
HAL Id: tel-05466218
https://theses.hal.science/tel-05466218v1

Submitted on 19 Jan 2026

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimized data structure and query system for static
code analysis
Quentin Dauprat

To cite this version:
Quentin Dauprat. Optimized data structure and query system for static code analysis. Computer
Science [cs]. Normandie Université, 2025. English. �NNT : 2025NORMC278�. �tel-05466218�

https://theses.hal.science/tel-05466218v1
https://hal.archives-ouvertes.fr

THÈSE

Pour obtenir le diplôme de doctorat
Spécialité INFORMATIQUE

Préparée au sein de l'Université de Caen Normandie

Οptimized data structure and query system fοr static cοde
analysis

Présentée et soutenue par
DAUPRAT QUENTIN

Thèse soutenue le 05/11/2025
devant le jury composé de :

M. DORBEC PAUL Professeur des universités - Université de Caen Directeur de thèse

M. SINGHOFF FRANCK Professeur des universités - Universite Bret. Occidentale Ubo Président du jury

M. RICHARD GAETAN Maître de conférences - UCN - Université de Caen Normandie Co-encadrant

M. MINÉ ANTOINE Professeur des universités - Sorbonne Université Membre du jury

MME PEKERGIN NIHAL Professeur des universités - UNIVERSITE PARIS 12 VAL DE
MARNE Membre du jury

MME ROSEN JEAN-PIERRE Chercheur - ADALOG Membre du jury

M. CHALLOUX EMMANUEL Professeur émérite - Sorbonne Université Rapporteur du jury

Thèse dirigée par DORBEC PAUL (Groupe de recherche en informatique, image et
instrumentation de Caen)

The Université de Caen Normandie neither endorses nor censors authors’ opinions

expressed in the thesis: these opinions must be considered to be those of their authors.

Keywords: ada language, graph databases, neo4j, pattern matching, scalability, static

code analysis, coding rule verification

Mots clés : langage ada, bases de données orientées graphe, neo4j, filtrage par motif,

passage à l’échelle, analyse statique de code, vérification de règles de codage

This thesis has been prepared at the following research units.

GREYC

6 Boulevard du Maréchal Juin

Bâtiment Sciences 3

CS 14032

14032 CAEN cedex 5

France

�

contact@greyc.fr

�

https://www.greyc.fr

Adalog

2 rue Mozart

92110 Clichy

France

�

contact@adalog.fr

�

https://www.adalog.fr

Novasys Ingenierie

2 rue Mozart

92110 Clichy

France

�

contacts2@pactenovation.fr

�

https://www.novasys-ingenierie.com/

https://www.greyc.fr
mailto:contact@greyc.fr
https://www.greyc.fr
https://www.greyc.fr
https://www.adalog.fr
mailto:contact@adalog.fr
https://www.adalog.fr
https://www.adalog.fr
https://www.novasys-ingenierie.com/
mailto:contacts2@pactenovation.fr
https://www.novasys-ingenierie.com/
https://www.novasys-ingenierie.com/

Computer programming is an art,
because it applies accumulated
knowledge to the world, because it
requires skill and ingenuity, and
especially because it produces objects
of beauty

Donald Knuth

Quality means doing it right when no
one is looking

Henry Ford

Abstract xiii

Optimized data structure and query system for static code analysis

Abstract

Static code analysis encompasses various techniques for improving software quality and security.
In this research, we focus exclusively on one important aspect: the verification of coding rules.
Conventional approaches for coding rule verification face challenges in efficiently analyzing
large, complex codebases. We thus explore the potential of graph databases to enhance the
performance of this specific static analysis task.
We propose a graph-based methodology that represents source code as rich property graphs,
enabling intuitive modeling of syntax, semantics, and behavior specifically for coding rule
verification. We parse the codebase and populate it into a graph database. Then, we evaluate
coding rules through graph traversals expressed in the Cypher query language, converting
traditional rule checks into optimized graph patterns.
We implemented this approach in a prototype tool, entitled Cogralys, for Ada and evaluated it on
real-world benchmarks. Our experiments demonstrate significant runtime improvements in
coding rule verification: Cogralys completes analyses 6.3 times faster than AdaControl and 17.6
times faster than GNATcheck. For specific rule categories, we achieved even greater improve-
ments– up to 195 times faster for local rules compared to traditional analyzers. These results
confirm graph databases’ capacity to accelerate coding rule verification through optimized data
structures and parallel query processing.
However, overheads introduced by database population should be considered. We found the
technique is best suited for sizable, frequently analyzed code. While showing significant promise
for coding rule verification, more research is needed to address language support, integration
with developers’ workflows, and queries for more complex rules.
Overall, in this thesis we deliver a practical graph-based framework for coding rule verifica-
tion while presenting the advantages, trade-offs and future opportunities of leveraging graph
technologies for efficient, scalable verification of coding standards.

Keywords: ada language, graph databases, neo4j, pattern matching, scalability, static code
analysis, coding rule verification

GREYC

6 Boulevard du Maréchal Juin – Bâtiment Sciences 3 – CS 14032 – 14032 CAEN cedex 5 –

France

xiv Abstract

Structures de données et système de requêtes optimisés pour l’analyse statique de code

Résumé

L’analyse statique de code englobe diverses techniques pour améliorer la qualité et la sécurité des
logiciels. Dans notre recherche, nous nous concentrons exclusivement sur un aspect important :
la vérification des règles de codage. Nous avons identifié que les approches conventionnelles
pour la vérification des règles de codage peinent à analyser efficacement des bases de code
volumineuses et complexes. Nous explorons le potentiel des bases de données orientées graphe
pour améliorer les performances de cette tâche spécifique d’analyse statique.
Nous proposons une méthodologie basée sur les graphes pour représenter le code source sous
forme de graphe de propriétés, permettant une modélisation intuitive de la syntaxe, de la sé-
mantique et du comportement spécifiquement pour la vérification des règles de codage. Nous
analysons la base de code et l’intégrons dans une base de données orientée graphe. Nous éva-
luons ensuite les règles de codage par des traversées de graphe exprimées en langage de requête
Cypher, convertissant les vérifications traditionnelles en motifs de graphe optimisés.
Nous avons implémenté cette approche par l’intermédiaire d’un prototype, appelé Cogralys, pour
le langage Ada et l’avons évaluée sur des benchmarks dumonde réel. Nos expériences démontrent
des améliorations significatives en temps d’exécution pour la vérification des règles de codage :
Cogralys effectue les analyses 6,3 fois plus rapidement qu’AdaControl et 17,6 fois plus rapidement
que GNATcheck. Pour certaines catégories de règles, nous avons obtenu des améliorations encore
plus importantes – jusqu’à 195 fois plus rapide pour les règles locales par rapport aux analyseurs
traditionnels. Ces résultats confirment la capacité des bases de données graphe à accélérer la
vérification des règles de codage grâce à des structures de données optimisées et à un traitement
parallèle des requêtes.
Cependant, nous reconnaissons que les surcharges introduites par la population de la base de
données sont à prendre en compte. Nous avons constaté que la technique est mieux adaptée
pour du code volumineux et fréquemment analysé. Bien que prometteuse pour la vérification
des règles de codage, nous identifions que des recherches supplémentaires sont nécessaires pour
traiter la prise en charge d’autres langages, l’intégration dans les flux de développement et les
requêtes pour des règles plus complexes.
Globalement, dans cette thèse nous proposons un cadre basé sur les graphes pour la vérification
des règles de codage tout en présentant les avantages, les inconvénients et les opportunités
futures de l’utilisation des technologies graphes pour une vérification efficace et évolutive des
standards de codage.

Mots clés : langage ada, bases de données orientées graphe, neo4j, filtrage par motif, passage à
l’échelle, analyse statique de code, vérification de règles de codage

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my superior, Jean-

Pierre Rosen, CEO of Adalog, for accepting me into his internship program and enabling

me to continue pursuing doctoral studies under his guidance. His vision and leader-

ship were instrumental in shaping this research. I am also deeply grateful to Laurent

Gouzenes, the scientific director of the company, for his valuable guidance and sup-

port throughout my research journey. I must extend my profound thanks to Novasys

Ingenierie, whose generous financial support made this research possible.

I would also like to sincerely thank my thesis supervisor, Professor Paul Dorbec, for

his invaluable advice and support throughout this endeavor. His insights and direction

were crucial to the completion of this work.

In addition, I am extremely thankful to my co-supervisor, Dr. Gaetan Richard, for all

the time and effort he dedicated to providing thoughtful feedback that helped refine and

enhance the present research. This thesis has benefitted tremendously from his input.

My heartfelt appreciation goes out to my family, for their endless love and encour-

agement which inspired me to stay determined through all the ups and downs of this

challenging but rewarding PhD journey. I could not have done this without them.

I want to acknowledge as well the many friends, colleagues, collaborators, and

institutions who contributed directly or indirectly to making this research possible.

Finally, I am grateful to have had this opportunity to conduct impactful research

alongside many gifted minds. The experience has been truly rewarding both personally

xv

xvi Acknowledgements

and professionally.

Résumé substantiel en français

Introduction et contexte

La fiabilité du logiciel constitue aujourd’hui un enjeu stratégique dans de nombreux

secteurs industriels à haute criticité, tels que l’aéronautique, le spatial, le ferroviaire,

le domaine médical, la défense ou encore l’énergie. Dans ces environnements, le logi-

ciel embarqué pilote des fonctions vitales, dont la défaillance peut entraîner des con-

séquences humaines, matérielles et économiques majeures. L’histoire récente a été

marquée par plusieurs accidents emblématiques : le système de radiothérapie Therac-25,

dont des défauts logiciels ont causé plusieurs décès ; l’explosion de la fusée Ariane 5

lors de son vol inaugural, imputée à une erreur de conversion numérique ; ou encore les

crashs du Boeing 737 MAX, où des erreurs logicielles dans le systèmeMCAS ont provoqué

la perte de deux appareils et de centaines de vies humaines. Ces événements soulignent

la nécessité absolue de maîtriser la qualité du logiciel tout au long de son cycle de vie.

Dans ce contexte, les logiciels embarqués sont soumis à des exigences de sûreté

et de certification particulièrement strictes, imposées par des normes internationales

telles que DO-178C (aéronautique), ISO 26262 (automobile), EN 50128 (ferroviaire), ou

encore CEI 61508 (industrie). Ces référentiels exigent la mise en œuvre de pratiques de

développement rigoureuses, incluant la vérification systématique du respect de règles de

codage précises, afin de prévenir l’introduction de défauts et de faciliter la maintenance.

Le langage Ada occupe une place centrale dans ce paysage. Conçu dès l’origine pour

répondre aux besoins de la programmation de systèmes critiques, Ada se distingue par

xvii

xviii Résumé substantiel en français

son typage fort, sa gestion native de la concurrence, ses mécanismes de modularité et

d’abstraction. Il est largement adopté dans les secteurs où la fiabilité et la maintenabilité

du logiciel sont des exigences non négociables.

L’évolution des pratiques industrielles, la croissance constante de la taille des bases

de code, la multiplication des intervenants et l’allongement du cycle de vie des logiciels

rendent désormais la vérificationmanuelle des règles de codage inenvisageable à grande

échelle. Les outils automatiques de vérification statique sont devenus indispensables

pour garantir la conformité, réduire les coûts de revue, accélérer la mise sur le marché et

fiabiliser les livrables dans un contexte de complexité croissante.

Problématique et objectifs

Malgré les avancées significatives des outils de vérification statique, les approches tradi-

tionnelles fondées sur l’analyse des Abstract Syntax Trees (ASTs) atteignent aujourd’hui

leurs limites face à l’ampleur et à la complexité croissante des bases de code indus-

trielles. Les outils de référence pour Ada, tels qu’AdaControl ou GNATcheck, s’appuient

principalement sur une analyse structurée du code source via l’AST, mais se heurtent à

plusieurs obstacles majeurs :

• Dispersion de l’information syntaxique et sémantique : dans les grands pro-

jets, les éléments nécessaires à la vérification d’une règle sont souvent répartis sur

de multiples fichiers, packages et unités de compilation, rendant leur agrégation

coûteuse et peu scalable.

• Difficulté à exprimer des règles complexes : certaines règles de codage re-

quièrent de corréler des informations issues de différents niveaux de l’AST, voire de

parcourir des relations de dépendance, d’appel ou d’héritage, difficiles à exprimer

avec des outils conçus pour des vérifications locales.

• Problèmes de performance et de passage à l’échelle : l’analyse de très grands

ensembles de code peut entraîner des temps de traitement prohibitifs, notamment

Problématique et objectifs xix

lorsque l’outil doit recharger ou reconstituer à la volée des arbres syntaxiques

volumineux et interdépendants.

• Rigidité des outils existants : l’ajout de nouvelles règles ou l’évolution des

référentiels nécessite souvent des développements spécifiques, limitant l’agilité

des équipes et la réactivité face à l’évolution des normes.

Le langage Ada, par sa richesse syntaxique, son typage fort, ses mécanismes avancés

(généricité, multitâche, héritage, visibilité fine), exacerbe ces difficultés. Les règles

de codage dans Ada sont particulièrement variées : certaines sont locales (absence

d’instructionabort), d’autres globales (absence d’appel indirect à une procédure critique,

respect de l’initialisation des variables, etc.), et peuvent nécessiter de parcourir des

graphes de dépendances complexes.

Face à ces constats, nous posons l’hypothèse qu’une approche fondée sur les bases

de données graphe, capable de modéliser explicitement les relations sémantiques et

structurelles du code, permettrait de lever ces verrous. L’objectif général de cette thèse

est donc de concevoir, implémenter et évaluer une méthode de vérification automatique

des règles de codage Ada s’appuyant sur une modélisation graphe, afin d’améliorer :

• la performance de l’analyse sur des bases de code de grande taille ;

• l’expressivité des règles, y compris pour des cas complexes ou globaux ;

• la robustesse et la reproductibilité de la vérification dans des contextes industriels

variés.

Les objectifs spécifiques incluent : la définition d’un schéma de graphe adapté à Ada,

la traduction des règles en requêtes de pattern matching (Cypher), l’évaluation expéri-

mentale sur un corpus de 134 projets Ada open-source, et la comparaison quantitative

avec les outils de l’état de l’art.

xx Résumé substantiel en français

État de l’art

L’analyse statique du code source s’appuie historiquement sur plusieurs représentations

intermédiaires : l’AST décrit la structure syntaxique du programme ; le Control Flow

Graph (CFG) modélise les chemins d’exécution possibles ; le Program Dependency Graph

(PDG) explicite les dépendances de données et de contrôle. Les graphes d’appels (Call

Graph (CG)) permettent de visualiser les relations d’appel entre sous-programmes.

Plusieurs outils de vérification statique existent pour Ada :

• AdaControl : outil puissant, capable d’exprimer un grand nombre de règles, mais

dont l’architecture repose sur une analyse locale de l’AST. Il montre ses limites sur

les très grands projets et pour des règles nécessitant de traverser plusieurs unités

de compilation.

• GNATcheck : intégré à la chaîne GNAT, il permet la vérification de règles stan-

dardisées, mais reste limité en termes d’expressivité et d’extensibilité.

• Autres outils : CodePeer (analyseur d’exécution symbolique), Polyspace (anal-

yse abstraite), etc., qui ciblent des aspects complémentaires (détection de bugs,

preuves formelles) mais ne répondent pas toujours aux besoins de vérification

fine des règles de codage.

La littérature met en évidence plusieurs limites : difficulté à exprimer des règles glob-

ales, manque de scalabilité, rigidité des architectures. Des travaux récents ont proposé

l’usage de graphes de propriétés (property graphs) pour l’analyse statique, notamment

via le concept de Code Property Graph (CPG) : ces modèles englobent l’AST, le CFG et

le CG dans un même graphe orienté, permettant des requêtes de pattern matching

puissantes [50]. Ces approches ont montré leur efficacité en sécurité (détection de vul-

nérabilités, analyse de dépendances), mais restent peu explorées pour la vérification de

règles de codage.

En synthèse, si les outils existants couvrent une large part des besoins industriels,

ils peinent à répondre aux exigences de scalabilité, d’expressivité et d’agilité imposées

Méthodologie xxi

par l’évolution des bases de code et des référentiels de règles. Les avancées récentes en

modélisation de graphe ouvrent de nouvelles perspectives pour dépasser ces verrous,

mais nécessitent une adaptation fine aux spécificités du langage Ada et aux contraintes

industrielles.

Méthodologie

L’approche proposée repose sur une architecture en plusieurs étapes visant à représenter

le code Ada sous forme de graphe de propriétés exploitable par des requêtes de pattern

matching. La méthodologie se décline selon les axes suivants :

Architecture de la solution

La chaîne de traitement se compose des étapes suivantes :

1. Extraction de l’AST : utilisation de librairies tels que Ada Semantic Interface

Specification (ASIS) pour obtenir une représentation syntaxique complète du code

source.

2. Enrichissement sémantique : ajout d’informations sur les types, les dépen-

dances, les relations d’appel et d’héritage, issues de l’analyse statique et de la

résolution des symboles.

3. Génération du graphe : transformation des entités et relations extraites en

nœuds et arêtes d’un property graph, stocké dans une base Neo4j.

4. Traduction des règles : conversion des règles de codage en requêtes Cypher,

permettant de rechercher des motifs précis dans le graphe.

5. Analyse et restitution : exécution des requêtes, collecte des résultats, génération

de rapports détaillés.

xxii Résumé substantiel en français

Modélisation du graphe

Le schéma du graphe est conçu pour capturer la richesse syntaxique et sémantique

d’Ada :

• Types de nœuds : procédures, fonctions, packages, types, variables, constantes,

tâches

• Types de relations : appels (CALL), lien d’AST (IS_ENCLOSED_IN), le type cor-

respondant (IS_OF_TYPE), etc.

Certaines relations complexes (ex : IS_ANCESTOR_OF, IS_PROGENITOR_OF) sont

calculées directement dans la base, offrant une expressivité accrue.

Traduction des règles en requêtes Cypher

Les règles de codage sont exprimées sous forme de requêtes Cypher, permettant de

détecter des motifs structurels ou sémantiques. Les requêtes Cypher combinent une

clause MATCH décrivant le motif à rechercher, des prédicats WHERE optionnels pour

filtrer les nœuds ou relations selon leurs labels et propriétés, et une clause RETURN

spécifiant les éléments à retourner.

À titre d’illustration, considérons une procédure Ada Cat_Laser_Pointer. Nous

pouvons utiliser Cypher pour récupérer tous les sous-programmes qu’elle appelle :

�

Code 0.1 – Requête Cypher illustrant les relations d’appel

1 MATCH (p:A_PROCEDURE_DECLARATION { name:

"Cat_Laser_Pointer" })-[:CALLING]->(callee)
2 RETURN callee

Cette requête se décompose ainsi :

Méthodologie xxiii

• (p:A_PROCEDURE_DECLARATION \{ name: "Cat_Laser_Pointe ⌋

r" \}) désigne un nœud avec le label A_PROCEDURE_DECLARATION et une

propriété name égale à "Cat_Laser_Pointer".

• -[:CALLING]-> représente une relation dirigée de type CALLING, indiquant

que p appelle un autre sous-programme.

• (callee) introduit une variable liée à chaque sous-programme appelé par p.

• RETURN callee retourne tous les nœuds correspondant aux appelés.

Ces mêmes éléments de base (nœuds avec labels et propriétés, relations typées, et

variables liées par pattern matching) permettent d’exprimer des règles de codage plus

sophistiquées. Par exemple :

�

Code 0.2 – Absence d’instruction ”abort”

1 MATCH (n:Statement {kind: 'Abort_Statement'}) RETURN n

�

Code 0.3 – Contrôle le nombre maximum de parents autorisé pour un type

1 /// Parameters of the query
2 :params { "minNbParents": 2 }
3
4 /// The query
5 MATCH (typeDecl)<-[r:IS_PROGENITOR_OF|IS_ANCESTOR_OF]-(p ⌋

arent)
6 WITH typeDecl, count(r) as nbParents
7 WHERE nbParents >>= $minNbParents
8 RETURN typeDecl, nbParents
9 ORDER BY typeDecl.filename, typeDecl.line,

typeDecl.column

xxiv Résumé substantiel en français

Corpus expérimental

L’approche a été évaluée sur un corpus de 134 projets Ada open-source, couvrant une

grande diversité de tailles (de quelques milliers à plusieurs millions de lignes) et de

complexités. Les critères de sélection incluent : version d’Ada maximum = Ada 2012,

compilation sur notre architecture de test (Linux x86-64).

Pour garantir une évaluation complète, nous avons analysé l’utilisation des fonc-

tionnalités du langage Ada dans le corpus. L’analyse quantitative révèle une couverture

étendue : le polymorphisme paramétrique (59 projets déclarant des unités génériques,

992 instanciations publiques), la programmation orientée objet (69 projets utilisant des

hiérarchies de types étiquetés avec des profondeurs d’héritage allant jusqu’à 7 niveaux),

la gestion des exceptions (77 projets avec des instructions raise, totalisant 2889 oc-

currences), et l’utilisation intensive des types d’accès (8302 utilisations de l’attribut

'Access dans 54 projets). Cependant, le corpus présente une couverture limitée des

fonctionnalités de concurrence (seulement 3 projets avec des déclarations de tâches, 9

projets avec des objets protégés), reflétant la prédominance de la logique séquentielle

dans l’écosystème Ada open-source disponible via Alire.

Critères d’évaluation

L’évaluation de la méthode repose sur les axes suivants :

• Temps d’analyse : mesure du temps total et par règle, comparaison avec Ada-

Control et GNATcheck.

• Scalabilité : capacité à traiter efficacement de très grands projets.

• Couverture des règles : proportion de règles vérifiables, expressivité des requêtes.

• Robustesse : capacité à gérer des cas limites, reproductibilité des résultats sur des

codes hétérogènes.

Résultats principaux xxv

Résultats principaux

Performances quantitatives

Le temps d’analyse moyen par projet, pour l’ensemble des règles, s’établit à environ

39 s 44ms secondes pour notre approche (Cogralys), contre 4min 5 s 827ms secondes

pour AdaControl et 11min 36 s 86ms secondes pour GNATcheck sur le même corpus.

L’approche graphe démontre des accélérations significatives allant de 6.30 × à 17.83 ×

par rapport aux outils traditionnels, selon la complexité des règles et la taille du code.

Nous avons également identifié les facteurs clés influençant les performances de

l’analyse statique à travers plusieurs études de cas :

• Dominance du surcoût d’initialisation : Pour de nombreux projets, notamment

les plus grands comme AICWL (avec une profondeur d’héritage de 5 niveaux et

plus de 100 instanciations génériques), le coût de construction de l’AST/graphe

domine le temps de vérification des règles.

• Complexité structurelle : La complexité algorithmique et les relations inter-

composants (comme dans APDF) augmentent le temps d’analyse indépendam-

ment des fonctionnalités spécifiques du langage.

• Complexité des données : Les grandes définitions de données statiques (comme

dans le projet Emojis avec ses tables d’initialisation massives) peuvent être aussi

coûteuses que la logique complexe en raison du volume de nœuds AST générés.

xxvi Résumé substantiel en français

Métrique Cogralys AdaControl GNATcheck (1) GNATcheck (32)

Temps d’analyse 39 s 44ms 4min 5 s 827ms 11min 36 s 86ms 11min 27 s 799ms

Relatif au meilleur Référence 6.30 × 17.83 × 17.62 ×

Initialisation 3 h 47min 31 s 709ms 7min 41 s 801ms 1min 26 s 762ms 1min 31 s 454ms

Exécution totale 3 h 48min 10 s 753ms 11min 47 s 628ms 13min 2 s 848ms 12min 59 s 253ms

Total relatif 19.35 × Référence 1.11 × 1.10 ×

Table 1: Comparaison des performances globales

Scalabilité et performance par type de règle

L’analyse révèle deux tendances distinctes pour les projets de moins de 10 000 lignes

de code¹, avec des comportements de performance différents selon la structure du

projet. Pour les grands projets, l’avantage de l’approche graphe devient particulièrement

significatif.

Les performances varient également selon le type de règle :

• Règles locales : accélérations jusqu’à 205 × par rapport à AdaControl

• Règles intermédiaires : accélérations d’environ 140 × par rapport à AdaControl

• Règles globales : améliorations significatives mais plus modérées

¹ Les résultats pour les projets de plus de 10 000 lignes de code sont présentés dans le chapitre 3.

Résultats principaux xxvii

Règle Cogralys AdaControl GNATcheck (1) GNATcheck (32)

Règles locales:

Abort Statements 3 s 400ms 10min 900ms 51 s 900ms 52 s 300ms

Blocks 2 s 100ms 9min 46 s 900ms 52 s 200ms 52 s 200ms

Constructors 7 s 700ms 9min 13 s 10ms 1min 7 s 300ms 1min 7 s 200ms

Enumeration Rep. Clauses 1 s 90ms 9min 36 s 100ms 41 s 900ms 42 s 500ms

Renamings 1 s 100ms 9min 53 s 500ms 52 s 90ms 52 s 300ms

Slices 1 s 700ms 9min 56 s 400ms 16min 29 s 200ms 16min 21 s 800ms

Total Local 17 s 90ms 58min 26 s 810ms 20min 54 s 590ms 20min 48 s 300ms

Moyenne d’accélération Référence 205 × 73 × 73 ×

Règles intermédiaires:

Abstract Type Declarations 4 s 80ms 9min 29 s 700ms 51 s 900ms 52 s 100ms

Total Intermédiaire 4 s 80ms 9min 29 s 700ms 51 s 900ms 52 s 100ms

Moyenne d’accélération Référence 140 × 13 × 13 ×

Règles globales:

Too Many Parents 2 s 300ms 9min 56 s 400ms 58 s 800ms 59 s 700ms

Total Global 2 s 300ms 9min 56 s 400ms 58 s 800ms 59 s 700ms

Moyenne d’accélération Référence 259 × 25 × 26 ×

Table 2: Analyse des performances par type de règle

Analyse préliminaire de la précision

Bien qu’une analyse complète des vrais/faux positifs et négatifs n’ait pas été menée, une

investigation préliminaire sur quelques projets a confirmé que notre approche basée

sur les graphes offre théoriquement une précision équivalente aux outils traditionnels

basés sur l’AST. En effet, notre graphe est dérivé directement du même AST ASIS sans

perte d’information structurelle, et les variations observées dans les comptages de

messages proviennent de détails d’implémentation corrigeables plutôt que de limitations

inhérentes à la représentation en graphe. Par exemple, notre revue initiale a révélé :

• Faux négatifs : causés par des requêtes Cypher incomplètes ne prenant pas en

compte toutes les constructions du langage.

xxviii Résumé substantiel en français

• Faux positifs : résultant de certains patterns du langage mal interprétés par une

requête.

• Différences de périmètre : différences dans l’ensemble des fichiers analysés par

chaque outil.

Synthèse comparative

En synthèse, l’approche graphe offre :

• Un gain de performance significatif sur l’analyse, particulièrement pour les grands

projets

• Une expressivité accrue pour la formulation de règles complexes

• Une meilleure compréhension sémantique du code par rapport aux approches

textuelles

• Un accès indexé direct aux éléments spécifiques sans nécessiter de parcourir

l’intégralité du code

Analyse, discussion et limites

L’approche par base de données graphe apporte plusieurs avancées conceptuelles et

techniques majeures. Sur le plan conceptuel, elle permet d’unifier la représentation des

relations syntaxiques et sémantiques et facilite la traversée de dépendances complexes.

La flexibilité du schéma de graphe autorise l’ajout progressif de nouveaux types de nœuds

et de relations, favorisant l’évolution du référentiel de règles sans refonte majeure de

l’outillage.

Sur le plan technique, l’utilisation de requêtes Cypher offre une expressivité inégalée

pour la formulation de règles, y compris celles impliquant des parcours transversaux,

des corrélations multi-modules ou des contraintes de visibilité.

Conclusion et perspectives xxix

Parmi les limites identifiées :

• Coût d’initialisation : la génération du graphe représente un surcoût important

(3,8 heures en moyenne), rendant l’approche plus adaptée aux grands projets ou

aux analyses répétées où ce coût peut être amorti.

• Dépendance entre règles et structure du graphe : il existe une dépendance

entre les règles de codage implémentées et les arêtes nécessaires dans le graphe,

nécessitant potentiellement des enrichissements du schéma pour de nouvelles

règles.

• Limitations liées à ASIS-for-GNAT : l’utilisation d’ASIS introduit des contraintes

de performance et demaintenance, suggérant une transition future vers libadalang.

Malgré ces limites, l’approche ouvre des perspectives prometteuses pour l’analyse

statique de code à grande échelle.

Conclusion et perspectives

Cette thèse propose une nouvelle génération d’outils de vérification statique, fondée sur

la modélisation graphe, capable de répondre aux défis de performance, d’expressivité

et de robustesse posés par les systèmes logiciels critiques modernes. L’approche a

démontré sa capacité à traiter efficacement de très grands projets et à exprimer des

règles complexes.

Notre implémentation prototype (Cogralys) est disponible en open-source pour

faciliter la reproductibilité et les recherches futures : Cogralys.

Les perspectives ouvertes par ces travaux sont multiples :

• Transition vers libadalang : pour supporter les fonctionnalités modernes d’Ada

et surmonter les limitations d’ASIS-for-GNAT.

https://github.com/Adalog-fr/cogralys-engine

xxx Résumé substantiel en français

• Analyse complète de précision : évaluation approfondie des vrais/faux positifs

et négatifs dans les messages rapportés.

• Mises à jour incrémentales : développement de capacités de mise à jour incré-

mentale de la base de données graphe pour réduire les surcoûts dans lesworkflows

de développement itératif.

• Intégration aux environnements de développement : pour fournir un retour

en temps réel sur les violations des règles de codage.

• Extension à d’autres langages : application de l’approche à d’autres langages

de programmation avec des systèmes de types complexes, tels que C++, Rust ou

OCaml. Pour les langages fonctionnels comme OCaml, des fonctionnalités telles

que le pattern matching et les fonctions de première classe créent des graphes de

flux de contrôle et de données complexes que notre schéma pourrait modéliser.

Pour Rust, les concepts de propriété (ownership) et de durées de vie (lifetimes)

pourraient être explicitement modélisés comme propriétés ou relations dans le

graphe.

À terme, cette approche pourrait contribuer à l’émergence de standards ouverts pour

la vérification statique avancée, et à la démocratisation de pratiques de qualité logicielle

dans les secteurs les plus exigeants.

Contents

Abstract xiii

Acknowledgements xv

Résumé substantiel en français xvii

Contents xxxi

List of Tables xxxiii

List of Figures xxxv

List of elements xxxvii

Introduction 1

1 Definitions & RelatedWork 5

2 Methodology 33

xxxi

xxxii Contents

3 Results and Analysis 71

4 Discussion 89

Conclusion 99

Bibliography 105

A More information 111

B Not (fully) implemented rules 113

C Benchmark Results 123

Declaration of Generative AI and AI-assisted technologies in the writing

process 227

Acronyms 229

Table of contents 231

List of Tables

1 Comparaison des performances globales xxvi

2 Analyse des performances par type de règle xxvii

2.1 Ada Language Feature Coverage in the Benchmark Dataset 45

2.2 Static Analysis Tools Evaluated . 62

3.1 Statistical Analysis of Run Times (on 3-run) 71

3.2 Overall Performance Comparison . 73

3.3 Performance Analysis by Rule Type . 83

3.4 Messages Reported by Rule Type . 85

xxxiii

xxxiv List of Tables

List of Figures

1.1 Example of a Property Graph . 7

1.2 Simplified AST of ”Cat Laser Pointer” program 9

1.3 CG of ”Cat Laser Pointer” program . 10

1.4 CFG of ”Cat Laser Pointer” program . 11

1.5 PDG of ”Cat Laser Pointer” program . 13

1.6 CPG of ”Cat Laser Pointer” program . 14

1.7 Extended CPG of ”Cat Laser Pointer” program 15

1.8 SCG of the ”Cat Laser Pointer” program 16

2.1 How DB population works . 52

2.2 Graphical representation of the ”Constructors” rule query pattern 57

3.1 Analysis Time (All Rules) vs. Lines of Code 74

3.2 Analysis Time (All Rules) vs. Lines of Code (0-10k LoC) 76

A.1 Full AST of ”Cat Laser Pointer” program 111

xxxv

xxxvi List of Figures

A.2 Full example of extended CPG of ”Cat Laser Pointer” program 112

List of elements

0.1 Requête Cypher illustrant les relations d’appel xxii

0.2 Absence d’instruction ”abort” . xxiii

0.3 Contrôle le nombre maximum de parents autorisé pour un type xxiii

1.1 Example of Ada program to illustrate Static Code Analysis (SCA) concepts 8

1.2 Simple Cypher query illustrating call relationships 28

1.3 Example Cypher query to detect magic numbers in conditions 29

2.1 Tree Swapping issue in our approach . 47

2.2 Example of Cypher query using literals 49

2.3 Example of Cypher query using parameters 49

2.4 Database specific optimization . 49

2.5 HTTP request streaming issue . 50

2.6 On the timing of relationship computation 51

2.7 Database parallel population . 52

2.8 Example Cypher query for the “Too Many Parents” coding rule 53

xxxvii

xxxviii List of elements

2.9 Common structure for simple Cypher queries 54

2.10 Cypher query for the “Renamings” rule . 54

2.11 Cypher query for the “Constructors” rule 55

2.12 Focus on Execution Time . 63

B.1 Query to get the READ /WRITE usage in normal and generic case 113

B.2 Query to get the READ /WRITE usage in instance of generics 117

Introduction

In the modern world, software has become ubiquitous, permeating every aspect of our
daily lives. From the smartphones we carry in our pockets to the complex systems that
power our industries, software is an integral and indispensable part of our society. As
our dependence on software grows, ensuring its quality, reliability, and security becomes
increasingly critical.

In many domains, such as aerospace, defense, healthcare, and automotive industries,
softwares play a vital role in controlling and monitoring systems that directly impact
human lives and safety [41]. In these contexts, even a seemingly minor bug or defect in
the code can have severe and far-reaching consequences. History provides numerous
examples of software failures that have led to catastrophic outcomes, such as the Therac-
25 radiation therapy machine accidents [31], the Ariane 5 rocket explosion [34], and the
Boeing 737 MAX crashes [26].

Software bugs canmanifest in various forms, each presenting unique challenges and
risks. Common types of bugs include programming errors, omission errors, configuration
errors, and concurrency errors [20, 53, 37, 41]. As software systems becomemore complex
and interconnected, the potential for bugs and vulnerabilities increases dramatically.
This is particularly true for autonomous systems, such as self-driving cars, drones, and
robots, where software is responsible for making critical decisions in real-time [29]. In
these cases, the consequences of software failures can be catastrophic, highlighting the
need for rigorous quality assurance and testing practices.

Static code analysis, particularly the verification of coding rules, has emerged as a
crucial technique in the software development lifecycle. By systematically examining
the source code without executing it, coding rule checkers can be used to identify and
mitigate potential issues before they manifest in the final product. A wide range of
issues, from simple coding style violations to more complex structural problems, can be
uncovered by these tools [12].

1

2 Introduction

However, traditional tools for coding rule verification often struggle to keep pace
with the increasing complexity and scale of modern software systems [21]. These tools
face challenges in efficiently analyzing large codebases, leading to long analysis times
and limited scalability [50, 38]. A significant portion of the analysis time is spent on
accessing all the information related to a code construct, which may be scattered across
multiple files and, consequently, multiple Abstract Syntax Tree (AST). This poses a major
challenge for AST-based methods, hindering their ability to efficiently verify coding
rules that require navigating and integrating information from different parts of the
codebase [39].

To address these challenges, in this thesis we designed a proof of concept to ana-
lyze how graph databases and pattern matching queries may enhance the scalability
and performance of coding rule verification. By representing code as a graph, where
nodes denote code constructs and edges represent relationships between them, we can
efficiently store and query the code structure and dependencies. This graph-based repre-
sentation allows for more expressive and efficient verification of coding rules compared
to traditional AST-based methods.

We focus specifically on the Ada programming language for our investigation. Ada is
known for its complex code structures and iswidely used in safety-critical systemswhere
adherence to coding standards is of utmost importance. We aim to advance the state-of-
the-art in coding rule verification techniques by developing a graph-based representation
of Ada code and evaluating its effectiveness through extensive benchmarking, thereby
contributing to its practical application in real-world software development scenarios.

The main contributions of our thesis are as follows:

• Our development of a novel graph-based representation of Ada code using the
Neo4j graph database, which enables efficient traversal and pattern matching
queries for coding rules verification.

• Our creation and open-source distribution of a comprehensive benchmark corpus
consisting of more than a hundred Ada projects of various sizes, providing a
valuable resource for the research community to evaluate static analysis tools.

• Our comprehensive evaluation of the proposed approach on various Ada code-
bases, demonstrating significant improvements in verification speed and scalabil-
ity compared to traditional AST-based tools.

• Our insights into the potential of graph databases and pattern matching queries
for enhancing coding rule verification, with implications for their application to
other programming languages and software engineering tasks.

Introduction 3

We also make our prototype implementation (Cogralys) available as open-source
to facilitate reproducibility and further research: Cogralys. The repository provides the
licensing information.

We have organized the remainder of this thesis as follows: In Chapter 1, we provide a
review of related literature on coding rule verification and graph databases, including an
overview of graph query languages and Cypher (Section 1.3.4). In Chapter 2, we describe
the methodology, detailing the selected coding rules (Section 2.2) and the relationships
created in the graph (Section 2.1), and we illustrate Cypher-based rule expression with
concrete examples (Chapter 2, Section 2.5). In Chapter 3, we present benchmark results
and analyses. In Chapter 4, we discuss the implications of our findings and identify
areas for future research. Finally, in Chapter 4.4, we synthesize the key contributions
and reflect on the significance of our research outcomes.

https://github.com/Adalog-fr/cogralys-engine

4 Introduction

Chapter 1

Definitions & Related Work

In this chapter, we provide an overview of the key background topics and related work
relevant to our research. The chapter is divided into four main sections.

Section 1.1 defines fundamental concepts from graph theory that are essential for
understanding graph-based code representations and analyses.

Section 1.2 introduces core concepts of static code analysis, with particular emphasis
on coding rule verification and different code representation techniques.

Section 1.3 examines graph databases and their advantages for modeling intercon-
nected data such as code structures, highlighting their applications in software engi-
neering and coding rule verification.

Section 1.3.6 outlines the selection process for an appropriate Graph DataBase Man-
agement System (GDBMS) to efficiently store and query our graph-based framework.

1.1 Definition related to graph theory

In graph theory, a graph is an ordered pair 𝐺 = (𝑉, 𝐸), where 𝑉 is a finite set of vertices
and 𝐸 is a finite set of edges. Each edge connects exactly two vertices, forming the
fundamental structure of the graph. Depending on whether edges possess directional
attributes or not, a graph may be classified as either a directed or undirected graph.

5

6 CHAPTER 1. Definitions & RelatedWork

Vertices represent distinct entities, while edges denote relationships between these
entities. In directed graphs, edges have inherent directionality, designating one vertex
as the start and another as the end. Graphs have diverse applications, from algorithm
design in computer science to social network analysis, providing a rigorous framework
for exploring complex relationships and interconnected systems.

An important concept inherent to graph theory is labeling, which involves assigning
categorical identifiers or tags, known as labels, to vertices and edges. Vertex labeling
associates each node with labels that capture shared characteristics among vertices,
enhancing the graph’s semantic structure and facilitating targeted retrieval of specific
groups of vertices. Similarly, edge labeling assigns categorical tags to relationships
between vertices, classifying distinct types of connections and contributing to the graph’s
contextual understanding.

A Property Graph is a specialized form of graph that incorporates properties for
both vertices and edges. Specifically, it is a directed graph 𝐺 = (𝑉, 𝐸)where each vertex
𝑣 ∈ 𝑉 is associated with a collection of key-value pairs, referred to as node properties,
encapsulating additional descriptive information about the entity. Likewise, each edge
𝑒 ∈ 𝐸 contains edge properties, constituting analogous key-value pairs that provide
further information about the relationship between connected vertices. This augmenta-
tion of node and edge properties enriches the graph with nuanced information beyond
mere connectivity. The concept of labeling is often integral to Property Graphs, with
vertices assigned labels based on common characteristics, enhancing the organization
and retrieval of graph elements and facilitating efficient query capabilities within the
graph database framework.

As an example, Figure 1.1 depicts a property graph used to represent a code database,
where nodes represent code construct like An_Expression or A_Defining_Name
and edges represent relationships like Is Enclosed In. These graph elements are
labeled (An_Expression, A_Defining_Name) and attached with properties such
as filename providing a rich and contextually nuanced depiction of the underlying
domain.

1.2. Static Code Analysis 7

Figure 1.1: Example of a Property Graph

1.2 Static Code Analysis

1.2.1 Key Concepts in Static Code Analysis

To illustrate the concepts described in this section, let us consider the following Ada
code snippet¹:

¹ This example is an adaptation of the example provided by Yamaguchi in [50]

8 CHAPTER 1. Definitions & RelatedWork

�

Code 1.1 – Example of Ada program to illustrate Static Code Analysis (SCA)
concepts

1 procedure Cat_Laser_Pointer is
2 Cat_Boredom_Level : Natural;
3 Laser_Speed : Natural;
4 begin
5 Cat_Boredom_Level ::= Observe_Cat;
6 if Cat_Boredom_Level > 8 then
7 Laser_Speed ::= Cat_Boredom_Level / 2;
8 Activate_Laser_Pointer (Laser_Speed);
9 end if;
10 end Cat_Laser_Pointer;

This code defines a procedure Cat_Laser_Pointer that aims to entertain a cat
using a laser pointer. The procedure starts by observing the cat’s boredom level, stored
in the variable Cat_Boredom_Level. If the boredom level exceeds a threshold of 8,
the laser pointer is activated with a speed proportional to the boredom level.

Abstract Syntax Tree (AST)

AST are typically one of the initial intermediate representations generated by code
parsers in compilers, serving as a foundational element for creating various other code
representations. These trees accurately depict the hierarchical structure of statements
and expressions within programs.

ASTs are structured as ordered trees, where internal nodes symbolize operators
(e.g., additions or assignments), and leaf nodes represent operands (e.g., constants
or identifiers). From a graph theory perspective, an AST can be viewed as an acyclic
graph, where edges exclusively represent nesting relationships between nodes. This
makes ASTs a fundamental but simplified form of graph-based code representation. For
example, Figure 1.2 illustrates a simplified AST from the example code presented earlier
in Code 1.1¹.

While ASTs are effective for straightforward code transformations and have been
used to detect semantically similar code segments, they fall short in more complex code

¹ The full AST can be found in appendix A.1

1.2. Static Code Analysis 9

Figure 1.2: Simplified AST of ”Cat Laser Pointer” program

analysis tasks like identifying dead code or uninitialized variables. This limitation stems
from their inability to explicitly represent control flow or data dependencies.

Consequently, static analysis tools often complement ASTs with additional graph-
based structures such as Call Graph (CG), Control Flow Graph (CFG), and Program De-
pendency Graph (PDG). These supplementary representations, which will be discussed
in subsequent sections, capture different aspects of program behavior and relationships
that cannot be expressed through the simple nesting structure of an AST alone.

10 CHAPTER 1. Definitions & RelatedWork

Call Graph (CG)

A Call Graph (CG) is a directed graph that represents the calling relationships between
subprograms (functions or procedures) in a computer program. Each node in the graph
represents a procedure, and each edge 𝑓 → 𝑔 indicates that procedure 𝑓 calls proce-
dure 𝑔. In object-oriented programming, the nodes may represent methods, and edges
may indicate not just direct calls but other references as well, such as virtual method
invocations.

CGs can be static or dynamic. A static CG is built by analyzing the source codewithout
executing the program. This type of analysis can be performed by examining the code
and identifying all potential calls that could be made based on the program’s structure.
However, static analysis may identify calls that never actually occur during execution
and may miss calls made through function pointers or virtual method invocations.
Specifically, it fails to capture calls to subprograms that are dynamically determined
at runtime, such as those made via function pointers, because these are not explicitly
visible in the static code structure.

On the other hand, a dynamic CG is constructed by tracing the actual execution of
the program. This approach provides a more accurate representation of the calls that
occur during a specific run of the program, but it maymiss calls that are not made during
that particular execution.

Figure 1.3 displays the CG for the code example provided in 1.1.

Figure 1.3: CG of ”Cat Laser Pointer” program

Call graphs have various applications in software engineering and program analysis.
They can be used for program understanding, as they provide a high-level view of the
program’s structure and the interactions between its components. Call graphs are also
useful for debugging, optimization, and testing. For example, they can help identify
unreachable code, recursive calls, or potential performance bottlenecks.

1.2. Static Code Analysis 11

Control Flow Graph (CFG)

A Control Flow Graph (CFG) concretely outlines the sequence in which code statements
are executed, along with the conditions necessary for a specific execution path to oc-
cur. In this representation, statements and predicates are depicted as nodes, linked by
directed edges that signify control transfer [7]. Unlike in abstract syntax trees, these
edges are not necessarily ordered, but each must be assigned a label of true, false,
or ε. Typically, a statement node will have a single outgoing edge marked as ε, while
a predicate node will feature two outgoing edges, each labeled to reflect the true or
false outcome of the predicate. Constructing a CFG from an abstract syntax tree in-
volves a two-step process: initially, structured control statements such as if, while,
and for are used to create a preliminary CFG; subsequently, this graph is refined by
incorporating unstructured control statements like goto or break. Figure 1.4 displays
the CFG for the code example provided in 1.1.

