similarly, the techniques proposed for TFHE
could potentially be transferred to other FHE schemes, leading to broader advancements across
the field.

Finally, practical fully homomorphic encryption is a relatively young field, and many break-
through improvements may emerge in the coming decades, helping to bridge the gap between the
clear world and the encrypted world, leading to massive adoption of FHE. These breakthroughs can
arise from various sources such as new algorithms, new lattice-based schemes, novel assumptions,
or dedicated hardware. Currently, even modest amelioration can spark new lines of thinking and
eventually lead to major breakthroughs. All the work presented in this manuscript has already
paved the way for new research directions and has been presented at conferences and published in
journals. I hope that the advancements achieved during this thesis, along with my future contri-
butions, will continue to inspire further research and contribute to greater advancements. For this
reason, I intend to continue working on FHE, making new enhancements, and contributing to the
collective effort to make it as practical as possible.
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A.1 Appendix Chapter 4
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2 750 1.5× 10−5 3 512 1.9× 10−11 17 1 4 3
3 797 6.7× 10−6 2 1024 2.8× 10−15 23 1 4 3
4 796 6.8× 10−6 1 2048 2.8× 10−15 23 1 3 5
5 891 1.3× 10−6 1 4096 2.1× 10−19 22 1 2 9
6 925 7.3× 10−7 1 8192 2.1× 10−19 15 2 3 6
7 997 2.1× 10−7 1 16384 2.1× 10−19 15 2 3 6
8 1069 6.1× 10−8 1 32768 2.1× 10−19 15 2 3 7
9 1136 1.9× 10−8 1 65536 2.1× 10−19 11 3 3 7

Table A.1: Summary of PBS Parameters for pfail = 2−40.
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5 850 2.6× 10−6 1 2048 2.8× 10−15 23 1 3 5 1
6 885 1.4× 10−6 2 1024 2.8× 10−15 23 1 2 8 3
7 898 1.1× 10−6 1 2048 2.8× 10−15 15 2 2 9 3
8 943 5.4× 10−7 1 2048 2.8× 10−15 15 2 2 9 4
9 973 3.2× 10−7 1 2048 2.8× 10−15 15 2 1 20 5

Table A.2: Summary of EBS and SBS Parameters for pfail = 2−40.
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5 856 2.4× 10−6 1 2048 2.8× 10−15 23 1 3 5 1 20
6 885 1.4× 10−6 2 1024 2.8× 10−15 23 1 2 8 3 1
7 924 7.5× 10−7 1 2048 2.8× 10−15 15 2 2 9 3 94
8 967 3.5× 10−7 1 2048 2.8× 10−15 15 2 2 10 4 90
9 996 2.1× 10−7 1 2048 2.8× 10−15 15 2 1 20 5 76

Table A.3: Summary of SBS with CMS Parameters for pfail = 2−40.
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Table A.4: Summary of PBS Parameters for pfail = 2−64.

P
re

c
isio

n

L
W

E
D
im

e
n
sio

n
(n

)

L
W

E
N
o
ise

(Ã
n
)

G
L
W

E
D
im

e
n
sio

n
(k

)

P
o
ly
n
o
m
ia
l
S
iz
e
(N

)

G
L
W

E
N
o
ise

(Ã
N
)

P
B
S

B
a
se

L
o
g
(
ℬ

P
B
S
)

P
B
S

L
e
v
e
l
(ℓ

P
B
S
)

K
S

B
a
se

L
o
g
(
ℬ

K
S )

K
S

L
e
v
e
l(ℓ

K
S )

E
x
te
n
d
e
d

F
a
c
to

r
(log

2 (¸
))

5 888 1.4× 10−6 2 1024 2.8× 10−15 23 1 2 8 2
6 896 1.2× 10−6 1 2048 2.8× 10−15 15 2 2 9 2
7 946 5.1× 10−7 1 2048 2.8× 10−15 15 2 2 9 3
8 993 2.2× 10−7 1 2048 2.8× 10−15 15 2 2 10 4
9 1045 9.3× 10−8 1 2048 2.8× 10−15 15 2 1 21 5

