Multiplicative ergodicity of Laplace transforms for additive functional of Markov chains - IPS
Article Dans Une Revue ESAIM: Probability and Statistics Année : 2019

Multiplicative ergodicity of Laplace transforms for additive functional of Markov chains

Loïc Hervé
  • Fonction : Auteur
  • PersonId : 942841
Sana Louhichi

Résumé

This article is motivated by the quantitative study of the exponential growth of Markov-driven bifurcating processes [see Hervé et al., ESAIM: PS 23 (2019) 584–606]. In this respect, a key property is the multiplicative ergodicity, which deals with the asymptotic behaviour of some Laplace-type transform of nonnegative additive functional of a Markov chain. We establish a spectral version of this multiplicative ergodicity property in a general framework. Our approach is based on the use of the operator perturbation method. We apply our general results to two examples of Markov chains, including linear autoregressive models. In these two examples the operator-type assumptions reduce to some expected finite moment conditions on the functional (no exponential moment conditions are assumed in this work).
Fichier principal
Vignette du fichier
mitosis170413.pdf (554.38 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02317232 , version 1 (03-10-2024)

Identifiants

Citer

Loïc Hervé, Sana Louhichi, Françoise Pene. Multiplicative ergodicity of Laplace transforms for additive functional of Markov chains. ESAIM: Probability and Statistics, 2019, 23, pp.607-637. ⟨10.1051/ps/2019003⟩. ⟨hal-02317232⟩
113 Consultations
15 Téléchargements

Altmetric

Partager

More