Figure 1.4: CFG of ”Cat Laser Pointer” program

CFGs are employed across various applications, particularly in security, such as
detecting variants of known malicious software [18] and enhancing the efficacy of
fuzz testing tools [46, 28]. They have also become essential in reverse engineering for
facilitating program comprehension. However, while CFGs reveal the control flowwithin
an application, they do not provide insights into data flow. Specifically, in the context of
vulnerability analysis, this limitation means that CFGs are not straightforward tools for
identifying statements that process data influenced by an attacker.

12 CHAPTER 1. Definitions & RelatedWork

Difference between CG and CFG: CG and CFG are both composed of nodes and
edges but serve different purposes within program analysis. The CG is interprocedural; it
comprises nodes that represent subprograms (such as methods or functions), and edges
that depict the caller-called relationships between these subprograms (for example,
𝐴 → 𝐵 indicates that subprogram 𝐴 calls subprogram 𝐵). On the other hand, the CFG
is intraprocedural, with nodes representing individual program statements, including
subprogram calls and conditionals, while the edges trace the program’s execution flow.

Program Dependency Graph (PDG)

ProgramDependencyGraphs (PDGs), initially introduced by Ferrante [17], were developed
primarily to facilitate program slicing [22]. Program slicing is a technique for extracting
a subset of a program’s statements (a ”slice”) that is relevant to a particular computation
or behavior of interest. The goal is to isolate the parts of the program that potentially
affect the values computed at some point of interest, referred to as a slicing criterion.
This process involves identifying all the statements and predicates in a program that
influence the value of a variable at a specific statement. PDGs explicitly map out the
dependencies between statements and predicates within a program. Specifically, the
graph incorporates two types of edges: data dependency edges, which illustrate the
impact one variable has on another, and control dependency edges, which represent
how predicates affect variable values.

The construction of a PDG involves extracting these dependencies from a CFG. This is
achieved by first identifying the variables defined and used by each statement, and then
calculating the reaching definitions for each statement and predicate—an established
challenge in compiler design.

For illustration, Figure 1.5 displays the PDG for the example code shown in 1.1. It
is important to note that control dependency edges in a PDG do not simply mirror
the control flow edges. Specifically, the PDG does not preserve the execution order of
statements but clearly delineates the dependencies among statements and predicates.

1.2. Static Code Analysis 13

Figure 1.5: PDG of ”Cat Laser Pointer” program

Unified Graph-Based Code Representations

Code Property Graph (CPG): The Code Property Graph (CPG), introduced by Ya-
maguchi et al. [50], represents a significant advancement in code representation by
combining multiple code perspectives into a single unified structure. It integrates:

1. The hierarchical syntactic structure from ASTs

2. The execution path information from CFGs

3. The data dependency relationships from PDGs

14 CHAPTER 1. Definitions & RelatedWork

This integration creates a directed, attributed, and labeled multigraph where:

• Vertices correspond to the program’s AST nodes

• Edges represent various relationships (syntactic, control flow, and data dependen-
cies)

• Both nodes and edges can have properties (key-value pairs) for additional infor-
mation

By unifying these perspectives, the CPG enables complex analyses that would be
difficult with separate representations, simplifying the development of tools for code
pattern detection, vulnerability identification, and program slicing.

Figure 1.6 shows the CPG for our example code from Code 1.1.

Figure 1.6: CPG of ”Cat Laser Pointer” program

ExtendedCode Property Graph (ECPG): For our research, we extend the standard
CPG by incorporating:

• Call graphs (CGs) to represent interprocedural relationships

1.2. Static Code Analysis 15

• Custom relationships tailored to the needs of Ada coding rule verification

These extensions enhance the graph’s ability to represent Ada-specific constructs
and relationships, making it more suitable for our coding rule verification tasks. Figure 1.7
illustrates this extended representation for our example code (a complete version appears
in Appendix A.2).

Figure 1.7: Extended CPG of ”Cat Laser Pointer” program

Semantic Code Graph (SCG): The Semantic Code Graph (SCG) [11] represents a
different approach to code representation, focusing on developer-relevant semantics
rather than execution mechanics. Unlike the CPG which builds upon compiler-oriented
representations, the SCG:

- Models concrete code entities that developers interact with (classes, methods,
variables) - Explicitly represents semantic relationships (calls, declarations, inheritance,
etc.) - Maintains precise source location linkage for each element - Supports extensibility
for language-specific constructs

Figure 1.8 shows an SCG for our example code, highlighting the semantic relation-
ships between code elements.

16 CHAPTER 1. Definitions & RelatedWork

Figure 1.8: SCG of the ”Cat Laser Pointer” program

While both CPG and SCG aim to represent code as graphs, they differ in their fo-
cus: CPG prioritizes execution semantics for security analysis, while SCG emphasizes
developer-oriented semantics for code comprehension.

The SCG offers several advantages over previous models. Unlike the PDG, which
focuses on statement-level data and control dependencies, or the CPG, which integrates
multiple lower-level representations, the SCG is centered on source-level entities and
semantic relationships that are most relevant to software comprehension, refactoring,
and quality assessment. Its extensibility and rich source mapping make it particularly

1.2. Static Code Analysis 17

well suited for interactive tools, structural analyses, and actionable insight generation.

In summary, the SCG provides a comprehensive, source-centric, and semantically
detailed representation of code structure and dependencies. This unifiedmodel serves as
a foundation for advanced code analysis, visualization, refactoring, and software mining
tasks, supporting both researchers and practitioners in understanding and maintaining
complex software systems.

1.2.2 The Evolution of Static Code Analysis Tools

Static code analysis has a rich and varied history that traces back to the early days of
software development. It involves examining the source code of a program without
executing it, to identify potential defects and adherence to coding standards. Over the
years, static code analysis has evolved significantly, driven by advancements in both
theoretical foundations and practical implementations.

One of the pioneering tools in this field was Lint, developed in 1979 at Bell Labs for
the C programming language [25]. Lint performed basic checks such as detecting unused
variables, type mismatches, and potential memory leaks. This groundbreaking tool laid
the foundation for the more sophisticated analysis techniques that would follow.

The 1990s and early 2000s saw significant advancements in static code analysis
with the introduction of tools that could handle increasingly complex programming
paradigms. Tools like LCLint, later renamed Splint, were developed to detect potential
errors in C programs, focusing on improving security and supporting new programming
paradigms [16, 30].

This period also saw the emergence of abstract interpretation, a mathematically
rigorous approach that reasons about program behavior by abstracting away details
while preserving essential properties [13]. Tools such as Polyspace and Astrée utilized
this technique to detect runtime errors and prove the absence of certain classes of bugs
in safety-critical software [10, 14].

Since the early 2010s, static code analysis has continued to evolvewith the integration
of these tools into Continuous Integration / Continuous Development (CI/CD) pipelines,
becoming a standard practice. This integration enables real-time feedback and early
detection of issues during the development process [33, 32].

The use of graph-based representations, particularly the CPG, represents a notable

18 CHAPTER 1. Definitions & RelatedWork

advancement in static code analysis. Introduced as a novel code representation, CPG
combines various aspects of code structure and semantics into a single, unified graph,
allowing for more efficient and scalable analysis, especially for large codebases [35].

The field has also seen the integration of machine learning (ML) and artificial intelli-
gence (AI) to enhance static analysis. Machine learningmodels, such as those fine-tuned
with CodeBERT, are being used to improve the generality and accuracy of defect detection.
These models can learn from historical data to identify patterns and predict potential
issues, thereby reducing the reliance on manually crafted rules and heuristics [27].

From its origins characterized by elementary syntactic checks to the current state
featuring advanced, AI-enhanced tools, coding rule verification has established itself
as an essential element of modern software development practices. Traditionally, the
principal architecture underpinning coding rule verification has been based on AST.
This is particularly evident in the Ada static analyzers that we compare in this study
(AdaControl and GNATcheck). While research has demonstrated the benefits of graph-
based analysis for languages like Java [40] (using CPG) and C++ [39] (using custom
representation), our research represents the first application of graph-based analysis for
coding rule verification of Ada programs.

1.2.3 Ada programming language as a case of study

We selected the Ada programming language as the target for this research due to its
inherent complexity and the sophistication of its applications. This choice is also driven
by the needs of the company that funded this thesis, Adalog, which specializes in Ada
development and quality assurance tools.

Origins and Evolution of Ada

Ada’s development began in 1974 when the US Department of Defense identified signifi-
cant inefficiencies from using different programming languages for each application
and maintaining programs written in obsolete languages. This led to specifications for a
single, flexible language capable of handling diverse applications from missile guidance
to management systems.

The language design contract was awarded in 1977 to a team from CII-Honeywell
Bull led by Jean Ichbiah, who drew inspiration from their previous work on LIS (Langage

1.2. Static Code Analysis 19

d’Implémentation de Systèmes). The result was Ada 83, standardized in the United States
by ANSI (ANSI/MIL-STD-1815A-1983) and later internationally as ISO 8652:1987.

Subsequent revisions have kept Ada at the forefront of programming language
development:

• Ada 95 (ISO/IEC 8652:1995) - The first internationally standardized object-oriented
language

• Ada 2005 - Added contract mechanisms and enhanced container libraries

• Ada 2012 - Introduced comprehensive contract-based programming

• Ada 2022 - Further refinements and modern programming features

The GNAT compiler, based on GNU GCC technology, was developed to fully support
the Ada standards, including all optional annexes.

Key Features and Capabilities

Ada represents a synthesis of the best elements from classical imperative and procedural
languages, designed specifically to reduce software costs across the entire development
lifecycle. Though contemporary with C++, Ada offers distinctive modern features:

• Strong static typing system with comprehensive compile-time checks

• Modular design through packages with fine-grained visibility control

• Clear, Pascal-inspired syntax emphasizing readability and maintainability

• Sophisticated object-oriented programming with interfaces similar to Java

• Advanced genericity beyond templates in other languages

• Integrated multitasking and multi-core support

• Real-time capabilities with tasks, protected objects, and interrupt handling

• Comprehensive standard libraries with strong typing guarantees

• Multi-language interoperability for system integration

20 CHAPTER 1. Definitions & RelatedWork

• The Ravenscar profile for safety-critical real-time systems

• Contract-based programming for formal verification

Complexity of the Ada Language

Despite its classical appearance, the Ada language is extremely difficult to compile.
The language’s Backus-Naur Form (BNF), provided in the standard, does not allow for
the direct generation of a syntax tree, notably due to the need to resolve identifiers
to remove ambiguities between certain constructions. Moreover, a simple AST, even
fully resolved, is insufficient for the needs of analysis tools. Ada Semantic Interface
Specification (ASIS) [1] (whose name expresses well that it is a semantic Application
Programming Interface (API)) provides access to the fully decorated AST.

For example, expressions like V ::= A (B); appear syntactically identical at first
glance, but could represent many different semantic constructs:

• A is a function, B is a parameter

• A is an array, B is an index

• A is a type, B is converted to A

• A is a function without parameters returning an array, B is an index

• A is a pointer to a function, B is a parameter

• And many more combinations of previous examples using pointers...

While these cases would produce similar initial syntax trees during parsing, distin-
guishing between them requires additional semantic analysis phases beyond simple AST
construction. The compiler or parsing framework must perform name resolution, type
checking, and overload resolution to determine the actual meaning of the expression.
This complexity in Ada’s semantics means that a simple AST is insufficient for proper
code analysis.

It is, therefore, necessary to resolve overloads, establish links between elements
(such as between an identifier and its declaration), and construct lists of elements that
meet certain criteria (such as the set of different pragmas or aspects applicable to a
declaration). All these elements are, of course, subject to visibility rules, overloading, etc.

1.2. Static Code Analysis 21

While this complex parsing and semantic analysis is handled by compilers or parsing
frameworks like ASIS or libadalang [3], the similarity of AST¹ structures for semantically
different constructs makes static analysis more challenging, as tools must carefully
consider these semantic differences to avoid false positives in their analysis results. To
address this challenge, our approach leverages a CPG.

The choice of Ada as our target language for this study is motivated by the fact that
the new architecture studied is likely to bring a more significant gain with a language
whose compilation is complex. Thus, choosing Ada first will allow us to realize the
relevance of the choices made and the effectiveness of the project’s architecture.

Furthermore, the operator overloading system is also a mechanism present in other
languages, such as Python. Supporting Ada will therefore simplify the work for other
languages.

Industrial Applications and Context

Ada has achieved significant success in diverse fields requiring high reliability and safety:

• Transportation Systems: The Paris Metro Line 14, in operation for over 20 years,
uses Ada for its control systems. This success led to Ada’s adoption for the New
York City Subway and Singapore’s Circle Line.

• Aerospace: Ada powered the Ariane 4 and 5 programs, with its contract-based
programming capabilities leading to adoption for Ariane 6.

• Air Traffic Control: EuroControl’s flight plan management system (handling up
to 34,000 flights daily) comprises over 2.3 million lines of Ada code, where new
features are added every day, requiring daily code analysis to ensure reliability.

• Other Domains: Ada is also used in management systems, CAD applications,
medical devices, and linguistic processing, with many applications operating for
more than a decade.

In the context of static analysis tools, AdaControl (developed by Adalog) represents
an important coding rule verification tool for Ada. It relies on ASIS to analyze source

¹ It should be emphasized that identical code expressed in various programming languages does

not yield equivalent ASTs, owing to differences in language constructs.

22 CHAPTER 1. Definitions & RelatedWork

code. While ASIS provides standardized access to semantic information, the main
implementation (ASIS-4-GNAT by AdaCore) faces significant challenges:

• Performance issues due to ”TreeSwapping”, where analyzing a compilation unit
requires loading the semantic tree of all its dependencies even when unnecessary
for the coding rules being verified

• Tight coupling with specific GNAT compiler versions (e.g., ASIS 2019 works only
with GNAT 2019), creating maintenance and compatibility issues

These limitations restrict both performance and adaptability, highlighting the need
for a more flexible approach to Ada static analysis that maintains high quality while
overcoming these constraints.

Conclusion

The complexity of Ada, combined with the limitations of current analysis tools, presents
several significant challenges that this research aims to address:

• Developing a more efficient and flexible analysis approach that isn’t constrained
by compiler-specific dependencies

• Creating a solution that can handle Ada’s complex semantic constructs while
maintaining good performance

• Building an architecture that can effectively manage the rich type system and
overloading mechanisms present in Ada

While these challenges are identified in the context of Ada, they are not unique to
this language. Many modern programming languages share similar features. Therefore,
the solutions developed in this research could potentially be adapted to address similar
challenges in other programming languages, particularly those with sophisticated type
systems and complex semantic rules.

1.3. Graph Databases for Code Analysis 23

1.3 Graph Databases for Code Analysis

Code analysis tools have traditionally maintained code representations inmemory using
custom data structures. However, as codebases grow in size and complexity, database-
backed approaches have emerged as a scalable alternative. This section examines the
application of graph databases to code analysis, their comparative advantages, and their
query capabilities.

1.3.1 Database-Backed Code Analysis Approaches

Several established tools demonstrate the viability of database-backed code analysis:

• Relational database approaches: CodeQL [19] (formerly SemmleQL) uses rela-
tional structures for vulnerability detection, SciTools’ Understand [44] employs
SQLite for code intelligence, and SonarQube [45] utilizes relational databases for
quality management.

• Graphdatabase approaches: Joern [51], created by the inventor of CPG, pioneered
graph-based vulnerability detection using a custom graph database [52].

Our approach adapts graph databases specifically for coding rule verification rather
than vulnerability detection. By selecting an established GDBMS, we leverage mature
graph operations and declarative query languages, allowing us to express coding rules
as patterns rather than procedural algorithms.

1.3.2 Graph Database Fundamentals

Unlike relational databases with their table-based model or document databases with
their hierarchical collections, graph databases store and manage data as interconnected
nodes and relationships. This structure is specifically optimized for traversing complex
relationships.

The core elements of a graph database are:

• Nodes: Store the primary data entities with labels indicating their types or roles

24 CHAPTER 1. Definitions & RelatedWork

• Relationships: Connect nodes with directional, typed edges

• Properties: Key-value pairs that can be attached to both nodes and relation-
ships [8]

This model naturally represents interconnected data like code structures, enabling
efficient pattern-based queries without the complex join operations required in re-
lational databases. Modern graph databases maintain specialized indexes on nodes,
relationships, and properties to optimize both storage and query performance.

1.3.3 Advantages for Code Analysis Applications

Graph databases provide particular benefits for code analysis when compared to tradi-
tional relational databases:

• Natural representation of code relationships: Graph databases directly model
the inherently connected nature of code elements, representing relationships
like ”calls,” ”inherits from,” or ”depends on” as first-class entities. This avoids the
complex join tables required in relational models and aligns with how developers
conceptualize code.

• Path-based query efficiency: Many coding rules require tracing sequences of
relationships (e.g., finding all possible execution paths to a critical function). Graph
databases excel at traversal operations that would require multiple recursive joins
or stored procedures in relational databases.

Vendors of graph database management systems, such as Neo4j, explicitly aim to
provide optimized implementations of standard graph algorithms, particularly for com-
plex operations such as graph partitioning and path-finding. While these claims are
often supported by technical documentation and blog articles [23], it is important to
note that such sources are not peer-reviewed scientific publications, and their reported
performance results should not be interpreted as independently validated evidence.
Nonetheless, these efforts illustrate the ongoing focus within the graph database com-
munity on efficient algorithmic support for advanced graph analytics tasks, which is
directly relevant to applications in code analysis.

• Flexible schema evolution: As coding standards evolve or new language fea-
tures emerge, graph databases allow incremental model enhancement without

1.3. Graph Databases for Code Analysis 25

disruptive schemamigrations [48]. This is particularly valuable for long-term code
analysis projects covering multiple language versions.

• Pattern matching capabilities: Graph databases provide built-in pattern match-
ing that aligns naturally with the structural patterns that coding rules aim to
identify or enforce.

These advantages are especially relevant for complex coding rules that require
correlating information across different parts of the codebase, such as detecting resource
leaks, validating architectural constraints, or ensuring proper exception handling.

1.3.4 Graph Query Languages for Code Analysis

Effective code analysis requires powerful query capabilities to express complex patterns
and relationships. Graph query languages provide specialized syntax for traversing and
pattern matching in code representations.

Major Graph Query Languages

Two dominant query languages have emerged in the graph database ecosystem:

• Cypher (Neo4j): A declarative pattern matching language where queries express
what patterns to find rather than how to find them. Its ASCII-art syntax for
describing nodes and relationships (e.g., (a)-[:CALLS]->(b)) makes queries
visually intuitive and readable, particularly for expressing structural code patterns.

• Gremlin (Apache TinkerPop): An imperative traversal language that uses method
chaining to specify graph navigation steps. Its procedural approach offers fine-
grained control over traversal operations and is often preferred for complex algo-
rithmic analyses.

Standardization efforts are underway with the Graph Query Language (Graph Query
Language (GQL)) [9, 15], which is being developed as an ISO standard (ISO/IEC 39075) to
provide a unified approach to graph querying.

26 CHAPTER 1. Definitions & RelatedWork

Applications in Software Engineering

Graph query languages enable developers and analysts to express complex code analysis
tasks that would be difficult with traditional query languages [39], including:

• Architecture compliance verification

• Dependency analysis and impact assessment

• Security vulnerability detection

• Code quality rule enforcement

• Identification of design patterns and anti-patterns

For our coding rule verification, Cypher’s declarative, pattern-based approach aligns
naturally with how coding rules are conceptualized—as structural patterns to identify
or enforce. This makes it particularly well-suited for expressing coding standards in a
way that is both efficient to execute and comprehensible to developers.

1.3.5 Evolution of Graph-Based Code Analysis Ap-
plications

The application of graph databases to code analysis has evolved significantly over the
past decade, with each major contribution addressing different aspects of software
engineering challenges:

• PioneeringWork (2013): Urma andMycroft [47] were the first to demonstrate the
practical scalability of graph databases for large codebases. Using Neo4j, they suc-
cessfully analyzed multi-million-line programs while maintaining detailed source
information, primarily focusing on program structure and evolution tracking.

• Security Applications (2014-2016): Following the introduction of the CPG by
Yamaguchi et al. [50], graph-based approaches were primarily applied to security
vulnerabilities detection in C/C++ code. Their work demonstrated how graph
traversal could efficiently identify subtle security patterns that would be difficult
to detect with traditional approaches.

1.3. Graph Databases for Code Analysis 27

• Comparative Studies (2018): Ramler et al. [39] conducted comprehensive eval-
uations of graph database technologies for source code representation. Their
work critically assessed various use cases including dependency analysis and
architecture recovery, providing evidence-based insights into both strengths and
limitations.

• Language-Specific Solutions (2020-2023): More recent applications have tar-
geted specific programming languages with tailored approaches. Rodriguez-Prieto
et al. [40] developed specialized graph structures for Java analysis, while Borowski
et al. [11] created the SCG model optimized for object-oriented languages like Java
and Scala.

Research Gap in Coding Rule Verification

Despite these advancements, a notable gap exists in the application of graph-based
approaches specifically for coding rule verification. Existing research has primarily
targeted:

• Security vulnerability detection

• Program comprehension and visualization

• Architecture and dependency analysis

• Performance optimization

This gap is particularly relevant for Ada development, where strict coding standards
are often mandatory due to safety-critical applications. Our research addresses this
gap by applying graph-based analysis specifically to Ada coding rule verification—an
application that presents unique challenges:

• Ada’s strong typing system and complex semantics require more sophisticated
representations

• Safety-critical applications demand higher precision in rule verification

• Industry coding standards for Ada (like SPARK or those used in aerospace) involve
complex cross-module rules

28 CHAPTER 1. Definitions & RelatedWork

By extending graph-based approaches to Ada coding rule verification, our work
complements existing research while exploring new territory in the application of graph
databases to static analysis. The following chapters will evaluate the effectiveness of
this approach in addressing the specific challenges of coding rule verification for Ada
programs.

Expressive Rule Definition with Graph Patterns

One of the most compelling advantages of graph-based approaches for coding rule verifi-
cation is the ability to express rules as intuitive graph patterns. Cypher queries combine
a MATCH clause that describes the pattern to search for, optional WHERE predicates that
restrict nodes or relationships based on labels and properties, and a RETURN clause that
specifies which elements should be reported.

As a simple illustration in our context, consider the Ada procedure Cat_Laser_Po ⌋

inter introduced earlier in this chapter. We can use Cypher to retrieve all subprograms
that it calls using the following pattern:

�

Code 1.2 – Simple Cypher query illustrating call relationships

1 MATCH (p:A_PROCEDURE_DECLARATION { name:

"Cat_Laser_Pointer" })-[:CALLING]->(callee)
2 RETURN callee

We can decompose this query as follows:

• (p:A_PROCEDURE_DECLARATION \{ name: "Cat_Laser_Pointer" \ ⌋

}) denotes a node with the label A_PROCEDURE_DECLARATION and a name
property equal to "Cat_Laser_Pointer", representing the procedure of inter-
est.

• -[:CALLING]-> represents a directed relationship of type CALLING from Sec-
tion 2.1, indicating that p calls another subprogram.

• (callee) introduces a node variable bound to each subprogram called by p.

• RETURN callee instructs the database to return all nodes matched as callee,
that is, all callees of Cat_Laser_Pointer.

1.3. Graph Databases for Code Analysis 29

The same building blocks—nodes with labels and properties, typed relationships,
and variables bound by pattern matching—are used to express more sophisticated
coding rules. Consider, for example, the rule ”Do not use magic numbers in conditions.”
While traditional AST-based analysis would require complex traversal logic withmultiple
conditional checks, a graph database approach allows us to express this rule as a concise
Cypher query:

�

Code 1.3 – Example Cypher query to detect magic numbers in conditions

1 MATCH (e:AN_INTEGER_LITERAL|A_REAL_LITERAL)-[:IS_ENCLOSE ⌋
D_IN*]->()-[:IS_ENCLOSED_IN { index:1

}]->(:AN_IF_PATH|AN_ELSIF_PATH)
2 RETURN e
3 ORDER BY e.filename, e.line, e.column

This query directly captures the essential structure: literal numbers within condi-
tional statements. The pattern uses:

• Node labels to identify the code constructs (literals, conditional statements)

• The IS_ENCLOSED_IN relationships to navigate the syntactic structure

• Index values to specify the precise structural relationship

These examples demonstrate how graph patterns align naturally with how cod-
ing rules are conceptualized—as structural patterns to identify in code rather than
algorithms to execute. The declarative nature of these patterns makes rules more main-
tainable, comprehensible, and adaptable to evolving coding standards.

1.3.6 Graph Database Management System Used:
Neo4j

In order to efficiently store and query the CPG for static analysis, a suitable GDBMS is
required. Rather than developing a custom graph database solution from scratch, which
would be a significant undertaking and beyond the scope of this research, we opted to
leverage an existing GDBMS. This approach allows us to focus on the graph-based static

30 CHAPTER 1. Definitions & RelatedWork

analysis methodology itself, while benefiting from the robustness, performance, and
query capabilities of a mature graph database system.

The requirements for our GDBMS selection fell into several categories:

Functional Requirements:

• Support for property graphs: The GDBMS should natively support the property
graph model, allowing properties (key-value pairs) to be assigned to both nodes
and edges [9]

• Powerful query language: An expressive and efficient query language for formu-
lating complex traversals and patterns over the code graph

• Extensibility: Ability to integrate custom algorithms to leverage domain-specific
knowledge

Performance Requirements:

• Scalability: Ability to handle large and complex codebases efficiently

• Query optimization: Support for efficient graph traversal and pattern matching

Technical Requirements:

• Operating locally: Support for local installation and operation

• Persistent disk storage: Ability to store data persistently to avoid repeated analysis

Strategic Requirements:

• Open-source: To ensure transparency, enable auditing, and facilitate research
collaboration

• Active community: For support, documentation, and long-term viability

Based on these criteria, we chose Neo4j as the GDBMS for this study. Neo4j is a
widely-used, mature graph database system that fulfills the above requirements [49]. It
provides native support for property graphs through its labeled property graph model.

1.3. Graph Databases for Code Analysis 31

Cypher, Neo4j’s declarative query language, is designed for efficient traversal and pattern
matching over graph structures.

It is important to note that while Neo4j was selected for this research, the choice of a
specific GDBMS is not a critical factor in the overall approach. The proposed graph-based
static analysis methodology is not tied to any particular graph database system. As long
as the GDBMS supports property graphs and provides a powerful query language, it can
be used to implement the technique effectively.

32 CHAPTER 1. Definitions & RelatedWork

Chapter 2

Methodology

In this chapter, we present a systematic methodology for investigating the efficacy of
graph databases for coding rule verification in Ada programming language. Our approach
combines practical implementation with rigorous empirical validation to address the
research gap identified in the literature review.

As outlined in Section 1.3.5, a significant research gap exists in exploring the scal-
ability and efficiency of graph databases for coding rule verification in Ada. In our
investigation, we adopt a mixed-methods approach, leveraging both theoretical founda-
tions from static code analysis using graph databases and practical implementation with
experimental validation. This dual approach is crucial for understanding the inherent
trade-offs between different static analysis techniques. While theoretical analysis pro-
vides insights into the computational complexity and potential benefits of graph-based
methods, practical experimentation is essential for assessing real-world performance
and identifying potential bottlenecks. Through this chapter, we aim to bridge this gap by
providing a concrete implementation and evaluating its performance against established
tools.

At the core of our approach, we represent Ada code as a property graph within a
Neo4j graph database. This graph-based representation allows us to capture not only
the syntactic structure of the code but also the rich semantic relationships between
code elements. We express coding rules, which often involve complex relationships
between different parts of the code, as graph pattern matching queries that can be
evaluated efficiently using the database’s query engine. With this method, we address
the scalability challenges faced by traditional static analysis tools when dealing with
large codebases, where accessing and processing information scattered across multiple

33

34 CHAPTER 2. Methodology

ASTs can be computationally expensive.

Our methodology proceeds in several key stages:

1. Defining the Graph Schema:We keep the nodes of the graph as those present in
the AST, without performing any reduction or suppression of AST nodes. Some ad-
ditional nodes are introduced where necessary, for example to explicitly represent
the order of function parameters or to encapsulate an entire package as a single
entity. The primary methodological focus is on the careful selection and addition
of relationships between these nodes, which enables the graph to capture the
complex interactions and dependencies required for advanced code analysis. We
provide a detailed description of our chosen relationships in Section 2.1.

2. Selecting Coding Rules:We select a set of coding rules for experimental eval-
uation. We choose these rules to cover a range of common coding patterns and
complexities, allowing for a comprehensive assessment of our proposed approach.
We detail the selected rules in Section 2.2.

3. Dataset Preparation: We curate a diverse benchmark dataset of Ada projects
to evaluate the performance and scalability of our method. This dataset includes
projects of varying sizes and complexities, reflecting real-world Ada codebases.
Beyond serving as an evaluation framework for this research, this comprehensive
corpus represents a valuable contribution to the Ada static analysis research
community, providing a standardized benchmark that can be reused and extended
by future researchers. We describe the dataset preparation process in Section 2.3.

4. Pre-processing andDatabase Population: In this stage, we parse the Ada source
code, extract the relevant information, and populate the graph database. A key
consideration in our approach is optimizing the pre-processing and population
steps to minimize overhead, which is particularly important for achieving good
performance on smaller projects. We detail this process in Section 2.4.

5. Coding Rule Implementation: We implement the selected coding rules as
Cypher queries and describe them in Section 2.5.

6. Benchmarking: We benchmark tool metrics on datasets of multiple projects of
different sizes. We present our benchmark protocol in Section 2.6, which details
the procedures and environment used for all tool evaluations.

7. Evaluation Metrics: We evaluate the performance of our graph-based approach
against the same rules in AdaControl and GNATcheck [2], two traditional coding
verification tools. We detail the evaluation approach and the metrics we use in
Section 2.7.

2.1. Created relationships 35

2.1 Created relationships

To capture the semantic information necessary for effective static code analysis, we
define several types of relationships between nodes in our graph representation. We
design these relationships to express the connections and dependencies among various
code elements, enabling efficient querying and pattern matching. Some relationships
come from the AST structure, others are inspired by CPG patterns, and several are specific
to our approach for Ada code analysis.

There exists a direct dependency between the coding rules we want to implement
and the relationshipswe create in the graph. We select relationships that enable efficient
implementation of our target coding rules, while attempting to create generic relation-
ships that could support multiple rules. As we add more rules, the graph naturally
evolves to become richer with additional semantic connections.

Beyond the rules implemented in this study, we design the schema so that addi-
tional families of coding rules can be supported by introducing new relationship types,
for instance to capture more precise data-flow or control-flow properties. Each new
relationship family affects the construction of the graph: it increases the amount of
information that we compute during preprocessing and store in the database, but it can
significantly simplify the queries used to express those rules.

The key relationships we create in the graph include:

• CALLING: Derived from CG. Connects a subprogram node to the subprograms it
calls, allowing for call graph traversal.

• CORRESPONDING_ACTUAL_ PARAMETER: Specific to my approach. Links a
parameter association node to the corresponding actual parameter value.

• CORRESPONDING_ASSIGNATION: Related to data flow analysis but specific to
my implementation. Connects a variable node to the corresponding assignment
statement node.

• CORRESPONDING_FIRST_SUBTYPE: Specific to my approach for type analysis
in Ada. Relates a subtype node to its corresponding first subtype declaration.

• CORRESPONDING_FORMAL_NAME: Specific tomy approach. Links a parameter
association node to the corresponding formal parameter identifier.

36 CHAPTER 2. Methodology

• CORRESPONDING_INSTANTIATION: Specific to my approach for generic in-
stantiation analysis. Connects a node to the corresponding generic instantiation
declaration.

• CORRESPONDING_NAME_DEFINITION: Inspired by symbol tables but imple-
mented in my graph representation. Relates an identifier, operator symbol, char-
acter literal, or enumeration literal node to its corresponding definition.

• CORRESPONDING_PARAMETER_ SPECIFICATION: Specific to my approach
for parameter analysis. Links a parameter association node to its corresponding
parameter specification.

• CORRESPONDING_ROOT_TYPE: Specific to my approach for type hierarchy anal-
ysis in Ada. Connects a derived type node to its original ancestor type.

• CORRESPONDING_SPECIFICATION: Specific to my approach. Relates a subpro-
gram, package, task body declaration, or expression function declaration node to
its corresponding specification, if available.

• CORRESPONDING_TYPE_ DECLARATION_VIEW: Specific to my approach for
type analysis. Links a type declaration node to its corresponding definition char-
acteristics.

• IS_ANCESTOR_OF: Derived from type hierarchy analysis but implemented in my
specific graph representation. Expresses the ancestor-descendant relationship
between type declarations.

• IS_ENCLOSED_IN: Directly derived from AST structure. Represents the parent-
child relationship between nodes. This is the only relationship found in an AST.

• IS_OF_TYPE: Inspired by symbol tables but implemented in my graph represen-
tation. Connects a declaration node (e.g., component, constant, discriminant
specification) to its corresponding type definition.

• IS_PROGENITOR_OF: Specific to my approach for interface inheritance analysis
in Ada. Expresses the relationship between an interface type and its directly
implementing types.

We carefully choose these relationships to strike a balance between expressiveness
and database efficiency. While addingmore relationship types can increase the semantic
richness of the graph, it also affects several aspects of the database:

2.1. Created relationships 37

• Query complexity: More relationship types can make queries more complex
to write and maintain, as they need to account for various possible connections
between nodes.

• Creation time: Calculating and establishing each relationship type requires
processing time during database population.

In practice, the selection of relationships is primarily guided by the families of coding
ruleswewant to support: adding a relationship canmake certain rules straightforward to
express but may increase population time and overall database size; conversely, omitting
it keeps population leaner but can lead to more complex queries.

We select relationships based on their semantic significance, particularly how they
facilitate the enforcement of specific coding rules. Not all coding rules benefit equally
from these relationships, but we choose ones that are instrumental for rules critical to
assessing code quality and security. This targeted approach maximizes the utility of the
database while maintaining manageable size and performance.

For calculating these relationships, we primarily rely on multiple traversals of the
AST during the preprocessing phase, before database population. Most relationships are
computed by analyzing the AST structure and creating appropriate connections between
nodes. However, we calculate certain relationships directly within the graph database
after the initial AST nodes are imported:

• The CALLING relationships (CG) are computed by executing specific queries on
the populated graph to identify function calls and their targets.

• Ancestor-related relationships (IS_PROGENITOR_OF and IS_ANCESTOR_OF) are
also calculated directly in the graph database after the initial node population.

Currently, we create all of the above relationships regardless ofwhether they are used
by the specific coding rules being applied. An alternative approach would be to create
only the relationships required by the coding rules specified by the user. However, we
believe the better long-term strategy is to build a comprehensive graph during the initial
pre-processing phase. This approach ensures that all potentially useful relationships
are available for analysis without the need to re-process the entire codebase when new
rules are introduced. Furthermore, when the source code evolves, the graph database
can be updated incrementally by modifying only the nodes and relationships affected
by the changes, rather than clearing and repopulating the entire database. Creating

38 CHAPTER 2. Methodology

only a subset of relationships would reduce initial processing time but would require
re-preprocessing the entire codebase when new rules need different relationships.

At present, our implementation rebuilds the entire graph from scratch whenever the
source code changes, rather than attempting to incrementally update only the affected
nodes and relationships. While incremental updates (where only the parts of the graph
impacted by code modifications are updated) represent a promising direction for future
work, they have not yet been implemented or evaluated in this study. For the purposes
of this research, we focused on the construction and analysis of a comprehensive graph
generated in a single pre-processing phase. Throughout this work, we carefully selected
and refined the relationship types to ensure they provide maximum value for static
analysis queries.

2.2 Selection of coding rules

To evaluate our graph-based static analysis methodology, we selected a set of coding
rules. We chose these rules to evaluate a variety of code constructs and patterns that
traditional Ada analysis tools examine, enabling direct comparison of results between
our proposed approach and established tools.

We aligned our selected rules with those found in the widely-used Ada static analysis
tools AdaControl and GNATcheck. This alignment facilitates direct comparison of find-
ings to help validate our graph database implementation. In spirit, we aim to support the
same families of checks as AdaControl (cf. the AdaControl user guide¹), although purely
stylistic rules are not our priority in this work. Our focus is on rules that verify the usage
and non-usage of language features and code constructs. As an illustration of our target
scope, we are interested in rules that help verify compliance with the Ravenscar profile.
For this initial proof of concept, we primarily focused on rules that were straightforward
to implement, while still representing different analysis categories.

In selecting these particular coding rules, we considered several practical factors.
Given the time constraints of our research, we prioritized rules that were feasible to
implement within the research timeline while still enabling meaningful comparisons
with existing tools. We acknowledge that this selection is not exhaustive and serves
primarily as a proof of concept.

It is important to note that the rules that would most dramatically demonstrate the

¹ https://www.adalog.fr/compo/adacontrol_ug.html

https://www.adalog.fr/compo/adacontrol_ug.html

2.2. Selection of coding rules 39

advantages of our graph-based approach are often those requiring complex, cross-unit
analysis and deep AST exploration—precisely the types of rules that might be difficult
or inefficient to implement in traditional tools due to their architecture. Such complex
rules would likely benefitmost from the graph database’s capability to efficiently traverse
relationships and correlate information across the codebase.

The following complex rules, which are currently implemented only in AdaControl
(not in GNATcheck), would be valuable additions in future work to further demonstrate
the scalability advantages of the graph-based approach:

• Abnormal_Function_Return: Controls functions that may not terminate nor-
mally, i.e. where Program_Error could be raised due to reaching the end of the
function without encountering a return statement.

• Directly_Accessed_Globals: Controls that global variables in package bodies are
accessed only through dedicated subprograms (through getters / setters). Espe-
cially, it can be used to prevent race conditions in multi-tasking programs.

• Movable_Accept_Statements: Controls statements that are inside accept state-
ments and could safely be moved outside. This is for optimizing performance in
multi-tasking systems.

• No_Operator_Usage: Controls integer types that do not use any arithmetic oper-
ators, which indicates that they might be replaceable with other kinds of types.

• Complete Variable_Usage: A full implementation of the variable usage tracking,
described below

We did analyze one more complex rule, Variable_Usage, which tracks read and
write operations on variables, though we only implemented it partially as a case study.

We categorize these rules into three types based on their analysis scope:

• Local rules: Rules that require analysis within a single compilation unit

• Intermediate rules: Rules that primarily analyze a single unit but may require
information from other units

• Global rules: Rules that necessarily analyze relationships across multiple compi-
lation units

40 CHAPTER 2. Methodology

We implemented the following coding rules:

• Local rules:

– Abort_Statements: Identifies uses of the abort; statement. This could
be achieved with simple text matching (like grep). This check is crucial
for ensuring compliance with the Ravenscar profile, which prohibits abort
statements to guarantee deterministic behavior in real-time systems.

– Blocks: Reports block statements

– Constructors: Identifies primitive functions of tagged types that have a
controlling result but no controlling parameter, focusing on potential object
construction patterns.

– Enumeration_Representation_Clauses: Reports enumeration representa-
tion clauses (like for Enum use (10, 20, 30);) to identify potential
portability issues.

– Renamings: Detects all renaming declarations to track alternate names
for entities. Many coding standards restrict the use of renamings, either
prohibiting them entirely or allowing only specific cases (such as package
renamings while forbidding variable renamings) to maintain code clarity
and prevent indirect references that could complicate maintenance.

– Slices: Identifies array slice operations to monitor potential performance
impacts.

• Intermediate rules:

– Abstract_Type_Declarations: Identifies declarations of abstract types, in-
cluding those in generic formal parts, requiring potential cross-unit analysis
for full type information.

• Global rules:

– Too_Many_Parents: Analyzes inheritance hierarchies across compilation
units, identifying tagged types, interface types, tasks, or protected types
exceeding a specified number of parents through derivation or interface
implementation. Various programming standards limit the number of an-
cestors a type can have to prevent overly complex inheritance hierarchies
that could make the code difficult to understand and maintain.

– Variable_Usage:¹ Tracks read and write operations on variables through-
out the program, including through procedure calls and renamings across
different units.

¹ Partially implemented

2.3. Selection and Preparation of the Benchmark Dataset 41

The selected rules demonstrate different scenarios where a graph-based approach
offers advantages over traditional analysis methods:

• For seemingly simple rules like Abort_Statements, while a text-based approach
(e.g., grep) might appear sufficient, such methods lack semantic understanding.
For example, a text search would report occurrences of abort in comments,
string literals, or within identifiers like abort_handler. Our graph approach
significantly improves accuracy by analyzing the syntactic and semantic structure
of the code, distinguishing between actual abort statements and other textual
occurrences. While no static analysis approach can claim perfect accuracy for all
possible programs (due to theoretical limitations of static analysis), working at the
AST level provides a more reliable foundation than text-based pattern matching.

• For rules requiring AST traversal like Abstract_Type_Declarations, traditional
analyzers must repeatedly traverse the entire AST to locate all abstract type decla-
rations and verify their properties. In contrast, our graph database allows direct ac-
cess (in𝑂(1)) through indexed labels for immediate retrieval of type declarations,
combined with efficient relationship traversal to check abstraction properties.

• For more complex rules like Constructors or Too_Many_Parents, our approach
can be beneficial as it can efficiently correlate information from multiple AST
locations that would otherwise require complex visitor patterns ormultiple passes
in traditional analysis.

We emphasize that the data we extract and store in the database constitutes a
fully elaborated AST, augmented with additional relationships as detailed in section 2.1.
Currently, we extract all information for all nodes and relationships of the AST, rather
than only extracting information required by specific coding rules. This comprehensive
approach provides more flexibility but comes with increased storage requirements.

2.3 Selection andPreparation of the Bench-
mark Dataset

To comprehensively evaluate our proposed techniques, we needed an appropriate Ada
codebase as a benchmark dataset. Our key considerations for dataset selection were:

42 CHAPTER 2. Methodology

• Representative of real-world industrial code: This enables us to assess scalability
and performance on complex logic.

• Wide variety of size and complexity: Required to stress test our approach on a
large variety of cases.

• Ability to compile on Linux x86_64: To match our target benchmark architecture.

• Limited to Ada 2012 code: Due to our tooling (ASIS) constraints.

To obtain a representative real-world Ada codebase, we utilized the Alire [6] package
manager¹ to download libraries from their repository. Alire provided us access to a
comprehensive collection of open source Ada projects. We downloaded all available
libraries from the Alire repository. In addition, we manually added Ada GitHub projects
that matched our requirements (containing alire.toml, compiling on Linux x86_64,
and limited to Ada 2012 code).

To avoid duplicating dependent libraries, we created local links between projects.
For example, if a project A depends on a project B, we edited the dependency of project A
to point to the local (downloaded) version of project B. This resulted in a self-contained
repository [4] with all dependencies encapsulated to ensure reproducibility.

To accomplish this task, we developed a set of scripts to edit alire.toml project
files to create the local link to each dependency.

After downloading repositories, we applied filters to only keep projects that compile
without generating compiler errors, ASIS errors, or SCA tool errors when running SCAs
tools.

In our selection, we also excluded the libadalang project. While this project met
our previous requirements (compiles without errors), its particular design, with a file
containing more than 100 000 Lines of Code (LoC), created a huge tree-swapping issue
that produced insignificant results. Since our approach currently relies on ASIS for the
pre-processing phase², it would take several days to complete it.

In total, we included 134 successfully compiling projects in our benchmark, encom-
passing 2 643 887 lines of Ada code³. This corpus provides us with extensive coverage
across a diverse set of coding styles, complexities, domains and sizes, ranging from small
(100s LoC) to large (+100 000 LoC) codebases.

¹ It is the equivalent of PIP for Python, Crates for Rust or NPM for Node.js
² As described in Section 2.4
³ Counted using SCC [43], excluding blank and comment lines

2.3. Selection and Preparation of the Benchmark Dataset 43

We categorized projects based on LoC to analyze scaling behavior:

• Small: 0-10 000 LoC

• Medium: 10 001-30 000 LoC

• Large: more than 30 000 LoC

This categorization enables us to analyze how each tool’s performance scales with
project size and complexity.

By leveraging Alire and applying careful filtering criteria, we created a sizable bench-
mark suite to facilitate thorough comparative assessments between our graph-based
approach and conventional analysis techniques.

2.3.1 Dataset Characteristics and Potential Bias

Our corpus was assembled by downloading all available Alire packages at a specific
point in time and then filtering projects to keep only those that successfully compile on
our target environment and for which the static analysis tools run without errors. This
pragmatic approach ensured reproducibility and a broad coverage of Ada code, but it
also introduces possible selection biases:

• Projects that fail to compile or that trigger tool errors are excluded, potentially
removing difficult edge cases.

• The dataset reflects the state of open-source Ada code in Alire at that specific
snapshot, which may not fully represent closed-source industrial projects.

• The focus on Ada 2012 compatibility (due to tooling constraints, see Section 2.6)
may reduce exposure to newer Ada 2022 constructs.

2.3.2 Language Feature Usage in the Dataset

To ensure our benchmark allows for a comprehensive evaluation of static analysis tools,
it is crucial that the dataset covers a wide spectrum of Ada language features. An analysis
of language features used and the imports used across the selected projects reveals a
rich diversity of usage patterns, confirming that the dataset is not limited to a simple
subset of the language but represents real-world usage.

44 CHAPTER 2. Methodology

Standard Library and Data Structures: A significant portion of the projects makes
extensive use of the Ada standard library. We observe frequent usage of:

• Containers: Usage of Ada.Containers including vectors, maps, and linked
lists (both definite and indefinite forms), as well as sorting algorithms.

• String Handling: Extensive use of Ada.Strings, including unbounded strings
and UTF encoding support.

• Input/Output: Standard text and stream I/O, aswell as specialized I/O for complex
types.

Generics and Polymorphism: The dataset includes projects that heavily rely on
generic programming, not only through standard containers but also via custom generic
units. This provides a robust test bed for analyzing instantiation chains and parametric
polymorphism.