Table A.5: Summary of EBS and SBS Parameters for pfail = 2−64.
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2 772 1.0× 10−5 4 512 2.8× 10−15 22 1 3 5
3 829 3.8× 10−6 2 1024 2.8× 10−15 23 1 3 5
4 876 1.7× 10−6 1 2048 2.8× 10−15 23 1 2 9
5 928 7.0× 10−7 1 8192 2.1× 10−19 15 2 4 4
6 958 4.1× 10−7 1 16384 2.1× 10−19 14 2 3 6
7 1056 7.7× 10−8 1 32768 2.1× 10−19 15 2 4 5
8 1085 4.6× 10−8 1 65536 2.1× 10−19 11 3 3 7
9 1204 6.0× 10−9 1 131072 2.1× 10−19 11 3 3 8

Table A.6: Summary of PBS Parameters for pfail = 2−80.
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5 873 1.8× 10−6 1 2048 2.8× 10−15 23 1 3 5 2
6 922 7.7× 10−7 2 1024 2.8× 10−15 23 1 2 9 4
7 910 9.5× 10−7 1 2048 2.8× 10−15 15 2 2 9 4
8 940 5.7× 10−7 1 2048 2.8× 10−15 15 2 1 19 5
9 984 2.6× 10−7 1 2048 2.8× 10−15 15 2 1 20 6

Table A.7: Summary of EBS and SBS Parameters for pfail = 2−80.
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5 873 1.8× 10−6 1 2048 2.8× 10−15 23 1 2 8 2 151
6 891 1.3× 10−6 1 2048 2.8× 10−15 14 2 2 9 3 255
7 935 6.2× 10−7 1 2048 2.8× 10−15 15 2 2 9 4 256
8 966 3.6× 10−7 1 2048 2.8× 10−15 15 2 1 19 5 256
9 1013 1.6× 10−7 1 2048 2.8× 10−15 15 2 1 21 6 255

Table A.8: Summary of SBS with CMS Parameters for pfail = 2−80.
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2 783 8.5× 10−6 2 1024 2.8× 10−15 23 1 4 3
3 788 7.8× 10−6 1 2048 2.8× 10−15 23 1 3 5
4 860 2.2× 10−6 1 4096 2.1× 10−19 22 1 3 5
5 916 8.6× 10−7 1 8192 2.1× 10−19 15 2 3 6
6 983 2.7× 10−7 1 16384 2.1× 10−19 15 2 3 6
7 1089 4.3× 10−8 1 32768 2.1× 10−19 15 2 4 5
8 1113 2.8× 10−8 1 65536 2.1× 10−19 11 3 3 7
9 1176 9.7× 10−9 1 131072 2.1× 10−19 9 4 3 8

Table A.9: Summary of PBS Parameters for pfail = 2−128.
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4 832 3.6× 10−6 1 2048 2.8× 10−15 22 1 3 5 1
5 905 1.0× 10−6 1 2048 2.8× 10−15 23 1 2 9 2
6 889 1.3× 10−6 1 2048 2.8× 10−15 16 2 2 9 3
7 932 6.5× 10−7 1 2048 2.8× 10−15 15 2 2 9 4
8 963 3.8× 10−7 1 2048 2.8× 10−15 15 2 1 19 5
9 1009 1.7× 10−7 1 2048 2.8× 10−15 15 2 1 21 6

Table A.10: Summary of EBS and SBS Parameters for pfail = 2−128.
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4 859 2.309× 10−6 1 2048 2.845× 10−15 23 1 3 5 1 123
5 905 1.044× 10−6 1 2048 2.845× 10−15 23 1 2 9 2 0
6 922 7.786× 10−7 1 2048 2.845× 10−15 15 2 2 9 3 150
7 966 3.644× 10−7 1 2048 2.845× 10−15 15 2 2 10 4 148
8 994 2.248× 10−7 1 2048 2.845× 10−15 15 2 1 20 5 137
9 1033 1.147× 10−7 1 2048 2.845× 10−15 15 2 1 21 6 96

Table A.11: Summary of SBS with CMS Parameters for pfail = 2−128.
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2 726 2.3× 10−5 6 256 2.0× 10−11 17 1 4 3 4
3 773 1.0× 10−5 4 512 2.8× 10−15 23 1 4 3 4
4 845 2.9× 10−6 4 512 2.8× 10−15 23 1 5 3 4
5 893 1.3× 10−6 4 512 2.8× 10−15 23 1 5 3 4
6 937 6.0× 10−7 4 512 2.8× 10−15 23 1 4 4 4
7 976 3.1× 10−7 2 1024 2.8× 10−15 15 2 4 4 4
8 970 3.4× 10−7 1 2048 2.8× 10−15 15 2 3 6 4
9 1070 6.1× 10−8 1 4096 2.2× 10−19 15 2 4 5 4