System and Low-Level Programming: Reflecting Ada’s strong presence in systems
programming, the dataset contains projects using:

• Ada.System hierarchy (e.g., Ada.System.Address, Ada.System.Storag ⌋

e_Pools).

• Interfacing with C (Interfaces.C).

• GNAT-specific extensions (e.g., Gnat.Sockets, Gnat.Expect).

Concurrency: While less dominant than sequential logic, the dataset does include
projects utilizing Ada’s concurrency features, such as Ada.Task_Identification
and synchronized queue interfaces, allowing us to verify that our tools handle multi-
tasking constructs correctly.

Quantitative Coverage: To provide concrete evidence of feature diversity, Table 2.1
summarizes the usage of major Ada language constructs across our dataset. The table
groups related features by category and reports both the number of projects using each
feature and the total number of occurrences. This demonstrates that our benchmark
exercises a substantial portion of the Ada language, including advanced features such
as parametric polymorphism (generics), object-oriented programming (tagged types
with inheritance), exception handling, and concurrency primitives. Complete detailed
metrics for all language features are available in Appendix C.1.

2.3. Selection and Preparation of the Benchmark Dataset 45

Feature Category Projects Total Uses

Generic units declared 59 640

Generic instantiations (public) 47 992

Generic instantiations (private) 40 256

Generic instantiations (local) 51 553

Tagged type hierarchies (max depth 7) 69 1304

Abstract type declarations 25 166

Types with discriminants 55 397

Controlled types 29 275

Exception declarations 53 482

Raise statements (all) 77 2889

Exception handlers (others) 44 1402

Locally handled exceptions 8 23

Task declarations 3 6

Protected object declarations 9 22

Accept statements 9 50

Entry call statements 12 113

Delay statements (relative) 12 69

'Access attribute 54 8302

'Unchecked_Access attribute 21 560

'Address attribute 36 1145

Access-to-subprogram types 34 1319

Parameter aliasing (possible) 3 4

Operator overloading 36 473

Representation clauses 43 469

Unchecked_Conversion (Address→Access) 9 869

Table 2.1: Ada Language Feature Coverage in the Benchmark Dataset

Parametric Polymorphism (Generics)

Object-Oriented Programming (Tagged Types)

Exception Handling

Concurrency and Tasking

Access Types and Aliasing

Advanced Features

46 CHAPTER 2. Methodology

The quantitative analysis reveals both strengths and limitations of our dataset. On
the positive side, we observe strong coverage of core Ada features: generics are widely
used (59 projects declaring generic units, with 992 public instantiations), object-oriented
programming is well-represented (69 projects using tagged type hierarchies with inheri-
tance depths reaching up to 7 levels), and exception handling is present (77 projects with
raise statements totaling 2889 occurrences, of which 23 are locally handled within the
same procedure in 8 projects). Access type manipulation, a critical feature for systems
programming, shows extensive usage with 8302 uses of the 'Access attribute across
54 projects.

However, the dataset shows limited coverage of concurrency features. Task decla-
rations appear in only 3 projects (6 total instances), protected objects in 9 projects (22
instances), and tasking primitives such as accept statements (9 projects, 50 uses) and
entry calls (12 projects, 113 uses) remain relatively scarce. Similarly, parameter aliasing—a
subtle but important aspect of Ada semantics—appears in only 3 projects with 4 possi-
ble aliasing situations detected. This limited representation of concurrency constructs
reflects the dominance of sequential logic in the open-source Ada ecosystem available
through Alire, rather than a deliberate filtering choice.

These gaps represent opportunities for future dataset improvement. Specifically, we
could enhance coverage by:

• Actively seeking projects from domains where concurrency is central (e.g., real-
time systems, embedded controllers, or distributed applications),

• Including curated industrial code samples when available under permissive li-
censes,

• Developing synthetic benchmarks that specifically exercise underrepresented
language features.

Such augmentation would enable more comprehensive evaluation of static analysis
tools’ capabilities across the full spectrum of Ada constructs, particularly for features
critical in safety-critical and real-time domains where Ada is heavily deployed.

This variety ensures that our performance results reflect the behavior of static analy-
sis tools when observing the full ”treated language” as found in diverse, open-source
ecosystems.

2.4. Pre-processing and database population 47

2.4 Pre-processing and database pop-
ulation

2.4.1 Pre-processing

To reduce the development time, we started from the source code of AdaControl [5],
which is built upon the ASIS [42] library to construct ASTs.

As we explained in section 1.2.3, ASIS has a performance issue (TreeSwapping) and is
strongly coupled with the AdaCore’s GNAT compiler ecosystem.

�

Warning 2.1 – Tree Swapping issue in our approach

It is important to note that since we currently use ASIS for parsing the Ada source
code during the data collection phase, there is a Tree Swapping issue. However, we
emphasize that this Tree Swapping issue is only relevant during the data collection
phase. There is no Tree Swapping issue in our database population phase, nor in
controlling coding rules.

Although ASIS has played a crucial role in our research as a proof of concept, we
plan to transition to the newer library libadalang [3] for future endeavors. Libadalang is
a semantic engine for Ada that provides a high-level interface to analyze Ada sources. It
is designed to be more efficient and flexible than ASIS, supporting newer Ada standards
(Ada 2022) and offering amoremodern API. At the time of our initial research, libadalang
was not yet fully mature to support our specific requirements for static code analysis. It
did not support all the language features, and therefore, did not allow us to support the
complexity of coding rules we needed.

2.4.2 Database population

To enable our graph-based analysis, we made deep modifications to AdaControl, replac-
ing the rule checking system with a mechanism to populate the Neo4j database.

In our code, we employed a Producer-Consumer pattern, where the producer is the
AST traversal task and the consumer is the query generation task. During the AST traver-

48 CHAPTER 2. Methodology

sal, our producer task visits each node in the abstract syntax tree and collects relevant
syntactic and semantic information about the code. We then store this information in a
shared data structure called a protected object, which ensures safe access from multiple
concurrent tasks.

Our use of a protected object allows for efficient communication between the pro-
ducer and consumer tasks, minimizing the need for synchronization and enabling
parallel processing. This design was particularly easy to implement in Ada.

Our consumer task, running concurrently with the producer, reads the information
from the protected object as it becomes available and processes this information to
generate a series of Cypher queries.

The following subsection describes our first implementation and the optimizations
we made to make the database population efficient.

Optimizing Database Population

In our initial approach to database population, the Consumer sent an HyperText Transfer
Protocol (HTTP) request immediately upon obtaining data from the protected object.
With this methodology, our analysis of a test file containing 3,876 LoC required more
than one hour to populate the database. Consequently, addressing this inefficiency
became critical for us to process large volumes of code.

We centered our reflection on refactoring the export system to make it more flexible
and modular. We applied the Observer design pattern to our Consumer task, which
enabled us to wire multiple export systems and simplified the addition of new ones.
We also included a JavaScript Object Notation (JSON) Lines¹ export of our internal
representation, which allowed us to doing prototype using a scripting language.

Subsequently, we implemented aNode.js prototype for database population. Through
our study of Neo4j’s API, we learned to optimize the query construction for repeated
query scenarios by replacing literals with parameters to leverage server-side caching
of query plans [24]. The code presented in 2.2 demonstrates an illustration of a node
creation query utilizing literals, whereas 2.3 exhibits the identical query employing
parameters.

¹ More information on the official website: https://jsonlines.org/

https://jsonlines.org/

2.4. Pre-processing and database population 49

�

Code 2.2 – Example of Cypher query using literals

1 CREATE(n:Person {_id:"id1",name:"Keanu Reeves"});
2 CREATE(n:Person {_id:"id2",name:"Carrie-Anne Moss"});

�

Code 2.3 – Example of Cypher query using parameters

1 /// Parameters of the query
2 :params rows =>= [{"_id":"id1","name":"Keanu

Reeves"},{"_id":"id2","name":"Carrie-Anne Moss"}]
3 /// The query
4 UNWIND $rows AS row
5 CREATE(n: `UNIQUE IMPORT LABEL`{node_id: row._id})
6 SET n += row.properties
7 SET n:Person;

Our utilization of parameters, alongside the addition of properties and labels to the
node through the SET operation, significantly enhanced the performance of populating
the database.

�

Note 2.4 – Database specific optimization

We want to emphasize that the parametrized query’s optimization varies de-
pending on the specific GDBMS employed. Similar optimizations may need to be
implemented on a case-by-case basis, contingent upon the chosen GDBMS.

This functional prototype informed our implementation in Ada.

However, we encountered two major issues. Firstly, a single file containing all nodes,
relationships and queries exceeded stack limits on large codebases. To remedy this,
we implemented a file management system that distributes queries across multiple
output files based on node types and relationships. Each file has a maximum size limit
determined by OS stack constraints, Ada type limitations, and average query size.

This organization is not a pipeline that allows immediate database population while
parsing continues. Rather, it works as follows: as nodes are encountered during parsing,
they are written to type-specific files (e.g., all procedure nodes to one file, all package
nodes to another); when a file reaches its size limit, a new file of the same type is created.

50 CHAPTER 2. Methodology

Similarly, relationships are written to dedicated relationship files. Due to referential in-
tegrity requirements, all node filesmust be completely processed before relationship files
can be loaded into the database, otherwise the database would create empty placeholder
nodes or even duplicates when encountering relationships referencing not-yet-loaded
nodes.

Secondly, reading the file stream to send HTTP requests to Neo4j’s API also caused
stack overflows. We addressed this by allocating the stream through a pointer to utilize
the heap rather than the stack.

�

Information 2.5 – HTTP request streaming issue

During early prototypes, streaming large batches over HTTP from a stack-allocated
stream led to stack overflows. Switching the stream allocation to the heap resolved
the issue without affecting the population pipeline semantics described above.

Our efforts successfully optimized population time. On a 3876 lines test file, we
reduced the time from over an hour to approximately 30 s. We also added the entirety of
AdaControl (with dependencies), representing around 100 000 lines and created a large
graph in under 2min.

Query structure of our current approach

We organize our new query structure into multiple JSON files, which we categorize as
follows:

• 0_XXX: Database initialization

• 1_XXX: Node creation

• 2_XXX: Relationship creation

• 3_XXX: Database finalization

Our initialization queries solely establish custom labels and indices used for populat-
ing the database, while our finalization queries encompass the following steps:

1. Creating an order with relations to the parent

2.4. Pre-processing and database population 51

2. Generating the call graph

3. Establishing ancestor relationships

4. Removing labels employed in the database population

5. Removing constraints employed in the database population

Unlike most other relationships which we calculate during the AST traversal phase,
we compute the CG and ancestor relationships directly in the database after populating
it with the basic structure and initial relationships. This approach leverages the graph
database’s querying capabilities for these particular relationships, which are more ef-
ficiently calculated by analyzing the complete graph structure rather than during the
initial AST traversal.

�

Information 2.6 – On the timing of relationship computation

It is important to clarify how the time spent computing the call graph and ancestor
relationships is accounted for in our methodology. In our current implementation,
this computation is included in the database population phase, rather than in the
rule evaluation phase. This differs from traditional static analysis tools, where
equivalent computations are typically performed each time rules are evaluated
and thus are counted within the rule-checking time.
Our approach aims to integrate as much semantic information as possible directly
into the graph during population. This design choice avoids redundant compu-
tation for each rule evaluation, making the process more efficient for repeated
analyses.
Ideally, the workflow could be decomposed into three distinct phases:

1. Population of the database with initial syntactic elements

2. Enrichment of the database with advanced relationships (such as call graph
and ancestry)

3. Rule verification

For a perfectly fair comparison with tools that do not use a graph database, one
could compare the sum of phases 2 and 3 with the total analysis time of non-
graph-based tools. However, in our current setup, phases 1 and 2 are performed
together for efficiency, and we did not anticipate separating their timings. This
could be explored in future work, as splitting these phases might slightly increase
the total population time compared to the current combined approach.

52 CHAPTER 2. Methodology

After we complete the exploration of the entire code, we sequentially read the files
to populate the database (utilizing an HTTP connection), except for those starting with
”1” or ”2,” which we execute concurrently. Specifically, we first execute all files beginning
with ”1,” followed by those starting with ”2”. The diagram in Figure 2.1 illustrates our
process.

Figure 2.1: How DB population works

As previously said, this approach yields 100-fold improvement in the time required
for the database population compared to ”real-time feeding”.

�

Information 2.7 – Database parallel population

We want to emphasize that it was possible to feed the database in parallel with
Neo4j. This is not necessarily the case with all GDBMS.

Conclusion on database population

Through this robust population process, the syntactic AST is efficiently transformed into
a semantically rich populated graph representation to enable querying and analysis. The
decoupled architecture and parallelized ingestion were key to achieving scalable graph
construction.

2.5 Development of Coding Rules

We developed our coding rules to align with those of existing Ada static analysis tools
to facilitate comparison of results. We implemented these rules using Cypher query
language, which is the only query language supported by Neo4j. In this section, we
explain the advantages of using Cypher for rule development and provide examples
demonstrating its expressivity compared to traditional approaches.

2.5. Development of Coding Rules 53

We provide a concise overview of graph query languages, including Cypher, in Sec-
tion 1.3.4 of the literature review. In practice, Cypher’s declarative pattern-matching
is well suited for expressing structural rules; however, expressing comprehensive se-
mantics for complex rules can lead to long queries when many language cases must be
covered explicitly. Where appropriate, we decompose such queries or combine Cypher
with post-processing, as illustrated later in this section.

2.5.1 Example Of Cypher Query

Code 2.8 shows our Cypher query related to the “Too Many Parents” coding rule, which
checks for type declarations with an excessive number of ancestor types.

�

Code 2.8 – Example Cypher query for the “Too Many Parents” coding rule

1 /// Parameters of the query
2 :params { "minNbParents": 2 }
3
4 /// The query
5 MATCH (typeDecl)<-[r:IS_PROGENITOR_OF|IS_ANCESTOR_OF]-(p ⌋

arent)
6 WITH typeDecl, count(r) as nbParents
7 WHERE nbParents >>= $minNbParents
8 RETURN typeDecl, nbParents
9 ORDER BY typeDecl.filename, typeDecl.line,

typeDecl.column

This query retrieves type declaration nodes (typeDecl) having at least two in-
coming relationships labeled IS_PROGENITOR_OF or IS_ANCESTOR_OF from parent
nodes, as specified by the minNbParents parameter. We order the results by the
filename, line, and column properties of each typeDecl node.

2.5.2 Common Query Structure

We share the structure shown in Code 2.9 across the following coding rules:

• Abort Statements

54 CHAPTER 2. Methodology

• Blocks

• Enumeration Representation Clause

• Slice

�

Code 2.9 – Common structure for simple Cypher queries

1 MATCH (e:<a-set-of-labels>)
2 RETURN e
3 ORDER BY e.filename, e.line, e.column

This querymatches nodes with certain label(s) (<a-set-of-labels>) and returns
them ordered by file position. For example, in our “Abort Statements” rule, we only
consider nodes with the AN_ABORT_STATEMENT label. In our “Renamings” rule, we
match multiple labels as shown in Code 2.10.

The simplicity of these queries demonstrates another advantage of our graph-based
approach. While a text-based approach like grep could potentially identify these patterns,
our method provides semantic understanding rather than purely textual matching.
Our graph representation ensures we’re identifying actual code constructs rather than
matching text patterns that might appear in comments or strings, and it allows us to
accurately locate each occurrence within its proper context in the code structure.

�

Code 2.10 – Cypher query for the “Renamings” rule

1 MATCH (e:AN_OBJECT_RENAMING_DECLARATION|
2 A_PACKAGE_RENAMING_DECLARATION|
3 A_FUNCTION_RENAMING_DECLARATION|
4 A_PROCEDURE_RENAMING_DECLARATION|
5 AN_EXCEPTION_RENAMING_DECLARATION|
6 A_GENERIC_PACKAGE_RENAMING_DECLARATION)
7 RETURN e
8 ORDER BY e.filename, e.line, e.column

2.5. Development of Coding Rules 55

2.5.3 Complex query example

As we observed, controlling the presence of simple constructs in the code is relatively
straightforward. However, as we demonstrate next, the complexity of the query can
increase proportionally to the inherent complexity of the rule being implemented.

Let us go back to the ”Constructors” rule (previously introduced in Section 2.2) which
aims to identify constructor functions in object-oriented Ada code. A constructor in this
context is a function that returns a tagged object type without taking that same type as
a parameter.

�

Code 2.11 – Cypher query for the “Constructors” rule

1 /// First, we match every function decl that returns a

tagged type
2 MATCH
3 (function:A_FUNCTION_DECLARATION|
4 A_FUNCTION_RENAMING_DECLARATION|
5 AN_EXPRESSION_FUNCTION_DECLARATION)
6 <-[:IS_ENCLOSED_IN]-(:AN_IDENTIFIER)
7 -[:CORRESPONDING_NAME_DEFINITION]->()
8 -[:IS_ENCLOSED_IN]->(typeDef)
9 -[:CORRESPONDING_TYPE_DECLARATION_VIEW]->
10 (:A_TAGGED_RECORD_TYPE_DEFINITION|
11 A_TAGGED_PRIVATE_TYPE_DEFINITION|
12 A_TAGGED_INCOMPLETE_TYPE_DECLARATION|
13 A_DERIVED_RECORD_EXTENSION_DEFINITION)
14
15 /// Get the type of each parameter of the function, if

exists
16 OPTIONAL MATCH
17 (function)<-[:IS_ENCLOSED_IN]
18 -(:A_PARAMETER_SPECIFICATION)<-[:IS_ENCLOSED_IN]
19 -(:AN_IDENTIFIER)
20 -[:CORRESPONDING_NAME_DEFINITION]->()
21 -[:IS_ENCLOSED_IN]->(parmType:A_DECLARATION)
22
23 /// Collect parameters and filter functions that don't

take their return type as parameter

56 CHAPTER 2. Methodology

24 WITH collect(parmType) AS functionParams, function,

typeDef
25 MATCH (function)
26 WHERE NOT apoc.coll.contains(functionParams, typeDef)
27
28 /// Return matching functions ordered by file location
29 RETURN function
30 ORDER BY function.filename, function.line,

function.column

Figure 2.2 illustrates the pattern used in the Cypher query to identify constructors.
The diagram is color-coded to enhance readability, with each color representing a distinct
relationship path in the graph:

• The vertical structure shows two main branches: a left branch (in blue) that
traces how a function returns a tagged type, and a right branch (in yellow) that
identifies parameter types.

• The green relationships connect identifiers to their containing function, showing
how function names and return types are associated.

• The red relationships connect parameter specifications to their function and
identify parameter names.

• The blue and yellow paths trace through name definitions to their respective
type definitions.

• At the top, the elliptical constraint (typeDef ∉ functionParams) connected by a
purple ”Apply filter” arrow enforces that no parameter type matches the return
type—the defining characteristic of a constructor.

2.5. Development of Coding Rules 57

Figure 2.2: Graphical representation of the ”Constructors” rule query pattern

The rectangular nodes represent elements from the Ada AST as stored in the graph
database, organized by their role in the code structure. The elliptical node at the top
represents a constraint that is applied during query execution. Each edge is explicitly
labeled with its relationship type (e.g., IS_ENCLOSED_IN, CORRESPONDING_NAME_ ⌋

DEFINITION) exactly as it appears in the graph database, making it possible to directly
trace how the abstract syntax tree relationships are traversed in the query.

In plain language, this query performs the following steps:

1. Identifies all functions (including function declarations, renaming declarations,

58 CHAPTER 2. Methodology

and expression functions) that return a tagged type (like tagged records or private
types)

2. For each of these functions, collects all parameter types

3. Filters out functions where any parameter is of the same type as the return type

4. Returns the remaining functions, which are constructors that create a tagged
object without taking that same type as input

Figure 2.2 provides a graphical representation of this query pattern, showing how
the nodes and relationships are connected.

This query demonstrates the expressivity of Cypher for complex pattern matching.
In a traditional imperative approach, we would need to write code to:

1. Iterate through all function declarations

2. For each function, determine its return type

3. Check if the return type is a tagged type

4. Gather all parameter types for the function

5. Check that none of the parameter types match the return type

Each of these steps would require multiple lines of code, traversal of the AST, and
management of intermediate collections. Our Cypher implementation encapsulates
this logic in a single query that directly expresses the pattern we’re looking for. The
database engine handles the complexity of finding these patterns efficiently across the
entire codebase.

Cypher follows a declarative, pattern-matching paradigm rather than an imperative
one. We found this makes it challenging to execute iterative, procedural operations
commonly encountered in static analysis. In the next section, we show an example of
issues we encountered with Cypher on a complex query.

2.5.4 Analysis of Variables Usage

We wrote an analysis rule to determine: For each variable in a program, is the variable
read and/or written?

2.5. Development of Coding Rules 59

This coding rule provides valuable insights into variable usage within the software.
However, our initial attempt to implement this rule using a single Cypher query resulted
in prohibitive performance penalties, with the query timing out on even moderately
sized codebases of approximately 8000 LoC. Our query required more than 200 lines of
Cypher and did not manage the case of renames.

Our further investigation revealed the likely cause to be the formulation of the query,
which appeared to induce multiple cartesian products that substantially increased pro-
cessing time. To address this inefficiency, we reformulated the query into two separate
parts:

• Our first query focuses exclusively on normal and generic variable usage contexts,
excluding instantiations of generics.

• Our second query handles only instantiations of generics.

This split query approach yielded improved performance, avoiding timeouts on
intermediate codebases. On our test case, we reduced the analysis time from 3.6 s
to 1.92 s with the dual query technique - an improvement of 1.875 × faster. We include
the full code in appendix B.1.

The complete implementation of these queries, available in Appendix B.1, demon-
strates both the power and limitations of using Cypher for complex static analysis tasks.
The declarative nature of Cypher allows us to express complex patterns concisely, but it
can also lead to performance challenges when dealing with very complex patterns that
would benefit from procedural control flow.

However, our rewritten rule does not yet fully support all cases. A key outstanding
case is that of renamings, which allow a variable to be referenced through alternate
names. We found that renamings can obscure the underlying variables being read or
written, presenting challenges for accurate analysis. For example, the code Tab (I)

::= My_Var has two read variables (I, My_Var) and one variable written, Tab. In the
case of renamings, we can do renaming like this My_Renamings renamings Tab

(I) and use it like My_Renamings ::= My_Var. Therefore, the variable Tab (written)
and I (read) are hidden but are still counted as read and written.

Due to the complexity of comprehensively handling all renaming cases, we post-
poned the support for this coding rule. Nonetheless, our exploration of this rule provided
us with valuable insights that extend beyond this specific case. It shed particular light
on the critical importance of query formulation in determining query efficiency within
graph databases.

60 CHAPTER 2. Methodology

We observed that even small changes in how a query is expressed can dramatically
impact its performance characteristics. The cartesian product issue we encountered is
just one example of a broader class of performance concerns that arise when working
with declarative query languages. It is somewhat surprising that, in a graph database
system, query optimization does not automatically handle these performance pitfalls
during query translation and execution. This reinforces the importance of understand-
ing the underlying query execution mechanics, even when working with high-level
declarative languages.

2.5.5 Advantages of Cypher for Static Analysis

Our choice of Cypher as the query language for implementing coding rules offers several
significant advantages over traditional imperative programming approaches:

• Declarative Pattern Matching: Cypher allows us to express what patterns we
want to find rather than how to find them. This declarative approach shifts the
computational complexity from our rule implementation to the database engine,
which can optimize the query execution plan.

• Graph Structure Alignment: The graph pattern syntax in Cypher ((node) ⌋

-[:RELATIONSHIP]->(otherNode)) directly mirrors the structure of code
relationships we’re analyzing, creating a natural alignment between the concep-
tual model and the implementation.

• Reduced Algorithmic Complexity: Tasks that would require complex multi-
pass traversal algorithms in imperative languages can be expressed concisely in
Cypher. For example, finding all ancestors of a type requires just a simple pattern in
Cypher, whereas in a traditional approach, we would need to implement recursive
traversal logic.

• Enhanced Readability: Cypher queries can be more readable than equivalent
imperative code for complex pattern matching tasks. The ASCII-art style of ex-
pressing relationships (()-[]->()) provides visual clarity about the structure
being queried.

We found the Neo4j Desktop Graphical User Interface (GUI) invaluable during our
development process, as it provided us with immediate visual feedback on the graph
structures created by our Cypher queries. This visual feedback allowed us to efficiently
validate that our queries were producing the intended results.

2.5. Development of Coding Rules 61

2.5.6 Limitations and Solutions

Despite the many advantages of Cypher for expressing static analysis rules, we encoun-
tered some limitations when implementing more complex rules. The lack of imperative
constructs in Cypher, particularly loops and procedural control flow, can lead to verbose
queries for certain types of analysis.

For example, in our Variable Usage analysis (detailed in Appendix B.1), the lack of
loop constructs forced us to create explicit patterns for many different scenarios where
variables might be read or written. This resulted in a query that was over 200 lines long,
yet still incomplete in terms of handling all possible Ada language constructs.

We identified various solutions to overcome these limitations:

• Custom Procedures: Implementing custom procedures via Neo4j plugins would
allow us to incorporate imperative logic where necessary while still leveraging
the graph structure for pattern matching.

• Hybrid Approach: Using Cypher for pattern matching and identification of
relevant code elements, then processing the results with an external script for
more complex analysis logic.

• Query Decomposition: Breaking complex queries into multiple simpler queries,
as we demonstrated with the Variable Usage analysis, can improve performance
and maintainability.

Despite these challenges, we found that Cypher’s expressivity and alignment with
graph structures make it well-suited for many static analysis tasks. The ability to di-
rectly express relationships between code elements and traverse these relationships
efficiently provides significant advantages over traditional AST-based approaches for
many common coding rules.

We believe further experiments will need to be carried out to define whether using
an imperative language for queries is an effective way of producing complex queries.
Opportunities remain for us to build upon these learnings to enable robust, efficient
analysis of all variables read and written within Ada software.

62 CHAPTER 2. Methodology

2.6 Benchmark Protocol

We designed a comprehensive protocol to rigorously evaluate various Ada static analysis
tools, focusing on their efficiency across diverse codebases. Our evaluation compared
three tools: Cogralys (our graph-based approach), AdaControl, and GNATcheck.

Tool Type Version Release Date Backend

Cogralys Graph-based 0.1 March 2023 Neo4j 5.12.0 + ASIS

AdaControl AST-based 1.23b4𝑎 February 2022 ASIS

GNATcheck AST-based 24.0w March 2023 Libadalang

Table 2.2: Static Analysis Tools Evaluated

𝑎 On a custom build to add a rule that does nothing.

Table 2.2 provides an overview of the tools evaluated in this study, including their
architectural approach, version information, and underlying analysis engine. This di-
versity in tool design allows for a comprehensive comparison across different static
analysis paradigms.

2.6.1 Benchmark Structure

Our benchmark features a two-phase approach designed for consistent data collection
and reproducibility:

1. Overhead Computation:We first measure the initialization overhead for each
tool by executing them with empty rule sets (all tools) and measuring database
population time (Cogralys). This allows us to isolate rule processing performance
from initialization costs.

2. Performance Benchmarking: We then execute each tool against multiple Ada
projects with complete rule sets and a rule-by-rule analysis, recording execution
time and resource metrics. For GNATcheck, we evaluate both single-threaded and
multi-threaded (32 threads) configurations.

Between runs, we remove all intermediate structures (AST files and Neo4j database)
to ensure each execution starts from a clean state. Although we initially planned ten

2.6. Benchmark Protocol 63

iterations per configuration, we found execution times highly consistent (standard
deviations below 3%), allowing us to use three runs for reliable results. This is detailed
in Chapter 3.

2.6.2 Data Collection and Metrics

We collected three primary metric categories:

• using the /usr/bin/time command:

– Execution time (user, system, and real time)

– Memory consumption

• Storage utilization (AST files and Neo4j database size)

�

Information 2.12 – Focus on Execution Time

While we collect comprehensive metrics, we prioritize execution time analysis as
itmost directly impacts developerworkflows and continuous integration pipelines.
The substantial performance differences between tools (often orders of magni-
tude) make relative comparisons meaningful despite the measurement tool’s
microsecond limitations.
We retain memory and disk utilization data primarily for contextualizing anoma-
lous results and supporting future research beyond this thesis.

2.6.3 Benchmark Environment

To ensure consistency and reproducibility, we execute our benchmark in a controlled
environment with the following specifications:

Hardware Configuration:

• Central Processing Unit (CPU): AMD Ryzen 9 7950X3D (32 cores) @ 4.2 GHz

64 CHAPTER 2. Methodology

• Graphics Processing Unit (GPU) 1¹: AMD ATI 19:00.0 Raphael

• GPU 2: AMD ATI Radeon RX 7900 XTX

• Memory: 64 GB

• Storage: Crucial P5 Plus 1 TB SSD (M.2 PCIe Gen 4)

Software Environment:

• Operating System: Debian GNU/Linux 12 (bookworm) x86_64

• Ada Compiler: GNAT Pro 24.0w (20230301-122)

• GNAT Pro 21lts for ASIS support

• Static Analysis Tools:

– GNATcheck 24.0w (20230301-122) based on libadalang

– AdaControl 1.23b4 based on ASIS

• Additional Software:

– Deno 1.46.3 with v8 12.9.202.5 and TypeScript 5.2.2 (for result processing)

– Neo4j Desktop 1.5.9.106 with database engine 5.12.0 and APOC plugin (for
Cogralys)

2.6.4 Benchmark Architecture

I implemented my benchmarking system as a three-phase pipeline to ensure repro-
ducibility and comprehensive data collection:

1. Execution: I collect raw performance data through a suite of shell scripts (bench ⌋

mark.sh, benchmark-rule-by-rule.sh, and benchmark-base.sh) that
execute each tool against the test corpus with three iterations per configuration.

¹ I mention GPUs purely for the sake of transparency. They are not used by any of the static code

analysis tools in my study.

2.6. Benchmark Protocol 65

2. Data Aggregation: A TypeScript-based system (aggregateResults.ts) pro-
cesses the raw data, calculating statistical metrics, organizing results by project
size, and computing comparative performance indicators.

3. Report Generation: The final phase (generateReport.ts) transforms aggre-
gated data into tabular comparisons and visualization formats (CLI, Markdown,
Typst, LaTeX) with performance analyses across tools and rule implementations.

2.6.5 Measurement Methodology

To accurately compare tool performance, I employed a two-phase measurement ap-
proach that isolates initialization overhead from rule execution time:

1. I first measured baseline overhead by executing each tool with empty rules (or
separately measuring database population for Cogralys)

2. I then conducted full analysis with complete rule sets and calculated net analysis
time by subtracting the overhead

I performed three iterations of each test, calculating mean values and standard
deviations to verify measurement stability. My evaluation included both comprehensive
testing (all rules simultaneously) and rule-by-rule analysis to assess individual rule
contributions to overall performance.

2.6.6 Precision and Comparability

We prioritize the quality of analysis over raw speed. When comparing tools, we ensure
that comparisons are meaningful by:

• Distinguishing initialization overhead from rule analysis time

• Comparing rules with similar intent and scope across tools

• Indicating when tools target different semantic coverage for a given rule

As static analysis precision depends on language features exercised and each tool’s
semantics, we restrict quantitative comparisons to the Ada subset exercised by our
benchmark corpus (see Section 2.3.1). Differences in reported messages are discussed in
Chapter 3.

66 CHAPTER 2. Methodology

2.6.7 Performance Metrics

I collected both raw and derived metrics to enable comprehensive performance analysis:

RawMetrics:

• Time metrics: User/system/elapsed times and CPU utilization

• Resourcemetrics: Memory usage, I/O operations, context switches, and page faults

• Tool-specificmetrics: AST file sizes (AdaControl/Cogralys), database size (Cogralys),
and rule violation counts

Derived Comparative Metrics:

• Net analysis time (total execution minus overhead)

• Relative performance ratios (using the fastest tool as baseline)

2.6.8 Execution Procedure

Our benchmark execution followed a structured four-phase workflow:

1. Preparation: We organized projects, measured their size using SCC [43], and
prepared configuration files.

2. Overhead Assessment:Wemeasured the initialization overhead for each tool
configuration, including Cogralys’ database population time.

3. Comprehensive Analysis:We ran all tools with complete rule sets, including
both single-threaded and multi-threaded (32 cores) configurations for GNATcheck.

4. Rule-specific Analysis:We executed each tool with individual rules to isolate
per-rule performance characteristics.

2.6. Benchmark Protocol 67

2.6.9 Language Scope

Our experiments target Ada 2012 code due to tooling constraints during data collection
(ASIS-for-GNAT), while GNATcheck uses libadalang. The benchmark corpus naturally
exercises common features such as tagged types, generics, exceptions, and tasking/pro-
tected objects. Our rule set is not intended to cover all Ada traits exhaustively; rather,
it samples representative families of rules for performance comparison. Extending
coverage (e.g., advanced parallelism or aliasing-heavy patterns) is left for future work.

2.6.10 Data Analysis Approach

Our analysis of benchmark results follows a systematic methodology to ensure fair and
meaningful comparisons:

1. We consolidate and normalize data frommultiple tool iterations, incorporating
code metrics from SCC [43]

2. We filter results to include only projects where all tools executed successfully

3. We calculate performance indicators by isolating analysis time from overhead,
using the fastest tool as the baseline (0%) for relative comparisons

4. We analyze scaling characteristics across project sizes and assess rule-specific
performance patterns

This separation of overhead from analysis time is critical for fair comparison. While
all tools incur AST generation costs, Cogralys has additional database population over-
head that—though substantial—becomes amortized across multiple analyses of the
same codebase. By focusing on net analysis time, we can directly compare rule execution
efficiency across different architectural approaches.

2.6.11 Results Presentation and Detection Analysis

To facilitate comprehensive analysis, we present benchmark results in multiple formats,
including detailed per-project metrics, aggregated tool summaries, and contextual infor-

68 CHAPTER 2. Methodology

mation about the analyzed codebase. We’ve made all benchmark materials available in
a public GitHub repository [4] to ensure reproducibility.

Beyond performance metrics, we analyze rule violation messages to assess detection
effectiveness across tools. This includes quantitative comparison of violation counts
and identification of detection pattern variations across project types. While a detailed
examination of true/false positives through manual inspection exceeds the scope of this
thesis, this quantitative analysis provides valuable preliminary insights into detection
capabilities.

This dual focus on performance and detection effectiveness offers a holistic view of
each tool’s practical utility, balancing speed with accuracy in real-world development
contexts.

To interpret the results obtained from the benchmark protocol, we now detail our
evaluation approach and the specific metrics used to compare tools.

2.7 Evaluation Approach

To evaluate the efficacy of our graph-based approach, we designed a comprehensive
benchmarking methodology comparing Cogralys against established tools (AdaCon-
trol and GNATcheck). Our evaluation focuses primarily on performance metrics, with
secondary consideration for detection effectiveness.

We structured our analysis around these key metrics:

• Analysis Time: The core processing time spent executing coding rules, excluding
initialization and preparation. Thismetric directlymeasures algorithmic efficiency
and query performance.

• Overhead: The initialization andpreparation time. For AdaControl andGNATcheck,
we measured this using an empty rule. For Cogralys, we captured the time to
traverse the code and populate the database—a significant practical bottleneck in
real-world usage.

• Total Execution Time: The combined analysis and overhead time, representing
the user’s actual experience. We analyzed performance with all rules running
simultaneously to simulate practical usage scenarios.

2.7. Evaluation Approach 69

• Detection Effectiveness: The number and type of coding rule violations identi-
fied by each tool, providing insights beyond performance metrics.

We also collected supplementary data on memory usage and disk utilization, though
our primary focus remains on execution time as it most directly impacts practical us-
ability in development workflows.

70 CHAPTER 2. Methodology

Chapter 3

Results and Analysis

This chapter presents and analyzes the results of our experimental evaluation. The
complete benchmark results, including detailed per-rule analysis and project-specific
metrics, are available in Appendix C.1.

3.1 Statistical Stability Analysis

To ensure the reliability of our performance measurements, we conducted multiple runs
of each tool across all test cases. While initially planning for 10 runs per configuration,
our statistical analysis of early results showed that execution times were very consistent
across runs with very low standard deviations. This led us to carry out only three runs of
the same configuration. The Table 3.1 shows the standard deviation and the Coefficient
of Variation (CV) for each tools across all projects, with the corresponding mean analysis
time.

Tool Mean Analysis Time Std Dev Successful Runs CV (%)

Cogralys 39 s 44ms 0.8 s 100% 2.68

AdaControl 4min 5 s 827ms 12.3 s 100% 2.46

GNATcheck (32 cores) 11min 27 s 799ms 14.9 s 100% 2.56

GNATcheck (1 core) 11min 36 s 86ms 15.2 s 100% 2.6

Table 3.1: Statistical Analysis of Run Times (on 3-run)

71

72 CHAPTER 3. Results and Analysis

CV was calculated for both 10-run and 3-run samples: CV = 𝜎
𝜇 × 100% where 𝜎 is

standard deviation and 𝜇 is mean. We obtain the following result:

• 10-run samples showed CV ≈ 2.6

• 3-run samples maintained similar stability with CV ≈ 2.575

The statistical analysis revealed several key points about the stability of our mea-
surements:

• All tools demonstrated consistent performance across runs, with CV values below
5%. This suggests that there is little perturbation from other processes and the
operating system

• No failed runs were observed across any configuration

• Standard deviations remained proportionally low relative tomean execution times

• Three runs proved sufficient to obtain statistically significant results, as additional
runs showed minimal variation

This stability in measurements provides confidence in the reliability of our compara-
tive analysis. The consistency across runs indicates that the performance characteristics
we observe are inherent to the tools rather than artifacts of measurement variability.

3.1.1 Sample Distribution Analysis

The distribution of projects across size categories impacts the statistical significance of
our results:

• Small projects (< 10k LoC): 118 projects

– Provide high statistical confidence

– Represent typical development scenario

– Show consistent performance pattern

• Medium projects (10-30k LoC): 9 projects

3.2. Global Performance Analysis 73

– Offer low statistical confidence

– Show transition effect in performance scaling

• Large projects (> 30k LoC): 7 projects

– Limited sample size affects statistical confidence

– Include one project exceeding 1M LoC

– Valuable for understanding scaling behavior

This distribution suggests highest confidence in results for small projects, with
findings for larger projects requiring additional validation.

3.2 Global Performance Analysis

3.2.1 Overall Tool Comparison

The comparative analysis of the tools reveals significant performance differences across
the test suite. Figure 3.1 illustrates the relationship between analysis time and codebase
size for all tools, while Table 3.2 presents the aggregate performance metrics.

Metric Cogralys AdaControl GNATcheck (1) GNATcheck (32)

Analysis Time 39 s 44ms 4min 5 s 827ms 11min 36 s 86ms 11min 27 s 799ms

Relative to Best Baseline 6.30 × 17.83 × 17.62 ×

Overhead 3 h 47min 31 s 709ms 7min 41 s 801ms 1min 26 s 762ms 1min 31 s 454ms

Total Execution 3 h 48min 10 s 753ms 11min 47 s 628ms 13min 2 s 848ms 12min 59 s 253ms

Relative Total 19.35 × Baseline 1.11 × 1.10 ×

Table 3.2: Overall Performance Comparison

The analysis time shows two distinct performance patterns:

• In terms of pure analysis time, Cogralys demonstrates superior performance,
completing the analysis in 39 s 44ms, while AdaControl requires 4min 5 s 827ms
(6.30 × slower) andGNATcheck configurations take over 11min 27 s 799ms (17.62 ×
slower)

74 CHAPTER 3. Results and Analysis

• However, Cogralys incurs substantially higher overhead (3 h 47min 31 s 709ms
compared to AdaControl’s 7min 41 s 801ms and GNATcheck’s 1min 26 s 762ms)

Figure 3.1: Analysis Time (All Rules) vs. Lines of Code

Figure 3.1 reveals two distinct trends for projects under 10k lines of code (labeled as
C1 and C2):

• Group C1: Projects exhibiting relatively constant execution time around 0.8 s,
with gradually increasing analysis time as codebase size grows

• Group C2: Projects showing faster execution (< 0.7 s) but with more pronounced
growth in analysis time relative to codebase size

Notable outliers are observed, particularly for projects AICWL and APDF, which show
significantly higher analysis times than the general trend would suggest for their size.
These outliers are further examined in the subsequent detailed analysis sections.

3.2. Global Performance Analysis 75

A side observation is that GNATcheck’s multi-core configuration (32 cores) shows
minimal improvement over its single-core variant, suggesting that the bottleneck lies in
aspects other than parallel processing capabilities. This is particularly evident in the
trend lines, which show nearly identical patterns for both configurations.

Cogralys exhibits near-constant analysis time regardless of project size, though
this advantage must be weighed against its significant initialization overhead. This
characteristic suggests particular suitability for scenarios where:

• Multiple analyses will be performed on the same codebase

• Analysis time is more critical than initialization time

• The codebase is large enough that the overhead is amortized by the analysis time
savings

The empirical trend lines for GNATcheck and AdaControl in C1 and C2 follow power-
law relationships:

𝐶1 = 1.445 × 10−3 × 𝑛0.707 + 0.7 (𝑅2 = 0.535) (3.1)

𝐶2 = 9.905 × 10−4 × 𝑛0.679 + 0.010 (𝑅2 = 0.283) (3.2)

Where 𝑛 represents the number of lines of code. While these equations are approx-
imations that do not capture all factors affecting analysis time, they provide insight
into how the tools scale with project size. Based on our observations, the complexity of
both tools appears to be sub-linear, i.e.,𝑂(𝑛𝛼)with 0.5 < 𝛼 < 1. This suggests a more
efficient scaling than linear complexity, while still aligning with the expectation that
traditional static analysis tools process each line of code when checking the rules (once
for all rules for GNATcheck, once per rule for AdaControl).

The relatively low𝑅2 values (0.535 and 0.283) further indicate that lines of code alone
do not fully explain the variance in execution times, reinforcing our observations about
the impact of code complexity, file structure, and project architecture, discussed in 3.2.2.

76 CHAPTER 3. Results and Analysis

3.2.2 Performance Analysis by Code Base Size

Small Projects Analysis (0-10k LoC)

For projects under 10 000 LoC, we observe distinct performance characteristics that
deviate from the overall trends. Figure 3.2 provides a detailed view of this range.

Figure 3.2: Analysis Time (All Rules) vs. Lines of Code (0-10k LoC)

The analysis of projects under 10 000 LoC reveals two distinct performance clusters
that exhibit significantly different behavior patterns with traditional AST-based tools.
This dichotomy persists across both AdaControl and GNATcheck, though with varying
degrees of correlation between the tools.

Group C1 (Normal Execution):

3.2. Global Performance Analysis 77

• Execution time consistently above 0.7 s, with relative stability across various
project sizes

• Average analysis time of 1 s 194ms with a tight interquartile range (0.87 s–0.90 s
for GNATcheck), suggesting a performance floor

• Lower complexity metrics (average: 77.06) despite slower analysis

• Fewer standard library imports (average: 3.27) but higher proportion of standard
library imports relative to total imports (34.1% vs 27.3% for C2)

• More modularized architecture with significantly more files for equivalent code
size (average LoC/Files ratio: 121.63)

Group C2 (Fast Execution):

• Execution time below 0.7 s, with more graduated scaling relative to project size

• Average analysis time of 154ms, representing a 7.75 × performance advantage
over C1

• Higher complexity metrics (average: 136.07) despite faster analysis, contradicting
the intuitive expectation that more complex code would require longer analysis

• Greater absolute number of standard library imports (average: 3.74) but with a
lower proportion relative to total imports (27.3%)

• More consolidated code organization with fewer, larger files (average LoC/Files
ratio: 195.00)

Cross-referencing these clusters between tools (as detailed in Appendix C.2) reveals
an interesting distribution pattern:

• 21.2% of projects fall into C1 for both AdaControl and GNATcheck

• 37.3% of projects fall into C2 for both tools

• 41.5% of projects show divergent classification, appearing in C1 for one tool and
C2 for the other

78 CHAPTER 3. Results and Analysis

This distribution suggests that while the clustering phenomenon is robust, the
specific characteristics triggering performance differences vary somewhat between
analysis tools.

Further analysis of project characteristics provides insights into the factors influenc-
ing this performance dichotomy:

1. File Structure and Modularity: The most significant discriminant between
C1 and C2 is the ratio of lines of code to number of files. C2 projects demonstrate a
significantly higher LoC/Files ratio (195.00 vs 121.63), indicating a more consolidated code
organization with fewer, larger files. This suggests that for AST-based tools, the overhead
of file operations, context tracking, and inter-file analysis may impose a substantial
performance cost that outweighs the impact of raw code complexity.

2. Standard Library Import Patterns:While C2 projects contain more absolute
imports, a closer examination of specific libraries reveals distinct patterns. C2 projects
uniquely import certain libraries including:

• Generic container implementations (e.g., Ada.Containers.Vectors, Ada.C ⌋

ontainers.Indefinite_Hashed_Maps)

• Mathematical packages (e.g., Ada.Numerics, Ada.Numerics.Float_Rand ⌋

om)

• Stream and text processing (e.g., Ada.Text_IO.Text_Streams)

Conversely, C1 projects uniquely import libraries such as:

• Character handling and Unicode support (e.g., Ada.Characters.Conversio ⌋

ns, Ada.Strings.UTF_Encoding)

• Bounded containers (e.g., Ada.Containers.Bounded_Vectors)

• System-level interfaces (e.g., GNAT.Expect, System.Parameters)

These differences suggest that certain library dependencies may trigger more inten-
sive analysis paths in AST-based tools, potentially due to their internal complexity or
the analysis rules they activate.

3. Initialization Cost Hypothesis: The tight clustering of C1 execution times
around 0.88 s (particularly for GNATcheck) suggests a substantial fixed initialization cost

3.2. Global Performance Analysis 79

that dominates the analysis time for these projects. This cost appears to be triggered
by specific code characteristics rather than being a general property of the tools. Once
triggered, this initialization overhead creates a performance floor below which analysis
cannot proceed, regardless of project size within this range.

This performance dichotomy has significant implications for static analysis tool
design:

• The traditional assumption that analysis time scales primarily with code complex-
ity is contradicted by these findings

• Project architecture and file organization appear to have a stronger impact on
analysis performance than raw complexity metrics

• The impact of specific library dependencies suggests that optimizing the analysis
of common standard libraries could yield significant performance benefits

For smaller projects, tools like Cogralys with higher initialization costs but efficient
analysis may not demonstrate their full performance advantage. However, as projects
scale beyond the small category, the benefits of the graph-based approach become
increasingly apparent, as demonstrated in the analysis of medium and large projects.

Larger Projects Analysis (10k+ LoC)

Beyond the 10 000 LoC threshold, the performance characteristics of the tools converge
into more predictable patterns:

• The C1/C2 distinction disappears as project complexity naturally increases

• Each tool demonstrates a characteristic scaling pattern:

– Cogralys maintains near-constant analysis time

– AdaControl shows linear growth with codebase size

– Both GNATcheck configurations exhibit similar super-linear growth

• Performance differences become more pronounced, with Cogralys showing in-
creasing advantages as project size grows

80 CHAPTER 3. Results and Analysis

For projects exceeding 30 000 LoC, the performance gap becomes particularly signif-
icant:

• Cogralys: 2 s 800ms average analysis time

• AdaControl: 2min 14 s 700ms (48.11 × slower)

• GNATcheck (32 cores): 10min 10 s 200ms (217.93 × slower)

3.2.3 Performance Factors Case Studies

To better understand the factors influencing analysis performance beyond simple code
metrics, we conducted a detailed examination of several outlier projects. These case
studies, supported by the detailed language feature analysis available in Appendix C.3,
illustrate how specific language features and project structures impact efficiency. This
addresses the need to justify efficiency factors and understand tool behavior on small
programs. It is also important to note that other, unmeasured factors can also influence
tool performance, though this study focuses on factors inherent to the source code itself.

Impact of Code Density and Advanced Features (AICWL)

The AICWL project provides an illustrative example of how code density and feature
usage impact performance. We analyzed two configurations of this project: a small core
subset (3000 LoC) and the full project (62 000 LoC).

The core subset is highly dense, with over 12,000 statements and heavy use of
advanced Ada features including:

• Extensive generic instantiations (over 100 instances)

• Object-oriented features (tagged types, controlled types, inheritance depth of 5)

• Low-level programming (address attributes, unchecked conversions)

• Exception handling (over 500 raise statements)

3.2. Global Performance Analysis 81

For this dense subset, AdaControl’s execution is dominated by overhead (2.2 s) with
a relatively short analysis time (0.15 s). However, when scaling to the full project, the
overhead grows disproportionately to over 30 minutes, while the analysis time remains
negligible. This characterizes AICWL as an ”overhead-bound” outlier, where the cost
of parsing and populating the AST or graph outweighs the actual analysis time. This
confirms that for projects with complex internal dependencies and heavy feature usage,
the initial model construction is the primary bottleneck.

Structural Complexity vs. Code Size (APDF)

The APDF project (3000 LoC) represents an opposite case: an ”analysis-bound” outlier.
Despite its moderate size and lower usage of advanced language features compared to
AICWL, it exhibits a high analysis time (3.14 s) in AdaControl. This performance cost
stems from the project’s nature (PDF generation), which involves:

• Complex data structures for document representation

• Intricate control flows for transformation algorithms

• Deep call graphs not immediately apparent from simple feature counts

This demonstrates that structural complexity (how code elements relate to one another)
can drive analysis costs even when standard complexity metrics appear low.

Data-Heavy vs. Logic-Heavy Code (Emojis vs. SPDX)

Comparing the emojis and spdx projects reveals the impact of data representation.
Both are small projects (2000 LoC), but they perform very differently:

• SPDX (Fast Outlier): A parser with logic-centric code. It has few statements (134),
minimal generics, and analyzes very quickly (0.09 s analysis time).

• Emojis (Slow Outlier): A data-centric project containing massive aggregate
initializations (tables of emoji code points). While it has even fewer statements
(54) and almost no control logic, its analysis time is significantly higher (6.94 s).

82 CHAPTER 3. Results and Analysis

This comparison highlights a critical finding: large static data structures (aggregates)
create massive AST structures that are expensive to traverse, even if the control flow
logic is minimal. Traditional metrics often overlook this ”data complexity,” which helps
explain why some seemingly simple projects incur high analysis costs.

The Lower Bound of Complexity (Hangman)

Finally, the Hangman project (400 LoC) serves as a baseline for minimal complexity.
With no generics, tasks, or pragmas, and a very simple structure, it achieves the fastest
analysis times (0.05 s). This confirms that when language feature usage is minimal,
the analysis overhead is negligible, and performance is strictly bound by I/O and basic
parsing.

Summary of Performance Factors

From these case studies, we identify three primary factors driving static analysis perfor-
mance:

1. Overhead Dominance: For many projects, especially large ones like AICWL, the
cost of AST/graph construction dominates the actual rule checking time.

2. Structural Complexity: Algorithmic complexity and inter-component relation-
ships (as in APDF) increase analysis time independently of specific language
features.

3. Data Complexity: Large static data definitions (as in Emojis) can be as costly as
complex logic due to the sheer volume of AST nodes they generate.

4. File Organization and Modularity: The distribution of code across files plays
a role, particularly for tools like AdaControl that are sensitive to tree-swapping
overhead. As observed in the distinction betweenC1 (normal) andC2 (fast) clusters
for small projects, codebases with a higher LoC-to-file ratio (fewer, larger files)
tend to be analyzed more efficiently than those with many small, interdependent
files, even when total code size is comparable.

These findings demonstrate that static analysis performance cannot be explained
by a single factor such as lines of code. Instead, it is the result of a complex interaction

3.3. Rule-Based Analysis 83

between code density, structural complexity, data representation, and file organization. A
comprehensive performance model must account for all these dimensions to accurately
predict analysis costs.

3.3 Rule-Based Analysis

The analysis of individual rules provides insights into howdifferent types of static checks
perform under various approaches. Table 3.3 presents the performance breakdown by
rule scope.

Rule Cogralys AdaControl GNATcheck (1) GNATcheck (32)

Local Rules:

Abort Statements 3 s 400ms 10min 900ms 51 s 900ms 52 s 300ms

Blocks 2 s 100ms 9min 46 s 900ms 52 s 200ms 52 s 200ms

Constructors 7 s 700ms 9min 13 s 10ms 1min 7 s 300ms 1min 7 s 200ms

Enumeration Rep. Clauses 1 s 90ms 9min 36 s 100ms 41 s 900ms 42 s 500ms

Renamings 1 s 100ms 9min 53 s 500ms 52 s 90ms 52 s 300ms

Slices 1 s 700ms 9min 56 s 400ms 16min 29 s 200ms 16min 21 s 800ms

Total Local 17 s 90ms 58min 26 s 810ms 20min 54 s 590ms 20min 48 s 300ms

Average Speedup Baseline 205 × 73 × 73 ×

Intermediate Rules:

Abstract Type Declarations 4 s 80ms 9min 29 s 700ms 51 s 900ms 52 s 100ms

Total Intermediate 4 s 80ms 9min 29 s 700ms 51 s 900ms 52 s 100ms

Average Speedup Baseline 140 × 13 × 13 ×

Global Rules:

Too Many Parents 2 s 300ms 9min 56 s 400ms 58 s 800ms 59 s 700ms

Variable Usage𝑎 1min 5 s 40ms 3min 48 s 500ms - -

Total Global 2 s 300ms 9min 56 s 400ms 58 s 800ms 59 s 700ms

Average Speedup Baseline 259 × 25 × 26 ×

Table 3.3: Performance Analysis by Rule Type

𝑎 Variable Usage rule is partially implemented and not included in totals.

84 CHAPTER 3. Results and Analysis

The performance analysis across rule types reveals several key patterns:

• Local Rules: Cogralys demonstrates the most significant advantage for local
rules, with speedups of 205 × compared to AdaControl and over 73 × compared
to GNATcheck configurations. This is particularly evident in simple checks like
Enumeration Representation Clauses and Slices.

• Intermediate Rules: The performance gap remains substantial, with Cogralys
maintaining consistent performance and showing speedups of 140 × compared
to AdaControl and around 13 × compared to GNATcheck configurations.

• Global Rules: The performance characteristics become more complex:

– For rules like ”Too Many Parents”, Cogralys maintains its performance ad-
vantage with speedups of 259 × compared to AdaControl

– The ”VariableUsage” rule showsdifferent characteristics, requiring 1min 5 s 40ms
in Cogralys compared to 3min 48 s 500ms in AdaControl. This rule is only
partially implemented in Cogralys and not implemented in GNATcheck. It’s
important to note that execution timemay increase when the rule is fully im-
plemented with complete variable tracking capabilities. However, assuming
future versions implement direct relations for renamings, the performance
impact should be minimal. Even in its partial implementation, it shows
the challenges of expressing complex data flow analysis in a graph query
language:

* The optimization of this specific query might be suboptimal for this
type of complex data flow analysis.

* There is an inherent difficulty in expressing iterative, procedural opera-
tions within a declarative pattern-matching paradigm.

Several observations emerge from this analysis:

• The graph database approach shows particular strength in rules requiring rela-
tionship traversal, such as inheritance hierarchies

• Performance advantages are most pronounced in rules involving structural pat-
terns that can be efficiently expressed as graph queries

• Some rules, particularly those involving complex data flow analysis, present chal-
lenges regardless of the approach used. However, in Cogralys’ case, this challenge
may be primarily due to the complexity of expressing such analyses in declarative
query language rather than inherent limitations of the graph-based approach

3.4. Collection of Reported Messages 85

The most significant outlier in terms of rule performance is the Variable Usage
analysis, which requires extensive data flow tracking and shows substantially higher
execution times compared to other rules. These results highlight how the graph-based
approach can be further enhanced for complex data flow analyses by combining the
relational model with custom relationships and potentially specialized traversal algo-
rithms, which aligns with the central thesis of this work: developing a framework that
leverages graph properties for different categories of static analysis.

3.4 Collection of Reported Messages

Beyond performance metrics, we collected the message counts reported by each tool.
Table 3.4 presents a breakdown by rule type and locality.

Rule Cogralys AdaControl GNATcheck (1) GNATcheck (32)

Local Rules:

Abort Statements 1 2 2 2

Blocks 7,896 8,322 8,529 8,529

Constructors 235 454 423 423

Enumeration Rep. Clauses 71 75 78 78

Renamings 2,573 3,332 3,402 3,402

Slices 5,481 5,679 5,945 5,945

Total Local 16,257 17,864 18,379 18,379

Intermediate Rules:

Abstract Type Declarations 162 211 221 221

Total Intermediate 162 211 221 221

Global Rules:

Too Many Parents 39 24 518 518

Variable Usage𝑎 11,892 22,134 - -

Total Global 39 24 518 518

Overall Total 16,458 18,099 19,118 19,118

Table 3.4: Messages Reported by Rule Type

𝑎 Variable Usage rule is partially implemented and not included in totals.

86 CHAPTER 3. Results and Analysis

The message counts show several notable patterns:

• Local rules show relatively consistent reporting across tools, with variations typi-
cally under 10%

• Intermediate rules demonstrate similar detection patterns

• Global rules show the most significant variations, particularly in inheritance
hierarchy analysis (”Too Many Parents”)

• The partially implemented Variable Usage rule shows substantial differences in
reporting patterns

It’s important to note that these are only raw detection counts. While a compre-
hensive analysis of true/false positives and negatives was not conducted, a preliminary
investigation on a few projects confirmed that our graph-based approach theoretically
offers equivalent precision to traditional AST-based tools. This is because our graph is
derived directly from the same ASIS AST without loss of structural information, and the
observed variations in message counts stem from correctable implementation details
rather than inherent limitations of the graph representation itself. For instance, our
initial review revealed:

• False Negatives: Caused by incomplete Cypher queries that did not account for
all language constructs (e.g., missing A_PRIVATE_EXTENSION_DECLARATION
in the type hierarchy for the ”Too Many Parents” rule).

• False Positives: Arising from specific language patterns being misinterpreted by
a query, such as for the ”Constructor” rule.

• Scope Mismatches: Differences in the set of files analyzed by each tool, explain-
ing some variations for local rules like ”Blocks” or ”Slices”.

These findings reinforce the conclusion that the precision of the graph-based approach
is fundamentally sound, with variations being attributable to the maturity of the rule
implementations. A full validation of detection accuracy remains an important direction
for future work that would:

• Verify reported messages through manual and automatic code inspection

• Compare detection rates between tools for each rule category

3.5. Summary 87

• Assess both false positive and false negative rates

• Evaluate the impact of different code patterns on detection accuracy

Such a detailed accuracy analysis would complement the performance metrics pre-
sented here and provide a more complete picture of each tool’s effectiveness. This
analysis would be particularly valuable for rules showing significant variation in re-
ported messages, helping to understand whether these differences represent genuine
improvements in detection capability or potential false positives/negatives.

3.5 Summary

The performance analysis reveals several key findings that warrant further discussion:

• Cogralys demonstrates significant performance advantages for most rule types,
particularly in analyzing larger codebases

• Project characteristics, such as complexity and library usage patterns, strongly
influence tool performance on smaller projects

• The graph-based approach shows particular promise for rules involving structural
relationships, while presenting some challenges for complex data flow analysis

• The overhead cost of database population suggests the need for optimization
strategies in certain use cases

These results raise important questions about the practical implications and potential
optimizations of graph-based static analysis. The following chapter examines these
aspects in detail, exploring:

• Strategies for reducing database population overhead

• Opportunities for query optimization in complex analysis scenarios

• Potential improvements to the graph schema for better supporting data flow
analysis

88 CHAPTER 3. Results and Analysis

Chapter 4

Discussion

In this chapter, we analyze and interpret the results of our research, examining their im-
plications within the broader context of static code analysis and coding rule verification.
Our findings confirm the hypothesis that using a graph database can substantially im-
prove static code analysis performance compared to traditional AST-based approaches.
We observed significant speedups over traditional tools like AdaControl and GNATcheck,
which aligns with similar findings in research on other languages such as Java [40].
However, an important revelation from our work is the potential for performance trade-
offs on smaller codebases where the overhead of database population exceeds the time
saved during analysis. This suggests our approach is best suited for larger codebases or
scenarios where repeated analyses can amortize the initial overhead cost.

4.1 Benefits and Limitations of Graph
Database Integration

4.1.1 Performance Analysis

The key benefit of integrating a graph database into static code analysis is the acceler-
ation of the analysis phase once the database is populated. Our experimental results
demonstrate substantial speedups ranging from 17 × to 195 × compared to traditional
tools, depending on the rule complexity and codebase size. This performance advan-

89

90 CHAPTER 4. Discussion

tage stems from the database’s ability to efficiently traverse relationships between code
elements without having to repeatedly process and navigate through ASTs.

However, our approach introduces significant overhead, where the time required
to populate the database exceed the time saved during analysis. This limitation is
particularly evident in projects under 10,000 lines of code, as shown in Section 3.2.2. For
these smaller projects, the population time dominated the total execution time, making
traditional AST-based tools potentially more efficient for one-time analyses.

This overhead-benefit balance represents a fundamental trade-off in our approach.
We recognize that the substantial upfront cost of database population must be weighed
against the performance benefits of faster analyses. This trade-off becomes more favor-
able as:

• Codebase size increases, providing more opportunities for optimization

• The number of coding rules being verified increases

• The same codebase undergoes repeated analyses, amortizing the initial population
cost

4.1.2 Comparing Graph-Based versus Text-Based
Approaches

Our research reveals that even for simpler rules that could theoretically be verified using
text-based tools like grep, the graph-based approach offers distinct advantages. For
instance, while rules like Abort_Statementsmight seem amenable to simple pattern
matching, our graph-based implementation provides several benefits that text-based
methods lack:

• Semantic understanding: Our approach distinguishes between actual abort
statements and similar text patterns occurring in comments, strings, or unrelated
contexts.

• Direct indexed access: Once populated, our graph database enables immediate
access to specific statement types without scanning entire codebases.

• Contextual information: Our implementation captures not just the presence of
statements but their context within the code structure, enabling more sophisti-
cated analyses.

4.1. Benefits and Limitations of Graph Database Integration 91

• Relationship correlation: Our approach can efficiently correlate information
across multiple AST locations, which becomes increasingly valuable as rule com-
plexity increases.

While we demonstrated these advantages primarily with simpler rules for this proof
of concept, we anticipate that the benefits would be even more pronounced for complex
rules requiring deeper AST exploration, such as those identified in Section 2.2 as potential
future implementations.

4.1.3 Rule Complexity and Performance Correla-
tion

Our analysis reveals an interesting correlation between rule complexity and relative
performance gains. We found that:

• Local rules show the highest performance improvements, with speedups of up
to 195 × compared to AdaControl, as they benefit most directly from the indexed
nature of the graph database.

• Intermediate rules maintain substantial performance advantages but with
slightly lower speedup factors (around 187 × compared to AdaControl), likely
due to their need to access information across code elements.

• Global rules still demonstrate significant improvements but show more mod-
erate speedups, reflecting the more complex graph traversals required to verify
constraints across compilation units.

This pattern suggests that our graph-based approach offers advantages across all
rule types but the magnitude of improvement varies with rule scope and complexity. It
also highlights the effectiveness of our relationship calculation methods, where most
relationships are established during AST traversal, while more complex relationships
like CALLING, IS_PROGENITOR_OF, and IS_ANCESTOR_OF are calculated directly
within the database during the finalization stage.

92 CHAPTER 4. Discussion

4.1.4 Technical Challenges and Solutions

Throughout our implementation, we encountered several technical challenges that
required careful consideration. One key challenge was the organization of database
population queries. We found that splitting queries across multiple output files by node
types and relationships was essential formaintaining referential integrity. This approach
ensures that all nodes are processed before any relationships are established, preventing
issues with empty placeholder nodes or duplicates.

Another challenge was determining which relationships to include in the graph.
We observed a clear dependency between the coding rules being implemented and
the edges needed in the graph. Our approach allows the graph to be enriched with
new relationship types as new rules are added, converging over time toward a richer
representation that covers most code analysis needs. This flexibility is particularly
important for extending the tool to support additional coding rules in the future.

Additionally, the use of a graph database required careful consideration of query
optimization techniques. We found that certain queries, particularly those involving
complex pattern matching or long traversals, benefit significantly from proper indexing
and query reformulation. This aspect of performance tuning represents an area where
further optimization could yield additional performance gains.

4.2 Potential Applications and Future
Work

4.2.1 Integration with Development Workflows

The improved analysis speed enabled by our approach could facilitate more frequent
verification of coding rules during development, potentially enhancing code quality
and developer productivity. This advantage becomes particularly significant in CI/CD
pipelines, where code needs to be analyzed with each commit or pull request.

However, for practical adoption, several technical transitions are necessary. Most
importantly, transitioning from ASIS to libadalang is critical for supporting modern Ada
features and overcoming the limitations of ASIS-for-GNAT. Additionally, ease of setupwill

4.2. Potential Applications and FutureWork 93

significantly influence user-friendliness and adoption rates. The current implementation
requires a Neo4j database instance, which adds complexity compared to standalone tools.
Future versions could explore embedded database options or containerized deployments
to simplify the setup process.

Integrationwith IntegratedDevelopment Environment (IDE) presents another promis-
ing direction. By providing real-time feedback on coding rule violations, our approach
could help developers identify and address issues earlier in the development cycle,
potentially reducing the cost of fixes and improving overall code quality.

4.2.2 Transitioning to libadalang

While our research leveraged ASIS-for-GNAT for robust parsing and AST generation, we
acknowledge its limitations, including lack of reentrancy, tree swapping overhead, and
end-of-life status. As noted in Section 1.2.3, these limitations affect not only performance
but also maintainability and adaptability to new Ada language features.

To overcome these challenges, transitioning to libadalang represents a promising
direction for future work. Libadalang supports newer Ada standards up to Ada 2022 and
avoids ASIS-for-GNAT performance issues related to concurrency and swapping ASTs.
Adopting libadalang would future-proof the techniques proposed in our research and
enable analysis of modern Ada codebases at scale.

The graph-based representation and querying approach we developed through this
thesis provide a solid foundation for migration to libadalang. The methodology for ex-
tracting nodes and relationships from the AST could be adapted toworkwith libadalang’s
different API, while the core graph database structure and query patterns would remain
largely unchanged.

4.2.3 Optimization Strategies

Future work should focus on several optimization strategies:

• Incremental updates: Developing capabilities for incremental updates to the
graph database would avoid full re-population for minor code changes, substan-
tially reducing overhead for iterative development workflows.

94 CHAPTER 4. Discussion

• Query optimization: Further optimization of pattern matching queries could
improve performance, particularly for complex rules involving long traversals or
multiple relationships.

• Parallel processing: Exploring parallel processing during both database pop-
ulation and query execution could leverage modern multi-core architectures to
further improve performance.

• Graph compression: Recent research has explored the use of compressed CPG
representations to reduce graph size and memory consumption, thereby improv-
ing query efficiency. For instance, Liu et al. [36] propose an approach that signifi-
cantly reduces analysis time on large codebases by working on a more compact
graph representation. This suggests that optimizing the graph schema itself is a
promising avenue for mitigating the overhead costs identified in our study.

4.2.4 Extending to Additional Languages

While our research focused specifically on Ada, the approach could potentially be ex-
tended to other programming languages. The graph-based representation is language-
agnostic in principle, although adapters for parsing and AST extraction would need to
be developed for each target language.

Languages with complex type systems and rich semantic structures, such as C++,
Rust, or OCaml, might benefit particularly from a graph-based approach similar to ours.

In functional languages like OCaml, features such as pattern matching and first-
class functions (where functions are passed as parameters or returned as results) create
complex control and data flow graphs. Our graph schema could be extended to model
these relationships, for instance by linking pattern branches to their corresponding type
constructors or tracing function values through higher-order calls.

Similarly, for languages like Rust, the concepts of ownership and lifetimes could be
explicitly modeled as properties or relationships within the graph. The borrow checker’s
constraints, which often involve traversing complex dependency chains, could poten-
tially be expressed as reachability queries in the graph database, offering an alternative
perspective to traditional data-flow analysis.

The experience gained from applying the technique to Ada, with its complex seman-
tics and type system, provides valuable insights for extending the approach to these
languages.

4.2. Potential Applications and FutureWork 95

4.2.5 Comprehensive Benchmarking

To fully validate the approach, more extensive benchmarking is necessary. Future work
should include:

• Complex query evaluation: Testing with more complex queries to assess how
performance scales with rule complexity

• Varying rule sets: Experimenting with different combinations and numbers of
coding rules to understand the impact on performance

Beyond performance metrics, a more comprehensive analysis of reported messages
is essential. As shown in Section 3.4, my initial analysis revealed interesting patterns in
how different tools report violations:

• Local rules showed relatively consistent reporting across tools (variations typically
under 10%)

• Intermediate rules demonstrated similar detection patterns, suggesting compara-
ble effectiveness in structural analysis

• Global rules showed significant variations, particularly in inheritance hierarchy
analysis with the ”Too Many Parents” rule

• The partially implemented Variable Usage rule showed substantial differences in
reporting patterns

However, these raw numbers need more thorough validation. Future work should
include a comprehensive analysis of true/false positives and negatives by:

• Verifying reported messages through manual code inspection

• Comparing detection rates between tools for each rule category

• Assessing both false positive and false negative rates

• Evaluating the impact of different code patterns on detection accuracy

96 CHAPTER 4. Discussion

This detailed accuracy analysis would complement the performance metrics and
provide a more complete picture of my approach’s effectiveness compared to traditional
tools. It would be particularly valuable for rules showing significant variation in re-
ported messages, helping to understand whether these differences represent genuine
improvements in detection capability or potential false positives/negatives.

These additional experiments would provide deeper insights into the scalability and
effectiveness of the graph-based approach across different scenarios and use cases.

4.3 Implications for Static Code Analy-
sis

My research has several broader implications for the field of static code analysis, partic-
ularly for safety-critical domains where Ada is commonly used.

4.3.1 Shifting Paradigms in Static Analysis

The significant performance improvements demonstrated by our graph-based approach
suggest a potential paradigm shift in how static analysis tools are designed and im-
plemented. Traditional AST-based approaches have been the dominant paradigm for
decades, but our research indicates that graph-based representations offer compelling
advantages, particularly for large codebases and complex analyses.

This shift aligns with broader trends in software engineering toward more scalable
and efficient tools capable of handling the increasing complexity of modern software
systems. As codebases continue to grow in size and complexity, approaches that can
efficiently navigate and query code structures become increasingly valuable.

4.3.2 Implications for Safety-Critical Software

In safety-critical domains, thorough verification of coding rules is essential for ensuring
software reliability and compliance with standards. The performance improvements
offered by our approach could enable more comprehensive analyses or more frequent

4.4. Conclusion 97

verification, potentially enhancing the safety assurance process without increasing
development time or cost.

4.3.3 Knowledge Representation in Code Analysis

Our research also contributes to the broader understanding of knowledge representation
in code analysis. By representing code as a property graph with rich semantic relation-
ships, we demonstrate how complex code structures and relationships can be efficiently
captured and queried.

This approach to knowledge representation could improve the development of other
software engineering tools beyond coding rule verification, such as refactoring tools,
program understanding aids, or automated code review systems. The graph-based
representation provides a flexible and expressive foundation for various analyses that
require understanding code structure and relationships.

4.4 Conclusion

In this chapter, we discussed the implications of our research findings, analyzed the
benefits and limitations of our graph-based approach to coding rule verification, and out-
lined potential applications and directions for future work. Our research demonstrates
that graph databases offer significant performance advantages for static code analysis,
particularly for large codebases and repeated analyses.

While our approach introduces overhead for database population and higher over-
head on AST traversal, the substantial speedups in analysis time make it a promising
alternative to traditional AST-based methods, especially as codebases grow in size and
complexity. The transition to libadalang, optimization of database population, and in-
tegration with development workflows represent key areas for future work that could
further enhance the practical utility of our approach.

By advancing the state-of-the-art in coding rule verification for Ada, our research
contributes to the broader goals of improving software quality and reliability, particularly
in safety-critical domains where these qualities are essential.

98 CHAPTER 4. Discussion

Conclusion

In this thesis, we proposed and validated a novel methodology for leveraging graph
databases to enhance the performance of coding rule checkers. Our research has demon-
strated that graph-based representations of code can significantly improve the efficiency
and scalability of coding rule verification, particularly for large codebases. Here, we
summarize the key findings and outcomes of our work:

Summary of Contributions

The primary contributions of our research are:

• We designed a graph schema optimized for representing Ada codebases by map-
ping ASTs, CFG, and PDG to nodes, relationships, and properties, with carefully
selected relationship types that support efficient coding rule verification.

• We developed an approach to systematically populate the graph database from
source code, withmost relationships established during AST traversal and complex
relationships (like CALLING, IS_PROGENITOR_OF, and IS_ANCESTOR_OF) cal-
culated directly within the database.

• We implemented a prototype toolchain integrating robust Ada parsing, AST con-
struction, graph population, and Cypher-based static analysis queries, demonstrat-
ing the feasibility of the approach.

• We curated a comprehensive real-world Ada benchmark suite using 134 open-
source projects to evaluate the performance and scalability of our approach.

99

100 Conclusion

• We evaluated performance on 8 coding rules spanning different complexity levels
(local, intermediate, and global rules) to assess the approach’s effectiveness across
different types of analyses.

• We demonstrated significant runtime improvements over conventional analysis
tools, with speedups ranging from 17 × to 195 × depending on rule complexity
and codebase size.

• We identified key trade-offs including database population overhead and demon-
strated that the approach is most beneficial for larger codebases or scenarios with
repeated analyses.

• We analyzed how our graph-based approach provides advantages even for simple
rules through semantic understanding, direct indexed access, and relationship
correlation capabilities that text-based methods lack.

Our work has delivered a functioning graph-powered analysis framework while
furthering the understanding of prospects and challenges in this emerging technique.

Revisiting Research Questions

The core research questions driving our investigation were:

1. Can graph databases improve static code analysis efficiency?

2. Which graph schema design optimally represents codebases?

3. How do existing static analysis techniques translate to graph queries?

4. What performance gains does graph analysis achieve over conventional approaches?

Our results affirmatively demonstrated that leveraging graph databases can signifi-
cantly improve static analysis performance through faster queries. However, we found
that benefits must be weighed against the population overhead, making the approach
most suitable for larger codebases or repeated analyses. We determined that an ab-
stracted schema focused on structure and enriched with selected semantic relationships
maximizes analytic power while minimizing complexity. Through our implementation,

Recommendations and Limitations 101

we showed that robust parsing and systematic AST traversal enabled reliable population,
with complex relationships calculated efficiently within the database itself.

We discovered that common checks mapped well to graph patterns, though we
noted that even simple rules benefit from the semantic understanding that our graph-
based approach provides. Across our benchmarks, we quantified significant order-of-
magnitude improvements over conventional tools, with the most substantial speedups
observed for local rules (up to 195 × compared to AdaControl).

Recommendations and Limitations

Based on the insights gained fromour research, we offer the following recommendations:

• Use graph databases for large, complex, or frequently analyzed codebases where
the performance benefits will outweigh the initial population overhead.

• Design graph schemas to balance simplicity and expressiveness, with the flexibility
to add new relationship types as needed for additional coding rules.

• Optimize population to only capture necessary information for the targeted coding
rules to minimize overhead.

• Consider the graph-based approach even for seemingly simple rules, as it provides
semantic understanding and context that text-based methods lack.

• Implement incremental update capabilities to avoid full re-population for minor
code changes in development workflows.

• In future work, consider separating the initial population phase from the ad-
vanced enrichment phase (such as the computation of call graph and ancestor
relationships), as discussed in Chapter 2.4. This would allow for a more granular
comparison of analysis times between graph-based and conventional tools, and
could provide further insight into the trade-offs of each approach.

However, our research had several limitations that we acknowledge:

• Ada-specific focus without immediate generalization to other languages, though
the approach is theoretically applicable with language-specific adapters.

102 Conclusion

• Limited benchmark diversity focused primarily on open-source code, which may
not fully represent large proprietary industrial codebases.

• Constrained subset of coding rules implemented, with more complex rules that
would likely demonstrate even greater advantages left for future work.

• Lack of comprehensive analysis of the accuracy of reported messages across
different tools.

• Use of ASIS limiting support for modern Ada constructs and introducing perfor-
mance constraints related to tree swapping.

Addressing these limitations represents promising directions for future work.

Future Work

We identify several promising directions for advancing this research:

• Transitioning to libadalang for robust modern Ada support, overcoming the limi-
tations of ASIS-for-GNAT and enabling analysis of code using newer Ada language
features.

• Implementing more complex coding rules that require deep AST exploration,
which would likely demonstrate even greater advantages for our graph-based
approach.

• Developing capabilities for incremental updates to the graph database to reduce
overhead for iterative development workflows.

• Conducting comprehensive analysis of true/false positives and negatives in re-
ported messages to validate detection accuracy.

• Integrating the approach into IDEs and CI/CD pipelines to provide real-time feed-
back during development.

• Extending the approach to additional programming languages, particularly those
with complex type systems and semantic structures similar to Ada.

• Investigating alternate graph database technologies and query optimization tech-
niques to further improve performance.

FutureWork 103

As graph databases and analysis techniques mature, we see sizable opportunities to
build on our research and expand its applications.

In summary, our thesis has introduced a practical approach for leveraging graph tech-
nologies to accelerate static code analysis while characterizing the trade-offs involved.
Our promising results indicate that graph-powered analysis could play an important role
in enabling efficient, automated code quality and security assurance across the software
development lifecycle. With further research and development, graph databases may
provide the cornerstone for the next generation of static analysis capabilities, particu-
larly for complex, safety-critical software systems where reliability and code quality are
paramount.

104 Conclusion

Bibliography

[1] Ada Semantic Interface Specification: ISO/IEC 15291:1999. url: https://www.

iso.org/standard/27169.html (cit. on p. 20).

[2] AdaCore.GNATcheck. url:https://www.adacore.com/static-analysis/

gnatcheck (cit. on p. 34).

[3] AdaCore. libadalangGitHub repository. url:https://github.com/AdaCore/

libadalang (cit. on pp. 21, 47).

[4] Adalog. Ada static code analysis tools benchmark. url: https://github.com/

Adalog-fr/ada-static-code-analysis-tools-benchmark

(cit. on pp. 42, 68).

[5] Adalog. AdaControl. url: https://www.adalog.fr/en/adacontrol.

html (cit. on p. 47).

[6] Alire. Alire. url: https://alire.ada.dev/ (cit. on p. 42).

[7] F. E. Allen and J. Cocke. “A program data flow analysis procedure”. In: Commu-

nications of the ACM 19.3 (Mar. 1976), p. 137. doi: 10.1145/360018.360025

(cit. on p. 11).

[8] Renzo Angles and Claudio Gutierrez. “Survey of graph database models”. In: Acm

Computing Surveys 40.1 (Feb. 2008), pp. 1–39. doi:10.1145/1322432.1322433

(cit. on p. 24).

[9] Renzo Angles et al. “PG-Keys: Keys for Property Graphs”. In: Proceedings of the 2021

International Conference on Management of Data. ACM, June 2021. doi: 10.1145/

3448016.3457561 (cit. on pp. 25, 30).

105

https://www.iso.org/standard/27169.html
https://www.iso.org/standard/27169.html
https://www.adacore.com/static-analysis/gnatcheck
https://www.adacore.com/static-analysis/gnatcheck
https://github.com/AdaCore/libadalang
https://github.com/AdaCore/libadalang
https://github.com/Adalog-fr/ada-static-code-analysis-tools-benchmark
https://github.com/Adalog-fr/ada-static-code-analysis-tools-benchmark
https://www.adalog.fr/en/adacontrol.html
https://www.adalog.fr/en/adacontrol.html
https://alire.ada.dev/
https://doi.org/10.1145/360018.360025
https://doi.org/10.1145/1322432.1322433
https://doi.org/10.1145/3448016.3457561
https://doi.org/10.1145/3448016.3457561

106 Bibliography

[10] Bruno Blanchet et al. “A static analyzer for large safety-critical software”. In: Acm

Sigplan Notices 38.5 (May 2003), pp. 196–207. issn: 1558-1160. doi: 10.1145/

780822.781153 (cit. on p. 17).

[11] Krzysztof Borowski, Bartosz Balis, and Tomasz Orzechowski. “Semantic Code

Graph—An Information Model to Facilitate Software Comprehension”. In: IEEE

Access 12 (2024), pp. 27279–27310. issn: 2169-3536. doi:10.1109/access.2024.

3351845. url: http://dx.doi.org/10.1109/ACCESS.2024.

3351845 (cit. on pp. 15, 27).

[12] B. Chess and G. McGraw. “Static analysis for security”. In: IEEE Security and Privacy

2.6 (Nov. 2004), pp. 76–79. doi: 10.1109/msp.2004.111 (cit. on p. 1).

[13] Patrick Cousot and Radhia Cousot. “Abstract interpretation: a unified lattice model

for static analysis of programs by construction or approximation of fixpoints”. In:

Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of program-

ming languages - POPL ’77. POPL ’77. ACM Press, 1977. doi: 10.1145/512950.

512973 (cit. on p. 17).

[14] Patrick Cousot et al. “The ASTRÉE analyzer”. In: Programming Languages and Sys-

tems: 14th European Symposium on Programming, ESOP 2005. Ed. by Mooly Sa-

giv. LNCS #3444. Springer, 2005, p. 21. doi: 10.1007/b107380. url: https:

//hal.science/hal-00084293 (cit. on p. 17).

[15] Alin Deutsch et al. “Graph Pattern Matching in GQL and SQL/PGQ”. In: (Dec. 2021).

arXiv: 2112.06217 [cs.DB] (cit. on p. 25).

[16] David Evans et al. “LCLint: a tool for using specifications to check code”. In: Proceed-

ings of the 2nd ACM SIGSOFT symposium on Foundations of software engineering.

SOFT94. ACM, Dec. 1994. doi: 10.1145/193173.195297 (cit. on p. 17).

[17] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. “The program dependence

graph and its use in optimization”. In: Acm Transactions On Programming Languages

and Systems 9.3 (July 1987), pp. 319–349. doi: 10.1145/24039.24041 (cit. on

p. 12).

https://doi.org/10.1145/780822.781153
https://doi.org/10.1145/780822.781153
https://doi.org/10.1109/access.2024.3351845
https://doi.org/10.1109/access.2024.3351845
http://dx.doi.org/10.1109/ACCESS.2024.3351845
http://dx.doi.org/10.1109/ACCESS.2024.3351845
https://doi.org/10.1109/msp.2004.111
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/b107380
https://hal.science/hal-00084293
https://hal.science/hal-00084293
https://arxiv.org/abs/2112.06217
https://doi.org/10.1145/193173.195297
https://doi.org/10.1145/24039.24041

Bibliography 107

[18] Hugo Gascon et al. “Structural detection of android malware using embedded call

graphs”. In: Proceedings of the 2013 ACM workshop on Artificial intelligence and

security. CCS’13. ACM, Nov. 2013. doi: 10.1145/2517312.2517315 (cit. on

p. 11).

[19] Inc. GitHub. CodeQL: Discover vulnerabilities across a codebase with CodeQL. url:

https://codeql.github.com/ (cit. on p. 23).

[20] Quinn Hanam, Fernando S. de M. Brito, and Ali Mesbah. “Discovering bug pat-

terns in JavaScript”. In: Proceedings of the 2016 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering. FSE’16. ACM, Nov. 2016. doi:

10.1145/2950290.2950308 (cit. on p. 1).

[21] Mark Harman and Peter O’Hearn. “From Start-ups to Scale-ups: Opportunities

and Open Problems for Static and Dynamic Program Analysis”. In: 2018 IEEE 18th

InternationalWorking Conference on Source Code Analysis andManipulation (SCAM).

IEEE, Sept. 2018. doi: 10.1109/scam.2018.00009 (cit. on p. 2).

[22] Susan Horwitz, Thomas Reps, and David Binkley. “Interprocedural slicing using

dependence graphs”. In: Acm Transactions On Programming Languages and Systems

12.1 (Jan. 1990), pp. 26–60. doi: 10.1145/77606.77608 (cit. on p. 12).

[23] Michael Hunger. Proudly Releasing: Efficient Graph Algorithms in Neo4j. 2017. url:

https://neo4j.com/blog/news/efficient-graph-algorithms-

neo4j/ (visited on 04/23/2025) (cit. on p. 24).

[24] Neo4j Inc. Neo4j Graph Database: The Fastest Path to Graph Success. url: https:

//neo4j.com (cit. on p. 48).

[25] S. C. Johnson. Lint, a C program checker. Bell Telephone Laboratories Murray Hill,

1977 (cit. on p. 17).

[26] Phillip Johnston and Robert Harris. “The Boeing 737 MAX Saga: Lessons for Soft-

ware Organizations”. In: Software Quality Professional 21.3 (2019), pp. 4–12 (cit. on

p. 1).

[27] Rafael-Michael Karampatsis et al. “Big code != big vocabulary: open-vocabulary

models for source code”. In: Proceedings of the ACM/IEEE 42nd International Con-

ference on Software Engineering. ICSE ’20. ACM, June 2020. doi: 10.1145/

3377811.3380342 (cit. on p. 18).

https://doi.org/10.1145/2517312.2517315
https://codeql.github.com/
https://doi.org/10.1145/2950290.2950308
https://doi.org/10.1109/scam.2018.00009
https://doi.org/10.1145/77606.77608
https://neo4j.com/blog/news/efficient-graph-algorithms-neo4j/
https://neo4j.com/blog/news/efficient-graph-algorithms-neo4j/
https://neo4j.com
https://neo4j.com
https://doi.org/10.1145/3377811.3380342
https://doi.org/10.1145/3377811.3380342

108 Bibliography

[28] Uday P. Khedker. Data Flow Analysis. Theory and Practice. Ed. by Amitabha Sanyal

and Bageshri Karkare. First. Baton Rouge: Taylor & Francis Group, 2009. 1401 pp.

isbn: 9780849332517 (cit. on p. 11).

[29] Philip Koopman and MichaelWagner. “Challenges in Autonomous Vehicle Testing

and Validation”. In: SAE International Journal of Transportation Safety 4.1 (Apr. 2016),

pp. 15–24. issn: 2327-5634. doi: 10.4271/2016-01-0128 (cit. on p. 1).

[30] David Larochelle and David Evans. “Statically detecting likely buffer overflow vul-

nerabilities”. In: Proceedings of the 10th Conference on USENIX Security Symposium -

Volume 10. SSYM’01. Washington, D.C.: USENIX Association, 2001, p. 14 (cit. on p. 17).

[31] N. G. Leveson and C. S. Turner. “An investigation of the Therac-25 accidents”. In:

Computer 26.7 (July 1993), pp. 18–41. issn: 0018-9162. doi: 10.1109/mc.1993.

274940 (cit. on p. 1).

[32] Junjie Li. “A Better Approach to Track the Evolution of Static Code Warnings”.

In: 2021 IEEE/ACM 43rd International Conference on Software Engineering: Com-

panion Proceedings (ICSE-Companion). IEEE, May 2021. doi: 10.1109/icse-

companion52605.2021.00058 (cit. on p. 17).

[33] Junjie Li and Jinqiu Yang. “Tracking the Evolution of Static CodeWarnings: The

State-of-the-Art and a Better Approach”. In: IEEE Transactions on Software Engi-

neering 50.3 (Mar. 2024), pp. 534–550. issn: 2326-3881. doi: 10.1109/tse.2024.

3358283 (cit. on p. 17).

[34] Jacques-Louis Lions. Ariane 5 Flight 501 Failure. Tech. rep. European Space Agency,

1996. url:http://sunnyday.mit.edu/accidents/Ariane5accidentreport.

html (cit. on p. 1).

[35] Zhengyao Liu et al. “Scalable Defect Detection via Traversal on Code Graph”.

In: 2024. url: https://api.semanticscholar.org/CorpusID:

270391551 (cit. on p. 18).

[36] Zhengyao Liu et al. “Scalable Defect Detection via Traversal on Code Graph”. In:

ArXiv abs/2406.08098 (2024). url:https://api.semanticscholar.org/

CorpusID:270391551 (cit. on p. 94).

https://doi.org/10.4271/2016-01-0128
https://doi.org/10.1109/mc.1993.274940
https://doi.org/10.1109/mc.1993.274940
https://doi.org/10.1109/icse-companion52605.2021.00058
https://doi.org/10.1109/icse-companion52605.2021.00058
https://doi.org/10.1109/tse.2024.3358283
https://doi.org/10.1109/tse.2024.3358283
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html
https://api.semanticscholar.org/CorpusID:270391551
https://api.semanticscholar.org/CorpusID:270391551
https://api.semanticscholar.org/CorpusID:270391551
https://api.semanticscholar.org/CorpusID:270391551

Bibliography 109

[37] Shan Lu et al. “Learning from mistakes: a comprehensive study on real world

concurrency bug characteristics”. In: Acm Sigarch Computer Architecture News 36.1

(Mar. 2008), pp. 329–339. issn: 0163-5964. doi: 10.1145/1353534.1346323

(cit. on p. 1).

[38] Alexey Ponomarev, Hitesh S. Nalamwar, and Ragesh Jaiswal. “Source Code Anal-

ysis: Current and Future Trends Challenges”. In: 685 (Feb. 2016), pp. 877–880. doi:

10.4028/www.scientific.net/kem.685.877 (cit. on p. 2).

[39] Rudolf Ramler et al. “Benefits and Drawbacks of Representing and Analyzing

Source Code and Software Engineering Artifacts with Graph Databases”. In: (Dec.

2018), pp. 125–148. doi: 10.1007/978-3-030-05767-1_9 (cit. on pp. 2, 18,

26, 27).

[40] Oscar Rodriguez-Prieto, Alan Mycroft, and Francisco Ortin. “An Efficient and Scal-

able Platform for Java Source Code Analysis Using Overlaid Graph Representa-

tions”. In: IEEE Access 8 (2020), pp. 72239–72260. doi: 10.1109/access.2020.

2987631 (cit. on pp. 18, 27, 89).

[41] Yaman Roumani, Joseph K. Nwankpa, and Yazan F. Roumani. “Examining the

relationship between firm’s financial records and security vulnerabilities”. In: 36.6

(Dec. 2016), pp. 987–994. doi: 10.1016/j.ijinfomgt.2016.05.016

(cit. on p. 1).

[42] Sergey Rybin et al. “ASIS-for-GNAT: A Report of Practical Experiences”. In: (Dec.

2000). Ed. by Hubert B. Keller and Erhard Pl”odereder, pp. 125–137. doi: 10.1007/

10722060_13 (cit. on p. 47).

[43] SCC: Sloc, Cloc and Code: scc is a very fast accurate code counter with complexity

calculations and COCOMO estimates written in pure Go. url: https://github.

com/boyter/scc (cit. on pp. 42, 66, 67).

[44] Inc. Scientific Toolworks. Understand code tool. url: https://scitools.

com/ (cit. on p. 23).

[45] SonarQube. SonarQube. url: https://www.sonarqube.org (cit. on p. 23).

https://doi.org/10.1145/1353534.1346323
https://doi.org/10.4028/www.scientific.net/kem.685.877
https://doi.org/10.1007/978-3-030-05767-1_9
https://doi.org/10.1109/access.2020.2987631
https://doi.org/10.1109/access.2020.2987631
https://doi.org/10.1016/j.ijinfomgt.2016.05.016
https://doi.org/10.1007/10722060_13
https://doi.org/10.1007/10722060_13
https://github.com/boyter/scc
https://github.com/boyter/scc
https://scitools.com/
https://scitools.com/
https://www.sonarqube.org

110 Bibliography

[46] Sherri Sparks et al. “Automated Vulnerability Analysis: Leveraging Control Flow

for Evolutionary Input Crafting”. In: Twenty-Third Annual Computer Security Appli-

cations Conference (ACSAC 2007). IEEE, Dec. 2007. doi: 10.1109/acsac.2007.