Table A.12: Summary of parallel EBS and parallel SBS Parameters for pfail = 2−40.
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2 750 1.5× 10−5 6 256 2.0× 10−11 17 1 4 3 4
3 796 6.8× 10−6 4 512 2.8× 10−15 23 1 4 3 4
4 861 2.2× 10−6 4 512 2.8× 10−15 23 1 5 3 4
5 914 8.9× 10−7 4 512 2.8× 10−15 23 1 5 3 4
6 958 4.2× 10−7 2 1024 2.8× 10−15 23 1 4 4 4
7 977 3.0× 10−7 2 1024 2.8× 10−15 15 2 3 6 4
8 1067 6.4× 10−8 1 2048 2.8× 10−15 15 2 4 5 4
9 1119 2.6× 10−8 1 4096 2.2× 10−19 11 3 3 8 4

Table A.13: Summary of parallel EBS and parallel SBS Parameters for pfail = 2−64.
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2 767 1.1× 10−5 6 256 2.0× 10−11 17 1 4 3 4
3 809 5.5× 10−6 4 512 2.8× 10−15 23 1 4 3 4
4 868 2.0× 10−6 4 512 2.8× 10−15 23 1 5 3 4
5 927 7.1× 10−7 4 512 2.8× 10−15 23 1 5 3 4
6 958 4.2× 10−7 2 1024 2.8× 10−15 23 1 3 6 4
7 936 6.1× 10−7 1 2048 2.8× 10−15 15 2 3 6 4
8 1031 1.2× 10−7 1 4096 2.2× 10−19 15 2 4 5 4
9 1091 4.2× 10−8 1 8192 2.2× 10−19 15 2 3 7 4

Table A.14: Summary of parallel EBS and parallel SBS Parameters for pfail = 2−80.
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2 801 6.3× 10−6 6 256 2.0× 10−11 17 1 3 5 4
3 840 3.2× 10−6 4 512 2.8× 10−15 23 1 5 3 4
4 884 1.5× 10−6 4 512 2.8× 10−15 23 1 5 3 4
5 922 7.8× 10−7 4 512 2.8× 10−15 23 1 4 4 4
6 958 4.2× 10−7 2 1024 2.8× 10−15 15 2 4 4 4
7 959 4.1× 10−7 1 2048 2.8× 10−15 15 2 3 6 4
8 1055 7.8× 10−8 1 4096 2.2× 10−19 15 2 4 5 4
9 1088 4.4× 10−8 1 8192 2.2× 10−19 11 3 3 7 4

Table A.15: Summary of parallel EBS and parallel SBS Parameters for pfail = 2−128.

202



A.2 Appendix Chapter 5

A.2 Appendix Chapter 5

p
Partial

LWE-KS GLWE Parameters PBS Parameters
LWE-KS

Metrics
Shared

Algorithm
Parameters

Keys Parameter Value Parameter Value Parameter Value Name Value

1 :
traditional

n 588
time 5.43

LWE-to-LWE

log2 (Ãn) −12.66 log2 (ℬPBS) 15 log2 (ℬKS) 3
k 5

log2 (N) 8 ℓPBS 1 ℓKS 3 size 58.6
log2 (Ãk·N ) −31.07

n 532 nKS 782
log2 (Ãn) −11.17

log2 (ℬPBS) 15
log2 (ÃnKS

) −17.82 time 3.78

1 6
2 steps k 5 log2 (ℬKS1

) 9
(Alg. 35) log2 (N) 8

ℓPBS 1
ℓKS1

1
ϕ 1280 log2 (ℬKS2

) 2 size 44.45
log2 (Ãϕ) −31.07 ℓKS2

4

FFT-based

n 534
kin 3

(Alg. 36)