27 (cit. on p. 11).

[47] Raoul-Gabriel Urma and AlanMycroft. “Source-code queries with graph databases-

with application to programming language usage and evolution”. In: Science of

Computer Programming 97 (Jan. 2013). Special Issue on New Ideas and Emerging

Results in Understanding Software, pp. 127–134. issn: 0167-6423. doi: 10.1016/j.

scico.2013.11.010 (cit. on p. 26).

[48] Chad Vicknair et al. “A comparison of a graph database and a relational database”.

In: Proceedings of the 48th Annual Southeast Regional Conference. ACM, Apr. 2010.

doi: 10.1145/1900008.1900067 (cit. on p. 25).

[49] Aleksa Vukotic et al. Neo4j in Action. Manning Publications, 2014, p. 304. isbn:

9781617290763 (cit. on p. 30).

[50] Fabian Yamaguchi et al. “Modeling and Discovering Vulnerabilities with Code

Property Graphs”. In: SP ’14 (May 2014), pp. 590–604. doi: 10.1109/sp.2014.

44. url: https://doi.org/10.1109/SP.2014.44 (cit. on pp. xx, 2, 7,

13, 26).

[51] Fabien Yamaguchi. Joern: Discover know vulnerabilities in your code. url: https:

//joern.io/ (cit. on p. 23).

[52] Fabien Yamaguchi. OverflowDB by ShiftLeft. url: https://github.com/

ShiftLeftSecurity/overflowdb (cit. on p. 23).

[53] Zuoning Yin et al. “An empirical study on configuration errors in commercial and

open source systems”. In: Proceedings of the Twenty-Third ACM Symposium on

Operating Systems Principles. SOSP ’11. ACM, Oct. 2011. doi: 10.1145/2043556.

2043572 (cit. on p. 1).

https://doi.org/10.1109/acsac.2007.27
https://doi.org/10.1109/acsac.2007.27
https://doi.org/10.1016/j.scico.2013.11.010
https://doi.org/10.1016/j.scico.2013.11.010
https://doi.org/10.1145/1900008.1900067
https://doi.org/10.1109/sp.2014.44
https://doi.org/10.1109/sp.2014.44
https://doi.org/10.1109/SP.2014.44
https://joern.io/
https://joern.io/
https://github.com/ShiftLeftSecurity/overflowdb
https://github.com/ShiftLeftSecurity/overflowdb
https://doi.org/10.1145/2043556.2043572
https://doi.org/10.1145/2043556.2043572

Appendix A

More information

A.1 Complete AST example

This section presents the full Abstract Syntax Tree (AST) for the ”Cat Laser Pointer”

program, used as a running example throughout this thesis. This visualization helps

illustrate the structural complexity that static analysis tools must process.

A_CLAUSE
with Observe_Cat, Activate_Laser_Pointer;

A_WITH_CLAUSE

AN_EXPRESSION
Observe_Cat
AN_IDENTIFIER

AN_EXPRESSION
Activate_Laser_Pointer

AN_IDENTIFIER

A_DECLARATION
procedure Cat_Laser_Pointer is

A_PROCEDURE_BODY_DECLARATION

A_DEFINING_NAME
Cat_Laser_Pointer

A_DEFINING_IDENTIFIER

A_DECLARATION
Cat_Boredom_Level : Natural;
A_VARIABLE_DECLARATION

A_DECLARATION
Laser_Speed : Natural;

A_VARIABLE_DECLARATION

A_STATEMENT
Cat_Boredom_Level := Observe_Cat;

AN_ASSIGNMENT_STATEMENT

A_STATEMENT
if Cat_Boredom_Level > 8 then

AN_IF_STATEMENT

A_DEFINING_NAME
Cat_Boredom_Level

A_DEFINING_IDENTIFIER

A_DEFINITION
Natural

A_SUBTYPE_INDICATION

AN_EXPRESSION
Natural

AN_IDENTIFIER

A_DEFINING_NAME
Laser_Speed

A_DEFINING_IDENTIFIER

A_DEFINITION
Natural

A_SUBTYPE_INDICATION

AN_EXPRESSION
Natural

AN_IDENTIFIER

AN_EXPRESSION
Cat_Boredom_Level

AN_IDENTIFIER

AN_EXPRESSION
Observe_Cat

A_FUNCTION_CALL

AN_EXPRESSION
Observe_Cat
AN_IDENTIFIER

A_PATH
if Cat_Boredom_Level > 8 then

AN_IF_PATH

AN_EXPRESSION
Cat_Boredom_Level > 8

A_FUNCTION_CALL

A_STATEMENT
Laser_Speed := Cat_Boredom_Level / 2;

AN_ASSIGNMENT_STATEMENT

A_STATEMENT
Activate_Laser_Pointer (Laser_Speed);
A_PROCEDURE_CALL_STATEMENT

AN_ASSOCIATION
Cat_Boredom_Level

A_PARAMETER_ASSOCIATION

AN_EXPRESSION
>

AN_OPERATOR_SYMBOL

AN_ASSOCIATION
8

A_PARAMETER_ASSOCIATION

AN_EXPRESSION
Cat_Boredom_Level

AN_IDENTIFIER

AN_EXPRESSION
8

AN_INTEGER_LITERAL

AN_EXPRESSION
Laser_Speed

AN_IDENTIFIER

AN_EXPRESSION
Cat_Boredom_Level / 2

A_FUNCTION_CALL

AN_ASSOCIATION
Cat_Boredom_Level

A_PARAMETER_ASSOCIATION

AN_EXPRESSION
/

AN_OPERATOR_SYMBOL

AN_ASSOCIATION
2

A_PARAMETER_ASSOCIATION

AN_EXPRESSION
Cat_Boredom_Level

AN_IDENTIFIER

AN_EXPRESSION
2

AN_INTEGER_LITERAL

AN_EXPRESSION
Activate_Laser_Pointer

AN_IDENTIFIER

AN_ASSOCIATION
Laser_Speed

A_PARAMETER_ASSOCIATION

AN_EXPRESSION
Laser_Speed

AN_IDENTIFIER

Figure A.1: Full AST of ”Cat Laser Pointer” program

111

112 APPENDIX A. More information

A.2 Complete Extended CPG example

Following the AST, this section provides a complete view of the extended Code Property

Graph (CPG) for the same ”Cat Laser Pointer” program. This graph includes AST, control

flow, and data flow information, demonstrating the rich, interconnected data model

used for our analysis.

IS
_E

N
C
LO

S
E
D
_I
N

IS
_E

N
C
LO

S
E
D
_I
N

IS_
ENC

LOS
ED_

IN

IS
_E

N
C
LO

S
E
D
_IN

IS_ENCLOSED_IN

IS
_EN

C
LO

S
ED

_IN

IS
_E
NC

LO
SE

D_
IN

IS_ENCLOSED_IN

IS_ENCLO
SED_IN

IS_ENCLOSED_IN

IS_EN
C
LO

SED
_IN

IS_ENCLOSED_IN

IS_ENCLOSED_IN

IS_
EN

CL
OS

ED
_IN

IS
_E

N
C
LO

S
E
D
_IN

IS_ENCLOSED_IN

IS_ENCLOSED_IN

IS
_E

N
C
LO

S
ED

_I
N

IS
_EN

C
LO

S
ED

_IN

IS_ENCL
OSED_I

N

IS_EN
C
LO

SED
_IN

IS_
EN

CL
OS

ED
_IN

IS_ENCLOSED_IN

IS_EN
C
LO

SED
_IN

IS
_E

N
C
LO

S
E
D
_I
N

IS
_E
NC

LO
SE
D_
IN

IS
_E
N
C
LO

SE
D_
IN

IS
_E

N
C
LO

S
E
D
_IN

IS_ENCLO
SED_IN

IS_ENCLOSED_IN

IS
_E

N
C
LO

S
E
D
_IN

IS
_E
NC

LO
SE
D_
IN

IS
_E

N
C
LO

S
E
D
_IN

IS
_E
N
C
LO

SE
D
_I
N

IS_EN
C
LO

SED
_IN

IS
_E
N
C
LO

SE
D
_I
N

IS
_E
N
C
LO

SE
D
_I
N

IS_E
NC

LOS
ED_

IN

IS_
EN

CL
OS

ED
_IN

IS
_E

N
C
LO

S
E
D
_I
N

IS_ENCLOSED_IN

IS
_E

N
C
LO

S
E
D
_IN

IS_ENCL
OSED_IN

IS_ENCLOSED_IN

CORRESPONDING_NAM
E_…

C
O
R
R
ESPO

N
D
IN
G
_N

AM
…

CO
RR

ES
PO

ND
ING

_N
AM

E_
DE

FIN
ITIO

N

CO
RR

ES
PO

ND
ING

_N
AM

E_D
EF

IN…

CO
RR

ES
PO

ND
ING

_N
AM

E_D
EF

INI
TIO

N

CORRES…

C
O
R
R
E
S
P
O
N
D
IN
G
_A

S
S
IG

N
ATIO

N

CORRESPONDING_ASSIGNATION

C
O
R
R
E
S
P
O
N
D
IN
G
_A

C
TU

A
L_… C

O
R
R
E
S
P
O
N
D
IN
…

>

Observe…

Activate…

Natural

Natural

Cat_Bor…

Observe…

Cat_Bor…

Laser_S…Cat_Bor…

Activate…

Laser_S…

Natural

Natural

Cat_Bor…

8

Cat_Bor…

2

Laser_S…

Normaliz…

Normaliz…

with
Obser…

/ procedure
Cat_L…

8

2

Cat_Las…

if
Cat_B…

User_Pa…

User_Pa…

User_Pa…
User_Pa…

Cat_Bor…

Laser_S…

Observe…

Cat_Bor…

Cat_Bor…

Cat_Las…

Cat_Bor…

Laser_S…

if
Cat_B…

Cat_Bor…

Laser_S…Activate…

Figure A.2: Full example of extended CPG of ”Cat Laser Pointer” program

Appendix B

Not (fully) implemented rules

B.1 Variable Usage

This section provides the complete Cypher queries used to implement the ”Variable

Usage” rule, which was discussed as a partially implemented global rule. These queries

illustrate the practical application of graph pattern matching to identify variable read-

/write operations across different language contexts, including generic instantiations.

For each variable in a program is the variable read and / or written?

�

Code B.1 – Query to get the READ / WRITE usage in normal and generic case

1 MATCH (cu:Compilation_Unit { is_predefined_unit: false

})
2 WHERE NOT cu.content STARTS WITH "System"
3 MATCH (vD:A_VARIABLE_DECLARATION)<-[:IS_ENCLOSED_IN]-(v: ⌋

A_DEFINING_IDENTIFIER)
4 WHERE (vD)-[:IS_ENCLOSED_IN*]->(cu)
5

113

114 APPENDIX B. Not (fully) implemented rules

6 OPTIONAL MATCH enclGen = (v)-[:IS_ENCLOSED_IN*]->(decl:A ⌋
_GENERIC_PACKAGE_DECLARATION)

7
8 WITH *,
9 CASE WHEN length(enclGen) is null THEN v ELSE null END

AS normalVar,
10 CASE WHEN length(enclGen) is not null THEN { var: v,

decl: decl } ELSE NULL END AS genericVar,
11 { filename: v.filename, line: v.line, column: v.column

} as l
12
13 //////////////////////
14 /// Normal variables ///
15 //////////////////////
16
17 /// Find read variables
18 CALL {
19 WITH normalVar
20 MATCH readVar=(normalVar)<-[:CORRESPONDING_NAME_DEFINI ⌋

TION]-(elt:AN_IDENTIFIER)
21 WHERE NOT EXISTS((elt:AN_IDENTIFIER)-[:CORRESPONDING ⌋

_ASSIGNATION]->(:AN_ASSIGNMENT_STATEMENT))
22 AND NOT EXISTS ((elt)-[:IS_ENCLOSED_IN]->(:A_PARAMET ⌋

ER_ASSOCIATION)-[:CORRESPONDING_PARAMETER_SPECIF ⌋
ICATION]->(:AN_OUT_MODE))

23 AND NOT EXISTS ((elt)-[:IS_ENCLOSED_IN*]->(:AN_OBJEC ⌋
T_RENAMING_DECLARATION))

24 WITH collect(readVar) as readArray
25 RETURN size(readArray) > 0 AS isReadNormal
26 }
27
28 /// Find written variables
29 CALL {
30 WITH normalVar
31 MATCH writeVar=(normalVar)<-[:CORRESPONDING_NAME_DEFIN ⌋

ITION]-(elt:AN_IDENTIFIER)
32 WHERE (EXISTS((elt:AN_IDENTIFIER)-[:CORRESPONDING_AS ⌋

SIGNATION]->(:AN_ASSIGNMENT_STATEMENT))
33 OR EXISTS ((elt)-[:IS_ENCLOSED_IN]->(:A_PARAMETER_AS ⌋

SOCIATION)-[:CORRESPONDING_PARAMETER_SPECIFICATI ⌋
ON]->(:AN_OUT_MODE))

B.1. Variable Usage 115

34 OR EXISTS ((elt)-[:IS_ENCLOSED_IN]->(:A_PARAMETER_AS ⌋
SOCIATION)-[:CORRESPONDING_PARAMETER_SPECIFICATI ⌋
ON]->(:AN_IN_OUT_MODE)))

35 AND NOT EXISTS ((elt)-[:IS_ENCLOSED_IN*]->(:AN_OBJEC ⌋
T_RENAMING_DECLARATION))

36 WITH collect(writeVar) as writeArray
37 RETURN size(writeArray) > 0 AS isWriteNormal
38 }
39
40 ///////////////////////
41 /// Generic variables ///
42 ///////////////////////
43
44 /// Find read variables
45 CALL {
46 WITH genericVar
47 WITH genericVar.var as genVar
48 MATCH readVar=(genVar)<-[:CORRESPONDING_NAME_DEFINITIO ⌋

N]-(elt:AN_IDENTIFIER)
49 WHERE NOT EXISTS((elt:AN_IDENTIFIER)-[:CORRESPONDING ⌋

_ASSIGNATION]->(:AN_ASSIGNMENT_STATEMENT))
50 AND NOT EXISTS ((elt)-[:IS_ENCLOSED_IN]->(:A_PARAMET ⌋

ER_ASSOCIATION)-[:CORRESPONDING_PARAMETER_SPECIF ⌋
ICATION]->(:AN_OUT_MODE))

51 AND NOT EXISTS ((elt)-[:IS_ENCLOSED_IN*]->(:AN_OBJEC ⌋
T_RENAMING_DECLARATION))

52 WITH collect(readVar) as readArray
53 RETURN size(readArray) > 0 AS isReadGen
54 }
55
56 /// Find written variables
57 CALL {
58 WITH genericVar
59 WITH genericVar.var as genVar
60 MATCH writeVar=(genVar)<-[:CORRESPONDING_NAME_DEFINITI ⌋

ON]-(elt:AN_IDENTIFIER)
61 WHERE (EXISTS((elt:AN_IDENTIFIER)-[:CORRESPONDING_AS ⌋

SIGNATION]->(:AN_ASSIGNMENT_STATEMENT))
62 OR EXISTS ((elt)-[:IS_ENCLOSED_IN]->(:A_PARAMETER_AS ⌋

SOCIATION)-[:CORRESPONDING_PARAMETER_SPECIFICATI ⌋
ON]->(:AN_OUT_MODE))

116 APPENDIX B. Not (fully) implemented rules

63 OR EXISTS ((elt)-[:IS_ENCLOSED_IN]->(:A_PARAMETER_AS ⌋
SOCIATION)-[:CORRESPONDING_PARAMETER_SPECIFICATI ⌋
ON]->(:AN_IN_OUT_MODE)))

64 AND NOT EXISTS ((elt)-[:IS_ENCLOSED_IN*]->(:AN_OBJEC ⌋
T_RENAMING_DECLARATION))

65 WITH collect(writeVar) as writeArray
66 RETURN size(writeArray) > 0 AS isWriteGen
67 }
68
69 ////////////
70 /// Result ///
71 ////////////
72
73 /// Aggregate all results for the final result
74
75 CALL {
76 /// Normal
77 WITH cu, l, normalVar, isWriteNormal, isReadNormal,

genericVar, isWriteGen, isReadGen
78 MATCH (normalVar)
79 WHERE normalVar IS NOT NULL
80 RETURN cu as Compilation_Unit, l as Location,

normalVar as Variable, isWriteNormal AS isWrite,

isReadNormal AS isRead,
81 "normal" AS origin
82
83 UNION
84
85 /// Generic
86 WITH cu, l, genericVar, isWriteGen, isReadGen
87 UNWIND [val in genericVar WHERE val IS NOT NULL] as

genVar
88 WITH cu, l, isWriteGen, isReadGen, genVar.var AS

finalGenericVar
89 MATCH (finalGenericVar)
90
91 RETURN cu as Compilation_Unit, l as Location,

finalGenericVar as Variable, isWriteGen AS

isWrite, isReadGen AS isRead,
92 "generic" AS origin
93 } /// END: Aggregate all results for the final result
94

B.1. Variable Usage 117

95 RETURN DISTINCT Compilation_Unit, Location, Variable,

isWrite, isRead, origin
96 ORDER BY Location.filename, Location.line,

Location.column;

�

Code B.2 – Query to get the READ / WRITE usage in instance of generics

1 MATCH (cu:Compilation_Unit { is_predefined_unit: false

})
2 WHERE NOT cu.content STARTS WITH "System"
3 MATCH (vD:A_VARIABLE_DECLARATION)<-[:IS_ENCLOSED_IN]-(v: ⌋

A_DEFINING_IDENTIFIER)
4 WHERE (vD)-[:IS_ENCLOSED_IN*]->(cu)
5
6 OPTIONAL MATCH enclGen = (v)-[:IS_ENCLOSED_IN*]->(decl:A ⌋

_GENERIC_PACKAGE_DECLARATION)
7
8 WITH *,
9 CASE WHEN length(enclGen) is null THEN v ELSE null END

AS normalVar,
10 CASE WHEN length(enclGen) is not null THEN { var: v,

decl: decl } ELSE NULL END AS genericVar,
11 { filename: v.filename, line: v.line, column: v.column

} as l
12
13 ////////////
14 /// Result ///
15 ////////////
16
17 /// Aggregate all results for the final result
18
19 CALL {
20 /// Instance
21 WITH cu, genericVar
22 CALL {
23 WITH cu, genericVar
24 UNWIND [val in genericVar WHERE val IS NOT NULL] as

genVar
25
26 /// match instantiated generic packages

118 APPENDIX B. Not (fully) implemented rules

27
28 CALL {
29 WITH genVar
30 WITH genVar.var as var, genVar.decl as decl
31
32 ///////////////////////
33 /// Generic variables ///
34 ///////////////////////
35
36 /// Find read variables
37 CALL {
38 WITH var
39 MATCH readVar=(var)<-[:CORRESPONDING_NAME_DEFINI ⌋

TION]-(elt:AN_IDENTIFIER)
40 WHERE NOT

EXISTS((elt:AN_IDENTIFIER)-[:CORRESPONDING_A ⌋
SSIGNATION]->(:AN_ASSIGNMENT_STATEMENT))

41 AND NOT EXISTS ((elt)-[:IS_ENCLOSED_IN]->(:A_PAR ⌋
AMETER_ASSOCIATION)-[:CORRESPONDING_PARAMETE ⌋
R_SPECIFICATION]->(:AN_OUT_MODE))

42 AND NOT EXISTS ((elt)-[:IS_ENCLOSED_IN*]->(:AN_O ⌋
BJECT_RENAMING_DECLARATION))

43 AND NOT EXISTS

((elt)-[:CORRESPONDING_INSTANCIATION]->())
44 WITH collect(readVar) as readArray
45 RETURN size(readArray) > 0 AS isReadGen
46 }
47
48 /// Find written variables
49 CALL {
50 WITH var
51 MATCH writeVar=(var)<-[:CORRESPONDING_NAME_DEFIN ⌋

ITION]-(elt:AN_IDENTIFIER)
52 WHERE (EXISTS((elt:AN_IDENTIFIER)-[:CORRESPONDIN ⌋

G_ASSIGNATION]->(:AN_ASSIGNMENT_STATEMENT))
53 OR EXISTS ((elt)-[:IS_ENCLOSED_IN]->(:A_PARAMETE ⌋

R_ASSOCIATION)-[:CORRESPONDING_PARAMETER_SPE ⌋
CIFICATION]->(:AN_OUT_MODE))

54 OR EXISTS ((elt)-[:IS_ENCLOSED_IN]->(:A_PARAMETE ⌋
R_ASSOCIATION)-[:CORRESPONDING_PARAMETER_SPE ⌋
CIFICATION]->(:AN_IN_OUT_MODE)))

B.1. Variable Usage 119

55 AND NOT EXISTS ((elt)-[:IS_ENCLOSED_IN*]->(:AN_O ⌋
BJECT_RENAMING_DECLARATION))

56 AND NOT EXISTS

((elt)-[:CORRESPONDING_INSTANCIATION]->())
57 WITH collect(writeVar) as writeArray
58 RETURN size(writeArray) > 0 AS isWriteGen
59 }
60
61 WITH decl, collect({ var: var, isWriteGen:

isWriteGen, isReadGen: isReadGen }) as vars
62
63 /// Then, find every instantiation of this generic

package
64 MATCH (inst)<-[:IS_ENCLOSED_IN { index: 2 }]-(gen) ⌋

-[:CORRESPONDING_NAME_DEFINITION]->(genPackId)
65 WHERE (inst:A_FORMAL_PACKAGE_DECLARATION) OR

(inst:A_FORMAL_PACKAGE_DECLARATION_WITH_BO ⌋
X) OR (inst:A_PACKAGE_INSTANTIATION)

66
67 WITH decl, vars, collect(CASE WHEN

exists((genPackId)-[:IS_ENCLOSED_IN*]->(decl))

THEN inst ELSE null END) AS instRef
68
69 RETURN { decl: decl, vars: vars, instances:

instRef } AS genPackMap
70 } /// END: match instantiated generic packages
71
72 /// Find usage of every instantiations
73
74 CALL {
75 with genPackMap
76 WITH genPackMap.instances as instances,

genPackMap.vars as vars
77 UNWIND instances AS instance
78
79 /// Build result of var in instance
80 CALL {
81 WITH vars, instance
82 UNWIND vars AS var
83
84 /// Find read variables
85 CALL {

120 APPENDIX B. Not (fully) implemented rules

86 WITH var, instance
87 WITH var.var as var, instance
88 MATCH readVar=(var)<-[:CORRESPONDING_NAME_DE ⌋

FINITION]-(elt:AN_IDENTIFIER)
89 WHERE NOT EXISTS((elt:AN_IDENTIFIER)-[:C ⌋

ORRESPONDING_ASSIGNATION]->(:AN_ASSI ⌋
GNMENT_STATEMENT))

90 AND NOT EXISTS ((elt)-[:IS_ENCLOSED_IN]- ⌋
>(:A_PARAMETER_ASSOCIATION)-[:CORRES ⌋
PONDING_PARAMETER_SPECIFICATION]->(: ⌋
AN_OUT_MODE))

91 AND NOT EXISTS ((elt)-[:IS_ENCLOSED_IN*] ⌋
->(:AN_OBJECT_RENAMING_DECLARATION))

92 AND EXISTS ((elt)-[:CORRESPONDING_INSTAN ⌋
CIATION]->(instance))

93 WITH collect(readVar) as readArray
94 RETURN size(readArray) > 0 AS isReadInst
95 }
96
97 /// Find written variables
98 CALL {
99 WITH var, instance

100 WITH var.var as var, instance
101 MATCH writeVar=(var)<-[:CORRESPONDING_NAME_D ⌋

EFINITION]-(elt:AN_IDENTIFIER)
102 WHERE (EXISTS((elt:AN_IDENTIFIER)-[:CORR ⌋

ESPONDING_ASSIGNATION]->(:AN_ASSIGNM ⌋
ENT_STATEMENT))

103 OR EXISTS ((elt)-[:IS_ENCLOSED_IN]->(:A_ ⌋
PARAMETER_ASSOCIATION)-[:CORRESPONDI ⌋
NG_PARAMETER_SPECIFICATION]->(:AN_OU ⌋
T_MODE))

104 OR EXISTS ((elt)-[:IS_ENCLOSED_IN]->(:A_ ⌋
PARAMETER_ASSOCIATION)-[:CORRESPONDI ⌋
NG_PARAMETER_SPECIFICATION]->(:AN_IN ⌋
_OUT_MODE)))

105 AND NOT EXISTS ((elt)-[:IS_ENCLOSED_IN*] ⌋
->(:AN_OBJECT_RENAMING_DECLARATION))

106 AND EXISTS ((elt)-[:CORRESPONDING_INSTAN ⌋
CIATION]->(instance))

107 WITH collect(writeVar) as writeArray
108 RETURN size(writeArray) > 0 AS isWriteInst

B.1. Variable Usage 121

109 }
110
111 RETURN var.var as Variable, isWriteInst,

isReadInst, var.isWriteGen AS

isWriteGen, var.isReadGen AS isReadGen
112 } /// END: Build result of var in instance
113
114 return { filename: instance.filename, line:

instance.line, column: instance.column } as

Location, Variable, isWriteInst, isReadInst,

isWriteGen, isReadGen
115 } /// END: Find usage of every instantiations
116
117 RETURN cu as Compilation_Unit,
118 Location,
119 Variable,
120 isWriteInst OR isWriteGen AS isWrite,
121 isReadInst OR isReadGen AS isRead,
122 "instance" AS origin
123 } /// END: Union Instance
124
125 RETURN Compilation_Unit,
126 Location,
127 Variable,
128 isWrite,
129 isRead,
130 origin
131 } /// END: Aggregate all results for the final result
132
133 RETURN DISTINCT Compilation_Unit, Location, Variable,

isWrite, isRead, origin
134 ORDER BY Location.filename, Location.line,

Location.column;

122 APPENDIX B. Not (fully) implemented rules

Appendix C

Benchmark Results

C.1 Benchmark Report

This section includes the complete benchmark report generated from our measurement

pipeline. It contains detailed per-project and aggregated results, tables, and plots com-

plementing Chapter 3. We provide it in full for transparency and reproducibility.

123

Benchmark report

Benchmark Results

2025-12-14

Université de Caen Normandie, France
Adalog SAS, SIREN 527 695 704, France

Contents i

Contents

1. Global Results 1

1.1. All Projects . 1

1.2. Small Projects (0-10k LoC) . 7

1.3. Medium Projects (10-30k LoC) . 14

1.4. Large Projects (30k+ LoC) . 20

2. Results by Rules 26

2.1. Summary . 26

2.1.1. Analysis Time . 26
2.1.1.1. All Projects . 26
2.1.1.2. Small Projects (0-10k LoC) . 27
2.1.1.3. Medium Projects (10-30k LoC) 28
2.1.1.4. Large Projects (30k+ LoC) . 29

2.1.2. Parsing Overhead . 29
2.1.2.1. All Projects . 29
2.1.2.2. Small Projects (0-10k LoC) . 30
2.1.2.3. Medium Projects (10-30k LoC) 31
2.1.2.4. Large Projects (30k+ LoC) . 32

2.1.3. Issued Messages . 32
2.1.3.1. All Projects . 32
2.1.3.2. Small Projects (0-10k LoC) . 33
2.1.3.3. Medium Projects (10-30k LoC) 34
2.1.3.4. Large Projects (30k+ LoC) . 34

2.2. Abort Statements . 35

2.2.1. All Projects . 35

2.2.2. Small Projects (0-10k LoC) . 35

2.2.3. Medium Projects (10-30k LoC) . 36

2.2.4. Large Projects (30k+ LoC) . 37

2.3. Abstract Type Declarations . 37

2.3.1. All Projects . 37

2.3.2. Small Projects (0-10k LoC) . 38

2.3.3. Medium Projects (10-30k LoC) . 39

2.3.4. Large Projects (30k+ LoC) . 39

2.4. Blocks . 40

2.4.1. All Projects . 40

2.4.2. Small Projects (0-10k LoC) . 41

2.4.3. Medium Projects (10-30k LoC) . 42

Contents ii

2.4.4. Large Projects (30k+ LoC) . 42

2.5. Constructors . 43

2.5.1. All Projects . 43

2.5.2. Small Projects (0-10k LoC) . 44

2.5.3. Medium Projects (10-30k LoC) . 44

2.5.4. Large Projects (30k+ LoC) . 45

2.6. Enumeration Representation Clauses . 46

2.6.1. All Projects . 46

2.6.2. Small Projects (0-10k LoC) . 46

2.6.3. Medium Projects (10-30k LoC) . 47

2.6.4. Large Projects (30k+ LoC) . 48

2.7. Renamings . 49

2.7.1. All Projects . 49

2.7.2. Small Projects (0-10k LoC) . 49

2.7.3. Medium Projects (10-30k LoC) . 50

2.7.4. Large Projects (30k+ LoC) . 51

2.8. Slices . 51

2.8.1. All Projects . 51

2.8.2. Small Projects (0-10k LoC) . 52

2.8.3. Medium Projects (10-30k LoC) . 53

2.8.4. Large Projects (30k+ LoC) . 53

2.9. Too Many Parents . 54

2.9.1. All Projects . 54

2.9.2. Small Projects (0-10k LoC) . 55

2.9.3. Medium Projects (10-30k LoC) . 56

2.9.4. Large Projects (30k+ LoC) . 56

2.10. Variable Usage . 57

2.10.1. All Projects . 57

2.10.2. Small Projects (0-10k LoC) . 58

2.10.3. Medium Projects (10-30k LoC) . 58

2.10.4. Large Projects (30k+ LoC) . 59

1. Global Results 1

1. Global Results

1.1. All Projects

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

overheadParsing 2 min 0 sec 600
ms

3 hr 0 min 19 sec
800 ms

1 min 27 sec 100
ms

1 min 28 sec 500
ms

overheadPopulat-
ing

46 min 3 sec 100
ms

Relative Over-
head (0 is better)

38.48% 15,490.42% 0.00% 1.57%

analysisTime 8 min 37 sec 500
ms

44 sec 90 ms 11 min 35 sec 800
ms

11 min 26 sec
1,000 ms

Analysis Relative
Speed (0 is better)

1,073.80% 0.00% 1,478.05% 1,458.06%

executionTime 10 min 38 sec 200
ms

3 hr 47 min 6 sec
1,000 ms

13 min 2 sec 900
ms

12 min 55 sec 400
ms

Execution Rela-
tive Speed (0 is

better)

0.00% 2,035.29% 22.68% 21.51%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 17,782 16,142 18,793 18,793
Table 1: Global: All Projects

Number of projects: 134

Total lines of code: 2,643,887

Feature Description Value
Attr Access All Number of uses of attribute ‘Access on any

object.
54

Attr Address All Number of uses of attribute ‘Address on any
object.

36

Attr Unchecked Access All Number of uses of attribute
‘Unchecked_Access on any object.

21

Decls Operators Overloaded Number of declarations of overloaded opera-
tors.

36

1. Global Results 2

Feature Description Value
Derivations Depth Protected Maximum inheritance depth of protected

types (number of derivation levels above the
root).

2

Derivations Depth Tagged Maximum inheritance depth of tagged types
(number of derivation levels above the root).

74

Derivations Depth Task Maximum inheritance depth of task types
(number of derivation levels above the root).

0

Derivations Depth Untagged Maximum inheritance depth of untagged types
(number of derivation levels above the root).

65

Derivations Parents Maximum number of parents (interfaces or
base types) for any single type.

10

Exceptions Declared Number of exception declarations. 53
Generics Decl Local Number of locally declared generic units

(generic packages or subprograms declared
inside another unit).

4

Generics Inst Local Number of local instantiations of generic units
(inside subprograms or nested scopes).

51

Generics Inst Private Number of private generic instantiations. 40
Generics Inst Public Number of public generic instantiations. 47

Generics Units All Number of generic units (generic packages
and subprograms).

59

Handlers Others All Number of exception handlers using the oth-
ers choice.

44

Handlers Others Null Number of others exception handlers whose
body is null.

14

Inst Unchecked Conv Addr To Access Full Number of instantiations of
Ada.Unchecked_Conversion converting
System.Address to an access type (fully qual-
ified).

9

Inst Unchecked Conv Addr To Access Short Number of
instantiations of Unchecked_Conversion con-
verting System.Address to an access type
(short form).

0

Known Exceptions Access Number of statically known access-related ex-
ceptions (invalid pointer dereferences).

4

Known Exceptions Assignment Number of statically known exceptions related
to assignments (e.g., constraint errors on as-
signment).

0

1. Global Results 3

Feature Description Value
Known Exceptions Index Number of statically known index-related ex-

ceptions (out-of-range array indexing).
2

Known Exceptions Raise Expression Number of statically known exceptions raised
by raise expressions.

3

Known Exceptions Zero Divide Number of statically known zero-divide excep-
tions.

0

Local Exception Number of exceptions that are locally handled. 8
Metrics Functions Called Number of function call sites. 115

Metrics Objects All Number of object declarations or usages
(rough measure of data size).

128

Metrics Procedures Called Number of procedure call sites. 103
Metrics Statements All Total number of executable statements. 125

Metrics Types Used Number of type usages in the source (rough
measure of type variety/complexity).

125

Named Number Declarations Number of named number declarations (inte-
ger constants used as named numbers).

56

Parameter Aliasing Certain Number of parameter aliasing situations that
are certainly aliasing (definite aliases).

5

Parameter Aliasing Possible Number of parameter aliasing situations that
are possibly aliasing (potential aliases).

3

Pragmas All Total number of pragmas. 116
Pragmas Nonstandard Number of nonstandard (implementation-de-

fined) pragmas.
96

Protected Objects Declared Number of protected object declarations. 9
Representation Clauses All Number of representation clauses (record lay-

out, alignment, etc.).
43

Statements Abort Number of abort statements. 1
Statements Accept Number of accept statements. 9

Statements Conditional Entry Call Number of conditional entry call statements. 2
Statements Delay Relative Number of relative delay statements (delay

until a duration has elapsed).
12

Statements Delay Until Number of delay until statements (delay until
a specific time).

0

Statements Entry Call Number of simple entry call statements. 12
Statements Raise All Number of raise statements (all exceptions). 77

Statements Raise Standard Number of raise statements raising predefined
(standard) exceptions.

48

Statements Requeue Number of requeue statements. 1

1. Global Results 4

Feature Description Value
Statements Selective Accept Number of selective accept statements (se-

lect).
3

Statements Terminate Alternative Number of terminate alternatives in selective
accept statements.

2

Statements Timed Entry Call Number of timed entry call statements. 4
Tasks Declared Number of task declarations. 3

Tasks Terminating Number of tasks that are known to terminate
(per static analysis).

8

Type Usage Pos On Enum Number of uses of attribute ‘Pos on enumera-
tion types.

38

Types Abstract Number of abstract type declarations. 25
Types Access Subprogram Number of access-to-subprogram type decla-

rations.
34

Types Controlled Number of controlled type declarations. 29
Types Derived Number of derived type declarations. 56

Types Tagged With Primitives Number of tagged types that have at least one
visible primitive operation.

69

Types With Discriminants Number of type declarations with discrimi-
nants.

55

Table 2: Global: All Projects - Language feature usage (projects count)

Feature Description Value
Attr Access All Number of uses of attribute ‘Access on any

object.
8,302

Attr Address All Number of uses of attribute ‘Address on any
object.

1,145

Attr Unchecked Access All Number of uses of attribute
‘Unchecked_Access on any object.

560

Decls Operators Overloaded Number of declarations of overloaded oper-
ators.

473

Derivations Depth Protected Maximum inheritance depth of protected
types (number of derivation levels above
the root).

1

Derivations Depth Tagged Maximum inheritance depth of tagged
types (number of derivation levels above
the root).

7

1. Global Results 5

Feature Description Value
Derivations Depth Task Maximum inheritance depth of task types

(number of derivation levels above the
root).

0

Derivations Depth Untagged Maximum inheritance depth of untagged
types (number of derivation levels above
the root).

3

Derivations Parents Maximum number of parents (interfaces or
base types) for any single type.

4

Exceptions Declared Number of exception declarations. 482
Generics Decl Local Number of locally declared generic units

(generic packages or subprograms de-
clared inside another unit).

14

Generics Inst Local Number of local instantiations of generic
units (inside subprograms or nested
scopes).

553

Generics Inst Private Number of private generic instantiations. 256
Generics Inst Public Number of public generic instantiations. 992

Generics Units All Number of generic units (generic packages
and subprograms).

640

Handlers Others All Number of exception handlers using the
others choice.

1,402

Handlers Others Null Number of others exception handlers
whose body is null.

34

Inst Unchecked Conv Addr To Access Full Number of instantiations of
Ada.Unchecked_Conversion converting
System.Address to an access type (fully
qualified).

869

Inst Unchecked Conv Addr To Access Short Number of instantiations of
Unchecked_Conversion converting
System.Address to an access type (short
form).

0

Known Exceptions Access Number of statically known access-related
exceptions (invalid pointer dereferences).

16

Known Exceptions Assignment Number of statically known exceptions re-
lated to assignments (e.g., constraint errors
on assignment).

0

Known Exceptions Index Number of statically known index-related
exceptions (out-of-range array indexing).

3

1. Global Results 6

Feature Description Value
Known Exceptions Raise Expression Number of statically known exceptions

raised by raise expressions.
6

Known Exceptions Zero Divide Number of statically known zero-divide ex-
ceptions.

0

Local Exception Number of exceptions that are locally han-
dled.

23

Metrics Functions Called Number of function call sites. 14,845
Metrics Objects All Number of object declarations or usages

(rough measure of data size).
78,296

Metrics Procedures Called Number of procedure call sites. 13,672
Metrics Statements All Total number of executable statements. 130,394

Metrics Types Used Number of type usages in the source (rough
measure of type variety/complexity).

11,896

Named Number Declarations Number of named number declarations (in-
teger constants used as named numbers).

2,366

Parameter Aliasing Certain Number of parameter aliasing situations
that are certainly aliasing (definite aliases).

18

Parameter Aliasing Possible Number of parameter aliasing situations
that are possibly aliasing (potential aliases).

4

Pragmas All Total number of pragmas. 18,818
Pragmas Nonstandard Number of nonstandard (implementation-

defined) pragmas.
4,337

Protected Objects Declared Number of protected object declarations. 22
Representation Clauses All Number of representation clauses (record

layout, alignment, etc.).
469

Statements Abort Number of abort statements. 1
Statements Accept Number of accept statements. 50

Statements Conditional Entry Call Number of conditional entry call state-
ments.

2

Statements Delay Relative Number of relative delay statements (delay
until a duration has elapsed).

69

Statements Delay Until Number of delay until statements (delay
until a specific time).

0

Statements Entry Call Number of simple entry call statements. 113
Statements Raise All Number of raise statements (all excep-

tions).
2,889

Statements Raise Standard Number of raise statements raising prede-
fined (standard) exceptions.

921

1. Global Results 7

Feature Description Value
Statements Requeue Number of requeue statements. 23

Statements Selective Accept Number of selective accept statements (se-
lect).

12

Statements Terminate Alternative Number of terminate alternatives in selec-
tive accept statements.

6

Statements Timed Entry Call Number of timed entry call statements. 12
Tasks Declared Number of task declarations. 6

Tasks Terminating Number of tasks that are known to termi-
nate (per static analysis).

24

Type Usage Pos On Enum Number of uses of attribute ‘Pos on enu-
meration types.

1,261

Types Abstract Number of abstract type declarations. 166
Types Access Subprogram Number of access-to-subprogram type de-

clarations.
1,319

Types Controlled Number of controlled type declarations. 275
Types Derived Number of derived type declarations. 780

Types Tagged With Primitives Number of tagged types that have at least
one visible primitive operation.

1,304

Types With Discriminants Number of type declarations with discrim-
inants.

397

Table 3: Global: All Projects - Language feature usage (sum of values)

1.2. Small Projects (0-10k LoC)

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

overheadParsing 1 min 1 sec 900
ms

23 min 31 sec 100
ms

57 sec 1,000 ms 59 sec 300 ms

overheadPopulat-
ing

14 min 16 sec 900
ms

Relative Over-
head (0 is better)

6.75% 3,811.95% 0.00% 2.24%

analysisTime 1 min 6 sec 100
ms

34 sec 900 ms 1 min 11 sec 200
ms

1 min 9 sec 300
ms

Analysis Relative
Speed (0 is better)

89.48% 0.00% 103.94% 98.45%

executionTime 2 min 8 sec 10 ms 38 min 22 sec 900
ms

2 min 9 sec 100
ms

2 min 8 sec 500
ms

1. Global Results 8

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

Execution Rela-
tive Speed (0 is

better)

0.00% 1,698.97% 0.89% 0.40%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 2,288 1,924 2,558 2,558
Table 4: Global: Small Projects (0-10k LoC)

Number of projects: 118

Total lines of code: 182,706

Feature Description Value
Attr Access All Number of uses of attribute ‘Access on any

object.
40

Attr Address All Number of uses of attribute ‘Address on any
object.

28

Attr Unchecked Access All Number of uses of attribute
‘Unchecked_Access on any object.

11

Decls Operators Overloaded Number of declarations of overloaded opera-
tors.

24

Derivations Depth Protected Maximum inheritance depth of protected
types (number of derivation levels above the
root).

2

Derivations Depth Tagged Maximum inheritance depth of tagged types
(number of derivation levels above the root).

61

Derivations Depth Task Maximum inheritance depth of task types
(number of derivation levels above the root).

0

Derivations Depth Untagged Maximum inheritance depth of untagged types
(number of derivation levels above the root).

51

Derivations Parents Maximum number of parents (interfaces or
base types) for any single type.

6

Exceptions Declared Number of exception declarations. 39
Generics Decl Local Number of locally declared generic units

(generic packages or subprograms declared
inside another unit).

2

Generics Inst Local Number of local instantiations of generic units
(inside subprograms or nested scopes).

39

1. Global Results 9

Feature Description Value
Generics Inst Private Number of private generic instantiations. 28
Generics Inst Public Number of public generic instantiations. 32

Generics Units All Number of generic units (generic packages
and subprograms).

46

Handlers Others All Number of exception handlers using the oth-
ers choice.

32

Handlers Others Null Number of others exception handlers whose
body is null.

6

Inst Unchecked Conv Addr To Access Full Number of instantiations of
Ada.Unchecked_Conversion converting
System.Address to an access type (fully qual-
ified).

4

Inst Unchecked Conv Addr To Access Short Number of
instantiations of Unchecked_Conversion con-
verting System.Address to an access type
(short form).

0

Known Exceptions Access Number of statically known access-related ex-
ceptions (invalid pointer dereferences).

1

Known Exceptions Assignment Number of statically known exceptions related
to assignments (e.g., constraint errors on as-
signment).

0

Known Exceptions Index Number of statically known index-related ex-
ceptions (out-of-range array indexing).

0

Known Exceptions Raise Expression Number of statically known exceptions raised
by raise expressions.

3

Known Exceptions Zero Divide Number of statically known zero-divide excep-
tions.

0

Local Exception Number of exceptions that are locally handled. 4
Metrics Functions Called Number of function call sites. 100

Metrics Objects All Number of object declarations or usages
(rough measure of data size).

113

Metrics Procedures Called Number of procedure call sites. 88
Metrics Statements All Total number of executable statements. 110

Metrics Types Used Number of type usages in the source (rough
measure of type variety/complexity).

110

Named Number Declarations Number of named number declarations (inte-
ger constants used as named numbers).

41

Parameter Aliasing Certain Number of parameter aliasing situations that
are certainly aliasing (definite aliases).

1

1. Global Results 10

Feature Description Value
Parameter Aliasing Possible Number of parameter aliasing situations that

are possibly aliasing (potential aliases).
2

Pragmas All Total number of pragmas. 101
Pragmas Nonstandard Number of nonstandard (implementation-de-

fined) pragmas.
82

Protected Objects Declared Number of protected object declarations. 3
Representation Clauses All Number of representation clauses (record lay-

out, alignment, etc.).
33

Statements Abort Number of abort statements. 1
Statements Accept Number of accept statements. 5

Statements Conditional Entry Call Number of conditional entry call statements. 1
Statements Delay Relative Number of relative delay statements (delay

until a duration has elapsed).
8

Statements Delay Until Number of delay until statements (delay until
a specific time).

0

Statements Entry Call Number of simple entry call statements. 7
Statements Raise All Number of raise statements (all exceptions). 62

Statements Raise Standard Number of raise statements raising predefined
(standard) exceptions.

34

Statements Requeue Number of requeue statements. 0
Statements Selective Accept Number of selective accept statements (se-

lect).
2

Statements Terminate Alternative Number of terminate alternatives in selective
accept statements.

2

Statements Timed Entry Call Number of timed entry call statements. 3
Tasks Declared Number of task declarations. 2

Tasks Terminating Number of tasks that are known to terminate
(per static analysis).

5

Type Usage Pos On Enum Number of uses of attribute ‘Pos on enumera-
tion types.

24

Types Abstract Number of abstract type declarations. 16
Types Access Subprogram Number of access-to-subprogram type decla-

rations.
24

Types Controlled Number of controlled type declarations. 22
Types Derived Number of derived type declarations. 43

Types Tagged With Primitives Number of tagged types that have at least one
visible primitive operation.

57

1. Global Results 11

Feature Description Value
Types With Discriminants Number of type declarations with discrimi-

nants.
42

Table 5: Global: Small Projects (0-10k LoC) - Language feature usage (projects count)

Feature Description Value
Attr Access All Number of uses of attribute ‘Access on any

object.
492

Attr Address All Number of uses of attribute ‘Address on any
object.

334

Attr Unchecked Access All Number of uses of attribute
‘Unchecked_Access on any object.

52

Decls Operators Overloaded Number of declarations of overloaded oper-
ators.

119

Derivations Depth Protected Maximum inheritance depth of protected
types (number of derivation levels above the
root).

1

Derivations Depth Tagged Maximum inheritance depth of tagged types
(number of derivation levels above the root).

7

Derivations Depth Task Maximum inheritance depth of task types
(number of derivation levels above the root).

0

Derivations Depth Untagged Maximum inheritance depth of untagged
types (number of derivation levels above the
root).

2

Derivations Parents Maximum number of parents (interfaces or
base types) for any single type.

4

Exceptions Declared Number of exception declarations. 182
Generics Decl Local Number of locally declared generic units

(generic packages or subprograms declared
inside another unit).

10

Generics Inst Local Number of local instantiations of generic
units (inside subprograms or nested scopes).

201

Generics Inst Private Number of private generic instantiations. 112
Generics Inst Public Number of public generic instantiations. 184

Generics Units All Number of generic units (generic packages
and subprograms).

226

Handlers Others All Number of exception handlers using the oth-
ers choice.

193

Handlers Others Null Number of others exception handlers whose
body is null.

9

1. Global Results 12

Feature Description Value
Inst Unchecked Conv Addr To Access Full Number of instantiations of

Ada.Unchecked_Conversion converting
System.Address to an access type (fully
qualified).

4

Inst Unchecked Conv Addr To Access Short Number of instantiations
of Unchecked_Conversion converting
System.Address to an access type (short
form).

0

Known Exceptions Access Number of statically known access-related
exceptions (invalid pointer dereferences).

1

Known Exceptions Assignment Number of statically known exceptions re-
lated to assignments (e.g., constraint errors
on assignment).

0

Known Exceptions Index Number of statically known index-related ex-
ceptions (out-of-range array indexing).

0

Known Exceptions Raise Expression Number of statically known exceptions
raised by raise expressions.

6

Known Exceptions Zero Divide Number of statically known zero-divide ex-
ceptions.

0

Local Exception Number of exceptions that are locally han-
dled.

4

Metrics Functions Called Number of function call sites. 3,969
Metrics Objects All Number of object declarations or usages

(rough measure of data size).
15,982

Metrics Procedures Called Number of procedure call sites. 3,074
Metrics Statements All Total number of executable statements. 40,343

Metrics Types Used Number of type usages in the source (rough
measure of type variety/complexity).

4,355

Named Number Declarations Number of named number declarations (in-
teger constants used as named numbers).

867

Parameter Aliasing Certain Number of parameter aliasing situations that
are certainly aliasing (definite aliases).

7

Parameter Aliasing Possible Number of parameter aliasing situations that
are possibly aliasing (potential aliases).

2

Pragmas All Total number of pragmas. 3,762
Pragmas Nonstandard Number of nonstandard (implementation-

defined) pragmas.
882

Protected Objects Declared Number of protected object declarations. 8

1. Global Results 13

Feature Description Value
Representation Clauses All Number of representation clauses (record

layout, alignment, etc.).
340

Statements Abort Number of abort statements. 1
Statements Accept Number of accept statements. 40

Statements Conditional Entry Call Number of conditional entry call statements. 1
Statements Delay Relative Number of relative delay statements (delay

until a duration has elapsed).
41

Statements Delay Until Number of delay until statements (delay until
a specific time).

0

Statements Entry Call Number of simple entry call statements. 74
Statements Raise All Number of raise statements (all exceptions). 963

Statements Raise Standard Number of raise statements raising prede-
fined (standard) exceptions.

248

Statements Requeue Number of requeue statements. 0
Statements Selective Accept Number of selective accept statements (se-

lect).
11

Statements Terminate Alternative Number of terminate alternatives in selective
accept statements.

6

Statements Timed Entry Call Number of timed entry call statements. 5
Tasks Declared Number of task declarations. 5

Tasks Terminating Number of tasks that are known to terminate
(per static analysis).

21

Type Usage Pos On Enum Number of uses of attribute ‘Pos on enumer-
ation types.

301

Types Abstract Number of abstract type declarations. 56
Types Access Subprogram Number of access-to-subprogram type dec-

larations.
126

Types Controlled Number of controlled type declarations. 80
Types Derived Number of derived type declarations. 217

Types Tagged With Primitives Number of tagged types that have at least
one visible primitive operation.

447

Types With Discriminants Number of type declarations with discrimi-
nants.

139

Table 6: Global: Small Projects (0-10k LoC) - Language feature usage (sum of values)

1. Global Results 14

1.3. Medium Projects (10-30k LoC)

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

overheadParsing 15 sec 90 ms 6 min 30 sec 300
ms

7 sec 1,000 ms 8 sec 20 ms

overheadPopulat-
ing

3 min 8 sec 800
ms

Relative Overhead
(0 is better)

88.82% 7,144.95% 0.00% 0.33%

analysisTime 25 sec 900 ms 4 sec 100 ms 6 sec 600 ms 6 sec 500 ms
Analysis Relative
Speed (0 is better)

524.46% 0.00% 59.07% 55.85%

executionTime 40 sec 1,000 ms 9 min 43 sec 300
ms

14 sec 600 ms 14 sec 500 ms

Execution Relative
Speed (0 is better)

183.01% 3,927.11% 0.74% 0.00%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 1,560 1,262 1,612 1,612
Table 7: Global: Medium Projects (10-30k LoC)

Number of projects: 9

Total lines of code: 122,288

Feature Description Value
Attr Access All Number of uses of attribute ‘Access on any

object.
8

Attr Address All Number of uses of attribute ‘Address on any
object.

3

Attr Unchecked Access All Number of uses of attribute
‘Unchecked_Access on any object.

5

Decls Operators Overloaded Number of declarations of overloaded opera-
tors.

7

Derivations Depth Protected Maximum inheritance depth of protected
types (number of derivation levels above the
root).

0

Derivations Depth Tagged Maximum inheritance depth of tagged types
(number of derivation levels above the root).

8

1. Global Results 15

Feature Description Value
Derivations Depth Task Maximum inheritance depth of task types

(number of derivation levels above the root).
0

Derivations Depth Untagged Maximum inheritance depth of untagged types
(number of derivation levels above the root).

8

Derivations Parents Maximum number of parents (interfaces or
base types) for any single type.

2

Exceptions Declared Number of exception declarations. 9
Generics Decl Local Number of locally declared generic units

(generic packages or subprograms declared
inside another unit).

2

Generics Inst Local Number of local instantiations of generic units
(inside subprograms or nested scopes).

7

Generics Inst Private Number of private generic instantiations. 7
Generics Inst Public Number of public generic instantiations. 9

Generics Units All Number of generic units (generic packages
and subprograms).

8

Handlers Others All Number of exception handlers using the oth-
ers choice.

7

Handlers Others Null Number of others exception handlers whose
body is null.

3

Inst Unchecked Conv Addr To Access Full Number of instantiations of
Ada.Unchecked_Conversion converting
System.Address to an access type (fully qual-
ified).

1

Inst Unchecked Conv Addr To Access Short Number of
instantiations of Unchecked_Conversion con-
verting System.Address to an access type
(short form).

0

Known Exceptions Access Number of statically known access-related ex-
ceptions (invalid pointer dereferences).

0

Known Exceptions Assignment Number of statically known exceptions related
to assignments (e.g., constraint errors on as-
signment).

0

Known Exceptions Index Number of statically known index-related ex-
ceptions (out-of-range array indexing).

2

Known Exceptions Raise Expression Number of statically known exceptions raised
by raise expressions.

0

Known Exceptions Zero Divide Number of statically known zero-divide excep-
tions.

0

1. Global Results 16

Feature Description Value
Local Exception Number of exceptions that are locally handled. 3

Metrics Functions Called Number of function call sites. 9
Metrics Objects All Number of object declarations or usages

(rough measure of data size).
9

Metrics Procedures Called Number of procedure call sites. 9
Metrics Statements All Total number of executable statements. 9

Metrics Types Used Number of type usages in the source (rough
measure of type variety/complexity).

9

Named Number Declarations Number of named number declarations (inte-
ger constants used as named numbers).

9

Parameter Aliasing Certain Number of parameter aliasing situations that
are certainly aliasing (definite aliases).

1

Parameter Aliasing Possible Number of parameter aliasing situations that
are possibly aliasing (potential aliases).

1

Pragmas All Total number of pragmas. 9
Pragmas Nonstandard Number of nonstandard (implementation-de-

fined) pragmas.
8

Protected Objects Declared Number of protected object declarations. 2
Representation Clauses All Number of representation clauses (record lay-

out, alignment, etc.).
5

Statements Abort Number of abort statements. 0
Statements Accept Number of accept statements. 2

Statements Conditional Entry Call Number of conditional entry call statements. 1
Statements Delay Relative Number of relative delay statements (delay

until a duration has elapsed).
3

Statements Delay Until Number of delay until statements (delay until
a specific time).

0

Statements Entry Call Number of simple entry call statements. 3
Statements Raise All Number of raise statements (all exceptions). 9

Statements Raise Standard Number of raise statements raising predefined
(standard) exceptions.

9

Statements Requeue Number of requeue statements. 0
Statements Selective Accept Number of selective accept statements (se-

lect).
0

Statements Terminate Alternative Number of terminate alternatives in selective
accept statements.

0

Statements Timed Entry Call Number of timed entry call statements. 0

1. Global Results 17

Feature Description Value
Tasks Declared Number of task declarations. 0

Tasks Terminating Number of tasks that are known to terminate
(per static analysis).

1

Type Usage Pos On Enum Number of uses of attribute ‘Pos on enumera-
tion types.

8

Types Abstract Number of abstract type declarations. 4
Types Access Subprogram Number of access-to-subprogram type decla-

rations.
4

Types Controlled Number of controlled type declarations. 2
Types Derived Number of derived type declarations. 8

Types Tagged With Primitives Number of tagged types that have at least one
visible primitive operation.

7

Types With Discriminants Number of type declarations with discrimi-
nants.

8

Table 8: Global: Medium Projects (10-30k LoC) - Language feature usage (projects count)

Feature Description Value
Attr Access All Number of uses of attribute ‘Access on any

object.
5,683

Attr Address All Number of uses of attribute ‘Address on any
object.

60

Attr Unchecked Access All Number of uses of attribute
‘Unchecked_Access on any object.

347

Decls Operators Overloaded Number of declarations of overloaded oper-
ators.

156

Derivations Depth Protected Maximum inheritance depth of protected
types (number of derivation levels above the
root).

0

Derivations Depth Tagged Maximum inheritance depth of tagged types
(number of derivation levels above the root).

3

Derivations Depth Task Maximum inheritance depth of task types
(number of derivation levels above the root).

0

Derivations Depth Untagged Maximum inheritance depth of untagged
types (number of derivation levels above the
root).

2

Derivations Parents Maximum number of parents (interfaces or
base types) for any single type.

4

Exceptions Declared Number of exception declarations. 254

1. Global Results 18

Feature Description Value
Generics Decl Local Number of locally declared generic units

(generic packages or subprograms declared
inside another unit).

4

Generics Inst Local Number of local instantiations of generic
units (inside subprograms or nested scopes).

134

Generics Inst Private Number of private generic instantiations. 38
Generics Inst Public Number of public generic instantiations. 84

Generics Units All Number of generic units (generic packages
and subprograms).

104

Handlers Others All Number of exception handlers using the oth-
ers choice.

84

Handlers Others Null Number of others exception handlers whose
body is null.

6

Inst Unchecked Conv Addr To Access Full Number of instantiations of
Ada.Unchecked_Conversion converting
System.Address to an access type (fully
qualified).

1

Inst Unchecked Conv Addr To Access Short Number of instantiations
of Unchecked_Conversion converting
System.Address to an access type (short
form).

0

Known Exceptions Access Number of statically known access-related
exceptions (invalid pointer dereferences).

0

Known Exceptions Assignment Number of statically known exceptions re-
lated to assignments (e.g., constraint errors
on assignment).

0

Known Exceptions Index Number of statically known index-related ex-
ceptions (out-of-range array indexing).

3

Known Exceptions Raise Expression Number of statically known exceptions
raised by raise expressions.

0

Known Exceptions Zero Divide Number of statically known zero-divide ex-
ceptions.

0

Local Exception Number of exceptions that are locally han-
dled.

18

Metrics Functions Called Number of function call sites. 1,649
Metrics Objects All Number of object declarations or usages

(rough measure of data size).
10,823

Metrics Procedures Called Number of procedure call sites. 2,774
Metrics Statements All Total number of executable statements. 26,965

1. Global Results 19

Feature Description Value
Metrics Types Used Number of type usages in the source (rough

measure of type variety/complexity).
2,120

Named Number Declarations Number of named number declarations (in-
teger constants used as named numbers).

618

Parameter Aliasing Certain Number of parameter aliasing situations that
are certainly aliasing (definite aliases).

4

Parameter Aliasing Possible Number of parameter aliasing situations that
are possibly aliasing (potential aliases).

2

Pragmas All Total number of pragmas. 1,502
Pragmas Nonstandard Number of nonstandard (implementation-

defined) pragmas.
213

Protected Objects Declared Number of protected object declarations. 3
Representation Clauses All Number of representation clauses (record

layout, alignment, etc.).
46

Statements Abort Number of abort statements. 0
Statements Accept Number of accept statements. 7

Statements Conditional Entry Call Number of conditional entry call statements. 1
Statements Delay Relative Number of relative delay statements (delay

until a duration has elapsed).
18

Statements Delay Until Number of delay until statements (delay until
a specific time).

0

Statements Entry Call Number of simple entry call statements. 8
Statements Raise All Number of raise statements (all exceptions). 820

Statements Raise Standard Number of raise statements raising prede-
fined (standard) exceptions.

87

Statements Requeue Number of requeue statements. 0
Statements Selective Accept Number of selective accept statements (se-

lect).
0

Statements Terminate Alternative Number of terminate alternatives in selective
accept statements.

0

Statements Timed Entry Call Number of timed entry call statements. 0
Tasks Declared Number of task declarations. 0

Tasks Terminating Number of tasks that are known to terminate
(per static analysis).

1

Type Usage Pos On Enum Number of uses of attribute ‘Pos on enumer-
ation types.

181

Types Abstract Number of abstract type declarations. 36

1. Global Results 20

Feature Description Value
Types Access Subprogram Number of access-to-subprogram type dec-

larations.
124

Types Controlled Number of controlled type declarations. 2
Types Derived Number of derived type declarations. 90

Types Tagged With Primitives Number of tagged types that have at least
one visible primitive operation.

332

Types With Discriminants Number of type declarations with discrimi-
nants.

82

Table 9: Global: Medium Projects (10-30k LoC) - Language feature usage (sum of values)

1.4. Large Projects (30k+ LoC)

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

overheadParsing 43 sec 700 ms 2 hr 30 min 18 sec
400 ms

21 sec 200 ms 21 sec 200 ms

overheadPopulat-
ing

28 min 37 sec 400
ms

Relative Over-
head (0 is better)

106.43% 50,652.10% 0.00% 0.19%

analysisTime 7 min 5 sec 500
ms

5 sec 50 ms 10 min 18 sec 0
ms

10 min 11 sec 200
ms

Analysis Relative
Speed (0 is better)

8,332.93% 0.00% 12,147.78% 12,013.74%

executionTime 7 min 49 sec 200
ms

2 hr 59 min 0 sec
800 ms

10 min 39 sec 200
ms

10 min 32 sec 400
ms

Execution Rela-
tive Speed (0 is

better)

0.00% 2,189.29% 36.23% 34.80%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 13,934 12,956 14,623 14,623
Table 10: Global: Large Projects (30k+ LoC)

Number of projects: 7

Total lines of code: 2,338,893

1. Global Results 21

Feature Description Value
Attr Access All Number of uses of attribute ‘Access on any

object.
6

Attr Address All Number of uses of attribute ‘Address on any
object.

5

Attr Unchecked Access All Number of uses of attribute
‘Unchecked_Access on any object.

5

Decls Operators Overloaded Number of declarations of overloaded opera-
tors.

5

Derivations Depth Protected Maximum inheritance depth of protected
types (number of derivation levels above the
root).

0

Derivations Depth Tagged Maximum inheritance depth of tagged types
(number of derivation levels above the root).

5

Derivations Depth Task Maximum inheritance depth of task types
(number of derivation levels above the root).

0

Derivations Depth Untagged Maximum inheritance depth of untagged types
(number of derivation levels above the root).

6

Derivations Parents Maximum number of parents (interfaces or
base types) for any single type.

2

Exceptions Declared Number of exception declarations. 5
Generics Decl Local Number of locally declared generic units

(generic packages or subprograms declared
inside another unit).

0

Generics Inst Local Number of local instantiations of generic units
(inside subprograms or nested scopes).

5

Generics Inst Private Number of private generic instantiations. 5
Generics Inst Public Number of public generic instantiations. 6

Generics Units All Number of generic units (generic packages
and subprograms).

5

Handlers Others All Number of exception handlers using the oth-
ers choice.

5

Handlers Others Null Number of others exception handlers whose
body is null.

5

Inst Unchecked Conv Addr To Access Full Number of instantiations of
Ada.Unchecked_Conversion converting
System.Address to an access type (fully qual-
ified).

4

Inst Unchecked Conv Addr To Access Short Number of
instantiations of Unchecked_Conversion con-

0

1. Global Results 22

Feature Description Value
verting System.Address to an access type
(short form).

Known Exceptions Access Number of statically known access-related ex-
ceptions (invalid pointer dereferences).

3

Known Exceptions Assignment Number of statically known exceptions related
to assignments (e.g., constraint errors on as-
signment).

0

Known Exceptions Index Number of statically known index-related ex-
ceptions (out-of-range array indexing).

0

Known Exceptions Raise Expression Number of statically known exceptions raised
by raise expressions.

0

Known Exceptions Zero Divide Number of statically known zero-divide excep-
tions.

0

Local Exception Number of exceptions that are locally handled. 1
Metrics Functions Called Number of function call sites. 6

Metrics Objects All Number of object declarations or usages
(rough measure of data size).

6

Metrics Procedures Called Number of procedure call sites. 6
Metrics Statements All Total number of executable statements. 6

Metrics Types Used Number of type usages in the source (rough
measure of type variety/complexity).

6

Named Number Declarations Number of named number declarations (inte-
ger constants used as named numbers).

6

Parameter Aliasing Certain Number of parameter aliasing situations that
are certainly aliasing (definite aliases).

3

Parameter Aliasing Possible Number of parameter aliasing situations that
are possibly aliasing (potential aliases).

0

Pragmas All Total number of pragmas. 6
Pragmas Nonstandard Number of nonstandard (implementation-de-

fined) pragmas.
6

Protected Objects Declared Number of protected object declarations. 4
Representation Clauses All Number of representation clauses (record lay-

out, alignment, etc.).
5

Statements Abort Number of abort statements. 0
Statements Accept Number of accept statements. 2

Statements Conditional Entry Call Number of conditional entry call statements. 0
Statements Delay Relative Number of relative delay statements (delay

until a duration has elapsed).
1

1. Global Results 23

Feature Description Value
Statements Delay Until Number of delay until statements (delay until

a specific time).
0

Statements Entry Call Number of simple entry call statements. 2
Statements Raise All Number of raise statements (all exceptions). 6

Statements Raise Standard Number of raise statements raising predefined
(standard) exceptions.

5

Statements Requeue Number of requeue statements. 1
Statements Selective Accept Number of selective accept statements (se-

lect).
1

Statements Terminate Alternative Number of terminate alternatives in selective
accept statements.

0

Statements Timed Entry Call Number of timed entry call statements. 1
Tasks Declared Number of task declarations. 1

Tasks Terminating Number of tasks that are known to terminate
(per static analysis).

2

Type Usage Pos On Enum Number of uses of attribute ‘Pos on enumera-
tion types.

6

Types Abstract Number of abstract type declarations. 5
Types Access Subprogram Number of access-to-subprogram type decla-

rations.
6

Types Controlled Number of controlled type declarations. 5
Types Derived Number of derived type declarations. 5

Types Tagged With Primitives Number of tagged types that have at least one
visible primitive operation.

5

Types With Discriminants Number of type declarations with discrimi-
nants.

5

Table 11: Global: Large Projects (30k+ LoC) - Language feature usage (projects count)

Feature Description Value
Attr Access All Number of uses of attribute ‘Access on any

object.
2,127

Attr Address All Number of uses of attribute ‘Address on any
object.

751

Attr Unchecked Access All Number of uses of attribute
‘Unchecked_Access on any object.

161

Decls Operators Overloaded Number of declarations of overloaded oper-
ators.

198

1. Global Results 24

Feature Description Value
Derivations Depth Protected Maximum inheritance depth of protected

types (number of derivation levels above the
root).

0

Derivations Depth Tagged Maximum inheritance depth of tagged types
(number of derivation levels above the root).

7

Derivations Depth Task Maximum inheritance depth of task types
(number of derivation levels above the root).

0

Derivations Depth Untagged Maximum inheritance depth of untagged
types (number of derivation levels above the
root).

3

Derivations Parents Maximum number of parents (interfaces or
base types) for any single type.

4

Exceptions Declared Number of exception declarations. 46
Generics Decl Local Number of locally declared generic units

(generic packages or subprograms declared
inside another unit).

0

Generics Inst Local Number of local instantiations of generic
units (inside subprograms or nested scopes).

218

Generics Inst Private Number of private generic instantiations. 106
Generics Inst Public Number of public generic instantiations. 724

Generics Units All Number of generic units (generic packages
and subprograms).

310

Handlers Others All Number of exception handlers using the oth-
ers choice.

1,125

Handlers Others Null Number of others exception handlers whose
body is null.

19

Inst Unchecked Conv Addr To Access Full Number of instantiations of
Ada.Unchecked_Conversion converting
System.Address to an access type (fully
qualified).

864

Inst Unchecked Conv Addr To Access Short Number of instantiations
of Unchecked_Conversion converting
System.Address to an access type (short
form).

0

Known Exceptions Access Number of statically known access-related
exceptions (invalid pointer dereferences).

15

Known Exceptions Assignment Number of statically known exceptions re-
lated to assignments (e.g., constraint errors
on assignment).

0

1. Global Results 25

Feature Description Value
Known Exceptions Index Number of statically known index-related ex-

ceptions (out-of-range array indexing).
0

Known Exceptions Raise Expression Number of statically known exceptions
raised by raise expressions.

0

Known Exceptions Zero Divide Number of statically known zero-divide ex-
ceptions.

0

Local Exception Number of exceptions that are locally han-
dled.

1

Metrics Functions Called Number of function call sites. 9,227
Metrics Objects All Number of object declarations or usages

(rough measure of data size).
51,491

Metrics Procedures Called Number of procedure call sites. 7,824
Metrics Statements All Total number of executable statements. 63,086

Metrics Types Used Number of type usages in the source (rough
measure of type variety/complexity).

5,421

Named Number Declarations Number of named number declarations (in-
teger constants used as named numbers).

881

Parameter Aliasing Certain Number of parameter aliasing situations that
are certainly aliasing (definite aliases).

7

Parameter Aliasing Possible Number of parameter aliasing situations that
are possibly aliasing (potential aliases).

0

Pragmas All Total number of pragmas. 13,554
Pragmas Nonstandard Number of nonstandard (implementation-

defined) pragmas.
3,242

Protected Objects Declared Number of protected object declarations. 11
Representation Clauses All Number of representation clauses (record

layout, alignment, etc.).
83

Statements Abort Number of abort statements. 0
Statements Accept Number of accept statements. 3

Statements Conditional Entry Call Number of conditional entry call statements. 0
Statements Delay Relative Number of relative delay statements (delay

until a duration has elapsed).
10

Statements Delay Until Number of delay until statements (delay until
a specific time).

0

Statements Entry Call Number of simple entry call statements. 31
Statements Raise All Number of raise statements (all exceptions). 1,106

Statements Raise Standard Number of raise statements raising prede-
fined (standard) exceptions.

586

2. Results by Rules 26

Feature Description Value
Statements Requeue Number of requeue statements. 23

Statements Selective Accept Number of selective accept statements (se-
lect).

1

Statements Terminate Alternative Number of terminate alternatives in selective
accept statements.

0

Statements Timed Entry Call Number of timed entry call statements. 7
Tasks Declared Number of task declarations. 1

Tasks Terminating Number of tasks that are known to terminate
(per static analysis).

2

Type Usage Pos On Enum Number of uses of attribute ‘Pos on enumer-
ation types.

779

Types Abstract Number of abstract type declarations. 74
Types Access Subprogram Number of access-to-subprogram type dec-

larations.
1,069

Types Controlled Number of controlled type declarations. 193
Types Derived Number of derived type declarations. 473

Types Tagged With Primitives Number of tagged types that have at least
one visible primitive operation.

525

Types With Discriminants Number of type declarations with discrimi-
nants.

176

Table 12: Global: Large Projects (30k+ LoC) - Language feature usage (sum of values)

2. Results by Rules

2.1. Summary

2.1.1. Analysis Time

2.1.1.1. All Projects

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

Number
Of Line Of
Codes

Number Of
Projects

Abort State-
ments

10 min 0 sec
900 ms

3 sec 400
ms

51 sec 900
ms

52 sec 300
ms

2,676,888 147

Abstract
Type Decla-

rations

9 min 29 sec
700 ms

4 sec 80 ms 51 sec 900
ms

52 sec
1,000 ms

2,676,888 147

2. Results by Rules 27

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

Number
Of Line Of
Codes

Number Of
Projects

Blocks 9 min 46 sec
900 ms

2 sec 100
ms

52 sec 200
ms

52 sec 200
ms

2,676,888 147

Construc-
tors

9 min 13 sec
10 ms

7 sec 700
ms

1 min 7 sec
300 ms

1 min 7 sec
200 ms

2,664,679 145

Enumera-
tion Repre-

sentation
Clauses

9 min 36 sec
1,000 ms

1 sec 90 ms 41 sec 900
ms

42 sec 500
ms

2,655,240 135

Renamings 9 min 53 sec
500 ms

1 sec 1,000
ms

52 sec 90
ms

52 sec 300
ms

2,676,888 147

Slices 9 min 56 sec
400 ms

1 sec 700
ms

16 min 29
sec 200 ms

16 min 21
sec 800 ms

2,664,679 145

Too Many
Parents

9 min 56 sec
400 ms

2 sec 300
ms

58 sec 800
ms

59 sec 700
ms

2,676,888 147

Variable Us-
age

3 min 48 sec
500 ms

1 min 5 sec
40 ms

655,191 140

Table 13: Analysis Time: All Projects

2.1.1.2. Small Projects (0-10k LoC)

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

Number
Of Line Of
Codes

Number Of
Projects

Abort State-
ments

1 min 58 sec
10 ms

2 sec 600
ms

38 sec 500
ms

39 sec 70
ms

204,354 130

Abstract
Type Decla-

rations

1 min 55 sec
100 ms

2 sec 1,000
ms

38 sec 500
ms

39 sec 600
ms

204,354 130

Blocks 1 min 56 sec
300 ms

1 sec 400
ms

38 sec 700
ms

39 sec 3 ms 204,354 130

Construc-
tors

1 min 56 sec
20 ms

6 sec 200
ms

43 sec 100
ms

43 sec 500
ms

203,498 129

Enumera-
tion Repre-

sentation
Clauses

1 min 44 sec
100 ms

900 ms 28 sec 500
ms

29 sec 200
ms

182,706 118

Renamings 1 min 55 sec
700 ms

1 sec 300
ms

38 sec 700
ms

39 sec 40
ms

204,354 130

2. Results by Rules 28

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

Number
Of Line Of
Codes

Number Of
Projects

Slices 1 min 58 sec
700 ms

1 sec 100
ms

48 sec 200
ms

48 sec 800
ms

203,498 129

Too Many
Parents

1 min 59 sec
800 ms

1 sec 600
ms

41 sec 700
ms

42 sec 700
ms

204,354 130

Variable Us-
age

1 min 17 sec
90 ms

58 sec 500
ms

199,948 128

Table 14: Analysis Time: Small Projects (0-10k LoC)

2.1.1.3. Medium Projects (10-30k LoC)

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

Number
Of Line Of
Codes

Number Of
Projects

Abort State-
ments

25 sec 700
ms

300 ms 5 sec 500
ms

5 sec 500
ms

133,641 10

Abstract
Type Decla-

rations

18 sec 200
ms

500 ms 5 sec 600
ms

5 sec 600
ms

133,641 10

Blocks 22 sec 800
ms

300 ms 5 sec 600
ms

5 sec 500
ms

133,641 10

Construc-
tors

14 sec 800
ms

800 ms 6 sec 600
ms

6 sec 500
ms

122,288 9

Enumera-
tion Repre-

sentation
Clauses

25 sec 300
ms

80 ms 5 sec 500
ms

5 sec 500
ms

133,641 10

Renamings 25 sec 400
ms

300 ms 5 sec 700
ms

5 sec 600
ms

133,641 10

Slices 31 sec 600
ms

200 ms 8 sec 1,000
ms

8 sec 900
ms

122,288 9

Too Many
Parents

25 sec 400
ms

300 ms 6 sec 300
ms

6 sec 300
ms

133,641 10

Variable Us-
age

1 min 29 sec
100 ms

4 sec 200
ms

106,623 8

Table 15: Analysis Time: Medium Projects (10-30k LoC)

2. Results by Rules 29

2.1.1.4. Large Projects (30k+ LoC)

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

Number
Of Line Of
Codes

Number Of
Projects

Abort State-
ments

7 min 37 sec
200 ms

400 ms 7 sec 900
ms

7 sec 800
ms

2,338,893 7

Abstract
Type Decla-

rations

7 min 16 sec
400 ms

600 ms 7 sec 900
ms

7 sec 800
ms

2,338,893 7

Blocks 7 min 27 sec
800 ms

500 ms 7 sec 900
ms

7 sec 600
ms

2,338,893 7

Construc-
tors

7 min 2 sec
200 ms

700 ms 17 sec 600
ms

17 sec 200
ms

2,338,893 7

Enumera-
tion Repre-

sentation
Clauses

7 min 27 sec
500 ms

80 ms 7 sec 900
ms

7 sec 800
ms

2,338,893 7

Renamings 7 min 32 sec
400 ms

300 ms 7 sec 800
ms

7 sec 600
ms

2,338,893 7

Slices 7 min 26 sec
100 ms

400 ms 15 min 31
sec 1,000
ms

15 min 24
sec 90 ms

2,338,893 7

Too Many
Parents

7 min 31 sec
300 ms

300 ms 10 sec 800
ms

10 sec 700
ms

2,338,893 7

Variable Us-
age

1 min 2 sec
200 ms

2 sec 300
ms

348,620 4

Table 16: Analysis Time: Large Projects (30k+ LoC)

2.1.2. Parsing Overhead

2.1.2.1. All Projects

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

Number
Of Line Of
Codes

Number Of
Projects

Abort State-
ments

5 sec 700
ms

3 hr 3 min 8
sec 300 ms

2 min 27 sec
400 ms

2 min 26 sec
900 ms

2,676,888 147

Abstract
Type Decla-

rations

37 sec
1,000 ms

3 hr 3 min 8
sec 300 ms

2 min 27 sec
400 ms

2 min 26 sec
900 ms

2,676,888 147

2. Results by Rules 30

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

Number
Of Line Of
Codes

Number Of
Projects

Blocks 15 sec 700
ms

3 hr 3 min 8
sec 300 ms

2 min 27 sec
400 ms

2 min 26 sec
900 ms

2,676,888 147

Construc-
tors

44 sec 50
ms

3 hr 2 min
39 sec 500
ms

2 min 25 sec
500 ms

2 min 25 sec
50 ms

2,664,679 145

Enumera-
tion Repre-

sentation
Clauses

4 sec 500
ms

3 hr 0 min
47 sec 900
ms

2 min 12 sec
300 ms

2 min 11 sec
800 ms

2,655,240 135

Renamings 7 sec 700
ms

3 hr 3 min 8
sec 300 ms

2 min 27 sec
400 ms

2 min 26 sec
900 ms

2,676,888 147

Slices 34 sec 600
ms

3 hr 2 min
39 sec 500
ms

2 min 25 sec
500 ms

2 min 25 sec
50 ms

2,664,679 145

Too Many
Parents

3 sec 100
ms

3 hr 3 min 8
sec 300 ms

2 min 27 sec
400 ms

2 min 26 sec
900 ms

2,676,888 147

Variable Us-
age

3 min 57 sec
300 ms

1 hr 8 min 6
sec 200 ms

655,191 140

Table 17: Parsing Overhead: All Projects

2.1.2.2. Small Projects (0-10k LoC)

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

Number
Of Line Of
Codes

Number Of
Projects

Abort State-
ments

5 sec 700
ms

25 min 51
sec 500 ms

1 min 57 sec
300 ms

1 min 56 sec
700 ms

204,354 130

Abstract
Type Decla-

rations

8 sec 600
ms

25 min 51
sec 500 ms

1 min 57 sec
300 ms

1 min 56 sec
700 ms

204,354 130

Blocks 7 sec 500
ms

25 min 51
sec 500 ms

1 min 57 sec
300 ms

1 min 56 sec
700 ms

204,354 130

Construc-
tors

7 sec 70 ms 25 min 50
sec 900 ms

1 min 56 sec
400 ms

1 min 55 sec
800 ms

203,498 129

Enumera-
tion Repre-

sentation
Clauses

4 sec 500
ms

23 min 31
sec 100 ms

1 min 42 sec
200 ms

1 min 41 sec
600 ms

182,706 118

2. Results by Rules 31

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

Number
Of Line Of
Codes

Number Of
Projects

Renamings 7 sec 700
ms

25 min 51
sec 500 ms

1 min 57 sec
300 ms

1 min 56 sec
700 ms

204,354 130

Slices 15 sec
1,000 ms

25 min 50
sec 900 ms

1 min 56 sec
400 ms

1 min 55 sec
800 ms

203,498 129

Too Many
Parents

3 sec 100
ms

25 min 51
sec 500 ms

1 min 57 sec
300 ms

1 min 56 sec
700 ms

204,354 130

Variable Us-
age

1 min 59 sec
500 ms

25 min 36
sec 200 ms

199,948 128

Table 18: Parsing Overhead: Small Projects (0-10k LoC)

2.1.2.3. Medium Projects (10-30k LoC)

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

Number
Of Line Of
Codes

Number Of
Projects

Abort State-
ments

6 min 58 sec
400 ms

8 sec 900
ms

8 sec 1,000
ms

133,641 10

Abstract
Type Decla-

rations

8 sec 200
ms

6 min 58 sec
400 ms

8 sec 900
ms

8 sec 1,000
ms

133,641 10

Blocks 3 sec 100
ms

6 min 58 sec
400 ms

8 sec 900
ms

8 sec 1,000
ms

133,641 10

Construc-
tors

9 sec 500
ms

6 min 30 sec
300 ms

7 sec 1,000
ms

8 sec 20 ms 122,288 9

Enumera-
tion Repre-

sentation
Clauses

6 min 58 sec
400 ms

8 sec 900
ms

8 sec 1,000
ms

133,641 10

Renamings 6 min 58 sec
400 ms

8 sec 900
ms

8 sec 1,000
ms

133,641 10

Slices 7 sec 500
ms

6 min 30 sec
300 ms

7 sec 1,000
ms

8 sec 20 ms 122,288 9

Too Many
Parents

6 min 58 sec
400 ms

8 sec 900
ms

8 sec 1,000
ms

133,641 10

Variable Us-
age

19 sec 200
ms

6 min 15 sec
90 ms

106,623 8

Table 19: Parsing Overhead: Medium Projects (10-30k LoC)

2. Results by Rules 32

2.1.2.4. Large Projects (30k+ LoC)

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

Number
Of Line Of
Codes

Number Of
Projects

Abort State-
ments

2 hr 30 min
18 sec 400
ms

21 sec 200
ms

21 sec 200
ms

2,338,893 7

Abstract
Type Decla-

rations

21 sec 200
ms

2 hr 30 min
18 sec 400
ms

21 sec 200
ms

21 sec 200
ms

2,338,893 7

Blocks 5 sec 60 ms 2 hr 30 min
18 sec 400
ms

21 sec 200
ms

21 sec 200
ms

2,338,893 7

Construc-
tors

27 sec 500
ms

2 hr 30 min
18 sec 400
ms

21 sec 200
ms

21 sec 200
ms

2,338,893 7

Enumera-
tion Repre-

sentation
Clauses

2 hr 30 min
18 sec 400
ms

21 sec 200
ms

21 sec 200
ms

2,338,893 7

Renamings 2 hr 30 min
18 sec 400
ms

21 sec 200
ms

21 sec 200
ms

2,338,893 7

Slices 11 sec 100
ms

2 hr 30 min
18 sec 400
ms

21 sec 200
ms

21 sec 200
ms

2,338,893 7

Too Many
Parents

2 hr 30 min
18 sec 400
ms

21 sec 200
ms

21 sec 200
ms

2,338,893 7

Variable Us-
age

1 min 38 sec
600 ms

36 min 14
sec 900 ms

348,620 4

Table 20: Parsing Overhead: Large Projects (30k+ LoC)

2.1.3. Issued Messages

2.1.3.1. All Projects

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

Number Of
Line Of Codes

Number Of
Projects

Abort State-
ments

2 1 2 2 2,676,888 147

2. Results by Rules 33

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

Number Of
Line Of Codes

Number Of
Projects

Abstract Type
Declarations

211 162 221 221 2,676,888 147

Blocks 8,322 7,896 8,529 8,529 2,676,888 147
Constructors 454 235 423 423 2,664,679 145
Enumeration
Representa-
tion Clauses

75 71 78 78 2,655,240 135

Renamings 3,332 2,573 3,402 3,402 2,676,888 147
Slices 5,679 5,481 5,945 5,945 2,664,679 145

Too Many Par-
ents

24 39 518 518 2,676,888 147

Variable Us-
age

22,134 11,892 0 0 655,191 140

Table 21: Issued Messages: All Projects

2.1.3.2. Small Projects (0-10k LoC)

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

Number Of
Line Of Codes

Number Of
Projects

Abort State-
ments

1 0 1 1 204,354 130

Abstract Type
Declarations

71 59 71 71 204,354 130

Blocks 863 689 948 948 204,354 130
Constructors 129 118 134 134 203,498 129
Enumeration
Representa-
tion Clauses

60 56 63 63 182,706 118

Renamings 567 472 599 599 204,354 130
Slices 848 776 920 920 203,498 129

Too Many Par-
ents

4 8 84 84 204,354 130

Variable Us-
age

8,035 4,927 0 0 199,948 128

Table 22: Issued Messages: Small Projects (0-10k LoC)

2. Results by Rules 34

2.1.3.3. Medium Projects (10-30k LoC)

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

Number Of
Line Of Codes

Number Of
Projects

Abort State-
ments

0 0 0 0 133,641 10

Abstract Type
Declarations

51 38 51 51 133,641 10

Blocks 462 338 476 476 133,641 10
Constructors 63 25 50 50 122,288 9
Enumeration
Representa-
tion Clauses

2 2 2 2 133,641 10

Renamings 477 391 485 485 133,641 10
Slices 566 528 575 575 122,288 9

Too Many Par-
ents

1 2 36 36 133,641 10

Variable Us-
age

5,849 4,227 0 0 106,623 8

Table 23: Issued Messages: Medium Projects (10-30k LoC)

2.1.3.4. Large Projects (30k+ LoC)

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

Number Of
Line Of Codes

Number Of
Projects

Abort State-
ments

1 1 1 1 2,338,893 7

Abstract Type
Declarations

89 65 99 99 2,338,893 7

Blocks 6,997 6,869 7,105 7,105 2,338,893 7
Constructors 262 92 239 239 2,338,893 7
Enumeration
Representa-
tion Clauses

13 13 13 13 2,338,893 7

Renamings 2,288 1,710 2,318 2,318 2,338,893 7
Slices 4,265 4,177 4,450 4,450 2,338,893 7

Too Many Par-
ents

19 29 398 398 2,338,893 7

Variable Us-
age

8,250 2,738 0 0 348,620 4

Table 24: Issued Messages: Large Projects (30k+ LoC)

2. Results by Rules 35

2.2. Abort Statements

2.2.1. All Projects

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

overheadParsing 5 sec 700 ms 3 hr 3 min 8 sec
300 ms

2 min 27 sec 400
ms

2 min 26 sec 900
ms

overheadPopulat-
ing

47 min 57 sec 10
ms

Relative Over-
head (0 is better)

0.00% 243,292.95% 2,486.95% 2,478.29%

analysisTime 10 min 0 sec 900
ms

3 sec 400 ms 51 sec 900 ms 52 sec 300 ms

Analysis Relative
Speed (0 is better)

17,680.18% 0.00% 1,436.29% 1,448.52%

executionTime 10 min 6 sec 600
ms

7 hr 42 min 13 sec
900 ms

3 min 19 sec 300
ms

3 min 19 sec 200
ms

Execution Rela-
tive Speed (0 is

better)

204.51% 13,821.73% 0.04% 0.00%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 2 1 2 2
Table 25: Abort Statements: All Projects

Number of projects: 147

Total lines of code: 2,676,888

2.2.2. Small Projects (0-10k LoC)

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

overheadParsing 5 sec 700 ms 25 min 51 sec 500
ms

1 min 57 sec 300
ms

1 min 56 sec 700
ms

overheadPopulat-
ing

15 min 54 sec 600
ms

Relative Over-
head (0 is better)

0.00% 43,892.31% 1,958.75% 1,948.92%

analysisTime 1 min 58 sec 10
ms

2 sec 600 ms 38 sec 500 ms 39 sec 70 ms

2. Results by Rules 36

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

Analysis Relative
Speed (0 is better)

4,353.40% 0.00% 1,353.36% 1,374.24%

executionTime 2 min 3 sec 700
ms

1 hr 23 min 34 sec
800 ms

2 min 35 sec 800
ms

2 min 35 sec 800
ms

Execution Rela-
tive Speed (0 is

better)

0.00% 3,953.71% 25.93% 25.93%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 1 0 1 1
Table 26: Abort Statements: Small Projects (0-10k LoC)

Number of projects: 130

Total lines of code: 204,354

2.2.3. Medium Projects (10-30k LoC)

Metric Adactl Cogralys Gnatcheck 1cores Gnatcheck
32cores

overheadParsing 6 min 58 sec 400
ms

8 sec 900 ms 8 sec 1,000 ms

overheadPopulat-
ing

3 min 25 sec 3 ms

Relative Overhead
(0 is better)

6,876.09% 0.00% 0.30%

analysisTime 25 sec 700 ms 300 ms 5 sec 500 ms 5 sec 500 ms
Analysis Relative
Speed (0 is better)

7,680.73% 0.00% 1,572.78% 1,557.64%

executionTime 25 sec 700 ms 20 min 47 sec 200
ms

14 sec 500 ms 14 sec 400 ms

Execution Relative
Speed (0 is better)

78.02% 8,537.05% 0.16% 0.00%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 0 0 0 0
Table 27: Abort Statements: Medium Projects (10-30k LoC)

Number of projects: 10

2. Results by Rules 37

Total lines of code: 133,641

2.2.4. Large Projects (30k+ LoC)

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

overheadParsing 2 hr 30 min 18 sec
400 ms

21 sec 200 ms 21 sec 200 ms

overheadPopulat-
ing

28 min 37 sec 400
ms

Relative Over-
head (0 is better)

50,652.10% 0.00% 0.19%

analysisTime 7 min 37 sec 200
ms

400 ms 7 sec 900 ms 7 sec 800 ms

Analysis Relative
Speed (0 is better)

114,361.72% 0.00% 1,873.56% 1,851.03%

executionTime 7 min 37 sec 200
ms

5 hr 57 min 51 sec
900 ms

29 sec 40 ms 28 sec 1,000 ms

Execution Rela-
tive Speed (0 is

better)

1,477.32% 73,975.16% 0.17% 0.00%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 1 1 1 1
Table 28: Abort Statements: Large Projects (30k+ LoC)

Number of projects: 7

Total lines of code: 2,338,893

2.3. Abstract Type Declarations

2.3.1. All Projects

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

overheadParsing 37 sec 1,000 ms 3 hr 3 min 8 sec
300 ms

2 min 27 sec 400
ms

2 min 26 sec 900
ms

overheadPopulat-
ing

47 min 57 sec 10
ms

Relative Over-
head (0 is better)

0.00% 36,429.25% 288.26% 286.96%

2. Results by Rules 38

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

analysisTime 9 min 29 sec 700
ms

4 sec 80 ms 51 sec 900 ms 52 sec 1,000 ms

Analysis Relative
Speed (0 is better)

13,879.28% 0.00% 1,174.58% 1,200.10%

executionTime 10 min 7 sec 700
ms

7 hr 42 min 14 sec
600 ms

3 min 19 sec 300
ms

3 min 19 sec 900
ms

Execution Rela-
tive Speed (0 is

better)

204.89% 13,814.87% 0.00% 0.27%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 211 162 221 221
Table 29: Abstract Type Declarations: All Projects

Number of projects: 147

Total lines of code: 2,676,888

2.3.2. Small Projects (0-10k LoC)

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

overheadParsing 8 sec 600 ms 25 min 51 sec 500
ms

1 min 57 sec 300
ms

1 min 56 sec 700
ms

overheadPopulat-
ing

15 min 54 sec 600
ms

Relative Over-
head (0 is better)

0.00% 28,905.73% 1,257.41% 1,250.93%

analysisTime 1 min 55 sec 100
ms

2 sec 1,000 ms 38 sec 500 ms 39 sec 600 ms

Analysis Relative
Speed (0 is better)