log2 (Ãn) −11.22
log2 (ℬPBS) 15 kout 3

time 3.27

1 6
k 5

log2 (NKS) 8
log2 (N) 8

ℓPBS 1 log2 (ℬKS) 1
ϕ 1280

ℓKS 9
size 37.76

log2 (Ãϕ) −31.07

2 :
traditional

n 668
time 8.75

LWE-to-LWE

log2 (Ãn) −14.79 log2 (ℬPBS) 18 log2 (ℬKS) 4
k 6

log2 (N) 8 ℓPBS 1 ℓKS 3 size 87.45
log2 (Ãk·N ) −37.88

n 576 nKS 896
log2 (Ãn) −12.34

log2 (ℬPBS) 18
log2 (ÃnKS

) −20.85 time 6.28

2 6
2 steps k 6 log2 (ℬKS1

) 10
(Alg. 35) log2 (N) 8

ℓPBS 1
ℓKS1

1
ϕ 1536 log2 (ℬKS2

) 2 size 66.55
log2 (Ãϕ) −37.88 ℓKS2

5

FFT-based

n 590
kin 1

(Alg. 36)

log2 (Ãn) −12.71
log2 (ℬPBS) 18 kout 1

time 5.32

2 6
k 6

log2 (NKS) 10
log2 (N) 8

ℓPBS 1 log2 (ℬKS) 1
ϕ 1536

ℓKS 11
size 56.64

log2 (Ãϕ) −37.88

Table A.16: Parameter sets, benchmarks for PBS+LWE-KS and sizes of public material for CJP
and two variants based on both partial and secret keys with shared randomness. Note that we use
log2 (¿) = p. Sizes are given in MB and times in milliseconds. The parameter sets are for a failure
probability of pfail f 2−13.9.
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p
Partial

LWE-KS GLWE Parameters PBS Parameters
LWE-KS

Metrics
Shared

Algorithm
Parameters

Keys Parameter Value Parameter Value Parameter Value Name Value

3 :
traditional

n 720
time 12.2

LWE-to-LWE

log2 (Ãn) −16.17 log2 (ℬPBS) 21 log2 (ℬKS) 4
k 4

log2 (N) 9 ℓPBS 1 ℓKS 3 size 104.1
log2 (Ãk·N ) −51.49

n 648 nKS 944
log2 (Ãn) −14.25

log2 (ℬPBS) 18
log2 (ÃnKS

) −22.13 time 6.22

3 6
2 steps k 3 log2 (ℬKS1

) 7
(Alg. 35) log2 (N) 9

ℓPBS 1
ℓKS1

2
ϕ 1536 log2 (ℬKS2

) 2 size 57.83
log2 (Ãϕ) −37.88 ℓKS2

6

FFT-based

n 686
kin 1

(Alg. 36)

log2 (Ãn) −15.27
log2 (ℬPBS) 18 kout 1

time 5.12

3 6
k 3

log2 (NKS) 10
log2 (N) 9

ℓPBS 1 log2 (ℬKS) 1
ϕ 1536

ℓKS 13
size 43.08

log2 (Ãϕ) −37.88

4 :
traditional

n 788
time 12.6

LWE-to-LWE

log2 (Ãn) −17.98 log2 (ℬPBS) 23 log2 (ℬKS) 4
k 2

log2 (N) 10 ℓPBS 1 ℓKS 3 size 92.39
log2 (Ãk·N ) −51.49

n 664 nKS 1126
log2 (Ãn) −14.68

log2 (ℬPBS) 22
log2 (ÃnKS

) −26.97 time 9.35

4 6
2 steps k 2 log2 (ℬKS1

) 13
(Alg. 35) log2 (N) 10

ℓPBS 1
ℓKS1

1
ϕ 2048 log2 (ℬKS2

) 2 size 68.68
log2 (Ãϕ) −51.49 ℓKS2

6

FFT-based

n 682
kin 3

(Alg. 36)

log2 (Ãn) −15.16
log2 (ℬPBS) 23 kout 3

time 7.38

4 6
k 2

log2 (NKS) 9
log2 (N) 10

ℓPBS 1 log2 (ℬKS) 1
ϕ 2048

ℓKS 14
size 48.61

log2 (Ãϕ) −51.49

5 :
traditional

n 840
time 20.0

LWE-to-LWE

log2 (Ãn) −19.36 log2 (ℬPBS) 23 log2 (ℬKS) 3
k 1

log2 (N) 11 ℓPBS 1 ℓKS 6 size 131.3
log2 (Ãk·N ) −51.49

n 732 nKS 1171
log2 (Ãn) −16.49

log2 (ℬPBS) 23
log2 (ÃnKS

) −28.17 time 13.8

5 6
2 steps k 1 log2 (ℬKS1

) 9
(Alg. 35) log2 (N) 11

ℓPBS 1
ℓKS1

2
ϕ 2048 log2 (ℬKS2

) 2 size 78.62
log2 (Ãϕ) −51.49 ℓKS2

7

FFT-based

n 766
kin 3

(Alg. 36)

log2 (Ãn) −17.39
log2 (ℬPBS) 23 kout 3

time 11.0

5 6
k 1

log2 (NKS) 9
log2 (N) 11

ℓPBS 1 log2 (ℬKS) 1
ϕ 2048

ℓKS 15
size 48.58

log2 (Ãϕ) −51.49

Table A.17: Parameter sets, benchmarks for PBS+LWE-KS and sizes of public material for CJP
and two variants based on both partial and secret keys with shared randomness. Note that we use
log2 (¿) = p. Sizes are given in MB and times in milliseconds. The parameter sets are for a failure
probability of pfail f 2−13.9.
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p
Partial

LWE-KS GLWE Parameters PBS Parameters
LWE-KS

Metrics
Shared

Algorithm
Parameters

Keys Parameter Value Parameter Value Parameter Value Name Value

6 :
traditional

n 840
time 55.6

LWE-to-LWE

log2 (Ãn) −19.36 log2 (ℬPBS) 14 log2 (ℬKS) 3
k 1

log2 (N) 12 ℓPBS 2 ℓKS 5 size 341.4
log2 (Ãk·N ) −62.00

n 748 nKS 1313
log2 (Ãn) −16.91

log2 (ℬPBS) 14
log2 (ÃnKS

) −31.94 time 44.3

6 6
2 steps k 1 log2 (ℬKS1

) 16
(Alg. 35) log2 (N) 12

ℓPBS 2
ℓKS1

1
ϕ 2443 log2 (ℬKS2

) 2 size 224.2
log2 (Ãϕ) −62.00 ℓKS2

8

FFT-based

n 774
kin 1

(Alg. 36)

log2 (Ãn) −17.61
log2 (ℬPBS) 14 kout 1

time 41.1

6 6
k 1

log2 (NKS) 11
log2 (N) 12

ℓPBS 2 log2 (ℬKS) 1
ϕ 2443

ℓKS 15
size 194.0

log2 (Ãϕ) −62.00

7 :
traditional

n 896
time 129.0

LWE-to-LWE

log2 (Ãn) −20.85 log2 (ℬPBS) 15 log2 (ℬKS) 3
k 1

log2 (N) 13 ℓPBS 2 ℓKS 6 size 784.4
log2 (Ãk·N ) −62.00

n 776 nKS 1332
log2 (Ãn) −17.66

log2 (ℬPBS) 15
log2 (ÃnKS

) −32.45 time 101.0

7 6
2 steps k 1 log2 (ℬKS1

) 10
(Alg. 35) log2 (N) 13

ℓPBS 2
ℓKS1

2
ϕ 2443 log2 (ℬKS2

) 1 size 463.3
log2 (Ãϕ) −62.00 ℓKS2

16

FFT-based

n 818
kin 1

(Alg. 36)

log2 (Ãn) −18.78
log2 (ℬPBS) 14 kout 1

time 90.3

7 6
k 1

log2 (NKS) 11
log2 (N) 13

ℓPBS 2 log2 (ℬKS) 1
ϕ 2443

ℓKS 16
size 409.5

log2 (Ãϕ) −62.00

8 :
traditional

n 968
time 415

LWE-to-LWE

log2 (Ãn) −22.77 log2 (ℬPBS) 11 log2 (ℬKS) 3
k 1

log2 (N) 14 ℓPBS 3 ℓKS 6 size 2179
log2 (Ãk·N ) −62.00

n 816 nKS 1359
log2 (Ãn) −18.72

log2 (ℬPBS) 11
log2 (ÃnKS

) −33.17 time 323

8 6
2 steps k 1 log2 (ℬKS1

) 9
(Alg. 35) log2 (N) 14

ℓPBS 3
ℓKS1

2
ϕ 2443 log2 (ℬKS2

) 1 size 1304
log2 (Ãϕ) −62.00 ℓKS2

17

FFT-based

n 854
kin 1

(Alg. 36)