3,759.72% 0.00% 1,189.29% 1,227.73%

executionTime 2 min 3 sec 800
ms

1 hr 23 min 35 sec
200 ms

2 min 35 sec 700
ms

2 min 36 sec 300
ms

Execution Rela-
tive Speed (0 is

better)

0.00% 3,951.79% 25.82% 26.30%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

2. Results by Rules 39

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

Issued Messages 71 59 71 71
Table 30: Abstract Type Declarations: Small Projects (0-10k LoC)

Number of projects: 130

Total lines of code: 204,354

2.3.3. Medium Projects (10-30k LoC)

Metric Adactl Cogralys Gnatcheck 1cores Gnatcheck
32cores

overheadParsing 8 sec 200 ms 6 min 58 sec 400
ms

8 sec 900 ms 8 sec 1,000 ms

overheadPopulat-
ing

3 min 25 sec 3 ms

Relative Overhead
(0 is better)

0.00% 7,549.45% 9.65% 9.98%

analysisTime 18 sec 200 ms 500 ms 5 sec 600 ms 5 sec 600 ms
Analysis Relative
Speed (0 is better)

3,550.68% 0.00% 1,014.76% 1,013.43%

executionTime 26 sec 400 ms 20 min 47 sec 400
ms

14 sec 500 ms 14 sec 500 ms

Execution Relative
Speed (0 is better)

81.89% 8,500.50% 0.00% 0.14%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 51 38 51 51
Table 31: Abstract Type Declarations: Medium Projects (10-30k LoC)

Number of projects: 10

Total lines of code: 133,641

2.3.4. Large Projects (30k+ LoC)

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

overheadParsing 21 sec 200 ms 2 hr 30 min 18 sec
400 ms

21 sec 200 ms 21 sec 200 ms

2. Results by Rules 40

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

overheadPopulat-
ing

28 min 37 sec 400
ms

Relative Over-
head (0 is better)

0.06% 50,652.10% 0.00% 0.19%

analysisTime 7 min 16 sec 400
ms

600 ms 7 sec 900 ms 7 sec 800 ms

Analysis Relative
Speed (0 is better)

73,462.93% 0.00% 1,235.15% 1,218.29%

executionTime 7 min 37 sec 500
ms

5 hr 57 min 52 sec
100 ms

29 sec 70 ms 29 sec 10 ms

Execution Rela-
tive Speed (0 is

better)

1,476.99% 73,907.74% 0.21% 0.00%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 89 65 99 99
Table 32: Abstract Type Declarations: Large Projects (30k+ LoC)

Number of projects: 7

Total lines of code: 2,338,893

2.4. Blocks

2.4.1. All Projects

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

overheadParsing 15 sec 700 ms 3 hr 3 min 8 sec
300 ms

2 min 27 sec 400
ms

2 min 26 sec 900
ms

overheadPopulat-
ing

47 min 57 sec 10
ms

Relative Over-
head (0 is better)

0.00% 88,082.86% 837.27% 834.13%

analysisTime 9 min 46 sec 900
ms

2 sec 100 ms 52 sec 200 ms 52 sec 200 ms

Analysis Relative
Speed (0 is better)

27,652.22% 0.00% 2,367.16% 2,366.21%

2. Results by Rules 41

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

executionTime 10 min 2 sec 600
ms

7 hr 42 min 12 sec
700 ms

3 min 19 sec 500
ms

3 min 19 sec 30
ms

Execution Rela-
tive Speed (0 is

better)

202.77% 13,833.92% 0.26% 0.00%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 8,322 7,896 8,529 8,529
Table 33: Blocks: All Projects

Number of projects: 147

Total lines of code: 2,676,888

2.4.2. Small Projects (0-10k LoC)

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

overheadParsing 7 sec 500 ms 25 min 51 sec 500
ms

1 min 57 sec 300
ms

1 min 56 sec 700
ms

overheadPopulat-
ing

15 min 54 sec 600
ms

Relative Over-
head (0 is better)

0.00% 33,196.21% 1,458.19% 1,450.75%

analysisTime 1 min 56 sec 300
ms

1 sec 400 ms 38 sec 700 ms 39 sec 3 ms

Analysis Relative
Speed (0 is better)

8,291.01% 0.00% 2,692.59% 2,714.48%

executionTime 2 min 3 sec 800
ms

1 hr 23 min 33 sec
600 ms

2 min 35 sec
1,000 ms

2 min 35 sec 700
ms

Execution Rela-
tive Speed (0 is

better)

0.00% 3,949.41% 25.98% 25.78%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 863 689 948 948
Table 34: Blocks: Small Projects (0-10k LoC)

Number of projects: 130

2. Results by Rules 42

Total lines of code: 204,354

2.4.3. Medium Projects (10-30k LoC)

Metric Adactl Cogralys Gnatcheck 1cores Gnatcheck
32cores

overheadParsing 3 sec 100 ms 6 min 58 sec 400
ms

8 sec 900 ms 8 sec 1,000 ms

overheadPopulat-
ing

3 min 25 sec 3 ms

Relative Overhead
(0 is better)

0.00% 19,754.46% 184.61% 185.46%

analysisTime 22 sec 800 ms 300 ms 5 sec 600 ms 5 sec 500 ms
Analysis Relative
Speed (0 is better)

8,866.60% 0.00% 2,100.37% 2,063.67%

executionTime 25 sec 900 ms 20 min 47 sec 100
ms

14 sec 500 ms 14 sec 500 ms

Execution Relative
Speed (0 is better)

79.35% 8,520.61% 0.46% 0.00%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 462 338 476 476
Table 35: Blocks: Medium Projects (10-30k LoC)

Number of projects: 10

Total lines of code: 133,641

2.4.4. Large Projects (30k+ LoC)

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

overheadParsing 5 sec 60 ms 2 hr 30 min 18 sec
400 ms

21 sec 200 ms 21 sec 200 ms

overheadPopulat-
ing

28 min 37 sec 400
ms

Relative Over-
head (0 is better)

0.00% 212,209.03% 318.33% 319.12%

analysisTime 7 min 27 sec 800
ms

500 ms 7 sec 900 ms 7 sec 600 ms

Analysis Relative
Speed (0 is better)

94,260.34% 0.00% 1,559.81% 1,511.34%

2. Results by Rules 43

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

executionTime 7 min 32 sec 800
ms

5 hr 57 min 51 sec
1,000 ms

29 sec 30 ms 28 sec 800 ms

Execution Rela-
tive Speed (0 is

better)

1,470.20% 74,352.13% 0.66% 0.00%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 6,997 6,869 7,105 7,105
Table 36: Blocks: Large Projects (30k+ LoC)

Number of projects: 7

Total lines of code: 2,338,893

2.5. Constructors

2.5.1. All Projects

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

overheadParsing 44 sec 50 ms 3 hr 2 min 39 sec
500 ms

2 min 25 sec 500
ms

2 min 25 sec 50
ms

overheadPopulat-
ing

47 min 36 sec 700
ms

Relative Over-
head (0 is better)

0.00% 31,262.61% 230.34% 229.26%

analysisTime 9 min 13 sec 10
ms

7 sec 700 ms 1 min 7 sec 300
ms

1 min 7 sec 200
ms

Analysis Relative
Speed (0 is better)

7,120.44% 0.00% 778.27% 777.40%

executionTime 9 min 57 sec 70
ms

7 hr 40 min 40 sec
200 ms

3 min 32 sec 800
ms

3 min 32 sec 300
ms

Execution Rela-
tive Speed (0 is

better)

181.30% 12,922.48% 0.26% 0.00%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 454 235 423 423
Table 37: Constructors: All Projects

2. Results by Rules 44

Number of projects: 145

Total lines of code: 2,664,679

2.5.2. Small Projects (0-10k LoC)

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

overheadParsing 7 sec 70 ms 25 min 50 sec 900
ms

1 min 56 sec 400
ms

1 min 55 sec 800
ms

overheadPopulat-
ing

15 min 50 sec 500
ms

Relative Over-
head (0 is better)

0.00% 35,280.50% 1,546.11% 1,538.43%

analysisTime 1 min 56 sec 20
ms

6 sec 200 ms 43 sec 100 ms 43 sec 500 ms

Analysis Relative
Speed (0 is better)

1,766.63% 0.00% 593.72% 599.35%

executionTime 2 min 3 sec 90 ms 1 hr 23 min 29 sec
20 ms

2 min 39 sec 500
ms

2 min 39 sec 300
ms

Execution Rela-
tive Speed (0 is

better)

0.00% 3,969.51% 29.58% 29.42%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 129 118 134 134
Table 38: Constructors: Small Projects (0-10k LoC)

Number of projects: 129

Total lines of code: 203,498

2.5.3. Medium Projects (10-30k LoC)

Metric Adactl Cogralys Gnatcheck 1cores Gnatcheck
32cores

overheadParsing 9 sec 500 ms 6 min 30 sec 300
ms

7 sec 1,000 ms 8 sec 20 ms

overheadPopulat-
ing

3 min 8 sec 800 ms

Relative Overhead
(0 is better)

18.85% 7,144.95% 0.00% 0.33%

2. Results by Rules 45

Metric Adactl Cogralys Gnatcheck 1cores Gnatcheck
32cores

analysisTime 14 sec 800 ms 800 ms 6 sec 600 ms 6 sec 500 ms
Analysis Relative
Speed (0 is better)

1,820.23% 0.00% 753.43% 745.20%

executionTime 24 sec 300 ms 19 min 18 sec
1,000 ms

14 sec 600 ms 14 sec 500 ms

Execution Relative
Speed (0 is better)

67.12% 7,883.89% 0.25% 0.00%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 63 25 50 50
Table 39: Constructors: Medium Projects (10-30k LoC)

Number of projects: 9

Total lines of code: 122,288

2.5.4. Large Projects (30k+ LoC)

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

overheadParsing 27 sec 500 ms 2 hr 30 min 18 sec
400 ms

21 sec 200 ms 21 sec 200 ms

overheadPopulat-
ing

28 min 37 sec 400
ms

Relative Over-
head (0 is better)

29.92% 50,652.10% 0.00% 0.19%

analysisTime 7 min 2 sec 200
ms

700 ms 17 sec 600 ms 17 sec 200 ms

Analysis Relative
Speed (0 is better)

62,451.02% 0.00% 2,505.82% 2,453.48%

executionTime 7 min 29 sec 700
ms

5 hr 57 min 52 sec
200 ms

38 sec 700 ms 38 sec 400 ms

Execution Rela-
tive Speed (0 is

better)

1,070.23% 55,773.52% 0.82% 0.00%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 262 92 239 239
Table 40: Constructors: Large Projects (30k+ LoC)

2. Results by Rules 46

Number of projects: 7

Total lines of code: 2,338,893

2.6. Enumeration Representation Clauses

2.6.1. All Projects

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

overheadParsing 4 sec 500 ms 3 hr 0 min 47 sec
900 ms

2 min 12 sec 300
ms

2 min 11 sec 800
ms

overheadPopulat-
ing

46 min 19 sec 300
ms

Relative Over-
head (0 is better)

0.00% 299,838.55% 2,811.45% 2,800.37%

analysisTime 9 min 36 sec
1,000 ms

1 sec 90 ms 41 sec 900 ms 42 sec 500 ms

Analysis Relative
Speed (0 is better)

52,922.98% 0.00% 3,751.55% 3,805.78%

executionTime 9 min 41 sec 500
ms

7 hr 34 min 15 sec
500 ms

2 min 54 sec 200
ms

2 min 54 sec 300
ms

Execution Rela-
tive Speed (0 is

better)

233.84% 15,547.30% 0.00% 0.05%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 75 71 78 78
Table 41: Enumeration Representation Clauses: All Projects

Number of projects: 135

Total lines of code: 2,655,240

2.6.2. Small Projects (0-10k LoC)

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

overheadParsing 4 sec 500 ms 23 min 31 sec 100
ms

1 min 42 sec 200
ms

1 min 41 sec 600
ms

overheadPopulat-
ing

14 min 16 sec 900
ms

2. Results by Rules 47

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

Relative Over-
head (0 is better)

0.00% 49,819.70% 2,149.16% 2,136.61%

analysisTime 1 min 44 sec 100
ms

900 ms 28 sec 500 ms 29 sec 200 ms

Analysis Relative
Speed (0 is better)

11,196.89% 0.00% 2,997.08% 3,071.22%

executionTime 1 min 48 sec 700
ms

1 hr 15 min 36 sec
1,000 ms

2 min 10 sec 700
ms

2 min 10 sec 800
ms

Execution Rela-
tive Speed (0 is

better)

0.00% 4,074.99% 20.30% 20.41%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 60 56 63 63
Table 42: Enumeration Representation Clauses: Small Projects (0-10k LoC)

Number of projects: 118

Total lines of code: 182,706

2.6.3. Medium Projects (10-30k LoC)

Metric Adactl Cogralys Gnatcheck 1cores Gnatcheck
32cores

overheadParsing 6 min 58 sec 400
ms

8 sec 900 ms 8 sec 1,000 ms

overheadPopulat-
ing

3 min 25 sec 3 ms

Relative Overhead
(0 is better)

6,876.09% 0.00% 0.30%

analysisTime 25 sec 300 ms 80 ms 5 sec 500 ms 5 sec 500 ms
Analysis Relative
Speed (0 is better)

30,111.45% 0.00% 6,441.77% 6,481.54%

executionTime 25 sec 300 ms 20 min 46 sec 900
ms

14 sec 400 ms 14 sec 500 ms

Execution Relative
Speed (0 is better)

75.61% 8,547.32% 0.00% 0.42%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

2. Results by Rules 48

Metric Adactl Cogralys Gnatcheck 1cores Gnatcheck
32cores

Issued Messages 2 2 2 2
Table 43: Enumeration Representation Clauses: Medium Projects (10-30k LoC)

Number of projects: 10

Total lines of code: 133,641

2.6.4. Large Projects (30k+ LoC)

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

overheadParsing 2 hr 30 min 18 sec
400 ms

21 sec 200 ms 21 sec 200 ms

overheadPopulat-
ing

28 min 37 sec 400
ms

Relative Over-
head (0 is better)

50,652.10% 0.00% 0.19%

analysisTime 7 min 27 sec 500
ms

80 ms 7 sec 900 ms 7 sec 800 ms

Analysis Relative
Speed (0 is better)

541,790.07% 0.00% 9,441.90% 9,288.52%

executionTime 7 min 27 sec 500
ms

5 hr 57 min 51 sec
600 ms

29 sec 30 ms 28 sec 900 ms

Execution Rela-
tive Speed (0 is

better)

1,445.98% 74,076.43% 0.30% 0.00%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 13 13 13 13
Table 44: Enumeration Representation Clauses: Large Projects (30k+ LoC)

Number of projects: 7

Total lines of code: 2,338,893

2. Results by Rules 49

2.7. Renamings

2.7.1. All Projects

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

overheadParsing 7 sec 700 ms 3 hr 3 min 8 sec
300 ms

2 min 27 sec 400
ms

2 min 26 sec 900
ms

overheadPopulat-
ing

47 min 57 sec 10
ms

Relative Over-
head (0 is better)

0.00% 179,735.08% 1,811.41% 1,805.02%

analysisTime 9 min 53 sec 500
ms

1 sec 1,000 ms 52 sec 90 ms 52 sec 300 ms

Analysis Relative
Speed (0 is better)

30,289.37% 0.00% 2,567.13% 2,575.84%

executionTime 10 min 1 sec 200
ms

7 hr 42 min 12 sec
500 ms

3 min 19 sec 500
ms

3 min 19 sec 100
ms

Execution Rela-
tive Speed (0 is

better)

201.90% 13,826.61% 0.16% 0.00%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 3,332 2,573 3,402 3,402
Table 45: Renamings: All Projects

Number of projects: 147

Total lines of code: 2,676,888

2.7.2. Small Projects (0-10k LoC)

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

overheadParsing 7 sec 700 ms 25 min 51 sec 500
ms

1 min 57 sec 300
ms

1 min 56 sec 700
ms

overheadPopulat-
ing

15 min 54 sec 600
ms

Relative Over-
head (0 is better)

0.00% 32,404.47% 1,421.14% 1,413.88%

analysisTime 1 min 55 sec 700
ms

1 sec 300 ms 38 sec 700 ms 39 sec 40 ms

2. Results by Rules 50

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

Analysis Relative
Speed (0 is better)

8,672.50% 0.00% 2,830.99% 2,860.82%

executionTime 2 min 3 sec 400
ms

1 hr 23 min 33 sec
500 ms

2 min 35 sec 900
ms

2 min 35 sec 800
ms

Execution Rela-
tive Speed (0 is

better)

0.00% 3,963.14% 26.37% 26.24%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 567 472 599 599
Table 46: Renamings: Small Projects (0-10k LoC)

Number of projects: 130

Total lines of code: 204,354

2.7.3. Medium Projects (10-30k LoC)

Metric Adactl Cogralys Gnatcheck 1cores Gnatcheck
32cores

overheadParsing 6 min 58 sec 400
ms

8 sec 900 ms 8 sec 1,000 ms

overheadPopulat-
ing

3 min 25 sec 3 ms

Relative Overhead
(0 is better)

6,876.09% 0.00% 0.30%

analysisTime 25 sec 400 ms 300 ms 5 sec 700 ms 5 sec 600 ms
Analysis Relative
Speed (0 is better)

8,612.95% 0.00% 1,838.88% 1,812.57%

executionTime 25 sec 400 ms 20 min 47 sec 200
ms

14 sec 600 ms 14 sec 500 ms

Execution Relative
Speed (0 is better)

74.66% 8,479.35% 0.34% 0.00%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 477 391 485 485
Table 47: Renamings: Medium Projects (10-30k LoC)

Number of projects: 10

2. Results by Rules 51

Total lines of code: 133,641

2.7.4. Large Projects (30k+ LoC)

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

overheadParsing 2 hr 30 min 18 sec
400 ms

21 sec 200 ms 21 sec 200 ms

overheadPopulat-
ing

28 min 37 sec 400
ms

Relative Over-
head (0 is better)

50,652.10% 0.00% 0.19%

analysisTime 7 min 32 sec 400
ms

300 ms 7 sec 800 ms 7 sec 600 ms

Analysis Relative
Speed (0 is better)

131,859.52% 0.00% 2,171.24% 2,128.46%

executionTime 7 min 32 sec 400
ms

5 hr 57 min 51 sec
900 ms

28 sec 900 ms 28 sec 800 ms

Execution Rela-
tive Speed (0 is

better)

1,469.04% 74,368.89% 0.37% 0.00%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 2,288 1,710 2,318 2,318
Table 48: Renamings: Large Projects (30k+ LoC)

Number of projects: 7

Total lines of code: 2,338,893

2.8. Slices

2.8.1. All Projects

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

overheadParsing 34 sec 600 ms 3 hr 2 min 39 sec
500 ms

2 min 25 sec 500
ms

2 min 25 sec 50
ms

overheadPopulat-
ing

47 min 36 sec 700
ms

Relative Over-
head (0 is better)

0.00% 39,812.21% 320.39% 319.02%

2. Results by Rules 52

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

analysisTime 9 min 56 sec 400
ms

1 sec 700 ms 16 min 29 sec 200
ms

16 min 21 sec 800
ms

Analysis Relative
Speed (0 is better)

34,721.36% 0.00% 57,653.67% 57,220.47%

executionTime 10 min 31 sec 40
ms

7 hr 40 min 34 sec
300 ms

18 min 54 sec 700
ms

18 min 46 sec 800
ms

Execution Rela-
tive Speed (0 is

better)

0.00% 4,279.16% 79.82% 78.57%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 5,679 5,481 5,945 5,945
Table 49: Slices: All Projects

Number of projects: 145

Total lines of code: 2,664,679

2.8.2. Small Projects (0-10k LoC)

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

overheadParsing 15 sec 1,000 ms 25 min 50 sec 900
ms

1 min 56 sec 400
ms

1 min 55 sec 800
ms

overheadPopulat-
ing

15 min 50 sec 500
ms

Relative Over-
head (0 is better)

0.00% 15,540.28% 627.68% 624.28%

analysisTime 1 min 58 sec 700
ms

1 sec 100 ms 48 sec 200 ms 48 sec 800 ms

Analysis Relative
Speed (0 is better)

10,445.89% 0.00% 4,184.44% 4,232.40%

executionTime 2 min 14 sec 700
ms

1 hr 23 min 23 sec
900 ms

2 min 44 sec 600
ms

2 min 44 sec 600
ms

Execution Rela-
tive Speed (0 is

better)

0.00% 3,613.95% 22.18% 22.18%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

2. Results by Rules 53

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

Issued Messages 848 776 920 920
Table 50: Slices: Small Projects (0-10k LoC)

Number of projects: 129

Total lines of code: 203,498

2.8.3. Medium Projects (10-30k LoC)

Metric Adactl Cogralys Gnatcheck 1cores Gnatcheck
32cores

overheadParsing 7 sec 500 ms 6 min 30 sec 300
ms

7 sec 1,000 ms 8 sec 20 ms

overheadPopulat-
ing

3 min 8 sec 800 ms

Relative Overhead
(0 is better)

0.00% 7,624.94% 6.63% 6.98%

analysisTime 31 sec 600 ms 200 ms 8 sec 1,000 ms 8 sec 900 ms
Analysis Relative
Speed (0 is better)

13,805.31% 0.00% 3,853.02% 3,828.07%

executionTime 39 sec 70 ms 19 min 18 sec 500
ms

16 sec 1,000 ms 16 sec 900 ms

Execution Relative
Speed (0 is better)

130.66% 6,738.57% 0.18% 0.00%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 566 528 575 575
Table 51: Slices: Medium Projects (10-30k LoC)

Number of projects: 9

Total lines of code: 122,288

2.8.4. Large Projects (30k+ LoC)

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

overheadParsing 11 sec 100 ms 2 hr 30 min 18 sec
400 ms

21 sec 200 ms 21 sec 200 ms

2. Results by Rules 54

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

overheadPopulat-
ing

28 min 37 sec 400
ms

Relative Over-
head (0 is better)

0.00% 96,386.76% 90.11% 90.47%

analysisTime 7 min 26 sec 100
ms

400 ms 15 min 31 sec
1,000 ms

15 min 24 sec 90
ms

Analysis Relative
Speed (0 is better)

123,891.02% 0.00% 258,938.51% 256,741.85%

executionTime 7 min 37 sec 200
ms

5 hr 57 min 51 sec
900 ms

15 min 53 sec 100
ms

15 min 45 sec 300
ms

Execution Rela-
tive Speed (0 is

better)

0.00% 4,596.04% 108.46% 106.74%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 4,265 4,177 4,450 4,450
Table 52: Slices: Large Projects (30k+ LoC)

Number of projects: 7

Total lines of code: 2,338,893

2.9. Too Many Parents

2.9.1. All Projects

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

overheadParsing 3 sec 100 ms 3 hr 3 min 8 sec
300 ms

2 min 27 sec 400
ms

2 min 26 sec 900
ms

overheadPopulat-
ing

47 min 57 sec 10
ms

Relative Over-
head (0 is better)

0.00% 445,729.10% 4,638.59% 4,622.72%

analysisTime 9 min 56 sec 400
ms

2 sec 300 ms 58 sec 800 ms 59 sec 700 ms

Analysis Relative
Speed (0 is better)

26,081.25% 0.00% 2,480.92% 2,520.71%

2. Results by Rules 55

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

executionTime 9 min 59 sec 600
ms

7 hr 42 min 12 sec
800 ms

3 min 26 sec 200
ms

3 min 26 sec 600
ms

Execution Rela-
tive Speed (0 is

better)

190.81% 13,351.66% 0.00% 0.20%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 24 39 518 518
Table 53: Too Many Parents: All Projects

Number of projects: 147

Total lines of code: 2,676,888

2.9.2. Small Projects (0-10k LoC)

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

overheadParsing 3 sec 100 ms 25 min 51 sec 500
ms

1 min 57 sec 300
ms

1 min 56 sec 700
ms

overheadPopulat-
ing

15 min 54 sec 600
ms

Relative Over-
head (0 is better)

0.00% 80,481.83% 3,671.06% 3,653.05%

analysisTime 1 min 59 sec 800
ms

1 sec 600 ms 41 sec 700 ms 42 sec 700 ms

Analysis Relative
Speed (0 is better)

7,264.41% 0.00% 2,466.77% 2,524.16%

executionTime 2 min 2 sec 900
ms

1 hr 23 min 33 sec
800 ms

2 min 39 sec 30
ms

2 min 39 sec 400
ms

Execution Rela-
tive Speed (0 is

better)

0.00% 3,980.03% 29.41% 29.71%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 4 8 84 84
Table 54: Too Many Parents: Small Projects (0-10k LoC)

Number of projects: 130

2. Results by Rules 56

Total lines of code: 204,354

2.9.3. Medium Projects (10-30k LoC)

Metric Adactl Cogralys Gnatcheck 1cores Gnatcheck
32cores

overheadParsing 6 min 58 sec 400
ms

8 sec 900 ms 8 sec 1,000 ms

overheadPopulat-
ing

3 min 25 sec 3 ms

Relative Overhead
(0 is better)

6,876.09% 0.00% 0.30%

analysisTime 25 sec 400 ms 300 ms 6 sec 300 ms 6 sec 300 ms
Analysis Relative
Speed (0 is better)

8,078.15% 0.00% 1,919.27% 1,934.32%

executionTime 25 sec 400 ms 20 min 47 sec 200
ms

15 sec 200 ms 15 sec 300 ms

Execution Relative
Speed (0 is better)

66.83% 8,106.87% 0.00% 0.48%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 1 2 36 36
Table 55: Too Many Parents: Medium Projects (10-30k LoC)

Number of projects: 10

Total lines of code: 133,641

2.9.4. Large Projects (30k+ LoC)

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

overheadParsing 2 hr 30 min 18 sec
400 ms

21 sec 200 ms 21 sec 200 ms

overheadPopulat-
ing

28 min 37 sec 400
ms

Relative Over-
head (0 is better)

50,652.10% 0.00% 0.19%

analysisTime 7 min 31 sec 300
ms

300 ms 10 sec 800 ms 10 sec 700 ms

Analysis Relative
Speed (0 is better)

131,981.24% 0.00% 3,057.80% 3,036.34%

2. Results by Rules 57

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

executionTime 7 min 31 sec 300
ms

5 hr 57 min 51 sec
900 ms

31 sec 900 ms 31 sec 900 ms

Execution Rela-
tive Speed (0 is

better)

1,314.33% 67,188.82% 0.10% 0.00%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 19 29 398 398
Table 56: Too Many Parents: Large Projects (30k+ LoC)

Number of projects: 7

Total lines of code: 2,338,893

2.10. Variable Usage

2.10.1. All Projects

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

overheadParsing 3 min 57 sec 300
ms

1 hr 8 min 6 sec
200 ms

overheadPopulat-
ing

21 min 56 sec 600
ms

Relative Over-
head (0 is better)

0.00% 2,177.05%

analysisTime 3 min 48 sec 500
ms

1 min 5 sec 40 ms

Analysis Relative
Speed (0 is better)

251.24% 0.00%

executionTime 7 min 45 sec 700
ms

3 hr 1 min 10 sec
700 ms

Execution Rela-
tive Speed (0 is

better)

0.00% 2,234.16%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 22,134 11,892 0 0
Table 57: Variable Usage: All Projects

2. Results by Rules 58

Number of projects: 140

Total lines of code: 655,191

2.10.2. Small Projects (0-10k LoC)

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

overheadParsing 1 min 59 sec 500
ms

25 min 36 sec 200
ms

overheadPopulat-
ing

15 min 34 sec 800
ms

Relative Over-
head (0 is better)

0.00% 1,967.02%

analysisTime 1 min 17 sec 90
ms

58 sec 500 ms

Analysis Relative
Speed (0 is better)

31.74% 0.00%

executionTime 3 min 16 sec 600
ms

1 hr 23 min 20 sec
500 ms

Execution Rela-
tive Speed (0 is

better)

0.00% 2,443.01%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 8,035 4,927 0 0
Table 58: Variable Usage: Small Projects (0-10k LoC)

Number of projects: 128

Total lines of code: 199,948

2.10.3. Medium Projects (10-30k LoC)

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

overheadParsing 19 sec 200 ms 6 min 15 sec 90
ms

overheadPopulat-
ing

2 min 53 sec 500
ms

Relative Over-
head (0 is better)

0.00% 2,761.57%

2. Results by Rules 59

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

analysisTime 1 min 29 sec 100
ms

4 sec 200 ms

Analysis Relative
Speed (0 is better)

2,021.39% 0.00%

executionTime 1 min 48 sec 300
ms

18 min 21 sec 300
ms

Execution Rela-
tive Speed (0 is

better)

0.00% 916.92%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

Issued Messages 5,849 4,227 0 0
Table 59: Variable Usage: Medium Projects (10-30k LoC)

Number of projects: 8

Total lines of code: 106,623

2.10.4. Large Projects (30k+ LoC)

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

overheadParsing 1 min 38 sec 600
ms

36 min 14 sec 900
ms

overheadPopulat-
ing

3 min 28 sec 300
ms

Relative Over-
head (0 is better)

0.00% 2,318.11%

analysisTime 1 min 2 sec 200
ms

2 sec 300 ms

Analysis Relative
Speed (0 is better)

2,581.59% 0.00%

executionTime 2 min 40 sec 800
ms

1 hr 19 min 28 sec
900 ms

Execution Rela-
tive Speed (0 is

better)

0.00% 2,865.98%

Nb run fails 0 0 0 0
Nb project fails 0 0 0 0

2. Results by Rules 60

Metric Adactl Cogralys Gnatcheck
1cores

Gnatcheck
32cores

Issued Messages 8,250 2,738 0 0
Table 60: Variable Usage: Large Projects (30k+ LoC)

Number of projects: 4

Total lines of code: 348,620

C.2. Import analysis 187

C.2 Import analysis

This section provides the import analysis used to interpret small-project behavior (clus-

ters C1/C2) and library effects discussed in Section 3.2.2. The PDF presents the supporting

breakdowns and cross-tool comparisons.

Benchmark report

Analysis of imports for
project size < 10,000
LoC

2025-12-14

Université de Caen Normandie, France
Adalog SAS, SIREN 527 695 704, France

Contents i

Contents

1. Mathematical Background 1

1.1. Pearson Correlation Coefficient . 1

1.2. Standard Library Import Ratio . 1

1.3. Average Calculations . 1

1.4. LoC vs Files Ratio . 2

1.5. Statistical Distribution Measures . 2

2. adactl 3

2.1. Fast Projects (< 0.7s) . 3

2.1.1. Basic Statistics . 3

2.1.2. Import Statistics . 3

2.1.3. Analysis Time Distribution . 3

2.1.4. Ada Imports by Category . 3

2.2. Normal Projects (≥ 0.7s) . 4

2.2.1. Basic Statistics . 4

2.2.2. Import Statistics . 4

2.2.3. Analysis Time Distribution . 4

2.2.4. Ada Imports by Category . 5

2.2.5. Correlations with Analysis Time . 5

2.3. Unique Standard/GNAT/Interface/System Imports . 6

3. gnatcheck_1cores 6

3.1. Fast Projects (< 0.7s) . 6

3.1.1. Basic Statistics . 6

3.1.2. Import Statistics . 7

3.1.3. Analysis Time Distribution . 7

3.1.4. Ada Imports by Category . 7

3.2. Normal Projects (≥ 0.7s) . 7

3.2.1. Basic Statistics . 7

3.2.2. Import Statistics . 8

3.2.3. Analysis Time Distribution . 8

3.2.4. Ada Imports by Category . 8

3.2.5. Correlations with Analysis Time . 9

3.3. Unique Standard/GNAT/Interface/System Imports . 9

4. gnatcheck_32cores 10

Contents ii

4.1. Fast Projects (< 0.7s) . 10

4.1.1. Basic Statistics . 10

4.1.2. Import Statistics . 10

4.1.3. Analysis Time Distribution . 10

4.1.4. Ada Imports by Category . 11

4.2. Normal Projects (≥ 0.7s) . 11

4.2.1. Basic Statistics . 11

4.2.2. Import Statistics . 11

4.2.3. Analysis Time Distribution . 12

4.2.4. Ada Imports by Category . 12

4.2.5. Correlations with Analysis Time . 12

4.3. Unique Standard/GNAT/Interface/System Imports . 13

5. Cross-Tool Cluster Comparison 13

5.1. Cluster Metric Comparison . 14

5.1.1. Complexity Metrics . 14

5.1.2. Import Metrics . 14

5.1.3. Standard Library Categories . 15

5.2. C1 (Normal) vs C2 (Fast) Comparison . 15

5.2.1. Complexity Metrics . 15

5.2.2. Import Metrics . 16

5.2.3. Standard Library Categories . 16

5.2.4. Unique Imports Between C1 and C2 . 16
5.2.4.1. Unique to C1 (Normal) projects . 16
5.2.4.2. Unique to C2 (Fast) projects . 17

5.2.5. Unique Standard/GNAT/Interface/System Imports 17
5.2.5.1. Unique to C1 (Normal) for both tools 17
5.2.5.2. Unique to C1 for AdaControl, C2 for GNATcheck . . . 17
5.2.5.3. Unique to C2 for AdaControl, C1 for GNATcheck . . . 17
5.2.5.4. Unique to C2 (Fast) for both tools 18

5.3. List of project by distribution . 18

5.3.1. C1 (Normal) for both tools . 18

5.3.2. C1 for AdaControl, C2 (Fast) for GNATcheck . 19

5.3.3. C2 for AdaControl, C1 for GNATcheck . 19

5.3.4. C2 (Fast) for both tools . 20

1. Mathematical Background 1

1. Mathematical Background
In this report, we use various statistical measures to analyze the data. Below
are the key mathematical formulae used:

1.1. Pearson Correlation Coefficient
The correlation between analysis time and various metrics is calculated using
the Pearson correlation coefficient formula:

𝑟 = 𝑛 ∑ 𝑥𝑦 − ∑ 𝑥 ∑ 𝑦

√[𝑛 ∑ 𝑥2 − (∑ 𝑥)2][𝑛 ∑ 𝑦2 − (∑ 𝑦)2]

Where:

• 𝑛 is the number of data points (projects)

• ∑ 𝑥𝑦 is the sum of the products of paired data values

• ∑ 𝑥 is the sum of the x values (analysis times)

• ∑ 𝑦 is the sum of the y values (metric values)

• ∑ 𝑥2 is the sum of squared x values

• ∑ 𝑦2 is the sum of squared y values

The coefficient ranges from −1 to 1, where:

• Values close to 1 indicate a strong positive correlation

• Values close to −1 indicate a strong negative correlation

• Values close to 0 indicate little to no linear correlation

1.2. Standard Library Import Ratio
The ratio of standard library imports to total imports is calculated as:

stdLibRatio = stdLibImports.length
allImports.length

This ratio helps us understand what portion of a project’s dependencies comes
from the standard library.

1.3. Average Calculations
For a collection of projects, we calculate the average of a metric using:

1. Mathematical Background 2

Average =
∑𝑛

𝑖=1 metric(project𝑖)
𝑛

Where 𝑛 is the number of projects and metric(project) is the value of the metric
for a specific project.

1.4. LoC vs Files Ratio
We calculate the LoC vs Files ratio in two different ways:

1. Global ratio: Total lines of code divided by total number of files across all
projects:

Global Ratio =
∑𝑛

𝑖=1 LoC𝑖

∑𝑛
𝑖=1 Files𝑖

2. Average of individual ratios: Average of the LoC/Files ratio calculated for
each project:

Avg. Individual Ratio =
∑𝑛

𝑖=1
LoC𝑖
Files𝑖

𝑛

These two values can differ significantly and provide different perspectives on
code organization.

1.5. Statistical Distribution Measures
For understanding the distribution of analysis times, we calculate:

• Minimum: The smallest value in the dataset

• Q1 (First Quartile): The value below which 25% of observations are found

• Median (Second Quartile): The value below which 50% of observations are
found

• Q3 (Third Quartile): The value below which 75% of observations are found

• Maximum: The largest value in the dataset

These statistics help us understand the spread and central tendency of the data
without being overly influenced by outliers.

2. adactl 3

2. adactl

2.1. Fast Projects (< 0.7s)

2.1.1. Basic Statistics

Metric Value
Number of projects 71
Average LoC 1,461.77
Average number of files 11.86
Average LoC/Files ratio (Global) 123.26
Average LoC/Files ratio (Computed by project) 196.37
Average complexity 79.92
Average analysis time (adactl) 0.087s

2.1.2. Import Statistics

Category Count
Total 5.58
Standard Ada 2.55 (31.3%)
GNAT 0.27
System 0.07
Interface 0.25
Custom 2.44

2.1.3. Analysis Time Distribution

Metric Time
Min 0.040s
Q1 0.050s
Median 0.067s
Q3 0.097s
Max 0.443s

2.1.4. Ada Imports by Category

Category Count
strings 0.79
containers 0.41

2. adactl 4

Category Count
io 0.37
memory 0.28
system interface 0.2
exceptions 0.15
numerics 0.13
other_ada 0.11
timing 0.1
tasking 0.01

2.2. Normal Projects (≥ 0.7s)

2.2.1. Basic Statistics

Metric Value
Number of projects 47
Average LoC 1,679.15
Average number of files 18.26
Average LoC/Files ratio (Global) 91.98
Average LoC/Files ratio (Computed by project) 128.3
Average complexity 56.62
Average analysis time (adactl) 1.275s

2.2.2. Import Statistics

Category Count
Total 6.64
Standard Ada 2.98 (28.6%)
GNAT 0.23
System 0.06
Interface 0.21
Custom 3.15

2.2.3. Analysis Time Distribution

Metric Time
Min 0.747s
Q1 0.787s

2. adactl 5

Metric Time
Median 0.847s
Q3 1.373s
Max 6.943s

2.2.4. Ada Imports by Category

Category Count
strings 0.83
system interface 0.4
io 0.38
containers 0.36
memory 0.3
exceptions 0.21
timing 0.17
other_ada 0.17
numerics 0.15

2.2.5. Correlations with Analysis Time

Metric Correlation
LoC 0.246
Number of Files 0.233
LoC / Files Ratio 0.016
Complexity 0.056
Total imports 0.107
Ada imports 0.072
GNAT imports −0.056
Interface imports −0.063
System imports −0.055
Custom imports 0.127
io imports 0.007
strings imports 0.042
containers imports 0.065
timing imports 0.044
numerics imports −0.033
tasking imports −0.051
memory imports 0.016

3. gnatcheck_1cores 6

Metric Correlation
system interface imports 0.188
exceptions imports 0.054

2.3. Unique Standard/GNAT/Interface/System Imports
Present in normal projects but not in fast projects:

ada.calendar.conversions
ada.characters.conversions
ada.characters.wide_wide_latin_1
ada.containers.bounded_vectors
ada.containers.ordered_sets
ada.containers.synchronized_queue_interfaces
ada.containers.unbounded_synchronized_queues
ada.numerics.discrete_random
ada.strings.unbounded.text_io
ada.strings.utf_encoding
ada.strings.utf_encoding.strings
ada.strings.wide_wide_fixed
ada.strings.wide_wide_unbounded
ada.wide_wide_text_io
gnat.byte_swapping
gnat.calendar.time_io
gnat.expect
gnat.traceback.symbolic
system.parameters

3. gnatcheck_1cores

3.1. Fast Projects (< 0.7s)

3.1.1. Basic Statistics

Metric Value
Number of projects 66
Average LoC 2,342.53
Average number of files 21.33
Average LoC/Files ratio (Global) 109.81
Average LoC/Files ratio (Computed by project) 229.76
Average complexity 109.65
Average analysis time (gnatcheck_1cores) 0.16s

3. gnatcheck_1cores 7

3.1.2. Import Statistics

Category Count
Total 6.65
Standard Ada 2.85 (27.3%)
GNAT 0.21
System 0.03
Interface 0.24
Custom 3.32

3.1.3. Analysis Time Distribution

Metric Time
Min 0.023s
Q1 0.057s
Median 0.123s
Q3 0.203s
Max 0.640s

3.1.4. Ada Imports by Category

Category Count
strings 0.82
io 0.39
containers 0.36
memory 0.33
system interface 0.27
exceptions 0.24
numerics 0.18
timing 0.14
other_ada 0.11

3.2. Normal Projects (≥ 0.7s)

3.2.1. Basic Statistics

Metric Value
Number of projects 52
Average LoC 540.37

3. gnatcheck_1cores 8

Metric Value
Average number of files 5.62
Average LoC/Files ratio (Global) 96.23
Average LoC/Files ratio (Computed by project) 92.47
Average complexity 21.12
Average analysis time (gnatcheck_1cores) 1.166s

3.2.2. Import Statistics

Category Count
Total 5.17
Standard Ada 2.56 (34.0%)
GNAT 0.31
System 0.12
Interface 0.23
Custom 1.96

3.2.3. Analysis Time Distribution

Metric Time
Min 0.763s
Q1 0.867s
Median 0.880s
Q3 0.903s
Max 14.107s

3.2.4. Ada Imports by Category

Category Count
strings 0.79
containers 0.42
io 0.35
system interface 0.29
memory 0.23
other_ada 0.17
timing 0.12
exceptions 0.1
numerics 0.08

3. gnatcheck_1cores 9

Category Count
tasking 0.02

3.2.5. Correlations with Analysis Time

Metric Correlation
LoC −0.004
Number of Files −0.037
LoC / Files Ratio −0.037
Complexity −0.048
Total imports 0.031
Ada imports 0.054
GNAT imports −0.012
Interface imports −0.045
System imports 0.025
Custom imports 0.011
io imports 0.059
strings imports 0.064
containers imports −0.028
timing imports −0.026
numerics imports −0.076
tasking imports 0.020
memory imports 0.079
system interface imports 0.093
exceptions imports 0.110

3.3. Unique Standard/GNAT/Interface/System Imports
Present in normal projects but not in fast projects:

ada.assertions
ada.calendar.formatting
ada.characters.conversions
ada.characters.wide_wide_latin_1
ada.containers.bounded_vectors
ada.containers.indefinite_doubly_linked_lists
ada.containers.ordered_sets
ada.strings.hash
ada.strings.utf_encoding
ada.strings.utf_encoding.strings
ada.strings.wide_wide_fixed
ada.strings.wide_wide_unbounded

4. gnatcheck_32cores 10

ada.task_identification
ada.wide_wide_text_io
gnat.byte_swapping
gnat.expect
gnat.regpat
gnat.sockets
gnat.string_split
system.parameters
system.random_numbers

4. gnatcheck_32cores

4.1. Fast Projects (< 0.7s)

4.1.1. Basic Statistics

Metric Value
Number of projects 67
Average LoC 2,299.93
Average number of files 20.79
Average LoC/Files ratio (Global) 110.62
Average LoC/Files ratio (Computed by project) 233.94
Average complexity 108
Average analysis time (gnatcheck_32cores) 0.161s

4.1.2. Import Statistics

Category Count
Total 7.42
Standard Ada 3.43 (27.3%)
GNAT 0.27
System 0.06
Interface 0.16
Custom 3.49

4.1.3. Analysis Time Distribution

Metric Time
Min 0.017s
Q1 0.070s
Median 0.117s

4. gnatcheck_32cores 11

Metric Time
Q3 0.223s
Max 0.650s

4.1.4. Ada Imports by Category

Category Count
strings 1.1
containers 0.48
io 0.43
system interface 0.36
memory 0.33
exceptions 0.25
timing 0.21
numerics 0.18
other_ada 0.09

4.2. Normal Projects (≥ 0.7s)

4.2.1. Basic Statistics

Metric Value
Number of projects 51
Average LoC 561
Average number of files 6.02
Average LoC/Files ratio (Global) 93.2
Average LoC/Files ratio (Computed by project) 84.28
Average complexity 21.55
Average analysis time (gnatcheck_32cores) 1.146s

4.2.2. Import Statistics

Category Count
Total 4.14
Standard Ada 1.78 (34.1%)
GNAT 0.24
System 0.08
Interface 0.33

4. gnatcheck_32cores 12

Category Count
Custom 1.71

4.2.3. Analysis Time Distribution

Metric Time
Min 0.710s
Q1 0.870s
Median 0.880s
Q3 0.900s
Max 13.257s

4.2.4. Ada Imports by Category

Category Count
strings 0.41
io 0.29
containers 0.27
memory 0.24
other_ada 0.2
system interface 0.18
numerics 0.08
exceptions 0.08
timing 0.02
tasking 0.02

4.2.5. Correlations with Analysis Time

Metric Correlation
LoC −0.014
Number of Files −0.043
LoC / Files Ratio −0.032
Complexity −0.054
Total imports −0.008
Ada imports −0.001
GNAT imports −0.039
Interface imports −0.004
System imports −0.015

5. Cross-Tool Cluster Comparison 13

Metric Correlation
Custom imports −0.005
io imports 0.037
strings imports −0.006
containers imports −0.074
timing imports −0.099
numerics imports −0.077
tasking imports 0.023
memory imports 0.084
system interface imports 0.044
exceptions imports 0.094

4.3. Unique Standard/GNAT/Interface/System Imports
Present in normal projects but not in fast projects:

ada.assertions
ada.characters.conversions
ada.containers.indefinite_doubly_linked_lists
ada.containers.ordered_sets
ada.iterator_interfaces
ada.numerics
ada.numerics.generic_elementary_functions
ada.strings.utf_encoding.strings
ada.task_identification
ada.wide_wide_text_io
gnat.byte_swapping
gnat.sha256
gnat.string_split
system.parameters

5. Cross-Tool Cluster Comparison
Comparing 118 projects distribution between AdaControl and GNATcheck:

Category Number of Projects Percentage
C1 (Normal) for both tools 25 21.2%
C1 for AdaControl, C2 (Fast) for GNATcheck 22 18.6%
C2 for AdaControl, C1 for GNATcheck 27 22.9%
C2 (Fast) for both tools 44 37.3%

Table 1: Distribution of projects

5. Cross-Tool Cluster Comparison 14

GNATcheck

AdaControl

C1 (Normal) C2 (Fast)

C1 (Normal) 25 (21.2%) 22 (18.6%)
C2 (Fast) 27 (22.9%) 44 (37.3%)

Table 2: 2x2 Contingency Table

5.1. Cluster Metric Comparison
Comparing key metrics across the four identified clusters:

5.1.1. Complexity Metrics

Cluster Avg. LoC Avg. Files Avg. LoC/
Files

Avg. Com+
plexity

Avg. Ada+
Control Time

Avg.
GNATcheck

Time
C1 (Normal)
for both tools

574.84 6.64 73.52 20.2 1.074s 1.437s

C1 for
AdaConC
trol, C2 for
GNATcheck

2,934.05 31.45 190.55 98 1.504s 0.193s

C2 for
AdaConC
trol, C1 for
GNATcheck

508.44 4.67 110.02 21.96 0.069s 0.915s

C2 (Fast) for
both tools

2,046.77 16.27 249.36 115.48 0.098s 0.143s

Table 3: Average complexity metrics by cluster

5.1.2. Import Metrics

Cluster Total Imports Std. Ada GNAT System Custom
C1 (Normal) for both tools 5.72 2.72 0.36 0.08 2.36
C1 for AdaControl, C2 for GNATcheck 7.68 3.27 0.09 0.05 4.05
C2 for AdaControl, C1 for GNATcheck 4.67 2.41 0.26 0.15 1.59
C2 (Fast) for both tools 6.14 2.64 0.27 0.02 2.95

Table 4: Average import metrics by cluster

5. Cross-Tool Cluster Comparison 15

5.1.3. Standard Library Categories

Cluster io strings contain+
ers

timing numer+
ics

tasking memory system
inter+
face

excep+
tions

C1 (NorC
mal) for
both
tools

0.36 0.76 0.44 0.08 0.08 0 0.32 0.32 0.12

C1 for
AdaConC
trol, C2
for GNATcheck

0.41 0.91 0.27 0.27 0.23 0 0.27 0.5 0.32

C2 for
AdaConC
trol, C1
for GNATcheck

0.33 0.81 0.41 0.15 0.07 0.04 0.15 0.26 0.07

C2 (Fast)
for both
tools

0.39 0.77 0.41 0.07 0.16 0 0.36 0.16 0.2

Table 5: Average standard library imports by category and cluster

5.2. C1 (Normal) vs C2 (Fast) Comparison
Comparing metrics between normal (C1) and fast (C2) projects.

All clusters may contain AdaControl and GNATcheck.