log2 (Ãn) −19.73
log2 (ℬPBS) 11 kout 1

time 306

8 6
k 1

log2 (NKS) 11
log2 (N) 14

ℓPBS 3 log2 (ℬKS) 1
ϕ 2443

ℓKS 18
size 1282

log2 (Ãϕ) −62.00

Table A.18: Parameter sets, benchmarks for PBS+LWE-KS and sizes of public material for CJP
and two variants based on both partial and secret keys with shared randomness. Note that we use
log2 (¿) = p. Sizes are given in MB and times in milliseconds. The parameter sets are for a failure
probability of pfail f 2−13.9.

205



Chapter A. Appendix

p
Partial

LWE-KS GLWE Parameters PBS Parameters
LWE-KS

Metrics
Shared

Algorithm
Parameters

Keys Parameter Value Parameter Value Parameter Value Name Value

9 :
traditional

n 1024
time 1340

LWE-to-LWE

log2 (Ãn) −24.26 log2 (ℬPBS) 9 log2 (ℬKS) 3
k 1

log2 (N) 15 ℓPBS 4 ℓKS 7 size 5890
log2 (Ãk·N ) −62.00

n 860 nKS 1388
log2 (Ãn) −19.89

log2 (ℬPBS) 8
log2 (ÃnKS

) −33.94 time 1010

9 6
2 steps k 1 log2 (ℬKS1

) 10
(Alg. 35) log2 (N) 15

ℓPBS 4
ℓKS1

2
ϕ 2443 log2 (ℬKS2

) 1 size 3525
log2 (Ãϕ) −62.00 ℓKS2

18

FFT-based

n 902
kin 1

(Alg. 36)

log2 (Ãn) −21.01
log2 (ℬPBS) 8 kout 1

time 1003

9 6
k 1

log2 (NKS) 11
log2 (N) 15

ℓPBS 4 log2 (ℬKS) 1
ϕ 2443

ℓKS 18
size 3609

log2 (Ãϕ) −62.00

10 :
traditional

n 1096
time 4710

LWE-to-LWE

log2 (Ãn) −26.17 log2 (ℬPBS) 6 log2 (ℬKS) 2
k 1

log2 (N) 16 ℓPBS 6 ℓKS 12 size 19730
log2 (Ãk·N ) −62.00

n 904 nKS 1417
log2 (Ãn) −21.06

log2 (ℬPBS) 6
log2 (ÃnKS

) −34.71 time 3620

10 6
2 steps k 1 log2 (ℬKS1

) 11
(Alg. 35) log2 (N) 16

ℓPBS 6
ℓKS1

2
ϕ 2443 log2 (ℬKS2

) 1 size 10940
log2 (Ãϕ) −62.00 ℓKS2

19

FFT-based

n 938
kin 3

(Alg. 36)

log2 (Ãn) −21.97
log2 (ℬPBS) 6 kout 3

time 3603

10 6
k 1

log2 (NKS) 9
log2 (N) 16

ℓPBS 6 log2 (ℬKS) 1
ϕ 2443

ℓKS 20
size 11260

log2 (Ãϕ) −62.00

11 :
traditional

n 1132
time 43900

LWE-to-LWE

log2 (Ãn) −27.13 log2 (ℬPBS) 2 log2 (ℬKS) 2
k 1

log2 (N) 17 ℓPBS 20 ℓKS 13 size 105300
log2 (Ãk·N ) −62.00

n 984 nKS 1471
log2 (Ãn) −23.19

log2 (ℬPBS) 3
log2 (ÃnKS

) −36.15 time 18000

11 6
2 steps k 1 log2 (ℬKS1

) 11
(Alg. 35) log2 (N) 17

ℓPBS 12
ℓKS1

2
ϕ 2443 log2 (ℬKS2

) 1 size 47330
log2 (Ãϕ) −62.00 ℓKS2

21

FFT-based

n 1018
kin 3

(Alg. 36)

log2 (Ãn) −24.10
log2 (ℬPBS) 3 kout 3

time 19450

11 6
k 1

log2 (NKS) 9
log2 (N) 17

ℓPBS 13 log2 (ℬKS) 1
ϕ 2443

ℓKS 22
size 52940

log2 (Ãϕ) −62.00

Table A.19: Parameter sets, benchmarks for PBS+LWE-KS and sizes of public material for CJP
and two variants based on both partial and secret keys with shared randomness. Note that we use
log2 (¿) = p. Sizes are given in MB and times in milliseconds. The parameter sets are for a failure
probability of pfail f 2−13.9.
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A.3.1 Parameters

In Tables A.20 and A.21, we report the cryptographic parameters that we use to compute our
benchmarks. All of them have been obtained with the optimization framework. In those tables, the
notation B (resp. ℓ) refers to the basis (resp. the number of levels) parameter used for a given FHE
algorithm such as a key switch or a [CGGI20]’s PBS. By default, the cryptographic parameters
ensure 128 bits of security, a failure probability pfail

(

A
(CJP21)

)

, pfail
(

A
(this work)

)

f 2−13.9 i.e. a
standard score (Definition 2) of 4 which is pretty easy to experiment with.

Remark A.1 (Biggest 2-Norm). For a given message modulo ℬ and carry-message modulo p one
can find the worst 2-norm that they could encounter in the modular arithmetic defined in Sec-
tion 2.3. Indeed, a fresh encoding is at worst ℬ−1, and the biggest message one can consider before
needing to empty the carry buffer is p − 1, so the biggest integer one can multiply a ciphertext

with is
⌊

p−1
ℬ−1

⌋

which is the biggest 2-norm.

AP parameters LWE GLWE
LWE-to-LWE

PBS
param key switch WoP-PBS
ID

p ¿ n log
2
(Ã) k log

2
(N) log

2
(Ã) log

2
(B) ℓ log

2
(B) ℓ

compatible

1 22 3 615 −13.38 4 9 −51.49 2 5 12 3 #8

2 24 5 702 −15.69 2 10 −51.49 2 7 9 4 #9

3 26 5 872 −20.21 1 12 −62.00 4 4 22 1 #10

4 22 3 667 −14.76 6 8 −37.88 4 3 18 1 ∅

5 24 5 784 −17.87 2 10 −51.49 4 3 23 1 ∅

6 28 17 983 −23.17 1 14 −62.00 4 5 15 2 ∅

7 26 9 838 −19.30 1 12 −62.00 3 5 15 2 ∅

Table A.20: Optimized parameters for A of type A
(CJP21).

In Table A.20, we provide seven parameter sets for A(CJP21), each one with a bit of padding, a
specific message modulus p and specific 2-norm ¿. In Table A.21, we provide five parameters sets
for A

(this work), each one with a specific (carry-) message modulo p, a specific number of bits to
extract per LWE ciphertext during the WoP-PBS, a specific number » of input LWE ciphertext
to the WoP-PBS and a specific 2-norm ¿. They do not have a bit of padding. In parameter IDs
#11 and #12, the message modulus specifies the CRT base used and the corresponding number
of bits to extract for each base.
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AP parameters LWE GLWE micro parameters
param
ID

p
bit(s) to

» ¿ n log
2
(Ã) k log

2
(N) log

2
(Ã) operator log

2
(B) ℓ

extract

8 22 1 16 3 549 −11.62 2 10 −51.49

LWE-to-LWE
2 5

key switch
PBS 12 3

packing
17 2

key switch
compatible circuit

13 1
with CJP#1 bootstrapping

9 24 2 8 5 534 −11.22 2 10 −51.49

LWE-to-LWE
2 5

key switch
PBS 12 3

packing
17 2

key switch
compatible circuit

9 2
with CJP#2 bootstrapping

10 26 4 5 5 538 −11.33 4 10 −62.00

LWE-to-LWE
1 10

key switch
PBS 4 11

packing
20 2

key switch
compatible circuit

7 4
with CJP#3 bootstrapping

11











7
8
9
11
13





















3
3
4
4
4











5 5 696 −15.53 2 10 −51.49

LWE-to-LWE
2 7

key switch
PBS 9 4

packing
17 2

key switch
circuit

7 3
bootstrapping

12























3
11
13
19
23
29
31
32













































2
4
4
5
5
5
5
5























8 25 781 −17.79 1 11 −51.49

LWE-to-LWE
1 16

key switch

PBS 5 8

packing
13 3

key switch
circuit

6 4
bootstrapping

Table A.21: Optimized parameters for A of type A
(this work).
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Titre : Vers une Arithmétique Homomorphe Pratique et Efficace.