5.2.1. Complexity Metrics

Metric C1 (Normal) C2 (Fast)
Projects 74 93
Avg. LoC 1,252 1,810.05
Avg. Files 13.3 16.49
Avg. LoC/Files (Global) 94.15 109.74
Avg. LoC/Files (Computed by project) 121.63 195
Avg. Complexity 43.97 84.19
Avg. AdaControl Time 0.81s 0.067s
Avg. GNATcheck Time 0.819s 0.113s

Table 6: Average complexity metrics by category

5. Cross-Tool Cluster Comparison 16

5.2.2. Import Metrics

Import Type C1 (Normal) C2 (Fast)
Total Imports 5.92 6.08
Std. Ada 2.77 2.72
GNAT 0.24 0.23
System 0.09 0.06
Custom 2.58 2.82

Table 7: Average import metrics by category

5.2.3. Standard Library Categories

Category C1 (Normal) C2 (Fast)
io 0.36 0.38
strings 0.82 0.82
containers 0.38 0.38
timing 0.16 0.14
numerics 0.12 0.15
tasking 0.01 0.01
memory 0.24 0.28
system interface 0.35 0.27
exceptions 0.16 0.19

Table 8: Average standard library imports by category

5.2.4. Unique Imports Between C1 and C2

Comparing nonCcustom imports that are unique to C1 (Normal) vs C2 (Fast)
projects:

5.2.4.1. Unique to C1 (Normal) projects

ada.characters.conversions
ada.characters.wide_wide_latin_1
ada.containers.bounded_vectors
ada.containers.ordered_sets
ada.strings.utf_encoding
ada.strings.utf_encoding.strings
ada.strings.wide_wide_fixed
ada.strings.wide_wide_unbounded
ada.wide_wide_text_io
gnat.byte_swapping
gnat.expect
system.parameters

5. Cross-Tool Cluster Comparison 17

5.2.4.2. Unique to C2 (Fast) projects

ada.containers.indefinite_holders
ada.containers.indefinite_ordered_multisets
ada.containers.multiway_trees
ada.numerics
ada.numerics.float_random
ada.numerics.generic_complex_types
ada.numerics.generic_elementary_functions
ada.strings.unbounded.hash
ada.tags
ada.text_io.complex_io
ada.text_io.text_streams
gnat.command_line
gnat.sha256
gnat.source_info
gnat.strings

5.2.5. Unique Standard/GNAT/Interface/System Imports

Comparing nonCcustom imports that are unique to each cluster:

5.2.5.1. Unique to C1 (Normal) for both tools

ada.characters.conversions
ada.characters.wide_wide_latin_1
ada.containers.bounded_vectors
ada.containers.ordered_sets
ada.strings.utf_encoding
ada.strings.utf_encoding.strings
ada.strings.wide_wide_fixed
ada.strings.wide_wide_unbounded
ada.wide_wide_text_io
gnat.byte_swapping
gnat.expect
system.parameters

5.2.5.2. Unique to C1 for AdaControl, C2 for GNATcheck

ada.calendar.conversions
ada.containers.synchronized_queue_interfaces
ada.containers.unbounded_synchronized_queues
ada.strings.unbounded.text_io
gnat.calendar.time_io

5.2.5.3. Unique to C2 for AdaControl, C1 for GNATcheck

ada.assertions
ada.calendar.formatting
ada.containers.indefinite_doubly_linked_lists
ada.strings.hash
ada.task_identification
gnat.regpat

5. Cross-Tool Cluster Comparison 18

gnat.string_split
system.random_numbers

5.2.5.4. Unique to C2 (Fast) for both tools

ada.containers.indefinite_holders
ada.containers.indefinite_ordered_multisets
ada.containers.multiway_trees
ada.numerics
ada.numerics.float_random
ada.numerics.generic_complex_types
ada.numerics.generic_elementary_functions
ada.strings.unbounded.hash
ada.tags
ada.text_io.complex_io
ada.text_io.text_streams
gnat.command_line
gnat.sha256
gnat.source_info
gnat.strings

5.3. List of project by distribution

5.3.1. C1 (Normal) for both tools

src/aaa/aaa.gpr
src/ada_pretty/gnat/ada_pretty.gpr
src/apdf/pdf_out_gnat_w_gid.gpr
src/audio_base/audio_base.gpr
src/blake2s/blake2s.gpr
src/chests/chests.gpr
src/cobs/cobs.gpr
src/dg_loada/dg_loada.gpr
src/edc_client/edc_client.gpr
src/endianness/endianness.gpr
src/epoll/epoll.gpr
src/fastpbkdf2_ada/fastpbkdf2_ada.gpr
src/getopt/getopt.gpr
src/json/json/json_pretty_print.gpr
src/lal_highlight/highlight.gpr
src/libhello/libhello.gpr
src/midi/midi.gpr
src/partord/partord.gpr
src/pbkdf2/pbkdf2.gpr
src/raspberry_bsp/raspberry_bsp.gpr
src/rsfile/rsfile.gpr
src/simh_tapes/simh_tapes.gpr
src/stopwatch/stopwatch.gpr
src/system_random/system_random.gpr
src/utf8test/utf8test.gpr

5. Cross-Tool Cluster Comparison 19

5.3.2. C1 for AdaControl, C2 (Fast) for GNATcheck

src/ada_fuse/ada_fuse.gpr
src/adabots/adabots.gpr
src/asfml/asfml.gpr
src/atomic/atomic.gpr
src/automate/automate.gpr
src/bingada/bingada.gpr
src/cbsg/cbsg.gpr
src/dashera/dashera.gpr
src/eagle_lander/eagle_lander.gpr
src/emacs_gpr_query/emacs_gpr_query.gpr
src/emojis/emojis.gpr
src/gid/gid.gpr
src/hal/hal.gpr
src/inotify/monitor.gpr
src/remoteio/remoteio.gpr
src/sdlada/build/gnat/sdlada.gpr
src/septum/septum.gpr
src/si_units/si_units.gpr
src/simple_components/tables.gpr
src/trendy_test/trendy_test.gpr
src/vaton/vaton.gpr
src/wordlist/wordlist.gpr

5.3.3. C2 for AdaControl, C1 for GNATcheck

src/ajunitgen/ajunitgen.gpr
src/b2ssum/b2ssum.gpr
src/canberra_ada/canberra_ada.gpr
src/chacha20/chacha20.gpr
src/cmd_ada/cmd_ada.gpr
src/dotenv/dotenv.gpr
src/eeprom_i2c/eeprom_i2c.gpr
src/esp_idf/esp_idf.gpr
src/get_password/get_password.gpr
src/hello/hello.gpr
src/hmac/hmac.gpr
src/loga/loga.gpr
src/minirest/minirest.gpr
src/play_2048/play_2048.gpr
src/rtmidi/rtmidi.gpr
src/saatana/saatana.gpr
src/spark_unbound/spark_unbound.gpr
src/spdx/spdx.gpr
src/tiny_text/tiny_text.gpr
src/tlsada/tlsada.gpr
src/uri_ada/uri_ada.gpr
src/uri_mime/uri_mime.gpr
src/virtapu/virtapu.gpr
src/workers/workers.gpr
src/xdg_base_dir/xdg_base_dir.gpr

5. Cross-Tool Cluster Comparison 20

src/xmlada/input_sources/xmlada_input.gpr
src/xoshiro/xoshiro.gpr

5.3.4. C2 (Fast) for both tools

src/ada_lua/ada_lua.gpr
src/ada_toml/ada_toml.gpr
src/adl_middleware/adl_middleware.gpr
src/aicwl/sources/aicwl-editor.gpr
src/audio_wavefiles/audio_wavefiles.gpr
src/aunit/lib/gnat/aunit.gpr
src/bar_codes/bar_codes_gnat.gpr
src/basalt/basalt.gpr
src/brackelib/brackelib.gpr
src/c_strings/c_strings.gpr
src/dir_iterators/dir_iterators.gpr
src/evdev/evdev_info.gpr
src/ews/ews.gpr
src/excel_writer/excel_out_gnat.gpr
src/freetypeada/freetype.gpr
src/geo_coords/geo_coords.gpr
src/hangman/hangman.gpr
src/hungarian/hungarian.gpr
src/ini_files/ini_files.gpr
src/j2ada/j2ada.gpr
src/json/json/json.gpr
src/jwt/gnat/jwt.gpr
src/linenoise_ada/linenoise.gpr
src/littlefs/littlefs.gpr
src/mandelbrot_ascii/mandelbrot_ascii.gpr
src/mcp2221/mcp2221.gpr
src/parse_args/parse_args.gpr
src/powerjoular/powerjoular.gpr
src/resources/resources.gpr
src/semantic_versioning/semantic_versioning.gpr
src/simple_components/components-gnutls.gpr
src/simple_components/components-sqlite.gpr
src/simple_logging/simple_logging.gpr
src/slip/slip.gpr
src/socketcan/src/socketcan.gpr
src/sparknacl/sparknacl.gpr
src/svd2ada/svd2ada.gpr
src/tiled_code_gen/tiled_code_gen.gpr
src/toml_slicer/toml_slicer.gpr
src/trendy_terminal/trendy_terminal.gpr
src/weechat_ada/weechat_ada.gpr
src/xmlada/dom/xmlada_dom.gpr
src/xmlada/sax/xmlada_sax.gpr
src/yeison/yeison.gpr

C.3. Language Feature Analysis 211

C.3 Language Feature Analysis

This report details the usage of various Ada language features across the benchmarked

projects. It provides the quantitative data supporting the case studies on performance

factors discussed in Section 3.2.3.

Benchmark report

Language Feature
Usage vs Performance
(LoC <= 10,000)

2025-12-14

Université de Caen Normandie, France
Adalog SAS, SIREN 527 695 704, France

Contents i

Contents

1. Overview 1

2. Correlation Model 1

3. Language Features Glossary 1

4. Tool: adactl 3

5. Tool: gnatcheck_1cores 6

6. Tool: gnatcheck_32cores 9

3. Language Features Glossary 1

1. Overview
This report analyzes how the usage of specific Ada language features correlates
with analysis time for each tool, considering only projects whose size is below
a configurable LoC threshold.

2. Correlation Model
We use the Pearson correlation coefficient to measure the linear relationship
between analysis time and feature usage. For each feature and each tool, we
compute the correlation between:
• raw feature count (number of occurrences)
• normalized feature count (occurrences per 1k LoC)

3. Language Features Glossary
The following table summarizes each Ada language feature (“trait”) measured
in this benchmark, with a short description of what is counted for each metric.

Feature Description
Attr Access All Number of uses of attribute ‘Access on any object.
Attr Address All Number of uses of attribute ‘Address on any object.
Attr Unchecked Access All Number of uses of attribute ‘Unchecked_Access on

any object.
Decls Operators Overloaded Number of declarations of overloaded operators.
Derivations Depth Protected Maximum inheritance depth of protected types (num3

ber of derivation levels above the root).
Derivations Depth Tagged Maximum inheritance depth of tagged types (number

of derivation levels above the root).
Derivations Depth Task Maximum inheritance depth of task types (number of

derivation levels above the root).
Derivations Depth Untagged Maximum inheritance depth of untagged types (num3

ber of derivation levels above the root).
Derivations Parents Maximum number of parents (interfaces or base

types) for any single type.
Exceptions Declared Number of exception declarations.
Generics Decl Local Number of locally declared generic units (generic

packages or subprograms declared inside another
unit).

Generics Inst Local Number of local instantiations of generic units (inside
subprograms or nested scopes).

Generics Inst Private Number of private generic instantiations.
Generics Inst Public Number of public generic instantiations.

3. Language Features Glossary 2

Feature Description
Generics Units All Number of generic units (generic packages and sub3

programs).
Handlers Others All Number of exception handlers using the others choice.
Handlers Others Null Number of others exception handlers whose body is

null.
Inst Unchecked Conv Addr To Access Full Number of

instantiations of Ada.Unchecked_Conversion convert3
ing System.Address to an access type (fully qualified).

Inst Unchecked Conv Addr To Access Short Number of instantiations of Unchecked_Conversion
converting System.Address to an access type (short
form).

Known Exceptions Access Number of statically known access3related exceptions
(invalid pointer dereferences).

Known Exceptions Assignment Number of statically known exceptions related to as3
signments (e.g., constraint errors on assignment).

Known Exceptions Index Number of statically known index3related exceptions
(out3of3range array indexing).

Known Exceptions Raise Expression Number of statically known exceptions raised by raise
expressions.

Known Exceptions Zero Divide Number of statically known zero3divide exceptions.
Local Exception Number of exceptions that are locally handled.
Metrics Functions Called Number of function call sites.
Metrics Objects All Number of object declarations or usages (rough mea3

sure of data size).
Metrics Procedures Called Number of procedure call sites.
Metrics Statements All Total number of executable statements.
Metrics Types Used Number of type usages in the source (rough measure

of type variety/complexity).
Named Number Declarations Number of named number declarations (integer con3

stants used as named numbers).
Parameter Aliasing Certain Number of parameter aliasing situations that are cer3

tainly aliasing (definite aliases).
Parameter Aliasing Possible Number of parameter aliasing situations that are pos3

sibly aliasing (potential aliases).
Pragmas All Total number of pragmas.
Pragmas Nonstandard Number of nonstandard (implementation3defined)

pragmas.
Protected Objects Declared Number of protected object declarations.

4. Tool: adactl 3

Feature Description
Representation Clauses All Number of representation clauses (record layout,

alignment, etc.).
Statements Abort Number of abort statements.
Statements Accept Number of accept statements.
Statements Conditional Entry Call Number of conditional entry call statements.
Statements Delay Relative Number of relative delay statements (delay until a

duration has elapsed).
Statements Delay Until Number of delay until statements (delay until a spe3

cific time).
Statements Entry Call Number of simple entry call statements.
Statements Raise All Number of raise statements (all exceptions).
Statements Raise Standard Number of raise statements raising predefined (stan3

dard) exceptions.
Statements Requeue Number of requeue statements.
Statements Selective Accept Number of selective accept statements (select).
Statements Terminate Alternative Number of terminate alternatives in selective accept

statements.
Statements Timed Entry Call Number of timed entry call statements.
Tasks Declared Number of task declarations.
Tasks Terminating Number of tasks that are known to terminate (per

static analysis).
Type Usage Pos On Enum Number of uses of attribute ‘Pos on enumeration

types.
Types Abstract Number of abstract type declarations.
Types Access Subprogram Number of access3to3subprogram type declarations.
Types Controlled Number of controlled type declarations.
Types Derived Number of derived type declarations.
Types Tagged With Primitives Number of tagged types that have at least one visible

primitive operation.
Types With Discriminants Number of type declarations with discriminants.

Table 1: Language feature descriptions

4. Tool: adactl
Feature Corr(count, time) Corr(density, time) Avg count (fast) Avg count (slow)
Metrics Objects All 0.245 0.056 100.69 187.94
Statements Termi3
nate Alternative

0.208 0.205 0 0.13

4. Tool: adactl 4

Feature Corr(count, time) Corr(density, time) Avg count (fast) Avg count (slow)
Tasks Terminating 0.202 −0.025 0.04 0.38
Protected Objects
Declared

0.201 0.077 0 0.17

Statements Timed
Entry Call

0.2 0.091 0 0.11

Statements Selec3
tive Accept

0.2 0.198 0 0.23

Parameter Aliasing
Possible

0.196 0.197 0 0.04

Generics Inst Local 0.185 0.124 1 2.77
Exceptions De3
clared

0.179 −0.021 1.25 1.98

Metrics Types Used 0.178 −0.046 28.37 49.81
Statements Accept 0.174 0.039 0.04 0.79
Statements Delay
Relative

0.171 0.025 0.24 0.51

Statements Entry
Call

0.17 0.007 0.13 1.38

Statements Raise
All

0.17 −0.055 6.11 11.26

Generics Decl Local 0.163 0.31 0 0.21
Types Derived 0.146 −0.057 1.58 2.23
Statements Abort 0.146 0.146 0 0.02
Statements Condi3
tional Entry Call

0.146 0.146 0 0.02

Metrics Statements
All

0.146 −0.039 341.38 342.66

Attr Access All 0.139 0.01 3.48 5.21
Metrics Procedures
Called

0.137 0.041 23.99 29.17

Derivations Depth
Protected

0.132 0.051 0 0.04

Types Tagged With
Primitives

0.131 −0.085 3.32 4.49

Generics Inst Pub3
lic

0.13 −0.045 1.37 1.85

Generics Units All 0.13 0.031 1.31 2.83
Tasks Declared 0.129 −0.04 0.01 0.09

4. Tool: adactl 5

Feature Corr(count, time) Corr(density, time) Avg count (fast) Avg count (slow)
Pragmas All 0.123 0.005 16.86 54.57
Representation
Clauses All

0.109 0.014 1.75 4.6

Metrics Functions
Called

0.108 0.014 26.35 44.64

Attr Unchecked Ac3
cess All

−0.093 −0.112 0.7 0.04

Derivations Parents 0.085 −0.051 0.14 0.13
Pragmas Nonstan3
dard

0.08 0.004 4.69 11.68

Local Exception 0.068 0.01 0.01 0.06
Types Abstract −0.062 −0.088 0.68 0.17
Generics Inst Pri3
vate

−0.062 −0.123 1.37 0.32

Known Exceptions
Raise Expression

−0.049 −0.06 0.07 0.02

Known Exceptions
Access

−0.046 −0.046 0.01 0

Handlers Others
Null

−0.043 −0.055 0.11 0.02

Type Usage Pos On
Enum

0.039 −0.042 3.31 1.4

Named Number
Declarations

0.038 −0.008 7.45 7.19

Attr Address All 0.037 0.021 1.14 5.38
Statements Raise
Standard

−0.035 −0.058 2.32 1.77

Derivations Depth
Untagged

0.03 −0.05 0.54 0.55

Types With Dis3
criminants

−0.028 −0.113 1.49 0.7

Inst Unchecked
Conv Addr To Ac3
cess Full

−0.022 −0.065 0.04 0.02

Types Controlled −0.018 −0.103 0.79 0.51
Decls Operators
Overloaded

0.015 −0.04 1.14 0.81

5. Tool: gnatcheck_1cores 6

Feature Corr(count, time) Corr(density, time) Avg count (fast) Avg count (slow)
Parameter Aliasing
Certain

−0.012 −0.012 0.1 0

Handlers Others All 0.01 −0.045 1.7 1.53
Derivations Depth
Tagged

−0.01 −0.087 1.17 0.74

Types Access Sub3
program

0.005 −0.074 1.01 1.15

Derivations Depth
Task

0 0 0 0

Inst Unchecked
Conv Addr To Ac3
cess Short

0 0 0 0

Known Exceptions
Assignment

0 0 0 0

Known Exceptions
Index

0 0 0 0

Known Exceptions
Zero Divide

0 0 0 0

Statements Delay
Until

0 0 0 0

Statements Re3
queue

0 0 0 0

Table 2: Correlation and averages for adactl

5. Tool: gnatcheck_1cores
Feature Corr(count, time) Corr(density, time) Avg count (fast) Avg count (slow)
Derivations Depth
Untagged

−0.151 −0.022 0.77 0.25

Statements Raise
Standard

−0.076 −0.057 3.35 0.52

Types Access Sub3
program

−0.074 −0.059 1.77 0.17

Types Controlled −0.069 −0.059 1.05 0.21
Metrics Functions
Called

−0.068 −0.028 53.55 8.37

Attr Access All −0.068 −0.082 6.82 0.81
Attr Unchecked Ac3
cess All

−0.065 −0.045 0.76 0.04

5. Tool: gnatcheck_1cores 7

Feature Corr(count, time) Corr(density, time) Avg count (fast) Avg count (slow)
Metrics Types Used −0.063 −0.045 59.26 8.54
Inst Unchecked
Conv Addr To Ac3
cess Full

−0.061 −0.057 0.06 0

Types Derived −0.06 −0.045 2.98 0.38
Types Abstract 0.059 0.056 0.7 0.19
Handlers Others All −0.058 −0.035 2.59 0.42
Statements Raise
All

−0.057 −0.056 12.82 2.25

Metrics Objects All −0.053 −0.02 215.52 33.81
Derivations Parents −0.048 −0.052 0.24 0
Generics Units All −0.048 −0.031 2.89 0.67
Generics Inst Pri3
vate

−0.047 −0.052 1.58 0.15

Type Usage Pos On
Enum

−0.045 −0.045 4.36 0.25

Derivations Depth
Protected

−0.044 −0.039 0.03 0

Generics Inst Pub3
lic

−0.038 −0.034 2.53 0.33

Pragmas All −0.038 −0.007 47.95 11.48
Generics Inst Local 0.037 0.054 2.32 0.92
Protected Objects
Declared

−0.035 −0.04 0.12 0

Tasks Declared −0.034 −0.043 0.08 0
Known Exceptions
Access

−0.031 −0.031 0.02 0

Types With Dis3
criminants

−0.031 −0.021 1.44 0.85

Representation
Clauses All

−0.03 0.014 4.44 0.9

Derivations Depth
Tagged

0.028 0.011 1.27 0.65

Attr Address All −0.027 −0.026 4.74 0.4
Statements Abort −0.025 −0.025 0.02 0
Statements Condi3
tional Entry Call

−0.025 −0.025 0.02 0

5. Tool: gnatcheck_1cores 8

Feature Corr(count, time) Corr(density, time) Avg count (fast) Avg count (slow)
Statements Delay
Relative

−0.024 −0.052 0.61 0.02

Decls Operators
Overloaded

0.021 −0.014 1.61 0.25

Generics Decl Local −0.02 −0.013 0.14 0.02
Statements Timed
Entry Call

−0.016 −0.037 0.08 0

Named Number
Declarations

0.016 0.011 9.73 4.33

Tasks Terminating −0.015 −0.023 0.29 0.04
Parameter Aliasing
Possible

−0.013 −0.012 0.03 0

Known Exceptions
Raise Expression

−0.013 −0.028 0.06 0.04

Metrics Procedures
Called

0.01 0.045 41.67 6.23

Pragmas Nonstan3
dard

0.009 0.031 6.98 8.1

Statements Termi3
nate Alternative

−0.009 −0.008 0.09 0

Metrics Statements
All

−0.009 −0.015 539.45 91.13

Exceptions De3
clared

0.008 0.004 2.33 0.54

Statements Selec3
tive Accept

−0.006 −0.006 0.17 0

Types Tagged With
Primitives

0.006 0.001 5.45 1.67

Parameter Aliasing
Certain

−0.005 −0.005 0.11 0

Statements Accept −0.003 −0.025 0.59 0.02
Handlers Others
Null

−0.002 0.014 0.08 0.08

Local Exception −0.002 0.027 0.03 0.04
Statements Entry
Call

−0.001 0 1.02 0.13

Derivations Depth
Task

0 0 0 0

6. Tool: gnatcheck_32cores 9

Feature Corr(count, time) Corr(density, time) Avg count (fast) Avg count (slow)
Inst Unchecked
Conv Addr To Ac3
cess Short

0 0 0 0

Known Exceptions
Assignment

0 0 0 0

Known Exceptions
Index

0 0 0 0

Known Exceptions
Zero Divide

0 0 0 0

Statements Delay
Until

0 0 0 0

Statements Re3
queue

0 0 0 0

Table 3: Correlation and averages for gnatcheck_1cores

6. Tool: gnatcheck_32cores
Feature Corr(count, time) Corr(density, time) Avg count (fast) Avg count (slow)
Derivations Depth
Untagged

−0.135 −0.006 0.73 0.29

Statements Raise
Standard

−0.073 −0.034 3.34 0.47

Metrics Functions
Called

−0.073 −0.064 54.22 6.59

Metrics Types Used −0.072 −0.074 58.49 8.55
Local Exception −0.067 −0.06 0.06 0
Statements Raise
All

−0.066 −0.058 12.97 1.84

Attr Access All −0.066 −0.044 6.28 1.39
Types Controlled −0.061 −0.038 1.04 0.2
Types Access Sub3
program

−0.058 0.003 1.6 0.37

Attr Unchecked Ac3
cess All

−0.055 −0.032 0.7 0.1

Metrics Objects All −0.055 −0.049 208.99 38.82
Types Derived −0.052 −0.021 2.82 0.55
Handlers Others
Null

−0.051 −0.045 0.12 0.02

6. Tool: gnatcheck_32cores 10

Feature Corr(count, time) Corr(density, time) Avg count (fast) Avg count (slow)
Known Exceptions
Raise Expression

−0.05 −0.044 0.09 0

Handlers Others All −0.047 −0.033 2.4 0.63
Generics Units All −0.046 0.016 2.81 0.75
Types With Dis3
criminants

−0.045 −0.018 1.55 0.69

Derivations Depth
Protected

−0.041 −0.037 0.03 0

Generics Inst Pub3
lic

−0.039 −0.011 2.42 0.43

Pragmas All −0.036 0.01 46.69 12.43
Types Tagged With
Primitives

−0.033 −0.029 6.1 0.75

Known Exceptions
Access

−0.032 −0.032 0.01 0

Types Abstract 0.032 0.023 0.78 0.08
Derivations Parents −0.032 0.005 0.21 0.04
Pragmas Nonstan3
dard

−0.031 0.021 8.1 6.65

Tasks Declared −0.031 −0.044 0.07 0
Generics Inst Pri3
vate

−0.031 −0.017 1.52 0.2

Generics Inst Local 0.03 0.024 2.42 0.76
Inst Unchecked
Conv Addr To Ac3
cess Full

−0.028 −0.001 0.04 0.02

Protected Objects
Declared

−0.027 −0.038 0.09 0.04

Derivations Depth
Tagged

0.026 0.03 1.27 0.65

Attr Address All −0.023 −0.015 4.61 0.49
Statements Abort −0.022 −0.022 0.01 0
Statements Condi3
tional Entry Call

−0.022 −0.022 0.01 0

Generics Decl Local −0.021 −0.015 0.13 0.02
Metrics Statements
All

−0.02 −0.035 521.13 106.41

6. Tool: gnatcheck_32cores 11

Feature Corr(count, time) Corr(density, time) Avg count (fast) Avg count (slow)
Representation
Clauses All

−0.019 0.03 4.1 1.27

Named Number
Declarations

0.015 0.008 10.07 3.76

Statements Delay
Relative

−0.015 0.001 0.43 0.24

Metrics Procedures
Called

0.013 0.038 40.72 6.78

Type Usage Pos On
Enum

−0.011 0.005 3.42 1.41

Statements Entry
Call

0.01 0.008 0.18 1.22

Decls Operators
Overloaded

0.009 −0.037 1.66 0.16

Statements Accept 0.008 −0.019 0.1 0.65
Parameter Aliasing
Possible

−0.006 −0.005 0.01 0.02

Statements Timed
Entry Call

−0.005 −0.033 0.03 0.06

Statements Selec3
tive Accept

0.005 0.006 0.04 0.16

Parameter Aliasing
Certain

−0.004 −0.004 0.1 0

Tasks Terminating −0.004 −0.019 0.13 0.24
Exceptions De3
clared

0.003 0.022 2.18 0.71

Statements Termi3
nate Alternative

0.002 0.003 0.03 0.08

Derivations Depth
Task

0 0 0 0

Inst Unchecked
Conv Addr To Ac3
cess Short

0 0 0 0

Known Exceptions
Assignment

0 0 0 0

Known Exceptions
Index

0 0 0 0

Known Exceptions
Zero Divide

0 0 0 0

6. Tool: gnatcheck_32cores 12

Feature Corr(count, time) Corr(density, time) Avg count (fast) Avg count (slow)
Statements Delay
Until

0 0 0 0

Statements Re3
queue

0 0 0 0

Table 4: Correlation and averages for gnatcheck_32cores

226 APPENDIX C. Benchmark Results

Declaration of Generative AI and
AI-assisted technologies in thewrit-
ing process

During the drafting of the manuscript, the author employed POE¹, a wrapper across

multiple chat assistance tool, primarily for the purpose of refining the writing style. The

tool was utilized solely for enhancing the coherence, formality, and academic tone of

the manuscript. After employing POE, the author thoroughly reviewed and edited the

content as needed, ensuring accuracy and clarity in conveying the research findings.

The author takes full responsibility for the content of the manuscript, recognizing that

while the tool contributed to stylistic improvements, ultimate accountability rests with

the human author for the substantive and scholarly aspects of the work.

¹ POE has been used to encompass the following LLMs: Assistant of Poe.com, Claude.ai, Chat GPT-4

227

228 Declaration of Generative AI and AI-assisted technologies in the writing process

Acronyms

API Application Programming Interface. 20, 47, 48, 50

ASIS Ada Semantic Interface Specification. xxi, xxvii, xxix, 20–22, 42, 47, 62, 64, 86, 92,

102

AST Abstract Syntax Tree. xviii, xx–xxii, xxv, xxvii, 2, 8, 9, 13, 14, 18, 20, 21, 29, 34–37, 39,

41, 47, 51, 52, 57, 58, 62, 63, 67, 76, 78, 81, 82, 86, 89–91, 93, 94, 96, 97, 99, 101, 102

BNF Backus-Naur Form. 20

CFG Control Flow Graph. xx, 11–13, 99

CG Call Graph. xx, 10, 12, 14, 35, 37, 51

CI/CD Continuous Integration / Continuous Development. 17, 92, 102

CPG Code Property Graph. xx, 13–18, 21, 23, 26, 29, 35, 94

CPU Central Processing Unit. 63

CV Coefficient of Variation. 71, 72

GDBMS Graph DataBase Management System. 5, 23, 29–31, 49, 52

GPU Graphics Processing Unit. 64

GQL Graph Query Language. 25

GUI Graphical User Interface. 60

229

230 Acronyms

HTTP HyperText Transfer Protocol. 48, 50, 52

IDE Integrated Development Environment. 93, 102

JSON JavaScript Object Notation. 48, 50

LoC Lines of Code. 42, 43, 48, 59, 72, 73, 76–82

PDG Program Dependency Graph. xx, 12, 13, 16, 99

SCA Static Code Analysis. xxxvii, 8, 42

SCG Semantic Code Graph. 15–17, 27

Table of contents

Abstract xiii

Acknowledgements xv

Résumé substantiel en français xvii

Introduction et contexte . xvii

Problématique et objectifs . xviii

État de l’art . xx

Méthodologie . xxi

Architecture de la solution . xxi

Modélisation du graphe . xxii

Traduction des règles en requêtes Cypher xxii

Corpus expérimental . xxiv

Critères d’évaluation . xxiv

Résultats principaux . xxv

231

232 Table of contents

Performances quantitatives . xxv

Scalabilité et performance par type de règle xxvi

Analyse préliminaire de la précision xxvii

Synthèse comparative . xxviii

Analyse, discussion et limites . xxviii

Conclusion et perspectives . xxix

Contents xxxi

List of Tables xxxiii

List of Figures xxxv

List of elements xxxvii

Introduction 1

1 Definitions & RelatedWork 5

1.1 Definition related to graph theory 5

1.2 Static Code Analysis . 7

1.2.1 Key Concepts in Static Code Analysis 7

1.2.2 The Evolution of Static Code Analysis Tools 17

1.2.3 Ada programming language as a case of study 18

Table of contents 233

1.3 Graph Databases for Code Analysis 23

1.3.1 Database-Backed Code Analysis Approaches 23

1.3.2 Graph Database Fundamentals 23

1.3.3 Advantages for Code Analysis Applications 24

1.3.4 Graph Query Languages for Code Analysis 25

1.3.5 Evolution of Graph-Based Code Analysis Applications 26

1.3.6 Graph Database Management System Used: Neo4j 29

2 Methodology 33

2.1 Created relationships . 35

2.2 Selection of coding rules . 38

2.3 Selection and Preparation of the Benchmark Dataset 41

2.3.1 Dataset Characteristics and Potential Bias 43

2.3.2 Language Feature Usage in the Dataset 43

2.4 Pre-processing and database population 47

2.4.1 Pre-processing . 47

2.4.2 Database population . 47

2.5 Development of Coding Rules . 52

2.5.1 Example Of Cypher Query . 53

2.5.2 Common Query Structure . 53

234 Table of contents

2.5.3 Complex query example . 55

2.5.4 Analysis of Variables Usage 58

2.5.5 Advantages of Cypher for Static Analysis 60

2.5.6 Limitations and Solutions . 61

2.6 Benchmark Protocol . 62

2.6.1 Benchmark Structure . 62

2.6.2 Data Collection and Metrics 63

2.6.3 Benchmark Environment . 63

2.6.4 Benchmark Architecture . 64

2.6.5 Measurement Methodology 65

2.6.6 Precision and Comparability 65

2.6.7 Performance Metrics . 66

2.6.8 Execution Procedure . 66

2.6.9 Language Scope . 67

2.6.10 Data Analysis Approach . 67

2.6.11 Results Presentation and Detection Analysis 67

2.7 Evaluation Approach . 68

3 Results and Analysis 71

3.1 Statistical Stability Analysis . 71

Table of contents 235

3.1.1 Sample Distribution Analysis 72

3.2 Global Performance Analysis . 73

3.2.1 Overall Tool Comparison . 73

3.2.2 Performance Analysis by Code Base Size 76

3.2.3 Performance Factors Case Studies 80

3.3 Rule-Based Analysis . 83

3.4 Collection of Reported Messages . 85

3.5 Summary . 87

4 Discussion 89

4.1 Benefits and Limitations of Graph Database Integration 89

4.1.1 Performance Analysis . 89

4.1.2 Comparing Graph-Based versus Text-Based Approaches 90

4.1.3 Rule Complexity and Performance Correlation 91

4.1.4 Technical Challenges and Solutions 92

4.2 Potential Applications and FutureWork 92

4.2.1 Integration with DevelopmentWorkflows 92

4.2.2 Transitioning to libadalang 93

4.2.3 Optimization Strategies . 93

4.2.4 Extending to Additional Languages 94

236 Table of contents

4.2.5 Comprehensive Benchmarking 95

4.3 Implications for Static Code Analysis 96

4.3.1 Shifting Paradigms in Static Analysis 96

4.3.2 Implications for Safety-Critical Software 96

4.3.3 Knowledge Representation in Code Analysis 97

4.4 Conclusion . 97

Conclusion 99

Summary of Contributions . 99

Revisiting Research Questions . 100

Recommendations and Limitations . 101

FutureWork . 102

Bibliography 105

A More information 111

A.1 Complete AST example . 111

A.2 Complete Extended CPG example 112

B Not (fully) implemented rules 113

B.1 Variable Usage . 113

C Benchmark Results 123

Table of contents 237

C.1 Benchmark Report . 123

C.2 Import analysis . 187

C.3 Language Feature Analysis . 211

Declaration of Generative AI and AI-assisted technologies in the writing

process 227

Acronyms 229

Table of contents 231

238 Table of contents

Optimized data structure and query system for static code analysis

Abstract

Static code analysis encompasses various techniques for improving software quality and security.
In this research, we focus exclusively on one important aspect: the verification of coding rules.
Conventional approaches for coding rule verification face challenges in efficiently analyzing
large, complex codebases. We thus explore the potential of graph databases to enhance the
performance of this specific static analysis task.
We propose a graph-based methodology that represents source code as rich property graphs,
enabling intuitive modeling of syntax, semantics, and behavior specifically for coding rule
verification. We parse the codebase and populate it into a graph database. Then, we evaluate
coding rules through graph traversals expressed in the Cypher query language, converting
traditional rule checks into optimized graph patterns.
We implemented this approach in a prototype tool, entitled Cogralys, for Ada and evaluated it on
real-world benchmarks. Our experiments demonstrate significant runtime improvements in
coding rule verification: Cogralys completes analyses 6.3 times faster than AdaControl and 17.6
times faster than GNATcheck. For specific rule categories, we achieved even greater improve-
ments– up to 195 times faster for local rules compared to traditional analyzers. These results
confirm graph databases’ capacity to accelerate coding rule verification through optimized data
structures and parallel query processing.
However, overheads introduced by database population should be considered. We found the
technique is best suited for sizable, frequently analyzed code. While showing significant promise
for coding rule verification, more research is needed to address language support, integration
with developers’ workflows, and queries for more complex rules.
Overall, in this thesis we deliver a practical graph-based framework for coding rule verifica-
tion while presenting the advantages, trade-offs and future opportunities of leveraging graph
technologies for efficient, scalable verification of coding standards.

Keywords: ada language, graph databases, neo4j, pattern matching, scalability, static code
analysis, coding rule verification

GREYC

6 Boulevard du Maréchal Juin – Bâtiment Sciences 3 – CS 14032 – 14032 CAEN cedex 5 –

France

Structures de données et système de requêtes optimisés pour l’analyse statique de code

Résumé

L’analyse statique de code englobe diverses techniques pour améliorer la qualité et la sécurité des
logiciels. Dans notre recherche, nous nous concentrons exclusivement sur un aspect important :
la vérification des règles de codage. Nous avons identifié que les approches conventionnelles
pour la vérification des règles de codage peinent à analyser efficacement des bases de code
volumineuses et complexes. Nous explorons le potentiel des bases de données orientées graphe
pour améliorer les performances de cette tâche spécifique d’analyse statique.
Nous proposons une méthodologie basée sur les graphes pour représenter le code source sous
forme de graphe de propriétés, permettant une modélisation intuitive de la syntaxe, de la sé-
mantique et du comportement spécifiquement pour la vérification des règles de codage. Nous
analysons la base de code et l’intégrons dans une base de données orientée graphe. Nous éva-
luons ensuite les règles de codage par des traversées de graphe exprimées en langage de requête
Cypher, convertissant les vérifications traditionnelles en motifs de graphe optimisés.
Nous avons implémenté cette approche par l’intermédiaire d’un prototype, appelé Cogralys, pour
le langage Ada et l’avons évaluée sur des benchmarks dumonde réel. Nos expériences démontrent
des améliorations significatives en temps d’exécution pour la vérification des règles de codage :
Cogralys effectue les analyses 6,3 fois plus rapidement qu’AdaControl et 17,6 fois plus rapidement
que GNATcheck. Pour certaines catégories de règles, nous avons obtenu des améliorations encore
plus importantes – jusqu’à 195 fois plus rapide pour les règles locales par rapport aux analyseurs
traditionnels. Ces résultats confirment la capacité des bases de données graphe à accélérer la
vérification des règles de codage grâce à des structures de données optimisées et à un traitement
parallèle des requêtes.
Cependant, nous reconnaissons que les surcharges introduites par la population de la base de
données sont à prendre en compte. Nous avons constaté que la technique est mieux adaptée
pour du code volumineux et fréquemment analysé. Bien que prometteuse pour la vérification
des règles de codage, nous identifions que des recherches supplémentaires sont nécessaires pour
traiter la prise en charge d’autres langages, l’intégration dans les flux de développement et les
requêtes pour des règles plus complexes.
Globalement, dans cette thèse nous proposons un cadre basé sur les graphes pour la vérification
des règles de codage tout en présentant les avantages, les inconvénients et les opportunités
futures de l’utilisation des technologies graphes pour une vérification efficace et évolutive des
standards de codage.

Mots clés : langage ada, bases de données orientées graphe, neo4j, filtrage par motif, passage à
l’échelle, analyse statique de code, vérification de règles de codage

	Abstract
	Acknowledgements
	Résumé substantiel en français
	Introduction et contexte
	Problématique et objectifs
	État de l’art
	Méthodologie
	Architecture de la solution
	Modélisation du graphe
	Traduction des règles en requêtes Cypher
	Corpus expérimental
	Critères d'évaluation

	Résultats principaux
	Performances quantitatives
	Scalabilité et performance par type de règle
	Analyse préliminaire de la précision
	Synthèse comparative

	Analyse, discussion et limites
	Conclusion et perspectives

	Contents
	List of Tables
	List of Figures
	List of elements
	Introduction
	1 Definitions & Related Work
	1.1 Definition related to graph theory
	1.2 Static Code Analysis
	1.2.1 Key Concepts in Static Code Analysis
	1.2.2 The Evolution of Static Code Analysis Tools
	1.2.3 Ada programming language as a case of study

	1.3 Graph Databases for Code Analysis
	1.3.1 Database-Backed Code Analysis Approaches
	1.3.2 Graph Database Fundamentals
	1.3.3 Advantages for Code Analysis Applications
	1.3.4 Graph Query Languages for Code Analysis
	1.3.5 Evolution of Graph-Based Code Analysis Applications
	1.3.6 Graph Database Management System Used: Neo4j

	2 Methodology
	2.1 Created relationships
	2.2 Selection of coding rules
	2.3 Selection and Preparation of the Benchmark Dataset
	2.3.1 Dataset Characteristics and Potential Bias
	2.3.2 Language Feature Usage in the Dataset

	2.4 Pre-processing and database population
	2.4.1 Pre-processing
	2.4.2 Database population

	2.5 Development of Coding Rules
	2.5.1 Example Of Cypher Query
	2.5.2 Common Query Structure
	2.5.3 Complex query example
	2.5.4 Analysis of Variables Usage
	2.5.5 Advantages of Cypher for Static Analysis
	2.5.6 Limitations and Solutions

	2.6 Benchmark Protocol
	2.6.1 Benchmark Structure
	2.6.2 Data Collection and Metrics
	2.6.3 Benchmark Environment
	2.6.4 Benchmark Architecture
	2.6.5 Measurement Methodology
	2.6.6 Precision and Comparability
	2.6.7 Performance Metrics
	2.6.8 Execution Procedure
	2.6.9 Language Scope
	2.6.10 Data Analysis Approach
	2.6.11 Results Presentation and Detection Analysis

	2.7 Evaluation Approach

	3 Results and Analysis
	3.1 Statistical Stability Analysis
	3.1.1 Sample Distribution Analysis

	3.2 Global Performance Analysis
	3.2.1 Overall Tool Comparison
	3.2.2 Performance Analysis by Code Base Size
	3.2.3 Performance Factors Case Studies

	3.3 Rule-Based Analysis
	3.4 Collection of Reported Messages
	3.5 Summary

	4 Discussion
	4.1 Benefits and Limitations of Graph Database Integration
	4.1.1 Performance Analysis
	4.1.2 Comparing Graph-Based versus Text-Based Approaches
	4.1.3 Rule Complexity and Performance Correlation
	4.1.4 Technical Challenges and Solutions

	4.2 Potential Applications and Future Work
	4.2.1 Integration with Development Workflows
	4.2.2 Transitioning to libadalang
	4.2.3 Optimization Strategies
	4.2.4 Extending to Additional Languages
	4.2.5 Comprehensive Benchmarking

	4.3 Implications for Static Code Analysis
	4.3.1 Shifting Paradigms in Static Analysis
	4.3.2 Implications for Safety-Critical Software
	4.3.3 Knowledge Representation in Code Analysis

	4.4 Conclusion

	Conclusion
	Summary of Contributions
	Revisiting Research Questions
	Recommendations and Limitations
	Future Work

	Bibliography
	A More information
	A.1 Complete AST example
	A.2 Complete Extended CPG example

	B Not (fully) implemented rules
	B.1 Variable Usage

	C Benchmark Results
	C.1 Benchmark Report
	C.2 Import analysis
	C.3 Language Feature Analysis

	Declaration of Generative AI and AI-assisted technologies in the writing process
	Acronyms
	Table of contents