Mots Clefs : Cryptologie, Chiffrement Totalement Homomorphe, TFHE.

Résumé : Le chiffrement totalement homo-
morphe (Fully Homomorphic Encryption, FHE)
est une famille de schémas de chiffrement per-
mettant d’effectuer des opérations directement
sur des données chiffrées. Grâce à cette pro-
priété, les schémas FHE permettent l’évaluation
de circuits tout en préservant la confidentialité
des utilisateurs. En conséquence, le FHE
trouve des applications dans de nombreux do-
maines tels que l’apprentissage automatique, la
blockchain, et bien d’autres. Au cours des
dernières décennies, le domaine est passé de
schémas nécessitant un temps impraticable pour
évaluer de petits circuits à des schémas capables
d’évaluer des circuits complexes dans un temps
raisonnable, ouvrant la voie à l’adoption du FHE
à l’échelle industrielle.

Cette thèse s’inscrit dans ce contexte, avec
un accent particulier sur le schéma TFHE.
TFHE est un schéma particulièrement efficace
pour effectuer des opérations sur des mes-
sages de faible précision, principalement grâce
à une opération, le bootstrapping, utilisée tout

au long du circuit pour garantir le résultat
des opérations. Malgré son efficacité, TFHE
présente encore certaines limitations que nous
cherchons à surmonter dans ce manuscrit.
Comme mentionné précédemment, TFHE dis-
pose d’algorithmes très performants pour traiter
des messages de petite précision, mais de nom-
breux circuits reposent sur des entiers 32 ou
64 bits, ou encore les nombres à virgule flot-
tante. Concernant cette première limitation,
nous avons étudié comment représenter efficace-
ment ces types de données avec TFHE en util-
isant des encodages et des algorithmes dédiés.
De plus, bien que TFHE soit l’un des schémas
FHE les plus efficaces, il reste lent comparé aux
opérations sur des données en clair. Afin de
réduire ces différences, nous avons étudié des al-
gorithmes bas niveau et de nouvelles primitives
visant à diminuer le coût global des opérations
FHE. L’ensemble de ces améliorations permet
la création d’une arithmétique homomorphe ef-
ficace et pratique, réduisant ainsi l’écart entre le
monde en clair et le monde homomorphe.

Title: Towards Efficient and Practical Homomorphic Arithmetics.

Key Words : Cryptology, Fully Homomorphic Encryption, TFHE.

Abstract: Fully Homomorphic Encryption
(FHE) is a family of encryption schemes permit-
ting operations over encrypted data. Thanks to
this property, FHE schemes allow the evaluation
of circuits while preserving user privacy. As a
result, FHE has applications in diverse domains
such as machine learning, blockchain, and so on.
Over the last decades, the field has evolved from
schemes taking an impracticable amount of time
to evaluate small circuits to schemes able to eval-
uate complex circuits in a reasonable amount of
time, leading to the beginning of the adoption
of FHE at the industrial level.

This thesis begins in this context, with a fo-
cus on the TFHE scheme. TFHE is an FHE
scheme that is highly efficient at performing op-
erations over small message precision, mainly
due to a core operation called bootstrapping,
which is used all along the circuit to ensure cor-

rectness. However, despite its efficiency, TFHE
still has some limitations that we aim to over-
come in this manuscript. As mentioned before,
TFHE has very efficient algorithms to work with
small message precision, but many circuits work
with primitive data types such as 32- or 64-bit
integers or floating-point numbers. Regarding
this first limitation, we study how to efficiently
represent these data types with TFHE by using
dedicated encodings and algorithms. Although
TFHE is one of the fastest FHE schemes, it re-
mains slow compared to plaintext operations.
To reduce the timing differences, we study low-
level algorithms and new primitives to reduce
the global cost of FHE operations. All these im-
provements permit the creation of efficient and
practical homomorphic arithmetic, bridging the
gap between the clear world and the homomor-
phic world.
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